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Title: Anderson localization in interacting quantum systems
Abstract: In this thesis we theoretically investigate the behaviour of quantum particles (electrons,
atoms, photons, etc.) moving in a random medium and undergoing Anderson localization. For non-
interacting particles, the energy spectrum can possess one or more critical points, where the nature
of the single-particle wavefunctions changes from extended to localized leading to a undergoes a
metal-insulator phase transition, also known as Anderson transition.
A fundamental question is whether and how Anderson transitions survive in interacting quantum
systems. Here we study a minimal model of two particles moving in a disordered lattice and subject
to short-range mutual interactions. By combining large-scale numerics with Green’s functions tech-
niques, we show that two-particle Anderson transitions do occur in three dimensions and explore the
phase diagram in the space of energy, disorder and interaction strength. The latter presents a rich
structure, characterized by a doubly reentrant behavior, caused by the competion between scattering
and bound states of the pair. We also show that previous claims of 2D Anderson transitions of the
pair are essentially due to finite-size effects.
A second problem that we address in this thesis is the occurrence of 2D metal-insulator transitions
for a single particle in the presence of a spatially correlated potential and subject to spin-orbit interac-
tions, described by Rashba-Dresselhauss couplings. We illustrate that, irrespective of the properties of
the disorder, there is a regime where the critical energy Ec depends linearly on the disorder strength.
The slope and the intercept are studied in the vicinity of the spin-helix point, where the SU(2) sym-
metry is restored and the 2D metal-insulator transition disappears.
Keywords: Transport phenomena, Anderson localization, Anderson transitions, Few-body systems,
Disordered lattices, Hubbard model, Green’s function methods, Transfer-matrix calculations, Spin-
orbit coupling, Cold atoms and matter waves.

Titre : Localisation d’Anderson dans des systèmes quantiques interagissants
Resumé : Dans cette thèse nous étudions au niveau théorique le comportement des particules quan-
tiques (électrons, atomes, photons, etc.) se mouvant dans un milieu désordonné et sujets à la localisa-
tion d’Anderson. Pour des particules non interagissantes, le spectre de l’énergie peut posséder un ou
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plus points critiques, où les fonctions d’onde étendues deviennent localisées, en donnant lieu à une
transition de phase métal-isolant connue comme Transition d’Anderson.
Une question fondamentale est si et comment les transitions d’Anderson survivent dans des systèmes
quantiques interagissants. Dans cet ouvrage, nous étudions un modèle simple décrivant le cas de
deux particules dans un réseau désordonné et sujettes à des interactions mutuelles à courte portée.
En combinant des simulations numériques sur une grande échelle avec des techniques à la fonction de
Green, nous montrons que les transitions d’Anderson à deux particules se produisent en trois dimen-
sions et explorons le diagramme de phase dans l’espace de l’énergie, du désordre et de l’interaction.
Cette dernière présente une structure riche, caractérisée par un double renfoncement de la limite de
phase, engendrée par la compétition entre les états de diffusion et les états liés de la paire. Nous
prouvons aussi que les annonces précédentes concernant l’apparition de transitions d’Anderson en
deux dimensions étaient essentielment dues à des effets de taille finie.
Un deuxième problème que nous abordons dans cette thèse est celui de l’occurrence de transitions
métal-isolant en deux dimensions pour une particule en la présence d’un potentiel spatialement cor-
rélé et sujette à des interactions spin-orbite, modélisées par les couplages Rashba-Dresselhaus. On
éclaire que, indépendamment des propriétés du désordre, il y a un régime où l’énergie critique Ec

dépend linéairement du paramètre de désordre. La pente et l’intercepte sont étudiées en voisinage
du point de symétrie spin-hélice persistant, dans lequel la symétrie SU(2) est restaurée et la transition
métal-isolant disparaît.
Mots clés : Phénomènes de transport, Localisation d’Anderson, Transitions d’Anderson, Systèmes à
plusieurs corps, Réseaux désordonnés, Modèle d’Hubbard, Méthodes de la fonction de Green, Méth-
odes de la matrice de transfert, Couplage spin-orbite, Atomes froids et ondes de matière.
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INTRODUCTION

Ordered systems, thanks to their symmetry and regularity, lend themselves to being described by
mathemical models. On the other hand, impurities, defects and dislocations are abundant in nature
and a quantitative description of their effect on the physical properties of materials represents a chal-
lenging task. In an infinite crystal, characterized by translational symmetry, the wavefunctions of
valence electrons are described by Bloch functions, which are extended all over the medium. Then,
the finiteness of conductivity in real samples is due to deviations of the ion positions from perfect
periodicity, owing to thermal vibrations.
The addition of impurities results in perturbative (negative) corrections to the conductivity of the ma-
terial, as long the De Broglie wavelength of electrons is smaller than their mean free path. At strong
enough disorder the latter condition is no longer satisfied and a novel phenomenon takes place: the
electron propagation is completely suppressed and its wavefunction becomes exponentially localized
in space, with a characteristic length named localization length. Importantly, Anderson localization
is not due to the complete filling of an energy band but rather to the scattering against randomly
distributed impurities.
The occurrence of a transition from extended to localized states was first predicted in 1958 by P.
W. Anderson, who was able to explain the origin of localization of spin excitations in doped semi-
conductors [1], experimentally observed in 1956 by Feher’s group [2]. In particular the electronic
excitations (resulting from the hyperfine coupling with nuclear spins) were localized at low electron
concentrations, contrarily to theoretical expectations at that time, and localization was circumvented
by thermally activated hopping between discrete localized states. By means of a pertubative ex-
pansion in terms of the tunnelling elements, Anderson proved that electronic eigenfunctions decay
exponentially at strong disorder or close to the band edges (in the so-called Lifshitz tails [3,4]).
A decade later, Mott introduced the concept of mobility edge [5] as the energy value separating the
metallic from the insulating regime while Thouless pointed out the sensitivity of conductance under
changes of boundary conditions [6]. A great progress in the comprehension of the nature of Ander-
son localization was achieved in 1979, when the scaling theory was proposed by Abrahams et al. [7],
who proved that in disordered systems localization persists also in two dimensions and explained
the scaling behaviour of conductance, based on the ideas of Landauer and Thouless. It was demon-
strated indeed that the latter quantity vanishes at zero temperature with a universal critical exponent.
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Besides, the renormalization group theory, put forward by Wegner [8], was able to establish a con-
nection with second-order phase transitions, using an approach analogous to the one used in spin
systems. The nonlinear σ-model introduced in 1979 [9] and further developed by Efetov et al. [10],
corroborated the scaling predictions in d ≤ 2 and shed light upon the conductance fluctuations.
Quantitative estimations of the relevant quantities involved in localization were obtained within the
framework of the self-consistent theory elaborated by Wölfle and Vollhardt [11] [12] on the basis of
the ideas of Abou-Chacra [13]. Although this theory is mean-field like and therefore cannot predict
the correct values of the critical exponents, it nevertheless provides reasonably good estimates of the
phase boundary between metallic and insulating states. Taking place in the strong scattering regime,
the Anderson transition defies analytical treatments. Hence, the role of numerical simulations is cru-
cial for a quantitative study of the phase transition, from the identification of the critical point to the
computation of the universal critical exponents [14] [15]. Several techniques have been developed for
this purpose going from transfer-matrix [16] [17] and Green’s function [18] techniques, to approaches
based on energy-level statistics [19–21] or multifractality [22, 23]. By studying the behaviour of the
localization length, which diverges at the critical point in the thermodynamic limit, it is also possible
to evaluate critical exponents and the parameters by means of the finite-size scaling procedure [17].
On the experimental front, the first setups have involved doped semiconductors, where the degree of
disorder has been varied by tuning the concentration of dopant atoms, which have been prominently
phosporous or boron atoms in silicon crystals [24]. These experiments provided large differences in
the estimations of the relevant critical exponent, due probably to interaction between electrons as
well as to the finiteness of the temperature of the sample, which introduces nonuniversal properties
to the conductance and forces one to extrapolate the scaling behaviour at zero temperature.
Owing to the wavelike nature of localization, the phenomenon has been inquired in other platforms,
involving also classical waves, which, differently from the quantum ones, neither interact nor localize
at low frequencies, when the wavelength exceeds the typical size of the scatterer. Amidst the realiza-
tions concerning waves belonging to the former kind, we canmention those with electromagnetic [25],
elastic [26], acoustic [27] and seismic waves [28]. The development in laser-cooling techniques has also
opened the possibility to study Anderson localization in cold atoms. Compared to condensed-matter
systems, in atomic gases the disorderd potential, generated by optical waves, can be more easily con-
trolled and tuned, as well as the effective dimensionality, by varying the geometry of the confining
potential. Furthermore, the particle statistics can be selected and even the strength of interactions can
be adjusted, exploiting Feshbach resonances. However, a drawback of these lattices is the smallness
of the samples analyzed, that are tipically tenths of millimeter [29]. The role of interactions on An-
derson transitions has recently received considerable attention, evolving into the flourishing research
field of many-body localization [30].
In this thesis we investigate interaction-induced Anderson transitions in two- and three-dimensional
systems from the viewpoint of two-body physics, which is a largely unsolved problem due to the
large computational complexity. In particular, by making use of large-scale calculations with state-
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of-the-art supercomputers, we succeed to study the three-dimensional geometry, which has never
been examined before. We unveil the complete phase diagram of the pair in the energy-disorder-
interaction space.
Beyond mutual interactions, in this thesis we also inspect the role of spin-orbit coupling in disor-
dered potentials endowed with spatial correlations, like the laser speckle pattern. More in detail, we
consider a spin-orbit interaction, which breaks spin-rotation invariance, thus paving the way to the
appearance of a metallic behaviour in two dimensions.

The dissertation is structured as follows. In Chapter 1 we first give a primer on Anderson localiza-
tion as a wave-like phenomenon, that can take place in a plethora of different platforms. Afterwards
we will introduce Anderson’s model and review its localization properties, focusing on the three-
dimensional case. In Chapter 2 we discuss how to extract the position of the critical point from
transmission amplitude calculations performed on an elongated bar. We outline a new procedure
which holds also for relatively short bars, which will be systematically exploited in the subsequent
chapter. In Chapter 3 , after presenting the formalism and its numerical implementation, we show
that the interaction-induced Anderson transition belongs to the orthogonal universality class. We
build the complete phase diagram of the pair. In Chapter 4 we take up the one-particle problem,
where an atom is subject to a spatially correlated random potential and to an artificial spin-orbit
coupling. We investigate the behaviour of the mobility edge along the crossover from the symplectic
to the orthogonal class. Overall conclusions and hints for further investigations are traced in the final
chapter.
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CHAPTER 1

LOCALIZATION IN DISORDERED SYSTEMS

In this chapter we will first present Anderson localization as a wavelike phenomenon, induced by
disorder, with a particular attention on quantum particles. We will then provide an overview on
experimental observations of this phenomenon in different platforms, both in the classical and in
the quantum domain. Next, we present the mathematical model for disordered systems focusing on
the Anderson’s model, whose known results are reviewed, in particular, the mobility edge appearing
in three-dimensional systems and the related phase diagram in the energy-disorder plane. Various
theoretical frameworks have been proposed in order to describe the Anderson transition, and we will
dwell upon the one-parameter scaling theory of localization, showing the crucial role played by the
global symmetries of the Hamiltonian and the spatial dimension of the system. Another approach,
able to explain transitions on the basis of changes in energy-level spacing statistics, known as random
matrix theory, is briefly explained in Appendix A.1.
The last section of the chapter is devoted to the introduction of the two-particle problem in the
presence of short-range interactions, a system which will be investigated in-depth in Chapter 3. In
particular, we review some of the most significant results of previous theoretical works, summarizing
the main findings on pair localization in low-dimensional geometries (d ≤ 2).

1.1 General definition

As discussed in the interoduction, Anderson localization refers to a wavelike phenomenon in which
propagation in a medium is halted by the presence of randomly placed impurities. Considering a trav-
elling plane wave as shown in Fig. 1.1, the interference phenomena between the waves generated by
its scattering off the sites can give rise to the suppression of diffusion if the lattice is disordered enough.
As a result, a standing wave is produced within a certain region, where the wave amplitude decreases
exponentially. The origin of this fact can be illustrated by expressing the transmission probability of
a wave between the positions rrr, rrr′ in the space as the square modulus of the contributions from all
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(a) Extended wave (b) Localized wave (c) Mean free path and wavelength

Figure 1.1 – An extended wave in the free espace (a) and a localized wave (b) in a disordered medium,
where it acquires a characteristic exponential decay, as shown in the small panel on the top. In the one
on the bottom the straight lines denote the wave front again, with a width proportional to the amplitude,
as well as the wavelets rescattered by the randomly distributed obstacles. On the right panel (c), the
definitions of wavelength and mean free path are shown qualitatively. From Ref. [31].

different paths between the two points,

P (rrr, rrr′) =

⃓⃓⃓⃓
⃓∑︂
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′)eiφ(rrr,rrr
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The latter relation can be rewritten isolating the summations on the incoherent contributions from
the ones on the interference terms:

P =

⃓⃓⃓⃓
⃓∑︂

j

Aj

⃓⃓⃓⃓
⃓
2

+
∑︂
j,k

A∗
jAke

i(φk−φj) . (1.1)

Supposing that the dephasing between the individual scattering paths is random and that no absorp-
tion process occurs, the second term in Eq. (1.1) cancels out in infinitely large systems. Nevertheless,
if time-reversal symmetry is present, the dephasing between paths with different propagation direc-
tion inside identical loops vanishes, so the summation on the right in Eq. (1.1) remains finite. The
probability to come back to the origin is thus enhanced, an effect which depends of the dimensionality
d of the lattice: in particular in d = 1, 2, P (rrr, rrr) = 1, since the random walk is recurrent, whereas
in d = 3, P varies according to the density of scatterers. More quantitatively, the occurrence of
localization in the latter situation is related to the length of the mean free path ℓ, compared to the
wavelength λ, as stated by the Ioffe-Regel criterion, introduced independently by A. Ioffe and A. Regel
in 1960 [32], which reads

ℓ ≲
λ

2π
,

where ℓ decreases as the degree of disorder increases. When the latter quantity is weak, scattering
events are very spaced and multiply scattered waves do not interfere, leading to incoherent transport,
which is described by random walk of step ℓ. On the other hand, in d = 1, 2, a wave gets localized
at any value of the mean free path ℓ, and thus at any degree of randomness of the medium.
In the case of a quantum particle, like an electron in a crystal, Bloch theorem affirms that all eigen-
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Figure 1.2 – The localization length ξ of a wavefunction in an one-dimensional random lattice. From
Ref. [29].

states of valence are extended and thus their energy levels are separated by energy gaps where no
states do exist, thanks to completely destructive wave interference. In the presence of defects, devi-
ations from the translational-invariant case emerge, until localized states between the gaps appear.
Neglecting interactions between electrons, the states obey the time-independent Schrödinger equa-
tion, (︃

−ℏ2∇2

2me

+ V (rrr)

)︃
ψE(rrr) = EψE(rrr) , (1.2)

where V (rrr) represents the lattice potential. If the typical amplitude of the latter is high enough, then
the eigenfunction at energy E has a maximum in the point rrrn and satisfies the relation

|ψE(rrr)| ≤ Cne
− |rrr−rrrn|

2ξ , (1.3)

in which Cn, rrrn and ξ depend on energy, and the latter quantity is defined as the localization length,
shown in Fig. 1.2. The eigenstates above an energy threshold Ec called mobility edge are extended
in the whole lattice, whereas the ones lying below are localized as shown in Eq. (1.3). This implies
that, if the Fermi energy is located below the mobility edge, the diffusion coefficient D vanishes at
long times:

D =
1

2d
lim

t→+∞

⟨rrr2⟩
t

= 0 ,

where the brackets ⟨·⟩ denote the expectation value, while the bar ·̄ indicates the average over the
realizations of the disordered potential. Under this condition, the conductance at zero temperature
decreases with the length of the sample L as

σ ∝ e−L/ξ ,

where the localization length is evaluated at the Fermi energy. When EF > Ec, the average square
position ⟨rrr2⟩ depends linearly on time, and the diffusion coefficient is constant.
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1.2 Experimental evidence

Since it is a general wavelike phenomenon, Anderson localization has been investigated in several
platforms, involving quantum as well as classical waves. The first experimental verification has been
executed in charge-uncompensated semiconductors (in Si:P samples in particular) in 1983 by Paala-
nen and Thomas [24], who looked at the behaviour of conductivity and dielectric susceptibility on
both sides of the transition, finding a critical exponents of 0.5, somewhat far from the prediction of
the self-consistent theory (ν = 1), available at the time. Another group [33], working on charge-
compensated semiconductors extracted an exponent of 1, and the discrepancy was ascribed to the
presence of local magnetic moments induced by Coulomb interactions [14] and to the finiteness of
temperature [34]. In those systems, the typical disorder amplitude was controlled by varying the con-
centration of doping atoms [35] or the concentration of charge carriers by means of optical excitation
in photoconductors. Due to the presence of interactions and to the difficulty in reducing the coupling
with a thermal reservoir, observations in solids are hardly noiseless, and, thanks to the development
in cooling techniques, cold atom gases established themselves as a more suitable setup for studying
the phenomenon with quantum waves. Aside from matter waves, much interest has also been drawn
by classical waves, since they do not interact and the fact that some additional properties (besides
conductance), like the statistical distribution of intensity as well as the complex amplitude [36], can
be measured. In particular, when the wavelength is much smaller than the other length scales (like
mean free path ℓ or lattice spacing a), polarization can be neglected and elecromagnetic waves can
be seen as classical waves satisfying Helmholtz equation.
Localization of electromagnetic waves has been demonstrated in different frequency domains, in-
cluding the ones of microwaves and infrared, but not at lower frequencies, when Rayleigh scattering
enhances the mean free path, due to the fact that the wavelength becomes much larger than the
average spacing between the impurities. In low dimensions, light localization has been realized [37]
and confirmed, and a particular setup is the one shown in Fig. 1.3, where a photonic crystal is por-
trayed. The dimensionality reduction is performed by considering a photorefractive crystal in which
a 2D speckle pattern (for a quantitative description, see Sec. 4.1), generated by shining a laser into a
diffusor, is added to the interference pattern of plane waves. The disorder lying in two dimensions
gives rise to small fluctuations of |∆n|

n0
∼ 2 · 10−4 in the refractive index n0, which plays the role of

the random potential in the Schrodinger-like Helmholtz equation in paraxial approximation, satisfied
by the amplitude of the probe beam in the medium, according to the approach developed in [38].
Photonic crystals represent also a suitable platform [39] for the realization of another disorder model
bearing similarities with Anderson’s one, the Aubry-André-Harper model [40], in which the lattice
potential is pseudo-random, like the one reproduced by the superposition of two lattices with incom-
mensurate spacings. The phase transition in that case shows up even in one-dimension [40].
On the other hand, for Anderson’s model in three dimensions, the experimental results obtained by
the groups of Lagendijk [41] and Maret [42] in fine GaAs and TiO2 powders respectively have been
recently questioned by Sperling et Al. [43], who attributed the exponential decay of the transmission
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Figure 1.3 – Transverse localization and experimental results for light propagation in disordered lattices.
In the upper panel (a) a probe beam entering a photorefractive crystal is shown at low (left image) and
higher disorder (right one). In the lower panel, the pattern of the random potential on the transverse
plane is displayed, at zero disorder (b), intermadiate (c) and higher enough to localize the beam intensity
(b). The latter quantity, averaged over 100 disorder realizations, is portrayed as the white solid curve,
setting logscale in abscissa. From Ref. [25].

coefficient to fluorescence. In the microwave range, experiments have been carried out in waveguides
with randomly placed metallic spheres [44] as well as in dielectric samples [45] endowed with a quasi-
1D geometry. In those systems, the achievement of localization was detected from scale-dependent
diffusion and large fluctuations on the transmission. Therefore localization of electromagnetic waves
in three dimensions is still an open problem, due to the fact that the phenomenon is hindered by
absorption which also affects transmission coefficient as an exponential extinction, and recent works
propose cold atoms subject to an external constant magnetic field [46] as a medium in which propa-
gation of light can be halted.
Another kind of classical waves in which localization has been tested is given by elastic wave pro-
duced by vibrations in solids [26]. The first experimental observation was conducted on an network of
aluminium beads brazed together [47], inspecting the angular dependence of the reflection coefficient,
which possesses a peak around the backscattering direction. When the direct and the time-reversed
paths start adding up coherently, the peak is enhanced and its width acquires a time-dependence
dictated by the inverse of the diffusion coefficient: that manifestation is regarded as a precursor of
strong localization. In a similar setup the propagation of ultrasound waves has been probed [48],
obtaining the first demostration of Anderson transition in three dimensions with acoustic waves. In
two-dimensions, the first realization was achieved byWeaver [27], who noticed around a point source
a concentration of energy whose intensity slowly decayed owing to absorption, using inhomogeneous
plates. Interestingly, coherent backscattering has also been detected in seismic waves, analysing the
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(a) Atomic gas expansion (b) Behaviour of the numerical density

Figure 1.4 – Observation of exponential localization in a one-dimensional lattice. On the left panel the
experimental setup of [54] is portrayed, showing the expansion of the atomic cloud after the switching off
of the longitudinal trap: on the bottom-right image (b) the exponential profile of atomic density, obtained
by direct imaging, is displayed. The latter quantity is shown in detail in the right panel, where the scale
in ordinate is logarithmic and also the fitting curve on the tails is present (blue solid curve). The clearer
curve in the center represents the density before the release of the condensate. In the inset the behaviour
of ⟨z2⟩(t) is plotted at different values of the typical amplitude of the random potential VR: when the
latter quantity is finite, a stationary regime is reached after 0.5 s, in accordance with Eq. (1.2), thus
signalling the onset of localization. From Ref. [54].

interference effects between waves artificially produced on Earth surface [28].
Unlike electronic systems, in atomic gases cooled at low temperature (of the order of the µK), dis-
order is not fixed by the specific realization of the sample and interactions can be tuned, by means
of Feshbach resonances. The fact that the external potential commonly generated by optical means
(exploiting the dipole-field interaction) can be adjusted makes also the dimensionality more control-
lable. Even the statistics of particles can be chosen, realizing atomic clouds with bosons, fermions or
mixtures, but the size of the atomic systems are typically small, reaching the order of 106 atoms [29].
The first experiments with cold atoms exploited the (approximate) map between Anderson’s model
(in Eq. (1.9)) and the kicked-rotor one, which was proved by Prange et Al. in 1982 [49]. The latter
paradigm, featuring localization in momentum space, describes a particle constrained on a ring and
periodically kicked by a field. In the first realization with laser-cooled atoms, achieved in 1994 [50],
the kicks were reproduced by a pulsed standing wave. In order to obtain the analogous of the three-
dimensional Anderson model, modulations of the kick strength, with incommensurate frequencies,
have to be introduced [51], as it was performed by Szriftgiser et al. [52]. The critical exponent found
by the latter group proved to be compatible with the one of Anderson’s model, in accordance with
the numerical demonstration in [53].
Concerning the spatial domain, localization in d = 1 has been tested with Bose-Einstein condensates
in [54] and [55], but in the previous one the disorder is given by the speckle potential (described in
Sec. 4.1), whereas in the second one the random potential is built by superimposing two periodic
lattices with incommensurate periods. This kind of potential, that guarantees a constant tunneling
between nearest-neighbour sites, presents the peculiar feature of exhibiting a crossover between lo-
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calized and extended states already in d = 1, as predicted by the Aubry-André model [40]. In the
first demonstration, whose setup is displayed on the left panel of Fig. 1.4, the quantities of inster-
est were the density of atoms as a function of the position, n(z, t), plotted on the right panel of the
aforementioned figure, and the average square position, ⟨z2⟩(t) :=

∫︁
dz z2n(z, t), which possesses a

different time-evolution according to the disorder strength, as seen in Eq. (1.2). In three dimensions,
Anderson transition has been recently detected in speckle potentials by De Marco’s [56], Aspect’s [57]
and Inguscio’s [58] groups, but on the position of the mobility edge the experimental results do not
agree very well with the ones of numerical simulations [59].

1.3 Models of disordered systems

The Hamiltonian of a single particle moving in a background of randomly-distributed fixed impurities
(quenched disorder) is given by:

H = −ℏ2∇∇∇2

2m
+ V (rrr) ,

where m is the effective mass of the particle, and V (rrr) =
∑︁N

j=1 Uj(rrr − RRRj), RRRj is the random
potential, generated by the impurities distributed at positionsRRRj , with j = 1, 2, . . . , N denoting the
positions of the impurities. If the scatterers are identical, Uj ≡ U for any j, the Hamiltonian concides
with the one introduced by Edwards [60].
A disordered potential is characterized by the on-site distribution function P (V ) and by a correlation
function C(rrr, rrr′) = V (rrr)V (rrr′) where ·̄ =

∫︁
dV P (V ) denotes the average over different disorder

realizations. In cold-atom realizations a common lattice potential is given by the speckle pattern,
which can be obtained by shining a laser on a diffusive plate, that lends a random phase to the electric
field. The resulting dipole-field interaction possesses a random behaviour in coordinate space and
its values are distributed according to Rayleigh law, as shown in Sec. 4.1. Uncorrelated potentials
have C(rrr, rrr′) = δ(3)(rrr − rrr′), and their long-time and long-distance behaviour is equivalent to the
one of models with finite-range correlations [61], with renormalized parameters. On the other hand,
correlations with infinite range, beside shifting the mobility edge in d = 3, can even lead to the
occurrence of transitions in d = 1 [62,63], in the absence of other interactions.
Because of the practical difficulty of finding solutions of Schrödinger equation when there is no long-
range order in the potential, a possibility is to make use of the tight-binding model, in which the single-
particle wave-function is expressed in terms of the orthogonalized orbitals around each scatterer of
the medium. The stationary Schrödinger equation of the particle near the j-th scatterer reads:

Hjψ(rrr) =

(︃
−ℏ2∇∇∇2

2m
+ U(rrr −RRRj) + ∆U(rrr)

)︃
ψ(rrr) = Ejψ(rrr) , (1.4)
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where∆U(rrr) denotes the correction to the single-scatterer potential U(rrr−RRRj) due to the presence
of the other sites [64]. The wave-function can be expanded as:

ψ(rrr) =
N∑︂
k=1

∑︂
α

ak,α⟨rrr|k, α⟩ :=
N∑︂
k=1

∑︂
α

ak,αϕα(rrr −RRRk) . (1.5)

By substituting the right-hand side of Eq. (1.5) into Eq. (1.4) and labeling the eigenvalues of the
single-scatterer Hamiltonian as,(︃

−ℏ2∇∇∇2

2m
+ U(rrr −RRRk)

)︃
ϕα(rrr −RRRk) = vα,kϕα(rrr −RRRk) ,

Eq. (1.4) becomes:

N∑︂
k=1

∑︂
α

vk,αak,αϕα(rrr−RRRk)+
N∑︂
k=1

∑︂
α

∆U(rrr)ak,αϕα(rrr−RRRk) = Ej

N∑︂
k=1

∑︂
α

ak,αϕα(rrr−RRRk) . (1.6)

By multiplying on the right both sides of Eq. (1.6) by ϕ∗
β(rrr − RRRj) and integrating in the space

coordinate, one finds:

vβ,jaβ,j +
N∑︂
k=1

∑︂
α

∫︂
drrrϕ∗

β(rrr −RRRj)∆U(rrr)ϕα(rrr −RRRk)ak,α = Ejaj,β

where the following orthonormality relation has been exploited,∫︂
drrrϕ∗

β(rrr)ϕα(rrr) = δα,β , (1.7)

and the integrals involving only pairs of orbitals centered at different sites, like
∫︁
drrrϕ∗

β(rrr−RRRj)ϕα(rrr−
RRRk) with j ̸= k, have been neglected. Denoting the overlap integral in Eq. (1.7) as Jjk,αβ :=∫︁
drrrϕ∗

β(rrr−RRRj)∆U(rrr)ϕα(rrr−RRRk), the latter equation can be seen as an eigenvalue equation for the
Hamiltonian Ĥ expressed in the ‘Wannier’ basis {|j, α⟩}:

Ĥ =
N∑︂
j=1

∑︂
α

vj,α|j, α⟩⟨j, α|+
N∑︂

j,k=1

∑︂
α,β

Jjk,αβ|k, β⟩⟨j, α| , (1.8)

where the Jjk,αβ represents the tunneling amplitude between the orbitals α and β, located in the
sites j and k respectively. The model described by the tight-binding Hamiltonian (in Eq. (1.8)) is
also the discrete analogue of the case of randomly-distributed identical scatterers, in the limit of a
large number of orbitals per site. The framework is also suitable for the treatment of alloys whose
components are randomly positioned in the lattice. In principle, both the on-site energies vi,α and the
tunneling amplitudes Jij,αβ are random variables and numerical simulations on that general case have
reported an enhancement of localization [65] with respect to the original Anderson’s model, where the
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Figure 1.5 – A quantum particle in a two-dimensional disordered lattice in d = 2, where the physical
meaning of the parameters of Anderson’s model is also outlined. From Ref. [72].

tunneling terms are taken to be constant and the disorder is thus purely site-diagonal. The former case
has been analysed in particular in low dimensions [66] [67], and even the case of complex hopping,
reproducing the situation in which a charged particle is subject to an external randomly-oriented
magnetic field [14], has been theoretically investigated [68]. On the contrary, when only off-diagonal
randomness is present, the Hamiltonian can admit extended eigenstates even in d = 1 [69, 70] and
d = 2 [71].

