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Introduction

Les algébroides de Lie ont été introduits par Pradines [56] comme les objets infinitési-
maux associés aux groupoides de Lie, qui permettent de réunir dans un méme formalisme
les symétries internes et externes. En particulier, ils revétent une importance particuliére
dans ’étude des feuilletages [8, 10, 68], des orbifolds [49] et des quotients singuliers [8, 10].
Remarquons que la structure algébrique sous-jacente & la notion d’algébroide de Lie était
déja présente dans un travail de Rinehart [57]. Un telle structure est aujourd’hui appelée
une algébre de Lie-Rinehart.

Les algébroides de Lie constituent le principal objet d’étude de cette thése, dans laquelle nous
nous intéressons & leurs déformations dans la direction d’une structure de Poisson donnée.

La quantification d’un systéme physique classique donné consiste en la donnée d’un sys-
téme physique quantique tel que si 'on néglige la constante de Planck A (mathématiquemet
parlant, on considére la limite & — 0) alors on retrouve le systéme classique de départ. Dans
[3], F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowics et D. Sternheimer ont découvert une
formulation extrémement élégante de cette situation en termes purement algébriques. C’est
ce qu’on appelle habituellement la gquantification par deformation.

D’une part, en mécanique classique les états sont les points d’une variété de Poisson et
les observables sont les fonctions sur cette variété. Ces fonctions forment une algébre com-
mutative munie d’un crochet de Poisson {, }. D’autre part, en mécanique quantique les états
sont des éléments d’un espace de Hilbert (en général un espace de fonctions) et les obser-
vables sont les opérateurs auto-adjoints sur cet espace de Hilbert. Ces opérateurs forment
une algebre associative (non commutative). L’idée principale de la quantification par défor-
mation est d’oublier les espaces de Hilbert (les états) et de ne s’occuper que des algébres (les
observables) : partant d’une algébre commutative A munie d’un crochet de Poisson {,}, on
se demande s'il existe un produit associatif A-linéaire * sur A[[A]] (les séries formelles en 7 &
coefficients dans A) tel que axb = ab+h{a, b} +0(h). Dans le cas ot A = C*(M) est algébre
des fonctions sur une variétés de Poisson, une réponse positive a été donnée & ce probléme
par M. Kontsevich [39]. En réalité, le résultat démontré par M. Kontsevich dans [39] est
beaucoup plus fort : il s’agit de la formalité de ’algébre de Lie différentielle graduée des opé-
rateurs polydifférentiels (ou cochaines de Hochschild locales) sur une variété donnée M (ce
qui signifie que cette algeébre de Lie différentielle graduée est Lo,-quasi-isomorphe & sa coho-
mologie), qui implique non seulement 1’existence d’une quantification pour n’importe quelle
structure de Poisson sur M, mais permet également de classifier ces quantifications. Une ver-
sion pour les chaines de Hochschild (qui forment un module différentiel gradué sur ’algébre
de Lie différentielle graduée des cochaines) de la conjecture de formalité a été formulée par
B. Tsygan [66] et démontrée par B. Shoikhet [58] puis V. Dolgushev [17] respectivement
pour M = R? et dans le cas général ; qui permet de calculer ’homologie de Hochschild des
algeébres déformées obtenues (et notament d’obtenir des traces quantiques).

Formuler puis démontrer de telles conjectures de formalité (pour les cochaines et pour
les chaines de Hochschild) dans le cas des algebroides de Lie permettrait ainsi d’obtenir des
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quantifications préservant les symétries. Cela constitue le premier axe du travail présenté ici.

La quantification des variétés de Poisson holomorphes pose plus de problémes, du fait du
trés petit nombre de fonctions holomorphes globales (dans la plupart des cas, il ne reste que
les fonctions constantes). Le bon probléme dans cette situation est la déformation du fais-
ceau des fonctions holomorphes sur la variété. Un résultat dans cette direction a été annoncé
par M. Kontsevich [40] et démontré dans le cas symplectique par P. Polesello et P. Schapira
[65]. Un théoréme de classification a également été démontré dans le cas symplectique par
P. Polesello [54].

La généralisation de ces résultats aux variétés de Poisson holomorphes (et méme aux
algébroides de Lie poissoniens holomorphes) constitue le deuxiéme axe de notre travail.

Enfin, il a été démontré par P. Etingof et A. Varchenko qu’a toute r-matrice dyna-
mique classique peut étre associé un groupoide de Lie-Poisson. Par ailleurs, les r-matrices
dynamiques apparaissent comme des cas particuliers de la procédure de réduction. Aussi
bien les r-matrices dynamiques que la procédure de réduction admettent des contreparties
quantiques, accompagnées des problémes de quantification associés (voir [70, 72] pour les
r-matrices dynamiques et [69, 53] pour la réduction). C’est trés naturellement que nous
nous penchons sur ces questions dans le troisiéme axe de notre travail.

Dans ce contexte, 'objectif de cette thése est triple:

— dans un premier temps (chapitres 1 et 2) on formule puis on démontre la formalité
pour les cochaines et pour les chaines de Hochschild associées & un algébroide de
Lie;

— on discute dans un deuxiéme temps (chapitre 3) la généralisation des précédents
résultats au cadre holomorphe;

— on applique enfin (chapitre 4) ces résultats au probléme de la quantification des
r-matrices dynamiques.

Le chapitre 1 est logiquement consacré & la construction des éléments principaux qui
permettent de formuler les théorémes de formalité du chapitre suivant. Il contient essen-
tiellement des rappels de constructions déja connues, ainsi que quelques nouveaux objets
(comme les cochaines et les chaines de Hochschild associées & un algébroide de Lie, respec-
tivement introduites dans [5] et [7]).

Le chapitre 2 est consacré a la démonstration du(des) théoréme(s) de formalité pour les
cochaines et les chaines de Hochschild associées & un algébroide de Lie. Ce chapitre est une
compilation des articles [5] et [7]. On utilise les techniques introduites par B. Fedosov [26]
dans le cas symplectique, et généralisées par A. Cattaneo, G. Felder et L. Tomassini [9], puis
par V. Dolgushev [16, 17]. La possibilité d’utiliser ces techniques repose essentiellement sur
Pexistence d’une connexion (au sens des algébroides) sans torsion. On s’attarde également
sur les applications de ces résultats pour la quantifications par déformation.

Dans le chapitre 3 on s’attache & démontrer une version des résultats précédents dans le
cadre holomorphe. Les principales difficultés proviennent du fait qu’il n’existe pas nécessai-
rement de connexion holomorphe (ce probléme est équivalent & celui, évoqué plus haut, du
trop petit nombre de sections globales). Dans cette situation, on verra que des applications a
la quantification par déformation sont toujours possibles, mais dans un sens plus faible que
précédemment.
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On démontre dans le chapitre 4 un théoréme d’existence et de classification pour la quan-
tification des r-matrices dynamiques, sous une hypothése de réductivité. Nous utilisons pour
cela le résultat principal du chapitre 2, qui nous permet de construire un quasi-isomorphisme
L entre deux algébres de Lie différentielles graduées appropriées.

Un annexe est consacré a quelques rappels utiles concernant les algébere de Lie-Rinehart
et les bialgébroides d’une part, et les algébres de Lie & homotopie prés (ou algébres L)
d’autre part.

Les définitions et résultats relatifs aux cochaines dans les chapitres 1 et 2 sont tirés de
Varticle [5] écrit seul et paru dans Communications in Mathematical Physics.

Dans ces mémes chapitres, les définitions et résultats relatifs aux chaines sont tirées de
Varticle [7] écrit en collaboration avec Vasiliy Dolgushev et Gilles Halbout et soumis aux
Annales de UInstitut Fourier.

La sections 1, 2 et 3 du chapitre 3 sont également tirées de ’article [7] en collaboration
avec Vasiliy Dolgushev et Gilles Halbout. La quatriéme et derniére section de ce chapitre, &

la quantification des variétés de Poisson holomorphes a fait I’objet d’un travail personnel.

Enfin, le chapitre 4 est tiré de I’article [6] écrit seul et & paraitre dans Advances in Ma-
thematics.

La suite du présent texte est rédigée en anglais.






Notations

We summarize here the conventions we adopt in the text.

e We assume Einstein’s convention for the summation over repeated indices. For

example,
1 ik
ajjpe'e” fi
means
I ik
zaijkeze fi
ik,

e We sometimes omit the symbol A referring to a local basis of exterior forms.

e For any graded vector space V', V[k] (k € Z) denote the graded vector space defined
by
VIk]® = VFt"

e The arrow =— denotes a Ly,-morphism of L -algebras, the arrow >>— denotes
a Loo-morphism of L..,-modules, and the notation

L

~L mod

M

means that M is a Ls,-module over the Ly,-algebra L.

e Throughout the dissertation (except Chapter 3) M denotes a smooth real manifold
and Oys denotes the structure sheaf of M .

e The abbreviation “DG” stands for “differential graded”. In particular, the abbre-
viation “DGLA” stands for “differential graded Lie algebra” and the abbreviation
“DGAA” stands for “differential graded associative algebra”.

e The words “deformation” and “quantization” are considered as synonym.

o We denote by the same symbol a vector bundle and its sheaf of sections.






CHAPITRE 1

Algebraic structures associated to Lie algebroids

REsuME. Ce premier chapitre est consacré au rappel des concepts et notions usuels re-
latifs aux algébroides de Lie, ainsi qu’a la construction des structures algébriques asso-
ciées & un algébroide de Lie donné. On y définit également le complexe des cochaines
(respectivement, des chaines) de Hochschild correspondant et on calcule sa cohomologie
(respectivement, son homologie).

Lie algebroids and Lie groupoids provide a natural framework for developing analysis on
differentiable foliations ([10, 51, 68]), orbifolds and singular quotients. This motivates our
interest to the natural analogues of Hochschild and cyclic (co)homological complexes in the
setting of Lie algebroids.

An appropriate analogue of the Hochschild cochain (respectively, chain) complex asso-
ciated with a Lie algebroid F is the complex of E-polydifferential operators (respectively,
Hochschild E-chains) (see definitions 1.11 and 1.18 in what follows). It turns out that the
complex of E-polydifferential operators is naturally a DGLA and the complex of E-chains
is naturally a DG module over this DGLA.

In this chapter we recall from [5, 7] and [8, 44| some basic facts about Lie algebroids,

associated sheaves and define algebraic structures on these sheaves. It is organized as fol-
lows.
Section 1 is devoted to the definition of the analogues of usual sheaves from differential
geometry in the Lie algebroid setting: polyvector fields, differential forms and differential
operators. In Section 2 we recall some basic facts about Lie algebroid connections [30]. Alge-
braic structures on Hochschild E-(co)chains are described in Section 3, and the corresponding
(co)homology is computed in Section 4.

1.1. Lie algebroids and associated sheaves
Let us recall the following

DEeFINITION 1.1. A Lie algebroid over a smooth manifold M is a smooth vector bundle
E of finite rank whose sheaf of sections is a sheaf of Lie algebras equipped with a Opr-linear
morphism of sheaves of Lie algebras

p:E—TM.

The Opr-module structure and the Lie algebra structure on the sheaf E are compatible in
the following sense: for any open subset U C M, any function f € Op(U) and any sections
u,v € D'(U, E)

(1.1) [u,fv] = flu,v] + p(u)(f)v-
The map p is called the anchor.

In other words, a Lie algebroid is a vector bundle E over a smooth manifold M whose
sheaf of sections is a sheaf of Lie-Rinehart algebras over Oyy.

EXAMPLES 1.2. (i) The tangent bundle TM on M is the simplest example of a Lie
algebroid. The bracket is the usual Lie bracket of vector fields and the anchor is the identity
map id:TM — TM.

11



12 1. ALGEBRAIC STRUCTURES ASSOCIATED TO LIE ALGEBROIDS

(ii) Suppose the anchor p is injective. It is equivalent to E ~ p(E) C TM being a
foliation, and the bracket on E is completey determined by that on T'M.
(iii) A Lie algebra is a Lie algebroid over a one-point manifold M = {pt}.

1.1.1. The sheaf of E-polyvector fields.

DEFINITION 1.3. The bundle ET;oly of E-polyvector fields is the exterior algebra of the
bundle E with the shifted grading

NHE >0

Ep E >

(1.2) Tpory = @ poly7 poly = o ’_ 1 ’
E>—1 M, *=—1

It turns out that the Lie bracket [,] on I(M, TS,

extended to a Lie bracket on the whole vector space T'(M,ZT>*

) = T'(M,E) can be naturally
) of E-polyvectors. Indeed,

poly

first, we define a Lie bracket [,] on I'(M, ETpoly Tl?oly) as follows

[f.9] =0, V f,g eD(M,FT, 1),
(1.3) [u.f] = p(w)f, YueT(MFTY,), feT(MPT,,),

[uw] = [uw], VYupel(M, ETgoly)
Next, we extend [,] to T'(M,F Tyo1,) by requiring the graded Leibniz rule with respect to the
A-product
(1.4) [u,0 Aw] = [up] Aw + (=1)* Dy A fuw],

Vuel(MFPT), ), vel(MPT,,), we T (MFTy, ).

In the simplest example E = T'M the Lie bracket [, ] coincides with the well known Schouten-
Nijenhuis bracket of ordinary polyvector fields.

1.1.2. The sheaf of E-differential forms. The exterior algebra A*EY of the dual
bundle EV to E is a natural candidate for the bundle £Q%, of E-differential forms or just
E-forms for short. The bundle £Q%, of E-forms is endowed with the following E-de Rham
differential

Edw(UO;"'aak) = Z(_l)ip(gi)w(o'();'"a&ia"'aak)
1.5
( ) +Z ’ﬂw [U,,UJ] ag, - - ,6i,...,&j,...,ak),
i<j
o; € D(M, E).
Let (e1,...,e:) and (£%,...,€") be dual local basis of E and EV respectively. Then the local
expression for ¥d is

= €p(er) — JEE o) o
where [e;, €;] = cf;(z)er, and the arrow over 9 denotes the left derivative with respect to the
anti-commuting variable £°.

Another operation defined on E-forms is a contraction with E-polyvector fields. For an
E-polyvector field u € T(M,”T}, ) we denote by i, the contraction with u. Using this
contraction, the E-de Rham differential (1.5), and the Cartan-Weil formula

(1.6) Ly ="Fdou, + (-1)*1, 0 %d

we define the E-Lie derivative of E-forms by the E-polyvector field u € T(M,PT}, ).
For our purposes it is more convenient to use the reversed grading in the bundle of
E-forms. Thus we denote by

(1.7) A, =E03;, Edo = On
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the corresponding bundle with reversed grading and observe that FA, is equipped with a
structure of a graded module over the sheaf of graded Lie algebras ET;oly via the E-Lie
derivative (1.6). Namely,

LEMMA 1.4. For any E-polyvector fields u € F(M,ETzfoly) and v € F(M,ETll)oly) one has
(1.8) FLyo "Ly — (—1)MPL, 0 PL,, = FLpy 4.

PRroOF. First, it is immediate from the definition (1.6) that for any u € F(M,ETIfoly)
(1.9) Edo L, = (~1)*EL, o ¥d.
Second, we claim that for any u € T(M,”TF, ) and v € T(M,”T} ) we have
(1.10) BLy oty — (1)K 0 BL, = (=1)kupy, 4.
Using (1.9) and (1.10) it is not hard to show that for any v € T(M,"T}, ) and v €
F(MJETéoly)

FLu(Pdey + (—1)'0,d) — (=1)¥ (Pduy + (=1)! 4, Pd)PLy = (Pdupy o) + (1)1 d).

Thus it suffices to prove that equation (1.10) holds.

The proof of (1.10) goes as follows. First, direct computations show that (1.10) holds for
any sections u and v of the subsheaf T @ PT0, . Second, using the Leibniz rule (1.4)
we prove the desired identity by induction on the degrees of E-polyvector fields u and v. In

doing this, we need another simple identity

PLusnus = PLuytu, = (=100, "Luy ;Y us € D(M,PT)
which follows easily from the fact that for any u € T'(M,”T}, ) and v € T(M,*T},;)

Lbuny = Ly O Ly

REMARK 1.5. One can also naturally consider E-tensors, that are just sections of the
bundle (*E) @ (*EVY).

1.1.3. The sheaf of E-differential operators. One can also define the Oy/-module
UE of E-differential operators to be the sheaf of algebras locally generated by functions and
E-vector fields. More precisely, U E is the sheaf associated with the following presheaf

T(OM@) & TWB)/ ( fog_ tg. fou-fu
u®f—f@u—pu)f,
UV —v®u— [u,],
fageoM(U)a U;UGF(UaE)'
As a sheaf of Op-modules, UFE is endowed with an increasing filtration
(1.12) Om =UE° CUE* CUE* C --- CUE,

which is defined by assigning the degree 1 to the E-vector fields.

In other words U E is the universal enveloping algebroid of the sheaf of Lie-Rinehart
algebras E. Thus, besides the fact that U/ F is a sheaf of algebras, U E is also equipped with
a coassociative Ops-linear coproduct A : UE — UE ®p,, UE which is defined as follows

Al)=1®1,

(1.11) U—s

(1.13) Aw)=u@l+lou, APQ)=AP)AQ),
Yuel(M,E), P,Q € T(M,UE).

Notice that, in the simplest example E = TM, UFE is the sheaf of usual differential
operators on M.
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1.2. Lie algebroids connections

By the word connection on a vector bundle B over M we always mean E-connection,
that is a linear operator

(1.14) V:T(M,B) - ZQY(M,B)
satisfying the following equation
(1.15) V(fu) = Fd(f)u+ fV(u)

for any f € Oy (M) and u € T'(M, B).

Locally, V is completely determined by its Christophel’s symbols Ffj. Namely, let (e1,...,e,)
and (£, ...,&") be dual local basis of E and EV respectively, and (by, ..., bs) be a local base
of B, then
(1.16) V(b;) = ETby

For any u € I'(M, E) we denote by V, the associated map I'(M, B) — I'(M, B).

REMARK 1.6. As with usual connections, one can extend this covariant derivative on
E-tensor in a unique way such that V, is a derivation with respect to the tensor product

of E-tensors, commutes with the contraction of E-tensors, acts as p(u) on functions, and is
R-linear.

DEFINITION 1.7. The curvature R of a connection V with value in B is the section R
of the bundle EY @ EY @ BY ® B defined by

(1.17) R(uw)w = (VuVU — VoV — V[u,v])w
for any u,w € T(M,E) and w € T'(M, B).
Locally, the curvature is given by
R(es,ej)br = (Rij)ipbi
with
(1.18) (Rij)i =T = F%Fgm + p(e;) -ng — plej) T — cz-";l“lmk
For a connection V on FE itself one has the following
DEFINITION 1.8. The torsion T of V is a E-tensor of type (1,2) défined by
(1.19) T(uw) = Vyv — Vyu — [u,0]
for any u,w € T(M, E).
One can write the local coefficients of this tensor very easily:
(1.20) Th =T —T% —cf;
PROPOSITION 1.9. A torsion free connection on E etzists.

ProoOF. Let (Uy)q be a cover of M by trivializing opens for E. On each a U, one has a

base (e;); of sections and then can define Vg?)ej = 1[ei,e;]. Let (fa)a be partition of unity

for (Uy)o and define V = f,V(®). V is a torsion free connection on E. O

ProposSITION 1.10 (Bianchi’s identities). Let V be connection on E. For any u,v,w €
T'(M, E) one has

(1.21) VuR(v,w) + R(T (u,v),w) + c.p-(u,p,w) =0
and
(1.22) R(u,w)w — T(T (u,w),w) — VT (v,w) + c.p.(u,v,w) =0

PROOF. See for example [30]. O
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1.3. Algebraic structures on E-polydifferential operators and E-polyjets
We start with the definition of E-polydifferential operators, which will play the role of
Hochschild E-cochains.

1.3.1. The DGLA of E-polydifferential operators.

DEFINITION 1.11. The bundle ED;OW

of the bundle UE with o shifted grading:

QHHUE, >0
ED D ED Om ) = Yy
poly — Ig?l poly » poly — {(9 ,x=—1.

of E-polydifferential operators is the tensor algebra

It is easy to see that in the case E = T M the sheaf “D*
operators on M.

Using the coproduct (A.4) in U E we endow the graded sheaf ED;oly of E-polydifferential
operators with a Lie bracket [,]g. To introduce this bracket we first define the following
bilinear product of degree 0

boly 18 the sheaf of polydifferential

o : "Dy, ® "Dy, = FD

poly poly
|P|

PeQ) = Z 1)iel (1% g AlRD g 1®\P|—i) (P)- (1% @ Q @ 1®IPI=%)

(1.23) Pl
Pef = Z (1% @pe 18P-)(P)(1% @ f © 1%1F177)

feg=0, feP=0,

for any P,Q € T(MD>% ) and f,g € T(MED.} ) = Opr. Here A = (A®1%" 1)o-- oA,
A is by convention the identity map, and p denotes the representation of UE on Oy
induced via the anchor map!

Although the bilinear product is not associative, the graded commutator

(124) [PaQ]GZP.Q_(_]-)lPHQ‘Q.P7 P7QEF( Dpoly)

defines a graded Lie bracket between the E-polydifferential operators.

It is not hard to see that in the case E = T'M the above bracket reduces to the well
known Gerstenhaber bracket [31] between polydifferential operators on M.
Notice that an element 1®1 € T'(M, ED;oly) is distinguished by the following remarkable
identity [1 ® 1,1 ® 1]g = 0. Using this observation we define the following differential

ED*+1

(1.25) 0=01®1]e : "Dpy, = "Dt

on the sheaf of E-polydifferential operators.
We see from its definition that O is compatible with the Lie bracket (1.24). Thus,
(ED;O,y,a [,]a) is a sheaf of differential graded Lie algebras (DGLA for short).
We would like to mention that the tensor product of sections (over Oys) turns the sheaf
ED poiy[—1]* with the shifted grading into a sheaf of graded associative algebras. Moreover, it
is not hard to see that the differential & (1.25) is compatible with this product. Thus £D*

poly
can be also viewed as a sheaf of DG associative algebras (DGAA).

