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Abstract

This thesis consists of two parts. In the first part, we study the cohomology of a compact Kahler
manifold with values in a pseudo-effective line bundle. This part also describes various results concerning
pseudo-effective vector bundles. Since several of our definitions do not require the use of a Kéhler metric,
the corresponding results also apply to general compact complex manifolds. The second part of the thesis
concentrates on finding adequate definitions of Chern classes (or equivalently, of Chern characteristic classes)
in Bott-Chern cohomology with rational coefficients. A related intersection theory is developed for that
purpose in the context of integral Bott-Chern cohomology.

The organisation of the thesis is as follows. In Chapter 2, we improve the hard Lefschetz theorem
obtained by Demailly, Peternell and Schneider, and discuss the optimality of the resulting statement. We
show in particular that the holomorphic sections constructed in this result are in fact parallel with respect
to the given positive singular metrics. A consequence of this property is the existence of naturally related
holomorphics foliations.

In Chapter 3, we study the numerical dimension of a pseudo-effective line bundle over a compact Kahler
manifold, and, in the framework of L? estimates, we obtain vanishing theorems analogous to those of Fedor
Bogomolov and Junyan Cao, expressed in terms of numerical dimension.

In Chapter 4, we introduce the definition of nefness in higher codimension, a concept that interpolates
between usual nefness and pseudo-effectivity. In this setting, we give a simplified proof of a result of
Nakayama on the non-existence of Zariski decompositions in dimension at least 3. We also state a variant of
the Bogomolov theorem and study the surjectivity of the Albanese map of a compact Kéhler manifold when
the anticanonical line bundle is pseudo-effective.

Chapter 5 discusses the concept of strongly pseudo-effective vector bundle or torsion-free sheaf, and
proves the result that a strongly pseudo-effective reflexive sheaf with vanishing first Chern class over a
compact Kahler manifold is in fact a numerically flat vector bundle.

In Chapter 6, following some ideas of Julien Grivaux, we construct an intersection theory for the integral
Bott-Chern cohomology that had been defined in 2007 by Michel Schweitzer. A combination of these works
allows us to define Chern classes and to obtain a Riemann-Roch-Grothendieck formula in rational Bott-Chern
cohomology.






Résumé

Cette thése comporte deux parties. Dans la premiére partie, nous étudions la cohomologie des variétés
k&hleriennes compactes & valeurs dans un fibré en droites pseudo-effectif, et également différents résultats con-
cernant les fibrés vectoriels pseudo-effectifs. Comme certaines de nos définitions ne nécessitent pas l’existence
de métriques kithleriennes, les résultats correspondents s’appliquent aussi aux variétés complexes compactes
arbitraires. Dans la seconde partie, nous nous attachons & trouver une définition appropriée des classes de
Chern (ou, de fagon équivalente, des classes de Chern caractéristiques) pour la cohomologie de Bott-Chern
A coefficients rationnels. Nous développons parallélement une théorie de I'intersection dans le contexte de la
cohomologie de Bott-Chern entiére.

L’organisation de la thése est la suivante. Dans le Chapitre 2, nous améliorons le théoréme de Lefschetz
difficile & valeurs dans un fibré en droites démontré par Demailly, Peternell et Schneider, et discutons
I'optimalité de I’énoncé qui en découle. Nous montrons en particulier que les sections holomorphes construites
dans ce résultat sont en fait paralléles par rapport & la métrique singuliére donnée. Une conséquence de cette
propriété est l'existence de feuilletages holomorphes naturellement reliés.

Dans le Chapitre 3, nous étudions la dimension numérique d’un fibré en droites pseudo-effectif sur une
variété kihlerienne compacte, et, dans le cadre des estimations L2, nous obtenons des théorémes d’annulation
analogues a ceux de Fedor Bogomolov et de Junyan Cao, exprimés en termes de la dimension numeérique.

Dans le Chapitre 4, nous introduisons la définition du concept de fibré en droites “nef en dimension
supérieure”, qui interpole entre la propriété nef usuelle et la pseudo-effectivité. Dans ce contexte, nous
donnons une preuve simpliée d’un résultat de Nakayama sur la non-existence de décompositions de Zariski
en dimension au moins 3. Nous énongons aussi une variante du théoréme d’annulation de Bogomolov
et étudions la surjectivité du morphisme d’Albanese d’une variété kihlerienne compacte dont le diviseur
anticanonique est pseudo-effectif.

Le Chapitre 5 propose une discussion de la notion de fibré vectoriel ou de faisceau sans torsion pseudo-
effectif (au sens fort). Nous montrons qu’un faisceau réflexif pseudo-effectif au sens fort sur une variété
kihlerienne compacte ayant une premiére classe de Chern triviale est en fait numériquement, plat.

Dans le Chapitre 6, en nous inspirant d’idées de Julien Grivaux, nous construisons une théorie de
Iintersection pour la cohomologie de Bott-Chern entiére, qui avait été introduite en 2007 par Michel
Schweitzer. Une combinaison de ces travaux nous permet de définir les classes de Chern et d’obtenir une
formule de Riemann-Roch-Grothendieck en cohomologie de Bott-Chern rationnelle.
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Introduction (Frangais)



0.1. Un peu d’histoire

Un siécle apres les travaux révolutionnaires de Riemann sur les surfaces de Riemann, les progrés généraux
en géométrie différentielle et en analyse globale sur les variétés ont abouti & des avancées majeures dans la
théorie des variétés algébriques et analytiques de dimension arbitraire. Dans ce contexte, I'un des résultats
les plus fondamentaux obtenu dans les années 1950 est le théoréme d’annulation de Kodaira pour les fibré
en droites positifs, qui est une conséquence profonde de la technique de Bochner et de la théorie des formes
harmoniques initiée par Hodge dans les années 1940. Cette approche a permis & Kodaira d’obtenir son
fameux théoréme de plongement, qui est une vaste généralisation du critére de Riemann caractérisant les
variétés abéliennes.

Pour expliquer comment les techniques analytiques modernes sont mises en jeu, nous rappelons ici
briévement ’argument de Kodaira. Le théoréme de plongement caractérise les variétés projectives comme
suit.

THEOREME 0.1.1. (Critére de Kodaira)

Soit X une variété kihlerienne compacte. Alors X est projective si et seulement s’il existe une métrique
kdhlerienne w dont la classe de cohomologie est image d’une classe entiére par le morphisme d’inclusion
H?*(X,7) — H*(X,R).

D’une facon équivalente, une variété complexe compacte est projective si et seulement si dans [’espace
H?(X,R), le cone de Kibhler, c’est-a-dire le come convere ouvert engendré par les formes kdihleriennes,
contient un point rationnel (un élément de H*(X,Q)).

Si une variété est projective, la restriction de la métrique de Fubini-Study est une forme kihlerienne
de classe entiére dans le cone de Kahler. Le point essentiel est de montrer la réciproque. La méthode de
Kodaira pour la démontrer est basée sur le théoréme d’annulation suivant.

THEOREME 0.1.2. (Théoréme d’annulation de Kodaira)
Si L est un fibré en droites positif sur une variété complexe compacte X (c’est-a-dire, s’il existe une
métrique lisse h sur L telle que i©(L,h) > 0), alors pour ¢ > 1,

HY(X,Kx ®L) = 0.

L’argument utilisé par Kodaira pour déduire le théoréme de plongement du théoréme d’annulation est
le suivant : on montre 'existence de suffisamment de sections pour plonger la variété dans l’espace projectif.
Plus précisément, on considére 'application de Kodaira pour m suffisamment grand

X — P(H°(X, L®™))
z— {se H°(X,L®™)|s(x) = 0}.
On montre que pour m suffisamment grand, I’application de Kodaira donne le plongement. Pour donner
une idée de la preuve, montrons que 'application de Kodaira est un morphisme pour m suffisamment grand,
ce qui est équivalent & montrer que pour tout = € X, la restriction H°(X,L®™) — L ® Ox . /m, est
surjective, ot 'on a noté m, l'idéal maximal de Ox , en x. Considérons I’éclatement  : X — X de X en z,
et désignons par E le diviseur exceptionnel. La suite exacte courte

0— O(-E)@n*Le™ — n* L& — r*[O™|p — 0
induit la suite exacte longue
HO(X,7*L®™) =~ HO(X, L®™) - H(E,7*L®™|p) = L®™ ® Ox ,/m, — H'(X,0(—E) @ 7*L&™).
D’aprés le théoréme d’annulation de Kodaira, on a
HY(X,0(-E)®n*L®™) = 0

pour m suffisamment grand. Ceci démontre la surjectivité. Ceci correspond a la preuve que L®™ est sans
point base pour m suffisamment grand. On voit ainsi apparaitre un de problémes centraux de la géométrie
complexe : construire des sections holomorphes vérifiant des propriétés supplémentaires particuliéres.

De nouveaux développements de la technique de Bochner, notamment entre les mains de Kohn, Andreotti-
Vesentini et Hérmander, ont conduit dix ans aprés Kodaira a la théorie des estimations de L? pour I'opérateur
de Cauchy-Riemann. Ces généralisations permettent non seulement d’améliorer ou de généraliser les théorémes
d’annulation, mais, et c’est peut-étre plus important encore, fournissent des informations nature quantitative
pour les solutions des équations du type du = v. Par exemple, on peut “forcer” les zéros d’une solution d’une
équation 0u = v par le choix d’un poids plurisousharmonique singulier.

Une facon de généraliser les résultats de Kodaira est ainsi d’étudier des théorémes d’annulation dans
le contexte des métriques singuliéres positives, par exemple dans la direction du théoréme d’annulation de
Demailly-Nadel. Rappelons quelques définitions élémentaires sur les métriques singuliéres positives.
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DEFINITION 0.1.1. (Courants positifs)
D’apres [Lel57], un courant © de bidimension (p,p) est dit (faiblement) positif si pour chaque choiz de
(1,0)-formes lisses a,--- ,ap sur X, la distribution

O Al AT A - Aty AT

est une mesure positive.
Pour tout (1,1)-courant T et toute (1,1)-forme lisse o, nous disons T > « au sens des courants si T — «
est un courant positif.

DEFINITION 0.1.2. (Fonction plurisousharmonique = psh / quasi-psh)

Soit X une variété complexe (pas nécessairement compacte). On dit que @ est une fonction psh (resp.
une fonction quasi-psh) sur X, si on a id0p = 0 au sens des courants (resp. i00p = o), ol v est une forme
lisse sur X. On dit qu’une fonction quasi-psh ¢ a des singularités analytiques, si localement ¢ est de la
forme

#(2) = clog( Y 1g:l?) + 0(1)
ot ¢ > 0 et (g;) sont des fonctions holomorphes locales, et ot O(1) signifie un terme localement borné.

Le singularité d’une métrique peut étre appréhendée au moyen du faisceau d’idéaux multiplicateurs
introduit par Nadel [Nad89]. En particulier, si la métrique est lisse, le faisceau d’idéaux multiplicateurs est
trivial (c’est-a-dire, égal & Ox).

DEFINITION 0.1.3. (Faisceau d’idéaux multiplicateurs)
Soit ¢ une fonction quasi-psh. Le faisceau d’idéauz multiplicateurs Z(p) est défini par

I(p)e = {f € OX,zHUraJ If|e2% < oo}

ou U, désigne un voisinage ouvert de x dans X.
Pour une métrique singuliére h (c’est-a-dire dont le poids local ¢ est dans Llloc), on définit localement
le faisceau d’idéauz multiplicateurs Z(h) comme le faisceau d’idéaux multiplicateurs de .

Le faisceau d’idéaux multiplicateurs intervient dans le théoréme d’annulation fondamental suivant :

THEOREME 0.1.3. (Théoréme d’annulation de Demailly-Nadel)( [Nad89], [Dem93])

Soit (X,w) une variété kahlérienne faiblement pseudoconvexe, et E un fibré en droites holomorphe sur
X muni d’une métrique hermitienne h singuliére de poids . Supposons qu’il existe une fonction continue
positive € sur X telle que la courbure satisfasse l’inégalité

iO(E,h) = ew
au sens des courants (on dit que L est gros). Alors
HI(X,O(Kx®FE)®Z(h)) =0
pour tout g = 1.

C’est une situation géométrique fréquente que la courbure d’une métrique singuliére puisse « dégénérer »
dans certaines directions. Cela conduit au concept de dimension numérique, qui, grosso modo, compte le
nombre de «directions positives» au point générique. Un probléme ouvert important en géométrie com-
plexe, qui va largement au dela des résultats de Kodaira, est la conjecture d’abondance. Celle-ci prédit la
croissance de la dimension des sections pluricanoniques (c’est-a-dire les sections de mKx ou Kx est le fibré
en droites canonique) par rapport a I’exposant m, asymptotiquement, en termes de la dimension numérique.
En particulier, dans cette conjecture, toute hypothése de positivité stricte est abandonnée. Ceci améne &
considérer plutot les cones fermés de classes positives et les classes se situant & la frontiére. Deux cone
positifs fermés importants interviennent ici : les cones nef et pseudo-effectif (psef).

Pour plus de généralité, notamment lorsque les variétés considérées ne sont pas kihleriennes, nous
travaillerons dans cette thése avec des classes prises au sens de la cohomologie de Bott-Chern complexe.
Rappelons que la cohomologie Bott-Chern complexe de X est définie par

H2L(X,C) = {(p, q)-formes d-fermées}/{(p, q)-formes do-exactes }.

DEFINITION 0.1.4. (Fibré en droites psef)

Soit L un fibré en droites holomorphe sur une variété complexe compacte X. On dit que L est pseudo-
effective (en abrégé, psef) sici(L) € H,é,’é(X, C) est la classe de cohomologie d’un courant positif fermé T, ou,
de fagcon équivalente, si L peut étre équipé d’une métrique hermitienne singuliére h telle que T' = %GLJL =0
au sens des courants.



Une classe de cohomologie o € H}g’é(X, C) est dite pseudo-effective (psef) si elle contient un courant
positif.

Une fagon usuelle de construire une métrique singuliére est d’utiliser des sections globales du fibré en
droites. Par exemple, on a la formule de Lelong-Poincaré suivante : soit f € H°(X, Ox) une fonction holo-
morphe non nulle, Zy = >\ m;Z;,m; € N, le diviseur zéro de f et [Z¢] = >, m;[Z;] le courant d’intégration
associé au diviseur zéro. Alors )

1 —

 datog | = (2]
Si f est une section globale non nulle & valeurs dans un fibré en droites L, la méme formule donne un courant
positif représentant la premiére classe de Chern ¢ (L).

Une autre méthode puissante permettant de construire des métriques singuliéres & la limite repose sur
I’utilisation de ’équation de Monge-Ampére. On peut ainsi construire une suite de métriques dont la masse

se concentre de plus en plus au voisinage d’un ensemble analytique donné, par une application du théoréme
de Calabi-Yau [Yau78| (le cas Kéhler-Einstein avec ¢;(X) < 0 étant di & Aubin).

THEOREME 0.1.4. (Yau) Soit (X,w) une variété kihlerienne compacte de dimension n. Alors pour toute
forme volume lisse f > 0 satisfaisant SX f= SX w™, il existe une métrique kahlerienne ® = w + 100p telle
que W™ = f.

On peut citer [Mou98|, [DP03], [DP04] parmi les travaux utilisant ce cercle d’idées. Une autre
technique utile consiste a utiliser des métriques Hermite-Einstein pour les fibrés vectoriels stables E sur une
variété Kéhlerienne compacte (X, w). Rappelons qu'une métrique Hermite-Einstein est une métrique telle
que AiO(F) = cldg ou A est 'adjoint de w A o, et ol ¢ est une constante. L’existence de telles métriques a
été prouvée par [Don85], [UY86], [BS94].

Un autre cone important est le cone nef. La définition relative au cas non algébrique a été introduite
dans [DPS94].

DEFINITION 0.1.5. (fibré en droites nef)

Un fibré en droites L sur une variété complexe compacte X est dit nef si pour tout € > 0, il existe une
métrique hermitienne lisse he sur L telle que i©r, . > —cw ot w est une métrique hermitienne lisse.

Une classe de cohomologie a € H}B’é(X, C) est dite nef si pour toute € > 0, il existe un représentant lisse
ae € a tel que o, = —cw, ol w est une métrique hermitienne lisse.

De maniére générale, il est intéressant d’étudier les cones positifs associés & des variétés complexes
compactes et de les relier & la géométrie de la variété. Leur importance se réflete déja dans les diverses
reformulations ou généralisations du théoréme de plongement de Kodaira. Pour le cas non algébrique, un tel
énonceé est donné dans [DP04] : une variété complexe compacte X contient un courant kihlerien (& savoir
un courant 7' e HY1(X,R) tel que T' > w pour une certaine forme hermitienne lisse w), si et seulement si
elle est biméromorphe & une variété kihlerienne. Dans la situation algébrique, on a le théoréme d’annulation
de Kawamata-Viehweg.

THEOREME 0.1.5. (Théoréme d’annulation de Kawamata-Viehweg)

Soit X une variété algébrique projective lisse et soit F un fibré en droites sur X tel que F posséde un
multiple mE s’ écrivant sous la forme mE = L+ D ou L est un fibré en droites nef, et D un diviseur effectif.
Alors

HYX,0(Kx + F)®Z(m™'D)) =0
pour ¢ =n —nd(L) + 1.

Un cas particulier du théoréme d’annulation de Kawamata-Viehweg est le suivant. Si F' est un fibré en
droites nef, alors
HY(X,OKx +F))=0
pour ¢ = n —nd(F) + 1. Dans le théoréme, nd(L) désigne la dimension numérique du fibré en droites nef.
Dans ce cas, elle est définie par

nd(L) = max{p € [0,n]; (c1(L))? # 0}.

Un autre outil fondamental de la géométrie complexe est la formule de Riemann-Roch-Hirzebruch. Elle
calcule entre autres la caractéristique d’Euler du produit tensoriel d’un fibré en droites en termes de nombres
d’intersection mettant en jeu les classes de Chern du fibré en droites et du fibré tangent de la variété. Si un
fibré en droites donné est supposé posséder une métrique de courbure strictement positive (par exemple, si le
fibré en droites est nef et gros), le théoréme d’annulation de Kawamata-Viehweg implique que les groupes de
cohomologie de degré supérieur a valeurs dans les puissances tensorielles élevées du fibré en droites tordu par
le fibré en droites canonique seront triviaux — aprés avoir pris le produit tensoriel avec le faisceau d’idéaux
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multiplicateurs ad hoc. Dans ce cas, la formule de Riemann-Roch-Hirzebruch prédit la croissance des sections
globales du produit tensoriel d’un fibré en droites. En particulier, si le fibré en droites L est nef et gros, on
a une croissance maximale des sections globales de L®™ par rapport a m, et des groupes de cohomologie
supérieurs triviaux pour m suffisamment grand.

En géométrie complexe, les classes de Chern peuvent étre définies et déclinées suivant différentes théories
cohomologiques : cohomologie singuliére, cohomologie de De Rham, cohomologie de Dolbeault, cohomologie
de Deligne, cohomologie de Bott-Chern complexe, etc. D’aprés les travaux de Michel Schweitzer [Sch07],
il existe une théorie cohomologique plus précise que toutes les théories précédemment citées, a savoir la
cohomologie de Bott-Chern a coefficients entiers. On veut dire par 1a qu’il existe des morphismes naturels
de la cohomologie de Bott-Chern entiére vers toutes ces autres théories cohomologiques.

C’est donc une question naturelle de savoir si l'on peut généraliser la formule de Riemann-Roch-
Hirzebruch et définir les classes de Chern pour un faisceau cohérent sur une variété complexe compacte
en cohomologie de Bott-Chern rationnelle.

Une difficulté, mise en évidence par un résultat frappant de C. Voisin [Voi02a], réside dans le fait que
sur une variété complexe compacte arbitraire (méme supposée kihlerienne), une résolution d’un faisceau
cohérent par des fibrés vectoriels n’existe pas nécessairement. Autrement dit, sur une variété complexe
compacte quelconque, le groupe de Grothendieck des fibrés vectoriels n’est pas isomorphe au groupe de
Grothendieck des faisceaux cohérents, méme si c’est le cas pour une variété projective. Il nous faudra
cependant donner un sens a la classe de Chern des images directes des faisceaux cohérents dans la formule
de Riemann-Roch-Grothendieck. Il s’ensuit que la définition des classes Chern des faisceaux cohérents sur
des variétés complexes compactes est beaucoup plus intriquée que dans le cas algébrique. Les résultats que
nous avons pu obtenir dans cette direction sont exposés dans la derniére partie de cette thése.

0.2. Un résumé des principaux résultats

Le théoréme d’annulation de Demailly-Nadel implique que dans le cadre des métriques singuliéres, la
positivité d’un fibré en droites entraine des contraintes importantes sur les groupes de cohomologie.

La majeure partie de cette thése portera sur les conséquences de l'existence de métriques positives
singuliéres sur les groupes de cohomologie des fibrés vectoriels ou la structure géométriques des variétés
mises en jeu.

Dans la derniére partie de la thése, nous discutons de la construction des classes de Chern et de ’énoncé
de la formule de Riemann-Roch-Grothendieck en cohomologie de Bott-Chern rationnelle (telle que définie
par Michel Schweitzer).

0.2.1. Théoréme de Lefschetz difficile pour un fibré en droites psef.

D’aprés la formule de Riemann-Roch-Grothendieck et le théoréme d’annulation de Kawamata-Viehweg,
les sections globales des grandes puissances tensorielles d’un fibré en droites nef et gros ont une croissance
asymptotique maximale (de 'ordre de 'exposant élevé & une puissance égale a la dimension complexe). Dans
le cas algébrique, one peut obtenir ces résultats en prenant une intersection par un hyperplan générique pour
faire une récurrence sur la dimension.

En général, et dans le cas semi-positif, en particulier lorsque (L, h) est un fibré en droites pseudo-effectif
(psef) possédant un faisceau d’idéaux multiplicateurs Z(h), les groupes de cohomologie de degrés supérieurs
calculés sur une variété kihlerienne compacte (X, w) a valeurs dans K x ® LQZ(h) ne sont pas nécessairement
triviaux.

Cette situation est étudiée dans [DPS01]|, ou Demailly, Peternell et Schneider construisent des pré-
images dans H°(X, Q% Y® L®Z(h)) pour le morphisme de Lefschetz, c’est-a-dire le morphisme induit par
w? A e & valeurs dans H?(X, Kx ® L®Z(h)). Lorsque le fibré en droites L est trivial équipé de la métrique
triviale, ce résultat redonne le théoréme classique de Lefschetz difficile — dans ce cas, comme il est bien
connu, le morphisme de Lefschetz est un isomorphisme.

THEOREME 0.2.1. ( [DPS01])

Soit (L, h) un fibré en droites pseudo-effiectif sur une variété kahlerienne compacte (X,w) de dimen-
sion n. Soit O p = 0 son courant de courbure et Z(h) le faisceau d’idéaux multiplicateurs associé.

Alors, lopérateur de produit extérieur w? A e induit un morphisme surjectif

o, HY(X, QY ' ® L®ZI(h) — HI(X, 0% ® LOI(h)).

Le cas spécial ot L est nef est di a Takegoshi [Tak97]. Un cas encore plus spécial est lorsque L est
semi-positif, c’est-a-dire que L posséde une métrique lisse ayant une courbure semi-positive. Dans ce cas, le
faisceau d’idéaux multiplicateurs Z(h) coincide avec Ox et on obtient la conséquence suivante déja observée
par Enoki [Eno93| et Mourougane [Mou95], 4 savoir que le morphisme H°(X, Q% '®L) —» HI(X,Q% ®L)
est surjectif.



La stratégie de la preuve est la suivante. On approche la métrique singuliére par une suite de métriques
lisses en dehors d’ensembles analytiques propres, de sorte que le faisceau d’idéaux multiplicateurs soit
préservé. Au cours du processus, on perd de maniére inévitable un peu de positivité de courbure. Comme ob-
servé dans [Dem82]|, on peut modifier la métrique de K&hler de facon & obtenir des métriques complétes sur
les ouverts complémentaires de chacun des ensembles analytiques. Pour une classe de cohomologie de degré
g donnée, on peut ainsi appliquer I'inégalité de Bochner (valable dans le cas kihlerien complet) aux représen-
tants harmoniques de cette classe par rapport aux métriques approchées du fibré et aux métriques de Kéhler
complétes construites précédemment. Ceci permet de trouver une suite de préimages via 1’isomorphisme
de Lefschetz ponctuel. Grace aux estimations L? obtenues, les préimages ont une limite faible qui sera
holomorphe, quitte & passer & une sous-suite bien choisie. La limite faible de cette sous-suite est la section
holomorphe souhaitée dans H°(X, Q% ?® L ® Z(h)).

Dans le cas semi-positif, les choses sont beaucoup plus faciles car il n’est pas besoin de prendre une suite
d’approximation des métriques singuliéres.

Dans le cas classique L = Ox, on peut observer que toute section u € H%(X, Q% ) satisfait la condition
supplémentaire du = dp,u = 0. Ceci se voit facilement a ’aide de la formule de Stokes, qui implique

J idu A du A w?t = J {du, du}p, A w?™t =0,
b'e X

ou hg est la métrique lisse triviale sur Ox .

La preuve du théoréme de Lefschetz difficile donnée dans [DPS01] est obtenue en construisant les
préimages comme limites de formes données par ’isomorphisme ponctuel de Lefschetz. On utilise ensuite
une suite de représentants harmoniques d’une classe donnée dans H4(X, Kx ® L ® Z(h)), par rapport aux
métriques hermitiennes approximatives h., encore singuliéres, mais lisses sur des ouverts de Zariski. 1l est
alors naturel de se demander si la limite est harmonique par rapport & la métrique singuliére originale h.

Dans le cadre singulier, 'opérateur 0; est encore un opérateur densément défini, mais il est a priori non
évident d’évaluer le domaine de I’adjoint hilbertien ¢;. Néanmoins, cela a encore un sens de se demander si
la limite est paralléle par rapport & la métrique singuliére originale h.

Le calcul effectué ci-dessus correspond au cas d’un fibré trivial muni d’une métrique triviale. Notre
premier résultat détaillé dans [Wu18] fournit une réponse affirmative a la question générale en étudiant des
estimations supplémentaires dans le processus d’approximation de [DPS01].

THEOREME 0.2.2. Toutes les sections holomorphes produites par le théoréeme de Lefschetz difficile a
valeurs dans un fibré en droites psef sont paralléles par rapport a la connezion de Chern associée a la métrique
hermitienne singuliére donnée h sur L, dés lors que celle-ci posséde un courant de courbure semi-positif.

Le point essentiel de la preuve consiste & montrer que ’opérateur de dérivée covariante est toujours bien
définis dans le cadre singulier, et se comporte bien dans le processus d’approximation.

Plus précisément, soit ¢ la fonction de poids locale de la métrique singuliére. Alors la dérivée dp est une
fonction L{ = pour tous ¢ < 2 (mais pas nécessairement pour ¢ = 2, comme c’est le cas par exemple pour
¢ = log|z| sur C). Localement, la dérivée covariante d’une section u par rapport a la métrique singuliére h
peut s’écrire sous la forme

Opu = 0u + 0p A u.

Si u est une section holomorphe (donc en particulier localement bornée), le deuxiéme terme est le pro-
duit d’une forme Lj  par une section LS, ce terme est donc L{  pour tout ¢ < 2. Dans le processus
d’approximation, nous prenons en fait une section & valeurs dans Lfoc(e_ﬁ"). Pour montrer que le second
terme est au moins bien défini dans L . par rapport a la mesure de Lebesgue, il suffit également d’observer
que 0p € L2 (e¥), ce qui est toujours le cas pour une fonction psh. Regardons & titre d’exemple le cas
typique ou ¢ = log|z| sur C. Alors la section u doit s’annuler en 0 et il suffit d’observer que

d
Ope? = %« |z|? = zdz.
z

Dans le cas pseudo-effectif, le morphisme de Lefschetz n’est en général plus injectif comme dans le cas
classique du théoréme de Lefschetz difficile. Un contre-exemple évident peut étre obtenu en prenant L = mA
ot A est un diviseur ample, de sorte que h?(X, Q% ‘®L) ~ Cm™ pour m assez grand, mais h4(X, Q% QL) = 0
si ¢ > 0. Néanmoins, nous allons montrer qu’il y a un isomorphisme entre ’espace des sections qui sont
paralléles par rapport a la métrique singuliére et le groupe de cohomologie de degré supérieur considéré.

THEOREME 0.2.3. Soit (L,h) un fibré en droites pseudo-effectif sur une variété kihlerienne compacte
(X,w). Alors, le produit extérieur avec la forme de Kahler induit un isomorphisme

o, HO(X, Q%9 ® L®I(h)) n Ker(d,) — HI(X, Q% ® LRI(h)).

w,h
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En particulier si la métrique est semi-positive, on a un isomorphisme
o HO(X, QY 7® L) nKer(Ap,) — HI(X, Q% @ L).

Cet énoncé entraine en particulier la surjectivité stipulée par le théoréme précédent. En application de
ces résultats, nous montrons que chaque section holomorphe obtenue comme préimage définit en fait une
feuilletage sur X.

THEOREME 0.2.4. Supposons que v € HO(X, Qv ?® L®Z(h)), ¢ = 1, soit une section paralléle par
rapport & la métrique singuliére h. En particulier, une section construite comme préimage par le théoréme
de Lefschetz difficile est paralléle. Le produit intérieur par v donne un Ox-morphisme (défini sur X tout
entier)

F:Tx - Qv 'L, &~ .
Le noyau de F, définit un sous-faisceau cohérent intégrable de O(Tx), et donc un feuilletage holomorphe.

Ici, nous entendons par feuilletage holomorphe un feuilletage éventuellement singulier, c’est-a-dire qu’il
existe un ensemble analytique irréductible V' de l'espace total T'x tel que pour tout z € X, V, :=V nTx
soit un espace vectoriel complexe et le faisceau de sections O(V) < O(Tx) soit stable par crochets de Lie. Il
est équivalent de dire que ’on a un sous faisceau cohérent O(V') qui est stable par crochets de Lie et saturé,
c-a-d. O(Tx)/O(V) est sans torsion.

Observons qu’en général une section de H%(X, 2y ‘@ L®Z(h)) n’induit pas nécessairement un feuilletage
singulier sur X. En fait, notre définition du noyau de F, définit une feuilletage si et seulement si

dpvav=0

qui est le cas quand la section mise en jeu est paralléle par rapport & la métrique singuliére. Une question
naturelle est de savoir si ce feuilletage est “algébrique”’, au sens ou il induit un espace quotient avec une
structure d’espace complexe.

Il existe des exemples concrets présentant ce phénomeéne qui ont été initialement donnés par Beauville
[Bea00]; ils nous ont été indiqués par Andreas Horing. Un calcul complet se trouve dans la section 4 de
notre travail [Wul8].

Une autre possibilité pour généraliser le théoréme de Lefschetz difficile est de se demander si l’'on peut
remplacer le faisceau d’idéaux multiplicateurs par un faisceau d’idéaux plus grand, “moins singulier”. De-
mailly, Peternell et Schneider ont montré dans [DPS01] qu’on ne peut pas en tout cas omettre le faisceau
d’idéal, méme lorsque le fibré L est supposé nef, et ils ont donné un contre exemple lorsque L = —mK x est un
multiple du fibré en droites anticanonique. Cependant, il pourrait encore étre possible dans certaines situa-
tions “d’améliorer” le faisceau d’idéaux multiplicateur, par exemple en le remplacant par lims_,o, Z((1—6)¢)
qui peut étre vu comme une intersection infinie de faisceaux cohérents contenant Z(p). Méme lorsque ¢
a des singularités analytiques, il peut arriver que ’on obtienne ainsi un faisceau d’idéaux strictement plus
grand que Z(p), et méme que la limite ne soit pas nécessairement un faisceau cohérent:

PROPOSITION 0.2.1. Il existe un exemple de fonction psh ¢ telle que

Jim Z((1 - 9)¢) = QOI((I —8)p)

ne soit pas cohérent.

0.2.2. Théoréme d’annulation dans L2.

Les singularités d’une métrique se reflétent notamment dans leurs idéaux multiplicateurs associés. Une
situation géomeétrique fréquente est que la courbure d’une métrique singuliére “dégénére” dans certaines
directions. Ce phénoméne conduit au concept de dimension numérique, qui, en gros, mesure le nombre de
“directions de courbure positives” en un point générique. Un probléme ouvert important de la géométrie
complexe est la conjecture dite d’abondance. Cette derniére peut étre vue comme une vaste généralisation
des résultats actuellement connus sur la dimension de Kodaira x(X) = k(K x), qui compte la croissance des
sections pluricanoniques, c¢’est-a-dire les sections des multiples mK x ou K x est le fibré en droites canonique.
Par définition, pour tout fibré en droites L, la dimension de Kodaira-litaka est

0

k(L) = limsup M.
M +00 logm
Un théoréme bien connu de Siegel entraine que k(L) € {—0,0,1,...,n} ou n = dimX, et qu’en dehors
du cas —o0, k(L) est le maximum des dimensions des images pluricanoniques ®,,,.(X) ¢ P(H°(X,mKy)).
La conjecture d’abondance prédit que le fibré canonique Kx atteint toujours sa croissance asymptotique
maximale possible comme m — +00, et que k(Kx) coincide avec la dimension numérique (redéfinie plus
loin).



CONJECTURE 0.2.1. (Conjecture d’abondance généralisée dans le cas kihlérien, cf. [ BDPP13]). Pour
une variété kihlerienne compacte arbitraire X, la dimension de Kodaira coincide avec la dimension numérique:

k(Kx) =nd(c1(Kx)).

Une version kihlerienne de la définition de la dimension numeérique est donnée dans [Deml14]| ou
[Bou02a].

DEFINITION 0.2.1. (Dimension numérique)
Pour un fibré en droites psef L sur une variété kihlerienne compacte (X,w), la dimension numérique de
L est définie comme

nd(L) := max {p € [0,n];3¢ > 0,Ye > 0,3h,iO . = —cw, telle quef (1Oph, +ew)P AWPTP = c}.
X~\Z.
Ici, les métriques h. sont supposées avoir des singularités analytiques, et on désigne par Z. l’ensemble

singulier de la métrique.

Pour un fibré en droites nef, cette définition coincide avec la définition donnée dans la section précé-
dente. Une définition équivalente peut étre donnée en termes du produit (d’intersection) positif défini
dans [BEGZ10]. Le produit positif est la classe de cohomologie réelle (o) de bidegré (p,p) de la limite

@ = Jim (T 50},

0l Tinin,sw €st le courant positif & singularité minimale contenu dans la classe o + 6{w}, et ou (T?
le produit non pluripolaire.
Avec cette notion, la dimension numérique de « est définie comme

nd(«) := max {p[(a?) # 0}

AR

Une définition plus intuitive du produit positif est donnée dans [BDPP13], comme suit. Supposons que «
soit une classe grosse sur une variété kihlerienne compacte (X,w) (c’est-a-dire que « contient un courant
T tel que T > Cw pour une certaine constante C' > 0). Pour déterminer la valeur du produit, il suffit de
connaitre son accouplement avec n’importe quelle forme test de bidegré (n — p,n — p), et, en fait avec une
famille dénombrable dense de formes dans ’espace des formes lisses.

Puisque toute forme u de bidegré (n —p,n—p) peut s’écrire u = Cw"™ P — (Cw" P —u) avec deux formes
Cw" P et Cw™ P — u fortement positives sur la variété compacte X si C' > 0 est assez grand, il suffit de
prendre en compte les accouplements avec une famille dénombrable dense de formes fortement positives.

Fixons une forme fermée fortement positive du type (n — p,n — p) u sur X. On sélectionne des courants
de Kéhler T' € a avec singularités analytiques et une résolution logarithmique p : X — X telle que

» est

in,0w

qui est aussi égale a

pT = [E]+ 5
ou [E] est le courant associé & un R—diviseur et 8 est une forme semi-positive. Nous considérons le courant
image directe py (8 A ... A B). Etant donné deux courants (1,1) positifs fermés T7,7» € «, nous pouvons

écrire T; = 0 + i0dp; (j = 1,2) pour certains forme lisse 6 € a. Définissons T := 0 + idd max (1, p2). On
obtient ainsi un courant & singularités analytiques moins singulier que les deux courants 77,75. De cette
facon, si on change le représentant T en un autre courant 7", on peut toujours prendre une log-résolution
simultanée telle que p*T" = [E’] + ', et supposer que E’ < E. Par un calcul direct, on trouve

J B//\.../\,B//\M*UZJ BA...ABAp*u.
X X

On peut montrer que les courants positifs fermeés py (8 A ... A 8) sont uniformément bornés en masse. Pour
chacune des intégrales associées & une famille dénombrable dense de formes u, le supremum de l'intégrale
S}”( B...AB A p*u est réalisé par une suite de courants (i, )« (Bm A - - . A Bm) Obtenus comme images directes,
pour une suite appropriée de modifications i, : X,, — X et pour des formes 3,, appropriées. En extrayant
une sous-suite, on peut supposer que cette suite est faiblement convergente et on définit

Ca?) := Tm 1 {(pm)s (B A - A B}

m——+00

Si « est seulement psef, on définit

La?) = h;?ol«(a +o{wh)”).

On peut vérifier que
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PROPOSITION 0.2.2. Les deux produits positifs définis dans [BEGZ10] et [BDPP13] coincident pour
toute classe psef.
DEFINITION 0.1. Pour tout fibré en droites psef L sur une variété Kdihlerienne compacte, on pose
nd(L) = nd(c1(L)).

Dans le cas particulier d’'une variété projective X, la définition précédente de la dimension numeérique
coincide avec la définition algébrique suivante :

logh®(X,mL + A
nd(L) = sup lim sup ogh”(X,mL + A)
1
A ample sur X m—+© ogm

(et on peut voir aisément qu’elle ne dépend elle aussi que de la classe numérique ¢ (L)).

Dans nos articles [Wu19a] et [Wu19b], nous démontrons quelques théorémes d’annulation L? s’appuyant
sur la notion de dimension numérique d’un fibré en droites psef. Rappelons qu’un théoréme d’annulation
classique de Bogomolov dit que pour tout fibré L sur une variété projective lisse X on a

HY (X, 05 ® L") =0

pour p < k(L). Il est intéressant de savoir si on peut remplacer la dimension de Kodaira (L) par la
dimension numérique nd(L). Dans [Dem02], il est prouvé que pour tout fibré en droites pseudo-effiectif L
sur une variété kihlerienne compacte X, et toute section holomorphe non nulle § € H°(X,Q? ® L~1), ou
0 < p <n=dimX, alors # induit un feuilletage sous le méme sens que dans le théoréme 0.2.4. Le théoréme
d’annulation de Bogomolov interdit 'existence d’une telle section non nulle pour p > «(L). (D’aprés notre
résultat, la méme conclusion est vraie pour p > nd(L).)

L’article [Mou98] démontre la version suivante du théoréme d’annulation de Bogomolov : si L est un
fibré en droites nef sur une variété kahlerienne compacte X, alors

HY (X, 0% ® L") =0

pour p < nd(L). Dans notre travail [Wul9b]|, nous obtenons une généralisation du cas nef au cas psef en
affinant les estimations de Mourougane dans [Mou98|. Une preuve similaire avait été donnée dans [Bou02a]
au moyen d’une version singuliére de I’équation Monge-Ampére ; nous donnons ici une autre preuve qui ne
nécessite que la résolution d’équations de Monge-Ampére “classiques 7.

THEOREME 0.2.5. Si L est un fibré en droites psef sur une variété kdhlerienne compacte X, alors
HY (X, 0% ®L ') =0
pour p < nd(L).

En nous inspirant des travaux de [Caol4], nous obtenons le théoréme d’annulation suivant de type
Kawamata-Viehweg dans [Wul9a]. La preuve est une modification celle donnée par Junyan Cao:

THEOREME 0.2.6. Soit L est un fibré en droites psef sur une variété kdhlerienne compacte X de dimen-
sion n. Alors le morphisme induit en cohomologie par linclusion Kx ® L ® Z(hmin) — Kx ® L, soit

HY(X,Kx ® L QL (hmn)) — H/(X,Kx ® L),

s’annule pour tous ¢ = n —nd(L) + 1. La méme conclusion est valable pour toute métrique singuliére a
courbure semi-positive au lieuw de hpyiy,.

Le théoréme de Junyan Cao est le suivant : soit (L, k) un fibré en droites psef sur une variété kihlerienne

compacte X de dimension n. Alors
HI(X,Kx®LR®ZI(h)) =0
pour tous ¢ = n —nd(L,h) + 1.

Remarquons que le résultat de Junyan Cao s’exprime en termes de la dimension numérique de la métrique
singuliére considérée, plutot que de celle du fibré en droites. En général, ces notions sont différentes, comme
le montre 'exemple 1.7 dans [DPS94] : il existe un fibré en droites nef L sur une surface réglée X — C au
dessus d’une courbe elliptique, de telle sorte qu’il existe une unique métrique singuliére a courbure positive
sur L, donc le courant de courbure est le courant d’intégration [5’] sur une section de X — C. Cette métrique
est & singularités analytiques et sa courbure est nulle sur un ouvert de Zariski, donc la dimension numérique
vaut 0. Mais la construction de [DPS94| montre que la dimension numérique du fibré en droites L est égale
al.

Remarquons aussi qu’en général on ne peut pas espérer ’annulation du groupe de cohomologie a valeurs
Z(hmin), mais seulement Pannulation de 'image dans la cohomologie & valeurs dans L. En effet, d’aprés
le méme exemple que celui donné dans le dernier paragraphe, h?(X, Kx ® L ® Z(hmin)) = 1 tandis que
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h?(X,Kx ® L) = 0. En fait, la situation envisagée ici est plus facile que celle étudiée par Junyan Cao,
puisque nous ne gardons pas de faisceau d’idéaux multiplicateurs dans I'image.

Le dernier résultat que nous énoncons dans cette partie est un théoréme d’annulation de type Kodaira-
Nakano-Akizuki ( [Wul9c]), exprimé en termes de lieux base augmentés.

THEOREME 0.2.7. Soit X une variété projective de dimension n et L un fibré en droites holomorphes
nef sur X. Alors on a

HP(X,Q% ®L) =0

pour tout p 4+ q > n + max(dim(B4(L)),0). Ici By (L) désigne le liew base augmenté (ou liew non ample) de
L. Lorsque By (L) = J, on pose par convention que la dimension est —1.

0.2.3. Fibré en droite nef en dimension supérieure.

Comme on I’a rappelé dans ’historique du début, la projectivité d’une variété compacte est caratérisée
par l'existence d’une classe rationnelle dans le cone de Kdhler. De maniére générale, il est intéressant
d’étudier les cones positifs attachés aux variétés complexes compactes et de les relier & la géométrie de ces
variétés. En géométrie algébrique classique ou complexe, I’accent est mis sur deux types de cones positifs:
les cones nef et psef, qui sont définis comme étant les cones convexes fermés engendrés par les classes nef et
les classes psef, respectivement. Le cone nef est bien entendu contenu dans le cone psef.

Remarquons qu’en géométrie algébrique, les propriétés de dualité des cones apparaissent dans de nom-
breux contextes, et que les cones fermés sont souvent plus aisés & décrire que les cone ouverts.

Les travaux de Boucksom [Bou0O2a] définissent et étudient un cone défini comme étant le “cone nef
modifié”, pour une variété complexe compacte arbitraire. En utilisant ce concept, Boucksom a pu montrer
Pexistence d’une décomposition de Zariski divisorielle pour toute classe psef (c’est-a-dire toute classe de
cohomologie contenant un courant positif). Le cone modifié se trouve étre compris entre les cones nef et
psef.

En nous inspirant de la définition de Boucksom, nous introduisons dans [Wul9d], pour toute variété
complexe compacte, un concept de cone nef en codimension arbitraire ; les cones associés aux diverses
codimensions possibles fournissent une interpolation entre les cones positifs psef et nef.

DEFINITION 0.2.2. (Multiplicités minimales) ( [Bou02a])
La multiplicité minimale en un point x € X d’une classe pseudo-effective o € H}gé (X,R) est définie par

v(a,z) = sup V(Tmin,e, T)
>0

0% Thin,c est un représentant de la classe d’équivalence des courants T € o & singularités minimales tels que
T > —cw, et 0t V(Tiin,e, x) désigne le nombre de Lelong de Tinine en x. Lorsque Z est un sous-ensemble
analytique irréductible, on définit la multiplicité minimale générique de « le long de Z par

via, Z) :=inf{v(a,z),z € Z}.

DEFINITION 0.2.3. Soit o € H,li,’é(X, R) une classe psef. Nous dirons que « est nef en codimension k, si
pour tout sous-ensemble analytique irréductible Z < X de codimension au plus égal a k, on a

v(a,Z) =0.

Avec cette terminologie, le cone nef est le cone nef en codimension n, o n est la dimension complexe de
la variété, tandis que le cone psef est le cone nef en codimension 0, et le cone nef modifié est le cone nef en
codimension 1. Dans le méme article, nous montrons au moyen d’exemples explicites que ces cones sont en
général différents.

Comme application, nous obtenons la généralisation suivante ( [Wu19d]), du cas nef au cas psef, d’un
résultat voisin énoncé dans [DP03].

THEOREME 0.2.8. Soit (X,w) une variété kihlerienne compacte de dimension n et L un fibré en droites
sur X qui est nef en codimension 1. Supposons que (L?) # 0 ot (o) est le produit positif défini dans
[Bou02a]. Supposons qu’il existe un diviseur entier effectif D tel que c¢1(L) = ¢1(D) . Alors

HY(X,Kx+L)=0
pour g =n — 1.

La preuve du théoréme repose sur une récurrence sur la dimension, en utilisant le théoréme 0.2.6 du
chapitre précédent. Une différence par rapport au cas nef étudié dans [DP03] réside dans le fait que le
produit positif (ou nombre d’intersection mobile) n’est plus linéaire dans le cas psef. Cependant, sous la
condition que L soit nef en codimension supérieure, nous avons I’estimation suivante.
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PROPOSITION 0.2.3. Soit a une classe nef en codimension p sur une variété kihlerienne compacte (X, w).
Alors pour tout k < p et toute (n — k,n — k)-forme O positive fermée, on a

(@*,0) = (o, ©).

Grace a cette inégalité, le calcul du nombre d’intersection effectué¢ dans [DP03] se trouve étre toujours
valide, de méme que les calculs de cohomologie qui en résultent. Remarquons que le courant a singularités
minimales n’est pas toujours & singularités analytiques, comme cela a été observé par Matsumura [Mat13]
pour la classe « construite par [Nak04], qui est grosse et nef en codimension 1 mais non en codimension 2.
Une conséquence directe de ’observation de Matsumura est que ’hypothése supplémentaire de notre version
du théoréme d’annulation de Kawamata-Viehweg énoncée ci-dessus, suivant laquelle le fibré en droites est
numériquement équivalent & un diviseur entier effectif, est bien nécessaire.

Dans le cas nef étudié dans [DP03], il se trouve que les auteurs parviennent & déduire de ’hypothése
que le fibré en droites L est nef avec (L?) # 0 que L est bien numériquement équivalent & un diviseur entier
effectif D, de sorte qu’il existe une métrique singuliére positive h sur L telle que Z(h) = O(—D). Cependant,
pour un fibré en droites L sur une variété kihlerienne compacte (X, w), qui est gros et nef en codimension 1
mais non nef en codimension 2 et tel que (L?) # 0, le courant 5=O(L, huyin) n'est pas associé  un diviseur
entier effectif.

Une autre conséquence est un exemple (probablement déja connu) d’une variété projective X telle que
—Kx soit psef, pour laquelle le morphisme d’Albanese n’est pas surjectif. Il a été démontré dans [Cao13],
[Paul?] (et [Zha06] pour le cas projectif) que le morphisme d’Albanese d’une variété kihlerienne compacte
avec —Kx nef est toujours surjectif. Remplacer la propriété nef par la pseudo-effectivité dans ’étude du
morphisme d’Albanese semble donc étre un probléme non trivial. Un résultat positif partiel est celui de
notre article déja cité, affirmant que le morphisme d’Albanese d’une variété compacte Kahlerienne qui a un
fibré en droites anticanoniques —K x psef et satisfaisant une condition d’intégralité est encore surjectif.

THEOREME 0.2.9. Soit (X,w) une variété kihlerienne compacte de dimension n telle que —Kx soit psef.
Supposons qu’il existe une suite €, > 0 telle que lim,_,, e, = 0 et Z(h.,) = Ox pour une suite de métriques
he, sur —Kx a singularités analytiques et telles que iO(—Kx, h.,) = —e,w. Alors le morphisme d’Albanese
ax est surjectif a fibres connexes. Plus précisément, le morphisme d’Albanese est une submersion en dehors
d’un ensemble analytique de codimension au moins égale a 2.

Notons que lorsque —Kx est nef, 'hypothése du théoréme ci-dessus est satisfaite. La stratégie de la
preuve est analogue a celle de Junyan Cao dans [Cao13]. On considére la filtration de Harder-Narasimhan
de TX

0C(€0C51C--~C(€S=Tx.

Le point essentiel est de prouver que les pentes de &;11/&; sont semi-positives. Supposons pour simplifier que
tous les &;11/&; soient des fibrés vectoriels. D’aprés [UY86], ’équation de Hermite-Einstein admet toujours
une solution pour des fibrés vectoriels stables.

En consédérant le signe des pentes, on voit que la trace de la courbure de &;,1/&; est semi-positive, ce
qui permet de construire une métrique sur Tx dont la partie négative de la courbure de Ricci peut étre prise
arbitrairement petite. Grace & la technique de Bochner, on vérifie que les sections non nulles de H°(X, QL)
ne s’annulent en aucun point, ce qui conclut la surjectivité du morphisme d’Albanese.

L’idée pour prouver la semi-positivité des pentes est la suivante. Grace a la condition de stabilité, il
suffit de prouver que les pentes de T'x/E; sont semi-positives. Grosso modo, on veut utiliser une équation
de Ké&hler-Einstein pour construire une métrique de Kahler sur le fibré tangent d’un modéle biméromorphe
ayant une borne inférieure de courbure de Ricci arbitrairement petite, et prendre la métrique quotient de
celle-ci sur T'x /€;.

Le probléme est que bien que ’on puisse résoudre une équation de Kahler-Einstein singuliére grace au
travail de [BEGZ10], la métrique quotient n’a pas toujours de sens précis. Cependant, d’aprés les travaux
de [CGP13] et [GP16], le potentiel a un comportement connu pour une équation de Monge-Ampére a
singularité conique, a la fois le long du diviseur de singularités, et on sait aussi que la solution est lisse sur
I’ouvert de Zariski complémentaire. Grace a cette derniére solution, on peut obtenir une solution lisse dans
le complémentaire du lieu singulier, qui induit donc une métrique lisse sur T'x /&; sur cet ouvert de Zariski.
D’aprés ce résultat de régularité de I’équation de Kadhler-Einstein appliqué sur un modéle biméromorphe
de la variété ou tous les diviseurs deviennent simples & croisements normaux, on conclut que la masse de
c1(Tx /E;) est bornée prés du lieu singulier. D’aprés le théoréme de Skoda-El Mir, le courant de courbure
quasi positif s’étend a travers le lieu singulier avec lequel on estime la pente.

0.2.4. Faisceaux reflexifs fortement pseudo-effectifs.
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Une question centrale de géométrie analytique est de classifier les variétés complexes vérifiant diverses
conditions. En ce qui concerne la structure des variétés projectives ayant un fibré en droites anticanonique nef,
un ingrédient clé utilisé par Junyan Cao [Cao19]| pour la preuve de I'isotrivialité du morphisme d’Albanese
est la trivialité numérique de certains fibrés vectoriels.

La notion de fibré vectoriel numériquement plat peut étre définie de maniére purement algébrique,
mais sur une variété complexe quelconque on peut observer qu’un tel fibré vectoriel est soumis & de fortes
contraintes métriques quant a sa courbure. Dans [DPS94|, Demailly, Peternell et Schneider ont prouvé
qu’un fibré vectoriel numériquement plat E sur une variété kihlerienne compacte X admet une filtration
par des fibrés vectoriels dont le gradué est somme directe de fibrés hermitiens plats. En ce sens, la platitude
métrique est le correspendant analytique de la notion algébrique de platitude numérique.

Dans les travaux [CCM19] et [HIM19], les auteurs considérent la question suivante. Si on a (dans un
sens adéquat) un fibré vectoriel pseudo-effectif sur une variété projective ayant une premiére classe de Chern
triviale, ce fibré vectoriel est-il numériquement plat? Puisqu’un fibré vectoriel E est numériquement plat si
et seulement si E et det(E)~! sont nefs (ou encore, si et seulement si E et E* sont nefs), la question revient
a se demander si un tel fibré vectoriel est en fait nef.

Intuitivement, une métrique singuliére & courbure semi-positive sur le fibré vectoriel E devrait induire
une métrique singuliére & courbure semi-positive sur le déterminant det(E). Comme la premiére classe Chern
de E (c’est-a-dire la classe Chern de det(E)) est supposée triviale, une métrique a courbure semi-positive
est nécessirement, plate et elle ne peut donc posséder aucune singularité. Ceci implique que toute métrique
singuliére & courbure semi-positive sur F est nécessairement lisse. On s’attend & ce qu’une telle propriété
ait lieu de maniére générale pour une variété kihlerienne compacte arbitraire, puisque les propriétés mises
en jeu font encore sens dans cette situation. Nous montrerons que c’est bien le cas dans le chapitre 5 :

THEOREME 0.2.10. Soit E un fibré vectoriel fortement pseudo-effectif tel que c1(E) = 0. Alors E est un
fibré vectoriel nef.

On peut en fait s’attendre & un certain nombre de propriétés plus générales des fibrés fortement psef
impliquant le résultat précédent comme cas particulier. Si E est fortement psef, la classe de cohomologie
c1(Op(g)(1)) est psef et contient une métrique pas trop singuliére (la définition implique grosso modo que
la projection du lieu singulier sur X est contenue dans un ensemble analytique de codimension au moins 1).
Ceci entraine que les puissances extérieures pas trop élevées de la classe Chern c1(Op(g)(1)) sont positives, et
donc que leur images directes sous la projection 7 : P(E) — X le sont aussi. En particulier, on peut espérer
que la deuxiéme classe de Segré my (c1(Op( E)(l)))7'+1 soit semi-positive (c’est-a-dire, qu’elle contienne un
courant positif) oil r est le rang de E. Rappelons que c’est aussi la classe ¢ (E)? — ca(E). D’aprés I'inégalité
de Bogomolov, lorsque c¢1(E) = 0 et que E est semi-stable, I'intégrale de co(E) A w™ 2 sur X est positive
pour toute forme de Kihler w sur X, ou n est la dimension de X. En comparant les deux inégalités, on
conclut que co(EF) = 0, donc l'inégalité de Bogomolov sera en fait une égalité.

Remarquons que pour un faisceau reflexif F, les classes de Chern peuvent étre définies comme suit.
Soit o : X — X une modification telle que o*F/Tors soit un fibré vectoriel. Alors pour tout i = 1,2,
¢i(F) = o4c;(c*F) est indépendant du choix de la modification . Moralement, nous espérons que les
mémes calculs que ci-dessus s’appliquent en passant a un modéle birationnel, et en prenant des images
directes, que 1’égalité dans I'inégalité de Bogomolov soit atteinte.

Notons le résultat important suivant de [BS94| : pour un faisceau réflexif polystable F de rang r sur
une variété kihlerienne compacte (X,w) de dimension n, on a 'inégalité de Bogomolov

J (2rca(F) — (r — e (F)?) Aw™ 2 = 0.
b's

De plus, I’égalité a lieu si et seulement si F est localement libre (c’est-a-dire si F est un fibré vectoriel), et
si sa métrique Hermite-Einstein donne une connexion projectivement plate. Les notions de faisceau réflexif
nef ou psef sont définies ici comme suit.

DEFINITION 0.2.4. Un faisceau sans torsion F sur une variété complexe compacte (resp. compacte
kahlerienne) est dit nef (resp. fortement psef) s’il existe une modification o : X — X telle que c*F modulo
torsion soit un fibré vectoriel nef (resp. fortement psef).

Comme conséquence de ce qui précéde, il est naturel d’espérer le fait plus fort suivant : un faisceau réflexif
fortement psef sur une variété kihlerienne compacte (X, w) ayant une premiére classe de Chern triviale est en
fait un fibré vectoriel nef. Au chapitre 5, nous prouvons que c’est vraiment le cas. Une difficulté de I’approche
précédente réside dans la fait qu’en général un produit extérieur de courants positifs n’est pas nécessairement,
bien défini. Pour contourner cette difficulté, nous commencons par prouver le résultat suivant.

THEOREME 0.2.11. Soit F un faisceau réflexif nef sur une variété kihlerienne compacte (X,w) tel que
c1(F) = 0. Alors F est un fibré vectoriel nef.
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En combinant maintenant les deux théorémes ci-dessus, on parvient alors & ’énoncé suivant.

THEOREME 0.2.12. Soit F un faisceau fortement psef réflexif sur une variété ahlerienne compacte (X, w)
avec ¢1(F) = 0. Alors F est un fibré vectoriel nef.

On observe que dans ’approche ci-dessus, tous les produits extérieurs sont bien définis sans restriction
sur la codimension du lieu singulier de la métrique. En d’autres termes, pour un fibré vectoriel fortement
psef E, on peut trouver un courant positif représentant la classe de cohomologie ¢;(F) (mais ce n’est pas
nécessairement le cas pour co(E)). Dans le chapitre 5, nous donnons une définition d’un fibré vectoriel psef
essentiellement équivalente & la version kihlerienne proposée dans [BDPP13].

DEFINITION 0.2.5. Soit (X,w) une variété kihlerienne compacte et E un fibré vectoriel holomorphe
sur X. On dit que E est fortement pseudo-effectif (en abrégé, fortement psef) si le fibré en droites Op(g) (1)
est pseudo-effectif sur le projectivisé P(E) des hyperplans de E, et si pour tout € > 0, on peut trouver une
métrique singuliere h. sur Oppy(1) ayant une courbure i©(h.) > —em*w (ou 7 : P(E) — X est la projection
naturelle), 4 singularités analytiques, telle que la projection w(Sing(he))) du lieu singulier ne recouvre pas X
tout entier.

De manicere équivalente, E est fortement psef si et seulement si le fibré en droites Op(g)(1) est pseudo-
effectif sur la variété projectivisée P(E) des hyperplans de E, et si la projection m(Lunnet(Opg)(1))) du lieu
non nef de Op(g)(1) ne recouvre pas X tout entier.

Rappelons qu'une métrique hermitienne sur Op(g)(1) correspond & une métrique de Finsler dans le sens
suivant ( [Kob75], [Dem99]).

DEFINITION 0.2.6. Une métrique de Finsler (définie positive) sur un fibré vectoriel holomorphe E est
une fonction homogéne complexe positive

§— ¢
définie sur chaque fibre E,, c’est-a-dire telle que |\E|z = |\||€|z pour chaque A € C, et telle que €|, > 0
pour & # 0.

On peut montrer que les métriques de Finsler sur un fibré vectoriel fortement psef E peuvent étre

approximées par des métriques induites par des métriques hermitiennes sur de grandes puissances symétriques
SME*.

PROPOSITION 0.2.4. Soit E — X un fibré vectoriel et p : S"E* — X la projection naturelle. Les
propriétés suwivantes sont équivalentes:

(1) E est fortement psef.

(2) 1l existe une suite de fonctions quasi-psh wy,(z,&) = log(|€|n,,,) & singularités analytiques, induites
par des métriques hermitiennes h,, sur S™E*, telles que le lieu des singularités se projette dans un ensemble
Zariski fermé propre Z,, < X, avec

100w, = —me,p*w

au sens des courants et lime,, = 0.

(8) 1l existe une suite de fonctions quasi-psh wy,(z,€) = log(|€|n,,) & singularités analytiques, induites
par des métriques hermitiennes h,, sur S™E*, telles que le lieu des singularités se projette dans un ensemble
Zariski fermé propre Z,, < X, avec

i®S7"E*,hm < MeEpw ® Id

sur X \ Z,, dans le sens de Griffiths et lime,,, = 0.

Grace a cette condition équivalente, nous pouvons montrer que certaines opérations algébriques habituelles
peuvent toujours étre faites pour des fibrés vectoriels fortement psefs. Par exemple, la somme directe ou le
produit tensoriel des fibrés vectoriels fortement psefs est toujours fortement psef.

Comme conséquence, on peut définir des formes de Segre (ou courants de Segre) associés, c’est-a-dire des
courants positifs fermés de bidegré (k, k), obtenus par image directe des puissances extérieures du courant
de courbure de Op(g)(1), sous une hypothése sur la codimension de lieu singulier.

THEOREME 0.2.13. Soit E un fibré vectoriel fortement psef de rang r sur une variété kdhlerenne compacte
(X,w). Soit he une métrique singuliere sur (Opg)(1), ayant des singularités analytiques et telle que

iO(Op(g) (1), he) = —em*w,

la codimension de 7(Sing(h.)) dans X étant au moins égale a k. Alors, il existe un courant positif de bidegré
(k, k) représentant la classe my(c1(Op(r)(1)) + em*{w}) =1, En particulier, det(E) est un fibré en droites
psef.
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Une construction similaire a été faite dans [LRRS18].

A la fin du chapitre, en tant qu’application géométrique, nous classifions les surfaces kiihleriennes com-
pactes et les variétés de dimension 3 ayant un fibré tangent fortement psef et une premiére classe de Chern
triviale. Par notre théoréme principal, ce sont les mémes que les surfaces kiihleriennes compactes et les var-
iétés de dimension 3 ayant un fibré tangent nef et une premiére classe de Chern triviale, qui ont été classées
en particulier dans [DPS94]. Une conséquence est que le fibré tangent d’une surface K3 kiihlerienne ne peut
pas étre fortement psef. Ce résultat généralise ceux de [DPS94] et de [Nak04] dans le cas projectif. Plus
généralement, les variétés symplectiques irréductibles ou de Calabi-Yau ont des fibrés tangents et cotangents
qui ne sont pas fortement psefs. Dans le cas singulier et projectif, un résultat plus fort est prouvé dans
le théoréeme 1.6 de [HP19], et dans le corollaire 6.5 de [Drul8], pour le cas de la dimension 3. En fait,
pour le cas projectif, Op(r, (1) ou OP(Qﬁ()(l) n’est pas un fibré en droites psef sur une variété symplectique
irréductible ou de Calabi-Yau X.

Nous généralisons également au cas compact kihlerien les principaux résultats de [LOY 20] sur les fibrés
tordus par des Q-diviseurs.

0.2.5. Théorie de 'intersection et classes de Chern en cohomologie de Bott-Chern.

Il est attendu que la formule de Riemann-Roch-Grothendieck soit vérifiée pour toutes les théories
de cohomologie naturelles associées aux variétés algébriques ou analytiques. En particulier, une question
intéressante est de savoir si la formule de Riemann-Roch-Grothendieck est vérifiée pour la cohomologie de
Bott-Chern & coefficients rationnels. Pour donner un sens précis a la formule, nous devons définir les classes
de Chern associées a I'image directe d’un fibré vectoriel (et méme & toutes les images directes supérieures).
Lorsqu’un morphisme entre deux variétés est propre, le théoréme des images directes de Grauert énonce que
ces images directes sont des faisceaux cohérents. En conséquence, il serait intéressant de pouvoir construire
une théorie des classes de Chern en cohomologie de Bott-Chern entiére (ou au moins rationnelle), pour des
faisceaux cohérents arbitraires.

Lorsque la variété est projective, cela découle d’un travail inédit de Junyan Cao dans lequel il définit
d’abord les classes Chern de fibrés vectoriels pour la cohomologie de Bott-Chern & coefficients entiers. Comme
on I’a expliqué dans la section précédente, le cas général des faisceaux cohérents est beaucoup plus compliqué.

Pour traiter la situation similaire de la cohomologie de Deligne rationnelle, Julien Grivaux propose dans
son travail [Gril0] une approche générale pour définir les classes caractéristiques de Chern dans une théorie
axiomatique de la cohomologie rationnelle. Ceci se fait en spécifiant que la théorie de la cohomologie doit
satisfaire certains axiomes de la théorie de I'intersection.

La ligne générale de la construction est la suivante. On «force» le théoréme de Grothendieck-Riemann-
Roch & étre valable pour une immersion fermée d’hypersurfaces lisses. Ensuite, par dévissage, on peut déduire
des axiomes de la théorie de l'intersection proposés par Grivaux que le théoréme de Grothendieck-Riemann-
Roch est valable pour toute immersion fermée. Puisque chaque morphisme projectif peut par définition
étre factorisé en la composition d’une projection et d’'une immersion fermée, le théoréme de Grothendieck-
Riemann-Roch est valable pour tout morphisme projectif, comme observé par Grothendieck. (Bien sar, nous
utilisons également les axiomes de la théorie de l'intersection pour traiter le cas d’une projection.)

En particulier, en suivant 'approche de Grivaux, nous sommes en mesure de définir les classes de Chern
comme des classes de cohomologie de Bott-Chern rationnelles. En principe, 'image réciproque d’une classe
de cohomologie est induit par 'image réciproque d’une forme lisse, tandis que le poussé en avance de la
classe de cohomologie est mieux vu en prenant des images directes de courants. La principale difficulté est
alors de controler le comportement des classes de cohomologie sous la composition de 'image réciproque et
d’une image directe.

Plus précisément, le complexe de Bott-Chern & coefficients entiers est quasi-isomorphe a différents
types de complexes, & savoir le complexe formé par le faisceau localement constant Z complété par un
complexe de formes différentielles lisses, soit comme Z remplacé par un complexe de courants construit
a 'aide des courants localement intégraux. Pour définir I'image réciproque ou le poussé en avance dans
I’hypercohomologie du complexe de Bott-Chern entier, nous sommes alors amenés a utiliser ces différents
complexes quasi-isomorphes. Lorsqu’on traite de la composition de l'image réciproque et du poussé en
avance de la cohomologie, il est commode de passer a la catégorie dérivée pour montrer que les morphismes
sont bien définis et commutent dans la catégorie dérivée des complexe de groupes abéliens, puis de prendre
I’hypercohomologie.

11 se trouve que 'image réciproque des courants n’est pas toujours bien définie en général, bien qu’elle
le soit pour des courants satsifaisant des hypothéses spéciales adéquates. Par exemple, supposons que Y, Z
solent deux cycles lisses se coupant transversalement le long de W. L’images réciproque du courant [Z]
sous 'immersion fermée de iy de Y dans X est bien défini comme étant égal & [W]. Nous devons montrer
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que via certains quasi-isomorphismes, ces types particuliers de morphismes entre représentants «spéciaux»
conduisent & des morphismes de cohomologie bien définis.

La principale difficulté par rapport au cas de la cohomologie de Deligne entiére est que la structure
multiplicative de la cohomologie de Bott-Chern entiére est beaucoup plus compliquée. Nous choisissons une
définition de la multiplication telle que le morphisme naturel de la cohomologie de Bott-Chern entiére vers
la cohomologie de Bott-Chern complexe soit un morphisme d’anneau, et pas seulement un morphisme de
groupe. On remarque pour cela que la cohomologie de Bott-Chern complexe peut étre représentée par des
formes lisses globales. Le produit extérieur des formes lisses passe en hypercohomologie, lorsqu’on effectue
une multiplication de classes de cohomologie de Bott-Chern complexes.

THEOREME 0.2.14. Soit p : X — S un morphisme projectif de variétés complexes compactes et F un
faisceau cohérent sur X. Alors, nous avons la formule de Riemann-Roch-Grothendieck dans la cohomologie
de Bott-Chern rationnelle et la cohomologie de Bott-Chern complexe

ch(R*p«F)Td(Ts) = px(Ch(F)Td(Tx))
ot R°pyF =Y, Ripy F.

THEOREME 0.2.15. Si X est compacte et si Ko X est l'anneau de Grothendieck des faisceaux cohérents
sur X, on peut définir un morphisme «caractére de Chern» Ch: Ko X — @ng’g(X7 Q) tel que
(1) le morphisme caractére de Chern est fonctoriel pour l’image réciproque par un morphisme holomorphe.
(2) le morphisme caractére de Chern est une extension du morphisme habituel défini pour les fibrés vectoriels.
(8) Le théoréme de Riemann-Roch-Grothendieck est valable pour les morphismes projectifs entre variétés
compactes complexes lisses.

Gréce a la dualité entre la cohomologie de Bott-Chern complexe et la cohomologie d’Aeppli, nous mon-
trons également que la cohomologie de plus haut degré d’une variété complexe connexe compacte peut étre
calculée en cohomologie de Bott-Chern entiére, contrairement & ce qui se passe pour la cohomologie de
Deligne.

PROPOSITION 0.2.5. Pour une variété complexe connexe compacte X, on a une suite exacte courte
0— H* Y(X,C)/H*""Y(X,Z) > HY5(X,Z) - Z — 0.






CHAPTER 1

Introduction and elementary definitions

1.1. Introduction

The modern language of complex geometry relies for a large part on cohomology theory, e.g. in the
context of coherent sheaves. One of the earliest general results is the Kodaira embedding theorem. The
original proof by Kodaira is based on the so-called Kodaira vanishing theorem: under a strict positivity
assumption for the Chern curvature of a given smooth hermitian line bundle, one shows the existence of
sufficiently many sections to embed the manifold into a projective space. One way to generalize the work of
Kodaira is to study vanishing theorems in the context of singular positive metrics, such as the Demailly-Nadel
vanishing theorem (cf. [Nad89], [Dem93]).

THEOREM 1.1. Let (X,wx) be a Kdhler weakly pseudo-conver manifold with a Kdhler metric wx and
let L be a line bundle on X with a singular metric h. Assume that i©),(L) > cwx in the sense of currents
for some € > 0. Then

HI(X,O(Kx +L)®ZI(h)) =0
for all ¢ = 1, where Z(h) = Z(p) is the multiplier ideal sheaf associated to ¢ for the local weight ¢ with
h=e"%.

The Demailly-Nadel vanishing theorem reflects that in the singular metric setting, the positivity of a line
bundle may have strong obstruction on the cohomology group. The major part of this thesis is concerned
by the implications of the hypothesis of the existence of positively curved singular metrics on the geometric
structure of a manifold, or on cohomology groups with values in a vector bundle. In the last part of the
thesis, we discuss the construction of Chern classes and give the Riemann-Roch-Grothendieck formula in the
rational Bott-Chern cohomology (defined by Michael Schweitzer).

1.1.1. Hard Lefschetz theorem for pseudoeffective line bundles.

A fundamental tool in complex geometry is the Riemann-Roch-Hirzebruch formula. It predicts the
growth of the Euler number of the tensor product of a line bundle in terms of the intersection numbers of the
Chern classes of the line bundle and the tangent bundle T'x. If a given line bundle is assumed to possess a
metric of strictly positive curvature (for example, if the line bundle is nef and big), the Kawamata-Viehweg
vanishing theorem states that the higher degree cohomology groups with values in high tensor powers of
the line bundle twisted by the canonical bundle Kx (maybe after taking the tensor product with an ad hoc
multiplier ideal sheaf) are trivial. In particular, asymptotically (which means we consider sufficient high
tensor powers of the line bundle), the global sections have a maximal asymptotic growth (with exponent
equal to the complex dimension). In the algebraic case, we can take a generic hyperplane intersection to
perform the induction on dimension.

In general, in the semi-positive case, especially when (L, h) is a pseudoeffective (psef) line bundle with
multiplier ideal sheaf Z(h), the higher degree cohomology groups of a compact Kéhler manifold (X,w) with
values in Kx ® L®Z(h) are not necessarily trivial. This situation is studied in [DPS01], where the authors
construct a non-trivial preimage in H°(X, Q% ?® L ® Z(h)) of the Lefschetz morphism, i.e. the morphism
induced by w? A e, for any non-trivial class in H9(X, Kx ® L®Z(h)). When the line bundle L is chosen to
be the trivial line bundle equipped with the trivial metric, this result recovers the classical hard Lefschetz
theorem. In this case, it is well-known that the Lefschetz morphism is in fact an isomorphism.

THEOREM 1.2. (see [DPS01]). Let (L, h) be a pseudo-effective line bundle on a compact Kdihler manifold
(X,w) of dimension n, /=10y, = 0 its curvature current and Z(h) the associated multiplier ideal sheaf.
Then, the wedge multiplication operator w? A e induces a surjective morphism

ol HY (X, Q'@ LRZI(h) — HY(X, Q% ® LRZL(h)).
The special case when L is nef is due to Takegoshi [Tak97]. An even more special case is when L is
semi-positive, i.e. L possesses a smooth metric with semi-positive curvature. In that case, the multiplier ideal

sheaf Z(h) coincides with Ox and we get the following consequence already observed by Enoki |[Eno93| and
Mourougane [Mou95].

17
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The strategy of the proof is the following. We approximate the singular metric by a sequence of metrics
which are smooth outside a proper analytic set and preserve the multiplier ideal sheaf. During this process,
one inevitably loses some positivity of the curvature. As observed in [Dem82], one can modify the K&hler
metric in such a way that the complement of any proper analytic set becomes complete with respect to the
modified Kdhler metric. For a fixed degree ¢ cohomology class, one can apply a Bochner type inequality
(which still works for a complete K&hler manifold) to the harmonic representatives of the approximated
metrics and to the approximated Kahler metrics. In this manner, one finds a sequence of preimages via the
pointwise Lefschetz isomorphism. By the L?—estimates, the preimages have a holomorphic weak limit up to
taking some subsequence. The weak limit is the desired section in H°(X, Q% ?® L ®Z(h)).

In the smooth semi-positive case, the arguments are much easier since there is no need to take an
approximating sequence for a given singular metric.

In the classical case L = Oy, one can observe that any section u € HY(X, Q% ?) satisfies the additional
condition du = dp,u = 0. This is easily seen by the Stokes formula, which implies

J idu A du A Wit = J {du, du}p, A Wit =0,
X X

where hg is the trivial smooth metric on Ox .

The proof of the hard Lefschetz theorem in [DPS01] is obtained by constructing preimages as limits of
forms given by the pointwise Lefschetz isomorphism. One then deals with a sequence of harmonic represen-
tatives of a given class in H4(X, Kx ® L ® Z(h)), with respect to the approximated hermitian metrics he,
which are still singular but smooth on a Zariski open set. It is natural to ask whether the limit is harmonic
with respect to the original singular metric h.

In the singular setting, the operator 0y is still a densely defined operator, but it is a priori not evident to
find explicitly the domain of definition of the Hilbert adjoint of 0. However, it is still meaningful to consider
whether the limit is parallel with respect to the original singular metric h; the above “classical” calculation
corresponds to the case of a trivial bundle with its trivial metric. Our first result in [Wul8] confirms a
positive answer to this question in the general case, by providing further estimates in the approximation
process of [DPS01].

THEOREM 1.3. All holomorphic sections produced by the bundle valued hard Lefschetz theorem are parallel
with respect to the Chern connection associated with any given singular hermitian metric h on L, possessing
a semi-positive curvature current.

The main point of the proof is to show that the covariant derivative operator is still well-defined in the
singular setting, and behaves well in the approximation process.

More precisely, let ¢ be the local weight function of the singular metric. Then the derivative dp is a
L . function for all ¢ < 2, but not necessarily ¢ = 2. This is the case for example for ¢ = log|z| on C. The
covariant derivative of a section u with respect to the singular metric h locally can be written under the
form

Opu = 0u + 0p A u.

If u is a holomorphic (and in particular locally bounded) section, the second term is the product of a L{
function with a section in L{°, hence is a L] _ for all ¢ < 2. In the approximation process, we deal with
sections with values in L _(e~?). To show that the second term is at least well defined in L{. . with respect
to the Lebesgue measure, it is enough to observe that dp € L2 (e¥). But this is always the case for a psh
function. To give an idea of what is going on in a typical case, let us just look at ¢ = log|z| on C. Then the

section u has to vanish at 0 and it is enough to observe that
dz
dpe? = — x |2|* = zdz.
z

In the pseudoeffective case, the Lefschetz morphism is in general no longer injective as in the classical
hard Lefschetz theorem. An obvious counterexample can be obtained by taking L = mA where A is an ample
divisor, so that h%(X,Q% Y ® L) ~ Cm™ for m large enough, but h?(X,Q% ® L) = 0 if ¢ > 0. However,
one can show that there is a linear isomorphism between the space of parallel sections with respect to the
singular metric and the corresponding higher degree cohomology groups.

THEOREM 14. Let (L,h) be a psef line bundle over a compact Kdhler manifold (X,w). Then the
Lefschetz morphism obtained by taking the wedge product with a power of the Kdhler form induces a linear
isomorphism

ol HY (X, QY '@ LR®ZI(h)) n Ker(dn) — HI(X, Q% ® LRZL(h)).
In particular, when the metric is semi-positive, there is a linear isomorphism

ol HY(X, QY 1@ L) n Ker(Ag,) — HY(X,0% Q L).
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Observe that the surjectivity property is a consequence of the previous theorem.
As an application, we show that each preimage actually defines a foliation on the given Kéhler manifold.

THEOREM 1.5. Assume that ve HY(X, Q% Q@ L®Z(h)),q > 1 is a parallel section with respect to the
singular metric h (such as any section constructed by the hard Lefschetz theorem). The interior product with
v gives an Ox-morphism (which is well defined on the whole of X )

E,:Tx - Q% 7'®L

Uw— Lyv.

The kernel of F, defines an integrable saturated coherent subsheaf of O(Tx), and thus a (possibly singular)
holomorphic foliation.

Here the concept of (possibly singular) holomorphic foliation is defined as follows: assuming X to be
connected, one means that there exists an irreducible analytic set V' of the total space Tx such that for any
rzeX,V,: =V nTx, is a complex vector space and the sheaf of sections O(V) « O(Tx) is closed under
the Lie bracket. It is equivalent to take a coherent analytic subsheaf O(V) < O(Tx) that is closed under
Lie bracket and saturated, i.e. such that O(Tx)/O(V) is torsion free.

Let us observe that in general a section in H(X, Q% ‘@ L®Z(h)) does not necessarily induce a singular
foliation on X. In fact, our definition for the kernel of F,, defines a foliation if and only if

dpvav=0

which is the case when the section is parallel with respect to the singular metric. Thus, to any element in
HY(X,Q% ® L®Z(h)) is associated in a canonical way of a holomorphic foliation defined by the section
produced via the hard Lefschetz theorem. A natural question is whether this foliation is always “algebraic”
in the sense that the leaf space has the structure of a complex space quotient.