1.3.1 The Anderson model

The simplest case of a disordered lattice described by a tight-binding Hamiltonian of the form given
by Eq. (1.8), is the one in which only one orbital per site is accessible while the tunneling terms follow
a so narrowly-peaked distribution that they can be regarded as constant. The resulting Hamiltonian
is then the Anderson’s one:

Ĥ =
∑︂
iii

viii|iii⟩⟨iii| − J
∑︂
{iii,jjj}

|iii⟩⟨jjj| , (1.9)

where |iii⟩ denotes the orbital of a single particle located in the site iii ∈ Z
d of a lattice with volume

Ld and viii labels the energy associated to that state. The on-site energies are statistically independent
and follow the uniform distribution in the interval [−W/2,W/2] [14],

p(viii) =
1

W
Θ

(︃
W

2
− |viii|

)︃
, (1.10)

whereas the hopping amplitude J between nearest-neighbour sites is constant. The meaning of the
parameters of Anderson’s Hamiltonian is further clarified in Fig. 1.5, representing a quantum particle
in a two-dimensional disordered lattice.
In order to find a finite-dimensional Hilbert space of dimensionNd, a convenient choice is to impose
periodic boundary conditions on the eigenfunctions, thus obtaining a complete set of the latter. In
the absence of disorder (W = 0), the one-particle Hamiltonian is translationally invariant and its
eigenstates, defined by Ĥ|ψ⟩ = E|ψ⟩, are Bloch waves ψkkk(iii) = eikkk·iiiaukkk(jjj) with trivial periodic
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Figure 1.6 – Examples of eigenfunctions of Anderson’s Hamiltonian plotted plotted as functions of one
spatial coordinate. In a) an extended eigenstate, taking the appearance of a deformed Bloch state, is
represented, while in b) a localized eigenstate, having asymptotically exponential tails (dashed curves) is
portrayed.

function ukkk(jjj) = N−d/2:

ψkkk(jjj) := ⟨jjj|ψkkk⟩ =
eikkk·jjja√
Nd

, (1.11)

where a := L
N
denotes the lattice constant and kkk = 2π

L
nnn, in whichnnn ∈ {0, ..., N−1}d. The eigenen-

ergies are given by:

Ekkk = −2J
d∑︂

s=1

cos (ksa) . (1.12)

In the presence of disorder (W ̸= 0), the features of eigenstates change according to energy and
dimensionality. The localized wave-functions, which represent the whole of the eigenfunctions in
d ≤ 2, possess asymptotic behaviour described by:

|ψβ(jjj)| ∼ e−|jjj−jjj0,β |a/ξβ ,

where ξβ indicates the localization length of the eigenstate ψβ(jjj) (see Fig. 3.1). In d = 1, the former
quantity depends on disorder typical amplitude as [73]

ξ = 2ℓ ∝ W−2 , (1.13)

according to both numerical simulations [74] and a perturbative approach in the weak-disorder
(W ≪ J ) limit [75].
In the limit of infinite disorder, eigenfunctions become localized in single sites of the lattice, Ψiii(jjj) =

δiii,jjj with eigenenergies corresponding to the on-site energies Eiii = viii.
In d = 3, however, all eigenstates of Anderson’s Hamiltonian are localized when W > Wmax

c ≈
16.536J [76]. For lower values of disorder strength, there exists an energy interval Ec,1 < E < Ec,2,
within which the states are delocalized. In infinite-sized lattices,Ec,1 = −Ec,2, since an exact particle-
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Figure 1.7 – Eigenfunction in cubic lattices with side 17a at E = 0 and variable disorder W =
{2, 10, 17}J . The radii of the coloured spheres indicate the magnitude of probability density |ψ(jjj)|2
at each grid point. Blue spheres display points where |ψ(jjj)|2 ≤ 0.003a−3, yellow spheres show
0.003a−3 <|ψ(jjj)|2 ≤ 0.02a−3, and red spheres correspond to |ψ(jjj)|2 > 0.02a−3. Radii in the lo-
calized regime W = 17J are plotted six times smaller than in the extended regime W = {2, 10}J .
From Ref. [73].

hole symmetry is achieved, where for each eigenstate of energy Ej , there exists another eigenstate
of energy Ej′ such that Ej′ = −Ej [67], and also the density of states satifies ρ(Ej) = ρ(−Ej) [77].
Examples of the two distinct typologies of wavefunctions are plotted in Fig. 1.6, as functions of one
coordinate, in the continuous space, whereas in Fig. 1.7 they are portrayed in the three-dimensional
space within a discrete lattice. At the critical values of the energy, the eigenstates are neither extended
nor localized but they exhibit strong fluctuations at all length scales and they are defined multifractal.
The concept of mobility edge was pointed out by Mott, who stated that, at a given energy, localized
and extended states cannot coexist [78]. While in periodic lattices the insulating property emerges
from the position of the Fermi energy outside energy bands, in disordered systems this is due to the
finite spatial extent of the eigenstate at the highest occupied level.
When the Anderson transition occurs, at d = 3, a curve in the (E,W ) plane separating the region
in which states are localized from the one in which they are extended, can be determined. The shape
of the boundary is related to the critical behaviour and depends on the interplay between the effects
of coherent interference and potential localization.
For instance, as shown in Fig. 1.8, the boundary separating the metallic region (shaded in dark orange)
from the insulating one (in light blue) calculated by numerical means (dashed curve) and analytical
approximations (solid line) is represented in an interval of positive energies. Due to the symmetry in
the spectrum above highlighted, the critical disorder strength has to be symmetric under sign inver-
sions of the energy.
At a given energy value E within the interval 6J ≲ |E| ≲ 8J , two critical values of disorder are
found. The upper one, signalling a transition from a metallic to an insulating behaviour of the system,
as pointed out by Bulka-et-Al. [79] is predominantly due to the coherent superposition of scattered
waves in the random lattice. On the contrary, the origin of the lower one has to be traced back to the
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Figure 1.8 – Phase diagram of Anderson localization in d = 3 in the disorder-energy plane in units of
the tunnelling amplitude J . The on-site energies follow the uniform distribution with widthW , while z
denotes the coordination number of the lattice, which is equal to 6 for d = 3. The solid line on the left
separates the metallic (M) from the insulating (I) region, while the one on the right marks the band edge
in CPA approximation, described in Sec. 2.2.1, both of them obtained within the framework of the Self-
Consistent Theory [80]. The short-dashed line on the left represents the band edge found numerically by
Bulka et Al. [79] using recursive Green’s function approach, illustrated in Sec. 2.1.2, while, on the right,
the exact upper boundWBE = E−6J is shown by means of the long-dashed line. The dots represent in
turn the phase boundary determined numerically in [79] and mark the border of the region of localized
wave-functions where the integrated density of states n(E) exhibits Lifshitz tails (cf. Eq. (1.14)). Edited,
from [81].

decrease of the density of states and to the onset of potential localization. In Fig. 1.8, the portion of
space where no eigenstates do exist is also highlighted and its boundary is close to the phase separa-
tor at low disorderW ≲ 4J owing to the fact that at those points the states are Lifshitz’s delocalized
states.
A useful quantity for characterizing the localized behaviour of an eigenfunction is the inverse partic-
ipation ratio (IPR), introduced by Bell and Dean [82], which measures the portion of the space where
the amplitude of the wave-function differs markedly from zero and is defined as [83]:

Iq,β :=
∑︂
jjj

|ψβ(jjj)|2q ,

where q is an integer.
For large but finite L, the scaling behaviour of this quantity is Iq ∼ 1 for localized eigenfunctions,
whereas it corresponds to Iq ∼ Ld(1−q) for delocalized ones. When q = 2, the IPR I2,β is always
smaller or equal to 1, thanks to Cauchy-Schwartz inequality. The quantity has been extensively used
for distinguishing the behaviour of the eigenstates of Anderson-Hubbard Hamiltonian [84,85]. At the
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ℓ

a

Figure 1.9 – The singularity spectrum f(α) at the criticality (convex curve), and in the metallic regime
(needle-like plot). The shaded area corresponds to rare events, that typically can not be found in a single
sample. From Ref. [86].

transition between the two opposite trends, the wave functions exhibit self-similarity and they are
neither extended nor localized. This results in the appearance of a non-trivial fractal dimension Dq ,
where 0 < Dq < d, characterizing the scaling of IPR as Iq ∼ LDq(1−q). The inverse participation
ratio averaged over disorder configurations, can be expressed in terms of the probability density
associated to the square modulus of the wave-function |ψ|2 close to the mobility edge, as:

Iq ∼
∫︂

d|ψ|2P
(︁
|ψ|2

)︁
|ψ|2q ∼

∫︂
d|ψ|2 |ψ|

2q

|ψ|2
L−d+f

(︁
− ln |ψ|2

lnL

)︁
,

where f is a function known as the singularity spectrum. Within this framework, Iq can thus be seen
as the q-th moment, |ψ|2q , of the distribution P

(︁
|ψ|2

)︁
. Defining α = − ln |ψ|2/ lnL, the previous

relation an be recast in the form:

Iq,β ∼
∫︂ +∞

0

dαL−qα+f(α) .

where the f(α) can be interpreted as the fractal dimension of the points jjj where the eigenfunction
scales as |ψ(jjj)|2 ∼ L−α. The number of the points exhibiting this scaling behaviour thus amounts
to Lf(α). The singularity spectrum of a multifractal f(α) is a convex function of α, f ′′(α) ≤ 0, that
possesses a maximum satisfyingmaxf(α) ≤ d, as shown in Fig. 1.9. In the metallic regime, it would
be formally defined as a function diverging at −∞ for α ̸= d, and equal to d at α = d (see Fig. 3.2).

In the absbence of disorder (W = 0), the spectrum of the Hamiltonian in Eq. (1.9) in a finite lattice
is discrete and takes values in the region −zJ ≤ E ≤ zJ , where z is the coordination number of
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the lattice [6], that, for an hypercubic d-dimensional lattice, is equal to z = 2d.
In infinite lattices it becomes (absolutely) continuous, the eigenvectors converge (uniformly) to zero,
||ψk|| ∼ L−d/2 →L→+∞ 0, and are not square-summable (in ℓ2(Zd,C). In that limit, the local
density of states becomes a continuous distribution, independent of the position in the lattice jjj [87]:

ρ(jjj, E) =
∑︂
kkk

δ(E − Ekkk)|⟨kkk|jjj⟩|2 ∼L→∞

∫︂
kkk∈[0,2π]d

ddkkk

(2π)d
δ

(︃
E + 2J

d∑︂
i=1

cos (ki)

)︃
.

The latter expression for d = 1, for instance, reduces to:

ρ(jjj, E) =
θ(2J − |E|)√
4J2 − E2

.

The integrated density of states, n(E) :=
∑︁

jjj

∫︁ E

−∞ dE ′ ρ(jjj, E ′), near the bottom of the spectrum
E0 = −2dJ , can be approximated as

n(E) ∼ C(E − E0)
d/2 , (1.14)

where C is a constant [88]. In the presence of disorder (W ̸= 0), the spectrum is also discrete in finite
lattices, in both the extended and the localized phase, and bounded in the interval−W/2−zJ ≤ E ≤
W/2 + zJ , since the probability distribution of the on-site energies has compact support. However,
for L→ +∞, the eigenvalues corresponding to localized states form a discrete set (spectrum) σp(H),
since these states are actually bound states, while the eigenvalues related to extended states lead to a
continuous set σc(H) [87]. This fact allows one to decompose Hilbert space into the two respective
orthogonal subspacesH = Hp

⨁︁
Hc. The local density of states ρ(jjj, E) reflects this feature and can

be cast as ρ(jjj, E) = ρp(jjj, E) + ρc(jjj, E), where ρp(jjj, E) :=
∑︁

β δ(E −Eβ)|⟨β|jjj⟩|2. In d = 1, the
density of states and the localization length are connected by a relation determined by Thouless [89]:

ξ(E)−1 =

∫︂
dE ′

Ld

∑︂
jjj

ρ(jjj, E ′) ln |E ′ − E| .

In the limit of infinite disorder, the latter becomes simply ρp(jjj, E) = δ(E − vjjj). In particular, at the
bottom of the band, where E±

0 = ±(zJ + W
2
), the integrated density of states is characterized by

exponentially decaying edges, known as Lifshitz tails [3] [4]:

n(E) = C1 exp

[︃
−C2(E − E0)

−d/2

]︃
where C1 and C2 are constants. Due to the lack of translational invariance, there are no divergencies
(like the van Hove ones) in the integrated density of states, and its behaviour is smooth [9] in the
region −E0 ≤ E ≤ E0.
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1.4 Theoretical approaches

After the introduction of the concept of mobility edge by Mott in 1967 and the formulation of Lan-
dauer’s theory of conductivity, the problem of localization induced by disorder has drawn an in-
creasing attention in condensed matter physics. The analogy with a second-order phase transition
has been outlined by Wegner [9], who mapped the original problem to the one of a ferromagnet with
broken continuous symmetry. In particular, he traced a comparison between the diffusion constant,
that vanishes in the localized regime, and the stiffness of a ferromagnet [90, 91]. Based on a field-
theoretical approach to study the behaviour of conductiviy correlation length near the critical point,
Wegner also pointed out the absence of a minimummetallic conductivity in a disordered medium [92],
thus confuting one of Mott’s predictions.
Another particular feature of Anderson localization is the lack of an upper critical dimension, above
which a mean-field theory describes exactly the critical behaviour. The latter assertion was proved by
the nonlinear σ-models, introduced by Wegner, using the replica trick in order to calculate disorder-
averaged quantities. The theory was later enriched by supersymmetric versions by Efetov [93], using
both commuting and anticommuting variables for the mapping of the original problem, and it was
able to reproduce the results of the diagrammatic theory but using a non-perturbative treatment and
demostrated the renormalizability of the theory.
In addition, the correlation function between the energy levels foundwithin that framework coincided
with the one predicted by random matrix theory, introduced by Wigner in 1951 [94] for explaining
some features of nuclear spectra and then first extended by Gorkov in 1965 [95] to disordered metals.
This theory, that is presented in App. A.1, has been able to assert that the distribution of the level
spacings depends only on global symmetries of the Hamiltonian, and not on the particular form of
the disorder potential. Besides it was argued that Anderson transition is not characterized by any
symmetry breaking and does not possess a conventional order parameter, since the one resulting
from nonlinear σ-models, i.e. the local density of states [96] does not vanish in any phase. Later,
in the context of the Typical Medium theory, the geometrically averaged (called ’typical’) density of
states was proposed by Nikolić [97] as a good order parameter.
Almost at the same time of the σ-models, a macroscopical theory was formulated by Abrahams et
Al. [7], to the end of characterizing the critical behaviour of localization length, by introducing a one-
parameter scaling hypothesis, that has been later supported by numerical results. A microscopical
approach was proposed by the diagrammatic Self-Consistent theory [11, 12, 98], who used a reno-
malized perturbative approach to describe the occurrence of the transition in terms of the quantum
interference processes between the paths of a particle in a random lattice.
In the following we will review some of the results of the scaling theory, who have been relevant for
the subsequent investigation of the interplay between localization and interactions.
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1.4.1 Scaling theory of Anderson Localization

The scaling theory, proposed by Abrahams et al. [7], on the basis of the results of the renormalization
group approach developed by Wegner [8] and on the contributions of Landauer [99] and Thouless [6],
aims at pointing out the transport properties of a disordered medium, by starting from the behaviour
of the systems under changes of scales L ↦→ bL. This involves taking into account scale-dependent
interference effects, that are primarily important at low dimensions, even at small disorder. The
singular backscattering process deeply affects localization, since the terms containg interferences
between time-reversed paths survive from averaging over disorder realizations [100] [14] [91].
The formalism is able to capture the universal behaviour of macroscopic quantities, like conductivity
and diffusion coefficient, in the vicinity of the critical point, regardless of the microscopic details of
the medium. While it does not allow for determining the exact critical point, it is able find relations
between macroscopic quantities and microscopic ones, like localization length (as well as disorder
parameter).
In order to show these connections, it is convenient to begin analysing the problem of the scattering
off a single impurity, in one dimension (d = 1). Portraying the impurity as a narrow potential barrier
located in x = 0, a one-particle wave-function can be decomposed into components travelling in the
left side (L, x < 0) and in the right side (R, x > 0), and into the ingoing (in) and outgoing (out) ones:

ψ(x) =

⎧⎨⎩ψin
L e

ikx + ψout
L e−ikx, x < 0

ψin
R e

ikx + ψout
R e−ikx, x > 0

,

The outgoing components of the wavefunction can be expressed in terms of the complex reflection
and transmission coefficients r, t and r′, t′, respectively from the left and from the right, as follows
(see Fig. 1.10):

ψout
L = rψin

L + t′ψin
R

ψout
R = tψin

L + r′ψin
R

The outgoing component can be thus written as linear combinations of the incoming components,
by introducing the scattering matrix S [99,101–103]:(︄

ψout
L

ψout
R

)︄
= SSS

(︄
ψin
L

ψin
R

)︄
,where SSS =

(︄
r t′

t r′

)︄
.

Since the probability flux must be conserved, the scattering matrix SSS must be unitary, condition
that implies that transmission and reflection probability add up to unity, |t|2 + |r|2 = 1, and that
r∗t′ = −t∗r′ and the complex-conjugate version of the latter relation. A further constraint comes
in the case of a time-reversal invariant scattering potential: by imposing an exchange of the roles of
incoming and outgoing waves, that entails SSS∗ = SSS−1, one finds t′ = t and r′ = −tr∗/t∗.
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Figure 1.10 – Propagation in a one-dimensional waveguide with randomly placed scatterers (left) and
detail of a scattering process (right).

In the presence of a large number of scatterers, the use of the scattering matrix is not convenient,
since the relation between the total SSS matrix and the individual ones would be very complicated to
determine. So, instead of grouping the wave-function components on the basis of time, we assemble
them on the basis of the position. This involves the definition of a transfer matrixMMM [103]:(︄

ψin
R

ψout
R

)︄
=MMM

(︄
ψout
L

ψin
L

)︄
,where MMM =

(︄
1/t∗ −r∗/t∗

−r/t 1/t

)︄
.

The transfer matrix thus found has a unit determinant and eigenvalues that are each other’s inverses,
due to the conditions imposed on SSS. For a sequence of N scatterers characterized by different trans-
mission coefficients and arranged in a row, the total transfer matrix at the two ends can be simply writ-
ten as the product of the transfer matrices related to each barrier of potential:MMM12...N =MMMN ...MMM2MMM1.
In the case of N = 2 obstacles, the complex transmission coefficient reads:

t12 =
t1|t2|2

t∗2 + r1r∗2t2
,

an expression that can be found also by adding up the transmission coefficients associated to each
process containing internal reflections, t12 = t2t1 + t2r

′
1r2t1 + t2(r

′
1r2)

2t1, reminding that r′1 =

−t1r∗1/t∗1. The transmission probability T12 can be written in terms of the phase φ accumulated
after one process of internal reflection, in the following form [104]:

T12(φ) =
T1T2

|1−
√
R1R2eiφ|2

.

If the barriers are distributed randomly in space, with ∆x ≪ λ, the phase φ can be considered
independent of the particular distribution of the obstacles and therefore it can be treated as a random
variable, taking values in [0, 2π]. In the case in which transmission is incoherent, we compute the
transmission probability by taking its average value over the phase variable. This is equivalent to
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averaging over different realizations, characterized by distinct relative positions of the scatterers. The
former procedure gives:

T12 =
T1T2

1−R1R2

. (1.15)

The same result as in Eq. (1.15) is reached if a classical propagation is considered, using only the
reflection and transmission probabilities R and T respectively. The latter quantity allows us for
computing the dimensionless element resistance, that is additive under the inclusion of a further
barrier:

1− T12

T12
=

1− T1
T1

+
1− T2
T2

.

The conductance of a sample is related to the transmission probability through Landauer’s for-
mula [99]:

G =
nse

2

h

T

1− T
, (1.16)

where ns denotes the spin degeneracy of the particle. For incoherent transport, the disorder-averaged
conductance reduces to:

G =
nse

2

h

2ℓ

L
, (1.17)

where ℓ is the mean free path of the particle. The latter expression can be generalized for higher-
dimensional systems, in which a multitude of transmission channels is available, thus getting the
usual Ohm’s relation:

G = σdL
d−2 , (1.18)

where σd is the conductivity of the hypercubic sample. In the case in which the particles are electrons,
the conductivity becomes [100]:

σd =

(︃
nse

2

h

)︃(︃
ℓkd−1

F

d(4π)d/2−1Γ(d/2)

)︃
, (1.19)

where kF is the Fermi wave-number of the electrons. In the case of coherent transport the relation
for the transmission in Eq. (1.15) can not be easily generalized for a great number of scatterers. If
we regard it as a function of the microscopic realizations of disorder, it does not prove to be a self-
averaging quantity, since its mean value does not concide with the most likely one. A solution can be
traced in the opposite of its logarithm, κ = − lnT , namely the extinction coefficient. The average of
the latter quantity over the phase shift due to multiple transmission and reflection paths gives∫︂ 2π

0

dφ

2π
ln |1−

√︁
R1R2e

iφ| = 0 ,

due to the analiticity of the complex logarithm for all 0 ≤ R1R2 < 1 [103]. The average of the
extinction across two consecutive potential barriers is thus additive and does not depend on the
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order in which the pieces of a sample are added nor on their length [7]:

lnT12 = lnT1 + lnT2 .

For a multitude of scatterers, the average extinction grows linearly with the length of the sample
κ = −lnT = L/2ℓ . We are thus able to define the typical value of the transmission probability as
Ttyp := elnT , that, once plugged into disorder-averaged Landauer’s formula (Eq. (1.17)), leads to the
following expression for the typical conductance Gtyp := elnG:

Gtyp =
nse

2

h

e−L/2ℓ

1− e−L/2ℓ
, (1.20)

where in d = 1 the conductance drops exponentially fast with L, with a characteristic length ξ = 2ℓ,
known as the localization length. The result can be generalized to higher-dimensional systems with a
quasi-1D geometry by considering that, for b independent transverse channels along a given direction,
the typical transmission behaves as Ttyp(bL) = (Ttyp)

bbd−1.
As a result, the localization length increases with the transverse degrees of freedom as ξ = 2bℓ, a
relation that has been proved for weakly coupled channels by Dorokhov [105] and independently by
Mello, Pereyra and Kumar [106]. In particular, they derived an equation connecting the ditribution
function of the eigenvalues of the transmission matrix with the length of the quasi-one-dimensional
bar. The relation, known as the DMPK equation [101], has allowed to find analytic estimates for the
universal conductance fluctuations in the metallic regime as well as to obtain analytical estimates of
the localization length in the limit bℓ≪ L for systems endowed with different global symmetries.
As we have seen, the conductance changes its dependence on the sample length according to kind
of transport occurring in the sample (incoherent or coherent). A measure of the total transmission
probability is provided by the dimensionless conductance, that is defined as g = hGtyp/nse

2. Using
Eq. (1.20), we can see that, in the limit of small system size, the ohmic law of conductance is recovered
(compare Eq. (1.18)):

g(L) =
1

eL/2ℓ − 1
=

⎧⎨⎩2ℓ/L, L≪ ℓ

e−L/2ℓ, L≫ ℓ
. (1.21)

The dimensionless conductance can be found also for quasi-1D systems with b transverse channels
along each direction, and its dependence on the latter can be cast as g(bL) = f(b, g(L)) [29]. Ac-
cording on the size of the sample, one can distinguish three transport regimes: ballistic transport, at
L < ℓ, described by the upper expression in Eq. (1.21), diffusive transport in the interval ℓ < L < ξ,
and strong localization for L > ξ, outlined by the lower expression in Eq. (1.21). In three dimensions
the localization length can be infinite, so that the localized regime can not be recovered even at large
system sizes, as we will see in more detail in the continuation.
A useful quantity for depicting this behaviour is the β-function, introduced by Callan and Symanzik,
with the aim of describing the variation of the coupling constant in quantum field theory. For our
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Figure 1.11 – Conductance scaling β-function in d = 1, 2, 3, determined from Eq. (1.23). The arrows
pinpoint its behaviour for increasing system size L: in d = 1, 2, g is ohmic in smal samples but ex-
ponentially low in greater samples. In d = 3, this takes place only if g < gc; in the opposite case the
conductance raises with growing L.

purpose, we consider the relation that binds the β-function to the dimensionless conductance g, the
so-called renormalization-group equation [7],

β(g) =
d ln g

d lnL
=
L

g

dg

dL
, (1.22)

where β is a function that depends on the size of the sample only through g(L) and evidences the
important role of dimensionality in the behaviour of the latter quantity [29]. For a d-dimensional
quasi-1D system (elongated hypercube), β(g) can be well approximated by [107]:

β(g) = d− 1− (1 + g) ln (1 + g−1) . (1.23)

In the limit of small system size, L ≪ ℓ, the conductance is large, and the system behaves approxi-
mately as in the classical (ohmic) case [107]:

β(g) ≈ d− 2− cd
g
+O(g−2) ,

where cd is the coefficient associated to the weak-localization correction of the classical result.
In the limit of large sysem size, L≫ ℓ, the conductance is small and exponential (strong) localization
occurs, so the beta function takes the form [107]:

β(g) ≈ ln (g/gd)− g(1− ln g) +O(g2) ,

where gd is a constant of order unity. The behaviour of β as a function of the logarithm of the
dimensionless conductance is also depicted in Fig. 1.11 for different system dimensionalities d.
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While in 1D systemswhere d = 1, the localization length is ξ = 2ℓ, as we have seenwhile expounding
coherent transport, in 2D this quantity can be found starting from the integration of the beta function
in Eq. (1.22) (with Eq. (1.23)) from L = L0 = ℓ and g(L0) =: g0 = kℓ ≫ 1 in the ohmic regime,
thus finding g(L) = g0− c2 ln (L/L0) = kℓ− c2 ln (L/ℓ). This quantity approaches unity at L = ξ,
the latter being:

ξ ≈ ℓekℓ/c2 ,

where c2, as obtained in the framework of self-consistent theory is equal to 2/π [78]. Therefore, the
prediction of the scaling theory in d = 2 is that all states are localized, since for large L, the β function
is never positive. This means that, as in d = 1, the dimensionless conductance always decreases for
increasing size, thus signalling an insulating behaviour. To sum up, the dependence of localization
length on mean free path according to the system dimension can be written as follows:

ξ =

⎧⎪⎨⎪⎩
2ℓ d = 1

ℓ exp

(︃
πkℓ

2

)︃
d = 2

.

In the three-dimensional case, from Eq. (1.23), we notice that at large value of the conductance the beta
function is positive, while, at low values is negative: these limiting behaviours in the thermodynamic
limit L → +∞ give rise to two stable fixed points, the metallic or infra-red and the insulating ones,
respectively. Between the aforementioned points, an unstable critical point is present, at which the
dimensionless conductance is of order unity and β(gc) = 0.
Using Eq. (1.18) and Eq. (1.19), we are able to find g(ℓ) = 2(kℓ)3/3, from which we can recover the
Ioffe-Regel criterion kℓ ∼ 1, that holds in any disordered system, but whose exact coefficient (of order
unity) is not universal: it notably depends on the features of the disordered potential distribution.
In order to characterize the behaviour around the critical point in d = 3, it turns out be useful to find
the approximate behaviour of the β-function in Eq. (1.23) piecewise in three regimes: the metallic
one (when g > g+), the critical one (between g− < g < g+) and the insulating one (g < g−). We
thus have [107]:

β(g) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 g > g+

1

s
ln

(︃
g

gc

)︃
g− < g < g+

ln g g < g−

,

where the values of the extremes of the critical interval are determined by imposing continuity:

g+ = gce
s , g− = g

− 1
s−1

c .
In the metallic side, we consider a point close to the critical one, g0+ = gc(1 + ϵ), and integrate the
beta-function (Eq. (1.22)) over the conductance, from g = g0+ to g ≫ 1, and over the sample length
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from L0+ to L≫ 1:

ln

(︃
L

L0+

)︃
=

∫︂ ln g+

ln g0+

sd ln g′

ln (g′/gc)
+

∫︂ ln g

ln g+

d ln g′ =

= s ln

(︃
ln (g+/gc)

ln (g0+/gc)

)︃
+ ln (g/g+) ,

By approximating ln (g0+/gc) as (g0+ − gc)/gc, we find for the dimensionless conductance:

g = gc

(︃
L

L0+

)︃(︃
e

sgc

)︃s

(g0+ − gc)
s .

We can also define in that phase a correlation length ξ, starting from g = gcL/ξ, whose denominator
diverges at the critical point as:

ξ = L0

(︃
sgc
e

)︃s

(g0+ − gc)
−s .

