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Abstract

This thesis investigates the theory of robust classification under adversarial perturbations — a.£.4.
adversarial attacks. An adversarial attack refers to a small — humanly imperceptible — change of an
input specifically designed to fool a machine learning model. The vulnerability of state-of-the-art
classifiers to these attacks has genuine security implications especially for deep neural networks
used in Al-driven technologies — e.g. for self-driving cars. Besides security issues, this shows how
little we know about the worst-case behaviors of models the industry uses daily. Accordingly, it
became increasingly important for the machine learning community to understand the nature
of this failure mode to mitigate the attacks. One can always build trivial classifiers that will not
change decision under adversarial manipulation - ¢.¢. constant classifiers— but this comes at odds
with standard accuracy of the model. This raises several questions. Among them, we tackle the
following one:

Can we build a class of models that ensure both robustness to adversarial attacks and accuracy?

We first provide some intuition on the adversarial classification problem by adopting a game
theoretical point of view. We present the problem as an infinite zero-sum game where classical
results — e.g. Nash or Sion theorems — do not apply. We then demonstrate the non-existence
of a Nash equilibrium in this game when the classifier and the adversary both use deterministic
strategies. This constitutes a negative answer to the above question in the deterministic regime.
Nonetheless, the question remains open in the randomized regime. We tackle this problem by
showing that randomized classifiers outperform deterministic ones in term robustness against
realistic adversaries. This gives a clear argument for further studying randomized strategies as a
defense against adversarial example attacks.

Consequently, we present an analysis of randomized classifiers — 7.e. classifiers that output ran-
dom variables — through the lens of statistical learning theory. To do so, we first define a new
notion of robustness for randomized classifiers using probability metrics. This definition boils
down to forcing the classifier to be locally Lipschitz. We then devise bounds on the generalization
gap of any randomized classifier that respects this new notion of robustness. Finally, we upper-
bound the adversarial gap — 7.e. the gap between the risk and the worst-case risk under attack — of
these randomized classifiers.

Finally, we highlight some links between our line of research and another emerging topic in
machine learning called differential privacy. Both notions build upon the same theoretical ground
— Z.e. stability of probability metrics. Therefore, results from one domain can be transferred to
the other. Based on this idea, we use the differential privacy literature to design a simple noise
injection method. The scheme allows us to build a class of robust randomized classifiers out of a
deterministic hypothesis class, making our previous findings applicable to a wide range of machine
learning models.

Open questions and perspectives for future research conclude this work.
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Résumé

Cette these étudie la théorie de la classification robuste aux attaques adverses. Une attaque ad-
verse est une modification imperceptible de 'entrée d’un algorithme, spécifiquement congue pour
provoquer un dysfonctionnement de celui-ci.

Lavulnérabilité des modeles d’intelligence artificielle 4 ces attaques pose de véritables problemes
en mati¢re de sécurité, notamment en ce qui concerne les réseaux neuronaux profonds utilisés
dans les nouvelles technologies, par exemple pour les voitures autonomes. Outre les questions
de sécurité, cela montre a quel point nous en savons peu sur le comportement des modeles que
Iindustrie utilise quotidiennement. Par conséquent, il devient de plus en plus important pour la
communauté scientifique de comprendre d’'ot1 proviennent ces défaillances. Parmiles nombreuses
questions que soulevent les attaques adverses, nous abordons la suivante :

Ponvons-nous construire une classe de modéles qui garantissent a la fois la robustesse aux attaques
adverses et la précision dans des taches dlassiques?

Nous donnons d’abord quelques intuitions en abordant le probleme sous I'angle de la théorie
des jeux. Nous formalisons la classification robuste comme un jeu 2 somme nulle infini et démon-
trons la non-existence d’un équilibre de Nash dans ce jeu lorsque le modele et 'adversaire utilisent
tous les deux des stratégies déterministes. Ceci constitue une réponse négative 4 la question ci-
dessus dans le cas déterministe. Néanmoins, la question reste ouverte si l'on prend en compte des
stratégies aléatoires. Nous abordons ensuite ce probléme en montrant que les modeles aléatoires,
cest-a-dire des modeles qui produisent des variables aléatoires, obtiennent de meilleurs résultats
que les modeles déterministes en termes de robustesse aux attaques. Cela donne un argument fort
en faveur des stratégies aléatoires.

Par conséquent, nous présentons une analyse approfondie des modeles aléatoires. Pour ce faire,
nous définissons une nouvelle notion de robustesse 4 I'aide de métriques/divergences sur les es-
paces des distributions de probabilité. Ensuite, nous étudions le comportement en terme d'erreur
de généralisation de tout modele aléatoire qui respecte cette nouvelle notion de robustesse. Enfin,
nous adaptons notre analyse a la généralisation adverse, c’est-a-dire Iécart entre le risque théorique
et le risque adverse de ces modeles.

Enfin, nous mettons en évidence certains liens entre notre champ de recherche et un autre su-
jet émergent dans le domaine de l'apprentissage automatique, 4 savoir la protection des données
personnelles. Ces deux notions reposent sur le méme fondement théorique. Par conséquent, les
résultats d’'un domaine peuvent étre transférés dans lautre. Sur la base de ce constat, nous util-
isons la littérature sur la protection des données personnelles pour concevoir une méthode simple
d’injection de bruit. Cette méthode nous permet de construire une classe de modeles aléatoires
robustes a partir d'une classe de modeles (déterministes) précis dans des tiches classiques.

Nous concluons se manuscrit par des questions ouvertes et des perspectives de recherche.
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Notations and Symbols

We use bold lower-case to denote vectors and functions with multidimensional outputs and stan-
dard lower-case to denote scalars and real-value functions. Depending on the context, we either
use calligraphic font or upper-case to denote ensembles — most of the times calligraphic, some-
times upper-case to denote sub-sets or elements of a set of sets.

Algebra

R Set of real numbers

N Set of natural integers

R4 Set of d-dimensional real-valued vectors

My (R)  Setofd x d’ real-valued matrices

1y d x d identity matrix

[a] Set of integers between 1 and @ [a] :={1,...,a}
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Reading guide

The organization of the manuscript has been designed to be simple, and the chapter titles should
be self-explanatory. We advise the reader to follow a linear reading style — chapter by chapter.
However, readers already familiar with the concepts and existing results in learning theory and
adversarial classification may skip Chapter 2 and go directly to the technical chapters 3, 4, and 5.
Each chapter is divided into four main parts.

1. An introduction to the specific issues and terminology of the chapter — one section.
2. Simple results with a focus on consequences and interpretations — one or two section(s).

3. Extension of previous results to more difficult/technical contexts — one section. This section
can be skipped for a first reading as it is not essential to understand the overall message. Nev-
ertheless, we encourage the interested reader to skim over additional results in Chapter 4 to
better understand the link between privacy and robustness we establish in Chapter 5.

4. Lessonslearned and future works — one section. We summarize our findings and discuss some
future research directions.
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Machine learning models are part of our everyday life and their weaknesses in terms of security
or privacy can be used to harm us either directly or indirectly. Itis thus crucial to be able to account
for, and deal with, any new vulnerabilities. Besides, the legal framework in Europe is evolving,
forcing practitioners — from both the private and the public sectors — to adapt quickly to these
new concerns. In this chapter, we first present the context in which the idea of this thesis was born
and our main motivations in Section 1.1. Then, we present the problem which we have chosen to
focus on: robust classification under adversarial perturbation in Section 1.2. Finally, we summarize
some of our contributions to the domain in Section 1.2.3.

1.1 Context & motivations

In the 1950s, the first artificial intelligence projects were developed’. At that time, the ultimate
goal was the replication of human intelligence. The proposed approaches consisted of using math-
ematics to describe the world, model the human perception, and simulate the cerebral mecha-
nisms. Seventy years later, the initial objective of replication of brain’s functions has been largely
supplanted by technological projects aiming to reproduce human performance in simple cogni-
tive tasks [142]. To this end, deep neural networks achieve state-of-the-art performance in a variety
of domains such as natural language processing [132], image recognition [76] and speech recogni-
tion [79]. The impressive efficacy of Al-driven technologies has made them omnipresent both in
industry and in some public sectors. However, recent studies have identified several major flaws
of machine learning and data analysis such as information leakage [120] or vulnerability to adver-
sarial perturbations [20]. These shortcomings raise questions about the legal liability of model
providers and cause practitioners to reevaluate the trust they place in the systems they use.

'"The Dartmouth conference of 1956 is often considered the founding act of the artificial intelligence project. How-
ever, it follows several pioneer works on the notion of machine intelligence by Mc Culloch, Pitts and Wiener [105,
157,165] in cybernetics and by Turing [157] in computer science.
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1.1.1 Dealing with privacy issues: the General Data Protection Regulation

Protecting individuals’ privacy against information leakage while producing statistical analysis is
already an old topic; its foundations were largely established in the 1980s [3, 42, 65]. These con-
cerns were brought back to light notably in 2008, when Narayanan ez a/. [120] demonstrated
a robust de-anonymization procedure on the dataset released for the “Netflix Price contest”. In
2016, the European Union provided an answer to these concerns from a legal standpoint by pub-
lishing the General Data Protection Regulation [126] - GDPR.

1. Transparency. Personal data must be processed with transparency, and data
owners can ask to be informed at any time on how their data are being used.

2. Limited purposes and retention. Personal data must be collected for clear,
understandable and legitimate purposes, and should not be processed for any
other purpose than the initial ones. Moreover, data must be kept for a period
that does not exceed the processing of the selected purposes.

3. Data integrity and privacy. Personal data must be processed in such a way
as to ensure appropriate security of such data, including protection against
unauthorized or unlawful processing and against accidental loss.

4. Access, rectification, erasing. Data owners should be granted easy access to
their personal data as well as the possibility to rectify of any inaccuracy or to
erase any personal data.

5. Privacy by design. Each new technology or application processing personal
data, or making it possible to process it, must ensure, from its design and each
time it is used, that it incorporates all the protection principles of the GDPR.

Figure 1.1: Key principles of the GDPR on the development of new machine learning models.

This regulation aims to define the duties of model providers with respect to the personal data
they use - see Figure 1.1 for an overview of the key principles”. In order to comply with the GDPR,
industries and governments are required to design models that preserve privacy. These new obli-
gations, coupled with already existing users’ concerns regarding their personal data, have made
privacy issues the priority within the computer science community. Accordingly, several defini-
tions have been introduced to characterize privacy preserving algorithms in the context of machine
learning and data publishing [57]. Among them, differential privacy [52] has become the domi-
nant standard to provide a formal and adaptive conception of privacy preserving data analysis.
The rationale is that one individual’s information is protected if “the outcome of any analysis is

2We do not claim to provide a thorough presentation of this regulation here. To keep the discussion concise, we only
highlight some points that we — as computer scientists — believe to be central.
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essentially equally likely, independent of whether any individual joins, or refrains from joining, the
data set” [53)].

More formally, an algorithm is said to be differentially private if, given two similar databases,
it produces statistically indistinguishable outputs. This privacy definition has been broadly in-
vestigated in numerous frameworks and applications — see [50] for a book of reference. Overall,
privacy preserving machine learning is now a well-known and accepted concept. It relies on a
proper legal framework, and technical solutions such as difterential privacy are consistently be-
ing implemented by major companies — e.g. Google [54, 166] — and public entities — ¢.g. the U.S.
Census Bureau [102]. The GDPR has been a real revolution both from a legal and scientific stand-
point. In our point of view, the battle for users’ privacy is not over yet, but significant efforts have
been made both by practitioners and researchers to meet the privacy requirements of our era.

1.1.2 Beyond privacy: interpretability, trust and and adversarial attacks

Despite focusing on data protection, the GDPR also includes an article — Article 22 — on the right
to receive an explanation for an algorithmic decision [126]. This raises a number of questions on
both the interpretability of machine learning algorithms and the trust users place in them [68].
While there is no clear consensus yet on the definition of interpretability or trust in machine
learning [24], recurring themes such as social bias [4] or vulnerability to perturbations [20, 152]
often resurface. These new concerns, along with the privacy issues mentioned above, are some-
times put together under the name trustworthy machine learning and have lately attracted a lot
of attention®. Furthermore, the deployment of machine learning in real-world systems and the
recent legal progress on data protection and decision explanation should encourage intensifying
the research in this new domain.

In this thesis, our primary focus is the models’ vulnerability to adversarial perturbations. The
term adversarial perturbation — a.k.4. adversarial attack — denotes a carefully chosen and humanly
imperceptible perturbation that causes a model to fail. The existence of these vulnerabilities shows
how far the deep learning community has drifted from the initial goal of reproducing the human
perception. To demonstrate the genuine security issue that adversarial attacks represent, we take
the example of self-driving cars. Recently, technology companies have made enormous invest-
ments in self-driving cars — z.e. autonomous vehicles equipped with a tremendous amount of
cameras and sensors that help them move with little to no human input. Much of the informa-
tion gathered by these cars is processed using in-vehicle machine learning models. In particular,
vision tasks process images through deep neural networks. However, recent works [55, 146, 150,
174] have indicated that these very systems can be fooled by real-world adversarial attacks on traffic
signs — e.g. by adding stickers on the traffic sign.

Figure 1.2 illustrates an attack setting where an adversary added such a sticker on a traffic sign. In
the first schematic — at top — the car captures the original version of the traffic sign, recognizes it as
a speed limitation, and goes on normally. In the second schematic, at bottom, the red car captures
an adversarial version of the traffic sign and recognizes it as a stop sign causing an accident with

3Top tier machine learning conferences started launching several workshops on this matter — see e,g. https://
trustworthyiclr2e.github.qo/ Or https://icml2019workshop.github.io/. Note also that the number of paper on
this matter have been growing exponentially in the last few years — see e.g. https://nicholas.carlini.com/writing/
2019/all-adversarial-example-papers.html for Vulnerability to adversarial perturbations.
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Figure 1.2: Illustration of a self-driving car misclassifying real-world traffic signs with adversarial pertur-

bations. On the top line: scenario without attack. On the bottom line: scenario with attack.
Trafhic sign images come from a real-life attack paper [150].

the blue car. Note that in this case, no human would have change his/her decision, but the car
did. This gap between the human and model responses could lead to various security issues — here
for example an accident triggered by an attack on a traffic sign. These technologies are currently
being deployed; it is thus crucial to adapt quickly to this new threat both from a technical and
legal standpoint. In the sequel, we will use self-driving cars as a running example. Accordingly, we
will focus our application setting to deep learning for image classification.

1.2 Problem setting(s)

The vulnerability of machine learning and deep learning models to adversarial attacks is a critical
security issue, especially for high-stakes applications such as self-driving cars. It is essential for the
community to understand the nature of this phenomenon in order to mitigate the threat. In this
section, we start by giving some reminders on the problem of classification in the standard setting
— i.e. without adversary. Then we present the problem of classification in the adversarial setting
and identify the core questions to which we aim to provide some answers. Finally, we outline the
main questions we wish to address in this manuscript.

1.2.1 Classification in the standard setting

Let us consider the supervised classification problem with an input space X’ — e.g. images — and
an output space ) — e.g. label describing the images. For simplicity here, we will consider that
Y = {1,..., K}, meaning that each description is characterized by an integer between 1 and
K. The goal of a supervised machine learning algorithm is to design an accurate prediction func-
tionc : X — YV - aka. classifier — that for any image © € X matches a label y € ) that
correctly describes the image. To find ¢, the learner has access to a set of n input-output pairs
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S = {(®1,%1),.- ., (®n,Yn)} — ak.a. training sample. The main assumption behind the
theory of classification is that there exists some ground truth distribution D that describes the
connection between the images and the labels and from which the pairs (;, y;) are drawn 7.z.d..

