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Abstract

Multi-stable perception refers to the perceptual dynamics that emerge when the
human’s sensory system is confronted with a stationary, ambiguous visual stimulus.
Though the stimulus is stationary, humans observe alternations in perception. Since
its first observations by Necker (1832), multi-stable perception has been a tool to
investigate the inference processes of the visual system when reconstructing a rich
perceptual world from incomplete, and sometimes poor, sensory information.

In this thesis, the relationships and dependencies between the oculomotor action
and perceptual systems are approached in the context of multi-stable perception.
The main questions driving the investigation can be formulated as follows: can
we infer percepts from oculomotor behaviour and thus, what are the (hierarchical)
relations between the perceptual and oculomotor systems?

At first, we have studied ocular micro-movements in fixations that have been detected
during exploration of a bi-stable visual stimulus with motion. We propose to classify
them as micro-pursuit; a class of fixational eye movements, correlating with smooth,
predictable, small-scale stimulus’ target trajectories. We replicated these findings
in an explicit pursuit task with a luminance change detection task, but only when
the moving object was a target, and not when it was a distractor. Inter-experiment
analysis suggests that the manipulation of task, stimulus target motion, and the level
of ambiguity of the stimulus affect the generation of micro-pursuits: a result that
may hint that bi-stable perception may play a role in the oculomotor decision to
attend either the fixation cross, or the moving object.

We have modelled this behaviour with a predictive model based on an energy
potential field in which gaze is represented by the dynamics of a unitary mass. We
further extend this model to capture multi-stable perception. An exploration of the
model’s capacity to reproduce fixational eye movement—covering micro-saccades,
micro-pursuits and stable fixations—is presented.

To further study perceptual multi-stability and oculomotor control, we used the
moving plaid: a tri-stable stimulus, composed of two transparent gratings moving in
different directions and visualised through an aperture, making perceived motion
direction ambiguous. We investigate how the plaid’s ambiguity can be manipulated
at the individual subject level, using a probabilistic model and an experimental
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protocol to estimate its parameters. As such, points of maximal ambiguity can be
identified for an observer based on the manipulation of the gratings’ transparencies.
We further looked at oculomotor manipulation in the context of the moving plaid
stimulus and provide a brief outlook at a no-report paradigm that aims to exploit
eye movements to infer the perception dynamics of an observer.

This exploration aims to provide a road map for further investigation of perceptual
and oculomotor coupling in multi-stable perception, and opens up to methods using
neuro-imaging techniques to investigate multi-stability. The work presented here
raises questions on the link between stability regimes and how bottom-up and
top-down processes may play a role in modulating the brain into mono-, multi- or
meta-stable dynamics.

Science popularisation abstract

Human vision enables us to acquire information about our environment, from a
distance and with precision. However, the eye is a heterogeneous photon sensor
with low resolution, when compared to cameras, but the brain has efficient hidden
processes. It uses eye movements to create rich perceptions and thus, it is able to
solve visual ambiguity problems. Here, we will show how multi-stability, a type of
illusion where one’s perception changes while the stimulus stays the same, can help
us make a link between vision and action. We will present the micro-pursuit: a small
eye movement used to track an object. We will use gravity to predict the relationships
between action and perception. We will manipulate a moving plaid’s ambiguity, a
multi-stable stimulus, and will propose ideas to help us decipher perception in eye
movements. At last, we ask, what does stability mean for perception?
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Résumé

La multi-stabilité dans la perception visuelle et les mouvements oculaires :
l’action contrôle-t-elle la perception ou vice-versa ?

La multi-stabilité perceptuelle désigne la dynamique perceptuelle, qui émerge
lorsque le système sensoriel humain est confronté à une stimulation stationnaire
et ambigüe. Dans ce cas, la perception de l’observateur alterne entre différents
percepts, tandis que le stimulus reste constant. Depuis les premières observations
de Necker (1832), la perception multi-stable est devenue un outil de recherche,
utilisé dans les recherches visant à comprendre comment le système visuel se sert de
mécanismes d’inférences, afin de reconstruire un monde perceptuel riche à partir
d’informations sensorielles incomplètes.

Dans cette thèse, nous cherchons à étudier les relations d’inter-dépendence entre
l’action oculomotrice et le système perceptuel, dans le contexte de la multi-stabilité
perceptuelle. Les questions centrales de recherche sont les suivantes : est-il possible
d’inférer les percepts à partir des mouvements oculaires, et si oui, comment se
constituent les relations (hierarchiques) entre les systèmes perceptuel et oculomo-
teur ?

Tout d’abord, nous avons étudié les micro-mouvements oculaires fixationnels, que
nous avons détecté dans une tâche d’exploration d’un stimulus bi-stable en mouve-
ment. Nous proposons de classifier ceux-ci en tant que micro-poursuite, une classe
de mouvements oculaires fixationnels, corrélant avec des trajectoires lisses, prévis-
ibles et de faibles amplitudes du stimulus en mouvement. Nous avons reproduit
ces résultats dans une tâche de poursuite explicite, accompagnée d’une tâche de
détection de changement de la luminance, mais uniquement lorsque l’objet était la
cible, et pas lorsqu’il était un distracteur. L’analyse inter-expérience suggère que
la manipulation des tâches, du mouvement du stimulus, et du niveau d’ambigüité
du stimulus, influe la génération de micro-poursuite: un résultat qui indique que la
perception bi-stable pourrait jouer un rôle dans la décision oculomotrice de porter
son attention sur la croix de fixation, ou l’objet en mouvement.

Nous avons modélisé ce comportement à l’aide d’un modèle prédictif, basé sur un
champ d’énergie potentielle, dans lequel le centre du regard est représenté par
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la dynamique d’une masse unitaire. Nous avons ensuite étendu ce modèle pour
qu’il rende compte de la multi-stabilité perceptuelle. Une exploration des capacités
du modèle à reproduire les mouvements oculaires fixationnels – en considérant
micro-saccades, micro-poursuites et fixations stables – est présentée.

Afin d’étudier davantage les liens entre multi-stabilité perceptuelle et contrôle oculo-
moteur, nous nous sommes servis d’un stimulus : le plaid en mouvement, composé
de deux grilles transparentes se déplaçant dans différentes directions et observées au
travers d’un trou circulaire, ce qui engendre une tri-stabilité vis-à-vis de la direction
du mouvement perçue. Nous examinons comment l’ambigüité du plaid peut être
manipulée au niveau de chaque sujet, en utilisant un modèle probabiliste et un
protocole pour en estimer ses paramètres. Ainsi, les points d’ambigüité maximale
peuvent être identifiés pour chaque observateur.rice, en manipulant la transparence
des grilles. Enfin, nous avons aussi regardé comment manipuler les mouvements oc-
ulaires avec le plaid en mouvement, et nous donnons un bref aperçu sur l’application
d’un paradigme, sans rapport explicite de la perception, qui a pour but d’inférer cette
dernière à partir de la dynamique oculomotrice. Cette exploration cherche avant tout
à proposer une feuille de route, afin de poursuivre les questions de recherche autour
du couplage entre les systèmes oculomoteur et perceptif, lorsqu’il y a multi-stabilité,
et d’ouvrir vers l’utilisation de techniques de neuro-imagerie, appliquées à cette
thématique.

Enfin, le travail présenté dans cette thèse pose des questions sur les liens entre les
différents régimes de stabilité – tel que la mono-, multi-, ou méta-stabilité – et quel
est le rôle des processus ascendants et descendants sur ceux-ci.

Résumé vulgarisé : La vision nous permet d’acquérir de l’information sur notre
environnement, à distance, avec précision. L’oeil n’étant qu’un capteur de photons
hétérogène de faible résolution, comparé aux appareils photo, le cerveau doit donc
avoir des techniques efficientes cachées. Il utilise les mouvements des yeux pour
créer des perceptions riches et ainsi, il est capable de résoudre des problèmes
d’ambiguïté visuelle. Nous montrerons comment la multi-stabilité, un type d’illusion
où la perception d’une personne change mais le stimulus reste le même, permet
de mettre en lien vision et action. Nous présenterons la micro-poursuite : un petit
mouvement de suivi d’un objet. Nous utiliserons la gravité pour prédire des liens
entre action et perception. Nous manipulerons l’ambiguïté du plaid en mouvement,
un stimulus multi-stable, pour évoquer les pistes devant permettre de décoder la
perception dans les mouvements des yeux. Finalement, quel est le sens de la notion
de stabilité dans la perception ?
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Avant-propos / Preface

Dans cet avant-propos, je souhaite partager une touche d’humanité et de gratitude
envers les personnes qui ont fait partie de ces années, de près ou de loin. Cette
partie est écrite dans un mélange de Français et d’Anglais.

I first want to share a touch of gratitude to those who participated closely, or from far
away, in my life during the years of the research presented in this manuscript. This part
is written in a mixture of French and English.

Anne Guérin-Dugué, qui m’a invité à explorer le sujet fascinant de la multi-stabilité
visuelle lors de mon stage de Master, et qui a su m’encourager à développer mes
idées tout en prenant soin de les mettre à l’épreuve de son examen critique. Je suis
aussi ravi que nous ayons, par ce projet de thèse, réussi à intéresser Steeve Zozor, sur
un terrain qui n’est pas forcément le sien, et cette rencontre a permis de nombreux
échanges passionnants, permettant ainsi de développer l’aspect modélisation de
cette thèse. La particularité de ce travail se centre autour de son approche inter-
disciplinaire, qui fut possible par la vivacité, la curiosité mais aussi la rigueur de
Ronald Phlypo, qui malgré ses nombreux cours et obligations d’enseignements, a
réussi à me transmettre un goût pour l’exploration de méthodes et de thématiques,
alliant l’éclectisme des sujets d’intérêt à un scepticisme scientifique nécessaire. Enfin,
je remercie Alan Chauvin d’avoir su pimenter cette expérience d’une légère chaleur
et d’amusements, lui aussi malgré des obligations d’enseignements parfois lourdes,
et cela, dans l’ouverture d’esprit, l’écoute et la rigueur de pensée essentielle dans un
projet de recherche aussi varié que le nôtre ; ses mots furent par moments de réelles
éclaircies dans la brume, parfois étouffante, d’un projet de recherche.

D’autres chercheur.se.s et collègues ont contribué aux idées travaillées et présentées
dans ces pages. Dans le monde des francophones, je souhaite partager ma gratitude
envers Jean-Michel Hupé, Nathalie Guyader, Simon Barthelmé, Aurélie Campagne,
Jean Lorenceau, Julien Diard, Nathan Faivre, Jean-Luc Schwarz, Eric Castet, Laurent
Madelain, Anna Montagnini, Sylvain Harquel, Laurent Ott, David Alleysson, Carole
Peyrin, Antoine Coutrot, Hélène Devillez, Suzon Ajasse, David Méary, Pierre Comon,
Gang Feng, Mauro Dalla Mura, Stéphane Rousset, Eric Guinet, Cédric Pichat et
Marcela Perrone-Bertolotti.
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D’autres ont aussi été présents et ont fait partie de ce voyage durant des échanges à
la pause café, dans les couloirs, ou en dehors. Les collègues du GIPSA-lab : Camille,
Emmanuelle, Quentin, Pedro, Pierre M, Raphaël, Jeanne, Imane, Cosme, Marc,
Marion, Marielle, Julien, Bruce, Miguel, Lorenzo, Florent, Taia, Victor, Pierre N,
Aziliz, Roza, Thibaut, Louis, Silvain, Gael, Tayeb, Malik, Allison, Christian, Bertrand,
Marco, Olivier et Pierre-Olivier.

D’autres dans le laboratoire LPNC : Alexia, Emilie, Audrey M, Louise, Hélène M,
Lisa, Ladislas, Chloé, Violette, Brice, Lea, Adeline, Méline, Audrey T, Elie, Olivier,
Benjamin, Eve, Christopher, Laura, Lucrèce, Amélie, Richard, Martial et Hélène L.

I also want to thank the international researchers Rubén Moreno-Bote and Ralf Engbert
for their support and their contributions.

Ces recherches ont aussi avancé grâce aux travaux de stagiaires enthousiastes et
motivés, qui je l’espère, auront tiré une expérience de recherche intéressante dans
leur collaboration. Je tiens donc à remercier Florian Millecamps, pour son travail
sur les effets des consignes et de la volition sur la perception multi-stable, Maryiem
Ahmida, qui nous a suivi sur deux stages autour du rôle de l’adaptation dans
la perception multi-stable, Eva Aprile, qui a contribué largement sur les travaux
d’expérience sans report explicite et subjectif, Emeline Lalisse, qui a repris les travaux
sur l’adaptation, et enfin Juliette Lenouvel, qui a entamé l’expérience ’Gaze-EEG’ et
qui poursuivra mes travaux dans une thèse que j’ai hâte de découvrir.

Évidemment, cette épreuve n’aurait pu être possible sans le soutien et l’amour que
ma famille a su me donner, durant ces quatre années mais aussi les vingt-six qui ont
précédés. Maman, Papa et Marc, je vous remercie donc d’une force éternelle. Merci
aussi à la famille Parisot.

My gratitude also goes to Anand, Shankar, Sweata, Velumama, Mami & Aya.

Je remercie aussi les professeur.e.s qui m’ont aidé à grandir dans mon parcours
académique, et qui ont permis cet aboutissement. Leurs rôles dans le parcours long
qui permet de faire une thèse est non-négligeable.

Une thèse se vit dans un contexte de vie en dehors des laboratoires aussi. Le mien fut
à Grenoble, une ville merveilleuse, vivante, et d’ouverture. Cette vie s’est manifestée
surtout par de formidables rencontres amicales. Des amis qui ont su me faire rire,
rêver, jouer, pleurer, changer, me stabiliser et me déstabiliser ; des amis qui m’ont
fait vivre des années inoubliables. Je veux donc remercier les personnes qui étaient
près de moi durant ces années. Celles et ceux au plus près, mes colocataires au
fil des années : Émile, Erwan, Hugo, Angèle, Laura, Matthias, Éléonore, Anaïs,
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Mika, Valentin, Camille, Marie, Solène et Louise. Je n’oublie pas nos chats Tatane,
Mapouche et Babybelle, ainsi que les poules et le pioupiou.

Celles et ceux du théâtre : Fernand, Letizia, Margherita, Laurine, Mélanie, Julien,
Lisa, Mary, Juliette T, Benjamin T, Benjamin V, Louise, Hélène, Thierry, Jean, Lucie,
Aurélie, Alexis, Morgan, Joris, Philippe, Jérôme, Roberto, Virginie, Romano, Jenny,
Germán, Hiba, Clara, Manu, Benjamin P, Félix, Marie G, Carole, Rachel, Nicolas,
Elisa, Juliette L, Nastasia, Loona, Manon, Babeth, Vaïk, Hubert, John, et tant
d’autres.

Aussi les amoureux et amoureuses de la montagne et des bars : Aurore, Tom, Ophélie,
Mathieu, Ety, Charlotte, Kilian, et Clément. Et celles et ceux qui furent plus loins :
Pierre-Alexandre, Touraj, Pierre, Dominique, Stephan, Adrien, Anne, Noémie, Jade,
Alex, Luc, Mikey, Marie, Fiona, Elisabeth, Guillaume, Oulfa, Georges, et Lou.

And the international friends : Florencia, Eugenio, Emma, Eliad, Calleb, Tom, Virginia,
Nina, Charlotte, Federico, and Alberto.

Enfin, il y a eu les indispensables présences furtives qui ont accompagné cette
traversée. Alban, je te remercie d’être resté lié à moi par cette force de curiosité et
d’enthousiasme que nous partageons. Nos pousses se sont nourries mutuellement
durant ces années. Malgré la distance, nous avons pu partager des moments festifs
aux quatre coins de l’Europe, des échanges constructifs sur nos thèses respectives,
et des visions sur ce monde que nous cherchons tous les deux à comprendre. Cette
thèse, je pense l’avoir écrite avec ta main bienveillante posée sur une de mes épaules.
Antoine, j’imagine que ta main était posée sur l’autre épaule, et ton énergie, ta
ressource, et ton ouverture, se sont écoulées tranquillement sur moi tout du long de
cette épreuve. Je te remercie aussi pour tous ces échanges festifs, scientifiques, et
philosophiques, malgré la distance, là aussi. Simon, tu as été à mes côtés dans le
quotidien pendant ces années, et partager ces murs avec toi, s’ancrer ensemble dans
la terre des taillées aura été source d’humour, de bringues, de délires et d’attention.
Ta force et ta liberté sont contagieuses : merci. Gallia, ta générosité, ta force de
vie, ton envie et ta gentillesse sont sans limites. Tu as été la brise chaude issue
d’une rouge flamme qui m’a animé et émerveillé : je te remercie intensément. Enfin,
Margaux, l’harmonie de nos souffles aura été l’atout de ma résilience dans ce voyage.
Ta justesse, ta tendresse, ton écoute, et ton regard ont fourni les impulsions qui
m’ont permis d’avancer, malgré toutes les épreuves, dans la douceur de la confiance
partagée. Par nos songes partagés et l’élan de nos vitalités, je te remercie.

Puisqu’une thèse est aussi un cadre qui permet la réflexion intellectuelle, la prise
de recul et l’ouverture, je souhaite enfin partager aux lecteurs et lectrices quelques
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dernières pensées. Le contexte, dans lequel ce manuscrit a été écrit, peut se peindre
tel un monde où les sciences modernes ont pu se développer grandement en quelques
siècles, en parallèle avec des technologies qui ont, pour certaines, permis les travaux
présentés. Ce monde technique domine de façon incontrôlée et dévastatrice la
planète sur laquelle nous vivons tous, la Terre, au point que nous ayons nommé
notre époque l’Anthropocène, une période où les activités humaines marquent
majoritairement la géologie, où la biodiversité des écosystèmes s’effondrent, et où la
composition atmosphérique est modifiée d’une ampleur sans précédent. Je souhaite
simplement rappeler que la lutte contre la dérive de l’équilibre de ce monde est une
épreuve collective débordant de sens. Un monde est complexe, et il pourrait bien,
lui aussi, être multi-stable.
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Before reading

Visual code for reading

This manuscript uses a visual code to provide the reader with different levels of
depth and importance. Four levels are used :

Highlights and important content are displayed in bold quote for-
mat.

Regular content is written in classical form such as displayed here.

Boxes.
Boxes are used to provide additional optional information which can be read independently
on a topic. They are also used to provide reading instructions and publication information.

And footnotes are used for optional additional information in the flow of reading1.

Manuscript architecture

The manuscript is composed an introductory chapter, a chapter with results for eye
movement research, a chapter with exploratory works on theoretical approaches,
a chapter with results for ambiguous visual perception research and a perspective
chapter. The decision to follow such a narrative patterns was made to provide the
building blocks towards the work and ideas presented in the final chapter.

1For instance, when a short additional comment might provide useful information to the reader but
is not sufficiently developed to fit a box.
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Ambiguity for the human
visual system

1
„The beauty of a living thing is not the atoms that

go into it, but the way those atoms are put
together. Information distilled over 4 billion
years of biological evolution. Incidentally, all the
organisms on the Earth are made essentially of
that stuff. An eyedropper full of that liquid could
be used to make a caterpillar or a petunia if only
we knew how to put the components together.