1. These four equations reduce to a single-one if we assume the convention A1) = p. that is done in
the rest of the dissertation.
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1.3.2. The DG-module of E-polyjets and the Grothendieck connection. Let
us now define the vector bundle of E-polyjets.

DEFINITION 1.12. The bundle EJF°lY of E-polyjets is the following graded bundle placed
in nonnegative degrees
*41
Eyrely = B Fypty Eypely .= Homo,, (UE®m , Oy).
k>0
Since the sheaf ED;‘,oly of E-polydifferential operators is an ind-finite dimensional graded

vector bundle the sheaf Z77°%Y of E-polyjets is a profinite dimensional graded vector bundle.
Furthermore, the sheaf £77°" is endowed with a canonical flat connection V¢ which is called
the Grothendieck connection and defined by the formula

(1.26) Vi (5)(P) = p(u)(i(P)) — j(ueP),

where u € T'(M, E), j € T(M, %), P € T(M, EDE ), and the operation e is defined in
(1.23).
For this connection we have the following standard

PROPOSITION 1.13. Let x be a map of sheaves

defined by the formula

(1.27) x(a)(P)=a(1®P), PeDl(M,"D), a€T(M,5J0M).

The restriction of the map x to the VC-flat E-polyjets gives the isomorphism of sheaves
Bppely - if k>0,

1.28 s ker VO N Eppoly X
(1.28) X s er k Om, if k=0.

PRrOOF. To see that the map (1.28) is surjective one has to notice that for any E-polyjet
b of degree k — 1 (respectively, a function b € T'(M,0y)) the equations

a(l® P)=b(P), PeT(M,"D} )
and
(1.29) a(u-Q® P) = p(u)a(Q ® P) —a(Q ® (A¥ "V (u) - P)),
Q e T(M,UE), wueT(M,E)
define a V%-flat E-polyjet a of degree k (respectively, a V¢-flat E-jet a).

On the other hand, if a is a V¢-flat E-polyjet of degree k equation (1.29) is automatically
satisfied. Thus a is uniquely determined by its image x(a). O

Let ¢ be the cyclic permutation acting on the sheaf ZI7°Y of E-polyjets
(1.30) ta)(Ph® - ®P) =a(PA® - QP8 R),
a€D(M, 5Py, P, e T(M,UE).
Using this operation and the bilinear product (1.23) we define the map
Eg . Epk o Egpetv - Eypoly

poly
P ®a~ FSp(a) such that

k
(131)  "Sp(a)(Q) = a(Q e P) + Y (~1)91(a) (AW & 190-M)(Q) - (P 18¢))

j=1
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for P € T(M,"Dk,),  aeT(M7P™),  QeT(M,EDIE).
Due to the following proposition the map (1.31) defines an action of the sheaf of graded
Lie algebras ED;(ﬂy of E-polydifferential operators on the graded sheaf Z17°"Y of E-polyjets.
Namely,
PROPOSITION 1.14. For any pair P1,P» € T'(M,¥D?,, ) of E-polydifferential operators

and any E-polyjet a € T(M, EJP°) r

(1.32) ESp, BSp, (a) — (~1)!P1I122! Egp ESp (a) = ESip, py.(a)-
Moreover, the action (1.31) is compatible with the Grothendieck connection (1.26)
(1.33) V¢ (5Sp(a)) = ¥Sp(VE(a)), uweT(M,E), PeT(M,FD:,,).

poly
PROOF. It is not hard to show that for any a € T'(M, £JE°W)
(1.34) ESp, PSp, (a) = “Spiep, (a) + H(P1,Py)(a) + (1)1 H (P3P )(a),
where 2
H(Py, Py) : Fpeow — 5ppty,
is a graded Oy;-linear endomorphism of the sheaf ZJ7°"Y defined by the following formula

(H(Py, P2)(a)(Q) =
_1)ilP Pl [(19F @ AP g 196G =i=IPiI=1) ¢ AIP2| g 18(—i=IP2D) (O)).
> (1) 1% ® ® ® ® @)
i,J

1® e P o180 PVepe 1®("*j*|P2‘))] +

Z(_l)k\P2|+l(n—le\)tl(a) [(A\Pll ® 1kH=IP1=1 o A|P2| g 1@n—k—I=|Py| (Q))-
k.

P, @ 18+ =-IPI-1) ¢ p & 1®(n—k—l—|P2\)] :
the sums run over all i, j, k, [ satisfying the conditions
0<i<j—|A|-1, j<n—|P],
1<I< Py, |Pi|—=14+1<k<n-—|P|-I,

and
Q e T(M, Epp,, [P 172,
Equation (1.34) obviously implies identity (1.32).
Equation (1.33) follows immediately from the fact that the coproduct (A.4) is compatible
with the multiplication of the E-differential operators and the fact that the Grothendieck

connection (1.26) commutes with the cyclic permutation (1.30). O

As in the previsous subsection, we use the distinguished element 1 ® 1 € I'(M, ED}DOW)
to define a differential

(1.35) b := ESyg1 ¢ POV — EpPOly

on the sheaf of E-polyjets.
From the definition of the differential (1.35) and equation (1.32), we see that b is com-
patible with the action (1.31) in the sense of the following equation
b ("Sp(a)) = "Sor(a) + (-1)F1 PSp(b(a)).
VaeT(MEPW), PeT(M,PED;,,).
Thus, (E77°Y b, ES) is a sheaf of differential graded modules (DG modules for short) over
the sheaf of DGLA £D*

poly*

2. Formula (1.34) is essentially borrowed from paper [32] of E. Getzler.
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1.3.3. Hochschild E-chains. The complex of sheaves (I'(M, EJF°'Y) b) is not a good
candidate for the Hochschild chain complex in the Lie algebroid setting. Indeed, if our Lie
algebroid E is TM then the complex (I'(M, E77°!¥), b) boils down to the Hochschild chain
complex of C°° (M) without the zeroth term and the action (1.31) does not coincide with the
standard action of Hochschild cochains on Hochschild chains (see eq. (3.4) in [17]). To cure
these problems simultaneously we introduce a graded sheaf FC? °W of O p-modules placed in
non-positive degrees

OM * =0
E, ly __ ’ )
(136) Cfo V= {Ejfilgl % S 0.

and the following R-linear isomorphism of sheaves
(1.37) 0 : FCPW - ker VO N ByPoly

obtained by inverting the map (1.28).

Due to propositions 1.14 the action (1.31) and the differential b (1.40) commute with the
Grothendieck connection V. Thus, the V&-flat E-polyjets form a sheaf of DG submodule
of (E12° b, ES) over the sheaf of DGLA ("D} 41,9, [, ]c)- Combining this observation with
Proposition 1.13 we conclude that the isomorphism (1.37) allows us to endow the sheaf (1.36)

with a structure of a sheaf of DG modules over the sheaf of DGLA "D, . Namely,

PROPOSITION 1.15. The map

(1.38) PR : PD},, @ FCPY — FCPYY

gien by the formula

(1.39) PRp(a) = x"Sp(e(a)), P eT(M,”DE,), ae€T(M,"CPW)

and the differential

(1.40) b(a) = x"S1e1 () : T(M, "CEW) — T(M, "CESY)

turn ECT°% (1.86) into a sheaf of DG modules over the sheaf of DGLA ED* . O

poly*
REMARK 1.16. Since the map g is NOT Ojps-linear the DG module structure (1.39),

(1.40) on ZC?°" is only R-linear unlike the DG module structure (1.31) (1.40) on the sheaf
Bypoly,

REMARK 1.17. It is not hard to see that in the case E = T'M the global sections of the
sheaf FCP° give the jet version [66] of the homological Hochschild complex of the algebra
O of functions on M.

The second remark motivates the following definition:

DEFINITION 1.18. We refer to the sheaf Egpoly of DG modules over the sheaf of DGLA
ED;oly of E-polydifferential operators as the sheaf of the Hochschild E-chains or just E-
chains for short.

1.4. Computation of Hochschild (co)homology
The (co)homology of the complexes "D and FCY °l% are described by Hochschild-
Kostant-Rosenberg type theorems. The original version of this theorem [36] says that the
module of Hochschild homology of a smooth affine algebra is isomorphic to the module of
exterior forms of the corresponding affine variety. In [10] A. Connes proved an analogous
statement for the algebra of smooth functions on any compact real manifold, and in [65],
N. Teleman was able to get rid of the assumption of compactness. The similar question about
Hochschild cohomology turns out to be tractable if we replace the Hochschild cochains by
polydifferential operators. We believe that the cohomology of this complex of polydifferential
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operators was originally computed by J. Vey [67]. All these computations correspond to the
case when E = T M. In our general case we have the following proposition:

ProproSITION 1.19 ([5, 7]). The natural maps

V: (ET;olyJO) — (ED;oly7a)
1
(1.41) VoA Avp Gt D Z (0 Vgo ® -+ @ Vg,
0E€ESk 41

and
¢: (Fortv p) —  (PA,,0)
(1.42) a — (v o(a)(V(v)))

are quasi-isomorphisms of (sheaves of) complexes.

PRrOOF. We only need to prove that V is a quasi-isomorphism. The fact that € is also a
quasi-isomorphism follows immediatly.

First, one can immediately check that the image of V is annihilated by 0, i.e. that it is
a morphism of complexes.

Now remark that the complex “D* ;.
operators. ET;oly carries also a natural filtration (which is in fact a gradation), namely by
degree of polyvector fields. Then V is compatible with filtrations. Thus we have to prove
that Gr(V) : Gr(*Ty,,) = Gr("D},,,) is a quasi-isomorphism of complexes. In GT(ED;OW)
all components are sections of some vector bundle on M and 0 is Op-linear (the same is
obviously true for ET;‘Oly) therefore we have to show that Gr(V) is a quasi-isomorphism
fiberwise.

Fix x € M and consider the vector space V = E,. One has
Gr( EDpoly r @S

n>0

is filtered by the total degree of polydifferential

but it is better to indentify S(V) with the cofree cocommutative coalgebra with counit
C(V) @ (R1)*. As above the differential can be expressed in terms of the cocommutative
coproduct A; namely
n—1
(=) 1o =1"®id®" — Z(—l)iid ® - ®RA®---®@id + (=1)""Hd®" ® 1*
i=1
Now let us recall a standard result in homological algebra:

LEMMA 1.20. Let S(V') be the cofree cocommutative coalebra with counit cogenerated by
a vector space V. Then the natural homomorphism of complexes (A*V,0) — (&*S(V),0) is
a quasi-isomorphism. O

Apply this lemma in the case when V = E, and remark that Gr(® Ty, )e = (P Ty, )z =
A*V . Consequently V is a quasi-isomorphism of complexes.

REMARK 1.21. Since we work in the C'*° setting all sheaves considered here have par-
tition of unity. Consequently, for any two sheaves of complexes C; and Cz, C; and Cs are
quasi-isomorphic as sheaves of complexes if and only if I'(M,C;) and T'(M,Cs) are quasi-
isomorphic as complexes. For this reason, we will sometimes make no difference between
sheaves and there spaces of global sections.

This remark will be of a particular importance in Chapter 3, where we also deal with
holomorphic sheaves (that do not admit partition of unity).






CHAPITRE 2

Formality theorems for Lie algebroids and applications

REsuMmE. Dans ce chaptitre on démontre une version de la conjecture de formalité des
cochaines et des chaines pour les algébroides de Lie, en utilisant le quasi-isomorphisme de
Kontsevich pour les cochaines de Hochschild de R[[y!, ... y%]], le quasi-isomorphisme de
Shoikhet pour les chaines de Hochschild de R[[y%,...,y?]], et des résolutions & la Fedosov
des analogues naturels des complexes de (co)chaines de Hochschild associés définis au
chapitre précédent. On discute les applications de ce résultat a des problémes de quanti-
ficaton par déformation. Précisons que les résultats de ce chapitre font ’objet de [5] en
ce qui concerne la formalité pour les cochaines et de [7] en ce qui concerne la formalité
pour les chaines.

Unfortunately, the maps (1.41) and (1.42) respect neither the Lie brackets nor the ac-
tions. This defect can be cured using the notion of Lie algebras and their modules up to
homotopy (see [35] for a detailed discussion of the general theory and its applications, and
annexe A.2 for a quick review of the notions and results we need). In this chapter we prove
that EDZO,y (respectively, ECf"ly) is quasi-isomorphic as a L..-algebra (respectively, as a
L.-module) to its cohomology (respectively, its homology). For short, we say that “D

*
poly

and FCT°Y are formal.

The formality theorem for the differential graded Lie algebra (DGLA) of Hochschild
cochains in the Lie algebroid setting (first proved in [5]) allows us to quantize an arbitrary
Poisson Lie algebroid!. The formality of the DGLA module of Hochschild chains in the Lie
algebroid setting (first proved in [7]) allows us to give a description of the quantum traces
for Poisson Lie algebroids. Notice that the formality of the cyclic complex in the setting
of Lie algebroids would imply the algebraic index theorem [50], [62] for the deformations
associated with an arbitrary Poisson Lie algebroid.

This chapter is organized as follows. In Section 1 we state our formality theorem, gi-
ving an equivariant version of it, and recall Kontsevich’s [39] and Shoikhet’s [58] formality
theorems for R‘}Wmal. In sections 2 and 3 we use these theorems and ‘Fedosov-like’ [28]
globalization technique [9, 16, 17, 50] to prove our main result. Section 4 is devoted to the
application of the formality to deformation quantization theory: existence of a deformation
quantization for any Poisson Lie algebroid, classification of these quantizations, description
of quantum traces associated to such a quantization, Hochschild (co)homology of a deforma-
tion.

2.1. The formality of ED;Oly and FCroW

2.1.1. Statement of the main result. The main result of this chapter is the following
theorem:

1. According to the terminology of P. Xu [71] we have to call this object a triangular Lie bialgebroid.
However, since we do not mention the bialgebroid structure, we refer to this object as a Poisson Lie algebroid.

21
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THEOREM 2.1 ([5, 7]). For any C* Lie algebroid (E,[,], p) there exists a commutative
diagram of sheaves of DGLA and DGLA modules over M

(]
ET;oly - D ;oly
(2- 1) ~L mod ~L mod

A\
By, =< Eorow,

such that ®M =V is Vey’s quasi-isomorphism (1.41) and ¥l% = & is the quasi-isomorphism
of Connes (1.42).

The proof of this theorem occupies the next two sections. It is based on the construction
of a bigger commutative diagram of sheaves of DGLA and DGLA modules over M

Fre, = L1 == Ly =< FDr,.
(2-2) ~Lm0d ~Lmod meod ~Lm0d

B, »»— Mi; =< My =< Borv,

Moreover, it will appear clearly in the proof that the terms (L1, L2, M1, Ms) and
the quasi-isomorphisms of the diagram (2.2) are functorial for isomorphisms of pairs (E,V),
where E is a C'* Lie algebroid and V is a torsion free E-connection on E.

We would like to mention that this functoriality of the chain of quasi-isomorphisms (2.2)
between the pair of sheaves of DGLA modules implies the following interesting result

THEOREM 2.2. Let (E,[,],p) be a C* Lie algebroid equipped with a smooth action of a
group G. If one can construct a G-invariant connection V on E then there exists a chain of

G-equivariant quasi-isomorphisms between the sheaves of DGLA modules (ET;oly,EA*) and
(ED* . choly) O
poly” :

In particular,

COROLLARY 2.3. If (E,[,],p) is a C* Lie algebroid equipped with a smooth action of
a finite or compact group G then the DGLA modules (T(M,PT* ¢, T'(M,PA.)%) and

poly
(T(M,"D;,,)¢ T(M,PC?")) are quasi-isomorphic. O

ExamPLES 2.4. (i) Consider the case of a Lie algebra g (i.e., a Lie algebroid over a point)
with the adjoint action of its Lie group G (which is a good action). Then the Lie algebroid
connection given by half the Lie bracket on g is a torsion free G-invariant connection and we
obtain a G-equivariant Ly,-quasi-isomorphism of DGLA from A*g to ®*Ug. In particular for
any subgroup H C G one obtains a quasi-isomorphism of DGLA from (A*g)¥ to (*Ug)H.

(ii) If a group G acts smoothly on a manifold M, then it induces an action on the Lie
algebroid £ = T'X. In this particular case, and only considering cochains, we recover theorem
5 in [16]; taking chains into account we obtain an equivariant version of the main theorem
of [17].

(iii) Now if E — M is a Lie algebroid with injective anchor (i.e., E is the Lie algebroid
of a foliation), then any smooth action of a group G on M that respects the foliation (i.e.,
that sends a leaf to a leaf) gives rise to an action on E. In this context we obtain a leafwise
version of the previous example.

2.1.2. Formality theorems for the Hochschild complexes of R[[y!,...,y%]]. In
order to prove Theorem 2.1 we construct the Fedosov resolutions of the sheaves of DGLA

ETz;koly and ED;OW and of the sheaves of DG modules FA, and ECP°". These resolutions

allow us to reduce the problem to the case of the Lie algebroid TR? — R?. For the latter
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case the desired result follows from the combination of Kontsevich’s [39] and Shoikhet’s [58]
formality theorems.
First, we recall the required version of Kontsevich’s formality theorem. Let M = R%

formal
be the formal completion of R? at the origin. In other words we set Opr = R[[y!,...,y%]] and
E = Der(Op). Let us denote by Ty, (RS ,,nqr) and D3y (RY,,01) the DGLA of polyvector

ormal reSPeCtively, then

fields and polydifferential operators on IR?

THEOREM 2.5 (Kontsevich, [39]). There exists a Loo-quasi-isomorphism K from Ty, (R} ,n01)
to D*  (R% ) such that

poly\""formal
(1) The first structure map KX is Vey’s quasi-isomorphism (1.41) of complezes V.
(2) K is GL4(R)-equivariant.

(3) Ifn > 1 then for any vector fields vy,. .. v, € TO

d
poly(Rformal)

KMy, ... 00) =0
(4) If n > 1 then for any vector field v € TC, (R%

poly\"formal

and any polyvector fields x2,...,xn € Ty, (R?wmal)

’C[n] (Uax2a v aXn) =0.

) linear in the coordinates y'

We denote by
A (R ) = Rl @ \(RY)

the complex of exterior forms on R% ; with the vanishing differential and by

orma
Jf()ly (R?ormal) = R[[yl yeee ayd]]® (++1)

the complex of Hochschild chains of R[[y',...,y%]], where the notation ® stands for the
tensor product completed in the adic topology on R[[y',. .. y?]].

Using the Lie derivative (1.6) of exterior forms by a polyvector field, we can regard
A*(R%,,nqr) as a graded module over the graded Lie algebra T, (R, )- Furthermore,
the action of Hochschild cochains on Hochschild chains (see formula (3.4) in [17]) allows us

to regard JP'Y(R% ) as a DG modules over the DGLA D, (R¢ ). Finally, using

‘formal poly\“formal
Kontsevich’s Loo-quasi-isomorphism K we get a Loo-module structure on J¥ Oly(]R‘}wmal) over
T 1y (RS o mar)- For this Lo-module, we have the following theorem:

THEOREM 2.6 (Shoikhet, [58]). There ezists a quasi-isomorphism S of Lo,-modules over
(]Rc}ormal) from Jfozy (Rd ) to A* (R?ormal) such that

formal

T*

poly
(1) The 0-th structure map S\ is the quasi-isomorphism of Connes (1.42).
(2) The structure maps of S are GL4(R)-equivariant.

(3) If n > 1 then for any vector field v € T}?oly(]Rd

formal

) and any chain j € J¥ OZy(R?m«mal)

) linear in the coordinates, any
(R}

formal

polyvector fields X2, ...,Xn € Tpyy,

S[n] (UaX27 s aXan) =0
REMARK 2.7. The third assertion of the above theorem is proved in [17, Theorem 3].
REMARK 2.8. Hopefully, one can prove the assertions of Theorem 2.6 along the lines of
Tamarkin and Tsygan [61, 62, 63].
2.2. The Fedosov resolutions

Let, as above, E — M be a C* Lie algebroid with bracket [,] and anchor p.
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2.2.1. Weyl-like bundles. Following [26, 16, 17, 5, 7] we introduce the formally
completed symmetric algebra S(EV) of the dual bundle EV and bundles T, D, A, J naturally
associated to S(EV).

(2.3)

(2.4)

2.7)

3 (EV) is the formally completed symmetric algebra of the bundle EV. Local sections

are given by formal power series

> . .
D s @)y’ -y
=0

where yi are coordinates on the fibers of E and s;, .. ;, are components of a symmetric
covariant E-tensor.

T* := §(EY) ® A*TLE is the graded bundle of formal fiberwise polyvector fields on
E. Local homogeneous sections of degree k are of the form

ZUJO ]k ..yil 8 /\.../\ 8 R

Oydo Oylx
where vffflk are components of an E-tensor with symmetric covariant part (indices
i1,...,%) and antisymmetric contravariant part (indices jo, - .., Jjk)-

*:= S(BEY) @ T*t'(SE) is the graded bundle of formal fiberwise polydifferential
operators on E with the shifted grading. A local homogeneous section of degree k
looks as follow

; Hleol Hlol
a07 ) ak e
ZP yaao® ®3yak’
where a; are multl indices, P,O‘0 ¥ are components of an E-tensor with the obvious
symmetry of the corresponding 1nd1ces and
oles 0 0

6yas - 6y.71 T 6yj|as\
for as = (j1 .- Jla,|)-
A, == S(EV)® A=*(EV) is the graded bundle of formal fiberwise differential forms

on E with the reversed grading. Any local homogeneous section of degree —k can
be written as

o
Zwi1~~~il’j1~njk (m)yzl T yzl dy]1 ARERNA dy]ka

where wj, . 4, ,j:...;, are components of a covariant E-tensor symmetric in indices
i1,...,4; and antisymmetric in indices j1, ..., jk-
T, is the bundle of Hochschild chains of S(EY) over Oy;.
J = @Jk, Ti = (gEv)é’oM(kH) )
£>0

where & stands for the tensor product completed in the adic topology. Local sections
of homogeneous degree k are formal power series

Qayo, ..., ak( )yéxoyfl T y;:k
in k+1 copies yo, - - - , Y of coordinates on the fibers of E. Here o are multi-indices,

Qag,...,ar are components of a tensor with an obvious symmetry in the corresponding
indices, and

Jlam |

y%m — yjl Y
for Oy = (]1 - ..j|am|).



