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Abstract

This thesis investigates the theory of robust classi�cation under adversarial perturbations – a.k.a.

adversarial attacks. An adversarial attack refers to a small – humanly imperceptible – change of an
input speci�cally designed to fool a machine learning model. The vulnerability of state-of-the-art
classi�ers to these attacks has genuine security implications especially for deep neural networks
used in AI-driven technologies – e.g. for self-driving cars. Besides security issues, this shows how
little we know about the worst-case behaviors of models the industry uses daily. Accordingly, it
became increasingly important for the machine learning community to understand the nature
of this failure mode to mitigate the attacks. One can always build trivial classi�ers that will not
change decision under adversarial manipulation – e.g. constant classi�ers– but this comes at odds
with standard accuracy of the model. This raises several questions. Among them, we tackle the
following one:

Can we build a class of models that ensure both robustness to adversarial attacks and accuracy?

We �rst provide some intuition on the adversarial classi�cation problem by adopting a game
theoretical point of view. We present the problem as an in�nite zero-sum game where classical
results – e.g. Nash or Sion theorems – do not apply. We then demonstrate the non-existence
of a Nash equilibrium in this game when the classi�er and the adversary both use deterministic
strategies. This constitutes a negative answer to the above question in the deterministic regime.
Nonetheless, the question remains open in the randomized regime. We tackle this problem by
showing that randomized classi�ers outperform deterministic ones in term robustness against
realistic adversaries. This gives a clear argument for further studying randomized strategies as a
defense against adversarial example attacks.

Consequently, we present an analysis of randomized classi�ers – i.e. classi�ers that output ran-
dom variables – through the lens of statistical learning theory. To do so, we �rst de�ne a new
notion of robustness for randomized classi�ers using probability metrics. This de�nition boils
down to forcing the classi�er to be locally Lipschitz. We then devise bounds on the generalization
gap of any randomized classi�er that respects this new notion of robustness. Finally, we upper-
bound the adversarial gap – i.e. the gap between the risk and the worst-case risk under attack – of
these randomized classi�ers.

Finally, we highlight some links between our line of research and another emerging topic in
machine learning called di�erential privacy. Both notions build upon the same theoretical ground
– i.e. stability of probability metrics. Therefore, results from one domain can be transferred to
the other. Based on this idea, we use the di�erential privacy literature to design a simple noise
injection method. The scheme allows us to build a class of robust randomized classi�ers out of a
deterministic hypothesis class, making our previous �ndings applicable to a wide range of machine
learning models.

Open questions and perspectives for future research conclude this work.
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Résumé

Cette thèse étudie la théorie de la classi�cation robuste aux attaques adverses. Une attaque ad-
verse est une modi�cation imperceptible de l’entrée d’un algorithme, spéci�quement conçue pour
provoquer un dysfonctionnement de celui-ci.

La vulnérabilité des modèles d’intelligence arti�cielle à ces attaques pose de véritables problèmes
en matière de sécurité, notamment en ce qui concerne les réseaux neuronaux profonds utilisés
dans les nouvelles technologies, par exemple pour les voitures autonomes. Outre les questions
de sécurité, cela montre à quel point nous en savons peu sur le comportement des modèles que
l’industrie utilise quotidiennement. Par conséquent, il devient de plus en plus important pour la
communauté scienti�que de comprendre d’où proviennent ces défaillances. Parmi les nombreuses
questions que soulèvent les attaques adverses, nous abordons la suivante :

Pouvons-nous construire une classe de modèles qui garantissent à la fois la robustesse aux attaques

adverses et la précision dans des taches classiques?

Nous donnons d’abord quelques intuitions en abordant le problème sous l’angle de la théorie
des jeux. Nous formalisons la classi�cation robuste comme un jeu à somme nulle in�ni et démon-
trons la non-existence d’un équilibre de Nash dans ce jeu lorsque le modèle et l’adversaire utilisent
tous les deux des stratégies déterministes. Ceci constitue une réponse négative à la question ci-
dessus dans le cas déterministe. Néanmoins, la question reste ouverte si l’on prend en compte des
stratégies aléatoires. Nous abordons ensuite ce problème en montrant que les modèles aléatoires,
c’est-à-dire des modèles qui produisent des variables aléatoires, obtiennent de meilleurs résultats
que les modèles déterministes en termes de robustesse aux attaques. Cela donne un argument fort
en faveur des stratégies aléatoires.

Par conséquent, nous présentons une analyse approfondie des modèles aléatoires. Pour ce faire,
nous dé�nissons une nouvelle notion de robustesse à l’aide de métriques/divergences sur les es-
paces des distributions de probabilité. Ensuite, nous étudions le comportement en terme d’erreur
de généralisation de tout modèle aléatoire qui respecte cette nouvelle notion de robustesse. En�n,
nous adaptons notre analyse à la généralisation adverse, c’est-à-dire l’écart entre le risque théorique
et le risque adverse de ces modèles.

En�n, nous mettons en évidence certains liens entre notre champ de recherche et un autre su-
jet émergent dans le domaine de l’apprentissage automatique, à savoir la protection des données
personnelles. Ces deux notions reposent sur le même fondement théorique. Par conséquent, les
résultats d’un domaine peuvent être transférés dans l’autre. Sur la base de ce constat, nous util-
isons la littérature sur la protection des données personnelles pour concevoir une méthode simple
d’injection de bruit. Cette méthode nous permet de construire une classe de modèles aléatoires
robustes à partir d’une classe de modèles (déterministes) précis dans des tâches classiques.

Nous concluons se manuscrit par des questions ouvertes et des perspectives de recherche.
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Machine learning models are part of our everyday life and their weaknesses in terms of security
or privacy can be used to harm us either directly or indirectly. It is thus crucial to be able to account
for, and deal with, any new vulnerabilities. Besides, the legal framework in Europe is evolving,
forcing practitioners – from both the private and the public sectors – to adapt quickly to these
new concerns. In this chapter, we �rst present the context in which the idea of this thesis was born
and our main motivations in Section 1.1. Then, we present the problem which we have chosen to
focus on: robust classification under adversarial perturbation in Section 1.2. Finally, we summarize
some of our contributions to the domain in Section 1.2.3.

1.1 Context & motivations
In the 1950s, the �rst arti�cial intelligence projects were developed1. At that time, the ultimate
goal was the replication of human intelligence. The proposed approaches consisted of using math-
ematics to describe the world, model the human perception, and simulate the cerebral mecha-
nisms. Seventy years later, the initial objective of replication of brain’s functions has been largely
supplanted by technological projects aiming to reproduce human performance in simple cogni-
tive tasks [142]. To this end, deep neural networks achieve state-of-the-art performance in a variety
of domains such as natural language processing [132], image recognition [76] and speech recogni-
tion [79]. The impressive e�cacy of AI-driven technologies has made them omnipresent both in
industry and in some public sectors. However, recent studies have identi�ed several major �aws
of machine learning and data analysis such as information leakage [120] or vulnerability to adver-
sarial perturbations [20]. These shortcomings raise questions about the legal liability of model
providers and cause practitioners to reevaluate the trust they place in the systems they use.

1The Dartmouth conference of 1956 is often considered the founding act of the arti�cial intelligence project. How-
ever, it follows several pioneer works on the notion of machine intelligence by Mc Culloch, Pitts and Wiener [105,
157, 165] in cybernetics and by Turing [157] in computer science.
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1.1.1 Dealing with privacy issues: the General Data Protection Regulation

Protecting individuals’ privacy against information leakage while producing statistical analysis is
already an old topic; its foundations were largely established in the 1980s [3, 42, 65]. These con-
cerns were brought back to light notably in 2008, when Narayanan et al. [120] demonstrated
a robust de-anonymization procedure on the dataset released for the “Net�ix Price contest”. In
2016, the European Union provided an answer to these concerns from a legal standpoint by pub-
lishing the General Data Protection Regulation [126] – GDPR.

Figure 1.1: Key principles of the GDPR on the development of new machine learning models.

This regulation aims to de�ne the duties of model providers with respect to the personal data
they use – see Figure 1.1 for an overview of the key principles2. In order to comply with the GDPR,
industries and governments are required to design models that preserve privacy. These new obli-
gations, coupled with already existing users’ concerns regarding their personal data, have made
privacy issues the priority within the computer science community. Accordingly, several de�ni-
tions have been introduced to characterize privacy preserving algorithms in the context of machine
learning and data publishing [57]. Among them, di�erential privacy [52] has become the domi-
nant standard to provide a formal and adaptive conception of privacy preserving data analysis.
The rationale is that one individual’s information is protected if “the outcome of any analysis is

2We do not claim to provide a thorough presentation of this regulation here. To keep the discussion concise, we only
highlight some points that we – as computer scientists – believe to be central.
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essentially equally likely, independent of whether any individual joins, or refrains from joining, the

data set” [53].
More formally, an algorithm is said to be di�erentially private if, given two similar databases,

it produces statistically indistinguishable outputs. This privacy de�nition has been broadly in-
vestigated in numerous frameworks and applications – see [50] for a book of reference. Overall,
privacy preserving machine learning is now a well-known and accepted concept. It relies on a
proper legal framework, and technical solutions such as di�erential privacy are consistently be-
ing implemented by major companies – e.g. Google [54, 166] – and public entities – e.g. the U.S.
Census Bureau [102]. The GDPR has been a real revolution both from a legal and scienti�c stand-
point. In our point of view, the battle for users’ privacy is not over yet, but signi�cant e�orts have
been made both by practitioners and researchers to meet the privacy requirements of our era.

1.1.2 Beyond privacy: interpretability, trust and and adversarial attacks

Despite focusing on data protection, the GDPR also includes an article – Article 22 – on the right
to receive an explanation for an algorithmic decision [126]. This raises a number of questions on
both the interpretability of machine learning algorithms and the trust users place in them [68].
While there is no clear consensus yet on the de�nition of interpretability or trust in machine
learning [24], recurring themes such as social bias [4] or vulnerability to perturbations [20, 152]
often resurface. These new concerns, along with the privacy issues mentioned above, are some-
times put together under the name trustworthy machine learning and have lately attracted a lot
of attention3. Furthermore, the deployment of machine learning in real-world systems and the
recent legal progress on data protection and decision explanation should encourage intensifying
the research in this new domain.

In this thesis, our primary focus is the models’ vulnerability to adversarial perturbations. The
term adversarial perturbation – a.k.a. adversarial attack – denotes a carefully chosen and humanly
imperceptible perturbation that causes a model to fail. The existence of these vulnerabilities shows
how far the deep learning community has drifted from the initial goal of reproducing the human
perception. To demonstrate the genuine security issue that adversarial attacks represent, we take
the example of self-driving cars. Recently, technology companies have made enormous invest-
ments in self-driving cars – i.e. autonomous vehicles equipped with a tremendous amount of
cameras and sensors that help them move with little to no human input. Much of the informa-
tion gathered by these cars is processed using in-vehicle machine learning models. In particular,
vision tasks process images through deep neural networks. However, recent works [55, 146, 150,
174] have indicated that these very systems can be fooled by real-world adversarial attacks on tra�c
signs – e.g. by adding stickers on the tra�c sign.

Figure 1.2 illustrates an attack setting where an adversary added such a sticker on a tra�c sign. In
the �rst schematic – at top – the car captures the original version of the tra�c sign, recognizes it as
a speed limitation, and goes on normally. In the second schematic, at bottom, the red car captures
an adversarial version of the tra�c sign and recognizes it as a stop sign causing an accident with

3Top tier machine learning conferences started launching several workshops on this matter – see e.g. https://

trustworthyiclr20.github.io/ or https://icml2019workshop.github.io/. Note also that the number of paper on
this matter have been growing exponentially in the last few years – see e.g. https://nicholas.carlini.com/writing/

2019/all-adversarial-example-papers.html for vulnerability to adversarial perturbations.
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Figure 1.2: Illustration of a self-driving car misclassifying real-world tra�c signs with adversarial pertur-
bations. On the top line: scenario without attack. On the bottom line: scenario with attack.
Tra�c sign images come from a real-life attack paper [150].

the blue car. Note that in this case, no human would have change his/her decision, but the car
did. This gap between the human and model responses could lead to various security issues – here
for example an accident triggered by an attack on a tra�c sign. These technologies are currently
being deployed; it is thus crucial to adapt quickly to this new threat both from a technical and
legal standpoint. In the sequel, we will use self-driving cars as a running example. Accordingly, we
will focus our application setting to deep learning for image classi�cation.

1.2 Problem setting(s)

The vulnerability of machine learning and deep learning models to adversarial attacks is a critical
security issue, especially for high-stakes applications such as self-driving cars. It is essential for the
community to understand the nature of this phenomenon in order to mitigate the threat. In this
section, we start by giving some reminders on the problem of classi�cation in the standard setting
– i.e. without adversary. Then we present the problem of classi�cation in the adversarial setting
and identify the core questions to which we aim to provide some answers. Finally, we outline the
main questions we wish to address in this manuscript.

1.2.1 Classi�cation in the standard setting

Let us consider the supervised classi�cation problem with an input space X – e.g. images – and
an output space Y – e.g. label describing the images. For simplicity here, we will consider that
Y = {1, . . . ,K}, meaning that each description is characterized by an integer between 1 and
K . The goal of a supervised machine learning algorithm is to design an accurate prediction func-
tion c : X → Y – a.k.a. classi�er – that for any image x ∈ X matches a label y ∈ Y that
correctly describes the image. To �nd c, the learner has access to a set of n input-output pairs
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S := {(x, y1), . . . , (xn, yn)} – a.k.a. training sample. The main assumption behind the
theory of classi�cation is that there exists some ground truth distribution D that describes the
connection between the images and the labels and from which the pairs (xi, yi) are drawn i.i.d..

To build a classi�er, the usual strategy is to build a hypothesis function h : X → RK that for
anyx ∈ X outputs a set of scoresh(x) := [h1(x), . . . ,hK(x)]ᵀ – one for every possible label.
Then, the prediction function c outputs the label with the better score for h. More formally, c
writes c(x) := argmaxk∈[K] hk(x). The problem then amounts to build a function h that
describes well the connection between the images and the labels. To do so, the learner aims to
select h∗ from a prede�ned setH, called the hypothesis class, that solves – or approximate – the
risk minimization problem. This optimization problem writes

inf
h∈H

E(x,y)∼D[L(h(x), y)] , (1.1)

where L : RK × Y → R is some loss function that measures how well h �ts the ground-truth
distribution. If L is su�ciently well chosen – typically if it is convex and smooth [9] – and if the
hypothesis classH is rich4 enough, the classi�er c we get will have a small probability to give the
wrong label for a new sample (x, y) ∼ D.

In practice, the learner does not have access to the ground-truth distribution; hence it cannot
estimate the risk E(x,y)∼D[L(h(x), y)]. To �nd an approximate solution for Problem (1.1), a
learning algorithm solves the empirical risk minimization problem instead. In this case, we simply
replace the risk by its empirical counterpart over the training S := {(x, y1), . . . , (xn, yn)}. It
writes

inf
h∈H

1

n

n∑
i=1

L(h(xi), yi) . (1.2)

Then, to evaluate how far the selected hypothesishS is from the optimalh∗, one wants to upper
bound the di�erence between the risk and the empirical risk of any h ∈ H. This di�erence is
known as the generalization gap. Intuitively, if we can control the di�erence between the risk
and the empirical risk of any function in h ∈ H, then the risk minimization problem and the
empirical risk minimization problem will have similar solutions.

In light of the above, the choice of the hypothesis classH in supervised classi�cation is critical.
On one hand, if it is too large, it will be hard to control the generalization gap of all the elements
in the class and the optimization problem is di�cult. On the other hand, if it is too small, the
generalization gap will be easy to control but the class might not be su�ciently rich to describe
the behavior of the ground-truth distribution, which leads to poor prediction functions. Another
key component is the size of the training sample. If we have enough training samples, thanks to the
uniform law of large numbers, the empirical risk of any hypothesis is a good approximation for its
true risk. More precisely, for some well chosen hypothesis classes one can bound the generalization
gap of any hypothesis byO

(
1√
n

)
. Then, when the sample size n is big enough, it is su�cient to

solve the empirical risk minimization – Problem (1.2) – to get good approximation for the risk

4The richness of a hypothesis set is a complicated notion. We will later discuss it in more depth. For now, one may
think of this notion as the size of the hypothesis class. When the hypothesis class is large enough, it is easy to �nd
at least oneh that describesD well. Conversely, when it is too small it is hard to �nd a good candidate.
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minimization – Problem (1.1). Let us now present the alternative classi�cation setting we will
study in this manuscript, namely Classification under adversarial perturbation.

Reading note. The interested reader can find a more thorough introduction to classification and

learning theory in Chapter 2.

1.2.2 Classi�cation under adversarial perturbation

Given a hypothesish ∈ H and an image-label pair (x, y) ∼ D, the goal of an adversary is to �nd
a perturbation τ ∈ X such that the following assertions both hold.

• The perturbation is imperceptible to humans. Strictly speaking, this means that a human
cannot visually distinguish the standard examplex from the adversarial examplex+τ . In
a less conservative viewpoint, this could also mean that a human will give the same answer
if it is asked to classify x or x+ τ . For simplicity, we consider the strict de�nition here.

• The perturbation modi�es x enough to make the classi�er misclassify. More formally, the
adversary seeks a perturbation τ ∈ X such that c(x+ τ ) 6= y.

Although the notion of imperceptible modi�cation is very natural for humans, it is genuinely
hard to formalize. Despite these di�culties, a su�cient condition to ensure that the attack will
remain undetected is to constrain the perturbation τ to have a small `p norm. This means that for
any p ∈ [1,∞], there exists a threshold αp > 0 for which any perturbation τ is imperceptible as
soon as ‖τ‖p ≤ αp. The literature on adversarial attacks for image classi�cation [27, 103] usually
uses either an `∞ or an `2 norm as a surrogate for imperceptibility 5.

Remark 1. Note that these norms have very di�erent behaviors in high-dimensional spaces, hence

the choice of p has a crucial impact on the answer one provides to Q1 and Q2 below. We will further

discuss this point in Chapter 2 and Appendix A.

Adversarial examples represent a serious security threat that machine learning models should
deal with. To do so, we need to revisit the standard risk minimization by incorporating the adver-
sary in the problem. The goal becomes to minimize the worst-case risk underαp-bounded manip-
ulations. We call this problem the adversarial risk minimization. It writes

inf
h∈H

E(x,y)∼D

[
sup

τ∈Bp(αp)
L(h(x+ τ ), y)

]
, (1.3)

where Bp(αp) := {τ ∈ X s.t. ‖τ‖p ≤ αp}. In this new problem, the adversary focuses on
optimizing the inner maximization, while the classi�er tries to get the best hypothesish∗ fromH
“under attack”. In the standard setting, we can most of the time design su�ciently rich hypothesis
classes such that the risk minimization problem gives a solution h∗ with small risk. But in the
adversarial setting, it becomes unclear whether this statement still holds. Hence the following
question.

5Sometimes, the adversary uses an `1 norm [33] or an `0 semi-norm [124].
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Q1: Is there some hypothesis classH for which the adversarial risk minimization

problem has a solutionh∗ with small adversarial risk?

At a �rst glance – looking at the empirical literature on adversarial examples – the answer seems
to be no. Indeed, a large body of works has been trying to design new models that would be
less vulnerable to the adversarial setting [67, 81, 107, 162, 170] but most of them were proven –
in time – to o�er only limited protection against more sophisticated attacks [6, 27, 38, 77, 154].
Nevertheless, it is important to investigate this question from a theoretical point of view to provide
either de�nitive negative answers or to design more robust models.

Let us suppose for a moment that Q1 has a positive answer and that we can design a hypothesis
classH for which the adversarial risk minimization has a solutionh∗with small adversarial risk. By
analogy with the standard setting, givenn training examplesS := {(x, y1), . . . , (xn, yn)}, we
want to �nd an approximate solution to the adversarial risk minimization by studying its empirical
counterpart, the empirical adversarial risk minimization. This optimization problem writes

inf
h∈H

1

n

n∑
i=1

sup
τ∈Bp(αp)

L(h(xi + τ ), yi) . (1.4)

In the presence of an adversary, two major issues appear in the empirical risk minimization. First,
as recently pointed out by Madry et al. [103], the adversarial generalization gap – i.e. the gap
between the empirical adversarial risk and the adversarial risk – can be much larger than in the
standard setting. Indeed, the adversary makes the problem dependent on the dimension of X .
Hence, in high-dimensional spaces – e.g. for images – one needs much more samples to classify
correctly [141, 148]. Second, �nding an approximated solution to the adversarial risk minimization
is not always su�cient. Two recent works [156, 180] gave theoretical evidence that training a robust
model may lead to an increase of its standard risk. Hence �nding a good approximation for the
adversarial classi�cation problem – Problem (1.3) – may lead to a poor solution for the standard
problem – Problem (1.1). Accordingly, a second question emerges.

Q2: Can we find a classH and a hypothesish∗ ∈ H that simultaneously

has small standard and adversarial risks?

1.2.3 Main contributions and outline of the thesis

In this thesis, we aim to provide answers to the previously stated problems. Our contribution is
threefold. First, we analyze the adversarial classi�cation problem and provide results showing that
randomized classi�ers – i.e. classi�ers that output a random variable – are good candidates to give a
positive answer to Q1. Second, we identify sub-classes of randomized classi�ers that provide some
positive answers to both Q1 and Q2. Finally, we present simple schemes to build these classes by
bridging connections with privacy preserving machine learning.

11



1 Introduction

Analyzing the adversarial classi�cation problem – Q1

Our �rst contribution consists in building new intuitions on the adversarial classi�cation prob-
lem. To do so, we cast the adversarial risk minimization – Problem (1.3) – as an infinite zero-sum
game between a defender – the learner – and an adversary that produces adversarial examples. In
this new setting, we obtainw the following results.

1. We demonstrate the non-existence of a Nash equilibrium in the game when both the de-
fender and the adversary play deterministic strategies. This, coupled with some recent re-
sults from related works [18, 131], entails that deterministic hypothesis classes may not be
good candidates to provide a positive answer to Q1.

2. From a game theoretical standpoint, the natural next step is to investigate randomized
strategies. We focus on randomizing the strategies for the defender – leaving the adversary
strategies unchanged. In this context, we demonstrate that randomized classi�ers can out-
perform deterministic ones in terms of worst-case theoretical guarantees – Problem (1.3).
Therefore, we identify randomized classi�ers as good candidates to answer Q1 positively.

Theoretical properties of randomized classi�ers – Q1 & Q2

For our second contribution, we study randomized classi�ers through the prism of learning the-
ory and information theory. By analogy with the deterministic case, we de�ne a notion of robust-
ness for randomized classi�ers. This de�nition boils down to forcing the classi�er to satisfy local
Lipschitzness with respect to the `p norm on X , and a probability metric on Y . DenotingHLip
the class of randomized classi�er that respect this Lipschitz condition, we present the following
results.

1. We show that for any h ∈ HLip, we can upper-bound the gap between the risk and the
adversarial risk ofh. This result says that any good approximation of the risk minimization
problem – Problem (1.1) – on HLip is also a good approximation of the adversarial risk
minimization – Problem (1.3). This means thatHLip is a good candidate to answer Q2.

2. We devise an upper-bound on the generalization gap of anyh inHLip. This means that, for
a su�ciently large training sample, solving the ERM – Problem (1.2) – onHLip can provide
a good approximate solution to the risk minimization problem. Since we can also bound
the gap between the adversarial and the standard risk, this gives answers to both Q1 and Q2.
Note, however, that this result relies on a strong assumption on X that does not always
bypass dimensionality issues. The problem of �nding a subclass ofH that provides tighter
generalization bounds is an open question.

Practical schemes based on di�erential privacy literature – Q2

Previous contributions identi�ed a class of randomized hypothesesHLip, that answers both Q1 and
Q2 – at least partially. But they gave no practical way to design this class. Our �nal contribution
tackles this issue by drawing lessons learned from privacy preserving machine learning. More pre-
cisely our contribution is as follows.

12



1.2 Problem setting(s)

1. We highlight some links between our de�nition of robustness and the de�nition of dif-
ferential privacy. Both frameworks build upon the same theoretical ground – i.e. stability
with respect to probability metrics. Therefore, results obtained so far in di�erential privacy
can easily be transferred to design robust randomized classi�ers.

2. Based on this idea, we use two famous tools from di�erential privacy – namely noise injec-
tion and post-processing – to design classes of robust randomized classi�ers. In particular,
we show that our previous �ndings are applicable to a wide range of machine learning mod-
els, provided some minor adaptations. We further corroborate our �ndings with experi-
mental results using deep neural networks on standard image datasets – namely CIFAR10
and CIFAR100 [93]. These models can simultaneously provide accurate prediction and
reasonable robustness, giving practical answers to Q2.

Outline of the thesis

The remainder of the manuscript is organized as follows. Chapter 2 presents an overview of the
domain of adversarial classi�cation. Then, Chapters 3, 4 and 5 are devoted to the three main
contributions we just presented above. Finally, Chapter 6 concludes this work with additional
discussions and open problems. Appendices provide a high-level summary of some additional
results obtained during this thesis in terms of robustness to adversarial examples – Appendix A,
di�erential privacy – Appendix B, and cryptography for deep learning – Appendix C.
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2 Background

At the beginning of this thesis work – in 2017 – the vulnerability of machine learning models to
adversarial examples was not much studied. But over the past three years, we have seen a massive
increase in the number of articles published on this topic1. In this chapter, we aim to provide
an overview of this emerging �eld. First, we give some background on image classi�cation and
learning theory in Section 2.1. We then review in Sections 2.2 and 2.3 the current state-of-the-art
in terms of adversarial attacks and defenses. We present in Section 2.4 some recent results studying
the adversarial risk minimization through the lens of learning theory and Section 2.5 asks whether
adversarial examples are unavoidable. Finally, we discuss in Section 2.6 how our work contributes
to the domain.

2.1 An introduction to learning theory and image classi�cation
We �rst come back to some of the elements we discussed in the introduction in a more precise
manner, and present some prerequisites on classi�cation and learning theory.

2.1.1 Formalizing the classi�cation problem

To begin, let us present the supervised learning setting for classi�cation. In this context, the learner
– e.g. model provider – has access to the following elements.

• An input spaceX , which is the set of objects the learner wants to classify. Here we consider
a setting where X is a set of images with d pixels and values in [0, 1]; hence X ⊂ [0, 1]d.
Note that in image classi�cation, there is often thousand of pixels in the image, which
means that X is a high dimensional space. As we will discuss later, this characteristic of
the input space plays a key role in our understanding of the adversarial setting.

• An output space Y that denotes the set of possible labels for elements in X . In the im-
age classi�cation setting, a label is a succinct description of the image. For simplicity, we
characterizeY by a set ofK integersY = {1, . . . ,K} := [K].

• A training sample S := {(x, y1), . . . , (xn, yn)}, which is a set of n elements from
X × Y . In the supervised learning setting, we hypothesize that these input-output pairs
are drawn i.i.d.from some ground-truth distributionD the learner does not have access to.

Remark 2. Below, we define probabilities and expectations over the ground-truth distribution D.

Formally, we assume that there exists a σ-algebra A(X × Y) over X × Y and that D is a prob-

ability measure over (X × Y,A(X × Y)). Accordingly, the set we evaluate are assumed to be in

A(X × Y) and the functions we define are measurable.

With these elements at hand, the goal of the learner is to �nd a prediction function c : X → Y
– a.k.a. classi�er – to predict the label of any new input x ∈ X . To measure the quality of this
prediction we use the notion of misclassification error, i.e. the probability that c does not predict
the correct label for a random sample (x, y) ∼ D. This probability writes

P(x,y)∼D[c(x) 6= y] = E(x,y)∼D[1{c(x) 6= y}] . (2.1)
1See https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html.
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2.1 An introduction to learning theory and image classification

Given any ground-truth probability distributionD, one can easily verify that the optimal predic-
tion function onX × Y writes

copt : x 7→ argmax
k∈[K]

Py∼D[y = k | x]2. (2.2)

This function is called the Bayes optimal classi�er [44, Chap. 2]. It is optimal in the sense that no
other classi�er c : X → Y can have a lower probability of misclassi�cation onD.

In practice the learner does not have access to the ground-truth distributionD; hence it cannot
know the Bayes optimal classi�er. Its objective is then to design a learning procedure that �nds a
prediction function with misclassi�cation error as close as possible from copt. To do so, the usual
strategy in machine learning is to de�ne a set of functionsH ⊂ {h : X → RK} that will mimic
the behavior of Py∼D[y | x]. This set is also known as the hypothesis class. For any hypothesis
functionh ∈ H, by analogy with the Bayes optimal classi�er, the prediction function writes

c : x 7→ argmax
k∈[K]

hk(x) , (2.3)

wherehk(x) is the kth element of the vectorh(x) = [h1(x), . . . ,hK(x)]ᵀ.
To select the best hypothesis out ofH, the learner uses a surrogate notion of misclassi�cation

error called the risk or the generalization error. The key component on which the risk relies is
L : RK×Y → R the loss function. It measures how wellh �ts the ground-truth distribution on
a given sample (x, y) ∼ D. Accordingly, the learner’s objective is to �nd the hypothesish∗ ∈ H
that minimizes the expected value of the loss function over D. The risk minimization problem
then writes

inf
h∈H
R(h) with R(h) := E(x,y)∼D[L(h(x), y)] . (1.1)

If L andH are well chosen, a solution to the above optimization problem gives a classi�er with
small misclassi�cation error. For example, if we use the 0/1 loss

L0/1(h(x), y) := 1

{
argmax
k∈[K]

hk(x) 6= y

}
, (2.4)

then Equation (1.1) directly amounts to seek a hypothesis h∗ in H minimizing the probability
of misclassi�cation of c∗ – the classi�er associated to h∗. The 0/1 loss is mostly used to analyze
the problem theoretically. Since the indicator function is not di�erentiable everywhere, for op-
timization purposes, the community often studies surrogate loss functions instead [9] – a.k.a.

classification calibrated losses. Under smoothness and convexity assumptions, we can also prove
that Problem (1.1) minimizes the misclassi�cation error of c∗.

Since the loss function is not a problem, the main objective the learner has is to design right class
of hypothesesH to search on. On the one hand, if we take a su�ciently rich set of hypotheses, it
could contain the optimalhopt such that argmaxk h

opt
k (x) = copt(x). But when the hypothesis

class becomes too complex, the learning process is much more di�cult to manage – in terms of

2Note that argmax operator might output a set. In this case copt(x) can be any element this set. Here we suppose
that there is a unique maximum for simplicity.
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optimization. More generally, the choice of H is subject to a trade-o� between estimation and
approximation errors.

An important special case: binary classi�cation

To study classi�cation from a theoretical standpoint, it is often easier to consider the bi-

nary classification setting – i.e. K = 2. In this context, it is standard to consider a setup
slightly di�erent from the above. We still consider X = [0, 1]d, but the output space is
now Y = {−1, 1}. Furthermore the hypothesis space only considers real-valued func-
tions h : X → R, and we also adjust the de�nition of the classi�er c(x) := sign(h(x)).
All other notions adapt accordingly. Our result in terms of learning theory are based on the
K-class classi�cation setting; hence we keep presenting results in this setting.

2.1.2 The estimation/approximation trade-o�

Let h ∈ H be any hypothesis function, the excess risk of h is the di�erence betweenR(h) and
the optimal riskR(hopt). It can decompose into two error types, namely the estimation error and
the approximation error

R(h)−R(hopt) = R(h)− inf
h∈H
R(h)︸ ︷︷ ︸

estimation

+ inf
h∈H
R(h)−R(hopt)︸ ︷︷ ︸

approximation

. (2.5)

On one hand, the estimation error represents the di�erence between the minimal error we could
get inH and the actual error we have by using h. If the risk minimization problem onH admits
a solution h∗, the estimation error measures how well h estimates h∗. On the other hand, the
approximation error represents the minimal excess risk a hypothesis inH can achieve. It measures
the amount of risk that is solely determined by the choice of the hypothesis classH. This error
does not depend on the optimization procedure the learner uses. In that sens, it can be seen as a
notion of richness of the hypothesis class. When we enlargeH the approximation error will drop.
Unfortunately, enlarging the hypothesis class will also increase the estimation error.

Figure 2.1 illustrates this phenomenon for two nested hypothesis classes H1 ⊂ H2. Let us
suppose that the there exist h∗1, and h∗2 solutions of the risk minimization problems respectively
onH1 andH2. If we �xh and make the hypothesis set grow fromH1 toH2, the estimation error
grows but the approximation error diminishes. The �eld of statistical learning theory studies this
trade-o� by designing hypothesis classes that have small approximation error – rich enough –
while maintaining reasonable estimation error – not too complex. Note that the approximation
error is very di�cult to evaluate because we do not have access to the ground-truth distribution.
Conversely, there is some learning procedure such as the empirical risk minimization for which
we can estimate the approximation error.
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2.1 An introduction to learning theory and image classification

Figure 2.1: Evolution of the approximation and estimation error for a �xed hypothesis h and two nested
hypothesis classesH1 andH2.

2.1.3 Empirical risk minimization and generalization gap

Empirical risk minimization – ERM – is the most popular learning procedures in machine learn-
ing. In a nutshell, the idea is to replace the true risk by the average error over the training sample
S – a.k.a. the empirical risk. Then, to �nd an approximate solution for the risk minimization
problem – Problem (1.1), a learning algorithm maps the n training examples to a hypothesis by
solving the following optimization problem

inf
h∈H
RS(h) with RS(h) :=

1

n

n∑
i=1

L(h(xi), yi) . (2.6)

Intuitively, if we have enough training samples3, the empirical risk of a hypothesis RS(h) is a
good approximation for its true riskR(h). Then, a hypothesis hS that minimizes the empirical
risk also minimizes the risk – or has risk close to the minimum – onH. More formally, we can
bound the estimation error of the ERM as follows4

R(hS)−R(h∗) = R(hS)−RS(hS) +RS(hS)−R(h∗) (2.7)
≤ R(hS)−RS(hS) +RS(h∗)−R(h∗) (2.8)
≤ 2 sup

h∈H
|R(h)−RS(h)|. (2.9)

Thanks to the above inequality, we can control the estimation error if we bound the for allh ∈ H
the di�erence between the risk and the empirical risk ofh. This di�erence is called generalization

gap and can generally be characterized according to the complexity ofH and the size of the training
sample n.

3This holds thanks to the uniform law of large numbers.
4We suppose that the risk minimization problem has a solution h∗ for simplicity. Similar results hold in the general

case considering approximate solutions.
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In most classical settings,H is an in�nite dimensional space, which makes the complexity analy-
sis di�cult. To measure the size of the hypothesis set anyway, the learning theory community [113,
145] uses di�erent complexity notions. Among them, the empirical Rademacher complexity is par-
ticularly useful to obtain quality bounds for complex classes such as neural networks, conversely
to combinatorial notions such as the VC dimension [10].

De�nition 1 (Rademacher complexity). For any function class F := {(x, y) 7→ R}, given a

sample S = {(x, y1), . . . , (xn, yn)}, the empirical Rademacher complexity is defined as

RS(F) :=
1

n
Eri

[
sup
f∈F

n∑
i=1

rif(xi, yi)

]
,

where ri are i.i.d. drawn from a Rademacher measure – i.e. P(ri = 1) = P(ri = −1) = 1
2 .

The empirical Rademacher complexity measures the uniform convergence rate of the empirical
risk toward the risk on the class of functionF . Thanks to this notion of complexity – under reg-
ularity assumption on the loss function – we can bound with high probability the generalization
gap of any hypothesish in a classH.

Theorem 1 ([10, 113]). Let H be a hypothesis class and L : RK × Y → [0, L]. We denote

LH := {(x, y) 7→ L(h(x), y) s.t.h ∈ H} the set of functions that compose the loss function with

a hypothesis. Then for any δ ∈ (0, 1), with probability at least 1 − δ, the following holds for any

h ∈ H,

R(h)−RS(h) ≤ 2LRS(LH) + 3L

√
ln(2/δ)

2n
.

In particular, whenH admits a reasonable Rademacher complexity one can bound the gener-
alization gap of anyh ∈ H byO

(
1√
n

)
with high probability. This means that, when the training

sample is su�ciently large, the ERM gives a solution with risk close to the optimal onH. Note,
however, that the ERM will only work if the class is already well chosen. In fact, ifH is not com-
plex enough, the approximation error can be very large. Conversely ifH is too large, the limit of
the estimation error becomes loose. But since the approximation error can not be evaluated, how
can we select a goodH?

2.1.4 Structural risk minimization

One way to look at the hypothesis class selection problem is through the structural risk minimiza-
tion – SRM. Let us start by taking a hypothesis classH with very small – or no – approximation
error.Hwill surely be too rich for the above generalization bounds to make sens. But the rational
behind the SRM is to decomposeH as the union of an increasing – in the sens of the inclusion
– sequence of subclassesH = ∪

m≥1
Hm. In theory, the problem then consists of selecting the pa-

rameterm∗ that o�ers the best trade-o� between estimation and approximation errors. Since this
quantities are not know, we keep track of the trade-o� with an upper bound on the excess risk –
e.g. by using the generalization gap of the elements inHm. Figure 2.2 summarizes the evolution
of the two error types according to the growing complexity of the hypothesis class – characterized
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2.1 An introduction to learning theory and image classification

Figure 2.2: Trade-o� between the approximation and estimation errors according to the complexity of the
hypothesis class.

bym. When the hypothesis class is small it leads to good estimation but high approximation error.
Furthermore, enlarging this class may decrease the approximation but also increase the estimation
error. m∗ represents the best trade-o� we found by using the upper bound on the excess risk. In
general, we write the structural risk minimization as follows

inf
m≥1

inf
h∈Hm

RS(h) + Ω(Hm), (2.10)

where Ω is a penalty term on the size of the classHm. This reformulation of the problem allows
to revisit the approximation/estimation trade-o� using the generalization error and the empirical
error. Figure 2.3 illustrates the evolution of the generalization error and the empirical rik, with

Figure 2.3: Reinterpretation of the approximation/estimation trade-o� using the generalization error and
the empirical risk – for the SRM.

respect to the complexity of the hypothesis class and the penalization term for the SRM. When
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the complexity of the model – m – increases, the training error decreases while the penalty term
increases. The generalization error follows the same kind of behavior as the upper bound for the
excess risk in Figure 2.3. Therefore, the SRM selects the model that minimizes the generalization
error. The SRM provides valuable insights on the links between complexity of the model and gen-
eralization bounds. Note however that – in general – the SRM is computationally intractable. In
fact, in most hypothesis classes, �nding the ERM is already hard and the SRM demands to com-
pute the ERM over a large number of di�erent hypothesis sets. Nevertheless, there exists several
workarounds to perform model selection at a lower cost such as cross-validation, or regulariza-
tion based algorithms [113, Chap. 4]. In this thesis, we focus on analyzing �xed hypothesis classes
in the context of adversarial classi�cation; hence we do not discuss model selection. The hypothe-
sis classes we study are however quite general; hence we believe it is safe to assume they have small
approximation error. Studying adversarial classi�cation through the lens of the structural risk
minimization would be an interesting follow up to our work.

Let us end this section with some more practical considerations by presenting the hypothesis
classes we will consider in practice, and some benchmark datasets.

