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Présentation générale

Dans ce mémoire, on s’intéresse aux propriétés asymptotiques d’équations aux dérivées partielles non-locales
qui apparaissent dans l’étude du vivant, et plus précisément en biologie cellulaire, en neurosciences, ou en
théorie de l’évolution. Les équations considérées sont du type

∂ut

∂ t
+∇ · (utF)+aut =

∫
X

ut(y)k(y,dx)dy

où l’inconnue ut dépend de la variable x. Ce “trait” x appartient à un espace d’états X qui est typiquement un
ouvert de Rn, même si cela peut être un espace mesurable plus général dans le cas où le champ de force F est
nul. Suivant les modèles considérés, ces équations pourront être de trois types :

▶ linéaires autonomes quand les coefficients F , a et k ne dépendent que de x. On s’intéresse alors à des
problèmes ergodiques de type Krein-Rutman.

▶ linéaires non-autonomes quand les coefficients dépendent de t et de x. On considérera le cas de coefficients
périodiques en temps, qui apparaissent naturellement en biologie ou en écologie, ainsi que le cas où la
dépendance en temps est due à un terme de contrôle.

▶ non-linéaires de type champ-moyen où les coefficients dépendent de l’inconnue ut à travers des termes
moyens

∫
X utψ , pour certaines fonctions positives ψ .

Le présent manuscrit donne un aperçu des résultats que j’ai obtenus sur ces équations entre 2012 et 2020,
avec divers collaborateurs. La question principale qui est abordée est celle du comportement des solutions en
temps long. Les différents résultats présentés illustrent la variété de ces comportements : convergence vers une
distribution stationnaire, phénomène de concentration ou d’oscillations. Le dernier chapitre est un peu à part
puisqu’on y considère des problèmes de passage à la limite de l’échelle mésoscopique vers des descriptions
macroscopiques. Détaillons maintenant brièvement les résultats principaux des différents chapitres.

Le premier chapitre est consacré à l’analyse des états stationnaires d’un modèle champ-moyen pour un
réseau de neurones “intègre et tire”. On montre en particulier un résultat de stabilité globale exponentielle dans
le cas de faible connectivité. Ce premier chapitre permet également d’introduire le critère de contraction de
Doeblin qui est à la base des méthodes développées au chapitre 2.

Dans le deuxième chapitre, on présente un résultat abstrait qui caractérise de manière quantitative l’ergodicité
géométrique des semi-groupes positifs non-conservatifs (Théorème 2.1). On propose également une condition
d’irréductibilité faible qui s’avère très utile pour l’application de ce théorème général à des modèles de
dynamique des populations (Proposition 2.4). Ces résultats d’inspiration probabiliste s’inscrivent dans la lignée
des travaux de Harris [130], Meyn et Tweedie [162] sur les semi-groupes de Markov (i.e. conservatifs).

Le chapitre 3 regroupe une série de résultats sur le comportement en temps long de l’équation de croissance-
fragmentation, obtenus en utilisant différentes méthodes : l’approche à la Harris développée au chapitre 2,
la théorie spectrale des semigroupes fortement continus, ou encore des inégalités d’entropie. Nous avons



notamment obtenu avec Hugo Martin, au cours de sa thèse de doctorat que j’ai co-encadrée avec Marie Doumic,
un résultat quantitatif de convergence exponentielle dans un cas non-ergodique où le comportement en temps
grand est périodique (Théorème 3.13). Ces oscillations sont dues à l’existence d’une famille dénombrable de
valeurs propres dominantes, et à notre connaissance c’est la première fois que l’existence d’un trou spectral est
prouvée dans une telle situation.

Dans le chapitre 4, on s’intéresse aux phénomènes de concentration dans les modèles de mutation-sélection
avec mutations non-locales. On présente en particulier un résultat récent, non encore publié, de convergence vers
une mesure singulière pour une version générale du modèle de château de cartes de Kingman (Théorème 4.4).
Ces phénomènes de concentration sont particulièrement intéressants, à la fois d’un point de vue biologique
puisqu’ils permettent d’interpréter les phénomènes de spéciation en théorie de l’évolution, et d’un point de
vue mathématique puisqu’ils fournissent des exemples d’obstruction aux hypothèses du théorème de Harris
présenté au chapitre 2.

Dans le cinquième chapitre, on considère un problème de contrôle optimal qui apparaît dans la modélisation
de la technique de PMCA (Protein Misfolding Cyclic Amplification), développée pour les maladies à prions.
On analyse ce problème sous deux angles différents : la théorie géométrique du contrôle optimal et le principe
de programmation dynamique. Bien que le système étudié ne soit pas uniformément contrôlable, on parvient à
établir dans la seconde approche un résultat d’ergodicité en horizon infini en tirant parti de la contraction dans
la métrique projective de Hilbert (Théorème 5.5).

Le chapitre 6 traite de la modélisation des phénomènes sous-diffusifs par des équations aux dérivées
partielles. J’ai commencé à m’intéresser à ce sujet lors de mon post-doctorat à l’Inria de Lyon avec Hugues
Berry. La sous-diffusion est en effet un phénomène couramment observé dans le déplacement de molécules à
l’intérieur des cellules. Dans ce dernier chapitre, on présente la dérivation de deux équations macroscopiques
comme limites d’échelle d’une description mésoscopique de processus sous-diffusifs.
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Notations

For a set A, we denote by 1A the indicator function of A.

For any Banach space E, we denote by E ′ its topological dual and by ⟨·, ·⟩ the duality bracket.

For any Banach lattice E, we denote by E+ its positive cone.

For X a measurable space, we denote by

• L ∞(X) the space of bounded measurable functions X→ R endowed with the supremum norm

∥ f∥
∞
= sup

x∈X
| f (x)|,

• M (X) the space of finite signed measures on X endowed with the total variation norm

∥µ∥TV = sup
∥ f∥∞≤1

∫
X

f dµ,

• P(X) the set of probability measures, i.e. positive measures with mass 1.

For V : X→ (0,∞) measurable we denote by

• L ∞(V ) = L ∞(X,V ) the space of measurable functions f : X→ R such that

∥ f∥L ∞(V ) = sup
x∈X

| f (x)|
V (x)

<+∞,

• M+(V ) = M+(X,V ) the set of positive measures that integrate V , namely µ ≥ 0 such that

⟨µ,V ⟩=
∫

X
V dµ <+∞,

• M (V ) = M (X,V ) the quotient space

M (V ) = M+(V )×M+(V )⧸∼

where (µ1,µ2)∼ (µ̃1, µ̃2) if µ1 + µ̃2 = µ2 + µ̃1. An element µ of M (V ) acts on L ∞(V ) through

⟨µ, f ⟩= ⟨µ1, f ⟩−⟨µ2, f ⟩,

where (µ1,µ2) is any representative of the equivalence class µ . We endow M (V ) with the weighted total
variation norm

∥µ∥M (V ) = sup
∥ f∥L ∞(V )≤1

⟨µ, f ⟩,

which makes it a Banach space.



When X is a measurable subset of Rn endowed with the Lebesgue measure, we denote by

• Lp(X) the standard Lebesgue space on X for any p ∈ [1,∞].

For V : X→ (0,∞) measurable we denote by

• Lp(V ) = Lp(X,V (x)dx) the weighted Lebesgue space with Lebesgue density V , endowed with the norm

∥ f∥Lp(V ) =
(∫

X
| f (x)|pV (x)dx

) 1
p

when p< ∞, and

∥ f∥L∞(V ) = supess
x∈X

| f (x)|
V (x)

.



Chapter 1

Doeblin in a neural network model

In this first chapter, we present the results obtained with Grégory DUMONT in [P15] about the mean field
equation of an excitatory network of leaky integrate-and-fire (LIF) neurons. More precisely we explain how
Doeblin’s argument allowed us to get new results about the steady states.

The LIF model is a well-established neuron model within the neuroscience community [137]. It consists in
an ordinary differential equation that describes the subthreshold dynamics of a neuron’s membrane potential.
Whenever the membrane potential reaches the firing threshold, the neuron initiates an action potential and the
membrane potential is reset, see [41] for a review and [1, 35] for historical consideration. In its normalized
form, the LIF model reads 

d
dt

Vt =−Vt +h
+∞

∑
j=1

δ t=t j

If Vt > 1 then Vt →V R.

(1.1)

Here, V R ∈ (0,1) is the reset potential, δ is the Dirac measure, h ∈ (0,1) is the so-called synaptic strength, and
t j are the arrival times of action potentials that originate from presynaptic cells. The fact that h is positive means
that we consider excitatory neurons. This dynamics describes a piecewise deterministic Markov process [75],
whose stochastic feature is embedded in the Poisson distribution of time arrivals [195]. It is worth saying that,
despite its vast simplifications, the LIF model yields amazingly accurate predictions and is known to reproduce
many aspects of actual neural data [114]. In Fig. 1.1, a simulation of the LIF model is presented. It illustrates
the different processes involved in the membrane equation such as the voltage jumps at the reception of an
action potential, and the reset mechanism at the initiation of an action potential.
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Fig. 1.1 Simulation of the LIF model. A) Time evolution of the membrane potential. B) The panel illustrates
the arrival times of impulses, so-called Poisson spike train. The red dots correspond to discontinuities induced
by the jump process. The parameters are: h = 0.2, V R = 0.1 and Poisson rate 100.



2 Doeblin in a neural network model

In a network, when a cell fires, the dynamics of each other neuron might be affected by the action potential.
This gives rise to an extremely complex dynamics, a population of neurons in the brain being composed of
thousands of nervous cells. Mean-field theory is a powerful convenient tool to establish a mathematically
tractable characterization of such large neural networks. Because each neuron receives input from many others,
a single cell is mostly responsive to the average activity of the population – the mean-field – rather than the
specific pattern of individual units. We are interested in the following mean-field approximation of excitatory
LIF neural networks, see [175] for details on the formal derivation and [92] for a first mathematical study.
Assuming that each neuron receives excitatory synaptic input with average rate σ(t) and fires action potentials
at rate r(t), we denote the probability density function pt(v), such that N pt(v)dv gives the approximate number
of neurons with membrane potential in [v−dv,v) at time t for a network made up of N neurons. The dynamics
of the density pt(v) is prescribed by the following nonlinear partial differential equation:

∂

∂ t
pt(v)−

∂

∂v

(
vpt(v)

)
︸ ︷︷ ︸

Leak

+σ(t)
(

pt(v)− pt(v−h)1[h,1)(v)
)︸ ︷︷ ︸

Jump

= r(t)δv=V R︸ ︷︷ ︸
Reset

, 0< v< 1, (1.2)

complemented with a zero flux boundary condition pt(1) = 0. The firing activity of the network r(t) is easily
extracted from the mean-field equation. The proportion of cells crossing the threshold is given by:

r(t) = σ(t)
∫ 1

1−h
pt(w)dw.

This expression guarantees that Equation (1.2) is formally conservative, in the sense that the integral of the
solution is preserved along time. This is required since it should describe the evolution of a probability density.
To account for the arrival of action potentials coming from an external source, the arrival rate σ(t) is given by
the sum of an external rate and the firing rate

σ(t) = σ0 + Jr(t),

where J is the average number of synaptic connexions. This is justified in the mean-field framework where it is
assumed that single cells are only sensitive to the average population activity [175]. Combining the two above
relations between σ(t) and r(t) we get an explicit formula for the arrival rate

σ(t) =
σ0

1− J
∫ 1

1−h pt(w)dw
, (1.3)

provided that the denominator is positive. This makes the value J = 1 appear critical, the arrival rate being in
particular always well-defined when J < 1.

Measure solutions to structured population equations have attracted increasing interest over the past few
years [42, 55, 125], to cite but a few. Here we are concerned with measure solutions to Equation (1.2), which
offers a very natural framework for at least two reasons. First it allows considering a Dirac mass initial
distribution. Such an initial profile corresponds to a fully synchronous state and is thus perfectly relevant
in neuroscience. Second it is very well suited for dealing with equations having a singular source term (the
reset part in Equation (1.2)). We prove in [P15] the global well-posedness of Equation (1.2) in P([0,1])
when J < 1, i.e. that for any initial probability distribution p0 there exists a unique family (pt)t≥0 ⊂P([0,1])
such that the arrival rate σ defined in (1.3) is positive and locally integrable on [0,∞), the mapping t 7→ pt is
weak*-continuous on [0,∞), and for all f ∈C1([0,1]) and all t ≥ 0

⟨pt , f ⟩= ⟨p0, f ⟩+
∫ t

0
⟨ps,−v f ′+σ(s)B f ⟩ds



3

where
B f (v) = f (v+h)1[0,1−h)(v)+ f (V R)1[1−h,1](v)− f (v).

We also prove the existence of steady states when the parameters J or σ0 are not too large, and the
exponential asymptotic stability of the unique steady state in the weakly connected regime.

Theorem 1.1. Depending on the network connectivity, the following situations occur:

(i) Under the conditions

J > 1+
⌊

1−V R

h

⌋
and σ0 <

1−h
4J

,

there exist at least two steady states.

(ii) If the following inequality holds

J < 1+
⌊

1−V R

h

⌋
,

then there exists at least one steady state.

(iii) In the case when

J < (5−2
√

6)
(h

4

)σ0+1
,

the steady state p̄ is unique and globally exponentially stable. More precisely there exist explicit constants
ω = ωJ > 0 and τ = τJ > 0 such that for all p0 taken from P([0,1]) and all t ≥ 0

∥pt − p̄∥TV ≤ e−ω(t−τ) ∥p0− p̄∥TV .

Sketch of the proof. The key step is a careful analysis of the dynamics (1.1) of a single LIF neuron submitted
to a Poisson spike train with fixed rate σ . A linear semigroup (Mt)t≥0 is associated to this stochastic dynamics,
given by

Mt f (v) = E
[

f (Vt) |V0 = v
]

for f bounded measurable function on [0,1]. This semigroup yields the solutions to the following linear PDE

∂

∂ t
ϕt(v) =−v

∂

∂ t
ϕt(v)+σ

(
ϕt(v+h)1[0,1−h)(v)+ϕt(V R)1[1−h,1](v)−ϕt(v)

)
which is nothing but the dual equation of (1.2) with constant σ . By duality we can thus define a left action of
the semigroup on the space of signed measures by setting

⟨µMt , f ⟩= ⟨µ,Mt f ⟩.

This left semigroup then yields the measure solutions to Equation (1.2) with constant σ . The study of a single
neuron can then be also seen as the dynamics of an unconnected network, i.e. with connectivity J = 0.

The semigroup (Mt)t≥0 is positive and conservative, in the sense that it leaves invariant the set of probability
measures, and it additionally satisfies the following Doeblin condition:

µMτ ≥ cν (1.4)

for all µ ∈P([0,1]), with

τ = log
4
h
> 0, c =

σ

2

(h
4

)σ

∈ (0,1), ν =
2
h

1[ h
2 ,h]
∈P([0,1]).
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Consequently it admits a unique invariant measure γσ , and it is exponentially ergodic with explicit constants:
for all µ ∈P([0,1]) and for all t ≥ 0

∥µMt − γσ∥TV ≤ e−ω(t−τ) ∥µ− γσ∥TV

where τ is given above, and

ω =
− log

(
1− σ

2 (
h
4 )

σ)
log 4

h

.

This result is crucial for studying the nonlinear coupled model, i.e. when J > 0. First, finding a steady state
now reduces to find σ > 0 such that

σ =
σ0

1− Jγσ ([1−h,1])

and this allows us to prove points (i) and (ii) by performing an asymptotic analysis of γσ ([1−h,1]) when σ

goes to zero or infinity.
Next, for the uniqueness and the exponential asymptotic stability of the steady state in the weakly connected

regime, we use the following Duhamel formula

⟨pt , f ⟩= ⟨p0,Mt f ⟩+
∫ t

0
(σ(s)−σ)⟨ps,BMt−s f ⟩ds

which is rigorously proved to be valid. Then combining the exponential ergodicity of (Mt)t≥0 and Grönwall’s
lemma yields the result of point (iii).

Some comments and perspectives. To our knowledge, it is the first time the asynchronous property of the
mean-field LIF model is proved mathematically. Before this work, the asynchronicity was studied only on the
diffusion approximation of Equation (1.2). This variant takes the form of a nonlinear Fokker-Planck equation,
and can be derived formally by making an asymptotic expansion when h→ 0 in Equation (1.2), see [174, 175,
193], or directly from the LIF model (1.1) by replacing the jumps by a Gaussian white noise [33, 34]. Using
entropy method and Poincaré inequalities, the diffusive model has been studied mathematically by Cáceres,
Carrillo, Perthame, Salort, and Smets [45, 56].

The mean-field equation (1.2) as well as its diffusion approximation allow to capture the synchrony property
of the neural circuits. The dynamics of a neural network made up of LIF neurons is exposed in Fig. 1.2, for two
different coupling parameters. As we can see, for weak coupling, the network displays an asynchronous activity
where each neuron fires irregularly (Fig. 1.2 A). In contrast, when the coupling parameter is taken sufficiently
large, the network enters into a synchronous state (Fig. 1.2 B). The system seems to have a critical coupling
value for which, above this value, the system is driven to a synchronous state, while below this value, it remains
asynchronous [170, 171]. At the mean-field level, the asynchronous case corresponds to the existence of a
steady state while a synchronous spiking event can be interpreted as the blow-up of the firing activity r(t).
Finite time blow-up was first proved to occur for the diffusive equation when J > 1 and the initial distribution is
concentrated enough around v = 1 in [45]. The proof was then adapted by Dumont and Henry in [93] to prove
that the solutions to Equation (1.2) blow-up in finite time for any initial data when

J ≥ 1+
1−V R

h
and σ0 >

1
h
.

It is worth comparing these conditions to the ones appearing in points (i) and (ii) of Theorem 1.1, since of
course no steady state can exist when blow-up occurs whatever the initial data.

Looking at Fig. 1.2 B, a natural perspective of future work would be to find a rule for restarting the dynamics
after blow-up. A good starting point is [79] where such a rule is proposed in the case of non leaky neurons,
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Fig. 1.2 Simulations of the neural network. The network contains N = 100 neurons. In each panel is shown the
spiking activity of every neuron in a raster plot (dots represent spikes). The parameters are: h = 0.1, V R = 0.1
and Poisson rate 200. The average affected cells J is: A) J = 1, B) J = 9.

i.e. without the drift term in Equation (1.2). Then a interesting but challenging question would concern the
existence of solutions with periodic blow-up events.





Chapter 2

A non-conservative Harris theorem

The results presented in this chapter are based on the publications [P14, P16, P19, P20], which are the fruits of
a collaboration with Vincent BANSAYE, Bertrand CLOEZ, and Aline MARGUET.

2.1 Introduction

We have introduced in Chapter 1 a semigroup (Mt)t≥0 associated to a Markov process, and we have seen the
crucial role played by the ergodicity of this semigroup in the study of the asynchrony of a neural network. This
ergodicity was a consequence of the Doeblin condition satisfied by the semigroup. We recall here this result in
a more abstract setting.

Doeblin contraction. Consider a measurable state space X and a positive semigroup (Mt)t≥0 of kernel
operators on X, namely a semigroup of linear operators Mt which act both on L ∞(X) on the right and on
M (X) on the left, are positive in the sense that they leave invariant the positive cones of both spaces, and enjoy
the duality relation ⟨µMt , f ⟩= ⟨µ,Mt f ⟩ for all µ ∈M (X) and f ∈L ∞(X). Such a semigroup is said to be
conservative if its right action is a Markov semigroup, meaning that Mt1 = 1 for all t ≥ 0, or equivalently if its
left action is a stochastic semigroup, meaning that it leaves invariant the set P(X) of probability measures. If
(Mt)t≥0 is conservative and additionally satisfies the so-called Doeblin condition

Mτ f (x)≥ c⟨ν , f ⟩ (2.1)

for some τ > 0, c ∈ (0,1) and ν ∈P(X), and for all x ∈ X and f ∈L ∞
+ (X), then it admits a unique invariant

measure γ ∈P(X) which is exponentially stable for the total variation distance: for all t ≥ 0 and all µ ∈P(X)

∥µMt − γ∥TV ≤ e−ω(t−τ) ∥µ− γ∥TV

where

ω =
− log(1− c)

τ
.

