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The subspace recovery problem

In many data sets, the relevant information often lies in a subspace of much lower dimension than the ambient observation space. Thus, the goal of many learning algorithms can be broadly interpreted as trying to find, or exploit, this underlying structure. In this scope, a recurring idea is that the whole data can generally be projected with no (or minimal) loss on a linear subspace of low-dimension. This principle is illustrated in Figure 1.1, where we can grasp that (most of) the 3D data information can simply be contained in the represented 2D plan. The issue of estimating this unknown subspace directly from the data will be referred to as the subspace recovery problem. The most celebrated solution for this problem is the principal component analysis (PCA), which is briefly reviewed below. Nevertheless, the subspace recovery problem still raises some challenges and theoretical questions, that will be discussed afterward.

1.1.1 From principal component analysis... An insightful overview of PCA can be found in [Jolliffe, 1986], which constitutes a solid reference on the topic. This short introduction is inspired by the two PCA's historical roots, with a personal take on the reformulation of the problems so that the document feels consistent.

The seminal idea originates from [START_REF] Pearson | On Lines and Planes of Closest Fit to Systems of Points in Space[END_REF], which proposed to find the subspace that minimizes the sum of the residual errors on the centered (or demeaned) samples {z i } n i=1 (with

z i ∈ C p ∀i ∈ [[1, n]
]) after projection. A k-dimensional subspace can be represented in many ways, but we will focus on the use of an orthonormal basis U ∈ St(p, k), where St(p, k) denotes the Stiefel manifold:

St(p, k) = {U ∈ C p×k | U H U = I}. (1.1)
Defining the projection error as d 2 (U, z) = ||(I -UU H )z|| 2 F , the expressed problem can then be straightforwardly rewritten as maximize

U∈St(p,k) Tr{U H SU}, (1.2) with S = n i=1 z i z H i .
A solution to this problem given by the k leftmost eigenvectors of S (where leftmost stands for "associated with the largest eigenvalues"). Note that this solution can also be obtained with the k leftmost singular vectors of the singular value decomposition (SVD) of the data matrix Z = [z 1 , . . . , z n ], which is why we often rely on the shortcut "PCA = SVD".

This concept was then mainly re-developed by [Hotelling, 1933], who proposed to find the subspace in which the projected data has maximal variance. Assuming that the covariance matrix1 of the data is known, and denoted

Σ = E[zz H ], this problem is expressed maximize U∈St(p,k)
Tr{U H ΣU}.

(1.3)

Of course Σ is generally unknown in practice, but it can be estimated with the sample covariance matrix, i.e. ΣSCM = S/n. Plugging ΣSCM instead of Σ in (1.3) then yields the same solution as previously. Nevertheless, the leap from geometrical to statistical interpretation offers interesting perspectives. A main example is that if the columns of U correspond to eigenvectors of the covariance matrix, the representation zi = U H z i produces uncorrelated entries. This aspect, coupled with the dimension reduction, can be extremely useful in terms of interpretation/analysis of the data.

... to current challenges

Unfortunately, the SVD of the data matrix does not solve every aspect of the subspace recovery problem. This is especially true for modern data sets, that gather complex information for which a single linear subspace may be too restrictive. Some of these current challenges are discussed below:

• Robustness: A common problem in many applications is the presence of outliers in the dataset (e.g., as seen in red in Figure 1.1). These outliers can cause a subspace swap phenomenon [START_REF] Thomas | The probability of a subspace swap in the SVD[END_REF], meaning that the standard PCA does not recover the relevant signal subspace accurately. The issue is conceptually complex to tackle, as solving it requires to characterize what is an outlier, which implies knowing the subspace we aim to recover in the first place. Various approaches exist to address the problem of robustness to outliers in subspace recovery [START_REF] Lerman | An Overview of Robust Subspace Recovery[END_REF]. We can notably mention: redefining the cost of "best fitting" in PCA [De La Torre andBlack, 2003, Lerman andMaunu, 2017], using of robust statistics to estimate the covariance matrix [Croux andHaesbroeck, 2000, Drašković et al., 2019],

or expressing of the problem as a low-rank plus sparse decomposition of the data matrix [START_REF] Chandrasekaran | Ranksparsity incoherence for matrix decomposition[END_REF], Candès et al., 2011]. Each of these solution has their own merits, depending on the context, meaning that other options still remain to explore. Some interesting leads can also come from formulation of recovery problems with alternate representation of a subspace in order to overcome limitations of existing methods. An example would be sparse subspace clustering, where the subspaces are recovered through the factors of linear combinations linking the samples [START_REF] Elhamifar | Sparse subspace clustering[END_REF].

• Structure and priors: Some applications can benefit from available prior information on the subspace to be estimated (e.g., a rough knowledge from previous estimations). Some structural information on the covariance matrix can also be obtained from physical considerations on the observed phenomenon (e.g., Toeplitz for signals measured with uniform linear arrays) [Forster, 2001].

In some other cases, a sparse structure can be desired within the principal components in order to simplify the variable selection and the statistical analysis [START_REF] Hu | Sparse principal component analysis via rotation and truncation[END_REF]. Several approaches exist to leverage these priors: Bayesian estimation [START_REF] Besson | Minimum mean square distance estimation of a subspace[END_REF], regularization penalties [START_REF] Benidis | Orthogonal sparse pca and covariance estimation via procrustes reformulation[END_REF], structured parameterizations [Sun et al., 2016], etc., each with own benefits and associated bottlenecks. As for the robustness issue, the challenge lies in the formulation of a (solvable) estimation problem that both promote the desired structures, while ensuring good performance for the process.

• Optimization: Once a new relevant optimization problem is formulated to respond to the two aforementioned issues, it generally does not have an analytic solution as for the standard PCA. Thus, the actual computation of such newly formulated subspace estimators is also at stake. Indeed, subspaces are generally represented by objects with complex constraints, such as the orthonormality of a basis, or the rank-deficiency of a matrix. The subspace recovery problem hence motivates the development of efficient constrained optimization methods, for which we can, e.g., mention Riemannian optimization [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF], and majorization-minimization techniques [Sun et al., 2016].

• Performance analysis: Once a subspace recovery problem is cast within the prism of a statistical model for the data, it is possible to theoretically study the ultimate estimation performance (Cramér-Rao bounds) [Kay, 1993] or the statistical characterization of an estimator [START_REF] Krim | Operator approach to performance analysis of root-MUSIC and root-min-norm[END_REF]. These derivations are generally not trivial, either because the considered model is complex, or because the studied estimator is not obtained in closed-form, on top of satisfying inherent constraints that should be acknowledged in the analysis [START_REF] Gorman | Lower bounds for parametric estimation with constraints[END_REF]. Additionally, we can question the performance criterion that should be used when dealing with subspaces represented by structured parameters. An interesting option is to turn to the natural Riemannian distance between two subspaces, which can take into account the aforementioned characteristics, as well as provide insightful results. However, this approach generally implies technical difficulties in the analysis [Smith, 2005].

It goes without saying that this list is set as a motivation for the following chapters, but is not meant to be exhaustive. There exists many other challenges related to subspace recovery, such as: developing efficient on-line [START_REF] Feng | Online robust PCA via stochastic optimization[END_REF] or distributed methods [START_REF] Huroyan | Distributed robust subspace recovery[END_REF], performing dimension reduction with non-linear representations [Pennec et al., 2018], recovering a mixture of subspaces [Vidal, 2011], reducing the dimension of multilinear data [START_REF] Lu | Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization[END_REF]... Some of these issues will be evoked as perspectives in the concluding chapter of this document.

Manuscript organization and contributions

This section presents the outline of the rest of this manuscript. Each chapter is centered around a theme and was aimed to be readable as a stand alone. Nevertheless, there are of course some overlaps and connections between these chapters (common motivation, models/formulations, or optimization techniques). These links are made as explicit as possible in the "big picture" presented at the end of this section.

Chapter 2: Bayesian PCA with Compound Gaussian signals

This chapter introduces the model of a structured mixture of compound Gaussian distributions. This statistical model appears as an interesting alternative to the multivariate Gaussian one, used in standard probabilistic PCA. It notably allows to account for signals with fluctuating power, and possibly outliers. We then present a family of distributions for orthonormal bases, that can be used as Bayesian priors for the signal subspace. We then discuss the derivation of estimation processes for the corresponding models.

Related publications in the cv (page xi)

• Non-Bayesian: [J1-J3], [C1-C5], [C7], [START_REF] Breloy | Estimation par maximum de vraisemblance du sous-espace clutter dans un bruit hétérogène rang faible avec application au STAP[END_REF][START_REF] Breloy | Estimation Robuste de la Matrice de Covariance en contexte Hétérogène Rang Faible[END_REF].

• Bayesian models: [J10], [C12], [C19], [START_REF] Ben Abdallah | Estimation de sousespaces en présence de sources gaussiennes avec application à la détection STAP[END_REF].

Chapter 3: Robust covariance matrix estimation in elliptical models

This chapter presents the general framework of elliptical distributions (a family that encompasses the compound Gaussians) and associated M -estimators of the scatter. First, we present new asymptotic characterizations for PCA built with M -estimators and samples following an elliptical distribution. Second, we discuss robust structured covariance matrix estimation methods adapted to this context: a new algorithm is presented and statistically characterized. In a third part, intrinsic (manifold oriented) Cramér-Rao bounds are derived, notably for covariance matrix estimation problems, as well as subspace recovery problems in spiked (low-rank structured) elliptical models.

Related publications in the cv (page xi)

• Performance analysis [J5, J8, J9], [C10], [START_REF] Drašković | Nouvelles propriétés asymptotiques de détecteurs robustes[END_REF][START_REF] Drašković | Caractérisations asymptotiques pour les composantes principales des M-estimateurs[END_REF].

• Structured covariance matrix estimation [J7], [C13, C15, C17], [START_REF] Mériaux | Une version récursive de RCOMET pour l'estimation robuste de matrices de forme à structure convexe[END_REF][START_REF] Mériaux | Estimation robuste de matrices de dispersion structurées pour des modèles bien/mal spécifiés[END_REF].

• Intrinsic Cramér-Rao bounds [J4], [C22], [X3].
Chapter 4: Change detection in satellite image time series Classical statistical change detection methodologies based on covariance matrix analysis are usually built upon the (unstructured) Gaussian assumption. In order to refine this approach, we discuss how the aforementioned PCA models (compound Gaussian mixture and structured elliptical) can be integrated in the formulation of change detection tests, and how to compute the corresponding detectors. The idea is then applied to change detection in multivariate synthetic aperture radar image time series.

Related publications in the cv (page xi)

• Change detection [J6, J12], [C16, C18], [START_REF] Mian | Détection de Changement Robuste en Rang Faible pour les Séries Temporelles d'Images SAR[END_REF][START_REF] Ben Abdallah | Détection de changement de sousespace signal dans des matrices de covariance structurées[END_REF], [X2].

Chapter 5: Geometric approaches for subspace recovery

This chapter presents some of my recent works, leaping from "statistically" to "geometrically" oriented formulations for subspace recovery. These approaches consist in designing optimization problems that are not necessarily linked to a statistical distribution, but rather geometric insights and functions/constraints that promote certain structures on the solution. First, we present a new class of sparse PCA algorithms, for which the objective function is composed of an Mestimation type subspace fitting term plus a regularizer that promotes sparsity in the principal components. Second, we present a prospective reformulation of radar detection problem as a robust subspace clustering one (i.e. recovering multiple linear subspaces from a heterogeneous data set.).

Related publications in the cv (page x)

• Sparse PCA [X1].

• Subspace clustering [C14], [C20].

Chapter 6: Perspectives

This chapter concludes by drawing some research perspectives brought by the presented work.

Appendix A: Majorization-Minimization on the Stiefel manifold

Along this manuscript, it will often be mentioned that the occurring optimization problems can be solved by tailoring dedicated majorization-minimization algorithms. The detailed derivation of these algorithms will be voluntarily omitted in order to lighten the presentation. Nevertheless, to fill this gap, this appendix presents a synthetic and generic framework for deriving majorization-minimization algorithm for a variable U ∈ St(p, k), which constitutes a major part of the considered subspace recovery problems. For other specific problems (side parameters estimation), the full derivations can be found in the auxiliary annexes.

Annexes (auxiliary document)

The annexes consist in a side document, gathering a selection of my articles. It is not meant to be extensively studied, as this main document already presents their core results in a synthetic manner. However, interested readers can find here most of the technical details (algorithm derivations, proofs, etc.) that were omitted in this synthesis.

Links with Ph.D. students and international collaborations

The following table details the implication of Ph.D. students and international collaborators in the contributions of each chapter:

Chapter Ben Abdallah Drašković Mériaux Mian Bouchard Intl. collab. 2 3 4 5
We also mention the following clarifications:

• Ph.D. students I officially supervised: R. Ben Abdallah, G. Drašković, B. Mériaux.

• Ph.D. students I worked with: A. Mian, F. Bouchard (now post-doc in our team).

• International collaborations: HKUST (Honk Kong), NCSU (USA).

Big pictures

Since the section 1.1.2 was set as a motivation, we can report on which of the aforementioned challenges the presented contributions bring an element of response to:

Links with challenges of section 1.1.2 Chapter Robustness Structure and priors Optimization Performance analysis 2 ∼ 3 ∼ 4 5

We can add several remarks to this table:

• The word "robustness" appears in each chapter, however it can refer to various meanings that will be specified. The three main examples are: to outliers, to various underlying distributions and model mismatches, to heterogeneity in the data set.

• Some contributions in Chapter 2-4 involve the development of majorization-minimization algorithms. However, these chapters rather focus on the problem formulation. For more details on majorization-minimization, the reader will be referred to the first part of chapter 5. Some of my recent work addresses Riemannian optimization algorithms. These are discussed in the perspectives of chapter 3, but not presented in details.

• Chapter 3 focuses on elliptically distributed samples, while Chapter 2 uses structured mixtures of compound Gaussian distributions. Chapter 4 discusses both models in the context of a specific application, however the presented contribution focuses on the first one.

To conclude this synthesis, Figure 1.2 presents the global picture, i.e. details the topics (and corresponding chapters) evoked in this manuscript. 

Can we recover a subspace from all this?

Finally, it is hard not to reduce the dimension of this work... Consider the following data matrix:

[J1] [J2] [J3 [J4] [J5] [J6] [J7] [J8] [J9] [J10 [X1] [X2] [X3] [C1 [C4] [C7] [C8] [C9] [C10] [C11 [C14] [C17] [C18] [C19] [C20] [C21] [C22] [C23] Sta Geo MM Rie CRB Perf Bay Reg Cov App Rob
where each sample represents a paper shortlisted from page xi (28 in total), and measurements consists in a list of 11 yes-or-no (0 or 1) keywords: statistical PCA, geometric PCA, MM, Riemannian geometry, CRLB, performance analysis, Bayesian, regularization, covariance, application, robustness.

PCA is applied on the correlation matrix of the data (which appeared more relevant for binary entries): the left side of Figure 1.3 represents the data points projected on the subspace spanned by the 3 leading principal components, containing 54% of the information. From this representation, we can interpret 3 clusters: a) the group [X1, C14, C20], which gather recent works, and illustrates a shift from statistical to sparse/geometrical subspace representations; b) the group [J4, C9, C22], which focus only on Cramér-Rao bounds derivations; c) the rest, which is mostly about statistics-based approaches (either covariance matrix estimation or probabilistic PCA).

The right side of Figure 1.3 displays 2D representation on the data projected onto the 2 leading principal components, for which we can give the following interpretation: The component u 1 separates [J10, X1, C18] (estimation algorithms) from [J7, X3, J4] (performance and Cramér-Rao analyses), which seem to reflect whether or not a statistical analysis is present in the contribution. The component u 2 opposes [X1, C14, C20, J9, C10, C17] to [J10, J4, X3], which appears to indicate if an application is targeted or not. Additionally the line following (u 1 -u 2 ) splits the contributions between "PCA only" and "covariance only" approaches. The points in the center contain some contributions about low-rank structured covariance matrices, which is a bridge between the two approaches. The plane {u 3 , u 4 } (not displayed) was hard to interpret as clearly, except that u 3 separates the clusters a) and b) from c), as seen in the 3D representation in the left.

Of course, this analysis was made with no pretension outside of being a fun pretext to apply PCA on papers about PCA, before moving to the technicalities of the upcoming chapters. 
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Contributions of the chapter

This chapter concerns subspace recovery with a statistical approach. We present a series of statistical model (based on structured mixtures of compound Gaussian distributions) suited to this problem and discuss their relevance in signal processing applications. We then extend these models to a Bayesian context, where a prior distribution is assumed on the signal subspace basis in order to account for potential available information. We then present several estimation methods driven by this model, and finally illustrate their interest on simulations and a radar detection problem.

The presented work consists in the follow-up of my thesis results, which we generalized to a Bayesian setting in the thesis of Rayen Ben Abdallah. Related publications in the cv (page xi): Non-Bayesian (my thesis): [J1-J3], [C1-C5], [C7], [START_REF] Breloy | Estimation par maximum de vraisemblance du sous-espace clutter dans un bruit hétérogène rang faible avec application au STAP[END_REF], [START_REF] Breloy | Estimation Robuste de la Matrice de Covariance en contexte Hétérogène Rang Faible[END_REF]. Bayesian models (Thesis of Rayen Ben Abdallah): [J10], [C12], [C19], [START_REF] Ben Abdallah | Estimation de sousespaces en présence de sources gaussiennes avec application à la détection STAP[END_REF].

Context overview

Probabilistic PCA

Interestingly, the initial derivations of PCA [START_REF] Pearson | On Lines and Planes of Closest Fit to Systems of Points in Space[END_REF], Hotelling, 1933] are obtained without any assumption on the probabilistic model of the data (only the second-order moment is assumed to exist). The term "probabilistic PCA" (PPCA) was coined in [Tipping and Bishop, 1999b], who demonstrated that PCA can also be derived within a density estimation framework. Indeed, consider that the samples are drawn as the sum of a low-rank structured signal plus noise

z d = Ws + n (2.1)
with W ∈ C p×k a full rank matrix, s ∼ CN (0, I) ∈ C k and n ∼ CN (0, σ 2 I) ∈ C p . We then have the representation z ∼ CN (0, Σ) with Σ = WW H + σ 2 I. The maximum likelihood estimator (MLE) for this model corresponds to the regularization of the sample covariance matrix, where the last p -k eigenvalues are averaged. Hence, from the point of view of subspace recovery (i.e., estimating span(W)), this model still leads to the standard PCA since eigenvectors of the sample covariance matrix are kept as estimators. However this formulation of the problem opens the path for numerous extensions. For example, [Tipping and Bishop, 1999b] exploits this model to propose a computationally efficient expectation-maximization (EM) algorithm (close to the power iteration method [Golub and Van Loan, 2012]), as well as a generalization to the case of data with missing entries [START_REF] Little | Statistical analysis with missing data[END_REF]. This approach was generalized to Gaussian mixture models for clustering and/or multiple subspace recovery in [Tipping and Bishop, 1999a]. Finally, a link with the so-called factor model in econometrics [Ruppert, 2011] can be pointed out since it generally considers (2.1) with n ∼ CN (0, D), where D is diagonal (i.e. a different variance for each entries).

Beyond Gaussian models

Non-Gaussian signals

In the scope of PPCA, a main angle that still draws research attention is to consider models that go beyond the Gaussian distribution for the two signal components in the representation (2.1). The rationale is that if an estimation algorithm accounts for a statistical model with a better empirical fit to the data, we can expect a more accurate subspace recovery. The presented contributions will follow this idea and consider the use of compound Gaussian distributions (denoted CG) for the signal component.

The approach was mainly motivated by high-resolution array processing application, as these distributions are suited to model sources with fluctuating power [START_REF] Greco | Statistical analysis of measured polarimetric clutter data at different range resolutions[END_REF], Ollila et al., 2012b], and where the columns of W represent steering vectors. Embedding compound Gaussian signals in white Gaussian noise then reflects the thermal noise of the system. In these applications, the signal subspace requires to be estimated to apply adaptive subspace methods [START_REF] Haardt | Subspace methods and exploitation of special array structures[END_REF] or low-rank filters (interference cancelation) [Rangaswamy et al., 2004, Ginolhac andForster, 2016]. However, mixtures of compound Gaussian distributions are quite general and were also used in the statistical literature, for which we can point some references: Tipping and Bishop, 1999b] Heteroscedastic PPCA [START_REF] Hong | Asymptotic performance of PCA for highdimensional heteroscedastic data[END_REF] s ∼ CG(0, I) CG subspace estimation (detailed section 2.3)

Model in (2.1) n ∼ CN (0, σ 2 I) n ∼ CG(0, σ 2 I) s ∼ CN (0, I) PPCA [
Robust PPCA [START_REF] Archambeau | Robust probabilistic projections[END_REF], Chen et al., 2009] Another approach that we can mention consists in simply assuming a general non-Gaussian multivariate distribution on z with the second order moment directly structured as Σ = WW H + σ 2 I. This approach, rather than refining the structure of multiple-contribution models (2.1), offers generally less physical interpretation. Yet, it can lead to good estimation performance in practice: robust estimation approaches within this context will be studied in Chapter 3 and 4.

