
HAL Id: tel-03137067
https://hal.science/tel-03137067v2

Submitted on 17 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synthesis and real-time implementation of
parameterized NMPC schemes for automotive

semi-active suspension systems
Karthik Murali Madhavan Rathai

To cite this version:
Karthik Murali Madhavan Rathai. Synthesis and real-time implementation of parameterized NMPC
schemes for automotive semi-active suspension systems. Automatic. Université Grenoble Alpes [2020-
..], 2020. English. �NNT : 2020GRALT052�. �tel-03137067v2�

https://hal.science/tel-03137067v2
https://hal.archives-ouvertes.fr

THÈSE

pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTE
UNIVERSITE GRENOBLE ALPES

Spécialité : Automatique-Productique

Arrêté ministériel : 7 août 2006

Présentée par
Karthik Murali Madhavan Rathai

Thèse dirigée par Olivier SENAME et
codirigée par Mazen Alamir

préparée au sein du GIPSA-Lab
dans Electronique, Electrotechnique, Automatique,
Traitement du Signal (EEATS)

Synthesis and real-time
implementation of parameterized
NMPC schemes for automotive
semi-active suspension systems

Thèse soutenue publiquement le 04 November 2020,
devant le jury composé de:

M. Didier GEORGES
Professeur, Grenoble-INP, Président
M. Sorin OLARU
Professeur, CentraleSupelec, Rapporteur
M. Michel BASSET
Professor, Université de Haute-Alsace, Rapporteur
M. Jonathan Brembeck
Head of the Vehicle System Dynamics department, German Aerospace
Center (DLR), Examinateur
M. Olivier SENAME
Professeur, Grenoble INP, Directeur de thèse
M. Mazen Alamir
Directeur de recherche, CNRS Grenoble, Co-Directeur de thèse

Contents

Table of Acronyms and Notations xiii

Thesis framework and contribution 1

0.1 Thesis framework . 1

0.2 Introduction and problem statement of the thesis 1

0.3 Structure of the thesis . 4

I Thesis background and theoretical background 7

1 Thesis background 9

1.1 Prelude . 9

1.2 Automotive suspension system . 10

1.2.1 Introduction to automotive suspension systems 10

1.2.2 Passive suspension system . 11

1.2.3 Active suspension system . 12

1.2.4 Semi-active suspension system . 12

1.3 Vertical vehicle dynamics modeling . 13

1.3.1 Quarter car vehicle model . 13

1.3.2 Half car vehicle model (Roll oriented model) 14

1.4 Performance and objective requirements for vehicle suspension control 15

1.5 INOVE test platform (GIPSA lab) . 16

1.5.1 Hardware description . 16

1.5.2 Plant and actuator description . 17

1.5.3 Sensor description . 17

1.6 Functional mock-up interface (FMI) . 19

i

ii Contents

1.7 EMPHYSIS project and embedded FMI (eFMI) standard 20

1.7.1 EMPHYSIS project . 20

1.7.2 Embedded Functional Mockup Interface (eFMI) 21

1.8 Conclusions . 23

2 Theoretical background 25

2.1 Introduction . 25

2.2 Nonlinear Optimization . 25

2.2.1 Introduction . 25

2.2.2 Classi�cation of nonlinear optimization problems 27

2.2.3 Derivative based methods . 28

2.2.4 Derivative free methods . 31

2.3 Fundamentals of Nonlinear Model Predictive Control 31

2.3.1 Introduction . 31

2.3.2 Direct methods . 33

2.3.2.1 Direct single shooting method 35

2.3.2.2 Direct multiple shooting method 36

2.3.2.3 Direct collocation method . 37

2.4 A Gentle Introduction to GPGPU Computing for Control Engineers using

CUDA Programming Paradigm . 38

II pNMPC with RT applications for control of semi-active
suspension system 39

3 Experimental implementation of pNMPC scheme for control for semi-active

suspension system 41

3.1 Introduction . 42

3.1.1 Related works . 42

3.1.2 Chapter contributions . 43

Contents iii

3.2 Control oriented ER semi-active damper modeling and parameter identi�cation 44

3.2.1 Vehicle modeling - Quarter car model 44

3.3 Quasi-static nonlinear ER damper model . 45

3.4 Parameter estimation . 46

3.4.1 ER semi-active damper response time estimation 46

3.4.2 Design of experiments . 47

3.4.3 Non-linear least squares (NLS) based data �tting 49

3.5 pNMPC design requirements for semi-active suspension system 50

3.5.1 Objective requirements . 50

3.5.2 Constraint requirements . 51

3.6 Parameterized NMPC . 51

3.7 RT HiL implementation of pNMPC controller and Linearization based MPC

controller on dSPACE MABXII . 53

3.7.1 Linearization based MPC design . 53

3.7.2 Simulation analysis for pNMPC method 54

3.8 Real-time Implementation . 56

3.8.1 Computational e�ciency test . 57

3.8.2 Chirp test with comfort objective . 58

3.9 Experimental implementation of pNMPC controller on INOVE test platform . . 60

3.9.1 Comparison controllers . 60

3.9.2 Results and Implementation . 60

3.9.2.1 Chirp road pro�le test . 60

3.9.2.2 Bump road pro�le test . 61

3.10 Conclusions . 61

4 GPU based parallelized pNMPC scheme for control of semi-active suspen-

sion system 65

4.1 Introduction . 66

iv Contents

4.1.1 Related works . 66

4.1.2 Chapter contribution . 67

4.2 Half car model with semi-active suspension system 68

4.2.1 Half car mathematical model without road model 68

4.2.2 Half car mathematical model with stochastic road model 68

4.2.3 ISO road pro�le . 69

4.2.4 Mathematical terminology . 69

4.2.5 Nonlinear quasi-static SA damper model 70

4.3 Parallelized pNMPC scheme for control of semi-active suspension system with-

out road model . 70

4.3.1 Mathematical model notations . 70

4.3.2 Parallelized pNMPC design requirements 70

4.3.2.1 Objective requirements for Parallelized pNMPC without road

model . 70

4.3.2.2 Constraint requirements for Parallelized pNMPC without road

model . 71

4.3.3 MPC problem formulation . 72

4.3.4 Parallelized pNMPC Method . 72

4.4 Analysis and Simulation results . 75

4.4.1 Computational time analysis b/w CPU and GPU 75

4.4.2 Comparative analysis . 75

4.4.3 Road pro�le simulation test - Ride handling 76

4.5 Scenario-stochastic pNMPC scheme for control of semi-active suspension system 80

4.5.1 Mathematical model notations . 80

4.5.2 SS-pNMPC design requirements . 80

4.5.2.1 Objective requirements for SS-pNMPC controller 80

4.5.2.2 Constraint requirements for SS-pNMPC controller 80

4.5.3 SNMPC problem formulation . 81

Contents v

4.5.4 SS-pNMPC method . 82

4.5.4.1 Method description . 82

4.5.4.2 Scenario generation . 84

4.5.5 Results and simulations . 85

4.5.5.1 RT embedded tests on NVIDIA boards 85

4.5.5.2 Pareto optimality of objectives 87

4.5.5.3 Road pro�le simulation test . 87

4.6 Conclusions . 88

III pNMPC - A code generation software tool for imple-
mentation of derivative free pNMPC scheme for embedded
control systems 91

5 pNMPC code generation tool 93

5.1 Introduction . 94

5.1.1 Prelude . 94

5.1.2 Motivation . 94

5.1.3 Related works . 95

5.1.4 Chapter contributions . 97

5.2 pNMPC theoretical background . 98

5.2.1 pNMPC problem formulation . 98

5.2.2 Visualization of control parameterization 99

5.3 Derivative free optimization module . 100

5.3.1 Constraint reformulation (Scalarization) 101

5.3.2 SQP based BBO (Uni-variate case) . 101

5.3.3 SQP based BBO (Multi-variate case) . 107

5.4 pNMPC S/W structure . 107

5.4.1 Symbolic classes . 107

vi Contents

5.4.2 OCP design classes . 108

5.4.3 Control parameterization classes . 109

5.4.4 Real/Symbolic classes . 110

5.4.5 Code generation classes . 110

5.5 pNMPC code generation module . 111

5.6 Application of pNMPC toolbox . 113

5.6.1 Cart-pole swing up problem . 114

5.6.2 PVTOL stabilization problem with Black-box models 116

5.7 HiL tests on dSPACE MABXII for control of semi-active suspension system for

quarter car vertical dynamics model . 120

5.8 Parallelized pNMPC patch . 121

5.8.1 Parallelization of the optimization module on CUDA GPUs and CUDA

code generation module . 121

5.8.2 Application of Parallelized pNMPC S/W for 2D crane control 122

5.9 Future works and conclusions . 127

A pNMPC C++ code examples 129

List of Figures

1.1 CAD design of double wishbone vehicle suspension system 10

1.2 Force-de�ection velocity characteristics (SER) for passive, semi-active and ac-

tive suspension systems . 11

1.3 Quarter car vehicle model . 14

1.4 Half car roll oriented vehicle model . 15

1.5 Schematic of INOVE test platform [Vivas-Lopez et al. 2014a] 17

1.6 INOVE test platform GIPSA-lab . 18

1.7 Schematic of data �ow between the simulation tool and the FMU [Blockwitz

et al. 2012] . 19

1.8 Simpli�ed schematic of eFMI work�ow [EMPHYSIS 2017] 20

1.9 Detailed schematic of eFMI work�ow [EMPHYSIS 2017] 21

1.10 Detailed schematic of eFMI work�ow [EMPHYSIS 2017] 22

1.11 Automotive standard compliant production code in eFMI work�ow [EMPH-

YSIS 2017] . 22

2.1 Classi�cation of nonlinear optimization problems 27

2.2 Classi�cation of optimal control problems . 34

2.3 Direct single shooting illustration . 36

2.4 Direct multiple shooting illustration . 37

3.1 Measured damper force (u) for PRBS based road pro�le 45

3.2 PWM-DC signal (φ) . 46

3.3 Wavelet analysis of ER semi-active damper force (u) signal 47

3.4 FER vs zdef plot for di�erent PWM-DC signals 48

3.5 FER vs żdef plot for di�erent PWM-DC signals 48

3.6 Predicted damper force and measured damper force u 49

vii

viii List of Figures

3.7 Ns vs J
norm
CL for di�erent values of computational scale factor γ 55

3.8 Control scheme for the proposed analysis . 55

3.9 dSPACE MicroAutoBox II - 1401/1511 . 56

3.10 Computational e�ciency between the pNMPC and linearization based MPC

controller . 57

3.11 Chirp Road pro�le with amplitude of 1 mm and frequency sweep from 5 to 25

Hz . 58

3.12 Chassis acceleration for the quarter car system 59

3.13 Damping force vs suspension de�ection velocity 59

3.14 Chirp road pro�le . 61

3.15 PWM-DC input for di�erent controllers for chirp road pro�le 62

3.16 Bump road pro�le . 62

3.17 Chassis acceleration for bump road pro�le . 63

3.18 PWM-DC input for di�erent controllers for bump road pro�le 63

4.1 CPU vs GPU pNMPC computation time . 76

4.2 Road pro�le for ride handling . 77

4.3 Ride handling - roll angle θ . 78

4.4 Computational time distribution . 78

4.5 PWM-DC input for Parallelized pNMPC method 79

4.6 PWM-DC input for ACADO-qpOASES NMPC controller 79

4.7 Histogram of computation time on di�erent embedded GPU plaftforms 86

4.8 Pareto optimal front between comfort and ride handling objective 87

4.9 Longitudinal acceleration pro�le (ax) . 88

4.10 Longitudinal velocity pro�le (vx) . 88

4.11 Roll angle (θ) plot for di�erent controllers for ISO-E road pro�le 89

4.12 Chassis acceleration (z̈s) plot for di�erent controllers for ISO-C road pro�le . . 89

List of Figures ix

5.1 Parameterized amplitude (p1(t)), frequency (p2(t)) and phase (p3(t)) for sinu-

soidal control input . 99

5.2 Parameterized sinusoidal control input (u(p(t), t)) 100

5.3 Graphical interpretation of the terms used in SQP BBO method 102

5.4 pNMPC code generation process . 112

5.5 Parse tree structure . 112

5.6 Cart position, cart force and the pole angle of the system for initial condition

x(0) = [0, 0, π2 , 0] (Case 1) . 115

5.7 Cart-pole system computation time (Case 1) . 115

5.8 Cart position, cart force and the pole angle of the system for initial condition

x(0) = [0, 0, π, 0] (Case 2) . 116

5.9 Parameterization p1, p2, p3, p4, p5 (Case 2) . 117

5.10 PVTOL Y-position, Z-position, Roll angle (θ) 118

5.11 PVTOL inputs (u1, u2) . 119

5.12 PVTOL computation time . 119

5.13 Computation time of pNMPC's generated code on dSPACE MABXII 121

5.14 PWM-DC signal, Damper force and stroke de�ection plots 122

5.15 Nonlinear frequency response from road pro�le (zr) to chassis position (zs) for

pNMPC controller, minimum, nominal and maximum damping setup 123

5.16 First and second iteration of parallelized SQP-BBO module 123

5.17 Crane position, swing angle and angular velocity comparison b/w pNMPC-GPU

and pNMPC-CPU controller . 125

5.18 Crane input force comparison b/w pNMPC-GPU and pNMPC-CPU controller . 126

5.19 Computation time pNMPC-GPU vs pNMPC-CPU controller 126

List of Tables

2.1 Second and quasi-second order NLP solvers . 30

2.2 Derivative free optimization solvers . 32

3.1 Estimated ER semi-active damper parameters 50

3.2 Model parameters for INOVE quarter car platform and proposed MPC design . 53

3.3 RMS values for comfort objective for chirp road pro�le 58

3.4 RMS values for comfort objective for chirp road pro�le 61

4.1 ISO road roughness parameters . 69

4.2 ACADO-qpOASES NMPC controller . 76

4.3 Parallelized pNMPC method . 77

4.4 NVIDIA boards H/W con�guration and results 86

4.5 RMS value of chassis acceleration . 90

5.1 Notation and meaning . 105

xi

Table of Acronyms and Notations

MPC Model Predictive Control

OCP Optimal Control Problem

pNMPC Parameterized Nonlinear Model Predictive Control

SS-pNMPC Scenario Stochastic Parameterized Nonlinear Model Predictive Control

GPU Graphic Processing Unit

EMPHYSIS Embedded systems with physical models in the production code software

HiL Hardware in the Loop

GPGPU General Purpose computing on Graphic Processing Unit

FMI Functional Mockup Interface

eFMI Embedded Functional Mockup Interface

COG Centre of Gravity

DAQ Data Acquistion system

PCVC Probabilistic Constraint Violation Certi�cate

IP Intellectual Property

BBO Black Box Optimization

3AC Three Address Code

LTI Linear Time Invariant

R Real values set

C Complex values set

A∗ Conjugate of A ∈ C
AT Transpose of A ∈ R
A ≺ (�)0 Matrix A is symmetric and negative (semi)de�nite

A � (�)0 Matrix A is symmetric and positive (semi)de�nite

Co(X) Convex hull of set X

A = AT Matrix A is real symmetric

He(A) = AT +A

xiii

Thesis framework and contribution

Contents

0.1 Thesis framework . 1

0.2 Introduction and problem statement of the thesis 1

0.3 Structure of the thesis . 4

0.1 Thesis framework

This thesis is a compilation of the results obtained over three years of doctoral work (beginning

from September 2017 to November 2020) on Embedded modeling and control of vehicle

dynamics: application to a small car pilot plant with ER dampers conducted in the

team SAFE (Safe, Controlled and Monitored Systems), formerly known as SLR (Systèmes

Linéaires et Robustesse), Automatic department, GIPSA-lab, Grenoble. The thesis was con-

ducted under the guidance of Prof. Mr. Olivier SENAME (Director of the thesis, Professor

Grenoble INP) and Prof. Mr. Mazen ALAMIR (Co-director of the thesis, Research Di-

rector CNRS). This work was supported and funded by the ITEA3 European project, 15016

EMPHYSIS (EMbedded systems with PHYSical models In the production code Software)

from 2017 to 2020 [EMPHYSIS 2017].

0.2 Introduction and problem statement of the thesis

In the recent years, study on advanced control methods for automotive systems has gained

a huge momentum and most of the automotive industries has embarked in research and de-

velopment and implementation of better control algorithms for improved passenger comfort

and safety and as well as vehicle's performance in terms of energy e�ciency, pollution reduc-

tion etc. This sudden surge in interest is partly in response to the advent of autonomous

vehicles and it has also been the key driving factor for automotive companies to strive for

better and optimal performance. Conditioned upon the aforementioned requirements both

objectively and subjectively, optimal control methods fares much better than other control

methods due to the systematic approach embodied in its design to tackle the above issues. In

order to implement optimal control in practice, model predictive control (MPC) formulation

of the optimal control problem (OCP) provides the necessary feedback control framework to

work seamlessly in real-time and real-world. MPC is one of the most e�cient and power-

ful control methodologies and over the last few years, MPC has become commonplace both

in industry and academia due to its performance and optimality. Initially, MPC (known as

1

2 Thesis framework and contribution

dynamic matrix control) was restricted to chemical engineering with application for petro-

chemical industries [Cutler and Ramaker 1980], however comprehending it's potential and

performance bene�ts, the method has gradually pervaded into other streams of engineering

such as automotive, aerospace, biomedical, etc. Concomitantly, this has attracted several

researchers from di�erent engineering domains and this has positively ensued in multitude of

its variants, methods, techniques and theory. Hitherto, some of the well-known extensions

of the MPC [Rakovi¢ and Levine 2018] include (to name a few) explicit MPC [Bemporad

et al. 2002] (EMPC), nonlinear MPC [Rawlings, Meadows, and Muske 1994] (NMPC), Linear

Parameter Varying MPC (LPV-MPC) [Morato, Normey-Rico, and Sename 2020], stochastic

MPC [Mesbah 2016] (SMPC), fault-tolerant MPC [Nguyen et al. 2014] (FTMPC), tube based

MPC [Mayne, Seron, and Rakovi¢ 2005] (TMPC), learning based MPC [Aswani et al. 2013]

(LMPC), economic MPC [Ellis, Durand, and Christo�des 2014] (eMPC), adaptive MPC [Bu-

jarbaruah et al. 2018] (AMPC) etc. and more exciting extensions to be engendered in years

to come and this trend seems to be growing unabatedly. The main reason for this popularity

and rapid adoption stems from the idea of receding horizon control, the fact that an online

optimization problem (in case of EMPC, an o�ine optimization problem is precomputed) is

solved at every sampling period to obtain the optimal control inputs for the current state of

the system. This provides the necessary leeway for the control engineer either to statically

or dynamically include the required objectives and system constraints into the optimization

problem for control.

With the given advantages of the MPC controller, in today's world, MPC is one of the

highly coveted and sought method by the automotive industry due its ability to explicitly

shape the performance and safety requirements by means of objective and constraint functions.

However, the major hindrance for the method from being pervasive is the need for high

computational time for solving the online optimization problem. Over the last few decades

with the development of advanced and sophisticated embedded processors, the gap between

theory and practice for MPC controller has abridged. At the same time the MPC methods,

techniques and its variants have evolved substantially in large proportions and number of

research papers on these topics stands as a testimony for this fact [Rakovi¢ and Levine 2018].

Thus, it can be scarcely denied that with increased complexity of methods, a need for increased

computational resource is inevitable to meet the real-time (RT) requirements, especially for

fast sampled systems. Under this premise, the multicore hardware architecture of Graphic

Processing Unit (GPU) displays a strong potential to provide a boost for unison of theory and

practice for several state of the art MPC methods. GPU at its outset was primarily developed

for accelerating the 3D graphics rendering pipeline for game engines and other multimedia

applications. However in turn of events, due to its unique parallelism encompassed in its

hardware (H/W) and software (S/W) architecture, it gained widespread attention in the

scienti�c community and revealed a big deal in solving humongous simulations at faster time

scales. In automotive domain, in the light of demanding computational needs, GPU based

parallel computing has proven its mettle in solving RT path planning, navigation and control

problems for autonomous vehicles [Bojarski et al. 2016].

The work proposed in this thesis combines the utility of MPC methodology as a control

S/W paradigm and optionally, the H/W architecture of multi-core processors by the likes of

0.2. Introduction and problem statement of the thesis 3

GPUs and the proposed control scheme is termed Parameterized NMPC (pNMPC). In due

course of the thesis work, a code generation S/W tool was developed and implemented in

C++ environment with interface to MATLAB/Simulink for embedded implementation of the

proposed control scheme for automotive systems. There are several automotive modules where

control system play an important role in ensuring comfort and safety such as Electronic Stabil-

ity Control system (ESC), Anti-lock Braking Systems (ABS), Automatic Emergency Braking

(AEB), Collision Avoidance Systems (CAS) etc. [Rajamani 2011]. In this thesis the subject

of focus is considered around modeling and control of suspension systems. The thesis was

conducted under the purview of the EMPHYSIS project and the outcome of this thesis aligns

with the goals of the project. The primary goal of the EMPHYSIS project is to utilize model

based methods for design of advanced automotive control systems. The �nal outcome of the

project is to design and develop an automotive standard known as the Embedded Functional

Mockup Interface (eFMI), which is used to deploy model based controllers onto the embedded

automotive harware or Electronic Control Units (ECUs). GIPSA-lab is one of the academic

partners of the project and the bestowed role is project demonstrator. Thus, GIPSA-lab is

tasked with implementation of eFMU based controller for control of semi-active suspension

system for the INOVE test platform and/or Hardware In the Loop (HiL) implementation in

dSPACE MicroAutoBoxII (MABXII). This work is carried out in concerted e�ort along with

its project partners from the French consortium which includes Siemens, SOBEN and Renault.

Vehicle suspension systems play a critical role in guaranteeing safety and comfort for the

onboard passengers. There exists plethora of suspension systems depending upon the mode

of operation and its technology, however under a bird's eye view, the entire spectrum can

be brie�y classi�ed into passive, semi-active and active suspension systems. Amongst the

three classes, semi-active suspension systems are quite popular in the automotive industry

due to multitude of reasons such as negligible power demand, safety, low cost and weight and

signi�cant impact on vehicle performance [Savaresi et al. 2010]. Some of the prominent semi-

active suspension technologies are a) Electro-Hydraulic (EH), b) Electro-Rheological (ER)

and c) Magneto-Rheological (MH) based system. In this thesis, the main theme is considered

around modeling and control of ER semi-active suspension system for the INOVE test platform

[Vivas-Lopez et al. 2014a]. Thus, the aim of this thesis is to utilize the proposed pNMPC

scheme for control of vehicle vertical dynamics by virtue of suspension systems.

In summary, the main contributions of this thesis are

� To propose the pNMPC scheme for control of semi-active suspension system for control

of vertical dynamics of vehicle. The method was experimentally tested and valided on

the INOVE test platform for a quarter car system and also tested with Hardware In the

Loop (HiL) simulations on dSPACE MicroAutoBox II (MABXII).

� The thesis also proposes the plausibility of using multi-core processors by the likes of

GPUs for solving the complex simulation based pNMPC scheme for fast sampled sys-

tems. As a proof of concept, this was tested in simulation for control of semi-active

suspension system for a half car vertical dynamics model with the parallelized pNMPC

scheme with INOVE parameters. The method was also augmented to incorporate the

4 Thesis framework and contribution

stochastic road pro�le model and this control scheme is termed as scenario stochastic

pNMPC (SS-pNMPC).

� pNMPC - A code generation S/W tool was developed for solving a derivative free pN-

MPC problem with the capability of generating both CPU and GPU codes. The code

generation S/W was tested for a couple of examples for both CPU and GPU versions

and also, tests (CPU version) on dSPACE MABXII were conducted for RT veri�cation

and validation of proposed code generation tool for a quarter car model with INOVE

parameters.

0.3 Structure of the thesis

The organization of the thesis is presented with the following major parts:

� Part I: Thesis and theoretical background

� Part II: pNMPC with RT applications for control of semi-active suspension system

� Part III: pNMPC - A code generation software tool for implementation of derivative

free pNMPC scheme for embedded control systems

The �rst part is dedicated to discuss the fundamentals and provide an outlook on the

thesis and theoretical background.

� Chapter 1 provides a general overview on automotive suspension systems and its clas-

si�cations, along with a brief overview on the mode of operation for each type. The

vehicle vertical dynamics modeling is covered for quarter and half car models, which

appear recurrently throughout the thesis. The performance and objective requirements

of vehicle suspension systems are succinctly explained. The INOVE test platform's sys-

tem con�gurations are expounded which includes the physical plant, software (S/W)

and hardware (H/W) components. Finally, the chapter is concluded with a simpli�ed

explanation of the Functional Mockup Interface (FMI) standard and a brief overview on

the EMPHYSIS project and its outcome - embedded FMI (eFMI) standard.

� Chapter 2 provides the theoretical background for the thesis. The �rst part of the

chapter provides a quick overview on nonlinear optimization problem, its classi�cations,

sub-branches and followed by a literature survey on several o� the self nonlinear opti-

mization solvers. The second part discusses the fundamentals of NMPC methods and

a brief literature survey on several MPC/NMPC toolboxes and �nally, the third part is

concluded with a gentle introduction to GPGPU computing (General Purpose comput-

ing on Graphic Processing Unit) with introduction to parallel programming with CUDA,

CUDA memory model, atomics and other CUDA libraries.

0.3. Structure of the thesis 5

The second part discusses about the pNMPC scheme, its application and RT implemen-

tation. Also, the implementation of GPU based parallelized pNMPC scheme is explained in

detail in Chapter 4.

� Chapter 3 �rst part introduces the concept of parameterized NMPC scheme and its

application for control of semi-active suspension system for the INOVE test platform.

The pNMPC controller's design requirements for both objective and constraints for the

suspension control problem are explained in detail. The second part explains the exper-

imental implementation of the pNMPC controller for control of semi-active suspension

system. The experimental study conducted to model the ER semi-active damper char-

acteristics and parameter estimation are discussed in detail. From the obtained model

parameters, the pNMPC controller is experimentally validated on the INOVE platform

and also with HiL simulations conducted on dSPACE MABXII embedded target. The

core results of this chapter are based on the following papers [Rathai et al. 2018], [Rathai,

Alamir, and Sename 2019].

� Chapter 4 discusses the GPU simulation implementation of the pNMPC controller for

control of semi-active suspensions system in MATLAB/Simulink for the INOVE test

platform model and parameters. In the �rst part, the parallelized pNMPC scheme is

introduced and in the second part, a stochastic version of the parallelized pNMPC is

introducted and also, the method was tested in RT on several NVIDIA embedded boards

to verify and validate the feasibility of the proposed scheme. The core results of this

chapter are based on the following paper [Rathai, Sename, and Alamir 2019].

The third part is completely dedicated for the pNMPC code generation S/W tool, its

working, features, implementation and along with few examples on CPU (PC), GPU and

embeddeded implementation in dSPACE MABXII.

Chapter 5 introduces the pNMPC code generation S/W tool for implementation of a

derivative free pNMPC scheme for embedded control systems. This chapter expounds the

features of the developed code generation S/W and also, explains the code generation process

in a bird's eye view. With a variety of examples, the proposed S/W was compared against

ACADO toolkit and the simulation results are presented. Furthermore, using the proposed

S/W, HiL tests were conducted on dSPACE MABXII for control of semi-active suspension

system for a quarter car model with INOVE parameters and the simulation results are

presented. Results for the GPU version of the code generation codes are also presented in

this chapter and �nally, the chapter is concluded with future works and conclusions. The

pNMPC code generation S/W tool C/C++, MATLAB/Simulink codes are present in the

following GitHub repository [Rathai 2020].

6 Thesis framework and contribution

Contributions

International conference papers with proceedings

[1] Rathai, K.M.M., Alamir, M., Sename, O. and Tang, R., 2018 A parameterized NMPC

scheme for embedded control of semi-active suspension system, in 6th IFAC Conference

on Nonlinear Model Predictive Control NMPC 2018, IFAC-PapersOnLine, 51(20),

pp.301-306., Madison, Wisconsin, USA.

[2] Rathai, K.M.M., Sename, O. and Alamir, M., November, 2018, A comparative study

of di�erent NMPC schemes for control of semi-active suspension system, in VSDIA 2018

- 16th International Conference on Vehicle System Dynamics, Identi�cation and

Anomalies, Budapest.

[3] Rathai, K.M.M., Sename, O. and Alamir, M., 2019, January. Reachability based Model

Predictive Control for Semi-active Suspension System, in 2019 Fifth Indian Control Con-

ference (ICC) (pp. 68-73), IEEE, New Delhi, India.

[4] Rathai, K.M.M., Alamir, M. and Sename, O., 2019. Experimental implementation of

model predictive control scheme for control of semi-active suspension system, in 9th IFAC

Symposium on Advances in Automotive Control AAC 2019, IFAC-PapersOnLine,

52(5), pp.261-266. Orléans, France.

[5] Rathai, K.M.M., Alamir, M. and Sename, O., 2020. GPU based Stochastic Parame-

terized NMPC scheme for Control of Semi-Active Suspension System for Half Car Vehicle,

submitted and accepted to 21st IFAC World Congress 2020, Berlin, Germany (To ap-

pear).

Journal papers

[1] Rathai, K.M.M., Sename, O. and Alamir, M., 2019. GPU-based parameterized NMPC

scheme for control of half car vehicle with semi-Active suspension system, IEEE Control Sys-

tems Letters, 3(3), pp.631-636, presented in 58th Conference on Decision and Control

(CDC), Nice, France.

[2] Rathai, K.M.M., Alamir, M. and Sename, O., 2020. pNMPC-A Code Generation Soft-

ware Tool for Implementation of Derivative Free Parameterized NMPC Scheme for Embedded

Control Systems, submitted to IEEE Control Systems Technology (Under review).

Part I

Thesis and theoretical background

7

Chapter 1

Thesis background

Contents

1.1 Prelude . 9

1.2 Automotive suspension system . 10

1.2.1 Introduction to automotive suspension systems 10

1.2.2 Passive suspension system . 11

1.2.3 Active suspension system . 12

1.2.4 Semi-active suspension system . 12

1.3 Vertical vehicle dynamics modeling . 13

1.3.1 Quarter car vehicle model . 13

1.3.2 Half car vehicle model (Roll oriented model) 14

1.4 Performance and objective requirements for vehicle suspension control 15

1.5 INOVE test platform (GIPSA lab) . 16

1.5.1 Hardware description . 16

1.5.2 Plant and actuator description . 17

1.5.3 Sensor description . 17

1.6 Functional mock-up interface (FMI) . 19

1.7 EMPHYSIS project and embedded FMI (eFMI) standard 20

1.7.1 EMPHYSIS project . 20

1.7.2 Embedded Functional Mockup Interface (eFMI) 21

1.8 Conclusions . 23

1.1 Prelude

This chapter is intended to provide an overview on some of the fundamental concepts on

automotive suspension systems, its performance and objective requirements and the INOVE

test platform stationed at GIPSA lab, Grenoble, France. Finally, the chapter is concluded

with a brief overview on Functional Mock-up Interface (FMI) and the EMPHYSIS project

which stands for EMbedded systems with PHYSical models In the production code Software

and the outcome of the project i.e. the embedded FMI (eFMI) standard. FMI and eFMI

are generic open source software (S/W) standards, yet, mostly used in automotive industry

9

10 Chapter 1. Thesis background

for model exchange and co-simulation of automotive subsystems as well as its embedded

implementation on electronic control units (ECUs) or embedded hardware.

1.2 Automotive suspension system

1.2.1 Introduction to automotive suspension systems

Figure 1.1: CAD design of double wishbone vehicle suspension system

Automotive suspension system is one of the most crucial and an indispensable component

of road vehicles. Typically, the tasks of a suspension system are three folds which are a) to

provide ride comfort for the passengers (minimize chassis vibrations), b) to provide safety by

ensuring that the wheels of the vehicle are in contact with the road (road holding) and c)

to minimize the roll angle of the vehicle (ride handling) [Savaresi et al. 2010]. The physical

realization of a suspension system is materialized with three main parts and an optional part

which are a) the structure of the suspension system, which de�nes the suspension geometry,

b) the spring element, which provides proportional and opposite force to the displacement

of the suspension system and also acts as an energy storage element, c) the damper element

aka shock absorber which provides proportional and opposite force to the velocity of the

suspension system and also used to dissipate energy [Goodarzi and Khajepour 2017], [Gillespie

1992], and d) the optional part, which involves a motion actuator which applies only for active

suspension system, which is used to provide additional energy by exerting force on the system.

A typical anatomy of a suspension system is illustrated in Fig. 1.1. The suspension system is

housed between the wheel (unsprung mass) and the chassis (sprung mass) of the vehicle and

1.2. Automotive suspension system 11

it supports the whole weight of the vehicle. The suspension system also play an important

role in describing the lateral, longitudinal and vertical dynamics of the vehicle as the forces

and moments along these respective axes are directly a�ected through the wheels and the

suspension system links the wheels to the road, the chassis to the wheels, thereby directly

transmits these e�ects to the chassis. These e�ects are well pronounced during cornering or

evasive maneuvers where vehicle handling becomes an issue of concern.

On the basis of suspension mechanics, the elements that constitute the suspension system

can be divided into two parts which are the dynamic elements and kinematic elements. In

this thesis, the prime focus lies on the study and control of suspension systems based on the

dynamic elements which includes the spring, shock absorbers etc. whereas on the other side of

the spectrum i.e. the kinematic elements, which involves the suspension geometry, suspension

mechanism etc. and the kinematic e�ects are not considered in this work. Furthermore, on the

basis of technological and dynamic perspective, suspension systems can be broadly classi�ed

into three types which are a) passive, b) active and c) semi-active suspension systems. The

di�erences in the these types are well characterized in the force vs de�ection velocity plot aka

Speed E�ort Rule (SER) plot which is illustrated in Fig 1.2. A more detailed exposition into

di�erent types of suspension systems are discussed in the following sections.

Force

Deflection velocity

Semi-active/Active damping region

Passive damping region

Active damping region

Figure 1.2: Force-de�ection velocity characteristics (SER) for passive, semi-active and active

suspension systems

1.2.2 Passive suspension system

The passive suspension system is one of the most basic and perhaps a ubiquitous system de-

ployed in several commercial automobiles. Typically, a passive suspension system consists of

a spring and a shock absorber and the system is void of any element of control for manip-

12 Chapter 1. Thesis background

ulating the suspension characteristics online [Miller 1988], [Savaresi et al. 2010]. The design

parameters such as sti�ness coe�cient, damping coe�cient, suspension structure etc. are op-

timized and tuned during the research and development phase of the product and the design

parameters are chosen based on several requirements such as road condition, rattle space re-

quirements, maximum number of passengers etc. Typically, the spring element is constituted

either by coil springs or gas springs which acts as the sti�ness component and the dissipative

element is constituted by hydraulic shock absorbers which exhibit nonlinear characteristics

such as hysteresis, friction etc. The pros of a passive suspension system are: low cost, low

weight, free of any electronics or sensor components and the cons are: not suitable for varying

road conditions where comfort and safety are of paramount importance and the suspension

system is in�exible to adaptation. The SER plot for passive system is pictorially illustrated

by the red dashed line in Fig. 1.2 which lies in the �rst and third quadrant in the SER plot,

which typically has non-linear characteristics.

1.2.3 Active suspension system

In contrast to the passive suspension system, the active suspension system can generate, store

and dissipate energy which is illustrated in Fig. 1.2, where the SER characteristics lies in all

four quadrants [Tora 2012]. Typically, an active suspension system consists of a spring, a shock

absorber and an active actuator to impart energy to the system [Fischer and Isermann 2004].

The actuator modulates the displacement between the chassis and wheels by providing input

force which ought to be controlled [Sun, Gao, and Shi 2020]. The pros of active suspension

systems are: better ride quality, handling and safety and the cons are: exorbitant price,

increased power consumption, heavy mechanical components and uncertain management of

safety issues [Savaresi et al. 2010].