— Carl Sagan
"Cosmos: A Personal Voyage".
Documentary (1990 Update).

Episode 5: "Blues For a Red Planet", 1990.

Visual experience has fascinated thinkers and scientists as far as written records exist.
As one of humans’ richest sensory modality, vision has driven many forms in arts, but
it also has driven physicists to develop methods in optics to observe and study the
stars, and now the cosmos. But what are the mechanisms proper to human vision?
And how does our brain handle such amounts of information, and combines it with
actions? A general review of what is known on perception, and more specifically
visual perception, shall be given. More specifically, we will then delve into vision and
how the multi-stable phenomenon arises in it, as well as the experimental methods
used in the scientific literature. Finally, the motivations for studying multi-stability
will be presented and the gaps in the literature will be identified.

Reading instructions.
This chapter is designed for vision researchers and dives into multi-stable perception.
However, readers wishing further context, notes and reviews may be interested to follow the
many pointers presented in boxes, for a more complete and introductory understanding of
cognition and vision.
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Theoretical context.
Readers who wish to read into the theoretical and philosophical context in cognitive sciences
surrounding this work can do so in Appendix A.1.

1.1 Visual perception

Visual perception is the phenomenon that allows humans to sense their environment
based on photons, in other words light, that is emitted or reflected. The environment
can be composed of objects or events. Visual perception is, foremost, a set of
processes used to acquire knowledge. These processes manipulate visual information
that is captured by sensors: the eyes. Though there is a purely optical and physical
aspect, visual perception also encompasses the cognitive activities that process the
visual flow of information from the eyes. This is where it differs from cameras, for
instance: they do not have knowledge of the scenes they record, whereas a human
visually perceiving does. In this section we shall give the reader a brief overview of
the stages and processes that visual information travels through in order to reach
awareness or conscious experience.

From the eyes to the brain.
Readers who wish to understand the basis of low-level vision and how light is transformed
into perception can read Appendix A.2 where an introduction to the field is given by
following the information pathways: from the eyes to the brain.

1.1.1 A brief look at some basics of visual perception

Importantly, the visual system is complex and processes light infor-
mation in such a way that it provides a rich reconstruction of the
world.

Human vision has key features such as heterogeneous sensors with its retina coverage
being unequal across the visual field it receives light from (Curcio and Allen, 1990).
It also has multiple pathways to relay the sensory information to the occipital cortex.
Visual information is projected in a retinotopic fashion in the cortex and neural
signals encoding it, are processed through layers and fed forward to other areas of
the brain (Wandell, 1995; S. Palmer, 1999). For more details, read Appendix A.2.

When we become visually aware of a perceptual object, its information flows in
multiple networks ranging from the frontal to the parietal cortex. This process is
not instantaneous—and though it may vary depending on the complexity of the
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stimulus, observer habituation and more factors—, to become quasi-fully conscious1

of a perceived object, the process may take at least 200 milliseconds (ms) (Kornmeier
and Bach, 2012). Visual illusion, phenomena in which the visual system’s expectation
are tricked into building an incoherent representation of the stimulus, have been
used in vision science to identify the processes as inferences, and more specifically
as predictive coding (Friston and Kiebel, 2009). Moreover, illusions, such as multi-
stable perception, are being used to uncover the neural correlates of consciousness
and perception (Frässle et al., 2014).

The visual system is typically considered as a hierarchical structure of networks
processing the information flowing in one global direction, that is upwards—namely
from the retina to higher cognitive functions in the brain. Vision scientists consider
the biological systems’ inputs, the eyes, the lower level of this model, and the
consciously experienced qualias—a proposed term to refer to a granular unit of
conscious subjective experience, analogous to the quantas in physics (Dennett, 1993;
Chalmers, 2007)—, the higher level of the system. The eyes and their movements are
key properties of visual perception. Indeed, though our eyes could be considered as
poor sensors, from an engineering perspective, we move them to capture information
from different areas of the visual field, and to process it efficiently. Eye movements
are typically broken down in three categories, when studied in the context of
cognitive tasks: saccade, pursuit and fixation (Liversedge et al., 2011). However,
they never remain still, and during fixations, micro-saccades, drifts and tremors can
be observed (Martinez-Conde, Macknik, and D. Hubel, 2004).

These eye movements create changes of the visual input on the
photoreceptor cells of the retina by shifting the retinal projection
constantly. But the visual system likely evolved with this constraint,
and is thought to exploit these noisy features to increase its capa-
bilities (Hicheur et al., 2013; Rucci and Victor, 2015).

A growing view in the field of cognitive sciences requires that the body and action be
considered as part of cognition—in embodied or enactive cognition (Varela, 1996a).
Linking oculomotor action to visual perception is becoming increasingly evident as
eye movements show potential to be physiological markers of internal cognitive
states (Kagan and Hafed, 2013; Spering and Carrasco, 2015; Shaikh and Zee, 2018);
whether it be attention (Kuhn et al., 2009; Orquin and Loose, 2013; Denison et al.,
2019), perception (Gold and Shadlen, 2003; Hafed and Krauzlis, 2006; Schütz, D. I.
Braun, and Gegenfurtner, 2011; Boi et al., 2017; Kagan and Burr, 2017), learning

1Consciousness is not a quantifiable and measurable property of neural information, at the time of
writing. And though we might be aware of some properties of a perceptual object, our conscious
representation may neglect more fine details of the object.
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and development (Eckstein et al., 2017), language processing (Engelmann et al.,
2013), and reading (Kliegl et al., 2004). Though the lower parts of the visual system
are starting to be well understood, the higher one goes along the visual hierarchy,
the less clear network architectures and causal relationships become.

In fact, the visual system is full of asynchronous feedback mechanisms that make
deciphering its workings a very complex task. For instance, parts of the visual signals
are fed, as they go through the lateral geniculate nucleus (LGN), to the superior
colliculus (SC) which has been correlated to oculomotor programming with other
cortical areas such as the frontal eye field (FEF) and the lateral intra-parietal (LIP)
cortex (Krauzlis, 2004; Hafed, Goffart, et al., 2009; Taouali et al., 2015; Peel et al.,
2016; Krauzlis et al., 2017). But the two later areas are also tightly correlated to
attention, a higher cognitive process than oculomotor programming (Astrand et al.,
2015). In fact, these two functions may share efference copies, a set of copies of the
information for motor programming enabling the system to have different levels of
engagement with its action2 (Jeannerod and Arbib, 2003). Note that other theories,
such as referent control of perception, may also explain the link between motor action
and perception (Feldman, 2016).

These points raise a series of questions. How is action and percep-
tion related? What tools can be used to simplify and understand
such complex and intertwined interactions in between the motor
and perceptual systems? How do these systems relate to conscious
experience of the world?

These questions linking the body’s actions to its internal cognitive states may give
insights and leads for some of the problems introduced in Appendix A.1 on the
origins of consciousness, perceptual experience and its evolution. Our attempt to
contribute relies on a trans-disciplinary approach, using a combination of methods
from empirical sciences—namely psychophysics and neurosciences—and theoretical
research—namely signal processing and computational modelling. In this work, we
focused on a visual phenomenon in particular, multi-stable perception, as it allows to
study changes of internal perceptual states while the stimulation remains stationary
from a physical perspective, but is changed by the eyes’ constant movements. More-
over, multi-stability occurs in different modalities (Schwartz et al., 2012) and relates
to the coordination of sub-systems in complex systems dynamics (Kelso, 2012).
Therefore, theoretical approaches to bi-stability might give key insights relating the
questions asked here (Moreno-Bote, Knill, et al., 2011).

2i.e., one copy may contain the information for a desired action that is not carried out, while a latter
one will only keep the neural information for action executed.
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1.1.2 Eye movements

The eyes move; in other words they are dynamic and active. Their motion has
one major consequence: it shifts the visual content of the retinal projection, and
therefore the visual input flow changes. The eyes are located in spherical sockets
that allow them to rotate on themselves. The movements are controlled by six strong
and precise extraocular muscles. In fact, the oculomotor system, that controls
the extraocular muscles enabling eye movements, can be very dynamic and shows
various behaviours ranging from stationary fixations to ballistic and highly dynamic
saccades.

The oculomotor system’s main functions allows the visual system
to fixate a point in space in order to accumulate information, or to
track a target by keeping it in the foveal location on the retina as it
moves across the visual field.

Oculomotor dynamics can vary extensively depending on the tasks and actions of
the observer as shown in Fig. 1.1 (Yarbus, 1967). The eye movements are captured
in a bi-variate signal called gaze that situates the foveal position on the visual field
over time. It is characterised by fixations during which the gaze is stable and the
retinal image motion is small, and punctuated by saccades, a class of rapid and
ballistic movements for static stimulation—i.e., a still image. When stimulation
is dynamic—i.e., a video display—the oculomotor system produces fixations and
saccades, but also in some cases smooth pursuit eye movements. These pursuits
are used to track a target object moving across the visual field. Eye movements have
been studied in close relation to visual perception and provide key information on
the retinal image variations as well as insight on visual attention (Liversedge et al.,
2011; Kowler, 2011). They can also be physiological marker of internal cognitive
states, and more precisely of motion perception (Just and Carpenter, 1976; Spering,
Pomplun, et al., 2011; Shaikh and Zee, 2018; Boccignone, 2019).

Eye & head movements.
Though eye movements are often coupled with head motion in ecological conditions—i.e.,
experimental conditions that are closer to everyday life, with less control and restrictions—in
this work, we do not consider the latter and its interaction because it adds another set of
degrees of liberty, thus increasing the complexity of scientific investigation. We focus our
review on eye movements that are considered independently from head movements and
with experimental setups where these head movements are restrained.
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Figure 1.1. Eye movements & instructions. Figure from Yarbus (1967) showing the
variation of the spatio-temporal dynamics of gaze for one stimulus. Different
tasks were given and are reported bellow the 2D gaze traces.

Saccades: the rapid and ballistic movements

Saccades are fast, ballistic eye movements shifting rapidly the locus of the fovea
on the visual field—diagram of a saccade shown on Fig. 1.2. They allow humans
to explore, scan and search their environment by displacing the fovea, where the
precise conic photoreceptor cells are located, to the area of interest. Saccades are
also an energy efficient method to explore a scene (Liversedge et al., 2011) and are
often used over other actions for humans, such as head or body movements. They
allow the gaze to move from a spatial position to another in a scene. The oculomotor
event lasts between 150 ms and 200 ms for planning and execution.
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Saccades are characterised in terms of duration, amplitudes and velocities by the
main sequence3, a relationship that links the velocity and amplitude of a saccade
to the time it takes to plan it (Bahill et al., 1975; Harris and Wolpert, 2006). The ve-
locity of the gaze is very high relative to all other eye movements: within 30 ms, the
eyes can reach a speed up to 900 visual degrees per second (deg.s-1) (Goldberg et al.,
1991). Saccades are typically defined by displacement, velocity and acceleration
thresholds—above 0.15 deg, above 30 deg.s-1 and above 9500 deg.s-2, respectively.
However other algorithms for detection exist based on adaptive methods and glis-
sade4 detection (Nyström and Holmqvist, 2010; Behrens et al., 2010) or Bayesian
classification in which an algorithm learns and adapts probability functions related
to motion properties of the gaze for saccade detection (Tafaj et al., 2013; Mihali
et al., 2017). As you are reading this text, you are in fact doing a series of saccades,
moving across words and sentences.

Although we know we can move the eyes, interestingly, our conscious visual flow
seems unaffected by the movements. By moving the eye, and thus the retinal image,
saccades should generate blurry moments in the visual experience. However, it is not
the case as the brain applies mechanisms that guarantee visual constancy (S. Palmer,
1999). This is referred to as saccadic suppression and though it is highly effective in
ecological conditions, some experiments have shown that transsaccadic perception
can occur (Burr and Ross, 1982; Castet and G. S. Masson, 2000). Though saccades
are generally direct movements, there are experimental paradigms and associated
phenomena5 that show that it is not always so.

Smooth eye pursuits: the target tracking movements

Smooth pursuits are slower eye movements that have been studied in the context
of visual tracking of an object. Therefore, the function of pursuit is to maintain
the tracked target on the fovea by matching the spatio-temporal properties of the
target’s displacement with the eyes. As a consequence, pursuits are defined as an
oculomotor phenomenon with two phases: (1) a catch-up saccade followed by (2)
a target pursuit or maintenance phase (Lisberger et al., 1987). Unlike saccades,
pursuits are considered as smooth as they do not show high acceleration and jerky
movements in the maintenance phase. If the tracked target has erratic motion,

3A notion taken from astronomy in which, when plotting colour versus brightness, all stars follow a
path in that space. In eye movement research, the field hypothesises that evolution has led humans
to maintain an advantageous trade off between accuracy and duration of the saccade movement.

4Glissades are defined as movements that follow saccades with slight overshoot and when the gaze
needs to be readjusted.

5i.e., Anti-saccades or saccade deviation.
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Figure 1.2. Saccade spatial shift. Diagram taken from Bahill et al. (1975) showing at
the top the spatial shift due a 10 deg saccade and a proposed nervous signal
controller associated to program it, below.

the oculomotor system will not track it as it becomes unpredictable and saccadic.
Therefore, pursuits are slow oculomotor behaviours, comparatively, with velocities
being restrained to a range of 20 to 90 deg.s-1 (Komogortsev and Karpov, 2013;
Krauzlis, 2004) and latencies dependent on the catch-up saccade properties.

Moreover, smooth pursuit movements are dependent on visual stimulation as they
attempt to fixate a moving target on the fovea by moving the eyes (Rashbass, 1961;
Do Robinson, 1965; Liversedge et al., 2011). Thus, they also require constant visual
feedback so that gaze can be adjusted and its position or velocity updated. Though
pursuits are mostly studied with a clear and explicit target, research has shown
that the phenomenon can be applied to more stimuli: random-dot kinematogram
(RDK)6 (Heinen and Watamaniuk, 1998), illusory perceptual motion (Madelain and
Krauzlis, 2003) or even motion after-effect (MAE) motion (D. Braun et al., 2006).
Since smooth pursuits have mostly been studied in explicit dot tracking experiments,
this has constrained the development of explicit measurement and detection of the
oculomotor event.

The functional role of the pursuit as an oculomotor process is to
maintain a target of interest on the high acuity foveal region of the
retina (Spering and Montagnini, 2011).

Interestingly, its properties are linked to its definition’s two phases of initiation
and maintenance. For instance, detection of pursuits is based on the measurement

6A stimulus made of a cloud of points in which numerous points have Brownian motion while an
arbitrary number of them have a coherent motion within the cloud.
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of particular properties for the initiation phase (catch-up saccade); by looking at
latencies between 80 to 120 ms (Krauzlis, 2004; Carl and Gellman, 1987) and
retinal positioning at the centre of the fovea. Therefore, this phase has a temporal
constraint that depends on saccade properties; a ballistic motion of gaze with high
velocity—linked to amplitude by the main sequence relationship from (Bahill et al.,
1975)—and the retinal position’s change of location for the region of interest in the
stimulus.

For the maintenance phase, measures of gaze and retinal errors and retinal slip7

are used to verify that position, and velocity, of the gaze and target are matched,
respectively (more details on pursuit measurement in the box below). Human observers
typically track targets up to a speed of 100 deg.s-1 (Spering and Montagnini, 2011),
though pursuits are mostly considered to be smooth and precise at speeds inferior to
30 deg.s-1. It is noteworthy that the upper range leads to corruption of the pursuit
epochs with catch-up saccades when velocity of target is high (De Brouwer et al.,
2002). The maintenance phase, in which retinal image is stabilised, is interpreted to
rely on a feedback loop where the oculomotor system must estimate and correct a
velocity matching error between gaze and target.

Pursuit measurement.
Measuring the quality of tracking has been done by computing gain as a result of modelling
the smooth pursuit system as closed-loop system (St-Cyr and Fender, 1969). This measure is
effective in the experimental protocols in which a target appears on screen and participants
are tasked to follow its motion. Pursuit is mostly studied for tracking a single point on a
uniform background, however, other stimuli in motion can lead to pursuit movements (Hey-
wood and Churcher, 1971; Heywood and Churcher, 1972). These other stimuli can lead
to pursuit phenomenon in conditions—i.e., RDK (Heinen and Watamaniuk, 1998), line
figures (G. Masson and Leland Stone, 2002), illusory perceptual motion (Madelain and
Krauzlis, 2003) or MAE (D. Braun et al., 2006)—that are less coherent with the two phases
structure described in the previous paragraphs, making it harder to detect them with these
measures. The measure of gain and the models associated have been questioned for tasks
where a percept is pursued, rather than a dot (Leland S Stone et al., 2000).

Fixations: the stationary state of visual accumulation

When the eyes are not moving—in between saccades and pursuits—they are sta-
bilised in fixations. A period or epoch of the gaze signal is classified as a fixation if it
cannot be classified in a type of movement and when the amplitude of displacement

7Retinal errors: qR = qG − qS , where [qR, qG, qS ] are bi-variate signals of the [x, y] coordinates
on the screen plane converted into visual degrees (deg), for the retinal image, the gaze and the
stimulus, respectively. Retinal slip: q̇R = q̇G − q̇S , which is same computation, but on the target
and the eyes’ velocities.
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is smaller than 1 deg (Martinez-Conde, Macknik, and D. Hubel, 2004). However, the
eyes never stay still. The study of fixations and fixational eye movements (FEM) have
grown in the recent decades as increasingly affordable measurement equipment
have facilitated this growth (Rolfs, 2009). During a fixation, information is accu-
mulated for the visual system as the region of observation is treated by the highly
sensitive and precise foveal region of the retina. Hence, during a scene exploration
or search task, human observers tend to scan the visual field with saccade-fixation
combinations also known as scanpaths (Noton and Stark, 1971a; Noton and Stark,
1971b). They are visible in Fig. 1.1 and characterise the spatio-temporal properties
of an observer’s oculomotor behaviour when facing a given task. In most of these
tasks, the fixations tend to last on average 300 ms, though they may be much longer
in other tasks.

FEM have different dynamics and are classified as micro-saccades, drifts or
tremors (Martinez-Conde, Macknik, and D. Hubel, 2004). The dichotomy sep-
arating FEM from larger, macro, eye movements can possibly be explained by
methodological constraints related to task choice, measurement equipment (Ap-
pendix A.3), analyses and classification. A possible explanation is that the reported
small amplitude eye movements are miniature versions of the more studied smooth
pursuits and saccades, and thus, they may have the same functional role to cognition
and vision. In fact, theories that link FEM to active vision have been developed,
in which the visual system uses the noisy properties of the FEM to enhance its
capabilities and enable the detection of subtle orientation changes (Hicheur et al.,
2013) or reach hyper-acuity (Poletti, Listorti, et al., 2013; Rucci, Iovin, et al., 2007)—
i.e., human vision shows capacities to detect changes at smaller resolutions than
their cone mosaic should allow (Appendix A.2), if no signal processing was carried
out by the brain in higher parts of the visual system. However, the identification
and classification of FEM, and more largely eye movements, are still debated and
unsettled (Rolfs, 2009; Hessels et al., 2018).