This is however not the case: there are concrete examples initially given by Beauville [Bea00] exhibiting
this phenomenon; they were indicated to us by Andreas Horing. A complete calculation can be found in
Section 4 of our work [Wu1l8].

Another possibility to extend or improve the hard Lefschetz theorem would be to see whether one
can replace the multiplier ideal sheaf by some bigger, “less singular”, ideal sheaf. Demailly, Peternell and
Schneider have already shown in [DPSO01] that one cannot entirely omit the ideal sheaf, even when L is
taken to be nef, and they gave a counterexample when L = —mK x is a multiple of the anticanonical bundle.
However, it might still be possible in some cases to “improve” the ideal sheaf, for instance to replace it
with the limit lims_o, Z((1 — §)¢), which is an infinite intersection containing Z(y). When ¢ has analytic
singularities, it may happen that one gets a strictly larger sheaf, and in general the limit need not even be
a coherent sheaf:

PRrROPOSITION 1.1.1. There exists an example of a psh function ¢ such that

lim Z((1 - 0)g) == [ | Z((1 - 8)¢)

550
-0+ >0
is not coherent.

1.1.2. L? vanishing theorems.

The singularities of a metric are reflected in particular in their associated multiplier ideal sheaves. A
frequent geometric situation is that the curvature of a singular metric can “degenerate” in some directions.
This leads to the concept of numerical dimension, that, loosely speaking, counts the number of “positive
directions of curvature” at a generic point. One important open problem in complex geometry is the Abun-
dance conjecture. The latter can be seen as a very broad generalisation of the results known so far on the
Kodaira dimension x(X) = k(Kx), which counts the growth of pluricanonical sections, i.e. sections of mK x
where Kx is the canonical line bundle. By definition, for any line bundle L, the Kodaira-Iitaka dimension is

logh®(X, mL
f{(L)zlimsupiog (X, mL)

It is a consequence of Siegel’s well known theorem that (L) € {—0,0,1,...,n} where n = dimX, and that it
is either —o0 or the maximum of the dimensions of the pluricanonical images ®,,,(X) ¢ P(H°(X, mK x)*).
The Abundance conjecture predicts that the canonical bundle Kx always achieves its maximum possible
asymptotic growth as m — +00, and that x(Kx) coincides with the numerical dimension (redefined further
below).
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CONJECTURE 1.1.1. (Generalized abundance conjecture in the Kahler case, see [ BDPP13])
For an arbitrary compact Kahler manifold X, the Kodaira dimension should be equal to the numerical
dimension :
k(Kx) =nd(c1(Kx)).

A Kahler version of the definition of numerical dimension can be found in [Dem14| or [Bou02al].

DEFINITION 1.6. (numerical dimension)
For L a psef line bundle on a compact Kdihler manifold (X,w), one defines

nd(L) := max{p € [0,n]; 3¢ > 0,Ye > 0,3h,iO . > —ew,such thatf (i1Op,p, +ew)? Aw"™P = ¢}
X\Z.

Here the metrics h. are supposed to have analytic singularities and Z. is the singular set of the metric.

When the line bundle L is nef, a simpler definition can be given:
nd(L) = max{p; c;(L)P # 0}.

An equivalent definition can be given in terms of the positive product defined in [ BEGZ10]. The positive
product is the real (p,p) cohomology class (a?) of the limit

(o) = T (T, 5.0}

where Tiin s, is the positive current with minimal singularity in the class a + é{w} and (T
non-pluripolar product. With this notion, the numerical dimension of « is defined as

nd(a) := max{p|[{a®) # 0}

which is also equal to max{p| {, () A w7 > 0}.

A more intuitive definition of positive product is defined in [BDPP13] as follows. Assume that « is a
big class on a compact Kéhler manifold (X,w). To determine the product, it is enough to know the value of
the product pairing with any (n —p, n— p)-form, in fact it is enough to know its value with a countable dense
family of forms in the space of smooth forms. Since for any (n —p,n — p)-form u, u = Cw™ P — (Cw" P —u)
and both Cw™ P and Cw" P — u are strongly positive forms on the compact manifold X if C' > 0 is big
enough, it is enough to consider only a countable dense family of strongly positive forms.

Fix a smooth closed (n — p,n — p) strongly-positive form v on X. We select Kéhler currents T € o with
analytic singularities, and a log-resolution p : X — X such that

> is the

in,0w

pT =[E]+ 5
where [E] is the current associated to an effective R-divisor and g is a semi-positive form. We consider
the direct image current p.(8 A ... A ). Given two closed positive (1,1) currents 77,75 € a, we write

T; = 0 +iddp; (j = 1,2) for some smooth form 6 € a. Define T := 0 + id0max(p1, p2). We get a
current with analytic singularities that is less singular than these two currents. In this way, if we change
the representative T' with another current 7”7, we may always take a simultaneous log-resolution such that
p*T" = [E'] + B/, and we can always assume that E’ < E. By a calculation, we find

JﬁIA.../\B/AM*UZJ BA...ABAp*u.
X X

It can be shown that the closed positive current (8 A ... A ) is uniformly bounded in mass. For each of
the integrals associated with a countable dense family of forms w, the supremum of Si{ BA...nBAp*uis
achieved by a sequence of currents (tim)«(Bm A ... A By) obtained as direct images by a suitable sequence
of modifications p,, : X,» — X and suitable S,,’s. By extracting a subsequence, we can achieve that this
sequence is weakly convergent and we set

L) := lm 1 {(pm)s(Bm A - A B)}

m——+00

If « is only psef, we define
(a?) = 1i§rll0l<<(a +0{w})).
One can check:

ProPOSITION 1.1.2. The two positive products defined in [BEGZ10] and [BDPP13] coincide for every
psef class.

DEFINITION 1.7. For a psef line bundle L over a compact Kihler manifold, one defines
nd(L) = nd(e1 (L)).
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In the special case of a projective manifold X, the above numerical dimension can be seen to coincide
with the following more algebraic definition:

logh®(X,mL + A
nd(L) = sup lim sup ogh”(X,mL + A)
A ample on X m—+0 logm

(and one can also easily see that this definition only depends on the numerical class ¢1(L)).

In our papers [Wul9a] and [Wul9b]|, we prove some new L? vanishing theorems in terms of the
numerical dimension of a psef line bundle.

The Bogomolov vanishing theorem [Bog] asserts that

HY(X, Q5 @ L") =0

for p < k(L). It is interesting to ask whether we can replace the Kodaira dimension «(L) by the numerical
dimension nd(L). In [Dem02], it is proven that for any pseudo-effective line bundle L on X a compact
Kihler manifold, and any nonzero holomorphic section § € H°(X, Q" ® L~!), where 0 < p < n = dimX,
then 6 induces a foliation in the same terms as for Theorem 1.5. The Bogomolov vanishing theorem forbids
the existence of such non zero section for p > «(L). (By our result, the same happens for p > nd(L).)
In [Mou98|, the following version of the Bogomolov vanishing theorem is stated: if L is a nef line bundle
over a compact K&hler manifold X, then

HY (X, 0% ® L") =0

for p < nd(L). In our work [Wul9b], we get a generalization from the nef case to the psef case by refining
Mourougane’s estimates from [Mou98]. A similar proof had been given in [Bou02a] by using a singular
Monge-Ampére equation. Here, we give another proof that only requires solving “classical” Monge-Ampére
equations.

THEOREM 1.8. Let L be a psef line bundle over a compact Kihler manifold X. Then
HY (X, 0% ® L™ ') =0
for p < nd(L).

Inspired by the work of Junyan Cao [Caol4], we get the following Kawamata-Viehweg type vanishing
theorem in [Wul9a]. The proof follows closely Cao’s proof:

THEOREM 1.9. Let L be a pseudoeffective line bundle on a n-dimensional compact Kdhler manifold X .
Then the morphism induced by the inclusion Kx @ L ® Z(hmyin) > Kx ® L

HY (X, Kx ® LR Z(hmin)) > HI(X,Kx ® L)
vanishes for every ¢ > n —nd(L) + 1. The same holds for any positive singular metric h instead of huin.

The theorem of Junyan Cao is as follows: Let (L,h) be a pseudoeffective line bundle on a compact
Kahler n-dimensional manifold X. Then

HYX,Kx ® LQZI(h)) =0

for every ¢ = n —nd(L,h) + 1.

Let us observe that the result of Junyan Cao is expressed in terms of the numerical dimension of a
singular metric nd(L, k), which is defined as the numerical dimension of the current Oy, ;, instead of the
numerical dimension nd(L) of the line bundle L itself. In general, these notions are different. A typical
example is the example 1.7 in [DPS94]. There exists a nef line bundle L over a ruled surface X — C
over an elliptic curve C, possessing a unique positively curved singular metric. In fact, the current ©p j
associated with this unique singular metric i turns out to be the current of integration [C] over a section of
X — C. Since this current is zero on a Zariski open set, the numerical dimension of the singular metric is
easily seen to be 0. However, the construction of [DPS94] shows that the numerical dimension of the line
bundle is 1.

Observe also that in general one cannot hope to obtain the vanishing of the cohomology groups with
values in Z(hmyin) instead of simply obtaining a zero image into the cohomology with values in L. In fact by
the same example of the last paragraph, h?(X, Kx ® L ® Z(hmin)) = 1 while h?(X, Kx ® L) = 0. In fact,
the situation we consider is easier than the one studied by Junyan Cao since we do not keep the multiplier
ideal sheaf.

Our last vanishing result is a Kodaira-Nakano-Akizuki type vanishing theorem ( [Wul9c]), stated in
term of augmented base loci.
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THEOREM 1.10. Let X be an n-dimensional projective manifold and L a nef holomorphic line bundle
over X. Then we have
HP (X, Q4% ®L)=0
for any p+q > n+max(dim(B4(L)),0). Here B (L) denotes the augmented base locus(or non-ample locus)
of L. When By (L) = &, we define by convention that its dimension is —1.

1.1.3. Nefness in higher codimension.

One of the reformulation of the Kodaira embedding theorem is that a compact complex manifold is
projective if and only if the Kihler cone, i.e. the convex cone spanned by Kihler forms in H?(X,R), contains
a rational point (i.e., an element in H?(X,Q)).

As a general matter of fact, it is obviously interesting to study positive cones attached to compact
complex manifolds and to relate them with the geometry of the manifold. In classical algebraic or complex
geometry, the emphasis is on two types of positive cones: the nef and psef cones, which are defined to be the
closed convex cones spanned by nef classes and psef classes, respectively. The nef cone is of course contained
in the psef cone.

The work of Boucksom [Bou02a] defines and studies the so-called modified nef cone, for an arbitrary
compact complex manifold. Thanks to this definition, Boucksom was able to show the existence of a divisorial
Zariski decomposition for any psef class (i.e., any cohomology class containing a positive current). The
modified cone just sits between the nef and psef cones.

Inspired by Boucksom’s definition, we introduce in [Wul9d], for any compact complex manifold, the
concept of a nef cone in arbitrary codimension, which is an interpolation between the above positive cones.

DEFINITION 1.11. (Minimal multiplicities) ( [Bou02a])
The minimal multiplicity at x € X of the pseudo-effective class o € H}g’é(X, R) is defined as

v(a, z) = sup V(Tmin,e, T)
>0

where Tin,e s the minimal element T € o« such that T > —ecw and v(Twine, ) s the Lelong number of
Tiin,e at x. When Z is an irreducible analytic subset, we define the generic minimal multiplicity of o along
Z as

via,Z) :=inf{v(a,z),z € Z}.

DEFINITION 1.12. Let a € H}B’é(X, R) be a psef class. We say « is nef in codimension k, if for any
irreducible analytic subset Z < X of codimension at most equal to k, we have

via,Z) = 0.

With this terminology, the nef cone is the nef cone in codimension n, where n is the complex dimension
of the manifold, while the psef cone is the nef cone in codimension 0, and the modified nef cone is the nef
cone in codimension 1. In the same paper, we show that these cones are in general different, and construct
explicit examples where these cones are different.

As an application, we obtain the following generalisation from the nef case to the psef case of a similar
result stated in [DP03] (see [Wul9d]).

THEOREM 1.13. Let (X,w) be a compact Kihler manifold of dimension n and L a line bundle on X
that is mef in codimension 1. Assume that (L*) # 0 where (o) is the positive product defined in [Bou02a].
Assume that there exists an effective integral divisor D such that ¢1(L) = ¢1(D). Then

HY(X,Kx+L)=0
forqg=n-—1.

The proof of the above theorem is an induction on dimension, using theorem 1.8 of the previous chapter.
A difference compared with the nef case treated in [DP03] is that we need passing from an intersection
number to a positive product (or movable intersection number), which is a non linear operation. Nevertheless,
under a condition of nefness in higher codimension, we get the following estimate.

LEMMA 1.14. Let « be a nef class in codimension p on a compact Kihler manifold (X,w), then for any
k < p and © any positive closed (n — k,n — k)—form we have

(a",0) = (a",0).

With this inequality, the intersection number calculation in [DP03] is still valid and thus the cohomology
calculations can be recycled.

Observe that a current with minimal singularities need not have analytic singularities for every big class
« that is nef in codimension 1 but not nef in codimension 2; such an example was given by [Nak04|, and
also observed by Matsumura [Mat13].
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As a consequence of Matsumura’s observation, the assumption of our Kawamata-Viehweg vanishing
theorem that the line bundle is numerically equivalent to a effective integral divisor is actually required. In
the nef case considered in [DP03], the authors deduce from their assumption that the line bundle L is nef
with (L?) # 0 that L is numerically equivalent to an effective integral divisor D, and that there exists a
positive singular metric h on L such that Z(h) = O(—D).

However, for a big line bundle L that is nef in codimension 1 but not nef in codimension 2 over an
arbitrary compact Kahler manifold (X,w), we have (L?) # 0 and 3-O(L,hmin) need not be a current
associated with an effective integral divisor.

Another by-product is a (probably already known) example of a projective manifold X with —Kx psef,
for which the Albanese morphism is not surjective. It was proven in [Caol3], [Paul?| (and [Zha06] for
the projective case) that the Albanese morphism of a compact Kahler manifold with —Kx nef is always
surjective. Thus replacing nefness by pseudoeffectivity in the study of the Albanese morphism seems to
be a non-trivial problem. In the same paper, we show that the Albanese morphism of a compact Kéahler
manifold which has its anticanonical line bundle — K x psef and satisfying some integrability condition is still
surjective.

THEOREM 1.15. Let (X,w) be an n-dimensional compact Kihler manifold such that —Kx is psef. As-
sume that there exists a sequence £, > 0 such that lim, .., = 0 and Z(h.,) = Ox for a sequence of
singular metrics with analytic singularities h., on —Kx such that iO(—Kx,he,) = —e,w. Then the Al-
banese morphism ax is surjective with connected fibres. In fact, the Albanese map is a submersion outside
an analytic set of codimension bigger than 2.

Notice that when —Kx is nef, the extra multiplier ideal sheaf assumption made in the above theorem
is satisfied. The condition is also satisfied when there exists a singular positive metric h on —Kx such
that Z(h) = Ox, in which case the surjectivity of the Albanese map is shown in [BDPP13]| and [Paul?]
(Remark 2.3, in the projective case).

The strategy of the proof follows closely the arguments of Junyan Cao in [Cao013]. We consider the
Harder-Narasimhan filtration of T'x

Océ&céic--cé=Tx.

The essential point is to prove that the slopes of &;41/&; is positive. Assume for simplification, that all
the &11/&; are vector bundles. By [UY86], the solution of Hermitian-Einstein equations for stable vector
bundles always exists. By considering the sign of the slopes, the trace of the curvature is positive on each
quotient & 11/&;. By this property, we can construct a metric on T'x whose Ricci curvature has an arbitrarily
small negative part. Then the Bochner formula shows any non zero section of H°(X, Q%) does not vanish
anywhere, and this implies the surjectivity of the Albanese morphism.

The idea to prove the positivity of the slopes is the following. By the stability condition, it is enough
to prove that the slopes of T'x/&; is positive. Grosso modo, we want to construct from a Kahler-Einstein
equation a Ké&hler metric on Tx with arbitrary small Ricci curvature lower bound. Such a metric will
induce a quotient metric on Tx/E;. The problem is that although we can solve a singular K&hler-Einstein
equation by the work of [BEGZ10], the quotient metric need not have a precise meaning. However, by the
work of [CGP13] and [GP16], we know the regularity and the behaviour of solutions for a Monge-Ampére
equation with conic singularity along a divisor. In that case, the solution is known in particular to be smooth
on a Zariski open set.

By taking the solution of a singular Monge-Ampére equation over some bimeromorphic model, we can
obtain a solution that is smooth outside the singular set and that induces a smooth metric on Tx /E; outside
on that same singular set. We show by the regularity result for the K&hler-Einstein equation on a birational
model of the manifold (on which all the divisors are simple normal crossing) that the mass of the curvature of
the induced metric on the pull back of det(Tx /&;) with respect to the solution of the Kdhler-Einstein equation
is bounded near the singular set. By the Skoka-El Mir theorem, the quasi-positive curvature current extends
across the singular set on the chosen bimeromorphic model. In this manner, we can obtain the required
slope estimate for the extended current.

1.1.4. Pseudo-effective reflexive sheaves.

A central question of geometry is to obtain a classification of complex manifolds satisfying various
natural positivity or negativity conditions. In order to elucidate the structure of a projective variety with
nef anticanonical line bundle, a key ingredient is the proof by Junyan Cao [Cao19] of the isotriviality of the
Albanese morphism, which is based in turn on the numerical flatness of some related vector bundles.

In fact, the numerical flatness property of a vector bundle is a completely algebraic concept that brings
in analytic terms a strong obstruction for the curvature of any psef metric. In [DPS94], Demailly, Peternell
and Schneider proved that a numerically flat bundle E on the compact K&hler manifold X admits a filtration
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by vector bundles whose graded pieces are hermitian flat. In some sense, numerical flatness is the algebraic
counterpart of the concept of metric flatness.

In the work of [CCM19] and [HIM19], the authors consider the following question. If one has a
pseudo-effective vector bundle over a projective manifold with vanishing first Chern class, is this vector
bundle necessarily numerically flat? An easy reformulation of the definition is that a vector bundle E is
numerically flat if and only if both E and det(E)~! are nef. As a consequence, the above question amounts
to ask whether the given pseudo-effective vector bundle with vanishing first Chern class is in fact nef.

Intuitively, a positive singular metric on the vector bundle E would induce a positive singular metric
on the determinant det(E). But since the first Chern class of E (i.e. the Chern class of det(E)) is trivial,
one checks that it cannot support any singularity anywhere. Therefore the given positively curved singular
metric has to be smooth.

From this point of view, the same should hold on an arbitrary compact K&hler manifold, and not only
on a projective manifold, since all hypotheses and conclusions are independent of the projectivity condition
and still make sense in the Kéahler situation. In Chapter 5 ( [Wu20]), we show that this is the case. Namely
we prove that

THEOREM 1.16. Let E be a strongly psef vector bundle over a compact Kihler manifold (X,w) with
c1(E) =0. Then E is a nef vector bundle.

In reality, one can expect something even stronger. Since E is strongly psef, the class ¢;(Opg)(1)) is
psef. Intuitively, c¢;(Op(g)(1)) contains a current that is not too singular (this means that the projection
of the singular part onto X is contained in some analytic set of codimension at least 1). Thus the wedge
power of the first Chern class to a not so high exponent is well defined and positive, and so is its direct
image under 7 : P(E) — X. In particular, if r is the rank of E, one can hope that the second Segre class
Ty (c1(Op(gy(1))) T is positive (in the sense that its cohomology class contains a positive current).

Remind that the second Segre class it is also the class ¢;(E)? — c2(E). By the Bogomolov inequality on
any Kéhler n-fold, when c;(E) = 0, the integration of co(E) A w™ 2 on X is positive for every Kihler form
w on X. By comparing these two facts, one concludes that co(E) = 0 and that the Bogomolov inequality is
in fact an equality.

We observe that for a reflexive sheaf F, its Chern class can be defined as follows. Let o be any
modification such that o*F/Tors is a vector bundle. Then for any i = 1,2, ¢;(F) = o4c;(0*F/Tors) which
is independent of the choice of modification o. Morally, we hope that the same calculations hold on some
birational model. By taking direct images, the equality in the Bogomolov inequality is attained.

On the other hand, we have the following important result of Bando-Siu [BS94]. For a poly-stable
reflexive sheaf F of generic rank r over a compact n-dimensional K&hler manifold (X,w), we have the
following Bogomolov inequality:

L(zrcz(f) —(r=1ei(F)H Aw2>0.

Moreover, the equality holds if and only if F is local free and its Hermitian-Einstein metric gives a projective
flat connection.
We will define a nef (or strongly psef) torsion free coherent sheaf as follows.

DEFINITION 1.17. A torsion free coherent sheaf F over a compact compler manifold (resp. compact
Kdhler manifold) is called nef (resp. strongly psef) if there exists some modification o : X — X such that
o*F modulo torsion is a nef (resp. strongly psef) vector bundle.

In conclusion, we hope the stronger fact that a strongly psef reflexive sheaf over a compact Kéahler
manifold (X,w) with trivial first Chern class is in fact a nef vector bundle.

In Chapter 5, we prove that this is again actually the case. A difficulty of the above approach is that in
general a wedge product of positive currents is not necessarily well defined. Instead of proving our contention
directly, we first prove the following result.

THEOREM 1.18. Let F be a nef reflexive sheaf over a compact Kahler manifold (X,w) with c¢1(F) = 0.
Then F is a nef vector bundle.

Now combining the above two theorems, we conclude

THEOREM 1.19. Let F be a strongly psef reflexive sheaf over a compact Kihler manifold (X,w) with
c1(F) = 0. Then F is a nef vector bundle.

Observe that in the above approach, the wedge products involved are well defined without having to
make a restriction on the codimension of the singular set of the metric. In other words, we can then find a
positive current in ¢ (FE) for any psef vector bundle E, but this will not be necessarily the case for cy(F).



1.1. INTRODUCTION 25

In the chapter, we give a definition of strongly psef vector bundles in the Ké&hler situation that is
essentially equivalent to the one proposed in [BDPP13].

DEFINITION 1.20. Let (X,w) be a compact Kdihler manifold and E a holomorphic vector bundle on
X. Then E is said to be strongly pseudo-effective (by short, strongly psef) if the line bundle Oppy(1) is
pseudo-effective on the projectivized bundle P(E) of hyperplanes of E, and if the projection w(Sing(he)))
of the singular part of some singular metric with analytic singularities on (Op(g)(1),he) with curvature
iO(he) = —em*w does not cover all of X for any e > 0 where 7 : P(E) — X.

Equivalently, E is strongly psef if and only if the line bundle Op(g)(1) is pseudo-effective on the projec-
tivized bundle P(E), and if the projection 7(Lynes(Opry(1))) of the non-nef locus of Op(g) (1) onto X does
not cover all of X.

Remind that a Hermitian metric on Op(g)(1) corresponds to a Finsler metric in the following sense
( [Kob75], [Dem99]).

DEFINITION 1.21. A (positive definite) Finsler metric on a holomorphic vector bundle E is a positive
complex homogeneous function
§— [€le
defined on each fibre E,, that is, such that |A\¢||l. = |M|€]x for each A € C and € € E,, and |£|. > O for
&#0.

It is shown in [Wu20] that a Finsler metric with positive curvature current on a strongly psef vector
bundle E can be approximated and induced in the limit by a sequence of Hermitian metrics on large
symmetric powers S™E*.

ProPOSITION 1.1.3. The following properties are equivalent:

(1) E is strongly psef

(2) There ezists a sequence of quasi-psh functions wy,(x, &) = log(|¢|n,,) with analytic singularity induced
from hermitian metrics h,, on S™E* such that the singularity locus projects into a proper Zariski closed set
Zm in X, and

100w, = —memp*w
in the sense of current with lime,, = 0. Here p: S™E* — X is the projection.

(8) There exists a sequence of quasi-psh functions wp(z,&) = log(|¢|n,,) with analytic singularities
induced from hermitian metrics hy, on S™E* such that the singularity locus projects into a proper Zariski
closed set Z,, of X, and

i@SmE*,hm < mepw® Id
on X\Z,, in the sense of Griffiths with lime,, = 0.

By the equivalence of the above conditions, one can show that the psef property is preserved by a number
of usual algebraic operations. For example, a direct sum or tensor product of strongly psef vector bundles is
still strongly psef.

As consequence, we can define Segre forms (or Segre currents) i.e. a (k, k)— closed positive current defined
as the direct image of the wedge product of a curvature current of Op(g)(1), under a suitable codimension
condition on the singular locus.

THEOREM 1.22. Let E be a strongly psef vector bundle of rank r over a compact Kihler manifold (X, w).
Let (Opgy(1), he) be singular metric with analytic singularities such that

iO(Op(py(1),he) = —em*w

and the codimension of w(Sing(h.)) is at least k in X. Then there exists a (k, k)—positive current in the
class T4 (c1(Op(py (1)) + em*{w})rHr=1.
In particular, det(E) is a psef line bundle.

A similar construction has been done in [LRRS18].

At the end of the chapter, as a geometric application, we classify compact Kéhler surfaces and 3-folds
with strongly psef tangent bundles and with vanishing first Chern class. By our Main theorem, they are the
same as compact Kdhler surfaces or 3-folds with nef tangent bundles and with zero first Chern class, that
were classified in [DPS94]. As a consequence, the tangent bundle of a Kéhler K3 surface is not strongly
psef. This generalises the work of [DPS94] and [Nak04] from the projective setting. More generally, an
irreducible symplectic or Calabi-Yau manifold does not have strongly psef tangenet bundle or cotangent
bundle. In the singular and projective setting, a stronger result has been proven in Theorem 1.6 of [HP19],
and in the case of threefolds, in Corollary 6.5 of [Drul8]. (They prove that in this case Op(g)(1) is not a
psef line bundle where F is the tangent bundle or the cotangent bundle.)
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In the compact Kahler setting, we also generalise our main results to the Q-twisted case considered
in [LOY20].

1.1.5. Intersection theory and Chern classes in Bott-Chern cohomology.

Important cohomology invariants of complex manifolds are provided by their Chern classes. In complex
geometry, Chern classes can be defined in various cohomology theories: singular cohomology, De Rham
cohomology, Dolbeault cohomology, Deligne cohomology, complex Bott-Chern cohomology, etc. By the
work of [Sch07], there exists a more precise cohomology theory than all the above cohomology theories,
namely integral Bott-Chern cohomology, in the sense that there exists a natural morphism from integral
Bott-Chern cohomology into all other cohomology theories.

It is proven that the Riemann-Roch-Grothendieck formula is verified for all the above cohomology
theories. A natural question is thus the Riemann-Roch-Grothendieck formula is verified for rational Bott-
Chern cohomology. To give a precise meaning to the formula, we have to define the Chern classes of the
direct image of a vector bundle (even all higher degree direct images). When the map between two manifolds
is proper, by Grauert direct image theorem, the direct image along with higher degree direct images of a
vector bundle is coherent. As a consequence, it would be interesting to be able to build a theory of Chern
classes in the integral Bott-Chern cohomology for arbitrary coherent sheaves.

When the manifold is projective, this follows from an unpublished work of Junyan Cao in which he defines
the Chern classes of vector bundles in the integral Bott-Chern cohomology. Since any coherent bundle can be
resolved by a finite sequence of vector bundles on a projective manifold, we can as well define Chern classes
for coherent sheaves via such resolutions. However, according to a striking result of Voisin [Voi02a], for
an arbitrary compact complex manifold (even assumed to be Kihler), the resolution of a coherent sheaf by
vector bundles does not necessarily exist. It follows that the definition of Chern classes of coherent sheaves
on compact complex manifolds is much more involved.

To treat the similar situation for the rational Deligne cohomology, in the work [Gril0], Julien Grivaux
proposes more generally an approach to define the Chern characteristic classes in a rational axiomatic coho-
mology theory. This has been done by specifying that the cohomology theory must satisfy some intersection
theory axioms.

The general line of the construction is as follows. One “forces” the Grothendieck—Riemann—Roch theorem
to be valid for a closed immersion of smooth hypersurfaces. Then by “devissage”, one can derive from the
intersection theory axioms that the Grothendieck—Riemann—-Roch theorem is valid for any closed immersion.
Since every projective morphism is by definition factorising into the composition of a projection and a closed
immersion, the Grothendieck—Riemann—Roch theorem is valid for any projective morphism, as observed by
Grothendieck. (Of course, we also use the axioms of the intersection theory to treat the projection case.)

In particular, following the approach of Grivaux, we are able in [Wul9e| to define Chern classes as
rational Bott-Chern cohomology classes. In principle, the pull back of a cohomology class is induced by the
pull-back of a smooth form, while the push-forward of cohomology class is better seen by pushing forward
currents. The main difficulty is then to control the behaviour of cohomology classes under the composition of
pull-back and push-forward. More precisely, the integral Bott-Chern complex is quasi-isomorphic to different
types of complexes. To define pull-back or push-forward for the hypercohomology (the integral Bott-Chern
cohomology), we have to use different quasi-isomorphic complexes. When we deal with the effect of taking
pull-backs and push-forwards in cohomology, we pass to the derived category to show that the morphisms
are still well-defined and that they commute in the derived category of complexes of abelian groups, after
passing to hypercohomology.

In certain situations, the pull-back of currents can still exist, although it is not always well-defined in
general. For example, let Y, Z be two smooth cycles intersecting transversally along W. The pull-back of
the current [Z] under the closed immersion 4y is well defined as [W]. We have to show that via some
quasi-isomorphisms, these special types of morphisms between special representatives lead to well defined
cohomology morphisms.

The main difficulty compared to the integral Deligne case is that the multiplication structure of the
integral Bott-Chern cohomology is much more complicated. We choose this multiplication definition such
that the natural morphism from the integral Bott-Chern cohomology to the complex Bott-Chern cohomology
is a ring morphism not only a group morphism. Remark that the complex Bott-Chern cohomology can be
represented by global smooth forms. The wedge product of smooth forms pass to hypercohomology the
multiplication of the complex Bott-Chern cohomology.

THEOREM 1.23. Let p : X — S be a projective morphism of compact complex manifolds and F a
coherent sheaf over X. Then we have the Riemann-Roch-Grothendieck formula in the rational and complex
Bott-Chern cohomology

ch(R*psF) td(Ts) = ps(ch(F) td(Tx))
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where R°pF = Y, R'p, F.

THEOREM 1.24. If X is compact and KoX is the Grothendieck ring of coherent sheaves on X, one can
define a Chern character morphism ch : Ko X — @, Hg’g(X, Q) such that
(1) the Chern character morphism is functorial by pull back of holomorphic maps;
(2) the Chern character morphism is an extension of the usual Chern character morphism for vector bundles;
(8) the Riemann—Roch-Grothendieck theorem holds for projective morphisms between smooth complex com-
pact manifolds.

Thanks to the duality between complex Bott-Chern cohomology and Aeppli cohomology, we also show
that the top degree cohomology of a compact connected complex manifold can be calculated in integral
Bott-Chern cohomology, unlike what happens for Deligne cohomology.

PROPOSITION 1.25. For a compact connected complex manifold X, we have a short exact sequence

0— H* Y(X,C)/H*""Y(X,Z) > HY5(X,Z) - Z — 0.

1.2. Elementary definitions and results

In this section, we recall some elementary definitions and fix the notations which will appear in all the
thesis. In all the thesis, without specifying we assume the manifold to be compact complex. For more
details, we refer to the books Analytic Methods in Algebraic Geometry [Dem12a] and Complex analytic
and differential geometry [Dem12b].

We start by recalling the definition of positive currents and of plurisubharmonic / quasi-plurisubharmonic
functions (psh / quasi-psh for brevity).

DEFINITION 1.26. (Positive currents)
According to [Lel57], a current © of bidimension (p,p) is said to be (weakly) positive if for every choice
of smooth (1,0)— forms aq,--- ,ap on X, the distribution

O NGOl AT A - Al ATy

1§ a positive measure.
For any (1,1)—current T and any smooth (1,1)—form «, we say T > « in the sense of currents if T — «
1S a positive current.

DEFINITION 1.27. (Psh / quasi-psh functions)

Let X be a complex manifold (not necessary compact). We say that ¢ is a psh function (resp. a quasi-psh
function) on X, if i00p = 0,(resp. i00p = a) in the sense of currents where « is some smooth form on X.

We say that a quasi-psh function ¢ has analytic singularities, if locally ¢ is of the form

p(z) = clog(z l9i%) +0(1)

with ¢ > 0 and (g;) some local holomorphic functions. Here O(1) means a locally bounded term.

An important example of closed positive current is the current associated to an effective cycle due to
Lelong [Lel57]. Every closed analytic set A < X of pure dimension p is associated a current of integration
[A] defined as follows:

([A], a) = L 0, € Dy p(X),

reg
obtained by integrating over the regular points of A.

To show that the current [A] is closed and to extend a current across an analytic set, we have the
following fundamental theorem.

THEOREM 1.28. (Skoda [Sko82], El Mir [EM&4], Sibony [Sib85])
Let E be a closed complete pluripolar set in X (i.e. there is an open covering (2;) of X and psh functions
uj on Q; with EnQ; = uj_l(—oo)), and let © be a closed positive current on X\E such that the coefficients

Oy,7 of © are measures with locally finite mass near E. Then the trivial extension O obtained by extending
the measures ©1 ; by 0 on E is still a closed positive current on X.

Let us observe that Lelong’s result asserting that d[A] = 0 for any (closed) analytic set A can be obtained
by applying the Skoda-El Mir theorem to © = [A,¢,] on X\ Agjng.

Another important property of closed positive currents is the following support theorem (see e.g. Demailly
[Dem12b| Chap. III (2.10)). Recall that a support of a current is the complement of the maximal open set
on which the restriction of the current is 0.
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THEOREM 1.29. Let © be a current of degree q on a real manifold M, such that both © and d© have
measure coefficients (i.e. are normal currents). Suppose that the support © is contained in a real submanifold
A with codimgA > q. Then © = 0.

Let A be a complex analytic subset of X a complex manifold with global irreducible components A; of
pure dimension p. Then any closed current © € D'PP(X) of order 0 with support in A is of the form

0 = > N[A4;]
where \j € C. Moreover,if © is positive, then all coefficients \; are = 0.

An important application of the support theorem is the Lelong-Poincaré formula.
Let f € H°(X,Ox) be a non zero holomorphic function, Z; = Y,m;Z;, m; € N, the zero divisor of f
and [Zf] = >, m;[Z;] the current associated to the zero divisor. Then

~adlog| | = [Zy].

An important measure of singularity is the Lelong number introduced by Lelong [Lel57]. Let © be a
closed positive current of bidimension (p,p) on a coordinate open set 2 € C". The Lelong number of O at
a point z € Q2 is defined to be the limit

v(O,z) = rli%lJr v(O,x,r)
with v(0,z,7) = o $Barm O() A (5=00|*)P.

A few basic properties of Lelong number are summarised below.

THEOREM 1.30. (1) ( [Lel57]) For every positive current O, the ratio v(©,x,r) is a non-negative
increasing function gf r, in particular the limit v(©,x) as r — 0+ always exists.
(2) (|Lel57]) If © = iddyp is the bidegree (1,1)-current associated with a psh function ¢, then

v(0,2) = v(p,x) = sup{y > 0;¢(2) < ylog|z — x| + O(1) at x}.

(8) ( [Siu74]|) For every ¢ > 0, the set E.(0) := {z € X;v(0,z) > ¢} is a closed analytic subset of X
of dimension at most p.

A related notion is the concept of multiplier ideal sheaf.

DEFINITION 1.31. (Multiplier ideal sheaf). Let ¢ be a quasi-psh function. The multiplier ideal sheaves
Z(p) is defined as

I(p)e = {f € OX@HUI,JU |f|?e2? < o0}

where U, is some open neighbourhood of x in X.

A basic property of the multiplier ideal sheaf due to [Nad89] is that it is always a coherent ideal sheaf.
Now we recall what are the main concepts of positive cones in complex geometry. In general, we work
in the complex Bott-Chern cohomology, which is define as follows:

HY4(X,C) = {d-closed (p, q)-forms}/{dd-exact (p, q)-forms}.

DEFINITION 1.32. (Psef line bundles)

Let L be a holomorphic line bundle on a compact complex manifold X. L is pseudo-effective (by short,
psef)ifci(L) € Hg’é(X, C) is the cohomology class of some closed positive current T, i.e. if L can be equipped
with a singular Hermitian metric h (which means the local weight function is Llloc) with T = %@L,h >0 as
a current.

A cohomology class « € Hg’é(X, C) is said to be psef if it contains some positive current. A cohomology
class a € Hg’g(X, C) for some k € N is said to be positive if it contains some strongly positive current in the
sense of Lelong. For a (1,1)—class, a class is psef if and only if it is positive.

Currents with minimal singularities in a given psef class are defined below.

DEFINITION 1.33. (See [DPSO01]). Let 1, s be two quasi-psh functions on X (i.e. i0dp; > —Cw in
the sense of currents for some C > 0). Then, 1 is said to be less singular than po (and we write 1 < @3)
if we have ps < 1 + C1 for some constant C. Let « be a psef class in Hé’é(X7 R), and v be a smooth real
(1,1)—form. Let Ty, Ty,0 € a with 6 smooth and T; = 0 + i00p;(i = 1,2). The potential p; is well defined
up to an additive constant since X is compact. We say that Ty < T if p1 < .

A minimal element Trin 4 with respect to the pre-order relation < can be shown to exist by taking the
upper semi-continuous reqularization of all ¢; such that 6 +i00p; =~ and supy @; = 0.
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Another important cone is the nef cone. The following definition has been introduced in [DPS94]| in
the non necessarily algebraic case.

DEFINITION 1.34. (Nef line bundles)

A line bundle L on a compact complex manifold X is said to be nef if for every € > 0, there is a smooth
Hermitian metric h. on L such that iOp, j_ > —ew where w is some smooth Hermitian metric.

A cohomology class o € Hgé(X, C) is said to be nef if for every e > 0, there is a smooth element o € «
such that a. = —ew where w is some smooth Hermitian metric.

By definition, the nef cone is contained in the psef cone. A basic measure for a psef class to be nef is
the non-nef locus introduced in [Bou04].

DEFINITION 1.35. (Non-nef locus)
The non-nef locus of a pseudo-effective class o € H}B’é(X, R) is defined by

Enn(a) = U U Ec(Tmin,faw)
e>0c>0

where w is any Hermitian metric.
The notion of nefness can be generalized to the vector bundle case (cf. [DPS94]).

DEFINITION 1.36. A wvector bundle E is said to be numerically effective (nef) if the canonical bundle
Op(g)(1) is nef on P(E), the projective bundle of hyperplanes in the fibres of E.

A holomorphic vector bundle E over X is said to be numerically flat if both E and E* are nef (or
equivalently if and only if E and (det E)™1 are nef).

Finally, we recall the following regularization theorem due to Demailly.

DEFINITION 1.37. A (1,1)-current T is said to be quasi-positive if T > « where « is a smooth form, in
other words if T' is positive modulo smooth forms. (In particular, according to the definitions, a function ¢
is quasi-psh ifff i100¢ is quasi-positive).

THEOREM 1.38. Let T be a quasi-positive closed (1,1)-current on a compact complex manifold X of
dimension n such that T = v for some continuous (1,1)-form ~. Then there exists a sequence of currents
T,, whose local potentials have the form

%bg(z |gi.m|?) +O(1)

with O(1) a locally bounded term and (g; ) some local holomorphic functions, and a decreasing sequence
€m > 0 converging to 0 such that

(1) T,, converges weakly to T';

(2) v(T,z) = = < v(Tin,x) < v(T,x) for every x € X;

(8) Ty = v — emw in the sense of currents.






CHAPTER 2

On the hard Lefschetz theorem
for pseudoeffective line bundles

ABSTRACT. In this note, we obtain a number of results related to the hard Lefschetz theorem for pseudoef-
fective line bundles, due to Demailly, Peternell and Schneider. Our first result states that the holomorphic
sections produced by the theorem are in fact parallel, when viewed as currents with respect to the singular
Chern connection associated with the metric. Our proof is based on a control of the covariant derivative in
the approximation process used in the construction of the section. Then we show that we have an isomor-
phism between such parallel sections and higher degree cohomology. As an application, we show that the
closedness of such sections induces a linear subspace structure on the tangent bundle. Finally, we discuss
some questions related to the optimality of the hard Lefschetz theorem.

2.1. Introduction

In this note, we establish a closedness and harmonicity result that complements the hard Lefschetz
theorem for pseudoeffective line bundles proved in [DPS01]. By following the arguments of the above paper,
we show that the sections provided by the proof are in fact parallel, when viewed as currents with respect
to the singular Chern connection of the metric. The first difficulty is to define the covariant derivative for
such singular metrics, since in general the wedge product of two currents is not always well-defined. Another
difficulty is to control the covariant derivative in the approximation process employed in the original proof.

Let X be a compact Kédhler n-dimensional manifold, equipped with a Kahler metric, i.e. a positive
definite Hermitian (1,1)-form w =i}, _; ;. wjk(2) dzj A dzy such that dw = 0. By definition a holomorphic
line bundle L on X is said to be pseudoeffective if there exists a singular hermitian metric h on L, given by
h(z) = e~#(?) with respect to a local trivialization Ly ~ U x C, such that the curvature form

iGL,h = 105@
is (semi)positive in the sense of currents, i.e. ¢ is locally integrable and i©p, 5, > 0: in other words, the weight
function ¢ is plurisubharmonic (psh) on the corresponding trivializing open set U. In this trivialization, if
the metric is in fact smooth, the (1,0) part of the covariant derivative with respect to the associated Chern
connection is given in the form:
8h =0+ ago ANLR
and the total connection is dj, = 9, + 0. An important fact is that ¢;, and dj, still make sense for an arbitrary

singular metric h as above. Another basic concept relative to a singular metric is the notion of multiplier
ideal sheaf, introduced in [Nad90].

DEFINITION 2.1. To any psh function ¢ on an open subset U of a complex manifold X, one associates
the “multiplier ideal sheaf” Z(p) < Oxy of germs of holomorphic functions f € Ox ., © € U, such that
|f|2e=% is integrable with respect to the Lebesgue measure in some local coordinates near x. We also define
the global multiplier ideal sheaf Z(h) € Ox of a hermitian metric h on L € Pic(X) to be equal to Z(p) on any
open subset U where L is trivial and h = e~ . In such a definition, we may in fact assume i©p, p > —Cw,
i.e. locally p = psh + C®, we say in that case that ¢ is quasi-psh.

The interest of considering quasi-psh functions is that on a compact manifold global psh functions are
constant, while the space of quasi-psh functions is infinite dimensional. Among them, functions with analytic
singularity will be of special concern for us. With this notation, the following bundle valued generalization
of the hard Lefschetz theorem has been established in [DPS01|. The proof uses the natural L?-resolution
of the sheaf Q% ® L ® Z(h).

THEOREM 2.2. ( [DPSO01]) Let (L,h) be a pseudo-effective line bundle on a compact Kdhler manifold
(X,w) of dimension n, let O, = 0 be its curvature current and Z(h) the associated multiplier ideal sheaf.
Then, the wedge multiplication operator w? A e induces a surjective morphism

o, HO(X, QYT ® LR®I(h) — HI(X, Q% ® LRZ(h)).

31



32 2. HARD LEFSCHETZ THEOREM

The special case when L is nef is due to Takegoshi [Tak97] (for the definition of nef in the analytic
setting, cf. [DPS94]). An even more special case is when L is semi-positive, i.e. L possesses a smooth metric
with semi-positive curvature. In that case, the multiplier ideal sheaf Z(h) coincides with Ox and we get the
following consequence already observed by Enoki [Eno93| and Mourougane [Mou95].

COROLLARY 2.3. Let (L,h) be a semi-positive line bundle on a compact K&hler manifold (X,w) of
dimension n. Then, the wedge multiplication operator w? A e induces a surjective morphism

®1: HY (X, Q% "® L) — HY(X,Q% @ L).

It should be observed that although all objects involved in Theorem 2.2 are algebraic when X is a
projective manifold, there is no known algebraic proof of the statement; it is not even clear how to define
algebraically Z(h) in the case when h = huyi, is a metric with minimal singularity. The classical hard
Lefschetz theorem is the case when L is trivial or unitary flat; then L has a (real analytic) metric h of
curvature equal to 0, whence Z(h) = Ox.

In the pseudoeffective case, the Lefschetz morphism is in general no longer injective as in the classical
hard Lefschetz theorem. An obvious counterexample can be obtained by taking L. = mA where A is an
ample divisor, so that h%(X, Q% Y ® L) ~ Cm™ for m big enough, but h?(X,Q% @ L) = 0 if ¢ > 0. We will
show that to have an isomorphism, we should change the left hand side by the parallel sections with respect
to the singular metric.

Notice that the proof of the hard Lefschetz theorem is given by constructing directly a pre-image for any
element in H7(X, Q% ® LRQZ(h)). This is done by taking weak limit of some subsequence in a bounded family
of some Hilbert space. Since for a bounded family of some Hilbert space, there exists some subsequence with
a weak limit in the Hilbert space. However, there is no trivial reason that the weak limit is unique. Thus
viewing the proof of the hard Lefschetz theorem as construction of an inverse operator

a priori, this operator is not necessarily linear. Thus it is a natural question to demand whether the inverse
operator is linear. More general, does there exist a sublinear space of H°(X,Qy Y® L®Z(h)) such that the
inverse operator is an isomorphism of linear spaces?

In the classical case L = Oy, one can observe that any section u € H°(X, Q% ) satisfies the additional
condition du = dp,u = 0. This is easily seen by Stokes formula, which implies

J- idu A du A w?t = J {du, du}p, A w?™t =0,
b b

where hg is the trivial smooth metric on Oy ; in that formula (as well as in the rest of this paper), given a
hermitian metric h, we denote by {u,v}; the natural sesquilinear pairing

CP(M, APTE ® L) x C*(M, AT% @ L) — CP(M, APHITE)

(u,v) — {u, v}
given by
{u,v}p = Ziw\ A Uulexs eun
A, p
where u = Y uy®ey, v = >, v, ®e,. Another proof relies on the observation that du = u=0 (the second
equality holds since u is of bidegree (n — ¢,0)), whence Azu = 0 = Asu by the Kéhler identities. As a
consequence, we have du = 0*u = 0, and so du = 0.

More generally, the proof of the hard Lefschetz theorem in [DPS01] is obtained by constructing pre-
images as limits of forms given by the pointwise Lefschetz isomorphism. One then deals with a sequence
of harmonic representatives of a given class in H1(X, Kx ® L ® Z(h)), with respect to approximated, less
singular, hermitian metrics h.. It is thus natural to wonder whether the holomorphic sections provided
by Theorem 2.2 also satisfy some sort of closedness property in the case of arbitrary pseudoeffective line
bundles. In fact, we are going to prove that these sections are parallel with respect to the (possibly singular)
Chern connection associated with the metric h; the proof employs similar arguments, but with the additional
difficulty that one has to deal with non smooth metrics.

THEOREM 2.4. All holomorphic sections produced by Theorem 2.2 are parallel with respect to the Chern
connection associated with the singular hermitian metric h on L.

More precisely, as h can be singular, this means that in local coordinates, any such holomorphic section
se HO(X, Qv 7® L®Z(h)) satisfies
Ons=0s+0pAns=0
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in the sense of currents. Since ds = 0, we conclude that dj,s = 0,5 + ds = 0. This property can be expressed
by saying that the section s is parallel with respect to d,.

Now, let us consider the harmonicity. Assume first that the metric is semi-positive (i.e. a smooth metric
with positive Chern curvature). By computing 0(ds) = 0, we get ddp A s = 0, hence

i@L,h As=0.

As Azs = 0 (s is a holomorphic section and s =0 by a bidegree consideration), the Kodaira-Nakano
identity implies
A§S - AahS = [Z‘@Lyh,A]S = Z'@LyhAS - Ai@L,hs = —Ai@L’hS = 0,

by the fact that As = 0. Therefore Ay, s = 0. Since the metric is smooth, this is equivalent to the fact that
Ons = 0 and 0;'s = 0. If the metric is singular, we still have

i@L’hASZO

by the same arguments. However, in the latter case, although the operator 0y is still a densely defined
operator on L?(X,0% ?® L,h) (cf. Remark 1), it is difficult to give an explicit expression of his Hilbert
adjoint Jf. There may exist the boundary condition on the domain of Jf caused by integration by parts,
while the singular part of a general positive singular metric could have very difficult topology. Thus it is
difficult to discuss the Hilbert adjoint 0} in general. Nevertheless, the fact that the section is parallel with
respect to the singular metric is sufficient to characterize the pre-image of the wedge multiplication operator
in the hard Lefschetz theorem.

THEOREM 2.5. Let (L,h) be a pseudo-effective line bundle on a compact Kihler manifold (X,w) of
dimension n, let O, = 0 be its curvature current and Z(h) the associated multiplier ideal sheaf. Then, the
wedge multiplication operator w? - e induces a linear isomorphism

®%: HY(X, Q% ?® L) n Ker(d,) — HY(X,Q% @ L).

In section 4, as a geometric application, we use the closedness property of the holomorphic sections
produced by the hard Lefschetz theorem to derive the existence of a “singular foliation” of X (in fact a linear
subspace structure of Tx).

THEOREM 2.6. Assume that ve H°(X, Q% Q@ L®Z(h)),q =1 is a parallel section with respect to the
singular metric h. In particular a section constructed by the hard Lefschetz theorem is such a section. The
interior product with v gives an Ox- morphism (which is well defined throughout X )

F,:Tx - Q% 7'®L

X — Lx.
The kernel of F,, defines an integrable coherent subsheaf of O(Tx), i.e. a holomorphic foliation.

At the end of section 4, we show by a concrete example indicated to the author by Professor Andreas
Horing that for a general pre-image, instead of the one constructed by the hard Lefschetz theorem, the above
process does not necessarily induce a foliation. In fact, the kernel of F), defined in the theorem 2.6 defines a
foliation if and only if v is a parallel section.

Finally, in the last sections of this work, we discuss the optimality of the multiplier ideal sheaf Z(h) =
Z(yp) involved in the hard Lefschetz theorem. Demailly, Peternell and Schneider already showed in [DPS01]
that one cannot omit the ideal sheaf even when L is taken to be nef, and gave a counterexample when
L = —Kx is the anticanonical bundle. However, it might still be possible in some cases to “improve” the
ideal sheaf, for instance to replace it with lims_o, Z((1 — 6)¢) D Z(p). When ¢ has analytic singularities,
it may happen that the inclusion be strict, but in general the limit need not even be a coherent sheaf (see
section 5). The abundance conjecture and the nefness of L = Kx would imply the semiampleness of L, so in
that case, the ideal sheaf is definitely not needed. For the general case, this seems to be a difficult problem.
Some discussions of these issues are conducted in section 6.
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2.2. Definition of the covariant derivative

In this section, we consider a pseudoeffective line bundle (L, h) on a K&hler (non necessarily compact)
manifold (Y,w) where h(z) = e~#(*) with respect to a local trivialization L;;; ~ U x C and w is smooth.
We denote by | | = | |un the pointwise hermitian norm on AP9Ty ® L associated with w and h, and by
| =1 |wn the global L? norm

n

ul> = | |ul*dV, where dV, = 2.
Y n!

Recall that since ¢ is a quasi-psh function on U, its derivative dy belongs to Li, .(U) with respect to Lebesgue
measure for every p < 2 (cf. e.g. Theorem 1.48 in [GZ17]). This regularity is optimal since on C, the psh
function log|z| has a derivative not in L (C). We fix a smooth reference metric ho on L (not necessarily
semi-positive) from which we can view any other singular metric as given by h = hgoe™%® where ¢ is a quasi-
psh function defined on Y. In general, for v e L2 (U, AP9Ty ® L,w, hg), dp A u is not a priori well defined
as a form with coefficients in L}OC(U, A”H"JT; ® L,w, hg) (with respect to the Lebesgue measure), at least
if we make a naive use of the Cauchy-Schwarz inequality to get a current on U. (Note that in this case,
dp e L (U APTHITE @ Lyw, ho) is however a current on U.)

We can overcome this problem in our proof, because in the construction of sections in the proof of the
bundle valued hard Lefschetz theorem, this type of product can always be defined. In fact we always have
additional assumptions on either u or ¢, as we will see next, and this will be enough to prove our main
theorem. At the end of this section, we prove that the wedge product dp A u is closed with respect to the
L? topology when ¢ is any psh function and w is in L2 (e™%); this will be used in the following section.

In the sequel, we will make use two types of such wedge products. The first type is when w is holomorphic,
so that the coefficients of u are in fact bounded on any compact set, hence in L . thus dp A u has coeflicients

loc?
in
Li (U, APITY ® L,w, ho) x LS (U, AY°Ty ® L, w, ho) < L, (U, AP 1Ty @ L, w, ho).

Moreover, if ¢; a sequence of quasi-psh functions such that ¢; — ¢ in L{ _(U,w, hg), we have dp; — dp in

LE (U AT ® L, w, ho) hence dp; Au — dp Auin Ll (U, APTHTE ® L, w, hg), which implies in particular
the weak convergence as currents (cf. e.g. theorem 1.48 in [GZ17]).

The second type is when ¢ is an arbitrary psh function, taken as a local weight function of h, and
we L (U, APITY @ Lyw, h).

To understand what happens, we start by the case when ¢ has analytic singularities, although this
consideration is not necessary for the proof of general case. Suppose that ¢ has analytic singularities along

a simple normal crossing divisor, i.e. in some coordinates,
¢ = clog|z{t..20"| + C*.

We only need to check the current is well defined near a point in Sing(h), a situation which happens only in
case ¢ > 0. When u e L (U, AP9Ty ® L,w, h), we have to show that dp A u is locally integrable with respect
to the Lebesgue measure, and without loss of generality, we can suppose that the section is integrable on U,

and not only on every compact in U, i.e.
f [0p A Ulw hegdVi < 0.
U

It is true since

an|C a; dz; 1 1
<O ettatr 1 D G V)bl pavi)?

Zg

a2 —_— 1 1
<C’J 2t zgn €y == |idz; A dz;)? f ul? ,dV,)z.
([ e S T ([ )

Since U is a local coordinate chart, we can suppose U to be a poly-disc [ [ D(0,r;). The integrability of the
first term in the integral is given by for any j such that a; > 0,

a2. _ T
|23t zpm [ Hidzl- A dzy < Cj r2aeml < oo
U EA 0

since ca; — 1 > —1. By assumption the second term in the integral is finite, so the product is finite.
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If ¢ has analytic singularities, there exists a modification of i : Y — Y such that x* (Z(h)) is an invertible
sheaf associated to a simple normal crossing divisor, thanks to Hironaka’s desingularization theorem [Hir64]|.
Since we consider only local integrability of functions up to modification (by definition, a modification is a
biholomorphism outside of proper analytic sets) and since analytic subsets are of Lebesgue measure zero,
singularities are irrelevant with respect to integration. Therefore, we can reduce the general case by using a
modification that converts the singular sets involved into simple normal crossing divisors.

For the general case where ¢ is arbitrary psh function. It is enough to prove that SK le® &pﬁ’hode is
finite for any compact set K &€ U. After shrinking U into a smaller relatively compact open subset, we can
suppose that ¢ < C for some C > 0, and also that there exists a non increasing sequence of smooth psh
functions ¢., converging to ¢ in L'(U) as £, — 0. The smooth psh function sequence can be obtained by
taking a convolution with radially symmetric approximations of the Dirac measure. The upper bound is
obtained by the maximum principle. The same is true for ¢.,. In particular, e € L'(U). We prove that
e? € PSH(U). Up to a subsequence, e?sv — e¥ almost everywhere. The functions are uniformly bounded.
By the dominated convergence theorem, e?s» — e in L!(U). Since the space of the psh functions is closed
in Lt (U), e? € PSH(U). Hence

loc
i00e? = e¥(i00p + i0p A Op) = 0

as a current. For any compact set K < U, the mass of i0p A dpe? Aw™ ! on K is the mass of i00(e%) A w™ !

on K minus the mass of iddpe? Aw™ ! on K which is finite. This means § le® 6g0|i7h0de is finite. And it is
closed with respect to the L? topology in the sense that considering a sequence uj, u € L (U, APITy®L,w, h)

such that u; — u, we have by the inequality

J [0p A Uy hedVe = f |6@e%|w,h0|u|w7thw
U U

e 1 1
< (| lefoul (| it
U U

which shows that dp A u; — dp A win Li (U, APTH9TY ® L,w, hy), in particular as currents.
We should mention that some similar discussion of the definition of covariant derivative with respect to
a singular metric can also be found in [Dem02]. (The author thanks Professor A. Horing for mentioning

the reference.)
REMARK 2.7. We check here that the operator
On: LA(X, A" ITE ® L, h) — L*(X, A" "' T ® L, h)

is a closed densely defined operator.

By a partition of unity argument, it is enough to check this on a local coordinate chart U. Assume
that we have h = e~% on U for some psh function ¢. We claim that functions of the type e(*/27€)¢ f with
any ¢ > 0 and f smooth with compact support are in the domain of definition of ), and are dense in
L2(U, A" 9T% ® L, h). In fact, we have

on(ePHf) = (3/2 4+ €)ap A e1/2HI? f 4 (1225,

Without loss of generality, we can assume that ¢ is bounded from above. Since f,Jf are bounded and
|0p|?e?¢dV,, < £7i00(e*?) Aw" ! is integrable, we have §; [0pAe(1/2F9)% f|2e=¢dV,, < co and §, [e1/2F)20f|2e=2dV, <
0. Thus e(1/2+9)% f is in the domain of definition.

To prove the density, it is equivalent to show that smooth functions with compact support are dense in
L?(U,e*%dV) where dV is the Lebesgue measure. Notice that we have an isomorphism of topological linear
space between L?(U, e**%dV) and L?(U,e~%dV) by sending f to e(/27)¢ f. Since ¢*¢ is locally bounded,
thus e2¢¥dV,, is a locally finite measure. Any real function u € L?(U, e**%?dV) can be approximated in norm
by a bounded function @, = max(min(u,v), —v), and then @, can be approximated by smooth compactly
supported functions w, by taking the product of 4, with a cut-off function and taking a convolution by
dominated convergence theorem.

By the last paragraphs before the remark, if v, — u in L?(e~%) topology, then d,u, — dpu in the weak
topology of currents. This shows that dj is a closed operator by definition.

Assuming for the moment that theorem 2.4 is valid, we infer theorem 2.5. A consequence is that the
inverse operator in the proof of the hard Lefschetz theorem is linear, a fact that is a priori non trivial.

PROOF OF THEOREM 2.5. By theorem 2.4, we know that the morphism is surjective. Since the mor-
phism is the restriction of the wedge multiplication operator on some subspace, it is linear. Thus to show
that it is a linear isomorphism, it is enough to show that it is injective.
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Assume that v e H(X, Q% “® L®Z(h)) such that dpu = 0 and u A w? =0in HI(X,Kx ® LQZ(h)).
It means that there exists v € L*(X, A™%1T% ® L, h) such that
uAw! = ov.

To prove that u = 0, it is equivalent to prove that u A w? = 0 by the pointwise Lefschetz isomorphism. To
prove that u A w? = 0, it is enough to prove that || dv ||= 0.
We have that

| ov ||*= J (Ov,u A wiHdV, = J {0v, u}.
b's X
On the other hand, we have that
v, u} = {Ov,u} + (=1)""1" o, opu}

since v is a (n,q — 1) form. By the assumption that d,u = 0, we get 0{v,u} = {dv,u}. Since u is a (n — ¢, 0)
form and v is a (n,q — 1) form, by a degree consideration, we find d{v,u} = 0.

Observe that {v,u} is a well defined current (in fact L} . with respect to any smooth metric on L) since
both v, u are L? with respect to the singular metric h.

Thus by Stokes theorem (for a statement of the result in terms of currents, cf. e.g. [deR60]), we obtain

| v 2= L dfv,u} — 0,

2.3. Proof of theorem 2.4

This section follows closely [DPS01] with some additional estimates for the integral norms of the terms
involved at each step. First, we reproduce the variant of the Bochner formula used in [DPSO01].

PROPOSITION 2.8. Let (Y,w) be a complete Kdhler manifold and (L, h) a smooth Hermitian line bundle
such that the curvature current possesses a uniform lower bound ©r ), > —Cw. For every measurable

(n — q,0)-form v with L? coefficients and values in L such that u = w? A v has differentials ou, 2 u also in

L?, we have
Bul® + [Brul? = ol? + |3 (35 ) ussf
Y 1.0  jeJ
(here, all differentials are computed in the sense of distributions) and where Ay < --- < A\, are the curvature
eigenvalues of 1Oy, expressed in an orthonormal frame (0/0z1,...,0/0z,) (at some fized point xo €Y ), in
such a way that
Wog =1 . dzj AdZj,  (iOpp)a, = ddpn, =1 Y Ndz A dZ.

1<j<n 1<j<n

Now, X denotes a compact Kiahler manifold equipped with a Kahler metric w, and (L, h) a pseudoeffective
line bundle on X. To fix the ideas, we first indicate the proof in the much simpler case when (L, h) has a
smooth metric h (so that Z(h) = Ox), and then treat the general case (although it is not really used in the
proof of the general case).

Let {8} € H1(X,Q% ® L) be an arbitrary cohomology class. By standard Hodge theory, {3} can be
represented by a smooth harmonic (0, ¢)-form 8 with values in Q% ® L. We can also view 3 as a (n,q)-
form with values in L. The pointwise Lefschetz isomorphism produces a unique (n — ¢,0)-form « such that
B = w? A a. Proposition 2.8 then yields

Bl + [ X (S0 )lews? = 13817 + 1251° =0,
I,J

jeJ
and the curvature eigenvalues \; are non-negative by our assumption. Hence dor = 0 and {a} € H(X, QY ‘®
L) is mapped to {8} by ® , = w? A e.
In this case, the proof of the closedness property of sections involves the identity

J {Onv, Opvln AWl = f (&{v, opvln — (—1)9%8%{v, dopvls) A Wit
X X
Using the holomorphicity of v, the fact that (X, w) is Kdhler and the Stokes formula, we get

RHS = (—1)deg”+lf {v, —0ndv + O pv}n A wi™t = (—l)degvﬂf {v,iOL pv}n A Wit
X X

= —J i@L,h A {U,U}h Awl™t <.
X



2.3. PROOF OF THEOREM 2.4 37

In the above calculation, we have used the formula
ahg + %h = iQL,h NCR

The last inequality uses the curvature assumption. Therefore we have
J {6hv,8hv}h Awl Tl = 0,
X

and this implies dpv = 0.

Let us return to the case of an arbitrary plurisubharmonic weight ¢. We will need the following
“equisingular” approximation of psh functions; here, equisingularity is to be understood in the sense that the
multiplier ideal sheaves are preserved. A proof can be found in [DPS01] or [Dem14].

THEOREM 2.9. Let T = « + dd®p be a closed (1,1)-current on a compact Hermitian manifold (X,w),
where « is a smooth closed (1,1)-form and ¢ a quasi-psh function. Let vy be a continuous real (1,1)-form
such that T = ~. Then one can write ¢ = lim,, o Pm where

) $m is smooth in the complement X\Z,, of an analytic set Z,, c X ;

b) {&m} is a non-increasing sequence, and Z,, < Z+1 for all m;

(a
(
(c) fy(e7® —e —Pm)dV,, is finite for every m and converges to 0 as m — +0;
(d) (“equisingularity”) Z(Pnm) = Z(p) for all m ;

(

e) T, = a+ dd°@,, satisfies T,, = v — epw, where lim,, 1o & = 0.

Fix ¢ = ¢, and let h, = h., be an approximation of h, such that h. is smooth on X\Z. (Z. being an
analytic subset of X), ©p . = —cw, he < h and Z(h.) = Z(h). As above we fix a reference smooth metric
ho on L. We denote by 8 the curvature form of hy and h. = hge™ %= (. is hence a global quasi-psh function
on X). The existence of a such metric is guaranteed by Theorem 2.9. Now, we can find a family

We s = w + 0(i00. + w), 6>0

of complete Kdhler metrics on X\Z., where 1. is a quasi-psh function on X with analytic singularity with
Y. = —o0 on Z., . smooth on X\Z. and i00¢. +w > 0 (see e.g. [Dem82], Théoréme 1.5). By construction,
we,s = w and lims_owe s = w. We look at the L? Dolbeault complex K25 of (n,e)-forms on X\Z., where
the L? norms are induced by w, s on differential forms and by h. on elements in L. Specifically

K2 = {0\ 2o AT @ L [ (s, + Pl s Vo < 0

Let IC‘EI’ s be the corresponding sheaf of germs of locally L? sections on X (the local L? condition should
hold on X, not only on X\Z_.!). Then, for all ¢ > 0 and 6 > 0, (Kg’g,é) is a resolution of the sheaf
0% @L®ZI(h:) = Q% ®LQ®Z(h). This is because L? estimates hold locally on small Stein open sets, and
the L? condition on X\Z. forces holomorphic sections to extend across Z. ( [Dem82], Lemma 6.9).

Let {8} € HY(X,Q% ® L®Z(h)) be a cohomology class represented by a smooth form with values in
0% ® LRZ(h). Then

<181 = [ 18nmendVi <+

The reason is that |ﬁ|%n,qw®hde decreases as w increases, see e.g. [Dem82|, Lemma 3.2. Now, § is a
0-closed form in the Hilbert space defined by w. s on X\Z. and for § > 0, the Kihler metric is complete on

X\Z., so there is a w. s-harmonic form wu. s in the same cohomology class as [, such that
< | Ble,s-

Let v, s be the unique (n — ¢,0)-form such that u. s = ves A wg’é (ve,s exists by the pointwise Lefschetz
isomorphism). Then

es = uesles < [Bles < [BI-
As >lic; Aj = —qe by the assumption on @L,hga the Bochner formula for X\Z, yields

[0ve 52,5 < gelluesZ,5 < gelBI1*.
But since Z. is an analytic set, the integral can also be seen taken on X; In the following, we use it
abusively. These uniform bounds imply that there are subsequences u. s, and v. 5, with §, — 0, possessing
weak-L? limits u. = lim,_, 1o Ue,5, and ve = lim,_, 1 Ve 5,. The limit v, = lim,_, ;o v, 5, is with respect to
L?(w) = L? (o./6 0). To check this, notice that in bidegree (n — ¢, 0), the space L?(w) has the weakest topology
of all spaces L?(w. 5); indeed, an easy calculation made in [Dem82], Lemma 3.2 yields

|f|An_q,%®thw < |f|A"—q10wE,5®thws,a if f is of type (n — ¢,0).
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On the other hand, the limit u. = lim, _, ;o uc s, takes place in all spaces L?(w. ), § > 0, since the topology
gets stronger and stronger as § | 0 [possibly not in L?(w), though, because in bidegree (n,q) the topology
of L?(w) might be strictly stronger than that of all spaces L?(w. s)]. For fixed ¢ > 0, for any ¢’ < J,we have

e < |8l

le.s < 18]
By Lebesgue’s monotone convergence theorem, u. is L?(w. s ® h.) bounded. The above estimates yield

IoctZo = | oelRo-souqn, 4V < 181,

[0v: 2,0 < g2l B112 0 = ¢el 817,
U =wi Av. =0 in H(X,Q% ® L&Z(he)).
The last equality can be checked via the De Rham-Weil isomorphism, by using the fact that the map « — {a}
from the cocycle space Z9( ;5) equipped with its L? topology, into H%(X,Q% ® L ® Z(h)) equipped with
its finite vector space topology, is continuous.

For the closedness property, we want to control the Ll = norm of the covariant derivative with respect
to the Lebesgue measure, which is well defined on X since the metric is smooth outside an analytic set and
the section is locally L? with respect to the metric. For any smooth (n — ¢, 0)-form v with compact support
in X\Z., we can apply the Stokes formula to get

JX{ahEU, ahE'U}hE A wg,gl = (—1)ngv+1 fX{U, —ahﬁv + ieL,hEU}hE A wg,gl

Husﬁ’ |6,5 < Hue,é/

Jucl s < limingyofuc,s

_ L{(?{v,gv}hs — (B0, B0, — 1O, A {0, 0bn) AWl

- fx(—{gv,gv}hg —iOrn. A {v,vhn) A w;{gl.

We want to apply this identity to v = vs that does not necessarily have compact support in X\Z.. However,
the metric we s®he is smooth and complete on X\ Z,, and this will allow us to extend the identity to v = v, 5.
In fact, there exists a sequence of smooth forms v 5, with compact support on X\Z. obtained by truncating
ve 5 and by taking the convolution with a regularizing kernel, in such a way that v. 5, — v. 5 in L?(w. s ®h,)
(and therefore in L?(w® hg) as well). For simplicity of notation, we put d. = Jj,. and denote by 0% 5 its dual
with respect to the metric w. s ® h. (the latter operator depends on ¢, since the Hodge = operator depends
on the Kéhler metric). By taking v = v, 5, in the above identity, neglecting the non positive term involving
Jv and using the curvature condition, we obtain

Haevs,zi,u 2,5 < gefve s |g5

Let us put C' = em®@x(#<1) (we have C' < o0 as X is compact). Then by using w. 5 > w, he > %ho, we get

HanE,é,VHQL?(w@hO) < C”anE,&VHg,év

By the Cauchy-Schwarz inequality and the fact that X is compact and that the metrics w, hg are smooth,
we find

‘LQ (w@ho) )
Since the covariant derivative is a closed operator and v. 5, — Ve 5, Ve,6 — Ve in L? (we,0 ® he), we conclude
that

”aEUE,&VHLl(w@ho) < CIHasUs,&V

10ve 5121 (weho) < C"v/ElBI,
10ve | L1 (woone) < C" v/l B-

Again, by arguing in a fixed Hilbert space L?(h.,) (since w. = w, the notation L?(he,) will be used for
fixed g9 > 0), we find L? convergent subsequences u. — u, v. — v as € — 0, and in this way get dv = 0 and
[0 < 1812,
u=wlArv=p in H1(X,Q% ® LRZI(h)).

By closedness of the covariant derivative and by continuity of the injection L?(w® hg) — L'(w® ho) on the
compact manifold X, we obtain

<
<

10e0v 171 (wione) < Caeoll B
As ¢ = lim._,g . and dp = lim._,q . in Llloc(ho), and as we haven proven that v is in fact holomorphic,
by the continuity of the covariant derivative operator, we infer that dp A v = lim._,g 0. A v in the sense of
distributions, and we have ||6hv|\2L1( )y =0, which means that d,v = 0. The closedness property is proved

along the same lines.

w®h0
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2.4. Foliation induced by sections

We show that the closedness property of the holomorphic section provided by the hard Lefschetz theorem
induces a foliation on X. Here foliation means that there exists an irreducible analytic set V of the total space
Tx such that for any x € X, V,, :=V n Tx is a complex vector space and the section sheaf O(V) c O(Tx)
is closed under the Lie bracket. It is equivalent to say that O(V) is closed under Lie bracket and that
O(Tx)/O(V) is torsion free.

We consider v € H(X, Q% ?® L ® Z(h)),q > 1 a parallel section with respect to the singular metric
h. In particular a section constructed by the hard Lefschetz theorem is such a section. The interior product
with v gives an Ox-morphism (which is well defined on the whole of X )

Fo:Tx - Q¥ 7'®L
X — 1xv.

First we observe that the kernel Ker(F,) is coherent and locally free over a Zariski open set — this
merely relies on the fact that v is holomorphic, and although the proof is purely formal, we repeat here
the standard argument for the reader’s convenience. For any z € X, take an open neighbourhood V of
z such that L[y is trivial and on this open set v(z) = X5 7_,,_, vr(2)dzr where vy € I'(V,Ox). Consider
€ = Zgj(z)a% a local tangent vector field on V. For any multiindex I and any j € I, we write it in the
form I = (j,I7). Then { € Ker(F,) if and only if Zj,1,|l\=n—q—1 §ug,ndzr = 0, i.e. if and only if for any
LIl =n—-q—1,%;§(2)ugn(z) = 0. This gives a local system of analytic equations defining Ker(F). In
particular, we see that Ker(F,) is locally free over the Zariski open set where the holomorphic linear system
23 &(2)ugn(2) =0 (|I| = n — g — 1) achieves its generic rank.

Next, we show that the spaces of sections of Ker(F,) are closed under Lie brackets; this uses of course
the closedness property of v. Since the closedness under Lie brackets is a local property, we can take an
open set U such that there exists a nowhere vanishing local generator sy, of the line bundle L on U, and
we verify the closedness of the Lie bracket on U. On U, v = u ® sy, for some u € H°(U,Q% ). Denote
by X,Y two local tangent vector fields in KerF,, ¢ O(Tx) defined on U. Observe that dj(u ® sr,) is only
almost everywhere defined (instead of pointwise defined). The above equalities are calculated in the sense
of currents. We have

0=dp(u®sL)(X,Y,e)
= (du®sy, + (=1)%%y A dy,s1)(X, Y, e)
= du(X,Y, ) ®@sp + (—1)%8%y A dysp(X,Y,e)
= du(X,Y, ) ®sp, + (—1)%8"[u(X, 8)dps(Y) — u(Y, ®)dpsy(X) + ...]
=du(X,Y,e)® sy,
The above dots ... mean terms of the form tu(X,Y,e)d,sr(e). The last equality uses of course the fact
that X,Y € KerF,,.
For any Xy, ..., X;,—4 tangent vector fields of U such that Xo = X, X; =Y, we have
n—q
0 = du(Xo, ..., Xn_q) = Y (~1)'X;[u(Xo, ..., Xi, .o, X))
i=0
+ Z (—1)i+ju([Xi,Xj],X07...,Xi,...,Xj,...,Xn,q)
0<i<js<n—q
= —u([X,Y], X2, ... X0—yg),
which means that [X, Y] € Ker(F,).

By the Frobenius theorem, the subsheaf Ker(F,) c Tx defines a regular holomorphic foliation on a
Zariski open set. Notice additionally that Ker(F,) is saturated in Tx, i.e. Tx/Ker(F,) ~ Im(F,) is torsion
free, as a subsheaf of the locally free sheaf Q}_q_l ® L.

We can also reformulate our conclusions in the following form: denote by r the generic rank of Ker(F,,).
Then, looking at F; as a morphism of bundles rather than as a morphism of sheaves, we get a meromorphic
morphism

X --» Gr(Tx, 1)
z — Ker(F, ,)
where Gr(TX,r) is the Grassmannian bundle of r-dimensional subspaces of T, and the corresponding
distribution of subspaces is integrable on the Zariski open set where the above map is holomorphic.

Let us observe that the foliation property only holds for the parallel sections. In general, a non trivial
section v € HY(X, QY ?®L),q = 1, does not necessarily induce a foliation. We give below a concrete
example of the non-integrability of Ker(F,,) for such a section v, and thank Professor A. Horing for pointing
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out the example. It is interesting at this point to compare the situation with the following result proved
in [Dem02]: if L is a psef line bundle over a compact Kéhler manifold X and 0 < ¢ < n = dimX, then
for every non-zero holomorphic section v € H(X,Q% ® L™1), the kernel Ker(F,) automatically defines a
foliation on X.

The example pointed out by A. Horing first appeared in the paper of Beauville [Bea00]. Let A be an
abelian surface and X = A x PL. Let (U,V) be a basis of H°(A,T4) , and let S, T be two vector fields on
P! which do not commute. For example, in the homogeneous coordinates [w; : ws] of P!, we can take

0 0

S =wy—, T = wy—.
wQa’wl, wl&wg

Then the vector fields U + S and V + T span a rank 2 subbundle ¥ of Tx. Since U + S, V + T have no
common root, ¥ (9%2. In particular, X is not integrable, i.e. 3 is not closed under the Lie bracket of
vector fields. Consider the short exact sequence of vector bundles

0% —Tx - Tx/S — 0.

We deduce that Tx /¥ =~ —Kx. The quotient map Tx — Tx /% =~ —Kx induces by duality a vector bundle
morphism Kx — Q%. Thus we have a non trivial section nsr € H°(X, Q4 ® (—Kx)).

To use the hard Lefschetz theorem, we take the following smooth metric on —Kx. Denote by m : X — A,
7y : X — P! the natural projections. —Ky = 75Op1(2). Thus —Kx is a semiample divisor. By taking
the smooth metric h induced by a basis of global sections 73 H°(P', Op1(2)) (or a base point free system of
global sections), we get a smooth positive metric on —K x. In particular, the multiplier ideal sheaf associated
to this metric is trivial. Moreover, by construction, the metric is real analytic. In other words, we have a
section v € HO(X, Q% ® (—Kx)) such that Ker(F,) is not integrable, while the metric is positive and real
analytic.

Fix any Ké&hler metric w on X. By the hard Lefschetz theorem, we have a surjective map

HY(X, 0% ® (-Kx)) = H*(X, Ox).

The image w? A 157 has a pre-image s which does not define a foliation on X with the above choice of
S,T.

Next, we derive by an explicit calculation what is the pre-image given by the hard Lefschetz theorem,
and show that this pre-image indeed defines a foliation on X. To simplify our exposition, we keep the same
notation as above without assuming any longer that S, 7" do not commute. Fix w4 a flat metric on A such
that U,V form an orthonormal basis at each point. Fix wp: a Kéhler metric on P' induced by the Fubini-
Study metric and fix w = 7fw4 + 7*wpr a Kéhler metric on X. In particular, with this choice of metric, the
induced metric ASw®h on Kx + (—Kx) is trivial.

We begin by showing that for any choice of S, T, the image w? A ng 1 is the same. To verify this claim,
we use the following isomorphism of C-vector spaces. Notice that H?(X,Ox) =~ nf H*(A,04) =~ C. Fix
some x € P'. Consider the morphism

L H*(X,0x) - C

{u} — uAiU* AV,
Ax{z}

Here u is a C{ 5 (X) representative of {u} € H*(X,Ox). It is surjective since a generator of H?(X,Ox)

can be represented by 7 (U* A V*) whose image is equal to SA w?. Since both sides are isomorphic to C,
we have an isomorphism.