By expressing the conductance difference as a function of the energy (g0+ − gc) ≃ ∂g
∂E

⃓⃓
E=Ec

(E −
Ec) =: KE(E − Ec), [107], we can write the conductivity σ (in Eq. (1.18)) as:

σ =
2e2

h

g

L
=

2e2

hL0

gc

(︃
eKE

sgc

)︃s

(E − Ec)
s , (1.24)

a quantity that vanishes at the critical point. Equivalently, expanding g in Taylor series, we an de-
termine an analogous dependence on the disorder strengthW : σ ∝ (Wc −W )s. This behaviour in
the vicinity of the critical point is also shared by the diffusion coefficient, which is directly pro-
portional to conductivity [108] and in the case of electrons it is related to the latter quantity as
D = σ/ [nse

2ρ(EF )]. On the insulating side, instead, if we integrate the beta-function over the
conductance from a g = g0− = gc(1− ϵ) until g ≪ 1, and over the length from L0− to L ≫ 1, we
end up with:

ln

(︃
L

L0−

)︃
=

∫︂ ln g−

ln g0−

sd ln g′

ln (g′/gc)
+

∫︂ ln g

ln g−

d ln g′ =

= s ln

[︃
ln (gc/g−)

ln (gc/g0−)

]︃
+ ln (g/g−) .

From the previous relation, we can find a relation for the dimensionless conductance,

g = e−2L/ξ , with ξ :=
2L0 ln g

1/(s−1)
c

gsc

[︂
ln g

s/(s−1)
c

]︂s (gc − g0−)
−s ,

that decays with a localization length ξ, which diverges at the critical point. Expressing it as a function
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of the energy [107], using gc − g0− = KE(Ec − E), it reads:

ξ :=
2L0

(KEgc)s
ln g

1/(s−1)
c[︂

ln g
s/(s−1)
c

]︂s (Ec − E)−s ,

where here, in d = 3, the exponent s corresponds to ν . For d > 2, the scaling relation between
the exponents ν and s (appearing in Eq. (1.24)) is s = (d − 2)ν , a result that was retrieved by
Wegner [84], starting from the expansion of the beta function in dimension d = 2+ ϵ, slightly above
the lower critical dimension for the Anderson localization transition. Similarly to the metallic case,
the characteristic length ξ can be expressed in terms of the disorder parameterW in vicinity of the
critical point as

ξ ∝ (W −Wc)
−ν .

An equivalent definition of the dimensionless conductance g is provided by the so-called Thouless
number [109]:

g =
δE

∆E
= f(L/ξ(E)) . (1.25)

In the latter reformulation of the dimensionless conductance,∆E represents the average energy-level
spacing, that can be expressed as the derivative dn(E)/dE , where n(E) is the cumulative density of
states: n(E) =

∫︁ E
dE ′Ldρ(E ′). The quantity at the denominator of Eq. (1.25), δE , denotes instead

the energy-level width, given by the geometrical mean of the energy shift which results from switching
the boundary conditions from periodic to antiperiodic ones [29]. Approximating excited states as
plane waves, a change in boundary conditions results in a variation of the allowed wavevectors
ki ↦→ ki + π/L and thus the energy varies as:

δEext = Epbc − Eapbc =
∂E

∂ki
δki ∝ L−1 ,

whereas for a localized state, the variation is:

δEloc ∝ e−L/ξ(E) ,

thus roughly recovering the scaling behaviour we have previously seen, starting from the transmis-
sion probability of a particle.
According to the alternative definition provided in [100], the numerator of Eq. (1.25) can be expressed
2πnsET = nsh/τT , which is the energy associated to Thouless time τT , i.e. the time to diffuse from
one boundary of the sample to the other. The latter quantity corresponds to τT = L2/D = L2d/vℓ,
where D denotes the diffusion coefficient and v the group velocity of the wave-packet. The latter is
then localized when it is unable to reach the boundary of a sample, condition that is fulfilled when
the Thouless time exceeds the Heisenberg time, that is the longest time in which a wavepacket can
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Universality Class Symmetry of the Hamiltonian Critical exponent ν
Time Spin d = 1 d = 2 d = 3

Orthogonal ✓ ✓ X X 1.571± 0.02 [76]
Symplectic ✓ X X 2.73± 0.02 [76] 1.375± 0.016 [76]
Unitary ✓ ✓/X X 2.71± 0.06 [111] 1.438± 0.004 [76]

Table 1.1 – Numerical values of the critical exponent ν according to dimension d and global symmetries
of the Hamiltonian.

propagate without visiting a region twice.
The critical exponents that characterize the behaviour of conductance (in the metallic case) and lo-
calization length (in the insulating one) in dimensions d > 2 are regarded as universal, since they
are independent of the particular form of the Hamiltonian (for instance, they are not tied up with the
disorder potential distribution), but only on its global symmetries. The first universality classes that
have been identified are the Wigner-Dyson classes [110], based on the changes in the dynamics under
time reversal and spin rotation. Systems described by Anderson Hamiltonian (Eq. (1.9)) are invariant
under the aforementioned transformations and belong to the orthogonal universality class. When
spin-rotation symmetry is not preserved , unlike the time-reversal one, as, for example, in the pres-
ence of spin-orbit coupling (case analysed in Chap. 4), the corresponding class is the symplectic one.
In the absence of time-reversal symmetry, instead, like when an external magnetic field is applied, the
system belogs to the unitary universality class, regardless of invariance over spin rotations. Labelling
the three classes with the indices β = 1, 2, 4 in the order in which they have been presented, an
analytic expression for the localization length in the insulating regime has been derived within the
framework of the DMPK approach [101] for quasi-one-dimensional systems with length L≫ bℓ:

ξ = (βb+ 2− β)ℓ .

The symmetries listed above, which were identified [112] in relation with three random matrix en-
sembles (that will be presented in App. A.1), have proven to be far incomplete in the description
of disordered systems. Three chiral classes have been in fact identified by Gade [113] in order to
elucidate system possessing also chiral symmetry, appearing, for instance, in bipartite lattices, de-
scribed by tight binding models with randomness concentrated only in the hopping terms. The
names of such classes follow those of the three previously enumerated ones. Four further classes
have been introduced by Zirnbauer [114] [115], capable to explain the dynamics of random systems
lacking chiral symmetry and described by Bogoljubov-de Gennes Hamiltonians, like quasiparticles in
disordered superconductors. Unlike chiral classes, the Bogoljubov ones are in greater number since
spin-rotation invariance has an impact even in the absence of time-reversal invariance, as it combines
with the particle-hole symmetry in a non-trivial way.
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1.5 Anderson localization of pairs: previous results

The effects of mutual interactions in the propagation of particles in disordered media represents an
important many-body problem that has been investigated since the eighties, focusing in particular
on electronic systems. A scaling theory for many-body systems subject to Coulomb interaction was
proposed in 1983 by Finkelstein [116] [117], who treated the case in which a magnetic field suppresses
the quantum interference contributions responsible for weak localization. It has been shown that
electron-electron interactions can reduce the quantum interference effects at the basis of localization.
The discovery of anomalously large currents in mesoscopic metallic rings in 2D [118] [119] [120] [121]
has fostered the research in the topic [122]. Since the size of the Hilbert space grows exponentially with
increasing system size, numerical studies have been restricted to few particles in low dimensions.
In the following paragraphs we will review the most relevant results on the simplest interacting
system, the one involving two particles, in lattice with d = 1, 2.

1.5.1 1D geometry

The first theoretical investigation of disorder effect on the two-particle problem in a chain was car-
ried out by Dorokhov [123], who pointed out that strong and long-range attractive interactions lead
to a remarkable increase of localization length. Soon after, the case of short-range interactions was
discussed by Shepelyansky [124], starting from the disordered Hubbard Hamiltonian. The corre-
sponding stationary Schrödinger equation is given by:

(vi + vj + Uδi,j)ψi,j − J(ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1) = Eψi,j ,

where ψi,j represents the wave-function describing the two-particles at the positions i and j along
the chain, whereas U indicates the Hubbard interaction strength. Mapping the original problem into
a particular ensemble of band random matrices, he derived an approximate relation between the
two-particle and the single-particle localization lengths, denoted as ξtp and ξsp respectively, finding
that the former length is enhanced for increasing interaction strength U , as

ξtp ∼
(︁ U2

32aJ2

)︁
ξ2sp . (1.26)

Moreover, he underlined that this effect is independent of the sign of interaction when the total energy
of the pair, E , is zero. The specific form of the latter relation has been subject of several studies [125–
131], examining also the behaviour of the pair localization length in the limits of strong (U ≫ J ) and
weak (U ≪ J ) interactions [132]. The physical implications of Shepelyansky’s relation were further
clarified by Imry’s arguments [133], based on the Thuouless’ block-scaling picture. He began dividing
a chain of length La (a being the lattice spacing) into blocks of length ξsp, thus containing on average
ξsp/a one-particle states, described by wavefunctions ψα(x) ∼ cα√

ξsp
e
− |x−xα|

ξsp , where cα is a complex
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random phase factor. Analogously as in the single-particle problem (see Eq. (1.25)), Imry defined a
dimensionless conductance between neighbouring blocks gtp, which has been later proven to be the
only scaling variable [134], as:

gtp ∼
ANB⟨(Iγδαβ)2⟩

∆Etp

,

where ∆Etp ∼ Bspa
2/ξ2sp, Bsp ∝ J being the band width of the one-particle problem, while ⟨·⟩

indicates the typical value of the quantity in brackets. The latter, Iγδαβ , is the interaction matrix element
between the single-particle states, labelled by the greek letters and evaluated inside a single block,
whereas ANB is a suppression factor which accounts for the superposition between wavefunctions
in neighbouring blocks. The interaction matrix element reads:

Iγδαβ = La

∫︂
dx

∫︂
dx′ψ∗

α(x)ψ
∗
α(x

′)Uδ(x− x′)ψγ(x)ψδ(x
′) .

Assuming the coefficients cα are uncorrelated and considering low disorder and interaction (U,W ≲

J ), the author reckoned ⟨(Iγδαβ)2⟩ atU2a3/ξ3sp. The two-particle localizaton length was then defined as
the length at which gtp ∼ 1, starting from the ohmic regime, where gtp/gsp = ξsp/ξtp, in accordance
with Eq. (1.18). Then Imry found ξtp ∼ ξ2spU

2/(B2
spa), in rough agreement with Shepelyansky’s

result.
On the other hand, by mapping the original problem into a single-particle one in d = 2 and per-
forming numerical simulations based on transfer-matrix method, a technique that we will illustrate
in Chap. 2, Römer et Al. [135] detected the disappearance of the phenomenon for increasing lattice
size. However, as pointed out by Frahm et Al. [125], this behaviour is traced back to the inexactitude
of the numerical procedure, that led to an estimate of ξtp deeply influenced by single-particle trans-
port. A different numerical method, based on the evaluation of the two-particle Green’s function, a
quantity, whose meaning will be elucidated in Chap. 3, was proposed by von Oppen et Al. [136],
who suggested a linear correction in ξsp to Eq. (1.26), and extended the result to particles following
the Fermi-Dirac statistics. Moreover, the same group, through a decimation method later proved that
interaction delocalizes primarily the center-of-mass motion rather than the relative one [137].
Further research has concerned energy level statistics [127], level curvature [138], time evolution of
wave-packets [139] [140] [141], and the fractal structure of the interactionmatrix elements [142] [143] [144].
An expression for the change in localization length due to short-range interactions in quasi-1D sys-
tem was obtained using an approach based on nonlinear σ-models [145] and on the truncation of
the Hilbert space. Although the effect of interaction-induced enhancement is well established, the
specific dependence of ratio ξtp/ξsp is still debated at the centre of the band [146] [147] [148] as well
as at finite total energy [146,149,150], as portrayed in Fig. 1.12. This figure shows that this effect is
strongest at intermediate values of the interaction strength, where ξtp/ξsp takes its maximum value:
for higher disorder this occurs for increasingly weaker interaction.
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Figure 1.12 – Dependence of ratio ξtp/ξsp on U for E = 0 (left panel) and E = J (right panel) and
the random-potential values W = {0.75, 0.875, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7}J corresponding to
decreasing curves. Here ξtp represents the localization length obtained by finite-size scaling at the inter-
action strength U . The curves are shown on normal scale in the interval −8J ≤ U ≤ 8J with errorbars
for data within the range 2J ≤ |U | ≤ 4J eavluated at the four lowest values of W . The errorbars for
the other curves are below line width. From Ref. [146].

1.5.2 2D geometry

For the 2D analogue of the Shepelyansky problem, Thouless block-scaling approach predicts an ex-
ponential enhancement of the two-particle localization length, compared to the single-particle coun-
terpart, when interactions are weak. Starting from the approach previously illustrated for the one-
dimensional case, Imry [133] partitioned a two-dimensional lattice in blocks of (ξsp/a)2 states on
average, thus finding for the typical interaction matrix element ⟨(Iγδαβ)2⟩ ∼ U2a6/ξ6sp. Under the
same conditions on interaction and disorder parameter, he imposed gtp(ξtp) ∼ 1 and, exploiting the
result of perturbation theory g2(ξsp) ≈ g20 − e2

ℏπ2 ln
(︁ ξsp

ℓ

)︁
[90], he obtained egtp(ξtp)

egtp(ξsp) ≈
(︁ ξsp
ξtp

)︁e2/(ℏπ2).
The latter equation gives thus [152,153]:

ξtp ∼ ξspe
π2ℏA2U2

e2B2
sp

(︁
ξsp
a

)︁2
,

where the enhancement of ξtp is particularly large at weak disorder (see Eq. (1.13)), but still finite. The
problem was numerically investigated for the first time by Ortuño and Cuevas [151], who extracted
the localization length by computing the two-particle Green’s function (see also Ref. [154], where the
same problem is addressed using energy-level statistics). By performing numerical simulations on
relatively short grids of up to 10 × 62 sites, they observed the signature of an Anderson transition
W = (9.3 ± 0.2)J for U = J and total energy E = 0 (centre of the band). They also provided
an estimate of the critical exponent ν = 2.4 ± 0.5. Their results are displayed in Fig. 1.13, where
the reduced localization length ΛM (see Chap. 2 for more in-depth explanations) is represented as a
function of the two-particle localization length ξtp and exhibits the characteristic two-branch structure
typical of 3D disordered systems, where both localized (lower branch) and extended (upper branch)
states are present.
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Figure 1.13 – Log-log plot of the reduced localization length ΛM as a function of ξtp/(Ma) evaluated at
17 different values of the disorder parameter 6J ≤W ≤ 15J . In the inset the dependence of the natural
logratihm of ξtp (in units of the lattice onstant) on the random-potential amplitude in units of tunnelling
is shown, at the same energy E = 0 and interaction U = J . From Ref. [151].

The appearance of this phenomenon was confirmed by Schreiber’s group [153] via the decimaton
method, obtaining slightly different numbers for the critical disorder stength, W = (8.1 ± 0.1)J .
In the same article the authors obtained the phase diagram of localization in the interaction-disorder
plane, shown in Fig. 1.14. However Shepelyansky [155] questioned the above results of Ref. [151],
suggesting that they were ascribable to finite-size effects due to the smallness of the considered lat-
tices and, based on Imry’s arguments, he ruled out the possibility of an Anderson transition in 2D for
two short-range interacting particles.
Concerning the case of long-range Coulomb interaction potentials, like those acting in electron gases,
the appearance of a metal-insulator transition was also predicted by Shepelyansky [156]. The con-
jecture was also supported by numerical simulation based on the statistics of energy levels. Defining
si :=

Ei+1−Ei
⟨∆E⟩ , where ⟨∆E⟩ denotes the average energy spacing, and P (s) as the probabiliy distri-

bution of them, the following quantity

ηD(W ) =

∫︁ s0
0

ds [P (s)− PWD(s)]∫︁ s0
0

ds [PP (s)− PWD(s)]
. (1.27)

was computed for different values of the disorder parameterW . In the definition of ηD in Eq. (1.27),
PP (s) corresponds to Poisson’s distribution, signalling localized states, and PWD(s) the Wigner-
Dyson distribution, associated to extended states, whose functional form is specified in App. A.1.
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Figure 1.14 – Phase diagram of the two-particle Anderson transition in d = 2. The data point for U = J
indicates the result of Ref. [151]. The error bars represent the error propagation coming from the finite-
size scaling procedure (presented in Sec. b)). In the inset the power-law fit to the data for U ≥ 0.4J is
displayed and the exponent found is 0.36. From Ref. [153].

This method allowed to obtain a critical regime of P (s) in the range 7J ≤ W ≤ 10J , where ηD
approaches the critical value of the single-particle Anderson model, ηD,c = 0.20.
Recent simulations aiming at inspecting the behaviour of the inverse participation ratio show that,
for two hardcore bosons in 2D lattices, the localization length is enhanced by interactions as long
as U ≤ 4J , whereas at higher interaction the two-particle wavefunctions get more extended in the
space [157].
In the light of the controversy on the occurrence of a metal-insulator transition in the presence of
short-range interactions, the problem in d = 2 appears to be still interesting and in Chap. 3 we will
present the results of our research on it.

1.6 Conclusions

In this chapter we have shown an overview of Anderson localization as a wavelike phenomenon,
providing also a brief survey on the experimental platforms in which it has been sought and observed.
We have then illustrated the localization properties of Anderson’s model, discussing in details the
nature of the eigenstates, the energy spectrum and the phase diagram in three dimensions. One of
the main goals of the thesis is to understand how this phase diagram generalizes in the presence
of interaction. The link between the spatial behaviour of the wave-functions and the macroscopical
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properties is highlighted through the description of the scaling theory of localization.
Finally, we discuss the combined effects of interactions and disorder, focusing on the problem of two
particles coupled by short-range interactions. Prior to the presentation of our research on the latter
topic, we will explain how we tested suitable numerical methods on the single-particle case, already
investigated in literature.



CHAPTER 2

NUMERICAL APPROACHES TO ANDERSON TRANSITIONS

In this chapter we present the numerical techniques that we have used in this thesis to estimate the
position of the critical point of the Anderson transition. We start by discussing the transfer-matrix
technique [15–17,76,158,159], which is the method of choice for disordered lattice system with short-
range hopping. In this method the transmission amplitude calculated from quasi-1D bars allows to
extract the associated Lyapunov exponent with great accuracy. This technique can also be adapted
for continuous systems, as we shall discuss in Chapter 4, where it will be applied to the study of
atoms in correlated random potentials.
Next, we present an alternative procedure where the Lyapunov exponent is extrapolated starting
from much shorter bars, by appropriately sampling the transmission amplitude along the bar. We
illustrate the convergence and the accuracy of this algorithm in the context of the Anderson model
in three dimensions. In particular, we show that the results for the position of the mobility edge as
well as the value of the critical exponent of the Anderson transition are in very good agreement with
the more accurate estimates based on transfer-matrix algorithms.
In the last section we introduce the disorder-averaged density of states, associated to the disordered
model. We outline our numerical procedure to compute it from the knowledge of the energy spec-
trum. We compare our numerical results for the three-dimensional Anderson model with theoretical
estimates based on the coherent-potential approximation, noticing a very good agreement. The same
approach will be followed in the context of the two-particle problem.

2.1 Computation of the critical point

In this section, two different numerical procedures are presented for the estimation of the localization
length of wave-functions in bar-shaped lattices. This quantity, extracted from finite-size systems will
be useful in the identification and in the computation of the critical point of Anderson transition of
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one particle in three dimensions.

2.1.1 Transfer-matrix method

One of the most widely used numerical methods for investigating the problem of one particle in a
disordered lattice is the transfer-matrix method, that has proved to be an efficient technique, suitable
for a model endowed with short-range hopping, like Anderson’s one.
As in the example shown in Sec. 1.4.1 in the presentation of Scaling theory, the transfer-matrix
procedure allows one to use a set of quantities evaluated at a given position to express the ones
related to an adjacent position. In order to clarify its meaning, we consider wavefunction of a single
particle in three dimensions, which satisfies a time-independent Schrödinger equation:(︃

− ℏ2

2m
∇2 + U(rrr)

)︃
ψ(rrr) = Eψ(rrr) , (2.1)

In a bar-shaped lattice with M sites along the transverse directions and N ≫ M sites along the
longitudinal one, the Laplacian operator can be approximated according to the centered-difference
scheme, derived from expansion in Taylor’s series up to the second order in the distance,

∂2ψ(rrr)

∂x2
↦→ ψijk+1 + ψijk−1 − 2ψijk

a2
, (2.2)

where a is the latting constant and ψijk corresponds to ⟨rrr|ψ⟩. Repeating the above approximation
to all the coordinates and placing the z axis parallel to the longer side of the lattice, starting from Eq.
(2.1) we are left with the relation:

ψijk+1 =

(︃
vijk − E

J

)︃
ψijk − ψi−1jk − ψi+1jk − ψij−1k − ψij+1k − ψijk−1 , (2.3)

where i, j = 1, 2, ...,M and k = 1, 2, ..., N , whereas J := ℏ2
2ma2

and vijk := Uijk − 6J . This
equation, Eq. (2.3), is nothing but a recursive equation having the same form as the one which
can be obtained by plugging Anderson Hamiltonian (Eq. (1.9)) into stationary Schrödinger equation
Ĥ|ψ⟩ = E|ψ⟩, where J represents the hopping amplitude and vijk the random potential at that site.
After evaluating the right-hand side of Eq. (2.3) in all sites in the lattice section lying on the z = ka

plane, we build aM2-component vector, ψψψk+1 := (ψ11k+1, ψ21k+1, .., ψM1k+1, ψ12k+1, ..ψMMk+1)
T ,

and get the following relation with vectors ψψψk and ψψψk−1:(︄
ψψψk+1

ψψψk

)︄
=

(︄
VVVk −1
1 0

)︄(︄
ψψψk

ψψψk−1

)︄
= TTTk

(︄
ψψψk

ψψψk−1

)︄
=

1∏︂
m=k

TTTm

(︄
ψψψ1

ψψψ0

)︄
,
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Figure 2.1 – Representation of theM2N elongated random lattice, at whose ends the asymptotic expo-
nential attenuation of a wave-function is estimated through the computation of the localization length.

whereTTTk is the transfer matrix and 0 is theM2×M2 zero matrix. A peculiar feature of the transfer
matrix is that it is symplectic, i.e. it obeys the relation:

JJJTTTJJJ = TTT−1 ,

where

JJJ =

(︄
0 1

1 0

)︄
.

For this reason, the eigenvalues of the transfer matrix occur in pairs (ti, t−1
i ), with eigenvectors

(vvvi, JJJvvvi), where i = 1, 2, ...,M2.

Furthermore, the matrixVVVk with k = 1, ..., N is a sparseM2 ×M2 matrix, that, after imposing
periodic boundary conditions, takes the following structure:

VVV k =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

VVV 1k −1 0 · · · 0 −1

−1 VVV 2k −1 . . . . . . 0

0 −1 VVV 3k
. . . . . . ...

... . . . . . . . . . . . . 0

0
. . . . . . . . . . . . −1

−1 0 · · · 0 −1 VVV Mk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where each block of the matrix can be written as:

VVV jk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1jk−E

J
−1 0 · · · 0 −1

−1
v2jk−E

J
−1

. . . . . . 0

0 −1
v3jk−E

J

. . . . . . ...
... . . . . . . . . . . . . 0

0
. . . . . . . . . . . . −1

−1 0 · · · 0 −1
vMjk−E

J

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The boundary conditions along the transverse directions allows to reduce effects due to the finiteness
of the lattice size.

Labelling withMMMk :=
∏︁1

m=kTTTm the transfer-matrix product performed up to the section in the
z = ka plane, the product (MMMNMMM

†
N)

1/N approaches an asymptotic matrix in the limit of N → +∞,
as stated by a theorem due to Oseledec [160]. Denoting the eigenvectors of ΩΩΩN :=

(︁
MMMNMMM

†
N

)︁1/2N
with {www(N)

i }, where i = 1, 2, ..., 2M2, the corresponding eigenvalues, {e±γ
(N)
i }, appear in couples of

opposite sign. In the limit of infiniteN , their natural logarithms converge to the Lyapunov exponents
γj of the system:

lim
N→+∞

(︁
www

(N)T
i MMMT

NMMMNwww
(N)
i

)︁1/2N
= lim

N→+∞
∥MMMNwww

(N)
i ∥1/N = eγi .

Viewing the z-coordinate as time, the γj measure the separation between infinitesimally close trajec-
tories of a dynamical system described by a map given by the transfer matrixTTT. Any arbitrary vector,
representing the wave-function, can be described by a set of vectors whose asymptotic divergence is
given by different Lyapunov exponents, and the smallest of them corrsponds to the slowest decay of
the wave-function in space, which is equal to the reciprocal of the localization length [105] λM of the
finite-size system:

λM =
1

γM2

,

where the superscript of γ comes from the fact that the exponents are sorted in descending order,
γ1 > γ2 > · · · > γM2 . In numerical computations, all Lyapunov exponents γi tend to converge
towards the highest one, due to round-off errors: to avoid this shortcoming one has to keep all
vectors wwwi, with i = 1, 2, . . . ,M2 orthogonal to each other. Considering an initial vector ϕϕϕ(1) that
contains equally weighted contribution from every eigenvector vvvi ofTTT1, after n iterations of the map,
the iterated vector will become approximately equal to

ϕϕϕ(n) ≈
M2∑︂
i=1

(︃
entivvvi + e−ntiJJJvvvi

)︃
,

in which the fractional weight of the eigenvector corresponding to the smallest positive exponent
tmin is roughly wn = e(tmin−tmax)n. When wn is larger than the accuracy ϵcomp of the machine, the
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information about tmin, necessary to estimate the localization length, is lost and the transfer matrix
becomes singular. We are thus required to restore the orthonormality of the columns of TTT, after an
appropriate number of iterations of the transfer-matrix product.
The most direct procedure is provided by the Gram-Schmidt’s method, which nevertheless is not
very efficient. A faster and more numerically stable algorithm is the one given by the QR factorisa-
tion, introduced by Slevin in [159], who proposed to decompose the transfer-matrix product into a
2M2 ×M2 matrix with orthogonal columns QQQ and an upper triangular invertible M2 ×M2 ma-
trix RRR. Supposing that this decomposition is repeated nO times, at intervals of nI transfer-matrix
multiplications, the product found at the l-th step of the procedure is:

QQQ(l)RRR(l) = TTTlnITTTlnI−1...TTT(l−1)nI+1QQQ
(l−1) .

whereQQQ(0) is the orthogonal matrix at the first step. In this way, it is possible to extract the positive
Lyapunov exponents {γi} with i = 1, 2, ...,M2 from the diagonal elements ofRRR(nO):

γi =
1

Na
lnR

(nO)
i,i .

Since the diagonal elements of the upper triangular matrix appear in decreasing order, the lowest
exponent, corresponding to the inverse of the localization length λM of the finite-size quasi-1D system,
is γM2 , that we name for the sake of simplicity γM .

2.1.2 Green’s function technique

An alternative method for analysing the same kind of lattices is the one making use of the Green’s
function, introduced by MacKinnon and Kramer [18] [161]. Differently from the transfer-matrix one,
it is suitable also for dense matrices, as the ones representing the two-body Hamiltonian, as we will
see in Chap. 3.
Resuming the one-particle case, applying periodic boundary conditions along transverse directions x
and y, but not along z, the Hamiltonian in Eq. (1.9) in the site basis, written as aM2N×M2N matrix,
takes a block-tridiagonal formHHH = tridiag(−1,HHHi,−1), where each blockHHHi with i = 1, 2, . . . , N

is a M2 ×M2 symmetric matrix. At given values of tunneling J , disorder W and energy E , the
Green’s function can be drawn from the Hamiltonian using

GGG(E) = (E1−HHH)−1 . (2.4)

Each element of the matrix GGG(E) represents the Green’s function calculated at the site (rrrm, rrrn) in
the lattice, where rrrm = (xm, ym, zm)

Ta and mm = xm + (ym − 1)M + (zm − 1)M2.
Writing it in aN ×N block structure too, its off-diagonal elements belonging to theM2×M2 block
GGG1n, where n ≤ N , are necessary for determining the transmission amplitude between one end of
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the bar and the slice of the three-dimensional bar lying on the plane z = na:

t1n = J2|TrGGG1n|2 =
M2∑︂

m1=1

nM2∑︂
mn=1+(n−1)M2

J2|Gm1mn |2 , (2.5)

where the single matrix index is connected to the position of the particle (xk, yk, k)Ta in the k-th
cross-section of the lattice, shown in Fig. 2.2, through the relation:

mk = xk + (yk − 1)M + (k − 1)M2 ,

in which k ∈ {1, 2, . . . , n} and n ≤ N .

a) Recursive method

In the case of matrices with short-range hopping like the one-particle Hamiltonian, a quicker numer-
ical procedure for obtaining GGG without diagonalizing HHH consists in calculating only the elements in
the blockGGG1N(E) in Eq. (2.5) recursively [161]. Considering lattices with n ≤ N sites along z and la-
belling theM2×M2 blocks into which the Green’s function is split asGGG(n)

i,j (E), with i, j = 1, 2, .., n,
the following relations can be exploited [79]:

GGG
(n+1)
1,n+1(E) = GGG

(n)
1,n(E)GGG

(n+1)
n+1,n+1(E)

GGG
(n+1)
n+1,n+1(E) =

[︂
E1−HHH

(n+1)
n+1 − J2GGG(n)

n,n(E)
]︂−1 , (2.6)

where GGG(n)
1,1 (E) = (E1 −HHH

(1)
1 )−1 and HHH(n+1)

n+1 is the block of the Hamiltonian related to the lattice
with n+ 1 sites along z, evaluated at the right end of the bar.

b) Direct-inversion procedure

To dense matrices, the recursive formula (Eq. (2.6)) in Sec. a) is not applicable, so a more compu-
tationally expensive method is needed. In this case, the most direct solution consists in determining
GGG(E) from the inversion of the one-particle Hamiltonian HHH , therefore following Eq. (2.4). Alterna-
tively, the single-particle Hamiltonian HHH can be diagonalized, thus finding its eigenvalues {εs} and
eigenvectors {ϕϕϕs}, where s = 1, 2, ...,M2N . The Green’s function associated to the particle at
energy E can be then evaluated as:

GGG(E) =
M2N∑︂
s=1

ϕϕϕ†
sϕϕϕs

E − εs
. (2.7)
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Figure 2.2 – Lattice showing the sites (shaded in yellow and red) at which the transmission amplitude
t is computed and retained for the subsequent fit, to the end of estimating the Lyapunov exponent
characterizing the one-particle wavefunction between the cross-sections lying in z = a and z = na ≤
Na.