This result originates from the pioneering work of Doeblin [83] and is now standard. We refer for instance
to [P14, P15] for a proof, noting that Doeblin’s condition (2.1) is equivalent to its dual formulation (1.4)
due to the duality between the left and right actions of Mτ . The proof is elementary but crucially uses the
conservativeness of the semigroup and Doeblin’s inequality, which are quite restrictive conditions.
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Harris ergodicity. Doeblin’s condition essentially means that there is an area in X, characterized by ν ,
which can be reached with positive probability c after a fixed time τ , uniformly with respect to the initial
position x in X. This typically fails when X is “unbounded”, with the probability usually vanishing when x
tends to “infinity”. Harris’s idea [130] allows relaxing Doeblin’s condition by localizing it in some “small”
set which is visited infinitely often. By using Lyapunov functions, this idea allows getting a spectral gap in a
weighted supremum norm [162, 163], see also [127] for a simplified analytical proof. Consider a conservative
semigroup (Mt)t≥0 which acts on L ∞(V ) and M (V ) for some V : X→ [1,∞) measurable, in such a way that

t 7→ ∥MtV∥L ∞(V ) = sup
x∈X

MtV (x)
V (x)

is locally bounded on [0,∞). (2.2)

Assume that there exist τ > 0 and a subset K ⊂ X such that V is a Lyapunov function for Mτ and K, i.e. there
exist some constants α ∈ (0,1) and θ > 0 such that

MτV ≤ αV +θ1K ,

and K is a small set for Mτ , i.e. there exist a constant c ∈ (0,1) and a probability measure ν supported by K
such that for any f ∈L ∞

+ (V )

Mτ f ≥ c⟨ν , f ⟩1K .

Then (Mt)t≥0 admits a unique invariant probability measure γ , which belongs to M (V ), and there exist
C ≥ 1,ω > 0 such that for all µ ∈P(X)∩M (V ) and all t ≥ 0

∥µMt − γ∥M (V ) ≤Ce−ωt ∥µ− γ∥M (V ) .

This V -uniform ergodicity result provides both quantitative estimates [127] and a necessary and sufficient
condition [87, Chapter 15].

Doob h-transform. Conservative semigroups are classically generated by linear partial differential
equations that model systems where the total number of particles is preserved along time. It arises when
particles move without birth and/or death. When studying biological systems, birth and death processes are
often involved, giving rise to non-conservative semigroups. In such situations, the dynamics is not expected to
converge to an invariant measure, but rather to enjoy the so-called asynchronous exponential growth property,
or asynchronous Malthusian behaviour,

µMt ∼ ⟨µ,h⟩eλ t
γ as t→ ∞ (2.3)

for all measure µ , where λ ∈ R is the Malthus parameter, h is a positive function, and γ is a positive measure
with ⟨γ,h⟩= 1. The triplet (λ ,γ,h) consists of the Perron-Frobenius eigenelements of (Mt)t≥0, namely

γMt = eλ t
γ and Mth = eλ th

for all t ≥ 0. When λ and h are known to exist, the Doob h-transform [85, 172] allows defining a conservative
semigroup (Pt)t≥0 by setting

Pt f =
Mt(h f )

eλ th
. (2.4)

Applying Harris’s theorem to this conservative semigroup then provides conditions ensuring the existence
of the eigenmeasure γ and a quantified exponential rate of convergence in (2.3) for the original semigroup
Mt f = eλ thPt( f/h). More precisely if (2.2) is verified for some V ≥ h and if there exist τ > 0 and K ⊂ X such
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that
MτV ≤ αV +θ1Kh, (2.5)

for some α ∈ (0,eλτ) and θ > 0, and

Mτ( f h)≥ c⟨ν , f ⟩eλτ 1Kh (2.6)

for any f ∈L ∞
+ (V/h), with c ∈ (0,1) and ν ∈P(X) such that suppν ⊂ K, then there exist γ ∈M (V ) with

⟨γ,h⟩= 1 and constants C ≥ 1,ω > 0 such that for all µ ∈M (V ) and all t ≥ 0∥∥e−λ t
µMt −⟨µ,h⟩γ

∥∥
M (V )

≤Ce−ωt ∥µ−⟨µ,h⟩γ∥M (V ) .

Embedded non-homogeneous semigroup. Getting the existence of λ and h is generally not trivial.
In [P19] we consider the case when the existence of these eigenelements is not known a priori. We propose a
counterpart of Harris’s ergodic theorem in the non-conservative setting by deriving necessary and sufficient
conditions for the existence of the triplet (λ ,γ,h) and the exponential convergence. We additionally obtain
quantitative estimates for the eigenelements and the speed of convergence. Our proof relies on the following
non-homogeneous transform:

P(t)
u,s f =

Ms−u( f Mt−sψ)

Mt−uψ
.

For a fixed time t and a positive function ψ , the family (P(t)
u,s )0≤u≤s≤t is conservative and satisfies the non-

homogeneous semigroup property
P(t)

u,v(P
(t)
v,s f ) = P(t)

u,s f .

Besides, for u = 0 and s = t we have P(t)
0,t f = Mt( f ψ)/Mtψ , which reminds (2.4) but is not a semigroup in t

unless ψ is an eigenfunction. To mimic the stabilizing property of the eigenfunction h in the h-transform, we
assume that ψ satisfies

Mτ ψ ≥ βψ

for some β > 0 and τ > 0, similarly as in [70, 71]. This condition is in general much easier to check than the
existence of an eigenfunction. We then construct a family of Lyapunov functions (Vn)n∈N as follows

Vn =

〈
ν ,

Mnτ ψ

ψ

〉
V

Mnτ ψ
,

where ν is a probability measure. Assuming that V satisfies (2.5) with h replaced by ψ and α ∈ (0,β ), these
functions allow us to prove that P(t) enjoys some Lyapunov conditions. To prove that small set conditions are
also met and invoke the contraction of the conservative framework, we complement the counterpart of (2.6)
with a condition which ensures that there is no favored initial position in K in terms of asymptotical growth of
mass. Such a mass control condition was first proposed by Champagnat and Villemonais in [62] for the study
of the convergence of processes conditioned on non-absorption.

The next section is devoted to the precise statement of the main results obtained in [P19, P20]. Before that,
let us mention that our results and method are linked to the study of the geometric ergodicity of Feynman-Kac
type semigroups

Mt f (x) = E
[

f (Xt)e
∫ t

0 F(Xs)ds |X0 = x
]
.

The analysis of these non-conservative semigroups has been developed in a general setting in [103, 143, 144]
and is motivated by various applications. They appear in particular for the study of branching processes [24, 26,
69, 156] and large deviations [84, 143, 144, 201], as well as metastability [135]. Our approach allows us to
relax some assumptions and provide more quantitative results.
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2.2 Main results

We consider two measurable functions V : X→ (0,∞) and ψ : X→ (0,∞), with V ≥ψ , and a positive semigroup
(Mt)t≥0 of kernel operators on L ∞(V )×M (V ) which verifies (2.2). We state now the key Assumption A.

Assumption A. There exist τ > 0, β > α > 0, θ > 0, (c,d) ∈ (0,1)2, K ⊂ X, and ν a probability measure on
X supported by K, such that supK V/ψ < ∞ and

(A1) MτV ≤ αV +θ1Kψ ,

(A2) Mτ ψ ≥ βψ ,

(A3) inf
x∈K

Mτ( f ψ)(x)
Mτ ψ(x)

≥ c⟨ν , f ⟩ for all f ∈L ∞
+ (V/ψ),

(A4)
〈

ν ,
Mnτ ψ

ψ

〉
≥ d sup

x∈K

Mnτ ψ(x)
ψ(x)

for all positive integers n.

Assumption A is related to classical assumptions for the ergodicity of non-conservative semigroups [63,
103, 135, 143, 144, 202, 203, P16]. It relaxes such criteria and provides necessary conditions for exponential
convergence in weighted total variation distance. More precisely we have the following theorem, which is the
main result of [P19] 1.

Theorem 2.1. (i) Assume that (V,ψ) satisfies Assumption A. Then, there exists a unique triplet (λ ,γ,h) ∈
R×M+(V )×L ∞

+ (V ) of eigenelements of (Mt)t≥0 with ⟨γ,h⟩= ∥h∥L ∞(V ) = 1. Moreover, there exist C ≥ 1
and ω > 0 such that for all t ≥ 0 and µ ∈M (V ),∥∥e−λ t

µMt −⟨µ,h⟩γ
∥∥

M (V )
≤Ce−ωt ∥µ−⟨µ,h⟩γ∥M (V ) . (2.7)

(ii) Assume that there exist an eigentriplet (λ ,γ,h) ∈ R×M+(V )×L ∞
+ (V ) and constants C,ω > 0 such

that (2.7) holds. Then, the couple (V,h) satisfies Assumption A.

In case (i) we have additionally the estimates log(β )/τ ≤ λ ≤ log(α +θ)/τ and 1
R (ψ/V )q

ψ ≤ h≤V for
some q,R> 0. Besides, all the constants ω , C, q and R are explicit in the proof.

The inequalities in Assumption A may seem difficult to check in practice. We now give more tractable
sufficient conditions.

Drift conditions on the generator for (A1)-(A2). Assumptions (A1)-(A2) can be checked more
easily by using the generator A of the semigroup (Mt)t≥0, similarly as for the Lyapunov condition in the
consevative setting [163]. We give here such sufficient conditions by adopting a weak but practical definition of
the generator, which can be seen as a mild formulation of A = ∂tMt |t=0 , similarly as in [126]. For F,G∈L ∞(V )

we say that
A F = G

if for all x ∈ X the function s 7→MsG(x) is locally integrable, and for all t ≥ 0

MtF = F +
∫ t

0
MsGds.

1Subsequently, the strict positivity assumption on ψ was relaxed in [64, 65].
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In general for F ∈L ∞(V ), there may not exist G ∈L ∞(V ) such that A F = G, meaning that F is not in the
domain of A . Therefore we relax the definition by saying that

A F ≤ G, resp. A F ≥ G,

if for all t ≥ 0

MtF−F ≤
∫ t

0
MsGds, resp. MtF−F ≥

∫ t

0
MsGds.

We can now state the drift conditions on A guaranteeing the validity of Assumptions (A1)-(A2).

Proposition 2.2. Let V,ψ0 : X→ (0,∞) such that, for some constants a< b and ζ ≥ 0,

A V ≤ aV +ζ ψ0 and A ψ0 ≥ bψ0.

Then, for any τ > 0, there exists R> 0 such that V and ψ = Mτ ψ0 satisfy (A1)-(A2) with K = {V ≤ Rψ}.

Irreducibility (and aperiodicity) for (A3)-(A4). Irreducibility is known to be a fundamental
notion in Perron-Frobenius theory or Krein-Rutman theory, as well as in the study of Markov chains. We
propose here irreducibility-type criteria based on coupling arguments that provide tractable sufficient conditions
for Assumptions (A3) and (A4). The notion of irreducibility basically refers to the property that all the states
are reachable from any initial position. In its classical form, it can be defined as the property that any x in X is
send to any y of X with positive probability after a certain time τ . This corresponds to the standard definition
which proves very useful in the case a finite state space for studying nonnegative matrices. We first give a result
which guarantee that such a condition is sufficient for ensuring (A3)-(A4) in the case of a finite set K, provided
that the time τ is the same for all the couples (x,y) in K, which ensures an additional property of aperiodicity.

Proposition 2.3. Let K be a finite subset of X and assume that there exists τ > 0 such that for any x,y ∈ K,

δxMτ({y})> 0. (2.8)

Then (A3)-(A4) are satisfied for any positive function ψ ∈L ∞(V ).

This sufficient condition is relevant for the study of irreducible processes on discrete spaces. As a motivation,
let us mention the study of the first moment semigroup of discrete branching or absorbed processes in continuous
time and more generally of the exponential of denumerable non-negative matrices, for which irreducibility is
generally easy to check.

In the case of a continuous state space, the irreducibility condition (2.8) is not relevant since the probability
of reaching a prescribed position at a fixed time is most of the time zero. When dealing with continuous time
Markov processes, one can relax this condition by asking any position y to be visited with positive probability
during a time interval, whatever the initial position x. Formulating this idea in terms of the semigroup associated
to the Markov process is not entirely clear. In [P20] we propose a condition in this vein, which is actually even
a bit weaker.

Proposition 2.4. Assume that t 7→ ∥ψ/Mtψ∥∞
is locally bounded. If for some τ > 0 and a family of probability

measures (σx,y)x,y∈K over [0,τ] there exists a constant c> 0 such that for all f ∈L ∞
+ (V ) and all x,y ∈ K

Mτ f (x)
ψ(x)

≥ c
∫

τ

0

Mτ−s f (y)
ψ(y)

σx,y(ds), (2.9)

then Assumption (A4) is verified for some d > 0 and any probability measure ν on K.
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When ψ is bounded from above and below by a positive constant on K, (2.9) with σx,y = δτ reads
equivalently δxMτ({y}) ≥ c. Condition (2.9) can thus be seen as a generalisation of Condition (2.8). It
is typically satisfied when, starting from x, the position y is visited in the time interval [0,τ] with positive
probability. But more generally Condition (2.9) means that the trajectories issued from x at time 0 cross at
time τ the trajectories issued from y at random times s ∈ [0,τ] distributed according to σx,y, with probability
cψ(x)/ψ(y). Condition (2.9) is stronger than (A4), but when it holds true it appears to be often easier to check
than (A4) since it is restricted to a finite time interval.

Contrary to Proposition 2.3, Condition (2.9) does not imply (A3), since it does not prevent from periodicity.
A typical example is provided by the semigroup defined on X = [0,1] by Mt f (x) = f (x+ t−⌊x+ t⌋), which
satisfies (2.9) but not (A3). A way to prevent such a behaviour is to impose the following additional aperiodicity
condition:

sup
x1,x2∈K

inf
y∈K

∫
τ

0

Mτ−s(ψ1K)(y)
ψ(y)

(σx1,y∧σx2,y)(ds)> 0. (2.10)

It is still not enough for ensuring (A3), but it suffices to guarantee a weaker variant, namely the existence
of a constant c ∈ (0,1) and a family (νx1,x2)x1,x2∈K of probability measures on K such that for all x1,x2 ∈ K,
i ∈ {1,2}, and all f ∈L ∞

+ (V/ψ)
Mτ( f ψ)(xi)

Mτ ψ(xi)
≥ c⟨νx1,x2 , f ⟩.

It turns out that it is actually enough using this relaxed small set condition instead of (A3) in Assumption A for
proving the point (i) of Theorem 2.1.

Proposition 2.5. Assume that t 7→ ∥ψ/Mtψ∥∞
is locally bounded and that there exist τ > 0 and K ⊂ X such

that supK V/ψ < ∞ and

• (A1) and (A2) are satisfied for some β > α > 0 and θ > 0,

• (2.9) and (2.10) are satisfied for some c> 0 and a family of probability measures (σx,y)x,y∈K over [0,τ].

Then the conclusion of (i) in Theorem 2.1 holds true.

We end this paragraph with a remark about other standard notions of irreducibility.

Remark 2.6. A notion of irreducibility which classically arises in probability is the so-called ϕ-irreducibility,
see e.g. [162, 172]. It means that there is a σ -finite measure ϕ on X such that for all Ω⊂X satisfying ϕ(Ω)> 0
and any initial position x ∈ X

δxMτ(Ω)> 0

for some τ > 0. This can be strengthened by requiring this positivity to hold for all time sufficiently large: A
semigroup (Mt)t≥0 is said to be ϕ-irreducible and aperiodic if for all Ω ⊂ X satisfying ϕ(Ω) > 0 and any
initial position x ∈ X there exists τ > 0 such that δxMt(Ω)> 0 for all t ≥ τ .

Irreducibility is also an important concept in Banach lattice theory. A positive semigroup (Mt)t≥0 on a
Banach lattice E is called irreducible if for all µ ∈ E+, f ∈ E ′+, µ ̸= 0, f ̸= 0, there exists τ > 0 such that

⟨µMτ , f ⟩> 0.

We refer to [8, Definition C-III.3.1] for alternative equivalent definitions. Irreducibility in E = M (X) implies
the original form of irreducibility, namely that for any x,y ∈ X there exists τ > 0 such that (2.8) is satisfied,
while irreducibility in E = L1(X,ϕ) is implied by ϕ-irreducibility for semigroups defined on M (X) that leave
invariant L1(X,ϕ).
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2.3 Comparison with other methods

Theorem 2.1 provides a powerful tool for proving the exponential ergodicity of linear partial differential
equations (PDEs). We now briefly compare this approach to two classical other methods: spectral analysis of
linear semigroups and entropy inequalities.

Spectral analysis of semigroups. Let E be a Banach lattice and (Mt)t≥0 a strongly continuous positive
semigroup on E: µ ∈ E 7→ µMt ∈ E. By duality we can define the dual semigroup on E ′: f ∈ E ′ 7→Mt f ∈ E ′.
We have the following result, readily deduced from e.g. [207, Remark 2.2] or [8, Theorem C-IV.2.1 and
Remarks 2.2].

Theorem 2.7 ([207] or [8]). Assume that (Mt)t≥0 is irreducible and that there exist τ > 0, α > β > 0, two
operators S,R ∈L (E) with ∥S∥ ≤ α and R compact, and ψ ∈ E ′ such that

Mτ = S+R and Mτ ψ ≥ βψ. (2.11)

Then there exist (λ ,γ,h) ∈ R×E×E ′ and C ≥ 1,ω > 0 such that for all µ ∈ E and all t ≥ 0∥∥µMte−λ t −⟨µ,h⟩γ
∥∥

E ≤Ce−ωt ∥µ−⟨µ,h⟩γ∥E . (2.12)

Let us make some comments on this result.

▶ The proof relies on the notions of measure of noncompactness and essential spectrum. Assumption (2.11)
guarantees that ress(Mτ) = ress(S)≤ r(S)≤ ∥S∥ ≤ α < β ≤ r(Mτ). This spectral gap property combined
with the irreducibility condition yields the result.

▶ There are links between the essential spectral radius and the existence of a Lyapunov function. More
precisely it is proved in [209] that for X a Polish space and under a local Dunford-Pettis type assumption,
if there exist a function V : X→ [1,∞), a compact subset K of X, and constants α,θ > 0 such that
MτV ≤ αV +θ1KV , then ress(Mτ)≤ α in the space L ∞(V ).

▶ Due to the works of Kato [140] and Pelczyński [176] on strictly singular operators, the compactness
condition on R can be replaced by weak compactness when E is a L1 space.

▶ When the eigentriplet (λ ,γ,h) is known to exist a priori and is unique, the irreducibility assumption is not
required for getting the exponential convergence, see Remark 2.2 in [207]. Also, we can use ψ = h.

▶ Recently Mischler and Scher [167] revisited the spectral analysis of semigroups without using the notions
of measure of non-compactness or essential spectrum. They proposed a more elementary proof, based on a
splitting of the generator, of a variant of Theorem 2.11 where the irreducibility condition of the semigroup
is replaced by a strong maximum principle on the generator.

Finally, let us list some positive and negative points of this method compared to Harris’s theory:

+ The result in Theorem 2.7 applies in general Banach lattices, while Harris’s theorem deals with semigroups
on the spaces M (V ) and L ∞(V ).