Bayesian priors in PCA

In some applications, we might want to account for some available prior knowledge on the subspace to be recovered. This prior information can be for example drawn from previous estimates in a sequential process, or from a physical model of the data. From the Bayesian perspective, accounting for this information can be done by assigning a prior distribution on the orthonormal subspace basis and deriving corresponding Bayesian estimators (e.g., maximum a posteriori and minimum mean squared distance). This approach was initially proposed to develop Bayesian PCA algorithms in [Srivastava, 2000, Besson et al., 2011]. In [START_REF] Besson | CS decomposition based Bayesian subspace estimation[END_REF], these results have been extended to a subspace parameterized by its CS decomposition. In [Elvira et al., 2017a, Elvira et al., 2017b], these concepts were extended to the Bayesian non-parametric framework in order to adaptively select the rank of the subspace to be estimated. In this scope, this chapter will present the derivation of Bayesian PCA algorithms for compound Gaussian sources.

Data models 2.3.1 Compound Gaussian distributions

Compound Gaussian distributions, also referred to as spherically invariant random vectors [Yao, 1973], have been widely employed in the statistical signal processing literature e.g., in image processing [START_REF] Shi | An elliptically contoured exponential mixture model for wavelet based image denoising[END_REF], Zozor and Vignat, 2010, Portilla et al., 2003], and for modeling radar clutter [START_REF] Greco | Statistical analysis of measured polarimetric clutter data at different range resolutions[END_REF], Ollila et al., 2012b]. A main interest is that they encompass a large family of multivariate distributions, notably heavy-tailed ones. These distributions are a sub-family of the wider class of elliptical distributions [Ollila et al., 2012a] (that will be presented in Chapter 3). However, we focus here on compound Gaussian distributions only because of a practical representation theorem, that will be instrumental to handle mixtures models and Bayesian priors: Definition 2.3.1. Compound Gaussian distribution A p-dimensional CG vector is represented as a product of two statistically independent components, i.e., if z ∈ C p follows a compound Gaussian distribution, denoted z ∼ CG(µ, Σ, f τ ), it has the following stochastic representation

z d = µ + √ τ d, (2.2) 
where i) µ ∈ C p is the center of distribution, which coincide with E{z} = µ when existing.

ii) τ ∈ R + is a positive random scalar, called texture, of p.d.f. f τ . This parameter is statistically independent of d.

iii) d ∈ C p follows a zero-mean multivariate complex Gaussian distribution of covariance matrix Σ, denoted, d ∼ CN (0, Σ). The matrix Σ ∈ H ++ p (H ++ p denotes the set of p × p positive definite Hermitian matrices) is referred to as the scatter matrix. Notice that if E{τ } < ∞, the covariance matrix of z exists and is proportional to the scatter matrix, i.e., E{(z -µ)(zµ) H } = E{τ }Σ.

The p.d.f. of a random vector z ∼ CG(µ, Σ, f τ ) is thus defined by

f (z) = π -M |Σ| -1 ∞ 0 τ -M exp -(z -µ) H Σ -1 (z -µ) τ f τ (τ )dτ, (2.3)
and conditionally to the texture, the random vector z has the distribution z|τ ∼ CN (µ, τ Σ).

Note that compound Gaussian distributions are not uniquely defined, as the vectors z ∼ CG(µ, Σ, f τ ) and z ∼ CG(µ, cΣ, f τ ), with τ = τ c and c ∈ R * + , satisfy z d = z . In order to avoid any ambiguity, we may impose an arbitrary scaling constraint, such as Tr{Σ} = 1, |Σ| = 1, or E{τ } = 1 (when E{τ } < ∞).

Depending on the choice of f τ , the compound Gaussian representation can lead to numerous usual multivariate distributions, such as Gaussian, Weibull, K-, and Student t-distributions (c.f. [Ollila et al., 2012a] for details). In most applications, a strong prior information on the texture distribution is not actually available. In order to design algorithms that are robust to the whole family compound Gaussian distributions, a common approach is to consider that the texture τ is unknown and deterministic for each realization, which offers an interesting robustness-performance trade off [Tyler, 1987, Pascal et al., 2008b]. This model will be denoted as below: Definition 2.3.2. Compound Gaussian distribution with deterministic texture Consider a n-sample {z i } n i=1 following a compound Gaussian distribution while assuming a deterministic texture τ i for each sample z i . We denote this model by z i ∼ CG(µ, Σ, δ τ i ), or equivalently, z i |τ i ∼ CN (µ, τ i Σ), ∀i.

Generalized Bingham-Langevin distributions

Definition

First, recall that we denote the Stiefel manifold St(p, k) = {U ∈ C p×k | U H U = I}. In this section, we present a familly of distributions for orthonormal bases U ∈ St(p, k) from the field of directional data analysis. Probability distributions and statistical inference on St(p, k) have been developed primarily in the spatial statistics literature [Chikuse, 2003, Mardia andJupp, 2009], starting with the real circle and real sphere, then extended to higher dimensions (and the complex case). These distributions were notably used for the formulation of Bayesian PCA algorithms [Srivastava, 2000, Besson et al., 2011]. In [Ben Abdallah et al., 2020], we introduced the complex generalized Bingham Langevin (CGBL) distributions as a generalization of these directional statistics to the case of matrix variables with complex entries: the CGBL is a probability distribution on St(p, k) which combines linear and quadratic terms. CGBL are defined as follows:

Definition 2.3.3. Complex generalized Bingham Langevin (CGBL) distribution
The CGBL is parametrized by the set of Hermitian matrices {A r } ∈ H + p and the matrix

C = [c 1 , . . . , c k ] ∈ C p×k . We denote U ∼ CGBL(C, {A r }) when the p.d.f. of U = [u 1 , . . . , u k ] on St(p, k) reads p CGBL (U) = c CGBL (C, {A r })exp k r=1 Re{c H r u r } + u H r A r u r (2.4)
where c CGBL (C, {A r }) is a normalizing constant.

From (2.4), we can interpret that p CGBL promotes the concentration of each vector u r around c r and each range space u r u H r around the subspace associated to the strongest eigenvalues of the Hermitian matrix A r . Typically, if A r = A, ∀r ∈ [[1, k]], the range space UU H tends to be close to the dominant eigenspace of A. In the following, we list some usual special cases of the CGBL distribution.

Example 2.3.1. Complex invariant Bingham (CIB) distribution

The CIB is a special case of the CGBL where

C = 0 and A r = κ Ū ŪH , ∀r ∈ [[1, k]] where Ū ∈ St(p, k)
represents the center of the distribution and κ denotes the concentration parameter. We denote U ∼ CIB(κ, Ū ŪH ) when U has as p.d.f. of the form

p CIB (U) = c CIB (κ, Ū)etr κU H Ū ŪH U (2.5)
in which c CIB (κ, Ū) denotes the normalizing constant.

Note that the p CIB (U) is invariant by rotation U = UQ, ∀Q ∈ St(p, k). This means that p CIB characterizes a distribution for the subspace represented by the orthogonal projector UU H , which will be its main interest.

Example 2.3.2. Complex Langevin (CL) distribution

The CL is a special case of the CGBL for which {A r = 0} and C = κ Ū, where Ū ∈ St(p, k) is the center of distribution and κ is the concentration parameter. We denote U ∼ CL(κ, Ū) when U has as p.d.f. of the following form

p CL (U) = 0 F 1 ( 1 2 N, 1 4 ŪH Ū) -1 etr κRe{ ŪH U} (2.6) with 0 F 1 ( 1 2 N, 1 4 ŪH Ū) -1
is the normalizing constant for this distribution.

To illustrate these distributions, Table 2.1 displays the p.d.f. of the real Bingham distribution u ∼ B(κūū T ) and the real Langevin

distributions u ∼ L(κū) on St(2, 1) (unit circle in R 2 ) where ū = [1/ √ 2, 1/ √ 2]
defines the center of distribution, and κ is a concentration parameter. We note that for high value of κ ∈ R * + , i.e., κ = 50, the generated samples u ∼ L(κū) are more concentrated around the center ū. For real Bingham distribution, the samples are gathered on both sides ū and -ū, since, this distribution characterizes the quantity uu T .

Bingham distribution

Langevin distribution

κ = 5 -1 0 1 -1 0 1 0 0.1 0.2 cos(θ) sin(θ) p B (cos(θ),sin(θ)) -1 0 1 -1 0 1 0 0.2 cos(θ) sin(θ) p L (cos(θ),sin(θ)) κ = 50 -1 0 1 -1 0 1 0 0.5 cos(θ) sin(θ) p B (cos(θ),sin(θ)) -1 0 1 -1 0 1 0 0.5 1 cos(θ) sin(θ) p L (cos(θ),sin(θ))
Table 2.1: The p.d.f. of Bingham and Langevin distributions for various values of concentration parameter κ and for a prior center ū = [1/ √ 2, 1/ √ 2] on St(2, 1) (represented by the unit circle) and 100 samples generated according to these distributions

Sampling from CGBL distribution

Several sampling methods were proposed in order to simulate random matrices drawn from the aforementioned distribution. Such approaches are based on Markov Chain Monte Carlo (MCMC) methods [Hoff, 2009] and/or acceptance rejection schemes [START_REF] Kent | A new method to simulate the Bingham and related distributions in directional data analysis with applications[END_REF]. In [Ben Abdallah et al., 2020], we proposed a general method to draw samples as U ∼ CGBL(C, {A r }). The proposed sampling technique is based on previous results, and summarized as follows:

i) The generation of U is obtained as a Markov chain on the columns {u r }, as proposed in [Hoff, 2009, Besson et al., 2011].

ii) The generation of each u r is obtained by using the results of [START_REF] Kent | A new method to simulate the Bingham and related distributions in directional data analysis with applications[END_REF], which proposed an acceptance rejection method to sample from a vector Bingham-Langevin distribution. For this problem [Hoff, 2009] proposed a Markov chain on the entries of the vectors. Both methods allow to sample the desired distribution, however, the acceptance rejection scheme from [START_REF] Kent | A new method to simulate the Bingham and related distributions in directional data analysis with applications[END_REF] allows us to significantly reduce the computation time.

Notice that [Hoff, 2009] and [START_REF] Kent | A new method to simulate the Bingham and related distributions in directional data analysis with applications[END_REF] proposed methods adapted to distributions of real variables. In order to generalize these sampling techniques to the case of complex distributions, we resort to the change of variables proposed in [START_REF] Mardia | Directional statistics[END_REF].

Structured mixtures of compound Gaussian models

This section details several models that we used to propose signal subspace estimation methods. These models are variations around (2.1) using compound Gaussian signals with deterministic textures. An important note is that we resort to the reparameterization

Σ = WW H = UDU H , with U ∈ St(p, k)
and D a diagonal matrix with positive entries. The main goal is to explicitly focus on the subspace recovery problem, e.g., in the structure of the MLE. Another interest of this parameterization is the possibility to include Bayesian priors directly on the parameter of interest U, rather than on the intermediary W [Bishop, 1999].

Definition 2.3.4. Noisy low-rank compound Gaussian (LRCG) Consider a n-sample {z i } n i=1 having the stochastic representation

z i d = √ τ i UD 1 /2 s i + n i , (2.7 
)

with n i ∼ CN (0, I), s i ∼ CN (0, I), U ∈ St(p, k) and D = diag(d) ∈ R k×k +
diagonal with positive entries, and where τ i is an unknown positive deterministic texture. We denote this LRCG model by its conditional representation z i |τ i ∼ CN (0, τ i Σ + I), ∀i, with Σ = UDU H . Again, LRCG corresponds to a model for low-rank non-Gaussian signal embedded in white Gaussian noise, which offers a very general framework for generic PPCA, as discussed in [Besson, 2016]. Note that we assumed knowledge of the white Gaussian noise power, or equivalently σ 2 = 1 for the ease of exposition. However, the extension to unknown σ 2 can be done trivially.

Definition 2.3.5. Simplified LRCG (LRCGs) Consider a n-sample {z i } n i=1 having the stochastic representation

z i d = √ τ i Us i + n i , (2.8) with n i ∼ CN (0, I), s i ∼ CN (0, I) with U ∈ St(p, k),
and where τ i is an unknown positive deterministic texture. We denote this LRCGs model by its conditional representation

z i |τ i ∼ CN (0, τ i UU H + I), ∀i.
The model LRCGs was initially introduced as a relaxation of LRCG (identical eigenvalues for the low-rank signal covariance matrix), which turned out to be difficult to solve from the point of view of ML estimation [Raghavan, 2012, Breloy et al., 2013]. However, as we will see, this approach leads to good performance, even in the mismatched case. This observation suggests that it is reasonable to neglect the variations of eigenvalues if the main goal is only to estimate the signal subspace.

Definition 2.3.6. Simplified LRCG with outliers (LRCGo) Consider a n-sample {z i } n i=1 having the stochastic representation

z i d = √ τ i Us i + β i U ⊥ o i + n i , (2.9) with n i ∼ CN (0, I), s i ∼ CN (0, I), U ∈ St(p, k), o i ∼ CN (0, I), U ⊥ ∈ St(p, p -k) an orthogonal complement of U (i.e., [U, U ⊥ ] H [U, U ⊥ ] = I)
, and where τ i and β i are unknown positive deterministic textures. We denote this LRCGo model by its conditional representation

z i |τ i , β i ∼ CN (0, τ i UU H + β i U H ⊥ U H ⊥ + I), ∀i.
The model LRCGo considers potential outliers as orthogonal contributions to the signal subspace. It was introduced in [Breloy et al., 2016] in order to propose a robust subspace recovery algorithm. Interestingly, mixtures of orthogonal elliptical distributions are also referred to as haystack (or needlehaystack) models the machine learning community [START_REF] Lerman | Robust computation of linear models by convex relaxation[END_REF]Maunu, 2017]. However, these are more generally used for assessing the performance of robust subspace recovery algorithms, rather than for driving a parametric estimation problem.

Finally, we denote with B-LRCG, B-LRCGs, and B-LRCGo, the corresponding counterparts of these three models when a prior U ∼ CGBL(C, {A r }) is assumed on the signal subspace basis. We can sum-up these models and (a selected) corresponding reference in the following table :   Model LRCG LRCGs LRCGo PPCA [Sun et al., 2016] [Raghavan, 2012] [Breloy et al., 2016] Bayesian PCA [Ben Abdallah et al., 2020] [Ben Abdallah et al., 2020] [Ben Abdallah et al., 2019a] 2.4 Algorithms

Maximum a posteriori (MAP)

For the LRCG model from definition 2.3.4, we denote the likelihood of a n-sample by L({z i } n i=1 |U, θ), where θ aggregates side parameters. Assuming a CGBL distribution as in (2.4) for U, the posterior probability of this parameter is then given in

p U (U|{z i } n i=1 ) ∝ L({z i } n i=1 |U, θ)p CGBL (U).
(2.10)

After several manipulations, the maximum a posteriori (MAP) of this B-LRCG model can be expressed as the solution of the problem minimize

{τ i },{dr},{ur} n i=1 k r=1 ln (1 + τ i d r ) - τ i d r τ i d r + 1 z H i u r u H r z i + ln(p CGBL (U)) subject to τ i ≥ 0, d r ≥ 0, U = [u 1 , . . . , u k ] ∈ St(p, k) (2.11)
where ln(p CGBL (U)) consists in linear and quadratic terms in U. This problem has no closed-form solutions and requires the use of iterative algorithms. In [Ben Abdallah et al., 2020], we proposed to leverage the majorization-minimization approach for this problem. The majorization-minimization algorithm proceeds with two steps: i) (majorization) finding a function that locally upperbounds the objective function up to a constant, referred to as surrogate function; ii) (minimization) minimizing this surrogate function. This procedure generates a sequence that monotonically decreases the objective value, and its main interest is that it can yield a sequence of subproblems that are easy to deal with. Following this procedure, we derived appropriate surrogate functions in order to obtain an algorithm with closed-form updates of the variables, and theoretical convergence guarantees. In order to lighten the presentation, these tedious derivations are not reported in this chapter 1 . For more information on the matter, Appendix A also details a generic majorization-minimization framework for a parameter U ∈ St(p, k) (notably applicable to the update of U in (2.11)). Note that, when setting ln(p CGBL (U)) = 0 (i.e., no prior), we also recover the algorithms to compute the maximum 1 Interested readers can find the details in the sections 2.1 and 2.2 of the annexes likelihood from [Sun et al., 2016].

Interestingly, the MAP for B-LRCGo (resp. B-LRCGs with

β i = 0, ∀i ∈ [[1, n]]
) admits an insightful structure in some specific cases. First, define P k as the operator that extracts the k leftmost eigenvectors of a matrix

P k : H + p -→ St(p, k) M EVD = [U k |U ⊥ k ] D [U k |U ⊥ k ] H -→ P k {M} = U k .
(2.12)

We have the following theorem:

Theorem 2.4.1. MAP structure for B-LRCGo [Ben Abdallah et al., 2019a] Let {z i } n i=1 be a n-sample following the B-LRCGo model in definition 2.3.6, with U ∼ CIB(κ, Ū ŪH ) (cf. example 2.3.1). The MAP of the signal subspace basis Û satisfies the fixed-point equation

Û = P k n i=1 ρ Û, z i z i z H i + κ Ū ŪH , (2.13)
where the function ρ is defined by

ρ Û, z i = max(0, τi -βi ) ( βi + 1) (τ i + 1) , with τi = max(0, z H i Û ÛH z i /k -1), βi = max(0, z H i (I -Û ÛH )z i /(p -k) -1).
(2.14)

Hence, this subspace estimator is contained in the dominant eigenspace of an intermediary sample covariance matrix (built from adaptively weighted samples) plus a weighted projector on the center of the prior. The adaptive weights tend to reject (resp. promote) samples if they are perceived as outliers (resp. inliners), which occurs when βi > τi (resp. βi τi ). Such estimate can be obtained through fixed point iterations, which also correspond to a block-coordinate descent algorithm with closed form updates on each parameters.

Minimum mean square distance (MMSD)

The MMSD estimator minimizes the expected Euclidean distance between the true range space R(U) = UU H and its estimate R( Û) = Û ÛH . This formulation was proposed in [START_REF] Besson | Minimum mean square distance estimation of a subspace[END_REF], in which its practical expression is obtained as follows:

ÛMMSD = arg min Û E U,Z Û ÛH -UU H 2 F = arg max Û E U,Z {Tr{ ÛH UU H Û}} = arg max Û Tr{ ÛH UU H Û}p(U|Z)dU p(Z)dZ = arg max Û Tr ÛH UU H p(U|Z)dU Û =P k UU H p(U|Z)dU ∆ = P k {M(p(U|Z))} (2.15)
where Z = [z 1 , . . . , z n ] ∈ C p×n denote the data matrix, and where P k is defined in (2.12). Hence, the MMSD depends on p(U|Z), which is specified from both the data model and the prior distribution assigned to the parameters. Except from several special cases, there is no closed-form solutions to compute M(p(U|Z)). However, the MMSD can still be evaluated using the so-called induced arithmetic mean

ÛMMSD ≈ P P    1 N r N bi +Nr n=N bi +1 U (n) U (n) H    , (2.16)
where U (n) are sampled from p(U|Z), N bi stands for the burn-in samples (number of thrown samples from the Markov chain), and N r is the number of samples used to evaluate the integral.

Combining this methodology with the previous majorization-minimization approach, we proposed several algorithms to evaluate the MMSD of the models LRCG and LRCGs in [Ben Abdallah et al., 2020]. Again, the details are omitted for the sake of conciseness.

Simulations and application

Simulations

This section displays some simulations examples that allow to draw general conclusions on the developed methodologies. MLE, MAP and MMSD denote the estimators build using the true data model. The suffixes "s" (resp."o") indicate the use of the LRCGs (resp. LRCGo) model for the estimation process, even for actually LRCG distributed data (mismatch). Thus, we study the impact of assuming a simplified model (equal eigenvalues) in this case. Ū denotes the "prior only" estimator. We consider the the average fraction of recovered energy (AFE), defined as

AFE( Û) = E U,Z Tr ÛH UU H Û /k, (2.17)
for a given estimator Û. Figure 2.1 displays the AFE of several algorithms for scenarios corresponding to a general B-LRCG. Figure 2.2 displays the AFE of several algorithms for scenarios corresponding to B-LRCGo.