2.1.5 Some more practical considerations: hypothesis classes and datasets

Some remarkable hypothesis classes

One of the �rst hypothesis classes one should think of when considering a classi�cation problem
is the class of linear hypotheses. It writes

H := {x 7→ h(x) := θᵀx s.t. θ ∈ Θ ⊂Md×K(R)} . (2.11)

The machine learning community often uses this hypothesis class on simple datasets, or to build
intuitions on the di�culty of the task. However, for involved applications such as image classi�ca-
tion, linear classi�ers are too simple to correctly capture the ground-truth distribution. Therefore,
one usually uses neural networks instead. A typical class of neural networks is a composition of
N – usually non-linear – parametric functionsh(i)

θi
with respective parameter dimensions di

H := {x 7→ hθ(x) := h
(N)
θN
◦ · · · ◦ h(1)

θ
(x) s.t. ∀i ∈ [N ], θi ∈ Θi ⊂ Rdi}. (2.12)

These classes are characterized by two features, namely their architecture and parameter sets.

• The architecture of the model. The architecture is the pre-de�ned structure materialized by
the set of parametric functions

{
h

(1)
θ
, . . . ,h

(N)
θN

}
– a.k.a. the layers of the network. De-

pending on the architecture, a neural network sometimes output a vector in the simplex
∆(K) := {z ∈ RK s.t.

∑K
k=1 zk = 1} – called probit vector– or in RK without fur-

ther assumptions – called logit vector. In the following, unless stated otherwise we always
assume that a neural network gives arbitrary outputs in RK , i.e. logits.

• The parameter sets. The parameters materialized by real valued sets Θ := {Θ1, . . . , ΘN}
on which the learner optimizes to select a hypothesis.
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2.1 An introduction to learning theory and image classification

To select a hypothesis from these classes – be it a linear classi�er or a neural network, we still need
to solve the ERM. Since the classes are parametrized, it simpli�es as follows

inf
θ∈Θ

1

n

n∑
i=1

L(hθ(xi), yi) , (2.13)

where Θ is the set of parameters at hand. For this problem, the loss function L we select as well
as the optimization procedure we use are called the hyper-parameter of the model. In the remain-
ing, unless stated otherwise – e.g. when we look at the 0/1 loss, we always consider the mapping
(θ,x, y) 7→ L(hθ(x), y) to be di�erentiable with respect to the parameters θ and the inputx –
which is a standard assumption. Furthermore, in all our experiments we will use the cross entropy
loss de�ned as follows

L : (z, y) 7→ −
K∑
k=1

1{y = k} log

(
exp(zk)∑K
j=1 exp(zj)

)
. (2.14)

Finally, for a well chosen loss such as the cross-entropy, a simple optimization algorithm – e.g. a
stochastic gradient descent combined with a back-propagation scheme – is su�cient to obtain a
good approximate solution to the empirical risk minimization.

Reading note. Here we only give some quick notions to fix the terminology. The main purpose of this

manuscript is not to discuss loss functions or optimization processes. We rather design new hypothesis

classes on which we can use well known optimization schemes. We refer the interested reader to [74]

or [145, Part II] for a more complete overview on machine learning and deep learning in practice.

Image datasets and evaluation procedure

Provided with a dataset, we divide it into a training and a test samples – a.k.a. train and test sets. We
use the training sampleS to select cS a candidate classi�er – model – and evaluate the performance
of cS on unseen input-output pairs from the test sample. Naturally, the quality of the model
depends on the error it gets on the test set – not the train set, but the di�erence we observe between
the quality of the prediction on the test and the training sample can be considered as an empirical
evaluation of the generalization error. When we evaluate the performance of a classi�er – be it on
the train or the test set, we sometimes use the term accuracy instead of error. The accuracy of a
classi�er is simply the average number of good classi�cations it makes. Accordingly, the notion of
test-time accuracy – resp. train-time accuracy – denotes the accuracy of the model on the test set –
resp. the train set. Let us now present the datasets we will most often refer to in this manuscript.

CIFAR-10 / CIFAR-100 We refer to CIFAR-10 or CIFAR-100 datasets [93] to present nu-
merical intuitions and evaluations. The CIFAR-10 dataset is one of the most used benchmarks
to evaluate vision tasks in machine learning and current state-of-the-art models achieve over 0.99
test-time accuracy on this dataset. It consists of 60000 color images of size 32×32 divided into 10
classes – 6000 images per class. There are 50000 training images and 10000 test images. CIFAR-
100 is just like CIFAR-10 with 100 classes and only 600 images per class. Accordingly, CIFAR-100
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is harder to classify, and current state-of-the-art models achieve around 0.93 test-time accuracy on
this dataset. Figure 2.4 presents a sample of images from CIFAR datasets.

Figure 2.4: Sample of images from CIFAR datasets [93].

Remark 3. The setting we consider defines the image spaceX as a subspace of the hyper-cube [0, 1]d.

In an image from CIFAR-10/CIFAR-100, each image has 32× 32 pixels and 3 channels; hence if

we normalize each channel to be within [0, 1] – instead of [0, 255] – the classification problem for

CIFAR-10/CIFAR-100 has dimension d = 3072.

ImageNet To a lesser extent, we sometimes refer to Imagenet dataset [41] to present visual rep-
resentations. ImageNet is an ongoing project5 that contributes to building one of the biggest
high-quality images database the machine learning community has open access to. It gathers more
than 14 million images and over 20000 classes – several hundred images per classes. Dealing with
this database calls for huge computational and energy resources. This is why, ImageNet should
not be used as a benchmark for new models, but rather to test the scaling of methods that already
– provably – work. Figure 2.5 presents a sample of images from ImageNet dataset.

Figure 2.5: Sample of images from Imagenet datasets [41].

2.2 Adversarial attacks, an overview

Adversarial attacks have recently come to light thanks to works studying deep neural networks [20,
67, 152], although it was an existing topic in spam �lter analysis [40, 64, 101]. Here we present an
overview of the domain in the context of image classi�cation with deep neural networks.

5See the project webpage: http://www.image-net.org/
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Figure 2.6: Adversarial perturbation of a pig from ImageNet.

2.2.1 A �rst example

Let us �rst give a simple example of what an attack looks like. Figure 2.6 illustrates how to design
an adversarial example6 on an image from ImageNet dataset. The original image is a pig – on
the left – and a state-of-the-art deep neural network trained on ImageNet recognizes it as such.
Then, if we compute a perturbation of the image that forces the network make a mistake, we �nd
the mask in the middle of the �gure. To the human eye this mask looks a lot like noise, but it is
carefully computed according to the model. If we then multiply this structured perturbation by a
small factor and add it to the original pig, we get an image that a human cannot distinguish from
the original. That little change is, however, su�cient for the network to classify the new image –
on the right – as an airliner. This phenomenon is drawing a lot of attention, and many articles
have been published on the vulnerability of neural networks to adversarial attacks [28, 37, 103, 114].
But it is important to note that these vulnerabilities are not restricted to neural networks. Indeed,
they apply to essentially any machine learning algorithm [20, 67, 152].

2.2.2 Threat models

We de�ne the adversaries regarding the information they have on the training set, the model archi-
tecture, and the parameters. Accordingly, the two main threat models considered in the literature
– see e.g. [26] – are the following.

• White box adversary. In this scenario, the adversary has the same knowledge as the model
provider. This means that it has access to the training samples, the architecture and the
parameters of the model. Furthermore, the adversary also knows if the model is defended
by any pre-or-post processing.

• Black box adversary. In this scenario, the adversary has no knowledge about the model, and
has only limited oracle access to it – e.g. limited queries with access only to the hypothesis
outputs’ or the predicted classes.

In this work, we only consider the more powerful model threat – i.e. white box adversaries. As
pointed out by Carlini et al. [26], it is not reasonable to assume that the defense algorithm can
be held secrets in practice. This concept, called the Kerckho�s’ principle [91], is very common in

6To reproduce this example, the interested reader can follow this tutorial: https://adversarial-ml-tutorial.org/

introduction/.
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the cryptography community. In a nutshell, it says that the only secret on which a cryptography
system should hold is the secret of the encryption key. In this work, we apply the same principle
and consider that the only secret is the random state of the algorithm – i.e. the pseudo-random
number generator is unknown from the adversary. Finally, note that considering the white box
setting is fully general, since a black box adversary can only be – by de�nition – less e�ective than
a white box adversary.

2.2.3 On the notions of imperceptibility in high dimension

As we mentioned in Chapter 1, evaluating the imperceptibility of an adversarial example is hard.
In practice, we use an `p norm with p ∈ [1,+∞] and a threshold αp to evaluate an acceptable
variation. Accordingly, the set of allowed perturbations for a standard image x ∈ X is an `p ball
Bp(x, αp) := {x+ τ ∈ X s.t. ‖τ‖p ≤ αp}. Note that the threshold αp does not only depend
on the norm, it also scales according to the dimension of the problem d. Indeed, if the image has
a low resolution, the human eye can easily distinguish the pixels from each other; hence it will
be much easier to see changes in this context than in a high quality image. Then the following
question arises: given some input space X with dimension d and p ∈ [1,+∞], how should we
select αp for the attacks to remain undetected?

First, one can give an empirical answer to this question forα∞ [67, 95] – i.e. the pixel-wise max-
imal perturbation that does not change the human perception. Then, to build adversaries with
comparable strength, but also because it matches empirical observations7, we select αp such that
Bp(x, αp) and B∞(x, α∞) have equivalent volumes8. Typically, on CIFAR datasets, a pertur-
bation τ is considered imperceptible if ‖τ‖∞ ≤ 0.031 or ‖τ‖2 ≤ 0.8.

Figure 2.7: Comparison of an `2 and an `∞ ball of similar volumes. On the left: d = 2. On the right:
d→∞.

Even if the `p balls have similar volumes – whenX is high dimensional, they will only overlap
on a negligible region of the space. Figure 2.7 illustrates this and compares an `2 and an `∞ ball
of similar volumes when the dimension of the problem – d – increases. In a 2 dimensional space

7See e.g. https://adversarial-ml-tutorial.org/adversarial_examples/
8Simon-Gabriel et al. [148] recently hypothesized that we should set αp = α∞ × d1/p instead, but this formula

does not match empirical observations as well as equalizing the volumes.
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– on the left – the balls overlap on more than 98 percent of their respective volumes, but when
the dimension grows – on the right – most of the mass for the `∞ ball moves toward the corners,
leaving only a negligible mass in the intersection. From these di�erent behaviors of the balls in
high dimensions, we can draw two conclusions.

• Low-dimensional intuition can be misleading. In this work, we will sometimes illustrate
our �ndings with �gures. By essence these �gures cannot tell the whole story because they
fail to render the high-dimensional nature of the problem.

• Being robust to one adversary does not say much about the others. Let us suppose that we can
design a classi�er c that is robust to any `2 perturbations with maximal radius α2. Then
without a �ner grain analysis, c can only ensure protection against `∞ perturbations of
sizeα2/

√
d. Therefore, whenX is high dimensional, c does not ensure protection against

realistic `∞ adversaries. Generally, guarantees devised for one adversary will not transfer to
other ones. Hence we need to clearly state what adversary we study. In this work, we mainly
present some general results, but we focus our empirical analysis on `2 and `∞ adversaries.

Reading note. The interested reader can refer to Appendix A for more detailed discussions on the

impossibility to transfer defense strategies for one adversary to another.

The threat models we just discussed consider that the adversary is constrained to `p-bounded
perturbations – which is the most standard threat model in the literature. Note that these mod-
els – based on su�cient conditions for imperceptibility – are too narrow to match real-world
threats [26, 62]. Nevertheless, they are mathematically well de�ned, which facilitates principled
analysis and assessments. Furthermore, while `p threats are not su�ciently realistic, they are part
of any more general – realistic – threat model. Thus, building models robust to `p adversaries
– which is still an open question – would allow the community to make a step toward a more
general notion of robustness. Hence, in this work, we keep studying `p-bounded perturbations.

2.2.4 How to build an attack?

Recall the K-class adversarial classi�cation setting with p ∈ [1,+∞] and αp ≥ 0. Given a
hypothesish ∈ H and an input-output pair (x, y) ∼ D, the adversary aims to �nd a solution to
the following maximization problem

sup
τ∈Bp(αp)

L(h(x+ τ ), y) . (2.15)

Two of the most common ways to do so are 1) to try directly solving Problem (2.15) with a
projected gradient descent, or 2) to solve a Lagrangian relaxation of the problem.

Remark 4. Note that – in general – Problem (2.15) might not have realizable solutions. However,

finding an approximate solution is most of the time sufficient for c to misclassify – i.e. c(x+τ ) 6= y.

The attacks we present below are sufficiently strong to make the test-time accuracy of any classical deep

neural network drop to 0 – on either CIFAR or ImageNet datasets.
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Solving directly with projected gradient descent

In one of the �rst attack papers, Goodfellow et al. [67] presented a simple attack scheme based
on the idea that h has a linear behavior. This method is called fast gradient method – FGM –
and relies on the idea that a single gradient step – scaled to have an `p norm smaller than αp – is
su�cient to fool most models. This technique was quickly extended to consider multiple gradient
steps [95, 103], and is now known as the projected gradient descent scheme – a.k.a. PGD attack.
Given a imagex to attack, a thresholdαp and a maximal number of steps tmax, PGD recursively
computes

xt+1 = projBp(x,αp)

(
xt + s argmax

v s.t. ||v||p≤1
∇xtL

(
h
(
xt
)
, y
)ᵀ
v

)
(2.16)

where,∇xt denotes the gradient with respect to the entryxt, s is a gradient step size, and projBp(x,αp)

is the projection operator onBp(x, αp)9. PGD attack has been implemented for several reference
norms such as `∞ or `2 and is widely used as a state-of-the-art benchmark to evaluate the e�cacy
of defense strategies [38, 154].

Remark 5. During training, we usually evaluate the gradient according to the parameters of the

model. But one can use the back-propagation algorithm to compute the gradient on the input as well.

Solving the Lagrangian relaxation

The second procedure searches for the perturbation that has the minimal norm, under the con-
straint thatL(h(x+τ ), y) is bigger than a parameterκ – typically chosen depending on the loss
functionL. The associated optimization problem is as follows,

inf
τ s.t. L(h(x+τ ),y)≥κ

‖τ‖p. (2.17)

Problem (2.17) has been studied extensively by Carlini et al. [28], resulting in a method called
C&W attack. It aims at solving the following Lagrangian relaxation of the problem

inf
τ
‖τ‖p + λ× g(x+ τ ) (2.18)

where g(x+τ ) < 0 if and only ifL(h(x+τ ), y) ≥ κ. According to the loss function, Carlini
et. al. use a binary search to optimize the constant κ and a stochastic gradient descent to compute
an approximate solution of the problem10. The C&W attack is well de�ned for both p = 2 and
p = ∞. However, empirical observations show a clear gap of e�cacy for the `2-based attack.
Accordingly, for this work, we only consider C&W as an `2 attack.

Remark 6. Note that when we solve the Lagrangian relaxation, we have no guarantee that the

approximate solution will have an αp bounded norm. To ensure imperceptibility in practice, at the

end of the procedure, we force the solution to be in the `p ball with a projection operator – as in the

9If the projection operator does not exist, any operator that bringsxt+1 back into the ball can work.
10The authors also use a change of variable to ensure thatx+ τ ∈ X
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PGD attack. Nevertheless, for a sufficient number of gradient steps, since the goal is to minimize the

norm, the solution will usually already be in the appropriate `p ball.

2.2.5 Discussion on the attack strategies

The literature on attacks is rich, and this section does not provide an exhaustive list of the methods
developed so far. We present only two of the most popular attack frameworks. Given an optimiza-
tion problem, one can use a number of possible algorithms to get an approximate solution to it,
which makes the attack literature �ourishing. But, at this stage, most attacks are based on solving
either one or the other optimization problems we have just introduced. Thus, we believe that the
above methods are su�cient to provide a general understanding of how to construct an adversar-
ial example. For a more complete overview of the attack methods one can – for example – refer
to [167].

2.3 State-of-the-art on defense strategies
At the moment, most the works that aim to provide robust classi�ers do not o�er any provable
protection against adversarial attacks, as the community has demonstrated on many occasions [6,
27, 38, 154]. However, among the defense strategies, two are susceptible to pass the test of time,
namely adversarial training and provable robustness.

2.3.1 Adversarial training

Let us suppose for a moment that we can solve the maximization Problem (2.15). This would
for example be the case if Danskin Theorem [17] holds. Then, given a classi�er h and a sample
(x, y) ∼ D, a well-calibrated stochastic gradient descent would �nd

τ ∗ = argmax
τ s.t. ‖τ‖p≤α

L(h(x+ τ ), y) . (2.19)

Then – intuitively – a standard training procedure on x + τ ∗ instead of x would converge to
a robust classi�er if it exists. Even-though Danskin Theorem does not hold in practice11, sev-
eral works [67, 95, 103] presented a learning procedure called adversarial training based on this
reasoning. In a nutshell, adversarial training seeks a solution to the empirical adversarial risk min-
imization – Problem (1.4) – by taking successive stochastic gradient steps on an approximated
worst-case perturbation of the clean input. To simulate the worst-case perturbation, the proce-
dure uses an attack method – usually PGD12. This solution – inspired by the literature on robust
optimization [16] – is intuitive and provides state-of-the-art experimental robustness against the
strongest `∞ attack methods proposed so far [38]. Typically on CIFAR-10, the latest improve-
ment of adversarial training [180] obtains 0.53 test-time accuracy under `∞ perturbations of size
0.031. However, the main weakness of adversarial training is its lack of formal guarantees. De-
spite some recent works [149, 180] providing valuable insights, the worst-case adversarial risk of

11Danskin Theorem may not hold e.g. because given (x, y), τ 7→ L(h(x+ τ ), y) will usually not be convex in τ .
12Note that most of the time, adversarial training builds attacks by using PGD with reference norm `∞, even we it

wants to defend against other types of attacks [103], with good empirical results.
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this method is still unknown. Provable defenses attempt to address this concern by providing an
in-depth mathematical analysis with the methods they present.

2.3.2 Provable robustness

The main objective of the literature on provable robustness is to upper-bound the adversary’s op-
timization problem – Problem (2.15). This allows gives worst-case accuracy results, even though
h is a complex, non-linear classi�er. The two most common methods to obtain provable defenses
are 1) to analyze a convex relaxation of the problem and 2) to use randomized smoothing to build
more robust classi�ers.

Analyzing a convex relaxation of the problem

Given some x ∈ X , the idea of is to build a convex relaxation of the ball of authorized modi�ca-
tions Bp(x, αp). To �nd a good approximation to the inner maximization problem, we should
characterize the image of Bp(x, αp) through h – i.e. h(Bp(x, αp)). To simplify the problem,
recent works [48, 134, 168, 169] performed a convex relaxation over the image set in the context
of neural networks with ReLU non-linearity, and performed robust optimization over this new
region.

Figure 2.8: Illustration of the convex relaxation technique from [168].

Figure 2.8 illustrates this simpli�cation for an `∞ adversary. Before applying the hypothesis
functionh – on the left – the `∞ ball is convex and easy to study. After applyingh – on the right
– h(B∞(x, α∞)) is highly non convex. Therefore, to simplify the analysis, one should study
the convex relaxation of h(B∞(x, α∞)) instead. The resulting problem is a linear program. By
dualizing, we obtain an optimization problem similar to back-propagation and we can draw guar-
antees for the network. However, this technique involves a linear program and is therefore di�cult
to apply to high-dimensional datasets; hence hardening its application to image classi�cation.

Randomized Smoothing

Randomized smoothing defenses are randomization based defenses. The idea of provable defense
through randomization was �rst introduced in [98] and re�ned in [34, 100, 139]. The rationale be-
hind this idea is very simple: take a hypothesis with probit outputsh : X → ∆(K), and smooth
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it after training by convolution with a Gaussian distributionN
(
0, σ2I

)
. Then the robust clas-

si�er writes

crob : x 7→ argmax
k∈[K]

(
hk ∗ N

(
0, σ2I

))
(x) := argmax

k∈[K]
Ez∼N (0,σ2I)[hk(x+ z)] . (2.20)

If we denote Φ the cumulative density function of the standard Gaussian distribution, we
can show that Φ−1

(
h ∗ N

(
0, σ2I

))
is 1-Lipschitz [139]. Therefore, crob is robust to adversar-

ial examples that are close enough to the unperturbed input x. More precisely, for any point
x ∈ X , we can build a radius around x for which no `2 adversary can change the decision of
crob. Furthermore, the radius depends on the di�erence between the two biggest probits of ĥ :=

h ∗ N
(
0, σ2I

)
. Formally, if for any x ∈ X we denote ĥ(x)(1) ≥ ĥ(x)(2) ≥ · · · ≥ ĥ(x)(K)

the values of the vector ĥ(x) in decreasing order, the following hold.

Theorem 2 ([34, 139]). For any x ∈ X and τ ∈ X the following hold.

If ‖τ‖2 ≤
1

2

(
Φ−1

(
ĥ(x)(1)

)
− Φ−1

(
ĥ(x)(2)

))
, then crob(x) = crob(x+ τ ).

This theorems says that the more separated the probits of the hypothesis, the more robust the
classi�er is to adversarial perturbations. Then, the model provider can evaluate its worst-case ac-
curacy under attack according to its standard accuracy and the con�dence the network has in it
predictions. This technique gives provable defense against adversarial examples on a given dataset.
Table 2.9 presents the current state-of-the-art results in terms of certi�ed accuracy – i.e. accuracy
that cannot be diminished by an adversary – of randomized smoothing for `2 based adversaries
with di�erent thresholds on CIFAR-10. Note that for a reasonable threshold of 0.75 one gets 0.52
certi�ed accuracy. Following the works investigating Gaussian distributions against `2 adversaries,

Table 2.9: Certi�ed accuracy of randomized smoothing model [139] on the CIFAR-10 dataset.

`2 norm of the attack 0.25 0.5 0.75 1.0 1.25

Randomized smoothing [139] 0.81 0.63 0.52 0.37 0.33

several extensions obtained similar results for other `p norms [99, 173], or discuss how this method
relates to the dimension of the problem [94]. Overall, randomized smoothing presents principled
advantages over most previous methods. It is simple to implement and to interpret, computation-
ally e�cient and provides state-of-the-art provable robustness for benchmark datasets.

2.3.3 Discussion on the current defense strategies

Over the last few years, there has been signi�cant advances on the robustness of machine learning
models to adversarial attacks. However, in terms of the quality of defenses, both provable robust-
ness and adversarial training call for improvements. Indeed, the accuracy under attack of these
methods is hardly above 0.5 against imperceptible perturbations on CIFAR-10. These results are
not su�cient to consider deploying image recognition systems in real-world applications.
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Furthermore, this literature focuses on minimizing the empirical adversarial risk and do not
present any generalization guarantee. This question is critical, especially for classi�cation under
perturbation. Indeed, Madry et al. [103] noticed that the initial version of adversarial training
achieves 0.96 train-time adversarial accuracy against 0.47 test-time adversarial accuracy. This gap
between train and test performances is signi�cantly larger than what models usually achieve in the
standard setting. Hence it is crucial to study generalization guarantees in the adversarial setting to
control the generalization gap between training and test errors.

2.4 Adversarial classi�cation through the lens of statistical
learning theory

Notations. By analogy with the standard setting, we denoteRadv(h;αp) andRadv
S (h;αp) the

adversarial risk and empirical adversarial risk ofh under αp-bounded perturbations

Radv(h;αp) := E(x,y)∼D

[
sup

τ∈Bp(αp)
L(h(x+ τ ), y)

]
, (2.21)

Radv
S (h;αp) :=

1

n

n∑
i=1

sup
τ∈Bp(αp)

L(h(xi + τ ), yi) , (2.22)

whereBp(αp) := {τ ∈ X s.t. ‖τ‖p ≤ αp}.

Unlike other notions such as training set corruptions– a.k.a. poisoning attacks [89, 90], the
theoretical aspects of adversarial robustness are not widely studied. For now, empirical observa-
tions tend to show that 1) adversarial examples on state-of-the-art models are hard to mitigate and
2) robust training methods give poor generalization performances. Some recent works study the
problem through the lens of learning theory either to understand the links between robustness
and accuracy or to provide bounds on the generalization gap of current learning procedures in
the adversarial setting.

2.4.1 Is robustness antagonist with accuracy?

A �rst line of research [83, 151, 156, 180] suggests that designing robust models might be at odds
with standard accuracy. These works study di�erent experimental and theoretical toy settings.
Among them, let us start with the toy binary classi�cation task from [156].

Toy Example. Given any (x, y) ∼ D, q ∈ [0, 1) and η > 0 , the following holds.

1. y is uniformly distributed at random on {−1, 1}.

2. Given y, x1 takes value y with probability q and−y otherwise.

3. All other elements x2, ...,xd of the vector x are drawn i.i.d. from a GaussianN (ηy, 1).

According to the above distribution, whenX is high dimensional, one can build a simple linear
classi�er h(x) = 1

d−1

∑d
i=2 xi that will have arbitrary high test-time accuracy. Indeed – thanks
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to the central limit theorem – when d→∞we get h(x) = 1
d−1

∑d
i=2 xi → ηy, meaning that

sign(h(x)) = y with arbitrarily high probability. Nevertheless, an `∞ adversary that can shift
all features by at most α∞ = 2η will be able to make the test-time accuracy of h drop to 0. More
generally, on this toy example, Tsipras et al. [156] presented the following result.

Theorem 3 ([156]). Any classifier that attains at least 1− r standard test-time accuracy onD has

robust test-time accuracy at most
q

1−q r against an `∞-bounded adversary with α∞ ≥ 2η.

This result proves �rst-hand that robustness can be at odds with precision. But it is not general
enough to draw conclusions – since it is based on a very simple toy distribution. A subsequent
work by Zhang et al. [180] observed – for the binary classi�cation setting with 0/1 loss – that the
adversarial risk of any hypothesis h straightforwardly decomposes as follows,

Radv(h;αp) = R(h) + E(x,y)∼D[1{c(x) = y and ∃τ ∈ Bp(αp) s.t. c(x+ τ ) 6= y}],
(2.23)

where c(x) := sign(h(x)). Looking at Equation (2.23), we realize that minimizing the adver-
sarial risk is not enough to ensure good standard accuracy – as one could only optimize over the
second term. This indicates that adversarial risk minimization – Problem (1.3) – is harder than
standard risk minimization – Problem (1.1). Note, however, that Equation (2.23) does not high-
light a fundamental trade-o� between robustness and accuracy. Finding such a relation in the
general case remains an open question.

2.4.2 Studying adversarial generalization

To further compare the di�culty of the two problems, a recent line of research began to explore
the notion of the adversarial generalization gap. In this line, Schmidt et al. [141] presented �rst
intuitions by studying a simpli�ed binary classi�cation framework whereD is a mixture of spher-
ical Gaussian distributions. In this framework, the authors show that we only needO(1) training
samples to have a small generalization error. But against an `∞ adversary, we need O(

√
d) train-

ing samples instead. In the discussion of their work, the authors present the problem of obtaining
similar results without making assumptions about the distribution as an open problem.

This issue was �rst tackled by Cullina et al. [39] by using the VC-dimension. Their analysis
shows that for linear classi�ers, the VC dimension of the hypothesis class does not change un-
der attack. This work indicates that – with respect to the VC dimension – classi�cation under
perturbation is not more di�cult than standard classi�cation which does not correspond to the
empirical observations and initial intuitions provided earlier [103, 141]. However, as previously
mentioned, the Rademacher complexity generally allows for tighter generalization bounds than
the VC dimension [8]. Accordingly, further works studied the same problem, using Rademacher
complexity and presented the following results relating the adversarial generalization error of lin-
ear classi�ers13 with the dimension of the problem14.

13These works also investigate neural networks with one hidden layer – we refer the interested reader to the original
papers for more details.

14[92] and [175] only present bounds for `∞ adversaries. [7] extended the results to any `p attack.
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Theorem 4 ([7]). LetHq :=
{
x 7→ θᵀx s.t. ‖θ‖q ≤M

}
and let us suppose thatL isL-Lipschitz.

Then with probability at least 1− δ, the following holds for any h ∈ Hq ,

Radv(h;αp) ≤ Radv
S (h;αp) + 2LRS(Hq) + αp

M√
n

max
(
d

1− 1
p
− 1
q , 1
)

+ 3

√
ln(2/δ)

2n
.

Note that the main di�erence between this result and the one we presented in the standard
setting – Theorem 1 – is the additive factor

αp
M√
n

max
(
d

1− 1
p
− 1
q , 1
)

= O

(
d

1− 1
p
− 1
q

√
n

)
. (2.24)

Therefore, by analyzing the problem using Rademacher complexity, we can show that the ad-
versarial generalization does depend on the dimension of the problem. Hence, in terms of sample
complexity, adversarial classi�cation is more di�cult than standard classi�cation. However, when
facing an `p adversary, one can always select a class of linear classi�ers for which the dimension
term disappears. Indeed, if we select q to be the Holder conjugate of p – i.e.

1
p + 1

q = 1 – the

additive term becomes O
(

1√
n

)
. Therefore, we can build strong intuitions for an adversary, but

the generalization bounds are not transferable to another `p adversary.

Reading note. At first a glance, the difficulty of adversarial generalization seems to contradict

previous conclusions on the link between robustness and generalization [171]. But as we will see in

Chapter 4, these results are based on very specific assumptions that may not hold in high dimensions.

2.4.3 Discussion on the learning theory literature

Some compelling insights were presented on whether robustness standard accuracy are in con-
�ict. However, in more general con�gurations, the question remains open. Moreover, from the
di�erent results on the adversarial generalization gap, we can draw two – somewhat contradictory
– conclusions. First, learning under perturbation is indeed much more di�cult than standard
learning and the di�culty increases with the dimension of the problem. Second, for an `p adver-
sary – �xed p – robustness might be achievable.

Going further, it should be noted that the generalization gap measures only the di�erence be-
tween empirical and theoretical risk. In practice, the empirical adversarial risk is never really es-
timated – since we cannot compute the exact solution to the inner maximization problem. The
following question therefore remains open: even if we can set up a learning procedure with a small
generalization gap, will the adversarial risk be low? To answer this question, we need to study the
adversarial risk minimization problem – Problem (1.3).

Remark 7. Another line of research within the learning community studies the problem from a com-

putational viewpoint. This was recently addressed by Bubeck et al. [25] who argued that the problem

of adversarial classification is not the sample size, but the computational hardness. Thus, even with

a reasonable sample size for both problems, we can present a set of learning problems where standard

non-robust learning can be performed efficiently, but is difficult to compute in an adversarial setting.
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2.5 Is classification under perturbation feasible?

2.5 Is classi�cation under perturbation feasible?
From preliminary intuitions to advanced mathematical analyses, some works are studying the fun-
damental properties of classi�cation under perturbation – Problem (1.3). Speci�cally, the com-
munity wonders why adversarial examples exist and whether we can mitigate them. These ques-
tions are far from settled, but most works indicate that sensitivity to adversarial perturbations is
inevitable. Besides, a very recent line of research began to investigate the worst case adversarial risk
of any hypothesis class; thus assessing whether Problem (1.3) is even worth solving.

2.5.1 Initial hypotheses on the existence of adversarial examples

When Szegedy et al. [152] �rst noticed the vulnerability of deep neural networks to small per-
turbations, they hypothesized that this phenomenon was a consequence of the model’s over-
�tting. The community uses complex and powerful neural networks that can sometimes be over-
parameterized for the task. Thus, even with enough training samples, the network learns struc-
tures that are too complicated to describe only the dataset distribution. As a result, it makes ran-
dom mistakes in low probability regions of the image space that an adversary can exploit.

Figure 2.10 – on the left – illustrates this hypothesis on a training set of three blue crosses and
three red circles. It is always possible to build a complex classi�er that easily adapts to the training
points. But since it has much more parameters than it needs, it also creates small classi�cation
areas in low probability regions – somewhat randomly. One can then easily see that a small shift
of a point in a well-chosen direction causes an error in the classi�er.

Figure 2.10: On the left: adversarial examples for a complicated over-�tting network. On the right: adver-
sarial examples for a linear under-�tting classi�er.

This theory was then invalidated by Goodfellow et al. [67] with the following argument. If
over-�tting was the main reason, then adversarial examples would be more or less artifacts of the
learning procedure, and should be unique to the classi�er. Therefore, if we �t the model again, or
if we �t a slightly di�erent model, we should get di�erent adversarial examples. But the authors
found that di�erent models misclassify the same examples; thus invalidating the initial theory 15.

15This phenomenon was later called attack transferability [155]
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Goodfellow et al. [67] further hypothesized that adversarial examples are more a matter of under-
�tting than over-�tting. Speci�cally, the authors argued that deep neural networks – despite the
use of non-linear transformations – have a linear behavior that make them vulnerable to attacks
in high-dimensional spaces.

To better understand how under-�tting can lead to a vulnerability, let us go back to Figure 2.10
– on the right. If we �t a linear model to the previous training set, we get a hyperplane lying
between the two sets of points. However, this hyperplane does not account for the distribution
of the dataset. The circles could be arranged in a C-shape, so moving a point along this shape
causes the classi�er to make an error. Some follow-up work kept linking the vulnerability of the
models to the shape of their decision boundary. For example, Moosavi et al. [115] related the
vulnerability of a classi�er to the curvature of its decision boundary. As such, the shape of the
decision boundary is not su�cient to explain the whole phenomenon, but it seems to play an
important role as some very e�cient attack methods extensively use this hypothesis [67, 114, 115].

2.5.2 Are adversarial examples inevitable?

To further investigate whether adversarial examples are inevitable, subsequent works [63, 144] has
focused their analysis on the task – rather than the classi�er itself. Consider for example K-class
classi�cation on the unit sphere – i.e. X = Sn−1 := {x ∈ Rd s.t. ‖x‖2 = 1}. In this context,
Shafahi et al. [144] used isoperimetric inequalities [22] to argue that adversarial examples are in-
evitable. The authors show that – under assumptions on the concentration of the ground-truth
distribution – for any classi�er on the unit sphere, there is at least one class k∗ ∈ Y for which
adversarial examples exist with high probability.

Theorem 5 ([144]). Let ν defines the probability distribution for y, µk is the conditional distribu-

tion for x knowing y = k and gk its probability density function. Let us also consider c a classifier

over the unit sphereX and αp a perception threshold for an `p adversary. Then there exists k∗ ∈ Y
such that for any x ∼ µk∗ , with probability at least

1− Vk∗
(π

8

)1/2
exp

(
−d− 1

2
(αp)

2

)
,

there exist τ ∈ Bp(x, αp) such that c(x+ τ ) 6= k∗. Where Vk∗ := supx∈X gk∗(x)× sn−1.

This result means that when the conditional distribution µk∗ has limited concentration, no
classi�er can be robust to `p16 adversaries targeting samples from class k∗. Gilmer et al. [63] pre-
sented observations of the same nature by studying a toy dataset consisting of two concentric
spheres. Their main result relates the errors in the standard and the adversarial setting by saying
that even a small standard error on their toy dataset translates to a large adversarial error. These re-
sults were later presented in a more general way by Dohmatob [46], but for simplicity we discussed
here the initial contributions.

Remark 8. Note that Shafahi et al. [144] tried to extend their conclusions to image classification –

i.e. whenX = [0, 1]d and d is large. However, in this context, the probability is high only when the

16The initial result in [144] uses the geodesic distance. Hence the result holds at least for `2 and `∞ adversaries.
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perturbation threshold αp is large – hence losing the imperceptibility of the attack. Dohmatob [46]

has conducted complementary experiments on – small-scale – image datasets with similar results;

the number of adversarial examples is not prohibitive as long as αp is small. Therefore, the above

results still need to be verified on large-scale image classification.

This literature suggests that adversarial examples are inevitable, which means that Problem (1.3)
can have a large value. In the following section, we present some works that attempt to assess
whether solving Problem (1.3) is even worth trying by estimating this value.

2.5.3 Finding worst case lower bounds on the adversarial risk minimization

Two recent works [18, 131] studied adversarial risk minimization by using arguments from optimal
transport [163]. They show how to characterize the adversarial risk for binary classi�cation by an
optimal transport cost between the conditional probability distributions of the two classes µ1

and µ91. Let us consider the adversary’s problem from a distributional point of view. Instead of
attacking every point, it directly moves the distributions µ1 and µ91 to maximize the risk with
respect toD. In this context, we can evaluate the worst-case – non-normalized – accuracy under
attack of any classi�er by the minimal number of points that are not susceptible to be switched
from one conditional distribution to the other

Dαp(µ1, µ91) = inf
π∈Π(µ1,µ91)

E(x,x′)∼π

[
1{
∥∥x− x′∥∥

p
> αp}

]
, (2.25)

where Π(µ1, µ91) is the set of all joint probability measures on X × X with marginals µ1 and
µ91. Finally, we can de�ne the best-case adversarial risk according to the non-normalized worst-
case accuracy under attackDαp(µ1, µ91) and the classes’ distribution ν.

Theorem 6 ([18, 131]). Letν consider the probability distribution forywithν(1) = ν(91) = 1/2.

Then the following holds,

inf
h∈H
Radv(h;αp) =

1

2

(
1−Dαp(µ1, µ91)

)
.

This result indicates that if the conditional distributions are close enough – according to the
above notion of distance – then the adversarial risk will be high, regardless of the classi�er. Note,
however, that this is already the case without adversaries. Indeed, the risk of the Bayes optimal
classi�er hopt – a.k.a. the Bayes optimal risk – is as follows

R(hopt) =
1

2
(1−DTV (µ1, µ91)), (2.26)

whereDTV (µ1, µ91) is the total variation distance between the conditional distributions. Hence
remains the question: how fast doesDαp(µ1, µ91) grow – compared toDTV (µ1, µ91) – accord-
ing to the distribution? To answer this, Pydi et al. [131] evaluated their bounds on – a smoothed
version – of CIFAR-10 dataset. Their preliminary results indicate that best-case adversarial risk
– for α2 ≤ 0.8 – can be 0.05 bigger than the Bayes optimal risk, which is not prohibitive but
still represents an important loss of accuracy. For the gap to be more important – as we already
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pointed out in the previous section – we should select a larger αp; hence the imperceptibility of
the attack becomes questionable.

Remark 9. Given ann points dataset, to build the smooth version of it, the authors use a mixture of

n Gaussian distributions, where each mean is placed on a data point. This smoothness assumption

seems reasonable, since machine learning practitioners often use Gaussian data augmentation to

improve the performances of their models [66, 128].

2.5.4 Discussion on the feasibility of classi�cation under perturbation

The results we just presented seem to show that adversarial examples are – to some extent – in-
evitable and that accuracy under attack of a classi�er will always be signi�cantly smaller than its
standard counterpart. However, these results – even if the authors sometimes claim the opposite
– do not prove that no satisfactory solution can be found to the adversarial risk minimization –
Problem (1.3). For example, on CIFAR-10, diminishing the current state-of-the-art by 0.05 still
gives a good classi�er with over 0.9 test-time accuracy17. Furthermore, as recently pointed out
by Dohmatob [46], the strength of these impossibility results might mainly come from the fact
that the adversary we consider is unrealistically strong. Thus, rethinking the constraints for the
adversary could question the ongoing consensus on whether we can build models that are both
robust and accurate.

2.6 Our positioning with regard to prior art

In this thesis, we aim to bring a new understanding on adversarial examples and contribute to the
development of new technical tools. Our main accomplishments are the followings.

Bringing a new point of view on the adversarial classi�cation problem

We begin by revisiting the problem of adversarial risk minimization by regularizing the adversary
objective function. We study this new problem through the lens of game theory by casting it as an
in�nite zero sum game. Our conclusions highlight a very interesting property of the adversarial
classi�cation problem, which is its instability – i.e. the nature of the game between the adver-
sary and the classi�er changes completely when we add a small regularization term. This leads
us to question current theses on adversarial classi�cation and to ask whether existing conclusions
would still hold if we limit the adversary’s strength. The game theoretical point of view we de-
velop also leads us to study randomized classi�ers – i.e. classi�ers that produce random variables.
In particular, we show that they have principled advantages over deterministic classi�ers in terms
of robustness to adversarial perturbations.

