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Abstract

With over 5.7 billion global mobile users, and an excess of 12 billion mobile-ready devices
expected by the year 2022 [1], the availability of reliable and fast wireless connectivity
is more necessary than ever before. Today, in order to satisfy the need for bidirectional
wireless communications, networks implement either time division duplexing (TDD) or
frequency division duplexing (FDD). In TDD, the transmitted and received signals at a
wireless device are sent on the same frequency but at different times. In FDD, the transmitted
and received signals at a wireless device are sent at the same time but on different frequencies.
This separation, whether in the time or the frequency domain, has always been deemed
necessary. If a wireless device were to transmit and receive, at the same time and on the
same radio resource i.e., operate in full-duplex, the transmitted signal–which is typically
multiple times stronger at the device–would interfere on the signal being received making its
proper reception and decoding infeasible. This is known as self-interference. For decades of
wireless communications, it was believed to be a permanent obstacle in the face of full-duplex
wireless transmissions.

At the turn of the decade, self-interference cancellation (SIC) technologies came into ef-
fect. SIC defines a set of analog and digital cancellation techniques that enable the mitigation
of self-interference at a full-duplex node. The existence and continuous development of these
technologies have made full-duplex wireless communications possible. With the capability of
simultaneously transmitting and receiving on the same radio resources, a theoretical doubling
of the bandwidth efficiency can be achieved. This could count for more connected users and
higher connection speeds.

Nonetheless, self-interference is not the only interference problem facing full-duplex
wireless communications. With users utilizing the same radio resources within the same cell,
intra-cell co-channel interference becomes a serious issue. Co-channel interference defines
the interference from a transmitting user on a receiving one using the same radio resource. In
order to mitigate this interference, it is up to the scheduler to ensure that the users operating
on the same radio resources interfere the least upon each other.

In our work, we consider a wireless network comprised of a full-duplex base station
and half-duplex user equipment (UEs). We assume that such a separation of full-duplex
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capabilities is necessary as to not burden the UEs with the power exhaustive task of self-
interference cancellation. In this network scenario, the base station will allocate the available
resources to pairs of uplink-downlink UEs. As such, on an allocated radio resource, one
UE will be transmitting, one UE will be receiving and the base station–being the full-duplex
node–will be concurrently transmitting and receiving. In such a network, self-interference
is exhibited at the base station and it degrades the performance of uplink UEs. Intra-cell
co-channel interference is experienced at downlink UEs, who are interfered upon by their
paired uplink UEs.

Our work in this thesis is focused on devising scheduling and power allocation algorithms
for full-duplex wireless networks. Starting with the scheduling task, we devise a global
optimal formulation for scheduling in full-duplex and hybrid full-duplex/half-duplex wireless
networks. We vary the objective of the global problem to obtain both greedy and fair
scheduling algorithms. Furthermore, to avoid the added complexities of optimization, we
propose heuristic algorithms with the same objectives. We show that these algorithms can
achieve near optimal results, and that lucrative gains are possible with respect to current
half-duplex wireless networks.

In order to properly assess the effects of intra-cell co-channel interference, full-duplex
networks need information on the channel states in between all the UEs in a network. Inter-
UE channel state information (CSI) is a new requirement for full-duplex wireless networks.
No current wireless protocols count for the estimation or relaying of such information. As
such, in our work we study the effects of incomplete CSI on the performance of full-duplex
networks. We show that significant losses in performance could occur as a result. In order
to circumvent the necessity of inter-UE CSI, we propose a reinforcement learning based
scheduling algorithm for full-duplex wireless networks. This algorithm learns how to best
allocate the resources, relying only on traditional feedback from the UEs to the base station.
We show that our algorithm can match the performance of scheduling with complete CSI.

Moving on to the power allocation task, we present both centralized and distributed
power allocation approaches. For the centralized approach, we propose a joint scheduling
and power allocation algorithm aimed at improving UE radio conditions whilst maintaining
fairness in the network. For the distributed approach, we propose a set of game theoretic
based algorithms with varying objectives aimed at improving UE SINR values and curbing
the network interferences. Via simulations, we comment on the importance, as well as
limitations, of implementing power allocation algorithms alongside scheduling in full-duplex
wireless networks.

Finally, in the context of multi-cellular networks, we study the impact on inter-cell inter-
ferences on the performances of full-duplex wireless networks, and discuss the importance
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of cell cooperation on extracting gains from such networks. We consider both indoor and
outdoor deployment scenarios and show via simulations that the gains from full-duplex
wireless communications in multi-cellular networks are tied to the inter-cell interference
mitigation provided by the deployment scenario.





Résumé

Avec plus de 5,7 milliards d’utilisateurs mobiles dans le monde et plus de 12 milliards de
terminaux connectés d’ici 2022 [1], le besoin d’une connectivité sans-fil fiable et rapide
est plus que jamais nécessaire. Aujourd’hui, pour répondre au besoin des communications
sans-fil bidirectionnelles, les réseaux mettent en œuvre soit le duplexage par répartition
en temps (TDD) ou le duplexage par répartition en fréquence (FDD). Dans le TDD, les
signaux transmis et reçus par un terminal sans-fil sont envoyés sur la même fréquence mais
à des instants différents. Dans le FDD, les signaux émis et reçus par un terminal sans-fil
sont envoyés en même temps, mais sur des fréquences différentes. Cette séparation, que
ce soit dans le domaine temporel ou fréquentiel, a toujours été jugée nécessaire. Si un
terminal sans-fil devait émettre et recevoir, en même temps et sur la même ressource radio,
c’est-à-dire fonctionner en full-duplex, le signal transmis, qui est généralement plusieurs
fois plus fort sur le terminal, interférerait sur le signal reçu, ce qui rendrait sa réception
et son décodage irréalisables. C’est ce qu’on appelle l’auto-interférence, et pendant des
décennies de communications sans-fil, on a cru que c’était un obstacle permanent face aux
communications sans-fil full-duplex.

Au tournant de la décennie, les technologies d’annulation d’auto-interférence (SIC) sont
entrées en vigueur. SIC définit un ensemble de techniques d’annulation analogiques et
numériques qui permettent d’atténuer l’auto-interférence au niveau d’un équipement full-
duplex. L’existence et le développement continu de ces technologies ont rendu possible les
communications sans-fil full-duplex. Avec la capacité d’émettre et de recevoir simultanément
sur les mêmes ressources radio, un doublement théorique de l’efficacité spectrale peut être
atteint. Cela pourrait impliquer un plus grand nombre d’utilisateurs connectés et à des débits
de connexion plus élevés.

Néanmoins, l’auto-interférence n’est pas le seul problème d’interférence auquel font face
les communications sans-fil full-duplex. Avec deux utilisateurs utilisant les mêmes ressources
radio dans la même cellule, l’interférence co-canal intra-cellulaire devient un problème
grave. L’interférence co-canal définit le brouillage causé par un utilisateur émetteur sur un
utilisateur récepteur utilisant la même ressource radio. Il n’y a pas d’aspects technologiques
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au traitement de l’interférence co-canal intra-cellulaire. C’est à l’ordonnanceur de s’assurer
que les utilisateurs opérant sur les mêmes ressources radio s’interfèrent le moins possible
entre eux.

Dans notre travail, nous considérons un réseau sans-fil composé d’une station de base
full-duplex et de terminaux half-duplex. Nous partons du principe qu’une telle séparation des
capacités full-duplex est nécessaire afin de ne pas imposer aux terminaux la tâche fastidieuse
de l’annulation de l’auto-interférence. Dans ce scénario de réseau, la station de base allouera
les ressources disponibles à des paires des terminaux mobiles (User Equipment en anglais,
UE) de liaison montante et descendante. Ainsi, sur une ressource radio attribuée, un terminal
émettra, un autre recevra et la station de base étant le nœud full-duplex, émettra et recevra
simultanément. Dans un tel réseau, l’auto-interférence se manifeste à la station de base et
dégrade la performance des terminaux de liaison montante dans le réseau. L’interférence
co-canal intra-cellulaire est subie par les terminaux de liaison descendante, qui sont perturbés
par les terminaux appariés de liaison montante.

Notre travail dans cette thèse s’est concentré sur la conception d’algorithmes d’ordonnan-
cement et d’allocation de puissance pour les réseaux sans-fil full-duplex. En commençant par
la tâche de d’ordonnancement, nous avons mis au point une formulation globale optimale pour
la l’allocation des ressources dans les réseaux sans-fil full-duplex et hybrides half-duplex/full-
duplex. Nous varions l’objectif de la formulation globale pour obtenir des algorithmes
à la fois gloutons et équitables. De plus, pour éviter les complexités supplémentaires de
l’optimisation, nous proposons des algorithmes heuristiques avec les mêmes objectifs. Nous
montrons que ces algorithmes permettent d’obtenir des résultats quasi optimaux et que des
gains substantiels peuvent être réalisés par rapport aux réseaux sans-fil half-duplex actuels.

Afin d’évaluer correctement les effets de l’interférence co-canal intra-cellulaire, les
réseaux full-duplex ont besoin d’informations sur les gains des canaux entre tous les ter-
minaux d’un réseau. L’information des gains des canaux inter-UE (Channel State Information
CSI, en anglais) est une nouvelle exigence pour les réseaux sans-fil. Aucun protocole sans-fil
actuel ne s’intéresse à l’estimation ou le relayage de ces informations. Ainsi, dans notre
travail, nous étudions les effets de l’estimation imparfaite du canal sur la performance des
réseaux full-duplex. Nous montrons qu’il pourrait en résulter une perte de performance
importante. Afin de contourner la nécessité d’estimer le canal entre UE, nous avons proposé
un algorithme d’ordonnancement basé sur l’apprentissage par renforcement pour les réseaux
sans-fil full-duplex. Cet algorithme apprend comment allouer au mieux les ressources, en se
basant uniquement sur les rapports de mesures classiques des terminaux à la station de base.
Nous montrons que notre algorithme peut égaler la performance de l’ordonnancement avec
une estimation parfaite du canal.
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En ce qui concerne la tâche d’allocation de puissance, nous proposons des approches à la
fois centralisées et distribuées d’allocation de puissance. Pour l’approche centralisée, nous
avons proposé un algorithme conjoint d’ordonnancement et d’allocation de puissance visant
à améliorer les conditions radio de l’UE tout en maintenant l’équité dans le réseau. Pour
l’approche distribuée, nous avons proposé un ensemble d’algorithmes basés sur la théorie
des jeux avec différents objectifs visant à améliorer les valeurs du SINR de l’UE et à réduire
les interférences. Grâce à des simulations exhaustives, nous commentons l’importance, ainsi
que les limites, de la mise en œuvre d’algorithmes d’allocation de puissance parallèlement à
l’ordonnancement dans les réseaux sans-fil full-duplex.

Enfin, dans le contexte des réseaux multicellulaires, nous étudions l’impact des inter-
férences intercellulaires sur les gains des réseaux sans-fil full-duplex et nous discutons de
l’importance de la coordination cellulaire pour exploiter au mieux ces réseaux. Nous exam-
inons des scénarios de déploiement à l’intérieur et à l’extérieur et montrons à l’aide de simu-
lations que les avantages des scénarios multicellulaires full-duplex sont liés à l’atténuation
de l’interférence intercellulaire fournie par le scénario de déploiement.
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Chapter 1

Introduction

1.1 The State of Wireless Communications

The proliferation of wireless devices is at an unprecedented level. Whether it is our mobile
phones, laptops, or any other smart device, the need for better, faster, and reliable wireless
connectivity is more pressing than ever before. With close to 13 billion mobile devices, along
an estimated 77 exabytes of monthly mobile traffic by the year 2022 [1], the technology is
barely able to keep up. For users, the failure of the infrastructure to keep abreast with the
demand results in lost connectivity on a mobile device, or a weak signal in a crowded area.
Symptoms of the problems that face wireless transmissions.

Wireless communications face two main challenges as they continue to evolve: signal
attenuation and generated interferences. Due to the nature of the wireless medium, any
transmitted signal will face rapid attenuation, making the distance between the transmitter
and the receiver an important factor. Additionally, all wireless devices share the same medium
and use a finite and limited set of radio resources. This means that wireless devices are
always in contention for this medium, and the inevitable sharing of the available resources
will lead to signal interference. The increasing need for capacity leads to frequency reuse and
the densification of network deployment, adding thus to the inherit interference problems.

The troubles for wireless communications only increase once you consider the necessity
for bidirectional communications. Any wireless device needs to transmit and receive in
order to function properly. This is known as duplexing. Nonetheless, if two communicating
wireless devices were to use the same radio resource at the same time to communicate, the
generated interference would make it impossible for any signal to be properly received. As a
result, two major mechanisms currently exist to allow duplexing [2]:
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1. Time Division Duplexing or TDD, consists of separating the transmitted and received
signals in the time domain. The latter is broken down into transmission time intervals
(TTIs), and the two communicating devices take turns transmitting and receiving.
With the devices not transmitting at the same time, naturally no interference would be
generated. Technologies such as DECT [3] and IEEE 802.116 WiMax [4] implement
TDD.

2. Frequency Division Duplexing or FDD, means that the nodes at either side of a
communication link will use different frequencies to send and receive data. This
will prevent the signals from interfering upon each other, even if the two devices are
transmitting at the same time. Cellular systems such as GSM [5], CDMA2000 [6], and
WiMax as well implement FDD.

In a TDD transmission, a wireless node is–at a certain instant in time–either transmitting
or receiving. In an FDD transmission, twice the amount of radio resources is required in
order to allow the nodes to transmit and receive within the same time frame. In either case,
the wireless communication is said to be half-duplex, even if it attempts to emulate what is
known as full-duplex communications.

A full-duplex node is one that can transmit and receive on the same radio resource, at
the same time. Setting aside all the problems and limitations of both TDD and FDD, the
aspect of full-duplex communications alone promises a doubling in the capacity of wireless
networks. But no current wireless device is actually full-duplex. Why? Until quite recently
the term "Full-Duplex Wireless" was considered to be an oxymoron.

1.2 The Problem With Wireless Full-Duplex

Queue the most quoted phrase in wireless networks literature, but Andrea Goldsmith’s
characterization of full-duplex wireless communications in her 2005 Cambridge Press book
really captures the essence of the scientific consensus back then. Goldsmith wrote “It is
generally not possible for radios to receive and transmit on the same frequency band because
of the interference that results” [7]. Goldsmith then argued that separating uplink and
downlink channels into orthogonal signaling dimensions, whether in the time domain like
TDD, or in the frequency domain like FDD, was in fact the only way to support bidirectional
communications.

Goldsmith was not technically wrong. Consider the network model we used in our work
and illustrated in Fig. 1.1 below. In this scenario, the base station (BS) is considered to be
the full-duplex node. The user equipment (UEs) are half-duplex i.e., at a certain moment
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they are either transmitting or receiving. During the same time frame, one uplink UE will
use the same radio resource as one downlink UE. We say that these two UEs are paired on
the resource. Being the full-duplex node, the BS concurrently transmits and receives on this
same radio resource. This network will exhibit two major added interferences with respect to
current half-duplex wireless networks:

Downlink UE Uplink UE
Co-Channel Interference

Self Interference

Figure 1.1 Full-duplex network model and interferences

1. Self-interference: It is the interference exhibited at a full-duplex node, where the
transmitted signal on a certain radio resource is multiple times stronger than the signal
being received on that same resource. The latter cannot be properly received as a result.
In the aforementioned scenario, self-interference degrades the performance of UEs on
the uplink.

2. Intra-cell co-channel interference: It is the interference resulting from two UEs using
the same radio resources within the same cell. The signal from an uplink UE, typically
several time stronger, interferes on the signal being received by a nearby downlink UE
using the same radio resource. This causes a degradation in the performance of the
latter.

These interferences are duplicated if the UEs are considered to be full-duplex as well. With
half-duplex wireless networks already suffering from interference problems, it is evident
why it was widely believed that these added interferences would simply make full-duplex
communications impossible. Nonetheless, like always, technological advancement inevitably
catches up with every thing once deemed impossible. For full-duplex wireless technologies,
the introduction of self-interference cancellation (SIC) techniques for wireless devices at the
beginning of this decade was a turning point.
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1.3 Self-interference Cancellation

As the name itself suggests, SIC technologies allow a wireless node to cancel the self-
interference generated due to full-duplex operations. Interference cancellation is not a new
concept. It is rooted in the idea that if a node knows the signal it is transmitting, it can
subtract it from the received signal and decode the remainder. However, the stronger the
interference the harder this task gets. Strong self-interference would cause the analog to
digital converter at the receiver to saturate. The latter would scale its quantization levels
to match that of the self-interference. Since it has a finite resolution (up to 12 bits), the
converter thus has a finite number of quantization levels. The weaker the information signal
is with respect to the interference, the less of it remains retrievable after digitization. Digital
components are not the only ones susceptible to saturation. Strong self-interference can
also cause analog amplifiers to function improperly. As such, a set of analog and digital
interference cancellation techniques are needed to properly receive and decode a signal at a
full-duplex node [8, 9]:

1. Digital Cancellation: Provided that a full-duplex node has a good estimation of the
transmitted signal (amplitude and phase), digital samples of this signal are passed
through a self-interference channel model to create a digital signal of the interference.
The latter is thereafter subtracted from the received digital signal. Digital cancellation
can still be rendered useless in the case of very strong self-interference. As previously
discussed, saturation of the analog to digital converter could make the useful signal
unrecoverable.

2. Analog Cancellation: These cancellation techniques aim to cancel the interference from
the radio frequency (RF) signal before it is digitized. They require knowledge of the
transmitted RF signal to do so. Among popular analog cancellation techniques is phase
offset. Phase offset uses the constructive and destructive interference patterns resulting
from multi-path transmissions to reduce self-interference. The transmission from a
signal node is split into two paths. One path is offset from the other by an odd multiple
of half the carrier wavelength. This causes the two signals to add destructively at the
receiver, reducing thus the self-interference. One way to implement cancellation using
phase offset is to have multiple antennas with controlled placement and transmission
powers. Other analog cancellation methods use vector modulation and signal inversion
to minimize self-interference. These techniques are illustrated in Table 1.1.

As digital cancellation techniques are limited and vulnerable to the saturation of the analog
to digital converter, a dual digital-analog cancellation process is necessary for full-duplex
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functionality. The received signal goes first through an RF or analog cancellation process
that aims to bring the interference down enough for the remaining digital architecture to take
care of. This process is illustrated in Fig. 1.2. In order to prevent receiver saturation, the
interfering signal must be sufficiently canceled in analog before it hits the low-noise amplifier
(LNA).

RF Cancellation Circuit

Modem

Digital Cancellation Algorithms and Techniques

Transceiver

Σ

PA
LNA

T R

T R

Figure 1.2 Self-interference cancellation: a set of analog and digital techniques

Table 1.1 Analog self-interference cancellation techniques

Technique Limitations Summary
Phase Offset Cancels up to

60.7 dB, suitable for
narrowband signals
only (< 5 MHz).

Uses multiple antennas to create a multi-path
effect aimed at canceling out the interference
signal.

Vector Modulation Cancels up to 36 dB,
susceptible to satura-
tion problems.

An interference signal sample is input to a
vector modulator to adjust the phase and gain
of the sample. This creates a cancellation sig-
nal that can remove the ambient interference
from the input signal.

Signal Inversion Bandwidth depend-
able, suitable for
wideband signals.

Obtain an exact inverse of the transmitted
signal and subtract it from the received signal.
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In [10], the authors present a complete survey of SIC techniques from which we highlight
the SIC requirements per mobile generation seen in Table 1.2 below.

Table 1.2 Full-duplex SIC requirements by generation

Generation Technolgies Frequency Range Required SIC
1G AMPS, FDMA 30 Khz 189 dB
2G GSM, TDMA 200 kHz, 1.25 MHz 157-161 dB

2.5G GPRS, EDGE 200 Khz 160 dB
3G UMTS, CDMA 5 Mhz, 1.25 Mhz 150-156 dB

3.5G HSU/DPA, EVDO 5 Mhz, 1.25 Mhz 50-156 dB
3.75G Fixed WiMAX, LTE 10 Mhz, 20 Mhz 147-150 dB

4G Mobile WiMAX, LTE-A 10 Mhz, 20 Mhz 147-150 dB
5G 802.11ad, FBMC 2 GHz, 60 Ghz 101-118 dB

The table mentions some of the technologies per each generation, the frequencies they operate
on and consequently, the required SIC value. In the context of 5G technologies and beyond,
101-118 dB of interference cancellation is required. This is well accomplished with the
available technology. Nonetheless, the efficacy of these technologies will always be tied to
several factors from the transmit power at the full-duplex node, to the frequency in use, as
well as the quality of the digital and analog cancellation circuits. As such, it is not realistic to
assume that ideal cancellation exists. Residual self-interference post cancellation will still
affect the performance of a full-duplex wireless network.

1.4 Scheduling and Power Allocation

The presence of SIC techniques, now well developed in the state-of-the-art, partially enables
dealing with one ramification of full-duplex communications, self-interference. Nonethe-
less, this is not sufficient. Full-duplex networks must still deal with intra-cell co-channel
interference as well as residual self-interference.

Radio resource management (RRM), encompassing both scheduling and power allocation,
is necessary to extract gains from full-duplex wireless communications. Scheduling indicates
how the network’s available radio resources would be distributed to the UEs. In order to
minimize intra-cell co-channel interference, UEs using the same radio resources should be
sufficiently far apart from each other. Furthermore, power allocation can also help battle the
network interferences. For instance, consider the network scenario illustrated in Fig. 1.1,
lowering the transmit power from the BS to an adjacent downlink UE, while raising it from
an uplink UE situated further away–and using the same radio resource–could significantly
enhance user performance. Self-interference would be reduced with the decrease in the BS
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transmit power, and co-channel interference would be decreased as a result of the distance
between the two UEs.

Scheduling in wireless networks is a decades old problem. Countless algorithms exist in
the state-of-the-art for scheduling in half-duplex wireless networks. These algorithms mostly
revolve around traditional scheduling ideas. Max-SINR scheduling [11] seeks to allocate
resources to UEs with the best radio conditions. This maximizes the system throughput
and thus increases the operator’s profits. However, this method of scheduling could cause
bandwidth starvation for UEs at the boundaries of a cell. Their relatively poor radio conditions
would see them deprived of any resources. Other scheduling techniques, such as Round
Robin [12], would allocate radio resources to UEs in turn regardless of any other factor.
Round Robin achieves total equity between the UEs at the cost of decreasing the system’s
throughput. The bandwidth is thus rendered inefficiently used. As a trade off between
contradictory objectives, Proportional Fair [13] seeks to maximize UE throughput while at
the same time ensuring a minimum level of service to UEs with poor radio conditions. It does
so by allocating resources following a user priority function that factors in a UE’s current
and historic throughput capabilities.

Due to the added full-duplex interferences, both scheduling and power allocation play a
vital role in enhancing the performance of a full-duplex wireless network. Current half-duplex
radio resource and power allocation schemes benefit from orthogonal downlink and uplink
channels which can be optimized independently. In contrast, in the context of full-duplex
wireless communications, the optimization of scheduling and power allocation has to be done
jointly for the uplink and the downlink because of the shared radio resources. Consequently, it
is not possible to apply any traditional half-duplex scheduling or power allocation algorithms
to full-duplex networks in a straightforward manner.

In our work, we build on the present SIC techniques to propose scheduling and power
allocation algorithms for full-duplex and hybrid full-duplex/half-duplex wireless networks.
The latter encompasses the allocation of radio resources to either a pair of UEs (full-duplex),
or to a single UE (half-duplex) depending on which better improves the network’s perfor-
mance. Via a set of different proposals, which cover variant techniques and tools from
optimization to machine learning and game theory, we aim to evaluate as well as maximize
the possible gains of full-duplex wireless communications.

1.5 Our Contributions

With our work being focused around scheduling and power allocation specifically, we sought
out the existent literature on full-duplex wireless networks. From there we set out our main
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objectives with focus on filling the gaps in the state-of-the-art where necessary. In what
follows we highlight the main contributions illustrated in this dissertation.

1. Global Optimal Scheduling Problems: First, we propose a global mathematical problem
for scheduling in both full-duplex and hybrid wireless networks. The objectives of
these global problems can be changed to yield different scheduling proposals with
different goals. The traffic model used in our proposals is non-full buffer and accounts
for dynamic arrivals. This makes our model rather unique with respect to the state-of-
the-art.

2. Heuristic Scheduling Algorithms: Following the possible intractability of optimization
problems when it comes to a high number of variables, we propose heuristic alterna-
tives for the optimal scheduling problems. We show that our proposals decrease the
complexity of the algorithms whilst incurring insignificant losses in UE throughput.
Using these algorithms, we study the performance of full-duplex wireless networks
under different SIC capabilities and in various scheduling scenarios ranging from UE
clustering to heterogeneous traffic.

3. Incomplete Channel State Information: This dissertation includes a comprehensive
study on the effect of incomplete channel state information (CSI) on the performance
of a full-duplex wireless network. Scheduling in a full-duplex scenario introduces
the notion of user-to-user radio channels. As illustrated in Fig. 1.1, and detailed
later on, knowledge of this channel is essential in estimating the resulting co-channel
interference between a pair of UEs. Nonetheless, no current wireless network protocol
counts for estimating user-to-user channels or for how to relay such information back
to the BS. In our work, we study the consequences of scheduling with partial to no
knowledge of such inter-UE channels on UE and network performances.

4. Reinforcement Learning Scheduling: Based on our analysis of scheduling in full-
duplex networks with incomplete CSI, we sought to propose a scheduling algorithm
capable of functioning without this information. To this end, we employ a subclass of
machine learning, known as reinforcement learning, to devise a scheduling algorithm
capable of learning how to best allocate radio resources. We show that this algorithm
is capable of mimicking the performance of scheduling with complete CSI, and that it
incurs minimal loss in performance in comparison.

5. Optimal Power Allocation: Similar to our approach to scheduling, we propose a global
optimal problem for power allocation in a full-duplex wireless network. This problem
is aimed at enhancing user radio conditions whilst maintaining a sense of equity
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between the UEs. We show that our proposal saves on power and that it improves UE
performance in the case of low SIC capabilities. This approach is centralized i.e., a
central unit–in this case the BS–is responsible for taking the power allocation decision
on both the uplink and the downlink.

6. Game Theory Based Power Allocation: With the aim of deviating from the centralized
approach to power allocation, we use game theoretics to devise a distributed power
allocation algorithm. We propose multiple non-cooperative games and afterwards
compare how they fare against each other in different scheduling scenarios, illustrating
the pros and cons of each one. In this distributed approach, no central authority
or added signaling between the players is required to allocate power on the radio
resources.

7. Scheduling in Multi-Cellular Full-duplex Networks: We study the performance of
full-duplex wireless networks in a multi-cell scenario. We consider both indoor and
outdoor deployments and illustrate how interference from neighboring cells affects the
performance of the UEs. We highlight the importance of cell cooperation when it comes
scheduling resources as it can aid in combating the full-duplex interferences. Finally,
we propose a joint scheduling and power allocation algorithm for multi-cellular full-
duplex wireless networks. We assume single cell scheduling and coordinated multi-cell
power allocation. We subsequently show the gains and limitations of power allocation
in a multi-cell setting.

1.6 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 has the latest research in
regards to scheduling and power allocation in full-duplex wireless networks. In it we present
the relevant works and indicate how our approaches to radio resource management differ from
those present in the state-of-the-art. Chapter 3 introduces our global mathematical problems
for scheduling in full-duplex and hybrid full-duplex/half-duplex wireless networks. In that
chapter, we introduce both greedy and fair approaches to scheduling with the assumption
that complete CSI is available to the scheduler. In Chapter 4, the assumption of complete
CSI is questioned. The performance of our scheduling algorithms in the absence of inter-UE
channel information is studied as a result. Furthermore, a reinforcement learning approach to
scheduling, one that does not need knowledge on inter-UE channel states, is introduced. We
show that our proposal can match scheduling with complete CSI and that it provides good
performances under different scheduling scenarios.
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Chapter 5 and Chapter 6 have our proposals for power allocation in single-cell full-duplex
wireless networks. In Chapter 5, we present a centralized approach to power allocation
coupled with a fairness oriented scheduler. We show that our proposal can improve UE
performance while saving on power expenditure. In Chapter 6, we present a distributed
approach to power allocation. Our proposal is based in a game theoretic context. We put
forward multiple super-modular games wherein the BS and the uplink UEs are considered to
be competing selfish (non-cooperative) players. We study the efficiency of our approaches in
different scheduling scenarios and show the pros and cons of each.

In Chapter 7, we study scheduling in a multi-cell environment. We introduce an algorithm
for joint scheduling and power allocation in multi-cell full-duplex wireless networks. We
highlight how the full-duplex interferences multiply and show that the gains from full-duplex
wireless communications will be tied to the deployment scenario. In addition, we study the
importance of cooperation between cells in regards to maximizing achievable performances.

Finally, we conclude this thesis and present some axes to be developed in future works in
Chapter 8.



Chapter 2

The State-of-the-Art for Full-Duplex
Wireless

2.1 Introduction

In this chapter, we give a general overview of where the state-of-the-art is at for full-duplex
wireless communications. We classify the latter into three categories. The first deals with the
development and progress of self-interference cancellation (SIC) techniques. It was essential
for these technologies to be well established before researchers went any further with their
work on full-duplex technologies. The second category encompasses early works in the
domain which sought either to suggest different possible full-duplex scenarios, or merely to
validate that gains could be extracted from full-duplex communications. The third category
in the state-of-the-art, to which our work practically belongs, builds on the previous two to
propose and simulate scheduling and power allocation algorithms for full-duplex wireless
networks.

2.2 Self-Interference Cancellation Technologies

It was important for SIC technologies to be well developed and tested before any other work
was done on full-duplex wireless. After all, the development of these technologies is what
made full-duplex wireless communications feasible in the first place.

The authors in [14] were among the first to discuss the direct impacts of developed SIC
techniques on full-duplex communications. They state that these technologies invalidate
long-held assumptions regarding wireless network design, and they overview what would
be required of interference cancellation techniques in order to propel full-duplex wireless
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communications into reality. In one of the earliest works on in-band full-duplex for wireless
networks, the authors in [15] survey a range of SIC techniques and touch on the main chal-
lenges facing full-duplex wireless networks. The articles in [16] and [17] aimed to evaluate
the performance of self-interference in the context of full-duplex wireless communications.
The authors in [16] conclude that the SIC performance increases as the signal bandwidth
decreases, while those in [17] focus on the impact of amplitude and phase errors on the
efficiency of interference cancellation technologies.

Furthermore, as we keep up with the state-of-the-art in terms of the progress of these tech-
nologies, the articles in [18–20] track the latest developments in the domain of interference
cancellation. The authors in [18] propose a new analog SIC technique for single antenna
in band full-duplex systems. They show that their model can cancel 40 dB of interference
over a 35 MHz frequency bandwidth. They claim that it is enough to avoid the saturation
of the analog to digital converter. The authors in [19] go into practical applications of
interference cancellation and present a patch antenna model with a simple two-tap RF/analog
domain-based SIC. Importantly, they attest that wideband SIC performance can be achieved.
Finally, the authors in [20] design and implement a neural network aided SIC scheme for
full-duplex radio. They verify via simulations that they can achieve good performance results
with a computation complexity lower than that of existent technologies.

In the context of this dissertation, we are mostly concerned by the level of SIC provided
by the current technology. In one of the most important papers in the domain of interference
cancellation techniques, Bharadia et all. (2013) [21] demonstrate that 110 dB of self-
interference can be canceled at a transmitter of 25 dBm power. We consider this to be a
benchmark for our work, although it is safe to assume that the technology has evolved far
beyond this mark.

2.3 Introduction to Full-Duplex Wireless Networks

After a consensus was reached on the viability of SIC techniques and on the role that these
technologies could play in making full-duplex communications feasible, research in the
domain pivoted towards exploring what full-duplex wireless networks would look like,
and whether impediments other than self-interference would hinder extracting gains from
full-duplex wireless communications.

The works in [22–25] revolve around assessing the possible gains of full-duplex wireless
networks. Their authors study different implementations of full-duplex systems alongside
the limitations and obstacles facing them.
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Aiming towards full-duplex inclusion in upcoming 5G 1 protocols, the authors in [22]
propose a full-duplex module with which they simulate two types of full-duplex networks:
one where only the base station (BS) is full-duplex capable, and the other where both the user
equipment (UEs) and the BS are full-duplex capable. Their aim was to assess the performance
of full-duplex wireless communications in ultra-dense small cells. They conclude that more
gains can be extracted when all the nodes in the network are full-duplex capable.