1.2.4 Semi-active suspension system

Semi-active suspension system is partly an active suspension system, however, the system can

not impart additional energy to the system and can only dissipate energy by manipulating

the damper characteristics online. The region of operation is illustrated in Fig. 1.2 where

the �rst and third quadrant represents the semi-active damping region. However, the range

of operation is much wider than passive suspension system and this provides the necessary

latitude for controlling the system characteristics on a broader range. The pros of semi-active

suspension system are: negligible power demand, safety characteristics, signi�cant impact on

vehicle performance and low cost and weight of the system [Savaresi et al. 2010] and the

cons are: reduction in vehicle handling performance, ride quality when compared to active

suspension system. Nevertheless, the system is adaptable to road conditions with better

controllers. In this thesis, the focus is on control of semi-active suspension system and its

application for control of vertical dynamics of vehicle. Also, this thesis follows the work of

former PhD theses [Poussot-Vassal 2008], [Do 2011] and [Nguyen 2016a] on control of semi-

active suspension systems.

1.3. Vertical vehicle dynamics modeling 13

The semi-active suspension system could be classi�ed based upon its technology and some

of the most common variants are a) Electro-Hydraulic (EH), b) Magneto-Rheological (MR)

and c) Electro-Rheological (ER) damping models. Despite the working mechanism of the semi-

active suspension system for di�erent technologies are distinct from each other, the underlying

principle of operation, properties and characteristics are virtually the same for all semi-active

damper classes. A brief insight into these working principle of these classes are provided below

� Electro-Hydraulic (EH) damper - The EH damper system consists of electronic valves,

which are typically controlled by manipulating the solenoid spool valve and therefore,

this operates the damper chambers for the �uid to navigate [Savaresi et al. 2010], [Spelta

2008]. By varying the �uid levels, the damping coe�cient is controlled continously and

linearly with the area of the opening valve [Aubouet 2010].

� Magento-Rheological (MR) damper - The MR damper consists of Magneto-Rheological

�uid which is formed by suspending magnetic particles into oil. By varying the magnetic

�eld, the particles aligns itself to the �eld and this in turn varies the viscocity of the

�uid [Rabinow 1948] [J Lozoya-Santos et al. 2012].

� Electro-Rheological (ER) damper - The ER damper shares a similar principle of MR

damper, however the damper �uid is a mixture of oil and micron sized electric �eld

sensitive particles. Thus, by varying the electric �eld, the damping co-e�cient is changed

and this principle is used for control of the damper [Winslow 1947]. The semi-active

dampers utilized for the INOVE test platform are ER dampers (for all four wheels of

the vehicle) [Nguyen 2016b] [Vivas-Lopez et al. 2014b].

1.3 Vertical vehicle dynamics modeling

1.3.1 Quarter car vehicle model

The quarter car model illustrated in Fig. 1.3 consists of two mass elements which are the

sprung mass element (chassis) and the unsprung mass element (wheel). The vertical dynamics

model for the system around equilibrium [Savaresi et al. 2010] is expressed with

msz̈s = −ks(zs − zus) + u

musz̈us = ks(zs − zus)− u− kt(zus − zr)
(1.1)

where, ms and mus are the sprung and unsprung masses respectively, ks and kus are the

sti�ness coe�cients of the damper system and wheel respectively. zs, żs, zus and żus are

the sprung mass position, velocity and unsprung mass position, velocity respectively and zr
is the vertical road displacement. It is worth to notice that u in this model is the force

exerted due to the semi-active suspension system. żdef = żus − żs and zdef = zus − zs are
the de�ection velocity and de�ection position between the sprung and unsprung mass. The

dynamics equation (1.1) can be compactly expressed in state space form with

ẋ = Acx(t) +Bcu(t) +Bdist
c d(t) (1.2)

14 Chapter 1. Thesis background

mus

kt

ks u

zr

zus

zs
ms

Figure 1.3: Quarter car vehicle model

where, x = [zs zus żs żus]
T are the system states, d(t) = zr is the disturbance input from the

road pro�le. Ac ∈ R4×4, Bc ∈ R4×1 and Bdist
c ∈ R4×1 are the system matrix, input matrix

and disturbance matrix respectively (Listed in equation (1.3)).

Ac =


0 1 0 0
−ks
ms

0 ks
ms

0

0 0 1 0
ks
mus

0 −(ks+kt)
mus

0

 , Bc =


0
1
ms
0
−1
mus

 , Bdist
c =


0

0

0
kt
mus

 (1.3)

1.3.2 Half car vehicle model (Roll oriented model)

The half car vertical dynamics roll oriented model, illustrated in Fig. 1.4 is a 4 degrees of

freedom (DOF) model [Mahala, Gadkari, and Deb 2009] [Savaresi et al. 2010], which involves

chassis dynamics (heave motion), roll dynamics and dynamics of the two unsprung masses

(wheels). The model ought to be viewed as the vehicle being scrunched from the front and rear

ends into a single block. Let the left and right corner of the vehicle be indexed with i ∈ {l, r}
respectively. The 4 DOF mathematical model is expressed with the following equations

msz̈s = −
∑

i∈{l,r} Fs,i

Ixθ̈ = (llFs,l − lrFs,r)
mus,lz̈us,l = (−Fs,l + Ft,l)

mus,rz̈us,r = (−Fs,r + Ft,r)

(1.4)

where, ms, mus,l, mus,r represent the chassis mass, unsprung masses for the left and right

corners. Ix represents the moment of inertia along the roll axis. ll and lr represents the length

of the chassis from the left and right corners with respect to centre of gravity (COG). Fs,i
represents the chassis forces and Ft,i represents the wheel forces ∀i ∈ {l, r} which are expressed

1.4. Performance and objective requirements for vehicle suspension control 15

mus,l mus,r

kt,l kt,r

ks,l ks,rul ur

ll lr
θ

zr,rzr,l

zus,r zus,l

zsms, Ix
C.O.G

Figure 1.4: Half car roll oriented vehicle model

with
Fs,i = −ks,i(zs,i − zus,i) + ui

Ft,i = −kt,i(zus,i − zr,i)
(1.5)

where, ks,i and kt,i represents the sti�ness coe�cent of the semi-active suspension system and

wheel respectively. zr,i and zus,i represents the vertical road displacement and unsprung mass

position ∀i ∈ {l, r}. ui represents the actuation force ∀i ∈ {l, r} exerted due to the semi-active
suspension system. zs,i, ∀i ∈ {l, r} represents the sprung mass displacement at each corner

which are obtained from the following equations

zs,l = zs + llsinθ

zs,r = zs − lrsinθ
(1.6)

Let X = [zs, θ, zus,l, zus,r, żs, θ̇, żus,l , żus,r] denote the state vector (X ∈ R8), U =

[ul, ur] denote the input vector (U ∈ R2) and D = [zr,l, zr,r] denote the disturbance vector

(D ∈ R2), then the half car model (1.4) can be compactly expressed using the nonlinear state

space equation with

Ẋ(t) = f(X(t),U(t),D(t)) (1.7)

1.4 Performance and objective requirements for vehicle suspen-
sion control

Despite the fact that the suspension system plays a pivtol role in shaping the lateral, longitu-

dinal and vertical dynamics of the vehicle, automotive engineers study and view the system

16 Chapter 1. Thesis background

predominantly through the lens of vertical dynamics as the e�ects of road roughness are very

palpable on the vehicle body [Goodarzi and Khajepour 2017]. The three important perfor-

mance and objective requirements for suspension control are:

� Ride comfort - Ride comfort objective is related to the comfort of the on-board passengers

of the vehicle. The comfort objective can be quanti�ed by vibration isolation due to road

roughness. The spectrum of frequencies from 0−20Hz is considered as the comfort zone

and ideally, the vertical displacement of the chassis of the vehicle must be same of the

road in low frequencies (< 1Hz) and attentuated for high frequencies (> 1Hz) [Savaresi

et al. 2010]. This is achieved by minimizing the vertical acceleration or velocity or

displacement of the chassis of the vehicle.

� Road holding - Road holding objective requires the vehicle to remain in contact with

the road which is highly sought for safety requirements of the vehicle. The cornering,

traction and braking abilities depend on the lateral and longitudinal forces of acting on

the tyre which is directly a function of the normal force [Goodarzi and Khajepour 2017].

Thus, the primary goal of this objective is to minimize the �uctuations in the normal

force of the wheel and this is assured by minimizing the de�ection between the wheel

and road position.

� Ride handling - Ride handling is a general requirement which necessitates the vehicle

to be stable in every maneuver and also an important condition for stability. The

fundamental requirement of ride handling objective is to ensure that the vehicle behavior

is predictable and this information is communicated to the driver. The suspension

system play a crucial role for ride handling by minimizing the vehicle's roll and pitch

motion, controls the wheel angles and decreases the lateral load transfer during cornering

maneuvers [Goodarzi and Khajepour 2017].

1.5 INOVE test platform (GIPSA lab)

The INOVE test platform is a GIPSA-lab experimental setup built in collaboration with

SOBEN company and the platform is a 1:5 scaled 4 poster testbed which is exclusively dedi-

cated to study and assess the performance of vertical dynamics of vehicle under several road

pro�le scenarios. The test platform consists of three major components which are a) Host

PC, b) Target system and c) Physical plant (illustrated in Fig. 1.5). In systems point of

view, the test platform is used to verify and validate controllers, observers and also, perform

fault diagnosis and condition monitoring [Vivas-Lopez et al. 2014a] of the components. The

INOVE platform is shown in Fig. 1.6.

1.5.1 Hardware description

� Host PC - The host PC is where the controller/observer/fault diagnosis/condition mon-

itoring modules are designed, developed, deployed and tested to verify and validate the

1.5. INOVE test platform (GIPSA lab) 17

module's performance on the target system. The front-end S/W is MATLAB/Simulink

and by virtue of Simulink Real-Time Workshop (RTW), the Simulink model is converted

to embedded C code and deployed on the target.

� Target system - There are two target systems for real-time (RT) implementation which

are xPC target and dSPACE MABXII. The targets run Simulink RT operating system.

� Data acquisition system (DAQ) - The I/O cards include 2x National Instruments

PCI-6259 DAQ boards, 1x Quatex QSC 100 serial board. The sampling frequency of

the DAQ is 200 Hz, i.e. a sampling period of 5 ms.

Figure 1.5: Schematic of INOVE test platform [Vivas-Lopez et al. 2014a]

1.5.2 Plant and actuator description

A brief outlook over the plant and actuator systems are presented below

� The physical plant is a 1:5 scaled baja styled racing car which refects a miniature ver-

sion of a full vehicle which encompasses wheels, engine and braking system. The key

component of the plant is the semi-active damping system.

� The semi-active suspension system involves four ER dampers with a force range of

±50N . The damper is manipulated by varying the input voltage from 0V to 5kV which

is in turn manipulated by varying the pulse width modulation (PWM) duty cycle (DC)

signal through CarCon2 driver module. The frequency of PWM-DC signal is 25kHz.

� The Remote Controlled (RC) car is mounted over four OMRON linear servomotor mod-

ule over all four corners and this is controlled appropriately to generate user de�ned

input road pro�le. The servomotors has a bandwidth of 0 − 20Hz and a maximum

linear velocity of 1.5 m/s.

1.5.3 Sensor description

To capture the complete vertical dynamical behavior of the vehicle, the plant is probed by

means of several onboard sensors.

18 Chapter 1. Thesis background

� To measure the vertical acceleration of the unsprung masses (wheels), four Texense

1-axis capacitive accelerometer are used.

� The stroke de�ection (i.e. the displacement between the sprung mass and unsprung

mass) and the road displacement (motor position) are measured using eight Gefran

resistive linear displacement sensors for each corner of the platform.

� To measure the unsprung mass displacement, four Micro-Epsilon draw-wire displacement

sensors are used for all four corners of the platform.

� To measure the acceleration and angular velocity of the chassis a SBG MEMS based

Attitude and Heading Reference System (AHRS) unit is placed on the sprung mass

of the plant. The AHRS unit measures 3 accelerations along lateral, longitudinal and

vertical axes and 3 angular velocities along roll, pitch and yaw axes.

� The force exerted by the ER damper is measured via four force sensors mounted on ER

dampers across all four corners.

� To measure the tire forces across all four corners, four force sensors are placed at the

base of the 4-poster testbed.

Figure 1.6: INOVE test platform GIPSA-lab

1.6. Functional mock-up interface (FMI) 19

1.6 Functional mock-up interface (FMI)

The functional mockup interface (FMI) is a tool independent standard used for model exchange

and co-simulation of dynamical systems. The standard was the result of ITEA2 MODELISAR

project, where FMI 1.0 was primarily developed for model exchange purpose [Blochwitz et

al. 2011]. Ever since the release of its initial version, its popularity surged and several tool

vendors adopted the standard and this paved way to FMI 2.0 which is used for both model

exchange and as well as co-simulation purpose with improved and new features to ease the use

and increase the performance for larger models [Blockwitz et al. 2012]. An instance of FMI is

called as Functional Mockup Unit (FMU), i.e. the FMI standard de�nes the blueprint and the

FMU is a container which consists of all the source code �les (C-code), meta-data model �les

(XML �les), binaries (static/dynamic libraries) �les which are compliant with FMI standard

to represent the underlying dynamical model. As mentioned previously, the FMI standard

consists of two parts:

Figure 1.7: Schematic of data �ow between the simulation tool and the FMU [Blockwitz et al.

2012]

� FMI for model exchange - FMI for model exchange de�nes an interface to model the dy-

namical system which is described by di�erential, algebraic and discrete-time equations.

The model developed in a FMI compliant tool is exported to FMU, which encompasses

the details of the dynamic system such as states, inputs, parameters etc. The simula-

tion tool utilizes this information from the FMU and simulates it by means of its inbuilt

solvers such as explicit/implicit integrators, �xed/variable step solvers etc. It is also

important to note that the quality of solution is contigent over the type of solver used

20 Chapter 1. Thesis background

to simulate the FMUs and this in turn is provided by the simulation environment.

� FMI for co-simulation - The general concept of co-simulation is to simulate multiple

interdependent subsystems in the simulation environment. The FMU exported for co-

simulation purpose is shipped with the model and as well as the solver to simulate the

system independently. Typically, the simulation tool would consist of multiple FMU

blocks which interact with each other through input/output (I/O) channels and the

primary task of the simulation tool is to handle the communication tra�c between the

I/O ports of the subsystem, synchronization of data transfer, signal extrapolation and

error control. In short, the simulation tool micromanages the whole collection of FMU

subsystems and simulates it holistically and seamlessly to re�ect the dynamics of the

real-world system.

A schematic of the FMUs subsystem is shown in Fig. 1.7, where the block is assumed to

be interacting with the simulation environment (For more details, refer [Blochwitz 2014]).

1.7 EMPHYSIS project and embedded FMI (eFMI) standard

1.7.1 EMPHYSIS project

Figure 1.8: Simpli�ed schematic of eFMI work�ow [EMPHYSIS 2017]

The goal of the ITEA 3 project EMPHYSIS (EMbedded systems with PHYSical models

In the production code Software) is to enhance the production code of embedded systems

in automotive vehicles with advanced algorithms based on physical models to improve the

performance of the underlying automotive system and to increase the productivity of embed-

ded software developement [EMPHYSIS 2017]. Over the last few years, there has been an

increased demand for the need for safe, clean and e�cient road vehicles as well the stringent

environmental regulations on CO2 and NOx emissions has propelled the automotive indus-

try to address the aformentioned issues with an ironclad measure. In order to circumvent

these issues, utilizing physical models for control and diagnosis of automotive systems can im-

prove the performance several folds and also, implementation of model based virtual sensors

1.7. EMPHYSIS project and embedded FMI (eFMI) standard 21

(observers) can downsize the production cost. The essence of physics based functions is the

ability to predict the dynamic behavior of the system in its whole operation space to achieve

signi�cantly better vehicle performance. Despite the several merits of utilization of physical

models, there are several challenges such as RT implementation, scalability, e�cient operation

etc. and these poses a serious concern for engineers. In order to tackle these issues, the EM-

PHYSIS project was constituted and has marshalled several automotive industries, software

companies, academic institutions and research labs spanning across �ve countries (Germany,

France, Sweden, Belgium and Canada) to investigate and develop a generic S/W standard

named eFMI (Embedded Functional Mockup Interface). The list of tool vendors, academic

partners and ECU S/W developers are shown in Fig. 1.9.

Figure 1.9: Detailed schematic of eFMI work�ow [EMPHYSIS 2017]

1.7.2 Embedded Functional Mockup Interface (eFMI)

The eFMI standard provides a systematic framework to implement physics based functions

in an automated way on electronic control units (ECU), microcontrollers or embedded sys-

tems. The key idea is to provide a standard and seamless interoperability of eFMI via a code

generation feature which will transform physics based functions to low level eFMI production

22 Chapter 1. Thesis background

code that ful�ls the requirements of ECU S/W and H/W compliant with AUTOSAR standard

[Fürst et al. 2009]. Fig. 1.8 illustrates a simpli�ed work�ow of eFMI code deployment from

simulation S/W to embedded H/W. The eFMU container is typically exported from model-

ing tools such as AMESIM, OpenModelica, SimulationX etc. and the generated module is

deployed either in embedded hardware or ECUs.

Figure 1.10: Detailed schematic of eFMI work�ow [EMPHYSIS 2017]

Figure 1.11: Automotive standard compliant production code in eFMI work�ow [EMPHYSIS

2017]

Fig. 1.10, illustrates a more detailed version of the eFMI work �ow. On a higher level, the

underlying physical models as well as the controllers for the automotive systems are modeled

using S/Ws such as AMESIM, SimulationX, OpenModelica etc. A speci�c module in these

1.8. Conclusions 23

S/Ws convert the designed model/model based controllers into eFMU containers. This is

further processed to production code which ought to be compliant with other automotive

standards such as AUTOSAR, MISRA-C etc. and the �nal production code is deployed into

the embedded H/Ws or ECU. The whole deployment cycle is illustrated in Fig. 1.11.

1.8 Conclusions

In this chapter a brief overview on automotive suspension system is provided which involves

the classi�cation of suspension systems and more speci�cally on classi�cation of ER semi-

active damper system based upon its technology. The two vertical vehicle dynamics models -

quarter and half car models are presented, which are pertinent to this thesis and recurs in the

upcoming chapters. A qualitative explanation of the objective requirements for the suspension

system is discussed and this notion is concretized in the following chapters. A quick overview

of the INOVE experimental platform is provided and �nally, the chapter concludes with a

simple explanation on the FMI standard and also, the gravitas for the EMPHYSIS project as

well its outcome i.e. the eFMI standard is expressed.

Chapter 2

Theoretical background

Contents

2.1 Introduction . 25

2.2 Nonlinear Optimization . 25

2.2.1 Introduction . 25

2.2.2 Classi�cation of nonlinear optimization problems 27

2.2.3 Derivative based methods . 28

2.2.4 Derivative free methods . 31

2.3 Fundamentals of Nonlinear Model Predictive Control 31

2.3.1 Introduction . 31

2.3.2 Direct methods . 33

2.4 A Gentle Introduction to GPGPU Computing for Control Engineers

using CUDA Programming Paradigm 38

2.1 Introduction

This chapter is dedicated to provide the fundamentals on non-linear optimization problems,

di�erent methodologies for implementation of non-linear model predictive control (NMPC)

schemes and �nally, the chapter is concluded with a brief outlook on general purpose graphic

processing unit (GPGPU) computing using CUDA programming framework.

2.2 Nonlinear Optimization

2.2.1 Introduction

A general formulation for an optimization problem is de�ned by the following form

minimize
x

f(x)

subject to x ∈ X ⊆ X
(2.1)

25

26 Chapter 2. Theoretical background

where x is the vector of optimization or decision variables of interest and X is the admissible

or feasible subset on the optimization domain (X) [Borrelli, Bemporad, and Morari 2017]. The

optimization problem is carried out with respect to an objective function f : X→ R which is

used to assign every vector x a cost value with f(x) ∈ R. Let the optimal cost value for the
problem (2.1) be represented with f∗ and the optimizer or optimal solution with x∗, then the

following equation holds

f(x) ≥ f(x∗) = f∗ ∀x ∈ X ,with x∗ ∈ X (2.2)

In simple words, equation (2.2) states that among all the possible feasible values of x, the

solution x∗ provides the optimal solution for the objective function f(x). The optimal objective

value f∗ is also de�ned as the greatest lower bound for the problem (2.1). If f∗ = −∞, then

the problem is regarded as unbounded below and if f∗ = ∞, then the problem is regarded

as infeasible and if X = X, i.e. the whole search space, then the problem is regarded as an

unconstrained optimization problem. The problem of determining the existence of optimal

solution is called as a feasibilty problem. The set of optimizers x∗ (the solution could either

be singleton or set-valued) that optimizes problem (2.1), i.e. f∗ = f(x∗) is de�ned with the

following form

argmin
x∈X

f(x) = {x ∈ X : f(x) = f∗} (2.3)

The optimization problem de�ned in equation (2.1) is generic in nature, however depending

upon the structure of the objective function f(x) and the search space domain X , there
exists plethora of classi�cations such as linear and non-linear, deterministic and stochastic,

continuous and discrete, convex and non-convex, �nite and in�nite dimensional and also, the

combination of all the aforementioned divisions. In this thesis the prime focus lies on a speci�c

class of optimization problem known as non-linear optimization or non-linear programs (NLP),

which is de�ned by

minimize
x∈Rn

f(x)

subject to g(x) = 0,

h(x) ≥ 0

(2.4)

where f : Rn → R, g : Rn → Rp, h : Rn → Rq are the objective function, equality

constraints and inequality constraints respectively and the involved functions are assumed

to be continuous and smooth in nature. In case when the knowledge of these functions

are available, one can make further assumptions such as the functions are once or twice

di�erentiable. In other cases, such as black box models which might involve computer codes,

compiled binaries, eFMU/FMUs models or functions etc., only the function values could be

queried and the derivative information may not be available for solving the pertinent NLP

problem. Thus, it is important to address the nonlinear optimization problems for both these

2.2. Nonlinear Optimization 27

cases which appears in several real-world applications. Typically, all the methods utilized

to solve the NLP problem (2.4) are iterative in nature and the solution converges either to

the optimal or suboptimal values depending upon various factors such as accuracy, relative

tolerance, number of iterations etc., which are the tuning parameters for the NLP solver.

2.2.2 Classi�cation of nonlinear optimization problems

As mentioned previously, in this thesis the prime focus lies on nonlinear optimization problems

with the assumption that the involved functions are continuous and smooth in nature. Under

this condition, the whole domain of NLP could be broadly classi�ed into convex and non-

convex problems. The key property of a convex problem is that the local optimizer is the global

optimizer, thereby the obtained solution is the global optimimum for the optimization problem.

Convex optimization involves optimization of convex functions over convex sets [Boyd, Boyd,

and Vandenberghe 2004]. Most of the convex problems could be broadly classi�ed into the

following classes: Linear Programming (LP), Quadratic programming (QP), Quadratically

Constrained Quadratic Programming (QCQP), Second Order Conic Program (SOCP), Semi-

De�nite Programming (SDP) and Conic Program (CP) as illustrated in Fig. 2.1. It is also

important to note that each of the aforementioned convex problems form a hierarchy chain

wherein each class is a subset of another under speci�c assumptions on the structure of the

objective and constraints set i.e. LP ⊂ QP ⊂ QCQP ⊂ SOCP ⊂ SDP ⊂ CP. In spite of

the hierarchy in this classi�cation, the methods involved for solving these convex problems

are compositionally distinct from each other as the individual solvers for each of these classes

exploit the structure of the functions or constraints set in a di�erent way in order to compute

the solution e�ciently within a fewer iterations. It is also important to note that LP is a

subclass of convex NLP where the objective and constraints sets are linear and polytopic in

nature and the rest follows suit.

Nonlinear optimization

Convex problems Non-Convex problems

LP QP QCQPSOCP SDP CP

Figure 2.1: Classi�cation of nonlinear optimization problems

The problems which are not convex in nature are deemed as non-convex problems, therefore

by de�nition only a local minimizer could be obtained and there isn't any guarantee or method

to establish the global optimum of the obtained solution. There exists variety of methods

for solving both convex and non-convex problems, however in a broader sense the methods

28 Chapter 2. Theoretical background

could be classi�ed as derivative based methods and derivative free methods. The derivative

based optimization methods relies upon the zeroth order (function values) and �rst order

(Jacobian)/second order (Hessian) derivative information of the functions involved in the

NLP problem. The derivative free methods relies only upon the zeroth order information i.e.

only function values can be queried for a given argument list or input vector. Typically, it is

always recommended to utilize the derivative information whenever it is available, however,

in situations where the details of the model or the functions are concealed from the end user

due to security reasons or privacy reasons or protection of intellectual property rights, then it

becomes highly impractical and cumbersome to utilize derivative based optimization methods.

Thus, the natural recourse is to resort to derivative free methods for solving NLP problems.

A brief outlook into derivative based and derivative free methods are provided in the

following sections. It is important to note that the primary intention of this chapter is only

to provide an overview and not delve into the implementation details of any of the methods.

Nevertheless, appropriate references are cited to bene�t the reader to study more in-depth on

these topics.

2.2.3 Derivative based methods

The state of the art derivative based methods can further be classi�ed into the following types

� First order derivative (Jacobian/gradient) based methods

� Second order derivative (Hessian) based methods

� Quasi-second order derivative based methods

First order derivative (Jacobian/gradient) based methods: Over the last few years,

the popularity of gradient based methods has increased in several folds and the main reason

for this sudden surge in interest is attributed to recent developments in the �eld of machine

learning (ML) [Goodfellow et al. 2016]. When dealing with sur�et of training data, the �rst

order derivative based methods provide faster and better solutions for large scale ML problems.

There exists variety of gradient based methods such as classic gradient descent, batch gradient

descent, stochastic gradient descent, gradient descent with momentum, Nesterov accelerated

gradient (NAG), adagrad, adadelta, RMSprop, adams, adamax etc. The survey paper [Ruder

2016] provides a quick glimpse into the several gradient based methods utilized for solving NLP

problems in the ML community. However, the aforementioned gradient based methods are

mostly designed for unconstrained NLP problems. In optimal control, one is obliged to include

the constraints into the NLP problem formulation. Some of the constrained gradient based

methods include proximal gradient methods [Parikh and Boyd 2014], Alternating Direction

Method of Multipliers (ADMM) [Boyd, Parikh, and Chu 2011], operator splitting methods

[Stathopoulos et al. 2016] etc. and also, several variants of these methods. These are commonly

adopted for online optimization in optimal control community. The prime bene�t of �rst order

method is, it is not computationally taxing compared to other methods, however, the major

2.2. Nonlinear Optimization 29

downside is that the convergence rate is either superlinear or linear, which is slow when

compared to second or quasi-second order methods.

There are several �rst order derivative based solvers for solving the unconstrained NLP

problems and these are predominantly utilized in the ML community [Ruder 2016]. However,

for the constrained case and as well as in the context of optimal control and RT implementa-

tion, this is currently in its inchoate state and there are only a handful of promising solvers

such as OSQP [Stellato et al. 2020], FiOrDOs [Ullmann 2011a], TFOCS [Becker, Candes, and

Grant 2011], QPgen [Giselsson 2018], GPAD [Patrinos and Bemporad 2012], POGS [Fougner

and Boyd 2018], SCS [O'donoghue et al. 2016], FORCES PRO [Zanelli et al. 2020]. For more

details into the inner workings of �rst order methods, refer [Beck 2017].

Second order derivative (Hessian) based methods: The whole class of second order

derivative methods relies on multiple variants of the classic Newton's method for solving

the roots of non-linear equations. In short, the NLP formulation in (2.4) is converted to

a set of nonlinear equations by means of Karush�Kuhn�Tucker (KKT) conditions and at

every Newton iteration of the NLP problem, a linear algebra subroutine is solved and this

is repeated until convergence to the optimal solution. Despite the simplicity of the above

explanation, the implementation methods are quite involved and requires special techniques

such as matrix pre-conditioning, determining the right step size, computational complexity etc.

[Nocedal and Wright 2006]. The most commonly used second order derivative based methods

for solving NLP problems are a) Sequential Quadratic Programming (SQP) methods and b)

Interior-Point (IPM) methods. The SQP method can be further classi�ed based on its working

principle which are a) SQP Active Set (AS) methods and b) SQP Interior Point Quadratic

Programming (IPM-QP) methods. A detailed explanation on the aforementioned methods are

discussed in [Bazaraa, Sherali, and Shetty 2013]. Typically, second order methods possesses

quadratic rate of convergence and the optimal solution is generally obtained within a couple of

iterations. Despite the fast convergence of the second order methods, one of the main issues is

the demand for high computational need to compute the Hessians and this doesn't scale well

for large scale problems. However, in optimal control, the structure of the NLP problem is

exploited due to the specialized functional form of the objective and constraints functions and

the Hessians are pre-computed and either cached or stored o�ine (the Hessians are mostly

sparse matrices). This provides a signi�cant boost for RT implementation of optimal control

problems in embedded systems.

Quasi-second order derivative based methods: As mentioned previously, one of the

major issues with second order methods is the high computational complexity involved in

computing the Hessian matrices. The conventional methods used to compute the deriva-

tives for Hessians are �nite di�erences method and algorithmic di�erentiation. However, the

�nite di�erences method is highly prone to numerical inaccuracies and algorithmic di�eren-

tiation may not be possible for implementation for large scale NLP problems. Quasi-second

order methods set a middle ground by retaining the computational complexity of �rst order

methods and convergence property of second order methods [Dennis and Moré 1977]. The

quasi-second order methods approximates the Hessians using the zeroth order information

and �rst order derivative (Jacobians) information and these approximations are plugged into

30 Chapter 2. Theoretical background

the IPM or SQP solver. The approximation is improved at every Newton iteration and this

procedure is repeated until convergence to optimal solution for the NLP problem. Some

of the well known Hessian update rules under the quasi-second order methods are Broy-

den�Fletcher�Goldfarb�Shanno (BFGS) algorithm, Broyden's rank-1 update and family of

its method, Davidon�Fletcher�Powell (DFP) algorithm, Symmetric rank-one methods etc. A

detailed exposition into these methods are provided in [Nocedal and Wright 2006].

The list of commonly used second order and quasi-second order NLP solvers are listed

in Table 2.1. For more details on the classi�cation of the NLP solvers, refer [Ley�er and

Mahajan 2010]. The references for the respective solvers are: CVXOPT [Vandenberghe 2010],

IPOPT [Wächter and Biegler 2006a], KNITRO [Byrd, Nocedal, and Waltz 2006], LOQO

[Vanderbei 1999], CONOPT [Drud 1994], FilterSQP [Fletcher and Ley�er 1998], LINDO [Lin

and Schrage 2009], LRAMBO [Griewank, Walther, and Korzec 2007], NLPQLP [Schittkowski

2006], NPSOL [Gill et al. 1986], SNOPT [Gill, Murray, and Saunders 2005], SQPlab [Gilbert

2009], qpOASES [Ferreau et al. 2014a], FORCES PRO [Domahidi and Jerez 2014].

Table 2.1: Second and quasi-second order NLP solvers

NLP solver Method Interfaces Programming language

CVXOPT IPM Python Python

IPOPT IPM AMPL, CUTEr, C, C++, f77 C++

KNITRO
IPM

SQP

AIMMS, AMPL, GAMS

Mathematica, MATLAB, MPL

C, C++, f77, Java, Excel

C++

LOQO IPM AMPL, C, MATLAB C

CONOPT SQP AIMMS, GAMS Fortran

FilterSQP SQP AMPL, CUTEr, f77 Fortran77

LINDO SQP C, MATLAB, LINGO Proprietary S/W

LRAMBO SQP C C/C++

NLPQLP SQP C,f77,MATLAB Fortran77

NPSOL SQP
AIMMS, AMPL, GAMS

MATLAB, C, C++, f77
Fortran77

SNOPT SQP
AIMMS, AMPL, GAMS

MATLAB, C, C++, f77
Fortran77

SQPlab SQP MATLAB MATLAB

fmincon
IPM

SQP
MATLAB MATLAB

qpOASES SQP
MATLAB/Simulink, Octave, SCILAB

Python
C++

FORCES PRO IPM MATLAB, Python C/C++

2.3. Fundamentals of Nonlinear Model Predictive Control 31

2.2.4 Derivative free methods

Derivative free methods can be broadly classi�ed into a) direct search methods, b) model-based

methods, c) heuristics based approach and d) randomized algorithms. A detailed exposition

into derivative free methods are propounded in the following literatures [Nocedal and Wright

2006], [Beck 2014], [Larson, Menickelly, and Wild 2019], [Conn, Scheinberg, and Vicente

2009]. A comparative study of several state of the art derivative free optimization methods

are presented in [Pham, Malinowski, and Bartczak 2011], [Moré and Wild 2009], [Powell 2007].

It is also important to note that the �eld of derivative free optimzation is not as mature as

derivative based methods and most of the research in the past have been conducted only for the

unconstrained case. Only a few methods exists for constrained case and this �eld is still being

researched for new directions. Table 2.2 lists the commonly used derivative free optimization

solvers, for more details refer [Rios and Sahinidis 2013], [Custódio, Scheinberg, and Nunes

Vicente 2017]. The references for the respective solvers are: ASA [Ingber 1989], BOBYQA

[Powell 2009], CMA-ES [Hansen, Müller, and Koumoutsakos 2003], COBYLA [Powell 1994],

HOPSPACK [Plantenga 2009], IMFIL [Kelley 2011], DAKOTA [Adams et al. 2009], DFO

[Conn, Scheinberg, and Toint 1998], NEWUOA [Powell 2006], NOMAD [Le Digabel 2011],

PSwarm [Vaz and Vicente 2009], SID-PSM [Custodio and Vicente 2008], SNOBFIT [Huyer

and Neumaier 2008] , TOMLAB [Holmström, Göran, and Edvall 2010], GLODS [Custódio

and Madeira 2015], PDF-MPC package [Alamir 2017].

2.3 Fundamentals of Nonlinear Model Predictive Control

2.3.1 Introduction

The general formulation for a non-linear optimal control problem (OCP) is described by the

following form

min
x(.),u(.)

∫ T

0
L(x(t), u(t)) dt+ ψ(x(T))

subject to ẋ = f(x(t), u(t)), ∀t ∈ [0, T]

g(x(t), u(t)) ≤ 0, ∀t ∈ [0, T]

h(x(t), u(t)) = 0, ∀t ∈ [0, T]

x(0) = x0, r(x(T)) ≤ 0

(2.5)

where x ∈ Rn, u ∈ Rm represents the state vector and input vector respectively, L :

Rn × Rm 7→ R and ψ : Rn 7→ R represents the stage cost and terminal cost respectively,

f : Rn × Rm 7→ Rn, g : Rn × Rm 7→ Rp, h : Rn × Rm 7→ Rk represents the dynamics of the

system (Ordinary Di�erential Equations (ODEs)/Di�erential Algebraic Equations (DAEs)),

inequality and equality constraints respectively. x0 and r : Rn 7→ Rr represents the initial

and �nal state conditions (terminal set) on the state variable. The inequality constraints

32 Chapter 2. Theoretical background

Table 2.2: Derivative free optimization solvers

Solver Constraints Bounds Programming language

ASA no required C

BOBYQA no required Fortran

CMA-ES no optional MATLAB

COBYLA yes required Fortran

DAKOTA/DIRECT yes required C++

DAKOTA/EA yes required C++

DAKOTA/PATTERN yes required C++

DAKOTA/SOLIS-WETS yes required C++

DFO yes required Fortran

fminsearch no no MATLAB

GLOBAL no required MATLAB

GLODS yes required MATLAB

HOPSPACK yes optional C++

IMFIL yes required MATLAB

MCS no required MATLAB

NEWUOA no no Fortran

NOMAD yes optional MATLAB

PSWARM yes required MATLAB

SID-PSM yes optional MATLAB

SNOBFIT no required MATLAB

TOMLAB/GLCCLUSTER yes required MATLAB

TOMLAB/LGO yes required MATLAB

TOMLAB/MULTIMIN yes required MATLAB

TOMLAB/OQNLP yes required MATLAB

PDF-MPC Package yes required MATLAB

arises from the physical, performance or path constraints imposed on the system and the

equality constraints arises from ODE/DAE equations, point constraints and mostly are added

for merely the convenience of solving the nonlinear OCP problem via NLP solvers. It is

important to note that the non-linear OCP (2.5) is an in�nite dimensional problem. Nonlinear

model predictive control (NMPC) implements the non-linear OCP (2.5) in practice by means

of receding horizon control technique over the prediction horizon T . The optimization problem

in (2.5) is solved at every sampling period (τ) and only the optimal input over one sampling

period is injected into the system i.e. u∗([0, τ]). In short, NMPC is non-linear OCP put in

practice and it is also important to note that an implicit feedback is formed in the NMPC

problem formulation as with receipt of new state information at every sampling period, the

inputs are recomputed. Therefore, the optimal input is a function of the initial state as well

(u∗(x0)) [Maciejowski 2002].