For any z € P!, let W be a local generator Tp1 with norm 1 with respect to wpi. In particular, locally
U, V,W form an orthonormal basis with respect to w pointwise. Assume that locally S = fW and T = gW.
There exists a C* splitting of the short exact sequence 0 - X — Tx — Tx/Y - 0by Tx =~ X @ Tx/%
which is induced by w. Locally, Tx is spanned by orthogonal basis fU + gV — W, U + fW and V + gW.
With this identification, 1 can be locally given by for any £ € Tx

= U V-Ww).
Thus 7 is given by
/ * g * 1 *
— %% U V-Ww).
(1+f2+g2 +1—|—f2—|—92 L+ 2492 )@ U +g )

The anticanonical line bundle — K x is locally generated by

(fU+gV —W)A U+ fW)AV+gW) =1+ f2+ ¢ U AV AW.
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In other words, the identification of ¥+ =~ Tx /¥ ~ —Kx means the identification of fU 4 gV — W with
—(1+ f24+¢g>)U AV A W. Thus w? A 7 seen as a 0(0872) form is given by
VAW 4 gU AW 4T AV,

Using this expression, t(w? A ng,r) is the same for any S,T. Since ¢ is an isomorphism of vector spaces,
w? A mg.r is independent of the choice of S, T

In the following, we show that the section constructed in the hard Lefschetz theorem for w? A ngr is
ns,r associated with S =T = 0. We remark that since the metric is smooth, we can directly use the result
of [Eno93] without employing the equisingular approximation of [DPS01]. In other words, the pre-image is
given by the pointwise Lefschetz isomorphism of the harmonic representative of an element in H?(X, Ox).

We claim that a generator of H2(X, Ox) can be represented by the harmonic (0,2)-form U A V. The
reason is as follows. Since the metric is trivial on Ox, the covariant derivative coincides with the exterior
derivative. Since U,V are global parallel holomorphic sections, dU* = dV* = 0. This implies in particular
that g(ﬁ* AV*) = 0. On the other hand, U AV is independent of the choice of coordinate on P!. To prove
that 0" (U* A V*) = 0, it is enough to make a calculation in a normal coordinate chart centred at . In other
words, locally w = iU* AU +iV* AV +iW* AW " with dW (z) = 0. (The existence of the normal coordinate
chart is ensured by the assumption that w is Kédhler.) Since 0" = —%0x, wehave 0 (U* /\V*)(m) = 0, as this
form involves only the value dW (x) at z. By the pointwise Lefschetz isomorphism, the pre-image of T AV*
in the hard Lefschetz theorem is given by U A V € HY(X, Q% ® —Kx) =~ HY(X, A?Tx) =~ H°(A, Ka). Tt
defines a foliation of T'x generated by U, V, which has leaves A x {z} (z € P?).

2.5. Counterexample to coherence

In this section, we wonder whether it is possible to replace the multiplier ideal sheaf by its “lower

semi-continuous regularization”, i.e.
T (p):= [ Z((1 = d)p),
6>0

which could be thought of as some sort of limit lims_o, Z((1 — d)¢). A priori, as an infinite intersection of
ideal sheaves, this lower semi-continuous regularization might not be coherent. It contains certainly Z(¢p)
and can be different from it if 1 is a jumping coeflicient of the multiplier ideal sheaf. In this section, we show
by a counterexample that the above infinite intersection (5., Z((1 —d)¢) need not be coherent for arbitrary
psh functions; hence some further conditions should be added to ensure coherence and possible applications
to algebraic geometry, thanks to Serre’s GAGA theorem [Ser56].

ProrposiTioN 2.10. Let B be the ball of radius % centred at 0 in C?, and consider the plurisubharmonic
function
o(z,w) = logl|z| + Z exlog(|z] + |w — az| %)
k=1
where ay is any sequence converging to 0 smaller than % and g, > 0 and Ny € N* are suitable numbers ( to
be determined later). Then ¢ defines multiplier sheaves such that the intersection ideal (5., Z((1 —d)¢) is

not coherent.

The potential used above is a modification of the one given in [GL16] (and was suggested to the author
by Demailly). Assume that the ai’s are distinct and not equal to zero. We recall the following elementary
calculation of [Siu01].

LeEMMA 2.11. Let a,b, and ¢ be some positive numbers such that a and c¢(1 — M%) are not integers and
[a] —a <b< 1. Let pg = [a—1] and qo = |c(1 — MT_‘Z)J Then on C2?, the multiplier ideal sheaf for the
weight function
alog|z| + log(|z[® + |w|%)
is generated by zP°*t! and zPowi. Here |-| denotes the round-down and [-] denotes the round-up.

Using this lemma, we can calculate the multiplier ideal sheaf at (0, ax) since near (0, ax) the function is
equisingular to log|z| + exlog(|z| + |w — ax|V*). Using the trivial inequality
1
5(a” +47) < (a+ )" <27(a” +67)
for a, 8,7 non negative, one can easily reduce the required check to the lemma. In order to compute the
multiplier ideal sheaf associated to (1 —0)p at (0,ax), 0 < d < 1, we apply the lemmatoa=1—-§,b=1-9§
and ¢ = (1 — 0)Ngeg. Once gg, Ny, are fixed, the number ¢(1 — MT_Q) is an integer only for countably many
values of §, a situation that does not affect Z_(¢). When ¢ converge to 0 fast enough, ¢ well define a
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psh function on B. In particular, we can choose ej, positive such that > e, < co. By this assumption,
v = (1+ > er)log|z|. Hence it is not identically infinite. In particular, ¢ is the limit of a decreasing sequence
of psh functions log|z| + >.;. > 41 exlog(|2] + [w — ak|V*). Hence it is a psh function on B for any choice of
Ni.

Now fix C' > 1 and choose Ni so that Nygep = C and Nyey is not an integer. Consider a given index k.
For such a choice and ¢ small enough, gx s = | Npex(1 —26)| = 1. By the lemma, Z((1 — §)y) is generated at
(0,ax) by z, (w — ag)®s. In particular, (z, (w — ay)V*<¥))  (Z_(¢), ax). Now we prove that Z_(y) is not
coherent by contradiction. If Z_(y) is coherent, since B is a Stein manifold, by Cartan theorem A for any
(0, ax) the map H°(B,Z_(¢)) = I_(9)(0,a,) is surjective. For any f € H*(B,Z_(p)), f(0,ax) = 0 for any k.
Since (0, ax) has a cluster point 0 on the complex line {z = 0}, we have f|._o; = 0. In other words, f can be
divided by z. But (w — az)!V+*! should then be the restriction of such a function f, and this contradiction
yields the proposition.

We check below that the coherence may however hold for psh functions that are not too badly behaved.
By definition, it is enough to treat the case when 1 is actually a jumping value of the multiplier ideal sheaves
t — Z(ty). First, we observe that when ¢ has analytic singularity, we have Z_(¢) = Z((1 — d)¢p) for § > 0
small enough, in particular, Z_(¢) is coherent. In fact, if ¢ has the form ¢ = > a;log|g;| where D; = gj_l(O)
are non-singular irreducible divisors with normal crossings, then Z(y) is the sheaf of functions f on open sets
U < X such that §,, [f|*]|g;|7>*dV < co. Since locally the g; can be taken to be coordinate functions
from a local coordinate system (z1,. .., z,), the integrability condition is that f be divisible by || g;nj where
m; > |a;|. Hence Z(p) = O(—|D]) = O(—>|;|D;). Saying that 1 is a jumping coefficient in this case
means that there exist some index subset J such that for any jo € J we have a;, = |, |. In this case for 0
small enough we have that

Z((1 = 8)p) = O(= D\ (ay + 1)D; = Y|y |Dy)
jeJ jgJ
and the conclusion follows. More generally, if ¢ has arbitrary analytic singularity, there exists a smooth
modification v : X — X of X such that v*Z(p) is an invertible sheaf O(—D) associated with a normal
crossing divisor D = > A\;D;, where (D;) are the components of the exceptional divisor of v. Now, we have
K; = v*Kx + R where R = }]p;D; is the zero divisor of the Jacobian determinant of the blow-up map.
By the direct image formula, we get

Z(p) = v« (O(R) ®Z(p o v)),

and the proof is reduced to the divisorial case.

Even more generally, for any psh function ¢ and any psh function ¢ with zero Lelong numbers (i.e., for
every z, v(¢,z) = 0), we have Z(p) = Z(p + v) (cf. Proposition 2.3 [Kim15]). By the above discussion we
thus get Z_ (¢ + ) = Z((1 — ) (¢ + ¢)) for § > 0 small if ¢ has analytic singularities.

In particular, when X is 1-dimensional, Siu’s decomposition theorem [Siu74] can be used, to decompose
dd®p into the sum of a convergent series of Dirac masses and of a current with zero Lelong numbers; only
the locally finite set of points where the Lelong number number is at least 1 plays a role; we then see that
Z_(¢) =Z((1 — d)yp) for § small enough, hence Z_(¢p) is coherent. More generally, the following variant of
Nadel’s proof on the coherence of multiplier ideal sheaf [Nad90] can be exploited.

LEMMA 2.12. For any psh function ¢ on Q c X such that E1(p) := {x;v(p,x) = 1} consists of isolated
points, the sheaf T_(p) is a coherent sheaf of ideals over Q.

ProoOF. We follow the proof of Nadel. Without loss of generality, we can assume that  is the unit ball.
By the strong noetherian property of coherent sheaves, the family of sheaves generated by finite subsets of
H2(Q, ) == {f € Oq(Q); {, | f|2e72(179% < o0, V6 € 0, 1[} has a maximal element on each compact subset
of Q, hence H? (2, ) generates a coherent ideal sheaf J in Og. By definition we have J < Z_ (). We will
prove that in fact J = Z_ (), which shows in particular that Z_(¢) is coherent.

For the other direction, it is enough to prove that J, + Z_ (), n mi*t! = Z_(¢), for every integer s,
by the Krull lemma. Let f € Z_(¢), be defined in a neighbourhood V of x and let 6 be a cut-off function
with support in V such that § = 1 in some neighbourhood of . We solve the 0 equation du = 0(ff) by
Hoérmander’s L? estimates ,with respect to the strictly psh weight

@(2) := o(2) + (n + s)log|z — x| + |2|*.

The integrability is ensured by the fact that d(6f) vanishes near x and the Skoda integrability theorem
[Sko72]. We remark that the Lelong number outside a small open neighbourhood of 0 is strictly less than
1 pointwise by the assumption that E;(y) is isolated at x.
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Hence we get a solution u such that {, [u|?e=2¢|z — z[~2("**)d\ < o0, thus F = 0f — u is holomorphic.
F e H%(Q,¢) as a sum of a function in L?(Q, ¢) and a function in H?(Q,¢). Moreover, f, — F, = u, €
T _(¢)r nmiTL. This finishes the proof. O

2.6. On the optimality of multiplier ideal sheaves

We study here whether the ideal sheaves Z(y) involved in the hard Lefschetz theorem can be replaced
by ideals Z((1 — d)¢) D Z(p). In other words, if (L, h) is a pseudo-effective line bundle on a compact K&hler
manifold (X,w) of dimension n, i©r ; > 0 its curvature current and Z(h) the associated multiplier ideal
sheaf, we study whether for any ¢ € [0, 1] small enough the wedge multiplication operator w? A e induces a
surjective morphism

7, HYX, Q% "®@ L®I((1 - 6)h)) — HY(X, Q% @ LRL((1 - 8)h)).

First, we recall the following special case of the hard Lefschetz theorem. Assume that L admits a smooth
metric hy such that its curvature form « is semi-positive. Then, the wedge multiplication operator w? A e
induces a surjective morphism for any § € [0, 1]

ol HY(X, QY@ LRI((1 - 6)h)) — HI(X, Q% ® LROZI((1—6)h)).

The proof of this case just consists of applying the hard Lefschetz theorem to the Hermitian line bundle
(L, h{h'=?). If the line bundle admits a positive singular metric hy such that the corresponding Lelong
numbers are equal to 0 at every point, by Proposition 2.3 in [Kim15], for any § € [0, 1], the metric (L, h{h'~?)
has a multiplier ideal sheaf equal to Z((1—0)h). Then the bundle valued hard Lefschetz theorem also implies
the surjectivity property.

The condition that the line bundle admits a positive singular metric such that the Lelong number of
this metric is pointwise 0 implies in particular by regularization (see e.g. Theorem 14.12 in [Dem12a]) that
the line bundle is nef. However, the converse is false by example 1.7 in [DPS94], in which the only positive
singular metric on the nef line bundle is the singular one induced by a section. An alternative example is
given in [Koil7]: there, Koike considers the anticanonical line bundle — K x of the blow-up of P? at 9 points,
and shows that there exists some configuration of the nine points such that —Kx is nef, while the singular
metric with minimal singularities is induced by a section s € H°(X, —Kx)\{0}. In particular, there exists
no singular metric on —Kx with curvature > 0, such that the Lelong number of the singular metric is equal
to 0 at each point.

This condition is also non equivalent to the semipositivity of the line bundle, although it is obviously
implied by semipositivity. A counter example for the converse direction is provided by [BEGZ10], example
5.4 and [KimO07], example 2.14. Take a non-trivial rank 2 extension V of the trivial line bundle by itself, over
an elliptic curve C, and an ample line bundle A over C. Then consider X = P(V@® A) and the associated line
bundle O(1). It is big and nef, and this is enough to conclude that it admits a semi-positive singular metric
with Lelong numbers equal to 0. In fact, it is enough to argue for the semi-positive metric with minimal
singularity. By the Kodaira lemma, there exists mg € N such that O(mg) = A+ E where A is an ample line
bundle over X and F is an effective line bundle over X. For any m > my, a metric on O(m) is induced by a
smooth strictly positive metric on the ample line bundle A + O((m —mg)) and by a singular metric induced
by a non zero section on the effective line bundle E. This metric itself induces a metric on O(1) which is by
definition more singular than the metric with minimal singularity. It has pointwise Lelong numbers at most
equal to % Hence the metric with minimal singularity has Lelong numbers equal to 0 pointwise. However,
O(1) cannot admit a smooth semi-positive metric: for this, note that X has a submanifold Y =~ P(V) given
by the surjective bundle morphism V& A — V; a smooth semipositive metric on O(1) would induce a
smooth semipositive metric on Oy (1) by restriction, which is impossible by [DPS94].

As we have seen, the extension is possible if the minimal metric is not “too bad”. This is also true in the
purely exceptional case, as we will now see.

Let X be the blow up a point of some smooth complex manifold Y of dimension n. Denote by E the
exceptional divisor. Let L be a semi-positive line bundle on X such that L|g is not trivial on E. Consider
the line bundle L + E. Take h to be metric on L + E induced by the canonical section of the effective divisor
E, tensor product with the given semi-positive metric on L. We start by remarking that for any § € 0, 1]
we have Z((1 — §)h) = Ox. Hence the lower semi-continuous regularization of the multiplier ideal sheaf is
trivial. We claim that the map

HY(X, OV 'QLQE) > HI(X,Kx®LR®E)
is surjective for every ¢ > 1. First, by the hard Lefschetz theorem, we find that

HY (X, QY '®L) > HY(X,Kx ®L)
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is surjective for every ¢ > 1. On the other hand, we have the following commutative diagram
HY (X, 0y '®L) — HYX, Q%Y '®LQE)

| l

HI(X,Kx®L) — HIYX,Kx®LQ®E).
To show that the right arrow is surjective, it is enough to show that the bottom arrow is surjective. By Serre
duality, this is equivalent to proving that
H"9(X,-L—-F)—> H"4(X,-L)

is injective. By considering the long exact sequence associated to the short exact sequence

0> Ox(—L—-FE)— Ox(—-L)—> O(-L)|g — 0,
it is enough to show that for any ¢ > 1

H" 7 YE,~L|g) = 0.

Remind that E =~ P"~!. For any q € Z, for 0 < i < n — 1, we have that H*(P"~!,O(q)) = 0. Remind also
that the Picard group of P"~! is Z. This finishes the case ¢ < n — 2, and the case ¢ = n — 1 also holds,
since our assumptions L > 0 and L|g non trivial imply H°(E,—L|g) = 0. The same arguments also work
for L = Ox. We have an exact sequence

H°(X,0x) — H°(E,Op) - H'(X,0(-FE)) - H'(X,0x).

The first morphism is an isomorphism — it is just a restriction morphism applied to constant functions —
hence H'(X,O(—E)) — H'(X, Ox) is injective.

In general, as discussed in [DPS96], the minimal singular metric of a psef line bundle can still be very
singular, and this fact might lead to a non coherent lower semi-continuous regularization of the multiplier
ideal sheaf. It thus seems to be a difficult problem to improve the hard Lefschetz theorem by replacing the
given multiplier ideal sheaf by its lower semi-continuous regularization, if at all possible.



CHAPTER 3

Numerical dimension and vanishing theorems

In the first part of this chapter, we compare different definitions of numerical dimension of a psef class
or a psef line bundle. Although it is perhaps well-known for experts, we still give the complete proofs here.
In the second part of this chapter, some L? vanishing theorems in terms of numerical dimension are given.
The variant of Junyan Cao’s vanishing will be also used in the next chapter to give a Kawamata-Viehweg
type vanishing theorem without multiplier ideal sheaf.

3.1. Numerical dimension

We first recall the Kéhler version of the definition of numerical dimension as stated in [Dem14|. For L
a psef line bundle on a compact Kahler manifold (X, w), we define

nd(L) := max{p € [0,n]; 3¢ > 0,Ve > 0,3h,iO . = —cw,such thatf (1Oph, +ew)? Aw" P =c}.
X\Z.

Here the metrics h. are supposed to have analytic singularities and Z, is the singular set of the metric. Fix
a family of metric h. as stated in the definition. For such metrics, for p > nd(L), by definition,

lim (i@L,hE +ew)? AwW"TP =0.

e—0 X\Z.
If the line bundle L is nef, we can take h. to be smooth and Z. = ¢, (cf. the proof of point (i) in [BDPP13],
or [Bou02a]) and we have for any p

lim (1Oph, +ew)P Aw'™P =1lim | (e1(L) +ew)? Aw™ P = J c1(L)P A W™ P,
e—0 X\Z. e—0 Jx X

The integral condition in the definition of the numerical dimension in the nef case means that p = nd(L) is

the largest integer such that

j (L) Aw™P #0.
X

Since for each p, ¢1(L)P can be represented by a positive closed (p, p)-current, the triviality of the mass is
equivalent to the triviality of the current. In other words,

nd(L) = max{p; c1(L)? # 0},

which corresponds to the definition of the numerical dimension for a nef line bundle.

In fact denoting o := ¢1 (L), the numerical dimension for the psef line bundle L is the numerical dimension
of the class of o defined in [BEGZ10].

To see it, we need the definition of moving intersection product for any psef (1,1)-class « for any
1 < p < n. We start by recalling the following definition.

DEFINITION 3.1. (See [DPSO01]). Let 1,02 be two quasi-psh functions on X (i.e. i0dp; > —Cw in
the sense of currents for some C = 0). Then, 1 is less singular than ps (and write v1 < 2 ) if we have
2 < 1 + Cy for some constant Cy. Let o be a psef class in H}}é(X, R) and v be a smooth real (1,1)-form.
Let Ty, T, 0 € o with 0 smooth and such that T; = 0 +i00p;(i = 1,2). o; is well defined up to constant since
X is compact. We say Th < Ty if and only if o1 < 9.

The minimal element T,y ~ with the pre-order relation < exists by taking the upper semi-continuous
envelope of all p; such that @ + v + iddp; = 0 and supy @; = 0.

The positive product defined in [BEGZ10] is the real (p,p) cohomology class {a?) of the limit
<ap> = %ir%{<Trﬁin,6w>}

where Tiin s, is the positive current with minimal singularity in the class « + §{w} and <Tr’;1
non-pluripolar product. The numerical dimension of « is defined as

nd(a) := max{p|{aP) # 0}

45
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which is also equal to max{p| {{(a?) A w"™? > 0}. The equivalence of two numerical dimensions given here
is an adapted version of arguments in [Tos|. We will also need the definition of non-Kéhler locus defined
in [Bou02b].

DEFINITION 3.2. Let « be a big class in HV'(X,R). The non-Kihler locus is defined to be
Bux(a) = (| E+(T)

Tex

where T ranges all Kihler currents in o and E(T) := .~ Ec(T).

We will also need the following lemma in [Bou02b| which implies in particular that the non-K&hler
locus is in fact an analytic set.

LEMMA 3.3. Let o be a big class. There exists a Kihler current T with analytic singularities such that

Enx(o) = EL(T).

PROOF. By regularization, we have equivalently that E,, k(o) = (e, E+(T) where T ranges all Kéhler
currents with analytic singularities. Since T has analytic singularities, E, (T) is a proper analytic set. By
the strong Noether property, there exist T;(i € I) finite Kéhler currents with analytic singularities such that
Enk(T) = (\ic; E+(T;). Take a regularization 7' of min;e; T;. Then we have

V(T ) < miny(T;, z)
€
for any z € X. In particular, this implies that
E(T) < [ E+(T).
iel
Since T itself is a Kihler current with analytic singularities, we get in fact an equality in the statement. [
We will need the following result stated in [BEGZ10, Prop. 1.16].

PROPOSITION 3.4. For j = 1,---,p, let T; and T} be two closed positive (1,1)-currents with small
unbounded locus (i.e. there ezists a (locally) complete pluripolar closed subset A of X outside which the
potential is locally bounded) in the same cohomology class, and assume also that T is less singular than T](.
Then the cohomology classes of their non-pluripolar products satisfy {{Ty A --- A Ty)} = {{T] A -+ AT))}
in HPP(X,R), where = means that the difference is pseudo-effective, i.e. representable by a closed positive
(p, p)-current.

Now we are prepared to prove that

PROPOSITION 3.5. For L a psef line bundle, we have that
nd(eq (L)) = nd(L).

PROOF. Let h. be a family of metric with analytic singularities as stated in the definition of nd(L).
Denote A. := E,x(a + e{w}). Since Thminew < iOp . + cw, we have by proposition 3.4 that for any
1<p<n

f (iOph, +ew)P Aw' P = J (1O, +ew)’) Aw" P < J (Thinewy AW P
X\Z. X\(ZevAe) X\(ZevAe)
The right hand term is the same as SX<T§HH’W> A w™ P, since the non-pluripolar product has no mass on
any analytic set. It has limit equal to {, {ci(L)?) Aw™ P. In particular, this implies that nd(c; (L)) > nd(L).
We remark that A, is an analytic set hence is a small unbounded locus.

For the other direction, we construct a family of metrics with analytic singularities with control of
the Monge-Ampére mass from below. Denote p := nd(ci(L)). Since {¢1(L)?) # 0, for £ small enough,
(e # 0 and

in,5w>

| e nrr =
X

for some constant ¢ > 0 uniform for € small enough. Let 7T} 5 be a sequence of regularisation of Tiyin o, With
analytic singularities such that

T5,5 > —dw
and the potentials of T; s decrease to the potential of Tinin e Hence Tinin ew + ew and T 5 + ew are closed
positive currents in the cohomology class a + 2e{w} if § < e. By lemma 3.3, A. = E (T:) for some Ké&hler
current with analytic singularities. Thus Tinincw < T, whose potential is locally bounded outside A., as
the potential of T, is. So the potentials of T} ; are also locally bounded outside A.. By weak continuity of
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the Bedford-Taylor Monge-Ampére operators with respect to decreasing sequences of functions, we have on
X\A. that,
(Te s + ew)! = (Thin.cw + cw)'

for any [. By the Fatou lemma, we have that

f (Tmin,ew +ew)? Aw"™P < liminf(;_)of (Tes + ew)? A WP,

X\A. X\Ae

Take any sequence d(¢) such that §(e) < e and lim._,0d(¢) = 0. Let h. be the metric on L with analytic
singularities such that i©p ;. = T 5y —cw. The metric h. is uniquely defined up to a multiple. To normalise
it, we can assume for example, that the maximum of the potentials on X equals to 0. Hence we have that

Oph. = —(e+0(e))w = —2ew.
Then the sequence of metric satisfies the condition demanded in the definition of nd(L). O

REMARK 3.6. Thnine'w < Tmin.cw + (6 — €)w for any ¢ < &’. Denote Tin cw = 0 + ew + 100Pmin c- We
can arrange that
¥min,0 < Pmin,ew < Pmin,e’w-

The Bergman kernel regularisation perserves the ordering of potentials (cf. [Dem14]), so we have

©0,6 S Pe,s S Pets-
for any 6 > 0. If §(e) is increasing with respect to €, by the proof of the proposition, we can choose the
metric he to be decreasing with respect to €. The limit of ¢, 5.) as € — 0 is equal t0 @m0 corresponding
to the metric with minimal singularities on L.

REMARK 3.7. Similar to the definition of [Dem14] for the numerical dimension of a psef line bundle,
we can define in a similar way the numerical dimension of a psef cohomology class. The above proof in fact
shows that the two definitions of numerical dimension of a psef cohomology class coincide.

In the rest of the section, we show that the movable intersection of cohomology classes defined in
[BDPP13| coincides with the positive product defined in [BEGZ10] which might be well-known for experts.
In particular, using movable intersection instead of positive intersection, we can give a third equivalent
definition of numerical dimension of a psef cohomology class.

To distinguish the notations, we will denote by {,) for the positive product and ) for the movable
intersection. In other words, it shows that the numerical definition of the psef class « can either defined to
be the largest number such that (o) # 0 or such that {a?) # 0.

We start by recalling the definition of the movable intersection given in Theorem 3.5 of [BDPP13]. Let
(X,w) be a compact Kéhler manifold and « be a psef class on X. To simplify the notations, we only define
P where the general case is similar. First assume that « is big. To know the value of the product pairing
with any (n — p,n — p)-smooth form, it is enough to know its value with a countable dense family of smooth
forms. Since for any (n — p,n — p)-smooth form u, u = Cw™ P — (Cw"™ P —u). For C' > 0 big enough, both
Cw™ P and Cw" P — u is strongly positive forms (since X is compact). Thus it is enough to consider only
a countable dense family of strongly positive forms.

Fix a smooth closed (n — p,n — p) strongly-positive form v on X. We select Kéhler currents T € o with
analytic singularities, and a log-resolution p : X — X such that

pT =[E]+ 5

where [E] is the current associated to a R-divisor and 5 a semi-positive form. We consider the direct image
current p14(BA... A ). Given two closed positive (1, 1)-currents 71, T» € o, we write Tj = 0 +iddp; (j = 1,2)
for some smooth form 6 € . Define T := 6 + i00 max(ip1, p2). We get a current with analytic singularities
less singular than these two currents. By this way, if we change the representative T' with another current 7",
we may always take a simultaneous log-resolution p such that p*7" = [E’] + /, and we can always assume
that £’ < E. By calculation, we find

JXﬂlA...AB'Au*UZJXﬁ...ABAu*u.

In fact, we have

f~ﬁ’/\5A...Aﬁ/\u*u:f~(ﬁ+[E]—[E'])/\BA.../\ﬂ/\u*u
X X

>J B...AB A pFu.
X
A similar substitution applies to change all 8’ by 3.
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It can be shown that the closed positive currents py4(8 A ... A 8) are uniformly bounded in mass. In
fact, for any Kéhler metric w in X, there exists a constant C' > 0 such that C{w} — « is a K&hler class. In
other words, there exists some Kahler form v on X in the cohomology class C{w} — «. By pulling back with
1, we find

Cp*w — ([E]+ B) = ™y,
hence f = Cu*w — ([E] + p*v) where = means in the same cohomology class. By performing again a
substitution in the integrals, we find

J ﬂk A M*wnfkr < CkJ ;U'*Wn _ Ck:f o
X X X

For each of the integrals associated with a countable dense family of forms w, the supremum of § B
B A p*u is achieved by a sequence of currents ()« (8m A ... A Bn) obtained as direct images by a suitable
sequence of modifications p,, : X,» — X and suitable £,,’s. By extracting a subsequence, we can achieve
that this sequence is weakly convergent and we set

Ca?) i= Tm 1 {(pm)s (B A - A Bm)}

m——+0o0

In the general case when « is only psef, we define
a?) = 1i§rll0l<<(a +0{w})").

We now prove that these two products coincide for psef classes. Since in the two cases, the products are
the limit of the products of big classes in HP?(X,R), without loss of generality, we can assume « to be big.
We state it in the following lemma.

LEMMA 3.8. For « a big class, for any 1 < p < n, we have
(@) = La?).

ProOF. It is enough to prove by duality that for any smooth closed (n — p, n — p)-strongly positive form
u on X, we have

JX@#’} Au= L{({al’» A U.

Denote by A the non-Kihler locus of o which is the pole of some Kéahler current 7' in « with analytic
singularities. Denote by T, € «, the current with minimal singularities in «. By definition, it is less
singular than the Kédhler current 7. In particular, the potential of Ty, is locally bounded outside A. Let
T. be a regularisation of Tp,;, such that T, > —ew. Their potentials are locally bounded outside A as Tyn’s
is. By weak continuity of the Bedford-Taylor Monge-Ampére operator along decreasing sequences we have
on X\A for any 6 >0 and € <

(Tmin + dw)? — (T + dw)P
as current. By Fatou lemma we have
f (Tmin + 0w)? A u < liminfgﬁof (T: + 6w)? A u.
X\A X\A

Since the non-pluripolar product of currents has no mass along any analytic set, the left hand term has limit
equal to §,{(a”) A u. We remark that both (a”) and {a”)) depend continuously on « in the big cone. Since

T. has analytic singularities, there exists a modification p : X — X such that
N*Ts = [E] + ﬁ

with F associated to a R-divisor and u a biholomorphism on X\A. So we have
f (T: + dw)P Au = f Wi (B + 0p*w)? Au < J Ko+ 0w)P» A u.
X\A X\A X
We remark that T, + dw is a Kdhler current with analytic singularities for ¢ < §. When § — 0, we have

liminfa_,OJ (T: +0w)P Au < J KaP» A .
X\A X

For the other direction, for any 7' € o a Kéhler current with analytic singularities, there exists a modification
i1 X — X such that
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as above. By the definition of non Ké&hler locus, T is locally bounded outside A. The modification can be
achieved by a composition of blow-ups with smooth centres in A, so u is a biholomorphism on X\ A. So we

have
‘[ Tp/\u:J u*(ﬂp)/\uzj ﬁp/\u*uéj <T£in>/\u:J<T£in>/\u.
X\A X\A X X\A X

The inequality use proposition 1.16 in [BEGZ10] cited above and the fact that Ty, is less singular than
T. By taking supremum among all K&hler currents with analytic singularities in the cohomology class «, we
have

L<ap> Aus JX<<04P>> A

3.2. Vanishing theorems

In this section, we generalise some L? vanishing theorems in terms of numerical dimension of a psef line
bundle. At the end of this section, we give a variant of Nakano vanishing theorem. The relation of the
Nakano vanishing theorem with the others is as follows. Recall the classical Kawamata-Viehweg vanishing
theorem states that for a nef line bundle L over a projective manifold X, for any ¢ > n—nd(L) we have that

HY(X,Kx®L) = 0.

It is natural to ask whether the canonical line bundle can be changed by Q% to get a Nakano type vanishing
theorem without strict positivity curvature condition. By the example of Ramanujam, it is not always
possible. The last section gives some laboratory discussions.

3.2.1. Bogomolov vanishing theorem.
Let L be a holomorphic line bundle over a compact Kéahler manifold X, the Bogomolov vanishing
theorem [Bog] asserts that
HY (X, 05 ®L ') =0
for p < k(L).
In [Mou98], the following two versions of Bogomolov vanishing theorem are given.
THEOREM 3.9. If L is a nef line bundle over a compact Kdihler manifold X, then
HY (X, Q5 ® L") =0
for p <nd(L).
THEOREM 3.10. If L is a psef line bundle over a compact Kdhler manifold X, then
HY (X, 05 ® L") =0

for p < e(L), where e(L) is the biggest natural number k such that there exists T € ¢1(L) a positive (1,1)-
current whose absolute part has rank k on a strictly positive Lebesque measure set on X. (The absolute part
exists and is unique by the Lebesque decomposition theorem.)

In this note, we give the following improved version of the Bogomolov vanishing theorem, following the
ideas of [Mou98].

THEOREM 3.11. Let L be a psef line bundle over a compact Kdhler manifold X. Then we have
HY (X, 0% L") =0

if p<nd(L).

In this section, we prove a numerical dimension version of the Bogomolov vanishing theorem. Now, let
us denote [ := nd(L). Then we have

SX\ZE (i@L,}LE + 60))”

- Sxwr
The first step of the proof consists in the use of Yau’s theorem [Yau78], so as to show that one can turn

the above integral inequality into a pointwise lower bound, more precisely, the inequality (%) given below.
Up to a re-parametrisation of £, we can assume that

Ae

= ce

. g
Onh +ew= 5(.«).

Let v, : X. — X be a log resolution of the analytic singularities of h.. We then have
vZ(iOLn, +ew) = [De] + Be
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where . > Sv¥w > 0 is a smooth positive closed (1, 1)-form on X.. It is strictly positive on the complement

X\FE of the exceptlonal divisor E (we denote its irreducible components as Ej). [D.] is the closed positive
current associated to a R-divisor. By the theorem of Hironaka [Hir64] we can assume that the exceptional
divisor is simple normal crossing divisors and the morphism is obtained as a composition of a sequence of
blow up with smooth centres. In this situation, there exist arbitrary small numbers 7; > 0 such that the
cohomological class of 5. — > m;[E;] is a Kahler class (which means that there exists a Kahler form in this
class).

Hence we can find a quasi psh function 9; on X, such that

Bs = ﬂs - an [El] + Zagé&

is a Kdhler metric on X.. By taking 7; small enough, we can assume that

[ dr=g] e

The assumption on the numerical dimension implies there exists ¢ > 0 such that with Z. := v.(F) c X,

we have
J gr = f (1O, . + ew)"
X. X\Z.
> <n)(5)n—zf (i@L,hE + Ew)l A wn—l > an—lf W™,
l 2 X\ZE 2 X

| G gt | o

€

Hence we have

By Yau’s theorem [YauT78|, there exists a quasi-psh potential 7. on X, such that BE + 9007, is a Kéhler
metric on X, with any prescribed volume form f such that SXE f= SXE (B:)". By the integral condition, we
can choose a smooth volume form on X, such that
(%) f> %5"711/:(»”
everywhere on X.. Fix h a smooth metric on L and let ¢. be the weight function of h. (i.e. h. = he™2%¢).
We impose the additional normalization condition that supx_(v*¢. +6- + 72) = 0.

We now work again on X (e.g. by taking direct images to construct a sequence of singular metrics on
X). Consider 6, := = Vel and 7. := Veyt. € Li (X). Define ®. := ¢, + 6. + 7.. This is a quasi psh potential
on X since it satlsﬁes the condition

VE(iOpp + ew +i00%.) = [D] + > m[Ei] + e + 1607 > 0

Define Z~6 := v.(D.) which includes Z. since the support of the divisor D, includes all components of
the exceptional divisor by Hironaka theorem [Hir64]. By construction, ®. is smooth on X\Z~5. By the
normalised condition we have that supy ®. = 0. Since iOp  + ew + i00P. is a family of (1,1)-forms in a
bounded family of cohomology classes, with the above normalisation, we have, up to taking a subsequence,
that the family of quasi-psh potentials ®. converges almost everywhere to ® € L!(X) by weak compactness.

It satisfies that
iOp.p +i00® = 0

We also have that

V:]IX\ZE (i@L,h + 16’5@8 + EOJ) ﬁ

In other words, on X\Z.
(1O 4 + 100D + ew)" = gzs"—lw”.
To use the Bochner-Kodaira-Nakano inequality, we need to change the Kdhler metric in such a way that
X \Z becomes a complete manifold. We define a family of Kéhler metrics w5 := w + 6(id0t. + w) for
6 > 0 which is complete metrics on X\ZE, where 1. is a quasi-psh function on X with 1. = —o0 on Z., Pe
smooth on X\Z. and i0dt. + w > 0 (see e.g. [Dem82], Théoréme 1.5).

Here we choose 1. more explicit for better control. Since we will use the Bochner-Kodaira-Nakano
inequality on X\Z., to simplify the notations, we identify it with X.\Supp(D.). We define

Ve = Y _V:Sps_c
with C' € R such that supy_vZ¥p. + C = —1. Now 1. satisfies the condition of [Dem82|, Théoréme 1.5
following its calculation.
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We want to prove that e®<dV,, . is a current on X.. Since X, is compact, it has finite mass on X,. In

£,8 —
particular, it has finite mass on X.\Supp(D,). It is enough to prove that e®(i00v. )P defines a current on
X, for any p > 0. More precisely, we prove that e %= (i00¢. )P defines a current on X, for any p > 0. Since
i00vEp N iovEp A UFp

2 41pe ’
it is equivalent to prove that e”j“’(iagngo)p A (iovEe A ovFe)e (p,q = 0) defines a current. By anti-
commutativity, we can assume ¢ is either 0 or 1.

1001, =

*Ws

Ye Pe A7 % Ye ;k‘p
e~ i00vip. =e 7 ([Dc] + smooth terms) = e~ »  smooth terms

since v¥p. vanishes along D.. Thus it is smooth on X, vanishing along D..
On the other hand, in local coordinates,
= > ailog(|zi]%)

*

v¥ee = 20k D Qi idz; o;dz;

e n 0vipe Aovip. = |||zk| - l/\g jz-J
j

with a; > 0. So

has all coefficients in L{, . (This is because ay, > 0 for any k, although a priori, the derivative of a quasi-psh
function is not necessarily in L120C.) Hence the current is well defined as a wedge product of locally integrable
functions and smooth forms.

In conclusion, we have that SX\ZE e‘bdewe’ s is finite and uniformly bounded for § small enough.

REMARK 3.12. Let us indicate an alternative argument in a more general situation, following a suggestion
by Demailly. Tt is not necessary for our proof, but may be interesting for other uses. Let (X,w) be a compact
Hermitian manifold and D a SNC divisor in X. Let u e H°(X,C) , x ® L) be a (p,q) continuous forms with
value in some line bundle (L, h) endowed with some continuous metric h. In this remark, we construct a
family of complete metrics ws on X\D such that ws decreasing to w as é — 0 and

J lu2dV,, < C
X\D

where C' is a universal constant independent of 4.
To begin with, we recall some facts about the local model: the Poincaré metric on the punctured disk.

The Poincaré metric on H := {z € C|Im(z) > 0} is given by Tﬁfz%. There exists an infinite cover from H

to D* = {z € C||z| < 1} given by z — e**. The Poincaré metric on # is the pull back of the Poincaré metric
on D* given by
idz A dz
|21 [log(|2])[*”
Since the Poincaré metric on H is complete and the cover is locally diffeomorphism, the Poincaré metric on
D* is also geodesic complete. It is well known that the Poincaré metric is of volume finite near the origin:

f idz A dz r’f J _2m
0<lzi<4 |2[*[log([2])2 o7 log )2 log2

Now we return to the construction of our metrics. Let U, be a finite system of coordinate charts of X (X is
compact) such that for any U, such that Uy, n D # J, (we denote the set of all such indices as I) we have
in this coordinate chart

UsonD={z=-=2 =0},
Uy < {|z] < 1,Vi}.
This is possible since D is a SNC divisor. Let x, be a partition of unity adapted to this cover. Define the
family of metric ws on X\D as follows:

n

idz; A dz; —
- —— idz; A dz;
Z |2i|? [log (] 24])|2 )

i=r+1

ws 3:UJ+5ZXa9a-
a€el

The sum converges since we take finite sums. We have by construction ws > w decreasing to w. By a similar
calculation to the one made above, we have

J lul2dV,,, < C.
X\D
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We remark that |u|? a priori depends on ws. However in a local chart U, (« € I), we can write

u = 2 UJ7KdZJ A dzK
JK,|J|=p,|K|=q
using J(resp. K) for multi index of length p (resp. ¢). Denote for 1 < ¢ < n and a multi index I, é;; = 1 if
1€l and d;; =0if i ¢ I. Then we have

n n
Julg, n = D [ [0zl floglza D™ [ T(Iz: Noglz:l )% i [e=2e
JKi=1 i=1
where ¢, is the weight function of h on U, (i.e. h = e™?#~ on Uy,). Hence [ul?_, is uniformly bounded
since |z;||log|z;|| is bounded for |z;| < 1 and all terms are continuous.

It remains to prove that ws is complete. We prove it by contradiction. Let v(t) be a geodesic of ws with
natural parametrization for § > 0 whose maximal defining interval is |to, ¢1[ with ¢; < co. By property of
ordinary differential equation (the solution goes outside any compact subset), the adherent point(s) must be
contained in D with respect to the background topology of X. Since X is compact, there exists a sequence
~v(t,) — x € D with t, — t1, t, < t;. Up to taking a subsequence we can assume that such a sequence is
contained in some chart U,,. Then [y/(t)]g,, < 0|7'(t)lws; = 0 where the second equality is from the fact
that v(t) be a geodesic of ws. Hence v(t,) is a Cauchy sequence with respect to g,. Since the Poincaré type
metric g, is complete, the limit = € Uy, \D exists, which gives a contradiction.

We recall the Bochner-Kodaira-Nakano inequality in the non compact case.

THEOREM 3.13. Let h be a smooth hermitian metric on L over (X,w) a complete Kihler manifold. We
assume that the curvature possesses a uniform lower bound

10 = —Cuw.

Then for an arbitrary (p,q)-form u € C®(X, AP4TE ® L) which is L? integrable, the following basic a priori
inequality holds

1302 + [ 3°u |2 JX<[i®L7h,A]u,u>de.

ProoOF. For u with compact support, the inequality is just the classical one. When u is just L2-
integrable case, since (X,w) is assumed to be complete, there exists a sequence of smooth forms u, with
compact support in X (obtained for example by truncating v and taking the convolution with a regularizing
kernel) such that u, — u in L? and such that du, — gu,g*uu — 0 win L2

By our curvature assumption the term on the right is controlled by C|u|? which is L?. We thus get the
inequality by passing to the limit, using Lebesgue’s dominated convergence theorem. O

We now return to the proof of the Bogomolov vanishing theorem.
Let u be a holomorphic p-form with value in L=!. We take the metric induced from (L,he~®<). The
Bochner-Kodaira-Nakano inequality on the complete manifold (X\Z.,w, 5) gives

0> f <[i@L7h,A]u,u>e¢Ede515,
X\Z.

by using the degree condition and the fact that the form is holomorphic. We remark that the form is L2-
integrable by the above discussion and the fact that u has globally bounded coefficients on X (hence on
X\Z.).

Let us observe that by [Dem82] Lemma 3.2, (p,0)-forms get larger L? norms as the metric increases.
In other words, in bidegree (p,0), the space L?(w) has the weakest topology of all spaces L*(w. 5). Indeed,
an easy calculation made in the above lemma yields

|f‘%\p'0w®hde < |f|%\1’~0w575®thws‘5

if f is of type (p,0). By Lebesgue’s dominated convergence theorem, we have
0= J (iOp ., Alu, upe®=dV,
X\Z-.

by taking § — 0.
The rest part of the proof follows in general the proof of [Mou98|.
Let —e < \{ < --- < X, the eigenvalues of 10, ,_ with respect to w on X\Z..
Then we have

f A+ &)dV, < J (O +8) 4+ (A5 +£))dV,
X\Z. X\Z.
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n—1

<f (1O +ew) A ——
X\Z. (n—1)!

n—1

< fX(i@L,hE +ew) A O = J-X(cl(L) +ew) A O

n—1
< L —— = A.
JX(cl( )+ w) A =)
Let § > 0 such that
n—1 -1
V= +0 < 1.

n—[01+1 n—I01+1
Hence V. := {z € X\Z:|\5 + ¢ > Ac 7%} has volume smaller that ° §, w™.
On the other hand, by the Monge-Ampére equation, on X \ZE we have

ﬁ()\f +e)=
i=1

ent,

wl o

Hence on X\ (V. U Z.) we have
I 1> 13 —1
Acipr e = (Mg +8) - (AL + )71
> et (A5, + 5)%111
> ce”.
Combining this with the Bochner-Kodaira-Nakano inequality, we find

0= JX\Z AL+ X+ Al e®edV,

> J i (cg” — (n *p)£)|u|2L,1’h,1eq>Ede + f —(n *p)e\u|2L,1’h,1e¢5de.
X\(ZSUVE)

e

In other words,

2 o, n—p ) ..
JX\ZE |U|L71’h716 Ve < (1 + m) J;/E |u|L717h—1€ dV,,

< C’J w" < Ce”,
where we use that ®. is uniformly bounded from above. Since Z. is of Lebesgue measure 0,
J‘ ~ |U;‘if1,h718¢.€de :j |U|%71’h71€¢‘5de.
X\Z. X
Again by Lebesgue’s dominated convergence theorem (there is an upper bound by constant), we have
fX |U|%717h71€¢de < 0

by taking € — 0. This implies that v = 0 and finishes the proof of the Bogomolov vanishing theorem.

REMARK 3.14. In example 1.7 of [DPS94], we consider a nef line bundle O(1) over the projectivisation
of the unique non-trivial rank 2 vector bundle as extension of two trivial line bundle over an elliptic curve.
An explicit calculation shows that there exists a unique singular positive metric on O(1) whose curvature is
the current associated to a smooth curve. Hence in this example e(O(1)) = 0. But the numerical dimension
is nd(O(1)) = 1 since the line bundle is non trivial and not big. In fact, (O(1))? = 0.

REMARK 3.15. Our Bogomolov vanishing theorem can be reformulated as follows:
The sheaf of holomorphic p-forms over X has no subsheaf of rank one associated to a psef line bundle
of numerical dimension strictly larger than p.

According to the fundamental work of Campana [CamO04]| [Cam11] on special manifolds, the above
results suggest to give the following variant of Campana’s definition.

DEFINITION 3.16. Let L < Q% be a saturated, coherent and rank one subsheaf. We call it a “numerical
Bogomolov sheaf” of X if nd(X,L) =p > 0.

We say that X is “numerically special” if it has no Bogomolov sheaf. A compact complezx analytic space
is said to be “numerically special” if some (or any) of its resolutions is “numerically special”.
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REMARK 3.17. It is conjectured by Campana that specialness is equivalent to the numerical specialness
defined here.

One possibility to address Campana’s conjecture would be study the following statement of the Bogo-
molov vanishing theorem incorporating the numerical dimension instead of the Kodaira-litaka dimension:

For a numerical Bogomolov subsheaf, does there exist a fibration f : X — Y such that L = f*(Ky) over
the generic point of Y (i.e., L and f*(Ky) have the same saturation in Q% ) ?

In case the Kodaira dimension case is used, the existence of the fibration comes directly from the Kodaira-
Iitaka morphism. However, in case one uses the numerical dimension instead, the existence of the fibration
is not guaranteed, i.e. there are examples of non abundant numerical Bogomolov sheaves. One can take
for instead X to be a Hilbert modular surface obtained as a smooth quotient I x /T’ with an irreducible
subgroup T' ¢ Aut(D) x Aut(D) (in such a way that no subgroup of finite index of T" splits). It is equipped
with two natural foliations F, G coming from the two factors D, and Tx = F @ G. Then one can check that
F*,G* < QL satisfy nd(F*) = nd(G*) = 1, but x(F*) = k(G*) = —o0 (see e.g. [Br03]).

REMARK 3.18. It should be remarked the above Bogomolov vanishing theorem was first proven in
[BouO2a]. The strategy of the both proofs is based on the nef case proven in [Mou98]. The difficulty is
the control by Monge-Ampeére equation in the pseudo-effective case. The difficulty is overcome in [Bou02a]
by a singular version of Monge-Ampére equation, and we give here another proof that only requires solving
“classical” Monge-Ampére equations.

3.2.2. Junyan Cao’s vanishing theorem.
In [Cao14], Junyan Cao has proven the following Kawamata-Viehweg-Nadel type vanishing theorem.

THEOREM 3.19. Let (L, h) be a pseudo-effective line bundle on a compact Kdhler n-dimensional manifold
X. Then

HY(X,Kx @ LR®ZI(h)) = 0
for every ¢ =n —nd(L,h) + 1.

The numerical dimension nd(L, k) used in Cao’s theorem is the numerical dimension of the closed positive
(1,1)-current Oy ; defined in his paper. Since we will not need this definition, we refer to his paper for
further information. We just recall the remark on page 22 of [Cao14]. In the example 1.7 of [DPS94], they
consider the nef line bundle O(1) over the projectivisation of a rank 2 vector bundle over the elliptic curve
C which is the only non-trivial extension of O¢. They prove that there exists a unique positive singular
metric h on O(1). For this metric, nd(O(1), k) = 0. But the numerical dimension of O(1) is equal to 1. We
recall that for a nef line bundle L the numerical dimension is defined as

nd(L) := max{p; ¢1(L)? # 0}.
We also remark that Cao’s technique of proof actually yields the result for the upper semi-continuous
regularization of multiplier ideal sheaf defined as
T.(h):= 11H(1)I(h1+5)
£—>

instead of Z(h), but we can apply Guan-Zhou’s Theorem [GZ15c| [GZ14a] [GZ15a] to see that the equality
Z.(h) = Z(h) always holds. In particular, by the Noetherian property of ideal sheaves, we have

T, (h) = T(0™) = Z(h)
for some Ao > 1. This fact will also be used in our result.

In this part, we prove the following version of Junyan Cao’s vanishing theorem, following closely the
ideas of Junyan Cao [Caol4] and the version that was a bit simplified in [Dem14].

THEOREM 3.20. Let L be a pseudo-effective line bundle on a compact Kdhler n-dimensional manifold
X. Then the morphism induced by inclusion Kx @ L®Z(hmin) > Kx ® L

H(I(X’ KX ®L®I(hmin)) - HQ(X’ KX ®L)
is 0 map for every g = n —nd(L) + 1.

REMARK 3.21. In the example 1.7 of [DPS94]|, since the rank 2 vector bundle is the only non-trivial
extension of O¢, there exists a surjective morphism from this vector bundle to O¢ which induces a closed
immersion C into the ruled surface. The only positive metric on O(1) has curvature [C] the current associated
to C. On the other hand, O(1) = O(C). So we have H?(X, Kx®0(1)) = H’(X,0(-1)) = HY(X,0(-C)) =
0 and H*(X, Kx ® O(1) @ Z(hmin)) = HA(X, Kx ® O(1) @ O(-C)) = H°(X,Ox) = C. This shows that to
get a numerical dimension version of theorem the best that we can hope for is that the morphism is 0 map
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instead of that H9(X, Kx ® L ® Z(hmin)) = 0. We notice that in general one would expect the vanishing
result

HY(X,Kx®L) =0
for ¢ = n —nd(L) + 1, whenever L is a nef line bundle. Here the difficulty is to prove a general K&hler

version, since the results follows easily from an inductive hyperplane section argument when X is projective
(cf. eg. Corollary (6.26) of [Dem12a]).

By remark 3.6 in the previous section, we can even assume that h. as stated in the definition of the
numerical dimension is increasing to hnyi, as € — 0. What we need here is that the weight functions ¢, has
limit i, and is pointwise at least equal to ¢, with a universal upper bound on X.

Before giving the proof of the vanishing theorem, we give the general lines of the ideas and compare
it with Cao’s theorem. The idea is using the L? resolution of the multiplier ideal sheaf and proving that
every 0-closed L2(hmin) global section can be approximated by O-exact L2(hoo) global sections with hy, some
smooth reference metric on L. To prove it, we solve the d-equation using a Bochner technique with error
term (as in [DP03]), and we prove that the error term tends to 0.

For this propose, we need to estimate the curvature asymptotically by some special approximating
hermitian metrics constructed by means of the Calabi-Yau theorem. Cao tried to prove that the error term
tends to 0 in the topology induced by the L?-norm, with respect to the given singular metric. In this way,
he tried to keep the multiplier ideal sheaf unchanged when approximating the singular metric, by means
of suitable “equisingular approximation”. For our propose, we try to prove that the error term tends to 0
in the topology induced by L2?-norm with respect to some (hence any) smooth metric. It would be enough
for us that the multiplier ideal sheaf of hp,is included in the multiplier ideal sheaf of the approximating
hermitian metric. In some sense, Cao’s theorem is more precise in studying the singularity of the metric
which somehow explains why his approach works for any singular metric while our approach applies only for
the image of the natural inclusion.

We start the proof of the vanishing theorem by the following technical curvature and singularity estimate.

PROPOSITION 3.22. Let (L, hyin) be a pseudo-effective line bundle on a compact Kihler manifold (X, w).
Let us write Tin = ﬁ@L,hmm =a+ i&gwmm where « is the curvature of some smooth metric ho, on L
and pmin S a quasi-psh potential. Let p = nd(L) be the numerical dimension of L. Then, for every v € 10, 1]
and § € ]0,1], there exists a quasi-psh potential ® 5 on X satisfying the following properties:

(a) @, is smooth in the complement X\Zs of an analytic set Zs < X.

(b) @+ 6w + 5=00P, 5 = (1 — v)w on X.
(¢) (a4 0w + 52000, 5)" = ay™0" Pw™ on X\Zs.
(d) supx @15 = 0, and for all vy € ]0,1] there are estimates @5 < A and
exp ( — <I>%5) < e (1+b0)Pmin oy (A — 7(1)1,5)
(e) For ~o, 6o > 0 small, v € 10,70], § € ]0,0¢], we have
Z+ (¢min) = Z(¢min) < I((I)’y,5)~
Here a, b, A, v, 6o are suitable constants independent of 7, 6.

PROOF. Denote by . the (non-increasing) sequence of weight functions as stated in the definition of
numerical dimension. We have ¥, > iy for all € > 0, the 1. have analytic singularities and

o+ iaéwe > —ew.
27

Then for £ < ¢, we have

4>
a+ ow + QL@?((I +b6)1he) = o+ dw — (1 + bd) (o + ew)
™
> 6w — (1 + bd)ew — b > Sw

for b €]0, ] small enough such that w — ba > 0.
Let w: X > Xbea log-resolution of ., so that

1 (ot 8w + %aé(u 1 b6)0.)) = [D.] + e

where 3. > gu*w > 0 is a smooth closed (1,1)-form on X that is strictly positive in the complement )A(\E
of the exceptional divisor, and D, is an effective R-divisor that includes all components E, of E. The map
u can be obtained by Hironaka [Hir64] as a composition of a sequence of blow-ups with smooth centres,
and we can even achieve that D, and E are normal crossing divisors. For arbitrary small enough numbers
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ne > 0, B — > ne[Ee] is a Kahler class on X. Hence we can find a quasi-psh potential ég on X such that
Be = B — X ne[Ee] + ﬁ&gﬂe is a Kédhler metric on X. By taking the 7, small enough, we may assume that

L?(Ba)” > %L?ﬁ?.

We will use Yau’s theorem [Yau78] to construct a form in the cohomology class of BAE with better volume
estimate. We have

a+ 0w+ 2155((1 +b0)) = o+ ew + 2iaé¢5 + (6 — £)w — bd(a + ew)
Y3 Y3

> (o + ew + —— 00, + éw.
2m 2

The assumption on the numerical dimension of L implies the existence of a constant ¢ > 0 such that, with
Z = p(F) c X, we have

c = L 1) n
L?ﬁg = L\Z (o + 6w + 2Waa((1 + b6)1).))
) O ! P n— n— n
2(}))(2) Jx\z(a+€w+27rw€) AW = ¢h pJ-XLu.

Therefore, we may assume
[T
X 2 b'e

We take f a volume form on X such that f > 26" Pp*w™ everywhere on X and such that SX\J? = SS(\ B;‘
By Yau’s theorem [Yau78], there exists a quasi-psh potential 7. on X such that BE + i&gﬂ is a Ké&hler
metric on X with the prescribed volume form f > 0.

Now push our focus back to X. Set 0. = u40. and 7. = p47- € L}, (X). We define

loc
Dy 5= (14 b8)¢pe + (0 + 7).

By construction it is smooth in the complement X\Zs i.e. property (a). It satisfies

1 (ot 6w + %aé(a L b8) e + (0 + 7)) = [D] + (1 —)Be + 7(;77@[135] + B+ %a@a)

5
> (1= = 51—y p'w

since 3. + 5007, is a Kéhler metric on X. Thus the property (b) is satisfied. Putting Zs = u(|D|) >
u(E) = Z, we have on X\Zs

n

i — n Z =, ~
w* (a + 0w + %68@%5) > (BE + 7506(98 + TE))

> 4" (B\a + Lagﬁ_\a)n > ¢ L L L
2 3
Since p: X\D. — X\Zs is a biholomorphism, the condition (c) is satisfied if we set a = <.

We adjust constants in és + 7. so that supy @15 = 0. Since Ymin < Ye < Y, < Ag 1= supx e, for

€ < g9 and
Q5= (1+b6)e + ’Y((I)l,é - ¢s) = (14 b0)@min +7P1,5 — 740
and we have ®., 5 < (1 — v+ bd)Ao. Thus the property (d) is satisfied if we set A := (1 + b)Ao.

We observe that @, ; satisfies a + w + dd°®; s > 0 and supy ®1,5 = 0, hence ®; 5 belongs to a compact
family of quasi-psh functions. By theorem 2.50 a uniform version of Skoda’s integrability theorem in [GZ17],
there exists a uniform small constant ¢y > 0 such that SX exp(—co®1,5)dV, < +ooforall§ € ]0,1]. If f € Ox,
is a germ of holomorphic function and U a small neighbourhood of x, the Hélder inequality combined with
estimate (d) implies

f 1f 12 exp(— @ )dV, <eA<f |f\ze’p(”b5)‘0m‘“de)5(J [FRemm®say, )
U U U

Take p € |1, Ao[ (say p = (1 + Ag)/2), and take

Ao —1
- o2 and 0 < dg € 0, 1] so small that p(1 + bdg) < Ao.
q Ao+ 1

Then f € Z, (¢min) = Z(Ao@min) implies f € Z(®, s) which proves the condition (e). O

Q=

TS =
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The rest of the proof follows from the proof of [Cao14] (cf. also [Dem14], [DP03], [Mou98]). We will
just give an outline of the proof for completeness.

Let {f} be a cohomology class in the group H¥(X, Kx ® L ® Z(hmin)), ¢ = n —nd(L) + 1. The sheaf
O(Kx ® L) ® Z(hmin) can be resolved by the complex (K*,0) where K° is the sheaf of (n,i)-forms u such
that both u and Ju are locally L? with respect to the weight pumin. So {f} can be represented by a (n, ¢)-form
f such that both f and df are L? with respect to the weight iy, i.e. SX | £1? exp(—@min)dV,, < +00 and
§x 1012 exp(—Pmin)dVe, < +00.

We can also equip L by the hermitian metric hs defined by the quasi-psh weight ®; = ®., ;5 obtained in
Proposition 1, with ¢ € ]0,dg]. Since @4 is smooth on X\Zs, the Bochner-Kodaira inequality shows that for
every smooth (n, ¢)-form u with values in Kx ® L that is compactly supported on X\Zs, we have

[Bul2 + 3% u)2 > QWJ s +oes 4+ Ags — g6 [ulPeP5aV,
X

where [u]l := § [ul? ,,dVe, = Sy [ul? ;e *2dV,. The condition (b) of Proposition 3.22 shows that

w,hs

)
0< 5(1 — ) < A5(z) <. < Aps(a)

where \; 5 are at each point z € X, the eigenvalues of a + dw + 5=00®s with respect to the base Kahler
metric w. In other words, we have up to a multiple 27

- . -
[0ull§ + 110" ull3 + dlluly = J (Ars oo+ Ags)lul e 0 dV.
X

By the proof of theorem 3.3 in [DP03], we have the following lemma:

LEMMA 3.23. For every L? section of A™9T% ® L such that |f|s < +o0 and df = 0 in the sense of
distributions, there exists a L? section v = vs of A”’q_lT)”} ®L and a L? section w = ws of A™ITE ® L such
that f = dv + w with

1 1
2 2 2 —®
o5 + =|wlz < e 2 dV,.
Jol3 5\\ I e wrll
By lemma 3.23 and condition (d) of proposition 3.22, the error term w satisfies the L? bound,
)
oA -0 2 -0
wl? v, f wl? e édesj e *dV,.
J | ‘ h:x) ‘ | heo X)‘17§+"'+)‘q,6 T

We will show that the right hand term tends to 0 as 6 — 0. To do it, we need to estimate the ratio function

ps = ﬁ The ratio function is first estimated in [Mou98].

By estimates (b,c) in Proposition 3.22, we have \;s(z) = $(1 — 7o) and A1 5(2) ... Ay s(7) = ay§d™P.
Therefore we already find ps(z) < 2/q(1 — ). On the other hand, we have

f An,s(x)dV, < J (o + 0w + dd°®s) A w™ ! = f (o + dw) A w™ ! < Const,
X\Zs X b

therefore the “bad set” S. < X\Z; of points x where A, s(x) > 0° has a volume with respect to w
Vol(S:) < C¥¢ converging to 0 as 6 — 0. Outside of S,

Aq, 5(x)q5_8(n_q) > Ag,5(2) A ()" = ayg P
n— (n )e
Thus we have ps(z) < C6'~ S I we take ¢ = n—nd(L)+1 and € > 0 small enough, the exponent of
0 in the final estimate is strictly positive. Thus there exists a subsequence (ps,), 0¢ — 0, that tends almost
everywhere to 0 on X.
Estimate (e) in Proposition 3.22 implies the Holder inequality

1 1
J.X p5|f‘i,hx exp(_q)5)de < eA(fX pg‘f|i}hwe—P(1+b5)tpminde)P (JX |f|i’hme—q’m¢>1,5de)q

for suitable p,q > 1 as in the proposition. |‘f|3)7hoo < C for some constant C' > 0 since X is compact. Taking
§ — 0 yields that ws — 0 in L?(hy) by Lebesgue dominating theorem.

H9(X,Kx ® L) is a finite dimensional Hausdorff vector space whose topology is induced by the L2
Hilbert space topology on the space of forms. In particular the subspace of coboundaries is closed in the
space of cocycles. Hence f is a coboundary which completes the proof.

For any singular positive metric & on L, by definition, h is more singular that hn,;, which implies that
Z(h) € Z(hmin)- A direct corollary of theorem 3.19 is the followmg
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COROLLARY 3.24. Let (L,h) be a pseudo-effective line bundle on a compact Kéahler n-dimensional
manifold X. Then the morphism induced by inclusion Kx ® L Z(h) > Kx ® L

HY(X,Kx @ LQL(h)) » HI(X,Kx ®L)
is 0 map for every ¢ = n —nd(L) + 1.

3.2.3. Nakano vanishing theorem.
In this part, we give the following generalized version of the Nakano vanishing theorem.

THEOREM 3.25. Let X be a n-dimensional projective manifold and L a nef holomorphic line bundle over
X. Then we have
HP(X, Q4 ®L)=0
for any p+q > n+max(dim(B4(L)),0). Here B (L) denotes the augmented base locus(or non-ample locus)
of L. When B, (L) = &, we define by convention that its dimension is —1.

Here we recall the definition of B (L). Given an ample line bundle A over X. the augmented base locus

is defined by
B (L) := np=oBs(mL — A)
where Bs means the base locus of a line bundle.

We recall classically (cf. [BBP13]) that By (L) = & if and only if L is ample and B, (L) # X if and
only if L is big. Thus we have the Nakano vanishing theorem in the case that B, (L) = (.

We notice that by the example of [Ram]|, we can not change the augmented base locus by the base
locus. In his example, we take X the blow up of P? at one point and L the pull back of Ops(1) under the
blow up. Thus L is a big and nef line bundle with n,,~¢Bs(mL) = ¢. But by calculation of cohomology
class we can show that

H?*(X,Q% ®L) #0.
We observe that in this example B, (L) = E where E is the exceptional divisor.

Now, we return to the proof of the theorem. We argue by induction on the dimension of By (L) and
apply of the Nakamaye theorem. First note that we can assume L big, otherwise B, (L) = X and the
theorem is void.

Let | := dim(B4(L)). When [ = —1, the theorem is true by the Nakano vanishing theorem. When | < 0,
we show that in fact L is ample. In this case, there exists some m > 0 and sq,-- - , s, € H*(X,mL — A) such
that

Bs(sg, - ,8k) = {zo, -, 21}
These sections induce a singular metric hg on mL — A with analytic singularity at the discrete points
{xg, - ,x}. Its curvature is a closed positive (1,1)-current which is smooth outside {zq,---,2;}. By
[Dem92a] Lemma 6.3 mL — A is nef. Hence L is ample.

Now let I > 0 and suppose by induction that the theorem has be verified for dim(B; (L)) <1 —1. We
recall the concepts involved in the theorem of Nakamaye on base loci [Nak04].

DEFINITION 3.26. Given a nef and big divisor L on X, the null locus Null(L) of L is the union of all
positive dimensional subvarieties V < X with

(LI . v) = 0.
We observe that for any smooth divisor D of X and such a line bundle,
Null(L|p) < Null(L).
THEOREM 3.27. (Nakamaye). If L is an arbitrary nef and big divisor on X, then
Bi (L) = Null(L).
Fix Ay a very ample divisor on X. By Bertini theorem with a general choice we can assume that D € |Asg|
is smooth. Since Az is very ample we can assume that D n B, (L) € By (L). More precisely, for a general

choice of D, no [—dimensional component of B, (L) is contained in D. Since L is nef and big, we have by
Nakayame theorem Null(L) = B, (L). By the definition of Null(L) we have

(L"*.D)>0.
In other words, L|p is big. Using another time the Nakamaye theorem, we find that
B, (L|p) =Null(L|p) = Null(L) n D < B, (L).

In particular, dimB, (L|p) < dimB, (L) — 1.
Recall the following elementary lemma (3.24) in [SS].
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LeMMA 3.28. Let L be a holomorphic line bundle over X, let D be a smooth hyper-surface in X, and
let p,q = 0 be fixed. If
(a)H? (X, Q% @ [D]® L) =0,
(WH?(D, Q% ® Llp) =0,
(e)H?"1(D, Q% ® ([D]® L)|p) = 0,
then we have
HP (X, Q% ®L) =0.

Since [D]® L is ample (L is nef), the hypotheses (a) (c) of the lemma is verified by the Nakano vanishing
theorem. Since
(p—1)+(¢g—1)>dimD +1—1,
the condition (b) is satisfied by the inductive hypothesis.
This finishes the proof.

REMARK 3.29. It would be interesting to know whether the theorem is still valid without assuming L
to be nef. Here principally, we use the nef condition in two places: in the Nakamaye theorem and in the fact
that the sum of an ample divisor and a nef divisor is ample.

Here, following some ideas of Demailly, we give the following more general version of the Nakano vanishing
theorem.

THEOREM 3.30. Let X be a n-dimensional projective manifold, L a holomorphic line bundle and A an
ample line bundle over X. Assume for sufficient grand m € N and general hyper-surfaces in the linear system
Hy, -+ ,Hy € |mA|, we have that Ly, ~...nn, is ample. Then for p + q > n,we have

HI(X, 05 ®L) =0.
PROOF. By duality, it is equivalent to show that for p + ¢ < n — k,we have
HY X, 05 ® L") =0.

Since the hyper-surface H; is supposed to be general, we can assume that any intersection of type Hyn---nH;
is smooth for any [ and of dimension n — [ for any [ < k.

For m big enough such that mA + L is ample, hence by Nakano vanishing theorem we have the vanishing
p+g<n—k

HY(X, 05 @ L '®0O(-H,)) =0.
From the short exact sequence
0— QF ® L1 ®O(—H,) — Q% QL - (Q% ®L_1)|H1 —0
we know that to prove the desired vanishing it is enough to show that for p + ¢ <n —k
HO(X, (% ® L™Y)|u,) = 0.
From the short exact sequence
0— TH1 - TX|H1 - O(H1)|H1 -0
we have the exact sequence (using the fact that O(H;) is of rank one)
0 — O(—Hy)|m @ W — Q% [, —» Q) —0.
We take the tensor product with L=!|g, and the long exact sequence associated to the coreesponding short
exact sequence. By the Nakano vanishing theorem, we find
H'(Hy, 2y, ® (L' ® O(=H1))|m,) = 0
for any i + j <n — 1. It is enough to prove that
H(Hy, (U, ® L™ m,) =0

forp+q<n—k.

We continue this process and change X with Hq, then H; with H; n Hy etc. Taking from the beginning

m so big that mA + L is ample, we get for every [ that mA + L|g, ~...~m, is ample on Hy n--- n H;. Hence
in each step, we can use the Nakano vanishing theorem. Finally, we are reduced to proving that

Hq(Hl (ORRRNA! Hknﬂl}j{lm-ank, ®L_1|H1f\"'ﬂHk) =0
for p + g < n — k. But this is true by the Nakano vanishing theorem and our assumption. O

REMARK 3.31. By the proof of the theorem, it is enough to take m so large that mA + L is ample, and
H; € ImA]| so that Hy n --- n H; is smooth and of dimension n — [ for any | < k, and L|g, ~...nx, is ample.
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As pointed out by A. Horing, it is interesting to compare this result to the following theorem 2 of [Kur13]:
Let X be a smooth projective variety, L a divisor, A a very ample divisor on X. If L|g, ~...n g, is big
and nef for a general choice of Ey,--- , By, then H (X,Ox(Kx + L)) = 0 for i > k.

REMARK 3.32. Our first theorem is a special case of this general version. Since L is nef, it is nef on the
complete intersection of the hyper-surfaces Hy, - -, H; where [ := dim(B4(L)). On the other hand, for such
general hyper-surfaces, we can assume that the intersection By (L) n Hy n -+ n H; is finite points. By the
definition of stable base locus, L|g, ~...~m, is ample outside these finite points. Hence in fact, L| g, ~...nq, 18
ample.

The k-ampleness condition defined by Sommese [Som)] is also a sufficient condition for the condition
stated in Theorem 3.30. We start by recalling the definition.

DEFINITION 3.33. A holomorphic line bundle L on a compact complex manifold X is said to be k-ample
(0 < k <n—1) if there exists a positive integer N such that NL spans at each point of X and the Kodaira
morphism associated to NL has at most k-dimensional fibres.

Changing N in the definition by a possible large multiple of N we can assume that the Kodaira morphism
associated to VL is the litaka fibration. Denote ® : X — Z the fibration where Z is a projective variety.
Denote A, ; (z € Z,j € N) the irreducible components of the fibre of z (i.e. ®71(2)). By a general choice
of Hy, we can assume that for any z,j the hyper-surface H; intersecting A, ; defines a divisor of A, ; by
the lemma stated below. Similarly, with a general choice of Hy,--- , Hy we can assume that for any z,j
Hyn---nHpn A, is a finite set, by the assumption that dimA, ; < k. In other words, the restriction of
the Kodaira morphism

b:-Hn---nH, > 7
is a finite morphism. Since L|g, ~...nm, is pull back of O(1) via ®, L|g, A...nm, is ample on Hy N -+ N H.
(Recall that the pull back of an ample line bundle under a finite morphism is ample.)

LEMMA 3.34. Let ® : X — Z be the fibration such that all the fibers have dimension < k. Assume X is
projective. Then there exists H — X a general very ample divisor such that the restriction &y : H — Z of
® on H has all fibers of dimension < (k —1).

PROOF. Denote A, ; (2 € Z,j € N) the irreducible components of the fibre of z (i.e. ®7'(z)). It is
equivalent to demand the restriction to each A, ; of the defining section ¢ of H is non trivial. Let A be an
ample divisor on X. Denote V. ; the linear subspace of H°(X, mA) such that o|4_, = 0. We want to choose
o such that o € H*(X,mA) \ |, ; Vz,;. Notice that the family A, ; parametrized by z, j forms a bounded
family in the Hilbert scheme of X. A sufficient condition to find o as above is that for m large enough

dimZ + dimV, ; < h°(X,mA).
Without loss of generality, we can assume that A is very ample on X. Hence, by boundedness, we have for
m large enough independent of z, j a surjective restriction morphism
H°(X,mA) — H°(A, ;,mA).
As V, ; is the kernel of this morphism, it is enough to take m so large that
dimZ < h%(A, ;,mA).
For A, ; with positive dimension, the regular part of A, ; is a smooth submanifold of X. Since A is very

ample, it generates 1-jets of the regular part of A, ; at any point. Hence H°(A, ;, NA) generates any m-fold
symmetric product of 1-jets of A ; at some regular point. In other words,

0 4 m <
h"(A, ;,mA) > <dimAz,j) > m.



CHAPTER 4

Considerations on nefness in higher codimension

ABsTraCT. In this note, following the fundamental work of Boucksom we construct the nef cone of a
compact complex manifold in higher codimension and give explicit examples where these cones are different.
In the third section, we give two versions of Kawamata-Viehweg vanishing theorems in terms of nefness in
higher codimension and numerical dimensions. We also show by examples the optimality of the divisoral
Zariski decomposition given in [Bou04|. In the last section, we discuss the surjectivity of the Albanese
morphism for a compact Kidhler manifold with — K 'x psef and some additional assumptions on the regularity
of approximated metrics.

4.1. Nefness in higher codimension

We first recall some technical preliminaries introduced in [Bou04]. Throughout this paper, X is as-
sumed to be a compact complex manifold equipped with some reference Hermitian metric w (i.e. a smooth
positive definite (1,1)-form); we usually take w to be Kahler if X possesses such metrics. The Bott-Chern
cohomology group H}B,’é(X ,R) is the space of d-closed smooth (1,1)-forms modulo i00-exact ones. By the
quasi-isomorphism induced by the inclusion of smooth forms into currents, H}B,’é(X ,R) can also be seen as
the space of d-closed (1,1)-currents modulo idd-exact ones. A cohomology class a € H}B’é(X ,R) is said to
be pseudo-effective iff it contains a positive current; « is nef iff, for each £ > 0, « contains a smooth form a,
such that a. > —cw; « is big iff it contains a Kéhler current, i.e. a closed (1, 1)-current 7" such that T > cw
for € > 0 small enough.

DEFINITION 4.1. ( [DPSO01]) Let @1, 2 be two quasi-psh functions on X (i.e. i00p; = —Cw in the sense
of currents for some C = 0). The function vy is said to be less singular than ps (one then writes 1 < p2)
if o < 1 + C1 for some constant Cy. Let o be a fized psef class in Hllg’é(X, R). Given T1,T5,0 € «
with 6 smooth, and T; = 0 + i00p; with ¢; quasi-psh (i = 1,2), we write Ty < Ty iff o1 < o (notice
that for any choice of 6, the potentials p; are defined up to smooth bounded functions, since X is compact).
If v is a smooth real (1,1)-form on X, the collection of all potentials ¢ such that 6 + i00p > v admits a
minimal element Ty~ for the pre-order relation <, constructed as the semi-continuous upper envelope of
the subfamily of potentials ¢ < 0 in the collection.

DEFINITION 4.2. (Minimal multiplicities). The minimal multiplicity at x € X of the pseudo-effective
class « € H}B’é(X, R) is defined as

v(o, x) = sup ¥(Thin,e, )
e>0

where Tyin e s the minimal element Tin —c,, n the above definition and v(Tyin,e, x) is the Lelong number
of Trin,e at x. When Z is an irreducible analytic subset, we define the generic minimal multiplicity of o
along Z as
via,Z) = inf{v(a,z),z € Z}.
When Z is positive dimensional, there exists for each £ € N* a countable union of proper analytic subsets
of Z denoted by Z; = U, Z¢p such that v(T 1, 2Z) := infocz V(T 2, 2) = V(T 1, @) for v € Z N Z,.
By construction, when &1 < €2, Thin,e; = Timin,e,- Hence for a very general point x € Z \ UZEN* Zy,

v(a,Z) < v(a,z) =sup (T 1, Z)-
¢

min, 3
On the other hand, for any y € Z,

Slép V(Tmin,% ’ Z) < Sl;p V(T’Inin,% ’ y) = V(av y)

In conclusion, v(a, Z) = v(a, x) for a very general point x € Z \ | Jyenx Z¢ and v(o, Z) = sup, v(Tiin,e, Z).
Now we can define the concept of nefness in higher codimension implicitly used in [Bou04]. It is the
generalisation of the concept of “modified nefness” to the higher codimensional case.

DEFINITION 4.3. Let o € H}B’é(X, R) be a psef class. We say that « is nef in codimension k, if for every
irreducible analytic subset Z < X of codimension at most equal to k, we have

v(a,Z) = 0.

61
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We denote by N, the cone generated by nef classes in codimension k. By Proposition 3.2 in [Bou04], a
psef class « is nef iff for any © € X, v(a,x) = 0. By our definition, psef is equivalent to nef in codimension
0, and nef is equivalent to nef in codimension n := dim¢X. In this way, we get a bunch of positive cones on
X, satisfying the inclusion relations

N=N,c---cNcNy=E.
By a proof similar to those of propositions 3.5, 3.6 in [Bou04], we get

PRroPOSITION 4.1.1. (1) For every z € X and every irreducible analytic subset Z, the map & — R*
defined on the cone & of psef classes by a — v(a, Z) is convex and homogeneous. It is continuous on the
interior £°, and lower semi-continuous on the whole of £.

(2) If Thin € o is a positive current with minimal singularities, we have v(«, Z) < v(Tin, Z).

(3) If v is moreover big, we have v(«o, Z) = v(Tiin, Z)-
The following lemma is a direct application of the proposition.

LEMMA 4.4. Let Y < X be a smooth submanifold of X and 7 : X — X be the blow-up of X along Y.
We denote by E the exceptional divisor. If a € H;’é(X, R) is a big class, we have

v(ia,Y) =v(r*a, E).
For Z any irreducible analytic set not included in'Y, we denote by Z the strict transform of Z. Then
vie, Z) = v(r*a, Z).
For W any irreducible analytic set in Y, we have
via, W) = V(W*Q,P(Ny/x|w)).

PROOF. Since « is big, we know that by taking a suitable regularisation, there exists a Kahler current
T € a with analytic singularities. The pull back 7*T of this current is a smooth Kahler current on some
dense open set U where 7 is a biholomorphism. Hence the volume of 7*«a defined as STEW*Q,TZO, " (ac
means the absolute part of the current) is larger than the mass of #*7T on U which is strictly positive.
By [Bou02a] 7*« is thus big.