To build a classifier, the usual strategy is to build a hypothesis function h : X' — RE that for
any & € X outputsaset of scores h(x) := [hi(x), ..., hx(x)]" - one for every possible label.
Then, the prediction function ¢ outputs the label with the better score for h. More formally, ¢
writes ¢(z) = argmaxyc(x) hx(x). The problem then amounts to build a function h that
describes well the connection between the images and the labels. To do so, the learner aims to
select h* from a predefined set H, called the hypothesis class, that solves — or approximate — the
risk minimization problem. This optimization problem writes

iig-l E(m,y)ND[ﬁ(h(x)a y)] ) (1~1)

where £ : RE x ) — R is some loss function that measures how well h fits the ground-truth
distribution. If £ is sufhiciently well chosen — typically if it is convex and smooth [9] — and if the
hypothesis class H is rich* enough, the classifier ¢ we get will have a small probability to give the
wrong label for a new sample (x, y) ~ D.

In practice, the learner does not have access to the ground-truth distribution; hence it cannot
estimate the risk E (5 ,).p[L(h(x),y)]. To find an approximate solution for Problem (1.1), a
learning algorithm solves the empirical risk minimization problem instead. In this case, we simply

replace the risk by its empirical counterpart over the training S := {(€1,y1), ..., (Tn,yn)}. It
writes
1 n
inf = h(x;), i) . 12
,ian;:lﬁ( (@3),yi) (12)

Then, to evaluate how far the selected hypothesis h s is from the optimal h*, one wants to upper
bound the difference between the risk and the empirical risk of any h € H. This difference is
known as the generalization gap. Intuitively, if we can control the difference between the risk
and the empirical risk of any function in b € H, then the risk minimization problem and the
empirical risk minimization problem will have similar solutions.

In light of the above, the choice of the hypothesis class H in supervised classification is critical.
On one hand, if it is too large, it will be hard to control the generalization gap of all the elements
in the class and the optimization problem is difficult. On the other hand, if it is too small, the
generalization gap will be easy to control but the class might not be sufhiciently rich to describe
the behavior of the ground-truth distribution, which leads to poor prediction functions. Another
key component is the size of the training sample. If we have enough training samples, thanks to the
uniform law of large numbers, the empirical risk of any hypothesis is a good approximation for its
true risk. More precisely, for some well chosen hypothesis classes one can bound the generalization

gap of any hypothesis by O (ﬁ) . Then, when the sample size n is big enough, it is sufficient to

solve the empirical risk minimization — Problem (1.2) — to get good approximation for the risk

“The richness of a hypothesis set is a complicated notion. We will later discuss it in more depth. For now, one may
think of this notion as the size of the hypothesis class. When the hypothesis class is large enough, it is easy to find
at least one h that describes D well. Conversely, when it is too small it is hard to find a good candidate.
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minimization — Problem (1.1). Let us now present the alternative classification setting we will
study in this manuscript, namely Classification under adversarial perturbation.

Reading note. The interested reader can find a more thorough introduction to classification and
learning theory in Chapter 2.

1.2.2 Classification under adversarial perturbation

Given a hypothesis h € H and an image-label pair (2, y) ~ D, the goal of an adversary is to find
a perturbation 7 € & such that the following assertions bozh hold.

* The perturbation is imperceptible to humans. Strictly speaking, this means that a human
cannot visually distinguish the standard example & from the adversarial example x+7. In
a less conservative viewpoint, this could also mean that a human will give the same answer
if it is asked to classify @ or & + 7. For simplicity, we consider the strict definition here.

* The perturbation modifies & enough to make the classifier misclassify. More formally, the
adversary secks a perturbation 7 € X such thatc(x + 7) # y.

Although the notion of imperceptible modification is very natural for humans, it is genuinely
hard to formalize. Despite these difficulties, a sufficient condition to ensure that the attack will
remain undetected is to constrain the perturbation 7 to have a small £, norm. This means that for
any p € [1, 00|, there exists a threshold v, > 0 for which any perturbation 7 is imperceptible as
soonas || T, < . Theliterature on adversarial attacks for image classification [27,103] usually
uses either an £, or an £ norm as a surrogate for imperceptibility °.

Remark 1. Note that these norms bave very different bebaviors in high-dimensional spaces, bence
the choice of p has a crucial impact on the answer one provides to QI and Q2 below. We will further
discuss this point in Chapter 2 and Appendix A.

Adversarial examples represent a serious security threat that machine learning models should
deal with. To do so, we need to revisit the standard risk minimization by incorporating the adver-
sary in the problem. The goal becomes to minimize the worst-case risk under a-bounded manip-
ulations. We call this problem the adversarial risk minimization. It writes

inf Ez )~ sup L(h(x+7),y)|, (1.3)
jnf Egy)~p A (h( ), Y)
where By(ay) 1= {7 € X st |||, < ap}. In this new problem, the adversary focuses on

optimizing the inner maximization, while the classifier tries to get the best hypothesis h* from H
“under attack”. In the standard setting, we can most of the time design sufficiently rich hypothesis
classes such that the risk minimization problem gives a solution h* with small risk. But in the
adversarial setting, it becomes unclear whether this statement still holds. Hence the following
question.

*Sometimes, the adversary uses an £1 norm [33] or an £ semi-norm [124].

10
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QU: Is there some hypothesis class H. for which the adversarial risk minimization
problem has a solution W* with small adversarial risk?

Atafirst glance — looking at the empirical literature on adversarial examples — the answer seems
to be no. Indeed, a large body of works has been trying to design new models that would be
less vulnerable to the adversarial setting [67, 81, 107, 162, 170] but most of them were proven —
in time — to offer only limited protection against more sophisticated attacks [6, 27, 38, 77, 154].
Nevertheless, itisimportant to investigate this question from a theoretical point of view to provide
either definitive negative answers or to design more robust models.

Let us suppose for a moment that QI has a positive answer and that we can design a hypothesis
class H for which the adversarial risk minimization has a solution h* with small adversarial risk. By
analogy with the standard setting, given n training examples S := {(2+,41), ..., (Tn, yYn)}, we
want to find an approximate solution to the adversarial risk minimization by studying its empirical
counterpart, the empirical adversarial risk minimization. This optimization problem writes

n

1
inf — sup L(h(x;+71),y:) - (1.4)
heH n =1 T€B(ap) ( ( ) )

In the presence of an adversary, two major issues appear in the empirical risk minimization. First,
as recently pointed out by Madry ez al. [103], the adversarial generalization gap — Ze. the gap
between the empirical adversarial risk and the adversarial risk — can be much larger than in the
standard setting. Indeed, the adversary makes the problem dependent on the dimension of X.
Hence, in high-dimensional spaces — e.¢. for images — one needs much more samples to classify
correctly [141, 148]. Second, finding an approximated solution to the adversarial risk minimization
is not always sufficient. Two recent works [156, 180] gave theoretical evidence that training a robust
model may lead to an increase of its standard risk. Hence finding a good approximation for the
adversarial classification problem — Problem (1.3) — may lead to a poor solution for the standard
problem — Problem (1.1). Accordingly, a second question emerges.

Q2: Can we find a class H and a hypothesis h* € H that simultaneously

has small standard and adversarial risks?

1.2.3 Main contributions and outline of the thesis

In this thesis, we aim to provide answers to the previously stated problems. Our contribution is
threefold. First, we analyze the adversarial classification problem and provide results showing that
randomized classifiers — z.e. classifiers that outputa random variable — are good candidates to give a
positive answer to QL. Second, we identify sub-classes of randomized classifiers that provide some
positive answers to both QI and Q2. Finally, we present simple schemes to build these classes by
bridging connections with privacy preserving machine learning.

11
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Analyzing the adversarial classification problem — Q1

Our first contribution consists in building new intuitions on the adversarial classification prob-
lem. To do so, we cast the adversarial risk minimization — Problem (1.3) - as an infinite zero-sum
game between a defender — the learner — and an adversary that produces adversarial examples. In
this new setting, we obtainw the following results.

1. We demonstrate the non-existence of a Nash equilibrium in the game when both the de-
fender and the adversary play deterministic strategies. This, coupled with some recent re-
sults from related works [18, 131], entails that deterministic hypothesis classes may not be
good candidates to provide a positive answer to QL.

2. From a game theoretical standpoint, the natural next step is to investigate randomized
strategies. We focus on randomizing the strategies for the defender — leaving the adversary
strategies unchanged. In this context, we demonstrate that randomized classifiers can out-
perform deterministic ones in terms of worst-case theoretical guarantees — Problem (1.3).
Therefore, we identify randomized classifiers as good candidates to answer QI positively.

Theoretical properties of randomized classifiers — Q1 & Q2

For our second contribution, we study randomized classifiers through the prism of learning the-
ory and information theory. By analogy with the deterministic case, we define a notion of robust-
ness for randomized classifiers. This definition boils down to forcing the classifier to satisfy local
Lipschitzness with respect to the £;, norm on X, and a probability metric on V. Denoting Hrip
the class of randomized classifier that respect this Lipschitz condition, we present the following
results.

1. We show that for any h € HLip, We can upper-bound the gap between the risk and the
adversarial risk of h. This result says that any good approximation of the risk minimization
problem — Problem (1.1) — on Hpjp, is also a good approximation of the adversarial risk
minimization — Problem (1.3). This means that Hy, is a good candidate to answer Q2.

2. We devise an upper-bound on the generalization gap of any h in Hp ;. This means that, for
asufficiently large training sample, solving the ERM — Problem (1.2) — on Hp, can provide
a good approximate solution to the risk minimization problem. Since we can also bound
the gap between the adversarial and the standard risk, this gives answers to both Q1 and Q2.
Note, however, that this result relies on a strong assumption on X’ that does not always
bypass dimensionality issues. The problem of finding a subclass of H that provides tighter
generalization bounds is an open question.

Practical schemes based on differential privacy literature — Q2

Previous contributions identified a class of randomized hypotheses Hpp, thatanswers both Ql and
Q2 - at least partially. But they gave no practical way to design this class. Our final contribution
tackles this issue by drawing lessons learned from privacy preserving machine learning. More pre-
cisely our contribution is as follows.

12
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1. We highlight some links between our definition of robustness and the definition of dif-
ferential privacy. Both frameworks build upon the same theoretical ground - ze. stability
with respect to probability metrics. Therefore, results obtained so far in differential privacy
can easily be transferred to design robust randomized classifiers.

2. Based on this idea, we use two famous tools from differential privacy — namely noise injec-
tion and post-processing — to design classes of robust randomized classifiers. In particular,
we show that our previous findings are applicable to a wide range of machine learning mod-
els, provided some minor adaptations. We further corroborate our findings with experi-
mental results using deep neural networks on standard image datasets — namely CIFAR10
and CIFAR100 [93]. These models can simultaneously provide accurate prediction and
reasonable robustness, giving practical answers to Q2.

Outline of the thesis

The remainder of the manuscript is organized as follows. Chapter 2 presents an overview of the
domain of adversarial classification. Then, Chapters 3, 4 and 5 are devoted to the three main
contributions we just presented above. Finally, Chapter 6 concludes this work with additional
discussions and open problems. Appendices provide a high-level summary of some additional
results obtained during this thesis in terms of robustness to adversarial examples — Appendix A,

difterential privacy — Appendix B, and cryptography for deep learning — Appendix C.
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2 Background

At the beginning of this thesis work — in 2017 - the vulnerability of machine learning models to
adversarial examples was not much studied. But over the past three years, we have seen a massive
increase in the number of articles published on this topic'. In this chapter, we aim to provide
an overview of this emerging field. First, we give some background on image classification and
learning theory in Section 2.1. We then review in Sections 2.2 and 2.3 the current state-of-the-art
in terms of adversarial attacks and defenses. We presentin Section 2.4 some recent results studying
the adversarial risk minimization through the lens of learning theory and Section 2.5 asks whether
adversarial examples are unavoidable. Finally, we discuss in Section 2.6 how our work contributes
to the domain.

2.1 An introduction to learning theory and image classification

We first come back to some of the elements we discussed in the introduction in a more precise
manner, and present some prerequisites on classification and learning theory.

2.1.1 Formalizing the classification problem

To begin, let us present the supervised learning setting for classification. In this context, the learner
— e.g. model provider — has access to the following elements.

* Aninputspace X, which is the set of objects the learner wants to classify. Here we consider
a setting where X is a set of images with d pixels and values in [0, 1]; hence X' C [0, 1]<.
Note that in image classification, there is often thousand of pixels in the image, which
means that X is a high dimensional space. As we will discuss later, this characteristic of
the input space plays a key role in our understanding of the adversarial setting.

* An output space Y that denotes the set of possible labels for elements in X'. In the im-
age classification setting, a label is a succinct description of the image. For simplicity, we

characterize ) by a set of K integers Y = {1,..., K} := [K].

* A training sample S := {(%1,¥1),...,(Tn,yn)}, which is a set of n elements from
& x Y. In the supervised learning setting, we hypothesize that these input-output pairs
are drawn 7.7.d.from some ground-truth distribution D the learner does not have access to.

Remark 2. Below, we define probabilities and expectations over the ground-truth distribution D.
Formally, we assume that there exists a o-algebra A(X x Y) over X x Y and that D is a prob-
ability measure over (X x Y, A(X x ))). Accordingly, the set we evaluate are assumed to be in

A(X % V) and the functions we define are measurable.

With these elements at hand, the goal of the learner is to find a prediction functionc : X — Y
— a.k.a. classifier — to predict the label of any new input £ € X. To measure the quality of this
prediction we use the notion of misclassification error, i.e. the probability that ¢ does not predict
the correct label for a random sample (x, y) ~ D. This probability writes

P(w,y)wp[c(w) 7é y] = E(w,y)wD[]l{c(w) 7& y}] . (2-1)

ISCC https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html.
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Given any ground-truth probability distribution D, one can easily verify that the optimal predic-
tion function on X X ) writes

P @ argmax Pyoply = k | z]*. (2.2)
ke|K]

This function is called the Bayes optimal classifier [44, Chap. 2]. It is optimal in the sense that no
other classifier ¢ : X — ) can have a lower probability of misclassification on D.

In practice the learner does not have access to the ground-truth distribution D; hence it cannot
know the Bayes optimal classifier. Its objective is then to design a learning procedure that finds a
prediction function with misclassification error as close as possible from ¢°P*. To do so, the usual
strategy in machine learning is to define a set of functions H C {h : X — RE} that will mimic
the behavior of Pyp[y | ]. This set is also known as the hypothesis class. For any hypothesis
function h € H, by analogy with the Bayes optimal classifier, the prediction function writes

¢:x+— argmax hi(x), (2.3)
ke[K]

where by (z) is the kth element of the vector h(z) = [h1(x), ..., hx(z)]".

To select the best hypothesis out of H, the learner uses a surrogate notion of misclassification
error called the 7isk or the generalization error. The key component on which the risk relies is
L : RE x ) — R theloss function. It measures how well A fits the ground-truth distribution on
a given sample (x, y) ~ D. Accordingly, the learner’s objective is to find the hypothesis h* € H
that minimizes the expected value of the loss function over D. The risk minimization problem
then writes

iirel?f-é R(h) with R(h) := E(z,y)~D [L(h(x),y)]. (1.1)
If £ and H are well chosen, a solution to the above optimization problem gives a classifier with

small misclassification error. For example, if we use the 0/1 loss

kE[K]

Loy (h(z),y) = ]l{argmax hy(x) # y} ) (2.4)

then Equation (1.1) directly amounts to seek a hypothesis h* in H minimizing the probability
of misclassification of ¢* - the classifier associated to h*. The 0/1 loss is mostly used to analyze
the problem theoretically. Since the indicator function is not differentiable everywhere, for op-
timization purposes, the community often studies surrogate loss functions instead [9] - 4.k.a.
classification calibrated losses. Under smoothness and convexity assumptions, we can also prove
that Problem (1.1) minimizes the misclassification error of ¢*.

Since the loss function is not a problem, the main objective the learner has is to design right class
of hypotheses H to search on. On the one hand, if we take a sufficiently rich set of hypotheses, it
could contain the optimal A% such that argmax;, b, (x) = c°P*(z). But when the hypothesis
class becomes too complex, the learning process is much more difficult to manage — in terms of

*Note that argmax operator might output a set. In this case ¢ () can be any element this set. Here we suppose
that there is a unique maximum for simplicity.
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optimization. More generally, the choice of H is subject to a trade-off between estimation and
approximation errors.