Fundamentally, there are three methods (illustrated in Fig. 2.2) for solving the non-linear

2.3. Fundamentals of Nonlinear Model Predictive Control 33

OCP problem (2.5), which are

� Hamilton-Jacobi-Bellman (HJB) equation or Dynamic programming (DP)

� Direct methods or Direct transcription methods

� Pontryagin minimum/maximum principle (PMP)

In this chapter, only the direct methods are described with considerable details. However,

for the sake of completeness, a brief overview on the HJB equation/DP and PMP methods

are given below.

HJB equation or DP method is based on the principle of optimality where the non-linear

OCP is solved from the terminal (�nal) cost to the initial cost in a backward fashion. The

cost optimization method is divided into several stages (starting from terminal to initial stage

costs) and the optimal input function or policy is computed for each stage recursively and

�nally, the optimal input policy is recovered for the initial stage and the initial state. It is

important to note that HJB equation is used in the context of continuous time systems and DP

method is used in the context of discrete time systems. The DP method in practice is typically

solved by means of tabulation method and HJB equation is solved by solving a constrained

Partial Di�erential Equation (PDE). The major downside of the method is it su�ers from

the curse of dimensionality and doesn't scale for higher dimensional systems [Bertsekas et al.

1995]. However, recently DP method has received considerable attention due to reinforcement

and deep reinforcement learning community and the method in these �elds are termed as

approximate dynamic programming (ADP) or bootstrapping [Bertsekas 2019].

The Pontryagin minimum/maximum principle (PMP), also known as indirect method is

based on the calculus of variations, where the objective is to minimize/maximize the Hamil-

tonian of the non-linear OCP. The method follows the philosophy of �rst optimize and then

discretize and is solved by means of gradient methods or shooting methods or collocation

methods. The method can treat large scale systems and also solve boundary value problems

(BVPs). Some of the major downsides include instability of the nonlinear ODE obtained for

the state and co-state equations, requirement of explicit expression for the input and singu-

lar arcs are di�cult to deal with and also, only necessary conditions for local optimality is

obtained [Liberzon 2011]. However, the method is mostly used in the �eld of aerospace en-

gineering for computing the optimal orbit trajectory for satellites and spacecrafts. For more

details, refer [Naidu 2002].

2.3.2 Direct methods

The direct methods or direct transcription methods transcribes the problem into a �nite di-

mensional problem, which yields an approximate solution to non-linear OCP (2.5) by virtue

of NLP solvers. Direct methods follow the philosophy of �rst discretize and then optimize.

The direct methods are classi�ed into a) Single shooting methods, b) Multiple shooting meth-

ods and c) Direct collocation methods [Rathai, Sename, and Alamir 2018]. Single shooting

34 Chapter 2. Theoretical background

Optimal Control
Problem

Hamilton-Jacobi-
Bellman Equation

Pontryagin
Minimum/Maximum

Principle

Direct
Methods

Single Shooting
Methods

Multiple Shooting
Methods

Collocation
Methods

Figure 2.2: Classi�cation of optimal control problems

methods falls under the category of sequential methods and multiple shooting and direct collo-

cation methods falls under simultaneous methods. In order to set the transcription procedure,

the following assumptions are taken into consideration [Alamir 2006], [Rawlings, Mayne, and

Diehl 2017].

� The input u(t), ∀t ∈ [0, T] is �nitely parameterized by piecewise constant vector set

U at an integer multiple of the sampling period (τ) over the prediction horizon. With

this representation, the input can be expressed with u(t) = µ(t;U), which is a piecewise

continuous input signal.

� The dynamics (de�ned by the ODE/DAE in (2.5)) of the system is numerically sim-

ulated for the given input signal u(t) = µ(t;U), and the solution is compactly ex-

pressed with x(t) = φ(t;U , x(0)), which is evaluated at N discrete time instants

Td = {t0, t1, . . . , tN} ⊂ [0, T]. The time stamps Td typically corresponds to the integer

multiple of the sampling period and it is utilized to discretize the dynamics, objective

function and the constraint functions listed in (2.5). A ODE/DAE solver is utilized

to simulate the system over the prediction horizon [Ascher and Petzold 1998]. With

the aforementioned assumptions, the non-linear OCP is transcribed to a generic NLP

2.3. Fundamentals of Nonlinear Model Predictive Control 35

framework, which is expressed with

minimize
w

F (w)

subject to G(w) ≤ 0,

H(w) = 0

(2.6)

where, w is the optimization variable which depends upon the direct method formulation,

and F (w), G(w) and H(w) represents the objective, inequality constraints and equality

constraints respectively. The transcribed NLP in equation (2.6) solves the non-linear

OCP (2.5) and this is the crux of direct methods.

Remark - The ODE/DAE solver mentioned in the assumption is to be considered as a

computer code and not in terms of algebraic equations. The ODE/DAE solver is a simulator

which takes the numerical input trajectory u(t) = µ(t;U) and outputs the numerical state

trajectory which is utilized in the objective and constraint functions for the NLP problem

mentioned in (2.6). Thus, the objective and the constraint functions is embedded with the

ODE/DAE solver code and is ought to be deemed as computer codes (function code). Under

conditions of twice di�erentiability of all the functions (codes) listed in (2.5), the Jacobians

and Hessians for the NLP solver are numerically obtained by methods such as �nite di�er-

ences, algorithmic di�erentiation etc. [Griewank and Walther 2008] (also known as oracles in

optimization parlance) and this information aids the optimization procedure.

2.3.2.1 Direct single shooting method

The direct single shooting method also known as sequential method eliminates the dynamics

equality constraint in the non-linear OCP (2.5) by forward simulation and thus, removing

the state variables from the OCP NMPC problem [Rathai, Sename, and Alamir 2018]. This

reduces the optimization problem only to the input variables, which is obtained from the

following NLP problem.

min
U

N∑
k=0

L(φ(tk;U , x(0)), µ(tk;U)) ∆t+ ψ(φ(tN ;U , x(0)))

subject to g(φ(tk;U , x(0)), µ(tk;U)) ≤ 0, ∀tk ∈ Td
h(φ(tk;U , x(0)), µ(tk;U)) = 0, ∀tk ∈ Td
r(φ(tN ;U , x(0))) ≤ 0

(2.7)

The objective is discretized by means of Riemann sum at time stamps Td and ∆t is the

temporal di�erence between tk+1 and tk, which usually coincides with the sampling period

(τ). The states are replaced with the ODE/DAE simulator evaluated at these time stamps in

the objective as well as the constraints. The optimal solution U∗ obtained from (2.7) and the

�rst input U∗(0) is injected into the system and the process is repeated in receding horizon

manner. The prime bene�t of the method is, it only require few degrees of freedom, however

36 Chapter 2. Theoretical background

T0 t1 t2 t3 t4 t5 t6 t7 t8

µ(t0;U) µ(t1;U)
µ(t2;U)

µ(t3;U)

µ(t4;U)

µ(t5;U)

µ(t6;U) µ(t7;U)

µ(t8;U)

µ(t9;U)

x(t) = φ(t;U , x(0))

Figure 2.3: Direct single shooting illustration

the major downside of the method is, it performs poorly on unstable ODE/DAE systems and

applies only for short prediction horizons. A pictorial illustration of the method is shown in

Fig. 2.3. For more details, refer [Gros et al. 2020].

2.3.2.2 Direct multiple shooting method

The direct multiple shooting method, also a part of simultaneous methods, retains the state

variables as optimization variables and this increases the number of decision variables in the

optimization formulation in the non-linear OCP (2.5). The ODE/DAE solver simulates the

system over multiple time intervals i.e. [tk, tk+1], ∀k = {0, 1, . . . , N − 1} simultaneously and

the �nal state value x(tk) for the simulation in the each interval [tk, tk+1] is stipulated to obey

the dynamics of the system, which is enforced by equality constraints [Rathai, Sename, and

Alamir 2018]. This method is implemented when the dynamics of the system (ODE/DAE

equations) is numerically ill-conditioned and for larger prediction horizon. By dividing the

prediction horizon into sub-intervals and simulating the system with respect to each sub-

interval, the stability property of the simulation is retained. The NLP optimization problem

is formulated as

2.3. Fundamentals of Nonlinear Model Predictive Control 37

min
U ,{x(t1),...x(tN)}

N∑
k=0

L(x(tk), µ(tk;U)) ∆t+ ψ(x(tN))

subject to g(x(tk), µ(tk;U)) ≤ 0, ∀tk ∈ Td
h(x(tk), µ(tk;U)) = 0, ∀tk ∈ Td
x(tk+1)− φ(tk+1;x(tk), µ(tk;U)) = 0, ∀tk ∈ Td
x(0) = x0, r(x(tN)) ≤ 0

(2.8)

T0 t1 t2 t3 t4 t5 t6 t7 t8

µ(t0;U) µ(t1;U)
µ(t2;U)

µ(t3;U)

µ(t4;U)

µ(t5;U)

µ(t6;U) µ(t7;U)

µ(t8;U)

µ(t9;U)

x(tk+1) = φ(tk;U , x(tk))

Figure 2.4: Direct multiple shooting illustration

The optimal solution for the above optimization problem yields both the optimal state

trajectory and optimal input sequence. As per the standard receding horizon policy, the

�rst input U∗(0) is applied to the system and this procedure is repeated in the future. The

bene�ts of utilizing direct multiple shooting methods include a) Better simulator stability

with unstable system, b) Parallelizability of ODE/DAE simulations, c) Structural properties

of the Hessian matrices aid the optimization routine. The Jacobians and Hessians for the

ODE/DAE simulator are obtained via either forward or adjoint sensitivity analysis methods

However, the downside is that the optimization is carried out over an increased number of

variables and a good initialization for the NLP solver is required for faster convergence to the

optimal/suboptimal solution (this can be ameliorated by warm start procedure). A pictorial

illustration of the method is shown in Fig. 2.4. For more details, refer [Gros et al. 2020].

2.3.2.3 Direct collocation method

Direct collocation methods is a part of simultaneous methods, where the ODE/DAE simulator

is expunged from the multiple shooting formulation (2.8) and is replaced with algebraic equal-

38 Chapter 2. Theoretical background

ity constraints enforced at the collocation points [Rathai, Sename, and Alamir 2018]. The

solution for the dynamics (ODE/DAE) system is typically represented by means of orthogo-

nal polynomials such as Lagrange polynomials and the in�nite ODE/DAE system is �nitely

discretized at the orthogonal collocation points de�ned by the polynomials. Therefore, the

ODE/DAEs are gridded and transcribed into several equality constraints enforced at these

collocation points and this method is also known as orthogonal collocation method. With this

transformation, the NLP problem is expressed with

min
U ,{x(t1),...x(tN)}

N∑
k=0

L(x(tk), µ(tk;U)) ∆t+ ψ(x(tN))

subject to g(x(tk), µ(tk;U)) ≤ 0, ∀tk ∈ Td
h(x(tk), µ(tk;U)) = 0, ∀tk ∈ Td
Ψ(x(tk+1), x(tk), µ(tk;U)) = 0, ∀tk ∈ Td
x(0) = x0, r(x(tN)) ≤ 0

(2.9)

The fundamental di�erence between (2.8) and (2.9) is Ψ, which de�nes the dynamics of

the system at collocation points and also, unlike multiple shooting method, there are no online

simulations of the ODE/DAE system. Direct collocation methods are typically suited for sti�

ODE/DAE systems. The bene�ts of direct collocation methods are a) suitable for large scale

problems and also, the NLP is sparse in nature, b) suitable for unstable systems, however the

downside is that the method is not adaptive for new grid and changes in NLP dimensions.

For more details, refer [Gros et al. 2020].

2.4 A Gentle Introduction to GPGPU Computing for Control
Engineers using CUDA Programming Paradigm

Part II

pNMPC with RT applications for

control of semi-active suspension

system

39

Chapter 3

Experimental implementation of

pNMPC scheme for control for

semi-active suspension system

Contents

3.1 Introduction . 42

3.1.1 Related works . 42

3.1.2 Chapter contributions . 43

3.2 Control oriented ER semi-active damper modeling and parameter

identi�cation . 44

3.2.1 Vehicle modeling - Quarter car model . 44

3.3 Quasi-static nonlinear ER damper model 45

3.4 Parameter estimation . 46

3.4.1 ER semi-active damper response time estimation 46

3.4.2 Design of experiments . 47

3.4.3 Non-linear least squares (NLS) based data �tting 49

3.5 pNMPC design requirements for semi-active suspension system . . . 50

3.5.1 Objective requirements . 50

3.5.2 Constraint requirements . 51

3.6 Parameterized NMPC . 51

3.7 RT HiL implementation of pNMPC controller and Linearization

based MPC controller on dSPACE MABXII 53

3.7.1 Linearization based MPC design . 53

3.7.2 Simulation analysis for pNMPC method 54

3.8 Real-time Implementation . 56

3.8.1 Computational e�ciency test . 57

3.8.2 Chirp test with comfort objective . 58

3.9 Experimental implementation of pNMPC controller on INOVE test

platform . 60

3.9.1 Comparison controllers . 60

3.9.2 Results and Implementation . 60

3.10 Conclusions . 61

41

42
Chapter 3. Experimental implementation of pNMPC scheme for control for

semi-active suspension system

3.1 Introduction

As mentioned previously in Chapter 1, suspension systems play a vital role for control of

vertical dynamics of vehicles for guaranteeing comfort and safety for the on-board passengers.

The seemingly simple task of control poses to be daunting under the presence of multiple non-

linearities, physical constraints and speci�cation over objective requirements for the system.

Thereby, it is of paramount importance to account for these issues during control design for

better e�ciency and prolonged endurance of the suspension system. Along with these control

design requirements, it is also important to address the issue under the ambit of the EM-

PHYSIS project [EMPHYSIS 2017], where the semi-active suspension system based vehicle

models are exported from modeling tools such as AMESIM, OpenModelica, SimulationX etc.

as eFMU containers. Typically, the eFMU encapsulates the model of the system either as C

source codes or binary executables and therefore, the generated eFMU could be considered as a

black box model. Under such circumstances, where the knowledge of the system is completely

obscured from the control engineer, the control design problem becomes more complicated in

nature. Predicated upon these requirements, in this thesis a simulation-optimization based

control strategy is proposed namely parameterized NMPC (pNMPC) scheme to handle this

control problem. The pNMPC controller is tested, veri�ed and validated for the INOVE test

platform model by presuming the availability of the knowledge of the system, so that the

method is scalable and copes up with black box model oriented eFMUs for future use case.

MPC is indisputably one of the most advanced and e�cient control design methodology.

However, despite its enormous advantages in terms of optimal performance and constraint

satisfaction, one of the major shortcoming is that the entire MPC controller hinges upon the

model utilized in the control design. Due to the predictive nature of the controller, utilizing

an erroneous model would ensue poor performance due to the mismatch of models between

the plant and the controller. Thus, it is important to build a high �delity model such that

the mismatch is reduced and tangible performance bene�ts from the MPC controller are

obtained. Despite the mathematical model could be a black-box model or white-box model,

the accuracy of the model with respect to the ground truth play a pivotal role in determining

the performance of the MPC controller. Given this prelude and in the same spirit, in this

chapter, the �rst part addresses the problem of modeling and parameter identi�cation for the

ER semi-active suspension system for the INOVE test platform of a quarter car system. The

obtained model could be conceptualized as a black-box model such as binary executables or

eFMU/FMUs and the pNMPC scheme could be applied for this model. In the second part,

the obtained model parameters are utilized for design and implementation of the proposed

pNMPC scheme via HiL simulations on dSPACE MABXII and the INOVE test platform.

3.1.1 Related works

There have been several semi-active suspension system control design methods developed in

the past such as Skyhook proposed in [Karnopp, Crosby, and Harwood 1974], Acceleration

Driven Damping (ADD) proposed in [Savaresi, Bittanti, and Montiglio 2005], Mixed Skyhook-

3.1. Introduction 43

ADD (SH-ADD) proposed in [Savaresi and Spelta 2007], LPV/H-∞ based control methods

proposed in [Do, Sename, and Dugard 2010], [Sename et al. 2012]. A detailed literature review

of di�erent control strategies are presented in [Tseng and Hrovat 2015] and [Poussot-Vassal

et al. 2011]. Despite the several mentioned control strategies provide good performance, these

methods adopt the state and input constraints in an ad-hoc fashion and not completely into

control design. In [Nguyen et al. 2016b], a robust control approach is applied by taking

into account state and input constraints into control design, however, the method has several

limitations and conservativeness. This exclusion of fully incorporating the constraints into

control design might deteriorate the system performance and not fully utilize the potential of

the semi-active damper system. To circumvent this problem, MPC based approach provides

an elegant way of tackling the system constraints and objectives in control system design.

Another key advantage of MPC based approach is the ability to incorporate future road

information (road preview) into control design which could improve the performance of the

system in many folds.

Over the last decade, there has been several research contributions on MPC based approach

for control of semi-active suspension systems. In [Canale, Milanese, and Novara 2006], a Fast

MPC method is proposed where the optimal control input is computed o�ine by means of

set membership approximation technique, however the model can not incorporate dynamic

information into problem formulation such as road pro�le, variation in system parameters

etc. In Hybrid MPC approach proposed in [Giorgetti et al. 2006], the system is modeled

as hybrid dynamical system and the optimal control input is computed o�ine by solving a

multi-parametric program for a mixed-integer quadratic program (MIQP) and the method

su�ers from similar shortcoming as for Fast MPC method. In [Cseko, Kvasnica, and Lantos

2010], a detailed analysis of explicit MPC for semi-active suspension system is conducted.

In [Gohrle et al. 2012], a preview information based MPC scheme is proposed for control of

suspension system for a full car model and the model is presumed to be a LTI system. In

[Nguyen et al. 2016a], MPC for semi-active suspension system is implemented for full car

model, where a MIQP problem is solved online, however, the sampling period is too high for

practical implementation. In [Morato et al. 2019], a fast RT Linear Parameter Varying (LPV)

MPC scheme is proposed for control of semi-active suspension system for a full vehicle to

overcome the computational issues in [Nguyen et al. 2016a] by modeling the system by means

of LPV model.

3.1.2 Chapter contributions

The main contribution of this chapter are

� System identi�cation and parameter estimation of ER semi-active damper system for

the INOVE test platform is explained in detail along with the design of experiments.

The obtained model parameters are utilized for implementation of the proposed pNMPC

method for a quarter car system. It is also important to note that the estimated model

and its parameters are utilized for all ER damper models throughout the thesis.

44
Chapter 3. Experimental implementation of pNMPC scheme for control for

semi-active suspension system

� The working principle of pNMPC controller is explained in detail along with its ap-

plication for control of semi-active suspension system. The design requirements such

as objectives, constraints and the pNMPC OCP formulation for the suspension control

system are laid down �rmly.

� The proposed method is implemented in HiL simulation on dSPACE MABX II and

also, compared against a linearization based MPC using CVXGEN [Mattingley and

Boyd 2012] solver. The proposed method is experimentally implemented on the INOVE

test platform and the performance was compared against other controllers.

3.2 Control oriented ER semi-active damper modeling and pa-
rameter identi�cation

In general, any semi-active damper modeling exercise can be broadly classi�ed into a) para-

metric and b) non-parametric based approach. Under the former regime, the structure of the

model is dictated by the physics of the system, which is modeled by means of �rst principles

techniques and by contrast, the latter method obscures the underlying physics of the system

and this leads to a �exible model structure, which is modeled by means of empirical techniques.

[Butz and Von Stryk 2002] provides a detailed survey on di�erent types of parametric/non-

parametric modeling for semi-active suspension systems. In this work, the parametric method

is of primary interest and some of the popular parametric models (to name a few) include

the Bingam model [Stanway, Sproston, and Stevens 1987], the phenomenal Bouc-Wen model

[Spencer Jr et al. 1997], the nonlinear viscoelastic-plastic model [Kamath and Wereley 1997],

the nonlinear bi-viscous model [Stanway, Sproston, and El-Wahed 1996], Guo's damper model

[Guo, Yang, and Pan 2006] etc. In this work, Guo's damper model is utilized to describe

the ER semi-active suspension system for the INOVE test platform due to its simplicity and

parsimonity to describe the damper characteristics.

3.2.1 Vehicle modeling - Quarter car model

The vertical dynamics model for the quarter car system equipped with ER semi-active damper

system (around the equilibrium) is de�ned with the same quarter car model described in

Chapter 1, Section 1.1 which is de�ned by

msz̈s = −ks(zs − zus)− u
musz̈us = ks(zs − zus) + u− kt(zus − zr)

(3.1)

where, ms, mus are the sprung mass and unsprung mass respectively, ks, kus are the

sti�ness coe�cients of suspension system and the tire respectively, zs, żs are the sprung

mass position and velocity respectively, zus, żus are the unsprung mass position and velocity

3.3. Quasi-static nonlinear ER damper model 45

respectively, zr is the vertical road position or disturbance and u is the force exerted due to

the ER semi-active damper system. The state vector is represented with x = [zs zus żs żus]
T .

3.3 Quasi-static nonlinear ER damper model

The ER semi-active damper force u is expressed using the quasi-static nonlinear damper model

(Guo's damper model) [Guo, Yang, and Pan 2006] with

u = fcφtanh(a1żdef + a2zdef) + c0żdef (3.2)

where, c0, fc, a1 and a2 represents the viscous damping coe�cient, dynamic yield force

of the �uid, and hysteresis coe�cient of the damper model respectively. zdef = zs − zus and
żdef = żs − żus represents the de�ection position and velocity ∀i ∈ {l, r} between the chassis

and wheel respectively. φ is the PWM-DC input for the system such that φ ∈ U, where
U := [φmin, φmax] such that 0 ≤ φmin < φmax ≤ 1. For reasons of safety and operational

requirements, the minimum and maximum bounds for the PWM-DC signal were set to φmin =

0.1 and φmax = 0.35.

4 6 8 10 12 14 16

Time(s)

-25

-20

-15

-10

-5

0

5

10

15

20

25

D
a

m
p

e
r

fo
rc

e
(N

)

Figure 3.1: Measured damper force (u) for PRBS based road pro�le

46
Chapter 3. Experimental implementation of pNMPC scheme for control for

semi-active suspension system

4 6 8 10 12 14 16

Time(s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
W

M
-D

C
 v

a
lu

e

Figure 3.2: PWM-DC signal (φ)

3.4 Parameter estimation

3.4.1 ER semi-active damper response time estimation

To study the dynamic characteristics of the ER-SA damper system, it is important to estimate

the response time of the system, which is indirectly estimated by �nding the peak response

time of the system (Tr). The following experiment was conducted to estimate Tr:

� The platform was excited with a pseudo binary random sequence (PRBS) road pro�le

with an amplitude of 5 mm for a duration of 20 s, illustrated in Fig. 3.1.

� The PWM-DC signal was �ipped from φmin to φmax at time 10 s (a step change in

input) and the ER-SA damper force (u) was measured, illustrated in Fig. 3.2.

In order to zero-in the point of transition (high frequency content), which provides the

necessary cues for Tr estimation, time-frequency analysis was performed by means of wavelet

transform. Fig. 3.3 illustrates the wavelet analysis performed on the damper force signal

(u) with Morlet wavelet basis functions [Tangirala, Mukhopadhyay, and Tiwari 2013]. It is

evident from the contour plot that the peak in the frequency and energy content at time

10.23s, provides the necessary cue to approximate the peak response time, i.e. Tr ≈ 230 ms.

This inference serves three purposes which are

3.4. Parameter estimation 47

4 6 8 10 12 14 16

Seconds

10

20

30

40

50

60

70

80

90

F
re

q
u
e
n
cy

2

4

6

8

10

12

14

M
a

g
n

itu
d

e

10 11

20

30

40

50

X: 10.23

Y: 47.75

Level: 1.807

Figure 3.3: Wavelet analysis of ER semi-active damper force (u) signal

� The at-most period for PWM-DC transition to completely capture the dynamical be-

havior of the ER-SA damper system is ascertained.

� The look ahead period or the prediction horizon for the MPC controller is computed.

� Estimation of sampling time (Ts) for the damper system, which is computed using the

general measure with Ts ∈ [
Tr
10
,
Tr
5

] is computed [Astrom and Wittenmark 1982]. This

also accounts for all the delays in the system i.e. sensors and actuator delays. However,

the natural sampling time of the system is 5 ms.

3.4.2 Design of experiments

In order to obtain the best model parameters for the ER semi-active damper system, it is

imperative to conduct informative experiments and collect the input/output data that captures

the dynamic behavior of the system. Conditioned upon the previous requirement, the test

involved the following scenario:

� PRBS signal based road excitation with an amplitude of 5 mm for a duration of 20 s.

� A PRBS based input PWM-DC signal between the interval [φmin, φmax] with a holding

period of Tr.

48
Chapter 3. Experimental implementation of pNMPC scheme for control for

semi-active suspension system

The rationale to adopt this scenario is to induce persistent excitation and minimize the

crest factor for input design [Ljung 1987]. The ER semi-active damper system was operated

upon the aforementioned scenario and all the input/output data were collected for param-

eter estimation stage. For the purpose of illustration, Fig. 3.4 and Fig. 3.5 illustrates the

force vs de�ection position and velocity respectively for selected PWM-DC values which are

{0.1, 0.21, 0.27, 0.35}.

-4 -3 -2 -1 0 1 2 3

Deflection position (m) 10-3

-30

-20

-10

0

10

20

30

F
o

rc
e

 (
N

)

PWM 10%

PWM 21%

PWM 27%

PWM 35%

Figure 3.4: FER vs zdef plot for di�erent PWM-DC signals

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Deflection velocity (m/s)

-30

-20

-10

0

10

20

30

F
o
rc

e
 (

N
)

PWM 10%

PWM 21%

PWM 27%

PWM 35%

Figure 3.5: FER vs żdef plot for di�erent PWM-DC signals

3.4. Parameter estimation 49

4 6 8 10 12 14 16

Time (s)

-30

-25

-20

-15

-10

-5

0

5

10

15

20

F
o
rc

e
 (

N
)

Predicted ER force

Measured ER force

Figure 3.6: Predicted damper force and measured damper force u

3.4.3 Non-linear least squares (NLS) based data �tting

The input/output N -sample dataset are expressed with {DiX }Ni=1 and {DiY}Ni=1, where X =

[zdef żdef φ] and Y = u. Let the unknown parameters be represented with θ = [fc a1 a2 c0],

then the NLS objective function is de�ned with

χ2(θ) =
1

N

N∑
i=1

(
DiY − ψ̂(DiX , θ)

)2

(3.3)

where, ψ̂ is the estimated function for the data �tting problem for the output dataset,

which in this case is the ER semi-active suspension force, i.e. u. The optimal parameters are

computed by solving the following nonlinear optimization problem

θ∗ = argmin
θ∈Θ

χ2(θ) (3.4)

where, Θ ⊂ R4 is the constraint set for the parameters, which is de�ned with Θ := {θ ∈
R4 | {θ1, θ4} ∈ R≥0, {θ2, θ3} ∈ R}. The estimated model was validated using K-fold cross

validation method with K = 5 and the accuracy of the model was estimated to 4.65 units.

The estimated model parameters are listed in the Table 3.1. Fig. 3.6 illustrates the predicted

vs measured ER semi-active damper force (u) for a single track of input/output data.

50
Chapter 3. Experimental implementation of pNMPC scheme for control for

semi-active suspension system

Table 3.1: Estimated ER semi-active damper parameters

Parameter Symbol Value (SI unit)

Force parameter fc 21.38(N)

De�ection position parameter a1 178.93(1/m)

De�ection velocity parameter a2 23.21(s/m)

Nominal damping coe�cient c0 71.03(Ns/m)

3.5 pNMPC design requirements for semi-active suspension
system

3.5.1 Objective requirements

The dichotomy of the objective design for the semi-active suspension system for a quarter car

system could be both qualitatively and quantitatively classi�ed into a) Comfort objective and

b) Road Holding objective [Savaresi et al. 2010].

� Comfort objective (Jcomt): Qualitatively, the prime goal of the comfort based objective

design is to guarantee the comfort for the on-board passengers. The human body is

sensitive to certain frequencies and it is of paramount importance to mitigate the e�ects

of vibrations at these spots of the spectrum. Quantitatively, this tantamount to mini-

mizing the vertical acceleration of the chassis (z̈s). The comfort objective for the given

look ahead period Tl is expressed as

JcomTl
=

∫ Tl

0
(z̈s(t))

2dt (3.5)

� Road holding objective (Jrht): Qualitatively, the prime goal of the road holding based

objective design is to guarantee that the wheel is always in contact with the road. The

requirement of this objective is crucial in control of longitudinal and lateral dynamics of

the vehicle. Quantitatively, this objective corresponds to the requirement of minimizing

the displacement between the road and the wheel (zus− zr). The road holding objective

for the given look ahead period Tl is expressed as

JrhTl =

∫ Tl

0
(zus(t)− zr(t))2dt (3.6)

It is also important to note that both the objectives are con�icting in nature. Thus, the

objective for the semi-active suspension system holistically at the current time instant t is

expressed as

JobjTl
= θ1J

com
Tl

+ θ2J
rh
Tl

(3.7)

3.6. Parameterized NMPC 51

Where, θ1 and θ2 are the weighting coe�cients between comfort and road holding objective

and also, the coe�cients form a convex combination between the two objectives such that

θ1 + θ2 = 1 and θ1, θ2 ≥ 0.

3.5.2 Constraint requirements

The constraints for the semi-active suspension system primarily arises from the physical limita-

tions of the system. These are hard constraints and must be handled systematically to prevent

weariness of the system components. For the pNMPC design considered, six constraints are

included in the problem formulation which are

� Semi-active ER damper input constraints:

� PWM input constraint: φ(t) ∈ U.

� Max/Min damper force constraint: This forms a non-linear mixed state-input con-

straint such that u(t) ∈ [u, u], where u and u are the minimum and maximum

saturation forces for the semi-active suspension system.

� State limitations constraints:

� Max/Min de�ection between the chassis and wheel position: This forms a linear

state constraint such that zs − zus ∈ [zmindef , z
max
def], where zmindef , z

max
def are the mini-

mum/maximum de�ection position between the chassis and the wheel.

� Max/Min de�ection between the chassis and wheel velocity: This forms a linear

state constraint such that żs − żus ∈ [żmindef , ż
max
def], where żmindef , ż

max
def are the mini-

mum/maximum de�ection velocity between the chassis and the wheel.

� Dynamics constraint: The nonlinear equality constraints due to dynamics of the system

de�ned in (3.1) and (3.2). It is important to note that this is eradicated via simulation

aka direct single shooting method.

� Road disturbance assumption: Under the consideration without road preview informa-

tion, it is not uncommon to presume a constant road disturbance input measured at

the current time instant t for the entire future horizon for the NMPC problem, i.e.

d+ = d(t).

3.6 Parameterized NMPC

The proposed parametrized NMPC approach is based on simulation methods, i.e. an explic-

it/implicit ODE solver is utilized to simulate the non-linear system in equation (3.1), (3.2)

to determine the evolution of the states for a set of input sequences over the horizon. In the

context of eFMI/FMU, the underlying system could be treated as black-box models and the

solvers could include either Ordinary Di�erential Equations (ODEs) or Di�erential Algebraic

52
Chapter 3. Experimental implementation of pNMPC scheme for control for

semi-active suspension system

Equations (DAEs) solvers [Ascher and Petzold 1998], which could either be provided by the

simulation environment or inbuilt within the eFMU/FMU containers. The optimal input se-

quence is elicited from the simulations which minimizes the objective function and satis�es the

constraint requirements, which are handled algorithmically [Rathai et al. 2018]. The proposed

parametrized NMPC algorithm is sequentially presented as follows

Algorithm:

1. The input φ of the non-linear system in equation (3.1), (3.2) is �nitely parameterized in

time with Nδ equidistant points over the look ahead period Tl with {δ0 . . . δNδ−1} time
stamps with an interval of Tl

Nδ
and Tl = δNδ−1 and in space, the set U is discretized with

Ns points such that φ ∈ {φ1, . . . φNs} ⊂ U, where φi is a discretization point in U. The
input sequence over the horizon is compactly represented with µ(δj |{φi(δj)}Nsi=1, t), ∀j ∈
{0, . . . Nδ − 1}, i.e. at a given time instant δj , there exists Ns possible input values and

this spans for all given time stamps.

2. The explicit/implicit ODE solver for the non-linear system in equation (3.1), (3.2) is

simulated for all input sequences along space and time.

3. The optimal control sequence is computed with respect to the objective and constraints

by plugging the simulated trajectory onto the cost function and the constraint functions.

The constraints are handled algorithmically that if a particular input sequence violates

the constraints, then the input sequence is discarded and the solver is proceeded with

another control sequence until the minimum cost is obtained.

4. In case, if no input sequence satis�es the constraints, then the input sequence which

least violates the constraints is considered as the optimal input sequence.

5. This procedure is repeated in receding horizon policy method at every sampling period

(Ts) and the optimal control input is φ∗(0) = φ∗(δ0).

For the considered case of quarter car semi-active suspension system, Ns is assumed as

variable (space discretization) and Nδ = 1 (time discretization) and the solver utilized is a

simple fourth order explicit Runge-Kutta (RK) method with �xed integration step h = 1 ms.

The model parameters for INOVE quarter car platform and proposed MPC design are listed

in Table 3.2. It is important to note that the ascertained sampling period from the system

identi�cation tests is Tsest = 0.023 and the natural sampling period of the system or the

sampling period of the DAQ is Ts = 0.005. For experiments on the test bench the former was

used and for tests on dSPACE MABXII the later was used.

3.7. RT HiL implementation of pNMPC controller and Linearization based
MPC controller on dSPACE MABXII 53

Table 3.2: Model parameters for INOVE quarter car platform and proposed MPC design

Parameter Symbol Value (SI unit)

Chassis quarter car mass ms 2.27(kg)

Unsprung mass mus 0.25(kg)

Suspension sti�ness ks 1396(N/m)

Tyre sti�ness kt 12270(N/m)

Max/Min damper force u, u ±21(N)

Max/Min de�ection position zmaxdef , z
min
def ±0.005(m)

Min PWM duty cycle φmin 0.1

Max PWM duty cycle φmax 0.35

Look ahead period Tl 0.23(s)

Estimated sampling period for the INOVE platform Tsest 0.023(s)

Natural sampling period Ts 0.005(s)

3.7 RT HiL implementation of pNMPC controller and Lin-
earization based MPC controller on dSPACE MABXII

The proposed pNMPC controller was compared against a linearization based MPC controller.

The performance and computation time were compared with each other to gauge the potential

of the proposed pNMPC method.

3.7.1 Linearization based MPC design

The fundamental assumption for the linearization based MPC design is to linearize the non-

linearities present in the system (i.e. constraints and dynamics) by means of �rst order Taylor

series expansion and then, the problem is casted as a linear MPC problem, i.e. a convex QP

problem. This procedure is repeated at every operating point and a linear MPC is solved at

every operating point in receding horizon fashion. The �rst order linearization of the quasi-

static nonlinear damper model (3.2) under the modi�ed input at a given operating point

Pi = (xi, φi) is expressed as

uPi(xk, φk) = u(Pi) +∇φu|(Pi)∆φ+∇xu|(Pi)∆x (3.8)

Where, ∆x = xk − xi and ∆φ = φk − φi are the state and input deviation variables with

respect to the operating point Pi. The �rst order linearization of the nonlinear dynamics at

the operating point Pi in continuous time is expressed as

∆ẋ(t) = Aic∆x(t) +Bi
c∆φ(t) +Bcdd(t) (3.9)

Where, Aic ∈ R4×4 and Bi
c ∈ R4×1 are the linearized system and input matrices at Pi. The

obtained continuous time matrices are converted to discrete time matrices by means of zero

54
Chapter 3. Experimental implementation of pNMPC scheme for control for

semi-active suspension system

order hold (ZOH) method with a sample time Ts. The discrete-time linearized state space

equation at the point Pi is expressed as

∆x+ = Aid∆x(k) +Bi
d∆φ(k) +Bddd(k) (3.10)

Where, Aid ∈ R4×4, Bi
d ∈ R4×1 and Bdd ∈ R4×1 are the discrete-time system matrix, input

matrix and disturbance matrix. The linearized MPC �nite time optimal control problem

(FTOCP) at the point Pi with with x0 = x(0) and with d0 = d(0) is casted as a convex QP

problem with horizon length N corresponding to the look ahead period Tl which is described

as

J∗Pi = min
φ0:N−1,x1:N

N−1∑
k=0

Jobjk

s.t. zs − zus ∈ [zmindef , z
max
def], ∀k = 1 . . . N

dk+1 = dk, ∀k = 0 . . . N − 1

uPi(xk, φk) ∈ [u, u], ∀k = 0 . . . N − 1

φk ∈ U, ∀k = 0 . . . N − 1

(3.10), ∀k = 0 . . . N − 1

(3.11)

Where, J∗Pi is the optimal objective function. The optimal control input at point Pi to the

actual system is φ∗(0) = φ∗0 and this procedure is repeated in receding horizon policy method.