2.2. THE FEDOSOV RESOLUTIONS 25

For our purposes, we consider E-differential forms with values in the sheaves S(EY), T,

D, A, J. Below we list these sheaves of E-forms together with the algebraic structures they

carry.

e PQ(S(EY)) is a bundle of graded commutative algebras with grading given by the
exterior degree of E-forms. ZQ(S(EV)) is also filtered by the degree of monomials

in fiber coordinates y*.
o EQ(T) is a sheaf of graded Lie algebras and ¥Q(A) is a sheaf of graded modules over
EQ(T). These structures are induced by those of T, (R$,,,,.;) and A*(R,......),
respectively and the grading is given by the sum of the exterior degree and the
degree of an E-polyvector (respectively, an E-form). [,]sny will denote the Lie
bracket between sections of the sheaf "Q(7") and L, (the Lie derivative) will denote
the action of a fiberwise polyvector u € FQ(T) on the sections of ZQ(A). ZQ(T)
is also a sheaf of graded commutative algebras. The multiplication of sections in

EQ(T) is given by the exterior product in the space Tty (Rﬁormal) of E-polyvector

fields on R}, ;- The Lie bracket and the product in "Q(7) turn "Q(T) into a
sheaf of Gerstenhaber algebras 2.

e BQ(D) is a sheaf of DGLA and #Q(.7) is a sheaf of DG modules over #Q(D). These
structures are induced by those of D, (R},.,.q;) and J%, (R},....), respectively
and the grading is given by the sum of the exterior degree and the degree of a
(co)chain. We denote by @ and [, ] respectively the differential and the Lie bracket
on EQ (D), b will stand for the differential on #Q(7) and Rp will denote the action
of P € EQ(D) on the sections of ZQ(J). BQ(D) is also a sheaf of DGAA. The
multiplication of sections is induced by the cup product in the space Dy, (R?m,mal)

of E-polydifferential operators on R}

ormal *

REMARK 2.9. Notice that A is a sheaf of exterior forms with values in S(EY). However,
we would like to distinguish A from FQ(S(EV)). For this purpose we use two copies of a
local basis of exterior forms. Those are {dy’} and {¢} for A and PQ(S(EV)), respectively.

The following proposition shows that we have a distinguished sheaf of graded Lie algebras
which acts on the sheaves Q(S(EV)), ¥Q(A), PQ(T), BQ(D), and #Q(7).

PROPOSITION 2.10. The sheaf PQ(T°) of E-forms with values in fiberwise vector fields
is a sheaf of graded Lie algebras. The sheaves "Q(S(EV)), ZQ(A), EQ(T), BUD), and Q(T)

are sheaves of modules over EQ(TO)Aand the action of sections in PQ(T°) is compatible with
the DG algebraic structures on FQ(S(EY)), EQ(A), ZQ(T), £Q(D), and £Q(T).

PROOF. Since the Schouten-Nijenhuis bracket (1.3), (1.4) has degree zero ZQ(7°) C
EQ(T) C ¥Q(D) is a subsheaf of graded Lie algebras. While the action of #Q(7°) on the
sections of EQ(S(EV)) is obvious, the action on FQ(A) is given by the Lie derivative, the
action on Q(T) is the adjoint action corresponding to the Schouten-Nijenhuis bracket, the
action on FQ(D) is given by the Gerstenhaber bracket and the action on Q(7) is induced
by the action of Hochschild cochains on Hochschild chains (see formula 3.4 in paper [17]).
The compatibility of the action with the corresponding DGLA and DGLA-module structures
follows from the construction. The compatibility of the action with the product in £Q(T)
follows from the axioms of the Gerstenhaber algebra [31] and the compatibility with the
product in (D) can be verified by a straightforward computation. O

Due to the above proposition the following 2-nilpotent derivation

(2.8) 8= 51'6%. - BQ*(S(EY)) — B+t (S(EY))

2. The definition of the Gerstenhaber algebra can be found in section 4.1 of the second part of [13] or
in the original paper [31].
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of the sheaf of algebras ZQ(S(EY)) obviously extends to 2-nilpotent differentials on (7)),
EQ(D), BQ(A) and BQ (7). Furthermore, it follows from Proposition 2.10 that d is compatible
with the DG algebraic structures on Q(T), ZQ(A), BQ(D), and ZQ(J).

Note that

(2.9) kerd N S(EY) = Oy,  kerdn A* = P4,

as sheaves of (graded) commutative algebras over Oy,. Similarly, kerd N T, (respectively,
ker ND) is a sheaf of fiberwise polyvector fields (2.3) (respectively, fiberwise polydifferential
operators (2.4)) whose components do not depend on the fiber coordinates y*. In other words,

(2.10) kerd N T* = A*T(E)
as sheaves of graded commutative algebras and
(2.11) kerd N D* = @* T (S(E)),

as sheaves of DGAA over Oyy.
In fact, one can prove a more stronger statement:

PROPOSITION 2.11. For B being either of the sheaves S(EV), A, T or D
H2'(FQ(B),8) = 0.
Furthermore,
H°(PQ(S(EY)),0) = Om,
(2.12) HO(BQ(A"),6) = PA, |
HO(BQ(T™),0) = A*HH(E)
as sheaves of (graded) commutative algebras and
(2.13) H(Q(D*),0) = @ (S(E))
as sheaves of DGAA over Oy.

PRrROOF. Due to equations (2.9), (2.10), and (2.11) the proposition will follow immedia-
tely if we construct an operator

(2.14) k: FQ*(B) = PQ*~1(B)
such that for any section u of £Q(B)

(2.15) u = 0k(u) + kKo(u) + H(u),
where

2.16 H(u) =u .

(216) W=u .,
First, we define this operator on the sheaf ZQ(S(EV))

L1
(2.17) k(a) = yki /a(m ty tg)ﬂ a € B>°(S(EY)) K =0
- aé-k 7 ) t 7 ) S(EV) ?

0
where the arrow over 0 denotes the left derivative with respect to the anti-commuting variable
¢'. Remark that one can also define k on a homogeneous element a € ZQ*(S!(EY)) by

kLHLgE(a) ifk+1#0
k(a) =
0ifk+1=0

where 0 = y’e; is the so called Euler vector field of E. Next, we extend & to sections of the
sheaves ZQ(A), BQ(T), Q(D) in the componentwise manner. A direct (and very standard)
computation shows that equation (2.15) holds and the proposition follows. O
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2.2.2. The Fedosov differential. Since we work in the C*° setting, we know from
Proposition 1.9 that our Lie algebroid E admits a torsion free connection V. Using this
connection we define the following derivation (which we denote be the same symbol) of the

DG sheaves ZQ(S(EY)), EQ(A), 2Q(T), Q(D), and £Q(7):

(2.18) V=%+T-:50*(B) - PFQ**'(B), T = —girg.@jyia%g ,

where B is either of the sheaves S(EY), A, T, D, or J, I‘fj (z) are Christoffel’s symbols of
the connection and I'- denotes the action of T on the sections of the sheaves PQ(B) (see
Proposition 2.10). It is not hard to see that V (2.18) is compatible with the DG algebraic
structures on PQ(S(EY)), PA(T), PQ(A), PQ(D), and PQ(7). Furthermore, the torsion
freeness of the connection implies that

(2.19) V6 + 0V =0.

The standard curvature E-tensor (R;;)%(z) (2.20) of the connection provides us with the
following fiberwise vector field:

1 8
(2.20) R=-3¢¢ (Rij)fk(x)yka_yl € P0*(T°).
A direct computation shows that for B being any of the sheaves £S, A, T, D, or J, we have
(2.21) V2 =R: EQ*(B) _ EQ*+2(B),

where R- denotes the action of the vector field R in the sense of Proposition 2.10.
Although V is not flat the following theorem shows that the combination V — 4 can be
extended to a flat connection on the sheaves BQ(S(EV)), PQ(T), FQ(A), FQ(D), and ZQ(T).

THEOREM 2.12. Let B be either of the sheaves ©S, A, T, D, or J. There exists a section

0

o0
(2.22) A= Z kagc,il...z'syh eyt e
s=2 Yy

of the sheaf QY (T°) such that the derivation

(2.23) D=V -6+ A : PQ*(B) —» Fa*t'(B)

is 2-nilpotent
D*=0,
and (2.23) is compatible with the DG algebraic structure on PQ(B).

PRrOOF. The proof goes essentially along the lines of [16, Theorem 2].
Thanks to equation (2.21) the condition D? = 0 is equivalent to the equation

1
(2.24) R+VA-§A+ §[A,A]5N =0.
We claim that a solution of (2.24) can be obtained by iterations of the following equation
1
(2.25) A=kR+k(VA+ Q[A;A]SN)

in degrees in the fiber coordinates y*. Indeed, equation (2.15) implies that iterating (2.25)
we get a solution of the equation

1
K(R+VA—-0A+ §[A,A]5N) =0.
We denote by C the left hand side of (2.24)

C:R+VA—6A+%[A,A]SN,
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and mention that due to Bianchi’s identities VR =R =0

(2.26) VC -46C+[A,C] =0.

Applying k (2.17) to (2.26) and using the homotopy property (2.15) we get
C =k(VC +[AC)).

The latter equation has the unique vanishing solution since the operator & (2.17) raises the
degree in the fiber coordinates y°.

Proposition 2.10 implies that the differential (2.23) is compatible with the DG algebraic
structures on “Q(B). Thus, the theorem is proved. O

In what follows we refer to the differential D (2.23) as the Fedosov differential. Since
D satisfies the condition (1.15) for connexions we also sometimes refer to it as the Fedosov
connezxion on B.

The following theorem describes the cohomology of the Fedosov differential D for the
sheaves EQ(S(EVY)), ZQ(A), BQ(T), and #Q(D)

THEOREM 2.13. For B being either of the sheaves ZU(S(EV)), PQ(A), PQ(T), or EQ(D)
(2.27) H='(B,D) =0.
Furthermore,

HO(PQ(S(EY)),D) = O,
(2.28) HO(PQ(A,),D) = BA, |
HO("Q(T*),D) = AT E,

as sheaves of graded commutative algebras
(2.29) H°(FQ(D*),D) = @* ' (S(E))
as sheaves of DGAA (over R).
PROOF. The first statement follows easily from the spectral sequence argument. Indeed,
using the fiber coordinates y* we introduce the decreasing filtration
- CFF'BCFBCFFIBC---Cc F'B=B,

where the components of the sections of the sheaf FPB have degree in 3¢ > p.
Since D(FPB) C FP~1B the corresponding spectral sequence starts with

EP8 = FPBPHe,

It is easy to see that

d_; =6.
Thus using Proposition 2.11 we conclude that for any p,q satisfying the condition p+¢ > 0
EPI=FEP1=...=EPI =0

and the first statement (2.27) follows.
Let B denote either of the bundles S(EY), A, T, or D. We claim that iterating the
equation

(2.30) Au) =u+k(VA(u) + A-Au)), ueT(M,B)Nkerd
we get a map of sheaves of graded vector spaces
(2.31) A:Bnkerd - BNkerD.

Here A- denotes the action of the fiberwise vector field A, defined in Proposition 2.10. Indeed,
let u be a section of B. Then, due to formula (2.15) A(u) satisfies the following equation

(2.32) K(D(\(w))) = 0.
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Let us denote DA(u) by Y
Y = DA(u).
The equation D? = 0 implies that
DY =0
which is equivalent to
(2.33) Y =VY+A-Y
Applying (2.15) to Y and using equations (2.32), (2.33) we get
Y=xk(VY +A.Y).

The latter equation has the unique vanishing solution since the operator & (2.17) raises the
degree in the fiber coordinates y°.
The map (2.31) is obviously injective. To prove that the map is surjective we notice that
H
H : B— Bnkerd

is a left inverse of the map (2.31). Thus it suffices to prove that if a € I'(M, B) Nker D and
(2.34) Ha =0

then a vanishes.
The condition a € ker D is equivalent to the equation

da=Va+A-a.
Hence, applying (2.15) to a and using (2.34) we get
a=k(Va+ A-a).
The latter equation has the unique vanishing solution since the operator £ (2.17) raises the
degree in the fiber coordinates y*. Thus, the map (2.31) is bijective and the map H
(2.35) H : BNnker D — BNkerd

is the inverse of (2.31).

It remains to prove that the map (2.31) is compatible with the multiplication of the
sections of the sheaf B, where B is either S(EY), A, T, or D. The latter follows immediately
from the fact that the inverse map H

(2.36) H : B— Bnkerd
respects the corresponding algebra structures on S (EV), A, T, and the DGAA structure on
D. O

2.2.3. Compatibilities of the resolutions with the algebraic structures. Let us
now mention that since the Fedosov differential (2.23) is compatible with the graded algebraic
structures on the sheaves ZQ(7) and FQ(A) we conclude that H*(FQ(T), D) is a sheaf of
graded Lie algebras and H*(EQ(A), D) is a sheaf of graded modules over H*(¥Q(T), D). On
the other hand the above theorem tells us that

H*("0(A), D) = PA,,
and
H*(%0(T), D) = A,
Thus, it is natural to ask whether the graded algebraic structures on the sheaves A**!1 E = FT*

poly
and PA, coincide with the ones given by Lie bracket (1.3) (1.4) and the Lie derivative (1.6).

A positive answer to this question is given by the following proposition:
PROPOSITION 2.14 ([5, 7]). The map
(2.37) H:T*NkerD — T* Nkerd = FT*

poly
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induces an isomorphism of the sheaves of graded Lie algebras H*(PQ(T),D) = ET;oly'
And the map

(2.38) H : A.Nker D — A, Nkerd = FA,

induces an isomorphism of the sheaves of graded modules H*(PQ(A), D) = FA, over the

sheaf of graded Lie algebras H* (Q(T),D) = ET;oly'

PROOF. Let us recall the proof of the first part of the proposition from [5, proposition
2.4]. We have to show that for any D-closed fiberwise polyvector field u,v € T'(M, ET;oly)
one has

H([w,v]sn) = [H(u), H(v)]
Since H is a morphism of graded commutative algebra, it is sufficient to prove it for functions
and vector fields:

o First case. Let f be a function on M and ug = u’(z)e; a vector field and
w = A(f), u=Auo) .-
A direct computation shows that
Af) = f+y'pes)f mod |yl?,

and

Auo) = 'y mod Jy,

Therefore [u,w]sn = u’p(e;) f mod |y| and hence H([u,w]sn) = [uo,f]-
o Second case. Let ug = u(z)e; and vg = v*(z)e; two vector fields and
u = Aug) v = A(vg) -
It is not hard to show that

/\(uo):uiazi +y"(p(ei)uk+1“fjuj)66? mod |y|*.
Therefore
= w{plegu + Thw?) 5oz =o' (pleu + Th) 50 mod
[uplsy = u'(ple))v” +T3v B—y’“_v pled)u” + Tjju a—yk mod |y|
= (Uip(ei)vk‘f'cgjuivj—'Uip(ei)uk)w mod |y| = [ug,v0] mod |y

And hence H ([u,v]sn) = [uo,v0]-
Next recall the proof of the second part the proposition from [7, proposition 2.5] . We have
to show that for any D-closed fiberwise differential form w € I'(M, A) one has
H(d w) = BdH (w),

where df = dy? 62,- is the fiberwise De Rham differential on A. Since H is a morphism of

graded commutative algebras, it is sufficient to prove it for functions and 1-forms:

e First case. Let f be a function on M and
w = A(f)-
A direct computation shows that
Af) = f+y'ple)f mod |y
Therefore dfw = p(e;) fdy? mod |y, and hence, H(d'w) = Zdf.
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e Second case. Let a = a;(z)€! be a E-1-form and
w = Ala).
It is not hard to show that
AMa) =a+ Yt (p(e,-)aj — Ffjak)dyj mod |y|?.
Therefore,
. . 1 . .
d'w = (p(es)a; — T ar)dy’ Ady’ mod |y| = (p(ei)o; — 5ijak)dy' Ady’ mod |y,
and hence,
H(d'w) = Fda.
To finish the proof we notice that for any fiberwise polyvector field v € T'(M, T*) and any
fiberwise differential form w € T'(M, A), the equation
,H([‘uw) = LH(u) © H(w)
is obviously satisfied. The latter implies that for any pair of D-closed sections u € T'(M, T*),
we T (M, A,)
H(Lyw) = PLyywy 0 H(w),
and the proposition follows. d

REMARK 2.15. Actually, we have proved a slightly stronger statement. Namely, we shown
that the maps (2.38) and (2.37) induce an isomorphism of sheaves of calculi.

(H*("(T), D),H*("U(A), D)) = (" Ty, "As).

poly>
The precise definition of the calculi can be found in section 4.3 of the second part of [13].
Let us now recall that 7! = §(EV), T is a sheaf of Lie-Rinehart algebras over the sheaf

of algebras 71 = S(EV), and D° is the universal enveloping algebroid of 7°. Therefore, the
inverse A = (H) ! of the map (2.37) induces the morphism

(2.39) p:UE — D°.
of sheaves of bialgebroids and for any P € T'(M,UE)
(2.40) D(u(P)) = 0.

We claim that
PROPOSITION 2.16. The map (2.39) gives the isomorphism
(2.41) p:UE = D° Nker D.

of sheaves of bialgebroids.

PRrROOF. Notice that UE and D are both filtered sheaves of algebras. The filtration
on UE is defined in (1.12) and the filtration on D° is given by the degree of differential
operators.

Thanks to the results of [51] and [57] we have the PBW theorem for Lie algebroids.
This theorem says that the associated graded module of the filtration (1.12) on UFE is

Gr(UE) = S(E)

the symmetric algebra of the bundle E.
Furthermore, it is not hard to see that the map p is compatible with the filtrations on
UE and D° and due to Theorem 2.13 and Proposition 2.11 p induces the isomorphism

S(E) = D° Nker D
of the associated graded sheaves of vector spaces. Therefore, the snake lemma argument

implies that the map (2.41) is also an isomorphism onto the sheaf D° N ker D of D-flat
sections of DY. O
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Let us recall that ED;oly (respectively, D*) is the tensor algebras of UE over Oy (res-

pectively, the tensor algebra of DO over S(EV)). Using this fact we extend (2.39) to the
morphism

(2.42) w :ED = D*.
of sheaves of DGAA algebras (over R) by setting
! !
= = A
Hlope =H K|, =2

poly
where A is defined in (2.31).

Let us also observe that since the map (2.39) is a morphism of sheaves of bialgebroids the
map (2.42) a morphism of sheaves of DGLA (over R). Furthermore, Theorem 2.13 implies
that the sheaf of DGAA D* Nker D is generated by the sheaf D° N ker D over the sheaf of
commutative algebras S (EV) Nker D = Oy;. Therefore using Proposition 2.16 we get the
following result:

PROPOSITION 2.17 (proposition 2.5, [5]). The map (2.42) gives an isomorphism of
sheaves of DGLA

(2.43) p': FD},, = D* Nker D.

This map is also compatible with the DGAA structures on the sheaves D*

oty and D* Nker D
by construction. O

2.2.4. Fedosov resolution of Hochschild FE-chains. Let us consider the map of
sheaves of graded vector spaces

(2.44) T = () (P) = (W (P) () yico
jeT(M, g%, Pel(M,"D},,).

We claim that

THEOREM 2.18 ([7]). For any g >1
(2.45) HY(*Q(7),D) =0,
and the map (2.44) gives an isomorphism of sheaves of DG modules over the sheaf of DGLA
ED;;Oly =2 D*Nker D
(2.46) v T S Eppety,

This isomorphism sends the Fedosov connection (2.23) on J* to the the Grothendieck connec-
tion (1.26) on EJF°Y.

PRrOOF. The first statement (2.45) follows easily from the spectral sequence argument.
Indeed, using the zeroth collection of the fiber coordinates y§ (2.7) we introduce the decrea-
sing filtration on the sheaf £Q(7)

- CFPRY(PQ(T)) € FP(P(T) € FPH(PQ(T) € -+ € FO(P() = P(T),
where the components of the sections (2.7) of the sheaf FP(¥Q(7)) have degree in y§ > p.
Since D(FP(EQ(7))) ¢ FP~1(EQ(J)) the corresponding spectral sequence starts with
EP{ = FP(PQ(g)PT).
Next, we observe that
0
Ay’
and hence, due to the Poincaré lemma, for the formal disk we have

Pad _ P9 _ .. _ P
Ey? = EPT = =FEN1=0

d_y=¢
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whenever p 4+ ¢ > 0. Thus, the first statement (2.45) of the theorem follows.
Since (2.39) is a morphism of sheaves of bialgebroids

MI(P.Q) :/J’I(P).IU/I(Q)a PaQ € F(MaED;oly)'
Furthermore, u' is obviously compatible with cyclic permutations
tpWPooP®---@P)=p(PLoPh®---QP®FR), P el(MUE).

Hence, for any P € T(M,"D,, ) and any a € [(M,J.)

