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algorithms accounting for a possible prior on the signal subspace distribution. The practical in-
terest of all these PCA algorithms was illustrated in low-rank filtering and radar detection applications.

• M-estimation: When it comes to second order moment estimation, M -estimators of the scatter
constitute a robust alternative to the traditional sample covariance matrix. The computation of these
robust estimators is challenging when some structural prior is involved, as well as an insufficient
sample support occurs. To overcome these issues, we proposed several regularized or structured
estimation algorithms. Notably, we derived and studied the performance of 2-steps approaches
for robust structured covriance matrix estimation in the thesis of B. Meriaux. In parallel, we also
proposed new statistical characterizations for detection processes and PCA based on M -estimators in
the thesis of G. Drašković.

•Majorization-Minimization (MM) for subspace bases: MM is an optimization technique that
we leveraged extensively in the aforementioned works. In collaboration with Hong Kong University
of Science and Technology (HKUST), we proposed a unified approach to MM for the Stiefel manifold
(set of tall orthonormal matrices). This lead to a practical framework to deal with the constrained
optimization of a large familly cost functions. This framework drove the formulation of a novel sparse
PCA algorithm, combining a robust subspace recovery cost and sparsity promoting penalties. We
currently explore extensions to other applications, as well as for optimization in distributed settings.

• Riemannian geometry: For subspace and covariance estimation problems, the Riemannian point
of view offered interesting perspectives on to two complementary aspects. First, the so-called intrinsic
Cramér-Rao theory allowed us to derive performance bounds on natural Riemannian distances
for covariance estimation problems in elliptical distribution. This study was extended to derive a
performance bound for subspace recovery problems (i.e., on the Grassmann manifold) in spiked
elliptical models. Second, we proposed several algorithms for optimizing costs functions of low-rank
structures (and structured structured covariance matrices) within the framework of Riemannian
optimization.

• Sparse subspace clustering in array processing: We started to explore the use of robust
robust subspace clustering algorithms after initiating a collaboration with North Carolina Sate
University (NCSU). In this scope, we extended existing algorithms to include a dictionary of prior
targets, and analyzed their use for radar detection applications.

• Change detection in satellite image time series: Local covariance matrix equality testing is a
popular approach to detect changes in SAR image times series. In this scope, we derived a familly of
new detectors to extend this approach to principal components, i.e. testing changes within low rank
signal structures in covariance matrices. This approach, coupled with robust estimation was shown to
yield improved change detection performance on real data (notably illustrated by the work of A. Mian).

For the sake of storytelling, only students and international collaborations were mentioned above.
However, I cannot conclude this overview without thanking my regular co-authors, who also deserve
a lot of credit for these works: G. Ginolhac, F. Pascal, P. Forster, J-P. Ovarlez, M.N. El Korso, C.
Ren, A. Renaux, and F. Bouchard.
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1.1 The subspace recovery problem

In many data sets, the relevant information often lies in a subspace of much lower dimension than the
ambient observation space. Thus, the goal of many learning algorithms can be broadly interpreted as
trying to find, or exploit, this underlying structure. In this scope, a recurring idea is that the whole
data can generally be projected with no (or minimal) loss on a linear subspace of low-dimension. This
principle is illustrated in Figure 1.1, where we can grasp that (most of) the 3D data information can
simply be contained in the represented 2D plan.
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Figure 1.1: Illustration of data contained in a low-dimensional subspace (outliers represented in red).

The issue of estimating this unknown subspace directly from the data will be referred to as the
subspace recovery problem. The most celebrated solution for this problem is the principal component
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analysis (PCA), which is briefly reviewed below. Nevertheless, the subspace recovery problem still
raises some challenges and theoretical questions, that will be discussed afterward.

1.1.1 From principal component analysis...

An insightful overview of PCA can be found in [Jolliffe, 1986], which constitutes a solid reference on
the topic. This short introduction is inspired by the two PCA’s historical roots, with a personal take
on the reformulation of the problems so that the document feels consistent.

The seminal idea originates from [Pearson, 1901], which proposed to find the subspace that
minimizes the sum of the residual errors on the centered (or demeaned) samples {zi}ni=1 (with
zi ∈ Cp ∀i ∈ [[1, n]]) after projection. A k-dimensional subspace can be represented in many ways,
but we will focus on the use of an orthonormal basis U ∈ St(p, k), where St(p, k) denotes the Stiefel
manifold:

St(p, k) = {U ∈ Cp×k | UHU = I}. (1.1)

Defining the projection error as d2(U, z) = ||(I − UUH)z||2F , the expressed problem can then be
straightforwardly rewritten as

maximize
U∈St(p,k)

Tr{UHSU}, (1.2)

with S =
∑n

i=1 ziz
H
i . A solution to this problem given by the k leftmost eigenvectors of S (where

leftmost stands for “associated with the largest eigenvalues”). Note that this solution can also be
obtained with the k leftmost singular vectors of the singular value decomposition (SVD) of the data
matrix Z = [z1, . . . , zn], which is why we often rely on the shortcut “PCA = SVD”.

This concept was then mainly re-developed by [Hotelling, 1933], who proposed to find the subspace
in which the projected data has maximal variance. Assuming that the covariance matrix1 of the data
is known, and denoted Σ = E[zzH ], this problem is expressed

maximize
U∈St(p,k)

Tr{UHΣU}. (1.3)

Of course Σ is generally unknown in practice, but it can be estimated with the sample covariance
matrix, i.e. Σ̂SCM = S/n. Plugging Σ̂SCM instead of Σ in (1.3) then yields the same solution
as previously. Nevertheless, the leap from geometrical to statistical interpretation offers interesting
perspectives. A main example is that if the columns of U correspond to eigenvectors of the covariance
matrix, the representation z̃i = UHzi produces uncorrelated entries. This aspect, coupled with the
dimension reduction, can be extremely useful in terms of interpretation/analysis of the data.

1.1.2 ... to current challenges

Unfortunately, the SVD of the data matrix does not solve every aspect of the subspace recovery
problem. This is especially true for modern data sets, that gather complex information for which a
single linear subspace may be too restrictive. Some of these current challenges are discussed below:

• Robustness: A common problem in many applications is the presence of outliers in the
dataset (e.g., as seen in red in Figure 1.1). These outliers can cause a subspace swap phe-
nomenon [Thomas et al., 1995], meaning that the standard PCA does not recover the relevant
signal subspace accurately. The issue is conceptually complex to tackle, as solving it requires
to characterize what is an outlier, which implies knowing the subspace we aim to recover in the
first place. Various approaches exist to address the problem of robustness to outliers in sub-
space recovery [Lerman and Maunu, 2018]. We can notably mention: redefining the cost of “best
fitting” in PCA [De La Torre and Black, 2003, Lerman and Maunu, 2017], using of robust statis-
tics to estimate the covariance matrix [Croux and Haesbroeck, 2000, Drašković et al., 2019],

1The initial work rather uses the correlation matrix, but both approaches have their merits, as discussed in
[Jolliffe, 1986, Sec. 2.3].
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or expressing of the problem as a low-rank plus sparse decomposition of the data matrix
[Chandrasekaran et al., 2011, Candès et al., 2011]. Each of these solution has their own merits,
depending on the context, meaning that other options still remain to explore. Some interesting leads
can also come from formulation of recovery problems with alternate representation of a subspace in
order to overcome limitations of existing methods. An example would be sparse subspace clustering,
where the subspaces are recovered through the factors of linear combinations linking the samples
[Elhamifar and Vidal, 2009].

• Structure and priors: Some applications can benefit from available prior information on the
subspace to be estimated (e.g., a rough knowledge from previous estimations). Some structural
information on the covariance matrix can also be obtained from physical considerations on the
observed phenomenon (e.g., Toeplitz for signals measured with uniform linear arrays) [Forster, 2001].
In some other cases, a sparse structure can be desired within the principal components in order
to simplify the variable selection and the statistical analysis [Hu et al., 2016]. Several approaches
exist to leverage these priors: Bayesian estimation [Besson et al., 2011], regularization penalties
[Benidis et al., 2016], structured parameterizations [Sun et al., 2016], etc., each with own benefits and
associated bottlenecks. As for the robustness issue, the challenge lies in the formulation of a (solvable)
estimation problem that both promote the desired structures, while ensuring good performance for
the process.

• Optimization: Once a new relevant optimization problem is formulated to respond to the two
aforementioned issues, it generally does not have an analytic solution as for the standard PCA.
Thus, the actual computation of such newly formulated subspace estimators is also at stake. Indeed,
subspaces are generally represented by objects with complex constraints, such as the orthonormality
of a basis, or the rank-deficiency of a matrix. The subspace recovery problem hence motivates the
development of efficient constrained optimization methods, for which we can, e.g., mention Rieman-
nian optimization [Absil et al., 2009], and majorization-minimization techniques [Sun et al., 2016].

• Performance analysis: Once a subspace recovery problem is cast within the prism of a statistical
model for the data, it is possible to theoretically study the ultimate estimation performance (Cramér-
Rao bounds) [Kay, 1993] or the statistical characterization of an estimator [Krim et al., 1992]. These
derivations are generally not trivial, either because the considered model is complex, or because
the studied estimator is not obtained in closed-form, on top of satisfying inherent constraints that
should be acknowledged in the analysis [Gorman and Hero, 1990]. Additionally, we can question the
performance criterion that should be used when dealing with subspaces represented by structured
parameters. An interesting option is to turn to the natural Riemannian distance between two
subspaces, which can take into account the aforementioned characteristics, as well as provide insight-
ful results. However, this approach generally implies technical difficulties in the analysis [Smith, 2005].

It goes without saying that this list is set as a motivation for the following chapters, but is not
meant to be exhaustive. There exists many other challenges related to subspace recovery, such as:
developing efficient on-line [Feng et al., 2013] or distributed methods [Huroyan and Lerman, 2018],
performing dimension reduction with non-linear representations [Pennec et al., 2018], recovering a
mixture of subspaces [Vidal, 2011], reducing the dimension of multilinear data [Lu et al., 2016]... Some
of these issues will be evoked as perspectives in the concluding chapter of this document.
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1.2 Manuscript organization and contributions

This section presents the outline of the rest of this manuscript. Each chapter is centered around a
theme and was aimed to be readable as a stand alone. Nevertheless, there are of course some overlaps
and connections between these chapters (common motivation, models/formulations, or optimization
techniques). These links are made as explicit as possible in the “big picture” presented at the end of
this section.

Chapter 2: Bayesian PCA with Compound Gaussian signals

This chapter introduces the model of a structured mixture of compound Gaussian distributions.
This statistical model appears as an interesting alternative to the multivariate Gaussian one, used
in standard probabilistic PCA. It notably allows to account for signals with fluctuating power, and
possibly outliers. We then present a family of distributions for orthonormal bases, that can be used
as Bayesian priors for the signal subspace. We then discuss the derivation of estimation processes for
the corresponding models.

Related publications in the cv (page xi)

• Non-Bayesian: [J1-J3], [C1-C5], [C7], [FC1, FC2].

• Bayesian models: [J10], [C12], [C19], [FC4].

Chapter 3: Robust covariance matrix estimation in elliptical models

This chapter presents the general framework of elliptical distributions (a family that encompasses the
compound Gaussians) and associated M -estimators of the scatter. First, we present new asymptotic
characterizations for PCA built with M -estimators and samples following an elliptical distribution.
Second, we discuss robust structured covariance matrix estimation methods adapted to this context:
a new algorithm is presented and statistically characterized. In a third part, intrinsic (manifold
oriented) Cramér-Rao bounds are derived, notably for covariance matrix estimation problems, as well
as subspace recovery problems in spiked (low-rank structured) elliptical models.

Related publications in the cv (page xi)

• Performance analysis [J5, J8, J9], [C10], [FC7, FC11].

• Structured covariance matrix estimation [J7], [C13, C15, C17], [FC9, FC10].

• Intrinsic Cramér-Rao bounds [J4], [C22], [X3].

Chapter 4: Change detection in satellite image time series

Classical statistical change detection methodologies based on covariance matrix analysis are usually
built upon the (unstructured) Gaussian assumption. In order to refine this approach, we discuss how
the aforementioned PCA models (compound Gaussian mixture and structured elliptical) can be inte-
grated in the formulation of change detection tests, and how to compute the corresponding detectors.
The idea is then applied to change detection in multivariate synthetic aperture radar image time series.

Related publications in the cv (page xi)

• Change detection [J6, J12], [C16, C18], [FC8, FC13], [X2].
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Chapter 5: Geometric approaches for subspace recovery

This chapter presents some of my recent works, leaping from “statistically” to “geometrically”
oriented formulations for subspace recovery. These approaches consist in designing optimization
problems that are not necessarily linked to a statistical distribution, but rather geometric insights
and functions/constraints that promote certain structures on the solution. First, we present
a new class of sparse PCA algorithms, for which the objective function is composed of an M-
estimation type subspace fitting term plus a regularizer that promotes sparsity in the principal
components. Second, we present a prospective reformulation of radar detection problem as a ro-
bust subspace clustering one (i.e. recovering multiple linear subspaces from a heterogeneous data set.).

Related publications in the cv (page x)

• Sparse PCA [X1].

• Subspace clustering [C14], [C20].

Chapter 6: Perspectives

This chapter concludes by drawing some research perspectives brought by the presented work.

Appendix A: Majorization-Minimization on the Stiefel manifold

Along this manuscript, it will often be mentioned that the occurring optimization problems can be
solved by tailoring dedicated majorization-minimization algorithms. The detailed derivation of these
algorithms will be voluntarily omitted in order to lighten the presentation. Nevertheless, to fill this
gap, this appendix presents a synthetic and generic framework for deriving majorization-minimization
algorithm for a variable U ∈ St(p, k), which constitutes a major part of the considered subspace
recovery problems. For other specific problems (side parameters estimation), the full derivations can
be found in the auxiliary annexes.

Annexes (auxiliary document)

The annexes consist in a side document, gathering a selection of my articles. It is not meant to be
extensively studied, as this main document already presents their core results in a synthetic manner.
However, interested readers can find here most of the technical details (algorithm derivations, proofs,
etc.) that were omitted in this synthesis.

Links with Ph.D. students and international collaborations

The following table details the implication of Ph.D. students and international collaborators in the
contributions of each chapter:

Chapter Ben Abdallah Drašković Mériaux Mian Bouchard Intl. collab.

2 X X
3 X X X
4 X X
5 X X

We also mention the following clarifications:
• Ph.D. students I officially supervised: R. Ben Abdallah, G. Drašković, B. Mériaux.
• Ph.D. students I worked with: A. Mian, F. Bouchard (now post-doc in our team).
• International collaborations: HKUST (Honk Kong), NCSU (USA).
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Big pictures

Since the section 1.1.2 was set as a motivation, we can report on which of the aforementioned challenges
the presented contributions bring an element of response to:

Links with challenges of section 1.1.2

Chapter Robustness Structure and priors Optimization Performance analysis

2 X X ∼
3 X X ∼ X
4 X X
5 X X X

We can add several remarks to this table:

• The word “robustness” appears in each chapter, however it can refer to various meanings that
will be specified. The three main examples are: to outliers, to various underlying distributions
and model mismatches, to heterogeneity in the data set.

• Some contributions in Chapter 2-4 involve the development of majorization-minimization algo-
rithms. However, these chapters rather focus on the problem formulation. For more details
on majorization-minimization, the reader will be referred to the first part of chapter 5. Some
of my recent work addresses Riemannian optimization algorithms. These are discussed in the
perspectives of chapter 3, but not presented in details.

• Chapter 3 focuses on elliptically distributed samples, while Chapter 2 uses structured mixtures
of compound Gaussian distributions. Chapter 4 discusses both models in the context of a specific
application, however the presented contribution focuses on the first one.

To conclude this synthesis, Figure 1.2 presents the global picture, i.e. details the topics (and
corresponding chapters) evoked in this manuscript.
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Figure 1.2: Overview of the topics considered in this manuscript, with corresponding chapters.
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1.3 Can we recover a subspace from all this?

Finally, it is hard not to reduce the dimension of this work... Consider the following data matrix:

[J1] [J2] [J3 [J4] [J5] [J6] [J7] [J8] [J9] [J10 [X1] [X2] [X3] [C1 [C4] [C7] [C8] [C9] [C10] [C11 [C14] [C17] [C18] [C19] [C20] [C21] [C22] [C23]
Sta X X X X X X X X X X X X X X

Geo X X X

MM X X X X X X X

Rie X X X X

CRB X X X X X

Perf X X X X X X

Bay X X

Reg X X X X

Cov X X X X X X X X X X X X X X X X X X X X

App X X X X X X X X X X X X X X X

Rob X X X X X X X X X X X X X X X X X X

where each sample represents a paper shortlisted from page xi (28 in total), and measurements
consists in a list of 11 yes-or-no (0 or 1) keywords: statistical PCA, geometric PCA, MM, Riemannian
geometry, CRLB, performance analysis, Bayesian, regularization, covariance, application, robustness.

PCA is applied on the correlation matrix of the data (which appeared more relevant for
binary entries): the left side of Figure 1.3 represents the data points projected on the subspace
spanned by the 3 leading principal components, containing 54% of the information. From this
representation, we can interpret 3 clusters: a) the group [X1, C14, C20], which gather recent
works, and illustrates a shift from statistical to sparse/geometrical subspace representations; b)
the group [J4, C9, C22], which focus only on Cramér-Rao bounds derivations; c) the rest, which
is mostly about statistics-based approaches (either covariance matrix estimation or probabilistic PCA).

The right side of Figure 1.3 displays 2D representation on the data projected onto the 2 leading
principal components, for which we can give the following interpretation: The component u1

separates [J10, X1, C18] (estimation algorithms) from [J7, X3, J4] (performance and Cramér-Rao
analyses), which seem to reflect whether or not a statistical analysis is present in the contribution.
The component u2 opposes [X1, C14, C20, J9, C10, C17] to [J10, J4, X3], which appears to indicate
if an application is targeted or not. Additionally the line following (u1 − u2) splits the contributions
between “PCA only” and “covariance only” approaches. The points in the center contain some
contributions about low-rank structured covariance matrices, which is a bridge between the two
approaches. The plane {u3,u4} (not displayed) was hard to interpret as clearly, except that u3

separates the clusters a) and b) from c), as seen in the 3D representation in the left.

Of course, this analysis was made with no pretension outside of being a fun pretext to apply PCA
on papers about PCA, before moving to the technicalities of the upcoming chapters.
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Figure 1.3: PCA applied on the keywords: data projected on {u1,u2,u3} (left), and {u1,u2} (right).



2 | Bayesian PCA with Compound
Gaussian signals

Contents

2.1 Contributions of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Context overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Probabilistic PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Beyond Gaussian models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Data models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Compound Gaussian distributions . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Generalized Bingham-Langevin distributions . . . . . . . . . . . . . . . . . . . 11

2.3.3 Structured mixtures of compound Gaussian models . . . . . . . . . . . . . . . . 13

2.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Maximum a posteriori (MAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Minimum mean square distance (MMSD) . . . . . . . . . . . . . . . . . . . . . 15

2.5 Simulations and application . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.2 Application to radar detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Onward to the next chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Contributions of the chapter

This chapter concerns subspace recovery with a statistical approach. We present a series of
statistical model (based on structured mixtures of compound Gaussian distributions) suited to
this problem and discuss their relevance in signal processing applications. We then extend these
models to a Bayesian context, where a prior distribution is assumed on the signal subspace basis in
order to account for potential available information. We then present several estimation methods
driven by this model, and finally illustrate their interest on simulations and a radar detection problem.

The presented work consists in the follow-up of my thesis results, which we generalized to a Bayesian
setting in the thesis of Rayen Ben Abdallah.
Related publications in the cv (page xi): Non-Bayesian (my thesis): [J1-J3], [C1-C5], [C7], [FC1],
[FC2]. Bayesian models (Thesis of Rayen Ben Abdallah): [J10], [C12], [C19], [FC4].

2.2 Context overview

2.2.1 Probabilistic PCA

Interestingly, the initial derivations of PCA [Pearson, 1901, Hotelling, 1933] are obtained without
any assumption on the probabilistic model of the data (only the second-order moment is assumed



CHAPTER 2. BAYESIAN PCA WITH COMPOUND GAUSSIAN SIGNALS 9

to exist). The term “probabilistic PCA” (PPCA) was coined in [Tipping and Bishop, 1999b], who
demonstrated that PCA can also be derived within a density estimation framework. Indeed, consider
that the samples are drawn as the sum of a low-rank structured signal plus noise

z
d
= Ws + n (2.1)

with W ∈ Cp×k a full rank matrix, s ∼ CN (0, I) ∈ Ck and n ∼ CN (0, σ2I) ∈ Cp. We then
have the representation z ∼ CN (0,Σ) with Σ = WWH + σ2I. The maximum likelihood estima-
tor (MLE) for this model corresponds to the regularization of the sample covariance matrix, where
the last p − k eigenvalues are averaged. Hence, from the point of view of subspace recovery (i.e.,
estimating span(W)), this model still leads to the standard PCA since eigenvectors of the sample
covariance matrix are kept as estimators. However this formulation of the problem opens the path
for numerous extensions. For example, [Tipping and Bishop, 1999b] exploits this model to propose
a computationally efficient expectation-maximization (EM) algorithm (close to the power iteration
method [Golub and Van Loan, 2012]), as well as a generalization to the case of data with missing
entries [Little and Rubin, 2019]. This approach was generalized to Gaussian mixture models for clus-
tering and/or multiple subspace recovery in [Tipping and Bishop, 1999a]. Finally, a link with the
so-called factor model in econometrics [Ruppert, 2011] can be pointed out since it generally considers
(2.1) with n ∼ CN (0,D), where D is diagonal (i.e. a different variance for each entries).