An important special case: binary classification

To study classification from a theoretical standpoint, it is often easier to consider the bz-
nary dassification setting — z.e. K = 2. In this context, it is standard to consider a setup
slightly different from the above. We still consider X = [0, 1]%, but the output space is
now ) = {—1,1}. Furthermore the hypothesis space only considers real-valued func-
tions h : X — R, and we also adjust the definition of the classifier ¢(x) := sign(h(x)).
All other notions adapt accordingly. Our result in terms of learning theory are based on the
K -class classification setting; hence we keep presenting results in this setting.

2.1.2 The estimation/approximation trade-off

Let h € H be any hypothesis function, the excess 7isk of h is the difference between R (h) and
the optimal risk R (h°P"). It can decompose into two error types, namely the estimation error and
the approximation error

R(h) — R(h?Y) = R(h) — inf R(h inf R(h) — R(h°PY). 2.5
(h) = R(h™) = R(h) — inf R(h)+ inf R(h) —R(h) (2.5)
estir;l;tion approximation

On one hand, the estimation error represents the difference between the minimal error we could
get in H and the actual error we have by using h. If the risk minimization problem on H admits
a solution h*, the estimation error measures how well h estimates hA*. On the other hand, the
approximation error represents the minimal excess risk a hypothesis in H can achieve. It measures
the amount of risk that is solely determined by the choice of the hypothesis class #. This error
does not depend on the optimization procedure the learner uses. In that sens, it can be seen as a
notion of richness of the hypothesis class. When we enlarge H the approximation error will drop.
Unfortunately, enlarging the hypothesis class will also increase the estimation error.

Figure 2.1 illustrates this phenomenon for two nested hypothesis classes H1 C Ha. Let us
suppose that the there exist h], and hj solutions of the risk minimization problems respectively
on H1 and Hs. If we fix h and make the hypothesis set grow from H; to Hz, the estimation error
grows but the approximation error diminishes. The field of statistical learning theory studies this
trade-off by designing hypothesis classes that have small approximation error — rich enough —
while maintaining reasonable estimation error — not too complex. Note that the approximation
error is very difficult to evaluate because we do not have access to the ground-truth distribution.
Conversely, there is some learning procedure such as the empirical risk minimization for which
we can estimate the approximation error.
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hopt
Estimation error
—— Approximation error
h*
2
1
Ho
hi
7, .
h

Figure 2.1: Evolution of the approximation and estimation error for a fixed hypothesis b and two nested

hypothesis classes 1 and Ho.

2.1.3 Empirical risk minimization and generalization gap

Empirical risk minimization — ERM - is the most popular learning procedures in machine learn-
ing. In a nutshell, the idea is to replace the true risk by the average error over the training sample
S - a.k.a. the empirical risk. Then, to find an approximate solution for the risk minimization
problem — Problem (1.1), a learning algorithm maps the n training examples to a hypothesis by
solving the following optimization problem

1 n
inf h) with h):=— h(x;),v:) . 2.
jnf Rs(h)with Rs(h) n;E( (i), i) (2.6)
Intuitively, if we have enough training samples®, the empirical risk of a hypothesis Rs(h) is a
good approximation for its true risk R (k). Then, a hypothesis hs that minimizes the empirical
risk also minimizes the risk — or has risk close to the minimum — on . More formally, we can
bound the estimation error of the ERM as follows*

R(hs) — R(h*) = R(hs) — Rs(hs) + Rs(hs) — R(h") (2.7)
< R(hs) — Rs(hs) + Rs(h*) — R(h") (2.8)
<

2 sup [R(h) — Rs(h)|.
heH

Thanks to the above inequality, we can control the estimation error if we bound the forallh € H
the difference between the risk and the empirical risk of h. This difterence is called generalization
gapand can generally be characterized according to the complexity of H and the size of the training
sample n.

3This holds thanks to the uniform law of large numbers.
“We suppose that the risk minimization problem has a solution h* for simplicity. Similar results hold in the general
case considering approximate solutions.
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In most classical settings, H is an infinite dimensional space, which makes the complexity analy-
sis difficult. To measure the size of the hypothesis set anyway, the learning theory community [113,
145] uses difterent complexity notions. Among them, the empirical Rademacher complexityis par-
ticularly useful to obtain quality bounds for complex classes such as neural networks, conversely
to combinatorial notions such as the VC dimension [10].

Definition 1 (Rademacher complexity). For any function dass F = {(z,y) — R}, given a
sample S = {(x+,y1), - .., (Tn, Yn)}, the empirical Rademacher complexity s defined as

Rs(F) = lEn [SUPZHf(iUi,%)] ;

n feriz

where r; arei.i.d. drawn from a Rademacher measure —ie. P(r; = 1) = P(r; = —1) = 1.

The empirical Rademacher complexity measures the uniform convergence rate of the empirical
risk toward the risk on the class of function . Thanks to this notion of complexity — under reg-
ularity assumption on the loss function — we can bound with high probability the generalization

gap of any hypothesis h in a class H.

Theorem 1 ([10, 113]). Let H be a hypothesis dass and L : RE x Y — [0, L]. We denote
Ly = {(z,y) — L(h(x),y) s.t. h € H} the set of functions that compose the loss function with
a hypothesis. Then for any 6 € (0, 1), with probability at least 1 — 0, the following bolds for any
h e H,

In(2/4)

on

R(h) — Rs(h) <2LRs(Ly) + 3L

In particular, when H admits a reasonable Rademacher complexity one can bound the gener-
alization gap of any h € H by O (ﬁ) with high probability. This means that, when the training

sample is sufficiently large, the ERM gives a solution with risk close to the optimal on H. Note,
however, that the ERM will only work if the class is already well chosen. In fact, if H is not com-
plex enough, the approximation error can be very large. Conversely if H is too large, the limit of
the estimation error becomes loose. But since the approximation error can not be evaluated, how
can we select a good H?

2.1.4 Structural risk minimization

One way to look at the hypothesis class selection problem is through the structural risk minimiza-
tion — SRM. Let us start by taking a hypothesis class H with very small — or no — approximation
error. H will surely be too rich for the above generalization bounds to make sens. But the rational
behind the SRM is to decompose H as the union of an increasing — in the sens of the inclusion
— sequence of subclasses H = mngm' In theory, the problem then consists of selecting the pa-

rameter 7 that offers the best trade-off between estimation and approximation errors. Since this
quantities are not know, we keep track of the trade-oft with an upper bound on the excess risk —
e.g. by using the generalization gap of the elements in H,,,. Figure 2.2 summarizes the evolution
of the two error types according to the growing complexity of the hypothesis class — characterized

20



2.1 An introduction to learning theory and image classification

=== Upper bound on the excess risk
Estimation error
\ = Approximation error

Low complexity High complexity ,

m*

Figure 2.2: Trade-oft between the approximation and estimation errors according to the complexity of the

hypothesis class.

by m. When the hypothesis class is small it leads to good estimation but high approximation error.
Furthermore, enlarging this class may decrease the approximation but also increase the estimation
error. m™ represents the best trade-off we found by using the upper bound on the excess risk. In
general, we write the structural risk minimization as follows

inf inf Rg(h)-+Q 2.10

Juf inf s(h) +Q(Hm), (2.10)
where €2 is a penalty term on the size of the class H,,,. This reformulation of the problem allows
to revisit the approximation/estimation trade-oft using the generalization error and the empirical
error. Figure 2.3 illustrates the evolution of the generalization error and the empirical rik, with

=== Generalization error
Penality term Q
\ = Empirical risk

Low complexity High complexity ,

*

m

Figure 2.3: Reinterpretation of the approximation/estimation trade-off using the generalization error and
the empirical risk — for the SRM.

respect to the complexity of the hypothesis class and the penalization term for the SRM. When

21



2 Background

the complexity of the model — m — increases, the training error decreases while the penalty term
increases. The generalization error follows the same kind of behavior as the upper bound for the
excess risk in Figure 2.3. Therefore, the SRM selects the model that minimizes the generalization
error. The SRM provides valuable insights on the links between complexity of the model and gen-
eralization bounds. Note however that — in general — the SRM is computationally intractable. In
fact, in most hypothesis classes, finding the ERM is already hard and the SRM demands to com-
pute the ERM over a large number of different hypothesis sets. Nevertheless, there exists several
workarounds to perform model selection at a lower cost such as cross-validation, or regulariza-
tion based algorithms [113, Chap. 4]. In this thesis, we focus on analyzing fixed hypothesis classes
in the context of adversarial classification; hence we do not discuss model selection. The hypothe-
sis classes we study are however quite general; hence we believe it is safe to assume they have small
approximation error. Studying adversarial classification through the lens of the structural risk
minimization would be an interesting follow up to our work.

Let us end this section with some more practical considerations by presenting the hypothesis
classes we will consider in practice, and some benchmark datasets.

2.1.5 Some more practical considerations: hypothesis classes and datasets
Some remarkable hypothesis classes

One of the first hypothesis classes one should think of when considering a classification problem
is the class of linear hypotheses. It writes

H:={x— h(x) =0"x5.0 c © C Mixx(R)}. (2.11)

The machine learning community often uses this hypothesis class on simple datasets, or to build
intuitions on the difficulty of the task. However, for involved applications such as image classifica-
tion, linear classifiers are too simple to correctly capture the ground-truth distribution. Therefore,
one usually uses neural networks instead. A typical class of neural networks is a composition of

(4)

N - usually non-linear — parametric functions h,’ with respective parameter dimensions d;
k3

H = {x > ho(x) == hy) o---ohy)(x)se. Vi€ [N], §; € ©; CR%}.  (212)
These classes are characterized by two features, namely their architecture and parameter sets.

o The architecture of the model. The architecture is the pre-defined structure materialized by
. . 1 N
the set of parametric functions {h(el), ceey h4(9N) } — a.k.a. the layers of the network. De-
pending on the architecture, a neural network sometimes output a vector in the simplex
A(K) == {z € RE sz, Z,}::l z = 1} — called probit vector- or in R¥ without fur-
ther assumptions — called logit vector. In the following, unless stated otherwise we always
assume that a neural network gives arbitrary outputs in RE /e logits.

* The parameter sets. The parameters materialized by real valued sets © := {©1,...,0On}
on which the learner optimizes to select a hypothesis.
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2.1 An introduction to learning theory and image classification

To select a hypothesis from these classes — be it a linear classifier or a neural network, we still need
to solve the ERM. Since the classes are parametrized, it simplifies as follows

n

.. 1

inf ~ ; L(ho(x:),vi) . (2.13)
where © is the set of parameters at hand. For this problem, the loss function £ we select as well
as the optimization procedure we use are called the hyper-parameter of the model. In the remain-
ing, unless stated otherwise — ¢.g. when we look at the 0/1 loss, we always consider the mapping
(0, z,y) — L(hgo(x),y) to be differentiable with respect to the parameters € and the input « —
which is a standard assumption. Furthermore, in all our experiments we will use the cross entropy
loss defined as follows

K
L:(z, N1y = kY log[ PR 2.14
(2,9) — ; {y = k}log K exp(s)] (2.14)

Finally, for a well chosen loss such as the cross-entropy, a simple optimization algorithm - e.g. a
stochastic gradient descent combined with a back-propagation scheme — is sufficient to obtain a
good approximate solution to the empirical risk minimization.

Reading note. Here weonly give some quick notions to fix the terminology. The main purpose of this
manuscript is not to discuss loss functions or optimization processes. We rather design new hypothesis
classes on which we can use well known optimization schemes. We refer the interested reader to [74]
or [145, Part IT] for a more complete overview on machine learning and deep learning in practice.

Image datasets and evaluation procedure

Provided with a dataset, we divide it into a training and a test samples — a.£.4. train and testsezs. We
use the training sample S to select ¢s a candidate classifier - model — and evaluate the performance
of ¢s on unseen input-output pairs from the test sample. Naturally, the quality of the model
depends on the error it gets on the test set — not the train set, but the difference we observe between
the quality of the prediction on the test and the training sample can be considered as an empirical
evaluation of the generalization error. When we evaluate the performance of a classifier — be it on
the train or the test set, we sometimes use the term accuracy instead of error. The accuracy of a
classifier is simply the average number of good classifications it makes. Accordingly, the notion of
test-time accuracy — resp. train-time accuracy — denotes the accuracy of the model on the test set —
resp. the train set. Let us now present the datasets we will most often refer to in this manuscript.

CIFAR-10 / CIFAR-100 We refer to CIFAR-10 or CIFAR-100 datasets [93] to present nu-
merical intuitions and evaluations. The CIFAR-10 dataset is one of the most used benchmarks
to evaluate vision tasks in machine learning and current state-of-the-art models achieve over 0.99
test-time accuracy on this dataset. It consists of 60000 color images of size 32 x 32 divided into 10
classes — 6000 images per class. There are 50000 training images and 10000 test images. CIFAR-
100 is just like CIFAR-10 with 100 classes and only 600 images per class. Accordingly, CIFAR-100
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is harder to classify, and current state-of-the-art models achieve around 0.93 test-time accuracy on
this dataset. Figure 2.4 presents a sample of images from CIFAR datasets.

e
| KPR S
-mﬂ&ﬁ K

Figure 2.4: Sample of images from CIFAR datasets [93].

Remark 3. The setting we consider defines the image space X as a subspace of the hyper-cube [0, 1]%.

In an image from CIFAR-10/CIFAR-100, each image has 32 x 32 pixels and 3 channels; bence if
we normalize each channel to be within [0, 1] - instead of [0, 255] - the dlassification problem for
CIFAR-10/CIEAR-100 has dimension d = 3072.

ImageNet To alesser extent, we sometimes refer to Imagenet dataset [41] to present visual rep-
resentations. ImageNet is an ongoing projectS that contributes to building one of the biggest
high-quality images database the machine learning community has open access to. It gathers more
than 14 million images and over 20000 classes — several hundred images per classes. Dealing with
this database calls for huge computational and energy resources. This is why, ImageNet should
not be used as a benchmark for new models, but rather to test the scaling of methods that already
— provably — work. Figure 2.5 presents a sample of images from ImageNet dataset.

Figure 2.5: Sample of images from Imagenet datasets [41].

2.2 Adversarial attacks, an overview

Adversarial attacks have recently come to light thanks to works studying deep neural networks [20,
67,152], although it was an existing topic in spam filter analysis [40, 64, 101]. Here we present an
overview of the domain in the context of image classification with deep neural networks.

>See the project webpage: http://www.image-net.org/
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“airliner”

Figure 2.6: Adversarial perturbation of a pig from ImageNet.

2.2.1 A first example

Let us first give a simple example of what an attack looks like. Figure 2.6 illustrates how to design
an adversarial example® on an image from ImageNet dataset. The original image is a pig — on
the left — and a state-of-the-art deep neural network trained on ImageNet recognizes it as such.
Then, if we compute a perturbation of the image that forces the network make a mistake, we find
the mask in the middle of the figure. To the human eye this mask looks a lot like noise, but it is
carefully computed according to the model. If we then multiply this structured perturbation by a
small factor and add it to the original pig, we get an image that a human cannot distinguish from
the original. That little change is, however, sufficient for the network to classify the new image —
on the right — as an airliner. This phenomenon is drawing a lot of attention, and many articles
have been published on the vulnerability of neural networks to adversarial attacks [28, 37,103, 114].
Butitis important to note that these vulnerabilities are not restricted to neural networks. Indeed,
they apply to essentially any machine learning algorithm [20, 67, 152].

2.2.2 Threat models

We define the adversaries regarding the information they have on the training set, the model archi-
tecture, and the parameters. Accordingly, the two main threat models considered in the literature
—see e.g. [26] — are the following.

* White box adversary. In this scenario, the adversary has the same knowledge as the model
provider. This means that it has access to the training samples, the architecture and the
parameters of the model. Furthermore, the adversary also knows if the model is defended
by any pre-or-post processing.

* Black box adversary. In this scenario, the adversary has no knowledge about the model, and
has only limited oracle access to it — e.¢g. limited queries with access only to the hypothesis
outputs’ or the predicted classes.

