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RÉSUMÉ

Alors que les processus issus de l’informatique sont de plus en plus présents dans notre
vie, notre dépendance sur ces systèmes automatisés est devenue de plus en plus importante.
Ces processus automatisés nous entourent et nous guident dans notre vie de tous les jours,
que ce soit à travers nos ordinateurs, smartphones, nos voitures, ou même des objets
connectés, ou même des machines simples mais de plus en plus automatisées telles qu’une
machine à café ou un réfrigérateur connecté. Bien sûr ils sont aussi présents de manière plus
discrète, que ce soit en dirigeant nos institutions financières, en guidant le trafic routier,
en choisissant le rythme d’un pacemaker, ou tout simplement en gérant le trafic de nos
abondantes communications. Les exemples sont multiples et abondants, et leur nombres
ne fait que croitre. En effet, cette année encore, nous avons pu constater à quel point
nos besoins dans ces outils numériques est grandissant, avec une demande grandissante
pour le télétravail et les cours en ligne, créant ainsi un besoin pour des plateformes et des
protocoles. De plus nous rentrons aussi dans l’ère de la conduite automatisée, avec des
voitures de plus en plus autonomes qui se démocratisent.

Bien sûr avec ces systèmes de plus en plus critiques qui reposent sur l’automatisation,
cela crée aussi un besoin de confiance dans ces systèmes. Cela s’est illustré par plusieurs
fiascos au cours du siècle passé. On peut citer l’exemple de la sonde Mars Climate Orbiter
qui fut perdue avant d’arriver en orbite autour de Mars. Cette perte de 328 millions de
dollars a été déterminée comme étant due à une erreur d’unité de mesure, le système de
navigation étant conçu pour utiliser le système de mesure impérial, plutôt que le système
métrique. De manière similaire, un des exemples les plus connus est celui du vol 501 de
la fusée Ariane 5, durant lequel la fusée explosa. La cause de cette défaillance d’un coût
estimé à 500 millions de dollars est le stockage d’un entier 64 bit dans un espace de
stockage de 16 bits. On peut aussi citer des satellites russes qui en 1983 confondent une
réflexion du soleil avec des missiles américains, manquant ainsi de peu de déclencher une
nouvelle guerre mondiale. D’autres exemples à plus petite échelle sont tous aussi critiques,
comme une faille de sécurité dans des pacemakers, permettant à une personne extérieure
d’en prendre le contrôle [49]. Il a aussi été montré que des changements de quelques pixels
pouvaient tromper des logiciels de reconnaissances visuels, de manière à ce qu’un feu rouge
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ne soit plus reconnu par exemple, ce qui peut causer des problèmes pour des véhicules
autonomes [48].

Pour protéger les vies humaines, et pour réduire le cout en cas de défaillance, ces
problèmes peuvent être traités en amont, durant la phase de développement. Plusieurs
méthodes ont été développées et peuvent être appliquées durant la phase de conception.

Assistants de preuves. Ce sont des outils puissants pour résoudre ce problème de
vérification. Ici, le comportement attendu du système est décrit comme un théorème
mathématique. Ensuite, ces assistants de preuve, tels que Coq, Isabelle ou encore Why3,
peuvent être utilisés pour prouver que l’implémentation vérifie ce théorème, et donc que
le comportement est bien celui attendu. Ici, la difficulté réside déjà dans le fait que l’on
doit exprimer le comportement comme une propriété mathématique. Ensuite l’assistant de
preuve a généralement besoin d’être guidé pour finir la preuve. Cela veut dire que l’on
va généralement faire appel à un expert qui maitrise cet assistant de preuve pour vérifier
cette propriété. En retour, cela permet d’exprimer énormèment de propriétés.

Solveurs. Ces outils sont utilisés quand la propriété peut être exprimée comme une
formule logique simple. Par exemple, les solveurs SMT sont utilisés quand le problème
peut être exprimé par une formule logique du premier ordre. Avoir cette expression en
formule logique peut être ardu, mais les solveurs SMT ont l’avantage de ne pas avoir besoin
d’être guidés et sont automatisés. En réalité, les assistants de preuve utilisent souvent des
solveurs SMT, tels que CVC4 ou OpenSMT pour résoudre leurs problèmes.

Tests. On peut aussi effectuer des simulations de notre système. On crée ainsi un modèle
représentant notre système et on effectue des tests sur cette simulation, c’est-à-dire on
simule des exécution du système pour un environnement donné. Cela peut aussi être fait
sur le système fini plutôt que sur une simulation, mais cela n’est pas toujours possible,
et si le système a un problème sur certains tests, le développer à nouveau peut avoir un
coût trop élevé. Donc cela requiert d’avoir une simulation assez précise du système. Un
des soucis de cette approche est que l’ensemble des tests effectués doit être suffisamment
exhaustif et représentatif pour avoir une confiance élevée dans le système. L’avantage de
cette approche est qu’elle requiert peu de connaissance sur le système si un simulateur est
fourni.
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Model checking. Dans cette thèse, nous nous focalisons sur cette approche. Cela consiste
à construire un modèle représentant notre système et à spécifier notre problème dans une
logique adaptée, par exemple LTL ou CTL comme dans [11]. Ici, la difficulté vient du fait
qu’il faut réussir à construire un modèle qui capture l’expressivité de notre modèle tout
en gardant une taille raisonnable, de manière à ce que les algorithmes de model checking
puissent être appliqués en un temps acceptable. Par exemple, NuSMV est un model checker
qui utilise plusieurs autres outils et solveurs pour construire et vérifier des propriétés
CTL sur des modèles dont la taille est raisonnable. Bien sûr, chaque outil prend différents
types de modèles en entrée. On peut avoir des modèles simples, comme des systèmes de
transitions dans lesquels les états du systèmes sont explicites, qu’on peut ensuite enrichir
avec de la composition asynchrone, des canaux de communication, des variables, des
contraintes sur ces variables ou encore de la synchronisation. Toute cette sémantique peut
ensuite être convertie en un système de transition sur lequel des algorithmes de model
checking peuvent être appliqués. Le problème ici est que ces algorithmes sont dépendants
du nombre d’états dans le système de transition et que celui-ci croit lorsque l’on rajoute
cette sémantique. Par exemple, la composition de plusieurs systèmes ou l’ajout de variables
fait croitre la taille du système de transition de manière exponentielle. Ce problème de
l’explosion combinatoire de l’espace d’états à vérifier est bien connu et plusieurs approches
existent pour y circonvenir. Premièrement, éviter le parallélisme et limiter le nombre
de variables dans la conception du modèle permet de faciliter la résolution. Ensuite des
approches utilisant des Diagrammes de Décision Binaires (ou BDDs) sont souvent utilisées
pour ordonner les variable booléennes à évaluer.

Abstraction et raffinement

Une idée proposée dans [21] pour limiter cette explosion est de limiter le nombre
d’états, même si cela implique de perdre de la précision sur notre modèle, et d’avoir un
modèle qui ne correspond pas exactement au système. En effet, une abstraction de notre
modèle concret est une représentation de notre modèle dans laquelle plusieurs états sont
groupés en un seul état. Dans certains cas, l’abstraction est bien choisie et le modèle
abstrait vérifie exactement les même propriétés que le modèle concret. Mais bien souvent,
l’abstraction est trop grossière et des chemins qui n’étaient pas présents dans le modèle
concret apparaissent. Par exemple on peut voir sur la fig. 1 un modèle de feu tricolore
ainsi que son abstraction. Mais l’abstraction pour ce feu fait apparaître un chemin qui ne
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passe jamais dans go qui n’existe pourtant pas dans le modèle concret original.
La solution proposée pour ce problème est une boucle de raffinement. En effet, si

l’abstraction est trop grossière et si un chemin apparait dans l’abstraction qui réfute la
propriété recherchée, alors les algorithmes de model checking retournent un contre-exemple.
Ce contre-exemple peut être comparé avec le modèle concret pour vérifier si cela est en
effet un contre-exemple, ou un artéfact issu de l’abstraction. Si il n’est présent que dans
l’abstraction, on peut l’utilise pour raffiner l’abstraction de manière à ce que ce contre-
exemple n’y apparaisse plus, et on peut relancer les algorithmes de model checking sur ce
nouveau modèle abstrait en étant convaincu que ce contre-exemple ne sera pas réutilisé.
Cette boucle qui alterne entre model checking sur abstraction et raffinement d’abstraction
est appelée CEGAR pour “Counter-Example Guided Abstraction Refinement”.

Ce procédé est de plus en plus utilisé pour répondre à la demande de model checking
sur des modèles de plus en plus complexes, contenant de plus en plus d’états. Par exemple
dans [27] dans un algorithme pour vérifier des abstractions de programmes C. Ou encore
dans [22] où une approche CEGAR est présentée pour vérifier des propriétés quantitatives.

rouge

∅

orange

∅

vert

{go}

stop

∅

go

{go}

Figure 1 – Un exemple d’un modèle de feu tricolore, ainsi que son abstraction dans
laquelle les états rouge et orange ont été groupés en un état stop.

Systèmes temporisés

Dans la plupart des automatisations, le comportement du système doit répondre à des
contraintes de temps, telles que des temps de réponses ou des deadlines. On les appelle
alors systèmes en temps réel ou systèmes temporisés.

Cela est important en model checking car créer un système temporisé demande non
seulement un développement correct du logiciel, mais requiert aussi de se conformer à des
contraintes de temps. La complexité croissante de ces systèmes fait que leur vérification est
d’autant plus importante et compliquée. Cela a pu être vu sur le système de freinage de la
Toyota Prius, où une erreur logicielle a engendré un délai dans la réponse du frein. On peut
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double simple
click ; x := 0

x > 10; click ; x := 0

x ≤ 10; click

Figure 2 – Exemple d’un automate temporisé pour modéliser un double clic.

aussi noter l’attaque Spectre où des différences dans le délai de réponse des programmes
permet d’inférer des données privées.

Plusieurs modèles peuvent être utilisés pour modéliser ces systèmes, tels que les réseaux
de Petri temporisés [43] ou alors les systèmes hybrides. Le modèle auquel nous nous
intéressons ici est celui des automates temporisés. Ceux-ci peuvent être vus tels que des
extensions des automates finis auxquels on rajoute des horloges, c’est-à-dire des variables
réelles dont la valeur augment de manière synchrone lorsque l’on attend dans un état.
Plusieurs outils ont déjà été développés pour ces automates, tel que Uppaal [35], Imitator
[8], TChecker ou Kronos [50]. Ces automates peuvent être utilisés pour prouver que le
comportement d’un système temporisé est bien celui attendu, comme dans [7] où une
extension des ces automates est présentée pour répondre à des attaques telles que Spectre,
mais ils peuvent aussi être utilisés pour générer un contrôleur par exemple [19]. La fig. 2
montre un exemple d’un tel automate, modélisant une souris d’ordinateur sur laquelle on
peut double-cliquer. L’horloge x sert ici à mesurer le temps entre deux clics consécutifs,
nous faisant passer dans l’état double si les deux actions se sont suivies assez rapidement.

Dans cette thèse, nous nous concentrons sur le problème d’accessibilité d’un état,
ou problème de sûreté. Il a été montré dans [4] que ce problème est PSPACE-complet,
en utilisant un découpage de l’espace des valeurs d’horloge en régions, c’est-à-dire des
ensembles d’horloges atomiques qui vérifient les même propriétés. Une amélioration existe,
utilisant un découpage de cet espace des valeurs en parties plus larges appelées zones.

Dans cette thèse, nous développons deux algorithmes pour répondre au problème
d’accessibilité dans les automates temporisés, en utilisant la boucle CEGAR. L’un d’entre
eux se base sur les méthodes énumératives traditionnellement utilisées par Uppaal et
TChecker, tandis que l’autre se base sur des méthodes symboliques et des réductions de
formules booléennes. Nous avons implémenté ces algorithmes, puis nous les avons évalués
sur des benchmarks en les comparant à Uppaal, qui est un des outils les plus utilisés pour
l’accessibilité sur des automates temporisés. De plus nous présentons aussi un algorithme
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basé sur de la recherche heuristique pour répondre à un problème de synthèse de contrôleur
dans des cas particuliers de planification de mouvement.
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INTRODUCTION

Verification

As digital processes became part of our everyday lives, our reliance on automatized
processes grew accordingly. They guide us most of our time, through our computers and
smartphones, but also through our connected devices, our cars, or some of our everyday
appliances such as coffee machines or connected fridge. Of course they also drive our
financial institutions, are routing our everyday commute through traffic lights, are choosing
the appropriate rhythm for a pacemaker, and overall are responsible for routing and
handling most of our communications. And that is not taking into account the growing
popularity of automated driving. The examples of our dependency on this automation
are almost infinite and this list is always growing. Just recently we have seen an urge for
classes and overall most services to go online, creating a need for platforms, protocols and
tools.

Of course this ever growing reliance comes with a consequential need for trust in these
systems. And it was shown many times that blind trust was not enough, as these processes
did not always work as intended. In the worst cases, the cost can be counted in human
lives and millions/billions of euros. Some of these examples are infamous, such as the Mars
Climate Orbit Crash, where a navigation system was designed to use imperial units instead
of the metric system. One of the most infamous example might be the Ariane V failed
launch, where a 64 bit number was stored in a 16 bit space, or maybe the Soviet early
warning satellite in 1983, that picked up sunlight reflections off cloud-tops and mistakenly
interpreted them as missile launches in the United States, almost causing the start of
World War III. These examples are extreme and might seem like unique occurrences, but
some are not that extreme and can occur in our daily lives. For example it has been
shown that changing only a few pixels in an image can change the output in a recognition
software, such that a traffic light might not be recognizable, creating a risk of importance
for automatized driving [48]. Another example is a lack of security on a medical pacemaker
that can be accessed remotely [49]. While the most famous examples concern critical
systems, there are some seemingly benign sub optimal issues that, while not a danger,
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Introduction

may cost a few euros at each time, multiplied by thousand or millions of usages.
In order to protect human lives and to reduce the costs, and to deal with this problem

in the early phase of development of these systems, several formal methods have been
developed to make sure that these automated processes behave as planned.

Proof assistants are a powerful tool to solve this problem. In this method, the expected
behavior of the system is given as a mathematical theorem. Then, using proof assistants
such as Coq, Isabelle or Why3, one can prove that the implementation of the system
respects this theorem. Here the difficulty is twofold: we have to first express the expected
behavior as a mathematical property, and then we have to guide the proof assistant to
prove this property. This means that this method, while allowing us to check all kind of
properties, requires an expert to guide the proof.

Solvers are used when the property can be expressed as a simpler formula. Satisfiability
Modulo Theories (SMT) solvers are used when the problem can be described as a formula
in first order logic. While expressing the property as a first order logic formula can be hard,
SMT solvers do not need human supervision. Actually most proof assistants use a SMT
solver to facilitate the proof. The most known SMT solvers are CVC4 and OpenSMT.

Tests and simulations can also be done. This consists at looking at the execution of
the system for a given environment, and a given initial state. This can be simulated on a
model representing the system, or sometimes this can be done on the system itself. Note
that this is not always a possibility and that if a critical design error is made apparent
on the real system, the cost of redesigning it might be too much. So we usually rely on
accurate simulation of our system. Of course, depending on the property we want to prove,
we can generate different sets of test cases. The main problem of this approach is that
the tests cannot be exhaustive, and this cannot be considered as an absolute proof that
the process will behave as expected. On the other hand, this can be done with little to no
information on the system, considering it as a black box. The difficulty here is to generate
test cases that will give us a high confidence that the system satisfies a property.

Model checking [20] is a method used when we can build a model of our system, and
when we can specify our property in a given logic, for example LTL or CTL as shown in
[11]. In this thesis, we will focus mainly on this approach to verification. Here the difficulty
stems from the fact that we want a model that captures all the expressiveness of our system
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while having a reasonable size, so algorithms can still work on it in a reasonable time. For
example, NuSMV is a model checker that uses several other tools and solvers to create
models whose size are manageable. Those models can be finite transition systems where
all the states of the system are explicit, or they can be enriched with more expressiveness,
such as adding bounded variables, with operations and constraints on these variables to
have a program graph, or having multiple systems that communicates with each other,
either through handshaking or through communication channels. In any cases, all this
added semantic can be transformed into a finite transition systems, where checking a
property is easier. Of course, each model checker takes different kind of model as an input.
So choosing an appropriate model, with the right semantic to model our system is key, and
can determine the model checker we use. Of course, this model can be more or less precise
in the way it represents the system, and as such be more or less expressive. This is relevant
since the algorithms used depend on the size of the model. So a precise model tends to
have many states represented, meaning that the model checking algorithms used will take
a longer time to conclude. Moreover, this number of states tends to grow exponentially
whenever the number of variables increases. This well known problem is usually referred
as the state space explosion. This is usually seen as we have multiple systems that are
interacting with each other, creating a state space that is the product of the state space
of each individual system. Many approaches are used to avoid this problem. First, in the
design phase, avoiding parallelism or limiting the number of variables will reduce the
impact of this problem. Then in the model checking part, using symmetry or solving the
problem on smaller independent instances of our system in order to reduce the size of the
model we check [23]. For example, using Binary Decision Diagrams (BDDs) to order the
variables and the order on which we treat them is a common method to solve this problem.

Counter-example Guided Abstraction Refinement

Another idea to answer this problem was proposed in [21]. The idea is to reduce
the number of states even further, by merging them together. This process, called an
abstraction, reduces the number of states to explore, but consequentially it may create
paths that do not exist in the original model. In [21], the authors consider only properties
that pertain to all the paths of the models, like safety properties. Since the abstracted
model contains all the paths from the original model, if this property is verified on the
abstracted model, then this property also holds for the original concrete model. On the
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other hand, if this property is not verified on the abstract model, since it is a property
on all the paths, then there is counter-example that shows that there exists a path that
disproves this property. If this path is realizable in the original model, then we know
that the property was false, otherwise a new abstraction can be built using the existing
abstraction and this counter-example path. This abstraction still over approximates the
possible paths, but every path in this new abstraction is a path of the previous abstraction,
meaning that no new path was added. Moreover this abstraction is defined such that it
does not contain the counter-example paths. This means that this process can be repeated
until an answer is found, giving us a finer abstraction at each iteration.

This process has been used more and more in model checking to answer the growing sizes
of the models. For example, in [27], an algorithm designed to have automatic verification
abstraction of C programs using the CEGAR paradigm is presented. In [22] a CEGAR
approach is introduced to verify quantitative properties. These algorithms have been
implemented into tools and provided good results, for example BLAST [28] or SLAM [12].
In all these cases, a CEGAR approach was introduced in order to have algorithms that
can finish faster.

Real-time systems and Timed automata

In most automated systems, the behavior depends on time in a quantitative manner.
We consider real-time systems, that is systems that are subject to real-time constraints
such as response times and operational deadlines. This is of particular interest in model
checking as designing such systems not only involves correct development of software,
but also requires to answer timing constraints. The growing complexity of these systems
means that checking their correctness has become more and more relevant and arduous.
In term of critical systems, this can be seen in the the Toyota Prius brake system software
error that created a delay of the braking system. This error could cost lives, but some
other errors could also cost money. For example most manufacturing chains and assembly
lines are now automated using a Programmable Logic Controller (PLC). Indeed, most of
these assembly lines now use safety PLC in order to detect when the emergency stop is
necessary. This need for considering time is even more visible when looking at the recent
Spectre attack, where time is used as a side channel to attack a system and obtain private
information.

These systems are even harder to design, as the classical testing and debugging of
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double simple
click ; x := 0

x > 10; click ; x := 0

x ≤ 10; click

Figure 3 – Example of a timed automaton for a double click.

real-time systems is often difficult, as reproducing a timing error in a given environment
might be hard. Moreover time cannot be stopped while debugging and analyzing the
system. Let us also remember that nowadays, most systems are distributed systems, which
is already a difficulty for designing concurrent software systems that is inherited when
designing distributed real-time systems. Most importantly, execution time and timing
constraints are not usually taken into account in software development. For all these
reasons, a lot of errors in real-time systems happen in the design phase.

In order to detect these errors using model checking, many models can be used such as
Timed Petri nets [43], or linear hybrid systems [2], but one of the most common models are
timed automata[3][5], and they are the focus of this thesis. They can be seen as extensions
of finite automata to which we added synchronized clocks, that can be compared and
reset. Several model checking tools are available for timed automata, such as Uppaal [35],
Imitator [8], TChecker or Kronos [50]. These automata can be used to both prove the
correctness of timed protocols, but also to generate a scheduling or a controller for a given
timed system [19]. There are also extensions of these timed automata to allow for more
expressiveness and to solve harder problems, such the weighted timed automata [14] or
parametric timed automata [7], but in this thesis we will only consider timed automata.
In Figure 3, we show an example of a timed automaton modeling a the behavior of the
button of a computer mouse, with one clock x. If a click happens, then we go to the state
“simple” and start measuring time by resetting the value of x to 0. If another click happen
in the next 10 time units, measured by x, then we consider it to be a double click and we
go to the state “double”. Otherwise a click happens after 10 time units and as such it is
just another simple click and we reset the value of x to check if this new click can become
a double click.

In this work, we will only consider one kind of property and that is the property of
safety, which means that we will only check whether or not a state can be reached. The
problem of reachability for timed automata has been shown to be PSPACE-complete in
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[4]. The method commonly used to solve it will consider the state we are in as well as a set
of clocks valuation. The first approach consists at partitioning the space of possible clock
valuations into sets of clocks that cannot be distinguished by any integer clock constraints.
These atomic sets are called regions, and we can use them to build a transition system.
Another approach consists at tracking all the possible clock valuations we can be in after
each transition. These sets are defined as convex areas in the value space of clocks and
are called zones [18]. The algorithm used to solve reachability depend on this number of
zones. And this number is exponential in the number clocks since it is the dimension of
this value space. Moreover, it also depends on how the partitioning is done, meaning that
this requires to limit the state space that we explore.

Abstraction for timed automata

Model checkers like Uppaal already implement abstraction. These abstractions are
necessary to build ourselves a finite system on which we can apply our algorithms. Moreover,
these abstractions are also sound and complete, meaning that if a state is reachable in
the abstracted model, it is reachable in the concrete model, and vice versa. Moreover,
abstractions that are not sound have already been developed for timed automata. This
means that some states might be seen as reachable in this abstracted model while this is not
the case in the original concrete model. This is done using the CEGAR paradigm described
above. In [40], an abstraction that tries to remove all clocks before reintroducing them by
using refinements as they are needed. Another approach in [37] consists at removing the
different constraints on clocks in the timed automata, and then refining it by identifying
the necessary constraint, and then splitting the states between those who satisfies this
necessary constraint and those who do not. Although so far these methods have not be
proven to be more efficient than the ones used in well established model checker such as
Uppaal, this thesis aim to use these methods to have algorithms that are more efficient for
reachability in timed automata.