In [23], different scenarios and implementations of possible full-duplex wireless networks
are discussed. Mainly, the authors present four representative scenarios: full-duplex MIMO
networks, full-duplex cooperative networks, full-duplex OFDMA cellular networks, and
full-duplex heterogeneous networks. The authors use resource management problems for the
purpose of validating wireless full-duplex communications.

With a more practical approach, the papers in [24, 25] introduce more realistic models
for full-duplex transmissions. In [24], the authors put forward a compact full-duplex receiver.
With it at hand, they demonstrate via numerical evaluations the capacity gains of full-
duplex communications, and they bring insights onto the impact of SIC techniques on the
performance of full-duplex wireless networks. In [25], the authors present a single-channel
full-duplex receiver with tunable self-interference canceling capability. They show that the
performance of their receiver is enough for reliable reception.

In the context of this dissertation, we assume that the technology for implementing
full-duplex transmission and reception is existent and well tested. The state-of-the-art is also
well vested in different full-duplex network scenarios. Our work builds on this to propose
scheduling and power allocation algorithms for full-duplex wireless networks.

2.4 Scheduling and Power Allocation

With SIC technologies now well established in the state-of-the-art, and with full-duplex
technologies well motivated, it was only a matter of time before researchers in the wireless
domain moved towards devising scheduling and power allocation algorithms for full-duplex
wireless networks. Radio resource management has always been the pillar for any trans-
mission technology. For full-duplex wireless networks specifically, there was more at stake.
Scheduling and power allocation in this context is not only about better management of
the radio resources, but also about mitigating full-duplex interferences. Without proper
scheduling–capable of fighting off the effects on intra-cell co-channel interference–full-
duplex communications would not be viable.

1As we later on discuss, full-duplex technologies were eventually overlooked in 5G. They are now spoken
of in the context of 6G.
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As a result, a plethora of papers in the state-of-the-art covered both scheduling and power
allocation for full-duplex wireless networks. The authors of the article in [26] present a
hybrid full-duplex OFDMA scheduler based on a greedy subcarrier allocation method and
an iterative water filling power allocation algorithm. Their proposal seeks to maximize
the sum-rate, choosing the pair of UEs which has the highest sum of instantaneous rates.
The scheduling problem is formulated as a combinatorial problem of high complexity. An
exhaustive search is needed to find the optimal solution. Thus, the authors introduce a
heuristic algorithm with lower complexity. Furthermore, they make their algorithm hybrid
by allocating certain time slots from each frame in full-duplex and others in half-duplex for
either downlink or uplink UEs.

In [27], a joint user selection and rate allocation algorithm is proposed. It is formulated
as a nonlinear non-convex problem with mixed discrete and continuous optimization. The
authors note that finding a global optimum through an exhaustive search method is com-
putationally difficult, thus a suboptimal method is considered. The article concludes that
full-duplex networks have the potential to significantly increase the capacity of small cells
under the presence of efficient SIC.

The authors in [28] propose an optimization problem with the purpose of allocating
resources in what is described as a three-node system. The scenario implemented exhibits a
full-duplex BS and half-duplex UEs which are paired on the radio resources. Constraints
are added on the minimum SINR value for a UE to be allocated resources, and on the UE
transmission powers as well. The problem thus belongs to the category of mixed integer
nonlinear programming with high complexity and computational intractability. A sub-optimal
heuristic is introduced as a result.

In [29], the authors formulate a problem for resource allocation in full-duplex OFDMA
networks. The goal is to maximize the sum-rate, as well as address power allocation for
the UEs. The problem they propose is non-convex with exponential complexity. As such,
they develop an iterative solution that achieves local Pareto optimality in typical scenarios.
Through simulations, they demonstrate that their proposal empirically achieves near optimal
performance and that it outperforms other resource allocation schemes designed for half-
duplex networks.

Many other articles we covered in the state-of-the-art had similar approaches. The authors
in [30–32] all put forward joint power and resource allocation schemes. They propose
optimization problems with greedy objectives focused on sum-rate maximization. The joint
task of power allocation makes all these optimization problems of the category mixed integer
nonlinear programming with high complexity and computational intractability. As such, the
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authors work on heuristic solutions which can produce near optimal performances, but bear
less complexity.

Tables 2.1, 2.2, 2.3, and 2.4 summarize the majority of the state-of-the-art concerned
with scheduling and power allocation in full-duplex wireless networks. They highlight the
full-duplex network scenarios used, and they state whether the referenced articles have power
allocation algorithms alongside the scheduling proposals. The tables indicate whether these
approaches to power allocation are distributed or centralized. Additional information on
cell scenario and size, traffic type and the state of the SIC considered are included. Table
cells marked "-" are for when the stated information is not given in the papers, or cannot be
directly inferred from them.

The vast majority of the papers in the state-of-the-art introduce a full-duplex scenario
similar to the one we used in our work. The BS is assumed to be the full-duplex node and the
UEs remain half-duplex. This scenario is the one implemented in all the full-duplex OFDMA
[30–32] models referenced as well. Other models in the related works focus on relay [33],
MIMO [34], and even heterogeneous networks [35]. Though the latter three are not of direct
connection to our work, we studied them due to the existence of a common problematic
when it comes to dealing with full-duplex problems and interferences.

As for scheduling, almost all of the works in the state-of-the-art implement greedy ap-
proaches focusing on the maximization of the sum-rate (Max SR) [26] or the throughput (Max
TP) [33]. Other greedy variations in the related works include maximizing the network’s
spectral efficiency (Max SE) [28], and maximizing the sum of the logarithmic rates [36] .
Furthermore, a variance of power allocation algorithms are utilized with a good number of
them being based on some form of optimization. Other approaches such as iterative water
filling (IWF) [29], multi-objective optimization (MOOP) [34] , and fractional power control
(FPC) [35] were used in some of the works.

Multi-cell scenarios are scarcely implemented in the state-of-the-art. This is mainly due
to the exponential increase in complexity that both studying and simulating such scenarios
would incur. Additionally, the existence of inter-cell interferences further complicate proving
the feasibility and gains of full-duplex wireless communications. As we show later on in our
work, not every multi-cell scenario produces gains with respect to half-duplex communica-
tions. Some papers in the state-of-the-art implement a simplistic model, as in [22], wherein
unrealistic inter-cell interference assumptions are made. To the best of our knowledge, the pa-
per in [36] has the most thorough multi-cell model in the related works. The authors consider
both indoor and outdoor cell scenarios and pair their sum-rate maximization scheduling with
an optimal power allocation problem. They consider single-cell scheduling and coordinated
power allocation.
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Self-interference cancellation technologies are a corner stone for full-duplex communica-
tions. Some articles in the state-of-the-art assume ideal conditions [32] i.e., the technologies
available are capable of canceling all of the self-interference. As we discussed before, this is
not completely realistic. Other models assume near-ideal interference cancellation conditions,
where a small residual self-interference (RSI) factor is added to the SINR calculation as noise.
Another approach to modeling the effect of self-interference is via using an RSI model [24],
wherein the RSI follows a probabilistic function such as a Gaussian law. Similar to our work,
the majority of the papers reviewed use a set of interference cancellation factors to determine
the RSI. Within the upper limits of 120 to 130 dB, these assumptions remain permissible.

Finally, a recapitulation of the buffer models used in the related works highlights the
uniqueness of our approach to queue-awareness. Almost all the articles we reviewed in
the state-of-the-art [26, 23, 28, 33, 34, 30–32, 37, 24, 29, 38–42, 35] used full buffer traffic
models. Some authors [36] used a simple non-full buffer model, as for downloading a file,
without incorporating queue-awareness into the traffic model.

Table 2.1 State-of-the-art for scheduling and power allocation (a)

[22] [26] [23] [28] [33]
Network Type BS/UEs FD OFDMA Multiple BS FD MIMO Relay
Scheduling Max TP Max SR Max SR Max SE Max TP
Power Allocation × IWF × Optimal ×
Centralized - X - × -
Distributed - × - X -
Multi-Cell Simple Scenario × × × ×
Cell Size (R) Small 40 m - 100 m -
Queue-Aware X × × × ×
SIC State Ideal 70-110 dB - 110 dB -

Table 2.2 State-of-the-art for scheduling and power allocation (b)

[34] [30] [31] [32] [37]
Network Type MU - MIMO OFDMA OFDMA OFDMA MC - NOMA
Scheduling - Max SR Max SR Max SR Max SR
Power Allocation MOOP Optimal Optimal Optimal Optimal
Centralized X X X X X
Distributed × × × × ×
Multi-Cell × × × × ×
Cell Size (R) 250 m 20/1000 m - Up to 1 km 600 m
Queue-Aware × × × × ×
SIC State 80 dB 130 dB 100 dB Ideal 110 dB
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Table 2.3 State-of-the-art for scheduling and power allocation (c)

[36] [24] [29] [38] [39]
Network Type BS FD BS/UEs FD OFDMA OFDMA BS FD
Scheduling Max log(R) Max SR Max SR Max TP Max SE
Power Allocation Optimal Optimal IWF × Optimal
Centralized X - X - X
Distributed X - × - ×
Multi-Cell X × × ×
Cell Size (R) Small - Up to 500 m Up to 500 m 100 m
Queue-Aware X × × × ×
SIC State RSI Model RSI Model Near Ideal Near Ideal RSI Model

Table 2.4 State-of-the-art for scheduling and power allocation (d)

[40] [41] [42] [35] [43]
Network Type OFDMA OFDMA BS FD Hybrid BS OFDMA
Scheduling Max SR Max SR Max SR - Max-Min
Power Allocation IWF Optimal Optimal FPC Optimal
Centralized X X X X X
Distributed × × × × ×
Multi-Cell × × × Het-Net ×
Cell Size (R) Up to 200 m 100m Up to 150 m Small 100 m
Queue-Aware × × × × -
SIC State 85 dB Up to 120 dB RSI Model Ideal 110 dB

2.5 Our Work Compared to the State-of-the-Art

In what follows, we highlight the main novelties of our work in thesis with respect to what is
already present in the state-of-the-art.

1. Queue-Aware Approach to Scheduling: Our traffic model is queue-aware. The number
of bits in each UE’s queue is finite and follows a dynamic arrival model. This is
unique with respect to the state-of-the-art where the majority of the works consider
full buffer traffic models. Our approach allows us to compute packet level metrics such
as the waiting delay and is generally more representative of real life network scenarios.
Non-full buffer traffic models real time arrivals and buffer statuses. Our scheduling
proposals have to adapt to the fact that UEs might not always have data to transmit
or receive. Assuming otherwise could allow the network to constantly exploit some
advantageous schemes such as multi-user diversity. This will produce deceivingly
positive results in otherwise disadvantageous scenarios. Finally, non-full buffer traffic
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like streaming and video will make upwards of 78 % of the global mobile traffic by
the year 2021 [1]. This further highlights the importance of accounting for dynamic
arrivals.

2. Effect of Scheduling with Incomplete CSI on UE Performances: Very few articles in the
state-of-the-art study the effects of imperfect CSI on the performances of full-duplex
wireless networks. Namely, the articles in [39] and [44] discuss the lack of complete
CSI and assume that an erroneous estimation of the channel is instead available. Our
approach to studying the effects of imperfect CSI relies instead on the presence of
different levels of channel information. As we detail in Chapter 4, partial availability
scenarios of inter-UE information i.e., pathloss information is present, are considered.
We show via simulations that limited information regarding the inter-UE channel is
sufficient to avoid the otherwise significant losses in UE performance that could occur
as a result of scheduling with incomplete CSI.

3. A Reinforcement Learning Approach to Scheduling: As we highlighted the negative
impact of scheduling with incomplete CSI, we introduce a method to circumvent
the need for such information. We propose a machine learning algorithm capable
of learning how to best allocate resources without the need for inter-UE CSI. This
approach is unique with respect to state-of-the-art on scheduling in full-duplex wireless
networks. Via simulations, we show that our proposal can emulate the performance of
scheduling with complete CSI and that throughout different simulation scenarios, it
remains more profitable than scheduling with incomplete CSI.

4. Distributed Approach to Power Allocation: In addition to our centralized approach
to power allocation detailed in Chapter 5, we use game theory to propose a game
theoretic framework for power allocation in full-duplex wireless networks. We use non-
cooperative game theory, alongside a special class of games known as super-modular,
to propose different games with varying objectives for power control. Probably the
closest in the state-of-the-art to our objective in this area, are the papers in [40] and [45].
In [40], the authors use a game theoretic approach for resource allocation in full-duplex
networks. While they implement a water filling algorithm for power control, their
game theoretic approach focuses on greedy resource allocation with the purpose of
sum-rate maximization. The authors in [45] suggest that a game theoretic approach
could be used for power allocation in full-duplex wireless networks. Their article
surveys possible applications in relation to scheduling and power allocation in different
full-duplex network scenarios. While the authors of the latter practically present a
survey with no specific algorithm proposals, the work in the former focuses mainly on
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the scheduling task. Our games are designed for power allocation specifically and as
we illustrate in Chapter 7, they cover different objectives from improving UE SINR to
enhancing energy efficiency.

5. Scheduling in a Multi-Cell Environment: In our work, we study the performance of
full-duplex networks in a multi-cell environment. The authors in [36] are–to the best
of our knowledge–the only ones who proposed a comprehensive study of multi-cell
full-duplex wireless scenarios. They assume single cell scheduling and a coordinated
multi-cell approach to power control. In this thesis, we sought to present a complete
analysis of the profitability of full-duplex communications in a multi-cell setting.
Additionally, we highlight the importance of cooperation between cells in order to
improve the gains which can be extracted from full-duplex wireless communications.





Chapter 3

Scheduling with Complete Channel State
Information

3.1 Introduction

In this chapter, we introduce a mathematical optimal algorithm for scheduling in full-duplex
and hybrid full-duplex/half-duplex wireless networks. Our generic optimization problem
is queue-aware and addresses the new challenges that arise from working with full-duplex
wireless networks: self-interference and intra-cell co-channel interference. We apply this
optimization with different scheduling objectives, tackling issues such as SINR maximization
and user fairness. Accordingly, we first propose an optimal full-duplex Max-SINR scheduling
algorithm and an optimal full-duplex Proportional Fair scheduling algorithm. Additionally,
and since full-duplex communications may not always be profitable, we introduce an optimal
hybrid Max-SINR scheduling algorithm and an optimal hybrid Proportional Fair scheduling
algorithm. These algorithms switch between full-duplex and half-duplex transmissions, so
as to enhance network performance. Moreover, to avoid possible intractability with the
optimization problems, we propose heuristic versions of our algorithms. We assess the
performance of our heuristic proposals in multiple challenging scheduling scenarios and
show that they achieve near-optimal results.

3.2 Network Model

The network model introduced in this chapter is the same one used for the remainder of this
dissertation up until the multi-cell scenarios discussed in Chapter 7. It is comprised of a
full-duplex base station (BS), and half-duplex user equipment (UEs). The main intent is to
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keep the costs and complexities of implementing self-interference cancellation (SIC) away
from the UEs. The size, battery, and cost limitations of UEs make them imperfect recipients
of SIC technologies. Analog antenna cancellation, for example, requires multiple transmit
antennas as well as enough separation between them, something inherently difficult and
costly to achieve with UE size limitations. While it is quite realistic to assume that future
technology will adapt effective SIC to the UEs, it is also safe to assume that using half-duplex
terminals is currently the most feasible recourse.

3.2.1 Radio Model

We consider a single-cell full-duplex wireless network. This network is comprised of a
full-duplex BS, and half-duplex UEs. The UEs are virtually divided into two sets: an uplink
set, denoted by I and a downlink set, denoted by D. This virtual division instigates that a
certain moment in time, a UE either wants to transmit or receive. The scheduling algorithms
would pair between uplink and downlink UEs on the resource blocks (RBs) k of the set
K, whereon one UE will transmit and the other will receive. This network is illustrated in
Fig. 3.1.

Downlink UE Uplink UE
Co-Channel Interference

Self Interference

Figure 3.1 Network model and interferences

In our work, we assume that the physical layer is operated using an OFDMA structure. The
latter is used in both 4G and 5G technologies [46]. The radio resources are divided into
time-frequency RBs. In the time domain, an RB contains an integer number of OFDM
symbols. In the frequency domain, an RB contains adjacent narrow-band subcarriers and
experiences flat fading. Scheduling decisions for downlink and uplink transmissions are
made in every transmission time interval (TTI). At the beginning of each TTI, K RBs are
to be allocated. The TTI duration is chosen to be smaller than the channel coherence time.
With these assumptions, UE radio conditions will vary from one RB to another, but remain
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constant over a TTI. The modulation and coding scheme (MCS), that can be assigned to a
UE on an RB, depends on its radio conditions. For performance evaluation, we consider LTE
like specifications, with an RB being composed of 12 subcarriers and 7 OFDM symbols [11].

An adapted formula is used to calculate the SINR that takes into consideration the co-
channel interference between a pair of UEs, and the self-interference cancellation performed
by the BS. Let Pik denote the transmit power of the ith uplink UE, on the kth RB. P0k is the
transmit power of the BS on the kth RB. We denote by hu

ik the channel gain from the ith uplink
UE to the BS on RB k, and by hd

jk the channel gain from the BS to the jth downlink UE, on
that same RB. Furthermore, hij,k denotes the channel gain between the ith uplink UE and the
jth downlink UE, on the kth RB. Pik|hij,k|2 is thus the co-channel interference on downlink
UE j caused by uplink UE i, using the same RB k. The self-interference cancellation level at
the BS is denoted SIC. In particular, P0k

SIC
represents the residual self-interference power at

the BS, on the kth RB. Finally, N0k and Njk denote the noise powers at the BS and at the jth
downlink UE, on the kth RB, respectively. Equations (3.1) and (3.2) denote the formulas for
SINR calculation for a pair of uplink-downlink UEs. For the uplink UE i at the BS,

Su
j (i, k) = Pik|hu

ik|2

N0k + P0k

SIC

, i ∈ I, j ∈ D. (3.1)

And at its paired downlink UE j,

Sd
i (j, k) =

P0k|hd
jk|2

Njk + Pik|hij,k|2
, i ∈ I, j ∈ D, (3.2)

where Su
j (i, k) is the SINR of uplink UE i on RB k while using the same radio resources as

downlink UE j. Similarly, Sd
i (j, k) is the SINR of downlink UE j on RB k while using the

same radio resources as uplink UE i.

3.2.2 Channel State Information

Legacy half-duplex networks are concerned mainly with the channel in between the BS
and the UEs (i.e., hu

ik and hd
jk). They would rely on feedback from the latter to determine

the current channel state on the downlink. The channel state information (CSI) would be
estimated at the receiver, quantized, and then fed back to the transmitter. A popular approach
in estimating the CSI is by using a training (pilot) sequence, where a known signal is
transmitted, and the channel matrix H is afterwards estimated using the combined knowledge
of the transmitted and received signals [47]. Different techniques are used to determine how
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often, and on which RBs, would this feedback on the CSI be required. The more periodic the
feedback, the more accurate the channel estimation is.

Full-duplex communications add to the complexity of determining the CSI. In full-duplex
networks, additional information on the channel in between the UEs of a certain pair (i.e.,

hij,k) is required. Not only do current wireless systems not count for such information,
there is also no implemented method for which a UE can estimate such UE-to-UE channels.
Additionally, it is perceivable that measuring and continuously updating such information
by a UE would cause excessive overhead and loads that it cannot handle. Consequently,
precisely estimating inter-UE channels might not be feasible. In our work, we statistically
model the inter-UE channel as follows:

hij,k = GtGrLpAsAf (3.3)

Gt and Gr are the antenna gains at the transmitter and the receiver, respectively. Lp represents
the path loss, or equivalently the median attenuation the signal undergoes in this channel. As

and Af are two random variables that respectively represent the shadowing effect, and the
fast fading effect. In this chapter, we assume that the scheduler has complete knowledge of
all the network’s wireless links. In Chapter 4, we discuss the effects of incomplete CSI on
scheduling in full-duplex wireless networks.

3.2.3 Traffic Model

 Downlink UE

Uplink UE

  t-1

  
Arrivals
      t

Figure 3.2 Traffic model: UE pair i-j with uplink and downlink queues

Our scheduling is queue-aware (Fig. 3.2). Each UE has a predefined throughput demand
which determines the rate at which the UE will transmit or receive. A downlink UE has a
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queue at the BS, denoted Qd
j , that it wants to receive. An uplink UE has a queue of bits it

wants to transmit to the BS, denoted Qu
i . UE queues are updated each TTI. They are filled

according to a Poisson process with an average arrival rate λ equal to the throughput demand.
Once the scheduling is done for a certain TTI, the number of bits each UE can transmit or
receive is calculated, and the UE queues are deducted accordingly. The traffic is packeted
into small units known as transport blocks. The modulation and coding scheme (MCS) that
can be assigned to a UE is based on its SINR. Following the MCS used and the number of
RBs allocated for a UE, its transport block size is determined for the TTI. Any bits remaining
in a UE queue at the end of a TTI are carried on to the next one.

3.2.4 Performance Model

The mapping between a UE’s SINR and the number of bits it can transmit/receive is done
following an MCS. Using LTE-like configurations, we set 15 channel quality indicator (CQI)
values. The CQI values are used to identify the coding rates selected between 1/8 and 4/5,
and the modulations chosen among 4-QAM, 16-QAM and 64-QAM. Figure 3.3 shows the
mapping between the UE SINR values and the assigned CQI value.
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Figure 3.3 CQI as a function of UE SINR

Furthermore, Table 3.1 shows the relationship between the CQI level and the MCS schemes
used. Based on the MCS used, the number of bits each UE can transmit or receive on the
resources allocated to it is recorded. At the end of the simulation, the UE throughput is
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calculated as the number of bits the UE has transmitted divided by the simulation duration.
Finally, the average UE waiting delay is calculated using Little’s formula as the average
queue length divided by the packet arrival rate.

Table 3.1 Modulation and coding scheme

CQI Modulation CodingRate NoBits/RB
0 - - 0
1 QPSK 1/8 21
2 QPSK 1/5 33.6
3 QPSK 1/4 42
4 QPSK 1/3 55.44
5 QPSK 1/2 84
6 QPSK 2/3 111.72
7 QPSK 3/4 126
8 QPSK 4/5 134.4
9 16-QAM 1/2 168
10 16-QAM 2/3 223.44
11 16-QAM 3/4 252
12 16-QAM 4/5 268.8
13 64-QAM 2/3 336
14 64-QAM 3/4 378
15 64-QAM 4/5 307.2

3.3 Generic Scheduling Algorithm

3.3.1 Queue-Aware Full-Duplex Scheduling Algorithm

We propose an optimal scheduling algorithm for full-duplex networks. The optimal problem
is run every TTI to determine how the resources will be allocated to the UEs. We define the
UE pair-RB assignment variable zijk, ∀ k ∈ K, ∀ i ∈ I , ∀ j ∈ D. zijk is equal to one if uplink
UE i is paired with downlink UE j on RB k. It is equal to zero otherwise. Let F u

j (i, k) is the
utility function of uplink UE i on RB k, while it is paired with downlink UE j. Likewise,
F d

i (j, k) is the utility function of downlink UE j on RB k, while it is paired with uplink UE
i. T u

ijk is the number of bits UE i can transmit on RB k while paired with UE j. Similarly,
T d

ijk is the number of bits UE j can receive on RB k while paired with UE i. T u
ijk and T d

ijk

depend mainly on the radio conditions of the UEs. In addition, Du
i is the demand of uplink

UE i i.e., the number of bits in its queue. Likewise, Dd
j is the demand of downlink UE j. We

formulate the optimization problem as follows.
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Global Full-Duplex Scheduling Problem (G1
t ) =

Maximize
zijk

∑
k∈K

∑
i∈I

∑
j∈D

zijk(F u
j (i, k) + F d

i (j, k)), (3.4a)

Subject to
∑
i∈I

∑
j∈D

zijk ≤ 1, ∀k ∈ K, (3.4b)

αp

∑
k∈K

∑
j∈D

zijkT u
ijk ≤ Du

i , ∀i ∈ I, (3.4c)

αp

∑
k∈K

∑
i∈I

zijkT d
ijk ≤ Dd

j , ∀j ∈ D, (3.4d)

zijk ∈ {0, 1}, ∀i ∈ I,∀j ∈ D,∀k ∈ K. (3.4e)

Equation (3.4a) expresses the objective of our problem: to maximize the total sum of
the utilities of the UE pairs that are allocated RBs. According to (3.4b), each RB should be
allocated to a maximum of one UE pair.

We define αp ∈ [0,1] as the resource utilization factor. This factor is needed to verify that
the RBs are being efficiently scheduled and not allocated to UEs which do not need or make
good use of them. Consider the constraints (3.4c) and (3.4d). They insure that a UE will
transmit or receive at least αp of the bits it can on the resources allocated to it. If αp = 1,
then a UE is allocated an additional resource if the number of bits in its queue is greater than
or equal to the number of bits it can transmit or receive on the resources allocated to it. If
αp = 0.8, then a UE is allocated an RB if the number of bits in its queue is at least 80%
of the number of bits it can transmit or receive on the resources allocated to it. The latter
might create a scenario where a UE is allocated an RB on which it transmits few or no bits.
The former might create a scenario in which a UE still has bits in its queue but is denied
more RBs because it does not have enough to fully utilize the additional RB. As we devise a
queue-aware model, the number of bits that each UE would receive or transmit in a certain
TTI varies, and the optimal value of αp is as such dependent on each UE and its current radio
conditions. Via simulations, we show that the best recourse is to set αp to one, as it would
produce the best UE throughput results in the vast majority of the cases. The optimization
problem is run every TTI to determine how the radio resources will be allocated to the UEs.

3.3.2 Queue-Aware Hybrid Scheduling Algorithm

The feasibility of full-duplex communications is related to the cell radio conditions, as well
as the resulting interference problems. This hybrid algorithm allows the scheduler to choose
between allocating the RBs in full-duplex to two UEs, or in half-duplex to one, depending on
which yields a higher sum of UE utility functions.
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Let yu
ik, ∀ k ∈K, ∀ i ∈ I be the uplink UE-RB half-duplex assignment variable. It is equal

to one if uplink UE i is allocated RB k in half-duplex. It is equal to zero otherwise. Similarly,
yd

jk is the downlink UE-RB half-duplex assignment variable. The hybrid scheduling problem
is formulated as follows.
Global Hybrid Scheduling Problem (G2

t ) =

Maximize
zijk,yd

jk
,yu

ik

∑
k∈K

∑
i∈I

∑
j∈D

zijk(F u
j (i, k) + F d

i (j, k))

+
∑
k∈K

∑
i∈I

yu
ikF u(i, k) +

∑
k∈K

∑
j∈D

yd
jkF d(j, k), (3.5a)

Subject to ∑
i∈I

∑
j∈D

zijk +
∑
i∈I

yu
ik +

∑
j∈D

yd
jk ≤ 1, ∀k ∈ K, (3.5b)

αp(
∑
k∈K

∑
j∈D

zijkT u
ijk +

∑
k∈K

yu
ikT u

ik) ≤ Du
i , ∀i ∈ I, (3.5c)

αp(
∑
k∈K

∑
i∈I

zijkT d
ijk +

∑
k∈K

yd
jkT d

jk) ≤ Dd
j , ∀j ∈ D, (3.5d)

zijk, yu
ik, yd

jk ∈ {0, 1}, ∀i ∈ I,∀j ∈ D,∀k ∈ K. (3.5e)

F u(i, k) and F d(j, k) are the utility functions for half-duplex uplink UE i and half-duplex
downlink UE j, respectively. T u

ik is the number of bits uplink UE i can send on RB k

if it gets it in half-duplex. Similarly, T d
jk is the number of bits downlink UE j can send

on RB k if it gets it in half-duplex. The objective of this problem stated in (3.5a) is to
maximize the networks’ sum of UE utility functions. The constraints in (3.5b) impose that
an RB is allocated only once, either in full-duplex to two UEs, or in half-duplex to one.
The constraints in (3.5c) and (3.5d) serve the same purpose as (3.4c) and (3.4d), with the
possibility of a half-duplex allocation considered. These constraints ensure the resources
are allocated efficiently in an environment with dynamic traffic arrivals. In what follows,
we propose different expressions for the utility function thus generating algorithms that are
either greedy or fairness oriented.

3.4 Optimal Resource Allocation

In this section, we present our optimal algorithms for scheduling in full-duplex wireless
networks. By changing the expressions of the utility functions in both the full-duplex and
hybrid models, we are able to propose four algorithms with different scheduling objectives.
We change the objective function in (3.4a) such that the utility function F is equal to the UE
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SINR: ∑
k∈K

∑
i∈I

∑
j∈D

zijk(Su
j (i, k) + Sd

i (j, k)), (3.6)

This algorithm, full-duplex Max-SINR, calculates the SINR, on every RB, for each possible
pair between an uplink UE and a downlink UE. It then proceeds to allocate each RB to
the corresponding UE pair in a way that maximizes the objective function. This approach
favors the best performing UEs, leading to an increase in the system’s overall throughput.
Nonetheless, UEs with bad radio conditions could experience bandwidth starvation.

Full-duplex Max-SINR is as such greedy and opportunistic. While such an approach
could lead to the most efficient utilization of resources, it is generally unfair. We are interested
in taking a different, and more fair advance on the scheduling task. Therefore, we propose an
optimal full-duplex Proportional Fair algorithm. We set the utility function in (3.4a) to be
equal to the UE priority. This yields the objective function presented by our second proposal
full-duplex Proportional Fair.

∑
k∈K

∑
i∈I

∑
j∈D

zijk(ρu
j (i, k) + ρd

i (j, k)), (3.7)

where ρu
j (i, k) is the priority of uplink UE i, and ρd

i (j, k) is the priority of downlink UE j,
when paired with each other. The priority of a UE is defined as a function of its current radio
conditions, represented by the number of bits a UE can transmit on the selected RB, and its
historic radio conditions, represented by the number of bits it has already transmitted. The
priority for an uplink UE i while paired with downlink UE j on RB k, for example, is defined
as:

ρu
j (i, k) =

T u
ijk

Ti

, (3.8)

where Ti is the number of transmitted bits within a certain time window. The priority of a
UE thus decreases as it transmits more. This gives higher priority to UEs which have not
transmitted in a while, while still factoring in their current radio conditions.

Making the algorithms hybrid guarantees that the system is always working in the
transmission mode that enhances its performance. As we demonstrate later on via simulations,
depending on the radio conditions, and the quality of the SIC techniques available, full-duplex
communications might not always even be viable. For low values of the SIC factor, uplink
UEs could be totally denied access to the system resources. We thus seek to allow the
scheduler to astutely choose between allocating an RB to a single UE (half-duplex) or to a
pair of UEs (full-duplex).

We set the utility function F in equation (3.5a) to be equal to the UE SINR to yield a
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hybrid Max-SINR algorithm:

∑
k∈K

∑
i∈I

∑
j∈D

zijk(Su
j (i, k) + Sd

i (j, k)) +
∑
k∈K

∑
i∈I

yu
ikru(i, k) +

∑
k∈K

∑
j∈D

yd
jkrd(j, k), (3.9)

where ru(i, k) and rd(j, k) are the SINR of UEs i and j in half-duplex. Similarly, replacing
F with the UE priority yields a hybrid Proportional Fair algorithm:

∑
k∈K

∑
i∈I

∑
j∈D

zijk(ρu
j (i, k) + ρd

i (j, k)) +
∑
k∈K

∑
i∈I

yu
ikρu(i, k) +

∑
k∈K

∑
j∈D

yd
jkρd(j, k), (3.10)

where ρu(i, k) and ρd(j, k) are the half-duplex priorities of UE i and j i.e, their priorities if
they were to be allocated resources solely. In both algorithms, the scheduling decision is
done following the allocation mode that would maximize the objective function (3.5a). In
hybrid Max-SINR for example, if the maximum half-duplex UE SINR value on a certain RB
is higher than the corresponding full-duplex highest sum of SINR values, the RB is allocated
in half-duplex. Otherwise, it is allocated in full-duplex. Note that in case of half-duplex
scheduling the SINR for an uplink UE i on an RB k is calculated as:

ru(i, k) = Pik|hu
ik|2

N0k

, i ∈ I, k ∈ K. (3.11)

And for a downlink UE j,

rd(j, k) =
P0k|hd

jk|2

Njk

, j ∈ D, k ∈ K, (3.12)

As for the priorities of the half-duplex UEs, they are calculated as a function of the number
of bits a UE can transmit or receive on an RB. For example, for an uplink UE i transmitting
solely on an RB k, the half-duplex UE priority can be written as:

ρu(i, k) = T u
ik

Ti

, (3.13)

In presence of sufficient SIC at the BS and reduced co-channel interference as an effect
of scheduling, our full-duplex algorithms will perform identically to our hybrid algorithms,
albeit with less complexity. The hybrid algorithms would always be allocating resources in
full-duplex, because the system conditions will always make it the more lucrative choice.
However, if that was not the case, the hybrid algorithms would be trading more complexity
for better resource allocation. A practical evaluation of the complexity is presented in the
following section.
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3.5 Complexity of the Optimal Problem

3.5.1 Full-duplex Scheduling Model

The variables in this optimization problem are all integers. The objective function and the
constraints, which depend on the binary value of zijk, are linear. The problem is thus of
type integer linear (ILP) [48]. The number of constraints and variables are important factors
when estimating if this problem is tractable. These problems can, in principle, be solved by
complete enumeration of candidate solutions. This method is known as branch and bound
[49], where the set of candidate solutions is thought of as forming a rooted tree with the full
set at the root. The branch and bound algorithm explores the branches of this tree, which
represent subsets of the solution set. Before enumerating the candidate solutions of a branch,
the branch is checked against upper and lower estimated bounds on the optimal solution,
and is discarded if it cannot produce a better solution than the best one found so far by
the algorithm. Such a problem could become mathematically intractable as the number of
variables increase.