(2.47) PSP (1(@) = 7(Ru (p)(a)).-

Since J is dual to D* Nkerd and D* Nkerd = D* Nker D = ED;oly the map (2.46)
is an isomorphism. It remains to prove that the map (2.46) sends the Fedosov connection
(2.23) to the Grothendieck connection (1.26). This statement is proved by the following line

of equations:

y'=0 yi=0
= p@H PG| _ ~ oW @ED|
= ol (PYG)] _ — () o' (PG|
= P (PG| _ = we PG|

= p(w)(v(7))(P) = (v(§)) (we P) = (VE7(5))(P),
where u € T'(M, E), j € (M, Jy), P € T'(M,ZD¥ ), 1 denotes the contraction of an E-

poly
vector field with E-differential forms, p is the anchor map, and u is viewed both as a section

of E and an E-differential operator. d

2.3. Proof of the formality theorem
Let us denote
o Aa: BA, — BQ(A,), the inverse of the map H (2.38),
o A\r: Ty, — PQ(T), the inverse of the map #H (2.37),
e Ap: ED;oly — BQ(D), the map p' (2.42) and
e Ao ECPW 5 EQ(7), the composition v~ o g of the inverse of the map v (2.44)
with the map ¢ (1.37).

The results of the previous section can be represented in the form of the following
commutative diagrams of sheaves of DG Lie algebras, their modules, and morphisms

AT

CTa LD 25 (1), D,[lsn)
Vb o
(PA,,0) ¥ (EQ(A), D),
(2.48)
(D), D+0,[.Je) €% ("Diyy0..10)
Rod bR

(EQ(T),D+b) <5< (B p),
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where the horizontal arrows correspond to embeddings of the sheaves of DG Lie algebras
(respectively, of DGLA modules) constructed in the previous section. These embeddings are
quasi-isomorphisms by theorems 2.13, 2.18 and propositions 2.14, 2.17.

Next, due to claims 7 and 2 in Theorem 2.5 we have a fiberwise quasi-isomorphism

(249) K: (EQ(T)707[7]SN) - (EQ(D)Jaa[J]G)
from the sheaf of DGLA (¥Q(T7),0,[,]sw) to the sheaf of DGLA (¥Q(D), d,[,]c). Composing
quasi-isomorphism (2.49) with the action of £Q(D) on £Q(J) we get a Lo,-module structure
on #Q(J) over £Q(T).

Due to claims 7 and 2 in Theorem 2.6 we have a fiberwise quasi-isomorphism
(2.50) S: (FQT),b) ==— (FQ(A),0)

from the sheaf of L.,-modules ZQ(7) to the sheaf of DGLA modules ZQ(A) over Q(T).
Thus we get the following commutative diagram

EQUT),0,[lsn) == (BD),0,[,]e)
(2.51) L R

mod mod

s
(P2(A),0) == ("),b),
where by commutativity we mean that S is a morphism of the sheaves of L,-modules
(EQ(J),b) and (£Q,0) over the sheaf of DGLA (¥Q(T),0,[,]sn) and the L.,-module
structure on (FQ(7),b) over (¥Q(T),0,[,]sn) is obtained by composing the L.-quasi-
isomorphism K with the action R of ("Q(D),d,[,]c) on (FQ(J),b).

Let us now restrict ourselves to an open subset V' C M such that E| is trivial. Over

any such subset the E-de Rham differential (1.5) is well defined for eith(‘a/r of the sheaves
EQ(A), 2Q(T), BQ(TJ), and ¥Q(D). Furthermore, since the quasi-isomorphisms (2.49) and
(2.50) are fiberwise we can add to all the differentials in diagram (2.51) the E-de Rham
differential (1.5). Thus we get a new commutative diagram

Fn) | Falls) -2 (D) | Fa+o,l o)

(2.52) L od ood

B | JFa) X< ()| LFd+b)

1%
of the L,,-morphism K and the morphism of L.,-modules S.
We claim that

PROPOSITION 2.19. The Loo-morphism K and the morphism of Lo-modules S in (2.52)
are quasi-isomorphisms.

Proo¥F. This statement follows easily from the standard argument of the spectral se-
quence. Indeed, we can naturally regard Q(7") and PQ(D) (respectively, PQ(7) and #Q(A))
as sheaves of double complexes and the exterior degree provides us with the following des-
cending filtration

FP("0"(B)) = @ "0*(B),
k>p
where B is either T or D (resp. J or A).

The corresponding versions of Vey’s [67] and Hochschild-Kostant-Rosenberg-Connes-Te-
leman [10], [36], [65] theorems for R?wmal imply that K (respectively, S) induces a quasi-
isomorphism on the level of Eq. Hence, K (respectively, S) induces a quasi-isomorphism on
the level of E,. The standard snake lemma argument of homological algebra implies that K
(respectively, S) in (2.52) is a quasi-isomorphism. O
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On the open subset V' we can represent the Fedosov differential (2.23) in the following
(non-covariant) form

(2.53) D="%+B,

o0

. . B

B=Y &B, @y .. .y" oy
p=0

If we regard B as a section of Q! (770) ‘ then the nilpotency condition D? = 0 says that
v

B is a Maurer-Cartan section of the sheaf of DGLA (¥Q(T) ‘V, Zd,[,]sn)- Then following

appendix A.2.3 this means that the sheaf of DGLA (£Q(T) ‘V,D, [,]sn) is obtained from

EQ(T) ‘V,Ed, [,]sn) via the twisting procedure by the Maurer-Cartan element B (see claim

2 in Proposition A.23).
According to the first statement of Proposition A.23 the element

=1
Bp=Y_ EIC,C(B, ...,B)
k=1

is a Maurer-Cartan section of (£Q(D) ‘V,Ed +8,[,]c). Moreover, due to claim & in Theorem
2.5

Bp =B,

where B is viewed as a section of the sheaf Q! (D?)

4
Thus twisting the L,-quasi-isomorphism K in (2.52) by the Maurer-Cartan element B
(claims 3, 4 in Proposition A.23) we get the Lo,-quasi-isomorphism

K (UT)| D, LJsw) == (D) | D +0,[]a).

Following Proposition A.24 (claim 1) one can twist the DG module structure of ZQ(A)
over Q(T) by B (respectively, of Q(7) over (D) by Bp = B). Hence, by virtue of claim 2,
3 of the same proposition the twisting procedure turns diagram (2.52) into the commutative
diagram

()| .D.LIsv) Fo (aD)| D +0,110)

(2.54) o od

o] 0 << (W) Do),

where S is a Lu-quasi-isomorphism obtained from S by twisting via the Maurer-Cartan
section B of the sheaf of DGLA (#Q(T) ‘V, Ed,[,]sn)-

We claim that the morphism K (respectively, S**) does not depend on the choice of
the trivialization of E over V and hence is a well-defined L,-morphism of sheaves of DGLA
(respectively, sheaves of DGLA modules). Indeed, the term in B that depends on the choice
of the trivialization of E is linear in the fiber coordinates y¢. But due to claim 4 in Theorem
2.5 and claim & in Theorem 2.6 this term contribute neither to X nor to St.
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Thus the quasi-isomorphisms K% and St are well defined and we arrive at the following
commutative diagram

(FUT). D, []sv) 5= (BUD),D +0,[]a)
(2.55) L R

mod mod

BQA),D) << (BUJ),D +b).

Assembling diagrams (2.48) and (2.55) we get the desired chain (2.2) of Ly-quasi-
isomorphisms between the sheaves of DGLA modules ("T}, ,”A.) and ("D3,,. ECPolvy T
is obvious from the construction that the terms and the quasi-isomorphisms of the resulting
diagram (2.2) are functorial in the pair (E,V), where V is a torsion-free connection on E.

Now we can end the proof of Theorem 2.1. Using Theorem A.13 we can inverse the

L.-quasi-isomorphism Ap: there exists a L,,-quasi-isomorphism

ap : ("UD),D +0,[,]e) == ("D}, 0,1,1c)
[

1;] = H. Then define ® = ap o K o A\y; its first structure map is

3 = Ho kMo Ny = H oK o A\ = V. In the same way using Theorem A.21 one can
find a quasi-inverse

with first structure map «

aa: (PQ(A),D + b) ==— (FA,,b)
of A4 such that aES] = H. Then define ¥ = a4 o St o \y; its first structure map is plol —
H oS o Ny =H 0800\ = €. The theorem is proved. O

2.4. Applications in deformation quantization theory

The obvious applications of the formality theorem for Lie algebroids are related to the
deformations associated with triangular Lie bialgebroids. Moreover, Theorem 2.1 allows us to
get an elegant description of the Hochschild homology and the traces of these deformations.

2.4.1. Quantization of Poisson Lie algebroids. Let £ — M be a Lie algebroid
with bracket [,] and anchor p.
First we recall that

DEFINITION 2.20. A Lie algebroid (E,[,],p) equipped with an E-bivector m € F(M,ETI}O,y)
satisfying the Jacobi identity
(2.56) [m,m] =0
is called a Poisson Lie algebroid.

In the simplest example E = T'M this corresponds to the definition of a Poisson manifold.

Following [50] a quantization (or deformation) of a Poisson Lie algebroid is a construction
of an element

(2.57) Il € T(M,”Dy,;,)[[A]]

poly
satisfying the condition of the classical limit
(2.58) M=1®1mod h, T —¢(I) = hr mod h?,
and the “associativity” condition
(2.59) [IL,IT]g = 0.
Here h is an auxiliary variable and ¢ denotes the (cyclic) permutation of components of

Il € T(M,PD! [H] = D(M,UE & UE)[[H]).

poly
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Furthermore, two quantizations II and II' of (E,[,], p,m) are called gauge equivalent if
there exists a formal power series

U =1+hT + 7T+ ... € [(M,UE)[[A]]
such that
(2.60) APII'=II(T®7),
where A is the coproduct (A.4) in UE.

REMARK 2.21. Following [45], a Lie bialgebroid is a Lie algebroid (E,[,], p) together
with a differential

d:N*E— NTE
which is a derivation of the bracket [, ]

d'([u,v]) = [d'(u),v] + [u,d'(v)], u,v € (M, E)

Starting from a Poisson Lie algebroid (E,[,],7) one can define a canonical Lie bialgebroid
structure d,. = [m,-] on E. In this context, a Poisson Lie algebroid is called a triangular Lie
bialgebroid in [5, 45].

Following [19], Ping Xu formulates in [70] a quantization problem for Lie bialgebroids.
Namely, a quantization of a Lie bialgebroid (E, [,],d', p) is a bialgebroid structure on U E[[A]]
with product m' = m mod A? and coproduct A’ = A + hd' mod h?. Xu shows ([70]) that
to quantize a triangular Lie bialgebroid it is sufficient to find an element II satisfying (2.57),
(2.58) and (2.59) (a twist, according to annexe A.1.2) .

Thanks to the formality of the sheaf of DGLA ED;Oly (from Theorem 2.1) we have a
bijective correspondence between the moduli spaces of Maurer-Cartan elements of the DGLA
F(M,ET;oly)[[h]] of E-polyvector fields and the DGLA F(M,ED;;Oly)[[h]] of E-polydifferential
operators. In other words, if we consider the cone

wh = hm + BPm + B 4+ ...

(2.61) [7r,mh] =0,
m € D(M.FT),,,)

of formal power series in & acted upon by the Lie algebra Al'(M, E)[[A]]
(2.62) 7w — [wms],  uw e hD(M, E)[[R],
then (following annexe A.2.4)

PROPOSITION 2.22. The map

1
(2.63) mTp— 1®1+ E —“I)[”](Wh,...,ﬂh)
s ~
= n times

defines a bijective correspondence between the deformations (2.57) associated with a Poisson
Lie algebroid (E, [,], p, ®) modulo the relation (2.60) and the points of the cone (2.61) modulo
the action (2.62) of the prounipotent group corresponding to the Lie algebra hT'(M, E)[[A]].
O

An orbit [m3] on the cone (2.61) corresponding to a deformation IT (2.57) is called the
class of the deformation and any point 7y of this orbit is called a representative of the class.
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2.4.2. Hochschild (co)homology of a deformation. Given a deformation II (2.57)
associated with a Poisson Lie algebroid (E,[,], p,m) one can define the Hochschild (or tan-
gent) chain complex of this deformation as the graded vector space

(2.64) (M, "CEl)|[A]]
equipped with the differential

l
PRy - FCP — POPLY.

Furthermore, one defines the Hochschild (or tangent) cochain complex of the deformation II
as the graded vector space

(265) F(M poly)[[h‘]]
equipped with the differential
[H, ']G . Enx* ED*+1

poly poly*
Due to claim 4 of Proposition A.23 and Theorem 2.1 we get the following

PROPOSITION 2.23. Let II be a deformation associated with a Poisson Lie algebroid
(E,[,],p,m) and let my be a representative of the class of this deformation. Then the Hoch-
schild cochain complex (2.65) of the deformation 11 is quasi-isomorphic to the cochain com-

plex (T'(M, ET;dy)[[h]], [k, -]) of Poisson cohomology for mp. O

And due to claim & of Proposition A.24 and Theorem 2.1 we get the following

PROPOSITION 2.24. Let II be a deformation associated with a Poisson Lie algebroid
(E,[,],p,m) and let my be a representative of the class of this deformation. Then the Hoch-
schild chain complex (2.64) of the deformation II is quasi-isomorphic to the chain complex

(PUM)[[A]],Lxy). B

REMARK 2.25. Actually, in the case Il = 1® 1+ > rt'@”] (7hy-..,7r) the quasi-
isomorphisms are “explicitly” given by
(266) vn—)V +Z(I)[n] Wﬁ; <+ 3Th U )7 v € EDpoly’
n>1 n tlmes
and
(2.67) a+— €(a) + Z Sl (wp, . ,a), a € Borely |
n>0 n times

2.4.3. Deformation quantization with traces. Given a deformation II (2.57) asso-
ciated with a Poisson Lie algebroid (E,[,], p, ) one can define a trace of the deformation II
as an R[[A]]-linear functional

(2.68) tr : O(M)[[h]] — R[[A]]
satisfying the following condition
(2.69) tr(j(I) — j(#(I)) =0, VjeD(MEP"Y) nker VE.

It is not hard to see that Proposition 2.24 implies the following statement:

COROLLARY 2.26. Let II be a deformation associated with a Poisson Lie algebroid
(E,[,],p,m) and let wy be a representative of the class of this deformation. Then the vector
space of traces of the deformation I is isomorphic to the vector space of continuous R[[A]]-
linear R[[A]]-valued functionals on O(M)[[h]] vanishing on all functions f € O(M)[[h]] of the
following form

f=ij(m), i €T(MI™) NkerVe,

where my, is viewed as a series E-bidifferential operators. O
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REMARK 2.27. One can verify without difficulty that all our constructions still make
sens (and all our results remain true) if we replace O(M) by the algebra of compactly
supported functions O.(M) (this can be usefull because in the case M is not compact, it can
happen that there is no traces on O(M)).

2.5. Further developments

2.5.1. Compatibility with cup-products on tangent cohomology. Let II be a
deformation associated with a Poisson Lie algebroid (E,[,], p, 7).

On one hand, recall from [39] that the tangent cochain complex associated to II (called
Hochschild cochain complex associated to II in the previous section) can be equipped with
an associative product Uy compatible with the differential and defined as follows

(270) P Up Q — Hl...k,k+1...k+l(P ® Q) Pe EDk 1[[h]], EDl 1 [[h]]

poly poly
On the other hand, the A-product endows the Poisson cochain complex (ETIj‘oly[[h]], [7h,])
with the structure of a DG commutative algebra. It is conjectured that at the level of
cohomology, the products A and Up coincide:
CONJECTURE 2.28. The (graded commutative) algebras (H*( T

poly’[ﬂ'ﬁa']); A ) and
(H*(EDzoly, [I,")c), Un ) are isomorphic.

This result was announced in [39, Section 8.2], where it is proved in the case E = TR
(for a proof with details we refer to [46]). The global situation E = T'M has been treated
(in [9]) only for the 0-th cohomology. Let us prove it for any Poisson Lie algebroid. Namely,
assume that II is the image of some 7y, by the map (2.63), then

THEOREM 2.29 ([9]). The algebras (H°(°T7,,,, [mh,]), A) and (H°(®D3,,, L)), Un)
are isomorphic.

We give here a new proof of this theorem, which we hope to make work in the future for
the whole cohomology.

PRrROOF. First observe that it follows directly from Theorem 2.13 and Proposition 2.14
that the inverse

A s (PToo [l [7n ], A) — (PUTHIR], D + Ar(mn), ], A)

of the map H (2.37) defines a morphism of DG commutative algebras and induces an iso-
morphism in cohomology. In particular it restricts to an isomorphism of algebras

(2.71) UL lA]] Nker([mn,]) — T[] Nker(D + [Ar(mn),])
In the same way Ap restricts to an isomorphism of algebras

(2.72) (EDpoly[[h]] Nker([IL,]g), Un ) — (D[R] Nker(D + [Ap(II),]a), Unp () )
Consider the element

_1®1+Z IC““ I (O\p(7h), - - -y Ar(mn))

n>1

of which the part of zero exterior degree is

— 1
— —_xlnl
T=1®1+ 2>:1 —K (A (), - -, Ar(mn)) -
Then one has the quasi-isomorphism of complexes
(o e I (B[R, D + D (mn) Jsw) — (PD)[AL, D + [T, J6)
In particular it restricts to an isomorphism (of vector spaces)

(2.73)  ((Kctw)rmm)) o, T=[A]] Nker(D + [Ar(mn),]sn) — D~Y[H]] Nker(D + [II,])¢)
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Due to degree considerations® ((Ktw)A()) m_ (KAm))1 on 7—1. Then using the fact that
K is compatible with cup-products [39, 46] we obtain that the map (2.73) sends the usual
product of functions to the product Ug.

Finally observe that since Ap(Il) and II are gauge equivalent one has an isomorphism
(2.74) (D7Y[[K]] Nker(D + [II,7)g), Uy ) — (D {[A]] N ker(D + [Ap(IL),]G), Unpem ) »
and composing the inverse of (2.72) with (2.74), (2.73) and (2.71) we prove the theorem. O

2.5.2. Compatibility with cup-products on tangent homology. Let II be a de-
formation associated with a Poisson Lie algebroid (E, [,], p, 7).

On one hand, recall from [58] that the tangent chain complex associated to II (called
Hochschild chain complex associated to II in the previous section) has a module structure
o1 over the tangent cochain complex (equipped with the cup-product Un) compatible with
the differential and defined as follows

(Penj)(@Q) =i((Aun P)®Q)) P e Dy, lhll, Q € "Dy, [[A]],

poly poly

(2.75) j € TIRL IR Mker VO 2= FORYY [R]).

On the other hand, the contraction of E-forms with E-polyvector fields endows the chain
complex (PA,[[A]], "L, ) with a structure of a module over (*Ty, [[h]], [m5,], A). Tt is conjec-
tured that at the level of cohomology these module structures coincide. It has already been
proved in degree 0 for the case E = TR? (see [60]).

Since our construction is compatible with many algebraic structures (see Remark 2.15)
one can expect to prove this compatibility at least in degree 0 for a general Poisson Lie

algebroid.

2.5.3. Characteristic classes and cyclic formality. Let us mention that it would
be interesting to prove the corresponding version of the algebraic index theorem [50], [62],
which should relate a cyclic chain in the complex associated with a deformation II to its
principal part and characteristic classes of the Lie algebroid (E, M, p). It would be also
interesting to investigate how other characteristic classes [12], [30], [43] of Lie algebroids
could enter this picture.

Let us finally observe that the compatibilities with cup-products on tangent cohomology
and homology, and the Lie algebroid version of the algebraic index theorem is a part of more
general conjecture. Namely, the pair (ET* = FA,) is a calculus [13], and it appears that at

poly’
the level of complexes ("D, , ECPO) is a calculus up to homotopy (see [64]).

The conjecture states that these two pairs are quasi-isomorphic as calculi up to homotopy.

3. Namely, K(B, A(mp), .. ., A(mp), f) € EQ1(D~2) = {0}.



CHAPITRE 3

Formality theorems for holomorphic Lie algebroids

REsuME. Ce chapitre est consacré a la généralisation des résultats du précédent chapitre
au cadre holomorphe. Ici la formulation des résultats en termes de faisceaux prends toute
sont importance. On discute en particulier de la quantification des variétés de Poisson
holomorphes. Les trois premiéres sections de ce chapitre sont tirées de [7, Section 4].

It is known ([40, 50]) that there are serious obstructions to deformation quantization of
holomorphic (or algebraic) Poisson manifolds, and thus a posteriori of holomorphic Poisson
Lie algebroids. Nevertheless, we prove in this chapter that the sheaf of holomorphic E-
(co)chains, where E is a holomorphic Lie algebroid, is formal as a sheaf of DGLA. But
unlike C'*° sheaves, holomorphic sheaves possess nontrivial higher cohomology and thus this
formality theorem does NOT imply that the DGLA of its global sections is formal.

Despite this fact we can still apply this theorem to deformation quantization and prove
that any holomorphic Poisson Lie algebroid is weakly quantizable. Here weakly means
broadly that we enlarge (in a reasonable way) the category in which we allow the defor-
mation to hold [40, 14, 55].

This chapter is organized as follows. In Section 1 we summarize and adapt the construc-
tions of Chapter 1 for holomorphic Lie algebroids. Sections 2 and 3 are respectively devoted
to the statement and the proof of the analogue of Theorem 2.1 for holomorphic Lie algebroids;
the proof goes essentially along the same lines as in Chapter 2 except that the Dolbeault
differential d enter the game. In Section 4 we apply this formality theorem to deformation
quantization theory in the holomorphic context: here we need a notion of weak deformation.
In the case of a holomorphic Poisson manifold we allow to deform not only the product of
functions but also the gluing conditions ... then the object that we obtain is no longer a sheaf
but something called an algebroid stack in [40].

3.1. Holomorphic Lie algebroids

Let now M be a complex manifold. Let us write TM = T1OM @ T%'M for the de-
composition of the tangent bundle as the sum of the holomorphic tangent bundle and anti-
holomorphic tangent bundle. We denote by O the structure sheaf of holomorphic functions
on M and by z® local coordinates on M . We have to adapt the definition of holomorphic
Lie algebroids:

DEFINITION 3.1. A holomorphic Lie algebroid over a complex manifold M is a holomor-
phic vector bundle E of finite rank whose sheaf of sections is a sheaf of Lie algebras equipped
with a holomorphic map of sheaves of Lie algebras

p:E—-1T",
satisfying the same conditions described (for the smooth case) in formula (1.1).