In this work, we only consider the more powerful model threat — 7.e. white box adversaries. As
pointed out by Carlini e al. [26], it is not reasonable to assume that the defense algorithm can
be held secrets in practice. This concept, called the Kerckhoffs’ principle [91], is very common in

°To reproduce this example, the interested reader can follow this tutorial: https://adversarial-ml-tutorial.org/

introduction/.
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the cryptography community. In a nutshell, it says that the only secret on which a cryptography
system should hold is the secret of the encryption key. In this work, we apply the same principle
and consider that the only secret is the random state of the algorithm - Ze. the pseudo-random
number generator is unknown from the adversary. Finally, note that considering the white box
setting is fully general, since a black box adversary can only be — by definition — less effective than
a white box adversary.

2.2.3 On the notions of imperceptibility in high dimension

As we mentioned in Chapter 1, evaluating the imperceptibility of an adversarial example is hard.
In practice, we use an £, norm with p € [1, 400] and a threshold v, to evaluate an acceptable
variation. Accordingly, the set of allowed perturbations for a standard image & € X is an £}, ball
By(z, ap) := {x + 7 € Xst ||7]|, < op}. Note that the threshold a, does not only depend
on the norm, it also scales according to the dimension of the problem d. Indeed, if the image has
a low resolution, the human eye can easily distinguish the pixels from each other; hence it will
be much easier to see changes in this context than in a high quality image. Then the following
question arises: given some input space X’ with dimension d and p € [1, 4+-00], how should we
select oy, for the attacks to remain undetected?

First, one can give an empirical answer to this question for cvo [67, 95] — Z.e. the pixel-wise max-
imal perturbation that does not change the human perception. Then, to build adversaries with

7

comparable strength, but also because it matches empirical observations’, we select vy, such that

By(x, ) and Boo (@, (o) have equivalent volumes®. Typically, on CIFAR datasets, a pertur-
bation 7 is considered imperceptible if || 7| ., < 0.031 or ||7||, < 0.8.

d=2 d— o

7 A ; > K

N

Figure 2.7: Comparison of an £3 and an £ ball of similar volumes. On the left: d = 2. On the right:
d — oo.

A

Even if the £}, balls have similar volumes — when X’ is high dimensional, they will only overlap
on a negligible region of the space. Figure 2.7 illustrates this and compares an {2 and an £, ball
of similar volumes when the dimension of the problem — d — increases. In a 2 dimensional space

7S€e eg. https://adversarial-ml-tutorial.org/adversarial_examples/
¥Simon-Gabriel ez al. [148] recently hypothesized that we should set iy = oo X d*/? instead, but this formula
does not match empirical observations as well as equalizing the volumes.
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— on the left — the balls overlap on more than 98 percent of their respective volumes, but when
the dimension grows — on the right — most of the mass for the £, ball moves toward the corners,
leaving only a negligible mass in the intersection. From these different behaviors of the balls in
high dimensions, we can draw two conclusions.

* Low-dimensional intuition can be misleading. In this work, we will sometimes illustrate
our findings with figures. By essence these figures cannot tell the whole story because they
fail to render the high-dimensional nature of the problem.

* Being robust to one adversary does not say much about the others. Let us suppose that we can
design a classifier ¢ that is robust to any {9 perturbations with maximal radius ca. Then
without a finer grain analysis, ¢ can only ensure protection against £, perturbations of
size g/ V/d. Therefore, when X is high dimensional, ¢ does not ensure protection against
realistic £, adversaries. Generally, guarantees devised for one adversary will not transfer to
other ones. Hence we need to clearly state what adversary we study. In this work, we mainly
present some general results, but we focus our empirical analysis on £ and £, adversaries.

Reading note. The interested reader can refer to Appendix A for more detailed discussions on the
impossibility to transfer defense strategies for one adversary to anotber.

The threat models we just discussed consider that the adversary is constrained to £,-bounded
perturbations — which is the most standard threat model in the literature. Note that these mod-
els — based on sufficient conditions for imperceptibility — are too narrow to match real-world
threats [26, 62]. Nevertheless, they are mathematically well defined, which facilitates principled
analysis and assessments. Furthermore, while £, threats are not sufficiently realistic, they are part
of any more general — realistic — threat model. Thus, building models robust to £, adversaries
— which is still an open question — would allow the community to make a step toward a more
general notion of robustness. Hence, in this work, we keep studying £,,-bounded perturbations.

2.2.4 How to build an attack?

Recall the K -class adversarial classification setting with p € [1,400] and o, > 0. Given a
hypothesis h € H and an input-output pair (x, y) ~ D, the adversary aims to find a solution to
the following maximization problem

sup L(h(x+71),y). (2.15)
TEBp(ayp)

Two of the most common ways to do so are 1) to try directly solving Problem (2.15) with a
projected gradient descent, or 2) to solve a Lagrangian relaxation of the problem.

Remark 4. Note that - in general — Problem (2.15) might not have realizable solutions. However,
[finding an approximate solution is most of the time sufficient for c to misclassify - ie. c(x+7) # y.
The attacks we present below are sufficiently strong to make the test-time accuracy of any classical deep
neural network drop to O — on either CIFAR or ImageNet datasets.
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Solving directly with projected gradient descent

In one of the first attack papers, Goodfellow ez al. [67] presented a simple attack scheme based
on the idea that h has a linear behavior. This method is called fast gradient method — FGM -
and relies on the idea that a single gradient step — scaled to have an £}, norm smaller than a, - is
sufficient to fool most models. This technique was quickly extended to consider multiple gradient
steps [95, 103], and is now known as the projected gradient descent scheme — z.k.4. PGD attack.
Given a image @ to attack, a threshold oy, and a maximal number of steps t,,,4., PGD recursively
computes

it = PIOj B, (z,a,) <:1:t + s argmax thﬁ(h(:ct) , y)Tv> (2.16)

v st ||v][p<1
. . t . . . .
where, V.t denotes the gradient with respect to the entry ¢, s isa gradient step size, and proj g (z,a,,)
is the projection operator on By, (x, a,)”. PGD attack has been implemented for several reference
norms such as £ or £ and is widely used as a state-of-the-art benchmark to evaluate the efficacy
of defense strategies [38, 154].

Remark 5. During training, we usually evaluate the gradient according to the parameters of the
model. But one can use the back-propagation algorithm to compute the gradient on the input as well.

Solving the Lagrangian relaxation

The second procedure searches for the perturbation that has the minimal norm, under the con-
straint that £L(h(x + 7), y) is bigger than a parameter & — typically chosen depending on the loss
function L. The associated optimization problem is as follows,

inf

. 2.17
T st. L(h(z+T),y) >k HTHp ( )

Problem (2.17) has been studied extensively by Carlini ez a/. [28], resulting in a method called
C&W attack. It aims at solving the following Lagrangian relaxation of the problem

iI_’l_f”THp-i-)\ x g(x+ 1) (2.18)

where g(x +7) < Oifand onlyif L(h(x +T),y) > k. According to the loss function, Carlini
et. al. use a binary search to optimize the constant x and a stochastic gradient descent to compute
an approximate solution of the problem'?. The C&W attack is well defined for both p = 2 and
p = o0o. However, empirical observations show a clear gap of efficacy for the £2-based attack.
Accordingly, for this work, we only consider C&W as an /3 attack.

Remark 6. Note that when we solve the Lagrangian relaxation, we have no gnarantee that the
approximate solution will have an o, bounded norm. To ensure imperceptibility in practice, at the
end of the procedure, we force the solution to be in the £y, ball with a projection operator — as in the

t+1

°If the projection operator does not exist, any operator that brings """ back into the ball can work.

The authors also use a change of variable to ensure thatx + 7 € X
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PGD attack. Nevertheless, for a sufficient number of gradient steps, since the goal is to minimize the
norm, the solution will usually already be in the appropriate £,, ball.

2.2.5 Discussion on the attack strategies

The literature on attacks is rich, and this section does not provide an exhaustive list of the methods
developed so far. We present only two of the most popular attack frameworks. Given an optimiza-
tion problem, one can use a number of possible algorithms to get an approximate solution to it,
which makes the attack literature flourishing. But, at this stage, most attacks are based on solving
either one or the other optimization problems we have just introduced. Thus, we believe that the
above methods are sufficient to provide a general understanding of how to construct an adversar-
ial example. For a more complete overview of the attack methods one can — for example — refer
to [167].

2.3 State-of-the-art on defense strategies

At the moment, most the works that aim to provide robust classifiers do not offer any provable
protection against adversarial attacks, as the community has demonstrated on many occasions [6,
27,38, 154]. However, among the defense strategies, two are susceptible to pass the test of time,
namely adversarial training and provable robustness.

2.3.1 Adpversarial training

Let us suppose for a moment that we can solve the maximization Problem (2.15). This would
for example be the case if Danskin Theorem [17] holds. Then, given a classifier h and a sample
(x,y) ~ D, a well-calibrated stochastic gradient descent would find

7" = argmax L(h(x+71),y). (2.19)

Tt f|r],<a

Then - intuitively — a standard training procedure on & + 7 instead of @ would converge to
a robust classifier if it exists. Even-though Danskin Theorem does not hold in practice“, sev-
eral works [67, 95, 103] presented a learning procedure called adversarial training based on this
reasoning. In a nutshell, adversarial training seeks a solution to the empirical adversarial risk min-
imization — Problem (1.4) — by taking successive stochastic gradient steps on an approximated
worst-case perturbation of the clean input. To simulate the worst-case perturbation, the proce-
dure uses an attack method — usually PGD'?. This solution — inspired by the literature on robust
optimization [16] — is intuitive and provides state-of-the-art experimental robustness against the
strongest £, attack methods proposed so far [38]. Typically on CIFAR-10, the latest improve-
ment of adversarial training [180] obtains 0.53 test-time accuracy under £, perturbations of size
0.031. However, the main weakness of adversarial training is its lack of formal guarantees. De-
spite some recent works [149, 180] providing valuable insights, the worst-case adversarial risk of

"Danskin Theorem may not hold ¢.g. because given (z, y), T — L(h(x + T), y) will usually not be convex in 7.
2Note that most of the time, adversarial training builds attacks by using PGD with reference norm £o, even we it
wants to defend against other types of attacks [103], with good empirical results.
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this method is still unknown. Provable defenses attempt to address this concern by providing an
in-depth mathematical analysis with the methods they present.

2.3.2 Provable robustness

The main objective of the literature on provable robustness is to upper-bound the adversary’s op-
timization problem — Problem (2.15). This allows gives worst-case accuracy results, even though
h is a complex, non-linear classifier. The two most common methods to obtain provable defenses
are 1) to analyze a convex relaxation of the problem and 2) to use randomized smoothing to build
more robust classifiers.

Analyzing a convex relaxation of the problem

Given some € X, the idea of is to build a convex relaxation of the ball of authorized modifica-
tions By, (x, o). To find a good approximation to the inner maximization problem, we should
characterize the image of B, (x, o) through h - ze. h(Bp(x, ). To simplify the problem,
recent works [48, 134, 168, 169] performed a convex relaxation over the image set in the context
of neural networks with ReLU non-linearity, and performed robust optimization over this new
region.

convex relaxation

h
+t, | —
/
B (.’B,Oloo) h(BOO (CU, O‘OO))

Figure 2.8: Illustration of the convex relaxation technique from [168].

Figure 2.8 illustrates this simplification for an {, adversary. Before applying the hypothesis
function b — on the left — the £, ball is convex and easy to study. After applying h — on the right
— h(Boo(, aso)) is highly non convex. Therefore, to simplify the analysis, one should study
the convex relaxation of h(Bx (&, o)) instead. The resulting problem is a linear program. By
dualizing, we obtain an optimization problem similar to back-propagation and we can draw guar-
antees for the network. However, this technique involves a linear program and is therefore difficult
to apply to high-dimensional datasets; hence hardening its application to image classification.

Randomized Smoothing

Randomized smoothing defenses are randomization based defenses. The idea of provable defense
through randomization was first introduced in [98] and refined in [34,100, 139]. The rationale be-
hind this idea is very simple: take a hypothesis with probir outputs h : X — A(K'), and smooth
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it after training by convolution with a Gaussian distribution (0, 0*I). Then the robust clas-
sifier writes

Crob @ — argmax (hy, * N'(0, 0'2]))(33) = argmax E, o 02n)[he(T + 2)] . (2.20)
k€[K] ke[K]

If we denote @ the cumulative density function of the standard Gaussian distribution, we
can show that &1 (h * N(O, 021)) is 1-Lipschitz [139]. Therefore, ¢}, is robust to adversar-
ial examples that are close enough to the unperturbed input &. More precisely, for any point
x € X, we can build a radius around & for which no £ adversary can change the decision of
Crob- Furthermore, the radius depends on the difference between the two biggest probits of h:=
h  N'(0,0°1). Formally, if for any & € X we denote fb(m)(l) > ﬁ(m)(g) > > ﬁ(m)(K)

the values of the vector iL(w) in decreasing order, the following hold.

Theorem 2 ([34,139]). Foranyx € X and T € X the following hold.

v, < %(@*I(i}(m)(l)) — 7 (h(@)w)). then crop(@) = erop(a + 7).

This theorems says that the more separated the probits of the hypothesis, the more robust the
classifier is to adversarial perturbations. Then, the model provider can evaluate its worst-case ac-
curacy under attack according to its standard accuracy and the confidence the network has in it
predictions. This technique gives provable defense against adversarial examples on a given dataset.
Table 2.9 presents the current state-of-the-art results in terms of certified accuracy — 7.e. accuracy
that cannot be diminished by an adversary — of randomized smoothing for ¢ based adversaries
with different thresholds on CIFAR-10. Note that for a reasonable threshold of 0.75 one gets 0.52
certified accuracy. Following the works investigating Gaussian distributions against £2 adversaries,

Table 2.9: Certified accuracy of randomized smoothing model [139] on the CIFAR-10 dataset.

05 norm of the attack (025 05 075 10 1.25
Randomized smoothing [139] | 0.81 0.63 0.52 0.37 0.33

several extensions obtained similar results for other £, norms [99,173], or discuss how this method
relates to the dimension of the problem [94]. Overall, randomized smoothing presents principled
advantages over most previous methods. It is simple to implement and to interpret, computation-
ally efficient and provides state-of-the-art provable robustness for benchmark datasets.

2.3.3 Discussion on the current defense strategies

Over the last few years, there has been significant advances on the robustness of machine learning
models to adversarial attacks. However, in terms of the quality of defenses, both provable robust-
ness and adversarial training call for improvements. Indeed, the accuracy under attack of these
methods is hardly above 0.5 against imperceptible perturbations on CIFAR-10. These results are
not sufficient to consider deploying image recognition systems in real-world applications.
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Furthermore, this literature focuses on minimizing the empirical adversarial risk and do not
present any generalization guarantee. This question is critical, especially for classification under
perturbation. Indeed, Madry ez a/. [103] noticed that the initial version of adversarial training
achieves 0.96 train-time adversarial accuracy against 0.47 test-time adversarial accuracy. This gap
between train and test performances is significantly larger than what models usually achieve in the
standard setting. Hence it is crucial to study generalization guarantees in the adversarial setting to
control the generalization gap between training and test errors.

2.4 Adversarial classification through the lens of statistical
learning theory

Notations. By analogy with the standard setting, we denote R*Y (h; o) and REY (h; ay,) the
adversarial risk 2nd empirical adversarial risk of b under oy-bounded perturbations

T\’,adv(h; ap) = Ezy~p| sup Lh(x+T1),9)|, (2.21)
TEBp(ap)
1 n
RENM(hsap) = =" sup  L(h(zi+7),u:), (2.22)

n i—1 TEBp(ap)
where By(ap) == {1 € Xs.t. |7, < ap}-

Unlike other notions such as training set corruptions— 4.k.4. poisoning attacks [89, 90], the
theoretical aspects of adversarial robustness are not widely studied. For now, empirical observa-
tions tend to show that 1) adversarial examples on state-of-the-art models are hard to mitigate and
2) robust training methods give poor generalization performances. Some recent works study the
problem through the lens of learning theory either to understand the links between robustness
and accuracy or to provide bounds on the generalization gap of current learning procedures in
the adversarial setting.