• For LRCG scenarios, the MLE approach generally yields the same performance as the standard PCA. The observation was also made in [Besson, 2016], where PCA is observed to reach an accuracy close to the Cramér-Rao bound. This disappointing result can be explained by the structure of the ML problem in (2.11): for high signal to noise ratio (high values of τ k d r ), the weights applied on the samples tend to be close to 1, meaning that the signal subspace MLE is close to the one from the standard PCA. This result is unexpected since it does not involve robust estimate of the covariance matrix, even in the presence of non-Gaussian observations. The MLE still offers a gain when highly impulsive signals occur, and when n is large enough to benefit from the natural "sample selection" of the MLE's structure, as observed in [Breloy et al., 2015]. Additionally, the ML approach remains useful for other applications, e.g., when requiring the estimation of the covariance matrix parameters [Breloy et al., 2016a].

• Bayesian estimators achieve better estimation accuracy thanks to the inclusion of prior knowledge.

In practice, such prior may not be fully available. However, the approach seems robust to slight mismatches on the parameters selection. This can be observed e.g., in Figure 2.1, where the MMSD of an approximated model reaches performance close the the actual MMSD. The MAP represents an interesting trade-off between the MMSD and MLE, notably because of the computational cost associated to the computation of the MMSD. Additionally, we can generally observe that the approximation of equals eigenvalues (i.e., assuming LRCGs) is quite harmless if the only focus is the estimation of the signal subspace.

• The most encouraging results are obtained when investigating the robustness of the developed subspace recovery methods. In this scope, Figure 2.2 illustrates that (B-)LRCGo can yield good recovery in practice. Interestingly, the approach is also robust to wrong assumptions (simplifying priors, equals eigenvalues), which permits the derivation of efficient algorithms with a low computational cost.

Application to radar detection

The inclusion of a Bayesian prior can significantly improve the performance of an estimation process. However, the design of this prior depends on the considered application and comes from ap- 

z k |τ k ∼ CN (0, τ k UDU H + σ 2 I), with τ k ∼ Γ(ν, 1 ν ), ∀k, and ν = 0.5. [D] r,r = (k + 1 -r)/( k i=1 i) and σ 2 to fix the SNR as SNR= Tr{Λ}/σ 2 . U ∼ CGBL(0, {κ 0 φ r Ū ŪH } k r=1 ), φ r = (k + 1 -r)/( k i=1 i), κ 0 =
z k |τ k , β k ∼ CN (0, τ k UU H +β k U ⊥ U H ⊥ +σ 2 I), with τ k ∼ Γ(1, 1) and β k ∼ Γ(1, 1), ∀k. U ∼ CIB(κ, Ū ŪH ), κ = 60, Ū
is the first vectors of the canonical basis. k = 5, p = 30, n = 20. For this scenario, the MAP and MMSD coincide.

propriate physical considerations/models on the system. In the following, we illustrate the practical use of the proposed methods for the airborne STAP detection [Ward, 1994]. In this application, the clutter (response of the environment) lies in a low dimensional subspace that needs to be estimated to perform adaptive interference cancellation. We consider the approach that directly leverages the physical model of [Ward, 1994] in order to improve the performance of low-rank detectors [Rangaswamy et al., 2004, Ginolhac andForster, 2016] on a real dataset provided by the French agency DGA/MI [START_REF] Ovarlez | Les données de club STAP, Introduction au STAP[END_REF]. The STAP detection problem is a binary hypothesis test:

H 0 : z i = c i + n i , ∀i ∈ [[0, n]] H 1 : z 0 = d + c 0 + n 0 , z i = c i + n i , ∀i ∈ [[1, n]] (2.18)
where the secondary data n]] are assumed to be i.i.d.. The additive noise in each sample is the sum of clutter (ground response) c i plus white Gaussian noise n i . The tested cell z 0 may potentially contain a moving target d = α 0 p where α 0 is the amplitude and p is the steering vector. From the Brennan's rule [START_REF] Brennan | Subclutter visibility demonstration[END_REF], we know that the clutter lies in an unknown low-dimensional subspace represented by the orthogonal projector Π c = U c U H c (CSP) of known rank k. In this context, we can use the LR-ANMF detector [START_REF] Ginolhac | Approximate distribution of the low-rank adaptive normalized matched filter test statistic under the null hypothesis[END_REF] to assess the performance of various CSP estimation methods:

z i ∈ C p , ∀i ∈ [[1,
Λ = |d H Π⊥ c z 0 | 2 |d H Π⊥ c d||z H 0 Π⊥ c z 0 | H 1 ≷ H 0 δ (2.19)
where Π⊥ c = I -Πc is an estimate of the orthogonal complement of the CSP. We compare the following detectors: i) ΛSCM is the LR-ANMF where the CSP is built from the standard PCA; ii) ΛSFPE is the LR-ANMF built from the SVD of regularized Tyler's estimator [Pascal et al., 2014a] with regularization parameter γ selected manually to obtain the best results.; iii) ΛG-MUSIC is the LR-ANMF using [START_REF] Mestre | Modified subspace algorithms for DoA estimation with large arrays[END_REF] to estimate the quadratic forms associated to the CSP; iv) ΛsMMSD denotes the LR-ANMF built from the MMSD estimator of LRCGs model; v) ΛMMSD-OM stands for the LR-ANMF built from the MMSD estimator of LRCGo model; vi) ΛMMSD-G is the LR-ANMF where the CSP is built from the MMSD estimator assuming a Gaussian model [Ben Abdallah et al., 2017]. For all the Bayesian estimators, we leverage the physical model of [Ward, 1994], that allows us to build a prior of the CSP basis Ū from the SVD of the STAP covariance matrix model. We then consider a CIB prior (cf. definition 2.3.1) where the concentration parameter κ is set manually.

The tested cell contains the response of 10 moving targets to be detected in presence of ground clutter response (and eventually in presence of outliers in the secondary data). We test the aforementioned detectors on two scenarios: Figure 2.3 displays the output of the detectors in the standard situation (n p), and at low sample support (n = 2k p) with outliers in the secondary data. In the standard case, all of the detectors allow for target detection with apparently low false alarm rates. In the challenging setting, SCM and SFPE detectors are not able to correctly detect the targets. The G-MUSIC detector appears robust to outliers in terms of detection but leads to a visually higher noise floor (false alarm rate). Conversely, the Bayesian detectors still achieve interference rejection and reliable target detection, which illustrates the interest of introducing some prior information in an adaptive subspace estimation process. Notably, the MMSD-OM detector yields the cleanest detection map, probably thanks to its robustness to sample corruption by outliers.

Perspectives

Finally, we can point out some direct perspectives from this work:

• The parameters of the CGBL distributions were used to gather prior information in the context of Bayesian PCA. However, we did do not address their estimation, nor the question of their automatic selection (e.g. using mini-batches), which could be an interesting direction.

• Inspired by the M -estimation framework, we could propose robust subspace estimators following the structure from Theorem 2.4.1 with various function ρ. An approach following this direction is discussed in chapter 5. It would then be interesting to characterize the existence and performance of these generic subspace M -estimators in various settings.

• The LRCG model still leaves opened theoretical questions. For example, the phase transition could be predicted by following [START_REF] Hong | Asymptotic performance of PCA for highdimensional heteroscedastic data[END_REF]. The study of intrinsic Cramér-Rao bounds could follow from [START_REF] Besson | Minimum mean square distance estimation of a subspace[END_REF]. A more complex issue concerns the characterization of the robustness of an estimation process when outliers are present [START_REF] Lerman | Fast, robust and non-convex subspace recovery[END_REF].

Onward to the next chapter

This chapter was focused on the subspace recovery problem, while relying on specific statistical models to perform PCA with a Bayesian approach. These models notably involved mixtures of (conditional) Gaussian distributions. Starting from these two concluding remarks, we can give the following introduction to the next chapter: • Chapter 3 will focus on covariance matrix problem estimation. The issue is still linked with subspace recovery, as we will notably conduct a statistical analysis for the EVD parameters of covariance matrices estimators (probabilistic PCA), as well as performance bounds for subspace estimation. However, we will also discuss some other problems, such as structured covariance matrix estimation.

• The statistical model considered in chapter 3 is the class of complex elliptically symetric distributions, which encompass compound Gaussian distributions as a special case. However, it will consider a single signal contribution, which cannot yield the mixture models from this chapter. Also, no priors on the parameter distribution will be involved (non-Bayesian setting).

• Though some estimation methods will be proposed, chapter 3 is quite focused on statistical analysis and performance bounds derivations.

3 | Robust covariance matrix estimation in elliptical models 

Contributions of the chapter

This chapter focuses on covariance matrix estimation problems with a focus on statistical performance characterization. As discussed in the global picture, covariance matrix estimation can be a prelude to a PCA approach, i.e., performing a subspace recovery from the principal subspace of the estimate. However, it is worth mentioning that this step is also a fundamental problem on its own, as the covariance matrix is a core component of many statistical signal processing and machine learning methods. In this scope, we present several statistical analysis for a class of robust covariance matrix estimators (M -estimators) in a general model of elliptical distributions.

The first contribution details a new asymptotic characterization for the eigendecomposition of M -estimators. This work was conducted during the thesis of Gordana Drašković. Related publications in the cv (page xi): [J5], [J8], [J9], [C10], [START_REF] Drašković | Nouvelles propriétés asymptotiques de détecteurs robustes[END_REF], [START_REF] Drašković | Caractérisations asymptotiques pour les composantes principales des M-estimateurs[END_REF].

The second contribution concerns robust estimation methods for structured covariance matrices and their statistical analysis in the mismatched case. This work was conducted during the thesis of Bruno Mériaux.

Related publications in the cv (page xi): [J7], [C17], [C15], [C13], [START_REF] Mériaux | Une version récursive de RCOMET pour l'estimation robuste de matrices de forme à structure convexe[END_REF], [START_REF] Mériaux | Estimation robuste de matrices de dispersion structurées pour des modèles bien/mal spécifiés[END_REF].

The third contribution presented in this chapter concerns intrinsic Cramér-Rao bounds, i.e., performance bounds on Riemannian distances, for covariance matrix estimation in elliptical distributions. Related publications in the cv (page xi): [J4], [X3].

Context overview

Complex elliptically symmetric distributions and M -estimators

There are many approaches to derive robust parametric estimation schemes. One of them is to consider a statistical model that is general enough to yield an accurate estimation, independently from the "true" underlying distribution of the data. A main challenge is then to manage the trade-off between the generality of the model and its practical representation (i.e., being simple enough to be handled). In this scope, complex elliptically symmetric (CES) distributions form a general family of circular multivariate distributions [Ollila et al., 2012a], parameterized by a mean vector µ and a scatter matrix Σ, which describes the correlations between the entries. This family encompasses notably the compound Gaussian distributions (used in chapter 2) and generalized Gaussian ones [START_REF] Zhang | Multivariate generalized Gaussian distribution: Convexity and graphical models[END_REF], Pascal et al., 2013] as special cases. Another main interest is that CES includes many heavy-tailed distributions, which is useful to account for potential outliers. Thus we can expect these elliptical models to yield both robustness to model mismatches, and outliers in the sample set.

Definition 3.2.1. Elliptical models (CES distributions) Let Σ ∈ H ++ p and µ ∈ C p . A vector z follows a (absolute continuous) CES distribution of center µ and scatter matrix Σ, denoted CES(µ, Σ, g z ), if it has the following p.d.f.:

f z (z) = C|Σ| -1 g z ((z -µ) H Σ -1 (z -µ)) (3.1)
where C is a normalization constant and g z : [0, ∞) → [0, ∞) is any function (called the density generator), ensuring that (3.1) defines a p.d.f.. Moreover, this vector admits the following stochastic representation

z d = √ QAu + µ (3.2)
where Σ = AA H , u is uniformly distributed on the complex sphere U p 1 , and Q is a non-negative real random variable, called the modular variate, independent of u with a p.d.f. depending only on g z .

Note that from this definition, the Gaussian distribution z ∼ CN (µ, Σ) appears as a special case with g z (z) = e -z and C = π -p . The density generator g z allows heavier or lighter tailed distributions to be described (cf. [Ollila et al., 2012a] for examples).

In the following, we will focus on the known mean case, which allows us to set µ = 0. In the general case, also note that (when existing) the covariance matrix E[zz H ] is proportional to the scatter matrix Σ (which always exists). This scaling mismatch is generally not an issue because most processes are insensitive to it (e.g., eigenvectors extracted for PCA). For this reason, we adopt the common abuse of denomination "covariance matrix estimation", while we technically estimate the scatter up to a scale factor.

When dealing with heavy-tailed distributed samples, it is well known that the traditional sample covariance matrix (SCM) usually fails to provide an accurate estimate. A solution to this problem is brought by M -estimators [Maronna, 1976, Tyler, 1987], that appear as generalized maximum likelihood estimators (MLE). Definition 3.2.2. M -estimators of the scatter Let {z i } n i=1 be an n-sample of p-dimensional complex i.i.d. vectors with z i ∼ CES(0, Σ, g z ). An M -estimator of Σ, denoted by Σ, is defined by the solution of the following fixed-point equation

Σ = 1 n n i=1 u(z H i Σ-1 z i )z i z H i ∆ = H( Σ). (3.3)
where u is any real-valued weight function on [0, ∞) that respects Maronna's conditions, ensuring existence and uniqueness of (3.3) [Maronna, 1976]. When these conditions are met, and for n > p, this estimator can be computed using the fixed-point algorithm Σ t+1 = H(Σ t ) (where t refers to the iteration index).

When u(t) = -g z (t)/g z (t), (3.3) corresponds to the MLE of the scatter matrix parameter for z ∼ CES(0, Σ, g z ). However, u may not be related to g z , which is generally unknown in practice. A popular example is Tyler's estimator [Tyler, 1987, Pascal et al., 2008a], obtained with u(t) = p/t. Despite the potential mismatch, M -estimators ensure good performance in terms of estimation accuracy in the whole CES family (formally characterized in the following sections). Additionally, M -estimators present robustness to contamination by outliers [Maronna, 1976], which is why they are also usually referred to as robust estimators.

Current issues

M -estimators offer an interesting solution to robust covariance matrix estimation issues. Yet, there still remains some open problems, from which we can mention:

• Statistical analysis: The statistical characterization of the M -estimators is a complex issue because they are defined by fixed-point equations. While the SCM in a Gaussian setting follows a well-known Wishart distribution [Muirhead, 1982], the true distribution of the M -estimators remains unknown. Therefore, several works derived various characterizations for these estimators. Their asymptotic Gaussian distribution was derived in [Maronna, 1976, Tyler, 1982] and extended to the complex case in [Ollila et al., 2012a, Mahot et al., 2013]. Probably approximately correct (PAC) error bounds have been studied in [Soloveychik and Wiesel, 2015b]. Their analysis in the large random matrix regime (i.e. when both the number of samples and the dimension tends to infinity at the same rate) has been established in [START_REF] Zhang | Marchenko-Pastur Law for Tyler's and Maronna's M -estimators[END_REF], Couillet et al., 2015]. Yet, we still aim for a characterization that is as handy as the Wishart distribution in order to tune statistical processes. In this direction, an axis of response will be explored in section 3.3.

• Low and insufficient support: M -estimators require at least n > p samples to be computed. Following [START_REF] Reed | Rapid convergence rate in adaptive arrays[END_REF], the general rule of thumb even suggests that n > 2p is required in order to reach an accurate estimation. Both of these conditions can be difficult to meet for high dimensional data. An approach to overcome low sample support issues is to account for prior knowledge on the covariance matrix structure in the estimation scheme, i.e., reducing the degree of freedom of the estimation problem. Variations around this method were recently proposed for M -estimators [START_REF] Soloveychik | Tyler's Covariance Matrix Estimator in Elliptical Models With Convex Structure[END_REF], Wiesel and Zhang, 2015, Soloveychik et al., 2016, Sun et al., 2016]. Section 3.4 will present our contributions in this scope. For insufficient sample support scenarios (n < p), a solution is brought by regularization methods, which will be discussed in the perspectives.

On the asymptotics of PCA with M -estimators

The parameters of an eigenvalue decomposition (EVD) of the second order statistics are ubiquitous in statistical analysis and signal processing. Notably, the eigenvalue decomposition (EVD) of M -estimators is involved in numerous processes, such as robust probabilistic PCA algorithms [Croux andHaesbroeck, 2000, Zhao andJiang, 2006], as well as in the derivation of robust counterparts of low rank filters or detectors [START_REF] Rangaswamy | Robust adaptive signal processing methods for heterogeneous RADAR clutter scenarios[END_REF]. The eigenvalues of the scatter ma-trix are also used in model order selection [Stoica andSelen, 2004, Terreaux et al., 2018], and functions of eigenvalues are involved in various applications such as regularization parameter selection [Ollila andTyler, 2014b, Kammoun et al., 2018], detection [START_REF] Ciuonzo | On Multiple Covariance Equality Testing with Application to SAR Change Detection[END_REF], and classification [START_REF] Bouveyron | Model-based clustering of high-dimensional data: A review[END_REF]. Hence, accurately characterizing the distribution of the Mestimators EVD represents an interest, both from the points of view of performance analysis and optimal process design. Towards the goal of characterizing these objects, we derived new asymptotics for the EVD parameters of M -estimators in elliptical models in [Drašković et al., 2019], from which the main results are summarized below.

Standard Asymptotic Regime

This section extends the analysis of [START_REF] Kollo | Asymptotics of Eigenvalues and Unit-Length Eigenvectors of Sample Variance and Correlation Matrices[END_REF] (for the SCM) to the complex M -estimators in a general elliptical model. This asymptotic analysis also provides an extension of the results obtained in [Tyler, 1981, Boente, 1987, Croux and Haesbroeck, 2000] to the complex case, with some additional characterizations (cf. discussion following Theorem 3.3.1).

First, let us denote the EVD of the scatter matrix Σ as

Σ EVD = UΛU H with U = [u 1 , . . . , u p ] ∈ St(p, k), Λ = diag(λ), λ = [λ 1 , . . . , λ p ] . (3.4)
In order to avoid ambiguity in this definition, we assume ordered eigenvalues as λ 1 > . . . > λ p > 0, and an element of each u j (e.g., the first entry) for j = 1, . . . , n, can be assumed to be real positive. We then have the following Theorem: Theorem 3.3.1. Standard asymptotics for M -estimators's EVD [Drašković et al., 2019] Let Σ EVD = Û Λ ÛH be an M -estimator (defined as the solution of the fixed point equation (3.3)) built from n samples drawn as z ∼ CES (0, Σ, g z ). The asymptotic distribution of the EVD of Σ is given by

   √ n σ λM -λ d → N 0, ϑ 1 Λ 2 + ϑ 2 λλ T , √ nΠ ⊥ j ûM j d → CN (0, Ξ j ) .
(3.5)

where

Ξ j = ϑ 1 λ j UΛ(λ j I -Λ) + 2 U H (3.6)
with Π ⊥ j = Iu j u H j , the scalar factor σ > 0 it the solution of E[Ψ(σt)] = p with Ψ(σt) = u(σt)σt and t = z H Σ-1 z, and the constants ϑ 1 > 0 and ϑ 2 > -ϑ 1 /p are given by

ϑ 1 = c -2 M a M p(p + 1), ϑ 2 = (c M -p 2 ) -2 (a M -p 2 ) -c -2 M a M (p + 1), (3.7 
)

where a M = E[Ψ 2 (σQ)] and c M = E[Ψ (σQ)σQ] + p 2 .
The results given in Theorem 3.3.1 are interesting since, besides the variance of each eigenvalue, they provide the correlation between them. Note that for a Wishart-distributed matrix this correlation is equal to zero, as shown in [START_REF] Kollo | Asymptotics of Eigenvalues and Unit-Length Eigenvectors of Sample Variance and Correlation Matrices[END_REF] for the real case. Conversely, Theorem 3.3.1 shows that the eigenvalues of an M -estimator are asymptotically correlated, as stated in [START_REF] Croux | Principal Component Analysis based on Robust Estimators of the Covariance or Correlation Matrix: Influence Functions and Efficiencies[END_REF] (but not explicitly characterized). This correlation depends on the second scale parameter ϑ 2 . Concerning the eigenvectors, note that the covariance depends only on ϑ 1 since u j is scale invariant w.r.t. to the covariance matrix (cf. [START_REF] Mahot | Asymptotic Properties of Robust Complex Covariance Matrix Estimates[END_REF] for more details).