Some works have tackled the problem of adversarial examples as a two player game before [127,
138], but they consider restricted versions of the game – e.g. when the players only have a �nite set
of possible strategies. We study a more general setting which allows us to build strong insights on
the fundamental nature of the game between the classi�er and the adversary.

17Still, it remains to �nd this optimal classi�er, which can be hard as discussed in Section 2.4
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Studying adversarial defense from a probabilistic point of view

Based on the new insights we develop on adversarial classi�cation, we present a theoretical analysis
of randomized classi�ers. To do so, we �rst de�ne a new notion of robustness for these classi�ers
using probability metrics. Then, we show that under robustness assumptions, we can limit the
di�erence between the standard risk and the adversarial risk of a randomized classi�er. This result
is important for the community because it shows that a well-chosen class of hypotheses can give
both reasonable robustness and accuracy – thus mitigating the previous results on deterministic
classi�ers. We then devise bounds on the standard generalization gap of this new hypothesis class.
This result encompasses existing works on the link between robustness and accuracy for deter-
ministic classi�ers. Finally we analyze the stability of the classi�er’s mode allowing us to present a
probabilistic point of view on randomized smoothing techniques. Our point of view on random-
ization as a defense strategy could pave the way to further investigating randomized smoothing
from a theoretical perspective.

Building robust classi�ers

Finally, we link our de�nition of robustness to the notion of di�erential privacy. Thanks to this
connection, we bring to the community a new set of technical tools. As a consequence, we de-
sign new noise injection schemes to build robust classes of randomized classi�ers. These schemes
prove that the theoretical analysis we have previously built is applicable to state-of-the-art image
classi�cation models.

Injecting noise into algorithms to improve train time robustness has been used for ages in de-
tection and signal processing tasks [29, 71, 111, 181]. It has also been extensively studied in several
machine learning and optimization �elds – e.g. robust optimization [16] and data augmentation
techniques [128]. Concurrently to our work, noise injection techniques have been adopted by
the adversarial defense community [45, 170]. In particular, Lecuyer et al. [98] �rst developed ran-
domized smoothing, by using theoretical results from di�erential privacy. Our work belongs to
the same line of research, but the nature of our results is di�erent. While randomized smoothing
focuses on the construction of certi�ed defenses, depending on the dataset and the classi�er used,
we study randomized mechanisms from the perspective of information theory and learning the-
ory. Our analysis presents the fundamental properties of randomized defenses, including – but
not limited to – randomized smoothing.
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Q1: Is there some hypothesis classH for which the adversarial risk minimization

problem has a solutionh∗ with small adversarial risk?

In this chapter, we aim to answer Q1 by adopting a game-theoretical point of view. We present
in Section 3.1 the adversarial attack and defense problem as an in�nite zero-sum game. Then
we discuss how unrealistic threat models might impact the analysis of this game and present a
simple additional constraint to mitigate the overpower of the adversary. We demonstrate in Sec-
tion 3.2 that – as long as this small constraint holds – no Pure Nash equilibrium exists in our
game. This shows how current impossibility results may provide questionable �ndings, but this
is not su�cient to rehabilitate deterministic hypotheses. Furthermore, we show in Section 3.3
that, in this setting, any deterministic hypothesis can be outperformed by a randomized one. This
gives arguments for using randomization, and leads us to a simple method for building random-
ized classi�ers that are robust to state-or-the-art adversarial attacks. In Section 3.4, we validate our
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theoretical analysis with empirical results. Finally, we present some additional results, and provide
concluding remarks respectively in Sections 3.5, and 3.6.

3.1 Casting the problem as a zero sum game

Notations. For any set Z with σ-algebra A(Z), if there is no ambiguity on the considered σ-

algebra, we denote P(Z) the set of all probability measures over (Z,A(Z)). We also denote FZ
the set of all measurable functions from (Z,A(Z)) to (Z,A(Z)). For µ ∈ P(Z) andψ ∈ FZ ,

the push-forward measure of µ byψ is the measureψ#µ such thatψ#µ(B) = µ(ψ91(B)) for

any B ∈ A(Z). Moreover, for any B ⊂ X we denote B c
the complement of B in X . Finally,

when the probability measure of reference is clear we denote essup the essential supremum, i.e. the

supremum over the non-null sets for this measure.

3.1.1 Initial problem statement

As this chapter aims at building new intuitions on adversarial classi�cation, we restrict our analysis
to the binary classi�cation setting with 0/1 loss. In the next chapters, we will come back to the
more general K-class classi�cation. Let us set X ⊂ [0, 1]d, Y = {91, 1} andH := C(X ,R)
– where C(X ,R) is the set of functions that are almost everywhere1 continuous from X to R.
Then, given a distribution D with full support on X × Y , the model provider is looking for a
hypothesis h ∈ Hminimizing the risk of hwith respect toD,

R(h) := E(x,y)∼D
[
L0/1(h(x), y)

]
= Ey∼ν

[
Ex∼µy

[
L0/1(h(x), y)

]]
,

(3.1)

where ν ∈ P(Y) is the probability distribution of y, and for any y ∈ Y , µy ∈ P(X ) is the
conditional law of x|y. Given a hypothesis h ∈ H and a data sample (x, y) ∼ D, the adversary
seeks a perturbation τ ∈ X such that ‖τ‖p ≤ αp andL0/1(h(x+ τ ), y) = 1.

From a distributional point of view, this amounts to constructing – for each label y ∈ Y – a
measurable function ψy such that ψy(x) is the perturbation associated with the labeled exam-
ple (x, y). This function naturally induces a probability distribution over adversarial examples,
which is simply the push-forward measure ψy#µy . The goal of the adversary is thus to �nd
ψ = (ψ91,ψ1) ∈ (FX|αp)2 that maximizes the adversarial score

Scoreadv(h,ψ) := Ey∼ν
[
Ex∼ψy#µy

[
L0/1(h(x), y)

]]
. (3.2)

Finally, for the attack to remain undetected, we de�ne FX|αp as the set of measurable functions
that imperceptibly modi�es a distribution onX ,

FX|αp :=

{
f ∈ FX s.t. essup

x∈X
‖f(x)− x‖p ≤ αp

}
. (3.3)

1Here we use almost everywhere with respect to the conditional distributions µ1 and µ91 de�ned below.
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Within this distributional setting, the adversarial example problem is a two-player zero-sum game,
where the defender – model provider – tries to �nd the best possible hypothesis h, while the ad-
versary is manipulating the dataset distribution. The defender problem then writes as follows.

inf
h∈H

sup
ψ∈(FX|αp)

2

Scoreadv(h,ψ). (3.4)

This means that the defender tries to design the hypothesis with the best performance under at-
tack, whereas the adversary will each time design the optimal attack on this hypothesis.

3.1.2 Adversarial attack and defense, a two-player zero-sum game

In game theory, the choice of a hypothesis h – resp. an attack ψ – for the defender – resp. the
adversary – is called a strategy. Note that the sup-inf and inf-sup problems do not necessarily
coincide. In this work, we mainly focus on the defender’s point of view which corresponds to the
inf-sup problem. We will be interested in understanding how the players behave in this game – i.e.

the best responses they give to a strategy and whether some equilibria may arise. This motivates
the following de�nitions.

De�nition 2 (Best Response). Let h ∈ H, andψ ∈
(
FX|αp

)2
.

• A best response from the defender toψ is a hypothesis h∗ ∈ H such that

Scoreadv(h∗,ψ) = min
h∈H

Scoreadv(h,ψ).

• Similarly, a best response from the adversary to h is an attackψ∗ ∈
(
FX|αp

)2
such that

Scoreadv(h,ψ∗) = max
ψ∈(FX|αp)

2
Scoreadv(h,ψ).

Remark 10. Note that the score achieved by a best response from the adversary toh is the adversarial

risk of h Scoreadv(h,ψ∗) = Radv(h;αp).

In the remaining, we denote BR(h) the set of all best responses of the adversary to a hypothesis
h. Similarly BR(ψ) denotes the set of best responses of the defender to an attackψ.

De�nition 3 (Pure Nash Equilibrium). In the zero-sum game from Equation (3.4), a Pure Nash
Equilibrium is a couple (h,ψ) ∈ H ×

(
FX|αp

)2
such that h ∈ BR(ψ) andψ ∈ BR(h).

When it exists, a Pure Nash Equilibrium is a state of the game in which no player has any incen-
tive to modify its strategy. In our setting, this simultaneously means that no attack could better
fool the current hypothesis, and that the hypothesis is optimal for the current attack.

Remark 11. All the definitions in this section assume a deterministic regime – i.e. that neither the

defender nor the adversary use randomization – hence the notion of “Pure” Nash Equilibrium in

the game theory terminology. We discuss extensions to the randomized regime in Section 3.3.
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3.1.3 Trivial solution and regularized adversary

Our current de�nition of the problem implies that the adversary has perfect information on the
dataset distribution and the hypothesis. It also has unlimited computational power and no con-
straint on the attack except on the size of the perturbations. Thus, it is similar to the adversaries
currently studied in the literature – see Section 2.5. However the community starts wondering
if this adversary is not too strong to be realistic [46, 62]. Going back to the example of the au-
tonomous car – Chapter 1 – this would mean that the adversary can modify every tra�c sign that
the camera may receive during any trip, which is highly unrealistic. The adversary has no down-
side to attacking, even when the attack is unnecessary – e.g. if the attack cannot work or if the
point is already misclassi�ed.

Figure 3.1: Illustration of the conditional distributions µ91 and µ1. On the left: without attack. On the
right: under trivial attack. Blue and red zones are the points that are at distance less than αp of
the boundary.

Figure 3.1 illustrates this phenomenon for the uni-dimensional setting with Gaussian distribu-
tions. The adversary moves every point toward the decision boundary2 – each time saturating
the norm constraint – and the defender cannot do much to mitigate the damages. In this case
the best classi�er remains unchanged, although both curves moved; hence a trivial equilibrium.
Furthermore, thanks to Theorem 6, we can evaluate the value of this equilibrium, which can be
high – depending on the conditional distributions.

In the remainder of this work, we show that this equilibrium does not hold when we add a
small constraint on the adversary’s strength – i.e. when it is not perfectly indi�erent to producing
unnecessary perturbations. To formalize the constraint on the adversary, we introduce a penalty
term in the initial formulation of the game,

inf
h∈H

sup
ψ∈(FX|αp)

2

Scoreadv
Ω (h,ψ) := Scoreadv(h,ψ)− λΩ(ψ). (3.5)

The penalty function Ω represents the limitations on the adversary’s budget – be it because of
computational resources or to avoid being detected – and λ ∈ (0, 1) is some regularization
weight.

2The decision boundary is the set{x s.t. h(x) = 0}
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3.2 Instability of the game

From a computer-security point of view, the �rst limitation that comes to mind is to limit the
number of queries the adversary can send. In our distributional setting, this boils down to penal-
izing the mass of points that the functionψ moves. Hence we de�ne the penalty as follows3

Ω(ψ) := Ey∼ν
[
Ex∼µy [1{x 6= ψy(x)}]

]
. (3.6)

Note that this limitation is also very relevant for the example of the self-driving car example. It
forces the adversary to select a few signs that it will attack. In the remaining, we study this reg-
ularized game and denote BRΩ(h) the set of all best responses of the adversary to a hypothesis
h, under penalty Ω. Since the penalty does not impact the defender’s optimization problem, the
notation remains unchanged. All above de�nitions adapt accordingly.

3.2 Instability of the game
Notations. Let h ∈ H, we denote Ph := {x ∈ X s.t. h(x) > 0} the set of positive outputs of h
and Nh := {x ∈ X s.t. h(x) < 0} the set of negative outputs of h. We also denote Ph(αp) and

Nh(αp) the set of points on whichh can change sign under anαp-bounded perturbation. Ph(αp) :={
x ∈ Ph s.t. ∃z ∈ (Ph) c

where ‖z − x‖p ≤ αp
}

, andNh(αp) likewise.

3.2.1 Characterizing the best responses

Let us now study how the game behaves when the adversary has been penalized. We show that
in this context, no Pure Nash Equilibrium exists. To do so, we characterize the best responses for
each player, and show that they can never satisfy De�nition 3. We �rst present the best responses
of the penalized adversary.

Lemma 1. Let h ∈ H andψ ∈ BRΩ(h). Then the following assertion holds:{
ψ1(x) ∈ (Ph) c

if x ∈ Ph(αp)

ψ1(x) = x otherwise.

ψ91 is characterized symmetrically.

Proof. Let us �rst simplify the worst-case adversarial score for h. From the de�nition of ad-
versarial score we have:

sup
ψ∈(FX|αp)

2

Scoreadv
Ω (h,ψ)

= sup
ψ∈(FX|αp)

2

Ey∼ν
[
Ex∼µy [1{sign(h(ψy(x))) 6= y} − λ1{x 6= ψy(x)}]

]

3We could build a lot of other di�erent penalties. The results would still hold. See e.g. Section 3.5 for a penalty on
the norm of the perturbation.

45



3 A game theoretical point of view on adversarial attacks

=Ey∼ν

[
sup

ψy∈FX|αp
Ex∼µy [1{h(ψy(x))y ≤ 0} − λ1{x 6= ψy(x)}]

]
.

Findingψ1 andψ91 are two independent optimization problems, hence we focus on char-
acterizingψ1 – i.e. we set y = 1.

sup
ψ1∈FX|αp

Ex∼µ1 [1{h(ψ1(x)) ≤ 0} − λ1{x 6= ψy(x)}]

=Ex∼µ1

[
essup

z∈Bp(x,αp)
1{h(z) ≤ 0} − λ1{x 6= z}

]

=

∫
X

essup
z∈Bp(x,αp)

1{h(z) ≤ 0} − λ1{x 6= z} dµ1(x).

Let us now consider (Hj)j∈J a partition ofX , we can write.

sup
ψ1∈FX|αp

Ex∼µ1 [1{h(ψ1(x)) ≤ 0} − λ1{x 6= ψy(x)}]

=
∑
j∈J

∫
Hj

essup
z∈Bp(x,αp)

1{h(z) ≤ 0} − λ1{x 6= z} dµ1(x).

In particular, we can takeH0 = P c
h ,H1 = Ph \Ph(αp), andH2 = Ph(αp). Then we can

study the three sets independently.

1. For any x ∈ H0 = P c
h , taking z = x we get 1{h(z) ≤ 0} − λ1{x 6= z} = 1.

Since for any z ∈ X we have 1{h(z) ≤ 0} − λ1{x 6= z} ≤ 1, this strategy is
optimal. Furthermore, for any other optimal strategyz′, we would have1{x 6= z} =
0, hence z′ = x.

2. For any x ∈ H1 = Ph \ Ph(αp), we have that Bp(x, αp) ⊂ Ph by de�nition of
Ph(αp). Hence, for any z ∈ Bp(x, αp), one gets h(z) > 0. Then 1{h(z) ≤ 0} −
λ1{x 6= z} ≤ 0. The only optimal z will thus be z = x, giving value 0.

3. Finally, for any x ∈ H2 = Ph(αp), we have thatBp(x, αp) ∩ P c
h 6= ∅, and for any

z in this intersection, one has h(z) ≤ 0 and z 6= x. Hence

essup
z∈Bp(x,αp)

1{h(z) ≤ 0} − λ1{z 6= x} = max(1− λ, 0).

Since λ ∈ (0, 1) one has 1{h(z) ≤ 0} − λ1{z 6= x} = 1 − λ for any z ∈
Bp(x, αp) ∩ P c

h . Then any function that outputs ψ1(x) ∈ Bp(x, αp) ∩ P c
h is

optimal onH2.
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SinceH0 ∪H1 ∪H2 = X , Lemma 1 holds. The proof for y = −1 is symmetrical. Further-
more, the value for the optimal score writes

sup
ψ∈(FX|αp)

2

Scoreadv
Ω (h,ψ)

=Ey∼ν

∑
j∈J

∫
Hj

essup
z∈Bp(x,αp)

1{h(z)y ≤ 0} − λ1{x = z} dµy(x)


=
∑
y=±1

ν(y)
∑
j∈J

∫
Hj

essup
z∈Bp(x,αp)

1{h(z)y ≤ 0} − λ1{x = z} dµy(x) .

Since the value is 0 on Ph \ Ph(αp) forψ1 – resp. onNh \Nh(αp) forψ91 – one gets

=R(h) + (1− λ)
(
ν(1)µ1(Ph(αp)) + ν(91)µ91(Nh(αp))

)
, (3.7)

where Equation (3.7) holds sinceR(h) = ν(1)µ1(P c
h ) + ν(91)µ91(N c

h ). This provides
an interesting decomposition of the adversarial risk into the risk without attack and the loss
the adversary produces by attacking that recall the decomposition in Chapter 2.

Note that an optimal attack will only change points that are close enough to the decision
boundary. This means that, when the adversary cannot change the hypothesis’ decision on a
point, it will not attack it. Let us now study what happens for the defender. At a �rst glance,
one would suspect that the best response for the defender ought to be the Bayes optimal classi�er
for the transported distributions. However, it is only well de�ned if the conditional distributions
admit a probability density function. This might not always hold here for the transported distri-
bution. Nevertheless, we present a property, shared by the Bayes optimal classi�er when de�ned,
that always holds for the defender’s best response.

Lemma 2. Let us consider ψ ∈
(
FX|αp

)2
. If we take h ∈ BR(ψ), then for any measurable

B ⊂ Ph one hasψ1#µ1(B)× ν(1) ≥ ψ91#µ91(B)× ν(1). A similar result holds forNh.

Proof. We reason ad absurdum with the following assumption:

There exists a measurable setC ⊂ Ph such that ν(91)ψ91#µ91(C) > ν(1)ψ1#µ1(C).

Let us construct h̄ as follows:

h̄(x) =

{
h(x) if x /∈ C
−1 otherwise.

Since h and h̄ are identical outsideC , the di�erence between the adversarial scores of h and
h̄writes as follows:

Scoreadv
Ω (h,ψ)− Scoreadv

Ω (h̄,ψ)
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3 A game theoretical point of view on adversarial attacks

=Ey∼ν

∫
C

1{h(x)y ≤ 0} − 1
{
h̄(x)y ≤ 0

}
dψy#µy(x)


=
∑
y±1

ν(y)

∫
C

1{h(x)y ≤ 0} − 1
{
h̄(x)y ≤ 0

}
dψy#µy(x)

.
Since – by construction – for any x ∈ C we have h̄(x) < 0 and h(x) > 0, we can write

Scoreadv
Ω (h,ψ)− Scoreadv

Ω (h̄,ψ)

= ν(−1)ψ91#µ91(C)− ν(1)ψ1#µ1(C)

Since we assumed ν(−1)ψ91#µ91(C) > ν(1)ψ1#µ1(C) the di�erence between the ad-
versarial scores ofh and h̄ is strictly positive. This means that h̄ gives strictly better adversarial
score than the best responseh, leading to a contradiction. Hence Lemma 2 holds. The proof
forNh is symmetrical.

In particular, when ψ1#µ1 and ψ91#µ91 admit probability density functions, Lemma 2
means that h is the Bayes optimal classi�er for the distribution characterized by ν,ψ91#µ91 and
ψ1#µ1.

3.2.2 No Pure Nash Equilibrium in the game

We can now state our �rst main result relating the absence of equilibrium in the regularized game.

Theorem 7 (Non-existence of a pure Nash equilibrium). In the zero-sum game from Equation (3.5),

there is no Pure Nash Equilibrium.

Proof. Let h be a classi�er and ψ ∈ BRΩ(h) an optimal attack against h. We will show
that h /∈ BR(ψ) – i.e. that h does not satisfy the condition from Lemma 2. It su�ces
for Theorem 7 to hold since it implies that there is no (h,ψ) ∈ H ×

(
FX|αp

)2 such that
h ∈ BR(ψ) andψ ∈ BRΩ(h).

According to Lemma 1, we haveψ1#µ1(Ph(αp)) = 0 – i.e. Ph(αp) is of null measure
for the transported distribution conditioned by y = 1. Sinceψ91 is the identity onPh(αp),
and since µ91 is of full support onX a we have

ψ91#µ91(Ph(αp)) = µ91(Ph(αp)) > 0. (3.8)

Hence we get the following

ψ91#µ91(Ph(αp)) > ψ1#µ1(Ph(αp)). (3.9)

Since the right side of the inequality is null, for any ν(1) and ν(91) we get

ψ91#µ91(Ph(αp))ν(91) > ψ1#µ1(Ph(αp))ν(1). (3.10)
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3.2 Instability of the game

This inequality is incompatible with the characterization of the best response for the defender
of Lemma 2. Hence h /∈ BR(ψ).

aNote that the full support hypothesis is much stronger than what we actually need. Fundamentally, we only
need the null sets for measures µ1 and µ91 to be su�ciently far one from the other.

Figure 3.2: Illustration of the conditional distributions µ91 and µ1. On the left: without attack. On the
right: under penalized attack. Blue and red zones are respectively the setsPh(αp) andNh(αp).

Figure 3.2 illustrates Theorem 7 with two uni-dimensional Gaussian distributions. We see that
– one the right –µ1 is set to 0 inPh(αp), and this mass is transferred intoNh(αp). The symmetric
holds for µ91. After attack, we have µ1(Ph(αp)) = 0. Hence, any small amount of mass for µ91

in Ph(αp) is now su�cient to make it dominant; hence the zone will now be classi�ed -1 by the
Bayes optimal classi�er. This result has several deep consequences. Among them, we focus on the
following two.

Consequence 1: There might be room for robustness after all

The above result shows the fundamental di�erence between regularized and unregularized games.
While in the unregularized setting there may exist a pure – trivial – Nash Equilibrium, our analysis
shows that such an equilibrium cannot exist as soon as we add an in�nitesimally small regulariza-
tion. Hence, our result highlights a very interesting property of the unregularized problem, which
is its instability. This leads us to the following conclusions.

• We should reconsider the works on the limits of classi�cation under perturbation and ver-
ify whether these results still hold – or are diminished – when we add a set of realistic con-
straints to the adversary, be it the one we just described or more sophisticated ones.

• There might be room for robustness after all. Even if for now, the defense community
seems to be losing the race, the game is not over yet. If we design more realistic adversaries,
we may be able to understand better the threat and design more robust models.
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3 A game theoretical point of view on adversarial attacks

Consequence 2: No free lunch for transferable examples

To understand this statement, �rst note that thanks to the weak duality, the following inequality
always holds

sup
ψ∈(FX|αp)

2

inf
h∈H

Scoreadv
Ω (h,ψ) ≤ inf

h∈H
sup

ψ∈(FX|αp)
2

Scoreadv
Ω (h,ψ).

On the left side problem – sup-inf – the adversary looks for the best strategy ψ against any un-

known hypothesis. This is closely related to the notion of transferablility of the attacks – inves-
tigated e.g. in [67, 155] – which refers to attacks successful against a wide range of hypotheses.
On the right side problem – inf-sup – the defender tries to �nd the best hypothesis under any
possible attack, whereas the adversary plays in second and speci�cally attacks this hypothesis. As
a consequence of Theorem 7, the inequality is always strict:

sup
ψ∈(FX|αp)

2

inf
h∈H

Scoreadv
Ω (h,ψ) < inf

h∈H
sup

ψ∈(FX|αp)
2

Scoreadv
Ω (h,ψ).

This means that the problems are not equivalent. In particular, an attack designed to succeed
against any hypothesis – i.e. a transferable attack – will not be as good as an attack tailored for a
given hypothesis. The adversary must therefore make a trade-o� between e�ectiveness and trans-
ferability of the attack. This sends a second encouraging message to the defense community.

3.3 Randomization might be the clue

3.3.1 Adaptation of the problem statement

We just found that adversarial defense might be possible. However, both the current literature on
adversarial attacks and the instability of the game in the deterministic setting pushes us to widen
the class of strategies we consider. A natural extension of the game would be to allow randomiza-
tion for both players. Now they choose a distribution over pure strategies, leading to the following
game

inf
η∈P(H)

sup
Ψ∈P

(
(FX|αp)

2
)Eh∼η,ψ∼Ψ

[
Scoreadv

Ω (h,ψ)
]
. (3.11)

Without making further assumptions – e.g. compactness – we cannot apply known results
from game theory to prove the existence of an equilibrium. Studying the equilibrium is appealing
from a theoretical point of view but would require strong results in the theory of optimal trans-
port; hence we leave it to further investigations. But even without knowing if an equilibrium exists
in the randomized setting, we can prove that randomization matters. More precisely we show that
any deterministic hypothesis can be outperformed by a randomized one in terms of the worst-case
adversarial score. To do so we simplify Equation (3.11) in two ways:

• We keep considering deterministic adversaries – i.e. we restrict the search space of the ad-
versary to (FX|αp)2 instead of P

(
(FX|αp)2

)
. This condition corresponds to the current
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3.3 Randomization might be the clue

state-of-the-art in the domain: to the best of our knowledge, no e�cient randomized ad-
versarial attack has been designed – and so is used – yet.

• We only consider a subclass of randomized hypotheses, called mixtures, which are discrete
probability measures on a �nite set of hypotheses. We show that this randomization is
enough to outperform any deterministic hypothesis. We will discuss in Chapters 4 and 5
the use of more general randomized hypothesis spaces. Let us now de�ne a mixture.

De�nition 4 (Mixture of hypothesis). Let m ∈ N, h = (h1, ..., hm) ∈ Hm a vector of m
hypothesis functions and q = (q1, . . . , qm) ∈ P({1, . . . ,m}) a probability vector

4
. A mixed

hypothesis of h by q is a mapping mqh from X to P(R) such that for all x ∈ X , mqh(x) outputs

hi(x) with probability qi.

We call such a mixture a mixed strategy of the defender. Given some x ∈ X , this amounts
to picking a hypothesis hi from h at random following the distribution q, and use it to output
the predicted class for x – i.e. sign(hi(x)). Note that a mixed strategy for the defender is a non-
deterministic algorithm, since it depends on the sampling one makes on q. Hence, even if the
attack space remains unchanged, the adversary now needs to maximize a new objective function
which is the expectation of the adversarial score under the distributionmqh(x). It writes as follows

Scoreadv
Ω (mqh,ψ) := Ey∼ν

[
Ex∼ψy#µy

[
Ei∼q

[
L0/1(hi(x), y)

]]]
− λΩ(ψ). (3.12)

This notion of score is the natural extension of the deterministic case; hence we keep the notation
Scoreadv

Ω . In the following, it will be clear from context that the defender uses a mixed strategy.

3.3.2 Randomization matters: how to outperform deterministic hypotheses

Using this new set of hypotheses for the defender, we demonstrate that we can improve determin-
istic defenses using a simple mixed strategy. This method presents similarities with the notions of
�ctitious play [23] in game theory, and boosting in machine learning [56]. Given a deterministic
hypothesis h1, we combine it – via randomization – with the best response h2 to its optimal at-
tack. The rationale behind this idea is that – by construction – e�cient attacks on one of these
two hypotheses will not work on the other. Mixingh1 withh2 has two opposite consequences on
the adversarial score. On one hand, where we only had to defend against attacks onh1, we are now
also vulnerable to attacks on h2, so the total set of possible attacks is now bigger. On the other
hand, each attack will only work part of the time, depending on the probability distribution q. If
we can calibrate the weights so that the new attacks have a low probability of succeeding, then the
average risk under attack on the mixture will be low.

Theorem 8 (Randomization matters). Let us consider h1 ∈ H, λ ∈ (0, 1),ψ ∈ BRΩ(h1) and

h2 ∈ BR(ψ). Then for any q1 ∈ (max(λ, 1− λ), 1) and for anyψ′ ∈ BRΩ(mqh) one has

Scoreadv
Ω (mqh,ψ

′) < Scoreadv
Ω (h1,ψ).

Whereh = (h1, h2), q = (q1, 1− q1), and mqh is the mixture ofh by q.

4Note that we already de�ned the simplex ∆(m) = P({1, . . . ,m}), but for consistency of the notations in this
chapter we useP({1, . . . ,m}).
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3 A game theoretical point of view on adversarial attacks

Figure 3.3: Illustration of the notationsU ,U+, andU− for proof of Theorem 8.

Proof. To demonstrate Theorem 8, let us denote U = Ph1(αp) and de�ne the αp-dilation

of U as U ⊕ αp :=
{
u+ v | (u, v) ∈ U ×X and ‖v‖p ≤ αp

}
. We can construct h2 as

follows

h2(x) =

{
−h1(x) if x ∈ U
h1(x) otherwise.

This means thath2 changes the class of all points inU , and do not change the rest, compared
to h1. Then taking q1 ∈ (0, 1), we can de�ne mqh, andψ′ ∈ BRΩ(mqh). We aim to �nd a
condition on q1 so that the score ofmqh is lower than the score of h1. Finally, let us recall that

Scoreadv
Ω (mqh,ψ

′)

= ν(1)

∫
X

essup
z∈Bp(x,αp)

q1 1{h1(z) ≤ 0}+ (1− q1)1{h2(z) ≤ 0} − λ1{x 6= z} dµ1(x)

+ ν(91)

∫
X

essup
z∈Bp(x,αp)

q1 1{h1(z) ≥ 0}+ (1− q1)1{h2(z) ≥ 0} − λ1{x 6= z} dµ91(x).

The only terms that may vary between the score ofh1 and the score ofmqh are the integrals on
U ,U⊕αp∩Ph1 andψ−1

91 (U) – inverse image ofU byψ91. These sets represent respectively
the points we mix on, the points that may become attacked – when changing from h1 to mqh
– by moving them onU , and the ones that were – for h1 – attacked before by moving them
onU . Hence, for simplicity, we only write those terms. Furthermore, we denote

U+ := U ⊕ αp ∩ Ph1 \ U, U− := ψ−1
91 (U) and recallU := Ph1(αp).
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3.3 Randomization might be the clue

One can refer to Figure 3.3 for visual interpretation of this sets. We can now evaluate the
worst-case adversarial score for h1 restricted to the above sets. Thanks to Lemma 1 that char-
acterizesψ, we can write

Scoreadv
Ω (h1,ψ)|U, U+, U−

= (1− λ)× ν(1)µ1(U) + ν(91)µ91(U)

+ 0× ν(1)µ1

(
U+
)

+ ν(91)µ91

(
U+
)

+ ν(1)µ1

(
U−
)

+ (1− λ)× ν(91)µ91

(
U−
)
.

Similarly, we can write the worst-case adversarial score of the mixture on the sets we consider.
Note that the max operator comes from the fact that the adversary has to make a choice
between attacking the zone or just taking advantage of the error due to randomization.

Scoreadv
Ω (mqh,ψ

′)|U, U+, U−

= max(1− q1, 1− λ)× ν(1)µ1(U) + max(q1, 1− λ)× ν(91)µ91(U)

+ max(0, 1− q1 − λ)× ν(1)µ1

(
U+
)

+ ν(91)µ91

(
U+
)

+ ν(1)µ1

(
U−
)

+ max(0, q1 − λ)× ν(91)µ91

(
U−
)
.

Computing the di�erence between these two terms, we get the following

Scoreadv
Ω (h1,ψ)− Scoreadv

Ω (mqh,ψ
′) (3.13)

= (1− λ−max(1− q1, 1− λ))× ν(1)µ1(U) (3.14)

+ (1−max(q1, 1− λ))× ν(91)µ91(U) (3.15)

− max(0, 1− q1 − λ)× ν(1)µ1

(
U+
)

(3.16)

+(1− λ−max(0, q1 − λ))× ν(91)µ91

(
U−
)
. (3.17)

First recall that bothµ1 andµ91 have full support. Let us now simplify Equation (3.13) using
additional assumptions.

• First, we have that Equation (3.15) is equal to

min(1− q1, λ)µ91(U)ν(91) > 0.

Thus, a su�cient condition for the di�erence between the adversarial scores to be pos-
itive is to have the other terms greater or equal to 0.

• To have Equation (3.14)≥ 0 we can always set max(1− q1, 1− λ) = 1 − λ. This
gives us q1 ≥ λ.
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3 A game theoretical point of view on adversarial attacks

• Also note that to get (3.16)≥ 0, we can force max(1− q1 − λ, 0) = 0.This gives us
q1 ≥ 1− λ.

• Finally, since q1 ≥ λ, we have that 1 − λ − max(0, q1 − λ) = 1 − q1 thus Equa-
tions (3.17)> 0.

With the above simpli�cations, we have (3.13) > 0 for any q1 > max(λ, 1 − λ) which
concludes the proof.

Remark 12. Note that depending on the initial hypothesis h1 and the conditional distributions

µ1 and µ91, the gap between Scoreadv
Ω (mqh,ψ

′)and Scoreadv
Ω (h1,ψ) could vary. Therefore, with

additional conditions on h1, µ1 and µ91, we could make the gap appear more explicitly. We keep

the formulation general to emphasize that for any h1, we can build a better mqh.

Even-though Theorem 8 only applies to mixtures of two classi�ers, it directly implies that ran-
domized hypotheses – de�ned in a broader way – outperform deterministic ones in terms of regu-
larized adversarial score. Based on this �nding, we devise a simple procedure called boosted adver-

sarial training to construct a robust mixture of two hypotheses. It relies on three core principles:
adversarial training, boosting and randomization. The procedure is summarized in Algorithm 1.

Algorithm 1: boosted adversarial training

Input : D the training data set and q1 the probability parameter.

Train h1 onD with adversarial training
Generate the adversarial data set D̃ against h1.
Train h2 on D̃
q ← (q1, 1− q1)
h← (h1, h2)

return mqh

Given a datasetD and a probability parameter q1 ∈ [1/2, 1), we constructh1 the �rst hypoth-
esis of the mixture by using adversarial training on D. Then, we train the second hypothesis h2

on a data set D̃ that contains adversarial examples for h1. At the end of the procedure, we return
the mixture constructed with the two hypothesis where the �rst one has a probability of q1 and
the second 1− q1 accordingly. The parameter q1 is found by conducting a grid-search.

3.4 Numerical validation: improving adversarial training

To empirically evaluate the above procedure, we run a series of experiments on the CIFAR-10 and
CIFAR-100 datasets using deep neural networks. We show that the above simple randomization
scheme can improve the robustness of adversarial training. Let us �rst start by presenting the
experimental setup we use. For direct access to the implementation, one can refer to the following
Github repository.
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3.4 Numerical validation: improving adversarial training

https://github.com/MILES-PSL/

Randomization-matters-How-to-defend-against-strong-adversarial-attacks

3.4.1 Experimental setup

Architecture and training procedure

All the hypotheses we use in this section are WideResNets – see [177] – with 28 layers, a widen
factor of 10, a dropout factor of 0.3 and LeakyRelu activation with a 0.1 slope. To train an un-
defended classi�er we use the following hyper-parameters.

• Number of Epochs: 200

• Batch size: 128

• Loss function: Cross Entropy Loss

• Optimizer : Stochastic gradient descent algorithm with momentum 0.9, weight decay of
2× 10−4 and a learning rate that decreases during the training as follows:

lr =


0.1 if 0 ≤ epoch < 60

0.02 if 60 ≤ epoch < 120

0.004 if 120 ≤ epoch < 160

0.0008 if 160 ≤ epoch < 200.

Remark 13. To train a hypothesis with adversarial training we use the same hyper-parameters as

above, and generate adversarial examples during training using an `∞ adversary with 20 iterations.

We also use PGD with 20 iterations and α∞ = 0.031 to build D̃.

Threat models

To compare the empirical performances of our method with adversarial training, we consider two
`p adversaries with thresholds corresponding to CIFAR datasets

• An `∞ adversary with perturbation bounded by 0.031. To model this adversary we use the
PGD attack with tmax = 100 iterations and a step-size s = 0.008.

• An `2 adversary with perturbation bounded by 0.8. To model this adversary we use the
C&W attack with 100 iterations, a learning rate equal to 0.01, 9 binary search steps, and
an initial constant of κ = 0.001.

Note that, when evaluating a defense against adversarial examples, it is crucial to test the robust-
ness of the method against the best possible attack. Accordingly, the defense method should be
evaluated against attacks that were speci�cally tailored to it – a.k.a. adaptive attacks [154]. Specif-
ically, when evaluating randomized algorithms, one should not try to compute the gradient over
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the logits/probits directly to avoid gradient masking as pointed out in [6] and [26]. Instead – as
we explained in Equation (3.12) – we should provide the expected logits/probits of the mixture
to the adversary. Since we assume perfect information for the adversary, it knows the distribution
of the mixture; hence it can directly compute the expectation over h1 and h2 – without having to
go through a Monte Carlo sampling scheme.

3.4.2 Results

In Table 3.1 we present results for q1 = 0.8 and compared with classical adversarial training [103]5.
The accuracy and accuracy under attack presented for the mixture are expectation overh1 andh2

with respect to q – as explained above, i.e. we give the true expectation.

Table 3.1: Accuracy under attack of a single adversarially trained classi�er (AT) and the mixture formed
with our method (Ours) on CIFAR-10 and CIFAR-100 datasets.

Dataset Method
Accuracy l∞-PGD `2-C&W

without attack α∞ = 0.031 α2 = 0.8

CIFAR910

Undefended 0.88 0.00 0.00
AT [103] 0.83 0.42 0.35

Ours 0.80 0.55 0.53

CIFAR9100

Undefended 0.62 0.00 0.00
AT [103] 0.58 0.26 0.22

Ours 0.56 0.40 0.38

These results show that for both model threats and on both datasets, the accuracy under attack
of our mixture is much higher – 0.10 better against any adversary – than the single classi�er with
adversarial training. However the standard accuracy of our technique dropped a little bit in the
process – minus 0.3/0.2 compared to adversarial training. A trade-o� between robustness and
standard accuracy seems to appear. Indeed – be it adversarial training or boosted adversarial train-
ing – the better the accuracy under attack, the worse the accuracy without attack. Nevertheless,
the trade-o� is not linear since boosted adversarial training gains four times more robust accuracy
than it loses standard one. This indicates that randomization can improve robustness of determin-
istic hypotheses. However, one should be careful when analyzing Table 3.1. We should not draw
conclusions either on the e�cacy of a defense nor on the trade-o� between robustness and accu-
racy only based on empirical evidence – since empirical defenses are often broken sometimes after
being designed [6, 38, 154]. Therefore, we need further theoretical and empirical investigations to
validate randomization as a proper defense strategy.

5Note that we compare here with the vanilla version of adversarial training. Other versions exist with slightly better
accuracy under attack. Furthermore, to avoid some computational burden, we did not use data augmentation
during the leaning procedure – which explains some di�erences with the initial paper [103].
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3.5 Additional results: another type of penalty
The core arguments we used to demonstrate Lemma 1 and Theorems 8 do not depend on the form
of the penalty we consider. Any notion of distance between the perturbation and the initial point
would allow to �nd the same kind of results. To show this, let us consider thatX is a Hilbert space
with a dot product 〈., .〉 and associated norm ||.|| =

√
〈., .〉. Then we can de�ne the following

regularization that penalizes the expected norm under perturbationψ,

Ω(ψ) := Ey∼ν
[
Ex∼µy [‖x−ψy(x)‖]

]
. (3.18)

This regularization could for example materialize an adversary that seeks a solution to the La-
grangian relaxation presented in Section 2.2 – e.g. C&W attack [28].

Remark 14. Note that we only use a dot product for the projection operator to be well defined. But

any notion of distance with a well-defined projection works alike.

In this context, the best responses for the defender remain unchanged; hence we only focus
on characterizing the set of best responses for the adversary. The new best response we get for
the adversary shares a fundamental similarity with the previous one: the optimal attack will only
change points that are close enough to the decision boundary. However, with our new penalty
all attacked points are projected on the decision boundary. The proof is very similar to Lemma 1,
but we display it below for completeness.