In other words, a holomorphic Lie algebroid is a holomorphic vector bundle whose sheaf
of sections is a sheaf of Lie-Rinehart algebras over Oy;.

41
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Let E be a holomorphic Lie algebroid. As in chapter 1, one can define the following
sheaves (which are also holomorphic vector bundles):

(3.1)

(3.2)

(3.4)

o PTx, is the sheaf of E-polyvector fields. We regard "T, as a sheaf of DGLA

with the vanishing differential and with the Lie bracket [,]sn defined as in (1.3),
(1.4).
FA, is the sheaf of E-differential forms with converted grading:
PA, =N*EY, PAy =0 .
We regard A, as a sheaf of DGLA modules over T*

poly
rential and with the action £L defined as in (1.6). For sections

a= Z ai, .i, (2)dy™ ... dy'"

m>0

with the vanishing diffe-

of the sheaf £A, we reserve the basis of local E-1-forms {dy’}, where y¢ are fiber
coordinates on E .
ED;ol is a sheaf of E-polydifferential operators. We regard ED;ol as a sheaf of

DGLA with the bracket [,]g and the differential 0 defined as in (1. 24) and (1.25).

Notice that the tensor product of sections (over Opr) of D, turns D}, into a
sheaf of DGAA.
Eppoly is the sheaf of E-polyjets
Fgpoty = @ EJgOly ) Eypoly .= Home,, (D poly> Obt) 5
k>0

which we regard as a sheaf of DGLA modules over EDI*,dy with the action S and
the differential b defined as in (1.31) and (1.35) . The sheaf Z77°" is also equipped
with the Grothendieck connection

VG L TR0 @ Bty oy Bty G (5)(P) := p(u) ((P)) — j(usP),
(

where u € T(T"?) is a holomorphic vector field, P € T(*D},,.), j € T(E7P°) and
the operation e is defined in (1.23). The connection (3.3) is compatible the DGLA
module structure on £77°%

ECPolY g the graded sheaf of V-flat E-polyjets with converted grading
ECPol .= ker V¥ 0 F7P .

Due to the compatibility of the Grothendieck connection (3.3) with the DGLA
module structure on E-polyjets PCP°"Y can be viewed as a sheaf of DG modules
over sheaf of DGLA £D* . We refer to EC?°" as a sheaf of Hochschild E-chains
or E-chains for short.

poly *

3.2. Statement of the formality theorem for holomorphic Lie algebroids

The main result of this chapter can be formulated as follows:

THEOREM 3.2. For any holomorphic Lie algebroid E over a complex manifold M the

sheaves of DGLA modules (T

EAL) and (EDx ,  ECPW

poly> Cx ) are quasi-isomorphic.

poly>

Omitting the sheaves of DGLA modules A, and FCT°" in the above theorem we get
the following corollary:

COROLLARY 3.3. For any holomorphic Lie algebroid E over a complex manifold M the

sheaves of DGLA ¥T*

and ED*

poly OT€ L -quasi-isomorphic. O

poly
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We would like to mention that this corollary is parallel to the result of A. Yekutieli [73],
who proved this statement for the tangent Lie algebroid TM — M of any smooth algebraic
variety over a field k for which R C k.

Notice that applying Theorem 3.2 to the tangent algebroid TV'°M — M we prove the
following version of Tsygan’s formality conjecture for complex manifolds:

THEOREM 3.4. For any complex manifold M the sheaf of DGLA modules CP°%(M)
of Hochschild chains over the sheaf Dpoy(M) of (holomorphic) polydifferential operators is
formal. O

The proof of Theorem 3.2 occupies the following section.

3.3. Proof of the formality theorem

First, we observe that any holomorphic Lie algebroid E can be viewed as a smooth Lie
algebroid in the sense of Definition 1.1, where the anchor map is naturally extended to the
smooth sections of E. It is clear that the sheaf of Lie algebras T%! acts on E and that this
action commutes with p as p is holomorphic. Thus we get

PROPOSITION 3.5. Let F be the smooth vector bundle F = E®T%L. Then F is a smooth
Lie algebroid over M with the anchor map pp: F — TY0 @ TO! given by pr =P and
PF =id : T%! - T9%1. O

70,1

For a holomorphic vector bundle B over M we consider the sheaf of smooth F-differential
forms with values in B:

(3.5) "B) = P "ar(s),
P,

FQP,‘I(B) — /\I’EV ® /\qT*O,lM ® B
For sections
(3.6) a= Zail,,,i},;al,,,,,aq (z,Z){"1 L EledE | dE

P,

ail...ip ;1 ,..., Qg (z7 2) € FsmOOth(B)
of FQ(B) we reserve the local basis {¢'} of anti-commuting fiber coordinates on E and the
local basis {dz®} of antiholomorphic exterior forms on M . We denote by d the Dolbeault
differential
(3.7) d = dz%0z. : FQP*(B) = FQP*+1(B).

It is obvious that the (DG) algebraic structures on the sheaves £T% ,  FA, £D* and

poly’ poly?
Eppoly can be naturally extended to the sheaves o=y ), Fa%*(PA,), Fao*(PDy

poly)7
and FQO*(EJP°Y) | Similarly, the Grothendieck connection (3.3) on EJ7°"Y extends to the

operator
(3.8) VG . TI,O ® FQO,*(EJfoly) — FQO,*(EJfoly) ,
which is compatible with the action *S of *Q%*(¥Dy ) on * Q0+ (£77°1) and with the
differential b on FQO*(EJFolvy

Since T, , PA,, PD,,. . and JZ°" are holomorphic vector bundles it makes sense to
speak about the Dolbeault differential (3.7)
(3.9) d: Q% (B) » FQo*+1(B),
for B being either #T, . YA., D%, , or LJ} °v Tt is obvious that d is compatible with
the (DG) algebraic structures on Q%*(B) and with the Grothendieck connection (3.8) on
FQO,*(EJfOl?!) .
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Furthermore, due to the d-Poincaré lemma we have

EA*} ED*

l .
olys OT EPotY then the canonical

PROPOSITION 3.6. If B is either PT%,
inclusion of sheaves
(3.10) inc : B = fQ%*(B)

is a quasi-isomorphism of complexes of sheaves (B,0) and (FQ°%*(B),d) . The inclusion inc is
compatible with the (DG) algebraic structures on B, and ¥Q%* (B), and with the Grothendieck
connection (3.8), (3.8). O

Due to this proposition it now suffices to prove that the sheaves of DGLA modules

(FQO*(FTy ), FQO* (PAL)), and (FQO*(PD2 ), FQO*(EJPolY)) are quasi-isomorphic. To

show this we follow the lines of Section 2 and introduce the formally completed symmetric
algebra S(EV) of the dual bundle EV and (holomorphic) bundles 7, D, A, J associated
with S(EV) (see page 24). As in Section 2, 7 and D are sheaves of DGLA while A and J
are sheaves of DGLA modules over 7 and D, respectively. D is also a sheaf of DGAA.

Next, we consider sheaves of smooth F-differential forms with values in the bundles
S(EV) T, D, A, and J . It is clear that the sheaves FQ(S(EV)), FQ(A), FQ(T), FQ(D), and
FQ(J) acquire the corresponding (DG) algebraic structures and the Dolbeault differential
(3.7) is obviously compatible with these structures.

Furthermore, we have the following obvious analogue of Proposition 2.10

PROPOSITION 3.7. The sheaf FQ(T°) of F-forms with values in fiberwise vector fields is
a sheaf of graded Lie algebras. The sheaves TUS(EY)), FQ(A), FQ(T), FQ(D), and FQ(J)
are sheaves of modules over Q(T?) and the action of TQ(TP) is compatible with the DG
algebraic structures on FQ(S(EY)), FQ(A), FQT), FQ(D), FQJ) and with the Dolbeault
differential (3.7). O

Due to this proposition one can extend the following differential
6:= fiaiyi - FQe1(S(EY)) - Fartba(S(EY))

of the sheaf of algebras FQ(S(EV)) to the sheaves FQ(T), FQ(D), FQ(A) and FQ(J) so that &
is compatible with the (DG) algebraic structures on ¥Q(T), ¥Q(A), FQ(D), and ¥Q(7), and
with the differential d (3.7). Here {y'} (resp. {¢’}) denote commuting (resp. anticommuting)
fiber coordinates of the bundle E.

We now have an analogue of Proposition 2.11
PROPOSITION 3.8. For B being either of the sheaves S(EV), A, T orD and g >0,
H>'(FQ*1(B),6) = 0.
Furthermore,
HO(FQ~1(S(EY)), ) = FQ%1(0y),
(3.11) HO(FQ*1(AL),0) =2 FQYe(P4,),
HO(FQ®1(T+), 6) = F0 (A1 (E)
as sheaves of (graded) commutative algebras and
(3.12) HO(FQ*1(D*),0) = QY4 (x*1(S(E)))
as sheaves of DGAA over Oyy.

PRrOOF. As in Proposition 2.11 is suffices to construct an operator (g > 0)
(3.13) & : FQ(B) = Fo*—14(B)
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such that for any section u of FQ(B) equation
(3.14) u = 0k(u) + Ko (u) + H(u),

is still true, where now

3.15 H(u) =u

(3.15) W=u .,

and y* are as above fiber coordinates on E. As in the proof of Proposition 2.11 we define &

on FQ(S(EV)) by equation (2.14) and then extend it to ¥Q(7), ¥Q(A), and FQ(D) in the
componentwise manner. O

3.3.1. Fedosov resolutions. Let us choose a connection V on E which is compatible
with the complex structure on FE, locally

(3.16) V="d+d+¢T;: 707 (B) - f (B,

where €°T; is locally a section of the sheaf #Q! (End(E)) and #d : ¥Q%57 — FQ3F" % is defined
n (1.5).

It is not hard to show that such a connection always exists, and moreover, one can always
choose V to be torsion free (one can use partition of unity, like in the proof of Proposition
1.9, since FQ(E) is a sheaf of C* sections).

As in (2.18) we extend (3.16) to a derivation of the DG sheaves FQ(S(EY)), FQ(A),
FQ(T), (D), and FQ7):

(3.17) V ="+ +d: 70" (B) - "o+ (B),
where B is either of the sheaves S'(EV), A T,D,or J, T = —firfj ayk 7 I‘k( ) are
Christoffel’s symbols of the connection (3.16) and I'- denotes the action of I' on the sections

of the sheaves FQ(B) . Due to Proposition 3.7 V (3.17) is compatible with the DG algebraic
structures on YQ(S(EV)), ¥Q(T), FQ(A), FQ(D), and FQ(J), and since V is torsion free

(3.18) Vi +46V=0.
Regarding (3.17) as a connection on B one can see that the curvature of (3.17) has the

components of type (2,0) and (1,1)

(3.19) VZ=R» 4+ R, R=F4+1)?, RO =dT.
We now prove the existence of a complex Fedosov differential D:

TuEOREM 3.9 ([7]). Let B be either of the sheaves S(EV), A, T, D, or J . There exists
a section

(520) A= Zsk L W o
of the sheaf FQ°(T°) and a section
(3.21) A= Zdz"Afl i (22)y" ---yis%
Y
of the sheaf FQ%L(TO) such that the derivation
(3.22) D:=V—-§+A-4+A4-:F0*B) = Fa**1(B)

is 2-nilpotent (D? = 0) and compatible with the DG algebraic structure on FQ(B) .
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PRrOOF. Let us rewrite D = D0 4+ D%1 with
DY =Fg4T. 5+A., D" =d+A

and try to mimic the proof of Theorem 2.12.
Due to (3.18) and (3.19) the condition (D':?)? = 0 is equivalent to the equation

1
R+ ("d+T-)A— 04+ S[A, Alsy =0.

This equation has a solution obtained by iterations of the following equation (with respect
to the degrees in fiber coordinates y;’s)

1
A=kR* 4+ k((Pd+T-)A + §[A, Alsn)

(the proof is the same as for Theorem 2.12).
Using (3.19) once again we observe that the condition D°D%! 4+ D%1pDLO — 0 is
equivalent to B
R +dA+ (Pd+T-)A-5A+[A,Alsy =0,
which, using the same arguments, has a solution obtained by iterations of the equation
A= H(Rl’l + dA + (Ed +T )/1 =+ [A,/I]SN).
Indeed, denoting
CY' =RY +dA+ (Pd+T-)A-6A+ A Alsn,
and using that 64 = R** + #d+T - A+ 1[4, Alsn ((D'?)? =0), dR*® = 0 and 6R™ =0
(Bianchi’s identities for V) we get
(Fd+T-)CHt — 500 +[4,CM] = 0.
We have kC™! = 0 by construction of A and so, by the “Hodge-de Rham” decomposition
(3.14), we have
Cl,l — I‘-‘,((Ed +T- )Cl,l 4 [A,Cl’l]).
The latter equation has the unique vanishing solution, which gives the result.
Let us now check the condition (D%!)2 = 0. This will be true if the section

%2 = JA + %[A’A] c FQO,2(7—0)

is zero. One has again D1'°C%? = 0 and kKC%? = 0 because it does not have £’s. As before,
one can conclude that C%2 = 0.

The compatibility of (3.22) with the corresponding DG algebraic structures follows from
Proposition 3.7. a

We now describe the cohomology of the Fedosov differential D for the sheaves FQ(S(EVY)),
FQ(A), F(T), and F0(D)

THEOREM 3.10 ([7]). Let B be either of the sheaves S(EV), A, T, or D and ¢ > 0. We
have
H(*Q*(B),D) = H("Q%*(B) Nker d,d).
as sheaves of (differential) graded (commutative) algebras.

PROOF. Let us consider the double complex (¥Q**(B), D1:° 4+ D%1). Using the degree in
the fiber coordinates y° we introduce on this complex a decreasing filtration. Applying the
spectral sequence argument (as in the proof of Theorem 2.13) and using Proposition 3.8 we
conclude that for any i > 0, the cohomology of the complex (FQ*#(B), D''?) is concentrated
in degree x = 0. Therefore,

(3.23) HFQ*(B), D) = HFQ**(B) Nker D0, D%1) .
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Following the lines of the proof of Theorem 2.13 it is not hard to show that iterating the
equation

(3.24) Au) =u+ &(VA(u) + A - Au) + A-Au)), u € FQ%(B) Nker§
we get an isomorphism of sheaves (of graded vector spaces)
(3.25) A FQ%(B) Nker § — YQ%(B) Nker D10

and moreover, the map A (3.25) has a natural inverse given by the map H (3.15).
We claim that A gives a quasi-isomorphism of complexes

X (FQO*(B) Nker 6,d) — (FQ*(B), D).
Indeed, due to (3.23) it suffices to show that for any u € ¥Q%9(B) Nker J, one has
Md(u)) = D% \(uw).
The term A(d(u)) is the only element in Q%9(B) such that H(A(d(u))) = d(u) and D*°\(d(u)) =
0. Tt is clear that H(D%!'A(u)) = d(u) and one has
DYDY \(u) = —D** DO\ (u) = 0,
since map A (3.24) lands in ker D1:0.

The map A (3.25) is compatible with the corresponding multiplications in S(EV), A, T,
or D since so is the map H (3.15) . The theorem is proved. O

It is not hard to prove the following analogue of Proposition 2.14:
ProPOSITION 3.11 ([7]). The map
(3.26) H : FQO*(T) Nker D0 — FQO*(T) Nker§ = FQO*(PT,.)

poly

is an isomorphism of the sheaves of DGLA

(3.27) ("Q%*(T) Nker DX, D%, [ ]swv) = (M (P T, ), d [ ]sw)

And the map
(3.28) H : 10O (AL) Nker DYO — FQ0*(A,) Nker§ = F0%(¥4,)

is an isomorphism of the sheaves of DGLA modules

("Q%*(A.) Nker V0, DO1) = (FQ%*(PA,), d)
over the sheaf of DGLA (3.27). O

Thanks to equation (3.23) this proposition implies that the inverse Ar of the map H
(3.26) defines gives a quasi-isomorphism of the sheaves of DGLA (¥ QO’*(ET;OW),J, [,]sn)
and (FQ*(T),D,[,]sn) - In the same way the inverse A4 of the map (3.28) defines a quasi-
isomorphism of the sheaves of DGLA modules (¥Q%*(FA,),d) and (FQ*(A.), D).

Playing with the PBW theorem for the Lie algebroids (as we did in the proof of Propo-
sition 2.16) and with the cup product in the sheaves D and ED;OW (see equation (2.42)) one
can prove the following analogue of Proposition 2.17

PRrROPOSITION 3.12 ([7]). The exists an isomorphism of the sheaves of DGLA

(3.29) e (FQO’*(ED;;O,y),J, [,]e) = (FQ%* (D) nker D°, D% [14),

which is compatible with the DGAA structures on the sheaves TQ0*(ED*

holy) and FQO(D).
O
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Thanks to equation (3.23) this proposition implies that the map u' (3.29) gives a quasi-
isomorphism of the sheaves of DGLA ("Q%*("Dx . ),d,[,]c) and ("Q*(D), D, [,]a)-
Let us consider the map

(3.30) v FQMU(T) = FQRITTEY) () (P) = (W (P))()

where j € ¥Q%9(J}) and P is a holomorphic section of *D} , .
For this map we have the following obvious analogue of Theorem 2.18

THEOREM 3.13 ([7]). For any ¢ >0

(3.31) H'*Q*(7),D) = H'(*Q%*(J) Nker D10, DO1) .
and the map v (3.30) provides us with an isomorphism of the sheaves of DGLA modules
(3.32) v : FQO*(7,) 5 FQlx (Eypely)

over the sheaf of DGLA
("Q%*(D) Nker DM, D%, [ ]6) = ("Q%*("Djo ), 4. [ ]a) -

The map v sends the component Di’o to the Grothendieck connection (3.8) and the component
D% to the Dolbeault differential d (3.7). O

3.3.2. End of the proof. Thus we have constructed the following maps

o Ar: (FQ%* (M, ET,?oly),d [,1sn) = ("), D, [, Isn),
o Aa: (FQO(M,PAL),d) > ("Q(AL) D),

* Ap: (FQO’*(M "D} oy)sd: 1) = (FUD), D, [, ]a), and
o Ao (FQO*(MFCEM),d) — ("Q(T), D).

Namely, the map Ar is the inverse of (3.26), the map A4 is the inverse of (3.28), Ap = /'
(3.29), and A\¢ is composition of the identification (3.4) and the inverse of 7 (3.30).
Our results can be summarized in the following commutative diagrams

(OO (PTr ), A, [ sw) > ("Q(T), D, [,]sw)
Vo hod
Q0 (FA), D) =¥ (F(A), D),
(3.33)
(FAUD), D +0,1,la) &% (FQ(PDr,),d+0,],]a)
R VR
(FQT),D+b) %< (FQOHECE),d + b),

where the action R is obtained from the action ES of FQ0*(M,ED* ) on FQO:(M EPelY)

poly
via the identification (3.4).
Due to claims 7 and 2 in Theorem 2.5 and claims  and 2 in Theorem 2.6 we get the
following commutative diagram

(FQAUT),0,Isnw) == (FUD),8,[,]0)
(3.34) L R

mod mod

(FOA),0) <2< (FJ),b),
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where by commutativity we mean that S is a morphism of the sheaves of L.,-modules
(FQ(7),b) and (F2,0) over the sheaf of DGLA (FQ(7),0,[,]sn) and the L,-module structure
on (FQ(7),b) over (FQ(T),0,[,]sn) is obtained by composing the L.,-quasi-isomorphism X
with the action R of (FQ(D),0,[,]c) on (FQ(J),b) .

Let us now restrict ourselves to an open subset V' C M such that F ‘V is trivial. Over
any such subset the E-de Rham differential (1.5) is well defined for either of the sheaves
FQA), FUT), FQ(T), and FQ(D) . So again, we get a new commutative diagram

(Fam)| Fa+dLlsy) Fo (AD)| L Fd+d+0,010)
(3.35) Tod Tmod
(F(A) ‘V,Ed+ d << Fw) ‘V,Ed+ d+b)

in which the Ly,-morphism K and the morphism of L.,-modules S are quasi-isomorphisms.
On the open subset V' we can represent the Fedosov differential (2.23) in the following
(non-covariant) form

(3.36) D=%+d+B-+B -,

0

B = Zf' i1 i zg)yjl---yjpwa

and
0

B= ZdzaBi A C (z,2)y’* ...y R

where the 2* are local coordinates on M . If we regard B+ B as a section of Q! (77°) ” then
the nilpotency condition D? = 0 says that B + B is a Maurer-Cartan section of the sheaf of
DGLA ((T) | Fd+d],Jsw)-

Thus applying the twisting procedures like in Section 2.3 (see also annexe A.2.3 and
using claim & of Theorem 2.5 we get the following commutative diagram

K:tw

(BT | . D.LIsn) == (FD)| ,D+0,1]0)
(3.37) Eod Tmod

tw

B | .0 =< ()| ,D+o),
in which K is a quasi-isomorphism of the sheaves of DGLA and S is a quasi-isomorphism
of the sheaves of DGLA modules.

Due to claim 4 in Theorem 2.5 and claim & in theorem 2.6 the quasi-isomorphisms do
not depend on the trivialization of E over V .