By the proposition, we have

v(a,Y) = inf v(T,Y), v(t*a,E)= inf v(S,E).
Tea Sem*a
On the other hand, the push forward and pull back operators acting on positive (1,1) currents induce
bijections between positive currents in the class o and positive currents in the class 7*a. Let 6 € o be a
smooth form such that 7' = 6 + iddp. We recall that for any irreducible analytic set W with local generators
(g1, - ,gr) near a regular point w € W, the generic Lelong number along W is the largest v such that
o < Ylog(X19:l?) + O(1) near w. Since 7*(g1, -+ ,gr) - O = Ig, we have v(T,Y) = v(z*T,E). In
particular, this implies that
v(ia,Y) =v(r*a, E).

For W any irreducible analytic set in the centre Y, since the exceptional divisor is isomorphic to P(Ny x),

the preimage of W under the blow-up is isomorphic to P(Ny,x|w ). In suitable local coordinates (21, , z,)
on X and (wi, - ,w,) on X, the blow-up map is given by

7T(IU1, o ,’U)n) = (wla Wiw2, - , W1 Ws; Ws41," " * awn)~
In these coordinates, the centre Y is given by the zero variety V(zs11, - ,2,). Assume that in this chart,
W = V(zs41,- " s 2n; 1, , fr) where f; is a function of z1,---,z, (as we can assume without loss of
generality). Then 7*(Zyw ) - O = (w1, fi(wi, - ,ws), -, fr(wi, -+ ,ws)) = Tp(Ny ) x|w)- In particular, this

implies that
via, W) = y(ﬂ*a,P(Ny/X|W)).

For the second statement, we just observe that the generic Lelong number along Z (resp. Z) is equal
to the Lelong number at some very general point. Since Z is not contained in Y we can assume without
loss of generality that the very general point is not in Y (resp. F). Since the Lelong number is a coordinate

invariant local property, for such very general point € Z near which 7 is a local biholomorphism and any
Tea,T=20,v(T,Z)=v(T,n(x)) =v(r*T,z) = v(r*T, Z). Hence we have

vio, Z) = v(r*a, Z).

As a corollary, we find
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COROLLARY 4.5. Let i : X — X be a composition of finitely many blow-up with smooth centres in X .
If a € Hg’é(X, R) is a big class on X such that p*« is nef in codimension k, then « is a nef class in
codimension k.

Proor. Without loss of generality, we can reduce ourselves to the case where p is a blow-up of smooth
centre Y in X. By Lemma 4.4, the generic minimal multiplicity of a along any irreducible analytic set of X
of codimension at most equal to k is equal to the generic minimal multiplicity of u*« along certain irreducible
analytic set of X of codimension at most equal to k. So by the definition of nefness in codimension k, the
fact p*« is nef in codimension k implies that « is nef in codimension k. O

REMARK 4.6. Let X be a compact complex manifold X whose big cone is non empty. Recall that by
Proposition 2.3 of [Bou04], a class « is modified Kéahler (i.e. « is in the interior of nef cone in codimension 1)
iff there exists a modification p : X — X and a Kibhler class & on X such that a = x&. As a consequence,
for : X — X a modification between compact Kihler manifolds and & e H,li,é(f( ,R) a big and nef class
on X in codimension k, it is false in general that ps@ is a nef class in codimension k.

To give an equivalent definition of nefness in higher codimension, we will need the following definition.

DEFINITION 4.7. (Non-nef locus)
The non-nef locus of a pseudo-effective class o € Hé;é(X, R) is defined by

E,n(a) :={re X,v(a,z) > 0}.

PROPOSITION 4.1.2. A psef class « is nef in codimension k iff for any € > 0, any ¢ > 0, the codimension
of any irreducible component of E.(Tin ) is larger than &k + 1.

ProOOF. By the definition of non-nef locus, we have

En’ﬂ(a) = U U Ec(Tmin,e) = U U E% (Tmin,%)'

e>0¢>0 meN* neN*

We know by Siu’s theorem [Siu74] that £1 (T, 1)
union of irreducible analytic set. If for angf € > O:nany ¢ > 0, the codimension of any irreducible component
of E¢(Twin,e) is larger than k + 1, then for any irreducible analytic set Z of codimension k, E,,(a) N Z is
strictly contained in Z. Hence v(«a, Z) = 0.

On the other direction, assume there exists an irreducible component Z of E1 (T}, 1)
1 JC) =

-
m

is an analytic set. Hence the non-nef locus is a countable

has codimension
1
o

at most equal to k. On each point z of this irreducible component, v (o, z) = v(T, In particular,

min,

v(a, Z) = L, which contradicts the fact that « is nef in codimension k. O

REMARK 4.8. If the manifold X is projective, it is enough to test the minimal multiplicity along irre-
ducible analytic subsets of codimension k to prove that the class is nef in codimension k. The argument is
as follows:

For any irreducible analytic set Z of codimension strictly smaller than k, for any z € Z, since X is
projective, there exists some hypersurfaces H; such that z € H; and the irreducible component of Z n
(), Hi containing z has codimension k. In other words, Z is covered by the irreducible analytic subsets
of codimension exactly k. By assumption, the generic minimal multiplicity along any of these irreducible
analytic subsets is 0. This implies that the generic minimal multiplicity along Z at most equal to the generic
minimal multiplicity along any these irreducible analytic set is 0.

REMARK 4.9. In the general setting of compact complex manifolds, it is important to test the generic
minimal multiplicity along any analytic set of codimension at most equal to k, instead of any analytic set
of codimension k, to obtain the inclusion of the various positive cones. The problem is that there may exist
too few analytic subsets in an arbitrary compact complex manifold.

A typical example can be taken as follows. For example let X; be a compact manifold such that the
nef cone is strictly contained in the psef cone (for example we can take the projectivisation of an unstable
rank two vector bundle over a curve of genus larger than 2, whose cones are explicited calculated on page
70 [Laz04]) and X be a very general torus such that the only analytic sets in Xo are either union of points
or X5. Let 8 be a psef but not nef class on X;. Let X := X; x Xy with natural projections 71,7 and
o = 7Ff. Assume that dim(X;) < dim(X3). Fix wy,ws two reference Hermitian metrics on X, Xo.

Now « is a psef but not nef class on X. The only analytic subsets of codimension dim(X) is the fibre
of my. « has generic minimal multiplicity 0 along any fibre of m5. The reason is as follows: The minimal
current in « larger than —e(nfw; + 7*wsy) denoting min{7T" € o, T > —e(rfw; + 7*w2)} is less singular
than the pull back of the minimal current in g larger than —ew; denoting min{S € 8,5 > —ew;} and the
restriction of these minimal currents on the fibre of s is trivial. In other words, the generic Lelong number
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of min{T € o, T > —e(nfws + 7*w2)} along the fibres is smaller than the generic Lelong number of the pull
back of min{S € 3,5 > —ew,} which is 0. Hence it is itself 0.

On the other hand, for any positive integers m, n, take Z a positive dimensional irreducible component,
of E1 (T, 1) in the non-nef locus of 3. The existence of such an irreducible component will be shown in
the lemma 4’."11, which implies that « has to be nef in codimension at most equal to n —2. Now Z x X5 is an
irreducible analytic set of codimension strictly smaller than dim(X;). But the generic minimal multiplicity

along Z x X is larger than 1. In particular this shows that « is not nef in codimension dim(X;) — dim(Z%).

REMARK 4.10. Let us mention that our definition of nefness in codimension 1 is equivalent to the
definition of modified nefness. By definition, a psef class is modified nef iff its generic minimal multiplicity
is 0 along any prime divisor. To prove the equivalence, it is enough to show that for any psef class a on X
we automatically have

v(a,X) =0.
It is because that v(a, X) < v(Tmin, X) where the latter is 0. We notice that by Siu’s decomposition
theorem [Siu74], the set Eo~o(Tmin) = U, en* £ (Tmin) is countable union of proper analytic sets.

By this observation, we can also say that the “nef in codimension 0" cone is exactly the psef cone.

In analogy to the case of surfaces for which the nef cone coincides with the modified nef cone, the nef
cone in codimension n — 1 coincides with the nef cone.

LEMMA 4.11. Let « be a psef class, then « is nef in codimension n — 1 iff « is nef.

PROOF. If « is nef, by inclusion of different positive cones, it is nef in codimension n — 1. On the
other direction, we will need the following proposition 3.4 in [Bou04] which is a reformulation of a result of
Piun [Paun98|.

A pseudo-effective class « is nef iff o]y is pseudo-effective for every irreducible analytic subset ¥ <
E,n(a).

Given a class « that is nef in codimension n — 1, proposition 4.1.2 implies that for any € > 0 and any
¢ > 0 the analytic set E.(Tiin,e) is a finite set. Therefore, the non-nef locus which is a countable union of
finite sets has at most countably many points. In particular, this implies that the restriction of o on any
Y < E,.(a) is 0, hence psef. By the above proposition, « is nef. O

REMARK 4.12. Recall that a line bundle L over a projective manifold is nef iff its intersection number
with any curve satisfies (L - C) > 0. By the important work of [BDPP13], a class is psef iff its pairing with
any movable curve is positive. Here a curve C' is said to be movable if C' = (Y, is a member of an analytic
family (C})¢es such that | J,.¢ C: = X and, as such, C' is a reduced irreducible 1-cycle. Remark also that nef
is equivalent to nef in codimension n — 1 and psef is equivalent to nef in codimension 0.

Then it is natural to conjecture that a class over a projective manifold is nef in codimension k if and
only if its pairing with any movable curve in codimension k is positive. Here a curve C is said to be movable
in codimension k if C' = C, is a member of an analytic family (Ci)es such that ( J, g C; is an analytic
subset of X of codimension k and, as such, C' is a reduced irreducible 1-cycle.

REMARK 4.13. Inspired by the result of Piun, it seems to be natural to conjecture that a psef class {T'}
with T a positive current on X is nef in codimension k if and only if that for any irreducible component of
codimension at most k in (.., Ec(T) {T'}|z is nef in codimension k — codim(Z, X). When k = n, this is
exactly the result of Pidun. When k = 0, it is trivial. The “only if” part is quite similar. The restriction of
the potentials of Tiyin,. on any irreducible analytic set of codimension at most k decreases to a potential on
the submanifold. If we fix the maximum of the potentials on X to be 0, they form a compact family. The
limit potential would be quasi-psh and thus the restriction of the class on the analytic set is psef. The “if”
part is of course true if the manifold is a K&hler surface by Paun’s result.

The “if” part is also true for the case k = 1 if the manifold is hyperkihler. By lemma 4.9 [Bou04] (see
also [HuyO03]) a psef class o on a hyperkéihler manifold is modified nef if and only if for any prime divisor
D one has g(a, D) = 0. Here, we let o be a symplectic holomorphic form on X, and define

q(a, B) == Jxoz ABA(cAT)ETL

to be the Beauville-Bogomolov quadratic form for any (1, 1)-classes «, 3. For a psef (1,1)-class « such that
a|D is psef for any prime divisor D, we have

n

s AP = [ aniDh A a7 = anrai =0

Thus « is nef in codimension 1.
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A natural idea to attack this question in general consists in trying to extend the current on this subvariety
Z to X. If this is possible, the current with minimal singularity would have a potential larger than that of
the extended current. In particular, the current with minimal singularity would have generic Lelong number
0 along Z.

In this direction, Collins and Tosatti proved the following results in [CT15] and [CT14], which we now
recall.

THEOREM 4.14. (Theorem 3.2 in [CT14|). Let X be a compact Fujiki manifold and o a closed smooth
real (1,1)-form on X with {o} nef and §, o™ > 0. Let E =V u UleYi be an analytic subvariety of X,
with V., Y; its irreducible components, and V a positive dimensional compact complex submanifold of X. Let
R = a+id0F be a Kihler current in the class {a} on X with analytic singularities precisely along E and let
T = aly +i0dp be a Kihler current in the class {a|y} on V with analytic singularities. Then there ezists a
Kihler current T = o +i00® in the class {a} on X with T|V smooth in a neighbourhood of the very general
point of V.

THEOREM 4.15. (Theorem 1.1 in |[CT15]). Let (X,w) be a compact Kihler manifold and let V < X be
a positive-dimensional compact complex submanifold. Let T' be a Kdihler current with analytic singularities
along V in the Kdhler class {w|v}. Then there exists a Kdihler current T on X in the class {w} with T = Ty .

Using their results, in a given Kéahler class, one can extend Kéhler currents with analytic singularities
defined in a smooth subvariety. If the class is just nef and big on the Ké#hler manifold, one can only
show the existence of a K&hler current whose potential is not identically infinity along the submanifold.
Following example 5.4 in [BEGZ10], one can show that in a nef and big class on a K#hler manifold X,
one cannot always extend a positive current along a submanifold into a positive current on X. In their
example, the positive current on the submanifold can even be chosen to be smooth. More precisely there
exists C', a submanifold of a certain compact Kéhler manifold X, {«} a nef and big class on X with a smooth
representative o and ¢ € LIOC(C) with a|¢ +i00p > 0, such that there does not exist a ¢ € L{ (X) satisfying
a+i00y = 0 and ¥|c =

Let us start the construction of the example. Let C be an elliptic curve and let A be an ample divisor on
C. Let V be the rank 2 vector bundle over C' the unique non-trivial extension of O¢. Define X :=P(V @ A)
and {a} := ¢1(Ox(1)) with smooth representative a. Then Ox (1) is a big and nef line bundle over X. The
quotient map V@ A — O¢ induces a closed immersion C' — X. In particular, we have Ox(1)|¢ = Oc¢.
Since ¢1(Ox(1)|¢) = 0, there exists a smooth function ¢ on C such that a|c + iddp = 0. We prove by
contradiction that there does not exist ¢ € L (X) such that o+ id0y > 0 and 9¥|c = ¢. The quotient map
V ® A — V induces a closed immersion P(V') — X. On the contrary, we would have a|py) + i&éwhp(v) >0
in the class ¢;1(Op(y)(1)). By the calculation made in example 1.7 of [DPS94|, we know that

alpvy + i00Y|pevy = [C]

where [C] is the current associated with C. In particular, this shows that ¢|c = —o0, a contradiction.

In other words, theorem 1.1 of [CT15] cannot be strengthened to obtain an extension of an arbitrary
closed positive current in a class that is merely nef and big. Similarly, one cannot drop the Kéahler current
condition in the theorem of [CT14].

Let us return to our previous question. To get an analogue of Paun’s result, the above discussion shows
that we need to generalise theorem 3.2 of [CT14] to the class of a big class that is nef in codimension k by
adding a small Kahler form to the class and by using the semi-continuity of the generic minimal multiplicity.
Unfortunately, we do not know how to do it at this point.

4.2. Kawamata-Viehweg vanishing theorem

We first give a “numerical dimension version” of the Kawamata-Viehweg vanishing theorem in the pro-
jective case. In the following, we study various properties of nef classes in higher codimension. Then we end
the section by a numerical version of the Kawamata-Viehweg vanishing theorem in the Kéhler case.

To start with, we need the relation between movable intersection defined in [BDPP13], [Bou02b| and
intersection number.

LEMMA 4.16. Let  be a nef class in codimension p on a compact Kdihler manifold (X,w). Then for any
k < p and © any positive closed (n — k,n — k)-form we have

(a",0) = (a", ).
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Here we use the definition of movable intersection defined in [Bou02b| and [BDPP13|. The movable
intersection number (¥, ©) in [Bou02b] is defined as the limit for ¢ > 0 converging to 0 of the quantity:

supf (Th +ew) A -+ (T, + ew) A O
T; JX\F

where T; ranges all closed current with analytic singularities in the class « such that T; > —ew and F' is the
union of all singular part of 7;. (In [Bou02b], the movable intersection number is defined for any closed
positive current ©. In the following, we will take © to be w™*. Thus we consider only the case when © is
a positive closed form.)

The proof of the boundedness of the quantity is a consequence of regularisation and the theory of
Monge-Ampére operator. In the general case, we approximate the current T; decreasingly by the smooth
forms by [Dem82] with a uniform lower bound —Cw depending on (X,w) and {T;}. Now on X \ F
the current (T} + Cw) A -+ (T, + Cw) A O is the limit of corresponding terms changing T; by its smooth
approximation, using the continuity of Monge-Ampére operator with respect to decreasing sequence. But
the integral on X ~\ F' obtained for the smooth approximation is bounded by its integral on X, which is the
intersection number of cohomology classes {T; + Cw} and {O}.

PROOF. Our observation is that with better regularity on the cohomology class a, we can define directly
the Monge-Ampére operator on X. So comparing to the general case, we can skip the approximation process
and get rid of the dependence of C' which only depends on (X,w) and « but not explicitly.

We recall the following theorem (4.6) on the Monge-Ampére operators in chapter 3 of [Dem12b].

Let u1,-- -, uq be quasi-plurisubharmonic functions on X and 7" be a closed positive current of bidimen-
sion (p,p). The currents u1i00us A - -+ A i@guq AT and i00u; A i00ug A -+ A i@guq AT are well defined and
have locally finite mass in X as soon as ¢ < p and

Hop—2m+1(L(u;,) 0 -+ 0 L(ug,,) 0 Supp(T)) = 0
for all choices of indices j; < -+ < jn, in {1, -+, ¢}.

Here Hsj,_9,,+1 means the (2p — 2m + 1)-dimensional Hausdorff content of the subset of X seen as a
metric space induced by the Kahler metric. The unbounded locus L(u) is defined to be the set of points
x € X such that w is unbounded in every neighbourhood of . When w has analytic singularities, it is the
singular part of u (i.e. {u = —o0}).

Now return to the proof of the lemma. By definition 7} jin,—e., is less singular than 7;. Since for any
¢ >0, Ec(T; min,—ew) has codimension larger than p+1, the singular set of T; which has analytic singularities is
also of codimension larger than p+1. By the theorem (4.6) cited above, the current (71 +ew) A - - - (T +ew) AO
is well-defined on X. Thus we have

J (T1+sw)/\---(Tk+8w)A@<J (Th+ew) A (T +ew) A O
X\F b'e

= (a+efw}) - (a+ef{w}) - {O}.
Taking € — 0, we get (a*,0) = (aF, ©). O

We can now give in the projective case the following version of the Kawamata-Viehweg theorem in terms
of nefness in higher codimension. The simple proof given below has been suggested to us by Demailly.

THEOREM 4.17. Let X be a projective manifold and L a nef line bundle in codimension p — 1. If

{c1(L)P) # 0, then for any ¢ = n —p + 1 we have
HY(X,Kx®L)=0.

PrOOF. The proof is an induction on the dimension of X. Let A be an ample divisor on X and w € ¢;(A)
be a Kéhler form. Let Y € |kA| be a generic smooth hypersurface. With the choice of k big enough, we can
assume that H4(X, L~ ® O(=Y)) = 0 for any ¢ < n by Kodaira vanishing theorem. By Serre duality, the
statement of the theorem is equivalent to prove that for any ¢ < p — 1 we have

HYX,L™') =0.
Consider the long exact sequence associated to the short exact sequence
0->L'®0(-Y)—> L' L'y —o.

It turns out that it is enough to prove that H4(Y,L~1) = 0 for any ¢ < p — 1.
We check that conditions are preserved under the intersection with a generic hypersurface. Since « is
nef in codimension p — 1, we find that any irreducible component of

En(a) = U U E%(Tmin,%)'

meN* neN*
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has codimension larger than p. By regularisation of T}, there exists currents 7, with analytic singulari-

1in, % ’
ties in « larger that —%w. Any irreducible component of the singular set of these currents have codimension
larger than p. For generic Y the restriction of these currents on Y is well defined for any m. Since the
inclusion of analytic sets is a Zariski closed condition, for generic Y we can also assume that the singular set
of T, is not contained in Y for any m.

On the other hand, in the class a|y, the current with minimal singularities that admits a lower bound
—%w|y is certainly less singular than T),|y. The upper-level set of the Lelong number of these minimal
currents is included in the singular set of T, |y, so it has codimension larger than p. This means that «ly
is nef in codimension p — 1.

The condition {aP) # 0 implies that

J Py nw™ P > 0.
X

In other words, there exist a sequence of currents with analytic singularities 73, € a such that T}, > —%w
and

1
f (T, + —wW)P AW P >c
X\Fnm m

for some ¢ > 0 independent of m where F,, is the singular set of T,.
With a generic choice of Y, we can still assume that the restriction of 7}, is a current with analytic
singularities. They satisfy the conditions T,,|y = —%w|y and

1
J (Tmly + —w|y)P A WPl >
Y~ F,, m

o

In other words, {(«a[},) # 0.

By induction on the dimension, we are reduced to proving the case where X has dimension p and L
is nef in codimension p — 1, in which case L is (plainly) nef by lemma 4.11. The condition of the movable
intersection reduces to {c¢1(L)?) # 0. By lemma 4.14, this implies that (L?) > 0. In particular, L is a nef
and big line bundle. Now the vanishing of cohomology classes follows from the classical Kawamata-Viehweg
theorem. O

As pointed out to us by A. Horing, this can also be proven using the result of [Kur13].

REMARK 4.18. When p = n, the above theorem is the classical Kawamata-Viehweg vanishing theorem
for a nef and big line bundle. We notice that {c¢;(L)™) = Vol(L) by theorem 3.5 of [BDPP13]. When
p = 1, the theorem states that if L is a psef line bundle with {c;(L)) # 0, then H"(X, Kx ® L) = 0. This
case is trivial by the following easy lemma. The first interesting case is when L is nef in codimension 1 and
{c1(L)*) # 0. In the following example, we show that we can not weaken the condition to the case that L is
only psef and {c¢;(L)?) # 0. On the other hand, by the divisorial Zariski decomposition, we can write any
psef line bundle numerically as a sum of a nef class in codimension 1 and of an effective class. This shows
that in some sense, this kind of theorem is the best we can hope for.

Now we begin our example. Let V be the unique non-trivial rank 2 extension of O¢ over an elliptic curve
C. Let X be the blow-up of a point of P(V) x P! and L be the pull back of Op(vy(1) W Op1 (1). Opeyy(1)
is a nef line bundle. We also notice that ¢1(Op(vy(1))? = 0 and ¢1(Op(yy(1)) # 0. So L is a nef line bundle
over X and nd(L) = 2. By the above theorem we have that H?(X, Kx + L) = 0. Let E be the exceptional
divisor of the blow-up. The short exact sequence

0-Kx+L—>Kx+L+E—->Kx+L+E|g—0
induces the long exact sequence
H*(X,Kx +L) » H*(X,Kx + L+ E) > H*(E,Kx + L + E|g) = H(E,~L) - H*(X,Kx + L).

By Serre duality and the following lemma, H3(X, Kx+L) = H°(X,—L) = 0. Since L|g = Og, H*(E, L) =
C. Thus we have that

H*(X,Kx +L+E)=C.
Now L + E is a psef line bundle over X and nd(L + E) > 2 but H*(X, Kx + L + E) # 0. The reason of the
numerical dimension is as follows. By the super-additivity of movable intersection, we have that

L+ E)?)y = (L* +(E*) + AL - E) > (L?).
LEMMA 4.19. Let (L,h) be a non-trivial (i.e. L # Ox) psef line bundle over a compact complex

manifold X. Then we have
HY(X,L™ ') =0.
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PRrOOF. We argue by contradiction. Let s be a non-zero section in H°(X, L~!). Consider the function
10g|s|2L,17h,1. Let ¢ be the local weight of h such that h = e~ locally. Thus the above function can be
locally written as log|s|?> + ¢. In particular, it is a psh function on X. Since X is compact, the only psh
functions are the constant functions. On the other hand,

i00log|s|] 1 ;1 = [s = 0] +iOL = 0

where [s = 0] is the current associated to the (possible trivial) divisor s = 0 and i©y, , is the curvature of
(L, h). Since both [s = 0] and i@ ;, are positive currents, they are 0. In particular, s never vanishes on X
which contradicts the fact that L is a non-trivial line bundle. (]

A classical result on nef line bundles is the following. Let A + B be a nef line bundle over a compact
manifold X where A, B are effective R-divisors without intersection. Then A, B are both nef divisors. In
the case of nefness in lower codimension, we have the following generalised version.

LEMMA 4.20. Let A+ B be a line bundle that is nef in codimension k over a compact manifold X (by this,
we mean that ¢ (A + B) is nef in codimension k), where A, B are effective R-divisors without intersection.
Then the divisors A, B are both nef in codimension k.

More generally, let o+ ¢1(E) be a class that is nef in codimension k over a compact manifold X, where
E is an effective R-divisor and En,(a) n E = &. Then « is nef in codimension k.

Proor. Fix ag € a, By € ¢1(F) two smooth representatives. By assumption, for any ¢ > 0, there exists
a quasi-psh function ¢. on X with analytic singularities such that

ag + 100p, = —ew

where w is some Hermitian metric on X (not necessarily Kahler). (For example, we can take a regularisation
of the minimal potential pmin,—z.) We can assume that the singular set of . has empty intersection with
VE. Here Vg is some small tubular neighbourhood of E.

Let 1. be a family of quasi-psh functions on X with analytic singularities such that

ag + Bo + Z&é@/)e = —Ew.

We can assume that the singular set of ¢ has codimension at least k + 1.

Let ¢x be a quasi-psh function on X such that 8y + i0dpr = [E] where [E] is the current associated
to E. But definition, the pole of ¢ is exactly the support of E. In particular we have that ¢. — ¢p is a
well-defined quasi-psh function outside E such that

ag +i00(Y. — pp) = —cw

on X \ F.
Now we glue the potentials to get a quasi-psh function ®. with analytic singularities on X, such that

ag + 100D, > —cw.

We also demand that the singular set of ®. be included in the singular set of .. This will finish the proof
of the lemma.

On X \ Vg we define . = max(¢¥. — pg, - + C:) where C; is a constant which will be determined
latter. In particular, on X \ Vg we have

ag + 100D, = —cw.

On Vg, we define &, = p. + C.. On X \ Vg, ¢g is bounded and 1. is bounded from above. Near the
boundary of Vg, ¢. is also bounded since the singular set of . has empty intersection with V. Thus for
C. large enough near the boundary of Vg ¥. — v < p. + C.. In particular, ®. is a global well defined
quasi-psh function such that ag +i00®. > —ew. The singular set of ®. in X \ V is included in the singular
set of Y. On Vg, ®. is smooth. This finishes our construction. O

REMARK 4.21. The condition that the intersection is empty is necessary for the lemma. Otherwise, we
have the following counter-example.

The construction uses Cutkosky’s construction detailed in the next section. Let Y be a projective
manifold such that Ny = & . Let 3 € HY(Y,R) be a non psef class. Let Ay, Ay be very ample divisors on
Y. Define

to := min{t|8 + tc1 (A1) nef}.
We can assume that 5+ toci(Asg) is nef. Define X := P(A; ® A3) and denote by 7 : P(4; @ Az) — Y the
natural projection. By proposition 4.3.1 below, 7% + toc1(O(1)) and ¢;(O(1)) are nef. Notice that O(1) is
an effective divisor since H°(X,O(1)) = H(Y, A1 @ Az) # 0.
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By proposition 4.3.2, for any ¢ < to, v(7* + tc1(O(1)),P(A2)) > 0 and E,,(7*8 + tc1(O(1)) = P(As).
This shows that for any t < to, #*8 + tc1(O(1)) is not nef in codimension 1. In other words, the nef
class 7 + toc1 (O(1)) is a sum of not nef in codimension 1 class 7*5 + tc1(O(1)) and an effective divisor
(to —t)O(1). Let (s1,s2) € HO(Y, A1) ® H(Y, A3) = H°(X,O(1)) be a non-trivial section. Then we have

Vi(s1,s2) = {(z,£%)|¢" € (A1 ® A2)*, ¥ (s1,52) = 0}
Identify P(As) as Y,then we have V(s1,s2) nP(A3) = V(s2) # . Similar calculation shows that for any
E € |O(m)| for any me N*
Epn(m*8 +tc1(O(1)) n E # .

Following the ideas of [DP03], we get the following K&hler version of the Kawamata-Viehweg vanishing

theorem.

THEOREM 4.22. Let (X,w) be a compact Kihler manifold of dimension n and L a nef in codimension
1 line bundle on X. Assume that (L?) # 0. Assume that there exists an effective N-divisor D such that
c1(L) = ¢1(D). Then

HY(X,Kx+L)=0

forqg=n-—1.

PROOF. In the case ¢ = n, we have H"(X, Kx + L) = H°(X, —L)* by Serre duality. For L psef, —L has
no section unless L is trivial by lemma 4.17. Since (L?) # 0, L is not trivial. Therefore the only interesting
case is ¢ = n — 1. We divide the proof into two cases.

Case 1: We assume that L = D. Since the canonical section of D induces a positive singular metric on
(L, h) with multiplier ideal sheaf Z(h) € O(—D). In fact we have equality outside an analytic set whose all
irreducible components have codimension larger than 2. Write D = ». n;D; where n;, > 0 and D; are the
irreducible components of D. Define

Y = (Dred)sing = U(Di nDj)u UDi,Sing
i#j i
where D; sine means the singular part of D;. It is easy to see that we have an equality outside Y and that

each irreducible components of Y is of codimension larger than 2.
In particular, the short exact sequence

0 — Z(h) —» O(=D) — O(—=D)/Z(h) — 0
induces that
H" Y X,Kx + L®ZI(h) - H" ' (X,Kx + L — D) - H"(X,0(-D)/Z(h)) =0

since the support of O(—D)/Z(h) is included in Y.
Denote by Amin the minimal metric on L where we have a natural inclusion of Z(h) € Z(hmin). Thus we
have the following commuting diagram

H Y (X,Kx + LQZI(h)) — H" Y (X, Kx + L ®Z(hmin))

l l

H""YX,Kx +L—-D) ——— H" (X, Kx + L).

By Theorem 1.9 proved in chapter 3 and the condition that nd(L) > 2, we know that the morphism
H" Y X,Kx + L®Z(hmin)) — H" 1 (X,Kx + L)
is the 0 map. Since the left vertical arrow is surjective in the above diagram, we conclude that the morphism
H" Y X,Kx +L—-D)— H" X, Kx + L)
is also the 0 map. Thus the short exact sequence
0>Kx+L-D—>Kx+L—>Kx+Lp=Kp—0
gives in cohomology
H" Y (X,Kx +L—-D) > H"YX,Kx +L) > H" (D,Kp) ~ H*(D,0p) - H*(X,Kx + L — D) — 0.
On the other hand, H"(X, Kx + L — D) ~ H°(X,Ox) ~ C. Therefore we need only show that
Y (D,0p) = 1.

More precisely, D is a effective Cartier divisor in the manifold X. Therefore D is a (possibly non reduced)
Gorenstein variety. In this case the dualizing sheaf Kp is given by adjunction as (Kx + D)|p. Moreover
Serre duality holds in the same form as in the smooth case.
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To calculate the dimension of global sections of D, first we show that D is connected. In fact, otherwise
we would have D = A + B with A and B effective non-trivial divisors such that A n B = ¢&. In particular
we have (A- B -w"?) = 0. But A and B are necessarily nef in codimension 1 by lemma 4.20.

We recall the Hodge Index Theorem on a compact Kahler manifold (X,w) as theorem 6.33 and 6.34
in [Voi02a]. By the Hard Lefschetz theorem, we have

H?*(X,C) = C{w} ® H*(X, C) prim
where H?(X, C)prim means primitive classes. The intersection form (o, 8) — (a - 8- w™2) has signature
(1,A5Y(X) — 1) on HY(X) since H*(X, C)pyim is orthogonal to w and the intersection form is negative
definite on H?(X, C)pyim-
On the other hand, by lemma 4.14, we have that
(A-A- 0" 2(A- A w2 >0
and similar inequality for B. We also notice that
(L-L-w" ) ={(L-L-w"%>0.

Since the intersection form (unlike the movable intersection) is bilinear, we have either (A - A - w"=2) > 0
or (B-B-w" %) > 0. Without loss of generality, assume that (A - A-w""2) > 0. Thus B € At and
(B-B-w" %) = 0. The Hodge index theorem implies that B = 0 which is a contradiction to our assumption.
Hence D is connected, and if h°(D,Op) > 2, then Op contains a nilpotent section ¢t # 0. In other
words, the pull back of ¢ under the natural morphism D..q — D is 0 but lies as a non trivial section in
H®(Drea, O(= X 5¢; 115 D5)) for some 1 < pij < ny for all j. Let
J:={je J|ﬁ maximal}
Hj
and let ¢ = Z—; be the maximal value. Notice that div(t)[p, = — >;c; #; Dj|p, is effective (possibly 0) for all
i. We claim that it is impossible that ¢ = Z—’ for all j € I. Otherwise, L|p, = ¢, p;D;|p, is psef. (L is nef
J
in codimension 1, so its restriction to any prime divisor is psef.) Its dual is effective, hence L|p, = 0 for all
i. This implies that (L - L - w"~2) = 0, contradiction.
Thus we find some j such that

s
c> 2L,
Hj
By connectedness of D we can choose ig € J in such a way that there exists j; € I\ J with D;, n D;, # &.

Now

> (ny —cpy)D;

jel
is pseudo-effective as a sum of a psef and an effective line bundle (this has nothing to do with the choice of
ip). Since the sum, taken over I, is the same as the sum taken over I \ {ip}, we conclude that

> (nj = ep;)Djlp,,
Jj#io

DiO

is pseudo-effective, too. Now all n; — cp; < 0 and nj, — cpj, < 0 with Dy, n Dy, # &, hence the dual of

> (nj —cpy) Dyl Dy,

J#io
is effective and non-zero, a contradiction. This finishes the proof of case 1.
Case 2: general case. We can write

L=D+ 1Ly

where Lf* € Pic’(X) (The exponent m is there because there might be torsion in H?(X,Z); we take m to
kill the denominator of the torsion part). We may in fact assume that m = 1; otherwise we pass to a finite
étale cover X of X and argue there (the vanishing on X clearly implies the vanishing on X by Leray spectral
sequence). In other words, we write L as a sum of D and a flat line bundle (Lo, ko). Here hg is the flat
metric. Thus there exists a bijection between singular positive metrics on L and those on D, via the tensor

product by hg. In particular, the minimal metric on L is the minimal metric on D, tensored by hyg.
The short exact sequence used above is modified into

0—>Kx+L—D—>Kx+L—>(Kx+L)‘D = (KD+L0)|D—>0.
Taking cohomology as before and using a similar discussion, the arguments come down to proving
H°(D,—Lo|p) =0
since H*(X,Kx + L — D) ~ H%(X,—Lg) = 0.
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The argument on the connectedness of D still works since the arguments only involve the first Chern
class, and since Lo has no contribution in the first Chern class. If —Lg|p # 0, then we see as above that
—Lo|p cannot have a nilpotent section. Since Ly is flat, adding a multiple of L does not change the pseudo-
effectiveness. By adding a suitable such multiple, the arguments on the non-existence of nilpotent section
are still valid.

So if HY(D,—Lo|p) = 0 fails, then —Lo|p has a section s such that s|p,, has no zeroes. In other
words —Lg|p,., is trivial. But then —Lg|p is trivial, since the nowhere vanishing section of H(X, — Lo ®o,
Ox/ZIp.,.,) is mapped to a nowhere vanishing section in H°(X, —Lo®e, Ox/Ip) by passing to the quotient.

Now let o : X — Alb(X) be the Albanese map with image Y. Then Ly = a*(L{) with some line bundle
L}, on Alb(X). (We observe that Pic”(X) = Pic’(Alb(X)).) Notice that L/ is a non trivial line bundle with
c1(Lg) = 0. Since Lo|p is trivial and Ly is non trivial, we conclude that a(D) # Y. We claim that a(D) is
contained in some proper subtorus B of Alb(X).

The reason is as follows. Let v : X — X be a modification such that v*(D) is a SNC divisor. Denote
by E; the irreducible components of v*(D). Define S = [, Pic’(E;) the connected component containing
(V*LO El) of

{(Li) € | [ Pic”(B)|Lil gy, = Ljlmimi, }-
By proposition 1.5 of [BL92], S is a subtorus since S is a translation of the kernel of

HpiCO(Ei)H [ Pic®(Ei n E))

4,J,87#]

(Li) = (Li

Eif\Ej - Lj Eif\Ej)'

Notice that PiCO(Ei) is a torus by Hodge theory since F; is smooth. The natural group morphism of
Pic’(X) — S given by L — (v*L|g,) induces by duality the following commuting diagram

[1, Pic®(E;)* —— §*

—, |

(Pic®(X))* =~ Alb(X).

Since Lo € S is non trivial, the image of S* as a complex torus is a proper subtorus in Alb(X). We denote
its image as B. (Let us observe that by proposition 1.5 of [BL92], the image of a homomorphism of complex
tori is a subtorus.)

Consider the induced map

B:X — Alb(X)/B

and denote its image by Z. (Z can be singular!) The image 8(D) is a point p by construction. Let U be a
Stein neighbourhood of p in Z(or some coordinate chart of p). Denote by m,, the maximal ideal of p in Z.
In particular, for any k € N*, mI’f is globally generated on U (by Cartan theorem A).

Let D = > n;D; and define ny. := max(n;). Then we have the inclusion B*HO(U, mgm“) c
H°(D,O(—nmaxDred)|p) © HY(D,O(—D)|p) where the second inclusion uses the fact that nyaxDied — D
is an effective divisor in X. In particular, for any i, H°(D;,O(—D)|p,) # 0. On the other hand, O(D)|p, is
psef since D is nef in codimension 1. (Observe that nefness is a numerical property. Since ¢1(Lg) = 0, D is
nef in codimension 1 as L is.) By lemma 4.17, D|p, is trivial.

Thus we have for any 4

(D-D; w"?) = J c1(D|p,) Aw" 2 = 0.
D;

This implies that (L? - w"2) = (D?-w" %) = 0. On the other hand, since L is nef in codimension 1,
(L? - w"=2) = (L? - w"?). But this is a contradiction with our assumption. O

REMARK 4.23. If D is a smooth reduced divisor, we can also argue as follows at the end of case 2. We
observe that Lg is a non-trivial element in a translate of the kernel of Pic’(X) — Pic’(D). On the other
hand, we have

H" Y X,Kx +D)=H"X,-D)=0— H'(X,0x) — H'(D,0Op)
since by case 1, H" (X, Kx+D) = 0. However, H'(X,0x) — H*(D, Op) is the tangent map of Pic’(X) —
Pic’(D). By proposition 1.5 of [BL92], the kernel is discrete. Moreover, the connected component containing

the zero point of the kernel is of finite index in the kernel. In particular, L is a torsion element. This yields
a contradiction.
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4.3. Examples and counter-examples

In this section, we first give for each k € N* an example of a psef class a; on some manifold Xy, such
that oy, is nef in codimension &k but not nef in codimension k& + 1. This shows in particular that the inclusion
of the various types of nef cones can be strict.

For the convenience of the reader, we recall Cutkosky’s construction described in [Bou04], as well as all
needed material for our use.

Let £ be a vector bundle of rank 7 over a manifold Y and L be a line bundle over Y. Since there exists a
surjective bundle morphism given by projection £ ® L — &, we can view D :=P(£) as a closed submanifold
of P(€ ® L). Note that the restriction of Opegr)(1) on P(£) is the tautological line bundle Opg)(1). We
notice that the canonical line bundle of the projectivization of a vector bundle P(£) is given by

Kp(gy = Op(ey(—(r + 1)) + 7% (Ky + det€)
where 7 : P(£) — Y is the projection. From the short exact sequence

0 — Tpey — Toeorn)lpe) = Nee)pear) = O(D)|pe) — 0
we have
Kpear)lpe) = Kpe) ® O(=D)|pee)-
Using the formula for the canonical line bundle, we have

O()[pe) = (O(D) @ *L) |p(e)-
We observe that by the Leray-Hirsh theorem for Bott-Chern cohomology,
HEL(PEDL),R) = Rey (O(1) @ 7 Hb (Y, R).

In particular, this implies that the inclusion i : P(€) — P(€ @ L) induces an isomorphism on Hp.. Hence
we find that on P(E® L)

c1(0O(1)) = 1 (O(D)) + 7*cq (L).
Now let Y be a compact complex manifold of dimension m and Lg,--- , L, the line bundles over Y. We
define

X =PLo® --®L,).

We denote H := O(1) the tautological line bundle over the projectivization and h := ¢;(H). For any i, the
projection Lo @ --- L. > Lo@® - -- I:Z @ - - @® L, induces inclusions of hypersurfaces

Di:=PLo® - ®L;® - ®L,).
By the above discussion

di+li=nh

where d; := ¢;(O(D;)) and l; := ¢1(L;). In fact, by calculating the transition function, we can show that
O(1) is linear equivalent to L; + D;. But the relation of Chern classes is enough for our use here.

We have the following explicit description of nef cone and psef cone in this case. We denote by C the
cone generated by the ;.

PROPOSITION 4.3.1. Let a € H};’é(X, R) be a class that is decomposed as « = 7% + Ah. Then
(1) v is nef iff A > 0 and B8 + AC is contained in Ny-.
(2) aispsefiff A\ = 0and (8+ A\C) n & # .

PRrROOF. We notice that if o contains a positive current 7' = 0 4+ iddy with 6 smooth, then the pluripolar
set P(p) = {¢p = —oo} is of Lebesgue measure 0. Hence, by the Fubini theorem, the set

{yeY,n(y) c P(p)}

is of Lebesgue measure 0. For y outside the measure 0 set, OZ|7T—1(Z) is the class of T'|,-1(;). It is also equal
to the class of Aci(Opr (1)), and this implies that A > 0. We always assume in the following that A > 0.

(1) If « is nef, the restriction of « to P(L;) for any 4 is also nef where P(L;) is biholomorphic to Y given
by 7. Note that a|py,) = Al; + 3 is nef as a restriction of nef class. So 8+ AC is contained in Ny.

Oun the other hand, o = 7*8 + h = 7*(8 + \l;) + \d; for any 7 where 8+ \; is nef by assumption. Hence
the non-nef locus of « is contained in D;. Since the intersection of all D; is empty, we conclude that « is nef.

(2) Let ¢; € [0,1] such that >.¢; = 1 and 8+ Y,_,t;l; € Ey. Hence h = Y t;h = Y t;w*1; + Y t;d; and
a =78+ XX til;) + A D tid;. d; is psef since it contains the positive current associated to D;. As a sum
of psef classes, « is psef.

For the other direction, we argue by induction. When r = 0, X =Y and a = S+ A\ly. By the assumption
that « is psef, we have

ae (B+AC)nEy.
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Continue the induction on r. Let T be a closed positive current in «. we have that o — v(T, Dy)dy is psef
containing the current T'— v(T, Do)[Do]. And (o —v(T, Dg)do)|p, is psef since the restriction of the current
T —v(T, Dy)[Do] on Dy is well defined. Now Dy is the projectivisation of a vector bundle of rank r over Y.
As a cohomology class

o — V(T, Do)d() = W*(B + )\lo) + ()\ — Z/(T, DO))dO

Restrict « on some fibre of 7 as above. We have that A\ = v (T, D). By induction, we see that the psef class
(o — v(T, Dy)do)| by, which is also equal to 7*(8 + v(T, Dg)ly) + (A — v(T, Do))h, satisfies

(B+v(T,Dy)lo + (A —v(T,Dy))Co) N Ey # &
where Cy is the cone generated by [y, - ,[.. In other words,
B+X0)NnE # .
d

We will also need the following explicit calculation of the generic minimal multiplicity in this example.
From now on, we choose Y such that the nef cone Ny and the psef cone £y coincide (for example we can
take Y to be a Riemann surface).

We denote I a subset of {0,--- ,r} with complement J. We denote V; := ()
the convex envelope of [;(i € I).

We observe that the non-nef locus of any psef class is contained in the union of D;. The reason is as
follows: since o = 7* 8 + Ah is psef, by proposition 4.3.1 we know that there exist ¢; € [0,1] with > ¢; =1
such that 8+ A\(>t;1;) € &y = Ny . Hence

a =78+ MO til:) + A tid;)

is a sum of nef divisor and effective divisor. (Since « is psef, A > 0.) So the non-nef locus of « is contained
in the union of D;.

Di = ]P(@jEJLj) and C[

iel

PROPOSITION 4.3.2. Let a be a big class such that a = 7% + M. The generic minimal multiplicity of
« along V7 is equal to

v(a, Vi) = min{t = 0, (8 +tC; + (A —t)Cy) n Ny # J}.
More precisely, we have v(a, V;) = v(a, ) for any z € Vi \ UjeJ D;.
PRrOOF. Let p : X; — X the blow-up of X along V; with exceptional divisor F;. Hence we have
Er = IP’(N"‘}I/X) with N"'}I/X = @;c;Ov, (—D;). By lemma 4.4, we get
v(ia, Vi) = v(u*a, Ey).

Denote by H the tautological line bundle over E; where we have Og,(—Er) = Hj.

For t = 0, the restriction of p*a — te1 (O(Ey)) to Ey is psef is hence equivalent to that u*a + tey (Hy)
is psef. By proposition 4.3.1, the latter is equivalent to the fact that o + tC(n*l; — h) = a — th + t7*C(I;)
intersects &y, where C(I;) is the convex envelop of [; (i € I). Note also that

a—th+tr*C(l;) = (B + tC(L;)) + (A — t)h

where we denote by the same notation 7 to be the projection from V; to Y and h to be the first Chern class
of the tautological line bundle over V;. By proposition 4.3.1, it is psef if and only if 8 + tC; + (A — ¢t)C;
intersects the psef cone &y .

Since the class p*a —v(a, Vi)er (O(Er)) has positive current p*Tiin — v(Timin, V1) [E7] whose restriction
to Fy is well defined by Siu’s decomposition theorem. By the last paragraph we have

Z/(Oé, V]) = V(Tmina VI) = mln{t = O, (6 + tCI + ()\ — t)OJ) M Ny # @}

On the other direction, let v := 8+t 3,y aili + (A —1) 2,c; bjl; be a psef (equivalently nef by assumption)
class on Y with }ja; = >;b; = 1. Hence v = 7%y +t X a;d; + (A —t) 21 b;d;. For x € Vi \ U, s Dy,

v(a,z) < tZ a;v([D;],z) + (A — t)iju([Dj],x) < tZai =t.
In particular, this shows that
v(a, Vi) < min{t > 0, (8 + tCr + (A —t)Cy) n Ny # &}
By the proof, the equality is attained for x € V; \ UjeJ D;. (|
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We notice that if we use the algebraic analogue in the projective case as in [Nak04], we can weaken the
assumption to the case that « is just a psef class.

In particular, the proposition 4.3.2 shows that uD; is stratified by the sets Vi ~ |
to the generic minimal multiplicity.

Now we are prepared to give our construction. Let Y as above be a projective manifold such that the
nef cone coincides with the psef cone. Define Xy = P(Oy @ Oy (A1) @ --- ® Oy (Ax+1)) where A; are the
ample line bundles over Y. Let 8 € H,la’é(Y, R) be a not-nef class. Denote H be the tautological line bundle
over Xy and denote h its first Chern class. Define a = 7n*8 + h. We assume that:

For any i, 8 + ¢1(4;) is nef and big.

As above, P(Oy) ~ Y is a closed submanifold of X}, of codimension k + 1 via the projection of Oy @
Oy(A1) @ @Oy (Ag+1) — Oy. «is psef but not nef on X by proposition 4.3.1. In fact, if « is nef, its
restriction to the submanifold Y (i.e. ) will be nef. For any subset I # {1,---7} (taking Ly := Oy), by
proposition 4.3.2, v(a, V7) = 0 since 8 + Zje] ¢1(A4;) is nef which means we can take ¢ = 0 on the right hand
of the equation. By proposition 4.3.2, v(«, z) is constant on P(Oy). The non-nef locus can not be empty
otherwise o would be nef. But non-nef locus have to be contained in P(Oy ). Hence the constant cannot be
7€ro.

In conclusion, we have v(«, P(Oy)) > 0, which in particular shows that « is not nef in codimension &+ 1.
On the other hand, the non-nef locus is also P(O(Y)) which in particular shows that « is nef in codimension
k.

jed D; with respect

With the explicit calculation of generic minimal multiplicity, we discuss the optimality of the divisorial
Zariski decomposition. Take £ = 1 in the above construction. Take 8 to be the first Chern class of some
line bundle. Hence by the above calculation « is nef in codimension 1 but not nef in codimension 2. Its
non-nef locus is P(Oy). For «, there doesn’t exist a unique decomposition of this psef class a« = ¢;(L)
into a nef in codimension 2 R-divisor P and an effective R-divisor N such that the canonical inclusion
HO(|kP|) — H°(kL) is an isomorphism for each & > 0. Here the round-down of an R-divisor is defined
coefficient-wise. On the contrary, this decomposition will also be the divisorial Zariski decomposition. But
« is nef in codmension 1, the uniqueness of the divisorial Zariski decomposition shows that the nef in
codimension 2 part have to be « itself. This is a contradiction. In particular, when Y is a Riemann surface,
it gives an example in dimension 3 where the classical Zariski decomposition does not exist (although it is
always possible in dimension 2).

Given a psef class a on some compact manifold X, in general there does not always exist a composition
of finite blow-up(s) of smooth centres y : X — X such that the nef in codimension 1 part of g* is in fact
nef. This example is first shown in [Nak04].

Let a be a big class on a compact Kahler manifold X. Assume that there exists no finite composition
of blow-up(s) with smooth centres. such that the the nef in codimension 1 part of p*« is in fact nef. For
example, we can take the pull back of the classed constructed by Nakayama on X by p: X xT — X where T'
a complex torus. We have following lemma to conclude that in fact there exists no modification such that the
the nef in codimension 1 part of p*« is in fact nef. In general, a modification is not necessarily a composition
of blow-up(s) with smooth centres. However, by Hironaka’s results, any modification is dominated by a finite
composition of blow-up(s) with smooth centres. In other words, for v : X — X a modification, there exists
a commutative diagram

vy L, %

X‘ ly

X
where ¢ is a finite composition of blow-up(s) with smooth centres and f is holomorphic. To prove that there
exists no modification such that the nef in codimension 1 part of the pull back of some cohomology class is
nef by the above argument, we have to prove that if Z(v*«) is nef, Z(g*«) is also nef. This is done by the
following proposition. It shows in particular that in the above example, if Z(v*«) is nef, Z(g*a) = f*Z(v*«)
is also nef.

Notice that the initial argument of Nakayama already proves the non-existence of Zariski decomposition
for any modification.

PRrROPOSITION 4.3.3. (1) Let f : Y — X be a holomorphic map between two compact complex manifolds
and « be a psef class on X. Assume that Z(«) is nef. Then f*N(«) = N(f*«) where the inequality relation
> means the difference is a psef class.

(2) Let f:Y — X be a modification between two compact complex manifolds and « a big class on X.
Then N(f*a) = f*N(«).
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PROOF. (1) By the convexity of minimal multiplicity along the subvarieties,
N(f*a) < N(f*N(a)) + N(f*Z(a)).

Since Z(«) is nef, f*Z(«a) is also nef, and thus N(f*Z(a)) = 0. The conclusion follows observing that
N(f*N(a)) < F*N(a).

(2) We claim that for any positive current 7' € f*«, there exists a positive current S € « such that
T = f*S. It is proven in Propositon 1.2.7 [Bou04] in more general setting. For the convenience of the
reader, we give a proof in this special case.

Fix a smooth representative ., in . There exists a quasi-psh function ¢ such that T = f*ay, + i00¢p.
Let U be a open set of X such that a, = i00v on U. The function vo f + ¢ is psh on f~1(U). All the fibres
are compact and connected (the limit of general connected fibre, the points, is still connected), thus vo f + ¢
is constant along the fibres. Thus there exists a function ¢ on U such that ¢ = ¢ o f. Since ¢ is L{ _ and
f is biholomorphic on a dense Zariski open set, 1 is also L{, .. It is easy to see that ¢ is independent of the

choice of v and is defined on X. Define S = v, + 7100 and we have T = f*S.
In particular, the minimal current in f*« is the pull back of the minimal current in a Ty,;,. Thus

N(f*a) = Qv T E)EDY 2 { Y, v(f*Toin, B)[E]}

codim(f(E))=1

={ 2 V(T f(E)[E] = f*N(a)

codim(f(E))=1
where the sum is taken over all irreducible hypersurfaces of Y. O

Let us point out that a current with minimal singularities does not necessarily have analytic singularities
for such a big class a that is nef in codimension 1 but not nef in codimension 2; this has been observed by
Matsumura [Mat13]. The reason is as follows. In such a situation, there exists a modification v : X — X
such that the pull back of a has a minimal current of the form 8+ [FE] where 3 is a semi-positive smooth form
and [FE] is the current associated to an effective divisor supported in the exceptional divisor. In particular,
the sum {8} + {[E]} as cohomology class gives the divisorial Zariski decomposition of the class v*«. Remind
that for a big class, the Zariski projection of « is given by

o — Z V(Tmin, D){[D]}

D
where D runs over all the irreducible divisors on X and Ty, is the current with minimal singularity in the
class « (cf. Proposition 3.6 of [Bou04]). On the other hand, the push forward v, and pull-pack v* induces
isomorphism between v*aq-psh functions on X and a.,-psh functions on X where o, is a smooth element
in «. In particular, the pull back of the minimal current of « is the minimal current in v*« which is also a
big class. Hence v*« admits a divisorial Zariski decomposition where the Zariski projection is semi-positive
(hence nef). This contradicts the last paragraph.

REMARK 4.24. As a direct consequence of Matsumura’s observation, it can be shown by an example
that the strategy of proof of the Kawamata-Viehweg vanishing theorem used in [DP03] fails in the setting
of theorem 4.22. In the nef case considered in [DPO03], let h be any positive singular metric on L. Let
ﬁ@(L,h) = Zj A;jD; + G be the Siu’s decomposition of the curvature current, where A\; > 0, D, are
irreducible divisors, and G is a positive current such that G has Lelong numbers in codimension > 2.
Define D = >}.[A;]D;, which is an integral effective divisor. As in the beginning of the proof of theorem
4.22, H""1 (X, Kx ® L) # 0 is equivalent to H°(X,(D — L)|p) # 0. To prove the vanishing theorem
by contradiction, Demailly and Peternell made the following first reduction, based on the non-vanishing
assumption H°(X, (D — L)|p) # 0 and the hypothesis that the line bundle L is nef with (L?) # 0; namely,
they showed that the curvature of h on L is the current of integration associated with an effective integral
divisor, so that, in particular, L is numerically equivalent to an effective integral divisor.

Here we show that for a big line bundle L which is nef in codimension 1 but not nef in codimension 2
over a compact Kihler manifold (X,w), the positive intersection product (L?) # 0 and ;=O(L, h) is not a
current associated to an effective integral divisor for any singular metric h. In particular, the above situation
occurs by nakayama’s example, and the strategy of [DP03] no longer works. (Up to taking some multiple
of L, since L is big, it can be represented by an effective divisor. By theorem 4.22; we still have vanishing
cohomology groups for some multiple of L.)

By the observation of Matsumura, the curvature current of the minimal metric cannot even be a current
associated to a real divisor. Since L is big, (L™) = Vol(L) # 0. By the Teissier-Hovanskii inequalities, we
get

(L? - w2y = (L% - w"2 = Vol(L)¥"Vol(w)"=2/" > 0.
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This shows in particular that (L?) # 0.

REMARK 4.25. Let us observe that this kind of construction can also be used to give an example of
manifold with psef anticanonical line bundle, for which the Albanese morphism is not surjective.

According to the knowledge of the author, this kind of question has been first proposed in [DPS93]
where the authors ask whether the Albanese map of a compact K&hler manifold is surjective under the
assumption that the anticanonical line bundle is nef. The statement has been proven first by Paun [Paul7]
using the positivity of direct image and then by Junyan Cao [Caol3| via a different and simpler method.
In case the manifold is projective and the anticanonical divisor is nef, this had been proven earlier by Qi
Zhang [Zha06|.

Let us use the same notation as above. Take Y to be a complex curve of genus larger than 2. By a
classical result, the Albanese map of Y is the embedding of the curve into its Jacobian variety Jac(Y'). In
particular, the Albanese map is not surjective. Fix A an ample divisor on Y. Define E = A®? @ A®~9 where
p,q € N will be determined latter. Denote X = P(E) with 7 : X —» Y.

We claim that the Albanese morphism of X is the composition of the natural projection 7 and the
Albanese morphism of Y. The reason is as follows: (cf. Proposition 3.12 in [DPS94])

Since the fibres of 7 are P! which is connected and since 7 is differentially a locally trivial fibre bundle,
we have RO7,Rx = Ry, while R'7,Rx = 0. We remark that H'(P!,R) = 0. The Leray spectral sequence
of the constant sheaf Ry over X satisfies

Ey' = H*(Y,R'mRx),E" = H*V' (X, R).

Since R'myRx = 0, the Leray spectral sequence always degenerates in Es. (In fact, by [B156], the Leray
spectral sequence always degenerates in Fy for Kéhler fibrations.) Hence we have

H'(X,Rx) = H'(Y,Ry).
Since Y and X is compact Kihler, we have by Hodge decomposition theorem that
HY(X, Q%) = HO(Y, Qy).

Since m* : HO(Y,Q1) ~ HY(X,QL) is an injective morphism, it induces an isomorphism. Passing to the
quotient, it induces an isomorphism 7* : Alb(X) =~ Alb(Y). The claim is proven by the universality of the
Albanese morphism:

X ———Y

b e
Alb(X) —=5 Alb(Y).

We also claim that for well chosen p, ¢, the anticanonical line bundle — K x is big but not nef in codimension
1. In particular, this shows that there exists the compact K&hler manifold X such that —Kx is psef but the
Albanese morphism is not surjective. Recall that

Kx = (Ky ®det E) ® Ox(—2).

In particular for ¢ » p, —(Ky ® det E) = (¢ — p)A — Ky is ample. On the other hand, Ox (1) is big since
one of the component in the direct sum bundle E is big. Thus —Kx is big for ¢ >> p. On the other
hand, the surjective morphism E — A®P induces the closed immersion P(A®?) ~ Y — X. We have that
—Kx|paory = —Ky — pA. For p big enough, we can assume that —Ky — pA is not psef. As consequence,
—K x is not nef in codimension 1.

In fact, we can calculate the generic minimal multiplicity as

v(ci(—Kx),P(A®P)) = min{t, — Ky + (¢ — p)A + tpA — (2 — t)qA is nef}.

Since Ky is ample, we know that the generic minimal multiplicity along P(A®P) is strictly larger than 1. In
particular, consider any singular metric h, on —Kx such that its curvature satisfies iO(—Kx,h.) = —ew
where w is some Kihler form on X. Then the multiplier ideal sheaf is not trivial. Near a point of P(A®P),
choose some local coordinate such that P(A®P) = {z; = 0}. By Siu’s decomposition, the local weight of h. is
more singular than log(|z1]?). This implies that Z(h.) < Zp(aer) where Zp 4ery is the ideal sheaf associated
to P(A®P).

Therefore, some additional condition is certainly needed to ensure the surjectivity of Albanese morphism.
In the next section, we will show that if there exist approximated singular metrics such that the associated
multiplier ideal sheaves are trivial, then the Albanese morphism is surjective.

REMARK 4.26. Using Nakayama’s algebraic definition of minimal multiplicities [Nak04], Lemma 4.4
holds for a psef class on a projective manifold. Our arguments based on the non existence of Zariski
decomposition over a birational model obtained as composition of blow-up(s) of smooth centres also work
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for the example of John Lesieutre [Les12]. Consider the blow up of P? at 9 points in very general position.
There exist a class « that is nef in codimension 1 and a curve C' such that (o, C') < 0 constructed in [Les12].
In particular, « is not nef. Of course, we can construct a family of similar classes by considering « + e¢1 (A)
with € > 0 and A an ample divisor. For € small enough, the intersection number is still strictly negative.

4.4. Surjectivity of the Albanese map

In this section, we discuss the surjectivity of the Albanese morphism of a compact K&hler manifold X,
under the assumption that —Kx psef and some additional integrability condition for its singular metrics.

We will need the following existence and regularity results of [CGP13] and [GP16] for solutions of
singular Monge-Ampére equations.

THEOREM 4.27. (Main theorem in [CGP13] and theorem A in [GP16])

Let X be a n-dimensional compact Kihler manifold, and let D =}, a;D; be an effective R-divisor with
simple normal crossing support, such that for all 1 < i < r, the coefficients satisfy 0 < a; < 1. Let w be
a Kdihler metric on X, let dV be a smooth volume form, and let ¢ > 0. Then the weak solution of the
Monge-Ampére equation
AV

[Tls[>
exists and has conic singularities along D, with regularity C*>*P for any 1 > a > 0 and any angles 3 =

(1—ay, -+ ,1—a,). Here s; is the canonical section of O(D;) and |s;|? is the norm of s; with respect to
some smooth metric.

(w+ i@@o)" =e

We notice that since the solution is bounded, the Monge-Ampére operator is well-defined in the sense of
currents by Bedford-Taylor [BT82]. The operator coincides with the positive product defined in [BEGZ10].
By the theorem, in particular, the weak solution is a bounded w-psh function which is smooth on X \ | J; D;.
We also find that w + 5-00¢ has coefficients in L] _ by the above regularity result.

We now recall the definition of a singular metric on a vector bundle according to [Paun16].

DEFINITION 4.28. A singular Hermitian metric h on E is given locally by a measurable possibly un-
bounded map with values in the set of semi-positive Hermitian matrices, such that 0 < deth < oo almost
everywhere.

By definition, a solution in the above theorem defines a singular metric on T'x. In particular, the solution
also induces a singular metric on any quotient bundle of T'y. We observe that by the Monge-Ampére equation,
the Ricci curvature of the singular metric is well defined as a current. However, one can notice that the
curvature tensor of Tx is not necessarily well-defined as a current with values in semi-positive, possibly
unbounded Hermitian matrices.

In fact, the work of [Guel3] and [CGP13] gives the following weak estimate for the following type of
Monge-Ampére equation.

THEOREM 4.29. Let X be a n-dimensional compact Kihler manifold, and let D = Y, a;D;, E = Zj b E;
be two effective R-divisors with simple normal crossing support, such that for all 1 < i <71, 0 < a; < 1.
Assume that D and E have no common irreducible component. Let w be a Kdhler metric on X, dV a smooth
volume form, and let € > 0. Then the weak solution of the Monge-Ampére equation

ep H ‘tj ‘ij dv
[ T1sif>e
exists which is smooth on X \ (D U E) and has upper bound by a metric with conic singularity along D. Here

(o) is the positive intersection product defined in [BEGZ10]. Here s;(resp. t;) is the canonical section of
O(D;) (resp. O(E;)) and |s;|* (resp. |tj|?) is the norm of s; (resp. t;) with respect to some smooth metric.

(o + %a@m —e

We observe that the existence of a solution is proved in [BEGZ10]. As a consequence of their theorem,
there exists C' > 0 such that the solution has on X \ (D u E) an upper bound

Cw
[Tl
By the Monge-Ampére equation, we find on X \ (D u E) a lower bound

sng‘tj‘ijw( c )7(n71)
[si T

W+ 00 <
2

w + L&ég@ =e
27
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Notice that since the solution is smooth on X \ (D u E), the above inequalities are satisfied pointwise. By
the result of [BEGZ10], || is uniformly bounded on X. In particular, we have

. 12b;
Wt L@ég@ > CH|tJ|2a.JW c — —(n—1)
[Tlsil?* "I, Isf?e

27
In conclusion outside Du E, the solution w+ iﬁ&p viewed as a Hermitian form over T'x with respect to w has

b
positive eigenvalues bounded from above by W and bounded from below by Cl_ﬂslt‘djf (l_[v \S\?ai )*(nfl).

Let us observe that for the singular metric on the determinant line bundle of the quotient bundle @
given by a short exact sequence of vector bundles

0—>S—>Tx—>Q—>O,

the curvature form is well-defined as a current. We detail the argument below.

Suppose that we are in the situation of Theorem 4.27, with the same notation as above. Since the metric
is smooth outside D u E, we only need to study the neighbourhood of D u E. By a C*” splitting of the
exact sequence we can view () as a subbundle of Tx. w + 5-0dp thus induces a Hermitian form over Q
which we will denote by w + %65@@. By the minimax principle, for the induced Hermitian form on @,

CI1lt;|*" (G )= (n=D)
[Tlsil?*i ‘[T, [ss]?* ’
To prove that the curvature of det(Q) is well-defined as a current (not necessarily positive), it is enough to

prove that log(det(w + 5=00¢|q)) € L. det(w+ 5=00¢|q) is the product of all eigenvalues of the Hermitian

loc*®

form w + i@@pb. Thus we get for the potentials the estimate

the eigenvalues are bounded from above by W and bounded from below by

-
[log(det(w + 5-00¢l@))| < X Cilog|sil® + > Cjloglt;|* + C
i J

for some C; > 0, C; > 0 and C > 0. In the following, we will refer to this type of control as potentials
possessing at most logarithmic poles along D u E. Notice also that for any i log|z;| is locally integrable with
respect to the euclidean metric. In particular, the curvature of the induced metric on det(Q) is well defined
as a current, since it is the 00 of some L{ . function.

Let U be a neighbourhood of some point in D U E as above and let 7 : U — U be some ramified cover

which can be written in local coordinate as
P1 P2 n
(217227"’,211)'_)(213223"'725,)

for some (p1,- - ,pn) € (N*)™. Notice that the pull back under 7 of the potential of our curvature current,
namely 7*log(det(w + 5=00¢|q)), is still L}, with at most logarithmic poles along D U E.

In the following, instead of solving a Monge-Ampére type equation on X, we will solve a Monge-Ampére
type equation on some bimeromorphic model of o : X — X. The bimeromorphic model is obtained by
the work of Hironaka. We can thus assume that the modification o is obtained as a finite composition of
blows-up of smooth submanifold. Let us first study the case of blow-up of smooth submanifold 7 : Y >Y.

The differential dm induces a bundle morphism over Y Ty — 7*Ty. Assume we have biholomorphism
between Y~ E and Y ~.S where E is the exceptional divisor and S is the smooth submanifold to be blown-up.
Over Y \ E, dr is a pointwise linear isomorphism. Let us estimate the variation of the norm of the pointwise
isomorphism. It will be enough for us to study the behaviour near the exceptional divisor. Otherwise the
norm will be locally bounded by a constant.

LEMMA 4.30. Let 7 : Y — Y be the blow-up of a smooth submanifold S. Let p be a point in the
exceptional divisor. Choose coordinate of Y and Y such that in local coordinates near p 7 is given by

7r(w1, T 7wn) = (wlwsa o, Ws—1Ws, Wy Wsg 1, 0 7wn)-
Then the norm of dr and (dm)~" with respect to fized smooth metric on Ty and 7*Ty has estimate

log|dm (w1, -+ ,wy)| < Ciloglws|* + Ca

log| (dﬂ)*l(wl, e wy)| < C’110g|ws|2 + Oy

for some C1,Cy > 0.
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PRrROOF. The differential of 7 at (wq,- - ,w,) is given by the matrix
[w, 0 0 w 0 ]
0 ws 0w 0
: 0
0 0 ... ws ws_q 0
o o0 ... O 1 0
|0 0 ... 0 0 Idp_s |
where Id,,_, is the identity matrix of rank n — s.
The norm of |dr| at (wy,--- ,w,) is bounded from above by the largest eigenvalue of the matrix dr'dn.
While the norm |(dn)~!| at (wy,--- ,w,) is bounded from above by the inverse of the smallest eigenvalue.

The product drfdr can be calculated in this local coordinate chart as

[ |ws|? 0 0 W1 W 0

0 lwsl? ... 0 Woll g 0

: : : : 0

0 0 lw|? Wy_1Ws 0

WsW1 WsWo ... WeWs—_1 1+ Zj<s |wj|2 0
| 0 0 o 0 0 Id,,—s |

The eigenvalues are the roots of the polynomial det(dr!dr — AId,,), which is (1 — \)"~* times

(14 25w P = N (fws? = 27 = wymr@,w, @, (Jug ][ = 2)*7
j<s
— Wy WswWsWs—a(|wg|? — N)*72 — ..
by developing the s-th column. The polynomial can be simplified as
(14 2] fw P = M = 257 = (X fws ) ws | (Je[* = 2)*7.
Jj<s j<s
The product of the eigenvalues is
det(dr'dr) = | det(dm)|? = |w|?=~)
while the sum of the eigenvalues is
= s+ [wsP6TY — (s = 2)Jws PO (Y] g P) + (s = DY oy P + Dfews[F672.
j<s j<s

In other words, the sum of the eigenvalues is |ws|**~2) (s — 1+ 3, |w;[*) + n —s.
Since drfdr is positive and Hermitian, all the eigenvalues are real and positive. In particular its largest

eigenvalue is controlled from above by |w,|?(*=2) (s — 1 + Yi<slwj?) +n — s and its smallest eigenvalue is

controlled from below by det(dn'dr) (Jws[**=2) (s — 1+ Dj<s lw;|?) +n— s)f(nfl). This implies the estimate
of the norms |dr|| and ||(dr) . O

PROPOSITION 4.4.1. Let o : X — X be a finite composition of blows-up of smooth submanifolds. Denote
by FE the exceptional divisor. We have an estimate for the norm of dm with respect to a fixed smooth metric
on Ty and m*Ty that reads

log|do| < Cilog|sp|? + Cy

where C1,Cy > 0 and sg is the canonical section of the exceptional divisor. We also have a similar estimate
for (do)~1L.

PROOF. Let 0 = w4 0---om where 7; are blows-up of smooth submanifolds. Since do = drgo---odmy,
we find

|do| < ||dmal - ---- ldy].

On the other hand, for each 7;, by the above lemma, the norm of dr; has upper bound with logarithmic pole
along the exceptional divisor of this blow up. This singularity is independent of the choice of coordinate. The
pull back of logarithmic pole along a divisor D under a modification is still logarithmic with pole supported
in the exceptional divisor of the modification union the strict transform of D. This concludes the estimate
of the upper bound of |do||. The estimate for (do)~! is similar. O
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We will also need the following topological lemma. The definition of the first Chern class of a coherent
sheaf F over a connected complex manifold can be found for example in section 6, Chap. V of [Kob75]. We
define

a1 (F) = cr((A"F)™)

where r is generic rank of F.

LEMMA 4.31. Let F be a torsion free sheaf over a compact complex manifold X. Let o : X > X bea
modification of X such that there exists a SNC divisor E in X such that

0:X~E—X-n(E)

is biholomorphism with E a SNC divisor and the codimension of w(E) at least 2 and o*F /Tors is locally
free. Then we have

c1(F) = o4 (c1(c* F/Tors)).

PRrROOF. First observe that such a modification always exists by the fundamental work of [Ros68],
[GR70], [Rie71] (cf. eg. Theorem 3.5 of [Ros68]).

Without loss of generality we can assume that the dimension of X is at least 2. Otherwise, F is locally
free and the result is straightforward. By Poincaré duality, it is equivalent to prove for any cohomology class
« one has

X

Recall that o* ch(F) = Y, (—1)" ch(L'c*F) where L'c* is the i-th left exact functor of o* (cf. eg. [BS56]).
Without loss of generality, we can assume that F is locally free over X \ w(E). In particular, L'c*F for any
i > 0 is supported in the exceptional divisor. On the other hand, the torsion part of o*F is also supported in
the exceptional divisor. Recall that for a torsion sheaf, its first Chern class is an effective divisor supported
in the support of the sheaf. Thus we have

JX(cl(a*}"/Tors)) AoFa = L} o*(c1(F)) A o*a

JX a(F)ra= J (c1(c*F/Tors)) A o*a.

since for any irreducible component of the exceptional divisor E;, 0*a|g, = 0. This implies that
c1(F) = o4 (c1(c* F/Tors)).
O

To prove the surjectivity of the Albanese map, we start by an analgue of the main result of [Cao13|.
Now (X, w) be a n-dimensional compact Kahler manifold such that —Kx is psef. Notice that without loss of
generality, we can assume that n > 2. Otherwise, — K x psef implies that —Kx is nef in which case we know
the surjectivity. By regularisation of the minimal metric larger than —e,w, for any ¢,, there exists a current
T., = Ric(w) 4 id0f., € ¢1(X) with analytic singularities such that T. > —2e,w. Let X be a modification
of X 7: X — X such that 7*T., = 8., + [F.,] where F., is a simple normal crossing R- divisor. We denote
[F:, ] = >, bi[D;]. We can also assume that the exceptional divisor is a SNC divisor.

Classically, we have

7K)~( Iﬂ*(fKX)ch

where ¢D = Y, ¢;D; with ¢; > 0. The condition that the singular metric k., := det(w)e™ /s has multiplier
ideal sheaf Z(h.,) = Ox means that ¢; — b; < 1 for any i. We will denote the irreducible components in D
contained in the exceptional divisor as E;. With this abuse of notation,

—Kg¢ =n*(—Kx) —cE.
THEOREM 4.32. Let (X,w) be a n-dimensional compact Kdihler manifold such that —Kx is psef. Assume

that there exists a sequence €, > 0 such that lim, ., = 0 and Z(h.,) = Ox with the notation explained
above. Let

0=80C€1C~--C55=TX

be a filtration of torsion-free subsheaves such that £;11/E; is an w-stable torsion-free subsheaf of Tx/E; of
mazimal slope. Then for any i, the slope of Ei41/E; with respect to w1, namely

w(Eir1/Ei) = f c1(Eiv1/E) AW,
X

18 positive.
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PrOOF. We first consider a simple case.

Case 1: assume that the filtration is regular, i.e., that all &, &;1+1/&; are vector bundles. By the stability
condition, to prove the theorem, it is sufficient to prove that for any 4

J Cl(Tx/gi) Awtl = 0.
X

The key step is the existence of positive closed (1,1)- current in a Kéhler class on some birational model of
X which is smooth outside a SNC divisor and whose Ricci curvature can be taken “arbitrary small" outside
the divisor.

With the same notations as in the discussion before the theorem, for § > 0 sufficient small, 7*w — §{F}
is a Kihler class on X. We want to construct a positive closed current in the class 7*w — §{F} with Ricci
curvature lower bound using the theorems in [GP16] and [CGP13].

To get the lower bound, we want to solve the following Kéhler-Einstein type of equation

Ric(ws,p) = —eyws,p + evws + 7T, — c[E]

where ws , = ws + i@é(p is the unknown in the class 7*w — §{E} and w; is a smooth K&hler representative.
Notice that both sides belong to the class ¢;(—Kg).

In order to solve the Kahler-Einstein type of equation, we thus solve the following Monge-Ampére
equation. Let 7., be a smooth representative of the class {F., — cE} which is induced from the curvature
forms of some smooth metrics (O(D;), h;). By the dd-lemma, there exists f., € C*(X) such that 8., +v., =
Ric(ws) + 5=00fe, 5. The Monge-Ampére equation equivalent to the Kéhler-Einstein type of equation can

be written as
wgeauv—f@,s

b = T e
T sl

By the assumption, we have
G <b+1
which is exactly the integrability condition in the Theorem 4.27. Thus by theorem 4.27, the solutions exist
and are smooth outside the support of D. In particular, we have the Kahler-Einstein type of equation
pointwise outside D and
Ric(ws,p) = —euws,,

in the sense of current. By lemma 2.7 in [Cao013] (which works even on non compact manifold since it is a
local calculation), we have on X ~ D that

iO(Tg,ws,p) A wg";l/wgtw > —¢,ldr,

pointwise.

The singular metric on T’y from the solution of the Monge-Ampére equation induces a singular metric
on 7*Tx by dm : Ty — m*Tx. Taking the quotient metric, it induces a singular metric on 7*T’x /€; (we also
denote it by w;,,). We get on X ~ D

i@(ﬂ'*(Tx/é‘i),w&S@) A wg‘,;l/wgw = 75VId7r*(TX/Ei)

pointwise. In particular, we have that (iO(m* det(T'x /&;),ws,,) + eyrank(n* (T'x /&;))ws,p) A w(’;;l defines a
closed positive (n,n)-current on X ~ w(D) =~ X ~ D.
Let us show that O (m* det(T'x /E;), ws,,») has L. weight. In fact the local weight has at most logarithmic
pole along the divisor D. Notice that i©(7* det(Tx /&;),ws,,) is in the first Chern class of 7%ci(Tx /&;).
Locally over X \. D, identify the metric ws,,, as a Hermitian matrix Hj; . The induced metric on 7*(Tx)
can be identified as the Hermitian matrix over X ~ D

[(dm)~"]T Hs o (dm) ™.

By the minimax principle, the induced metric on 7*(Tx/E;), as a Hermitian form, has eigenvalues that
are controlled both from above and from below by the eigenvalues of the above matrix. More precisely,
the maximal eigenvalue of the induced metric on 7*(Tx/&;) over X ~ D is bounded from above by the
maximal eigenvalue of Hs,, times |(dw)~!|%. By the discussion after Theorem 4.27 and Proposition 4.4.1,
the logarithm of the maximal eigenvalue of induced metric on 7*(T’x /&;) has at most logarithmic pole along
the divisor D. Similarly, the inverse of the minimal eigenvalue of induced metric on 7*(T’x /&;) is bounded
from above by the inverse of the minimal eigenvalue of Hs, times |(dm)|?. The absolute value of the
logarithm of the minimal eigenvalue of induced metric on 7*(T'x /€;) has also at most logarithmic pole along
the divisor D.
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The induced metric on 7* det(T'x /€;) has thus weight controlled both from above and from below by
functions with at most logarithmic pole along the divisor D. In particular, the local weight is locally
integrable.

We claim that (1©(7* det(T'x /&;), ws,p) + eprank(m* (T'x /&) )ws,) A wg;l extends by zero to be a closed
positive (n,n)-current on X. Moreover, (iQ(r* det(Tx/E;),ws.»)) A w;;l well defines a (n,n)-current on X
and it has zero mass along D.

To prove the claim, we start by showing that (i©(m* det(T'x /&;),ws,4)) A wgi;l can be defined as a (n,n)-
current on X. By a partition of unity, it is enough to show it in a finite open cover of X such that D is the
zero set of the coordinate functions in these charts. Let p € N be a natural number large enough such that
p(c; —b;) > 1 for any 4 such that ¢; — b; > 0. Let ¢ be the local potential of i{®(7* det(Tx /&;),ws,,) on U a
local chart. Assume that F., —cE = E; — Ey with Ey, E5 two effective divisors without common irreducible
components. Assume that By = Y,._; a;[z; = 0]. Let p : U — U be a local finite ramified cover given by

2,

p(zl7"' y Rpy Rp41y " 7Z’rl) = ( : ,Z,,I,),Z,,n+1,"' 7zn)-

By the discussion before Lemma 4.28, p*4) is still L] _ since ¢ can possess at most logarithmic pole along

the divisor Ey U Ey. On the other hand, p*ws ., is bounded from above by
C Y id(2P") A d(P™) + C ) id(z;) A d(z)
i=1 i=r+1
by the upper bound with conic singularity given by the theorem 4.27. Thus p*¢ A p*w(?’;l is well defined as
coefficients. We define (i©(7* det(T'x /&;),ws,z)) A w;;l on U to be

1 .
Z?p*(zﬁa(p*z/} A p*wé’wl)).

current on U with L]

This current coincides with the usual definition on X . D.