2.1.3 Accuracy test of the direct-inversion method

a) Extraction of the Lyapunov exponent

The Lyapunov exponent associated to the transmission of the particle between the two ends of the
bar can be recovered by retaining only the t1N [18]:

γ
(Tri)
M (N) = − ln (t1N)

2a(N − 1)
, (2.8)

where the superscript ‘Tri’ labels the ‘triangular’ method we are using for estimating the quantity.
Another method consists in fitting the values of (n, ln t1n) at regular intervals ∆n, starting from
a n0 not too small, in order to ensure that the behaviour of the transmission amplitude t1n as a
function of the position along the z axis is exponential. Fitting the data (i∆n, ln t1i∆n) where i =
1, 2, . . . , N/∆n with a straight line ln t1n = pn + q, from the slope p we obtain the Lyapunov
exponent between the cross-sections 1 and N as

γ
(Fit)
M (N) = − p

2a
. (2.9)

The procedure is repeated for many disorder realizations, and the average value γM(n) is found, in
order to estimate the reduced localization length ΛM = (MaγM)−1 in Eq. (2.10), which depends on
the parameters of the Hamiltonian (E,W, J).

The Lyapunov exponents for different realizations of the random potential allow one to calculate
a dimensionless reduced localization length ΛM , that describes the behaviour of the system under
changes of the number of sites along a transverse directionM . Keeping the parameters (E, J) of the
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Figure 2.3 – Convergence study of the reduced localization length as a function of the position along
the z direction in units of lattice constants. The blue points represent the ones found with the usual
‘triangular’ procedure (Eq. (2.8)) while the ones in red are those found using linear regressions (Eq.
(2.9)). The analysis is carried out with by fixing the parameters of the Anderson’s Hamiltonian (Eq.
(1.9)) as follows: the total energy is E = 0 (middle of the band), the typical disorder is W = 16.5J .
Concerning the lattice, M = 12, N = 150, whereas Ntr = 701. The dashed line corresponds to the
estimate ΛM = 0.5814±0.0004 obtained from transfer-matrix calculations performed on a bar of length
N = 105 lattice constants after averaging over Ntr = 240 disorder realizations.

Hamiltonian as fixed, ΛM can be written as:

ΛM(W ) =
1

MaγM(W )
= fd

(︃
ξ(W )

M

)︃
, (2.10)

According to the one-parameter scaling ansatz [16], this quantity depends on a characteristic length
ξ(W ) through a function fd which is regular in d ≤ 2, and depends on the universality class. This
characteristic length, that corresponds also to the limit ξ(W ) = limM→+∞ λM(W ) = limM→+∞ γM

−1,
represents the localization length of the infinite system in d ≤ 2 as well as in the insulating phase at
higher dimensions, or the correlation length in the metallic phase in d > 2.
While in d = 2 fd increases monotonically as fd(ξ/M) = ξ/M , in d = 3, fd develops a singular
behaviour with an upper branch in which it decreases as fd(ξ/M) =M/ξ atW < Wc [18], whereas
in the lower branch the reduced localization length behaves as in the two-dimensional case [161].
We will illustrate the behaviour of the scaling function around the critical point in next paragraph,
while presenting the finite-size scaling technique.
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Figure 2.4 – The reduced localization length evaluated for different system sizes with transfer-matrix
(TM) and Green’s function (GF) methods. The common intersection between the curves represents the
critical point, at which d lnΛM/d lnM = 0, highlighted also by the red vertical dashed line.

b) Finite-size scaling analysis

In order to estimate the universal properties such as the critical exponent ν and the reduced localiza-
tion length Λc, and the system-dependent ones, as the critical disorder parameterWc or the critical
energy Ec in d > 2, an accurate procedure is provided by the finite-size scaling method [17]. The
starting point is the expansion in Taylor series of the reduced localization length around the critical
value of the typical random potential amplitude, which separates the localized from the extended
states at fixed energy and tunneling. This reduced localization length can thus be written as:

Λ
(FSS)
M (W ) =

m∑︂
i=0

ci
(︁
uR(W )M1/ν

)︁i
, (2.11)

where:

uR(W ) =
n∑︂

j=0

bj

(︃
W −Wc

Wc

)︃j

. (2.12)

Since at the critical point Λ(FSS)
M (E,Wc, J) is independent of system sizeM , the coefficient b0 is set

to zero, whereas c1 is set to unity due to undefined scale or free b1 as fit parameter.

For a set of values of W and four lattice sizes, to the purpose of finding the best estimate of the
parameters (a0, a2, ..., am, b1, .., bn,Wc, ν), a non-linear fit using Levenberg-Marquardt algorithm is
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ν Λc Wc/J N NTr

Transfer matrix 1.55 ± 0.02 0.582 ± 0.002 16.49 ± 0.03 50000 240
Green’s function 1.58 ± 0.06 0.583 ± 0.006 16.50 ± 0.06 150 1200

Table 2.1 – Critical values of the reduced localization length and the random potential amplitude obtained
with two different numerical methods starting from N-sites long quasi-1D lattices. The value of the
critical exponent ν is in excellent agreement with the one found in [76], exposed in Tab. 1.1.

performed, minimizing the χ2 with ND − 2−m− n degrees of freedom:

χ2 =

ND∑︂
l=1

(Λ
(FSS)
M,l − ΛM,l)

2

σ2
l

(2.13)

where σ2
l is the statistic uncertainty on ΛM,l. To the end of comparing the results obtained with

the two numerical methods, we estimated the least Lyapunov exponents fot NTr realizations of the
random potential, then evaluated the reduced localization length and found its critical value as well
as the critical exponent and disorder using Λ(FSS)

M approximated up to the second order in the ex-
pansion. The results are listed in Tab. 2.1, while in Fig. 2.4 the behaviour of ΛM in the vicinity of the
critical point is shown.

Considering n = m = 3 in Eq.s (2.14) and (2.12), we have also estimated the behaviour of the
reduced localization length as a function of localization length ξ of the infinite-sized lattice, by setting
ξ/a = |ur(W )|−ν in Eq. (2.14). The separation of ΛM into two branches near the critical point is
shown in Fig. 2.5.
Due to is weaker dependence on number of sites along the z direction (M6N vs M8N4, that can
be reduced to M8N3 using a particular alogithm for block-tridiagonal matrix inversion, illustrated
in Chap. 3), the transfer-matrix method allows for the computation over much longer bars. Since
γM is a self-averaging quantity, performing simulations on larger lattices allows to lower the number
of realizations of the random potential necessary for achieving satisfactory accuracy of the estimates.
The finite-size scaling procedure can be also carried out by considering one of the irrelevant scaling
variables, as it has been done by Slevin and Ohtsuki [76], who preformed transfer-matrix calculations
for the estimates of the Lyapunov exponent. The first irrelevant variable fI , characterized by the
exponent y, contributes to ΛM with the function uI

(︁
W−Wc

Wc

)︁
, so that the reduced localization length

is approximated as

Λ
(FSS)
M (W ) =

NR∑︂
m=0

NI∑︂
n=0

cmn [fR(W,M)]m [fI(W,M)]n , (2.14)
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Figure 2.5 – The reduced localization length as a function of localization length in units of the transverse
side of the lattice. The orange curve has been obtained by fitting the data obtained by means of the
Green’s function method (GF) in Fig. 2.4 (dark green triangles) with the curve Λ(FSS)

M expanded up to
the third order in uR and (W −Wc)/Wc, and using the definition ξ/a = |uR(W )|−ν .

where

fR(W,M) =M1/νuR(W ) =M1/ν

MR∑︂
i=0

ai

(︃
W −Wc

Wc

)︃i

,

and

fI(W,M) =M−yuI(W ) =M−y

MI∑︂
j=0

bj

(︃
W −Wc

Wc

)︃j

. (2.15)

Setting c01 = c10 = 1 and a0 = 0, the number of parameters of the non-linear fit becomes NP =

2 + MI + MR + (NI + 1)(NR + 1) [158], where the critical exponents ν and y as well as the
critical disorderWc are included in the calculation. The reckonings executed by the aforementioned
authors led to an estimate of 3.3 ± 0.6 for the exponent y associated to the first irrelevant variable.
They also found the critical reduced localization length as Λc = 0.577 ± 0.001 and the critical
disorder parameter as Wc = (16.536 ± 0.006)J , considering a random potential following the
uniform distribution. The latter estimate is in full agreement with the one we have obtained, listed
in Tab. 2.1.

2.2 Disorder-averaged density of states

Unlike the localization length, the density of states ρ̄(E) averaged over disorder configuration has a
smooth behaviour near the critical point and it can be well predicted also analytically. In the follow-
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ing, we present a numerical method to determine it and we will compare the results against the ones
derived from the Green’s function within the coherent potential approximation (CPA).
Considering a cubic lattice withM3 sites and imposing periodic boundary conditions to the Hamil-
tonian along the three directions, we begin by diagonalizing the HamiltonianHHH . Repeating the pro-
cedure forNtr disorder realizations, and labelling the eigenvalues as {εα,r}, where r = 1, 2, . . . , Ntr

identifies the single configuration of the random potential, the disorder-averaged density of states can
be expressed as:

ρ(E) =
Ntr∑︂
r=1

M3∑︂
α=1

δ(E − εα,r)

Ntr(Ma)3
, (2.16)

where, thanks to Gershgorin’s theorem [162], the eigenvalues ofHHH are within the interval
[︁
−W/2−

6J,W/2+6J
]︁
. The expression in the right-hand side of Eq. (2.16) can be reconstructed numerically,

starting from the subdivision of the energy interval of interest into a set of Nb ≈
√
M3 bins of equal

width, which at the same time satisfies ∆E ≪ (W + 12J). For each realization of the disordered
potential, the number eventualities in each frequency class {f(i, r)}with i = 1, 2, . . . , Nb is counted,
then the average value per unit volume is performed, in accordance with Eq. (2.16):

ρ(i) =
1

∆Ea3

Ntr∑︂
r=1

f(i, r)

NtrM3
.

From this function, an interesting quantity is represented by the band edges, which correspond to
the energy values delimiting the region where the disorder-averaged density of states is significantly
different from zero. The upper (resp. lower) band-edge position is then evaluated by identifying
the upper (resp. lower) energy Emax,l (resp. Emin,l) associated to the frequency class fl such that,
considering an ordered set of energies Emax/min,0 < Emax/min,1 < · · · < Emax/min,Nb associated to
the respective bin, f l+1 < 0.5 ≤ f l (resp. f l−1 < 0.5 ≤ f l ). Using this criterion, at W = 5J we
have been able to find El = ±(6.53± 0.04)J for the upper and the lower band edges respectively.

2.2.1 The coherent potential approximation

As previously disclosed, the density of states can also be well estimated analytically within the CPA,
according to which the disordered and uncorrelated potential around a single site can be replaced
by an effective medium. This theoretical framework interpolates between the strong- and the low-
disorder limits, but is not able to capture the singularities at band edges [81] and it is not suitable for
correlated potentials. For a cubic lattice with side L = Ma, it can be calculated starting from the
ordered system, described by Hamiltonian in Eq. (1.9) withW = 0. For a given value of the energy
E , the retarded single-site Green’s function G0(E) is translationally invariant, and can be written as:

G0(E) = lim
η→0+

+π/a∫︂∫︂∫︂
−π/a

d3kkk

(2π)3
L3

E − ε(kkk) + iη
, (2.17)
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Figure 2.6 – The density of states in the CPA approximation, calculated for different disorder typical
amplitudesW (solid lines), compared to the density of states of the ordered lattice (dashed line), described
by Eq. (2.18), with Eq.s (2.19)-(2.20).

whereas the advanced Green’s function is marked by a negative imaginary part at the denominator in
Eq. (2.17). Following Joyce [163], the unperturbed Green’s function of a cubic lattice can be expressed
as

G0(E) =
Q(6/E)

E
, (2.18)

where:

Q(z) =
1− 9ξ(z)4

(1− ξ(z)4)(1 + 3ξ(z))

[︃
2

π
K(ϕ(z))

]︃2
. (2.19)

Here ξ and k1 are functions of z defined as:

ξ(z) =

(︃
1−

√︁
1− z2/9

1 +
√
1− z2

)︃1/2

,

ϕ(z)2 =
16ξ(z)3

(1− ξ(z))3(1 + 3ξ(z))
,

where K(ϕ(z)) is the complete elliptic integral of the first kind:

K(ϕ(z)) =

∫︂ π/2

0

dθ√︁
1− ϕ(z)2 sin2 θ

. (2.20)

When disorder is included, the translational invariance of the Green’s function is recovered only
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after averaging over random-potential configurations:

G(E) := L3

+π/a∫︂∫︂∫︂
−π/a

d3kkk

(2π)3
Gkkk(E) = L3

+π/L∫︂∫︂∫︂
−π/L

d3kkk

(2π)3
1

E − ε(kkk)− Σ(E,kkk)
.

According to the CPA, the effect of the random potential can be reproduced by an effective one,
through the presence of a self-energy Σ which is constant in the space of the wave vectors. Calling
the Green’s function of the disodered system as G in the CPA, the latter quantity can be written as:

G(E) := [G0(E)]
−1 − Σ(E) = G0 [E − Σ(E)] .

Now, the total Green’s function operator Ĝ(E) := (E−Ĥ0− V̂ )−1, where Ĥ0 denotes the Hamilto-
nian of the ordered system, can be expressed in terms of the so-called t-matrix T̂ as Ĝ = Ĝ+ ĜT̂ Ĝ

[164]. Using this definition, the t-matrix, averaged over disorder realizations, must vanish. Consider-
ing a single site iii,

∫︁
dviii p(viii)⟨iii|T̂ |iii⟩ = 0 translates into the self-consistent equation:∫︂

dviii p(viii)
viii − Σ

1− [viii − Σ]G0

(︁
E − Σ

)︁ = 0 . (2.21)

For a random potential following the uniform distribution (Eq. (1.10)) in the interval [−W/2,W/2],
defining for simplicity g := G0(E − Σ), the condition in Eq. (2.21) leads to:

W +
1

g
ln

⃓⃓⃓⃓
2−Wg + 2Σg

2 +Wg + 2Σg

⃓⃓⃓⃓
= 0 . (2.22)

where the real part of the self-energy represents the shift in energy from Ekkk (Eq. (1.12)) owing to the
presence of disorder, coming from the renormalization procedure, whereas the imaginary part can
be interpreted as the broadening of the energy distribution or as 2τ/ℏ, where τ is the relaxation time
appearing in Drude’s formula of conductivity. By solving the latter equation, Eq. (2.22), for Σ(E)
and inserting the self-energy in the disorder-free Green’s function (Eq. (2.17)), the density of states,
plotted in Fig. 2.6, can be obtained:

ρ(E) := − 1

π
ImG(E) = − 1

π
ImG0 [E − Σ(E)] . (2.23)

By reexpressing the density of states in terms of the advanced Green’s function and self-energy, one
would obtain an analogous equation as Eq. (2.23), yet differing in the sign on the right-hand side.
The curve resulting from CPA approximation is plotted in Fig. 2.6 for different values of the disorder
parameter and in Fig. 2.7 atW = 5J , where it is compared against the one computed numerically.
The positions of the band edges found numerically prove to be utterly compatible with those predicted
by making use of the CPA approximation Ebe = ±6.5J (cf. Fig. 2.6). Although ρ(E) is not a scaling
quantity (as ΛM ) and its behaviour is smooth around the critical point, larger lattices allow one to
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Figure 2.7 – The density of states averaged over Ntr = 140 disorder ralizations calculated numerically
atW = 5J (light-orange dots) plotted against the one in the CPA approximation (blue solid line).

estimate the positions of the band edges more precisely, due to the greater number of eigenstates.
Therefore, the overlap between the two curves improves as long as N3 and NTr are increased.

2.3 Conclusions

In this chapter we have presented two numerical procedures for the extraction of the reduced lo-
calization length in bar-shaped grids. The first one is the transfer-matrix, which will be employed
in Chapter 4 to investigate Anderson transition of atoms in spatially-correlated potentials upon dis-
cretization of the laplacian operator using a high- (fourth-) order finite-difference scheme. The sec-
ond one is based on a direct calculation of the Green’s function via matrix inversion. Differently
from the transfer-matrix method, this technique applies to any kind of Hamiltonian, including those
with long-range hopping, like the effective model of the pair used in Chapter 3. However, due to the
larger computational cost, the length of the bar has to be considerably reduced. We have shown that,
in the context of Anderson’s model, the Lyapunov exponent can still be extrapolated with sufficient
accuracy, by appropriately sampling the logarithm of the transmission amplitude along the short bar.
In particular, we have shown that one can extract good estimates for the position of the critical point
and the value of the universal exponent of the Anderson transition. This gave us confidence that the
same approach can be used for studying the the two-particle problem. For the same model, we have
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tested our algorithm to compute the disorder-averaged density of states, making use of the energy
spectrum of the model previously obtained by exact diagonalization. Again, we have found a very
good agreement with well-known analytical results based on the coherent potential approximation.



CHAPTER 3

TWO-PARTICLE TRANSITIONS IN THE ANDERSON-HUBBARD
MODEL

Let us consider a disordered quantum many-particle system where all single-particle states are
Anderson-localized. A central problem in the field of many-body localization is the stability of the
insulating phase with respect to mutual repulsive interactions. Under certain assumptions, it has been
shown that the system undergoes a transition to the ergodic (metallic) phase at a finite value of the
interaction strength [87].
In this chapter we show that this a similar effect can appear also in a minimal model of two inter-
acting particles (bosons or fermions with opposite spins) moving in a disordered lattice. We start by
mapping the original two-body Schrödinger equation into an effective single-particle model, whose
properties are investigated numerically. Calculating the matrix associated to such an Hamiltonian
turns out to be computationally very challenging, even for systems sizes of say 10000 sites. To allevi-
ate the numerical effort we have implemented a recursive algorithm for matrix inversion tailored for
Hamiltonians with block-tridiagonal structure (only nearest-neighbour hopping). Once the effective
Hamiltonian is known, we compute the reduced localization length ΛM of the system by evaluating
the associated resolvent using the direct-matrix-inversion and the finite-size scaling techniques out-
lined in Chapter 2.
For two-dimensional systems we observe apparent critical points for relatively small lattice sizes, as
previously found in Ref. [130,151]. However, as we increase the system size, the interaction-induced
metallic phase shrinks considerably and tends to disappear for the largest lattices that we have ex-
plored.
In the remaining, we first perform a detailed analysis of the transition, for zero total energy of the pair
and fixed disorder strength, finding results compatible with the orthogonal universality class. Next
we build the complete phase diagram in the energy-disorder interaction space. We will interpret our
results in light of the disorder-averaged density of states of the effective model.
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3.1 Mapping to an effective single-particle model

The starting point of our investigation is an Anderson-Hubbard Hamiltonian, written in the two-
particle basis of Wannier functions {|iii, jjj⟩}. The Hamiltonian is composed of a noninteracting part
that can be written as:

Ĥ0 = Ĥsp ⊗ 1̂+ 1̂⊗ Ĥsp ,

where Ĥsp corresponds to Anderson’s Hamiltonian (Eq. (1.9)), with an uncorrelated and uniformly-
distributed random potential. Considering a short-range interaction, Û = UP̂ , where P̂ :=

∑︁
iii|iii, iii⟩⟨iii, iii|,

the total two-body Hamiltonian Ĥ = Ĥ0 + Û reads:

Ĥ = −J
∑︂
{iii,kkk},jjj

|iii, jjj⟩⟨kkk, jjj| − J
∑︂

iii,{jjj,kkk}

|iii, jjj⟩⟨iii, kkk|+
∑︂
iii,jjj

|iii, jjj⟩(viii + vjjj)⟨iii, jjj|+ U
∑︂
iii

|iii, iii⟩⟨iii, iii| , (3.1)

where U represents the on-site interaction strength.
Let |ψ⟩ be a two-particle state, satisfying Schrödinger’s equation (Ĥ0+Û)|ψ⟩ = E|ψ⟩, we can write:

(E1̂− Ĥ0)|ψ⟩ = Ĝ0(E)
−1|ψ⟩ = Û |ψ⟩ ,

where Ĝ0(E) represents the Green’s function operator of the noninteracting two-particle system. By
multiplying the latter equation by Ĝ0(E) and projecting on left by the state ⟨lll,mmm|, one gets:

⟨lll,mmm|ψ⟩ = U
∑︂
nnn

⟨lll,mmm|Ĝ0(E)|nnn,nnn⟩⟨nnn,nnn|ψ⟩ , (3.2)

a relation which allows for evaluating |ψ⟩ in the whole two-particle Hilbert space by using only the
elements in the subspace of doubly-occupied states, that possesses the same dimension as the one-
particle space. A closed equation can thus be derived from Eq. (3.2), involving uniquely the ’diagonal’
elements Ψ(nnn) := ⟨nnn,nnn|ψ⟩ as in [165]:

1

U
Ψ(nnn) =

∑︂
mmm

K(nnn,mmm)Ψ(mmm) , (3.3)

where K(nnn,mmm) = Ĝ0(nnn,mmm;E) = ⟨nnn,nnn|Ĝ0(E)|mmm,mmm⟩. The equation can thus be interpreted as
an eigenvalue equation for an effective single-particle problem, accounting for the center-of-mass
motion. The wave-function amplitudes involved in Eq. (3.3), belonging to a subspace of the Hilbert
space of the pair, are the most affected by on-site interactions [136], even in the limit of zero particle
density. For the other amplitudes, the localization problem does not differ significantly from the one of
a single particle [166]. In the absence of disorder the probability amplitude corresponds to delocalized
Bloch waves Ψ(nnn) ∼ eiqqq·nnn, where the dimensionless wave-vector qqq is a conserved quantity. On the
other hand, in the strong-disorder limit, Ψ(nnn) represents maximally localized states Ψ(nnn) = δnnnnnn0 , in
which particles must be in the same site to feel the interaction. Importantly, the kernelK in Eq. (3.3)
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applies for either bosons or fermions with opposite spins in the singlet state and can be expressed in
terms of the eigenbasis of the single-particle problem, Hspϕr(nnn) = εrϕr(nnn), as

K(nnn,mmm) =
∑︂
r,s=1

ϕr(nnn)ϕs(nnn)ϕ
∗
r(mmm)ϕ∗

s(mmm)

E − εr − εs
, (3.4)

where Hsp is the one-particle Hamiltonian in Eq. (1.9). Differently from the latter Hamiltonian, the
kernel K possesses nonzero terms far from the diagonal, thus representing an effective model with
long-range hopping, instead of the nearest neighbour one appearing in the original Anderson’s model.
Furthermore, it is worth mentioning that the effective Schrödinger’s equation (3.3) allows to recon-
struct the whole energy spectrum of orbitally symmetric states. This fact is not straightforward, since,
representing the effective kernel as a matrix,KKK, the latter possessesN eigenvales for a lattice withN
sites, which is much lower than the dimension of the subspace of orbitally symmetric states, which
amounts to N(N + 1)/2. In order to perform the reconstruction of the spectrum of Ĥ , it is possible
indeed to compute the matrix KKK and its eigenvalues {λr}, with r = 1, 2, ..., N for different values
of the eenrgy E , and the energy levels at a given interaction strentgh are subsequently obtained by
imposing λr(E) = 1/U .
The procedure, which represents a valuable alternative to the exact diagonalization of Ĥ , can be
better explained by considering a lattice with N = 2 and no disorder (W = 0). In this case, the
Hilbert space of symmetric states is spanned by three vectors, |1, 1⟩, |2, 2⟩ and (|1, 2⟩+ |2, 1⟩)/

√
2.

The corresponding energy levels of the pair can be found starting from the exact diagonalization of
the projected HamitlonianHHH, which is the following 3× 3 matrix:

HHH =

⎛⎜⎝ U −
√
2J 0

−
√
2J 0−

√
2J

0 −
√
2J U

⎞⎟⎠ .

An explicit calculation of the eigenvalues ofHHH yields E = U and E = (U ±
√
U2 + 16J2)/2. If we

consider the effective kernel instead, we have to begin with the evaluation of the eigenvectors of the
one-particle Hamiltonian, represented by the matrixHHH(sp),

HHH(sp) =

(︄
0 −J
−J 0

)︄
,

whose eigenvalues are given by ε1 = −J and ε2 = J . The corresponding eigenvectors are |ϕ1⟩ =
(|1⟩+ |2⟩)/2 and |ϕ2⟩ = (|1⟩ − |2⟩)/2. From Eq. (3.3), it follows that

KKK =

(︄
A B

B A

)︄
,



50 CHAPTER 3. TWO-PARTICLE TRANSITIONS IN THE ANDERSON-HUBBARD MODEL

Figure 3.1 – Eigenvalues of the matrix K of the effective model of the pair, Eq. (3.3) for a toy model of
N = 2 coupled sites with no disorder, plotted as a function of the energyE of the pair (blues data curves).
For a given interaction strengthU , the entire spectrum ofN(N+1)/2 energy levels of orbitally symmetric
states of the pair can be obtained by intersecting the data curves with the horizontal line, λ = 1/U , here
shown for U = J (dashed red line). The corresponding three energy levels are E = −1.56155J , E = J
and E = 2.56155J .

where A = (E/(E2 − 4J2) + E−1)/2 and B = (E/(E2 − 4J2) − E−1)/2. The associated
eigenvalues ofKKK are then given by λ1(E) = A−B = E−1 and λ2(E) = A+B = E/(E2 − 4J2).
The condition λ1 = U−1 gives E = U , whereas λ2 = U−1 leads to two solutions, E = (U ±
√
U2 + 16J2)/2, allowing to retrieve the energy spectrum found by exact diagonalization.
While in the present example all energy levels can be obtained analytically, in the more general case,
it is necessary to compute all the different eigenvalues of KKK as a function of the energy, as shown
in Fig. 3.1 for N = 2. By intersecting the curves λr(E) with λ = U1 one gets the three sought
eigenenergies ofHHH for orbitally simmetric states.
It is important to point out that extracting the full energy spectrum of the pair based on the effective
model, for a fixed value of the interaction strength U , is computationally demanding as N becomes
large. The effective model of the pair is instead very efficient, as compared to exact diagonalization,
when the transport properties of the pair are investigated as a function of the interaction strength U ,
for a fixed value of the total energy E .

3.2 Computation of the effective Hamiltonian matrix

As in the one-particle case, we consider an elongated lattice with Nd =Md−1N sites, with d = 2, 3,
imposing periodic boundary conditions to the Hamiltonian along the transverse directions. In order
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to compute the noninteracting two-particle Green’s function, we first have to diagonalize the single-
particle Hamiltonian, finding its eigenfunctions {ϕϕϕs} and eigenvalues {εs}. The latter quantities are
necessary for calculating the matrix elements of the effective kernelKKK, using Eq. (3.4) [131] [146]:

Kij(E) =

Nd∑︂
s=1

ϕ∗
s,iϕs,jG

(sp)
ij (E − εs) , (3.5)

where i, j = 1, 2, . . . , Nd and the one-particle Green’s function G
(sp)
ij is the one defined in Eq.