Micro-saccades & small amplitude saccades

Micro-saccades have varying definitions and the algorithms used to detect them
have changed over the years. Given that the majority of algorithms are based on
thresholds, either on speed or acceleration, only threshold based algorithms will be
discussed in this paper—one can refer to Hoppe and Bulling (2016) for alternative
approaches. Thresholds used in these algorithms are not absolute (as used for
saccade detection and definition): velocity thresholds are defined with respect to
the median velocity for every trial (Poletti and Rucci, 2016; Krauzlis et al., 2017),

1.1 Visual perception 19



or by absolute deviation of the velocity distribution within the fixation combined
with a binocularity criterion (Engbert and Kliegl, 2003), or even a Bayesian classifier
with priors on velocity and magnitude (Mihali et al., 2017).

Once micro-saccades are detected and classified as events, it is possible to extract
oculomotor drift as the complementary epochs in the signal. It is also worth noting
that, though the function of micro-saccades has been, in the past, the subject of
controversy, the literature now agrees that they are a small amplitude eye movement
strategy used for visual exploration and acuity (Martinez-Conde, Macknik, and D.
Hubel, 2004; Engbert and Kliegl, 2003; Rolfs, 2009; Kowler, 2011; Hicheur et al.,
2013; Poletti, Listorti, et al., 2013). Therefore, they can be considered to have a
dependency on the visual signals. And if they can be used as an exploration strategy,
they might have some level of volition involved in the process. The use of volition
as a criterion for oculomotor event definition and classification is unreliable, as
it has been shown that dissociating voluntary oculomotor control and awareness
is not straightforward (Poletti and Rucci, 2016). For instance, saccades are often
produced without explicit awareness though they serve a voluntary task to find
visual information.

Recent research results and reviews tend to minimise the debated multiple roles of
micro-saccades, and interpret them as small amplitude saccades (Poletti and Rucci,
2016; Sinn and Engbert, 2016). Therefore, in this consideration of eye movements,
micro-saccades help readjust the preferred foveal area against the stimulus’ area of
interest, hence having a similar functional role as saccades.

Oculomotor drifts & tremors

Once micro-saccades are detected and classified as events, it is possible to extract
oculomotor drift as the complementary epochs in the signal (Cornsweet, 1956).
Drifts are defined as the low frequency and large amplitude8 component of FEM
activity that lead to long term (relative to the fixation time) exploration of the
area of fixation, also referred to as persistence (Engbert and Kliegl, 2004; Engbert,
Mergenthaler, et al., 2011), which is a term used to describe a signal that has high
correlation between its observation and its lag. Ocular drift is thought to be due to
the viscosity of the medium in which the eyes rest in the socket; when fixation starts
after a saccade, the eyes still have momentum in the same or opposite direction to
the saccade.

8Relative to other FEM components; all these movements are within 1 deg of amplitude.
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Figure 1.3. Fixational eye movements. Representation of FEM dynamics with ballistic
movements corresponding to micro-saccades, low frequency oscillations for
drifts and high frequency oscillations for tremor. Figure taken from Martinez-
Conde, Macknik, and D. Hubel (2004).

Tremors are also notably not well studied as they remain difficult to measure and
distinguish from measurement noise (Martinez-Conde, Macknik, and D. Hubel, 2004;
Krauzlis et al., 2017). They represent the small amplitude oscillations in the signal
(see Fig. 1.3), which can be confused with measurement noise. However, tremors
are thought to originate in the noisy components of the extra-ocular muscles nervous
control system. They can be characterised as a mechanism that reduces the gaze
motion due to drift and keeps the locus of fovea persistently in the same area; this
is often analogous to Brownian motion and random walks (Engbert, Mergenthaler,
et al., 2011).

Historically, FEM are considered as noise in the oculomotor system, although this
view is gradually being contested with recent evidence that they may help to relocate
a preferential locus of the fovea (Putnam et al., 2005) on the scene in order to give
hyper-acuity to humans for instance (Rucci and Casile, 2005; Rucci, Iovin, et al.,
2007; Zozor et al., 2009; Rucci and Victor, 2015).
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Other movements: vergence, vestibular & optokinetic.
More types of eye movements exist though they will not be covered in details in this
work. Vergence movements are used when a tracked target approaches the observer by
having the eyes move in a disconjugate manner—in smooth pursuit movements, when the
target moves along a plane, like a computer screen, the eyes move in a conjugate fashion.
Vestibular movements, i.e., the vestibulo-ocular reflex (VOR), correspond to compensatory
eye movements, when the head moves, in order to stabilise a target on the fovea. Finally, the
oculo-following reflex (OFR) occurs when a large portion of the visual field has a uniform
motion across the retina (Michalski et al., 1977; Quaia et al., 2012)—e.g., when looking
outside through the window while being inside a moving train. The opto-kinetic nystagmus
(OKN) is a composite gaze pattern in which an object is followed by smooth pursuit until
the object leaves the visual field. The eyes will maintain an object on the fovea in the slow
phase until it is not possible, and find a new object to stabilise in a fast phase.

Eye movements classification

The classification of all these eye movements is a key methodological topic of the
research field because other fields, such as vision science, use oculomotor events
as signals giving information on the observer’s task at hand and the stimulus. The
definition of each category or class plays an important role on the output. Though
eye movements have been studied for many decades, the variety of their dynamics
and the quality of measured signals make it difficult for the research field to agree
on definitions (Hessels et al., 2018). Indeed, eye movement signal classification is
approached with different methods (Coutrot et al., 2018), with consequences on
their interpretation (see Fig. 1.4 for an overview of methods).

The traditional approach has been to look at the parameters of eye movements which
gives interpretability but often reduces spatial and mostly temporal information. For
instance, one can look at (i) fixations’ durations, numbers, dispersion or clusters, (ii)
saccades’ amplitude, velocity, direction, duration or latency, (iii) blinks’ frequency
or duration, or (iv) pupil size. Another approach is to use the spatial distribution
of the oculomotor signal in order to derive bottom-up distribution-based metrics
such as Kullback-Leibler divergence (KLD), correlation coefficient (CC), similarity
(SIM) or earth moving distance (EMD) (Rajashekar et al., 2004; Le Meur, Le Callet,
et al., 2006; Toet, 2011; Judd et al., 2012). Alternatively one can use location-based
metrics such as the area under the curve, normalised scanpath saliency, percentage
of fixation or information gain (Riche et al., 2013; Bylinskii et al., 2018). An
approach, driven by web-based experimental work, where the stimulus is divided into
sections, has focused on string-based, common scanpath and geometric comparisons
of gaze signals (Le Meur and Baccino, 2013; N. Anderson et al., 2015). Finally,
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the probabilistic approaches use transitions matrices, graphs, Markov processes,
Fisher vectors, Gaussian mixture model or spatial point processes (Galdi et al., 2016;
Boccignone, 2019).

The diversity of methodologies presented here (Fig. 1.4) can be explained by the
multitude of contexts in which eye movements are studied and by the multi-variate
aspect of the signals extracted in eye movement studies.

Eye tracking.
For further information on eye tracking signals and apparatus, Appendix A.3 provides a
review.

Now that we have covered the foundations of eye movements’ sci-
entific literature, one can go back towards the visual information
processing in the brain, while considering that the sensory input is
subject to variation with eye movements.

1.1.3 Visual perception as an inference mechanism

In the next paragraphs, we look at how vision is an active inference process, where
sensory information is mixed with prior information, to reconstruct a rich perceptual
world, from an incomplete, and sometimes poor, sensory world.

Visual inferences

Vision is often considered as a feed-forward process that progressively extract features
based on the statistics of the retinal image. Also, the system keeps a map of the
visual space across the different stages of the visual system—V1, V2, V3, etc. Neural
network models, for instance, are inspired by our knowledge of the human visual
system, capable of achieving very high performances in detection, recognition and
classification tasks (Castelluccio et al., 2015; Gide, Karam, et al., 2017). However,
this hierarchical, feed-forward view is still too simple to reflect natural cognition
and perception9. Visual perception involves more functions and capacities than
passive observation and classification of scenes or objects. Perception in humans and
other mammals is an active process and interacts with many other systems and may
have evolved in only a few hundred thousand years from simple light detector to a
complex system capable of scene decomposition, driving actions, three dimensional

9Though there are parallels with cortical anatomy and physiology, on top of behaviour performances,
the deep learning models use implausible mechanisms, for instance, back-propagation, to learn the
features.
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Figure 1.4. Eye movement signal processing.
Overview of eye movement modelling and comparison methods taken and
adapted from Coutrot et al. (2018). a) is a list of eye movement events parame-
ters, b) is a list of spatial distribution methods for gaze analysis—i.e., Kullback-
Leibler divergence (KLD), correlation coefficient (CC), Similarity (SIM), earth
moving distance (EMD)—, c) is a list of string-based and geometric approaches
for signal comparisons and d) regroups probabilistic approaches to eye move-
ment analysis. The table at the bottom gives a qualitative appreciation and
requirements for each cluster of method listed above.
For more details on all these methods, please refer to Coutrot et al. (2018).
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environment mental representations, etc (Nilsson and Pelger, 1994; Lewicki et al.,
2014).

Action is an important component to consider for vision (Aloi-
monos et al., 1988); so much so that the sensors, the eyes, never
stop being active in information retrieval (Rucci and Casile, 2005;
Kagan and Hafed, 2013), and action is driven by goals, behavioural
states and memory.

In classical feed-forward models, the information collapses towards a decision, but
here one can consider an intermediate level in which goals can intervene in an
inferential process (Knill and Richards, 1996; Kersten and Yuille, 2003; Kersten,
Mamassian, et al., 2004; Shams and Beierholm, 2010; Moreno-Bote, Knill, et al.,
2011; Moreno-Bote and Drugowitsch, 2015). The properties of the environment are
not captured by the sensors; shape, motion, texture, colour, identity, and the many
other features that humans systematically use to describe and interact with objects
are inferred. These properties are entangled in spatio-temporal visual patterns.

Inference as a core mechanism of perception is key to understand how the visual
experience, for instance, suppress the visual interference of the blood vessels in the
eye in front of the retina, the hole made by the optical nerve in the retina, or even
the fact that internal representations are three dimensional while the retinal image
is two dimensional. In fact, most known visual illusion emerge from exploiting the
inferential system such that it has to solve a problem in a metameric10 fashion or
to give an experience that is incoherent with the physical world—i.e., such as in
multi-stable perception—see Fig. 1.5 for a schematic representation of the illusory
phenomena (Mamassian, 2006).

Visual illusions as stimuli for vision science

Visual illusions have been a source of fascination for thinkers all the way back
to Aristotle (Eagleman, 2001). In psychology, the rise of Gestalt theory brought
illusory stimuli to the research community as phenomena that could be used to
study the mechanisms of the brain (Köhler, 1929; Wertheimer, 1938; Wuerger et al.,
1996; Bach and Poloschek, 2006). Since then, visual illusions have been used as
stimuli to study and gain empirical knowledge on contour (Anstis, 2013), surface
filling-in (Pinna and Grossberg, 2005), adaptation (Anstis et al., 1998), motion

10Perceptual metameres are phenomena in which two distinct physical objects or properties are
merged into one perceptual object. This is studied, for instance, in colour perception (Hardin,
1988; Wandell, 1995) or cross modal fusion (Hillis et al., 2002).
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Figure 1.5. Metamere & Multi-stability. Diagram showing the difference between multi-
stable perception and perception metamere. Reproduced from original diagram
in Mamassian (2006).

perception (Anstis, 1980) and perceptual decision (D. Leopold and Logothetis,
1999), for instance11. Visual illusions support the theory that perception is an
inferential process. The brain reconstructs and represents the environment internally
so that actions and decision can be made.

Inferential problems are linked to incompleteness of information and past knowl-
edge. In more formal terms, such as in the Bayesian framework, we refer to these as
the probability of observing the data and prior information. In fact, a growing trend
in cognitive sciences, using visual illusory phenomena, is oriented on predictive
coding, an approach where vision is considered as an inference on visual informa-
tion, other modalities and memory (Friston and Kiebel, 2009; Shams and Beierholm,
2010). To summarise, the brain is seen as a system that attempts to predict effi-
ciently an interpretation of the neural sensory information. Visual illusions then
correspond to situations, or conditions, in which the perceptual system mistakenly
ignores differences in the physical world, for metameres. Or on the other hand, they
may lead to a curious experience; the seemingly spontaneous change of a perceptual
object into another one, while the physical stimulus remains unchanged, in the case
of multi-stability.

Illusions like multi-stable perception or binocular rivalry have recently been used
to gain insight on the neural correlates of visual awareness (Eagleman, 2001;
Frässle et al., 2014). They are of interest as they feature a change of state of
the perceptual system when the stimulation remains constant—see Fig. 1.5 for
a schematic representation of the problem. Hence it is possible, with sufficient
temporal resolution neuro-imaging methods—e.g., electro-encephalography (EEG),

11For more on visual illusion, the reader can delve into https://michaelbach.de/ot/ or Martinez-
Conde and Macknik (2017).
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magneto-encephalography (MEG)—, to decode how perceptual change can occur
in stable and controlled presentation condition (Parkkonen et al., 2008; Kornmeier
and Bach, 2014). Alternatively, research has also focused on the location of percept
coding in the brain by identifying the neural correlates during the duration of a
quasi-stable percept. Using methods with high spatial resolution—e.g., functional
magnetic resonance imaging (fMRI)—, researchers have identified multiple cortical
areas, ranging from cortex areas V1 to middle temporal (MT) and depending on the
stimulus used, in which the illusion changes seem to occur (Sterzer et al., 2009).
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Figure 1.6. Circle Limit IV (Heaven and Hell), by M.C. Escher. July 1960, Woodcut,
printed from two blocks.

1.2 Vision & ambiguity: how does the brain handle it?

In this section, we delve more deeply in the behaviour of our visual system when
facing ambiguity. Ambiguity is a universal term, used in a variety of context, and
relates to the uncertainty associated with the interpretation of given information.
This means that multiple interpretations are probable, and none of them clearly
dominate the other ones. It differs from vagueness as the latter is evoked when
having any interpretation is difficult given the information presented. Ambiguity
can be used in reference to character’s personality or motives in arts, such as
the Caterpillar in Lewis Caroll’s Alice’s adventures in Wonderland12 or Hamlet in
Shakespeare’s Hamlet13. Artists like Escher have exploited ambiguity in its visual
manifestation to create fascinating visual works (for an example, see Fig. 1.6). In
vision sciences, the classical example for ambiguity is the Necker cube (Necker,
1832), shown in Fig. 1.7. Even when the figure is hand drawn on paper, this
simple stimulus clearly shows to an observer that its orientation’s perception will
change over time. This phenomenon has been defined as bi-stability, and it is the
type of visual illusion of interest, in this thesis, from empirical and theoretical
perspectives.

12The Caterpillar is ambiguous in his structure, as he is described to have a head that can be viewed
as a human male’s face or being a caterpillar’s end head with legs.

13Hamlet is classic example of a protagonist showing moral ambiguity in literature. He has dual
objectives as he tries to protect his mother and avenge his father. While Ophelia’s death shows
he has a human side with emotions, he carries on his vengeance leading to the death of many
innocent characters.
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One key phenomenon, within the domain of visual illusions, is multi-stable percep-
tion: when perception changes over the time of observation but the physical stimulus
remains constant (D. Leopold and Logothetis, 1999). Multi-stable perception refers
to the emergence of multi-stability, here, in visual perception. Multi-stability occurs
when complex systems, with multiple sub-systems within, such as a brain, create
multiple preferred states rather than one14 (Kelso, 2012). This is not exclusive to
the brain and can be observed in other domains such as physics (Hamedi et al.,
2013), biology (Gonze et al., 2017), computational networks (Mao, 2012), climate
science (Mitra et al., 2015), and more. However, the phenomenon has been investi-
gated for over two centuries in vision sciences, since Necker (1832), a chemist, first
reported the illusion formally (Fig. 1.7). In fact, there are different paradigms in
experimental psychology to generate such illusions: binocular rivalry, in which two
separate images are presented independently to each eye of the observer through
an experimental setup, ambiguous figures, in which the stimulus is a static image
(presented to both eyes simultaneously) too ambiguous for a single interpretation,
or percept (Wernery, 2013), or ambiguous videos, where image motion will be
ambiguous and generate alternation of percepts.

Multi-stable perception has been characterised by the following properties, common
to many ambiguous stimuli:

• Irrepressible—an observer cannot avoid perceptual change over prolonged
observation of a multi-stable stimulus.

• Mutual exclusivity—the percepts, i.e., the interpretations an observer will have
of the stimulus, can only be experienced once at a time.

• Unpredictability—perceptual changes cannot be predicted (Lehky, 1995), at
the time of writing, and seem to be stochastic, or at least are modelled as such.

• Percept duration distribution—tailed distribution such as Gamma and Log-
Normal distribution are used to model reported percept durations (Levelt,
1967).

• First percept—the longest percept in duration, it has an idiosyncratic bias, and
it may provide information on the continuous viewing empirical probabilities
of perception (Hupé and Rubin, 2003; Mamassian and Goutcher, 2005).

Multi-stable perception properties.
The properties listed above are further described and expanded upon in Appendix A.4.

14In which case, the system would be said to be mono-stable.
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Figure 1.7. Necker cube: one of the simplest bi-stable stimuli, in which the geometric
orientation of the cube is made ambiguous by the lack of perspective, i.e.,
vanishing lines, or the absence of occlusion of the back side of the cube. The
ambiguity of the cube was first documented by Necker (1832).

In most studies, the simplest form of multi-stability is studied,
namely bi-stability, in which there are variation between two quasi-
stable states, here percepts.

Bi-stability: stimuli & phenomenon description

Visual bi-stability occurs in binocular rivalry and for most ambiguous figures—such as
the classics, e.g., the Necker cube (Necker, 1832), Rubin’s vase/face illusion (Parkko-
nen et al., 2008) or the rabbit/duck illusion (McManus et al., 2010), presented
in Fig. 1.9. And bi-stability appears also in some artists’ work, like for instance,
Salvador Dali (Fig. 1.8) or Mauritis Cornelis Escher (Fig. 1.6), who exploited the
visual phenomenon in various forms. In bi-stability, two states of perception, or
percepts, are alternatively experienced by human observers. In binocular rivalry,
where two different images are presented to each eye independently, Levelt (1966)
presented four propositions to describe the dynamics:

(i) Stimulus dominance—the ratio of time duration of a percept over the other—
depends on the strength of the stimulus; the strength can be modulated by
controlling luminance and contrast.

(ii) Increasing the strength of the stimulus in one eye reduces the phase time of
the stimulus in the other eye.

(iii) Reversal speed increases as a consequence of proposition 2.
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Figure 1.8. Slave Market with the Disappearing Bust of Voltaire, by Salvador Dali,
1940. This art piece plays on spatial frequencies to hide two percepts and
interpretations of the scene: one being a slave market scene, and with the right
distance, one can see a bust of Voltaire appear and fade in the centre.