Lemma 2. Let h ∈ H andψ ∈ BRΩ(h). Then the following assertion holds:

ψ1(x) =

{
proj(x) if x ∈ Ph(αp)

x otherwise.

Where proj is the orthogonal projection on (Ph) c
. ψ91 is characterized symmetrically.

Proof. Let us �rst simplify the worst-case adversarial score for h.

sup
ψ∈(FX|αp)

2

Scoreadv
Ω (h,ψ)

=
∑
y=±1

ν(y) sup
ψy∈FX|αp

Ex∼µy [1{h(ψy(x))y ≤ 0} − λ‖x−ψy(x)‖] .

Findingψ1 andψ91 are two independent optimization problems, hence, we focus on char-
acterizingψ1 – i.e. y = 1.

sup
ψ1∈FX|αp

Ex∼µ1 [1{h(ψ1(x)) ≤ 0} − λ‖x−ψ1(x)‖]

=

∫
X

essup
z∈Bp(x,αp)

1{h(z) ≤ 0} − λ‖x− z‖ dµ1(x)
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=
∑
j∈J

∫
Hj

essup
z∈Bp(x,αp)

1{h(z) ≤ 0} − λ‖x− z‖ dµ1(x),

where (Hj)j∈J is a partition of X . In particular, we take H0 = P c
h , H1 = Ph \ Ph(αp),

andH2 = Ph(αp). Then we can study the three sets independently.

1. For x ∈ H0 = P c
h , taking z = x gives us 1{h(z) ≤ 0} − λ‖x− z‖ = 1. Since

for any z ∈ X we have 1{h(z) ≤ 0} − λ‖x− z‖ ≤ 1, this strategy is optimal.
Furthermore, for any other optimal strategy z′, we would have ‖x− z′‖ = 0, hence
z′ = x, and an optimal attack will never move the points ofH0 = P c

h .

2. For x ∈ H1 = Ph \ Ph(αp). We have Bp(x, αp) ⊂ Ph by de�nition of Ph(αp).
Hence, for anyz ∈ Bp(x, αp), one getsh(z) > 0. Then1{h(z) ≤ 0}−λ‖x− z‖ ≤
0. The only optimal z will thus be z = x, giving value 0.

3. Let us now considerx ∈ H2 = Ph(αp) which is the interesting case where an attack
is possible. We know that Bp(x, αp) ∩ P c

h 6= ∅, and for any z in this intersection,
1{h(z) ≤ 0} = 1. Hence :

essup
z∈Bp(x,αp)

1{h(z) ≤ 0} − λ‖x− z‖

= max

(
1− λ essinf

z∈Bp(x,αp)∩P c
h

‖x− z‖, 0
)

= max
(

1− λ‖x− projBp(x,αp)∩P c
h

(x)‖, 0
)

Where projBp(x,αp)∩P c
h

is the projection on the closure ofBp(x, αp)∩P c
h

a. Finally,
let us remark that, since λ ∈ (0, 1) and αp ≤ 1, one has

1− λ‖x− projBp(x,αp)∩P c
h

(x)‖ ≥ 0

for anyx ∈ H2. Hence, onPh(αp), the optimal attack projects all the points onP c
h .

Finally, sinceH0 ∪H1 ∪H2 = X , Lemma 2 holds. Furthermore, the worst-case adversarial
score writes

sup
ψ∈(FX|αp)

2

Scoreadv
Ω (h, ψ)

=
∑
y=±1

ν(y)
∑
j∈J

∫
Hj

essup
z∈Bp(x,αp)

1{h(z)y ≤ 0} − λ‖x− z‖ dµy(x) .
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Since the value is 0 on Ph \ Ph(αp) forψ1 – resp. onNh \Nh(αp) forψ91 – one gets

= R(h) + ν(1)

∫
Ph(αp)

(
1− λ‖x− proj(x)‖

)
dµ1(x)

+ ν(91)

∫
Nh(αp)

(
1− λ‖x− proj(x)‖

)
dµ91(x) .

aNote that projBp(x,αp)∩P c
h

exists. Indeed h is continuous, so Bp(x, αp) ∩ P c
h is a closed and bounded

set; thus compact – since we are in �nite dimension. The projection is however not guaranteed to be unique
since we have no evidence on the convexity of the set.

Note that, in practice, it might be computationally hard to generate the exact best response –
i.e. the projection onP c

h . That will happen for example if the decision boundary is very complex –
e.g. highly non-smooth – or whenX is in a high-dimensional space. To keep the attack tractable,
the adversary will have to compute an approximate best response by allowing the projection to
reach points within a small ball around the boundary. This means that the best responses for the
new penalized problem will sometimes match the best response for the previous one.

Figure 3.4: Illustration of the conditional distributions µ91 and µ1. On the left: without attack. On the
right: under penalized attack with the new penalty. Blue and red zones are respectively the sets
Ph(αp) andNh(αp).

As for the previous penalty, we illustrate in Figure 3.4 the the non-existence of a Pure Nash
Equilibrium with two uni-dimensional Gaussian distributions. We can see – on the right – that
the mass ofµ1 that was inPh(αp) is transported on a Dirac distribution at the decision boundary.
Similarly to the previous penalty, the Bayes optimal classi�er for the new distribution will predict
91 for the zone Ph(αp), hence Theorem 7 holds with exactly the same proof as above. Finally,
let us present an adaptation of Theorem 8 to our new penalty. The statement is almost the same,
with the only di�erence that we have to interpolate on the bound of the perturbation, getting a
new condition: q1 > max(1 − λδ, λ(αp − δ)) with δ ∈ (0, αp). The proof follows the same
steps as before but because of the proj operator, some more calculus is needed.
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3 A game theoretical point of view on adversarial attacks

Remark 15. For the condition on q1 to make sens, we also need that max(1−λδ, λ(αp−δ)) < 1.

This will hold in particular whenαp ≤ 1 which is a standard assumption considering the threshold

we have discussed so far. In the remaining we will consider that αp ≤ 1 accordingly.

Theorem 9 (Randomization matters bis). Let us consider αp ≤ 1, h1 ∈ H, λ ∈ (0, 1), δ ∈
(0, αp) andψ ∈ BRΩ(h1). Then there exists h2 such that, for any q1 ∈ (max(1 − λδ, λ(αp −
δ)), 1) and for anyψ′ ∈ BRΩ(mqh) one has

Scoreadv
Ω (mqh,ψ

′) < Scoreadv
Ω (h1,ψ).

Whereh = (h1, h2), q = (q1, 1− q1), and mqh is the mixture ofh by q.

Figure 3.5: Illustration of the notationsU ,U+,U− and δ for proof of Theorem 9.

Proof. Let us takeU ⊂ Ph1(αp) such that

min
x∈U
‖x− projPh\Ph(αp)(x)‖ = δ ∈ (0, αp).

We construct h2 as follows.

h2(x) =

{
−h1(x) if x ∈ U
h1(x) otherwise.

This means that h2 changes the class of all points in U , and do not change the rest. Let
q1 ∈ (0, 1), the corresponding mixture mqh, andψ′ ∈ BRΩ(mqh). We will �nd a condition
on q1 so that the score of mqh is lower than the score of h1. Recall that

Scoreadv
Ω (mqh,ψ

′)
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= ν(1)

∫
X

essup
z∈Bp(x,αp)

q1 1{h1(z) ≤ 0}+ (1− q1)1{h2(z) ≤ 0} − λ‖x− z‖ dµ1(x)

+ ν(91)

∫
X

essup
z∈Bp(x,αp)

q1 1{h1(z) ≥ 0}+ (1− q1)1{h2(z) ≥ 0} − λ‖x− z‖ dµ91(x) .

As we discussed in the proof of Theorem 8, the only terms that may vary between the score
of h1 and the score of mqh are the integrals on U , U ⊕ αp ∩ Ph1 andψ−1

91 (U). Hence, for
simplicity, we only write those terms. Furthermore, we denote

U+ := U ⊕ αp ∩ Ph1 \ U, U− := ψ−1
91 (U) and Pαp := Ph1(αp).

One can refer to Figure 3.5 for a visual interpretation of these sets. We can now evaluate
the worst-case adversarial score for h1 restricted to the above sets. Thanks to Lemma 2 that
characterizesψ, we can write

Scoreadv
Ω (h1,ψ)

= ν(1)

∫
U

(
1− λ‖x− projP c

h1
(x)‖

)
dµ1(x) + ν(91)µ91(U)

+ ν(1)

∫
U+\Pαp

0 dµ1(x) + ν(91)µ91

(
U+ \ Pαp

)
+ ν(1)

∫
U+∩Pαp

(
1− λ‖x− projP c

h1
(x)‖

)
dµ1(x) + ν(91)µ91

(
U+ ∩ Pαp

)
+ ν(1)µ1

(
U−
)

+ ν(91)

∫
U−

(
1− λ‖x− projU (x)‖

)
dµ91(x).

Similarly we can evaluate the worst-case adversarial score for the mixture,

Scoreadv
Ω (mqh,ψ

′)

= ν(1)

∫
U

max
(

1− q1, 1− λ‖x− projP c
h1

(x)‖
)
dµ1(x)

+ ν(91)

∫
U

max(q1, 1− λ‖x− projU+(x)‖) dµ91(x)

+ ν(1)

∫
U+\Pαp

max(0, 1− q1 − λ‖x− projU (x)‖) dµ1(x) + ν(91)µ91

(
U+ \ Pαp

)
+ ν(1)

∫
U+∩Pαp

max
(

1− q1 − λ‖x− projU (x)‖, 1− λ‖x− projP c
h1

(x)‖
)
dµ1(x)
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+ ν(91)µ91

(
U+ ∩ Pαp

)
+ ν(1)µ1

(
U−
)

+ ν(91)

∫
U−

max
(

0, 1− λ‖x− projN c
h1
\U (x)‖, q1 − λ‖x− projU (x)‖

)
dµ91(x).

Note that we need to take into account the special case of the points in the dilation that
were already in the attacked zone before, and that can now be attacked in two ways, either
by projecting onU – but that works with probability q1, since the classi�cation onU is now
randomized – or by projecting on P c

h1
, which works with probability 1 but may use more

distance and so pay more penalty. We can now compute the di�erence between both scores.

Scoreadv
Ω (h1,ψ)− Scoreadv

Ω (mqh,ψ
′) (3.19)

= ν(1)

∫
U

1− λ‖x− projP c
h1

(x)‖ −max
(

1− q1, 1− λ‖x− projP c
h1

(x)‖
)
dµ1(x)

(3.20)

+ ν(91)

∫
U

1−max(q1, 1− λ‖x− projU+(x)‖)dµ91(x) (3.21)

− ν(1)

∫
U+\Pαp

max(1− q1 − λ‖x− projU (x)‖, 0)dµ1(x) (3.22)

+ ν(1)

∫
U+∩Pαp

1− λ‖x− projP c
h1

(x)‖

− max
(

1− q1 − λ‖x− projU (x)‖, 1− λ‖x− projP c
h1

(x)‖
)
dµ1(x) (3.23)

+ ν(91)

∫
U−

1− λ‖x− projU (x)‖

− max
(

0, 1− λ‖x− projN c
h1
\U (x)‖, q1 − λ‖x− projU (x)‖

)
dµ91(x). (3.24)

First recall that both µ1 and µ91 have full support. Let us simplify Equation (3.19) using
using additional assumptions.

• First, note that Equation (3.21)> 0. Then a su�cient condition for the di�erence to
be strictly positive is to ensure that other lines are≥ 0.

• In particular to have (3.20) ≥ 0 it is su�cient to have for all x ∈ U

max
(

1− q1, 1− λ‖x− projP c
h1

(x)‖
)

= 1− λ‖x− projP c
h1

(x)‖.

This gives us q1 ≥ λ(αp − δ) ≥ λmax
x∈U
‖x− projP c

h1
(x)‖.
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• Similarly, to have (3.22) ≥ 0, we should set for all x ∈ U+ \ Pαp

q1 ≥ 1− λ‖x− projU (x)‖.

Since min
x∈U+\Pαp

‖x− projU (x)‖ = δ, we get the condition q1 ≥ 1− λδ.

• Finally (3.24)≥ 0, since by de�nition ofU−, for any x ∈ U− we have

‖x− projN c
h1
\U (x)‖ ≥ ‖x− projU (x)‖.

Finally, by summing all these simpli�cations, we have (3.19) > 0. Hence the result holds for
any q1 > max(1− λδ, λ(αp − δ)).

3.6 Lessons learned and future works
In this chapter, we provided a new point of view on the problem of classi�cation under pertur-
bation – Problem (1.3). Based on simple tools from game theory, we demonstrated that adding
some regularization can fundamentally modify the nature of the game between the adversary and
the defender – model provider. This analysis led us to investigate randomized hypothesis classes.
Both our theoretical �ndings and empirical validation prove the e�cacy of this method and thus
provide a �rst answer to Q1:

There might be a class of randomized hypothesesH for which the adversarial risk

minimization problem has a solutionh∗ with small adversarial risk

In Chapters 4 and 5 we will further investigate some speci�c classes and show that we can obtain
both robustness and accuracy – to some extent. Nevertheless, several questions remain open. We
list here some of them that we aim to investigate in the future.

Future work 1: The equilibrium in the randomized regime

There remains to study whether an equilibrium exists in the randomized regime. This question
is appealing from a theoretical point of view, and requires to investigate the space of randomized
adversariesP((FX|αp)2) which implies more technicalities. The study of this equilibrium is also
tightly related to that of the value of the game, which would be interesting for obtaining min-max
bounds on the accuracy under attack.

Future work 2: Study the duality gap

For now, Theorem 7 shows that there is no Pure Nash Equilibrium in the game, meaning that
strong duality does not hold. But it does not indicate how distant the values from the inf − sup
and the sup− inf problem are – a.k.a. the duality gap. Evaluating this duality gap could help us
build a �ner analysis on the impact of regularization on the game.
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3 A game theoretical point of view on adversarial attacks

Future work 3: Boosted adversarial training, a certi�ed defense?

Although the experimental results show that our mixture of hypotheses outperforms adversarial
training, the algorithm we present do not provide guarantees in terms of certi�ed accuracy. As
the literature on adversarial attacks and defenses demonstrated, better attacks always exist. This is
why, we need to further study the theoretical aspects of our procedure, to prove the robustness of
the mixtures we design.
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Q1: Is there some hypothesis classH for which the adversarial risk minimization

problem has a solutionh∗ with small adversarial risk?

Q2: Can we find a classH and a hypothesish∗ ∈ H that simultaneously

has small standard and adversarial risks?

In Chapter 3, we identi�ed randomized hypotheses as good candidates to build more robust
classi�ers; thus partially answering Q1. Here, we keep answering Q1 and provide preliminary
answers to Q2 by studying randomized classi�ers through the prism of learning theory. In Sec-
tion 4.1, we de�ne this class and adapt the notions of risk and robustness to account for the in-
ternal random state of the classi�ers. In particular, we use the total variation distance to de�ne

65



4 Theoretical analysis of randomized classifiers

robustness as a local Lipschitz condition from X to P(Y). We show in Section 4.2 that under
this robustness assumption, we can bound the di�erence between the standard risk and the ad-
versarial risk of any randomized classi�er. This answers Q2 by evaluating the maximal trade-o�
between robustness and accuracy of the classi�er. Then, we devise bounds on the standard gener-
alization gap of this hypothesis class in Section 4.3 and discuss the consequences and limitations
of our result. In Section 4.4 we analyze the stability of randomized classi�ers with respect to their
mode and the implications it has on our understanding of randomized smoothing. Finally, we
extend our results to the Renyi divergence, present some additional results and summarize our
�ndings respectively in Sections 4.5 and 4.6.

4.1 Terminology for randomized classi�ers

Notations. For any set Z with σ-algebra A(Z), if there is no ambiguity on the considered σ-

algebra, we denote P(Z) the set of all probability measures over (Z,A(Z)). For ρ ∈ P(Y), we

sometimes denote ρ = (ρ1, . . . , ρK) where for every i ∈ {1, . . . ,K}, ρi is the probability under

ρ to get i – i.e. ρ(i). Depending on the context, we use one or the other notation without further

distinction.

4.1.1 De�nitions on randomized classi�ers

This chapter’s goal is to analyze how randomized classi�ers could constitute good candidates to
solve the problem of classi�cation under perturbation. For this, we come back to the general K-
class classi�cation setting. We have X ⊂ [0, 1]d, Y = {1, . . . ,K} and D the ground-truth
distribution onX × Y . Let us start by de�ning what we mean by randomized classi�ers.

De�nition 5 (Probabilistic mapping). LetZ andZ ′ be two arbitrary spaces. A probabilistic map-
ping from Z to Z ′ is a mapping m : Z → P(Z ′). When Z = X and Z ′ = Y , m is called a

randomized classi�er. To get a numerical answer out of m for an input x, we sample ŷ ∼ m(x).

Remark 16. In Chapter 3, we discussed the properties of mixtures of hypotheses. The above definition

generalizes the previous one. Furthermore, we can consider any mapping as a probabilistic mapping

whether it explicitly considers randomization or not. In fact, any deterministic classifier can be seen

as a randomized one, since we can characterize it with a Dirac measure.

As we previously did for randomized hypotheses, we can adapt the concepts of risk and adver-
sarial risk for a randomized classi�er. The loss function we use is the natural extension of the 0/1
loss to the randomized regime. Given a randomized classi�erm and a sample (x, y) ∼ D it writes

L0/1(m(x), y) := Eŷ∼m(x)[1{ŷ 6= y}]. (4.1)

This loss function evaluates the probability of misclassi�cation ofmon a data sample (x, y) ∼ D.
Accordingly, the risk of m with respect toD writes

R(m) := E(x,y)∼D
[
L0/1(m(x), y)

]
. (4.2)
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Finally, givenm and (x, y) ∼ D, the adversary seeks a perturbation τ ∈ X such that ‖τ‖p ≤ αp
that maximizes the expected error of the classi�er onx – i.e. Eŷ∼m(x+τ )[1{ŷ 6= y}]. Therefore,
the adversarial risk of m under αp-bounded perturbations writes

Radv(m;αp) := E(x,y)∼D

[
sup

τ∈Bp(αp)
L0/1(m(x+ τ ), y)

]
. (4.3)

4.1.2 Robustness for randomized classi�ers

We could de�ne the notion of robustness for a randomized classi�er depending on whether it
misclassi�es any test sample (x, y) ∼ D. But in practice, neither the adversary nor the model
provider have access to the ground-truth distributionD. Furthermore, in real-world scenarios –
e.g. the autonomous car – we want to check before its deployment whether the model is robust.
Therefore, we want the classi�er to be stable on the regions of the space where it already classi�es
correctly. Formally a – deterministic – classi�er c : X → Y is called robust if for any (x, y) ∼ D
such that c(x) = y, and for any τ ∈ X one has

‖τ‖p ≤ αp =⇒ c(x) = c(x+ τ ). (4.4)

By analogy with this notion, we de�ne robustness for a randomized classi�er as follows.

De�nition 6 (robustness for a randomized classi�er). A randomized classifier m : X → P(Y)
is called (αp, ε)-robust w.r.t.D if for any x, τ ∈ X , one has

‖τ‖p ≤ αp =⇒ D(m(x),m(x+ τ )) ≤ ε .

Where D is a metric/divergence between two probability measures. Moreover, given such a metric

D, we denote MD(αp, ε) the set of all randomized classifiers that are (αp, ε)-robust w.r.t.D.

Remark 17. Note that we did not add the constraint thatm classifies well on (x, y) ∼ D, since it is

already encompassed in the probability distribution itself. If the two probabilitiesm(x) andm(x+
τ ) are close, and if m(x) outputs y with high probability, then it will be the same for m(x+ τ ).

This formulation naturally raises the question of the choice of metric D we should use to de-
fend against adversarial attacks. Any choice of metric/divergence will instantiate a notion of ad-
versarial robustness, and it should be carefully selected. In the present work, we focus our study
on the total variation distance and extend our results to the Renyi divergence in Section 2.4. The
question whether these metrics/divergences are more appropriate than others remains open but
these two divergences are su�ciently general to cover a wide range of other de�nitions – see Sec-
tion 2.4 for more details. Furthermore, these notions of distance comply with both a high level –
Chapter 4 – and a more practical analysis – Chapter 5.

Let us now recall the de�nition of total variation distance. LetZ be an arbitrary space, and ρ,
ρ′ be two measures inP(Z). The total variation distance between ρ and ρ′ is

DTV

(
ρ, ρ′

)
:= sup

Z⊂A(Z)
|ρ(Z)− ρ′(Z)| . (4.5)
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The total variation distance is one of the most commonly used probability metrics. It admits
several very simple interpretations, and is a very useful tool in many mathematical �elds such as
probability theory, Bayesian statistics or optimal transport [129, 137, 163]. In optimal transport,
it can be rewritten as the solution of the Monge-Kantorovich problem with the cost function
cost(z, z′) = 1{z 6= z′},

DTV (ρ, ρ′) = inf

∫
Z2

1
{
z 6= z′

}
dπ(z, z′) , (4.6)

where the in�mum is taken over all joint probability measures π inP(Z × Z) with marginals ρ
and ρ′. According to this interpretation, it seems quite standard to consider the total variation
distance as a relaxation of the trivial distance on [0, 1] – see e.g. [163, chap 1] for details. In the
remaining we denote MTV (αp, ε) the set of all (αp, ε) robust classi�ers w.r.t.DTV .

4.2 Risks’ gap for robust randomized classi�ers

4.2.1 An additive bound for the risks’ gap

As we discussed in Section 2.4, we can always decompose the adversarial risk of a classi�er m in
two terms. First the standard risk of m and second the amount of risk the adversary creates with
non-zero perturbations

Radv(m;αp) = R(m) +Radv
>0 (m;αp). (4.7)

Hence minimizingR(m) can give poor values forRadv(m;αp) and vise-versa. In this section,
we upper-boundRadv

>0 (m;αp) to simplify the learning procedure. Speci�cally, let us consider m
in the class of (αp, ε)-robust classi�ers w.r.t.DTV . Then we can control the loss of accuracy under
attack of this classi�er with the robustness parameter ε.

Theorem 10 (Risk’s gap for TV-robust classi�ers). Let m ∈MTV (αp, ε) . Then we have

Radv(m;αp) ≤ R(m) + ε .

Proof. Let m be an (αp, ε)-robust classi�er w.r.t. DTV , (x, y) ∼ D and τ ∈ X such that
‖τ‖p ≤ αp. By de�nition of the 0/1 loss we have

L0/1(m(x+ τ ), y) = Eŷ∼m(x+τ )[1{ŷ 6= y}].

Furthermore, by de�nition of the total variation distance we have

Eŷ∼m(x+τ )[1{ŷ 6= y}]− Eŷ∼m(x)[1{ŷ 6= y}] ≤ DTV (m(x),m(x+ τ )).

Since m ∈MTV (αp, ε), the above amounts to write

L0/1(m(x+ τ ), y)− L0/1(m(x), y) ≤ ε.
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Finally, this holds for any (x, y) ∼ D and any αp bounded perturbation τ , then we get

E(x,y)∼D

[
sup

τ∈Bp(αp)
L0/1(m(x+ τ ), y)

]
− E(x,y)∼D

[
L0/1(m(x), y)

]
≤ ε.

The above inequality concludes the proof.

This result means that if we can design a class MTV (αp, ε) with small enough ε, then mini-
mizing the risk of m ∈MTV (αp, ε) is also su�cient to get a good value for the adversarial risk.

4.2.2 Robustness may not be at odds with accuracy.

The above result is relatively easy to obtain, but it has an interesting consequence on the under-
standing we have of the trade-o� between robustness and accuracy. It says that there exists some
classes of randomized classi�ers for which robustness and standard accuracy may not be at odds,
since we can upper-bound the maximal loss of accuracy the model may su�er under attack. This
questions previous intuitions developed on deterministic classi�ers – see Section 2.4 – and keeps
advocating for using randomization schemes as defenses against adversarial attacks. Note, how-
ever, that we did not evade the trade-o� between robustness and accuracy, we only showed that
with certain hypothesis classes it is manageable. Since we can bound the di�erence between the
risk and the adversarial risk of any classi�er m ∈ MTV (αp, ε), we now want to minimize the
risk over a hypothesis class M ⊂ MTV (αp, ε) to obtain a good approximation for both Prob-
lems (1.1) and (1.3). But for this, we still need the empirical risk minimization to converge to a
solution with small standard risk. To measure the rate of convergence of the empirical risk toward
the risk on M, we need to upper-bound the Rademacher complexity ofLMTV (αp,ε).

Remark 18. Remark that this result is not limited to the 0/1 loss. Indeed, any loss function of the

form (x, y) 7→ Eŷ∼m(x)[L(ŷ, y)] withL non-negative would work alike.

4.3 Generalization gap for randomized classi�ers

4.3.1 Bounding the Rademacher complexity for the total variation

Recall from Chapter 2 that in the supervised learning setting we have access to n i.i.d.training
examples drawn from D, denoted by S := {(x, y1), (x, y2), . . . , (xn, yn)}. Given a class
M ⊂MTV (αp, ε), we aim to solve the empirical risk minimization problem

inf
m∈M

RS(m) :=
1

n

n∑
i=1

L0/1(m(xi), yi) . (4.8)

Then, to evaluate how far the theoretical risk of the selected classi�er m is from what we observe
on S , we need to upper bound the generalization gap of any m ∈MTV (αp, ε). To do so, we can
to study the empirical Rademacher complexity of

LMTV (αp,ε) := {(x, y) 7→ L0/1(m(x), y) s.t. m ∈MTV (αp, ε)}. (4.9)
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4 Theoretical analysis of randomized classifiers

Then, thanks to Theorem 1, for any δ ∈ (0, 1), and for any m ∈ MTV (αp, ε), the following
holds with probability at least 1− δ,

R(m) ≤ RS(m) + 2RS
(
LMTV (αp,ε)

)
+ 3

√
ln(2/δ)

2n
. (4.10)

Remark 19. Note that in Theorem 1, there is an additional parameter W where ‖L‖∞ ≤ W .

Here, by definition of the 0/1 loss, we have

∥∥L0/1

∥∥
∞ ≤ 1; henceW = 1 in Equation (4.10).

Accordingly, we want to upper bound the empirical Rademacher complexity of LMTV (αp,ε),
which motivates the following de�nition.

De�nition 7 (α-covering and external covering number). Let us consider (X , ‖.‖p) a vector space

equipped with the `p norm,B ⊂ X and α ≥ 0. Then

• C = {c, . . . , cm} is an α-covering of B for the `p norm if for any x ∈ B there exists

ci ∈ C such that ‖x− ci‖p ≤ α.

• The external covering number of B writes N
(
B, ‖.‖p, α

)
. It is the minimal number of

points one needs to build an α-covering ofB for the `p norm.

The covering number is a well-known measure that is often used in statistical learning the-
ory [145] and asymptotic statistics [160] to evaluate the complexity of a set of functions. Here we
use it to evaluate the number of `p balls we need to cover the training samples, which gives us the
following bound on the Rademacher complexity ofLMTV (αp,ε).

Theorem 11 (Rademacher complexity TV-robust classi�ers). LetLMTV (αp,ε) be the loss function

class associated with MTV (αp, ε). Then, for any S := {(x, y1), . . . , (xn, yn)}, the following

holds,

RS
(
LMTV (αp,ε)

)
≤

√
N ×K
n

+ ε.

WhereN = N
(
{x, . . . ,xn}, ‖.‖p, αp

)
is theαp-external covering number of the inputs{x, . . . ,xn}

for the `p norm.

Proof. Let us denoteS := {(x, y1), . . . , (xn, yn)} andN = N
(
{x, . . . ,xn}, ‖.‖p, αp

)
.

By de�nition of a covering number, there exists C = {c, . . . , cN} an αp-covering of
{x, . . .xn} for the `p norm. Furthermore, for j ∈ {1, . . . , N} and y ∈ {1, . . . ,K},
we de�ne

Ey,j =

{
i ∈ {1, . . . , n} s.t. yi = y and arg min

l∈{1,...,N}
‖xi − cl‖ = j

}
.
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4.3 Generalization gap for randomized classifiers

We also denoteEj = ∪
y∈[K]

Ey,j . Finally, we denoteLm : (x, y) 7→ L0/1(m(x), y). Then,

by de�nition of the empirical Rademacher complexity, we can write

RS
(
LMTV (αp,ε)

)
=

1

n
Eri

[
sup

m∈MTV (αp,ε)

n∑
i=1

riLm(xi, yi)

]
.

where ri are i.i.d. drawn from a Rademacher distribution – i.e. P(ri = 1) = P(ri = −1) =
1
2 . Then we can useEj to write

RS
(
LMTV (αp,ε)

)
=

1

n
Eri

 sup
m∈MTV (αp,ε)

N∑
j=1

∑
i∈Ej

riLm(xi, yi)

.
Furthermore for any m ∈ MTV (αp, ε) and i ∈ Ej , there exists εi ∈ [−ε, ε] such that:
Lm(xi, yi) = Lm(cj , yi) + εi. Then we have

RS
(
LMTV (αp,ε)

)
≤ 1

n
Eri

 sup
m∈MTV (αp,ε)

N∑
j=1

∑
i∈Ej

riLm(cj , yi)


+

1

n
Eri

 sup
εi∈[−ε,ε]

N∑
j=1

∑
i∈Ej

riεi

.
Let us start by studying the second term. We have

1

n
Eri

 sup
εi∈[−ε,ε]

N∑
j=1

∑
i∈Ej

riεi

 =
1

n
Eri

[
sup

εi∈[−ε,ε]

n∑
i=1

riεi

]
=

1

n

n∑
i=1

ε = ε.

Now looking at the �rst term. SinceLm(x, y) ∈ [0, 1] for all (x, y) we have

1

n
Eri

 sup
m∈MTV (αp,ε)

N∑
j=1

∑
i∈Ej

riLm(cj , yi)

 =
1

n
Eri

 sup
m∈MTV (αp,ε)

N∑
j=1

K∑
y=1

Lm(cj , y)
∑
i∈Ey,j

ri


≤ 1

n
Eri

 N∑
j=1

K∑
y=1

∣∣∣∣∣∣
∑
i∈Ey,j

ri

∣∣∣∣∣∣
 .

Finally using the Khintchine inequality and the Cauchy Schartz inequality we get

1

n
Eri

 N∑
j=1

K∑
y=1

∣∣∣∣∣∣
∑
i∈Ey,j

ri

∣∣∣∣∣∣
 ≤ 1

n

N∑
j=1

K∑
y=1

√
|Ey,j | (Khintchine)
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≤ 1

n

√
N ×K

√√√√ N∑
j=1

K∑
y=1

|Ey,j | (Cauchy)

=

√
N ×K
n

.

By combining the upper-bounds we have for each term, we get the expected result,

RS
(
LMTV (αp,ε)

)
≤
√
N ×K
n

+ ε.

The above result means that, if we can cover the n training samples withO(1) balls, then we can
bound the generalization gap of any randomized classi�er m ∈MTV (αp, ε) byO

(
1√
n

)
+ ε.

4.3.2 Discussion on the generalization bound

Xu et al. [171] previously studied generalization bounds for learning algorithms based on their
robustness. Although we use very di�erent techniques of proof, their results and ours are similar.
More precisely, both analyses conclude that robust models generalize well if the training samples
have a small covering number. Note, however, that we base our formulation on an adaptive par-

tition of the samples, while the initial paper only focuses on a �xed partition of the input space.
The interested reader can refer to the discussion section in [171] for more details.

These �ndings seem to contradict the current line of works on the hardness of generalization
gap in the adversarial setting – see Section 2.4. In fact, if the ground truth distribution is su�-
ciently concentrated, a small number of balls can coverS with high probability; henceN = O(1).
This means that we can learn robust classi�ers with the same sample complexity as in the standard
setting. But if the ground truth distribution is not concentrated enough, the training samples will
be far one from another; hence forcing the covering number to be large. In the worse case sce-
nario, we need to cover the whole space [0, 1]d giving a covering numberN = O

(
1

(αp)d

)
which

is exponential in the dimension of the problem. Figure 4.1 illustrates the exponential growth
of the covering number of [0, 1]d for the `∞ norm. When d = 2 – on the left – we need
22 = 4 points to cover [0, 1]d with `∞ balls of radius 1

2 . When d = 3 – on the right – we
need 23 = 8 points. In general, covering [0, 1]d with `∞ balls of radius α∞, requires at least

1
(α∞)d

elements. Finally, when we change from the `∞ to any `p norm, we get a covering number

N
(

[0, 1]d, ‖.‖p, αp
)

= O
(

1
(αp)d

)
.

Therefore, in the worst-case scenario, our bound is inO
(

1
(αp)d

√
n

)
+ ε. Whenαp is small and

the dimension of the problem is high, this bound is too large to give any meaningful insight on
the generalization gap of the problem. Therefore, we still need to tighten our analysis to show
that robust learning for randomized classi�ers is possible in high dimensional spaces.

Remark 20. Note that, we provided a very general result for randomized classifiers under the

only assumption that they are robust w.r.t. the total variation distance. To build a finer analysis,
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4.4 Mode preservation and randomized smoothing

Figure 4.1: Illustration of a 1/2-covering for the hyper cube for the `∞ norm. On the left: [0, 1]2. On the
right: [0, 1]3.

and to evade the dimension dependencies, we should consider designing specific sub-classes M ⊂
MTV (αp, ε) and adapt the techniques of proof to make the term N smaller in the worst-case sce-

nario.

4.4 Mode preservation and randomized smoothing

4.4.1 Mode preservation property for randomized classi�ers

Notations. Let ρ ∈ P(Y) be the vector of point-wise probability ρ = (ρ1, . . . , ρK), we denote

(ρ(1), . . . , ρ(K)) the probability vector ρ sorted in decreasing order.

Even though randomized classi�ers have some interesting properties regarding generalization
gap, we can also study them through the prism of deterministic robustness. Let us for example
consider the classi�er that outputs the class with the highest probability for m(x) – a.k.a. the
mode of m(x). It writes

c : x 7→ argmax
k∈[K]

m(x)k (4.11)

Then checking whether c is robust boils down to demonstrating that the mode of m(x) does
not change under perturbation. It turns out that DTV robust classi�ers have this property. We
call it the mode preservation property of MTV (αp, ε).

Proposition 1 (Mode preservation forDTV -robust classi�ers). Letm ∈MTV (αp, ε) be a robust

randomized classifier and x ∈ X such that m(x)(1) ≥ m(x)(2) + 2ε. Then, for any τ ∈ X , the

following holds,

‖τ‖p ≤ αp =⇒ c(x) = c(x+ τ ) .

Proof. Let x, τ ∈ X such that ‖τ‖p ≤ αp and m ∈MTV (αp, ε) such that

m(x)(1) ≥ m(x)(2) + 2ε.
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By de�nition of MTV (αp, ε), we have that

DTV (m(x),m(x+ τ )) ≤ ε.

Then, for all k ∈ {1, . . . ,K}we have

m(x)k − ε ≤ m(x+ τ )k ≤ m(x)k + ε .

Let us denote k∗ the index of the biggest value in m(x) – i.e. m(x)k∗ = m(x)(1). For any
k ∈ {1, . . . ,K}with k 6= k∗, we have m(x)k∗ ≥ m(x)k + 2ε. Finally, for any k 6= k∗, we
get

m(x+ τ )k∗ ≥ m(x)k∗ − ε ≥ m(x)k + ε ≥ m(x+ τ )k.

Then, argmax
k∈[K]

m(x)k = argmax
k∈[K]

m(x+ τ )k. This concludes the proof.

Coming back to the decomposition in Equation (4.7), with the above result, we can bound
the risk the adversary induces with non-zero perturbations by the mass of points on which the
classi�er c gives the good response but based on a low probability, i.e. with small con�dence.

Radv
>0 (m) ≤ P(x,y)∼D

[
c(x) = y and m(x)(1) < m(x)(2) + 2ε

]
. (4.12)

This means that the only points on which the adversary may induce misclassi�cation are the
points on which m already has a high risk. Once more, this says something fundamental about
the behavior of robust randomized classi�ers. On undefended models, the adversary could change
the decision on any point it wanted; now it is limited to changing points on which the classi�er is
already bad. This considerably mitigates the threat model we should consider.

Furthermore, for any deterministic classi�er designed as in Equation (4.11), we can also bound
the maximal loss of accuracy under attack the classi�er may su�er. This bound may, however, be
harder to evaluate since it now depends on both the classi�er and the dataset distribution.

4.4.2 From mode preservation to randomized smoothing

The classi�er we de�ne in Equation (4.11) and the mode preservation property of m are closely
related to provable defenses based on randomized smoothing. Recall that the core idea of ran-
domized smoothing is to take a hypothesishwith probit outputs, and to build a robust classi�er
that writes

crob : x 7→ argmax
k∈[K]

Ez∼N (0,σ2I)[hk(x+ z)] . (4.13)

From a probabilistic point of view, for any input x, randomized smoothing amounts to output
the most probable class of the probability measure

m(x) := Ez∼N (0,σ2I)

[
[h1(x+ z), . . . ,hK(x+ z)]ᵀ

]
. (4.14)

Hence, randomized smoothing uses the mode preservation property of m to build a prov-
ably robust – deterministic – classi�er. Therefore, the above results – Proposition 1 and Equa-
tion 4.14– also hold for provable defenses based on randomized smoothing.
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Remark 21. Note that we can only use the mode preservation property of m if it is (αp, ε)-robust

w.r.t. DTV . In the next chapter we will demonstrate that from any deterministic hypothesis h, we

can build a robust randomized classifier using noise injection from a Gaussian distribution; hence

m defined in Equation (4.14) is robust w.r.t.DTV .

Studying randomized smoothing from our point of view could give an interesting new perspec-
tive on that method. So far no results have been published on the generalisation gap of this defense
in the adversarial setting. We could devise generalization bounds by similarity with our analysis.
Furthermore, the probabilistic interpretation stresses that randomized smoothing is somewhat re-
strictive since it only considers probability measures which are the expectation on a simple noise
injection scheme. The mode preservation property explains the behavior of randomized smooth-
ing, but also presents fundamental properties of randomized defenses that could be used to con-
struct more general defense schemes.

4.5 Additional results: extension to the Renyi divergence and
discussion on probability metrics

4.5.1 Extending previous results to the Renyi divergence

In this section, we extend the previous results to another probability divergence of reference,
namely the Renyi divergence. Let Z be an arbitrary space, and ρ, ρ′ be two measures in P(Z),
with probability density functions of g and g′ according to a third measure ν. The Renyi diver-

gence of order β writes

Dβ

(
ρ, ρ′

)
:=

1

β − 1
log

∫
Y
g′(y)

(
g(y)

g′(y)

)β
dν(y) .

The Renyi divergence [136] is a generalized divergence de�ned for any β on the interval [1,∞].
It equals the Kullback-Leibler divergence when β → 1, and the maximum divergence when
β → ∞. It also has the property of being non-decreasing with respect to β. This divergence is
very common in machine learning and Information theory [161], especially in its Kullback-Leibler
form as it is widely used as the loss function – cross entropy – of classi�cation algorithms. In the
remaining, we denote Mβ(αp, ε) the set of (αp, ε)-robust classi�ers w.r.t.Dβ .

Let us show that, for any randomized classi�er in this class, we can bound the gap between the
risk and the adversarial risk of m. In the context of the Renyi divergence, the factor that controls
the classi�er’s loss of accuracy under attack is multiplicative and depends both on the robustness
parameter ε and on the divergence parameter β.

Theorem 12 (Multiplicative risks’ gap for Renyi-robust classi�ers). Let m ∈ Mβ(αp, ε). Then

we have

Radv(m;αp) ≤ (eεR(m))
β−1
β .