(2.7). As the double sum over the products of four eigenvector elements in Eq. (3.4) in Eq. (3.5) is
computationally slow, the determination of the Green’s function at each value of the energy E − εs

by inversion of (E − εs)1 −HHH(sp) is preferable, and for the task we use a specific technique. This
method, which we have developed starting from the one proposed by Jain et Al. [167], is intended for
block-tridiagonal matrices, like the single-particle Hamiltonian. For the sake of simplicity, to explain
its various steps, each GGG(sp)−1(E − εs) = (E − εs)1 −HHH(sp), with s = 1, 2, . . . , Nd is written in
the following as tridiag{1,AAAi,1}, where AAAi = (E − εs)1 −HHH

(sp)
i areMd−1 ×Md−1 blocks and

i = 1, 2, . . . , N . To the purpose of finding GGG(sp), we first have to compute a sequence of N − 1

Md−1 ×Md−1 matrices {SSS1,SSS2, . . . ,SSSN−1} in a recursive fashion, beginning with SSSN−1 = AAA−1
N :

SSSi = (AAAi+1 −SSSi+1)
−1 , (3.6)

where i = N − 2, N − 3, . . . , 1. Denoting the off-diagonalMd−1×Md−1 blocks of the one-particle
Green’s function as GGG(sp)

ij (E − εs) as CCCij and the diagonal ones as DDDi, as the original matrix is
symmetric, only N(N + 1)/2 blocks are needed for achieving a complete knowledge of the inverse
matrix. Considering only the elements below the diagonal (i ≤ j), we determine each block using
only the ones on or below the diagonal:(︂

CCCi1 CCCi2 . . . CCCii−1

)︂
= −SSSi−1

(︂
CCCi−11 CCCi−12 . . . DDDi−1

)︂
, (3.7)

and
DDDi = SSSi−1(1+DDDT

i−1SSS
T
i−1) . (3.8)

This procedure is performed from i = N − 2 to i = 1 and yields to a computational complex-
ity of NM3(d−1) elementary operations instead of N3M3(d−1) required for the inversion of general
Md−1N ×Md−1N matrices.
For example, in the case of a block 4×4 -matrix, the original block tridiagonal matrix and the inverse
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one can be thus expressed as:

GGG(sp) −1 =

⎛⎜⎜⎜⎜⎝
AAA1 1 0 0

1 AAA2 1 0

0 1 AAA3 1

0 0 1 AAA4

⎞⎟⎟⎟⎟⎠

GGG(sp) =

⎛⎜⎜⎜⎜⎝
DDD1 −SSS1DDD1 SSS2SSS1DDD1 −SSS3SSS2SSS1DDD1

−SSS1DDD1 DDD2 −SSS2DDD2 SSS3SSS2DDD2

SSS2SSS1DDD1 −SSS2DDD2 DDD3 −SSS3DDD3

−SSS3SSS2SSS1DDD1 SSS3SSS2DDD2 −SSS3DDD3 DDD4

⎞⎟⎟⎟⎟⎠
Since the matrices describing the examined lattices were very large (up to 43350 sites for the bar with
M = 17 andN = 150), the algebraic operations explained above have been set to a supercomputer,
composed of compute nodes with multiple cores. In particular, the evaluation of matrix elements of
KKK has been carried out in parallel form, by using subroutines from library MPI which handle tasks
distributed to various nodes. Besides, the diagonalization of the one-particle Hamiltonian has been
performed by distributing blocks of matrices among the different processors, using functions from
SCALAPACK library. The filling of the latter matrix has been accomplished with the aid of openMP
library for multi-threading computation, able to share out the tasks between the several cores of each
node. For the simulation with the largest matrices, mentioned above, the execution of the algorithm
has been assigned to 10 nodes composed of 24 cores each, the latters sharing a memory of 120Gb.

3.3 Numerical estimate of the reduced localization length

In order to estimate the Lyapunov exponent of the pair, we first have to compute the off-diagonal
elements of the resolvent matrix GGG(λ) associated to the effective kernel KKK. Defining λ = U−1, the
latter is given by:

GGG(λ) := (λ1−KKK)−1 .

Its off-diagonal elements are necessary for reckoning the transmission amplitude between one end
of the bar and the slice of the d-dimensional bar lying on the plane z = na:

t1n =
Md−1∑︂
m1=1

nMd−1∑︂
mn=1+(n−1)Md−1

J2|G(λ)
m1mn

|2 ,
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where the matrix index mk is connected to the position (xk, yk, k)Ta of the pair on the k-th section
of the lattice through the relation:

mk =

{︄
xk + (k − 1)M d = 2

xk + (yk − 1)M + (k − 1)M2 d = 3
,

in which k ∈ {1, 2, . . . , n} and n ≤ N .For the computation of the Lyapunov exponent associated
to the asymptotic behaviour of the two-particle wave-function between the two ends of the bar,
we tested, as done in the one-particle case, the consistence between the results found with the usual
method (Eq. (2.8)) and those obtained by making linear regressions in Eq. (2.9). From the comparison
between the values ofΛM , we notice that the fitting procedure allows for getting stable and convergent
results even when the longitudinal size of the lattice is not very large (N ∼ 10M ) compared to the
one of the transverse side. In addition, the choice of the spacing ∆n between two neighbouring
cross-sections selected for the fit is little influent on the reduced localization length if N ≳ 7M , as it
emerges from Fig. 3.2.
The latter method differs from the one proposed by Ortuño and Cuevas [151], in which the average
over the disorder realizations was performed after interpolating the transmission amplitudes. The
reduced localization length ΛM = (MaγM)−1 in Eq. (2.10), depending on the parameters of the
Hamiltonian (E,W, J, U) has been evaluated at different positions along the z-axis of the bar , both
in the d = 2 and d = 3 lattices, as shown in Fig. 3.2.
While in Fig. 3.2b we have shown the comparison for a single value of the interaction strength

U = 2J close to the critical value Uc = 2.16J , whose esitmation will be illustrated in § Par. 3.3.3, in
Fig. 3.3 we display ΛM as a function of U for increasing values of the boundary position n along the
bar. From the graph it emerges that effects due to the shortness of the bar are small and appear well
inside the metallic region, where they lead to slightly overestimate the correct result.

3.3.1 The effect of boundary conditions

We also analyzed the behaviour of the reduced localization length by varying the boundary condi-
tions imposed to the single-particle Hamiltonian in the transverse directions in both the d = 2- and
the d = 3-cases, whereas no such constrants are set in the longitudinal direction. In the absence of
conditions, the one-particle Hamiltonian loses some tunneling terms, thus enhancing the confinement
of the wavefunction. This results in increased Lyapunov exponents, and therefore, in a decreased
reduced localization length. The effect is more pronounced at high interactions U .

As pointed out by Ohtsuki and Slevin [168] [158] concerning the one-particle case in d = 3,
the common crossing point between the curves ΛM(W ) plotted for different values ofM can even
disappear where no conditions are imposed along transverse directions. By considering the first
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(a) d = 2 (b) d = 3

Figure 3.2 – The reduced localization length ΛM obtained using linear regression (Eq. (2.9)) of the trans-
mission amplitudes is here plotted versus the one got by retaining only t1N , within the usual ‘triangular’
method (Eq. (2.8)), in two- and three-dimensional random lattices. Besides, data recovered with different
fitting step∆n are compared: in the 2-dimensional case∆n = {10, 20} (a), whereas in the 3-dimensional
one (b) only the results with ∆n = 10 are plotted in the main graphic area, whereas the inset shows
only the reduced localization length at N = 150, that is estimated at four different values of ∆n. The
parameters of the systems, as well as the number of realizations Ntr, are specified in the upper squares.

Figure 3.3 – Reduced localization length of the pair, calculated via the fitting method, as a function of the
interaction strength U for increasing values n = 90, 110, 130, 150 of the right-boundary position along
the bar. The other parameters are the same as in Fig. 3.2b.
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Figure 3.4 – Reduced localization length in d = 3, plotted as a function of the interaction strength U in
tunneling units, using two different sizesM = {8, 10}. The red curves portray the ΛM found with free
boundary conditions, while the ones in blue represent the case in which periodic conditions are present
along transverse directions.

irrelevant variable fI characterized by the exponent y in the finite-size expansion of ΛM (cf. Eq.s
(2.14) and (2.15)) around the critical point, they corrected the ΛM found numerically by subtracting
the irrelevant variable with the parameters obtained by nonlinear fits, retaining terms up to the first
order in fI in the series in Eq. (2.14),

ΛM → ΛM − fI

NR∑︂
m=0

cm1f
m
R .

This operation eventually leads to the recovery of a critical value of disorderWc compatible with the
one found imposing periodic boundary conditions W (pbc)

c,orth = 16.536J , as well as critical exponents
ν and y in accordance with the ones of the orthogonal universality class. Nevertheless, the critical
value of the reduced localization length Λc remained lower than Λc,orth ≈ 0.577, reflecting the fact
that the transmission coefficient depends on boundary conditions [169]. A similar conclusion has
been reached through the study of the statistics of level spacings [170], by searching for the value of
the disorder at which the probability density function turns from the Poissonian, revealing localized
states (described by Eq. (A.19)), to the Wigner-Dyson one, signalling the presence of extended states
in Eq. (A.18), as seen in App. A.1. We predict that these considerations on the single-particle states
apply also to the case of two particles subject to short-range interactions.
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Figure 3.5 – Reduced localization length plotted as a function of the interaction strength in tunneling
units. For the larger lattices, shorter bars with N ∼ 10M and a lower number of realizations Ntr have
been considered, thus getting rougher curves. While for small M (see Panel a) a drifting intersection
between the curves ΛM (U) is detected, at higher sizes M (shown in Panel b) the crossing disappears,
suggesting an insulating behaviour in the whole interval of U .

3.3.2 Absence of Anderson transitions in 2D systems

Following in the wake of previous investigations [151] [153] on the two-particle problem, we have
studied the reduced localization length ΛM at zero total energy of the pair, varying the interaction
strength U instead of the random potential W . Since the aforementioned publications revealed a
transition at U = J andWc = (9.3± 0.5)J andWc = (8.1± 0.1)J respectively, we have focused
our attention in that region of the space of the parameters.
Observing the behaviour of the localization length at W = 9J as a function of interaction strength,
we first noticed that the curves portrayed for differentM < 25 in Panel a in Fig. 3.5, cross each other
in the region 0.73J ≲ U ≲ 1.05J , where 0.69 ≤ ΛM ≤ 0.88, thus suggesting a confirmation of the
aforementioned claims. However, a closer look to the crossing region signals that the intersections
between the curves slightly swerve at increasing lattice size; in particular the deviations are more
marked forM = 20.
With the aim of understanding the behaviour of the position of the crossing point, we examined larger
lattices, withM = {30, 40, 50}, considering also longer bars with N = 500, in order to guarantee
an aspect ratio large enough. As shown in Panel b of Fig. 3.5, the peak height reaches its maximum
for M = 30, then the curves ΛM(U) for M = 40 and M = 50 do not intersect neither with the
former, nor between each other. In the whole interaction range examined, the reduced localization
length ΛM decreases for increasingM , thus indicating the absence of Anderson transitions.
This leads to conclude that the results of the previous works, based on lattices with M = 10 and
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Figure 3.6 – Behaviour of the reduced localization length as a function of the localization length of the
infinite lattice ξ in units of the length of the transverse side (Panel a) plotted in logarithmic scale along
the two axes. The points have been extracted from the data related to the lattices withM = {30, 40, 50}
and N = 500 in the whole range of values of the interaction strength represented in Fig. 3.5. The
dependence of ξ on interaction strength is shown in Panel b (solid red curve) adopting logarithmic scale
for the y axis, whereas the exponential curve describing the behaviour at low interactions is represented
by the dashed light-green curve. The inset of Panel b displays the value of the scale factor asf , obtained
by fitting the data for each value of U with the law on the right-hand side of Eq. (3.10). The estimated
value of asf does not converge for weak interactions, signalling that the strongly localized regime is never
fully reached in our simulations.

N = 62 at most, were plagued by considerable finite-size effects. As a consequence, we are driven
to affirm that the presence of short-range interactions do not lead to a metal-insulator transition in
two-dimensional systems, as in the single-particle Anderson model.
A further proof of this statement can be traced by inspecting the behaviour of the reduced local-
ization length as a function of the characteristic length ξ, which depends on the parameters of the
Hamiltonian but not on the lattice size, as shown by Eq. (2.10). We thus tested the one-parameter
scaling ansatz, ΛM = f(ξ/M) , by following a similar procedure to the one presented in [161], for
fixed values of the total energy and the disorder parameter. Denoting as NU the number of values of
the interaction strength U available, we consider theNU curves obtained by connecting with straight
lines the values of ln Λ found at NM different values of lnM . Let Λi be one of the NMNU numer-
ical values available of the reduced localization length, the horizontal line ln Λ = lnΛi generally
intersects Ni curves obtained for different U . In order to keep track of these events, we define the
matrix η in such a way that ηij = 1 if the curve for U = Uj is crossed, otherwise ηij = 0. Defining
lnMij as the value of lnM at which the curve for U = Uj intersects the line ln Λ = lnΛi, we
sought ξ as the length (depending on interaction) which minimizes the variance Var [ξ] of the values



58 CHAPTER 3. TWO-PARTICLE TRANSITIONS IN THE ANDERSON-HUBBARD MODEL

of (lnM − ln ξ(U)) corresponding to each value of ln Λ:

Var [ξ] =

NMNU∑︂
i=1

{︃
1

Ni

NU∑︂
j=1

ηij

[︃
lnMij − ln ξ(Uj)

]︃2
−
[︃
1

Ni

NU∑︂
j=1

ηij
(︁
lnMij − ln ξ(Uj)

)︁]︃2}︃
, (3.9)

whereNi =
∑︁NU

j=1 ηij represents the total number of crossing points obtained for each Λi value. The
minimization condition for Var [ξ] thus reads:

∑︂
j

{︄∑︂
i

ηij

(︃
1

N2
i

− δjk
Ni

)︃}︄
ln ξ(Uj) =

∑︂
j

{︄∑︂
i

ηij

(︃
1

N2
i

− δjk
Ni

)︃
lnMij

}︄
.

This yields to a system of linear equations where the matrix of coefficients is singular: this means that
there is a shift of the absolute origin of lnM − ln ξ, or of the mean corresponding to the variance in
Eq. (3.9). Nevertheless, the system can be solved by means of a least-squares algorithm which allows
for finding the minimum-norm solution, that represents the physical values of ξ up to an overall scale
factor. The latter quantity, denoted as asf , can be in principle obtained starting from a nonlinear
regression,

ΛM =

(︃
asfξ

M

)︃
+ b

(︃
asfξ

M

)︃2

, (3.10)

as it was proposed by Kramer at Al. [161], whenΛM is sufficiently small (e.g. ΛM ≲ 10−1), a condition
that can be fulfilled at weak interactions and strong disorder. However, in our case these conditions
are not satisfied by the data and, when 0.5J ≤ U ≤ J , asc varies from 19.2 to 12.5, so that an
absolute scale of ξ cannot be precisely estimated, as shown by the curve in the inset of Panel b of
Fig. 3.6, where asf is extracted for different (small) U and exhibits still a marked dependence on the
interaction: it grows linearly as U decreases. The values of ξ plotted in both panels of Fig. 3.6 are
therefore deprived of such factor, that at U = 0.5J amounts to 18.2± 0.3, a value which provides a
lower bound for asf .
Despite this, we found a doubly-branched behaviour of ΛM as a function of ξ/(Ma), qualitatively
similar to the one shown in Fig. 2.5 in Chap. 2, using small-sized lattices (characterized by M =

{8, 10, 12} and N = 400), thus retrieving the signature of a metal-insulator transition as in Ref. [151]
(see Fig. 3).
The scenario changes, as only the data for the largest lattices are considered (M = {30, 40, 50}), as
displayed in Panel a of Fig. 3.6, where ΛM as the universal scaling function of ξ/(Ma) possesses a
single branch: this reflects the insulating behaviour already noticed in Panel b of Fig. 3.5, and a slight
deviation of the data from the common curve is due to the data found near the maximum of ΛM

(located precisely at U = 4.362J ), where the curves ΛM(U) forM = 40 andM = 50 appear very
close, as it emerges from Panel b of the latter figure. In the Panel b of Fig. 3.6 the behaviour of the
localization length ξ is shown as a function of interaction, which displays a nonmonotonic trend, with
a large enhancement (of up to four orders of magnitude) in the range 0.5J ≤ U ≲ 6.182J . Differently
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from the prediction of Shepelyansky [152] and Imry [133], the localization length does not obey the
relation ξ ∝ ξspe

B(Uξsp/J)2 , but follows more probably an exponential law, the curve ξ = AeBU/J ,
represented by the short-dashed line in Panel b of Fig. 3.6, where A ≈ 0.295 and B ≈ 2.469 in the
interaction interval 0.5J ≤ U ≤ 1.295J . This discrepancy can be probably traced back to the fact
that the aforementioned predictions are valid for lower interactions (U ≲ 0.1J ), which have not
been explored in our numerical simulations.

3.3.3 Characterization of Anderson transitions in 3D systems

The critical point of the metal-insulator transition can be identified by studying the behaviour of ΛM

as a function of the interaction strength U and for increasing values of the transverse size M . In
the metallic phase, ΛM increases with M, while in the insulating regime ΛM decreases forM large
enough. Exactly at the critical point ΛM becomes scale-invariant, that is limM→+∞ ΛM = Λc, where
Λc is a constant of order unity, which only depends on the universality class of the model and on the
specific choice of boundary conditions. For example, the Anderson model belongs to the orthogonal
universality class, where Λc,orth = 0.576 (see Tab. 1.1) assuming periodic boundary conditions in
the transverse directions. In Fig. 3.7 we plot our numerical results for the reduced localization length
as a function of the interaction strength for increasing values ofM assumingW = 23.5J , so that all
single-particle states are localized. Since E = 0, the value of ΛM is independent of the sign of U , so
hereafter we assume U > 0. We see that interactions favour the delocalization of the pair and lead
to an Anderson transition around U = 2J .
Identifying the precise position of the critical point is not straightforward, because the crossing

point drifts towards stronger interactions and upwards as M increases, due to finite-size effects. Sim-
ulating systems with even larger values of M is computationally prohibitive: the data for M = 17,
obtained by averaging Ntr = 700 disorder realizations, required already 750.000 hours of computa-
tional time on a state-ofthe-art supercomputer, and the curve is not particularly smooth. As shown in
the inset of Fig. 3.8, the height of the crossing point for the largest system sizes (couplesM = {12, 17}
andM = {15, 17}) becomes closer and closer to Λc,orth, suggesting that also the effective model for
the pair belongs to the orthogonal universality class. In this case, no significant further drift is ex-
pected. To verify this hypothesis, we need to compute the critical exponent ν related to the divergence
of the localization length at the critical point, ξ2 ∝ |U − Uc|−ν , and compare it with the numerical
value νorth = 1.573± 0.009 known [76] for the orthogonal class.
For the analysis of the transport properties of the pair we base ourselves on the one-parameter scaling
ansatz, whose validity for the problem of two particles subject to Hubbard interactions was demon-
trated by Frahm et Al. [134], starting from a σ-model and a DMPK approach for bound pairs. In light
of this ansatz, for large enoughM , as seen in § b), the reduced localization length can be written in
terms of a reduced localization length f as

Λ
(FSS)
M = f

[︁
u(ω)M1/ν

]︁
, (3.11)
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Figure 3.7 – The reduced localization length as a function of interaction strength in units of tunneling
amplitude, for increasing values of the number of sites of the bar along each transverse directionM =
{8, 10, 12, 15, 17}. The energy of the pair is E = 0 and the disorder strength is W = 23, 5J , implying
that all single-particle states are localized. The transition takes place at the point where all data curves
with sufficiently largeM cross.
.

where u is a function of the variable ω = (U − Uc)/Uc, measuring the distance from the critical
point. Close to it, we can expand the reduced localization lengths u and f in Eq. (3.11) in Taylor
series up to orders m and n, respectively, as

u(ω) =
m∑︂
j=0

bjω
j ,

and

f(x) =
n∑︂

j=0

ajx
j ,

Following Slevin [76] [17], we set b0 = 0, a1 = 1, and a0 = Λc. The coefficients aj and bj , as
well as Uc and ν , are then obtained via a multilinear fit. We extract the critical exponent by fitting
the (smoothest) data for M = 12 and M = 15 in Fig. 3.7 (a) with the ansatz in Eq. (3.11). The
latter should in principle include also irrelevant variables, describing the drift of the crossing point.
However, unlike Uc and Λc, the value of the critical exponent is much less sensitive to these variables.
For n = m = 2 we obtain ν = 1.64 ± 0.13, in full agreement with the universal value. All other
crossings yield consistent results for ν .
Having found that on-site interactions do not change the universality class of the transition, we can
use this information to estimate Uc. Expanding the ΛM in terms of the leading irrelevant scaling field,



3.4. DISORDER-AVERAGED DENSITY OF STATES 61

similarly to what was done in Chap. 2 (cf. Eq.s (2.14) and (2.15)), as a function of the interaction,

ΛM(ω) =
∑︂
m

NI∑︂
n

amn

(︃
M1/ν

∑︂
i

biω
i

)︃m(︃
M−y

∑︂
j

cjω
j

)︃n

,

setting a01 = a10 = 1 and b0 = 0 as in [76], at first order in ω one finds that:

ΛM(ω) = a00 + c0M
−y + b1M

1/νω + c1M
−yω , (3.12)

where y is the critical exponent of the first irrelevant field. Since we have shown that the system
behaves as one belonging to the orthogonal universality class, ν = νorth and yorth = 3.3 ± 0.6 [76].
Besides, when M → +∞ and ω = 0 (i.e. U = Uc) we expect that limM→+∞ ΛM(0) = Λc,orth,
which implies that a00 = Λc,orth. However, at finite number of sitesM along each transverse direc-
tion, ΛM(U ≡ UM) = Λc,orth at UM ̸= Uc, so ωM is nonzero. Using Eq. (3.12), one can discover that
it amounts to:

ωM = − c0M
−y

b1M1/ν + c1M−y
.

Reminding that ωM = (UM − Uc)/Uc, the relation between UM and Uc becomes, approximating
ωM at the leading term inM ,

UM = Uc + aM−b , (3.13)

where a = −c0Uc/b1 is a dimensional constant and b = 1/νorth+yorth. The expression in Eq. (3.13)
concides with the one obtained by Campostrini et Al. [171] for the estimate of the position of critical
points, starting from crossing points between curves at finiteM [172].
In 3.8 we show that the values of UM extracted from our data curves forM = {10, 12, 15} do vary
linearly as a function ofM−b. A linear fit to the data then yields Uc = (2.16± 0.04)J [173].

3.4 Disorder-averaged density of states

As seen in Sec. 3.1, a closed equation can be derived for the two-particle wavefunction in the basis of
doubly-occupied states. This eigenvalue equation (Eq. (3.3)) can be regarded as a time-independent
Schrödinger equation of an effective single-particle problem, whose eigenvalues are represented by
the values of 1/U , whereas the total energy E becomes a parameter of the ‘Hamiltonian’:

∑︂
mmm

K(nnn,mmm)Ψv(mmm) = λvΨv(nnn) :=
1

Uv

Ψv(nnn) , (3.14)

where K(nnn,mmm) = G0(nnn,mmm;E) is the effective kernel and Ψv(nnn) := ⟨nnn,nnn|Ψv⟩. From the eigen-
values of KKK, which accounts for the motion of the center of mass of the pair, we can write the
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Figure 3.8 – The reduced localization length as a function of interaction strength in units of tunneling
amplitude (a). The ones found at ΛM = Λc,orth (dashed orange line), denoted as UM/J , at five dif-
ferent values of M−b (cf. Eq. (3.13)), with M = {8, 10, 12, 15, 17} (b). The line that fits the UM with
M = {10, 12, 15} [173], averaged over an higher number of disorder realizations, is plotted in red. The
intercept of the line obtained by regression corresponds to the critical value Uc/J .
.

disorder-averaged density of states per unit volume as:

ρK(λ) =
1

Vd

∑︂
v

δ(λ− λv) , (3.15)

where Vd denotes the volume of the lattice. In the atomic limit, in which tunneling is weak com-
pared to the random potential, we can outline the behaviour of the disorder-averaged density of
states ρK, by beginning from the expectation values of the effective kernel in the two-particle basis
{|mmm,nnn⟩}. Writing the noninteracting two-particle Green’s function operator as Ĝ0(E) = (Â+ T̂ )−1,
where Â =

∑︁
mmm,nnn(E − vmmm − vnnn)|mmm,nnn⟩⟨mmm,nnn| is the contribution of the on-site energies, whereas

T̂ = −J
∑︁

kkk,{mmm,nnn}
(︁
|kkk,mmm⟩⟨kkk,nnn|+ |mmm,kkk⟩⟨nnn,kkk|

)︁
denotes the one of the hopping, the operator can be

approximated to the second order in the tunnelling term as:

Ĝ0(E) = (Â+ T̂ )−1 ≈
(︁
1̂− Â

−1
T̂ + Â

−1
T̂ Â

−1
T̂
)︁
Â

−1
, (3.16)

Noticing that the second term in the right-hand side of Eq. (3.16) gives no contribution to the matrix
elements evaluated between states with double occupancy ⟨nnn,nnn|Ĝ0(E)|mmm,mmm⟩, the latters become:

⟨nnn,nnn|Ĝ0(E)|mmm,mmm⟩ =
[︃

1

E − 2vmmm
+ J2

∑︂
{kkk,lll}

δkkknnnδlllmmm
(E − 2vkkk)2(E − vkkk − vlll)

]︃
δmmm,nnn+

+ J2
∑︂
{kkk,lll}

δkkknnnδlllmmm
(E − 2vkkk)(E − vlll − vkkk)(E − 2vlll)

.

(3.17)
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The second term at the right-hand side of Eq. (3.17) accounts for the processes in which one particle
hops from a site to a neighbouring one, while the second particle is at rest. The third term in that
equation represents instead the processes in which both electrons tunnel from one site to the same
neighbouring site, thus leading an effective hopping for the pair. Retaining terms up to the first order
in the approximation of the matrix element in Eq. (3.17), we can rewrite the density of states ρ̄G(λ)
using the probability distribution of the uniform on-site disorder P (v) = W−1Θ

(︁
W
2
− |v|

)︁
as:

ρK(λ) ≈
1

Vd

∫︂
dvP (v)δ

(︃
λ− 1

E − 2v

)︃
=

1

2Wλ2Vd
Θ

(︃
W −

⃓⃓⃓⃓
E − 1

λ

⃓⃓⃓⃓)︃
. (3.18)

The latter relation means that, in the strong disorder regimeW ≫ J , the density ρK(λ) develops tails
descending as λ−2 whenW ≥ E in the region where λ ≥ 1/(E +W ) and λ ≤ 1/(E −W ). The
same scenario takes place as long asW ≤ E , in the intervals λ ≥ 1/(E−W ) and λ ≤ 1/(E+W ).

3.4.1 Numerical computation

In order to analyse the density of states, that is a quantity that behaves regularly in vicinity of the
critical point, we consider cubic lattices (with N ≡ M ) in which periodic boundary conditions are
imposed to the single-particle Hamiltonian in all d directions. As a result, HHH(sp) does not possess a
block-tridiagonal structure any more, since it contains two nonzero blocksHHH(sp)

1M =HHH
(sp)
M1 = −1. The

computation of the effective kernel in Eq. (3.5) therefore can not be performed using the algorithm
presented in Sec. 3.2.
A sharp-witted strategy to perform Nd = Md inversions of matrices required in Eq. (3.5) can now
be applied by decomposing the GGG(sp)−1(E − εs) into the sum of a block-tridiagonal matrix BBB and
the product between a Md × Md−1 matrix UUU and a Md−1 × Md one, denoted as VVV . Matrix BBB
corresponds to theGGG(sp)−1 obtained leaving the free boundary conditions along z appearing in Sec.
3.2, with modified blocks AAA′

1 = AAA1 + AAA−1
N and AAA′

N = 2AAAN and can thus be inverted using the
recursive relations in Eq.s (3.6), (3.7) and (3.8). The rectangular matricesUUU and VVV must be composed
of the followingMd−1 ×Md−1 blocks respectively:

UUU =
(︂
AAA−1

N 0 · · · 0 1

)︂
,

and
VVV =

(︂
1 0 · · · 0 −AAAN

)︂
.

Using Woodbury’s identity1, the single-particle Green’s function can be evaluated as follows:

GGG(sp) = (BBB +UUUTVVV )−1 = BBB−1 −BBB−1UUUT (1+ VVVBBB−1UUUT )VVVBBB−1 .

1Let AAA be a N × N matrix, UUU a N ×M one with M ≤ N , VVV a M × N and CCC a M ×M matrix. Then
(AAA+UUUCCCVVV )−1 = AAA−1 −AAA−1UUU(CCC−1 + VVVAAA−1UUU)VVVAAA−1.
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Figure 3.9 – The disorder-averaged density of states ρK (in units of lattice constant and inverse of tun-
nelling), evaluated at E = 0 and W = 23.5J , plotted as a function of the λ in units of the hopping
amplitude (red solid line). The dashed curve represents the density in the atomic limit, where tunneling
is neglibile compared to the typical value of the random potential. Edited, from Ref. [173].