Thus we constructed the following commutative diagram of sheaves of DGLA, DGLA
modules and their (Lq.-)quasi-isomorphisms:

(FT),D,[]sv) S (D), D +0,[,]a)
(3.38) L R

mod mod

BQA), D) << (BUJ),D+b),
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Combining the diagrams in (3.33), (3.38) together with the Proposition 3.6 we see that
the sheaves of DGLA modules (T, ,PA,) and (PD%,, FC?*") are connected by chain of
Lso-quasi-isomorphisms. Thus, Theorem 3.2 is proved. O

3.4. Application to deformation quantization in the holomorphic context

Corollary 3.2 does not in general give a chain of quasi-isomorphisms between the DGLA
(M, ET*, ) and T(M, ED?* ;) of global holomorphic sections. However, since the sheaves

poly poly
of smooth forms FQ0*(*Tx ), FQ%*("Dr ), FQ0*(PA,) and FQO*(BCPWY) admits parti-

tion of unity one obtains a quasi-isomorphism for global sections. Using the correspondence
between the Dolbeault and Cech pictures we relate these considerations to Kontsevich’s al-
gebroid picture of deformation quantization of algebraic varieties [40] . Namely, we construct
a quantization of any holomorphic Poisson Lie algebroid in a weaker sens (that we define
following [14, 40, 55]).

3.4.1. Algebroid stacks and weak deformations. Let us recall the usefull notion
of algebroid stack introduced by M. Kontsevich in [40]. On the one hand it is a sheafified
version of the categorical realization of an algebra [47], and on the other hand it is the
linear analogue of the notion of gerb (groupoid stack locally connected by isomorphisms)
from algebraic geometry [33].

Let us begin by the categorical realization of an algebra.

DEFINITION 3.14. An R-algebroid is a small R-linear category A such that Obj(A) # 0
and all objects of A are isomorphic.

Remember that a category is R-linear if morphisms sets are R-module and compositions
of morphisms are R-bilinear.

REMARK 3.15. A unital associative algebra is the same as an algebroid over R with
only one object. Conversely, to any algebroid 4 we can associate an isomorphism class of
algebras: all algebras Hom 4(z,z) (x € Obj(A)) are isomorphic since all objects of A are
isomorphic.

Now we want to sheafify this notion of an algebroid. Since we deal with categories, the
good concept to use is the one of a stack. Let X be a topological space! and R a sheaf
of commutative rings. An R-algebroid stack A is a sheaf of R-categories (a stack in the
terminology of Giraud [33]) which is

e locally non-empty: for a small enough open U, Obj(A|y) # 0, and

e locally connected by isomorphisms: for any two objects z,y € Obj(A|y) over an
open U, there exists an open covering U = |J,, Uy, such that z|y, = y|y, in Aly,.

Under a technical assumption (that more or less says that Yoneda lemma is satisfied) one
obtains [14] an equivalent description of an R-algebroid stack by the following local data

e an open covering X = |J, Ua,

e an R-algebra A, on each U,,

¢ isomorphisms of R-algebras gqp : Ag = Aq on Uyg,
e invertible sections aqgy € AX (Uapy) such that

90 © 98y © 9ya = Ad 4, (aes,) as morphisms A, — Ay on Uygy

and
Aapraars = 9ap(agys)aass  in Aa(Uapys)

1. Actually, one can define stacks over any site. Here we consider the case of the small site of a
topological space.
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This discussion motivates the following definition of a weak deformation of a Poisson Lie
algebroid:

DEFINITION 3.16. A weak quantization of a Poisson Lie algebroid (E,[,], p,m) over a
manifold M is the data of
e an open covering M = J, Ua,
o elementsTl, € T'(U,, "D, )] satisfying the condition of the classical limit (2.58)
and the associativity condition (2.59),

e gauge equivalences Gop € T(Uag, “D) 1, )[[1]] from T to Iy,

o invertible sections fogy € [(Uagy, ED;OIZy)[[h]] such that?

(3.39) GapGpyGra = TP  (fagy, (Fig,) ™)
and
(3'40) faﬁ’yfafyé = Gaﬁ(fﬂ'yé)faﬁé

Given a weak quantization (or deformation) of a Poisson Lie algebroid (&, [,], p, 7) over
a manifold M, one can obviously construct a C[[A]]-algebroid stack that is a deformation of
the sheaf of functions on M, with first order term given by the image of 7 by the anchor.
Namely, the algebra structure on O(U,)[[A]] is given by p®2(II,), isomorphisms of algebras

are gog = p(Gag), and aagy = fapy-

REMARK 3.17. A weak quantization with f,3, = 1 exactly corresponds to a usual
quantization in the sens of the previous chapter.

THEOREM 3.18. Any holomorphic Poisson Lie algebroid is weakly quantizable.

Before proving this theorem we have to introduce a variant of the standard Cech reso-
lution of a sheaf, which will be compatible with algebraic structures.

3.4.2. A variant of the Cech cochain complex. Let us begin with some abstract
notions about (co)simplicial objects, taking our inspiration from [37, Section 1].

Let A denote the category with objects the ordered sets [k] := {0,...,k} (k € N) and
with sets of morphisms A := Homa ([¥],[!]) (k,I € N) consisting of the order preserving
functions [k] — [I].

A (co)simplicial object (respectively, a simplicial object) in a given category C is a functor
C : A — C (respectively, C': A°? — (). Such objects form a category (namely, morphisms
are given by natural transformations): let AC (respectively, A°PC) denotes the category of
cosimplicial (respectively, simplicial) objects in C. For a cosimplical object C' = {Cp}ren
(respectively, a simplicial object C' = {C*}jen) , we denote by a, : Cx — C; (respectively,
a* : C' — C*) the morphism corresponding to a € Al.

EXAMPLE 3.19. For any k € N let A be the geometric k-dimensional simplex
Ak :=SpecR[tg,...,tx]/ <to+---+tp—1>
The i-th vertex of AL is the R-point ; — ¢; ;. We identify the set of vertices with the ordered
set [k]. For any a € Al there exists a unique linear morphism a, : Af — AL extending
the corresponding map between the sets of vertices; namely, it is given by the morphism of
algebras
OA% — OAKIE b — Z t;
J st a;j=i

and f € ED1

2. Let us explain the notation we will follow by now with an example: if P € D! oly

pol
then P(f!) = (p® id)(P) - (f ® 1). ’
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which is well-defined since 33,37, _;t; = 3;t; = 1. In this way {AE}en is a cosimpli-
cial affine variety. As an obvious consequence we also obtain that {Q*(Ak)}ren defines a
simplicial DG commutative algebra.

ExaMPLE 3.20. Let G be a sheaf of (DG) vector spaces over a topological space X.
Then one can associate a cosimplicial (DG) vector space to any open covering X = |JI", U;.
Namely, define (here U;,..;, :==U;, N---NU;,)

9= I TWi.i 9
0<ip<--<ir<m
and for any a = (0 < ap < -+~ < ap < 1) € AL one has
@ (ionis = (fingiag NUig..s, (f € Cr(U,G) and 0 < ip < -+ < ig < m)

Moreover, if the starting sheaf is a sheaf of DGLA (respectively, a sheaf taking its values in
any category C) then {Cj (U, G*)}ren becomes a cosimplicial DGLA (respectively, a cosim-
plical object in C).

Let C, D and £ be abelian categories, with an additive (bi)functor F : C x D — £. If we
assume that projective limits exist in £ then one has a functor F' : A°’C x AD — £, namely

FU*,V,) = ker( [1 Fom™vi) == T ]I F(Uk,vl))
meN k,leNaeAl

We now need to apply this in the following situation: C = DGCA is the category of DG
commutative algebras, D = £ = DGmod is the category of DG vector spaces, and F = ® is
the tensor product functor. This way we have the functor

® : A°°DGCA x ADGmod — DGmod

Then to any sheaf of complexes G one can canonically associate a complex (which is actually
a bicomplex)

C'(U.G) = 0(AR)® Cu(T, G%)
that we call the modified Cech resolution of G. Moreover, if G is a sheaf of DGLA, then its

modified Cech resolution becomes a DGLA (since the tensor product of a DG commutative
algebra with a DGLA is a DGLA).

5 LEMMA 3.21. Let G be a sheaf of complexes. The 0-th cohomology of the cochain complex
(C (U, g),ddAR) is isomorphic to the DG vector space of global sections T'(X,G).

PrROOF. Let f = (fo, fi,...) be a 0-djs-cocycle. Remember that fo = (fa)a, fi =
(fij)i<j, etc ..., where f;,. i, are functions on AL with values in I'(Uy,...q,,G)- The cocycle
property says that these functions are constants. In particular using the fact that for any
a € A, (1®a)(fo) = (@* ®@1)(fi) in Opo ® Cr(U, G), it implies that fi,. i, = (fi.)jvs, ., -
Consequently f is uniquely determined by fo, and (fi)v,; = fi; = (fi)v,;- O

This lemma is actually a corollary of a more general result. Namely, let C = {C} }ren
be a cosimplicial complex and consider vector space N*C = _  ker(si) C CP~9, where
8; = (-vuy8y0,...) € Ag 41 is the i-th codegeneracy map. Then the differential of C' provides us
a coboundary map d := (—1)%d¢ : NP2C' — NP1 there is also another natural coboundary
map d = 314 (~1)itl : NPIC — NPT C, where ¢! = (...,i—1,i+1,...) € Al is the i-th
coface map. Thus we get a bicomplex (N**C,d + d) (which is the standard Cech resolution
of C) and then we have the following

THEOREM 3.22 (Simplicial de Rham theorem, [37, 4]). Let C = {C} }ren be a cosim-

plicial DG wvector space. Then the complezes Q*(AR)RC: and N**C are quasi-isomorphic.
O
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REMARK 3.23. The quasi-isomorphism is explicitly given by the integration of forms
over the simplex (see [4, 87]). In the case when C is a cosimplicial DGLA, even if the
complex NC' is not endowed with a DGLA structure, we conjecture that it is naturally a
Lo.-algebra and that the quasi-isomorphism of complexes Q*(A%)®RC* — N**C extends to
a Lyo-quasi-isomorphism.

From now we assume that we are given a complex manifold M together with a covering
M = |JU, by nice enough opens (which means trivializing contractible opens). For any

holomorphic DG vector bundle B over M, if we assume that B| is trivial then

o

PROPOSITION 3.24. The natural inclusions
incy : (C™(U, B),d3r + ds) = (C*(U, Q%*(B)),d5s + ds + d)

and
incy : (Q0*(M, B)),ds +d) — (C*(U,92%*(B)),d5p + ds + d)
are quasi-isomorphisms of complexes.
Moreover, if B is in fact a DGLA then incy and ince are morphisms of graded Lie
algebras.

PROOF. First of all, due to the d-Poincaré lemma
B (0,00 (B)), ) = HO(C(1,00(B)), d) = &' (U, B),

and thus it follows from the standard argument of the spectral sequence that inc; is a quasi-
isomorphism.

Second, since Q0*(B) is a sheaf of smooth sections of a C*°-bundle then its standard
Cech cohomology is concentrated in degree 0. Then due to the simplicial de Rham theorem
and Lemma 3.21

H*(C'(7,Q%"(B)), g ) = H*(C™(T, Q%% (B)), dgy ) = Q**(M,B),

and thus it follows from the standard argument of the spectral sequence that inc, is a quasi-
isomorphism.
Finally, the last statement of the proposition is obvious. O

3.4.3. Existence of weak quantizations (proof of Theorem 3.18). Recall that
we proved the existence of a L,-quasi-isomorphism
QO’* (Ma B ;oly) = FQO,* (Ma B ;oly) - FQO,* (Ma ED;oly) = QO’*(Ma ED;oly)
Now using Proposition 3.24 we obtain the existence of a Ly,-quasi-isomorphism

v (QO’*(MvE ;oly)aja [7]) - (é*(ﬂ, ED;oly)’dg + 8,[,]@)

If 7 is a holomorphic Poisson E-bivector then d(w) = 0 and [, 7] = 0 and thus An €

hQ*0 (M, ET) ;. )[[h]] is a Maurer-Cartan element. As usual we define

= 1
Ni=1®1+ E H‘P[k](hw,...,hw),
E>1

and it satisfies

- 1 - —
(3.41) dopIl + I TMe =0.

Let T = I+ I + 11" with Il = 1 ® 1+ O(h) € C"(U, "D},,,), I € hC' (U, PDY,,,) and
" e KC* (U, FD_.,)- Then equation (3.41) rewrite

e [II,M]g =0,

o dipIl + [ILII'] = 0,
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o (dggll' + 3[II',1]g) + [, 11"]g = 0, and
o d3pI" + [, 11" = 0.

Remember that II = (I, ..., I,...), with
IO = (Hao---ak)GOS“'Sak € H OAE ® F(Uao CYk7EDpOly)[[h]]
0<ag<:--<ar<m

such that IIy, . 4, (i-th vertex) = I1,, and satisfying

[Hao...ak ) Hao...ak]G = 0 .

In particular for any o € {0, ..., m} we have an element I, = 101+0(h) € T'(Ua,"D;,;, )[[1]]
such that [IIy,II,]¢ = 0. The second condition of Definition 3.16 is satisfied.
In the same way II' = (0,113, ...,II},...) with

(HIC(() ak)QOS'“Sak € H th(A]ﬁ) ®F(Uao~~~ak5E poly)[[h]]
0<ap<--<ar<m
that satisfies
ddARHOéo-nak - [ HI Hao...ak]G’-

Q... ?

Here the action of the pronilpotent Lie algebra Al'(Uy,...q, ,EDgo,y) [Al onT'(Uq,...q4 ,EDzl,oly) [[7]]
given by

q-P:=[q,Pla =A(@P-P1®q+q®]1)
integrates to an action of the prounipotent group
Gao .ag = €XP (hF(Uao Oék:EDpoly)[[h]]) =1+ hF(Uao ak’EDpoly)[[h]]
given by
G-P=AG)P(GaG)™
Then defining Gog := Pexp fol IT, 5 € Gap, it is a gauge equivalence from IIg to Ila:
Hﬁ = A(Gaﬁ)ilna(Gaﬁ ® Gaﬁ) -

For B > a we set Gop = GE;, and thus the third condition of Definition 3.16 is satisfied.
Let now IT" = (0,0,1I5,...,II}/,...) enter the game. Here

H (H:)Izo ak)QOS"'Sak € H th(A]ﬁ) ® F(Uao~~~ak: poly)[[h]]
0<ap<--<ap<m

satisfies

(342) (d aO . [Hao Oék’]'_'[:lo ak] )_[ Hao ak)Hao...ak]G
!

Let us explain the geometric meaning of this equation. First of all V := d '+ o o
defines a (usual) connection on Ak on the trivial Ga,.. o, -bundle. It follows from what we
wrote before that Il,,.. o, is a horizontal section of V with values in the trivial vector bundle
with fiber T'(Uyy...qk» EDzlmly)[[h]]. Then the action of the pronilpotent abelian Lie algebra
AL (Ugg.. amEDpoly)[[h]] given by

q-P:=lg,Plg = P(¢") — P(-¢°)
integrates to the action of the prounipotent abelian group
A, = €Xp (hF(Uao ks EDpoly)[[h]]) =1+l (Uag..ax, " poly)[[ﬁ]]

given by
f‘P (]:[1!023 akHi(? ak)( éo...akﬂ( 20...ak)_1)
Then equation 3.42 means that for any piecewise-smooth map ¢ : D? — AX with a given

point p € 8D? = S, the holonomy of V along the based oriented loop £ = (z = ¢(p), #(S"))
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is given by fs.p - ag...ap (2) € Gag...ap for a certain fy, € Ay, a, . Applying this in the
case k = 2 and ¢ : D> A3 is the natural isomorphism sending p to the 0-th vertex in A2, we
obtain elements fyg, such that GogGpyGya = fagy - Ila. The fourth condition of definition
3.16 is satisfied for 0 < a < f < v < m; in order to make it true for any «, 3,7 we have to
define fup := f;ﬂlv and fyag := Gya(fapy)-

Finally, the last equation

d?RH:)Iéo...ak = [_Hlao...ak7H:)lé0...ak]G
means that the quantities f, , depend only on the based oriented loop £. Namely, if ¢; : D* —
AR (i = 1,2) are such that (¢1(p), ¢1(S")) = (¢2(p), ¢2(S")) then fo,,p = fy,. Applying
this in the case k = 3, ¢1 : D? — A} corresponds to the (0,1,2)-face, ¢ : D? — A}
corresponds to the union of faces (0,1,3), (0,3,2), (1,2,3), and ¢1(p) = ¢2(p) the 0-th
vertex, then we obtain the last condition of Definition 3.16.
Theorem 3.18 is proved. O

REMARK 3.25. The L,-quasi-isomorphism ¥ should imply a stronger result than just
the existence of a weak quantization, namely a classification result generalizing the one
proved in [54] for the symplectic case.

REMARK 3.26. The way we proved the existence of weak quantizations is pedestrian
and I believe there should exist a more conceptual proof of this fact. Namely, to any sheaf of
DGLA one can associate the groupoid stack (roughly speaking, it is a sheaf of groupoids) of
Maurer-Cartan elements. Then two Ls.-quasi-isomorphic sheaves of DGLA have isomorphic
stacks of Maurer-Cartan elements (this was pointed out to me by Mathieu Anel). Both
existence of weak quantizations and classification result should come from this fact using
Theorem 3.2.

3. the explicit formula for fj , is given by exp (— / oI ).
D2

ag...a






CHAPITRE 4

Quantization of formal classical dynamical r-matrices

REsuME. Dans ce chapitre, dont les résultats font ’objet de [6], on démontre Pexistence
d’une quantification par twist dynamique pour toute r-matrice dynamique formelle dans
le cas réductif. On démontre également un théoréme de classification de telles quantifi-
cations. Ces deux résultats découlent de l’existence d’un quasi-isomorphisme Lo, entre
deux algébres de Lie différentielles graduées appropriées.

In [28], Felder introduced dynamical versions of both classical and quantum Yang-Baxter
equations which has been generalized to the case of a nonabelian base in [25] for the classical
part and in [72] for the quantum part. Naturally this leads to quantization problems which
have been formulated in terms of twist quantization ¢ la Drinfeld ([19]) in [70, 72, 21, 22].

Let us formulate this problem in the general context. Consider an inclusion ) C g of Lie
algebras equipped with an element Z € (A3g)?. A (modified) classical dynamical r-matriz for
(g,h,Z) is a regular (meaning C*°, meromorphic, formal, ... depending on the context) -
equivariant map p : h* — A%g which satisfies the (modified) classical dynamical Yang-Baxter
equation (CDYBE)

(4.1) CYB(p) — Alt(dp) =
where CYB(p) := [V, p%] + [p"2, p*%] + [p"%, p>°] = 3, p] and

o 1 9p>® _ 5 Op™? 3 0p"?
Alt(dp) ._Z(h, o~ Mgy Thigy)

Here (h;) and (\?) are dual basis of h and h*.

Let ® =1+ O(h?) € (Ug®?)?[[h]] be an associator quantizing Z (of which the existence
was proved in [20, proposition 3.10]). A dynamical twist quantization of a (modified) clas-
sical dynamical r-matrix p associated to ® is a regular h-equivariant map J = 1+ O(h) €
Reg(h*, Ug®?)[[h]] such that AltZ=2 = p mod h and which satisfies the (modified) dynamical
twist equation (DTE)

(42) J12’3()\) * J1,2()\ +hh3) — @—1(]1,23()\) * J2’3()\)
where * denotes the PBW star—product of functions on h* and
T2 (A + hh®) : Z Z (Oxir = Oie J)(A) ® (hiy -+ i)
k>0 . 21, ,’lk

Now observe that many (modified) classical dynamical r-matrices can be viewed as
formal ones by taking their Taylor expansion at 0. In this chapter we are interested in the
following conjecture:

CONJECTURE 4.1 ([21]). Any (modified) formal classical dynamical r-matriz admits a
dynamical twist quantization.

Let us reformulate DTE in the formalA framework. A formal (modified) dynamical twist
is an element J(\) = 1+ O(h) € (Ug®?®Sh)?[[h]] which satisfies DTE, and JY2(\ + hh?) €
(Ug®3&8h)[[1]] is equal to (id®? @ A)(J) where A : Sh — (UgdSh)[[]] is induced by

57
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h>z+— hrx®1+1®z. Then define K := J(A\) € (Ug®? ® Sh)?[[A]] which we view as an
element of (Ug®2 ® Uh)"[[A]] using the symmetrization map Sh — UB. Since J is a solution
of DTE K satisfies the (modified) algebraic dynamical twist equation (ADTE)

(4.3) K123451,2,34 _ (@‘1)1’2’3K1’23’4K2’3’4

Moreover and by construction, K = 1+ ) ., i"K, has the h-adic valuation property.
Namely, Ub is filtered by (Uh)<, = ker(id —noe)®"+! o Al®™) where ¢ : Uh — k and
n : k — Ul are the counit and unit maps, and K,, € (Uh)<n_1. Conversely, any algebraic
dynamical twist having the h-adic valuation property can be obtained from a unique formal
dynamical twist by this procedure.

This chapter, in which we always assume Z = 0 and ® = 1 (non-modified case), is
organized as follow.

In Section 1 we define two differential graded Lie algebras (DGLA) respectively asso-
ciated to classical dynamical r-matrices and algebraic dynamical twists. In Section 2 we
formulate and prove the main theorem of this chapter which states that if h admits an adh-
invariant complement (the reductive case) then these two DGLA are L.,-quasi-isomorphic.
We prove that it implies Conjecture 4.1 in this case, which generalizes Theorem 5.3 of [70]:

THEOREM 4.2. In the reductive case, any formal classical dynamical r-matriz for (g, b, 0)
admits a dynamical twist quantization (associated to the trivial associator).

The construction of the L.,-quasi-isomorphism makes use of an equivariant formality
theorem for homogeneous spaces which is obtain from results of Chapter 2. In Section 3 we
use our quasi-isomorphism to deduce some classification results, still in the reductive case.
Section 4 is dedicated to a short study of what happens in the case of an abelian base: in
particular we also prove that if g = h & m for h abelian and m a Lie subalgebra then the
results of the previous sections are still true in this situation. We conclude the chapter with
some open questions.

4.1. Algebraic structures associated to dynamical equations

Let h C g be an inclusion of Lie algebras.