3.5.2 Hybrid Scheduling Model

This model is similar in form to the full-duplex model. All the variables are binary, and the
constraints are linear, and dependent of the binary variables. The problem is thus also of type
ILP and therefore NP-Complete [48]. Containing more variables and more constraints, this
problem would take slightly more time to solve than the previous one.

The complexity of the optimization problem, which can become prohibitive for an
increased number of resources and UEs, motivates a heuristic approach. In the following sec-
tion, we provide heuristic algorithms with the same objectives as the optimization problems,
albeit bearing less complexity.

3.6 Heuristic Algorithms

Seeking scheduling solutions with less complexity, we present heuristic algorithms corre-
sponding to our optimal propositions. First, we introduce a heuristic full-duplex Max-SINR
algorithm. This algorithm seeks to couple between two half-duplex UEs, one on the uplink
and one on the downlink, on the same RBs. The traffic is non-full-buffer. As such, a UE that
has depleted its queue is excluded from the resource allocation within the same TTI. For
each RB k of the set K, the algorithm calculates the SINR for each possible pair between an
uplink UE and a downlink UE. We compute the SINR as indicated in equations (3.1) and
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(3.2), and allocate the currently selected RB to the pair of UEs which has the highest value
of the sum: Su

j (i, k) + Sd
i (j, k), where i belongs to the set of uplink UEs and j to the set of

downlink UEs. This algorithm is iterative. In contrast with the globality of the optimization
problem, which makes the allocation decision for all the RBs at the same time, the decision
here is made for each RB in turn. Moreover, in case it is impossible to pair between UEs due
to one of the uplink or downlink sets being empty (either all uplink or all downlink UEs have
emptied their queues), the scheduler allocates the RB to a single UE in half-duplex.

If all the UEs empty their queues before the resources are depleted, the remaining RBs
are marked as free. The function Update(x), in Algorithm 1, is responsible for updating the
queue status and the UE sets after resource allocation. The number of transmitted bits is
calculated for each UE allocated an RB depending on the MCS used and decremented from
its corresponding queue. The pseudo-code for full-duplex Max-SINR is shown in Algorithm
2, when the utility function is equal to the UE SINR.

Algorithm 1 Queue Update Function
1: Update (x)
2: if x ∈ I
3: Qu

x ← Qu
x − T u

xjk

4: if Qu
x == 0

5: I ← I − {x}
6: end if
7: end if
8: if x ∈ D
9: Qd

x ← Qd
x − T d

ixk

10: if Qd
x == 0

11: D ← D − {x}
12: end if
13: end if

Similarly, we propose a heuristic version of our full-duplex Proportional Fair algorithm.
For every RB, the UE pair with the highest sum of priorities is chosen. The corresponding
pseudo-code is shown in Algorithm 2, when the objective function is equal to the priority of
the UEs.

We further propose a heuristic implementation of our hybrid Max-SINR algorithm. The
scheduling decision for this algorithm is done based on the following criteria. For every RB,
pair allocation is used if the following condition is met:

Su
j (i∗, k) + Sd

i (j∗, k) > r(e∗, k), (3.14)
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where r(e∗, k) is the highest SINR value for a half-duplex UE. Under this condition, we
assume that we have sufficient SIC and/or acceptable radio conditions to support full-duplex
communications. Otherwise, the scheduler allocates the RB in half-duplex to the UE with
the highest SINR (uplink or downlink). The pseudo-code for the algorithm is illustrated in
Algorithm 3 when the objective function is equal to the UE SINR.

Algorithm 2 Full-Duplex Heuristic Scheduling
1: for k = 1, . . . , K
2: if I ≠ φ and D ≠ φ
3: (i*, j*) = argmax

i∈I,j∈D
(F u

j (i, k) + F d
i (j, k))

4: Allocate RB k to couple (i*, j*)
5: Update(i*), Update(j*)
6: else
7: e*=argmax

e∈I∪D
(F (e, k))

8: Allocate RB k to user e*

9: Update(e*)
10: end if
11: end for

Algorithm 3 Hybrid Heuristic Scheduling
1: for k = 1, . . . , K
2: (i*, j*) = argmax

i∈I,j∈D
(F u

j (i, k) + F d
i (j, k))

3: e*=argmax
e∈I∪D

(F (e, k))

4: if F u
j∗(i∗, k) + F d

i∗(j∗, k) > F (e*, k)
5: Allocate RB k to couple (i*, j*)
6: Update(i*), Update(j*)
7: else
8: Allocate RB k to user e*

9: Update(e*)
10: end if
11: end for

Similarly, we propose a heuristic hybrid Proportional Fair algorithm. The scheduling
decision for this algorithm is done based on the following criteria. For every RB, pair
allocation is used if the sum of full-duplex priorities of any UE pair is greater than the highest
priority value of a single half-duplex UE:

ρu
j (i∗, k) + ρd

i (j∗, k) > ρ(e∗, k), (3.15)
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where ρ(e∗, k) is the highest priority value for a half-duplex UE. We assume that we have
sufficient SIC and/or acceptable radio conditions to support full-duplex communications.
Otherwise, the scheduler allocates the RB in half-duplex to the UE with the highest priority
(uplink or downlink). The pseudo-code for the algorithm is illustrated in Algorithm 3, when
the utility function is set to be equal to the priority of the UEs.

Finally, we introduce the last of our proposed algorithms, full-duplex Round Robin. The
general idea is to make a list of random UE pairs, and then proceed to allocate the RBs to the
pairs on this list in turn, regardless of any other factor. This might cause some UEs to be at a
great disadvantage if the UEs of a pair are close to each other, or far away from the BS. As a
bad luck protection mechanism, we randomly re-pair the UEs at the beginning of every TTI.
Algorithm 4 explains the process.

Algorithm 4 Full-Duplex Round Robin
1: Form a set of random UE pairs P of size n
2: Ps=1 Selected Pair Index
3: for k = 1, . . . , K
4: Allocate k to couple (i,j) of the pair Ps

5: Update(i), Update(j)
6: if Ps < n + 1
7: Ps=Ps+1;
8: else
9: Ps=1;

10: end if
11: end for

Note that if only one UE of a certain pair has emptied its queue (and accordingly removed
from its corresponding dowlink or uplink UE set), its paired UE keeps getting the RBs during
the pair’s turn till the end of the TTI, albeit this time in half-duplex.

3.7 Complexity of the Heuristic Algorithms

Our heuristic algorithms have complexities of the same order. The wireless system has I

uplink UEs, and D downlink UEs. This amounts to a total of n = I ×D possible UE pairs.
In our algorithms, we seek to sort these pairs based on SINR or priority. The complexity of
these heuristic algorithms is thus of the order O(n) [50].

We compare the simulation duration for each of the optimal and heuristic Max-SINR
algorithms. Under identical conditions and using the simulation parameters in Table 3.3. The
SIC value is set to 1011. 10 UEs are simulated along with 20 RBs. We note the time taken
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by the simulator to allocate the resources during one TTI. A statistical interpretation of the
results is given in Table 3.2. The criteria are measured in seconds. The machine used for the
simulations has an INTEL(R) core i3-4170 CPU at 3.70 GHz processor. It runs on 8 GB of
RAM.

Table 3.2 Heuristic vs. optimal: simulation time

Criteria Optimal (s) Heuristic (s)

Mean 1.3125 0.1710
1st Quartile 0.1563 0.1646
Median 0.1563 0.1692
3rd Quartile 0.1836 0.1748

For a limited number of RBs and UEs, the optimal algorithm can solve the resource
allocation problem faster than the heuristic one. However, there are few exceptions as
indicated by the higher mean value for the optimal algorithm. This would no longer be the
case as we increase the number of UEs and RBs, where the simulation time for the optimal
algorithm could significantly increase.

3.8 Simulation and Results

We have four main objectives to tackle through this set of simulations. First, we want to
affirm the gains that full-duplex wireless networks bring, compared to half-duplex networks,
and in varying simulation scenarios. Second, we want to assess the effects of having different
scheduling objectives, both greedy and fair, on UE throughputs and performances. third, we
seek to justify the necessity for a hybrid algorithm, illustrating the cases where full-duplex
alone would not be viable. Finally, we want to validate our heuristic algorithms, and show
that they achieve near optimal performances.

The channel gain takes into account the path loss, the shadowing and the fast fading
effects. The path loss is calculated using the extended Hata path loss model [51]. The
shadowing is modeled by a log-normal random variable As = 10( ξ

10 ), where ξ is a normal
distributed random variable with zero mean and standard deviation equal to 10. The fast
fading is modeled by an exponential random variable Af with unit parameter. This model
is used for urban zones, and it takes into account the effects of diffraction, reflection and
scattering caused by city structures. In this simulation set, the transmit power per RB is fixed
and set to a value lower than the maximum possible.



36 Scheduling with Complete Channel State Information

Table 3.3 Simulation parameters for scheduling with complete CSI

Parameter Value

Cell Specifications Single-Cell, 120 m Radius
Number of RBs 50
BS Transmit Power 24 dBm
Maximum UE Transmit Power 24 dBm
αp 1
SIC Value 1011-108

Number of UEs 10 DL, 10 UL
UE Distribution Uniform
Demand Throughput 2-4 Mbps
Fast Fading Exponential variable
Shadowing Log-normal variable
Path Loss Model Extended Hata Path Loss Model

3.8.1 General Performance of the Full-Duplex Algorithms

The global optimal problem is NP-complete, and as we demonstrate later on, our heuris-
tic algorithms produce near-optimal results. As such, we are going to consider multiple
scheduling scenarios in order to better study the performances of the heuristic algorithms,
and full-duplex wireless networks in general. Following the parameters indicated in Table
3.3, we simulate our full-duplex Max-SINR, Round Robin, and Proportional Fair algorithms.
As a half-duplex reference, we simulate a traditional half-duplex Max-SINR algorithm.

Figure 3.4 is a cumulative distribution function (CDF) plot of the throughput values
attained by the UEs across the simulations. The trends which are set by the scheduling tech-
niques are clear. Max-SINR, whether in half-duplex implementation, or in our full-duplex
algorithm, seeks to serve the UEs with the best radio conditions. Nonetheless, around 70 %
of the full-duplex Max-SINR UEs attained a throughput equal to the demand, significantly
more than that of its half-duplex counterpart at 45 %.

On the other hand, Proportional Fair scheduling seeks equity between the UEs. The
percentage of full-duplex Proportional Fair UEs which have attained a throughput equal to
the demand sits at around 45 %, less than that of full-duplex Max-SINR. However, the least
attained UE throughput for full-duplex Proportional Fair is about 0.8 Mbps, compared to
0 Mbps (by 50 % of the UEs simulated) for half-duplex Max-SINR and around 0.1 Mbps,
the lowest for a full-duplex Max-SINR UE. Full-duplex Proportional Fair will degrade the
performance of UEs with excellent radio conditions, in order to provide resources to UEs
with poor conditions.
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Figure 3.4 Full-duplex algorithms performance in terms of UE throughput

Finally, our full-duplex Round Robin algorithm shows that even with random allocation,
full-duplex transmissions can provide significant improvement with respect to half-duplex
communications. Whilst half-duplex Max-SINR produces more UEs with throughput equal
to the demand, our full-duplex Round Robin gave better throughput values for about 55 % of
the UEs. The median UE throughput value for full-duplex Round Robin is about 1.6 Mbps.

We compute the fairness index, for each of the four algorithms, for the current simulation
scenario. We use Jain’s fairness index [52] to determine whether the resources are getting
allocated fairly under our proposed scheduling algorithms. This index is computed according
to the Raj-Jain equation as follows:

J (x1, x2, . . . , xn) = (∑n
i=1 xi)2

n.
∑n

i=1 x2
i

. (3.16)

J represents the fairness of a scheduling algorithm, for n UEs, of xi throughput each. The
results for an algorithm is between 1

n
and 1. It is maximum when all the UEs receive the

same allocation. Full-duplex Proportional Fair allocates resources more fairly than the others,
with a Jain index value equal to 0.97. Full-duplex Max-SINR sits near 0.80, and half-duplex
Max-SINR with the lowest value at 0.58. Max-SINR is opportunistic and greedy, it would not
allocate resource fairly. This is shown clearly in the case of half-duplex Max-SINR, but rather
concealed with full-duplex Max-SINR. With full-duplex scheduling UEs have practically
double the RBs at their disposal remedying the unfair nature of Max-SINR scheduling.
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Furthermore, we compare between these algorithms in terms of the average waiting delay
for the UEs. The average waiting delay is calculated using Little’s formula as the average
queue length divided by the packet arrival rate. Figure 3.5 has box plots of the average
waiting delay for the UEs, per simulation run, across the four algorithms we simulated in this
section.
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Figure 3.5 Full-duplex algorithms performance in terms of UE waiting delay

The box plot, also known as the box and whisker diagram [53], is a standardized way of
displaying the distribution of data based on a five number strategy: minimum, first quartile,
median, third quartile, and maximum. In the simplest box plot the central rectangle spans the
first quartile to the third quartile (the interquartile range). A red segment inside the rectangle
shows the median, and the segments in black or "whiskers" above and below the box show
the minimum and maximum. In some cases, a red cross will indicate a certain data value that
stood out from the rest, and could not be grouped with the majority of the data.

Our full-duplex Proportional Fair and Max-SINR algorithms heavily outperform the rest
in terms of maximum delay, with full-duplex Max-SINR edging out full-duplex Proportional
Fair when it comes to UEs with bad radio conditions. Moreover, it is noticeable that all the
full-duplex algorithms outperform half-duplex ones in terms of waiting delay. Naturally,
with good SIC, full-duplex UEs will on average be getting double the resources, and thus
experiencing half the delay. Full-duplex RR UEs experience on average 1 ms less delay than
half-duplex UEs, while full-duplex Proportional Fair and Max-SINR UEs experience on
average more than 2 ms less waiting delay.
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3.8.2 Effect of Heterogeneous Traffic on UE Performance

We repeat the same simulations, but with heterogeneous traffic for the UEs. With equal
probability, the throughput demand for the UEs is set to either 2 or 4 Mbps. All other
parameters remain unchanged from the previous section. Figure 3.6 shows the throughput
attained by the UEs, while scheduling using each of our proposed full-duplex heuristic
algorithms.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

UE Throughput in Mbps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

FD Max-SINR
FD Proportional Fair
FD Round Robin

Figure 3.6 Full-duplex algorithms performance in the case of heterogeneous traffic

The trends by the algorithms we observed in the previous section remain pertinent.
Full-duplex Max-SINR allocates resources to the UEs with the best radio conditions. The
Max-SINR algorithm thus has the highest percentage of UEs attaining a throughput equal to
their demand, be it 2 or 4 Mbps. The tendency for full-duplex Proportional Fair to allocate
resource more fairly is also visible. No full-duplex Proportional Fair UE attained a throughput
less than 0.75 Mbps. All other algorithms have UEs which have been totally denied resources.
The Jain fairness index reflects this, with full-duplex Proportional Fair having an index value
of 0.95, compared to 0.73 for full-duplex Max-SINR.

3.8.3 Effect of Clustering on UE Performance

In this subsection, we study the effects of UE clustering on the performance of our algorithms.
The cell has 20 UEs, 10 uplink (UL), and 10 downlink (DL), with 50 RBs to be allocated.



40 Scheduling with Complete Channel State Information

The throughput demand is 2 Mbps. The SIC value is set to 1011. All other parameters remain
as in Table 3.3. We form a cluster containing all 20 UEs. The circular cluster’s center is 50 m
away from the BS, and has a radius of 10 m. The clustering of UEs means bringing them
closer to each other. As such, the intra-cell co-channel interference would spike. This affects
the SINR of downlink UEs in a full-duplex system as illustrated in equation (3.2). Therefore,
we plot the uplink and downlink UE throughput values separately. Figure 3.7 has box
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Figure 3.7 Effect of UE clustering on UE throughput

plots of the UE throughput values for this simulation scenario. For all of our full-duplex
algorithms, a degradation in performance of downlink UEs, with respect to their uplink
counterparts, is expected. The full-duplex Round Robin algorithm UEs suffer the most. Since
no method is implemented in this case to avoid scheduling pairs with bad radio conditions,
the chance of selecting downlink UEs with bad radio conditions increases. Downlink UEs
scheduled with the full-duplex Proportional Fair algorithm also have their throughput values
decreased, although to a lesser extent. Nonetheless, because of the small cell size, and the
greedy nature of the algorithm, full-duplex Max-SINR downlink UEs are effected the least
by the clustering. Following these results, we can argue the need for a hybrid algorithm that
could switch scheduling to half-duplex when a certain threshold, below which full-duplex
communications are no longer profitable, is reached.
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3.8.4 Necessity of Hybrid Algorithms

The effect of UE clustering on the performance of downlink UEs, shown in the previous
section, is just a part of the argument for hybridity. We examine the performance of our
heuristic full-duplex Max-SINR algorithm, in comparison to that of our hybrid Max-SINR
algorithm in the presence of insufficient interference cancellation. The SIC factor is set at the
relatively low value of 108. The box plots in Fig. 3.8 show the UE throughput per simulation
for both downlink and uplink UEs.
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Figure 3.8 Effect of low SIC on UE throughput

Figure 3.8 shows a median on the verge of 0 Mbps average throughput for full-duplex
Max-SINR UEs in the uplink. These UEs are completely denied any resources. Self-
interference degrades the performance of uplink UEs, as shown in equation 3.1, where the
decrease in the SIC factor decreases the uplink UEs’ SINR. Downlink UEs do not suffer
under low SIC values, however, their good performance in this case is not of importance, as
we would not operate a wireless network in which there can be little to no transmission on
the uplink. On the other hand, the hybrid Max-SINR algorithm does far better. Almost none
of the hybrid algorithm UEs got denied throughput, and the median on the uplink is greater
than 200 kbps. Therefore, the availability of a hybrid algorithm improves the performance
of the system, especially when UE radio conditions go below that certain threshold where
full-duplex communications are no longer profitable.

Finally, we compare our hybrid algorithm to traditional half-duplex Max-SINR schedul-
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ing. In the worst case scenario, the hybrid algorithm would choose to allocate all the resource
in half-duplex, and would thus match half-duplex Max-SINR’s performance. We verify this
by showing, in Fig. 3.9, the box plots for the network throughput of 500 simulations runs, for
both half-duplex Max-SINR and our hybrid Max-SINR algorithm. The parameters remain
unchanged as above for this simulation, with the SIC value still at the relatively low value of
108. Figure 3.9 shows that for all the simulations, the hybrid algorithm would attain a higher
network throughput than its half-duplex counterpart. Moreover, the median hybrid network
throughput is close to 22.5 Mbps, significantly higher than that of half-duplex Max-SINR
at about 19 Mbps. In conclusion, not only do we show that is it necessary to have a hybrid
option, we also prove that we can still outperform half-duplex operation with only a partial
implementation of full-duplex communications.
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Figure 3.9 HD Max-SINR vs. hybrid Max-SINR. SIC = 108

3.8.5 Validity of the Heuristic Algorithms

We seek to verify that our heuristic algorithms produce near optimal performances. To this
end, we first simulate our optimal full-duplex Max-SINR and Proportional Fair algorithms
vs. their heuristic counterparts. In this simulation, the cell has 10 UEs, and the SIC value is
set to 1011. The number of RBs available is 20, and the throughput demand is 2 Mbps. The
remainder of the parameters are as in Table 3.3. Figure 3.10 has the box plots for the UE
throughputs achieved by each of these four algorithms.
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Figure 3.10 Optimal vs. heuristic implementations of the full-duplex algorithms

For both full-duplex Max-SINR and Proportional Fair, the optimal and heuristic box plots
are very similar. For full-duplex Max-SINR, both the optimal and heuristic algorithms show
a maximum of 2 Mbps and a minimum close to 0 Mbps. The median is around 1.8 Mbps.
Nonetheless, the box plot for the optimal Max-SINR algorithm is slightly shifted upwards,
indicating that the optimal algorithm does in fact still produce better throughput values for
some UEs. The same goes for full-duplex Proportional Fair. The slightly upward shifted
box plot for the optimal algorithm shows that some optimal UEs are doing better than their
heuristic counterparts, but the vast majority are still performing almost identically. The
box plots also highlight the greedy nature of the full-duplex Max-SINR algorithms and
the fairness orientation of the Proportional Fair algorithms. The rectangular boxes for the
Proportional Fair algorithms are small, indicating that the UE throughput values are close to
each other. It is the opposite for Max-SINR, where the long boxes show a big span of UE
throughput values, albeit with a gain in throughput for the UEs with good radio conditions.
The respective box plots show that more than quarter of the Max-SINR UEs have attained a
throughput equal to the demand.

We repeat the same simulation but for hybrid Max-SINR. Figure 3.11 shows a box plot
for the ratio between the objective value (sum of SINR) of the heuristic algorithm to that of
the optimal algorithm. Except for a few outliers, the heuristic algorithm matches the optimal
one with a minimum of 85% of the value, outside of some outliers. In the vast majority of
the cases, it matches it with an efficiency higher than 90%.
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Objective Ratio: Heuristic to Optimal
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Figure 3.11 Optimal vs. heuristic implementations of hybrid Max-SINR

3.8.6 Effect of the Resource Utilization Factor αp

For the same simulation parameters used in the previous subsection, we study the effect
of varying the resource utilization factor αp on both the objective of our global optimal
problem and the resulting UE throughput values. For this simulation, Max-SINR scheduling
is assumed. Figure 3.12 has a CDF plot of the objective values of the optimal problem i.e.,
the network’s sum-SINR. The variation of the objective is tracked for αp = 0, 0.2, 0.4, 0.6,
0.8, and 1. The lower the value of αp the higher the objective value is. For αp = 0 the results
vary between 1100 and 2350 dB. As the value of αp increases, the plots recede. αp = 0.8 and
αp = 1 produce the lowest objectives values.

Furthermore, we plot the UE throughput values corresponding to the previous simulation.
Figure 3.13 has a CDF plot with the results. Opposite to the objective value, the higher the
value of αp the better the algorithm seems to perform. For αp = 0 about 29% of the UEs
are totally denied throughput. Only about 18% of the UEs attain a throughput equal to the
demand. For αp = 0.6, the median throughput value increase to about 1.4 Mbps. For αp= 0.8,
it is around 1.65 Mbps.

Even though the relation between the objective function and the attainable throughput
values is inversely proportional with respect to the value of αp, it is not contradictory. A lower
value of αp would allow the scheduler to regularly select the UEs with the highest SINR
values. Nonetheless, those UEs might not always have any bits to transmit/receive. In the
case we simulated above, αp = 1 produces the best results in terms of UE throughput values.



3.8 Simulation and Results 45

The optimal value for αp will always lie in the vicinity of 1 but it would vary depending on
the simulation scenario. As a result, in our simulations in this chapter, and in all subsequent
uses of the optimal formulation, we consider αp = 1 as it guarantees that no resources are
wasted, even if it is not the optimal value.

1000 1200 1400 1600 1800 2000 2200 2400

Sum-SINR in dB

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

p
 = 0

p
 = 0.2

p
 = 0.4

p
 = 0.6

p
 = 0.8

p
 = 1

Figure 3.12 The objective of the optimal formulation as a function of αp
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Figure 3.13 The objective of the optimal formulation as a function of αp
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3.9 Conclusion

In this chapter, we presented a generic optimal scheduling algorithm for full-duplex and
hybrid full-duplex/half-duplex wireless networks. We implemented this algorithm with
different scheduling objectives. With focus on UE SINR, we proposed an optimal full-
duplex Max-SINR algorithm that allocates resources to UE pairs with the highest sum-SINR.
We additionally proposed an optimal hybrid Max-SINR algorithm that chooses between
allocating resources in half-duplex or full-duplex depending on the UE SINR values. With
focus on fairness, we proposed an optimal full-duplex Proportional Fair algorithm that
allocates resources to UE pairs that have the highest priority. Similarly, we proposed an
optimal hybrid Proportional Fair algorithm that can choose to allocate the resources in
half-duplex or full-duplex depending on the UE priorities. We then proposed heuristic
versions of these four algorithms, and proved that their performance is near optimal. Under
different simulation scenarios, we illustrated the gains full-duplex wireless networks provide
in comparison with current half-duplex networks, and we verified that the hybrid algorithms
provide a good alternative to full-duplex scheduling in the case of low SIC. We showed that
with sufficient SIC, full-duplex communications can almost double the throughput for the
UEs while cutting the waiting delay in half.



Chapter 4

Scheduling with Incomplete Channel
State Information

4.1 Introduction

In the previous chapter, we presented our approach to scheduling in full-duplex wireless
networks in the presence of complete channel state information (CSI). Nonetheless, there is
still no evident manner in which full-duplex networks can achieve this state of completeness.
After all, no existing wireless network protocols count for estimating inter-user channels
or for how such channel information could be relayed back to the base station (BS). In
order to properly schedule and distribute resources among pairs of uplink-downlink user
equipment (UEs), the network needs exact information on the channels between all the UEs,
in addition to all the traditional half-duplex UE-to-BS channels. In a single small cell network
of five uplink and five downlink UEs, the BS would have to be continuously updated with
information on up to 35 radio channels. Ten of which are of type UE-to-BS and 25 of type
UE-to-UE. A number that would dramatically increase in large cell scenarios. Considering
that scheduling is done on a small time scale (ms), scheduling with complete CSI is rendered
even more complex with a signaling overhead further burdening the UEs. In this chapter, we
address the consequences of scheduling in full-duplex wireless networks with incomplete
CSI, and afterwards put forward a reinforcement learning scheduling algorithm that can
allocate radio resources without the need for such information.
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4.2 The Effect of Incomplete Channel State Information

The state of a wireless channel is determined by the combined effect of several factors, the
most pertinent of which, are the path loss, the shadowing, and the fast fading. Knowledge of
the channel on a certain wireless link permits adapting the transmission to the communication
channel. This is essential in achieving reliable communications, and for making efficient
resource allocation decisions.

Legacy half-duplex wireless networks would rely on feedback from the UEs to determine
the current channel state. These networks are concerned mainly with the channel in between
the BS and the UEs, and different techniques are used to determine how often, and on
which resource blocks (RBs), would this feedback information be required. Because channel
conditions are constantly varying, the CSI needs to be estimated on a short-term basis. It also
needs to be relayed back to the BS within the channel coherence time, else this information
would be nugatory.

Full duplex communications add to the complexity of determining the CSI. In full-duplex
networks, additional information on the channel in between the UEs of a certain pair is
required. Not only do current wireless systems not count for such information, there is also
no implemented method for which a UE can estimate such UE-UE channels. Additionally, it
is perceivable that continuously updating such information by the UEs would cause excessive
overhead and loads that UEs cannot handle. Consequently, precisely estimating inter-UE
channels might not be feasible. As we previously indicated, we statistically model the
inter-UE channel as follows:

hij,k = GtGrLpAsAf , (4.1)

where Gt and Gr are the antenna gains at the transmitter and the receiver, respectively. Lp

represents the path loss, or equivalently the mean attenuation the signal undergoes in this
channel. As and Af are two random variables that respectively represent the shadowing
effect, and the fast fading effect.

In this chapter, we aim to assess the vitality of inter-UE CSI to the functioning of a
full-duplex network. To this end, we examine the components of the statistical CSI of the
inter-UE channels, jointly and independently. We simulate our proposed algorithms for
multiple scenarios of CSI availability. First, we assume that the inter-UE channel information
is completely unavailable. Second, we consider that the path loss component of the CSI is
available to the scheduler at the BS. Since the path loss is related to the distance between
the UEs, we assume that the presence of a geographical positioning system helps estimate
it. Finally, we assume that the shadowing information is also available. This would form
an additional level of complexity that we consider is possible to model, if knowledge of
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the terrain is present. Additionally, the path loss and the shadowing vary less often than
other factors, such as the fast fading. It would need less periodical updates to convey such
information to the BS. Our aim is to study the impact of the lack–as well as the partial
availability–of inter-UE channel information on the performance of a full-duplex wireless
network. These three scenarios of CSI availability are simulated and compared to the optimal
case, where the CSI is completely known at the BS.

4.2.1 Simulation Parameters

The parameters used to run the simulations in this section are presented in Table 4.1 below.

Table 4.1 Simulation parameters for scheduling with incomplete CSI

Parameter Value

Cell Specifications Single-Cell, 120 Radius
Number of RBs 50
BS Transmit Power 24 dBm
Maximum UE Transmit Power 24 dBm
SIC Value 1011

Number of UEs 10DL, 10UL
Demand Throughput 2 Mbps

4.2.2 Effect Of Incomplete CSI on Greedy Allocation

In this section, we study the effect of incomplete CSI on UE throughput in the case of greedy
resource allocation. Note that under our simulation parameters of 50 resource blocks and 20
UEs, the system is considered to be under heavy load conditions. The channel in between a
pair of UEs is the focus of our work.

We simulate multiple scenarios of CSI availability for our full-duplex Max-SINR algo-
rithm presented in the previous chapter. Figure 4.1 is a CDF plot of the throughput attained
by the UEs across the different simulation scenarios. For reference, a traditional half-duplex
Max-SINR algorithm is simulated under complete CSI. The throughput attained by full-
duplex Max-SINR UEs when the channel state information is complete is the highest among
those simulated. Around 70% of those UEs attained a throughput equal to the demand,
with the lowest UE throughput recorded being around 300 kbps. The performance of UEs
degrades depending on the channel estimation error. The lack of any information on the
inter-UE channels incurs the most degradation in performance. In this case, about 12% of the
UEs attain zero throughput, with the rest of the UEs transmitting with a rate lower than the
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Figure 4.1 Effect of incomplete CSI on full-duplex Max-SINR

optimal case. The performance of the algorithm improves when parts of the channel become
known at the BS. When the path loss information is available, full-duplex Max-SINR UEs
show substantial improvement in performance, where almost half of the UEs got an average
increase in throughput close to 1 Mbps. When the shadowing information is also available,
the number of UEs which were denied throughput drops to zero, with 150 kbps being the
lowest attained UE throughput. In both these cases however, the performance of the UEs is
still degraded when compared with the case for complete CSI. Nonetheless, full-duplex Max-
SINR outperforms half-duplex Max-SINR regardless of the channel estimation errors. Under
these simulation parameters, almost 50% of the half-duplex UEs were denied throughput,
compared to 12% the worst case scenario for full-duplex. In addition, for any UE simulated,
the throughput attained by a full-duplex UE is higher than that attained by a half-duplex
UE. To conclude, it is evident that scheduling without complete information on the channel
between the UEs degrades the performance of full-duplex networks, but this performance
remains much better than that of traditional half-duplex Max-SINR scheduling.