Compared to the algorithm illustrated in Sec. 3.2, the one presented above leads to an increase of a
factor (about) two in the number of elementary operations necessary for the computation, but remains
still advantageous with respect to standard algorithms for the inversion of symmetric matrices.
Once obtained the effective kernel KKK, it is diagonalized, finding its eigenvalues λi and eigenvectors
ΨΨΨi, with i = 1, 2, . . . ,Md. From the spectrum determined for different realizations of the random
potential, ρK is thus derived as explained in Sec. b), by partitioning the region of interest into Nb

bins of equal width ∆λ and counting the number of eventualities in each frequency class {f(i, r)},
where i = 1, 2, . . . , Nb and r = 1, 2, . . . , Ntr . Hence the disorder-averaged density of states in the
i-th bin reads:

ρ(i) =
1

∆λa3

Ntr∑︂
r=1

f(i, r)

NtrMd
. (3.19)

3.4.2 Zero total energy

At the same values of total energyE and disorderW at which the critical beahviour has been studied
(see Fig. 3.7 ), we have estimated the density of states, which exhibits a nonmonotonic behaviour as
a function of λ = U−1. In particular, as highlighted in Fig. 3.9, ρK displays two peaks at λ = ±W−1,
where the reduced localization length ΛM nearly reaches its maxima, whereas its power-law tails
behave in considerable accordance with the approximationK(nnn,mmm ≈ δnnnmmm/(E − 2vnnn) of Eq. (3.18)
describing the atomic limit. Indeed, in order to interact, the two particles must lie on the same site nnn,
so the total energy is given by E = U +2Vnnn = 0, implying |U | = 2|Vnnn| ≤ W . Nevertheless, at high
interactions (|U | ≫ J ) ρK does not vanish and remains finite, contrarily to Eq. (3.18), thus signalling
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Figure 3.10 – The disorder-averaged density of states ρK, evaluated at E = 0 and W = 23.5J , plotted
as a function of the λ using three different lattice sides (M = {10, 12, 14, 16}).

that tunnelling effects are still relevant. The latter become more pronounced if disorder strengthW
is reduced. Besides, the doubly-peaked structure of the density reflects the fact that the two-particle
energy levels are closer and likely to mix together, giving rise to level hybridization and, ultimately, to
a metallic behaviour. On the contrary, where that quantity is lower, the two-particle wave-functions
are more spaced out in energy and levels tend to repel even at finite but small U .
As expected, since density is smooth around the critical point, its behaviour is independent of lat-

tice size, as shown in Fig. 3.10, although some minor finite-size effects are present at high interactions
(λ ≈ 0). At decreasing disorder parameterW , the height of the peaks lowers and the tails broaden,
as displayed in Fig. 3.11 in the right panel. At W ≲ 4J , a region where all one-particle states are
extended (cf. Fig. 1.8), the density exhibits an only maximum at high interactions, while preserving
its parity symmetry (Fig. 3.11 in the left panel).

3.4.3 Finite total energy

When the total energy is fixed at a finite value, the density of states loses its parity symmetry in the
interaction domain, and the effect is much pronounced at low disorder, where the quantity is finite
only at negative values of the interaction. In particular, at very low disorder, ρK is peaked around
λ ≈ E−1 as shown in the left panel of Fig. 3.12 and its tails descend almost symmetrically from this
value, thus reminding the behaviour of the single-particle ρ as a function of energy, plotted in Fig. 2.6.
As we will see in next paragraph, where this similarity will be explained quantitatively, the analogy
persists even in the phase diagram in the (U,W ) plane.
At higher disorder this symmetry is progressively lost and a slower decay of ρK is detected at low
interactions, whereas the peak broadens, assuming a form which approaches the one of a plateau
(see the right panel in Fig. 3.12). For W ≳ 9J , the left tail, endowed with decreasing steepness,
eventually mingles with the descending upper part, while the right tail gets (increasingly) slanting.
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Figure 3.11 – The density of states ρK, averaged over Ntr = 100 disorder realizations, plotted as a
function of λ. The former quantity, evaluated at E = 0, is shown at low values of the random potential
(J ≤W ≤ 5J ) on the left panel and at higher values (6J ≤W ≤ 10J ) on the right one. The lattice side
is now kept fixed at 16a.

WhenW ≳ 20J at positive interactions a second peak appears, whose height increases at growing
typical values of the random potential (Fig. 3.13).

3.5 Phase diagrams

3.5.1 Zero total energy

Based on the fact that the transition in d = 3 belongs to the orthogonal universality class, as asserted
in Sec. 3.3.3, we determined the position of the phase boundary between localized and extended

Figure 3.12 – The density of states at E = −15J , averaged over Ntr = 100 disorder realizations and
plotted as a function of λ. The curve in the left panel is evaluated at low values of the random-potential
amplitude (0.5J ≲W4J ), while ρK(λ) on the right one at higher ones (6J ≲W10J ). The lattice side is
kept fixed again at 16a.
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Figure 3.13 – The density of states at E = −15J , averaged over Ntr = 100 disorder realizations and
plotted (in logscale) as a function of λ. The curve ρK(λ) is evaluated in a wide range of random-potential
amplitudes, fromW = {11J, 15J, 25J, 50J, 100J}, while the lattice side is kept fixed again at 16a.

states of the pair in the (U,W ) plane. For each value of the disorder strength, we calculate the
reduced localization length as a function of U for M = {10, 12, 15} and extrapolate the critical
point from the scaling behaviour of the UM values. To save computer resources, we have limited
the number of disorder realizations resulting in larger error bars for Uc. Moreover, for W ≤ 21J ,
we have calculated the intercept by discarding also the data for M = 10, as the relative deviation
(UM − Uc)/Uc increases as W decreases. The obtained results, which are independent of the sign
of the interaction parameter, are displayed in Fig. 3.15 . We see that the Anderson transition for a
pair with zero total energy occurs in a region where all single-particle states are localized (see Fig.
1.8). For 23.7J ≤ W ≤ 25.9J the system is endowed with two distinct critical points resulting in a
nonmonotonic behavior of the phase boundary.
This feature can be understood in light of discussion of the density of states in Sec. 3.4.2, from
which one expects that weakly interacting states are the first to be localized by disorder, whereas
states with |U | ∼ W are the most robust against localization. Indeed, for disorder strengths such
that 23, 7J ≤ W ≤ 25, 9J , the system possesses two distinct critical points. As an example, in Fig.
3.14 (right panel) we display ΛM versus U/J calculated at W = 24, 5J for three different values
M = 10, 12, 15 of the transverse size of the bar. We can indeed distinguish two critical points,
Uc = 4.04J and Uc = 23.7J , values of the interaction strength between the states are delocalized at
zero total energy. As W increases, the two critical points get progressively closer, until they merge
around U = 14J for W = 25.9J . For W < 16.54J , all pair states with zero total energy are
extended, as illustrated in Fig. 3.14 (left panel) for W = 14J . In fact, at this disorder strength,
ΛM grows with system size for any value of the interaction strength, implying diffusive behaviour.
Besides, it is worth mentioning that a nonmonotonic behavior of the critical disorder strength versus
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Figure 3.14 – Right panel: Reduced localization length of the pair as a function of the interaction strength
U calculated atW = 24.5J and total energy E = 0 for three different values of the transverse size of the
bar,M = {10, 12, 15}. The shaded areas highlight the regions in which two critical points, Uc = 4.04J
and Uc = 23.7J , are detected. The length of the bar is 150a and the number of disorder realizations is
Ntr = 200. Left panel: The same quantity as in the previous one, evaluated atW = 14J and total energy
E = 0 for two different values of the transverse size of the bar,M = 10 andM = 12. The bar is again
150a long, whereas the values of ΛM are obtained by averaging over Ntr = 100 different realizations of
the random potential.

U was also obtained for the ground state of the Anderson-Hubbard model at finite fillings in earlier
theoretical studies based, respectively, on the dynamical mean-field theory [174] and on the self-
consistent theory of localization [175].

3.5.2 Finite total energy

Straying from the band centre, the scenario becomes richer and, as we will see in the phase phase
diagrams that follow, Anderson transitions can now occur at more than one value of the disorder pa-
rameter, fixing energy and interaction strength. We continue our investigation on the phase diagram
of the two-particle system by first analysing the transport properties at the Hubbard subbandE = U .
Resuming our effective model, described by the kernelK in Eq. (3.3), assuming E ∼ U ≫ W,J , the
former quantity can be expanded in terms of the one-particle eigenenergies εr of the Hamiltonian in
Eq. (1.9), as follows:

K(nnn,mmm) =
∑︂
r,s

ϕ∗
r(mmm)ϕ∗

s(mmm)ϕr(nnn)ϕs(nnn)

E

∑︂
l=0

(︃
εr + εs
E

)︃l

. (3.20)
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Figure 3.15 – Main panel: phase boundary between localized and extended states in the (U,W ) plane,
computed for a pair with zero total energy, E = 0. The dashed horizontal line corresponds to the nonin-
teracting limit,W =Wc,sp = 16.54J . The diagram holds for both attractive and repulsive interactions.

Using the orthonormality relations,

∑︂
s

ϕ∗
s(mmm)ϕs(nnn) = δmmm,nnn ,∑︂

nnn

ϕ∗
s(nnn)ϕr(nnn) = δrs ,

and retaining the terms up to the second order inE−1 in the series in the right-hand side of Eq. (3.20),
one gets an extension to three-dimensional lattices of the result found in [165]:

K(nnn,mmm) ≃ δmmm,nnn

E

(︃
1 +

2

E
vnnn +

4(v2nnn + 3J2)

E2

)︃
+

2J2

E3
δ{mmm,nnn} , (3.24)

where δ{mmm,nnn} is the Kronecker delta which does not vanish only when mmm and nnn refer to nearest-
neighbour sites. The latter equation, plugged into Eq. (3.14), leads to an effective model with nearest-
neighbour tunneling and modified random pontential and energy:

ĤeffΨ(nnn) =
2J2

E

3∑︂
i=1

Ψ(nnn+eeei) +
2J2

E

3∑︂
i=1

Ψ(nnn− eeei) +
2vnnn(E + 2vnnn)

E
Ψ(nnn) = EeffΨ(nnn) , (3.25)
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where eeei are the unit vectors along the three orthogonal axes and Eeff is the effective total energy,

Eeff =
E(E − U)

U
− 12J2

E
. (3.26)

At the leading order in E−1, the disorder parameter and the hopping amplitude in the new Hamilto-
nian, denoted with the subscript eff , can be expressed as:

Jeff = −2J2

E
, (3.27a) Weff = 2W . (3.27b)

When E = U , the energy of the new effective model with short-range hopping reads Eeff =

−12J2/U = 6Jeff . Differently from the atomic limit W ≫ J (see Eq. (3.17)), the tunneling terms
of the new effective model in Eq. (3.25) do not depend on the specific values of the disordered po-
tential at the two edges of a bond. Remarkably, the effective Hamiltonian Ĥeff obtained under the
aforementioned conditions and approximations shares the same form of Anderson’s model in Eq.
(1.9), so in that regime of parameters the localization properties can be inferred from known results
of that model. In particular, at large interactions and low W , K(nnn,mmm) in Eq. (3.14) takes the form
of a single-particle Anderson Hamiltonian (Eq. (1.9)), with modified disorder, tunnelling and energy
and unveils the localization properties of molecular states, in which the two particles are bound with
each other.
Now, since at Esp = 6Jsp, the critical disorder parameter in the original Anderson’s model in d = 3

(Eq. (1.9)) satisfies Wc,sp ≃ 16Jsp, the same relation must hold for the effective Hamiltonian in Eq.
(3.25), so, using Eq.s (3.27a) and (3.27b), we find thatWc,eff ≃ 16Jeff implies:

Wc = −Wc,sp(6J)J

E
, (3.28)

which means that, at E ∼ U ,Wc ≈ −16J2

U
.

In the following, we will first examine the phase diagram obtained numerically in the subband
E = U , then we will proceed with the analysis of the diagrams traced at fixed energy, where the
interval in which a reentrant behaviour of the phase boundary shows up.
This feature, as shown in Panel a of Fig.3.16 can be explained by the change in the nature of the
pair states for increasing disorder. Neglecting Lifshitz-tail regions, where the single-particle density
of states is exponentially suppressed, the energy band of a single particle broadens with disorder
according to −εBE(W ) ≤ ε ≤ εBE(W ), where the numerical band edges ±εBE(W ) are com-
puted for a given disorder strength within the coherent potential approximation, illustrated in Sec.
2.2.1. As a consequence, the energy spectrum of two noninteracting particles is bound to the interval
−2εBE(W ) ≤ ε1 + ε2 ≤ 2εBE(W ). For given values of E and W , we say that a state is scat-
tering-like if the total energy of the pair lies inside the two-particle noninteracting spectrum, that is
−2εBE(W ) ≤ E ≤ 2εBE(W ). These states correspond to the yellow region in the energy-disorder
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Figure 3.16 – In Panel a the critical disorder strengthWc for pair localization is plotted as a function of
the Hubbard interaction U and the total energy E. The orange and the blue data curves represent cuts
along the planes E = 0 and E = U . For vanishing interactions, the phase boundary (violet data curve)
coincides with the single-particle mobility edge calculated in Ref. [79], under the change of variable
E = −2ε, where ε is the energy of a single particle. Panel b highlights the nature of the pair state
as a function of energy and disorder. The two (brown) solid lines define the numerical band edges
E = ±2εBE(W ) of the non-interacting two-particle energy spectrum for a given disorder strengthW and
divide the plane in three regions, marked out by states of different nature: scattering states, attractively
and repulsively bound states. For |E| > 12J , the state changes from molecular to scattering-like as
the disorder strength increases (solid vertical arrow), generating multiple Anderson transitions. From
Ref. [176].

plane shown in Fig.3.16b. States which are not scattering-like are called molecular. In the same fig-
ure we distinguish between attractively bound states, occurring for E < −2εBE(W ) (cyan region),
and repulsively bound states, which are defined for E > 2εBE(W ) (orange region).
As in the zero-energy case, owing to the not neglible finite-size effects, we extracted the critical val-
ues of interaction strength using the critical exponents νorth and yorth estimated in [76], assuming
again that the transitions belong to the orthogonal universality class. In the case where E = U , at
M = 8, 10, 12 we initially identifiedWM as the value at which ΛM = Λc,orth, starting from reduced
localization lengths extracted by averages overNtr = 100÷200 realizations of the random potential.
We then executed linear regressions over the disorder variable, at fixed values of the coupling be-
tween the two particles,

WM = Wc + aM−b , (3.29)

where a = −c0Wc/b1 is a dimensional constant and b = 1/νorth + yorth. The latter relation (in
Eq. (3.29)) can be determined by rewriting the right-hand side of Eq.s (2.14) and (2.12) in first-order
approximation in (W −Wc)/Wc. We also noticed pronounced finite-size effects around the point
of the phase boundary where the tangent is parallel to the y-axis, as displayed in Fig. 3.17. The
phase boundary thus obtained is compared to the one found at E = 0 in Fig. 3.15, where also the
approximate curve given by Eq. (3.28), derived from the effective model at U ≫ W is portrayed.
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Figure 3.17 – Phase boundaries between localized and extended states in the (U,W ) plane, where the
quantities are expressed in terms of the tunnelling amplitude. The curve obtained at finite energy E =
U < 0 is plotted in cyan, while the one determined at E = 0, corresponding to the one in Fig. 3.15,
is grey coloured. The doubly dotted and dashed curve represented in dark purple indicates in turn the
boundary estimated in the framework of the effective one-particle Anderson model, in Eq. (3.28), thus
describing a pointlike molecule. The magenta dot indicates the critical point found in [76], in the absence
of interactions. Edited, from Ref. [176].

Contrarily to the zero-energy case, where interactions favour delocalization, at E = U ≫ W , they
give rise to confinement of molecular states at weak disorder (W ≲ 2.5J ). The critical value of the
random-potential parameter W decreases as |U | increases since, according to Eq. (3.27a) with the
E = U constraint, the hopping amplitude is lowered under this variation of the interaction strength.
A unique critical W at fixed interaction is possible until the energy E is low enough to prevent the
occupation of scattering states, in which particles are kept apart by long distances. As shown in Fig.
3.17, the phase boundary in that region follows very well the one predicted by Eq. (3.28), based
on the effective model with short-range hopping. As |U | ≲ 18.7J , the band of delocalized scat-
tering states becomes available and the phase boundary displays a s-like behaviour in the interval
12.2J ≲ |U | ≲ 18.4J : here the two-particle system undergoes three metal-insulator transitions as
W is raised. In that case, therefore, interactions favour the delocalization of those states. Further-
more, at strong disorder (16.5J ≲ W ≲ 25J ) and |E| ≲ 7J , the phase boundary follows the one
found at zero total energy, displaying a nonmonotonic behaviour.
In order to explore the dynamics of the system at finite energy more in-depth, we have traced the
phase diagram at E = −15J , an energy value located within the region (12.2J ≲ |E| ≲ 18.4J )
where multiple critical values of W are present at fixed energy and interaction. As in the case in
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Figure 3.18 – Phase boundary between localized and extended states in the (U,W ) plane, where the
quantities are expressed in terms of the tunnelling amplitude and evaluated at E = −15J (green solid
curve). At low disorder parameter the numerically obtained band edge is also represented (dotted curve),
together with the one extracted by resorting to the analysis of the translationally-invariant lattice (Eq.
(3.32)), portrayed by the long-dashed curve. The star denotes the band edge found in the one-particle
case at ε = −E/2, using the coherent-potential approximation, illustrated in Sec. 2.2.1. The brown
arrow on the left indicates the disorder value at the latter band edge, separating the region of molecular
states (below that threshold) from the one of scattering states (above). From Ref. [176].

which E = U (Fig. 3.17), we have performed simulations in lattices with M = {8, 10, 12} along
each transverse direction and averaged the Lyapunov exponents over Ntr = 100÷ 300 realizations
of the random potential. As done for the zero-energy case in Sec. 3.5.1, keeping the disorder con-
stant, we made linear regressions over (M−b, UM), to the end of extrapolating the critical values of
interaction strength in Eq. (3.13) in the regions where the phase boundary in the (U,W ) plane is not
approximately parallel to the x-axis. When the latter condition is not fulfilled, the fitting procedure
using Eq. (3.29) has been carried out, in particular in the regions where 9.7J ≲ W ≲ 10.5J and
23J ≲ W ≲ 25J , resorting also, in the former interval, to simulations in lattices with M = 15,
since finite-size effects are more relevant there. The latter occur also in the one-particle case, leading
to lower values of the reduced localization length at the crossing point between the curves ΛM(W )

evaluated varyingM .
The phase diagram thus obtained exhibits a region atW ≲ 1.5J where the boundary calls back the
one of the single-particle problem in the (E,W ) plane. From the effective model for molecular states,
we would expect that all these states are localized for W > −(16/15)J ≈ 1.1027J according to
Eq. (3.28), a value that is slightly smaller than the value inferred from Fig.s 3.18 and 3.21. Morevoer,
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(a) Localized state (b) Extended state

Figure 3.19 – The probability density |Ψ|2 associated to the effective one-particle eigenvalue problem in
Eq. (3.14) as a function of the coordinates (in unit of the lattice constant a) jjj of the center-of-mass of the
pair at E = −15J in lattices with M = 20. In Fig. 3.19a a localized state at U ≈ −15J is displayed,
where the effects due to imposition of periodic boundary conditions along all three directions are visible.
In Fig. 3.19b a delocalized eigenfunction is plotted instead, where the probability density does not exhibit
an exponential decrease in space. In both the graphs, |Ψ|2 is shown in decimal-logarithmic scale.

according to that model (see Eqs. (3.27a) and (3.26)), the phase boundary W (U) is symmetric un-
der reflections around the axis U = E3/(E2 + 12J2), a feature which is not fully present when
E = −15J , as shown in Fig. 3.21, but that would appear more clearly at lower total energies. A
closer look to the latter phase diagram reveals other discrepancies with the effective tight-binding
model, whose phase boundary is represented by the doubly dotted-dashed curve, extracted using
the numerical data of Ref. [79] and exploiting the relations in Eq.s (3.26)-(3.27b). In the absence of
disorder, the latter model predicts a band-width equal to 12Jeff = 1.6J , which is smaller than the
correct value by a comparable factor. Besides, the unperturbed band edges are given by the solution
of Eeff = ±6Jeff , yielding U = E ans U = E3/(24J2 + E2) ≈ −13.55J . The difference can be
reduced by considering fifth-order terms in E−1 in Eq. (3.20), since fourth-order ones give zero con-
tribution, and one thus obtainsEeff = E2(U−1−12J2E−3−240J4E−5) and a larger tunnelling rate,
Jeff = −2J2E−1 − 120J4E−3 = 0.169J . Using that value, one recovers a band-width of 2.028J ,
in good agreement with the numerical phase diagram. Further deviations from the numerical value
may be traced back to the different probability distribution of the random potential in the effective
Anderson model (in Eq. (3.25)) if fifth-order terms in E−1 are included. As pointed out in [14] in
the noninteracting case, the distribution of the on-site energies can indeed modify the position of the
phase boundary. Nevertheless, the latter quantity is close to the one predicted by the tight-binding
scheme when E ≈ U .
The behaviour of the system can be better disclosed by observing the reduced localization length
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as a function of interaction, shown in Fig. 3.20. From the latter it emerges that atW = J , ΛM pos-
sesses two critical points at Uc = (−15.211± 0.013)J and Uc = (−12.671± 0.002)J , in panel (a),
among which the states are extended and correspond to the ones inside the lobe on the bottom of
Fig. 3.18. Outside that interaction range, the two-particle wave-functions are exponentially localized,
property that persists at increasing disorder (until 9.8J ) and concerns eventually the whole range of
couplings U (cf. panels (b) to (d) in Fig. 3.20). At the same time ΛM develops two minima at negative
interactions (already visible at W = 3J ) which shift towards lower |U | at greater typical values of
the random potential. As an example showing the insulating behaviour in this disorder range, the
eigenfunction of K in Eq. (3.14) related to the eigenvalue λ = −0.0667J−1 atW = 7J is portrayed
in Fig. 3.19a.
A major change occurs when the disorder exceeds the value calculated at the right band edge of
Anderson’s single-particle model (in Eq. (1.9)) at ε = −E/2 = 7.5J . Using the coherent-potential
approximation and solving Eq. (2.22) at that energy, the quantity corresponds toW (7.5J) = 8.91J .
Above this value of the disorder parameter, pinpointed in Fig. 3.18 by the brown arrow on the left side,
scattering states start playing a role, and the average distance between the two particle is enhanced,
whereas the molecular bandmerges with the continuum ofU values. This results in an increase in the
reduced localization length and in the displacement of its minimum value, from negative interaction
towards U = 0, as shows in panel (d) of Fig. 3.20, portraying ΛM(U) atW = 9.4J . In the disorder
interval 9.8J ≤ W ≤ 24.3J a second region where the behaviour of the system is metallic appears.
The states involved here are the scattering ones, little modified by the presence of interaction. In
particular, at U = 0 the lower critical point is positioned at Wc = (10.52 ± 0.06)J , in good agree-
ment with the one-particle phase boundary found within the coherent potential approximation [81]
at energy εc = −E/2 (Fig. 1.8), while the upper critical point lies at Wc = (14.52 ± 0.05)J , a
result consistent with the numerical one of Bulka et Al. [79] at the same value εc. The lower boundary
delimiting the metallic phase is almost independent of the coupling except in the weakly-interacting
region. This descends from the fact that the states involved at this level of disorder describe particles
located in sites far apart, which do not feel the presence of interaction, because the overlap between
orbitals is very small.
AtW = 10J , the curves ΛM withM = {8, 10, 12, 15}, plotted in panel 3.20 (f), exhibit a minimum
in U = 0, a maximum at U ≃ −2.5J and saturate at high repulsive and attractive interactions. They
signal a metallic behaviour for all U except at |U | ≲ J . A similar behaviour of ΛM is detected at
W = 11J , in Fig. 3.20 (g), where the reduced localization length obtained with different lattice sizes
approach at the origin, although without intersecting among themselves, thus signalling a metallic
regime in the whole U range we have examined. An example of extended wavefunctions is plotted
in Fig. 3.19b, where the eigenstate of K related to the eigenvalue U = 0.2J at W = 20J shows
sizeable fluctuations (amounting even to several orders of magnitude) in the scale of a lattice constant
a.
As in the case of zero energy (Fig. 3.15), the upper phase boundary possesses a nonmonotonic be-
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Figure 3.20 – The reduced localization length as a function of interaction strength in tunneling units
at finite total energy E = −15J . ΛM is computed at different values of the disorder strangth W =
{1, 3, 7, 8, 9, 10, 11, 24}J , starting from the top-left panel to the bottom-right one. Edited, from Ref. [176].

haviour, with a slight asymmetry according to the sign of interactions: Wmax,<
c = (24.33 ± 0.08)J

when the two-particle potential is attractive and Wmax,>
c = (24.26 ± 0.07)J when it is repulsive.

This trend can also be noticed in the ΛM(U) curves atW = 24J , where four Anderson transitions
are expected to occur, analogously to the situation in which the two particles lie at the center of the
band.
In the phase diagram in Fig. 3.18 and its zoomed lobe, in Fig. 3.21, explained through the effective
model in Eq. (3.24), the position of the numerical band edge is also represented.
The latter quantity is estimated from the disorder-averaged density of states ρK in Eq. (3.18), eval-
uated using Eq. (3.19). Following the method detailed in Sec. 2.2, we first subdivided the range in
λ = U−1 into Nb bins, ordered in ascending way in λ. We then identified the upper (resp. lower)
edge in interaction Umax (resp. Umin) as the minimum (resp. maximum) value of zeta in the bin l
whose frequency, averaged over Ntr = 100 disorder realizations, satisfies f̄ l−1 < 0.5 ≤ f̄ l (resp.
f̄ l+1 < 0.5 ≤ f̄ l). Each of the interaction edges, represented by a dotted curve in the (U,W ) plane,
has a monotonic behaviour and approaches the phase boundaries at both vanishing disorder and
W = (9.84 ± 0.01)J . However, especially when the density of states possesses slowly decaying
tails, the band-edge position seems to be slightly sensitive to the system size as well as to the choice
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Figure 3.21 – Phase boundary between localized and extended states in the (U,W ) plane, evaluated at
E = −15J (green solid curve) in the low-disorder region, where E ∼ U and the molecular states are
involved. The numerically obtained band edge is also represented (dotted curve), together with the one
extracted by resorting to the analysis of the translationally-invariant lattice (in Eq. (3.31) on the right side
and W = E − U with W ≤ 3J on the left side), portrayed by the long-dashed curves. Edited, from
Ref. [176].

of the extremes of the interval of λ. Nevertheless, at vanishing interaction, the numerical band edge
shown in Fig.3.18 lies in very appreciable agreement with the one found for the one-particle problem
with energy ε = −E/2 applying the coherent-potential approximation, detailed in Sec. 2.2.1. Denot-
ing the latter value of the band edge asW be

sp ≈ 8.91J , for higher disorder values we also find that the
denisty of states expressed in terms of the disorder strength as ρ̃K(U) = ρK(λ)λ

2 becomes nonzero
in the noninteracting limit, ρ̃K(0) ̸= 0: it is therefore a specific feature of the scattering nature of the
states of the pair.
To the end of determining the position of the exact band edge, depicted by the dashed curves in Fig.s
3.18 and 3.21, we resorted to the ordered lattice model (Eq. (3.1) withW = 0), writing a two-particle
eigenfunction of the complete system as Ψ(nnn,nnn) = eiqqq·nnnaψqqq(000), thus separating the center-of-mass
coordinate from the relative coordinates [177]. Plugging this ansatz in the eigenvalue equation for K
(Eq. (3.3)) whose matrix elements are given by Eq. (3.4) and using the one-particle eigenbasis {ϕkkk},
in Eq. (1.11), with the eigenvalues in Eq. (1.12), we found the relation:

1

U
=

1

Ns

∑︂
kkk

1

E − εkkk − εqqq−kkk

, (3.30)
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whereNs is the number of lattice sites. For a fixed energy E = −15J , and considering now a lattice
potential with constant value W/2, the lowest value of U is determined by solving Eq. (3.30) with
qqq = (π, π, π)Ta−1 and replacing E zith E−W at the denominator in its right-hand side. This gives
the relationW = E−U , which is plotted as the long-dashed line on the bottom-left part of Fig.s 3.18
and 3.21 in the disorder range 0 ≤ W ≤ 3J . In the ordered system,W = 3J represents indeed the
lower limit at which the interval of available values of U is unlimited, as it can be deduced by Eq.