Contribution of this thesis

In this thesis, we present two algorithms that apply the CEGAR approach to timed
automata. The first chapter is a description of the well known algorithms implemented in
Uppaal, as well as several other CEGAR approach to timed automata that have been tried
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before. In the second chapter we show an algorithm that we developed and implemented
that applies the CEGAR approach to reachability timed automata. This algorithm is
based on an enumerative approach to the problem, similarly to the way Uppaal solves
reachability. In the third chapter we explain another algorithm that we developed that is
solving the same problem using a symbolic approach. This means that instead of having an
enumerative exploration, we instead reduce the problem to a formula, abstracted with the
CEGAR approach. We then solve the reachability problem using the CEGAR loop as well
as BDD algorithms. The results for both of these algorithms are shown in Chapter 4, where
we also detail several benchmarks that we developed to test these algorithms. Finally in
Chapter 5 we remind a way to construct a timed automaton that can be used to generate a
controller for a dynamical system, and we show a heuristic approach that we implemented
to solve this problem more efficiently.
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Chapter 1

STATE OF THE ART

1.1 Preliminaries

1.1.1 Transitions systems

A good way to model a system is to define a state space where the state contains all
the information necessary for the exploration, and then to define transitions between all
these states, representing the different changes that can occur within a system. Formally,
this simple model is the transition system, as defined in [11]. It is a set of states that are
connected by edges that are labeled with a letter.

Definition 1.1.1. A transition system is a tuple (S, s0, Σ, →) where:

— S is a set of states

— s0 ∈ S is the initial state

— Σ is the alphabet of actions

— → ⊆ S × Σ × S is the set of transitions.

This can also be called a finite automaton. In model checking, the transition system
is used to express the semantics of models that are complex. Indeed, the semantic of a
transition system is self apparent, as we can go from one state s to the next state s′

with the action α if and only if there is a transition (s, α, s′) ∈ →, also noted s
α→ s′.

Then a state s is reachable from s0 if there is a sequence of states s1, s2, ..., sn and actions
α0, α1, ..., αn such that there are transitions si

αi→ si+1 for all i < n and sn
αn→ s.

1.1.2 Clocks, valuations and constraints

In order to model timed systems, a common method is to use clocks, that is real-valued
variables that evolve synchronously. Let us consider a finite set C = {x1, ..., xN} of clocks.
We call a function v : C → R≥0 a clock valuation. For a clock valuation v, a subset
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R ⊆ C, and a non-negative real d, we denote with v[R ← d] the valuation w such that
w(x) = v(x) for x ∈ C \ R and w(x) = d for x ∈ R, and with v + d the valuation w′ such
that w′(x) = v(x) + d for all x ∈ C. This delay is used to represent an elapsed period of
time, during which the values of the clocks grow synchronously.

For a set of valuations S ⊆ R
C
≥0, we extend those operations such that S[R ← d] =

{v[R ← d] | v ∈ S} and S + d = {v + d | v ∈ S} . We write �0 for the valuation that
assigns 0 to every clock. Given R ⊆ C, we define the reset of a valuation v, denoted by
v[R ← 0], as it intuitively follows: v[R ← 0](x) = 0 if x ∈ R, and v[R ← 0](x) = v(x)
otherwise. An atomic constraint is a formula of the form x �� k or x − y �� k with x, y ∈ C,
k ∈ N, and �� ∈ {<, ≤, >, ≥}. We say that v satisfies the atomic constraint x �� k, denoted
by v |= x �� k if and only if v(x) �� k. And v satisfies the atomic constraint x − y �� k,
denoted by v |= x − y �� k if and only if v(x) − v(y) �� k.
A guard or constraint g is a conjunction of atomic constraints. For a positive integer n let us
write g = ∧

0≤i≤n gi a constraint with gi an atomic constraint for 0 ≤ i ≤ n. A valuation v

satisfies g, denoted v |= g, if and only if for all 0 ≤ i ≤ n, v |= gi. In other words all atomic
constraints hold true when each x ∈ C is replaced with v(x). Let �g� = {v ∈ R

C
≥0 | v |= g}

denote the set of valuations satisfying g. We write ΦC for the set of guards built on C.

1.1.3 Timed automata and semantics

Timed automata (TA) were introduced by Alur and Dill in [6] and [4], as an extension
of finite automata as a convenient formalism to model real-timed systems. In this thesis,
timed automata are our main formalism used to model systems. In essence, a timed
automaton is a finite automaton to which one adds clocks that are modeled by real-valued
variables, and the behavior of the automaton is restricted by constraints on these clocks.
Those clocks can be reset or compared with integer constants. Nowadays, the model that is
studied a lot, as in [16], and especially here, is timed safety automata. These automata are
used in the model checker Uppaal [35], and since they are the only ones we are studying
here, we refer to them simply as timed automata.

Definition 1.1.2 (Timed automata). A timed automaton A is a tuple (Σ, L, Inv, �0, C, E)
where

1. Σ is a finite set of actions

2. L is a finite set of locations

3. Inv : L → ΦC defines location invariants
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�0 �1

x ≤ 5

�2

�3

x = 2; a; y := 0

y ≤ 10; b; x, y := 0

x = 5; a; x := 0

y > 10; a;

x > 6; a;

Figure 1.1 – An example of a timed automaton on {x; y}.

4. C is a finite set of clocks
5. E ⊆ L × ΦC × Σ × 2C × L is a set of edges
6. �0 ∈ L is the initial location.

An edge e = (�, g, a, R, �′) is also written as �
g,a,R−−−→ �′. For any location �, we let E(�)

denote the set of edges {(�1, g, a, R, �2) ∈ E | �1 = �}, that is the outgoing edges from �.

Timed automata can be easily represented, as in Figure 1.1, where we represent a timed
automaton with C = {x, y}, Σ = {a, b}, L = {�0, �1, �2; �3}, with resets being represented
as an assignment to 0.

Although this is a definition of timed automata, this definition is unpractical to build
large models, as the number of locations can be large. To simplify this construction, we
use a synchronized product of timed automata.

Definition 1.1.3 (synchronized product of TAs). Let N ∈ N
∗. Given a set of TAs

Ai = (Σi, Li, Invi, �0,i, Ci, Ei), 1 ≤ i ≤ N , and a set of actions Σs, the synchronized product
of Ai, 1 ≤ i ≤ N , denoted by A1 ‖Σs A2 ‖Σs · · · ‖Σs AN , is the tuple (Σ, L, Inv, �0, C, E),
where:

1. Σ = ⋃N
i=1 Σi,

2. L = ∏N
i=1 Li,

3. Inv((�1, . . . , �N)) = ∧N
i=1 Invi(�i) for all (�1, . . . , �N) ∈ L,

4. �0 = (�0,1, . . . , �0,N),
5. C = ⋃

1≤i≤N Ci,
and E is defined as follows. For all a ∈ Σ, let σa be the subset of indices i ∈ {1, . . . , N}
such that a ∈ Σi. For all a ∈ Σ, for all (�1, . . . , �N) ∈ L, for all (�′

1, . . . , �′
N) ∈ L,(

(�1, . . . , �N), g, a, R, (�′
1, . . . , �′

N)
)

∈ E if:
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�0

�1

�2 �3

�4 �5

x ≤ 3

a; x := 0

y := 0
x − y > 3

a
x − y > 0

a

Figure 1.2 – Two TAs, denoted by A1 (on the left) and A2 (on the right).

�0, �2

�1, �4

�0, �3

�1, �5

�1, �2

�0, �4

�1, �3

�0, �5

x ≤ 3 x ≤ 3

x ≤ 3 x ≤ 3

y := 0

y := 0

y := 0

y := 0

a; x := 0

x − y > 3

x − y > 0

a; x := 0

x − y > 0

x − y > 3

Figure 1.3 – The synchronized product A1 ‖{a} A2. All locations are represented.

— if a ∈ Σs, then

1. for all i ∈ σa, there exist gi, Ri such that (�i, gi, a, Ri, �′
i) ∈ Ei, g = ∧

i∈σa
gi,

R = ⋃
i∈σa

Ri, and,

2. for all i 
∈ σa, �′
i = �i.

— otherwise (if a /∈ Σs), then there exists i ∈ σa such that

1. there exist gi, Ri such that (�i, gi, a, Ri, �′
i) ∈ Ei, g = gi, R = Ri, and,

2. for all j 
= i, �′
j = �j.

Of course, the number of locations in a product of timed automata is the product of the
number of locations in each of its component, which can be a problem as most algorithms
on TAs are dependent on the number of locations. Since the principal use of actions is to
synchronize the products of TAs, we allow ourselves to not represent actions that will not
be used in a product. An example of a product of TAs can be seen in Figure 1.3, where
we represent the synchronized product of the two TAs shown in Figure 1.2.

1.1.4 Semantics of timed automata

As we explained Section 1.1.1, we will use transition systems to explain the semantics
of timed automata. Since we are interested in timed models, we will consider Timed
Transition Systems (TTS). In a timed transition system, the alphabet of actions is in
Σ ∪ R≥0, with the transitions (s, d, s′), d ∈ R≥0 called delay transitions. We will define the
semantics of a timed automaton using a timed transition system.
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Definition 1.1.4 (Semantics of a TA). Given a TA A =(Σ, L, Inv, �0, C, E) the semantics
of A is given by the timed transition system (S, s0, Σ ∪ R≥0, →), with

— S = {(�, v) ∈ L × R
C
≥0 | v |= Inv(�)},

— s0 = (�0,�0),
— → consists of the discrete transitions and continuous delay transition relations:

1. discrete transitions: (�, v) e→ (�′, v′), if (�, v), (�′, v′) ∈ S, and there exists
e = (�, g, a, R, �′) ∈ E, such that v′ = v[R ← 0], and v |= g).

2. delay transitions: (�, v) d→ (�, v +d), with d ∈ R≥0, if ∀d′ ∈ [0, d], v +d′ |= Inv(�).

In other words, in a timed automaton, we can either wait in a location, as long as it
satisfies its invariant, or we can take an edge if we satisfy its guard and apply its reset. We
denote by T (A) the timed transition system associated with A. Moreover we write (�, v) e,d→
(�′, v′) for a combination of a delay and discrete transition if ∃v′′ : (�, v) d→ (�, v′′) e→ (�′, v′).

A configuration or state of a TA A is an element q = (�, v) ∈ S. A run of A is an
alternating sequence of concrete configurations of A and pairs of edges and delays starting
from the initial state s0, of the form q0, (e0, d0), q1, · · · (en, dn), qn+1 with i = 0, 1, . . . n,
ei ∈ E, di ∈ R≥0 and qi

ei,di→ qi+1. A path is a sequence of edges with matching endpoint
locations.
A common definition for the synchronized product of two transition systems T1 =
(S1, s0,1, Σ1, →1) and T2 = (S2, s0,2, Σ2, →2) over a set of actions Σ′, also called rendezvous
or handshake, can be found in [7]. It is defined as T1 ‖Σ′ T2 = (S1×S2, (s0,1, s0,2), Σ1×Σ2, →)
with (s1, s2) a→ (s′

1, s′
2) if and only if we have either:

1. a ∈ Σs, s1
a→1 s′

1 and s2
a→2 s′

2

2. a ∈ Σ1 \ Σs, s1
a→1 s′

1 and s2 = s′
2

3. a ∈ Σ2 \ Σs, s1 = s′
1 and s2

a→2 s′
2

Note that we then have T (A1 ‖Σ′ A2) = T (A1) ‖Σ′∪R≥0 T (A2). We can also extend
timed automata with bounded integers and Boolean variables, adding simple operations
and comparisons. This will of course increase the size of the state space, since the states
will now represent the location, the clocks valuation and the variables valuation.

1.2 Regions and zones

As we have seen, timed automata induce a timed transition system, which has an
infinite uncountable number of states. We will consider the problem of reachability, and in
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order to solve it, we will find an equivalent finite state space to explore, by finding a way
to make our set of valuation discrete and finite.

1.2.1 Reachability problem and examples

Here, we will consider the problem of reachability in timed automata, that is whether
a location � or a set of locations T is reachable in a given timed automaton. This problem
was proven to be decidable and in PSPACE [4]. It allows us to check for safety properties,
but also for invariant properties and bounded liveness properties. These algorithms are
implemented in the model-checker Uppaal [35] [17], first released in 1995. It implements
most of the methods that we describe in this chapter. This problem is usually used in
verification when the accepting set contains locations that models “error” states of the
system. In this case, the property we are trying to verify is a safety property “an error
state is never reachable”. If the target location is reachable, then there is an accepting run,
that is a run reaching the targeted state. If we can produce such a run, that is in fact a
counter-example for our safety property. For example, in the model shown in Figure 1.1,
the location �3 is not reachable, since x < 5 as long as we are in �1 and as such we can
never take the transition to �3. On the other hand, the location �2 is reachable by looping
at least twice in �1

Fischer protocol is used for mutual exclusion between multiple processes. That is, for n

processes, numbered from 1 to n as Pi, make sure that no more than one of them can be in a
critical section simultaneously. This can be easily represented with a synchronized product
of timed automata Ai represented in Figure 1.4 [45]. Note that there are n clocks and a
shared variable id, and that there is no synchronized action here. In fact the automata are
synchronized using the shared variable id. The idea behind this model is that processes
can reach a state ready only when id is set to 0. After 10 units of time or less, the process
that reached ready has to go into wait so no process can go to ready anymore since the
value of id is no longer 0. Once it reached wait, a process can either go back to idle or
go into its critical section. In order to go to idle, the value of id needs to be changed
to something else since the process reached wait, meaning that another process reached
wait afterward. And in order to go into its critical section, it has to wait at least 10 units
of time at least, which means that no process is in ready anymore. So the value id is set
to the last process that reached wait and this process can only go into its critical section,
and is the only one that can do so. Afterwards, it resets the value id to 0, every process is
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idlei

criti

readyi

waiti

xi ≤ 10id = 0; xi := 0

xi ≤ 10; xi := 0 & id := i
id 
= i

xi > 10 ∧ id = i

id := 0

Figure 1.4 – A timed automaton Ai representing process Pi

in idle or are in wait and can only go to idle and this loop starts over. With this, we
are fairly confident that we cannot reach a state where two processes are in their critical
section at the same time, but we could use a model checker to prove this property.

Job Shop Scheduling problems can also be modeled with timed automata. Given
a set of machines, a set of tasks and a recipe for each task, meaning constraints on the
machine the task can be executed on, the order of execution for the tasks, and a duration
for each tasks, this problems consists in finding a scheduling for these tasks. This problem
can be solved using timed automata [1]. For example, let us assume 2 machines M1 and
M2 and a set of tasks {A, B, C, D, E} with the following constraints:

1. A takes 2 time units, and must be executed on M1

2. B takes 2 time units, and must be executed after A and D, on M2.

3. C takes 1 time units, and must be executed be executed on M1.

4. D and E both take 3 time units, and can be executed on any machine.

Each task can be modeled by a timed automaton as shown in Figure 1.5. In this example,
each task is modeled by a timed automaton, which first takes a machine among the available
ones, then waits the duration of the task before releasing the machine and marking the
task as complete. Each machine is also modeled by a one-state automaton that ensures
that two different tasks cannot use the same machine at the same time. A model checker
will tell us whether or not we can reach a target state, that is a state where all tasks are
completed, but it will also give us a path to that state. This means that not only can we
know that a scheduling is possible, but we also find such a scheduling. By adding a global
clock that is never reset and by ensuring that the value of this clock is always smaller than
a constant d, we can also check whether or not there is a scheduling that ensures that all
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A0 A1 A2
lock1; xA := 0 xA = 2; unlock1; Adone := true

(a) Timed automaton for task A

B0 B1 B2
Adone ∧ Ddone; lock2; xB := 0 xB = 2; unlock2; Bdone := true

(b) Timed automata for task B

C0 C1 C2
lock1; xC := 0 xC = 1; unlock1; Cdone := true

(c) Timed automaton for task C

D0

D1

D3

D2
C

done ; lock1 ; xD := 0 xD
= 3; unlock1; Ddone := true

Cdone; lock2; xD
:= 0 xD = 3; unlock2 ; Ddone := true

(d) Timed automaton for task D, identical for E

M0

¬busyi; locki; busyi := true

busyi; unlocki; busyi := false

(e) Timed automaton for ma-
chine Mi

Figure 1.5 – Timed automata used to model the job shop scheduling problem. Each task
and each machine is modeled by a timed automaton, our model being the synchronized
products on the represented actions lock and unlock

the tasks are completed in less than d units of time, and find this scheduling if it exists.

1.2.2 Regions

In order for us to define a region we need a clock ceiling function, denoted by M , that
associates to each clock x a maximum value M(x).

Let us define ∼reg as an equivalence relation on clock valuations, which are functions
of RC

≥0 defined by u ∼reg v iff:

— for all clocks x, �u(x)� = �v(x)�

— for all clocks x, frac(u(x)) = 0 if and only if frac(v(x)) = 0.

— for all clocks x and y, frac(u(x)) ≤ frac(u(y)) if and only if frac(v(x)) ≤ frac(v(y)).

Using this relation, we can write [u]∼reg the equivalence class of u ∈ R
C
≥0, and we

can build a transition system Treg(A) = (S, s0, Σ ∪ R≥0, ⇒) with S = L × R
C
≥0 and the

transition ⇒ defined as :

— (�, [u]∼reg) d⇒ (�, [v]∼reg) if (�, u) d→ (�, v) for d a non-negative number.

— (�, [u]∼reg) a⇒ (�, [v]∼reg) if (�, u) a→ (�, v) for e ∈ E.
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From [16] we can find the proof for this theorem:

Theorem 1. For a timed automaton A with an initial state �0, u0, for �f ∈ L, and uf a
clock valuation, (�0, u0) → · · · → (�f , uf) in T (A) iff (�0, [u0]∼reg) → · · · → (�f , [uf ]∼)reg

in this region transition system.

This is simply due to the fact that for a valuation u and a valuation v ∈ [u]∼reg , we
have for any constraint g, u |= g if and only if v |= g, and for any delay d ∈ R≥0, there
exists a delay d′ ∈ R≥0 such that v + d′ ∈ [u + d]∼reg . Now we have a transition system
that has an infinite enumerable number of states. In order to limit ourselves to a finite
transition system, we can use a clock ceiling function, denoted by M , that associates to
each clock x a maximum value M(x). We can then define ∼reg,M as an equivalence relation
on clock valuations defined by u ∼reg,M v iff:

— for all clocks x, �u(x)� = �v(x)� or both u(x) > M(x) and v(x) > M(x).

— for all clocks x, if u(x) ≤ M(x) then frac(u(x)) = 0 if and only if frac(v(x)) = 0.

— for all clocks x and y, if u(x) ≤ M(x) and u(y) ≤ M(y) then frac(u(x)) ≤ frac(u(y))
if and only if frac(v(x)) ≤ frac(v(y)).

By using this ceiling functions, we can also obtain regions, and in Figure 1.6 we show
a representation of these regions. Every elementary surface with an open border, but also
every border between this surfaces is a region. This means that, in this case with M(x) = 3
and M(y) = 2, we have 60 regions for only 2 clocks.

In this figure, we marked three valuations u, u′ and u′′. u is equivalent to v if and only
if �v(x)� = 2, �v(y)� = 1, frac(v(x)) = 0 and frac(v(y)) = 0. This gives us that [u]∼reg is
the single valuation u.
u′ is equivalent to v iff �v(x)� = 1, v(y) > 2 and frac(v(x)) 
= 0. So [u′]∼ is the set of
valuations that satisfy x = 1 and y > 2.
u′′ is equivalent to v iff �v(x)� = 1, �v(y)� = 1,frac(v(x)) 
= 0,frac(v(y)) 
= 0,frac(v(x)) < frac(v(y)).
This gives us that [u′′]∼ is the open surface containing u′′ on the figure, defined by the
constraints x > 1, x < 2, y > 1, y < 2 and x < y.

Since the number of these regions is finite, we can similarly build a transition system
Treg,M(A) that has a finite amount of states. We can also note that this is an abstraction
or in other words an over approximation of the transition system Treg(A) that is itself
an abstraction of T (A), we defined earlier. We also know that for a given TA A, there
exists a ceiling function M such that Theorem 2 still holds. For example the function M

29



Chapter 1 – State of the art
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Figure 1.6 – A representation of regions

that associates x to the highest constant it is compared to would ensure the validity of
this theorem. This transition system can also be referred to as a region graph. This means
that the reachability problem for a timed automaton is equivalent to the reachability
problem for the region abstraction. Let us denote by R(A, M) the number of regions for
the timed automaton A with a ceiling function M . In [4] it is explained that R(A, M)
can be bounded by |C|! · 2|C| · ∏

x∈C
(2M(x) + 2). Then the transition system is computed

in time O((|L| + |E|) · R(A, M)) and the reachability problem can be solved in time
O((|L| + |E|) · R(A, M)). Algorithm 1 details the reachability algorithm using regions.
Given a timed automaton A, an initial state (�0, u0) and a target state (�f , rf ) with �f ∈ L
and rf a region, this algorithm returns whether some state (�f , uf ) with uf ∈ rf is reachable.
We can also note that the reachability problem for timed automata is PSPACE-complete
[4]. As we said, the number of regions is exponential which is a problem for the time
complexity of the algorithm. To obtain an efficient algorithm, one aggregates regions into
larger sets called zones, as explained in the next section.

1.2.3 Zones

Zones are particular polyhedra of RC
≥0 definable by a constraint of ΦC, that is, a set

Z ⊆ R
C
≥0 such that there exists g ∈ ΦC such that Z = �g�. Let us note that for a given zone

Z, we do not have the unicity of g. For example, x = y ∧ y ≤ 1 and x = y ∧ x ≤ 1 represent
the same zone. We can also note that, in the space of clocks, a zone is a polyhedron that
is delimited by hyperplanes defined by x = k or x − y = k, with x, y ∈ C, k ∈ Z.

We note a few basic operations defined on zones. First, the intersection Z ∩ Z ′ of
two zones Z and Z ′ is clearly a zone. Given a zone Z, the set of time-successors of Z,
defined as Z↑ = {v + t ∈ R

C
≥0 | t ∈ R≥0, v ∈ Z}, is easily seen to be a zone; similarly for
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Algorithm 1: Algorithm for reachability problem using regions
1 compute ⇒ from A and M
2 wait = {(�0, [u0]∼)}
3 passed = ∅
4 while wait 
= ∅ do
5 take (�, r) from wait
6 if � = �f ∧ r = rf then
7 Stop and return true
8 if (�, r) /∈ passed then
9 add (�, r) to passed

10 forall (�′, r′) such that (�, r) ⇒ (�′, r′) do
11 add (�′, r′) to wait

12 return false

time-predecessors Z↓ = {v ∈ R
C
≥0 | ∃t ≥ 0. v + t ∈ Z}. Given R ⊆ C, we let ResetR(Z) be

the zone {v[R ← 0] ∈ R
C
≥0 | v ∈ Z}, and Freex(Z) = {v′ ∈ R

C
≥0 | ∃v ∈ Z, d ∈ R≥0, v′ =

v[x ← d]}. We can also extend Free to a set of clocks R. We can define it by induction
with Freex∪R(Z) = Freex(FreeR(Z)). We can define the successor of a zone by an edge as
follows.

Definition 1.2.1. For a zone Z, and an edge e = (�, g, a, R, �′), we denote Poste(Z) =
(ResetR(Z ∧ g) ∧ Inv(�′))↑ ∧ Inv(�′), that is the set of valuations reachable from a valuation
of Z by taking the transition e and waiting some time in �′.