4.2.3 Effect Of Incomplete CSI on Fair Allocation

In this section, we study the effect of incomplete CSI on fair scheduling techniques. Figure 4.2
has box plots of the resulting UE throughputs for our full-duplex Proportional Fair algorithm
under different scenarios of CSI availability. A half-duplex Proportional Fair algorithm is
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also simulated under complete CSI.
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Figure 4.2 Effect of incomplete CSI on full-duplex Proportional Fair

Similar to the case of full-duplex Max-SINR, the lack of CSI deteriorates the performance
of the algorithm, and the presence of partial CSI is sufficient for near-optimal performance.
Nonetheless, in the case where no information on the inter-UE channel is available, the
median value for UE throughput dropped more than 1 Mbps, and the gains with respect
to half-duplex Proportional Fair become questionable. Although the full-duplex algorithm
maintains higher UE throughput values for the majority of the UEs, the fairness of the
algorithm is severely struck. This can be inferred from the size of the box corresponding
to no CSI information, where it spans nearly all the possible values. This effect is due to
the nature of the algorithm, where the scheduling decision at a certain instant is tied to the
previous one in terms of transmitted bits. This incurs that a previously erroneous decision
will be carried on and even magnified.

4.2.4 On Scheduling with Incomplete CSI

In the first part of this chapter, we studied the effects of incomplete CSI on scheduling in
full-duplex wireless networks. We showed that significant losses in performance were to be
expected when inter-UE CSI is not present at the scheduler. Furthermore, the losses incurred
are likely to massively increase in the cases of low SIC or when UEs are situated farther away
from the BS. In our work, we sought an alternative for knowing the exact states of the inter-
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UE channels. As such, we introduce a reinforcement learning based scheduling algorithm
for full-duplex wireless networks. Inter-UE channel information is not a prerequisite for this
scheduling approach which rather learns how to best allocate the network’s radio resources.

Multiple articles in the state-of-the-art have previously addressed utilizing machine
learning to tackle intricate scheduling tasks. The authors in [54] propose a learning based
approach to address multiple cellular network challenges such as limited data availability
and convoluted sample data. The papers in [55] and [56] propose using deep learning to
schedule resources in half-duplex wireless networks. The authors in [57] present a machine
learning based antenna selection algorithm for wireless networks. These and countless
others applications of machine learning in wireless networks exist in the related works
[58]. Nonetheless, our approach in using reinforcement learning to schedule resources in
full-duplex wireless network was a first.

In what follows, we detail our approach to reinforcement learning scheduling. We show
that our proposal can match scheduling with complete CSI in terms of user equipment
throughput, and that it performs well under multiple testing scheduling scenarios: increased
UE numbers, randomized UE demand, and UE clustering, among others.

4.3 The Reinforcement Learning Problem

In this section, we briefly explain the general reinforcement learning problem. Reinforcement
learning is the idea of learning from interaction to achieve a goal [59]. The learner i.e, the
decision maker in such a problem, is known as the agent. Everything else interacting with
this agent is known as the environment. The environment and the agent interact at a sequence
of discrete time steps, t = 0,1,2,3,.... At a moment in time t, the environment is in a state St.
The agent takes an action At from the set of actions available in the current state A(St). As a
consequence of the selected action, the agent will receive a rewardRt+1, and subsequently,
it will find itself in a new state St+1. This agent-environment interaction model is shown in
Fig. 4.3.

Furthermore, the agent, in a state s, selects an action a with a probability p. This mapping
is called the agent’s policy, and is denoted πt. πt(a|s) is thus the probability that At = a

if St = s. As time progresses, a reinforcement learning algorithm should change its policy
following the experience it has gained. The agent’s goal when implementing new policies is
to maximize the received rewards. Reinforcement learning casts a wide net. Its framework is
flexible and can be applied to different problems and via several ways. In what follows, we
implement the abstract of reinforcement learning on the problem of scheduling in full-duplex
wireless networks.
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Figure 4.3 Reinforcement learning model

4.4 Reinforcement Learning Scheduling Algorithm

Let pijk(t) be the probability that uplink UE i gets paired with downlink UE j on RB k, during
TTI t. The sum of all pairing probabilities is equal to 1 for each RB k i.e,

∑
i∈U

∑
j∈D pijk(t)

= 1 ∀ k ∈ K, ∀ t. Let θij be a binary value that is equal to one if pair (i,j) is allocated RB
k, and 0 otherwise. At t = 0, and at the beginning of the scheduling process, all possible
UE pairings have equal probabilities of getting any resource. After any RB is allocated, the
probabilities are updated as follows.

pijk(t + 1) =

 pijk(t) + βR(1− pijk(t)), if θij = 1,

pijk(t)− βRpijk(t), otherwise,
(4.2)

where β is the learning rate, chosen between 0 and 1, and R is the reward. The reward is
evaluated as the number of bits the UE pair has transmitted/received (Tij) on the allocated
RB, divided by the maximum number of bits (Tmax) the UE pair could ideally send/receive
over the channel on the RB i.e, if it was alone in the cell and using the highest modulation
order and coding rate. Tmax is constant for all pairs. The reward is as such chosen in direct
relation to a pair’s radio conditions. The algorithm will reward UE pairs which best utilize
the RBs, thus using the network bandwidth with utmost efficiency, without the need for
inter-UE channel information. The more frequently a pair makes good use of the RB, the
more likely it is to get it within subsequent time slots. In case an RB is not allocated as
a result of all UE queues being empty, the probabilities remain intact. P is a 3-D matrix
containing all the variables pijk.

The learning rate β controls both the speed with which the algorithm converges towards a
preferred scheduling choice, as well as its efficiency. A high value of β would incur that the
algorithm arrives at a preferred choice quicker, but it would be a less efficient one. Ideally,
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we want to chose the highest value of β that would always lead to a good scheduling decision
with respect to maximizing UE throughput values.

In our problem, the agent is the scheduler at the BS. The environment is the UEs, as well
as the resulting UE radio conditions after the pairing decisions. The reward is expressed in
terms of bits transmitted by a UE pair on an allocated resource. Finally, the action is the
process of selecting a UE pair to allocate an RB to.

4.5 Challenges

Scheduling via a reinforcement learning algorithm poses several problems and challenges. In
this section, we highlight these challenges and go over our approaches in tackling them.

Non-Full Buffer Traffic

In our work, we focus on non-full buffer traffic scenarios. As such, any UEs which have
emptied their queue within an allocation round, should be excluded from the scheduling
process in the following one. UEs will be leaving and rejoining the network. Subsequently, all
pairs which have an excluded UE should have their selection probability set to 0. Furthermore,
when an excluded UE has new arrivals, it is re-factored into the scheduling task. With it are
all the possible pairs within which this UE is contained. This raises another problem, what
probabilities should these pairs take then ?

We address this problem by introducing a temporary probability matrix V with pair-
resource probability values vijk. At the beginning of each TTI, V will hold a copy of P.
Resources are allocated within the current TTI according to the temporary matrix. After an
RB is allocated, P is updated following equation (4). When a UE empties its queue within
a TTI, all pairs containing this UE have their probabilities in V set to 0. This insures that
this UE will not get allocated anymore resources within the same TTI. The values of the
remaining probabilities are normalized, i.e., each probability, for a certain RB, is divided
by the sum of the remaining probabilities. This keeps the sum of probabilities equal to one,
unless of course all UE queues are empty. New arrivals are expected at the beginning of
the new TTI (at least a limited number of bits). All UEs are now back in the scheduling
process and the temporary matrix V, used for allocation, gets its values from the up-to-date
P. The pseudo-code for the reinforcement learning algorithm is presented in Algorithm 5.
Note that the total number of possible UE pairingsN is defined as the number of uplink UEs
multiplied by the number of downlink UEs.
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Algorithm 5 RL Scheduling Algorithm
1: Requires: Set of states S, actions A, and rewardsR
2: Input: Learning rate β ∈ [0,1]

3: Initialize: pijk(1)← 1
N

, ∀ (i,j,k) ∈ (U × D ×K)
4: for TTI t=1,. . . ,T
5: V← P
6: for k=1,. . . ,K
7: Draw a pair according to the probabilities in V
8: Allocate k to the drawn UE pair (i′j′)
9: ComputeR = Ti′j′/Tmax

10: for (i,j,k) ∈ (U × D ×K)
11: if θij== 1
12: pijk(t + 1)← pijk(t) + βR(1− pijk(t))
13: else
14: pijk(t + 1)← pijk(t)− βRpijk(t)
15: end if
16: end for
17: if i′ emptied its queue
18: vi′jk(t) = 0, ∀ (j,k) ∈ (D ×K)
19: Normalize V
20: end if
21: if j′ emptied its queue
22: vij′k(t) = 0, ∀ (i,k) ∈ (U × K)
23: Normalize V
24: end if
25: end for
26: end for

Exploration and Exploitation

Our proposal makes it feasible to account for dynamic traffic. With UEs constantly leaving
and joining back, the algorithm would not always select the same UE pair for any RB.
Every allocation the algorithm deems most suitable to maximize throughput values is only
temporary, and bound to change once the pair(s) exits the allocation process or the radio
conditions change. This makes our reinforcement learning algorithm similar to that of an
ϵ-greedy one, where the algorithm will go into exploration with a probability ϵ [59]. However,
in our case, the value of ϵ is determined by the demand of the UEs. For a low UE demand,
ϵ is relatively high, and the algorithm could fall back into exploration several times within
the same TTI. In the case of full buffer traffic, ϵ is equal to zero, and the algorithm would
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never go into exploration. Since we implement a non full-buffer traffic model, it is counter
intuitive to manually assign a value for ϵ.

Online Learning and Dynamic Radio Conditions

As a result of shadowing and the time variant fast fading, any suitable pair selected by the
learning algorithm to maximize UE and network throughput values, will not remain the best
choice over the following TTIs. The radio conditions of each UE pair are bound to change
from one TTI to another. In the case of non-full buffer traffic, this does not pose a major
problem. After all, the algorithm is bound to regularly go into exploration mode. In all
cases, our learning algorithm cannot be expected to find the relatively best allocation within
one TTI. As such, it is correct to assume that the algorithm is learning the average radio
conditions of the UE pairs across the TTIs, rather than the instantaneous ones. This is bound
to be somewhat costly with respect to a greedy allocation method with full CSI.

Because of our non full-buffer traffic model, dynamic arrivals, as well as the varying radio
conditions, our algorithm is constantly learning. The dynamics of the network imply that
the UE pair that would maximize UE and network throughput on a certain RB is constantly
changing. We show, via our simulations, that our algorithm is capable of adapting to this
change, as the allocation probabilities per RB are updated each TTI.

Positive Reinforcement

In our proposal, we always use a positive payoff. Unless a selected UE pair transmits zero
bits, its probability of selection would always increase, no matter how slightly, for the next
TTI. In the context of our simulation scenarios, we cannot determine if the number of bits
a certain UE pair sent/received is good enough or not. A UE pair situated away from the
BS might return a small reward, but it could still be among the best performing pairs in the
current network. Using a negative payoff, i.e., reducing the probability of selection for this
pair, could in fact set the algorithm farther away from reaching its goal of maximizing UE
and network throughput values.

4.6 Simulation and Results

We seek via our different simulation scenarios to address the validity and practicality of our
machine learning scheduling proposal. First, and as the research into full-duplex communi-
cations shifts from micro to macro cells, we assess the performance of our algorithm in a
larger cell scenario. Second, we test the limits of our proposal, and show that with adequate
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parameters, it can match the performance of scheduling with complete CSI. Additionally, we
test our algorithm under different circumstances: variable UE traffic, increased UE numbers,
low SIC values, and UE clustering among others.

Table 4.2 Simulation parameters for reinforcement learning based scheduling

Parameter Value

Cell Specifications Single-Cell, 120,500,1000 m Radius
Number of RBs 50
SIC Value 1011 or 109

Number of UEs 5DL, 5UL or 10DL, 10UL
Demand Throughput 4 Mbps
TTI Duration 1 ms

The simulation parameters we used are presented in Table 4.2. In assessing the perfor-
mance of our algorithm, we do not take into account the first few TTIs (up to 10% of the
total) where the allocation process can be arbitrary. In section 4.6.1 of the simulations the
value of β is varied between 0.015 and 0.9 in order to study the significance of the learning
rate. In the remainder of the simulations, the value of β is fixed at 0.015. This value of β

guarantees the learning algorithm explores enough to find the pairs that maximize UE and
network throughput every time.

4.6.1 Effect of the Learning Rate β

Case of small cell

We seek to study the effect of varying the learning rate on the performance of the algorithm.
We consider a small cell of radius 120 m, the cell has 10 UEs: 5 uplink and 5 downlink. The
throughput demand is 4 Mbps. The UE throughput values attained for β = 0.1, 0.3, 0.5, 0.7,
and 0.9 are plotted in the CDF plot of Fig. 4.4.

For reference, a greedy full-duplex Max Sum-Rate algorithm we enhanced is also plotted.
This algorithm allocates resources to UE pairs that can get the highest throughput values. This
makes it an ideal reference to the performance we expect from a full-duplex system which
has complete channel knowledge. Additionally, we plot a random resource allocation scheme
in our full-duplex Round Robin algorithm, and a fair allocation scheme in our full-duplex
Proportional Fair algorithm. These three algorithms are simulated with complete CSI. For β

= 0.1, around 70% of the learning algorithm UEs attained a throughput equal to their demand
of 4 Mbps. This is almost identical to the full-duplex Max Sum-Rate algorithm. As the value
of β increases, the number of UEs attaining the nominal throughput value decreases. For β =
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Figure 4.4 Throughput as a function of the learning rate β in a small cell

0.9, only about 50% of the simulated UEs attain a throughput equal to their demand. The
resource allocation process becomes near random for this value of β, hence the similarity to
the full-duplex Round Robin algorithm. Moreover, the plot for full-duplex Proportional Fair
contrasts the difference in objectives with respect to our greedy algorithm. Only about 55%
of the full-duplex Proportional Fair algorithm UEs got a throughput equal to the demand
of 4 Mbps, significantly lower than the 70% for our learning algorithm. However, for all
except one of the Proportional Fair UEs, the lowest recorded throughput value is 2.7 Mbps,
significantly larger than 0.6 Mbps, the lowest recorded value for our learning algorithm
(for β = 0.1). Our learning based algorithm is greedy and seeks to extract the utmost gain
from the bandwidth, while full-duplex Proportional Fair seeks to balance between bandwidth
efficiency and achieving fairness between the UEs.

Finally, as we illustrate later on, the lower the value of β, the more likely it is that the
learning algorithm identifies the best pair to allocate each RB to. Nonetheless, it would take
longer for the algorithm to find this pair. That is to say that the higher the value of β is the
quicker the algorithm can react to a change in the network, albeit at the cost of making more
incorrect scheduling decisions with respect to maximizing UE throughput values.
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Case of large cell

Whilst full-duplex communications are most suitable for small cells, the current state-of-
the-art cancellation technologies allow mitigating self-interference by values up to 110 dB.
This means that medium to large cell scenarios are pretty feasible. We repeat our simulation
from the previous section, albeit with a cell radius of 500 m. This change in cell size, with
the transmission powers being fixed, is bound to put more UEs in disadvantageous radio
conditions. Cell edge UEs are more likely to have low SINR values. A bad scheduling
decision is now more heavily punished. The results are shown in Fig. 4.5.

For β = 0.1, about 30% of the UEs attained a throughput equal to the demand. The
full-duplex Max Sum-Rate proposal attained a value close to 47%. Similar to before, the
higher the value of β, the lower the performance of the algorithm. For β = 0.5, only about
25% of the UEs attained a throughput equal to the demand. Nonetheless, the gains with
respect to HD wireless communications remain evident. HD Max Sum-Rate UEs has more
UEs attaining a throughput equal to the demand in comparison to our reinforcement learning
proposal (β = 0.5). Nonetheless, it also has about 30% of the UEs with zero throughput.
Almost none of the service based learning UEs, regardless of the value of β, are denied
throughput.
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Figure 4.5 UE throughput as a function of β. 500 m cell radius

Additionally, we compare our machine learning solution to a full-duplex Max Sum-Rate
algorithm simulation done without any information on the UE-UE channels. In such a case,
almost 13% of the UEs were denied service, and 30% of the UEs attained a throughput
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equal to the demand. The performance of our algorithm for β = 0.1 thus barely outperforms
scheduling with incomplete CSI. As such, we lower the value of the learning rate and
simulate our learning algorithm for β = 0.015. In this case, our proposal can better match
the performance of scheduling with complete CSI with about 44% of the UE attaining a
throughput equal to the demand and less than 1% of them being denied throughput.

Selection of the value of the learning rate

In our aim to deduct the best value for β, we simulate our algorithm for different values
of the learning rate β and record how the algorithm would fare in terms of total network
throughout with respect to scheduling with complete CSI, in each time slot. Figure 4.6 has
a logarithmic scale plot with the results for β = 0.015, 0.1, and 0.5 for one simulation run
across 6000 TTIs. In this simulation, and for the purpose of better distinguishing between
the results, the radius of the cell is increased to 1 km. A wrong scheduling decision could
now be more costly for the network.
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Figure 4.6 Efficiency of the algorithm as a function of time and β

For β = 0.5, the algorithm will reach an efficiency of about 85% in 200 TTIs. It no longer
improves. For β = 0.1, the algorithm will take about 1000 TTIs to reach an efficiency of
90% where it no longer improves on average. For β = 0.015, the algorithm is shown to
be constantly improving. For this simulation, it would eventually reach upwards of 99%
efficiency. A lower value of β would eventually lead to better efficiency, but at the cost of
requiring more time to do so.



4.6 Simulation and Results 61

Since the value of β = 0.1 can barely outperform scheduling with incomplete CSI as
illustrated in Fig. 4.5, a lower value of β is required for our macro-cell simulations. As such,
for the remainder of the simulations, the value of β is set to 0.015.

4.6.2 Performance evaluation as a function of time

At the beginning of the simulation, the allocation process by our learning algorithm can
be said to be arbitrary. Nonetheless, each TTI the algorithm learns how to better allocate
resources in a manner that maximizes UE and network throughput. For a 500 m cell radius,
and a value of β = 0.015, we track the progress of our algorithm as a function of time.
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Figure 4.7 Efficiency of the learning algorithm as a function of time

We define the efficiency of the algorithm as the total network throughput attained by
the learning algorithm divided by that attained by the full-duplex Max Sum-Rate algorithm
(with complete CSI). As explained before, we consider the latter to be a reference due to
the similarity in objectives. Figure 4.7 has a plot with the results. 10 TTIs, equivalently
10 ms, are enough for the algorithm to reach a 73% efficiency. At 1000 TTIs, or 1 s, the
learning algorithm achieves about 95% of the throughput attained by full-duplex Max Sum-
Rate. From these results we can conclude that the learning algorithm can respond quickly
to changes in the network, whether caused by dynamic radio conditions (Rayleigh fading
channel), UEs leaving or rejoining the network, or even UE mobility.
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4.6.3 Proximity to Greedy Scheduling with Complete CSI

Whilst our learning algorithm can still provide good results in cases where wrong decisions
are heavily punished (4.6.1), it still clearly trails scheduling with complete CSI. Figure 4.5
shows that our algorithm provided less UEs with the required demand, in comparison with
full-duplex Max Sum-Rate. We aim to determine how closely our algorithm can mimic
the performance of scheduling with complete CSI. The value of β is set to 0.015. This
allows the algorithm to make thorougher explorations. The rest of the parameters remain
as in the previous subsection with 10 UEs present in a 500 m radius cell. For the same UE
distributions and radio conditions, we record the number of bits transmitted or received by
each UE when scheduled by both our reinforcement learning proposal and by full-duplex
Max Sum-Rate scheduling with complete CSI. Let δ be the difference in throughput assigned
to the same UEs by the two algorithms. Figure 4.8 shows a CDF plot of the results.
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Figure 4.8 Proximity to scheduling with complete CSI

More than 25% of the time, the UEs will get the exact same throughput values. Moreover,
the curve is almost perfectly symmetrical with respect to δ = 0. This indicates that even when
our learning algorithm decided to give resources differently than full-duplex Max Sum-Rate
scheduling with complete CSI, it allocated them to pairs which were doing just as good. In
fact, the reinforcement learning approach would lose at most 2% in total network throughput,
even though it takes scheduling decisions without any information on the inter-UE channels.
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4.6.4 Effect of Varying User Characteristics

In this section, we vary different UE characteristics from randomizing traffic to clustering UEs
and increasing UE numbers, and study the effects they have on UE performance. We show
that regardless of the scenario at hand, our learning algorithm can mimic the performance of
scheduling with complete CSI with high efficiency, and that it remains more profitable than
scheduling without information on the inter-UE channels.

Effect of Randomized User Demand

In this subsection, we aim to study the effect of different UE throughput demands on the
performance of our reinforcement learning algorithm. To this end, we simulate the learning
algorithm vs. full-duplex Max Sum-Rate in a 500 m radius cell scenario with 10 UEs present.
The throughput demand for each UE is set to random value uniformly chosen between 0 and
4 Mbps.
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Figure 4.9 Effect of randomized UE traffic

The performance of our reinforcement algorithm mimics that of greedy allocation with
complete CSI, as illustrated in Fig. 4.9. Nonetheless, it is also evident that it lags in
performance. The reinforcement learning algorithm denies throughput to about 1% of the
UEs and has a median throughput value of 1.5 Mbps. On the other hand, scheduling without
inter-UE channel information denies throughput to about 5% of the simulated UEs and has a
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median throughput value of 1.25 Mbps. This scenario is not very punishing to scheduling
with incomplete CSI as many UEs have low throughput demands.

Performance Assessment in the Case of UE Clustering

Additionally, we seek to study the effect of UE clustering on the performance of our algorithm.
For a cell of 500 m radius, the UEs are all placed within 200 m distance from the BS. The
SIC value is returned to the relatively good value of 1011, and the remainder of the simulation
parameters are left unchanged. Following the SINR calculation for downlink UEs in equation,
the proximity of uplink and downlink UEs (as a result of UE clustering) degrades the radio
conditions of downlink UEs. A wrong scheduling decision is bound to now have a more
grievous effect on the performance in general, and on downlink UEs throughputs specifically.
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Figure 4.10 Effect of clustering on downlink UE performance

Figure 4.10 shows the CDF plots of the downlink UE throughput values for full-duplex
Max Sum-Rate scheduling with both complete and incomplete CSI, and that of our learning
proposal as well. The complete CSI full-duplex Max Sum-Rate scheduling algorithm edges
out the learning algorithm in terms of UEs attaining a throughput equal to the demand (35%
to 28%). The losses for the network are mainly found in downlink UEs which on average
deliver around 86% of the throughput attained by the UEs scheduled with complete CSI.
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This form of UE clustering incurs a small performance penalty on our reinforcement learning
scheduling proposal. Nonetheless, Max Sum-Rate scheduling with incomplete CSI incurs a
higher loss. In this case, 18% of the simulated downlink UEs are denied any resources with
about 30% of the simulated UEs attaining a throughput equal to the demand.

Effect of UE Mobility on Performance

In this section, we study the effect of mobile UEs on the performance of our algorithm. We
consider a random walk model [60] in determining the movement of the UEs. Each TTI, the
UEs will move from a current location to a new one by choosing a speed and a direction
randomly from the uniform intervals [speedmin,speedmax] and [0,2π], respectively. The
minimum and maximum speeds are chosen as the average velocity of a walking person
(0.5 m/s) and the average velocity of a moving car (20 m/s), respectively. As the positions of
the UEs change, their individual radio conditions will vary. This variation is related to their
proximity to the BS, as well as to the resulting changes in the shadowing and the fast fading
effects. We simulate our learning algorithm alongside full-duplex Max Sum-Rate in both
complete and incomplete CSI scenarios. The simulation is done with 10 UEs present in a
500 m radius cell. Figure 4.11 has a CDF plot of the resulting UE throughputs.
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Figure 4.11 Effect of UE mobility on performance

Our algorithm shows more UEs attaining the throughput demand (40% to about 35%).
Nonetheless, on average full-duplex Max Sum-Rate UEs, scheduled with complete CSI,
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will get higher throughput values. It has a median UE throughput value equal to about
3.2 Mbps compared to a 2.6 Mbps median value for our learning algorithm. UE mobility will
force erroneous decisions (with respect to maximizing UE throughput) and incite changes
in performance for both algorithms. However, there is no noticeable added degradation in
performance for our proposal in comparison to scheduling with complete CSI, and with
respect to previous scheduling scenarios. Our learning algorithm can adapt over time to
changes in UE radio conditions, limiting thus its losses. In comparison, scheduling without
information on the inter-UE channels incurs higher losses in throughput. Around 20% of the
UEs in that case attain a throughput of 0 Mbps with only about 31% attaining a throughput
equal to the demand.

Effect of an Increase in the Number of UEs

We seek to study the effect of increased UE numbers in the cell on the performance of our
proposal. The number of UEs is increased to 20: 10 uplink and 10 downlink. The number of
RBs is also doubled. Our aim is to study how the learning algorithm copes with increased
scheduling options and not to increase the network load. The cell radius is 500 m and the
SIC value remains at the relatively good value of 1011. The throughput demand is 4 Mbps
and the learning factor β is set to 0.015. Accordingly, there are 100 different possible pairing
scenarios. We simulate the learning algorithm vs. the full-duplex Max Sum-Rate proposal
for both scenarios of complete and incomplete CSI.

Figure 4.12 has the CDF plot of the corresponding UE throughputs. Around 45% of
the full-duplex Max Sum-Rate UEs–simulated with complete CSI–attained a throughput
equal to the demand compared to 38% for the learning algorithm. Around 14% of the
former UEs were completely denied throughput compared to none in the case of the learning
algorithm. Our proposal makes good enough scheduling decisions to mimic the full-duplex
Max Sum-Rate algorithm with complete CSI. The learning algorithm will lose a small part
of the efficiency in terms of total network throughput. Arguably, this is a trade-off between
efficiency and a more fair resource allocation. Furthermore, we simulate how the full-duplex
Max Sum-Rate algorithm would fare if the inter-UE channel information was not available.
In such a case, almost 30% of the UEs are completely denied throughput. Additionally, every
simulated UE attains a throughput value lower than that achieved by our learning proposal.

Scalability of the Problem

Furthermore, we look at how an increase in the number of UEs in the network affects the time
needed for the algorithm to become efficient. Figure 4.13 has a plot detailing the number of
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TTIs needed for our learning algorithm to reach 90% efficiency (with respect to full-duplex
Max Sum-Rate scheduling with complete CSI).
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Figure 4.12 UE throughput as a function of UE numbers
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Figure 4.13 TTIs needed to attain 90% efficiency as a function of the number of UEs
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As the number of UEs in the network increases, more time is required to reach the 90%
efficiency mark. At 20 UEs, 3000 TTI are needed. At 60 UEs, about 8000 TTIs are needed.
Nonetheless, with 1 TTI equaling 1 ms, the problem remains scalable even as the number of
UEs in the network increases.

Finally, we compare how both our proposal and scheduling with incomplete CSI fare
with respect to scheduling with complete CSI in terms of total network throughput, in each
of the aforementioned scenarios. Table 4.3 has the average percentage efficiency of both
proposals in each of the mentioned cases.

Table 4.3 Efficiency with respect to scheduling with complete CSI

Randomized Demand Clustering Mobility Increased UE numbers
RL Algorithm 91% 90% 90% 93%

Incomplete CSI 89% 78% 79% 78%

In the case of randomized UE traffic, scheduling with incomplete CSI and our RL algorithm
fare similarly. After all, the fact that many UEs have a limited amount traffic mitigates the
losses of the scheduling without inter-UE channel information. In each of the remaining
scenarios, our proposal significantly outperforms scheduling with incomplete CSI.

4.6.5 UE Performance Under Low SIC

We lower the value of the SIC factor to 109. With 10 UEs present in a 500 m radius cell,
the remainder of the simulation parameters remain unchanged as above. This is bound to
negatively impact the performance of uplink UEs in the network as their SINR values degrade.
Multiple uplink UEs, especially those on the cell borders, would now suffer from bad radio
conditions. An incorrect scheduling decision, with respect to maximizing UE and network
throughput, made by the learning algorithm would be more severely punished than before.

Figure 4.14 has box plots [61] of the resulting UE throughput values for our reinforcement
learning algorithm and full-duplex Max Sum-Rate, both with and without complete CSI.
Both our algorithm and Max Sum-Rate scheduling with complete CSI show again a similar
distribution of UE throughputs with maximums equal to the demand, and minimums equal to
zero. Nonetheless, the full-duplex Max Sum-Rate algorithm with complete CSI has more
UEs achieving a throughput equal to the demand, and fewer ones attaining zero throughput.
The increased cost on scheduling errors incurred by lowering the SIC factor are visible on the
network performance as a whole, where the learning algorithm would lose up to 19% in total
network throughput with respect to scheduling with complete CSI. This is not a significant
drop in performance. Nonetheless, uplink UEs are the most affected by this degradation.
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Figure 4.14 Effect of low SIC on UE performance

Downlink UEs scheduled by our learning algorithm attain throughputs, on average, equal to
97% of those achieved by their complete CSI full-duplex Max Sum-Rate counterparts, but
uplink UEs only manage around 60%. In comparison to scheduling with incomplete CSI, the
median UE throughput value for our algorithm sits at about 0.75 Mbps. For the former, it
is about 0.4 Mbps. In addition, uplink UEs scheduled without information on the inter-UE
channels manage only about 40% efficiency in comparison to scheduling with complete CSI.

4.7 Conclusion

In this chapter, we went over the consequences of scheduling with incomplete CSI on
the performance of full-duplex wireless networks. We simulated both our fair and greedy
scheduling proposals in multiple levels of incomplete CSI, and showed that significant losses
in performances are incurred as a result. As an alternative. we presented a reinforcement
learning based approach to scheduling in full-duplex wireless networks. The main objective
was to avoid the added intricacies of scheduling in such networks. Specifically, we let go the
unrealistic assumption of perfect CSI, as well as the regularly expected knowledge of all UE-
to-UE channel states. We detailed the main challenges facing a machine learning scheduling
proposal, focusing on the effects of non-full buffer traffic and dynamic radio conditions on
the performance of the algorithm. We tested our proposal in multiple scheduling scenarios
from randomized UE traffic, to UE clustering and in the presence of low SIC. While UE
clustering degrades the performance of downlink UEs, and low SIC that of uplink UEs,
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we illustrated that our learning proposal still performs well in terms of UE and network
throughput. Accordingly, we verified the validity of our algorithm regardless of any obstacles
facing the scheduling task.



Chapter 5

Centralized Approach to Power
Allocation

5.1 Introduction

In this chapter, we propose a centralized optimal approach to scheduling and power allocation
in full-duplex wireless networks. We aim to use power allocation alongside scheduling to
overcome the interference problems generated by full-duplex wireless communications.
Since both co-channel interference and self-interference are tied to the powers on the uplink
and the downlink, respectively, power allocation has the potential to play an important role
in mitigating these interferences. In this centralized approach, a central unit, i.e., the base
station (BS) is assumed to have all the information necessary to both schedule and allocate
power on the resources. We formulate a queue-aware fair scheduling and power allocation
problem for full-duplex wireless networks. Due to its intractability, we decompose this
problem into two: a scheduling problem and a power allocation problem. We compare our
proposal to the state-of-the-art, and show that it improves fairness among the user equipment
(UEs) at no cost in the system’s performance.