For initialization of the input for the next linearization point, the solution of the previous

program of equation (3.11) is utilized, i.e. Pi+1 = (xi+1, φ
∗
1), where φ∗1 is the solution at time

step 1 at Pi point. The linearization is performed by precomputing the Jacobians a priori and

is evaluated at every time instant.

3.7.2 Simulation analysis for pNMPC method

A detailed analysis is conducted for the proposed parameterized NMPC method for the quarter

car semi-active suspension system for di�erent cases. The parameterized NMPC method is

simulated in MATLAB/Simulink environment and its closed-loop performance characteristics

are investigated for di�erent complexity factors i.e. di�erent space discretization points (Ns)

and computational time i.e. the control update period (τφ). The considered acid test is for

the following scenario

� A chirp road pro�le with a frequency sweep between 0.1 Hz to 25 Hz with an amplitude

of 1 mm for a duration of 10 s.

� The control objective is selected to be comfort oriented design i.e. θ1 = 1 (θ2 = 0).

� The control update period is a variable which is expressed with τφ = γNsTs, where γ is

the computational scale factor and Ts = 0.5× 10−4 s.

The rationale behind this heuristic and the analysis is to comprehend the behavior of the

proposed controller when executed in di�erent computational resources for di�erent complex-

ities (Ns), control update period (τφ) and also, the analysis provides insight over the optimal

3.7. RT HiL implementation of pNMPC controller and Linearization based
MPC controller on dSPACE MABXII 55

2 4 6 8 10 12 14 16 18 20

space discretization (N
s
)

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

n
o

rm
a

liz
e

d
 c

lo
s
e

d
 l
o

o
p

 o
b

je
c
ti
v
e

=2

=3

=4

=5

=6

Figure 3.7: Ns vs J
norm
CL for di�erent values of computational scale factor γ

Σ

ZOH(Ts)ZOH(τφ)

zr
x

C

φ

Figure 3.8: Control scheme for the proposed analysis

complexity factor N∗s to be utilized for a given computational resource. Fig. 3.7 illustrates the

normalized closed loop performance of the system for complexity factor (Ns) vs normalized

closed loop objective (JnormCL) for di�erent computational scale factor (γ). The normalized

closed loop objective (JnormCL) is de�ned with respect to the objective of nominal passive sus-

pension system de�ned as

JnormCL =
JobjCL

JpassCL

(3.12)

where, JpassCL corresponds to the the closed loop objective for the nominal passive suspension

system and JobjCL corresponds to the closed loop objective of the parameterized NMPC method.

The curves in plot Fig. 3.7 illustrates the fact that the normalized closed loop objective (JnormCL)

for a given computational scale factor (γ) declines as the complexity factor gradually increases,

however as the complexity factor increases more than a certain threshold, the normalized closed

56
Chapter 3. Experimental implementation of pNMPC scheme for control for

semi-active suspension system

loop objective (JnormCL) increases due to the fact that the computational load is elevated and

consequently, the control update period (τφ) is increased, which results in poor performance

of the controller. The abscissa of the optimal point for the curves indicates the best/optimal

complexity factor N∗s for a given computational resource or computational scale factor (γ).

Remark - The proposed parametrized NMPC is of high interest for practical applications

for a large set of semi-active dampers. Indeed it is worth noting that Ns de�nes the set of

damping coe�cients than can be used in real-time control. When that Ns tends to in�nity

this corresponds to a continuously-variable damper. When Ns = 2 this corresponds to a 2-

states damper or to a min-max suspension control approach (as for SkyHook, and ADD and

SH-ADD methods). This o�ers a large �exibility for the implementation of several control

methods for di�erent damper types.

Figure 3.9: dSPACE MicroAutoBox II - 1401/1511

3.8 Real-time Implementation

The proposed method and linearization based MPC method are implemented on RT condi-

tions on dSPACE MicroAutoBox II hardware with MATLAB/Simulink interface. HIL tests

are conducted for di�erent scenarios and the performance characteristics of the controllers are

investigated. The linearization based MPC is implemented using CVXGEN solver by [Mattin-

gley and Boyd 2012], in which the optimization problem in equation (3.11) is programmed and

3.8. Real-time Implementation 57

the generated C-code is patched with Simulink using S-function builder block. The parameter-

ized NMPC is programmed using Simulink-MATLAB function block. The generated Simulink

�les are deployed to the dSPACE hardware and the results were obtained from ControlDesk

environment.

3.8.1 Computational e�ciency test

To test the computational e�ciency of the two methods, the maximum execution time is

recorded for di�erent complexity parameter of the controller. The complexity parameter for

the linearization based MPC is selected to be the number of Newton steps/iterations for the

QP solver and for the proposed approach, the number of space discretization points (Ns) is

considered. The road pro�le is a chirp signal with amplitude of 1 mm and frequency sweep

from 5 Hz to 25 Hz with comfort objective i.e. θ1 = 1 (also applies for road holding objective

θ2 = 0).

2 4 6 8 10 12 14 16 18 20

N
s
/Iterations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

m
ax

im
um

 e
xe

ct
ut

io
n

tim
e

(s
)

10-3 Computational efficiency

Parameterized MPC

State of the art MPC

Figure 3.10: Computational e�ciency between the pNMPC and linearization based MPC

controller

Fig 3.10 shows a linear relationship between the complexity and the maximum execu-

tion time for both controller, however the scale of the proposed controller is roughly three

times lesser than the linearization based MPC using CVXGEN. This observation leverages

the plausibility to utilize smaller sampling time (Ts) and complexity factor Ns for the pro-

posed method.

58
Chapter 3. Experimental implementation of pNMPC scheme for control for

semi-active suspension system

0 1 2 3 4 5 6 7 8 9 10

time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ro
ad

 p
ro

fil
e

(m
)

10-3

Road profile

Figure 3.11: Chirp Road pro�le with amplitude of 1 mm and frequency sweep from 5 to 25

Hz

Table 3.3: RMS values for comfort objective for chirp road pro�le

Objective Linearized MPC Parameterized NMPC

Comfort (m/s2) 2.7701 2.2643

3.8.2 Chirp test with comfort objective

The test involves a chirp road pro�le (shown in Fig. 3.11) with amplitude of 1 mm and

frequency sweep from 5 Hz to 25 Hz with comfort objective i.e. θ1 = 1 (also applies for road

holding objective i.e. θ2 = 0). The complexity factor for linearization based MPC, i.e. number

of iterations is 11 and for parameterized NMPC Ns is 20. The root mean square (RMS) values

for the simulations are listed in Table 3.3. For the comfort objective, the chassis acceleration

is shown in Fig. 3.12. The dissipativity constraint due to non-linear modeling of ER damper

is shown in Fig. 3.13. The results demonstrate better performance of the proposed approach

compared to linearization based MPC for the considered scenario in RT considerations.

3.8. Real-time Implementation 59

0 1 2 3 4 5 6 7 8 9 10

time (s)

-6

-4

-2

0

2

4

6

ch
as

si
s

ac
ce

le
ra

tio
n

(m
/s

2)

Linearizaed based MPC

Parameterized NMPC

Figure 3.12: Chassis acceleration for the quarter car system

-0.3 -0.2 -0.1 0 0.1 0.2

suspension deflection velocity (m/s)

-15

-10

-5

0

5

10

15

su
sp

en
si

on
 fo

rc
e

(N
)

Linearized based MPC

Parameterized NMPC

Figure 3.13: Damping force vs suspension de�ection velocity

60
Chapter 3. Experimental implementation of pNMPC scheme for control for

semi-active suspension system

3.9 Experimental implementation of pNMPC controller on IN-
OVE test platform

The proposed pNMPC controller was tested on the INOVE test platform for a series of tests

along with a few comparison controllers.

3.9.1 Comparison controllers

� Modi�ed Skyhook controller - Skyhook controller is one of the most prominent and

well known controller for semi-active suspension system [Karnopp, Crosby, and Harwood

1974]. The modi�ed skyhook controller is an extension to the skyhook controller where

the ER-SA damper system's PWM-DC signal swings between minimum and maximum

value conditioned upon a switch condition. Mathematically, the controller is expressed

with

φ =

{
φmax, if żsżdef ≥ 0

φmin, if żsżdef < 0
(3.13)

� Nominal passive suspension - The nominal passive suspension is a typical passive

suspension system, however the term nominal indicates that the PWM-DC for the ER-

SA damper system is �xed to the mean value of the minimum and maximum values of

the PWM-DC, i.e. φnom =
φmin + φmax

2
. The value is held constant over the entire

period of operation, which is 0.225.

3.9.2 Results and Implementation

The proposed MPC controller and the comparison controllers were programmed in MAT-

LAB/Simulink environment and was implemented on the INOVE test platform. Two road

pro�le tests were conducted to validate the performance of the proposed MPC controller,

which are a) Chirp road pro�le test and b) Bump road pro�le test.

3.9.2.1 Chirp road pro�le test

The test involved a chirp road pro�le with amplitude of 2.5 mm and frequency sweep from 5

Hz to 22 Hz (this corresponds to the comfort frequency range for the INOVE test platform).

The road pro�le is shown in Fig. 3.14. The PWM-DC control inputs for di�erent controllers is

shown in Fig. 3.15. It is clearly evident that the proposed MPC utilizes the control authority

in a judicious manner such that to minimize the vertical chassis acceleration. The RMS values

of the chassis acceleration for the test and the percentage gain with respect to nominal passive

damping are listed in Table 3.4. The RMS values clearly evinces the fact that the proposed

MPC method fares better the nominal passive damping and modi�ed skyhook controller.

3.10. Conclusions 61

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-4

-3

-2

-1

0

1

2

3

4

R
oa

d
pr

of
ile

 (m
)

10-3

Chirp road profile

Figure 3.14: Chirp road pro�le

Table 3.4: RMS values for comfort objective for chirp road pro�le

Controller RMS (m/s2) % Gain

Nominal passive damping 6.87 0

Modi�ed Skyhook controller 6.66 3.05

Proposed pNMPC controller 6.42 6.5

3.9.2.2 Bump road pro�le test

The INOVE test platform was excited with bump road pro�le, shown in Fig. 3.16 with peak

amplitude of 7 mm and duration of 10 s. The recorded chassis acceleration is shown in Fig.

3.17. From the chassis acceleration plot, it is evident that the proposed MPC method mitigates

the peak chassis acceleration at bump points. The PWM-DC control input is shown in Fig

3.18.

3.10 Conclusions

This chapter has presented the pNMPC scheme for control of vertical dynamics of vehicle via

ER semi-active suspension system for a quarter car model. The method was tested through

HiL simulations as well as the INOVE test platform to validate and verify the performance

with respect to the objective and constraints requirements. The method was compared against

62
Chapter 3. Experimental implementation of pNMPC scheme for control for

semi-active suspension system

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
W

M
-D

C

Proposed MPC controller

Nominal passive damping

Skyhook controller

Figure 3.15: PWM-DC input for di�erent controllers for chirp road pro�le

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-8

-6

-4

-2

0

2

4

6

8

Ro
ad

 p
ro

file
 (m

)

10-3

Bump road profile

Figure 3.16: Bump road pro�le

CVXGEN based linearized MPC controller in dSPACE MABXII and control schemes such as

skyhook and passive damping setup on the INOVE test platform. Overall, the proposed

pNMPC method fares well and looks promising for practical implementation on real-world

systems. It is also important to note that the crux of the EMPHYSIS project is to utilize

model based controllers for embedded control of automotive systems and at the same time,

3.10. Conclusions 63

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

C
h

a
ss

is
 a

cc
e

le
ra

tio
n

7 7.2 7.4

0.25

0.3

0.35Proposed MPC controller

Nominal passive damping

Skyhook controller

Figure 3.17: Chassis acceleration for bump road pro�le

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

PW
M

-D
C

Proposed MPC controller

Nominal passive damping

Skyhook controller

Figure 3.18: PWM-DC input for di�erent controllers for bump road pro�le

the dynamical models are exported as eFMU containers, where at times, the knowledge of

the system is not explicitly provided to the end user. The proposed pNMPC method does

not require any internal details of the system rather only the model ought to be simulated to

obtain the stae trajectory of the system. Thus, the proposed pNMPC method is scalable with

eFMU containers and also, can cope up with black-box models.

Chapter 4

GPU based parallelized pNMPC

scheme for control of semi-active

suspension system

Contents

4.1 Introduction . 66

4.1.1 Related works . 66

4.1.2 Chapter contribution . 67

4.2 Half car model with semi-active suspension system 68

4.2.1 Half car mathematical model without road model 68

4.2.2 Half car mathematical model with stochastic road model 68

4.2.3 ISO road pro�le . 69

4.2.4 Mathematical terminology . 69

4.2.5 Nonlinear quasi-static SA damper model 70

4.3 Parallelized pNMPC scheme for control of semi-active suspension

system without road model . 70

4.3.1 Mathematical model notations . 70

4.3.2 Parallelized pNMPC design requirements 70

4.3.3 MPC problem formulation . 72

4.3.4 Parallelized pNMPC Method . 72

4.4 Analysis and Simulation results . 75

4.4.1 Computational time analysis b/w CPU and GPU 75

4.4.2 Comparative analysis . 75

4.4.3 Road pro�le simulation test - Ride handling 76

4.5 Scenario-stochastic pNMPC scheme for control of semi-active sus-

pension system . 80

4.5.1 Mathematical model notations . 80

4.5.2 SS-pNMPC design requirements . 80

4.5.3 SNMPC problem formulation . 81

4.5.4 SS-pNMPC method . 82

4.5.5 Results and simulations . 85

4.6 Conclusions . 88

65

66
Chapter 4. GPU based parallelized pNMPC scheme for control of semi-active

suspension system

4.1 Introduction

This chapter introduces the parallelized pNMPC scheme for control of semi-active suspension

system for a half car vehicle. The method taps the power of GPU computing for parallelizing

the pNMPC control scheme across several GPU multi-core processors. The method is generic

in nature, however in thesis the proposed method is utilized for solving the automotive sus-

pension control problem. The chapter is divided into two parts, where in the �rst part the

road model is not accounted into the OCP formulation and in the second part the road pro�le

is modeled via a stochastic process and the resulting method is termed scenario stochastic

pNMPC scheme (SS-pNMPC).

Some of the key aspects of the proposed methods are

� Automotive standard - The method is amenable with the existing automotive stan-

dards as only simple math operations are required and also, independent of any back-end

optimization solver.

� Modeling �exibility - The proposed SS-pNMPC method requires no a-priori assump-

tions on the system such as linear time invariant (LTI) dynamics, stationary property,

Gaussian distribution of noise etc. This feature is highly sought these days as proposed in

[Guanetti and Borrelli 2017], the road model stochastic information can be dynamically

obtained from cloud servers and this could be easily embedded in the OCP formulation.

� Black-box model compatibility - When dealing with black box models such as FMUs

[Blockwitz et al. 2012] or eFMUs, the model implementation details such as dynamical

equations, system parameters etc. are concealed away from the end user due to pro-

tection of intellectual property (IP) rights. In the such a situation, designing a model

based controller poses to be a serious challenge, however the proposed pNMPC controller

is based on a simulation-optimization method and this obviates any need to stipulate

the structure of dynamics, objective or constraint functions. The proposed approach is

implemented on GPU to increase the computation throughput for the controller.

� E�cient RT operability - The fast computation of the control input by means of

GPU renders the method to be RT operable, especially for fast systems.

� Validation/Veri�cation on Embedded platforms - The proposed SS-pNMPC

method was tested on multiple GPU based embedded boards to calculate the com-

putation time and also to assess the RT feasibilty of the method. The method was

tested on the NVIDIA Jetson embedded boards - Nano, TX1, TX2 and Xavier and the

results looks promising for RT implementation.

4.1.1 Related works

There has been several research conducted in a recent past on solving the MPC problem which

harnesses the potential of GPUs. A brief tutorial on di�erent parallel architectures for MPC is

4.1. Introduction 67

proposed in [Koegel and Findeisen 2012]. In [Gade-Nielsen, Dammann, and Jørgensen 2014],

several GPU based interior point methods were developed for linear MPC framework. There

have been several research contributions on utilization of GPUs for solving stochastic control

problems and in [Abughalieh and Alawneh 2019], a detailed survey on various types of parallel

implementation of MPC methods are described. In [Sampathirao et al. 2017], a scenario based

Stochastic MPC (SMPC) method is proposed where the structure of the system is exploited

and the problem is solved using proximal gradient method which is parallelized on GPU. In

[Ohyama and Date 2017], a sampling based parallelized nonlinear MPC (NMPC) scheme is

proposed and experimentally validated for control of inverted pendulum system. In [Williams

et al. 2016], a path integral based MPC method is proposed and experimentally validated

for a Remote Controlled (RC) car, the paper derives an input update rule for a stochastic

optimal control problem based on information theoretic concepts and at every sampling period,

multiple random scenarios are generated to update the input sequence. In [Rogers 2013], a

guidance law for guided projectiles is proposed, where the GPUs are utilized to generate RT

scenarios to predict the impact point and probability of violating impact area constraints. In

[Hyatt and Killpack 2020], a GPU based RT NMPC scheme for control of robots is proposed

where the method is termed as Nonlinear Evolutionary MPC (NEMPC) and is practically

implemented for control of a 24 state pneumatically actuated continuum soft robot.

Concerning the control of semi-active suspensions system, as mentioned previously in

Chapter 3, [Savaresi et al. 2010] provides a comprehensive collection of all classical and mod-

ern control methods such as (to name a few) Skyhook, SH-ADD, Hybrid MPC with preview,

H∞ and LPV methods etc. However, in the line of research of application of Stochastic MPC

for control of suspension systems, not many research have been conducted in the past. To the

best of knowledge of the authors, in [Guanetti and Borrelli 2017] a cloud aided SMPC method

is proposed for control of active suspension system for a quarter car vehicle. However, the

method is proposed only for LTI systems and also, the second order conic program (SOCP)

solver utilized in the method is computationally not tractable within the prescribed sampling

period for higher order systems such as half/full car.

4.1.2 Chapter contribution

The main contributions of this chapter are

� The pNMPC method proposed in Chapter 3 is augmented by parallelizing the method

over the several multi-core streaming processors in the GPUs. By parallelizing the pN-

MPC method over several multi-core processors, one can attain signi�cant reduction in

computation time due to several simultaneous simulations of the dynamical system un-

der several control con�gurations. The proposed parallelized pNMPC method is applied

for control of semi-active suspension system for a half-car model with two con�gurations.

� In the �rst con�guration, the road model is not included into the control design and

the proposed controller is simply termed as parallelized pNMPC scheme. In the second

con�guration, the road model is modeled via a stochastic model using the ISO road pro-

68
Chapter 4. GPU based parallelized pNMPC scheme for control of semi-active

suspension system

�le standand and the proposed controller is termed Scenario-Stochastic pNMPC scheme

(SS-pNMPC).

� The proposed methods were tested in simulation as well as in NVIDIA embedded boards

to test, verify and validate the performance both in simulation as well as in RT scenario.

The methods were developed using C++ with CUDA-C compiler support and MAT-

LAB/Simulink environment.

4.2 Half car model with semi-active suspension system

4.2.1 Half car mathematical model without road model

As decribed in Chapter 1, Section 1.3.2, the half car vertical dynamics model is a 4 degrees

of freedom (DOF) model which involves chassis dynamics, roll dynamics and dynamics of

the two unsprung masses (wheels). Let the left and right corner of the vehicle be indexed

with i ∈ {l, r} respectively. The 4 DOF mathematical model is expressed with the following

equations 
msz̈s = −

∑
i∈{l,r} Fs,i

Ixθ̈ = (llFs,l − lrFs,r)
mus,lz̈us,l = (−Fs,l + Ft,l)

mus,rz̈us,r = (−Fs,r + Ft,r)

(4.1)

4.2.2 Half car mathematical model with stochastic road model

Here the objective is to incorporate the road model in to the problem formulation. The

mathematical model of the vehicle is comprised of a) Dynamical model of vertical motion of

half car vehicle extended with road model and b) Kinematics model for longitudinal motion of

the vehicle. Let the left and right corners of the vehicle be indexed with i ∈ {l, r} respectively.
The equations of the model is expressed as follows



msz̈s = −(Fs,l + Fs,r)

Ixθ̈ = (llFs,l − lrFs,r)
mus,lz̈us,l = (−Fs,l + Ft,l)

mus,rz̈us,r = (−Fs,r + Ft,r)

żr,l = −αvxzr,l + ξl

żr,r = −αvxzr,r + ξr

v̇x = ax

(4.2)

4.2. Half car model with semi-active suspension system 69

4.2.3 ISO road pro�le

The ISO road pro�le is primarily dependent upon two factors which are a) Longitudinal

velocity of the vehicle and b) Road roughness coe�cient, i.e. the road surface [Tyan et al.

2009]. In accordance with the ISO-8608 standard [ISO 1995], the factored power spectral

density (PSD) of road surface is de�ned with

H(jω)ΨwH
∗(jω) =

2αvxσ
2

(αvx + jω)(αvx − jω)
(4.3)

where, ω is the excitation frequency of the road input (in rad/s), Ψw = 2αvxσ
2 represents

the spectral density of the Gaussian white noise and σ2 denotes the road roughness variance.

H(jω) = 1
(αvx+jω) is the �rst order shaping �lter. This frequency response function can be

recasted as a time-varying �rst order auto regressive process, which is expressed with

żr(t) = −αvx(t)zr(t) + ξ(t) (4.4)

where, zr(t) is the road pro�le as de�ned in (4.2) and road disturbance drawn from a normal

distribution de�ned with ξ(t) ∼ N (0,Ψzr(t)). The parameters for di�erent road surfaces are

listed in Table 4.1. It is also important to note that the road roughness variance listed in

Table 4.1 is scaled accordingly to suit the INOVE test platform.

Table 4.1: ISO road roughness parameters

Road surface Road roughness variance (σ2) α (rad/s)

ISO A (Very Good) 4× 10−6 m 0.127

ISO B (Good) 16× 10−6 m 0.127

ISO C (Average) 64× 10−6 m 0.127

ISO D (Poor) 256× 10−6 m 0.127

ISO E (Very Poor) 1024× 10−6 m 0.127

4.2.4 Mathematical terminology

zs, θ represents the heave/chassis position and roll angle of the vehicle w.r.t. the centre of

gravity (COG) respectively. zus,i, zr,i, ξi ∀i ∈ {l, r} represents the wheel/unsprung mass

position, vertical road pro�le of the vehicle and random disturbances respectively [Guanetti

and Borrelli 2017]. vx and ax denotes the longitudinal velocity and acceleration of the vehicle.

ms, mus,l, mus,r represents the chassis mass, unsprung masses for the left and right corners.

Ix represents the moment of inertia along the roll axis. ll and lr represents the length of the

chassis from the left and right corners with respect to COG. α represents the ISO road pro�le

parameter. Fs,i represents the chassis forces and Ft,i represents the wheel forces ∀i ∈ {l, r}
which are expressed with

Fs,i = −ks,i(zs,i − zus,i) + ui

Ft,i = −kt,i(zus,i − zr,i)
(4.5)

70
Chapter 4. GPU based parallelized pNMPC scheme for control of semi-active

suspension system

where, ks,i and kt,i represents the sti�ness coe�cent of the SA suspension system and wheel

respectively. zr,i and zus,i represents the vertical road displacement and unsprung mass po-

sition ∀i ∈ {l, r}. ui represents the actuation force obtained from the nonlinear SA damper

model (see Section 4.2.5). zs,i represents the sprung mass displacement at each corner which

are obtained from the following equations

zs,l = zs + llsinθ

zs,r = zs − lrsinθ
(4.6)

4.2.5 Nonlinear quasi-static SA damper model

The SA damper force ui (4.4) is expressed by utilizing the Guo's damper force model [Savaresi

et al. 2010] ∀i ∈ {l, r} with

ui = c0żd,i + fcφitanh(a1żd,i + a2zd,i) (4.7)

where k0, c0, fc, a1 and a2 represent the damper sti�ness coe�cient, viscous damping

coe�cient, dynamic yield force of the �uid, hysteresis coe�cient due to velocity and position

respectively. φi, ∀i ∈ {l, r} represents the duty cycle (PWM-DC) input signal which manip-

ulates the damper characteristics online by changing the input voltage. zd,i = zs,i − zus,i and
żd,i = żs,i− żus,i represents the de�ection position and velocity ∀i ∈ {l, r} between the chassis

and wheel respectively. The values for the parameters are listed in Chapter 3, Table 3.1

4.3 Parallelized pNMPC scheme for control of semi-active sus-
pension system without road model

4.3.1 Mathematical model notations

Let X = [zs, θ, zus,l, zus,r, żs, θ̇, żus,l , żus,r] denote the state vector, U = [φl, φr] denote the

input vector and D = [zr,l, zr,r] denote the disturbance vector. X ∈ R8, U ∈ R2 and D ∈ R2,

then the half car model in equation (4.1) can be compactly expressed with

Ẋ(t) = f(X(t),U(t),D(t)) (4.8)

4.3.2 Parallelized pNMPC design requirements

4.3.2.1 Objective requirements for Parallelized pNMPC without road model

The objective design can be brie�y classi�ed as a) comfort and b) ride handling objective

[Savaresi et al. 2010].

4.3. Parallelized pNMPC scheme for control of semi-active suspension system
without road model 71

� Comfort objective: The goal of the comfort based objective is to minimize the vertical

acceleration of the chassis (z̈s), obtained from equation (4.1). The comfort objective for

a given look ahead period Tl is expressed with

JaccTl
(X(.),U(.),D(.)) =

∫ Tl

0
(z̈s(t))

2dt (4.9)

� Ride handling objective: The goal of the ride handling objective is to minimize the

roll angle (θ) of the vehicle. The ride handling objective for a given look ahead period

Tl is expressed with

JrollTl
(X(.),U(.),D(.)) =

∫ Tl

0
(θ(t))2dt (4.10)

4.3.2.2 Constraint requirements for Parallelized pNMPC without road model

The constraints for the SA suspension system primarily arise from the physical limitations

and secondarily from performance requirements [Baumal, McPhee, and Calamai 1998]. For

the MPC design, the included constraints are

1. ER-SA damper input constraints:

(a) Damper force constraint (Physical): The ER-SA damper force is bounded, i.e.

ui ∈ [umin,i, umax,i], ∀i ∈ {l, r}.
(b) PWM-DC input constraints: The operating DC for the PWM signal is constrained

to φi ∈ [φmin,i, φmax,i], ∀i ∈ {l, r}.

2. State constraints:

(a) Stroke de�ection constraint (Physical): This forms a linear state constraint i.e.

zd,i ∈ [zdmin,i, zdmax,i], ∀i ∈ {l, r}.
(b) Wheel rebound constraint (Performance): This bounds the de�ection position be-

tween the wheel and road. This is to ensure the tyre de�ection forces are bounded

i.e. zus,i − zr,i ∈ [zrebmin,i, zrebmax,i], ∀i ∈ {l, r}.
(c) Unsprung mass displacement constraint (Performance): This bounds the displace-

ment of the unsprung mass. This reinforces the road holding condition for the

vehicle i.e. zus,i ∈ [zusmin,i, zusmax,i], ∀i ∈ {l, r}.

3. Road disturbance assumption: The road disturbance is assumed to be constant over

the prediction horizon (Tl) with D(0) = D0 i.e. the road pro�le measured at the current

time instant by means of observers [Doumiati et al. 2017]. There is no loss of generality

with this formulation as it can be easily extendable with any road models such as ISO

road pro�les or from road preview sensors.

The mixed input-state constraint set is compactly expressed with (X,U) ∈ Ω(X,U) ⊂
R8 × R2, the input constraint set is compactly expressed with U ∈ ΩU ⊂ R2 and the state

constraint set is compactly expressed with X ∈ ΩX ⊂ R8.

72
Chapter 4. GPU based parallelized pNMPC scheme for control of semi-active

suspension system

4.3.3 MPC problem formulation

In summary, with the proposed objective and constraints function, the NMPC OCP is casted

as
Jobj(X0,Γ0,D0,U(.)) = min

U(.)
Γ1

0J
acc
Tl

+ Γ2
0J

roll
Tl

subject to Ẋ(t) = f(X(t),U(t),D(t))

X0 = X(0),D(t) = D0

X(t) ∈ ΩX,U(t) ∈ ΩU

(X(t),U(t)) ∈ Ω(X,U)

(4.11)

where Γ0 = [Γ1
0, Γ2

0] with Γ1
0 and Γ2

0 being the convex combination weights between the

two objectives i.e. Γ1
0 + Γ2

0 = 1. Once the optimal input trajectory is computed, the �rst

control action in U∗ is injected into the system and this procedure is repeated in receding

horizon fashion. In this work, a constant input pro�le is assumed over the control horizon.

4.3.4 Parallelized pNMPC Method

The crux of the method is to �nitely parameterize the input constraint set ΩU and by virtue

of parallel computing methods, the system in equation (4.8) is simulated for every parameter-

ized input given the current state, disturbance and objective speci�cation information. The

optimal input is elicited which minimizes the objective and satis�es the constraint in equation

(4.11) (see [Rathai et al. 2018] for more details). The pseudo-code for the implementation of

parallelized pNMPC is shown in Implementation 1.

The pseudo-code deserves some explanation to elucidate its working principle. The

details enclosed in this section provides the reader with the need to know basics to handle

parallel computing using the NVIDIA CUDA GPUs for implementation of the proposed

parallelized pNMPC method. The pseudo-code is written in a manner to bene�t the reader

to easily connect with CUDA-C implementation. For the respective application programming

interfaces (APIs) and other syntax details refer to [Sanders and Kandrot 2010].

Explanation of Implementation:

1. Initialization, I/Os and Syntax declaration:

(a) The �rst step is the data initialization where the model/constraint parameters

and GPU parameters are initialized. bs, gs represents the size of the grid and

blocks respectively [Sanders and Kandrot 2010]. nφl , nφr represents the number of

quantized levels of the PWM-DC input signal for the left/right corner of the vehicle

respectively.

(b) The input variables for the method are X0,D0,Γ0 and the output variable is U∗.

4.3. Parallelized pNMPC scheme for control of semi-active suspension system
without road model 73

(c) The decorators __HOST__, __GLOBAL__, __DEVICE__ denotes the func-

tion call made from host (CPU) to host, host to device (GPU) and device to device

respectively. The �rst function invoked is the MAIN.

2. MAIN function:

(a) The lines 2-3 dynamically allocates memory (DMA) in the host and the device for

the objective and inputs for every input combination.

(b) In line 8, the KERNEL function is launched with appropriate launch parameters

gs and bs.

(c) The line 9 transfers the computed objective and input data from the device to the

host.

(d) The lines 6-8 returns the optimal input U∗ by �nding the index of the minimum

objective or constraint violation.

3. KERNEL function:

(a) The line 11 sets the thread indices for each PWM-DC input combination. From

this point onward, each thread parallely computes the solution for each input com-

bination.

(b) The line 12 serializes the 2D grid into a single vector for objective and input vector

designation.

(c) The line 13 is a check condition to make sure the thread access is not exceeded.

(d) The lines 16 and 17 obtains the input combination and objective value from the

functions GRID2D and ODESIM2OBJ.

4. GRID2D function:

(a) The line 20-19 sets the PWM-DC input values for left and right corner of the

vehicle.

(b) The function assigns the input values for every thread call, i.e. for all input com-

binations.

5. ODESIM2OBJ function:

(a) The line 25 initializes the objective and constraint violation variable to zero and

line 26 invokes theGRID2D function for speci�c thread indices which corresponds

to an input combination.

(b) The lines 27-35 runs the Euler integration scheme for the system (4.8) until the look

ahead period Tl with an integration step of h. In case the constraints are violated,

the objective is set to a very high value MAX and the constraint violation is quanti�ed

with N function, which computes the 2-norm for the constraints. Otherwise, the

objective in (4.11) is computed numerically.

(c) The line 36 returns the sum of objective and constraint violation for the given

thread indices.

74
Chapter 4. GPU based parallelized pNMPC scheme for control of semi-active

suspension system

Implementation 1 Parallelized pNMPC implementation

Data Initialization: Model/Constraint parameters, bs, gs, nφl , nφr
Input: X0,D0,Γ0; Output: U

∗

1: function __host__ MAIN(X0,D0,Γ0)

2: HostDMAObj(hobj) ; HostDMAInp(hinp)

3: DeviceDMAObj(dobj); DeviceDMAInp(dinp)

4: KERNEL{gs,bs}(dobj , dinp,X0,D0,Γ0)

5: DevicetoHostCpy(hobj , dobj); DevicetoHostCpy(hinp, dinp)

6: kopt ← indexmin(hobj)

7: U∗ ← hinp(kopt)

8: return U∗

9: end function

10: function __global__ KERNEL{bs,gs}(dobj , dinp,X0,D0,Γ0)

11: i← bIdx.x*bDim.x+tIdx.x; j ← bIdx.y*bDim.y+tIdx.y

12: r ← nφli+ j

13: if i ≥ nφl ∨ j ≥ nφr then
14: return

15: end if

16: dinp[r]← GRID2D(i, j)

17: dobj [r]← ODESIM2OBJ(X0,D0,Γ0, i, j)

18: end function

19: function __device__ GRID2D(i, j)

20: φi,l = φmin,l + i
nφl−1(φmax,l − φmin,l)

21: φj,r = φmin,r + j
nφr−1(φmax,r − φmin,r)

22: return {φi,l, φj,r}
23: end function

24: function __device__ ODESIM2OBJ(X0,D0,Γ0, i, j)

25: Obj = 0, Con = 0

26: Ui,j ← GRID2D(i, j)

27: for tloop = 0 : h : Tl do

28: X+ ← X0 + hf(X0,Ui,j ,D0)

29: if X+ /∈ Ω(X,U) ∨X+ /∈ Ω(X) then

30: Obj = MAX; Con = Con + N(Ω(X,U),Ω(X))

31: else

32: Obj = Obj + h(Γ1
0J

acc
ll

+ Γ2
0J

roll
ll

)

33: end if

34: X0 = X+

35: end for

36: return {Obj + Con}
37: end function

4.4. Analysis and Simulation results 75

4.4 Analysis and Simulation results

The conducted simulation study can be broadly classi�ed into three parts which are

1. Computational time (CT) analysis b/w CPU (serial) and GPU (parallel) for the pro-

posed pNMPC method.

2. Comparative analysis b/w ACADO-qpOASES NMPC controller [Houska et al. 2009]

and the proposed parallelized pNMPC method.

3. Performance analysis with a road pro�le test. Both methods were implemented in MAT-

LAB/Simulink on a Intel Core i7 PC and NVIDIA GTX 1050Ti with 768 CUDA cores

Code generation option was utilized for ACADO-qpOASES NMPC controller and the proposed

parallelized pNMPC was programmed in CUDA C and patched into Simulink with S-function.

4.4.1 Computational time analysis b/w CPU and GPU

The raison d'être for conducting this analysis is to emphasize the signi�cance of GPUs for

solving huge simulations and viability of the approach for control of real SA suspension system.

From Fig. 4.1, it is evident that the pNMPC method fares well in GPU compared to CPU

in terms of mean CT per sampling period. The abscissa indicates the number of discretized

inputs for the PWM-DC signal for both left (nφl) and right (nφr) corner of the vehicle (i.e.

nφl × nφr input combinations). The road pro�le involved a chirp signal (same pro�le for both

corners) with an amplitude of 2.5 mm and frequency sweep from 1− 14 Hz for a duration of

10 s. The objective was comfort (Γ1
0 = 1,Γ2

0 = 0).

4.4.2 Comparative analysis

A comparative analysis was conducted b/w ACADO-qpOASES NMPC controller and the

proposed parallelized pNMPC method. The basis for conducting this study was to analyze

computational time (CT), normalized closed-loop objective (NCLO), i.e. with respect to

nominal damping (see Section 4.4.3) and feasibility analysis (FA), i.e. constraint satisfaction.