4.1.1. Algebraic structures associated to CDYBE. Let us consider the following
graded vector space

CDYB := A*g® Sh = @) A*g @ Sh
k>0
equipped with the differential d defined by

l
(4.4) d(@i A Aag@hi b)) ==Y hi Azt Ao Ay ® by hih
=1

With the exterior product A it becomes a differential graded commutative associative algebra.
Moreover, one can define a graded Lie bracket of degree —1 on CDYB which is the Lie bracket
of g extended to CDYB in the following way:

(4.5) [a,bAc] = [a,b] Ac+ (=1)12=DPp A [a, ]

Thus one can observe that polynomial solutions to CDYBE are exactly elements p € CDYB
of degree 2 such that dp+ 3 [p, p] = 0. We would like to say that such a p is a Maurer-Cartan
element but (CDYBJ1],d,[,]) is not a differential graded Lie algebra (DGLA).
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Instead, remember that we are interested in h-equivariant solutions of CDYBE (i.e.,
dynamical r-matrices) and thus consider the subspace g; = (CDYB)" of h-invariants with
the same differential and bracket.

PRrOPOSITION 4.3. (g1[1],d,[,]) is a DGLA. Moreover (g1,d, A,[,]) is a Gerstenhaber
algebra.

PROOF. Leta=21 A--- Az ®hy---hsand b=y A---Ay; ®my ---my be h-invariant
elements in g;. We want to show that
(4.6) d[a,b] = [da,b] + (=1)*"[a, db]
The Lh.s. of (4.6) is equal to

e
—(Zhi/\[xl/\---/\xk,yl/\---/\yl]®h1---hsml---mthz-
i=1

t
+ij/\[:c1/\---/\:I:k,y1/\---/\yl]®h1---hsml---mtmj)
j=1

The first term in the r.h.s. of (4.6) gives

S

~

Z ((—l)kflxl/\- SATE ARG I Ay — AT A AT, Y1 A - -/\yl])®h1 -o-hgmy ---myhy
i=1
and for the second term we obtain

t

Z ((—l)k_l[mj,ml/\- ATEIAYLA- - Ay —mGA[TIA- - AT, Y1 A- - -/\yl])®h1 -~ hgmy - - My
j=1

Thus the difference between the 1.h.s. and the r.h.s. of (4.6) is equal to

k
(—1)’“(2:1:1/\---/\xk/\[hi,yl/\---Ayl]®h1---hsm1---mthi
i=1

l
+Z[m.’,$1/\"'/\xk]/\yl/\"'/\yl@hl"'hsml"'mtm])
i=1

Then using h-invariance of a and b one obtains

(—l)kil Z.’L‘l NNz AN N--- ANy ® (h1 --hgmq - -mt([h,-,mj] — [m],hz])ﬂ,mj) =0
%,

The second statement of the proposition is obvious from the definition (4.5) of the
bracket. 0

Let p(\) € (A2g&8h)" be a formal classical dynamical r-matrix. Since p satisfies CDYBE,
a := hp(h)) € hgi[[A]] is a Maurer-Cartan element (i.e. do + 1[e, ] = 0).

4.1.2. Algebraic structures associated to ADTE. Let us now consider the graded
vector space

ADT :=T*Ug® Uh = P @ Ug® Uh

k>0
equipped with the differential b given by
k+1
(47) b(P) .— p2okt2 + Z(_1)iP1,...,iz’+1,...,k+2 for Pe ®kUg ® Uh
i=1

REMARK 4.4. This is just the coboundary operator of Hochschild’s cohomology with
value in a comodule; and b2 = 0 follows directly from an easy calculation.
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One can define on ADT an associative product U (the cup product) which is given on
homogeneous elements P € @*Ug ® Uh and Q € ® Ug® Uh by

(4.8) PUQ = Plyohobt okt gkl beti41

PROPOSITION 4.5. (ADT,b,U) is a differential graded associative algebra.

PRrOOF. The cup product is obviously associative. Thus the only thing we have to check
is that

(4.9) HPUQ)=bPUQ+ (-1)FIPUBQ
Let k = |P| and I = |Q|. The Lh.s. of (4.9) is equal to
k
Pk Lk 2 b2 Ok 2, k2 Z(_l)z'Pl,...,z'z'+1,...,k+1,k+2...k+l+2Qk+2,...,k+l+2
i=1
k+1+1
+ Z (_l)ipl,...,k,k+1...k+l+2Qk+1,...,ii+1,...,k+l+2
i=k+1

The first line of this expression is equal to
BPUQ — (—1)F+L plokibit Lo kb2 (2, bt 42

and the last term of the same expression gives
(_1)k(P ubQ — Pl,...,k,k+1...k+l+2Qk+2,...,k+l+2)

The proposition is proved. O

Recall that in the case h = {0} one can define a brace algebra structure on (T*Ug)[1]
(see [32]). Unfortunately we are not able to extend this structure to ADT in general. Since
we deal with h-equivariant solutions of ADTE we can consider the subspace g» = (ADT)Y
of h-invariants. Let us now define a collection of linear homogeneous maps of degree zero

{=] =, ,—} 1 92[1] ® g2[1]®™ — go[1] indexed by m > 0, and {P|Q1,- .., Q. } is given by
m
Z (_1)6P1,...,i1+1...i1+k1,...,im+1...im+km,...,n+1 H Qis—i-l,...,is—i-ks,is+ks+1...n+1
El
0< i1 im +hm <n s=i
itk <ig41

where ks = |Qs], n = |P|+ >, ks —m and e = ) (ks — 1)i,.

PROPOSITION 4.6. (g2[1],{—|—,...,—}) is a brace algebra.

PROOF. Since we work with b-invariant elements one can remark that if is + ks < it
then Qi+l mistheisthatlontl gpg Qiethrmiethobthetlontl oonmyte, Using this the proof
becomes identical to the case when h = 0 (see [32] for example). O

Now observe that since m = 1%3 € (®?Ug ® Uh)Y is such that {m|m} = 0 one obtains a
Byo-algebra structure ([2]) on ga (see [38]). More precisely, we have a differential graded bial-
gebra structure on the cofree tensorial coalgebra T°(go[1]) of which structure maps a™, a??
are given by

e a'(P) = bP = (=1)/PI=1[m, P]g, where

[P, Qle = {PIQ} - (~1)(FI-D(@I-Dq|P}
« X(P,Q) = {mlP,Q} = PUQ

e g% =¢10 =id

o al’n(P;Qla"'aQn) = {P|Q1a7Qn} for n Z 1
e all other maps are zero
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In particular, we have
COROLLARY 4.7. (g2[1],b,[,]c¢) is a DGLA. O

REMARK 4.8. Since that for any graded vector space V, DG bialgebra structures on the
cofree coassociative coalgebra T°V are in one-to-one correspondence with DG Lie bialgebra
structures on the cofree Lie coalgebra LV (see [61], section 5), then L¢(g2[1]) becomes a DG
Lie bialgebra with differential and Lie bracket given by maps ", [P¢ such that I'! = b and
M =[,]g- Therefore dy := 3,501 + 3, 50179 : C°(L4(g2[1])) = C°(L%(g2[1])) defines a
G o-algebra structure on ga (d2 o da = 0 since ds is just the Chevalley-Eilenberg differential
on the DG Lie algebra L(g2[1])).

4.2. Existence of a twist quantization in the reductive case

In this section we assume that g = h @ m with [h,m] C m. Let us denote by p: g - m
the projection on m along b; it is h-equivariant.

4.2.1. Main result and proof of Theorem 4.2. First of all, observe that CDYB, g1
and G; := C°(g1[2]) have a natural grading induced by the one of S§. In the same way ADT,
g2 and Gy := C°(g2[2]) have a natural filtration induced by the one of Uh. Our main goal is
to prove the following theorem, which is sufficient to obtain algebraic dynamical twists from
formal dynamical r-matrices.

THEOREM 4.9. In the reductive case, there exists a Ly -quasi-isomorphism

¥ (gu(1],d,[,]) == (g2[1],b,[,]e)
with the following two filtration properties:
(F1) VX € (g1)k, PM(X) = (alt ® sym)(X) mod (g2)<k 1
(F2) VX € (A"g1)k, OI(X) € (g2)<nth 1

PROOF OF THEOREM 4.2. Now consider a formal solution p(\) € (A2g®S5h)% to CDYBE.
Let us define o := fip(hA) € hgi[[h]] which is a Maurer-Cartan element in g [[A]]. The Loo-

morphism property implies that & := Y o, %lI!["](a, ...,a) is a Maurer-Cartan element
in hgs[[R]]; this exactly means that K := 1®% + & € (®2Ug ® Ub)"[[h]] satisfies ADTE.
Moreover, due to (F2) the coefficient K,, of A" in K lies in (g2)<n—1. It means that there
exists J € (Ug®2&Sh)"[[h]] satisfying DTE and such that K = (id®? @sym)(J(h))). Finally,
property (F1) obviously implies that the semi-classical limit condition < ’hJ 2 = pmod his

satisfied. 0

ExAMPLE 4.10. Let g = h ® m a reductive Lie algebra (i.e. b is a Lie subalgebra
and [h,m] C m). Following [22] we have a map hY — (A?m)V, taking A € hY to w(}) :
z Ay — A([z,y]). The reductive decomposition is called nondegenrate if for generic A, w(A)
is nondegenerate (by this we mean that if we identify (A?2m)Y with a subspace of End(m)
using any isomorphism m =2 m", then the map X\ — det w()\) does not vanish identically). In
this situation one can define a rational map py : b — A’m C A’g; A = —w(X)~". This map
is a dynamical r-matrix [22, proposition 1.1]. Unfortunately, pg is singular at the origin. But
in the case b is equipped with a nontrivial character x € (h")" then the map A — pp(A + x)
is a dynamical r-matrix that is regular at the origin.

4.2.2. Resolutions. Let us first observe that the bilinear map [, ]m := (A'p)o[, ] defines
a graded Lie bracket of degree —1 on (A*m)". Then we prove

PROPOSITION 4.11. The natural map p; : (g1[1],d,[,]) = ((A*m)®[1],0,[,]m) is a mor-
phism of DGLA. Moreover, there exists an operator § : g5 — gI_l such that od +dod =
id—p1, 606 =0 and §((g1)x) C (91)k+1- In particular, pi induces an isomorphism at the
level of cohomology.
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PROOF. The projection p; := (A'p) ® ¢ : (CDYB,d) = (A*m,0) is a h-equivariant
morphism of complexes, and it obviously restricts to a morphism of (differential) graded Lie
algebras at the level of h-invariants.

Moreover, A"g ® Sh = P, ,_, A’'m ® A’h ® Sh as a h-module; and under this identi-
fication d becomes —id ® dx, where dx : A*h ® Sh — A*T1h ® Sh is Koszul’s coboundary
operator, and p; corresponds to the projection on the part of zero antisymmetric and sym-
metric degrees in . Let us define § = id ® dx with 6x : A*h @ S*h = A* " 1h® S*+1h defined
by

mi_n SV A g AT @by chma; fm+n#£0
0 otherwise

6K(x1/\---/\mn®h1---hm)={

Finally remark that § is a h-equivariant homotopy operator: § od +d o § = id — p; and
d 0§ = 0. The proposition is proved. O

Now we prove a similar result for go. Let us first define Um := sym(Sm) C Ug; this is a
sub-coalgebra of Ug and thus T*Um equipped with its Hochschild coboundary operator by,
becomes a cochain subcomplex of the Hochschild complex (T*Ug, bg) of Ug. We also have
the following

LEMMA 4.12. Ug =Ug-h @ Um as a filtered h-module. Moreover [,]gm := (®'p) o [,]
defines a graded Lie bracket of degree —1 on (T*Um)?

PROOF. See [34, Ch.IT §4.2] for the first statement. The second statement follows from
a direct computation. O

Then we prove the

PROPOSITION 4.13. The natural map ps : (g2[1],b,[,]c) = (T*Um)®[1],bm,[,]a.m) is a
morphism of DGLA. Moreover, there exists an operator k : g5 — g§_1 such that Kob+bok =
id —p2, Kok =0 and m((gz)sk) C (92)<k+1- In particular, py induces an isomorphism at
the level of cohomology.

PROOF. The projection ps := (®'p) ® € : (ADT,b) — (T*Um,by,) is a h-equivariant
morphism of complexes, and it obviously restricts to a morphism of DGLA at the level of
bh-invariants (by Lemma 4.12).

Remember that go has a natural filtration induced by the one of Ul. Then one obtains
a spectral sequence of which we compute the first terms:

Ey* = (T*Ug® S*h)® dp = by ®id

E}* = (A*g® S*h)b d=d
Ey* = Ey° = (A*m)? dy=0
Then the proposition follows from Proposition 4.11. O

4.2.3. Inverting po. In this subsection, taking our inspiration from [48, appendix], we
prove the following

PROPOSITION 4.14. There exists a Lo, -quasi-isomorphism
Q: (T*Um)°[1], b, [, ]aym) == (82[1],0,[,]c)

such that QM is the natural inclusion and Q™ takes values in (gg)Sn_l.

PROOF. Let (N,by) C (g2,b) be the kernel of the surjective morphism of complexes
po @ (g2,b) = ((T*Um)Y, by). It follows from Proposition 4.13 that there exists an operator
H : N* — N*~1 such that H(N<,) C Neps1, Ho H=0and by o H+ Hoby =id.

Now let us construct a L,-isomorphism

F: (C(g2[2),b+ [ ]a) = (C((T*UM)°[2] © N[2]), b + by + [, ]6.m)
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with structure maps FI" : A"gy — ((T*Um)? @ N)[1 — n] such that

— Fis the sum of py with the projection on N along (T*Um)" (in some sense FI!]
is the identity),

— for any n > 1 and X € (A"gs)<g, FI'N(X) € Nepypo1-

Let us prove it by induction on n. First FI!l is a morphism of complexes by definition. Then
let us define s : A2g2 — ((T*Um)" @ N)[1] by

Ka(z,y) = [F (), F' @)lom — F (2. 9]c)

It takes values in N[1] and is such that by /Ko (z,y) + K2(bz, y) + Ka(z, by) = 0. Consequently
F2l:= Ho K, : A2g5 — N is such that

bnF(z,y) — FP(ba,y) — F2(x,by) = Ka(z,y) (Leo-condition for F2)
and for any X € (A%g2)<k, FPI(X) € N<pi1. After this, suppose we have constructed
FUI ... FI"l and let us define

Knt1 = [Jamo FET = FSTo [ g : A" gy — (T*Um)" @ N)[1]

It obviously takes values in N[1] and is such that by o Ky q1 + Kpt1 o b = 0. Consequently
Flntl] .= H o K,,4, satisfies the Loo-condition (where we omit the composition symbol o)

by FIt — Flntllpy = by HK g1 — HK g1 b = (bvH 4+ Hbn)K g1 = Kyt

and for any X € (A"g2)<pnt1, FI"P(X) € Nepyr (since Kop1(X) € Nk 1)-

Now let H be the inverse of the isomorphism F, it is such that for any n > 1 and
X € (A"g2) <k, H"(X) € N<pir—1. Finally we obtain Q by composing H with the inclusion
of DGLA (T*Um)"[1] = ((T*Um)" @ N)[1]. O

4.2.4. Proof of Theorem 4.9. Recall from [34, Ch.II §4.2] that
(T*'Um)" = Dif*™(G/H)Y and (A*P'wm)Y = I(G/H, A" T(G/H))¢

as DGLA. Remember also from [52, Ch.IT §8] that G-invariant connections on G/H are in
one-to-one correspondence with h-equivariant linear maps a : m ® m — m, and that the
torsion tensor is given by a@ —a?! —po[,]. Thus G/H is equipped with a G-invariant torsion
free connection V, corresponding to the map a := 1po[,]. Then using the equivariant version
of Theorem 2.1 (see Corollary 2.2) we obtain a G-equivariant L.,-quasi-isomorphism

¢:T(G/H, N T(G/H)) »— Diff** (G/H)

with first structure map ¢!} =V, which restricts to a Leo-quasi-isomorphism at the level of
G-invariants. Let us define

p:=Qogop: (91[1]7d7[a]) - (92[1]ab7[7]G);

it is a Loo-quasi-isomorphism with first structure map 'l = (alt ® 1) o (A'p ® £).

Finally define V := (alt ® sym) o d : g1 — g2[—1] and use Lemma 4.12 to construct
a Leo-quasi-morphism ¥ : (gi[1],d,[,]) =— (g2[1],b,[,]g) with first structure map ¥l =
YN 4+ b0V +V od. Since for any X € (g1)r we have

bo (alt ® sym)(X) = (alt ® sym) o d(X) mod (g2)<k—1,

then ¥l(X) PH(X) + bV (X) + V(dX)
(alt ® sym) o (p1 + dd + dd)(X) mod (g2)<k—1

= (alt ® sym)(X) mod (g2)<g—1

Consequently ¥ satisfies (F1). Moreover, it follows from the proof of Lemma 4.12 that ¥
also satisfies (F2). O
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4.3. Classification

Theorem 4.9 implies a stronger result than just the existence of the twist quantization.
Namely, since ¥ is a Ly,-quasi-isomorphism there is a bijection between the moduli spaces
of Maurer-Cartan elements of the DGLA (g1 [1])[[#]] and (g2[1])[[%]]-

4.3.1. Classification of algebraic and formal dynamical twists. Following [21],
two dynamical twists J(A) and J'()) are said to be gauge equivalent if there exists a regular
h-equivariant map T'()\) = exp(q) + O(h) € Reg(h*,Ug)[[A]], with ¢ € Reg(h*, g)" such that
q(0) = 0, and satisfying
(4.10) J'AN) =T2(N\) « JQA) «T*(A) '« TH(A + hh?) !

Dealing with formal functions one can easily derive an equivalence relation for the corres-
ponding algebraic dynamical twists K = J(A\) and K' = J'(A)):
(4‘11) KI — Q12’3K(Q2’3)71(Q1’23)71

in (Ug®? @ Uh)Y[[R]], with Q =1+ O(h) € (Ug @ Uh)"[[R]] given by T (AN).

Assume now we are in the reductive case.
Since the composition Q2 0 ¢ : ((Am)Y[1],0,[,]m) =— (82[1]),b[,]c) in the previous
section is a L,-quasi-isomorphism then we have a bijective correspondance
{7 € L(A2m)"[[A]] s.t. [m,m]m = O} - {algebraic dynamical twists}
Go gauge equivalence (4.11)

(4.12)

where Gy is the prounipotent group corresponding to the Lie algebra hm"[[A]]. Moreover,

since the structure maps Q[2n] take values in (g2)<p—1 then it appears that any algebraic
dynamical twist is gauge equivalent to a one with the A-adic valuation property and thus we
have a bijection

{algebraic dynamical twists} {formal dynamical twists}

4.1
(4.13) gauge equivalence (4.11) gauge equivalence (4.10)

4.3.2. Classical counterpart. Assume that we are in the reductive case. Since p; is
a Ly,-quasi-isomorphism by propostion 4.11 then we have a bijection

{a € h(A’g ® Sn)[[A] st. dov+ §lasa] =0} {r € h(A*m)°[[h] s.t. [, ] = 0}
G1 G'O

where (1 is a prounipotent group and its action (by affine transformations) is given by the
exponentiation of the infinitesimal action of its Lie algebra h(g ® Sh)"[[A]]:

(4.14) g-a=dg+lg.a] (g€ n(g®Sh)°[n])

Then going along the lines of Subsection 4.2.3 one can prove the following

PRroOPOSITION 4.15. There exists a Ly, -quasi-isomorphism
Qi = (N*m)[11,0,[,Jw) == (@a[1],d,[,])
such that Q[ll] is the natural inclusion and Q[ln] takes values in (g1)<n—1- O

Consequently any Maurer-Cartan element in (gq[1])[[7]] is equivalent to a one of the
form hpp(h)), where p;, € (A2g®Sh)Y[[R]] satisfies CDYBE. In other words py, is h-dependant
formal dynamical r-matrix. On such a pp, the infinitesimal action (4.14) becomes

(4.15) q-pn=— Zhi A % +lg,pn) (g € g®Sm)[[R]]
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This action integrates in an affine action of some group G of h-equivariant formal maps
with values in the Lie group G of g. And then we have a bijection

{7 € H(A2m)"[[A]] s.t. [7,7]m = O} PR {form. dynam. r-matrices/R[[#]]}
Go G,
REMARK 4.16. This bijection has to be compared with Proposition 2.13 in [70] and
[24, Section 3]

(4.16)

Finally, combining (4.16), (4.12) and (4.13) we obtain the following generalization of
Theorem 6.11 in [70] to the case of a nonabelian base:

THEOREM 4.17. Let m € (A’m)¥ such that [r,7]m = 0. Then there are bijective corres-
pondances between

(1) the set of h-dependant and G-invariant Poisson structures mp, = hm mod h% on
G/H, modulo the action of Gy,

(2) the set of h-dependant formal dynamical r-matrices pr(\) such that pr(0) = m mod h
in A2(g/B)[[B]], modulo the action (4.15) of Gy,

(3) the set of formal dynamical twists J()\) satisfying (22p) (Alt%) = 7w mod h,
modulo gauge equivalence (4.10). O

4.4. The case of an abelian base
In this section we assume that b is abelian.

4.4.1. A classification result for dynamical r-matrices. Let m be any complement
of b, denote by p the projection on m along h (that is NOT h-equivariant), and observe that
(Ag)Y N Am is naturally equipped with a graded Lie bracket [,]m = A'po[,] of degree —1.
Then we prove

PROPOSITION 4.18. The natural map p1 : (9:[1],d,[,]) = ((Ag)? N A*m[1],0,[,]m) is a
morphism of DGLA. Moreover, there exists an operator § : gt — g} ' such that Sod+dod =
id—p1, 006 =0 and 5((gl)k) C (g1)k+1- In particular, p1 induces an isomorphism at the
level of cohomology.