+ The spectral gap property ress(Mτ)< r(Mτ) actually provides more informations about the spectrum than
only the conclusion of Theorem 2.7.

– The constants C and ω in Theorem 2.7 are not quantified.

– Spectral methods are not applicable to time-inhomogeneous semigroups, contrary to Harris’s approach
(see Section 2.4).
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General Relative Entropy. Entropy methods, reminiscent from Lyapunov functions for (nonlinear)
ordinary differential equations, are elegant and powerful tools for analysing stability and convergence issues in
the theory of (linear or nonlinear) PDEs. Consider an evolution equation posed on a subset D of vector space E.
An entropy (or Lyapunov functional) for this equation is a function H : D→ R which decreases along the
trajectories: for any solution (ut)t≥0 to the evolution equation and for all time t ≥ 0 the dissipation of entropy is
non-negative

D [ut ] =−
d
dt

H [ut ]≥ 0.

Using compactness arguments, this inequality usually allows deriving LaSalle’s invariance principle, namely
that the set of accumulation points of any trajectory is contained in F , the largest subset of {u ∈ D : D [u] = 0}
which is invariant under the dynamics of the equation. When F is reduced to a single point ū, this point is
then the unique equilibrium and it is asymptotically stable. If additionally the entropy is non-negative and is
dominated by its dissipation through a Poincaré type inequality, i.e. there exists ω > 0 such that for all u ∈ D

H [u]≤ 1
ω

D [u], (2.13)

then it decreases exponentially fast along the trajectories to its minimum 0 = H [ū]

H [ut ]≤H [u0]e−ωt . (2.14)

In the context of linear PDEs, the notion of General Relative Entropy (GRE) was introduced in 2005 by
Michel, Mischler, and Perthame [164]. It extends to non-conservative equations the notion of relative entropy
for conservative parabolic, hyperbolic, or integral equations, by involving a solution to the associated dual
equation. Consider such an equation set on a space E of functions defined on a state space X. In the case where
particular solutions are provided by a Perron-Frobenius eigenvalue problem, i.e. when there exist positive
solutions t 7→ eλ tγ and t 7→ eλ th to the direct and dual equations respectively, the GRE principle states that for
any convex function H : E→ R the functional

H [u] =
∫

X
H
(u

γ

)
γh

is an entropy for the rescaled dynamics t 7→ e−λ tut . When the set F is the vector space spanned by γ , LaSalle’s
invariance principle usually allows deriving the asynchronous exponential growth property. If additionally
the function H is non-negative and a Poincaré inequality is available on the level sets of u 7→ ⟨u,h⟩, then
the convergence is exponential. Note that an important class of convex functions is provided by the choice
H(u) = |u|p with p≥ 1, since in this case H [u] = ∥u∥p

E with E = Lp(γ p−1h).

Let us now list some positive and negative points of this method compared to Harris’s theory:

+ If the Poincaré inequality (2.13) is valid for the choice H(u) = |u|p (p≥ 1), then inequality (2.14) yields
coercivity in the space E = Lp(γ p−1h), i.e. (2.12) holds with the optimal constant C = 1.

+ LaSalle’s invariance principle allows addressing more general situations than the convergence to a steady
state. In Chapter 3, Section 3.3, we give an example of application of GRE in a case where F is an infinite
dimensional space, leading to an oscillatory asymptotic behaviour.

– The Perron-Frobenius eigentriplet (λ ,γ,h) is required to be known a priori for defining the GRE.

– Poincaré inequalities can be hard to obtain in general, especially for non-local equations.
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2.4 Time-inhomogeneous semigroups and a few other perspectives

Harris’s approach is based on a contraction argument for discrete times, and can thus be applied to time-
inhomogeneous semigroups. We call time-inhomogeneous semigroup a two indexed family (Ms,t)0≤s≤t of
operators which satisfies the following extension of the semigroup property

Ms,uMu,t = Ms,t

for any t ≥ u≥ s≥ 0. It is naturally associated to PDEs with time-varying coefficients or time-inhomogeneous
Markov processes. A particular interesting case is provided by periodic semigroups, i.e. time-inhomogeneous
semigroups which are T -periodic for some T > 0 in the sense that

Ms+T,t+T = Ms,t

for all t ≥ s≥ 0. They typically appear in biological models which take into account the time periodicity of the
environment. Harris’s method can be easily adapted to the periodic framework to provide some extension of the
Floquet theory of periodic matrices [107] to periodic semigroups. We say that (λF ,γs,t ,hs,t)0≤s≤t is a Floquet
eigenfamily for the T -periodic semigroup (Ms,t)0≤s≤t if the families (γs,t)0≤s≤t and (hs,t)0≤s≤t are T -periodic
in the sense that

γs+T,t+T = γs,t = γs,t+T and hs+T,t+T = hs,t = hs,t+T

for all t ≥ s≥ 0, and are associated to the Floquet eigenvalue λF in the sense that

γs,sMs,t = eλF (t−s)
γs,t and Ms,tht,t = eλF (t−s)hs,t

for all t ≥ s ≥ 0. The following result is readily deduced from the proofs of Theorem 2.1 above and [P16,
Theorem 3.15].

Theorem 2.8. Let (Ms,t)0≤s≤t be a T -periodic semigroup such that (s, t) 7→ ∥Ms,tV∥L ∞(V ) is locally bounded,
and suppose that M0,τ satisfies Assumption A for some functions V ≥ ψ > 0, with τ = nT for some integer n.
Then there exist a unique T -periodic Floquet family (λF ,γs,t ,hs,t)0≤s≤t ⊂ R×M (V )×L ∞(V ) such that
⟨γs,s,hs,s⟩ = ∥hs,s∥L ∞(V ) = 1 for all s ≥ 0, and there exist C ≥ 1, ω > 0 such that for all t ≥ s ≥ 0 and all
µ ∈M (V ), ∥∥e−λF (t−s)

µMs,t −⟨µ,hs,s⟩γs,t
∥∥

M (V )
≤Ce−ω(t−s) ∥µ−⟨µ,hs,s⟩γs,s∥M (V ) .

To conclude this section and this chapter, let us give some chalenging perspectives of future work.

▶ In [P16], generalized Doeblin’s conditions are proposed for deriving the ergodicity of general non-
conservative time-inhomogeneous semigroups (not only periodic). It would be interesting to localize
these conditions in small sets by means of Lyapunov functions as in the Harris approach. This would
provide a powerful tool for tackling various time-inhomogeneous problems, as for instance optimal control
problems.

▶ Assumption (A4) is usually the most delicate condition to verify in Assumption A. It can be deduced
from Harnack inequalities when available, typically in the case of diffusive processes as in [62, 63, 202],
or through other sufficient conditions as the ones proposed in [203] for the study of absorbed Markov
processes or Condition (2.9) in Proposition 2.4. While (2.9) is well suited for the case of a one dimensional
state space X, it is generally too restrictive to be applicable in higher dimensions. It would be valuable to
relax this condition for deriving a handy criterion which could be applied to a wide range of semigroups.

▶ Working with total variation distances is quite demanding. Wasserstein type distances are more flexible
and can reveal more suitable in some situations. A result of exponential ergodicity in the flat norm, also
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called Fortet-Mourier norm, was recently obtained in [100] by means of spectral analysis of semigroups.
In [128] a general form of Harris’s theorem is proposed, which extends the classical conservative Harris
result to more general distances. Extending this work to non-conservative semigroups might be tricky but
could prove very useful for applications.

▶ Ergodicity with sub-geometric speed of convergence can also be addressed via Harris’s theory, see [86, 126].
These results are about conservative semigroups and, again, it would be interesting to extend this approach
to the non-conservative setting.



Chapter 3

Growth-fragmentation

We gather in this chapter some results obtained in joint works with Daniel BALAGUÉ, José A. CAÑIZO and
Havva YOLDAŞ [P4, P22], Vincent BANSAYE, Bertrand CLOEZ and Aline MARGUET [P16, P19], Étienne
BERNARD and Marie DOUMIC [P11, P12, P18], Hugo MARTIN [P21], Francesco SALVARANI [P5], as well as
in [P9].

3.1 Introduction and state of the art

We are interested in the following so-called growth-fragmentation equation

∂

∂ t
ut(x)+

∂

∂x

(
g(x)ut(x)

)
+B(x)ut(x) =

∫ 1

0
B
(x

z

)
ut

(x
z

)
℘(dz)

z
(3.1)

This non-local evolution PDE appears in the modelling of various physical or biological phenomena [11, 12,
160, 177, 188]. The unknown ut represents the population density at time t of some “particles” characterized by
their “size” x > 0. Each particle with size x grows with speed g(x) and splits with rate B(x) to produce smaller
particles of sizes zx with 0< z< 1 distributed with respect to the fragmentation kernel ℘. This kernel is a finite
positive measure on the open interval (0,1) with unit first moment∫ 1

0
z℘(dz) = 1.

This condition guarantees that the total “mass” is preserved at fragmentation events: the sum of the sizes of the
fragments is equal to the size of the mother particle.

Equation (3.1) is also the Kolmogorov (forward) equation of the underlying piecewise deterministic Markov
process [27, 52, 69, 77, 90, 156]. Let us explain this briefly and informally. Consider the measure-valued
branching process Z = (Zt)t≥0 defined as the empirical measure

Zt = ∑
i∈Vt

δX i
t

where Vt is the set of individuals alive at time t and {X i
t : i ∈ Vt} the set of their sizes. For each individual

i ∈ Vt the size X i
t grows following the deterministic flow d

dt X i
t = g(X i

t ) until a division time Ti which occurs
stochastically in a Poisson-like fashion with rate B(X i

t ). Then the individual i dies and gives birth to n new
smaller particles i1, · · · , in with sizes X i1

Ti
, · · · ,X in

Ti
such that X i1

Ti
+ · · ·+X in

Ti
= X i

Ti
. These new particles evolve

independently according to the same dynamics. Taking the expectation of the random measures Zt , we get a



18 Growth-fragmentation

family of measures ut , defined for any Borel set A⊂ (0,∞) by

ut(A) = E
[
Zt(A)

]
= E

[
#{i ∈ Vt , X i

t ∈ A}
]
,

which is a weak solution to Equation (3.1). Another Kolmogorov equation is classically associated to (Zt)t≥0,

which is the dual equation of (3.1)

∂

∂ t
ϕt(x) = g(x)

∂

∂x
ϕt(x)−B(x)ϕt(x)+B(x)

∫ 1

0
ϕt(zx)℘(dz). (3.2)

This second equation is sometimes written in its backward version where ∂

∂ t ϕt(x) is replaced by − ∂

∂ t ϕt(x), and
is then usually called Kolmogorov backward equation. For an observation function f , we have that

ϕt(x) = E
[
⟨Zt , f ⟩ |Z0 = δx

]
= E

[
∑

i∈Vt

f (X i
t )
∣∣Z0 = δx

]
is the solution to (3.2) with initial condition ϕ0 = f .

Before stating our contributions, we make a brief review of the literature about the asynchronous exponential
growth property of Equation (3.1). It was first extensively investigated by Diekmann, Heijmans and Thieme
in [81] through spectral analysis of semigroups in the case of a bounded state space X = [x,x] ⊂ (0,∞), see
also [121, 131–133]. More recently Banasiak, Pichór and Rudnicki revisited this case by using the notion
partially integral semigroups [13, 187]. The first result for the case X = (0,∞) was obtained by Perthame
and Ryhzik [179] for g(x) = 1 and B (almost) constant by means of functional inequalities, see also [146].
Similar results were then derived by [15, 59] via probabilistic coupling arguments. Shortly after [179], Michel,
Mischler and Perthame introduced the General Relative Entropy (GRE) principle in [164], which ensures the
Malthusian long-time behaviour for general coefficients but without rate of convergence, see also [95]. This
method was recently extended to measure solutions by Dȩbiec, Doumic, Gwiazda and Wiedeman [76]. A
Poincaré inequality was proved by Cáceres, Cañizo and Mischler in [44] for the quadratic GRE when ℘ is
“not singular”, thus guaranteeing an exponential rate of convergence in the corresponding wheighted L2 norm.
This spectral gap result was extended to larger weighted Lebesgue spaces in [43, 44] by using the enlargement
result in [123]. Some time later, general results in weighted L1 spaces were obtained through a new approach
of the spectral analysis of semigroups by Mischler and Scher [167]. Let us also mention [211] where Zaidi, van
Brunt and Wake derived a point-wise higher-order asymptotic expansion in the case B constant and ℘= 2δ1/2.
Finally, a probabilistic analysis through a h-transform and many-to-one formulae was proposed by Cloez [69],
and more recently a new probabilistic approach based on a Feynman-Kac formula was developed by Bertoin
and Watson [24, 26, 27], see also Cavalli [57, 58].

In the next two sections, we present new results that complement the above mentioned studies. More
precisely we are interested in the uniform exponential convergence to the Malthusian behaviour:∥∥e−λ tut −⟨u0,h⟩γ

∥∥
E ≤Ce−ωt ∥u0−⟨u0,h⟩γ∥E . (3.3)

Most of the results in the literature deal with one of the two particular growth rates that are constant and linear
rates. The constant rates are relevant for instance in the modelling of fibrils polymerization, while the linear
ones are well suited for the exponential growth of cells. For the sake of conciseness and clarity, we restrict the
presentation of our results to these two cases. The questions we address are:

▶ For which spaces E and under which assumptions on the coefficients do we have (3.3)?

▶ When (3.3) holds true, can we quantify the constants C and ω?

▶ What are the possible obstructions to (3.3)?
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Regarding the two first questions, our main contribution is a quantified proof of the convergence (3.3) in spaces
of measures under general assumptions, see Theorems 3.1 and 3.9. Concerning the third question, the most
obvious obstruction to (3.3) is the non-existence of the eigenelements in E, as in [25, 88]. We do not consider
this case here, but rather focus on situations where the eigenelements exist but the uniform convergence (3.3)
fails to be true, see Theorem 3.5 and Theorems 3.12 and 3.13.

In Section 3.4 we show how some results on the long-time behaviour of Equation (3.1) can be used for
studying a nonlinear model of prion replication.

Section 3.5 is devoted to the analysis of the long-time behaviour of generalisations of Equation (3.1) where
the division rate depends on time in a periodic way.

3.2 Constant growth rate

In this section we are concerned with the case g(x) = 1, and Equation (3.1) is then complemented with the zero
flux boundary condition ut(0) = 0. It is useful to define, for any k ∈ R,

℘k =
∫ 1

0
zk

℘(dz)

the k-th moment of ℘, which belongs to (0,+∞]. We will also need the following definition

k∗ = inf{k ∈ R, ℘k <+∞}.

We have by assumption that ℘1 = 1, so that k∗ ∈ [−∞,1]. For instance we have k∗ = −∞ for ℘= 2δ1/2
and k∗ = −1 for ℘≡ 2. The function k 7→℘k is continuous and strictly decreasing on (k∗,+∞). The zero
order moment ℘0 > 1 represents the mean number of fragments. For the sake of clarity we assume that
B : (0,∞)→ [0,∞) is a continuous function.

Harris’s method. We use our result of Theorem 2.1 for the semigroup generated by Equations (3.1)
and (3.2), namely µMt = ut is the solution to Equation (3.1) with initial distribution u0 = µ and Mt f = ϕt is
the solution to Equation (3.2) with initial condition ϕ0 = f . Interestingly enough, the embedded semigroup
presented in Chapter 2.1, which is at the core of the proof of Theorem 2.1, can be here expressed in terms of the
branching process Z by

P(t)
s0,s f (x) =

E
[

∑i∈Vt f (X i
s)ψ(X i

t ) |Zs0 = δx
]

E
[

∑i∈Vt ψ(X i
t ) |Zs0 = δx

]
for 0≤ s0≤ s≤ t. It is associated to an inhomogeneous Markov process Y (t), i.e. P(t)

s0,s f (x)=E[ f (Y (t)
s ) |Y (t)

s0 = x],
which basically provides the trajectory of the backward lineage of a particle sampled at time t with a bias ψ ,
see [155, 156] for more details. Before stating the result we give the assumption on ℘, which is supposed to
satisfy the following lower bound: there exist z0 ∈ (0,1), ε ∈ [0,z0] and c0 > 0 such that

℘(dz)≥ c0

ε
1(z0−ε,z0)(z)dz if ε > 0 or ℘≥ c0δz0 if ε = 0. (3.4)

Theorem 3.1. Assume that (3.4) is satisfied and that we are in one of the following cases:

(i) B is continuously differentiable and increasing, B ̸≡ 0, and V (x) = 1+ xk with k > 1,

(ii) B(x) = 0 in a neighbourhood of the origin, limx→∞ xB(x) = +∞, and V (x) = 1+ xk with k > 1,

(iii) limx→0 xB(x) = 0, limx→∞ xB(x) = +∞, k∗ < 0, and V (x) = xℓ+ xk with ℓ ∈ (k∗,0) and k > 1.

Then the convergence (3.3) holds true in E = M (V ) with computable constants C and ω .
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Main steps of the proof. We apply Theorem 2.1 after having checked Assumption A. For verifying (A1)
and (A2) we use Proposition 2.2.

(A2) holds with ψ(x) = 1+ x and β = 1,
(A1) is satisfied with α ∈ (0,1) by the Lyapunov function V (x) = 1+ xk, k > 1, for some K = [0,x1], and,

when k∗ < 0, by V (x) = xℓ+ xk, k > 1, ℓ ∈ (k∗,0), for some K = [x0,x1], 0< x0 < x1 < ∞.
(A3) is checked through (iterated) Duhamel formula on any bounded interval,
(A4) is proved directly by monotonicity arguments in case (i) in [P19]. In the two other cases it is checked

by using Proposition 2.4: on K = [0,x1] for any x1 > 0 in case (ii), and on K = [x0,x1] for any 0< x0 < x1 <∞

in case (iii).

The most general assumption on B is the one in (iii). However, to check Assumption (A4) through
Condition (2.9) in that case, we need to work on a set K which is away from the origin. It forces us to strengthen
the Lyapunov function by adding xℓ with ℓ < 0, thus shrinking the space M (V ). An alternative for extending
the result to V (x) = 1+ xk is to use a h-transform. It requires knowing a priori the existence of h and λ , but
it has the advantage that there is no need to check (A4). Indeed the approach via h-transform corresponds
to choosing ψ = h in Assumption A, so that (A2) and (A4) are trivially verified since h is an eigenfunction.
In [P22] we prove the existence of h and λ by using the Krein-Rutman theorem, Lyapunov functions, and
compactness arguments. It allows us to prove the following result.

Theorem 3.2. Assume that (3.4) is satisfied, limx→0 xB(x) = 0, and limx→∞ xB(x) = +∞. Then the conver-
gence (3.3) holds true in E = M (V ) for the weight V (x) = 1+ xk with k > 1.

The drawback of this h-transform approach is that since the existence of h is obtained in a non constructive
way, the constants in the convergence result are not quantifiable (unless h is known explicitly, which occurs
when B is affine).

Spectral analysis. Before being aware of Harris’s method, we had used in [P18] the spectral analysis of
strongly continuous semigroups to prove the following theorem.

Theorem 3.3. Assume that B has a connected support and that

B1(x− x0)
b1
+ ≤ B(x)≤ B2(1+ x)b2

for all x≥ 0 and some b2≥ b1 > 0, B2≥B1 > 0, and x0 > 0. Suppose also that℘ is either absolutely continuous
with respect to the Lebesgue measure or that supp℘⊂ [ε,1− ε] for some ε > 0. Then convergence (3.3) holds
true in E = L1(V ) with V (x) = 1+ xk for any k >max(1,k∗+2b2−2b1).