Gaussian core Wishart equivalent

This second result represents a new approach based on [START_REF] Drašković | New Insights Into the Statistical Properties of M -Estimators[END_REF]. A new characterization is proposed to show that the EVD parameters of M -estimators are asymptotically concentrated around a Wishart equivalent, with a variance that is significantly lower than the one of the standard asymptotic regime (i.e., derived around the true expected values). Thus, it quantifies when it is acceptable to directly rely on well-established results on the EVD of Wishart-distributed matrices for characterizing the EVD of M -estimators. First, let us define two quantities related to the hidden Gaussian cores of CES vectors.

Definition 3.3.1. Gaussian cores of CES vectors [START_REF] Drašković | New Insights Into the Statistical Properties of M -Estimators[END_REF] Let z ∼ CES(0, Σ, g z ). This vector has a representation analogous to (3.2), given as

z d = √ QAg/ g , (3.8)
where g ∼ CN (0, I). The vector x = Ag is referred to as the Gaussian-core of z.

Definition 3.3.2. Gaussian cores Wishart equivalent (GCWE) [START_REF] Drašković | New Insights Into the Statistical Properties of M -Estimators[END_REF] Let {z i } n i=1 be a n-sample drawn as z ∼ CES(0, Σ, g z ) and denote {x i } n i=1 their Gaussian cores from the representation z i = √ Q i / x i Ax i (cf. Definition 3.3.1). Let Σ be an M -estimator built with {z i } n i=1 using (3.3). The SCM built from the Gaussian cores, i.e.

ΣGCWE = 1 n n i=1 x i x H i (3.9)
is referred to as Gaussian Core Wishart Equivalent (GCWE) of Σ.

Note that the GCWE cannot be computed in practice. It is a theoretical quantity distributed according to a Wishart distribution. The asymptotic distribution of the difference between an Mestimator and its GCWE is derived in [START_REF] Drašković | New Insights Into the Statistical Properties of M -Estimators[END_REF]. Following this result, we derived the following theorem: Theorem 3.3.2. GCWE for M -estimators's EVD [Drašković et al., 2019] Let Σ EVD = Û Λ ÛH be an M -estimator as in (3.3) built from n samples drawn as z ∼ CES (0, Σ, g z ).

Let ΣGCWE EVD = ÛGCWE ΛGCWE ÛGCWE H be its GCWE (Definition 3.3.2). The asymptotic distribution of the difference between the EVD parameters of Σ and ΣGCWE is given by 

   √ n σ λM -λGCWE d → N 0, σ 1 Λ 2 + σ 2 λλ T , √ nΠ ⊥ j ûM j -ûGCWE j d → CN (0, σ 1 /ϑ 1 Ξ j ) , ( 
M = E[Ψ(σQ) g 2 ],
and where the coefficients σ 1 and σ 2 are given by

σ 1 = (a M p(p + 1) + c(c -2b M ))/c 2 M , σ 2 = ϑ 2 -2p(b M -c M )/(c M (c M -p 2 )).
(3.11)

This theorem characterizes the asymptotic variance of the EVD of an M -estimator compared to the one of its GCWE. Interestingly, it shows that their covariance structure is the same as in the standard asymptotic regime, and differs only through the variance scales (σ 1 , σ 2 ) (instead of (ϑ 1 , ϑ 2 )). As noted in [START_REF] Drašković | New Insights Into the Statistical Properties of M -Estimators[END_REF], the total variance captured by the GCWE factors is much smaller than the standard one. For example, Table 3.1 displays these factors for two M -estimators, assuming Student t-distributed data with degree of freedom (DoF) parameter d (whose p.d.f. is given by (3.1) with g z (x) = (1 + 2x/d) -(p+d/2) ). In this case, the factors σ 1 and ϑ 1 differ by an order 1/p. This observation is also confirmed by the validation simulations displayed in Figure 3.1. In conclusion, these results support the idea that an underlying Wishart distribution can offer a better approximation for characterizing the distribution of the M -estimator's EVD.

Student's M -estimator (MLE)

Tyler's M -estimator SA 

ϑ 1 = (p + d/2 + 1)/(p + d/2) ϑ 1 = (p + 1)/p ϑ 2 = 2(p + d/2 + 1)/(d(p + d/2)) ϑ 2 = -(p + 1)/p 2 GCWE σ 1 = 1/(p + d/2) σ 1 = 1/p σ 2 = 2(p + d/2 + 1)/(d(p + d/2)) σ 2 = (p -1)/p 2

Practical use of the result

By establishing two different asymptotic regimes, we have shown that the behavior of the EVD parameters of M -estimators can be more accurately characterized by an equivalent Wishart model than by their standard asymptotic Gaussian distribution. This approximation allows us to leverage well established results (e.g., [Muirhead, 1982, Zanella et al., 2009]), and offers a thinner analysis compared to the asymptotic Gaussian results. In [Drašković et al., 2019], this idea was illustrated on several examples1 :

1. We addressed the complex issue of characterizing the intrinsic bias [Smith, 2005] of M -estimators in the CES context. This quantity has been studied in [Smith, 2005] for the SCM in the Gaussian context thanks to the distribution of the eigenvalues of a Wishart matrix [Muirhead, 1982].

Extending this analysis to M -estimators in the general CES context represents, at first sight, an intractable problem because of their unknown exact distribution. However, the established convergence of the eigenvalues of an M -estimator toward their GCWE counterpart allows an accurate approximation of this intrinsic bias to be derived;

2. In the context of model order selection (i.e., rank estimation) from non-Gaussian samples, we showed that the use of M -estimators (rather than the SCM) in theoretic criteria derived for Gaussian models [Akaike, 1974, Wax and[START_REF] Wax | [END_REF]] yields the same results as the one obtained with the theoretical GCWE. Again, this justifies a plug-in approach (using M -estimators in processes derived under the Wishart assumption), instead of a complete re-derivation that would require to assume an exact CES distribution;

3. The performance of low rank filters [START_REF] Ginolhac | Performance analysis of a robust low-rank STAP filter in low-rank Gaussian clutter[END_REF] built from M -estimators were derived in the same way (i.e., approached by the one of their GCWE) to illustrate that the method also holds for adaptive processes based on the eigenvectors.

We can also mention that an identical approach was conducted in [Drašković et al., 2020] to study robust detection methods 2 . We showed that, from CES distributed samples, the distribution of a detection statistic (adaptive normalized matched filter, Kelly's GLRT, and Rao test) built with plugin M -estimators can be accurately approximated by the distribution of the same statistic built from the SCM of an equivalent Gaussian core. The loss due to this approximation was theoretically derived and shown to be negligible in most cases. This explicit equivalent statistic is especially interesting since it allowed us to tune robust plug-in detectors with well established results from the Gaussian detection framework.

Robust estimation of structured covariance matrices

Besides being Hermitian positive (semi-)definite, the covariance matrix can exhibit a specific structure depending on the considered application. This structure can often be determined by physical considerations (e.g. symmetries) on the data acquisition system. We can give the following taxonomy of usual covariance matrices structures:

• Linear structures, i.e., when the covariance matrix belongs to a set of the form S = {Σ = d r=1 α r B r , α r ∈ R}, where {B r } d r=1 is a known basis of the considered set. These structures encompass notably Toeplitz, banded, and sum-of-rank-1 matrices (i.e. factor models with known factors).

• Group symmetric structures, i.e., when the covariance matrix belongs to a set in of form S H = {Σ|Σ = HΣH H , ∀H ∈ H}, where H = {H k } d i=1 is a multiplicative group of orthogonal matrices. These structures encompass notably persymmetric and circulant matrices.

• Spectral structures, i.e., when the eigenvalues of the covariance matrix satisfy a certain property.

These structures encompass notably positive plus scaled identity (lower-bounded eigenvalues), low-rank plus scaled identity (identical eigenvalues after certain index), and matrices with a constrained condition number.

• Kronecker products, i.e., when the covariance matrix is expressed as Σ = A ⊗ B. In some cases, the covariance matrix can also be expressed as a Kronecker products of structured matrices.

Taking this prior knowledge on the covariance matrix structure in the estimation process reduces the degree of freedom of the estimation problem, which is especially interesting when the sample size is low.

An approach to generalize M -estimators to the case of structured matrices is solve for the generalized log-likelihood function under structural constraint, i.e. focus on the problem minimize

Σ 1 n n i=1 ρ(z i Σ -1 z i ) + ln |Σ| subject to Σ ∈ S (3.12)
with ρ (t) = -u(t) (to match definition 3.2.2), and where S is the considered set of structured Hermitian positive definite matrices. This formulation leads to non-trivial issues because the problem (3.12) is non-convex, even in the unstructured case. Nevertheless, this objective function holds hidden (geodesic) convexity properties [Wiesel, 2012a], which is preserved on some specific structure sets (e.g., group symmetric ones [START_REF] Pailloux | Persymmetric adaptive radar detectors[END_REF], Soloveychik et al., 2016]). This property can help to establish existence/uniqueness of specific solutions, but the general problem of robust structured covariance matrix estimation still requires a case by case study. Several methodologies were considered to tackle this issue:

• Reparameterization: reformulating the problem (3.12) using a parameter θ and a corresponding mapping Σ ∆ = R(θ) ∈ S, then leveraging an optimization method directly on θ. In this scope, [Sun et al., 2016] proposed majorization-minimization algorithms for various structures. A similar methodology was applied for structures involving Kronecker product of low rank matrices in [Breloy et al., 2016b]. This solution has few theoretical guarantees (apart from convergence to a local minimum), but was shown to be quite accurate in practice.

• Relaxations: considering an alternative to (3.12) that still allows some properties (accuracy, robustness,...) to be ensured. In this scope, [START_REF] Soloveychik | Tyler's Covariance Matrix Estimator in Elliptical Models With Convex Structure[END_REF] proposed a convex relaxation of Tyler's cost function, which is suited to matrices belonging to convex sets.

• Projections: projecting an M -estimator on the set of interest. This 2-step procedure is generally sub-optimal, but can benefit from a low computational cost, and offers some theoretical guarantees.

In the following we present a projection-based method for convex sets. The estimation procedure was proposed in [START_REF] Meriaux | Robust Estimation of Structured Scatter Matrices in (Mis) matched Models[END_REF], and has the advantage of having nice asymptotic properties.

Structured scatter matrix estimator (SESAME)

In this section, we assume that the scatter matrix belongs to a convex subset S of Hermitian matrices (e.g., Toeplitz, persymmetric, or banded), for which there exists a one-to-one differentiable mapping θ → R(θ) from R d to S. We propose a robust two-step estimation procedure of θ inspired by [START_REF] Ottersten | Covariance matching estimation techniques for array signal processing applications[END_REF]]. An important note is that we will theoretically study the robustness of the method to a mismatch scenario, i.e.:

• The data set {z i } n i=1 is distributed according to z ∼ CES(0, Σ e , g), with Σ e = R(θ e ) ∈ S, its corresponding p.d.f. is denoted f z .

• The estimation procedure is conducted assuming the model z ∼ CES(0, R(θ), g mod ), the corresponding p.d.f. is denoted f mod .

Indeed, the assumed model (g mod ) can be different from the true one (g) in practice. A main example would be assuming Gaussian distributed samples, when they are actually not. Other incorrect assumptions can also come from the selection of shape/scale parameters in the density generator (e.g. the selected degrees of freedom for a t-distribution).

The SESAME algorithm proceeds as follows:

Step 1: compute Σm , the M -estimator corresponding to the MLE of the assumed model (cf. definition 3.3 using the function u mod (s) = -g mod (s)/g mod (s)). Notice that this provides a consistent estimator of σ -1 Σ e , with σ defined in Theorem 3.3.1 [Ollila et al., 2012a].

Step 2: estimate θ by solving θ = arg min

θ J Σm, Σ(θ) (3.13) with J Σm, Σ(θ) = κ 1 Tr Σ-1 Σm -R (θ) Σ-1 Σm -R (θ) + κ 2 Tr Σ-1 Σm -R (θ) 2 , (3.14)
where Σ refers to any consistent estimator of Σ e up to a scale factor, such as for instance Σm , κ 2 = κ 1 -1, and κ 1 = E f mod Ψ 2 mod |t mod | 2 /(m(m + 1)) = 0 where t mod ∼ CES m (0, I, g mod ), and where f mod is the assumed p.d.f. of the data. The criterion J Σm, Σ(θ) is strongly related to the Fisher information metric derived for CES distributions in [START_REF] Besson | On the Fisher information matrix for multivariate elliptically contoured distributions[END_REF]. Given Σm and Σ, the function J Σm, Σ(θ) is convex w.r.t R (θ). Therefore, for the desired convex set Σ ∈ S, the minimization of (3.13) w.r.t. R (θ) is a convex problem that admits a global minimizer, yielding a solution θ thanks to the one-to-one mapping. Some practical implementations for holding the positiveness constraint R (θ) 0 are discussed in [START_REF] Meriaux | Robust Estimation of Structured Scatter Matrices in (Mis) matched Models[END_REF] 3 .

Step 3 (optional): Perform the recursions

θ(k+1) = arg min θ J Σm, Σ(k) (θ) with Σ(k) = R θ(k) , for k = 1, . . . , N it , (3.15) 
The intuition behind this refinement is the following: The estimate Σ can be any consistent estimate up to a scaling factor. Intuitively (and also experienced in practice), the more accurate the estimator Σ, the more accurate the solution θ. Since SESAME will be shown to be consistent, this leads naturally to a recursive procedure, where the minimized norm is refined at each step by updating Σ with the previously computed R( θ).

Asymptotic analysis of SESAME

Pseudo-parameter and consistency Theorem 3.4.1. Consistency of SESAME [START_REF] Meriaux | Robust Estimation of Structured Scatter Matrices in (Mis) matched Models[END_REF] The SESAME estimate θ is a consistent estimator of θ c such that vec (R (θ

c )) = σ c σ -1 σ e = σ -1 vec (R (θ e )). Likewise, R θ is a consistent estimator of σ -1 R (θ e ).
With a potential model misspecification, the so-called pseudo-true parameter vector, θ 0 , is classically introduced for an asymptotic analysis [White, 1982, Richmond and Horowitz, 2015, Fortunati et al., 2016, Mennad et al., 2018]. The latter is defined as the minimizer of the Kullback-Leibler divergence (KLD) between the true and the assumed models, i.e.,

θ 0 = arg min θ D (f mod f z ) = arg max θ E f mod [log f z (z; θ)] ,
(3.16)

where D (f mod f z ) E f mod log f mod (z; θ e ) f z (z; θ) . In the following, we always assume the existence and the uniqueness of the pseudo-true parameter vector, θ 0 (the reader is referred to [START_REF] Fortunati | The misspecified Cramér-Rao bound and its application to scatter matrix estimation in complex elliptically symmetric distributions[END_REF] for necessary and sufficient conditions).

Proposition 3.4.1. The pseudo-true parameter vector, θ 0 , is equal to θ c . Thus, the SESAME estimate, θ, given by (3.13), is a consistent estimator of θ 0 such that θ 0 = arg min θ D (f mod f z ).

Efficiency in the mismatched framework

In the matched context, the Cramér-Rao Bound (CRB) is a lower bound of the variance of any unbiased estimator (which corresponds then to the Mean Square Error) of a deterministic parameter. Such an estimator is said to be (asymptotically) efficient if its variance reaches the CRB for an (in)finite number of samples. Likewise, under misspecified models, the Misspecified Cramér-Rao Bound (MCRB) is defined as a lower bound of the variance of any unbiased estimator θg mod of θ 0 , where θ 0 is actually the pseudo-true parameter vector [START_REF] Fortunati | The misspecified Cramér-Rao bound and its application to scatter matrix estimation in complex elliptically symmetric distributions[END_REF], Mennad et al., 2018]. Specifically, we have

Var θg mod 1 n A -1 (θ 0 ) B (θ 0 ) A -1 (θ 0 ) 1 n MCRB, (3.17)
where, for all k, = 1, . . . , P , [B (θ

0 )] k, = E fz ∂ log f mod (z; θ) ∂θ k θ=θ0 ∂ log f mod (z; θ) ∂θ θ=θ0 and [A (θ 0 )] k, = E fz ∂ 2 log f mod (z; θ) ∂θ k ∂θ θ=θ0
. For the proposed estimation method, we have the following theorem:

Theorem 3.4.2. (mismatched-)Efficiency of SESAME [START_REF] Meriaux | Robust Estimation of Structured Scatter Matrices in (Mis) matched Models[END_REF] Let θn be the SESAME estimate computed from n i.i.d. observations, then θn is asymptotically efficient in the mismatched sense, i.e.,

√ n θn -θ 0 d → N (0, MCRB) , (3.18) 
with

MCRB = ϑ 1 C -1 + ϑ 2 C -1 DC -1 = ϑ -1 1 C - ϑ 2 ϑ 1 (ϑ 1 + mϑ 2 ) D -1 , (3.19) 
where

C = J (θ 0 ) H W -1 0 J (θ 0 ) , D = J (θ 0 ) H U 0 J (θ 0 ) , (3.20) in which W 0 = Σ T 0 ⊗ Σ 0 , U 0 = vec Σ -1 0 vec Σ -1 0 H , β 1 = ϑ 1 κ 2 1 , β 2 = ϑ 1 κ 2 (2κ 1 + mκ 2 ) + ϑ 2 (κ 1 + mκ 2 ) 2 ,
∂σ(θ) ∂θ θ J (θ) refers to the Jacobian matrix of σ(θ) evaluated in θ, and where the coefficients ϑ 1 and ϑ 2 are given in (3.7).

Notice that, as a corollary from this theorem, the SESAME estimator is efficient in the matched case, i.e., when g = g mod .

Simulations

First, we illustrate the theoretical analysis on SESAME performance under misspecifications. For the simulations, we choose a scatter matrix with an Hermitian Toeplitz structure. We consider a scenario where the true p.d.f is a Weibull distribution and we assume a Gaussian model for the estimation. Thus, we have

   g (t) = t s-1 exp - t s b
, with b = 2 and s = 0.8, g mod (t) = exp (-t) . The estimate obtained by SESAME under misspecification is referred to as θ Mis-SESAME whereas the one computed in the matched case is denoted by θ SESAME-E . We also compare the performance of SESAME under both matched and mismatched models with the CRB and the MCRB. To draw the comparison, we define the Pseudo Mean Square Error (PMSE) w.r.t the pseudo-parameter θ 0 by

PMSE θ 0 θ = E θ -θ 0 θ -θ 0 T
. In Figure 3.2, the asymptotic variance of the SESAME estimates under both matched and mismatched models reach the corresponding CRB derived in either matched or mismatched scenarios, i.e., the (mismatched-)efficiency of the algorithm is verified. The unbiasedness as well as the consistency can be also indirectly observed.

Second, we consider the matched case (g = g mod ) where the covariance matrix is Toeplitz and the data follows a t-distribution. In Figure 3.3, we compare the performance of SESAME to the state of the art: RCOMET from [Meriaux et al., 2017], COCA from [START_REF] Soloveychik | Tyler's Covariance Matrix Estimator in Elliptical Models With Convex Structure[END_REF] and Constrained Tyler from [Sun et al., 2016]. The three methods are based on the Tyler's scatter estimator [Tyler, 1987] using normalized observations zn = z n / z n . It should be noted that, for Constrained Tyler, Algorithm 3 in [Sun et al., 2016] derived for real-valued PSD Toeplitz matrices cannot be directly applied. However, the Vandermonde factorization of PSD Toeplitz matrices allows us to use Algorithm 2 of [Sun et al., 2016]. In this algorithm, the set of PSD Toeplitz matrices is parameterized by S = R | R = APA H through the unknown diagonal matrix P 0 and with

A = [a(-90 • ), a(-88 • ), • • • , a(86 • ), a(88 • )]
, where a (θ) = 1, e -jπ sin(θ) , • • • , e -jπ(m-1) sin(θ) T . Finally, we also study the estimate obtained by averaging the real and imaginary parts of diagonals of the unstructured ML estimator, which corresponds to the Euclidean projection onto the Toeplitz set. The asymptotic efficiency of our estimator is checked in Figure 3.3: its MSE reaches the CRB as n increases. RCOMET, Constrained Tyler and COCA do not reach this bound since they do not take into account the underlying distribution of the data. In addition, the asymptotic unbiasedness of SESAME as well as those of the other algorithms can be observed.

Intrinsic Cramér-Rao bounds in elliptical models

Cramér-Rao lower bounds (CRLBs) are ubiquitous tools in statistical signal processing, as they characterize the optimum performances in terms of mean squared error that can be achieved for a given parametric estimation problem. However, the classical Cramér-Rao analysis provides a lower bound on the mean squared error, while this criterion may not be the most appropriate for characterizing the performance in a given context. Especially, for parameters living in a mani- fold (which is the case for covariance matrices and subspaces), it can be more relevant to caracterize a lower bound on the mean natural Riemannian distance between the true parameters and the estimators, which can also reveal hidden properties of estimators. To overcome this issue, intrinsic (i.e. in a manifold setting) versions of the Cramér-Rao inequality have been established in [Hendriks, 1991, Xavier and Barroso, 2002, Xavier and Barroso, 2005, Smith, 2005, Boumal, 2013, Bonnabel and Barrau, 2015]. Notably, in [Smith, 2005] intrinsic CRLBs are expressed in the form of a matrix inequality that is valid for any chosen Riemannian metric. Hence, it allows us to obtain Cramér-Rao bounds for various distances (depending on the chosen metric). This section presents the application of this framework to elliptical distributions.