2.2.2 Beyond Gaussian models

Non-Gaussian signals

In the scope of PPCA, a main angle that still draws research attention is to consider models that go
beyond the Gaussian distribution for the two signal components in the representation (2.1). The ratio-
nale is that if an estimation algorithm accounts for a statistical model with a better empirical fit to the
data, we can expect a more accurate subspace recovery. The presented contributions will follow this
idea and consider the use of compound Gaussian distributions (denoted CG) for the signal component.
The approach was mainly motivated by high-resolution array processing application, as these distribu-
tions are suited to model sources with fluctuating power [Greco et al., 2006, Ollila et al., 2012b], and
where the columns of W represent steering vectors. Embedding compound Gaussian signals in white
Gaussian noise then reflects the thermal noise of the system. In these applications, the signal subspace
requires to be estimated to apply adaptive subspace methods [Haardt et al., 2014] or low-rank filters
(interference cancelation) [Rangaswamy et al., 2004, Ginolhac and Forster, 2016]. However, mixtures
of compound Gaussian distributions are quite general and were also used in the statistical literature,
for which we can point some references:

Model in (2.1) n ∼ CN (0, σ2I) n ∼ CG(0, σ2I)

s ∼ CN (0, I)
PPCA

[Tipping and Bishop, 1999b]
Heteroscedastic PPCA

[Hong et al., 2018]

s ∼ CG(0, I)
CG subspace estimation

(detailed section 2.3)
Robust PPCA

[Archambeau et al., 2006, Chen et al., 2009]

Another approach that we can mention consists in simply assuming a general non-Gaussian multivari-
ate distribution on z with the second order moment directly structured as Σ = WWH + σ2I. This
approach, rather than refining the structure of multiple-contribution models (2.1), offers generally less
physical interpretation. Yet, it can lead to good estimation performance in practice: robust estimation
approaches within this context will be studied in Chapter 3 and 4.

Bayesian priors in PCA

In some applications, we might want to account for some available prior knowledge on the subspace
to be recovered. This prior information can be for example drawn from previous estimates in a
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sequential process, or from a physical model of the data. From the Bayesian perspective, accounting
for this information can be done by assigning a prior distribution on the orthonormal subspace basis
and deriving corresponding Bayesian estimators (e.g., maximum a posteriori and minimum mean
squared distance). This approach was initially proposed to develop Bayesian PCA algorithms in
[Srivastava, 2000, Besson et al., 2011]. In [Besson et al., 2012], these results have been extended to a
subspace parameterized by its CS decomposition. In [Elvira et al., 2017a, Elvira et al., 2017b], these
concepts were extended to the Bayesian non-parametric framework in order to adaptively select the
rank of the subspace to be estimated. In this scope, this chapter will present the derivation of Bayesian
PCA algorithms for compound Gaussian sources.

2.3 Data models

2.3.1 Compound Gaussian distributions

Compound Gaussian distributions, also referred to as spherically invariant random vectors [Yao, 1973],
have been widely employed in the statistical signal processing literature e.g., in image processing
[Shi and Selesnick, 2007, Zozor and Vignat, 2010, Portilla et al., 2003], and for modeling radar clutter
[Greco et al., 2006, Ollila et al., 2012b]. A main interest is that they encompass a large family of
multivariate distributions, notably heavy-tailed ones. These distributions are a sub-family of the wider
class of elliptical distributions [Ollila et al., 2012a] (that will be presented in Chapter 3). However, we
focus here on compound Gaussian distributions only because of a practical representation theorem,
that will be instrumental to handle mixtures models and Bayesian priors:

Definition 2.3.1. Compound Gaussian distribution
A p-dimensional CG vector is represented as a product of two statistically independent components,
i.e., if z ∈ Cp follows a compound Gaussian distribution, denoted z ∼ CG(µ,Σ, fτ ), it has the following
stochastic representation

z
d
= µ +

√
τd, (2.2)

where

i) µ ∈ Cp is the center of distribution, which coincide with E{z} = µ when existing.

ii) τ ∈ R+ is a positive random scalar, called texture, of p.d.f. fτ . This parameter is statistically
independent of d.

iii) d ∈ Cp follows a zero-mean multivariate complex Gaussian distribution of covariance matrix Σ,
denoted, d ∼ CN (0,Σ). The matrix Σ ∈ H++

p (H++
p denotes the set of p × p positive definite

Hermitian matrices) is referred to as the scatter matrix. Notice that if E{τ} <∞, the covariance
matrix of z exists and is proportional to the scatter matrix, i.e., E{(z−µ)(z−µ)H} = E{τ}Σ.

The p.d.f. of a random vector z ∼ CG(µ,Σ, fτ ) is thus defined by

f(z) = π−M |Σ|−1

∫ ∞
0

τ−M exp

{
−(z− µ)HΣ−1(z− µ)

τ

}
fτ (τ)dτ, (2.3)

and conditionally to the texture, the random vector z has the distribution z|τ ∼ CN (µ, τΣ).

Note that compound Gaussian distributions are not uniquely defined, as the vectors

z ∼ CG(µ,Σ, fτ ) and z′ ∼ CG(µ, cΣ, fτ ′), with τ ′ = τ
c and c ∈ R∗+, satisfy z

d
= z′. In order

to avoid any ambiguity, we may impose an arbitrary scaling constraint, such as Tr{Σ} = 1, |Σ| = 1,
or E{τ} = 1 (when E{τ} <∞).

Depending on the choice of fτ , the compound Gaussian representation can lead to numerous
usual multivariate distributions, such as Gaussian, Weibull, K-, and Student t- distributions (c.f.
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[Ollila et al., 2012a] for details). In most applications, a strong prior information on the texture
distribution is not actually available. In order to design algorithms that are robust to the whole
family compound Gaussian distributions, a common approach is to consider that the texture τ is
unknown and deterministic for each realization, which offers an interesting robustness-performance
trade off [Tyler, 1987, Pascal et al., 2008b]. This model will be denoted as below:

Definition 2.3.2. Compound Gaussian distribution with deterministic texture
Consider a n-sample {zi}ni=1 following a compound Gaussian distribution while assuming a deter-
ministic texture τi for each sample zi. We denote this model by zi ∼ CG(µ,Σ, δτi), or equivalently,
zi|τi ∼ CN (µ, τiΣ), ∀i.

2.3.2 Generalized Bingham-Langevin distributions

Definition

First, recall that we denote the Stiefel manifold St(p, k) = {U ∈ Cp×k | UHU = I}. In this section,
we present a familly of distributions for orthonormal bases U ∈ St(p, k) from the field of directional
data analysis. Probability distributions and statistical inference on St(p, k) have been developed
primarily in the spatial statistics literature [Chikuse, 2003, Mardia and Jupp, 2009], starting with
the real circle and real sphere, then extended to higher dimensions (and the complex case). These
distributions were notably used for the formulation of Bayesian PCA algorithms [Srivastava, 2000,
Besson et al., 2011]. In [Ben Abdallah et al., 2020], we introduced the complex generalized Bingham
Langevin (CGBL) distributions as a generalization of these directional statistics to the case of matrix
variables with complex entries: the CGBL is a probability distribution on St(p, k) which combines
linear and quadratic terms. CGBL are defined as follows:

Definition 2.3.3. Complex generalized Bingham Langevin (CGBL) distribution
The CGBL is parametrized by the set of Hermitian matrices {Ar} ∈ H+

p and the matrix C =

[c1, . . . , ck] ∈ Cp×k. We denote U ∼ CGBL(C, {Ar}) when the p.d.f. of U = [u1, . . . ,uk] on St(p, k)
reads

pCGBL(U) = cCGBL(C, {Ar})exp

{
k∑
r=1

Re{cHr ur}+ uHr Arur

}
(2.4)

where cCGBL(C, {Ar}) is a normalizing constant.

From (2.4), we can interpret that pCGBL promotes the concentration of each vector ur around
cr and each range space uru

H
r around the subspace associated to the strongest eigenvalues of the

Hermitian matrix Ar. Typically, if Ar = A, ∀r ∈ [[1, k]], the range space UUH tends to be close
to the dominant eigenspace of A. In the following, we list some usual special cases of the CGBL
distribution.

Example 2.3.1. Complex invariant Bingham (CIB) distribution
The CIB is a special case of the CGBL where C = 0 and Ar = κŪŪH , ∀r ∈ [[1, k]] where Ū ∈ St(p, k)
represents the center of the distribution and κ denotes the concentration parameter. We denote U ∼
CIB(κ, ŪŪH) when U has as p.d.f. of the form

pCIB(U) = cCIB(κ, Ū)etr
{
κUHŪŪHU

}
(2.5)

in which cCIB(κ, Ū) denotes the normalizing constant.

Note that the pCIB(U) is invariant by rotation U′ = UQ, ∀Q ∈ St(p, k). This means that pCIB

characterizes a distribution for the subspace represented by the orthogonal projector UUH , which will
be its main interest.
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Example 2.3.2. Complex Langevin (CL) distribution
The CL is a special case of the CGBL for which {Ar = 0} and C = κŪ, where Ū ∈ St(p, k) is the
center of distribution and κ is the concentration parameter. We denote U ∼ CL(κ, Ū) when U has as
p.d.f. of the following form

pCL(U) = 0F1(
1

2
N,

1

4
ŪHŪ)−1etr

{
κRe{ŪHU}

}
(2.6)

with 0F1(1
2N,

1
4ŪHŪ)−1 is the normalizing constant for this distribution.

To illustrate these distributions, Table 2.1 displays the p.d.f. of the real Bingham distribution
u ∼ B(κūūT ) and the real Langevin distributions u ∼ L(κū) on St(2, 1) (unit circle in R2) where
ū = [1/

√
2, 1/
√

2] defines the center of distribution, and κ is a concentration parameter. We note that
for high value of κ ∈ R∗+, i.e., κ = 50, the generated samples u ∼ L(κū) are more concentrated around
the center ū. For real Bingham distribution, the samples are gathered on both sides ū and −ū, since,
this distribution characterizes the quantity uuT .

Bingham distribution Langevin distribution
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Table 2.1: The p.d.f. of Bingham and Langevin distributions for various values of concentration
parameter κ and for a prior center ū = [1/

√
2, 1/
√

2] on St(2, 1) (represented by the unit circle) and
100 samples generated according to these distributions

Sampling from CGBL distribution

Several sampling methods were proposed in order to simulate random matrices drawn from the afore-
mentioned distribution. Such approaches are based on Markov Chain Monte Carlo (MCMC) methods
[Hoff, 2009] and/or acceptance rejection schemes [Kent et al., 2013]. In [Ben Abdallah et al., 2020],
we proposed a general method to draw samples as U ∼ CGBL(C, {Ar}). The proposed sampling
technique is based on previous results, and summarized as follows:



CHAPTER 2. BAYESIAN PCA WITH COMPOUND GAUSSIAN SIGNALS 13

i) The generation of U is obtained as a Markov chain on the columns {ur}, as proposed in
[Hoff, 2009, Besson et al., 2011].

ii) The generation of each ur is obtained by using the results of [Kent et al., 2013], which proposed
an acceptance rejection method to sample from a vector Bingham-Langevin distribution. For
this problem [Hoff, 2009] proposed a Markov chain on the entries of the vectors. Both meth-
ods allow to sample the desired distribution, however, the acceptance rejection scheme from
[Kent et al., 2013] allows us to significantly reduce the computation time.

Notice that [Hoff, 2009] and [Kent et al., 2013] proposed methods adapted to distributions of real
variables. In order to generalize these sampling techniques to the case of complex distributions, we
resort to the change of variables proposed in [Mardia and Jupp, 2009].

2.3.3 Structured mixtures of compound Gaussian models

This section details several models that we used to propose signal subspace estimation methods. These
models are variations around (2.1) using compound Gaussian signals with deterministic textures. An
important note is that we resort to the reparameterization Σ = WWH = UDUH , with U ∈ St(p, k)
and D a diagonal matrix with positive entries. The main goal is to explicitly focus on the subspace
recovery problem, e.g., in the structure of the MLE. Another interest of this parameterization is the
possibility to include Bayesian priors directly on the parameter of interest U, rather than on the
intermediary W [Bishop, 1999].

Definition 2.3.4. Noisy low-rank compound Gaussian (LRCG)
Consider a n-sample {zi}ni=1 having the stochastic representation

zi
d
=
√
τiUD

1/2si + ni, (2.7)

with ni ∼ CN (0, I), si ∼ CN (0, I), U ∈ St(p, k) and D = diag(d) ∈ Rk×k+ diagonal with positive
entries, and where τi is an unknown positive deterministic texture. We denote this LRCG model by
its conditional representation zi|τi ∼ CN (0, τiΣ + I), ∀i, with Σ = UDUH .

Again, LRCG corresponds to a model for low-rank non-Gaussian signal embedded in white Gaus-
sian noise, which offers a very general framework for generic PPCA, as discussed in [Besson, 2016].
Note that we assumed knowledge of the white Gaussian noise power, or equivalently σ2 = 1 for the
ease of exposition. However, the extension to unknown σ2 can be done trivially.

Definition 2.3.5. Simplified LRCG (LRCGs)
Consider a n-sample {zi}ni=1 having the stochastic representation

zi
d
=
√
τiUsi + ni, (2.8)

with ni ∼ CN (0, I), si ∼ CN (0, I) with U ∈ St(p, k), and where τi is an unknown positive deterministic
texture. We denote this LRCGs model by its conditional representation zi|τi ∼ CN (0, τiUUH +I), ∀i.

The model LRCGs was initially introduced as a relaxation of LRCG (identical eigenvalues for the
low-rank signal covariance matrix), which turned out to be difficult to solve from the point of view
of ML estimation [Raghavan, 2012, Breloy et al., 2013]. However, as we will see, this approach leads
to good performance, even in the mismatched case. This observation suggests that it is reasonable to
neglect the variations of eigenvalues if the main goal is only to estimate the signal subspace.

Definition 2.3.6. Simplified LRCG with outliers (LRCGo)
Consider a n-sample {zi}ni=1 having the stochastic representation

zi
d
=
√
τiUsi +

√
βiU⊥oi + ni, (2.9)
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with ni ∼ CN (0, I), si ∼ CN (0, I), U ∈ St(p, k), oi ∼ CN (0, I), U⊥ ∈ St(p, p − k) an orthogonal
complement of U (i.e., [U,U⊥]H [U,U⊥] = I), and where τi and βi are unknown positive deterministic
textures. We denote this LRCGo model by its conditional representation zi|τi, βi ∼ CN (0, τiUUH +
βiU

H
⊥UH

⊥ + I), ∀i.

The model LRCGo considers potential outliers as orthogonal contributions to the signal subspace.
It was introduced in [Breloy et al., 2016] in order to propose a robust subspace recovery algorithm.
Interestingly, mixtures of orthogonal elliptical distributions are also referred to as haystack (or needle-
haystack) models the machine learning community [Lerman et al., 2015, Lerman and Maunu, 2017].
However, these are more generally used for assessing the performance of robust subspace recovery
algorithms, rather than for driving a parametric estimation problem.

Finally, we denote with B-LRCG, B-LRCGs, and B-LRCGo, the corresponding counterparts of
these three models when a prior U ∼ CGBL(C, {Ar}) is assumed on the signal subspace basis. We
can sum-up these models and (a selected) corresponding reference in the following table:

Model LRCG LRCGs LRCGo

PPCA [Sun et al., 2016] [Raghavan, 2012] [Breloy et al., 2016]

Bayesian PCA [Ben Abdallah et al., 2020] [Ben Abdallah et al., 2020] [Ben Abdallah et al., 2019a]

2.4 Algorithms

2.4.1 Maximum a posteriori (MAP)

For the LRCG model from definition 2.3.4, we denote the likelihood of a n-sample by L({zi}ni=1|U,θ),
where θ aggregates side parameters. Assuming a CGBL distribution as in (2.4) for U, the posterior
probability of this parameter is then given in

pU(U|{zi}ni=1) ∝ L({zi}ni=1|U,θ)pCGBL(U). (2.10)

After several manipulations, the maximum a posteriori (MAP) of this B-LRCG model can be expressed
as the solution of the problem

minimize
{τi},{dr},{ur}

n∑
i=1

k∑
r=1

[
ln (1 + τidr)−

τidr
τidr + 1

zHi uru
H
r zi

]
+ ln(pCGBL(U))

subject to τi ≥ 0, dr ≥ 0,

U = [u1, . . . ,uk] ∈ St(p, k)

(2.11)

where ln(pCGBL(U)) consists in linear and quadratic terms in U. This problem has no closed-form
solutions and requires the use of iterative algorithms. In [Ben Abdallah et al., 2020], we proposed to
leverage the majorization-minimization approach for this problem. The majorization-minimization
algorithm proceeds with two steps: i) (majorization) finding a function that locally upperbounds the
objective function up to a constant, referred to as surrogate function; ii) (minimization) minimizing
this surrogate function. This procedure generates a sequence that monotonically decreases the
objective value, and its main interest is that it can yield a sequence of subproblems that are easy to
deal with. Following this procedure, we derived appropriate surrogate functions in order to obtain an
algorithm with closed-form updates of the variables, and theoretical convergence guarantees. In order
to lighten the presentation, these tedious derivations are not reported in this chapter1. For more
information on the matter, Appendix A also details a generic majorization-minimization framework
for a parameter U ∈ St(p, k) (notably applicable to the update of U in (2.11)). Note that, when
setting ln(pCGBL(U)) = 0 (i.e., no prior), we also recover the algorithms to compute the maximum

1Interested readers can find the details in the sections 2.1 and 2.2 of the annexes
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likelihood from [Sun et al., 2016].

Interestingly, the MAP for B-LRCGo (resp. B-LRCGs with βi = 0, ∀i ∈ [[1, n]]) admits an
insightful structure in some specific cases. First, define Pk as the operator that extracts the k leftmost
eigenvectors of a matrix

Pk : H+
p −→ St(p, k)

M
EVD
= [Uk|U⊥k ] D [Uk|U⊥k ]H 7−→ Pk{M} = Uk.

(2.12)

We have the following theorem:

Theorem 2.4.1. MAP structure for B-LRCGo [Ben Abdallah et al., 2019a]
Let {zi}ni=1 be a n-sample following the B-LRCGo model in definition 2.3.6, with U ∼ CIB(κ, ŪŪH)
(cf. example 2.3.1). The MAP of the signal subspace basis Û satisfies the fixed-point equation

Û = Pk

[
n∑
i=1

ρ
(
Û, zi

)
ziz

H
i + κŪŪH

]
, (2.13)

where the function ρ is defined by

ρ
(
Û, zi

)
=

max(0, τ̂i − β̂i )

(β̂i + 1) (τ̂i + 1)
, with

{
τ̂i = max(0, zHi ÛÛHzi/k − 1),

β̂i = max(0, zHi (I− ÛÛH)zi/(p− k)− 1).
(2.14)

Hence, this subspace estimator is contained in the dominant eigenspace of an intermediary sample
covariance matrix (built from adaptively weighted samples) plus a weighted projector on the center
of the prior. The adaptive weights tend to reject (resp. promote) samples if they are perceived as
outliers (resp. inliners), which occurs when β̂i > τ̂i (resp. β̂i � τ̂i). Such estimate can be obtained
through fixed point iterations, which also correspond to a block-coordinate descent algorithm with
closed form updates on each parameters.

2.4.2 Minimum mean square distance (MMSD)

The MMSD estimator minimizes the expected Euclidean distance between the true range space
R(U) = UUH and its estimateR(Û) = ÛÛH . This formulation was proposed in [Besson et al., 2011],
in which its practical expression is obtained as follows:

ÛMMSD = arg min
Û

EU,Z

{
‖ ÛÛH −UUH ‖2F

}
= arg max

Û
EU,Z{Tr{ÛHUUHÛ}}

= arg max
Û

∫ [∫
Tr{ÛHUUHÛ}p(U|Z)dU

]
p(Z)dZ

= arg max
Û

Tr

{
ÛH

[∫
UUHp(U|Z)dU

]
Û

}
=Pk

{∫
UUHp(U|Z)dU

}
∆
= Pk {M(p(U|Z))}

(2.15)

where Z = [z1, . . . , zn] ∈ Cp×n denote the data matrix, and where Pk is defined in (2.12). Hence, the
MMSD depends on p(U|Z), which is specified from both the data model and the prior distribution
assigned to the parameters. Except from several special cases, there is no closed-form solutions
to compute M(p(U|Z)). However, the MMSD can still be evaluated using the so-called induced
arithmetic mean

ÛMMSD ≈ PP

 1

Nr

Nbi+Nr∑
n=Nbi+1

U(n)U(n)
H

 , (2.16)
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where U(n) are sampled from p(U|Z), Nbi stands for the burn-in samples (number of thrown samples
from the Markov chain), and Nr is the number of samples used to evaluate the integral.

Combining this methodology with the previous majorization-minimization approach, we
proposed several algorithms to evaluate the MMSD of the models LRCG and LRCGs in
[Ben Abdallah et al., 2020]. Again, the details are omitted for the sake of conciseness.

2.5 Simulations and application

2.5.1 Simulations

This section displays some simulations examples that allow to draw general conclusions on the devel-
oped methodologies. MLE, MAP and MMSD denote the estimators build using the true data model.
The suffixes “s” (resp.“o”) indicate the use of the LRCGs (resp. LRCGo) model for the estimation
process, even for actually LRCG distributed data (mismatch). Thus, we study the impact of assuming
a simplified model (equal eigenvalues) in this case. Ū denotes the “prior only” estimator. We consider
the the average fraction of recovered energy (AFE), defined as

AFE(Û) = EU,Z

{
Tr
{

ÛHUUHÛ
}}

/k, (2.17)

for a given estimator Û. Figure 2.1 displays the AFE of several algorithms for scenarios corresponding
to a general B-LRCG. Figure 2.2 displays the AFE of several algorithms for scenarios corresponding
to B-LRCGo.

• For LRCG scenarios, the MLE approach generally yields the same performance as the standard
PCA. The observation was also made in [Besson, 2016], where PCA is observed to reach an accuracy
close to the Cramér-Rao bound. This disappointing result can be explained by the structure of the
ML problem in (2.11): for high signal to noise ratio (high values of τkdr), the weights applied on the
samples tend to be close to 1, meaning that the signal subspace MLE is close to the one from the
standard PCA. This result is unexpected since it does not involve robust estimate of the covariance
matrix, even in the presence of non-Gaussian observations. The MLE still offers a gain when highly
impulsive signals occur, and when n is large enough to benefit from the natural “sample selection”
of the MLE’s structure, as observed in [Breloy et al., 2015]. Additionally, the ML approach remains
useful for other applications, e.g., when requiring the estimation of the covariance matrix parameters
[Breloy et al., 2016a].