The proof of this theorem mainly relies on a famous property of the Renyi divergence called
probability preservation property.
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Proposition 2 ([96]). Let ρ and ρ′ be two measures in P(Z). Then for any Z ∈ A(Z), the

following holds,

ρ(Z) ≤
(
exp
(
Dβ(ρ, ρ′)

)
ρ′(Z)

)β−1
β .

With this proposition at hand, we can now demonstrate how the adversarial risk of a random-
ized classi�er relates to its standard risk, under robustness assumptions.

Proof. Let m be an (αp, ε)-robust classi�er w.r.t. Dβ , (x, y) ∼ D and τ ∈ X such that
‖τ‖p ≤ αp. With the same reasoning as above, and with Proposition 2, we get

L0/1(m(x+ τ ), y) = Eŷ∼m(x+τ )[1{ŷ 6= y}]
= Pŷ∼m(x+τ )[ŷ 6= y]

≤
(
eDβ(m(x+τ ),m(x)) Pŷ∼m(x)[ŷ 6= y]

)β−1
β (Prop. 2)

=
(
eDβ(m(x+τ ),m(x)) Eŷ∼m(x)[1{ŷ 6= y}]

)β−1
β

≤
(
eεL0/1(m(x), y)

)β−1
β .

Since this holds for any (x, y) ∼ D and any αp bounded perturbation τ , we get

Radv(m;αp) = E(x,y)∼D

[
sup

τ∈Bp(αp)
L0/1(m(x+ τ ), y)

]
≤ E(x,y)∼D

[
e
β−1
β
εL0/1(m(x), y)

β−1
β

]
≤ e

β−1
β
ε E(x,y)∼D

[
L0/1(m(x), y)

β−1
β

]
.

Finally, using the Jensen inequality, one gets

≤ e
β−1
β
ε E(x,y)∼D

[
L0/1(m(x), y)

]β−1
β = (eεR(m))

β−1
β .

The above inequality concludes the proof.

This �rst result gives a multiplicative bound on the gap between the standard and adversarial
risks. This means that if we can design a class Mβ(αp, ε) with small enough ε, and big enough
β, then minimizing the risk of any m ∈ Mβ(αp, ε) is su�cient to also minimize the adversarial
risk of m. Nevertheless, multiplicative factors are not easy to analyze. Theorem 13 provides an
additive counterpart to Theorem 12. It gives a control on the loss of accuracy under attack with
respect to the robustness parameter ε and the Shannon entropy of m.

Theorem 13 (Additive risks’ gap for Renyi-robust classi�ers). Let m ∈Mβ(αp, ε), then we have

Radv(m;αp)−R(m) ≤ 1− e−ε Ex∼D|X
[
e−H(m(x))

]
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whereH is the Shannon entropy – i.e. for any ρ ∈ P(Y), H(ρ) = − ∑
k∈Y

ρk log(ρk) – andD|X
is the marginal distribution ofD forX .

Proof. Let m ∈Mβ(αp, ε), then

Radv(m;αp)−R(m)

= E(x,y)∼D

[
sup

τ∈Bp(αp)
L0/1(m(x+ τ ), y)− L0/1(m(x), y)

]
.

By de�nition of the 0/1 loss, this amounts to write

= E(x,y)∼D

[
sup

τ∈Bp(αp)
Eŷadv∼m(x+τ ),ŷ∼m(x)[1(ŷadv 6= y)− 1(ŷ 6= y)]

]

≤E(x,y)∼D

[
sup

τ∈Bp(αp)
Eŷadv∼m(x+τ ),ŷ∼m(x)[1(ŷadv 6= ŷ)]

]

= E(x,y)∼D

[
sup

τ∈Bp(αp)
Pŷadv∼m(x+τ ),ŷ∼m(x)[ŷadv 6= ŷ]

]

= E(x,y)∼D

[
sup

τ∈Bp(αp)
1− Pŷadv∼m(x+τ ),ŷ∼m(x)[ŷadv = ŷ]

]

= E(x,y)∼D

[
sup

τ∈Bp(αp)
1−

K∑
i=1

m(x)i ×m(x+ τ )i

]
.

Now, note that for any (x, y) ∼ D and τ ∈ X , by de�nition of a probability vector in
P(Y), and thanks to Jensen inequality we can write

K∑
i=1

m(x)i ×m(x+ τ )i ≥ exp

(
K∑
i=1

m(x)i logm(x+ τ )i

)
.

Then by de�nition of the entropy and the Kullback Leibler divergence we have

exp

(
K∑
i=1

m(x)i logm(x+ τ )i

)
= exp

(
−D1(m(x),m(x+ τ ))−H(m(x))

)
.

Finally, by combining the above inequalities and since m ∈Mβ(αp, ε) we get

E(x,y)∼D

[
sup

τ∈Bp(αp)
Pŷadv∼m(x+τ ),ŷ∼m(x)(ŷadv 6= ŷ)

]
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≤E(x,y)∼D

[
sup

τ∈Bp(αp)
1− e−D1(m(x),m(x+τ ))−H(m(x))

]
≤E(x,y)∼D

[
1− e−ε−H(m(x))

]
= 1− e−εEx∼D|X

[
e−H(m(x))

]
.

The above inequality concludes the proof.

This result is interesting because it relates the accuracy of m with the bound we obtain. Intu-
itively, when m(x) has large entropy – i.e. H(m(x))→ log(K) – the output distribution tends
towards the uniform distribution; hence ε → 0. This means that the classi�er is very robust
but also completely inaccurate, since it outputs classes uniformly at random. On the opposite, if
H(m(x)) → 0, then ε → ∞. The classi�er may be accurate, but it is not robust anymore – at
least according to our de�nition. Hence we need to �nd a classi�er that has reasonable robustness
and good accuracy simultaneously. To evaluate our ability to do so, as a corollary of Theorem 11,
we can bound the Rademacher complexity of the classLMβ(αp,ε).

Corollary 1. Let LMβ(αp,ε) be the loss function class associated with Mβ(αp, ε). Then, for any

S := {(x, y1), . . . , (xn, yn)}, the following holds,

RS

(
LMβ(αp,ε)

)
≤

√
N ×K
n

+ min

3

2

√1 +
4ε

9
− 1

1/2

,
eε+1 − 1

eε+1 + 1

.
WhereN = N

(
{x, . . . ,xn}, ‖.‖p, αp

)
is theαp-external covering number of the inputs{x, . . . ,xn}

for the `p norm.

To prove Corollary 1, note that thanks to previous works [61, 159], we can always upper-bound
the total variation distance by a function of the Renyi divergence.

Proposition 3 (Inequality between total variation and Renyi divergence). Let ρ and ρ′ be two

measures inP(Z), and β ≥ 1. Then the following holds,

DTV (ρ, ρ′) ≤ min

3

2

(√
1 +

4Dβ(ρ, ρ′)

9
− 1

)1/2

,
exp(Dβ(ρ, ρ′) + 1)− 1

exp(Dβ(ρ, ρ′) + 1) + 1

.
Proof. Thanks to [61], one has

D1(ρ, ρ′) ≥ 2DTV (ρ, ρ′)2 +
4DTV (ρ, ρ′)4

9
.

From which it follows that

DTV (ρ, ρ′) ≤ 3

2

(√
1 +

4D1(ρ, ρ′)

9
− 1

)1/2

.
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Moreover, using inequality from [159], one gets

D1(ρ, ρ′) + 1 ≥ log

(
1 +DTV (ρ, ρ′)

1−DTV (ρ, ρ′)

)
.

This inequality leads to the following

exp(D1(ρ, ρ′) + 1)− 1

exp(D1(ρ, ρ′) + 1) + 1
≥ DTV (ρ, ρ′).

By combining the above inequalities and by monotony of Renyi divergence regarding β, one
obtains the expected result.

Then to get the proof of Corollary 1, we only need to combine Theorem 11 and Proposition 3.
Finally, let us present the mode preservation property for m ∈Mβ(αp, ε).

Proposition 4 (Mode preservation for Renyi-robust classi�ers). Let m ∈Mβ(αp, ε) be a robust

randomized classifier and x ∈ X such that

(
m(x)(1)

) β
β−1 ≥ exp

(
(2− 1

β )ε
)(

m(x)(2)

)β−1
β

.

Then, for any τ ∈ X , the following holds,

‖τ‖p ≤ αp =⇒ c(x) = c(x+ τ ),

where c(x) := argmax
k∈[K]

m(x)k .

Proof. Let x, τ ∈ X such that ‖τ‖p ≤ αp and m ∈Mβ(αp, ε) such that

(
m(x)(1)

) β
β−1 ≥ exp

(
(2− 1

β
)ε

)(
m(x)(2)

)β−1
β .

Then by de�nition of Mβ(αp, ε), we have

Dβ(m(x),m(x+ τ )) ≤ ε.

Furthermore, by using Proposition 2, for any k ∈ {1, . . . ,K}we have

(∗)m(x)k ≤ (exp(ε)m(x+ τ )k)
β−1
β and (∗∗)m(x+ τ )k ≤ (exp(ε)m(x)k)

β−1
β .

Let us denote k∗ the index such that m(x)k∗ = m(x)(1). Then using (∗) we get

m(x+ τ )k∗ ≥ exp(−ε)(m(x)k∗)
β
β−1 .

Furthermore for any k ∈ {1, . . . ,K} where k 6= k∗, we can use the assumption we made
on m to get

exp(−ε)(m(x)k∗)
β
β−1 ≥ exp

(
β − 1

β
ε

)
(m(x)k)

β−1
β .
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Finally, using (∗∗) we have

exp

(
β − 1

β
ε

)
(m(x)k)

β−1
β ≥ m(x+ τ )k.

The above gives us argmax
k∈[K]

m(x)k = argmax
k∈[K]

m(x+ τ )k. This concludes the proof.

4.5.2 Discussion on the metric/divergence one should consider

As mentioned earlier in this chapter, the choice of the metric/divergence is crucial as it character-
izes the notion of adversarial robustness we are examining. We focus on the total variation distance
and Renyi divergence, but the question of whether these metrics/divergences are more appropri-
ate than others remains open. It should be noted, however, that our de�nition of robustness is
monotonous depending on the metric/divergence we use.

Proposition 5 (Monotonicity of the robustness). Let m be a randomized classifier, and let D
and D′ be two divergences/metrics on P(Y). If there exists a non decreasing function f : R → R
such that ∀ρ, ρ′ ∈ P(Y),D(ρ, ρ′) ≤ f(D′(ρ, ρ′)), then the following assertion holds.

m is (αp, ε)-robust w.r.t.D′ =⇒ m is (αp, f(ε))-robust w.r.t.D.

The proof straightforwardly comes from the de�nition of robustness.

Proof. Let us consider m a randomized classi�er (αp, ε)-robust w.r.t.D′. Then for anyx ∼
D, and τ s.t. ‖τ‖p ≤ αp, since f is non decreasing, we have

D(m(x),m(x+ τ )) ≤ f
(
D′(m(x),m(x+ τ ))

)
≤ f(ε).

Then m is (αp, f(ε))-robust w.r.t.D which concludes the proof.

The above result suggests that the di�erent notions of robustness we might conceive are more
related than they appear. Here are some of the most classical divergences used in machine learning.
Let ρ, ρ′, ν three measures in P(Y). We denotes g and g′ the probability density functions of ρ
and ρ′ with respect to ν. Then we can de�ne the Wasserstein distance as follows

DW (ρ, ρ′) := inf

∫
Y2

dist
(
y, y′

)
dπ(y, y′), (4.15)

where dist is some ground distance on Y , and the in�mum is taken over all joint distributions π
inP(Y × Y) with marginals ρ and ρ′.

Remark 22. In transportation theory, the Wasserstein distance is solution of the Monge-Kantorovich

problem with the cost function c(y, y′) = dist(y, y′). Then, the definitions of total variation and

Wasserstein distance match when we use the trivial distance dist(y, y′) = 1{y 6= y′}.
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Figure 4.2: Summary of the relations between the di�erent robustness notions from Propositions 6 and 7.

We also de�ne respectively the Hellinger distance and the Separation distance as follows.

DH(ρ, ρ′) :=

[∫
Y

(√
g −

√
g′
)2
dν

]1/2

. (4.16)

DS(ρ, ρ′) := sup
y∈Y

(
1− ρ(y)

ρ′(y)

)
. (4.17)

If we take any of the above metrics/divergences to instantiate a notion of adversarial robustness
we might get very di�erent semantics for them. However, we can show that any of these de�ni-
tions can be covered – with respect to Proposition 5 – either by the Renyi or the total variation
robustness. Figure 4.2 summarizes the links we can make between all these di�erent de�nitions
of robustness, and Propositions 6 and 7 present the associated results. We can see that the total
variation distance and the Renyi divergence are both central since they can cover any of the other
robustness notions. This does not mean that they are more appropriate than the others, but at
least they are general enough to cover a wide range of possible de�nitions.

Proposition 6. Let m be a randomized classifier. If m is (αp, ε)-robust w.r.t. DTV then the fol-

lowing assertions hold.

• m is (αp, ε× diam(Y))-robust w.r.t.DW , where diam(Y) := max
y,y′∈Y

dist(y, y′).

• m is

(
αp,
√

2ε
)

-robust w.r.t.DH .

Proof. Let us consider ρ and ρ′ ∈ P(Y). Thanks to [59] we have

• DW (ρ, ρ′) ≤ diam(Y)DTV (ρ, ρ′).
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• DH(ρ, ρ′) ≤
√

2DTV (ρ, ρ′).

Hence, by using Proposition 5 respectively with f : x 7→ diam(Y)x and f : x 7→
√

2xwe
get the expected results.

Proposition 7. Letm be a randomized classifier. Ifm is (αp, ε)-robust w.r.t.Dβ then the following

assertions hold.

• m is (αp, ε
′)-robust w.r.t.DTV with ε′ = min

(
3
2

(√
1 + 4ε

9 − 1
)1/2

, exp(ε+1)−1
exp(ε+1)+1

)
.

• m is (αp,
√
ε)-robust w.r.t.DH .

• If β =∞, then m is (αp, ε) robust w.r.t.DS .

Proof. 1) First, let us suppose that β ≥ 1. Thanks to Proposition 3 and to [59], for any
ρ, ρ′ ∈ P(Y) we have

• DH(ρ, ρ′) ≤
√
D1(ρ, ρ′) ≤

√
Dβ(ρ, ρ′) (see [59]).

• DTV (ρ, ρ′) ≤ min

(
3
2

(√
1 +

4Dβ(ρ,ρ′)
9 − 1

)1/2

,
exp(Dβ(ρ,ρ′)+1)−1

exp(Dβ(ρ,ρ′)+1)+1

)
(Prop. 3).

Hence, by using Proposition 5, as above, we get the expected results.
2) Now let us suppose that β =∞. By de�nition of the supremum divergence, we have

D∞(ρ, ρ′) = sup
B⊂Y

∣∣∣∣ln ρ(B)

ρ′(B)

∣∣∣∣.
Furthermore, note that the function x 7→ 1 − x − |ln(x)| is negative on R, therefore for
any y ∈ Y one has

1− ρ(y)

ρ′(y)
≤
∣∣∣∣ln ρ(y)

ρ′(y)

∣∣∣∣.
Since the above inequality is true for any y ∈ Y , we have

DS

(
ρ, ρ′

)
= sup

y∈Y

(
1− ρ(y)

ρ′(y)

)
≤ sup

y∈Y

∣∣∣∣ln ρ(y)

ρ′(y)

∣∣∣∣ ≤ sup
B⊂Y

∣∣∣∣ln ρ(B)

ρ′(B)

∣∣∣∣ = D∞(ρ, ρ′).

Finally, by using Proposition 5 with f : x 7→ xwe get the expected results.

4.6 Lessons learned and future works
In this chapter, we examined the theoretical properties of randomized classi�ers, both in terms of
robustness and accuracy. We �rst de�ned a notion of robustness for randomized classi�ers using
probability metrics/divergences – the total variation distance and the Renyi divergence. We then
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demonstrated that when a randomized classi�er complies with this de�nition of robustness, we
can estimate the maximum loss of precision it can su�er under attack. This answers questions
Q1 and Q2 as follows.

There exists classes of randomized classifiers for which we can control

the gap between the adversarial and the standard risks.

We then studied the generalization properties of this class of functions and gave results indicating
that robust randomized classi�ers can generalize. Finally, we showed that randomized classi�ers
have a mode preservation property. This presents a fundamental property of randomized defenses
that can be used to explain randomized smoothing from a probabilistic point of view. Based on
the above analysis, we approach randomized classi�ers from a more practical point of view in
Chapter 5 and demonstrate that we can build such classi�ers from state-of-the-art neural network
architectures. Our analysis could be re�ned in several ways. We list some of them here for future
considerations.

Future work 1: tighter bounds for the generalization gap

Our results on the standard generalization of randomized classi�ers could be improved, especially
since they can – in some cases – be very dependent on the dimension of the problem. In future
works, we aim to study this property from a di�erent perspective. We could for example study
the covering number of the class of functions we consider instead of the covering number of the
training samples. To this end, we could use technical tools such as the Massart’s lemma or the
notion of the shattering dimension to make the bound less dependent on the dimension of the
problem.

Future work 2: studying the properties of randomized smoothing

In this chapter, we established some links between the mode preservation property of the random-
ized classi�er, and the provable defense called randomized smoothing. Based on this evidence, we
can bound the gap between the standard and adversarial risks for this defense. Another interesting
direction would be to show that the classi�ers based on randomized smoothing have a generaliza-
tion gap similar to the classes of randomized classi�ers we studied.

Future work 3: study f -divergences and integral probability metrics

For now, we presented results for randomized classi�ers that are robust either with respect to the
total variation distance or to the Renyi divergence. Both divergences have interesting properties,
but we believe that they are a special case of more general classes of divergences for which similar
results could be obtained. The study of more general forms of divergences such as f -divergences
and integral probability metrics could provide some insights on the generality of the de�nition of
robustness we present in this chapter.
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Q2: Can we find a classH and a hypothesish∗ ∈ H that simultaneously

has small standard and adversarial risks?

In chapter 4, we presented two classes of randomized hypotheses that have good properties
both in terms of robustness and accuracy; thus answering Q1 and Q2 from a theoretical point of
view. Here we continue to answer Q2 but we give a more practical point of view. More precisely,
we present simple schemes to build the above mentioned classes and give numerical results demon-
strating their accuracy and robustness. In Section 5.1, we highlight the links between di�erential
privacy and Renyi-robustness. By analyzing their de�nitions, we show that they are based on the
same theoretical foundation; therefore, results obtained so far in one domain can be transferred
to the other. In Section 5.2, we use tools from the literature on di�erential privacy to show that
Gaussian noise injection can provide principled robustness against `2 adversarial attacks. Then,

85



5 A unified view on privacy and robustness to adversarial examples

in Section 5.3, we use Gaussian noise injection with advanced neural network architectures to
build robust and accurate models. We support our theoretical claims with a series of experiments
on CIFAR910 and CIFAR9100. We achieve both good standard accuracy and state-of-the-art
robustness. Finally, we extend our analysis to consider noise injection from exponential families
and summarize our results respectively in sections 5.4 and 5.5.

5.1 From di�erential privacy to Renyi robustness
Notations. For any set Z with σ-algebra A(Z), if there is no ambiguity on the considered σ-

algebra, we denote P(Z) the set of all probability measures over (Z,A(Z)). Moreover, FZ×Z′
denotes the set of all measurable functions from (Z,A(Z)) to (Z ′,A(Z ′)). For ρ ∈ P(Z) and

ψ ∈ FZ×Z′ , the pushforward measure of ρ by ψ is the measure ψ#ρ such that ψ#ρ(B) =
ρ(ψ91(B)) for anyB ∈ A(Z ′). Finally, let us takeM ∈Md×d(R), we define the Mahalanobis

norm with matrixM as the mapping x 7→ ‖x‖M =
√
xᵀMx.

5.1.1 Introduction to di�erential privacy

The aim of this chapter is to link two seemingly unrelated notions, namely di�erential privacy and
robustness to adversarial examples. So far, we have discussed robustness thoroughly, but we have
only mentioned the central idea behind di�erential privacy in Chapter 1. So we begin with a brief
introduction to this notion before making some links with our domain.

With the large adoption of machine learning techniques, researchers and practitioners are ob-
serving growing concerns on the user’s privacy of the tools they develop. Beyond primary concerns
to guarantee that the private information are not leaked or accidentally disclosed, a crucial issue of
machine learning approaches is to ensure that information cannot be recovered or inferred from
the sole release of the model – i.e. the learning algorithm should be privacy preserving. Several def-
initions have been introduced to characterize these algorithms in the context of machine learning
and data publishing. Among them, di�erential privacy has become the standard by providing a
formal and adaptive de�nition for privacy preserving data analysis. It has been widely studied in
many frameworks and applications – see [50] for a complete overview of the �eld. The central idea
of di�erentiated privacy is to restore the user’s trust in their privacy by ensuring that the learning
procedure will yield essentially the same results whether or not a person joins the database. For-
mally, it writes as follows.

De�nition 8 (Di�erential privacy). LetSn be the space of all data samples of sizen, andH a class

of hypotheses. A Learning algorithmAmaps a training sample S ∈ Sn to a hypothesis h ∈ H.

ThenA is said to be ε-di�erentially private if for any S,S ′ ∈ Sn that only di�er from one input-

output pair, and anyh ∈ H, we have

P[A(S) = h] ≤ exp(ε)P
[
A
(
S ′
)

= h
]
,

where the probability is taken over the – possible – random states of the algorithm.

Note that the de�nition of di�erential privacy does not make any assumptions about the ad-
versary, it only states a property of the algorithm. In practice, it is di�cult to know what kind
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of auxiliary information and computing power the adversary may have access to. Therefore, the
de�nition of di�erential privacy is based on the worst-case scenario where the adversary has access
to all training samples and all details of the architecture except those it is trying to deduce. In this
sense, the type of adversary we are considering is very close to the threat model we have dealt with
until now - white box adversaries - even if they do not have the same objective.

Figure 5.1: Illustration of the typical threat scenario in di�erential privacy.

To better understand the idea behind di�erential privacy, let us consider the threat scenario
illustrated in Figure 5.1. The model provider has access to a training sample S in which Alice par-
ticipated – e.g. (x, y1) are Alice’s information – and builds a modelhwith a learning procedure
A on S . The adversary wants to infer Alice’s information from the knowledge it already has of
the learning algorithm and the training sample S . Since we assume the adversary has unlimited
knowledge outside Alice’s sample, it can retrain the model on another training sample S ′ which
is S where Alice has be replaced with a dummy sample. Then the followings can happened.

1. If the training algorithm is not di�erentially private – for example, if it is deterministic –
the adversary can tune the dummy sample so that the training procedure onS ′ andS gives
the same results, i.e. h = h′. The dummy sample is then very likely to contain information
about Alice, which is a violation of her privacy.

2. On the contrary, if the algorithm is di�erentially private, given any dummy sample, the
learning procedure produces the same model with a high probability. The adversary cannot
tell whether the change in response is due to database change or randomization; therefore,
Alice’s information is safe.

Remark 23. Note that in machine learning it is very rare to have a purely deterministic learning

procedure – and even more so in deep learning. Indeed, as soon as we use stochastic gradient descent or

random initialization, the learning procedure becomes random. In that sense, a learning procedure

is a probabilistic mapping from Sn to H. This definition of privacy makes intensive use of this

property, and designs specific internal randomization procedures to make the algorithms safer.

87



5 A unified view on privacy and robustness to adversarial examples

5.1.2 Generalization of di�erential privacy

The notion of di�erential privacy is strongly correlated with the notion of “closeness”, both in
the input spaceSn and in the output spaceH. Since the original work of Dwork et al. [52], many
extensions have been introduced to adapt the de�nition to other possible input or output spaces,
depending on the application setting – see [43] for a complete list. Recently, Chatzikokolakis et

al. [31] introduced a general framework, called “metric-di�erential privacy”, which encompasses
many extensions of the initial de�nition.

De�nition 9 (Metric-di�erential privacy). Let ε, α ≥ 0, (Z, dZ) an arbitrary input metric space,

andZ ′ an output space. A probabilistic mapping m fromZ toZ ′ is called (α, ε)-metric private if

for any z, z ∈ Z such that dZ(z, z) ≤ α and for anyB ∈ A(Z ′) we have

Pz′∼m(z)

[
z′ ∈ B

]
≤ exp(ε)Pz′∼m(z)

[
z′ ∈ B

]
.

This de�nition provides a more general view on di�erential privacy, and adapts to more com-
plex application settings such as geolocation and smart metering [31]. Note that we return to the
classical de�nition of di�erential privacy when we setZ = Sn,Z ′ = H, dZ is the hamming dis-
tance, and α = 11. It is also worth noting that for any probability measures ρ, ρ′ ∈ P(Z ′), and
for anyB ∈ A(Z ′), having ρ(B) and ρ′(B) within a multiplicative factor of exp(ε) amounts to
write

D∞(ρ, ρ′) := sup
B∈A(Z′)

∣∣∣∣ln ρ(B)

ρ′(B)

∣∣∣∣ ≤ ε. (5.1)

As a result, the two de�nitions of di�erential privacy we just saw simply enforce certain Lip-
schitz properties on probabilistic mappings based on a Renyi divergence with β = ∞. As a
straightforward relaxation of these measure of privacy, Mironov [110] proposed to use an arbitrary
Renyi divergence of order β to obtain a more general de�nition. This adaptation has principled
theoretical advantages over the previous ones, making it the most practical formulation of the
di�erential privacy introduced so far.

De�nition 10 (Renyi di�erential privacy). Let ε, α ≥ 0, (Z, dZ) an arbitrary input metric space,

andZ ′ an output space. A probabilistic mapping m fromZ toZ ′ is called (α, ε, β) Renyi-private
if for any z, z ∈ Z one has

dZ(z, z) ≤ α =⇒ Dβ(m(z),m(z)) ≤ ε .

Reading note. For the reader who might have skipped the additionnal results in Section 4.5, let

us recall the definition of Renyi divergence. LetZ be an arbitrary space, and ρ, ρ′ be two measures

inP(Z), with probability density functions of g and g′ according to a third measure ν. The Renyi
divergence of order β writes

Dβ

(
ρ, ρ′

)
:=

1

β − 1
log

∫
Y
g′(y)

(
g(y)

g′(y)

)β
dν(y) .

1The literature often sets α = 1, and argue that one can always scale dZ such that dZ ≤ 1 �ts the appropriated
notion of “closeness”. We keep dZ unchanged and take an arbitrary α instead. Both de�nitions are equivalent.
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The Renyi divergence [136] is a generalized divergence defined for any β on the interval [1,∞]. It

equals the Kullback-Leibler divergence when β → 1, and the maximum divergence when β →∞.

Note also that the previous results we obtained on the risk and robustness using the total variation

distance, can be extended with minor variations to the Renyi divergence.

5.1.3 A uni�ed view on privacy and robustness

At a �rst glance, the link between di�erential privacy and robustness may not be immediate. First
of all, the studied mapping is not the same: in the domain of privacy, we look at the learning al-
gorithms, while in the domain of robustness, we look at the model. Second, adversaries do not
have the same objective: in privacy, the adversary wants to infer a subset of the training sample,
while in robustness, it wants to force to misclassify. But if robustness and privacy have very dif-
ferent semantics, we can see how the de�nitions are based on the same mathematical foundation:
Lipschitz continuity and information theory. If we consider Z an arbitrary input space with `p
norm2 andZ ′ an arbitrary output space, then the following holds.

A mapping m is (αp, ε)-robust w.r.t.Dβ if and only if m is (ε, αp, β) Renyi-private.

This equivalence – which comes directly from the de�nitions – is important from a theoretical
point of view and has direct practical implications. Let us discuss some of them below.

Consequence 1: Unifying robustness and privacy

At the moment, the privacy and robust machine learning communities do not interact much,
and most often use very di�erent mathematical tools. The explicit link we have just established
between the two domains shows that they have very similar goals and that technical tools should be
shared or transferred from one domain to the other. Moreover, privacy and robustness, although
orthogonal in their semantics, may have common application settings. For example, in the case
of facial or speech recognition systems, there are real privacy and security issues to be addressed.
In this context, instead of considering two separate methodologies, adding unnecessary layers of
complexity, we could address both issues simultaneously within a uni�ed framework.

Consequence 2: Using di�erential privacy as a fast track to robustness

Adversarial examples, in the context of deep learning, have only been studied for a few years now.
On the other hand, di�erential privacy – although still young on the scale of computer science
research – is at least 10 years ahead in terms of research accomplishments and societal awareness.
It would therefore be interesting to take into account some of the lessons learned from privacy
preserving machine learning and apply them to robustness. In particular, the literature on di�er-
ential privacy makes extensive use of Gaussian noise injection and data processing inequality to

2Note that we set the `p norm for the de�nition to exactly match. But as we discussed in Chapter 2, we could de�ne
a range of other notion for imperceptibility. Thus this equivalence between di�erential privacy and robustness is
much more general.
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build private models. In the rest of this chapter, we show how we can easily adapt these two tools
to build classes of robust classi�ers – both w.r.t.Dβ andDTV .

5.2 Leveraging tools from di�erential privacy

5.2.1 Post-processing inequality

We just saw that di�erential privacy amounts to controlling the Renyi divergence between the
outputs of a probabilistic mapping m. A crucial property of the Renyi divergence is the Data

processing inequality. It is a well-known result from information theory which states that “post-

processing cannot increase information” [12, 35]. In the context of privacy preserving data analysis,
this means that no adversary – regardless of its computational power – can increase the maximal
probability to recover information from the data sample. This is a fundamental property that any
good de�nition of privacy should respect. Indeed, if an adversary can process the output of an
algorithm to make the privacy guarrantees of the algorithm drop, then the privacy de�nition is
not reliable. In its general form the data-processing inequality is as follows.

Theorem 14 (Post-processing inequality). Let us consider two arbitrary spacesZ,Z ′ and ρ, ρ′ ∈
P(Z). Then for any ψ ∈ FZ×Z′ we haveDβ(ψ#ρ, ψ#ρ′) ≤ Dβ(ρ, ρ′).

The proof of this statement exists in many forms in the information theory literature [12, 35,
161]. But the notations and concepts can sometimes vary from the ones we use in this manuscript.
Hence, we recall the proof for readability.

Proof. Let us consider ρ, ρ′ ∈ P(Z) with probability density functions g and g′ with re-
spect to a third measure ν ∈ P(Z). Furthermore, let us denote ψ#g and ψ#g′ the proba-
bility density functions of ψ#ρ, ψ#ρ′ with respect to ψ#νa. Then we have

Dβ(ψ#ρ, ψ#ρ′) =
1

β − 1
log

∫
Z

(ψ#g(z))β
(
ψ#g′(z)

)1−β
dψ#ν(z)

=
1

β − 1
log

∫
Z

(
ψ#g(z)

ψ#g′(z)

)β
dψ#ρ′(z).

Using the transfer theorem, we get

Dβ(ψ#ρ, ψ#ρ′) =
1

β − 1
log

∫
Z′

(
ψ#g

ψ#g′
◦ ψ(z)

)β
dρ′(z).

Since
(
ψ#g
ψ#g′ ◦ ψ(Z)

)
= E

(
g
g′ (Z)

∣∣∣ψ−1(A(Z))
)

we get the following.

Dβ(ψ#ρ, ψ#ρ′) =
1

β − 1
log

∫
Z′

(
ψ#g

ψ#g′
◦ ψ(z)

)β
dρ′(z)

=
1

β − 1
log

∫
Z′

E
(
g(z)

g′(z)

∣∣∣ψ−1(A(Z))

)β
dρ′(z).
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By using the Jensen inequality, and the property of the conditional expectation, we get

Dβ(ψ#ρ, ψ#ρ′) ≤ 1

β − 1
log

∫
Z′

E

(
g(z)

g′(z)

β∣∣∣ψ−1(A(Z))

)
dρ′(z)

=
1

β − 1
log

∫
Z′

g(z)

g′(z)

β

dρ′(z) = Dβ(ρ, ρ′).

The above inequality concludes the proof.
aψ#g andψ#g′ exist thanks to the Radon-Nykodym Theorem.

Remark 24. Note that the data-processing inequality is not limited to the Renyi divergence. Look-

ing at the proof above, we see that the main argument is the Jensen inequality. Therefore, any di-

vergence that can be written as the expectation of a convex function would give the same result. In

fact, the data-processing inequality holds for any f -divergence
3
; which includes the total variation

distance. Therefore the data -processing inequality holds both w.r.t.Dβ andDTV .

In the context of robustness to adversarial examples, we want to use the data processing in-
equality to ease the design of robust randomized classi�ers. In particular, let us suppose that we
can build a randomized pre-processing p : X → P(X ) such that for any x ∈ X and any αp-
bounded perturbation τ , we have

D(p(x), p(x+ τ )) ≤ ε, withD ∈ {DTV , Dβ}. (5.2)

Then, thanks to the data-processing inequality, we can take any deterministic classi�er c to build
an (αp, ε) robust classi�er w.r.t.D de�ned as m : x 7→ c#p(x). This considerably simpli�es the
problem of building a class of robust models, but we still need to build p in the �rst place. To do
so, we keep taking inspiration from the privacy preserving community and study noise injection
schemes.

5.2.2 Pre-processing with Gaussian noise injection

We want to build p a randomized pre-processing that has a stable Renyi divergence and/or total
variation distance. To do this, we analyze the simple procedure of injecting random noise directly
on the image before sending it to a classi�er. Noise injection is another fundamental tool in the
literature of di�erential privacy. The most common noise choices are the Gaussian distribution
and the Laplace distribution. Since the Renyi divergence is particularly well suited to the study of
Gaussian distributions, we �rst use this type of noise injection. More precisely, in this section, we
focus on a mapping that writes as follows.

p : x 7→ N (x, Σ), (5.3)

for some given non-degenerate covariance matrix Σ ∈ Md×d(R). We extend our analysis in
Section 5.4 to more general classes of noise, namely exponential families – which includes the

3see e.g. http://www.stat.yale.edu/~yw562/teaching/598/lec04.pdf for a very simple proof in the general case.
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Laplace distribution. Let us now evaluate the maximal variation of Gaussian pre-processing p
when applied to an image x ∈ X with and without perturbation.

Lemma 3. Let β > 1, x, τ ∈ X and Σ ∈ Md×d(R) a non-degenerate covariance matrix. Let

ρ = N (x, Σ) and ρ′ = N (x+ τ , Σ), thenDβ(ρ, ρ′) = β
2 ‖τ‖

2
Σ91 .

Proof. Let β > 1. Let us denote g and g′ respectively the probability density functions of ρ
and ρ′ with respect to the Lebesgue measure. We also set x′ = x+ τ for readability. Then
we have

Dβ(ρ, ρ′) =
1

β − 1
logEz∼ρ′

[(
g(z)

g′(z)

)β]

=
1

β − 1
logEz∼ρ′

[
exp

(β
2

(
(z − x′)ᵀΣ−1(z − x′)− (z − x)ᵀΣ−1(z − x)

))]
.

By change of variable we get

=
1

β − 1
logEz∼N (0,Σ)

[
exp

(
β

2

(
zᵀΣ−1z − (z + τ )ᵀΣ−1(z + τ )

))]
=

1

β − 1
logEz∼N (0,Σ)

[
exp

(
β

2

(
−2zᵀΣ−1τ − ‖τ‖2Σ−1

))]

=
1

β − 1
log

∫
Rd

exp
(
−1

2z
ᵀΣ−1z − β

2 2zᵀΣ−1τ − β
2 ‖τ‖

2
Σ−1

)
(2π)d det(Σ)d/2

dz .

Furthermore, for any z ∈ Rd, we have

− 1

2
zᵀΣ−1z − β

2
2zᵀΣ−1τ − β

2
‖τ‖2Σ−1

=− 1

2
(z + βτ )ᵀΣ−1(z + βτ ) +

β2 − β
2
‖τ‖2Σ−1 .

Then we can re-write the Renyi divergence as follows

Dβ(ρ, ρ′) =
1

β − 1
logEz∼N (−βτ ,Σ)

[
exp

(
β2 − β

2
‖τ‖2Σ−1

)]
=

1

β − 1
log

(
exp

(
β2 − β

2
‖τ‖2Σ−1

))
=
β

2
‖τ‖2Σ91 .

This concludes the proof.

Thanks to the above lemma, we know how to evaluate the level of Renyi-robustness that a
Gaussian noise pre-processing brings to a classi�er. Now that we have this result, thanks to Propo-
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sition 3, we can also upper-bound the total variation distance between N (x, Σ) and N (x +
τ , Σ). But this bound is not always tight. Besides, we can directly evaluate the total variation
distance between two Gaussian distributions as follows.

Lemma 4. Let x,x′ ∈ X and Σ ∈ Md×d(R) a non-degenerate covariance matrix. Let ρ =

N (x, Σ) and ρ′ = N (x+ τ , Σ), thenDTV (ρ, ρ′) = 2Φ(
‖τ‖Σ−1

2 )− 1 withΦ the cumulative

density function of the standard Gaussian distribution.

Proof. Let us denote g and g′ respectively the probability density functions of ρ and ρ′ with
respect to the Lebesgue measure. Furthermore, we denote x′ = x+ τ . Then by de�nition
of the total variation distance, we haveDTV (ρ, ρ) = ρ(Z)−ρ′(Z) withZ = {z s.t.g(z) ≥
g′(z)}. In our case g(z) ≥ g′(z) is equivalent to

(z − x′)ᵀΣ−1(z − x′)− (z − x)ᵀΣ−1(z − x) ≥ 0.

Then with the same simpli�cation as above, we have

ρ(Z) = Pz∼N (x,Σ)

(
(z − x′)ᵀΣ−1(z − x′)− (z − x)ᵀΣ−1(z − x) ≥ 0

)
= Pz∼N (0,Σ)

(
(z − τ )ᵀΣ−1(z − τ )− zᵀΣ−1z ≥ 0

)
= Pz∼N (0,Σ)

(
−2zᵀΣ−1τ + ‖τ‖2Σ−1 ≥ 0

)
= Pz∼N (0,Id)

(
zᵀΣ−1/2τ ≤ 1

2
‖τ‖2Σ−1

)
.

Furthermore, if z ∼ N (0, Id) then zᵀΣ−1/2τ ∼ N (0, ‖τ‖2Σ−1); hence we also have
zᵀΣ−1/2τ
‖τ‖Σ−1

∼ N (0, 1). Accordingly we get

ρ(Z) = Pz∼N (0,1)

(
z ≤ 1

2
‖τ‖Σ−1

)
= Φ

(
1

2
‖τ‖Σ−1

)
.

By symmetry we get that ρ′(A) = 1− ρ(A) = 1− Φ
(

1
2‖τ‖Σ−1

)
. We then get

DTV (µ, ν) = 2Φ

(‖τ‖Σ−1

2

)
− 1

which concludes the proof.

Note that both �gures increase with the Mahalanobis distance of τ . Furthermore, we see that
the greater the entropy of the Gaussian noise we inject, the smaller the distance between distribu-
tions. If we simplify the covariance matrix by settingΣ = σ2Id, it means that we can build more
or less robust randomized classi�ers against `2 adversaries, depending on σ.

Theorem 15 (Robustness of Gaussian pre-processing). Let us consider c : X → Y a deterministic

classifier, σ > 0 and p : x 7→ N (x, σ2Id) a pre-processing probabilistic mapping. Then the

randomized classifier m := c#p is
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• (α2,
(α2)2β

2σ )-robust w.r.t.Dβ against `2 adversaries.

• (α2, 2Φ
(
α2
2σ

)
− 1)-robust w.r.t.DTV against `2 adversaries.