Next, we show that (i©(7* det(Tx /&;),ws,x)) A wg’;l defined above has zero mass along D. Let 6(z) €
CF(C™) with compact support in U. Then 6. := 0(ez1, -+ ,€2r,2p41, "+ , 2n) 1S supported in a tubular
neighbourhood of D of diameter ¢ in the coordinate chart. Then it remains to prove that for € > 0 small
enough the pair of the current (:©(7* det(T’x /&;),ws,)) A wf{;l with 6. is finite and has limit 0 as ¢ — 0.
We have

j 0.(10(r* det(Tx /E:), w5 ) A Wil = — f
U

p" Jo

o m*((10(r* det(Tx /&), ws.p)) A w5 ,")

1 o —1 . .~3
=— | 7 AWETH A 1000,).
pr Jf] (w S, )

Here, |i000.| is bounded from above, with some constant C' > 0, by

C ; Eizid(zi) nd(z)+C Y id(z) A d(z,).

i=r+1

On the other hand, {7 7* (¢ A wg;l A i000.) is bounded from above for some ry > 0 independent of ¢ by

r £ 1 . I n 70 . R
C’HL E—Qlog|zillzi|2pal Yidz; A dz; n L idzi A dz;.
=1

1=r+1
The upper bound is uniformly bounded and has limit 0 as € — 0 since
1

2pa; __
4p2a?e?

2pa;

1
J —log(r)r?P%~tdr =

= log(e)e
0

2pa;e?
Notice that by the choice of p, for any i, pa; > 1.

In conclusion, (iO(r* det(T'x /&;), ws.») + eprank(n™ (T'x /€;))ws,p) A wg;l is a closed (n,n)- current with
0 mass along D. (1O(7* det(Tx /E;),ws,,) + eprank(n™®(Tx /&;))ws ) A wf{;l is a closed positive current on

X < D. By Skoda-El Mir theorem, it extends by 0 across E to be a positive closed current on X which is
(iO(m* det(Tx /&;),ws,p) + eprank(m* (Tx /E;))ws,p) A wf{;l defined above. The mass on X is equal to the
mass on X ~ E. This can be seen from the following decomposition:

J (1O(m* det(Tx /&;), ws,p) + evrank(m™ (T'x /€;))ws.o) A wg‘,;l
U

= f 0-(iO(r* det(Tx /&;), ws,p) + evrank(n™ (T'x /€;))ws,p) A wgf;l
U
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+ J (1 —0.)(iO(m* det(Tx /&;), ws,) + evrank(n™ (Tx /€;))ws,p) A wg;l.
U

By the dominated convergence theorem, the limit of the second term is
JU E(i@(w* det(T'x /&), ws,p) + eprank(m*(T'x /&;))ws,p) A wf{;l.

The limit of the first term is 0 by above discussion.
Now (1O(7* det(T'x/&;),ws,p) + evrank(n* (Tx /€;))ws, ) A w(’{;l is a positive closed (n,n)- current on
X. It belongs to the cohomology class
(m*e1(Tx /&) + e,rank(Tx /&) m*{w} — e, rank(Tx /&)S{E}) A (1¥{w} — {E}N" L.
In particular, we have
(m*c1(Tx /&) + e vank(Tx /&) ¥ {w} — e, rank(Tx /&)S{E}) A (m*{w} — §{E})" = 0.
If we let ¢ tend to 0, we find
(m*e1(Tx /&) + e rank(Tx /E)m* {w}) A (¥ {wh)™ ™1 =0

which is also equal to
(c1(Tx /&) + e rank(Tx /£){w}) A ({w}) ™t
By taking v — o0, one achieves the proof of case 1.

Case 2: general case.

To prove the theorem in the case when the filtration is given by subsheaves whose quotient sheaves are
torsion free, we follow the arguments given in case 1.

In this situation, we first take a finite composition of blows-up of smooth submanifolds o : X — X such
that o*(Tx/&;)/Tors is a vector bundle over X. Then we take a further finite composition of blows-up of
smooth submanifolds 7 to reduce the analytic singularity of h., to the simple normal case. The proof given

in case 1 changing X by X and Tx /& by o*(Tx /&;)/Tors shows that
(cr(m*(0*(Tx /&) /Tors)) + e, rank(Ty /&) m*o*{w} — e, rank(Tx /E)6{E}) A (t*o*{w} — §{E})" ' > 0.

Notice that the metric is always well-defined on a Zariski open set and that its curvature defines a current
in the first Chern class. The wedge product of the currents extends across the exceptional divisor over the
bimeromorphic model for the same reasons. Letting § tend 0 implies that

(c1(0*(Tx /E;)/Tors) + e,rank(Tx /E;)o*{w}) A (6*{w})" ™ = 0.

Notice that 7 depends on v, however o is independent of v. Letting v tend to infinity and using Lemma
4.29 concludes the proof.
O

Now the arguments of Proposition 5.1 of [Cao13] give the following corollary.

COROLLARY 4.33. Let (X,w) be a n-dimensional compact Kdihler manifold such that —Kx is psef.
Assume that there exists a sequence €, > 0 such that lim, , e, = 0 and Z(h.,) = Ox for a sequence of
singular metrics with analytic singularities h., on —Kx such that i©(—Kx,h.,) = —e,w Then the Albanese

morphism ax is surjective with connected fibres. In fact, the Albanese map is submersion outside an analytic
set of codimension larger than 2.

PROOF. The proof in [Caol3| only uses the fact that the slopes with respect to w1 of the sheaves
obtained as graded pieces of the Harder-Narasimhan filtration are positive. Hence using theorem 4.30, the
result is a direct consequence of his arguments. For the convenience of the readers, we just give here the proof
of the fact that the fibres of the Albanese map are connected. We follow the arguments in the Proposition
3.9 of [DPS94].

Let X — Y — Alb(X) be the Stein decomposition of the Albanese map with Y = Spec ax+Ox. Since
X is smooth, Y is normal. We claim that the map f : Y — Alb(X) is étale. The reason is as follows. By the
arguments in [Cao13], there exists Z an analytic subset in Alb(X) with codimension at least 2 such that
X\ ay'(Z) — Alb(X) \ Z is submersion (thus a fibration). Thus Y . f~!(Z) — Alb(X) \ Z is étale. We
denote by F the fibre of the fibration f|y-_ s-1(z) which is finite. By the long exact sequence associated to a
fibration, we have

1 (F) - m (Y ~ f71(2)) = 71 (AIb(X) \ Z) — 7o(F)
where 71 (F) = 0 and mo(F) is finite. In particular, m (Y ~ f~1(Z)) is a free Abelian group of rank 2q :=
2dimcAlb(X). Notice that by the codimension condition, we have 71 (Alb(X) N\ Z) = 7 (Alb(X)). Alb(X)
is isomorphic to the quotient of the universal cover C? of Alb(X) under the group action 71 (Alb(X)). Define
T to be the quotient of C? under the group action 7 (Y ~\ f~1(Z)) with the natural cover p : T — Alb(X).
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By the homotopy lifting property, there exists a map g : Y \ f~1(Z) — T such that pog = fly_j-1(2)-
Remark that g is holomorphic since it is given by the composition of f with the holomorphic local inverse
of p. Since Y \ f71(Z) — Alb(X) \ Z is finite, f~1(Z) is of codimension at least 2. Since Y is normal, g
extends to a morphism g : Y — T. Now g is a generically injective morphism between Y and 7. Since T is
smooth, the inverse map of T\ p~1(Z) — Y also extends across p~!(Z) which gives the inverse morphism
of ¢g. In conclusion g is a biholomorphism between 7" and Y which proves that f is étale.

In particular, Y is a finite étale cover of the torus Alb(X), so Y itself is a torus. By the universality of
the Albanese morphism, there exists a morphism h : Alb(X) — Y such that the morphism X — Y factorises
through h. Since the morphisms X — Y and ax are surjective, we have ho f =idy and foh = idap(x)-
Thus f is a biholomorphism and the Albanese morphism has connected fibres. O

Notice that the assumption in the theorem 4.30 is satisfied when — K x is nef. In this case, all metrics
are smooth and we do not need to take the blow up. Thus the above theorem can be seen as a generalisation
of the result of [Caol3].

We remark that when —Kx is psef and there exists a singular metric h on —Kx such that Z(h) = Ox,
the surjectivity of the Albanese map is a direct consequence (Proposition 2.7.1 in [DPS01]) of the line
bundle valued hard Lefschetz theorem in [DPS01]. For the convenience of the reader, we briefly recall the
proof.

LEMMA 4.34. Let (X,w) be a compact Kihler manifold such that —Kx is psef. Assume that there ezists
a singular metric h on —Kx such that Z(h) = Ox. Then the Albanese map is surjective.

PRrROOF. By the hard Lefschetz theorem (main theorem in [DPS01]), we know that the morphism
induced by taking the wedge product with w

HY (X, Q¥ '®-Kx)~ H'(X,Tx) —» H' (X, Ox)

is surjective. Moreover, by the Hodge decomposition theorem, we have H!(X,0x) = HO(X, Q). For any
u e H°(X,Qk), there exists a holomorphic vector field £ € H?(X, Tx) such that the image of £ under the
morphism induced by wedge product with w is u.

In particular, the inner product i¢(u) € H°(X,Ox) is a global holomorphic function. Thus ig¢(u) is
constant. On the other hand i¢(u) = |u|? pointwise. Thus if u # 0, there exists some point = such that
|u|? (x) # 0. In other words, i¢(u) # 0. This implies that for any z, u(x) # 0, which implies in its turn that
the Albanese morphism is surjective. O

The arguments of [Cao13] combined with theorem 4.30 also give the following affirmation of a conjecture
of Mumford. The general conjecture of Mumford states that a projective or compact Kahler manifold X is
rationally connected if and only if HO(X, (T%)®™) = 0 for any m > 1.

COROLLARY 4.35. Let (X,w) be a n-dimensional compact Kdihler manifold such that —Kx is psef.
Assume that there exists a sequence €, > 0 such that lim, ,ne, = 0 and Z(h.,) = Ox for a sequence
of singular metrics with analytic singularities h., on —Kx such that i©(—Kx,h.,) = —e,w. Then the
following properties are equivalent:

(1) X is projective and rationally connected.

(2)H° (X, (T%)®™) =0 for any m > 1.

(8) For every m =1 and every finite étale cover X of X, one has HO()N(,Q?(L) = 0.



CHAPTER 5

Pseudo-effective and numerically flat reflexive sheaves

ABsTRACT. In this note, we discuss the concept of strongly pseudoeffective vector bundle and also introduce
strongly pseudoeffective torsion-free sheaves over compact Kahler manifolds. We show that a strongly
pseudoeffective reflexive sheaf over a compact K&hler manifold with vanishing first Chern class is in fact
a numerically flat vector bundle. A proof is obtained through a natural construction of positive currents
representing the Segre classes of strongly pseudoeffective vector bundles.

5.1. Introduction

The concept of numerical flatness introduced in [DPS94]| proved itself to be instrumental in the study
and classification theory of compact Kdhler manifolds with nef anticanonical bundles. It has been studied by
many authors and in many works, cf. [Caol8], [Caol9], [CH17], [CH19], [CCM19], [CP17], [HIM19],
[HPS16], [Wang19] among others.

Recall that a holomorphic vector bundle F is called numerically flat if both F and E* are nef (equivalently
if £ and (det E)~! are nef). In fact, the condition of being numerically flat yields strong restrictions for
the curvature of the corresponding vector bundle. Actually, in [DPS94], Demailly, Peternell and Schneider
proved that a numerically flat bundle £ on a compact K&hler manifold X admits a filtration by vector
bundles whose graded pieces are Hermitian flat. In some sense, numerical flatness is the algebraic analogue
of metric flatness.

In [CCM19] and [HIM19], the authors consider the following question. If a strongly pseudo-effective
vector bundle over a projective manifold has a vanishing first Chern class, is this vector bundle numerically
flat? Since a vector bundle E is numerically flat if and only if E and det(F)~! are nef, the question amounts
to ask whether the vector bundle is in fact nef.

Intuitively, a positive singular metric on the vector bundle £ would induce a positive singular metric on
the determinant det(E). But since the first Chern class of E (i.e. the Chern class of det(E)) is trivial, any
metric with (semi)positive curvature must be flat and thus cannot possess any singularity. This implies that
the given positive singular metric on F has to be smooth as well.

From this point of view, the same property should hold on an arbitrary compact Kdhler manifold, and
not just on projective manifolds, since all properties under consideration are independent of the projectivity
condition. One of the goals of this work is to confirm this philosophy. Namely, we prove the following

Main Theorem. Let E be a strongly psef vector bundle over a compact Kdihler manifold (X,w) with
c¢1(E) = 0. Then E is a nef vector bundle.

The main technical tool is the construction of Segre currents. More precisely, we define a Segre (k, k)-
closed positive current as the direct image of the wedge product of the curvature current of Opgy(1), as
soon as we have an appropriate codimension condition on the singular locus of the metric.

Main technical lemma. Let E be a strongly psef vector bundle of rank r over a compact Kdihler manifold
(X,w). Let (Opgy(1), he) be singular metric with analytic singularities such that

i@(OP(E)(l), he) = —em*w

and the codimension of w(Sing(h.)) is at least k in X. Then there exists a (k, k)-positive current in the class
T (c1(Op(y (1)) + em*{w}) 1.

The strategy of the proof of the Main theorem is as follows. We show that the Lelong numbers of
the corresponding Segre current control the Lelong numbers of the weight functions of the singular metrics
prescribed in the definition of a strongly pseudoeffective vector bundle. Then, we observe that the Lelong
numbers of Segre currents must tend to 0 in the limit, as the unique (semi)positive current in ¢q(E) is the
zero current. Thus the Lelong numbers of the weight functions uniformally tend to 0 as the Lelong numbers
of the Segre currents. By Demailly’s regularisation theorem, the weight functions of the metrics can be
regularised, thus the vector bundle is actually nef.

In fact, we can expect an even stronger property. Since E is strongly psef, the class c1(Op(g)(1)) is psef.
Intuitively, ¢;(Op(g)(1)) contains a not too singular current (in the sense that the projection of the singular
part onto X is contained in some analytic subset of codimension at least 1). Thus the wedge powers of
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appropriate exponents of this current in the first Chern class are defined and positive, as well as their direct
images under 7 : P(E) — X. In particular, if r is the rank of E, we can hope that the second Segre class
4 (c1(Op(y (1)) is positive (by this, we mean that its cohomology class contains a positive current)

Remind that the second Segre class is equal to c;(E)? — c2(E). By the Bogomolov inequality if E is
semistable, when ¢;(FE) = 0, the integration of c2(FE) A w™ ™2 on X is positive where w is a Kihler form on
X and n is the dimension of X. Comparing these two facts, one knows that co(E) = 0 and the Bogomolov
inequality is in fact an equality.

For a reflexive sheaf F, the Chern classes can be defined as follows. Let o be any modification such
that o*F/Tors is a vector bundle. The existence of such modification is provided by the fundamental work
of |[Ros68|, |GR70| and |Rie71|. Then for i = 1,2, ¢;(F) = o4c;(0*F/Tors) which is independent of the
choice of modification o. The rough idea is that the above calculations should hold on some birational model
of X, and by taking direct images, the equality in the Bogomolov inequality is also attained on X.

On the other hand, we have the following important result of [BS94]. For a polystable reflexive sheaf F
of generic rank r over a compact n-dimensional Kéhler manifold (X, w), we have the Bogomolov inequality

j (2rea(F) — (r = 1)1 (F)2) A w2 3 0,
X

Moreover, the equality holds if and only if F is locally free and its Hermitian-Einstein metric yields a
projectively flat connection.

In order to study the positivity of torsion free coherent sheaves, it is useful to define in full generality
the nef (or strongly psef) property for such sheaves.

Definition. A torsion free coherent sheaf F over a compact complex manifold is called nef (resp. strongly
psef) if there exists some modification o : X — X such that o* F/Tors is a nef (resp. strongly psef) vector
bundle.

The above considerations, combined with the result of [BS94], let us hope the stronger fact that over
every compact Kdhler manifold (X, w), a strongly psef reflexive sheaf with trivial first Chern class is in fact
a nef vector bundle. In section 5, we prove that this is actually the case. A difficulty of the above approach
is that in general a wedge product of positive currents is not necessarily well defined. Instead of proceeding
directly, we first prove the following result.

Lemma. Let F be a nef reflexive sheaf over a compact Kihler manifold (X,w) with ¢1(F) = 0. Then F is
a nef vector bundle.
Now combining the main theorem, we can conclude that

Corollary. Let F be a strongly psef reflexive sheaf over a compact Kihler manifold (X,w) with ¢;(F) = 0.
Then F is a nef vector bundle.

Note that in the above approach we have to take wedge products that are well defined without imposing
any restriction on the codimension of singular part of the metric. In this situation, for a strongly psef vector
bundle E, we can find a positive current in ¢ (E) but not necessarily in co(FE).

At the end of the paper, as a geometric application, we classify compact Kéahler surfaces and 3-folds with
strongly psef tangent bundles and with vanishing first Chern class. By our Main theorem, they are the same
as compact Ké&hler surfaces or 3-folds with nef tangent bundles and with zero first Chern class, that were
classified in [DPS94]. As a consequence, the tangent bundle of a Kihler K3 surface is not strongly psef.
This generalise the work of [DPS94| and [Nak04] in the projective setting. More generally, an irreducible
symplectic, or Calabi-Yau manifold does not possess a strongly psef tangent bundle or cotangent bundle.
In the singular and projective setting, the “strongly psef” version is proven in Theorem 1.6 of [HP19] and
Corollary 6.5 [Drul8] for threefolds. (They even prove in this case that the bundle is not weakly psef, i.e.
that Opg)(1) is not a psef line bundle whenever £ is the tangent or cotangent bundle.)

We also generalise the main results to the Q—twisted case analogous to the result of [LOY20] in the
compact Kihler setting.

The organisation of this paper is as follows. In section 2, the concept of strongly psef vector bundles
is discussed. We give a definition of strongly psef vector bundle of the K&hler version essentially equivalent
to the one proposed in [BDPP13]. By this equivalent condition, we can show that some usual algebraic
operations can still be taken for strongly psef vector bundles. For example, the direct sum or tensor product
of strongly psef vector bundles is still strongly psef. In section 3, we investigate the concept of nef/strongly
psef torsion free coherent sheaves and algebraic operations of these sheaves. Then we show that a numerically
flat reflexive sheaf on an arbitrary compact Kahler manifold is in fact a vector bundle. This result can also
be generalised to strongly pseudoeffective (strongly psef) reflexive sheaves F such that ¢;(det F) = 0 in
section 5. In section 4, we make a digression to introduce the definition of Segre forms (or Segre currents),
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as a tool to treat the strongly psef case. It should be observed that a similar construction has been done
in [LRRS18].
In this note, all manifolds are supposed to be compact without any explicit mention.

5.2. Strongly pseudoeffective vector bundles

The following definition of a strongly psef vector bundle is a reformulation of the definition of [ BDPP13]
(Definition 7.1).

DEFINITION 5.1. Let (X,w) be a compact Kihler manifold and E a holomorphic vector bundle on X.
Then E is said to be strongly pseudo-effective (strongly psef for short) if the line bundle Opgy(1) is pseudo-
effective on the projectivized bundle P(E) of hyperplanes of E, i.e. if for every e > 0 there exists a singular
metric he with analytic singularities on Op(g)(1) and a curvature current i©(he) > —en*w, and if the
projection w(Sing(h.)) of the singular set of h. is not equal to X.

One can observe that in [BDPP13] the definition is expressed rather in terms of the non-nef locus.

DEFINITION 5.2. ( [DPS01]) Let @1, 2 be two quasi-psh functions on X (i.e. i0dp; > —Cw in the
sense of currents for some C = 0). Then, o1 is said to be less singular than po (we write v1 < w2) if
we have po < 1 + Cy for some constant Cy. Let o be a psef class in Hé’é(X, R) and v be a smooth real
(1,1)-form. Let Ty, Ts,0 € o with @ smooth and T; = 0 + i00p; (i = 1,2), the potential ; being defined up
to a constant since X is compact. We say that Ty < Ty, resp. singularity equivalent Ty ~ Ty, if p1 < o,
resp. if o1 < w2 and P < 1.

A minimal element Ty,in , with respect to the pre-order relation < always exists. Such an element can
be obtained by taking the upper semi-continuous upper envelope of all o; such that 6 + i00p; > v and
supy @i = 0. It is unique up to equivalence of singularities.

DEFINITION 5.3. (Non-nef locus)
The non-nef locus of a pseudo-effective class o € H}B’é(X, R) is defined to be

Enn(a) = U U Ec(Tmin,fsw)

e>0 c>0

where w is any Hermitian metric.

Let us observe that we can replace 7*w by any smooth Kahler form @ on P(F) in the definition of a
strongly psef vector bundle. The reason is as follows. On the one hand, 7*w < C& for some C' > 0 since
X is compact. Thus, i©(h.) > —em*w implies that i©(h.) > —Ce®. On the other hand, since Op(gy(1) is
relatively m-ample, we have €0iOp, (Op(g) (1)) + m*w = 1@ for any given smooth Hermitian metric ho on F,
if 0 <e1 « g9 « 1 are small enough. Assuming that there exists a singular metric h. on Opgy(1) such that

iOn. (Op(p)(1)) = —e@, we infer that the metric i, = hg/slh;_g/al has a curvature lower bound

101, (Op(r) (1) = — (€180 — 7*w) — (1 - i)5"3 > - 7w,
€ €1 €1 €1
In [BDPP13], a holomorphic vector bundle F was defined to be strongly pseudo-effective if the line bundle
Op(g)(1) is pseudo-effective on the projectivized bundle P(E) of hyperplanes of F, and if the projection

T(Enn(Opgy(1))) of the non-nef locus of Op()(1) onto X does not cover all of X. By definition,

Enn(cl (OIP’(E)(l))) = U Sing(,‘rmin,—sd)) < U Slng(hs)
e>0 e>0
Hence a strongly psef vector bundle defined in Definition 5.1 is strongly psef under the definition of [ BDPP13].
On the other hand, by the regularization theorem, we can construct from Tinin,—.q a metric hoe on Op(g)(1)
with i©(he.) = —2ew. By definition, Sing(hs:) < J,.~o Ee(Timin,—2:5) thus it does not project onto X.
Hence our definition is equivalent to the definition of [BDPP13].

We remark that the definition of strongly psef vector bundle we used is stronger than the widely used
weak definition. A vector bundle £ is called psef in the weak sense if Op(g)(1) is a psef line bundle over
P(E). Of course, our definition of strongly psef vector bundle coincide with the widely used weak definition
in the case of line bundle. However, this weak definition is too weak to give a classification even if we pose
some strong topological obstruction like with vanishing first Chern class. For example, if X is a projective
manifold and A is an ample line bundle over X, for any p # 0, AP @ (AP)* is a psef vector bundle in the
weak sense with vanishing first Chern class. Intuitively, a psef vector bundle can have negative curvature
in some direction which is not enough for our propose to construct some positive current in the first Chern
class of the determinant bundle.
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It should be noticed that pseudo-effectiveness in the weak sense is a Zariski closed condition while strong
pseudo-effectiveness is not, Zariski closed. More precisely, let p : X — A be a proper holomorphic submersion
which defines a family of compact Kéhler manifolds over the unit disc A and E be a holomorphic vector
bundle over X. Then the set ¢t € A such that the restriction E|x, is a psef vector bundle over X; in the
weak sense is a Zariski closed set where X; := p~1(t). A complete proof can be found e.g. in the appendix
of [AH19] by Simone Diverio. However, the same does not hold for strong pseudo-effectiveness. For example,
we can take the following example indicated to the author by Jean-Pierre Demailly.

EXAMPLE 5.4. (Theorem 2.2.5 [OSS80])
Let x1, -, %, be the points of the projective plane P2. There is a holomorphic rank 2 bundle E over
P? whose restriction to any line L, on which exactly a points of the set {x1,--- ,2,,} lie, splits in the form

E|L = OL(CL) @ OL(—a).
The generic splitting type of this bundle is (0, 0).

The construction of the vector bundle is as follows. Let o : Y — P2 be the blow up of P? over {1, , 2., }
with exceptional divisor C = /" | C;. Let E’ be a rank two vector bundle over Y such that it satisfies the
extension

0 O0y(C) > E - 0y(-C)—0
and its restriction to each C; satisfies the Euler sequence
0— Oc¢,(~1) - F'l¢, = 0F - Oc,(1) — 0.
It can be proved that E’ is the pull back of some vector bundle E over P2, We have the short exact sequence

0— Oi(a) g El|f, — (’)E(—a) — 0.

where a is the number of {x1,--- ,x,,} which lie in L. The short exact sequence splits since H' (L, O; (2a)) =
0. The blow up induces a biholomorphism between the strict transform of a line L to L which gives the
conclusion.

Thus we can construct a family of vector bundles whose restriction to some special fibers is not strongly
psef although the restriction to the general fiber is strongly psef (in fact trivial). The lines in the projective
plane form a family of P! over the Grassmannian Gr(2,3). The total space X is a closed submanifold of
P2 x Gr(2,3). Consider the vector bundle which is the restriction over X of the pull back of the previous
constructed bundle under p; : P? x Gr(2,3) — P2,

A related definitions in the projective case is also widely used in the literature, which is weak positivity
in the sense of Nakayama (cf. eg. [Nak04]| Definition 3.20). A torsion free coherent sheaf F is weakly
positive at € X a projective manifold if, for any a € N* and for any ample line bundle A on X, there exists
b € N* such that (Sym®™F)v¥ ® A is globally generated at x, where (Sym®F)¥" is the double dual of
ab-th symmetric power of F. A torsion free coherent sheaf is called weak positive in the sense of Nakayama
if it is weak positive at some point. It is proven in Proposition 7.2 [BDPP13] that for a vector bundle E
over a projective manifold X, F is psef in our strong sense if and only if E is weak positive in the sense of
Nakayama.

Now we give still another equivalent definition of a strongly psef vector bundle. The argument is analo-
gous to the one of [Dem92a, theorem 4.1] in the singular setting. Intuitively, being strongly psef is equivalent
to the existence of “algebraic" approximation currents. Here “algebraic" means that the approximation can
be obtained from the sections of higher degree tensor product of the vector bundle. (Of course the sections
are local since the global sections on X does not necessarily exist.) We construct approximating metrics
by use of a Bergman kernel technique and use a Hérmander type L? estimate to get the required curvature
estimates. For the convenience of the reader, we recall the basic L? estimate that we need.

LeEmMA 5.5. (Corollary 5.3 in [Dem12al)
Let (X,w) be a Kahler manifold, dim X = n. Assume that X is weakly pseudo-convez (in particular it
is the case for any compact Kihler manifold). Let F be a holomorphic line bundle equipped with a degenerate

metric whose local weights are denoted o € L;, ., i.e. H = e™%. Suppose that

i@pyh = %05@ = Ew

in the sense of currents for some € > 0. Then for any form g € L*(X,A™T% @ F) satisfying 0g = 0, there
ezists f € L?(X,A\""19T% ® F) such that 0f = g and

1
j f2e2dV,, < —f lgZe=dV,.
D'e q¢€ Jx
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We will also need the following lemma stated by Demailly to glue the local weights into a global one,
via a partition of unity.

LEMMA 5.6. (Lemma 13.11 in [Dem12al)

Let Ujf cc Uj’/ be locally finite open coverings of a (not necessarily compact) complex manifold X by
relatively compact open sets, and let 0; be smooth non-negative functions with support in Uj'-’, such that
0; <1 onU and 0; =1 on U}. Let Aj >0 be such that

1(0]55@ — 693 A EQJ) = —Ajw
on U] N\ Uj for some positive (1,1)-form w. Finally, let w; be almost psh functions on U; with the property
that ié’gwj > v for some real(1,1)-form ~ on M, and let C; be constants such that
wi(x) <Cj+ sup  wg(z)
k#j,xeUy,
on U} N\ Uj.

Then the function w :=log(}07¢"7) is almost psh and satisfies

100w > v =2 Tyr v Aje .
J

PROPOSITION 5.2.1. The following properties are equivalent:

(1) E is strongly psef

(2) There exists a sequence of quasi-psh functions wy,(x,&) = log(|€|n,,) with analytic singularities
induced from Hermitian metrics hy,, on S™E™* such that the singularity locus projects into a proper Zariski
closed set Z,,, and

100W,, = —mempFw
in the sense of currents with lime,, = 0. Here p: S™E* — X is the projection.

(8) There exists a sequence of quasi-psh functions wy,(x,&) = log(|€|n,,) with analytic singularities
induced from Hermitian metrics hy, on S™E*, such that the singularity locus projects into a proper Zariski
closed set Z,,, and

ieSmE*,hm <menw®Id
on X \ Z,, in the sense of Griffiths with lime,, = 0.

ProoOF. Note that when a metric over F' a vector bundle over X is smooth near a point x, we have the
following equivalence (cf. Lemma 4.4 in [Dem92a|): for any real (1, 1) form 7 near x, over a neighbourhood
U near z

(1) iO(F) = y®Idp in the sense of Griffiths;
(2) —iO(F*) > v®IdF in the sense of Griffiths;
(3) ﬁ@élogmz > p*y, € e F*, where log|¢|? is seen as a function on p~1(U) and p : F* — X is the
projection.
In particular, (2) implies (3) by this observation.

The more substantial part of the proof consists of showing that (1) implies (2). The proof follows closely
the proof of theorem 4.1 in [Dem92a].

It is enough to show that for any ¢ > 0, there exists a sequence of quasi-psh functions wy,(z,§) =
log(|€]s,,) with analytic singularities induced from Hermitian metrics h,, on S™E*, such that the singularity
locus projects into a proper Zariski closed set Z,,, and

100w, = —mep*w

in the sense of currents. Here p : S™E* — X is the projection.

We construct the metrics on the symmetric powers of vector bundles, starting from a singular metric h.
on Op(g)(1) given in the definition of strongly psef vector bundle. Namely, we start with a singular metric
such that the singularity locus projects into a proper Zariski closed set Z, and

i

ZQOJ{’(E)(I) = —em*w.
Since X is compact, we can select a finite covering (W,) of X with open coordinate charts. For any ¢ > 0,
we take in each W, a maximal family of points with (coordinate) distance to the boundary > 3§ and mutual
distance > §/2. In this way, we get for any § > 0 small enough a finite covering of X by open balls U}
of radius 0 (actually every point is even at distance < 0/2 of one of the centres, otherwise the family of
points would not be maximal), such that the concentric ball U; of radius 26 is relatively compact in the
corresponding chart W,,.
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Let 7; : U; — B(aj,20) be the isomorphism given by the coordinates of W,. Let £(§) be a modulus of
continuity for v := —ew on the sets U}, such that lims_, (6) = 0 and w; —w, < €(d)w, for all z, 2’ € U;. We
denote by v; the (1,1)-form with constant coefficients on B(a;,2d) such that 75v; coincides with v —e(d)w
at ijl(aj). Then we have

(1) 0<vy—7 <2(d)w

on U for § > 0 small enough. Let 9;(2;) be the associated quadratic function such that v; = L300,

Now, we consider the Hilbert space #;(m) of holomorphic sections f € H®(x~*(U;), Op(g)(m)) with the
L? norm

= [, e,
71'71 J

where dV is a volume element on P(E) (fixed once for all) and |f|? is the pointwise norm on Opg)(m)
induced by the given (singular) Hermitian metric h. on Op(g)(1). It can be viewed as a metric on Opgy(1),
twisted by the local weight ©;. Thus the corresponding curvature form is

) T om
ggoww)(l) - ;aavj >t (v — T;%‘) =0

by (1). Let U; € U/ € Uj; be concentric balls such that (U}) still cover X and let 6; be smooth functions
with support in U7, such that 0 < #; < 1 on U} and ¢; = 1 on Uj.
We define a Bergman kernel type metric on S™E* as follows: for all x € X and 5 € S™E* we set

(2) Hf\l(m)—292 ) exp(2m;(z5) + Vm(rf —|z*) Z\GN

where 7% is the radius of U} and (0;,);>1 is an orthonormal basis of #;(m). The local sections o;; can be
viewed as sections in H°(U;, S™E), and here o;;(z) - € is computed via the natural pairing between S™FE
and S™FE*. The metric is Hermitian since it is a sum of square of linear forms in S™FE*. Since the metric
on Op(gy(1) can be singular, the Hermitian metric can also be degenerate. It is degenerate at a point x if
oj1(x) =0 for all 7,

However, the infinite sum >}, |o;;(z) - £|* is smooth. In fact, the sum converges locally uniformly above
every compact subset of U;. This sum is the square of evaluation linear form

frof@)-¢
which is continuous on H;(m). The reason is as follows. Given o an element of H°(U;, S™E). It can be
identified as an element of H° (7' (U;), Opg)(m)) = H°(U;, S™E) by considering the quotient of 7*c €
HO(n=Y(U;), 7*S™E) under the tautological map 7*S™E — Op(g)(m). On the other hand, £ € S™E¥ can
be pulled back to P(E) as an element of Op(g)(—m),1e] © w*SmE;"’[g]. The natural pairing between S™ E*
and S™FE of f(z) and ¢ is equal to the natural pairing between Op(g)(—m), (¢ and Op(g) (M), [¢] under the
above identification. In particular,

() - &l < [f[( [€DIE] (, [€])

Here we identify Op(g)(m)4, e as C under any local trivialization near (z,[£]). The supremum of |f|(z, [£])
for f € H;(m), | fll <1 is by definition the norm of the continuous linear function f — f(z) under the chosen
local trivialization near (z,[£]). (Remark that in the trivialization, by mean value inequality, the value of
the holomoprhic function at the center of a ball is bounded from above by the L? norm of the function on
the ball which is bounded from above by the L? norm of the section on P(E) with the singular weight.) Thus
[~ f(x)- ¢ is a continuous linear function. The square of its norm is Y, |0, () - £|? since o, (x) - € is the
I-th coordinate in the orthonormal basis o, of H;(m). By Montel’s theorem, };, , 0;:(z) - € 0j,(w) -0 is a
holomorphic function for (z,w,&,n) € U; x U; x E x E. Thus its restriction >, |o;,(z) - £|* to the diagonal
U; x E is a real analytic function.

As a consequence, the metric || - ||, is a smooth metric, except for the fact that it might degenerate at
some points. To show that this metric has analytic singularities and obtain the curvature estimate, we use
lemma 5.6 for w(z,§) := longHQm) and

(3) w;(w,€) = 2mo;(27) + Vm(r? — |27%) + logz loja(z) - &
1
on the total space S™E* covered by p‘l(Ujf) where p: S"E* — X is the projection.
To proceed further, we need the following lemma 5.7 to compare the behaviour of w; on different
open sets. As a consequence of lemma 5.7, the functions w;(z, &) satisty w;(x,€) < wg(z,§) for any x €
(U} \U}) nUj, for m large enough. (Remark that /7 —|27|* < 0 and r}2 —[2*|?> > 0 for such z.) The choice
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of m depends on the value 737 — [2*[> > 0. But the function on U/ \ U} , supy 4 sevy |ax — | has a uniform
strictly positive lower bound since U j’.’ ~ U]’» is compact. Thus there exists mg such that for m > mg we have

wie) < sup wile)
k#3j,xeUy,

on Ujf’ ~ U;. We have a curvature estimate
- A
%aawj = mp*v; — \/m%86|zj|2 = mp*(y — 3ew)

in the sense of currents, since v; > v — 2ew for m > m(, = mq large enough (independent of z). Then lemma
5.6 implies that

-

The right side hand is bigger than mp* (v — 4ew) for m = m{ = my,.
We observe that the metric has analytic singularities. By the following lemma 5.7, there exist constants
Cjk, C} . such that
wj — C;’,k < wg < wj + Cij.
Note that w; can be —o0 at some point. Thus we have

log(ZG?ecﬁ'wew’“) <w= log<z H?ewﬂ'> < log(ZG?eCf”“ewk).
J J J

Without loss of generality, we can assume that 6; is a partition of unity, and in particular that ; 032 is
strictly positive on any relative compact set. Thus w = wy + O(1) which implies w has analytic singularities
along with wy.

Now we show that (2) implies (1). The sequence of metrics in (2) induces a sequence of Hermitian
metrics on O(1) over P(S™FE). Observe that we have the following commutative diagram given by the
Veronese embedding

| |

P(E) - P(S™E).
Since the metric is smooth over the pre-image of a dense Zariski open set of X. The restriction of singular
metrics is well defined and still has analytic singularities. Define a sequence of metrics on Op(g)(1) induced
from the restricted metrics. This sequence of metrics is the one required in the definition of a strongly psef
vector bundle.

The arguments needed to show that (3) implies (2) are similar. By the observation made at the beginning
of the proposition, the inequality holds on a dense Zariski open set V' where the metric is smooth. The
Skoda-El Mir extension theorem implies that 1y iddw,, > —me,p*w. Since w,, has analytic singularities,
the current 00w, is normal, and by the support theorem Lgm px_yi00w,, is a sum of closed positive
currents obtained by integration on analytic sets with positive coefficients. Thus the same inequality holds
for 100w, = Ly i00w,, + Lgm gs -y i00Wm. O

LEMMA 5.7. There exist constants C; j, independent of m such that the almost psh functions
wj(z,§) = 2mu;(z;) + logZ oj0(@) - €%, (x,€) e p " (U}) < S™E*
1
satisfy on p~" (U} n UY) a bound
w; < Wy + (2n + 2)logm + Cj .

PROOF. By construction E|U]. =~ U; x C" is trivial over U;. Define a Hermitian metric hy, on E|U]. with
strict positive curvature by taking »
€2 = Y jealem T 1T,
A

The associated curvature form on (Op(gy, )(1), heo) is strictly positive and thus defines a Kahler metric w
on 7~ 1(U;). In fact, Op = weya ® ldg v;here Weucl 18 the standard (flat) Hermitian metric on U;. By a
standard formula (cf. formula (15.15) in Chap V of [Dem12b]), the curvature of (OIP’(E\Uj)(l)v he) is equal
to the direct sum of the Euclidean metric of U; and of the Fubini-Study metric of P*~!. In particular, the

Ricci curvature of w; is non-negative. Define 7(z) := nlog|2? — 27 ()| depending only on the base variables
and possessing a logarithmic pole at x. This is a psh function on a neighbourhood of W_l(Uj). Define a



92 5. PSEUDO-EFFECTIVE AND NUMERICALLY FLAT REFLEXIVE SHEAVES

singular metric on Op(p|,, )(m) as follows. Twist the metric W€D @ hoy by (m — 1)7;(29) + 7(27). The
resulting curvature form on Op( E‘Uj)(m) is given by

i i i -
(m = 1) (32O, (1 (he) = =005 ) + w; + =007 > w;

by (1). We consider the Hilbert space F]Q’q(m) of (0,¢)-forms (¢ = 0,1) f on 7~ '(U;) with values in
Op(g)(m), equipped with the L? norm | f|% = Srl(Uj) | f12dV;, where dV; = """ /(n+r—1)! and where
the pointwise norm | f|; is induced by w; and of the metric defined above on Op(g)(m).

Now, we apply Hoérmander’s L? estimates for the bundle —Kx + Op(g)y(m) and an arbitrary (0, 1) form
g in F]Q’l(m) with dg = 0, (i.e. a d-closed L? (n,1)-form valued in —Kx + Op(g)(m)). We conclude that
there exists a (0,0)-form in FJQ’O(m) such that 0f = g and | f];.0 < |gllj.1- (Note that Ric(w;) = 0.)

It remains to choose a suitable section g to prove the inequality. Fix a point z € U/ n U}/ and £ € S™E}.
There exists h € Hy(m) with ||h]; = 1 such that

)- &7 = Zml €[

If the right rank side is 0, we can take h to be any element in the orthonormal basis. Otherwise, the linear
functional f — f(z) - ¢ is a non zero functional whose kernel defines a closed hypersurface in Hy(m). Thus
there exists h € Hy(m) with ||h]|z = 1 which is orthogonal to the kernel. It is easy to see that such a point
h is a maximum of the function Hy(m) ~ 0 — R:

lv-¢€|

v —
Jol?”

and hence we have the equality. Let x be a cut-off function with support in the (coordinate) ball B(z,1/m),
equal to 1 on B(z,1/2m) and with [0x| < m. For m = myq large enough (independent of z € U} n Uy) we
have B(z,1/m) = U; n Uy. We consider the solution of the equation 0f = hd(x o 7) on 7~ 1(U;). We then
get a holomorphic section
h':=h(xom)—fe HO(’R'_1<UJ‘),O]P>(E)(m)).
The section b’ coincide with h over 71 (z), since the Lelong number of the local weight at a point in 71 (x)
is at least that of the local weight of 7 which is n. The fact that the section f is in L? implies that it has to
vanish along 77!(z). On the other hand, we have
e2(m—1 v (27
\h|h®(m Den, € (m=1);( )de
~1(B(x,1/m)~B(z,1/2m)) |28 — 23 (z) >

130 m|2, <m f

< Cm?n{—?J‘ |h|i®(m—l)®h eQ(m—l)'Dj(zj)d‘/j
7©—1(B(z,1/m)~\B(z,1/2m)) € *

< Cm2n+2 J ‘h|

7 1(B(z,1/m))

h®(7n 1)®h 2(m_1)ﬁj (zj)dvj

< Cm2n+2 J |h|i§m62(m—1)ﬁj(zj)d‘/j
w—1(B(z,1/m))

< Cm2n+262m(f}j (27 (m))—f)k(zk(x))) J |h|h®m 2mf)k (zk(zk))d‘/'lc
= H(B(z,1/m))
< Cm2n+262m(f}j (27 (x)) =0k (2" (2))) Hh”i
All the constants are independent of z and m. For the fourth inequality we use the fact that h. = Chy, for
some C on P(E|y,), since h. has analytic singularities, hy, is smooth and the Uj’s are relatively compact. For

the fifth inequality, we use the fact that the oscillation of v; and v}, on B(z,1/m) is O(1/m). By Hérmander’s

L? estimates we obtain _
HfH?o < Cm2n+262m('t7j(zj(w))—'ﬂk(zk(a:))) W\%

Since 7 < 0 and h. = Chy, we have for some C
1£15 <

The norm |h(x o )|; satisfies a similar estimate
[h(x o ml; < CmPem @ E NI )

where C comes from the change of volume form from dV; to dV}, and the oscillation of ¥; and 9, on B(z,1/m).
Thus we have

”h/HJ < Cm2n+2e2m(ﬁj(zj(x))—ﬁk(zk(ac))))
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_ ; ~ k
Z |Jj,l(x) . £|2 > Cflm72n72672m(vj(z] (z))—0k (2" (2))) ‘hl(fb) . €|2
l

> O~ L2020 —2m(7; (2 (2)) 0k (2" () Z ok () - €|?
]
since b’ (z) = h(x) and ¥, |0y, (x) -€|? = |h(z)-£|%. By taking logarithms, we infer the desired inequality. [

REMARK 5.8. We have formulated the proposition in terms of E* instead of E for the following reason.
According to [BP08] and section 16 of [HPS16], the dual metric of a singular metric of vector bundle is
always pointwise well defined. However the dual metric is not necessarily continuous if the original metric
is continuous. Let us consider a case where the metric has analytic singularities. Assume that log|¢|, has
analytic singularities as a function on the total space V for some vector bundle (V,h) and is the form of
log Y. | fi(z)-£|? +4(x) with f; are holomorphic vector bundle sections and v is bounded. This is for instance
the case for the approximating metrics used in Proposition 5.2.1. The function log|{* |, on the total space V*
is the difference of two real analytic functions modulo bounded terms, on the dense Zariski open set where the
metric is smooth. At points where the metric is smooth, we have log|¢|? = log(¢1H (x)€) for some Hermitian
matrix H (r) where T means the Hermitian transpose. Thus one has log|¢*|,+ = log(¢*T(H~!(x))¢*) which
can be calculated from the determinant and the adjugate matrix of H(z). Each component of the adjoint
matrix and of the determinant is the product of a bounded function times a real analytic series in the z7’s
(coordinates of x) and in £. Near the singular locus of the metric h, both functions can tend to infinity for
fixed £*. These facts would result in more difficulties to be dealt with.

Here is a concrete example taken from Raufi [Raul5]. Let E be the trivial rank 2 vector bundle over C
where the metric at z € C is represented by the matrix

2
[T <1 +Jz| z2> .
z 4

On C*, the dual metric can be represented by the matrix

_ L[|z —z
H Y =_— )
=g (1
Thus log|€* |« = log(|2€3|? + |26F + £X]?) — log|z|*. At £€* = (1,0), log|¢* |« is a difference of two functions
both tending to infinity when z tends to 0.

REMARK 5.9. We can also interpret the inequality
1Ogmps p,, <Mepw@Id

in the sense of currents as follows: for any non-trivial local section s of S™E*, me,,w + i@élog|s|im is a
positive current. The local section can be seen as a map 7 from an open subset of X to the total space S™E*.
If we pull back the current (2) to U via i, we see that me,,w + iddlog|s|; is a positive current. Here s,
is not identically zero since it is non vanishing outside of the zero locus of s and of singular locus of h,.

Further discussions of these points can be found in [Paun16]. The above proposition also answers
partially to a question proposed in remark 2.11 of [Paun16|. Given a singular Finsler metric with analytic
singularities on a vector bundle, one can produce singular Hermitian metrics on high order symmetric tensor
products of the given vector bundle, with arbitrary small loss of positivity.

As a direct consequence of the approximation statement, we have the following corollary.

COROLLARY 5.10. If E is a strongly psef vector bundle of rank r over a compact Kihler manifold (X,w),
then det(E) is a psef line bundle.

ProOOF. On X \ Z,,, the curvature inequality
iOgmp* p,, < Mepw®Id

implies that i© ., gm g ger . = —rank(S™E)meyw. On the other hand

mrank(S™ E)

det S™E = (det E)®~
Therefore, the induced metric on det(E) satisfies on X \ Z,, the curvature inequality
1O4et(B) = —TEMW.

Let us point out that the metric h,, is smooth on X (although it might vanish at some points). The induced
metric on —det(FE) is locally bounded. In other words, the local weight of the dual metric on det(FE) is
locally bounded from above. By the Riemann extension theorem, the curvature inequality holds in the sense
of currents throughout X, and not only on X \ Z,,. By weak compactness, up to taking some subsequence,
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we get in the limit a closed positive current belonging to the class ¢;(det EY). This shows that det(E) is
psef. O

Another direct application of the approximation is the following corollary.

COROLLARY 5.11. Let E be a vector bundle over a compact Kdihler manifold (X,w). The following
properties are equivalent.

(1) E is strongly psef.

(2) For any m € N* S™FE is strongly psef.

(3) There exists m € N* such that S™E is strongly psef.

ProoF. (2) implies (3) trivially. (3) implies (1) as in the proof of (2) implying (1) in Proposition 5.2.1.
(1) implies (2) is a direct consequence of Proposition 5.2.1. All symmetric products S™FE of E (p € N*)
are quotients of symmetric products of SP(S™F). On the other hand, the induced metric on the quotient
bundle of a vector bundle will satisfy similar curvature condition as the original metric as in point (1) the
following corollary. O

As a consequence, one can also define "Q—twisted" strongly psef vector bundles as follows.

DEFINITION 5.12. Let (X,w) be a compact Kdihler manifold and E a holomorphic vector bundle on X
and D be a Q—line bundle. Then E{D) is said to be Q—twisted strongly pseudo-effective (Q—strongly psef
for short) if S™E ® Ox(mD) is strongly psef for some (hence any by Corollary 5.11) m > 0 such that
Ox(mD) is a line bundle.

As in [DPS94], one can derive some natural algebraic properties of strongly psef vector bundles.

COROLLARY 5.13 (Algebraic properties of strongly psef vector bundles).

(1) A quotient bundle of a strongly psef vector bundle is strongly psef.

(2) A direct summand of strongly psef vector bundles is strongly psef.

(8) A direct sum of strongly psef vector bundles is strongly psef.

(4) A tensor product (or Schur functor of positive weight) of strongly psef vector bundles is strongly
psef.

PrOOF. One can obtain lower bounds of the curvature through calculations very similar to those of
[DPS94]. We first show that the induced singular metric has analytic singularities.

Assume F to be strongly psef. The surjective bundle morphism E — @ induces a closed immersion
of P(Q) into P(E), and the restriction of Op(g)(1) to P(Q) is Op(gy(1). The singular metrics on Op(gy(1)
prescribed in the definition of a strongly psef vector bundle induce by restriction singular metrics with
analytic singularities on Op(g)(1). If we observe that all metrics involved are smooth over inverse images of
non-empty Zariski open sets, we infer that the restricted metrics are not identically infinite. This concludes
the proof of (1).

(1) implies (2) since a direct summand can be seen as a quotient bundle. Now, let E, F' be two strongly
psef vector bundles. The Hermitian metrics on Opgy(1) and Op(py(1) correspond to Finsler metrics on E*
and F* denoted by hg,hr. Then hg + hp defines a Finsler metric with analytic singularities on E* @ F'*.
It corresponds to a Hermitian metric on Op(ggr) (1), and the properties required in the definition can easily
be checked for hg + hp if they are satisfied for hg and hp. This concludes the proof of (3).

By Corollary 5.11 and (3), S?(E @ F) is strongly psef as soon as E, F are. Since

SYE@F)=S’E®(EQ F)® S°F,

we infer by (2) that E'® F' is strongly psef. Finally, the fact that a Schur tensor power is a direct summand
of a tensor product implies (4). O

COROLLARY 5.14. Let

0-S—>FEF->Q—0

be an exact sequence of holomorphic vector bundles. If E and (det(Q))™! are strongly psef, then S is strongly
psef.

PROOF. We have S = A*~1S* ® det S where s is the rank of S. By dualizing and taking the s — 1
exterior product, we get a surjective bundle morphism

ASTIE* - A6 = S® (det S) 1.
On the other hand, we have det £ =~ det S ® det @), thus we have a surjective bundle morphism
AN TIE® (det Q) — S

where 7 is the rank of E by tensoring det E. By (4) of Corollary 5.13, A" *"'E® (det Q) ! is strongly psef.
By (1) of Corollary 5.13, S is strongly psef. O
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5.3. Reflexive sheaves

In this section, we show that a numerically flat reflexive sheaf on a compact K&hler manifold is in fact
a vector bundle. We need the following topological lemmata.

LEMMA 5.15. Let X be an arbitrary complez manifold (non necessarily compact) and E be a vector
bundle on X. Let Xo be a Zariski open set in X with codim(X \ Xg) = 3. Then the morphism induced by
the restriction morphism H' (X, E) — H'(X,, E) is surjective.

Proor. We start by proving that
Hl ((C‘3 N {(Ov Oa 0)}7 Oc3\{(0,0,0)}) =0.
It is done by direct calculation. Cover C3 \ {(0,0,0)} by three Stein open sets isomorphic to C* x C2, say
U; = {z; # 0}, with coordinates (2o, 21, 22). A 1-cochain can be identified with a triple of convergent power
series (fo1, fo2, f12) with fia (say) of type

a By
Z Capy®0 %1 %2
(0.8,7)€Z2 xN

over C*2 x C (the intersection of two Stein open sets). Similarly, fo2 is a sum over («, 3,7) € Z x N x Z and
fo1 is a sum over (o, 3,7) € N x Z2,

The condition that (fo1, fo2, f12) is closed means that fo1 — fo2 + f12 = 0 on the intersection of the three
Stein open sets Uy n Uy n Us, biholomorphic to C*3. We can write fy; as a sum of three convergent power
series gd1, gd1, go1 such that go1 has only positive power terms, gJ; has only negative power terms in zy and
gé, has only negative power terms in z;. Similarly, we decompose foa, f12. Now the closeness condition is
equivalent to

go1 —goz + 912 =0, 901 = Goo» G2 = Goo»  Yo1 + 912 = 0.
We define a 0-cochain in such a way that its differential is (fo1, foz, f12). On Uy, resp. Uy, Us, we take the
convergent power series go1 + go;, TeSp. gia, —012 — Jao- This implies that every 1-cocycle is exact, hence

H'(C? <. {(0,0,0)}, Ocs((0,0,0)}) = 0.

Now, on every polydisc D in C3, a holomorphic function is uniquely determined by its Taylor expansion at
origin, and the same calculation shows that

Hl (D N {(07 Oa O)}v OD\{(O,(],O)}) =0.
By a similar calculation, we can show that for any polydisc D of dimension at least 3,
H' (D~ {0},0p_j0}) = 0.
By the Kiinneth formula, for B’ x (B” \ {0}) where B’, B” are polydiscs with dimension of B” at least 3,
we have HI(B/ X (B” AN {0}), OB’X(B”\{O})) = 0.

We now return to the general case. By the standard lemma below ensuring the existence of stratifications
of analytic sets, we can reduce ourselves to the situation where X \ X is a closed manifold.

Cover X by the Stein open sets U, and By := Bj; x Bj such that X is covered by U, and Bj; x (B5 ~{0})
where B’B, Bg are polydiscs with dimension of B’ﬁ' at least 3. Assume that E is trivial on U, and Bg. Cover
By x (Bj ~{0}) by Bg (1 <7 < dimBg) such that each Bg is isomorphic to a polydisc minus a hyperplane
defined as zero set of one coordinate. Since U,, Bg are Stein, the cohomology on X, can be calculated as

the Cech cohomology with respect to this open covering of X, which we denote by V. We also denote by U/
the open covering of X consisting of the sets U, Bs. Any element s of H!(Xp, E) can be represented by a
family of sections

2l Y1572 Y172
(Sar,a2:Sap: 85" 8518 ) €

[[T(Ua, AUy, E) x [ [T(Ua 0 BY, E) x | [T(B} n B}, E) x | [T(B}' n B}, E).
Since Hl(B’ﬁ X Bg, E) = 0 by the previous case, there exists
(spe]rsy B

SuCh that fOI‘ any ﬂ ﬁXed
Y172 ] +1 .7 ] +1 72
83 = (_ )’Yl 89 + (_ )72 83 .

Define a 0-cochain

(s5,00e [ [T(BS, E) x [ [T(Ua, E).
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Then we have (Say,a,, 505,55 %84 4) +0(—s3,0) as another representative of the same cohomology class

on Xy. The components in 1“(Bg1 N Bgz , E) are 0 by construction. Thus we can assume that the components
in T'(Bj' n B*, E) are 0 from the beginning.

Since the representative is closed, the components in T'(Bj n Ua, E) glue to a section sq 5 € T'(Bg ~
(Bj x {0}) n Ua, E) when v varies. By the Hartogs theorem, this section extends across the submanifold
Bj; x {0}, as its codimension is at least 3. The components in T'(B}! n Bj?, E) can be glued into a section
of F(Bgi N Bg,, E) when v, varies, and into a section of I'(Bg, N Bg;’, E) when ~, varies. By the unique
continuation theorem for holomorphic functions, in fact they define a holomorphic section sg, g, of £ on
Bﬁl @) Bﬁ2.

We claim that after performing this glueing, the sections

(Sar.azs S8 581,82) € | [T(Uay 0 Uay, E) x [ [T(Ua 0 By, B) x | [T(By, n Bg,, E)

define a 1-cocycle of X with respect to the open covering U,, Bs, and that its class in H'(Xy, E) is exactly
s.

The reason is as follows. The image of (Sa; s, Sa.8s55,.8,) from HY (U, E) to H (U n Xo, E) is just
the restriction of sections. The covering V is a refinement of &/ N X given by the inclusion of open sets:
Uy € Uy, Bg C Bg. The image under this refinement of open sets is precisely s. O

LEMMA 5.16 (Stratification of analytic sets, see e.g. Proposition 5.6 in Chap. IT of [Dem12b]).
Let Z ¢ X be an analytic subset of dimension n. Then Z admits a stratification & = Zpy1 < -+ C Zg=Z
by closed analytic sets Zy of dimension ni > ngi1 such that Zy \ Zx11 is a closed complex submanifold of
dimension ny of X \ Zg11.

Let us point out that the result is false if the codimension is equal to 2. For example, the group
H'(C? ~{(0,0)}, Oc2((0,0)}) is infinite dimensional, while H'(C?, O¢2) = 0 by Cartan’s theorem B.

LEMMA 5.17. (analogue of lemma 11.13 in [Voi02a])
Let X be a complex manifold (not necessary compact) and Y be a closed submanifold of codimension at
least v + 1. Then the restriction map

H'(X,R) - H'(X \Y,R)
is an isomorphism for [ < 2r.
ProoOF. We have the long exact sequence of relative cohomology
- HYX,X\Y,R) - H'(X,R) » H(X \Y,R) » HT (X, X \Y,R)--- .
On the other hand, we have by the excision lemma that for U a tubular neighborhood of Y
HY(X,X \Y,R) =~ H(U,U \Y,R).
By Thom isomorphism theorem, we have
H'7?"(Y,R) =~ H'(U,U \ Y, R).

We remark that X as a complex manifold is orientable, so does U. Hence the Thom class in coefficient Z
exists by Theorem 4.D.10. in [Hat02]. The natural inclusion Z — R sends the Thom class in coefficient Z
to the Thom class in coefficient R. Thus we have the Thom isomorphism by the Corollary 4.D.9 in [Hat02].
It follows that for j < codim Y, H7(X, X \ Y,R) = 0. This finishes the proof of the lemma using the exact
sequence. U

LEMMA 5.18. Let X be a complex manifold (not necessary compact) and Y be a closed analytic subset
of codimension at least r + 1. Then the restriction map

H'(X,R) - H(X \Y,R)
is an isomorphism for [ < 2r.

ProOF. It is a direct consequence of lemmata 5.16 and 5.17. (|

We recall briefly the construction of Chern classes of a coherent sheaf F in the de Rham cohomology.
We refer to [GR58] for more details. If X is connected complex compact manifold (or more generally a
Zariski open set U of in X), by [Voi02a], F does not necessarily admit a resolution by holomorphic vector
bundles. On the other hand, a real analytic coherent sheaf possesses a resolution by real analytic vector
bundles. Let
0—E" — ... B’ - F®Ro, O3 -0
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be a resolution of F ®p OD}}*M by real analytic vector bundles E? where (’)H){}*an is sheaf of real analytic
function on X and n is the complex dimension of X. Define the total Chern class of F by

Co(F) := Hc.(Ei)(*l)i.

By restriction on U, same formula defines co(F|y). It can be check that this is independent the choice of
resolution.

LEMMA 5.19. Let F be a coherent torsion sheaf over a compact complex manifold X (not necessarily
Kabhler) of dimension n. Assume that F is supported in a SNC divisor E = U, E; where E; are the irreducible
components. Let o be a smooth closed form over X such that o|g, = 0 for any i. Then for any i <n,

J ci(F) Aa™ " =0.
X

More generally we have for any i < n and any cohomology class 5 of X,
f ch(F) AB A" =0.
X

PROOF. Denote for any divisor D (not necessarily irreducible) Gp(X) the Grothendieck group of co-
herent sheaves over X supported in D. We have exact sequence

@iGE, (X) - Gg(X) — 0.
Let (F;) € ®;Gp,(X) be a preimage of F. Then we have by construction of Chern character class (cf.
[Gril0]),
Ch(]:) = ZZE,*(Ch(]:z)td(NE,/X)_l)

where ip, is the closed immersion and td(Ng,, x) is the Todd class of the normal bundle of E;. For any
cohomology class § on X,

J- ch(F) A B Ara™ = ZJ ch(Fi) td(Npg, x) " A il BAiga =0
X i E;

since i, a = 0. O
As an application of this lemma, we have the following result.

LEMMA 5.20. Let F be a reflexive sheaf over a compact complex manifold X. Let o : X > X bea
modification of X such that there exists a SNC divisor E in X such that

0: XNE—-X~n(E)
is biholomorphism with E a SNC divisor and the codimension of w(E) at least 8 and o*F/Tors is locally

free. Then we have that for i = 1,2
¢i(F) = o4(ci(c* F /Tors)).

ProOF. First observe that such a modification always exists by the fundamental work of [Ros68],
[GR70], [Rie71].

Without loss of generality we can assume that the dimension of X is at least 3. Otherwise, F is locally
free and the result is direct. By Poincaré duality, it is the same to prove that for i = 1,2 and any cohomology
class o we have that

JX i(F) na= JX(ci(a*}"/Tors)) A o*a.

Recall that o* ch(F) = ¥,(—1)" ch(L'c*F) where L'c* is the i-th left derived functor of o*. Without loss
of generality, we can assume that F is locally free over X \ 7(F). In particular, L'c*F for any i > 0 is
supported in the exceptional divisor. On the other hand, the torsion part of ¢* is also supported in the
exceptional divisor. By the above lemma, we have that

J_ (¢i(0*F/Tors)) A c*a = j_ o*(c;(F)) A o*a
X X
which concludes the proof. 0

We now introduce the definition of nef and strongly psef torsion-free sheaves.

DEFINITION 5.21 (Nef/ Strongly psef torsion-free sheaf).
Assume that F is a torsion free sheaf over a compact complexr manifold X. We say that F is nef (resp.
strongly psef) if there exists some modification 7 : X — X such that m* F/Tors is a nef (resp. strongly psef)
vector bundle where Tors means the torsion part.
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Notice that for any further modification 7’ : X’ — X, 7/*(n* F/Tors) = (m o 7')* F /Tors (in particular,
further pull back is still a nef or strongly psef vector bundle). In fact, for any morphism #’, 7, there exist
natural surjective morphisms

(ron)*F = n"*n*F — 7"*(x*F/Tors) — (n"*(n* F/Tors))/Tors

which induces a surjection (7’ o 7)*F/Tors — (7"*(7*F/Tors))/Tors. It is generic isomorphism on which F
is locally free. Thus the kernel of the induced morphism is a torsion sheaf. Since (7’ o 7)*F/Tors is torsion
free, the morphism is also injective.

More generally, we show in the next remark that the definition is independent of the choice of the pull
back.

REMARK 5.22. By the work of [Ros68], [GR70], [Rie71], for any torsion-free sheaf F over a compact
complex manifold, there exists a modification 7 : X — X such that n*F /Tors is a locally free sheaf (i.e. a
vector bundle). In the above definition, we say that F is nef or strongly psef if 7*F /Tors is nef or strongly
psef.

Let us recall here theorem 1.B.1 of [Paun98|. Let f : Y — X be a surjective holomorphic map between
compact complex manifolds. Let o be a cohomology class in the Bott-Chern cohomology class H;’é(X ,C).
Then « is nef if and only if f*« is nef.

For the vector bundle case, a modification ¢ : X — X induces a surjection 6 : P(c*E) — P(E) where E
is a vector bundle over X. The pull back of Op(g)(1) under & is Op(,# g)(1). Thus o*E is nef if and only if
Op(o+ (1) is nef which is equivalent to say that Op(gy(1) is nef, i.e. E is nef.

Thus in the above definition, it is same to say that F is nef if and only if for every modification o : X — X
such that o*F/Tors is a vector bundle, o*F/Tors is nef.

Similarly, let f: Y — X be a surjective holomorphic map between compact complex manifolds. Let «
be a cohomology class in the Bott-Chern cohomology class Hg’é(X, C). Then « is psef if and only if f*« is
psef. The pull back of a strongly psef vector bundle E under a modification o is psef if and only if E itself
is psef. Once a smooth metric has been fixed on £, the singular metrics on Op(,+ ) (1) (resp. on Op(p) (1))
are identified with quasi-psh functions. Let us observe that the push forward of a psh function with analytic
singularities under a proper modification is still a psh function with analytic singularities. The singular set of
the pushed forward weight on Op(gy(1) is the image of the singular set of the weight function on Op,* g (1).

More precisely, denote by 7 : P(6*E) — X and 7 : P(E) — X the projections. We have moG = oo#. For
a simple blow-up with a smooth irreducible centre, the opposite of the cohomology class of the exceptional
divisor has a smooth representative that is positive along the fibers of the projectivised normal bundle. From
this, it is easy to see that exists a smooth form wg on X such that o*wx + wp is a Kéhler form on X, and
{wg} = —{[E]} for a suitable combination E = }}J,E;, d; € R-¢ of the irreducible components E; of the
exceptional divisor. Notice that {o4wg} is the zero cohomology class. Denote by ¢ a quasi psh function on
X such that

wWE = —[E] + u?ap
Assume that o*F is strongly psef and let us use a reference metric o*hy induced by a smooth metric hq
on E. Then there exist quasi-psh functions 1. with analytic singularities such that

i@(@p(a*E)(l),o*hooewa) > —e*(o*wx +wg),
and o*hpe ¥=~7 ¢ are singular metrics with analytic singularities on Opexp)y(1). By taking the push-

forward of the quasi-psh functions . + e7*¢ under the modification &, we get singular metrics h. :=
hope~Tx(Wetem®9) o Op() (1) possessing analytic singularities and satisfying the condition

’L@(OP(E) (1), hE) = —Eﬂ*wx.

In the above definition, it is thus the same to say that F is strongly psef if and only if for every modification
o : X — X such that o*F/Tors is a vector bundle, o*F/Tors is strongly psef.

In fact, following the arguments in [Paun98] and [DPS94]|, we can prove a more general result.

THEOREM 5.23. Let f : Y — X be a surjective holomorphic map between compact Kihler manifolds.
Let E be a vector bundle over X. Then f*FE is strongly psef if and only if E is strongly psef.

PROOF. It is easy to see that E is strongly psef implies that f*F is strongly psef. To prove the inverse
direction, we use the Hironaka flattening theorem which shows the existence of a commutative diagram

Z 2 X
Wl e
f
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where Z is a compact Kéhler complex space, 7 a flat morphism (i.e. with equidimensional fibres) and o a
composition of blow-ups of smooth centres. In the previous remark, we prove that the pull back of a vector
bundle under a blow-up of smooth center is strongly psef if and only if it is itself strongly psef. The result
will follow if we prove that the pull back of a vector bundle under a flat morphism is strongly psef if and only
if it is itself strongly psef. Intuitively, we would want to take the quasi-psh weight at any point to be the
supremum of the quasi-psh weight on the pre-image of that point. But this operation does not necessarily
give the desired lower bound of curvature. In order to overcome this difficulty, we use a modified version of
the argument given in [DPS94] proposition 1.8, as follows. O

PROPOSITION 5.3.1. Let f:Y — X be a surjective holomorphic map with equidimensional fibres where
X is a compact Kdhler manifold and Y is a compact Kihler complex space. Let E be a vector bundle over
X. Then f*E is strongly psef if and only if E is strongly psef.

PRrOOF. The proof is essentially the same as for Théoréme 1.B.1 in [Paun98] and Proposition 1.8
in [DPS94]. We just outline the arguments with the necessary modifications.

We denote by the same symbol f the induced map P(f*FE) — P(E). Let a be the curvature form in the
cohomology class ¢1(Op(g)(1)) induced by some smooth metric on E. Let 1. be quasi psh functions with
analytic singularities on P(f*E) such that

i
fra+ %061116 > —ew', >0,

for some Kéhler form w’ on P(f*FE). The existence follows from the definition of a strongly psef vector
bundle (the definition of a strongly psef vector bundle is still valid for a compact Kéhler complex space).

Denote by p the dimension of fibres. For every y € P(f*E) there exist local holomorphic functions
w1, -+ ,wp in a neighbourhood U of y such that z — (f(z), w1(2), - ,wp(2)) is a proper finite morphism
from U to a neighbourhood of {f(y)} x {0} in P(E) x CP. Thus there exist local coordinates centered at
f(y) on P(E) such that

|F(2) = F(y)|* + Z lwi(2)]* >0

on oU, where F' = (Fy,--- , F,) denote the local coordinate components of f.

Since P(f*FE) is compact, we can cover P(f*FE) by finitely many such sets Uy, centered at yi € P(f*E),
and find corresponding holomorphic functions (w§’“), e ,w,(,k)) on Uy, as well as components F(¥). Each
Uy, can be supposed to be embedded as a closed analytic set of some open set in CN* with coordinates
(w%k), e ,w;(,k),--~ ,wj(\’,ck)) (i-e., we complete (wgk),--- ,wz(;k)) into a local coordinate system of CN*). By
construction,

204 = inf IFW () = FO )2+ Y [wi(2)] > 0.

1<j<p

We can even suppose that the open sets

Vii={z€ U [FE(2) - FO )2+ Y [0 (2)? < ok}

1<j<p

cover P(f*E). Define for z € Uy

k k
M) = 3 P 2(FP ) - FO@)R + Y [P ()P -6,

1<i<Ng 1<j<p
and for z € P(E),
poi= sup (Ya(y) + AP (y))
yef~1(z)nUk
where the supremum is also taken with respect to k. The curvature condition is checked in the same way as
in [Paun98] and [DPS94].

Let us observe that by using a regularization, one can assume that the quasi psh weight 1. is continuous
(i.e. locally the weight is of the form clog Y \gj|2 + f where f is continuous, and not just bounded).

By choosing ¢ small enough, we get . continuous with values in [—oo, o[. In fact, for & small enough,
)\gk) is strictly negative on the boundary of Uy and positive on Vj. Thus the function U, (y) := ¥.4(y) +
i A (y) is continuous on Y. Since . (z) = supye-1(,) ¥e(y), e is continuous on X.

We now turn ourselves to the proof that ¢. has analytic singularities. Observe that ¢. has the same

sup,

singularities as the function SUPye f—1(z) Yet (y) on X, since the functions )\gk) are bounded. We claim the



100 5. PSEUDO-EFFECTIVE AND NUMERICALLY FLAT REFLEXIVE SHEAVES

following more general fact: let f : Y — X be a proper morphism between complex spaces, and . be a
quasi psh function with analytic singularities on Y, then the function

fep(x) = sup o(y)
yef~(z)
has analytic singularities on X. Here “¢ is a quasi-psh function over a complex space” means that ¢ can
be locally extended as a quasi-psh function to any open set of C"V in which Y can be embedded as a closed
analytic set; that ¢ has analytic singularities means for every y € Y, there exists an open set on which
¢ = clog(>_|gi|?) + f, with holomorphic functions g; and a bounded function f.

By Hironaka, there exists a modification o : ¥ — Y such that Y is smooth. By considering f o ¢ and
¢ oo, we are reduced to the case where Y is smooth. For every z € X, we can cover f~!(x) by finite open
sets Uy such that the restriction of ¢ to each open set is of the form clog )] \gz(k)|2 + O(1), where g; are
holomorphic functions on this open set and O(1) is a bounded term. There exists an open neighbourhood
V of x such that f~(V) < uUy. For every z € V,

frp(z) =sup  sup  p(y).
k yef—1(z)nUy
Since a finite supremum of quasi-psh functions with analytic singularities still has analytic singularities, it
is enough to show that sup,cs-1(,)~u, ©(y) has analytic singularities for every k. Since we take a finite
supremum, the bounded terms will remain bounded after taking the supremum, therefore we are only
concerned with the logarithmic term in what follows.

Let Ji be the maximal germ of ideal sheaf at = such that f*J;|y, < (ggk)) with respect to the inclusion
relation. (Here one may have to shrink the open set Uy, i.e. the inclusion is to be understood in the
(k)
)
1

sense of germs at any point of f~!(x).) Then the ideal (g, ') is generated by finitely many holomorphic

functions that are either of the form f *h&k) for some holomorphic function germ at x, or of the form fék) for
some holomorphic function on Uy. We claim that the zero set V(fék)) is not of the form f‘l(f(V(ngk)))).
Otherwise, by Hilbert’s Nullstensatz, f[(,k) is contained in the germ of pull back of the prime ideal sheaf
vanishing on f(V( fgk))), contradicting the maximality of Ji. Therefore

og(Y g2y (@) = sup log(OL[FF AP + DM,
« B

yef~H(x)nUy .

which also has analytic singularities. O

REMARK 5.24. Observe that when the manifold X is projective, there exists the subtlety in the definition
of strongly psef torsion free sheaf. Recall that a torsion free sheaf F over a projective manifold X with an
ample line bundle A is called weakly positive in the sense of Nakayama (cf. [Nak04]) if for any a € N,
there exists b € N* such that (S®F)vV ® A’ is globally generated at some point (hence generically globally
generated). Our definition of strongly psef torsion free sheaf implies that it is the weak positive torsion free
sheaf in the sense of Nakayama, but not inversely in general.

First we show that if F is a strongly psef torsion free sheaf, then it is weakly positive in the sense
of Nakayama. Let o : X — X be a composition of blow-ups of the smooth centers such that the pull
back of torsion free coherent sheaf o*F/Tors is a strongly psef vector bundle. Let A be an ample line
bundle over X. For b large enough, 0*A? — E is an ample line bundle over X where E is the exceptional
divisor. S?(o* F/Tors) @ 0* A’ @ O(—E) is generically globally generated over X by possible larger b and by
changing O(—FE) by its multiple. It is from the assumption that o*F/Tors is a strongly psef vector bundle
over X. By tensoring the canonical section of the line bundle O(E), S%*(o* F/Tors) ® o* A® is generically
globally generated over X. Thus the same holds for (Sym“b}" )VV ® Ab over X by the natural isomorphism
(Sym™ F)vY ® A’ — [0 (Sym® (o* F/Tors) ® o* AY)]V V.

To indicate the subtlety, we use the same notations as above. For the inverse direction, we hope to
show that (S°(c* F/Tors))¥ ¥ ® o* A is generically globally generated over X for large b from the fact that
(S® F)vv ® AY is generically globally generated over X for large b. Let S be the analytic set of codimension
at least 2 in X such that o : X ~ E — X ~S is biholomorphic. But the global sections

HO(X,(S®F)"V @ A®) =~ HO(X . S, (S®F)VV @ A®) ~ H)(X \ E,S%®(c* F/Tors) @ o* A®)

do not necessarily extend over X even seen as a section of S**(c* F/Tors)®c* A’® A where A is an arbitrary
ample line bundle over X. The reason is that the sections may have essentially singularity along E.

A typical example is the following. Let S be an analytic set of codimension at least two over a projective
manifold X and let Zg be the ideal sheaf associated to S. The bidual of Zg is Ox as well as all the symmetric
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power. Let U be any open set of X. We have that for any m and any vector bundle F
HY(U,(S™Z5)"V @ E) ~ HY (U N S,(S™Zs)"Y ® E) = HY (U S,E) =~ H'(U,E)

where the last equality follows from the Hartogs theorem. As a consequence, for any ample divisor A and
any a € N*, (S%Zg)VV ® A’ is globally generated for b large enough. In particular, Zs is weakly positive in
the sense of Nakayama.

However, observe that Zg has some “negativity" along .S, even if it is weakly positive in the sense of
Nakayama. It can be seen as follows. Let o : X — X be a composition of blow-ups with smooth centers
such that 0*Zg/Tors = O ¢ (—F) where E is an effective divisor supported in the exceptional divisor. By the
definition of strongly psef torsion free sheaf, if Zg is strongly psef, 0*Zg/Tors should be a psef vector bundle
since it is a line bundle. But it is not the case which means that Zg is not strongly psef. In other words,
our definition of strong psef torsion free sheaf is reasonable which forbids the above kind of negativity which
will appear in some birational models.

Like the bundle case, the strongly psef torsion-free sheaf is stable under the usual algebraic operations,
with the consideration of taking torsion free part.

ExampPLE 5.25. (The pull back of a torsion free sheaf is not necessarily torsion free)

According to the knowledge of the author, this example can be found in [GR70]. Let X be the blow
up of the origin of C? with 7 : X — C2. Let (z,y) be the coordinate of C2. The maximal ideal at the origin
can be resolved by the Koszul complex

chz —)(—y,m) O%%Q — my — 0
where the second arrow sends (f, g) to 2 f +yg. The pull back is right exact which induces the exact sequence

Ox MO?{Q — 1*mg =mp ®o, Ox =0

where in local coordinates m(u,v) = (uv,v) and the the second arrow sends (f, g) to f®z + g®y. We denote
the second arrow as e. We claim that e(—1,u) is not a zero element in 7*mgy. Otherwise, (—1,u) is in the
kernel of € which by exactitude is of the form (—vf,uvf) for some f. Contradiction.

Oun the other hand (—1, ) is torsion in 7*mg since ve(—1,u) = —VRz+vu®yY = (—vr*r+vur*y)®1 = 0.
Consider the composition O%?/Ker(¢) — n*my — Ox. The image is Zr where Zp is the ideal sheaf
associated to the exceptional divisor E. The first morphism is in fact isomorphism. In local coordinates
the composition sends (f,g) to uvf + vg. The kernel is Ox(—1,u) which is torsion. We have isomorphism
between OF?/Ker(e) modulo this kernel and Zg. Thus the image under ¢ (i.e. Oxe(—1,u)) gives all the
torsion elements. In other words, 7*mg/Tors = Ox (—F).

In fact, the morphism u : O¢z — 0%922 induces a meromorphic map from C? to Gr(1,2) which sends z
to the image of u(z). The meromorphic map induces a holomorphic map from the blow up of the origin to
Gr(1,2) which resolves the indeterminacy set of the meromorphic morphism. The total space of Op2(—1) is
also the blow-up of C? at the origin with the natural projection 7 : X — P2. The pull back of the tautological
line bundle over Gr(1,2) admits exact sequence

09 = 10 — 7*Op2(1) — 0.

The image of the kernel of ¢ in 7#Op2 (1) is 0. Thus we have factorisation O* /Ker () =~ n*mg — 7¥Op2 (1) —
0. The kernel of the factorisation is supported in the exceptional divisor which is thus torsion. In conclusion,
we have isomorphism 7*mg/Tors =~ 7*Op=2(1). This shows in this special case how to find a modification such
that the pull back of a torsion free sheaf is locally free modulo torsion. This construction was generalised
in [Ros68], [GR70], [Rie71]. (We recall it briefly in Lemma 5.30.)

EXAMPLE 5.26. (The symmetric and wedge power of torsion free sheaves are not necessarily torsion
free)

Consider the maximal ideal sheaf my in X = C2. The wedge power A%?mg is supported at the origin,
however z; A z is a non zero element of germ of A%mq at the origin.