• Bayesian estimators achieve better estimation accuracy thanks to the inclusion of prior knowledge.
In practice, such prior may not be fully available. However, the approach seems robust to slight
mismatches on the parameters selection. This can be observed e.g., in Figure 2.1, where the MMSD
of an approximated model reaches performance close the the actual MMSD. The MAP represents
an interesting trade-off between the MMSD and MLE, notably because of the computational cost
associated to the computation of the MMSD. Additionally, we can generally observe that the
approximation of equals eigenvalues (i.e., assuming LRCGs) is quite harmless if the only focus is the
estimation of the signal subspace.

• The most encouraging results are obtained when investigating the robustness of the developed sub-
space recovery methods. In this scope, Figure 2.2 illustrates that (B-)LRCGo can yield good recovery
in practice. Interestingly, the approach is also robust to wrong assumptions (simplifying priors, equals
eigenvalues), which permits the derivation of efficient algorithms with a low computational cost.

2.5.2 Application to radar detection

The inclusion of a Bayesian prior can significantly improve the performance of an estimation pro-
cess. However, the design of this prior depends on the considered application and comes from ap-
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Figure 2.1: AFE w.r.t. signal to noise ratio (SNR) for various estimators. B-LRCG model zk|τk ∼
CN (0, τkUDUH +σ2I), with τk ∼ Γ(ν, 1

ν ), ∀k, and ν = 0.5. [D]r,r = (k+1−r)/(
∑k

i=1 i) and σ2 to fix

the SNR as SNR= Tr{Λ}/σ2. U ∼ CGBL(0, {κ0φrŪŪH}kr=1), φr = (k + 1− r)/(
∑k

i=1 i), κ0 = 300,
Ū is the first vectors of the canonical basis. k = 5, p = 20, n = 3k (left) and n = 6k (right).
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Figure 2.2: AFE w.r.t. number of corrupted samples for outlier to noise ratio ONR=SNR=15dB (left),
and w.r.t. ONR for SNR=10dB (right). B-LRCGo model zk|τk, βk ∼ CN (0, τkUUH+βkU⊥UH

⊥+σ2I),
with τk ∼ Γ(1, 1) and βk ∼ Γ(1, 1), ∀k. U ∼ CIB(κ, ŪŪH), κ = 60, Ū is the first vectors of the
canonical basis. k = 5, p = 30, n = 20. For this scenario, the MAP and MMSD coincide.

propriate physical considerations/models on the system. In the following, we illustrate the prac-
tical use of the proposed methods for the airborne STAP detection [Ward, 1994]. In this appli-
cation, the clutter (response of the environment) lies in a low dimensional subspace that needs to
be estimated to perform adaptive interference cancellation. We consider the approach that directly
leverages the physical model of [Ward, 1994] in order to improve the performance of low-rank detec-
tors [Rangaswamy et al., 2004, Ginolhac and Forster, 2016] on a real dataset provided by the French
agency DGA/MI [Ovarlez et al., 2011]. The STAP detection problem is a binary hypothesis test:{

H0 : zi = ci + ni, ∀i ∈ [[0, n]]

H1 : z0 = d + c0 + n0, zi = ci + ni, ∀i ∈ [[1, n]]
(2.18)

where the secondary data zi ∈ Cp, ∀i ∈ [[1, n]] are assumed to be i.i.d.. The additive noise in each
sample is the sum of clutter (ground response) ci plus white Gaussian noise ni. The tested cell z0

may potentially contain a moving target d = α0p where α0 is the amplitude and p is the steering
vector. From the Brennan’s rule [Brennan and Staudaher, 1992], we know that the clutter lies in an
unknown low-dimensional subspace represented by the orthogonal projector Πc = UcU

H
c (CSP) of

known rank k. In this context, we can use the LR-ANMF detector [Ginolhac and Forster, 2016] to
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assess the performance of various CSP estimation methods:

Λ̂ =
|dHΠ̂⊥c z0|2

|dHΠ̂⊥c d||zH0 Π̂⊥c z0|

H1

≷
H0

δ (2.19)

where Π̂⊥c = I − Π̂c is an estimate of the orthogonal complement of the CSP. We compare the
following detectors: i) Λ̂SCM is the LR-ANMF where the CSP is built from the standard PCA; ii)
Λ̂SFPE is the LR-ANMF built from the SVD of regularized Tyler’s estimator [Pascal et al., 2014a]
with regularization parameter γ selected manually to obtain the best results.; iii) Λ̂G-MUSIC is
the LR-ANMF using [Mestre and Lagunas, 2008] to estimate the quadratic forms associated to
the CSP; iv) Λ̂sMMSD denotes the LR-ANMF built from the MMSD estimator of LRCGs model;
v) Λ̂MMSD-OM stands for the LR-ANMF built from the MMSD estimator of LRCGo model; vi)
Λ̂MMSD-G is the LR-ANMF where the CSP is built from the MMSD estimator assuming a Gaussian
model [Ben Abdallah et al., 2017]. For all the Bayesian estimators, we leverage the physical model
of [Ward, 1994], that allows us to build a prior of the CSP basis Ū from the SVD of the STAP
covariance matrix model. We then consider a CIB prior (cf. definition 2.3.1) where the concentration
parameter κ is set manually.

The tested cell contains the response of 10 moving targets to be detected in presence of ground
clutter response (and eventually in presence of outliers in the secondary data). We test the afore-
mentioned detectors on two scenarios: Figure 2.3 displays the output of the detectors in the standard
situation (n � p), and at low sample support (n = 2k � p) with outliers in the secondary data.
In the standard case, all of the detectors allow for target detection with apparently low false alarm
rates. In the challenging setting, SCM and SFPE detectors are not able to correctly detect the targets.
The G-MUSIC detector appears robust to outliers in terms of detection but leads to a visually higher
noise floor (false alarm rate). Conversely, the Bayesian detectors still achieve interference rejection
and reliable target detection, which illustrates the interest of introducing some prior information in an
adaptive subspace estimation process. Notably, the MMSD-OM detector yields the cleanest detection
map, probably thanks to its robustness to sample corruption by outliers.

2.6 Perspectives

Finally, we can point out some direct perspectives from this work:

• The parameters of the CGBL distributions were used to gather prior information in the context
of Bayesian PCA. However, we did do not address their estimation, nor the question of their
automatic selection (e.g. using mini-batches), which could be an interesting direction.

• Inspired by the M -estimation framework, we could propose robust subspace estimators following
the structure from Theorem 2.4.1 with various function ρ. An approach following this direction is
discussed in chapter 5. It would then be interesting to characterize the existence and performance
of these generic subspace M -estimators in various settings.

• The LRCG model still leaves opened theoretical questions. For example, the phase transition
could be predicted by following [Hong et al., 2018]. The study of intrinsic Cramér-Rao bounds
could follow from [Besson et al., 2011]. A more complex issue concerns the characterization of
the robustness of an estimation process when outliers are present [Lerman and Maunu, 2017].

2.7 Onward to the next chapter

This chapter was focused on the subspace recovery problem, while relying on specific statistical models
to perform PCA with a Bayesian approach. These models notably involved mixtures of (conditional)
Gaussian distributions. Starting from these two concluding remarks, we can give the following intro-
duction to the next chapter:
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Figure 2.3: Output of various low-rank detectors on STAP data for n = 397 (n > p) (left), and n = 2k
(n� p) in presence of outliers (right). k = 46, p = 256.

• Chapter 3 will focus on covariance matrix problem estimation. The issue is still linked with
subspace recovery, as we will notably conduct a statistical analysis for the EVD parameters of
covariance matrices estimators (probabilistic PCA), as well as performance bounds for subspace
estimation. However, we will also discuss some other problems, such as structured covariance
matrix estimation.

• The statistical model considered in chapter 3 is the class of complex elliptically symetric distri-
butions, which encompass compound Gaussian distributions as a special case. However, it will
consider a single signal contribution, which cannot yield the mixture models from this chapter.
Also, no priors on the parameter distribution will be involved (non-Bayesian setting).

• Though some estimation methods will be proposed, chapter 3 is quite focused on statistical
analysis and performance bounds derivations.
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3.1 Contributions of the chapter

This chapter focuses on covariance matrix estimation problems with a focus on statistical performance
characterization. As discussed in the global picture, covariance matrix estimation can be a prelude
to a PCA approach, i.e., performing a subspace recovery from the principal subspace of the estimate.
However, it is worth mentioning that this step is also a fundamental problem on its own, as the
covariance matrix is a core component of many statistical signal processing and machine learning
methods. In this scope, we present several statistical analysis for a class of robust covariance matrix
estimators (M -estimators) in a general model of elliptical distributions.

The first contribution details a new asymptotic characterization for the eigendecomposition of
M -estimators. This work was conducted during the thesis of Gordana Drašković.
Related publications in the cv (page xi): [J5], [J8], [J9], [C10], [FC7], [FC11].

The second contribution concerns robust estimation methods for structured covariance matrices and
their statistical analysis in the mismatched case. This work was conducted during the thesis of Bruno
Mériaux.
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Related publications in the cv (page xi): [J7], [C17], [C15], [C13], [FC9], [FC10].

The third contribution presented in this chapter concerns intrinsic Cramér-Rao bounds, i.e., perfor-
mance bounds on Riemannian distances, for covariance matrix estimation in elliptical distributions.
Related publications in the cv (page xi): [J4], [X3].

3.2 Context overview

3.2.1 Complex elliptically symmetric distributions and M-estimators

There are many approaches to derive robust parametric estimation schemes. One of them is to
consider a statistical model that is general enough to yield an accurate estimation, independently
from the “true” underlying distribution of the data. A main challenge is then to manage the trade-off
between the generality of the model and its practical representation (i.e., being simple enough to be
handled). In this scope, complex elliptically symmetric (CES) distributions form a general family
of circular multivariate distributions [Ollila et al., 2012a], parameterized by a mean vector µ and a
scatter matrix Σ, which describes the correlations between the entries. This family encompasses
notably the compound Gaussian distributions (used in chapter 2) and generalized Gaussian ones
[Zhang et al., 2013, Pascal et al., 2013] as special cases. Another main interest is that CES includes
many heavy-tailed distributions, which is useful to account for potential outliers. Thus we can expect
these elliptical models to yield both robustness to model mismatches, and outliers in the sample set.

Definition 3.2.1. Elliptical models (CES distributions)
Let Σ ∈ H++

p and µ ∈ Cp. A vector z follows a (absolute continuous) CES distribution of center µ
and scatter matrix Σ, denoted CES(µ,Σ, gz), if it has the following p.d.f.:

fz(z) = C|Σ|−1 gz((z− µ)HΣ−1(z− µ)) (3.1)

where C is a normalization constant and gz : [0,∞) → [0,∞) is any function (called the density
generator), ensuring that (3.1) defines a p.d.f.. Moreover, this vector admits the following stochastic
representation

z
d
=
√
QAu + µ (3.2)

where Σ = AAH , u is uniformly distributed on the complex sphere Up1 , and Q is a non-negative real
random variable, called the modular variate, independent of u with a p.d.f. depending only on gz.

Note that from this definition, the Gaussian distribution z ∼ CN (µ,Σ) appears as a special case
with gz(z) = e−z and C = π−p. The density generator gz allows heavier or lighter tailed distributions
to be described (cf. [Ollila et al., 2012a] for examples).

In the following, we will focus on the known mean case, which allows us to set µ = 0. In the
general case, also note that (when existing) the covariance matrix E[zzH ] is proportional to the
scatter matrix Σ (which always exists). This scaling mismatch is generally not an issue because most
processes are insensitive to it (e.g., eigenvectors extracted for PCA). For this reason, we adopt the
common abuse of denomination “covariance matrix estimation”, while we technically estimate the
scatter up to a scale factor.

When dealing with heavy-tailed distributed samples, it is well known that the traditional sample
covariance matrix (SCM) usually fails to provide an accurate estimate. A solution to this problem is
brought by M -estimators [Maronna, 1976, Tyler, 1987], that appear as generalized maximum likeli-
hood estimators (MLE).

Definition 3.2.2. M-estimators of the scatter
Let {zi}ni=1 be an n-sample of p-dimensional complex i.i.d. vectors with zi ∼ CES(0,Σ, gz). An
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M -estimator of Σ, denoted by Σ̂, is defined by the solution of the following fixed-point equation

Σ̂ =
1

n

n∑
i=1

u(zHi Σ̂−1zi)ziz
H
i

∆
= H(Σ̂). (3.3)

where u is any real-valued weight function on [0,∞) that respects Maronna’s conditions, ensuring
existence and uniqueness of (3.3) [Maronna, 1976]. When these conditions are met, and for n > p,
this estimator can be computed using the fixed-point algorithm Σt+1 = H(Σt) (where t refers to the
iteration index).

When u(t) = −g′z(t)/gz(t), (3.3) corresponds to the MLE of the scatter matrix parameter for z ∼
CES(0,Σ, gz). However, u may not be related to gz, which is generally unknown in practice. A popular
example is Tyler’s estimator [Tyler, 1987, Pascal et al., 2008a], obtained with u(t) = p/t. Despite
the potential mismatch, M -estimators ensure good performance in terms of estimation accuracy in
the whole CES family (formally characterized in the following sections). Additionally, M -estimators
present robustness to contamination by outliers [Maronna, 1976], which is why they are also usually
referred to as robust estimators.

3.2.2 Current issues

M -estimators offer an interesting solution to robust covariance matrix estimation issues. Yet, there
still remains some open problems, from which we can mention:

• Statistical analysis: The statistical characterization of the M -estimators is a complex issue
because they are defined by fixed-point equations. While the SCM in a Gaussian setting follows a
well-known Wishart distribution [Muirhead, 1982], the true distribution of the M -estimators remains
unknown. Therefore, several works derived various characterizations for these estimators. Their
asymptotic Gaussian distribution was derived in [Maronna, 1976, Tyler, 1982] and extended to the
complex case in [Ollila et al., 2012a, Mahot et al., 2013]. Probably approximately correct (PAC)
error bounds have been studied in [Soloveychik and Wiesel, 2015b]. Their analysis in the large
random matrix regime (i.e. when both the number of samples and the dimension tends to infinity at
the same rate) has been established in [Zhang et al., 2014, Couillet et al., 2015]. Yet, we still aim for
a characterization that is as handy as the Wishart distribution in order to tune statistical processes.
In this direction, an axis of response will be explored in section 3.3.

• Low and insufficient support: M -estimators require at least n > p samples to be com-
puted. Following [Reed et al., 1974], the general rule of thumb even suggests that n > 2p is re-
quired in order to reach an accurate estimation. Both of these conditions can be difficult to meet
for high dimensional data. An approach to overcome low sample support issues is to account for
prior knowledge on the covariance matrix structure in the estimation scheme, i.e., reducing the de-
gree of freedom of the estimation problem. Variations around this method were recently proposed
for M -estimators [Soloveychik and Wiesel, 2014, Wiesel and Zhang, 2015, Soloveychik et al., 2016,
Sun et al., 2016]. Section 3.4 will present our contributions in this scope. For insufficient sample
support scenarios (n < p), a solution is brought by regularization methods, which will be discussed in
the perspectives.

3.3 On the asymptotics of PCA with M-estimators

The parameters of an eigenvalue decomposition (EVD) of the second order statistics are ubiqui-
tous in statistical analysis and signal processing. Notably, the eigenvalue decomposition (EVD)
of M -estimators is involved in numerous processes, such as robust probabilistic PCA algorithms
[Croux and Haesbroeck, 2000, Zhao and Jiang, 2006], as well as in the derivation of robust counter-
parts of low rank filters or detectors [Rangaswamy et al., 2004]. The eigenvalues of the scatter ma-
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trix are also used in model order selection [Stoica and Selen, 2004, Terreaux et al., 2018], and func-
tions of eigenvalues are involved in various applications such as regularization parameter selection
[Ollila and Tyler, 2014b, Kammoun et al., 2018], detection [Ciuonzo et al., 2017], and classification
[Bouveyron and Brunet-Saumard, 2014]. Hence, accurately characterizing the distribution of the M -
estimators EVD represents an interest, both from the points of view of performance analysis and
optimal process design. Towards the goal of characterizing these objects, we derived new asymptotics
for the EVD parameters of M -estimators in elliptical models in [Drašković et al., 2019], from which
the main results are summarized below.

3.3.1 Standard Asymptotic Regime

This section extends the analysis of [Kollo and Neudecker, 1993] (for the SCM) to the complex
M -estimators in a general elliptical model. This asymptotic analysis also provides an extension of
the results obtained in [Tyler, 1981, Boente, 1987, Croux and Haesbroeck, 2000] to the complex case,
with some additional characterizations (cf. discussion following Theorem 3.3.1).

First, let us denote the EVD of the scatter matrix Σ as

Σ
EVD
= UΛUH with

U = [u1, . . . ,up] ∈ St(p, k),

Λ = diag(λ),

λ = [λ1, . . . , λp] .

(3.4)

In order to avoid ambiguity in this definition, we assume ordered eigenvalues as λ1 > . . . > λp > 0,
and an element of each uj (e.g., the first entry) for j = 1, . . . , n, can be assumed to be real positive.
We then have the following Theorem:

Theorem 3.3.1. Standard asymptotics for M-estimators’s EVD [Drašković et al., 2019]

Let Σ̂
EVD
= ÛΛ̂ÛH be an M -estimator (defined as the solution of the fixed point equation (3.3)) built

from n samples drawn as z ∼ CES (0,Σ, gz). The asymptotic distribution of the EVD of Σ̂ is given
by 

√
n
(
σλ̂M − λ

)
d→ N

(
0, ϑ1Λ

2 + ϑ2λλ
T
)
,

√
nΠ⊥j ûMj

d→ CN (0,Ξj) .
(3.5)

where

Ξj = ϑ1λj
(
UΛ(λjI−Λ)+

)2
UH (3.6)

with Π⊥j = I − uju
H
j , the scalar factor σ > 0 it the solution of E[Ψ(σt)] = p with Ψ(σt) = u(σt)σt

and t = zHΣ̂−1z, and the constants ϑ1 > 0 and ϑ2 > −ϑ1/p are given by

ϑ1 = c−2
M aMp(p+ 1),

ϑ2 = (cM − p2)−2(aM − p2)− c−2
M aM (p+ 1),

(3.7)

where aM = E[Ψ2(σQ)] and cM = E[Ψ′(σQ)σQ] + p2.

The results given in Theorem 3.3.1 are interesting since, besides the variance of each eigenvalue,
they provide the correlation between them. Note that for a Wishart-distributed matrix this corre-
lation is equal to zero, as shown in [Kollo and Neudecker, 1993] for the real case. Conversely, The-
orem 3.3.1 shows that the eigenvalues of an M -estimator are asymptotically correlated, as stated in
[Croux and Haesbroeck, 2000] (but not explicitly characterized). This correlation depends on the sec-
ond scale parameter ϑ2. Concerning the eigenvectors, note that the covariance depends only on ϑ1

since uj is scale invariant w.r.t. to the covariance matrix (cf. [Mahot et al., 2013] for more details).
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3.3.2 Gaussian core Wishart equivalent

This second result represents a new approach based on [Drašković and Pascal, 2018]. A new character-
ization is proposed to show that the EVD parameters of M -estimators are asymptotically concentrated
around a Wishart equivalent, with a variance that is significantly lower than the one of the standard
asymptotic regime (i.e., derived around the true expected values). Thus, it quantifies when it is ac-
ceptable to directly rely on well-established results on the EVD of Wishart-distributed matrices for
characterizing the EVD of M -estimators. First, let us define two quantities related to the hidden
Gaussian cores of CES vectors.

Definition 3.3.1. Gaussian cores of CES vectors [Drašković and Pascal, 2018]
Let z ∼ CES(0,Σ, gz). This vector has a representation analogous to (3.2), given as

z
d
=
√
QAg/‖g‖, (3.8)

where g ∼ CN (0, I). The vector x = Ag is referred to as the Gaussian-core of z.

Definition 3.3.2. Gaussian cores Wishart equivalent (GCWE) [Drašković and Pascal, 2018]
Let {zi}ni=1 be a n-sample drawn as z ∼ CES(0,Σ, gz) and denote {xi}ni=1 their Gaussian cores from
the representation zi =

√
Qi/‖xi‖Axi (cf. Definition 3.3.1). Let Σ̂ be an M -estimator built with

{zi}ni=1 using (3.3). The SCM built from the Gaussian cores, i.e.

Σ̂GCWE =
1

n

n∑
i=1

xix
H
i (3.9)

is referred to as Gaussian Core Wishart Equivalent (GCWE) of Σ̂.

Note that the GCWE cannot be computed in practice. It is a theoretical quantity distributed
according to a Wishart distribution. The asymptotic distribution of the difference between an M -
estimator and its GCWE is derived in [Drašković and Pascal, 2018]. Following this result, we derived
the following theorem:

Theorem 3.3.2. GCWE for M-estimators’s EVD [Drašković et al., 2019]

Let Σ̂
EVD
= ÛΛ̂ÛH be an M -estimator as in (3.3) built from n samples drawn as z ∼ CES (0,Σ, gz).