For the rest of this paper, we will only consider timed automata that have constraints
of the form x < k or x ≤ k in their invariants. This is a reasonable assumption as if this
assumption is false for some timed automaton, we can build a timed automaton with the
same set of reachable states by passing the constraints of an invariant Inv� to the guard of
the edges going to �, taking into account their reset. This is what is done in Uppaal or in
[34].
With this assumption, we can write Poste(Z) = ResetR(Z ∧ g)↑ ∧ Inv(�′). By induction,
we can extend the definition of Poste to executions σ = e0....ekek+1 with Postσ(Z) =
Postek+1(Postek

(...(Poste0(Z)))).

Definition 1.2.2. For a Z and an edge e = (�, g, a, R, �′), Pree(Z) = (FreeR(Zwedge(r =
0)) ∧ g ∧ Inv(�))↓, that is the set of valuations that can reach Z by waiting and taking the
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y
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y

x

Figure 1.7 – For e = (�, g, a, R, �′) with Inv(�) = Inv(�′) = x ≤ 6 ∧ y ≤ 3, g = x ≥ 1 ∧ y ≥ 1
and R = {y}, left figure represents in blue the successor of the gray zone by Poste. On the
right, the blue zone is the predecessor of the gray zone by Pree.

transition e.

From the definition we have:

Property 1. For all zones Z, for all transitions e = (�, g, a, R, �′), for all valuations u′:
u′ ∈ Poste(Z) if and only if ∃u ∈ Z, ∃d ∈ R

+ s.t. (�, u) a→ d→ (�′, u′)

Proof. By definition of Post, u′ ∈ (Z ∧g)[r ← 0]↑ ∧ Inv(�′). So there is a u′′ ∈ (Z ∧g)[r ← 0]
such that (�′, u′′) d→ (�′, u′) and because u′′ ∈ (Z ∧ g)[r ← 0], there is a u ∈ Z such that
(�, u) a→ (�, u′′).

If (�, u) a→ (�′, u′′) d→ (�′, u′), then u′′ ∈ (Z ∧ g)[r ← 0] and (Z ∧ g)[r ← 0]↑ ∧ Inv(�′) =
Poste(Z)

Property 2. For all zones Z, for all transitions e = (�, g, a, r, �′), for all valuations u

u ∈ Pree(Z) iff ∃u′ ∈ Z, ∃d ∈ R
+ s.t. (�, u) a→ d→ (�′, u′)

Proof. Similarly, we know that , u ∈ (FreeR(Z↓ ∧ (r = 0)) ∧ g ∧ Inv(�)). So there is a
u′′ ∈ Z↓ ∧ (r = 0) such that (�′, u′′) d→ (�′, u′) and because u′′ ∈ Z↓ ∧ (r = 0), there is a
u ∈ (FreeR(Z↓ ∧ (r = 0)) ∧ g ∧ Inv(�)) such that (�, u) a→ (�′, u′′).

If (�, u) a→ (�′, u′′) d→ (�′, u′), then u′′ ∈ Z↓ ∧ (r = 0) and u ∈ (FreeR(Z↓ ∧ (r =
0)) ∧ g ∧ Inv(�)) = Pree(Z)

We give an example of these successor and predecessor functions in Figure 1.7. Note
that in general, Pree(Poste(Z)) 
= Z

We can now build a transition system called the zone graph Tzone(A) = (S, s0, Σ ∪
R≥0, ↪→) where the states (�, Z) are pairs of a location and a zone, and the initial state is the
initial location �0 coupled with �0↑∩ Inv(�0). The transition ↪→ is defined by (�, Z) a

↪→ (�′, Z ′)
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if and only if there is an edge e = (�, g, a, R, �′) such that Z ′ = Poste(Z). We then have
the following theorem.

Theorem 2. For a timed automaton A with an initial state �0,�0, for �f ∈ L, and uf

a clock valuation, (�0,�0) → · · · → (�f , uf) in T (A) if and only if there exists a path
(�0,�0↑ ∩ Inv(�0)) ↪→ · · · ↪→ (�f , Z) with uf ∈ Z in the zone graph Tzone(A).

So we have an infinite enumerable transition system and we will show in Section 1.2.5
how to limit ourselves to a finite number of zones. But first we will discuss the representation
of these zones. Indeed, when we implement zones, we usually represent them with Difference
Bound Matrices [24].

1.2.4 Difference Bound Matrices

First we need to represent atomic constraints. Let C0 = C ∪ {0}, where 0 is an
extra symbol representing a special clock variable whose value is always 0. Then we
can express atomic constraints as x − y � n where x, y ∈ C0, n ∈ Z, � ∈ {<, ≤}. Let
Z{<,≤} = (Z × {<, ≤}) ∪ {(+∞, <)}. We define the sum operation on this set as (≤
, n1) + (≤, n2) = (≤, n1 + n2) and ∀� ∈ {<, ≤}(<, n1) + (�, n2) = (<, n1 + n2). We also
define the comparison < on Z{<,≤} as follows. If n1 < n2 then (�, n1) < (�, n2) and
(<, n) < (≤, n).

A DBM is a |C0| × |C0|-matrix taking values in (Z × {<, ≤}) ∪ {(+∞, <)}. Intuitively,
cell (x, y) of a DBM D stores a pair (d, �) representing an upper bound on the difference x−y.
For any DBM D, we let �D� denote the zone it defines.

While several DBMs can represent the same zone, each zone admits a canonical
representation, also called reduced form or closed form, which is obtained by storing
the tightest clock constraints defining the zone. This canonical representation can be
obtained by computing shortest paths in a graph where the vertices are clocks and the
edges weighted by clock constraints, with natural addition and comparison of elements
of (Z×{<, ≤})∪{(+∞, <)}. This graph has a negative cycle if, and only if, the associated
DBM represents the empty zone. Algorithm 2 provides an implementation for this operation.

All the operations on zones can be performed efficiently (in O(|C0|3)) on their associated
DBMs while maintaining reduced form. For two DBMs M and N , we write M ∩ N for the
reduced DBM describing �M� ∩ �N� and the intersection N = D ∩ D′ of two canonical
DBMs D and D′ can be obtained by first computing the DBM M = min(D, D′) such that
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Algorithm 2: Close
1 Input:(D);
2 for k ∈ C0 do
3 for i ∈ C0 do
4 for j ∈ C0 do
5 Di,j :=

min(Di,j, Di,k + Dk,j)

Algorithm 3: Up
1 Input:(D);
2 for i ∈ C0 do
3 Di,0 := (+∞, <)

Algorithm 4: Down
1 Input:(D);
2 for i ∈ C0 do
3 Di,0 := (0, ≤) for j ∈ C do
4 if Dj,i < D0,i then
5 D0,i := Dj,i

Algorithm 5: Reset
1 Input:(D, R);
2 for x ∈ R do
3 for i ∈ C0 do
4 Dx,i := D0,i Di,x := Di,0

Algorithm 6: Free
1 Input:(D, R);
2 for x ∈ R do
3 for i ∈ C0, i 
= x do
4 Dx,i := (+∞, <) Di,x := Di,0

M(x, y) = min{Z(x, y), Z ′(x, y)} for all (x, y) ∈ C0
2, and then turning M into canonical

form.

We refer to [16] for full details. By a slight abuse of notation, we use the same notations
for DBMs as for zones, writing e.g. D′ = D↑, where D and D′ are reduced DBMs such that
�D′� = �D�↑. This DBM can easily be computed by setting the cells (x, 0) to (+∞, <) for
all clocks x. This means that we keep only the diagonal constraints and the lower bound
constraints. Similarly, we can define D↓ as the the canonical DBM representing the zone
�D�↓. Algorithms for these operations can be found in Algorithm 3 and Algorithm 2.

Given R ⊆ C, we let ResetR(D) be the reduced DBM that defines {v ∈ R
C
≥0 | ∃v′ ∈

�D�, v = v′[R ← 0]}. This DBM can be computed by setting the cell (x, 0) to (0, ≤) for all
clocks x ∈ R. This means that the upper constraints on the clocks of R have been reduced
to 0. We can also define FreeR(D) as the reduced DBM that defines {v′ ∈ R

C
≥0 | ∃v ∈

�D�, v = v′[R ← 0]}. We give some examples of the algorithms used to do such operations
in Algorithm 5 and Algorithm 6. With all these operations we can also compute Poste(D)
and Pree(D) the canonical DBM representing the successor and the predecessor by e of
the zone represented by D.
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1.2.5 Extrapolation

Provisio. From here, we limit our study to timed automata whose guards and invariants
contain no constraints of the type x − y � n, x, y ∈ C, n ∈ Z.

For simplicity, we also consider only timed automata with no invariants, as for every
timed automaton, we can build a timed automaton with no invariants that has the same
transition system. If A = (L, �0, E, Inv), then the automaton A′ = (L, �0, E ′, Inv′) where
∀� ∈ L, Inv′(�) = true and E ′ = {(�, g ∧ Inv(l), a, R, �′) | (�, g, a, R, �′) ∈ E} is equivalent
to A with respect to location reachability properties.

Maximum bounds abstraction

In order to limit ourselves to a finite system, we use the Maximum Bounds abstraction.
Let M a clock ceiling. We denote by ≡M the equivalence relation defined by u ≡M v iff
for all x ∈ C, u(x) = v(x) or (u(x) > M(x) and v(x) > M(x)). Note that we already
used this relation when we used regions. Indeed u ∼reg,M v if and only if u ∼reg,M v or
u ≡M v. We then define an abstraction function αM as αM(Z) = {u | ∃v ∈ Z, v ≡M u}.
If M is chosen as the function that associates to every clock the maximum constant to
which this clock is compared, then this abstraction is complete and sound with regards to
reachability. This means that for a location �, the set of locations reachable from (�, Z) is
exactly the set of location reachable from (�, αM). But this abstraction is not necessarily
used in algorithms because αM does not preserve the convexity of zones. The abstraction
actually used is an extrapolation denoted by αExtraM

such that for all zones Z we have
Z ⊆ αExtraM

(Z) ⊆ αM (Z) and αExtraM
(Z) is a zone. From Z, we can compute αExtraM

(Z)
as follows:

— removing every atomic constraints x − y < m, and x − y ≤ m where m > M(x).

— replacing all the constraints x − y > m and x − y ≥ m where m > M(x) by
x − y > M(x).

This is shown in Algorithm 7.
We define a new transition system with a transition Tzone,M (A) = (S, s0, Σ∪R≥0, ↪→ExtraM

)
defined by (�, Z) a

↪→ExtraM
(�′, Z ′) if and only if there is an edge e = (�, g, a, R, �′) such

that Z ′ = αExtraM
Poste(Z). Then we have from [16] [13]:

Theorem 3. For a timed automaton A with initial state (�0,�0) and no constraints of the
type x − y � n, for �f ∈ L and Zf a zone
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Algorithm 7: αExtraM

1 Input:(D, M);
2 for i ∈ C0 do
3 for j ∈ C0, j 
= i do
4 if Di,j > (M(i), ≤) then
5 Di,j := (∞, <)
6 else if Di,j < (−M(j), <) then
7 Di,j := (−M(j), <)

— If there is a path from (�0,�0↑) to (�f , Zf ) in Tzone,M (A) then (�f , uf ) is reachable for
all uf ∈ Zf such that ∀x ∈ C, uf (x) ≤ M(x).

— (�f , uf) for uf such that ∀x ∈ C, uf(x) ≤ M(x), implies that there is a path from
(�0,�0↑) to (�f , Zf ) in Tzone,M(A) such that uf ∈ Zf .

Moreover, the transition system Tzone,M(A) is finite and can be built and explored
easily. However, some improvements can be made.

Lower Upper bounds abstraction

In [13], a variant of this abstraction is used, where instead of one ceiling function,
we use two functions L and U . We denote by ≺L,U the relation on clocks valuation
defined by u ≺L,U v if and only if for all x ∈ C, v(x) = u(x) or L(x) < u(x) < v(x) or
U(x) < v(x) < u(x). We can then define the abstraction function αL,U as αL,U(Z) = {v |
∃u ∈ Z, u ≺L,U v}. As above, if we choose L(x) as the lowest value k such that x > k

or x ≥ k appears in a guard or invariant of the considered timed automaton, and U(x)
as the greatest value k such that x < k or x ≤ k appears in a guard or invariant of the
timed automaton. We have a sound and complete abstraction that does not preserve the
convexity of zones, so we define an extrapolation αExtraL,U

as :

— We remove all constraints x − y < m, and x − y ≤ m where m > L(x).

— We replace all the constraints x − y > m and x − y ≥ m where m > U(x) by
x − y > U(x).

This can be seen in Algorithm 8. It was proven than for all zones Z and for all ceiling
functions L, U , we have Z ⊆ αExtraL,U

(Z) ⊆ αL,U(Z). We can then define the abstracted
transition system defined by Tzone,L,U(A) = (S, s0, Σ ∪ R≥0, ↪→ExtraL,U

) and Theorem 3
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Algorithm 8: αExtraL,U

1 Input:(D, L, U);
2 for i ∈ C0 do
3 for j ∈ C0, j 
= i do
4 if Di,j > (L(i), ≤) then
5 Di,j := (∞, <)
6 else if Di,j < (−U(j), <) then
7 Di,j := (−U(j), <)

holds for ↪→ExtraL,U
. This abstraction is a bit coarser but needs a deeper analysis of the

automaton to find L and U .
Now that we have a finite transition system, we can modify Algorithm 1 to solve the

reachability problem. The algorithm is very similar, but the abstraction we did aggregated
the regions, which can result in fewer reachable states in the transition system. However,
since each region is a zone, the number of zones can be greater than the number of regions,
but if we look at zone inclusion, we can speed up the reachability analysis algorithm.
Indeed, since we are only focused in reachability, we know that for two zones Z, Z ′ with
Z ⊆ Z ′, for a location �, every location reachable from (�, Z) is also reachable from (�, Z ′).
So if the algorithm finds such a state (�, Z) after it has computed the successors of (�, Z ′),
then it is not necessary to compute the successors and start the exploration of (�, Z). In
Algorithm 9 we denote by A the automaton, (�0, Z0) the initial state, �f the state we are
trying to reach and Zf the conditions on clocks we want to have when we reach �f .

The details of the implementation can be found in [16]. This algorithm is efficient, but
it can be improved.

Diagonal constraints. For both extrapolations, we only gave the method if there
are no constraints of the type x − y � n in the automaton. If there is that kind of
constraints, there is a variant of these abstractions that can be found in [13]. Those
abstraction, denoted by α+

ExtraM
and α+

ExtraL,U
are coarser, meaning that for a zone Z we

have Z ⊆ αExtraM
(Z) ⊆ α+

ExtraM
(Z) and Z ⊆ αExtraL,U

(Z) ⊆ α+
ExtraL,U

(Z). Algorithms for
such extrapolations are given in Algorithm 10 and Algorithm 11.

Lazy LU-abstraction. In [30], a method based on lazy abstraction for LU-abstraction
is detailed. The main interest of this algorithm is that it used the precise LU-abstraction
instead of the extrapolation to test the inclusion. The algorithm builds an Adaptive
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Algorithm 9: Algorithm for reachability problem using zones
1 compute ↪→ from A and M (or L, U)
2 wait = {(�0, Z0)}
3 passed = ∅
4 while wait 
= ∅ do
5 take (�, Z) from wait
6 if � = �f ∧ Z ⊆ Zf then
7 Stop and return true
8 if Z 
⊆ Z ′ for all (�, Z ′) ∈ passed then
9 add (�, Z) to passed

10 forall (�′, Z ′) such that (�, Z) ↪→ExtraM
(�′, Z ′) do

11 add (�′, Z ′) to wait

12 return false

Algorithm 10: α+
ExtraM

1 Input:(D, M);
2 for i ∈ C0 do
3 for j ∈ C0, j 
= i do
4 if Di,j > (M(i), ≤) or D0,i < (−M(i), <) or (D0,j < (−M(j), <) and i 
= 0)

then
5 Di,j := (∞, <)
6 else if Di,j < (−M(j), <) and i = 0 then
7 Di,j := (−M(j), <)

Algorithm 11: α+
ExtraL,U

1 Input:(D, M);
2 for i ∈ C0 do
3 for j ∈ C0, j 
= i do
4 if Di,j > (L(i), ≤) or D0,i < (−L(i), <) or (D0,j < (−U(j), <) and i 
= 0)

then
5 Di,j := (∞, <)
6 else if Di,j < (−U(j), <) and i = 0 then
7 Di,j := (−U(j), <)
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simulation graph. This is an exploration tree where the nodes are (q, Z, L, U) where q is
a location, Z a zone and L, U are ceiling functions. The child (q′, Z ′, L′, U ′) of a node
(q, Z, L, U) satisfies Z ′ = Poste(Z) for e = (l, g, a, r, l′) ∈ E. We stop exploring the child of
a node (q, Z, L, U) if there is a node (q′, Z ′, L′, U ′) such that Z ⊆ αL′,U ′(Z ′). Additionally,
for each nodes, the ceiling functions L, U must satisfy some properties that we do not
detail here. This is different from Algorithm 9 for three reasons.

— We have ceiling functions for each nodes, and for each node (q, Z, L, U), L ≥ Lmax,
U ≥ Umax where Lmax, Umax are the ceiling functions computed in the previous
method. This means that αL,U is coarser that αLmax,Umax

— Here the nodes store Z and L, U . This allows us to use the abstraction αL,U which
is coarser than αExtraL,U

.

— The inclusion test here is Z ⊆ αL′,U ′(Z ′). Indeed, it is shown in [29] that this test is
practically as easy as testing Z ⊆ Z ′, which is the test in Algorithm 9

Note that using local LU functions instead of the global LU function is something that
is easy do even in Algorithm 9. Instead of using a global LU function, we can use LU
functions that are specific to a location and based on the constraints on the location. We
can also see that this algorithm is also based on refining the LU functions as we explore
the adaptive simulation graph, hence the name adaptive.

We are also interested in using such methods, but on abstractions that are not necessary
sound.

1.3 Counterexample Guided Abstraction Refinement

Abstraction is a process used extensively in model checking. Usually we have a model
and we want to check if this model satisfies some properties. Since models can have a large
number of states, the computation time can be too long, and abstraction is used to reduce
the size of the model without losing the properties we want to check. An abstraction
denotes an approximation of the model where states are merged, or more generally where
the number of states to explore is reduced. This causes an over-approximation of the
possible paths in the system. For example in Figure 1.8, we abstracted a simple red light
by merging the states yellow and red in a stop state. But in the abstracted model, there
is a path that cycles in stop and never reaches go, which is not possible in the concrete
model.
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red

∅

yellow

∅

green

{go}

stop

∅

go

{go}

Figure 1.8 – An example of a Kripke structure for a traffic light Mlight (on the left) and
its abstraction Mabs (on the right).

In [27], a method called CounterExample-Guided Abstraction Refinement (CEGAR) is
detailed. The general idea of a CEGAR loop, as shown in Figure 1.9 is to start with a
coarse abstraction. This will create an over-approximation of the reachable states. This
means that if a state is not reachable in our abstracted model, then it is not reachable
in the concrete one either. On the other hand, if a state is reachable in the abstracted
model, then we have an abstract path and we can check if this path is realizable in the
concrete model. If that is the case, then we know that this state is reachable in the concrete
model. Otherwise, we can use this counter-example to refine our abstraction, and have an
abstraction where this abstract path does not exist. We can then restart the exploration
of our new abstracted model and close the loop.

The CEGAR paradigm has been used already on many models, such as checking
ACTL* formula on Kripke structures [21]. An improvement called lazy abstraction can be
found in [27]. This paper describes an algorithm for automatic abstraction verification of
C programs. Here the program is modeled with an abstract control flow graph, and when
a spurious run is found, only the relevant part of the control flow graph is refined, so the
rest of the control graph stays coarser and does not necessarily require further exploration.
For real-time systems, it was used for collapsing locations on timed games in [25].

In [40], a CEGAR algorithm for timed automata can be found. The abstraction
presented consists of removing clocks and the constraints of the automaton are projected
on the remaining clocks, reducing the dimension of the valuation space we need to explore
while possibly creating spurious behaviors in the abstracted model. With a comparison of
the spurious run with the original model, one can detect the clocks needed, and add them
back to the abstraction. Then starting with an abstraction that removes all clocks of a
timed automaton, the CEGAR loop can be applied. This abstraction relies on the fact
that some clocks are not needed, which is a strong assumption. One of the main problems
is that, in practice, at the end of the CEGAR loop, we tend to obtain almost all, if not all
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Figure 1.9 – Decision diagram for a CEGAR loop.

the clocks of the original automaton.
In [37] we can find once more the idea of studying a timed automaton with no clocks.

More precisely, we remove the constraints on clocks, which essentially gives us a Kripke
structure that is easier to study. Here the idea is to add new locations in the timed
automaton when a constraint is needed. So if a run is realizable in the abstract model but
not in the concrete model, it means that a transition e = (�, g, R, �′) cannot always be
taken because we found a run where we could reach � while not satisfying a constraint of
g. In this case we duplicate the location � into � where this constraint is verified, and �

where this constraint is not verified. This is the abstraction refinement.
Some abstraction methods on timed automata are exact and as such, there is no need

to use the CEGAR paradigm. The zones and regions abstraction, which are detailed in
Section 1.2.5 are sound and complete, which means that no refinement is needed and that
every property satisfied by the abstraction is satisfied by the concrete model, and vice versa.
The main idea is to reduce the space of clocks valuation by separating it into “chunks”
using an equivalence or a simulation relation. In [30], the method presented also uses lazy
zone-based abstractions, which means that the abstraction function is defined differently
for each discrete state, allowing for multiple local abstractions that are coarser than the
global abstraction. This also allows us to refine only some of these local abstractions instead
of a global abstraction. In [32] we can even find abstractions that do not preserve the
zones, but are used just for the subsumption relation. We are also using a trace refinement
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algorithm, similar to the one introduced in [47].
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Chapter 2

ENUMERATIVE ALGORITHM

In this chapter we will describe enumerative algorithms that used Counter-Example
Guided Abstraction Refinement to check the safety of timed automata. We implemented
and evaluated these algorithms on benchmarks based on previously known timed automata,
as well as new examples that we created for this purpose.

2.1 Abstraction refinement

The main idea is to create an abstraction based on the extrapolation we have seen
before, but instead of using an overapproximation of the zones that is sound and complete
for reachabilty, we use an abstraction that overapproximates the set of reachable locations,
and use the CEGAR loop to refine these abstractions.

2.1.1 Quantization abstraction

Let C0 a set of clocks. If D = (Dx,y)x,y∈C0 is such that for all clocks x and y in C0,
Dx,y ⊆ Z × {≤, <} is a finite set, then D is an abstract domain. We call D the concrete
domain if Dx,y = Z × {≤, <} for all x, y ∈ C0.

A zone Z is D-definable if it can be expressed as a conjunction of atomic constraints
x − y � n with x, y ∈ C0 and (n, �) ∈ Dx,y. This is equivalent to saying that there exists a
DBM D such that Z = �D� and D(x, y) ∈ Dx,y ∪ {∞, <} for all x, y ∈ C0. Note that we
do not require this DBM D to be reduced as the reduction can introduce values that are
not in D. We also consider the empty zone ∅ to always be D-definable, and by definition
the zone R

C
≥0 is always D-definable. We denote by ZC/D the set of D-definable zones.