2.4.1 Is robustness antagonist with accuracy?

A first line of research [83, 151, 156, 180] suggests that designing robust models might be at odds
with standard accuracy. These works study different experimental and theoretical toy settings.
Among them, let us start with the toy binary classification task from [156].

Toy Example. Given any (x,y) ~ D, q € [0,1) andn > 0, the following holds.
1.y is uniformly distributed at random on {—1, 1}.
2. Given vy, x1 takes value y with probability q and —y otherwise.
3. All other elements @2, ..., T4 of the vector x are drawn iid. from a Gaussian N (ny, 1).

According to the above distribution, when X is high dimensional, one can build a simple linear
classifier h(z) = 715 25:2 x; that will have arbitrary high test-time accuracy. Indeed - thanks

32



2.4 Adversarial classification through the lens of statistical learning theory

to the central limit theorem — when d — 0o we get h(x) = ¢ Zgzz x; — 1y, meaning that
sign(h(zx)) = y with arbitrarily high probability. Nevertheless, an £ adversary that can shift
all features by at most cvo, = 217 will be able to make the test-time accuracy of h drop to 0. More
generally, on this toy example, Tsipras ez a/. [156] presented the following result.

Theorem 3 ([156]). Any classifier that attains at least 1 — r standard test-time accuracy on D has
robust test-time accuracy at most ﬁr against an Lo-bounded adversary with a, > 2.

This result proves first-hand that robustness can be at odds with precision. But it is not general
enough to draw conclusions — since it is based on a very simple toy distribution. A subsequent
work by Zhang ez al. [180] observed - for the binary classification setting with 0/1 loss — that the
adversarial risk of any hypothesis A straightforwardly decomposes as follows,

RV (h; ap) = R(h) + E(gzy)~pl{c(x) = yand IT € By(ayp) s.t. c(x + T) # y},

(2.23)
where ¢(x) := sign(h(x)). Looking at Equation (2.23), we realize that minimizing the adver-
sarial risk is not enough to ensure good standard accuracy — as one could only optimize over the
second term. This indicates that adversarial risk minimization — Problem (1.3) — is harder than
standard risk minimization — Problem (1.1). Note, however, that Equation (2.23) does not high-
light a fundamental trade-off between robustness and accuracy. Finding such a relation in the
general case remains an open question.

2.4.2 Studying adversarial generalization

To further compare the difficulty of the two problems, a recent line of research began to explore
the notion of the adversarial generalization gap. In this line, Schmidt ez a/. [141] presented first
intuitions by studying a simplified binary classification framework where D is a mixture of spher-
ical Gaussian distributions. In this framework, the authors show that we only need O(1) training
samples to have a small generalization error. But against an £o, adversary, we need O(v/d) train-
ing samples instead. In the discussion of their work, the authors present the problem of obtaining
similar results without making assumptions about the distribution as an open problem.

This issue was first tackled by Cullina ez 4/. [39] by using the VC-dimension. Their analysis
shows that for linear classifiers, the VC dimension of the hypothesis class does not change un-
der attack. This work indicates that — with respect to the VC dimension — classification under
perturbation is not more difficult than standard classification which does not correspond to the
empirical observations and initial intuitions provided earlier [103, 141]. However, as previously
mentioned, the Rademacher complexity generally allows for tighter generalization bounds than
the VC dimension [8]. Accordingly, further works studied the same problem, using Rademacher
complexity and presented the following results relating the adversarial generalization error of lin-
ear classifiers'® with the dimension of the problem'*.

BThese works also investigate neural networks with one hidden layer — we refer the interested reader to the original
papers for more details.
14[92] and [175] only present bounds for £oc adversaries. [7] extended the results to any £, attack.
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Theorem 4 ([7]). LetH, = {m = 0Tz st 6], < M} and let us suppose that L is L-Lipschitz.
Then with probability at least 1 — 9, the following holds for any h € Hg,

adv adv M 1—-1_1 111(2/(5)
R (hyap) < REY (R ay) + 2L Rs(Hy) + ap%ma){(d ’ q,1) + 3| ——
Note that the main difference between this result and the one we presented in the standard
setting — Theorem 1 — is the additive factor

ap% max(dlf%f%, 1) =0 (2.24)
Vn

Therefore, by analyzing the problem using Rademacher complexity, we can show that the ad-

versarial generalization does depend on the dimension of the problem. Hence, in terms of sample

complexity, adversarial classification is more difficult than standard classification. However, when

facing an £}, adversary, one can always select a class of linear classifiers for which the dimension

term disappears. Indeed, if we select ¢ to be the Holder conjugate of p — ze. % + % = 1-the

additive term becomes O (ﬁ) . Therefore, we can build strong intuitions for an adversary, but

the generalization bounds are not transferable to another £, adversary.

Reading note. A first a glance, the difficulty of adversarial generalization seems to contradict
previous conclusions on the link between robustness and generalization [171]. But as we will see in
Chapter 4, these results are based on very specific assumptions that may not bhold in high dimensions.

2.4.3 Discussion on the learning theory literature

Some compelling insights were presented on whether robustness standard accuracy are in con-
flict. However, in more general configurations, the question remains open. Moreover, from the
different results on the adversarial generalization gap, we can draw two — somewhat contradictory
— conclusions. First, learning under perturbation is indeed much more difficult than standard
learning and the difficulty increases with the dimension of the problem. Second, for an £, adver-
sary — fixed p — robustness might be achievable.

Going further, it should be noted that the generalization gap measures only the difference be-
tween empirical and theoretical risk. In practice, the empirical adversarial risk is never really es-
timated — since we cannot compute the exact solution to the inner maximization problem. The
following question therefore remains open: even if we can set up a learning procedure with a small
generalization gap, will the adversarial risk be low? To answer this question, we need to study the
adversarial risk minimization problem — Problem (1.3).

Remark 7. Another line of research within the learning community studies the problem from a com-
putational viewpoint. This was recently addressed by Bubeck et al. [25] who argued that the problem
of adversarial classification is not the sample size, but the computational hardness. Thus, even with
a reasonable sample size for both problems, we can present a set of learning problems where standard
non-robust learning can be performed efficiently, but is difficult to compute in an adversarial setting.
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2.5 Is classification under perturbation feasible?

From preliminary intuitions to advanced mathematical analyses, some works are studying the fun-
damental properties of classification under perturbation — Problem (1.3). Specifically, the com-
munity wonders why adversarial examples exist and whether we can mitigate them. These ques-
tions are far from settled, but most works indicate that sensitivity to adversarial perturbations is
inevitable. Besides, a very recent line of research began to investigate the worst case adversarial risk
of any hypothesis class; thus assessing whether Problem (1.3) is even worth solving.

2.5.1 Initial hypotheses on the existence of adversarial examples

When Szegedy ef al. [152] first noticed the vulnerability of deep neural networks to small per-
turbations, they hypothesized that this phenomenon was a consequence of the model’s over-
fitting. The community uses complex and powerful neural networks that can sometimes be over-
parameterized for the task. Thus, even with enough training samples, the network learns struc-
tures that are too complicated to describe only the dataset distribution. As a result, it makes ran-
dom mistakes in low probability regions of the image space that an adversary can exploit.

Figure 2.10 — on the left — illustrates this hypothesis on a training set of three blue crosses and
three red circles. It is always possible to build a complex classifier that easily adapts to the training
points. But since it has much more parameters than it needs, it also creates small classification
areas in low probability regions — somewhat randomly. One can then easily see that a small shift
of a point in a well-chosen direction causes an error in the classifier.

<

®)
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Adversarial X @)

&

Adversarial

Figure 2.10: On the left: adversarial examples for a complicated over-fitting network. On the right: adver-
sarial examples for a linear under-fitting classifier.

This theory was then invalidated by Goodfellow ez 4l. [67] with the following argument. If
over-fitting was the main reason, then adversarial examples would be more or less artifacts of the
learning procedure, and should be unique to the classifier. Therefore, if we fit the model again, or
if we fit a slightly different model, we should get different adversarial examples. But the authors
found that different models misclassify the same examples; thus invalidating the initial theory 15

5 This phenomenon was later called attack transferability [155]
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Goodfellow et al. [67] further hypothesized that adversarial examples are more a matter of under-
fitting than over-fitting. Specifically, the authors argued that deep neural networks — despite the
use of non-linear transformations — have a linear behavior that make them vulnerable to attacks
in high-dimensional spaces.

To better understand how under-fitting can lead to a vulnerability, let us go back to Figure 2.10
— on the right. If we fit a linear model to the previous training set, we get a hyperplane lying
between the two sets of points. However, this hyperplane does not account for the distribution
of the dataset. The circles could be arranged in a C-shape, so moving a point along this shape
causes the classifier to make an error. Some follow-up work kept linking the vulnerability of the
models to the shape of their decision boundary. For example, Moosavi ef al. [115] related the
vulnerability of a classifier to the curvature of its decision boundary. As such, the shape of the
decision boundary is not sufficient to explain the whole phenomenon, but it seems to play an
important role as some very efficient attack methods extensively use this hypothesis [67, 114, 115].

2.5.2 Are adversarial examples inevitable?

To further investigate whether adversarial examples are inevitable, subsequent works [63, 144] has
focused their analysis on the task — rather than the classifier itself. Consider for example K -class
classification on the unit sphere — Ze. X = S"1 ;= {& € R¥s. ||z||, = 1}. In this context,
Shafahi ez al. [144] used isoperimetric inequalities [22] to argue that adversarial examples are in-
evitable. The authors show that — under assumptions on the concentration of the ground-truth
distribution — for any classifier on the unit sphere, there is at least one class k* € ) for which
adversarial examples exist with high probability.

Theorem 5 ([144]). Let v defines the probability distribution fory, iy, is the conditional distribu-
tion for x knowingy = k and g, its probability density function. Let us also consider c a classifier
over the unit sphere X and o, a perception threshold for an €, adversary. Then there exists k* € Y
such that for any T ~ =, with probability at least

1/2 d—1
1-— Vk* (%) eXp<—2( p)2>,

there exist T € Bp(x, o) such that c(x + T) # k*. Where Vi := supgey g+ (€) X Sp—1.

This result means that when the conditional distribution iz« has limited concentration, no
classifier can be robust to £,'® adversaries targeting samples from class k*. Gilmer et al. [63] pre-
sented observations of the same nature by studying a toy dataset consisting of two concentric
spheres. Their main result relates the errors in the standard and the adversarial setting by saying
that even a small standard error on their toy dataset translates to a large adversarial error. These re-
sults were later presented in a more general way by Dohmatob [46], but for simplicity we discussed
here the initial contributions.

Remark 8. Note that Shafahi et al. [144] tried to extend their conclusions to image dlassification -
ie. when X = [0,1]% and d is large. However, in this context, the probability is high only when the

"The initial result in [144] uses the geodesic distance. Hence the result holds at least for £2 and £o adversaries.
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perturbation threshold o, is large - hence losing the imperceptibility of the attack. Dobmatob [46]
has conducted complementary experiments on — small-scale - image datasets with similar results;
the number of adversarial examples is not probibitive as long as o, is small. Therefore, the above
results still need to be verified on large-scale image classification.

This literature suggests that adversarial examples are inevitable, which means that Problem (1.3)
can have a large value. In the following section, we present some works that attempt to assess
whether solving Problem (1.3) is even worth trying by estimating this value.

2.5.3 Finding worst case lower bounds on the adversarial risk minimization

Two recent works [18, 131] studied adversarial risk minimization by using arguments from optimal
transport [163]. They show how to characterize the adversarial risk for binary classification by an
optimal transport cost between the conditional probability distributions of the two classes 11
and fi_1. Let us consider the adversary’s problem from a distributional point of view. Instead of
attacking every point, it directly moves the distributions 1 and fi-1 to maximize the risk with
respect to D. In this context, we can evaluate the worst-case — non-normalized — accuracy under
attack of any classifier by the minimal number of points that are not susceptible to be switched
from one conditional distribution to the other

Doy pia) = inf - Eg gty (1)l — ]|, > ). (2.25)

where 17 (f11, pu-1) is the set of all joint probability measures on X' x X with marginals 1 and
fi-1. Finally, we can define the best-case adversarial risk according to the non-normalized worst-
case accuracy under attack Dy, (11, pr-1) and the classes’ distribution v.

Theorem 6 ([18,131]). Let v consider the probability distribution fory withv(1) = v(-1) = 1/2.
Then the following holds,

1
inf R (h;a,) = =(1—D 1)).
jnf R (b3 ap) = 5(1 = Day (11, 1))

This result indicates that if the conditional distributions are close enough — according to the
above notion of distance — then the adversarial risk will be high, regardless of the classifier. Note,
however, that this is already the case without adversaries. Indeed, the risk of the Bayes optimal
classifier h°P' — a.k.a. the Bayes optimal risk — is as follows

R(h) = 51~ Drv (1, 11)), (2.26)

where Dpy (g1, 11-1) is the total variation distance between the conditional distributions. Hence
remains the question: how fast does D, (f1, f¢-1) grow — compared to Dy (pi1, f4-1) — accord-
ing to the distribution? To answer this, Pydi ez a/. [131] evaluated their bounds on - a smoothed
version — of CIFAR-10 dataset. Their preliminary results indicate that best-case adversarial risk
— for ag < 0.8 - can be 0.05 bigger than the Bayes optimal risk, which is not prohibitive but
still represents an important loss of accuracy. For the gap to be more important — as we already
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pointed out in the previous section — we should select a larger cy,; hence the imperceptibility of
the attack becomes questionable.

Remark 9. Given an n points dataset, to build the smooth version of it, the authors use a mixture of
n Gaussian distributions, where each mean is placed on a data point. This smoothness assumption
seems reasonable, since machine learning practitioners often use Gaussian data augmentation to
improve the performances of their models [66, 128].

2.5.4 Discussion on the feasibility of classification under perturbation

The results we just presented seem to show that adversarial examples are — to some extent — in-
evitable and that accuracy under attack of a classifier will always be significantly smaller than its
standard counterpart. However, these results — even if the authors sometimes claim the opposite
— do not prove that no satisfactory solution can be found to the adversarial risk minimization —
Problem (1.3). For example, on CIFAR-10, diminishing the current state-of-the-art by 0.05 still
gives a good classifier with over 0.9 test-time accuracyW. Furthermore, as recently pointed out
by Dohmatob [46], the strength of these impossibility results might mainly come from the fact
that the adversary we consider is unrealistically strong. Thus, rethinking the constraints for the
adversary could question the ongoing consensus on whether we can build models that are both
robust and accurate.

2.6 Our positioning with regard to prior art

In this thesis, we aim to bring a new understanding on adversarial examples and contribute to the
development of new technical tools. Our main accomplishments are the followings.

Bringing a new point of view on the adversarial classification problem

We begin by revisiting the problem of adversarial risk minimization by regularizing the adversary
objective function. We study this new problem through the lens of game theory by casting it as an
infinite zero sum game. Our conclusions highlight a very interesting property of the adversarial
classification problem, which is its instability — ze. the nature of the game between the adver-
sary and the classifier changes completely when we add a small regularization term. This leads
us to question current theses on adversarial classification and to ask whether existing conclusions
would still hold if we limit the adversary’s strength. The game theoretical point of view we de-
velop also leads us to study randomized classifiers — z.e. classifiers that produce random variables.
In particular, we show that they have principled advantages over deterministic classifiers in terms
of robustness to adversarial perturbations.

Some works have tackled the problem of adversarial examples as a two player game before [127,
138], but they consider restricted versions of the game — e.g. when the players only have a finite set
of possible strategies. We study a more general setting which allows us to build strong insights on
the fundamental nature of the game between the classifier and the adversary.

78¢ill, it remains to find this optimal classifier, which can be hard as discussed in Section 2.4
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2.6 Our positioning with regard to prior art

Studying adversarial defense from a probabilistic point of view

Based on the new insights we develop on adversarial classification, we present a theoretical analysis
of randomized classifiers. To do so, we first define a new notion of robustness for these classifiers
using probability metrics. Then, we show that under robustness assumptions, we can limit the
difference between the standard risk and the adversarial risk of a randomized classifier. This result
is important for the community because it shows that a well-chosen class of hypotheses can give
both reasonable robustness and accuracy — thus mitigating the previous results on deterministic
classifiers. We then devise bounds on the standard generalization gap of this new hypothesis class.
This result encompasses existing works on the link between robustness and accuracy for deter-
ministic classifiers. Finally we analyze the stability of the classifier’s mode allowing us to present a
probabilistic point of view on randomized smoothing techniques. Our point of view on random-
ization as a defense strategy could pave the way to further investigating randomized smoothing
from a theoretical perspective.