Proof. Let x, τ ∈ X such that ‖τ‖2 ≤ α2. Thanks to Lemma 3 we have

Dβ(p(x), p(x+ τ )) =
β

2
‖τ‖2Σ−1 =

β

2σ2
‖τ‖22 ≤

β(α2)2

2σ2
.

Similarly, thanks to Lemma 4, we get

DTV (p(x), p(x+ τ )) = 2Φ

(‖τ‖Σ−1

2

)
− 1 ≤ 2Φ

(α2

2σ

)
− 1.

Finally, from the data-processing inequality – Theorem 14, we get both

Dβ(m(x),m(x+ τ )) ≤ β(α2)2

2σ2
,

and

DTV (m(x),m(x+ τ )) ≤ 2Φ
(α2

2σ

)
− 1.

The above inequalities conclude the proof.

Theorem 15 means that we can build simple noise injection schemes as pre-processing of state-
of-the-art image classi�cation models and keep track of the maximal loss of accuracy under attack
of the resulting randomized classi�er. These results also highlight the profound link between ran-
domized classi�ers and randomized smoothing. Even-though our �ndings are of di�erent nature,
both techniques use the same base mechanism – Gaussian noise injection. Therefore, Gaussian
pre-processing is a principled defense method that can be analyzed trough several standpoints,
including certi�ed robustness and statistical learning theory.

5.3 Numerical validation: the case study of the neural network

To illustrate our theoretical results, we train a randomized neural networks with Gaussian pre-
processing during training and inference on CIFAR-10 and CIFAR-100. Based on this random-
ized classi�er, we study the impact of randomization on the standard accuracy of the network,
and compare the theoretical trade-o� between accuracy and robustness with experimental results
against state-of-the-art attacks. Let us �rst start by presenting the experimental setup we use. For
direct access to the implementation, one can refer to the following Github repository.

https://github.com/MILES-PSL/Adversarial-Robustness-Through-Randomization
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5.3 Numerical validation: the case study of the neural network

5.3.1 Experimental setup

Important remark on the image space we consider

At the time of these experiments, we were using attack implementations that take an image
with pixels scaled between −1 and 1; meaning that X = [−1, 1]d. All the above results
remain valid in this setting, but we have to adapt the perception thresholds – multiply them
by 2. This is why we report results with α∞ = 0.06 and α2 = 1.6.

Architecture and training procedure

All the neural networks we use in this section are WideResNets – see [177] – with 28 layers, a
widen factor of 10, a dropout factor of 0.3 and LeakyRelu activation with a 0.1 slope. To train
an undefended classi�er we use the following hyper-parameters.

• Number of Epochs: 200

• Batch size: 400

• Loss function: Cross Entropy Loss

• Optimizer : Stochastic gradient descent algorithm with momentum 0.9, weight decay of
2× 10−4 and a learning rate that decreases during the training as follows:

lr =


0.1 if 0 ≤ epoch < 60

0.02 if 60 ≤ epoch < 120

0.004 if 120 ≤ epoch < 160

0.0008 if 160 ≤ epoch < 200.

To transform these classical networks into randomized classi�ers, we inject noise drawn from
Gaussian distributions, each with various standard deviations directly on the image before passing
it through the network. Both during training and test, for computational e�ciency, we evaluate
the performance of the the algorithm over a single run for every images; hence no Monte Carlo
estimator is used. However, in practice, the test-time accuracy and accuracy under attack are quite
stable when evaluated over the entire test dataset.

Remark 25. To train a neural network with adversarial training we use the same hyper-parameters

as above, and generate adversarial examples during training using an `∞ adversary with 7 itera-

tions. Furthermore, we want to build state-of-the-art models; hence we use data augmentation during

the leaning procedure – which explains some di�erences with the results from Chapter 3.

Threat models

To compare the empirical performances of our method with adversarial training, we consider two
`p adversaries with thresholds corresponding to CIFAR datasets
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• An `∞ adversary with perturbation bounded by 0.06. To model this adversary we use the
PGD attack with tmax = 20 iterations and a step size s = 0.006.

• An `2 adversary with perturbation bounded by 1.6. To model this adversary we use the
C&W attack with 60 iterations, a learning rate equal to 0.01, 9 binary search steps, and an
initial constant of κ = 0.001.

As we already mentioned in Chapter 3, when evaluating a defense against adversarial examples,
it is crucial to test the robustness of the method against the best possible attack. More precisely,
when evaluating randomized algorithms, one must provide the adversary with the expected results
from the classi�er. Here, the actual distribution of the outputs can be di�cult to evaluate since
the Gaussian distribution passes through the network. Thus, to build an adversarial example, the
adversary has to use a Monte Carlo mean estimator. For each input, we estimate the expected
output of the network for 80 di�erent samples of the Gaussian noise.

Remark 26. In Chapter 3, we knew the exact distribution of the randomized classifier, so we didn’t

have to use Monte Carlos sampling. Therefore, to keep the calculation tractable, we decrease the

number of gradient steps of the attacks compared to the previous experiments.

5.3.2 Results

Figures 5.2 and 5.3 show the accuracy and the minimum level of accuracy under attack of our
randomized neural network for several levels of injected noise. We can see – Figure 5.2 – that
the precision decreases as the noise intensity grows. In that sense, the noise must be calibrated
to preserve both accuracy and robustness against adversarial attacks – it must be large enough to
preserve robustness and small enough to preserve accuracy. This is to be expected, because the
greater the entropy of the classi�er, the less precise it gets.

Figure 5.2: Impact of the standard deviation of the Gausian noise on accuracy in a randomized model on
CIFAR-10 and CIFAR-100 dataset.
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Furthermore, when injecting Gaussian noise as a defense mechanism, the resulting randomized
networkm is both (α2,

(α2)2

2σ )-robust w.r.t.D1 and (α2, 2Φ
(
α2
2σ

)
−1)-robust w.r.t.DTV against

`2 adversaries. Therefore thanks to Theorems 10 and 13 we have that

Radv(m;α2)−R(m) ≤ 2Φ
(α2

2σ

)
− 1, and (5.4)

Radv(m;α2)−R(m) ≤ 1− e−
(α2)

2

2σ Ex∼D|X
[
e−H(m(x))

]
. (5.5)

Figure 5.3 illustrates the theoretical lower bound on accuracy under attack – based on the min-
imum gap between Equations (5.4) and (5.5) – for di�erent standard deviations. The term in
entropy has been estimated using a Monte Carlo method with 104 simulations. The trade-o� be-
tween accuracy and robustness appears with respect to the noise intensity. With small noises, the
accuracy is high, but the guaranteed accuracy drops fast with respect to the magnitude of the ad-
versarial perturbation. Conversely, with bigger noises, the accuracy is lower but decreases slowly
with respect to the magnitude of the adversarial perturbation. Overall, we get strong accuracy
guarantees against small adversarial perturbations, but when the perturbation is bigger than 0.5
on CIFAR-10 – resp. 0.3 on CIFAR-100, the guarrantees are still not su�cient.

Figure 5.3: Guaranteed accuracy of di�erent randomized models with Gaussian noise given the `2 norm
of the adversarial perturbations.

Remark 27. Note that the maximal `2 perturbation considered as imperceptible for CIFAR datasets

is α2 = 1.6. Hence our theoretical bounds are still not sufficient to consider worst case threats.

Table 5.1 shows that in practice, randomized networks reach an accuracy under attack much
higher than the theoretical lower bound we obtained, and keep a good accuracy against much
larger perturbations. While Figure 5.3 illustrates theoretical robustness against increasing adver-
sarial perturbations, Table 5.1 illustrates this trade-o� experimentally. It compares the standard
accuracy and accuracy under attack of randomized networks with Gaussian pre-processing for
di�erent standard deviations against the adversarial training of Madry et al. [103]. We observe
that the accuracy on the standard images for the noise injection method is similar to the one we
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Table 5.1: Accuracy under attack of randomized neural networks with Gaussian pre-processing for di�er-
ent standard deviations versus adversarial training by Madry et al. [103] – AT. The �rst line
refers to the baseline without attack. Results are presented for both CIFAR-10 and CIFAR-100
datasets.

Dataset Method
Accuracy `∞-PGD `2-C&W

without attack α∞ = 0.06 α2 = 1.6

CIFAR910

Undefended 0.96 0.00 0.00
AT [103] 0.87 0.46 0.47

Gaussian σ = 0.32 0.88 0.57 0.51
Gaussian σ = 0.5 0.82 0.59 0.49

CIFAR9100

Undefended 0.79 0.00 0.00
AT [103] 0.58 0.26 0.22

Gaussian σ = 0.32 0.63 0.40 0.29
Gaussian σ = 0.5 0.56 0.35 0.30

obtain for the adversarial training. Moreover, Gaussian pre-processing is more robust than ad-
versarial training for both PGD and C&W attacks. These experiments show that randomized
defenses can be competitive given the intensity of the noise injected into the network.

Remark 28. Our theoretical findings only hold for `2 adversaries. Hence we were not guaranteed

to have any protection against `∞-PGD. Nevertheless, our method presents state-of-the-art experi-

mental robustness against this attack as well.

5.4 Additional results: extension to the exponential family and
experiments against `1 adversaries

5.4.1 Extension to broader classes of noise injection

In the previous section we demonstrated, based on insights from the literature on di�erential pri-
vacy, how Gaussian pre-processing can help build more robust models against adversarial exam-
ples. Now, from a di�erential privacy perspective, the use of Laplace noise is at least as frequent
as Gaussian noise. Moreover, the above results only work for `2 adversaries, so we wonder if we
could use other types of noise to defend against other `p adversaries. In this section, we extend the
previous results to a larger family of noises, namely the exponential family.

De�nition 11 (Exponential family). Let d′ ∈ N,Θ be an open convex set of Rd′ , and θ ∈ Θ. Let

ρ be a probability measure inP
(
Rd
)

that admits a probability density function either with respect
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to the Lebesgue or the counting measure. ρ is said to be part of the exponential family of parameter

θ if it has the following probability density function

gθ(z) = exp(t(z)ᵀθ − u(θ) + v(z))

where t(z) is a sufficient statistics, v a carrier measure (either for a Lebesgue or a counting measure)

and u(θ) = log
∫
Rd exp(t(z)ᵀθ + v(z))dz. We denote EF(θ, t, v) the set of such probability

distributions.

To show the robustness of randomized networks with noise injected from an exponential fam-
ily, we need to de�ne the notion of modulus of continuity.

De�nition 12 (Modulus of continuity). Let us consider d, d′ ∈ N and an arbitrary function

f : Rd → Rd′ . f admits a non-decreasing modulus of continuity with respect to ‖.‖p and ‖.‖q if

there exists a non-decreasing function ωp,qf : R+ → R+
such that for all x,x′ ∈ Rd we have,

‖f(x)− f(x)‖q ≤ ω
p,q
f (
∥∥x− x′∥∥

p
).

The de�nition of modulus of continuity is a simple relaxation of the Lipschitz continuity. In-
deed, if ωp,qf is linear with 0 intercept and slope W , then f is W -Lipschitz with respect to ‖.‖p
and ‖.‖q . We can now show how to control the Renyi divergence of a pre-processing based on an
exponential family as follows.

Lemma 5. Let d′ ∈ N, β > 1 and θ ∈ Rd′ . Let ρ be a probability measure from the exponential

family EF(θ, t, v) where t and v have non-decreasing modulus of continuity ωt and ωv . Let us

define the pre-processing p that to any image inX adds a noise drawn from ρ. Then, for anyx ∈ X
and any αp-bounded perturbation τ – for an `p adversary – we have

Dβ(p(x), p(x+ τ )) ≤ ‖θ‖2ωp,2t (αp) + ωp,1v (αp).

Proof. Let us denote gθ the probability density function of ρ and δa the Dirac measure map-
ping any element to 1 if it equals a and to 0 otherwise. Then by de�nition of the convolution
with the Dirac measure, we have that

Dβ(p(x), p(x+ τ ))

=Dβ(ρ ∗ δx, ρ ∗ δx+τ ).

Since the Renyi divergence is increasing with respect to β, we have

≤D∞(ρ ∗ δx, ρ ∗ δx+τ )

= log sup
z∈Rd′

gθ(z − x)

gθ(z − (x+ τ ))

= log sup
z∈Rd′

exp((t(z − x)− t(z − (x+ τ )))ᵀθ + v(z − x)− v(z − (x+ τ ))).

99



5 A unified view on privacy and robustness to adversarial examples

By Cauchy Schwartz inequality, we get

≤ sup
z∈Rd′

‖θ‖2‖t(z − x)− t(z − (x+ τ ))‖2 + |v(z − x)− v(z − (x+ τ ))|.

Furthermore, since t and v have modulus of continuity ωt and ωv , we get

≤ ‖θ‖2ωp,2t (‖x+ τ ,x‖p) + ωp,1v (‖x+ τ ,x‖p)
≤ ‖θ‖2ωp,2t (αp) + ωp,1v (αp).

The above inequality concludes the proof.

Thanks to this result, we identi�ed a range of possible distributions to build robust classi�ers.
In particular, we can build a pre-processing based on the Laplace distribution to defend against `1
adversaries. However, the bound can be loose due to the use of the Cauchy Schwartz inequality.
The following result uses the same reasoning to get a tighter bound for a pre-processing based on
Laplace noise injection.

Theorem 16 (Robustness for Laplace pre-processing). Let us consider c : X → Y a deterministic

classifier,σ > 0 and a pre-processingp that to any image adds noise drawn from Lap(0, σId) where

Lap(0, σId) is the product measure of d uni-variate Laplace distributions with scale parameter σ
and mean 0. Then the randomized classifier m := c#p is (α1,

α1
σ )-robust w.r.t. Dβ against `1

adversaries.

Proof. First, let us recall that a uni-variate Laplace distribution with scale σ and mean 0 de-
�nes an exponential family with t : x 7→ |x|, v : x 7→ 0, and θ = − 1

σ . Furthermore, the
distribution of Lap(0, σId) is de�ned as the product of d uni-variate Laplace distributions.
Then using the same �rst steps as in Lemma 5, for any x, τ ∈ X such that ‖τ‖1 ≤ α1, we
have

Dβ(p(x), p(x+ τ )) ≤ log sup
z∈Rd

exp

(
−

d∑
i=1

|zi − xi| − |zi − (xi + τi)|
σ

)
.

Since
∑d

i=1 |zi − (xi + τi)| − |zi − xi| ≤ ‖τ‖1 for any z, we get

Dβ(p(x), p(x+ τ )) ≤ log

(
exp

(‖τ‖1
σ

))
≤ α1

σ
.

The above inequality concludes the proof.

5.4.2 Additional experiments for `1 adversaries

To illustrate this result, we train a randomized neural network with Laplace pre-processing during
training and inference on CIFAR-10 and CIFAR-100. As for the Gaussian case, we study the
impact of randomization on the standard accuracy of the network, and on its robustness. We use
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Figure 5.4: Impact of the standard deviation of the Laplace noise on accuracy in a randomized model on
CIFAR-10 and CIFAR-100 dataset.

the same experimental protocol as above, but instead of using an `2 adversary – C&W – we take
its adaptation to `1 attacks called Elastic Net attack – EAD [33]. The optimization algorithm and
implementation techniques are the same. The only modi�cation is that we add an `1 term to the
objective function, which gives

κ1 × ‖τ‖1 + κ2 × ‖τ‖2 + g(x+ τ ). (5.6)

Moreover, we select α1 = 7 for the algorithm, as it corresponds to the volume condition we
discussed in Chapter 2. This value may seem important, but the standard perturbations for an `1
adversary are usually much larger than those for an `2 or `∞ adversary – see [33] for more details.

Figures 5.4 and 5.5 show the standard accuracy and the minimum level of accuracy under at-
tack of our new randomized network for multiple levels of injected noise. As in the Gaussian
case, the precision decreases as the noise intensity grows. In addition, the theoretical trade-o�
between precision and robustness appears with respect to the noise intensity. We achieve high
precision guarantees against small `1 perturbations, but when the perturbation is greater than
0.2, the guarantees decrease.

Remark 29. The above theoretical limits only draw the bounds of Theorem 13. Indeed, we have not

demonstrated that Laplace pre-processing gives robustness for the total variation yet. We will have to

study it in future works to improve the theoretical worst case accuracy.

Table 5.2 shows that in practice, Laplace pre-processing achieves higher accuracy under attack
than the theoretical bounds against `1 and `∞ adversaries. It compares the precision and accuracy
under attack of randomized networks with Laplace preprocessing for di�erent standard devia-
tions. As in the Gaussian case, we found out that randomized defenses can be competitive given
the intensity of the noise injected in the network.
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Figure 5.5: Guaranteed accuracy of di�erent randomized models with Laplace noise given the `1 norm of
the adversarial perturbations.

Table 5.2: Accuracy under attack of randomized neural network with Laplace pre-processing for di�erent
standard deviations. CIFAR-10 and CIFAR-100 datasets.

Dataset Method
Accuracy `∞-PGD `1-EAD

without attack α∞ = 0.06 α1 = 7

CIFAR910
Laplace σ = 0.32 0.89 0.58 0.45
Laplace σ = 0.5 0.85 0.59 0.47

CIFAR9100
Laplace σ = 0.32 0.65 0.30 0.36
Laplace σ = 0.5 0.67 0.33 0.32

5.5 Lessons learned and future works
In this chapter, we presented simple schemes for building robust randomized classi�ers. Based on
the links we have established with the privacy preserving literature, we show that Gaussian noise
injection can provide principled robustness against `2 adversarial attacks. Then, we used Gaussian
noise injection with advanced neural network architectures to build robust and accurate models
and supported our theoretical claims with a set of experiments on CIFAR910 and CIFAR9100.
We achieve both good standard accuracy and state-of-the-art robustness. This responds to Q1 and
Q2 from a practical point of view.

We can build randomized classi�ers that are robust for both the total variation
distance and the Renyi divergence.

Finally, we extended our analysis to take into account the noise injection from an exponential
family. This allows us to build a principled defense against `1 adversaries based on Laplace noise
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injection. The practical schemes we developed could be improved in several ways. Among them,
we list below some possible approaches.

Future work 1: widen the scope of adversaries

So far, we have identi�ed Gaussian noise injection to defend against `2 attacks, and we have ex-
tended our study to `1 adversaries. But Lemma 5 is quite general and could lead us to study other
noises for di�erent `p adversaries. The question whether we can build noise injection schemes
to defend against `∞ adversaries also remains open. To this end, we could use the fundamental
link that our framework shares with randomized smoothing to study noises that proved useful
for this defense. In particular, Yang et al. [173] studied new classes of noise by using the Wul�
Crystals theory. This could open some interesting leads for more sophisticated noise injection
mechanisms.

Future work 2: injecting noise anywhere in the network

In the particular case of neural network, we can decompose the deterministic hypothesis into suc-
cessive compositions of functionsh(x) := h(N) ◦ · · · ◦h(1)(x). Thus, from a theoretical point
of view, the data-processing inequality allows us to inject noise at any stage h(i) of the network
and we would obtain results similar to those of this chapter. Nevertheless, noise injection only
works if the maximum perturbation that the adversary can produce is limited, so the network
should have a speci�c design for the scheme to be applicable. The design architectures that allow
for noise injection in the network – e.g. networks with very small Lipschitz constant – rather than
directly on the image would give a very interesting new perspective on the schemes we have just
designed.

Future work 3: establishing deeper connections with di�erential privacy

The link we have established with di�erential privacy is fundamental, and we are far from having
studied all its aspects. For example, we could design much more sophisticated random schemes
based on this link, for example by using the exponential mechanism, or di�erentially private voting
procedures[50]. Di�erential privacy is also known to have very interesting properties for general-
ization based on stability theory [11]. Thus, we could adapt previous results to improve the analysis
we presented in Chapters 4 and 5.
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Contents

6.1 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Open problem 1: Revisiting the adversarial framework . . . . . . . 106
6.3 Open problem 2: Rethinking learning theory . . . . . . . . . . . . 107
6.4 Open problem 3: Unifying trustworthy machine learning . . . . . . 109

6.1 Summary of the results
In this thesis, we studied the problem of adversarial classi�cation from di�erent angles, using a
series of theoretical and practical tools. We have tried to analyze the problem using both a high level
and a more precise analysis. Overall, our work advocates for the development of a probabilistic
viewpoint on adversarial examples is a principled way to better understand and to build new useful
theories. We can summarize our �ndings as follows.

1. We �rst presented the problem as an in�nite zero-sum game, and analyzed the funda-
mental nature of the game under di�erent types of regularization using game theory.
This analysis gave us a better understanding of the current analytical framework used
in the adversarial examples community, and led us to argue for randomization as a
principled defense against adversarial attacks.

2. We then studied in more detail the key properties that random defenses should ob-
serve in order to build classi�ers that are robust while maintaining high standard
accuracy. To this end, we developed new approaches to study the robustness of ran-
domized classi�ers using information theory, probability theory and statistical learn-
ing theory. We identi�ed su�cient conditions for randomized algorithms to be ro-
bust and we studied the generalization property of these classi�ers.

3. Finally, we developed practical schemes for designing robust random classi�ers using
information theory and lessons learned from the privacy literature. This shows that
we can build robust random classi�ers based on state-of-the-art neural network ar-
chitectures, and paves the way to exciting future works, both in theory and practice.

We hope that our analysis helped the community move forward and brought new and interesting
perspectives on the di�cult problem which is adversarial classi�cation. The �eld is still young and
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many research directions are still open. Throughout the manuscript, we have discussed future
works that correspond - more or less - to direct improvements of our results. But here, we would
like to take the time to present some more challenging open problems that would require more
investment in terms of time and resources.

6.2 Open problem 1: Revisiting the adversarial framework

Back to adversarial classi�cation, the community studies the Problem (1.3) de�ned as

inf
h∈H

E(x,y)∼D

[
sup

τ s.t. ‖τ‖p≤αp
L(h(x+ τ ), y)

]
. (1.3)

As we discussed in this work, from a functional point of view, the same problem writes

inf
h∈H

sup
ψ∈FX|αp

E(x,y)∼D[L(h(ψ(x)), y)] . (6.1)

This is the main focus of the literature, and the current analysis tends to show that the inf problem
cannot have a good solution. Empirical evidence support these conclusions [28, 103]. Neverthe-
less, in chapter 3, we have shown that the conclusions we draw about the nature of adversarial
classi�cation can change as soon as we modify the problem, even very slightly. This raises the
following question.

Remark 30. Note that even advanced methods based on randomization such as the one presented

in chapter 5, or randomized smoothing achieve an accuracy under attack slightly above 0.5, which is

not enough to consider classifiers as ultimately robust.

Is the problem of classi�cation under adversarial perturbation ill-posed?

By ill-posed, we mean that the problem is not modeling a real threat scenario. We believe that
the mathematical convenience of the current formulation has led researchers to study an over-
simpli�ed problem in which the opponent is unrealistically strong. This idea is shared by recent
literature [46, 62]. We therefore need to rethink the mathematical framework to make it more
representative of real threat scenarios.

In Chapter 3, we �rst pointed out that adversaries who can attack all points in the distribution
are unrealistic and presented simple ways to mitigate this concern. In addition, we could also ask
whether the better way of evaluating the performance of an attack is by computing the expectation
over attacking all points. If we come back to the example of the self-driving car, an adversary who
wants to trigger an accident may only want to change the decision on a very limited number of
points and not care about the others. Similarly, the classi�er may have di�erent priorities on the
points it has to defend. If we let Ldef and Ladv encode the di�erent policies of the defender and
the adversary regarding the points, the problem now writes
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
sup

ψ∈FX|αp
E(x,y)∼D

[
Ladv(h(ψ(x)), y)

]
, for a given hypothesish.

inf
h∈H

E(x,y)∼D
[
Ldef(h(ψ(x)), y)

]
, for a given adversaryψ.

(6.2)

From the game theoretical standpoint, we are now studying an asymmetrical and non-zero-sum
game, which leads to very interesting and much more sophisticated designs. Wondering whether
the model is ill-posed naturally leads to the following question.

If we change the mathematical framework, would existing �ndings and
insights still hold – at least to some extent?

As we saw in Chapter 3, a simple regularization can fundamentally change the nature of the
game. Therefore, most of the previous conclusions may not be valid when we change the whole
game design. In any case, studying new frameworks would allow us to assess whether existing
conclusions are based solely on the over-strength of the adversary or whether they encompass some
form of generality. In both cases, since the modi�cations will be aimed at limiting the adversary’s
strength, it would allow us to better understand the actual defense capabilities that we may have
when faced with adversarial examples.

6.3 Open problem 2: Rethinking learning theory

Recall that most of the literature on learning theory focuses on demonstrating the convergence of
the empirical risk to the theoretical risk using the uniform law of large numbers and some capacity
control over the complexity of the hypothesis class. The goal is then to �nd classes of models
that are large enough for the ERM to have a small value, and small enough for us to get a good
generalization gap. According to this interpretation – see Figure 6.1 on the left – the common
way of thinking is that models with zero training error over-�t samples, leading to poor test time
accuracy. However, recent works have questioned the application of this point of view to modern
machine learning models such as neural networks. For example, Zangh et al. [179] have shown
that we can learn a deep network for image classi�cation on CIFAR - 10 which has a training
accuracy of 1.0 and still gives more than 0.85 test accuracy. This means that the model may either
not over-�t signi�cantly or even not over-�t at all. Returning to the classic form of a bound in
learning theory, when the training error is zero, we get

Ropt ≤ E(x,y)∼D[L(h(x), y)] ≤ O
(√

C(n)

n

)
, (6.3)

where Ropt is the risk of the Bayes optimal classi�er, and C(n) is a measure of complexity for
the hypothesis class that may or may not depend on n. WhenRopt = 0 we can often show that√

C(n)
n −→

n→∞
0 which makes sense. But, whenRopt > 0, for the right term to explain the error in
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a non-trivial way, we need the hidden constants inO
(√

C(n)
n

)
to be optimal – which is never the

case for the bounds on neural networks. As a result, the ideas of classical learning theory may not
apply to deep learning frameworks, meaning that the analysis should not be based on the uniform
law of large numbers or capacity control.

Figure 6.1: Comparison of the classical belief in learning theory with the double descent phenomenon.

Remark 31. Note that, most of the time, we will haveRopt > 0 as the support of the conditional

distributions {µk}k∈[K] are not likely to be disjoint.

We �nd that the ERM works quite well in practice, which is why researchers have begun to
question capacity control. Speci�cally, the following question arises.

How does the generalization of modern machine learning models
depends on their complexity?

A partial answer to this question comes from an observation that is based on the extension
of the study beyond the over�tting regime for several machine learning models including neural
networks [15, 119]. When we arbitrarily increase the complexity of the model, we �nd that after
over�tting the training samples, the theoretical risk of the model begins to decrease again. This
phenomenon is called "double descent". Note that after over�tting, all models have a zero training
error, but the larger the model, the lower the theoretical risk. This is a very surprising phenomenon
that has been observed on many models of advanced neural networks. From a theoretical point
of view, the phenomenon has been identi�ed and analyzed for linear models which indicates that
the theory behind neural networks should also be revisited. Coming back to the main objective
of this manuscript, we could also ask the following question.
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Would this paradigm shift allow us to better understand or avoid adversarial examples?

An interesting way to start answering this question is to examine the k-nearest neighbor model,
as suggested by Belkin et al. [14]. This is a classical smoothing technique for which we can directly
relate the expected loss of the algorithm to the Bayes optimal classi�er. For example, Cover and
Hard [36] have shown that we can bound the model error as follows.

Ropt ≤ E(x,y)∼D[L(h(x), y)] ≤ Ropt
(

2− KRopt

K − 1

)
. (6.4)

Since the guarantees of this technique depend neither on the complexity of the model nor on
the uniform law of large numbers, it is a good starting point for the study of a new formalism.
Regarding adversarial examples, it should be noted that some classi�cation methods that do not
over-�t, such as the k nearest neighbor model, have proven robust against some forms of adver-
sarial examples [164]. Nevertheless, recent results [14] have also shown that if we force a k-nearest
neighbor model to over-�t the training samples – a.k.a. by interpolating nearest neighbor in [14],
then adversarial examples become unavoidable, as it seems to be the case for neural networks. This
suggests that the adversarial example phenomenon is closely related to the double-descent regime
of deep neural networks and thus to over-�tting.

Remark 32. As we already discussed in Chapter 2 Goodfellow et al. [67] disproved the hypothesis

of the model over-fitting the dataset by presenting transferable attacks. But here by over-fitting we

mean a much more profound and convoluted phenomenon that occurs when the complexity of the

model goes to infinity.

6.4 Open problem 3: Unifying trustworthy machine learning

Figure 6.2: Summary of the links and expected links between several areas within the trustworthy machine
learning community.
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In this manuscript, we have highlighted the theoretical links between di�erential privacy and
robustness to adversarial examples using information theory. But di�erential privacy also has a
formal framework that can be linked to other areas such as fairness in machine learning, as pointed
out by Dwork et al. [51]. Furthermore, robustness to adversarial examples has been linked to
explainability in machine learning by Ignatiev et al. [82] using a formal logic viewpoint. Hence,
by transitivity, explainability and di�erential privacy are related notions. It would be interesting
to study whether we could establish a direct line between these two concepts using information
theory. Di�erential privacy seems to be a key concept that the community should continue using
to build bridges with other areas of trustworthy machine learning.

In particular, the robustness to train time adversaries – a.k.a. poisoning attacks [89, 90] – could
also be connected to di�erential privacy since both notions are based on stability theory [11]. Fig-
ure 6.2 summarizes the links between the areas we have just discussed – plain lines – and the links
that we believe could be useful to the community – dotted lines. We strongly believe that di�eren-
tial privacy and information theory can play a key role in building a uni�ed view on the di�erent
domains of trustworthy machine learning.
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A Defending against multiple `p
adversarial attacks simultaneously

This appendix is the result of work carried out in collaboration with Alexandre Araujo,
Laurent Meunier and Benjamin Negrevergne. It was recently published as a workshop pa-
per at ECML 2020 under the name “Advocating for Multiple Defense Strategies against
Adversarial Examples”. We also refer the interested reader to the arXiv version of the paper
called “Robust Neural Networks using Randomized Adversarial Training”.
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A.3 Related works and perspective to defend against multiple perturbations 116

As we have discussed several times in this manuscript, the construction of a defense mechanism
against an `p adversary does not guarantee protection against any other type of attack. Further-
more, no uni�ed framework allows to simultaneous protect against multiple threats yet. In this
appendix, we re�ne the geometric analysis presented in Chapter 2 and explain why it is di�cult to
deal with several threats simultaneously. We also provide a number of empirical insights to illus-
trate this phenomenon in practice. We then review some of the existing defense mechanisms that
attempt to defend against multiple attacks by mixing defense strategies. The rest of this appendix
is organized as follows. In Section A.1, we conduct a theoretical analysis to show why `∞ defense
mechanisms cannot be robust against `2 attacks and vice versa. We then corroborate this anal-
ysis in Section A.2 with empirical results using real adversarial attacks and defense mechanisms.
In Section A.3, we discuss some recent related works that try to build defenses against multiple
adversarial attacks.

A.1 No free lunch for adversarial defenses – a theoretical approach

In this section, we show both theoretically and empirically that defense mechanisms that protect
against `∞ attacks cannot provide adequate protection against `2 attacks. Our reasoning is per-
fectly general, so we can demonstrate the reciprocal assertion in the same way, but we focus on
this side for the sake of simplicity.
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Figure A.1: On the left: 2D representation of the `∞ and `2 balls of respective radius α∞ and α2. In the
middle: a classi�er trained with `∞ adversarial perturbations – red line – remains vulnerable
to `2 attacks. On the right: a classi�er trained with `2 adversarial perturbations – blue line –
remains vulnerable to `∞ attacks.

Let us consider a classi�er c∞ that is robust against adversarial examples with α∞ bounded
perturbation for the `∞ norm. It guarantees that for any input-output pair (x, y) ∼ D such that
c(x) = y and for any α∞ bounded perturbation τ we have c∞(x + τ ) = c∞(x). We now
wonder what are the performances of this classi�er against `2 adversaries with maximal perturba-
tionα2. Figure A.1 – on the left, shows the balls with the respective radiiα2 andα∞. If we build
an `2 adversarial example which is at the intersection of the two balls, it will not work on c∞. On
the other hand, if we manage to select an example outside the `∞ ball, c∞ has no more guarantee.

Thus, to characterize the probability that an `2 perturbation fools an c∞ in the general case –
that is, for any dimension d – we measure the ratio between the volume of the intersection of the
ball `∞ of radiusα∞ and the ball `2 of radiusα2. As shown in the Theorem 17, this ratio depends
on the dimension of the problem d and quickly converges to zero when d increases. It is therefore
unlikely that a defense mechanism that protects against `∞ adversaries will be e�ective against `2
attacks.

Theorem 17. Let us consider d ∈ N,x ∈ Rd andBd|2(α2) – resp. Bd|∞(α∞) – the `2 ball with

radiusα2 – resp. the `∞ ball with radiusα∞ – with centerx. If for all d, we selectα2 andα∞ such

that Vol
(
Bd|2(α2)

)
= Vol

(
Bd|∞(α∞)

)
. Then the following holds,

Vol
(
Bd|2(α2) ∩Bd|∞(α∞)

)
Vol
(
Bd|∞(α∞)

) −→
d→∞

0.

Proof. Without loss of generality, let us �x α∞ = 1 and x = 0. Then we have

Vol
(
Bd|2(α2)

)
=

(
2Γ
(

1
2 + 1

)
α2

)d
Γ
(
d
2 + 1

) and Vol
(
Bd|∞(1)

)
= 2d.
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Then, to have balls with the same volumes, for any dwe set

α2 =
2√
π
Γ

(
d

2
+ 1

)1/d

where Γ is the gamma function. Since α2 is a function of d, in the remaining we use the
notation α2(d). If we denote U , the uniform distribution onBd|∞(1) we get

Vol(Bd|2(r2(d)) ∩Bd|∞(1))

Vol(Bd|∞(1))

= Pz∼U
[
z ∈ Bd|2(r2(d))

]
= Pz∼U

[
d∑
i=1
z2
i ≤ α2(d)2

]
= Pz∼U

[
d∑
i=1
z2
i − Ez∼U

[
d∑
i=1
z2
i

]
≤ α2(d)2 − Ez∼U

[
d∑
i=1
z2
i

]]
.

Furthermore, when d is su�ciently large we get

α2(d)2 − Ez∼U

[
d∑
i=1

z2
i

]
= α2(d)2 − d

3
< 0.

Using the Hoe�ding inequality we get

Vol(Bd|2(r2(d)) ∩Bd|∞(1))

Vol(Bd|∞(1))
≤ exp

(
−
(
α2(d)2 − d

3

)2
d

)
.

Finally, thanks to Stirling’s formula, we have

α2(d) ∼
d→∞

√
2

πe
d1/2.

Then the right hand term converges towards 0 when d goes to∞which concludes the proof.

Theorem 17 indicates that, when d is large enough, `2 based perturbations have a null prob-
ability of being also in the `∞ ball of the same volume. Therefore, when the dimension of the
problem is su�ciently large, a defense mechanism o�ering complete protection against `∞ ad-
versaries is not guaranteed to o�er any protection against `2 attacks1. This result goes against
two-dimensional intuition. Indeed, if we consider a two-dimensional problem, the `∞ and `2
balls overlap signi�cantly – as shown on the left of �gure A.1 – and the probability of sampling at
the intersection of the two balls is about 0.98. However, this probability is close to zero for any
realistic image setting, even for very simple image data sets such as MNIST [97].

1Theorem 17 can easily be extended to any two balls with di�erent norms. But we restrict to the case of `∞ and `2
norms as we mainly discussed these norms until now.
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Table A.2: Comparison of the bound from Theorem 17 when d varies from d = 2 to typical image classi-
�cation setting – 10−0.009 ≈ 0.98.

Dataset Dimension (d) Volume of the intersection
– 2 10−0.009

MNIST 784 10−144

CIFAR 3072 10−578

ImageNet 150528 10−28946

A.2 No free lunch for adversarial defenses in practice
Our theoretical analysis shows that if adversarial examples were uniformly distributed in a high di-
mensional space, then any mechanism that only defends perfectly against the `∞ adversaries has
a zero probability to be robust to `2 adversarial examples. Although existing defense mechanisms
do not necessarily assume such a distribution, targeted defenses only work marginally when at-
tacked with di�erent norms. Before analyzing the results, let us brie�y present some details of the
experimental protocol.

Experimental protocol

All experiments are conducted on CIFAR-10 with the Wide-Resnet 28-10 architecture. We use
the training procedure and the hyper-parameters described in the original paper by [177]. To train
a neural network with adversarial training, we still use the same hyper-parameters, and generate
adversarial examples during training using either PGD-`∞ or PGD-`2 adversary with 10 itera-
tions.

To compare the empirical performances of our method with adversarial training, we consider
two `p adversaries with thresholds corresponding to CIFAR-10.

• An `∞ adversary with perturbation bounded by 0.031. To model this adversary we use the
PGD attack with tmax = 20 iterations.

• An `2 adversary with perturbation bounded by 0.8. To model this adversary we use the PGD
attack with tmax = 20 iterations.

• Another `2 adversary with perturbation bounded by 0.8. To model this adversary we use the
C&W attack with 60 iterations, a learning rate equal to 0.01, 9 binary search steps, and an
initial constant of κ = 0.001.

Remark 33. Our analysis is mainly focusing on PGD attacks for both the `∞ and the `2 norms.

However, these attacks have a very strict geometry
2
. This is why, to present a deeper analysis of the

behavior of adversarial attacks and defenses, we also present a set of experiments that use C&W

attack.

2Due to the projection operator, all PGD attacks saturate the constraint, which makes them all lie in a very small part
of the ball.
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Results

Table A.3: Average norms of PGD-`2 and PGD-`∞ adversarial examples with and without `∞ adversarial
training on CIFAR-10 (d = 3072).

Adversary Attack PGD-`2 Attack PGD-`∞
Model Unprotected AT-`∞ Unprotected AT-`2

Average `2 norm 0.830 0.830 1.400 1.640
Average `∞ norm 0.075 0.200 0.031 0.031

To demonstrate that adversarial training is not robust against PGD-`2 attacks, we measure the
evolution of the `2 norm of the adversarial examples generated by the attack against an unpro-
tected model and a model trained with adversarial training `∞ – AT-`∞, where the adversarial
examples are generated with the PGD-`∞. The results are presented in Table A.3. We can see that
the average `∞ norm of an `2 perturbation more than doubles between an unprotected model
and a model trained with an adversarial training. As shown in Figure A.1 – on the right – the at-
tack generates an adversarial example in the cap of the `2 ball, thus increasing the `∞ norm while
maintaining the same `2 norm. The same phenomenon can be observed with the AT-`2 against
the PGD-`∞ attack – see Figure A.1 in the middle and Table A.3. The PGD-`∞ attack increases
the `2 norm while maintaining the same `∞ perturbation by generating the perturbation in the
corner of the `∞ ball. As a result, we cannot expect adversarial training `∞ to guaranty any pro-
tection against the `2 adversarial examples.

α′ = α∞ α′ = α∞ ×
√
d

0

0.5

0.1

·104

α′ = α∞ α′ = α∞ ×
√
d

0

0.5

0.1

·104

Figure A.4: Comparison of the number of adversarial examples found by C&W, inside the `∞ ball – lower,
blue area, outside the `∞ ball but inside the `2 ball – middle, red area – and outside the `2
ball –upper beige area. α∞ is set to 0.03 and α′ varies along the x-axis. On the left: without
adversarial training. On the right: with adversarial training.