This anterior result is essentially covered by Theorem 3.2. However the proof is worth of interest since it
relies on a moment creation result, given in Lemma 3.4 below, that can be useful by itself.

Idea of the proof. We use the spectral approach of Theorem 2.7. From [91] we know that the Perron eigentriplet
(λ ,γ,h) exists and is unique. So we do not need to check the irreducibility assumption, and the condition on ψ

is satisfied by h. The splitting Mτ = S+R is obtained through a Duhamel formula, and the (weak) compactness
of R is established by using the strong convex compactness property [190, 208] (see also [168] for a direct
proof in Lebesgue spaces). For applying this property, we need to prove the following regularity result.

Lemma 3.4. For all ℓ > k > k0 > 1 there exist two positive constant a = a(ℓ,k) and C =C(ℓ,k,k0) such that
for all u0 ∈ L1(1+ xk) and all t > 0

∥ut∥L1(1+xℓ) ≤Ct−(ℓ−k0)/m0eat ∥u0∥L1(1+xk) .

Interestingly enough, the proof of this lemma relies on the use of Lyapunov functions.
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It is known that when it exists, the function h is dominated by (1+ x)k for any k > 1. So the results in
Theorems 3.1, 3.2, and 3.3 hold in spaces with weights stronger than h. A natural question then is wether or
not they can be extended to L1(h) or M (h), which are the largest function or measure spaces for which the
quantity ⟨u0,h⟩ is well defined. In [44] it is proved by means of GRE inequalities that pointwise convergence
holds in L1(h) under general assumptions on the coefficients, so that

sup
∥u0∥=1

lim
t→∞

∥∥e−λ tut −⟨u0,h⟩γ
∥∥

L1(h) = 0. (3.5)

The stronger convergence that interests us in (3.3) is equivalent to switching the “sup” and the “lim” in (3.5).
In [P11] we prove that this uniform convergence does not hold in L1(h) in general, at least for bounded
fragmentation rates. More precisely we prove the following result.

Theorem 3.5. Assume that limk→k∗℘k =+∞, B is bounded, with connected support, and B(x) = B∞ > 0 for
all x large enough. Then

inf
t≥0

sup
∥u0∥=1

∥∥e−λ tut −⟨u0,h⟩γ
∥∥

L1(h) ≥ 1.

Ingredients of the proof. We start with the case infsupp℘> 0, for which we can prove more, namely that

sup
∥u0∥=1

∥∥e−λ tut −⟨u0,h⟩γ
∥∥

L1(h) = 2 (3.6)

for all t ≥ 0. Then we treat the case infsupp℘= 0 by using the notion of quasi-compactness, which is an
topological invariant. To do so we need precise estimates on the dual eigenfunction h, that are stated in
Theorem 3.8 below (case b∞ = 0) and are valid under the only assumptions of Theorem 3.5.

The method for proving (3.6) also allows us to bound the size of the spectral gap in smaller weighted L1

spaces when infsupp℘> 0. We illustrate this on the example of constant division rate with equal mitosis
kernel.

The case of constant fragmentation rate with equal mitosis. This case, which corresponds
to B(x) = B > 0 and ℘= 2δ1/2, is well understood. First we readily check that λ = B and h(x) = 1 are
eigenelements. There is also an explicit expression for γ [129]. Sharp rates of convergence for Wasserstein
distances are provided by [59] via coupling arguments. For the 1-Wasserstein distance this spectral gap is equal
to B, which was already proved by means of functional inequalities in [179]. It allows deriving convergence
with the same rate in total variation distance, but with a stronger control on the initial data [15, 179].

A more precise description can be obtained in weighted L1 spaces, by combining the spectral result in [167,
Proposition 4.4] and the point-wise higher-order asymptotic expansion derived in [211]. This expansion is
given by a sequence of eigenfunctions (γm)m≥0 associated to the explicit eigenvalues

λm = (21−m−1)B.

The eigenfunctions γm derived in [199, 200] are given by Dirichlet series that decay rapidly as x→∞. The Weyl
theorem available in [167] then allows us to strengthen this point-wise convergence into a uniform exponential
convergence. It provides as a by-product the existence of a sequence (hm)m≥0 of eigenfunctions that grow at
most polynomially as x→+∞. Using the result in [P11, Theorem 6.1] we can also bound from above the rate
of convergence. Finally we have the following result.

Theorem 3.6. Let a ∈ (−B,B). For any k >max(1,ka) where

ka =
log(2B)− log(B+a)

log2
,
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we have (γm,hm) ∈ L1(V )×L∞(V ) with V (x) = 1+ xk, and for all u0 ∈ L1(V ) and all t ≥ 0∥∥∥∥ut −
ma

∑
m=0
⟨u0,hm⟩eλmt

γm

∥∥∥∥
L1(V )

≤Ceat
∥∥∥∥u0−

ma

∑
m=0
⟨u0,hm⟩γm

∥∥∥∥
L1(V )

(3.7)

where ma = ⌈ka−1⌉ is the integer such that λma+1 ≤ a< λma . On the other hand, (3.7) does not hold true for
k ∈ [0, B−a

2Be log2

)
.

Entropy method. Let us place ourselves in a situation where the conditions in [91] ensuring the existence
of the Perron eigenelements (λ ,γ,h) are met, and consider the GRE corresponding to the quadratic convex
function H(u) = (u−1)2, namely

H [u] =
∫

∞

0
(u− γ)2 h

γ
= ∥u− γ∥2

L2(h/γ).

This functional is an entropy for the rescaled dynamics e−λ tut . The corresponding dissipation of entropy is
given by

D [u] =
∫

∞

0

∫ 1

0
h(zx)γ(x)B(x)

(u(x)
γ(x)
− u(zx)

γ(zx)

)2
℘(dz)dx.

The analysis in [164] guarantees that, if ⟨u0,h⟩ = 1, then H [e−λ tut ] decreases to zero under fairly general
assumptions on B and ℘, but without providing decay rate. An exponential rate of convergence readily follows
from the validity of the Poincaré inequality

H [u]≤ 1
2ω

D [u] (3.8)

for some ω > 0 and all u in the set {u ∈ L2(γ/h), ⟨u,h⟩= 1}, which is invariant under the rescaled dynamics
t 7→ e−λ tut . In the particular case ℘= 2δ1/2, the dissipation of entropy is too weak to produce such a Poincaré
inequality, since D [u] = 0 for any u = wγ with w such that w(2x) = w(x). To avoid such an obstruction, the
authors of [44] consider fragmentation kernels satisfying

℘(dz)≥ c0 dz (3.9)

for some c0 > 0 and they prove the validity of (3.8) under some assumptions on B. In [P4] we extend this result
to other fragmentation rates B under additional conditions on the fragmentation kernel ℘. More precisely we
assume that ℘ is absolutely continuous with respect to the Lebesgue measure around 0 and 1, and that the
corresponding densities verify

℘(z)→ p0 when z→ 0 and ℘(z) = p1 +O((1− z)η) when z→ 1 (3.10)

for some p0, p1,η > 0. The function B is supposed to have the following asymptotic behaviours

B(x)∼ B0xb0 as x→ 0 and B(x) = B∞xb∞ +O(xb∞−η) as x→+∞ (3.11)

for some B0,B∞,η > 0 and b0,b∞ > −1. Note that these assumptions ensure in particular the existence of
(λ ,γ,h), see [91]. In addition, we have the following result, mainly taken from [P4].

Theorem 3.7. Suppose that (3.9), (3.10), and (3.11) are satisfied with b0 ∈ (−1,2] and b∞ >−1. Then there
exists ω > 0 such that the Poincaré inequality (3.8) is valid in {u ∈ L2(γ/h), ⟨u,h⟩= 1}. Consequently, (3.3)
is verified in E = L2(h/γ) with this same ω and C = 1.
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The Poincaré inequality is obtained following the proof in [44], which is inspired by a work of Diaconis and
Stroock [80]. It requires estimates from above and below on the eigenfunctions. Our main contribution in [P4]
is the derivation of such estimates, which drastically refine those of [44]. We gather in the following theorem
the estimates that allow to prove Theorem 3.7. They are particular cases of the ones derived in [P4], except the
bounds on the dual eigenfunction h in the case b∞ = 0 which are proved in [179] for the equal mitosis case and
in [P11] for general fragmentation kernels. The asymptotic behaviour of γ as x→+∞ involves the function

Λ(x) =
∫ x

1

λ +B(y)
g(y)

dy.

Theorem 3.8. Under Assumptions (3.10) and (3.11), the following estimates hold true, where in each of them
C is a positive constant. The dual eigenfunction h satisfies

1
C
(1+ x)k ≤ h(x)≤C(1+ x)k

for some k ∈ R, and the asymptotic behaviour of the eigenfunction γ is given by

γ(x) ∼
x→0

Cx and γ(x) ∼
x→∞

Ce−Λ(x)xq

where q is a positive number. The values of k and q are explicit and depend on the sign of b∞. More precisely,

▶ if b∞ > 0 then k = 1 and q = p1,

▶ if b∞ = 0 and either B(x) = B∞ for all x large enough or ℘≡ 2, then k < 1 is the unique real number
such that ℘k = 1+ λ

B∞
, and q = p1/℘k,

▶ if b∞ < 0 then k = b∞−1 and q = 0.

3.3 Linear growth rate

We now consider the case g(x) = x, for which λ = 1 and h(x) = x are eigenelements. Notice that in this case
there is no need of a boundary condition for Equation (3.1) at x = 0. As in Section 3.2 we still assume that
B : (0,∞)→ [0,∞) is a continuous function.

Harris’s method. Since h is known explicitly, it is quite appropriate to apply Harris’s theorem trough a
h-transform. Similarly as in Theorem 3.2 we can prove the following result for the case of linear growth rate.

Theorem 3.9. Assume that there exist z0 ∈ (0,1), ε ∈ (0,z0] and c0 > 0 such that

℘(dz)≥ c01(z0−ε,z0)(z)dz

and that B is a continuous function such that

lim
x→0

B(x) = 0 and lim
x→∞

B(x) = +∞.

Then the convergence (3.3) holds true in E = M (V ) with V (x) = xℓ+ xk, k∗ < ℓ < 1 < k, and computable
constants C and ω .

Entropy and functional inequalities. As for the case of constant growth rate, we can use the
quadratic GRE to get (3.3) in the corresponding weighted L2 space by proving a Poincaré inequality. Since here
h(x) = x is known explicitly we only need estimates on the eigenfunction γ . Assuming that (3.10) and (3.11)
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are satisfied with b0,b∞ > 0, we have the following estimates from [P4], where in each of them C is a positive
constant,

γ(x)−−→
x→0

C and γ(x) ∼
x→∞

Ce−Λ(x)xp1 .

It allows us to prove the following result in [P4].

Theorem 3.10. Suppose that (3.9), (3.10), and (3.11) are satisfied with b0 ∈ (0,2] and b∞ > 0. Then there
exists ω > 0 such that the Poincaré inequality (3.8) is valid in {u ∈ L2(γ/h), ⟨u,h⟩= 1}. Consequently, (3.3)
is verified in E = L2(h/γ) with this same ω and C = 1.

As in the case of constant growth rate, this result requires b0 to be smaller than 2. In [P5] we obtain a
spectral gap in L2(h) for the special case B(x) = xb with b≥ 2 and ℘≡ 2, by means of a functional inequality.
More precisely we prove that for any u0 ∈ L2(h) such that ⟨u0,h⟩= 0 we have for all t ≥ 0

d
dt
∥ut∥2

L2(h) =−(b−2)
∫

∞

0
xb−3U2

t (x)dx−
∫

∞

0
xb+1u2

t (x)dx≤ 0

where Ut(x) =
∫ x

0 yut(y)dy. This is a spectral gap inequality since it readily implies the following result,
recalling that here the Perron eigenvalue is λ = 1.

Theorem 3.11. Assume that B(x) = xb with b ≥ 2 and ℘≡ 2. Then the convergence (3.3) holds true in
E = L2(h) with C = 1 and ω = 1

2 .

The equal mitosis case. The assumptions in Theorems 3.9, 3.10 and 3.11 preclude the equal mitosis
kernel ℘= 2δ1/2. It is not a technical but a necessary restriction, since asynchronous exponential growth does
not occur in this case. It can be easily understood through the branching Markov process Z. If at time t = 0 the
population is composed of only one individual with deterministic size x> 0, then for any positive time t and any
i ∈ Vt we have that X i

t ∈ {2−metx : m ∈ N}. This observation was made already by Bell and Anderson in [21].
It shows that the solution ut = E[Zt ] cannot relax to a steady size distribution and it prevents Equation (3.1)
from having the asynchronous exponential growth property. The dynamics does not mix enough the trajectories
to generate ergodicity, and the asymptotic behaviour keeps a strong memory of the initial distribution. This
situation has been much less studied than the classical ergodic case. In [81, 132] Diekmann, Heijmans and
Thieme made the link with the existence of a nontrivial boundary spectrum: all the complex numbers

λn = 1+
2nπ

log2
i

with n lying in Z, are eigenvalues. As a consequence the Perron eigenvalue λ = λ0 = 1 is not strictly dominant
and it results in persistent oscillations, generated by the boundary eigenfunctions. The convergence to this
striking behaviour was first proved by Greiner and Nagel [121] in the space L1(X) with X = [x,x] ⊂ (0,∞)

through spectral analysis of semigroups. More recently it was derived in L1((0,∞),x1+rdx) for monomial
division rates B(x) = xr (r > 0) and smooth initial data by means of Mellin’s transform [198].

In [P12, P21] we tackle this problem by using the GRE principle and obtain new and very fine convergence
results. Consider again the quadratic functional

H [u] =
∫

∞

0
|u− γ|2 h

γ
= ∥u− γ∥2

L2(h/γ)

which is an entropy for the rescaled solutions t 7→ e−tut with dissipation

D [u] =
∫

∞

0
xB(x)γ(x)

∣∣∣∣u(x)
γ(x)
− u(x/2)

γ(x/2)

∣∣∣∣2dx.
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As we already noticed in Section 3.2, this dissipation of entropy does not vanish only for u∈ span{γ} but for any
u = wγ with w(2x) = w(x). The main difference with the case of constant growth rate is that for g(x) = x the set
of such functions u is invariant under Equation (3.1). Let us now relate this to the boundary spectrum. Since the
eigenvalues λn are associated to eigenfunctions γn that yield periodic rescaled solutions, these eigenfunctions
necessarily nullify the dissipation of entropy. The direct and dual eigenfunctions associated to λn are actually
explicitly related to γ and h and given by

γn(x) = x−
2inπ

log2 γ(x) and hn(x) = x
2inπ

log2 h(x) = x1+ 2inπ

log2 .

The family (γn)n∈Z clearly belongs to the null set of the entropy dissipation, but we can also prove that it
forms a Hilbert basis of this vector subspace of L2(h/γ). Let us make this more precise. First we clearly
assume that γ exists in L1(h), which is guaranteed from [91] if B has a connected support and verifies
B1(x− x0)

b1
+ ≤ B(x)≤ B2(xb0 + xb2) for some B1,B2,b0,b1,b2,x0 > 0. Then we consider the complex Hilbert

space L2(h/γ) endowed with the inner product

( f ,g) =
∫

∞

0
f (x)ḡ(x)

xdx
γ(x)

.

Since ⟨γ,h⟩= 1 and γn,hn are direct and dual eigenfunctions associated to λn with λn ̸= λm when n ̸= m, we
deduce that

(γn,γm) = ⟨γn,hm⟩=
{

1 if n = m
0 if n ̸= m

,

meaning that (γn)n∈Z is an orthonormal family of L2(h/γ). By means of Fourier analysis, we prove in [P12]
that

span(γn)n∈Z =
{

u ∈ L2(h/γ), D [u] = 0
}
.

This result combined with the GRE inequality allows us to derive the convergence of the rescaled solutions
e−tut to their orthogonal projection on the null space of the entropy dissipation.

Theorem 3.12. For any u0 ∈ L2(h/γ) we have∥∥∥∥e−tut −
+∞

∑
n=−∞

(u0,γn)e
2inπ

log2 t
γn

∥∥∥∥
L2(h/γ)

−−−→
t→+∞

0.

As we already noticed, ut is a Dirac comb for all time t ≥ 0 when u0 is a Dirac mass. This observation
motivates studying the long time behaviour in a space of measures. The question is then what becomes the
convergence in Theorem 3.12 in the absence of Hilbert structure. We answer this question in [P21] by using
both the GRE structure of the dual equation (3.2), which is set on a space of functions, and Harris’s ergodic
theorem. The Fourier type series is replaced by a Fejér type sum and the convergence occurs with an explicit
exponential rate. To our knowledge, it is the first time a spectral gap is obtained in such a periodic setting.

Theorem 3.13. Let V (x) = xℓ+ xk with ℓ < 1 < k. There exist computable constants C ≥ 1 and ω > 0 such
that for all u0 ∈M (V ) and all t ≥ 0∥∥e−tut −ρt

∥∥
M (V )

≤Ce−ωt ∥u0−ρ0∥M (V )

where for all f ∈C1
c (0,∞)

⟨ρt , f ⟩= lim
N→∞

N

∑
n=−N

(
1− |n|

N

)
⟨u0,hn⟩⟨γn, f ⟩e

2inπ

log2 t
.
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Main steps of the proof. We work on the dual equation (3.2) which, similarly as Equation (3.1), enjoys a GRE
structure. The quadratic one reads

H [ϕ] =
∫

∞

0
|ϕ−h|2 γ

h
.

It is an entropy for the rescaled solutions t 7→ e−tϕt with dissipation

D [ϕ] =
∫

∞

0
xB(x)γ(x)

∣∣∣∣ϕ(x)
x
− ϕ(x/2)

x/2

∣∣∣∣2dx,

which vanishes for the functions ϕ satisfying ϕ(2x) = 2ϕ(x). We start by proving via Fejér’s Theorem that for
any ϕ ∈L ∞(h)∩C(0,∞) such that ϕ(2x) = 2ϕ(x), the sequence (FN(ϕ))N≥1 defined by

FN(ϕ) =
N

∑
n=−N

(
1− |n|

N

)
⟨γn,ϕ⟩hn

converges to ϕ in L ∞(h). The GRE inequality then allows us to prove that for any ϕ0 ∈C1
c (0,∞) and any t ≥ 0

the sequence

FN(e−t
ϕt) =

N

∑
n=−N

(
1− |n|

N

)
⟨γn,ϕ0⟩e

2inπ

log2 thn

converges in L ∞(h) to a limit Rtϕ0. This defines a log2-periodic family of bounded linear operators Rt from
{ϕ ∈L ∞(h),ϕ/h ∈C0(0,∞)} to L ∞(h)∩C(0,∞). The GRE principle guarantees additionally that for all
ϕ0 ∈ {ϕ ∈L ∞(h),ϕ/h ∈C0(0,∞)}

e−t
ϕt −Rtϕ0 −−−→

t→+∞
0

locally uniformly on (0,∞). In terms of the direct equation, this implies the weak-* convergence

e−tut −ρt
∗
⇀ 0 (3.12)

for any u0 ∈M (h).

The second step consists in strengthening this weak convergence by using Harris’s theorem. Let us denote
by (Mt)t≥0 the semigroup generated by Equations (3.1) and (3.2), namely such that µMt = ut is the solution
to Equation (3.1) with initial distribution u0 = µ and Mt f = ϕt is the solution to Equation (3.2) with initial
condition ϕ0 = f . Of course we cannot apply Harris’s theorem to (Mt)t≥0 since we just proved that it is not
ergodic. But we can apply it, for any fixed x∈ (0,∞), to the discrete time semigroup (Mn log2)n∈N on the discrete
state space

Xx =
{

y ∈ (0,∞) : ∃m ∈ Z,y = 2mx
}
.