For the symmetric powers, let us first recall the following important theorem in [Mic64] (cf. also theorem
3 of [LaB14]). Let A be a domain, M be a finitely generated A-module. Then @;>¢S*M is a domain if
and only if S*M is torsion free, for all i > 0. To give a concrete example, consider a surjection from a
holomorphic vector bundle E to a torsion free sheaf F over a compact manifold X. Then P(F) is a closed
analytic set of P(E). If P(F) is not irreducible, by the above theorem there exists i > 0 such that S'F is
not torsion free.

We summarise the algebraic properties of strongly psef torsion free sheaf in the following propositions.
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PROPOSITION 5.3.2. Let F be a torsion free sheaf over a compact Kihler manifold (X,w). The following
properties are equivalent.

(1) F is strongly psef.

(2) For any m € N* | S™F modulo its torsion part is strongly psef.

(3) There exists m € N* such that S™F modulo its torsion part is strongly psef.

PRrROOF. (1) implies (2) as follows. Let o be a modification of X such that o* F/Tors and o*(S™F /Tors)/Tors
are vector bundles where Tors means the torsion part. We have a surjection

o*SMF ~ SMo*F — o*(S™F/Tors).
It induces a surjection
S™(o*F/Tors) — o*(S™F/Tors)/Tors.
This is justified as follows. Recall that there exists an exact sequence
Tors ® S™ o*F — S™(c*F) — S™(c* F/Tors) — 0

induced by
0 — Tors — o*F — o*/Tors — 0.

The image of Tors @ S™ !o*F consists of torsion elements, and induces the morphism S™(o*F/Tors) —
o*(S™F /Tors)/Tors. Thus Corollary 5.11 and (1) of Corollary 5.13 implies that o*(S™F/Tors)/Tors is a
strongly psef vector bundle.

We finally check that (3) implies (1). With the same notation, the above surjection is in fact an
isomorphism since both sides have the same rank. Thus Corollary 5.11 implies that ¢*F/Tors is a strongly
psef vector bundle. O

DEFINITION 5.27. Let (X,w) be a compact Kihler manifold, F be a torsion free sheaf on X and D be a
Q- Cartier divisor. Then F(D) is said to be Q—twisted strongly pseudo-effective ( Q—twisted strongly psef
for short) if S™F/Tors ® Ox(mD) is strongly psef for some (hence any by Proposition 5.3.2) m > 0 such
that Ox(mD) is a line bundle.

PROPOSITION 5.3.3.

(1) A torsion free quotient sheaf of a strongly psef torsion free sheaf is strongly psef.

(2) A direct summand of strongly psef torsion free sheaf is strongly psef.

(8) A direct sum of strongly psef torsion free sheaves is strongly psef.

(4) A tensor product (or Schur functor of positive weight) modulo its torsion part of strongly psef
torsion free sheaves is strongly psef.

PrROOF. Let F — Q be a surjective morphism of torsion free sheaves with F strongly psef over X. Let
o : X — X be a modification such that o* F/Tors,c* Q/Tors are vector bundles. By assumption o* F/Tors
is a strongly psef vector bundle. ¢* is right exact which induces surjection o* F'/Tors — o*Q/Tors passing
to quotient. Thus o*Q/Tors is a quotient bundle of o* F/Tors Using Proposition 5.2.1 we can conclude that
o*Q/Tors is strongly psef. The other conclusions are similar and can be obtained in a formal manner. O

A natural operation for torsion free sheaves consists of taking the bidual. The relationships between a
torsion free sheaf and its bidual will be stated in the next propositions. The following example indicates
some of the occurring phenomena.

EXAMPLE 5.28. Let D be a smooth effective divisor over a compact Kahler manifold X with canonical

section sp. We have generic surjective sheaf morphism
a: 0% - Ox(D)®Ox(2D)

induced by global section (sp,s%). Then det(a) =~ Ox(3D) has a global section s%. The division by
this global section induces a bimeromorphic map between the total spaces of (Ox(D) @ Ox(2D))* and
0P ® det(a)*. Since OF? is strongly psef, there exists a global (quasi-)psh function on the total space of
its dual. Pairing with s%, induces a global (quasi-)psh function on the total space of O%* ® det(a)* which
induces a (quasi-)psh function on the total space of (Ox (D) @ Ox(2D))* outside a smooth divisor. We
claim that this (quasi-)psh function extends across the divisor by boundedness from above. In particular,
(Ox (D) ® Ox(2D)) is strongly psef.

For example, locally consider the psh function on the total space of 0)@(2 ® det(a)*

p(z, €1, €2) == log (|2’ (& + [&2]*))
where a(z, &1, &) = (z, 261, 2°&2). The induced psh function outside the divisor {z = 0} is given by

(2,61, &2) == log (|2 (|&1/2 + [€2/2%)),
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which is bounded from above near the divisor and can thus be extended across the divisor.

PROPOSITION 5.3.4. Let £, F be two torsion free sheaves over a compact Kdihler manifold (X,w). Let
a: & — F be a morphism of sheaves which is an isomorphism over a Zariski open set X \ A. Assume that
& is strongly psef. Then F is strongly psef.

PROOF. Let o be a modification of X such that o*&/Tors and o*F/Tors are locally free and o*& /Tors is
strongly psef. We can assume that o*« is an isomorphism outside a divisor E. Then det(c*«) is an effective
divisor supported in E. Division by this global section induces bimeromorphic map between the total spaces
of (6*F/Tors)* and (c*E/Tors)* ®det(c*a)*. By Proposition 5.2.1, the fact that o*&/Tors is strongly psef
implies the existence of quasi-psh functions with analytic singularities on the total space of the symmetric
powers of (c*&/Tors)*. Pairing with the canonical section of det(c*«) induces global (quasi-)psh functions
on the total space of S™(0*E/Tors ® det())*. We denote these quasi-psh functions by w,,. The functions
wyy, induce quasi-psh function on the total space of (S™o*F/Tors)* outside the divisor E. We claim that
these quasi-psh functions extend across all the irreducible components of the divisor E by boundedness from
above. In particular, by Proposition 5.2.1, c*F/Tors is a strongly psef vector bundle.

The claim is proven by a local coordinate calculation. In local coordinate o*«(z,&) = (2, A(2)€§) where
A(z) a matrix of holomorphic functions. Locally

wm(z,€) = log(z |Bj(2)€]*) + O(1) + log(| det (A(2))[*)

where B;(z) are matrices of holomorphic functions. The induced quasi-psh functions outside the divisor E
over (S™o*F/Tors)* are of the form

W (z,8) = log(Z |Bj(2) A1 (2)€]*) + O(1) + log(| det(A(2))[?).

Since the inverse is given by the co-adjoint of the matrix divided by its determinant, w,, is locally bounded
from above near the divisor. O

The inverse direction is in general false. To get a counter-example, we consider an inclusion Z, — Ox
where A is an analytic set of codimension at least 2. Then Z4 is not strongly psef, while Ox is. However,
the inclusion is an isomorphism over X \ A.

PRroroSITION 5.3.5. Let
be an exact sequence of torsion free sheaves. If F,(det(Q))~! are strongly psef and S is reflexive, then S is
strongly psef.

PROOF. We have S = A*~18* ®det S where s is the rank of S outside an analytic set A of codimension

at least 2. Assume that all three sheaves are locally free outside A. We have a surjective bundle morphism
over X \ A

A" F /Tors ® (det Q) — S
where 7 is the rank of F. Since S is reflexive (hence normal), the morphism extends as a morphism of sheaves
over X. By (4) of Proposition 5.3.3, A"~*~1F /Tors® (det Q) ! is strongly psef. By (1) of Proposition 5.3.3,
the image of this sheaf morphism is strongly psef. Since the image ans S are isomorphism over X \ A, by
Proposition 5.3.4, S is strongly psef. U

PROPOSITION 5.3.6. Let F be a strongly psef torsion free sheaf of rank r. Then det(F) is a psef line
bundle.

PROOF. By (4) of Proposition 5.3.3, A" F/Tors is strongly psef. Since A”F/Tors and det(F) is generic
isomorphism, by Proposition 5.3.4, det(F) is a psef line bundle. O

PROPOSITION 5.3.7. Let F be a strongly psef torsion free sheaf with ¢1(F) = 0. Then F* is a strongly
psef reflexive sheaf.

PRrROOF. The fact that F* is reflexive is purely algebraic. Outside an analytic set of codimension at least
2, F is locally free. Over this open set, we have an isomorphism
A" F/Tors ® (det(F)) ™t — F*.
Since F* is reflexive, this morphism extends across the analytic set. By (4) of Proposition 5.3.3, the left

hand term is strongly psef. Thus the image is strongly psef. Moreover, the fact that we have a generic
isomorphism implies that F* is strongly psef. O
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LEMMA 5.29. Let F be a strongly psef torsion free sheaf with ¢i(F) = 0 over X. Let o : X > X bea
modification such that both o*F /Tors and o*F* /Tors are locally free. Then cq(o*F/Tors) = 0.

PROOF. There exists a natural morphism
o* F*/Tors — (o*F/Tors)*
which is a generic isomorphism. Note that (o*F/Tors)* =~ (¢*F)* by Corollary 4.9 Chap. V [Kob75].
The above morphism is induced by o*F* — (o*F/Tors)* =~ (¢*F)* under which the torsion part is in the

kernel since (o*F)* is torsion free. By proposition 5.3.4, (o*F/Tors)* is strongly psef. In other words, both
o*F/Tors and its dual are strongly psef vector bundle which infers that its first Chern class is 0. O

11

We can now prove the main result of this section assuming the main theorem (whose proof is independent
of the main result of this section). For the convenience of readers, we recall here the construction of reduction
of torsion free sheaf to the vector bundle case modulo torsion. For a complete proof, we recommend the
paper of [Ros68|.

LEMMA 5.30. Let F be a torsion free sheaf of generic rank r over X a complex manifold. There exists
some modification o : X — X such that o*F/Tors is locally free. Then for every i = 1,2, the Chern class
ci(F) is well defined in the Bott-Chern cohomology group H e (X,C).

If X is compact Kdhler and F is a reflexive sheaf, these two Chern classes can be represented by normal
currents (in fact differences of two closed positive currents).

PRroor. Cover X by Stein open sets U,. On each U,, there exists an exact sequence
OB = OB~ Flu, 0
which induces a meromorphic map
fa : Uy ——» GI‘(’/‘, Na)'
The maps O}?ya — O}?iv = are locally given as holomorphic matrices A, (z) which are of constant rank over

Zariski open sets, and f, sends z to the image of A, (z). Let U, be the graph of this map fa : Uq — Gr(r,Ny)
be the correspondlng morphism (given by the second projection of the graph) The U, glue into a complex
space X sitting over X, and by Hironaka, we can find a modification o : X — X — X such that X is
smooth and o*F/Tors is a vector bundle (the pull-back to X comes locally from the tautological quotient
bundle Q, of Gr(r, N,) generically, hence is already a vector bundle generically). It can be shown that
the surjection o*F — @, which is in fact generic isomorphism. This infers in particular that the kernel
is torsion and isomorphism o*F/Tors — @Q,. We equip Q. with a smooth metric (e.g. the standard one
coming from a Hermitian structure on CV+) and use a partition of unity to endow o*F/Tors with a smooth
metric h. Then the Chern forms ¢;(c*F/Tors, h) associated with the curvature tensor represent the Chern
classes ¢;(o* F /Tors) in Bott-Chern cohomology on X. We define the Chern classes ¢;(F/Tors) in Bott-Chern
cohomology on X to be the direct images oyc;(0*F, h) for i = 1,2 as in Lemma 5.20. (Notice that in lemma
5.20, we work with the de Rham cohomology. By the work of [Gril0] and the result in Chapter 6, the same
formula holds in the complex Bott-Chern cohomology.) It is well known that these classes are independent
of the choice of the metric h.

Assume now that X is a compact Kahler manifold. Then X is also a compact Kéhler manifold. Let w
be a smooth Kihler form on X. Then for C large enough, ¢;(c*F/Tors, h) can be written as difference of
two positive forms ¢;(o*F/Tors, h) + Cw® and Cw’. The second statement holds by taking direct images of
these positive forms. O

PROPOSITION 5.3.8. Let F be a nef reflexive sheaf over a compact Kihler manifold (X, w) with ¢1(F) = 0.
Then F is a nef vector bundle.

PRrOOF. The proof is analogous to those of [CCM19] and [HIM19]. The essential point is the following
result of [BS94]: for a polystable reflexive sheaf F of rank r over a compact n-dimensional Kahler manifold
(X,w), one has the Bogomolov inequality

J (2rco(F) — (r— 1)01(}')2) Awh2 >0,
X

and the equality holds if and only if F is locally free and its Hermitian-Finstein metric gives a projective flat
connection.

The proof is obtained by an induction on the rank of F. The general strategy of the induction is the
same as in [HIM19]. For the convenience of the reader, we outline here the arguments with the necessary
modifications. In the rank one case, reflexive sheaves are locally free, hence line bundles, and the conclusion is
immediate. Let us observe however that the reflexivity condition is necessary even in that case; for example,
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the ideal sheaf associated with an analytic set of codimension at least 2 is of generic rank one, torsion free,
but not locally free.
In the higher rank case, we consider the Harder-Narasimhan filtration of F with respect to w, say

Fo=0->F =>Fy— > Fp:=F

where F;/F;_1 is w-stable for every ¢ and pq = pio = -+ = iy, and where p; = p,,(F;/F;—1) is the slope of
F;/Fj—1 with respect to w. Now, consider the coherent subsheaf S = F,,_1. Notice that by construction &
can be chosen to be reflexive by taking the double dual if necessary, as this preserves the rank, first Chern
class and slope. Then we get a short exact sequence

and Q is a torsion-free coherent sheaf. Pick a modification o such that o*F/Tors and o*(Q)/Tors are
vector bundles, with o*F/Tors being nef. The pull back functor is right exact, so we have surjective bundle
morphism ¢*F/Tors — o*(Q)/Tors. Thus o*(Q)/Tors is a nef vector bundle. By definition, we conclude
that Q is nef.

In particular, its first Chern class ¢1(Q) is pseudo-effective by Proposition 5.3.6. On the other hand, we
have

0=rci(F) =c1(S) +c1(Q)
by the assumption. Thus

J c1(Q) Aw™ !t = —f c1(S) Aw™ !t <0,
b'e b'e

and Cl(Q) = Cl(S) =0.

Let X be the largest open set on which F is locally free. We claim that S is a vector subbundle of
F on Xy, and that the morphism & — F is a bundle morphism on Xy; for this, we apply corollary 1.20
of [DPS94]| and prove that det(Q*) — AP F* is an injective bundle morphism on Xy, where p is the rank of
Q. This corresponds to a global section 7 € HY(X, (AP F*)** @ det(Q**)) since X \ X is of codimension at
least 3.

There exists a modification o : X — X such that ¢*F/Tors and o* F*/Tors are vector bundles. We can
assume that o is obtained as a composition of smooth centres in X ~\ Xo. We can view o*7 as an element
in HY(X,o*[(APF*)** ® det(Q**)]) as well as an element in H°(X, AP(c* F/Tors)* ® o* det(Q**)) under
natural morphism

¥ [(APF*)**] — [0 (APF*)]** — AP(c™ F/Tors)*.
More precisely, the natural morphism ¢*F* — (¢*F)* induces
o*(APF*) = APo™*(F*) — APo™(F)* = AP(o* F/Tors)*.

By taking the bidual, we obtain the second morphism.

Let us observe that APc*F/Tors is nef, and also that det(Q*) is nef since ¢1(Q) = 0. Thus ¢*7 cannot
vanish at any point of X by Prop. 1.16 of [DPS94]. Thus 7 does not vanish on X,. This concludes the
proof of the claim. In particular, @ is a vector bundle over Xj.

Let s be the rank of S, which must be strictly smaller than the rank r of 7. We consider the surjective
bundle morphism

AT F@det QF —> S

on Xy. Since F is nef and det Q* is numerical trivial, we infer that S is a strongly psef reflexive sheaf
by Proposition 5.3.5. Thus over some bimeromorphic model of X, the pull back of S is a strongly psef
vector bundle modulo torsion with vanishing first Chern class by Lemma 5.29. By Theorem 5.48, over the
bimeromorphic model, the vector bundle is in fact nef. By the induction hypothesis, S is in fact a nef vector
bundle over X.

@ is a priori not necessarily a reflexive sheaf, but the double dual Q** is. To conclude that Q** is in fact
a vector bundle by the result of Bando-Siu recalled at the beginning, it is enough to prove that co(Q**) = 0.
Since Q is locally free on Xy and the codimension of X \ X is at least 3, Q coincides with Q** on Xj.
Let i be the inclusion Xy — X. Since the restriction map i* : H*(X,R) — H*(X,,R) is an isomorphism by
Lemma 5.18 and

*e2(Q) = 2(Qlx,) = 2(Q%|x,) = i e2(Q™),

we infer that c3(Q) = c2(Q**). Let 7 : P(6*Q/Tors) — X be the projectivization of the nef vector bundle

o*Q/Tors, viewed as a quotient of the nef vector bundle o*F/Tors. By the definition of Segre classes, we
have

T4 (€1 (Op (o 0 Tors) (1)) ) = s2(0* Q/Tors) = ¢} (c* Q/Tors) — ca(c* Q/Tors).
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In particular,

J s2(0*Q/Tors) A "2 = f c1(Op(o# 0 /Tors) (1) 5T A @™ 7% > 0,
X P(c%* Q/Tors)
as o*Q/Tors is a nef vector bundle and thus sy(c*Q/Tors) = —co(c* Q/Tors) is a positive class, containing

a closed positive (2,2)-current. Here & is any Kihler form on X. Since ¢;(0*Q/Tors) = 0 by Lemma 5.29,
we deduce that

J~ ca(0*Q/Tors) A "2 < 0.
X

The inequality is valid for any Kéhler form on X. In particular, we can take a sequence of Kihler metrics
on X converging to 7*w, and this implies

J c2(Q) AW = J~ c2(0*Q/Tors) A W™ 2 < 0.
X X
Notice that the first equality is by Lemma 5.20. The Bogomolov inequality shows that
f CQ(Q**) A wnf2 =0.
X

Q** is thus in fact a vector bundle by the result of Bando-Siu.

The extension class obtained from the exact sequence on X, can be extended to the extension class
(defined on X) of S and Q** by lemma 5.15. The extended class by construction determines a vector bundle
whose restriction to X is isomorphic to F. Since F is a reflexive sheaf, in fact we have an isomorphism on
X. This proves that F is in fact a vector bundle. By remark 5.22, it is a nef vector bundle. O

REMARK 5.31. It has been observed by Demailly, that the previous proposition can be derived from
Theorem 1.18 of [DPS94] (cf. also [Dengl6]). Let us recall the statement of this theorem. Let E be a
numerically flat vector bundle over a compact Kihler manifold (X,w). Then there exists a filtration of E

O=Eyckc---cE,=F

by vector subbundles such that the quotients Ey/Eyx_1 are hermitian flat, i.e. given by unitary representations
m1(X) = U(rg).

Since F is a nef reflexive sheaf with ¢;(F) = 0, there exists a modification such that ¢ : X — X such
that o*F/Tors is a nef vector bundle with vanishing first Chern class by lemma 5.29. By the above theorem,
there exists a filtration of o*F/Tors

0=Eyc Eyc---cE,=0c*F/Tors

by vector bundles over X such that Ej, /Ek_l are hermitian flat.

We claim that Ek/Ek_l = 0*(Fx/FEx—1) for some vector bundle Ey/Ey_; over X for each k. (For the
moment, Ej/Ej_1 is just a notion, not the quotient of two vector bundles over X. But it is the case which
is proven in the next paragraph.) The reason is as follows. oy : 7r1()~( ) — m1(X) is an isomorphism since
we can assume that o is composition of a sequence of blows-up of smooth centres and as a CW complex a
blow-up of smooth center changes skeleton of (real) codimension at least 2 which preserves the fundamental
group. Thus we have unitary representations (X ) — U(ry) which proves the claim.

Let A be the analytic set such that F is locally free over X \ A. Since F is reflexive, A is of codimension
at least 3 in X. Without loss of generality, we can assume that ¢ induces an isomorphism between =1 (X \ A)
and X ~ A. Thus we have extension of vector bundles over X ~\ A

0— Ep_1]lx<a — Ex|lx<a — Ex—1/Ep_1|xa — 0
where E}, are a priori vector bundles defined over X \ A. By lemma 5.15, the extensions extend across A.
Thus there exist vector bundles Fj, over X which are the extensions of Fy_1 and Fy/Ej_1.
By construction, we have isomorphism F|x. 4 = Ep|x-a. Since F is reflexive, we have isomorphism
F = E, over X. In particular, F is a vector bundle.

REMARK 5.32. In the proof, we have shown that co(F) = c2(F**) € H*(X,R) from the fact that
F = F** outside an analytic set of codimension at least 3. In fact, the equality also holds in Bott-Chern
cohomology, and the latter equality induces the previous one by the natural morphism from the Bott-Chern
cohomology to the de Rham cohomology.

The proof is an easy consequence of the following diagram, using the same notation as in the proof.

HE2(X,C) — HEZ(X ~ A,C)

| |

H*(X,C) = H*(X < A,C).
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By the Hodge decomposition theorem, the left vertical arrow is an injection, and this implies that the map
Hf;’é(X, C) — Hé’é(X ~ A, C) is also injective.

REMARK 5.33. The difficulty to extend the above proof to the case where F is a strongly psef reflexive

sheaf is to prove that
J Cl((9]13’(<7>*‘]-'/T01rs)(1))7.-"_1 A (‘:}n_Q =0
P(o%* F/Tors)

on some bimeromorphic model of X. In the nef case, with small loss of positivity, the cohomology class can be
represented by smooth forms. Thus the above inequality is trivial when taking the small loss tending to 0. In
the strongly psef case, the cohomology class can be represented by a current with analytic singularities only
at the expense of some loss of positivity. However a wedge product of arbitrary currents is not always well
defined. In the next section, we make a “digression” and discuss what we call Segre currents to investigate
the strongly psef case.

5.4. Segre forms

In this section, we are interested in the following problem. Assume that E is a holomorphic vector
bundle of rank r over a compact Kéhler manifold (X,w). Can one find a (k, k)-closed positive current in
the Segre class s (E) := my(c1(Opg)(1))¥T771)? We have to point out that a similar construction is made
in [LRRS18|, based on Demailly’s improvement ( [Dem92a]) of the Bedford-Taylor theory ( [BT82]) of
Monge-Ampére operators. The authors define the corresponding current as a limit of smooth forms induced
from local smooth regularizations of the metric given in [Raul5]. Compared to theirs, our construction has
the advantage that we define the relevant current as a limit of currents defined by Monge-Ampére operators
without necessarily employing a regularizing sequence. In that way, we are still in a position to estimate the
Lelong number of the limiting Segre current in terms by the Lelong number of the approximating sequence
of weights. On the other hand, in the case of [LRRS18], the approximation is given by smooth forms,
hence the Lelong number of the approximation forms is identically zero, and one does not a priori obtain any
information on the Lelong number of the limiting current. The Lelong number estimate will be necessary in
the next section.

In particular, starting from a singular metric with analytic singularities on Opgy(1), the construction
yields a singular metric on det(E) which is unique up to a constant and, as a consequence, the curvature of
the induced metric of det(E) is uniquely determined by the curvature of the metric on Op(g)(1).

To start with, we state some results of pluripotential theory. Some of this material is not essentially
needed in the construction, but it provides intuition for a few arguments. The following statement is an
improvement by Demailly of the Bedford-Taylor theory ( [BT82]) of Monge-Ampére operators.

LEMMA 5.34 (Proposition 10.2 [Dem93]).
Let ¢ be a plurisubharmonic function on a (non necessarily compact) complex manifold X such that v is
locally bounded on X ~\ A, where A is an analytic subset of X of codimension = p + 1 at each point. Let 0
be a closed positive current of bidimension (p,p).

Then 0 A i0dy can be defined in such a way that 0 A 100y = lim,_,o 0 A 1001, in the weak topology of
currents, for any decreasing sequence (¢, ),>1 of plurisubharmonic functions converging to 1. Moreover, at
every point x € X we have

V(H A %(75@/},1) = v(0,2)v(v, x).

PROPOSITION 5.4.1. Let T be a (k, k)-closed positive current in the cohomology class o, over a compact
Kahler manifold (X,w). Let U be a coordinate open set of X such that on U,

Clw< L(35|z|2 < Cw.
27

Then for any ro > 0 and for any v € U with d(z,0U) = ro with respect to the Fuclidean metric in the
coordinate chart, we have for r < rg

1 . 02n72k .
T JB(I’T) TAw < 77”(2)”7% (a-{w}™™").

Here (- {w}™™") is the intersection product of cohomology classes.

PROOF. It is enough to prove that

1 Cnfk

- 9 n—k e
7r2n—2k JB(Z,T) T A (%08|z| ) < W(a . {w} )
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By a basic observation of Lelong in [Lel68], the left hand term is a increasing function with respect to r.
Thus we have
1 1

7 = n—~k 7 = n—k
- T A (—86|z|2> < 7J T A (—8(’7’|z|2) .
r2n—2k fB(z,r) 27 ,rgn—Qk B(a.ro) 21

However, the right hand term is at most

1 A 02n72k
R f TA(Cw)"™ < g (@ {w}™)
To B(z,ro0) To

since T is a positive current. U
We will need the following standard local parametrization theorem for analytic sets.

LEMMA 5.35 (local parametrization theorem, cf. e.g. Theorem 4.19, Chap. II [Dem12b]).
Let T be an ideal in Oy, let A=V (Z) and A; be the irreducible components of A whose dimension is equal
to the dimension of A. For every j and d = d; = dimA;, there exists a generic choice of coordinates

(Zlvz”) = (217 Ty Rdy R4, 7Zn) € A/ X A//

such that the restriction of the canonical projection to the first component m; : A; n (A" x A”) — A’ is a
finite and proper ramified cover, which moreover yields an étale cover Aj nn= (A’ S) — A’ S, where S
is an analytic subset in A'.

LEMMA 5.36. Let A be a compact analytic subset of a complex manifold M. Assume that dimcA = d
and dim¢M = n. Let (W,) be relatively compact coordinate charts which form a finite open covering of A.
Without loss of generality, assume that W, is taken to be relatively compact in some larger coordinate chart,
and is the coordinate chart provided by the local parametrization theorem. Then there exists C > 0 such that
for r > 0 small enough, the open neighbourhood | J, {x € W, ,d(A,x) <r} of A can be covered by at most T%
balls of radius r. Here the distance is calculated by the coordinate distance in each coordinate chart.

PRrROOF. It is enough to prove this for each W,. We verify that the volume of the open set {z €
W,,d(A,z) < r} has an upper bound Cr**~2¢ for r small enough. We take in each local tubular neigh-
bourhood a maximal family of points with mutual coordinate distance > r. For r small enough, every point
is at distance < r to at least one of the centres, otherwise the family of points would not be maximal. In
particular, balls of radius 2r centered at these points cover the tubular neighbourhood. On the other hand,
balls of radius r/2 centered at these points are disjoint. Therefore, the number of such balls N, satisfies the
relation

2n
CnNu(g) < Vol({x e Wy, d(A, z) <r}) < Cr2n2d,

Here ¢, is the volume of the unit ball in C"*. The lemma follows from the inequality.

The proof of the volume estimate for the tubular neighbourhood is obtained by induction on the dimen-
sion of the analytic set A. When d = 0, i.e. when A consists of a finite set, the estimate is trivial. Assume
that we have already proven the result for all analytic sets of dimension d < dimc(A4) — 1. Then, we use
the local parametrization theorem and the fact that A n 7=1(9) is a proper analytic set of A n W,. By the
induction hypothesis, we have

Vol({z € W,,,d(A n 7 1(S),z) < r}) < Cr2n—2d+2
and a similar estimate holds for the open set of points with distance < r to the irreducible components of A
of dimension < d—1. On the other hand, An7~'(A’~\ S) is contained in the union of A; + 3" ;. D(0,7)e;
where e; is the standard basis of C” and (0, r) is the disc in C centered at 0 of radius r. Here A; are the
irreducible components of dimension d of A intersecting 7—*(A’ \ S). Each open set A; + > . D(0,7)e;
has volume equal to c¢(n, d)Vol(A4;)r?"~24 where c(n, d) is the volume of the unit disc in C"~%. This is because
that 7 induces a biholomorphism between A;+3 " ;. D(0,7)e; and A’ x0+3" , , D(0,7)e; which preserves
the Lebesgue volume form. On the other hand the tubular neighbourhood of A {d(x, A) < r} is included
in the union of the union of A; + > , ., D(0,7)e;, the open set of points whose distance to the dimension

< d — 1 irreducible components of A < r and {x € W,,d(A n 7= 1(S),z) < r} from which the estimate
follows. O

PROPOSITION 5.4.2. Let T be a (k, k)-closed positive current in the cohomology class «, over a compact
Kahler manifold (X,w). Let A be an analytic subset of X of dimension d. There exists a sequence of open
neighbourhoods U(r) of A (independent of T') such that (.., U(r) = A and the volume of U(r) is at most
Cr®=24 with a constant C independent of T. Moreover there exists C' independent of T such that

J T AWk < Ofp2n—2k—2d
U(r)
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Here C' depends on o, (X,w) and A.

ProOOF. This is a direct consequence of Proposition 5.4.1 and Lemma 5.36. O

Remark that in particular, if A is codimension at least k + 1, the contribution of mass of T" on U(r)
vanishes asymptotically as » — 0, and the above Proposition holds uniformly for all positive currents 7'
in the cohomology class a. The codimension condition is optimal since that the mass of the current [A]
associated with a k-dimensional analytic set A does not vanish in the limit.

Now we return to the construction of positive currents in the Segre classes. Observe that a codimension
condition is needed to ensure the existence of such closed positive currents; this is shown by the following
easy example.

EXAMPLE 5.37. Let X be the blow up of P? at some point and let D be the exceptional divisor. Consider
the vector bundle E := O(D)®" of rank r > 2 over X. Corollary 5.13 shows that E is a strongly psef vector
bundle as a direct sum of strongly psef line bundles.

An equivalent definition of total Segre class (i.e. ), sx(E)) is the inverse of the total Chern class.
Remark that for any vector bundles E, F, the total Chern class satisfies the axiom ¢(E @ F) = ¢(E)c(F).
Thus the same relation holds for the total Segre class since the cohomological ring is commutative. In
particular, s(E) = s(O(D))" with sz(E) = (5)(c1(O(D))?) = —(3). Thus there exists no closed positive
current in the class so(E).

For the convenience of the reader, we recall the definition of a Finsler metric on a vector bundle, as
introduced in [Kob75] (cf. also [Dem99]).

DEFINITION 5.38. A (positive definite) Finsler metric on a holomorphic vector bundle E is a positive
complex homogeneous function

§ =[]l

defined on each fibre E,, that is, such that |A\||l, = |M[€]x for each A € C and € € E,, and |£|, > 0 for
£ #0.

We say that the metric is smooth if it is smooth outside of the zero section on the total space of F.
Observe that a Finsler metric on a line bundle L is the same as a Hermitian metric on L. A Finsler metric
on E* can also be viewed as a Hermitian metric 2* on the line bundle OP(E)(—I) (as the total space of
Op(g)(—1) coincides with the blow-up of E* along the zero section). In particular, Op(g)(1) carries a smooth
Hermitian metric of positive Chern curvature form if and only if F carries a smooth Finsler metric whose
logarithmic indicatrix defined by

x(x,€) = log|¢].

is plurisubharmonic on the total space. Let us observe that the logarithmic indicatrix has a pole along the
zero section and can be extended as a global psh function on the total space, even though it is a priori psh
only outside of the zero section.

Assume that we have a smooth Hermitian metric on (E, h) rather than just a Finsler metric on E, and
let us consider the corresponding Hermitian metric on Op(g)(1). We have the following calculation, which
can be seen as a direct consequence of intersection theory, and is still valid on the level of forms without
passing to cohomology classes: for every k€ N

i r+k
7 (5:00unD1) = su(Eh),
Note that the Segre classes can be written in terms of Chern classes and the Chern classes can be represented
by the Chern forms derived from the curvature tensor. For our application, we only detail the calculation
for the case k = 1 that we need. For the general case, we refer for example to the papers [Div16], [Gull2]
and [Mou04]. The author thanks Simone Diverio for the references.

LEMMA 5.39. Let E be a holomorphic vector bundle of rank r on a (non necessarily compact) complex
manifold X. Let m be the canonical projection P(E) — X. Assume that E is endowed with a smooth
Hermitian metric h, and consider the induced metrics on Op(g) (1) and det(E) (which we still denote by h).
Then

2T s

where © means the curvature tensor.

72 (52000 (1)) = 3-0(det(E), det(n)
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PRroOF. To start with, we recall formula (15.15) of Chap. V in [Dem12b], expressing the curvature of
O(1) for the projectivisation of a vector bundle. Let (ey) be a normal coordinate frame of E at x9 € X and
let

iO(E)z, = chmyidzj AdZp®ex ®e,
be the curvature tensor of E. At any point a € P(E) represented by a vector Y}, axe} € E} of norm 1, the
curvature of Op(g)(1) is

@(OP(E)(I))a = chku)\a)\audzj AdzZy + Z df,\ A dEM
I1<A<r—1

where (£) are the coordinates near a on P(E), induced by unitary coordinates of the hyperplane a* < E¥ .
In other words, if P(E|y) is locally isomorphic to U x P"~! with coordinates (z,[£]), we have a canonical
projection pro : P(E) — P"~! and the curvature at (z,[£]) is given by

57002 (1) (2, [€]) = 72<€T

where wgg is the Fubini-Study metric on P"~!. Therefore we have

' " 2=O0p+, & .
T4 <2,;_®(O]}D(E)(1), h)) = —T J;Pril W A wFsl.

Observe that P—! >~ §27=1 /91 by the Hopf fibration. The Fubini-Study metric is the metric induced on the
quotient P"~! by the restriction of the standard Euclidean metric to the unit hypersphere. We denote by do
the volume form of the standard Euclidean metric restricted to that sphere. Then we have

7 (5200 W) =1 [ (LOme&Onndn
Note that for a Hermitian form Q(&,€) = Y \;|¢;|? we have
| @@ - Ju@ -1 3

since §g,, [&[*do(€) = L by symmetry. Thus we get

*
+ prowrs

s (5200011 = ~tre(5-Ops€,On = p-Odet(E). 1)

0

As a direct consequence of the above formula, if  is a smooth semi-positive metric on Opgy(1), the
induced metric on det(FE) is also semi-positive. This is the positive form what we want. More generally, the

forms 7, (5=0(Op(p) (1), h))”’c = si(E, h) are smooth positive currents in the k—th Segre class. Hence if h
is a smooth semi-positive metric on Opgy(1), we can find positive forms in the Segre classes, which we will
call Segre forms (or Segre currents) in the sequel.

In the case where the metric is singular, the construction is more complicated. The difficulty is that
Monge-Ampére operators are not always well-defined for arbitrary closed positive currents.

In general, for a strongly psef vector bundle, in order to get a singular metric with analytic singularities,
we have to allow a bounded negative part. Accordingly, we have to work in a more general setting. Let F be
a vector bundle of rank r on a compact Kéhler manifold (X,w), and let T be a closed positive (1, 1)-current
on P(E), in the cohomology class of a fixed closed smooth form «. Notice that that the restriction of the
cohomology class {a} is constant on any fibre of 7 : P(E) — X. A typical case is {a} = ¢1(Opg)(1)) + Cm*w
for some C' > 0. Write

T = a+iddp.
Assume that ¢ is smooth over P(E) \. A where A is an analytic set in P(E) such that A = 7—1(7(A)) and
7(A) is of codimension at least k in X. We wish to define a current m, 7" ~'**. A priori, this Monge-Ampére
operator is not well defined by just invoking the codimension condition, since the exponent r — 1+ k is larger
than the codimension k. This problem can be overcome by defining the desired current as a weak limit of a
sequence of less singular currents, in such a way that the limit is still unique.

Let v be a quasi-psh function on P(FE) that is smooth outside an analytic set A’ such that A’ is of
dimension at most n—k —1. In other words, the codimension of A" in P(E) is at least k+r. This implies that
the codimension of m(A’) in X is at least k4 1. Then the Monge-Ampére operator (a-+iddlog(e? +de?)) ~1+k
is well defined for every 6 > 0, as a consequence of Demailly’s techniques [Dem92a]. Thus, by a weak
compactness argument, the sequence of currents

Ty (o + i00log(e? + 6,e¥)) 1Tk
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which all belong to the cohomology class mea" '** has a weak limit as §, — 0 for some subsequence.
Observe that if we take ¢ = 0, for any ¢ > 0, the function log(e® + d) is a bounded quasi-psh function. In
that case the wedge product

7 (a0 + i0dlog(e® + 6)) L TF

is already well defined as a current by the work of [BT82]. However, we want the flexibility of choosing a
non constant potential ¢ in order to get quasi-psh functions with isolated singularities that can be used to
get Lelong number estimates. Note that since all currents involved are closed, the limit current is still closed.

Now, we show that the limit is uniquely defined. The intuition is as follows. As we have observed at
the end of Proposition 5.4.2, the family of currents indexed by § has a contribution of mass 0 along the
singular part of m(A’), and we can therefore guess that the limit should be independent of the choice of .
(Nevertheless, without passing to the limit, each current may still have a positive Lelong number at some
point of w(A’).)

LeMMA 5.40. The limit current is independent of the choice of the smooth representative o, as well as
of the choice of 1.

ProOF. Fix a sequence 4, tending to 0 such that the weak limit corresponding to o and ¥ = 0 exists.
Up to taking a subsequence which preserves the weak limit, we can assume in the following that the same
sequence ¢, gives a weak limit for different choice of o and . We will prove that the weak limits are the
same, although a priori they might be different.

Let &, o be two representatives in the same cohomology class. Then there exists a smooth function f
on P(F) such that

& = a+iddf.
Let ¢ be the quasi-psh function such that T = & + idd@. Without loss of generality, we can assume that
@ =@ — f. Thus we have

7 (@& + i00log(e? + 6,e¥))" 1HE = my (o + i00log(e? + 6,eV )1k,

Thus to prove that the limit is independent of the choice of «a, it is enough to prove that the limit is
independent of v, and this is what the proof will be devoted to from now on. On the regular part X \
(m(A) um(A")), the limit current is equal to

T (a +i00p) "1 F

by the continuity of Monge-Ampére operators with respect to bounded decreasing sequences and the fact
that the currents are smooth on the pre-image of X \ (7(A) um(A’)). Thus the limit currents corresponding
to different choices of ¢ coincide on the regular part. Now, consider a Kahler form & on P(E) satisfying the
conditions

a=-—0/2, 00y = —/2.

We can assume that the restriction of & over all the fibres P"~! is a fixed cohomology class. For example,
we can take

o =Cr*w+ Cl(O[p(E)(l), hoo)
for some C' » 0 and for a smooth metric ho on Op(gy (1) induced by a Hermitian metric on E. For any § > 0
we have
a + id0log(e¥ + de?)

* e’ - de¥ Jertv

e? + oe? e + de¥
in the sense of currents, and the lower bound is independent of §.
By adding and subtracting @ and using the Newton binomial formula, we see that the current (o +
i00log(e¥ + 6e¥))"tF~1 can be written as a difference of two closed positive currents equal to summations
of terms

W0 =) A — ) = —&

(o + i00log(e? + de¥) + @) A &7

with ¢+ j = r 4+ k — 1. Since the direct image functor transforms closed positive currents into closed positive
currents, 74 (o + i00log(e? + de¥))" k1 can also be written as a difference. If we compute the limit as §
tends to 0 (up to taking some convergent subsequence), the limit current will be a difference of two closed
positive currents, in particular, lim, ., 74 (o + i00log(e® + d,e¥))" 51 is a normal current.

Denote by T3, T the limit currents obtained with different choices of v, namely 1, and 5. Assume
that A’ is the union of the singular loci of 1; and 5. By assumption, w(A’) is of codimension at least k + 1
in X. Then Ty — T3 is a normal (k, k)-current supported in w(A) u w(A’). If the codimension of m(A) in X
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is at least k + 1, standard support theorems imply that T} = T5. If the codimension of m(A) in X is k, the
support, theorem yields

Ty — Ty = Y c,[Z)]

where Z,, are the codimension k irreducible components of 7(A) and ¢, € R, and there exists no components
of w(A’) as its codimension is higher. We now check that the limit current is independent of the choice of ¢
by a Lelong number calculation, i.e. by showing that ¢, = 0.

For any = € Zy; reg ~ (U, 2y, Zv U T(A')), there exists a coordinate chart V' such that x = 0, V' €
X ~m(A'), and Z,, = {z1 = --- = 2z, = 0} locally. Take a cut-off function 6 supported in V and define

T s = a+iddlog(e? + 66%),

Ty 5 = a +i0dlog(e? + 6@””“).
It is enough to prove that
lim (W*ng“l _ W*T;f;;r—l) A"k = 0
5*>0 X ’ ’
which will imply that

J (Tl — TQ) VAN Gw"_k =0.
X

By a direct calculation, we have that

k+r—1
k+r—1 k+r—1 _ J r+k—1—j
T1,5 - T2,5 = ( Z T1,5 A T2,5 ) A (Trs —Tas)
=0

ktr—1 ¢ 4 Setn
_ J r+k—1—j e e? + de
= ( J;O T1,5 VAN T2,6 > AN zaalog<w> .

An integration by parts gives

J (moThEr 1 Er=1) 5 gk 500 A Wk & J ko1 ¥ + de¥
T Ly T — T A ™ =J 1000 A W A E T ATy log().
< #1416 *L25 P(E) = 1,6 2,6 e® + de¥z
Define

e¥ + 667*”1)

Foi= 1°g<e«:+(sewz

which is a uniformly bounded function on V since V is outside of the image of the singular locus of 11,
under 7. Note also that the bound is independent of §. Moreover, Fs tends to 0 almost everywhere as § — 0.
The convergence is locally uniform outside of the pole set A of .

Define Z,, := {z € V,d(z,m(A)) < n} with respect to the Kéhler metric w. The volume of Z,, with respect
to w tends to 0 as n — 0 by the assumption that V' n 7(A) is a smooth submanifold in V. Now we separate
the estimate in different terms

J (F*le:{r71 - W*Tzkjgrfl) A QR = J
b'e

r+k—1
1000 A W™ R A ( 2 T) s A Tg‘gk_l_]> Fs
w1 (Zy) =0 7

r+k—1
+f 000 AW F A DT T ATy R,
n= N (V\Zy) j=0 ’ ’

and we use the Fubini theorem to perform a double integration with respect to the base direction V' ~\ Z,
(resp. Z,) and the fibration direction P"~!, for V sufficiently small. The first term in the integration is
bounded by

r+k—1
Cw™F+1L A ( Z (Ty5 + @) A (Tos5 + of))r+k_1_j>
§j=0

with C' independent of § since Fjs is uniformly bounded on V and 4006 is bounded by Cw for C large enough.

The currents T s and T5 5 are not smooth on Z,,, thus some attention has to be paid to apply the Fubini
theorem. Let U(n) (resp. U’(n)) be the open neighbourhoods of A (resp. A’) in P(E) given by Proposition
5.4.2. Note that T} 5 and Tb 5 are smooth near the boundary of U(n) u U’(n). Without loss of generality,
we can assume that 7—'(Z,) is contained in U(n) ~ U’(n). Take smooth currents T} 5 on U(n) u U’(n)
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cohomologous to T; 5, which coincide with T; s (i = 1,2) near the boundary of U(n) u U’(n). By Stokes’
theorem,

r+k—1
J WhTREL A Z (Ty5 + @) A (Tp + @) TE—17d
U(n)wU’(n)

Jj=0

r+k—1
:J Uﬁ%HA( Z(ﬁﬁ+@“W@ﬁ+@HFFg-
U)o’ (n) j=0

Therefore we can apply the Fubini theorem in the right hand side since all terms are smooth. The integral
on 7~1(Z,) is bounded from above by the integral of the same term on U(n) uU’(n) by the inclusion relation
7N (Zy) < Um) v U'(n).

We first perform the integration along the fibres P"~!. The integration of Z;fgil(

- T1,5 + L:J)j A (Tg,g +
@©)"+#=1=J7 along the fibre direction is a cohomological constant since we assume that the restriction of
cohomology class of v along each fibres is a fixed cohomology class on P"~!. Thus the integral on U(n)uU’(n)

is bounded from above by CSU(W)UU,(H) w™, for some C independent of §. Observe that the constant is the

same as the supremum of |Fs| on V (independent of ), since for  small enough V n U’(n) = .
The second term appearing in the integral is bounded by
r+k—1
sup | Fs|sup [i000|,w™ KL A ( Z (Ty5 + @) A (Tos + cD)”klj).
=1 (X~ Zy) X j=0
On V \ Z,, the currents T s and T s are smooth, thus the Fubini theorem applies. We first integrate
along P"~!. The integration of Z;:g_l((Tm + @) A (Ta,s + ©)"T*"177) along the fibre direction is a
cohomological constant as above. Thus the second term obtained after integrating is bounded from above
by C'sup,-1(xz,) |Fs|, for some C independent of 4.

For every ¢ > 0, there exist 1 such that CSU( w" < %/ There also exists dp such that

mnU’ (n)
Csupx .z, |Fs| < %, for every 6 < §p. Thus the two parts of estimate (integration on U(n) u U’(n) and on
71 (V \ Z,)) are both bounded from above by % for 0 < dp. This concludes the proof that the limit current
is independent the choice of 1.

U

In what follows we show that the weak limit is also independent of the subsequence ¢, if the weight
function ¢ has analytic singularities. It seems that the independence of the weak limit does not hold in
general if we only require that ¢ is smooth outside an analytic set of sufficient high codimension. However
some special cases can be easily checked.

EXAMPLE 5.41. Assume that there exists some Cy = C; > 0 such that
C18, <6, < Cqf),
up to taking some subsequence but with the same limit currents. Then the function
| e + 6,e?
oo| —— v
& e? + ) e?
is uniform bounded on P(E) (independently of v). It is locally uniformly convergent to 0 on 71 (X \ Z,).
The same arguments as above can be used to achieve the proof.
Another easy case is when the projection of the singular part of ¢ is of codimension at least k + 1. In

this case, different choices of subsequence 9, will have the same closed positive limit outside an analytic set
of codimension at least k + 1. By standard support theorems, they have to coincide over X.

The case of potentials with analytic singularities comes from the following observation of Demailly.

PROPOSITION 5.4.3. Let ¢ be a quasi-psh function with analytic singularities over on a (connected)
complex n-dimensional manifold X, and uw e C*(X). Then for any exponent p (1 < p < n), the asymptotic
limit of Monge-Ampére operator lims_o(i00log(e? + 6e¥))P is always well defined as a current (but not
necessarily positive, even when i00p > 0, and the limit may depend on u).

PROOF. By writing log(e¥ + de*) = log(e¥ ™" + ) + u and using a binomial expansion, it is sufficient to
consider the case u = 0, after replacing ¢ with ¢ — u. Let us now consider the divisorial case, i.e., assume
that X = C™ and that ¢ is of the form ¢ = log|f|* + 4 for some holomorphic function f = []", 2" € O(X)
and ¢ € C*(X). We can define h = e¢¥ a smooth Hermitian metric on L := Ox. We denote by V;, the
associated Chern connection.
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Then, for every § > 0, we have iddlog(e? + §) = iddlog(|f|? + §) which converge to i00p as § — 0+.
We will define the Monge-Ampeére operator (iddp)? as the limit of (iddlog(|f|% + 5))p as 6 — 0+. For every
6 > 0, we have

o)) KL V) (b (EVD VRV

A= 2
10008 (fTh +0) = 10T = “fE a5 B+ N UE+s T 1fETe
P 17
~ g op VD g O

Now, iV f,Vrf)is a (1,1)-form of rank 1. In particular, its wedge powers of exponents > 1 are equal to 0.
If we raise to power p, the Newton binomial formula implies

1 = P ) IfI7 \p=1 i i p—1
— o0l 219)) = s —{(Vnf,V -5-0
(27T og(|fl5 + )) (|f|}2l +6)? (‘f|% T 5) < nf,Viuf) A ( o L,h)
If12 \? i P
—0 .
+(|f|i+5) (- 55000)
The last term converges almost everywhere to (7—6) )P, thus it converges weakly to the same limit by
the bounded convergence theorem as § — 0+. We claim that
po|fI >
e Vif,V - [Z
(*) (|f|2 _1_5) p+l op < hf7 hf> [ f]

weakly, where [Z¢] is the current of integration on the zero divisor of f. Terms that depend on h in V f
are equal to fdy, and they can be seen to yield zero limits, using the Cauchy-Schwarz formula and the fact
that
2p—2
_POLfI If2<p
(If[7 + o)r+?

converges to zero almost everywhere. In fact the limit (if it exists) is a positive current as a limit of positive
currents. It will also be closed, since

S(_ PO pOLIE 1
o\ Vif,V e Vif)A0©

<(|f|2+5)p+1 o0 < hf7 h.f> (‘f|2+5)p+1 o <fa h >/\ L.,h
and we can again apply a Cauchy-Schwarz argument to see that the right hand side converges to 0. A priori
the limit current (if it exists) should be supported on |Z;|. However, at any regular point of Z,; we can find
local holomorphic coordinates in which f(z) = 2", where m is the multiplicity of the irreducible component.
An easy calculation yields

) f P8 |22 idep A AT
z1€C (

|27%]2 + o)+ 21

Equality (#*) can be checked e.g. by putting w = 21", using polar coordinates w = e’ and making a change

of variables ¢t = More generally, if f(z) =[], we have to consider the integration

[ I I T
{lzil<1} (H_[z 1% |2+5)p+1 (271') eucl

where weyc is the standard (1, 1)-form associated with the euclidean metric on C™. It is bounded by sums
of integrals of the type

r2+5

J p(sHHz 2 z ‘Zm1|2p 2 7’|Hz 2 z ‘d( ) ‘Hz 2 z |dZ /\wnfl.
{0<|zi|<1,2<i<n} (||].—Iz o 7 22+ 6)P (2m)" cul

The integral is finite by the Fubini theorem and a calculation similar to (xx), putting e.g. w = [ [/, 2]
In particular, up to taking a subsequence, the limit in formula (*) exists as 6 — 0+. By the support theorem
any limit current is associated to a divisor supported in |Zf|. To show that the weak limit is unique, it is
sufficient to check formula (*) at a regular point of |Zy| and to show that the coefficient is unique. This
actually follows from equality ().

As a consequence of the above calculations, we find

(m0moe17 +8)" = (1120 A (500a) + (1 (5=01)"
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For the general case, we apply Hironaka’s theorem. There exists a certain modification o : X > Xof X
such that o*¢ is locally of the form considered in the previous case, where f has a simple normal crossing
divisor. Thus the limit

. . AR P
Jim(idPlog(c? +9))" = o (

. . AR * D

lim (id0log(e” % + 6 )

§—0+ ( g( ))

exists by the weak continuity of the direct image operator o,. By the filtering property of modifications,
one can also see that the above limit is independent of the choice of the modification o. O

It follows directly from the proposition that the limit current is independent of the subsequence ¢, if
the weight function ¢ has analytic singularities. It is communicated has communicated to the us by Richard
Larkang that a similar calculation has been done in [ABW19] and [B119]. The advantage of the construction
made in lemma 5.40 is that under the assumption that the weight function is smooth outside of an analytic
set of sufficient high codimension, one can show that the limit current is positive. This is shown in theorem
5.43 below.

EXAMPLE 5.42. We describe below a special case of the previous construction. Let E be a strongly psef
vector bundle over a compact Kahler manifold (X,w). Let he be an arbitrary metric on E. Since Opg)(1)
is relatively ample with respect to the projection 7 : P(E) — X, there exists C' > 0 big enough such that

We take the above form as a smooth representative in the class ¢1(Op(g) (1)) + Cn*{w}. By definition of a
strongly psef vector bundle, there exists a singular metric h. with analytic singularities on Op(g)(1) such
that

iO(Op(p (1), he) = —em*w.
By the above construction, my (5= ©(Op(g)(1), h-) + C7*w)" is well defined for & small enough by taking that
¢ = 0. In the construction, all currents are positive currents. In particular, 7y (5=0(Opg) (1), he) + Cr*w)"

is a closed positive current on X for £ small enough. On the other hand,

1

2

Ty <2,L7T@(OIP(E)(1)a he) + CW*W) = T (

@(ow)(l),ha))

+ Ty <C’7T*w A (2;@((9]1»(}5)(1),]15))“1) +

In the --- summation, there are terms of the form

i <7r*wi 4 (;T@(OP(m(l)»hs))"_i)

for ¢ > 2. By the projection formula, we have

2

o (4 A (0O o)) = (0O 1)) n

By a degree consideration, for i > 2, the right hand side is 0 and for ¢ = 1 it is equal to w. In conclusion,

1

Tx (;T(")(O]P’(E)(l)yhs) + C’]T*UJ> = Tx (27_‘_@(0]}»(]5)(1), h€)> +Crw=0
in the sense of currents. In particular, (i@(OP(E)(l), ha))r is a quasi-positive current (i.e. a current

bounded below by a smooth form), belonging to the cohomology class ¢; (det(E)) by lemma 5.39.
More generally, we have the following Segre current construction.

THEOREM 5.43. (Main technical lemma) Let E be a vector bundle of rank r over a compact Kdihler
manifold (X,w), and let T be a closed positive (1,1)-current on P(E), belonging to the same cohomology
class as a smooth form «. Write

T = a +i00p.
Assume that ¢ is smooth over P(E) \ A, where w : P(E) — X is the projection and A is an analytic set in

P(E) such that A = 7=(7(A)) and 7(A) is of codimension at least k in X. Then there exists a (k, k)-positive
current in the class my {a} 1.
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PRrROOF. The desired current 7, (7" +*~1) has been constructed, and its uniqueness has been shown in
the previous lemma. It remains to show that m(77T*~1) is positive. It is enough to prove this near an
arbitrary point z € X, since positivity is a local property. There exists a smooth function ¢ on P(FE) such
that B

a+1i00Y =0
on an open neighbourhood U of x. Thus over U, for every d > 0, we have
o+ i0dlog(e? + 6e¥) = 0
using (*) in the previous lemma. Therefore, over U again, we see that

w7 = fim (o + i0log(e? + 5ev))H!

is positive as a limit of positive currents. Let us note that the restriction of the cohomology class {«a} is
constant on the fibres of = — this property being automatically true for any smooth proper morphism. [

REMARK 5.44. In fact, the above construction would work for any submersion 7 : X — Y of relative
dimension r — 1 and any psef cohomology class {a} € H1(X,R), when X,Y are compact Kihler manifolds.
The construction works for currents with analytic singularities of an adequate codimension, and in this way,
one gets gives a closed positive current in the direct image of wedge powers of {a}.

In the special case of Segre currents, we get

COROLLARY 5.45. Let E be a strongly psef vector bundle of rank r over a compact Kdihler manifold
(X,w). Let (Opgy(1), he) be a singular metric with analytic singularities such that
i@(Op(E)(l),hs) > —em*w
and the codimension of w(Sing(he)) is at least k in X. Then there exists a (k,k)-positive current in the
cohomology class my(c1(Opg) (1)) + en*{w})" 1. In particular, det(E) is a psef line bundle.

PRrROOF. The first part is a direct consequence of theorem 5.43. The second part is consequence of the
fact that when k& = 1 one has

74(e1(Op(iy (1) + e {w))" = e (det(B)) + ew.
O

REMARK 5.46. Let h be a smooth metric on Op(gy(1) (not necessarily coming from a Hermitian metric
on F). We can define an induced singular metric on det(E) in the following non canonical way. Fix an
arbitrary smooth Hermitian metric hy, on P(E). Then there exists ¢ € C®(P(E)) such that h = hype Y.
Therefore we have

O(Oe() (1), 1) ~ 5-O(Osy (1), ) = 5005
et(ho )e”? with

( Z Gr0@nm 1) (Zr@wpwxn,hm))r_l_j) .

i
27
Define a metric on det(E) by d

We have that ) ) '
1 = 7 T 7 r
30 = 4 ((%ewm)(l), n) = (5200 (1)) ) :
In other words, .
7 T
- O(det(B), det(har)e ) = ma (5-0(Op(ry (1),1))
If h comes from a Hermitian metric of E, we get precisely the same curvature formula as in lemma 5.39.

REMARK 5.47. The definition in the previous remark is non canonical in the sense that it depends on
the choice of the reference metric hy. This can be seen as follows. In analogy with the Monge-Ampére
functional, we consider the functional

My, : C*(P(E)) — C*(X)
r—1 . . . . .
i T = \J { r—l-j
T (gé% (50O (1. hio) + 5=000)" A (5=0(Orir) (1), 1)) ) .
Let ¢ be a smooth path in C*(P(E)). We compute the Fréchet differential

dMp, . (v¢)
dt

L=l P j ; r—1—j
=7, (wt % (5-0(08() (1), o) + 5-0001)" A (5-0(Os(y (1), hic) ) -

j=
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1
us

r—1 . . . . .
= i 1 = \J 1 r—1-j
T <wt;‘ay%6ﬁwt A (%@(OP(E)(l)vhoo) + %551/%) A (2 @(OIF’(E)(l)thO>) )
which, by an integration by parts, is equal to
. 1 r—1
T (wt(%@(oﬂmw)(l),hw)) ) .

Now let hu, hey be two smooth metrics on E and denote the induced metrics on Op(gy(1) by the same

notation. Let ¢; be a smooth path connecting ho, and he. For example we can take ¢, such that hee ¥t =
hi hlt. As a consequence of the calculation of Fréchet differential, our functional satisfies for any ¢ €
C*(P(E)) the cocycle relation

Mp, (¢ + 1) = My () + Mp,, (¥1).
Let us note that My, (¢ + 1) (resp. Mj_(¢)) is the weight function of the induced metric on det(E) with

respect to the reference metric ho, (resp. ho,), associated with the weight function ¢+ (resp. @) on P(E).
In particular, they correspond to metrics on det(F) that are induced by the same metric on Opgy(1), but

with different reference metrics ho, and ho,. Since iaéth (¢) is independent of the choice of the reference
metric hy, we have id0My,, (1) = 0, and this means that My (1) is a constant. Therefore the metric
defined in the previous remark is uniquely defined up to a constant.

5.5. Strongly pseudoeffective and numerically trivial bundles

In this section, we use the Lelong number estimate to show that a strongly psef vector bundle with trivial
first Chern class is in fact numerically flat. In particular, this implies that a strongly psef reflexive sheaf
with trivial first Chern class is in fact a numerically flat vector bundle. As an application of the previous
section, we get the following result.

THEOREM 5.48. (Main theorem) Let E be a strongly psef vector bundle on a compact Kdihler manifold
(X,w), such that ¢c1(E) = 0. Then E is a nef (and thus numerically flat) vector bundle.

ProOOF. We show through Lelong number estimates and regularization, that the vector bundle E is in
fact nef. Let h. be a singular metric with analytic singularities on Op(g)(1), such that

Z@(OP(E) (1)7 hs) = _E’IT*OJ.

Let us write he = hye™%= with respect to some smooth reference metric ho, on Op(g)(1). Define

i i\
T2 i= i (5-0(Orimy1)s o) + 5000 )

by means of Theorem 5.43. We have T, > —ew. More precisely, we are going to prove the Lelong number
estimate .
Tz = (sw view))
w,m(w)=z2

The proof of this estimate is similar to the proof of theorem 10.2 of [Dem93]. For the convenience of the
reader, we briefly outline the proof here. Fix wq € 77 !(z) and v = v(¢.,wp). The inequality is trivial when
~ = 0. Otherwise, for any ¢’ <+, let us define

P = (v —&")0(w)loglw — wol
where w is the coordinate near wgy and 6 is a cut off function near wgy. By lemma 5.40, we have

i - "

T. = li —6(0 heo) + =—00log(e?s + e

in the sense of currents. For every n so small that {|z| < n} is contained in a coordinate chart with m(wg) = 0,
we have
7 9 n—1
J T. A (—6610g|z| ) >
|zl<n 2

i i T 7 n—1
li —0(0 h — 00log(e¥= + de? — 00l 2
e[, 7 (7 00Onm o)+ 5on(e 60 ) o (5o

by the semi continuity of Monge-Ampére operators with respect to decreasing sequences. By construction,
we have ¢.(w) < ~loglw — wo| + C near wo, so 5=ddlog(e¥s + de¥') coincides with 5=00¢ on a small ball
B(wo,ns) < m#~1(B(0,n)). Thus we have

K KNPy @e Y ' P 2yn—1
jz|<n T (QWG(OP(E)(I)’}L@) + 2ﬂ_8010g(e + de )) A (2776010g|z| )
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> f (=O(Op(iy(1), hon) + == 00log(e?= + 5€¥))" A (s—ddlog|z[2)" ! = (y —&')".
lw—wo|<ns 2T 27 27
Taking n — 0 and €’ — 0 gives the Lelong number estimate.

We have proven in Corollary 5.45 that T, > —cw, and T, + cw is in the class ¢;(det(E)) +e{w}. By weak
compactness, there exists a convergent subsequence T, with limit 7" in the class ¢;(det(E)). Since T' = 0
and c¢;(det(F)) = 0, the only possibility is that T" = 0.

Now, we recall the following version of the regularization theorem given in [Dem82]: let T = 0 + 00y
be a closed (1,1)-current, where 0 is a smooth form. Suppose that a smooth (1,1)-form v is given such that
T = ~. Then there exists a decreasing sequence of smooth functions py converging to ¢ such that, if we set
Ty := 0 + 100y, we have

(1) T, —» T weakly,
(2) T, = v — CA\pw, where C > 0 is a constant depending on (X,w) only, and Ay is a decreasing
sequence of continuous functions such that \i(xz) — v(T, z) for all z € X.

By Corollary 5.51 below, we get

lim sup v(T%,x) = 0,
e—0 x

thus

lim sup v(p.,w) =0
e—0 ]P’(E)

thanks to the above Lelong number estimate. By the regularization theorem just recalled, there exists
pe € CP(P(FE)) such that
i -
i 005, = —2eG
QWG(OP(E)(”’ hoo) + or 00pe Ew
where @ is some Kéahler form on P(E). In other words, the line bundle Op(g)(1) is nef. O

LEMMA 5.49. Let X be a compact complex manifold. Let Ts (6§ > 0) be a sequence of closed positive
(k, k)-currents. Assume that Ts — 0 weakly as 6 — 0. Then

lim sup v(T5, z) = 0.
6—0 x

PRrOOF. Since X is compact, we can cover X by finite coordinate open charts V;(c U; < U~Z) such that
V; is relatively compact in U; and U; is relatively compact in U;. Thus we reduce the proof to the case of
coordinate chart V;.
Let p; be cut off functions supported in U, such that p; =1on U; and 0 < p; < 1. Since Ty — 0 weakly,
there exists a uniform C' > 0 such that
—k

. n—=k . n
J Ts A (265|z|2) < J Ts A p; (2682|2) <C.
U 27 g, 2

Define for € V; and for small r
i n—k
Ts A (%86|z|2> .

Then v(Ts,x,r) is an increasing function with respect to r and we have that

v(Ts,x,r) = r_Q(”_k)f

|z—x|<r

I/(Tg,(E) = }i_r}(l)l/(Tg,fE,T).

For small r > 0 such that 2r < d(V;, 0U;), there exists a cut-off function 6, supported in B(x,2r) such that
6, =1on B(x,r) and 0 < 6, < 1. Then we have

. n—k
y(Ts,,7) < 1 20H) f Ty 0, (;raa|z|2> |
U;

Since ¢, can be obtained by translation of the same function, (0,),.y- for small r is a compact family with

respect to C® topology. Thus for fixed small r, for every x,y € V;,

. n—1
17—
r*2<”*k>f Ts A (0, — 0,) | =—00]2)? <Cr2 R 10, — 0, || e, -
U, 27
Thus r~2(n—Fk) SU’_ Ts A O (i&é\zp)n_k tends to 0 as § — 0 uniformly with respect to = € V;.

In particular, v(Ts,z,7) tends to 0 as § — 0 uniformly with respect to x € V;, hence the same property
holds for v(Ty,x). O
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REMARK 5.50. For a family of (1,1)-closed positive currents, the proof is much simpler, using the
observation of Proposition 5.4.1.

Let v be a Gauduchon metric over X (i.e. a smooth metric such that i00(y"~1) = 0). With the same
notation as in the proof, we have for rg small enough

C
V(Tg,l‘,’l") = V(Téal‘ﬂ"o) < WJ‘ T5 A ’ynil'
To X

Since the right-hand side term (which is cohomological) tends to 0 along with §, the Lelong number tends
to zero locally uniformly. Since X is compact, the convergence is uniform.

COROLLARY 5.51. Let (X,w) be a compact Kihler manifold. Let Ts (0 > 0) be a sequence of closed
(1,1)-currents such that
Ts > —dw
in the sense of currents. Assume that T5 — 0 weakly as § — 0. Then

lim sup v(T5, z) = 0.
6—0 x

PRrROOF. This is a direct consequence of the previous lemma if we consider Ty + dw instead of Tj. O
Now we can easily conclude our result.

COROLLARY 5.52. Let F be a strongly psef reflexive sheaf over a compact Kéihler manifold (X,w) with
c1(F) =0. Then F is a nef (and numerically flat) vector bundle.

PRrROOF. By our assumption, there exists a modification such that the pull back of F modulo torsion is
a strongly psef vector bundle with vanishing first Chern class by lemma 5.29. By theorem 5.48, this vector
bundle is in fact nef. Thus by Proposition 5.3.8, we conclude the corollary. O

As a geometric application, we obtain the following generalisation of Theorem 7.7 in [BDPP13].

COROLLARY 5.53. Let X be a (non necessarily projective) K3-surface or a Calabi-Yau 3-fold. Then the
tangent bundle Tx is not strongly psef. In other words, for a compact Kihler surface or 3-fold if ¢c1(X) =0
and Tx is strongly psef, then a finite étale cover of X is a torus.

PROOF. Assume X is a compact Kahler surface such that ¢;(X) = 0 and Tx is strongly psef. Then by
Theorem 5.48, T'x is in fact numerically flat. In particular, the second Chern class of X is 0. By classification
of compact surface with nef tangent bundle (Theorem 6.1 and 6.2) in [DPS94], a finite étale cover of X
must be a torus. Remind that the difference between the projective case and the compact complex case is
whether the torus is abelian or Kodaira surface or Hopf surface. The later two surfaces are nevertheless non
Kahler.

Then proof of the dimension 3 case is similar. Instead of the Theorem 6.1 and 6.2, we use the classification
of compact 3-folds with nef tangent bundle (Theorem 7.1 and 7.2) in [DPS94]. O

In fact, we can show the following more general fact. A stronger result in the projective singular setting
can be found in Theorem 1.6 of [HP19] (Instead of proving “non strong psefness”, they prove “non weak
psefness”.)

COROLLARY 5.54. For a compact Kihler manifold if c1(X) = 0 and Tx is strongly psef, then a finite
étale cover of X is a torus. In particular, an irreducible symplectic, or Calabi-Yau manifold does not have
strongly psef tangenet bundle or cotangent bundle.

ProOOF. By the Beauville-Bogomolov theorem, up to a finite étale cover  : X — X, X is a product of
[17:x]]S;x]]Ys where T; are complex tori, S; are Calabi-Yau manifolds and Y}, are irreducible symplectic
manifolds. Since the tangent bundle of X is numerical flat under the assumption and by Theorem 5.48, the
tangent bundle of all the components in the direct sum is numerical flat. In particular, all the components
have vanishing second Chern class by Corollary 1.19 of [DPS94]. (A stronger result in the projective and
singular setting can be found in Theorem 1.8 of [HP19].) By representation theory, the tangent bundle of the
Calabi-Yau or irreducible symplectic components is stable. Thus we have the equality case in the Bogomolov
inequality which implies that the tangent bundle of the Calabi-Yau or irreducible symplectic components is
projectively flat. Since the first Chern class of the Calabi-Yau or irreducible symplectic components vanishes,
the tangent bundle is in fact unitary flat. In particular, the restricted holonomy groups of the Calabi-Yau
or irreducible symplectic components are trivial. In other words, only the complex tori components appear
in the decomposition. O

Inspired by the work of [LOY20], we can slightly generalise Corollary 5.52 in the following form.
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LEMMA 5.55. (analogue of Lemma 4.5 [LOY20]) Let (X,w) be a compact Kihler manifold of dimension
n > 2, and let F be a reflexive coherent sheaf of rank r > 2 on X. Then, for any positive integer m > 2, we
have

c2(SI™F) = AH(F) + Beo(F),
where A and B are non-zero rational numbers depending only on m and r, and satisfy the relation

_ _ 2
4.1y (R-1)Rm

=0
r 22

where R = (TJ”:L_l) is the rank of SU™F.

ProOF. The proof is almost identical to Lemma 4.5 in [LOY 20]. The only difference is the abandonment
of the use of the auxiliary ample line bundle. For this reason, we only sketch the proof. We have trivially
the form of the equality over the open set where the sheaf is locally free. By Lemma 5.18, the same equality
should hold on X. By splitting principle, it is enough to prove the formula for 7 = @"L where L is a
hermitian (complex) line bundle (not necessarily holomorphic).

In this case, F is a polystable and projectively flat vector bundle, thus we have the equality case in the
Bogomolov-Liibke inequality,

r—1
(e2(F) — =
Develop c2(S™F @ L*®™) = ( in terms of ¢;(L). Combining with the above equality, we have

r—1 (R —1)Rm?
(A+ " B 572

It suffices to show that there exists a hermitian (complex) line bundle such that ¢;(L)? - w™ ™9 % 0 for any

q- Recall that Théoréme 4.3 of [Lae02] proved using Kronecker lemma that for any closed real (1,1)—form

« on a compact complex manifold, for infinite k, ko can be approximated in C® norm by the curvature of

some hermitian (complex) line bundle Lj with respect to some hermitian connection. In particular, for such
k large enough, ¢y (Ly)? - w™ 2 # 0 for any q.

By choosing F as some combination of L, L} and Ox, it can be shown that A, B are non-zero. O

ci(F)?) w2 =0.

Jer (L) - w2 = 0.

For the convenience of the reader, we give here the proof of the compact K&hler version of proposition
4.6 Chap. IV of [Nako04].

PROPOSITION 5.5.1. Let (X,w) be a compact Kidhler manifold and F be an w-semi-stable reflexive sheaf
with

(ca(F) — 01(]:)2) LW = .

Then F is locally free.

Proor. We shall prove by induction on the rank of F. If F is polystable, it is direct consequence of
corollary 3 of [BS94]. We may assume F is not polystable. Then there is an exact sequence

where § and Q are non-zero torsion-free sheaves satisfying the relation of slope u(S) = pu(F) = u(Q). The
sheaves S and Q** are semi-stable.
Recall the formula (I1.9) Chap. IT [Nak04]

BalF) = Bo(8) + Dy(@) - O TIEL 5 ()2

where Ay(F) := (c2(F) — 5tei(F)?) - w2 The Bogomolov inequality gives Ax(S) = 0 and Ay(Q**) = 0.

On the other hand, c2(Q**/Q) is represented by an effective cycle supported in the support of the torsion
sheaf Q**/Q. Thus we have that

As(Q**) = Ay(Q) = As(S) = 0.

By induction, S and Q** are locally free which by lemma 5.15 defines an extension of vector bundles over
X. Since F coincides with a vector bundle outside an analytic set of codimension at least 3, F is locally
free. O

As consequence of the lemma and the proposition, we have the following generalisation of Corollary 5.52.
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COROLLARY 5.56. (analogue of Theorem 1.6 [LOY20])

Let (X,w) be a compact Kihler manifold of dimension n, and let F be a reflexive coherent sheaf on X.
Assume there exists a line bundle L and m > 0 such that SU™ FQ L is strongly psef with ¢;(S'"™ F®L) = 0.
Then F is a vector bundle such that F(—LL) is a Q—twisted nef vector bundle.

In particular, let E be a vector bundle of rank r such that E<f%det(E)> is Q—twisted strongly psef
vector bundle, then E{—X det(E)) is Q—twisted nef vector bundle.

r

PROOF. By corollary 5.52, SI"] F®L is a numerically flat vector bundle. In particular, CQ(S[m]}"@L) =0
and SI™ F® L is semistable. In fact, Sl F & L admits a filtration of vector bundles

0=&c&Ec--cE=S"FeL
such that for each 4, £ /&;_ is flat and polystable. For any subsheaf S of SI"™ F®L, let io := max{i, & < S}.
Then if § = &;,, u(S) = 0. Otherwise F/&;, is a non zero subsheaf of &;, 41/, thus pu(S) = u(S/&,) +
w(Eiy) < p(&ig+1/Eiy) = 0.
By the above lemma, direct calculations yield

r—1
F) —
(e2(F) - 7
We claim that F is also semistable. In fact, for any torsion free quotient sheaf Q of F, we have generic

surjective morphism

c(F))-w" 2 =0.

a:SMFRL - SMo®L.
The image of « coincide with SlmlQ ® I outside an analytic set of codimension at least 2, thus these two
sheaves have the same slope. The inequality (S F ® L) < pu(S™Q ® L) implies that pu(F) < p(Q).
In fact, SI™F and F are locally free outside a closed analytic set A of codimension at least 2. Since

H?*(X,C) =~ H3 (X \ A, F),
e (SIF) = - (m e 1)(:1 (F)
r m
from the corresponding formula by restriction on X ~\ A on which the coherent sheaves are locally free. Here
r is the rank of 7. We have of course similar formula for Q.
For the general case, it is a direct consequence of the above proposition. Thus we can prove the following
equivalent conclusion. F is locally free and there is a filtration of vector subbundles

O=FycFhic---cF=F
such that F;/F;1 are projectively flat vector bundles and u(F;/F;+1) = u(F) for any i. O

As pointed out to us by A. Horing, Corollary 5.54 can be established in the following easier way. As
above, one shows that a compact Kéhler manifold (X,w) with strongly psef tangent bundle or cotangent
bundle and ¢; (X) = 0 is a finite étale quotient of a complex torus. By our main theorem, T'x is a numerically
flat vector bundle. In particular, it is well-known that Ty is w-semi-stable and that co(X) = 0. (This is the
special case considered at the beginning of the proof of Corollary 5.56.) Thus we have the equality case in
the Bogomolov inequality, and therefore the tangent bundle Tx is projectively flat. Since ¢;(X) = 0, Tx is
flat, which, by the Bieberbach theorem, implies that X is a torus, up to a finite étale cover.






CHAPTER 6

Intersection theory and Chern classes in Bott-Chern cohomology

AsTrAaCT. In this article, we study the axiomatic approach of Grivaux in [Gril0] for rational Bott-Chern
cohomology, and use it in particular to define Chern classes of coherent sheaves in rational Bott-Chern
cohomology. This method also allows us to derive a Riemann-Roch-Grothendieck formula for a projective
morphism between smooth complex compact manifolds. The appendix presents a calculation of integral
Bott-Chern cohomology in top degree for a connected compact manifold.
In the general case of complex spaces, the Poincaré and Dolbeault-Grothendieck lemmas are not valid
in general. For this reason, and to simplify the exposition, we only consider non singular complex spaces in
the sequel, and let X denote throughout a complex manifold.

6.1. Introduction

Chern classes and Chern characteristic classes are very important topological invariants of complex
vector bundles. In order to better reflect the complex structure of manifolds, we refine Chern classes and
Chern characteristic classes, and define them in rational Bott-Chern cohomology. This is done by introducing
suitable complexes of sheaves of holomorphic and anti-holomorphic forms. There exists a canonical morphism
from the complex of rational Bott-Chern cohomology into the locally constant sheaf Q, seen as a complex with
a single term located in degree 0. Under this morphism, the image of Chern classes and Chern characteristic
classes in rational Bott-Chern cohomology are the usual ones defined in singular cohomology.

In the fundamental article [Gril0], Grivaux showed that for suitable rational cohomology theories of
compact complex manifolds, one can construct Chern characteristic classes of arbitrary coherent sheaves,
and in particular of torsion sheaves, by induction on the dimension. This can be done provided one has a
reasonable intersection theory, and provided Chern classes can be defined for vector bundles. One important
argument consists of ensuring the validity of the Riemann-Roch-Grothendieck formula for closed immersions
of smooth hypersurfaces.

We begin by recalling some background for this type of problems. For any complex manifold X, we
denote by K°X the Grothendieck group of vector bundles on X. For a vector bundle E, we denote by
[E] the class represented by E. By definition, K°X is the quotient of the free abelian group on the set of
isomorphism classes of vector bundles, modulo the relations

[E] = [E'] + [E"]

for all exact sequences 0 - E' — E — E” — 0. It can be endowed with a ring structure by taking tensor
products of vector bundles.

In a similar way, we denote by KoX the Grothendieck group of coherent sheaves on X, simply by
replacing vector bundles in the definition of K°X by coherent sheaves, and one has a natural morphism
K%X — KX by viewing vector bundles as coherent sheaves. This morphism is an isomorphism in the
projective case. However, by the fundamental work of Voisin [Voi02a], K°X can be strictly smaller than
KpX when X is a compact K&hler manifold. This phenomenon is caused by the lack of global resolutions
of coherent sheaves by locally free sheaves.

Over Q, Chern characteristic class can be seen through the Q-linear morphism

ch: KO(X) ®z Q — A(X),

where A(X) means the cohomology ring in the cohomology theory under consideration. A priori, on arbitrary
compact complex manifolds, it is not trivial that this morphism can extended into a morphism from Ky (X)®y
Q. Grivaux showed that this is possible once the cohomology theory satisfies suitable axioms of intersection
theory. The aim of this note is to develop a similar intersection theory for integral (or rational) Bott-Chern
cohomology.

Such theories have been considered in the work [Sch07] of M. Schweitzer, and have also been developed
in a more recent unpublished work of Junyan Cao. They are more precise than Deligne cohomology or
than complex Bott-Chern cohomology, in the sense that there always exist natural morphisms from the
integral (or rational) Bott-Chern cohomology into the other ones. We use here Grivaux’s axiomatic approach
to construct Chern classes in rational Bott-Chern cohomology, for coherent sheaves on arbitrary compact
complex manifolds.