The study involved a gradual increase in the complexity parameter and the aforementioned

criteria were recorded. The complexity parameter for ACADO-qpOASES NMPC controller

was the number of Newton iterations (Ns) i.e. IMPLICIT_INTEGRATOR_NUM_ITS (see [Houska

et al. 2009]) and other settings were set to default and the number of discretization points

{nφl , nφr} (left/right corner of the vehicle) for parallelized pNMPC method. The road pro�le

utilized was the same as mentioned in Section 4.4.1 and the objective was comfort (Γ1
0 =

1,Γ2
0 = 0).

The 7and 3indicates the infeasibility and feasibilty of the imposed constraints for the

system. The recorded readings are listed in Table 4.2 and 4.3 and from the tables, it is evi-

76
Chapter 4. GPU based parallelized pNMPC scheme for control of semi-active

suspension system

2 4 8 16 32 64 128 256

Discretized inputs (Complexity)

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Lo
g

of
 m

ea
n

co
m

pu
ta

tio
n

tim
e

(s
)

CPU vs GPU computation time

GPU

CPU

Figure 4.1: CPU vs GPU pNMPC computation time

Table 4.2: ACADO-qpOASES NMPC controller

Ns FA Mean CT (ms) Max CT (ms) NCLO

5 7 0.70 1.6

10 7 0.95 2.2

15 3 1.3 2.9 0.6484

20 3 1.5 3.0 0.6412

25 3 1.9 3.9 0.6317

dent that the proposed parallelized pNMPC method performs better than ACADO-qpOASES

NMPC controller in all criteria.

4.4.3 Road pro�le simulation test - Ride handling

The experiment involved a lopsided bump road pro�le with an amplitude of 4mm with ride

handling objective (Γ1
0 = 0,Γ2

0 = 1) and the duration of simulation was 10s. The road pro�le

is illustrated in Fig. 4.2. Three di�erent methods were adopted to analyze the performance

of the system which are 1) Nominal damping, 2) ACADO-qpOASES NMPC controller and 3)

Parallelized pNMPC method. The settings for each method are listed below

1. Nominal damping (Passive): The PWM-DC input for both left and the right corner was

set to a constant value 0.225, i.e. the case when the damper control is switched o� and

4.4. Analysis and Simulation results 77

Table 4.3: Parallelized pNMPC method

{nφl , nφr} FA Mean CT (ms) Max CT (ms) NCLO

{2, 2} 3 0.35 0.62 0.4679

{4, 4} 3 0.35 0.60 0.4640

{8, 8} 3 0.35 0.61 0.4646

{16, 16} 3 0.36 0.55 0.4588

{32, 32} 3 0.41 0.67 0.4568

the system is passive.

2. ACADO-qpOASES NMPC controller: The corresponding best setting was utilized, In-

tegrator - 4th order Runge Kutta integrator, QP solver - qpOASES, Hessian ap-

proximation - Gauss-Newton, Discretization - Multiple shooting, Discretization

intervals - 5 and for the rest, default parameters were utilized.

3. Parallelized pNMPC controller: The number of discretization points (complexity) was

{nφl , nφr} = {8, 8} for both left and right corners of the vehicle.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-5

-4

-3

-2

-1

0

1

2

3

4

5

Am
pl

itu
de

 (m
)

10
-3 Road profile for ride handling

Left road profile

Right road profile

Figure 4.2: Road pro�le for ride handling

Fig. 4.3 illustrates the roll angle (θ) and it is clearly seen that the overshoot in the nominal

damping is larger than the other two methods. In comparing the ACADO-qpOASES NMPC

and proposed parallelized pNMPC method, the latter performs slightly better than the former.

However the key aspects here are the computation time and the PWM-DC input pro�le.

The histogram of computation time for both the methods are displayed in Fig. 4.4.

The mean computation time are 0.28 ms and 0.48 ms and maximum computation time are

78
Chapter 4. GPU based parallelized pNMPC scheme for control of semi-active

suspension system

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

R
ol

l a
ng

le
 (

ra
d)

Ride handling performance

Parallelized pNMPC method

ACADO-qpOASES

Nominal damping

Figure 4.3: Ride handling - roll angle θ

0.2 0.3 0.4 0.5

Computation time (ms)

0

100

200

300

400

500

600

700

800

F
re

q
u

e
n

cy

Parallelized pNMPC method

0.2 0.4 0.6 0.8 1 1.2

Computation time (ms)

50

100

150

200

250

300

350

400

450

F
re

q
u

e
n

cy

ACADO-qpOASES

Figure 4.4: Computational time distribution

0.51 ms and 1.6 ms for parallelized pNMPC method and ACADO-qpOASES NMPC controller

respectively. A signi�cant reduction in the computation time is observed for nearly the

same performance of the system. The PWM-DC input for parellelized pNMPC method and

ACADO-qpOASES NMPC controller are displayed in Fig. 4.5 and Fig. 4.6. A key point to be

noted is that the input pro�le rendered by ACADO-qpOASES NMPC controller is unrealistic

and cannot be practically injected into the real SA suspension system (INOVE test platform)

due to the limitations of the set of operational input levels of the PWM-DC signal, i.e. quan-

4.4. Analysis and Simulation results 79

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0.1

0.15

0.2

0.25

0.3

0.35

P
W

M
-D

C
 s

ig
n
a
l

PWM-DC inputs Parallelized pNMPC

PWM-DC left corner

PWM-DC right corner

Figure 4.5: PWM-DC input for Parallelized pNMPC method

0 1 2 3 4 5 6 7 8 9 10

Time (s)

0.1

0.15

0.2

0.25

0.3

0.35

P
W

M
-D

C
 s

ig
na

l

PWM-DC inputs - ACADO-qpOASES

PWM-DC left corner

PWM-DC right corner

Figure 4.6: PWM-DC input for ACADO-qpOASES NMPC controller

tized levels of operation. From practical experience obtained by working on the INOVE test

platform, only quantized values of PWM-DC inputs provide a signi�cant di�erence in the

system's output. The input control pro�le obtained from the ACADO-qpOASES controller

in Fig. 4.6, assumes the inputs to be in continuum, which in practice might not render the

required performance for the system. On the contrary, this can be easily included into the

proposed parallelized parameterized NMPC (pNMPC) method and this is illustrated in Fig.

4.5.

80
Chapter 4. GPU based parallelized pNMPC scheme for control of semi-active

suspension system

4.5 Scenario-stochastic pNMPC scheme for control of semi-
active suspension system

4.5.1 Mathematical model notations

Let X = [zs, θ, zus,l, zus,r, żs, θ̇, żus,l, żus,r, zr,l, zr,r, vx] denotes the state vector, U = [φl, φr]

denotes the input vector and Ξ = [ξl, ξr] denote the disturbance vector. X ∈ R11, U ∈ R2

and Ξ ∈ R2, then the half car model in equation (4.2) can be compactly expressed with

Ẋ(t) = f(X(t),U(t),Ξ(t), ax(t)) (4.12)

It is important to note that all the state variables are assumed to be measured and this

also includes the road pro�le [zr,l, zr,r] at every sampling period.

4.5.2 SS-pNMPC design requirements

4.5.2.1 Objective requirements for SS-pNMPC controller

The objective design in time domain can be brie�y classi�ed as a) comfort and b) ride handling

objective [Savaresi et al. 2010].

1. Comfort objective: The goal of the comfort based objective is to minimize the vertical

acceleration of the chassis (z̈s), governed by equation (4.2). The comfort objective for a

given look ahead period Tl is expressed with

JaccTl
(X(.),U(.),Ξ(.), ax(.)) =

∫ Tl

0
(z̈s(t))

2dt (4.13)

2. Ride handling objective: The goal of the ride handling objective is to minimize the

roll angle (θ) of the vehicle. The ride handling objective for a given look ahead period

Tl is expressed with

JrollTl
(X(.),U(.),Ξ(.), ax(.)) =

∫ Tl

0
(θ(t))2dt (4.14)

4.5.2.2 Constraint requirements for SS-pNMPC controller

The constraints for the SA suspension system primarily arise from the physical limitations

and secondarily from performance requirements [Baumal, McPhee, and Calamai 1998]. For

the MPC design, the included constraints are

1. ER-SA damper input constraints:

4.5. Scenario-stochastic pNMPC scheme for control of semi-active suspension
system 81

(a) Damper force constraint (Physical): The ER-SA damper force is bounded, i.e.

ui ∈ [umin,i, umax,i], ∀i ∈ {l, r}.
(b) PWM-DC input constraints: The operating DC for the PWM signal is constrained

to φi ∈ [φmin,i, φmax,i], ∀i ∈ {l, r}.

2. State constraints:

(a) Stroke de�ection constraint (Physical): This forms a linear state constraint i.e.

zd,i ∈ [zdmin,i, zdmax,i], ∀i ∈ {l, r}.
(b) Wheel rebound constraint (Performance): This bounds the de�ection position be-

tween the wheel and road. This is to ensure the tyre de�ection forces are bounded

i.e. zus,i − zr,i ∈ [zrebmin,i, zrebmax,i], ∀i ∈ {l, r}.

3. Road variable assumption: The vertical road displacement at the current time instant

is assumed to be measured by means of adaptive road pro�le observers [Doumiati et al.

2017] or from cloud servers [Zhang et al. 2017].

4. Longitudinal acceleration assumption: The longitudinal acceleration ax is assumed

to be constant over the prediction horizon (Tl). In a real vehicle setting ax is typically

obtained from Inertial Measurement Unit (IMU) of the vehicle.

The mixed input-state constraint set is compactly expressed with (X,U) ∈ Ω(X,U) ⊂ R11×
R2 and the input constraint set is compactly expressed with U ∈ ΩU ⊂ R2. The disturbance

has a probabilistic support P which is normally distributed with Ξ ∼ N (0,Σ(X(t))), where

Σ(X(t)) = diag(Ψzr,l(X(t)),Ψzr,r(X(t))). The variance is dependent on longitudinal velocity

(vx) of the vehicle, which is a state variable of the system (see Section 4.2.3).

4.5.3 SNMPC problem formulation

In summary, with the proposed objective and constraints function, the SNMPC OCP is casted

as
J∗obj(X0,Γ0, ax,0,U

∗(.)) = min
U(.)

E(Γ1
0J

acc
Tl

+ Γ2
0J

roll
Tl

)

s.t. Ẋ(t) = f(X(t),U(t),Ξ(t), ax(t))

X(0) = X0, ax(.) = ax,0,U(.) ∈ ΩU

P[(X(.),U(.)) /∈ Ω(X,U)] ≤ η

(4.15)

where X0 represents the initial state vector and ax,0 represents the constant longitudinal

acceleration over the prediction horizon. Γ0 = [Γ1
0, Γ2

0] with Γ1
0 and Γ2

0 being the convex

combination weights between the two objectives comfort and ride handling respectively. The

stochastic measure adopted for the total objective is the expectation operator (E). The mixed
state-input constraints (Ω(X,U)) are encapsulated in a probabilistic framework with a �nite

level of violation η � 1. Once the optimal input trajectory is computed, the �rst control

action is injected into the system and this procedure is repeated in receding horizon fashion.

82
Chapter 4. GPU based parallelized pNMPC scheme for control of semi-active

suspension system

It is also important to note that the two objectives are con�icting in nature (See [Savaresi

et al. 2010]). In this work, a constant control input pro�le is assumed over the control horizon.

As the semi-active suspension system is inherently stable the foregoing assumption is apposite

for performance requirements for fast sampled systems.

4.5.4 SS-pNMPC method

4.5.4.1 Method description

The method is an extension of the work proposed in [Rathai et al. 2018] and [Rathai, Sename,

and Alamir 2019], where the stochastic road model is accounted in the model dynamics. The

fundamental idea of the method is to parameterize the input set (ΩU) into �nite number of

control inputs (similar to �nite control set MPC) and for each parameterized control input,

the SMPC is solved by performing MC simulations with several scenarios of the road pro�le.

From the simulations, the expected objective function is numerically obtained by empirical

mean and a probabilistic constraint violation certi�cate (PCVC) is numerically obtained by

computing the ratio between constraint violation and scenarios generated. The optimal input

is selected by �nding the minimum expected objective along with the consideration of PCVC

less than or equal to the speci�ed level (η). If none of the input satis�es the above criteria,

then the input with the least PCVC is selected. The pseudo-code for the method is shown in

Algorithm 2. The algorithm is explained in the following part. It is important to note is that

the pseudo-code is an abstraction of the parallel programming paradigm. Several threads are

spawned in parallel to achieve this task (See [Sanders and Kandrot 2010]).

Explanation of Implementation:

1. Initialization, I/Os and Syntax declaration:

(a) The data initialization step sets the parameter values for the half-car model and

the constraints.

(b) The input variables are X0,Γ0, ax,0, ng, γ, where ng and γ are the number of input

parameterization and number of scenarios respectively. The output variable is Ui∗ ,
i.e. the optimal input vector injected into the system.

(c) The quali�ers __CPU__ and __GPU__ denotes the function operation in CPU

and GPU respectively. The entry point is SSpNMPC function.

2. SSpNMPC function:

(a) In line 2, the input set ΩU is �nitely discretized into ng points and collected in the

grid U1:ng .

(b) From line 3-8, the parfor i.e. parallel for function is utilized to dispatch each and

every discretized input from U1:ng to GPU and for each input the SIM function is

utilized to conductNs number of MC simulations. The respective objective function

Obji[l] and constraint violation CVi[l] for the l
th MC simulation and ith input are

4.5. Scenario-stochastic pNMPC scheme for control of semi-active suspension
system 83

Implementation 2 SS-pNMPC pseudocode

Data Initialization: Model/Constraint parameters

Input: X0,Γ0, ax,0, ng, γ := Ns ×Nτ

Output: Ui∗
1: function __CPU__ SSpNMPC(X0,Γ0, ax,0)

2: U1:ng ← grid(ΩU, ng)

3: parfor i← 1 : ng do

4: parfor l← 1 : Ns do

5: (Obji[l], CVi[l])← SIM(X0,Γ0, ax,0,Ui)
6: end parfor

7: EObji ←
∑
l Obji[l]
Ns

; PCVCi ←
∑
l CVi[l]
Ns

8: end parfor

9: if (EObji∗ ≤ EObj∀i\{i∗} & PCVCi∗ ≤ η) then
10: i∗ ← indexmin(EObj)

11: J∗obj ← EObji∗

12: else

13: i∗ ← indexmin(PCVC)

14: end if

15: return Ui∗
16: end function

17: function __GPU__ SIM(X0,Γ0, ax,0,Ui)
18: CV← 0; Obj← 0

19: for j ← 0 : Nτ do

20: BO← 1; TObj← 0; Xem ← X0

21: for tloop ← 0 : h : Tl do

22: Ξ ∼ N (0,Σ(Xem)h)

23: Xem ← Xem + hf(Xem,Ui,Ξ, ax,0)

24: if (((Xem,Ui) /∈ Ω(X,U)) & BO) then

25: CV← CV + 1; BO← 0

26: end if

27: TObj← TObj + h(Γ1
0J

acc
ll

+ Γ2
0J

roll
ll

)

28: end for

29: Obj← Obj + TObj

30: end for

31: return {ObjNτ ,
CV
Nτ
}

32: end function

84
Chapter 4. GPU based parallelized pNMPC scheme for control of semi-active

suspension system

obtained as return arguments. Finally, the expected objective function EObji and

probabilistic constraint violation certi�cate PCVCi are numerically obtained for the

ith input in U1:ng .

(c) The lines 9-15, looks for the optimal input i∗ index with minimum expected ob-

jective i.e. EObji∗ and also satis�es the violation condition PCVCi∗ ≤ η. If the

aforementioned condition is true, i∗ is obtained from the function indexmin over

the vector EObj, otherwise, i∗ with the least violating constraint is obtained from

the function indexmin over the vector PCVC. Once the index for the optimal input

(i∗) is obtained, Ui∗ is injected to the system. It is important to note that the

optimal objective (J∗obj) and input (U∗(.)) in (4.15) are EObji∗ and Ui∗ .

3. SIM function:

(a) The lines from 19 to 30 executes the MC simulation for the ith input - Ui. The

simulation consists of two for loops. The outer loop runs the MC simulation Nτ

(Nτ = γ
Ns
) times to maximize the e�ciency of CUDA cores to simulate several sce-

nario instances. The inner loop is dedicated for problem (4.15), where the stochastic

ODE is simulated by means of Euler-Maruyama integration and in due course of

simulation, if the constraints are violated, the counter variable CV registers the vi-

olation and also, the objective is numerically approximated by means of Riemann

sum. The inner loop objective is stored in a temporary variable TObj and the outer

loop objective Obj is a Nτ times accumulation of the inner loop objective. It is

also important to note that the total number of MC simulations for each input is

γ = Ns ×Nτ and the total number of simulations for all the inputs is N = γ × ng.

(b) The line 31 returns the average objective and constraint violation certi�cate with

respect to Nτ simulations.

4.5.4.2 Scenario generation

As the SNMPC optimization problem in (4.15) is numerically solved by means of MC simu-

lations, it is of paramount importance to sample enough number of scenarios to approximate

the solution for the problem. Thanks to the theory of statistical learning and randomized al-

gorithms which provides a systematic framework to derive the minimum number of scenarios

required to achieve a probabilistic bound over the quality of the solution. The following con-

tent of this section is a summary of the core result presented in the seminal paper [Vidyasagar

2001]. To present the result more concretely, the context of the problem is laid down �rmly

with the following setup. Consider the task of approximating a stochastic function de�ned by

h(y) = Ex∼Px [ψ(x,y)] (4.16)

where, x ∈ X is distributed w.r.t. the distribution Px over X and y ∈ Y. Let the empirical
mean approximation of the function in (4.16) be de�ned with ĥ(y). Let the parameters for

accuracy, probability level and con�dence level be de�ned with ε, β, δ ∈ [0, 1]. Given these

parameters, the study of randomized algorithms is to derive a lower bound for the number of

4.5. Scenario-stochastic pNMPC scheme for control of semi-active suspension
system 85

scenarios required to achieve the following requirement.

P[P[|ĥ(y)− h(y)| > ε] ≤ β] ≥ 1− δ, ∀y ∈ Y (4.17)

In simple words, the above (4.17) two layered probabilistic statement implies that the di�erence

between the empirical approximation and real function must be not greater than ε with a

probability less than β and this must be certi�ed with a probabilistic con�dence level of 1− δ.
Given this prelude, the task of optimizing the function ĥ(y) by means of scenarios is de�ned

by the following Theorem 4.5.1.

Theorem 4.5.1. Choose the integers n and m de�ned with

n ≥
ln(2

δ)

ln(1
1−β)

andm ≥ 1

2ε2
ln

4n

δ
(4.18)

Generate i.i.d. samples y1, . . . ,yn ∈ Y and x1, . . . , xm ∈ X according to Px. De�ne

ĥ(yi) =
1

m

m∑
j=1

ψ(xj ,yi), i = 1 . . . n and ĥ∗ = min
1≤i≤n

ĥ(yi)

Then with con�dence 1− δ it can be said that ĥ∗ is a probably approximate near the minimum

h(.) to accuracy ε and level β. The result is universal and applicable for all family of functions

[Vidyasagar 2001].

Using the results from Theorem 4.5.1, the empirical means in the SNMPC problem (4.15)

both in the objective as well as the chance constraints can be numerically approximated.

An important point to note is that the chance constraint can be recasted with expectation

formulation with

P[(X(.),U(.)) /∈ Ω(X,U)] = E[1{(X(.),U(.)) /∈ Ω(X,U)}] (4.19)

where, 1{A} represents the indicator function over the set {A}. Thus, by leveraging the

results propounded in Theorem 4.5.1, the number of scenarios γ for Algorithm. 2 can be

derived. Setting β = δ = 0.05 yields the total number of input parameterization to ng = 64.

Utilizing the previous result and setting ε = 0.125, the number of scenarios (m = γ) for

each parameterized input is γ ≈ 270. In total, the GPU simulates approximately 270 × 64

simulations over the prediction horizon at every sampling period. In this study ε is assumed

to be �xed, however it is really important to note that the parameter ε is implicitly a function

of the computing resource such that the method is RT doable.

4.5.5 Results and simulations

4.5.5.1 RT embedded tests on NVIDIA boards

The test was conducted to study the RT viability of the proposed method and it involved

execution of the proposed SS-pNMPC method (Algorithm. 2) with the aforementioned sce-

nario parameters on multiple NVIDIA embedded boards as listed in Table 4.4. The key

86
Chapter 4. GPU based parallelized pNMPC scheme for control of semi-active

suspension system

15 20 25 30

Computation time (ms)

0

10

20

30

40

Fr
eq

ue
nc

y

Jetson Nano

10 15 20 25 30

Computation time (ms)

0

10

20

30

Fr
eq

ue
nc

y

Jetson TX1

7.5 7.55 7.6 7.65 7.7

Computation time (ms)

0

5

10

15

20

Fr
eq

ue
nc

y

Jetson TX2

5.8 6 6.2 6.4 6.6

Computation time (ms)

0

10

20

30

Fr
eq

ue
nc

y

Jetson Xavier

Figure 4.7: Histogram of computation time on di�erent embedded GPU plaftforms

metrics which de�ne the H/W performance of the board are a) Number of CUDA cores and

b) Compute capability (CC) of the board i.e. the underlying architecture of the board. The

performance of the method is gauged with the mean computation time (CT) and maximum

computation time (CT) in terms of milliseconds (ms). The method was programmed in C++

using CUDA libraries.

Table 4.4: NVIDIA boards H/W con�guration and results

Board #Cores CC Mean CT (ms) Max CT (ms)

Jetson Nano 128 5.3 20.81 29.83

Jetson TX1 256 5.3 22.37 30.64

Jetson TX2 256 6.2 7.62 7.74

Jetson Xavier 512 7.2 6.04 6.59

As from Table 4.4, it clearly evident that with increase in the hardware con�guration

a considerable reduction in the mean and maximum CT is observed. However, the natural

sampling period (Ts) of the platform is 5 ms and the best of embedded NVIDIA boards - Jetson

Xavier hovers around 6 ms. Despite the boards doesn't compute the optimal input within

Ts, the scenario parameters ε, β, δ (mentioned in Section 4.5.4.2) can be tweaked to meet RT

requirements, however the quality of the solution would be deteriorated. The histogram for

the computational time for di�erent NVIDIA embedded platforms is shown in Fig. 4.7.

4.5. Scenario-stochastic pNMPC scheme for control of semi-active suspension
system 87

4.5.5.2 Pareto optimality of objectives

As mentioned in Section 4.5.3, the two objectives (comfort and ride handling) are con�icting

in nature. Thus, the convex weights Γ1
0 and Γ2

0 ought to be tuned in order to strike a proper

balance between the two objectives. To study the e�ects on variations of the convex weights,

a Pareto optimality analysis was performed for several simulations. The simulation involved

the vehicle moving at a constant velocity vx = 20m/s on a IS0-C road pro�le for a duration

of 10s. In Fig. 4.8, the Pareto optimal front is plotted and this aids in detecting the right

weights for the best results.

0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095

Normalized roll objective

0.07

0.075

0.08

0.085

0.09

0.095

0.1

0.105

N
or

m
al

iz
ed

 c
ha

ss
is

 a
cc

el
er

at
io

n
ob

je
ct

iv
e

Simulated data

Pareto frontier

Figure 4.8: Pareto optimal front between comfort and ride handling objective

4.5.5.3 Road pro�le simulation test

The simulation test involved the vehicle moving with longitudinal acceleration and velocity

pro�le as shown in Fig. 4.9 and Fig. 4.10 on all the ISO road pro�les. These pro�le correspond

to the scenario where the vehicle is subjected to sudden braking. The convex weights used

in the study are Γ1
0 = 0.75 and Γ2

0 = 0.25, shown in Fig. 4.8. Three passive controllers -

ui, ui and nominal un,i =
ui+ui

2 , ∀i ∈ {l, r} were chosen to compare the performance with the

proposed SS-pNMPC controller.

The RMS values of the chassis acceleration for all the systems are listed in Table 4.5.

It is clearly evident that the RMS value of the proposed method is less than the nominal

passive system and in par with the minimum passive system (Comfort design). For illustration

purpose, Fig. 4.12 displays the chassis acceleration plot for ISO-C road pro�le. Also, at

the same time, the proposed method minimizes the ride handling objective judiciously in

comparison with other passive systems. For illustration purpose, Fig. 4.11 displays the roll

88
Chapter 4. GPU based parallelized pNMPC scheme for control of semi-active

suspension system

angle plot for ISO-E road pro�le.

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)

Longitudinal acceleration

Figure 4.9: Longitudinal acceleration pro�le (ax)

0 1 2 3 4 5 6 7 8 9 10

Time (s)

16

18

20

22

24

26

28

V
e
lo

c
it
y
 (

m
/s

)

Longitudinal velocity

Figure 4.10: Longitudinal velocity pro�le (vx)

4.6 Conclusions

This chapter has scaled the pNMPC scheme proposed in the previous chapter (Chapter 3) by

parallelizing the method on GPUs. The utilization of GPU could be perceived as an instance

4.6. Conclusions 89

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-4

-3

-2

-1

0

1

2

3

4

5

6

R
ol

l a
ng

le
 (

ra
d)

10
-3

Minimum system

Nominal system

Maximum system

SS-pNMPC controller

Figure 4.11: Roll angle (θ) plot for di�erent controllers for ISO-E road pro�le

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

C
ha

ss
is

 a
cc

el
er

at
io

n
(m

/s
2) Minimum system

Nominal system

Maximum system

SS-pNMPC controller

Figure 4.12: Chassis acceleration (z̈s) plot for di�erent controllers for ISO-C road pro�le

of a massively multi-core processor for implementing the proposed parallelized version of the

pNMPC controller. In this chapter, two methods has been proposed for control of vertical

dynamics of a half-car vehicle through ER semi-active suspension system. The �rst method

proposes the parallelized pNMPC method where the road model is not accounted in the

pNMPC problem formulation. In the second method, the stochastic road model in included

into the pNMPC problem formulation and this method is termed the SS-pNMPC scheme.

The methods were both tested in simulation and as well as on NVIDIA embedded boards

90
Chapter 4. GPU based parallelized pNMPC scheme for control of semi-active

suspension system

Table 4.5: RMS value of chassis acceleration

ISO SS-pNMPC(ms−2) un(ms
−2) u(ms−2) u(ms−2)

A 0.012 0.014 0.011 0.017

B 0.023 0.029 0.021 0.034

C 0.049 0.058 0.042 0.076

D 0.093 0.118 0.087 0.138

E 0.194 0.234 0.178 0.277

to validate and verify the feasibilty of the proposed approach. For future implementation of

the parallelized pNMPC scheme under the purview of the EMPHYSIS project, the eFMU

container could be potentially designed to be amenable on GPUs or any multi-core processors

by the likes of GPUs. Thus, by this feature, several simulations of the eFMU models could be

conducted in parallel and the parallelized pNMPC method could be seamlessly implemented

for RT control.

Part III

pNMPC - A code generation software

tool for implementation of derivative

free pNMPC scheme for embedded

control systems

91

Chapter 5

pNMPC code generation tool

Contents

5.1 Introduction . 94

5.1.1 Prelude . 94

5.1.2 Motivation . 94

5.1.3 Related works . 95

5.1.4 Chapter contributions . 97

5.2 pNMPC theoretical background . 98

5.2.1 pNMPC problem formulation . 98

5.2.2 Visualization of control parameterization 99

5.3 Derivative free optimization module 100

5.3.1 Constraint reformulation (Scalarization) 101

5.3.2 SQP based BBO (Uni-variate case) . 101

5.3.3 SQP based BBO (Multi-variate case) . 107

5.4 pNMPC S/W structure . 107

5.4.1 Symbolic classes . 107

5.4.2 OCP design classes . 108

5.4.3 Control parameterization classes . 109

5.4.4 Real/Symbolic classes . 110

5.4.5 Code generation classes . 110

5.5 pNMPC code generation module . 111

5.6 Application of pNMPC toolbox . 113

5.6.1 Cart-pole swing up problem . 114

5.6.2 PVTOL stabilization problem with Black-box models 116

5.7 HiL tests on dSPACE MABXII for control of semi-active suspension

system for quarter car vertical dynamics model 120

5.8 Parallelized pNMPC patch . 121

5.8.1 Parallelization of the optimization module on CUDA GPUs and CUDA

code generation module . 121

5.8.2 Application of Parallelized pNMPC S/W for 2D crane control 122

5.9 Future works and conclusions . 127

93

94 Chapter 5. pNMPC code generation tool

5.1 Introduction

5.1.1 Prelude

Over the last decade, there has been a tremendous amount of e�ort in the nonlinear MPC

(NMPC) and optimal control community to build real-time (RT) operable software (S/W) for

embedded control of engineering systems. There have been several contributions on code gen-

eration based NMPC/Optimal control toolboxes, however, by and large most of the existing

toolboxes shares a common thread which is the need for derivatives of objective, constraints

and dynamical model for solving the underlying optimization problem for the NMPC con-

troller. In cases where the derivatives are not available and automatic di�erentiation may

not be feasible, the only recourse is to compute the derivatives using numerical methods such

as �nite di�erence methods. However, numerically computing the derivatives is highly prone

to error and as well as computationally taxing which could encumber RT feasibility. This

brings the need for implementation of a complete derivative free NMPC package to address

situations as mentioned before. As of today, the only derivative free NMPC toolbox available

on market is the PDF-MPC package [Alamir 2017] which uses MATLAB as the front end

and MATLAB coder on top to deploy the code into embedded devices. The pNMPC code

generation software tool presented in this chapter is highly in�uenced from the aforementioned

tool with improved support and features to cater the open source community and embedded

control programmers. The pNMPC S/W is available in GitHub repository [Rathai 2020].

5.1.2 Motivation

Optimization solver plays a pivtol role in solving the underlying OCP for the MPC controller.

The entire edi�ce of MPC controller reposes on the underpinning optimization problem. Typ-

ically, any state of the art optimization problem can be broadly classi�ed into three types

i) Zero order methods, ii) First order methods and iii) Second order methods. The order

determines the type of information that the optimization solver can query to determine the

solution, i.e. for zero order methods, only the function value can be obtained, for �rst order

methods, the function value and it's �rst order derivatives (Jacobian) can be obtained and for

second order methods, the function value, the �rst (Jacobian) and second order derivatives

(Hessian) can be obtained or approximated. In optimization parlance, this is demarcated by

classifying zero-order methods as derivative free methods or black box optimization (BBO)

problem and the rest as derivative based methods. The focus of this chapter circles around

implementation of MPC controller using derivative free methods. Some of the compelling

reasons for a need of a BBO based MPC are

� It is not uncommon in the real world industrial application, that the plant model and

parameters are secured due to intellectual property (IP) rights and perhaps this sensitive

information is never divulged even to the internal engineers working with the system.

Thus, the knowledge of the system is completely obscured from the control engineer and

5.1. Introduction 95

renders nearly impossible to design a MPC controller that predominantly relies upon

the derivative information.

� In cases where the model of system exists only as computer codes or in binary format

(executable �les), it becomes very cumbersome to obtain accurate derivatives by numeri-

cal methods. To exacerbate, if the code involves several break, if-else or goto statements,

it is highly impractical to obtain the derivatives using automatic di�erentiation meth-

ods. Case in point, this is common in the functional mock-up interface (FMI) standard

[Blockwitz et al. 2012], which is used for model exchange and co-simulation purposes.

Also, this is the main framework of the EMPHYSIS project [EMPHYSIS 2017].

� Even when the functional form is available to the control engineer, at times, computation

of derivatives can be computationally too expensive or noisy and this could preclude

from practical implementation of MPC controller for fast sampled systems. Also, in

cases where the function is discontinuous and not di�erentiable, the derivative based

methods can lead to unde�ned behavior.

� In today's world, with availability of deluge of data and increased computation power,

data-driven modeling has challenged the pre-existing notions of �rst principles modeling

and perhaps it wouldn't be too much of a stretch to consider the former superseding the

latter in a few decades now. Machine learning models such as neural networks, Gaussian

processes etc. provide excellent empirical approximations of the underlying dynamical

systems and typically one can right away utilize these models for control design. It is

also important to note that many of these models are not di�erantiable by de�nition.

As per the cited reasons, it is certainly not an unreasonable requirement but, also, a matter

of paramount importance to address the control problem by designing a derivative free MPC

scheme. In this chapter, a BBO based parameterized NMPC (pNMPC) S/W tool is proposed

to circumvent the aforementioned issues. The term parameterized refers to the parameteriza-

tion of the control input [Alamir 2006]. The parameterization serves two purposes a) reduces

the computational burden for the optimization solver and b) design of a parsimonious control

input pro�le. It is also important to note that the potential of the pNMPC method as well as

the toolbox relies upon the astuteness of the control engineer to model the input pro�le with

e�cient, e�ective and economical parameterization.

5.1.3 Related works

There has been several contributions on development of code generation based MPC toolbox

for embedded systems. The �rst automatic NMPC code generation toolbox traces back to

AutoGen [Ohtsuka and Kodama 2002] which is based on indirect methods and the toolbox

generates C code of a RT algorithm to update the initial co-state of the OCP problem. A

newer version of the toolbox AutoGenU [Ohtsuka 2015] provides extension with continua-

tion/GMRES method and a RT optimization (RTO) algorithm with interface to Maple. Ever

since AutoGen, there has been signi�cant development in building code generation based MPC

toolbox for RT applications.

96 Chapter 5. pNMPC code generation tool

The µAO-MPC [Zometa, Kögel, and Findeisen 2013] toolbox provides code generation

feature for embedded RT linear MPC. The underlying optimization solver for the tool involves

a �rst order method based on Nesterov's gradient method coupled with augmented Lagrangian

method. The toolbox provides front end interface to Python and the generated C code is

implemented on embedded systems.

The CVXGEN [Mattingley and Boyd 2012] toolbox provides code generation feature for

an embedded convex optimization problem. The front end involves a quadratic programming

(QP) modeling framework, where the user enters the optimization variables, dimensions, pa-

rameters, objective, inequality/equality constraints etc. and the output of the program is an

optimized C-code of the optimization problem. The toolbox exploits the structure of the QP

problem such as sparsity, optimal Karush�Kuhn�Tucker (KKT) matrix factorization etc. to

speed up the computation. Despite the toolbox is agnostic to any speci�c application, the

method has been mostly used for MPC controller design. The only limitation is that the

method applies only for a convex QP problem.

FiOrdOs [Ullmann 2011b] is an automated C-code generation MATLAB toolbox for �rst

order methods for parameteric convex programs. The only limitation of the toolbox is that

it can only handle only convex QPs with simple convex sets on which projections can be

evaluated at low cost.

The ACADO toolbox [Houska, Ferreau, and Diehl 2011] provides an automatic C-code

generation feature for implementation of NMPC controller based on real-time iteration (RTI)

using Gauss-Newton method. The toolbox is implemented in C++ and also provides interface

with MATLAB. The front end involves a modeling framework to model the states, inputs, pa-

rameters, di�erential equations, equality/inequality constraints, integrator parameters, solver

parameters etc. and the back end involves the optimization solver, which is outsourced to

other third party S/W such as qpOASES [Ferreau et al. 2014b], QPdunes [Kouzoupis et al.

2015], FORCES [Zanelli et al. 2020], IPOPT [Wächter and Biegler 2006b]. The �nal output

is the respective C codes of the model, constraints, integrator sensitivities etc.

The VIATOC toolbox [Kalmari, Backman, and Visala 2015] which shares similar syntax as

ACADO toolbox, however the NMPC problem is speci�cally tailored to an optimization solver

based on projected gradient method. The toolbox also provides automatic code generation

feature similar to ACADO. The toolbox was programmed in C++ environment.

The Multi-Parameteric toolbox (MPT) [Kvasnica, Rauová, and Fikar 2010] provides code

generation feature for implementation of explicit MPC. The method uses QP parameteric

programming method and precomputes the optimal control input over the partitioned poly-

hedral regions of the constraint space. The states are considered as the parameters and the

optimal feedback law given current state of the system is �nally computed by performing a

table traversal algorithm using binary tree search method and the optimal control input is

recovered. The method is suitable for linear MPC problems with low state, input dimensions

and horizon length. The toolbox is programmed in MATLAB and uses MATLAB coder to

generate C-code for embedded systems.