Let Σ̂GCWE
EVD
= ÛGCWEΛ̂GCWE

(
ÛGCWE

)H
be its GCWE (Definition 3.3.2). The asymptotic distri-

bution of the difference between the EVD parameters of Σ̂ and Σ̂GCWE is given by
√
n
(
σλ̂M − λ̂GCWE

)
d→ N

(
0, σ1Λ

2 + σ2λλ
T
)
,

√
nΠ⊥j

(
ûMj − ûGCWE

j

)
d→ CN (0, σ1/ϑ1Ξj) ,

(3.10)

with Ξj, σ, aM and cM are defined in Theorem 3.3.1, and bM = E[Ψ(σQ)‖g‖2], and where the
coefficients σ1 and σ2 are given by

σ1 = (aMp(p+ 1) + c(c− 2bM ))/c2
M ,

σ2 = ϑ2 − 2p(bM − cM )/(cM (cM − p2)). (3.11)

This theorem characterizes the asymptotic variance of the EVD of an M -estimator compared to
the one of its GCWE. Interestingly, it shows that their covariance structure is the same as in the
standard asymptotic regime, and differs only through the variance scales (σ1, σ2) (instead of (ϑ1, ϑ2)).
As noted in [Drašković and Pascal, 2018], the total variance captured by the GCWE factors is much
smaller than the standard one. For example, Table 3.1 displays these factors for two M -estimators,
assuming Student t-distributed data with degree of freedom (DoF) parameter d (whose p.d.f. is given

by (3.1) with gz(x) = (1 + 2x/d)−(p+d/2)). In this case, the factors σ1 and ϑ1 differ by an order 1/p.
This observation is also confirmed by the validation simulations displayed in Figure 3.1. In conclusion,
these results support the idea that an underlying Wishart distribution can offer a better approximation
for characterizing the distribution of the M -estimator’s EVD.
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Student’s M -estimator (MLE) Tyler’s M -estimator

S
A

ϑ1 = (p+ d/2 + 1)/(p+ d/2) ϑ1 = (p+ 1)/p

ϑ2 = 2(p+ d/2 + 1)/(d(p+ d/2)) ϑ2 = −(p+ 1)/p2

G
C

W
E

σ1 = 1/(p+ d/2) σ1 = 1/p

σ2 = 2(p+ d/2 + 1)/(d(p+ d/2)) σ2 = (p− 1)/p2

Table 3.1: Coefficients ϑ1, ϑ2, σ1 and σ2 for Student’s and Tyler’s M -estimator with t-distributed
data (SA stands for Standard asymptotic while GCWE refers to as GCWE asymptotic).
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Figure 3.1: Validation of theoretical results on eigenvalues (top) and eigenvectors (bottom) for Stu-
dent’s and Tyler’s M -estimator built with Student t-distributed data with various DoF d and dimen-
sions p.

3.3.3 Practical use of the result

By establishing two different asymptotic regimes, we have shown that the behavior of the EVD pa-
rameters of M -estimators can be more accurately characterized by an equivalent Wishart model than
by their standard asymptotic Gaussian distribution. This approximation allows us to leverage well es-
tablished results (e.g., [Muirhead, 1982, Zanella et al., 2009]), and offers a thinner analysis compared
to the asymptotic Gaussian results. In [Drašković et al., 2019], this idea was illustrated on several
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examples1:

1. We addressed the complex issue of characterizing the intrinsic bias [Smith, 2005] of M -estimators
in the CES context. This quantity has been studied in [Smith, 2005] for the SCM in the Gaussian
context thanks to the distribution of the eigenvalues of a Wishart matrix [Muirhead, 1982].
Extending this analysis to M -estimators in the general CES context represents, at first sight,
an intractable problem because of their unknown exact distribution. However, the established
convergence of the eigenvalues of an M -estimator toward their GCWE counterpart allows an
accurate approximation of this intrinsic bias to be derived;

2. In the context of model order selection (i.e., rank estimation) from non-Gaussian samples, we
showed that the use of M -estimators (rather than the SCM) in theoretic criteria derived for
Gaussian models [Akaike, 1974, Wax and Ziskind, 1989] yields the same results as the one ob-
tained with the theoretical GCWE. Again, this justifies a plug-in approach (using M -estimators
in processes derived under the Wishart assumption), instead of a complete re-derivation that
would require to assume an exact CES distribution;

3. The performance of low rank filters [Ginolhac and Forster, 2010] built from M -estimators were
derived in the same way (i.e., approached by the one of their GCWE) to illustrate that the
method also holds for adaptive processes based on the eigenvectors.

We can also mention that an identical approach was conducted in [Drašković et al., 2020] to study
robust detection methods2. We showed that, from CES distributed samples, the distribution of a
detection statistic (adaptive normalized matched filter, Kelly’s GLRT, and Rao test) built with plug-
in M -estimators can be accurately approximated by the distribution of the same statistic built from
the SCM of an equivalent Gaussian core. The loss due to this approximation was theoretically derived
and shown to be negligible in most cases. This explicit equivalent statistic is especially interesting
since it allowed us to tune robust plug-in detectors with well established results from the Gaussian
detection framework.

3.4 Robust estimation of structured covariance matrices

Besides being Hermitian positive (semi-)definite, the covariance matrix can exhibit a specific struc-
ture depending on the considered application. This structure can often be determined by physical
considerations (e.g. symmetries) on the data acquisition system. We can give the following taxonomy
of usual covariance matrices structures:

• Linear structures, i.e., when the covariance matrix belongs to a set of the form S = {Σ =∑d
r=1 αrBr, αr ∈ R}, where {Br}dr=1 is a known basis of the considered set. These structures

encompass notably Toeplitz, banded, and sum-of-rank-1 matrices (i.e. factor models with known
factors).

• Group symmetric structures, i.e., when the covariance matrix belongs to a set in of form SH =
{Σ|Σ = HΣHH , ∀H ∈ H}, whereH = {Hk}di=1 is a multiplicative group of orthogonal matrices.
These structures encompass notably persymmetric and circulant matrices.

• Spectral structures, i.e., when the eigenvalues of the covariance matrix satisfy a certain property.
These structures encompass notably positive plus scaled identity (lower-bounded eigenvalues),
low-rank plus scaled identity (identical eigenvalues after certain index), and matrices with a
constrained condition number.

1Interested readers can find the details in section 2.3 of the annexes.
2Interested readers can find the details in section 2.4 of the annexes.
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• Kronecker products, i.e., when the covariance matrix is expressed as Σ = A⊗B. In some cases,
the covariance matrix can also be expressed as a Kronecker products of structured matrices.

Taking this prior knowledge on the covariance matrix structure in the estimation process reduces the
degree of freedom of the estimation problem, which is especially interesting when the sample size is low.

An approach to generalize M -estimators to the case of structured matrices is solve for the gener-
alized log-likelihood function under structural constraint, i.e. focus on the problem

minimize
Σ

1
n

∑n
i=1 ρ(ziΣ

−1zi) + ln |Σ|
subject to Σ ∈ S

(3.12)

with ρ′(t) = −u(t) (to match definition 3.2.2), and where S is the considered set of structured Her-
mitian positive definite matrices. This formulation leads to non-trivial issues because the problem
(3.12) is non-convex, even in the unstructured case. Nevertheless, this objective function holds hid-
den (geodesic) convexity properties [Wiesel, 2012a], which is preserved on some specific structure sets
(e.g., group symmetric ones [Pailloux et al., 2011, Soloveychik et al., 2016]). This property can help
to establish existence/uniqueness of specific solutions, but the general problem of robust structured
covariance matrix estimation still requires a case by case study. Several methodologies were considered
to tackle this issue:

• Reparameterization: reformulating the problem (3.12) using a parameter θ and a corresponding

mapping Σ
∆
= R(θ) ∈ S, then leveraging an optimization method directly on θ. In this scope,

[Sun et al., 2016] proposed majorization-minimization algorithms for various structures. A sim-
ilar methodology was applied for structures involving Kronecker product of low rank matrices
in [Breloy et al., 2016b]. This solution has few theoretical guarantees (apart from convergence
to a local minimum), but was shown to be quite accurate in practice.

• Relaxations: considering an alternative to (3.12) that still allows some properties (accuracy,
robustness,...) to be ensured. In this scope, [Soloveychik and Wiesel, 2014] proposed a convex
relaxation of Tyler’s cost function, which is suited to matrices belonging to convex sets.

• Projections: projecting an M -estimator on the set of interest. This 2-step procedure is gen-
erally sub-optimal, but can benefit from a low computational cost, and offers some theoretical
guarantees.

In the following we present a projection-based method for convex sets. The estimation procedure was
proposed in [Meriaux et al., 2019], and has the advantage of having nice asymptotic properties.

3.4.1 Structured scatter matrix estimator (SESAME)

In this section, we assume that the scatter matrix belongs to a convex subset S of Hermitian matrices
(e.g., Toeplitz, persymmetric, or banded), for which there exists a one-to-one differentiable mapping
θ 7→ R(θ) from Rd to S. We propose a robust two-step estimation procedure of θ inspired by
[Ottersten et al., 1998]. An important note is that we will theoretically study the robustness of the
method to a mismatch scenario, i.e.:

• The data set {zi}ni=1 is distributed according to z ∼ CES(0,Σe, g), with Σe = R(θe) ∈ S, its
corresponding p.d.f. is denoted fz.

• The estimation procedure is conducted assuming the model z ∼ CES(0,R(θ), gmod), the corre-
sponding p.d.f. is denoted fmod.

Indeed, the assumed model (gmod) can be different from the true one (g) in practice. A main example
would be assuming Gaussian distributed samples, when they are actually not. Other incorrect
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assumptions can also come from the selection of shape/scale parameters in the density generator (e.g.
the selected degrees of freedom for a t-distribution).

The SESAME algorithm proceeds as follows:

Step 1: compute Σ̂m, the M -estimator corresponding to the MLE of the assumed model (cf.
definition 3.3 using the function umod(s) = −g′mod(s)/gmod(s)). Notice that this provides a consistent
estimator of σ−1Σe, with σ defined in Theorem 3.3.1 [Ollila et al., 2012a].

Step 2: estimate θ by solving
θ̂ = arg min

θ
JΣ̂m,Σ̂

(θ) (3.13)

with

JΣ̂m,Σ̂
(θ) = κ1Tr

(
Σ̂−1

(
Σ̂m −R (θ)

)
Σ̂−1

(
Σ̂m −R (θ)

))
+ κ2

[
Tr
(
Σ̂−1

(
Σ̂m −R (θ)

))]2
,

(3.14)
where Σ̂ refers to any consistent estimator of Σe up to a scale factor, such as for instance Σ̂m,
κ2 = κ1 − 1, and κ1 = Efmod

[
Ψ2

mod

(
|tmod|2

)]
/(m(m + 1)) 6= 0 where tmod ∼ CESm (0, I, gmod), and

where fmod is the assumed p.d.f. of the data. The criterion JΣ̂m,Σ̂
(θ) is strongly related to the Fisher

information metric derived for CES distributions in [Besson and Abramovich, 2013]. Given Σ̂m and
Σ̂, the function JΣ̂m,Σ̂

(θ) is convex w.r.t R (θ). Therefore, for the desired convex set Σ ∈ S, the
minimization of (3.13) w.r.t. R (θ) is a convex problem that admits a global minimizer, yielding
a solution θ̂ thanks to the one-to-one mapping. Some practical implementations for holding the
positiveness constraint R (θ) < 0 are discussed in [Meriaux et al., 2019]3.

Step 3 (optional): Perform the recursions

θ̂(k+1) = arg min
θ
JΣ̂m,Σ̂(k)(θ) with Σ̂(k) = R

(
θ̂(k)

)
, for k = 1, . . . , Nit, (3.15)

The intuition behind this refinement is the following: The estimate Σ̂ can be any consistent estimate
up to a scaling factor. Intuitively (and also experienced in practice), the more accurate the estimator
Σ̂, the more accurate the solution θ̂. Since SESAME will be shown to be consistent, this leads
naturally to a recursive procedure, where the minimized norm is refined at each step by updating Σ̂
with the previously computed R(θ̂).

3.4.2 Asymptotic analysis of SESAME

Pseudo-parameter and consistency

Theorem 3.4.1. Consistency of SESAME [Meriaux et al., 2019]
The SESAME estimate θ̂ is a consistent estimator of θc such that vec (R (θc)) = σc , σ−1σe =

σ−1vec (R (θe)). Likewise, R
(
θ̂
)

is a consistent estimator of σ−1R (θe).

With a potential model misspecification, the so-called pseudo-true parameter vector, θ0,
is classically introduced for an asymptotic analysis [White, 1982, Richmond and Horowitz, 2015,
Fortunati et al., 2016, Mennad et al., 2018]. The latter is defined as the minimizer of the Kullback-
Leibler divergence (KLD) between the true and the assumed models, i.e.,

θ0 = arg min
θ
D (fmod‖fz) = arg max

θ
Efmod

[log fz (z;θ)] , (3.16)

where D (fmod‖fz) , Efmod

[
log

fmod (z;θe)

fz (z;θ)

]
. In the following, we always assume the existence and

the uniqueness of the pseudo-true parameter vector, θ0 (the reader is referred to [Fortunati et al., 2016]
for necessary and sufficient conditions).

3Interested readers can find the details in section 2.5 of the annexes.
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Proposition 3.4.1. The pseudo-true parameter vector, θ0, is equal to θc. Thus, the SESAME esti-
mate, θ̂, given by (3.13), is a consistent estimator of θ0 such that θ0 = arg min

θ
D (fmod‖fz).

Efficiency in the mismatched framework

In the matched context, the Cramér-Rao Bound (CRB) is a lower bound of the variance of any unbiased
estimator (which corresponds then to the Mean Square Error) of a deterministic parameter. Such an
estimator is said to be (asymptotically) efficient if its variance reaches the CRB for an (in)finite number
of samples. Likewise, under misspecified models, the Misspecified Cramér-Rao Bound (MCRB) is
defined as a lower bound of the variance of any unbiased estimator θ̂gmod

of θ0, where θ0 is actually
the pseudo-true parameter vector [Fortunati et al., 2016, Mennad et al., 2018]. Specifically, we have

Var
(
θ̂gmod

)
� 1

n
A−1 (θ0) B (θ0) A−1 (θ0) ,

1

n
MCRB, (3.17)

where, for all k, ` = 1, . . . , P , [B (θ0)]k,` = Efz

[
∂ log fmod (z;θ)

∂θk

∣∣∣∣
θ=θ0

∂ log fmod (z;θ)

∂θ`

∣∣∣∣
θ=θ0

]
and

[A (θ0)]k,` = Efz

[
∂2 log fmod (z;θ)

∂θk∂θ`

∣∣∣∣
θ=θ0

]
. For the proposed estimation method, we have the follow-

ing theorem:

Theorem 3.4.2. (mismatched-)Efficiency of SESAME [Meriaux et al., 2019]
Let θ̂n be the SESAME estimate computed from n i.i.d. observations, then θ̂n is asymptotically efficient
in the mismatched sense, i.e.,

√
n
(
θ̂n − θ0

)
d→ N (0,MCRB) , (3.18)

with

MCRB = ϑ1C
−1 + ϑ2C

−1DC−1 =

(
ϑ−1

1 C− ϑ2

ϑ1(ϑ1 +mϑ2)
D

)−1

, (3.19)

where {
C = J (θ0)H W−1

0 J (θ0) ,

D = J (θ0)H U0J (θ0) ,
(3.20)

in which W0 = ΣT
0 ⊗ Σ0, U0 = vec

(
Σ−1

0

)
vec
(
Σ−1

0

)H
, β1 = ϑ1κ

2
1, β2 = ϑ1κ2 (2κ1 +mκ2) +

ϑ2 (κ1 +mκ2)2,
∂σ(θ)

∂θ

∣∣∣∣
θ

, J (θ) refers to the Jacobian matrix of σ(θ) evaluated in θ, and where

the coefficients ϑ1 and ϑ2 are given in (3.7).

Notice that, as a corollary from this theorem, the SESAME estimator is efficient in the matched
case, i.e., when g = gmod.

3.4.3 Simulations

First, we illustrate the theoretical analysis on SESAME performance under misspecifications. For the
simulations, we choose a scatter matrix with an Hermitian Toeplitz structure. We consider a scenario
where the true p.d.f is a Weibull distribution and we assume a Gaussian model for the estimation.
Thus, we have  g (t) = ts−1 exp

(
− t

s

b

)
, with b = 2 and s = 0.8,

gmod (t) = exp (−t) .
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Figure 3.2: PMSE of SESAME procedures, true p.d.f. is Weibull distribution with b = 2 and s = 0.8
and assumed model is Gaussian. For m = 5, the true scatter matrix has is Toeplitz and its first row
is
[
2, ρ, ρ2, . . . , ρm−1

]
, with ρ = 0.8 + 0.3i.

The estimate obtained by SESAME under misspecification is referred to as θ̂Mis-SESAME whereas the
one computed in the matched case is denoted by θ̂SESAME-E. We also compare the performance of
SESAME under both matched and mismatched models with the CRB and the MCRB. To draw the
comparison, we define the Pseudo Mean Square Error (PMSE) w.r.t the pseudo-parameter θ0 by

PMSEθ0

(
θ̂
)

= E
[(

θ̂ − θ0

)(
θ̂ − θ0

)T]
. In Figure 3.2, the asymptotic variance of the SESAME

estimates under both matched and mismatched models reach the corresponding CRB derived in
either matched or mismatched scenarios, i.e., the (mismatched-)efficiency of the algorithm is verified.
The unbiasedness as well as the consistency can be also indirectly observed.

Second, we consider the matched case (g = gmod) where the covariance matrix is Toeplitz and
the data follows a t-distribution. In Figure 3.3, we compare the performance of SESAME to the
state of the art: RCOMET from [Meriaux et al., 2017], COCA from [Soloveychik and Wiesel, 2014]
and Constrained Tyler from [Sun et al., 2016]. The three methods are based on the Tyler’s scatter
estimator [Tyler, 1987] using normalized observations z̃n = zn/‖zn‖. It should be noted that, for
Constrained Tyler, Algorithm 3 in [Sun et al., 2016] derived for real-valued PSD Toeplitz matrices
cannot be directly applied. However, the Vandermonde factorization of PSD Toeplitz matrices allows
us to use Algorithm 2 of [Sun et al., 2016]. In this algorithm, the set of PSD Toeplitz matrices is
parameterized by S =

{
R | R = APAH

}
through the unknown diagonal matrix P � 0 and with

A = [a(−90◦),a(−88◦), · · · ,a(86◦),a(88◦)], where a (θ) =
[
1, e−jπ sin(θ), · · · , e−jπ(m−1) sin(θ)

]T
. Fi-

nally, we also study the estimate obtained by averaging the real and imaginary parts of diagonals
of the unstructured ML estimator, which corresponds to the Euclidean projection onto the Toeplitz
set. The asymptotic efficiency of our estimator is checked in Figure 3.3: its MSE reaches the CRB
as n increases. RCOMET, Constrained Tyler and COCA do not reach this bound since they do not
take into account the underlying distribution of the data. In addition, the asymptotic unbiasedness
of SESAME as well as those of the other algorithms can be observed.

3.5 Intrinsic Cramér-Rao bounds in elliptical models

Cramér-Rao lower bounds (CRLBs) are ubiquitous tools in statistical signal processing, as they
characterize the optimum performances in terms of mean squared error that can be achieved for
a given parametric estimation problem. However, the classical Cramér-Rao analysis provides a
lower bound on the mean squared error, while this criterion may not be the most appropriate for
characterizing the performance in a given context. Especially, for parameters living in a mani-
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Figure 3.3: Comparison of several structured robust estimators. Samples follow a t-distribution
with d = 5 DoF. m = 4, and the Toeplitz scatter matrix is defined by its first row:
[1,−0.83− 0.20i, 0.78 + 0.37i,−0.66− 0.70i].

fold (which is the case for covariance matrices and subspaces), it can be more relevant to carac-
terize a lower bound on the mean natural Riemannian distance between the true parameters and
the estimators, which can also reveal hidden properties of estimators. To overcome this issue, in-
trinsic (i.e. in a manifold setting) versions of the Cramér-Rao inequality have been established
in [Hendriks, 1991, Xavier and Barroso, 2002, Xavier and Barroso, 2005, Smith, 2005, Boumal, 2013,
Bonnabel and Barrau, 2015]. Notably, in [Smith, 2005] intrinsic CRLBs are expressed in the form of
a matrix inequality that is valid for any chosen Riemannian metric. Hence, it allows us to obtain
Cramér-Rao bounds for various distances (depending on the chosen metric). This section presents the
application of this framework to elliptical distributions.

3.5.1 Intrinsic CRLB (ICRLB)

The intrinsic Cramér-Rao bound extends the traditional Cramér-Rao bound for parameters living in
a manifold and for an arbitrary chosen Riemannian metric. Indeed, the traditional estimation error
(Euclidean distance) is defined through the difference between the true parameter and its estimate,
which is not always properly defined (e.g., for subspaces). To deal with this issue [Smith, 2005]
derived a Cramér-Rao type theorem for parameters living in a manifold by bounding the expected
intrinsic distance between the estimate and the true parameter. Eventually, this theorem retrieves
the well-known inequality “C < F−1”, with C being the covariance matrix of the estimation error
and F being the Fisher information matrix. However, these parameters have a different definition
due to the specific nature of the considered quantities. This section briefly presents those definitions
and the essential tools needed for the derivation of our contributions. We also refer the reader to
the Chapter 6 of [Boumal, 2014] and the reference [Barrau and Bonnabel, 2013], which provide good
introductions to the topic.

First, we list some definition used afterward

• M denotes a manifold, i.e. a space in which each point has a neighborhood that is homeomorphic
to the Euclidean space.

• θ ∈M denotes the parameter of interest, a point in the manifold M.

• TθM is the tangent space at point θ, which is a vector space that conceptually contains the
possible directions in which one can tangentially pass through the point θ.

• gθ : TθM× TθM→ R+ is a Riemannian metric: a scalar product on TθM. The pair (M, gθ)
is a Riemannian manifold. At each point, we denote by {Ωi} a basis of the tangent space TθM
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that is orthonormal w.r.t. gθ.

• d : M×M → R+ is the geodesic distance induced by gθ on M (length of the shortest path
between two points when integrating w.r.t. gθ).