(iv) Increasing contrast of the images in both eyes reduces the time phases, and
thus increases the reversal speed, however stimulus dominance remains unaf-
fected. This was already observed by Breese (1899) and suggests independence
between reversal and percept suppression in binocular rivalry.

These principles have been extended to some ambiguous figures in some studies (Ma-
massian and Goutcher, 2005; Chopin, 2012) however the second proposition is not
always valid when contrast values go beyond a certain range (Jan W Brascamp et al.,
2006). The hypothesis of independence between reversal and suppression suggests
that two different mechanisms are at work which reflect such behaviour; one that
maintains while another reverses.

1.2.1 Experimental paradigms of multi-stability

As mentioned above, multi-stable perception can be achieved, experimentally, in
a variety of ways, and with various stimuli. We will now look at the main experi-
mental paradigms in which the phenomenon has been studied, and their associated
results.
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Figure 1.9. Ambiguous figures.
Top: different ambiguous figures of the categories perspective reversal: (i) the
Necker Cube, (ii) the Mach book, and (iii) Schröder’s staircase (taken from
Wernery (2013)).
Below: an example of figure-ground bi-stability with (iv) Rubin’s face/vase, and
semantic rivalry with (v) the duck/rabbit illusion and the (vi) the old/young
woman illusion (taken from Wernery (2013)).
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Binocular rivalry

Researchers have developed sophisticated paradigms and experimental setups to
study bi-stability in human perception. As such, binocular rivalry is an experimental
paradigm that has been extensively used to investigate bi-stability.

Binocular rivalry consists in showing two different images or stimulus to each eye
independently at the same retinal location—for a review we refer to Blake and Tong
(2008). Fig. 1.10 shows different experimental setups used for binocular rivalry. The
independence of stimulus presentation for each eye can be achieved, for instance,
using a set of mirrors or polarised glasses. As a consequence of the setup, visual
perception of the observers will alternate between the two images presented. First
reports of binocular rivalry date back to as far as the 16th century (Wade, 1998).
Though the setup might suggest that bi-stability is driven by specialised inter-ocular
inhibitory processes rather than by competition of higher stimulus representations,
there is compelling evidence that it is not the case and that binocular rivalry bi-
stability might occur just in the visual cortex (D. Leopold and Logothetis, 1999).
Note that the angular size of the stimulus can lead to different behavioural patterns.
Indeed, the size of the stimulus will have an impact on what receptive fields and their
associated neuronal networks code for the percept in the retinotopic visual cortex.
Evidence suggests that the size of the minimal unit of such neuronal populations do
not exceed 0.1 deg (Blake, O’Shea, et al., 1992).

Monocular rivalry

Monocular rivalry has a similar experimental setup to binocular rivalry but the
same image is shown to both eyes; however, the stimulus can be a mixture, i.e., a
superposition of two images, or a grating. In this instance, bi-stability will occur
though after a longer fused initial interpretation. When comparing binocular and
monocular rivalry, many similarities were reported, such as gamma distributed
percept durations. Monocular rivalry is also called pattern rivalry and is considered
closer to ambiguous figures in the range of bi-stable phenomena (Wernery, 2013).

Ambiguous figures

Ambiguous figures (Fig. 1.9) are images that do not contain sufficient information
in order for the brain to stabilise itself on a single interpretation and which leads it
to the experience of multi-stable alternations. Some of them have gained popularity
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Figure 1.10. Binocular rivalry setups.
A: diagram of a setup using red-blue googles and with competing stimuli being
composed only of red or blue colours.
B: picture and diagram of a setup using a miror stereoscope to project inde-
pendent images on each eye.
C: Diagram of a setup using prism goggles, where each prism bends light
creating an effective barrier between each eye.
Diagrams are taken from Carmel et al. (2010).

as they produce the phenomenon with no need for sophisticated viewing setup,
and as most observers share and experience the illusion. Most ambiguous figures
lead to bi-stability with two interpretations possible, though it is usually possible to
consider an additional one: the meaningless drawing, a hidden third percept of bi-
stability. For instance, the Necker cube can be perceived with two three-dimensional
interpretations, however the third percept, in this case, refers to the "flat" two
dimensional drawing of the cube. One should note that most studies do not record
or take into account this third hidden percept, as its observation occurs after long
exposure to the stimulus (Wernery, 2013).

Ambiguous figures can be distinguished in different categories due to the nature of
the competition that operates and due to the computational properties involved in
decoding the traits that determine the interpretations. However, in all cases, the
physical stimulus remains unchanged while the observer’s subjective experience
alternates. Perspective reversing figures refers to images where a two dimensional
drawing provides insufficient information for its three dimensional interpretation to
be unique. Usual properties involved in this type of figure are symmetry and low
semantic content, with both interpretations being very similar.

The most famous one is the Necker cube (Fig. 1.7) (Necker, 1832) and can also
be extended to a lattice of Necker cubes (see Fig. 1.11, from Kornmeier and Bach
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Figure 1.11. Necker lattice. Lattice of ambiguous bi-stable Necker cubes drawn, provided
by J. Kornmeier.

(2012)). The Schröder staircase—Fig. 1.9-iii (Schröder, 1858)—is also an insightful
example. Finally the Mach book (Fig. 1.9-ii) is yet another simple drawing that
leads to perspective reversing bi-stability (Mach, 1901). Figure-ground reversing
stimuli are related to Gestalt psychology, with their interpretations alternating
between a foreground figure and a background shape standing out in an observer’s
consciousness, while the other is suppressed. The Rubin vase/faces (Fig. 1.9-iv) is
also a popular example. Content reversal stimuli are characterised by the switch
being due to the nature of the content observed in the subjective experience, not
its perspective or figure-ground contrast. Examples such as the duck/rabbit and
the old/young woman figures (Fig. 1.9-v,vi) were first published in non-scientific
domains and were later adapted as stimuli for the study of perception.

Videos: dynamic bi-stable stimuli

Furthermore, bi-stable illusions can emerge in video stimuli; they are called structure-
from-motion (Fang and He, 2004; Brouwer and Ee, 2006). They are related to
visual kinetic depth effects (Wernery, 2013). The literature reports many results
on the rotating sphere15 and rotating cylinder stimuli—see Fig. 1.12. Apparent
motion quartets16 are also used to induce bi-stability, where the interpretations
vary in the orientation of an inferred motion from dots blinks. Moving plaids
can be used to produce a rivalry of direction too (Pressnitzer and Hupé, 2006).

15For an example, go to http://www.michaelbach.de/ot/col-equilu/index.html.
16For an example, go to http://www.michaelbach.de/ot/mot-sam/index.html.
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Figure 1.12. Structure from motion. Diagram showing the bi-stable illusion of structure
from motion, that can be generated when randomly spaced dots within, a
cylinder for instance, move according to, a horizontal sinus wave for example,
and create the illusion of a rotating cylinder. Perception of the direction of
rotation spontaneously changes for observers, creating the bi-stable perception
phenomenon. Diagram taken from Fang and He (2004).

Finally, motion-induced blindness17 has been shown to have temporal dynamics
similar to ambiguous figure perception (Bonneh and Donner, 2011), though its
link to bi-stability remains less obvious. Ambiguous figures also allow studying the
interaction of specialised and distant neural networks known to code or operate
decisions on certain types of information such as movement, face recognition, colour,
perspective, and more. Thus, it is important to keep in mind that some ambiguous
figures can lead to switches in perception within a category of cognitive function,
i.e., intra-categorical competition, and across different cognitive functions, i.e.,
cross-categorical competition (Ishizu and Zeki, 2014).

Paradigm comparisons

Binocular rivalry and ambiguous figures are the two dominant paradigms used
to study bi-stable perception; researchers have found many similarities and some
differences in terms of observed dynamics and data fitting to models. One of
the key aspects of bi-stability, the Gamma distribution of percept durations, has
been reported, with similar results to binocular rivalry, for the Necker cube (Jan
Brascamp et al., 2005), orientation rivalry (L. v. Dam and Ee, 2005), auditory bi-
stability (Pressnitzer and Hupé, 2005; Pressnitzer and Hupé, 2006), monocular
rivalry, motion-induced blindness (Wernery, 2013), or rivalry between moving
gratings known as the moving plaid stimulus (Hupé and Rubin, 2003; Pressnitzer
and Hupé, 2006; Moreno-Bote, Shpiro, et al., 2008; Moreno-Bote, Shpiro, et al.,

17For an example, go to http://www.michaelbach.de/ot/mot-mib/index.html.
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Figure 1.13. Moving plaid.
A: Diagram of the moving plaid stimulus and its two motion percepts with
orange arrows.
B: A third percept can be introduced if observers are asked to differentiate the
depth order of the two gratings for the transparency percept.
Below, the timeline of perceptual dynamics are shown, with perceptual changes
occurring over time of observation of the stimulus.
Diagrams taken from Moreno-Bote, Shpiro, et al. (2008).

2010)—see Fig. 1.13 for a schematic explanation. The moving plaid stimulus is
described in details, and a literature review of results related to it will be provided
and discussed later, in Chapter 4. Another key property, the independence of phase
durations and there unpredictability, has been reported for plaids (Rubin, Hupé, et
al., 2005), auditory bi-stability (Pressnitzer and Hupé, 2006) and many ambiguous
figures.

Moreover, differences in mean percept duration can be found for rivalry, orientation
rivalry and moving plaids, where percept durations are found to be much longer
than in binocular rivalry (Ee, Van Dam, et al., 2005; Wernery, 2013). Studies
have found that voluntary control and observer strategy are more effective on the
Necker cube as opposed to rivalry (Ee, Van Dam, et al., 2005; Meng and Tong,
2004). Finally, mutual exclusivity of interpretations is a property that relates to
ambiguous figures more accurately than rivalry as observers report having fused
percepts in the latter. It is worth noting that trans-magnetic stimulation (TMS) of
the visual cortex has been shown to affect binocular rivalry but not ambiguous figure
bi-stability, strongly suggesting that the conflicts in perception do not occur for the
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same neuronal populations in these paradigms, though the phenomena are closely
linked (Pearson, Tadin, et al., 2007).

1.2.2 State of the art for subjective reports

Before covering the topic, it is important to consider that, in an experimental setup
where perception changes, the reversal can be of two nature: (i) endogenous reversals
refer to changes of perception caused by internal processes in the visual system, and
the brain, while (ii) exogenous reversals refer to changes of perception caused by
external modification of the stimulation, in the physical display of the experimental
setup.

The simplest form of experimental paradigm18 is based on presenting the stimulus
and asking for the observer to explicitly report perception. This is usually done by
using assigned keys on a keyboard that correspond to a percept. Participants can
be asked to either report changes in perception by a brief key press, or to keep the
key pressed as long as a percept is perceived. For both cases, motor programming
has to be considered as part of the response, as it introduces variable latencies. This
time may vary greatly from one participant to another, and from one trial to another,
from one perceptual change to another. In fact this issue is amplified when high
temporal resolution neuro-imaging techniques are applied to study multi-stability,
as it becomes difficult to estimate the precise moment of endogenous reversal and
have an onset for perception change (Kornmeier, Ehm, et al., 2007; Kornmeier and
Bach, 2012). Overall, one can assume that the motor response may take between
200 ms and 600 ms, but as shown in Fig. 1.14, multiple internal motor processes
are involved before measure acquisition, and each can add variability on the time
stamp. As most experiment in the literature use key press reporting, these caveats
apply to most results (Ballanger and Boulinguez, 2009).

Experimental paradigms review

Two approaches have been explored by researchers: (i) continuous viewing dur-
ing which the stimulus remains stationary and participants report their perceptual
dynamics as it changes, and (ii) discontinuous viewing during which the exper-
iment provides temporal windows during which the observers may report their
perception.

18We refer to experimental paradigms as families of protocols and approaches in methodologies that
have a common structure and constraints, beyond parameter changes.
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Figure 1.14. Key press. Diagram of the motor programming process for reaction time key
press events, estimated from empirical data in electro-myography (EMG) in
Ballanger and Boulinguez (2009).

Continuous viewing. Researchers have used the continuous viewing paradigm
for empirical research in multi-stable perception because what sets the phenomenon
apart from other visual illusions, is the mid-term19 dynamics of perception. Indeed,
most perceptual tasks in vision science use short trials to study the visual system,
during which a stimulus will be presented for a duration smaller than 5 seconds,
typically. This allows experimenters to control presentation condition and accu-
mulate a large sample of trials per condition. However, multi-stable stimuli have
varying mean percept durations with most being over 3 seconds: in fact this is why
the percept is considered to be stable for a period of time. Note that static stimuli
such as the Necker cube tend to have shorter percept durations (Zhou et al., 2004;
Wernery, 2013) than dynamic stimuli like the moving plaid (Hupé and Rubin, 2003;
Hupé and Rubin, 2004; Moreno-Bote, Shpiro, et al., 2008; Moreno-Bote, Shpiro,
et al., 2010).

As a consequence, trial durations tend to be larger, though they vary greatly from one
experiment to another, ranging between 20 seconds and 3 minutes. Trial duration
quickly becomes a pragmatic trade-off to consider when designing experiments as
observers will experience fatigue over prolonged stationary stimulation and reactivity
to perceptual changes may vary more. For neurosciences, continuous viewing
protocol have been used successfully in fMRI studies with results showing percept
coding in the visual cortex and some other cortical areas (Sterzer et al., 2009), but
also present difficulties to estimate the precise time at which the perceptual reversal
occurs and to synchronise signals for event relate potential (ERP) and time-frequency
(TF) analyses in MEG and EEG studies (Parkkonen et al., 2008; Kornmeier and Bach,
2012).

19By mid-term we mean effects that are in the order of magnitude of a tens of seconds.

1.2 Vision & ambiguity: how does the brain handle it? 39



Discrete viewing. To solve synchronisation issues raised in the previous paragraphs,
some researchers have tried to exploit a known aspect of bi-stability: when visual
presentation is interrupted by a mask also referred to as the inter-stimulus-interval
(ISI), percept reversal rates20 can be manipulated such that perception is quasi-
stabilised for one percept (D. Leopold, Wilke, et al., 2002; Kornmeier, Ehm, et al.,
2007).

We refer to this approach as the discrete viewing paradigm, also known as discon-
tinuous presentation protocols. Defenders of this approach argue that given the flow
inputted to the visual system is ecologically interrupted by eye blinks, the system
is used to treat discontinuities and that multi-stable perception is fundamentally
discontinuous (Kornmeier and Bach, 2012). Furthermore, ERP and TF analyses are
greatly improved as temporal noise, i.e., phase shift, is reduced since the protocol
forces the observer to respond at a given time, after the stimulus and the ISI were
displayed (see Fig. 1.15) and an onset can be estimated (Parkkonen et al., 2008;
Kornmeier and Bach, 2012). However, the issue cannot be as simply solved. Visual
awareness is experienced as continuous but input feed interruption such as blinks
are endogenously generated and do not influence the system with the same power
as an exogenous ISI as shown by the variation of mean phase duration depending
on ISI (D. Leopold, Wilke, et al., 2002). Indeed the impact of eye blinks on bi-stable
perception has been shown to be minimal and indirect; in fact, L. v. Dam and Ee
(2005) discuss that blinking rates are impacted and decrease when key press motor
programming occurs. Such issues reorient questions on the impact of key press on
perception. Their results support the idea that given blinks are endogenous events,
the visual system is given the information of their occurrence and adapts to the task
events.

In fact, Brascamp et al. (2009) showed that perceptual changes occur on larger time
scales when using a discrete presentation protocol with ISI. They further argued that
perceptual memory may play a role in the dynamics of multi-stable perception, by
having similar dynamics at larger temporal scales. Furthermore, when looking at
the dynamics in a probabilistic way, such as the one proposed by Mamassian and
Goutcher (2005), the impact of blanks on survival probabilities21 is evident, as the
temporal dynamics suggest that subjects have high perceptual biases on their first
percept, with the system having mechanisms to stabilise near equi-probability.

20Reversal rates or perceptual change speed is a measure used to estimate based on data in a trial
how quickly perceptual changes occur. It is typically expressed as reversals per seconds and gives
an interpretation and value on the dynamics of perception. One can compute it simply with:
r = nX/tT with r the reversal rate, nX the number of perceptual changes and tT the trial duration
in seconds.

21Survival probability refers to a probability value given to the dominant percept that indicates the
chance that it will remain dominant in the next iteration.
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Figure 1.15. Discrete viewing paradigm. Experimental protocol from Kornmeier and Bach
(2012) showing unambiguous (A & B) versus ambiguous (C & D) conditions
contrast. Each condition shows examples where a perceptual reversal (A & C)
is reported in the ISI, and perceptual stability (B & D) is reported during the
ISI.

Known interference effects linked to key press reports

Motor response is used in subjective report experiments in the form of mostly
key press on a computer keyboard, but also mouse click or even oral report. For
instance, it is established that motor response performances are dependent on task
difficulty or workload (Veltman and Gaillard, 1998). Furthermore, motor responses
are not equivalent; saccades can be generated with much faster latencies, in just
100 milliseconds for natural scene tasks, compared to around 300 milliseconds
when using button press (Crouzet et al., 2010; Guyader et al., 2017). The motor
response implies attentional shifts and thus can affect the visual decoding and spatial
frequency appearances of the stimulus for the observer (Yeshurun and Carrasco,
1998; Barbot and Carrasco, 2017; Barbot, S. Liu, et al., 2018). In fact, the effects of
attention on multi-stable perception are not negligible.

In binocular rivalry, changes in attention can explain the dynamics of bi-stability (Di-
eter et al., 2016; Li et al., 2017), but this is not as clear for ambiguous figures.
However, a review of motor control and learning with regards to attention exposed
the conclusion that as participants get accustomed to the task, their attention is
not distributed in the same manner as at the end of the experience (Song, 2019).
This in turn affects perceptual performance for the visual system. Furthermore,
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motor response is known to introduce unwanted neural activity in neuro-imaging
experiment as programming the response activates neural networks dedicated and
not involved in visual perception as per say (Kornmeier and Bach, 2012).

Overall, little is known on the direct contribution of key press re-
sponses on the dynamics of multi-stable perception besides its im-
pact on attention and eye movements (L. v. Dam and Ee, 2005).
To further study the contribution of indirectly related motor action,
researchers need to develop, before hand, methods that can be en-
able perception decoding without relying on key press, so that the
conditions can be contrasted.

1.2.3 State of the art for objective reports

Objective report experimental protocols aim to use other methods to measure
perceptual changes, without being entirely dependent on the observers’ explicit
responses.