5.1. Introduction 97

The SPLIT toolbox [Shukla et al. 2017], a C code generation tool for linear MPC problems

uses operator splitting methods and also, the toolbox is capable of generating both software

as well as hardware speci�c code such as FPGA boards. The toolbox provides a MATLAB

front-end interface.

The Optimization Engine toolbox (OpEn) [Sopasakis, Fresk, and Patrinos 2020] is a code

generation tool for RT embedded non-convex optimization problems. The OpEn tool combines

proximal averaged Newton-type method with penalty and augmented Lagrangian methods.

The method was implemented in Rust programming language and provides front end interfaces

with MATLAB, Python, C/C++ or via a TCP socket.

The ParNMPC [Deng and Ohtsuka 2018] is a parallel code generation toolbox to generate

C/C++ code for NMPC controller. ParNMPC utilizes the OpenMP programming framework

and implements Newton-type methods across the multi-core processors.

5.1.4 Chapter contributions

The main contribution of this chapter is to present a derivative free pNMPC toolbox for

embedded control of engineering systems. The salient features of the pNMPC S/W are

� The pNMPC S/W was completely programmed in C++ environment. The S/W by it's

inbuilt design provides an OCP modeling framework, where the user can provide the

objectives, constraints, di�erential equations, Black box modules, solver parameters,

OCP parameters in a hassle-free way.

� The S/W is completely derivative free and as well as free of any online matrix operations

such as matrix-matrix addition, multiplication, inverse computation, linear algebra solve

etc.

� A one-stop control solution is provided to the end user for generation of portable, ef-

�cient, optimized and embeddable C code of the pNMPC controller. Extensions to

MATLAB/Simulink environment is also provided. The inbuilt code generation module

is scrupulously engineered, thus leading to more optimized code in terms of memory

footprint and computation time.

� The toolbox is independent of any external libraries such as Basic Linear Algebra Sub-

programs (BLAS), Linear Algebra Package (LAPACK) etc. and consumes less memory

footprint.

� The S/W also includes Graphic Processing Unit (GPU) based parallel implementation

of the optimization solver as well as Compute Uni�ed Device Architecture (CUDA) code

generation module suited for problems with large optimization variables.

� Additional to the inbuilt modeling framework, the S/W also provides the �exibility to

include and call external functions (black box functions) which can be in the form of

either source code or static/dynamic libraries.

98 Chapter 5. pNMPC code generation tool

� The S/W is open sourced under GNU-LGPL v3 license.

The proposed pNMPC S/W tool was tested in Hardware in the Loop (HiL) simulation for

a quarter car vertical dynamics model on dSPACE MicroAutoBoX-II (MABXII, See Section

5.7).

5.2 pNMPC theoretical background

5.2.1 pNMPC problem formulation

The goal of the pNMPC toolbox is to solve the following Optimal Control Problem (OCP)

problem at every sampling period.

min
x(.),p(.)

∫ T

0
l(x,u(x,p,κ),κ) dt+ ψ(x(T),κ(T))

subject to ẋ = f(x,u(x,p,κ),κ, t), ∀t ∈ [0, T]

u(x,p,κ) ∈ U , x ∈ X , p ∈ P , ∀t ∈ [0, T]

x(0) = x0, x(T) ∈ XT

(5.1)

where, x ∈ Rnx , u ∈ Rnu , p ∈ Rnp and κ ∈ Rnκ represents the state vector, input vector,

input parameterization vector and external parameters (i.e. model parameters, set point for

tracking or measured disturbances) vector respectively. The input map u : Rnx×Rnp×Rnκ →
Rnu maps the states, input parameterization vector and external parameters to actual input

for the system. The sets X , U , P and XT denote the state constraint, input constraint,

input parameterization constraint and the terminal state constraint respectively. The OCP

is subjected to a set of di�erential equations denoted with f : Rnx × Rnp × Rnκ × R+ → Rnx
and the Lagrangian cost (stage cost) and Mayer's cost (terminal cost) are denoted with l :

Rnx × Rnp × Rnκ → R and ψ : Rnx × Rnp × Rnκ → R respectively. It is important to note

that the cost terms can be economic and no stipulations are enforced such as non-negativity or

convexity. It is also important to note that handling the impact of the objectives or constraints

design or choise of sampling period (∆t) on the closed loop behavior is left to the user.

The pNMPC S/W transcribes the above OCP formulation (5.1) into a generic constrained

optimization problem. The OCP transcription is implemented by discretizing the problem in

time with a �nite time step of ∆t. Thus, the states of the system are eliminated from the

problem by simulating the di�erential equation over time (direct single shooting method, see

Chapter 2), the integral objective is numerically approximated (Riemann sum) and the con-

straints are quanti�ed at every discretized time step. Let J and hi, ∀i ∈ {1 . . . nc} denote the
transcribed objective and inequality constraints (nc inequality constraints). The transcribed

constrained optimization problem is described by the following form

5.2. pNMPC theoretical background 99

min
p∈Rnp

J(p)

s.t. hi(p) ≤ 0, ∀i ∈ {1, . . . , nc}
(5.2)

where p ∈ Rnp is the optimization vector or decision variables which is also the input

parameterization vector. Let the solution of the above problem (5.2) be denoted with p∗.

Utilizing the optimized input parameterization vector, the optimal input u(x∗(τ),p∗(τ),κ(τ))

is injected into the system over the time period τ ∈ [0,∆t]. Henceforth, by marching forward

in time and with receipt of new state vector, this process is repeated in receding horizon

manner.

5.2.2 Visualization of control parameterization

To understand the representative and expressive power of the input parameterization tech-

nique, consider a sinusoidal input parameterization over a prediction horizon T = 2s as de-

scribed below.

u(p(t), t) = p1(t)sin(2πp2(t)t+ p3(t)) (5.3)

where the time dependent input parameterization vector is p(t) = [p1(t), p2(t), p3(t)] and

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time(s)

-1

-0.5

0

0.5

1

1.5

A
m

p
li
tu

d
e

Amplitude, frequency and phase of parameterized sinuoid input

Parameterized amplitude

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time(s)

-0.4

-0.2

0

0.2

0.4

0.6

F
re

q
u

e
n

c
y
(H

z
)

Parameterized frequency

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time(s)

0

0.5

1

1.5

P
h

a
s
e

Parameterized phase

(t
0
,p

1,0
)

(t
1
,p

1,1
)

(t
2
,p

1,2
)

(t
3
,p

1,3
)

(t
4
,p

1,4
)

(t
0
,p

2,0
) (t

1
,p

2,1
)

(t
2
,p

2,2
)

(t
3
,p

2,3
)

(t
4
,p

2,4
) (t

5
,p

2,5
)

(t
0
,p

3,0
)

(t
1
,p

3,1
)

(t
2
,p

3,2
)

(t
3
,p

3,3
)

(t
4
,p

3,4
)

(t
5
,p

3,5
)

(t
6
,p

3,6
)

(t
7
,p

3,7
)

Figure 5.1: Parameterized amplitude (p1(t)), frequency (p2(t)) and phase (p3(t)) for sinusoidal

control input

100 Chapter 5. pNMPC code generation tool

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time(s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
in

u
so

id
 in

p
u

t
Parameterized sinuoid input

Parameterized sinusoid input

Figure 5.2: Parameterized sinusoidal control input (u(p(t), t))

p(t) ∈ P. The physical interpretation of the input parmeterization vector corresponds to the

amplitude, frequency and phase of the sinusoid input respectively. In order to discretize the

continuous time input parameterization vector p(t), consider np1 , np2 , np3 �nite control points

over the prediction horizon, then each of parameterized input at a speci�c time instant can

be described with the pairs {ti, p1,i}
i=np1−1
i=0 , {ti, p2,i}

i=np2−1
i=0 , {ti, p3,i}

i=np3−1
i=0 . For a simplistic

case, let the control points be connected with a linear interpolation curve and let np1 =

5, np2 = 6, np3 = 8, then the respective input parameterization pro�les and the sinusoid

control input is illustrated in Fig. 5.1 and Fig. 5.2.

By virtue of these parameterization points, a �exible control input pro�le can be designed

and in the context of pNMPC toolbox, the parameterization control points are the optimiza-

tion variables which ought to be ascertained from the solver. In this sinusoid example, in

total there are np1 + np2 + np3 = 19 control points, which in this example is certainly an over

parameterization of the control input. However, in practice, with a careful and deliberate

placements of control points one can obviate the perils of over-parameterization of control

input.

5.3 Derivative free optimization module

In this section, the underlying BBO module for the proposed pNMPC controller is discussed

in detail. The content and core results summarized in this section is based on the Sequen-

tial Quadratic Programming based Black Box Optimization (SQP-BBO) method proposed in

[Alamir 2017], [Alamir 2013], [Alamir 2012]. The method falls under the category of inter-

polation based trust region methods for derivative free optimization. The method is based

on the technique of sequentially approximating the cost and constraint functions by means

5.3. Derivative free optimization module 101

of quadratic functions and at successive iterations the optimal solution is computed based

on multiple trust region switch conditions. In the Subsection 5.3.2, uni-variate case of the

optimization problem is discussed in detail and in Subsection 5.3.3, the method is extended

for the multi-variate case.

5.3.1 Constraint reformulation (Scalarization)

Consider an optimization problem as de�ned below

min
p∈Rnp

J(p)

s.t. g(p) ≤ 0
(5.4)

where p ∈ Rnp is the vector of optimization variables and J and g represents the scalar

cost and scalar constraint of the optimization problem respectively. In cases where there

exists several inequality constraints, then all the constraints are scalarized by either of the two

following forms.

Consider there exists nc constraints acting upon the optimization problem, i.e.

hi(p) ≤ 0, ∀i = {1, . . . nc} (5.5)

The two forms of constraint scalarization are

� Form 1 - The scalar function g can be expressed as a sum over all the maximum of

inequality violating constraints (if any) i.e.

g(p) :=

nc∑
i=1

max{hi(p), 0} (5.6)

� Form 2 - The scalar function g can be expressed as maximum over all the inequality

constraints, i.e.
g(p) := max

i∈{1,2,...nc}
{hi(p), 0} (5.7)

5.3.2 SQP based BBO (Uni-variate case)

Consider the optimization problem de�ned in (5.4) for an uni-variate case, then the optimiza-

tion problem is de�ned with

min
p∈[pmin, pmax]

J(p) s.t. g(p) ≤ 0 (5.8)

where the optimization variable p ∈ R belongs to a bounded interval [pmin, pmax] with pmax ≥
pmin. In order to de�ne a local quadratic approximation of a function f (f is a generic

102 Chapter 5. pNMPC code generation tool

representation of a function which can be either J or g) over an interval I, consider a variable

α > 0 with respect to a point p such that the interval I is de�ned with

I := [p− α, p+ α] ∩ [pmin, pmax] (5.9)

p− α pc p + αpmaxpmin

2β

p

f (p)

p

f (pmin)

f (pmax)

pmin pmax

f (pc)
f (p)

Figure 5.3: Graphical interpretation of the terms used in SQP BBO method

Reformulating this interval with respect to the center of interval pc between the extreme

bounds pmin and pmax yields

I := [pc − β, pc + β] (5.10)

where pc, p
min, pmax and β (semi-length of the interval I) are de�ned as follows

pmin = max{pmin, p− α}
pmax = min{pmax, p+ α}

pc =
1

2
[pmin + pmax]

β =
1

2
[pmax + pmin]

(5.11)

Illustration Fig. 5.3 lucidly presents the de�ned reformulation. In order to �t a local quadratic

function qf (p), three function points are considered {f(pmin), f(pc), f(pmax)}. The above

points are equivalently represented with {f−, f0, f+} respectively. The locally approximated

quadratic function qf (p) can be expressed using a parabolic parameteric form with

qf (p) = af

(
p− pc
β

)2

+ bf

(
p− pc
β

)
+ cf (5.12)

5.3. Derivative free optimization module 103

where af , bf , cf de�ne the coe�cients of the approximated quadratic function. As there ex-

ists three unknown coe�cients and three sets of equations de�ned for the functions values

{f−, f0, f+}, the coe�cients can be computed by solving the following linear algebra prob-

lem.

1 −1 1

0 0 1

1 1 1

afbf
cf

 =

f−f0

f+

 (5.13)

The solution for the above problem (5.13) yields the results

af =
1

2
[f− + f+]− f0

bf =
1

2
[f+ − f−]

cf = f0

(5.14)

In order to compute the local minimizer for the approximated quadratic function (5.12),

it is of high importance to consider the parameter af to determine the existence of minimizer,

i.e. when af 6= 0, �nite value for the minimizer exists and when af = 0, the solution can be

either at −∞ (when sign(bf) > 0) or +∞ (when sign(bf) < 0). Thus, the solution p
(f)
s is

expressed with

p(f)
s =


pc −

βbf
2af

, if af 6= 0

+∞, if af = 0 and bf ≤ 0

−∞, if af = 0 and bf > 0

(5.15)

In order to con�ne the solution (5.15) obtained from the local quadratic approximation

within the interval I de�ned in (5.10), the solution is projected onto the interval I and the

projected solution is de�ned with

p(f,∗)
s := min

{
pmax,max

{
pmin, p(f)

s

}}
(5.16)

The optimal function value of the locally approximated quadratic function at the projected

solution (5.16) is de�ned with

q∗f = af

(
p

(f,∗)
s − pc

β

)2

+ bf

(
p

(f,∗)
s − pc

β

)
+ cf (5.17)

Using the computed q∗f value from (5.17) the extreme values of parabola qf (.) over the

interval of interest I are obtained. These extreme values are de�ned with

104 Chapter 5. pNMPC code generation tool

qmin

f := min
{
f−, f+, q∗f

}
qmax

f := max
{
f−, f+, q∗f

} (5.18)

The values of p at these extreme values are denoted with pmin

f and pmax

f and are de�ned

with

pmin

f :=


pmin, if qmin

f = f−

pmax, if qmin

f = f+

p
(f,∗)
s , if qmin

f = q∗f

pmax

f :=


pmin, if qmax

f = f−

pmax, if qmax

f = f+

p
(f,∗)
s , if qmax

f = q∗f

(5.19)

When the generic function (f) is the inequality constraint function i.e. f = g, special cases

arises for the local quadratic function (qg(p)) approximation over the interval I. The possible

cases are

1. qg(p) is non-negative for all p ∈ I and this applies when qmin
g > 0. In this case, g is

non-negative in the interval I This means that the inequality constraint is violated over

the entire interval I.

2. qg(p) is negative for all p ∈ I and this applies when qmax
g ≤ 0. This means that the

inequality constraint is admissible over the entire interval I.

3. qg(p) is negative on a strict subset of the interval I and this occurs when q
min
g ×qmax

g < 0.

In the last case, there could be either one or two values of p that belong to the interval I and

this occurs only when qg(p) = 0 and these value can be obtained by analyzing the discriminant

∆ := b2g − 4agcg and when ∆ ≥ 0 (non-negative) there is at least one real solution. Thus, the

possible candidate solutions are

p(0,+)
g := pc + βmax

{−bg ±√∆

2ag

}
p(0,−)
g := pc + βmin

{−bg ±√∆

2ag

} (5.20)

Let Z−g ⊂ I denote the subset of values of p that belong to I where qg(.) is negative. The
set Zg is computed with

5.3. Derivative free optimization module 105

Z−g :=



[pmin, p
(0,−)
g], if p

(0,−)
g < pmin & g− ≤ 0

[p
(0,+)
g , pmax], if p

(0,−)
g < pmin & g+ ≤ 0

[pmin, p
(0,−)
g], if p

(0,+)
g > pmax & g− ≤ 0

[p
(0,−)
g , pmax], if p

(0,+)
g > pmax & g+ ≤ 0

[p
(0,−)
g , p

(0,+)
g], if [p

(0,−)
g , p

(0,+)
g] ⊂ I & ag > 0

A ∪ B, if [p
(0,−)
g , p

(0,+)
g] ⊂ I & ag < 0

(5.21)

where, A = [pmin, p
(0,−)
g] and B = [p

(0,+)
g , pmax]. It is important to note that the set Zg is

either an interval or a union of two intervals and this di�erence is demarcated with nzg ∈ {1, 2}
which corresponds to an interval I

(1)
g or union of intervals I

(2)
g . All the terminologies used are

summarized and tabulated in Table 5.1.

Table 5.1: Notation and meaning

Notation Meaning

pc Center I = [p− α, p+ α] ∩ [pmin, pmax]

β Semi-length of I

qf (.) Local quadratic approximation of f over I

af , bf , cf Coe�cients of parabola qf (.), f ∈ {J, g}
p

(f)
s Position of singular point qf (.)

p
(f,∗)
s Projection of p

(f)
s over I

q∗f The value of parabola qf (.) at p
(f,∗)
s

qmin

f Minimum value of qf (.) on I

qmax

f Maximum value of qf (.) on I

pmin

f Location of minimum value of qf (.) on I

pmax

f Location of maximum value of qf (.) on I

p
(0,+)
g , p

(0,−)
g Solution of qg(p) = 0

Z−g Subset of I where qg(.) ≤ 0

nzg Number of intervals in Z−g
I

(1)
g , I

(2)
g Interval de�ning Z−g

The BBO algorithm is completely premised upon the previously de�ned three cases. The

algorithm for the next iteration p(i+1) and trust region update size α(i+1) are given by the

following steps

1. When qmax
g ≤ 0, then the whole interval I is the search space and the function J is

minimized over the whole interval I. The candidate value of the update p(i+1) is given

by

pcand ← pmin

J (5.22)

The minimizer in the above equation (5.22) is obtained from equation (5.19) where the

function f is replaced with J . This computation is based on the assumption that the

106 Chapter 5. pNMPC code generation tool

quadratic approximation is appropriate. The logical condition to verify this assumption

and also, to update the trust region size is given by C ← C1
∨
C2 where,

C1 ←
(
J(pcand) < J(p(i))

) ∧ (
g(pcand) ≤ 0

)
C2 ←

(
J(pcand) ≤ J(p(i))

) ∧ (
g(pcand) < 0

) (5.23)

2. When qmax
g > 0, which means that the constraints are strictly non-negative which tanta-

mount to constraint violation and the priority ought to be given to minimization of the

inequality constraint g. In this case, the candidate value of the update p(i+1) is given by

pcand ← pmin

g (5.24)

and the trust region update condition is given with

C ←
(
g(pcand) < g(p(i))

)
(5.25)

3. When qmax
g ≥ 0 and qmin

g ≤ 0, which means that there exists a subset in I where there

exists a solution. In this case, the integer nzg and the corresponding intervals I
(1)
g and

I
(2)
g are computed. Utilizing these intervals, the potential candidate for p(i+1) update is

computed by
pcand ← arg min

p∈{p(min,l)
J }

nzg
l=1

J(p)
(5.26)

where p
(min,1)
J and p

(min,2)
J are optimal solutions that minimize J over the intervals I

(1)
g

and I
(2)
g respectively. The trust region update condition is given by

C ←


(
g(pcand) < g(p(i))

)
, if g(p(i)) > 0(

J(pcand) < J(p(i))
) ∧ (

g(pcand)
)
≤ 0, else

(5.27)

The update of next iterate p(i+1) and α(i+1) is implemented according to following rules.

� If C is true, then
� p(i+1) is assigned to the computed candidate value pcand.

� The trust region parameter α(i) is increased according to

α(i+1) ← β+ · α(i); β+ > 1 (5.28)

� Otherwise, the current value p(i+1) ← p(i) is used and the trust region size is

decreased according to

α(i+1) ← max
{
αmin, β− · α(i)

}
; 0 < β− < 1 (5.29)

Let Niter represent the number of iterations the above algorithm is repeated, then the total

number of function evaluations of the objective and constraint functions (J, g) is

Neval = 4Niter + 1 (5.30)

5.4. pNMPC S/W structure 107

5.3.3 SQP based BBO (Multi-variate case)

The multi-variate case is an extension to the uni-variate case, where an uni-variate optimiza-

tion problem is solved over each component of the decision variables while the rest of the

values are maintained constant. Consider the decision variables to be p ∈ Rnp and let the list

of decision variables be indexed with l ∈ {1, 2, . . . , np}. Let η ∈ R denote the scalar variable

over which the uni-variate optimization is performed. In notational form, this is expressed

with p(η,l) and an element in Rnp is de�ned as

p
(η,l)
j :=

{
pj if j 6= l

η if j = l
(5.31)

The formulation (5.31) is extended for ∀j ∈ {1, 2, . . . , np}. The total number of loop count
to visit all the np components for Niter iterations and Neval is given by

Nloop =

⌈
Neval − 1

4np ×Niter

⌉
(5.32)

It is important to note that a feasible choice of pair (Neval, Niter) and must satisfy the in-

equality

Neval ≥ 4npNiter + 1 (5.33)

For convergence results for the SQP-BBO algorithm, refer [Alamir 2013][Alamir 2012].

5.4 pNMPC S/W structure

In this section, the pNMPC S/W structure, syntax and features are discussed in a bird's eye

view level. It is important to note that a complete coverage of all the features of the S/W

is not feasible within the scope of this chapter. The goal of this section is to point out the

crucial elements of the S/W along with it's use case. The core components of the S/W can

be broadly categorized into �ve parts which are a) Symbolic classes, b) OCP design classes,

c) Real/Symbolic classes, d) Control parameterization classes and e) Code generation classes.

5.4.1 Symbolic classes

The symbolic classes of the pNMPC S/W are

� HyperStates - This serves as the base class for other derived symbolic classes.

HyperStates can also be used as a substitution or an intermediate variable.

Usage: HyperStates H = 2*x1*k1+u1*x2+F;

� States - This symbolic class is used to de�ne the states for the system.

Usage: States x1,x2;

108 Chapter 5. pNMPC code generation tool

� Inputs - This symbolic class is used to de�ne the inputs for the system.

Usage: Inputs u1;

� Params - This symbolic class is used to de�ne the parameters for the system.

Usage: Params k1;

� External - This symbolic class is used to de�ne external variables which invokes function

calls from source �les or libraries. The below example links the symbolic object/variable

to a function named NeuralNet

Usage: External F = "NeuralNet";

5.4.2 OCP design classes

The OCP design classes of the pNMPC S/W are

� ParameterizationMap - This OCP class maps the input parameterization vector to the

actual input for the system. The parameterization map must be de�ned within the begin

and end guards. Usage:

BEGIN_PARAMETERIZATION_MAP

ParameterizationMap u1 = p1*x1+p2;

ParameterizationMap u2 = p3*x2+p4;

END_PARAMETERIZATION_MAP

where p1,p2,p3,p4 denote the input parameterized variables, x1,x2 denote the states

of the system and u1,u2 denote the actual input to the system.

� DiffEquation - This OCP object is used to de�ne the underlying di�erential equation of

the system. The di�erential equations must be de�ned within the begin and end guards.

Usage:

BEGIN_DIFFERENTIAL

DiffEquation x1d = -x1*x2+u1;

DiffEquation x2d = -x2+u2;

END_DIFFERENTIAL

� ScalarConstraint - This OCP class is used to de�ne the scalar constraints for the

system. The scalar constraint class can be classi�ed into two types which are a) Regular

constraints and b) Terminal constraints and these are de�ned within the respective begin

and end guards. Usage:

5.4. pNMPC S/W structure 109

BEGIN_CONSTRAINTS

BEGIN_REGULAR_CONSTRAINTS

ScalarConstraint GR1 = {-5<=x1<=5};

ScalarConstraint GR2 = {-5<=x2<=5};

ScalarConstraint GR3 = {-1<=u1<=1};

ScalarConstraint GR4 = {-1<=u2<=1};

END_REGULAR_CONSTRAINTS

BEGIN_TERMINAL_CONSTRAINTS

ScalarConstraint GT1 = {-1<=x1<=1};

ScalarConstraint GT2 = {-1<=x2<=1};

ScalarConstraint GT3 = {-1<=u1<=1};

ScalarConstraint GT4 = {-1<=u2<=1};

END_TERMINAL_CONSTRAINTS

END_CONSTRAINTS

� ScalarObjective - This OCP class is used to de�ne the scalar objectives for the system.

The scalar objective class can be classi�ed into two types which are a) Lagrangian (stage

cost) and b) Mayer (terminal cost) and these are de�ned within the respective begin

and end guards. Multiple de�nition of objectives within each guard will be scalarized

by addition. Usage:

BEGIN_OBJECTIVES

BEGIN_LAGRANGIAN

ScalarObjective L1 = x1*x1+x2*x2;

ScalarObjective L2 = u1*u1+u2*u2;

END_LAGRANGIAN

BEGIN_MAYER

ScalarObjective M1 = 5*x1*x1+5*x2*x2;

ScalarObjective M2 = 2*u1*u1+2*u2*u2;

END_MAYER

END_OBJECTIVES

5.4.3 Control parameterization classes

The pNMPC S/W has two control parameterization features namely a) Piecewise parameter-

ization and b) Linear parameterization. The de�nitions for the classes are given below

� ControlParamZ<Piecewise> - This class parameterizes the input in a piecewise fashion

over the prediction horizon. There are multiple constructor overloads for this class,

however in the interest of brevity, only the simplest case is presented here. Usage:

ControlParamZ<Piecewise> {5,p1,-1,1};

where, the �rst argument de�nes the number of piecewise parameterization placed

equidistantly over the prediction horizon, the second argument p1 represents the in-

put object from the Inputs class, so the speci�ed parameterization is latched to this

110 Chapter 5. pNMPC code generation tool

input and the last two arguments represents the minimum and maximum bounds over

the input p1 respectively.

� ControlParamZ<Linear> - This class parameterizes the input in a linear fashion over

the prediction horizon. The other speci�cations follow suit as the piecewise parameteri-

zation. Usage:

ControlParamZ<Linear> {2,p2,-1,1};

5.4.4 Real/Symbolic classes

The pNMPC software supports several functions and operation between real numbers and as

well as symbolic objects. The list of supported functions are {sin, cos, tan, sinh, cosh, tanh,
exp, log, abs, asin, acos, atan, asinh, acosh, atanh, minimum, maximum, sign}. The list

of supported numerical operations are {+, −, ∗, \, ∧, ≥, ≤, &&, ||}, where the last two are

logical AND and OR operations, which is used to couple multiple constraints to one (Example

- blocking constraints in state space region). The scalar real numbers are declared with Real

keyword and real valued matrices are declared with MATReal keyword. Symbolic matrices are

declared with MATHyperStates keyword. Usage:

MATHyperStates A(2,2); MATReal B(2,2);

// Populate symbolic matrix

A[0][0] = x1; A[0][1] = x1+sin(x2);

A[1][0] = u1; A[1][1] = u1*x2;

// Populate real matrix

B[0][0] = 2; B[0][1] = -1;

B[1][0] = 5; B[1][1] = 3;

// Symbolic Matrix - Real Matrix multiplication

MATHyperStates C = A*B;

There are several in-build matrix operations such as matrix-vector operations, matrix-matrix

operations etc. packaged along with the S/W.

5.4.5 Code generation classes

The code generation classes are formed by a composition of three classes which are a)

INTEGRATOR, b) CONST_FORM and c) PNMPCGEN. The de�nitions of the classes are given be-

low.

� INTEGRATOR - This enum class speci�es the integrator to be used to simulate the under-

lying di�erential equations. It is important to note that the S/W for now has support

only for explicit solvers. Usage:

5.5. pNMPC code generation module 111

INTEGRATOR iODE = INTEGRATOR::RK45;

� CONST_FORM - This enum class speci�es the method for constraint scalarization either

using Form 1 or Form 2 technique as mentioned in Section 5.3.1. Usage:

CONST_FORM cF = CONST_FORM::FORM_1;

� PNMPCGEN - This class is used to create the instance of the OCP with all the aforemen-

tioned classes and functions. The class follows singleton design pattern, thereby only

one instance of the controller can be generated. The setting function calls are initial and

�nal time of the OCP, step-size for the embedded integrator, SQP solver parameters,

constraint form, integrator object and a Boolean �ag to toggle between parameter data

at current time step or over the prediction horizon. Finally, the method genCCode() is

invoked to generate the respective C �les. Usage:

// Get Singleton instance of code generation class

PNMPCGEN* pNMPC = PNMPCGEN::getSton();

pNMPC->setInitialTime(0);

pNMPC->setFinalTime(2);

pNMPC->setStepSize(0.1);

pNMPC->getSolver()->setNiter(4);

pNMPC->setConstForm(cF);

pNMPC->setIntegrator(iODE);

// Generate C codes

pNMPC->genCCode();

5.5 pNMPC code generation module

The pNMPC code generation module is not dissimilar to any compiler design paradigm [Aho,

Sethi, and Ullman 1986] at the same time the steps involved are not as extensive as for

compilation process of any programming language. The motivation for adopting a scheme as

such are two folds which are:

1. The ingredients of the OCP problem (objectives, constraints, dynamics etc.) fed by the

user are broken down into fundamental elements and then modeled in an appropriate

way to suit the optimization module. Case in point, the inequality constraints ought to

be aligned in a non-positive formulation as described in equation (5.4).

2. By breaking down the OCP into it's fundamental elements, code optimization can be

performed e�ciently which in turn bene�ts in reducing the memory footprint (space

complexity) and burning less computer clock cycles (time complexity). This feature has

high practical importance, especially for low-end embedded devices.

112 Chapter 5. pNMPC code generation tool

Lexical analyzer Syntax analyzer
(Tokenizer) (Parser)

Intermediate
code generation

Code

Target C code
generation

OCP

Simulink
S-function

optimizationC++

Embedded
system

Figure 5.4: pNMPC code generation process

The pNMPC code generation process is illustrated as a process �ow diagram in Fig. 5.4. The

key stages involved in the process are briefed below:

� OCP design and speci�cation: The OCP's design and speci�cation are programmed

by the user using C++ as a front-end modeling language.

� Lexical analyzer: Lexical analyzer or tokenizer takes the user's OCP design and spec-

i�cation and breaks down the entries into separate characters or special tokens such as

the states, inputs, parameters, math operations etc.

� Syntax analyzer: Syntax analyzer or parser scans through these tokens and contrives

a relational tree or parse tree. Consider an example y = x1x2 + sin(x1x2), then the

computed parse tree for this relation is illustrated in Fig. 5.5.

x1 x2 x1 x2

∗ ∗

Sin

+

Figure 5.5: Parse tree structure

� Intermediate code generation: In this stage, the parse tree is stored as Three-address

code (3AC) and stored in a stack data structure. Additional variables x3, x4, x5 and x6

5.6. Application of pNMPC toolbox 113

are induced in the due process. It is important to note that the code is unoptimized at

this stage.

� Code optimization: The code optimization stage is a crucial stage of the code gener-

ation module. Typically, the code optimization module obliterates redundant relations,

self negation operations, identity and inverse relations for addition, subtraction, multi-

plication and division operations such as (to list a few) 0 ∗ x, x + 0 etc. In the above

example, it is clearly evident that the term x1 ∗ x2 is computed twice. After code

optimization, this redundancy is removed and the stack is updated.

� Target C code generation: In this stage, the embedded C �les are exported by using

the �le stream operations. Under circumstances of securing the generated source code,

either a static or dynamic library can be created. However, this has to be done manually

by the user.

� Simulink S-function: This stage is optional, however in today's world, embedded

control has virtually become MATLAB/Simulink's �efdom and it plays a dominant role

in design, development and deployment of production code to embedded systems both in

industry and academia. The pNMPC S/W provides the �exibility to provide Simulink

compliant C codes and this can be included into Simulink by availing MEX wrappers in

MATLAB or C-MEX S-functions features from Simulink.

� Embedded system: Finally, the generated code is deployed into the embedded system

either through Simulink or manually by the user.

5.6 Application of pNMPC toolbox

The pNMPC S/W was tested for several examples and the simulation results looks promising

and viable for RT implementation. In this Chapter, in the interest of space, the results and

simulation of two examples are described in detail which are

1. Cart-pole swing up problem.

2. PVTOL stabilization problem.

The outputs were compared against ACADO toolkit [Houska, Ferreau, and Diehl 2011] as a

benchmark S/W to study the performance and computation time of the two examples. The

former example was implemented with the assumption of a white box model and the latter

example was implemented with the assumption of a black box model. The examples were

simulated in MATLAB/Simulink on a Intel Core i7, 16GB RAM PC. The pNMPC C++

codes for the respective examples are listed in Appendix A.

114 Chapter 5. pNMPC code generation tool

5.6.1 Cart-pole swing up problem

The task of the cart-pole swing up problem [Mills, Wills, and Ninness 2009] is to stabilize a

pole in an upright direction (typically starting from downward position) which is attached to

a movable cart by means of a revolute joint. The control input to this system is the horizontal

force applied to the cart and system is bounded by physical constraints which are the length

of cart travel and the input force. The nonlinear state space equations of the system are given

below
ẋ = v

v̇ =
−m2lsin(θ)θ̇2 + u+m2gcos(θ)sin(θ)

m1 +m2(1− cos2(θ))

θ̇ = ω

ω̇ =
−m2lcos(θ)sin(θ)θ̇2 + ucos(θ) + (m1 +m2)gsin(θ)

l(m1 +m2(1− cos2(θ)))

(5.34)

where m1,m2, l, g represents the mass of the cart, mass of the pole, length of the pole and

acceleration due to gravity respectively. The values for the parameters are listed in Appendix

A. The state vector of the system are x = [x, v, θ, ω], which are the cart position, cart velocity,

pole angle and pole angular velocity respectively and input to the system is u, which represents

the force acting on the cart. The constraints acting on the system are

−xmax ≤ x ≤ xmax
−umax ≤ u ≤ umax

(5.35)

where xmax and umax represents the maximum bounds of the cart position and cart force

respectively. The OCP for the system is given as

min
x(.),p(.)

x(tf)TQfx(tf) +

∫ tf

0
(xTQx + uTRu) dt

subject to (5.34), (5.35), x(0) = {[0, 0, π, 0], [0, 0,
π

2
, 0]}

u(p,x) = p1x+ p2v + p3θ + p4ω + p5

(5.36)

where tf , Qf , Q, R and Ts represents the look ahead period, quadratic terminal state

cost, quadratic stage state cost, quadratic input cost and sampling period respectively. The

input parameterization is an a�ne state feedback policy where the parameterization vector

is p = [p1, p2, p3, p4, p5] which is modeled a constant over the horizon. Once the OCP is

solved for p∗, the input u(p∗,x(0)) is injected into the system over the period Ts and this

process is repeated in a receding horizon fashion. To compare against the ACADO con-

troller, an un-parameterized version of the NMPC problem (5.36) was implemented with the

following settings - Integrator - 4th order Implicit Runge Kutta integrator, QP solver

- qpOASES, Hessian approximation - Gauss-Newton, Discretization - Multiple shoot-

ing, Discretization intervals - 30 and for the rest, default parameters were utilized. The

study was conducted in two parts with two initial conditions which are x(0) = [0, 0, π2 , 0] and

x(0) = [0, 0, π, 0].

5.6. Application of pNMPC toolbox 115

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-2

-1

0

1

2

C
a
rt

 p
o
si

tio
n
 (

m
)

pNMPC

ACADO

Min/Max constraints

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-10

-5

0

5

10

C
a
rt

 f
o
rc

e
 (

N
)

pNMPC

ACADO

Min/Max constraints

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-5

0

5

P
o
le

 a
n
g
le

 (
ra

d
)

pNMPC

ACADO

Min/Max constraints

Figure 5.6: Cart position, cart force and the pole angle of the system for initial condition

x(0) = [0, 0, π2 , 0] (Case 1)

0 2 4 6 8 10 12 14 16 18 20

Simulation time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
om

pu
ta

tio
n

tim
e

(s
)

10
-3

pNMPC

ACADO

Figure 5.7: Cart-pole system computation time (Case 1)

Fig. 5.6 illustrates the cart force, cart position and the pole angle of the system for pNMPC

and ACADO controller for the �rst case respectively. The computation time of the pNMPC

116 Chapter 5. pNMPC code generation tool

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-2

-1

0

1

2

Ca
rt

po
sit

io
n

(m
)

pNMPC

ACADO

Min/Max constraints

0 5 10 15

Time (s)

-10

-5

0

5

10

Ca
rt

fo
rc

e
(N

)

pNMPC

ACADO

Min/Max constraints

0 5 10 15

Time (s)

-6

-4

-2

0

2

4

6

Po
le

 a
ng

le
 (r

ad
)

pNMPC

ACADO

Min/Max constraints

Figure 5.8: Cart position, cart force and the pole angle of the system for initial condition

x(0) = [0, 0, π, 0] (Case 2)

and ACADO controller for the �rst case is plotted in Fig. 5.7. The mean computation

time of ACADO hovers around 185.57 ms and 205.05 µs for the pNMPC controller. The

maximum computation time of the ACADO hovers around 897.5 µs and 966.7 µs for the

pNMPC controller.