Indeed the space of measures on (0,∞) supported by Xx is invariant under Mlog2. Harris’s ergodic theorem then
allows us to prove that for all f ∈L ∞(V )∣∣e−n log2Mn log2 f (x)−Rn log2 f (x)

∣∣≤Crn ∥ f −R0 f∥L ∞(V )

for some explicit constants C ≥ 1 and r ∈ (0,1) which are independent of x. This independence on x combined
with the weak-* converge (3.12) yields the result.
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Some numerics. The oscillating asymptotic behaviour proved in Theorems 3.12 and 3.13 is very sensitive
to the coefficients g(x) = x and ℘= 2δ1/2. If g(2x) ̸= 2g(x) for some x > 0, then asynchronous exponential
growth takes place, see [188, Section 6.3.3]. Similarly, if δ1/2 is approximated by a density probability measure,
then the solutions converge to γ , as guaranteed by Theorem 3.9. In terms of numerics, it implies that capturing
the persistent oscillations at the discrete level requires an accurate numerical scheme. Otherwise the numerical
simulations will result in damped oscillations and convergence to a stationary profile. For the numerical analysis,
it is more convenient to consider the function wt(x) = xut(x)e−t , which is solution to the conservative equation

∂twt(x)+∂x(xwt(x))+B(x)wt(x) = 2B(2x)wt(2x).

This equation generates a positive semigroup of contractions in L1(0,∞), meaning that ∥wt∥L1 ≤ ∥w0∥L1 for all
t ≥ 0. For preserving the periodic solutions, the numerical scheme needs to satisfy the two following conditions:

(C1) The discretization of the transport equation ∂

∂ t wt +
∂

∂x (xwt) must be non-diffusive. If we use a standard
upwind scheme, we thus need a Courant number equal to 1, meaning that each point of the grid at time t
is transported to the next point of the grid at time t +∆t.

(C2) The discretization of the fragmentation term 2B(2x)wt(2x)−B(x)wt(x) must ensure that if x is a point of
the grid, then so is x/2, so that there is no approximation when applying the fragmentation operator.

Condition (C2) leads us to define the following geometric grid, for given n,N ∈ N∗:

∆x = 2
1
n −1, xk = (1+∆x)k−N , 0≤ k ≤ 2N.

Then, for any k ∈N, 0≤ k≤ 2N, 2xk = xk+n is in the grid. The computational domain is [x0,x2N ] =
[
2−

1
n ,2

N
n
]
.

Due to the properties of the eigenvector γ established in [91], we have that γ(x) quickly vanishes as x→ 0 and
x→ ∞, so that the truncation results in only a small and quantifiable error.

For ensuring the existence of γ , we typically assume that B(x) tends to infinity as x→ ∞ [91]. For such
fragmentation rates, satisfying Condition (C1) gives rise to a difficulty. If we use a classical explicit finite
difference discretization, then the Courant-Friedrichs-Lewy (CFL) stability condition requires the Courant
number to be smaller than 1/sup[x0,x2N ]

B, due to the term B(x)wt(x). A solution is then to treat this term
implicitly. But if we want to preserve the conservation law

∫
wt =

∫
w0 for all t ≥ 0 at the discrete level, which

is a very important property in a numerical and physical point of view, the term 2B(2x)wt(2x) also has to be
handled in an implicit way, making the constraint on the CFL reappear. We overcome this issue by considering
the semi-implicit scheme with splitting given by

w
ℓ+ 1

2
k −wℓ

k
∆t

+
xkwℓ

k− xk−1wℓ
k−1

xk− xk−1
+Bkw

ℓ+ 1
2

k = 0, 1≤ k ≤ 2N,

wℓ+1
k −w

ℓ+ 1
2

k
∆t

= 2Bk+nw
ℓ+ 1

2
k+n , 1≤ k ≤ 2N,

where Bk = B(xk). In the first half-step, the term Bkw
ℓ+ 1

2
k is implicit, and in the second half-step the term

2Bk+nw
ℓ+ 1

2
k+n is explicit, allowing the CFL condition to not depend on B. But since the two terms do not appear

in the same half-step, they are evaluated at the same discrete time ℓ+ 1
2 , so that the conservativeness property is

preserved. More precisely, if we choose the influx boundary condition

wℓ
0 =

x2N

x0
wℓ

2N +
1
x0

n

∑
k=1

(xk− xk−1)Bkw
ℓ+ 1

2
k
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which means that what comes in the interval [x0,x2N ] equals what goes out, then the numerical scheme is
conservative in the sense that for all ℓ≥ 0

2N

∑
k=1

(xk− xk−1)wℓ+1
k =

2N

∑
k=1

(xk− xk−1)wℓ
k. (3.13)

Choosing a Courant number equal to 1 in our framework means imposing

∆t =
∆x

1+∆x
.

Indeed under this condition the discretization of the transport term follows the characteristics and sends exactly
a point of the grid on the next point of the grid. The first step of the scheme can then be written as

w
ℓ+ 1

2
k =

1
1+∆tBk

∆t
∆x

wℓ
k−1

which leads to the condensed form of the full scheme

wℓ+1
k =

1
1+∆tBk

xk−1

xk
wℓ

k−1 +
2∆tBk+n

1+∆tBk+n

∆t
∆x

wℓ
k+n−1, 1≤ k ≤ 2N, (3.14)

and

wℓ
0 = (1+∆tB1)

[
x2N

x0
wℓ

2N +
n−1

∑
k=1

xk

x0

∆tBk+1

1+∆tBk+1
wℓ

k

]
. (3.15)

This scheme is clearly positive. Together with the discrete conservation law (3.13) we deduce that it is a
contraction for the discrete L1 norm ∥ · ∥1 defined for a vector u = (uk)1≤k≤2N by

∥u∥1 =
2N

∑
k=1

(xk− xk−1)|uk|=
∆x

1+∆x

2N

∑
k=1

xk|uk|.

This stability property allows us to prove in [P12] that the numerical scheme is convergent for this norm.

Theorem 3.14. Let u0 be such that the associated solution w(t,x) belongs to C2
b([0,+∞)× (0,+∞)). Let wℓ

k
be the numerical solution obtained by the iteration rule (3.14)–(3.15) and with the initial data w0

k = u0(xk).

Then for all r > 0 there exists a constant Cr > 0 such that for all T > 0

sup
tℓ≤T

∥∥eℓ
∥∥

1 ≤CrT
(
2

N
n −

logn
log2 +2−r N

n
)
,

where e is the “error” vector defined by eℓk = wℓ
k−wtℓ(xk).

This is a convergence result since if n and N/n tend to infinity in such a way that logn
log2 −

N
n →+∞, then the

error tends to zero. For instance if we take N =
⌊

ε

log2 n logn
⌋

with ε ∈ (0,1) we get a speed of convergence of
order nε−1 +n−rε . Choosing r = 1

ε
−1 we obtain an order nε−1 for any ε ∈ (0,1), meaning that the scheme is

“almost” of order 1 in n.

We illustrate in Figures 3.2 that this numerical scheme indeed capture the periodic oscillations. We choose
B(x) = x2 and two different initial distributions (Figure 3.1, Left and Right respectively), one a peak very close
to the Dirac delta at x = 2 and the other one very smooth.
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Fig. 3.1 Two different initial conditions. Left: peak in x = 2. Right: u0(x) = x2 exp(−x2/2).

Fig. 3.2 Time evolution of max
x>0

ut(x)e−t (Top) and size distribution ut(x)e−t at five different times (Bottom,

each time is in a different grey). Left: for the peak as initial condition. Right: for the smooth initial condition.

3.4 A nonlinear model

In this section we show how the result in Theorem 3.9 can be used to analyse a nonlinear growth-fragmentation
equation coming from the modelling of prion protein aggregation.

Prion diseases, also referred to as transmissible spongiform encephalopathies, are infectious and fatal
neurodegenerative diseases. They include bovine spongiform encephalopathy in cattle, scrapie in sheep, and
Creutzfeld-Jakob disease in human. It is now widely admitted that the agent responsible for these diseases,
known as prion, is a protein which has the ability to self-replicate by an autocatalytic process [122, 182]. The
infectious prion, called PrPSc for Prion Protein Scrapie, is a misfolded form of a normally shaped cellular prion
protein, the PrPc . The so-called nucleated polymerization was proposed by [139] as a conversion mechanism
of PrPc into PrPSc . According to this theory the PrPSc is in a polymeric form and the polymers can lenghten
by attaching PrPc monomers and transconforming them into PrPSc . To understand more qualitatively this
mechanism, a mathematical model consisting in a infinite number of coupled ordinary differential equations
(ODEs) was introduced in [157]. Then a PDE version of this model was proposed in [119], see also [89] for
a rigourous derivation. This equation, known as the prion equation, was studied in various works in the last
few years [50, 51, 94, 111, 147, 183, 192, 206]. A more general model including general incidence of the
total population of polymers on the polymerization process and polymer joining was proposed in [120], see
also [148, 149] for recent works on the well-posedness of this model. Here we propose to analyse the prion
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equation with general incidence, but without polymer joining, which reads
ṅ(t) = a−

(
b+

c⟨ut ,g⟩
1+η⟨ut ,xp⟩

)
n(t),

∂tut(x) =−
cn(t)

1+η⟨ut ,xp⟩
∂x
(
g(x)ut(x)

)
−d ut(x)−B(x)ut(x)+

∫ 1

0
B
(x

z

)
ut

(x
z

)
℘(dz)

z
.

(3.16)

The unknown n(t) represents the quantity of PrPc monomers at time t and ut(x) the quantity of PrPSc polymers
of size x. The PrPc is produced by the cells with the rate a> 0 and degraded with the rate b> 0. The PrPSc

polymers have a death rate d > 0 and they can break into smaller pieces with rate B(x), according to the
self-similar fragmentation kernel ℘. The “general incidence” corresponds to the term c

1+η⟨ut ,xp⟩ in front of the
polymerization rate g(x), with c> 0 and η , p≥ 0. The case η = 0 corresponds to the mass action law, i.e. the
original model without general incidence. The more interesting case η > 0 corresponds to the case when the
total population of polymers induces a saturation effect on the polymerization process. In [120] the parameter p
is equal to 1, meaning that the saturation is a function of the total number of polymerized proteins. To be more
general and to take into account the fact that the polymers are not necessarily linear fibrils but can have more
complex 3D structure [157], we consider in our study any parameter p≥ 0. In [120], the polymerization rate
g(x) is supposed to be independant of x. But some works [111, 191] indicate that the polymerization ability,
which relies on the infectivity of a polymer, may depend on its size. For mathematical convenience we assume
that this dependence is linear and take

g(x) = x.

In [120] they restrict their study to linear global fragmentation rates B(x) and to the homogeneous fragmentation
kernel ℘(dz) = 2dz. It allows them to reduce the PDE model to a system of three ODEs. Here we consider
more general global fragmentation rates

B(x) = Bxb

with b,B> 0, and general fragmentation kernels ℘ satisfying as in Theorem 3.9

℘(dz)≥ c01(z0−ε,z0)(z)dz

for some z0 ∈ (0,1) and ε ∈ (0,z0]. Our result is about the stability of the equilibria of Equation (3.16). We
easily check that (n̄ = a

b , ū≡ 0) is an equilibrium, usually called disease free equilibrium (DFE) since there is
no polymerized proteins in this situation. A natural question is to know whether there exist endemic equilibria
(EE), namely equilibria (n∞,u∞) with n∞ > 0, u∞ ≥ 0 and u∞ ̸≡ 0. The existence of such an EE, as well as the
stability of the DFE, depend on the basic reproduction number R0 of Equation (3.16) given by

R0 =
ac
bd
.

It is worth noticing that this parameter does not depend on the fragmentation coefficients. We prove in [P9] the
following theorem about the existence and stability of equilibria.

Theorem 3.15. If R0 ≤ 1, then the unique equilibrium in [0,∞)×L1
+(0,∞) is the DFE, and it is globally

asymptotically stable.

If R0 > 1, then there exists a unique EE which coexists with the DFE. The EE is locally asymptotically
stable in (0,∞)×L1(V ) for any function V (x) = xℓ+ xk with k∗ < ℓ < 1< k. The DFE is unstable in the sense
that

u0 ≥ 0,u0 ̸≡ 0 =⇒ liminf
t→+∞

∫
∞

0
xut(x)dx> 0.

In the case p≥ 1 and b≥ d, the EE is globally asymptotically stable in [0,∞)×
(
L1
+(V )\{0}

)
.
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Idea of the proof. The main idea consists in performing a self-similar transformation on the unknown ut , as
introduced in [112]. Define wt(x) through

wτ(t)(x) = m1/b(t)ut
(
m1/b(t)x

)
ed(t−τ(t)) (3.17)

where the functions τ and m satisfy

τ̇ = m and ṁ =
1
b

m
( c

1+η⟨ut ,xp⟩
n−dm

)
.

We choose τ(0) = 0 and m(0) = 1, so that w0 = u0. We can prove that τ̇(t) = m(t)> 0 and τ(t)≥ b
d log(1+ d

b t),
so that τ : [0,∞)→ [0,∞) is an increasing bijection and (3.17) indeed defines uniquely wt(x) for any t,x > 0.
Simple calculations enable us to check that wt is solution to the linear growth-fragmentation equation

∂

∂ t
wt(x)+d

∂

∂x

(
xwt(x)

)
+dwt(x)+B(x)wt(x) =

∫ 1

0
B
(x

z

)
wt

(x
z

)
℘(dz)

z

and Theorem 3.9 then ensures that∥∥wt −⟨u0,h⟩γ
∥∥

L1(V )
≤Ce−ωt∥∥u0−⟨u0,h⟩γ

∥∥
L1(V )

(3.18)

for all u0 ∈ L1(V ) and some C ≥ 1, ω > 0, γ ∈ L1
+(V ) with h(x) = x and ⟨γ,h⟩= 1. In particular, using (3.17),

this implies that ⟨ut ,xp⟩ ∼ ⟨u0,h⟩⟨γ,xp⟩mp/b(t)ed(τ(t)−t) as t → +∞, and defining q(t) = ⟨u0,h⟩ed(τ(t)−t) we
get an “asymptotically closed” system of ODEs:

ṅ ∼
t→∞

a−n
(
b+

cm1/bq
1+η⟨γ,xp⟩mp/bq

)
,

ṁ ∼
t→∞

1
b

m
(

cn
1+η⟨γ,xp⟩mp/bq

−dm
)
,

q̇ = dq(m−1).

Since ut(x) =
q(t)m−1/b(t)
⟨u0,h⟩

wτ(t)
(
m−1/b(t)x

)
, the steady state analysis of this system combined with (3.18) allows

us to derive the stability results about Equation (3.16).

3.5 Time-periodic coefficients

Structured population models with time periodic coefficients naturally appear in biology, and Harris’s method
is well suited to analyse their long-time behaviour. We present here two examples.

Circadian rhythms. The impact of circadian rhythms on the cell cycle is the basis of the idea of cancer
chronotherapy. It can be modelled by the classical renewal equation with time periodic coefficients, as in [66, 67].
When no death rate is considered, this equation reads

∂

∂ t
ut(a)+

∂

∂a
ut(a)+B(t,a)ut(a) = 0,

ut(0) = 2
∫

∞

0
B(t,a)ut(a)da,

(3.19)

where a≥ 0 stands for the age of the cells and B(t,a) is the time periodic division rate. This age-structured
model can be seen as a particular case of the growth-fragmentation equation with fragmentation kernel
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℘= 2δ0. In [P16] we propose generalized Doeblin’s conditions that ensure ergodicity of time-inhomogeneous
semigroups. In the periodic case, it allows us to give conditions on the division rate B that guarantee the periodic
asynchronous exponential growth of the solutions to Equation (3.19).

Theorem 3.16. Let B be a non-negative bounded function, periodic in the time variable with period T > 0,
which satisfies additionally one of the two following conditions

(i) there exist a0 ≥ 0 and B> 0 such that B(t,a)≥ B for all t ≥ 0 and a≥ a0,

(ii) B(t,a) = B(t) is not identically zero.

Then there exist a Floquet eigenvalue λF > 0, a function h ∈ L ∞([0,∞)), a T -periodic family (γt)t≥0 ⊂
M ([0,∞)) and explicit constants C ≥ 1, ω > 0 such that for all t ≥ 0 and all u0 ∈M ([0,∞)),∥∥e−λF tut −⟨u0,h⟩γt

∥∥
TV ≤C e−ωt ∥u0−⟨u0,h⟩γ0∥TV .

Moreover in case (ii) we have λF =
1
T

∫ T

0
B(s)ds and ω = 2λF .

Let us point out that the exponential rate of convergence 2λF in case (ii) is kind of optimal since when
B(t,a) = B is independent of t and a, it is known that the spectral gap is equal to 2B.

Protein Misfolding Cyclic Amplification. Protein Misfolding Cyclic Amplification (PMCA) is a
technique that aims at mimicking and accelerating in vitro the polymerization process of misfolded prions,
see Chapter 5 for more details. It allows detecting the presence of PrPSc in a sample by multiplying their
amount, and is used as a test for spongiform encephalopathies. It consists of two phases: first a small amount of
PrPSc is incubated with an excess of PrPc , so that the conversion takes place; then the growing polymers are
broken with ultrasound to increase their number. By repeating the cycle, the normal PrPc proteins are rapidly
converted into PrPSc . This cyclic alternation of incubation and sonication phases can be modelled via the
growth-fragmentation equation by considering time periodic fragmentation rates B(t,x):

∂

∂ t
ut(x)+

∂

∂x
ut(x)+B(t,x)ut(x) =

∫ 1

0
B
(

t,
x
z

)
ut

(x
z

)
℘(dz)

z
.

Similarly as for Equation (3.19), periodic asynchronous exponential growth can be derived. More precisely we
can apply Theorem 2.8 when the fragmentation rate B is a time periodic function with period T , continuous and
non-negative, such that limx→0 supt∈[0,T ] xB(t,x) = 0 and limx→∞ inft∈[0,T ] xB(t,x) =+∞, and the fragmentation
kernel ℘ satisfies (3.4).



Chapter 4

Selection-mutation

The results in this chapter are mainly ongoing works, in collaboration with Matthieu ALFARO, Bertrand CLOEZ,
and Otared KAVIAN.

4.1 Introduction

We are interested in the following mutation-selection equation

∂

∂ t
ut(x) =

∫
X

ut(y)k(y,dx)dy+a(x)ut(x)−⟨ut ,ψ⟩ut(x). (4.1)

This now standard model in evolutionary biology was first proposed by Kimura [141]. It can be derived from
stochastic individual based models [60, 61, 108, 205]. The trait space X is a subset of Rn and the fitness
function a is supposed to be continuous. When X is unbounded we assume that the fitness is confining, in the
sense that

lim
|x|→+∞

a(x) =−∞.

We will consider different mutation kernels k, but it will always be a mapping x 7→ k(x, ·) ∈M+(X) satisfying

sup
x∈X

∫
X

k(x,dy)<+∞.

Depending on modelling considerations, the interaction function ψ can take one of two forms.

Replicator-mutator. The so-called replicator-mutator model corresponds to the function

ψ(x) =
∫

X
k(x,dy)+a(x). (4.2)

It was derived by Kimura in his original paper [141] as a model for quantitative genetics, ut(x) representing the
relative frequency of allele x at time t in a large population. It is thus a conservative equation which prescribes
the time evolution of a probability distribution ut . It is easily seen that the equation is left unchanged by adding
a constant to a, so that we can always assume that ψ ≤ 0.