For a domain D, we denote by αD : ZC → ZC/D the abstraction function induced by D,
that associates with each zone Z its abstracted zone αD(Z), that is the smallest D-definable
zone that contains Z. Since R

C
≥0 ∈ ZC/D we know that there is at least one D-definable
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zone containing Z. Since ZC/D is closed under intersection by definition, we know that if
two D-definable zones contain Z, then their intersection contains Z and is D-definable. So
we know that the smallest D-definable zone that contains Z always exists and is unique,
and αD is properly defined.

Formally, for a zone Z with M = DBM(Z), then αD(Z) = �M ′� such as ∀x, y ∈
C0, M ′

x,y = min{(k, �) ∈ Dx,y | Mx,y ≤ (k, �)} with min ∅ = (∞, <).
We can observe that for some function M : C → N that we can extend to C0 with
M(0) = 0, and with Dx,y = {k ∈ Z | −M(y) ≥ k ≥ M(x)} for all x, y ∈ C0, then we
have αD = ExtraM . Similarly, for L, U two functions in N

C, extended to C0 and with
Dx,y = {k ∈ Z | −U(y) ≥ k ≥ L(x)} for all x, y ∈ C0, then we have αD = ExtraM .
So our abstractions are similar to the extrapolation shown in Section 1.2.5, although
those were sound and complete with regard to reachabilty for some well chosen M or L, U

functions.

2.1.2 Interpolants

An interpolant for a pair of zones (Z1, Z2) with Z1 ∩ Z2 = ∅ is a zone Z3 with Z1 ⊆ Z3

and Z3 ∩ Z2 = ∅ 1 [44]. Let us define the density of a DBM D as d(D) = #{(x, y) ∈ C0
2 |

D(x, y) 
= (∞, <)}. An interpolant is simple if it can be represented by a DBM of density 1.
We use interpolants to refine our abstractions, that is why in order not to add too many
new constraints when refining, our aim is to find minimal interpolants. Notice that while
any pair of disjoint convex polyhedra can be separated by hyperplanes, not all pairs of
disjoint zones admit simple interpolants, this is because not all half-spaces delimited by
hyperplanes are zones.

Lemma 1. There exist pairs of zones accepting no simple interpolants.

Proof. Consider 3-dimensional zones A, defined as z = 0 ∧ x = y, and B, defined as
y ≥ 2 ∧ z ≤ 2 ∧ y − x ≤ 1 ∧ x − z ≤ 1. Both zones and their canonical DBMs are
represented in Fig. 2.1.

We observe that they are disjoint: if a triple (x, y, z) were in both A and B, then x = y

and z = 0 (for being in B); in A, y ≥ 2, hence also x ≥ 2, contradicting x − z ≤ 1.
Now, assume that there is a simple interpolant I, with A ∩ I = ∅ and B ⊆ I.

In the canonical DBM of I, only one non-diagonal element is not (+∞, <); assume
1. It is sometimes also required that the interpolant only involves clocks that have non-trivial constraints

in both Z1 and Z2. We do not impose this requirement in our definition, but it will hold true in the
interpolants computed by our algorithm.
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Figure 2.1 – Two zones that cannot be separated by a simple interpolant

I(x, y) 
= (+∞, <). Then we must have A(y, x) + I(x, y) < (0, ≤), and B(x, y) ≤ I(x, y).
Then A(x, y) + B(x, y) < (0, ≤). However, it can be observed that in our example,
A(x, y) + B(y, x) ≥ (0, ≤) for all pairs (x, y).

Still, we can bound the density of a minimal interpolant:

Lemma 2. For any pair of disjoint, non-empty zones (A, B), there exists an interpolant
of density less than or equal to |C0|/2.

Proof. Assume that A and B are given as canonical DBMs, which we also write A and B

for the sake of readability. We prove the stronger result that A ∩ B = ∅ if, and only if, for
some n ≤ |C0|/2, there exists a sequence of pairwise-distinct clocks (xi)0≤i≤2n−1 such that,
writing x2n = x0,

n−1∑
i=0

A(x2i, x2i+1) + B(x2i+1, x2i+2) < (0, ≤).

Before proving this result, we explain how we conclude the proof: the inequality above
entails that

n−1⋂
i=0

A(x2i, x2i+1) ∩
n−1⋂
i=0

B(x2i+1, x2i+2) = ∅

where we abusively identify A(x, y) with the half-space it represents. It follows that⋂n−1
i=0 B(x2i+1, x2i+2) is an interpolant, whose density is less than or equal to |C0|/2.
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Assume that such a sequence exists, and write C for the DBM min(A, B). Then

2n−1∑
i=0

C(xi, xi+1) =
2n−1∑
i=0

min{A(xi, xi+1), B(xi, xi+1)}

≤
n−1∑
i=0

A(x2i, x2i+1) + B(x2i+1, x2i+2) < (0, ≤).

This entails that the intersection is empty.
Conversely, if the intersection is empty, then there is a sequence of clocks (xi)0≤i<m,

with m ≤ |C0|, such that, letting xm = x0, we have

m−1∑
i=0

min{A(xi, xi+1), B(xi, xi+1)} < (0, ≤).

Consider one of the shortest such sequences. Since A and B are non-empty, the sum must
involve at least one element of each DBM. Moreover, if it involves two consecutive elements
of the same DBM (i.e., if A(xi, xi+1) < B(xi, xi+1) and A(xi+1, xi+2) < B(xi+1, xi+2) for
some i), then by canonicity of the DBMs of A and B, we can drop clock xi+1 from
the sequence and get a shorter sequence satisfying the same inequality, contradicting
minimality of our sequence. The result follows.

By adapting the algorithm of [44] for computing interpolants, we can compute minimal
interpolants relatively efficiently: Computing a minimal interpolant can be performed
in O(|C|4).

Algorithm 12 describes our procedure. In order to prove its correctness, we begin with
proving that the sequence of DBM it computes satisfies the following property:

Lemma 3. For any i ≥ 0 such that N i has been computed by Algorithm 12, for any
(x, y) ∈ C0

2, it holds
N i(x, y) = min

π∈Paths(x,y)
|π|B≤i

Wmin(A,B)(π).

Proof. The proof proceeds by induction on i. For i = 0, pick a path π = (xi)0≤i≤k from x0

to xk such that |π|B = 0. Then

Wmin(A,B)(π) =
∑

0≤i<k

A(xi, xi+1) =
∑

0≤i<k

M0(xi, xi+1)

=
∑

0≤i<k

N0(xi, xi+1) ≥ N0(x0, xk).
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Algorithm 12: Algorithm for minimal interpolant
1 Input:(canonical DBM A, B);
2 for (x, y) ∈ C0

2 do
3 if A(x, y) ≤ B(x, y) then
4 M0(x, y) := A(x, y);
5 else
6 M0(x, y) := (∞, <);

7 N0 := canonical(M0);
8 for (i = 1; i ≤ |C0|/2; i + +) do
9 for (x, y) ∈ C0

2 do
10 M i(x, y) := min{N i−1(x, y), minz∈SCB(y) N i−1(x, z) + B(z, y)};

11 for (x, y) ∈ C0
2 do

12 N i(x, y) := min{M i(x, y), minz∈SCA(y) M i(x, z) + A(z, y)};
13 if (x = y) and N i(x, x) < (0, ≤) then
14 return (true, i);

15 return false;

The first two equalities follow from the fact that π only involves transitions from xi to
xi+1 if A(xi, xi+1) < B(xi, xi+1); the third equality is because canonization will not modify
entries from A (since A is originally in canonical form). The last inequality follows from
canonicity of N0.

Now assume that the result holds at step i, and that N i+1 is defined. Pick x and y

in C0. By construction of M i+1 and N i+1, there exists z and t in C0 such that N i+1(x, y) =
N i(x, z) + B(z, t) + A(t, y) with t ∈ SCA(y) (or t = y) and z ∈ SCB(t) (or z = t). From the
induction hypothesis, there is a path π′ from x to z such that N i(x, z) = Wmin(A,B)(π′),
and |π′|B ≤ i. Adding t and y to this path, we get a path π from x to y such that
N i+1(x, y) = Wmin(A,B)(π) and |π|B ≤ i + 1.

It remains to prove that any path π from x to y with |π|B ≤ i + 1 is such that
N i+1(x, y) ≤ Wmin(A,B)(π). Fix such a path π = (xj)0≤j≤k; we concentrate on the case where
|π|B = i + 1, since the other case follows from the induction hypothesis. We decompose π

as π1 = (xj)0≤j≤l, π2 = (xl, xl+1) and π3 = (xj)l+1≤j≤k, such that (xl, xl+1) ∈ EB and
(xj, xj+1) ∈ EA for all j > l; in other terms, π2 is the last EB transition of π, and π3 is a
path from xl+1 to xk only involving transitions in A. Then

wmin(A,B)(π2 · π3) = B(xl, xl+1) + wA(π3) ≥ B(xl, xl+1) + wA(xl+1, xk),
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and

— if (xl+1, xk) ∈ EB, then wmin(A,B)(π2 · π3) ≥ wB(xl, xk), and, applying the induction
hypothesis, wmin(A,B)(π) ≥ N i(x, xl)+min{A(xl, xk), B(xl, xk)}. Since M i+1(x, xl) ≤
N i(x, xl), we get

wmin(A,B)(π) ≥ min{N i(x, xl) + B(xl, xk), M i+1(x, xl) + A(xl, xk)}
≥ N i+1(x, xk).

— if (xl+1, xk) ∈ EB, then wmin(A,B)(π2 ·π3) ≥ B(xl, xl+1)+A(xl+1, xk). From the induc-
tion hypothesis, wmin(A,B)(π) ≥ N i(x, xl) + B(xl, xl+1) + A(xl+1, xk) ≥ N i+1(x, xk).

Following the argument of the proof of Lemma 2, we get:

Corollary 1. If A ∩ B 
= ∅, then Algorithm 12 returns false; otherwise, it returns
(true, k) for the smallest k such that for all cyclic path π such that |π|B < k, it holds
wmin(A,B)(π) ≥ (0, ≤).

This entails that k is the dimension of the minimal interpolant. The minimal interpolant
can be obtained by taking the B-elements of the negative cycle found by the algorithm.

2.2 Enumerative algorithm

In this section we present an algorithm based on an enumerative exploration. We will
build and explore the zone graph in a similar fashion as Algorithm 9, but in this case we
will apply an abstraction function before computing the successors function.

2.2.1 Core idea of the CEGAR loop

The main idea of this algorithm is to build an abstracted exploration tree. The nodes
of this tree will contain a location �, a zone Z and an abstract domain D. In Algorithm 13,
we show our implementation of the CEGAR loop. The initialization at line 1 chooses an
abstract domain for the initial state, which can be either empty (thus being the coarsest
abstraction) or defined according to some known data as we discuss in Section 2.2.3. The
algorithm maintains the wait and passed lists that are used in the forward exploration.
As usual, the wait list can be implemented as a stack, a queue, or another priority list
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that determines the search order. The nodes of this wait list are called unexplored nodes.
Conversely, nodes that are not in the waiting list are called explored nodes so that each node
is either explored or unexplored. The algorithm also uses a relation of subsumption between
nodes. Indeed if there are two node n and n′ with n.� = n′.�, and n′.z ⊆ αn.D(n.Z), then
we know that every location reachable from n′ is also reachable from n. So exploring n and
generating its abstract successors is enough and there is no need to explore the successors
of n′. The algorithm explicitly creates an exploration tree that respects 4 properties:

P.1 The root of the tree is n0 = (�0,�0↑ ∩ Inv(�0), D0) for some domain D0

P.2 If a node n = (�, Z, D) is covered by n′ = (�′, Z ′, D′) then n′ is not covered, � = �′

and Z ⊆ α′
D(Z ′).

P.3 An unexplored node is not covered and has no children.

P.4 If an explored node n = (�, Z, D) is not covered, then for every transition e =
(�, g, a, R, �′) such that Poste(αD(Z)) 
= ∅, n has a child n′ = (�′, Z ′, D′) with
Poste(αD(Z)) ⊆ Z ′

Line 2 creates a node containing location �0, zone �0↑ ∩ Inv(�0), and the abstract
domain D0 as the root of our tree, and adds this to the wait list, thus ensuring that all the
above properties are verified at the initialization of our algorithm. Procedure AbsExplore
then looks for a trace to the target location �T . This procedure is detailed in Section 2.2.2.
If such a trace exists, line 9 checks its feasibility. Here π is a sequence of node and edges
of A. The feasibility check is done by computing predecessors with zones starting from the
final state. If the last zone intersects our initial zone, this means that the trace is feasible.
More details are given in Section 2.2.3.

2.2.2 Abstract forward reachability: AbsExplore
We give a generic algorithm independently of the implementations of the abstraction

functions and the refinement procedure.
Algorithm 14 describes the procedure that unfolds A into an exploration tree using an

abstract successor function. It is similar to the standard forward reachability algorithm
using a wait-list and a passed-list. In the resulting exploration tree the leaves are nodes in
wait, covered nodes, or nodes that have no non-empty successors. Each node n contains the
fields �, Z which are labels describing the current location and zone; field covered points to
a node covering the current node, field covering contains the list of nodes covered by the
current node, field parent points to the parent node in the tree and field D is the abstract
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Algorithm 13: Enumerative algo-
rithm checking the reachability of a
target location �T .
1 Input:(A = (L, Inv, �0, C, E), �T )

Initialize D0;
2 wait:= {node(�0,�0↑, D0)};
3 passed:= ∅;
4 while true do
5 π := AbsExplore(A, wait, passed, �T );

6 if π = ∅ then
7 return Not reachable;
8 else
9 if trace π is feasible then

10 return Reachable;
11 else

Refine(π, wait, passed);

Algorithm 14: AbsExplore
1 Input:((L, Inv, l0, C, E), wait, passed, �T ) while

wait 
= ∅ do
2 n := wait.pop();
3 if n.� = �T then
4 return Trace from root to n;
5 if ∃n′ ∈ passed such that n.� =

n′.� ∧ n.Z ⊆ αn′.D(n′.Z) then
6 n.covered := n′;
7 add n to n′.covering;
8 else
9 for n′ ∈ passed s.t.

n.� = n′.� ∧ n′.Z ⊆ αn.D(n.Z) do
10 n′.covered := n;
11 add n′ to n.covering; remove n′ from

passed passed.add(n);
12 for e = (�, g, R, �′) ∈ E(n.�) s.t.

Z ′ := Poste(αn.D(n.Z)) 
= ∅ do
13 D′ := choose-dom(n, e);
14 n′ := node(�′, Z ′, D′);
15 n′.parent := n;
16 wait.add(n′);

17 return ∅;

domain associated with the node. Thus, the algorithm uses a possibly different abstract
domain for each node in the exploration tree. Also note that the field parent points to
nothing only for the root, and that either the field covered or the field covering is left
empty.

The difference of our algorithm w.r.t. the standard reachability can be seen at lines
9, 12 and 13. At line 12, we replaced the successor function with an abstract successor
function, that is a composition of our abstraction function with a successor function.
Similarly, when we test for covering at line 9, then we check if the current zone is covered
by an abstracted zone.

At line 13, the function choose-dom chooses an abstract domain for the node n′. The
abstraction function α depends on this domain, allowing us to have a lazy abstraction,
where the abstraction might be coarser on some parts of the system. This also allows us
to define variants for our abstraction function. In fact we will define two modes for our
abstraction; one called global domain and the other called local domain.
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Global domain means that we have a domain denoted Dg initialized with Dg
x,y =

{U(x), −L(y)} with L and U the global lower bounds and upper bounds defined in
Section 1.2.5. Then the choose-dom function will always return the current Dg. Note that
if a refinement occurs, new values might be passed to the domain Dg but all the nodes
will not be updated with this new domain, so only nodes created after the refinement
will have this refined domain. The advantage of this domain is that when the refinement
procedure refines the abstract domain, all nodes benefit from this new information so the
overall algorithm can converge faster in some cases. However, it is well-known that not all
predicates are useful in every part of the search tree. So the abstraction in this variant can
quickly become too refined which can render the abstraction-refinement loop inefficient.

Localized domain means that we have a function Δ that associates each location � with
a domain. Initially, for all � we have Δ(�)x,y = {U�(x), −L�(y)} with L� and U� the local
lower bounds and upper bounds for � defined in Section 1.2.5. Then the choose-dom(n)
function returns Δ(n.�). This stems from the fact that not all states might need the same
values and that we might want to have a coarser abstraction on some parts of our timed
automata. Taking this a step further, in the case of a synchronized product of timed
automata, our locations in L are actually tuples of L0 × L1 × ... × Ln. In this case, we
can define a function δ that associates each location �i ∈ L0 ∪ L1 ∪ ... ∪ Ln with a domain,
and we then have for � = (�0, �1, ..., �n) ∈ L, Δ(�)x,y = δ(�0)x,y ∪ δ(�1)x,y ∪ ... ∪ δ(�n)x,y ∪
{U�(x), −L�(y)}. The motivation behind this choice can be seen for example in Figure 2.2.
The non reachability of (�2, �6) is due to the fact that we cannot reach �1 with x < 4. So
for � ∈ {�3, �4, �5, �6} we want the domain of (�1, �) to contain the constraint x < 4, in
other words (4, <) ∈ δ(�0)x,0

�0

�1�2

�3

�4

�5

�6

α

x < 4

y > 5

x > 2; y := 0

α

y > 2; α

Figure 2.2 – An example of two timed automaton. In the synchronized product of those
two on α, it can be seen that (�2, �6) is not reachable
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Algorithm 15: Refine
1 Input:(π, wait, passed);
2 n := last node of π;
3 Z := n.Z;
4 r := Refine-rec(n, Z, wait, passed);
5 ncut := node to cut

(according to heuristics);
6 cut(ncut);
7 if ncut.Z = ∅ then
8 delete ncut

9 else
10 passed.remove(ncut);
11 wait.add(ncut);
12 ncut.Z := Concrete(ncut);
13 return r;

Algorithm 16: Refine-rec
1 Input:(n, Z, wait, passed);
2 C := n.Z;
3 if C ∩ Z = ∅ then
4 Strengthen (n, Z, C, wait);
5 return Not Feasible;
6 else if n has no parent then
7 return Feasible ;
8 else
9 e edge from n.parent to n;

10 Z ′ := Pree(Z);
11 if Refine-rec(n.parent, Z ′, wait,

passed)= Feasible then
12 return Feasible;
13 else
14 n.Z =

Poste(αn.parent.D(n.parent.Z))
C := n.Z;

15 Strengthen(n, Z, C, wait);
16 return Not Feasible;

Algorithm 17: Strengthen
1 Input:(n, Z, C, wait);
2 Update n.D if αn.D(C) ∩ Z 
= ∅ then
3 I :=interpolant(C, Z);
4 add(I) to domain;
5 Add every uncovered nodes to wait ;

As a first step towards proving correctness of our algorithm, we can make an easy
observation about our algorithm AbsExplore:

Lemma 4. Algorithm AbsExplore preserves Properties P.1, P.2, P.3 and P.4.

Note that although we use inclusion in Property P.4, AbsExplore would actually preserve
equality of zones, but we will not always have equality before running AbsExplore. This is
because Refine might change the zones of some nodes without updating the zones of all
their descendants.
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2.2.3 Refinement: Refine
We now describe our refinement procedure Refine. Let us now assume that AbsExplore

returns π = n1
σ1−→ n2

σ2−→ . . .
σk−1−−−→ nk, and write Di for the updated domain of ni and

Ci for its zone. Note that we chose the updated domain, as we might have already done
a refinement that showed this path was spurious before. We write Ai for the abstracted
zone αDi

(Ci). Then π is not feasible if, and only if, Postσ1...σk
(C1) = ∅, or equivalently

Preσ1...σk
(Ak) ∩ C1 = ∅. We note Zk = Ak and for i < k, Zi = Preσi

(Zi+1). Since for all
i < k, it holds Postσi(Ai) ⊆ Ci+1 by Property P.4. We can conclude that π is not feasible
if, and only if, ∃i ≤ k. Ci ∩ Zi = ∅. We illustrate this on Fig. 2.3.

Z1

C1

A1

Z2

C2

A2

C3

A3 = Z3
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Pre
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Figure 2.3 – Spurious counter-example: Z1 ∩ C1 = ∅
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Figure 2.4 – Spurious counter-example: Z1 ∩ A1 = ∅. The dashed area represent the
previous value of A1 used to compute the current value C2.

Let us assume that π is not feasible. Let us denote by i0 the maximal index such that
Ci0 ∩ Zi0 = ∅. This index also has the property that for all j < i0, we have Zj = ∅ and
Zi0 
= ∅. Once we have identified this trace as spurious by computing the Zj, we have two
possibilities:

— if Zi0 ∩ Ai0 
= ∅: this means that we can reach Ak from Ai0 but not from Ci0 . In
other words, our abstraction is too coarse and we must add some values to Di0 so
that Zi0 ∩ Ai0 = ∅. Those values are found by computing the interpolant of Zi0 and
Ci0 . This is the example shown in Figure 2.3.

— Otherwise it means that Ai0 cannot reach Ak and the only reason the trace exists is
because Di0 has been modified at some point after the computation of ni0+1 and so
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ni0+1 has been computed as the successor of an abstracted zone computed with a
coarser abstraction than the one we have now, and we need to update it. Such an
example can be found in Figure 2.4

We can then update the values of Ci for i > i0 and repeat the process until we reach
an index j0 such that Cj0 = ∅. We then have modified the nodes ni0 , . . . , nj0 and knowing
that nj0 .Z = ∅, we can delete it and all of its descendants. Since some of the descendants
of ni0 have not been modified, this might cause some refinements of the second type in the
future. In order to ensure termination, we sometimes have to cut a subtree from a node in
ni0 , . . . , nj0−1 and reinsert it in the wait list to restart the exploration from there. We call
this action cut, and we can use several methods to decide when to use it. We considered 3
different methods that ensure termination:

1. always-top: we perform cut on the first node ni0 . This is the same as restarting
the exploration from the first node we modified, which can be seen as updating the
subtree of this node.

2. top-covered: we perform cut on the first node ni0 if it is covered by some other node.
Since this node is covered, we know that we will not restart the exploration from this
node, or that the node was covered by one of its descendant. If not, we delete nj0

and its descendants.

3. highest-covered: we perform cut on the first node of ni0 ...nj0 that is covered by
some other node. If none of these nodes are covered, we delete nj0 and its descendants.

Lemma 5. Pick a node n, and let Y = n.Z. Then after running Refine, either node n is
deleted, or it holds n.Z ⊆ Y . In other words, the zone of a node can only be reduced by
Refine.

Proof. Refine may only add values to the domain of a node, so that the refined zone is
included in the previous one. If no values were added to the domain of a node, then its
parent must have been modified. Since A ⊆ B ⇒ Poste(A) ⊆ Poste(B), the result follows
by induction.

From this we get

Lemma 6. Refine also preserves Properties P.1, P.2, P.3 and P.4.

Proof. — Property P.1 is preserved since the root cannot be deleted.
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— Property P.2 is dealt with on line 5. Indeed we call Strengthen on every node that
we modify. At the end of Strengthen, we update the covering for the node.

— The only node added to waiting is the node we applied cut on, so P.3 is preserved.