5.2 Problem Formulation

We propose a queue-aware scheduling and power allocation optimal problem for full-duplex
wireless networks. Our aim is to maximize the UEs’ SINR values, while at the same time
enforcing fairness amongst them. Solving such a problem requires information on the UE
radio conditions, their queue statuses, as well as an innate definition of fairness. As such, we
define a UE pair priority and formulate the problem with the objective of maximizing the
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sum of these priorities.
The priority of a UE pair is defined as a function of its current radio conditions, repre-

sented by the sum of the log of the pair’s UE SINR values, and its historic radio conditions,
represented by the number of bits these UEs have already transmitted. The priority for an
uplink-downlink UE pair i-j, on resource block (RB) k, is defined as:

ρijk =
log(Su

j (i, k)) + log(Sd
i (j, k))

T u
i + T d

j

, (5.1)

where T u
i is the number of bits UE i has transmitted in a certain time window. Consequently,

the fairness is relative to the UE SINR. The priority of a certain pair, and with it the priority
of the UEs which have transmitted for a prolonged period of time will drop. The sum of
logarithmic functions of the SINR enforces fairness as illustrated in [62]. It dictates that
no UE will attain an SINR equal to zero. Furthermore, the UE queue is finite, and the UE
priorities are dependent on the transmitted bits, as such, they are periodically reset. This
guarantees that no UE priority will be zero, as long as it can, and has, bits to transmit. The
UE pair-resource scheduling variable zijk, is defined ∀ k ∈ K, ∀ i ∈ I, ∀ j ∈ D, and is equal
to one if uplink UE i is paired with downlink UE j on RB k. It is equal to zero otherwise. In
this optimization problem, the variables are the UE pair-RB scheduling variables, and the
uplink and downlink powers. We formulate the problem for TTI t as follows:
Scheduling and Power Allocation Problem (P t) :

Maximize
zijk,P0k,Pik

∑
k∈K

∑
i∈I

∑
j∈D

zijk.ρijk. (5.2a)

Subject to
∑
i∈I

∑
j∈D

zijk ≤ 1, ∀k ∈ K, (5.2b)

∑
k∈K

∑
j∈D

zijkT u
ijk ≤ Du

i , ∀i ∈ I, (5.2c)

∑
k∈K

∑
i∈I

zijkT d
ijk ≤ Dd

j , ∀j ∈ D, (5.2d)

∑
k∈K

P0k ≤ pmax
0 , (5.2e)

∑
k∈K

Pik ≤ pmax
i , ∀i ∈ I, (5.2f)

Pik ≥ pmin
i , ∀i ∈ I,∀k ∈ Ki (5.2g)

P0k ≥ pmin
0 , ∀k ∈ K, (5.2h)

zijk ∈ {0, 1}, ∀i ∈ I,∀j ∈ D,∀k ∈ K. (5.2i)
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Ki is the set of RBs allocated to UE i. The resource utiliziation factor introduced in
Chapter 3 is assumed to be equal to one in the context of this chapter. Equation (5.2a) is the
objective of our problem, to select the pairs which have the highest priorities. According
to (5.2b), each RB should be allocated to either one or no pair. Equations (5.2c) and (5.2d)
help incorporate queue-awareness. By estimating the number of bits a UE can transmit (T u

ijk)
or receive (T d

ijk) on an RB, these constraints ensure that a UE will get a certain number of
resources, if and only if, it is going to use them in their entirety. Equation (5.2e) indicates
the power budget at the BS. The Equations in (5.2f) limit the transmit power of a UE to a
maximum value. Due to the necessity of giving minimum power values on the RBs as to
avoid mathematical intractability (i.e., log(0)), we add the constraints (5.2g) and (5.2h). pmin

i

and pmin
0 are constants and equal to 0.001 W and 0.005 W, respectively. Note that the UEs

on the uplink and the BS on the downlink will only transmit on allocated RBs.
The scheduling problem presented is combinatorial in nature. Addressing it together with

power allocation in an optimal manner is challenging, especially as the combined problem
is of type mixed integer non-linear programming (MINLP). It will become intractable as
the number of UEs and RBs increase. As such, we solve this problem according to the
framework presented in the following section.

5.3 Problem Solving Framework
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Figure 5.1 Scheduling and power allocation framework
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The optimal problem is decomposed and solved according to the framework illustrated
in Fig. 5.1 below. Knowing the UE radio conditions and their queue statuses, we obtain an
optimal resource allocation matrix z∗

ijk with fixed uplink and downlink power values within
the feasible limits i.e., satisfying the power constraints. Afterwards, the power allocation
problem takes this matrix as input, and computes the powers on the uplink and the downlink.
The UE SINR values are recomputed using the optimal power values, and the number of
bits each UE can transmit, or receive, is calculated. The UE queues Qu

i and Qd
j are then

appropriately deducted depending on the resources each UE was allocated. At the beginning
of the next TTI, new arrivals are added to the UE queues, and the UE demands Du

i and Dd
j

are updated.

5.3.1 Scheduling Problem

According to the proposed framework, and with fixed powers on the RBs, the optimization
variables are now the values of zijk. The scheduling problem is written as follows:
(P t

S):
Maximize

zijk

∑
k∈K

∑
i∈I

∑
j∈D

zijk.ρijk. (5.3)

Subject to (5.2b) to (5.2d)

The values of zijk are binary. The constraints are linear. This problem is as such of type
integer linear programming (ILP). The number of constraints and variables are important
factors when estimating if this problem is tractable. Generally, ILP problems are solved
using a linear-programming based branch-and-bound approach. The idea of this approach is
to look for an integer solution by branching and bounding on the decision variables provided
by the LP relaxations. Thus, the number of integer variables determines the size of the search
tree and influences the running time of the algorithm.

5.3.2 Power Allocation Problem and Convex Transformation

Power allocation is performed after the resources are scheduled. The optimization variables
are now the power levels on the RBs P0k and Pik. The problem is written as follows:
(P t

P A):

Maximize
P0k,Pik

∑
k∈K

∑
i∈I

∑
j∈D

z∗
ijk

Ti + Tj

.(log( Pik|hu
ik|2

N0k + P0k

CSI

) + log(
P0k|hd

jk|2

Njk + Pik|hij,k|2
)), (5.4)

Subject to (5.2e) to (5.2h).
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The expression of the SINR has the following form:

log( ax

b + cy
), (5.5)

where a, b, and c are constants. x and y are the optimization variables that represent the
powers. Maximizing a concave function, subject to linear and convex constraints, leads to a
convex problem. We perform a logarithmic change to the variables and the constants, i.e.,
x̂ = log x. This changes equation (5.5) into

log(ex̂+â)− log(eb̂ + eŷ+ĉ) = x̂ + â− log(eb̂ + eŷ+ĉ), (5.6)

x̂ + â is a linear function, therefore it is a concave function [50]. The function log ∑
ex is

convex, therefore − log ∑
ex is concave. Thus, the expression in (5.6) is concave. As the

objective function is concave, we still need to proof that the constraints are convex. These
constraints can be written in the form of:

∑
x ≤ d. (5.7)

With the change of variables we did, it becomes:

∑
ex̂ − d ≤ 0. (5.8)

∑
ex is a convex function and d is a constant, this means that (5.8) is convex. In conclusion,

the power allocation problem can be transformed into a non-linear convex problem, and can
be solved efficiently by standard convex program solvers such as CVX [63]

5.4 Simulation and Results

5.4.1 Simulation Parameters

The simulation parameters we used are presented in Table 5.1. In the case where power
allocation is not used, maximum transmit power per RB is assumed.

5.4.2 Gain In Throughput and Fairness

We seek to compare our proposed algorithm to the state-of-the-art. As such, we plot the
throughputs attained by the UEs for our full-duplex Priority Based algorithm, and for the
sum-rate maximization algorithm proposed in [26].
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Table 5.1 Simulation parameters for centralized power allocation

Parameter Value

Cell Specifications Single-Cell, 120 m Radius
Number of RBs 50
SIC Value 1011 or 108

Number of UEs 10 UL,10 DL
Demand Throughput 2 Mbps
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Figure 5.2 UE Throughput: Priority Based full-duplex and Max Sum-Rate

The graph in Fig. 5.2 has a CDF plot with the results. In comparison to the sum-rate
maximization algorithm we simulated, our full-duplex algorithm has less UEs attaining
the maximum throughput value of 2 Mbps. However, it has no UEs attaining values lower
than 1.2 Mbps, whilst the lowest throughput for the sum-rate algorithm is 0 Mbps. Our
algorithm focuses more on the aspect of UE fairness, giving more resources to UEs which
have transmitted less often than others.

Furthermore, we seek to study the effect this added fairness has on the overall network
performance. Figure 5.3 has box plots for network throughputs attained by our algorithm, and
by the sum-rate maximization algorithm throughout the simulations. The highest network
throughput attained by the sum-rate algorithm, between 500 simulation runs, is around
38 Mbps, compared to 38.4 Mbps for our algorithm. The latter has 36.3 Mbps as the lowest
attained network throughput, compared to around 35.6 Mbps for the sum-rate algorithm.
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Figure 5.3 Network throughput: Max-Sum Rate and Priority Based full-duplex

In general, our algorithm slightly improves the overall network throughput, and the added
fairness comes at no cost in the overall system performance. This is mainly due to the effects
of multi-user diversity and dynamic traffic. With UEs having finite queues and limited bits to
transmit, UEs with high SINR values will not hog the resources and transmit indefinitely. If
the UEs were to have full buffer traffic, the sum-rate algorithm would always produce higher
network throughput. Nonetheless, this is not the case neither in our model, nor in real life
wireless networks.

5.4.3 Power Expenditure and Effect on UE Throughput

In this subsection, we seek to compare the difference in power expenditure by our algorithm,
in the presence and absence of power allocation. For the case where the powers are not
optimally allocated, the transmit power of a UE on an RB is equal to the maximum transmit
power, divided by the number of RBs it was allocated during that TTI. On the downlink, it
is the BS maximum transmit power divided by the number of allocated RBs. In order to
compare the total power expended we plot the total power spent by UEs on the uplink and by
the BS on the downlink, when our power allocation algorithm is used. The results can be
seen in the CDF plot of Fig. 5.4.

The maximum transmit power for the UEs and the BS–used when simulating the schedul-
ing algorithm without power allocation–is also shown. From the plot for the uplink UEs
transmit power, we can notice that in our simulations power allocation massively saved



78 Centralized Approach to Power Allocation

on power. Almost half of the the UEs on the uplink did not transmit at maximum power.
However, no such savings can be seen on the downlink, where in the few cases where the
BS did not transmit at maximum power, it actually transmitted at a value pretty close to
just that. In the end, because of how the SINR values on the uplink and the downlink are
interconnected, it will always be a trade-off on where the algorithm can save or expend power.
A relation can also be drawn to the SIC factors. If the network struggles on the uplink (due
to high self-interference for example), the power allocation could decrease the power on the
downlink and increase it on the uplink.
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Figure 5.4 Total power expended by the UEs and the BS

We furthermore look at how this deviation from maximum power affects UE performance
in the network. Figure 5.5 has a CDF plot with the corresponding UE throughputs. We
notice that the ranges for the throughput values are almost identical, with a minimum close to
1.2 Mbps and a maximum equal to the demand of 2 Mbps. The median value is also identical
for the two algorithms at around 1.93 Mbps. Nonetheless, the box for the case of power
allocation is slightly shifted upwards and smaller. This indicates a higher range of values
for these UEs. Power allocation produced slightly better performance for the UEs with less
power being expended.
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Figure 5.5 Effect of power allocation on UE performance

5.4.4 Effect of Low Self-Interference Cancellation

We want to study the performance of our algorithm in case of relatively low SIC. The SIC
value is lowered to 108. The rest of the parameters remain unchanged from the previous
section. Following the uplink UE SINR equation, the value of the SIC affects the performance
of uplink UEs. We use bag plots [64] to assess the SINR values attained by uplink UEs as a
function of their transmission powers on the RBs. Figures 5.6a and 5.6b show the results,
with and without power allocation, respectively.

The inner bag (dark blue) in Fig. 5.6a is thinner than that corresponding to the algorithm
runs without power allocation (shown in Fig. 5.6b). This implies that the power spread is
smaller in the case of power allocation. Furthermore, the SINR spread favors the case of the
latter as well. Power allocation helped increase the SINR values of the worst performing
UEs. The lowest UE SINR value in the case of power allocation is -15 dB compared to
-20 dB for the case without. Finally, the bag in Fig. 5.6a slopes upwards. This means
that the SINR increases as the power expenditure increases. This is not true for the case
where maximum power is used, where sometimes the expenditure of uplink power does not
necessarily translate into better SINR.
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Figure 5.6 Effect of power allocation on UE performance in the case of low SIC

5.5 Conclusion

In this chapter, we presented our optimal full-duplex Priority Based algorithm for scheduling
and power allocation in full-duplex wireless networks. We sought to fairly schedule the
resources while appropriately allocating power to the UEs. Our algorithm is queue-aware
and takes dynamic traffic arrivals into account. Additionally, it enforces fairness among the
UEs without any cost in the system’s performance. Finally, optimally allocating power on the
RBs decreased expenditure and helped improve radio conditions for the worst faring UEs.



Chapter 6

Distributed Approach to Power
Allocation

6.1 Introduction

As illustrated in this thesis thus far, and as a result of self-interference, uplink user equipment
(UEs) in a full-duplex network suffer a degradation in performance with an increase in
the power on the downlink. Furthermore, and due to the presence of intra-cell co-channel
interference, downlink UEs in the network would suffer a degradation in performance as a
result of an increase in the power on the uplink. UEs on the uplink and the base station (BS)
on the downlink are competitors with contradicting objectives. This makes a selfish game
theoretic approach that pits the UEs and the BS as competing players well suited for power
allocation in full-duplex wireless networks. In this chapter, we propose three non-cooperative
games to help tackle the intricate task of allocating power to scheduled pairs of UEs, with
objectives varying from improving UE performance to reducing power expenditure. The
games have two sets of players: the UEs on the uplink, and the BS on the downlink. We use
a special class of games–known as super-modular games–to draft different player utilities
with different objectives. Via a set of exhaustive simulations, we assess the significance of
power allocation in full-duplex networks, and determine both its gains and limitations.

6.2 Framework for Scheduling and Power Allocation

We propose three games for power allocation in full-duplex wireless networks. First, the
scheduler will allocate the resources to pairs of uplink-downlink UEs with the assumption
of constant powers. The latter are chosen to be feasible within the power constraints. For
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this task, we use the full-duplex Proportional Fair algorithm we proposed in Chapter 3.
Afterwards, our game theoretic proposals are used to calculate the transmit power on every
allocated resource block (RB).
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i Qd
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Figure 6.1 Scheduling and power allocation framework

Knowing the UE radio conditions and their queue statuses, we obtain an optimal resource
allocation matrix z∗

ijk with fixed uplink and downlink power values. Afterwards, the power
allocation problem takes this matrix as input, and computes the power levels on the uplink
and the downlink. The UE SINR values are recomputed using the optimal power values,
and the number of bits each UE can transmit (T u

ijk), or receive (T d
ijk), is calculated. The UE

queues Qu
i and Qd

j are then appropriately deducted depending on the resources each UE was
allocated. At the beginning of the next TTI, new arrivals are added to the UE queues, and the
UE demands Du

i and Dd
j are updated.

6.3 Non-Cooperative Games for Power Allocation

In the context of game theory and power allocation, the authors in [45] were the first to
introduce the idea of using game theory to enhance the profitability full-duplex operations.
Their article surveys possible applications and implementations of game theory in relation
to scheduling and power allocation in different full-duplex network scenarios. In [40], the
authors use a game theoretic approach for radio resource allocation in full-duplex wireless
networks. They couple their algorithm with a water-filling based power allocation problem
and iterate till a Nash equilibrium is achieved. They show that their proposal is profitable
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with respect to half-duplex networks. In our work, the focus is on power allocation rather
than scheduling. We aim to explore different objectives with focus on multiple aspects of
performance optimization. We compare between our different proposals highlighting the
gains and limitations of each.

Non-Cooperative game theory models the interactions between players competing for
a common resource. Contrary to our proposal in Chapter 5, this distributed approach does
not necessitate any central authority or signaling between the players. Following the SINR
formulas for uplink and downlink UEs (Equations 3.1 and 3.2), an increase in the power of
an uplink UE will increase its SINR but at the same time cause added interference on its
paired downlink UE. Vice-versa, an increase in the transmit power at the BS, would increase
the SINR of the receiving downlink UE, but cause added interference on the paired uplink
UE. UEs on the uplink and the BS on the downlink, i.e., the decision makers, are playing
for contradicting objectives. Hence, non-cooperative game theory is well adapted to power
allocation in full-duplex wireless networks. We summarize our contributions in this chapter
as follows:

(a) We propose a greedy game for power allocation, where the uplink players and the BS
on the downlink seek to maximize UE SINR.

(b) We propose an interference aware game, in which the players mind the interferences
they generate onto the system.

(c) We propose an energy efficient game. The players in this game vary their transmit
powers with respect to the interferences they generate.

(d) Via a set of exhaustive simulations, we compare and contrast between our proposals,
highlighting their advantages, as well as their shortcomings.

6.3.1 Game Formulation

We define a set of multi-player games G between the BS (coined player 0) and the |I|
uplink UEs. In particular, on every alloted RB k, the uplink UEs will compete with the BS.
The formulation of this non-cooperative game G = ⟨M, S0 ×

∏
i Si, U⟩ can be described as

follows:

• A finite set of players M = (BS, UE i) paired on the same RB k. The game is engaged
between the BS and the uplink UEs for all the RBs.

• The action of a given player is the amount of power allocated on RB k, the strategy
chosen by the BS is then P 0 = (P01, ..., P0|K|) and the strategy chosen by any uplink
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UE i is P i = (Pi1, ..., Pi|K|). A strategy profile P = (P 0, P 1, ..., P |I|) specifies the
strategies of all players.

• For the BS, the space of pure strategies is S0 given by what follows:

S0 = {P 0 ∈ R|K|, such as
∑
k∈K

P0k ≤ pmax
0 and P0k ≥ pmin

0 ,∀k ∈ K}

• For each uplink UE i, the space of pure strategies is Si given by what follows:

Si = {P i ∈ R|K|, such as
∑
k∈K

Pik ≤ pmax
i and Pik ≥ pmin

i ,∀k ∈ Ki},

where Ki is the set of RBs alloted to UE i and S = S0 × S1 × ...× S|I| is the set of all
strategies;

• A set of utility functions U = (U0, Ui∈I) that quantify players’ profit for a given
strategy profile.

Note that an uplink player i will not transmit on an RB it was not allocated.

6.3.2 Best Response

In a non-cooperative game, a valid solution is one where all players adhere to a Nash
equilibrium, which is a profile of strategies in which no player will profit from deviating its
strategy unilaterally. A Nash equilibrium is a static concept that often abstracts away the
question of how it is reached. Thus, the main challenge in non-cooperative game theory is
to devise practical algorithms to reach such an equilibrium. The simplest example of such
algorithms are repeated best response dynamics. Following these dynamics, each player
selects the best (locally optimal) response to other players’ strategies, until convergence.

6.4 The Greedy Game

We define the greedy game Gg. The objective of this game is to maximize UE SINR values.
Both the UEs on the uplink and the BS on the downlink will aim to increase the UE SINR
values. Their decisions are taken individually and independent of any factors. Let j(i, k) be
a reference to downlink UE j paired with uplink UE i on RB k as a result of scheduling. For
simplicity, in the remainder of this chapter we use j = j(i, k).
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The utility of any uplink UE i ∈ I only encompasses its own SINR. It is formulated as
follows:

U g
i =

∑
k∈Ki

log( Pik|hu
ik|2

N0k + P0k

SIC

), (6.1)

where Ki is the set of RBs scheduled to UE i. The utility of the BS encompasses the SINR
of both uplink and downlink UEs :

U g
0 =

∑
k∈K

(log( Pik|hu
ik|2

N0k + P0k

SIC

) + log(
P0k|hd

jk|2

Njk + Pik|hij,k|2
)) (6.2)

For any uplink UE i, U g
i is concave in Pik (logarithmic function) and continuous in P0k,

∀k ∈ K. For the BS, U g
0 is concave in P0k since

∂2U g
0

∂P 2
0k

= −SIC ·N0k × (SIC ·N0k + 2P0k)
P 2

0k × (N0k · SIC + P0k)2 < 0, (6.3)

and continuous in Pik, ∀ k ∈ K. Hence, as all strategy spaces are compact, a Nash equilibrium
exists for this game.

6.4.1 Computing a Nash Equilibrium

As the utility functions are strictly concave, the Nash equilibrium is the solution of the
following optimization problems:

max
P γ

U g
γ (P γ, P −γ) (6.4a)

subject to
∑
k∈K

Pγk ≤ pmax
γ , (6.4b)

Pγk ≥ pmin
γ , ∀k ∈ K. (6.4c)

pmax
γ (resp. pmin

γ ) is the maximal (resp. minimal) power limit on the uplink for γ ∈ I and on
the downlink for γ = 0. As the optimization problems in (6.4) are nonlinear and convex, the
Karush-Kuhn-Tucker (KKT) conditions are sufficient to determine the optimal case (i.e. the
Nash equilibrium) [65].

The KKT conditions associated with Pik, ∀k ∈ K for uplink UE i ∈ I gives what follows:

1
P ∗

ik

− µ = 0, ∀k ∈ K (6.5a)
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µ× (pmax
i −

∑
k∈K

P ∗
ik) = 0 (6.5b)

P ∗
ik ≥ pmin

i , ∀k ∈ Ki (6.5c)

µ ≥ 0, (6.5d)∑
k∈K

P ∗
ik ≤ pmax

i , (6.5e)

where µ is the Lagrange multiplier associated with the constraint (6.4b). We deduce from
(6.5a) that µ cannot be null and hence all Pik are equal. Further, according to (6.5b),∑

k∈K Pik = pmax
i and finally Pik = max(pmin

i ,
pmax

i

Ki ) if RB k is allocated to UE i and 0
otherwise. The KKT conditions associated with P0k,∀k ∈ K for the BS gives what follows:

1
P ∗

0k

− 1
N0k · SIC + P ∗

0k

− µ + αk = 0, ∀k ∈ K (6.6a)

µ× (pmax
0 −

∑
k∈K

P ∗
0k) = 0 (6.6b)

αk × (pmin
0 − P ∗

0k) = 0, ∀k ∈ K (6.6c)

µ ≥ 0 (6.6d)

αk ≥ 0, ∀k ∈ K ≥ 0, (6.6e)∑
k∈K

P ∗
0k ≤ pmax

0 , (6.6f)

P ∗
0k ≥ pmin

0 , ∀k ∈ K. (6.6g)

where µ and αk, ∀k ∈ K, are the Lagrange multiplier associated with the constraints (6.4b)
and (6.4c) respectively. We deduce from (6.6a) that µ cannot be null and therefore the BS
will allocate greedily all available power as

∑
k∈K

P ∗
0k = pmax

0 (6.7)

Further, we need to distinguish two cases where αk, ∀k ∈ K are either null or not.

1. If αk = 0,∀k ∈ K, we need to solve the following second order equation: ak

P ∗
0k

×(ak+P ∗
0k

) =
µ, ∀k ∈ K, where ak = N0k · SIC which gives a single realistic solution (positive

power value) P ∗
0k =

ak·(
√

1+ 4
akµ

−1)

2 . As the value of power levels is still dependent on
the Lagrangian variable µ (the ak are constant and known), we have recourse to (6.7)
to obtain it and compute the numerical values of P ∗

0k,∀k ∈ K accordingly.

2. If αk ̸= 0, P ∗
0k = pmin

0 , ∀k ∈ K according to (6.6c). Further, in conjunction with (6.7),
maximal and minimal thresholds should verify pmax

0
K

= pmin
0 .
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6.4.2 Best Response Algorithm

A best response algorithm, illustrated in Algorithm 6, is used in this case to reach a Nash
equilibrium. After the RBs are allocated, the uplink UEs and the BS take turn maximizing
their utilities until the power values on the RBs no longer change. The resulting power
allocation scheme is used in performance assessments. pu and pd are matrices containing all
the power values on the RBs on the uplink and the downlink, respectively.

Algorithm 6 Scheduling and Power Allocation Algorithm for the Greedy Game
1: Requires: Maximum tolerance ϵ ≥ 0.
2: Input: UE radio conditions, channel states, initial power settings pu

0 and pd
0

3: for TTI t=1,. . . ,T
4: Step 1: Scheduling
5: RBs are allocated following G1

t

6: Step 2: Power Allocation
7: repeat:
8: Solve (6.5) in the uplink ∀ i ∈ I
9: Update pu

n

10: Solve (6.6) in the downlink for the BS
11: Update pd

n

12: δd=
∥∥∥pd

n − pd
n−1

∥∥∥, δu=
∥∥∥pu

n − pu
n−1

∥∥∥
13: n← n + 1
14: until δd ≤ ϵ and δu ≤ ϵ
15: end for

6.5 The Interference Aware Game

We define Gc as the interference aware collaborative game. As the name suggests, our
objective in this game is for power allocation to be interference aware. Since the game is
non-cooperative, it is necessary that each player is aware of the interferences they generate.
If these interferences are not accounted for in the utilities, each player will seek to maximize
its own gains independently, and consequently, increase its transmit power to the maximum
(as with the greedy game). This would generate maximum interference in the network and
could inadvertently degrade UE performance. The utility of every uplink UE i is thereafter
defined as:

U c
i =

∑
k∈Ki

log( Pik|hu
ik|2

N0k + P0k

SIC
+ Pik|hij,k|2

). (6.8)
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As for the BS:

U c
0 =

∑
k∈K

log(
P0k|hd

jk|2

Njk + Pik|hij,k|2 + P0k

SIC

). (6.9)

The SINR values for the UEs are thus inherently included in the utilities. Additionally, the co-
channel interference, which degrades the performance of downlink UEs, is now also affecting
the utility of uplink UEs. The self-interference, which degrades the performance of uplink
UEs, is now also affecting the utilities relating to downlink UEs. As such, we can seek to
improve UE performance, while at the same time account for the resulting interferences. Via
our simulations, we show that our proposed utilities converge to an efficient Nash equilibrium
which improves UE performance in terms of throughput.

6.5.1 A Super-modular Game

The convergence of a repeated best response algorithm is not guaranteed in general. For this
game, we are in presence of a type of games called super-modular, where a best response
algorithm permits attaining NEs. In what follows, we introduce a formal definition of
super-modular games and prove that our interference aware game belongs to the latter class.
According to [66], any game G is super-modular if for any player γ ∈M :

1. The strategy space Sγ is a compact sub-lattice of R|K|;

2. The objective function is super-modular, that is ∂2U0
∂P0∂Pi

≥ 0 and ∂2Ui

∂Pi∂P0
≥ 0 ∀i ∈ I,

∀P ∈ S, and ∀k ∈ K.

In [66, 67], proof is given for the following two results in a super-modular game:

• If each player γ either initially uses its lowest or largest policy in Sγ , then a best
response algorithm converges monotonically to a Nash equilibrium.

• If we start with a feasible policy, then the sequence of best responses monotonically
converges to a Nash equilibrium: it monotonically increases in all components in the
case of maximization in a super-modular game.

Proposition 6.5.1 Game Gc ⟨M, S0 ×
∏

i Si, U c⟩ is a super-modular game.

Proof: To prove the super-modularity of the game, we need to verify the aforementioned
conditions. First, the strategy space Sγ is obviously a compact convex set of R|K|. Hence, it
suffices to verify the super-modularity of the objective function U c

γ of any player γ as there
are no constraint policies for Gc. For any uplink UE i, we have:

∂2U c
i

∂Pik∂P0k

=
|hij,k|2

SIC

(N0k + P0k

SIC
+ Pik|hij,k|2)2 ≥ 0, ∀i ∈ I,∀k ∈ K.
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And for the BS, we have what follows:

∂2U c
0

∂P0k∂Pik

=
|hij,k|2

SIC

(Njk + P0k

SIC
+ Pik|hij,k|2)2 ≥ 0, ∀i ∈ I, ∀k ∈ K.

✷

6.5.2 Computing a Nash Equilibrium

As we proved that we are in presence of a super-modular game, we implement a best
response algorithm to reach its pure Nash equilibrium. At the convergence of the best
response algorithm, a Nash equilibrium is the solution of the following two optimization
problems:

max
P γ

U c
γ(P γ, P −γ) (6.10a)

subject to
∑
k∈K

Pγk ≤ pmax
γ , (6.10b)

Pγk ≥ pmin
γ , ∀k ∈ K. (6.10c)

where pmax
γ (resp. pmin

γ ) is the maximal (resp. minimal) power limit on the uplink for γ ∈ I
and on the downlink for γ = 0. As the optimization problems in (6.10) are convex, the
Karush-Kuhn-Tucker (KKT) conditions enable determining a global optimal (i.e., the Nash
equilibrium at convergence) [65]. The KKT conditions associated with Pγk,∀k ∈ K give:

1
P ∗

γk

− 1
bγk + P ∗

γk

= λγ, ∀k ∈ K (6.11a)

λγ × (pmax
γ −

∑
k∈K

P ∗
γk) = 0 (6.11b)

P ∗
γk ≥ pmin

γ , ∀k ∈ K (6.11c)

λγ ≥ 0, (6.11d)∑
k∈K

P ∗
γk ≤ pmax

γ . (6.11e)

where λγ is the KKT multiplier associated with the constraint (6.10b), and

bγk =


N0k+

P ∗
0k

SIC

|hij,k|2 , γ = i ∈ I

SIC × (Njk + P ∗
ik|hij,k|2), γ = 0

(6.12)



90 Distributed Approach to Power Allocation

We deduce from (6.11a) that λγ cannot be null. As such, all P ∗
γk are the solution of a second

order equation that gives P ∗
γk =

bγk·(
√

1+ 4
bγkλγ

−1)

2 , where λγ can be computed numerically
owing to

∑
k∈K P ∗

γk = pmax
γ . Finally, in respect with constraint (6.11c), we have what follows

for the BS:

P ∗
0k = max(pmin

0 ,
SIC × (Njk + P ∗

ik|hij,k|2)
2 · (

√
1 + 4

SIC × (Njk + P ∗
ik|hij,k|2)λ0

− 1)),

(6.13)
and for any uplink UE i:

P ∗
ik = max(pmin

i ,
N0k + P ∗

0k

SIC

2|hij,k|2
· (

√√√√√1 + 4
N0k+

P ∗
0k

SIC

|hij,k|2 λi

− 1)). (6.14)

6.5.3 Best Response Algorithm

Algorithm 7 has the pseudo-code for the scheduling and power allocation algorithm.

Algorithm 7 Scheduling and Power Allocation Algorithm for the Interference-Aware Game
1: Requires: Maximum tolerance ϵ ≥ 0.
2: Input: UE radio conditions, channel states, initial power settings pu

0 and pd
0

3: for TTI t=1,. . . ,T
4: Step 1: Scheduling
5: RBs are allocated following G1

t

6: Step 2: Power Allocation
7: repeat:
8: Solve (6.10) in the uplink ∀ i ∈ I
9: Update pu

n

10: Solve (6.10) in the downlink for the BS
11: Update pd

n

12: δd=
∥∥∥pd

n − pd
n−1

∥∥∥, δu=
∥∥∥pu

n − pu
n−1

∥∥∥
13: n← n + 1
14: until δd ≤ ϵ and δu ≤ ϵ
15: end for
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Every TTI, and following the scheduling step, the UEs on the uplink and the BS on the
downlink take turns allocating powers on the RBs until a convergence is reached. Typically,
the algorithm will reach a Nash equilibrium for the power allocation step in 3 to 4 iterations.

6.6 The Energy Efficient Game

Our objective in this game is to avoid power wastage as much as feasible. Our energy
efficiency objective represents a benefit-to-cost ratio, where the benefit is represented by the
SINR of the UEs and the cost by the interferences generated by them. To this end, any player
γ weights its SINR by the interference it creates. Accordingly, for the energy efficient game
Ge, the utility of every uplink UE i becomes:

U e
i =

∑
k∈Ki log Pik|hu

ik|2

N0k+ P0k
SIC∑

k∈Ki Pik|hij,k|2
(6.15)

As for the BS:

U e
0 =

∑
k∈K log P0k|h0k|2

Njk+Pik|hij,k|2∑
k∈K

P0k

SIC

(6.16)

Proposition 6.6.1 Game Ge ⟨M, S0 ×
∏

i Si, U e⟩ is a super-modular game.

Proof: To prove the super-modularity of the game, we need to verify the conditions
discussed in the previous section. First, the strategy space Sγ is obviously a compact convex
set of R|K|. Hence, it suffices to verify the super-modularity of the objective function U e

γ of
any player γ as there are no constraint policies for Ge. Hence, for any uplink UE i, we have :

∂2U e
i

∂Pik∂P0k

= |hij,k|2

(∑
k∈K Pik|hij,k|2)2(SIC ×N0k + P0k) ≥ 0, ∀i ∈ I,∀k ∈ K.

And for the BS, we have what follows:

∂2U e
0

∂P0k∂Pik

= |hij,k|2

SIC × (Njk + Pik|hij,k|2)(
∑

k∈K
P0k

SIC
)2 ≥ 0, ∀i ∈ I,∀k ∈ K.

✷
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6.6.1 Computing the Nash Equilibrium

As we proved that we are in presence of a super-modular game, we implement a best response
algorithm to reach its pure Nash equilibrium. A Nash equilibrium is the solution of the
following optimization problems:

max
P γ

U e
γ(P γ, P −γ) (6.17a)

Subject to
∑
k∈K

Pγk ≤ pmax
γ , (6.17b)

Pγk ≥ pmin
γ , ∀k ∈ K. (6.17c)

where pmax
γ (resp. pmin

γ ) is the maximal (resp. minimal) power limit on the uplink for γ ∈ I
and on the downlink for γ = 0.