In [141] Kimura considered a quadratic fitness a(x) =−x2 and showed the existence of an explicit Gaussian
equilibrium for the diffusion approximation of this equation, namely when the mutation operator is replaced
by a Laplace term. The stability of this unique equilibrium was recently proved by Alfaro and Carles [6], see
also [7] for more general confining fitnesses. The original model with non-local mutations was extensively
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studied by Bürger under general assumptions on the coefficients [36, 37, 39, 40]. Let us also mention that the
non-confining fitness a(x) = x appears as a model of RNA virus evolution [197] and was investigated by some
authors in the last few years [5, 115, 116], see also [38] for a well-posedness result.

Competitive interactions. In evolutionary ecology, a natural process of selection is through the competition
for resources [82, 165, 166]. In our setting it corresponds to considering

ψ(x)≥ 0 (4.3)

in Equation (4.1). The nonlinear term thus has a logistic type effect, ensuring essentially that the mass of
the solutions is bounded in time. Contrary to the replicator-mutator model, it is not conservative and can
exhibit extinction. Models with such competition-driven selection were extensively studied in the recent years,
see [19, 29, 46–49, 68, 113, 153, 154] to cite only a few.

Equation (4.1) is strongly related to the linear equation

∂

∂ t
vt(x) =

∫
X

vt(y)k(y,dx)dy+a(x)vt(x). (4.4)

For the same inital distribution u0 = v0 we have

vt(x) = ut(x)e
∫ t

0⟨us,ψ⟩ds and ut(x) =
vt(x)

1+
∫ t

0⟨vs,ψ⟩ds
.

In the replicator-mutator case (4.2), for any probability measure u0 we have ⟨vt ,1⟩= 1+
∫ t

0⟨vs,ψ⟩ds. So we get

ut =
vt

⟨vt ,1⟩

and it emphasizes that ut is a probability measure for all time. Due to the link between the linear and nonlinear
equations, the eigenvalue problem associated to Equation (4.4) which consists in finding (λ ,γ,h) with γ ≥ 0,
h≥ 0 such that

λγ(dx) =
∫

X
k(y,dx)γ(dy)+a(x)γ(dx) and λh(x) =

∫
X

h(y)k(x,dy)+a(x)h(x) (4.5)

plays a crucial role in the analysis of Equation (4.1). Note that the spectral properties of Equation (4.4) is an
active research topic [22] since it also appears in ecology to model long-range dispersion, leading to nonlocal
reaction-diffusion equations, see e.g. [23] and the references therein.

4.2 Convolutive mutations

A classical mutation operator is provided by the convolution with a symmetric kernel. Assume that X =Rn and

k(x,dy) = J(x− y)dy

with J ∈ L1(Rn)∩L2(Rn) such that J(−x) = J(x), and J(x)> 0 for almost every x in a neighbourhood of zero.
Note that the symmetry of J implies that the two equations in (4.5) are the same. Let us also suppose that

a(x)≤ 0, a(0) = 0,
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and that there exist ε > 0 and a Borel set A such that∫
Aε

∫
Aε

J(x− y)
a(x)a(y)

dxdy>
∫

Aε

1
−a(x)

dx (4.6)

where Aε = {a < −ε}∩A. With Matthieu Alfaro and Otared Kavian, we proved the following result, yet
unpublished.

Theorem 4.1. Under the above assumptions, there exists a unique triplet (λ ,γ,h = γ) solution to the eigen-
problem (4.5) with ⟨γ,h⟩= 1. Moreover γ ∈ E for E =C0(Rn), E = Lp(Rn) with 1≤ p< ∞, or E = M (Rn),
and there exist constants C ≥ 1 and ω > 0 such that for any v0 ∈ E the solution vt of Equation (4.4) verifies∥∥e−λ tvt −⟨v0,γ⟩γ

∥∥
E ≤Ce−ωt ∥v0−⟨v0,γ⟩γ∥E .

Idea of the proof. The ground state γ is built as the minimizer of the energy functional

E (u) =−
∫
(J ∗u)(x)u(x)dx−

∫
a(x)u2(x)dx

over the set S=
{

u∈ L2(1−a) : ⟨u,u⟩= 1
}

, and λ is the corresponding minimal energy λ = infu∈S E (u)=E (γ).
Condition (4.6) ensures that λ < 0, which is a crucial property for building γ . Then the long time behaviour of
vt is obtained by using the spectral approach of Theorem 2.7.

This result allows us to analyse the long-time behaviour of the nonlinear equation (4.1).

Corollary 4.2 (replicator-mutator). Normalizing γ by ⟨γ,1⟩= 1, there exists a constant ω > 0 such that, for
any u0 ∈P(Rn)∩E there is a constant C(u0)> 0 for which the solution ut to Equation (4.1)-(4.2) starting
from u0 satisfies

∥ut − γ∥E ≤C(u0)e−ωt .

Corollary 4.3 (competition-mutation). Assume that ψ ∈ E ′ if E =C0(Rn) or E = Lp(Rn) with 1≤ p<∞, and
that ψ ∈L ∞(Rn) if E = M (Rn). Normalize γ by ⟨γ,ψ⟩= 1 and consider u0 ∈ E+ \{0}. Then the solution ut

to Equation (4.1)-(4.3) with initial distribution u0 verifies as t→+∞

▶ ut → λγ exponentially fast if λ > 0,

▶ ut → 0 with speed in O( 1
t ) if λ = 0,

▶ ut → 0 exponentially fast if λ < 0.

Condition (4.6) is milder than

inf
y∈A

∫
A

J(x− y)
−a(x)

dx> 1 (4.7)

which appears in [150] and can also be proved to be sufficient from [37], see [40, p.250, Note added in proof].
Deriving sharp conditions for the existence of a ground state function is an important issue. Indeed we know
from [37] that such a principal eigenfunction does not always exist, see also [72]. In this case the principal
eigenvalue may be associated to a singular eigenmeasure [40], see also [73]. This indeed occurs when

supess
x∈X

∫
X

J(x− y)
−a(y)

dy< 1

as it is proved in [40]. Filling the gap between this condition and (4.6) is still an open question. However in the
simpler case of house-of-cards mutations we have a complete picture of the eigenvalue problem.



36 Selection-mutation

4.3 House-of-cards mutations

In [142], Kingman analysed a discrete-time version of Equation (4.1)-(4.2) in the case X = [0,1], a(x) = x−1,
and a mutation kernel of the form

k(x,dy) = q(y)dy.

Such a kernel that does not depend on x is now usually referred to as house-of-cards mutations, and the
corresponding eigenvalue problem can be fully characterized [40]. For the sake of simplicity, we assume here
that the fitness a admits a unique maximum. We are interested in the replicator-mutator equation (4.1)-(4.2), so
we can consider without loss of generality that

0 ∈ X, a(0) = 0, and x ̸= 0 =⇒ a(x)< 0.

We also assume that
∫

X
q(x)

1−a(x)dx<∞. The eigenvalue problem (4.5) then depends on the value of
∫ q
−a compared

to 1. More precisely

▶ if
∫

X

q(x)
−a(x)

dx≥ 1 then λ ≥ 0 is the unique solution to
∫

X

q(x)
λ −a(x)

dx = 1 and γ(dx) =
q(x)

λ −a(x)
dx,

▶ if ρ =
∫

X

q(x)
−a(x)

dx< 1 then λ = 0 and γ(dx) = (1−ρ)δ0 +
q(x)
−a(x)

dx.

The case ρ < 1 is of particular interest since it indicates a possible concentration phenomenon, which is
supported by numerical evidences [29]. However it seems that this striking behaviour was never proved
mathematically. With Bertrand Cloez, we proved the convergence of the solutions of the replicator-mutator
equation (4.1)-(4.2) toward the singular measure γ . This result is still unpublished.

Theorem 4.4. If ρ < 1, then for any u0 ∈P(X) the solution ut to the replicator-mutator equation (4.1)-(4.2)
verifies

1
t

∫ t

0
us ds−−−→

t→+∞
(1−ρ)δ0 +

q
−a

in the weak-* topology.

Concentration phenomena are very relevant in evolutionary biology. It was proved to occur for competitive
interactions but only in the pure selection case [2–4, 78, 138, 185] or in the vanishing mutation regime [19,
152, 178, 184]. For the replicator-mutator model, a result similar to ours is proved in [115, 116] for the specific
case a(x) = x with X = R and purely deleterious convolutive mutations, by means of an explicit formula of the
so-called cumulant generating function. To our knowledge Theorem 4.4 is the first concentration result for a
generalized version of Kingman’s house-of-cards model.

We point out that this concentration is due to a nonlinear effect. When ρ < 1 the solutions vt to the linear
equation (4.4) tend to zero in norm as t→+∞ for any v0 ∈ L1(X). Our result ensures the convergence to γ of
the Cesàro mean of the renormalized function ut =

vt
⟨vt ,1⟩ .

Remark 4.5 (Concentration in a pure mutation model). Concentration phenomena can actually occur for
linear jump models. In the work with Bertrand Cloez, we also considered the conservative scattering equation

∂

∂ t
vt(x) = ⟨vt ,−a⟩q(x)+a(x)vt(x),

which can be seen as a pure mutation model. We proved that

if
∫

X

q(x)
−a(x)

dx =+∞ then vt
∗
⇀ δ0 as t→+∞.

Note that this contrasts with the smallness condition ρ < 1 of the replicator-mutator equation.
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4.4 Varying environment

Adaptation to varying environment is an important issue in population dynamics, particularly in the context
of climate change. To model this question we consider the one-dimensional trait space X = R, convolutive
mutations k(x,dy) = J(x− y)dy, an interaction function ψ given either by (4.2) or by the homogeneous
competitive case ψ = 1, and we make depend the fitness function on time in two ways.

Shifting environment. The simplest way to model climate change is to consider a translation with
constant speed c ∈ R of the fitness function which becomes a(x− ct). Due to the form of the coefficients we
chose, we can perform a change of variable x← x− ct to follow the moving environment. We get the equation

∂

∂ t
ut(x) = c

∂

∂x
ut(x)+

∫
R

ut(y)J(x− y)dy+a(x)ut(x)−⟨ut ,ψ⟩ut(x) (4.8)

which is as Equation (4.1) with an additional drift term. As for Equation (4.1), the analysis of Equation (4.8)
strongly relies on the linear equation

∂

∂ t
vt(x) = c

∂

∂x
vt(x)+

∫
R

vt(y)J(x− y)dy+a(x)vt(x). (4.9)

The spectral problem associated to this linear equation was investigated recently in [74], motivated by the
question of the survival of a population under a climate shift in non-local reaction-diffusion models. A notable
difference with the case c = 0 is that when c ̸= 0 the solution γ to the eigenvalue problem cannot be a singular
measure, and the existence of a principal eigenfunction holds true under fairly general assumptions on a and J.
In [P20] we apply Proposition 2.5 of Chapter 2 to prove the following result.

Theorem 4.6. Assume that J is such that J(z)≥ κ01(−ε,+ε)(z) for some κ0,ε > 0. Then there exist constants
C ≥ 1, ω > 0, and a unique eigentriplet (λ ,γ,h) ∈ R×L1(R)×C1

b(R) with ⟨γ,h⟩= ∥h∥
∞
= 1 such that for

any initial condition v0 ∈M (R) the corresponding solution vt of Equation (4.9) verifies∥∥e−λ tvt −⟨v0,h⟩γ
∥∥

M (R) ≤Ce−ωt ∥v0−⟨v0,h⟩γ∥M (R) .

The explicit relation between ut and vt presented in the introduction section still holds with the drift term,
namely for Equations (4.8) and (4.9). We thus deduce from Theorem 4.6 that for the replicator-mutator model,
the population follows the moving environment by aligning to the profile γ(x− ct). For the competitive case
with ψ = 1, we deduce similarly as in Corollary 4.3 that the survival of the population relies on the sign of the
eigenvalue λ . Since a(x) tends to −∞ when x goes to −∞, we can show that λ is negative for c positive large
enough. If λ > 0 when c = 0, it is thus expected that there exists a threshold for c below which the population
survives and above which it does not manage to adapt and gets extinct.

Oscillating and shifting environment. In order to take into account some periodicity induced for
instance by seasonal fluctuations, we can consider a fitness function a(t,x− ct) with periodicity in the first
variable that encodes the oscillatory behaviour of the environment [54, 104, 105, 151]. The survival of the
population subjected to this fitness landscape for the competitive selection-mutation model with ψ = 1 and
diffusive mutations is investigated in [54, 104] for the case c = 0 and in [105] for the case c ̸= 0. Applying
Theorem 2.8 it would be possible to extend some of these results to non-local mutations.
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4.5 Some perspectives

The results presented in this chapter are the fruit of recently initiated works, and their extensions are natural
perspective for future investigations:

▶ A still open problem is to find a condition on the coefficients that characterizes the existence of a ground
state function, similarly as for the house-of-cards case but for general mutation kernels. There are two
natural first questions in this direction. We have proved in Theorem 4.1 that (4.6) is a sufficient condition
for convolutive kernels. Is it also a necessary condition? In [40] and [150], condition (4.7) is proved to be
sufficient for general mutation kernels. Can we also extend the milder condition (4.6) to non-convolutive
cases?

▶ When the ground state is a singular measure, the question of its attractiveness is a challenging open
problem in general. In Theorem 4.4 we have treated the case of house-of-cards mutations. In [115, 116] a
very specific fitness function is considered and concentration is obtained for convolutive mutations. The
first step toward the general case would be adressing the case of convolutive mutations with more general
fitness functions. Another interesting improvement of Theorem 4.4 would be to remove the Cesàro mean
in the convergence result.

▶ As mentioned in the previous section, an interesting extension of the method we used in [P20] would be to
consider oscillating environments.



Chapter 5

An optimal control problem

The results presented in this chapter are issued from works in collaboration with Vincent CALVEZ and Stéphane
GAUBERT [P3, P7] and others together with Monique CHYBA, Jean-Michel CORON and Peipei SHANG which
lead to the publications [P6, P8, P10].

5.1 Modelling and statement of the problem

The optimal control problem we consider in this chapter is motivated by the modelling of an amplification
technique which aims at in vitro multiplying misfolded proteins involved in Transmissible Spongiform En-
cephalopathies (TSEs). Note that in Chapter 3 an in vivo model for these diseases is investigated in Section 3.4
and the amplification method is evoked in Section 3.5.

Prions and PMCA. Unlike the other infectious diseases which are caused by viruses, bacteria, parasites
or fungi, the pathogenic agent of TSEs has no nucleic acid (DNA or RNA), which makes it very resistant.
According to the widely admitted “protein-only hypothesis” proposed by the mathematician Griffith [122]
and then supported by the experimental works of Prusiner’s group [182], the pathogenic agent is a misfolded
protein. This proteinaceous infectious particle was named prion by Prusiner.

Based on the protein-only hypothesis, Protein Misfolding Cyclic Amplification (PMCA) was developed
by Soto and colleagues [189] to mimic in vitro, in an accelerated way, the prion conversion process that takes
place in vivo. The success of this technique is a strong support to the prion hypothesis. The method relies on
the nucleated polymerization model proposed by Lansbury [139] as conversion mechanism of normal proteins
into misfolded ones, see Figure 5.1. PMCA starts with a few polymers of abnormally-shaped proteins added to
an excess of normal monomeric prion proteins, and alternates incubation and sonication phases. During the
incubation phases, the sample is left at rest in order to allow the conversion of normal proteins into misfolded
ones by templating process. The sonication aims at periodically breaking the growing chains into smaller
polymers with ultrasounds in order to rapidly increase the number of templating interfaces.

PMCA is extensively used for fundamental molecular-level investigations on prions. Another important
application of PMCA is the diagnosis of TSEs, which is an important public health issue. Even for advanced
states of the disease, the pathogenic prion agent is mainly concentrated in brain tissues and central nervous
system, and the other body tissues or fluids contain very few. This little amount is both enough for possibly
transmitting the disease and too small for directly detecting its presence in blood or urine samples for instance.
By amplifying the minute amount of pathogenic prion agent present in a sample, PMCA allows making them
detectable. In France, the national medicines safety agency actually requires using PMCA for verifying that
some medicines derived from human tissues are innocuous.
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Fig. 5.1 The nucleated polymerization model is based on the templating phenomenon, where the amyloid
assembly which constitutes the template induces a structural change in the monomeric substrate. The templating
process leads to an increase in the size of amyloid fibrils but keeps the number of templating interfaces constant.
This phase corresponds to the elongation phase. The fragmentation phase leads to the generation of de novo
templating interfaces.

Mathematical model and Mayer problem. Since the contributions of Griffith, prion’s history is
strongly linked to mathematical modelling. However PMCA seems not having been investigated through
equations. We propose here a mathematical model which leads to an interesting optimal control problem.

The growth-fragmentation equation investigated in Chapter 3 is widely used as a basis for models of
nucleated polymerization, see Section 3.4. Here we start from a discrete approximation of this equation, in the
spirit of Masel’s model [157], and introduce a control parameter representing the sonication intensity. More
precisely we consider the following controlled system

dxi

dt
+ r(α(t))(gixi−gi−1xi−1) = α(t)

( n

∑
j=i+1

B jκi jx j−Bixi

)
. (5.1)

In this model xi(t) is the quantity of polymers of size i ∈ {1, · · · ,n} at time t ≥ 0. The coefficients gi and
Bi represent respectively the elongation and fragmentation rates of polymers of size i, and we assume that
B1 = gn = 0 while Bi and gi−1 are strictly positive for i ∈ {2, · · · ,n}. The coefficient κi j ≥ 0 provides the mean
number of i-size fragments resulting from the fragmentation of a polymer of size j > i, and we thus impose the
mass conservation condition

j−1

∑
i=1

iκi j = j

for all j > 1. The fragmentation is modulated by a multiplicative factor α(t) ∈ [αmin,αmax] which stands for
the sonication intensity, αmin = 1 corresponding to the absence of sonication (i.e. the incubation phases) and
αmax > 1 representing the maximal power of the sonicator. We also take into account the possible influence
of the sonication on the elongation process through the positive term r(α(t)) where the function r is typically
decreasing for reflecting a negative effect of the ultrasounds on the conversion and attachment of monomers.
Since the monomers are supposed to be in excess in PMCA, we do not consider their amount as being a limiting
quantity for the elongation and it thus does not appear in the model.

Optimizing the efficiency of PMCA means maximizing the quantity of polymerized proteins at a given time
T > 0. In our model, it corresponds to the quantity

n

∑
i=1

ixi(T ).

Finding the control α : [0,T ]→ [αmin,αmax] which maximizes this terminal gain is known as Mayer problem
in optimal control theory.
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In the next section, we investigate this Mayer problem and in particular the properties of singular arcs by
using tools of geometric control. In Section 5.3 we consider the infinite horizon limit problem when T →+∞

and prove an ergodicity result. Finally, in the last section, we give some insights about the possible extension of
the ergodicity property to the continuous version of Equation (5.1).

5.2 Finite horizon

System (5.1) can be written as bi-input control system

ẋ(t) =
(
α(t)F +β (t)G

)
x(t)

where β (t) = r(α(t)), and F,G represent respectively the fragmentation and growth matrices:

F =


0
−B2 (κi jB j)i< j

. . .

0
−Bn

 , G =



−g1

g1 −g2 0
. . . . . .

0 gn−2 −gn−1

gn−1 0


.

We assume that r : [αmin,αmax]→ (0,∞) is a decreasing convex function. The pair (α(t),β (t)) belongs by
definition to the graph of the function r, which is not convex except in the particular case of an affine function r.
This lack of convexity prevents guaranteeing the existence of an optimal control. It is then standard to relax the
problem by assuming that (α(t),β (t)) belongs to the convex hull of the graph of r. For this relaxed control
problem the optimal control exists, and we prove in [P6] that it belongs to the line that links (αmin,r(αmin)) to
(αmax,r(αmax)) in the αβ -plane. Therefore, there is no loss of generality to consider r(α) = θα +1 for some
θ ≤ 0. We obtain an affine control system and, denoting Fθ = F +θG, the Mayer problem reads

ẋ(t) = Gx(t)+α(t)Fθ x(t), (5.2)

max
α:[0,T ]→[αmin,αmax]

ψx(T ), (5.3)

where x(0)> 0 is given and ψ = (1 · · ·n).