Fig. 5.8 illustrates the cart force, cart position and the pole angle of the system for

pNMPC and ACADO controller for the second case respectively. From the plots, it is evident

that the ACADO controller crashes, however, despite the numerical ill-conditioning of model,

the pNMPC controller fares well with state feedback parameterization and at the same time,

the system is stabilized. Fig. 5.9 illustrates the parameterization values for the second case.

5.6.2 PVTOL stabilization problem with Black-box models

The task of the PVTOL (planar vertical takeo� and landing aircraft) [Martin, Devasia, and

Paden 1996] stabilization problem is to regulate the states of the system to the origin given

5.6. Application of pNMPC toolbox 117

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-60

-50

-40

-30

-20

-10

0

10

20

P
ar

am
et

er
iz

at
io

n

p1

p2

p3

p4

p5

Figure 5.9: Parameterization p1, p2, p3, p4, p5 (Case 2)

an initial perturbation. The nonlinear state space equations of the system are given below

ẏ = vy

v̇y = ψBBy (x,u,κ)

ż = vz

v̇z = ψBBz (x,u,κ)

θ̇ = ω

ω̇ = u2

(5.37)

where, the state vector is x = [y, vy, z, vz, θ, θ̇] which represents the vertical position,

vertical velocity, horizontal position, horizontal velocity, roll angle and roll rate respectively,

the input vector is u = [u1, u2] which represents the lift acceleration and angular acceleration

respectively and the parameter vector is κ = [σ] which represents the coupling between roll

and lift e�ects. The variables ψBBy (x,u,κ) = −u1sin(θ) + σu2cos(θ) and ψBBz (x,u,κ) =

u1cos(θ)+σu2sin(θ)−1 represents the dynamics of the system which are deliberately modeled

as a black-box model and invoked using the function calls "ModelY" and "ModelZ" respectively.

The input arguments for these functions are the state vector, input vector and parameter vector

and the output is the respective dynamics of system. The source codes for these functions were

compiled to a dynamic library �le and linked during the compilation process of the pNMPC

controller. This example serves as an use case of the pNMPC S/W, where external black box

models can be linked with the S/W's inbuilt symbolic variables.

118 Chapter 5. pNMPC code generation tool

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-3

-2

-1

0

1

2

3

Y
-p

os
iti

on
 (

m
) pNMPC

ACADO

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-3

-2

-1

0

1

2

3

Z
-p

os
iti

on
 (

m
) pNMPC

ACADO

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

R
ol

l a
ng

le
 (

ra
d)

pNMPC

ACADO

Min/Max constraints

Figure 5.10: PVTOL Y-position, Z-position, Roll angle (θ)

The constraints acting on the system are

0 ≤ u1 ≤ umax1

−umax2 ≤ u2 ≤ umax2

−θmax ≤ θ ≤ θmax
(5.38)

where umax1 , umax2 , θmax represents the maximum bounds over the inputs u1 and u2 and

the roll angle state θ. The OCP for the stabilization problem is de�ned as

min
x(.),p(.)

x(tf)TQfx(tf) +

∫ tf

0
(xTQx + uTRu) dt

subject to (5.37), (5.38), x(0) = [1,−1, 2, 1, −14π
10 ,−0.1]

u(p) = p

(5.39)

where tf , Q, R and Ts represents the look ahead period, quadratic stage state cost, input

cost and sampling period respectively. The input parameterization is p = [p1, p2] where each

parameter has two control points placed equidistantly over the prediction horizon and follows

a linear pro�le. Once the OCP is solved for p∗, the input u(p∗) is injected into the system over

the period Ts and this process is repeated in a receding horizon fashion. The following setting

was chosen for the ACADO controller, Integrator - 4th order Runge Kutta integrator, QP

5.6. Application of pNMPC toolbox 119

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-0.5

0

0.5

1

1.5

2

2.5

Li
ft

ac
ce

le
ra

tio
n

u 1 (m
/s

2)

pNMPC

ACADO

Min/Max constraints

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-2

-1

0

1

2

A
ng

ul
ar

 a
cc

el
er

at
io

n
u 2 (m

/s
2)

pNMPC

ACADO

Min/Max constraints

Figure 5.11: PVTOL inputs (u1, u2)

0 2 4 6 8 10 12 14 16 18 20

Simulation time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

C
om

pu
ta

tio
n

tim
e

(s
)

10
-4

pNMPC

ACADO

Figure 5.12: PVTOL computation time

solver - qpOASES, Hessian approximation - Gauss-Newton, Discretization - Multiple

shooting, Discretization intervals - 5 and for the rest, default parameters were utilized.

Also, for simulation of ACADO controller, the whole dynamics of the system was presumed

120 Chapter 5. pNMPC code generation tool

to known already as ACADO toolkit has no feature to incorporate external function calls into

it's symbolic framework.

Fig. 5.10 and Fig. 5.11 illustrates the Y-position, Z-position and roll angle (θ) and the

inputs u1 and u2 of the system for the pNMPC and ACADO NMPC controller respectively.

The computation time of the pNMPC and ACADO controller is plotted in Fig. 5.12. The

mean computation time of ACADO hovers around 41.50 µs and 44.7 µs for the pNMPC

controller. The maximum computation time of ACADO hovers aroud 311.0 µs and 389.4 µs

for the pNMPC controller. The comparison highlights the fact that in-spite of incorporating

black box models, the performance and computation time is nearly on par with the ACADO

toolkit.

5.7 HiL tests on dSPACE MABXII for control of semi-active
suspension system for quarter car vertical dynamics model

The proposed pNMPC S/W was tested on dSPACE MicroAutoBox II (MABXII) embedded

hardware via Hardware In the Loop (HiL) simulations to verify and validate the feasibility

of generated code under RT conditions. The example involved a quarter car model of the

INOVE test platform (refer Chapter 1, Section 1.1) with the following experimental settings

� The sampling frequency was set to 200 Hz i.e. a sampling period of 5 ms.

� The road pro�le involved a chirp signal with amplitude of 5mm and frequency sweep

from 0.1 Hz to 20 Hz for duration of 20s.

� The pNMPC S/W settings were Integrator - 4th order explicit Runge Kutta inte-

grator, Step size - 5 ms, Number of SQP iterations - 5, Constraint form -

CONST_FORM::FORM_1 and for the rest, default parameters were utilized.

� The constraints imposed on the system were the min/max damper force constraints,

the min/max stroke de�ection constraints and the min/max PWM-DC (Pulse Width

Modulation - Duty Cycle) signal which operates the damper characteristics.

� The objective was considered to maximize the comfort, which in turn is re�ected in

minimizing the chassis acceleration of the vehicle.

Fig. 5.13 illustrates the computation time on dSPACE MABXII. The mean and maximum

computation time hovers around 586.04 µs and 745.36 µs respectively and the generated code

was doable under RT conditions. Fig. 5.15 illustrates the nonlinear frequency response (refer

[Savaresi et al. 2010]) from road pro�le to chassis position for minimum, nominal, maximum

and pNMPC controller. It is clearly evident that the pNMPC controller attentuates the road

disturbance and performs better than other passive damper settings. Fig. 5.14 illustrates the

PWM-DC signal, damper force and stroke de�ection respectively. The PWM-DC signal is

chosen judiciously to satisfy both minimization of objective as well as constraint satisfaction.

5.8. Parallelized pNMPC patch 121

0 2 4 6 8 10 12 14 16 18 20

Simulation time

0

1

2

3

4

5

6

7

8
C

o
m

p
u
ta

tio
n
 t
im

e
 f
o
r

p
N

M
P

C
's

 g
e
n
e
ra

te
d
 c

o
d
e

10
-4

Figure 5.13: Computation time of pNMPC's generated code on dSPACE MABXII

5.8 Parallelized pNMPC patch

5.8.1 Parallelization of the optimization module on CUDA GPUs and
CUDA code generation module

The parallelized pNMPC S/W augments the proposed multi-variate SQP-BBO module to si-

multaneously run on the multi-core CUDA based GPUs. The parallelized SQP-BBO module

spawns multiple threads for each component in the optimization vector and for each compo-

nent, a uni-variate SQP-BBO is solved in each CUDA core of the GPU. The GPU version of

the pNMPC controller codes can be generated by toggling the conditional compilation headers

at compilation time.

The method deserves some explanation to elucidate it's working principle. Consider an

example as illustrated in Fig. 5.16. The optimization vector is four and black dots represents

the unoptimized values of the variables in its respective places at the current iteration. In the

�rst iteration, the optimization vector is disseminated to four CUDA processors and an uni-

variate SQP-BBO routine is executed in parallel for each component of the optimization vector

with rest of the components held constant with previous values. The cross mark represents

the component of interest for optimization and as well as the optimized component. Once the

optimization is carried out in the CUDA core, the optimized components are collected and the

optimization vector is updated and this is passed on for the second iteration. This procedure

is repeated till the end of iteration count.

122 Chapter 5. pNMPC code generation tool

0 2 4 6 8 10 12 14 16 18 20

Time (s)

0

0.1

0.2

0.3

0.4

P
W

M
-D

C
 s

ig
n
a
l

pNMPC

Min/Max constraints

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-30

-20

-10

0

10

20

30

D
a
m

p
e
r

fo
rc

e

pNMPC

Min/Max constraints

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-0.02

-0.01

0

0.01

0.02

S
tr

o
k
e
 d

e
fl
e
c
ti
o
n

pNMPC

Min/Max constraints

Figure 5.14: PWM-DC signal, Damper force and stroke de�ection plots

5.8.2 Application of Parallelized pNMPC S/W for 2D crane control

The task of 2D crane or gantry crane control [Alamir 2013] to track a reference signal, typically

the position of the crane under minimum oscillations of the crane, i.e. the swing angle. The

nonlinear state space equations of the system are given below

5.8. Parallelized pNMPC patch 123

10
-1

10
0

10
1

Frequency (Hz)

-10

-8

-6

-4

-2

0

2

4

Fr
eq

ue
nc

y
re

sp
on

se
 (d

B
)

Parameterized MPC

Minimum damping

Nominal damping

Maximum damping

Figure 5.15: Nonlinear frequency response from road pro�le (zr) to chassis position (zs) for

pNMPC controller, minimum, nominal and maximum damping setup

First iteration

Second iteration

Figure 5.16: First and second iteration of parallelized SQP-BBO module

124 Chapter 5. pNMPC code generation tool

ṙ = rd

ṙd =
u+mgcosθsinθ +mlω2sinθ

M +m(1− cos2θ)

θ̇ = ω

ω̇ =
−ucosθ −mlω2cosθsinθ − (M −m)gsinθ − frω

(M +msin2θ)l

(5.40)

where, the state vector is x = [r, rd, θ, ω] which represents the crane position, velocity,

crane angle of swing and angular rate of swing respectively. The input is u which represents

the applied input force. M , m, l, fr and g represents the mass of the moving body, mass

of the suspended mass, length of the crane, drag resistance and acceleration due to gravity

respectively. The constraints acting on the system are

−umax ≤ u ≤ umax

−θmax ≤ θ ≤ θmax

−ωmax ≤ ω ≤ ωmax
(5.41)

where, umax, θmax and ωmax represents the maximum bounds over the input, swing angle

and swing angular rate respectively. The OCP for the tracking problem is given as

min
x(.),p(.)

(x(tf)− xd(tf))TQf (x(tf)− xd(tf)) +

∫ tf

0
(x− xd)

TQ(x− xd) + uTRu) dt

subject to (5.40), (5.41), x(0) = [0, 0, 0, 0]

u(p) = p
(5.42)

where tf , Q, Qf R and Ts represents the look ahead period, quadratic stage state cost,

terminal state cost, input cost and sampling period respectively. The reference tracking vector

xd = [κ, 0, 0, 0], where κ is the reference signal for position tracking. In order to validate, verify

and assess the performance, e�ciency and computation time of the GPU version of the pNMPC

controller, the input parameterization was considered to be of length 128 and subsequently

compared against the CPU version of the pNMPC controller. The input parameterization

vector is p = [p1, p2, . . . p128], where the control points are placed equidistantly over the

prediction horizon and follows a linear pro�le. Once the OCP is solved for p∗, the input u(p∗)

is injected into the system over the period Ts and this process is repeated in a receding horizon

fashion. The pNMPC S/W settings for both the CPU and GPU version were Integrator - 4th

order explicit Runge Kutta integrator, Step size - 0.2s, Prediction horizon - 10s, Number

of SQP iterations - 8, Constraint form - CONST_FORM::FORM_1 and for the rest, default

parameters were utilized.

Fig. 5.17 illustrates the crane position, swing angle and the angular velocity for pNMPC-

GPU and pNMPC-CPU controllers respectively. As from the plot, the di�erence in perfor-

5.8. Parallelized pNMPC patch 125

mance of the controllers isn't very signi�cant. Both nearly performs well, which validates the

performance of pNMPC-GPU version.

0 20 40 60 80 100 120 140 160 180 200

Time (s)

-10

-5

0

5

10

P
o
s
it
io

n
 (

m
)

pNMPC-GPU

pNMPC-CPU

Min/Max constraints

0 20 40 60 80 100 120 140 160 180 200

Time (s)

-0.2

-0.1

0

0.1

0.2

A
n
g
le

 (
d
e
g
)

pNMPC-GPU

pNMPC-CPU

Min/Max constraints

0 20 40 60 80 100 120 140 160 180 200

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

A
n
g
u
la

r
ra

te
 (

d
e
g
/s

)

pNMPC-GPU

pNMPC-CPU

Min/Max constraints

Figure 5.17: Crane position, swing angle and angular velocity comparison b/w pNMPC-GPU

and pNMPC-CPU controller

Fig. 5.18 illustrates the input force to the crane for pNMPC-GPU and pNMPC-CPU

controllers respectively.

Remark: The NVIDIA CUDA based GPUs intrinsically uses �oating (single) precision

for parallel computing. The �uctuations in the input as seen in the plot for the pNMPC-GPU

126 Chapter 5. pNMPC code generation tool

controller stems due to single precision operations. However, one can observe that on an

average the pNMPC-GPU controller follows the pNMPC-CPU controller's input pro�le. In

later versions of the S/W, support for double precision computation would be implemented.

0 20 40 60 80 100 120 140 160 180 200

Time (s)

-80

-60

-40

-20

0

20

40

60

80

A
ct

u
a

to
r

fo
rc

e
 (

N
)

pNMPC-GPU

pNMPC-CPU

Min/Max constraints

Figure 5.18: Crane input force comparison b/w pNMPC-GPU and pNMPC-CPU controller

0 20 40 60 80 100 120 140 160 180 200

Simulation time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
om

pu
ta

tio
n

tim
e

(s
)

pNMPC-GPU

pNMPC-CPU

Figure 5.19: Computation time pNMPC-GPU vs pNMPC-CPU controller

Fig. 5.19 illustrates the computation time for pNMPC-GPU and pNMPC-CPU controllers

respectively. It is clearly evident that computation time for pNMPC-GPU version is nearly ten

folds lower than the pNMPC-CPU version and this di�erence would be more pronounced when

large parameterization vectors (greater than 128) are used, as the throughput of CUDA GPU

5.9. Future works and conclusions 127

devices are much larger. It is also important to note that the sampling period Ts considered for

this example is 0.1s and the mean computation time of pNMPC-CPU controller hovers around

0.2232s and renders impossible for RT implementation. However, the mean computation time

of pNMPC-GPU controller hovers around 0.036s, which is feasible for RT implementation.

5.9 Future works and conclusions

The crux of this chapter is to present a derivative free pNMPC code generation S/W and to

validate its performance by means of simulation on multiple examples. From the simulation

study as well as from HiL simlations conducted, it is certainly evident that the proposed S/W

has applications for several engineering systems, where the model exists either as computer

codes or as a data driven model. Despite the S/W is su�ce for several real world applications,

there are certain directions for improvement. The future line of work can be strati�ed into

two parts a) Technical challenges and b) Software challenges. A detailed examination of the

aforementioned division of work is expounded below

� Smart parameterization - As mentioned in the Section 5.1.2 and to re-emphasize the

fact again that the potential of the method solely depends upon the parameterization

technique adopted by the control engineer. However, in cases when this becomes intricate

in nature, the onus of determining an optimal parameterization is substantially increased.

In such a situation, it would be remiss of not utilizing tools from the machine learning

community. Methods developed in reinforcement learning (RL) [Sutton and Barto 2018]

zones in parallel to the proposed approach and by availing tools and methods from RL

community a smart parameterization technique for pNMPC controller can be developed.

� Implicit solvers - As of now, the proposed S/W provides only explicit ODE solvers for

the pNMPC controller. However, in many applications where the system is intrinsically

sti� in nature, one is obliged to use implicit solvers for numerical stability. The future

version of the S/W would encompass support for several implicit solvers.

� Equality constraints - In the future, the S/W would include support for equality

constraints, which is important for control of periodic systems or to enforce time point

constraints on the system.

� PDEs, DAEs and Hybrid systems - In the future, the S/W would include support for

control of partial di�erential equations (PDEs), di�erential algebraic equations (DAEs)

and hybrid systems. The overarching goal is to widen the scope of the S/W and provide

a one-stop shop pNMPC solution.

� S/W challenges - The current S/W provides a primitive interface to MAT-

LAB/Simulink. In the future, it is planned to provide better interfaces to MAT-

LAB/Simulink, Python and Julia to bene�t all the embedded programmers across the

board.

128 Chapter 5. pNMPC code generation tool

To recall, the GitHub repository for the pNMPC S/W tool is available in this link - The

pNMPC S/W is available in GitHub repository in https://github.com/Kartz4code/pNMPC_

CODEGEN.

https://github.com/Kartz4code/pNMPC_CODEGEN
https://github.com/Kartz4code/pNMPC_CODEGEN

Appendix A

pNMPC C++ code examples

Listing A.1: pNMPC OCP C++ code for cart-pole swing up problem

1 #inc lude "pNMPC_headers . hpp"

2 #de f i n e PI 3 .1416

3 us ing namespace pNMPC;

4 i n t main ()

5 {

6 // Sta te s

7 Sta t e s p , theta , pd , thetad ;

8 // Inputs

9 Inputs p1 , p2 , p3 , p4 , p5 ;

10 // Constant parameters

11 Real m1 = 1 , m2 = 0 .1 , g = 9 .81 , l = 0 . 5 ;

12 // Bounds

13 Real pmax = 2 , umax = 10 , thetamax = 2*PI ;

14 // OCP data

15 MATHyperStates Xs (4 , 1) ; Xs = {p , theta , pd , thetad } ;

16 MATReal Q = diag ({5 , 1 0 , 1 , 1 }) ; MATReal Qf = diag ({10 , 20 , 1 , 1 }) ;

17 Real R = 0 . 1 ;

18 // Input paramete r i za t i on

19 BEGIN_PARAMETERIZATION_MAP

20 ParameterizationMap u = p1*p + p2* theta + p3*pd + p4* thetad + p5 ;

21 END_PARAMETERIZATION_MAP

22 // D i f f e r e n t i a l equat ions

23 BEGIN_DIFFERENTIAL

24 Di f fEquat ion d1 = pd ;

25 Di f fEquat ion d2 = thetad ;

26 Di f fEquat ion d3 = (= l *m2* s i n (theta)* ((thetad)^2)+u+

27 m2*g* cos (theta)* s i n (theta)) / (m1+m2*(1=(cos (theta)) ^ 2)) ;

28 Di f fEquat ion d4 = (= l *m2* cos (theta)* s i n (theta)* ((thetad)^2)+

29 u* cos (theta)+(m1+m2)* g* s i n (theta)) / (l *m1+l *m2*(1=(cos (theta))^2) ;

30 END_DIFFERENTIAL

31 // Const ra in t s

32 BEGIN_CONSTRAINTS

33 BEGIN_REGULAR_CONSTRAINTS

34 Sca la rCons t ra in t G1 = {=umax <= u <= umax} ;

129

130 Appendix A. pNMPC C++ code examples

35 Sca la rCons t ra in t G2 = {=pmax <= p <= pmax} ;

36 Sca l a rCons t ra in t G3 = {=thetamax <= theta <= thetamax } ;

37 END_REGULAR_CONSTRAINTS

38 END_CONSTRAINTS

39 // Lagrangian and Mayer Cost

40 BEGIN_OBJECTIVES

41 // Lagrangian Cost

42 BEGIN_LAGRANGIAN

43 Sca l a rOb j e c t i v e LC1 = transpose (Xs)*Q*(Xs) ;

44 Sca l a rOb j e c t i v e LC2 = R* ((u)^2) ;

45 END_LAGRANGIAN

46 // Mayer Cost

47 BEGIN_MAYER

48 Sca l a rOb j e c t i v e MC1 = transpose (Xs)*Qf*(Xs) ;

49 END_MAYER

50 END_OBJECTIVES

51 // Input paramete r i za t i on

52 ControlParamZ<Linear >{1,p1 } ;

53 ControlParamZ<Linear >{1,p2 } ;

54 ControlParamZ<Linear >{1,p3 } ;

55 ControlParamZ<Linear >{1,p4 } ;

56 ControlParamZ<Linear >{1,p5 } ;

57 // PNMPCGEN s i n g l e t on ob j e c t

58 PNMPCGEN* pNMPC = PNMPCGEN: : getSton () ;

59 pNMPC=>se t I n i t i a lT ime (0) ;

60 pNMPC=>setFinalTime (1) ;

61 pNMPC=>se tS t epS i z e (0 . 0 5) ;

62 pNMPC=>getSo lv e r ()=>se tN i t e r (4) ;

63 pNMPC=>setConstForm (CONST_FORM: :FORM_1) ;

64 pNMPC=>se t I n t e g r a t o r (INTEGRATOR: : RK45) ;

65 // Generate C code

66 pNMPC=>genCCode () ;

67 // Free a l l o c a t e d memory

68 pNMPC_free () ;

69 re turn 0 ;

70 }

Listing A.2: pNMPC OCP C++ code for PVTOL stabilization problem

1 #inc lude "pNMPC_headers . hpp"

2 us ing namespace pNMPC;

3 i n t main ()

4 {

5 // Sta te s

6 Sta t e s x1 , x2 , x3 , x4 , x5 , x6 ;

131

7 // Inputs

8 Inputs p1 , p2 ;

9 // External v a r i a b l e s

10 External psi_y = "ModelY" ;

11 External psi_z = "ModelZ" ;

12 // Constant parameters

13 Real a_l = 0 , a_u = 2 , alp_l = =2, alp_u = 2 ;

14 // OCP data

15 MATHyperStates Xs (4 , 1) , Us (2 , 1) ;

16 Xs = {x1 , x2 , x3 , x4 , x5 , x6 } ;

17 MATReal Q = 5* eye (6) ;

18 MATReal Qf = 10* eye (6) ;

19 Real R = 0.01* eye (2) ;

20 // Input paramete r i za t i on

21 BEGIN_PARAMETERIZATION_MAP

22 ParameterizationMap a = p1 ;

23 ParameterizationMap alp = p2 ;

24 END_PARAMETERIZATION_MAP

25 Us = {a , a lp } ;

26 // D i f f e r e n t i a l equat ions

27 BEGIN_DIFFERENTIAL

28 Di f fEquat ion d1 = x2 ;

29 Di f fEquat ion d2 = psi_y ;

30 Di f fEquat ion d3 = x4 ;

31 Di f fEquat ion d4 = psi_z ;

32 Di f fEquat ion d5 = x6 ;

33 Di f fEquat ion d6 = alp ;

34 END_DIFFERENTIAL

35 // Const ra in t s

36 BEGIN_CONSTRAINTS

37 BEGIN_REGULAR_CONSTRAINTS

38 Sca la rCons t ra in t G1 = {a_l <= a <= a_u} ;

39 Sca l a rCons t ra in t G2 = {alp_l <= alp <= alp_u } ;

40 Sca l a rCons t ra in t G3 = {=15*PI/180 <= x5 <= 15*PI /180} ;

41 END_REGULAR_CONSTRAINTS

42 END_CONSTRAINTS

43 // Lagrangian and Mayer Cost

44 BEGIN_OBJECTIVES

45 // Lagrangian Cost

46 BEGIN_LAGRANGIAN

47 Sca l a rOb j e c t i v e LC1 = transpose (Xs)*Q*(Xs) ;

48 Sca l a rOb j e c t i v e LC2 = transpose (Us)*R*(Us) ;

49 END_LAGRANGIAN

50 // Mayer Cost

132 Appendix A. pNMPC C++ code examples

51 BEGIN_MAYER

52 Sca l a rOb j e c t i v e MC1 = transpose (Xs)*Qf*(Xs) ;

53 END_MAYER

54 END_OBJECTIVES

55 // Input paramete r i za t i on

56 ControlParamZ<Linear >{2,p1 , a_l , a_u} ;

57 ControlParamZ<Linear >{2,p2 , alp_l , alp_u } ;

58 // PNMPCGEN s i n g l e t on ob j e c t

59 PNMPCGEN* pNMPC = PNMPCGEN: : getSton () ;

60 pNMPC=>se t I n i t i a lT ime (0) ;

61 pNMPC=>setFinalTime (2) ;

62 pNMPC=>se tS t epS i z e (0 . 1) ;

63 pNMPC=>getSo lv e r ()=>se tN i t e r (4) ;

64 pNMPC=>setConstForm (CONST_FORM: :FORM_1) ;

65 pNMPC=>se t I n t e g r a t o r (INTEGRATOR: : RK45) ;

66 // Generate C code

67 pNMPC=>genCCode () ;

68 // Free a l l o c a t e d memory

69 pNMPC_free () ;

70 re turn 0 ;

71 }

Listing A.3: pNMPC OCP C++ code for 2D Crane control problem

1 #inc lude "pNMPC_headers . hpp"

2 us ing namespace pNMPC;

3 i n t main ()

4 {

5 // Sta te s

6 Sta t e s r , rd , theta , thetad ;

7 // Inputs

8 Inputs p1 ;

9 // Parameter

10 Params kappa ;

11 Real m = 200 , M = 1500 , l = 100 , f r = pow(10 , 5) , umax = 80 ;

12 Real thetamax = 0 .005 , thetadmax = (2*PI)/9 , g = 9 . 8 1 ;

13 // State and input bu f f e r

14 MATHyperStates Xs (4 , 1) , Xd(4 , 1) ;

15 // Set po int f o r t r a ck ing

16 Xd(0 , 0) = kappa ;

17 // Sta t e s bu f f e r

18 Xs(0 ,0)= r ; Xs (1 , 0) = rd ; Xs (2 , 0) = theta ; Xs (3 , 0) = thetad ;

19 // Input paramete r i za t i on

20 BEGIN_PARAMETERIZATION_MAP

21 ParameterizationMap u = p1 ;

133

22 END_PARAMETERIZATION_MAP

23 // D i f f e r e n t i a l equat ions

24 BEGIN_DIFFERENTIAL

25 Di f fEquat ion d1 = rd ;

26 Di f fEquat ion d2 = (u + m*g* cos (theta)* s i n (theta)

27 + m* l * thetad * thetad * s i n (theta))/

28 (M + m*(1=(cos (theta)* cos (theta)))) ;

29 Di f fEquat ion d3 = thetad ;

30 Di f fEquat ion d4 = (=u* cos (theta) =

31 m* l * thetad * thetad * cos (theta)* s i n (theta) =

32 (M=m)* g* s i n (theta) = f r * thetad)/

33 ((M + m* s i n (theta)* s i n (theta))* l) ;

34 END_DIFFERENTIAL

35 // Const ra in t s

36 BEGIN_CONSTRAINTS

37 BEGIN_REGULAR_CONSTRAINTS

38 Sca la rCons t ra in t G1 = {=umax <= u <= umax } ;

39 Sca l a rCons t ra in t G2 = {=thetamax <= theta <= thetamax } ;

40 Sca l a rCons t ra in t G3 ={=thetadmax <= thetad <= thetadmax } ;

41 END_REGULAR_CONSTRAINTS

42 END_CONSTRAINTS

43 // Cost matr i ce s

44 MATReal Q = diag ({100 , 1 , 1 , 1}) ;

45 MATReal Qf = 100* eye (4) ;

46 Real R = 0 . 0 1 ;

47 // Lagrangian and Mayer Cost

48 BEGIN_OBJECTIVES

49 // Lagrangian Cost

50 BEGIN_LAGRANGIAN

51 Sca l a rOb j e c t i v e LC1 = 0.5* t ranspose (Xs=Xd)*Q*(Xs=Xd) ;

52 Sca l a rOb j e c t i v e LC2 = 0.5*R*u*u ;

53 END_LAGRANGIAN

54 // Mayer Cost

55 BEGIN_MAYER

56 Sca l a rOb j e c t i v e MC = 0.5* t ranspose (Xs=Xd)*Qf*(Xs=Xd) ;

57 END_MAYER

58 END_OBJECTIVES

59 // Input paramete r i za t i on

60 ControlParamZ<Linear >{1024 , p1 , =umax , umax } ;

61 // pNMPC codegen ob j e c t

62 PNMPCGEN* pNMPC = PNMPCGEN: : getSton () ;

63 pNMPC=>se t I n i t i a lT ime (0) ;

64 pNMPC=>setFinalTime (1 0) ;

65 pNMPC=>se tS t epS i z e (0 . 2) ;

134 Appendix A. pNMPC C++ code examples

66 pNMPC=>getSo lv e r ()=>se tN i t e r (8) ;

67 pNMPC=>setConstForm (CONST_FORM: :FORM_1) ;

68 pNMPC=>se t I n t e g r a t o r (INTEGRATOR: : RK45) ;

69 pNMPC=>setParameterPred ic t (0) ;

70 // Generate C code

71 pNMPC=>genCCode () ;

72 // Free memory

73 pNMPC: : pNMPC_free () ;

74 }

Listing A.4: pNMPC OCP C++ code for control of semi-active suspension system for quarter

car model

1 #inc lude "pNMPC_headers . hpp"

2 us ing namespace pNMPC;

3 i n t main ()

4 {

5 // Sta te s

6 Sta t e s x1 , x2 , x3 , x4 , x5 , x6 ;

7 // Inputs

8 Inputs p1 , p2 ;

9 // External v a r i a b l e s

10 External psi_y = "ModelY" ;

11 External psi_z = "ModelZ" ;

12 // Constant parameters

13 Real a_l = 0 , a_u = 2 , alp_l = =2, alp_u = 2 ;

14 // OCP data

15 MATHyperStates Xs (4 , 1) , Us (2 , 1) ;

16 Xs = {x1 , x2 , x3 , x4 , x5 , x6 } ;

17 MATReal Q = 5* eye (6) ;

18 MATReal Qf = 10* eye (6) ;

19 Real R = 0.01* eye (2) ;

20 // Input paramete r i za t i on

21 BEGIN_PARAMETERIZATION_MAP

22 ParameterizationMap a = p1 ;

23 ParameterizationMap alp = p2 ;

24 END_PARAMETERIZATION_MAP

25 Us = {a , a lp } ;

26 // D i f f e r e n t i a l equat ions

27 BEGIN_DIFFERENTIAL

28 Di f fEquat ion d1 = x2 ;

29 Di f fEquat ion d2 = psi_y ;

30 Di f fEquat ion d3 = x4 ;

31 Di f fEquat ion d4 = psi_z ;

32 Di f fEquat ion d5 = x6 ;

135

33 Di f fEquat ion d6 = alp ;

34 END_DIFFERENTIAL

35 // Const ra in t s

36 BEGIN_CONSTRAINTS

37 BEGIN_REGULAR_CONSTRAINTS

38 Sca la rCons t ra in t G1 = {a_l <= a <= a_u} ;

39 Sca l a rCons t ra in t G2 = {alp_l <= alp <= alp_u } ;

40 Sca l a rCons t ra in t G3 = {=15*PI/180 <= x5 <= 15*PI /180} ;

41 END_REGULAR_CONSTRAINTS

42 END_CONSTRAINTS

43 // Lagrangian and Mayer Cost

44 BEGIN_OBJECTIVES

45 // Lagrangian Cost

46 BEGIN_LAGRANGIAN

47 Sca l a rOb j e c t i v e LC1 = transpose (Xs)*Q*(Xs) ;

48 Sca l a rOb j e c t i v e LC2 = transpose (Us)*R*(Us) ;

49 END_LAGRANGIAN

50 // Mayer Cost

51 BEGIN_MAYER

52 Sca l a rOb j e c t i v e MC1 = transpose (Xs)*Qf*(Xs) ;

53 END_MAYER

54 END_OBJECTIVES

55 // Input paramete r i za t i on

56 ControlParamZ<Linear >{2,p1 , a_l , a_u} ;

57 ControlParamZ<Linear >{2,p2 , alp_l , alp_u } ;

58 // PNMPCGEN s i n g l e t on ob j e c t

59 PNMPCGEN* pNMPC = PNMPCGEN: : getSton () ;

60 pNMPC=>se t I n i t i a lT ime (0) ;

61 pNMPC=>setFinalTime (2) ;

62 pNMPC=>se tS t epS i z e (0 . 1) ;

63 pNMPC=>getSo lv e r ()=>se tN i t e r (4) ;

64 pNMPC=>setConstForm (CONST_FORM: :FORM_1) ;

65 pNMPC=>se t I n t e g r a t o r (INTEGRATOR: : RK45) ;

66 // Generate C code

67 pNMPC=>genCCode () ;

68 // Free a l l o c a t e d memory

69 pNMPC_free () ;

70 re turn 0 ;

71 }

Bibliography

Abughalieh, Karam M and Shadi G Alawneh (2019). �A Survey of Parallel Implementations

for Model Predictive Control.� In: IEEE Access (cit. on p. 67).

Adams, Brian M et al. (2009). �DAKOTA, a multilevel parallel object-oriented framework for

design optimization, parameter estimation, uncertainty quanti�cation, and sensitivity anal-

ysis: version 5.0 user's manual.� In: Sandia National Laboratories, Tech. Rep. SAND2010-

2183 (cit. on p. 31).

Aho, Alfred V, Ravi Sethi, and Je�rey D Ullman (1986). �Compilers, principles, techniques.�

In: Addison wesley 7.8, p. 9 (cit. on p. 111).

Alamir, Mazen (2006). Stabilization of nonlinear systems using receding-horizon control

schemes: a parametrized approach for fast systems. Vol. 339. Springer (cit. on pp. 34,

95).

� (2012). �A framework for real-time implementation of low-dimensional parameterized

NMPC.� In: Automatica 48.1, pp. 198�204 (cit. on pp. 100, 107).

� (2013). A pragmatic story of model predictive control: self-contained algorithms and case-

studies. CreateSpace Independent Publishing Platform (cit. on pp. 100, 107, 122).

� (2017). �The PDF-MPC package: A free-MATLAB-coder package for real-time nonlinear

model predictive control.� In: arXiv preprint arXiv:1703.08255 (cit. on pp. 31, 94, 100).

Ascher, Uri M and Linda R Petzold (1998). Computer methods for ordinary di�erential equa-

tions and di�erential-algebraic equations. Vol. 61. Siam (cit. on pp. 34, 52).

Astrom, Karl J and BjornWittenmark (1982). Computer controlled systems: theory and design.

Vol. 3. Prentice-Hall Englewood Cli�s, New Jersey (cit. on p. 47).

Aswani, Anil et al. (2013). �Provably safe and robust learning-based model predictive control.�

In: Automatica 49.5, pp. 1216�1226 (cit. on p. 2).

Aubouet, Sébastien (2010). �Modélisation et commande de suspensions semi-actives SOBEN.�

PhD thesis. Institut National Polytechnique de Grenoble-INPG (cit. on p. 13).

Baumal, AE, JJ McPhee, and PH Calamai (1998). �Application of genetic algorithms to the

design optimization of an active vehicle suspension system.� In: Computer methods in

applied mechanics and engineering 163.1-4, pp. 87�94 (cit. on pp. 71, 80).

Bazaraa, Mokhtar S, Hanif D Sherali, and Chitharanjan M Shetty (2013). Nonlinear program-

ming: theory and algorithms. John Wiley & Sons (cit. on p. 29).

Beck, Amir (2014). Introduction to nonlinear optimization: Theory, algorithms, and applica-

tions with MATLAB. SIAM (cit. on p. 31).