Intrinsic CRLB (ICRLB)

The intrinsic Cramér-Rao bound extends the traditional Cramér-Rao bound for parameters living in a manifold and for an arbitrary chosen Riemannian metric. Indeed, the traditional estimation error (Euclidean distance) is defined through the difference between the true parameter and its estimate, which is not always properly defined (e.g., for subspaces). To deal with this issue [Smith, 2005] derived a Cramér-Rao type theorem for parameters living in a manifold by bounding the expected intrinsic distance between the estimate and the true parameter. Eventually, this theorem retrieves the well-known inequality "C F -1 ", with C being the covariance matrix of the estimation error and F being the Fisher information matrix. However, these parameters have a different definition due to the specific nature of the considered quantities. This section briefly presents those definitions and the essential tools needed for the derivation of our contributions. We also refer the reader to the Chapter 6 of [Boumal, 2014] and the reference [START_REF] Barrau | A note on the intrinsic Cramér-Rao bound[END_REF], which provide good introductions to the topic.

First, we list some definition used afterward

• M denotes a manifold, i.e. a space in which each point has a neighborhood that is homeomorphic to the Euclidean space.

• θ ∈ M denotes the parameter of interest, a point in the manifold M.

• T θ M is the tangent space at point θ, which is a vector space that conceptually contains the possible directions in which one can tangentially pass through the point θ.

• g θ : T θ M × T θ M → R + is a Riemannian metric: a scalar product on T θ M. The pair (M, g θ ) is a Riemannian manifold. At each point, we denote by {Ω i } a basis of the tangent space T θ M that is orthonormal w.r.t. g θ .

• d : M × M → R + is the geodesic distance induced by g θ on M (length of the shortest path between two points when integrating w.r.t. g θ ).

Our aim is to obtain a lower bound on the expected error of an estimator θ when measuring with d rather that the Euclidean squared norm || θ -θ|| 2 F . This requires to redefine the error measure, as the difference between two points on a manifold is not properly defined: Definition 3.5.1. Riemannian estimation error Let θ be an estimator of the parameter θ ∈ M. The estimation error X θ ∈ T θ M is given by inverse exponential map (or logarithmic map):

X θ = exp -1 θ θ. (3.21)
where exp -1 θ denotes the operator that creates a vector "pointing toward" θ from θ, whose length coincides with the geodesic distance d( θ, θ). Let the tangent space T θ M be endowed with any metric (inner product) g θ and {Ω i } be a basis of this space. We have the coordinate vector x(θ) with entries We can finally state the two following theorems: Theorem 3.5.1. Fisher information metric [Smith, 2005] Let f ({z i } n i=1 |θ) be a family of probability density function parameterized by θ living in a manifold M, l = log f be the log-likelihood function, and g f im be the Fisher information metric. Let {Ω} be an element of the tangent space T θ M of the manifold M at point θ. We have the relation

g f im (Ω, Ω) = -E d 2 dt 2 l ({z} n i=1 |θ + tΩ) t=0 . (3.23)
Let {Ω i } be a basis of T θ M. The Fisher information matrix F is defined as

[F] i,j = g f im (Ω i , Ω j ) , (3.24)
where g f im (Ω i , Ω j ) can be obtained from (3.23) using a polarization formula.

Theorem 3.5.2. Intrinsic Cramér-Rao bound [Smith, 2005] Let f ({z i } n i=1 |θ) be a family of probability density function parameterized by θ ∈ M, F be the Fisher information matrix, and d be the distance associated with M and chosen Riemannian metric g θ . Assume that θ is an unbiased (cf. definitions 1 and 2 of [Smith, 2005]) estimator of θ, then the covariance of the estimation error exp -1 θ θ satisfies the matrix inequality

E exp -1 θ θ exp -1 θ θ H F -1 - 1 3 F -1 R m F -1 + R m F -1 F -1 +O(λ max (F -1 ) 2+1/2 ) (3.25)
where R m () defines a Riemannian curvature term (cf. [Boumal, 2014, Eq. 6.6]).

This theorem generalizes the standard Cramér-Rao inequality with additional Riemanian curvature terms. These terms reflect the impact of the intrinsic structure of the parameter space (natural constraints satisfied within the manifold) in the estimation problem. However, if we neglect them (relevant for large n), the inequality translates in (3.26) where d corresponds to the distance associated with the chosen Riemannian metric (in which (3.22) was used to recover this term). Notice that intrinsic Cramér-Rao bounds in (3.26) are defined relatively to a Riemannian metric to be chosen, which allows for bounding a distance (performance criterion) that is considered to be meaningful for the addressed estimation problem.

E d 2 θ, θ ≥ Tr F -1 ,

ICRLB for scatter matrix estimation

We consider the problem of scatter matrix4 estimation from elliptically distributed samples z ∼ CES (0, Σ, g z ) from definition 3.2.1. The parameter Σ naturally belongs to the space of Hermitian positive definite matrices H ++ p , which is indeed a Riemannian manifold (though the choice of the metric will be specified afterward) [Bhatia, 2009]. Notably, its tangent space T Σ H ++ p at each point Σ can be identified as H p , the space of Hermitian matrices. The related Fisher information metric is given in the following theorem: Theorem 3.5.3. Fisher information metric for CES [Breloy et al., 2019a] Let {z i } n i=1 be a n-sample of z ∼ CES (0, Σ, g z ).

Let Ω 1 and Ω 2 be two elements of T Σ H ++ p . Then, the Fisher information metric associated with Σ is given as

g f im Σ (Ω 1 , Ω 2 ) = ng ces Σ (Ω 1 , Ω 2 ) (3.27) with g ces Σ (Ω 1 , Ω 2 ) = αTr Σ -1 Ω 1 Σ -1 Ω 2 + βTr Ω 1 Σ -1 Tr Ω 2 Σ -1 , (3.28)
where the coefficients α and β are defined as

α = 1 -E Q 2 φ (Q) /(p(p + 1)) and β = α -1 (3.29)
with φ = g z (t)/g z (t) and where Q is the second order modular variate of the considered distribution.

This metric corresponds to the Rao-Fisher metric [START_REF] Micchelli | Rao distances[END_REF] (also referred to as affine-invariant metric) with specific scalings (α,β) depending on the underlying distribution. We now turn to the choice of the metric used to measure the estimation error. Two popular choices are considered:

Euclidean Natural Riemannian Metric g Eucl (Ω, Ω) = Tr Ω 2 g nat Σ (Ω, Ω) = Tr Σ -1 Ω 2 Distance d 2 Eucl (Σ 1 , Σ 2 ) = Σ 1 -Σ 2 2 F d 2 nat (Σ 1 , Σ 2 ) = || log(Σ -1 /2 1 Σ 2 Σ -1 /2 1 )|| 2 F
Notice that g nat Σ corresponds to a special case of g ces Σ for which α = 1 and β = 0. For these two metrics we have the following results: Theorem 3.5.4. Euclidean Cramér-Rao bound on Σ [Breloy et al., 2019a] Let {z i } n i=1 be a n-sample of z ∼ CES (0, Σ, g z ). The Cramér-Rao bound on the Euclidean distance between an unbisaed estimator Σ and Σ is

E d 2 Eucl Σ, Σ ≥ Tr F -1 Eucl (3.30) with [F Eucl ] i,j = nαTr Σ -1 Ω Eucl i Σ -1 Ω Eucl j + nβTr Σ -1 Ω Eucl i Tr Σ -1 Ω Eucl j (3.31)
where {Ω Eucl i } p 2 i=1 is an orthonormal basis of H p (e.g., given in [Smith, 2005]).

Remark that this corresponds well to the Euclidean Cramér-Rao bounds obtained for several distributions in [START_REF] Greco | Cramér-Rao lower bounds on covariance matrix estimation for complex elliptically symmetric distributions[END_REF], Pascal and Renaux, 2010, Besson and Abramovich, 2013, Mitchell, 1989]. Also notice that we retrieve the same result as Theorem 5 of [Smith, 2005] for the special case of Gaussian distribution, obtained with α = 1 and β = 0. Theorem 3.5.5. Natural Cramér-Rao bound on Σ [Breloy et al., 2019a] Let {z i } n i=1 be a n-sample of z ∼ CES (0, Σ, g z ). The Cramér-Rao bound on the natural Riemannian distance between an unbiased estimator Σ and Σ is

E d 2 nat Σ, Σ ≥ p 2 -1 nα + (n(α + pβ)) -1 . (3.32)
Besides providing a more interpretable result, the Riemannian analysis can also reveal interesting hidden properties of estimators. A main example from [Smith, 2005] is that the SCM in the Gaussian case appears efficient w.r.t. d Eucl , while not being so w.r.t. d 2 nat at small sample size. This better reflects results from empirical processes, meaning that there is still room for improvement when n ∼ p, which motivated recent works such as [START_REF] Tiomoko | Random matrix improved covariance estimation for a large class of metrics[END_REF]. These insights are confirmed by the validation simulation presented in Figure 3.5.

ICRLB for subspace estimation in spiked models

This section briefly presents recent results derived in [Bouchard et al., 2020]. We consider spiked models (also referred to as factor models), which correspond to the case of covariance matrices structured as

Σ = Σ k + I (3.33)
where rank(Σ k ) = k < p. In the following, the distributions z ∼ CES(0, Σ k + I, g z ) are referred to as spiked elliptical models, which correspond to a generalization of low-rank structured Gaussian models (e.g., [Tipping and Bishop, 1999a]) to the case of CES distributions.

Dealing with this model requires to chose a geometry for the manifold H + p,k of p × p Hermitian positive semi-definite matrices of rank k, which has recently attracted much attention; see e.g., [START_REF] Bonnabel | Riemannian metric and geometric mean for positive semidefinite matrices of fixed rank[END_REF], Vandereycken and Vandewalle, 2010, Meyer et al., 2011, Vandereycken et al., 2012, Massart and Absil, 2018]. In [Bouchard et al., 2020], we opted for the parameterization k : the part in St p,k is the so-called canonical metric on Stiefel [START_REF] Edelman | The Geometry of Algorithms with Orthogonality Constraints[END_REF]] while the part in H ++ k is a general form of the Fisher information metric of elliptical distributions in H ++ k (cf. Theorem 3.5.3). It is of particular interest in our context because the principal subspace of the covariance matrix is directly obtained from this parametrization and a closed-form divergence function, which can be exploited to measure estimation errors [START_REF] Bonnabel | Riemannian metric and geometric mean for positive semidefinite matrices of fixed rank[END_REF]. Tedious calculations details are omitted for clarity of exposition5 . However we can still report the following result: Theorem 3.5.6. Cramér-Rao bound for subspace estimation in spiked elliptical models

Σ k = UΛ k U H (3.34)
Let {z i } n i=1 be a n-sample of z ∼ CES (0, Σ k + I, g z ), with Σ k = UΛ k U H and Λ k = diag({σ i }). Let d 2
G p,k (span(U), span( Û)) be the estimation error between the subspaces spanned by U and an unbiased estimator Û, defined as

d 2 G p,k (span(U), span( Û)) = ||Θ|| 2 F , (3.35)
where Θ is derived from the singular value decomposition U H Û = O cos(Θ) ÔH . We have the following inequality

E d 2 G p,k (span(U), span( Û)) ≥ (p -k) nα k i=1 1 + σ i σ 2 i .
(3.36)

10 1 n = p 10 2 -15 -10 -5 0 n d 2 G p,k (dB) CRLB PCA T-RGD T-MM T-RTR 10 1 n = p n Figure 3
.6: Performance of several subspace estimators from [Sun et al., 2016, Bouchard et al., 2020] compared the intrinsic Cramér-Rao bounds. z ∼ 0, Interestingly, this theorem leads to an interpretable lowerbound for subspace recovery in terms of problem dimensions and signal to noise ratio. We also note that it coincides with the Gaussian signal case studied in [Smith, 2005] for α = 1 and σ i = SNR, ∀i ∈ [[1, k]]. Finally, Figure 3.6 illustrates that this lower bound can asymptotically be achieved by the algorithms proposed in [Sun et al., 2016, Bouchard et al., 2020].

σUΛ k U H + I, g z with a t-distribution (g z (t) = 1 + d -1 t -(d+M ) ), U is a random matrix in St(p, k), Λ k is a diagonal

Related works and perspectives

Insufficient sample size

In this chapter, we focused on the case n > p. In order to enjoy the robustness properties of M -estimators at insufficient sample support (n < p), it is possible to leverage regularization methods. A regularized M -estimator can be expressed as the minimizer of the cost function Σ(α) = argmin Σ L(Σ) + αP(Σ), where L is the objective in (3.12), P is a penalty function, and α is a regularization parameter. Recent works [Wiesel, 2012b, Sun et al., 2014, Pascal et al., 2014b, Ollila and Tyler, 2014a] focused on penalties of the form P(Σ) = Tr{Σ -1 T} + ln |Σ| that shrink the estimate towards a prior T. These regularized M -estimators satisfy the fixed-point equation

Σ(α) = 1 1 + α n i=1 ρ (z H i Σ-1 (α)z i )z i z H i + α 1 + α T (3.37)
and can exist for n < p [Ollila and Tyler, 2014a]. In this topic, several perspectives of the presented work can be mentioned:

• Numerous works considered the problem of optimal α parameter selection, with respect to several applicative criterions (cf. [Hoarau et al., 2017] and refs. therein). The issue is quite complex, therefore it would be interesting to simplify it by establishing Wishart equivalents of regularized M -estimators (e.g. in the form of shrinked SCM [START_REF] Ledoit | A well-conditioned estimator for large-dimensional covariance matrices[END_REF]).

• In order to promote certain spectral structures [START_REF] Aubry | A geometric approach to covariance matrix estimation and its applications to radar problems[END_REF], Tyler and Yi, 2018, Basiri et al., 2019], it would be interesting to develop EVD-based regularization penalties, e.g.,

P(Σ) = P λ (Λ) + P v (V) for Σ EVD = VΛV H .
We started working on this approach by first considering unitary invariant shrinkage (P v (V) = 0) in [Breloy et al., 2019b]. An interesting lead would be to promote sparsity in the eigenvectors, e.g., using the tools that will be presented in chapter 4.

Information geometry and Riemannian approaches

Beyond performance bounds, the Riemannian point of view offers a unified approach to tackle statistical estimation problems involving structured matrices. Indeed, the information geometry derived from the considered model can guide the choice of relevant metrics for the derivation of the geometry of the parameter space. This geometry can be exploited by both deriving performance bounds, as well as optimization algorithms on Riemannian manifolds [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF]. For example, we also proposed new estimation algorithms in [Bouchard et al., 2020], with promising results at insufficient sample support. We also started addressing robust blind source separation with this perspective in [Bouchard et al., 2020]. Finally, the derivation of information geometry for the considered parameter space and distribution may yield new Riemannian distances that can be leveraged for other applications such as clustering, which is a lead we started to explore in the thesis of Antoine Collas (started in september 2019).

Onward to the next chapter

This chapter presented several theoretical derivations (within the elliptical model framework) for covariance matrix estimation related problems. The chapter 4 will be more application-centered, as it will discuss the application of spiked elliptical models (cf. sec 3. 

Contributions of the chapter

This chapter addresses the problem of change detection in multivariate image times series. In this context, testing the similarity of covariance matrices from groups of observations has been shown to be a relevant approach. The corresponding classical statistical methodologies are usually built upon the Gaussian assumption, as well as an unstructured signal model. Both of these hypotheses may be inaccurate for high-dimension/resolution images (non-Gaussian observations), and where all channels are not always informative (structured signals). The problem will be tackled by deriving new detection methods using signal models from the previous chapters, that alleviate the aforementioned limitations. While the term "testing similarity" usually refers to equality, we also discuss the testing of shared properties in the eigendecomposition (e.g., principal components) of groups of covariance matrices structures.

The contributions presented in this chapter detail works conducted during the theses of Ammar Mian and Rayen Ben Abdallah. Related publications in the cv (page xi): [J6], [C16], [C18], [START_REF] Ben Abdallah | Détection de changement de sousespace signal dans des matrices de covariance structurées[END_REF], [START_REF] Mian | Détection de Changement Robuste en Rang Faible pour les Séries Temporelles d'Images SAR[END_REF], [J12], [X2]. 

Spatial

Context overview

Change detection in SAR image time series

The analysis of Synthetic Aperture Radar (SAR) Image Time Series (ITS) has become a popular topic of research since it has many practical applications for Earth monitoring, such as disaster assessment, infrastructure monitoring or land-cover analysis. Over the past years, SAR-ITS have been made more widely available thanks to various missions such as Sentinel-1, TerraSAR-X, or UAVSAR. As a consequence, an active topic of research addresses the development of reliable automatic Change Detection (CD) methodologies in order to efficiently process this large amount of data. The CD problem is indeed challenging due to the lack of available ground truths, which does not allow applying supervised methods from the image processing literature. Moreover, it is well known that SAR images are subjected to speckle noise, which makes traditional image-based approaches prone to high false alarm rates. In this case, unsupervised methodologies, often based on statistical tools, have yield interesting approaches in recent decades [START_REF] Hussian | Change detection from remotely sensed images: From pixel-based to object-based approaches[END_REF].

In the following, we consider a multitemporal time-series of T multivariate SAR images as described in Figure 4.1. Each pixel of a SAR image at a given date t corresponds to a vector of dimension p, denoted z ∈ C p . The p channels can correspond to a polarimetric diversity (p = 3), or to another kind of diversity such as a spectro-angular one, obtained through wavelet transforms [Mian et al., 2019]. The change detection process is applied using a local window around the pixel of interest, including n pixels. Locally, the whole data set is denoted {{z t i } n i=1 } T t=1 , which corresponds to the aggregation of all pixels at spatial indexes

i ∈ [[1, n]] and dates t ∈ [[1, T ]].

Statistical change detection with the GLRT

For a given time t, the local observation {z t i } n i=1 is assumed to be distributed according to a fixed parametric distribution, of parameter θ t . The corresponding likelihood is denoted L {z t i } n i=1 |θ t . The parameters {θ t } are feature that characterize the local data at each date t: if a local change occurs, this parameter is expected to vary. The CD problem can thus be formulated as a binary hypothesis test:

H 0 :

θ i = θ 0 , ∀i ∈ [[1, T ]] (no change), H 1 : θ i = θ j , for i = j (change). (4.1)
Notice that we will consider an omnibus CD problem, i.e. we do not test for a change at a specific date. Conversely, the sequential test focusing on the date t 0 is expressed as:

     H 0 : θ i = θ 1 , ∀i ∈ [[1, T ]] (no change), H 1 : θ i = θ 1 , ∀i ∈ [[1, t 0 -1]] θ i = θ t 0 , ∀i ∈ [[t 0 , T ]], with θ t 0 = θ 1 (change at t 0 ). (4.2)
which can often be recasted as an omnibus one with T = 2 by re-partitioning the data set if there is a single change (yet, this property is not always true depending on the chosen model).

In order to derive a metric of decision, we consider the use of the generalized likelihood ratio test (GLRT) for the hypothesis test (4.1). This test consists in computing the following quantity:

ΛGLRT = max {θt} T t=1 T t=1 L H 1 {z t i } n i=1 |θ t max θ 0 T t=1 L H 0 ({z t i } n i=1 |θ 0 ) , (4.3) 
where L H 1 (resp. L H 0 ) denotes the likelihood function and {θ t } T t=1 (resp. θ 0 ) corresponds to the parameters of the distribution, both under H 1 (resp. H 0 ).

Additionally, a possible parameter splitting θ = {θ test , θ side } can lead to the following hypothesis test:

           H 0 : θ test i = θ test 0 , ∀i ∈ [[1, T ]] θ side i = θ side j , for i = j (no change in θ test ), H 1 : θ test i = θ test j , for i = j θ side i = θ side j , for i = j (change in θ test ).
(4.4)

Modified accordingly, the GLRT formulation of (4.3) still allows us to test for specific changes within the parameters. Thus, one statistical model can yield several tests, whose relevance will depend on the phenomenon we aim to test. This perspective will be discussed in the following, but not fully detailed because our experiments showed that the considered CD application (i.e., detecting any change) favors detectors that test for all the parameters.