— On line 14, we ensured that every node we modified still respect P.4 with regards
to their parents. And they still respect it regarding their children as either those
children have been modified and have been ensured to respect P.4, or they have not
been modified and using Lemma 5, we recognize that only the zone of the parent
has been reduced, which preserves the property P.4

From this and Lemma 4 we can deduce:

Theorem 4. Algorithm 13 satisfies Properties P.1, P.2, P.3 and P.4.

Corollary 2. If wait = ∅ then for every run π′ starting from (�0,�0) and finishing in (�, v)
in A, there is a node n = (�, Z, D) reachable in our exploration tree with v ∈ Z.

Proof. This can be proven by induction on the length of the run π′. Indeed propert P.1
ensures it for run of length 0. Otherwise ou run is (�0,�0) d0,e0→ · · · (�′, v′) d,e→ (�, v) and by
induction we know that there is a node n′ = (�′, Z ′, D′) reachable in our exploration tree
with v′ ∈ Z ′. If it is not covered, we note n′′ = n′, otherwise we know that there is a covering
node n′′ = (�′, Z ′′, D′′) with Z ′ ⊆ αD′′(Z ′′) from propert P.2, and so v′A ∈ αD′′(Z ′′). In
either cases, since n′′ is not covered and since v ∈ Poste(αD′′(Z ′′)) 
= ∅, we know from
property P.4 that it has a children node n = (�, Z, D) by e such that (alphaD′′(Z ′′) ⊆ Z

and so v ∈ Z.

We can then prove that our algorithm correctly decides the reachability problem and
always terminates.

Theorem 5. Algorithm 13 terminates and is correct.

Proof. We first prove correctness, assuming termination. First let us notice that if
AbsExplore(A, wait, passed, �T ) returns ∅, then there is no node �T in our abstracted
exploration tree and using Corollary 2, we know that �T is not reachable in A. In other
words, if the enumerative algorithm returns “Not reachable” then �T is indeed not reachable.

On the other hand, if the algorithm returns “Reachable”, it means that there is a
node nk = (�T , Z, D) and AbsExplore returned π = n1

σ1−→ n2
σ2−→ . . .

σk−1−−−→ nk with
Preσ1...σk

(Ak) ∩ (0↑ ∩ Inv(�0)) 
= ∅. From this we can deduce that π = σ1...σk is a feasible
trace reaching �T , and �T is indeed reachable.
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We now prove termination. We will assume that we are in highest-covered, but the
proof for top-covered is similar and the proof for always-top is easier. Since there are
a finite number of possible locations and we can limit the number of possible zones to a
finite number using abstraction functions, we can deduce that AbsExplore terminates.

Let us assume that the enumerative algorithm does not terminate. Then it means that
Refine is called infinitely many times. Note that Refine is modifying a node and a node
can be modified a finite number of time.

We can also note that a node can be destroyed only if one of its ancestors is modified.
As such, we can show that for every depth k, there is a point in the algorithm where every
node at depth k or less is fixed and will no longer be modified.

So we know that the algorithm does not terminate if, and only if, the depth of the
resulting tree is unbounded. This means that there exists a path where we have two distinct
nodes n1 and n2 with n1.� = n2.� and αn1.D(n1.Z) = αn2.D(n2.Z), since the number of
location and possible zones is finite. Without loss of generality, we can assume that n1 is
an ancestor of n2 and n2 is the parent of another node. This is only possible if n2 is in
passed, which means that n2 was in wait and was not covered at some point. Since the
abstracted zone can only be modified to be smaller, this means that n2 has been modified
at any point. Otherwise n2 has always been covered by n1, which is not possible. Since n2

has been modified, and it is covered (at least by n1), this means that cut has been called
on n2 last time its zone has been modified. This means that n2 has no children and is not
in passed, contradicting our assumption. Hence the algorithm always terminates.

2.2.4 Implementation discussion

Note that this algorithm requires to use the abstraction function every time we want
to check the covering of a node, as we would have to check its zone against all the
abstracted zone of zones sharing its location. Since the abstraction function is performed
in O(|C0|2 max(|C0|, log2(|D|)), this is something we would like to avoid. In reality, our
implementation does not store the domain and the zone before abstraction for each node.
Instead we only store one zone and use the abstraction function when the node is inserted
in the passed list. This is because we want the node to contain the smallest zone possible
when we test whether the node is covered. If it is not the case, then we can apply our
abstraction and use the abstracted zone when we compute its successor and when we test
whether the node is covering. This allows us to store a unique zone. Note that because of
this we have to recompute the concrete successors for the Refine function. But since this
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algorithm can be efficient only if we have a fairly short number of refinement, we prefer to
have costly operations in Refine rather than in the successor and cover computation.

With that in mind, this algorithm has been implemented for TChecker with both
the localized and globalized domain, as well as with all three variations always-top,
top-covered, highest-covered. Moreover, you can see that this algorithm uses a passed
and wait list, just like the algorithms presented in the first chapter. A good implementation
of these lists results in faster executions, as it can facilitate the search for a subsumption
relation. TChecker already has an efficient implementation of these lists as detailed in [30]
[31].

We present experimental results for this algorithm and the one presented in the following
chapter in Chapter 4.
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Chapter 3

SYMBOLIC ALGORITHM

In this chapter we present a symbolic algorithm, that reduces the reachability problem
in timed automata to a problem of satisfiability for some Boolean formula. Indeed, this
comes from the facts that a zone can be seen as small formula where the atomic constraints
are the predicates. By encoding the state with a Boolean predicate, and seeing the successor
operations as a succession of Boolean relations, we can build a Boolean formula that
encodes the reachable part of the automaton.

3.1 Notation

We now present a symbolic algorithm that represents abstract states using Boolean
formulas. Let B = {0, 1}, and V be a set of variables. Let f a Boolean formula that
uses variables from set X ⊆ V, that is a combination of negations, conjunctions and
disjunctions over the variables of X. We will write f(X) to make the dependency explicit
and sometimes write f(X, Y ) in place of f(X ∪ Y ). Such a formula represents a set
�f� = {v ∈ B

V | v |= f}.
A literal is either p or ¬p for a variable p. Given a set X of variables, a formula f(X)

is a X-minterm if it is the conjunction of literals where each variable of X appears exactly
once. X-minterms can be seen as elements of BX since they fix the value of each elements
of X. For a Boolean formula on F (X), we can denote Minterms(F ) the set of X-minterms
that satisfy F . Each of these minterm sis a valuation of BX that satisfies F (X).

For a formula f(X), g(X ′) and x ∈ X, the formula f [g/x] is the substitution of x by g

in f . It is a formula on X ∪ X ′ and is obtained by replacing each x with the formula g(X ′).
Given a vector of Boolean formulas Y = (Yx)x∈X , formula f [Y/X] is the substitution of X

by Y in f , obtained by replacing each x ∈ X with the formula Yx. The positive cofactor
of f(X) by x is ∃x. (x ∧ f(X)), and its negative cofactor is ∃x. (¬x ∧ f(X)).

For a relation R(X, X ′) and a formula S(X, Y ) representing a set of elements, let
us define a generic operator post that computes the successors S(X, Y ) with the re-
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lation R(X, X ′) postR(S(X, Y )) = (∃X.S(X, Y ) ∧ R(X, X ′))[X/X ′]. Similarly, we set
preR(S(X, Y )) = (∃X ′.S(X, Y )[X ′/X] ∧ R(X, X ′)), which computes the predecessors
of S(X, Y ) by the relation R [36].

3.1.1 Clock predicate abstraction.

We fix a total order � on C0. In this section, abstract domains are defined as D =
(Dx,y)x�y∈C0 , that is only for pairs x � y. We can do so because constraints of the form x−y ≤
k with x � y can be encoded using the negation of y − x < −k since (x − y ≤ k) ⇔
¬(y − x < −k). So it is the same as using domains with Dx,y = −Dy,x.

For x, y ∈ C0, let Px,y denote the set of clock predicates associated to Dx,y:

PD
x,y = {Px−y�k | (k, �) ∈ Dx,y}.

Let PD = ∪x,y∈C0PD
x,y denote the set of all clock predicates associated with D (we may

omit the superscript D when it is clear). For all (x, y) ∈ C0
2 and (k, �) ∈ Dx,y, we denote

by px−y�k the literal Px−y�k if x � y, and ¬Py−x�−1−k otherwise (where ≤−1 = < and
<−1 = ≤). So we can use px−y�k without consideration for the clocks order.

Here we have a strong justification for the use of these abstract domains. Most algorithms
on Boolean formulas depend strongly on the number of Boolean predicates. Since the
concrete domain creates too many predicates, this tends to slow down our algorithms. We
also consider a set B of Boolean variables used to encode locations. Overall, the state
space is described using Boolean formulas on these two types of variables, so states are
elements of BP∪B.

Our Boolean encoding of clock constraints and semantic operations follow those of [42]
for a concrete domain. We define these however for abstract domains, and show how all
successor computation and refinement operations can be performed.

Let us define the clock semantics of predicate Px−y�k as �Px−y�k�C0 = {ν ∈ R
C0
≥0 |

ν(x)−ν(y)�k}. Since the set C of clocks is fixed, we may omit the subscript and just write
�Px−y�k�. We define the conjunction, disjunction, and negation as intersection, union, and
complement, respectively. Given a P-minterm v ∈ B

P , we define �v�D = ⋂
p∈v−1(true)�p�D ∩⋂

p∈v−1(false)�p�c
D. Thus, the negation of a predicate encodes its complement. For a Boolean

formula F (P), we set �F � = ⋃
v∈Minterms(F )�v�D. Intuitively, the minterms of P define

smallest zones of RC
≥0 definable using P . Of course, if we used the concrete domain, those

would be regions. For a domain D, we call this set the D-region. A minterm v ∈ B
B∪P
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y
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x

Figure 3.1 – On the left in blue the zone x = y and on the right in blue its abstraction
using the two predicates x ≤ 2, y ≤ 2 represented in red

defines a pair �v�D = (�, Z) where � is encoded by v|B and Z = �v|P�D. A Boolean formula F

on B ∪ P defines a set �F �D = ∪v∈Minterms(F )�v�D of such pairs. A minterm v is satisfiable
if �v�D 
= ∅.

An abstract domain D induces an abstraction function αD : 2R
C
≥0 → 2BP with αD(Z) =

{v | v ∈ B
P and �v�D ∩Z 
= ∅}, from the set of zones to the set of subsets of Boolean valua-

tions on P . We define the concretization function as �·�D : 2BP → 2R
C
≥0 . The pair (αD, �·�D)

is a Galois connection, and �αD(Z)�D is the most precise abstraction of Z in the domain
induced by D.

Note that although we use an abstract domain here, the abstraction function αD in
this section is not the same as the one we defined in the previous section. This is due to
the fact that here, we are not using zones but a Boolean formula that can define a union of
zones. For example, αD is non-convex in general: if the clock predicates are x ≤ 2, y ≤ 2,
then the set defined by the constraint x = y maps to (px≤2 ∧ py≤2) ∨ (¬px≤2 ∧ ¬py≤2),
which is not convex as shown in Figure 3.1.

3.1.2 Reduction

We now define the reduction operation, which is similar to the reduction of DBMs.
The idea is to eliminate unsatisfiable minterms from a given Boolean formula. For example,
we would like to make sure that in all minterms, if px−y≤1 holds, then so does px−y≤2, when
both are available predicates. Another issue is to eliminate minterms that are unsatisfiable
due to triangle inequality. This is similar to the shortest path computation used to turn
DBMs in canonical form. We recall that reducing a DBM is the same as building a minimal
graph where the nodes are the clocks and the weight are the constraints between those
clocks.
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Here we will do something similar, with a path in D being a sequence

x1, (α1, �1), x2, (α2, �2), . . . , xk, (αk, �k), xk+1

where
x1, . . . , xk+1 ∈ C0

, and (αi, �i) ∈ Dxi,xi+1 for 1 ≤ i ≤ k. In other words, it is a path from clocks to clocks,
where the weights are constraints of D. Let us define PathsD

k (x − y � α) as the set of paths
from x to y of length k and of weight at most (α, �), that is, paths

x1, (α1, �1), x2, (α2, �2), . . . , xk, (αk, �k), xk+1

with x1 = x, xk+1 = y, and
k∑

i=1
(αi, �i) ≤ (α, �)

. We also denote
PathsD

≤k(x − y � α) =
⋃
l≤k

PathsD
l (x − y � α)

, meaning the paths from x to y of length at most k that weigh less than (�, α). For
a path π = x1, (α1, �1), . . . , xk+1 and minterm v, let us write v |= π for the statement
v |= ∧k

i=1pxi−xi+1�αi
.

Definition 3.1.1. A minterm v ∈ B
P is k-reduced if for all (x, y) ∈ C0

2 and (α, �) ∈ Dx,y,
for all π = x1, (α1, �1), x2, . . . , xk+1 ∈ Paths≤k(x − y � α), whenever v |= π, we also have
v |= px1−xk+1�α for all (α, �) ∈ Dx1,xk+1 with (α, �) ≥ ∑k

i=1(αi, �i).

In other words, a minterm is k-reduced if and only if no contradictions can be obtained
via paths of length less than or equal to k. Note that |C0|-reduction is equivalent to
satisfiability since the condition then includes all the cycles, and it is known that in the
absence of negative cycles, a set of difference constraints is satisfiable. Furthermore, for the
concrete domain, k-reduction is equivalent to reduction for any k ≥ 2. Indeed in a concrete
domain we would have every predicate and his negation, so if a minterm is 2-reduced, it
means that for all values (α1, �1), (α2, �2) and for every clock x, y, z, v |= x − y �1 α1 and
v |= y − z �2 α2 implies v |= x − z(�1 + �2)(α1 + α2). Since this is true for every possible
value, this triangular inequality stands also for paths of lengths more than 2. A formula is
said to be k-reduced if all its minterms are k-reduced.
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Example 1. Given predicates P = {px−y≤1, py−z≤1, px−z≤2}, the formula px−y≤1 ∧ py−z≤1

is the disjunction of the minterms px−y≤1 ∧ py−z≤1 ∧ px−z≤2 and px−y≤1 ∧ py−z≤1 ∧ ¬px−z≤2.
But this last minterm is not satisfiable, therefore the formula is not 2-reduced. However,
the same formula is reduced if P = {px−y≤1, py−z≤1}, since then the formula contains only
one minterm that is satisfiable.

Consider now the predicate set P = {px−y≤1, py−z≤1, pz−w≤3, px−w≤5}, and consider the
formula φ = px−y≤1 ∧ py−z≤1 ∧ pz−w≤3 which is 2-reduced. Notice that φ does contain the
minterm px−y≤1 ∧ py−z≤1 ∧ pz−w≤3 ∧ ¬px−w≤5. However, φ is 2-reduced since no path of
length 2 allows to deduce px−w≤5. In the concrete domain, px−y≤1 ∧ py−z≤1 would imply
px−z≤2, thus, px−w≤5 could be derived too. So It is indeed because of the abstract domain
that 2-reduction might fail to capture all shortest paths, since px−z≤2 is not a part of our
abstract domain and as such cannot be used.

We only consider 2-reduction since computing reductions is the most expensive operation
in our algorithms, and the formula below defining 2-reduction already tends to grow in size.
Let us define reduce2

D as follows

∧
(x,y)∈C02

(k,�)∈Dx,y

⎡
⎣px−y�k ←

( ∨
(l1,�1)∈Dx,y

(l1,�1)≤(k,�)

px−y�1l1 ∨
∨

z∈C0,(l1,�1)∈Dx,z ,
(l2,�2)∈Dz,y

(l1,�1)+(l2,�′
2)≤(k,�)

px−z�1l1 ∧ pz−y�2l2

)⎤
⎦

The formula intuitively applies shortest paths over paths of length 1 or 2. In fact, for a
formula S we note reduce2

D(S) = S ∩ reduce2
D

Lemma 7. For all formulas S(P), we have �S�D = �reduce2
D(S)�D and all minterms

of reduce2
D(S) are 2-reduced.

Proof. It is easy to see that �reducek
D(S)�D ⊆ �S�D. In fact, any minterm of the former is

a minterm of S as well by definition.
To see the converse, consider v ∈ Minterms(S). We show that �v�D ⊆ �reducek

D(S)�D.
If �v�D = ∅ then the inclusion holds trivially. Otherwise, we must have v ∈ Minterms(reducek

D(S)).
In fact, we show that all minterms v 
∈ Minterms(S) satisfy �v� = ∅. Consider such a
minterm v. There must exist x, y ∈ C0 and (k, �k) ∈ Dx,y such that ¬px−y�k but the right
hand side of the implication holds. But this implies that �v� = ∅.

The fact that all minterms of reducek
D(S) are k-reduced follows by the definition of the

operator.
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Example 2. Note that reduce2
D(S) can still contain valuations that are unsatisfiable.

Consider P = {px−y≤1, py−z≤1, px−z≤4, pz−x≤−3}. Then the minterm u that sets all predicates
to true is still contained in reduce2

D(S) although �u� = ∅ since x − y ≤ 1 ∧ y − z ≤ 1
implies x−z ≤ 2 which contradicts z−x ≤ −3. Here, adding the predicate px−z≤2 or px−z<3

to the domain would make the reduction precise enough to remove this unsatisifable minterm
in reduce2

D(S).

We have already shown twice that adding predicates to the domain would refine the
abstraction enough so that the reduced constraint eliminate a given unsatisfiable minterm.
Here we will show how to do it.

Lemma 8. Let v ∈ B
PD be a minterm such that v |= reduce2

D and �v� = ∅. One can
compute in polynomial time a refinement D′ ⊃ D such that v 
|= reduce2

D′.

Proof. Consider a (non-canonial) DBM D that encodes v. Formally, for all (x, y) ∈ C0
2,

D(x, y) = min{(k, �) | px−y�k ∈ Px,y and v(px−y�k) = 1}. The corresponding graph must
have a negative cycle s1s2 . . . sm with sm = s1. To define D′, we add the following predicates
to D:

— si − si+1 ≤ D(si, si+1) for all 1 ≤ j ≤ m − 1.

— s1 − sj ≤ D(s1, s2) + D(s2, s3) + . . . + D(sj−1, sj) for 1 ≤ j ≤ m − 1.

Intuitively, along the negative cycle, we are adding predicates to represent exactly each
single step, and also each big step from s1 to sj. This allows to derive the negative cycle
using only paths of length 2.

More precisely, v∧reduce2
D′ implies the following two predicates: s1−sm ≤ ∑m−1

j=1 D(sj, sj+1),
and sm − s1 ≤ D(sm, s1) as implied by v. Since −D(sm, s1) >

∑m−1
j=1 D(sj, sj+1) (due to

the negative cycle), the first predicate entails that ¬ps1−sm≤−D(sm,s1), which contradicts
the second one. Hence v 
|= reduce2

D′ .

As you can see, this method for refining our domain is similar to the one defined to
refine the domain in the previous chapter, by looking for a negative cycle in an intersection.
So now we have a way of encoding our reachable zones and state using an abstract domain,
a way of reducing this encoding dependent on this abstract domain and a way to refine
this domain such that the reduction can remove a given unsatisfiable minterm. Now we
need to be able to compute the successors.
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3.2 Successor Computation

In this section, we explain how successor computation is realized in our encoding.
For a guard g, assume we have computed an abstraction αD(g) in the present abstract
domain. For each transition σ = (�1, g, R, �2), let us define the formula Tσ = �1 ∧ αD(g).
We show how each basic operations on zones can be computed in our BDD encoding. In our
algorithm, all formulas A(B, P) representing sets of states are assumed to be reduced,
that is, A(B, P) =⇒ reduce2

D(A(B, P)).

3.2.1 Intersection

The intersection operation is simply logical conjunction. In fact, given A(B, P) and B(B, P),
we define A(B, P) � B(B, P) = reduce(A(B, P) ∧ B(B, P)).

Lemma 9. For all reduced formulas A(P), B(P), A(P)∧B(P) = αD(�A(P)�D ∩�B(P)�D).

Proof. Consider v ∈ Minterms(A(P)∧B(P)). Then v ∈ Minterms(A(P))∩Minterms(B(P)).
So �v� ⊆ �A(P)� ∩ �B(P)�, and v = αD(�v�) ⊆ αD(�A(P)�D ∩ �B(P)�D).

We will now show αD(�A(P)�D ∩ �B(P)�D) ⊆ A(P) ∧ B(P), which is equivalent to
�A(P)�D ∩ �B(P)�D ⊆ �A(P) ∧ B(P)�. Consider any clock valuation ν in the LHS, and
let v = αD(ν). Since ν ∈ �A(P)�D and ν ∈ �B(P)�D, we must have v ∈ A(P) ∧ B(P), so
ν ∈ �A(P) ∧ B(P)�.

3.2.2 Time Successors

For the time successors, we define

SUp =
∧
x∈C

(k,�)∈Dx,0

(¬px−0�k → ¬p′
x−0�k)

∧
x,y∈C0,x 
=0
(k,�)∈Dx,y

(p′
x−y�k ↔ px−y�k).

Note that this relation is not a function: for x ≤ 0, y = 0, if ¬px−y�k, then necessarily
¬p′

x−y�k; but otherwise both truth values for p′
x−y�k are allowed. In fact, the formula

only says that all lower bounds on clocks and diagonal constraints must be preserved.
We let Up(A(B, P)) = reduce(postSUp

(A(B, P))). We can see that this operations similar
to the time successor operation on the DBMs, where for a DBM D we remove the upper
constraints Dx,0 for all clocks x while keeping all the other diagonals constraints. Of course

65



Chapter 3 – Symbolic Algorithm
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Figure 3.2 – Time successors: the successors of the gray zone on the left are the union of
all blue dashed zones on the right.

here this operation is abstracted and depends on the abstract domain D. In fact it provides
an over approximation of the time successor function.

Example 3. Figure 3.2 shows this operation applied to the gray zone on the left. The
over-approximation is visible in this example. In fact, the blue dashed zone defined by
Z = 3 < x < 5 ∧ 0 ≤ y < 1 ∧ x − y < 4 (on the bottom right) is computed as a successor
of the gray zone although no point of the gray zone can actually reach Z by a time delay.
Adding more diagonal constraints to the abstract domain, for instance, x − y ≤ 2 would
refine the abstraction to remove some unreachable valuations.

Lemma 10. For any Boolean formula A(B, P), αD(�A�↑) ⊆ Up(A). Moreover, if D is the
concrete domain and A is reduced, then this holds with equality.

Proof. We show that αD(�A�↑) ⊆ Up(A), which is equivalent to �A�↑ ⊆ �Up(A)�D. Let ν ′ ∈
�A�↑, and let ν ∈ �A� such that ν ′ = ν + d for some d ≥ 0. We write u = αD(ν) ∈
Minterms(A), and v = αD(ν ′). We now show that (u, v) ∈ SUp. This suffices to prove the
inclusion since v ∈ Minterms(Up(A)) implies that ν ′ ∈ �v�D ⊆ �Up(A)�D. Observe that
αD(ν) and αD(ν ′) satisfy the same diagonal predicates of the form px−y�α with x, y 
= 0,
since ν ′ = ν + d. Moreover, any lower bound satisfied by u is also satified by v. Thus,
(u, v) ∈ SUp.