Difficulties related to subjective report paradigms have been presented above, but
other approaches are being developed. They rely on finding physiological markers or
signatures of multi-stable perception that can be measured on participants during the
task. These markers can be estimated by building up on subjective report protocols,
during which data can be labelled by observers, considering them as ground truth—
note that given some of the arguments mentioned above on motor and attentional
interference, this notion should not be considered as absolute. As these signals
may have some level of variability, this type of approach heavily relies on signal
processing and modelling. In fact, this type of problems can be approached by
machine learning methods, in which the signatures can be learned by an algorithm,
to detect the markers of a percept or of perceptual changes. A model of signatures
needs to be established either by theoretical works or by data-driven techniques,
so that it can be applied to scan data and detect matches. The data can be of
many kinds; for instance, one can use physiological data such as muscle activity
measurement with EMG, or neural activity with EEG, MEG, electro-physiology, or
blood activity with fMRI, or even eye movements using eye trackers. In the following
paragraphs, we review attempts across the literature to identify perceptual dynamics
in visual multi-stability, with an emphasis on eye movement studies.
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Eye movements

Studying the dynamics of eye behaviour provides a mean to understand how forces
external to the visual system may influence perceptual reversals. Or in other words,
this approach can provide a characterisation of system noise coming from eye
movements, fixations and blinks that may lead to switching. Necker himself had
already described the influence of fixating certain aspects of the cube (Necker,
1832). Thus, the question of whether the percept, at a given time in bi-stable
perception, is due to eye movement or whether the movement is a consequence
of perceptual reversal has been an important source of investigation (L. C. v. Dam
and Ee, 2006a). Eye tracking devices allow researchers to have quantitative and
precise measurements, providing information on the impact of different events that
are featured in human vision: fixations, saccades, smooth pursuit, blinks, pupil
dilatation and micro-movements.

Observers of the multi-stable stimuli, and more specifically with the Necker cube,
often report finding strategies to control their perception by fixating different features
of the cube. Indeed, up to a certain extent, subjects can control the rate of perceptual
reversals, though they can never fully stop the reversals (Ee, Van Dam, et al., 2005).
Some studies have aimed to pinpoint the role of fixations and gaze position in
ambiguous vision; for instance, it has been shown that eye position and percept
dynamics of the Necker cube in a free viewing paradigm are closely linked (Einhäuser,
Martin, et al., 2004). However this finding has been contested (Long and Toppino,
2004; L. v. Dam and Ee, 2005). As most scientists are interested in the markers that
correlate or are causally linked to the reversal of perception, a series of studies have
looked at eye movements and their implication in multi-stability.

Saccades and micro-saccades. Studying the impact of saccades, and other eye
movements, on bi-stable perception is crucial in understanding the impact of shifting
the visual input, along different neural populations, on the subsequent perceptual dy-
namics. In an attempt to quantitatively characterise eye movement related strategies
operated by subjects in free viewing perceptual rivalry, no positive correlation was
reported between saccades and perceptual changes (L. C. v. Dam and Ee, 2006a).
Thus, it seems unlikely that participants use eye movements to stabilise or accelerate
reversal rhythms. Furthermore, some interesting differences were highlighted: for
instance, for ambiguous figures, no or weak correlations were observed between
saccadic movements and reversals, though strong correlations were found in binocu-
lar rivalry (L. C. v. Dam and Ee, 2006a). And correlation between micro-saccadic
eye movements and the following percept was shown. Hence, researchers have
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attempted to differentiate the impact of eye movement from retinal image shifts on
perception.

Retinal image shifts. In this perspective, retinal—and more specifically foveal—
image change has been shown to be the factor linked to perception reversals in
binocular rivalry by investigating the impact of stimulus motion on a saccade-less
observation (Blake, Sobel, et al., 2003; L. C. v. Dam and Ee, 2006a). Using stimulus
motion to excite changing populations of neurons, based on retinotopic mapping,
and coding of the percept, in V1, it was expected that, in theory, the effects of neural
adaptation22, would be minimised. Blake and colleagues showed that stimulus
motion speed, in subjects’ visual field, had an effect on the average reversal speed for
binocular rivalry. However, their data were collected on very few subjects, making
generalisation questionable given the high inter-individual variability observed in
multi-stability.

Pursuits & opto-kinetic nystagmus There have been attempts to use OKN on
binocular rivalry to infer perceptual dynamics without depending on subjective
reports (Frässle et al., 2014). The authors used a typical OKN generating stimulus
and presented it separately to the two eyes and asked participants to report using key
presses in one condition, and no-report in the other. In the latter, they analysed the
gaze signal dynamics to infer the perceptual dynamics. This allowed them to then
contrast neural correlates of multi-stable perception using fMRI. But their method
was in fact improved by another team, using the same psychophysical setup, without
the fMRI, but focusing on gaze signal processing and data interpretation to solve
signal interruptions and displacement due to blinks and saccades (Aleshin et al.,
2019). They proposed a method to estimate the cumulative smooth pursuit by
identifying smooth pursuit epochs in the signal and interpolating the signal over
unwanted other epochs. These are, to the author’s knowledge, the first convincing
attempts at applying objective measures of perceptual dynamics using eye move-
ments, featuring experiments with blind no-report conditions. However, no such
results have been reproduced yet on ambiguous figures.

Eye blinks. There has been little investigation of the impact of blinks on multi-stable
dynamics though their role could theoretically be linked to studies of intermittent
presentation of ambiguous stimuli. Indeed, blinks should act as blank periods where

22more details on adaptation will be given in the review of models, however, for now, adaptation
refers to a process that drives a baseline oscillatory behaviour in bi-stability
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the stimulus is not being fed to the visual system. Thus, results observed when
manipulating and controlling discontinuous presentation times should offer insights
on how blinks affect bi-stability. Researchers have shown that by setting the blank
period, i.e., the ISI, to longer durations (above mean phase time), it is possible to
stabilise the perception of an ambiguous stimulus, while short blanks will lead to
high probabilities of reversals (D. Leopold, Wilke, et al., 2002). However, when
examining data around blinks, in free viewing conditions, no positive correlation
was found between blinks and reversal dynamics (L. v. Dam and Ee, 2005). This
suggests that the blank created by a blink could be profoundly different from a
stimulus removal, with perceptual memory23 playing a part in the dynamics of multi-
stability. Indeed, scientists have shown that using intermittent presentation can
be misleading and lead to perceptual alternation cycle with specific characteristics
and dependencies (Brascamp et al., 2009). When looking at the dynamics in a
probabilistic way, such as the one proposed by Mamassian and Goutcher (2005), the
impact of blanks on percept survival probabilities tends to create a bias towards the
first percept.

Pupilometry. Pupil dynamics can be recorded and analysed through eye tracking
data and can be used in vision sciences. Attempts to link pupilometry and perceptual
changes have been proposed (Einhäuser, Stout, et al., 2008), however, the proposed
correlations have been shown to reflect the planning of the motor response over
the endogenous experience of reversal of perception (Hupé, Lamirel, et al., 2009).
Moreover, pupilometry has been shown to be a less effective means to measure
higher cognitive functions such as attention or work memory (Meghanathan et al.,
2015).

Neuro-imaging results review.
A review of neuroscience results on multi-stable perception, which also provide objective
report methods, can be read at Appendix A.5. It is not essential to understand the results
presented in Chapters 2 to 4 as the planned EEG experiment could not be carried out.

To synthesise, finding oculomotor markers of perceptual changes,
when the human visual system faces an ambiguous stimulus, is
not trivial, as the many studies covered in the paragraphs above
show. Although some empirical results show that oculomotor
events—e.g., micro-saccades, OKN or retinal image shifts—can pro-
vide information on the perceptual dynamics, eye movements re-
main difficult to control, since they also depend on attentional and

23Perceptual memory refers to short term memory, present in the lower visual cortex, and used in the
processes that reconstruct the visual experience (Magnussen and Greenlee, 1999).
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intentional factors. Finally, objective report methods require ad-
vanced signal processing to decode systematically signatures of per-
cepts, or perceptual change, in oculomotor, physiological or neuro-
imaging data. Such constraints require researchers to consider
modelling the phenomenon in order to predict the investigated and
searched markers.

1.2.4 Explanatory models of multi-stable perception

Historically, the scientific community modelling multi-stable perception was divided
by two opposing approaches. On one hand, a top-down view, supported by the obser-
vations of voluntary control, knowledge of reversibility, priming and cognitive load
(see Tab. A.1 in Appendix A.4), was developed. On the other hand, a bottom-up view,
driven by the observations of initial adaptation, local adaptation, multiple-figure
presentation, reverse-bias, (dis-)continuity of presentation and viewing parameters
(see Tab. A.1 in Appendix A.4), emerged. This division was maintained as both
sides found evidence backing their type of models (Wernery, 2013). Furthermore,
bi-modal experimentation has shown that a centralised hypothesis seems less likely
than a distributed competition in unconscious perceptual decision making (Hupé,
Joffo, et al., 2008). Quantitative models have been proposed, by different research
groups, to provide a theoretical and computational tools to understand multi-stable
perception. They can be classified with two main approaches: oscillators and
attractors.

Oscillators

Oscillator models are based on noisy oscillator circuits with adaptation being the
main driving force dictating reversal temporal dynamics. A comparison of four
oscillator models based on cross-inhibition for binocular rivalry showed that, with
different parameters and gain functions, dynamics followed Levelt’s Proposition
IV of monotonic decrease of phase durations with the increase of the stimulus’
strength (Shpiro, Curtu, et al., 2007). Oscillators have been used to account for
adaptation, an internal theoretical force thought to explain the choice of percepts,
their duration and Levelt’s Proposition IV (Moreno-Bote, Rinzel, et al., 2007). It
applies a slow negative feedback that gives models an oscillatory characteristic;
as the system enters percept A (PA), adaptation slowly reduces the probability of
maintaining PA over its competitor, percept B (PB). As shown in Fig. 1.16aA, the
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(a) Diagrams comparing oscillator and attractor
models.

(b) Bi-stable models.

Figure 1.16. Bi-stability.
(a) Diagrams comparing oscillator and attractor models.
A (left): oscillator models have deterministic trajectories between the percepts
A and B in the firing rate space (rA, rB) for a neural population coding the
bi-stable perception. This leads to periodic oscillations between A and B.
A (Right): an attractor models have two locations in the (rA, rb) space and
when the system is initialised, it falls to the nearest lower energy point or
attractor. No change will occur unless noise is added.
B: the energy function for percepts A and B in the attractor models, and an
example of perceptual time series by computing the difference of firing rates
δr(t) = rA − rB .
C: the distribution of dominance durations for attractor models with noise.
Figure taken from Moreno-Bote, Rinzel, et al. (2007).
(b) Bi-stable models.
Left: a diagram of the architecture of a bi-stable model with slow negative
feedback β and noisy inputs I + n, with I the input and n the noise. The
model has slow negative feedback in the form of adaptation (u1(t), u2(t)).
Right: the consequence on alternation dynamics when the strength of noise
and adaptation vary, with two extreme example points where the alternative
force is absent and the models is either noise-driven or adaptation-driven. This
diagram shows how noise provides the characteristic tailed distribution of
dominance durations, while adaptation impacts the mean of that distribution.
Taken from Shpiro, Moreno-Bote, et al. (2009).
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dynamics of the system act as a deterministic24 oscillator. The period in each percept
becomes regular and the system’s state changes has periodicity that can be estimated
and defined (Fig. 1.16b).

Adaptation is interpreted in physiological and neuronal terms as due to synaptic
depression and spike rate or frequency adaptation (Shpiro, Curtu, et al., 2007).
When neurons are pushed in a response regime over a prolonged period25, the
neurons gradually decrease in excitation for a constant input and adapt. This is in
fact understood and modelled at the level of membrane current and action potential
propagation dynamics (Dayan et al., 2001). It is observed and pervasive in many
neural systems of human cognition and relates to the change of the system’s response
over time although the input remains the same. For instance, other visual illusions,
such as MAE, are linked to neuronal adaptation (Anstis et al., 1998).

In the context of perceptual multi-stability, it is thought that adap-
tation occurs over populations or networks of neurons coding for
one percept over its alternative (Shpiro, Moreno-Bote, et al., 2009;
Moreno-Bote, Knill, et al., 2011; Huguet et al., 2014). Hence, it
acts as a suppression or inhibitive mechanism that provides oscil-
lations in the perceptual time discourse (Hupé, Signorelli, et al.,
2019). However, the dynamics of perception have been shown to
be unpredictable, and therefore, adaptation and oscillation are not
sufficient to explain the empirical data (Lehky, 1995; Shpiro, Curtu,
et al., 2007), and some form of stochastic process should be consid-
ered.

Attractors

Attractor models (Fig. 1.16A) propose that noise acts as the main component that
directs perceptual reversal in time and adaptation only modulates the process. With
such an approach, the system is modelled as a particle in landscape following a
random walk (Einstein, 1956) and gradient descent (Kelley, 1999). An attractor for
each percept (PA & PB) is set in an energy landscape. Noise, which remains poorly
defined and characterised, is the driving force that helps overcome energy barriers
between attractors and lead to percept reversals (Moreno-Bote, Rinzel, et al., 2007).
It may refer to a variety of negligible interactions with other systems, thought not

24Determinism refers to the absence of noise on the system in the parameter space described.
25Depending on the neurons, it may vary from a few seconds to a few minutes to adapt.
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to be of crucial importance for perception, or it may also refer to neuronal noise as
modelled in leaky integrate-and-fire neurons (Moreno-Bote and Parga, 2005).

Consequently, models based on adaptation will showcase stable periodicity if the
noise is removed, whereas noise-driven models will have no reversals of perceptual
states (Shpiro, Moreno-Bote, et al., 2009). Moreover, if adaptation is removed
from attractor models, the distribution of phase times would become Exponential,
not Log-Normal or Gamma. Hence, a combination of these structures seems to be
necessary as an exclusively attractor-based or oscillator-based model is not realistic
given the arguments cited and the defining features of bi-stability (for an illustration,
see Fig. 1.16 & Fig. 1.16b). For instance, an attractor model, with weak adaptation,
has been implemented, and studied, with firing rate mean-field and in spiking cell-
based neural networks (Moreno-Bote, Rinzel, et al., 2007). In Moreno-Bote, Knill,
et al. (2011), the authors showed that when viewing ambiguous gratings motion
with a moving plaid bi-stable stimulus, the fractions of dominance26 of each percept
depending on a cue manipulation (speed or wavelength) follow a multiplicative rule
(see Fig. 1.17a). In fact, they showed that this is a key aspect of Bayesian sampling,
thus suggesting that the visual system may act as such a sampler. They further
showed that an attractor neural network can sample probability distributions in a
Bayesian way (Fig. 1.17b), hence reinforcing the proposed idea.

Forces

The models described above operate through the dynamics of a particle in an energy
landscape, corresponding to its parametric space. Different forces are applied to the
system and result in dynamical changes of its position in its parametric space. These
forces are interpreted to be related to the input strength, adaptation and noise.

Input strength. Because multi-stability focuses on having the input kept constant
and observing the states of the system vary, input strength is rarely manipulated,
and often omitted from models. However, some models can be expressed with
an input variable such as the one shown in Fig. 1.16b. Input strength relates to
Levelt’s propositions (Levelt, 1966; Levelt, 1967) for binocular rivalry, where the
variable can be easily controlled by increasing luminance or contrast in the display
of one eye over the other, for instance. In most multi-stable perception stimuli, such
as ambiguous figures, we consider the input to remain constant throughout the

26The fraction of dominance here corresponds to the empirical probability of a percept PA over total
observation time.
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(a) Bi-stable moving plaid.

(b) Bi-stable model.

Figure 1.17. Bi-stability and the moving plaid stimulus.
(a) Bi-stable moving plaid.
A: a diagram of the bi-stable moving plaid stimulus with transparency, or
depth ordering, percept competition and a schematic timeline of perceptual
dynamics.
B: a diagram showing how the multiplicative rule is applied, schematically, to
fractions of dominance with different cues to build the probability distribution
of each percept given the cues.
(b) Bi-stable model.
A: a diagram of competing neural networks coding for a percept each.
B: the model’s energy function with attractors for each percept as a function of
the firing rate difference of the two networks (r = rA− rB) and an adaptation
force (the arrow).
C: the rate difference over time, with noisy oscillations, showing residence in
each percept.
Figures taken from Moreno-Bote, Knill, et al. (2011)
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observation time. Input strength can be seen to directly affect the probability of
observing a percept, and in attractor models, it corresponds to the minimum level of
energy for an attractor.

Adaptation. Adaptation represents a force that affects the relative depth of the
attractors by providing a slow negative feedback. When the system particle is located
in an attractor, its depth is reduced, thus increasing the probability of the competing
attractor—illustrated by the grey arrow in Fig. 1.17bB, Moreno-Bote, Knill, et al.
(2011). If adaptation is the only force applied to the system, one obtains a periodical
dynamic of perception as shown by Fig. 1.16bB (Shpiro, Moreno-Bote, et al., 2009).
Adaptation has a variety of interpretations in the literature (Huguet et al., 2014),
but it corresponds, in theory, to a slow negative feedback loop. It is sometimes
explained by referring to neural adaptation27, a phenomenon that occurs when
neurons are constantly stimulated over a period, their firing rate threshold adapts
and shifts. Adaptation can lead, for instance, to visual illusions such as motion after
effect (Anstis et al., 1998). However, adaptation can be also explained by mutual
inhibition mechanisms, in which the activation of a population of neurons coding
for a percept leads to its competitor gradually inhibiting the current percept (Hupé,
Signorelli, et al., 2019). This leads to the same periodic observations, if only
adaptation is the driving force in the system. Whatever the interpretation and
biological plausibility, adaptation, in models, refers to a deterministic force or
mechanism that provides oscillatory behaviours. It is then mixed with a stochastic
component to obtain dynamics similar to bi-stable perception.

Noise. Neural noise is present in biophysical systems and corresponds to the
intrinsic electrical fluctuations in the neural signals that do not code the information
processed by a neural network (Huguet et al., 2014). However, more generally, noise
can refer to stochastic processes that impact a system. In multi-stability modelling,
it is an essential component to explain unpredictable percept durations, however,
experimental observations or characterisations are scarce. In the attractor model
family, noise has been shown to be necessary to reproduce the percept duration
distributions observed in multi-stable perception (Shpiro, Curtu, et al., 2007; Shpiro,
Moreno-Bote, et al., 2009). In fact, it is necessary to have both adaptation and
noise’s strength balanced to reproduce empirical observations, as both forces seem
to be involved in alternations such that the system must operate near the boundary
between being driven by adaptation or noise.

27Spike-frequency adaptation or synaptic depression.
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Bi-stable models thus use adaptation to change the likelihood of a
percept being chosen, by increasing the probability of the compet-
ing alternative percept. However, this is not sufficient: noise will
provide the necessary energy to pass over the energy barrier re-
maining. Hence noise drives the moment of alternation, and adap-
tation which state is chosen.

If the noise enables the exploration of the multiple states, stochastic resonance is
said to occur (Gammaitoni et al., 1998). Stochastic resonance is a phenomenon
known to occur in biological systems in which a system takes advantage of its internal
noise to enhance its performances (McDonnell and Abbott, 2009). Some works have
shown how stochastic resonance might take place in the visual system (Kim et al.,
2006; Funke et al., 2007).
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1.3 Why do we study multi-stable perception?

This section provides some arguments motivating the study of multi-stable percep-
tion stimuli. Indeed, as reviewed in previous sections of this chapter, multi-stability
is an illusion that occurs when visual inference cannot find a single stable interpre-
tation to perceive. Cognitive systems, functions and research themes linked to this
phenomenon include attention, decision making and complex system dynamics. Rel-
evant results from these research fields are reported for a contextual understanding
of this thesis’ work.