Our aim is to obtain a lower bound on the expected error of an estimator θ̂ when measuring with d
rather that the Euclidean squared norm ||θ̂−θ||2F . This requires to redefine the error measure, as the
difference between two points on a manifold is not properly defined:

Definition 3.5.1. Riemannian estimation error
Let θ̂ be an estimator of the parameter θ ∈ M. The estimation error Xθ ∈ TθM is given by inverse
exponential map (or logarithmic map):

Xθ = exp−1
θ θ̂. (3.21)

where exp−1
θ denotes the operator that creates a vector “pointing toward” θ̂ from θ, whose length

coincides with the geodesic distance d(θ̂,θ). Let the tangent space TθM be endowed with any metric
(inner product) gθ and {Ωi} be a basis of this space. We have the coordinate vector x(θ) with entries
[x (θ)]i = gθ (Xθ,Ωi), and the squared magnitude of estimation error is

‖x(θ)‖2F = x(θ)Hx(θ) =
∥∥∥exp−1

θ θ̂
∥∥∥2

θ
= d2(θ, θ̂) , (3.22)

where d is the distance defined w.r.t. the chosen Riemannian metric gθ.

All these definitions are summarized in the Figure 3.4:

M

TθM Xθ = exp−1
θ θ̂

•θ

•

θ̂

Figure 3.4: Illustration of the Riemannian estimation error Xθ = exp−1
θ θ̂ ∈ TθM between the

parameter θ ∈M and its estimate θ̂ ∈M.

We can finally state the two following theorems:

Theorem 3.5.1. Fisher information metric [Smith, 2005]
Let f({zi}ni=1|θ) be a family of probability density function parameterized by θ living in a manifold
M, l = log f be the log-likelihood function, and gfim be the Fisher information metric. Let {Ω} be an
element of the tangent space TθM of the manifold M at point θ. We have the relation

gfim (Ω,Ω) = −E
[

d2

dt2
l ({z}ni=1|θ + tΩ)

∣∣∣∣
t=0

]
. (3.23)

Let {Ωi} be a basis of TθM. The Fisher information matrix F is defined as

[F]i,j = gfim (Ωi,Ωj) , (3.24)

where gfim (Ωi,Ωj) can be obtained from (3.23) using a polarization formula.
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Theorem 3.5.2. Intrinsic Cramér-Rao bound [Smith, 2005]
Let f({zi}ni=1|θ) be a family of probability density function parameterized by θ ∈ M, F be the Fisher
information matrix, and d be the distance associated with M and chosen Riemannian metric gθ.
Assume that θ̂ is an unbiased (cf. definitions 1 and 2 of [Smith, 2005]) estimator of θ, then the
covariance of the estimation error exp−1

θ θ̂ satisfies the matrix inequality

E
[(

exp−1
θ θ̂

)(
exp−1

θ θ̂
)H]

� F−1−1

3

(
F−1Rm

(
F−1

)
+ Rm

(
F−1

)
F−1

)
+O(λmax(F−1)2+1/2) (3.25)

where Rm() defines a Riemannian curvature term (cf. [Boumal, 2014, Eq. 6.6]).

This theorem generalizes the standard Cramér-Rao inequality with additional Riemanian curvature
terms. These terms reflect the impact of the intrinsic structure of the parameter space (natural
constraints satisfied within the manifold) in the estimation problem. However, if we neglect them
(relevant for large n), the inequality translates in

E
[
d2
(
θ, θ̂

)]
≥ Tr

{
F−1

}
, (3.26)

where d corresponds to the distance associated with the chosen Riemannian metric (in which (3.22)
was used to recover this term). Notice that intrinsic Cramér-Rao bounds in (3.26) are defined relatively
to a Riemannian metric to be chosen, which allows for bounding a distance (performance criterion)
that is considered to be meaningful for the addressed estimation problem.

3.5.2 ICRLB for scatter matrix estimation

We consider the problem of scatter matrix4 estimation from elliptically distributed samples z ∼
CES (0,Σ, gz) from definition 3.2.1. The parameter Σ naturally belongs to the space of Hermitian
positive definite matrices H++

p , which is indeed a Riemannian manifold (though the choice of the
metric will be specified afterward) [Bhatia, 2009]. Notably, its tangent space TΣH++

p at each point
Σ can be identified as Hp, the space of Hermitian matrices. The related Fisher information metric is
given in the following theorem:

Theorem 3.5.3. Fisher information metric for CES [Breloy et al., 2019a]
Let {zi}ni=1 be a n-sample of z ∼ CES (0,Σ, gz). Let Ω1 and Ω2 be two elements of TΣH++

p . Then,
the Fisher information metric associated with Σ is given as

gfimΣ (Ω1,Ω2) = ngcesΣ (Ω1,Ω2) (3.27)

with

gcesΣ (Ω1,Ω2) = αTr
{
Σ−1Ω1Σ

−1Ω2

}
+ βTr

{
Ω1Σ

−1
}

Tr
{
Ω2Σ

−1
}
, (3.28)

where the coefficients α and β are defined as

α = 1− E
[
Q2φ′ (Q)

]
/(p(p+ 1)) and β = α− 1 (3.29)

with φ = g′z(t)/gz(t) and where Q is the second order modular variate of the considered distribution.

This metric corresponds to the Rao-Fisher metric [Micchelli and Noakes, 2005] (also referred to
as affine-invariant metric) with specific scalings (α,β) depending on the underlying distribution. We
now turn to the choice of the metric used to measure the estimation error. Two popular choices are
considered:

4The problem of shape (normalized scatter) matrix estimation is also studied in [Breloy et al., 2019a]. Interested
readers can find the details in section 2.6 of the annexes.
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Euclidean Natural Riemannian

Metric gEucl (Ω,Ω) = Tr
{
Ω2
}

gnatΣ (Ω,Ω) = Tr
{(

Σ−1Ω
)2}

Distance d2
Eucl (Σ1,Σ2) = ‖Σ1 −Σ2‖2F d2

nat (Σ1,Σ2) = || log(Σ
−1/2
1 Σ2Σ

−1/2
1 )||2F

Notice that gnatΣ corresponds to a special case of gcesΣ for which α = 1 and β = 0. For these two metrics
we have the following results:

Theorem 3.5.4. Euclidean Cramér-Rao bound on Σ [Breloy et al., 2019a]
Let {zi}ni=1 be a n-sample of z ∼ CES (0,Σ, gz). The Cramér-Rao bound on the Euclidean distance
between an unbisaed estimator Σ̂ and Σ is

E
[
d2
Eucl

(
Σ̂,Σ

)]
≥ Tr

{
F−1
Eucl

}
(3.30)

with

[FEucl]i,j = nαTr
{

Σ−1ΩEucl
i Σ−1ΩEucl

j

}
+ nβTr

{
Σ−1ΩEucl

i

}
Tr
{

Σ−1ΩEucl
j

}
(3.31)

where {ΩEucl
i }p

2

i=1 is an orthonormal basis of Hp (e.g., given in [Smith, 2005]).

Remark that this corresponds well to the Euclidean Cramér-Rao bounds obtained for sev-
eral distributions in [Greco and Gini, 2013, Pascal and Renaux, 2010, Besson and Abramovich, 2013,
Mitchell, 1989]. Also notice that we retrieve the same result as Theorem 5 of [Smith, 2005] for the
special case of Gaussian distribution, obtained with α = 1 and β = 0.

Theorem 3.5.5. Natural Cramér-Rao bound on Σ [Breloy et al., 2019a]
Let {zi}ni=1 be a n-sample of z ∼ CES (0,Σ, gz). The Cramér-Rao bound on the natural Riemannian
distance between an unbiased estimator Σ̂ and Σ is

E
[
d2
nat

(
Σ̂,Σ

)]
≥ p2 − 1

nα
+ (n(α+ pβ))−1 . (3.32)

Besides providing a more interpretable result, the Riemannian analysis can also reveal interesting
hidden properties of estimators. A main example from [Smith, 2005] is that the SCM in the Gaussian
case appears efficient w.r.t. dEucl, while not being so w.r.t. d2

nat at small sample size. This better
reflects results from empirical processes, meaning that there is still room for improvement when n ∼ p,
which motivated recent works such as [Tiomoko et al., 2019]. These insights are confirmed by the
validation simulation presented in Figure 3.5.

3.5.3 ICRLB for subspace estimation in spiked models

This section briefly presents recent results derived in [Bouchard et al., 2020]. We consider spiked mod-
els (also referred to as factor models), which correspond to the case of covariance matrices structured
as

Σ = Σk + I (3.33)

where rank(Σk) = k < p. In the following, the distributions z ∼ CES(0,Σk + I, gz) are referred to as
spiked elliptical models, which correspond to a generalization of low-rank structured Gaussian models
(e.g., [Tipping and Bishop, 1999a]) to the case of CES distributions.

Dealing with this model requires to chose a geometry for the manifold H+
p,k of p × p Her-

mitian positive semi-definite matrices of rank k, which has recently attracted much attention;
see e.g., [Bonnabel and Sepulchre, 2009, Vandereycken and Vandewalle, 2010, Meyer et al., 2011,
Vandereycken et al., 2012, Massart and Absil, 2018]. In [Bouchard et al., 2020], we opted for the pa-
rameterization

Σk = UΛkU
H (3.34)
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Figure 3.5: Performance of several M -estimators compared to the Euclidean (top) and natural
(bottom) Cramér-Rao bounds on scatter estimation. z ∼ (0,Σ, gz) with a t-distribution (gz(t) =(
1 + d−1t

)−(d+M)
) and [Σ]i,j = ρ|i−j| with ρ = 0.9

√
1/2 (1 + i). p = 10, left: d = 100 (similar to

Gaussian case), right: d = 3.

with U ∈ Stp,k and Λk ∈ H++
k . Notice that this representation is invariant by the unitary transfor-

mation (UOH)(OΛkO
H)(OUH) with O ∈ Uk, so we consider the geometry induced by the quotient

(Stp,k×H++
k )/Uk. We then derived geometric tools induced by a new Riemannian metric on the prod-

uct Stp,k × H++
k : the part in Stp,k is the so-called canonical metric on Stiefel [Edelman et al., 1998]

while the part in H++
k is a general form of the Fisher information metric of elliptical distributions in

H++
k (cf. Theorem 3.5.3). It is of particular interest in our context because the principal subspace of

the covariance matrix is directly obtained from this parametrization and a closed-form divergence func-
tion, which can be exploited to measure estimation errors [Bonnabel and Sepulchre, 2009]. Tedious
calculations details are omitted for clarity of exposition5. However we can still report the following
result:

Theorem 3.5.6. Cramér-Rao bound for subspace estimation in spiked elliptical models
Let {zi}ni=1 be a n-sample of z ∼ CES (0,Σk + I, gz), with Σk = UΛkU

H and Λk = diag({σi}). Let
d2
Gp,k(span(U), span(Û)) be the estimation error between the subspaces spanned by U and an unbiased

estimator Û, defined as
d2
Gp,k(span(U), span(Û)) = ||Θ||2F , (3.35)

where Θ is derived from the singular value decomposition UHÛ = O cos(Θ)ÔH . We have the following
inequality

E
[
d2
Gp,k(span(U), span(Û))

]
≥ (p− k)

nα

k∑
i=1

1 + σi
σ2
i

. (3.36)

5Interested readers can find the details in section 2.7 of the annexes
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Figure 3.6: Performance of several subspace estimators from [Sun et al., 2016, Bouchard et al., 2020]
compared the intrinsic Cramér-Rao bounds. z ∼

(
0, σUΛkU

H + I, gz

)
with a t-distribution (gz(t) =(

1 + d−1t
)−(d+M)

), U is a random matrix in St(p, k), Λk is a diagonal matrix whose minimal and
maximal elements are 1/

√
c and

√
c (c = 20 is the condition number); its other elements are randomly

drawn from the uniform distribution between 1/
√
c and

√
c; its trace is then normalized as Tr(Λk) = k,

σ = 50 is a free parameter corresponding to the signal to noise ratio. p = 16 and k = 4, left: d = 3
(heavy tailed), right: d = 100 (similar to Gaussian).

Interestingly, this theorem leads to an interpretable lowerbound for subspace recovery in terms
of problem dimensions and signal to noise ratio. We also note that it coincides with the Gaussian
signal case studied in [Smith, 2005] for α = 1 and σi = SNR, ∀i ∈ [[1, k]]. Finally, Figure 3.6 illustrates
that this lower bound can asymptotically be achieved by the algorithms proposed in [Sun et al., 2016,
Bouchard et al., 2020].

3.6 Related works and perspectives

Insufficient sample size

In this chapter, we focused on the case n > p. In order to enjoy the robustness properties
of M -estimators at insufficient sample support (n < p), it is possible to leverage regularization
methods. A regularized M -estimator can be expressed as the minimizer of the cost function
Σ̂(α) = argminΣ L(Σ) + αP(Σ), where L is the objective in (3.12), P is a penalty function, and
α is a regularization parameter. Recent works [Wiesel, 2012b, Sun et al., 2014, Pascal et al., 2014b,
Ollila and Tyler, 2014a] focused on penalties of the form P(Σ) = Tr{Σ−1T}+ ln |Σ| that shrink the
estimate towards a prior T. These regularized M -estimators satisfy the fixed-point equation

Σ̂(α) =
1

1 + α

n∑
i=1

ρ′(zHi Σ̂−1(α)zi)ziz
H
i +

α

1 + α
T (3.37)

and can exist for n < p [Ollila and Tyler, 2014a]. In this topic, several perspectives of the presented
work can be mentioned:

• Numerous works considered the problem of optimal α parameter selection, with respect to several
applicative criterions (cf. [Hoarau et al., 2017] and refs. therein). The issue is quite complex,
therefore it would be interesting to simplify it by establishing Wishart equivalents of regularized
M -estimators (e.g. in the form of shrinked SCM [Ledoit and Wolf, 2004]).

• In order to promote certain spectral structures [Aubry et al., 2018, Tyler and Yi, 2018,
Basiri et al., 2019], it would be interesting to develop EVD-based regularization penalties, e.g.,

P(Σ) = Pλ(Λ) + Pv(V) for Σ
EVD
= VΛVH . We started working on this approach by first con-

sidering unitary invariant shrinkage (Pv(V) = 0) in [Breloy et al., 2019b]. An interesting lead



CHAPTER 3. ROBUST COVARIANCE MATRIX ESTIMATION IN ELLIPTICAL MODELS 37

would be to promote sparsity in the eigenvectors, e.g., using the tools that will be presented in
chapter 4.

Information geometry and Riemannian approaches

Beyond performance bounds, the Riemannian point of view offers a unified approach to tackle sta-
tistical estimation problems involving structured matrices. Indeed, the information geometry derived
from the considered model can guide the choice of relevant metrics for the derivation of the geometry
of the parameter space. This geometry can be exploited by both deriving performance bounds, as
well as optimization algorithms on Riemannian manifolds [Absil et al., 2009]. For example, we also
proposed new estimation algorithms in [Bouchard et al., 2020], with promising results at insufficient
sample support. We also started addressing robust blind source separation with this perspective
in [Bouchard et al., 2020]. Finally, the derivation of information geometry for the considered pa-
rameter space and distribution may yield new Riemannian distances that can be leveraged for other
applications such as clustering, which is a lead we started to explore in the thesis of Antoine Collas
(started in september 2019).

3.7 Onward to the next chapter

This chapter presented several theoretical derivations (within the elliptical model framework) for
covariance matrix estimation related problems. The chapter 4 will be more application-centered, as it
will discuss the application of spiked elliptical models (cf. sec 3.5.3) to the problem of change detection
in muntivariate image time series.
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4.1 Contributions of the chapter

This chapter addresses the problem of change detection in multivariate image times series. In this
context, testing the similarity of covariance matrices from groups of observations has been shown
to be a relevant approach. The corresponding classical statistical methodologies are usually built
upon the Gaussian assumption, as well as an unstructured signal model. Both of these hypotheses
may be inaccurate for high-dimension/resolution images (non-Gaussian observations), and where all
channels are not always informative (structured signals). The problem will be tackled by deriving new
detection methods using signal models from the previous chapters, that alleviate the aforementioned
limitations. While the term “testing similarity” usually refers to equality, we also discuss the testing
of shared properties in the eigendecomposition (e.g., principal components) of groups of covariance
matrices structures.

The contributions presented in this chapter detail works conducted during the theses of Ammar Mian
and Rayen Ben Abdallah.
Related publications in the cv (page xi): [J6], [C16], [C18], [FC13], [FC8], [J12], [X2].
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Figure 4.1: Representation of p-variate SAR-ITS data set. The pixels highlighted in black correspond
to the local observation window (here, n = 9).

4.2 Context overview

4.2.1 Change detection in SAR image time series

The analysis of Synthetic Aperture Radar (SAR) Image Time Series (ITS) has become a popular topic
of research since it has many practical applications for Earth monitoring, such as disaster assessment,
infrastructure monitoring or land-cover analysis. Over the past years, SAR-ITS have been made
more widely available thanks to various missions such as Sentinel-1, TerraSAR-X, or UAVSAR. As
a consequence, an active topic of research addresses the development of reliable automatic Change
Detection (CD) methodologies in order to efficiently process this large amount of data. The CD
problem is indeed challenging due to the lack of available ground truths, which does not allow
applying supervised methods from the image processing literature. Moreover, it is well known that
SAR images are subjected to speckle noise, which makes traditional image-based approaches prone
to high false alarm rates. In this case, unsupervised methodologies, often based on statistical tools,
have yield interesting approaches in recent decades [Hussian et al., 2013].

In the following, we consider a multitemporal time-series of T multivariate SAR images as described
in Figure 4.1. Each pixel of a SAR image at a given date t corresponds to a vector of dimension p,
denoted z ∈ Cp . The p channels can correspond to a polarimetric diversity (p = 3), or to another kind
of diversity such as a spectro-angular one, obtained through wavelet transforms [Mian et al., 2019].
The change detection process is applied using a local window around the pixel of interest, including n
pixels. Locally, the whole data set is denoted {{zti}ni=1}Tt=1, which corresponds to the aggregation of
all pixels at spatial indexes i ∈ [[1, n]] and dates t ∈ [[1, T ]].
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4.2.2 Statistical change detection with the GLRT

For a given time t, the local observation {zti}ni=1 is assumed to be distributed according to a fixed
parametric distribution, of parameter θt. The corresponding likelihood is denoted L

(
{zti}ni=1|θt

)
. The

parameters {θt} are feature that characterize the local data at each date t: if a local change occurs,
this parameter is expected to vary. The CD problem can thus be formulated as a binary hypothesis
test: {

H0 : θi = θ0, ∀i ∈ [[1, T ]] (no change),
H1 : θi 6= θj , for i 6= j (change).

(4.1)

Notice that we will consider an omnibus CD problem, i.e. we do not test for a change at a specific
date. Conversely, the sequential test focusing on the date t0 is expressed as:

H0 : θi = θ1, ∀i ∈ [[1, T ]] (no change),

H1 :
θi = θ1, ∀i ∈ [[1, t0 − 1]]
θi = θt0 , ∀i ∈ [[t0, T ]], with θt0 6= θ1

(change at t0).
(4.2)

which can often be recasted as an omnibus one with T = 2 by re-partitioning the data set if there is
a single change (yet, this property is not always true depending on the chosen model).

In order to derive a metric of decision, we consider the use of the generalized likelihood ratio test
(GLRT) for the hypothesis test (4.1). This test consists in computing the following quantity:

Λ̂GLRT =

max
{θt}Tt=1

∏T
t=1 LH1

(
{zti}ni=1|θt

)
max
θ0

∏T
t=1 LH0 ({zti}ni=1|θ0)

, (4.3)

where LH1 (resp. LH0) denotes the likelihood function and {θt}Tt=1 (resp. θ0) corresponds to the
parameters of the distribution, both under H1 (resp. H0).

Additionally, a possible parameter splitting θ = {θtest,θside} can lead to the following hypothesis
test: 

H0 :
θtest
i = θtest

0 , ∀i ∈ [[1, T ]]
θside
i 6= θside

j , for i 6= j
(no change in θtest),

H1 :
θtest
i 6= θtest

j , for i 6= j

θside
i 6= θside

j , for i 6= j
(change in θtest).

(4.4)

Modified accordingly, the GLRT formulation of (4.3) still allows us to test for specific changes within
the parameters. Thus, one statistical model can yield several tests, whose relevance will depend on
the phenomenon we aim to test. This perspective will be discussed in the following, but not fully
detailed because our experiments showed that the considered CD application (i.e., detecting any
change) favors detectors that test for all the parameters.

In conclusion: to develop efficient GLRT detectors, the problem remains to select an assumed
distribution (and corresponding parameters) that accurately reflects the behavior of the data and the
phenomenon we aim to test.

4.2.3 Current issues

The CD problem still generates several challenges, from which we can stress the following:

• A first issue concerns the modeling of the data. The CD processes are built upon the Gaussian
assumption, which can be inaccurate for high-dimension/resolution images (i.e., non-Gaussian
observation). An element of response is brought by the use or more general families of distribu-
tions, such a compound Gaussian ones (cf. chapters 2-3). For a chosen distribution, the choice
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of parameters to test is also not trivial, as it should leverage prior physical considerations on
the acquisition system. In this scope, we will consider the use of spiked models (i.e., covariance
matrices with a low rank structure), which is often appropriate in radar signal processing.

• It is also worth mentioning that, depending on the chosen model, the evaluation of the GLRT
may lead to complex optimization problems, which boils down to the computation of maximum
likelihood estimators. In the following presentation, we will elude this question by simply noticing
that the proposed tests can be computed using the majorization-minimization techniques evoked
in the previous chapters and Appendix A1.

4.3 GLRTs based on the covariance matrix

Testing the similarity of covariances matrices between groups of observations is a well-established topic
in the statistical literature [Nagao, 1973, Schott, 2001, Anderson, 2003, Hallin and Paindaveine, 2009],
which has also been considered for CD in time-series in, e.g. [Galeano and Peña, 2007,
Aue et al., 2009]. More specifically for SAR-ITS applications, various test statistics based on
covariance matrix equality testing from Gaussian samples have been proposed within statistical
detection framework [Conradsen et al., 2003, Novak, 2005, Barber, 2015, Carotenuto et al., 2015,
Maio et al., 2017], or using information theory [Nascimento et al., 2019, Ratha et al., 2017] . A good
review of these Gaussian detectors can be found in [Ciuonzo et al., 2017].