Assume now that A is reduced. We show that Up(A) ⊆ αD(�A�↑). Let v ∈ Minterms(Up(A)),
and let (u, v) ∈ SUp with u ∈ Minterms(A). We claim that �v� ⊆ �u�↑. This suffices to prove
the inclusion since {v} = αD(�v�) ⊆ αD(�u�↑) ⊆ αD(�A�↑). To prove the claim, it suffices
to see �u� and �v� as DBMs. In fact, SUp precisely corresponds to the up operation on
DBMs. In particular, u and v have the same diagonal constraints, and any lower bound
of u is a lower bound of v. Because u is reduced, this implies that �v�↑ ⊆ �u�.
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Example 4. Note that we do need that the domain is concrete to prove equality. In fact,
assume the predicates are p1 = y − x ≤ 3, p2 = x − y ≤ 1, x ≤ 1, y ≤ 2, x ≤ 2, y ≤ 4. Then
if u = x ≤ 1 ∧ y ≤ 2 ∧ p1 ∧ p2 and v = 1 ≤ x ≤ 2 ∧ y ≤ 4 ∧ p1 ∧ p2. So v is larger than u↑.

Second, to see that the Up operation can yield strict over-approximations, consider
px≤1 ∧ py≥1 in a domain with no predicate on x − y. The operator relaxes all upper bounds,
yielding py≥1 which defines a set larger than the concrete time-successors y ≥ 1 ∧ x − y ≤ 0.

Alternatively, we can also use the method described in [42, Theorem 2] to compute
time successors, but the above relation will allow us to compute predecessors as well.

3.2.3 Reset

Last, we define the reset operation as follows. For any z ∈ C,

SResetz =
∧

(0,≤)≤(k,�)∈Dz,0

p′
z−0�k

∧
∧

x 
=z
(k,�)∈Dx,z

( ∨
(l,�′)∈Dx,0
(l,�′)≤(k,�)

px−0�′l

)
⇒ p′

x−z�k

∧
∧
y 
=z

(k,�)∈Dz,y

( ∨
(l,�′)∈D0,y

(l,�′)≤(k,�)

p0−y�′l

)
⇒ p′

z−y�k

∧
∧
y 
=z

(0,≤)≤(k,�)∈Dz,y

p′
z−y�k

∧
∧

x,y 
=z
(k,�)∈Dx,y

p′
x−y�k ⇔ px−y�k.

Intuitively, the first conjunct ensures all non-negative upper bounds on the reset clock hold;
the second conjunct ensures that a diagonal predicate x − z � k with x 
= z is set to true if,
and only if, an upper bound (l, �′) ≤ (k, �) already holds on x. Once again this is similar
to the reset we defined for DBMs, but for a DBM D, if z was reset, then we set Dx,z to
Dx,0 which was the tighter possible constraint on x if D was reduced. Of course here this
is the tighter possible constraint that appears in the reduction relative to our domain D.
The third conjunct is symmetric to the second, and the last one ensures diagonals not
affected by reset are unchanged. Let us define Resetz(A) = reduce(postSResetz

(A)).
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Figure 3.3 – Reset Operation: The abstract successor of the gray zone on the left is the
blue dashed zone on the right.

Lemma 11. For any Boolean formula A(B, P), and for any z ∈ C, we have αD(Resetz(�A�D)) ⊆
Resetz(A). Moreover, if D is the concrete domain, and A is reduced, then the above holds
with equality.

Proof. Let r = {z}. We show the equivalent inclusion Resetr(�A�D) ⊆ �Resetr(A)�D.
Let ν ′ ∈ Resetr(�A�), and ν ∈ �A� such that ν ′ = ν[r ← 0]. So u = αD(ν) ∈ A.
Letting v = αD(ν ′), let us show that (u, v) ∈ SResetr , which proves that v ∈ Resetr(A),
thus ν ′ ∈ �v�D ⊆ �Resetr(A)�D.

— Consider x ∈ r. Since ν ′(x) = 0, we have that v |= px−y�k for all (k, �) ∈ Dx,y

with (k, �) ≥ (0, ≤); so (u, v) satisfies the first conjunct. Fix (k, �) ∈ Dx,y.

— Assume x 
∈ r, y ∈ r, so that ν ′(x) = ν(x), ν ′(y) = 0. If there is (l, �′) ∈ Dx,0

with (l, �′) ≤ (k, �), this means ν(x) − 0 �′ l � k so ν ′(x) − ν ′(y) � k. Thus the second
conjunct is satisfied.

— Assume x ∈ r, y 
∈ r so that ν ′(x) = 0, ν ′(y) = ν(y). If there is (l, �′) ∈ D0,y

with (l, �′) ≤ (k, �), this means 0 − ν(y) �′ l � k so ν ′(x) − ν ′(y) � k as well. Thus the
third conjunct is satisfied. We also have trivially ν ′(x)−ν ′(y)�k for all (0, ≤) ≤ (k, �),
which entails the fourth conjunct.

— Observe that ν and ν ′ satisfy the same predicates of type px−y�α with x, y 
∈ r since
these values are not affected by the reset; so the pair (u, v) satisfies the last conjunct
of SResetr as well.

Now, if the domain is concrete and A is reduced, then we have �Resetr(A)�D ⊆
Resetr(�A�D). In fact, the operation then corresponds precisely to the reset operation
in DBMs of [16, Algorithm 10] as shown above. On DBMs, for a component (x, y)
with x ∈ r, y 
∈ r, the algorithm consists in setting this component to value (0, y). In our
encoding, we thus set the predicate p′

x−y�k to true whenever p0−x�′l holds with (l, �′) ≤ (k, �).
The argument is symmetric for (x, y) with x 
∈ r, y ∈ r.
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We now have all the components to compute our abstract successor operations.

3.3 Model-checking algorithm

3.3.1 Abstract successors computation

Algorithm 18 shows how to check the reachability of a target location given an abstract
domain. The list layers contains, at position i, the set of states that are reachable in i

steps. The function ApplyEdges computes the junction of immediate successors by all edges.
It consists in looping over all edges e = (l1, g, R, l2), and gathering the following image
by e:

enc(�2) ∧ Resetrk
(Resetrk−1(. . . (Resetr1((((∃B.A(B, P) ∧ enc(�1)) ∧ αD(g))))))),

where R = {r1, . . . , rk}. We thus use a partitioned transition relation and do not compute
the monolithic transition relation.

When the target location is found to be reachable, ExtractTrace(layers) returns a trace
reaching the target location. This is standard and can be done by computing backwards
from the last element of layers, by finding which edge can be applied to reach the current
state. This is similar to what happens in the enumerative algorithm, where we compute
the successive predecessors. Since both reset and time successor operations are defined
using relations, predecessors in our abstract system can be easily computed using the
operator preR. As it is similar to what we already did in the previous chapter, we are not
detailing this function here but assume that it returns a trace of the form

A1
σ1−→ A2

σ2−→ . . .
σn−1−−−→ An,

where the Ai(B, P) are minterms and the σi belong to the trace alphabet Σ = {up, r∅} ∪
{r(x)}x∈C, with the following meaning:

— if Ai
up−→ Ai+1 then Ai+1 = Up(Ai);

— if Ai
r∅−→ Ai+1 then Ai+1 = Ai;

— if Ai
r(x)−−→ Ai+1 then Ai+1 = Resetx(Ai).

The feasibility of such a trace is easily checked using DBMs.
The overall algorithm then follows a classical CEGAR scheme. We initialize D by

adding the clock constraints that appear syntactically in A, which is often a good heuristic.
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Algorithm 18: Algorithm SymReach that checks the reachability of a target loca-
tion lT in a given abstract domain D.
1 Input:(A = (L, Inv, �0, C, E), �T , D);
2 next := enc(l0) ∧ αD(∧x∈Cx = 0);
3 layers := [];
4 reachable := false;
5 while (¬reachable ∧ next) 
= false do
6 reachable := reachable ∨ next;
7 next := ApplyEdges(Up(next)) ∧ ¬reachable;
8 layers.push(next);
9 if (next ∧ enc(lT )) 
= false then

10 return ExtractTrace (layers);
11 return Not reachable;

We run the reachability check of Algorithm 18. If no trace is found, then the target location
is not reachable. If a trace is found, then we check for feasibility. If it is feasible, then the
counterexample is confirmed. Otherwise, the trace is spurious and we run the refinement
procedure described in the next subsection, and repeat the analysis.

3.3.2 Spurious trace detection

Since we initialize D with all clock constraints appearing in guards and invariants, we
can make the following hypothesis.

Assumption 1. All guards are represented exactly in the considered abstractions.

Note that the algorithm can be easily extended to the general case; but this simplifies
the presentation.

The abstract transition relation we use is not the most precise abstraction of the
concrete transition relation. Therefore, it is possible to have abstract transitions A1

a−→ A2

for some action a while no concrete transition exists between �A1� and �A2�. This requires
care and is not a direct application of the standard refinement technique from [21]. A second
difficulty is due to incomplete reduction of the predicates using reduce2

D. In fact, some
reachable states in our abstract model will be unsatisfiable. Let us explain how we refine
the abstraction in each of these cases.

Consider an algorithm interp that returns an interpolant of two given zones Z1, Z2

as we have shown in the previous chapter. In what follows, by the refinement of D
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by interp(Z1, Z2), we mean the domain D′ obtained by adding (k, �) to Dx,y for all constraints
x − y � k of interp(Z1, Z2). Observe that αD′(Z1) ∩ αD′(Z2) = ∅ in this case.

We define concrete successor and predecessor operations for the actions in Σ. For
each a ∈ Σ, let Prec

a denote the concrete predecessor operation on zones defined straight-
forwardly, and similarly for Postc

a.
Consider domain D and the induced abstraction function αD. Assume that we are given

a spurious trace π = A1
σ1−→ A2

σ1−→ . . .
σn−1−−−→ An. Let B1 . . . Bn be the sequence of concrete

states visited along π in A, that is, B1 is the concrete initial state, and for all 2 ≤ i ≤ n,
let Bi = Postc

πi−1(Bi−1). This sequence can be computed using DBMs.
The trace is realizable if Bn 
= ∅, in which case the counterexample is confirmed.

Otherwise it is spurious. We show how to refine the abstraction to eliminate a spurious
trace π.

3.3.3 Refinement Procedure.

Let i0 be the maximal index such that Bi0 
= ∅. There are three possible reasons
explaining why Bi0+1 is empty:

1. first, if the abstract successor Ai0+1 is unsatisfiable, that is, if it contains contradictory
predicates; in this case, �Ai0+1� = ∅, and the abstraction is refined by Lemma 8 to
eliminate this case by strengthening reducek

D.

2. if there are predecessors of Ai0+1 inside Ai0 but none of them are in Bi0 , i.e.,
Prec

πi0
(�Ai0+1�) ∩ �Ai0� 
= ∅; in this case, we refine the domain by separating these

predecessors from the rest of Ai0 using interp(Prec
πi0

(�Ai0+1�), Bi0−1), as in [21].

3. otherwise, there are no predecessors of Ai0+1 inside Ai0 : we refine the abstraction
according to the type of the transition from step i0 to i0 + 1:

(a) if πi0 = up: refine D by interp(�Ai0�↑, �Ai0+1�↓).

(b) if πi0 = r(x): refine D by interp(Freex(�Ai0�), Freex(�Ai0+1�)).

Note that the case πi0 = r∅ is not possible since this induces the identity function both in
the abstract and concrete systems.

Given abstraction αD and spurious trace π, let refine(αD, π) denote the refined abstrac-
tion αD′ obtained as described above. The following two lemmas justify the two subcases
of the third case above. They prove that the detected spurious transition disappears
after refinement. The reset and up operations depend on the abstraction, so we make
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(a) Refinement for the time successors oper-
ation. The interpolant that separates �A1�↑
from �A2�↓ contains the constraint x − y ≤ 2.
When this is added to the abstract domain,
the set A′

2 (which is A2 in the new abstraction)
is no longer reachable by the time successors
operation.
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(b) Refinement for the reset operation.
The interpolant that separates Freey(A1)
from Freey(A2) contains the constraint x <
2. When this is added to the abstract do-
main, the set A′

2 (which is A2 in the new
abstraction) is no longer reachable by the
reset operation.

this dependence explicit below by using superscripts, as in Resetα
x and Upα, in order to

distinguish the operations before and after a refinement.

Lemma 12. Consider (A1, A2) ∈ Upα with �A1�↑ ∩ �A2� = ∅. Then �A1�↑ ∩ �A2�↓ = ∅.
Moreover, if α′ is obtained by refinement of α by interp(�A1�↑, �A2�↓), then for all (A′

1, A′
2) ∈

Upα′, �A′
1� ⊆ �A1� implies �A′

2� ∩ �A2� = ∅.

Proof. Assume there is v ∈ �A1�↑ ∩ �A2�↓. There exists d1, d2 ≥ 0 and v1 ∈ A1 such that
v = v1 + d1 and v + d2 ∈ A2, which means v1 + d1 + d2 ∈ A2, thus �A1�↑ ∩ �A2� 
= ∅.

Let Z = �interp(�A1�↑, �A2�↓)�. By definition, �A1�↑ ⊆ Z, and Z ∩ �A2�↓ = ∅. We
have Z↑ = Z; in fact, Z cannot have upper bounds since �A1�↑ does not have any. It follows
that Z↑ ∩ �A2�↓ = ∅.

Now, consider (A′
1, A′

2) ∈ Upα′ with �A′
1� ⊆ �A1�. Let us show that �A′

2� ⊆ Z. Notice
that all constraints of Z must be satisfied by A′

2 due to the inclusion �A′
1� ⊆ Z: there

are no upper bounds in Z, all its lower bounds are satisfied by A1, thus also by A′
1, and

are preserved by definition by Up, and all diagonal constraints of Z hold in A1, thus
also in A′

1, and are preserved as well in A′
2. This shows the required inclusion. It follows

that �A′
2� ∩ �A2� = ∅.

Lemma 13. Consider x ∈ C, and (A1, A2) ∈ Resetα
x such that �A1�[x ← 0] ∩ �A2� = ∅.

Then Freex(�A1�) ∩ Freex(�A2�) = ∅. Moreover, if α′ is obtained by refinement of α by
interp(Freex(�A1�), Freex(�A2�)), then for all (A′

1, A′
2) ∈ Resetα′

x with �A′
1� ⊆ �A1�, we have

�A′
2� ∩ �A2� = ∅.
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Proof. Let v ∈ Freex(�A1�) ∩ Freex(�A2�). Then there exist v1 ∈ �A1�, v2 ∈ �A2� and v0

such that v0 = v[x ← 0] = v1[x ← 0] = v2[x ← 0]. But �A2� is closed by resetting x, that
is, �A2�[x := 0] ⊆ �A2�. This follows from Lemma 11 applied to A2, by observing that A2

is unchanged by the reset operation. So v0 ∈ �A2�. But then �A1�[x := 0] ∩ �A2� 
= ∅ as
witnessed by v1[x := 0] = v0.

Let Z = �interp(Freex(�A1�), Freex(�A2�))�. For all A′
1 satisfying �A′

1� ⊆ �A1�, we
have �A′

1�[x ← 0] ⊆ �A1�[x ← 0] ⊆ Freex(�A1�) ⊆ Z. So Z ∩ A2 = ∅ means that
�A′

1�[x ← 0] ∩ A2 = ∅.
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Chapter 4

EXPERIMENTS

In this chapter, we explain the models on which the algorithms presented in the previous
chapters were evaluated, and then present the results of our tests on these models. We
implemented the symbolic algorithm in OCaml in a tool called Symrob using the CUDD
library and the OCaml wrapper mlcuddidl. The enumerative algorithm was implemented
in C++ within an existing model checker called TChecker using Uppaal DBM library. It is
worth noting that during this work, TChecker was redone completely. We reimplemented
the enumerative algorithm, albeit a simpler version. Indeed, after each refinement, this
simpler version restarts the exploration from the root, with a refined abstraction. Because
of this, the results shown here are the ones from the original version of TChecker.

Both prototypes can take as input synchronized products of timed automata with
invariants and discrete variables. It can also use a broader syntax of timed automata than
the ones presented here, such as urgent and committed locations or weak synchronization.
The presented algorithms are adapted to these features without difficulty.

We evaluated our algorithms on three classes of benchmarks that we developed and
that we believe are significant. We also ran our tools on the CSMA/CD benchmarks
with 3 to 12 processes, which is a protocol to ensure mutual exclusion. We compare the
performance of our algorithms with that of Uppaal [15] which is based on zones, as well
as the BDD-based model checker engine of PAT [38]. Here we will use the most recents
algorithms presented in [39]. We were unable to compare with RED [46] which is not
maintained anymore and not open source, and with which we failed to obtain correct
results. The tool used in [26] was not available either. We thus only provide a comparison
here with two well-maintained tools.

We will also note that these benchmarks were presented and made available during an
artifact review in [41], and as such can still be used, since only small improvement have
been made since.
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4.1 Benchmarks

Two of our benchmarks are variants of schedulability-analysis problems where task
execution times depend on the internal states of executed processes, so that an analysis
of the state space is necessary to obtain a precise answer. All algorithms were given
8GiB of memory and a timeout of 30 minutes, and the experiments were run on laptop
with an Intel i7@3.2Ghz processor running Linux. We ran the symbolic algorithm as
well as the enumerative algorithm. For the enumerative algorithm, we implemented a
version using a localized domain, as well as a version using a global domain. Moreover
we implement 3 different ways to refine that we presented in Section 2.2.3: always-top,
top-covered and highest-covered. This means that we have 6 different variations of
the enumerative algorithm that we ran. Although we show the results for all 6 variants at
the end of this chapter, in this section we will only consider the highest-covered variant
for localized domain and the always-top variant for the global domain. This is mainly
because representing all the 6 variant would make the following graphs hard to read, as
well as the fact that on most examples, the difference between the 3 variants was too
marginal to justify representing all 6 modes.

4.1.1 CSMA/CD

CSMA/CD is a fairly known protocol and a traditional benchmark for timed automata.
It is a protocol used for collision detection when transmitting data and that has been used
in Ethernet protocols for a long time. It is modeled by timed automata since the protocol
solves collision by making other processes wait for some amount of time, as shown in [45].
The goal here is to verify the model to see if a state “collision” is reachable. We evaluate it
for a different number of processes, and try to see how far it could scale for each algorithm.

The results in fig. 4.1 show that Uppaal performs the best but that our enumerative
algorithm is slightly behind. The symbolic algorithm does not scale, probably due to
the fact that adding clocks and diagonal constraints slows it down, while PAT fails to
terminate in all cases. It is worth noting that PAT is slowed down if the constants used
are high, which is not the cases for the other algorithms.
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4.1. Benchmarks

Figure 4.1 – Comparison of our enumerative and symbolic algorithms (L-enumerative,
G-enumerative and Abs-symbolic) with Uppaal for CSMA. A point (X,Y) means X
benchmarks were solved within time bound Y.

4.1.2 Monoprocess Scheduling Analysis

In this example, we build a model where a single process sequentially executes tasks on
a single machine, and the execution time of each task depends on the state of the process.
The goal is to determine a bound on the maximum execution time of a single cycle. This
depends on the semantics of the process since the bound depends on the reachable states.

More precisely, we built a set of benchmarks where the processes are defined by
synchronous circuit models taken from the Synthesis Competition [33]. In this circuit,
latches represents resources being used by the system. We consider that changing the
state of a resource takes some amount of time and so a subset of the latches have clocks
associated with them, which measures the time elapsed since the latest value change.
In other words, we measure the latest moment when the value changed from 0 to 1,
or from 1 to 0. In our timed automata, a latch is represented as such: each latch is
associated with positive bounds k0 and k1, and if the value of the latch changes from 0
to 1 (respectively from 1 to 0), then the execution time of the present task cannot be less
than k1 (respectively k0). The execution time of the task is then defined as the minimum
that satisfies these constraints. Modeling this as a timed automaton is done by creating
a state that models the end of all the tasks. So we can verify the reachability of such a
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state with a constraint on the global time, stating that such a state has to be reached in
less than a given constant. If such a state is not reachable, we can answer that it is not
possible to schedule these tasks within that time frame.

Figure 4.2 – Comparison of our enumerative and symbolic algorithms with Uppaal and PAT.
for monoprocess scheduling analysis

The results of those tests are shown in fig. 4.2. The symbolic algorithm performs
notably better than all the other algorithms on these examples. One of the possible reasons
is that the Boolean encoding allows the algorithm to find the necessary refinements quickly
in these benchmarks. The enumerative algorithm does not perform well on these examples,
notably the localized version, due to a high number of refinements. On the other hand,
the global version manages to find refinements for the entire model, avoiding unnecessary
cycles of exploration and refinements. It is also worth noting that the symbolic algorithm
initiates its domain with all the predicates that are present in the guards of the timed
automaton, which might explain why it needs fewer refinements. Also, the enumerative
algorithm tends to run out of memory on these benchmarks, which can indicate that the
lazy approach is not the best in this case.

4.1.3 Multiprocess Stateful Scheduling Analysis

In this example, three processes are scheduled on two machines with a round-robin
policy. Each of these processes schedules tasks one after the other without any delay.
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Each task is described by a tuple (C1, C2, D) which defines the minimum and maximum
execution times, and the deadline for the task. When a task finishes, the next task arrives
immediately. The values in this tuple depend on the state of the process. The goal is to
check the absence of any deadline miss. As in the previous benchmarks, a process executing
a task (on any machine) corresponds to a step on a synchronous circuit model. Once again,
we instantiate these circuits based on circuits from the Synthesis Competition.

Figure 4.3 – Comparison of our enumerative and symbolic algorithms with Uppaal and PAT
for multiprocess scheduling analysis

The results of those tests are shown in fig. 4.3 and are similar to the ones for monoprocess
benchmarks, with a good performance of the symbolic algorithm. We note that once again
the enumerative does not finish on a lot of these benchmarks, especially for the localized
version.

4.1.4 Asynchronous Computation

This example is based on the notion of “threshold gates”, defined as follows: each gate
is characterized by a tuple (n, θ, [l, u]) where n is the number of inputs, 0 ≤ θ ≤ n is the
threshold, and l ≤ u are lower and upper bounds on activation time. This gate has an
output which is initially undefined, but then can take the value 0 or 1. After l units of
times, the gate becomes activated and is then deactivated at u (or in other words it stays
active for u − l units of time). If all the inputs of a gate are defined, and if at least θ of
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these inputs have value 1 while the gate is active, then it sets its output to 1. At the end
of the time period, it becomes deactivated and the output becomes undefined again. Once
deactivated, the gate restarts its loop, and wait l units of time, before it is activated again.

Let us assume a synchronized network of such gates. Our goal is to check whether a
given gate can output 1 within a given time bound T . This is once again a model that
can be modeled by timed automata, since every gate can be modeled by a location with
constraint on an internal clock that is reset after u units of time.

Figure 4.4 – Comparison of our enumerative and symbolic algorithms with Uppaal and PAT.
for asynchronous waves

In fig. 4.4, we can see that the enumerative algorithm clears this benchmark easier than
the other algorithms. This is because these benchmarks contain a lot of time constraints
that are not always useful or relevant to the reachability problem considered. For Uppaal,
these extra constraints would end up partitioning the space into many small zones and no
zone would be covered by another. This partitioning is not always necessary to determine
whether or not the accepting state can be reached, and as such would only slow down the
traditional algorithms. The high number of constants on this algorithm could also explain
why the symbolic algorithm is slower, since the symbolic algorithm already starts with
every predicate that already appear in the timed automaton. This high number of initial
predicates would only slow down this algorithm.
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4.2 Overall results.