1.3.1 Premotor theory of attention

Attention is a cognitive process that allows an individual to select an object or a
feature and to focus on its processing over the rest of the stimulation. For instance, it
allows to enhance our perceptual capacities on a part of the visual stimulation (Yeshu-
run and Carrasco, 1998). As James et al. (1890) originally wrote:

"[Attention] is the taking possession by the mind, in clear and vivid form,
of one out of what seem several simultaneously possible objects or trains of
thought. Focalisation, concentration, of consciousness are of its essence."

In vision sciences, spatial attention has been extensively studied, and numerous
experimental paradigms28 have been developed and investigated, giving insights
and observations (Rizzolatti, Riggio, Dascola, et al., 1987; Posner and Petersen,
1990; Posner and Dehaene, 1994; Rizzolatti, Craighero, et al., 1998; Petersen and
Posner, 2012). In fact, vision and attention have been studied closely together, and
attention has become a necessary consideration for theoretical work (Gide, Karam,
et al., 2017), in a wide range of model families:

• bottom-up approaches including feature integration (Itti et al., 1998), spectral
residual analysis (Hou and L. Zhang, 2007), superpixel segmentation (Z. Liu
et al., 2013) or proto-objects (Yanulevskaya et al., 2013), and more29,

• deep learning approaches including deep neural networks, sparse deep learn-
ing and Boltzmann machines (Gide, Karam, et al., 2017),

28e.g., Posner, Stroop, etc.
29For a complete and recent review reading Gide, Karam, et al. (2017) is recommended.

1.3 Why do we study multi-stable perception? 53



• and top-down approaches using the known features of higher visual processing
mechanisms such as facial detection (Cerf et al., 2008; Gide, Karam, et al.,
2017).

Classical theory of attention relies on a supramodal control mechanism that orients
the information processing of the visual scene in the brain to enhance perfor-
mance (Posner and Dehaene, 1994). This suggests that a dedicated neural network,
anatomically and functionally, orients attention; this cognitivist conceptualisation
has often linked attention and consciousness studies (Wyart and Tallon-Baudry,
2008). But connexionist approaches have shown that there is no need for a ded-
icated system and that it may be a distributed phenomenon (Rizzolatti, Riggio,
Dascola, et al., 1987). The latter is known as the premotor theory of attention and
explains the control mechanisms of attention as being dependant on weaker activa-
tion in a series of fronto-parietal networks (Desimone and Duncan, 1995; Rizzolatti,
Craighero, et al., 1998). The study of attention has shown links to oculomotor
dynamics as these networks are highly correlated and dependant to both attention
and eye movement programming (Posner, 1980; Hoffman and Subramaniam, 1995;
Kuhn et al., 2009; Engbert, Trukenbrod, et al., 2015; Kalogeropoulou and Rolfs,
2017; Meyberg et al., 2017).

Evidence from psychology studies

Using the Posner experimental paradigm, Rizzolatti, Riggio, Boris M Sheliga, et al.
(1994) showed the meridian effect: a delay in response time when participants have
to respond in the contra-lateral side with respect to the hemifield where the cue
is. Thus attention was located. The meridian effect is a strong argument in favour
of premotor theory of attention as it can be explained by how eye movements are
executed: when a cue indicates the position of the expected stimulus, the observer
prepares a saccade towards this expected position. If the expected target does not
appear in the cued location, the brain has to reprogram a saccade, which adds a delay
in the reaction time. If the target appears at the location cued, the saccade is carried
out more efficiently, as the premotor programming corresponds to an attentional
boost in performance. This can be observed, especially in eye movements, with
saccade deviations—see Fig. 1.18 (B. Sheliga et al., 1995). In fact, this has been
causally demonstrated by restraining eye movements, attention was affected such
that detection performances dropped hence showing that oculomotor programming
and attention are intrinsically linked (Craighero, Carta, et al., 2001; Craighero,
Nascimben, et al., 2004).
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Figure 1.18. Spatial attention. Gaze traces from the experiment presented in B. Sheliga
et al. (1995), in which the meridian effect in spatial attention is exposed
by saccade deviation generated by cues in the contra-lateral side of target
location.

Evidence from neuro-imaging & neuro-physiology studies

Neuro-imaging studies further showed that the cortical neuronal networks used
for eye movement and visuo-spatial attention are shared in parietal, frontal and
temporal lobes (Corbetta et al., 1998; Nobre et al., 2000). The networks reported in
these studies are analogous, for humans, to the monkeys’ FEF and LIP areas, both
known for voluntary control of eye movements (Astrand et al., 2015). Moreover,
event-related fMRI data on blind individuals reinforce the idea that attention and
eye movements share the same neural circuitry in FEF (Garg et al., 2007).

Invasive neuro-physiology data also show activity of neurons recorded in monkey’s
SC, a core neural network for oculomotor programming (Kustov and David Robinson,
1996). Neurons in SC increased their excitability when attention was paid to
the location it needed to make eye movements to, for the task. In fact, some
researchers have shown that it is possible to enhance spatial perception by changing
the oculomotor signals inside the brain (Moore and Fallah, 2001). Two monkeys
had to make a manual response when detecting a transient dimming of a peripheral
visual target while experimenters micro-stimulated the FEF cortical area. The
authors reported that sub-threshold stimulation of a specific area of FEF led to a
decrease for the psychophysical detection threshold of the stimulus, hence improving
performance, when the target was positioned in the motor field corresponding to
the stimulated neurons. Such evidence argues for a causal relationship between eye
movement control and allocation of spatial attention. These results have since been
replicated and investigated further, showing that when stimulating sub-regions of the
FEF, visual and oculomotor performances can be improved (Moore and Armstrong,
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2003; Ekstrom et al., 2008). Furthermore, these results have been causally replicated
on human subjects using TMS-fMRI by showing stimulating human FEF leads to
systematic effects on fMRI signals in the early visual cortex V1 (Ruff et al., 2006).

Attention & intention for action & perception

Premotor theory of attention makes attention intrinsic to motor commands and thus,
action. Indeed, more specifically, eye movements, attention and visual perception
are highly inter-linked phenomena (Posner, 1980; Hoffman and Subramaniam, 1995;
Kuhn et al., 2009; Engbert, Trukenbrod, et al., 2015; Kalogeropoulou and Rolfs,
2017; Meyberg et al., 2017) as the first changes the input, the second orients the
former and the latter processes the information. In fact, attention and intention are
closely linked during visual tasks (Kohler et al., 2008), notably longer ones during
which attention may vary and fluctuate over time (Esterman and Rothlein, 2019).
On the other hand, intention can be controlled with relatively more constancy by
means of task design and instructions (Firestone and Scholl, 2016). While attention
often refers to bottom-up driven changes in behaviour (e.g., eye movements) and
thus in perception, intention is often conceived as a top-down signal driving mo-
tor commands and affecting sensory inputs. Premotor theory offers a distributed
mechanism in neural networks whereby the attention is not driven by an external
supra-modal function, but by preactivation or sub-threshold levels of neural exci-
tation in the action or perception related networks. Therefore, in this theoretical
approach, attention is placed as an intrinsic component modulating both action and
perception, but also provide a commonality and is shared across both systems.

This consequence is a key aspect that shall be exploited in this thesis’ theoretical
work, and provides a pathway to bridge our understanding of eye movements and
multi-stable visual perception (Rolfs, 2015; Li et al., 2017; Mirza et al., 2019; Song,
2019)—but see Parr and Friston (2019) for a critic of the premotor theoretical
approach.

1.3.2 Perceptual decision over time

When the visual system infers a perceptual representation of the sensory inputs, it
takes many unconscious decisions, referred to as perceptual decisions.
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Figure 1.19. Decision models. Figure taken from Moreno-Bote and Drugowitsch (2015)
showing the results of simulations for three types of decision problems: classi-
fication, mixture identification and closest component.

Percepts as options for perceptual decisions

Perception reduces the sensory information into interpreted perceptual objects in a
mental space, as presented in Section 1.1.3. The process uses inferential mechanisms
to generate percepts, and this requires the brain to make perceptual decisions.
Decision making is a phenomenon that occurs in many cognitive functions and can
be linked to neural network architecture reducing the input into a restrained set of
outputs (Hérault and Jutten, 1994). In fact, in a recent computational study, Moreno-
Bote and Drugowitsch (2015) showed that spiking network models can solve high
dimensional causal inference problems. Using spiking network models in numerical
simulations, they looked at the network’s behaviour for hard discrimination classical
problems, complex mixture identification problems and closest component problems
(Fig. 1.19). This type of operation follows the accumulation of evidence from sensory
input which is associated to a cost function (Drugowitsch et al., 2012). In the latter
study, the authors used a RDK on a diffusion model and observers and obtains similar
reaction time distributions and could identify a contribution they interpreted as the
urgency signal which was independent of stimulus strength (i.e., difficulty). These
studies suggest that perceptual decision operates at fast time scales with neural
populations accumulating evidence towards an inference (i.e., a percept), and are
able to take a hard decision to classify, but also to identify the proportions of the
input leading to the outcome. When no class exist for a stimulation, the network
can converge towards the closest state. Empirical studies using continuous tracking
methods such as track pads over decision making provide data showing similar drift
to those engaged by the models (Zeljko et al., 2019).
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Inference mechanisms

The states of decision making show parallelism to the attractors in multi-stable
models and the Bayesian framework is used in both cases to explain the system’s
dynamics (Moreno-Bote, Knill, et al., 2011). Moreover, some researchers have shown
that these attractors, in the network’s parametric space, are not static and may evolve
over time, with neuronal plasticity being a key feature to enable that (Malhotra
et al., 2017). By combining an ideal observer model and a noisy judgement task in
which observers had to trade off accuracy (i.e., the accumulation of evidence) and
speed (i.e., more rewards), the authors showed that participants can modulate their
internal decision boundary, though they did so in a sub-optimal way. Therefore, key
theoretical bridges exist between findings in perceptual decision making and multi-
stable perception. In the latter, the processes for accumulation of evidence continues
over time and the suppressed percept ends up re-emerging, thus suggesting that the
visual system is constantly inferring perceptual objects.

1.3.3 Multi-stability as a regime of stability in complex systems
dynamics

The theory of predictive coding (Fig. 1.20a) with the free energy principle
(Fig. 1.20b) proposes that the brain computes sets of prediction errors based on
established and learned priors (Friston and Kiebel, 2009; Friston, 2010). The theory
is based on the assumption that the brain is Bayesian (Chater et al., 2006), namely
its computations attempt to solve the following generic equation, corresponding to
Bayes’ theorem:

p(Θ|X) = p(X|Θ)p(Θ)
p(X) (1.1)

where X is a set of data (i.e., sensory information) and Θ is a set of parameters.
p(Θ) is the prior which corresponds to the probability that the brain have such a
state, independent of the sensory information. p(X|Θ) is the conditional probability
of observing the sensory inputs given the current state of the system, also referred
to as the likelihood. p(X) is the marginal probability that normalises the p(Θ|X)
posterior distribution. The latter corresponds to the probability of the brain being
in a state, defined by Θ, given the sensory input. The posterior is the probability
law that is investigated in cognitive studies as it reflects behaviour based on the
mixing of prior and likelihood distributions. The inference computation in the
context of active vision can be interpreted using the schematic models described in
Fig. 1.20. A consequence of the Bayesian foundations is that multiple systems can
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(a) Predictive coding framework. (b) Free energy principle.

Figure 1.20. Predictive coding & free energy.
(a) Diagram depicting the loop for perceptual inference, in which an agent
interacts with its environment by capturing an estimation of the environment’s
state through sensations, that modify its internal states, causing the agent to
act, which in turn, affects the external states.
(b) The free energy principle postulates that the system is driven by surprise,
i.e., when expectations are not met, and can act on its actions to minimise
prediction errors or on its perceptual computations to optimise predictions
and inferences.
Diagrams are reproduced from Friston (2010).

be integrated in hierarchical models with forward propagation of inference errors
being a bottom-up coupling of systems, and backwards propagation being top-down
influences.

The theory also considers that as complex systems, the neural networks learn to
form attractors which encode what is being perceived, while neural activity itself
encodes where the attractors are located in the network’s parametric space. When
considering such types of organisations for complex systems, multi-stability can be
seen as a regime of stability, in which a complex system may settle for a time (Kelso,
2012). However, other regimes such as mono-stability and meta-stability exist—for
an illustration see Fig. 1.21—and a system’s regime depends on its history (i.e., what
is has learned). Visual multi-stability occurs on highly trained visual systems—for
instance, there is evidence that uninformed children are not capable of experiencing
perceptual reversal on ambiguous figure (Mitroff et al., 2006)—and one can assume
that priors are well established for adult participants and attractors are unlikely
to vary. Hence, ambiguous stimuli reveal how the visual system, a mature and
complex one, may enter a regime of multi-stability where the brain re-evaluates its
predictive errors on sensory information, and operates perceptual decisions based on
accumulated evidence and noise. Furthermore, similarities between the error back-
propagation algorithm used for predictive coding learning and synapse’s Hebbian
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plasticity have been shown (Whittington and Bogacz, 2017), suggesting it is a good
model to study how the brain may learn preferred states (i.e., attractors) for a
certain type of problems and their boundaries may evolve.

Studying the brain as a complex system, composed of a multitude of inter-connected
networks, requires to look at how these components interact: i.e., what is the
level of integration or segregation of sub-systems? Though the task is not trivial
as billions of neurons are involved with a much larger number of connections,
researchers have tried to propose metrics to quantify and estimate such complexity,
based on the theory of information, by looking at mutual information between
sub-systems (Tononi et al., 1994), for instance. This type of measure is difficult to
apply to neuro-physiological data as they are in essence, largely incomplete, but it
is useful when working with complex computational models. Indeed, this provides
tools to investigate the relative coupling and synergies between sub-systems over
computational visual processing for instance.
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Figure 1.21. Mono-, multi-, meta-stability. Diagram taken from Kelso (2012) showing the
changes of regimes as a dependency of a system’s sub-systems’ inner coupling.
Coordination dynamics have four described regimes.
(a) Multi-stability where, here, two stable attractors are represented by the
filled circles on the landscape of coordination variable coupling the systems
oscillations together, the relative phase parameter φ, and two unstable repellors
as unfilled circles.
(b) Mono-stability corresponds to a shift of the coordination variable φ such
that only one attractor and one repellor remain at φ̇ = 0.
(c) Meta-stability in which no attractor or repellor exist, with a system effec-
tively using sub-system coordination, though no stable state can be found.
(d) Uncoupled dynamics where no sub-system coordination are present.
(e) The system’s parameter space marked with areas corresponding to the
described regimes and arrows showing possible transitions as the system’s
parameters and its coupling vary—b/a is a coupling parameter, internal to the
system, while δω represent the observed coordinated dynamics.
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1.4 State of the art synthesis

In this section, a synthesis of the Chapter 1 is given by providing the gaps identified
in the literature for visual multi-stability with eye movements and EEG studies. The
content is split such that these gaps are specified for theoretical and computational
models on one hand, and empirical studies on the other. Following this summary, the
aspects that are addressed in this thesis are specified, thus providing the motivation
for the rest of this manuscript.

1.4.1 Identified gaps

Theoretical and computational models

In theoretical works, the key gaps identified are (1) the lack of generalisation from
bi-stable to multi-stable models, (2) the lack of consensus on the interpretation of
the adaptation force in models, (3) the lack of studies on noise characterisation, (4)
not many models implementing active vision processes for multi-stable phenomena
and (5) the perspective of addressing the problem as dynamical complex systems
coupling for multi-stable perception.

Bi-stable models, but little on multi-stable models. As reviewed in Section 1.2.4,
research on computational models of multi-stable perception has focused on bi-stable
phenomena. Attractor models composed of a deterministic component, adaptation,
and a stochastic one, noise, are able to generate perceptual dynamics similar to
observations measured on human participants in experiments. This is particularly
true for replication of percept durations distribution. However, the focus has been
primarily on the simpler case of a system with two attractors, or states. Few studies
have approached problems with three or more states, though some attempts have
been reported (Huguet et al., 2014).

In fact, generalisation to tri-stable perception provides new prob-
lems and may lead to further insights on the mechanistic proper-
ties of perceptual inference: for instance, understanding whether
percepts interact hierarchically can be valuable to identify the tem-
poral and serial aspects of inferential processes in the brain.
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Furthermore, bi-stability models rely on adaptation and noise, but does tri-stability
require new components? Or does it clarify the controversial interpretation for
adaptation?

Adaptation’s interpretation is still debated. Adaptation is a force in theoretical
models of bi-stable perception that has generated disagreements within the literature.
It is defined as a deterministic slow negative feedback that allows oscillatory changes
of perception if all other forces are removed (Shpiro, Moreno-Bote, et al., 2009).
However, its interpretation, namely its physiological basis, is not clear. Some authors
refer to neural adaptation (Pastukhov and J. Braun, 2013), often experienced in
visual phenomena—e.g., in motion after effect (Anstis et al., 1998), or in colour
perception—but is often explained by low-level bottom-up processes, where neurons
adapt to a saturated state in order to provide sensitivity again after at least 20
seconds. This mechanism can be implemented by synaptic depression or spike-
frequency adaption. An alternative view is that the slow negative feedback occurs
in the brain by means of mutual inhibition connections between networks coding
for the competing percepts (Hupé, Signorelli, et al., 2019). Further investigation on
the physiological nature of this deterministic force in bi-stable models is thus still
needed.

Noise’s interpretation is elusive. Multi-stable perception dynamics have been
shown to be replicated best when adding a stochastic process, in theoretical
works (Shpiro, Moreno-Bote, et al., 2009). In fact, there is some evidence that
bi-stable visual perception for binocular rivalry is not chaotic, and that given one
perceptual duration, it is not possible to predict systematically the length of the
next duration (Lehky, 1995). Furthermore, noise is an elusive notion that can be
referred to for all processes that are not explained. Hence, identifying what might
act as noise in the inference of an ambiguous stimulus for the visual system is a
challenging and less addressed issue. But the role noise plays is not necessarily
detrimental; for instance, stochastic resonance, in which the noise brings the energy
for a change of the system’s state (Gammaitoni et al., 1998), might provide an
interesting explanation for multi-stable perception (Kim et al., 2006). Indeed, this
could bring evidence towards showing that the brain has evolved to have optimal
and preferred states to which it converges to, when doing perceptual inference,
but also has a stochastic mechanism to allow it to explore new possibilities, thus
improving its capacities to evolve and adapt (McDonnell and Abbott, 2009).
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Addressing multi-stable perception as an active vision process. Some research
has been carried out on trying to identify correlations between eye movements
and visual multi-stability. However, from a modelling perspective, models have
been focused on perception exclusively, and no model, to the author’s knowledge,
have provided a mechanistic interaction between the oculomotor system and the
perceptual one (Fig. 1.22). In fact, investigating such coupling in the paradigm of
active vision may provide key results on the identification of stochastic processes in
perceptual inference. Results on hyper-acuity have shown for instance that fixational
eye movements provide changes to the visual signal that are exploited by the brain to
enhance its performances (Rucci and Victor, 2015). Thus, the noise, when decoding
perceptual ambiguous stimuli, may be linked to variations operated in the motor
system driving the changes in the visual flow: the oculomotor system.