(3.30), reminding that εk = −2J
3∑︁

s=1

cos ksa. When the lattice potential amounts to W/2 on each

site (the highest possible value according the distribution in Eq. (1.10)), at E = −15J , the highest
value of U below which states do not exist is obtained by setting qqq = 000 in Eq. (3.30). Under the latter
condition, in the limit of infinite-sized lattices, Eq. (3.30) can be rewritten as:

1

U
=

π/a∫︂∫︂∫︂
−π/a

d3kkk

(2π)3
1

E + 4J
∑︁3

s=1 cos ksa
. (3.31)

Recalling the parity of the cosine, the latter equation can be reexpressed by making use of Bessel’s
integrals of the first kind:

1

U
=

π/a∫︂∫︂∫︂
−π/a

d3kkk

(2π)3

∫︂ +∞

0

dteE+4J
∑︁3
s=1 cos ksa =

∫︂ +∞

0

dteEtI0(4Jt) := h(E) . (3.32)

Replacing again E with E +W in Eq. (3.32) in order to account for the potential and performing
the integration for different values ofW ≥ 0, one obtains h(E +W ), whose reciprocal is plotted in
the phase diagrams above mentioned as the long-dashed curve appearing in their bottom-right part.
Moreover, from the exact band edge it is possible to estimate the effective tunneling rate, through
12Jeff = 1/h(E)−E , and then the bandwidth, getting 2.01J , a result in optimal agreement with the
one obtained by including fifth-order terms in the approximation of the effective kernelK . The exact
and the numerical band edges converge in the absence of disorder, whereas whenW ̸= 0 they stray
abruptly and the numerical one follows closely the phase boundary as in Fig. 1.8 in 0 ≤ W ≤ 0.5J .
Interestingly, the states close to the right band edge have smaller binding energy as compared to the
rest of the band of molecular states.
For higher two-particle energy E , the scenario changes significantly and, in particular, the metallic
regions in the parameters space can merge. This is the situation we gather at E = −12.25J , whose
phase diagram is portrayed in Panel a of Fig. 3.22. Here, the upper phase boundary preserves its sym-
metry under parity ofU , and slightly shifts towards higher disorder, reachingWc,max = (24.97± 0.05)J .
The minimum, touched at zero interaction, is located at Wc = (15.91 ± 0.03)J , a value consistent
with the estimate of Bulka et Al. [79], visible again in Fig. 1.8. At the same time, the lower phase
boundary, separating extended scattering states from localized, ones moves towards lower disorder
values, eventually merging with the one of molecular states. The unbinding of molecular states and
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Figure 3.22 – In Panel a the phase boundary between localized and extended states is plotted in the
(U,W ) plane, evaluated at E = −12.25J and expressed in units of the tunneling amplitude. The
change in the topology of the metallic region with respect to the case shown in Fig. 3.18 is highlighted
by the slight shades in the regions of extended and localized states. Panel b displays a zoom of the phase
diagram in the low-disorder regime, where the region of extended scattering states merges with the one
of delocalized molecular states. Edited, from Ref. [176].

the subsequent delocalization of scattering states occur almost simultaneously atW = 2.465J . The
area in which molecular states are extended gets wider, since, at decreasing |E|, hopping between
nearest-neighbour sites becomes more effective and higher-order corrections of the effective disorder
parameterWeff = 2W in Eq. (3.27b) begin to be increasingly relevant.
Besides the full kernel is needed to explain the breaking of the pair into scattering states and their
subsequent delocalization. The scenario changes in the opposite direction, when the phase diagram
atE = −18J is analysed, thus considering an higher |E| compared to the case in whichE = −15J .
In this situation, represented in Panel a of Fig. 3.23, the asymmetry under the inversion of sgn (U/J)
gets more marked, and indeed WR

c,max = (22.1 ± 0.1)J and WL
c,max = (22.7 ± 0.2)J , where R

(resp. L) label the quantity at positive (resp. negative) interaction strength. This mirrors the fact that
the disorder-averaged density of states possesses a less prominent peak at positive λ, as it can be
noticed from Panel b of Fig. 3.24. Besides, at low interactions there are no extended states, so the two
metallic region at postive and negative interactions are separated, coherently with the one-particle
phase diagram, in which a εc = E/2 = 9J the behaviour is insulating for any W . In the area in
which molecular states are involved, the extended part appears to shrink although more symmetric
with respect to U = E3/(E2 + 12J2), therefore pointing out that the pointlike model (in Eq. (3.25))
becomes more representative of the dynamics of the system, as pointed by Panel b of Fig. 3.23.
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Figure 3.23 – In Panel a the phase boundary between localized and extended states is plotted in the
(U,W ) plane, evaluated at E = −18J and expressed in units of the tunneling amplitude. The phase
boundary obtained within the pointlike approximation, represented by the doubly dot-dashed curve,
is also portrayed, highlighting a better agrrement with respect to the case of E = −15J , in Fig. 3.21.
Edited, from Ref. [176].

This behaviour can be also observed in the density of states ρK, which is significant in a more
restricted interval of λ and thus, to a lesser extent, of interaction strength. Thanks to the miti-
gation of hopping (in Eq. (3.27a)), a lowering of the maximum critical value of W is detected at
W ≈ J , in accordance with Eq. (3.28). While comparing the Panels a of Fig.s 3.22 and 3.23,
we notice that the closeness of the numerical band edge and the CPA at U = 0 is lower when
E = −18J , due to more marked finite-size effects: in the latter case W be(U ≡ 0) ≈ 12.79J ,
whereasW be

sp (ε = −E/2) ≈ 13.26J .
We finally assessed the agreement between the numerical phase boundaries in the limit of vanishing
interactions and the one-particle phase diagram reported in Ref. [79]. In order to do this, we plotted
the phase boundary of the latter diagram in the energy-disorder plane, showing also the errorbars.
Moreover, for a more direct comparison, we evaluated the critical disorder and the exact and nu-
merical phase boundaries at the total energy E = 2ε of the pair. For this reason, the exact band
edges appearing in [79] at Wj = − ∓ 2ε − 12J , where j = L,R indicates the left and the right
edges respectively, become Wj = − ∓ E − 12J in Fig. 3.25. Accordingly, the numerical band
edge atW = W∗, corresponding to the crossing from molecular to scattering states, is fixed by the
condition E = ±2εbe(W

∗), yielding ε = εbe(W
∗), as expected. As guides to the eyes we plotted

also the dot-dashed lines corresponding to the total energy at which we built the previously shown
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Figure 3.24 – The averaged density of states ρK (Eq. (3.15)) at E = {−12.25,−15,−18}, evaluated at
W = 1J (Panel a) and at W = 20J (Panel b), and plotted as a function of λ := J/U . The solid curves
are obtained after averaging over Ntr = 100 realizations of the random potentials. In the figure on the
right, the dotted lines represent the density of states in the limitW ≫ J (Eq. (3.18)), where the quantity
in ordinate vanishes when (E −W )−1 ≤ λ ≤ (E +W )−1. Edited, from Ref. [176].

Figure 3.25 – Comparison between the single-particle and the two-body mobility edges for vanishing
interactions.The red squares denote the two-body data calculated for zero total energy, E = −12.25J
(light-orange dashed line) and E = −15J (green dashed line). For E = −18J no critical point is found.
The result obtained forE = 0 by Slevin and Ohtsuki in [76] is also shown by the light blue diamond. The
violet line corresponds instead to the numerical data from Ref. [79], upon the change of variable E = 2ε.
As in the previous phase diagrams, the dotted and the long-dashed lines represent the numerical and the
exact band edges respectively. Edited, from Ref. [176].



82 CHAPTER 3. TWO-PARTICLE TRANSITIONS IN THE ANDERSON-HUBBARD MODEL

two-particle phase diagrams. While noticing that atE = −18J no transitions are detected at U → 0,
we observe that our numerical results for the two-particle mobility edge are fully consistent (within
the numerical accuracy) with the single-particle counterpart.

3.6 Conclusions and perspectives

In this chapter we have presented our main results on the combined effects of disorder and interac-
tion based on a thorough analysis of the two-particle problem.
For two-dimensional systems, we showed that previous reports [151] [153] of interaction-induced An-
derson transitions in two dimensions were actually plagued by finite-size effects. This is in agreement
with the general rule that 2D Anderson transitions are forbidden in the orthogonal universality class.
In three-dimensional systems we showed that, for zero total energy of the pair, the metal-insulator
transitions takes place in a region of disorder strength, where all single-particle states are localized.
We noticed that finite-size effects are much stronger than what observed in the single-particle case,
although both transitions belong to the same universality class. In particular, the inclusion of the first
irrelevant variable in the finite-size scaling ansatz has been crucial to pinpoint the correct position of
the mobility edge. We found that, while interactions favour the delocalization of scattering states, the
effect is the opposite for tightly-bound states. This feature gives rise to a very rich phase diagram,
like in the E = U Hubbard subband, where the phase boundary exhibits a doubly reentrant (S-like)
behaviour. To better understand our results, we performed a thorough analysis of the effective den-
sity of states.
Our results provide a firm ground for further studies of the interplay of disorder and interactions
in quantum many-body systems. Our approach can be applied to a variety of two-particle systems,
including Cooper pairs in strongly-disordered superconductors [178] and electron-hole bound states
(excitons) in semiconductors.



CHAPTER 4

2D ANDERSON TRANSITION IN SPIN-ORBIT COUPLED GASES

So far we have considered models where the spin degree of freedom plays no role. In this chapter we
will focus instead on a system where spin-rotational symmetry is broken by spin-orbit interactions,
coupling the spin with the momentum of the particle. In particular the former quantity rotates during
the motion, resulting in destructive interference between the direct and the time-reversed paths, thus
weakening localization.
This phenomenon, known as weak anti-localization, is well predicted by the Scaling Theory: the
beta function can become positive as in 3D systems. For sufficiently strong spin-orbit coupling, an
Anderson transition appears even in two dimensions. This picture has been fully confirmed by en-
suing numerical works, where mobility edges in d = 2 have indeed been reported together with
estimates [179–184]. Weak anti-localization has been experimentally detected in 2D electrong gases
in semiconductor quantum wells [185] and at a surface of topological insulators [186].
More recently, artificial spin-orbit coupling for cold atoms has been reported in experiments [187] [188].
The simplest source of disorder in cold-atom systems is provided by laser speckles, which can be
obtained by shining a laser through a diffusive plate [189], resulting in a spatially correlated random
potential.
In this chapter we address the localization properties of a single atom subject to the combined action
of the spin-orbit interaction and the disordered potential. After introducing the speckle potential, we
show how to generate it numerically. We further show how to numerically implement a disordered
potential with given on-site distribution and correlation function, with emphasis on Gaussian-like
functions. Next we briefly outline the origin of optically-induced spin-orbit interactions in ultracold
atoms, comprising linear Rashba [190] and Dresselhaus terms. We then illustrate a modified transfer-
matrix algorithm resulting from a fourth-order discretization of the continuum Hamiltonian.
We show that the linear regime is not a specific property of the speckle potential, but appears also
for other kinds of disorder sources. In the wake of a previous work [191] pointing out the existence
of a new regime, where the mobility edge Ec varies linearly with the disorder strength, we also show
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Figure 4.1 – An example of speckle potential in d = 2, shown on the right. On the left an experimental
setup fo its generation is sketched: the speckle pattern is produced by shining a laser beam with wave-
length λL and widthD on a ground glass plate forming an angle α seen from the focal plane at distance
f from a lens, placed in front of the diffusive medium. Edited, from Ref. [194].

how the slope and the intercept of Ec behave near the persistent spin-helix symmetry point [192],
where the Rashba and Dresselhaus constants have equal magnitude and the SU(2) symmetry of the
Hamiltonian is restored.

4.1 Spatially correlated random potentials

In the previous chapters we have dealt with uncorrelated disorder, as proposed in the original An-
derson’s model. The presence of finite-range correlations can give rise to variations in the position
of the critical energy in d = 3 [193], as mentioned in Sec. 1.3, but, as proved by recent numerical
studies, do not affect the universality class of the transitions in d = 3 [193] and d = 2 [191].
In the presence of an electric field oscillating with a frequency ω far detuned from the atomic transi-
tion frequencies, the dipole moment of the particle can be written as the product of the polarizability
constant and the eternal field. Depicting the atom as a two-level system, having an excited state with
low decay frequency Γ, the interaction energy can be written as:

V (rrr) =
3πε0c

3Γ

ω3
A(ω − ωA)

|E(rrr)|2 := K|E(rrr)|2 (4.1)

where ωA denotes the atomic transition frequency and E(rrr) the complex amplitude of the electric
field. When the latter comes frommonochromatic light scattered at a rough surface (in the scale of the
optical wavelength), it can be expressed, according to Huygens’ principle, as a linear superposition of
amplitudes coming from uncorrelated scatterers. Owing to the irregularity of the medium, the phases
arising from different regions can be treated as random variables, which contribute to an electrical
field amplitude that, in the presence of a large number of scatterers, has normally distributed real
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and imaginary parts,
P (Re{E}, Im{E}) = 1

2πσϵ
e−|E|2/2σ2

ϵ , (4.2)

Making use of the relation in Eq. (4.1), in which the sign of the potential is essentially given by the
one of the frequency detuning, the probability density function in Eq. (4.2) can be rewritten as a
function of the potential V and the phase ϕ := arctan [Im{E}/Re{E}]. Performing the substitution
and integrating over the latter variable, one gets the Rayleigh law:

P̃ (V ) =
Θ(V V0)

V0
exp

(︃
− V

V0

)︃
where V0 = 2σ2

ϵK is a constant that coincides with the mean value of V . A positive value of V0
indicates blue-detuned laser speckles, whereas a negative one signals red-detuned speckles. In the
following we shall focus on blue-detuned speckles, as employed in recent experiments [56] [57] [58],
shifting also the potential by its mean value V ↦→ V − V0, so that its distribution P̃ becomes the
following:

PSpeckle(V ) =
Θ(V + V0)

V0
exp

(︃
−V + V0

V0

)︃
, (4.3)

whose variance satisfies V 2 = V 2
0 . The electric field amplitude on a plane far apart from the diffusive

plate can be expressed in terms of the one measured just after the aperture, denoted as ϵ(rrr) as follows:

E(rrr) =
∫︂

drrr′ε(rrr′)h(rrr − rrr′) , (4.4)

where h(rrr) represents the point spread function, dependent on the geometry of the diffusor. From
the latter relation, the spatial correlation C(rrr) can be written as:

C(rrr) := V (000)V (rrr) = V 2
0

⃓⃓⃓⃓
⃓E(rrr)E∗(000)

|E(rrr)|2

⃓⃓⃓⃓
⃓
2

= V 2
0

⃓⃓⃓⃓
h(rrr)

h(000)

⃓⃓⃓⃓2
.

For a circular aperture, the Fourier transform of the point spread function corresponds to an Airy
disk, ˜︁h(kkk) = Θ(k0 − |kkk|) [195], where k0 = αkL, α being the aperture angle and kL the wave
vector of the laser beam, as shown in Fig. 4.1. Switching to the space of coordinates, by using∫︁ 2π

0
dθe−ikr cos θ = 2πJ0(kr) and

∫︁ k0
0

dkJ0(kr)k = J1(k0r)k0/r, Jn(x) being the Bessel function
of order n, we get

C(rrr) = V 2
0

4J2
1 (r/σ)

(r/σ)2
, (4.5)

where σ = 1/k0 = 1/(αkL) is the speckle correlation length [196], which depends on the distance
f between the diffuser and the plane placed far apart through α = D/2f , where D corresponds to
the diameter of the plate, as displayed in Fig. 4.1.
In the subsequent computations we will express all energies in units of the correlation energy Eσ =
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ℏ2/(2mσ2), and we will consider random potential amplitudes V0 of nearly the same order of that
energy, so that the De Broglie wavelength λdB of the particle is roughly comparable to the correlation
length [193]. In the limit in which the latter quantity is much smaller than λdB, the speckle potential
is seen instead as essentially uncorrelated.

4.1.1 Numerical generation of the random potentials

To the purpose of understanding how a change in the features of a random potential affects the
occurrence of Anderson transitions, we consider two different potentials: the one generating the
speckle pattern, with distribution in Eq. (4.3) with correlation given by Eq. (4.5), and a normally-
distributed one, with Gaussian correlation. Their on-site probability distributions and correlations
are plotted in Fig. 4.2.

a) Speckle potential

Unlike in the previously analyzed systems, in this case the random potentials are correlated and
their numerical generation is not straightforward. In order to reproduce the speckle potential, of the
form illustrated in Sec. 4.1 with a correlation given by Eq. (4.5), we first generated the normalized
electric field amplitudes ϵ(iii) where iii := (ix, iy) denotes the position within the lattice, in units of the
lattice spacing∆. The real and the imaginary part of ϵ(iii) are normally distributed random variables,
with zero mean and unit variance. To lend a Besselian correlation, as in Eq. (4.5), to the random
variables, the convolution between the latter amplitude and the point spread function is performed
in momentum space. Defining g(iii) :=

∑︁
jjj h(iii− jjj)ϵ(jjj), that quantity in Fourier space becomes:

g̃(kkk) = ϵ̃(kkk)h̃(kkk) = ϵ̃(kkk)Θ(σ−1 − |kkk|) ,

since the Fourier transform of the point spread function is an Airy disk. From g(iii), its square modulus
f(iii) := |g(iii)|2 has been computed, together with its spatial average favg, thus finding a potential
which takes values from the probability distribution in Eq. (4.3):

VSpeckle(iii) = V0

[︃
f(iii)

favg
− 1

]︃
.

b) Gaussian potential

The Gaussian potential follows an on-site probability distribution function given by:

P (V ) =
1√
2πV0

e
− V 2

2V 2
0 , (4.6)
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Figure 4.2 – In the left panel the probability distribution functions of the two disordered potentials studied
are represented in units of V −1

0 . In the right panel the autocorrelation function is portrayed in units of
V 2
0 as a function of the distance r/σ in units of the correlation length.

where V0 represents its standard deviation. The autocorrelation function has also a Gaussian profile,
with a correlation length σ corresponding to one standard deviation:

C(rrr) = V 2
0 e

− r2

2σ2 . (4.7)

The spatial behaviour of this potential is compared to the one of the speckle potential (Eq. (4.3)) in
Fig. 4.3, where also the respective correlation functions are plotted. Besides, the constant V0 has the
same meaning in the two spatial distributions and corresponds to the square root of their respective
variances. For achieving the Gaussian potential, like the ones used in [197] and [193], we began by
generating a real random variable following the normal distribution, s(kkk), and then, in momentum
space, we impressed a Gaussian correlation on it by carrying out the following convolution:

ũ(kkk) := s̃(kkk)

√︃
2

π
e−

kkk2σ2

2 ,

as the Fourier transform of the normal distribution is also a Gaussian. Afterwards, in coordinate
space, the random potential is evaluated as:

VGauss(iii) = V0
Re
[︁
u(iii)

]︁
MN

.

Considering a square grid of M = 5000 ≡ N sites per side, we have tested the behaviour of the
potential and the correlation function in the two cases above presented, and the latter quantity has
been plotted against the exact function in Fig. 4.3. The result obtained by averaging over Ntr = 112
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(a) Bessel correlation (b) Gaussian correlation

Figure 4.3 – Spatial correlations of the random potentials, following the Rayleigh (a) and the Gaussian (B)
probability distributions, plotted as a function of the distance plotted as a function of the distance in units
of the correlation length σ. The data have been obtained from square lattices withM ≡ N = 5000 sites
per side and ∆ = 0.2πσ (a) and ∆ = 0.25πσ (b), setting the same parameters of the Hamiltonian. The
results are in excellent agreement with the analytical formulae in Eqs. (4.5) (a) and (4.7) (b), represented
by the orange/red solid curves.

realizations of the random potential agrees very well with the exact curve. In particular, in the left
panel of that figure, there are 6 sampling points between the origin, r = 0, and the first zero of the
correlation function, which occurs at r/σ = 3.83171.

4.2 Synthetic Spin-orbit couplings

As announced in the introduction, spin-orbit coupling in cold-atom systems mimics the one present
in certain materials. For example, in a lattice lacking mirror symmetry along the z axis, there can be
a static electric fieldEEE = E0êz , an electron moving with momentum ℏkkk feels a magnetic field due to
relativistic corrections of BBBSO = ℏE0

mec2
(kxêy − ky êx). The magnetic field then acts on the magnetic

dipole moment of the particle µµµ = − geℏ
4me

σσσ as −µµµ ·BBBSO, thus originating the following interaction
term in the total Hamiltonian:

HR =
geℏ2E0

4m2
ec

2
(kxσy − kyσx) := αR(kxσy − kyσx) , (4.8)

where g is the dimensionless magnetic moment, αR denotes Rashba constant and σi with i = x, y

refer to two Pauli matrices. This linear spin-orbit coupling term (Eq. (4.8)) is known as the Rashba
contribution [190], and arises in semiconductor heterostructures [192] which exhibit symmetry under
operations from the C4v point group, representing the one of the symmetries of a square. The Dres-
selhaus term comes instead from a lack of inversion symmetry of the material, and its particular form
depend on the symmetry of the material and contains odd powers of the particle momentum [198].
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Figure 4.4 – An example of the generation of an artificial spin-orbit coupling with cold neutral atoms:
a four-level ring coupling scheme with 87Rb atoms, involving hyperfine states |F,mF ⟩ Raman-coupled
by five lasers, marked as σi with i = 1, 2, 3 and πj with j = 1, 2, the formers three being circularly
polarized and the latters being linearly polarized. In the panel on the left, each red curve represents
a two-photon Raman transition, with polarizations denoted by the field symbols. The ring states are
mapped into physical states according to |1⟩ ≡ |2, 0⟩, |2⟩ ≡ |1,−1⟩, |3⟩ ≡ |1, 0⟩ and |4⟩ ≡ |2, 1⟩. A
microwave field with coupling frquency Ωµ shifts the internal states |1, 0⟩ and |2, 0⟩. In the panel on
the right, a constant magnetic field is displayed, as well as the arrangement of the lasers and the atomic
sample. From Ref. [199].

We adopt the term which proceeds from invariance under operation from the dihedral group D2d:

HD = βD(kxσy + kyσx) , (4.9)

where βD is the Dresselhaus constant, whose form is determined using perturbation theory and the
Kane model for semiconductors.
The interaction terms just presented in Eq.s (4.8) and (4.9) can be engineered in gases of cold
atoms, as previously disclosed. This can be realized by coupling selected internal atomic states with
counterpropagating laser fields, which link atomic motion in the plane (x, y) to the particle’s spin,
creating the characteristic spin-orbit coupled energy-momentum dispersion relations [192] [199]. The
system which allows to obtain this effect is shown in Fig. 4.4, displaying the configuration proposed
by Campbell et Al. [199]. In particular the Rashba and Dresselhaus constants depend on the lasers’
wave-number kL and the light-matter coupling strength Ω [199] as:

αR =
ℏ2kL
2mA

βD =
ℏ2δkL

2
√
2mAΩ

,

where δ := ωA − ωL denotes the detuning between the atomic and the light frequency. Object of
our investigation is a single atom of massm and spin s = 1/2 subject to a linear spin-orbit coupling,
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whose Hamiltonian can be written in the following form:

H =

[︃ℏ2(k2x + k2y)

2m
+ V (rrr)

]︃
12 + αR(kyσx − kxσy) + βD(kyσx + kxσy) . (4.10)

The continuous random potential is represented by V (rrr), which is now endowed with spatial corre-
lation C(rrr), as illustrated in Sec. 4.1. The absence of that potential yields split energy bands, whose
dispersion is given by:

Ekkk =
ℏ2k2

2m
±
√︁

(αR + βD)2k2 − 4αRβDk2x , (4.11)

where k := |kkk|. The previous relation, Eq. (4.11), in the case of pure Rashba or Dresselhaus coupling,
simplifies to Ek = ℏ2k2

2m
± ηk, where η = αR, βD . Under this condition, the ground-state occurs at

k = mη, where the energy reads:

Emη = −mη
2

2
. (4.12)

4.3 Identification of the critical point

In order to sudy the behaviour of wavefunctions inside the disordered lattice, we made use of the
transfer-matrix method illustrated in Sec. 2.1.1, based on strip-sized lattices with width M∆ and
length L∆, where L≫M .
The stationary Schrödinger equationHΨ = EΨ has thus been discretized on the lattice, by replacing
first- and second- order partial derivatives by expressions containing finite differences. Unlike in the
original Anderson problem (Eq. (1.9)), owing to the fact that spin-orbit interaction acts differently
according to spin orientation, we write a single-atom wavefunction as a two-component spinor Ψ =(︁
ψ↑ψ↓

)︁T which, in a discretized lattice, is represented by a vector with components labelling the
position in the grid ψβ(rrr = ∆ieeex +∆jeeey) ↦→ ψi,j,β , where β =↑, ↓ denotes the spin index.
Differently from the previously mentioned case, the approximation to the second order in ∆, in Eq.
(2.2), is no longer sufficient for obtaining converged results for the Lyapunov exponent, so we have
to resort to a finer discretization scheme, the fourth-order one, which however requires an higher
computational cost.
As pointed out in [191], the former approximation leads to reliable results only when ∆ ≲ 0.2πσ

at low spin-orbit coupling constant (mαRσ ∼ 10−2), while the latter scheme yields stable results at
∆ ≲ 0.3πσ, at fixedM∆. The advantage of the second method becomes evident at higher couplings:
when mαRσ ∼ 1, the first procedure is not reliable even at ∆ ≈ 0.1πσ, while the second one is
trustworthy at∆ ≲ 0.15πσ. Therefore, we express the first derivative in the latter scheme, which is
used thereafter, reads

∂xψβ ↦→
(︁
−ψi+2,j,β + ψi−2,j,β + 8ψi+1,j,β − 8ψi−1,j,β

)︁
12∆

, (4.13)
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Figure 4.5 – A sketch of the lattice withMN sites, at whose ends the transmission amplitude has been
calculated through the transfer-matrix method. At each step, the wavefunction has been evaluated using
the values obtained in the first four rows behind, highlighted by paler shades of red.

and the second-order spatial derivative becomes in turn:

∂xxψβ ↦→
(︁
−ψi+2,j,β + ψi−2,j,β + 16ψi+1,j,β + 16ψi−1,j,β − 30ψi,j,β

)︁
12∆2

. (4.14)

In general, discretization effects become more important as αR or βD increase, and the lattice con-
stant must satisfy ∆ < min (σ, ℓSO), where the latter quantity, denoting the spin-precession length,
in the case of pure Rashba and Dresselhaus couplings, corresponds to π/(mη), in which η = αR, βD .
With the aim of reducing finite-size effects, we imposed periodic boundary conditions forΨ along the
transverse side of the lattice, as previously done in Chaps. 2 and 3. By placing the y axis parallel to
the longer side of the bar and discretizing the derivatives as in Eq.s (4.13) and (4.14), we can express
the wavefunction at (i, j + 2)∆ in terms of the ones along the lines y = {j − 2; j − 1; j; j + 1}∆
as shown in Fig. 4.5, thus finding one recursive relation for each spin orientation. These equalities
correspond to:

ψij+2,↑ = a2ψi+2j,↑ + a1ψi+1j,↑ + aijψij,↑ + a∗1ψi−1j,↑ + a∗2ψi−2j,↑+

+ b1ψij+1,↑ + b−1ψij−1,↑ + b−2ψij−2,↑+

+ c2ψi+2j,↓ + c1ψi+1j,↓ + cijψij,↓ − c∗1a1ψi−1j,↓ − c∗2ψi−2j,↓+

+ d1ψij+1,↓ + d−1ψij−1,↓ + d−2ψij−2,↓ ,

(4.15)

and

ψij+2,↑ = −c∗2ψi+2j,↑ − c∗1ψi+1j,↑ − c∗ijψij,↑ − c1a1ψi−1j,↑ − c2ψi−2j,↑+

− d∗1ψij+1,↑ − d∗−1ψij−1,↑ − d∗−2ψij−2,↑+

+ a∗2ψi+2j,↓ + a∗1ψi+1j,↓ + aijψij,↓ + a1ψi−1j,↓ + a2ψi−2j,↓+

+ b1ψij+1,↓ + b−1ψij−1,↓ + b−2ψij−2,↓ ,

(4.16)
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where the coefficients denoted by latin letters depend on the parameters J , K and Γ as well as on
the random potential through the relations:

a2 =
iΓK − 1

1 +K2
a1 =

8(2− iΓK)

1 +K2
aij =

E − Vij − 60J

J(1 +K2)

b1 =
8(2 +K2)

1 +K2
b−1 =

8(2−K2)

1 +K2
b−2 =

K2 − 1

1 +K2

c2 =
iK + Γ

1 +K2
c1 = −8(Γ + 2iK)

1 +K2
cij = −iK

(E − Vij − 60J)

J(1 +K2)

d1 = − 8iK

1 +K2
d−1 = − 24iK

1 +K2
d−2 =

2iK

1 +K2
,

in which J , K and Γ are defined as the following functions of the parameters of Hamiltonian (Eq.
(4.10)):

J :=
ℏ2

24m∆2
K :=

αR + βD
12∆J

Γ :=
αR − βD
12∆J

.