123
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In fact, it would be interesting to give a construction of Chern classes of coherent sheaves in the integral
Bott-Chern cohomology rather than the rational one, but substantial difficulties remain. Let F be a coherent
sheaf on a smooth hypersurface D of X. We denote by i : D — X the inclusion. One of the main difficulties
is to express the total Chern class c(i4F) in function of iyc.(F) and ixce(Np/x ), where Np x is the normal
bundle of D in X. There exists a formulation of the Riemann-Roch-Grothendieck formula that does not
involve denominators, but it does not seem to be easily applicable since Chern classes of coherent sheaves,
unlike in the vector bundle case, may involve data in higher degrees than the generic rank.

Using the methods developped in this note combined with the work of [Gril0], we give as an application
a more algebraic proof of the following theorem of Bismut [Bis11], [Bis13] under the additional assumption
that the morphism is projective. However, we do not need the condition that the sheaf and all of its direct
images are locally free, nor the condition that the morphism is a submersion.

THEOREM 6.1. Letp: X — S a projective morphism of compact complex manifolds and F be a coherent
sheaf over X. Then we have the Riemann-Roch-Grothendieck formula in the rational and complex Bott-Chern
cohomology

ch(R*p F)Td(Ts) = px (ch(F)Td(Tx))
where R°pyF = Y, Rip, F.

The rational case is a direct consequence of the work of [Gril0], which uses classical arguments of Serre
to reduce the prooof to the fact that the Riemann-Roch-Grothendieck formula holds for a closed immersion.
It is proven by a construction of Chern characteristic classes (or equivalently of Chern classes in the rational
coefficient case), using the prescribed axioms of intersection theory. The complex case can be derived by the
natural morphism from the rational Bott-Chern cohomology to the complex Bott-Chern cohomology.

For the convenience of the reader, we summarize here the axioms needed in the axiomatic cohomology
theory developped in [Gril0]. We assume that for any compact complex manifold X we can associate to X
a graded commutative cohomology ring A(X) which is also a Q(c AY(X))-algebra.

Axiom A (Chern classes for vector bundles)

(1) For each holomorphic map f: X — Y, there exists a functorial pull-back morphism f*: A(Y) - A(X)
which is compatible with the products and the gradings.

(2) One has a group morphism ¢; : Pic(X) — A'(X) which is compatible with pull-backs.

(3) (Splitting principle) If E is a holomorphic vector bundle of rank r on X, then A(P(E)) is a free graded
module over A(X) with basis 1,¢1(Og(1)),- -+, (c1(Og(1)) L.

(4) (homotopy principle) For every t in P!, let 4; be the inclusion X x {t} < X x P!. Then the induced
pull-back morphism i} : A(X x P!) — A(X) = A(X x {t}) is independent of .

(5) (Whitney formula) Let 0 - E — F — G — 0 be an exact sequence of vector bundles, then one has
¢(F) = ¢(E) - ¢(F) and ch(F) = ch(F) + ch(G) where ¢(E) means the total Chern class of F and ch(FE)
means the Chern characteristic class of E.

The construction of the pull-back will be given in the second section and the other parts are important
results of Junyan Cao which will be given the fourth section.

Axiom B (Intersection theory)

If f: X — Y is a proper holomorphic map of relative dimension d, there is a functorial Gysin morphism
fs : A%(X) — A*=4(Y) satisfying the following properties:

(1) (Projection formula) For any x € A(X) and any y € A(Y) one has fi(z - f*y) = fi(x) - y.
(2) Consider the following commutative diagram with p, ¢ the projections on the first factors

Y x 2% X« 7
YCLX
Agsume Z to be compact and iy proper. Then one has ¢*iy s = iy x z+D*-
(3) Let f: X — Y be a surjective proper map between compact manifolds, and let D be a smooth divisor of

Y. We denote f*D = myD1 +--- + myDy with D; simply normal crossing. Let fl :D; —» D (1<i<N)
be the restriction of f to D;. Then one has

N
Fripe = Y miip fi.

i=1

(4)Consider the commutative diagram, where Y and Z are compact and intersect transversally with W =
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Y nZ:

Then one has i§izy = iW/Y*iIa:I//Z‘
(5)(Excess formula) If Y is a smooth hypersurface of a compact complex manifold X, then for any cohomo-
logical class o we have

i;k/iy*a =« Cl(Ny/X).
(6) The Hirzebruch-Riemann-Roch theorem holds for (P™, O(i)) (V7).
(7) Let X be a compact complex manifold with dimcX = n and Y < X be a closed complex submanifold
of complex codimension r > 2. Suppose that p: X — X is the blow-up of X along Y. We denote by E the
exception divisorand i : Y - X, j: E — X the inclusions, and ¢ : E — Y the restriction of p on E. Then
p* is injective and there is an isomorphism induced by j*

J*ANX)pFAN(X) = AN (E)/q" A (Y).

In other words, a class o € A*(X) is in the image of p* if and only if the class j*a is in the image of ¢*.

The verification of axiom B will constitute the main substance of the fifth and sixth sections. In principle,
pull-backs can be induced by taking the pull-back of smooth forms, and push-forwards can be induced by
taking the push-forward of currents under proper morphisms. The proof of the first two axioms is then
reduced to considering the natural pairing between smooth forms and currents. The third and fourth axioms
are more complicated, since they demand taking pull-backs of currents. As in the case of Deligne cohomology,
we first reduce the situation to the case of cycle classes. Then we reduce cycle classes to integral Bott-Chern
(or Deligne) cohomology by means of Bloch cycle classes, which can be represented by holomorphic forms.
Checking the remaining axioms is more standard. This will be done in the sixth section.

In conclusion, it can be shown that the cohomology ring G—)ng’g(X ,Q) satisfies axiom A, B. In fact,
the cohomology ring (—Bng’g(X ,Z) satisfies axiom A, B except the sixth one of list B which demands
rational coefficients to define Chern characteristic classes and the Todd class. As a consequence, by the work
of [Gril0], for the rational Bott-Chern cohomology we get the following result.

THEOREM 6.2. If X is compact and KoX is the Grothendieck ring of coherent sheaves on X , one can
define a Chern character morphism ch : Ko X — @kH]’;’g(X, Q) such that
(1) the Chern character morphism is functorial by pull-backs of holomorphic maps.
(2) the Chern character morphism is an extension of the usual Chern character morphism for locally free
sheaves given in axiom A.
(8) The Riemann—Roch-Grothendieck theorem holds for projective morphisms between smooth complex com-
pact manifolds.

The organisation of the paper is the following. Section two recalls basic definitions and introduces
pull back and push forward morphisms. Section three introduces a ring structure on the integral Bott-
Chern cohomology, in such a way that it is compatible with the ring structure of the complex Bott-Chern
cohomology via the canonical map. Section four gives the construction of Chern classes associated with a
vector bundle and verifies the list of axioms A. Section five introduces cycle classes in integral Bott-Chern
cohomology and verifies the intersection theory part of axioms B. Section six studies the transformation
of Chern classes under blow ups. This completes the verification of axioms B. At the end, we present an
appendix in which we calculate the integral Bott-Chern cohomology of a connected compact manifold in top
degree. The analogous result for integral Deligne cohomology do not seem to be as direct.

6.2. Definition of integral Bott-Chern cohomology classes

In this section, we recall the basic definitions associated with integral Bott-Chern cohomology. A refer-
ence for this part is [Sch07]. Notice that changing Z(p) by C in the integral Bott-Chern complex gives a
quasi-isomorphic complex which defines the complex Bott-Chern cohomology. Hence one gets a canonical
map from the integral Bott-Chern cohomology to the complex Bott-Chern cohomology. Next, we define pull
backs and push forwards in integral Bott-Chern cohomology. We verify the axioms without involving the
ring structure of the integral Bott-Chern cohomology (namely Axiom B (2), part of (7)).

DEFINITION 6.3. The integral Bott-Chern cohomology group is defined as the hypercohomology group
Hgg (X7 Z) = Hp+q(X, B;:,q,Z)
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of the integral Bott-Chern complex
B, Zp) 000> > 5P loW T W .. 501 0

p.q,

where Z(p) = (2mi)PZ at 0 degree and A is multiplication by 1 for the first component and multiplication by
-1 for the second component. We call rational (or complez) Bott-Chern cohomology the hypercohomology of
the complex obtained by changing Z(p) respectively into Q, C.

Notice that the choice of the sign in A is to ensure that the natural map from the integral Bott-Chern
cohomology to the complex Bott-Chern cohomology is a ring morphism. This will be discussed in Section 3.
The choice of Z(p) instead of Z(q) is more or less artificial, but since the Chern class always lies in HR% (X, Z)
for some p, this choice poses no problem.

We begin by the definition of pull-backs of cohomology classes. Let f : X — Y be a holomorphic

3
map, it induces a natural morphism of complexes of abelian group on any open set U of Y, B;7q7Z7Y(U) EAN
*
By . 7.x(f~H(U)) which induces the cohomological class morphism Hp (Y, Z) ElN HY%A(X,7Z). More pre-

cisely, the pull-back of forms induces a morphism of complexes f*B; =, B} , 7 x on X which induces
a cohomological morphism H*(X, f*B; ;) — H*(X,B; 7 ). On the other hand, there exists a natural
morphism H*(Y, B ;) — H*(X, f*B; , ;) since the pre-image of any open covering of Y gives an open
covering of X. The composition of two morphisms gives the pull back morphism H%Z (Y, Z) EAN Be(X,Z).
The second morphism can be interpreted more formally as follows. There exists a natural morphism
By 2y — Rf«f*B; , 7. Taking RI'(Y, —) on both sides gives H*(Y, B, ;) — H*(X, f*B; 7 v )

For a proper holomorphic map f : X — Y of relative dimension d, we next construct a functorial Gysin
morphism f, : HRA(X,Z) — H g}d’q_d(Y, Z). The construction is a modification of the similar construction
for Deligne cohomological class given in [ZZ84]. The condition of properness is necessary even if we just
consider cycle classes, since the image of an analytic set is not necessarily an analytic set when the properness
condition is omitted.

Let K* be a complex of sheaves on the space X. One denotes by {FPK*} the stupid filtration which
does not preserve the cohomology at degree p i.e. if ¢ = p, FPK? = K9, otherwise FPK? = 0. For the
corresponding quotient complex, we denote it as 0, K* = K*/FPK*. We denote by °* the complex of sheaves
of holomorphic forms on X. Let i : Z(p) — 0,Q° @ 7,0° be the complex map defined by the diagonal map
sending Z(p) into Ox ® Ox at degree 0 with a sign —1 at the second component and viewing Z(p) as a
complex centred at degree 0. With the above notations, the integral Bott-Chern complex is the mapping
cone of ¢ which we denote as Cone®(i)[—1]. The idea to define the push-forward of the cohomology class
is to choose compatible resolutions of the complexes Z(p),0,Q° @ 0,0° such that the both complexes are
formed by some kind of currents for which the push-forward is well-defined.

For the convenience of the readers, we recall here some basic definitions and properties concerning
currents and geometric measure theory. We will use them to define a resolution of Z(p). For more details
and proofs, we refer to the article of [Kin71].

DEFINITION 6.4. Let A, B be two metric spaces and f: A — B be a map. We say that f is Lipschitz if
there exists C > 0 such that for any a,b e A, we have

d(f(a), f(b)) < Cd(a,b).
We now recall the definition of the mass of a current.

DEFINITION 6.5. For any continuous form on a Riemannian manifold N and any x € N, we define a
function
[ul(x) = sup{|u(A)] : Xis a decomposable r-vector at x with |\|, < 1}.

For any set K ¢ N, the comass of u on K is
vk (u) = sup{|uf (z),z € K}.
The mass of a current T is
M(T) = {|T(u)| : v e AL(N), vy (u) <1}
where AL (N) is the space of the smooth r-forms with compact support.
Let U < R?® be an open set of euclidean space and N a Riemannian manifold. Let P be a current
defined by a finite sum of oriented linear simplices and f : U — N a Lipschitz map. We can approximate f

by fi : U — N which is C' and we define f.P to be the limit of f;, P in the sense of currents. Using this
construction, one can define rectifiable currents.
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DEFINITION 6.6. For any compact set K € N, one defines the space R, x(N) of rectifiable r-currents
in K as follows: T € R, x(N) if and only if T € E.(N) (the dual space of smooth forms) and for any e > 0,
there exists U < R® for some s, f : U — N a Lipschitz map and P a current defined by finite sum of oriented
linear simplices such that
M(T — f«(P)) <e.
One defines the space R.(N) of rectifiable r-currents by R.(N) := Uxen Br.x(N) and the space R°*°(N)
of locally rectifiable r-currents by
RI°°(N) = {T € D.(N)|Vx € N,3T, € R,(N) s.t. x € N ~ supp(T — T)}.
Now, one defines locally integral currents.
DEFINITION 6.7. The space of locally integral currents is defined by
T°°(N) := {T € R°°(N)|dT € R\°°(N)}.
We have the following version of the Federer support theorem.
THEOREM 6.8. Let i : M — N be an embedding of the submanifold M into N. One has
ixL,°°(M) = {T € Z°°(N)|supp(T) = M}.
As a corollary, the sheaf of locally integral currents is a soft sheaf, and is in particular acyclic.

COROLLARY 6.9. Let N be any Riemannian manifold. Then the sheaf of locally integral currents Z.°¢
is a soft sheaf.

PROOF. Let F be a closed set of N with respect to the metric topology. Let s € ZI°¢(F) = lim ., Tlc(U)
be a section on F'. By definition, there exists sy a section defined on U an open set of N such that sy|p = s.
Consider i : U — N the inclusion. The Federer support theorem gives a section § € Z!°°(N) such that
i+Sy = §. Hence § extends s, and this proves that the sheaf of locally integral currents is soft. O

Notice that for any smooth morphism f : M — N, f, maps locally integral currents to locally integral
currents even without the properness condition on f. To see that the complex of locally integral currents
gives a resolution of the locally constant sheaf Z, we need the fact that for 7' e Z!°¢(R™) such that dT' = 0
there exists a S € 7199, (R") such that dS = T (cf. [Fed96] 4.2.10 as a consequence of the deformation
theorem) and the following proposition in [Kin71] proposition 2.1.9 for the case of top degree.

THEOREM 6.10. Let M be a Riemannian manifold of dimension n. If T € D'O(M) such that dT" = 0 then
T is the current defined by locally constant functions. If T € TI°°(M) then this function is integral valued.

We now return to the construction of the push forward for hypercohomology. We denote by D"
the sheaf of currents of type (p,q) on X. For each p, (Dx"*,0) is a fine resolution of Q% . By taking the
conjugation, (D% "%, ) is a fine resolution of Q% . The conjugate of differential forms induces the conjugate of
currents. In particular, o, D *"* (resp. o, ;D% ") is a Cartan-Eilenberg resolution of 0,Q% (resp. 0,0Q%).
Taking the total complex of the double complex, we deduce that opD’X° is a resolution of 0,{2%. Here,
we use an abuse of notation, and actually mean that we take direct sums of spaces of currents of bidegree
(k,1) with k < p. Similarly, o,D%"* is a resolution of 7,0%. By taking complex coefficients, locally integral
currents extend into a complex of C-vector spaces of currents instead of Z-modules.

Let Z% be the complex valued extended sheaf of locally integral currents of real codimension i on X, as
defined above. The complex 7% is a soft resolution of Z. The integral Bott-Chern complex is quasi-isomorphic
to the following complex obtained by composing the natural inclusion of forms into currents:

A ° .
Z(p) = 0,Dx ®0c,Dx .
This morphism of complexes factorises into
¢« A . .
Z(p) = Ix — UPD/X ® UqD/X .
The morphism of complexes A factorises itself into the composition of two maps : the first is the diagonal
map with positive sign on the first component and negative sign on the second component with image in
Dy @ D%°; the second map is the decomposition of locally integral currents into their components of
adequate bidegrees.

Since the first inclusion is a quasi-isomorphism in the derived category in D(Sh(X)), the integral Bott-
Chern complex is quasi-isomorphic to Cone® (A)[—1] : Z§ 2> 0, D * ® 0,Dx ". Note that the push-forward
of currents and of the locally integral currents are both well-defined for a proper morphism. We also remark
that the rule dfy = fsd holds for currents. Hence there exists a natural morphism of complexes on Y

[+ — I;7d7 s (UPD/X. ® UqD/X.) - Updegf. @ Uqdeg/.
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which, as will be explained below, induces a cohomological group morphism
. yPa p—d,q—d
fe: Hpe(X,Z) — Hpe Y, 2).

Here, to define the push-forward for cohomology classes, it is enough to define it for global section repre-
sentatives; in fact, the complex % is soft, which means any section over any closed subset can be extended
to a global section; a soft sheaf is in particular acyclic, thus the complex 0, D%* @ 0,D* is acyclic. The
hypercohomology of the integral Bott-Chern complex is just the cohomology of the global sections of the
mapping cone A. Now we define the push-forward of a cohomology class as the push-forward of any of the
global currents representing the cohomology class. By construction, the pull-back and push-forward both
satisfy the functoriality property.

Notice that the use of a resolution of the locally constant sheaf Z(p) seems to be necessary since a
priori we have only natural morphism in inverse direction H*(Y, f«BB; , 7 x) — H*(X, B} , 7 ). The trace
morphism tr : fyZx — Zy and the push forward of currents induces a morphism H*(Y, f*B;;,q,Z,X) —
H* (Y, By, qu’Y) if X, Y have the same dimension. It seems to be not easy to induces from these two morphisms
a morphism H*(X,B5  ; ) — H* (Y, B} ;). If we take the quasi-isomorphic acyclic resolution involving
the locally integral currents, the hypercohomology of H* (X, B} 2. ) is represented by global sections. Then
the restriction of the global section on the open sets induces a morphism H*(X, B 7 ) — H*(Y, f« 85 , 7 x)
in the desired direction. In this case, we have the following factorisation

H* (X, B;,q,ZX) — H*(Y, f*B;,qux)

&) l

H* (Y, B} ; 2,y [—2d])

where d is the relative complex dimension. The vertical arrow is the morphism induced by pushing forward
currents, under the assumption that f is proper.

Commutativity can be checked directly. Let T" be the global section representing a cohomology class in
H*(X,Bp , 7.x)- Let (Vi); be an open Stein covering of Y such that the hypercohomology class on Y can
be calculated by the hypercohomology associated with the open cover. We denote by {T;} the image of T
in H*(Y, f«B;, , 7 x) by restriction on V;. More precisely, 7; is the restriction of 7" on f7L(V;). Tts image in
H*(Y, By , zy[—2d]) is {f«Ti}, and those sections glue into a global section fy7

The definition of the push-forward of cohomology classes can also be interpreted more formally as follows.
In order to distinguish the different morphisms of complexes, we denote by A x the map on X involving Z(p)
and Ax the map on X involving locally integral currents. The complex Cone(A x ) involving locally integral
currents is a soft complex. Since f is proper, fyCone(Ax) is a soft complex which means fCone(Ay) =
Rf,Cone(Ax) in D(Sh(Y)). We denote by ax (resp. ay) the morphism from X (resp. Y) to a point. The
push forward of currents induces a morphism of complexes in C(Sh(Y)): fxCone(Ax) — Cone(Ay)[—2d].
In other words, we have by composition a morphism in the derived category

Rf.«(Cone(Ax)) — Cone(Ay)[—2d].

Taking RI'(Y, —) = Rayy on both sides, and using the fact that R(ay o f)x = Raxs = Rayy o Rf; (since
f« transforms soft complexes into soft complexes), we get fy : HL(X,Z) — HY%"9"%(Y,Z) after taking
cohomology.

In the following, once we want to view the push forward of the cohomology groups as a morphism in the
cohomology level induced by a morphism of complexes, we use the above interpretation (for example, in the
proof of the projection formula).

In the case where f is analytic fibration, in the sense that f is a proper surjective morphism and all
fibres are connected, we can additionally define a morphism from the push forward of the locally constant
sheaf Zx to the locally constant sheaf Zy, e.g. a morphism f,Zx — Zy. Any modification f such as a
composition of blows-up with smooth centers is an example of an analytic fibration in the above setting.
We now use this morphism to prove that any modification p yields an injective morphism p* between the
corresponding integral Bott-Chern cohomology groups.

In this case, for any connected open set V < Y, we have fiZx (V) = Zx(f~1(V)) where f~1(V) is a
connected open set, so it is enough to define the morphism f,Zx — Zy by asserting that it associates the
constant function 1 on f~1(V) to the constant function 1 on V. In preparation for the next steps, we need
the following lemma.
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LeEMMA 6.11. For any algebraic fibration f: X — Y, there is a commutative diagram

felly —— f*I)O(

J |

Zy — 10,

PROOF. This is directly verified on any connected openset V < Y. Themap Zx (f~*(V)) — I%(f~1(V))
is given by associating the constant function 1 to the integral current [f~!(V)] associated with f=1(V'). The
image of the constant function 1 under Zx (f~1(V)) — Zy (V) is the constant function 1 on V. The image
of the constant function 1 under Zy (V') — Z{.(V) is the integral current [V] associated with V which is also
the image of [f~1(V)] under f.Z% (V) — Z%(V). O

Using an identification of the push forward of currents on X as currents on Y, we get the following
commutative diagram

fxCone(Ax) ———— f.Cone(Ax)

! !

Cone(Ay)[—2d] —— Cone(Ay)[—2d]
with the above notations. Taking Ray s and cohomology to the commutative diagram gives

H* (Y, f+B} 4 7.x) —— H(X, B}, 7 x)

| |

L] L] id L] L]
H (}/7 Bp,q,Z,Y [_2d]) — H (Y7 Bp,q,Z,Y [_2d])
In the case of a modification, one can prove that f* is injective. This can be seen via the following

LEMMA 6.12. For any modification f : X — Y, one has
fof*=1d: Hl(Y,Z) - Hpo (Y, Z).

ProoF. Using the above commutative diagram, it is enough to show that for any open set V < Y and
any sheaf in the integral Bott-Chern complex one has the identity fyf* = id, so that the identity will hold
for any hypercocycle representing an integral Bott-Chern cohomology class.

Let A be an analytic set of X, Z be an analytic set of Y such that the map f|x. 4 : X~NA—>Y N Zis
biholomorphic. For any smooth form w defined on V', we have fyf*w = w. In fact, for any smooth form @
with compact support in V', we can write

(fufro, @) = (frow, ) - le fronfa=|  puspa

fTIVNA

:J wAcD:fw/\d):@),d})
vz %

Here, the third and fourth equality hold since the integral of a smooth form on an analytic set of lower
dimension is 0 (such a set being of Lebesgue measure 0 in the relevant dimension).

For the locally constant sheaf Z, since the analytic fibration has connected fibres, a straightforward
argument yields f, f* = id.

In conclusion the composition of sheaf morphisms: B | - — f«f*B; , 7y (given by the canonical map),
fof*By 7y — f«B} 7. x (induced by pull-back of smooth forms) and f«B; , 7 x — By , 7y (induced by
push-forward of currents) is the identity map. Notice that a priori, the image complex of the last morphism
should be the quasi-isomorphic complex involving currents instead of smooth forms. However, in the case of
a modification, the push forward of a pull-back of a smooth form is still a smooth form. In particular, the
composition of sheaf morphisms

o * 100 .
By gzy = " Bhgny = [«Bhgzx = Byazy

is the identity map. This shows that the canonical map B , 7y — f«f*B; , 7y is an isomorphism.
Thus we have the following commutative diagram

He* (Y, B;),q,Z,Y) = H* (K f*f*B;),q,Z,Y) — H* (Y’ f*B;;q’Z’X)

| l

H* (X, f*B} g zy) —————— HY(X, B} ;2 x)-
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The vertical arrows are the canonical maps and the horizontal maps are given by pull-back of smooth forms.
Notice that the composition of

H*(Y, B;),q,z,y) =~ H*(Y, Jaf* ;,q,z,y) — H*(Y, f« ;,q,z,x) — H*(X, B;),q,Z,X)

is exactly the pull-back of cohomology classes. A comparison of this diagram with the diagram given before
the lemma concludes the proof. O

The above observation is in particular useful to define the Chern class of a coherent sheaf on a complex
manifold, using the following fundamental lemma (cf. [GR70], [Hir64], [Rie71], [Ros68]).

LEMMA 6.13. Let X be a complex compact manifold and F be a coherent analytic sheaf on X. There
exists a bimeromorphic morphism o : X' — X, which is a finite composition of blow-ups with smooth centres,
such that o*F is locally free modulo torsion.

Using the same notations as in the lemma, we recall briefly the strategy proposed by Grivaux [GrilO]
to define the Chern classes of arbitrary coherent sheaf 7 on X. We force the equality

o* ch(F) := Z(—l)i ch(Lio* F)

%

to be always verified where Lic* is the i-th left derived functor of o*. On the other hand, we also force the
equality

ch(c*F) = ch(c*F/Tors) + ch(Tors)

to be always verified where Tors is the torsion part. We first define the Chern classes for all the torsion
sheaves Lic*F(i > 1) and Tors as well as the Chern classes of the vector bundle o*F/Tors. Since o* is
injective, we can thus define ch(F) to be the unique element such that these two equalities are verified.

Since the support of a torsion sheaf is a proper analytic subset, we can perform an induction on the
dimension of the manifold to define Chern classes of a torsion sheaf. Intuitively, using an appropriate version
of the Riemann-Roch-Grothendieck formula, one can construct Chern classes of a torsion sheaf over X’ as a
direct image under a closed immersion of a certain polynomial in the Chern classes of a positive rank sheaf
over the support in X’, and the normal bundle of that support.

The difficulty in defining Chern classes of an arbitrary coherent sheaf comes from the case where the
coherent sheaf is torsion, especially since the support of a torsion sheaf may be an analytic subset with
singularities, and not necessarily a submanifold. In order to make the construction, the results of [Gril0]
will be applied thoroughly.

By the fact that the pull back of a current is always well defined in the case of a submersion, one gets
the following proposition.

PROPOSITION 6.2.1. Consider the commutative diagram below, where p,q are the projections on the first
factors

Y x ch X xZ
Assume Z to be compact and iy proper. Then one has ¥ iy s = iy xz+p™.

PRrROOF. The point is that the pull-back of a current is well defined and commutes with the exterior
differential for a submersion, which is the case here. For any connected open set V < Y, we have the
following commutative diagram

*

Zy (V) — Zywz(p~ (V) .

o

(V) —> Ty, (07 (V)

The vertical arrow is given by associating the constant 1 to the integral current associated with [V] (resp.
[ (V)]):

Passing to hypercohomology, inclusion of forms and constants B* into currents and locally integral
currents B° induces isomorphism on hypercohomology, so the morphisms of integral Bott-Chern cohomology
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groups induced by pulling back forms and pulling back currents are the same. In other words the commutative
diagram

p*By —— p*By

B)./XZ ’ B;’XZ
induces in hypercohomology the commutative diagram

H*(Y,By) ——=—— H*(Y,By)

! !

H*(Y x Z,p*BYy) —— H*(Y x Z,p*By,)

J |

H*(Y x Z,By, ;) —— H*(Y x Z,B%, ).

Here the terms containing a tilde indicate complexes involving currents, and the terms without tilde indicate
complexes involving locally constant sheaves or forms.

To prove the equality at the level of hypercohomology, it is thus enough to prove the equality at the
level of complexes with terms involving currents. In particular, we just take global representative and verify
the equality. The proof is reduced to checking that for any current 7' defined on Y, one has

qFiy«T =iy xz4p™T.
By duality, this is equivalent to the fact that for any smooth form w with compact support in X x Z, one
has
Y Qa = Pty z00.
This is indeed trivial, if we observe that p, and g4 are just integration along the second factor. The integrals
are finite by the assumption that Z is compact. O

The directions of arrows can also be reversed; this is exactly Axiom B (2). For complex Bott-Chern
cohomology, the formula is valid, since the cohomology class can be represented by global smooth forms and
since the push forward of global forms under the projection is just the integration over the second component,
which commutes with the restriction on the corresponding (smooth) submanifold.

LeMMA 6.14. Consider the commutative diagram below, where p,q are the projections onto the first
factors

YXZ&XXZ

pl lq

Assume Z to be compact. Then one has in complex Bott-Chern cohomology an equality i¥qs = p+iy. 5.

To prove the case of integral coefficients, we need a relative version of pull back and push forward
for cohomology classes. To do this, we recall some definitions of derived categories. For a more complete
description, we refer to [KS02]. We start with the definition of a relative soft sheaf.

DEFINITION 6.15. Let f : X — Y be a continuous proper morphism between topological spaces and F be
a sheaf of abelian groups on X. Then we say that F is f-soft if for any y € Y, F|;-1(,) is soft.

In general, to define Rf, (or some right derived functor), one can take any f.-injective resolution (or
any relative injective resolution). In particular, we do not need to take an injective resolution (which is the
key point of Axiom B (2)). We verify that a f-soft resolution gives a fy-injective resolution.

DEFINITION 6.16. (Definition 1.8.2 in |[KS02|) Let F : C — C' be an additive functor between abelian
categories. A full additive subcategory S of C is called injective with respect to F if

(1) for any X € Ob(C) there exists X' € Ob(S) and an exact sequence 0 — X — X'.
(2) For any ezact sequence 0 > X' - X — X" — 0 inC, if X', X € Ob(S) then X" € Ob(S).
(8) For any ezact sequence 0 > X' — X — X" — 0 in C, if X', X, X" € Ob(S) then we have exact
sequence
0—- F(X')—> F(X)— F(X")—0.
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LEMMA 6.17. The subcategory formed by f-soft modules in C(Sh(X)) is injective with respect to fy for
f proper.

PROOF. It is a variant version of Proposition 2.5.10 in [KS02]. We give the proof in the relative case.

Since any soft module is f-soft by definition and the subcategory formed by soft modules has enough
injective element i.e. it satisfies condition 1, the subcategory formed by f-soft modules in C(Sh(X)) also
satisfies condition 1. Notice that since f is proper, for any y € Y, f~1(y) is compact hence closed.

Condition 2 is a direct consequence of exercice I1.10 in [KS02]. Tt says that for any exact sequence
of Zx modules 0 - F/ — F — F” — 0 with F,F’ f-soft and for any y € Y, the hypothesis that
0 — Flly1(y) = Flg) — F"|j-14) — 0 is exact implies that F"|;-1(,) is soft. In particular, " is
f-soft.

Now, we prove condition 3, i.e. that if 0 - F/ — F — F” — 0 is an exact sequence of f-soft module,
then there is an exact sequence

Oﬂf*F/Hf*Fﬁf*F”HO-

Let y € Y, we want to check that for any s” € I'(f~1(y), F) there exists s € ['(f~!(y), F') whose image is s”.
Notice that since f is proper the functors f, and f, are the same. By the base change theorem (proposition
2.5.2 in [KS02]), we have

(f«F)y = D(f (W), Flp-1(y))-

Let K; be a finite covering of f~!(y) by compact subsets such that there exists s; € I'(K;, F') whose image is
s"|k,. This is possible from the assumption that F' € F” is surjective and the fact that f~!(y) is compact.
Let us argue by the induction on the index of the covering to adjust the s;’s such that s;’s glue to a global
section. For n > 2, on (|J;<,,_ Ki) N Kn, we have sj the glued section constructed by induction and
sy € T(Ky, F). Hence s — s3 € I'((U;<,_1 Ki) 0 Kn, F’) which extends to s’ € I'(f~!(y), F') since F’ is
f-soft. Replacing ss by s2 + s’ we may assume that

/ J—
S (Uscns K)nKn = 82U,y Ki)nKn -

Therefore after finite times induction, there exists s € I'(f~!(y), F') such that s|x, = s;.
(Notice that condition 2 can be deduced from condition 3 by the following commutative diagram. Let
K be a closed subset of f~1(y). We have

L), F) — T(f (), F")

| l

INK,F) —— T'(K, F").
The fact that the bottom and left arrow are surjective implies that the right arrow is surjective.) O

We also need the following lemma (Lemma 3.1.2) in [KS02].

LeEMMA 6.18. Let f : X — Y be a continuous map of locally compact spaces and K be a flat and f-soft
Zx module. For any sheaf G on X, G®z, K is f-soft.

This lemma entails the following useful corollary.

COROLLARY 6.19. Let X,Z be two complex manifolds with Z compact. Let F* be a flat complex (of
sheaves of abelian groups) over X and G* be a soft and flat complex over Z. Then F*XIG® is flat and g-soft
with respect to q: X x Z — X.

PRroOOF. The flatness part is from the fact that for abelian groups flatness is equivalent to torsion-freeness.
For any x € X we have F'*[X]G*|;1xz = F ®z, G* which, by the lemma, is g-soft. O

Now, we are prepared for the proof of Axiom B (2).

PRroPOSITION 6.2.2. Consider the following commutative diagram where p,q are the projections on the
first factors

YxZCgXxZ
ycL)X

Assume Z to be compact. Then one has in integral Bott-Chern cohomology an equality i¥ qs = psi%. 5.



6.2. DEFINITION OF INTEGRAL BOTT-CHERN COHOMOLOGY CLASSES 133

ProOOF. The idea is to use a resolution on X x Z formed by pulling back a resolution involving smooth
forms on X, and tensoring with the pull back of a resolution involving currents on Z. This gives a g-soft
resolution, and an explicit method to calculate Rgq,, via corollary 6.19.

Let U be an open covering of X formed by geodesic balls with small enough radius such that any finite
intersection of such balls are diffeomorphic to euclidean ball. Therefore, the total complex of the Cech
complex C* (U, Zx) gives a resolution of Zx by the Leray theorem. It is a flat complex on X since all terms
are torsion free. Also, 77 is a flat and soft resolution of Zz on Z.

By the corollary, C*(U, Zx) XI1Z3 is a g-soft resolution of Zxyxz = Zx XZz on X x Z.

Now we perform a similar construction for the sheaves of smooth forms. The sheaves C* on X x Z can
be viewed as flat Zx modules and Z; modules. Thus we have

O3 =03 ®7, C°(UZx) = C3° Q@ Zx.
Similarly we have
Cy*=2C%* ®z, I, =C%° ®§Z Zz.
Therefore, the integral Bott-Chern complex on X x Z in the derived category is quasi-isomorphic to
Bi,XxZ = Cone(é. (ua ZX) I% - 0'177000.07. Qzx O. (U, ZX) ®z, I% S UO,qu.d. ®zx va (ua ZX) Xz, I%)[_l]

with the natural inclusion morphism which is g-soft. Notice that the sheaves of smooth forms on X x Z are
also ¢-soft. In particular, we have

Ras (B3, x x z) = ¢x(Cone(C* (U, Zx) BT — 05,.C%° © 04,405 [-1])

where C%* means in fact C%* ®z, C*(U,Zx) ®z, Iy. In the following of the proof, we always use this
simplified notation. We have morphisms in the derived category D(Sh(X))

C*(U,Zx) < Zx = T¥.
We also have a morphism g.priZy — ¢.Z%,, — I%. It induces a morphism ¢4(C*(U,Zx) K I3) —
C*(U,Zx). We have commutative diagrams

(2% W13) — ¢(C* (U, Zx) RN I7) 4(Z% M17) — ¢:(Ixxz)
Ly —————— C*(U,Zx), y ———— I%.

On the other hand, since ¢ is a submersion, we have a canonical morphism q.(C%*) — C5 ™" where
n = dim¢Z. Thus we get a morphism

q*(Cone(C" (Z/{, ZX) I% - Up,oC;d. ® O'.,qco.d.)[_l]) — COIle(CV"—Qn(Z/{7 ZX)
— O'p—n,o—ncc:d. ® Uo—n,q—ncc:o,.)[fl]‘

Passing to hypercohomology, this morphism induces the push forward of integral Bott-Chern cohomology
by ¢. The above commutative diagrams show that the push forward of cohomology classes defined in this
way coincides with the previous one. This yields two ways of defining the same map RgyZxxz — Zx.
Since this resolution is flat, we can also use it to define the pull back of cohomology classes. More precisely,
one can define the pull-back of cohomology class for a projection as follows. Since iy xz = (iy,idyz), one has

i¥ ., Cone(C* (U, Zx) KRNIy — 0peC%* @04 yC%")[—1] — Cone(C*(U N Y, Zy) K Iy,
— 0,03 D 0. ,C%°)[-1]

induced by pulling back forms and pulling back currents. Here idz is a submersion, so the pull back of
currents is well defined (and is in fact the identity!). Passing to hypercohomology, we get another way of
defining %, , for integral Bott-Chern cohomology. We next check that these two definitions coincide. The
inclusion Zz — I% induces a commutative diagram

%
Yy xz
Lxyxzg =%xXRly ——— Lyxz =Ly X7z

.

C U, Zx )BTy —55 C*UNY, Zy) BTy

This commutative diagram implies that the two definitions of pull back coincide.

Similar arguments show that the pull back by ¢} and the push forward by p, can be defined using the
corresponding resolutions. Since the resolution is relative soft with respect to p or g, the hypercohomology
can be represented by global sections. The sections are formed by currents and forms on the open set of
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UxZ or (UnY)x Z for some open set U of X which is some intersection of the open sets in the cover ¢. The
equality asserted in the proposition is satisfied for such forms and currents. This concludes the proof. O

6.3. Multiplication of the Bott-Chern cohomology ring

In this section, we discuss a natural ring structure of the integral Bott-Chern cohomology and we verify
the projection formula (Axiom B(1)). Some calculation of this part is borrowed from an unpublished work
of Junyan Cao.

The complex Bott-Chern cohomology is represented by global differential forms. The exterior product
of forms induces the multiplication of cohomology classes. To define a multiplication of integral Bott-
Chern cohomology which preserves the ring structure under the canonical map from the integral Bott-Chern
cohomology to the complex Bott-Chern cohomology, we start by defining a modified version of multiplication
of Deligne cohomology. Recall that the integral Deligne complex D(p)® is the complex in C'(Sh(X))

Z(p)—>@—>Ql—>-~~—>Qp71—>O.
The integral Deligne complex admits a multiplication structure as follows.

U D(p)°* ®zx D(q)" = D(p+q)°

x-y,if deg(x) =0
rUy =<z Adyif deg(x) >0 and deg(y) =p
0, otherwise.

U is a morphism of Zx-module sheaf complexes by a direct verification. A modified version of multiplication
is given in the following definition.

DEFINITION 6.20. For the integral Deligne complez, we define

v D(p)* Qzy D(@)* = Dlp+9)°

x-y,if deg(y) = 0
ruy =<3 (=1)Pdz A y,if deg (y) > 0 and deg(x) =p

0, otherwise.
We verify that U yields a well defined morphism of complexes, namely that
dz uy) =dr oy + (1) Dz U dy.

Notice that for € D(p)? with i > 0, 2 is a (i — 1,0)-form, and not a (i, 0)-form. This is frequently used in
the following calculations.

If deg(y) = 0,deg(z) < p, d(z Uy) = d(yx) = ydz, dz Uy + (—1)%8@ gz U dy = ydr + 0 = yda.

If deg(y) = 0,deg(z) = p, d(z Uy) = d(yz) = ydz, dv Uy + (—1)%e@z U dy =0 Uy + dz A y = ydu.

If deg(y) > 0,deg(x) = p, d(z Uy) = d((=1)Pdz Ay) = dx A dy, de oy +(—=1)8@ s Ldy =0y +dr Ady =
dx A dy. (zis a (p—1,0)-form here.)

If deg(y) = 0,deg(z) =p—1, d(x uy) =0, dz Uy + (—1)%@) g U dy = (—1)Pddz Ay +0 = 0.

In the other cases, both sides are 0.

REMARK 6.21. For the definition of multiplication in the integral Bott-Chern complex, we need a mod-
ified Deligne complex where we change the signs. To be more precise, we consider the complex

Z(p) =5 0> Q > ... Sl .
In this case, we define the multiplication as follows:

- y,if deg (y) = 0
zuy =1 (=1)P"tdz A y,if deg (y) > 0 and deg(z) = p
0, otherwise.

The verification is similar. In the second case x U dy = (—1)P~"'dx A dy = (—1)Pydx since dy = —y in this
case. The third and fourth cases consist of changing just a sign on both sides of the equations.

ProprosITION 6.3.1. The multiplication is associative and homotopy graded-commutative. Thus, it in-
duces a structure of an anti-commutative ring with unit on the integral Deligne cohomology.
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ProoOF. Considering a € D(p)®, @ € D(p')* and deg () = i, deg (&) = j, we prove the formula
(-)9ava=auva+ (dH + Hd)(a® a).

Here d is the differential of D(p)*@D(p')*, and d(a® B) is defined by d(a®f) = da® S + (—1)%&@a®d £.
The modified homotopy operator H is defined by: H(a@® a) = (—1)77'a@ A a, if i # 0,7 # 0. Otherwise,
H(a® «) = 0. We prove it by a direct verification, case by case:
(1) i=j=0: (-1)Yava=ad adua=ad, (dH+ Hd)(@a®a) = 0.
(2)i=0,j>0ava=0,ava=anra, (dH+Hd)(a®a)=d0+ Hda®a+ (-1))a®da) =
(—=1)7+71a A da = —a A a. Here we use da = a, if dega = 0.
(3) j=0,i>0: ava=ara,auva =0, (dH+Hd)(a®a) = H(da®a+a®da) = dara+0 = ara.
4 p>7>0p>i>0:
ava=aua=0,
(dH + Hd)(a®a) =d((-1)"'a ra) + H(-1)/a ®@da + da® )
= (1) Yda na+ (=1)77 e A da + (=17 da A a4+ (<17 @ A da = 0.
The second line uses the fact that da is a (j, 0)-form.
(5) j=p,p>i>0:
ava=0,aua=(-1)"dana,
(dH + Hd)(a®a) =d((—1)ta ra)+ Hda®a + (—1)a®da)
= (=1 Ya A a+anda+ (—1)7Ha A da = (—=1)P "Nda A a.
The second line uses the fact that da is a (j,0)-form and that da = 0 in D(p')°.
(6) i =p,p > j > 0: the verification is similar to the previous case.
(7) t=p,J :p/:
ava=(—Pdanda,aua= (—1)p/d6¢ A,
(dH + Hd)(G®a) = d((—1)ta A a) + H(0) = (1) 'da A a + (—1)77 714 A da.
For the equality, it remains to see that
(=1)ida r & = (-1)Ya A da.
This is true since ¢ = i(j — 1) 4+ ij mod 2.
The associativity is also checked by a direct calculation. Let x € D(p)®,y € D(p')*, 2z € D(p”)*. Then
(1) ifdegz =degy =0,z 0 (yuz)=(xuUy)uz=uayz
(2) ifdegz=0,degy >0,degz =p,zu(yuz)=(ruy)uz=(—1)Pdx A yz.
(3) if degz > 0, degy = p/, degz = p, z U (yu 2) =z U (=1)P'dy A 2) = (=1)Pde Ady Az =
(zuy)uz=((-1)Pdz ry)uz= (1P d(dx A y) Az = (—=1)P"Pdx A dy A z since dz is a
(p,0) form.
(4) otherwise, the product is 0.
(|

REMARK 6.22. Similarly, for the integral Bott-Chern cohomology, the modified Deligne complex admits
a homotopy operator defined by: H(@® o) = (—1)7a A «, if i # 0,5 # 0. Otherwise, H(a@ ® o) = 0. We
also have the equality:
(-D9ava=aua+ (dH + Hd)(a® ).
We prove it again by a direct calculation case by case:
(1) i=j=0 (-D¥%ava=ad aua=ad, (dH + Hd)(a® a) = 0.
(2)i=0,j>0ava=0,aua=anra, (dH+Hd)(a®a)=d0+ Hda®a+ (—1)a®da) =
(=179 a A da = —a& A . Here we use da = —a, if dega = 0.
(3) 7=0,i>0: ava =ara,ava =0, (dH+Hd)(a®a) = H(da®a+a®da) = —dara+0 = ara.
The last equality uses da = —a, if dega = 0.
4 p>7>0p>i>0:
!

ua=
(dH + Hd)(@a®a) = d((—1)a r a) + H((-1)a ® da + da ® a)
= (—=1)da ~n a+ (=1)"a ada + (=1)"tda A a+ (=1)7a A da =0
The second line uses the fact that déa is (j,0)-form.

avua=0,
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5) j=p,p>i>0:
avda=0aua=(-1)"1da A a,
(dH + Hd)(a®a) = d((-1)a A o) + Hda® o + (—1)a® da)
= (=1)da A a—a A da+ (—1)a A da = (-1)Pda A a.

The second line uses the fact that dé is (7, 0)-form and that d& = 0 in D(p’)°.
(6) i =p,p’ > j > 0: the verification is similar to the previous case.
(7) i=p,j=1p

avda=(-1)""dandaava=(-1)"""dan a,
(dH + Hd)(6® a) = d((—1)7a@ A a) + H(0) = (-1)? da A a + (—=1)” "' ~'a A da.
For the equality, it remains to see that
(- tda ra = (-1)7"ta A da.

This is true as above since ¢ = ¢(j — 1) + ij mod 2.

Once we have defined a morphism from a tensor product of two complexes to another complex. It
naturally induces a product on the hypercohomology class. For self-containedness, we recall the construction.

DEFINITION 6.23. Consider two complexes of sheaves A®,B®, such that there exists a multiplication
denoted by U: A* @z B* — C*, a® S — au f satisfying the relation d(a U ) = (da) u B+ (—1)%&@a U dp.
Then one can define a product between H*(A*) and H*(B*) as follows: let § € C*(A!) and 5 € C¥ (BY)
(where C means Cech hypercocycle). One defines a Cech hypercocycle - 3 € CFHF (CHYY by

B Bjoirin = (D Biooju U Biriisnr-
We next check the derivation relation:
8(B-B) = (68)- B+ (=)' (3p)
where 63 = (—1)'08 + dB, § is the Cech differential. By definition we have
5(8-B) = (~1)*8(8 U B) = (DM (=188 U B) +d(B v B)
= (“DMD)HEB U B+ (-8 U EB) + (~1)F(dB U B+ (-1)'B v dB).
(68) -5+ (~1)"1B - (3) = (~)*(=1)(68) v b+ (~1) B U B
DR (=)MB U (1)1 68 + (— 1R (—1)R B U d.

The multiplicative structure on the integral Deligne complex induces a multiplicative structure on the integral

Bott-Chern complex as follows. We denote ep the canonical morphism of complexes from the integral Bott-
*. We denote €5 the canonical morphism of

Chern complex Bj , ; to the integral Deligne complex D(p)*.
complexes from the 1ntegra1 Bott-Chern complex B} , ; to the modified conjugated integral Deligne complex

D(q)* := 0 — Z(q) L0x > > Q%" — 0 with a multiplication of (27i)47P at degree 0. The modified
multiplication of modified integral Deligne complex in the remark 6.22 induces a multiplication of modified
conjugated integral Deligne complex. These two canonical maps induce a multiplicative structure on the
integral Bott-Chern complex as follows. Let y’,4” be two elements of D(p)?, D(q)¢ over the same open set
for some ¢. If i = 0, there exists a unique element z of B)  , such that ep(z) = ¢y’ and &p(z) = ¢ if and
only if they satisfy y” = (274)?7 Py’. The existence of the unlque element is trivial for all positive degree.
Hence we can define the multiplication x U 2’ of two elements x, 2’ of B 0z and B ..z Tespectively just to
be the unique element such that ep(z v a’) =z v’ and ez vz’) = x L 2/ with the cup product of Deligne
complex and the modified cup product of modified conjugated Deligne complex respectively. At degree 0,
the multiplication is just the multiplication of the two integer at degree 0 up to a constant satisfying the
compatible condition. Therefore the multiplication of the integral Bott-Chern complex is well-defined. In
conclusion, the cup product of the complex is given explicitly by the following definition.

DEFINITION 6.24. Let w,w be two elements of the complex By , ®z By, /.
diagrams to denote the elements w,w of mized degrees

w00 .. up~ 10 - _oa% ,qP —10
w=Ae 90 yodamt ) W=\ 700, .. g0 1 :
For instance, at degree 0, we denote w by c, at degree 1, we denote w by (u®°,v"0) etc. With the same
notation, the cup product w U W is represented by the diagram

~ /7 ~ /7 _ - /7
N a CAUOO ......... se AP 0 00 A pgp =10 o yp= L0 A ggp — 10
cAC N = a1 = 01 0
00 A, 00T A e (1) o0 A 00 , (=1)a7top0a=t A gOa =t

and let us use the following
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The cup product of integral Bott-Chern cohomology is given explicitly by the following diagram.

DEFINITION 6.25. Let w,w be two representatives of hypercocycles of the complex By  ®z By, ., and let
us use the following diagrams to denote the elements w,w
IR 2t a0 P’ =10
R N Jovat ) w=16 U X :
For instance, at degree 0, we denote by c an element in C'p‘*q(l’)’g’q), at degree 1, we denote by (u®°,v%°) an

element in Cv'p+q_1(5;7q) etc. With the same notation, the cup product w v W is represented by the diagram

-~ /_ - /_ / - /_ /_ _ - /_
oA QFeAad, JeP T hEe A P L0 Pk 0.0 4 pgp =10 o epF P =L p— 1,0 4 pp =10
~ _ _ ~ = _ ~ /1= _ 0 .
Tet 000 A g emaTIg0aTl A g e®agylaTl A 500 e*ata —15y0.a=1 1 0.4 —1
The signs €'v* %5 are given as follows:

rae_ J(DPHOED AR < pf -1
© Ty iR > g

eS8 1,ifS<q-—1
(_1)p5+(p+1)(q4r1), ifS >q

Notice that this cup product is just the cup product defined in [Sch07]. Let us also notice that there
exists a more obvious natural product structure on the complex Bott-Chern cohomology induced by the
wedge product of forms. The signs in the cup product defined in [Sch07] are exactly taken in such a way
that the two products coincide under the natural morphism. The natural inclusion of the integral Bott-Chern
complex into the complex Bott-Chern complex induces a ring morphism in hypercohomology. The morphism
of complexes ep also induces a ring morphism in hypercohomology.

PROPOSITION 6.3.2. The multiplication is anti-commutative. Thus, it induces a structure of an anti-
commutative ring with unit on the integral Bott-Chern cohomology.

PROOF. As for Deligne cohomology, there is a natural homotopy operator. We identify the degree 0 sheaf
in the integral Bott-Chern class Z(p) with a subsheaf of Z(p) @ Z(q) via the map 1 — (1, (27i)?"?). In this
way, we can include the integral Bott-Chern complex into the direct sum of the integral Deligne cohomology
and the (modified) conjugate integral Deligne complex. We define H : B , 7 ®zy By 17— By yrgrz bY

; P P
the formula for any element ¢* = (a’,b") € B, 7, ¥’ = (a”,07) € B, . ;,

((=D)ia* A b7, (=1)7a" A B7),ifi #0,7 #0
0, otherwise.

H(p' @7) :={

This is well defined since at degree 0, the homotopy operator is 0 map. We have checked that
(=197 U ' = " U 4 (dH + Hd) (o' @17).
Therefore, passing to hypercohomology, we have defined an anti-commutative ring structure on the integral

Bott-Chern cohomology. For reference, the formulas for the homotopy operator of the integral Deligne
complex can be found in [EV88]. O

We write - for the multiplication of cohomology classes. There exists also another description of cup
product following [EV88] by introducing the Deligne-Beilinson complex. In this way, the projection formula
can be expressed more formally.

We start by recalling the Deligne-Beilinson complex in [EV88|. The advantage of the Deligne-Beilinson
complex is that the multiplication is either 0 or weight product of two forms. When changing the complex
involving forms by the complex involving currents, it becomes clearer what the sign should be.

DEFINITION 6.26. The Deligne-Beilinson complex is
A(p)® = Cone(Z(p) ® FPQ% <5 Q%)[~1]
where €, ¢ are the natural maps and FPQ% the stupid filtration.

By the following easy lemma in [EV88], we know that the Deligne-Beilinson complex is quasi-isomorphic
to the Deligne complex.
LEMMA 6.27. Letuy : A} — B*® and uy : A3 — B* be two morphisms of complexes and C* = Cone(A}®
A3 2725 B*)[—1]. Then
C* = Cone(A} 5 Cone(Ay —2 B*))[—1].
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PROOF. Both complexes are equal to A} @ A3 ® B*[—1] with the differential
(al, a2, b) — *(*dal, *d&g, ul(al) — UQ(GQ) + db)

A quasi-isomorphism « : D(p)* — A(p)® can be given by

Z(p) Ox . Qr-2 Qr-1 0

bbb b

Z(p) — Ox — a2 22 gpg et 2 il gop

with o, (w) = (—1)P(dw,w) and a;(w) = (—1)'w. The symbol § denotes the differential of the mapping cone,
where in particular

610*1(77) = (07 dn)a 6p(ql}7 77) = (_d¢v —¢ + dn)
The mapping cone has a negative sign, by the convention that for a complex A®, the complex A*[d] has a

differential in degree n defined by (—1)?d"~9. The cup product of the Deligne-Beilinson complex is defined
as follows. We set

uo : A(p)* Rz A(9)* — Alp+9)°

x -y, if x € Z(p),y € Z(q)
x-y,if x € Z(p),y € Q°

T Uy =+ xAyif xe FPQ*, ye FI1Q°
Ay, if xeQ® ye FIQ°
0, otherwise.

A direct verification shows that the diagram

D(p)* ®zy D(@)* —— D(p+q)*

[ t

A(p)* ®zx Alg)* —— Alp+q)°

is commmutative and that Ug is a morphism of complexes (cf. [EV88]). Since « is a quasi-isomorphism, we
have a ring isomorphism at the level of hypercohomology.

For the analogue in the Bott-Chern case, we start by the modified cup product of Deligne-Beilinson
complex. In this case, the cup product is defined as follows. We set

Uo : A(p)* Rz A(9)* — Alp+q)°

z - y,if v € Z(p), y € Z(q)
x-y,if v e Q% yeZ(p)

TUgY =<z Ay, if xe FPQ* ye FI1Q°
(—1)de8@) gy Ay, if 2 € FPQ® ye Q°
0, otherwise.

The product can be described by the following table

Aq fq Wq

ap | ap-aq 0 0

fo 0 fo A fq | (=1)%EUR) f A wy
0

Wp | Wp - aq 0

representing elements of
Z(q) | FiQ* | Q°
Z(p) | Z(p +q) 0 0
FrQe® 0 FrraQe | Q°

Q° Q° 0 0

We verify that the cup product Ug is a morphism of complexes, i.e. that

d(z Vo y) = dz Up y + (—=1)%e@ gz Uy dy.
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Both sides of the equation can be represented by the following table

Gq fa Wq
ap | ap-aq 0 0
Ip 0 (=dfp A fg — (= )deg fp)f Adfg,—fp A fq) (*l)deg(fp)dfp A wg + fp A dwg
wp | dwy, - ag 0 0

The second line is calculated as follows:
—dfy, —f») Uo ag + (—1 dcg(fp)f Uo g = —fp A ag + (—1 2dcg(fp)f Aag =0,
p p q p q p q q

(=dfp, o) Vo fqt (=19 f, 0o (=dfy, = fg) = (=dfp A Syt (=100 foy n (= fp), (= 1)2 90 f n (= £)),
(=dfp, —fp) Vowg + (_1)deg(fp)fp Vo dwg = (=1 )deg(fp)+1(_dfp) Awg t (_1)2deg(fp)fp A duwg.

We now verify that the map from Deligne complex to Delinge-Beilinson complex is also commutative under
the modified cup product.

If deg(y) = 0,deg(z) < p, a(zuy) = a(ey) = (~1)*@zy, a(z) vgaly) = (~1)*EPzuey = (1)1 zy.
If deg(y) = 0,deg(x) = p, a(z U y) = alzy) = (~1)*ay, a(e) v aly) = (~1)%@) (da,2) Loy =
(—1)%s)zy,

If 0 < deg(y) < g¢,deg(z ) p, a(z uy) = al(=1)Pdx A y) = (—1)d@+deeW)Pdy A 4 ax) U a(y) =

() (1) (e st s

If deg(y) = ¢, deg(z) = p, a(zuy) = a((—1)Pdzry) = (— )deg(m)+deg(y)+p(d(dx/\y),dx/\y) = (—1)deg(“")+deg(y)(dx/\
dy, (=1)Pdz ny), a(z )an y) = (—1)48) (dz, z) U (—1)48W) (dy, y) = (—1)des@)Tde) (dg A dy, (—1)Pdz A

Y)-

If 0 < deg(y) < g,deg(z) < p, a(z Uy) = a(0) = 0, a(z) Ug aly) = (—1)%e@)z Uy (—1)d8®)y = 0. So in
this case, we also have a ring isomorphism of Deligne cohomology and Deligne-Beilinson cohomology for the
modified cup product.

The modified Deligne complex is quasi isomorphic to the following modified Deligne-Beilinson complex

A(p)* = Cone(Z(p) ® FPQy ——5 %)[~1]

where €, ¢ are the natural maps. We define the morphism « by the same formula. We change the definition
of ug by the following table to give a modified cup product

Qq fq Wq
ap | ap-aq 0 0
fp 0 —fo A Jq (‘Udeg(fp)_lfp N Wq
wp | Wp - ag 0 0

The verification that this is a morphism of complexes can be represented by the table

Aq fq Wq
ap | —ap - aq 0
Ip 0 (dfp A fo + (= )deg f”)fp A dfg, fp A fq) (*1)deg(fp)71dfp A wg — fp A dwg
wp | dwy, - ag 0 0

The second line is calculated as follows:
(=dfp, —fp) Vo ag + (*l)deg(fp)fp Uo (—aq) = —fp A ag + (*1)2deg(fp)7lfp A (—aq) =0,

(=dfy, —Fp) o fy+ (=1) "I f L0 (—dfy, = fo) = (dfp n fo— (=D f A (=dfy), (=1)2 9B 7L f A (= fy)),
(—dfp, —fp) Vo wg + (—1)dcg(fp)fp Vo dwy = (—l)dcg(fp)(—dfp) Awg + (—1)2d°g(f”)_1fp A dwyg.

We verify that the map from modified Deligne complex to the modified Delinge-Beilinson complex is also

commutative under the modified cup product.

If deg(y) = 0,deg(z) < p, a(zuy) = a(ey) = (~1)@zy, a(z) voaly) = (~1)*EPzuey = (=1)%E@zy.

If deg(y) = 0,deg(z) = p, a(z vy) = alzy) = (~1)*EOzy, a(z) Vg aly) = (~1)%8) (dz,z) Vo y =

(_1)deg(m)xy.

If 0 < deg(y) < g¢,deg(z) = p, a(z Uy) = a((=1)""dz A y) = (—1)IB@HBLIP e Ay, a(z) Uo aly) =

(—1)de8(®) (dz, 2) Ug (—1)de8W)y = (—1)dea(@)+degW)+p—1y A 4.

If deg(y) = g,deg(z) = p, a(z uy) = a((=1)P "'z A y) = (=1)dEOTEWTP1(d(dx A y),de A y) =

(—1)des@rdee) = (dz ndy, (~1)Pdz ny), a(z)voaly) = (1) (dz, 2)uo(=1)18W) (dy, y) = (~1)eel)HdesW) =1 (dz A

dy, (—1)Pdx A y).

If 0 < deg(y) < g¢,deg(z) < p, a(z v y) = a(0) = 0, a(zr) ug aly) = (~1)*E@a yy (~1)4EW)y = 0.

Hence passing to hypercohomology, we have a ring isomorphism for the modified Deligne cohomology and

the modified Deligne-Beilinson cohomology.
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As above, the cup product of the Deligne-Beilinson complex and the modified cup product of the conju-
gate modified Deligne-Beilinson complex induce a cup product on the integral Bott-Chern complex. Indeed,
the latter is quasi-isomorphic to

(e,—(2mi)?™"

Cone(Z(p) ® FPQY @ FI0%, VLD, s @ 0% [—1]

Pl =
where € is the natural map Z(p) — Q% and ¢, £ are the natural maps FPQ% — Q% and FPQ% — Q%. With
this quasi-isomorphism it becomes easier to check the projection formula.

PROPOSITION 6.3.3. (Projection formula) For a proper morphism f, one has
(D) ffo- f* = f*(p-9)
(2) fe(p- f*7/’) = fxp .
PRrROOF. For the first equality, we can in fact check that on the level of complexes
frou ff = f*pui).
Below, we concentrate ourselves on the proof of the second equality. The integral Bott-Chern complex is
quasi-isomorphic to the complex

—€)+(—¢,—¢)

l?;)q)z := Cone(Z% & s(F””D;”) &) s(F"qD;;’°) (e, D;} ® D;})[—l]

where ¢ is the natural map 7% — D;;, s(Fp"D;;") is the total complex of Fp"D;;", i.e. the direct sum
of spaces of currents of bidegree (k,l) (k < p), and ¢, are the natural maps s(Fp”D;;") — D'y and
s(F"qD;;") — D'y. We start by defining a multiplication between By vz and Bz:’,q',Z that is compatible
with the multiplication of the integral Bott-Chern complex. In this way, we avoid the problematic weight

product of two currents. We first perform a similar construction for the integral Deligne complex. One can
represent the product

o : A(p)* ® Cone(Zx @ s(F‘L'D;;") =L D) [~1] — Cone(T} @ s(Ferq"D;") =4 D[-1]
by the following table

Gq Jq Wq
ap | ap - aq 0 ap - Wy
fp 0 oA Ja 0
Wp 0 wp A fq 0
representing elements of
I3 | s(FeeDet) | D
Z(p) | Ik 0 Dy
FrQe | 0 | s(FrreeDety | 0
Q |0 Dy 0

Notice that the wedge product of smooth forms and currents is always well-defined. We also observe that
since a locally integral current is represented by a generalised measure by the Riesz representation theorem,
it defines a current of degree 0. We now check that the multiplication is a morphism of complex, i.e. that

d(z Lo y) = dx vy + (—1)%8@z U dy.
Both sides of the equation can be represented by the following table

Aq fq Wy
ap | ap-aq+ap, - dag 0 ap - dwg + ayp - wy
fo 0 (=dfp A fg = (D)%B T ) A dfy. —fp A fo) 0
Wp 0 dwp A fy + (—1)38LR)w, A df, 0

The calculation is different from the previous case. The difference just occurs in the first column, as a locally
integral current is not necessarily closed, while the exterior differential of constant is always 0. The first
object is

d(a, Uo ag) = d(ap - ag) = day, - a, + (—1)%°8%)a, - da, = da, Uy ag + (—1)%)a, U da,.
The second object is
d(fpvoaq) = d(0) = 040 = (=dfy, f,) Voag+ (=1)*U2) f, 0o (~day, ag) = dfy voag+ (~1)*U») f, 0o day.
The third object is

d(wp Ug ag) = d(0) = 0+ 0 = dw, Ug ag + (1)@ 0, Ug (—dag, a,) = dw, Ug ag + (—1)%8Er) 0, Ug day,.
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One can change the definition of U for the modified Deligne complex by introducing a different sign for
the morphism at degree 0, according to the table

Aq fq Wq
ap | ap-aq 0 0
fo 0 —fp A fo | (Z1)TEUD LR A wy
Wp | wp - aq 0 0

representing elements of

Ii | s(F*D3*) | D%
Z(p) | Ix 0 0
FrQe | 0 | s(FrteeD ) | Dy
Q [ Dy 0 0
The verification that this is a morphism of complexes can be represented by the table
aq Jfq Wy
ap | (=d(ap - aq), —ay - ag) 0 0
fp 0 (dfp A fq + (_1)deg(fp)fp Adfg, fo A fo) (‘Udeg(f”)_ldfp A wq — fp A dwyg
Wp d(wp - aq) 0 0

The difference with the previous calculation just occurs in the first column. The first object is
d(apuoay) = (—d(ay-ay), —ay-a,) = (—day, —a,) Voag+a,uo(—day, —a,) = da,ga,+(—1)%8)a, Ugda,.
The second object is

dfp Vo aq + (_1)deg(fp)fp Vo dag = (=dfp, —fp) Vo ag + (_1)deg(fp)fp Vo (—dag, —aq)

= —fp Aag+ (—1)2d8U) =1 A (—q,) = 0.
The third object is
d(wp Vo ag) = d(wy A ag) = dwy A ag + (—1)38@w, A day = dw, Lo ag + (=1)38E@P 0, Uy day,.

We have the following commutative diagram of Zx-modules, where, as before, the multiplication of Deligne
complex and the modified multiplication of the modified Deligne complex induce the multiplication of the
integral Bott-Chern complex

B(p,q,7)* ®zx B, ¢, Z)* —— Blp+p,q+d,2)*

l l

B(p,q,Z)* @z B, ¢, 2)* —> B(p+p,q+,7)°.

The vertical arrow is induced by the morphism of complexes Z(p) — ZI%. The “gluing condition” used to
define the multiplication of the integral Bott-Chern complex, starting from the Deligne complex and the
conjugate (modified) Deligne complex, is that Z(p) ® I% — Z% should be the same for both complexes.
Now, the second equality comes from the straightforward check

T« (f* 1 v ) = ¥ Ug frep.

This equality induces as follows the desired formula on the level of hypercohomology. By the algebraic
Kiinneth formula (cf. Theorem 15.5 in [Dem12b]), we have a morphism

H*(RGY*B(Z?»%Z)) ® H*(RaY*Rf*g(p7 CI7Z)) - H*(RGY*B(ZU7 q7Z> ®L RaY*(Rf*g(p7 CI>Z)))

Notice that since Z is a PID, B(p, ¢, Z), B(p, q, Z) are torsion free and flat. Notice also that l”;'(p7 q,7) is also
a soft complex. There is in fact no need to write functors R and L in the above morphism. We have proven
that the following diagram commutes:

B(p,a.2) ® f: B, ¢, Z) —— f+(f*Blp,q,Z) @ BW',q', Z))

\ l (%)

Blp+p,q+4d.2)).



142 6. INTERSECTION THEORY AND CHERN CLASSES IN BOTT-CHERN COHOMOLOGY

Let us observe that a tensor product of a soft complexe by a flat complex is soft. By taking Ray . (equivalently
ay x since all complexes are soft) the above commutative diagram induces the following commutative diagram

RGY*B(p, q, Z)®LRG’X*B(p/7 q/a Z) _)RaY*(B(pa q, Z)®LRf*B(p/7 q/a Z)) ﬁRaX*(f*B(pa q, Z)®Ll§(p/v qlv Z))

R

RayB(p+p',q+d,7)).

(Remark that the symbol f* used here is denoted f~! by some authors.) The left arrow is the natural
morphism and the left-down arrow is just the composition. Taking hypercohomology and composing with
the morphism in the Kiinneth formula give the projection formula.

The order for taking the cup product is unimportant when passing to hypercohomology, since the integral
Bott-Chern cohomology is anti-commutative. This finishes the proof of the projection formula. O

6.4. Chern classes of a vector bundle

In this part we give a construction of the Chern class of a vector bundle in the integral Bott-Chern
cohomology. It is borrowed from Junyan Cao (personal communication). The general line is Grothendieck’s
construction of Chern classes of a vector bundle via the splitting principle. In particular, we prove axiom A
stated in the introduction. We first recall the definition of the first Chern class of a line bundle in integral
Bott-Chern cohomology, following [Sch07].

Let L be a holomorphic line bundle over X and U = (U;) be an open covering of X with connected
intersections such that on each Uj;, L is locally trivial by a nowhere-vanishing section e;. We denote g;;, the
transition function defined on U; n Uy defined by the relation ex(z) = g;k(x)e;(x). Perhaps with further
refinement of the open covering, we can suppose that g;; = exp(u;x). The element

{gjx} € H'(U,0*) =~ H'(X,0%)

determines the isomorphic class of L. Let h be a hermitian metric on L and we denote by D the Chern
connection associated with (L,h) and by © the curvature of the Chern connection. On Uj, the Chern
connection is given by the formula

D(&j(x)ej(x)) = (d&;(x) — dp;(x)€;(x)) ® €j(x)

where ¢; is the local weight function of the metric under the trivialisation defined by

e = e (2)]7,
which verifies the compatibility condition on U; n Uy, :

—Pk Tt ) = Ujk + Ujk
We define the Cech 2-cocycle 0(u;r) to be (2mic;;) which means on Ujy
2WiCjp = Ujp — Uj + Uk
Taking exponential map on the both sides we know
exp 2miCjk = Gjk * gj_ll # g = 1
which in particular shows (2mic;;) € C?(X,Z(1)) a 2—Cech cocycle with value in Z(1). We define the first
Chern class of L in the integral Bott-Chern cohomology to be
er(L)peg = {(2mici), (ujr), (@r)} € Hpe (X, Z).

We prove in what follows that this hypercocycle also represents the Chern class of L in the complex Bott-

Chern cohomology. For the complex Bott-Chern cohomology, the corresponding global representative (1,1)-
form via the quasi-isomorphic complex £ [1] which is defined with p =1, =1

Lh,= @ & ifk<p+q-2

r+s=k
7"<p78<q
k—1 rs :
Ly t,1= @ & ifk=p+q,
r+s=k
r=p,s=q
with differential
od od 00
L0 P, o B pher B gkt gk 4

is just the global form with ﬁ&ggoj on U;. Notice that the complex L7 is acyclic. The proof of the
quasi isomorphism between £; ~and B , can be found in section 12 Chap VI of [Dem12b]. (Notice that

in [Sch07], the operator 5-00 is changed by dd. Here we take this choice so that the first Chern class of a
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line bundle in the integral Bott-Chern class has image as the first Chern class in the complex Bott-Chern
class under the canonical morphism.)

With the same notation as in [Sch07], a®Y can be chosen to be (¢;), so the global representative is
690 = ﬁ&gao’o. This is exactly the curvature form on Uj;. Therefore the hypercocycle of B} ; ; viewed as a
hypercocycle of B} ; ¢ corresponding to © is

{©} — {(@micju), (ujn), (W)} -
Observe that the first Chern class of the complex Bott-Chern cohomology is just represented by the curvature.

We denote by epc the canonical map from the integral Bott-Chern complex to the complex Bott-Chern
complex. We have in hypercohomology

egc c1(L)pez = ci(L)be-
Notice that the Chern classes of a vector bundle in integral Bott-Chern cohomology (which will be defined

below) and in complex Bott-Chern cohomology are both defined by means of the splitting principle, in such
a way that for any d and any vector bundle F we have

esc ¢i(E)pco,z = ca(E)Bc-

To construct the Chern class of a vector bundle, we use Grothendieck’s splitting principle. We begin by
proving a Leray-Hirsch type theorem for the integral Bott-Chern cohomology. This theorem is a direct
consequence of the Hodge decomposition theorem and of the Leray-Hirsch theorem for De Rham cohomology,
in case X is a compact Kidhler manifold. Here we give a generalisation to arbitrary compact complex
manifolds. Before giving the statement in the integral Bott-Chern cohomology, we prove lemma 6.29 below,
which is a proposition of the same nature for Dolbeault cohomology, and which will be used in a further
induction process. The proof also uses the following Kiinneth type theorem for Dolbeault cohomology.

THEOREM 6.28. Let X,Y be any two complex manifolds, Y being compact. Then one has the Kiinneth

isomorphism
HPY(X xY) = @  HY(X)@HM(Y).
k+l=pm+n=q

ProoF. With respect to local coordinates (z°) on X and (w’) on Y, the sheaf Q57 is a locally free
Ox xy-module with the basis dz! A dw’ (|I| = p,|J| = ¢). Similarly the Q% (resp. Q) is locally a free
Ox-module (resp. Oy-module) with the basis dz! with |I| = p (resp. dw’ with |J| = ¢). With this
identification, the vector bundle isomorphism

iy P %R
pt+q=Fk
is just the canonical isomorphism
Oxxy = Ox X Oy.

The symbol * means here that we take the topological tensor product of two nuclear spaces (for more details,
cf. [Dem12b], Section 5 of Chap. IX).

By Remark (5,24) of Chap. IX in [Dem12b], when Y is compact we have

HPI(X xY) = HI(X xY,Q%,y) = @ HI(X xY,0x®Q)

k+l=p
k+l=pm+n=q k+l=pm+n=q

We can now state the relevant Leray-Hirsch type theorem for Dolbeault cohomology.

LEMMA 6.29. Let X be a compact complex manifold and E be a vector bundle of rank r on X. One has

an isomorphism
@ HPX) e (0(1) — HPMP(R(E)).

s<r—1

PrOOF. We follow in general the proof of Leray-Hirsch theorem as in [BT82]. Take a finite open
covering (U;) of X. We do an induction on the open cover. In the following, U, V' are respectively | J U;
and Uj, 4+ appearing in the open covering.

We have a short exact sequence of complexes of abelian groups:

0> AP (UUV) - AP (U)D AT (V) - AT*(U V) — 0.
It induces a long exact sequence
- HPUYU UV) - HPYU)® HP(V) - HPYU N V) - HPYY (U OV) — -

i<ig
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We verify the following diagram is commutative where both lines are exact

@ HPTURTPTNUOV) e (0() - @ (HPTURTPTIU) @ HPTOE TP (V) e (0() - @ HPTURTRTS (U A V) - ef (0) = -

s<r—1 s<r—1 s<r—1

| | |

HP =P (B(Bly v)) ——————————— HPEP(B(B|)) @ HPF P (B(Bly)) ——————— HPE P BBy av)) ———— -
The commutativity of the diagram is clear at all places, except at

@ prs,kfpfs(U A V) . CL{(O(].)) L C—B prs,kfpfs(U U V) C‘i(O(l))

s<r—1 s<r—1

l * |

HP*FP(P(Elyav)) : HPEP(P(Elyov))

We denote by ¥ the vertical maps. Let py, py be a partition of unity associated with U,V so the functions
*py, ¥ py form a partition of unity associated with 7#=*(U), 7=1(V). For any w a global representative of
the cohomology class HP~**=P=5(U n V) and ¢ a global representative of the cohomology class c;(O(1)),
we have on 7= (U)

V(@ (@@ ) = 7 @(pw)) A ¢
T Pw @) = 3" (1w A @) = A(r*pu - 7w A §) = T (A(puw)) A 6.
The last equality use the fact that the global representative is 0-closed.

By the five lemma, once we know the vertical arrows are isomorphisms for the terms involving UnV, U, V,
we know the isomorphism for the terms involving U u V. We take U,V to be the local trivial open sets
chosen above. If we have 7=(U;) = U; x P! for any i, we have 7= '(U; n U;) = (U; nU;) x P!, For any
U open set on which 7 is locally trivial we have the following commutative diagram

—s,k—p—s s id®s —s,k—p—s S
@ HP =+ (U) (O (1) 225 @D HP = P=(U) - 64Oz (1))

s<r—1 s<r—1

~ * %
e,
HPEP(P(Ey))
where the map s is associating ¢§(Opr—1(1)) to ¢;(Op(g) (1)) and iy—1(yy is the inclusion of 77 (U) in P(E).
By the above Kiinneth type theorem for Dolbeault cohomology, we get an isomorphism as shown in the
diagram. We next check that the diagram commutes. In fact, one has

i:—l(U) (s(c1(Opr-1(1)))) = i:—l(U)Cl(O]P’(E)(l)) = Cl(O]P’(E\U)(l))
= c1(pr3 Opr-1(1)) = prici(Opr—1(1)).

Here we consider U x P~} 7~ 1(U). In the calculation we have used many times the functoriality of
Chern classes of line bundles, which is a direct consequence of their construction.

The commutativity of the diagram and the fact that the horizontal arrow is a linear isomorphism show
that the vertical arrow is also an isomorphism. Using this argument, we have isomorphisms for the terms
involving U; n U;, U;, U;.

The induction process can be done in three different cases. The case of finite union of open sets is
obtained by the induction assumption. The case of a single local trivialising open chart is done as above.
The case of the intersection of a union of open sets and of a local trivialising chart (which also yields a local
trivialising chart) is again done as above. Since the covering is finite, the induction is achieved in finitely
many steps. O

(7,pry)
T

REMARK 6.30. The difference between this proof and the one given in [BT82] is that we do not have
to take a good covering since here the induction on the open covering start with the Kiinneth type theorem
instead of Poincaré lemma which in fact shows that the De Rham cohomology is homotopy invariant. We
are forced to do it because the Dolbeault cohomology is not homotopy invariant. For example H%9 of a
point is C while H%? of C are the entire functions.

Now, we prove the principal proposition of this section, namely a Leray-Hirsch type theorem for the
integral Bott-Chern cohomology.

PROPOSITION 6.4.1. Let X be a compact complex manifold, E a vector bundle of rank r over it. Then,
we have

H* (P(E), > 0Z) = H* (X, B ,z) ®H"?(X, By i 4-12) w®: - @HF 22 (X, By it.g—ri12) W

where w is the first Chern class of the tautological line bundle over P(E) in Hgo(P(E),Z) as defined above.
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In the proposition we use the following notations.

If p <0 (resp. ¢ <0), we denote By ;= Bg 7 (resp. By 7). The morphism

F: @ Hk_2S(X’ szfs,qfs,Z) ‘w® - Hk(]P)(E), BP#I)
s<r—1

is defined as follows: let 7 : P(F) — X

If s < min(p,q), Fla w?®) =7*(a) - w?,

If s> p, Fla-w®) =7%(a) - wP - prg(w)*F,

Ifs>q, Fla-w®) =7%(a) w! ~pr170(w)57(1,

where the projection pry ; is induced by the canonical projection from BI,LZ to B&LZ. Similarly pry g is
induced by the projection to BLO’Z.

Notice that when p = ¢ = r, k = 2r, this is just the normal splitting principle without the complicated
notations.

(
°)

ProOOF. The idea is to use the exact sequence

0— QP[p] = By 142 = Bpgz—0

to reduce the proof to the Dolbeault case. In this proof, we use the usual convention for differential forms
that for p < 0, QP[p] = 0. We begin by proving that the following diagram is commutative and that its two
lines are exact:

® B2 (X, 0P p—s]) - w® > @ HNTR(X,BY, L) wt > @EFTR(X B )Wt - @ HE2HL(X, QP [p — s]) - w®
s<r—1 s<r—1 : s<r—1 s<r—1

! | | |

H*(P(E), QP [p]) —————— HY(B(E), By, | , ;) ——————— H*(®(EB), B} , ;) ——————— H* T (B(E), QP [p])

We first check the exactness of the two lines. The exactness is just obtained from the long exact sequence
associated with the short exact sequence of sheaves. We now check the commutativity of the first square.