The field may benefit from propositions giving computational mod-
els that can take into account gaze dynamics, that can be objectively
measured, and perceptual subjective dynamics.

Such propositions may be done in the form of a theoretical framework in which
models can be developed in both spaces with their interactions; they would allow, if
generative, the possibility of making quantified predictions, through computational
simulations and the generation of synthetic data, that can be tested in empirical
studies. Such perspectives would lead the community in theoretical studies of multi-
stable perception to investigate the phenomenon by studying how these systems are
coupled and their synergy.

Developing the study of multi-stable perception as complex system coupling prob-
lem. Visual multi-stability is linked to the inferential process that occurs in decoding
visual information. As reviewed in Section 1.1 and Appendix A.2, many layers of
processing are involved. Information is gradually interpreted into perceptual objects
through parallel operations. This implies that many sub-systems are involved and
that the signals are combined and re-combined asynchronously, though perceptual
experience is known to flow continuously. A recent article has proposed and sketched
out a framework for considering how all these sub-systems involved might be treated
as a complex larger system and may be studied as such (Kelso, 2012). It focuses
in considering the coupling of these sub-systems by observing whether they are in
a synergistic regime or whether they tend towards segregation. Moreover, these
considerations should be done with dynamical processes.

In the framework proposed by Kelso (2012), multi-stability be-
comes a regime of stability for complex dynamic systems, and there-
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fore, a larger context is provided to understand how multi-stable
perception might be a marker of an evolving visual system’s cou-
pling states.

This might help formulate hypotheses on the longer temporal dynamics of visual
multi-stability, and may help understand why it seems to be absent in children of
young age and some patients with neuropathologies.

Eye movements & multi-stable perception

For empirical studies, key identified gaps related to this thesis are as follows; (1)
some oculomotor markers of multi-stable perception have been identified, (2) high
temporal resolution neuro-imaging techniques combined with eye-tracking could
provide further knowledge on the processes occurring at the moment of reversal,
(3) many issues remain with continuous viewing paradigms, more so with neuro-
imaging techniques and (4) further development of no-report protocols are needed
to remove subjective and attentional shift biases.

Oculomotor markers of multi-stable perception. Though studies have been carried
out in attempts to find eye movement correlates of bi-stable perception, these have
often been done with multiple and varied stimuli, and more importantly, with an
empirical and exploratory approach. In other words, most studies investigated
whether saccadic dynamics or fixation location might be correlated with perceptual
events, but clear evidence of such relationships are sparse.

An alternative approach can be formulated as follows: given a cho-
sen stimulus and associated models for eye movements and percep-
tion, one can establish specific hypotheses and predict gaze mark-
ers linked to perceptual changes and the stimulus dynamics.

This type of approach have been attempted successfully in recent works using
binocular rivalry and OKN eye movements (Frässle et al., 2014). The markers
allowed the authors to investigate neural correlates of perceptual changes and
with recent methodological improvements, this type of research can be further
investigated (Aleshin et al., 2019).
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Joint gaze and neuro-imaging investigations. Eye movement and neuro-imaging
research on visual multi-stable perception have produced many results, indepen-
dently. Moreover, methods combining both recordings have sprung in the past two
decades, enabling researchers to look at interaction between physiological and neu-
ral dynamics. In addition to oculomotor markers of perceptual change in multi-stable
perception, reviewed in this chapter, neural dynamics can be used to decode internal
events (see Appendix A.5). This can be done by looking in TF analysis for Gamma
band energy periods at percept reversals and Alpha band energy during percept
duration (Kornmeier and Bach, 2012). MEG and EEG, especially, should provide
adequate data to investigate the processes that occur around perceptual reversal.

Improve continuous viewing paradigms. Multi-stable perception is characterised
by changes of perception over a continued period of observation. This differs from
most cognitive experiments for which trials tend to be short and thus, tasks and
attention tend be relatively controlled. A key challenge here, on the other hand,
is that participants will observe the stimulus and report spontaneous perceptual
changes over periods typically beyond 20 seconds, and will do so in a repetitive
manner. This tends to introduce variability in participants’ behaviours. Some
researchers have reported methods that can provide a relative compensation for
these fall outs, using discontinued stimulus presentation with blank intervals and
the report task being deported to the end of the trial (Kornmeier, Ehm, et al., 2007),
or by sampling the perception at periods over long observation times by giving an
auditory cue to report (Mamassian and Goutcher, 2005).

Beyond attentional control, key press report requires motor com-
mands and impacts attention and perception.

Thus, no-report experimental protocols are a step towards improving continuous
viewing protocols.

Extend no report methods for neural correlates of consciousness research. No-
report protocols rely on inferring the content of conscious perception based on
implicit physiological markers. Such markers may be eye movements or neural
dynamics for instance. This approach provides a bridge with the emerging literature
on neural correlates of consciousness (NCC). The results from NCC can provide
insights on identifying neural markers for perceptual changes in multi-stability. The
contrary is true as well, the development of methods on multi-stable stimuli can help
drive research on NCC and provide a methodological basis to develop the field.
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Figure 1.22. Synthesis & simplified overview of the literature review. This diagram
provides a simplified overview of the state of the art for experimental and
modelling research on the processes involved in visual multi-stability. In
this thesis, we approach multi-stability with models and experiments. We
also focus on the relationship with relationship between oculomotor control
and perception, defined as active vision, i.e., vision being coupled to the
body’s action to operate. The stimulus chosen for most of the study is the
moving plaid, featuring tri-stable ambiguity on perceived motion direction and
depth ordering. Diagram composed of figures from the literature (Engbert,
Mergenthaler, et al., 2011; Moreno-Bote, Knill, et al., 2011; J. Zhang and
Sclaroff, 2013; Huguet et al., 2014).
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1.4.2 Gaps addressed in this work

In this work, we do not address all the gaps but we focus on some by following
an approached based on theoretical models developed. To address the problem
more simply, first, linking the field of eye movements and multi-stable perception is
necessary. In fact, investigating oculomotor dynamics by looking at eye movement
classification, and providing a model, that can join both phenomena, is key to predict
observation that relate perceptual multi-stability and oculomotricity.

In Chapter 2, we provide a definition and evidence of micro-pursuits, fixational eye
movement dynamics showing similarity with a stimulus’ motion. We look at how
micro-pursuit may relate to other FEM, like micro-saccades, and propose metrics to
measure them, based on spatio-temporal similarity of bi-variate signals.

In Chapter 3, a set of models based on gravitational energy fields provides a frame-
work for a theoretical understanding of active vision in the context of multi-stable
perception. It also explains all eye movement dynamics using the motion of attrac-
tors, which can be linked to perceptual attractors, modulated by attentional and
intentional forces. Experimental work of this manuscript focuses on a particular
tri-stable stimulus: the moving plaid.

In Chapter 4, contributions on the manipulation of its ambiguity using the gratings’
transparency parameters, and the perceptual inference from gaze data based on its
motion ambiguity. The latter is a test to apply theoretical and empirical understand-
ing of the moving plaid and eye movements in order to investigate the role of eye
movements in perceptual decision when stimulation is ambiguous.

In Chapter 5, a synthesis of the body of work presented in the thesis are presented,
as well as some preliminary works on oculomotor control in the moving plaid and
no-report paradigm, and perspectives are discussed.
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Micro-pursuits: a class of
fixational eye movements

2
„Consciousness is only possible through change;

change is only possible through movement.

— Aldous Huxley
"The Art of Seeing".

Human vision and eye movements are intrinsically linked as the latter change the
visual input projected on the retina. Though our visual representation is stable, the
eyes never truly stay still and generate small amplitude FEM that can be interesting
markers of cognitive states. Research in the field of FEM has been extensive on
micro-saccades, but less is known about drift and slow movements. Drift and slow
movements tend to be considered as independent from visual stimulation, since
larger eye movements are typically used to explore the visual field. However, we have
detected small amplitude (fixational), slow movements when the task comprised
a visual target with a highly predictable trajectory. In addition, the gaze showed
high similarity with the target trajectory, measured through maximally projected
correlation. Individual and group analyses gave significant results both in an implicit
(Necker) and an explicit (Cross) pursuit task experiment, but not in a secondary
implicit (Square) pursuit task experiment. The inter-experiment analysis results
suggest that the manipulation of task, stimulus target motion, and the complexity of
the stimulus may play a role in the generation of micro-pursuits.

Publication.
The work presented in this chapter had been accepted for publication to the Journal of Vision,
as an article under the title Micro-pursuit: a class of fixational eye movements correlating
with smooth, predictable, small-scale target trajectories, Kevin Parisot, Steeve Zozor, Anne
Guérin-Dugué, Ronald Phlypo, & Alan Chauvin, and has been revised since this thesis’ first
review.
CAUTION: the micro-saccade analysis was corrected following the defence’s discussion, in
which an error in the analysis was pointed out by the examiners Laurent Madelain. The
discussion was significantly modified as no secondary main sequence were detected in the
corrected analysis. The Journal of Vision article has been accepted for publication and the
reader should refer to the version in Appendix C rather than the following content, which
was left as a trace of the defence’s discussion.
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2.1 Introduction

The main function of eye movements is to orient the gaze towards parts of a visual
scene (Yarbus, 1967; S. Palmer, 1999; Liversedge et al., 2011). To accomplish this
goal, the human oculomotor system has the capacity to generate a wide variety
of movements that can be categorised based on their spatio-temporal dynamics:
amplitude, velocity, and acceleration.

Rapid and ballistic eye movements (saccades): classified based on displace-
ment, speed, and acceleration thresholds, e.g., displacement above 0.15
degrees (deg), velocity above 30 deg.s-1, acceleration above 9500 deg.s-2,
though other detection criteria exist (Nyström and Holmqvist, 2010; Behrens
et al., 2010; Mihali et al., 2017). These criteria have become their definition.
But, absolute threshold criteria have been criticised for their lack of func-
tional, physiological or formal justifications. For example: the clear dichotomy
between fixations and saccades has been loosened (Ko, Poletti, et al., 2010).

Slow eye movements (smooth eye pursuits, slow oculomotor control):
classified based on a simple velocity criterion, e.g. smooth pursuit ranges
from 20 to 90 or 20 to 100 deg.s-1 (Krauzlis, 2004; Komogortsev and Karpov,
2013; Spering and Montagnini, 2011), though pursuits are considered smooth
and precise only at speeds up to 30 deg.s-1. If target velocity is too high for
the pursuit system, catch-up saccades can compensate for the accumulated
position error created by the difference between target and gaze velocities,
also known as the retinal slip (De Brouwer et al., 2002).

Eye fixations: usually defined as any eye movement with an amplitude below 1 deg.
They specifically include FEM which form a generic class of small-amplitude
eye movements (ocular drift, tremor and micro-saccades) sharing dynamic
characteristics with regular (macro) eye-movements at smaller scale (Otero-
Millan et al., 2013; Krauzlis et al., 2017).

The aim of this chapter is to focus on FEM and more specifically the subclass of
slow FEM, which we term micro-pursuit eye movements. We provide evidence
of micro-pursuit eye movements, providing an adapted metric that reveals their
existence in three different experiments. Thus, we will describe the different class of
slow eye movements, with their functions and metrics.

2.1 Introduction 71



Notation used.
Throughout the chapter, subscripts R, G, and S will respectively refer to the retinal image,
the gaze, and the stimulus. We will use qG and q̇G to define the gaze position (in deg)
and velocity (in deg.s-1), respectively (analogously for qR and q̇R or qS and q̇S). The bold
notation indicates that we deal with a 2D column vector of coordinate (and a 2× 2 matrix
when a capital letter is used), the over-lined notation · refers to the mean over a set of trials
and let the tilde notation ·̃ refers to the median over a set of trials, for all metrics. The ± sign
precedes standard deviation values associated with mean values, while for median values
we report mean absolute deviation (mad).

2.1.1 Slow eye movements: different kinds of motion

The functional role of (smooth) pursuit is to maintain a—usually moving—target
of interest on the high acuity foveal region of the retina (Spering and Montagnini,
2011). Tracking is believed to be controlled by retinal errors, the difference between
gaze and target positions, or retinal slip, i.e. qR=̇qG − qS , the difference between
gaze and target velocities or speed vectors of the gaze and of the target stimulus,
i.e., q̇R=̇q̇G − q̇S . According to Orban de Xivry and colleagues (Orban de Xivry and
Lefevre, 2007), pursuit relies mostly on reducing retinal slip and is modulated, in a
smaller way, by position and acceleration errors.

In order to detect and measure the quality of slow eye movements, metrics have
been defined that associate gaze with the target stimulus position. For smooth
pursuit, tracking quality is measured through gain (see Section 2.2 section for more
details). This measure has shown its effectiveness in experimental protocols where
a target appears on screen and participants are tasked to follow its motion. Pursuit
is mostly studied for tracking a single point on a uniform background, although
other stimuli in motion also lead to pursuit movements, for instance, random-dot
kinematograms (Heinen and Watamaniuk, 1998), line figures (G. Masson and
Leland Stone, 2002), illusory perceptual motion (Madelain and Krauzlis, 2003), or
after-effect motion (D. Braun et al., 2006). In tasks where a percept is pursued,
rather than a stimulus, the measure of gain and the associated models have been
questioned (Leland S Stone et al., 2000).

Among the slow eye movements, we also find reflexive movements such as the VOR,
the OFR, or the OKN. The VOR is a reflex eye movement that compensates head
motion in order to maintain a stable retinal image. Though the VOR expression
may be similar to pursuit, it is only generated when the head is free to move. The
OFR is a reflexive eye movement in response to a sudden change of a wide-field
image (Michalski et al., 1977; Quaia et al., 2012). The reflex is mainly attributed
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to the tracking of motion in peripheral vision (Ilg, 1997). The OKN is a composite
gaze pattern in which an object is followed by smooth pursuit until the object leaves
the visual field. At this point, the gaze returns to the object’s initial position (fast
saccadic response) at the starting position of the pursuit. VOR, OFR and OKN are eye
movements solicited in specific visual stimulation and experimental contexts, which
require the manipulation of a large part of the visual field, not a smaller perceptual
target, as with pursuit.

To summarise, pursuits have been studied as large-scale eye move-
ments with amplitudes exceeding 1 deg (60 min-arc) in which a per-
cept with motion is tracked by the gaze, such that the retinal slip is
minimised. The metric used to measure pursuit has been velocity
gain since it has been shown that the oculomotor system uses mo-
tion information for movement control and closed-loop feedback
models have been proposed to explain observed data.

2.1.2 Do small amplitude pursuits exist?

Fixational eye movements

We have just described the three principal classes of eye movements, where saccades
and pursuits are distinguished from fixations based on the amplitudes and velocities
involved. In fact, it is well known that during the fixation the eye never stands
still (Ditchburn and Ginsborg, 1953) and continuously produces FEM subdividing
fixations into the following sub-classes (Kowler, 2011): micro-saccades, composed
of ballistic small amplitude and fast gaze shifts (Rolfs, 2009; Poletti and Rucci, 2016);
slow drifts, small velocity (< 0.5 deg.s-1) displacements of the gaze (Nachmias,
1961; Yarbus, 1967); and tremors (or physiological nystagmus), aperiodic high-
frequency oscillations of the eye (30-80 Hz and amplitudes of up to 50 sec of
arc) (Nachmias, 1961; Martinez-Conde, Macknik, and D. Hubel, 2004). Some of
these phenomena, like micro-saccades, have been studied extensively over the past
decades—see Fig. 2 in (Rolfs, 2009)—and consensus has emerged on the functional
and neurological similarities between large-scale saccades and micro-saccades (Ko,
Poletti, et al., 2010; Sinn and Engbert, 2016). Research has also been conducted
on tremor, but due to their small amplitude and high frequency it is impossible
to distinguish them from noise using video-based eye-trackers (Ko, Snodderly, et
al., 2016). Therefore, tremors will not be considered in our study. The class of
slow drifts, and more particular small-amplitude pursuits, seems less covered in
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the literature, which can be explained by the technical difficulties associated with
eye-tracker precision, especially video-based ones, at such small scales (Wyatt, 2010;
Choe et al., 2016). As we want to focus on the latter, we will give a detailed review
of literature on slow drifts small-amplitude movements.

Ocular drift: a simple random process or stimulus-dependent?

These slow and small movements are the consequence of a slow control system of
eye position (Cunitz, 1970) described in literature as a mere drift of the eye (Dodge,
1907), OFR (C.-Y. Chen and Hafed, 2013), or—more recently—as small amplitude
pursuits (Skinner et al., 2018).

In early studies of FEM, when subjects had to fixate a static dot, eyes drifted slowly
with an upper velocity limit at 0.5 deg.s-1 and mean velocity of 5 min-arc.s-1 (Yarbus,
1967). Their trajectories were considered as random and involuntary processes since
they showed dynamics similar to Brownian random walks (Ratliff and Riggs, 1950;
Engbert and Kliegl, 2004) as well as independence between the two eyes (Cornsweet,
1956). However, Ditchburn and Ginsborg’s work (Ditchburn and Ginsborg, 1953)
provided evidence that direction of eye movement is not completely random during
drift; it is idiosyncratic. Nachmias (Nachmias, 1961) replicated this finding in
an experiment where a fixation target was switched on and off during 3 seconds
cycles. He found that each of the 2 subjects have preferred drifting direction but this
preferred direction can be modified by changing the visual environment. The author
interpreted the idiosyncratic direction preference as specific to muscular response
and reasserted that nonrandom ocular drifts occur in fixations while providing
evidence that drift direction can be modulated by the visual environment. More
recently, a variety of experiments have shown that drift can take properties and
characteristics close to other known oculomotor phenomena (Poletti, Listorti, et
al., 2010; C.-Y. Chen and Hafed, 2013; Skinner et al., 2018; M. Watanabe et al.,
2019).

As mentioned, drift can be viewed as part of a slow control system, enabling gaze
to capture a target, whether static or dynamic. Here, we will discuss two studies
that show evidence of slow eye movements correlating with the target stimulus,
and as such related to our proposition of adding a subclass to the FEM: that of
micro-pursuits.

Chen and Hafed (C.-Y. Chen and Hafed, 2013) studied the impact of micro-saccades
on visual perception and investigated the relationship between micro-saccades and
drift. Their experiment contained two major tasks. The first task required two
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monkeys to stare at a fixation dot where a change in luminance of the dot or a
peripheral white flash was introduced to induce a higher probability of micro-saccade
generation. Drift velocity was analysed before and after the micro-saccades using
either direct velocity measurements or spatial dispersion (by spatial binning and
box counts). Both measures showed an increase in drift velocity post-micro-saccadic
movements with respect to pre-micro-saccadic movements or baseline movements.
They also showed that eye drift mainly occurs in the direction opposite to the
micro-saccade, which is interpreted as corrective slow control of the gaze position.
The second task consisted of a sinusoidal grating that started moving at predefined
delays after the onset of a micro-saccade (or after 500 ms if no micro-saccade was
detected). The authors analysed the speed and direction of early drift of the eye,
namely the OFR, according to the direction of the grating and the time of grating
onset based on micro-saccade detection. Indeed, they reported that (i) the drift
directions were in the opposite directions of the micro-saccades and (ii) the eye
velocity was reduced when the grating’s motion was initiated during micro-saccade
and was enhanced when the motion was initiated after micro-saccade. The OFR
being an indicator of “the sensitivity of early motion processing to retinal-image
slip after a micro-saccade”, the OFR, and thus motion perception, are suppressed
during the saccade and enhanced after. Their overall findings suggest that there
is a single slow gaze control system that control both fixation and eye movement
position in the presence of a fixed target or a slow moving background linked to the
motion perception system. Conclusions suggesting a subtle coupling between micro-
saccades and drifts are also reinforce by previous reports (Engbert and Mergenthaler,
2006).