In the following, we will consider generalizations of the Gaussian GLRT approach: we present the
GLRTs corresponding to four models, which can be splitted between two distributions

� Gaussian, i.e., assuming z ∼ CN (0,Σ),

� Compound Gaussian with deterministic textures, i.e. assuming zi|τi ∼ CN (µ, τiΣ), ∀i, where
τi is unknown deterministic,

and two parameterizations for the covariance matrix

� Unstructured, i.e., no specific structure assumed on Σ,

� Spiked (low-rank structured), i.e., assuming Σ = Σk + σ2I, where rank(Σk) = k and k is fixed,

which are summed-up (with a corresponding reference) in the following table:

Model Gaussian Compound Gaussian

Unstructured [Conradsen et al., 2003] [Mian et al., 2019]

Spiked [Ben Abdallah et al., 2019c] [Mian et al., 2019]

4.3.1 Gaussian models

Unstructured Gaussian

Assuming Gaussian distributed samples, the CD can be performed by testing a change in the covariance
matrix [Conradsen et al., 2003, Novak, 2005]. The corresponding GLRT, denoted Λ̂G, corresponds to
(4.1) and (4.3) with the following distribution/parameters:

Model: zti ∼ CN (0,Σt)

Param.: H0 : θ0 = Σ0

H1 : {θt}Tt=1 = {Σt}Tt=1.

(4.5)

1Interested readers can find the details in sections 2.8 and 2.9 of the annexes.
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This test has well established statistical properties (cf. eg. [Ciuonzo et al., 2017]) and admits the
closed-form expression

Λ̂G = |Σ̂SCM
0 |/

T∏
t=1

|Σ̂SCM
t |1/T , (4.6)

with the Sample Covariance Matrices (SCMs) defined by

Σ̂SCM
0 =

1

Tn

∑
t,i

zti(z
t
i)
H and Σ̂SCM

t =
1

n

∑
i

zti(z
t
i)
H . (4.7)

Spiked Gaussian (and extensions)

The performance of the CD methods is tightly linked to the accuracy of the covariance matrix esti-
mation. The general rule-of-thumb suggests that n > 2p samples are required in order to obtain a
correct estimation. However, spiked models are very common structure in radar due to signals lying
in a lower dimensional subspace. In order to lower n (i.e., reduce the local window size), we proposed
in [Ben Abdallah et al., 2019c] to extend the Gaussian GLRT to the spiked model. The resulting test
corresponds to (4.1) and (4.3) with the following distribution/parameters:

Model: zti ∼ CN
(
0,Σt

k + σ2
t I
)

Param.: H0 : θ0 = {Σ0
k, σ

2
0}

H1 : {θt}Tt=1 = {Σt
k}Tt=1

(4.8)

where Σk belongs to the set of p × p Hermitian positive semi-definite matrices of rank k. Following
from [Tipping and Bishop, 1999a], this test consists in evaluating the ratio (4.3) with the MLEs

Σ̂0
k + σ̂2

0I = Tk{Σ̂SCM
0 }

Σ̂t
k + σ̂2

t I = Tk{Σ̂SCM
t }

(4.9)

with the operator Tk (projection on the set of low-rank plus scaled identity) is defined by

TR : Σ = U diag(d) UH 7→ TR(Σ)
∆
= U diag(d̃) UH (4.10)

with
d = [d1, . . . , dk, dk+1, . . . , dp]

d̃ =
[
d1, . . . , dk, σ̂

2, . . . , σ̂2
]

σ̂2 =
1

p− k

p∑
r=k+1

dr .
(4.11)

We also note that if the noise variance is assumed to be known and equal to σ2, the solution is given
in [Kang et al., 2014], and consists in replacing d̃ by d̄ =

[
max(d1, σ

2), . . . ,max(dR, σ
2), σ2, . . . , σ2

]
.

Several generalizations of this approach can be found in [Ben Abdallah et al., 2019c,
Ben Abdallah et al., 2019b], where the considered model is

zti
d
= Ut(D

t
i)

1/2sti + σtn
t
i (4.12)

with Ut ∈ St(p, k), Dt
i ∈ H

++
k , sti ∼ CN (0, I) and ntiCN (0, I). This model encompasses (4.8), but also

allows for extensions echoing to the non-Gaussian models in chapter 2, such as LRCG in definition
2.3.4. Most interestingly, splitting the parameters as in (4.4) can yield detectors that test for a
specific feature change. For example [Ben Abdallah et al., 2019b] proposed a detector for a change in
the signal subspace, while being insensitive to variations of the other parameters (power fluctuations,
inner correlations, etc.)2. The approach is an interesting prospect for other applications that aim to
test for specific physical phenomenons. However, these formulations are not specifically efficient for
standard CD where we aim to detect any change.

2Interested readers can find the details in section 2.9 of the annexes.
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4.3.2 Compound Gaussian models

Unstructured compound Gaussian

As stated previously, the standard Gaussian assumption is no longer valid for high-resolution, or
heterogeneous SAR images. This mismodeling induces a strong reduction of the CD performance when
using Λ̂G, notably caused by the inaccuracy of the SCM computed from non-Gaussian observations.
This issue can be alleviated by assuming a compound Gaussian model. Under this assumption, the
CD can be performed by testing a change in both the covariance matrix and the texture parameters
[Mian et al., 2019]. The corresponding GLRT, denoted Λ̂CG, corresponds to (4.1) and (4.3) with the
following distribution/parameters:

Model: zti ∼ CN
(
0, τ tiΣt

)
Param.: H0 : θ0 =

{
Σ0, {τ0

i }ni=1

}
H1 : {θt}Tt=1 =

{
Σt, {τ ti }ni=1

}T
t=1

(4.13)

The evaluation of the quantity Λ̂CG involves fixed-point equations that can be computed numerically.
A study and generalizations (testing for textures or covariance matrices individually) of this approach
can be found in [Mian et al., 2019].

Spiked compound Gaussian

In [Mian et al., 2019], we proposed to combine the advantages of both the low-rank structure and the
CG distribution. Thus, we considered a model of CG distributed samples with a spiked covariance
matrix. The corresponding GLRT for CD, denoted Λ̂LRCG, corresponds to (4.1) and (4.3) with the
following distribution/parameters:

Model: zti ∼ CN
(
0, τ ti

(
Σt
k + σ2

t I
))

Param.: H0 : θ0 =
{
Σ0
k, σ

2
0, {τ0

i }ni=1

}
H1 : {θt}Tt=1 =

{
Σt
k, σ

2
t , {τ ti }ni=1

}T
t=1

(4.14)

Here, the test accounts for a possible change of both the covariance matrix and the textures between
acquisitions, as it was shown to be the most relevant approach for SAR-ITS [Mian et al., 2019]. This
GLRT can be computed with appropriate modifications of the spiked covariance matrix estimation
algorithm in [Sun et al., 2016].

4.4 Application to real data

The performance of the proposed change detector is tested on a SAR ITS dataset, and assessed with
ROC curves (displaying the probability of detection versus the false alarm rate). As a mean to assess
the effectiveness of combining LR structure with a robust model, it is compared to the following
detectors:

i) the unstructured Gaussian detector proposed in [Conradsen et al., 2003, Ciuonzo et al., 2017],
denoted Λ̂G,

ii) the spiked Gaussian detector of [Ben Abdallah et al., 2019c], denoted Λ̂LRG

iii) the compound Gaussian detector proposed in [Mian et al., 2019], denoted Λ̂CG

iv) the spiked compound Gaussian detector proposed in [Mian et al., 2019], denoted ΛLRCG.



44 CHAPTER 4. CHANGE DETECTION IN SAR IMAGE TIME SERIES

Table 4.1: Description of SAR data used

Dataset Url Resolution Scene p T Size
Coordinates
(top-left px)

UAVSAR
SanAnd 26524 03 Segment 4
April 23, 2009 - May 15, 2011

https://uavsar.jpl.nasa.gov
Rg: 1.67m
Az: 0.6m

Scene 1 12 4 2360× 600 px
[Rg, Az] =
[2891, 28891]

Scene 2 12 2 2300× 600 px
[Rg, Az] =
[3236,25601]

(a) t=1 (b) t=2

(c) t=3 (d) t=4

Figure 4.2: UAVSAR Dataset used in this study for the scene 1. Four dates are available between
April 23, 2009 and May 15, 2011.

4.4.1 Datasets description

The SAR ITS data set is taken from UAVSAR (courtesy of NASA/JPL-Caltech). Two scenes
with respectively 4 and 2 images are used. They are displayed in Figure 4.2 for the scene
1 (4 images) and 4.3 for the scene 2 (2 images). The CD ground truths are collected from
[Ratha et al., 2017, Nascimento et al., 2018] and are shown in figures 4.4. Table 4.1 gives an overall
perspective of the scenes used in the study. The SAR images correspond to full-polarisation data with
a resolution of 1.67m in range and 0.6m in azimuth. Since the scatterers present in this scene exhibit
an interesting spectro-angular behavior, each polarization of these images has been subjected to the
wavelet transform presented in [Mian et al., 2019], allowing to obtain images of dimension p = 12.

The rank k is chosen according to Figure 4.5, which displays the eigenvalues of the total sample
covariance matrix. For this data set, k = 3 appears to be an interesting value to separate signal from
noise components. Notably, this rank gathers 81% of the total variance.
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(a) t=1 (b) t=2

Figure 4.3: UAVSAR Dataset used in this study for the scene 2. Four dates are available between
April 23, 2009 and May 15, 2011.

(a) Scene 1 (b) Scene 2

Figure 4.4: Ground truth for scenes 1 and 2

Figure 4.5: Repartition of eigenvalues mean over the ITS for the scene 1.

4.4.2 Results

Comparison between the four methods

Figure 4.6 displays the outputs of the 4 detectors applied to scene 1. From visual inspection, the levels
of the false alarms appear lower for the low-rank based detectors. Figure 4.8 confirms this insight,
and also assesses that the LRCG method achieves the best performance in terms of probability of
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(d) Low Rank Compound Gaussian

Figure 4.6: Outputs of the 4 methods for the scene 1: Gaussian, Low Rank Gaussian, Compound
Gaussian (CG) and Low Rank Compound Gaussian (LRCG). Rank is fixed as 3, the window size is
7× 7 and σ2 is assumed unknown for low rank models.

detection versus false alarm rate. For the scene 2, the same conclusions can be drawn from Figure 4.7
(detectors output) and Figure 4.8 (ROC curves).

Robustness to parameter selection

Figure 4.9 (left) displays the ROC curves of ΛLRCG on the scene 1 for three different values of the
rank k. It is interesting to notice that these curves do not vary significantly with respect to this
parameter. Therefore, we can expect that a slight error in the rank estimation will not lead to a
significant drop in CD performance.

In [Ben Abdallah et al., 2019b], the noise variance σ2 is pre-estimated locally with the mean of
the (p− k) lowest eigenvalues of the sample covariance matrix of all samples in the patch. This value
is then used as a known parameter in the detector. Figure 4.9 (right) compares this method with
the fully adaptive one (cf. (4.10)-(4.11)). It shows that the parameter σ2 can be left as a degree of
freedom at each t without loosing in terms of CD performance.
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(b) Low Rank Gaussian
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(c) Compound Gaussian
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(d) Low Rank Compound Gaussian

Figure 4.7: Outputs of the 4 methods for the scene 2: Gaussian, Low Rank Gaussian, Compound
Gaussian (CG) and Low Rank Compound Gaussian (LRCG). Rank is fixed as 3, the window size is
7× 7 and σ2 is assumed unknown for low rank models.

4.5 Perspectives

Finally, we can list several direct perspectives following from this work:

• The presented framework assumed zero-mean samples. The approach is relevant for SAR imag-
ing, but not in general for satellite image time series. The extension the case of unknown mean
is therefore an interesting prospect as it would allow us to apply the proposed methodologies
to other data-sets. Especially, the spiked models appear suited to hyperspectral imaging, where
the sample dimension p is generally too high to apply local covariance-based processes.

• The considered formulation requires to fix the rank k in spiked models prior to any derivation.
A potential extension of our work would be to investigate the change of the rank within a CD
process.

• Detecting specific phenomenons through structural changes in the covariance matrix can be an
interesting approach, but it requires a strong prior on the physics of the data. Some promising
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Figure 4.8: Comparison between 4 methods for the scene 1 (left) and 2 (right): Gaussian, Low Rank
Gaussian, Compound Gaussian (CG) and Low Rank Compound Gaussian (LRCG). Rank is fixed as
3, the window size is 7× 7 and σ2 is assumed unknown for both low rank models.
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Figure 4.9: Robustness to parameter selection for LRCG: (left) Comparison of several LRCG on the
scene 1 for different rank values. The window size is fixed at 7×7 and σ2 is assumed unknown. (right)
Comparison of the ROC curves between assumed known σ2 and assumed unknown σ2 (integrated in
GLRT). R = 3, Window size is equal to 7× 7.

results were obtained in SAR tomography in collaboration with A. Taylor. However, the lead
remains to be further explored.

4.6 Onward to the next chapter

This chapter presented an application-oriented conclusion to the statistical model discussed in the
chapters 2 and 3. Following from this, the last chapter will still address problems related to sub-
space recovery and detection. However, it will not involve statistical models, but rather consider
recovery/detection problems through geometric formulations.
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5.1 Contributions of the chapter

This chapter presents some of my recent works, focused on geometric formulations for sub-
space recovery. First, we present a new class of majorization-minimization algorithms for sparse
PCA, where the objective function is composed of an M -estimation type subspace fitting term
plus a regularizer that promotes sparsity in the principal components. Second, we present a
prospective work, where we introduce a reformulation of the radar detection problem as a robust
subspace clustering problem (i.e. recovering multiple linear subspaces from a heterogeneous data set).

The first contribution presented in this chapter details works conducted in collaboration with Hong
Kong University of Science and technology (HKUST).
Related publications in the cv (page xi): [X1].

The second contribution presented in this chapter details works initiated in collaboration with North
Carolina State University (NCSU), that has been further developed in the thesis of Bruno Mériaux.
Related publications in the cv (page xi): [C14], [C20].

5.2 Sparse PCA with majorization-minimization

5.2.1 Motivations

In standard PCA, the estimated principal components are usually dense (i.e., a linear combinations
of all entries of the variables). Since the principal components have an actual physical meaning
in many applications, estimating sparse principal components can significantly help the interpreta-
tion, as well as the variable selection process. As an example, we can cite the analysis of gene
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expression data, where the aim is to identify only a few relevant genes (generally among thou-
sands) within the principal components. Many algorithms have been proposed to perform this task
[Chen et al., 2012, Chen and Huang, 2012, Bunea et al., 2012, Hu et al., 2016, Benidis et al., 2016,
Uematsu et al., 2017]. Most of the proposed methods involve an orthonormal basis U ∈ St(p, k),
whose columns represent the principal components, and can be generically formulated through the
problem

minimize
U∈St(p,k)

L(U, {zi}ni=1) + λξ (U) , (5.1)

where L is a data fitting term (orthogonal regression on the dataset {zi}ni=1), ξ is a sparsity pro-
moting penalty (e.g., the `1-norm), and λ is a regularization parameter. The introduction of the
sparse penalty usually makes the minimization in (5.1) hard to tackle under the orthonormality
constraint. Thus, most algorithms in the literature relax this constraint and resort to a trade-off
[Chen et al., 2012, Chen and Huang, 2012, Bunea et al., 2012, Hu et al., 2016]. A natural way to han-
dle the orthonormality constraint is to turn to the framework of Riemannian optimization for St(p, k)
[Edelman et al., 1998, Manton, 2002, Absil et al., 2009]. However, these methods can be computation-
ally expensive, and handling sparsity promoting penalties in this framework has only recently been
addressed [Chen et al., 2018, Huang and Wei, 2019]. In the following, these issues will be addressed
by using the majorization-minimization framework. The contribution is twofold:

• We proposed a framework to deal with the orthonormality constraint in a systematic manner,
which is fully detailed in Appendix A. First, we present a majorization rule that transforms the
initial problem in a series of orthogonal Procrustes ones, and analyze the corresponding generic
algorithm. Second, we derive a catalog of corresponding majorizers for standard cost function.

• Driven by this methodology, we proposed a new set of algorithms for sparse PCA by leveraging
proxies of `0-norm proposed from [Song et al., 2015]. Interestingly, the approach allows us to
combine M -estimation type data fitting terms (robustness) and sparsity promoting penalties,
while still ensuring orthonormality of the principal components.

5.2.2 Robust Sparse PCA with MM

We consider the generic formulation in (5.1). The following subsections detail options for the data
fitting term and penalties that can be managed with the presented MM framework.

Robust data fitting term

In the context of probabilistic PCA, the data fitting term can be chosen as the log-likelihood of
a statistical model, such as the ones presented in chapters 2 and 3. For the corresponding ob-
jective functions, one can leverage the linear surrogates from [Sun et al., 2016, Breloy et al., 2016,
Ben Abdallah et al., 2020] to fit the proposed framework. In this work, we will rather fo-
cus on a geometric approach inspired by the robust subspace recovery (RSR) algorithms of
[De La Torre and Black, 2003, Maronna, 2005, Ding et al., 2006, Lerman and Maunu, 2017]. Its main
interest is to offer a flexible formulation that does not involve side parameters, while being robust to
potential outliers within this set [Lerman and Maunu, 2018]. Thus, we consider the function

L(U, {zi}ni=1) =
1

n

n∑
i=1

ρ
(
d2 (U, zi)

)
, (5.2)

where
d2 (U, z) = ‖(UUH)⊥z‖2F = zHz− Tr

(
UHzzHU

)
(5.3)

is the Euclidean distance between a vector z ∈ Cp and the subspace spanned by U ∈ St(p, k), and
where ρ : R → R is a function that ensures the robustness to outliers. Here, ρ is assumed to be a
concave nondecreasing function, which holds for a wide variety of usual robust formulations from the
literature, as illustrated by the following examples:
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Example 5.2.1. (`p-norm) For p > 0, `p-norm nonconvex RSR estimators are defined as in (5.2)
by using the function

ρp(t) = tp/2. (5.4)

The least-square estimator (standard PCA) is obtained for p = 2.

Example 5.2.2. (Huber-type) For a parameter T ≥ 0, Huber-type nonconvex RSR estimators are
defined as in (5.2) by using the function

ρH(t) =

{
t/
√
T if t ≤ T,

√
t if t > T.

(5.5)

The median estimator, e.g. considered in [Ding et al., 2006, Lerman and Maunu, 2017], corresponds
to the case limit case T → 0.

Example 5.2.3. (Cauchy–Lorentz-type) For a parameter T ≥ 1, Cauchy–Lorentz-type nonconvex
RSR estimators are defined as in (5.2) by using the function

ρCL(t) = T ln(T + t). (5.6)

Example 5.2.4. (Geman-McClure-type) For a parameter T ≥ 0, Geman-McClure-type nonconvex
RSR estimators are defined as in (5.2) by using the function

ρGMC(t) = t/(T + t), (5.7)

which has been used in, e.g., [De La Torre and Black, 2003].

Sparse penalties with linear surrogates on St(p, k)

In order to design sparsity promoting penalties suited to the MM framework, we follow the approach
proposed in [Song et al., 2015], i.e., approximating the `0-norm by a smooth function denoted lεγ , and
defined as

lεγ(x) =

{
a|x|2, if |x| ≤ ε
lγ(x)− b, if |x| > ε,

(5.8)

with appropriate constants a and b so that the approximations lεγ are continuous and differentiable (cf.
[Song et al., 2015]), and where lγ belongs to the family of functions (involving a tuning parameter γ):

a) `γ-norm [Gorodnitsky and Rao, 1997, Chartrand and Yin, 2008, Lai et al., 2013]:
lγ(x) = |x|γ , γ ∈ (0, 1]

b) `1-norm approximation from [Sriperumbudur et al., 2011, Candès et al., 2008]:
lγ(x) = ln(1 + |x| /γ) ln(1 + 1/γ), γ > 0

c) lower bound of sign function from [Mangasarian, 1996]:
lγ(x) = 1− e−|x|/γ , γ > 0.

Thus, this class covers most of standard 1-dimensional sparsity forcing penalties (i.e., a proxy of the
sign function). In order to mimic a weighted `0-norm, we consider the cost function:

r0 (U) =

R∑
r=1

ωr

N∑
n=1

lεγ ([ur]n) , (5.9)

where ωr are positive weights and with lεγ in (A.29), and where U = [u1, . . . ,uk], and

[·]n denotes the nth element of a vector. Such type of penalty was initially proposed for
Sparse PCA in [Benidis et al., 2016] using the `1-norm approximation [Sriperumbudur et al., 2011,
Candès et al., 2008] (i.e., lεγ in the class b) of the considered family).
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Algorithm derivation

In this section, an MM algorithm is derived in order to solve problem (5.10). First, recall that we
consider the problem

minimize
U∈St(p,k)

1

n

n∑
i=1

ρ
(
d2 (U, zi)

)
+ λr0 (U) . (5.10)

Following the surrogates given in [Breloy et al., 2020], the objective of this problem admits a linear
surrogate function on St(p, k), given in the following proposition:

Proposition 5.2.1. The objective in (5.10) can be majorized on St(p, k) at point Ut by a surrogate
satisfying (A.7) with

R(Ut) =
1

n
M
(
Ut
)
Ut − λH

(
Ut
)

(5.11)

with

M (U) =
n∑
i=1

ρ′
(
d2 (U, zi)

)
ziz

H
i and


H
(
Ut
)

=
[

W1u
t
1 | · · · | WRutR

]
Wr = diag( wr − wmax

r 1N )

[wr]n = ωrφ
([

utr
]
n

)
wmax
r = max(wr),

(5.12)

and where the function φ is a majorizing function that depends on the chosen lεγ (full expressions are
detailed in Proposition A.3.5 of Appendix A).

Therefore, we can apply Algorithm 2 of Appendix A, which leads to the following MM iterations:

Ut+1 = PProc

{
1

n
M
(
Ut
)
Ut − λH

(
Ut
)}

. (5.13)

This algorithm will be referred to as Robust-Sparse PCA (RSPCA).