To better capture the behavior of `2 adversarial examples, we now study the performance of
an `2 C&W attack with and without AT-`∞. It allows us to understand in which area C&W dis-
covers adversarial examples and the impact of AT-`∞. In high dimensions, the red corners – see
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Figure A.1 left – are very far away from the `2 ball. Therefore, we hypothesize that a large pro-
portion of the `2 adversarial examples will remain unprotected. To validate this assumption, we
measure the proportion of adversarial examples inside the `2 ball before and after `∞ adversarial
training. The results are presented in Figure A.4 – on the left: without adversarial training, right:
with adversarial training. The blue area represents the proportion of adversarial examples that are
inside the `∞ ball. The red zone represents the adversarial examples that are outside the `∞ ball
but still inside the `2 ball, i.e. valid adversarial examples for an `2 adversary but not for `∞ ad-
versary. Finally, the brown-beige zone represents the adversarial examples that are beyond the `2
limit3. α′ is the size of the `2 ball and varies along the x-axis from α∞ to α∞

√
d. On the left –

without adversarial training - most of the adversarial examples generated by C&W are inside the
two balls. On the right, most of the adversarial examples have been moved outside the `∞ ball.
This is the expected consequence of `∞ adversarial training. However, these adversarial examples
remain in the `2 ball — i.e. they are in the upper cap of the `2 ball described on the right of Fig-
ure A.1. This means that even after adversarial training, it is still easy to �nd good `2 adversarial
examples, which makes the robustness of AT-`∞ almost non-existent.

A.3 Related works and perspective to defend against multiple
perturbations

Defenses against adversarial examples, such as adversarial training, are usually tailored to a single
type of perturbation. As we have just discussed, defending against a single perturbation o�ers no
guarantee and can even sometimes increase the vulnerability of the model to new attacks. Hence
the community is trying to develop e�ective defenses against multiple perturbations. This ques-
tion has been studied in several recent works [104, 153].

Tramer et al. [153] �rst proposed to address this problem by mixing adversarial training with
attacks for di�erent norms in order to defend against multiple models of perturbation. To de-
sign the loss function, the authors proposed two simple aggregation rules. The �rst averages the
attacks and the second selects the perturbation that maximizes the loss over the di�erent threat
models. While this approach can achieve varying degrees of robustness for the adversarial per-
turbation models considered, in practice it is quite di�cult to adjust and often achieves varying
degrees of robustness to individual perturbations. This results in a sub-optimal worst-case loss
when we consider the union of threat models – which is actually our main purpose. To address
this shortcoming, Maini [104] has further re�ned the PGD-based procedure to simultaneously
incorporate all model threats into a single attack called MDS – Multi Steepest Descent. This
technique achieves about the same level of robustness as adversarial training – against one model
threat — when it faces any of the threats it has learned on. Much work remains to be done on
defense against multi-model threats, which opens interesting theoretical and practical perspec-
tives. In particular, it would be interesting to study cases where we could design provable defenses
against multiple perturbations without compromising the accuracy of the model.

3As mentioned in Chapter 2, the C&W attack is not bounded at �rst since the Lagragian relaxation does not have
a strong constraint. Hence, the beige zone represents the set of examples that will be clipped at the end of the
procedure.
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This appendix is based on the individual and joint works of Anne Morvan and Rafael Pinot. We
refer the interested reader to the following manuscripts for an in-depth analysis of all the concepts
and contributions associated with this appendix.

• “Graph-based Clustering under Di�erential Privacy”.
Uncertainty in Artificial Intelligence (UAI) 2018.
R. Pinot, A. Morvan, F. Yger, C. Gouy-Pailler, J. Atif.

• “Contributions to unsupervised learning from massive high-dimensional data streams”.
PhD thesis PSL University 2018.
A. Morvan.

• “Minimum spanning tree release under di�erential privacy constraints”.
Master thesis Sorbonne University 2017.
R. Pinot.

Finally, to access implementation details, one can refer to the following Github repositories.

https://github.com/RPINOT/privateMST & https://github.com/annemorvan/DBMSTClu
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In this appendix, we present an overview of another line of research we investigated in this the-
sis, namely unsupervised learning under di�erential privacy constraints. More precisely, we de-
veloped a di�erentially private clustering algorithm for arbitrarily-shaped clustering of nodes in a
graph. The results we present here are somewhat orthogonal to the main object of the manuscript,
but they represent advances in the �eld of di�erential privacy which is closely related to robustness
as we discussed in Chapter 5. In Section B.1, we �rst present the key concepts of node clustering

117

https://github.com/RPINOT/privateMST
https://github.com/annemorvan/DBMSTClu
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in a graph and summarize our �ndings in this domain. We then introduce clustering based on dif-
ferentially private graphs and present our main contributions in this area in Section B.2. Finally,
Section B.3 presents some numerical results.

Reading note. We only provide a very light introduction to our contributions and we deliberately

skip a lot of technical details and state informal results for simplicity. The interested reader will find

above references and source code for a more detailed reading.

B.1 Graph clustering and minimum spanning tree

Notations. LetG = (V,E,w) be a simple undirected weighted graph with a vertex set V , an edge

set E, and a weight function w := E → R. We call G = (V,E) the topology of the graph, and

WE denotes the set of all possible weight functions mapping E to weights in R. Cursive letters are

used to represent weighted graphs and straight letters refer to topological arguments. Since graphs

are simple, the path Pu−v between two vertices u and v is characterized by the ordered sequence of

vertices {u, . . . , v} or the corresponding binding edges depending on the context.

Weighted graphs are known to be a useful representation of data in many areas of computer sci-
ence, such as bioinformatics or network analysis – be it social, computer or information networks.
More generally, a graph can always be thought of as a representation of data dissimilarity where
the points in the dataset are the vertices and the weighted edges express the distances between these
objects. In both cases, graph clustering [140] is a key tool for understanding the underlying struc-
ture of the datasets by locating groups of nodes ruled by a speci�c similarity. Furthermore, the
minimum spanning tree is known to help recognizing clusters with arbitrary shapes in tree-based
clustering algorithms. It thus can be used for a wide range of applications [5, 72, 116, 172, 178].

Figure B.1: Summary of the generic procedure for computing an MST-based clustering.

Let us consider G = (V,E,w) a simple undirected weighted graph with a vertex set V , an
edge setE, and a weight functionw := E → R. From G, an MST-based algorithm proceeds as
follows – Figure B.1 summarizes the procedure.

1. Compute a connected subset of E that spans V with minimal cumulative weight, i.e. a
minimum spanning tree of G – Figure B.1 middle.
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2. Prune the tree according to some criteria in order to obtain a forest. Every connected com-
ponent in this forest characterizes a cluster – Figure B.1 right.

Remark 34. Note that we will always assume here that the graph is connected, but similar results

hold when we have more than one connected component.

MST-based clustering methods, however e�ective, generally lack appropriate formal analysis. Our
�rst contribution �lls this gap by providing a theoretical framework for MST-based clustering.
More precisely, our contribution is twofold: 1) we present a theoretical framework motivating
MST-based clustering methods, where the notion of clustering is based on the concept of min-
imum path distance, 2) we provide theoretical guarantees for DBMSTClu [116] algorithm, an
MST-based clustering algorithm we previously worked on.

Analytical framework for MST-based clustering

In order to analyze the e�ectiveness of an MST-based method, we must �rst introduce a notion of
clustering that we want to comply with. Since the graph is simple, it is possible to de�ne the min-
imum path distance between two nodes, which makes our de�nition of clustering more explicit.

De�nition 13 (Minimum path distance). Let us consider G = (V,E,w) and u, v ∈ V . The

minimum path distance between u and v is

dist(u, v) = min
Pu−v

∑
e∈Pu−v

w(e),

withPu−v a path from u to v in G – edges version.

De�nition 14 (Cluster extended from [172]). Let us considerG = (V,E,w), dist the minimum

path distance defined on G and D ⊂ V . A vertices set C ⊂ D is a cluster if and only if |C| > 2
and for any partitionC1, C2 ofC we have

arg min
z∈D\C1

{ min
v∈C1

dist(z, v) } ⊂ C2.

Remark 35. Assuming that a cluster is built of at least 3 points makes sense since singletons or groups

of 2 nodes can be legitimately considered as noise. For simplicity of the proofs, the following theorems

hold in the case where noise is neglected. However, they are still valid in the setting where noise is

considered as singletons – with each singleton representing a generalized notion of cluster.

In particular, this de�nition states that a clusterC can only be de�ned if for any vertex u ∈ C ,
the closest vertex to u in G must be in C . Figure B.2 illustrates the de�nition. On the left, we
have a valid clustering. On the right, the cluster is obviously non representative of the underlying
structure of the graph; hence De�nition 14 does not hold. Thanks to the above de�nition of
cluster, we can now motivate the use of MST-based algorithms for node clustering in a graph.

Theorem 18 (Motivation for MST-based clustering - Informal). Let G = (V,E,w) be a graph

and T a minimum spanning tree of G. Let also C be a cluster in the sense of Definition 14. Then

for any two vertices u, v ∈ C , we havePu−v ⊂ C , wherePu−v is the path from u to v in T .
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Figure B.2: Illustration of valid and non-valid clusters for De�nition 14.

This theorem states that for any two nodes inC , every vertex in the path between them is inC .
This means that a cluster can be fully characterized by a subtree of T . It justi�es the use of MST-
based methods for clustering data or nodes in a graph. All clustering algorithms based on succes-
sively cutting the edges of an MST to obtain a forest are sound in the sense of the Theorem 18. In
what follows, we focus our analysis on one of the latest MST-based clustering algorithms called
DBMSTClu and recently introduced by Morvan et al. [116].

MST-based clustering with guarrantees

Let us brie�y present this algorithm – refer to Figure B.3 for a basic description. Given an MST
T , DBMSTClu consists of successive cuts on T . At each iteration, an edge is cut if a certain
criterion, called Density-Based Validity Index of a Clustering partition – DBCVI – is improved.
This edge is greedily chosen to locally maximize the DBCVI at each step. When no improvement
of the DBCVI can be made, the algorithm stops. The notion of DBCVI is constructive. In short,
it compares the maximum edge weight inside the cluster with the minimum weight of the edges
coming out of the cluster. When this di�erence is high; the DBCVI is also high and vice versa.
For more details on this notion, we refer the reader to [116] and [117].

Then – under mild assumption on the weight functionw– we can guarantee thatDBMSTClu
outputs a set of clusters that comply with De�nition 14. In a nutshell, this condition says that the
edge separating each cluster must have a weight that is su�ciently distinct from the edges within
the cluster. This motivates the following de�nition.

De�nition 15 (Homogeneous separability condition). Let us consider a graph G = (V,E,w),

s ∈ E and T a tree of G with a set of edges E(T ). T is said to be homogeneously separable by s if

the following holds,

βT max
e∈E(T )

w(e) < w(s), with βT =

max
e∈E(T )

w(e)

min
e∈E(T )

w(e)
≥ 1.

The latter condition is local and depends on a tree in G. Let us suppose that there exists K
clusters in G – (C1, . . . , CK) – characterized by subtrees (T1, . . . , TK). Then if the subtrees are
homogeneously separable by a set of edges (s1, ..., sK−1), then the graph is called homogeneous.
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Input: T

Compute
the

DBCV I
for each

cut

Apply
the best
cut on T

Does the
best cut
improve

the
DBCV I?

Return the
clustering
partition

yes

no

Figure B.3: Diagram summarizing DBMSTClu algorithm. Figure from [117].

This is simply a condition for clusters to be su�ciently separated one from another in G. When
the graph is homogeneous, we can show that DBMSTclu recovers correctly theK clusters.

Theorem 19 (E�cacy of DBMSTclu – Informal). Let G be a simple weighted graph with K
clusters C1, . . . , CK . If G is homogeneous, then DBMSTclu applied on any MST of G outputs

subtrees that match the clustersC1, . . . , CK .

We now have an algorithm in an appropriate analytical framework, which allows us to evaluate
when it will correctly �nd the underlying structure of the graph. Nevertheless, it is essential that
the data representation we use protects the private characteristics contained in the graph. Let us
consider an application in which we want to identify groups of web pages that have similar con-
tent, i.e. web pages with a similar audience. In this case, the vertices represent the web sites. The
link between two vertices represents the fact that some users visit both of them. The edge weights
re�ect the number of common users and therefore carry sensitive information about individu-
als. When analyzing the graph data, no personal user’s browsing behavior should be violated; i.e.

browsing from one page to another should remain private. As already mentioned in the body of
the manuscript, the gold standard for privacy data analysis is di�erential privacy [50]. In the fol-
lowing, we discuss how di�erential privacy can be applied to graph based clustering algorithms.

B.2 Di�erentially private node clustering in a graph

Even though di�erential privacy has been extensively investigated, learning from graph databases
under di�erential privacy remains challenging. Mir et al. [108] as well as Karwa et al. [86] for-
malized the idea of releasing statistics from a graph in a di�erentially private manner following
the seminal work of Nissim et al. [122]. Then several de�nitions of di�erential privacy on graphs
appeared. Among them, the main ones are edge-di�erential privacy [75], and node-di�erential pri-
vacy [88]. Conceived for the protection of the graph topology, these de�nitions are not suitable for
applications to network analysis where the structure is static and the private information on the
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users are carried by the edge weights. Sealfon [143] addressed this issue by providing a new formal
framework for the private analysis of weighted graphs where the graph topology G = (V,E) is
public and the private information is contained in the weight functionw : E → R. We recently
studied a slightly di�erent version of the de�nition that relies on the following notion of closeness
between weight functions.

De�nition 16. For any edge setE, two weight functionsw,w′ are called neighbors – denotedw ∼
w′ – if ||w − w′||∞ := max

e∈E
|w(e)− w′(e)| ≤ α.

α represents the sensitivity of the weight function and should be chosen according to the appli-
cation at hand. The de�nition of weight-di�erential privacy for a graph algorithm can then write
as follows.

De�nition 17. For any graph topologyG = (V,E), letA be a randomized algorithm that takes

as input a weight functionw. A is called ε-di�erentially private onG = (V,E) if for all pairs of

neighboring weight functionsw ∼ w′, and for any possible output o, one has

P[A(w) = o] ≤ eεP
[
A(w′) = o

]
.

When it is ε-di�erentially private on every graph topology in a class C,A is called ε-di�erentially

private on C.

In the remaining, we will be interested in this de�nition of di�erential privacy that we call
weight-di�erential privacy.

Node clustering in a graph under di�erential privacy

Di�erentially private clustering for unstructured datasets has been �rst discussed in [122]. This
work introduced the �rst method for di�erentially private clustering based on the k-means algo-
rithm. Since then most of the work in the �eld focused on adaptation of this method [21, 49,
106]. The main drawback of this work is that it is not able to deal with arbitrary-shaped clus-
ters. This issue has been recently investigated in [80] and [32]. They proposed two new methods
to �nd arbitrary-shaped clusters in unstructured datasets respectively based on density cluster-
ing and wavelet decomposition. Even though both of them produce non-convex clusters, they
only deal with unstructured datasets and thus are not applicable to node clustering in a graph.
Graph clustering has already been investigated in a topology-based privacy framework [118, 121],
however, these works do not consider weight-di�erential privacy. Hereafter, we present a new
generic method for node clustering in a graph under this privacy notion using MST-based clus-
tering methods. Recall that an MST-based clustering algorithm 1) builds a minimum spanning
tree and 2) prunes it until getting a forest that represents the clusters. To make this procedure
private, we choose to compute step 1) under di�erential privacy constraint. Then thanks to the
post-processing inequality– see Theorem 14, we extend the obtained privacy guarantees to step
2). Hence, we �rst want to design a di�erentially private minimum spanning tree algorithm. Seal-
fon [143] addressed this issue by providing and analyzing an algorithm that releases an approximate
minimum spanning tree under weight-di�erential privacy. The error of this seminal algorithm in
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B.2 Di�erentially private node clustering in a graph

terms of weight approximation isO(|V | log |E|) 1 for �xed privacy parameters and its time com-
plexity is O(|E|+ |V | log |V |). Accordingly, this method can be highly inaccurate when the
graph is large, which is common in machine learning applications.

I: G = (V,E,w)
Pick v ∈ V
at random,

SV ← {v}, SE ← ∅
. SV = V ?

Use the Exp.
mechanism to get
the next edge e.

update SV and SE

Return SE

no

yes

Figure B.4: Diagram summarizing PAMST algorithm. Figure from [117].

A way to improve the algorithm’s performances in the context of graph learning under di�er-
ential privacy is to construct an iterative method which focuses on considering a local condition
on the weight function in the process. This idea has been �rst proposed by Gupta et al. [73], and
extensively investigated in the framework of di�erentially private submodular optimization by
Mitrovic et al. in [112]. In the latter, the issue of releasing a minimum spanning tree under weight-
di�erential privacy is not directly investigated. Yet one could derive from the study of monotone
submodular maximization a private version of Kruskal algorithm with an improved approxima-
tion error of O

(
|V |2/|E| log |V |

)
. Even though the approximation error is satisfying, Kruskal

algorithm in the submodular framework has an algorithmic complexity of O(|E||V |) which is
prohibitive when dealing with large and dense graphs.

Under a similar privacy setting we recently produced an algorithm to release the topology of a
tree under di�erential privacy. We designed a Prim-like algorithm2 – called PAMST– to privately
release the topology of an almost minimum spanning tree thanks to an iterative use of the well
known scheme from the di�erential privacy literature called the Exponential mechanism [50]. The
Exponential mechanism represents a way of privately answering arbitrary range of queries. It is
de�ned according to a utility function which aims at providing some preorder on the possible
outputs of the algorithm according to the order in R. In PAMST we use it to select an edge at
random from a subset ofE. The algorithm is summarized in Figure B.4.

PAMST takes as an input a weighted graph. It outputs the spanning tree which weight is almost
minimal, according to the weight function. To do so, the algorithm starts at an arbitrarily chosen
vertex and chooses one of its incident edges according to the Exponential mechanism. Then it
updates the set of edgesSE and adds the second node belonging to this edge to the current node set
SV . As long as the node set does not contain all the vertices, PAMST continues to choose at each

1This error is computed according to the di�erence between the underlying weight of the tree topology – sum of the
edges weights – and the weights of the minimum spanning tree, using the initial weight function.

2For more details on Prim algorithm, the interested reader can refer to [130].
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step an edge that is incident to SV to update the edge set, and updates the node set accordingly.
Theorem 20 states that using PAMST to get an almost minimal spanning tree topology preserves
weight-di�erential privacy.

Theorem 20 (Privacy for PAMST - Informal). PAMST is ε-di�erentially private on the set of

simple undirected weighted graphs, where ε depends on the type of exponential mechanism we use.

PAMST exhibits a weight approximation error of O
(
|V |2/|E| log |V |

)
for �xed privacy pa-

rameters, and a time complexity ofO(|V |2). This result, in contrast to previous works, enables to
deal with relatively large, and dense graphs, which are frequently met in machine learning appli-
cations. For more details on the design of the algorithm and the privacy guarrantees, one can refer
to [133]. Thanks to the above and to the data-processing inequality, we get a di�erentially private
clustering algorithm by combining PAMST andDBMSTClu algorithms that we call PTClust.

B.3 Experimental validation

To verify the e�cacy of PTClust for varying levels of privacy, we have performed experiments
on two classical synthetic graph datasets for clustering with non-convex shapes: two concentric
circles and two moons, both in their noisy versions. Before analyzing the results, let us brie�y
present some details of the experimental protocol.

Experimental protocol

For the readability and visualization purposes, both graphs are embedded into a two dimensional
Euclidean space. Each dataset contains 100 vertices represented by a point of two coordinates.
Both graphs have been built with respect to the homogeneity condition from Theorem 19. In
practice, the complete graph – graph where all vertices are connected – has been trimmed from
its irrelevant edges, i.e. the edges not respecting the homogeneity condition. Hence, those graphs
are not necessarily Euclidean since close nodes in the visual representation may not be connected
in the graph. Finally, weights are normalized between 0 and 1, and α is set to 0.1.

Figures B.5 and B.6 show for each dataset (a) the original homogeneous graph G we built, (b)
the clustering partition of DBMSTClu with the underlying MST. We compare this benchmark
with the clustering partition for PTClust with di�erent privacy degrees – resp. (c) ε = 1, (d)
ε = 0.7 and (e) ε = 0.53. Each experiment is carried out independently and the tree topology
obtained by PAMST will be di�erent. This explains why the edge between clusters may not be
the same when the experiment is repeated with a di�erent level of privacy. However, this will
marginally a�ect the overall quality of the clustering.

Results

As expected, DBMSTClu – (b) – recovers automatically the right partition and the results are
shown here for comparison with PTClust. For PTClust, the true MST is replaced with a
private approximate MST obtained using PAMST. When the privacy degree is moderate, i.e.

3Although we could take any ε > 0, it is usually chosen in (0, 1] [50, Chap 1&2].
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ε ∈ {1.0, 0.7}, it appears that the clustering result is slightly a�ected. More precisely, in Fig-
ures B.5 and B.6 –(c) and (d) – the two main clusters are recovered. Some points however are
isolated as singletons. This is due to the randomization involved in determining the edge weights
for the topology returned by PAMST. Furthermore, as an expected e�ect of di�erential privacy,
when ε decreases, the clustering quality deteriorates, as DBMSTClu is sensitive to severe changes
in the MST – see Figure B.5 and B.6 (e).
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(a) (b)

(c) (d)

(e)

Figure B.5: Di�erentially private clustering for the Circles dataset of size n = 100.
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(a) (b)

(c) (d)

(e)

Figure B.6: Di�erentially private clustering for the Moons dataset of size n = 100.
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C Secure and private deep learning with
encrypted aggregation operator

This appendix is a brief overview of an ongoin work in collaboration with Arnaud Grivet
Sebert, Martin Zuber and Renaud Sirdey. We refer the interested reader to an arXiv version
of this preparatory work called “SPEED: Secure, PrivatE, and E�cient Deep learning”.
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C.1 A new framework beyond di�erential privacy . . . . . . . . . . . . 129
C.2 Related works on private deep learning . . . . . . . . . . . . . . . 130

In this appendix, we present some of our most recent work addressing the issue of collaborative
deep learning with privacy constraints. In Section C.1 we present our problem setting and the new
framework we designed. More precisely we aim to devise a framework that takes into account
threat models that are beyond the scope of di�erential privacy. Then, we present some related
works on deep learning with privacy in Section C.2.

C.1 A new framework beyond di�erential privacy
As we have already discussed, the large adoption of machine learning in several domains, including
critical ones, raises a number of concerns on the security and privacy of the tools we develop. For
now, we mainly discussed the notion of di�erential privacy, but here we try to go beyond this
de�nition of privacy preserving machine learning.

Toy Example. An example of scenario from the field of cybersecurity where we need to consider a

more sophisticated threat model is as follows. Several actors hold a database of cybersecurity incident

signatures, that have occurred on their customer networks. Each actor can build a malware detection

model on its own, but building a model that benefits from a larger set of such signatures would lead to

improved detection capabilities. In general, these databases are highly-sensitive and highly-valuable;

as such, they cannot be disclosed. In such a setting, the data owners wish to collaboratively transfer the

knowledge they have into a global model while preserving the confidentiality of their learning sets.

In the context of collaborative learning, several recent works [13, 19, 30, 58, 123, 125] focused on
using di�erential privacy to build privacy preserving deep learning models. However, these tech-
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niques rely on a “trusted” aggregation server that gathers non-private information before process-
ing some sanitizing scheme. In real-life scenarios the absence of such a server will jeopardize the
privacy and security of the overall learning procedure. Hereafter, we present a new approach called
SPEED which obtains di�erential privacy guarantees without the need for a trusted aggregation
server. Building upon di�erentially private decentralized semi-supervised learning [123, 125], we
introduce homomorphically encrypted operations to extend the set of threats considered so far.
The procedure is summarized in Figure C.1. Our approach is supported by theoretical guarantees

Figure C.1: Diagram illustrating SPEED deep learning framework.

in terms of di�erential privacy and provably-secure cryptography. In a nutshell, SPEED works as
follows.

• First, every data owner builds a local model – a.k.a. teacher model – using its own database.

• Then, given a new unlabeled dataset, the teacher models output encrypted predictions and
send them to the server which computes a di�erentially private aggregation in the encrypted
domain to obtain an encrypted labeled dataset.

• From this new dataset, a collaborative model – a.k.a. student model – is learned in a semi-
supervised manner.

C.2 Related works on private deep learning
The literature on private training of deep neural networks essentially uses either di�erential pri-
vacy, secure multiparty computing or homomorphic encryption – see e.g. [109]. Hereafter, we
focus on di�erential privacy and homomorphic encryption.

Di�erential privacy and deep learning

Through the lens of di�erential privacy, we can design machine learning algorithms that are pro-
tective of the database private attributes. For deep learning tasks, a widely used technique is to use
a noisy stochastic gradient descent [1, 176] during the learning procedure, and to keep track of the
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privacy budget using the moments accountant scheme [1]. Even though some of these models can
be satisfying when using a centralized database, none of them meet our problem requirements
since it forces all the data owners to merge their databases.

To address these concerns some recent works considered to use di�erential privacy in decen-
tralized settings close to the one we consider [13, 19, 30, 58, 123, 125]. Among them, the most
e�cient technique in terms of accuracy and privacy guarantees is Private Aggregation of Teacher
Ensembles (PATE) �rst presented in [123] and re�ned in [125]. PATE uses private semi-supervised
learning to privately transfer to the student model the knowledge of the ensemble of teachers by
using a di�erentially private aggregation method. This approach considers a setting very close to
ours with the notable di�erence that the aggregator is trusted. Hence applying PATE in our sce-
nario makes the teacher models vulnerable. To tackle this issue, our work builds upon PATE idea,
and adds a layer of homomorphic encryption in order for the overall learning framework to be
kept secure.

Homomorphic Encryption – HE

HE allows to perform computations over encrypted data. In particular, this can be used so that
the model can perform both training and prediction without handling cleartext data. In terms of
learning, the naive approach would be to have the training sets homomorphically encrypted, sent
to a server for training to be done in the encrypted domain and the resulting – encrypted – model
be sent back to the participants for decryption. However, putting aside many subtleties, even by
deploying all the arsenal available in the HE practitioner toolbox – batching, transciphering, etc.
– this would be impractical as standard learning is both computation and know-how intensive
and HE operations are intrinsically costly. As a consequence, there are only very few works that
capitalize on HE for private training [70, 78] and inference [60, 84] of machine learning tasks.
Moreover, since some attacks can be performed in a black-box setting, the system is still vulnerable
to attacks from the end user who has access to the decryption key. In our framework, we do not
use HE directly to build the model, we use it as a mean for the aggregation to be kept private.
That way, we are protected against potential threats from the aggregator – which does not have
the decryption key, and we keep a manageable computational overhead.

Private aggregation

Several approaches have been considered to limit the need for a trusted aggregator when applying
di�erential privacy, for example by considering local di�erential privacy [47, 85, 87]. In practice
it often results in applying too much noise, and maintaining utility can be di�cult [87, 158] es-
pecially for deep learning applications. In order to recover more accuracy while keeping privacy,
some works combined decentralized noise distribution – a.k.a. distributed di�erential privacy
[147] – and encryption schemes [2, 69, 135, 147] in the context of aggregation of distributed time-
series. Our work contributes to this line of research. Our framework, which combines distributed
DP and HE, is the �rst one to be su�ciently e�cient to investigate deep learning applications.
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D Résumé en Francais de la Thèse

Cette annexe présente un résumé en français de ma thèse, rédigée en anglais. Elle comporte
principalement une traduction du contexte et des motivations de mon travail ainsi que les
grandes lignes de chacune de mes contributions.
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Les modèles d’apprentissage automatique font partie de notre vie quotidienne et leurs faiblesses
en termes de sécurité peuvent être utilisées pour nous nuire directement ou indirectement. Il est
donc crucial de pouvoir prendre en compte et de traiter toute nouvelle vulnérabilité. De plus,
le cadre juridique en Europe évolue, ce qui oblige les praticiens – des secteurs public et privé
– à s’adapter rapidement à ces nouvelles préoccupations. Dans cette annexe, nous présentons
d’abord le contexte dans lequel l’idée de cette thèse est née et nos principales motivations dans
la Section D.1. Ensuite, nous présentons l’un des problèmes sur lequel nous nous sommes con-
centrés pendant ce travail de thèse: La classification supervisée sous perturbations adverses, ainsi
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que quelques résultats de l’état de l’art dans la Section D.2. Nous résumons certaines de nos con-
tributions au domaine dans la Section D.3. Pour chacune de nos contributions, nous résumons
succinctement nos résultats et présentons quelques pistes d’améliorations. En�n, nous listons nos
productions de matériel scienti�que et pédagogique dans la Section D.4, et nous présentons un
problème ouvert pour la communauté en Section D.5.

D.1 Contexte et motivations

C’est au cours des années 1950 que naît le concept de l’intelligence arti�cielle. Plus particulière-
ment, c’est souvent la conférence de Dartmouth de 1956 qui est considérée comme l’acte fondateur
du concept 1. À cette époque, le but était de comprendre et de tenter de reproduire l’intelligence
humaine. Les approches proposées consistaient en l’utilisation des mathématiques pour décrire
le monde, modéliser la perception humaine et simuler les mécanismes cérébraux. Soixante-dix
ans plus tard, l’objectif initial de réplication des fonctions cérébrales a été largement supplanté par
des projets technologiques visant à reproduire les performances humaines dans des tâches cog-
nitives simples [142]. À cet e�et, les réseaux de neurones profonds atteignent des performances
remarquables dans des domaines applicatifs complexes tels que le traitement automatique du lan-
gage [132], la reconnaissance d’images [76] ou la reconnaissance de la parole [79].

L’impressionnante e�cacité des technologies basées sur ce type de modèles les a rendu om-
niprésents tant dans l’industrie que dans certains secteurs publics. Cependant, des études récentes
ont identi�é plusieurs défauts majeurs des algorithmes d’intelligence arti�ciel tels que la fuite
d’informations [120] ou la vulnérabilité aux perturbations adverses [20]. Ces faiblesses soulèvent
de nombreuses questions sur la responsabilité juridique des fournisseurs des modèles et amènent
les praticiens à réévaluer la con�ance qu’ils placent dans les systèmes qu’ils utilisent.

D.1.1 Gestion des questions relatives à la vie privée: le Règlement Général sur la
Protection des Données

La protection des données personnelles contre de potentielles fuites pendant un traitement statis-
tique de celles-ci n’est pas exactement une nouvelle préoccupation; les fondements théoriques
sur l’analyse de données à caractère sensible ont été largement établis dans les années 1980 [3, 42,
65]. Cependant, ces sujets sont revenus sur le devant de la scène notamment en 2008, lorsque
Narayanan et al. [120] ont présenté une procédure de désanonymisation très e�cace sur la base de
données publiée pour le "Net�ix Prize". En 2016, l’Union européenne a apporté une réponse à ces
préoccupations d’un point de vue juridique en publiant le Règlement Général sur la Protection
des Données [126] – RGPD.

Ce règlement vise à dé�nir les obligations des fournisseurs de modèles en ce qui concerne les
données à caractère sensible qu’ils utilisent2. A�n de se conformer au RGPD, les industries et

1Cette conférence est en réalité l’aboutissement de plusieurs travaux pionniers traitant de la notion d’intelligence
arti�cielle par Mc Culloch, Pitts et Wiener [105, 157, 165] par la communauté cybernétique et par Turing [157]
pour celle de l’informatique.

2Nous ne prétendons pas présenter ici une analyse complète de ce règlement. Pour que la discussion reste concise,
nous nous contentons de souligner certains points que nous – en tant qu’informaticiens – jugeons essentiels.
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les gouvernements sont tenus de concevoir des modèles pour lesquelles les mécanismes de pro-
tection contre la fuite des données soient plus élaborées. Ces nouvelles obligations, associées aux
préoccupations déjà existantes des utilisateurs concernant leurs données personnelles, ont fait de
la question de protection des données l’une des priorités de la communauté informatique. En
conséquence, plusieurs dé�nitions ont été introduites pour caractériser les algorithmes de protec-
tion de données dans le contexte de l’apprentissage supervisé et de l’analyse de données [57]. Parmi
elles, la con�dentialité di�érentielle [52] est devenue l’un des standards en permettant de fournir
une dé�nition forte et pratique de la protection de données. L’idée de cette dé�nition est que les
informations d’une personne de la base de données sont protégées si le résultat de toute analyse
donne un résultat aussi probable, que la personne fasse ou non parti de l’ensemble des données à
disposition de l’algorithme.

Plus formellement, on dit qu’un algorithme est di�érentiellement con�dentiel si, compte tenu
de deux bases de données similaires, il produit des résultats statistiquement indissociables. Cette
dé�nition de protection de données a été largement étudiée dans de nombreux cadres et appli-
cations – voir [50] pour un ouvrage de référence. Dans l’ensemble, l’apprentissage supervisé sous
contrainte de protection des données est désormais un concept connu et intégré dans le paysage
de la recherche en informatique. Il repose sur un cadre juridique approprié, et des solutions tech-
niques telles que la con�dentialité di�érentielle sont systématiquement mises en œuvre par les
grandes entreprises – par exemple Google [54, 166] – et les entités publiques – comme le U.S.
Census Bureau [102]. La bataille pour la protection des données utilisateurs n’est pas encore ter-
minée, mais des e�orts importants ont été déployés tant par les praticiens que par les chercheurs
pour répondre aux exigences de notre époque en matière de protection de la vie privée.

D.1.2 Au-delà de la vie privée : interprétabilité, con�ance et attaques adverses

Bien qu’il se concentre sur la protection des données, le RGPD comprend également un article
– l’article 22 – sur le droit de recevoir une explication lorsqu’une décision à été prise à l’aide d’un
algorithme [126]. Cela soulève un certain nombre de questions tant sur l’interprétabilité des al-
gorithmes d’apprentissage supervisé que sur la con�ance que les utilisateurs leur accordent [68].
Bien qu’il n’y ait pas encore de consensus clair sur la dé�nition de l’interprétabilité ou de la con-
�ance dans les modèles d’intelligence arti�cielle [24], des thèmes récurrents tels que les biais algo-
rithmiques [4] ou la vulnérabilité aux perturbations [20, 152] sont souvent cités en exemple. Ces
nouvelles préoccupations, ainsi que les questions de protection de données mentionnées plus tôt,
sont parfois regroupées sous le nom d’Intelligence Artificielle de Confiance, concept qui a récem-
ment attiré beaucoup d’attention. En outre, le déploiement de modèles d’intelligence arti�cielle
dans les systèmes industriels et commerciaux à fort impact, ainsi que les récents progrès juridiques
en matière de droit à la protection et à l’explication encouragent l’intensi�cation de la recherche
dans ce nouveau domaine.

Dans cette thèse, nous nous concentrons principalement sur la vulnérabilité des modèles aux
perturbations adverses. Le terme de perturbation adverse – ou attaque adverse – désigne une per-
turbation soigneusement choisie et humainement imperceptible qui déclenche le dysfonction-
nement d’un modèle. L’existence de ce type de faiblesse montre à quel point la communauté de
l’apprentissage profond s’est éloignée de l’objectif initial de comprendre et reproduire la percep-
tion humaine.
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Figure D.1: Illustration d’une voiture autonome, dupée par une modi�cation mineure d’un panneau de
signalisation. En première ligne : le scénario sans attaque. En seconde ligne : scénario avec
attaque. Les images des panneaux de signalisation proviennent d’une attaque présentée par
Sitawarin et ses co-auteurs [150].

Pour mettre en évidence l’enjeu de sécurité que représentent les attaques adverses, nous prenons
l’exemple des voitures autonomes. Récemment, les entreprises à la pointe des nouvelles technolo-
gies ont fait d’énormes investissements de recherche et de développement dans le domaine des
voitures autonomes, c’est-à-dire des véhicules équipés d’un nombre considérable de caméras et de
capteurs qui les aident à se déplacer avec peu ou pas d’intervention humaine. Une grande partie des
informations recueillies par ces voitures sont traitées à l’aide de modèles d’apprentissage automa-
tique embarqués. En particulier, les tâches de traitement d’images se font par le biais de réseaux
de neurones profonds. Cependant, des travaux récents [55, 146, 150, 174] ont démontré que ces
mêmes systèmes peuvent être dupés par des modi�cations marginales de panneaux de signalisation
– par exemple en ajoutant des autocollants sur le panneau en question.

La Figure 1.2 illustre un contexte d’attaque où un adversaire a ajouté un tel autocollant sur
un panneau de signalisation. Dans le premier schéma – en haut – la voiture analyse la version
originale du panneau de signalisation, le reconnaît comme une limitation de vitesse et continue
normalement. Dans le second schéma – en bas – la voiture rouge analyse une version modi�ée du
panneau de signalisation et le reconnaît comme un panneau “Stop” causant un accident avec la
voiture bleue. Notez que dans ce cas, aucun humain n’aurait changé sa décision, mais la voiture
le fait. Ce décalage manifeste entre la réponse humaine et la réponse du modèle peut conduire à
d’innombrables problèmes de sécurité – ici par exemple un accident déclenché par une attaque
sur un panneau de signalisation. Ce type de technologies est actuellement en cours de développe-
ment; il est donc crucial de s’adapter rapidement à la nouvelle menace que représente les attaques
adverses, tant d’un point de vue technique que juridique.
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D.2 Formalisation du/des problème(s) de classi�cation

Dans cette section, nous commençons par faire quelques rappels sur le problème de classi�cation
dans le cadre standard – c’est-à-dire sans adversaire. Ensuite, nous présentons le problème de clas-
si�cation en présence d’un adversaire et identi�ons les problèmes fondamentaux auxquels nous
souhaitons apporter des réponses.

D.2.1 Classi�cation dans le cadre standard

Considérons le problème de classi�cation supervisée avec un espace d’entréeX – des images – et
un espace de sortieY – des étiquettes décrivant les images. Pour simpli�er, nous considérerons ici
que Y = {1, . . . ,K}, ce qui signi�e que chaque étiquette est caractérisée par un entier compris
entre 1 et K . L’objectif d’un algorithme d’apprentissage supervisé est de construire une fonc-
tion de prédiction c : X → Y – aussi appelée un classi�eur – qui fait correspondre à toute
image x ∈ X une étiquette y ∈ Y . Pour trouver c, l’algorithme d’apprentissage a accès à un
ensemble S de n couples entrée-sortie S := {(x, y1), . . . , (xn, yn)} – aussi appelé ensemble

d’apprentissage. L’hypothèse principale qui sous-tend la théorie de la classi�cation est qu’il existe
une certaine distribution D qui décrit le lien entre les images et les étiquettes et dont sont tirées
indépendamment les paires (xi, yi).

Pour construire un classi�eur, on dé�nit en général une fonction h : X → RK appelée hy-
pothèse, qui pour toute imagex ∈ X va renvoyer un vecteur de scoresh(x) := [h1(x), . . . ,hK(x)]ᵀ.
Ensuite, la fonction de prédiction c donne l’étiquette avec le meilleur score pourh. Plus formelle-
ment, c s’écrit

c(x) := argmax
k∈[K]

hk(x).

Le problème revient donc à construire une fonction h qui décrit bien le lien entre les images et
les étiquettes. Pour ce faire, l’algorithme d’apprentissage cherche à sélectionnerh∗ dans un espace
fonctionnelH– aussi appelé classe d’hypothèses – qui soit solution du problème de minimisation

du risque. Ce problème d’optimisation s’écrit comme ceci:

inf
h∈H

E(x,y)∼D[L(h(x), y)] , (D.1)

où L : RK × Y → R est une fonction de coût qui mesure à quel point h correspond à la
distribution des données. Si L est su�samment bien choisie – typiquement si elle est convexe et
su�samment régulière [9] – et si la classe d’hypothèsesH est su�samment riche3, le classi�eur c
que nous obtenons aura une faible probabilité de donner une mauvaise étiquette pour un nouvel
échantillon (x, y) ∼ D.