All of the results can be found in fig. 4.5, fig. 4.6, fig. 4.7 and fig. 4.9. In these tables we
abreviated the always-top, top-covered and highest-covered by cut, top and high
respectively. First of all, let us note that there are some cases where the enumerative
algorithm does not finish the computation with some refinement modes, notably on
the multiprocess and monoprocess scheduling, meaning that although these modes are
equivalent on a lot of these examples, there are some cases where one is better than the
other. Some explanations can be given on why some algorithms perform better than others.
First of all, the shortcomings of the symbolic algorithm can be explained by its difficulty
to scale. Indeed this algorithm is highly dependent on the number of predicates, which
explains why it has some troubles with CSMA/CD. On the other hand, it manages to find
the necessary refinements quickly in the monoprocess and multiprocess benchmarks and
as such manages to finish quickly.

The enumerative algorithm does not perform well on these examples due to a high
number of refinements, but manages to finish faster on the asynchronous wave benchmarks.
Note that the high number of refinements can be limited by using a global domain, but
that in the asynchronous wave benchmarks, the localized abstraction is better as it is
better to have the coarsest abstraction possible in this case. We can also note that while
these algorithms are used to answer whether or not a state is reachable, our algorithms
are better suited for the cases when this state is not reachable. Indeed since checking if
a state is reachable is the same as giving a path to this state, and since our algorithms
are based on counter-example guided abstraction refinement, the only path that they
could return is a feasible path. If this path is short, then Uppaal could have find this path
easily, since these algorithms explore with a breadth-first search. If the path is long, then
every predicate along the way needs to be present in our domain, which means that many
refinements needs to have happened, which means that our algorithm has no chance to
finish faster than Uppaal. This means that our algorithms are more adapted to safety
problems, problems where we want to be sure than an error or unsafe state is not reachable.
In this problem, we suppose that the state is not reachable in the model, and as such we
suppose that our algorithms might finish faster than Uppaal. Of course we can also design
other algorithms for problems where we want to prove that a some state is reachable and
use the paths to this state. This is explained in the following chapter.
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Name Reachable Uppaal Symbolic Ghig Gtop Gcut Lhigh Ltop Lcut
csma-perso_10 False 11.11 28.97 29.1 29.8 28.56 28.57 27.38
csma-perso_11 False 22.08 88.88 89.14 89.07 79.97 79.97 78.27
csma-perso_12 False 121.2 264.99 264.86 264.77 243.34 237.39 232.42
csma-perso_2 False 0.0 0.02 0.03 0.02 0.02 0.02 0.03
csma-perso_3 False 0.0 1.91 0.03 0.02 0.03 0.03 0.02 0.02
csma-perso_4 False 0.0 0.23 0.04 0.04 0.04 0.04 0.04 0.04
csma-perso_5 False 0.01 0.43 0.09 0.09 0.09 0.12 0.11 0.09
csma-perso_6 False 0.02 10.61 0.25 0.25 0.27 0.28 0.28 0.23
csma-perso_7 False 0.08 1149.09 0.81 0.89 0.82 0.87 0.87 0.76
csma-perso_8 False 2.24 2.76 2.76 2.75 2.76 2.76 2.51
csma-perso_9 False 3.77 8.79 8.81 8.81 8.48 8.49 7.99
csma-perso_13 False 472.2 666.27 665.27 660.16

Figure 4.5 – Experimental results for CSMA/CD. For each timed automata, we show
whether or not the target state was reachable, and how long it took for each algorithm to
compute this result. If a cell has no results it means that the algorithm did not finish due
to a lack of time or memory. PAT was not run on CSMA/CD due to its high dependencies
to the constants.

Name Reachable Uppaal PAT Symbolic Ghigh Gtop Gcut Lhigh Ltop Lcut
a0_f False 0.3 9.5 9.51 9.53 0.04 0.04 0.05
a1_f False 2.29 959.42 957.02 959.1 0.09 0.09 0.09
a2_f False 0.22 9.48 9.46 9.5 0.04 0.04 0.04
a7_f False 0.2 9.52 9.51 9.52 0.04 0.04 0.05
a8_f False 12.36 859.07 858.05 852.3 0.04 0.04 0.04
b0_150_t True 0.0 0.8 0.03 0.04 0.04 0.04 0.04 0.04 0.05
b0_50_f False 1.27 60.47 0.08 0.4 0.41 0.41 0.05 0.05 0.06
b1_150_f False 387.58 1.31 9.62 9.62 9.61 0.04 0.04 0.05
b1_400_f False 427.47 1646.9 9.6 9.6 9.59 0.04 0.04 0.05
b1_50_f False 387.62 0.46 9.56 9.55 9.59 0.04 0.04 0.04
a10_f False 473.12 0.94 0.93 0.95
a3_f False 455.07 0.94 0.93 0.95
a5_f False 11.73 29.71 29.63 29.79
a6_f False 0.46 42.4 42.31 42.53
a9_f False 4.81 61.18 28.22 21.19 21.16 21.4
b2_150_t False 0.95 0.94 0.95
b2_50_f False 499.48 0.94 0.94 0.97
b3_150_f False 12.88 22.1 22.2 22.37
b3_300_t False 4.44 63.92 30.96 22.12 22.22 22.38
b4_300_f False 29.85 29.86 30.06
b5_300_f False 29.71 29.7 29.94
a0 False 0.24
a4_f True 547.73

Figure 4.6 – Experimental results for the asynchronous waves. For each timed automata,
we show whether or not the target state was reachable, and how long it took for each
algorithm to compute this result. If a cell has no results it means that the algorithm did
not finish due to a lack of time or memory.
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Name Reachable Uppaal Symbolic PAT
amba3b5y.aag_4L_200 True 9.05 1.25 278.10
amba3b5y.aag_4L_290 True 9.03 1.64 304.64
amba3b5y.aag_5L_290 True 10.9 2.49 420.20
amba3b5y.aag_6L_290 True 12.71 3.18 653.10
amba3b5y.aag_7L_290 True 16.88 8.54
bs16y.aag_4L_100 True 0.01 0.12
bs16y.aag_4L_150 False 0.01 0.19
bs16y.aag_4L_200 False 0.01 0.2
cnt5y.aag_4L_200 True 0.0 0.53
cnt5y.aag_4L_300 False 0.0 0.54
factory_assembly_3x3_1_1errors.aag_4L_200 True 4.28 0.91
genbuf2b3unrealy.aag_4L_300 False 1.17 3.21
genbuf2b3unrealy.aag_5L_250 True 0.13 1.53
genbuf2b3unrealy.aag_5L_300 False 1.44 4.19
genbuf2b3unrealy.aag_7L_400 False 1.65 2.51
moving_obstacle_8x8_1glitches.aag_4L_150 True 4.31 0.33
moving_obstacle_8x8_1glitches.aag_5L_150 True 5.05 0.52
moving_obstacle_8x8_1glitches.aag_6L_150 True 5.87 1.43
moving_obstacle_8x8_1glitches.aag_7L_150 True 7.15 3.97
amba3b5y.aag_10L_300 False 956.55
amba3b5y.aag_4L_300 False 1.24 369.36
amba3b5y.aag_5L_300 False 4.46
amba3b5y.aag_6L_300 False 32.46
amba3b5y.aag_7L_300 False 56.26
amba3b5y.aag_8L_300 False 85.12
amba3b5y.aag_9L_300 False 207.34
amba4c7y.aag_10L_300 True 473.28
amba4c7y.aag_4L_200 True 83.53 1.35
amba4c7y.aag_4L_300 False 1.21
amba4c7y.aag_5L_200 True 99.92 2.19
amba4c7y.aag_5L_300 False 4.44 476.98
amba4c7y.aag_6L_300 True 17.25
amba4c7y.aag_6L_500 False 12.54
amba4c7y.aag_7L_300 True 32.52
amba4c7y.aag_7L_500 False 121.7
amba4c7y.aag_8L_300 True 53.48
amba4c7y.aag_8L_500 False 167.3
amba4c7y.aag_9L_300 True 136.51
amba4c7y.aag_9L_500 False 296.39
factory_assembly_3x3_1_1errors.aag_4L_300 False 0.81
factory_assembly_3x3_1_1errors.aag_5L_300 False 3.34
factory_assembly_3x3_1_1errors.aag_6L_300 True 101.12 5.67
factory_assembly_3x3_1_1errors.aag_6L_400 False 11.41
factory_assembly_3x3_1_1errors.aag_6L_500 False 9.72
factory_assembly_3x3_1_1errors.aag_7L_500 False 93.69
factory_assembly_3x3_1_1errors.aag_8L_500 False 126.42
factory_assembly_3x3_1_1errors.aag_9L_500 False 531.07
genbuf2b3unrealy.aag_10L_400 False 2.35 305.57
genbuf2b3unrealy.aag_6L_300 False 1.63 1.49
genbuf2b3unrealy.aag_7L_300 False 2.06 6.7
genbuf2b3unrealy.aag_8L_400 False 2.04 6.0
genbuf2b3unrealy.aag_9L_400 False 2.31 80.62
genbuf5f5n.aag_10L_300 False 854.02
genbuf5f5n.aag_5L_290 True 59.85 3.69
genbuf5f5n.aag_5L_300 False 3.13
genbuf5f5n.aag_6L_290 True 64.08 7.39
genbuf5f5n.aag_6L_300 False 10.42
genbuf5f5n.aag_7L_290 True 83.27 15.45
genbuf5f5n.aag_7L_300 False 20.65
genbuf5f5n.aag_8L_300 False 43.49
genbuf5f5n.aag_9L_300 False 154.79
moving_obstacle_8x8_1glitches.aag_10L_300 True 165.18 584.12
moving_obstacle_8x8_1glitches.aag_4L_300 False 0.85
moving_obstacle_8x8_1glitches.aag_5L_300 False 3.55
moving_obstacle_8x8_1glitches.aag_6L_300 True 99.24 5.96
moving_obstacle_8x8_1glitches.aag_6L_500 False 10.82
moving_obstacle_8x8_1glitches.aag_7L_300 True 110.12 27.23
moving_obstacle_8x8_1glitches.aag_7L_500 False 95.44
moving_obstacle_8x8_1glitches.aag_8L_300 True 117.22 44.67
moving_obstacle_8x8_1glitches.aag_8L_500 False 129.41
moving_obstacle_8x8_1glitches.aag_9L_300 True 129.17 120.82

Figure 4.7 – Experimental results for monoprocess schedulings for Uppaal, the symbolic
algorithm and PAT.
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Name Reachable Ghigh Gtop Gcut Lhigh Ltop Lcut
amba3b5y.aag_4L_200 True 103.89 103.33 104.07
amba3b5y.aag_4L_290 True 104.73 104.13 104.69
amba3b5y.aag_5L_290 True 131.25 131.58 131.86
amba3b5y.aag_6L_290 True 173.21 172.84 172.59
amba3b5y.aag_7L_290 True 241.9 256.5 239.88
bs16y.aag_4L_100 True 0.03 0.03 0.04 0.03 0.03 0.04
bs16y.aag_4L_150 False 0.04 0.04 0.03 0.44 0.42 0.23
bs16y.aag_4L_200 False 0.03 0.03 0.07 2.38 2.26 0.06
cnt5y.aag_4L_200 True 0.02 0.02 0.02 0.02 0.02 0.03
cnt5y.aag_4L_300 False 0.03 0.03 0.03 0.03 0.03 0.03
factory_assembly_3x3_1_1errors.aag_4L_200 True 54.91 55.02 55.09 234.52 236.14
genbuf2b3unrealy.aag_4L_300 False 11.68 11.31 13.12 40.9
genbuf2b3unrealy.aag_5L_250 True 4.19 3.88 5.02 14.44 13.59 41.01
genbuf2b3unrealy.aag_5L_300 False 14.43 13.93 16.12 50.2
genbuf2b3unrealy.aag_7L_400 False 125.28 124.36 125.29 149.54
moving_obstacle_8x8_1glitches.aag_4L_150 True 56.19 54.84 55.25 182.29 171.74 244.06
moving_obstacle_8x8_1glitches.aag_5L_150 True 72.65 71.07 73.52 231.22 223.35 324.59
moving_obstacle_8x8_1glitches.aag_6L_150 True 96.97 94.16 97.52 320.14 305.09 448.63
moving_obstacle_8x8_1glitches.aag_7L_150 True 136.77 140.05 140.87

Figure 4.8 – Experimental results for monoprocess schedulings with the enumerative
algorithm.



Name Reachable Uppaal PAT Symbolic Ghigh Gtop Gcut Lhigh Ltop Lcut
1 True 0.01 0.43 0.03 0.03 0.07 0.03 0.03 0.03
10 True 0.0 77.53 0.04 0.02 0.02 0.04 0.02 0.02 0.03
15 True 0.0 55.2 0.04 0.02 0.02 0.02 0.03 0.02 0.03
17 False 28.0 81.34 12.89 248.82 248.69 262.08 291.81 290.14 293.45
18 True 0.0 52.55 0.05 0.02 0.02 0.02 0.02 0.02 0.02
19 False 21.26 8.89 191.98 192.14 196.54 225.12 231.28 231.98
20 True 0.01 0.43 0.03 0.03 0.06 0.04 0.04 0.03
22 True 0.01 0.42 0.03 0.03 0.11 0.02 0.02 0.02
25 True 0.0 100.5 0.06 0.03 0.02 0.04 0.03 0.02 0.02
27 False 28.12 158.35 1.31 278.53 307.21 324.33
28 True 0.0 116.07 0.09 0.03 0.02 0.05 0.02 0.02 0.03
29 False 4.06 3.2 875.98 915.99 989.61 1394.06 1427.22
30 False 6.29 179.1 0.95 66.45 73.42 79.16
31 True 0.0 128.78 0.12 0.02 0.02 0.03 0.02 0.02 0.02
32 False 0.96 2.46 133.71 143.84 147.98 246.68 346.84 252.22
34 True 0.0 409.25 0.07 0.03 0.03 0.03 0.03 0.03 0.04
11 False 218.7 46.62
12 False 293.95 91.28 93.45
14 False 121.35 87.28 32.84
16 False 100.75 20.34
24 False 117.79 135.26 3.42
26 False 17.33 8.61
33 False 439.3 129.72
35 False 96.58
36 False 631.87
37 False 79.65
38 False 281.21
39 False 448.91
3 False 56.35 72.08 20.1
40 False 952.91
41 False 337.0
4 True 0.0 43.8 0.04
5 False 45.08 11.08
6 False 123.85 80.71 40.8
7 True 0.0 52.55 0.04
8 False 97.5 21.99
9 False 249.93 100.36 63.08

Figure 4.9 – Experimental results for multiprocess schedulings.





Chapter 5

FUNNEL AUTOMATA: A HEURISTIC

APPROACH

In this chapter we present a planning problem that can be solved using timed automata,
as shown in [19]. This problem consists of building a controller for an automated system
by finding a path in a timed automaton. As said before, the CEGAR approach that we
used will not perform better than Uppaal in this example, since we know that our goal is
reachable and we just want a path to this goal. We will present an example of such a case,
and methods to speed up the process in that case.

5.1 Funnel automata

5.1.1 Control funnel

Let us consider a dynamical system, that is a system whose state is time dependent,
and defined by its state x ∈ R

d (with d the dimension of the system). For example x

can represent the position or the velocity of an object. We use the notation ẋ = dx
dt

with
t ∈ R≥0 representing time. We assume that this time is measured by a controller such that
it is continuous and never reset. Let us assume that this system is controlled by a law

ẋ = f(x, u(x, t)) (5.1)

In this equation we have a function u : Rd × R≥0 → R
k called the control input function

that represents control laws on the systems, and f : Rd × R
k → R

d that is a continuous
differentiable function that ensures the uniqueness of the solution for an initial state.

For a dynamical system such as this one, a control funnel is a function F : I → 2R
d .

where I is an interval of R≥0 such that

∀t ∈ I, x(t) ∈ F(t) ⇒ ∀t′ ∈ I s.t. t < t′, x(t′) ∈ F(t′) (5.2)
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This means that if at a time t ∈ I, a trajectory is in the area defined by the funnel F(t),
then it stays in that funnel in the future bounded by I. In other words, the control funnel
does not define a trajectory but a constraint in which the trajectory has to stay. These
funnels were introduced in [19] and are inspired from the notion of viability tubes that
can be found in [10].

Example: dampened pendulum. For example let us assume a simple model of a
pendulum as shown in Figure 5.1 and let us consider friction that creates dampening.
If we consider θ the angle of the pendulum, a model for such a pendulum is driven by
the differential equation θ̈ = −Aθ − B sin(Cθ) with A, B, C constants dependent of the
physical properties of our system. This corresponds to what we previously defined with
x = (θ, θ̇) our states constrained by this equation. In a perfect model with no dampening,
we have a pendulum oscillating between the angles θ0 and −θ0 with a maximum angular
speed of

√
Aθ0. This means that if we represent the trajectory of x it would be an ellipse

(or a circle if the scale is chosen appropriately). In the dampened case, our trajectory stays
inside this ellipse, since the amplitude and the maximum angular momentum decrease over
time. Since the pendulum is dampened, we can say that after some time t′, the pendulum
amplitude decreases and the trajectory x(t) for t > t′ will stay inside a smaller ellipse
defined by this new amplitude. This allows us to define a funnel for this movement, as
represented in Figure 5.2. Since we know that the amplitude is decreasing we know that
that the trajectory will be contained in smaller ellipses as time grows.

Example controlled system Another example of funnels would be a trajectory tracking
controller. Let us assume a reference trajectory xref that we want to follow. Of course we
cannot always ensure x(t) = xref (t) for every time step t, but we want to stay as close as
possible to this reference trajectory. We can design a control law u that ensures that we
do converge toward this reference trajectory. Then we would have a control funnel F that
ensures that as long as we stay close the trajectory xref at a time t′, meaning x(t′) ∈ F(t′),
then for all t > t′ by following the control law u, we ensure that we stay closer to xref by
x(t) ∈ F(t) (of course we have xref (t) ∈ F(t) for all t). Such an example can be seen in
Figure 5.3. On this figure you can see the funnel converging to the reference trajectory,
constraining the possible trajectories. Note that although the funnel tends to converge
and diminish in size over time, this is not necessarly the case
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x

y

θ

Figure 5.1 – A simple example of a
pendulum

F(t0)

F(t1)

F(t2) θ

θ̇

Figure 5.2 – An example of a funnel for the
dampened pendulum, here with t0 < t1 < t2

x(t0)

x(t1) x(t2)

x(t3)

x(t4)

x(t5)

Figure 5.3 – An example of a funnel for a trajectory tracking controller. The dotted line
represents the reference trajectory, and the red line represents a possible trajectory. We
represent the funnel at different times t0 < t1 < t2 < t3 < t4 < t5
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5.1.2 Motion planning with funnels

Let us assume a set of control laws u1(x, t), u2(x, t), ..., un(x, t). These can be seen as
different reference trajectories for different movements for example. In a state x̃ we can
switch to a control law ui if and only if there is a trajectory x(t) solution of ẋ = f(x, ui(x, t))
and a time t0 ∈ R≥0 such that x̃ = x(t0). In other words, if we are in a state such that we
can follow a trajectory that is a solution for ui at a time t0, then we can switch to the
control law ui. Note that here, we do not add a constraint of time in order to switch to the
control law ui. This means that before the switch occurred, we might be following another
control law with a trajectory x′ and x′(t1) = x̃ = x(t0) with t1 
= t0 meaning that when
we switch the control law, we switch our referenced time to the time of this new trajectory.
Let us define the motion planning problem

Definition 5.1.1. For an initial state xinit, a target Tf ⊆ R
d and an obstacle Ω ⊆ R

d, for
a set of control law u1, u2, ..., un, the motion planning problem is to answer whether or not
there are a sequence of indices k0, k1, ...., kN and two sequences of time tstart

0 , tstart
1 , ...tstart

N

and tend
0 , tend

1 , ...tend
N such that

— for 0 ≤ i ≤ N , tstart
i ≤ tend

i

— for 0 ≤ i ≤ N there is a unique solution to ẋ = f(x, uki
(x, t)) denoted xi with

xi(tstart
i ) = xi−1(tend

i−1) (except for i = 0 as x0(tstart
0 ) = xinit)

— for 0 ≤ i ≤ N and a time t such that tstart
i ≤ t ≤ tend

i ), xi(t) 
∈ Ω

— xN(tend
N ) ∈ Tf

In other words, this means that there is a sequence of control laws that we can follow
in succession, in order to reach Tf from xinit while avoiding the obstacle Ω. The previous
definition expresses that we can effectively switch from one control law to the next one.

This problem can be modeled with funnels. Indeed, let us assume that for each control
law ui we have a sequence of funnels F1

i , F2
i , ..., Fni

i . We denote by Ij
i the interval on which

the funnel F j
i is defined, and we do not consider funnels such that ∃t ∈ Ij

i , F j
i (t) ∩ Ω 
= ∅.

By the definition of a funnel, we know that if for some value t0 ∈ Ij
i , the current state

is in F j
i (t0), then as long as we follow the control law ui, for any t > t0 with t ∈ Ij

i , the
state of the system will remain F j

i (t). This means that if there is t1 ∈ Ij
i and t2 ∈ Iq

p ,
with t1 > t0 and F j

i (t1) ⊆ F q
p (t2) then we know that as long as we reach F j

i (t0), then by
following the control law ui we know that we will be able to switch to the control law
up in the future. So there is a way to switch from a funnel to another funnel and if this
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x(0)

x(h1,2)

x(h1,3)

Figure 5.4 – An example of absorbing funnels. The red line represents a possible trajectory.
We represent the funnels for the same control law F1, F2 and F3. Due to the absorbing
relation, the trajectory starts in F1 but is the successively confined to F2 and F3

switch is possible, so is the switch from the represented control laws. Note that this is
only an implication as a switch might be possible between two control laws, but not be
possible between two funnels. So the funnel can be seen as an abstraction of the system,
where the set of possible paths is under approximated.

In [19], it is also shown a different type of transition from a funnel to another called an
absorption. Indeed, for any law u the case we study here follows the dynamics of the form
ẋ = ˙xrefA(x − xref ) following a reference trajectory, where A is a matrix R

d × R
d whose

eigen values have a negative real part. From this it can be deduced that we can find a
sequence of funnels F1, ...Fk following the control law u such that for all i, j with i < j,
we have ∀t, Fj(t) ⊂ Fi(t) there is a constant hi,j such that for any trajectory x following u,
if x(t) ∈ Fi then x(t + hi,j) ∈ Fj. In other words, we have a sequence of funnels, such that
as we progress in this sequence, the funnels get tighter around the reference trajectory,
and after staying in a funnel for a certain time, we know that we are in fact in a tighter
funnel. Such funnels are represented in Figure 5.4

w
With this absorption, if we have a set of funnels F j

i , we can define transitions from
a funnel F j

i to F q
p by either switching, or by absorption if i = p and the absorption is

possible, with a constant hj,q
i . Now that we have a full abstraction of our model, the
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problem becomes easier to solve.
Let us define a set of clocks C = {ch, ct, cg} where cg is a global clock that will never

be reset, ch is a clock measuring how long we have spent in the current funnel, and ct is
a clock used to track where we are in the current funnel. If we consider the pairs (F j

i , v)
with v a clock valuation, we can go from (F j

i , v) to (F q
p , v′) in three different ways:

— With a delay transition if p = i, q = j and there is a value d ∈ R≥0 such that
v′ = v + d, with [v(ct), v′(ct)] ⊆ Ij

i .