In conclusion: to develop efficient GLRT detectors, the problem remains to select an assumed distribution (and corresponding parameters) that accurately reflects the behavior of the data and the phenomenon we aim to test.

Current issues

The CD problem still generates several challenges, from which we can stress the following:

• A first issue concerns the modeling of the data. The CD processes are built upon the Gaussian assumption, which can be inaccurate for high-dimension/resolution images (i.e., non-Gaussian observation). An element of response is brought by the use or more general families of distributions, such a compound Gaussian ones (cf. chapters 2-3). For a chosen distribution, the choice of parameters to test is also not trivial, as it should leverage prior physical considerations on the acquisition system. In this scope, we will consider the use of spiked models (i.e., covariance matrices with a low rank structure), which is often appropriate in radar signal processing.

• It is also worth mentioning that, depending on the chosen model, the evaluation of the GLRT may lead to complex optimization problems, which boils down to the computation of maximum likelihood estimators. In the following presentation, we will elude this question by simply noticing that the proposed tests can be computed using the majorization-minimization techniques evoked in the previous chapters and Appendix A 1 .

GLRTs based on the covariance matrix

Testing the similarity of covariances matrices between groups of observations is a well-established topic in the statistical literature [Nagao, 1973, Schott, 2001, Anderson, 2003, Hallin and Paindaveine, 2009], which has also been considered for CD in time-series in, e.g. [START_REF] Galeano | [END_REF]Peña, 2007, Aue et al., 2009]. More specifically for SAR-ITS applications, various test statistics based on covariance matrix equality testing from Gaussian samples have been proposed within statistical detection framework [START_REF] Conradsen | A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[END_REF], Novak, 2005, Barber, 2015, Carotenuto et al., 2015, Maio et al., 2017], or using information theory [START_REF] Nascimento | Detecting Changes in Fully Polarimetric SAR Imagery With Statistical Information Theory[END_REF], Ratha et al., 2017] . A good review of these Gaussian detectors can be found in [START_REF] Ciuonzo | On Multiple Covariance Equality Testing with Application to SAR Change Detection[END_REF].

In the following, we will consider generalizations of the Gaussian GLRT approach: we present the GLRTs corresponding to four models, which can be splitted between two distributions Gaussian, i.e., assuming z ∼ CN (0, Σ), Compound Gaussian with deterministic textures, i.e. assuming z i |τ i ∼ CN (µ, τ i Σ), ∀i, where τ i is unknown deterministic, and two parameterizations for the covariance matrix Unstructured, i.e., no specific structure assumed on Σ, Spiked (low-rank structured), i.e., assuming Σ = Σ k + σ 2 I, where rank(Σ k ) = k and k is fixed, which are summed-up (with a corresponding reference) in the following table :   Model Gaussian Compound Gaussian Unstructured [START_REF] Conradsen | A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[END_REF] 

Gaussian models

Unstructured Gaussian

Assuming Gaussian distributed samples, the CD can be performed by testing a change in the covariance matrix [START_REF] Conradsen | A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[END_REF], Novak, 2005]. The corresponding GLRT, denoted ΛG , corresponds to (4.1) and (4.3) with the following distribution/parameters:

Model: z t i ∼ CN (0, Σ t ) Param.: H 0 : θ 0 = Σ 0 H 1 : {θ t } T t=1 = {Σ t } T t=1 .
(4.5)

1 Interested readers can find the details in sections 2.8 and 2.9 of the annexes.

This test has well established statistical properties (cf. eg. [START_REF] Ciuonzo | On Multiple Covariance Equality Testing with Application to SAR Change Detection[END_REF]) and admits the closed-form expression

ΛG = | ΣSCM 0 |/ T t=1 | ΣSCM t | 1/T , (4.6) 
with the Sample Covariance Matrices (SCMs) defined by

ΣSCM 0 = 1 T n t,i z t i (z t i ) H and ΣSCM t = 1 n i z t i (z t i ) H . (4.7)
Spiked Gaussian (and extensions)

The performance of the CD methods is tightly linked to the accuracy of the covariance matrix estimation. The general rule-of-thumb suggests that n > 2p samples are required in order to obtain a correct estimation. However, spiked models are very common structure in radar due to signals lying in a lower dimensional subspace. In order to lower n (i.e., reduce the local window size), we proposed in [Ben Abdallah et al., 2019c] to extend the Gaussian GLRT to the spiked model. The resulting test corresponds to (4.1) and ( 4.3) with the following distribution/parameters:

Model: z t i ∼ CN 0, Σ t k + σ 2 t I Param.: H 0 : θ 0 = {Σ 0 k , σ 2 0 } H 1 : {θ t } T t=1 = {Σ t k } T t=1 (4.8)
where Σ k belongs to the set of p × p Hermitian positive semi-definite matrices of rank k. Following from [Tipping and Bishop, 1999a], this test consists in evaluating the ratio (4.3) with the MLEs

Σ0 k + σ2 0 I = T k { ΣSCM 0 } Σt k + σ2 t I = T k { ΣSCM t } (4.9)
with the operator T k (projection on the set of low-rank plus scaled identity) is defined by

T R : Σ = U diag(d) U H → T R (Σ) ∆ = U diag( d) U H (4.10) with d = [d 1 , . . . , d k , d k+1 , . . . , d p ] d = d 1 , . . . , d k , σ2 , . . . , σ2 σ2 = 1 p -k p r=k+1 d r . (4.11)
We also note that if the noise variance is assumed to be known and equal to σ2 , the solution is given in [START_REF] Kang | Rank-Constrained Maximum Likelihood Estimation of Structured Covariance Matrices[END_REF], and consists in replacing d by d

= max(d 1 , σ 2 ), . . . , max(d R , σ 2 ), σ 2 , . . . , σ 2 .
Several generalizations of this approach can be found in [Ben Abdallah et al., 2019c, Ben Abdallah et al., 2019b], where the considered model is

z t i d = U t (D t i ) 1 /2 s t i + σ t n t i (4.12) with U t ∈ St(p, k), D t i ∈ H ++ k , s t i ∼ CN ( 
0, I) and n t i CN (0, I). This model encompasses (4.8), but also allows for extensions echoing to the non-Gaussian models in chapter 2, such as LRCG in definition 2.3.4. Most interestingly, splitting the parameters as in (4.4) can yield detectors that test for a specific feature change. For example [Ben Abdallah et al., 2019b] proposed a detector for a change in the signal subspace, while being insensitive to variations of the other parameters (power fluctuations, inner correlations, etc.) 2 . The approach is an interesting prospect for other applications that aim to test for specific physical phenomenons. However, these formulations are not specifically efficient for standard CD where we aim to detect any change.

Compound Gaussian models

Unstructured compound Gaussian

As stated previously, the standard Gaussian assumption is no longer valid for high-resolution, or heterogeneous SAR images. This mismodeling induces a strong reduction of the CD performance when using ΛG , notably caused by the inaccuracy of the SCM computed from non-Gaussian observations. This issue can be alleviated by assuming a compound Gaussian model. Under this assumption, the CD can be performed by testing a change in both the covariance matrix and the texture parameters [Mian et al., 2019]. The corresponding GLRT, denoted ΛCG , corresponds to (4.1) and (4.3) with the following distribution/parameters:

Model: z t i ∼ CN 0, τ t i Σ t Param.: H 0 : θ 0 = Σ 0 , {τ 0 i } n i=1 H 1 : {θ t } T t=1 = Σ t , {τ t i } n i=1 T t=1 (4.13)
The evaluation of the quantity ΛCG involves fixed-point equations that can be computed numerically.

A study and generalizations (testing for textures or covariance matrices individually) of this approach can be found in [Mian et al., 2019].

Spiked compound Gaussian

In [Mian et al., 2019], we proposed to combine the advantages of both the low-rank structure and the CG distribution. Thus, we considered a model of CG distributed samples with a spiked covariance matrix. The corresponding GLRT for CD, denoted ΛLRCG , corresponds to (4.1) and ( 4.3) with the following distribution/parameters:

Model: z t i ∼ CN 0, τ t i Σ t k + σ 2 t I Param.: H 0 : θ 0 = Σ 0 k , σ 2 0 , {τ 0 i } n i=1 H 1 : {θ t } T t=1 = Σ t k , σ 2 t , {τ t i } n i=1 T t=1 (4.14)
Here, the test accounts for a possible change of both the covariance matrix and the textures between acquisitions, as it was shown to be the most relevant approach for SAR-ITS [Mian et al., 2019]. This GLRT can be computed with appropriate modifications of the spiked covariance matrix estimation algorithm in [Sun et al., 2016].

Application to real data

The performance of the proposed change detector is tested on a SAR ITS dataset, and assessed with ROC curves (displaying the probability of detection versus the false alarm rate). As a mean to assess the effectiveness of combining LR structure with a robust model, it is compared to the following detectors:

i) the unstructured Gaussian detector proposed in [START_REF] Conradsen | A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[END_REF], Ciuonzo et al., 2017], denoted ΛG , ii) the spiked Gaussian detector of [Ben Abdallah et al., 2019c], denoted ΛLRG iii) the compound Gaussian detector proposed in [Mian et al., 2019], denoted ΛCG iv) the spiked compound Gaussian detector proposed in [Mian et al., 2019], denoted Λ LRCG . 

Datasets description

The SAR ITS data set is taken from UAVSAR (courtesy of NASA/JPL-Caltech). Two scenes with respectively 4 and 2 images are used. They are displayed in Figure 4.2 for the scene 1 (4 images) and 4.3 for the scene 2 (2 images). The CD ground truths are collected from [START_REF] Ratha | Change Detection in Polarimetric SAR Images Using a Geodesic Distance Between Scattering Mechanisms[END_REF], Nascimento et al., 2018] and are shown in figures 4.4. Table 4.1 gives an overall perspective of the scenes used in the study. The SAR images correspond to full-polarisation data with a resolution of 1.67m in range and 0.6m in azimuth. Since the scatterers present in this scene exhibit an interesting spectro-angular behavior, each polarization of these images has been subjected to the wavelet transform presented in [Mian et al., 2019], allowing to obtain images of dimension p = 12.

The rank k is chosen according to Figure 4.5, which displays the eigenvalues of the total sample covariance matrix. For this data set, k = 3 appears to be an interesting value to separate signal from noise components. Notably, this rank gathers 81% of the total variance. 

Results

Comparison between the four methods It is interesting to notice that these curves do not vary significantly with respect to this parameter. Therefore, we can expect that a slight error in the rank estimation will not lead to a significant drop in CD performance.

Robustness to parameter selection

In [Ben Abdallah et al., 2019b], the noise variance σ 2 is pre-estimated locally with the mean of the (p -k) lowest eigenvalues of the sample covariance matrix of all samples in the patch. This value is then used as a known parameter in the detector. Figure 4.9 (right) compares this method with the fully adaptive one (cf. (4.10)-(4.11)). It shows that the parameter σ 2 can be left as a degree of freedom at each t without loosing in terms of CD performance. 

Perspectives

Finally, we can list several direct perspectives following from this work:

• The presented framework assumed zero-mean samples. The approach is relevant for SAR imaging, but not in general for satellite image time series. The extension the case of unknown mean is therefore an interesting prospect as it would allow us to apply the proposed methodologies to other data-sets. Especially, the spiked models appear suited to hyperspectral imaging, where the sample dimension p is generally too high to apply local covariance-based processes.

• The considered formulation requires to fix the rank k in spiked models prior to any derivation.

A potential extension of our work would be to investigate the change of the rank within a CD process.

• Detecting specific phenomenons through structural changes in the covariance matrix can be an interesting approach, but it requires a strong prior on the physics of the data. results were obtained in SAR tomography in collaboration with A. Taylor. However, the lead remains to be further explored.

Onward to the next chapter

expression data, where the aim is to identify only a few relevant genes (generally among thousands) within the principal components. Many algorithms have been proposed to perform this task [Chen et al., 2012, Chen and Huang, 2012, Bunea et al., 2012, Hu et al., 2016, Benidis et al., 2016, Uematsu et al., 2017]. Most of the proposed methods involve an orthonormal basis U ∈ St(p, k), whose columns represent the principal components, and can be generically formulated through the problem minimize

U∈St(p,k) L(U, {z i } n i=1 ) + λξ (U) , (5.1) 
where L is a data fitting term (orthogonal regression on the dataset {z i } n i=1 ), ξ is a sparsity promoting penalty (e.g., the 1 -norm), and λ is a regularization parameter. The introduction of the sparse penalty usually makes the minimization in (5.1) hard to tackle under the orthonormality constraint. Thus, most algorithms in the literature relax this constraint and resort to a trade-off [Chen et al., 2012, Chen and Huang, 2012, Bunea et al., 2012, Hu et al., 2016]. A natural way to handle the orthonormality constraint is to turn to the framework of Riemannian optimization for St(p, k) [START_REF] Edelman | The Geometry of Algorithms with Orthogonality Constraints[END_REF], Manton, 2002, Absil et al., 2009]. However, these methods can be computationally expensive, and handling sparsity promoting penalties in this framework has only recently been addressed [Chen et al., 2018, Huang andWei, 2019]. In the following, these issues will be addressed by using the majorization-minimization framework. The contribution is twofold:

• We proposed a framework to deal with the orthonormality constraint in a systematic manner, which is fully detailed in Appendix A. First, we present a majorization rule that transforms the initial problem in a series of orthogonal Procrustes ones, and analyze the corresponding generic algorithm. Second, we derive a catalog of corresponding majorizers for standard cost function.

• Driven by this methodology, we proposed a new set of algorithms for sparse PCA by leveraging proxies of 0 -norm proposed from [START_REF] Song | Sparse Generalized Eigenvalue Problem Via Smooth Optimization[END_REF]. Interestingly, the approach allows us to combine M -estimation type data fitting terms (robustness) and sparsity promoting penalties, while still ensuring orthonormality of the principal components.

Robust Sparse PCA with MM

We consider the generic formulation in (5.1). The following subsections detail options for the data fitting term and penalties that can be managed with the presented MM framework.

Robust data fitting term

In the context of probabilistic PCA, the data fitting term can be chosen as the log-likelihood of a statistical model, such as the ones presented in chapters 2 and 3. For the corresponding objective functions, one can leverage the linear surrogates from [Sun et al., 2016, Breloy et al., 2016, Ben Abdallah et al., 2020] to fit the proposed framework.

In this work, we will rather focus on a geometric approach inspired by the robust subspace recovery (RSR) algorithms of [De La Torre and Black, 2003, Maronna, 2005, Ding et al., 2006, Lerman and Maunu, 2017]. Its main interest is to offer a flexible formulation that does not involve side parameters, while being robust to potential outliers within this set [START_REF] Lerman | An Overview of Robust Subspace Recovery[END_REF]. Thus, we consider the function

L(U, {z i } n i=1 ) = 1 n n i=1 ρ d 2 (U, z i ) , (5.2) where d 2 (U, z) = (UU H ) ⊥ z 2 F = z H z -Tr U H zz H U (5.3)
is the Euclidean distance between a vector z ∈ C p and the subspace spanned by U ∈ St(p, k), and where ρ : R → R is a function that ensures the robustness to outliers. Here, ρ is assumed to be a concave nondecreasing function, which holds for a wide variety of usual robust formulations from the literature, as illustrated by the following examples:

Example 5.2.1. ( p -norm) For p > 0, p -norm nonconvex RSR estimators are defined as in (5.2) by using the function ρ p (t) = t p/2 .

(5.4)

The least-square estimator (standard PCA) is obtained for p = 2.

Example 5.2.2. (Huber-type) For a parameter T ≥ 0, Huber-type nonconvex RSR estimators are defined as in (5.2) by using the function

ρ H (t) = t/ √ T if t ≤ T, √ t if t > T.
(5.5)

The median estimator, e.g. considered in [Ding et al., 2006, Lerman andMaunu, 2017], corresponds to the case limit case T → 0. 

ρ GMC (t) = t/(T + t), (5.7) 
which has been used in, e.g., [De La Torre and Black, 2003].

Sparse penalties with linear surrogates on St(p, k)

In order to design sparsity promoting penalties suited to the MM framework, we follow the approach proposed in [START_REF] Song | Sparse Generalized Eigenvalue Problem Via Smooth Optimization[END_REF], i.e., approximating the 0 -norm by a smooth function denoted l γ , and defined as

l γ (x) = a|x| 2 , if |x| ≤ l γ (x) -b, if |x| > , (5.8) 
with appropriate constants a and b so that the approximations l γ are continuous and differentiable (cf. [START_REF] Song | Sparse Generalized Eigenvalue Problem Via Smooth Optimization[END_REF]), and where l γ belongs to the family of functions (involving a tuning parameter γ): a) γ -norm [START_REF] Gorodnitsky | Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm[END_REF], Chartrand and Yin, 2008, Lai et al., 2013]:

l γ (x) = |x| γ , γ ∈ (0, 1]
b) 1 -norm approximation from [START_REF] Sriperumbudur | A majorizationminimization approach to the sparse generalized eigenvalue problem[END_REF], Candès et al., 2008]:

l γ (x) = ln(1 + |x| /γ) ln(1 + 1/γ), γ > 0 c
) lower bound of sign function from [Mangasarian, 1996]:

l γ (x) = 1 -e -|x|/γ , γ > 0.
Thus, this class covers most of standard 1-dimensional sparsity forcing penalties (i.e., a proxy of the sign function). In order to mimic a weighted 0 -norm, we consider the cost function: 5.9) where ω r are positive weights and with l γ in (A.29), and where U = [u 1 , . . . , u k ], and [•] n denotes the n th element of a vector. Such type of penalty was initially proposed for Sparse PCA in [START_REF] Benidis | Orthogonal sparse pca and covariance estimation via procrustes reformulation[END_REF] using the 1 -norm approximation [START_REF] Sriperumbudur | A majorizationminimization approach to the sparse generalized eigenvalue problem[END_REF], Candès et al., 2008] (i.e., l γ in the class b) of the considered family). point plays an important role in the achieved robustness of all iterative algorithms (even without regularization). In these simulations, we used the spherical PCA (PCA applied on the normalized samples) as starting point. It has been observed that the achieved robustness can be lowered by using the standard PCA instead.

r 0 (U) = R r=1 ω r N n=1 l γ ([u r ] n ) , ( 
Second, we compare the performance of RSPCA with state of the art sparse PCA algorithms on the Leukemia data set [START_REF] Golub | Molecular classification of cancer: class discovery and class prediction by gene expression monitoring[END_REF] 1 . The data consists in gene expression measurements from RNA micro-array: p = 7129 gene are studied for n = 72 patients. Remark that n p, which suggests the interest for both dimension reduction and variable selection. The studied performance criteria are the following SP

( Û) = 1 -|| Û|| 0 /(pk) CPEV( Û) = Tr{(span( Û)) H ZZ H span( Û)}/Tr{ZZ H } NOR( Û) = || ÛH Û -I|| 2 F (5.15)
which measure respectively the sparsity (expected to be close to 1, i.e., 100%), the explained variance (expected to be close to 1, i.e., 100%), and the non-orthonormality (expected to be low). As the goal is to explain as much as possible, with less entries, we are interested in studying the explained variancesparsity trade-off. In this case, notice that the CPEV criterion may slightly favor the algorithms that relax the orthonormality constraint in the principal components, so we also check this property with respect to the sparsity. The RSPCA estimator is build with a GMC cost (cf. Example 5.2.4), r 0 penalty and l γ is from the proxy of the lower bound of the sign function (i.e., c) in the familly of proposed proxies). We notice that similar conclusions can be drawn with other objectives, up to minor changes of the parameters. RSPCA is computed with Algorithm 2 using an outer loop, decreasing from 10 -1 to 10 -7 in order to avoid potential local minima. This algorithm is compared to ALSPCA [START_REF] Lu | An augmented Lagrangian approach for sparse principal component analysis[END_REF], SPCArt and rSVD-GP from [START_REF] Hu | Sparse principal component analysis via rotation and truncation[END_REF]. Figure 5.2 displays the CPEV and NOR versus SP for the studied sparse PCA algorithms on the Leukemia data set. Interestingly, we can notice that RSPCA achieves state of the art performance when it comes to the explained variance-sparsity trade-off, but without relaxing the orthonormality constraint, as done by the other algorithms.

Robust subspace clustering for radar detection

Motivations

Statistical radar detection

Adaptive detection of targets embedded in a complex environment (strong clutter, jammers, etc.) is a major issue in array processing. This topic has been extensively -and is still actively-studied in the signal processing literature for a plethora of signal models and assumed noise distributions. Following the classical statistical paradigm [Kelly, 1986, Kraut et al., 2001, Kraut and Scharf, 1999, Kraut et al., 2005], the detection problem can be formulated as a binary hypothesis test (target present or not), with unknown statistical parameters (e.g., the disturbance covariance matrix). Formally, we consider the following binary hypothesis test:

H 0 : z 0 = c 0 + n 0 ; z i = c i + n i , ∀i ∈ [[1, n]] H 1 : z 0 = α 0 p + c 0 + n 0 ; z i = c i + n i , ∀i ∈ [[1, n]]
where:

• z 0 is referred to as primary sample (tested cell) and the {z k } n i=1 is the secondary data set, in which samples are assumed to be i.i.d. and target-free.