Starting from the relations just found, Eq.s (4.15) and (4.16), we thus derive an iterative formula which
connects the values of the wave-function in the rows {j + 2, j + 1, j, j − 1} to the ones in the rows
{j + 1, j, j − 1, j − 2}. Denoting as Ψj := (Ψ1j,↑,Ψ2j,↑, . . . ,ΨMj,↑,Ψ1j,↓,Ψ2j,↓, . . . ,ΨMj,↓)

T , the
j-th transfer-matrix multiplication step reads:⎛⎜⎜⎜⎜⎝

ψψψj+2

ψψψj+1

ψψψj

ψψψj−1

⎞⎟⎟⎟⎟⎠ = TTTj

⎛⎜⎜⎜⎜⎝
ψψψj+1

ψψψj

ψψψj−1

ψψψj−2

⎞⎟⎟⎟⎟⎠ =MMMj

⎛⎜⎜⎜⎜⎝
ψψψ2

ψψψ1

000

000

⎞⎟⎟⎟⎟⎠ ,

where TTTj represents the 8M × 8M transfer-matrix associated to the j-th row, whereas MMMj =∏︁1
k=jTTTk is its product. From the latter we extract the least Lyapunov exponent by following the
procedure illustrated in Sec. 2.1.1, taking care of the loss of orthogonality of its eigenvectors by
performing QR reorthogonalizations each nI = 10 iterations of the transfer-matrix product, using
now unitary 8M × 4M QQQ matrices. The least Lyapunov exponent describing the slowest decay rate
of an eigenfunction is then averaged over Ntr = 336 configurations of the random potential, to the
end of evaluating the reduced localization length (Eq. (2.10)), expressed as

ΛM :=
1

M∆γ
,
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Figure 4.6 – The reduced localization as a function of energy in units of the correlation energy Eσ =
(mσ2)−1 in vicinity of the mobility edge. The quantities refer to a speckle potential with Bessel correla-
tion and V0 = 1.5Eσ . The lattices are all N = 50000 sites long and the Lyapunov exponents have been
averaged over Ntr = 336 disorder realizations. ΛM increases when the system is in the metallic regime,
while it decreases in the insulating one, approaching to ξM∆ at high system sizes.

and studying its behaviour near the critical point. In the critical region, we expand ΛM in Taylor
series as a function of energy, retaining only the relevant scaling variable, due to the small finite size
effects. Within this finite-size scaling framework, the reduced localization length can be expressed
as:

Λ
(FSS)
M = f

[︁
u(ω)M1/ν

]︁
=

n∑︂
k=0

ak
[︁
u(ω)M1/ν

]︁k
, (4.17)

where ω := (E − Ec)/Ec and u(ω) =
m∑︁
j=0

wjω
j . Similarly to what was done in Sec. b), we

set a1 = 1 and w0 = 0. Assuming that the transition belongs to the symplectic universality class,
characterized by Λc,symp = 1.844 ± 0.002 [183] [184] and νsymp = 2.73 ± 0.02 (cf. Tab. 1.1), we
performed nonlinear least-squares regressions usingm+ n parameters, wherem = n = 3, starting
from the data {(E,ΛM)} found at differentM near the critical point. The behaviour of ΛM in this
region is shown in Fig. 4.6, where the random potential in the lattice is the Rayleigh one with Bessel
correlation function.
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Figure 4.7 – Mobility edge Ec of the 2D Anderson transition separating low-energy localized states (E <
Ec) from high-energy diffusive states (E > Ec), plotted as a function of the standard deviation V0 of the
disordered potential following a Gaussian distribution. The phase boundaries are estimated for different
values of the Rashba constant, satisfying 0.03 ≤ αR/(mσ) ≤ 0.81, keeping βD = 0. In the computations,
the Lyapunov exponents have been averaged over 56 ≤ Ntr ≤ 336 disorder configurations, whereas the
length of the lattice has been mantained fixed at 50000∆, where ∆ = 0.2πσ.

4.4 Phase diagram

After having tested the compatibility of the mobility edges obtained through the method described
in the previous paragraph and the values already known in literature [191] for the speckle potential,
we will focus our attention on the case in which the potential on the lattice follows the normal dis-
tribution (Eq. (4.6)) with Gaussian correlations (Eq. (4.7)). Considering a pure Rashba coupling and
adopting a discretization fine enough to ensure convergence of ΛM , we have estimated the mobility
edge starting from lattices with size M = {200, 250, 300, 350, 400} at a disorder parameter in the
range [0.25, 2.5]Eσ . The procedure, based again on the finite-size scaling in Eq. (4.17), has been
carried out for four different values of the Rashba constant, satisfying 0.03 ≤ αRmσ ≤ 0.25. At the
end of these computations, we have noticed the appearance of a linear behaviour of the position of
the mobility edge as a function of V0 in the interval 0.5Eσ ≤ V0 ≤ 2.0Eσ , for all the values of the αR.
Nevertheless small deviations from linearity show up for low Rashba coupling strengths. The former
feature of the phase boundary, in the case of the speckle potential, has been identified only at low
disorder (V0 ≲ 0.5Eσ) at αRmσ = 0.03, detecting also negative slopes as soon as αR ≳ 0.3/(mσ).
Contrarily to that case, here we do not observe any ’kink’ of the curve and the slope seems to be not
very sensitive to the interaction constant: by decreasing the latter of a factor 27, the former raises of
a factor 2.44, as displayed in Fig. 4.7, where we show in ordinate the mobility edge from which the
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ground-state energy E0, in Eq. (4.12), has been subtracted. Even if these results have been obtained
with a pure Rashba coupling, they remain valid also in the case of a pure Dresselhaus coupling, be-
cause switching to the latter interaction equals to performing a transformation kx ↦→ −kx.

4.5 Crossover towards the orthogonal universality class

Nowwe consider the full Hamiltonian of Eq. (4.10), including both the Rashba and the Dresselhaus, in
order to study the behaviour of the critical energy as a function of the two constants, which contribute
to weak antilocalization in a non-additive way [200]. To this end, we can write the coupling constants
functions of a common constant λSO and a mixing angle θ, defined as follows:

αR = λSO cos θ βD = λSO sin θ ,

Since the critical energy is invariant under a transformation θ ↦→ π/2− θ, the relevant range of theta
reduces to 0 < θ < π/4. In particular, at θ = π/4, it has been found that the system possesses an
SU(2) spin-rotation symmetry and is robust against spin-independent disorder [201] [202]. Indeed,
under the latter condition, the Hamiltonian of Eq. (4.10) becomes:

H =

(︃
ℏ2kkk2

2m
+ V (rrr)

)︃
12 + 2βDkyσx ,

which now commutes with σx, and therefore a common basis of eigenstates for the two operators
can be found. Denoting the eigenstates of σx as sx,± = ±1, the Hamiltonian decouples into two
scalar operators,

H± =
ℏ2kkk2

2m
+ V (rrr)± 2βDky ,

in which the disorder acts on the two spin components separately, as in systems belonging to the
orthogonal universality class. Since both spin-rotation and time-inversion symmetries are preserved,
we predict that the mobility edge Ec diverges in d = 2. Fixing the value of λSO = 0.03/(mσ),
representing the magnitude of the ’vector’ of coupling constants, we estimated the slope p of the
phase boundary within the region 0.5 ≤ V0/Eσ ≤ 2.0 of a speckle potential and the intercept q at
different mixing angles θ. The two quantities, plotted in Fig. 4.8, exhibit an abrupt increase, while
θ → π/4 ≈ 0.785 is approached, highlighting a strong dependence of the mobility edge on θ near
the crossover with the orthogonal universality class. This result is consistent with the behaviour
of the critical energy in [191]. Concerning the nature of the divergence at θ → π/4, according to
Wegner’s renomalization-group approach [203], the presence of a spin-orbit coupling in d = 2 + ϵ

would translate in a correction toEc characterized by a power-law with an exponent 1/(2νorth) [204].
Since in d = 2, νorth diverges, the behaviour of the mobility edge is not described by a power-law of
|αR−βD|, but by a logarithmic relation. To prove this deduction, we performed regressions for slope
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Figure 4.8 – Behaviour of the slope p and intercept q of the phase boundary (coloured dots) as functions
of the mixing angle θ between Rashba and Dresselhaus couplings, plotted in linear scale (main panels)
and using logarithmic scale on the x-axis (insets). In the computations λSO has been fixed at λSO =
0.03/(mσ) while the speckle potential has been chosen as the random potential. The critical energies
have been extracted using the values of the critical exponent and reduced localization length estimated
in [184], with the finite-size scaling technique illustrated in Sec. 4.3. The scaling function has been
computed based on a number of disorder configurations Ntr ranging from 112 to 196, in lattices with
M = {150, 200, 250} sites along the transverse side and N = 50000 sites along the longitudinal one
and a lattice constant ∆ = 0.25πσ. The dashed curves, portrayed in both the insets and the main
panels, represent the fitting functions ζ = −aζ ln (π/4− θ) + bζ , where ζ = p, q within the interval
0.2 ≤ θ ≤ 0.75, showing the logarithmic divergences near the persistent spin-helix symmetry point.

p and intercept q within the range 0.2 ≤ θ ≤ 0.75: denoting the two aforementioned quantities as
ζ we fitted the data (θ, ζ) with the curves ζ = −aζ ln (π/4− θ) + bζ . Noticing a satisfactory
agreement between the data and the interpolating curves, we found ap = 0.049 ± 0.002 and bp =

0.085 ± 0.003 as the parameters of the fitting curve for the slope, and aq = (0.0198 ± 0.0009)Eσ

and bq = (0.093± 0.002)Eσ in the case of the intercept.

4.6 Conclusions and perspectives

In this chapter we have presented our results for 2D Anderson transitions for atoms in spatially
correlated disorder in the presence of artificial spin-orbit coupling.
We found that the linear regime observed for the mobility edge, reported in Ref. [191] also occurs for
other kinds of randomness, in particular Gaussian disorder, provided the spin-orbit coupling strength
is not too weak.
We also showed that the slope p and the intercept q of the straight line Ec = pV0 + q diverge
logarithmically where the Rashba coupling becomes equal to the Dresselhaus one. This divergence
signals the restoration of the SU(2) spin-rotation invariance, signalling the crossover of the model
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from the symplectic to the orthogonal universality class.
In the future it would be interesting to develop a theoretical approach which is able to explain the
observed logarithmic divergence. The regime of strong spin-orbit interaction is also worth exploring.
This requires to use more sophisticated higher-order discretization schemes.
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CONCLUSIONS

In this thesis we have reported our original results concerning interaction-induced Anderson transi-
tions. All the presented data have been obtained using state-of-the-art supercomputers with a total
computational cost around 2.5 millions hours of CPU time, most of which have been dedicated to
the analysis of the two-particle system. The intrinsic complexity of the subject and the numerical
approach has forced us to pay particular attention to the efficiency and the stability of the codes
against memory leaks. The final code that we used for production exhibits an hybrid MPI-openMP
structure, allowing for both multi-threading and parallel computation. We stress that the implemen-
tation of the recursive technique for matrix inversion exploiting the block-tridiagonal structure of the
single-particle (Anderson) model, discussed in Sec. 3.2, has been instrumental to obtain all numerical
results that we presented in Chapter 3.
As we have seen in Chapter 1, Anderson localization is a very general wavelike phenomenon. Quan-
tum systems offer the possibility to investigate new regimes where the wave describes a many-body
system of interacting particles. In Chapter 2 we present the numerical procedure used for extracting
the position of the critical point. In particular, we distinguish between the well-known transfer-matrix
method, which is very efficient but it applies only to models with short-range hopping and an alter-
native method based on a direct computation in short bars. This method, which applies for any kind
of Hamiltonian, has been benchmarked against the transfer-matrix in 3D in the context of Anderson
model, and systematically used in Chapter 3 to study localization properties of the pair.
Starting from well-known results for the localization properties of a single particle, we have investi-
gated the interaction-induced metal-insulator transition in a two-body system. We have found that
such transitions are absent in two-dimensional systems, in contrast with previous claims. For three-
dimensional disordered systems, where the existence of a mobility edge is well established, we have
shown that the transition can take place in a regime where all single-particle states are localized.
This opens an interesting connection with many-body localization, where a similar situation can oc-
cur [30] [87], which is worth exploring in the future.
We also revealed that the phase diagram in the energy-disorder-interaction space exhibits a rich and
counter-intuitive structure due to the opposite effects of interactions on the localization of scattering
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and of bound states. A peculiar feature of the effective model of the pair, not shared with the original
Anderson’s model, described by the matrixKKK, is that its whole spectrum can contain only extended
states for finite interval of disorder strength, whose size depends on the specific value of the total
energy of the pair. A microscopic explanation of this interesting effect is still an open problem. Our
numerical procedure adopted for the computation of the elements of KKK provides also an effective
tool to investigate the localization properties of two-particle states ranging from Cooper pairs [178] to
excitons in semiconductors [166]. Concerning the former system, the Gor’kov equation for the pairing
field [205] shares an analogous form as the eigenvalue equation (3.3) with K given by Eq. (3.4), and
can be exploited for estimating the critical temperature Tc of superconductivity as a function of the
disorder parameterW .
When a term able to break spin-rotation invariance is added to the single-particle Anderson’s Hamil-
tonian, a phase transition in two dimensions becomes possible. Considering a spatially correlated
speckle potential, we have inspected the behaviour of the phase boundary near the persistent spin-
helix symmetry point, where the Rashba and the Dresselhaus spin-orbit coupling strengths become
equal. In the vicinity of this point, the two-dimensional system features a logarithmic divergence re-
flecting the crossover to the orthogonal universality class. Furthermore, after switching from speckle
to Gaussian potential, we noticed a linear behviour in the phase boundary for different Rashba cou-
pling strengths, when the spin-orbit interaction is sufficiently strong: we verified that this effect is
independent of the specific properties of the disordered potential, calling for further theoretical de-
velopments. The results of Chapter 4 can also provide a basis to develop an higher-order discretiza-
tion scheme, leading to a tight-binding model with longer-range hopping. This opens the interesting
perspective of using such schemes to reduce the computation burden also in other models with a
spatially-correlated disorder.



Appendices





APPENDIX A

A.1 Random matrix theory

The features of the Anderson Hamiltonian can be also explained by making use of some results of
random matrix theory. This theory is able to explain the properties of matrices arising from dif-
ferent dynamical systems and finds applications in several branches of physics, including nuclear,
condensed-matter and statistical physics, and even in other disciplines, aside from mathematics [112].
Interpreting the single-particle HamiltonianHHH as a random matrix with an diagonal part VVV , repre-
senting the on-site energies, and a deterministic off-diagonal part TTT , containing the tunneling am-
plitudes, it has been proved that, in the metallic regime, HHH possesses spectral properties consistent
with the ones of a Gaussian random ensemble [206], especially at high dimensions d [207]. These
ensembles, composed of matrices with indipendent and identically distributed elements following
Gaussian’s distribution, describe quantum non-integrable ergodic systems, according to a conjecture
due to Bohigas, Giannoni and Schmit [208].
In particular, systems endowed with both time-reversal and spin-inversion symmetries, like the ones
characterized by the Hamiltonian in Eq. (1.9), are described by the Gaussian orthogonal ensemble
(GOE), made up of real symmetric matrices that are invariant under the following transformations,

HHH →WWW THHHWWW ,

where
WWW TWWW = 1 .

Systems in which time-inversion symmetry is broken are represented by matrices from Gaussian
Unitary Ensemble instead, as in the case of a particle subject to a magnetic field. On the other hand,
for systems in which rotational invariance is broken, like those where the hopping is spin-dependent,
the corresponding ensemble is the gaussian symplectic one (GSE). The local and the global properties
of the spectrum of gaussian ensembles hold for a larger class of random marices [209], the Wigner
matrices, that are hermitian matrices with independent and identically distributed entries with zero
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mean and finite variance.
Labelling each Gaussian ensemble cited above with an index β = 1, 2, 4, in the respective order,
known as Dyson’s index [101], the joint probability density of the eigenvalues {E1, ..., EN} ofN×N
gaussian matrices is given by [112]:

P (E1, ..., EN) = CN,β exp

{︄
−β
2

N∑︂
k=1

E2
k

}︄∏︂
i<j

|Ei − Ej|β

where

CN,β =

(︃∫︂ +∞

−∞
...

∫︂ +∞

−∞

∏︂
i<j

|Ei − Ej|β
N∏︂
k=1

exp

{︃
−β
2
E2

k

}︃)︃−1

=

=
βN/2ββN(N−1)/4

[︁
Γ(1 + β/2)

]︁N
(2π)N/2

∏︁N
i=1 Γ

(︁
1 + jβ

2

)︁ .

For all three gaussian ensembles, in the limit of N → +∞, the density of states converges to the
Wigner semicircle law:

ρN(E) =

⎧⎨⎩
√
2N
π

√︂
1− E2

2N
, −

√
2N ≤ E ≤ +

√
2N

0, E >
√
2N and E < −

√
2N

.

Another important feature of Gaussian random matrices is the level spacing statistics, which varies
according to the ensemble that is considered. Denoting the normalized spacings as

si :=
Ei+1 − Ei

⟨Ei+1 − Ei⟩
= Nρ(Ei)(Ei+1 − Ei) ,

where i = 0, 1, . . . , N − 1, in which a higher subscript refers to greater energy eigenvalue, the
probability density PN(s) associated to a N × N matrix approaches, even in the thermodynamic
limit of N → +∞, the one found in the N = 2 case. The latter corresponds to the so-called Wigner
surmise:

PWD(s) = cβs
βe−aβs

2

, (A.18)

where the constants cβ and aβ depend on the statistical enseble as illustrated in Table 1 .9. The
fact that the probability of finding two energy levels arbitrarily close to each other is zero, as P (s)
vanishes at the origin, reflects the ‘repulsion’ between the energy levels, that is a typical feature of
extended states, resulting from the hybridization of adjacent orbitals.
In the insulating regime, localized states have uncorrelated eigenvalues, and the distribution of the
energy level spacings follows Poisson’s law

PP (s) = e−s , (A.19)
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Figure .9 – Values of the coefficients appearing in Eq. (A.18) for the different Gaussian ensembles, asso-
ciated to the three Wigner-Dyson universality classes introduced in § 1.4.1.

Figure .10 – Behaviour of the probability density function of the normalized energy-level spacings ac-
cording to the three different gaussian ensembles, describing the metallic states. Comparison of the latter
with the Poisson distribution, accounting for the localized regime.
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that is the one that characterizes quantum integrable systems, according to a conjecture of Barry and
Tabor [210]. Taking up Anderson’s model, when these states are close in energy, they are centered in
far-away lattice sites, and do not overlap: the spectrum thus exhibits level clustering. The statistics
of level spacings thus allows for distinguishing the localized from the extended states and it has been
used extensively for this purpose [207] [211] [154].
In more recent works, the change in the probability distribution is studied through the variable

ri :=
min {si, si−1}
max {si, si−1}

known as the reduced gap ratio [21] [212] [213], which characterizes the correlation between adjacent
energy gaps. Notice that this quantity is independent of the average spacing between the energy
levels. In the insulating phase, this random variable takes values from the following distribution:

PP (r) =
2

(1 + r)2
. (A.20)

When the model belongs to the orthogonal universality class, in the metallic phase the proabability
distribution of the reduced gap ratio is given by:

PWD(r) =
27

4

r + r2

(1 + r + r2)5/2
. (A.21)

From Eq. (A.20) and (A.21), one finds that the mean values of the reduced gap ratio for the two dis-
tributions are given by ⟨r⟩P = 0.38629 and ⟨r⟩WD = 0.5307 respectively. Therefore, the reduced
gap ratio has become a useful tool to pinpoint the position of the critical point of Anderson transi-
tions [21,214]. In particular, for lattice models, it has been found that at the critical point the gap ratio
takes the universal value ⟨r⟩c = 0.513± 0.05.
Beyond the three well-known universality classes, other classes have been discovered in more recent
years. For instance, the three gaussian chiral ensembles representing the chiral universality classes
possess a further symmetry and is composed of complex matrices that can be written in the following
block off-diagonal form:

HHH =

(︄
0 hhh

hhh† 0

)︄
,

which satisfy the relationHHH = −τzHHHτz , where τz = σz ⊗ 1 and σz is a Pauli matrix. These matri-
ces describe systems like bipartite lattices, modelled by tight-binding Hamiltonians whose tunneling
terms are random and account for hopping between the two sublattices, whereas on-site energies
are absent or constant: this particular structure favours the occurrence of delocalized eigenstates.



RESUMÉ SUBSTANTIEL

Cette thèse porte sur l’étude de la localization d’Anderson de particules quantiques dans des poten-
tiels désordonnés, un phénomène qui se manifeste par la suppression de la propagation d’un paquet
d’onde à cause de l’interference destructive entre les ondes engendrées par la diffusion contre les
impuretées.
Au niveau microscopique, ce phénomène est lié à un changement profond du comportement des
fonctions d’onde, qui deviennent spatialement localisées. Le passage d’un état localisé à un état délo-
calisé correspond à une transition de phase métal-isolant, la transition d’Anderson. L’apparition de
cette transition depend de la classe d’universalité du modèle microscopique, ainsi que à la dimension
du réseau: en l’absence de champs magnétiques et d’interactions spin-orbite, le phénomène peut se
vérifier seulement dans des réseaux tridimensionnels.
La transition d’Anderson est diffiicile à étudier analytiquement, car elle survient dans un régime non
perturbatif. Par conséquent, le calcul numérique est un outil fondamental pour toute analyse quan-
titative, de l’identification du point critique au calcul des exposants universels associés. Parmi les
modèles qui ont plus contribués à notre compréhension du sujet, il y a celui d’Anderson, qui décrit
une particule qui se deplace par effet tunnel d’un site à un autre d’un réseau discret en présence d’un
potentiel extérieur aléatoire. L’Hamiltonien correspondant, est défini par:

Ĥsp = −J
∑︂
{iii,jjj}

|iii⟩⟨jjj|+
∑︂
iii

viii|iii⟩⟨iii| , (.22)

où iii ∈ Zd indique le site dans le réseau d-dimensionnel, J est le terme de saut. Le désordre apparait
par le biais de l’énergie locale viii, qui correspond à une variable aléatoire independant uniformement
distribuée dans l’intervalle [−W/2,+W/2], où W est un nombre réel. En d ≤ 2, toutes les états
propres de l’Hamiltonien (.22) sont exponentielment localisés,

|ψβ(iii)| ∼ e−|iii−iii0,β |/ξβ , (.23)

où ξβ represente la longueur de localisation de l’état propre ψβ , centré sur le site iii0,β . En trois
dimensions, par contre, ils existent deux valeurs critiques Ec,1, Ec,2 de l’énergie de la particule, ap-
pelés seuils de mobilité, separent les états localisés, décrits par l’Eq. (.23), des états délocalisés. Cela
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donne lieu à un diagramme de phase dans le plan énergie-désordre en Fig. 1.8. La relation entre le
comportement spatial des fonctions d’onde et les propriétés macroscopiques du milieu est mise en
évicence par la théorie du scaling, qui est également éclairée. Dans le même chapitre, nous abordons
ensuite le problème de la localisation à deux corps, en rappelant les résultats connus en literature et
les questions ouvertes, qui font l’objet de cette thèse.

L’identification du point critique de la transition d’Anderson passe par le calcul numérique du loga-
rithme de l’amplitude de transmission entre les deux extremités d’une barre quasi-unidimensionnelle,
caractérisée par une section carrée de cotéMa, où a represente le pas, et par une longueurNa, telle
que N ≫ M . Ce calcul permet d’extraire la longueur de localisation reduite ΛM du modèle à
partir duquel la position du point critique s’obtient par la technique du finite-size scaling. Dans le
chapitre 2, qui est préparatoire aux chapitres 3 et 4, nous présentons deux différentes méthodes pour
l’évaluation précise de ΛM . La première, celle de la matrice de transfert, est la méthode de référence
car elle permet de simuler des systèmes de grande taille. Cependant, elle s’applique seulement à des
Hamiltoniens avec tunneling à courte portée. La deuxième méthode, qui s’appuie sur l’évaluation
directe de la fonction de Green à un corps, a un champ d’application plus général, mais sa com-
plexité numérique ne permet d’aborder que des barres relativement courtes. Ici nous montrons qu’il
est néanmoins possible d’évaluer ΛM avec une précision satisfaisante. Pour cela, nous vérifions que,
dans le cas de l’Hamiltonien d’Anderson (.22), on obtient des résultats cohérent avec la méthode de
la matrice de transfert, pourvu que une régression linéaire des données soit effectuée.
Dans le même chapitre, nous discutons en détail la méthode numérique suivie pour l’évaluation de
la densité d’états moyennée sur les Ntr différentes réalisations du désordre

ρ(E) =
Ntr∑︂
r=1

M3∑︂
α=1

δ(E − εα,r)

Ntr(Ma)3
,

où εα,r representent les valeurs propres de l’Hamiltonien d’Anderson (.22) relatifs à la configuration r
du potentiel aléatoire. Nous constatons un très bon accord avec la prédiction issue de l’approximation
de potentiel cohérent (CPA), en Fig. 2.7.

Ce système est décrit par l’Hamiltonien d’Anderson-Hubbard:

Ĥ = −J
∑︂
{iii,kkk},jjj

|iii, jjj⟩⟨kkk, jjj| − J
∑︂

iii,{jjj,kkk}

|iii, jjj⟩⟨iii, kkk|+
∑︂
iii,jjj

|iii, jjj⟩(viii + vjjj)⟨iii, jjj|+ U
∑︂
iii

|iii, iii⟩⟨iii, iii| ,

où U indique la force d’interaction. Pour ce modèle, on peut demontrer que les élements diagonaux
de l’amplitude Ψ(nnn) := ψ(nnn,nnn) de la fonction d’onde à deux corps satisfont l’équation aux valeurs
propres suivante,

1

U
Ψ(nnn) =

∑︂
mmm

K(nnn,mmm)Ψ(mmm) , (.24)

où les élements de la matriceK sont liés à la fonction de Green à deux corps en l’absence d’interaction
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par la relation K(nnn,mmm) := ⟨nnn,mmm|(E1̂ − Ĥ0)
−1|nnn,mmm⟩. Ici Ĥ0 := Ĥ(U = 0), tandis que E

represente l’énergie totale de la paire. Nous considérons dorenavant (.24) comme un’équation de
Schrödinger à un corps éfficace, où K joue le rôle de l’Hamiltonien et la valeur propre λ := U−1

correspond à la pseudo-énergie. Ce chapitre est consacré à l’étude des propriétés de localisation de ce
modèle efficace. Nous expliquons d’abord l’algorithme utilisé pour le calcul des élements de matrice
de K , à l’aide de techniques recursives. Ensuite nous démontrons que les transitions d’Anderson
à deux corps prédites en dimension deux par des précedents travaux sont probablement des effets
de taille finie. Dans le reste du chapitre, nous examinons le cas tridimensionnel, ce qui represente
également un grand défi au niveau numérique. Nous commençons par démontrer que les transitions
d’Anderson du modèle efficace donnent des exposants critiques en accord avec ceux de la classe
orthogonale (Fig. 3.8), ce qui nous permet d’estimer la position du point critique par la méthode du
finite-size scaling. Puis, nous avons établi le diagramme de phase dans le plan interaction-désordre
(en Fig. 3.15), pour une paire d’énergie nulle (E = 0), en observant que la transition a lieu dans un
régime où tous les états à une particule sont localisés. Ce résultat est en accord avec les prédictions de
la localisation à plusieurs corps, appelée many-body localization. Nous expliquons le comportement
non monotone du seuil critiqueWc du désordre en fonction de U en analysant le comportement de
la dénsité d’états du modèle efficace (Fig. 3.9).
Pour des valeurs d’énergie non nulles, |E| > 12J , nous montrons que la topologie du diagramme
de phase est modifiée par la présence d’états moleculaires, qui sont très sensibles aux effets du dé-
sordre. En effet, ces états correspondent à des situations où E ∼ U et la paire se comporte comme
une particule ponctuelle, qui obéit à un modèle d’Anderson avec des paramètres rénormalisés par
l’interaction,

2J2

E

3∑︂
i=1

Ψ(nnn+eeei) +
2J2

E

3∑︂
i=1

Ψ(nnn− eeei) +
2vnnn(E + 2vnnn)

E
Ψ(nnn) = EeffΨ(nnn) ,

où Eeff = E(E−U)/U − 12J2/E et eeei, avec i = 1, 2, 3, sont les trois vecteurs unitaires le long des
trois axes orthogonaux. En partant de cet effet nous avons construit le diagramme de phase le long
la direction E = U , où le mélange d’états diffusifs et liés donne lieu à un diagramme de phase avec
une double renfoncement (Fig. 3.17).

Si dans les chapitres précédents nous avions negligé le dégré de liberté de spin dans nos calculs,
dans le chapitre 4 nous considérons un système qui brise la symétrie SU(2) et dont le modèle ap-
partient à une classe d’universalité différente, la classe sympléctique. Cette situation se vérifie lorsque
une particule est soumise à une interaction spin-orbite, qui modifie les effets d’intérférence et favorise
la delocalisation de la particule. Ainsi des transitions d’Anderson en dimension deux deviennent pos-
sibles dans cette classe.
Nous étudions ce transition dans le contexte d’atomes froids soumis à l’effet conjoint d’un potentiel
désordonné, V (rrr), et d’un couplage spin-orbite artificiel, de type Rashba-Dresselhaus. L’Hamiltonien
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correspondant est:

H =

[︃ℏ2(k2x + k2y)

2m
+ V (rrr)

]︃
12 + αR(kyσx − kxσy) + βD(kyσx + kxσy) . (.25)

où αR et βD symbolisent respectivement les constants de couplage de Rahsba et Dresselhaus.
Nous étudions le seuil de mobilitéEc de la transition en variant les deux propriétés caractèristiques du
désordre, à savoir la distribution de probabilitéP (V ) et la fonction de correlationC(rrr) := V (000)V (rrr).
Pour βD = 0, nous avons vérifié l’existance d’un régime où le seuil de mobilité varie linéairement
avec l’intensité V0 du désordre, définie par V 2

0 := V (000)2 (Fig. 4.7).
Lorsque les couplages Rashba et Dresselhaus prendent la même valeur, αR = βD , l’invariance SU(2)
est rétablie et le modèle (.25) tombe dans la classe orthogonale, où toute transition d’Anderson en
dimension deux est interdite. Dans le régime linéaire mentionné ci-dessus, nous étudions le com-
portement du seuil de mobilité en variant le couplage de Dresselhaus de βD = 0 à βD = αR, où Ec

diverge. Ainsi, nous avons decélé une divergence logarithmique de la pente e de l’intercepte du seuil
de mobilité (Fig. 4.8).
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