6.6.2 Dinkelbach Approach

The problems presented above cannot be solved in a straightforward manner as they are
non-convex. However, as they are fractional problems, an optimal solution is obtained by
iteratively solving the parametrized convex problems, according to the Dinkelbach method.
For each uplink UE i, the problem is rewritten as follows:

max
P ik

F (λi) =
∑

k∈Ki

log Pik|hu
ik|2

N0k + P0k

SIC

− λi

∑
k∈Ki

Pik|hij,k|2 (6.18a)

Subject to
∑

k∈Ki

Pik ≤ pmax
i , (6.18b)

Pik ≥ pmin
i , ∀k ∈ Ki. (6.18c)

And for the BS on the downlink, it can be rewritten as follows:

max
P 0k

F (λ0) =
∑
k∈K

log P0k|h0k|2

Njk + Pik|hij,k|2
− λ0

∑
k∈K

P0k

SIC
(6.19a)

Subject to
∑
k∈K

P0k ≤ pmax
0 , (6.19b)

P0k ≥ pmin
0 , ∀k ∈ K. (6.19c)

The values of λ0 and λi can be calculated by iteration. The problems in (6.18) and (6.19) are
first solved for large values of λi and λ0, respectively. Afterwards, λ is calculated assuming
that the objective functions found in (6.18a) and (6.19a) are equal to zero. The problems in
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(6.18) and (6.19) are solved and the steps are repeated until the values of λi and λ0 satisfy the
conditions F (λi)= 0, and F (λ0)= 0, respectively. This process is illustrated in Algorithm 8.

Algorithm 8 Calculating λγ

1: Define: number of iterations n
2: Set: λγ=M a sufficiently large value
3: Repeat:
4: Solve the problem in (6.18) for γ=i
5: Solve the problem in (6.19) for γ=0
6: Compute λγ such as F (λγ)=0
7: n← n + 1
8: Until F (λγ)=0

6.6.3 Best Response

Similarly to the game before, a best response algorithm is used to reach a Nash equilibrium.
Uplink players and the BS take turns solving the Dinkelbach problem for their locally optimal
powers, until convergence is reached wherein the power levels on the RBs no longer change.
This is illustrated in Algorithm 9.

Algorithm 9 Scheduling and Power Allocation Algorithm for the Energy Efficient Game
1: Requires: Maximum tolerance ϵ ≥ 0.
2: Input: UE radio conditions, channel states, initial power settings pu

0 and pd
0

3: for TTI t=1,. . . ,T
4: Step 1: Scheduling
5: RBs are allocated following G1

t

6: Step 2: Power Allocation
7: repeat:
8: Using Algorithm 8 get the value of λi ∀ i
9: Solve (6.18) in the uplink ∀ i ∈ I

10: Update pu
n

11: Using Algorithm 8 get the value of λ0
12: Solve (6.19) in the downlink for the BS
13: Update pd

n

14: δd=
∥∥∥pd

n − pd
n−1

∥∥∥, δu=
∥∥∥pu

n − pu
n−1

∥∥∥
15: n← n + 1
16: until δd ≤ ϵ and δu ≤ ϵ
17: end for
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6.7 Simulations and Results

6.7.1 Simulation Parameters

We seek via our different simulation scenarios to address gains attributed to our game
theoretic proposals. The simulation parameters we used are presented in Table 6.1.

Table 6.1 Simulation parameters for distributed power allocation

Parameter Value

Cell Specifications Single-Cell, 120-1000 m Radius
Number of RBs 60
SIC Value 1011

Number of UEs 20 UEs: 10 downlink, 10 uplink
Demand Throughput 4 Mbps

6.7.2 Power Consumption

The Greedy Game

Allocating power on the RBs using the greedy game results in maximum power consumption.
On the downlink, the power per RB is equal to the maximum available power divided by the
total number of available resources. On the uplink, the transmit power on each RB is equal to
the maximum UE transmit power divided by the number of resources allocated to a certain
UE.

Figure 6.2 has a CDF plot with the results. The transmit powers on the RBs in the
downlink is approximately 6.2 dBm, and for the uplink it ranges between 8 and 24 dBm.

The Interference Aware game

Similarly, allocating power on the RBs using the interference aware game also leads to
maximum power usage. Nonetheless, the power is not equally divided on the RBs as before.
Figure 6.3 has a CDF plot of the power allocated per RB on the uplink and the downlink.
On the downlink, the power on the RBs varies between 4 and 8 dBm, and on the uplink it
varies between 4 and 24 dBm. This variation comes as a result of including the generated
interferences in the corresponding player utilities. This will also result in better throughput
values for the UEs as we later on illustrate.
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Figure 6.2 Power consumption per RB for the greedy game
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Figure 6.3 Power consumption per RB for the interference aware game

The Energy Efficient Game

In the case of the energy efficient game, neither the UEs on the uplink, nor the BS on the
downlink consume maximum power. In fact, in the majority of the cases, the power assigned
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on each RB defaults to the minimum allowed power. Figure 6.4 has a CDF plot with the
results. For both the uplink and the downlink, and in the majority of the cases, the power
allocated on the RBs is close to 6 dBm, around the default minimum value allowed for this
simulation.
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Figure 6.4 Power consumption per RB for the energy efficient game
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Figure 6.5 Power consumption per RB for the energy efficient game in case of a large cell
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Nonetheless, the lower power limit is not the only factor in the allocation process. For
example, if we increase the cell radius to 1 km, the game will result in higher power values
on the RBs in order to improve the player utilities. This can be seen in Fig. 6.5. In this case,
the power is significantly increased. This is due to two main reasons. First, to compensate the
SINR losses resulting from increased BS-UE distances, and second in response to the now
decreased UE-UE interferences as a result of the cell size increase. The power per RB on the
uplink now has a median value at 10 dBm and can reach up to 24 dBm. On the downlink,
about 20% of the UEs now transmit at a power larger than the minimum value.

6.7.3 Performance Evaluation in Terms of UE Throughput

We assess the performance of our proposed power allocation algorithms in terms of resulting
UE throughput. We simulate the power allocation proposals alongside the full-duplex
Proportional Fair scheduling algorithm. The cell radius considered in this simulation is
120 m. The results can be seen in Fig. 6.6.
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Figure 6.6 Effect of power allocation on UE throughput, case of small cell

The greedy game, the interference aware game, and the energy efficient game are all
plotted. Comparing between the greedy game and the interference aware game, it is evident
that better results are produced when the players mind the interferences they generate. The
interference aware game has a higher maximum throughput value of 4 Mbps and a higher
minimum value as well (1.1 Mbps compared to 0.25 Mbps for the greedy game). Nonetheless,
it is clear that both algorithms waste power. The simulations for the energy efficient game
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produce good results with lower power consumption. In comparison, the greedy game had
around 25% of the UEs with throughput values less than 1.3 Mbps, about the minimum
recorded throughput value for the energy efficient game.

Nonetheless, the relevance of one game over the other might change depending on the
scenario at hand. In what follows, we increase the cell radius to 1 km, and note the resulting
UE throughput values for each of the games. The results can be seen in Fig. 6.7. The
minimum power per RB is set to 6 dBm.
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Figure 6.7 Effect of power allocation on UE throughput, case of large cell

An increase in cell size decreases inter-UE interference and lowers the SINR at UEs far
away from the BS. An increase in UE power per RB would most benefit the UEs as it would
improve their SINR, without affecting other UEs as much as before. As a result, the greedy
game now produces the best performance in terms of UE throughput values. It produces
a higher median value at about 1 Mbps, compared to 0.65 and 0.5 Mbps for the other two
games, and it has much more UEs attaining throughput values close to the demand of 4 Mbps
as well.

6.7.4 Performance Evaluation in Terms of Average UE Waiting Delay

As our queue model is non full-buffer, we are able to compute the average UE waiting delay
using Little’s formula. We calculate the latter across multiple simulation runs for full-duplex
Proportional Fair alongside each of our power allocation proposals. We also compute the
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average waiting delay for the full-duplex Max Sum-Rate algorithm simulated using the
greedy game, and for half-duplex Proportional Fair using maximum power allocation as well.
In this simulation, the cell has a radius of 120m. The results can be seen in the CDF plot of
Fig. 6.8.
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Figure 6.8 Effect of power allocation on UE waiting delay, case of small cell

As with the UE throughput values, the half-duplex algorithm produce the worst waiting
delays with averages exceeding 4.16 ms. The greedy game produces average UE waiting
delays between 3.1 and 3.75 ms, the interference aware game between 3 and 3.1 ms, and the
energy efficient game between 2.8 and 3 ms. On the other hand, the greedy Max Sum-Rate
algorithm results in average UE waiting delays ranging between 2.9 and 3.3 ms. As with
throughput, the fairness imposed by Proportional Fairness scheduling will come at a cost in
network and UE performances. Nonetheless, in this case both the interference aware and the
energy efficient game were able to outperform or at least match the performance of greedy
scheduling.

We now repeat the same simulation, albeit with the cell radius increased to 1 km. Fig. 6.9
has CDF plot with the resulting average UE waiting delays. Similar to the results seen in the
previous section, the performances of the games are flipped. While half-duplex Proportional
Fair still produces the largest average waiting delay (about 5 ms), the greedy game now
actually produces the lowest waiting delay with average values between 3.95 and 4.85 ms. In
this case, the greedy game produces lower waiting delays than the greedy Max Sum-Rate
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scheduler. This can be traced back to several factors, primarily the ability of full-duplex
Proportional Fair to further exploit the effects of multi-user diversity in a dynamic arrivals
scenario.

3.8 4 4.2 4.4 4.6 4.8 5

Average Waiting Delay in ms

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

HD PF

FD PF Gg

FD PF Gc

FD PF Ge

FD Max SR Gg

Figure 6.9 Effect of power allocation on UE waiting delay, case of large cell

6.7.5 The Price of Anarchy

The price of anarchy [68] is a game theory concept which measures how the efficiency of a
system degrades due to the selfish behavior of its players. We study the price of anarchy in
the case of the interference aware game. In this non-cooperative game proposal the uplink
UEs and the BS on the downlink will each seek to maximize their own utilities. This is done
in turn until a Nash equilibrium is achieved. A more global approach would be to maximize
the sum of the uplink and downlink utilities. This problem can be written as follows:

max
P γ

∑
i∈I

∑
j∈D

∑
k∈K

(log( Pik|hu
ik|2

N0k + P0k

SIC
+ Pik|hij,k|2

) + log(
P0k|hd

jk|2

Njk + Pik|hij,k|2 + P0k

SIC

)) (6.20a)

subject to
∑
k∈K

Pγk ≤ pmax
γ , (6.20b)

Pγk ≥ pmin
γ , ∀k ∈ K, (6.20c)
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where (6.20a) is the objective of this problem: to maximize the sum of the player utilities.
(6.20b) and (6.20c) are the power constraints for the BS on the downlink and the UEs on the
uplink, for γ = 0 and γ = i, respectively.

In what follows we compare the resulting objective value from the sum of maximizing
the separate utilities (distributed approach) vs. the maximization of the sum of utilities i.e.,
the global optimal (centralized approach). Figure 6.10 has a CDF plot of the ratio of the sum
of objective values generated by maximizing the player utilities separately divided by the
result yielded by the global problem.
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Figure 6.10 The price of anarchy for the interference aware game

In more than 80% of the cases, the selfishness of the cooperative game costs less than 7%
in objective efficiency. In some rare cases, the selfish approach achieves less than 80% of
the result achieved by the global objective. Nonetheless, this disparity in objectives does not
yield better throughput results for the global optimal problem. As the uplink and downlink
transmission are intertwined, an increase in the uplink UE power will negatively impacts its
paired downlink UE and vice versa.

6.8 Conclusion

In this chapter, we put forward a game theoretic framework for power allocation in full-duplex
wireless networks. Unlike the centralized approach to power allocation, this distributed
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approach does not require a central authority or any signaling. Coupled with our scheduling
proposals, we proposed several non-cooperative games for power allocation. These games
are played between the UEs on the uplink and the BS downlink. The first of these games is
greedy. In it, each player seeks to maximize its radio conditions individually. The second
game is interference aware, wherein players take their generated interferences into account.
And our third proposal, the energy efficient game, aims to better utilize the available power
while combating the full-duplex interferences. Via a set of simulations we showed that the
relevance of each game depends in fact on the scenario at hand. The energy efficient game
saves power and is most viable in small cell scenarios, whilst the greedy game delivers the
most in terms of performance when it comes to large cell scenarios.



Chapter 7

Scheduling and Power Allocation in
Full-Duplex Multi-Cellular Networks

7.1 Introduction

In this chapter, we explore the challenges of scheduling and power allocation in the context
of multi-cellular full-duplex wireless networks. This is a more realistic setting than the single
cell scenario, and it better envisions how full-duplex wireless communications could eventu-
ally be implemented. We propose an optimal joint scheduling and power allocation problem
for full-duplex wireless networks. Because of its mathematical intractability, we decouple the
problem and solve for scheduling first, and for power allocation second. We consider both
indoor and outdoor scenarios and show that the gains of multi-cellular full-duplex wireless
networks, with respect to their half-duplex counterparts, are situational. Furthermore, we
highlight the importance of inter-cell cooperation when it comes to scheduling resources and
show that depending on the scenario at hand, interference mitigation from inter-cell coop-
eration can improve the performance of UEs in terms of throughput. Finally, we show that
power allocation can improve UE throughput with its efficiency being tied to the deployment
scenario.

7.2 Full-Duplex Multi-Cell Interferences

The presence of multi-cells greatly increases the interference problems in a full-duplex
wireless network. Consider the scenario illustrated in Fig. 7.1 below, where we have two
adjacent cells following our network model. The base stations (BSs) are the full-duplex
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nodes, and the user equipment (UEs) are half-duplex. Each BS will schedule pairs of
uplink-downlink UEs on the available radio resources.

As a result, each uplink UE in the first cell will experience interferences from three
sources:

1. I1: Self-interference at the BS due to its transmission towards a downlink UE on the
same resource block (RB).

2. I2: Co-channel interference resulting from uplink UEs in neighboring cells using the
same RB.

3. I3: Inter-cell interference from neighboring cell BSs transmitting on the same RB.

Uplink UE 
2

Uplink UE 
1

Downlink 
UE 1

Downlink 
UE 2

Interferences on Uplink UEs 

Interferences on Downlink UEs

Uplink Transmission

Downlink Transmission

Cell 1 Cell 2

I4

I6

I5

I1

I2

I3

Figure 7.1 Inter-cell interferences in a multi-cell scenario

A Downlink UE in the first cell also experience interferences from three different sources:

1. I4: Intra-cell co-channel interference from its paired uplink UE using the same RB.

2. I5: Co-channel interference resulting from uplink UEs in neighboring cells using the
same RB.

3. I6: Inter-cell interference from neighboring cell BSs transmitting on the same RB.
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7.3 SINR Calculation

7.3.1 Notations

In order to accommodate the presence of a multi-cell scenario, a different set of notations are
used. They can be seen in Table 7.1 below, where b belongs to the set of BSs B.

Table 7.1 Notation summary

Notation Definition

Su(i, j, k, b) SINR of uplink UE i on RB k in the pair (i,j) associated with BS b
Sd(i, j, k, b) SINR of downlink UE j on RB k in the pair (i,j) associated with BS b
P u

ik Transmit power of uplink UE i on RB k
P d

bk Transmit power of BS b on RB k
hu

ibk Channel between i and BS b on RB k
hs

b′bk Channel between BSs b′ and b on RB k
hijk Inter-UE channel between i and j on RB k
hd

bjk Channel between BS b and downlink UE j on RB k
SIC Self-interference cancellation factor
Nu

bk Noise power at BS b on RB k
Nd

jk Noise power at j on RB k

7.3.2 Interference Calculation

The full-duplex interferences on a UE transmitting or receiving on an RB k are calculated as
follows.

• The self-interference experienced by every uplink UE, on RB k, at its corresponding
BS is written as:

I1 = P d
bk

SIC
. (7.1)

• The interference on an uplink UE from all uplink UEs i′ using the same RB:

I2 =
∑

i′∈I\i

(P u
i′k|hu

i′bk|2
∑
j∈D

Zi′jk), (7.2)

where Zi′jk is a global resource allocation variable that conditions that uplink UE i′ is
indeed transmitting on RB k.
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• The interference on an uplink UE from all BSs transmitting on the downlink using the
same RB k:

I3 =
∑

b′∈B\b

P d
b′k|hs

b′bk|2. (7.3)

• The interference on a downlink UE from all uplink UEs i′ using the same RB k:

I4 + I5 =
∑
i′∈I

(P u
i′k|hi′jk|2

∑
j∈D

Zi′jk). (7.4)

• The interference on a downlink UE from all BSs transmitting on the same RB k:

I6 =
∑

b′∈B\b

P d
b′k|hd

b′jk|2. (7.5)

7.3.3 SINR formulation

As a result, The SINR for an uplink UE i paired with a downlink UE j on RB k and associated
with BS b is written as:

Su(i, j, k, b) = P u
ik|hu

ibk|2

Nu
bk + P d

bk

SIC
+ ∑
b′∈B\b

P d
b′k|hs

b′bk|2 + ∑
i′∈I\i

(P u
i′k|hu

i′bk|2
∑

j∈D
Zi′jk)

, (7.6)

For a downlink UE j paired with an uplink UE i on RB k and associated with BS b, the SINR
becomes:

Sd(i, j, k, b) =
P d

bk|hd
bjk|2

Nd
jk + ∑

i′∈I
(P u

i′k|hi′jk|2
∑

j∈D
Zi′jk) + ∑

b′∈B\b
P d

b′k|hd
b′jk|2

. (7.7)

7.4 Multi-Cell Deployment Scenarios

In our work, we consider both indoor and outdoor cell scenarios. In what follows, we
highlight the specifics of these scenarios.

Indoor Scenario

We consider the indoor cell scenario illustrated in Fig. 7.2 below. Seven indoor cells are
present in this network. The distance from the central cell BS to all other BSs is constant.
Each cell has 10 randomly distributed UEs.
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UE

RRH BS
100 m

Figure 7.2 Indoor deployment scenario

The parameters used for this scenario are stated in Table 7.2 below. The path loss model
used is based on 3GPP simulation recommendations for an RRH cell environment [69].
Additionally a penetration loss of 20 dB between cells due to walls is assumed. The path
loss model used for BS-to-BS channels is the same one used for UE-to-UE channels with the
justification that the BSs have no significant height advantages in the case of indoor cells.

The probability of line of sight is given by (d is the distance in m):

PLOS =


1, if d ≤ 18
exp(−(d− 18)/27), if 18 < d <37
0.5, if d ≥ 37

(7.8)

Table 7.2 Path loss model for the indoor cells

Parameter (d in m, fc in GHz) Value
Shadowing Log-normal with σ = 3 dB if LOS, 4 dB otherwise
Fast Fading Exponential with unit parameter
LOS path loss within a cell in dB 32.8 + 20log10(fc) + 16.9log10(d)
NLOS path loss within a cell in dB 11.5 + 20log10(fc) + 43.3log10(d)
Path loss between two cells in dB 11.5 + 20log10(fc) + 43.3 log10(d)
Penetration loss Due to boundary: 20 dB, within a cell: 0 dB

Outdoor Scenarios

The outdoor scenarios we consider in this chapter are illustrated in Fig. 7.3 below.



108 Scheduling and Power Allocation in Full-Duplex Multi-Cellular Networks

200 m
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30
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1   2

Figure 7.3 First (left) and second (right) outdoor deployment scenarios

There are no physical barriers between the cells in the outdoor scenarios. 10 UEs are
randomly dropped in each cell. In the second outdoor deployment, the distribution of the
UEs is closer to their corresponding BSs. This means the average distance between a UE and
its inter-cell interferers is increased. The path loss model used for both scenarios, as given by
3GPP simulation standards [70], can be seen in Table 7.3. The probability of line of sight in
this case is given by (d is the distance in km):

PLOS = 0.5−min(0.5, 5 exp(−0.156/d)) + min(0.5, 5 exp(−d/0.03)). (7.9)

Table 7.3 Path loss model for the outdoor cells

Parameter (d in km) Value
Shadowing inside the cell Log-normal with σ = 3 dB if LOS, 4 dB otherwise
Shadowing between the cells Log-normal with σ = 6 dB
Fast Fading Exponential with unit parameter

BS-to-BS LOS path loss
if d < 2/3 km then 98.4 + 20log10(d),

else 101.9 + 40log10(d)
BS-to-BS NLOS path loss 169.36 + 40log10(d)
BS-to-UE LOS path loss 103.8 + 20.9log10(d)
BS-to-UE NLOS path loss 145.4 + 37.5log10(d)

UE-to-UE path loss
if d < 50 m then 98.45 + 20log10(d),

else 175.78 + 40log10(d)
Penetration loss 0 dB
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7.5 Optimal Approach to Scheduling and Power Alloca-
tion in a Multi-Cell Setting

We propose an optimal algorithm for scheduling and power allocation in a multi-cellular
full-duplex wireless network. Our objective is to maximize the logarithmic sum of the
signal-to-interference-plus-noise-ratios (SINR) of the scheduled pairs of user equipment
(UEs). This is a fairness oriented allocation as proclaimed in [71, 72]. We define the UE
pair-RB-base station (BS) allocation variable zijkb, ∀i ∈ I,∀j ∈ D,∀k ∈ K,∀b ∈ B. It is
equal to one if uplink UE i is paired with downlink UE j on RB k, whilst associated with BS
b. It is equal to zero otherwise. As explained in the following chapter, there is no inherent
advantage of allowing the formation of pairs across the boundaries of different cells. As such,
each BS has its unique set of UEs i and j and subsequently, unique possible UE pairings.
Reuse-1 is assumed for the radio resource allocation process. As such, each BS has access
to all the RBs. The scheduling and power allocation problem problem can be thereafter
formulated as follows:
(P t

mc)

Maximize
zijkb,P d

bk
,P u

ik

∑
b∈B

∑
k∈K

∑
i∈I

∑
j∈D

zijkb(log(Su(i, j, k, b)) + log(Sd(i, j, k, b))) (7.10a)

Subject to
∑
i∈I

∑
j∈D

zijkb ≤ 1, ∀k ∈ K, ∀b ∈ B, (7.10b)

∑
k∈K

∑
j∈D

zijkbT
u
ijk ≤ Du

i , ∀i ∈ I, ∀b ∈ B, (7.10c)

∑
k∈K

∑
i∈I

zijkbT
d
ijk ≤ Dd

j , ∀j ∈ D,∀b ∈ B, (7.10d)

∑
k∈K

P d
bk ≤ pmax

0 , ∀b ∈ B, (7.10e)

∑
k∈K

P u
ik ≤ pmax

i , ∀i ∈ I, (7.10f)

P u
ik ≥ pmin

i , ∀i ∈ I, ∀k ∈ Ki, (7.10g)

P d
bk ≥ pmin

0 , ∀k ∈ K, ∀b ∈ B, (7.10h)

zijkb ∈ {0, 1}, ∀i ∈ I,∀j ∈ D,∀k ∈ K,∀b ∈ B (7.10i)

This problem belongs to the category of mixed integer non-linear programming (MINLP).
Because of the high number of variables, it is already intractable and can become impossibly
complex as the number of UEs, RBs, and BSs increases. As such, we follow the same
approach we used in Chapters 5 and 6, wherein the problem is divided into two: (a) a
scheduling problem, followed by (b) a power allocation problem.
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7.5.1 Single Cell Scheduling

In each time slot, every BS schedules its radio resources independently. With the exception
of the central cell, the cells are oblivious of their surroundings and do not account for
inter-cell interferences. As such, the SINR formulas introduced in Chapter 3 are used. The
central cell allocates its resources based on feedback from the surrounding cells on how
they each distributed their own resources. The SINR values in this case are calculated using
the equations presented in this chapter. The assumption of single scheduling is essential to
obtain a tractable problem as well. If each of the seven cells (as discussed in our deployment
scenarios) has 10 UEs, a total of (25)7 or more than 6× 109 possible scenarios exist for the
allocation of each RB. This makes the problem hard to solve in a centralized manner. The
problem in its current form–as single cell scheduling–is a simple ILP problem and can be
solved efficiently using any optimization software such as CVX [63]. For the purpose of
scheduling, constant powers within the feasible constraints are assumed. In addition, the BS
is assumed to have complete channel state information (CSI) including all the UE-to-UE
channels. The single cell scheduling problem can thereafter be written as follows:

Maximize
zijk

∑
k∈K

∑
i∈I

∑
j∈D

zijk(log(Su
j (i, k)) + log(Sd

i (j, k))) (7.11a)

Subject to
∑
i∈I

∑
j∈D

zijk ≤ 1, ∀k ∈ K, (7.11b)

∑
k∈K

∑
j∈D

zijkT u
ijk ≤ Du

i , ∀i ∈ I, (7.11c)

∑
k∈K

∑
i∈I

zijkT d
ijk ≤ Dd

j , ∀j ∈ D, (7.11d)

zijk ∈ {0, 1}, ∀i ∈ I,∀j ∈ D,∀k ∈ K. (7.11e)

With the exception of the central cell which allocates its resources following:

Maximize
zijk

∑
k∈K

∑
i∈I

∑
j∈D

zijk(log(Su(i, j, k, 1)) + log(Sd(i, j, k, 1))) (7.12)

Subject to (7.11b) to (7.11e)

7.5.2 Multi-Cell Power Allocation

The power is allocated on all the RBs for all the cells conjointly, by an assumed central
unit, after the radio resources have been allocated by each cell independently. The power
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allocation problem can thereafter be written as follows:

Maximize
Pbk,Pik

∑
b∈B

∑
k∈K

∑
i∈I

∑
j∈D

z∗
ijkb(log(Su(i, j, k, b)) + log(Sd(i, j, k, b))) (7.13)

Subject to (7.10e) to (7.10i)

The aim is to use power allocation to minimize the interferences generated from full-duplex
operation and single cell scheduling. Whilst this problem is still of the MINLP category, it is
now tractable and can be efficiently solved for each TTI using geometric programming [73].

7.6 Simulations and Results

7.6.1 Simulation Parameters

The simulation parameters used for this chapter are presented in Table 7.4 below. In the
following simulations, the performance assessment is done for the central cell UEs only.
Unless specified otherwise, the central cell will take its scheduling decision based on feedback
from the surrounding cells on how they each allocated their resources. In the comparison
between half-duplex and full-duplex scheduling, maximum power allocation is assumed for
both.

Table 7.4 Simulation parameters for multi-cell scheduling

Parameter Value

Number of RBs 50
SIC Value 1011

Number of UEs 10 UEs per cell: 5 UL, 5 DL
Demand Throughput 4 Mbps

7.6.2 Indoor Deployment Scenario

UE Performance

We first aim to assess the profitability of full-duplex wireless communications with respect
to their half-duplex counterparts. For the considered scenario, we simulate the proposed
scheduling algorithm for both full-duplex and half-duplex scheduling. The results can be
seen in the CDF plot of Fig. 7.4. The mean UE throughput value for half-duplex UEs is
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always less than 2 Mbps. In comparison, the mean UE throughput value for full-duplex UEs
is between 3.3 and 4 Mbps. The latter achieve almost double the throughput values.
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Figure 7.4 Central cell UE throughput values for the indoor scenario

Cell Cooperation

Additionally, we explore the gains resulting from relaying interference information to the
central cell. We repeat the simulation of our algorithm, albeit with the central cell being
unaware of the scheduling decisions of the surrounding cells (scheduling for the central
cell is done following the problem in 7.11). Figure 7.5 has box plots showing the achieved
efficiency ratios for both half-duplex and full-duplex scheduling. We define the latter as the
ratio of the total throughput achieved by central cell UEs when such inter-cell information is
not relayed to the cell, to the total UE throughput achieved when such information is in fact
relayed to the central cell.

Depending on how the UEs are dropped inside the cell, the lack of relayed information to
the central cell could cost up to 12% in its throughput efficiency in the case of full-duplex
communications. Half-duplex communications are also affected by the absence of cell
cooperation. Except for a few outliers, the maximum loss in efficiency for half-duplex is
about 14%. This difference will not make half-duplex communications more profitable
than their full-duplex counterparts even in the lack of cell cooperation. Nonetheless, based
on these results, we can expect significant gains for full-duplex communications if the
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scheduling was to be done for all cells at the same time (i.e., a centralized global approach
to scheduling). A further study on how cell border UEs benefit from this cooperation showed
that their performances do not vary any differently when compared with the rest of the UEs
in the cell. In the aforementioned scenario, the intra-cell co-channel interference and the
inter-UE distance will play a more important role in regards to a UE’s radio conditions than
the distance separating it from the BS.
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Figure 7.5 Effect of inter-cell cooperation on UE performances for the indoor scenario

7.6.3 Outdoor Scenarios

First Outdoor Scenario

We now consider the first outdoor deployment scenario illustrated by Fig. 7.3. The distance
separating the central BS from all others is 200 m. Without any barriers separating the cells,
the inter-cell interference affecting the UEs is enormous.

Figure 7.6a shows that in this scenario, cell cooperation is vital. More than 30% of the
central cell’s efficiency in terms of total throughput could be lost as a result of independent
single cell scheduling, with a median efficiency loss of about 12%. Nonetheless, the gains
of full-duplex communications are lost in this scenario. Figure 7.6b shows that full-duplex
communications are no longer profitable with respect to their half-duplex counterparts. About
95% of the time, half-duplex UEs will attain higher average throughput values.
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(a) Effect of inter-cell cooperation
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Figure 7.6 Results for the first outdoor scenario

Second Outdoor Scenario

As the previous outdoor scenario produces no gains from full-duplex communications, we
consider a second scenario wherein the UEs remain in close vicinity of the BSs. This case is
illustrated in Fig. 7.3 as the second outdoor scenario. The simulation parameters remain as
stated in the previous section. Figure 7.7 has a CDF plot illustrating the resulting average UE
throughputs.
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Figure 7.7 Central cell UE throughput values for the second outdoor scenario
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Though not as profitable as the indoor deployment scenario, it is evident that the full-
duplex gains are retrieved. The average UE throughput values for the full-duplex algorithm
ranges between 1.9 Mbps to slightly over 2.6 Mbps. It registers a median around 2.3 Mbps.
The half-duplex algorithm on the other hand has average UE throughput values between
1.9 Mbps and 2 Mbps with a median value of 1.97 Mbps. Half-duplex central cell UEs
manage on average about 15% less than their full-duplex counterparts in terms of total
throughput.

Furthermore, we assess the importance of inter-cell cooperation in this scenario as well.
The box plots in Fig. 7.8 have the efficiency ratio of the total throughput achieved without cell
cooperation to that achieved with it, for the central cell, for both full-duplex and half-duplex
scheduling.
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Figure 7.8 Effect of cell cooperation on UE performances for the second outdoor scenario

In the case of full-duplex communications, up to 27% of the cell’s throughput could be
lost due to the lack of such cooperation. For the half-duplex case, a maximum of 10% in
efficiency is lost. Even in a worst case scenario, full-duplex communications would still
bring profit with respect to their half-duplex counterparts. Nonetheless, these gains could be
limited in case no cell cooperation exists.
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7.6.4 Power Allocation for the Indoor Scenario

We first consider the indoor deployment scenario. We simulate the proposed scheduling
algorithm both with and without power allocation. In the absence of power allocation, equal
maximum power is assumed. On the uplink, each UE will transmit with the maximum power
equally divided among the RBs it got. On the downlink, each BS will transmit on all the RBs
with the same power (total power divided by the number of RBs). Figure 7.9 has a CDF plot
with the resulting average UE throughput values per simulation. Though limited due to the
well mitigated inter-cell interferences, the benefits of power allocation on UE throughput can
be seen. On average, power allocation UEs have a higher minimum average throughput (3.45
to 3.23 Mbps) and higher maximum as well (3.95 to 3.9 Mbps). A general increase in the
average UE throughput values can be noted. As much as 10% in total throughput gain for the
central cell could be achieved as a result of power allocation.

7.6.5 Power Allocation for the Second Outdoor Scenario

We consider the second outdoor deployment scenario. Similar to before, we simulate
our scheduling algorithm with and without power allocation. Equal maximum power is
considered in the case of the latter. Figure 7.10 has a CDF plot with the results. As in
the indoor scenario, power allocation provides an increase in the average UE throughput
values. The median average UE throughput value for the case with power allocation is about
2.45 Mbps compared to 2.3 Mbps without power allocation. Up to 25% in total central cell
throughput could be gained as a result of power allocation. The outdoor scenario exhibits
higher inter-cell interferences and as a result, stands to benefit more from power allocation.