• p is the signal to be detected, and α 0 is an unknown power/phase-shift coefficient.

• c i , ∀i ∈ [[0, n]] represents the interference: clutter (response of the environment) and/or jammers.

• n i , ∀i ∈ [[0, n]] represents the additive thermal noise of the system.

Depending on the assumed noise plus interference model, various detection schemes and likelihood ratios can be envisioned. From a robust and practical point of view, one can rely on the adaptive coherence estimator (ACE) [Kraut andScharf, 1999, Kraut et al., 2005], also referred to as ANMF detector, which is defined as: 5.16) for a given plug-in estimator Σ of the interference-plus-noise covariance matrix Σ = Σ c +σ 2 I, computed from the secondary data {z k } k∈[[1,K]] (excluding z 0 ). To sum up, a classical 2-step detection process is performed as follows:

Λ( Σ) = |p H Σ-1 z 0 | 2 |p H Σ-1 p||z H 0 Σ-1 z 0 | H 1 ≷ H 0 δ Σ, ( 
Step 1:

{z i } n i=1 estimation -----------→ Σ
Step 2: z 0 , Σ plug-in detector -----------→ detection (5.17)

In order to improve the performance of this detection process, the estimation of the interference plus noise covariance matrix (or interference subspace) represents a crucial step. This problem thus still drives a lot of current research, notably for dealing with the problems of robustness and low sample supports (cf. chapters 2 and 3).

Limitation of statistical based methods

Most of the aforementioned detection methodologies have been built upon the availability of a homogeneous secondary data set, i.e., i.i.d. and target-free samples, that are used to estimate the unknown statistical parameters. From a practical point of view, the scanned environment can indeed be assumed stationary for a given amount of observations. However embedded systems encounter non-stationarity due to varying environment and/or switching jammers. Dealing with change points upstream is not a trivial task, which often leads to heterogeneous secondary data sets. Moreover, the secondary data are also potentially corrupted by outliers, such as targets. Generally speaking, statistical-based methods may suffer from an important performance loss if the assumed hypothesis are not met (so called mismatched situations). To alleviate this issue, the sample selection/partition could be performed and checked using a more complex estimation chain. Though, efficient in practice, this process may be tedious and computationally expensive, as it involves numerous unknown parameters. While recent works keep robustness to heterogeneity/corruption in mind, it seems interesting to explore new methodologies, such as geometrical formulations, in order to tackle these problems.

In this scope, we will present a recent exploration, where the detection problem is reformulated as a union-of-subsapces recovery. Of course, this reformulation will eventually not solve every aspect of the question, and will bring its own inherent issues. Yet, it appeared as an interesting prospect that remained to be delved into.

Heterogeneous interferences modeled as an union-of-subspaces

This section motivates the reformulation of the detection problem as a union-of-subsapces recovery from the whole data. This approach is justified by the fact that the radar clutter (and/or jamming) interference is often contained in a subspace of low dimension compared to the size of the data [START_REF] Brennan | [END_REF]Staudaher, 1992, Goodman andStiles, 2007]. Hence, the background of a piecewise stationary environment can be modeled as a union-of-subspaces. Additionally, the present sources can be modeled as a known dictionary of steering-vectors multiplied by a sparse matrix of power and phaseshift coefficients. Recovering these two components from a noisy observation (the sample set) is referred to as a robust subspace clustering problem [Vidal, 2011, Elhamifar and Vidal, 2013, Bian et al., 2018].

We consider that the whole collected sample set {z i } n i=0 is not necessarily homogeneous: the interference (clutter and/or jammers) covariance and distribution may change at certain points of the acquisition, with J unknown homogeneous sub-partitions (or clusters). Denote the partitioned sample set {z j i } n j i=1 with j ∈ [[1, J]], and J j=1 n j = n + 1. These samples are modeled as

z j i = v j i + c j i + n j i (5.18)
with the following additive contributions:

• v k is the sum of target responses, expressed as:

v j i = [p 1 , • • • , p P ] α k = Pα j i (5.19)
where {p i } P i=1 is a dictionary of known steering vectors (targets we seek to detect), and where the vector α j i contains power/phase-shifts coefficients. Under the realistic assumption that there are few targets to be detected, only few entries in α j i are non-zero. Therefore, these vectors are expected to be sparse.

• c j i represents the interference, such as ground clutter (response of the scanned environment) and/or jammers. Such contribution is commonly assumed to be zero-mean with an assumed existing covariance matrix Σ c and following a given (possibly heavy-tailed [Ollila et al., 2012a]) distribution. In this work, the underlying distribution will be considered unknown and unspecified. A crucial point is however that, from physical considerations on the system [START_REF] Brennan | [END_REF]Staudaher, 1992, Goodman andStiles, 2007], we can assume that the covariance matrix Σ j c of the interference in each cluster reads

Σ j c = k j r=1 c j r u j r u jH r
(5.20) with k j < p (low-rank). Thus, in a given cluster j ∈ [[1, J]], the interference realizations lie in a low dimensional subspace and satisfy

c j i = Π j c c j i ∀ i ∈ [[1, n j ]],
with the rank k j orthogonal projector Π j c = k j r=1 u j r u jH r .

• n j i represents the thermal noise, assumed to be white Gaussian with a covariance matrix σ 2 I. Note that, since the interference is heterogeneous with respect to each cluster, the whole set {{c j i } n j i=1 } J j=1 can be represented by a union-of-subspaces, as illustrated in Figure 5.3. From this union-of-subspaces representation, an instrumental geometric relation will be given by noticing that each interference realization lying in the hyperplane spanned by Π j c can be obtained as a linear combination of the others (when n j > k j ), i.e., c j i = l =i γ j l c j l , or in matrix form

C j = C j W j , with [W j ] i,i = 0 (5.21) with C j = [c j 1 , • • • , c j n j ],
and where W j is the matrix containing the coefficients γ j l . This formulation is also referred to as a self-representative property of the data.

Finally, if we denote the concatenation operator , and the corresponding matrices To sum up on this formulation, most of the power of the samples is contained in the union of unknown subspace Π j c , and the matrix A is a sparse matrix that contain the information about the present targets (outliers with respect to the low-rank subspaces).

Z = {z j k }, C = {c j k } = {C j }, V = {v j k }, N = {n j k }, A = {α j k }, W = {W j },
Note that, as evoked previously, this global model is quite complex to deal with within a statistical framework. Indeed, the number of partitions J, the different distributions of interferences, their corresponding covariance matrices Σ j c and ranks k j , the index of target-free samples (thus requiring simultaneous estimation and detection), are unknown. From a practical point of view, this model probably involves too many unknown parameters for deriving an efficient statistical estimation procedure such as an Expectation-Maximization algorithm. Thus, we will turn to sparse recovery algorithms in order to propose a solution. Interestingly, this formulation will not involve any assumptions about homogeneous and signal-free secondary data as in the statistical approach, and will allow the whole data to be processed in a single step.

Recovery algorithms

From the data model in (5.22), the problem is to recover a union of low-rank subspaces (interferences) and a sparse matrix (target responses) from a noisy observation of the matrix PA + C. Note that, in a detection application, we are primarily interested in the recovery of A, which informs on the presence (or not) of targets in each samples. This approach, while -to the best of our knowledgeunconventional for radar detection, is under a lot of ongoing investigations for machine learning and computer vision problems [START_REF] Elhamifar | Sparse Subspace Clustering: Algorithm, Theory, and Applications[END_REF]. In the following, we will thus consider the use of several sparse recovery algorithms, which are described thereafter. The technical core of the optimization algorithms will not be detailed. However, it is worth mentioning that our contribution consisted in the adaptation of existing algorithms to include the dictionary P.

Robust subspace recovery via bi-sparsity pursuit (RoSuRe)

In order to recover the components from the data model in (5.22), we consider the following minimization problem: minimize

W,A,C ||Z -PA -C|| 2 F + λ 1 ||W|| 1 + λ 2 ||A|| 1 subject to (ii) C = CW, (iii) diag (W) = 0 (5.23)
Intuitively, the 1 -norm promotes sparsity of the matrices W and A, which allows to recover the low dimensional structures within the self-representative relation of the data, as well as the active targets within the observations. Due to the bilinear constraint (ii), this problems is non-convex. The optimization can be achieved by the linearized version of the Alternating Direction Method of Multipliers (ADMM) [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF], Lin et al., 2011], which was initially proposed in [START_REF] Bian | Bi-sparsity pursuit: A paradigm for robust subspace recovery[END_REF] (then with dictionary in [START_REF] Breloy | Robust Subspace Clustering for Radar Detection[END_REF]). The corresponding algorithm will be referred to as RoSuRe.

Sparse subspace clustering (SSC)

Based on a rewriting introduced in [START_REF] Elhamifar | Sparse Subspace Clustering: Algorithm, Theory, and Applications[END_REF], we also proposed to study a convexified modification of the problem (5.23) in [Mériaux et al., 2019]. Indeed, starting from Z = PA+C+N and C = CW, we obtain

ZW = PAW + CW + NW = PAW + Z -PA -N + NW Consequently, Z = ZW + PA (I -W) + N (I -W) Z = ZW + P Ã + Ñ (5.24)
Thus, we consider the following modified problem minimize

W, Ã ||Z -P Ã -ZW|| 2 F + λ 1 ||W|| 1 + λ 2 || Ã|| 1 subject to diag (W) = 0 (5.25)
where the 1 -norm promotes the sparsity of the matrices W and à and the parameter λ balances the two terms in the criterion. The problem (5.25) being convex, it can be efficiently solved using convex programming tools [START_REF] Boyd | Convex optimization[END_REF]. However, the reformulation trick sightly degrades the original problem, which can lead to a biased estimate of the matrix A. The corresponding algorithm will be referred to as SSC.

Principal component pursuit (PCP)

Another popular approach consists in recovering a "low-rank plus sparse" decomposition of the data matrix. In our context, this can be performed by the pincipal component pursuit algorithm [START_REF] Chandrasekaran | Ranksparsity incoherence for matrix decomposition[END_REF], Candès et al., 2011], that solves the problem minimize 5.26) where || • || * is the nuclear norm. In this recovery, the union-of-subspace representation is factorized in a single low-rank matrix L. Yet, since we are mostly interested in the matrix A, it can still provide an interesting solution when the union-of-subspaces still lies in a single low dimensional one.

L,A ||Z -PA -L|| 2 F + λ 1 ||L|| * + λ 2 ||A|| 1 ( 

Application to detection in non-stationary jammers

In this section, we consider the problem of target detection where the interferences are due to nonstationary jammers. Consider a uniform linear array with p = 8 sensors, spaced each other of λ/2, collecting n = 50 samples. The steering vector is given by d (θ) = 1, e -iπ sin θ , . . . , e -iπ(p-1) sin θ T . The dictionary D is built from d where U and Λ are the eigen-decomposition of R jam . Then, we define the covariance matrix of the total noise by R = (JNR/Tr{Λ}))UΛU H + σ 2 I M , with JNR is the Jammer to Noise Ratio. Analogously, we define the Signal to Noise Ratio (SNR) by SNR = V 2 /σ 2 , where σ 2 is fixed equal to 1. Finally, the clutter plus noise is sampled from a Gaussian model CN (0, R).

In the considered application, we consider the standard adaptive detection methods: i) the Adaptive Normalized Matched Filter (ANMF), where the covariance learning is based on the sample covariance matrix, computed from the 2M samples surrounding the tested sample, which will serve as secondary data; ii) the ANMF, where the covariance learning is using the Tyler's estimator [Tyler, 1987] on the 2M samples surrounding the tested sample. These methods are compared to the following sparse recovery approaches: a) the RoSuRe-detector, which solves the problem (5.23) from the given observations Z and the considered dictionary D; b) the SSC-detector, denoted by SSC and which is obtained by solving the problem (5.25) from Z and D; c) the PCP-detector, denoted by m-RoSuRe and which is obtained by solving the problem (5.25) from Z and D. The tuning parameters (λ 1 , λ 2 ) for each recovery algorithms have been selected by scanning a grid prior to the simulation, then fixed in order to fairly compare the result. Figure 5.5, displays the probability of detection with respect to the signal to noise ratio (for a probability of false alarm set to 10 -3 for each detector). Interestingly, we can observe that the sparse recovery approach can outperform the ANMF-based methods. However, it is still hard to grasp a global pattern, as the performance of each of these method depends on the observed target.

Perspectives

MM framework for the Stiefel manifold

The framework used in section A.2 (detailed in appendix A) appears to be a practical solution to derive optimization algorithms involving the orthonormality constraints. In terms of applications, we can point the following immediate perspectives: • The regularization of the eigenvectors of positive semi-definite Hermitian matrices, which can be useful for covariance matrices (discussed in section 3.6), as well as graph Laplacian matrices (discussed in section 6.2).

• The computation of robust tensor decomposition, such as the higher-order SVD (HOSVD) [START_REF] Chachlakis | L1-norm Tucker Tensor Decomposition[END_REF].

Robust subspace clustering

Sparse subspace recovery methods leveraging the self-representativity of the data represent a new perspective that I aim to further explore, notably from a more theoretical aspect such as optimization.

The radar detection problem offered a good entry point to this topic, as it brought some interesting preliminary results. The considered methodology can be applied for two purposes: either performing the detection itself by looking at the recovered sparse error matrix (revealing present targets), and/or for doing a first step clustering of homogeneous samples, that can be then used in a traditional statistical detection process. Eventually, this second option (that we did not study yet) appear probably more suited to detection problems. Indeed, such application is quite demanding in guarantees (e.g., the constant false alarm property w.r.t. to the interference), which seems hard to ensure with sparse recovery approaches. Wrapping up, the previous chapters presented my research output around subspace recovery and its applications. My first works adopted a statistical approach (probabilistic PCA and covariance matrix estimation), and I recently moved to geometrical formulations. In this scope, my main contributions concern the derivation of optimisation methods (majorization-minimization and Riemannian optimization) to compute robust estimators related to various problems. A part of my work is also focused on theoretical performance analysis (asymptotic characterizations and intrinsic Cramér-Rao bounds). On the practical side, these methods/studies were mainly motivated by array processing and teledetection applications (airborne radar and satellite image time series).

To conclude this synthesis, this chapter will now detail perspectives opened by these works.

Perspectives by chapters

Several immediate perspectives (i.e., extensions of the presented work) were evoked at the end of each chapter. This section rather focuses on non-trivial, "medium/long-run", leads that I aim to explore.

• Chapter 2 presented Bayesian subspace estimation methods for mixtures of low-rank compound Gaussian models. The Bayesian priors for the subspace were drawn from directional statistics (Bingham-Langevin distributions). A main remaining issue concerns the "fast" generation of samples according to these distributions, which could be addressed by exploiting modern Langevin and Hamiltonian Monte Carlo methods for manifolds [START_REF] Girolami | Riemann manifold langevin and hamiltonian monte carlo methods[END_REF]. It would also be interesting to study new distributions of subspaces from a Riemannian point of view, directly involving the natural Riemannian distance on the Grassmann manifold [START_REF] Edelman | The Geometry of Algorithms with Orthogonality Constraints[END_REF]].

On a second note, the problem of missing data should also be addressed. This can be efficiently done within the expectation-maximization framework [START_REF] Little | Statistical analysis with missing data[END_REF]. Hence, we can generalize our previous algorithms for data with missing entries. This mostly requires tedious technical derivations, but appears very important from a practical/applied point of view. We started exploring this lead in the thesis work of Alexandre Hippert-Ferrer.

• Chapter 3 presented several theoretical performance characterizations (asymptotic analysis or Cramér-Rao bounds) related to M -estimators and complex elliptically symmetric distributions. I am now interested in studying non-asymptotic characterizations [Vershynin, 2010], in order to obtain concentration bounds for subspace recovery algorithms (as e.g. in [START_REF] Uematsu | SOFAR: large-scale association network learning[END_REF]). Another puzzling question concerns the Riemanian intrinsic bias of maximum likelihood estimators exhibited in [Smith, 2005]: it seems quite counter-intuitive that estimates could be biased or not, depending on the chosen metric. Should the intrinsic bias be corrected? The answer probably lies in practical/applied results, since the correction interest cannot be validated by simply measuring an error (which is metric dependent).

• Chapter 4 presented a framework to test for shared properties in the eigendecomposition of covariance matrices from groups of observations. The approach is an interesting prospect for applications that aim to test for specific physical phenomenons, but it requires a strong knowledge of the considered application (and its underlying physics). I am currently learning about EEG signals (mostly for blind source separation), where several shared formulations indicate that the approach could be useful. Another interest of this framework is that it allows us to extract features that can be leveraged for clustering within time-series, which is a lead currently explored in the thesis of Antoine Collas.

• Chapter 5 presented a majorization-minimization framework for the Stiefel manifold. Notably, we proposed cost functions and tricks to promote sparsity in orthonormal bases. Being sparse on a smooth manifold is a complex issue with numerous applications: sparse PCA, sparse subspace representations, sparse covariance/precision matrix estimation... A lead that I aim to explore is brought by recent proximal gradient methods for Riemannian optimization [Chen et al., 2018, Huang andWei, 2019]. In the second part, chapter 5 presented an application of robust sparse subspace clustering methods to radar detection. In this scope, the subspace recovery problem through self-representative linear combinations could also be generalized to formulations that naturally promote inherent symmetries (such as persymetric ones), that are relevant in some applications.

Perspectives on new themes

This section details some topics I want to explore in a relatively near future. Though some connections exist with the previous works, these topics are not directly related to any chapter in particular and mostly represent new perspectives.

On Spectral regularization for graphs and covariances

Graph Laplacian learning shares a lot of common formulation with covariance matrix estimation. Thus, the regularization and optimization techniques evoked for covariance matrices can be leveraged in this context. Specifically, I want to study estimators formulated as where L is an objective function (either for graph or covariance learning), α is a regularization parameter, and P is a penalty function with separate actions on the EVD parameters of Σ. This formulation can be used in order to promote certain spectral structures, as e.g. considered in [Kumar et al., 2020a] (through constraints rather than penalties). Moreover, eigenvectors are also essential in numerous processes such as PCA and graph Fourier transform. It will therefore be interesting to control separately their behavior in a regularization process. Notably, the use of sparsity promoting penalties on eigenvectors from chapter 5 can be useful for sparse precision matrices estimation (of primary interest in graph analysis). This lead will be my main focus for my 1/2 CRCT in 2021 (mobility at Aalto University, Helsinki).

On probabilistic PCA

I am also looking for new models that go beyond mixtures of elliptical distributions. An interesting perspective is brought by the theory of copulas using a Gaussian kernel from [START_REF] Woodbridge | Signal detection in complex structured para normal noise[END_REF],

expressed as z d = f (x) (6.2) with x ∼ CN (0, Σ), and where f is an element-wise operator, i.e., [z] i = f i ([x] i ). This formulation allows us to change the marginal distribution of each entries, while controlling the correlation between them through Σ, which appears especially interesting to model heterogeneous data. This model first needs more empirical validation (i.e., exhibiting a fit to real data) to be motivated. However, it also opens the door to numerous generalizations, as well as to the development of new subspace estimation methods.

On dimension reduction

Still concerning subspace learning, I am also interested in studying low-dimensional structures in non-linear spaces/representations. In the context of Riemannian geometry, a main question would be: what is a subspace on a manifold? Elements of response are brought by tangent PCA, principal geodesic analysis [START_REF] Fletcher | Principal geodesic analysis for the study of nonlinear statistics of shape[END_REF] and recent developments on the matter [Pennec et al., 2018].

A good entry point related to my work would be to study the problem of robust structured covariance estimation when the structure is not actually known. Some solutions were proposed for linearly structured covariance matrices [Soloveychik and Wiesel, 2015a], but the Riemannian point of view is -to the best of my knowledge-not yet explored in this context. In this scope, Riemannian dimensionality reduction techniques, e.g. inspired from [START_REF] Harandi | Dimensionality Reduction on SPD Manifolds: The Emergence of Geometry-Aware Methods[END_REF], would be interesting to explore. Compute R U t from surrogate (A.7)

4:

Update U t+1 = P Proc R U t with Algorithm 1 5: t = t + 1 6: until convergence criterion is met 7: Output {U t } where the operator P Proc is defined in Algorithm 1. Eventually, solving the sequence of orthogonal Procrustes problems results in a MM procedure to optimize f under the orthonormality constraint, which is summarized in Algorithm 2.