� (2017). First-order methods in optimization. SIAM (cit. on p. 29).

Becker, Stephen, E Candes, and M Grant (2011). �TFOCS: �exible �rst-order methods for

rank minimization.� In: Low-rank Matrix Optimization Symposium, SIAM Conference on

Optimization (cit. on p. 29).

Bemporad, Alberto et al. (2002). �The explicit linear quadratic regulator for constrained sys-

tems.� In: Automatica 38.1, pp. 3�20 (cit. on p. 2).

Bertsekas, Dimitri P (2019). Reinforcement learning and optimal control. Athena Scienti�c

Belmont, MA (cit. on p. 33).

137

138 Bibliography

Bertsekas, Dimitri P et al. (1995). Dynamic programming and optimal control. Vol. 1. 2. Athena

scienti�c Belmont, MA (cit. on p. 33).

Blochwitz, Torsten (2014). �Functional mock-up interface for model exchange and co-

simulation.� In: July [Online] https://www.fmi-standard.org/Downloads (Accessed January

2016) (cit. on p. 20).

Blochwitz, Torsten et al. (2011). �The functional mockup interface for tool independent ex-

change of simulation models.� In: Proceedings of the 8th International Modelica Confer-

ence; March 20th-22nd; Technical Univeristy; Dresden; Germany. 063. Linköping Univer-

sity Electronic Press, pp. 105�114 (cit. on p. 19).

Blockwitz, Torsten et al. (2012). �Functional mockup interface 2.0: The standard for tool

independent exchange of simulation models.� In: Proceedings (cit. on pp. 19, 66, 95).

Bojarski, Mariusz et al. (2016). �End to end learning for self-driving cars.� In: arXiv preprint

arXiv:1604.07316 (cit. on p. 2).

Borrelli, Francesco, Alberto Bemporad, and Manfred Morari (2017). Predictive control for

linear and hybrid systems. Cambridge University Press (cit. on p. 26).

Boyd, Stephen, Stephen P Boyd, and Lieven Vandenberghe (2004). Convex optimization. Cam-

bridge university press (cit. on p. 27).

Boyd, Stephen, Neal Parikh, and Eric Chu (2011). Distributed optimization and statistical

learning via the alternating direction method of multipliers. Now Publishers Inc (cit. on

p. 28).

Bujarbaruah, Monimoy et al. (2018). �Adaptive MPC for iterative tasks.� In: 2018 IEEE

Conference on Decision and Control (CDC). IEEE, pp. 6322�6327 (cit. on p. 2).

Butz, T and O Von Stryk (2002). �Modelling and Simulation of Electro-and Magnetorheologi-

cal Fluid Dampers.� In: ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift

für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics 82.1,

pp. 3�20 (cit. on p. 44).

Byrd, Richard H, Jorge Nocedal, and Richard A Waltz (2006). �KNITRO: An integrated pack-

age for nonlinear optimization.� In: Large-scale nonlinear optimization. Springer, pp. 35�59

(cit. on p. 30).

Canale, M, M Milanese, and C Novara (2006). �Semi-active suspension control using "fast"

model-predictive techniques.� In: IEEE Transactions on Control Systems Technology 14.6,

pp. 1034�1046 (cit. on p. 43).

Conn, Andrew R, Katya Scheinberg, and Luis N Vicente (2009). Introduction to derivative-free

optimization. SIAM (cit. on p. 31).

Conn, Andy, Katya Scheinberg, and Ph Toint (1998). �A derivative free optimization algo-

rithm in practice.� In: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, p. 4718 (cit. on p. 31).

Cseko, L.H., M. Kvasnica, and B. Lantos (2010). �Analysis of the explicit model predictive

control for semi-active suspension.� In: Periodica Polytechnica, Electrical Engineering 54

(cit. on p. 43).

Custódio, AL and JF Aguilar Madeira (2015). �GLODS: global and local optimization using

direct search.� In: Journal of global optimization 62.1, pp. 1�28 (cit. on p. 31).

Bibliography 139

Custódio, Ana Luísa, Katya Scheinberg, and Luís Nunes Vicente (2017). �Methodologies and

software for derivative-free optimization.� In: Advances and Trends in Optimization with

Engineering Applications, pp. 495�506 (cit. on p. 31).

Custodio, Ana Luisa and Luis N Vicente (2008). �SID-PSM: A pattern search method

guided by simplex derivatives for use in derivative-free optimization.� In: Departamento

de Matemática, Universidade de Coimbra, Coimbra (cit. on p. 31).

Cutler, Charles R and Brian L Ramaker (1980). �Dynamic matrix control?? A computer

control algorithm.� In: joint automatic control conference. 17, p. 72 (cit. on p. 2).

Deng, Haoyang and Toshiyuki Ohtsuka (2018). �A parallel code generation toolkit for nonlinear

model predictive control.� In: 2018 IEEE Conference on Decision and Control (CDC).

IEEE, pp. 4920�4926 (cit. on p. 97).

Dennis Jr, John E and Jorge J Moré (1977). �Quasi-Newton methods, motivation and theory.�

In: SIAM review 19.1, pp. 46�89 (cit. on p. 29).

Do, Anh Lam (2011). �LPV approach for the vehicles dynamics robust control: joint comfort

and safety improvement.� PhD thesis. Université de Grenoble (cit. on p. 12).

Do, Anh-Lam, Olivier Sename, and Luc Dugard (2010). �An LPV control approach for semi-

active suspension control with actuator constraints.� In: American Control Conference,

pp. 4653�4658 (cit. on p. 43).

Domahidi, Alexander and Juan Jerez (2014). �FORCES Professional. embotech GmbH

(http://embotech. com/FORCES-Pro).� In: J uly (cit. on p. 30).

Doumiati, Moustapha et al. (2017). �Road pro�le estimation using an adaptive Youla�Ku£era

parametric observer: Comparison to real pro�lers.� In: Control Engineering Practice 61,

pp. 270�278 (cit. on pp. 71, 81).

Drud, Arne Stolbjerg (1994). �CONOPT�a large-scale GRG code.� In: ORSA Journal on

computing 6.2, pp. 207�216 (cit. on p. 30).

Ellis, Matthew, Helen Durand, and Panagiotis D Christo�des (2014). �A tutorial review of

economic model predictive control methods.� In: Journal of Process Control 24.8, pp. 1156�

1178 (cit. on p. 2).

EMPHYSIS (2017). EMPHYSIS: Embedded systems with physical models in the production

code software. https://itea3.org/project/emphysis.html. "[Online; accessed 22-June-

2020]" (cit. on pp. 1, 20�22, 42, 95).

Ferreau, Hans Joachim et al. (2014a). �qpOASES: A parametric active-set algorithm for

quadratic programming.� In: Mathematical Programming Computation 6.4, pp. 327�363

(cit. on p. 30).

� (2014b). �qpOASES: A parametric active-set algorithm for quadratic programming.� In:

Mathematical Programming Computation 6.4, pp. 327�363 (cit. on p. 96).

Fischer, Daniel and Rolf Isermann (2004). �Mechatronic semi-active and active vehicle sus-

pensions.� In: Control Engineering Practice 12.11, pp. 1353�1367 (cit. on p. 12).

Fletcher, Roger and Sven Ley�er (1998). �User manual for �lterSQP.� In: Numerical Analysis

Report NA/181, Department of Mathematics, University of Dundee, Dundee, Scotland 35

(cit. on p. 30).

Fougner, Christopher and Stephen Boyd (2018). �Parameter selection and preconditioning for

a graph form solver.� In: Emerging Applications of Control and Systems Theory. Springer,

pp. 41�61 (cit. on p. 29).

https://itea3.org/project/emphysis.html

140 Bibliography

Fürst, Simon et al. (2009). �AUTOSAR�A Worldwide Standard is on the Road.� In: 14th

International VDI Congress Electronic Systems for Vehicles, Baden-Baden. Vol. 62, p. 5

(cit. on p. 22).

Gade-Nielsen, Nicolai Fog, Bernd Dammann, and John Bagterp Jørgensen (2014). �Interior

point methods on GPU with application to model predictive control.� In: (cit. on p. 67).

Gilbert, J Charles (2009). SQPlab�A Matlab software for solving nonlinear optimization prob-

lems and optimal control problems (cit. on p. 30).

Gill, Philip E, Walter Murray, and Michael A Saunders (2005). �SNOPT: An SQP algorithm

for large-scale constrained optimization.� In: SIAM review 47.1, pp. 99�131 (cit. on p. 30).

Gill, Philip E et al. (1986). User's guide for NPSOL (version 4.0): A Fortran package for

nonlinear programming. Tech. rep. Stanford Univ CA Systems Optimization Lab (cit. on

p. 30).

Gillespie, Thomas D (1992). Fundamentals of vehicle dynamics (cit. on p. 10).

Giorgetti, N. et al. (2006). �Hybrid model predictive control application towards optimal semi-

active suspension.� In: International Journal of Control 79, pp. 521�533 (cit. on p. 43).

Giselsson, Pontus (2018). �QPgen.� In: Dosegljivo: http://www. control. lth. se/QPgen/index.

html (cit. on p. 29).

Gohrle, Christoph et al. (2012). �Active suspension controller using MPC based on a full-car

model with preview information.� In: American Control Conference (ACC), 2012. IEEE,

pp. 497�502 (cit. on p. 43).

Goodarzi, Avesta and Amir Khajepour (2017). �Vehicle suspension system technology and

design.� In: Synthesis Lectures on Advances in Automotive Technology 1.1, pp. i�77 (cit.

on pp. 10, 16).

Goodfellow, Ian et al. (2016). Deep learning. Vol. 1. MIT press Cambridge (cit. on p. 28).

Griewank, Andreas and Andrea Walther (2008). Evaluating derivatives: principles and tech-

niques of algorithmic di�erentiation. SIAM (cit. on p. 35).

Griewank, Andreas, Andrea Walther, and Maciek Korzec (2007). �Maintaining factorized KKT

systems subject to rank-one updates of Hessians and Jacobians.� In: Optimisation Methods

and Software 22.2, pp. 279�295 (cit. on p. 30).

Gros, Sébastien et al. (2020). �From linear to nonlinear MPC: bridging the gap via the real-

time iteration.� In: International Journal of Control 93.1, pp. 62�80 (cit. on pp. 36�38).

Guanetti, Jacopo and Francesco Borrelli (2017). �Stochastic MPC for cloud-aided suspension

control.� In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE,

pp. 238�243 (cit. on pp. 66, 67, 69).

Guo, Shuqi, Shaopu Yang, and Cunzhi Pan (2006). �Dynamic modeling of magnetorheological

damper behaviors.� In: Journal of Intelligent material systems and structures 17.1, pp. 3�

14 (cit. on pp. 44, 45).

Hansen, Nikolaus, Sibylle D Müller, and Petros Koumoutsakos (2003). �Reducing the time

complexity of the derandomized evolution strategy with covariance matrix adaptation

(CMA-ES).� In: Evolutionary computation 11.1, pp. 1�18 (cit. on p. 31).

Holmström, Kenneth, Anders O Göran, and Marcus M Edvall (2010). �User's Guide for TOM-

LAB 7.� In: Tomlab Optimization Inc (cit. on p. 31).

Bibliography 141

Houska, Boris, Hans Joachim Ferreau, and Moritz Diehl (2011). �An auto-generated real-time

iteration algorithm for nonlinear MPC in the microsecond range.� In: Automatica 47.10,

pp. 2279�2285 (cit. on pp. 96, 113).

Houska, Boris et al. (2009). �ACADO toolkit user's manual.� In: (cit. on p. 75).

Huyer, Waltraud and Arnold Neumaier (2008). �SNOBFIT�stable noisy optimization by

branch and �t.� In: ACM Transactions on Mathematical Software (TOMS) 35.2, pp. 1�25

(cit. on p. 31).

Hyatt, Phillip and Marc D Killpack (2020). �Real-time nonlinear model predictive control of

robots using a graphics processing unit.� In: IEEE Robotics and Automation Letters 5.2,

pp. 1468�1475 (cit. on p. 67).

Ingber, Lester (1989). �Very fast simulated re-annealing.� In: Mathematical and computer

modelling 12.8, pp. 967�973 (cit. on p. 31).

ISO, I (1995). Mechanical vibration�Road surface pro�les�Reporting of measured data (cit.

on p. 69).

J Lozoya-Santos, Jorge de et al. (2012). �Magnetorheological damper�an experimental study.�

In: Journal of Intelligent Material Systems and Structures 23.11, pp. 1213�1232 (cit. on

p. 13).

Kalmari, Jouko, Juha Backman, and Arto Visala (2015). �A toolkit for nonlinear model pre-

dictive control using gradient projection and code generation.� In: Control Engineering

Practice 39, pp. 56�66 (cit. on p. 96).

Kamath, Gopalakrishna M and Norman M Wereley (1997). �A nonlinear viscoelastic-plastic

model for electrorheological �uids.� In: Smart Materials and Structures 6.3, p. 351 (cit. on

p. 44).

Karnopp, Dean, Michael J Crosby, and RA Harwood (1974). �Vibration control using semi-

active force generators.� In: Journal of engineering for industry 96.2, pp. 619�626 (cit. on

pp. 42, 60).

Kelley, CT (2011). �Users Guide for IMFIL version 1.0.� In: Available at www4. ncsu. edu/�

ctk/im�l. html (cit. on p. 31).

Koegel, MJ and R Findeisen (2012). �Parallel architectures for model predictive control.� In:

4th IFAC Nonlinear Model Predictive Control Conference. Vol. 4 (cit. on p. 67).

Kouzoupis, D et al. (2015). �Block condensing for fast nonlinear MPC with the dual Newton

strategy.� In: IFAC-PapersOnLine 48.23, pp. 26�31 (cit. on p. 96).

Kvasnica, Michal, Ivana Rauová, and Miroslav Fikar (2010). �Automatic code generation for

real-time implementation of model predictive control.� In: 2010 IEEE International Sym-

posium on Computer-Aided Control System Design. IEEE, pp. 993�998 (cit. on p. 96).

Larson, Je�rey, Matt Menickelly, and Stefan M Wild (2019). �Derivative-free optimization

methods.� In: arXiv preprint arXiv:1904.11585 (cit. on p. 31).

Le Digabel, Sébastien (2011). �Algorithm 909: NOMAD: Nonlinear optimization with the

MADS algorithm.� In: ACM Transactions on Mathematical Software (TOMS) 37.4, pp. 1�

15 (cit. on p. 31).

Ley�er, Sven and Ashutosh Mahajan (2010). �Nonlinear constrained optimization: methods

and software.� In: Argonee National Laboratory, Argonne, Illinois 60439 (cit. on p. 30).

Liberzon, Daniel (2011). Calculus of variations and optimal control theory: a concise introduc-

tion. Princeton University Press (cit. on p. 33).

142 Bibliography

Lin, Youdong and Linus Schrage (2009). �The global solver in the LINDO API.� In: Optimiza-

tion Methods & Software 24.4-5, pp. 657�668 (cit. on p. 30).

Ljung, Lennart (1987). System identi�cation: theory for the user. Prentice-hall (cit. on p. 48).

Maciejowski, Jan Marian (2002). Predictive control: with constraints. Pearson education (cit.

on p. 32).

Mahala, K Manoj, Prasanna Gadkari, and Anindya Deb (2009). �Mathematical models for

designing vehicles for ride comfort.� In: ICORD 09: Proceedings of the 2nd International

Conference on Research into Design, Bangalore, India 07.-09.01. 2009 (cit. on p. 14).

Martin, Philippe, Santosh Devasia, and Brad Paden (1996). �A di�erent look at output track-

ing: control of a VTOL aircraft.� In: Automatica 32.1, pp. 101�107 (cit. on p. 116).

Mattingley, Jacob and Stephen Boyd (2012). �CVXGEN: A code generator for embedded

convex optimization.� In: Optimization and Engineering 13.1, pp. 1�27 (cit. on pp. 44, 56,

96).

Mayne, David Q, María M Seron, and SV Rakovi¢ (2005). �Robust model predictive control of

constrained linear systems with bounded disturbances.� In: Automatica 41.2, pp. 219�224

(cit. on p. 2).

Mesbah, Ali (2016). �Stochastic model predictive control: An overview and perspectives for

future research.� In: IEEE Control Systems Magazine 36.6, pp. 30�44 (cit. on p. 2).

Miller, Lane R (1988). �Tuning passive, semi-active, and fully active suspension systems.� In:

Proceedings of the 27th IEEE Conference on Decision and Control. IEEE, pp. 2047�2053

(cit. on p. 12).

Mills, Adam, Adrian Wills, and Brett Ninness (2009). �Nonlinear model predictive control of

an inverted pendulum.� In: 2009 American control conference. IEEE, pp. 2335�2340 (cit.

on p. 114).

Morato, Marcelo M, Julio E Normey-Rico, and Olivier Sename (2020). �Model predictive

control design for linear parameter varying systems: A survey.� In: Annual Reviews in

Control (cit. on p. 2).

Morato, Marcelo Menezes et al. (2019). �Design of a fast real-time LPV model predictive

control system for semi-active suspension control of a full vehicle.� In: Journal of the

Franklin Institute 356.3, pp. 1196�1224 (cit. on p. 43).

Moré, Jorge J and Stefan M Wild (2009). �Benchmarking derivative-free optimization algo-

rithms.� In: SIAM Journal on Optimization 20.1, pp. 172�191 (cit. on p. 31).

Naidu, D Subbaram (2002). Optimal control systems. CRC press (cit. on p. 33).

Nguyen, Manh Quan (2016a). �LPV approaches for modelling and control of vehicle dynamics:

application toa small car pilot plant with ER dampers.� PhD thesis. Université Grenoble

Alpes (cit. on p. 12).

� (2016b). �LPV approaches for modelling and control of vehicle dynamics: application toa

small car pilot plant with ER dampers.� PhD thesis. Université Grenoble Alpes (cit. on

p. 13).

Nguyen, Minh Tri et al. (2014). �Fault Tolerant Predictive Control for Multi-Agent dynamical:

formation recon�guration using set-theoretic approach.� In: (cit. on p. 2).

Nguyen, M.Q. et al. (2016a). �A Model Predictive Control approach for semi-active suspension

control problem of a full car.� In: 2016 IEEE 55th Conference on Decision and Control,

CDC 2016. Las Vegas, NV, USA (cit. on p. 43).

Bibliography 143

Nguyen, M.Q. et al. (2016b). �Semi-active suspension control problem: Some new results

using an LPV/H∞ state feedback input constrained control.� In: Proceedings of the IEEE

Conference on Decision and Control. Osaka, Japan (cit. on p. 43).

Nocedal, Jorge and Stephen Wright (2006). Numerical optimization. Springer Science & Busi-

ness Media (cit. on pp. 29�31).

O'donoghue, Brendan et al. (2016). �Conic optimization via operator splitting and homoge-

neous self-dual embedding.� In: Journal of Optimization Theory and Applications 169.3,

pp. 1042�1068 (cit. on p. 29).

Ohtsuka, Toshiyuki (2015). �A tutorial on C/GMRES and automatic code generation for

nonlinear model predictive control.� In: 2015 European Control Conference (ECC). IEEE,

pp. 73�86 (cit. on p. 95).

Ohtsuka, Toshiyuki and Akira Kodama (2002). �Automatic code generation system for non-

linear receding horizon control.� In: Transactions of the Society of Instrument and Control

Engineers 38.7, pp. 617�623 (cit. on p. 95).

Ohyama, Shimpei and Hisashi Date (2017). �Parallelized nonlinear model predictive control

on GPU.� In: 2017 11th Asian Control Conference (ASCC). IEEE, pp. 1620�1625 (cit. on

p. 67).

Parikh, Neal and Stephen Boyd (2014). �Proximal algorithms.� In: Foundations and Trends

in optimization 1.3, pp. 127�239 (cit. on p. 28).

Patrinos, Panagiotis and Alberto Bemporad (2012). �An accelerated dual gradient-projection

algorithm for linear model predictive control.� In: 2012 IEEE 51st IEEE Conference on

Decision and Control (CDC). IEEE, pp. 662�667 (cit. on p. 29).

Pham, Nam, Aleksander Malinowski, and Tomasz Bartczak (2011). �Comparative study of

derivative free optimization algorithms.� In: IEEE Transactions on Industrial Informatics

7.4, pp. 592�600 (cit. on p. 31).

Plantenga, Todd D (2009). �Hopspack 2.0 user manual.� In: Sandia National Laboratories

Technical Report Sandia National Laboratories Technical Report SAND2009-6265 (cit. on

p. 31).

Poussot-Vassal, Charles (2008). �Commande robuste LPV multivariable de chassis automo-

bile.� PhD thesis. Institut National Polytechnique de Grenoble-INPG (cit. on p. 12).

Poussot-Vassal, Charles et al. (2011). �Survey on some automotive semi-active suspension

control methods: A comparative study on a single-corner model.� In: 18th IFAC World

Congress (IFAC WC 2011), pp. 1802�1807 (cit. on p. 43).

Powell, Michael JD (1994). �A direct search optimization method that models the objective

and constraint functions by linear interpolation.� In: Advances in optimization and numer-

ical analysis. Springer, pp. 51�67 (cit. on p. 31).

� (2006). �The NEWUOA software for unconstrained optimization without derivatives.� In:

Large-scale nonlinear optimization. Springer, pp. 255�297 (cit. on p. 31).

� (2007). �A view of algorithms for optimization without derivatives.� In: Mathematics

Today-Bulletin of the Institute of Mathematics and its Applications 43.5, pp. 170�174

(cit. on p. 31).

� (2009). �The BOBYQA algorithm for bound constrained optimization without derivatives.�

In: Cambridge NA Report NA2009/06, University of Cambridge, Cambridge, pp. 26�46

(cit. on p. 31).

144 Bibliography

Rabinow, Jacob (1948). �The magnetic �uid clutch.� In: Electrical Engineering 67.12,

pp. 1167�1167 (cit. on p. 13).

Rajamani, Rajesh (2011). Vehicle dynamics and control. Springer Science & Business Media

(cit. on p. 3).

Rakovi¢, Sa²a V and William S Levine (2018). Handbook of model predictive control. Springer

(cit. on p. 2).

Rathai, Karthik Murali Madhavan (2020). pNMPC: A Code Generation Tool For Implemen-

tation of pNMPC Controller For Embedded Control Systems. https : / / github . com /

Kartz4code/pNMPC_CODEGEN. [Online; accessed 22-June-2020] (cit. on pp. 5, 94).

Rathai, Karthik Murali Madhavan, Mazen Alamir, and Olivier Sename (2019). �Experimental

implementation of model predictive control scheme for control of semi-active suspension

system.� In: IFAC-PapersOnLine 52.5, pp. 261�266 (cit. on p. 5).

Rathai, Karthik Murali Madhavan, Olivier Sename, and Mazen Alamir (2018). �A compara-

tive study of di�erent NMPC schemes for control of semi-active suspension system.� In:

14th International Conference on Vehicle System Dynamics, Identi�cation and Anomalies

(VSDIA 2018) (cit. on pp. 33, 35, 36, 38).

� (2019). �GPU-Based Parameterized NMPC Scheme for Control of Half Car Vehicle With

Semi-Active Suspension System.� In: IEEE Control Systems Letters 3.3, pp. 631�636 (cit.

on pp. 5, 82).

Rathai, Karthik Murali Madhavan et al. (2018). �A Parameterized NMPC scheme for embed-

ded control of semi-active suspension system.� In: IFAC-PapersOnLine 51.20, pp. 301�306

(cit. on pp. 5, 52, 72, 82).

Rawlings, James B, Edward S Meadows, and Kenneth R Muske (1994). �Nonlinear model

predictive control: A tutorial and survey.� In: IFAC Proceedings Volumes 27.2, pp. 185�

197 (cit. on p. 2).

Rawlings, James Blake, David Q Mayne, and Moritz Diehl (2017). Model predictive control:

theory, computation, and design. Vol. 2. Nob Hill Publishing Madison, WI (cit. on p. 34).

Rios, Luis Miguel and Nikolaos V Sahinidis (2013). �Derivative-free optimization: a review of

algorithms and comparison of software implementations.� In: Journal of Global Optimiza-

tion 56.3, pp. 1247�1293 (cit. on p. 31).

Rogers, Jonathan (2013). �GPU-enabled projectile guidance for impact area constraints.� In:

Modeling and Simulation for Defense Systems and Applications VIII. Vol. 8752. Interna-

tional Society for Optics and Photonics, p. 87520I (cit. on p. 67).

Ruder, Sebastian (2016). �An overview of gradient descent optimization algorithms.� In: arXiv

preprint arXiv:1609.04747 (cit. on pp. 28, 29).

Sampathirao, Ajay Kumar et al. (2017). �GPU-accelerated stochastic predictive control of

drinking water networks.� In: IEEE Transactions on Control Systems Technology 26.2,

pp. 551�562 (cit. on p. 67).

Sanders, Jason and Edward Kandrot (2010). CUDA by example: an introduction to general-

purpose GPU programming. Addison-Wesley Professional (cit. on pp. 72, 82).

Savaresi, Sergio M., Sergio Bittanti, and Mauro Montiglio (2005). �Identi�cation of semi-

physical and black-box non-linear models: The case of MR-dampers for vehicles control.�

In: Automatica 41.1, pp. 113�127 (cit. on p. 42).

https://github.com/Kartz4code/pNMPC_CODEGEN
https://github.com/Kartz4code/pNMPC_CODEGEN

Bibliography 145

Savaresi, Sergio M. and Cristiano Spelta (2007). �Mixed Sky-Hook and ADD: Approaching

the Filtering Limits of a Semi-Active Suspension.� In: Journal of Dynamic Systems, Mea-

surement, and Control 129.4, p. 382 (cit. on p. 43).

Savaresi, Sergio M et al. (2010). Semi-active suspension control design for vehicles. Elsevier

(cit. on pp. 3, 10, 12�14, 16, 50, 67, 70, 80, 82, 120).

Schittkowski, Klaus (2006). �NLPQLP: A fortran implementation of a sequential quadratic

programming algorithm with distributed and non-monotone line search�user's guide.� In:

Report, Department of Computer Science, University of Bayreuth (cit. on p. 30).

Sename, Olivier et al. (2012). �Some LPV Approaches for Semi-active Suspension Control.�

In: American Control Conference 2012 (cit. on p. 43).

Shukla, Harsh A et al. (2017). �Software and hardware code generation for predictive control

using splitting methods.� In: IFAC-PapersOnLine 50.1, pp. 14386�14391 (cit. on p. 97).

Sopasakis, Pantelis, Emil Fresk, and Panagiotis Patrinos (2020). �OpEn: Code Generation for

Embedded Nonconvex Optimization.� In: arXiv preprint arXiv:2003.00292 (cit. on p. 97).

Spelta, Cristiano (2008). �Design and applications of semi-active suspension control systems.�

PhD thesis. Phd thesis, Politecnico di Milano, dipartimento di Elettronica e Informazione

(cit. on p. 13).

Spencer Jr, BF et al. (1997). �Phenomenological model for magnetorheological dampers.� In:

Journal of engineering mechanics 123.3, pp. 230�238 (cit. on p. 44).

Stanway, R, JL Sproston, and AK El-Wahed (1996). �Applications of electro-rheological �uids

in vibration control: a survey.� In: Smart Materials and Structures 5.4, p. 464 (cit. on

p. 44).

Stanway, RSJL, JL Sproston, and NG Stevens (1987). �Non-linear modelling of an electro-

rheological vibration damper.� In: Journal of Electrostatics 20.2, pp. 167�184 (cit. on

p. 44).

Stathopoulos, Georgios et al. (2016). �Operator splitting methods in control.� In: Foundations

and Trends in Systems and Control 3.ARTICLE, pp. 249�362 (cit. on p. 28).

Stellato, Bartolomeo et al. (2020). �OSQP: An operator splitting solver for quadratic pro-

grams.� In: Mathematical Programming Computation, pp. 1�36 (cit. on p. 29).

Sun, Weichao, Huijun Gao, and Peng Shi (2020). Advanced control for vehicle active suspension

systems. Springer (cit. on p. 12).

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An introduction. MIT

press (cit. on p. 127).

Tangirala, Arun K, Siddhartha Mukhopadhyay, and Akhilanand P Tiwari (2013). �Wavelets

applications in modeling and control.� In: Advances in chemical engineering. Vol. 43. El-

sevier, pp. 107�204 (cit. on p. 46).

Tora, Grzegorz (2012). �The active suspension of a cab in a heavy machine.� In: Advances on

Analysis and Control of Vibrations: Theory and Applications, p. 105 (cit. on p. 12).

Tseng, H. Eric and Davor Hrovat (2015). �State of the art survey: Active and semi-active

suspension control.� In: Vehicle System Dynamics 53, pp. 1034�1062 (cit. on p. 43).

Tyan, Feng et al. (2009). �Generation of random road pro�les.� In: Journal of Advanced En-

gineering 4.2, pp. 1373�1378 (cit. on p. 69).

Ullmann, Fabian (2011a). �FiOrdOs: A Matlab toolbox for C-code generation for �rst order

methods.� In: MS thesis (cit. on p. 29).

146 Bibliography

Ullmann, Fabian (2011b). �FiOrdOs: A Matlab toolbox for C-code generation for �rst order

methods.� In: MS thesis (cit. on p. 96).

Vandenberghe, Lieven (2010). �The CVXOPT linear and quadratic cone program solvers.� In:

Online: http://cvxopt. org/documentation/coneprog. pdf (cit. on p. 30).

Vanderbei, Robert J (1999). �LOQO: An interior point code for quadratic programming.� In:

Optimization methods and software 11.1-4, pp. 451�484 (cit. on p. 30).

Vaz, A Ismael F and Luís Nunes Vicente (2009). �PSwarm: a hybrid solver for linearly con-

strained global derivative-free optimization.� In: Optimization Methods & Software 24.4-5,

pp. 669�685 (cit. on p. 31).

Vidyasagar, Mathukumalli (2001). �Randomized algorithms for robust controller synthesis

using statistical learning theory.� In: Automatica 37.10, pp. 1515�1528 (cit. on pp. 84, 85).

Vivas-Lopez, Carlos et al. (2014a). �INOVE: a testbench for the analysis and control of auto-

motive vertical dynamics.� In: 14th International Conference on Vehicle System Dynamics,

Identi�cation and Anomalies (VSDIA 2014) (cit. on pp. 3, 16, 17).

Vivas-Lopez, Carlos A et al. (2014b). �Modeling Method for Electro-Rheological Dampers.�

In: IFAC Proceedings Volumes (IFAC-PapersOnline) (cit. on p. 13).

Wächter, Andreas and Lorenz T Biegler (2006a). �On the implementation of an interior-

point �lter line-search algorithm for large-scale nonlinear programming.� In: Mathematical

programming 106.1, pp. 25�57 (cit. on p. 30).

� (2006b). �On the implementation of an interior-point �lter line-search algorithm for large-

scale nonlinear programming.� In: Mathematical programming 106.1, pp. 25�57 (cit. on

p. 96).

Williams, Grady et al. (2016). �Aggressive driving with model predictive path integral con-

trol.� In: 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE,

pp. 1433�1440 (cit. on p. 67).

Winslow, Willis M (1947). Method and means for translating electrical impulses into mechan-

ical force. US Patent 2,417,850 (cit. on p. 13).

Zanelli, Andrea et al. (2020). �FORCES NLP: an e�cient implementation of interior-point

methods for multistage nonlinear nonconvex programs.� In: International Journal of Con-

trol 93.1, pp. 13�29 (cit. on pp. 29, 96).

Zhang, Lixian et al. (2017). �Cloud-Aided State Estimation of A Full-Car Semi-Active Sus-

pension System.� In: arXiv preprint arXiv:1701.03343 (cit. on p. 81).

Zometa, Pablo, Markus Kögel, and Rolf Findeisen (2013). �µAO-MPC: a free code generation

tool for embedded real-time linear model predictive control.� In: 2013 American Control

Conference. IEEE, pp. 5320�5325 (cit. on p. 96).

	Table of Acronyms and Notations
	Thesis framework and contribution
	Thesis framework
	Introduction and problem statement of the thesis
	Structure of the thesis

	I Thesis background and theoretical background
	Thesis background
	Prelude
	Automotive suspension system
	Introduction to automotive suspension systems
	Passive suspension system
	Active suspension system
	Semi-active suspension system

	Vertical vehicle dynamics modeling
	Quarter car vehicle model
	Half car vehicle model (Roll oriented model)

	Performance and objective requirements for vehicle suspension control
	INOVE test platform (GIPSA lab)
	Hardware description
	Plant and actuator description
	Sensor description

	Functional mock-up interface (FMI)
	EMPHYSIS project and embedded FMI (eFMI) standard
	EMPHYSIS project
	Embedded Functional Mockup Interface (eFMI)

	Conclusions

	Theoretical background
	Introduction
	Nonlinear Optimization
	Introduction
	Classification of nonlinear optimization problems
	Derivative based methods
	Derivative free methods

	Fundamentals of Nonlinear Model Predictive Control
	Introduction
	Direct methods
	Direct single shooting method
	Direct multiple shooting method
	Direct collocation method

	A Gentle Introduction to GPGPU Computing for Control Engineers using CUDA Programming Paradigm

	II pNMPC with RT applications for control of semi-active suspension system
	Experimental implementation of pNMPC scheme for control for semi-active suspension system
	Introduction
	Related works
	Chapter contributions

	Control oriented ER semi-active damper modeling and parameter identification
	Vehicle modeling - Quarter car model

	Quasi-static nonlinear ER damper model
	Parameter estimation
	ER semi-active damper response time estimation
	Design of experiments
	Non-linear least squares (NLS) based data fitting

	pNMPC design requirements for semi-active suspension system
	Objective requirements
	Constraint requirements

	Parameterized NMPC
	RT HiL implementation of pNMPC controller and Linearization based MPC controller on dSPACE MABXII
	Linearization based MPC design
	Simulation analysis for pNMPC method

	Real-time Implementation
	Computational efficiency test
	Chirp test with comfort objective

	Experimental implementation of pNMPC controller on INOVE test platform
	Comparison controllers
	Results and Implementation
	Chirp road profile test
	Bump road profile test

	Conclusions

	GPU based parallelized pNMPC scheme for control of semi-active suspension system
	Introduction
	Related works
	Chapter contribution

	Half car model with semi-active suspension system
	Half car mathematical model without road model
	Half car mathematical model with stochastic road model
	ISO road profile
	Mathematical terminology
	Nonlinear quasi-static SA damper model

	Parallelized pNMPC scheme for control of semi-active suspension system without road model
	Mathematical model notations
	Parallelized pNMPC design requirements
	Objective requirements for Parallelized pNMPC without road model
	Constraint requirements for Parallelized pNMPC without road model

	MPC problem formulation
	Parallelized pNMPC Method

	Analysis and Simulation results
	Computational time analysis b/w CPU and GPU
	Comparative analysis
	Road profile simulation test - Ride handling

	Scenario-stochastic pNMPC scheme for control of semi-active suspension system
	Mathematical model notations
	SS-pNMPC design requirements
	Objective requirements for SS-pNMPC controller
	Constraint requirements for SS-pNMPC controller

	SNMPC problem formulation
	SS-pNMPC method
	Method description
	Scenario generation

	Results and simulations
	RT embedded tests on NVIDIA boards
	Pareto optimality of objectives
	Road profile simulation test

	Conclusions

	III pNMPC - A code generation software tool for implementation of derivative free pNMPC scheme for embedded control systems
	pNMPC code generation tool
	Introduction
	Prelude
	Motivation
	Related works
	Chapter contributions

	pNMPC theoretical background
	pNMPC problem formulation
	Visualization of control parameterization

	Derivative free optimization module
	Constraint reformulation (Scalarization)
	SQP based BBO (Uni-variate case)
	SQP based BBO (Multi-variate case)

	pNMPC S/W structure
	Symbolic classes
	OCP design classes
	Control parameterization classes
	Real/Symbolic classes
	Code generation classes

	pNMPC code generation module
	Application of pNMPC toolbox
	Cart-pole swing up problem
	PVTOL stabilization problem with Black-box models

	HiL tests on dSPACE MABXII for control of semi-active suspension system for quarter car vertical dynamics model
	Parallelized pNMPC patch
	Parallelization of the optimization module on CUDA GPUs and CUDA code generation module
	Application of Parallelized pNMPC S/W for 2D crane control

	Future works and conclusions

	pNMPC C++ code examples