Building robust classifiers

Finally, we link our definition of robustness to the notion of differential privacy. Thanks to this
connection, we bring to the community a new set of technical tools. As a consequence, we de-
sign new noise injection schemes to build robust classes of randomized classifiers. These schemes
prove that the theoretical analysis we have previously built is applicable to state-of-the-art image
classification models.

Injecting noise into algorithms to improve train time robustness has been used for ages in de-
tection and signal processing tasks [29, 71, 111, 181]. It has also been extensively studied in several
machine learning and optimization fields — e.¢. robust optimization [16] and data augmentation
techniques [128]. Concurrently to our work, noise injection techniques have been adopted by
the adversarial defense community [45, 170]. In particular, Lecuyer ez a/. [98] first developed ran-
domized smoothing, by using theoretical results from differential privacy. Our work belongs to
the same line of research, but the nature of our results is different. While randomized smoothing
focuses on the construction of certified defenses, depending on the dataset and the classifier used,
we study randomized mechanisms from the perspective of information theory and learning the-
ory. Our analysis presents the fundamental properties of randomized defenses, including — but
not limited to — randomized smoothing.
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QU: Is there some hypothesis class H. for which the adversarial risk minimization
problem bas a solution W* with small adversarial risk?

In this chapter, we aim to answer QI by adopting a game-theoretical point of view. We present
in Section 3.1 the adversarial attack and defense problem as an infinite zero-sum game. Then
we discuss how unrealistic threat models might impact the analysis of this game and present a
simple additional constraint to mitigate the overpower of the adversary. We demonstrate in Sec-
tion 3.2 that — as long as this small constraint holds — no Pure Nash equilibrium exists in our
game. This shows how current impossibility results may provide questionable findings, but this
is not sufficient to rehabilitate deterministic hypotheses. Furthermore, we show in Section 3.3
that, in this setting, any deterministic hypothesis can be outperformed by a randomized one. This
gives arguments for using randomization, and leads us to a simple method for building random-
ized classifiers that are robust to state-or-the-art adversarial attacks. In Section 3.4, we validate our
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3 A game theoretical point of view on adversarial attacks

theoretical analysis with empirical results. Finally, we present some additional results, and provide
concluding remarks respectively in Sections 3.5, and 3.6.

3.1 Casting the problem as a zero sum game

Notations. For any set Z with o-algebra A(Z), if there is no ambiguity on the considered o-
algebra, we denote P(Z2) the set of all probability measures over (2, A(Z)). We also denote Fz
the set of all measurable functions from (2, A(2)) to (Z, A(Z)). Forp € P(Z) andp € Fz,
the push-forward measure of 1 by 1 is the measure W#u such that Y#u(B) = p(v¥1(B)) for
any B € A(Z). Moreover, for any B C X we denote B © the complement of B in X. Finally,
when the probability measure of reference is clear we denote essup the essential supremum, i.e. the
supremum over the non-null sets for this measure.

3.1.1 Initial problem statement

As this chapter aims at building new intuitions on adversarial classification, we restrict our analysis
to the binary classification setting with 0/1 loss. In the next chapters, we will come back to the
more general K -class classification. Let usset X C [0,1]4, Y = {-1,1} and H := C(X,R)
— where C(X,R) is the set of functions that are almost everywhere' continuous from X to R.
Then, given a distribution D with full support on X x ), the model provider is looking for a
hypothesis h € H minimizing the risk of i with respect to D,

R(h) := E(gy)op Lo (W), y)]
= EyNV [Ew’\/ﬂy [LO/I(h(m)v y)” s
where v € P(Y) is the probability distribution of y, and forany y € Y, pu, € P(X) is the

conditional law of «|y. Given a hypothesis & € H and a data sample (x,y) ~ D, the adversary
secks a perturbation T € X such that [|7(|, < e and Loy (h(z + 7),y) = 1.

(3.1)

From a distributional point of view, this amounts to constructing — for each label y € Y —a
measurable function 1), such that ¥, () is the perturbation associated with the labeled exam-
ple (z, y). This function naturally induces a probability distribution over adversarial examples,
which is simply the push-forward measure 1, #1,,. The goal of the adversary is thus to find
P = (Y.1,¢1) € (.FX‘%)2 that maximizes the adversarial score

Score®® (h, ) := Eyy [Epma, 0, [Los1 (h(2),9)]] (3.2)

Finally, for the attack to remain undetected, we define F y|q,, as the set of measurable functions
that imperceptibly modifies a distribution on X,

Frla, = {f € Fux st eizlj(p | f(z) — ||, < ap}. (3.3)

"Here we use almost everywhere with respect to the conditional distributions 1 and g1 defined below.
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3.1 Casting the problem as a zero sum game

Within this distributional setting, the adversarial example problem is a two-player zero-sum game,
where the defender — model provider — tries to find the best possible hypothesis h, while the ad-

versary is manipulating the dataset distribution. The defender problem then writes as follows.

inf  sup  Score®®(h,1p). (3.4)
"veFr,)

This means that the defender tries to design the hypothesis with the best performance under at-
tack, whereas the adversary will each time design the optimal attack on this hypothesis.

3.1.2 Adversarial attack and defense, a two-player zero-sum game

In game theory, the choice of a hypothesis h — resp. an attack 1) — for the defender — resp. the
adversary — is called a stzategy. Note that the sup-inf and inf-sup problems do not necessarily
coincide. In this work, we mainly focus on the defender’s point of view which corresponds to the
inf-sup problem. We will be interested in understanding how the players behave in this game - Ze.
the best responses they give to a strategy and whether some equilibria may arise. This motivates
the following definitions.

Definition 2 (Best Response). Leth € H, and 1) € (.7: X|ap)2.
* A best response from the defender to 1) is a hypothesis h* € H such that
S adv h* — min$ adv h )
core®™ (h*, 1) min Score (h, )
* Similarly, a best response from the adversary to h is an attack ¥* € (Fu| aP)Q such that

Score®V(h,9*) =  max , Score®V(h, ).
¥E(Fxlay)

Remark 10. Note that the score achieved by a best response from the adversary to h is the adversarial
risk of h Score® (h, 1p*) = R (h; ).

In the remaining, we denote BR(h) the set of all best responses of the adversary to a hypothesis
h. Similarly BR (%)) denotes the set of best responses of the defender to an attack 9.

Definition 3 (Pure Nash Equilibrium). In the zero-sum game from Equation (3.4), a Pure Nash
Equilibrium 75 2 couple (h, 1) € H x (]:X\ap) ? such that h € BR(%) and ¢ € BR(h).

When it exists, a Pure Nash Equilibrium is a state of the game in which no player has any incen-
tive to modify its strategy. In our setting, this simultaneously means that no attack could better
fool the current hypothesis, and that the hypothesis is optimal for the current attack.

Remark 11. A/l the definitions in this section assume a deterministic regime - i.e. that neither the
defender nor the adversary use randomization — bence the notion of “Pure” Nash Equilibrium 7z
the game theory terminology. We discuss extensions to the randomized regime in Section 3.3.
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3 A game theoretical point of view on adversarial attacks

3.1.3 Trivial solution and regularized adversary

Our current definition of the problem implies that the adversary has perfect information on the
dataset distribution and the hypothesis. It also has unlimited computational power and no con-
straint on the attack except on the size of the perturbations. Thus, it is similar to the adversaries
currently studied in the literature — see Section 2.5. However the community starts wondering
if this adversary is not too strong to be realistic [46, 62]. Going back to the example of the au-
tonomous car — Chapter 1 — this would mean that the adversary can modify every traffic sign that
the camera may receive during any trip, which is highly unrealistic. The adversary has no down-
side to attacking, even when the attack is unnecessary — e.g. if the attack cannot work or if the
point is already misclassified.

/’“\ : x'x“ /\ /»"\ \
; K :" “\ / . “\
! \‘\ A > i\ <
/ 4 A 3
p1, i/ L H-1 ZEA S AN
/ \ / RN
r_-_f_'__/._: ----------- ___/' .\ — e :_\."_"_--_-: =_‘_ﬂ'—'—-’--;-/'-_-—"" X S~. ::"_"7-;-_-;
h(z) >0 h(z) <0 h(z) >0 h(z) <0

Figure 3.1: Illustration of the conditional distributions -1 and j1. On the left: without attack. On the
right: under trivial attack. Blue and red zones are the points that are at distance less than a, of

the boundary.

Figure 3.1 illustrates this phenomenon for the uni-dimensional setting with Gaussian distribu-
tions. The adversary moves every point toward the decision boundary2 — each time saturating
the norm constraint — and the defender cannot do much to mitigate the damages. In this case
the best classifier remains unchanged, although both curves moved; hence a trivial equilibrium.
Furthermore, thanks to Theorem 6, we can evaluate the value of this equilibrium, which can be
high — depending on the conditional distributions.

In the remainder of this work, we show that this equilibrium does not hold when we add a
small constraint on the adversary’s strength — z.e. when it is not perfectly indifferent to producing
unnecessary perturbations. To formalize the constraint on the adversary, we introduce a penalty
term in the initial formulation of the game,

inf sup Score?)d"(h, 1) := Score®® (h,1p) — A Q(¥p). (3.5)
heH 2
YE(Fxjap)

The penalty function € represents the limitations on the adversary’s budget — be it because of
computational resources or to avoid being detected — and A € (0, 1) is some regularization
weight.

*The decision boundary is the set{x s.z. h(z) = 0}
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3.2 Instability of the game

From a computer-security point of view, the first limitation that comes to mind is to limit the
number of queries the adversary can send. In our distributional setting, this boils down to penal-
izing the mass of points that the function 1 moves. Hence we define the penalty as follows’

Q) == Eyy [wavuy [1{x # ¢y(w)}H (3.6)

Note that this limitation is also very relevant for the example of the self-driving car example. It
forces the adversary to select a few signs that it will attack. In the remaining, we study this reg-
ularized game and denote BRq (%) the set of all best responses of the adversary to a hypothesis
h, under penalty €. Since the penalty does not impact the defender’s optimization problem, the
notation remains unchanged. All above definitions adapt accordingly.

3.2 Instability of the game

Notations. Let h € H, we denote P, := {x € X s.t. h(x) > 0} the set of positive outputs of h
and Ny, := {x € X s.t. h(x) < 0} the set of negative outputs of h. We also denote Py, (cyy) and
Ny (avp) the set of points on which h can change sign under an ouy-bounded perturbation. Pp(oy) :=

{:c € Pys.t. 3z € (Py) “where ||z — x|, < ap}, and Ny (o) likewise.

3.2.1 Characterizing the best responses

Let us now study how the game behaves when the adversary has been penalized. We show that
in this context, no Pure Nash Equilibrium exists. To do so, we characterize the best responses for
each player, and show that they can never satisty Definition 3. We first present the best responses
of the penalized adversary.

Lemmal. Let h € Hand yp € BRq(h). Then the following assertion holds:

YPi(x) = otherwise.

{ Pi(x) € (P)S  ifz € Pyay)

VY_1 is characterized symmetrically.

Proof. Let us first simplify the worst-case adversarial score for h. From the definition of ad-
versarial score we have:

sup  ScoreX (h, 1))
Ye (‘FX\QP )2

= swp By [Eony, [L{sign(h(yy(z))) # y} — A1{z # 9y (2)}]]

$E(Fxjay)”

3We could build a lot of other different penalties. The results would still hold. See e.g. Section 3.5 for a penalty on
the norm of the perturbation.
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3 A game theoretical point of view on adversarial attacks

= Eyf\/ll

sup  Bgrp, [1{A(¢y(2))y <0} — Al{x # lby(w)}]] :

’l/’y€]:x|ap

Finding v)1 and 1)1 are two independent optimization problems, hence we focus on char-
acterizing 11 — i.e. wesety = 1.

sup  Egepy [I{A(¢h1 () <0} — A{z 7# 3y (x)}]

¢1E-FX|ap
=Egzu, | essup 1{h(z) <0} —A1{x # z}]
2€Bp(x,0p)
:/ essup  1{h(z) <0} — A1{x # z} dui(x).
5 2€Bp(x,0p)

Let us now consider (H) jes a partition of X', we can write.

sup  Egep, [1{A(¥1(x)) < 0} — A1{x # ¢y (x)}]

P1EF X |ap

:Z/ essup 1{h(z) <0} — A 1{x # z} dui(x).

jelg 2€By (x,0p)
In particular, we can take Hy = P,¢, Hi = Pj, \ Py(oyp), and Hy = Py (cp). Then we can
study the three sets independently.

1. Foranyx € Hy = P,5, taking z = x weget 1{h(z) <0} — A1{x # 2z} = 1.
Since for any z € X we have 1{h(z) <0} — A1{x # 2z} < 1, this strategy is
optimal. Furthermore, for any other optimal strategy z’, we would have 1{x # z} =
0, hence 2’ = .

2. Foranyx € Hy = P}, \ Py(ap), we have that By(x, o) C P, by definition of
Pp(ayp). Hence, forany z € By(x, o), one gets h(z) > 0. Then 1{h(z) < 0} —
A1{x # z} < 0. The only optimal z will thus be z = @, giving value 0.

3. Finally, forany @ € Hy = Py (ap), we have that By(x, ) N P,S # (), and for any
z in this intersection, one has h(z) < 0and z # . Hence

essup 1{h(z) <0} — A1{z # x} = max(1 — A,0).

zEBp(x,ap)

Since A € (0,1) one has 1{h(z) <0} — Al{z#x} = 1 — Aforany z €
By(x,ap) N P,°. Then any function that outputs ¥1(x) € By(x,ap) N P is
optimal on Ho.
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3.2 Instability of the game

Since Hyp U H1 U Hy = X, Lemma I holds. The proof for y = —1 is symmetrical. Further-
more, the value for the optimal score writes

sup  ScoreXM(h,p)
d)e(‘FX\O‘p)Q

Ey o Z/ essup 1{h(z)y <0} — A1{x = 2z} duy(x)

jel 2EBp(x,0p)

Z/ essup  1{h(z)y <0} — A\ {z = 2z} du,(x).

y= il ]GJ ZGBp €T O(p)

Since the valueis 0 on P, \ Py (ap) for 91 — resp. on Np, \ Nj(a) for 1-1 — one gets

=R(h) + (1 = X)(v(1)p1(Prlap)) + v(-1)p-1(Nu(ep))), (3.7)

where Equation (3.7) holds since R(h) = v(1)u1(P,°) + v(-1)p-1(N,¢). This provides
an interesting decomposition of the adversarial risk into the risk without attack and the loss
the adversary produces by attacking that recall the decomposition in Chapter 2. 0l

Note that an optimal attack will only change points that are close enough to the decision
boundary. This means that, when the adversary cannot change the hypothesis” decision on a
point, it will not attack it. Let us now study what happens for the defender. At a first glance,
one would suspect that the best response for the defender ought to be the Bayes optimal classifier
for the transported distributions. However, it is only well defined if the conditional distributions
admit a probability density function. This might not always hold here for the transported distri-
bution. Nevertheless, we present a property, shared by the Bayes optimal classifier when defined,
that always holds for the defender’s best response.

Lemma 2. Let us consider 1 € (.7:X|ap)2. If we take h € BR(v), then for any measurable
B C Py, one has 141 (B) x v(1) > 1 #p-1(B) X v(1). A similar result bolds for Ny,

Proof. We reason ad absurdum with the following assumption:
There exists a measurable set C C Py, such that v(-1)Y_1#p-1(C) > v(1)p1#u1 (C).

Let us construct A as follows:

: { hz) ifxé¢C

-1 otherwise.