Remark A.2.1. Importantly, the MM approach is also applicable to objective function consisting in a sum of functions of the form

f (U) = I i=1 f i (U).
(A.11) Then, if each f i can be majorized by a linear surrogate g i of the form A.12) following the same steps as (A.8)-(A.10), the MM updates can simply be obtained as .13) Obviously, this methodology cannot be applied to any arbitrary cost function. Still, Section A.3 presents a catalog of surrogate functions satisfying (A.7) for a large set of standard cost functions that can be used as building blocks. The method also suggests that simple algorithms can be obtained by designing meaningful proxies of the desired function that can be majorized by a linear surrogate on St(p, k). A practical example for a proxies of 0 -norm is proposed in section 5.2.2 .

g i U|U t = -Tr R H i U t U -Tr U H R i U t + const., ( 
U t+1 = P Proc I i=1 R i U t . (A

A.2.2 Computational complexity

Interestingly, a single iteration in Algortithm 2 essentially involves two operations:

• The computation of the matrix R(U): this step usually involves functions of the p × n data matrix and/or multiplying this matrix with the current point U t . Thus, this step is generally O(npk). Also notice that this computation can most of the time, be parallelized. Hence it does not represent the major bottleneck of Algorithm 2, contrarily to the second step.

• The computation of P Proc : this step requires to compute thin-SVD of a tall matrix R ∈ C p×k which is O(pk 2 + k 3 ).
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  Figure 2.1: AFE w.r.t. signal to noise ratio (SNR) for various estimators. B-LRCG model zk |τ k ∼ CN (0, τ k UDU H + σ 2 I), with τ k ∼ Γ(ν, 1 ν ), ∀k, and ν = 0.5. [D] r,r = (k + 1 -r)/( k i=1 i) and σ 2 to fix the SNR as SNR= Tr{Λ}/σ 2 . U ∼ CGBL(0, {κ 0 φ r Ū ŪH } k r=1 ), φ r = (k + 1 -r)/( k i=1 i), κ 0 =300, Ū is the first vectors of the canonical basis. k = 5, p = 20, n = 3k (left) and n = 6k (right).
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 2 Figure 2.2: AFE w.r.t. number of corrupted samples for outlier to noise ratio ONR=SNR=15dB (left), and w.r.t. ONR for SNR=10dB (right). B-LRCGo model zk |τ k , β k ∼ CN (0, τ k UU H +β k U ⊥ U H⊥ +σ 2 I), with τ k ∼ Γ(1, 1) and β k ∼ Γ(1, 1), ∀k. U ∼ CIB(κ, Ū ŪH ), κ = 60, Ū is the first vectors of the canonical basis. k = 5, p = 30, n = 20. For this scenario, the MAP and MMSD coincide.
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 2 Figure 2.3: Output of various low-rank detectors on STAP data for n = 397 (n > p) (left), and n = 2k (n p) in presence of outliers (right). k = 46, p = 256.
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 34 Figure 3.4: Illustration of the Riemannian estimation error X θ = exp -1 θ θ ∈ T θ M between the parameter θ ∈ M and its estimate θ ∈ M.
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 35 Figure 3.5: Performance of several M -estimators compared to the Euclidean (top) and natural (bottom) Cramér-Rao bounds on scatter estimation. z ∼ (0, Σ, g z ) with a t-distribution (g z (t) = 1 + d -1 t -(d+M ) ) and [Σ] i,j = ρ |i-j| with ρ = 0.9 1/2 (1 + i). p = 10, left: d = 100 (similar to Gaussian case), right: d = 3.
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 41 Figure 4.1: Representation of p-variate SAR-ITS data set. The pixels highlighted in black correspond to the local observation window (here, n = 9).
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 4 Figure 4.2: UAVSAR Dataset used in this study for the scene 1. Four dates are available between April 23, 2009 and May 15, 2011.
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 445 Figure 4.3: UAVSAR Dataset used in this study for the scene 2. Four dates are available between April 23, 2009 and May 15, 2011.
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 4 Figure 4.6 displays the outputs of the 4 detectors applied to scene 1. From visual inspection, the levels of the false alarms appear lower for the low-rank based detectors.Figure 4.8 confirms this insight, and also assesses that the LRCG method achieves the best performance in terms of probability of
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 4 Figure 4.9 (left) displays the ROC curves of Λ LRCG on the scene 1 for three different values of the rank k.It is interesting to notice that these curves do not vary significantly with respect to this parameter. Therefore, we can expect that a slight error in the rank estimation will not lead to a significant drop in CD performance.
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 4 Figure4.7: Outputs of the 4 methods for the scene 2: Gaussian, Low Rank Gaussian, Compound Gaussian (CG) and Low Rank Compound Gaussian (LRCG). Rank is fixed as 3, the window size is 7 × 7 and σ 2 is assumed unknown for low rank models.
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 49 Figure 4.9: Robustness to parameter selection for LRCG: (left) Comparison of several LRCG on the scene 1 for different rank values. The window size is fixed at 7 × 7 and σ 2 is assumed unknown. (right) Comparison of the ROC curves between assumed known σ 2 and assumed unknown σ 2 (integrated in GLRT). R = 3, Window size is equal to 7 × 7.
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 5 2.3. (Cauchy-Lorentz-type) For a parameter T ≥ 1, Cauchy-Lorentz-type nonconvex RSR estimators are defined as in (5.2) by using the function ρ CL (t) = T ln(T + t). (5.6) Example 5.2.4. (Geman-McClure-type) For a parameter T ≥ 0, Geman-McClure-type nonconvex RSR estimators are defined as in (5.2) by using the function
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 5 Figure 5.1: AFE versus ONR and number of outliers for various algorithms. p = 100, k = 15, n = p, SNR = 10. RSPCA built with r 0 penalty.
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 5 Figure 5.2: CPEV and NOR versus SP for various sparse PCA algorithms on the Leukemia data set. p = 7129, k = 10, n = 72.

Figure 5 . 3 :

 53 Figure 5.3: Illustration of data contained in a union of three low-dimensional subspaces
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 54 Figure 5.4: Scenario with non-stationary jammer
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 55 Figure 5.5: PD versus SNR for each target in the scenario. The probability of false alarm is set to 10 -3 for each detector.
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Σ

  (α) = argmin Σ L(Σ) + αP(Σ), P(Σ) = P λ (Λ) + P v (V) for Σ EVD = VΛV H ,(6.1) 

Algorithm 1

 1 Computation of P Proc (projection on St(p, k) ) 1: Entry: R ∈ C p×k 2: Compute the thin-SVD: R TSVD = V left PV H right 3: Set U=V left V H right 4: Output: U = P Proc (R) ∈ St(p, k) Algorithm 2 Generic Procrustes-MM Algorithm 1: Entry t = 0, U (0) ∈ C N ×R 2: repeat 3:
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Table 3 .

 3 1: Coefficients ϑ 1 , ϑ 2 , σ 1 and σ 2 for Student's and Tyler's M -estimator with t-distributed data (SA stands for Standard asymptotic while GCWE refers to as GCWE asymptotic).

Table 4

 4 

		.1: Description of SAR data used	
	Dataset	Url	Resolution Scene	p	T Size	Coordinates (top-left px)
	UAVSAR SanAnd 26524 03 Segment 4 April 23, 2009 -May 15, 2011	https://uavsar.jpl.nasa.gov	Rg: 1.67m Az: 0.6m	Scene 1 12 4 2360 × 600 px	[Rg, Az] = [2891, 28891]
				Scene 2 12 2 2300 × 600 px	[Rg, Az] = [3236,25601]

The initial work rather uses the correlation matrix, but both approaches have their merits, as discussed in[Jolliffe, 1986, Sec. 

2.3].

Interested readers can find the details in section

2.3 of the annexes.2 Interested readers can find the details in section 2.4 of the annexes.

Interested readers can find the details in section 2.5 of the annexes.

The problem of shape (normalized scatter) matrix estimation is also studied in[Breloy et al., 2019a]. Interested readers can find the details in section 2.6 of the annexes.

Interested readers can find the details in section 2.7 of the annexes

Interested readers can find the details in section 2.9 of the annexes.

This chapter presented an application-oriented conclusion to the statistical model discussed in the chapters 2 and 3. Following from this, the last chapter will still address problems related to subspace recovery and detection. However, it will not involve statistical models, but rather consider recovery/detection problems through geometric formulations.

Described in https://github.com/ramhiser/datamicroarray/wiki[START_REF] Golub | [END_REF] 
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Algorithm derivation

In this section, an MM algorithm is derived in order to solve problem (5.10). First, recall that we consider the problem minimize U∈St(p,k) 1 n n i=1 ρ d 2 (U, z i ) + λr 0 (U) .

(5.10)

Following the surrogates given in [START_REF] Breloy | Majorization-Minimization on the Stiefel Manifold with Application to Robust Sparse PCA[END_REF], the objective of this problem admits a linear surrogate function on St(p, k), given in the following proposition:

Proposition 5.2.1. The objective in (5.10) can be majorized on St(p, k) at point U t by a surrogate satisfying (A.7) with

with

w max r = max(w r ), (5.12) and where the function φ is a majorizing function that depends on the chosen l γ (full expressions are detailed in Proposition A.3.5 of Appendix A).

Therefore, we can apply Algorithm 2 of Appendix A, which leads to the following MM iterations: (5.13) This algorithm will be referred to as Robust-Sparse PCA (RSPCA).

Numerical validations

First, we study the robustness of RSPCA to corruption by outliers in the sample set. The aim is to illustrate the interest of both the robust fitting objective and the sparsity promoting penalty. The simulation setup is built around the so-called haystack model [START_REF] Lerman | Robust computation of linear models by convex relaxation[END_REF], which corresponds here to a mixture of orthogonal Gaussian distributions plus additive noise: 5.14) where U and U ⊥ are built from the canonical basis such that U H U ⊥ = 0 (hence U's sparsity is maximal), SNR is signal to noise ratio, and ONR is outlier to noise ratio. We will compare four algorithms: i) RSPCA with least square fitting (cf. Example 5.2.1) and λ = 0 (i.e., the standard PCA); ii) RSPCA with least square fitting and λ = 100; iv) RSPCA with Huber cost (cf. Example 5.2.2) and λ = 0 (i.e., RSR); iii) RSPCA with Huber cost and λ = 1000. Figure 5.1 displays the average fraction of recovered energy of each algorithm with respect to ONR and the fraction of outliers in the sample set. We can notice that the use of a robust cost improves the performance compared to the standard PCA. Moreover, the introduction of the sparse penalty improves the results in terms of AFE, but also interestingly improves the robustness of the estimation process. Here, it is worth mentioning two critical points: a) RSPCA appears very robust when a valid signal subspace basis is actually sparse, which is probably because the sparse penalty contributes to naturally discard dense outliers. If the true subspace basis is dense, results can be degraded in practice. b) The starting

Appendices

A | Majorization-minimization on the Stiefel manifold

A.1 Majorization-minimization (MM) algorithms

The general MM framework is briefly reviewed below. For more complete information, we refer the reader to [Sun et al., 2016]. Consider the following optimization problem:

where f : X → R is a continuous function and X is a closed set. Given an initial point x 0 ∈ X , the MM procedure minimizes f over X by updating x iteratively as

where g(•|x t ) : X → R is a surrogate function of f satisfying the following property:

In other words, g(•|x t ) upperbounds f globally over set X up to a constant:

The sequence {f (x t )} t∈N generated by (A.2) is non-increasing since

The MM procedure suggests thus the possibility of minimizing f by iteratively seeking for a sequence of surrogate functions {g( 

where f : C p×k → R is a smooth differentiable objective function suited to an application of interest.

Notice that optimization problems over the Stiefel manifold St(p, k) are nonconvex due to the orthonormality constraint. Hence, they are usually hard to deal with, even for apparently simple objective functions f . Therefore, we consider applying the MM framework (cf. section A.1) and minimizing f by solving a sequence of simpler problems: in short, we will construct surrogate functions that are linear when restricted to the feasible set St(p, k). The corresponding subproblems can then be recast as an orthogonal Procrustes ones (detailed below), leading to simpled updates of the variable.

In the following, we assume that the objective in (A.6) is majorized at point U t by a surrogate g(U|U t ) that satisfies the following properties:

iv) Linearity: restricting to St(p, k), g can be expressed as

where R :

Following the MM procedure described in section A.1, an update of the parameter U is given by

Since g is linear (cf. (A.7)) and U ∈ St(p, k), it is not hard to see that obtaining this update is equivalent to solving minimize

which is referred to as an orthogonal Procrustes problem. When R U t is full rank 1 , the problem (A.9) admits a unique solution [Manton, 2002], leading to the MM update:

1 Rank deficiency is a case we do not focus on: some pathological counter-examples can be build but they rely on either i) a cost function f that does not satisfy the initial regularity assumptions; ii) a subspace within U t that has reached a local stationary point. For the second point, the proposed method can still be applied by setting the stable subspace fixed and updating only the remaining portion of U t (i.e., recasting the problem with k < k). In practice, the issue has not been experienced with the considered cost functions.

Comparing to the existing approaches, e.g., the steepest descent on the Stiefel manifold [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF], an iteration requires computing the gradient (also generally O(npk)) and a retraction (local mapping between a point in St(p, k) and its tangent space). The choice of the retraction is not unique, which leads to several options, e.g., based on geodesic paths [START_REF] Edelman | The Geometry of Algorithms with Orthogonality Constraints[END_REF]], Procrustes projection [Manton, 2002], or QR decomposition [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF]. Nevertheless, for all of the corresponding algorithms, the retraction step is O(pk 2 +k 3 ). Hence, the computational complexity of an iteration of Algortithm 2 is on par with standard first-order based methods. However, this MM procedure is step-size free, thus it does not require the knowledge of any global parameter (such as the Lipschitz constant), or its adaptive estimation using a line search-type method. Compared to the latter option, this property effectively reduces the computational burden of each iteration, as it does not involve multiple computations of the retraction step (the computational bottleneck).

A.2.3 Convergence analysis

The convergence analysis of Algorithm 2 can be obtained by following the one of the successive upper-bound minimization (SUM) algorithm in [START_REF] Razaviyayn | A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization[END_REF]. Note that the result of [START_REF] Razaviyayn | A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization[END_REF] does not hold directly for Algorithm 2, as the SUM framework does not cover non-convex constraints. Nevertheless, this result can be adapted to St(p, k) as in [START_REF] Benidis | Orthogonal sparse pca and covariance estimation via procrustes reformulation[END_REF], Fu et al., 2017, Kumar et al., 2020b], leading to the following proposition:

t=0 be a sequence generated by Algorithm 2. Then the following holds: 1. The sequence {f (U t )} t∈N converges.

2. Every limit point U * of the sequence is a critical (also referred to as Karush-Kuhn-Tucker, or KKT) point of the problem (A.6).

3. The whole sequence converges to K, the set of KKT point of the problem (A.6).

Note that the convergence to K does not imply the convergence of Algorithm 2 in terms of the variable U. Establishing this property requires a case-by-case analysis: in some cases the monotonic decrement of the objective can directly imply the convergence in terms of variable [Kiers, 1995]. For the case of rotation invariant costs, this convergence in variable requires to be expressed in terms of subspace, e.g. as in [START_REF] Lerman | Fast, robust and non-convex subspace recovery[END_REF].

A.3 Standard cost functions and their surrogates

The key to apply Algorithm 2 is to obtain a linear surrogate of the objective on the set St(p, k). In this section, we gather (and generalized) such surrogates functions from the literature (cf. e.g., [Kiers, 1995, Kiers, 2002]) for several standard minimizing problems: convex/concave quadratic forms, concave functions, quotients of quadratic forms, and a class of tailored sparse penalties. This catalog offers then practical building-blocks to tackle a large class of objective functions through systematic Procrustes reformulations.

A.3.1 Quadratic forms (QFs)

First, define the Brockett function [Absil et al., 2009, Sec. 4.8] 

In the following, functions of the form f B (resp. -f B ) are referred to as convex (resp. concave) QFs. Note that some other expressions of QFs exist, but they can usually be rewritten as special cases or combinations (e.g., sums) of Brockett functions. Proof. The function -f B as in (A.14) is concave, so it can be majorized at point U t by its first order Taylor expansion (cf. [Sun et al., 2016] where K = M -λ max M I and λ max M is the largest eigenvalue of M. Equality holds at U t .

Proof. The function f B in (A.14) can be expressed as

where the second term is constant and equal to λ max M Tr {D} for the restriction U ∈ St(p, k). The first term of this expression is concave in U (U ∈ C M ×R ) so it can be upper-bounded by its first order Taylor expansion, thus

with K defined as in Proposition A.3.2.

Remark A.3.1. Majorizing a convex QF of U by a linear one seems counter-intuitive since it is not possible on the entire Euclidean space C N ×R . Nevertheless, the restriction to the set St(p, k) makes the upperbound in Propositon A.3.2 possible. In order to give some insight, a visual example on R 2 is presented in Figure A.2.

A.3.2 Concave compositions of quadratic forms

Compositions involving inner QFs that yield concave functions are often used in order to build robust loss functions (examples are given in section 5.2.2). The following proposition gives a linear majorizer of concave functions composed from the Brockett function.

Proposition A.3.3. (Majorization of concave function composed from concave QF) Let ρ : R → R be a concave non-decreasing function. For f B as in (A.14), the function ρ(-f B ) admits at point U t a linear majorizing surrogate in the form of (A.7), with

Equality holds at U t .

Proof. The function -f B is concave in U and ρ is concave non-decreasing. It follows that the function ρ(-f B ) is concave, so it can be upper-bounded at point U t by its first order Taylor expansion, i.e.,

Following this proof, other linear surrogates can be derived using compositions of concave (nondecreasing/non-increasing) functions and the chain rule. It is also worth noting that one can apply the reformulation of Proposition A.3.2 to express a quadratic QF as a concave term plus a constant in order to do so (the obtained majoration is then only valid on St(p, k)).

A.3.3 Quotients of quadratic forms

Various formulations of quotients of quadratic forms arise in generalized versions of PCA [Kiers, 1995]. Most of them can be obtained as linear combinations of functions of the form

where C is positive definite and A is positive semi-definite.

Proposition A.3.4. (Majorization of quotient of QFs) The function f q as in (A.22) admits on St(p, k) and at point U t a linear majorizing surrogate in the form of (A.7), with Proof. Starting from the inequality 

A.3.4 Proxies of element-wise sign function

The 0 -norm of a complex number can be expressed as

where | • | stands for the modulus, and sgn is the sign function. This function would serve as an ideal for the formulation of sparsity promoting penalty, however, it is too complex to deal with due to its discontinuity. To alleviate this issue, we follow the approach proposed in [START_REF] Song | Sparse Generalized Eigenvalue Problem Via Smooth Optimization[END_REF], i.e., approximating the absolute sign function by a smooth function denoted l γ , and defined as

with appropriate constants a and b so that the approximations l γ are continuous and differentiable (cf. [START_REF] Song | Sparse Generalized Eigenvalue Problem Via Smooth Optimization[END_REF]), and where l γ belongs to the family of functions:

a) γ -norm [START_REF] Gorodnitsky | Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm[END_REF], Chartrand and Yin, 2008, Lai et al., 2013]:

b) 1 -norm approximation from [START_REF] Sriperumbudur | A majorizationminimization approach to the sparse generalized eigenvalue problem[END_REF], Candès et al., 2008]:

) lower bound of sign function from [Mangasarian, 1996]:

involving a tuning parameter γ for each case. Thus, this class covers most of standard proxies of the sign function. Notice that this class is still valid for data with complex entries by reading |•| as the modulus function. We have the following proposition [START_REF] Song | Sparse Generalized Eigenvalue Problem Via Smooth Optimization[END_REF] where the function φ depends on l γ as: a) γ -norm [START_REF] Gorodnitsky | Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm[END_REF], Chartrand and Yin, 2008, Lai et al., 2013]: [START_REF] Sriperumbudur | A majorizationminimization approach to the sparse generalized eigenvalue problem[END_REF], Candès et al., 2008]:

) lower bound of sign function [Mangasarian, 1996]:

Equality is achieved at x t .

The functions l γ can now serve as basic building blocks to build sparsity promoting penalties for U ∈ St(p, k). A main example following from [START_REF] Benidis | Orthogonal sparse pca and covariance estimation via procrustes reformulation[END_REF] (weighted sum) is presented in section 5.2.2. The key trick to obtain a linear majorizer is to obtain the following series of inequalities:

• Using Proposition A.3.5, to obtain a convex quadratic surrogate function of U over St(p, k).

• Applying Proposition A.3.2 to obtain a linear majorizer on St(p, k).