— With a switching transition if v(cg) = v′(cg), v′(ch) = 0, v(ct) ∈ Ij
i , v′(ct) ∈ Iq

p and
F j

i (v(ct)) ⊆ F q
p (v′(ct)).

— With an absorption transition if p = i, with an absorption from F j
i to F q

i v(cg) =
v′(cg), v′(ch) = 0, v(ct) ∈ Ij

i , v′(ct) = v(ct) and v(ch) ≥ hj,q
i .

From this transition system, we can easily show that if we can take a sequence of transitions
from (F0, v0) to (Ff , vf ) with xinit ∈ F0(v0(ct)) and Ff (vf (ct)) ∩ Tf 
= ∅, then we can plan
a motion. Moreover, by looking at the control law associated to each funnel, and the time
at which the switch is done, we can deduce an effective planning for the motion. Note
that this is only an implication and not an equivalence, as going from motion to funnel
made us under approximate the possible paths. We remark that we can have switching
transitions between two funnels of the same reference trajectory xi

ref , from F j
i to F q

i , even
though there is an absorption transition from F q

i to F j
i . This is because while both funnels

describe the same trajectory, switching from one to the other allow to shift the value of ct

from t to t′, allowing us to follow a point of the trajectory xi
ref (t′) that is slightly behind

or slightly ahead of the point xi
ref (t) that we were following before, as shown in Figure 5.5.

5.1.3 Funnel automata

From there we can reduce this problem to an reachability problem in timed automata,
as shown in [19]. This requires to consider an extension of the previously defined timed
automata, where instead of resetting a clock to 0, we can set it to any value. This is not a
problem since the number of values that a clock can be set to is limited. Indeed we can
just see it as a clock reset where we remember the offset, since the number of offsets is
limited, and this can be encoded in the location. So we will note the reset R as a partial
function on the set of clocks that assigns clocks to their new value. We can build this
timed automaton (Σ, L, Inv, �0, C, E) where :

— Σ is empty, since we are not considering synchronization here.
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F j
i (t)

F q
i (t1) F q

i (t2)

Figure 5.5 – For the same reference trajectory, we have two funnels F j
i and F q

i , with an
absorption from j to q. But here we also represent a switch from F q

i to F j
i , allowing to

change the value of ct from any value between t1 and t2 to the value t.

— L = {F j
i | 1 ≤ i ≤ n and 1 ≥ j ≥ ni} ∪ {init}

— Inv(F j
i ) = ct ∈ Ij

i that can be expressed as a finite number of comparison, under
approximating Ij

i if necessary.

— C = {ch, ct, cg}

— E is defined as Einit ∪ Eswitch ∪ Eabsorb with

1. Einit = {(init, true, R, F j
i ) | ∃t ∈ Ij

i ; xinit ∈ F j
i (t)∧R(cg) = R(ch) = 0∧R(ct) =

t}

2. Eswitch = {(F j
i , α ≤ ct ≤ β, R, F q

p ) | [α, β] ⊆ Ij
i ∧ ∃t′ ∈ Iq

p , R(ch) = 0 ∧ R(ct) =
t′ ∧ ∀t ∈ [α, β], F j

i (t) ⊆ F q
p (t′)}

3. Eabsorb = {(F j
i , α ≤ ch, R, F q

i ) | F j
i is absorbed by F q

i with hj,q
i = α∧R(ch) = 0}

The main problem with this timed automaton is that it is not finite. Indeed, the number
of edges can be infinite, since there can be an infinity of values α, β, t′ for which ∀t ∈
[α, β]F j

i (t) ⊆ F q
p (t′). In order to restrict ourselves to a finite model, we will choose a finite

subset of E so that we only have a finite number of transitions. From this construction,
we can show that if we can reach a location F j

i at a valuation v such that F j
i (v(ct)) ∈ Tf ,

then there is a sequence of transition in the transition system defined in the previous
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section, from (F0, v0) to (Ff , vf) with xinit ∈ F0(v0(ct)) and Ff(vf(ct)) ∩ Tf 
= ∅. Note
that we have once again underestimated the number of possible paths, since we limited
ourselves to a finite number of edges, and that is why we only have an implication. But if
we find such a path in the timed automaton, we can deduce a planning for the motion.

5.1.4 Pick and place problem

We will consider a simple system, of a grabber that can move on a rail. Perpendicular
to this rail are 3 lanes that bring objects or packages to place in a goal. We number these
lanes from 1 to 3 and we consider a fourth lane called lane 0 where we want to drop the
objects. We consider that the lanes are equidistant and we will only monitor the position x

of the grabber along the rail and its speed ẋ. This two values are the state that we monitor
x. The goal here is to find a controller so that the grabber can pick up all the packages as
they arrive, and drop them on the lane 0. This problem, and its resolution using timed
automata was introduced in [19]. We denote the position of a lane i by xLi

. Due to the
limitations of the system, the speed and acceleration of the grabber are constrained. We
will consider a certain number of positive reference velocities, noted Nvel and a reference
trajectory for each of these velocities denoted by xi

ref with 0 < i ≤ Nvel, ordered from the
slowest to the fastest. Each trajectory represents a movement from xL0 to xL4 at a constant
speed. For each of these trajectory xi

ref we consider the trajectory x−i
ref the trajectory from

xL4 to xL0 with an opposite velocity. Moreover we define the static trajectories xLk
ref for

k ∈ {0, ..., 3} that represent a stationary position in xLk
.

We also associate each trajectory xi
ref to a controller that defines a control law ui

ref .
This control low ensures that we can define a sequence of funnels F0

i , ..., FNfun

i such that
for all j, j′ ∈ {0, ..., Nfun}, F j

i being a funnel of constant size, Ij
i = Ij′

i , F j
i is absorbed

in F j+1
i and if j ≤ j′, then ∀t ∈ Ij

i , F j′
i (t) ⊆ F j

i (t). Note that we then have a set of
funnels that depends on the number of reference velocities Nvel and the number of funnels
defined for each of these velocities Nfun. Moreover, the set of possible switches between two
control laws is dependent on the definition of these funnels. In order to allow the switch
between different trajectories, we ensure that for two neighboring trajectories xi

ref and
xk

ref , meaning that they either have a neighboring index or one of them is stationary while
the other is of the slowest velocity, then we have ∀t ∈ I0

i , ∃t′ ∈ I
Nfun

k , F0
i (t) ⊆ FNfun

k (t′).
In other words, this means that if we know that our current trajectory is close to the
reference trajectory we are following, so we know that our velocity is close to the reference
one, then we can switch to the closest trajectory but we are know farther away from our
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x

L0 L1 L2 L3

item item

item

Figure 5.6 – The pick and
place problem, with the 3
lanes, and 1 item in each
lane

x

ẋ

Figure 5.7 – A representation of the funnels for pick
and place, with 2 reference velocities and 2 funnels per
velocity. The green funnels represent the maximum
velocity and the red ones represent a lower velocity.
The blue funnels represent the stationary trajectories
for each of the 4 lanes.

new reference trajectory. We represent the problem and the funnel generated in Figure 5.7

We can build a timed automaton as we described before. We consider that, at each
time step t, the funnel is defined as an ellipse so intersections can be computed easily.
We compute an arbitrary amount of switching transition, by looking for a finite number
of these intersections. Moreover, we need to make a small timed automaton that models
the other constraints on the system, such that the timing at which the packages arrive,
modeled by a constraint on the global clock. Also the fact that only 2 packages can be held
at the same time, that we need to deposit all the packages (in this case 3, one for each
lane) in the lane 0, and that we need to be on the right position at a slow velocity to grab
a package. This is done with a small 2 state automaton, that we call the task automaton,
and by doing the product between these two timed automata, we can solve our problem.
Note that the funnel automata is an abstraction of our problem that underestimates the
number of paths. By increasing the number of velocities or funnels, we increase the number
of states, and by increasing the number of possible intersections, we increase the number
of switching transitions. If these numbers are not high enough, the target state might not
be reachable. If we find that the goal state is reachable, we then have a path giving us all
the control laws and the switch that we need to take to complete the task.
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5.2 Algorithm for a pick-and-place problems

As we have shown, we can build an automaton, and by applying a reachability algorithm
we can deduce a planning, so this problem could be solved using Uppaal on the resulting
timed automata, but we propose an improvement. The main problem here is that the
algorithms defined in the previous chapters are not adapted to this situation. Indeed, here
we want to prove that a “good” state is reachable instead of proving that we can never
reach a “bad” state. This means that algorithms that over-approximate the number of
paths will not help us, as we are only looking for real paths here. So we need algorithms
that under approximates the number of paths, since that is what is used to build the
timed automaton. We can notice that underestimating the number of paths, before, and
adding paths that we omitted if we cannot reach the goal, is the same as exploring our
automata in a certain order. So it is equivalent to a heuristic search.

5.2.1 A heuristic approach

So we chose a heuristic approach to solve this problem, and that is to prioritize the
search in the zone graph. Indeed, since we are only interested in finding a single path,
exploring the entirety of the graph is unnecessary work. So we define a function h that
associates each node n to a priority, that is a positive integer. Then when we pick an
element n from wait we pick the one with the lowest priority h(n) first. We consider the
same algorithm as the one regularly used to solve reachability, the only difference being
the implementation of wait, that is now a priority queue parametrized by a function h.

Naive notion of predictive distance. A first idea is to associate to each location a
distance to the target location. It means that h(n) is the minimal number of transitions
between n.� and the goal, without taking the clocks into account. So that way we ignore
the locations that cannot reach the goal, and we try to find a path that switches between
funnels the least amount of times. While this approach might be good, probably for simpler
funnel examples, it is not efficient in this case since the task is very timing dependent.
Indeed our packages arrive at very precise timings, and the paths with the least amount of
switches or absorptions are paths that stay at the lowest possible velocity and often arrive
too late. Moreover, computing this notion of distance requires some preprocessing. We can
still say that if the traditional algorithms that use depth-first search find a target location
at a depth k, then this means that the target can be reached by taking k − 1 transitions.
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So in theory, with this heuristic, we should only compute paths of length less than k before
finding that the target is reachable, and we can hope that we will explore less than the
depth-first search algorithm. Unfortunately, our tests have proven that this is not the case
and that this heuristic is slightly slower if the goal is reachable, and noticeably slower
when it is not reachable. We assume that this due to the preprocessing, but also that this
algorithm starts with deep explorations of paths that have no chance to reach the goal
location, because the movement is too slow, leading up to high values for the clocks cg

being explored first, while they would have been covered by the relation of subsumption
by using depth-first search.

Measuring the elapsed time. The second idea is to measure the elapsed time, and
prioritize the paths that reach our goals quickly. This can be done easily by defining
h(n) = helapsed(n.Z) where helapsed(Z) is the lower bound on cg in Z. The intuition is that
this will help us find the paths that stop in a lane as soon as possible, even if we have
to wait in this lane. This will also solve the covering problems, since we will explore the
lowest values of cg first. Also, this does not require any preprocessing. Finding the path
that reach the goal in a minimal time is not a new problem and can be found for example
in [9] referred as minimal-time reachability. The problem with this method is that there
are a lot of switching and absorption possible before picking up the first package, and
some of them are of no use for us, e.g. slowing down and accelerating in succession tends
to create a long path that we do not necessary want to explore.

Measuring the past while estimating the future: the A* algorithm. Our solution
is to combine both methods cited previously into something that is inspired by the A*
algorithm. Indeed the A* algorithm tries to find the shortest path by measuring the
distance up to the location, and estimating a distance to the goal. First we define an
estimate function hest that associates to each edge an estimated time to reach the goal.
We first define a function fest that associates to a pair (e, �) ∈ E × L the underestimated
time to reach � by taking e. For a location �, let us denote by absorb(�) the set of locations
reachable from � by taking only absorption transitions, � included. Let us denote switch(�)
the set of switch transitions starting in � and switch∗(�) = ⋃

�′∈absorb(�)
switch(�). This means

that from �, the next reset that can occur on ct is from a transition of switch∗(�). For
a switch transition e, we denote αe

t , βe
t and re

t the lower bound on ct, the upper bound
on ct and the value to which ct is set respectively. We note delay(k, α, β) the function

97



Chapter 5 – Funnel automata: a heuristic approach

that returns 0 if k ∈ [α, β], α − k if k ≤ α and +∞ otherwise. We ensure that for every
location � and for every transition e = (�1, g, a, R, �2) :

— if �2 = � then fest(e, �) = 0

— if e is a switch transition, then fest(e, �) = mine′∈switch∗(�2)(delay(re
t , αe′

t , βe′
t ) +

fest(e′, �))

— if e is an absorption transition then fest(e, �) = mine′∈switch∗(�) fest(e′, �))

This means that for a switching transition e, we estimate the minimum time that can be
spent before taking another switching transition e′ by comparing the value of ct set by e,
and the constraint on ct in e′. If e is an absorption transition, then we just consider the
next reachable switching transitions. Of course this is a big under approximation since
we cannot know the value of ct simply by taking the transition e, and thus we consider
that we can take every transition from there. From this, for a target location �f , we can
set hest(e) = fest(e, �f ). This function can be computed recursively by first computing the
value for every edge going to �f , using Section 5.2.1 and setting the value to +∞ for every
other edge. Then we can iterate Section 5.2.1 on every edge e pointing to a location �

such that an edge of switch∗(�) had its value modified during previous iteration, since the
second property only takes switching transitions into account. Finally, once the values
have been computed for switching transition we can also compute them for the absorption
transitions.

Now we can define h(n) = helapsed(n.Z) + hest(n.parent). where n.parent is the edge
used to create the node n. We have a function helapsed measuring the effective time needed
to reach the node n and a function hest that estimates what time is needed to reach the
target �f .

5.2.2 Results

We implemented this heuristic in TChecker and tested it on several examples of
funnel automata for the pick and place problem. We generated these automata using a
python script, the difference between these timed automata being the number of reference
velocities, the number of funnels for a velocity, and the number of intersections looked at
for defining the switch constraints. We also noted the time for the preprocessing, that is
the computation of hest. We run those tests on the same machine as the one used in the
previous chapter, with a timeout of 1 hour, and present the results in Table 5.1

98



5.2. Algorithm for a pick-and-place problems

Model Reachable Uppal time(sec) Heuristic time(sec) preprocess (sec)
funnel_2_3_2 true 847 851 234
funnel_4_5_2 true 1341 1283 394
funnel_5_6_2 true 2896 2545 521
funnel_3_4_4 true 3051 timeout 987
funnel_4_5_1 false 1292 1682 171
funnel_2_3_1 false 645 1088 87

Table 5.1 – Comparative results between Uppaal and our heuristic approach. The name
of a file indicates the number of reference velocities, the number of subfunnels, and a
factor indicating the number of switches created. For each model, we say whether or
not the timed automaton has indeed a path that delivers all 3 packages, as well as the
preprocessing time necessary for the heuristic.

The first thing that can be noted here is that this heuristic is not working well if the
goal is not reachable, that is if we have a small number of funnels and switches between
them. This is expected since we need to explore the entirety of the zone graph in that
case, and we are losing time in preprocessing. Note that in that case, the time lost in
preprocessing is not the only factor. We suppose that the other problem is that the covering
relation generated by this order of exploration is less optimal than the one generated
by a depth-first search. That being said, this is not the case that interests us, since this
heuristic was not designed to be efficient in the non reachable case. On the reachable
case, the results are a bit better, although the preprocessing seems to be growing with the
number of switches generated, which is to be expected. Interestingly, cases with a high
number of switches seem also to be the ones where the gain is high, especially discounting
the preprocessing. We also recognize that the implementation for the computation of
hest is not optimal, and that optimizations can certainly be made. Moreover, the value
computed by hest can be discussed, especially for an absorption transition. Indeed while a
switching transition is given a decent estimation, this is not the case for an absorption
transition. Indeed the value for an absorption transition might be lower than the value for
the switching transition that preceded it. This happens because we forget the value of ct

in the estimation hest for an absorption transition, resulting in us relying on the values
of switching transition that we might not be able to take. This could be improved by
computing the values of hest for absorption transitions during the exploration, by using
the true value of ct. This is not something we have done, especially since the impact of this
is limited due to the fact that we only consider a small number of funnels per reference
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trajectory, meaning that the number of consecutive absorptions is quite low.
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CONCLUSION

Here we summarize the results presented in this thesis, and we also discuss possible
improvements to our algorithms. We also discuss more general perspectives for this work.

Quantization abstraction

We have presented and defined the quantization abstraction for zones, and we have
presented its implementation in two algorithms. The results presented here show multiple
examples where this abstraction allows for faster verification of safety properties in timed
automata.

Algorithm choice. We have shown that these algorithms are more efficient than Uppaal
or PAT on some examples. We will note that these examples were proposed by us, and that
our algorithms are less efficient on the more traditional models. We think that one of the
reasons is that these algorithms are better suited to timed automata that are generated
automatically, with some redundancy or states and constraints that are not relevant to the
properties we are checking. On traditional models such as Fischer or CSMA/CD, we believe
that our algorithms are less efficient because those models are “well designed", meaning
that those models are designed in a way to minimize the state-space to explore, so that
Uppaal would be efficient on these examples. As such, we think that the choice between
our algorithms and the traditional non CEGAR algorithms can be decided by looking
at the timed automaton and how it was obtained. We believe that on models generated
automatically by other algorithms that may add superfluous states and constraints, the
choice of our algorithms can be justified.

Domain choice. We also notice that the biggest difference in the results was not between
the approach taken for the algorithms, but between the implementation of the abstract
domain for the quantization abstraction. Indeed, for a global domain, the enumerative
algorithm and the symbolic algorithm have comparable performances, and the noticeable
difference is between the use of global domain versus the use of a localized domain. The
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choice of the type of domain has to be motivated by the model on which the property is
checked. Here there is less intuition. Global domains work better on models where only
a few constraints are needed by the entirety of the model to prove that the goal is not
reachable, while local domains are a better choice when the model needs a lot of constraints
but the number of constraints needed per location is low. Of course this is something that
might be harder to determine by looking at the model before running the algorithms.

Interpolant choice. We provided and detailed an algorithm to find an interpolant
between two zones. This is a key part of our CEGAR loop, as this choice of interpolant is
the refinement part of our loop. Our algorithm is designed to find the interpolant that
involves the minimum number of constraints, in order to have the coarse abstraction
possible. But the coarser abstraction is not always the best choice. This is evident since the
global domain sometimes performs better than the localized domain despite the fact that
the localized domain provides a coarser abstraction. So choosing the interpolant with the
minimal number of constraints might not be the best option, and choosing an interpolant
based on other things, like the constraints on the outgoing transitions might be better and
worth implementing.

Predecessor computation. We also note that finding a refinement forces us to re-
compute some part of our exploration. Because of this, being able to detect a spurious
trace earlier can be useful, allowing us to explore less before refinement. This can be
achieved by using the predecessor computation that we do when we have a refinement.
Using the enumerative algorithm for example, once a predecessor is computed, we know
that if we reach the corresponding location, with an abstracted zone that intersects this
predecessor, then by definition of the predecessors we can also reach the target state from
this abstracted zone. It is the same as adding the pair location/predecessor to the set of
target states, and as such would allow us to detect the refinements earlier. This should
be more efficient, especially since our exploration is a breadth-first search. Of course this
would require to check many intersections every time a new node is computed which might
be too big of a cost, but we believe that this might be a worthwhile improvement.

Scalable symbolic algorithm. We will remark that while the symbolic algorithm is
still a BDD based algorithm that is not dependent of the maximum constant that appear
in the timed automaton. Unlike other BDD based algorithms, if all the constants of the
timed automaton are scaled, the execution time of our algorithm does not increase.
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Extensions. Finally we note that both approaches could be generalized to weighted
timed automata or other extension of timed automata. We believe that the enumerative
CEGAR algorithm could be adapted to weighted timed automata as algorithms on weighted
timed automata use priced zone, that is zones that are associated with an affine function
that determines the cost. If we only over approximates the zone in a direction that only
increases cost, we do not add a new minima to the cost function. That is why we believe
that be only considering over-approximations in directions that increase the cost, our
algorithms could be applied as such, and this change could be easily tried as soon as tools
for weighted timed automata are added to TChecker.

Heuristic approach

We have given an example of an heuristic approach on one case of funnel automata.
This approach could be adapted for other use of these automata. Moreover we also note
that while our experiments have shown that our implementation is barely faster than
Uppaal in some cases and considerably slower in others, we have also shown that a lot of
this lost time can be found in the computation of our heuristic, during the preprocessing.
We believe that this preprocessing could be implemented in a better way, or that a simpler
version of the heuristic could be used, allowing our heuristic approach to be applied more
efficiently.
Moreover we believe that this heuristic approach could be combined with our CEGAR
algorithms. Indeed a main problem of the CEGAR algorithms is the breadth-first search
approach. While a depth-first search is not advisable and produces poor results, a compro-
mise between the two approaches, based on an heuristic search could be an improvement
for the enumerative CEGAR algorithm. Indeed, after a refinement, the nodes that have
been refined, meaning the nodes from which we found a spurious trace, are more likely
to produce another spurious trace in the future. Prioritizing them in the exploration
might speed up the process. Moreover this could make the CEGAR approach more viable
whenever the target state is reachable.
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Titre : Vérification efficace de systèmes en temps réel
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ment d’abstraction

Résumé : Les automates temporisés sont
souvent utilisés pour modéliser des systèmes
en temps réel. Le problème d’accessibilité est
notamment étudié puisqu’il permet de vérifier
des propriétés de sureté mais aussi de gé-
nérer des contrôleurs pour réaliser une tâche.
Bien que ce problème soit déjà résolu depuis
plus de 25 ans et implémenté dans plusieurs
outils, nous proposons des algorithmes pour
accélérer ces méthodes dans des cas particu-
liers. Pour le problème de sureté nous propo-

sons des méthodes basées sur des abstrac-
tions de zones temporelles, surestimant les
parties accessibles. Ces abstractions sont en-
suite successivement raffinées grâce à une
boucle CEGAR. Pour le problème de géné-
ration de contrôleur, nous proposons des al-
gorithmes basées sur des exploration heuris-
tiques et A*. Nous présentons aussi des implé-
mentations de ces algorithmes, ainsi que des
résultats sur des différents exemples.

Title: Efficient verification of real-time systems
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Abstract: Timed automata are often used
to model real-time systems. The reachability
problem is of particular interest since it allows
us to check for safety properties, but also build
controllers for motion planning for example. Al-
though this problem has been solved for 25
years, and implementation of these algorithms
can be found in many tools, we propose some
algorithms to speed up this process in partic-
ular cases. For safety problems, we propose

and test abstraction based methods, that over-
estimate zones of a time space that could be
reachable. These abstractions are then refined
successively through a CEGAR loop. As for
the problem of controller generation for mo-
tion planning, we propose algorithms based
on heuristic search and A*. For all these algo-
rithms we then show experimental results that
we obtained with our implementation.