Since h and h are identical outside C, the difference between the adversarial scores of i and
h writes as follows:

Score™ (h, ap) — Score (h, 1)
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3 A game theoretical point of view on adversarial attacks

—Eyn. | [ 1{h(@)y <0} - 1{h(@)y < 0} doy ()

C

=S u(y) / 1{h(z)y < 0} — 1{f(e)y < 0} dip,iuy () | .

y£1 &
Since — by construction — for any & € C we have h(z) < 0and h(x) > 0, we can write
Scored¥ (h, 1) — ScoredY (h, 1))
=v(=D)¢pa#u-1(C) — v(1)h1#u (C)
Since we assumed v(—1)¢_1#u-1(C) > v(1)y1#p1(C) the difference between the ad-

versarial scores of h and h is strictly positive. This means that / gives strictly better adversarial
score than the best response h, leading to a contradiction. Hence Lemma 2 holds. The proof
for Ny, is symmetrical. L]

In particular, when 1# 11 and -1 1-1 admit probability density functions, Lemma 2
means that / is the Bayes optimal classifier for the distribution characterized by v, 1p_1# -1 and

(TR
3.2.2 No Pure Nash Equilibrium in the game
We can now state our first main result relating the absence of equilibrium in the regularized game.

Theorem 7 (Non-existence of a pure Nash equilibrium). 17 the zero-sum game from Equation (3.5),
there is no Pure Nash Equilibrium.

Proof. Let h be a classifier and 1 € BRgq(h) an optimal attack against h. We will show
that b ¢ BR(%) - i.e. that h does not satisfy the condition from Lemma 2. It suffices
for Theorem 7 to hold since it implies that there is no (h,9) € H x (.7'" X\ap) ? such that
h € BR(v¢) and 1y € BRq(h).

According to Lemma 1, we have 41 # 11 (P, () = 0 - ze. Py(ayp) is of null measure
for the transported distribution conditioned by y = 1. Since 1)1 is the identity on P, (),
and since j1_1 is of full support on X we have

Yot (Paley)) = po1(Prlay)) > 0. (3)

Hence we get the following

W (Pu(ap)) > P1#u (Pa(op)). (3.9)

Since the right side of the inequality is null, for any v/(1) and v/(-1) we get

Yt (Prlap))v(-1) > it (Puap) v (1). (3.10)
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3.2 Instability of the game

This inequality is incompatible with the characterization of the best response for the defender
O

of Lemma 2. Hence h ¢ BR(%)).

“Note that the full support hypothesis is much stronger than what we actually need. Fundamentally, we only

need the null sets for measures 11 and -1 to be sufficiently far one from the other.
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Figure 3.2: Illustration of the conditional distributions -1 and 1. On the left: without attack. On the
right: under penalized attack. Blue and red zones are respectively the sets Pj, (cv,) and Np ().

Figure 3.2 illustrates Theorem 7 with two uni-dimensional Gaussian distributions. We see that
— one the right - 11 issetto 0 in Pp, (vp), and this mass is transferred into N, (v, ). The symmetric

holds for pi_1. After attack, we have 11 (P, (cy)) = 0. Hence, any small amount of mass for ju_1
in Py (ap) is now sufficient to make it dominant; hence the zone will now be classified -1 by the

Bayes optimal classifier. This result has several deep consequences. Among them, we focus on the

following two.

Consequence 1: There might be room for robustness after all

The above result shows the fundamental difference between regularized and unregularized games.

While in the unregularized setting there may exist a pure — trivial - Nash Equilibrium, our analysis
shows that such an equilibrium cannot exist as soon as we add an infinitesimally small regulariza-

tion. Hence, our result highlights a very interesting property of the unregularized problem, which
is its instability. This leads us to the following conclusions.

* We should reconsider the works on the limits of classification under perturbation and ver-
ify whether these results still hold — or are diminished — when we add a set of realistic con-
straints to the adversary, be it the one we just described or more sophisticated ones.

* There might be room for robustness after all. Even if for now, the defense community
seems to be losing the race, the game is not over yet. If we design more realistic adversaries,

we may be able to understand better the threat and design more robust models.
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3 A game theoretical point of view on adversarial attacks

Consequence 2: No free lunch for transferable examples

To understand this statement, first note that thanks to the weak duality, the following inequality
always holds

sup én?f{ ScoreX! (h, 1) < ﬁnyf-[ sup  ScorelV(h, ).
¢€(fx|ap)2 © © "/’E(-F/\’\ap)2

On the left side problem — sup-inf — the adversary looks for the best strategy 1) against any -
known hypothesis. This is closely related to the notion of transferablility of the attacks — inves-
tigated e.g. in [67, 155] — which refers to attacks successful against a wide range of hypotheses.
On the right side problem — inf-sup — the defender tries to find the best hypothesis under any
possible attack, whereas the adversary plays in second and specifically attacks this hypothesis. As
a consequence of Theorem 7, the inequality is always strict:

sup  inf ScoreXY(h,1) < inf  sup  ScoreilV(h, ).
2 heH heH 2
¢e<}—/\’\ap) ’lpe(]:/\f\ap>

This means that the problems are not equivalent. In particular, an attack designed to succeed
against any hypothesis — z.e. a transferable attack — will not be as good as an attack tailored for a
given hypothesis. The adversary must therefore make a trade-off between eftectiveness and trans-
ferability of the attack. This sends a second encouraging message to the defense community.

3.3 Randomization might be the clue

3.3.1 Adaptation of the problem statement

We just found that adversarial defense might be possible. However, both the current literature on
adversarial attacks and the instability of the game in the deterministic setting pushes us to widen
the class of strategies we consider. A natural extension of the game would be to allow randomiza-
tion for both players. Now they choose a distribution over pure strategies, leading to the following
game

inf sup  Epey e |Scores™ (h, ). (3.11)
neP(H) WGP((]—'X‘%)Q) [

Without making further assumptions — e.g. compactness — we cannot apply known results
from game theory to prove the existence of an equilibrium. Studying the equilibrium is appealing
from a theoretical point of view but would require strong results in the theory of optimal trans-
port; hence we leave it to further investigations. But even without knowing if an equilibrium exists
in the randomized setting, we can prove that randomization matters. More precisely we show that
any deterministic hypothesis can be outperformed by a randomized one in terms of the worst-case
adversarial score. To do so we simplify Equation (3.11) in two ways:

* We keep considering deterministic adversaries — e. we restrict the search space of the ad-
versary to (F, X|%)2 instead of P ((F, X‘%)Q)‘ This condition corresponds to the current
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3.3 Randomization might be the clue

state-of-the-art in the domain: to the best of our knowledge, no efficient randomized ad-
versarial attack has been designed — and so is used - yet.

* We only consider a subclass of randomized hypotheses, called mixtures, which are discrete
probability measures on a finite set of hypotheses. We show that this randomization is
enough to outperform any deterministic hypothesis. We will discuss in Chapters 4 and 5
the use of more general randomized hypothesis spaces. Let us now define a mixture.

Definition 4 (Mixture of hypothesis). Lerm € N, h = (hy,...,hy) € H™ a vector of m
hypothesis functions and q = (q1,-..,qm) € P({1,...,m}) a probability vector*. A mixed
hypothesis of h by q is 2 mapping mj. from X to P(R) such that for all x € X, mj (x) outputs
hi(x) with probability q;.

We call such a mixture a mixed strategy of the defender. Given some & € X, this amounts
to picking a hypothesis h; from h at random following the distribution g, and use it to output
the predicted class for & - z.e. sign(h;(x)). Note that a mixed strategy for the defender is a non-
deterministic algorithm, since it depends on the sampling one makes on g. Hence, even if the
attack space remains unchanged, the adversary now needs to maximize a new objective function
which is the expectation of the adversarial score under the distribution m{ (). It writes as follows

Scorey™ (mf, ) := Eyoy [Enup, 0, [Bing [Loji(hi(®), 9)]]] = AQ).  (3.12)

This notion of score is the natural extension of the deterministic case; hence we keep the notation

Score?ldv. In the following, it will be clear from context that the defender uses a mixed strategy.

3.3.2 Randomization matters: how to outperform deterministic hypotheses

Using this new set of hypotheses for the defender, we demonstrate that we can improve determin-
istic defenses using a simple mixed strategy. This method presents similarities with the notions of
fictitious play [23] in game theory, and boosting in machine learning [56]. Given a deterministic
hypothesis h1, we combine it — via randomization — with the best response A3 to its optimal at-
tack. The rationale behind this idea is that — by construction — efficient attacks on one of these
two hypotheses will not work on the other. Mixing h1 with hg has two opposite consequences on
the adversarial score. On one hand, where we only had to defend against attacks on /1, we are now
also vulnerable to attacks on ho, so the total set of possible attacks is now bigger. On the other
hand, each attack will only work part of the time, depending on the probability distribution q. If
we can calibrate the weights so that the new attacks have a low probability of succeeding, then the
average risk under attack on the mixture will be low.

Theorem 8 (Randomization matters). Let us consider by € ‘H, A € (0,1), ¢ € BRq(h1) and
ho € BR(v). Then for any ¢ € (max(A, 1 — ), 1) and forany ' € BRa(m}) one bas

ScoreX (m,9') < ScoreX (hy, ).

Where h = (h1, ha), ¢ = (q1,1 — q1), and m}. is the mixture of h by q.

“Note that we already defined the simplex A(m) = P({1,...,m}), but for consistency of the notations in this
chapter weuse P({1,...,m}).
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Figure 3.3: Illustration of the notations U, U+, and U ~ for proof of Theorem 8.

Proof. To demonstrate Theorem 8, let us denote U = P, () and define the av,-dilation
of UasU @ oy := {u +v | (u,v) €U x Xand|v], < ozp}. We can construct hg as

follows

ho() —hi(x) ifxeU
€Xr) =
? hi(x) otherwise.

This means that g changes the class of all points in U, and do not change the rest, compared
to h1. Then taking g1 € (0, 1), we can define m}, and ¢ € BRo(m] ). We aim to find a
condition on ¢ so that the score of m;]l is lower than the score of hy. Finally, let us recall that

Score?zdv(m;ll, P’)

= (1) / essup  qu L{h1(2) < 0} + (1 — 1) L{ha(z) < 0} — AL # 2} dju ()

zEBy(x,a
J zeBy(@ay)

+ 1/(—1)/ essup q1 1{h1(z) >0} + (1 — q1) 1{ha(z) > 0} = A 1{x # z} du-1(x).

zE€Bp(x,0p)

The only terms that may vary between the score of /11 and the score of mj, are the integrals on
U,U @, NPy, and ! (U) - inverse image of U by 1. These sets represent respectively
the points we mix on, the points that may become attacked — when changing from A to m;]l
— by moving them on U, and the ones that were — for h1 — attacked before by moving them
on U. Hence, for simplicity, we only write those terms. Furthermore, we denote

Ut :=U®ap,N Py, \U, U™ :=v¢7'(U)and recall U := Py, (a).
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One can refer to Figure 3.3 for visual interpretation of this sets. We can now evaluate the
worst-case adversarial score for h restricted to the above sets. Thanks to Lemma 1 that char-
acterizes 1), we can write

Scored (hy, Vv, v+, U-
= (1= ) x () (U) + v(-1)p1 (U)

+0x vV (UT) +v(-1)p4 (UT)
+r(m(U7) + (1= X)) xv(-1)p1(U7).

Similarly, we can write the worst-case adversarial score of the mixture on the sets we consider.
Note that the max operator comes from the fact that the adversary has to make a choice
between attacking the zone or just taking advantage of the error due to randomization.

Scorey™ (mE, ), v+ -
= max(1l —q,1 — A) x v())p1(U) + max(qi,1 — A) x v(-1)p-1(U)
+ max(0,1—q1 — A) x v(D)p (UF) + v(-1)p1 (UT)
+ v (U7) + max(0,q1 — A) x v(-1)pu-1 (U7).

Computing the difference between these two terms, we get the following

ScoreX! (hy, 1) — ScorelY (mf, ') (3.13)
= (1—-X—max(l —q,1—\) x v(1)u (V) (3.14)
+ (1 = max(q1,1 = ) x v(-1)p-1(U) (3.15)
— max(0,1 — g1 — A) x v(1)u1 (UY) (3.16)
+(1 = A —max(0,q1 — A)) x v(-D)p-1(U7). (3.17)

First recall that both i1 and pi_1 have full support. Let us now simplify Equation (3.13) using
additional assumptions.

* First, we have that Equation (3.15) is equal to
min(1 — g1, \)p-1(U)v(-1) > 0.

Thus, a sufficient condition for the difference between the adversarial scores to be pos-
itive is to have the other terms greater or equal to 0.

* To have Equation (3.14) > 0 we can always set max(1 — ¢;,1 — A) = 1 — A. This
givesus 1 > A.
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* Also note that to get (3.16) > 0, we can force max (1 — g1 — A, 0) = 0. This gives us
g >1-A\

* Finally, since g1 > A, we have that 1 — A — max(0,¢q1 — A) = 1 — ¢ thus Equa-
tions (3.17) > 0.

With the above simplifications, we have (3.13) > 0 for any ¢; > max(\, 1 — X) which
concludes the proof. O

Remark 12. Note that depending on the initial hypothesis hi and the conditional distributions
pi1 and -1, the gap between ScorelY (mf 4" )and Scorels™ (hy, 1) could vary. Therefore, with
additional conditions on hy, 1 and pi-1, we could make the gap appear more explicitly. We keep
the formulation general to emphasize that for any hy, we can build a better m;ll.

Even-though Theorem 8 only applies to mixtures of two classifiers, it directly implies that ran-
domized hypotheses — defined in a broader way — outperform deterministic ones in terms of regu-
larized adversarial score. Based on this finding, we devise a simple procedure called boosted adver-
sarial training to construct a robust mixture of two hypotheses. It relies on three core principles:
adversarial training, boosting and randomization. The procedure is summarized in Algorithm 1.

Algorithm 1: boosted adversarial training

Input : D the training data set and ¢ the probability parameter.

Train hq on D with adversarial training
Generate the adversarial data set D against .
Train hg on D

q+ (q1,1—q)
h + (hl,hQ)

return mz

Given a dataset D and a probability parameter g1 € [1/2, 1), we construct b the first hypoth-
esis of the mixture by using adversarial training on D. Then, we train the second hypothesis /2
on a data set D that contains adversarial examples for h1. At the end of the procedure, we return
the mixture constructed with the two hypothesis where the first one has a probability of ¢; and
the second 1 — g1 accordingly. The parameter ¢; is found by conducting a grid-search.

3.4 Numerical validation: improving adversarial training

To empirically evaluate the above procedure, we run a series of experiments on the CIFAR-10 and
CIFAR-100 datasets using deep neural networks. We show that the above simple randomization
scheme can improve the robustness of adversarial training. Let us first start by presenting the
experimental setup we use. For direct access to the implementation, one can refer to the following

Github repository.
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3.4 Numerical validation: improving adversarial training

https://github.com/MILES-PSL/

Randomization-matters-How-to-defend-against-strong-adversarial-attacks

3.4.1 Experimental setup
Architecture and training procedure

All the hypotheses we use in this section are WideResNets — see [177] — with 28 layers, a widen
factor of 10, a dropout factor of 0.3 and LeakyRelu activation with a 0.1 slope. To train an un-
defended classifier we use the following hyper-parameters.

* Number of Epochs: 200
* Batch size: 128
e Loss functz'on: Cross Entropy Loss

* Optimizer : Stochastic gradient descent algorithm with momentum 0.9, weight decay of
2x 10 %anda learning rate that decreases during the training as follows:

0.1 it 0 < epoch < 60
I — 0.02 if 60 < epoch < 120
0.004 if 120 < epoch < 160
0.0008 if 160 < epoch < 200.

Remark 13. 70 train a hypothesis with adversarial training we use the same hyper-parameters as
above, and generate adversarial examples during training using an U adversary with 20 iterations.
We also use PGD with 20 iterations and oo = 0.031 to build D.

Threat models

To compare the empirical performances of our method with adversarial training, we consider two
{p, adversaries with thresholds corresponding to CIFAR datasets

* An Lo adversary with perturbation bounded by 0.031. To model this adversary we use the
PGD attack with ¢,,,4,, = 100 iterations and a step-size s = 0.008.