Maximum principle. The Pontryagin Maximum Principle [181] gives necessary conditions for a solution
of a control problem to be optimal. Let α∗(·) be an optimal control for Mayer problem (5.2)-(5.3) and x∗(·) be
the corresponding trajectory, and let p∗ : [0,T ]→ Rn be the row vector solution to the costate equation

ṗ∗(t) =−p∗(t)
(
G+α

∗(t)Fθ

)
(5.4)

with the transversality terminal condition
p∗(T ) = ψ. (5.5)

Introducing the Hamiltonian function

H(x, p,α) = p(G+αFθ )x,

Pontryagin’s maximum principle states that (x∗, p∗,α∗) must maximize the Hamiltonian H in the sense that

H(x∗(t), p∗(t),α∗(t)) = max
α∈[αmin,αmax]

H(x∗(t), p∗(t),α) (5.6)
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holds for almost every time t ∈ [0,T ]. In addition, the mapping t 7→ H(x∗(t), p∗(t),α∗(t)) is constant. A triplet
(x(·), p(·),α(·)) solution of (5.2), (5.4) and (5.6) is called an extremal of the problem.

Let us introduce the function

Φ(t) =
∂H
∂α

(x∗(t), p∗(t),α∗(t)) = p∗(t)Fθ x∗(t).

The maximization condition (5.6) implies the following. If α∗(·) is an optimal control, we have

α
∗(t)


= αmin if Φ(t)< 0,

= αmax if Φ(t)> 0,

∈ [αmin,αmax] if Φ(t) = 0.

The function Φ is called the switching function and an isolated zero t of the switching function is called a
switching time. If Φ(t) = 0 on a nonempty time interval, a further analysis must be performed to deduce the
value of α∗(t), see below. A bang extremal defined on (t1, t2), t2 > t1, corresponds to a constant maximum
or minimum control, i.e. the sign of the switching function is constant over the entire interval (either strictly
positive or strictly negative). An extremal is said to be singular on (t1, t2), t2 > t1, if Φ identically zero on that
interval. The maximum principle implies that an optimal solution x∗(·) is the projection of a concatenation of
bang and singular extremals. For instance, since ψF = 0, ψG≥ 0, ψG ̸≡ 0, and x∗(t)> 0 for all time t ≥ 0,
the tranversality condition (5.5) implies that the optimal strategy must finish by a bang arc αmin when θ < 0. In
the case of PMCA, the alternation of incubation and sonication phases corresponds to a bang-bang strategy.
However it is well known that singular arcs play a major role in optimal synthesis [28]. We will show that
singular controls can indeed provide a better performance.

To compute singular controls we proceed as follows. Along a singular arc, we have Φ(t) = 0 on a nonzero
time interval (t1, t2), namely

p(t)Fθ x(t) = Φ(t) = 0. (5.7)

Differentiating this equation we obtain

p(t)[G,Fθ ]x(t) = Φ̇(t) = 0, (5.8)

where [G,F ] = GF−FG. Differentiating (5.8) with respect to time, we get

p(t)[[G,Fθ ],G]x(t)+α(t)p(t)[[G,Fθ ],Fθ ]x(t) = Φ̈(t) = 0 (5.9)

almost everywhere on (t1, t2). Outside the surface {(x, p); p[[G,Fθ ],Fθ ]x = 0}, the singular control is said to
be of order one and is given by

αsing(t) =−
p(t)[[G,Fθ ],G]x(t)
p(t)[[G,Fθ ],Fθ ]x(t)

. (5.10)

The generalized Legendre-Clebsch condition is a second order necessary condition for optimality in the Mayer
problem [145]. In its general form it reads ∂

∂α

d2

dt2
∂H
∂α
≤ 0 and it is satisfied for our problem if

p(t)[[G,Fθ ],Fθ ]x(t)≤ 0 (5.11)

along the singular arc.

Perron extremals. A particular feature of system (5.2) is that it is linear in x. Moreover, for any
α ∈ (0, 1

−θ
), the matrix G+αFθ is irreducible and has non-negative off-diagonal entries. Such matrices are

sometimes referred to as irreducible Metzler matrices, and the Perron-Frobenius theorem ensures that they
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admit a unique eigenvalue associated to positive eigenvectors. In addition this Perron eigenvalue is real, simple,
and dominant. For our problem, it implies that for any constant control α ∈ [αmin,αmax] there exist a particular
solution to (5.2) and (5.4) of the form

xα(t) = eλ t
γ and pα(t) = e−λ th

where λ = λ (α) is the Perron eigenvalue of the matrix G+α(F +θG) and the column and row vectors γ > 0
and h> 0 are right and left corresponding eigenvectors:

(G+αFθ )γ = λγ and h(G+αFθ ) = λh.

Normalizing h or γ so that hγ = 1, we have λ (α) = h(G+αFθ )γ which gives by differentiation

λ
′(α) = hFθ γ.

Since Φ(t) = p(t)Fθ x(t), the above expression makes appear the correlation between the critical points of the
function λ (·) and the extremals of the Mayer problem. More precisely, a Perron solution (xα(·), pα(·),α) is an
extremal if and only if the constant control α maximizes the eigenvalue λ over the interval [αmin,αmax], i.e.
α = ᾱ with

λ (ᾱ) = max
αmin≤α≤αmax

λ (α).

If ᾱ = αmin or ᾱ = αmax we obtain a bang extremal, and if αmin < ᾱ < αmax a singular extremal. The singular
case is both more interesting mathematically and more relevant biologically since it indicates that a trade-off
has to be found between elongation and fragmentation. The following result provides sufficient conditions for
the existence of a singular Perron extremal.

Proposition 5.1. If θ < 0, then λ (α)> 0 for all α ∈ (0, 1
−θ

) and

lim
α→0

λ (α) = lim
α→ 1

−θ

λ (α) = 0.

If θ = 0 and g2 > 2g1, then λ (α)> 0 for all α > 0 and

lim
α→0

λ (α) = lim
α→+∞

λ (α) = 0.

In the sequel we focus on the case ᾱ ∈ (αmin,αmax) and we denote by (x̄(·), p̄(·), ᾱ) the corresponding
Perron singular extremal. By construction, this extremal maximizes the Lyapunov exponent λ (α) among all
the constant controls and it can thus be expected that it is involved in the optimal control strategy α∗(·). To test
further this intuition, we compare λ (ᾱ) to the Lyapunov exponents provided by periodic controls. For α(·) a
τ-periodic function, there exist a periodic eigenfunction γα(·) associated to a Floquet eigenvalue λF(α) such
that

γ̇α(t)+λF(α)γα(t) = (G+α(t)Fθ )γα(t).

We consider small periodic perturbations of the best constant control, α(t) = ᾱ + εζ (t), where ζ is τ-periodic.
We assume that the matrix G+ ᾱFθ is diagonalizable and we denote by (γ1, · · · ,γn) and (h1, · · · ,hn) the right
and left eigenvector bases associated to the eigenvalues (λ1, · · · ,λn) with λ1 = λ , γ1 = γ , h1 = h, and hiγi = 1.
We can compute the two first directional derivatives of λF in terms of these eigenelements, which allows us to
derive a second order necessary condition for ᾱ to be a local maximum of λF over the set of periodic controls.
We use the notation

⟨α⟩= 1
τ

∫
τ

0
α(t)dt.
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Proposition 5.2. We have
dλF(ᾱ + εζ )

dε

∣∣∣∣
ε=0

= ⟨ζ ⟩λ ′(ᾱ) = 0 (5.12)

and
d2λF(ᾱ + εζ )

dε2

∣∣∣∣
ε=0

= 2
n

∑
i=2
⟨|ζi|2⟩

(h1Fθ γi)(hiFθ γ1)

λ1−λi
, (5.13)

where ζi(t) is the unique τ-periodic solution of the relaxation equation
ζ̇i(t)

λ1−λi
+ζi(t) = ζ (t).

Equation (5.12) ensures that the constant control ᾱ is also a critical point in the class of periodic controls.
Taking γ ≡ 1 in (5.13), we get the second derivative of the Perron eigenvalue at ᾱ ,

λ
′′(ᾱ) = 2

n

∑
i=2

(h1Fθ γi)(hiFθ γ1)

λ1−λi
, (5.14)

which is nonpositive since ᾱ is a maximum point. The question then is wether (5.13) can be positive while (5.14)
is nonpositive. This is clearly not possible in dimension n = 2 because the sum in (5.13) is reduced to a single
term which is nonpositive as (5.14).

By considering periodic perturbations of the form ζ (t) = cos(ωt) we get the formula

d2λF(ᾱ + εζ )

dε2

∣∣∣∣
ε=0

= 2
n

∑
i=2

λ1−λi

|λ1−λi|2 +ω2 (h1Fθ γi)(hiFθ γ1).

An asymptotic expansion as ω →+∞ yields the following corollary.

Corollary 5.3. If G+ ᾱFθ is diagonalizable, then

n

∑
i=2

(λ1−λi)(h1Fθ γi)(hiFθ γ1)≤ 0 (5.15)

is a necessary condition for ᾱ to be a local maximum of λF over the set of periodic controls.

Condition (5.15) is actually the generalized Legendre-Clebsch condition (5.11) for the Perron singular
extremal (x̄(·), p̄(·), ᾱ). Indeed, we have the identities

p̄(t)[[G,Fθ ],Fθ ]x̄(t) = 2hFθ (λ −G− ᾱFθ )Fθ γ = 2
n

∑
i=2

(λ1−λi)(h1Fθ γi)(hiFθ γ1).

The 2D case. We consider here the case n = 2. We thus have g2 = 0 and, in view of Proposition 5.1,
we suppose that θ < 0 in order to guarantee the existence of a Perron singular extremal. As noticed above,
for n = 2, such an extremal necessarily satisfies the generalized Legendre-Clebsch condition. Theorem 5.4
below, obtained in [P6] and illustated by Figure 5.2, actually shows that the Perron singular extremal essentially
provides the solution to the Mayer problem. The optimal control α∗(·) consists mainly in the singular control ᾱ ,
except in the regions close to the endpoints of [0,T ]. For small time, the optimal control depends on the initial
data x(0) and it aims at reaching as fast as possible the singular arc. Then the control remains constant equal
to ᾱ as long as possible. At the end of the experiment, the control is αmin due to the transversality condition
induced by the objective function. Such a strategy is said to exhibit the so-called turnpike property [196, 212].
The “turnpike” is the singular trajectory x̄(·).
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Fig. 5.2 Top left: the optimal control α∗(t) for T = 24, n = 2, θ =−0.2, g1 = 0.1, B2 = 0.05 and the initial
data x1(0) = 0, x2(0) = 1. Top right: the corresponding trajectories x1(t) and x2(t). Bottom left: the switching
function Φ(t). Bottom right: the evolution of the objective ψx(t) = x1(t)+2x2(t).

Theorem 5.4. Let x(0) be a nonnegative and nonzero vector. There exist a time T0 = T0(x(0)), a time Tψ > 0
independent of x(0), and a time Tc > T0 +Tψ such that for any T > Tc, the optimal control is given by

α
∗(t) =


αmin if x1(0)

x1(0)+x2(0)
> γ1

γ1+γ2

αmax if x1(0)
x1(0)+x2(0)

< γ1
γ1+γ2

}
for t ∈ [0,T0],

ᾱ for t ∈ (T0,T −Tψ ],

αmin for t ∈ (T −Tψ ,T ].

(5.16)

Moreover, on the time interval [T0,T −Tψ ], the optimal trajectory (x∗(·), p∗(·),α∗(·)) is aligned to the Perron
singular extremal (x̄(·), p̄(·), ᾱ).

Main steps of the proof. In [P6], this result is split into three theorems:

▶ First, by using (5.7), (5.8), (5.9) and (5.10), we prove that the Perron extremal (x̄(·), p̄(·), ᾱ) is the unique
singular extremal of our problem, up to normalization;

▶ Then we prove that for a suitable definition of the times T0 and Tψ , the control defined in (5.16) satisfies
the maximization condition (5.6);

▶ Finally, through a careful analysis of the switching function Φ, we prove that for T large enough the
optimal control is necessarily given by (5.16).
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The 3D case. We have seen that in the two-dimensional case, the only singular control is ᾱ and that it
constitutes the best strategy. In dimension n≥ 3, the singular flow is more complex. In dimension three, the
costate vector p can be eliminated from (5.10) and the singular control is determined as a feedback from the
state only. Introducing the determinants

D1(x) = det
(
Fθ x, [G,Fθ ]x, [[G,Fθ ],G]x

)
, D2(x) = det

(
Fθ x, [G,Fθ ]x, [[G,Fθ ],Fθ ]x

)
,

the relations (5.7)-(5.8)-(5.9) ensure that singular trajectories of order one are solutions of ẋ(t) = Xs(x(t))
where Xs is given by

Xs(x) = Gx− D1(x)
D2(x)

Fθ x (5.17)

with the feedback control αsing =−D1(x)
D2(x)

. In Figure 5.3a, we illustrate numerically that in dimension three the
optimal control is again essentially singular but that contrary to the two-dimensional case the singular arc is not
provided by ᾱ . However, backward in time, αsing seems to converge to ᾱ . This suggests that, similarly as for
the two-dimensional case, the optimal gain ψx∗(T ) behaves like eλ (ᾱ)T when T becomes large.
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(a) Growth-fragmentation with αmin = 1, αmax = 8,
g1 = 0.01, g2 = 10, B2 = 0.1, B3 = 0.9, κ13 = κ23 = 1,
θ = 0, and x(0) = (3 4 4)⊤. Blue crosses represent the nu-
merical optimal control α∗(t) obtained through a relaxation
method; the green dashed line is the Perron singular control
ᾱ; the red curve is the singular control αsing(t) computed
by solving (5.17) numerically, starting from the optimal
trajectory x∗ at time t = 1.5.
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(b) The bang-bang numerical optimal control α∗(t) for
matrices F and G (not of the fragmentation and growth
type) that fail to meet the generalized Legendre-Clebsch
condition (5.11).

Fig. 5.3 Two three-dimensional optimal control examples.

In the example of Figure 5.3a, the generalized Legendre-Clebsch condition (5.11) is verified and the optimal
control is bang-singular-bang. We did not find any growth and fragmentation matrices F and G that defeat the
generalized Legendre-Clebsch condition. However, by looking in another subclass of Metzler matrix pairs, we
managed to find three-dimensional examples of matrices F and G that do not satisfy (5.11), see [P7]. In such
cases the Perron singular control ᾱ does not maximize the Lyapunov exponent among periodic controls, and
the optimal control seems to follow a bang-bang strategy, see Figure 5.3b for a numerical evidence.

Hamilton-Jacobi-Bellman equation. Another approach of optimal control problems is to focus on
the optimal gain rather than on the optimal trajectories. Let us define the cone K = {x ∈ Rn, x≥ 0}, which is
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invariant under the dynamics (5.2), and the value function v : [0,+∞)×K→ [0,+∞) by

v(T,x) = sup
α:[0,T ]→[αmin,αmax]

{
ψx(T ) : x(0) = x, ẋ(t) = Gx(t)+α(t)Fθ x(t)

}
.

This function is a viscosity solution of the Hamilton-Jacobi-Bellman equation

−∂tv(t,x)+ max
a∈[αmin,αmax]

⟨(G+aFθ )x,Dxv(t,x)⟩= 0

with initial condition v(0,x) = ψx. The so-called dynamic programming method actually allows designing the
optimal control α∗ as a feedback control once this Hamilton-Jacobi-Bellman equation is solved [96, 106].

Since our problem is linear in x, the value function v is homogeneous of degree one in space and accordingly
there exists a function w defined on the simplex S = {x ∈ K : ⟨x,1⟩= 1} such that for all x ∈ K and t ≥ 0

v(t,x) = ⟨x,1⟩w
(

t,
x
⟨x,1⟩

)
.

This new function is defined on a compact and lower dimensional space. It satisfies the Hamilton-Jacobi
equation

−∂tw(t,y)+ max
a∈[αmin,αmax]

(
L(y,a)w(t,y)+ ⟨b(y,a),Dyw(t,y)⟩

)
= 0

where the Lagrangian L and the vector field b are given by

L(y,a) = ⟨(G+aFθ )y,1⟩, b(y,a) = (G+aFθ )y−L(y,a)y.

Note that each vector field b(·,a) is tangent to the simplex S. It gives indeed the projected dynamics on the
simplex: if x(·) is solution to (5.2) then y(·) = x(·)

⟨x(·),1⟩ is solution to the non-linear ODE

ẏ(t) = b(y(t),α(t)).

We can derive a maximization problem on the simplex by performing the logarithmic transformation

u(t,y) = logw(t,y).

The function u satisfies the Hamilton-Jacobi-Bellman equation

−∂tu(t,y)+ max
a∈[αmin,αmax]

(
L(y,a)+ ⟨b(y,a),Dyu(t,y)⟩

)
= 0

and is solution to the maximization problem with running reward

u(t,y) = sup
α:[0,t]→[αmin,αmax]

{∫ t

0
L(y(s),α(s))ds+ log(ψy(t)) : y(0) = y, ẏ(s) = b(y(s),α(s))

}
.

5.3 Infinite horizon

In this section, we investigate the long time behaviour of the value function of Mayer problems slightly
more general than (5.2)-(5.3). Let A be a compact set of irreducible Metzler matrices. For t > 0, x ∈ K and
A : [0, t]→ A, we consider the following linear system controlled by A:{

ẋA(s) = A(s)xA(s), 0< s< t,

xA(0) = x.
(5.18)



48 An optimal control problem

The Lyapunov exponent λ (A) is defined as the maximal possible growth rate realized by the trajectories
of (5.18) when x ∈ K0 = K \{0},

lim
t→+∞

1
t

(
sup

A:[0,t]→A

logv0(xA(t))
)
= λ (A), (5.19)

where v0 : K0→ (0,∞) is any continuous function homogeneous of degree one. The fact that the limit (5.19)
exists and does not depend on the initial condition x is a corollary of the following theorem, obtained in [P7].

Theorem 5.5. For any compact set of irreducible Metzler matrices A, there exist a real λ (A) and a function
v̄ : K→ [0,+∞), homogeneous of degree one, positive on K0, Lipschitz continuous, such that for all t ≥ 0 and
all x ∈ K

eλ(A) t v̄(x) = sup
A:[0,t]→A

v̄(xA(t)). (5.20)

The Lyapunov exponent λ (A) is also called the joint spectral radius of A, after Rota and Strang [186], and
the potential v̄ shares features with so-called Barabanov norms [14]. Identity (5.20) means that the potential v̄
is such that the optimal trajectories with respect to v̄ grow exactly exponentially, with rate λ (A). It can be seen
as an extension of the Perron-Frobenius theorem which ensures that, in the case where A= {A} is a made of a
single matrix, the potential is given by v̄(x) = ⟨x,h⟩ where h is the left eigenvector of A associated to the Perron
eigenvalue λ (A) = λ (A). This is perhaps even clearer on the infinitesimal version of (5.20),

λ(A)v̄(x) = max
A∈A
⟨Ax,Dxv̄(x)⟩,

which is a stationary Hamilton-Jacobi-Bellman equation in the viscosity sense [16].

Sketch of the proof. Due to the presumed homogeneity of v̄ and the exponential growth in time in (5.20), we
perform the transformation

ů(x) = log v̄(x)− log⟨x,1⟩.