En pratique, l’algorithme d’apprentissage n’a pas accès à la distributionD; il ne peut donc pas
estimer le risque E(x,y)∼D[L(h(x), y)]. Pour trouver une approximation au Problème (D.1), un

3On peut considérer cette notion comme la taille de la classe d’hypothèses. Lorsque la classe d’hypothèses est assez
grande, il est facile de trouver au moins une h qui décrive bien D. Inversement, lorsqu’elle est trop petite, il est
di�cile de trouver un bon candidat. Pour plus de détails, nous incitons le lecteur à se référer à la partie anglaise du
manuscrit.
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algorithme d’apprentissage résout le problème de minimisation du risque empirique à la place. Ce
problème s’écrit

inf
h∈H

1

n

n∑
i=1

L(h(xi), yi) . (D.2)

Ensuite, pour évaluer la distance entre l’hypothèse sélectionnée hS et l’hypothèse optimale h∗,
on cherche à borner supérieurement la di�érence entre le risque et le risque empirique de toute
hypothèse h ∈ H. Cette di�érence est connue sous le nom d’écart de généralisation. Intuitive-
ment, si nous pouvons contrôler la di�érence entre le risque et le risque empirique d’une fonction
quelconque dansH, alors le problème de minimisation du risque et le problème de minimisation
du risque empirique auront des solutions similaires.

Au regard de ce qui précède, le choix de la classe d’hypothèses H est central pour résoudre
un problème de classi�cation. D’une part, si la classe est trop grande, il sera di�cile de con-
trôler l’écart de généralisation pour tous les éléments de la classe et le problème d’optimisation
sera di�cile. D’autre part, si elle est trop réduite, l’écart de généralisation sera facile à contrôler
mais la classe pourrait ne pas être su�samment riche pour décrire correctement le comportement
de la distribution des données, ce qui conduira à sélectionner de mauvaises fonctions de prédic-
tion. Un autre élément clé est la taille de l’ensemble d’apprentissage. Si nous avons su�samment
d’échantillons d’apprentissage, grâce à la loi uniforme des grands nombres, le risque empirique de
toute hypothèse est une bonne approximation de son risque théorique.

Plus précisément, pour certaines classes d’hypothèses bien choisies, on peut limiter l’écart de
généralisation de toute hypothèse par O

(
1√
n

)
. Ensuite, lorsque la taille de l’échantillon n est

su�samment grande, il su�t de résoudre le problème de minimisation du risque empirique –
Problème (D.2) – pour obtenir une bonne approximation pour le problème de minimisation du
risque – Problème (D.1). Présentons maintenant le cadre de classi�cation alternatif que nous al-
lons étudier dans ce manuscrit, à savoir la classification sous perturbations adverses.

D.2.2 Classi�cation sous perturbations adverses

Étant données une hypothèseh ∈ H et une paire image-étiquette (x, y) ∼ D, le but d’un adver-
saire est de trouver une perturbation τ ∈ X telle que les a�rmations suivantes soient véri�ées.

1. La perturbation doit être imperceptible pour un humain. Cela signi�e qu’un hu-
main ne peut pas distinguer visuellement l’image standardxde l’image adversex+τ .

2. La perturbation modi�e su�samment x pour que le classi�eur fasse une erreur de
classi�cation. Plus formellement, l’adversaire recherche une perturbation τ ∈ X
telle que c(x+ τ ) 6= y.

Bien que la notion de modi�cation imperceptible soit très naturelle pour un humain, elle est
véritablement di�cile à formaliser. Malgré ces di�cultés, une condition su�sante pour garantir
que l’attaque restera non détectée est de contraindre la perturbation τ à avoir une petite norme
`p. Cela signi�e que pour tout p ∈ [1,∞], il existe un seuil αp > 0 pour lequel une perturba-
tion τ est imperceptible dès lors que ‖τ‖p ≤ αp. La littérature sur les attaques adverses dans le
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cadre de la classi�cation d’images [27, 103] utilise généralement une norme `∞ ou `2 pour dé�nir
l’imperceptibilité 4.

Les exemples adverses représentent une menace sérieuse pour la sécurité des modèles d’intelligence
arti�cielle. Il est donc primordial de re-formaliser le problème de minimisation du risque standard
en intégrant l’adversaire dans le problème. L’objectif devient donc de minimiser le risque adverse

– aussi appelé risque contradictoire, lorsque les manipulations sont limitées en norme `p. Nous
appelons ce nouveau problème la minimisation du risque adverse. Il s’écrit comme suit:

inf
h∈H

E(x,y)∼D

[
sup

τ∈Bp(αp)
L(h(x+ τ ), y)

]
, (D.3)

où Bp(αp) := {τ ∈ X t.q. ‖τ‖p ≤ αp}. Dans ce nouveau problème, l’adversaire se concentre
sur le problème de maximisation intérieur, tandis que l’algorithme d’apprentissage tente d’obtenir
l’hypothèse optimale “sous attaque” h∗ à partir deH. Dans le cadre standard, nous pouvons la
plupart du temps concevoir des classes d’hypothèses su�samment riches pour que le problème de
minimisation du risque donne une solution h∗ avec un risque faible. Mais dans le cadre adverse,
on ne sait pas si cette a�rmation tient toujours. D’où la question suivante.

Q1: Existe-t-il une classe d’hypothèsesH pour laquelle le problème de minimisation du risque

adverse a une solutionh∗ avec un faible risque adverse?

À première vue – au regard de la littérature empirique sur les exemples adverses – la réponse
semble être non. En e�et, un grand nombre de travaux ont tenté de concevoir des modèles qui
seraient moins vulnérables aux manipulations [67, 81, 107, 162, 170] mais la plupart d’entre eux se
sont avérés – avec le temps – ine�caces contre des attaques plus sophistiquées [6, 27, 38, 77, 154].
Néanmoins, il est important d’étudier cette question d’un point de vue théorique pour apporter
des réponses négatives dé�nitives ou pour concevoir des modèles plus robustes.

Supposons un instant que Q1 ait une réponse positive et que nous puissions concevoir une
classe d’hypothèses H pour laquelle la minimisation du risque adverse a une solution h∗ avec
un faible risque contradictoire. Par analogie avec le cadre standard, étant donné les n exemples
d’apprentissage S := {(x, y1), . . . , (xn, yn)}, nous voulons trouver une solution au prob-
lème de minimisation du risque adverse en étudiant sa contrepartie empirique, le risque empirique

adverse. Ce problème d’optimisation s’écrit

inf
h∈H

1

n

n∑
i=1

sup
τ∈Bp(αp)

L(h(xi + τ ), yi) . (D.4)

En présence d’un adversaire, plusieurs problèmes majeurs apparaissent dans la minimisation
du risque empirique. Nous présentons ci-dessous quelques pointeurs bibliographiques qui per-

4Il arrive aussi parfois que l’on utilise une norme `1 [33] ou une semi-norme `0 [124]. Notez que ces normes ont des
comportements très di�érents dans les espaces de grande dimension, d’où l’impact crucial qu’a le choix de p sur la
réponse que l’on donne à Q1 et Q2 ci-dessous. Pour plus de détails, nous incitons le lecteur à se référer à la partie
anglaise du manuscrit.

139



D Résumé en Francais de la Thèse

mettent de mieux comprendre les di�cultés et enjeux de la minimisation du risque empirique
adverse.

• Comme récemment souligné par Madry et al. [103], l’écart de généralisation adverse – c’est-
à-dire l’écart entre le risque empirique contradictoire et le risque contradictoire – peut être
beaucoup plus important que dans le cadre standard. Plus particulièrement, Madry et

al. [103] ont remarqué qu’il est possible d’atteindre une précision adverse de 0, 96 pen-
dant l’apprentissage contre 0, 47 pendant l’étape de test. Cet écart entre les performances
pendant ces deux étapes est nettement plus important que ce que les modèles atteignent
habituellement dans le cadre standard. En e�et, l’adversaire rend le problème dépendant de
la dimension deX , et donc beaucoup plus di�cile.

• Pour mieux comprendre d’où provient la di�culté de résoudre le problème de classi�cation
sous perturbations adverses, un certain nombre de travaux théoriques ont été menés. No-
tamment, Schmidt et al. [141] ont montré dans un cadre joué que nous n’avons besoin que
de O(1) exemples d’entraînement pour avoir un petit écart de généralisation. Par contre,
en présence d’un adversaire `∞, nous avons besoin d’au moinsO(

√
d) échantillons. Cette

étude a été suivie de plusieurs avancée majeurs [7, 39, 175] démontrant que la généralisa-
tion contradictoire dépend e�ectivement de la dimension du problème. Ainsi, en termes
de taille de l’échantillon, la problème de classi�cation adverse est plus di�cile que celui de
la classi�cation standard.

• Un autre axe de recherche étudie le problème du point de vue des contraintes de calcul.
Bubeck et al. [25] se sont récemment penchés sur cette question pour démontrer que même
avec un ensemble d’apprentissage su�samment large, il existe un ensemble de problèmes
d’apprentissage pour lesquels l’apprentissage standard non robuste peut être e�ectué e�-
cacement, mais demande des capacités de calcul considérable dans le cadre adverse.

• En�n, il ne su�t pas toujours de trouver une solution qui minimise le risque adverse. Cer-
tains travaux récents [83, 151, 156, 180] ont apporté des arguments théoriques établissant que
construire un modèle avec un faible risque adverse peut conduire à une augmentation de
son risque standard. Ainsi, trouver une bonne approximation pour le problème de classi�-
cation adverse – Problème (D.3) – peut conduire à une mauvaise solution pour le problème
standard – Problème (D.1).

Au vu de l’état de l’art que nous venons de discuter, on se pose également la question suivante.

Q2: Peut-on trouver une classeH et une hypothèseh∗ ∈ H qui atteignent

simultanément un petit risque standard et contradictoire ?

D.3 Résumé des contributions de cette thèse
Dans cette thèse, nous cherchons à apporter des réponses aux problèmes énoncés précédemment.
Tout d’abord, nous analysons le problème de la classi�cation contradictoire et fournissons des
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résultats montrant que les classi�eurs randomisés – c’est-à-dire les classi�eurs qui renvoient une
variable aléatoire – sont de bons candidats pour donner une réponse positive à Q1. Ensuite, nous
identi�ons des sous-classes de classi�eurs randomisés qui fournissent des réponses positives à la
fois à Q1 et Q2. En�n, nous présentons des méthodes simples pour construire ces classes en étab-
lissant des liens avec la littérature sur la protection des données personnelles.

D.3.1 Analyse du problème de la classi�cation contradictoire – Q1

Notre première contribution consiste à construire de nouvelles intuitions sur le problème de la
classi�cation adverse. Pour ce faire, nous présentons la minimisation du risque contradictoire –
Problème (D.3) – comme un jeu à somme nulle infini entre un défenseur – l’algorithme d’apprentis-
sage – et un adversaire qui produit des exemples adverses. Certains travaux récents ont eux aussi
abordé le problème des exemples d’adverses comme un jeu à deux joueurs [127, 138], cependant ils
considèrent des versions restreintes du jeu – par exemple lorsque les joueurs n’ont qu’un ensemble
�ni de stratégies possibles. Nous étudions un cadre plus général qui nous permet d’avoir une idée
précise de la nature fondamentale du jeu entre le classi�eur et l’adversaire. Plus particulièrement,
nous obtenons les résultats suivants.

1. Nous démontrons la non existence d’un équilibre de Nash dans le jeu (régularisé) lorsque
le défenseur et l’adversaire jouent tous deux des stratégies déterministes. Ceci, associé à
certains résultats récents obtenues dans des travaux connexes [18, 131], implique que les
classes d’hypothèses déterministes peuvent ne pas être de bons candidats pour fournir une
réponse positive à Q1. Nos conclusions mettent également en évidence une propriété très
intéressante du problème de classi�cation contradictoire : son instabilité. Cela signi�e que
la nature du jeu entre l’adversaire et le classi�eur change complètement lorsque nous ajou-
tons un petit terme de régularisation. Cela nous amène à remettre en question certaines
thèses actuelles sur la classi�cation adverse et à nous demander si les conclusions existantes
tiendraient toujours si nous considérons un adversaire réaliste.

2. Du point de vue de la théorie des jeux, l’étape suivante consiste naturellement à étudier des
stratégies randomisées. Nous nous concentrons sur la randomisation des stratégies pour
le défenseur – en laissant les stratégies de l’adversaire inchangées. Dans ce contexte, nous
démontrons que les classi�eurs aléatoires peuvent surpasser les classi�eurs déterministes
en termes de garanties théoriques de robustesse – Problème (D.3). Par conséquent, nous
identi�ons les classi�eurs aléatoires comme de bons candidats pour répondre à Q1 pos-
itivement. De plus, ce résultat nous permet de développer une méthode algorithmique
que nous nommons Boosted Adversarial Training (BAT). Cette méthode repose sur une
construction simple et permet de générer un classi�eur randomisé à partir d’un classi�eur
déterministe. Le classi�eur randomisé obtenu donne de meilleurs résultats expérimentaux
en terme de précision sous attaques adverses que le classi�eur déterministe initial.

Il pourrait donc y avoir une classe d’hypothèsesH aléatoires pour lesquelles le problème de

minimisation du risque adverse a une solutionh∗ avec un faible risque contradictoire
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Ce travail en collaboration avec Raphael Ettedgui, Geovani Rizk, Yann Chevaleyre et Jamal Atif
a été publié à la Conférence Internationale sur l’Apprentissage Machine (ICML) 2020. Cette pub-
lication est accompagnée d’un ensemble de codes hébergé sur Github permettant de reproduire
nos résultats expérimentaux.

• “Randomization matters, how to defend against strong adversarial attacks”.
International Conference on Machine Learning (ICML) 2020.
R. Pinot, R. Ettedgui, G. Rizk, Y. Chevaleyre, J. Atif.

• https://github.com/MILES-PSL/Randomization-matters-How-to-defend-against

-strong-adversarial-attacks

Ce travail ouvre un grand nombre de questions particulièrement intéressantes à la fois sur le
plan théorique et pratique. Nous présentons ci-dessous quelques-unes des pistes potentielles.

Travail futur 1 : L’équilibre dans le régime randomisé

Il reste à étudier si un équilibre existe dans le régime randomisé. Cette question est séduisante d’un
point de vue théorique, et nécessite d’étudier l’espace des adversaires randomisés ce qui implique
plus de technicités. L’étude de cet équilibre est également étroitement liée à celle de la valeur du
jeu, ce qui serait intéressant pour obtenir des bornes min-max sur la précision sous attaque des
classi�eurs randomisés.

Travail futur 2 : Étudier le saut de dualité

Pour le moment, nous avons montré qu’il n’y a pas d’équilibre de Nash Pure dans le jeu. Cela
signi�e que la dualité forte ne tient pas. Mais cela n’indique pas l’écart entre les valeurs du problème
inf/sup et du problème sup/inf — aussi appelé le saut de dualité. L’évaluation de ce saut de
dualité pourrait nous aider à construire une analyse plus �ne de l’impact de la régularisation sur
le jeu.

Travail futur 3 : Boosted Adversarial Training, une défense certi�ée ?

Bien que les résultats expérimentaux montrent que Boosted Adversarial Training est plus perfor-
mant dans le cadre de la classi�action sous attaques adverses, l’algorithme que nous présentons ne
fournit pas de garanties en termes de précision certi�ée. Comme l’a démontré la littérature sur les
attaques et les défenses, de meilleures attaques existent toujours. C’est pourquoi, nous devons ap-
profondir les aspects théoriques de notre procédure, a�n de prouver la robustesse des classi�eurs
randomisés que nous concevons.

D.3.2 Propriétés théoriques des classi�eurs randomisés – Q1 & Q2

Pour notre deuxième contribution, nous étudions les classi�eurs randomisés à travers le prisme de
la théorie de l’apprentissage et de la théorie de l’information. Par analogie avec le cas déterministe,
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nous dé�nissons une notion de robustesse pour les classi�eurs randomisés. Cette dé�nition se
résume à véri�er que le classi�eur satisfasse une condition de Lipschitzité locale en ce qui concerne
la norme `p sur X , et une métrique de probabilité sur Y . En notantHLip la classe des classi�eur
randomisés qui respectent cette condition de Lipschitz, nous présentons les résultats suivants.

1. Nous démontrons que pour toute hypothèseh ∈ HLip, il est possible de borner supérieure-
ment l’écart entre le risque et le risque contradictoire de h. Ce résultat indique qu’une
bonne approximation du problème de minimisation du risque – Problème (D.1) – sur
HLip est également une bonne approximation de la minimisation du risque contradictoire
– Problème (D.3). Cela signi�e queHLip est un bon candidat pour répondre à Q2.

2. Nous démontrons ensuite qu’il est possible de borner supérieurement l’écart de généralisa-
tion de toute hypothèse h dansHLip. Cela signi�e que, pour un ensemble d’apprentissage
su�samment important, la résolution du problème de minimisation du risque empirique
– Problem (D.2) – surHLip peut fournir une bonne solution au problème de minimisation
du risque théorique. En�n, nous analysons la stabilité du mode des classi�eurs randomisés,
ce qui nous permet de présenter un point de vue probabiliste sur un ensemble de techniques
existantes regroupées sous l’appellation de lissage randomisé [34, 98, 100, 139]. Notre point
de vue sur la randomisation en tant que stratégie de défense pourrait ouvrir la voie à une
étude plus approfondie du lissage randomisé d’un point de vue théorique. Ces résultats
nous permettent également d’o�rir la réponse suivante à Q1 et à Q25.

Il existe des catégories de classifieurs aléatoires pour lesquelles nous pouvons contrôler

l’écart entre le risque adverse et le risque standard.

Une partie de ce travail en collaboration avec Laurent Meunier, Alexandre Araujo, Hisashi
Kashima, Florian Yger, Cédric Gouy-Pailler et Jamal Atif a été publiée à la Conférence Interna-
tionale sur les Systèmes de Traitement de l’Information Neuronale (NeuriPS) 2019. Une version
étendue de ce travail est actuellement en cours de préparation dans le but d’une soumission à une
revue.

• “Theoretical evidence for adversarial robustness through randomization”.
Version journal, en cours 2020.

• “Theoretical evidence for adversarial robustness through randomization”.
Avances in Neural Information Processing (NeurIPS) 2019.
R. Pinot, L. Meunier, A. Araujo, H. Kashima, F. Yger, C. Gouy-Pailler, J. Atif.

Notre analyse pourrait être a�née de plusieurs façons. Nous en énumérons ici quelques-unes
pour des futurs travaux possibles.

5Il convient toutefois de noter que ce résultat repose sur une hypothèse forte concernant l’espace d’entrée qui n’est
pas toujours véri�ée. Le problème de trouver une sous-classe deH qui o�re des bornes plus précises sur l’écart de
généralisation reste une question ouverte.
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Travail futur 1 : des bornes plus précises pour l’écart de généralisation

Nos résultats sur la généralisation standard des classi�eurs randomisés pourraient être améliorés.
Dans nos travaux futurs, nous visons à étudier ces résultats sous un nouvel angle. A cette �n, nous
pourrions utiliser des outils techniques tels que le lemme de Massart ou la notion de dimension
d’éclatement pour rendre la borne moins dépendante de la dimension du problème.

Travail futur 2 : étudier les propriétés du lissage randomisé

Nous avons établi des liens entre la propriété de préservation de mode des classi�eurs randomisés et
la technique de défense appelée lissage randomisé. Sur la base de ces preuves, nous pouvons borner
l’écart entre les risques standards et les risques adverses pour cette défense. Une autre direction
intéressante serait de montrer que les classi�eurs basés sur le lissage randomisé ont un écart de
généralisation similaire à celui des classi�eurs randomisés que nous avons étudiés.

Travail futur 3 : f -divergences et métriques de probabilité dé�nies par intégrales

Les résultats que nous avons obtenus jusque là reposent sur des propriété fondamentales de la
distance de variation totale et de la divergence de Renyi. Ces deux divergences ont des propriétés
intéressantes, mais nous pensons qu’elles constituent un cas particulier de classes de divergences
plus générales pour lesquelles des résultats similaires pourraient être obtenus. L’étude de formes
plus générales de divergences telles que les f -divergences et les métriques de probabilité dé�nies
par intégrales pourrait fournir quelques directions sur la généralité de la dé�nition de robustesse
que nous présentons dans ce manuscrit.

D.3.3 Méthode simple basée sur l’injection de bruit – Q2

Les contributions précédentes ont identi�é une classe d’hypothèses randomiséesHLip, qui répond
à la fois à Q1 et Q2 – au moins partiellement. Mais elles ne fournissent aucun moyen pratique pour
construire cette classe. Notre dernière contribution aborde cette question en tirant les leçons de
la littérature sur la protection des données. Plus précisément, notre contribution est la suivante.

1. Nous mettons en évidence des connections entre notre dé�nition de la robustesse et la déf-
inition de la con�dentialité di�érentielle. Les deux notions reposent sur les mêmes fonde-
ments théoriques, à savoir la stabilité sur des espaces de mesures. Par conséquent, les ré-
sultats obtenus jusqu’à présent en matière de protection des données peuvent facilement
être transférés pour construire des classi�eurs aléatoires robustes. Sur la base de cette idée,
nous utilisons deux outils courants dans la littérature de la con�dentialité di�érentielle – à
savoir l’injection de bruit Gaussien et l’inégalité de data-processing [12] – pour concevoir
des classes de classi�eur aléatoires robustes.

2. L’injection de bruit est une méthode utilisée depuis longtemps dans les tâches d’apprentissage
et de traitement du signal [29, 71, 111, 181]. Elle a également été largement étudiée dans
plusieurs domaines de l’apprentissage supervisé et de l’optimisation – par exemple en op-
timisation robuste [16] ou dans les techniques d’augmentation de données [128]. Parallèle-
ment à nos travaux, d’autres techniques d’injection de bruit ont été mises en place par la
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communauté de la classi�cation adverse [45, 170]. En particulier, Lecuyer et al. [98] ont
développé le lissage randomisé, en utilisant des résultats liés à la con�dentialité di�éren-
tielle. Nos travaux s’inscrivent dans le même axe de recherche, cependant la nature de
nos résultats est di�érente. Alors que le lissage randomisé se concentre sur la construc-
tion de défenses certi�ées, nous étudions les mécanismes randomisés du point de vue de la
théorie de l’information et de la théorie de l’apprentissage supervisé. Notre analyse permet
de comprendre certaines propriétés fondamentales des défenses randomisées, comprenant
– mais ne se limitant pas – au lissage randomisé. Nos résultats sont applicables à un large
éventail de modèles d’intelligence arti�cielle, moyennant quelques adaptations mineures.
Nous validons donc nos conclusions par des résultats expérimentaux utilisant des réseaux
de neurones profonds et des jeux de données d’images standards – à savoir CIFAR10 et
CIFAR100 [93]. Ces modèles peuvent simultanément o�rir une prédiction précise et une
robustesse raisonnable, donnant des réponses pratiques à Q1 et Q2.

Nous pouvons construire facilement des classi�eurs randomisés qui
sont robustes aux attaques adverses.

Une partie de ce travail en collaboration avec Laurent Meunier, Alexandre Araujo, Hisashi
Kashima, Florian Yger, Cédric Gouy-Pailler et Jamal Atif a été publiée à la Conférence Interna-
tionale sur les Systèmes de Traitement de l’Information Neuronale (NeuriPS) 2019 et dans un
Workshop à la Conférence Européenne sur l’Apprentissage Machine (ECML) 2019. De plus,
cette publication est accompagné d’un ensemble de codes hébergé sur Github permettant de re-
produire nos résultats expérimentaux.

• “ A uni�ed view on di�erential privacy and robustness to adversarial examples”.
Workshop on Machine Learning for CyberSecurity (ECML-PKDD) 2019.
R. Pinot, F. Yger, C. Gouy-Pailler, J. Atif.

• “Theoretical evidence for adversarial robustness through randomization”.
Avances in Neural Information Processing (NeurIPS) 2019.
R. Pinot, L. Meunier, A. Araujo, H. Kashima, F. Yger, C. Gouy-Pailler, J. Atif.

• https://github.com/MILES-PSL/Adversarial-Robustness-Through-Randomization

Les méthodes pratiques que nous avons développées pourraient être améliorées de plusieurs
façons. Parmi celles-ci, nous énumérons ci-dessous quelques approches possibles.

Travail futur 1 : élargir le champ des adversaires possibles

Jusqu’à présent, nous avons identi�é des mécanismes d’injection de bruit pour se défendre con-
tre les attaques dont l’imperceptibilité est mesurée par une norme `2. Nous avons étendu notre
étude à la norme `1, mais la question de savoir si nous pouvons construire des systèmes d’injection
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de bruit pour nous défendre contre des perturbations en norme `∞ reste également ouverte. À
cette �n, nous pourrions utiliser le lien fondamental que notre cadre partage avec le lissage ran-
domisé pour étudier les bruits qui se sont déjà avérés utiles dans cette littérature. En particulier,
Yang et al. [173] ont étudié de nouvelles classes de bruit en utilisant la théorie des cristaux de
Wul�. Cela pourrait ouvrir des pistes intéressantes pour des mécanismes d’injection de bruit plus
sophistiqués.

Travail futur 2 : établir des liens plus profonds avec la con�dentialité di�érentielle

Le lien que nous avons établi avec la con�dentialité di�érentielle est fondamental, et nous sommes
loin d’avoir étudié tous ses aspects. Par exemple, nous pourrions concevoir des modèles aléatoires
beaucoup plus sophistiqués basés sur ce lien, notamment en utilisant le mécanisme exponentiel,
ou des procédures de vote di�érentiellement con�dentiel [50]. La con�dentialité di�érentielle est
également connue pour avoir des propriétés très intéressantes pour la généralisation basée sur la
théorie de la stabilité [11]. Ainsi, nous pourrions adapter les résultats précédents pour améliorer
l’analyse que nous avons présentée sur les propriétés des classi�eurs randomisés (au regard de l’écart
de généralisation).

D.4 Autres matériels scienti�ques et pédagogiques

D.4.1 Publications non évoqués dans les corps du manuscrit

Pendant cette thèse nous avons eu l’occasion de travailler sur di�érents aspects de la protection
des données personnelles et de la robustesse aux exemples adverses. Dans la partie principale de
ce manuscrit, nous avons essayé de donner un aperçu clair de nos contributions dans le domaine
de l’apprentissage supervisé robuste. Nous nous sommes délibérément concentrés sur certaines
de nos contributions les plus signi�catives a�n de rendre le manuscrit léger et facile à suivre. Ce
travail de thèse a également pris d’autres directions. Nous avons notamment étudié l’apprentissage
non supervisé sous contraintes de con�dentialité di�érentielle, et le développement d’outil cryp-
tographique qui puisse être appliqués au développement de méthodes d’apprentissage profond.
Nous listons ci-dessous les contributions qui ne sont pas directement traitées dans le corps du
manuscrit.

• “SPEED: Secure, PrivatE, and E�cient Deep learning”.
preprint 2020.
A. Grivet Sébert, R. Pinot, M. Zuber, C. Gouy-Pailler, R. Sirdey.

• “Advocating for Multiple Defense Strategies against Adversarial Examples”.
Workshop on Machine Learning for CyberSecurity (ECML-PKDD) 2020.
A. Araujo, L. Meunier, R. Pinot and B. Negrevergne.

• “Graph-based Clustering under Di�erential Privacy”.
Uncertainty in Artificial Intelligence (UAI) 2018.
R. Pinot, A. Morvan, F. Yger, C. Gouy-Pailler, J. Atif.
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D.4.2 Publications à plus large audience

Tout au long de ce travail de thèse, nous n’avons pas seulement mis l’accent sur la production
de publications scienti�ques. Nous nous sommes également engagés dans la vulgarisation scien-
ti�que par le biais de démonstrations et de communiqués de presse. Nous pensons que c’est aussi
le rôle des scienti�ques, en particulier dans le domaine de l’intelligence arti�cielle, d’expliquer leur
travail à un public plus large au sein de la communauté scienti�que, et d’accroître les connais-
sances du public sur les dé�s et les enjeux des nouvelles technologies. Voici quelques-unes de nos
contributions.

• “Attaques adversariales: comprendre pour atténuer les risques” (article de presse).
Clef du CEA num 69 2020.
Contributeurs: R. Pinot, C. Gouy-Pailler.

• “AI vs Wild. How to strengthen neural networks of AI systems” (démonstration).
Consumer Electronic Show Las Vegas 2020.
Contributors: C. Gouy-Pailler, E. Kawasaki, R. Pinot, F. Valente.

• “Randomization based defenses against adversarial examples” (démonstration).
DIGIHALL days Paris Saclay 2019.
Contributeurs: R. Pinot, C. Gouy-Pailler.

• “La recherche et les risques inhérents à l’IA” (article de presse).
Préventique num 166 2019·
Contributeurs: R. Pinot, C. Gouy-Pailler.

D.4.3 Responsabilités pédagogiques

En�n, l’enseignement fait partie intégrante du parcours doctoral et le développement rapide de
l’intelligence arti�cielle nécessite la conception de nouveaux supports d’apprentissage. Pendant la
durée de cette thèse, j’ai également participé à l’élaboration de deux nouveaux cours d’apprentissage
automatique.

• “Mathématiques du machine learning” – Université Paris-Dauphine - PSL.
Master IDD première année 2019-2020.
Lecturer: R. Pinot.

• “Trustworthy machine learning in practice” – Université Paris-Dauphine - PSL.
Executive Master 2019-2020.
Lecturers: A. Araujo, R. Pinot, G. Rizk.
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D.5 Conclusion et problème ouvert pour la communauté

D.5.1 Conclusion

Dans cette thèse, nous avons étudié le problème de la classi�cation contradictoire sous di�érents
angles, en utilisant une série d’outils théoriques et pratiques. Nous avons essayé d’analyser le
problème théorique �nement pour pouvoir proposer des solutions pratiques et viables. Dans
l’ensemble, analyser le problème sous ces di�érents angles, nous a permis de mieux le comprendre
et de construire de nouveaux outils utiles sur le point de vue théorique et pratique. Nous pouvons
résumer nos conclusions comme suit.

1. Nous avons d’abord présenté le problème comme un jeu à somme nulle in�nie, et
analysé les propriétés fondamentales du jeu sous di�érents types de régularisation.
Cette analyse nous a permis de mieux comprendre le formalisme actuellement utilisé
dans la communauté des exemples adverses, et nous a amenés à justi�er l’utilisation
de méthodes randomisées comme défenses contre les attaques adverses.

2. Nous avons ensuite étudié plus en détail les défenses aléatoires. Nous avons notam-
ment développé de nouvelles approches pour étudier la robustesse des classi�eurs
aléatoires en utilisant la théorie de l’information, la théorie des probabilités et la
théorie de l’apprentissage statistique. Cela nous a permis de mettre en évidence les
propriétés que devraient respecter les classi�eurs randomisés pour être robustes tout
en maintenant une bonne précision. Plus particulièrement, nous avons identi�é des
conditions su�santes pour que les classi�eurs randomisés soient robustes et nous
avons étudié la propriété de généralisation de ces classi�eurs.

3. En�n, nous avons élaboré des méthodes simples et pratiques pour concevoir des clas-
si�eurs aléatoires robustes en utilisant la théorie de l’information et les leçons que
nous avons pu tiré de la littérature sur la con�dentialité di�érentielle. Cela montre
que nous pouvons construire des classi�eurs aléatoires robustes en nous basant sur
des architectures de réseaux de neurones profonds, et ouvre la voie à des travaux fu-
turs passionnants, tant en théorie qu’en pratique.

Nous espérons que notre analyse a aidé la communauté à progresser et a apporté des perspec-
tives nouvelles et intéressantes sur le problème di�cile qu’est la classi�cation contradictoire. Le
domaine est encore jeune et de nombreuses pistes de recherche sont encore ouvertes. Tout au long
du manuscrit, nous avons discuté des travaux futurs qui correspondent – plus ou moins – à des
améliorations directes de nos résultats. Mais ici, nous aimerions prendre le temps de présenter un
problème ouvert plus large pour l’ensemble de la communauté.

D.5.2 Problème ouvert : Repenser la théorie de l’apprentissage

La majeure partie de la littérature sur la théorie de l’apprentissage s’attache à démontrer la conver-
gence du risque empirique vers le risque théorique en utilisant la loi uniforme des grands nombres
et en contrôlant la complexité de la classe d’hypothèses. L’objectif est alors de trouver des classes de
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modèles qui soient su�samment grandes pour que la minimisation du risque empirique ait une
petite valeur, et su�samment petites pour que nous obtenions un faible écart de généralisation.
Au regard de cet objectif – voir Figure D.2 à gauche – l’idée la plus courante est qu’un modèle
dont l’erreur d’entraînement est nulle aura une mauvaise précision sur l’ensemble de test. Cepen-
dant, des travaux récents ont remis en question ce point de vue pour certains modèles tels que les
réseaux de neurones. Par exemple, Zangh et al. [179] ont montré que nous pouvons apprendre
un réseau profond pour la classi�cation d’images sur CIFAR-10 qui a une précision de 1.0 sur
les données d’entraînement et qui obtient plus de 0.85 de précision sur les données de test. Cela
signi�e que le sur-apprentissage du modèle est soit modeste, soit même inexistant. Pour revenir à
la forme classique d’une borne en généralisation en théorie de l’apprentissage, lorsque l’erreur de
d’apprentissage est nulle, on obtient

Ropt ≤ E(x,y)∼D[L(h(x), y)] ≤ O
(√

C(n)

n

)
, (D.5)

oùRopt est le risque du clasii�eur optimal de Bayes, et C(n) est une mesure de complexité pour
la classe d’hypothèses qui peut ou non dépendre de n. LorsqueRopt = 0, nous pouvons souvent

montrer que
√

C(n)
n → 0, ce qui est logique. Mais, lorsqueRopt > 06, pour que le terme de

droite permette d’expliquer l’erreur de manière non triviale, nous avons besoin que les constantes

cachées dans O
(√

C(n)
n

)
soient optimales – ce qui n’est jamais le cas pour des réseaux de neu-

rones. Par conséquent, les idées de la théorie classique de l’apprentissage peuvent ne pas s’appliquer
au cadre de l’apprentissage profond, ce qui signi�e que l’analyse ne doit pas être uniquement basée
sur la loi uniforme des grands nombres ou sur le contrôle de la classe d’hypothèses.

Figure D.2: Illustration du phénomène de la double descente.

6Notez que, la plupart du temps, nous auronsRopt > 0, étant donnée que le support des distributions condition-
nelles {µk}k∈[K] ne sont pas susceptibles d’être disjoints.
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Nous constatons cependant que la minimisation du risque empirique fonctionne assez bien en
pratique, c’est pourquoi les chercheurs ont commencé à s’interroger sur le contrôle de la complex-
ité des modèles. Plus précisément, la question suivante se pose.

En quoi, et à quel point la généralisation des modèles d’apprentissage supervisé dépendent de
leur complexité ?

Un premier élément de réponse à cette question provient d’une observation faite en forçant
les modèles à sur-apprendre – pour plusieurs modèles d’apprentissage machine, notamment les
réseaux de neurones [15, 119]. Lorsque nous augmentons arbitrairement la complexité du mod-
èle, nous constatons qu’après le sur-apprentissage, le risque théorique du modèle recommence
à diminuer. Ce phénomène est appelé "double descente". Notez qu’après le sur-apprentissage,
tous les modèles ont une erreur d’entraînement nulle, mais plus le modèle est grand, plus le risque
théorique est faible. C’est un phénomène très surprenant qui a été observé sur de nombreux mod-
èles de réseaux de neurones avancés. D’un point de vue théorique, le phénomène a été identi�é et
analysé pour les modèles linéaires. Pour revenir à l’objectif principal de ce manuscrit, nous pour-
rions également poser la question suivante.

Ce changement de paradigme nous permettrait-il de mieux comprendre ou d’éviter les
exemples adverses ?

Une façon intéressante de commencer à répondre à cette question est d’examiner le modèle des
k plus proches voisins, comme le suggère Belkin et al. [14]. Il s’agit d’une technique de prédiction
classique pour laquelle nous pouvons directement relier l’erreur attendue de l’algorithme au clas-
si�eur optimal de Bayes. Par exemple, Cover et Hard [36] ont montré que nous pouvons encadrer
l’erreur du modèle comme ceci:

Ropt ≤ E(x,y)∼D[L(h(x), y)] ≤ Ropt
(

2− KRopt

K − 1

)
. (D.6)

Comme les garanties de cette technique ne dépendent ni de la complexité du modèle ni de la loi
uniforme des grands nombres, elle constitue un bon point de départ pour l’étude d’un nouveau
formalisme. En ce qui concerne les exemples adverses, il convient de noter que certaines méthodes
de classi�cation, telles que le modèle des k plus proches voisins, se sont révélées robustes face à cer-
taines formes d’exemples adverses [164]. Néanmoins, des résultats récents [14] ont également mon-
tré que si nous forçons un tel modèle à sur-apprendre – aussi appelé régime d’interpolation [14],
alors les exemples adverses deviennent inévitables, comme cela semble être le cas pour les réseaux
de neurones. Cela suggère que le phénomène des exemples adverses est étroitement lié au régime
d’interpolation observé dans les réseaux de neurones profonds.
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ABSTRACT 

Machine learning models are part of our everyday life and their weaknesses in terms of security 
or privacy can be used to harm us either directly or indirectly. It is thus crucial to be able to 
account for, and deal with, any new vulnerabilities. Besides, the legal framework in Europe is 
evolving, forcing practitioners, from both the private and the public sectors, to adapt quickly to 
these new concerns.  

This thesis studies how to build safer machine learning models. In particular, we focus on a new 
security concern called adversarial attacks. The vulnerability of state-of-the-art models to these 
attacks has genuine security implications especially when models are used in AI-driven 
technologies, e.g. for self-driving cars. Besides security issues, these attacks show how little we 
know about the models used everyday in the industry, and how little control we have over them. 
We provide some insights explaining how adversarial attacks work, and how to mitigate them by 
using statistical learning theory as well as probability and information theory.

MOTS CLÉS 

Théorie de l’apprentissage supervisé - Théorie de l’Information - Intelligence Artificielle de 
confiance - Exemples adverses 

RÉSUMÉ 

Les modèles d’intelligence artificielle font partie de notre vie quotidienne et leurs faiblesses 
peuvent être utilisées pour nous nuire directement ou indirectement. Il est donc crucial de pouvoir 
prendre en compte et traiter toute nouvelle vulnérabilité. Par ailleurs, le cadre juridique en Europe 
évolue, ce qui oblige les professionnels, tant du secteur privé que du secteur public, à s'adapter 
rapidement à de nouvelles préoccupations en matière de sécurité et de transparence des 
algorithmes.  

Cette thèse étudie comment construire des modèles plus sûrs. Nous étudions en particulier une 
nouvelle menace: les attaques adverses. La vulnérabilité des modèles d’intelligence artificielle à 
ces attaques est un véritable problème de sécurité, en particulier lorsque ceux-ci sont utilisés 
dans des technologies sensibles telles que les voitures autonomes. Outre les questions de 
sécurité, ces attaques montrent à quel point nous manquons de recul sur les modèles que 
l'industrie utilise quotidiennement. Nous fournissons des éléments de réflexion sur les attaques 
adverses et proposons des méthodes simples pour atténuer leurs effets en utilisant la théorie de 
l’apprentissage supervisé, de l’information, et des probabilités.

KEYWORDS 

Statistical learning theory - Information theory - Trustworthy machine learning - Adversarial 
examples  
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