Case of Low SIC

We repeat the simulation for the same outdoor deployment scenario albeit with the self-
interference cancellation (SIC) factor lowered to 108. Following the SINR formulas, this will
degrade the performance of uplink UEs in the network. Figure 7.11 has box plots with the
results. Power allocation improves the performance of uplink UEs in the central cell. Without
power allocation, these UEs achieve a median throughput of about 0.5 Mbps and a maximum
of 3.5 Mbps (barring some outliers). Well over 75% of the uplink UEs would achieve a
throughput less than 1.5 Mbps. On the other hand, power allocated uplink UEs achieve a
median of about 1.4 Mbps with half of the UEs achieving a throughput above 1.5 Mbps.
Power allocation better adapts the UEs to the challenges the network could experience.
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Figure 7.9 Effect of power allocation on UE throughputs for the indoor scenario
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Figure 7.10 Effect of power allocation on UE throughputs for the outdoor scenario
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Figure 7.11 Effect of low SIC on uplink UE performances

7.7 Conclusion

In this chapter, we presented a scheduling and power allocation algorithm for full-duplex
wireless networks in a multi-cell setting. We considered both indoor and outdoor deployments
and showed that the profitability of multi-cellular full-duplex communications is tied to the
inter-cell interference mitigation that the deployment scenario provides. Additionally, we
highlighted the importance of cell cooperation when it comes to scheduling resources and
showed that independent single cell scheduling could prove costly in terms of network
efficiency. Finally, we showed that power allocation stands to improve UE throughput values
with varying degrees of success depending on the deployment scenario.



Chapter 8

Conclusion, Discussion, and Perspectives

With the ever growing demand for faster, stronger, and better wireless network connections,
full-duplex wireless communications have the means to become the next big telecommuni-
cations breakthrough. In this thesis, we explored the possible gains of full-duplex wireless
communications with respect to the current half-duplex technology in place. We proposed
several greedy and fair scheduling algorithms along with both centralized and decentralized
approaches to power control. Generally, we presented a complete study of scheduling and
power allocation in full-duplex wireless networks, as we sought to fill in the gaps in the
state-of-the-art where necessary.

In our work, we considered a full-duplex wireless network where the base station (BS)
is full-duplex capable and the user equipment (UEs) remain half-duplex. Our aim was to
keep the complexities of implementing full-duplex technologies away from the user ter-
minals. We began our work in Chapter 3, where we proposed global optimal problems
for scheduling in both full-duplex and hybrid full-duplex/half-duplex wireless networks.
Using this global problem, we presented greedy scheduling algorithms based on traditional
Max-SINR scheduling, and fair scheduling algorithms based on traditional Proportional Fair
scheduling. We showed that in comparison to their half-duplex counterparts, almost double
the throughput values could be achieved with full-duplex communications. Current radio
resource allocation schemes, designed for half-duplex networks, benefit from orthogonal
downlink and uplink channels which can be optimized independently. In contrast, in the
context of full-duplex wireless communications, the optimization of scheduling and power
allocation has to be done jointly for the uplink and the downlink because of the concept of
pairing and the generated full-duplex interferences. Consequently, it was not possible to
apply any traditional half-duplex scheduling or power allocation algorithms to full-duplex
networks in a straightforward manner.

In Chapter 4, we assessed the importance of complete channel state information (CSI) for
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extracting gains from full-duplex wireless networks. Specifically, we focused on the inter-UE
channels. No current wireless network protocols count for such channels and estimating
them is expected to be a hurdle in front of practical implementations of full-duplex wireless
networks. After showing that partial information about inter-UE channels is sufficient to
achieve significant gains from full-duplex wireless communications, we proposed a rein-
forcement learning approach to scheduling capable of learning how to best allocate resources
without any information on the inter-UE channels. We showed that our proposal can match
greedy scheduling with complete CSI at a cost of 10% or less in total network efficiency.

Moving forward to power allocation, in Chapter 5 we proposed a centralized optimal
approach to scheduling and power allocation in full-duplex wireless networks. Our approach
to the joint task was fairness oriented and introduced a pair priority based on current and
historic UE performances. Because the joint optimization problem was mathematically in-
tractable, we separated the problem into two and solved for scheduling and power allocation
independently. We showed via simulations that our proposal improves UE performance and
saves on power expenditure, where about 50% of the uplink UEs in the network transmitted
at powers levels lower than the maximum available.

In Chapter 6, we proposed a distributed approach to power allocation. The latter was
based in game theoretics. We used non-cooperative game theory to model power alloca-
tion as a super-modular game with the BS and the UEs set as competing players. We put
forward multiple games with objectives varying from maximizing UE SINR to improving
the network’s energy efficiency, and subsequently showed that the relevance of each of our
proposals depends on the scenario at hand.

In Chapter 7, we addressed scheduling and power allocation in a multi-cell full-duplex
wireless network. We considered both indoor and outdoor deployment scenarios and showed
that the gains of full-duplex wireless communications, with respect to their half-duplex
counterparts, will depend on the interference mitigation utilities available. We studied the
effects that cell cooperation has on UE performance, and showed that depending on the
network scenario, gains of up to 43%–in terms of cell throughput–stand to be made from the
latter.

8.1 Further Discussion on the Profitability of Full-Duplex

Practical implementation of full-duplex networks will eventually hinge on their profitability
with respect to current and future half-duplex wireless communications. In this section, we
discuss the potential gains of full-duplex wireless communications beyond what we presented
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in the course of this thesis, and we elaborate on how they fare vs. competitive half-duplex
technologies designed for throughput enhancement.

Added Gains of Full-Duplex Wireless Networks

The gains of full-duplex wireless networks extend beyond increased UE throughput, added
capacity, and reduced waiting delays. A classic issue for typical Wi-Fi networks is the hidden
terminal problem (Fig. 8.1), wherein two nodes transmitting to one access point cannot hear
each other’s transmissions resulting in collisions. With the access point being full-duplex,
every node in the network will be able to hear the access point’s transmission to the rest of
the nodes, largely avoiding the hidden terminal problem as a result. In [9], the author shows
that full-duplex communications reduce packet losses due to hidden terminals by up to 88%,
whilst improving the throughput on the downlink by 110%.

Hidden Terminal 
Transmission

Collision

User 1 User 2

Figure 8.1 The hidden terminal problem

Gains With Respect to Half-Duplex MIMO

One recurring question in the context of full-duplex wireless communications is whether
the profit they bring with respect to half-duplex communications is absolute. Multiple input
multiple output (MIMO) technology can immensely improve the throughput of traditional
half-duplex networks. If the transmission in a certain case is in only one direction, we can
expect MIMO to outperform full-duplex communications, as it doubles the throughput of
that direction. In that case, implementing a MIMO network could prove to be not only
more profitable, but more feasible as well as it is already tested. In the case of bidirectional
communications, it again comes down to how well full-duplex networks deal with the
resulting interference problems. Full-duplex nodes can use full UE power on each antenna.
In comparison, a half-duplex MIMO node has to share the UE power between its multiple
antennas. As [9] attests, if the SIC technologies are good enough, and in the presence
of sufficient channel knowledge, full-duplex communications will be more profitable than
MIMO at high SINR values. As MIMO is being superseded by the more lucrative Massive
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MIMO [74], full-duplex technologies need to be able to well mitigate their interference
problems in order to compete.

8.2 Perspectives in Relation to Resource Management in
Full-Duplex Networks

In this section, we discuss multiple perspectives in relation to radio resource management in
full-duplex wireless networks. Specifically, we discuss proposals on how inter-UE channels
could be estimated and explore axes regarding different UE pairing scenarios in full-duplex
wireless networks.

Estimation of Inter-UE Channels

As discussed in this thesis, estimating inter-UE channels is an added requirement in the
context of full-duplex wireless communications. The scheduler needs information on all
the UE-to-UE channels in order to efficiently allocate resources and maximize full-duplex
gains. However, no current wireless network protocols count for relaying such channel
information from the UEs to the BS. In Chapter 4, we introduced a reinforcement learning
approach to scheduling in order to circumvent the need for such inter-UE channel information.
Nonetheless, estimating these channels would allow the most optimal allocation of radio
resources. The authors in [36] and others in the state-of-the-art suggest using sounding
reference signals (SRSs) to estimate and relay such information to the BS. After implementing
neighbor discovery at the UEs to determine the strongest interferers, the uplink SRS can
be used by the UEs to estimate the channels to those interferers. While such an approach
could indeed be functional, it would still be challenging to distinguish between different UEs
on the SRS, causing thus added complexities. Furthermore, identifying only the strongest
interferes might not be a sufficient approximation. Irregardless, partial estimation of the
inter-UE channels could be enough to extract gains with respect to traditional half-duplex
scheduling, but those gains would not be as clear when compared to half-duplex MIMO and
other multiplexing technologies.

On Pair Association in Multi-Cell Full-Duplex Wireless Networks

During our work on multi-cell full-duplex wireless networks, we assessed the significance
of pair association. The idea was that instead of the current single UE association–which
usually associates each UE with the nearest BS–we implement pair association, wherein
pairs of uplink-downlink UEs are associated to the BSs they best perform on. This scenario
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is illustrated in Fig. 8.2 below, where the first pair which includes a UE that otherwise would
have been associated to the BS in the second cell, is associated to the BS in the first.

The scheduler might choose to do this if the co-channel interference between the two UEs
in this pair is low enough to generate better radio conditions for the pair as a whole when it
is associated to the first BS, despite the second downlink UE being closer to the second BS.
We evaluated the performance of such a network and compared it to the case of single UE
association. In the case where all the resources are used in adjacent cells (reuse-1), such an
approach produces no gains. In fact, in some of our simulations it actually costs the network
in terms of total throughput. Nonetheless, in the case where all the immediate interfering
cells do not use the same frequency resources, pair association could in fact improve the
performance of full-duplex networks. For the second outdoor scenario introduced in the
previous chapter, up to 10% increase in total network throughput is achievable via pair
association.

Uplink 
UE 2

Uplink 
UE 1

Downlink 
UE 1

Downlink 
UE 2

Cell 1 Cell 2

Pair 1

Pair 2

Figure 8.2 Pair association in a multi-cell scenario

Another interesting approach to UE association in full-duplex wireless networks consists
of decoupling the uplink-downlink UEs and associating each with a different BS. In this
case, the first uplink UE and the second downlink UE (seen in Fig. 8.2) would still be paired
together albeit with each associated to a different BS. With each UE receiving from or
transmitting to the closest BS, the SINR of each UE can be expected to improve. Nonetheless,
such an approach would not be without its complications. A central unit would have to be in
charge of the pairing and the scheduling. An extensive signaling overhead could be incurred.
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On Future Works in Full-Duplex Wireless Networks

As this dissertation comes to a conclusion, our work on full-duplex wireless communication
continues. Pending the time left for our work on this subject, we aim to explore the following:

1. In Chapter 4, we introduced a reinforcement learning approach to scheduling in
full-duplex wireless networks. It would be interesting to adapt this algorithm to the
multi-cell setting. Practically speaking, not much change would be required. The
algorithm would still allocate resources to pairs of UEs based on select probabilities
and afterwards, update the allocation probabilities based on how many bits were
transmitted and received by the UE pairs on the RBs they were allocated. An added
advantage for the learning approach in a multi-cell setting is that not only would it
not require information on the inter-UE channels, it would also not require knowledge
of the UEs’ inter-cell interferers. What remains is to assess how quickly and how
efficiently can the algorithm allocate the radio resources and whether it would incur a
large cost in terms of total network throughput.

2. In Chapter 6, we used game theoretics for power allocation in full-duplex wireless
networks. In [40], the authors used game theoretics for radio resource allocation in
full-duplex wireless networks and implemented a water filling algorithm for power
allocation. An interesting idea is to use game theory to jointly schedule the RBs
and allocate power on them. Traditionally, jointly addressing scheduling and power
allocation results in mathematically intractable problems. However, non-cooperative
game theory can be used to address both scheduling and power allocation at the same
time. The main challenge would be with identifying the players of the games designed
for scheduling and power allocation. In the case of power allocation, it made sense for
the UEs on the uplink and the BS on the downlink to be competing players. After all,
raising the power on the uplink degrades the performance of UEs on the downlink and
vice-versa. Nonetheless, this is not valid for scheduling the RBs. Uplink and downlink
UEs are paired on shared resources. In this case, they are no longer competitors. One
approach is to pit uplink UEs vs. uplink UEs and downlink UEs vs. downlink UEs.
The end game would be to select the uplink and downlink UEs with the best radio
conditions on each RB and pair them together. However, the best performing uplink
UE and the best performing downlink UE might not always form a good pairing. For
instance, they could be situated close to each other causing degradation in performance
for the downlink UE. Another approach would be to list all possible UE pairings as the
players of the scheduling game. The scheduling game would then be played between
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pairs of UEs to decide which pairs get what RBs. Afterwards, a power allocation game,
similar to our proposals, can be used to allocate powers to the scheduled UEs.

3. In the context of the multi-cellular networks introduced in Chapter 7, a distributed
approach to power allocation presents a challenging and interesting approach. In our
proposal, a central unit decides how to allocate the power on all the scheduled RBs
for the entire system in one shot. As with all centralized approaches, this is expected
to cause a signaling and processing burden. An alternative is to follow an iterative
distributed approach to power allocation. Each BS would solve the power allocation
problem individually and the BSs would take turn resolving the problem based on the
results of their counterparts, until a convergence is reached. A stopping criterion e.g.,

when the total network throughput no longer improves, might be needed.

Finally, when our work on full-duplex wireless communications started in 2016, there were
high hopes for 5G inclusion. Research in the domain boomed and countless approaches to
radio resource management in various scenarios of full-duplex implementations saw light.
Nonetheless, last year with the 3GPP 5G release 15 [75] made public, it was evident that
operators were not as excited for full-duplex wireless. Nowadays, full-duplex wireless
communications are spoken of in the context of 6G [76] with small hopes for introduction in
the final 5G release in 2021. It is not definitive that 6G will in fact include full-duplex, but at
least another decade of research will certainly pave way for practical implementation.
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Appendix A

Our Simulator for Scheduling and Power
Allocation in Full-Duplex Networks

A.1 Simulator Overview

In this section, we give a general overview of our simulator for scheduling and power
allocation in full-duplex wireless networks. Figure A.1 depicts a schematic block diagram
of our proposal. The simulator conveys two main tasks: (i) Scheduling and (ii) Power
Allocation. Depending on the simulation scenarios, power allocation on the resource blocks
(RBs) might not be necessary. As such, the simulator can output the results of the scheduling
with constant powers, without going through the task of power allocation.

The scheduling task consists of forming the uplink-downlink UE pairs, and allocating the
available RBs to these pairs. In addition to information on the radio channels, UE distribution
in the cell, and the UEs’ traffic model, a scheduling strategy is needed to indicate how the
RBs will be distributed on the UE pairs. This strategy could be greedy i.e., allocating the RBs
to the UEs with the best radio conditions, or fair i.e., allocating the RBs with the purpose of
achieving equity between the UEs.

Allocating powers on the RBs can be done after the scheduling task has been performed
for a certain TTI. Based on the power allocation objective, usually improving the UE SINR,
the transmit powers on the RBs are updated.

Implementation wise, Algorithm 10 below illustrates how the simulator works. The
scheduling decision is made, for all the available resources, each TTI. If desired, power
allocation is performed post scheduling.
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Figure A.1 Schematic block diagram of the simulator

Algorithm 10 Example Pseudo-Code

for t=1....Number of TTIs do
for k=1....K do

for each UE do
Calculate UE SINR for all possible pairs.

end
Allocate k to pair i-j based on the scheduling objective.

end
Allocate power on the RBs.
Calculate resulting UE throughputs.

end

In all cases, the resulting UE throughput values, among other metrics, are used to evaluate
the performance of the network under the simulated scenarios. This permits exploring the
gains and limitations of FD networks. The modularity of the simulator allows the permutation
of the blocks shown in the schematic diagram changing thus specific functions and settings.
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A.2 Network Model

A.2.1 Radio Model

We consider a single-cell FD-OFDMA system. This system is comprised of a full-duplex BS,
and half-duplex UEs. The UEs are virtually divided into two sets: an uplink UE set, denoted
by I and a downlink UE set, denoted by D. The scheduling algorithms pair between uplink
and downlink UEs on the RBs k of the set K. This system is illustrated in Fig. A.2.

Downlink UE Uplink UE
Co-Channel Interference

Self Interference

Figure A.2 Full-duplex network and interferences

The signal-to-noise and interference (SINR) ratio is calculated differently in such a
network, than in legacy HD networks. Let Pik denote the transmit power of the ith uplink
UE, on the kth RB. P0k is the transmit power of the BS on the kth RB. We denote by hu

ik the
channel gain from the ith uplink UE to the BS on RB k, and by and hd

jk the channel gain
from the BS to the jth downlink UE, on the kth RB. Furthermore, hij,k denotes the channel
gain between the ith uplink UE and jth downlink UE, on the kth RB. Pik|hij,k|2 is thus the
co-channel interference on downlink UE j caused by uplink UE i, using the same RB k. The
self-interference cancellation level at the BS is denoted SIC. In particular, Pjk

SIC
represents

the residual self-interference power at the BS, on the kth RB. Finally, N0k and Njk denote
the noise powers at the BS and at the jth downlink UE, on the kth RB, respectively. For an
uplink UE,

Su
j (i, k) = Pik|hu

ik|2

N0k + P0k

SIC

, i ∈ I, j ∈ D. (A.1)
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For a downlink UE,

Sd
i (j, k) =

P0k|hd
jk|2

Njk + P0k|hij,k|2
, i ∈ I, j ∈ D, (A.2)

where Su
j (i, k) is the SINR of uplink UE i on RB k while using the same resources as UE j.

Similarly, Sd
i (j, k) is the SINR of downlink UE j on RB k while using the same resources as

UE i.

A.2.2 Channel State Information

The state of a wireless channel is determined by the combined effect of several factors, the
most pertinent of which, are the path loss, the shadowing, and the fast fading. Knowledge of
the channel on a certain wireless link permits adapting the transmission to the communication
channel. This is essential in achieving reliable communications, and for making efficient
resource allocation decisions.

An FD-OFDMA network is concerned mainly with two types of channels: (i) BS-UE
channels (ii) UE-UE channels. Currently implemented 3GPP protocols have mechanisms
with which UEs can estimate BS-UE channels. UEs would periodically update the base
station with this channel information. The need to estimate UE-UE channels is unique to FD
networks. Knowing such channels enables a UE to distinguish the strongest interferers. This
information is vital for optimal pair selection. In our work, we statistically model the radio
channels as follows:

hji,k = GtGrLpAsAf (A.3)

Gt and Gr are the antenna gains at the transmitter and the receiver, respectively. Lp represents
the path loss, or equivalently the mean attenuation the signal undergoes in this channel. As

and Af are two random variables that respectively represent the shadowing effect, and the fast
fading effect. This model allows us to tune the factors affecting the different radio channels
to encompass different environments such as rural or urban cells.

The simulator enables implementing different path-loss models. One implemented
example is the Cost Hata Path-Loss model [51]. The path-loss (in dB), for the BS-UE
channel for example, is calculated as follows. For simulating urban environments:

Lp|dB = 46.3 + 33.9 · log10(f)− 13.82 · log10(hBS)− a

+ (44.9− 6.55 · log10(hBS)) · log10(dUE−BS) + Cm, (A.4)
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where
a = (1.1 · log10(f)− 0.7) · hUE − (1.56 · log10(f)− 0.8).

f is the transmission frequency in MHz. hBS is the base station antenna effective height in
m. hUE is the UE antenna effective height in m. dUE−BS is the link distance in km. Finally,
Cm is a constant equal to 3 dB for metropolitan centers, and 0 dB for medium-sized city and
suburban areas.
For simulating rural environments:

Lp|dB = 69.55 + 26.16 · log10(f)− 13.82 · log10(hBS)

+ (44.9− 6.55 · log10(hBS)) · log10(dUE−BS)

− 4.78 · (log10(f))2 + 18.33 · log10(f)− 40.94 (A.5)

Other path-loss models can also be incorporated. The log-distance path-loss model is used
for calculating indoor attenuations:

Lp|dB = L0
p|dB + 10γ log10

dUE−BS

d0
, (A.6)

where d0 is a reference distance (usually 1 km), and L0
p is the path-loss at that distance. γ is

the path-loss exponent, dependent on the type of the structures.

A.2.3 Traffic Model

The simulator incorporates both full buffers for the UEs, as well as queue-awareness
(Fig. A.3). In the case of queue-awareness and dynamic arrivals, each UE has a prede-
fined throughput demand which determines the rate at which the UE will transmit or receive.
A downlink UE has a queue at the BS, denoted Qd

j . An uplink UE has a queue of bits it
wants to transmit to the BS, denoted Qu

i . UE queues are updated each TTI according to a
Poisson process with a number of bits/s equal, on average, to the UE throughput demand.
Once the scheduling is done for a certain TTI, the BS computes the number of bits each UE
can transmit or receive, and the UE queues are deducted accordingly.

A.2.4 Performance Model

The mapping between a UE’s SINR and the number of bits it can transmit/receive is done
following a modulation and coding scheme (MCS). Using LTE-like configurations, we set
15 CQI values. These values use coding error rates between 1/8 and 4/5 combined with
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4-QAM, 16-QAM and 64-QAM modulations. Figure A.4 maps between the UE SINR and
the assigned CQI value.

 Downlink UE

Uplink UE

  t-1

  
Arrivals
      t

Figure A.3 Traffic model: UE pair i-j
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Figure A.4 CQI as a function of UE SINR

Table A.1 shows the relationship between the CQI level and the modulation and coding
schemes used. Based on the MCS used, the number of bits each UE can transmit or receive
on the resources allocated to it is recorded. At the end of the simulation the UE throughput is
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calculated as the number of bits the UE has transmitted, divided by the simulation duration.
The average delay is calculated using Little’s formula as the average queue length divided by
the packet arrival rate.

Table A.1 Modulation and coding scheme

CQI Modulation CodingRate NoBits/RB
0 - - 0
1 QPSK 1/8 21
2 QPSK 1/5 33.6
3 QPSK 1/4 42
4 QPSK 1/3 55.44
5 QPSK 1/2 84
6 QPSK 2/3 111.72
7 QPSK 3/4 126
8 QPSK 4/5 134.4
9 16-QAM 1/2 168

10 16-QAM 2/3 223.44
11 16-QAM 3/4 252
12 16-QAM 4/5 268.8
13 64-QAM 2/3 336
14 64-QAM 3/4 378
15 64-QAM 4/5 307.2

A.3 Simulation Settings

Prior to the run of any scheduling algorithm, the simulator is initiated with a set of predefined
settings (Seen in Fig. A.5).

Figure A.5 Simulation Settings
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Choosing the number of UEs in the network as well as the number of RBs to be allocated
enables us to change the load conditions from light to heavy. Also to be set is the number
of TTIs in a simulation and the duration of each. The UE and BS powers are globally set,
although they can be altered from within the scheduler.

A.4 UE Class

The base station is located at the center of the simulated cell with (0,0) coordinates. The UEs
are created as class instances with multiple property tags as shown in Fig. A.6. The UEs are
given an ID, and for a certain simulation assigned a type: uplink or downlink. The UEs are
also initialized with the throughput demand. Afterwards, a UE distribution function is called
upon to determine the position of a UE inside the cell. This function enables simulating
different UE distribution scenarios, with the possibility of forming UE clusters within the
cell.

Figure A.6 Class UE

The remainder of the UE properties are related to the functionality of the simulator. The
distance between the UE and the BS is subsequently calculated and stored. When making
scheduling decisions, the simulator needs to calculate the UE SINR and the number of
bits it can transmit on the RB being allocated. These property values are as such updated
accordingly. After the scheduling is performed, the UE queues, also stored as properties of
the class, are deducted following the resources allocated. Finally, because the simulator is
queue-aware, it can compute and store performance metrics such as the waiting delay.
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Appendix C

Résumé

C.1 Introduction et état de l’art

La prolifération des terminaux sans-fil atteint un niveau sans précédent. Qu’il s’agisse de
nos téléphones mobiles, de nos ordinateurs portables ou de tout autre terminal intelligent,
le besoin d’une connectivité sans-fil meilleure, plus rapide et fiable est plus urgent que
jamais. Avec près de 13 milliards de terminaux mobiles et un trafic mobile mensuel estimé
à 77 exabytes d’ici 2022 [1], la technologie est à peine à la hauteur. Pour les utilisateurs,
l’incapacité de l’infrastructure à satisfaire la demande entraîne une perte de connectivité sur
un terminal mobile ou un signal faible dans une zone surchargée. Symptômes des problèmes
auxquels font face les transmissions sans-fil.

Les communications sans-fil sont confrontées à deux grands défis au fur et à mesure de
leur évolution : l’atténuation des signaux et les interférences générées. En raison de la nature
du support sans-fil, tout signal transmis subira une atténuation rapide, ce qui rend la distance
entre l’émetteur et le récepteur un facteur important. De plus, tous les terminaux sans-fil
partagent le même support et utilisent un ensemble fini et limité de ressources radio. Cela
signifie que les terminaux sans-fil sont toujours en compétition pour ce support, et le partage
inévitable des ressources disponibles entraînera inévitablement des interférences de signal.
Le besoin croissant de capacité conduit à la réutilisation des fréquences et à la densification
du déploiement des réseaux, ce qui aggrave les problèmes de brouillage hérités du passé.

Les problèmes pour les communications sans-fil n’augmentent que lorsque l’on considère
la nécessité des communications bidirectionnelles. Tout terminal sans-fil doit émettre et
recevoir pour fonctionner correctement. C’est ce qu’on appelle le duplexage. Néanmoins, si
deux terminaux sans-fil communicants devaient utiliser la même ressource radio en même
temps pour communiquer, les interférences générées rendraient impossible la réception
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correcte d’un signal. En conséquence, deux mécanismes majeurs existent actuellement pour
permettre le duplexage [2] :

1. Time Division Duplexing ou TDD, consiste à séparer les signaux transmis et reçus dans
le domaine temporel. Ce dernier est décomposé en intervalles de temps d’émission
(TTI), et les deux terminaux communicants se relaient pour émettre et recevoir. Si les
terminaux n’émettent pas en même temps, il va de soi qu’il n’y aura pas d’interférences.
Des technologies telles que DECT [3] et IEEE 802.116 WiMax [4] implémentent le
TDD.

2. Frequency Division Duplexing ou FDD, signifie que les nœuds de chaque côté d’une
liaison de communication utiliseront différentes fréquences pour envoyer et recevoir
des données. Ceci empêchera les signaux d’interférer l’un sur l’autre, même si les
deux terminaux émettent en même temps. Les systèmes cellulaires tels que GSM [5],
CDMA2000 [6], et WiMax implémentent également FDD.

Dans une transmission TDD, un terminal sans-fil est - à un certain instant - soit en trans-
mission, soit en réception. Dans une transmission FDD, il faut deux fois plus de ressources
radio pour permettre aux nœuds d’émettre et de recevoir dans le même laps de temps. Dans
les deux cas, la communication sans-fil est dite half-duplex, même si elle tente d’émuler ce
qu’on appelle les communications full-duplex.

Un nœud full-duplex est un nœud qui peut émettre et recevoir sur la même ressource
radio, en même temps. Si l’on met de côté tous les problèmes et toutes les limites du TDD et
du FDD, l’aspect des communications en full-duplex à lui seul promet un doublement de la
capacité des réseaux sans-fil. Mais aucun terminal sans-fil actuel n’est en fait un full-duplex.
Pourquoi? Jusqu’à tout récemment, le terme "full-duplex sans-fil" était considéré comme un
oxymore.

C.1.1 Le problème des communications full-duplex sans-fil

Probablement la phrase la plus citée dans la littérature sur les réseaux sans-fil, la caractérisa-
tion par Andrea Goldsmith des communications sans-fil full-duplex dans son livre de 2005 de
Cambridge Press capture vraiment l’essence du consensus scientifique à l’époque. Goldsmith
a écrit : "Il n’est généralement pas possible pour les radios de recevoir et d’émettre sur la
même bande de fréquences à cause de l’interférence qui en résulte" [7]. Goldsmith a ensuite
fait valoir que la séparation des liaisons montante et descendante, que ce soit dans le domaine
temporel comme le TDD ou dans le domaine fréquentiel comme le FDD, était en fait le seul
moyen de soutenir les communications bidirectionnelles.
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Goldsmith n’avait pas tort techniquement. Considérons le modèle de réseau que nous
avons utilisé dans notre travail et illustré dans la Fig. C.1 ci-dessous. Dans ce scénario, la
station de base est considérée comme le nœud full-duplex. Les terminaux mobiles sont en
half-duplex, c’est-à-dire qu’à un certain moment, ils émettent ou reçoivent. En même temps,
un UE de liaison montante (en transmettant à la station de base) utilisera la même ressource
radio qu’un UE de liaison descendante (un UE qui reçoit de la station de base). Nous disons
que ces deux UE sont appariés sur la ressource. En tant que nœud full-duplex, la station de
base émet et reçoit simultanément sur cette même ressource radio. Ce réseau présentera deux
interférences supplémentaires majeures par rapport aux réseaux sans-fil half-duplex actuels :

Downlink UE Uplink UE
Co-Channel Interference

Self Interference

Figure C.1 Full-duplex network model and interferences

1. Auto-interference : Il s’agit du brouillage au niveau d’un nœud full-duplex, où le signal
transmis sur une ressource radio donnée est plusieurs fois plus fort que le signal reçu
sur cette même ressource. Ce dernier ne peut donc pas être reçu correctement. Dans
le scénario susmentionné, l’auto-interférence dégrade la performance des UE sur la
liaison montante.

2. Interférence intra-cellulaire co-canal : Il s’agit du brouillage résultant de l’utilisation
par deux UE des mêmes ressources radio au sein d’une même cellule. Le signal d’un
UE de liaison montante, généralement plusieurs fois plus puissant, interfère avec le
signal reçu par un UE de liaison descendante voisin utilisant la même ressource radio.
Cela entraîne une dégradation des performances de ces derniers.

Ces interférences sont dupliquées si l’on considère que les UE sont également full-duplex.
Les réseaux sans-fil half-duplex souffrant déjà de problèmes d’interférence, il est évident
que l’on croyait généralement que ces interférences supplémentaires rendraient simplement
impossibles les communications en full-duplex. Néanmoins, comme toujours, le progrès
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technologique rattrape inévitablement tout ce qui était autrefois considéré comme impossible.
Pour les technologies sans-fil full-duplex, l’introduction des techniques d’annulation d’auto-
interférence pour les terminaux sans-fil au début de cette décennie a marqué un tournant.

C.1.2 L’état de l’art pour l’ordonnancement et l’allocation de puis-
sance

Dans cette section, nous présentons un aperçu général de l’état de l’art des communications
sans-fil full-duplex. Nous classons ces derniers en trois catégories. La première traite du
développement et de l’évolution des techniques d’annulation d’auto-interférence. Il était
essentiel que ces technologies soient bien établies avant que les chercheurs n’aillent plus loin
dans leurs travaux sur les technologies full-duplex. La deuxième catégorie englobe les travaux
préliminaires dans le domaine qui visaient soit à suggérer différents scénarios full-duplex
possibles, soit simplement à valider que des gains pourraient être tirés des communications
full-duplex. La troisième catégorie de l’état de l’art, à laquelle appartient pratiquement
notre travail, s’appuie sur les deux précédentes pour proposer et simuler des algorithmes
d’ordonnancement et d’allocation de puissance pour les réseaux sans-fil full-duplex.

Il était important que les technologies SIC soient bien développées et testées avant tout
autre travail sur le sans-fil full-duplex. Après tout, c’est le développement de ces technologies
qui a rendu les communications sans-fil full-duplex possibles.

Les auteurs de [14] ont été parmi les premiers à discuter des impacts directs des techniques
SIC développées sur les communications full-duplex. Ils affirment que ces technologies
invalident des hypothèses de longue date concernant la conception des réseaux sans-fil, et
ils donnent un aperçu de ce qui serait requis des techniques d’annulation des interférences
afin de propulser les communications sans-fil full-duplex dans la réalité. Dans l’un des
premiers travaux sur le full-duplex en bande pour les réseaux sans-fil, les auteurs de [15]
passent en revue un ensemble de techniques SIC et abordent les principaux défis auxquels
sont confrontés les réseaux sans-fil full-duplex. Les articles de [16] et [17] visaient à évaluer
la performance de l’auto-ingérence dans le contexte des communications sans-fil full-duplex.
Les auteurs de [16] concluent que la performance du SIC augmente à mesure que la largeur
de bande du signal diminue, tandis que ceux de [17] se concentrent sur l’impact des erreurs
d’amplitude et de phase sur l’efficacité des technologies de suppression des brouillages.