* An Uy adversary with perturbation bounded by 0.8. To model this adversary we use the
C&W attack with 100 iterations, a learning rate equal to 0.01, 9 binary search steps, and
an initial constant of kK = 0.001.

Note that, when evaluating a defense against adversarial examples, it is crucial to test the robust-
ness of the method against the best possible attack. Accordingly, the defense method should be
evaluated against attacks that were specifically tailored to it — ..a. adaptive attacks [154]. Specif-
ically, when evaluating randomized algorithms, one should not try to compute the gradient over
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the logits/probits directly to avoid gradient masking as pointed out in [6] and [26]. Instead - as
we explained in Equation (3.12) — we should provide the expected logits/probits of the mixture
to the adversary. Since we assume perfect information for the adversary, it knows the distribution
of the mixture; hence it can directly compute the expectation over i1 and ho — without having to
go through a Monte Carlo sampling scheme.

3.4.2 Results

In Table 3.1 we present results for g1 = 0.8 and compared with classical adversarial training [103].
The accuracy and accuracy under attack presented for the mixture are expectation over h1 and ha
with respect to g — as explained above, 7.e. we give the true expectation.

Table 3.1: Accuracy under attack of a single adversarially trained classifier (AT) and the mixture formed
with our method (Ours) on CIFAR-10 and CIFAR-100 datasets.

Dataset Method Accuracy loo-PGD fo-C&W
without attack | oo = 0.031 | ap = 0.8
Undefended 0.88 0.00 0.00
CIFAR-10 AT [103] 0.83 0.42 0.35
Ours 0.80 0.55 0.53
Undefended 0.62 0.00 0.00
CIFAR-100 AT [103] 0.58 0.26 0.22
Ours 0.56 0.40 0.38

These results show that for both model threats and on both datasets, the accuracy under attack
of our mixture is much higher — 0.10 better against any adversary — than the single classifier with
adversarial training. However the standard accuracy of our technique dropped a little bit in the
process — minus 0.3/0.2 compared to adversarial training. A trade-off between robustness and
standard accuracy seems to appear. Indeed — be it adversarial training or boosted adversarial train-
ing — the better the accuracy under attack, the worse the accuracy without attack. Nevertheless,
the trade-oft is not linear since boosted adversarial training gains four times more robust accuracy
thanitloses standard one. This indicates that randomization can improve robustness of determin-
istic hypotheses. However, one should be careful when analyzing Table 3.1. We should not draw
conclusions either on the efficacy of a defense nor on the trade-off between robustness and accu-
racy only based on empirical evidence — since empirical defenses are often broken sometimes after
being designed [6, 38, 154]. Therefore, we need further theoretical and empirical investigations to
validate randomization as a proper defense strategy.

>Note that we compare here with the vanilla version of adversarial training. Other versions exist with slightly better
accuracy under attack. Furthermore, to avoid some computational burden, we did not use data augmentation
during the leaning procedure - which explains some differences with the initial paper [103].
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3.5 Additional results: another type of penalty

The core arguments we used to demonstrate Lemma 1 and Theorems 8 do not depend on the form
of the penalty we consider. Any notion of distance between the perturbation and the initial point
would allow to find the same kind of results. To show this, let us consider that & is a Hilbert space

with a dot product (., .) and associated norm |.|| = 4/(.,.). Then we can define the following
regularization that penalizes the expected norm under perturbation 1),
Q) = By [Eanp, [l — y ()] (3.18)

This regularization could for example materialize an adversary that seeks a solution to the La-
grangian relaxation presented in Section 2.2 — e.g. C&W attack [28].

Remark 14. Note that we only use a dot product for the projection operator to be well defined. But
any notion of distance with a well-defined projection works alike.

In this context, the best responses for the defender remain unchanged; hence we only focus
on characterizing the set of best responses for the adversary. The new best response we get for
the adversary shares a fundamental similarity with the previous one: the optimal attack will only
change points that are close enough to the decision boundary. However, with our new penalty
all attacked points are projected on the decision boundary. The proof is very similar to Lemma 1,
but we display it below for completeness.

Lemma 2. Let h € H and1p € BRq(h). Then the following assertion holds:

T otherwise.

(@) = { proj(z) ifx € Pi(ay)

Where proj is the orthogonal projection on (Py,) ©. 11 is characterized symmetrically.

Proof. Let us first simplify the worst-case adversarial score for h.

sup Score?zdV (h, )

$e(Fxjay)”
=Y v(y) sup  Eouy, [1{h(1hy(®))y < 0} — Az — 3y (@)|] -
y=+1 YyEFx|ap

Finding 1)1 and 1p_1 are two independent optimization problems, hence, we focus on char-
acterizing 11 — z.e. y = 1.

sup By [I{A(¢1()) < 0} = Az — 31 ()]
P1€Fx|ap

— [ eswp 1{b(x) <0}~ Mo - 2] dpa(@)

z€Bp(x,x
), zeBy(za)
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> [ e 1{a(=x) <0} - Ao - 2| dis(@),
jeJHj 2€Bp(z,0p)

where (H) je s is a partition of X In particular, we take Hy = P,¢, Hy = P}, \ Py(oyp),
and Hy = Py (). Then we can study the three sets independently.

1. Forx € Hy = P,5, taking z = @ givesus 1{h(2) < 0} — A||x — z|| = 1. Since
forany z € X we have 1{h(2z) <0} — M| — z|| < 1, this strategy is optimal.
Furthermore, for any other optimal strategy z’, we would have || — 2’| = 0, hence
z' = x, and an optimal attack will never move the points of Hy = P,°.

2. Forx € Hy = P, \ Py(ap). We have B, (x, ap) C Py, by definition of Pp, ().
Hence, forany z € By(x, ap),onegetsh(z) > 0. Then1{h(z) < 0} —A||x — z|| <
0. The only optimal z will thus be z = , giving value 0.

3. Letus now consider € Hy = Pj(a,) which is the interesting case where an attack
is possible. We know that By (x, o) N P,¢ # (), and for any z in this intersection,
1{h(z) <0} = 1. Hence:

essup 1{h(z) <0} — Az — z||

zE€Bp(x,0p)

:maX<1 — A essinf |E* —zH,O>
zE€Bp(x,0p)NP,°

= max(1 = A& — Projg, (s.apnpe (®)1,0)

Where projg, (z,,,)n p,c is the projection on the closure of By(x, ap) NP5, Finally,
let us remark that, since A € (0, 1) and o, < 1, one has

1 = A& — projp, (z,a,)nps(®)[| = 0
forany © € Hy. Hence, on Pj (), the optimal attack projects all the points on P,°.

Finally, since Ho U H1 U Hy = X, Lemma 2 holds. Furthermore, the worst-case adversarial
score writes

sup  Score™(h, )

wE(IX\aP)Q
WY / essup  1{A(2)y < 0} — Al — 2I| djuy(a)
y= il jeTg 2E€Bp(z,ap)
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Since the value is 0 on Py, \ Py (cy,) for 41 — resp. on Np, \ Np () for ¥_1 — one gets

— R(h) + (1) / (1= Al = proj(e) ) daec)
Pp(ap)
+0() [ (= Al = proj@)l) du-a(@).

Np(ap)
]

“Note that projp (o ap)nP,e CXISES. Indeed h is continuous, so By (€, ap) N Py is a closed and bounded
set; thus compact — since we are in finite dimension. The projection is however not guaranteed to be unique

since we have no evidence on the convexity of the set.

Note that, in practice, it might be computationally hard to generate the exact best response —
i.e. the projection on P, . That will happen for example if the decision boundary is very complex —
e.g. highly non-smooth — or when X’ is in a high-dimensional space. To keep the attack tractable,
the adversary will have to compute an approximate best response by allowing the projection to
reach points within a small ball around the boundary. This means that the best responses for the
new penalized problem will sometimes match the best response for the previous one.

Y A 7
/ \ Y /N 4
;i i IOALE
M1 / \ |/ V-1 K1/ V-1
/ Y / ]
R _.-" ‘\,_.__ RO _ _’/ _______ ___./' \,\_. R
h(z) >0 h(z) <0 h(z) >0 h(z) <0

Figure 3.4: Illustration of the conditional distributions (-1 and f¢1. On the left: without attack. On the
right: under penalized attack with the new penalty. Blue and red zones are respectively the sets

Ph(ozp) and Nh(Oép).

As for the previous penalty, we illustrate in Figure 3.4 the the non-existence of a Pure Nash
Equilibrium with two uni-dimensional Gaussian distributions. We can see — on the right — that
the mass of f¢; that was in P, () is transported on a Dirac distribution at the decision boundary.
Similarly to the previous penalty, the Bayes optimal classifier for the new distribution will predict
-1 for the zone P}, (), hence Theorem 7 holds with exactly the same proof as above. Finally,
let us present an adaptation of Theorem 8 to our new penalty. The statement is almost the same,
with the only difference that we have to interpolate on the bound of the perturbation, getting a
new condition: g1 > max(1 — A§, A(ap, — 0)) with § € (0, o). The proof follows the same

steps as before but because of the proj operator, some more calculus is needed.
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3 A game theoretical point of view on adversarial attacks

Remark 15. For the condition on q1 to make sens, we also need that max (1 — Ao, Aoy, —6)) < 1.
This will bold in particular when oy, < 1 which is a standard assumption considering the threshold
we have discussed so far. In the remaining we will consider that oy, < 1 accordingly.

Theorem 9 (Randomization matters bis). Let us consider o, < 1, hy € H, A € (0,1), 6

(0, atp) and 1 € BRa(h1). Then there exists ho such that, for any 1 € (max(1 — A, Aoy, —
8)), 1) and forany ' € BRo(m}) one bas

Scorey™ (mf ') < Scorey™ (h1, ).

Whereh = (h1,h2),q = (q1,1 — q1), and mZ is the mixture of h by q.

-

'--.-'l-

Figure 3.5: Illustration of the notations U, U, U™ and § for proof of Theorem 9.

Proof. Letustake U C P, (o) such that

min || — projp, \p, (ay) (%)l = 0 € (0, ap).
We construct Ao as follows.
—h if U
ha(x) = e) e & .
hi(x) otherwise.

This means that hg changes the class of all points in U, and do not change the rest. Let

q1 € (0,1), the corresponding mixture m;]l, and 7' € BRg (m;]l). We will find a condition
on q1 so that the score of m;’b is lower than the score of h1. Recall that

ScorelY (mi, ")



3.5 Additional results: another type of penalty

zE€Bp(x,0p)

u(1) [ essup a1 1{In(z) <0} + (1 - ) Lla(z) <0} = Mo - 2] dpa(@)
X

+v(- 1) E?S(up )Q1 1{h1(z) = 0} + (1 — q1) 1{ha(z) = 0} — Al — 2| dp-1 (2) .

As we discussed in the proof of Theorem 8, the only terms that may vary between the score
of hy and the score of m{ are the integrals on U, U @ ey, N Py, and 45 (U). Hence, for
simplicity, we only write those terms. Furthermore, we denote

Ut =U®apN Py \U, U™ :=4¢3'(U)and P, := Py, (ap).

One can refer to Figure 3.5 for a visual interpretation of these sets. We can now evaluate
the worst-case adversarial score for hj restricted to the above sets. Thanks to Lemma 2 that
characterizes 1, we can write

ScoredV(hy, )
—v(1) [ (1= Me -~ projps @) )drae) + (- Dy (0)

U

+0() [ 0dm@)+ (D U\ Bay)
U+\Pa,

+u(1) / (1 — A& — projp,e (ac)||)du1(ac) +u(-D)pa (UT N Py,)
U+NPa,

oW (U7) + o) [ (1= N = projy (@) s ()

-
Similarly we can evaluate the worst-case adversarial score for the mixture,

adv

Scorey ¥ (mf, ')

1) [ max(1- 1,1 = M - projpg (@)]) dpr(@)
+0(-1) [ max(an, 1= Al — projos @) dp-(e)

+ (1) / max(0,1 — 1 — M@ — projys(@)[) dyur(@) + (-1t (UF\ o)
Ut\Pa,

+u(1) [ max(1- = Xo - projy(@)l 1 = Mz — projps (@)]) dia(@)
U+NPa,
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+v(-D)pa(UTNP,) + v (U7)

+0(1) [ max(0,1- Mo = projxge v (@) a1 ~ M = projy (@) di-1(a).
'

Note that we need to take into account the special case of the points in the dilation that
were already in the attacked zone before, and that can now be attacked in two ways, either
by projecting on U — but that works with probability g1, since the classification on U is now
randomized — or by projecting on Phc1 , which works with probability 1 but may use more
distance and so pay more penalty. We can now compute the difference between both scores.

ScoreX! (hy, 1) — Score?ldv(mg, ') (3.19)
—1(1) [ 1= Nl = projig (@) — max(1 - 1,1 = Al = proji ()] dos (@)
U
(3.20)
+v(-1) / 1 —max(q1,1 — A||z — projy+ (x)|])dp-1(x) (3.21)
U
o) [ max(t - g = Al - projo(@)], 0)dsa (@) (3.22)
U+\Pa,
+0() [ 1=~ projp (@)
UTNPy,
— max (1~ g1 — Mz — projy (@), 1~ Az — projpe (@) )i (@) (323
+0(1) [ 1A = proji (@)
J
— max(0,1 - Az~ proje \u (@) 1 — Me — projy(@)])dpur ). (329

First recall that both p; and -1 have full support. Let us simplify Equation (3.19) using
using additional assumptions.

¢ First, note that Equation (3.21)> 0. Then a sufficient condition for the difference to
be strictly positive is to ensure that other lines are > 0.

* In particular to have (3.20) > 0 it is sufficient to have for all x € U
max(1 - qu,1 = Az = projpg @)]) = 1 = M= = proje ()]

This gives us ¢1 > A(oy — 0) > Amax || — projpec ()]
xcU hy
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* Similarly, to have (3.22) > 0, we should set forallz € U™ \ Py,
q1 > 1 = |z — projy (z)]|.

Since n}_in |l — projy(x)|| = J, we get the condition g1 > 1 — Ad.
xzeU ap

* Finally (3.24) > 0, since by definition of U, for any & € U~ we have

lz = projy,e \u (@) 2 |l — projy (@)

Finally, by summing all these simplifications, we have (3.19) > 0. Hence the result holds for
any ¢1 > max(1l — AJ, A(ap — 9)). O

3.6 Lessons learned and future works

In this chapter, we provided a new point of view on the problem of classification under pertur-
bation — Problem (1.3). Based on simple tools from game theory, we demonstrated that adding
some regularization can fundamentally modify the nature of the game between the adversary and
the defender — model provider. This analysis led us to investigate randomized hypothesis classes.
Both our theoretical findings and empirical validation prove the efficacy of this method and thus
provide a first answer to QI:

There might be a class of randomized hypotheses H for which the adversarial risk

minimization problem has a solution W* with small adversarial risk

In Chapters 4 and 5 we will further investigate some specific classes and show that we can obtain
both robustness and accuracy — to some extent. Nevertheless, several questions remain open. We
list here some of them that we aim to investigate in the future.

Future work 1: The equilibrium in the randomized regime

There remains to study whether an equilibrium exists in the randomized regime. This question
is appealing from a theoretical point of view, and requires to investigate the space of randomized
adversaries P((F|a,)?) which implies more technicalities. The study of this equilibrium is also
tightly related to that of the value of the game, which would be interesting for obtaining min-max
bounds on the accuracy under attack.

Future work 2: Study the duality gap

For now, Theorem 7 shows that there is no Pure Nash Equilibrium in the game, meaning that
strong duality does not hold. But it does not indicate how distant the values from the inf — sup
and the sup — inf problem are — 4.k.4. the duality gap. Evaluating this duality gap could help us
build a finer analysis on the impact of regularization on the game.
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Future work 3: Boosted adversarial training, a certified defense?

Although the experimental results show that our mixture of hypotheses outperforms adversarial
training, the algorithm we present do not provide guarantees in terms of certified accuracy. As
the literature on adversarial attacks and defenses demonstrated, better attacks always exist. This is
why, we need to further study the theoretical aspects of our procedure, to prove the robustness of
the mixtures we design.
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