PROOF. Asin the proof of Proposition 4.11, the projection p; := (A'p)®e : (CDYB,d) —
(A*m,0) is a quasi-isomorphism of complexes, and it restricts to a morphism of DGLA
(g1[1],4,[,]) = ((Ag)" N A*m[1],0,[,]m)- But in this case it is a priori NOT h-equivariant.

Nevertheless, we want to prove that it still is a quasi-ismorphism at the level of b-
invariants. Namely, since b is abelian one has

(A"g® Sh)? = (A"g)" @ Sh= P [(Ag)’ N APmM] ® A%h @ Sh.
p+q=n
Under this identification d becomes —id ® dx, where dx : A*h®@.5h — A*T1H® Sh is Koszul’s
coboundary operator, and p; corresponds to the projection on the part of zero antisymmetric
and symmetric degrees in h. Let us define § = id® 0k with dx : A*H® S*h = A*"1h® S**T1h
defined by

1 E.(—l)iwl/\---.fi---/\xn®h1---hmwi fm+n#0
— m+n i
Ok (2L A+ AZn ® hy - hin) { 0 otherwise

and remark that ¢ is a homotopy operator: dod+dod = id—p; and dod = 0. The proposition
is proved. O

In particular p; is a Ly,-quasi-isomorphism, and thus we have a bijection
{a € h(A%g ® Sh)P[[A]] s.t. da + %[a,a] =0} {7 € h(A2g)" N A2m[[A]] s.t. [, 7]m = O}
e — Go
1
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where (1 is as in Subsection 4.3.2 and G is the prounipotent group corresponding to the
Lie algebra A (g" N m)[[A]].
Again one can inverse p;, namely

PROPOSITION 4.19. There exists a Lo, -quasi-isomorphism
such that Q[ll] is the natural inclusion and Q[ln] takes values in (g1)<n—1- O

Consequently any Maurer-Cartan element in (g; [1])[[]] is equivalent to a one of the form
hpr(RA) and then we have a bijection

{7 € W(A2g)" N A2m[[A]] s.t. [m, 7T]m = O} PN {form. dynam. r-matrices/R[[h]]}
Go G1

(4.17)

where @I is as in Subsection 4.3.2.

4.4.2. Another case when the twist quantization exists. In this subsection we
assume that the abelian subalgebra § admits a Lie subalgebra m as a complement. Then
the natural inclusions i : (Ag)? N Am < Ag and id ® 1 : (T*Ug)" < g, are compatible
with all algebraic structures. Now recall from example 2.4 (i) that there exists a Loo-quasi-
isomorphism F : (A*g)"[1] =— (T*Ug)"[1] with FI = alt. By composing these maps
together with p; one obtains a L,-morphism

F= (1d® 1) oFoi op1: (gl[l],d,[,]) - (92[1]5b7[7]G)
with F11l = (alt ® 1) o p; and F[" taking values in (92)<o-
THEOREM 4.20. There exists a Lo -quasi-isomorphism

v (91[1], d, [a]) - (92[1]7 b, [7]G)
with properties (F1) and (F2) of Theorem 4.9.

PROOF. First recall that since b is abelian then g; = ((Ag)? NAmM) ® Ah® Sh as a vector
space. Thus if §x is as in the proof of Proposition 4.11 then § := id ® dx is a homotopy
operator such that 0d +dd =id—Ap®e.

Now we proceed like in Subsection 4.2.4: use Lemma 4.12 to construct ¥ with first
structure map ! = F! 4+ boV + V od, where V := (alt ® sym) 0§ : g1 — go[—1].

Finally, ¥ obviously induces an isomorphism in cohomology. d

Then using the same argumentation as in the proof of Theorem 4.2 (Subsection 4.2.1)
one obtains the

THEOREM 4.21. If b is an abelian subalgebra of g with a Lie subalgebra as a comple-
ment, then any formal classical dynamical r-matriz for (g,b,0) admits a dynamical twist
quantization (associated to the trivial associator). O

EXAMPLE 4.22. In particular, this allows us to quantize dynamical r-matrices arizing
from semi-direct products g = m x C" like in [23, example 3.7].

Moreover we also obtain a classification of quantizations like in Section 4.3:
THEOREM 4.23. Let m € (A%g)Y N A’m such that [r,7]m = 0. Then there are bijective
correspondances between
(1) the set m = hr mod h? € R(A%g)Y N A’m[[h]] such that [mh, Tr]m = 0, modulo the
action of Gy,
(2) the set of h-dependant formal dynamical r-matrices pr()\) such that (A*p)(pr(0)) =
7w mod h, modulo the action (4.15) of G1,
(3) the set of formal dynamical twists J()\) satisfying (®2p) (Alt%) = 7 mod H,
modulo gauge equivalence (4.10). O
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4.5. Concluding remarks

Open questions. Let us then mention that one can consider a non-triangular (i.e., non-
antisymmetric) version of non-modified classical dynamical r-matrices. Namely, h-equivariant
maps r € Reg(h*, g ® g) such that CYB(r) — Alt(dr) = 0. According to [72], a quantization
of such a r is a h-equivariant map R = 1+ hr + O(h?) € Reg(h*,Ug®?)[[h]] that satisfies the
quantum dynamical Yang-Baxter equation (QDYBE)

(4.18) RY2(X) * RY3(X + k%) « R*3(X) = R*®(\ + hh') « R13(X) « RV (X + hh®)
QUESTION 4.24. Does such a quantization always exist?

The most famous example of non-triangular dynamical r-matrices was found in [1]
by Alekseev and Meinrenken, then extended successively to a more general context in
[25, 24, 21], and quantized in [21].

Following [21], remark that for any non-triangular dynamical r-matrix r such that r +
P =t € (S%g)® (quasi-triangular case) one can define p := r — t/2 and Z := 1[t1.2 23]
Then p is a modified dynamical r-matrix for (g, b, Z); morever the assignment r — p is
a bijective correspondence between quasi-triangular dynamical r-matrices for (g, bh,t) and
modified dynamical r-matrices for (g, b, Z). Now observe that if J(\) is a dynamical twist
quantizing p, then R(\) = JP(X)~'xe™/2xJ()) is a quantum dynamical R-matrix quantizing
the classical one r.

In this chapter we have constructed such a dynamical twist in the triangular case ¢t = 0.
One can ask

QUESTION 4.25. Does such a dynamical twist exist for any quasi-triangular dynamical
r-matriz? At least in the reductive and abelian cases?

This question seems to be more reasonable than the previous one.
More generally one can ask if Conjecture 4.1 (and its smooth and meromorphic versions) is
true in general. A positive answer was given in [21] when § = g; but unfortunately it is not
known in general, even for the non-dynamical case h = {0} (which is the last problem of
Drinfeld [19]: quantization of coboundary Lie bialgebras).

Momentum maps. Finally let us mention that if r()) is a triangular dynamical r-
matrix for (g,h), then the bivector field

7r:=7’(—)\s+z%/‘\m+m,*

is a G x H-biinvariant Poisson structure on G x h* and the projection p : G x h* — h* is a
momentum map. Moreover, according to [72] any dynamical twist quantization J(A) of r(X)
allows us to define a G x H-biinvariant star-product * quantizing = on G x h* as follows:

fxg=Ff*pwyg if f,g€C™(Y)
fxg=fg if feC®G),geC @)

fro=ep(hY AL oh) (fog) i feC0™0HY).geC™(O)

frg=IN(f®g) i f9€C=(@)
Therefore the map p* : (Fet(h*)[[A]], +psw) — (Fet(G x h*)[[A]], =) becomes a quantum
momentum map in the sens of [69]. Consequently, there might be a way to look at momentum
maps and their quantum analogues as Maurer-Cartan elements in DGLA.






ANNEXE A

Basic materials

A.1. Lie-Rinehart algebras and bialgebroids
A.1.1. Lie-Rinehart algebras. In this subsection we recall some ideas from [57].

DEFINITION A.1. A Lie-Rinehart algebra is the data of a commutative algebra B, o Lie
algebra L which is also a B-module, and o B-linear morphism of Lie algebras

p: L — DerB

such that the B-module and Lie algebra structures on L are compatible in the following sense:
for any f € B and any u,v € L

(A.1) [u,fv] = flu,v] + p(u)(f)v

The notion of a morphism of Lie-Rinehart algebras is obvious.

We then define the enveloping algebra UrL of a Lie-Rinehart algebra (R, L, p) as the
quotient algebra
(4-2) TRSD/( fog—fg, fou—fu,
u® f—fRu—p)f,
UV —v®u-—[u,v,
f,9€R, u,v € L.

REMARK A.2. UgL can be obtained from the universal enveloping algebra of the Lie
algebra R @ L, with bracket given by

[f +u,g+0] = pw)(g) = p@)(F) + [u,0]
for any f,g € R and any u,v € L. Namely,
UprL=U(R®L)/{f®u— fu,f € R,ue R® L}
UgL is endowed with an increasing filtration
(A.3) R=U{L CURL CURL C --- C UgL,
which is defined by assigning the degree 1 to the elements of L.

PROPOSITION A.3. Any morphism (p,®) : (R,L) — (R',L') of Lie-Rinehart algebras
lifts to a morphism of algebras N
$.UrL —» Up I/

compatible with the filtration and such that ® = @ and @ L= P.
Remark that for any P € ULL and any u € R& L, Pu— uP € UlgflL. It implies in
particular that the right and left R-module structures on Gr(UgL) are the same, and we may

regard Gr(UgL) as a R-algebra. Thus we can formulate the Poincaré-Birkhoff-Witt theorem
for Lie-Rinehart algebras:

THEOREM A.4 (Rinehart, [57]). If L is a projective R-module, then the canonical map
SR(L) — GT(URL)

is an isomorphism of R-algebras.

69
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A.1.2. Bialgebroids.

DEFINITION A.5 ([70], see also [42]). A bialgebroid is an associative algebra with unit
H together with o base algebra R, an algebra homomorphism s : R — H and an algebra
antithomomorphism t : R — H whose respective images commute together (the source and
target maps, which give H an R-bimodule structure), and R-bimodule maps A : H > HQr H
(the coproduct) and € : H — R (the counit) such that

(1) AQ)=1®gr1 and (AQgrid) o A= (id®r A)o A
(2) Ya € RYh € HA(h)(t(a) ®r 1 —1®Rr s(a)) =0
(3) Vhi,hs € H,A(hlhz) = A(hl)A(hQ)
(4) e(lg) =1k and (e ®g idg) o A = (idy ®re) o A = idy
Given a bialgebroid H over a base R, an anchor is a representation p : H — End(R)
which is also a R-bimodule map and satisfies
s(p(z1) -a)zs =xs(a) z€ Ha€R
z1t(p(z2) -a) = zt(a) z€ Ha€R
p(x) - 1g = e(x) reH
EXAMPLE A.6. Besides the fact that UsL is an algebra, UaL is also equipped with a
coassociative A-linear coproduct A : UsL — UaL ® 4 U4 L which is defined as follows

A1) =1®1,

(A.4) Aw)=u®l+lou, APQ)=AP)AQ),
VueL, P,Q€U4L.

A twist ([70]) in a Hopf algebroid H over a base R is an invertible element J € H @ g H
that satisfies

J12,3J1,2 — J1,23J2,3
(e®rid)(J) = ([d®ge)(J) =1y

Let H be a bialgebroid over a base R (respectively, with anchor p), and let J = ). 2;®ry; be
a twist. Then one can define a new product on R given by ax;b = >,(p(z;)a)(p(y:)b), a new
coproduct A; = J~'AJ, and new source and target maps given by s;(a) = >, s(p(z;)a)y;
and t;(a) = t(p(y;)a)z;. Denote Ry = (R,*;).

THEOREM A.7 ([70], theorem 4.14). Let (H,R,A,s,t,e) be a bialgebroid (respectively
with anchor p). If J is a twist, then (H,Rj,Ay,sy,ts,€) is again a bialgebroid (respectively
with the same anchor p).

(A.5)

A.2. [ -algebras, morphisms and modules

Here, by a graded vector space we mean a Z-graded vector
v-@r
kez

such that V¥ =0 for k < 0.
For a detailed study of Ly -structures we refer to [35, 41].

A.2.1. L-algebras and their morphisms.

DEFINITION A.8. A L-structure on a graded vector space L is a degree 1 and 2-nilpotent
coderivation () on the cofree cocommutative coalgebra C°(L[1]) cofreely cogenerated by L with
the shifted parity.

We call such a couple (£,Q) a Lo-algebra.
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By cofreeness, such a coderivation () is uniquely determined by structure maps
(A.6) QM AL s L[2-n] (n>1)
which satisfy a (semi-)infinite collection of quadratic equations. In particular, (£, Q') is a
cochain complex.

EXAMPLE A.9. Any DGLA (g,d,[,]) is obviously a L-algebra. Namely, the coderiva-
tion @ is given by structure maps QM1 = d, Q) =[,] and Q"] =0 for n > 2.

DEFINITION A.10. Let (£1,Q1) and (L2,Q2) be two Lo, -algebras. A morphism of Lq.-
algebras F : (£1,Q1) =— (£2,Q2), or Lo,-morphism, is a degree 0 morphism of coalgebras

F:C°(L1[1]) = C°(L2[1])

such that
(A.7) Fo@i =Q20F

Again by cofreeness, such a morphism is uniquely determined by structure maps
(A.8) FIl ALy - Lo[1—=n] (n>1)

n],

which satisfy a (semi-)infinite collection of quadratic equations also involving QE s. In par-

ticular FI! : £; — £ is a morphism of complexes.

ExXAMPLE A.11. Any morphism of DGLA is a Ly, -morphism with all structure maps
equal to zero except the first one.

DEFINITION A.12. A (Lo-)quasi-isomorphism is a Lo -morphism of which the first
structure map is a quasi-isomorphism of cochain complezes (i.e. induces an isomorphism
at the level of cohomology).

Two Ly,-algebras are said to be quasi-isomorphic if they are connected by a chain of
quasi-isomorphisms (in a pedant formulation we should have said “if they are isomorphic in
the localized category with respect to quasi-isomorphisms”). A Ly-algebra is formal if it is
quasi-isomorphic to the graded Lie algebra of its cohomology.

Actually, Ly,-quasi-isomorphisms are really invertible, namely

THEOREM A.13. Let F : (L1,Q1) =— (L2,Q2) be a Ly -quasi-isomorphism. Then there
exists a Loo-quasi-isomorphism H : (L2,Q2) =— (L1,Q1) which induces the inverse ismor-
phisms between the cohomology of complexes (EZ-,QEI]). O

In this dissertation we need the following lemma, that allows us to modify the first
structure map of a Ls.-morphism:

LEMMA A.14 ([16]). Let F': C°(L4[1]) = C°(L2[1]) be a Loo-morphism. For any linear
map L : L1 — Lo[—1] there exists a Loo-morphism ¥ : C°(L1[1]) = C¢(La[1]) with first
structure map Wl = I 4 Q[zl] oL+ Lo Q[ll]. Moreover, if F is a Ly -quasi-isomorphism
then VU is also.

PRroOF. First remark that L extends uniquely to a linear map C°(£1[1]) = C¢(L2[1])
of degree —1 such that

1 1
AzoL:(F®L+L®F+§L®(Q20L+L0Q1)+§(Q2oL+LoQ1)®L)oAl

where A; and Ay denote comultiplications in C°(g1[1]) and C°(g2[1]), respectively.
Then define ¥ := F+ Q20L + Lo Q. O

REMARK A.15. Assume that in the previous lemma £, and L are filtrated, F' is such
that F[" takes values in (L£2)<,—1, and L((£1)<k) C (L2)<k+1. Then one can obviously
check that for any X € (A"L1)<k, FIM(X) € (g2)<ntk—1-
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A.2.2. L -modules and their morphisms. Let (£, Q) be a L..-algebra.

DEFINITION A.16. A L-module over (L£,Q) is a graded vector space M together with
a degree 1 and 2-nilpotent coderivation P on the cofree C°(L[1])-comodule C¢(L[1]) @ M
cogenerated by M.

Again by cofreeness, such a P is uniquely determined by structure maps
(A.9) PP A"LOM - M[1—n]  (n>0)
which satisfy a (semi-)infinite collection of quadratic equations also involving Q[™’s. In par-

ticular (M, PI%) is a chain complex.

EXAMPLE A.17. Any DG module (m,b,e) over a DGLA (g,d,[,]) is obviously a Lu-
module over (g, Q@ = d+[,]). Namely, the coderivation P is given by structure maps Pl% = b,
Pl = e and P =0 for n > 1.

DEFINITION A.18. Let (M1, P;) and (Ms, Py) be two Lo,-modules over a Ly -algebra
(£,Q). A morphim of L,,-modules G : (M, P) =>— (Ma, P,), or Ly,-morphism, is a
degree 0 morphism of comodules

G:C°(L[1]) @ My = C°(L[1]) ® My
such that
(A.10) GoP =PFPro(G

By cofreeness, such a morphism is uniquely determined by structure maps

(A.11) PP A"COM = M[-n]  (n>0)

which satisfy a (semi-)infinit collection of quadratic equations also involving Q!")’s and Pz.["]’s.
In particular P19 : M; — M, is a morphism of complexes.

ExXAMPLE A.19. Any mophism of DG modules is a Lo,-morphism with all structure
maps equal to zero except the 0-th one.

DEFINITION A.20. A (Lo-)quasi-isomorphism between two Lo,-modules is a Loo-morphism
of which the 0-th structure map is a quasi-isomorphism of chain complezxes (i.e. induces an
isomorphism at the level of homology).

As for Ly,-algebras, Ly,-quasi-isomorpisms of L.,-modules are invertible, namely
THEOREM A.21. Let G : (M1, P) ==— (Ma, P5) be a Ly -quasi-isomorphism of Lo,-

modules. Then there exists a Lo,-quasi-isomorphism H : (Ms, Py) ==— (M, Py) which
induces the inverse isomorphism between the homology of complexes (M,-,Pi[o]). |

A.2.3. Maurer-Cartan elements and twisting procedures. This subsection is ins-
pired by [17, Section 2.3].

Let [ be a local (pro-)Artinian algebra with maximal ideal m. In the typical situation m
is a (pro-)nilpotent algebra) and [ =k & m.

DEFINITION A.22. Let (£,Q) be a Lo -algebra. Then m € L' @ m is called a Maurer-
Cartan element if

1
(A.12) > =QW(m,...,m) =0
k21 & k times

Now assume we have a Lo,-morphism of L-algebras F': (£1,Q1) =— (L2,Q2). Then
using a Maurer-Cartan element m € £} ® m one can twist everything, namely:

PROPOSITION A.23.



A.2. Lo.-ALGEBRAS, MORPHISMS AND MODULES 73

(1) The element

1
= E —F[k](w,...,w) G,C%(X)m
E>1 )
= k times
is a Maurer-Cartan element.

(2) The degree 1 coderivation QT defined by structure maps

1
Mgy, . zn) = —QWtr (w0 n>1
(@)™ (21 ) Zng (.., m,m ) (n=1)

k20 k times

is 2-nilpotent. In other words, (£1 ® I, QT) is a Lo -algebra.
(3) The degree 0 morphism of coalgebras F™ defined by structure maps

1
(F @, n) = 30w, ma) (02 1)

k20 k times

is such that F™ o QT = Q% o F™. In other words, one has
FT: (L10LQT) == (L2 ©1L,Q3)
(4) If F is a Ly-quasi-isomorphism, then so is F™. O

Now let (M1, Py) and (Ma, P5) be two L-modules over a Ly-algebra (£, Q), with a
Loo-morphism G : (My,P1) =>=— (M2, P2). Again, using a Maurer-Cartan element 7 €
L! ® m one can also twist these objects:

PROPOSITION A.24.
(1) Leti=1,2. The degree 1 coderivation P defined by structure maps

1
P ["]w,...,wn,v = — @Glktn] oo sy T3 Xlyeney T,V n>0
(B (2 ) Zk! (.o, 2 ) (n20)

k20 k times

is 2-nipotent. In other words, (M; ® I, PT) is a Lo -module over (L ® [,Q™).
(2) The degree 0 morphism of comodules G™ defined by structres maps

1
GM(zq, ... 2n,0) = —G (e, T, v n>0
(@) oy )= 3 Gl : ) (20

k>0 k times

is such that G™ o Pf" = PJ o G™. In other words, one has
G": (Mi®LPT) == (M2 ®L PY)
(3) If G is a Loo-quasi-isomorphism, then so is G™. O

A.2.4. Gauge equivalences of Maurer-Cartan elements. In this subsection we
restrict ourself to the case of DGLA.

Let (g,d,[,]) be a DGLA. The infinitesimal action of the Lie algebra hg°[[R]] on hg'[[A]]
defined by

q-a=dq+[q,0]

integrates into an affine action of the corresponding prounipotent group G. An element of this
group is called a gauge equivalence. Since the subspace of Maurer-Cartan elements in fig! [[}]]
is stable under the action of G then one can define the moduli space MC of Maurer-Cartan
elements up to gauge equivalence by

MC := {mn € hg'[[A]] s-tc-;dﬂ'h + %[ﬂ'ﬁ,ﬂ'h]}
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THEOREM A.25. Let ¥ : (g1,d1 +[,]1) =— (92,d2 + [,]2) be a Loo-quasi-isomorphism
of DGLA. Then the map
1
T — Z H\Il[k] (Thy -, Th)
E>1
defines an isomorphism MC; — MCs,.

A.2.5. What about sheaves? All the definitions are easy to sheafify. But when dea-
ling with sheaves one has to be carefull with the following:

e a quasi-isomorphism of sheaves of complexes does NOT induce a quasi-isomorphism
between the complexes of global sections (but it does if the sheaves have their
standard Cech cohomology concentrated in degree 0, like sheaves of smooth sections
of C*°-bundles for example),

e in particular theorems A.13, A.21 and A.25 are not true for sheaves.
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