HF25(X, QP [p — s]) - w® —= HF25(X, B, 1,y z) w0

o |

H* (P(E), 2°[p]) : HY(P(E), B} y1,q.2)-

The morphism G is induced from the following morphism of complexes QP~*[p —s|®z, B} ; 7 — Qp=stip—
s + 1]. Denote the germs as a € QP *[p — s], w = (&, 8; ). We define

Gla®pB) =an (06).

We take it equal to zero otherwise.
We check that this a morphism of complexes. In fact, we have

0=d(Gla®é)) =Gda®?)+ (-1)P\°Gla®dé) = GO®:é) + (—1)P~°a A d¢,
0=d(G(a®p)) = G(da®p) + (-1)"°Gla®dB) = GO® ) + (-1)"°G(a®0),
0=d(G(a®p)) =Gda®pB)+ (—1)P°Gla®df) = GO®F) + (-1)’°G(a®0).
Therefore G defines a morphism at the level of hypercohomology. From now on, we do not pay attention to
write « or m*a when the context should make the meaning clear. Notice that the morphism F' is induced by a
morphism of complexes. (It is just the cup product of the integral Bott-Chern cohomology defined in section

3.) To prove the commutativity at the level of hypercohomology, it is enough to show the commutativity at
the level of complexes. It is enough to check the commutativity for the case s < p. We have

i(a A (06)°%) = (0,0,0....a77° A (05)°%;0),

which is equal to the image of F o .

We check the commutativity of the second square. Let o = (¢, g, ..., 0p—s; Bgs -y By_s_1), w = (¢, 8; B) be
the representatives of hypercocycles. If s < p, the horizontal morphism just consists of forgetting the term
involving ap_s, thus it is commutative. Otherwise, o = (c, Bos "'7Bq—s—1) and the morphism is induced by
the identity map at the level of complexes, so it is commutative.

We check the commutativity of the third square.

DE (X B) ) — = @H X0 p—s]) o

o X

HF(B(E), B, ) l HA 4 (B(E), 2 [p)]).
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If s < p— 1, take a representative of hypercocycle oo = (¢, g, ..., 0p—s—1; By, .-, B,_s_1), which is the image
of hypercocycle of BS__ 1 .. (¢,0,...,0p—s1,0; By, ..., B,_s_1)- By the definition of the connecting mor-
phism, i(a) can be taken as the degree (p—s) element of the hypercocycle & (c, Qs ey Up—s5—1,0; By vy qusfl)
which is da,_s_;. Hence

G(i(a)) = dap—s—1 A (95)°.
On the other hand, i(F(a)) = d(ap—s—1 A (08)*) = dap—s—1 A (0B)*.

If s = p, we take a representative of the hypercocycle a = (c, Bo, ~~an7571): which is the image of the
hypercocycle (C,O;BO, ...,Bqﬂfl) of B} ,_s 7 By definition of the connecting morphism, i(«) can be taken
as the degree 0 element of the hypercocycle & (c,0; By, ..., 3,_,_1), which is c.

Therefore i(a)) = ¢ and G(i(a)) = ¢ A (08)°. The two elements with highest degrees in the hypercocycle
F(a)are c A B A (0B8)*~ 1 and ¢ A (9B)*. Now, i(F(«)) is the degree p element of the hypercocycle §(F(a)),
namely
i(F(a)) = d(c A B A (08)°71) = G(i(a)).

If s < p, the sequence

0— Qp—s[p] - B;Jrlfs,q,Z — B;zfs,q,Z -0
is an isomorphism between the second and third terms, which therefore induces a zero connecting morphism.
The diagram is also commutative in this case.

At this point, all the asserted commutativity properties have been checked.

Using the five lemma to perform an induction on p, we have to prove that the following morphism is an
isomorphism:

G: @ H(X,Q°[p—s]) - w* — H(P(E), Q°[p)]).
s<r—1
On the Cech cohomology groups HP(X, 09), one can introduce a ring structure by the wedge product
HP(X,Q9) x H? (X,Q7) — HPT (X, Qi)
On the other hand, using the De Rham-Weil isomorphism, we have a canonical isomorphism
¢: HP(X,Q%) — HIP(X,C).

Lemma 6.31 below shows that the isomorphism is compatible with the ring structure of Dolbeault cohomol-
ogy, possibly up to a sign.

Now we prove that G is an isomorphism. Let w = (c, 3; 3), so that by definition G (a -w?) is represented
by the k-hypercocycle G(« - w?®) = 7*(a) A (08)%. By the construction of the Chern class of the line bundle
O(1), we have Bj; + Bjx = ¢; — ¢x which implies

0Bjk = (¢ — dr).

A diagram chasing procedure similar to the proof of the De Rham-Weil isomorphism gives that the image of
0Bk in HY1(P(E),C) is —d(0¢;), where the later form is the curvature. The negative sign comes from the
convention that if we denote §,d the differentials of a double complex, dd + dd = 0. Therefore, to define a
double complex from the Cech complex and J-complex, we have to add a negative sign following the parity.
In conclusion w represents ¢ (O(1)), hence by the Leray-Hirsch type theorem for Dolbeault cohomology and
by lemma 6.31, the isomorphism G is settled.

To conclude the proof of the proposition, the five lemma and an induction on p reduce the proof to the
case p = 0. It is enough to show that

H(P(E), By 4z) = H* (X, B, 2) OH (X, B) y_12) - w @ @H" " 2(X, B | 112) "
The short, exact sequence 0 — Q/[¢] — BS 4112 = B 4z — 0 induces the two lines of the following diagram
are exact.

@ HUFX, Qg8 w' > @ HFUE(X By grios)-w’ > @ HYU(X,Bogos) w® > @ HFZIPI(X,Qams[g—s]) - wf

s<r—1 s<r—1 s<r—1 s<r—1

i i | |

H* (P(E), 2%([q]) H* (P(E), Bo,q11) —————> HF (P(E), Bo,y) ———————— HFF1(B(E), Q9[q])

Here we change the connecting morphism of the first line with a sign (—1)® on the relevant terms. This
change does not affect the exactness of sequence but ensures the commutativity of the diagram. As before,
we check that the diagram is commutative. To simply the sign in the cup product of Bott-Chern cohomology,
we use the anti-commutativity of the integral Bott-Chern class. For any class a, a - w = w - a. Notice that
since p = 0, w is in fact pry;w. With the same notations as before, this time the morphism G is induced by
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the morphism of complexes B | ;®z, 297 5[p—s] — Qi=t1[p—s+1]. Denote the germs by a € Q4~5[p —s]
and w = (E, ﬁ,B) We define

GB®a)=(0B) rna
and take it equal to zero otherwise.
We check that this is a morphism of complexes. Indeed, we have

0=d(G(e®a))=G(ERda)+G(dé®a) = G(E®0) + Jé A a,
0=d(GB®a) =-G(Rda)+G(df®a) = -G(F®0) + G0® ),
0=dG(f®a)) =-G(B®da) +GdE®a) =-G(BR0)+GOR® a).
To check the commutativity of the first square, it is enough to check the commutativity at the level of
complexes for the case s < q.
i((0B)° A @) = (0,0;0....(08)° A a?7%)
which is equal to the image of F'oi. The commutativity of the second square is easy.
We now check the commutativity of the third square. Take hypercocycles a = (¢, o, ..., Dq—s), Pro1(w) =
(¢,B). Tt is enough to check the case s < g, otherwise the connecting morphism is zero map. If s < ¢ — 1,
the image of a under the connecting morphism is 0v,_s. The image at the lower right corner of the diagram
is (—9B)° A 0Uy—s. (The sign comes from the change of the signs in the first line. ) On the other hand, the
image under the connecting morphism of F(a) = (08)* A Uy—s is 0((0B)° A Vy—s) = (—0B)* A OVy—s.
If s = g, the image of a under the connecting morphism is —c. The image at the lower right corner of the
diagram is (;65)8 A —cC. On the other hand, the elements with the two highest degrees in the hypercocycle
F(a) are (6@3_1 A B A cand (08)° A c. The image of the first one under the connecting morphism is
0((0B)* " A B Ac)=(=0B)* A —c.
By the five lemma, similar arguments as those given above reduce the induction on ¢ to the case ¢ = 0,

p = 0. In the case BI')’(LZ = Z, the isomorphism is trivial. O

LEMMA 6.31. One has the following relation:
S(HI(X, ) A p(HT (X, Q7)) = (—1)P7 p(HU(X, Q) - HY (X, ).

PRrROOF. We denote by £ the sheaf of smooth (p, g)-forms on X. We modify the definition of the
wedge product so that on A* := @,EP* the 0 operator defines a graded derivation, instead of taking d as
the graded derivation. We define A : A* ®c, A* — A* as WP RGP = (=1)TPuPa A P
To verify that ¢ is indeed a graded derivation, we compute

O(wPIRGP ) = (=1)TPP(wP? A &P 7Y = (=1)7P (TP A P 7 + (—1)PFHIwP? A 9P
= QWP AP 4+ (=1)9wP AooP 9
Hence, we obtain a cup product on H*(X,A*) ®c H*(X,A*) — H*(X,.A*) with respect to the Cech-
differential and 0, and this endows H* (X, .A*) with a C-algebra structure.

Let U be an open covering of X such that any finite intersection is Stein. There exist two natural
morphisms the inclusion of holomorphic forms into smooth forms ¢ : C*(U,B,QP) — C*(U,A*) and the
restriction r : A*(X) — C*(U,A*). Given the ring structure on the hypercohomology induced from the
wedge product on @,Q”, the inclusion is a C-algebra morphism. The restriction morphism s — (s|y, )q is
also a C-algebra morphism.

For fixed p, by a spectral sequence calculation in the double complex C* (U, A*), we get isomorphisms
induced by 7, r respectively

HY(X,QF) ~ H?(X,C) =~ HL(C* (U, EP*)),
where D is the total differential of the double complex. Hence we find a C-algebra isomorphism
By, HI(X, Q) = @, HP(X,C) = ®HEL(C* (U, A”)).
Here the cup product on @, ,H?9(X,C) is induced by A instead of A. Therefore we obtain
SHI(X,Q0)) A $(HY (X, Q7)) = (~1)P o(HU(X, Q) - HY (X, 0))
if we return to the ordinary wedge product. O

The splitting principle can thus be applied and gives the following definition of Chern classes for a vector
bundle.
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DEFINITION 6.32. Taking p = q =1, k = 2r, there are unique elements c; € HBZ(X, Z), such that
W'+ Z (=1)im*(c;) -w™ P =0
where w = ¢1(O(1)) by the above proposition 6.4.1. We define the Chern classes of a vector bundle E in the
integral Bott-Chern cohomology to be precisely the c;.

We now prove some elementary properties of Chern classes in the integral Bott-Chern cohomology. In
particular, we check that axiom A of the introduction holds. Let us first observe that such Chern classes are
unique, since they satisfy the Grothendieck axioms for Chern classes included in Axiom A.

PROPOSITION 6.4.2. (functoriality of Chern classes) Let f : X — Y be a holomorphic morphism between
two compact complex manifolds, and E be a holomorphic vector bundle of rank r over Y, Then we have

f*(er(E)) = er(f*(E)).
ProoF. We have the following commutative diagram:

OM)lp(r*(m)) —= O(1)|p(r)

L,
P(f*(E)) ———P(E)

x— 1 .y
which in particular shows that f*((’)(l)hp(E)) = O(1)|p(s*(p))- By the functoriality of the first Chern class
(directly obtained from its construction), we get f*(cl((’)(l)hp(E))) = c1(O(1)|p(s#(E)))- By the definition of
Chern classes, we have an equality

D (=12 O [y - 7 (es(E)) = 0.
Hence Y (1) f*(cy (OM)|pm))) - f*(7*(cs(E))) = 0, from which the definition of Chern classes yields
[*(ex(E)) = en(f*(E)). -
The next property is the Whitney formula.

PROPOSITION 6.4.3. Let 0 > E — F — G — 0 be a short exact sequence of holomorphic vector bundles.
Then we have ch(E) + ch(G) = ch(F') and ¢(E) - ¢(G) = ¢(F).

PrROOF. On X x P!, there exists a short exact sequence of holomorphic vector bundles

0>F—>F—>G—0,

such that the restriction of exact sequence on the complex submanifold X x {0} is0 - E — F' - G — 0 and
the restriction on X x {0} is 0 > E - E@® G — G — 0. The existence of such a sequence can be found for
example in [Sou92]. In the case of a direct sum, we obviously have the formulas ch(G) + ch(E) = ch(F®G)
and ¢(E@® G) = ¢(E) - ¢(G) by the splitting principle (cf. section 21 [BT82]).

On the other hand, we have the following commutative diagram for every point a € P:

XXP1L>X.

1

X

The identity element of the ring @, H"(X,BS ;) is the element in H(X,B] ;) represented by the

constant 1 € Z(0)(X) (more precisely the 0-cocycle 1 € Z(0)(U;) for each U; in the open covering). Via the
quasi-isomorphism, it can also be represented by the integral current associated with X. We denote this
element by Idx. By the projection formula we have for every a € H*(X x P!) that
T (iax(Idx) - @) = Ty (a5 (Idx - 15 (@) = e (ia £ (35 () = 1ds(ig () = i5(a).
By the functoriality of Chern classes, we thus find
T (i0x(Idx) - (ch(G) + ch(E) — ch(F))) = (ch(G) + ch(E) — ch(F))|x {0y = ch(G) + ch(E) — ch(F),

T (ioo «(Idx) - (ch(G) + ch(E) — ch(F))) = (ch(G) + ch(E) — ch(F))| x x (o0} = 0
To prove the Whitney formula, it is enough to prove the following homotopy property: let i, : X <> X x P!
be the inclusion into the complex submanifold X x {a}, then i*(«) is independent of the choice of a.
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Since X x {a} is a codimension 1 analytic set in X x P!, its associated integral current defines a global
section of Z%. Since [X x {a}] is of type (1,1), it projects to zero in H%(X, 01Dy @ e 1Dy"). Hence
2m v/—1[X x{a}] defines a hypercocycle for the integral Bott-Chern complex BY | ;. By the construction of the

push-forward, this element represents i, (Idx ). In the following we denote i, «(Idx) as {27 v/—1[X x {a}]}
(which is just the cycle class defined in the next section). With this notation, we have proved the equality

ch(G) + ch(E) — ch(F) = s (21 vV—=1({[X x {0}]} — {[X x {o0}]}) - (ch(G) + ch(E) — ch(F))).

We denote by z the parameter in P! = C U {0} and by [0,0] a (real) line connecting 0 and oo in P! (for
example we can take the positive real axis). Then the function In z is well defined on P! \ [0, 0]. X x [0, o0]
is a real codimension one real analytic set of X x P!, so it well defines a locally integral current. As a current
d([X x [0,00]]) = —[X x 0] + [X x o0]. For any smooth form of type (n + 1,n) with compact support where
n is the complex dimension of X

<51nz’¢n+1,n> - _ <1nz7g¢n+1,n> _ 7J\

X x[0,00]t =X x[0,00]~

lnz«gb:finJ o.

X x[0,00]

The second equality is a consequence of the Stokes formula. It shows that pry  ([X x [0,00]]) = — 55 din(2).

Similarly pry o([X x [0,%0]]) = —5L:0In(Z). Therefore, in the space of global sections of the mapping cone
Cone(A)*[—1](X x P!) for p = 1,q = 1, we have

1 1
([X x {0}] = [X x {©0}],0) = 6(X x [0, 0], 27r\/jllnz®_27r\/jl
where ¢ is the differential of the integral Bott-Chern complex. In other words, [X x {0}] — [X x {o0}] is
exact, and this means that ch(G) + ch(E) — ch(F) = 0 in the integral Bott-Chern cohomology class. The
proof of the total Chern class formula is similar.
(Tt would be more direct to conclude that the class of —[X x 0] + [X x 0] is 0 in the complex Bott-
Chern cohomology. Using a resolution by currents, this is equivalent to show that as currents on X x P!,
—[X x 0] + [X x 0] is d0—exact. However, notice that

In z),

—[X % 0] + [X x 0] = —idd([X]1n|z])

where we view z as a meromorphic function on P! with a single zero at 0 and a single pole at infinity.) [

6.5. Cohomology class of an analytic set

To prove the other axioms, we have to study the transformation of cohomology groups under what
appears to be the “wrong” direction. For example the pull back of a cohomology class represented by the
closed current associated with a cycle should morally be represented by the pull back of this current, but such
pull backs are not always well defined. In this section, given an irreducible analytic cycle Z of codimension
kin X, we will associate to it a cycle class in the integral Bott-Chern cohomology H é’g(X ,Z). Then we will
prove a number of elementary properties of this type of cycle classes. In particular, the projection formula,
the transformation formula of a cycle class under a morphism will be established (Axiom B (3)). At the end,
we will deduce the commutativity property of pull back and push forward by projections and inclusions,
according to Axiom B (4). The excess formula (Axiom B(5)) is a direct consequence, using the standard
deformation technique of the normal bundle.

To show that, in certain cases, the pull back of a current representing a class induces a well defined
map in cohomology, we bypass the difficulty by showing a corresponding formula for the Bloch cycle class,
which takes values in local cohomology. We make this choice since locally the Bloch cycle class can be given
explicitly, and its pull back can also be made explicit.

Cohomology with support is involved since cycle classes can be represented in a natural way by currents
associated which the cycle. These are in fact supported in the given analytic sets, whence the appearance
of cohomology with support.

With this refinement, technically, we can show that before taking the hypercohomology, the complex
RT'z(X,Ox) can be centered at the degree we want. Hence the related spectral sequences degenerate. This
allows us to glue local sections into global ones to define the Bloch cycle class.

Attention should be paid to the fact that the Bloch cycle class lies in the derived category of O x-modules,
while the integral Bott-Chern complex lies in the derived category of sheaves of abelian groups D(Sh(X)).

In this section, we denote ]HI"Z‘ (X, e) or H% (X, e) the local hypercohomology class of some complex on
X with support in Z.
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6.5.1. Definition of cycle classes. We start by defining a cycle class in the integral Bott-Chern
cohomology. This is an analogue of the cycle class in integral Deligne cohomology that has been defined
in [ZZ84]. As before, we denote by A : Cx — o,2% @oq@..

For any p, q, we have the following commutative diagram with exact lines

0 B}.),q,Z ;.;A,q,C;)(CXlzX —0
0 Zx (CX (Cx/ZX —0.

The vertical morphism of complexes consists of forgetting the terms with degree > 0. It induces the following
diagram with exact lines for p = ¢ = k.

HYS (X, Cx /Zx) — H|2§|(X7 B rz) — H‘QZ(X, B k) — H%Z(X, Cx/Zx)

" | | |

HYy (X, Cx/Zx) —— B (X, Zx) —— HP% (X, Cx) —— H% (X, Cx/Zx).
The first and fourth vertical arrow are the identity map. By the Poincaré duality for cohomology with
support we know

Hf}“fl(X, Cx/Zx) = Han—2x+1(Z,Cx/Zx) = 0

where the second equality comes from the fact that the real dimension of Z is 2n — 2k.

By chasing the diagram, we know for any elements a € HI2§I(X’ B} ;) and b € H|2§| (X,Zx) such that
their images in H7 (X,Cx) are the same, then there exists a unique element in H7j (X, By, ;) such that
the image of this element is a, b respectively.

To define the cycle class, it is thus enough to associate the cycle two elements in Hfg‘(X, B,;,k’(c),
H‘Zg‘(X, Zx) such that their image in H‘le(X ,Cx) is the same. The cycle Z defines a global section in
HO(X,I%) so it represents an element in HF} (X,Zx). The inclusion Zyx — Cx induces in the derived

category a morphism 75, — D;}. These two quasi-isomorphic morphisms induce the same morphism when
passing to hypercohomology. The cycle class in ]HI|2§| (X,Zx) associated with Z has an image in ]HI|2§| (X,Cx)
represented also by the integral current associated with Z.

On the other hand, Cx is quasi-isomorphic to the complex D;;. The complex Bott-Chern complex is
quasi isomorphic to the mapping cone C(¢)*[—1] with the natural map ¢ : Dy — ak’.D/)}" @ a.,kD;;" with
a negative sign on the second component. The integral current associated with Z defines a global section of
HO(X, DY) of bidegree (k, k). And its image in HO(X, O’k’.Dl);" @ a.ykD;") is 0. This means in particular
that the integration current defines a hypercocycle. Here the hypercohomology class can be represented by
this global section since the sheaf of currents is acyclic. Hence the integration current ([Z],0@0) represents
an element in Hfg‘(X, By . c)- Under the forgetting map By ;, - — Cx, its image in H‘le(X, Cx) can also be
represented by the same integration current [Z].

In conclusion, the cycle class associated with Z in H|2§I(X s B 1.z) 1s exactly the class of the integral
current associated with Z view as an element in H‘QZ’“‘ (X, Cone(q)*[—1]) with ¢ : Z% — aky.D;;” (—Bo.,kl);”.
The image under the canonical map Hfé“'()ﬁ B} 1.z) = H2k (X, B;, . z) defines finally the cycle space associ-
ated with Z represented by the same integration current. (This construction is already used in the proof of
the Whitney formula.) We denote in the following the cycle class associated with Z as {[Z]}.

Notice that izs1 = {[Z]} where 1 € HY}2(Z,Z) the identity in @, ,H%%(Z,Z). The identity in
®p.g HEE(Z,Z) corresponds a global constant section 1 € I'(Z,Zy) whose image under iz, in the hyper-
cohomology is defined by locally integral current [Z] by the construction of the push forward. This global
current represents the cycle space {[Z]} on X.

Now we prove some properties of cycle classes. We start by the following lemma which expresses the
push forward of a cohomology class by an arbitrary morphism in terms of the pull back and push forward
of its projection, and a multiplication by the cycle class associated with the graph of the morphism.

LEMMA 6.33. Let f : X — Y be a holomorphic map between complex manifolds. Assume X to be
compact. Let « be an integral Bott-Chern cohomology class. Denote by ' the graph of f in X XY and by
p1, P2 the two canonical projections. Then one has

fra = pas(pia-{[T]}).
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PRrooOF. This can be checked directly using the multiplication structure as in the Deligne-Beilinson
complex. The compactness condition is just used to ensure that the push-forward is well defined. Taking
[['] as the global representative of the cohomology class, the cup product is induced by the wedge product
between the forms and locally integral currents at the level of complexes. We prove at the level of complexes
that

fe(@) = pas(pT () Lo [T]).
It suffices to check on germs on Y. Let U be an open set of X such that U = f~!(V) for some connected
open set V of Y. There are two kinds of sheaves in the Deligne-Beilinson complex: locally constant sheaf in
Z and sheaves of holomorphic forms.
Let a € Q) (U). Let we Cin—pnyc(U) be asmooth form with compact support in U. Then we have

<f*a,w>=<a,f*w>=J‘Ua/\f*w=J- pra A pff*w

Capyt(U)
- j pra A phw = (pas (@) Up [T]), w).
Crpy (U)

Notice that p; induces a biholomorphism between I' n p; ! (U) and U.
For ¢ € Zx (U), its image under f, via the quasi-isomorphism is the local integral current cf[U]. The
equality at the level of complexes is just

cf«[U] = p2s ([T 0 p3 ' (U)]) = a2 (pf (¢) wo [T]).
Passing to hypercohomology gives the desired equality. O

As in [Gril0], we have the following property. It is a combination of the above lemma and the pull back
of the cycle class under a closed immersion (the proof will be postponed to the next subsection).

ProrposiTioN 6.5.1. Let f: X - Y be a sur]ectwe _proper map between compact manifolds, and let D
be a divisor of Y. We denote f*D = miDy + --- + myDy. Let fz D; —» D (1 <i < N) be the restriction
of f to D;. Then we have

N
[Fipsx = Z m; iDi*Ji-*
i=1

PrOOF. The proof is identical to the case of the Deligne complex. For self-containedness, we give
briefly the details. The idea consists of passing to the graph and using the above lemma. Since all spaces are
compact, the push-forward is always well-defined. Let I' be the graph of ip : D — Y and let I"; be the graph
of ip, o D'y — X. We denote all terms involving X with a prime symbol ” and all other terms without that
symbol. By definition, [I")] := (f;,id)«[I"}] as current which induces as cycle class {[T}]} = (fi,id)«{[T}]}.
[I';] is supported in the image of (ﬂ7 id). We denote by p; (j = 1,2) the natural projections of D x Y, by pj
projections of D x X, and by ﬁ;l projections of D; x X.

In terms of currents, we have (id, f)*[I'] = Zfil m;[I'}]. We can prove the Bloch cycle class equality
(id, £)*{[T]} = ZZ 1 mi{[I"}]}. The proof will be given in Lemma 6.46. Then we have

fsipsa = f*pax(pYo - {[T1}) = phy (id, £)* (pTa - {[T]})

N
= pha((id, £)*pFa- (id, H)*{[T]}) = Y. mipha(pr*a - {[T]]})
v =zlv ~
= Zmiplz*(fi>id>*<(fuld) pl Q- { F/ Z 2p2z* p lzfl Q- {[F;]})

i=1 =
N

Z zD,*f-*oz.

The first equality uses the lemma 6.33. The second formula uses the proposition 6.2.2 for fopl = pyo(id, f).
The third equality uses the fact that pull-back is a ring morphism. The fourth equality uses the fact that
p1 = py o (id, f). The fifth equality uses the projection formula. The sixth equality uses the fact that
Do = (f;,id) o pb and f; o p/ 10 =DPro (fi,id). The last equality uses another time lemma 6.33. The
surjectivity of f is just used to ensure that the pull-back of a divisor is a divisor. O

We give an easy generalisation of a lemma in [Sch07]. It gives the expected relation between the integral
Bott-Chern cohomology and the Deligne cohomology. In particular, one can reduce the relevant properties
of cycle classes in the integral Bott-Chern cohomology to the Deligne complex case, when they only involve
the group structure.
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LeEMMA 6.34. For any p = 1, we have a Z-module isomorphism
HYE(X,Z) ~ HY (X, Z(p)) @ HP~1(X, Q1 ).

Moreover, via the isomorphism, for any proper cycle Z in X, the cycle class {[Z]} pc associated with Z in
the integral Bott-Chern cohomology corresponds to ({[Z]}p,0), where {[Z]}p is the cycle class associated
with Z in the Deligne cohomology.

This isomorphism is functorial with respect to pull backs.

PRrROOF. We have the short exact sequence

0— QL[] = B,z — D(p)° — 0.
We can prove as shown in [Sch07] that the short exact sequence is in fact split, so that we have an abelian
group isomorphism
HYP(X,Z) ~ HY (X, Z(p)) @ H» (X, Q%)

by taking the hypercohomology. We have to transform the complex involving smooth forms into a cone
complex involving currents. These complexes are quasi-isomorphic, so that the splitting induces a morphism
of complexes in the derived category. However, we want to modify that splitting to relate the cycle spaces
in our different cohomology theories (respectively Deligne and integral Bott-Chern).
Let A be the matrix X )
G 7)
2 2

We use the construction for A given in the next remark which shows that the integral Bott-Chern complex

is quasi-isomorphic to Cone(Z% 1.9, 0p,e DY @ 04, DY°)[—1]. The Deligne complex is quasi-isomorphic

to Cone(Zy —2° 0p,eD%°)[—1]. There exists a splitting morphism given by for any element (a,b) €
Ié“( @J]’;;lD;(" by
L] prpy. e.0 (] (1)0) e.0 e.0
F: Cone(Ty 2% 0 DY)[-1] — Cone(Ty 12 0, . DY* @ 00,3~ 1]

(a,b) — (a,b,0).
We verify that it is a morphism of complexes:

F(d(a,b)) = F(—da,pr, ,a + 0b) = (—da,pr, ,a + 0b,0)

= d(F(a,b)) = d(a,b,0) = (~da, pr, ,a+ b,0).

Via this splitting isomorphism the cycle space associated with an analytic set Z is the cohomology class
represented by [Z] and ([Z],0) respectively. Thus the image of the cycle class {[Z]}p under F is {[Z]}Bc-
The functoriality comes from the functoriality of the construction given in the remark. O

REMARK 6.35. The sign in the definition of the integral Bott-Chern complex is unimportant for the
group structure of the integral Bott-Chern cohomology when p = ¢. In fact, up to an isomorphism of abelian
group, we can change the vector (1,—1) to be any non zero vector in C2. To do it, we need the following

construction.

Recall that the integral Bott-Chern complex is Cone(Z &), Q, ®Q_,)[~1] the mapping cone of

the morphism Z o), L, (—Bﬁ;p. Let A € GL(2,C) be any invertible matrix. We denote by a;;(1 <
i,j < 2) the elements of A. Then we have the following isomorphism of Zx-complex Q2 (—Dﬁ;p. For any

k, (w1, ws) € QF @ﬁk sends to (a11wy + a19Ws, a21W71 + azews). The conjugation transforms the holomorphic
forms to the anti-holomorphic forms and vice versa. (In fact it is Ry-morphism not Cy-morphism.) The
inverse morphism is induced by the matrix A~".

Via this isomorphism of complex of Z x-sheaves, the integral Bott-Chern complex is isomorphic to

A(l,—1)°
_—

Cone(Z QL @0.)[-1].

For any vector (a,b) € C2, if we choose adequately A so that (a,b)! = A(1,—1)!, the integral Bott-Chern

complex is isomorphic to Cone(Z {ab), Q‘<p®§.<p)[—1], which induces an isomorphism by passing to hyper-
cohomology. This construction is functorial with respect to pull-backs, since the pull-back by a holomorphic
map preserves the holomorphic forms and the anti-holomorphic forms.

This construction does not work for complex Bott-Chern cohomology since the isomorphism we have
constructed is not complex linear.
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. . . . A s
The integral Bott-Chern complex is quasi-isomorphic to Cone(Z% = 0, .DY" @ 0. ,DY")[—1]. Via this
quasi-isomorphism, the above construction gives an isomorphism of complexes

F : Cone(T§ = 0, D" @02, D}")[~1] — Cone(Tx A0

UP,OD;é. S U':PID;{)'. )[-1]

sending (a,b,c) to (a,a11b + a12¢, as b + azsc). Here A(1,—1) is the composition of A with the morphism
given as in the above construction for o, DY* @ 0. ,D%" and A. Concretely for any k, the differential of
T € Ix" sends to (a11pr, JT —a1opr, J T, asipr, ,T — agepr, ,T') with value in ap,.D;(’k (—Ba.’pD];(". We check
that A induces a morphism of complexes.

F(d(a,b,c)) = F(—da,pr, ,a + 0b, —pr, ,a+ dc)
= (—da,a11pr, a + a110b — a12pr, ,a + a120¢, a21PT, L@ + a910b — agapr, 0 + az00c).
d(F(a,b,c)) = d(a,a11b + a12¢, as1b + ac)
= (—da,a11pr, ,a + a110b — ai2pr, ,a + a120¢, ax pr, ,a + a210b — azapr, ,a + a920c).
In particular, since the cycle class associated with an analytic set Z is represented by the global section

([Z],0 @ 0) where [Z] is the current associated with Z, its image under the isomorphism is represented by
the same section for any matrix A.

Now we return to the transformation of a cycle class under a morphism in the integral Bott-Chern
cohomology.

LEMMA 6.36. Let X be any complex manifold, Y and Z be compact submanifolds of X which intersect
transversally and let W =Y nZ. Letiy : Y — X be the inclusion. Then we have in the integral Bott-Chern
cohomology the equality

A2 = {W ]}

ProoF. In this proof we denote {[Z]}pc for the cycle class associated with an analytic set Z in the
integral Bott-Chern cohomology and {[Z]}p for the corresponding class in the Deligne cohomology. Via the
isomorphism given in Lemma 6.34 and the functoriality, the equality i} {[Z]}pc = {{W]}Bc is equivalent
to the equality i¥-{[Z]}p = {[W]}p. The proof in the Deligne complex case is given in the following via the
Bloch cycle spaces. O

6.5.2. Deligne and Bloch cycle class. For self-containedness, we present here the general line of
the proof of the equality in the Deligne complex case, as given in [Gril0]. We also need the local formula
expressing Bloch cycle classes to complete the proof of Proposition 6.5.1. We start by recalling the Bloch
cycle construction made in [Blo72] that was mentioned at the beginning of the section. The detour through
Bloch cycle classes is organised as follows. First we recall the definition of the algebraic local cohomology
groups and of the topological local cohomology groups. We show that for a coherent Ox-module, these group
are the same up to the forgetting functor. Secondly, we can give locally an explicit resolution of éech—type
complex of Ox in the algebraic local cohomology case. Next we show that associated with a cycle using the
local resolution we can glue some local sections to a global section which is the Bloch cycle class associated
with this cycle. Finally, we prove that under a suitable canonical map, the image of the Deligne cycle class
is the Bloch cycle class associated with the same cycle. The author expresses warm thanks to Stéphane
Guillermou for very interesting discussions on this subject.

Let X be a complex manifold and Z be an irreducible analytic subset of X of codimension d. Let F be a
coherent sheaf on X. There are two notions of local cohomology with support in Z. A topological definition
is the derived functor of the function “sheaf of sections with support in Z” given on any open subset U < X
by

Tz(F)(U) :={se F(U)|supp(s) c Z}.
For every x € X and s € F,, we have an induced O,-morphism O, — F, given by f — f-s. The annihilator
Ann(s) of s is defined to be the kernel of this morphism. The support of s is the zero variety V (Ann(s)) of
Ann(s); by the Nullstellensatz theorem, saying that the support is contained in Z is equivalent to the fact
that Iz < /Ann(s). Since the ideal sheaf associated with an analytic set is coherent, this is equivalent to
the fact that I < Ann(s) for n » 0, which amounts to say that I%s = 0 for n » 0. Next, this is equivalent

to say that O, —> F, factorise through O, /T3 . X% F, for some n. In other words,
I'z(F) = lim Hom(Ox/I7,F).
n—0o0

The construction does not give the same equality if we replace the coherent sheaf F by a complex of
coherent sheaves (in particular, when the complex is unbounded), or by an arbitrary sheaf. In this case,
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we must define the algebraic local cohomology sheaf supported in Z to be the derived functor of the sheaf
Lz (F) :==lim Hom(Ox/I7,F). Since the direct limit functor is exact, we have

R'T7(F) := lim Ext'(Ox /Ty, F).
n—aoo
We define the algebraic local cohomology sheaf complex with the same formula, after replacing the given
sheaf F by a complex of sheaves.

Given an Ox-complex F*, we still have an injective morphism (but not necessarily an isomorphism)
Liz1(F*) = I'z(F*). The image of an element in I'[z(F*) is given by the image of the constant function 1
under the composition morphism Ox — Ox/Z} — F* for some n large enough such that Ox/Z} — F* is
defined. We have the following local-to-global spectral sequence

By = HP(X, R'T4)(F)) = H}' (X, F).

Here H[iZ] (X, F) := lim Exty, (Ox/I £, F) is the algebraic local cohomology. We have similar spectral
sequence for complex changing the cohomology by the hypercohomology.

We prove that RIT'[;1(Ox) is trivial for any ¢ # d. The easy direction is a consequence of the following
proposition [Kas02, Prop. 2.20].

PROPOSITION 6.5.2. Let X be a non singular variety and F a coherent Ox-module. Then for any
k < codim(supp(F)), we have Extf, (F,Ox) = 0.

Use the proposition for F = Ox /I for any m. We have R’“I‘[Z](OX) = 0 for any k < d passing the
direct limit. The converse direction needs to resolve the sheaf Ox/Z7 by Koszul type complex. Assume
that Z is a smooth submanifold or a locally complete intersection (this is the only case we need in the
following) from which we can suppose locally Z = V(f1,---, fq). To start with, we notice that for any
coherent O x-module F

Iz (F) = lim Hom(Ox/(f1',---, 1), F)-
n—0o0

This comes from the relation below, that holds for every n
I e (- f) < T

One can resolve locally Ox/(f{,--- , f}) by the Koszul complex K, (f{", -, f7)[—d]. For example, when

d =1, Ox/(f1) is quasi-isomorphic to the complex 0 — Ox xh, Ox — 0 concentrated in degrees -1 and 0.

Since lim is an exact functor, for any k > d, we have
R'T17)(Ox) = lim R*Hom(Ox/(ff',---, f1),0x) =0
n—o0
where the last equality comes from the fact that each element is 0 even before taking the limit.

We describe the Bloch cycle class associated with Z in Hfiz] (X,0%). Since Z is a local complete
intersection and Q¢ is locally free, RIT 7 (24) = 0 for any ¢ # d. Hence the local-to-global spectral sequence
degenerates, and

H{y (X, Q%) = T(X, RT4(29).
As a consequence, it is enough to describe the cycle class locally, as the local representatives patch into a
global section. _

Let (U;) be a Stein open covering of X such that Z n U; = {f(li) =... = f(di) = 0} for f(Ji) e I'(U;, Ox).
We need the following result.

LEMMA 6.37. The direct limit of the dual of the Koszul complez Homoe (K*((f(li))", e (f(di))"), Ox) on
U; is the extended Cech-type complex associated with Stein open covering of U~ Z given by V(Jl) = {f(ji) # 0}.
More precisely the limit is

1 1 1
1]‘_0[ f(Jz‘) jolgd f(Jz‘)f(]i) f(li)"'f(di)

with Ox at degree 0. In the following we will denote this complex by C*(Ox).

PROOF. On the one hand, the natural morphism between the duals of the Koszul type complexes, map-
ping HomOX (K*((f(ll))na M) (fé))n)v OX) to HOIn(’)x (K*((f(lz))n+1a Ty (f(di))n+1)v OX): is given by Sending
(€iy Aooonei)to fi ... fi(ei, A... A€, )* where the indices satisfy {1,...,r} = {i1,...,i,}. On the
other hand, in general we know that if F* is a complex of Op-sheaves for every complex space U and if

f € Oy (U), the direct limit of the complex system --- — F* o Fe s ]—"'[%]. The isomorphism is
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given by sending s a local section in the i-th copy of F* to 7. This completes the proof by combining the
two facts.

Notice that in the analytic setting OX[%] is not the same as j,Ox .y () where j is the open immersion of
X N\ V(f) into X, since a holomorphic function on X \ V(f) can have essential singularities along V(f). O

REMARK 6.38. Denote by Sh(X) the category of sheaves of abelian groups on X and by C(Sh(X)) the
category of complex of sheaves of abelian groups on X. Notice that I'; is a left exact functor from C(Sh(X))
to C(Sh(X)). So it induces a right derived functor from D(Sh(X)) to D(Sh(X)). We denote by G the
forgetting functor from C(Mod(Ox)) the category of complexes of quasi-coherent Ox-module (that is the
direct limit of a sequence of coherent Ox-module) to C(Sh(X)). For any coherent Ox-sheaf F, we have

As we have seen above, the equality
Go F[Z](]:) = FZ O G(]:)
also holds. We further observe in general that for two functors A, B the relation R(Ao B) = RAo RB holds

if for any injective object I we have R'A(B(I)) = 0 for any i > 0. The forgetting functor is an exact functor,
hence R'G = 0 for any i > 0. We have

R(G oT'(2])(F) = RG o RT4)(F) = G o RTz(F).

On the other hand, if I is an injective Ox-module, I is flasque and so is G(I). By [Har77] Chap III exercise
2.3, RTz(G(I)) = 0 for any i > 0. Hence we have

R(Tz o G)(F) = RTz 0o RG(F) = RT'z o G(F).
In particular, R‘T'z(F) is also concentrated at degree d for any locally free Ox-module.

Now we define a global section corresponding to the Bloch cycle by patching local sections. Locally the
differential form
dfiy A~ Iy
ORI
gives rise to a (d — 1)—éech—cocyle with value in Q¢ with respect to the open covering V( > SO it defines a

sectilon of RdF[Z](Qd) on U; by passing to the quotient. As in [Gro62] exposé 149, we have the following
result.

LEMMA 6.39. These sections can be shown to patch to a global section of RdF[Z](Qd) which we will
denote {[Z]}pi-

PROOF. For any z € Z, let (fi,---, fa), (fi, -, fa) be two systems of generators near a neighbourhood
of z. Then there exists A € GL(0O,) such that (f1,---, fa) = (f1,--- , fa)A. By the Gaussian elimination, the
matrix A can be generated in perhaps a small open set by row-switching transformations, row-multiplying
transformations and row-addition transformations with values in Ox. Thus we reduce the check in these
three cases. The sections are invariant under the row-switching transformations by anti-commutativity of
Cech-complex and the anti-commutativity of differential forms.

If (f1,~- ,fd) = (f1, - ,ufq) with ue OF, we have

dfy n - A d(ufa) _ dfy /\(@ dl)
fi--(ufa) fi fa  u’
The difference corresponds to a Cech coboundary 4(0, - - - ,(fl)di{—f A A i{;—: A 4u) since % A A
‘?j—: A 4t e QU U)[4—] for some open set U.
If (1, fa) = (fi,--+,vf1 + fa) with ve O, we have
SRS VY
Jfatvf o 5“
dfi o ndfi+fa) _df o dfa (=Dkokfr dfs dfa—1
+ Y ——————dfi A=A A A4
7 7 R A 7 Yy Ly fs
k=1 d

kk d d
+Z fldfl/\ﬁA'u/\ fd_l/\dv.
k=0

k“ fo fa—1
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The difference corresponds to a Cech coboundary

k—
5(2 Mdfl/\di?,\... dfar /\dfd-i-z(_l)lwﬁdﬁA%/\“'A(j{dl A dv,0,---,0).
k=0

A
=1 . J2 fa—1 P f2 d—1

O

Notice that by remark 6.38, the Bloch cycle class takes values in the (topological) local cohomology
under the forgetting functor.

We now give the relation between the Bloch class and the Deligne cycle class. The complex Deligne
complex is the mapping cone of Cone(C — ¢,2*)[—1]. Via the quasi-isomorphism in D(Sh(X)), the complex

Deligne complex is also isomorphic to the mapping cone Cone(g)*[—1] of the quotient map ¢ : Q% — 0,Q%
by Dolbeault-Grothendieck lemma. We also have short exact sequence

0— FPQY — Q% — 0,Q% — 0

which shows in particular FPQ% = Cone(g)°[—1]. Hence we have in the derived category of sheaves of
abelian groups an isomorphism

D(p)e =~ FPOY%.
The exact sequence
0 — FI1Q* —» FiQ® - Q4[—d] — 0
gives
HY (X, FI10%) — HZ(X, FIQ°) — HL(X, Q%) - HF X, FAQ0) — -

In the following, we show that the Deligne cycle class sends to the Bloch cycle class in the above long exact
sequence. To prove the degeneration of some spectral sequence, we need the following lemma.

LEMMA 6.40. Let&*:--- >0 —> E° - ... - EP - 0 — --- be a complezx of locally free Ox-module of
finite length p + 1 in the category of complexes of abelian groups. Then RT z(E®) is quasi-isormorphic to the
complex

() (0 RITH(E) = - RIT5(E?) =0 = ) ~d]
In particular, RT z(FPQ®) is quasi-isomorphic for every p to the complex

(=0 = RITz(QF) = oo = RT(Q") - 0= --)[~d],
where RT 7(QP) is placed at degree p.

PrOOF. The proof is a consequence of an induction on the length of the complex. When the length is
1, the proof is straightforward by the fact that RIT'z(QP) is concentrated at ¢ = d. Assuming the assertion
to hold for i, we denote by £* the concatenation of terms £° up to degree i. We have a short exact sequence

0 B —i—1] - &+ L&l 0
which induces a distinguished triangle
gitl g, E”l[—i] &
Since RI'z converts distinguished triangles into distinguished triangles, we get a distinguished triangle
RT(E+1) — RT4(E%) — RTz(E[—i]) = |

By the induction assumption we get a quasi-isomorphism RTz(£%) =~ (- — 0 — RITZ(E®) — .-+ —
RIT7(E?) — 0 — ---)[—d]. Therefore, we see that R['z(£*!) is quasi-isomorphic to the mapping cone of
(+++—>0— RITZ(E° — -+ —» RITZ(E) - 0 — ---)[~d] to RITz(E**1)[~d], which proves the result.
The particular case comes from the fact that the differential on X has maximal degree n. O

REMARK 6.41. In fact, one can show that the differential in the complex () is induced by the differential

of the complex £°. Stéphane Guillermou indicated to us the following proof in a more general setting.
Let £* € C(Sh(X)) such that for any i, one has RI'z(E') = HZ(E")[—d] in the derived category
D(Sh(X)) of sheaves of abelian groups. Then we have a quasi-isomorphism

RUz(€*) = (HL(E®) — - — HL(EP))[~d]
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where the differential map on the right is induced by the differential of £°. Take an injective resolution for
each F! so as to obtain a double complex I*®

,1

30,0 =0
70,0 9 70.1 0

lao,o J/aO,l
=1,1

=1,0
710 9 Ll 0
lal,o J/al,l

Then RT'z(E°) = T'z(Tot(I**)). Take A** = T'z(I**), B** = 7<q.A%* and C** = 754.B*°. Here
T<d,s, T>d,« A are the concatenation functors. More concretely, B** is

FZ(EO.O)

D, (100) 2290, p oy
J/FZ(aO,O) J/Fz(a[),l)

1,0 =1,1
FZ(ILO) Fz(a ) FZ(Il’l) I—‘Z(a )

lrzw“’) lrzm“)

rz@")
—Z 4

?d,() —=d,1
Ker(T7(0%9)) "2 Ker (T4 (9%1)) 2. .

| |

0 0

and C** is concentrated on the (d + 1)th-line which is (HZ(E®) — --- — HZ(EP)). Since the concatenation
functor preserves cohomology up to degree d, one can use the following lemma twice, for the pair A**, B**
and for the pair B**,C**, to conclude the result.

LEMMA 6.42. Let A®*, B** two double complexes of sheaves of abelian groups. Let u : A** — B** be
a morphism of double complex which induces an isomorphism of double complex

HgHa(A.’.) jas HgH(‘;(B.’.)

where 0,0 is the two differentials of the corresponding double complezes. (Since the morphism in the double
compleves HzHy(A**), HsHy(B**) is in fact the zero morphism, the isomorphism of the double complex
is the same as isomorphism of each term in the double complex.) Then we have an isomorphism of total
complezes

Tot(A®*®) =~ Tot(B**).
The standard spectral sequence of double complexes gives
Hi(X, Rz ((F10%))[—d]) = HT (X, Rz (F4H1Q®)) = H Y (X, FA+Q°).

By reasoning on degrees and using the above lemma 6.40 to calculate the derived functor of the complex,
one sees that the spectral sequence degenerates. Thus we find

szd(X, Fd+1Qo) _ 0,

H2Zd+1(X, Fd+1Ql) _ F(X, RdFZ(Qd+1))'
The image of {[Z]}5; under the boundary morphism is represented by the cocycles
1 d
RIORAMAR IO
ORIt
Here we use remark 6.41, which ensures that the boundary morphism is induced by the standard differential
of differential forms.
By the long exact sequence before Lemma 6.40, we know that the class {[Z]}p, lifts to a unique class
{[Z]}p. In conclusion, the image of the Deligne cycle class under the natural morphism is the Bloch cycle

class and the natural morphism is injective. In this way, to evaluate the transformation of a Deligne cycle
class under a morphism, it is enough to evaluate the corresponding transformation of the Bloch cycle class.

) =0e (U, R z(Q4F1)).
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REMARK 6.43. One can show that the Bloch cycle can also be represented by the global section (27i)¢[Z]
of the current associated with the cycle Z. This is a direct consequence of the Lelong-Poincaré formula.
Consider the extended Cech complex for the open covering (Vé)) of X \ Z as in the lemma 6.37. Notice that
these open sets give an open covering of X \ Z but at the degree 0, the component of complex is (—BiQfUi. We
resolve 2 by complex of currents D;l(" and we consider the total complex Tot(C"(D;i(")). {(2mi)4[Z " U;]},
defines a element in CO(D%%). The differential is given by § = (—1)/(—=1)**1§ + d on C*(D%') where § is
the Cech-differential and § the total differential. The factor (—1)¥*1 comes from the commutativity of the
double complex. The factor (—1)! comes from the fact that the extended Cech complex (as the direct limit
of Homp,, (K*((f(li))”, I (f(”é))”)7 Dﬁl(")) differs from the ordinary Cech complex by the same factor.

~ 1 Acr A d
The boundary of the C~!(D%")-hypercocycle defined by T2 200 on {f2 % 0, ft # 0} 0
(i) (i)

adfin r-ndffyy
Ty T
C’d(Di’o)) and 0 otherwise (as the component in C'd_l(Dggl)). On the other hand

1 d 2 d
_ df(i) A A df(i) df(i) Acoe A df(i)
1 ... dfd 2 ... fd
Ty Al ORI
on { f(zi) #0,---, f(di) # 0} by the Lelong-Poincaré formula. Hence the Bloch cycle is cohomologous to the
PAUNTIUN' 54
hypercocycle defined by (—1)%~1(2mi) [fly =01A w
[ORRIO)
By induction, it is also cohomologous for any & to the hypercocycle defined by (fl)d*1(27ri)2k+1[f(1i) =
dfPRT2 A ndfd
(i) (@)
TR A ,
induction we use the fact that the currents involving terms [ f(JZ.) = 0] are zero on the open subset { f(JZ.) # 0}.
We also observe that, since Z is a locally complete intersection of X, the wedge product of the currents
[f(]i) = 0] A [f(’“i) = 0] for j # k is well defined. The induction is pursued until one reaches k = d. This
finishes the proof.

By a similar argument, one shows that the Deligne cycle class can also be represented by the global
current [Z], as in the previous subsection. In particular, the image of the Deligne cycle class under the
natural morphism is the Bloch cycle class. Since the Bloch cycle class is represented by meromorphic forms,
the pull back of Bloch cycle classes is much easier to express. This explains our choice of introducing Bloch
cycle classes to circumvent the difficulties.

otherwise, is the hypercocycle defined by (—1) on {f(ll) #0,- - 7f(di) # 0} (as the component of

) = (2mi)[fl = 0] A

on {fa) #0,--- ,f(%) # 0} and 0 otherwise.

cee = fé’;“ =0] A on {]“(21»];+2 #0,--- ,f(”i) # 0} and 0 otherwise. Notice that when doing the

REMARK 6.44. (Functoriality of local cohomology) As in [Inv84] page 125, we have the following com-
mutative diagram. Let A be a closed subset of a complex manifold X and B a closed subset of Y a complex
manifold. A holomophic map f: X — Y with f(X \ A) c Y \ B will induce for any p, q

HY(Y, F103) —— HI(Y, F103)

| |

HY (X, f*FI03) —— HI(X, f*FI03)

| |

HY(X,F1Q%) —— HI(X, F1Q%).
The first diagram commutes by taking injective resolutions F'4Q}, — J* and f*F?Q5, — I* and the com-
mutative morphism of complexes
Tp(Y,J*) — I(Y,J*)

| |

TA(X, I%) —— T(X,I*).

The second diagram is given by natural inclusion f*FQ3 — FQ% in C(Sh(X)). This shows the functori-
ality of local cohomology under pull-backs.

Now we finish the “detour” via Bloch cycle classes. In the sequel, we reduce equalities to be proved for
the Deligne (or Bott-Chern) cycle classes to the case of Bloch classes, using functoriality under pull-backs.
This will complete the proof of most of the properties contained in Axiom B.
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LEMMA 6.45. Let X be a complex manifold. Let Y and Z be compact submanifolds of X that intersect
transversally into W =Y n Z. Letiy : Y — X be the inclusion. Then we have in the integral Deligne
cohomology the identity

i {[Zl}p = {(W]}p-

ProoF. Using the exact sequence, 0 — D(d)* — D(d)% — C/Z — 0, as in the Bott-Chern case, we can
reduce the integral case to the complex case by the injectivity of local cohomology. By the construction of
Bloch classes, it is enough to prove the equality for Bloch classes, thanks to the injectivity of the Deligne
complex into the Bloch complex after passing to hypercohomology. Since Q¢ is a coherent Ox or Oy sheaf,

the topological local cohomology H 7 is isomorphic to the algebraic local cohomology H (7] We can cover X
by Stein open sets U; such that U; n Z # ¢J and, in ad hoc local coordinate charts,

UinZ={zp_f4y1 == 2, =0} for every i.
We can also suppose that in any open set U; of the covering such that U; n'Y # ¢J, we have
UnY ={z,_1=-=2 =0}
In particular, this gives in local coordinates
UnW={zp_pt1="=2, =21 = =21 =0}
In this case, the cycle class satisfies

i dzp—ks1 A - AN dzp dzp—ky1 A - A dzp

Zn—k+1"" " Zn }lUl B { Zn—k+1"" " Zn }\UimY
which implies Z;{[Z]}Bl = {[W]}Bl U
LEMMA 6.46. With the same notation as in Proposition 6.5.1, we have
N
(id, ))*{[T]} = > mif[T7]}-
i=1
ProOOF. In ad hoc local coordinates, (21, -+ ,2,) € U, we can write D = {z; = 0}. Therefore I' =
{(wa, -+ ywpn, 21, y2n)|21 = 0,2; = w;,¥i = 2} € D x Y in this coordinate. As in the previous lemma, it

is enough to prove the equality for the Bloch classes. Locally, {[D]}p; is represented by

dzy A d(zg —wa) A Ad(zn — wy) i 1
z1(z2 —wp) -+ (2, — wy) I OU[21(22 —wy) - (2 — wn)])'

Locally we may write f = (f1,---, fn) for some coordinate chart V' of X such that f; = z]" ---2"». Then
(id, £)*{[T]} g1 on (D nU) x V is represented by

A ndlfy —wn) nndinwa) 5 dw AUy — ) A ()
fl(f2_wn)"'(fn_wn) i=1 ’ xi(f2_wn)"'(fn_wn)

in

- )
fl(f2 _wn)(.fn _wn) .
On the other hand, in (D nU) x V, I'} is given by {(w2, - ,wn,z1, - ,2n)|z; = 0,w; = f;(x),¥j = 2}.
This proves the equality. The cohomology groups involved are all calculated by taking support in D. Since
all cohomological arguments remain valid when the closed set is a locally complete intersection, we can still

reach the desired conclusion, although D is not necessarily a submanifold. O

F((D N U) X VvaO(DmU)XV[

In fact lemma 6.36 gives as a special case the following proposition, which translates into the equality
i3igsl = iW/y*i*W/Zl.

PROPOSITION 6.5.3. Consider the following commutative diagram, where Y and Z are compact and
intersect transversally with W =Y n Z:
W Y
iW/Z’l ,‘liy
X

7>

iz

W)y

Then we have i%izy = z'W/y*i;,/Z.
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ProoF. Under the assumptions, W is compact and iy, iz, iw y,iw/z are all proper. In the following,
we denote by p; x,/x,(i = 1,2, X1,Xo = X,Y,Z, W) the natural projection of X; x X, onto the i-th
component. We denote I'x, /x, the graph of iy, jx, with X;, X = W, X,Y,Z, and make substitutions
iy = iy/X, ty = ZZ/X We have

iyizeo =iy (P2,2/x4 (P} z/x @ {[Tz/x]})
= p2,Z/Y*(idzv Z'Y)*(foz/x@ ’ {[FZ/X]}) = pZ,Z/Y*((idZa Z‘Y)*IT’T,Z/X@-(idZa iY)*{[FZ/X]})
= pQ,Z/Y*(p;k,Z/YO‘ ) {[FW/Y]}) = Z'W/Y*i?ﬁy/zoé-
The first equality uses the lemma 6.33. The second equality uses Proposition 6.2.2 for p, z/x o (idz,iy,)x) =
iy/x ©Pp2,z/y- The third equality uses the fact that pulling back is a ring morphism. The fourth equality
uses the fact that py z/x o (idz, iy /x) = p1,z/v- It also uses the fact that I,y is transversal in Z x X with

Z xY and lemma 6.46. To prove the last equality, take w a smooth form defined on U an open set of Z in a
Cech representative of o. Take w’ any smooth form with compact support on U n'Y. We have to prove that

P2,2/v (0] z/yw A [Cwyy]),w') = Cw v aify zw, o).

This holds true since

<p2,Z/Y*(p>1k,z/Yw A [FW/Y])7W/> = <(p>1k,z/yw A [FW/Y])7p§,Z/le>
= J pT,Z/Yw A p;,Z/Yw/ = f pT,W/Yi*W/Zw A p;,W/Yw/
Twy w)y

= (iw /vy sy jzw, w')-
Notice that all the projections other than p; y,x,p1,z/x are proper. The terms involving the two morphisms
use only the pull-back, which is well defined even for a non proper morphism. So in the assumption, we do
not need to assume that X is compact. O

The transversality condition is necessary in the above proposition. Indeed, if we take Y = Z = W, the
morphism iy, is not equal to the identity. To calculate it, we need the following excess formula. In the
reverse direction, the formula is far easier. For any smooth submanifold Z of X and any cohomology class
a on X we have

izsiya = a-{[Z]}.
This can be derived from the projection formula, which implies

izeiga =1iz(iya-1) =a izl = a-{{Z]}.

PROPOSITION 6.5.4. If Y is a smooth hypersurface of X with X a compact complex manifold, then for
any « an integral Bott-Chern cohomological class,

iyiysa = a-c1(Ny/x).

PrOOF. We use the deformation of the normal cone (cf. [Ful84] chap V). Let M be the blow up of
X x P! along Y x {0}, X be the strict transform of X x {0} under the blow up. Let M° = M ~ X. Then
we have an injection F : Y x P! < M°. There exists a flat morphism p : M — P! such that the following
diagram commutes

Y x Pt £ pe

y‘ lleo
P!

The fibre over o0 is Ny, x and the fibre over other points is X. We denote the inclusion Ny ,x < M® by jo,
the zero section Y < Ny x by 4, the projections of (Y x PY) x M° (resp. Y x P! resp. (Y x P!) x Ny /x,
and resp. Y x Ny/x) on the first and second factor by pr; and pry (resp. pry, pry, resp. pri, prj, resp.
pr], pry). We denote by I' = Y x P! x M° the graph of F and by I the graph of i. Finally, we denote the
inclusion of the central fibre ig : Y — Y x P! by 4o, and define [I"] = (ig, i, )«[I"']-

Since Y is compact, pry, pry are proper, we find (io, idn,,  )«{[I"]} = {[I""]}, and also (idy xp1, jo) *{[T']} =
{[T""]} since the image of (idy xp1, jo) and T" are transversal with intersection equal to I'”. Let v be the class
on M° defined by v = Fy(prfa). Then we have

3oy = o Fe(pri@) = jiprag (pripria - {[T']})
= pray (idy xp1, jo)* (priprie - {[T]}) = pra,[(idy xpr, jo) *pripria - {[I"]}]
= prhy (io, idny )« (0, 1d Ny ) ¥ [(idy wpr, Jo) *priprie - {[T']}]
= prhy (i0, idny. )+ [ (0, 1d ) * (idy wpr, Jo) *priprie - {[T']}]
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— Py (pry*a- {[I']}) = ixar
The second equality uses lemma 6.33. The third equality uses Proposition 6.2.2 for pryo(idy xp1, jo) = joopr].
The fourth equality uses the fact that (idy xp1, jo)* is a ring morphism. The fifth equality uses the projection
formula. The sixth equality uses pry = prj o (io, idn,, ) and pry opry o (idy xp1, jo) © (i0,id Ny, ) = pr{. The
last equality uses another time lemma 6.33.
By the homotopy principle which is proven in the Whitney formula, the class (F*v)|y 4 is independent
of the choice of ¢. For t = 0, (F*v)|yxoy = i*j5v = i*ixa. For t # 0,

(F*ly gty = (F*Fe(pr7 @) |y x ¢4}

= i;x{t}/Xx{t}i§x{t}/MoiYX{t}*(ﬁralka) = if’iYX{t}/Xx{t}*i?fx{t}/ywlﬁrika
= i;iy*a.
The third equality the proposition 6.5.3, and the fact that Y x P! and X x {t} intersect transversally in M°
with intersection Y x {t}. (Here M® is non compact.) The last equality uses the fact that pr; oiy (/v xp1 =
id.
Let m be the projection of Ny /x onto Y. Then a = i*7*a. We have

ifiga = i* i Y a = i* (rFa - {[Y]})

where the second equality uses the remark before this proposition and {[Y]} is the class of Y in Ny x. So

i*iga = *r*a " {[Y]} = a-*{[Y]}. By lemma 6.47 below, i*{[Y]} = i*c1(On,,,x (Y)) = c1(Ony  (Y)|y) =
Cl(NY/Ny/X) = Cl(NY/X)- O

—

LEMMA 6.47. Let D be a simple normal crossing divisor in a complex manifold X ( that need not
necessarily be compact). Then we have

a(0(D)) = {[P]}-

PROOF. By an obvious additivity argument, we can suppose that the divisor is reduced. The first Chern
class in complex Bott-Chern cohomology can be defined by singular metric since in the complex £ ;[1] the
forms can be changed by currents. These two complexes are quasi-isomorphic. The line bundle of the
effective divisor has a canonical section sp which induces a singular metric on X. The image of the first
Chern class in complex Bott-Chern cohomology can be represented by global section ﬁ@glog\s pl?. A priori,
log|sp|? is the weight function of the singular metric on some open set on which sp can be trivialized. But in
fact, 5=00dlog|spl|? is independent of the choice of trivialisation. By the Lelong-Poincaré formula, the image
of the first Chern class in complex Bott-Chern cohomology can be represented by the current [D].

By construction, the image of Chern class in integral Bott-Chern class under the canonical map is the
Chern class in integral singular cohomology. Since O(D) is a complex line bundle, its first Chern class is
just its Euler class. Classically the Euler class of the Poincaré dual of the zeros of the smooth section sp.
It can also seen from the fact the cycle class in the hypercohomology of BY ; ; sends to the cycle class in
the hypercohomolgy of BS oz (which is just the singular cohomology) induced from the natural morphism
of complexes BY ; ; — B 5. Since we have the equality of classes

a1 (0(D)) = {[Dl}

in the complex Bott-Chern cohomology as well as in the integral singular cohomology, we deduce the equality
for the integral Bott-Chern cohomology. ]

6.6. Transformation under blow-up

In this part, we want to show that the integral Bott-Chern class satisfies the rest of the axioms B
in [Gri10] (see Axiom B (5)(6)(7) in Introduction).

To start with, we prove the transformation formula of the integral Bott-Chern cohomology under blow
up. The closed immersions, projections and blow ups are the most elementary morphisms in the description
of Serre’s proof of Riemann-Roch-Grothendieck formula. In fact, by considering the graph, any projective
morphism can be written as a composition of a closed immersion and a projection. By devissage, we reduce
the general closed immersion to the case of closed immersion of a smooth hypersurface. To perform this
reduction, we need to blow up submanifolds, and thus a study of the cohomology of blow ups is required.
To do this, we will need the following version for Dolbeault cohomology groups stated in [RYY17].

THEOREM 6.48. Let X be a compact complex manifold with dimcX = n and Y < X a closed complex
submanifold of complex codimension r = 2. Suppose that p : X — X is the blow-up of X along Y. We
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denote by E the exception divisor and by i:Y — X, E — X the inclusions, by q : E — Y the restriction of
p on E. Then for any 0 < p,q < n, there is an isomorphism

J* 2 HEA(X) /p* HE9(X) = HE(B)/q* HE9(Y).
3% HYY(X)/p*HYY(X) =~ HYY(E)/¢* HE(Y).
PROOF. The first statement is the main theorem of [RYY17]. The second statement uses the fact that
HZ9(X) = ker{d: D(X, C%) — T(X, C49)} /Im{d : T(X, €2 19) — D(X, C%9))

= ker{0 : T(X,C4P) — T'(X, CE"")}/Im{0 : T(X,CE"™) — T(X, C4P)} = HIP(X).
Now the second statement comes from the first statement. O

We also need the classical analogue for integral coefficient cohomology (cf. [GH78]|, page 603) by using
the Mayer-Vietoris sequence involving a tubular neighbourhood of Y.

LEMMA 6.49. Let X be a compact complex manifold with dimcX = n and Y < X a closed complex
submanifold of complex codimension r = 2. Suppose that p : X — X is the blow-up of X along Y. We
denote by F the exception divisor and by i:Y — X, F — X the inclusions, by q : E — Y the restriction of
p on E. Then for any n there is an isomorphism

¥ H™(X,Z)/p*H"(X,Z) =~ H"(E,Z)/q* H"(Y, Z).
Using these results, we can prove by induction an analogous result for integral Bott-Chern cohomology.

PROPOSITION 6.6.1. Let X be a compact complex manifold with dimcX =n andY < X a closed complex
submanifold of complex codimension r = 2. Suppose that p : X — X is the blow-up of X along Y. We denote
by E the exception divisor and byi:Y — X, E — X the inclusions, by q: E — Y the restriction of p on
E. Then for any n,p, q there is an isomorphism

7* HNX, By ) /PN (X, By ) = HY(E, By 1) /q*H™(Y, By, ).
PROOF. The short exact sequence

0— QP+1[_p —1] - pt1.0.2 — Bpa,

z—0
induces a commutative diagram

—p—1,p+1, % —p—1,p+1 & 3 L (W 3
HETPTLPTH(R)pR HE TP TP (X)) —— WX, B 4 0)/p*H (X, By 4y o z) —— B (X, By ) /p¥H™ (X, B} | 5) —— -+

b L be

n—p—1,p+1 n—p—1,p+1 2 9
oz (B)/q* H (V) —— B (B, By 11 4 2)/a* 0" (Y, By 11 g 5) — W(E, By )/a*H (Y, B} 5) — -

By the five lemma and Theorem 6.48, one can reduce the proof to the case p = 0 by induction. Then the
short exact sequence

0— Qqul[_q - 1] - B(.),qul,Z - Ba,q,Z -0
induces a commutative diagram

1,n—q—1, 1,n—qg—1 o &
HITOPT TN Ry p T TN (X)) —— (R, BY 4y 2)/PFH (X, B g ) —— B (X, B ) /pFH (X, B, ) —

| * [+ | *

1,m—q—1 1,n—q—1 y
HITLP TN (B g  HIT TN YY) —— BB, BY 4 ) aFH (Y, By ) — H (B, BY , 2)/a¥H™ (Y, By , ) —

By the five lemma and Theorem 6.48 again, one can reduce the proof to the case p = 0, ¢ = 0 by induction.
This is done directly by Lemma 6.49. O

A direct application of the proposition is the following general excess formula.

PROPOSITION 6.6.2. With the same notation in the above proposition, if F' is the excess conormal bundle
on E defined by the exact sequence

one has the following excess formula for any cohomology class o on'Y :

prigo = j*(q*a : Cd—l(F*>)-
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PROOF. Define 8 = j.(q¢*a - cq—1(F*)). By the excess formula for a line bundle, we have
7B =lq* o car(F*)] - e1(Ng 5) = ¢*a - ¢*(ca(Ny x))-

The second equality uses the Whitney formula for Chern class of vector bundles. Hence j*f € Im(¢*) and
by the above Proposition we know 3 = p*v for some cohomology class on X. So p.5 = p.p*y = v where
the second equality uses psp* = id proven in the second section. Then we have

B =p*psf = p*psju(¢*a - ca1(F*)) = p¥ings(qg*a - ca_1(F*))

= p*i*(a : Q*Cd—l(F*)) = pYigon.
The first equality on the second line uses the projection formula. The last equality uses the fact that
Gxcd—1(F*) = 1, as follows from the next lemma. O

LEMMA 6.50. Let G — X be a vector bundle of rank r which induces 7 : P(G) — X. Let H be the vector
bundle defined by the exact sequence

0—- H - "G — O]P’(G)(l) — 0.
Then we have T4 (c,—1(H)) = (—1)""L.

PRrOOF. We start the proof for the complex Bott-Chern cohomology such that the cohomology class can
be represented by global differential forms. By the Whitney formula for the total Chern class, ¢(7*G) =
c(H) - c(Op(g)(1)). We denote h := c;(Op()(1)). Then

cH)=c(r*Q)1+h) P =1+ca(@m*CG)+ 4+ (7*G)A —h+h* +---).

The element of degree 7 —1 on two sides is ¢,_1(H) = (—=1)" LA™+ (=1)"2h"2¢1 (7*G) + - - + ¢, 1 (¥ G).
T4 is given by integration along the fibre direction. By degree reason, myc,_1(H) = (=1)""ln h™"1 =
(—=1)"~*. The integration can be calculated by a metric on Op(¢)(1) induced by a smooth Hermitian metric
on G. This finishes the proof of the complex case.

Since the equality is taken in Hyg(X,Z) = H(X,Z) = Z which is a lattice in Hyg(X,C) = HO(X,C) =
C. We deduces the integral case from the complex one. (|

Everything we have done also works for rational Bott-Chern cohomology. In [Gril0], Grivaux shows
that as soon as one has a good intersection theory for some cohomology theory, one can use the Riemann-
Roch-Grothendieck formula to construct the Chern class of a coherent sheaf by an induction on dimension.
The last axiom that remains to be proven is the Hirzebruch-Riemann—-Roch theorem. It can be reduced to
the case of the Deligne complex by the following observation made in lemma 7.2 of [Sch07].

LEMMA 6.51. Let X be a compact Kdhler manifold. Then for any p € N* and k € N we have
HF(X, QL) = @, somprep H™ (X, C).

Since P™ is Kéhler, the lemma gives the complete description of the integral Bott-Chern cohomology for
the projective spaces.

PROPOSITION 6.6.3. The natural morphism (—Bng’g (P",Z) — @, H (P™, Z(p)) induces an isomorphism
of rings. In particular, the Hirzebruch—Riemann—Roch theorem holds for integral Bott-Chern cohomology.

PRrROOF. By the lemma 6.51, we have for any p € N*
H*(B", Q) = 0 — HRE(P", Z) — Hy (P, Z(p)) — H»*'(P", QL) = 0.

The second morphism is the natural morphism from Bott-Chern cohomology to Deligne cohomology which
is in fact an isomorphism shown by the exact sequence. For p = 0, it is also an isomorphism since the
complexes are the same. Since the natural morphism from Bott-Chern cohomology to Deligne cohomology
is a ring morphism, we have the first statement. O

REMARK 6.52. As far as we know, it seems that Grivaux’s method does not work for constructing Chern
classes of a coherent sheaf in the integral Bott-Chern cohomology, as opposed to the rational cohomology.
The main reason is that the Chern characteristic class is additive but the total Chern class is multiplicative,
and switching from one to the other involves denominators. The proof given in [Ful84| for the Riemann-
Roch-Grothendieck formula in the context of coherent sheaves and the Chow ring reduces to proving that the
Riemann-Roch-Grothendieck formula holds for vector bundles. The additivity of the Chern characteristic
class and the nature of the formula ensure that after proving the special case of bundles, the Riemann-Roch-
Grothendieck formula will also be valid for coherent sheaves on projective manifolds. However, one needs
the projectivity condition to ensure that the Grothendieck group of coherent sheaves and the Grothendieck
group of vector bundles are the same.
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There exists an analogue of the “integral” Riemann-Roch-Grothendieck formula given in [Jou70]. In
this work, Jouanolou proved that for a closed embedding f : X — Y of non-singular varieties of codimension
d and for any vector bundle of rank e on X, then the total Chern class in Chow groups satisfies

C(f*E) =1 +f*(P(Cl(N)7"' 7Cd(N)>Cl(E)7"' 7CS(E)))

where NV is the normal bundle and P is some universal polynomial depending only on d,e. This formula
does not work directly for coherent sheaves by simply replacing e with the generic rank of the coherent
sheaf involved, even in the projective case. This is caused by the lack of additivity and the appearance of
polynomials. As a consequence, a different choice of the values of e will give a completely different class. As a
matter of fact, a coherent sheaf can carry in its Chern classes some information that extend to degrees beyond
its generic rank. At this point, there does not seem to exist a similar integral Riemann-Roch-Grothendieck
formula for coherent sheaves.

An easy counter example is obtained by considering f : P2 — P3 and F = Opz2/mg. The left hand
side is equal to ¢(Ops/mg) = CC((%S)) = 1 — ¢1(Ops(1))3, but the right hand of the universal polyno-
mial with d = 1,e = 1 where 1 is the generic rank of Ops/mg gives 1 + fyP(c1(N),c1(Op2/mg)) =
1+ f*P(Cl(OPZ(l)),Cl(OPZ/mo)) =1+ f*(1+61(Omz/m01)*01(0p2(1)) - 1) =1+ CI(OP3(1))2 + C1(OP3(1))3.
The same example shows that the formula is not valid when we taking e to be the largest number such that
the Chern class is not trivial. We do not know whether there are any substitutes of the Riemann-Roch-
Grothendieck formula used in Grivaux’s induction argument, that would be capable of defining Chern classes
in integral Bott-Chern cohomology.

6.7. Appendix: Top degree integral Bott-Chern cohomology

In this section, using the duality between the complex Bott-Chern cohomology and the Aeppli cohomol-
ogy, we give a description of the integral Bott-Chern cohomology in top degree, on any compact connected
manifold X. We denote by n the complex dimension of X. We start by recalling the definition of Aeppli
cohomology.

DEFINITION 6.53. (Aeppli cohomology). For all p,q < dimX, one defines
ker{d0 : CBY(X) — CHI (X))
({0 : CZ7H(X) — CE*(X)} + (Im{0: CF*1(X) — CRM(X)})
As is well known, the natural pairing between HY?(X,C) and Hj”"" (X, C), defined by integrating

wedge products of forms on X, induces a duality between Aeppli cohomology and complex Bott-Chern
cohomology. In particular

HER(X,C) = (HY (X,C)* = {f e C%(X)|0df = 0}* = C.

We also need the following lemma.

HY(X,C) :=

LEMMA 6.54.
H2" (X, 0,Q% ®onlly) =~ H> (X, C).

PROOF. The short exact sequence
0— 0, Q% @0, Qx[-1] > B, c—C—0

n,n,C

induces the long exact sequence

H"~Y(X,Be, ) — H (X, C) - H*" " Y(X,0,0% ®0,0y) - Hph(X,C) — H*(X,C).

n,n,C

Since the last morphism is a linear isomorphism, we have

H>"" (X, 0,0% ®0,0y) = H>L(X,C)/H>*"Y(X,B, ).

n,n,C

We claim that H** (X, By, |, o) = H*"~'(X, B} | ¢)* as topological linear spaces. The argument is as follows.

Recall that the complex Bott-Chern complex B}, ,, ¢ is quasi-isomorphic to the complex (L3, ,,[1], 6[1]) defined
by

Eﬁm = P C24 for k < 2n—2;
p+q=k,p<n,q<n
k=1 _ D5q
Ly, = @ Cche for k = 2n

p+qg=k,p=n,q=n

(for the proof, see [Sch07]). The differential 6 is chosen to be the exterior derivative d for k # 2n — 2
(in the case k < 2n — 3 we neglect the components which fall outside £5*1) and we set

n,n
2n—2 _ AA. n—1,n—1 n,m
522 = 90 : O —
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We view this complex in the category of sheaves of topological linear space where the differential is continuous.
We denote L] ; the complex obtained by changing smooth forms by currents which is quasi-isomorphic to
L3 1. By a direct calculation, the dual of the component of the complex Bott-Chern complex Lﬁyn in degree

kis £2"717%. By the universal coefficient theorem, we have

B (X, By ) = PV (XBY o)

n,n,C

If n > 2, since B | - vanishes for degree bigger than 2, H**~!(X, B} | ) = 0 which proves the lemma in this
case.
If n = 1, we claim that the image of H?>"~}(X,B® ) in H?"71(X,C) is 0. This is equivalent to say

n,n,C

that H' (X, Ox ® Ox[-1]) » H'(X, B} , ¢) is surjective. We have a commutative diagram

Ox ®O0x

l

0,0
CSO’O @C’So’o (0,9) 020,1 @Colo’o

lJr l% (dop1—0dops)

o0 3@ oLt
with a translation of degree 1. Hence the map H*(X,Ox ® Ox[-1]) — H} (X, B}, c) is given by
HO(X,C3° @ 30 — O3 @ ") — H(X,C%° — Ch).
For any constant function ¢ on X, (c,0) defines an element of H°(X, cec%’ - ot @Colc’o) whose image
is ¢ in HO(X,C%° — C%'). This completes the proof when n = 1. O
Another way to prove the lemma when n = 1 is to see that
H'(X,0x)®H'(X,0x) =~ H'(X,0x) ® H(X,Ox)
= H'Y9(X)@ HO(X) = H'(X,C).

Here we remark that a Riemann surface is Kahler so we have the Hodge decomposition theorem. Now we
can give the structure of the integral Bott-Chern cohomology in top degree.

PRroOPOSITION 6.7.1. Under the above assumption, we have a short exact sequence
0— H* YX,C)/H* (X,Z) > Hg5(X,Z) - Z — 0.
Proor. The commutative diagram

0 — 0,Q% ®0,Qx[-1] — B, z——2Z—0

n,n

| |

0 —— 0,Q% ®0on,Qx[-1] — B, o — C—— 0

n,n,C

induces a commutative diagram

H> =YX, 7) —— H2H(X,0,Q% ®0,Q%) —— HEM(X,Z) —— H>™(X,Z) = Z

! |1 | !

H>=Y(X,C) —— H2"1(X,0,Q% ®0,0%) — HE2(X,C) ~C —— H>"(X,C)=C

The rightest morphism on the first line is surjective since for any x € X the image of the cycle class associated
with z in the integral Bott-Chern cohomology is the corresponding cycle class in the singular cohomology
H?"(X,7) =~ Z. The image is a generator in the singular cohomology. Hence we have the surjectivity in the
proposition. The kernel of this morphism is H*"~(X,C)/H?"~1(X,Z) by lemma 6.54 and chasing into the
commutative diagram. O

REMARK 6.55. This kind of description does not work in general for the integral Deligne cohomology.
By the Poincaré-Grothendieck lemma, we get in the derived category D(Sh(X)) a quasi-isomorphism
(CX = er
Hence the Deligne complex in top degree is quasi-isomorphic to Q™. However, in general, we do not have

an isomorphism between HZ'(X,C) ~ H"(X,Q%) and H?"(X,C) =~ C. If the manifold is Kihler, this is
true by the Hodge decomposition theorem. If the manifold is not Ké&hler, the Frolicher spectral sequence
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does not necessarily degenerate at page 1. In this case, we only have a surjection, but not necessarily an
isomorphism.

REMARK 6.56. The short exact sequence in the proposition splits in a non canonical way. Fix a point
x € X. Sending 1 to the cycle class associated with z in the integral Bott-Chern cohomology gives such a
splitting. But a priori such a splitting depends on the choice of .
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