En outre, alors que nous suivons l’évolution de ces technologies, les articles de [18–20]
suivent les derniers développements dans le domaine de la suppression des interférences. Les
auteurs de [18] proposent une nouvelle technique SIC analogique pour les antennes uniques
dans les systèmes full-duplex en bande. Ils montrent que leur modèle peut annuler 40 dB
d’interférence sur une bande de fréquence de 35 MHz. Ils affirment qu’il suffit d’éviter
la saturation du convertisseur analogique-numérique. Les auteurs de [19] se penchent sur
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les applications pratiques de l’annulation d’interférence et présentent un modèle d’antenne
patch avec un simple SIC à deux prises RF/analogique basé sur le domaine. Il est important
de noter qu’ils attestent qu’il est possible d’atteindre des performances SIC à large bande.
Enfin, les auteurs de [20] conçoivent et mettent en œuvre un système SIC assisté par réseau
neuronal pour la radio full-duplex. Ils vérifient par simulations qu’ils peuvent obtenir de bons
résultats de performance avec une complexité de calcul inférieure à celle des technologies
existantes.

Après un consensus sur la viabilité des techniques SIC et sur le rôle que ces technologies
pourraient jouer dans la faisabilité des communications par le full-duplex, la recherche dans
le domaine s’est orientée vers l’exploration de ce que seraient les réseaux sans-fil full-duplex
et si des obstacles autres que l’auto-interférence pourraient entraver la réalisation de gains
grâce aux communications sans-fil full-duplex.

Les travaux de [22–25] portent sur l’évaluation des gains possibles des réseaux sans-fil
full-duplex. Leurs auteurs étudient différentes implémentations des systèmes full-duplex,
ainsi que les limites et les obstacles auxquels ils sont confrontés.

Dans le contexte de cette thèse, nous avons supposé que la technologie de mise en œu-
vre de l’émission et de la réception full-duplex est existante et bien testée. L’état de l’art
est également bien investi dans différents scénarios de réseaux full-duplex. Notre travail
s’appuie sur ces données pour proposer des algorithmes d’ordonnancement et d’allocation de
puissance pour les réseaux sans-fil full-duplex.

Les technologies SIC étant maintenant bien établies dans l’état de l’art, et les technologies
full-duplex étant maintenant bien motivées, ce n’était qu’une question de temps avant que
les chercheurs dans le domaine du sans-fil ne s’orientent vers la conception d’algorithmes
d’ordonnancement et d’allocation de puissance pour les réseaux sans-fil full-duplex. La
gestion des ressources radio a toujours été le pilier de toute technologie de transmission.
Pour les réseaux sans-fil full-duplex en particulier, l’enjeu était plus important. Dans ce
contexte, l’ordonnancement et l’attribution de puissance ne visent pas seulement à améliorer
la gestion des ressources radio, mais aussi à atténuer les interférences full-duplex. Sans un
ordonnacement appropriée - capable de lutter contre les effets sur le brouillage intra-cellulaire
co-canal - les communications full-duplex ne seraient pas viables.

Le tableau C.1 résume la majorité de l’état de l’art en matière d’ordonnancement et
d’allocation de puissance dans les réseaux sans-fil full-duplex. Il met en évidence les
scénarios de réseau full-duplex utilisés et indique si les articles référencés introduisent des
algorithmes d’allocation de puissance en plus des propositions d’ordonnancement. Le tableau
indique également si ces approches d’allocation de puissance sont distribuées ou centralisées.
Des informations supplémentaires sur le scénario et la taille des cellules, le type de trafic et
l’état de la CSI considérée sont incluses. Les cellules du tableau marquées "-" sont destinées
aux cas où l’information indiquée n’est pas donnée dans les documents, ou ne peut être
directement déduite.
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La grande majorité des articles de l’état de l’art présentent un scénario full-duplex sem-
blable à celui que nous avons utilisé dans notre travail. On suppose que la station de base est
le nœud full-duplex et que les équipements d’utilisateur restent half-duplex. Ce scénario est
celui mis en œuvre dans tous les modèles full-duplex OFDMA [30–32] cités en référence
également. D’autres modèles dans les travaux connexes se concentrent sur le relais [33],
MIMO [34], et même des réseaux hétérogènes [35]. Bien que ces trois derniers ne soient pas
directement liés à notre travail, nous les avons étudiés en raison de l’existence d’une problé-
matique commune lorsqu’il s’agit de traiter les problèmes et les interférences full-duplex.

Quant à l’ordonnancement, presque tous les travaux de l’état de l’art mettent en œuvre
des approches gloutonnes axées sur la maximisation du débit (Max SR) ou le débit (Max
TP) [33]. D’autres variations gloutonnes dans les travaux connexes incluent la maximisa-
tion de l’efficacité spectrale du réseau (Max SE) [28], et la maximisation de la somme des
logarithmes des débits [36]. De plus, un ensemble d’algorithmes d’allocation de puissance
est utilisée, un bon nombre d’entre eux étant basés sur une certaine forme d’optimisation.
D’autres approches telles que l’Iterative Water Filling (IWF) [29], l’optimisation multi-
objectifs (MOOP) [34], et le contrôle de puissance fractionnaire (FPC) [35] étaient utilisées
dans certains de ces travaux.

Les scénarios multi-cellules ne sont guère mis en œuvre dans l’état de l’art. Cela
s’explique principalement par l’augmentation exponentielle de la complexité qu’entraîneraient
l’étude et la simulation de tels scénarios. En outre, l’existence d’interférences intercellulaires
complique davantage la preuve de faisabilité et des avantages des communications sans-fil
full-duplex. Comme nous le montrons plus loin dans notre travail, tous les scénarios multi-
cellules ne produisent pas des gains par rapport aux communications half-duplex. Certains
articles de l’état de l’art mettent en œuvre un modèle simpliste, comme dans [22], dans lequel
des hypothèses irréalistes d’interférence intercellulaire sont faites. Le travail en [36] introduit
le modèle multi-cellulaire le plus complet dans les travaux connexes. Les auteurs examinent
des scénarios de cellules à l’intérieur et à l’extérieur et associent l’ordonnancement visant la
maximisation de la somme des débits à un problème d’allocation optimale de puissance. Ils
envisagent l’établissement d’un ordonnancement par cellule et l’attribution coordonnée de
puissance.

Les technologies d’annulation d’auto-interférence sont une pierre angulaire des commu-
nications full-duplex. Certains articles de l’état de l’art supposent des conditions idéales [32]
i.e., les technologies disponibles sont capables d’annuler toute l’auto-interférence. Comme
nous l’avons déjà dit, ce n’est pas tout à fait réaliste. D’autres modèles supposent des condi-
tions quasi-idéales d’annulation du brouillage, où un petit facteur résiduel d’auto-interférence
(Residual Self-Interference en anglais, RSI) est ajouté au calcul du SINR en tant que bruit.
Une autre approche pour modéliser l’effet de l’auto-interférence consiste à utiliser un modèle
RSI [24], où le RSI suit une fonction probabiliste telle qu’une loi gaussienne. Comme pour
notre travail, la majorité des articles examinés utilisent un ensemble de facteurs d’annulation
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d’interférence pour déterminer l’RSI. Dans les limites supérieures de 120 à 130 dB, ces
hypothèses restent admissibles.

Table C.1 L’état de l’art en full-duplex

Publication Type de Réseau Ordonnancement Allocation de Puissance Spécifications des Cellules
Objectif Q-Aware Centralisé Distribué Multi-Cell Taille (R) SIC

Sarret et al.[22] BS/UEs full-duplex Max TP X × × X Petite Idéal
Cirik et al.[26] OFDMA Max SR × X × × 40 m 70-110 dB
Song et al.[23] BS/UEs full-duplex Max SR × × × × - -

Da Silva et al. [28] BS full-duplex Max SE × X × × 100 m 110 dB
Gao et al. [33] MIMO Relay Max TP × × × × - -
Sun et al. [34] MU-MIMO - × X × × 250 m 80 dB

Tehrani et al.[30] OFDMA Max SR × X × × 20-1000 m 130 dB
Di et al.[31] OFDMA Max SR × X × × - 100 dB

Nam et al. [32] OFDMA Max SR × X × × 1 km Idéal
Sun et al. [37] MC-NOMA Max SR × X × × 600 m 110 dB

Goyal et al. [36] BS full-duplex Max log(R) × X X X Petite Modèle RSI
Marasevic et al. [24] BS/UEs full-duplex Max SR × - - × × Modèle RSI

Nam et al. [29] OFDMA Max SR × X × × 500 m Quasiment idéal
Liu et al. [38] OFDMA Max TP × × × × 500 m Quasiment idéal
Park et al. [39] BS full-duplex Max SE × X × × 100 m Modèle RSI

Al-Imari et al. [40] OFDMA Max SR × X × × 200 m 85 dB
Tran et al. [41] OFDMA Max SR × X × × 250 m 120 dB
Wu et al. [42] BS full-duplex Max SR × X × × 150 m Modèle RSI

Shaikh et al. [35] Hybrid BS - × X × × Petite Idéal
Zhang et al. [43] OFDMA Max-Min - X × Het-Net 100 m 110 dB

Our Proposal full-duplex BS Multiple X X X X Multiple 110 dB

C.2 Ordonnancement dans les réseaux sans-fil full-duplex
avec CSI complète

Dans ce chapitre de thèse, nous avons présenté un algorithme mathématique optimal pour l’ordonnanc-
ement dans les réseaux sans-fil full-duplex et hybrides full-duplex/half-duplex. Notre problème
d’optimisation générique tient compte des files d’attente et relève les nouveaux défis qui découlent
de l’utilisation de réseaux sans-fil full-duplex : l’auto-interférence et l’interférence intra-cellulaire
co-canal. Nous appliquons cette optimisation avec différents objectifs d’ordonnancement, en nous
attaquant à des problèmes tels que la maximisation du SINR et l’équité entre les utilisateurs. En
conséquence, nous proposons d’abord un algorithme d’ordonnancement Max-SINR full-duplex
optimal et un algorithme d’ordonnancement Proportional Fair full-duplex optimal. De plus, et
puisque les communications full-duplex ne sont pas toujours rentables, nous avons introduit un
algorithme d’ordonnancement Max-SINR hybride optimal et un algorithme d’ordonnancement Pro-
portional Fair optimal. Ces algorithmes commutent entre les transmissions full-duplex et half-
duplex, afin d’améliorer les performances du réseau. De plus, pour éviter d’éventuels problèmes
d’insolubilité avec les problèmes d’optimisation, nous avons proposé des versions heuristiques de
nos algorithmes. Nous évaluons la performance de nos propositions heuristiques dans de multiples
scénarios d’ordonnancement difficiles et montrons qu’elles donnent des résultats quasi optimaux.
Enfin, par rapport à leurs homologues half-duplex, nous avons montré que les communications
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full-duplex peuvent plus que doubler le débit du terminal mobile, tout en réduisant de moitié le délai
d’attente.

C.3 Ordonnancement dans les réseaux sans-fil full-duplex
sans CSI complète

Dans le chapitre 3 de la thèse, nous avons présenté notre approche de l’ordonnancement dans les
réseaux sans-fil full-duplex en présence d’informations complètes sur l’état des canaux. Néanmoins,
il n’existe toujours pas de moyens évidents permettant aux réseaux full-duplex d’atteindre cet état
d’exhaustivité. Après tout, aucun protocole de réseau sans-fil existant n’est pris en compte pour estimer
les canaux interutilisateurs ou pour déterminer comment l’information sur ces canaux pourrait être
relayée à la station de base. Afin d’allouer correctement les ressources entre les paires d’équipements
utilisateurs de liaison montante et descendante, le réseau a besoin d’informations exactes sur les
canaux entre tous les UE, en plus de tous les canaux half-duplex traditionnels UE vers BS. Dans un
réseau unique de femto cellules composé de cinq UE de liaison montante et de cinq UE de liaison
descendante, la station de base devrait être continuellement mise à jour avec des informations sur
un maximum de 35 canaux radio. Dix d’entre eux sont de type UE-to-BS et 25 de type UE-to-UE.
Un nombre qui augmenterait considérablement dans les scénarios de macro cellules. Étant donné
que l’ordonnancement se fait sur une petite échelle de temps (ms), l’ordonnancement avec CSI
complet est rendu encore plus complexe par une surcharge de signalisation qui alourdit encore plus les
équipements d’utilisateur. Dans ce chapitre, nous avons abordé les conséquences de l’ordonnancement
dans des réseaux sans-fil full-duplex avec CSI incomplet, puis nous avons proposé un algorithme
d’ordonnancement par apprentissage par renforcement qui peut allouer des ressources radio sans avoir
besoin de telles informations. De plus, nous avons détaillé les principaux défis auxquels fait face une
proposition d’ordonnancement par machine learning, en nous concentrant sur les effets du trafic de
mémoire vide et des conditions radio dynamiques sur la performance de l’algorithme. Nous avons
testé notre proposition dans de multiples scénarios d’ordonnancement allant du trafic UE aléatoire, au
clustering des UE et en présence d’un faible SIC. Alors que le regroupement des terminaux dégrade
les performances des UE de liaison descendante et des UE de liaison montante, nous avons illustré
que notre proposition par apprentissage fonctionne toujours bien en termes de débit des terminaux et
de réseau. Par conséquent, nous avons vérifié la validité de notre algorithme sans égard aux obstacles
auxquels se heurte la tâche d’ordonnancement.

C.4 Allocation centralisée de puissance
Dans le chapitre 5 de la thèse, nous avons proposé une approche centralisée optimale de l’ordonnancement
et de l’allocation de puissance dans les réseaux sans-fil full-duplex. Nous voulions utiliser l’allocation
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de puissance parallèlement à l’ordonnancement pour surmonter les problèmes d’interférence générés
par les communications sans-fil full-duplex. Étant donné que le brouillage co-canal et l’auto-
interférence sont tous deux liés aux puissances de la liaison montante et de la liaison descendante,
respectivement, l’attribution de puissance peut jouer un rôle important pour atténuer ces interférences.
Dans cette approche centralisée, une unité centrale, i.e., la station de base est supposée avoir toutes
les informations nécessaires pour allouer puissance sur les ressources. Nous formulons un problème
d’ordonnancement équitable et d’allocation de puissance pour les réseaux sans-fil full-duplex, en
tenant compte des files d’attente. En raison de son insolubilité, nous décomposons ce problème en
deux : un problème d’ordonnancement et un problème d’allocation de puissance. Nous comparons
notre proposition à l’état de l’art et montrons qu’elle améliore l’équité entre les terminaux mobiles, et
ce, sans impact négatif sur la performance du système.

C.5 Allocation décentralisée de puissance
Comme on l’a vu jusqu’à présent, et en raison de l’auto-interférence, les terminaux mobiles de liaison
montante d’un réseau full-duplex subissent une dégradation des performances avec une augmentation
de la puissance sur la liaison descendante. En outre, et en raison de la présence de brouillage
intra-cellulaire co-canal, les terminaux mobiles de la liaison descendante du réseau subiraient une
dégradation des performances en raison d’une augmentation de la puissance sur la liaison montante.
Les équipements utilisateurs sur la liaison montante et la station de base sur la liaison descendante
sont des concurrents aux objectifs contradictoires. Cela rend une approche egoiste de la théorie des
jeux parfaitement adapté à l’allocation de puissance dans les réseaux sans-fil full-duplex. Dans ce
chapitre de la thèse, nous avons proposé trois jeux non coopératifs pour aider à s’attaquer à la tâche
complexe de l’allocation de puissance aux paires d’équipements d’utilisateur programmées, avec des
objectifs allant de l’amélioration des performances des utilisateurs à la réduction des dépenses en
énergie. Les jeux ont deux groupes de joueurs : les utilisateurs sur la liaison montante et la station de
base sur la liaison descendante. Nous utilisons une classe spéciale de jeux, connus sous le nom de
jeux super-modulaires, pour créer des utilités différentes avec des objectifs différents. En s’aidant un
ensemble de simulations exhaustives, nous avons évalué l’importance de l’allocation de puissance
dans les réseaux full-duplex, et déterminé ses gains et ses limites.

C.6 Ordonnancement et allocation de puissance dans les
réseaux sans-fil multicellulaire

Dans ce chapitre de la thèse, nous avons exploré les défis de l’ordonnancement et de l’allocation
de puissance dans le contexte des réseaux sans-fil full-duplex multicellulaires. Il s’agit d’un cadre
plus réaliste que le scénario à cellule unique, et il envisage mieux la façon dont les communications
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sans-fil en full-duplex pourraient être mises en œuvre. Nous avons proposé un problème optimal
d’ordonnancement conjointe et d’allocation de puissance pour les réseaux sans-fil full-duplex. En rai-
son de son insolubilité mathématique, nous avons découplé le problème et résolu d’abord le problème
de l’ordonnancement, puis celui de l’attribution de la puissance. Nous avons examiné des scénarios de
déploiement à l’intérieur et à l’extérieur et nous avons montré que les avantages des réseaux sans-fil
full-duplex multicellulaires, par rapport à leurs équivalents half-duplex, sont situationnels. En outre,
nous avons souligné l’importance de la coopération intercellulaire en matière d’ordonnancement
des ressources et montré que, selon le scénario à l’étude, l’atténuation des interférences dues à la
coopération intercellulaire peut améliorer les performances des équipements utilisateurs en termes de
débit. Enfin, nous avons montré que l’allocation de puissance peut améliorer le rendement de l’UE,
son efficacité étant liée au scénario de déploiement.

C.7 Conclusion
Avec la demande sans cesse croissante de connexions réseau sans-fil plus rapides, plus fortes et de
meilleure qualité, les communications sans-fil full-duplex ont les moyens de devenir la prochaine
grande percée en télécommunications. Dans cette thèse, nous avons exploré les gains possibles
des communications sans-fil full-duplex par rapport à la technologie half-duplex actuelle en place.
Nous avons proposé plusieurs algorithmes d’ordonnancement gourmands et équitables ainsi que des
approches centralisées et décentralisées de la gestion de puissance. En général, nous avons présenté
une étude complète de l’ordonnancement et de l’allocation de puissance dans les réseaux sans-fil
full-duplex, alors que nous cherchions à combler les lacunes de l’état de l’art si nécessaire.

Dans notre travail, nous avons considéré un réseau sans-fil full-duplex où la station de base est
compatible full-duplex et les terminaux mobiles restent half-duplex. Notre objectif était d’éviter que la
complexité de la mise en œuvre des technologies full-duplex n’atteigne les terminaux des utilisateurs.
Nous avons commencé notre travail au chapitre 3, où nous avons proposé des problèmes globaux
optimaux pour l’ordonnancement dans les réseaux sans-fil full-duplex et hybride full-duplex et half-
duplex. En utilisant ce problème global, nous avons présenté des algorithmes d’ordonnancement
gourmands basés sur l’ordonnancement Max-SINR traditionnel, et des algorithmes d’ordonnancement
équitable basés sur l’ordonnancement proportionnel équitable traditionnel. Nous avons montré
que, par rapport à leurs homologues half-duplex, les communications en full-duplex permettent
d’atteindre des valeurs de débit presque deux fois plus élevées. Les schémas actuels d’allocation des
ressources radio, conçus pour les réseaux half-duplex, bénéficient de canaux de liaison descendante et
montante orthogonaux qui peuvent être optimisés indépendamment. En revanche, dans le contexte
des communications sans-fil en full-duplex, l’optimisation de la programmation et de l’attribution
de puissance doit se faire conjointement pour la liaison montante et la liaison descendante en raison
du concept de couplage et des interférences en full-duplex produites. Par conséquent, il n’a pas été
possible d’appliquer les algorithmes traditionnels d’ordonnancement half-duplex ou d’allocation de
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puissance aux réseaux full-duplex d’une manière simple et directe.
Au chapitre 4, nous avons évalué l’importance de l’information complète sur l’état des canaux pour

extraire les gains des réseaux sans-fil full-duplex. Plus précisément, nous nous sommes concentrés
sur les canaux inter-UE. Aucun protocole de réseau sans-fil actuel ne compte pour de tels canaux
et on s’attend à ce que leur estimation constitue un obstacle à la mise en œuvre pratique de réseaux
sans-fil en full-duplex. Après avoir démontré qu’une information partielle sur les canaux inter-UE est
suffisante pour réaliser des gains significatifs avec les communications sans-fil full-duplex, nous avons
proposé une approche d’apprentissage par renforcement de l’ordonnancement capable d’apprendre
comment allouer au mieux les ressources sans aucune information sur les canaux inter-UE. Nous
avons montré que notre proposition peut faire correspondre une ordonnancement gloutonnes avec un
CSI complet à un coût de 10 % ou moins en termes d’efficacité réseau totale.

En ce qui concerne l’attribution de puissance, nous avons proposé au chapitre 5 une approche
centralisée et optimale de la programmation et de l’attribution de puissance dans les réseaux sans-fil
full-duplex. Notre approche de la tâche conjointe était axée sur l’équité et a introduit une priorité de
paire basée sur les performances actuelles et historiques de l’UE. Comme le problème de l’optimisation
commune était mathématiquement insoluble, nous avons séparé le problème en deux et l’avons résolu
pour l’ordonnancement et l’allocation de puissance indépendamment. Nous avons montré par des
simulations que notre proposition améliore les performances de l’UE et permet d’économiser sur les
dépenses de puissance, où environ 50 % des UE de liaison montante du réseau sont transmis à des
niveaux de puissance inférieurs au maximum disponible.

Au chapitre 6, nous avons proposé une approche distribuée d’allocation de puissance. Ce dernier
était basé sur la théorie des jeux. Nous avons utilisé la théorie des jeux non coopératifs pour modéliser
l’allocation de puissance comme un jeu super-modulaire avec les BS et les UE comme joueurs
concurrents. Nous avons proposé de multiples jeux avec des objectifs allant de la maximisation du
SINR de l’UE à l’amélioration de l’efficacité énergétique du réseau, et avons ensuite montré que la
pertinence de chacune de nos propositions dépend du scénario à l’étude.

Au chapitre 7, nous avons abordé l’ordonnancement et l’allocation de puissance dans un réseau
sans-fil full-duplex à cellules multiples. Nous avons examiné des scénarios de déploiement à l’intérieur
et à l’extérieur et avons montré que les avantages des communications sans-fil full-duplex, par rapport
à leurs homologues half-duplex, dépendront des utilitaires de réduction des interférences disponibles.
Nous avons étudié les effets de la coopération cellulaire sur les performances de l’UE et montré que,
selon le scénario du réseau, des gains allant jusqu’à 43 % - en termes de débit cellulaire - peuvent être
réalisés à partir de ce dernier.

C.8 Perspectives
Dans cette section, nous abordons les multiples perspectives de la gestion des ressources radio dans
les réseaux sans-fil full-duplex. Plus précisément, nous discutons des propositions sur la façon dont
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les canaux inter-UE pourraient être estimés et explorons les axes concernant les différents scénarios
d’appariement UE dans les réseaux sans-fil full-duplex.

C.8.1 Estimation des canaux inter-UE

Tel que discuté dans cette thèse, l’estimation des canaux inter-UE est une exigence supplémentaire
dans le contexte des communications sans-fil full-duplex. L’ordonnanceur a besoin d’informations
sur tous les canaux UE-UE afin d’allouer efficacement les ressources et de maximiser les gains en
full-duplex. Toutefois, aucun protocole de réseau sans-fil actuel ne permet de relayer ces informations
de canal des équipements d’utilisateur à la station de base. Dans le chapitre 4 de la thèse, nous avons
introduit une approche d’apprentissage de renforcement de l’ordonnancement afin de contourner le
besoin d’une telle information de canal inter-UE. Néanmoins, l’estimation de ces canaux permet-
trait une allocation optimale des ressources radio. Les auteurs de [36] et d’autres auteurs de l’état
de la technique suggèrent d’utiliser des signaux de référence de sondage (SRS) pour estimer ces
informations. Après la mise en œuvre de la découverte du voisin dans les UE pour déterminer les
brouilleurs les plus puissants, le SRS de la liaison montante peut être utilisé par les UE pour estimer
les canaux vers ces brouilleurs. Bien qu’une telle approche puisse effectivement être fonctionnelle,
il serait toujours difficile de faire la distinction entre les différents UE du SRS, ce qui entraînerait
des complexités supplémentaires. De plus, le fait de n’identifier que les interférences les plus fortes
pourrait ne pas être une approximation suffisante. Quoi qu’il en soit, une estimation partielle des
canaux inter-UE pourrait suffire à extraire des gains par rapport à la programmation traditionnelle en
half-duplex, mais ces gains ne seraient pas aussi évidents si on les compare à la technologie MIMO
en half-duplex et autres technologies de multiplexage.

C.8.2 Association de paire dans les réseaux full-duplex multicellulaire

Au cours de nos travaux sur les réseaux sans-fil full-duplex multicellulaire, nous avons évalué
l’importance de l’association de paires. L’idée était qu’au lieu de l’association des terminaux unique
actuelle, qui associe habituellement chaque UE à la station de base la plus proche, nous mettions
en place une association de paires, dans laquelle les paires des terminaux de liaison montante et
descendante sont associées aux stations de base où elles fonctionnent le mieux. Ce scénario est illustré
dans la figure 8.2 ci-dessous, où la première paire, qui comprend un UE qui aurait autrement été
associé à la station de base dans la deuxième cellule, est associée à la station de base dans la première.

L’ordonnanceur peut choisir de le faire si le brouillage co-canal entre les deux UE de cette paire
est suffisamment faible pour générer de meilleures conditions radio pour l’ensemble de la paire
lorsqu’elle est associée à la première station de base, bien que la deuxième station de base de la liaison
descendante soit plus proche de la seconde. Nous avons évalué la performance d’un tel réseau et
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Figure C.2 Pair association in a multi-cell scenario

l’avons comparé au cas d’une association unique. Dans le cas où toutes les ressources sont utilisées
dans des cellules adjacentes, une telle approche ne produit aucun gain. En fait, dans certaines de nos
simulations, le coût total du réseau est calculé en fonction du débit total. Néanmoins, dans le cas
où toutes les cellules brouilleuses immédiates n’utilisent pas les mêmes ressources fréquentielles,
l’association de paires pourrait en fait améliorer les performances des réseaux full-duplex. Pour le
deuxième scénario extérieur présenté dans le chapitre précédent, il est possible d’augmenter jusqu’à
10 % le débit total du réseau par association de paires.

Une autre approche intéressante de l’association des terminaux dans les réseaux sans-fil full-
duplex consiste à découpler les UE de liaison montante et descendante et à les associer à une station
de base différente. Dans ce cas, le premier UE sur la liaison montante et le second UE sur la liaison
descendante (voir la Fig. C.2) seraient toujours appariés, mais chacun étant associé à une station
de base différente. Avec chaque UE recevant ou transmettant de ou vers la station de base la plus
proche, on peut s’attendre à ce que le SINR de chaque UE s’améliore. Néanmoins, une telle approche
ne serait pas sans complications. Une unité centrale devrait être chargée de l’appariement et de
l’ordonnancement. Au moins, il faudrait une signalisation aérienne importante.

C.9 Travaux Futurs
Alors que cette thèse tire à sa fin, notre travail sur la communication sans-fil full-duplex se poursuit.
Nous avons l’intention d’explorer ce qui suit :

1. Au chapitre 4, nous avons introduit une approche par apprentissage par renforcement de
l’ordonnan-cement dans les réseaux sans-fil full-duplex. Il serait intéressant d’adapter cet
algorithme dans un contexte multicellulaire. Dans la pratique, peu de changements seraient
nécessaires. L’algorithme continuerait d’allouer des ressources à des paires des terminaux en
fonction de probabilités choisies, puis mettrait à jour les probabilités d’allocation en fonction
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du nombre de bits transmis et reçus par les paires des terminaux sur les ressources radio qui
leur ont été attribuées. Un autre avantage de l’approche d’apprentissage dans un contexte
multicellulaire est que non seulement elle n’exigerait pas d’information sur les canaux inter-UE,
mais elle n’exigerait pas non plus une connaissance des brouilleurs intercellulaires des UE. Il
reste à évaluer la rapidité et l’efficacité avec lesquelles l’algorithme peut allouer les ressources
radio et si cela entraînerait un coût élevé en termes de débit total du réseau.

2. Au chapitre 6, nous avons utilisé la théorie des jeux pour l’allocation de puissance dans
les réseaux sans-fil full-duplex. Dans [40], les auteurs ont utilisé la théorie des jeux pour
l’allocation des ressources radio dans les réseaux sans-fil full-duplex et ont mis en œuvre un
algorithme IWF pour l’allocation de puissance. Une idée intéressante est d’utiliser la théorie des
jeux pour décider conjointement de l’ordonnancement des ressources radio et leur allocation de
puissance. Traditionnellement, le fait d’aborder conjointement l’ordonnancement et l’allocation
de puissance entraîne des problèmes insolubles sur le plan mathématique. Cependant, la théorie
des jeux non coopératifs peut être utilisée pour traiter à la fois l’ordonnancement et l’allocation
de puissance. Le principal défi consisterait à identifier les joueurs des jeux conçus pour la
programmation et l’allocation de puissance. Dans le cas de l’allocation de puissance, il était
logique que les UE sur la liaison montante et les stations de base sur la liaison descendante
soient des acteurs concurrents. Après tout, l’augmentation de la puissance sur la liaison
montante dégrade la performance des équipements d’utilisateur sur la liaison descendante et
vice-versa. Néanmoins, ceci n’est pas valable pour l’ordonnancement des ressources radio.
Les UE de liaison montante et descendante sont appariés sur des ressources partagées. Dans
ce cas, ils ne sont plus des concurrents. L’une des approches consiste à opposer les UE de
liaison montante aux UE de liaison montante et les UE de liaison descendante aux UE de
liaison descendante. La fin du jeu consisterait à sélectionner les UE de liaison montante et
descendante présentant les meilleures conditions radio sur chaque ressources radio et à les
coupler entre eux. Toutefois, l’UE la plus performante de liaison montante et l’UE la plus
performante de liaison descendante peuvent ne pas toujours former un bon couple. Par exemple,
ils pourraient être situés à proximité l’un de l’autre, ce qui entraînerait une dégradation des
performances pour les équipements d’utilisateur de liaison descendante. Une autre approche
consisterait à dresser la liste de tous les appariements UE possibles en tant que joueurs du jeu
d’ordonnancement. Le jeu d’ordonnancement se jouerait alors entre les paires des terminaux
pour décider quelles paires obtiennent quelles ressources radio. Par la suite, un jeu d’allocation
de puissance, semblable à nos propositions, peut être utilisé pour allocation du puissance aux
UE prévues.

3. Dans le contexte des réseaux multicellulaires présentés au chapitre 7, une approche distribuée de
l’allocation de puissance présente un défi et une approche intéressante. Dans notre proposition,
une unité centrale décide comment allouer puissance sur tous les ressources radio programmés
pour l’ensemble du système en un seul coup. Comme pour toutes les approches centralisées,
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on s’attend à ce que cela entraîne une charge de signalisation et de traitement. Une autre
solution consiste à suivre une approche itérative allocation de puissance. Chaque station de
base résoudrait individuellement le problème d’allocation de puissance et les stations de base
le résoudraient à tour de rôle sur la base des résultats de leurs homologues, jusqu’à ce qu’une
convergence soit atteinte. Un critère d’arrêt par exemple, lorsque le débit total du réseau ne
s’améliore plus, pourrait être nécessaire.

Enfin, lorsque nos travaux sur les communications sans-fil en full-duplex ont commencé en 2016,
les espoirs d’inclusion de la 5G étaient grands. La recherche dans le domaine a connu un essor
considérable et d’innombrables approches de la gestion des ressources radio dans divers scénarios de
mise en œuvre en full-duplex ont vu le jour. Néanmoins, l’année dernière, avec la publication de la
version 15 du 3GPP 5G, il était évident que les opérateurs n’étaient pas aussi enthousiastes à l’idée de
communications sans-fil full-duplex. De nos jours, on parle de communications sans-fil full-duplex
dans le contexte de 6G [76] avec de faibles espoirs d’introduction dans la version finale 5G en 2021.
Il n’est pas certain que la 6G inclura effectivement le full-duplex, mais au moins une autre décennie
de recherche ouvrira certainement la voie à une mise en œuvre pratique.
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