5.2.3 Numerical validations

First, we study the robustness of RSPCA to corruption by outliers in the sample set. The aim is to
illustrate the interest of both the robust fitting objective and the sparsity promoting penalty. The
simulation setup is built around the so-called haystack model [Lerman et al., 2015], which corresponds
here to a mixture of orthogonal Gaussian distributions plus additive noise:

{zi}ni=1 = {{zin
i }

nin
i=1, {z

out
i }ni=nin+1}

zin ∼ CN (0, SNR×UUH + I)

zout ∼ CN (0,ONR×U⊥UH
⊥ + I),

(5.14)

where U and U⊥ are built from the canonical basis such that UHU⊥ = 0 (hence U’s sparsity is
maximal), SNR is signal to noise ratio, and ONR is outlier to noise ratio. We will compare four
algorithms: i) RSPCA with least square fitting (cf. Example 5.2.1) and λ = 0 (i.e., the standard
PCA); ii) RSPCA with least square fitting and λ = 100; iv) RSPCA with Huber cost (cf. Example
5.2.2) and λ = 0 (i.e., RSR); iii) RSPCA with Huber cost and λ = 1000. Figure 5.1 displays the
average fraction of recovered energy of each algorithm with respect to ONR and the fraction of
outliers in the sample set. We can notice that the use of a robust cost improves the performance
compared to the standard PCA. Moreover, the introduction of the sparse penalty improves the results
in terms of AFE, but also interestingly improves the robustness of the estimation process. Here, it is
worth mentioning two critical points: a) RSPCA appears very robust when a valid signal subspace
basis is actually sparse, which is probably because the sparse penalty contributes to naturally discard
dense outliers. If the true subspace basis is dense, results can be degraded in practice. b) The starting
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Figure 5.1: AFE versus ONR and number of outliers for various algorithms. p = 100, k = 15, n = p,
SNR = 10. RSPCA built with r0 penalty.

point plays an important role in the achieved robustness of all iterative algorithms (even without
regularization). In these simulations, we used the spherical PCA (PCA applied on the normalized
samples) as starting point. It has been observed that the achieved robustness can be lowered by using
the standard PCA instead.

Second, we compare the performance of RSPCA with state of the art sparse PCA algorithms on
the Leukemia data set [Golub et al., 1999]1. The data consists in gene expression measurements from
RNA micro-array: p = 7129 gene are studied for n = 72 patients. Remark that n� p, which suggests
the interest for both dimension reduction and variable selection. The studied performance criteria are
the following

SP(Û) = 1− ||Û||0/(pk)

C̃PEV(Û) = Tr{(span(Û))HZZHspan(Û)}/Tr{ZZH}
NOR(Û) = ||ÛHÛ− I||2F

(5.15)

which measure respectively the sparsity (expected to be close to 1, i.e., 100%), the explained variance
(expected to be close to 1, i.e., 100%), and the non-orthonormality (expected to be low). As the goal is
to explain as much as possible, with less entries, we are interested in studying the explained variance-

sparsity trade-off. In this case, notice that the C̃PEV criterion may slightly favor the algorithms
that relax the orthonormality constraint in the principal components, so we also check this property
with respect to the sparsity. The RSPCA estimator is build with a GMC cost (cf. Example 5.2.4),
r0 penalty and lγε is from the proxy of the lower bound of the sign function (i.e., c) in the familly of
proposed proxies). We notice that similar conclusions can be drawn with other objectives, up to minor
changes of the parameters. RSPCA is computed with Algorithm 2 using an outer loop, decreasing ε

1Described in https://github.com/ramhiser/datamicroarray/wiki/Golub-(1999)
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Figure 5.2: C̃PEV and NOR versus SP for various sparse PCA algorithms on the Leukemia data set.
p = 7129, k = 10, n = 72.

from 10−1 to 10−7 in order to avoid potential local minima. This algorithm is compared to ALSPCA

[Lu and Zhang, 2012], SPCArt and rSVD-GP from [Hu et al., 2016]. Figure 5.2 displays the C̃PEV
and NOR versus SP for the studied sparse PCA algorithms on the Leukemia data set. Interestingly,
we can notice that RSPCA achieves state of the art performance when it comes to the explained
variance-sparsity trade-off, but without relaxing the orthonormality constraint, as done by the other
algorithms.

5.3 Robust subspace clustering for radar detection

5.3.1 Motivations

Statistical radar detection

Adaptive detection of targets embedded in a complex environment (strong clutter, jammers, etc.) is
a major issue in array processing. This topic has been extensively —and is still actively— studied
in the signal processing literature for a plethora of signal models and assumed noise distributions.
Following the classical statistical paradigm [Kelly, 1986, Kraut et al., 2001, Kraut and Scharf, 1999,
Kraut et al., 2005], the detection problem can be formulated as a binary hypothesis test (target present
or not), with unknown statistical parameters (e.g., the disturbance covariance matrix). Formally, we
consider the following binary hypothesis test:{

H0 : z0 = c0 + n0 ; zi = ci + ni , ∀i ∈ [[1, n]]

H1 : z0 = α0p + c0 + n0 ; zi = ci + ni , ∀i ∈ [[1, n]]

where:

• z0 is referred to as primary sample (tested cell) and the {zk}ni=1 is the secondary data set, in
which samples are assumed to be i.i.d. and target-free.
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• p is the signal to be detected, and α0 is an unknown power/phase-shift coefficient.

• ci, ∀i ∈ [[0, n]] represents the interference: clutter (response of the environment) and/or jammers.

• ni, ∀i ∈ [[0, n]] represents the additive thermal noise of the system.

Depending on the assumed noise plus interference model, various detection schemes and likelihood
ratios can be envisioned. From a robust and practical point of view, one can rely on the adaptive
coherence estimator (ACE) [Kraut and Scharf, 1999, Kraut et al., 2005], also referred to as ANMF
detector, which is defined as:

Λ̂(Σ̂) =
|pHΣ̂−1z0|2

|pHΣ̂−1p||zH0 Σ̂−1z0|

H1

≷
H0

δΣ̂, (5.16)

for a given plug-in estimator Σ of the interference-plus-noise covariance matrix Σ = Σc+σ
2I, computed

from the secondary data {zk}k∈[[1,K]] (excluding z0). To sum up, a classical 2-step detection process
is performed as follows:

Step 1: {zi}ni=1
estimation−−−−−−−−−−−→ Σ̂

Step 2:
{

z0, Σ̂
}

plug-in detector−−−−−−−−−−−→ detection
(5.17)

In order to improve the performance of this detection process, the estimation of the interference plus
noise covariance matrix (or interference subspace) represents a crucial step. This problem thus still
drives a lot of current research, notably for dealing with the problems of robustness and low sample
supports (cf. chapters 2 and 3).

Limitation of statistical based methods

Most of the aforementioned detection methodologies have been built upon the availability of a
homogeneous secondary data set, i.e., i.i.d. and target-free samples, that are used to estimate the
unknown statistical parameters. From a practical point of view, the scanned environment can indeed
be assumed stationary for a given amount of observations. However embedded systems encounter
non-stationarity due to varying environment and/or switching jammers. Dealing with change points
upstream is not a trivial task, which often leads to heterogeneous secondary data sets. Moreover,
the secondary data are also potentially corrupted by outliers, such as targets. Generally speaking,
statistical-based methods may suffer from an important performance loss if the assumed hypothesis
are not met (so called mismatched situations). To alleviate this issue, the sample selection/partition
could be performed and checked using a more complex estimation chain. Though, efficient in practice,
this process may be tedious and computationally expensive, as it involves numerous unknown
parameters. While recent works keep robustness to heterogeneity/corruption in mind, it seems
interesting to explore new methodologies, such as geometrical formulations, in order to tackle these
problems.

In this scope, we will present a recent exploration, where the detection problem is reformulated as
a union-of-subsapces recovery. Of course, this reformulation will eventually not solve every aspect of
the question, and will bring its own inherent issues. Yet, it appeared as an interesting prospect that
remained to be delved into.

Heterogeneous interferences modeled as an union-of-subspaces

This section motivates the reformulation of the detection problem as a union-of-subsapces recovery
from the whole data. This approach is justified by the fact that the radar clutter (and/or jamming)
interference is often contained in a subspace of low dimension compared to the size of the data
[Brennan and Staudaher, 1992, Goodman and Stiles, 2007]. Hence, the background of a piecewise
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stationary environment can be modeled as a union-of-subspaces. Additionally, the present sources can
be modeled as a known dictionary of steering-vectors multiplied by a sparse matrix of power and phase-
shift coefficients. Recovering these two components from a noisy observation (the sample set) is referred
to as a robust subspace clustering problem [Vidal, 2011, Elhamifar and Vidal, 2013, Bian et al., 2018].

We consider that the whole collected sample set {zi}ni=0 is not necessarily homogeneous: the
interference (clutter and/or jammers) covariance and distribution may change at certain points of the
acquisition, with J unknown homogeneous sub-partitions (or clusters). Denote the partitioned sample
set {zji}

nj

i=1 with j ∈ [[1, J ]], and
∑J

j=1 nj = n+ 1. These samples are modeled as

zji = vji + cji + nji (5.18)

with the following additive contributions:

• vk is the sum of target responses, expressed as:

vji = [p1, · · · ,pP ]αk = Pαj
i (5.19)

where {pi}Pi=1 is a dictionary of known steering vectors (targets we seek to detect), and where

the vector αj
i contains power/phase-shifts coefficients. Under the realistic assumption that there

are few targets to be detected, only few entries in αj
i are non-zero. Therefore, these vectors are

expected to be sparse.

• cji represents the interference, such as ground clutter (response of the scanned environment)
and/or jammers. Such contribution is commonly assumed to be zero-mean with an assumed
existing covariance matrix Σc and following a given (possibly heavy-tailed [Ollila et al., 2012a])
distribution. In this work, the underlying distribution will be considered unknown and
unspecified. A crucial point is however that, from physical considerations on the system
[Brennan and Staudaher, 1992, Goodman and Stiles, 2007], we can assume that the covariance
matrix Σj

c of the interference in each cluster reads

Σj
c =

kj∑
r=1

cjru
j
ru

jH
r (5.20)

with kj < p (low-rank). Thus, in a given cluster j ∈ [[1, J ]], the interference realizations lie in

a low dimensional subspace and satisfy cji = Πj
cc
j
i ∀ i ∈ [[1, nj ]], with the rank kj orthogonal

projector Πj
c =

∑kj
r=1 ujru

jH
r .

• nji represents the thermal noise, assumed to be white Gaussian with a covariance matrix σ2I.

Note that, since the interference is heterogeneous with respect to each cluster, the whole set
{{cji}

nj

i=1}Jj=1 can be represented by a union-of-subspaces, as illustrated in Figure 5.3. From this
union-of-subspaces representation, an instrumental geometric relation will be given by noticing that
each interference realization lying in the hyperplane spanned by Πj

c can be obtained as a linear
combination of the others (when nj > kj), i.e., cji =

∑
l 6=i γ

j
l c
j
l , or in matrix form

Cj = CjWj , with [Wj ]i,i = 0 (5.21)

with Cj = [cj1, · · · , c
j
nj ], and where Wj is the matrix containing the coefficients γjl . This formulation

is also referred to as a self-representative property of the data.

Finally, if we denote the concatenation operator d, and the corresponding matrices{
Z = d{zjk}, C = d{cjk} = d{Cj}, V = d{vjk},
N = d{njk}, A = d{αj

k}, W = d{Wj},
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Figure 5.3: Illustration of data contained in a union of three low-dimensional subspaces

we then obtain the expression of the data matrix as:

Z = PA + C + N, with C = CW, and [W]i,i = 0 (5.22)

To sum up on this formulation, most of the power of the samples is contained in the union of unknown
subspace Πj

c, and the matrix A is a sparse matrix that contain the information about the present
targets (outliers with respect to the low-rank subspaces).

Note that, as evoked previously, this global model is quite complex to deal with within a statistical
framework. Indeed, the number of partitions J , the different distributions of interferences, their
corresponding covariance matrices Σj

c and ranks kj , the index of target-free samples (thus requiring
simultaneous estimation and detection), are unknown. From a practical point of view, this model
probably involves too many unknown parameters for deriving an efficient statistical estimation
procedure such as an Expectation-Maximization algorithm. Thus, we will turn to sparse recovery
algorithms in order to propose a solution. Interestingly, this formulation will not involve any
assumptions about homogeneous and signal-free secondary data as in the statistical approach, and
will allow the whole data to be processed in a single step.

5.3.2 Recovery algorithms

From the data model in (5.22), the problem is to recover a union of low-rank subspaces (interferences)
and a sparse matrix (target responses) from a noisy observation of the matrix PA + C. Note that,
in a detection application, we are primarily interested in the recovery of A, which informs on the
presence (or not) of targets in each samples. This approach, while —to the best of our knowledge—
unconventional for radar detection, is under a lot of ongoing investigations for machine learning and
computer vision problems [Elhamifar and Vidal, 2013]. In the following, we will thus consider the
use of several sparse recovery algorithms, which are described thereafter. The technical core of the
optimization algorithms will not be detailed. However, it is worth mentioning that our contribution
consisted in the adaptation of existing algorithms to include the dictionary P.

Robust subspace recovery via bi-sparsity pursuit (RoSuRe)

In order to recover the components from the data model in (5.22), we consider the following mini-
mization problem:

minimize
W,A,C

||Z−PA−C||2F + λ1||W||1 + λ2||A||1 subject to

{
(ii) C = CW,
(iii) diag (W) = 0

(5.23)
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Intuitively, the `1-norm promotes sparsity of the matrices W and A, which allows to recover the low
dimensional structures within the self-representative relation of the data, as well as the active targets
within the observations. Due to the bilinear constraint (ii), this problems is non-convex. The opti-
mization can be achieved by the linearized version of the Alternating Direction Method of Multipliers
(ADMM) [Boyd et al., 2011, Lin et al., 2011], which was initially proposed in [Bian et al., 2018] (then
with dictionary in [Breloy et al., 2018]). The corresponding algorithm will be referred to as RoSuRe.

Sparse subspace clustering (SSC)

Based on a rewriting introduced in [Elhamifar and Vidal, 2013], we also proposed to study a convexi-
fied modification of the problem (5.23) in [Mériaux et al., 2019]. Indeed, starting from Z = PA+C+N
and C = CW, we obtain

ZW = PAW + CW + NW = PAW + Z−PA−N + NW

Consequently, Z = ZW + PA (I−W) + N (I−W)

Z = ZW + PÃ + Ñ (5.24)

Thus, we consider the following modified problem

minimize
W,Ã

||Z−PÃ− ZW||2F + λ1||W||1 + λ2||Ã||1 subject to diag (W) = 0 (5.25)

where the `1-norm promotes the sparsity of the matrices W and Ã and the parameter λ balances
the two terms in the criterion. The problem (5.25) being convex, it can be efficiently solved using
convex programming tools [Boyd and Vandenberghe, 2004]. However, the reformulation trick sightly
degrades the original problem, which can lead to a biased estimate of the matrix A. The corresponding
algorithm will be referred to as SSC.

Principal component pursuit (PCP)

Another popular approach consists in recovering a “low-rank plus sparse” decomposition of the
data matrix. In our context, this can be performed by the pincipal component pursuit algorithm
[Chandrasekaran et al., 2011, Candès et al., 2011], that solves the problem

minimize
L,A

||Z−PA− L||2F + λ1||L||∗ + λ2||A||1 (5.26)

where || · ||∗ is the nuclear norm. In this recovery, the union-of-subspace representation is factorized
in a single low-rank matrix L. Yet, since we are mostly interested in the matrix A, it can still provide
an interesting solution when the union-of-subspaces still lies in a single low dimensional one.

5.3.3 Application to detection in non-stationary jammers

In this section, we consider the problem of target detection where the interferences are due to non-
stationary jammers. Consider a uniform linear array with p = 8 sensors, spaced each other of λ/2,

collecting n = 50 samples. The steering vector is given by d (θ) =
[
1, e−iπ sin θ, . . . , e−iπ(p−1) sin θ

]T
.

The dictionary D is built from d (θ), with θ ∈ [[−90o, 90o[[. The targets of interest, which are located at
θt = 40o, 10o,−10o and −60o at different sample times, are represented by the white markers in Figure
5.4. We consider in addition the presence of jammers, through a stochastic model, in the observation
scenario, which are similar to fake targets d (θj). For this non-stationary scenario, there exists J = 3
homogeneous clusters, bounded by the white dotted line in Figure 5.4. In the first sub-partition, the
jammers are in θj = 20o and −20o with γ1 = γ2 = 3. In the second one, we have θj = 20o,−45o and
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Figure 5.4: Scenario with non-stationary jammer

−25o with γ1 = γ3 = 2 = γ2/2. In the last one, we set θj = 60o and 20o with γ1 = γ3 = 3. Thus, the
low-rank covariance matrix of the jammers is given in each cluster by:

Rj
jam =

kj∑
i=1

d (θi) d (θi)
H = UΛUH (5.27)

where U and Λ are the eigen-decomposition of Rjam. Then, we define the covariance matrix of
the total noise by R = (JNR/Tr{Λ}))UΛUH + σ2IM , with JNR is the Jammer to Noise Ratio.
Analogously, we define the Signal to Noise Ratio (SNR) by SNR = ‖V‖2/σ2, where σ2 is fixed equal
to 1. Finally, the clutter plus noise is sampled from a Gaussian model CN (0,R).

In the considered application, we consider the standard adaptive detection methods: i) the
Adaptive Normalized Matched Filter (ANMF), where the covariance learning is based on the sample
covariance matrix, computed from the 2M samples surrounding the tested sample, which will serve
as secondary data; ii) the ANMF, where the covariance learning is using the Tyler’s estimator
[Tyler, 1987] on the 2M samples surrounding the tested sample. These methods are compared to
the following sparse recovery approaches: a) the RoSuRe-detector, which solves the problem (5.23)
from the given observations Z and the considered dictionary D; b) the SSC-detector, denoted by SSC
and which is obtained by solving the problem (5.25) from Z and D; c) the PCP-detector, denoted
by m-RoSuRe and which is obtained by solving the problem (5.25) from Z and D. The tuning
parameters (λ1, λ2) for each recovery algorithms have been selected by scanning a grid prior to the
simulation, then fixed in order to fairly compare the result.

Figure 5.5, displays the probability of detection with respect to the signal to noise ratio (for a
probability of false alarm set to 10−3 for each detector). Interestingly, we can observe that the sparse
recovery approach can outperform the ANMF-based methods. However, it is still hard to grasp a
global pattern, as the performance of each of these method depends on the observed target.

5.4 Perspectives

MM framework for the Stiefel manifold

The framework used in section A.2 (detailed in appendix A) appears to be a practical solution to
derive optimization algorithms involving the orthonormality constraints. In terms of applications, we
can point the following immediate perspectives:
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Figure 5.5: PD versus SNR for each target in the scenario. The probability of false alarm is set to
10−3 for each detector.

• The regularization of the eigenvectors of positive semi-definite Hermitian matrices, which can
be useful for covariance matrices (discussed in section 3.6), as well as graph Laplacian matrices
(discussed in section 6.2).

• The computation of robust tensor decomposition, such as the higher-order SVD (HOSVD)
[Chachlakis et al., 2019].

Robust subspace clustering

Sparse subspace recovery methods leveraging the self-representativity of the data represent a new per-
spective that I aim to further explore, notably from a more theoretical aspect such as optimization.
The radar detection problem offered a good entry point to this topic, as it brought some interesting
preliminary results. The considered methodology can be applied for two purposes: either performing
the detection itself by looking at the recovered sparse error matrix (revealing present targets), and/or
for doing a first step clustering of homogeneous samples, that can be then used in a traditional sta-
tistical detection process. Eventually, this second option (that we did not study yet) appear probably
more suited to detection problems. Indeed, such application is quite demanding in guarantees (e.g.,
the constant false alarm property w.r.t. to the interference), which seems hard to ensure with sparse
recovery approaches.
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Wrapping up, the previous chapters presented my research output around subspace recovery and
its applications. My first works adopted a statistical approach (probabilistic PCA and covariance
matrix estimation), and I recently moved to geometrical formulations. In this scope, my main contri-
butions concern the derivation of optimisation methods (majorization-minimization and Riemannian
optimization) to compute robust estimators related to various problems. A part of my work is also
focused on theoretical performance analysis (asymptotic characterizations and intrinsic Cramér-Rao
bounds). On the practical side, these methods/studies were mainly motivated by array processing
and teledetection applications (airborne radar and satellite image time series).

To conclude this synthesis, this chapter will now detail perspectives opened by these works.

6.1 Perspectives by chapters

Several immediate perspectives (i.e., extensions of the presented work) were evoked at the end of each
chapter. This section rather focuses on non-trivial, “medium/long-run”, leads that I aim to explore.

• Chapter 2 presented Bayesian subspace estimation methods for mixtures of low-rank com-
pound Gaussian models. The Bayesian priors for the subspace were drawn from directional
statistics (Bingham-Langevin distributions). A main remaining issue concerns the “fast” gener-
ation of samples according to these distributions, which could be addressed by exploiting modern
Langevin and Hamiltonian Monte Carlo methods for manifolds [Girolami and Calderhead, 2011].
It would also be interesting to study new distributions of subspaces from a Riemannian
point of view, directly involving the natural Riemannian distance on the Grassmann manifold
[Edelman et al., 1998].

On a second note, the problem of missing data should also be addressed. This can be efficiently
done within the expectation-maximization framework [Little and Rubin, 2019]. Hence, we can
generalize our previous algorithms for data with missing entries. This mostly requires tedious
technical derivations, but appears very important from a practical/applied point of view. We
started exploring this lead in the thesis work of Alexandre Hippert-Ferrer.

• Chapter 3 presented several theoretical performance characterizations (asymptotic analysis or
Cramér-Rao bounds) related to M -estimators and complex elliptically symmetric distributions.
I am now interested in studying non-asymptotic characterizations [Vershynin, 2010], in order to
obtain concentration bounds for subspace recovery algorithms (as e.g. in [Uematsu et al., 2017]).
Another puzzling question concerns the Riemanian intrinsic bias of maximum likelihood estima-
tors exhibited in [Smith, 2005]: it seems quite counter-intuitive that estimates could be biased
or not, depending on the chosen metric. Should the intrinsic bias be corrected? The answer
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probably lies in practical/applied results, since the correction interest cannot be validated by
simply measuring an error (which is metric dependent).