The function ů is zero-homogeneous and thus naturally defined on the projective space PK0 = K0/∼, where ∼
is the equivalence relation induced by the colinearity of vectors. In terms of this new function, (5.20) becomes

λ(A) t + ů(x) = sup
A:[0,t]→A

{∫ t

0
L(xA(s),A(s))ds+ ů(xA(t))

}
, (5.21)

where the Lagrangian (or running reward) L is given by L(x,A) = ⟨Ax,1⟩
⟨x,1⟩ . The problem is thus to find a real

λ (A) and a zero-homogeneous function ů such that (5.21) is satisfied, or equivalently such that ů is a viscosity
solution of the ergodic Hamilton-Jacobi equation

−λ (A)+H(x,Dxů(x)) = 0, (5.22)

where the Hamiltonian is defined as H(x, p) = maxA∈A(L(x,A)+ ⟨Ax, p⟩/⟨x,1⟩).
The key point is to notice that, due to Birkhoff’s theorem, each flow associated to a given control A : [0, t]→

A is a contraction for the Hilbert projective metric defined on the projective space PK0 by

d(x,y) = max
1≤i≤n

(
log

xi

yi

)
− min

1≤ j≤n

(
log

x j

y j

)
.

More precisely, we can prove that for any τ > 0 there exists ω > 0 such that for any A = [0,∞)→ A, any
x,y ∈ PK0 and all t ≥ 0

d(xA(t),yA(t))≤ e−ω(t−τ)d(x,y). (5.23)
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Furthermore, by exploiting the Finsler structure of the projective space PK0 endowed with Hilbert’s metric [173],
we can establish that the Lagrangian L is Lipschitz continuous from (PK0,d) to (R, | · |). More precisely, the
Lipschitz constant is bounded from above by

LipL(·,A)≤ sup
x∈PK0

inf
a∈R

(
⟨|A−a Id|x,1⟩
⟨x,1⟩

)
.

Then, for any discount rate ε > 0, we consider the infinite-horizon counterpart of (5.21) defined as

uε(x) = sup
A:(0,∞)→A

{∫
∞

0
e−εtL(xA(t),A(t))dt

}
.

It is a viscosity solution of the stationary Hamilton-Jacobi equation

−εuε(x)+H(x,Dxuε(x)) = 0. (5.24)

Clearly, εuε is uniformly bounded by ∥L∥∞. Besides, the exponential contraction of trajectories yields an a
priori Lipschitz estimate, uniformly with respect to ε . Let us fix x and y in PK0. For any η > 0, there exists a
η-close-to-optimal control function A : [0,∞)→ A associated to the initial condition x, namely such that

uε(x)≤ η +
∫

∞

0
e−εtL(xA(t),A(t))dt.

Choosing the same control for the initial point y we get

uε(x)−uε(y)≤ η +
∫

∞

0
e−εt(L(xA(t),A(t))−L(yA(t),A(t))dt

≤ η +(sup
A∈A

LipL(·,A))
∫

∞

0
e−εtd(xA(t),yA(t))dt

≤ η +(sup
A∈A

LipL(·,A))eωτ

∫
∞

0
e−(ε+ω)td(x,y)dt

≤ η +(sup
A∈A

LipL(·,A)) eωτ

ε +ω
d(x,y).

As x, y, and η are arbitrary we deduce

Lipuε ≤
eωτ

ω
LipL.

Hence, up to extraction, εuε converges locally uniformly towards a constant λ (A). In addition, we can extract
a subsequence (uε ′) which converges towards some Lipschitz function ů, up to the substraction of a (possibly
large) constant, say minuε ′ . It can be proven that ů is globally Lipschitz on PK0, up to the boundary. Passing to
the limit in (5.24) in the viscosity sense, the limit function ů is a viscosity solution ot the ergodic equation (5.22),
and the proof is complete.

Lack of controllability/coercivity and the ergodic set. Contrary to our approach which is based
on the long time contraction of the trajectories, classical arguments for proving ergodicity results such as
Theorem 5.5 rather rely on short time dynamics of the system. This is the case for instance of the ergodicity
result in Capuzzo-Dolcetta and Lions [53, Theorem X.2], and of the weak KAM Theorem of Fathi [101]. In the
former the authors assume a uniform controllability condition which basically states that the vector field of the
controlled system allows going in all directions with speed uniformly bounded from below. The latter relies on
a regularizing property of the Lax-Oleinik semi-group which holds true for Tonelli Lagrangians. Both cases
imply that the Hamiltonian is coercive, i.e. lim|p|→∞ H(x, p) = +∞, a property which is not satisfied in our case.
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One noticeable exception can be found in [16, Section VII.1.2], where the controllability condition is replaced
by a dissipativity condition which is somehow similar to our uniform contraction estimate (5.23).

Uniform controllability is far from being satisfied in our case, where some strict subsets of PK0 are positively
invariant by all the flows. In a couple of papers [9, 10], Arisawa made clear the equivalence between ergodicity,
in the sense of (5.19), and the existence of a so-called ergodic set when controllability is lacking. The ergodic
set satisfies the following properties: it is non empty, closed and positively invariant by the flows; it is attractant;
it is controllable.

In [P3], we characterized the ergodic set in the case of the growth-fragmentation problem (5.2)-(5.3) in
dimension n = 3, with θ = 0. Actually we used this characterization to prove the ergodicity property (5.19) in
this specific case, before being aware by S. Gaubert that ideas and techniques from max-plus linear algebra
could allow to dramatically improve the result by proving Theorem 5.5. The ergodic set of the three-dimensional
growth-fragmentation problem is the area enclosed between the projective trajectory issued from the Perron
projective eigenline of the matrix G+αminF with constant control αmax, and the trajectory starting from the
Perron projective eigenline of G+αmaxF with constant control αmin, see Figure 5.4.

0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ea

eA
0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

Fig. 5.4 The three-dimensional growth-fragmentaion process with typical parameters. The projective space PK0
is identified with the two-dimensional simplex {x ∈ K : ⟨x,1⟩= 1}. The dashed line represents the boundary
x3 = 0. Left: the two red dots are the projective eigenlines for α = αmin and α = αmax, and the black curve
represents the set of all the eigenlines for α browsing (0,∞). Middle: the blue curves delimit the ergodic
set. Right: illustration of the attraciveness and stability of the ergodic set through the plot of several periodic
trajectories. Parameters are g1 = 2E−2, g2 = 1, B3 = 2B2 = 8E−2, κ13 = κ23 = 1, and αmin = 2, αmax = 8.

About the optimality of the maximal Perron eigenvalue. In Theorem 5.4, we fully character-
ized the optimal trajectories of the two-dimensional growth-fragmentation problem. Since these trajectories
consist essentially in Perron extremals, we get as a by-product that for A= {G+αFθ , αmin ≤ α ≤ αmax} the
Lyapunov exponent is given by the best Perron eigenvalue of A, namely

λ (A) = max
A∈A

λ (A). (5.25)

By taking advantage of the Pontryagin maximum principle, we can actually prove that (5.25) holds true for any
set A of two-dimensional irreducible Metzler matrices [P7]. It is in this same paper [P7] that we proposed the
three-dimensional counter-example presented in Figure 5.3b, for which some periodic controls provide a better
Floquet eigenvalue than the best Perron’s. This example shows that the strict inequality λ (A)>maxA∈A λ (A)
can occur in dimension n≥ 3.

Meanwhile, we realized that the optimality of constant controls in dimension n = 2 was already proven by a
different approach in [124]. Also, a three-dimensional counter-example was described in [99], thus answering
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a question raised in [124]. These two works deal with more general linear inclusion systems, without the
monotonicity property.

In Figures 5.5 and 5.6 we illustrate two kinds of behaviours for optimal trajectories in dimension three: the
convergence to the best Perron eigenline when (5.25) holds true, Figure 5.5, and the convergence to a limit
cycle when it does not, Figure 5.6. Proving that only these two types of behaviour can take place in dimension
three is still an open question.
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Fig. 5.5 Illustration of convergence of optimal trajectories towards the optimal Perron eigenline for the three-
dimensional growth-fragmentation process with the same parameters as in Figure 5.4. We have plotted the
curve of Perron eigenvectors (black line), the boundary of the ergodic set (blue line), and an arbitrary optimal
trajectory (red line). The optimal trajectory enters the ergodic set and then converges towards a limit cycle.
Right picture is a zoom of the left one. The numerical grid is plotted on the axes: the space step is ∆x = 5E−4
to fall much below the width of the ergodic set.
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Fig. 5.6 Illustration of the optimal limit cycle for the same example as in Figure 5.3b. We have plotted the
curve of Perron eigenvectors (black line), the boundary of the ergodic set (blue line), and an arbitrary optimal
trajectory (red line). The optimal trajectory enters the ergodic set and then converges towards a limit cycle.
Right picture is a zoom of the left one. The numerical grid is plotted on the axes: the space step is ∆x = 1E−3
to fall much below the width of the limit cycle.
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5.4 Infinite dimension in infinite horizon (perspectives)

A challenging problem is the extension of Theorem 5.5 to the continuous version of Equation (5.1), namely the
controlled growth-fragmentation equation

∂

∂ t
ut(x)+ r(α(t))

∂

∂x

(
g(x)ut(x)

)
= α(t)

(∫ 1

0
B
(x

z

)
ut

(x
z

)
℘(dz)

z
−B(x)ut(x)

)
, (5.26)

or more generally to infinite dimensional systems enjoying some positivity properties. To our knowledge, such
infinite-dimensional ergodicity results do not exist in the literature, and the methods classically used to prove the
existence of Barabanov norms seem not being easily extendable to the infinite-dimensional setting. By contrast,
our approach based on the exponential contraction of the flows could be applicable. However, Birkhoff’s
theorem requires a very strong positivity property to derive (5.23), which fails in general for infinite-dimensional
systems and in particular for Equation (5.26).

The option we are considering to work around this problem is the method presented in Chapter 2, by
replacing Hilbert’s projective metric by a weighted total variation projective distance of the type

d(µ1,µ2) =

∥∥∥∥ µ1

⟨µ1,ψ⟩
− µ2

⟨µ2,ψ⟩

∥∥∥∥
M (V )

on the positive cone M+(V ), for some suitable positive functions ψ and V . In [P16] we proposed sufficient
generalized Doeblin’s conditions for time-inhomogeneous semigroups to be contractions with respect to
this metric. Unfortunately these conditions are to restrictive to be satisfied by the semigroup generated by
Equation (5.26). We shall follow Harris’s approach to relax these conditions by using Lyapunov functions,
similarly as in [P19], in order to derive general conditions on time-inhomogeneous semigroups to be contractions
for the above weighted total variation projective distance.



Chapter 6

Subdiffusion

I started studying subdiffusion during my post-doc with Hugues BERRY at Inria Lyon in 2011-2012, with the
aim to better understand and model the motion of molecules in living cells. We have continued since then,
with the help of Emeric BOUIN, Vincent CALVEZ, Thomas LEPOUTRE and Álvaro MATEOS GONZÁLEZ.
Section 6.2 presents a yet unpublished result, and Section 6.3 the main result of [P13].

6.1 The continuous time random walk model

Continuous time random walks (CTRW) were introduced by Montroll and Weiss as a generalisation of random
walks [169], where the residence time between jumps is a random variable. They are widely used to model
anomalous diffusive behaviour when the mean squared displacement does not grow linearly with time, unlike
Brownian motion, see [161]. Anomalous diffusion is observed in the intra-cellular motion of molecules which
usually present a sub-diffusive behaviour (namely a sub-linear growth of the mean squared displacement) due
to molecular crowding and trapping, see the review article [134].

CTRW are characterized by two probability distributions: one for the waiting times between two consecutive
jumps, and one for the direction and length of the jumps. In particular, the residence time between jumps does
not necessarily follow an exponential law. This flexibility allows modelling sub-diffusive motion by considering
that the longer a particle is trapped at some position, the less likely it jumps. In the context of cell biology, such
a phenomenon is rather natural due to chemical bonding of molecules in the cell. Sub-diffusion arises in CTRW
when the mean residence time is infinite, namely when∫

∞

0
t Φ(t)dt = ∞

where Φ is the probability distribution of waiting times. CTRW are Markovian processes only when Φ is an
exponential law, and thus not in the sub-diffusive cases. A classical trick for recovering the Markov property is
to increase the dimension of the state space by adding a new independent variable. We associate to the random
walker an “age” a≥ 0 which represents the time elapsed since its previous jump. For the sake of simplicity,
we consider CTRW in one dimension of space. If we denote by u(t,x,a) the probability distribution for a
particle to be at time t ≥ 0 at position x ∈R since a time a≥ 0, then its evolution is prescribed by the following
jump-renewal equation, initially proposed by [204],

∂

∂ t
u(t,x,a)+

∂

∂a
u(t,x,a)+B(a)u(t,x,a) = 0,

u(t,x,0) =
∫

∞

0
B(a)

∫
R

J(x− y)u(t,y,a)dyda,
(6.1)
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where J is the probability distribution of jumps and B is the escape rate, so that Φ(t) is given by

Φ(t) = B(t)e
∫ t

0 B(a)da.

The function Φ is usually supposed to behave as t→+∞ like

Φ(t)∼Φ∞ t−1−α , 0< α < 1, (6.2)

which leads, when the variance of J is finite, to a mean squared displacement that behaves as tα for large
times [161]. We will therefore consider escape rates B such that (6.2) is satisfied and, to simplify, that J is a
Gaussian distribution with zero mean and variance σ2.

6.2 The subdiffusion limit

In order to highlight the α-power long time behaviour of the mean squared displacement when Φ verifies (6.2),
we accelerate time and rescale space in an accurate manner by considering, for a small parameter ε > 0,

uε(t,x,a) =
1
ε

u
( t

ε2/α
,

x
ε
,a
)
.

By using Laplace and Fourier transform, it is shown formally in [159, 210] that the limit p(t,x) of the marginal
pε(t,x) =

∫
∞

0 uε(t,x,a)da when ε → 0 satisfies the time-fractional diffusion equation

CDα
t p(t,x) =

σ2

2τα
∆x p(t,x) (6.3)

whereCDα
t is the Caputo fractional derivative of order α defined by

CDα
t f (t) =

1
Γ(1−α)

∫ t

0

f ′(s)
(t− s)α

ds

and τ is a characteristic time given by τα = Φ∞

∫
∞

0
1−e−s

s1+α ds. Classical fractional calculus allows us to deduce
from (6.3) that the mean squared displacement grows as tα through the formula

∫
R

x2 p(t,x)dx =
∫
R

x2 p(0,x)dx+
σ2

Γ(1+α)τα
tα .

Our aim is to give a rigorous convergence result of pε to a solution of (6.3).
In the set of functions Φ that verify (6.2), a special place is occupied by the function

Φ(t) =− d
dt

Eα(−tα)

where Eα is the Mittag-Leffler function with parameter α , see [117, 118]. Indeed it is a generalization of the
exponential law for the Caputo derivative, in the sense that the function Ψ(t) =

∫
∞

t Φ(s)ds = Eα(−tα) verifies

CDα
t Ψ(t) =−Ψ(t).

With Hugues Berry and Thomas Lepoutre, we proved a convergence result to an integrated version of Equa-
tion (6.3) in the Mittag-Leffler case, namely starting from u solution to (6.1) with escape rate

B(a) =− d
da

logEα(−aα). (6.4)
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Theorem 6.1. Assume that B is given by (6.4). Then under suitable conditions on the initial distribution
uε(0,x,a), when ε goes to 0, after extraction, the limit p of pε in C([0,T ],M (R)) where M (R) is endowed
with the weak-* topology satisfies: for all ϕ ∈C2

c (R) and all t ∈ [0,T ]

∫
R

ϕ(x)p(t,x)dx =
∫
R

ϕ(x)p(0,x)dx+
σ2

2τα Γ(α)

∫ t

0

1
(t− s)1−α

∫
R

ϕ
′′(x)p(s,x)dxds.

6.3 A Hamilton-Jacobi limit

In [P13] we consider the hyperbolic regime instead of the subdiffusive regime of Section 6.2, and we perform a
so-called Hopf-Cole transformation:

uε(t,x,a) = u
( t

ε
,

x
ε
,a
)
= exp

(
− φε(t,x,a)

ε

)
.

This enables us to accurately measure the behaviour of small, exponential tails of the probability density
function u, reminiscent of large deviation principle theory. This approach was used in [30] for analysing a
linear kinetic model.

We assume that the escape rate and the associated waiting time distribution are given by

B(a) =
α

1+a
, Φ(a) =

α

(1+a)1+α
.

Contrary to [30], the local Maxwellian of our problem, i.e. the stationary solution of the first equation in (6.1),
given by

Ψ(a) = e−
∫ a

0 B(a′)da′ =
1

(1+a)α
,

is not integrable. To bypass this issue, we consider the boundary condition function

ψε(t,x) = φε(t,x,0)

and we prove that its limit as ε → 0 satisfies a Hamilton-Jacobi equation. Still, the non-integrability of the
stationary distribution Ψ yields the main difficulties in the proof.

Theorem 6.2. Under suitable hypotheses on the initial condition φε(0,x,a), the family (ψε)ε>0 converges
locally uniformly on [0,+∞)×R to the unique viscosity solution ψ of the limiting Hamilton-Jacobi equation

1 =
∫

∞

0
Φ(a)ea∂t ψ(t,x)da

∫
R

J(z)ez∂xψ(t,x)dz. (6.5)

Observe that Equation (6.5) is equivalent to

∂

∂ t
ψ(t,x)+H(Dxψ(t,x)) = 0 (6.6)

with H given by

H(p) = Φ̂
−1
(

1∫
R J(z)ezpdz

)
where Φ̂−1 is the inverse function of the Laplace transform of Φ. We also prove in [P13] that the Hamiltonian
H is a smooth convex function, not strictly uniformly convex, which exhibits quadratic growth at infinity, and
that when p→ 0

H(p)∼
(

σ2

2Γ(1−α)

)1/α

|p|2/α . (6.7)
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6.4 Conclusion and some perspectives

We derived two different limiting equations of the jump-renewal equation (6.1). The subdiffusive limit (6.3) is
linear but non-local in time, which is the trace of the non-Markovian property of the underlying CTRW. On the
contrary the Hamilton-Jacobi limit (6.6) is nonlinear but local in time. The latter approach seems better-suited
for analysing front propagation when subdiffusion is coupled to nonlinear reaction terms, similarly as in [102]
where speeds of propagation are formally computed through Hopf-Cole transformation. The Hamilton-Jacobi
method was successfully used for studying front propagation in reaction-diffusion equations [17, 18, 20, 32,
98, 109, 110, 194], as well as for non-local jump models [31, 158, 180]. With Emeric Bouin, we have started
investigating the case of reaction-subdiffusion equations.

Another Hamilton-Jacobi equation can be derived from Equation (6.1) by performing subdiffusive and
hyperbolic scaling simultaneously. Defining

φε(t,x,a) =−ε logu
( t

ε2/α+1 ,
x
ε2 ,a

)
,

the limit ψ of ψε(t,x) = φε(t,x,0) when ε → 0 formally satisfies

∂

∂ t
ψ(t,x)+

(
σ2

2τα

)1/α ∣∣Dxψ(t,x)
∣∣2/α

= 0. (6.8)

We essentially recover Equation (6.6) where the Hamiltonian H is replaced by its equivalent at the origin (6.7).
Equation (6.8) is a well known Hamilton-Jacobi equation [136], which is the classical eikonal equation in the
diffusive case α = 1 [97]. Proving rigorously the convergence to Equation (6.8) would require handling two
scalings at the same time, which is a substantial additional difficulty.
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