• Chapter 4 presented a framework to test for shared properties in the eigendecomposition of
covariance matrices from groups of observations. The approach is an interesting prospect for
applications that aim to test for specific physical phenomenons, but it requires a strong knowledge
of the considered application (and its underlying physics). I am currently learning about EEG
signals (mostly for blind source separation), where several shared formulations indicate that
the approach could be useful. Another interest of this framework is that it allows us to extract
features that can be leveraged for clustering within time-series, which is a lead currently explored
in the thesis of Antoine Collas.

• Chapter 5 presented a majorization-minimization framework for the Stiefel manifold. Notably,
we proposed cost functions and tricks to promote sparsity in orthonormal bases. Being sparse on
a smooth manifold is a complex issue with numerous applications: sparse PCA, sparse subspace
representations, sparse covariance/precision matrix estimation... A lead that I aim to explore is
brought by recent proximal gradient methods for Riemannian optimization [Chen et al., 2018,
Huang and Wei, 2019]. In the second part, chapter 5 presented an application of robust sparse
subspace clustering methods to radar detection. In this scope, the subspace recovery problem
through self-representative linear combinations could also be generalized to formulations that
naturally promote inherent symmetries (such as persymetric ones), that are relevant in some
applications.

6.2 Perspectives on new themes

This section details some topics I want to explore in a relatively near future. Though some connections
exist with the previous works, these topics are not directly related to any chapter in particular and
mostly represent new perspectives.

On Spectral regularization for graphs and covariances

Graph Laplacian learning shares a lot of common formulation with covariance matrix estimation.
Thus, the regularization and optimization techniques evoked for covariance matrices can be leveraged
in this context. Specifically, I want to study estimators formulated as

Σ(α) = argminΣ L(Σ) + αP(Σ),

P(Σ) = Pλ(Λ) + Pv(V) for Σ
EVD
= VΛVH ,

(6.1)

where L is an objective function (either for graph or covariance learning), α is a regularization param-
eter, and P is a penalty function with separate actions on the EVD parameters of Σ. This formulation
can be used in order to promote certain spectral structures, as e.g. considered in [Kumar et al., 2020a]
(through constraints rather than penalties). Moreover, eigenvectors are also essential in numerous pro-
cesses such as PCA and graph Fourier transform. It will therefore be interesting to control separately
their behavior in a regularization process. Notably, the use of sparsity promoting penalties on eigen-
vectors from chapter 5 can be useful for sparse precision matrices estimation (of primary interest
in graph analysis). This lead will be my main focus for my 1/2 CRCT in 2021 (mobility at Aalto
University, Helsinki).

On probabilistic PCA

I am also looking for new models that go beyond mixtures of elliptical distributions. An interesting
perspective is brought by the theory of copulas using a Gaussian kernel from [Woodbridge et al., 2017],
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expressed as

z
d
= f(x) (6.2)

with x ∼ CN (0,Σ), and where f is an element-wise operator, i.e., [z]i = fi([x]i). This formulation
allows us to change the marginal distribution of each entries, while controlling the correlation between
them through Σ, which appears especially interesting to model heterogeneous data. This model first
needs more empirical validation (i.e., exhibiting a fit to real data) to be motivated. However, it also
opens the door to numerous generalizations, as well as to the development of new subspace estimation
methods.

On dimension reduction

Still concerning subspace learning, I am also interested in studying low-dimensional structures in
non-linear spaces/representations. In the context of Riemannian geometry, a main question would
be: what is a subspace on a manifold? Elements of response are brought by tangent PCA, principal
geodesic analysis [Fletcher et al., 2004] and recent developments on the matter [Pennec et al., 2018].
A good entry point related to my work would be to study the problem of robust structured covariance
estimation when the structure is not actually known. Some solutions were proposed for linearly
structured covariance matrices [Soloveychik and Wiesel, 2015a], but the Riemannian point of view
is —to the best of my knowledge— not yet explored in this context. In this scope, Riemannian
dimensionality reduction techniques, e.g. inspired from [Harandi et al., 2018], would be interesting to
explore.
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A | Majorization-minimization on the
Stiefel manifold

A.1 Majorization-minimization (MM) algorithms

The general MM framework is briefly reviewed below. For more complete information, we refer the
reader to [Sun et al., 2016]. Consider the following optimization problem:

minimize
x∈X

f(x), (A.1)

where f : X → R is a continuous function and X is a closed set. Given an initial point x0 ∈ X , the
MM procedure minimizes f over X by updating x iteratively as

xt+1 ∈ argmin
x∈X

g(x|xt), (A.2)

where g(·|xt) : X → R is a surrogate function of f satisfying the following property:

xt ∈ argmin
x∈X

g(x|xt)− f(x). (A.3)

In other words, g(·|xt) upperbounds f globally over set X up to a constant:

g(x|xt)− f(x) ≥ ct , {g(xt|xt)− f(xt)}, ∀x ∈ X . (A.4)

The sequence {f(xt)}t∈N generated by (A.2) is non-increasing since

f(xt+1)
(A.4)

≤ g(xt+1|xt)− ct
(A.2)

≤ g(xt|xt)− ct = f(xt). (A.5)

The MM procedure suggests thus the possibility of minimizing f by iteratively seeking for a sequence
of surrogate functions {g(·|Ut)}t∈N that are easy to minimize over the feasible set. This procedure in
recapped in Figure A.1.

A.2 Systematic Procrustes reformulations for the Stiefel manifold

A.2.1 Generic algorithm

Consider a generic optimization problem where the variable U is constrained to the Stiefel manifold
St(p, k) =

{
U ∈ Cp×k | UHU = I

}
:

minimize
U∈St(p,k)

f (U) , (A.6)

where f : Cp×k → R is a smooth differentiable objective function suited to an application of interest.
Notice that optimization problems over the Stiefel manifold St(p, k) are nonconvex due to the
orthonormality constraint. Hence, they are usually hard to deal with, even for apparently simple
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Figure A.1: MM principle: “Iteratively minmizing a smooth local tight upperbound of the objective”.

objective functions f . Therefore, we consider applying the MM framework (cf. section A.1) and
minimizing f by solving a sequence of simpler problems: in short, we will construct surrogate functions
that are linear when restricted to the feasible set St(p, k). The corresponding subproblems can then
be recast as an orthogonal Procrustes ones (detailed below), leading to simpled updates of the variable.

In the following, we assume that the objective in (A.6) is majorized at point Ut by a surrogate
g(U|Ut) that satisfies the following properties:

Assumption A.2.1. The surrogate function g : Cp×k × Cp×k → R satisfies the following conditions:

i) Tightness: g(Ut|Ut) = f(Ut),

ii) Continuity: g(· | ·) is continuous on Cp×k × Cp×k,

iii) Upperbound: g(U|Ut) ≥ f(U), ∀U ∈ St(p, k),

iv) Linearity: restricting to St(p, k), g can be expressed as

g
(
U|Ut

)
= − Tr

{
RH

(
Ut
)
U
}
− Tr

{
UHR

(
Ut
)}

+ const.,

= − 2Re
{

Tr{UHR
(
Ut
)
}
}

+ const.,
(A.7)

where R : Cp×k → Cp×k is a matrix function of Ut.

Following the MM procedure described in section A.1, an update of the parameter U is given by

Ut+1 ∈ argmin
U∈St(p,k)

g
(
U|Ut

)
. (A.8)

Since g is linear (cf. (A.7)) and U ∈ St(p, k), it is not hard to see that obtaining this update is
equivalent to solving

minimize
U∈St(p,k)

||R
(
Ut
)
−U||2F , (A.9)

which is referred to as an orthogonal Procrustes problem. When R
(
Ut
)

is full rank1, the problem (A.9)
admits a unique solution [Manton, 2002], leading to the MM update:

Ut+1 = PProc

{
R
(
Ut
)}
, (A.10)

1Rank deficiency is a case we do not focus on: some pathological counter-examples can be build but they rely on
either i) a cost function f that does not satisfy the initial regularity assumptions; ii) a subspace within Ut that has
reached a local stationary point. For the second point, the proposed method can still be applied by setting the stable
subspace fixed and updating only the remaining portion of Ut (i.e., recasting the problem with k′ < k). In practice, the
issue has not been experienced with the considered cost functions.
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Algorithm 1 Computation of PProc (projection on St(p, k) )

1: Entry: R ∈ Cp×k

2: Compute the thin-SVD: R
TSVD

= VleftPVH
right

3: Set U=VleftV
H
right

4: Output: U = PProc(R) ∈ St(p, k)

Algorithm 2 Generic Procrustes-MM Algorithm

1: Entry t = 0, U(0) ∈ CN×R
2: repeat
3: Compute R

(
Ut
)

from surrogate (A.7)
4: Update Ut+1 = PProc

{
R
(
Ut
)}

with Algorithm 1
5: t = t+ 1
6: until convergence criterion is met
7: Output {Ut}

where the operator PProc is defined in Algorithm 1. Eventually, solving the sequence of orthogonal
Procrustes problems results in a MM procedure to optimize f under the orthonormality constraint,
which is summarized in Algorithm 2.

Remark A.2.1. Importantly, the MM approach is also applicable to objective function consisting in
a sum of functions of the form

f(U) =

I∑
i=1

fi(U). (A.11)

Then, if each fi can be majorized by a linear surrogate gi of the form

gi
(
U|Ut

)
= −Tr

{
RH
i

(
Ut
)
U
}
− Tr

{
UHRi

(
Ut
)}

+ const., (A.12)

following the same steps as (A.8)-(A.10), the MM updates can simply be obtained as

Ut+1 = PProc

{
I∑
i=1

Ri

(
Ut
)}

. (A.13)

Obviously, this methodology cannot be applied to any arbitrary cost function. Still, Section A.3
presents a catalog of surrogate functions satisfying (A.7) for a large set of standard cost functions that
can be used as building blocks. The method also suggests that simple algorithms can be obtained by
designing meaningful proxies of the desired function that can be majorized by a linear surrogate on
St(p, k). A practical example for a proxies of `0-norm is proposed in section 5.2.2 .

A.2.2 Computational complexity

Interestingly, a single iteration in Algortithm 2 essentially involves two operations:

• The computation of the matrix R(U): this step usually involves functions of the p × n data
matrix and/or multiplying this matrix with the current point Ut. Thus, this step is generally
O(npk). Also notice that this computation can most of the time, be parallelized. Hence it does
not represent the major bottleneck of Algorithm 2, contrarily to the second step.

• The computation of PProc: this step requires to compute thin-SVD of a tall matrix R ∈ Cp×k
which is O(pk2 + k3).
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Comparing to the existing approaches, e.g., the steepest descent on the Stiefel manifold
[Absil et al., 2009], an iteration requires computing the gradient (also generally O(npk)) and a retrac-
tion (local mapping between a point in St(p, k) and its tangent space). The choice of the retraction is
not unique, which leads to several options, e.g., based on geodesic paths [Edelman et al., 1998], Pro-
crustes projection [Manton, 2002], or QR decomposition [Absil et al., 2009]. Nevertheless, for all of
the corresponding algorithms, the retraction step is O(pk2+k3). Hence, the computational complexity
of an iteration of Algortithm 2 is on par with standard first-order based methods. However, this MM
procedure is step-size free, thus it does not require the knowledge of any global parameter (such as
the Lipschitz constant), or its adaptive estimation using a line search-type method. Compared to the
latter option, this property effectively reduces the computational burden of each iteration, as it does
not involve multiple computations of the retraction step (the computational bottleneck).

A.2.3 Convergence analysis

The convergence analysis of Algorithm 2 can be obtained by following the one of the successive
upper-bound minimization (SUM) algorithm in [Razaviyayn et al., 2013]. Note that the result of
[Razaviyayn et al., 2013] does not hold directly for Algorithm 2, as the SUM framework does not cover
non-convex constraints. Nevertheless, this result can be adapted to St(p, k) as in [Benidis et al., 2016,
Fu et al., 2017, Kumar et al., 2020b], leading to the following proposition:

Proposition A.2.1. Let {Ut}∞t=0 be a sequence generated by Algorithm 2. Then the following holds:

1. The sequence {f(Ut)}t∈N converges.

2. Every limit point U∗ of the sequence is a critical (also referred to as Karush-Kuhn-Tucker, or
KKT) point of the problem (A.6).

3. The whole sequence converges to K, the set of KKT point of the problem (A.6).

Note that the convergence to K does not imply the convergence of Algorithm 2 in terms of the
variable U. Establishing this property requires a case-by-case analysis: in some cases the monotonic
decrement of the objective can directly imply the convergence in terms of variable [Kiers, 1995]. For
the case of rotation invariant costs, this convergence in variable requires to be expressed in terms of
subspace, e.g. as in [Lerman and Maunu, 2017].

A.3 Standard cost functions and their surrogates

The key to apply Algorithm 2 is to obtain a linear surrogate of the objective on the set St(p, k).
In this section, we gather (and generalized) such surrogates functions from the literature (cf. e.g.,
[Kiers, 1995, Kiers, 2002]) for several standard minimizing problems: convex/concave quadratic forms,
concave functions, quotients of quadratic forms, and a class of tailored sparse penalties. This catalog
offers then practical building-blocks to tackle a large class of objective functions through systematic
Procrustes reformulations.

A.3.1 Quadratic forms (QFs)

First, define the Brockett function [Absil et al., 2009, Sec. 4.8] for U = [u1| · · · |uk] ∈ St(p, k) as

fB (U) =
k∑
r=1

dru
H
r Mur = Tr

{
UHMUD

}
, (A.14)

with M ∈ H+
p , and D ∈ Rk×k a diagonal matrix with [D]r,r = dr satisfying 0 ≤ d1 ≤ · · · ≤ dk. In

the following, functions of the form fB (resp. −fB) are referred to as convex (resp. concave) QFs.
Note that some other expressions of QFs exist, but they can usually be rewritten as special cases or
combinations (e.g., sums) of Brockett functions.
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Proposition A.3.1. (Majorization of concave QF) The function −fB as in (A.14) admits at
point Ut

R a linear majorizing surrogate in the form of (A.7), with

R(Ut) = MUtD. (A.15)

Equality holds at Ut.

Proof. The function −fB as in (A.14) is concave, so it can be majorized at point Ut by its first order
Taylor expansion (cf. [Sun et al., 2016] section III.A), i.e.,

−fB (U) ≤ −Tr
{(

MUtD
)H

U
}
− Tr

{
UH

(
MUtD

)}
+ const.. (A.16)

Proposition A.3.2. (Majorization of convex QF) The function fB in (A.14) admits on St(p, k)
and at point Ut a linear majorizing surrogate in the form of (A.7), with

R(Ut) = −KUtD, (A.17)

where K = M− λmax
M I and λmax

M is the largest eigenvalue of M. Equality holds at Ut.

Proof. The function fB in (A.14) can be expressed as

Tr
{
UHMUD

}
= Tr

{
UH (M− λmax

M I) UD
}

+ Tr
{
UH (λmax

M I) UD
}
, (A.18)

where the second term is constant and equal to λmax
M Tr {D} for the restriction U ∈ St(p, k). The first

term of this expression is concave in U (U ∈ CM×R) so it can be upper-bounded by its first order
Taylor expansion, thus

fB (U) ≤ +Tr
{(

KUtD
)H

U
}

+ Tr
{
UH

(
KUtD

)}
+ const., (A.19)

with K defined as in Proposition A.3.2.

Remark A.3.1. Majorizing a convex QF of U by a linear one seems counter-intuitive since it is not
possible on the entire Euclidean space CN×R. Nevertheless, the restriction to the set St(p, k) makes
the upperbound in Propositon A.3.2 possible. In order to give some insight, a visual example on R2 is
presented in Figure A.2.
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A.3.2 Concave compositions of quadratic forms

Compositions involving inner QFs that yield concave functions are often used in order to build robust
loss functions (examples are given in section 5.2.2). The following proposition gives a linear majorizer
of concave functions composed from the Brockett function.

Proposition A.3.3. (Majorization of concave function composed from concave QF) Let
ρ : R→ R be a concave non-decreasing function. For fB as in (A.14), the function ρ(−fB) admits at
point Ut a linear majorizing surrogate in the form of (A.7), with

R(Ut) = ρ′
(
−fB

(
Ut
))

MUtD. (A.20)

Equality holds at Ut.

Proof. The function −fB is concave in U and ρ is concave non-decreasing. It follows that the function
ρ(−fB) is concave, so it can be upper-bounded at point Ut by its first order Taylor expansion, i.e.,

ρ (−fB (U)) ≤ −ρ′
(
−fB

(
Ut
))

Tr
{(

MUtD
)H

U
}
− ρ′

(
−fB

(
Ut
))

Tr
{
UH

(
MUtD

)}
+ const.

(A.21)

Following this proof, other linear surrogates can be derived using compositions of concave (non-
decreasing/non-increasing) functions and the chain rule. It is also worth noting that one can apply
the reformulation of Proposition A.3.2 to express a quadratic QF as a concave term plus a constant
in order to do so (the obtained majoration is then only valid on St(p, k)).

A.3.3 Quotients of quadratic forms

Various formulations of quotients of quadratic forms arise in generalized versions of PCA [Kiers, 1995].
Most of them can be obtained as linear combinations of functions of the form

fq(U) = −Tr
{(

UHCU
)−1

UHAU
}
, (A.22)

where C is positive definite and A is positive semi-definite.

Proposition A.3.4. (Majorization of quotient of QFs) The function fq as in (A.22) admits on
St(p, k) and at point Ut a linear majorizing surrogate in the form of (A.7), with

R(Ut) = T(Ut)−
(
KUtT̃(Ut)

)
, (A.23)

in which

T(Ut) = AUt
(
(Ut)HCUt

)−1
and T̃(Ut) =

(
A−1/2T(Ut)

)H (
A−1/2T(Ut)

)
, (A.24)

with K = C− λmax
C I, and where λmax

C is the largest eigenvalue of C. Equality holds at Ut.

Proof. Starting from the inequality∥∥∥(UHCU
)−1/2

UHA1/2 −
(
UHCU

)1/2 (
(Ut)HCUt

)−1
(Ut)HA1/2

∥∥∥2
≥ 0, (A.25)

we obtain
fq(U) ≤− 2Re

{(
T(Ut)

)H
U
}

+ Tr
{

UHCUT̃(Ut)
}
, (A.26)

with T(Ut) and T̃(Ut) as in (A.24), and where equality holds at Ut. Following the proof of Proposition
A.3.2, we can majorize on St(p, k) the quadratic term in (A.26) as

Tr
{

UHCUT̃(Ut)
}
≤ +Tr

{(
KUtT̃(Ut)

)H
U

}
+ Tr

{
UH

(
KUtT̃(Ut)

)}
+ const., (A.27)

with K as in (A.24), and where equality holds again at Ut. Combining the inequalities (A.26) and
(A.27) concludes the proof.
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A.3.4 Proxies of element-wise sign function

The `0-norm of a complex number can be expressed as

||x||0 = sgn(|x|) (A.28)

where | · | stands for the modulus, and sgn is the sign function. This function would serve as an
ideal for the formulation of sparsity promoting penalty, however, it is too complex to deal with due to
its discontinuity. To alleviate this issue, we follow the approach proposed in [Song et al., 2015], i.e.,
approximating the absolute sign function by a smooth function denoted lεγ , and defined as

lεγ(x) =

{
a|x|2, if |x| ≤ ε
lγ(x)− b, if |x| > ε,

(A.29)

with appropriate constants a and b so that the approximations lεγ are continuous and differentiable
(cf. [Song et al., 2015]), and where lγ belongs to the family of functions:

a) `γ-norm [Gorodnitsky and Rao, 1997, Chartrand and Yin, 2008, Lai et al., 2013]:
lγ(x) = |x|γ , γ ∈ (0, 1]

b) `1-norm approximation from [Sriperumbudur et al., 2011, Candès et al., 2008]:
lγ(x) = ln(1 + |x| /γ) ln(1 + 1/γ), γ > 0

c) lower bound of sign function from [Mangasarian, 1996]:
lγ(x) = 1− e−|x|/γ , γ > 0,

involving a tuning parameter γ for each case. Thus, this class covers most of standard proxies of the
sign function. Notice that this class is still valid for data with complex entries by reading |·| as the
modulus function. We have the following proposition [Song et al., 2015, Section III]:

Proposition A.3.5. The function lεγ in (A.29) is majorized at point xt by the following quadratic
surrogate:

lεγ(x|xt) ≤ φ(xt)|x|2 + const. (A.30)

where the function φ depends on lεγ as:

a) `γ-norm [Gorodnitsky and Rao, 1997, Chartrand and Yin, 2008, Lai et al., 2013]:

φ(xt) =

{
(γ/2)εγ−2, |xt| ≤ ε

(γ/2) |xt|γ/2 , |xt| > ε

b) `1-norm approximation [Sriperumbudur et al., 2011, Candès et al., 2008]:

φ(xt) =

{
( 2ε(γ + ε) ln(1 + 1/γ) )−1, |xt| ≤ ε
( 2 ln(1 + 1/γ) |xt| (|xt|+ γ) )−1, |xt| > ε

c) lower bound of sign function [Mangasarian, 1996]:

φ(xt) =

{
e−ε/γ/2γε, |xt| ≤ ε
e−|xt|/γ/2γ |xt| , |xt| > ε

Equality is achieved at xt.

The functions lεγ can now serve as basic building blocks to build sparsity promoting penalties for
U ∈ St(p, k). A main example following from [Benidis et al., 2016] (weighted sum) is presented in
section 5.2.2. The key trick to obtain a linear majorizer is to obtain the following series of inequalities:

• Using Proposition A.3.5, to obtain a convex quadratic surrogate function of U over St(p, k).

• Applying Proposition A.3.2 to obtain a linear majorizer on St(p, k).
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