Part of this idea had already put forward by Murphy and colleagues (Murphy et al.,
1975). In their experiment, they asked participants to maintain their gaze on a
present or absent fixation dot while a grating in the background moved horizontally
at velocity ranging from 0.08 deg.s-1 to 8 deg.s-1. In a second condition, the
participants had to follow the grating. Eye movement velocities were analysed for
trials without saccades. The study shows that when participants have to stare at the
fixation dot (i) they have an ability to keep gaze fixed when the fixation dot was
present, and (ii) an OFR -— a smooth displacement of the eye in the direction of
the grating’s movement but with smaller velocities—is detected when the fixation
dot was absent. In contrast, when the task was to follow the grating, participants
showed clear smooth, slow movement in the direction of motion with velocity as
low as 0.08 deg.s-1.

Both these studies confirm the existence of a slow movement within a fixation that
track a slow velocity target or counteract the displacement of a micro-saccade. These
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slow movement of pursuit or fixation stabilisation are thought to be under a same
slow control system, although the tracking mechanism seems not to be triggered
when the movement is initiated during a micro-saccade.

Ocular drift and slow motor control

Drift has been linked to slow control of the eyes during fixation in the context of
investigating links between visual stimulation and drift motion.

In a series of experiments, Kowler and Steinman (Kowler and Steinman, 1979a;
Kowler and Steinman, 1979b) have investigated how expectation, over a stimulus
and task, can induce anticipatory smooth and slow eye movements. The authors
implemented a task in which participants had to track a dot moving by steps (with
three frequencies: 0.25, 0.375 or 0.5 Hz) along a horizontal segment of 3.3 deg
amplitude. They showed that eye movements’ direction and latency depend on
predictability of target displacement. Furthermore, they showed this effect to remain
even when the level of predictability was manipulated and when a distracting
secondary task was imposed (Kowler and Steinman, 1981). In fact, they provided
evidence that anticipatory eye movements—which they also named involuntary
drifts in the direction of future target motion—depended on the history of prior
target motions (Kowler, Martins, et al., 1984). To understand whether the slow
control of ocular drift is driven by position or velocity signals, they carried out
an experiment in which they manipulated drift by changing the configuration of
reference points, thus varying the difficulty of fixation of a central point (Epelboim
and Kowler, 1993). Their analyses used gaze position data and bi-variate contour
ellipse area (BCEA) computation for quantification of gaze dispersion. As such,
they provided evidence that the oculomotor system does not rely on visual position
signals, but rather on retinal image slip, in order to implement slow motor control.
This creates a parallel with the known models for smooth eye pursuit described
above.

In addition, in a recent paper, Watanabe and colleagues (M. Watanabe et al., 2019)
reported a study that links ocular drift, micro-saccades, and pupil area on voluntary
eye movements preparation. They observed anticipatory drifts prior to stimulus
appearance and they argue that these anticipatory eye movement may reflect voli-
tional action preparation. Interestingly, the authors provide a replication of previous
results on anticipatory drift with a video-based eye tracker while applying correction
to their gaze signals for pupil deformation.
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Overall, these studies show that slow eye movements are present
during fixation. These movements can control for a fixation posi-
tion, can track large target and depend on expectation. Authors
have postulated that all these behaviours are under control of a
unique system.

Small amplitude pursuits

As mentioned higher, smooth pursuits are large-scale eye movements with amplitudes
exceeding 1 deg (60 min-arc). A small set of studies found eye movements within a
fixation that share characteristics with smooth pursuits, except for their amplitude.
Though there are references to smooth pursuits of small amplitude as far as in Yarbus’
book (Yarbus, 1967), most papers in the literature have reported the phenomenon
in an indirect manner.

In a study on drift in the absence of visual stimulation or with afterimages, hor-
izontal smooth drifts were reported (Heywood and Churcher, 1971). Although
their description corresponds to pursuit dynamics, they did not define the observed
movements as such. The authors published a follow-up paper showing that, depend-
ing on the eccentricity of the afterimage, oculomotor dynamics are more or less
smooth and show low velocities, hence could be interpreted as pursuits (Heywood
and Churcher, 1972). Further, while attempting to study oculomotor control capaci-
ties when presenting a moving grating background with a fixation point, Murphy
and colleagues (Murphy et al., 1975) reported eye movements that correspond
to small amplitude pursuits. When investigating the lack of compensation of the
VOR when the head was free, Martins, Kowler and Palmer (Martins et al., 1985)
studied whether a smooth pursuit system might interact with the VOR. Their data
provided a qualitative description that small amplitude pursuits are related to the
velocity of target motion. The following finding was reported: foremost, the ef-
fectiveness of smooth pursuits varied with target velocities. At the lowest average
velocities of a tracked point1 (0.0025-0.125 deg.s-1), smooth pursuit was the most
effective, i.e., retinal-image speed during smooth pursuit was about the same as
retinal-image speed during low target velocities. At higher target velocities (0.25-1
deg.s-1), smooth pursuit was less effective for retinal image stabilisation and at the
highest velocities (1.5-2.5 deg.s-1), smooth pursuit was totally ineffective.

1Here, we present the velocities rather than frequencies to provide comparable measures across
reviewed articles. However, in most cases, the target signal corresponds to a sinusoidal movement,
thus velocity is not constant over a period.
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More recently, small amplitude pursuits have been reported again, in very different
contexts. In a study of eye drift and its relationship to retinal image motion—
investigating whether the latter drives the former through retinal or extra-retinal
information—Poletti and colleagues (Poletti, Listorti, et al., 2010) declared the
following observation: "small pursuit-like eye movement with amplitudes comparable
to those of fixational drifts are under precise control of the oculomotor system". Finally,
a precise characterisation of rhesus macaque oculomotor control for rectilinear
sinusoidal motion of a target with amplitudes inferior to 0.5 deg and velocities
below 2.5 deg.s-1 was recently reported (Skinner et al., 2018). The amplitude and
frequency of the sinusoidal motion was modulated and gaze signals were analysed
using gain and compared to filter responses; filters are, here, used as models to
show how the oculomotor system could display different behaviours based on input
frequencies—on gaze position and velocity. Furthermore, they showed that the gaze
signals had eye velocity spectrum with peaks at target frequency and that pursuit
gain was highest at 1 deg.s-1.

Overall, pursuits have been observed for a range of velocities (0.05-
2 deg.s-1) and amplitudes (1.9-30 min-of-arc) which qualifies them
as FEM. Given the classification in the FEM research field—in which
only micro-saccades, drifts, and tremors are considered—these ob-
servations raise questions on the nature and potential definition of
micro-pursuits or fixational pursuits.

This chapter focuses on the presentation of micro-pursuits in three contexts: (i)
presentation of metrics that fit the theoretical requirements to detect micro-pursuit,
(ii) detection of the oculomotor phenomenon in (a) a dual task experiment (Necker)
in which its elicitation was not explicitly made to participants, and (b) an explicit
tracking experiment (Cross) and an implicit distractor setup (Square). Our hypothe-
sis was that if the perceptual system has to detect a change in a moving stimulus
with a predictable trajectory, the oculomotor system is likely to follow the target
even if the participant is instructed not to do so (fixation task). But, since the
fixation task inhibits large deviations, only small amplitude pursuit eye movements
are generated. Furthermore, a computational model of pursuit eye movements
based on gravitational energy fields is presented in Chapter 3 that accounts for the
two contrasting objectives (fixation vs. pursuit). In our data analyses, we made
use of a measure of inertia for gaze dispersion and maximally projected correlation
(MPC) for similarity, since they are simple methods that showcase clear advantages
in our context. The latter also offers a metric that can be physically interpreted as it
is able to capture similarity between two trajectories of different scales and spatial
offsets.
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2.2 Micro-pursuits

2.2.1 Quantifying pursuit movements (metrics)

To propose a definition of micro-pursuit movements, existing met-
rics for ocular movements will be discussed, since they will orient
our choices for proposing metrics and hence our working defini-
tion.

Classical smooth pursuit is measured by velocity—or retinal slip—gain (gain =
‖ ˙qG‖

/
‖q̇S‖ with ˙qG the gaze velocity and q̇S the stimulus velocity), which is con-

sistent with its closed-loop modelling (Liversedge et al., 2011). Position gain is
also used—although to a lesser extent,—for instance, when dealing with catch-up
saccades (Orban de Xivry and Lefevre, 2007). For the various drift phenomena
described in the previous section, a variety of metrics have been used to study
FEM dynamics (e.g. gaze position, velocity, acceleration, gain, and BCEA). For
instance, gain measurement was used for analysis in the case of the small amplitude
pursuits of monkeys on uni-variate sinusoidal motion (Skinner et al., 2018). But the
authors went further and provided a spectral analysis using Fourier transform on
eye signals to identify the fundamental frequency and harmonics with the expected
target frequencies. However, gain is a uni-variate metric which does not extend
to multi-variate problems. Thus, it can be used adequately only for pursuit of a
target moving on a line, rather than a plane, like the visual field. Fourier analysis
shares the same issue as it looks for a frequency in a uni-variate movement, typically
horizontal.

In studies of ocular drift (Epelboim and Kowler, 1993), BCEA2 was used to quantify
the spatial variance—inertia, or spread—of the gaze. The authors obtain orientation
preferences through the inferred relative anisotropy of the ellipse. Though this
metric is clearly conceived for bi-variate signals, it does not provide spatio-temporal
correlation between gaze and a target signal in the way gain does. Meanwhile, the
box-count method used in more recent studies permits to compute dispersion of
the gaze data over time, though it may suffer, like gain, from measurement noise,
especially with video-based eye tracker (Engbert and Mergenthaler, 2006; C.-Y. Chen
and Hafed, 2013). To summarise, (i) some metrics, e.g. BCEA, box count, inertia,
can be used as quantifiers for the spread of a bi-variate gaze signal during an epoch,

2The surface area of the ellipse such that the data belong to this area with a probability of 68% when
a two dimensional Gaussian fits the data; roughly speaking, up to a factor, it is the determinant of
the empirical covariance matrix.
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and these metrics are useful descriptors for drift and slow movements, and (ii) other
metrics, e.g. gain, Fourier analysis, correlation, can be used to quantify similarity
between two bi-variate signals, to quantify the quality of a pursuit between gaze
and a stimulus in motion. Each metric presents a trade-off that should be considered
based on a theoretical definition and prediction.

2.2.2 Micro-pursuits: a working definition

Given the reported observations of small amplitude pursuits, the following con-
straints need to be considered to define a micro-pursuit.

Amplitude as indicated by the prefix of its name, and as an analogy to micro-
saccades, the micro-pursuit must be of small amplitude, within the range of
fixational eye movements; typically below 1 deg.

Velocity ; micro-pursuit should consist of slow zye movements, similarly to drift, or
smooth pursuit but at a smaller scale, with velocities below 2 deg.s-1.

Tracking ; micro-pursuits occur when a percept with motion across the observer’s
visual field is tracked. But, as pursuit involves matching the motion of a target
by that of an observer in real time, micro-pursuit measurement of tracking
should reflect the spatio-temporal interaction between the dynamics of two bi-
variate signals. Hence, similarity between gaze dynamics should be evaluated.
Because the eye movement amplitude is within the fovea’s size, deformation
may occur in the tracking of predictable bi-variate signals. Therefore, any
similarity metric should exhibit both scale and translation invariances—spatial
offset invariance may also be beneficial for measures from eye-trackers with
lower precision and accuracy.

Duration ; the phenomenon of tracking a moving target requires by definition that
it is done over a sufficiently long epoch. Thus, micro-pursuit should not occur
over brief epochs such as saccades and micro-saccades.

We propose that gaze signal epochs satisfying the above description be considered
as micro-pursuits. As this is a proposed working definition, micro-pursuits may
correspond to entire eye fixation periods, making it possible for micro-pursuit to
be punctuated by other FEM. Once its properties are defined more precisely than
above and detection algorithms can be developed, it will be possible discriminating
micro-pursuits from other FEM, like micro-saccades.
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2.2.3 Descriptive statistics for the classification of micro-pursuits

Choosing an adequate metric for analysis was key, given the constraints presented
in the previous section and our experimental setup. Two metrics, inertia and max-
imally projected correlation (MPC), are used in this work; they provide comple-
mentary information about the data. The first is a measure of the spatial dispersion
of the gaze within a fixation to investigate the marginal dynamics of the gaze during
FEM. The second metric gives a quantification of similarity—and hence interaction—
between the gaze and a target. Compared to works in the literature with similar
observations (Martins et al., 1985; Skinner et al., 2018), an essential aspect was to
have a metric that could reflect similarity with noise robustness, as well as scale and
translation invariance. Moreover, this was needed in the context of movements in the
plane, rather than rectilinear ones for which uni-variate measures are sufficient. A
benefit from such considerations is to propose a generalised metric for micro-pursuit
that could be applied to track perceived motion in the two-dimensional visual field
projected on the retina. MPC offers a method to quantify spatio-temporal similarity
between two bi-variate signals. Furthermore, inertia and MPC can both be applied
on the gaze signals in fixation epochs detected by video-based eye-tracker algorithm.
Their mathematical relationship is detailed more in-depth in Appendix B.1.

2.2.4 Measuring gaze dispersion with inertia

The dispersion of gaze within a fixation was computed using a measure of inertia, a
metric used to quantify the spread of a cloud of data points with respect to a fixed
point, usually its empirical mean. Here, we used a similar, but generalised formula
based on the mean quadratic distance from an arbitrary reference point. As such, in
the case of stimulus motion, we can compute inertia with respect to the stimulus’
centre of gravity. Let qU �

1
N

∑N
i=1 q

i
U be the empirical mean of a signal whose

samples (i = 1, . . . , N) are given by qiU =
[
xiU , y

i
U

]>. We will use U = G for the
observed gaze and U = S for the coordinates of the stimulus’ ( centre of gravity).
Gaze inertia I was computed over the stimulus trajectories over a trial as follows:

I = 1
N

N∑
i=1

(
qiG − qiO

)> (
qiG − qiO

)
= 1
N

N∑
i=1
‖qiG − qiO‖2 (2.1)

where N represents the total number of frames in the trial, qG = [xG,yG]> the mea-
sured monocular bi-variate gaze signal coordinates and qO = [xO,yO]> the origin
reference point coordinates in the screen plane—however, one can compute inertia
with respect to other points in space, e.g., stimulus centre of gravity or the fixation’s
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mean gaze position. Inertia quantifies gaze displacement as does BCEA (Epelboim
and Kowler, 1993) and box-count measures (Engbert and Mergenthaler, 2006). Its
key advantage over the former two is that inertia is a more intuitive measure of
spatial displacement over a fixation period. The box-count metric is simple and
provides similar insight in gaze dispersion over an epoch, it is dependent on the
size of the box in space and time used for analysis. Hence, it corresponds to a
down sampling measurement of inertia over a fixed time window. Finally, inertia
provides the advantage of being a metric relative to a chosen origin or reference
point—box count being independent of the origin—and thus it can be used to look
at spatial displacement in the following three contexts: (1) absolute inertia (Iscreen)
is obtained by choosing the centre of screen as a reference (absolute, like box count;
qO = [0, 0]>), (2) relative retinal image instability (Istimulus) by choosing the stimu-
lus’ centre of gravity (for pursuit; qO = qS = [xS ,yS ]>), and (3) general relative
FEM instability (Ifixation) by referring to the fixation centre of gravity (obtained by
choosing qO = qG = [xG,yG]> with qG, the empirical mean of the gaze for a N
samples fixation epoch).

2.2.5 Measuring gaze-stimulus similarity with MPC

Though humans can intuitively express a qualitative judgement of similarity between
two trajectories, obtaining a quantified and objective value for any two bi-variate
signals is not as trivial as one might suppose. Gain, of gaze velocity over stimulus
velocity, has been used as a metric in pursuit data analysis (Skinner et al., 2018),
though the stimulus moved in a uni-variate context: either horizontal or vertical.
In bi-variate signals, however, a gain will be obtained for each dimension of the
signal, and hence some form of projection to obtain a scalar metric is required.
Although similarities between the stimulus and gaze trajectories can be quantified
with a diversity of metrics, we will here focus on a measure based on multi-variate
statistical theory (T. Anderson, 2003; Muirhead, 2009), quantifying the interaction
between the stimulus (qS) and gaze (qG), in order to infer on the similarity of their
trajectories during fixations. We choose to determine the direction of the plane for
which correlation between gaze and target within a fixation are maximised, and
report the such obtained correlation value, which we call MPC. Our metric hence
inherits the ease of interpretability from (Pearson) correlation values and has low
computational costs (just as gain). In addition, for unidirectional motion (see, e.g.,
(Skinner et al., 2018)), this exactly corresponds to Pearson’s correlation coefficient
between the two time-series.
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Let ΣSG �
1
N

∑N
i=1 q

i
Sq

i
G
> − qSq>G the empirical (variance-)covariance matrix be-

tween stimulus (S) and gaze (G). We then write ρ∗ as the maximal absolute em-
pirical correlation that can be obtained under simultaneous projections onto a
one-dimensional space, i.e.,

ρ∗ � max
w

ρ(w) where ρ(w) � w>ΣSGw√
w>ΣSSw

√
w>ΣGGw

(2.2)

and w represents the coordinates of the vector onto which both the gaze and the
stimulus signal are projected. This method projects the data in a new space, and
provides a quantity bounded between -1 and 1, where 1 shows perfect correlation
and -1 perfect anti-correlation. By construction, MPC is invariant with respect to
scale and to a translation of either or both of the signals.

To summarise this section, in this work, inertia with respect to
screen (Iscreen) was used as a measure of gaze displacement. Inertia
with respect to stimulus (Istimulus) was used as a measure of retinal
image displacement. Inertia with respect to fixation (Ifixation) was
used as a measure of FEM displacement. And finally, MPC (ρ∗) was
used as a measure of similarity between gaze and stimulus trajec-
tory, during a fixation.
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2.3 Main Experiment: Necker cube

Micro-pursuits were observed and systematically detected at first in an experiment
in which a moving ambiguous Necker cube stimulus was presented and participants
had to report their perceived orientation. They were instructed to keep their gaze
fixed on a static fixation cross at the centre of the screen and report which side of the
cube was perceived at the front; either lower-left or upper-right square. The main
objectives of the experiment was to manipulate the rate of reversal by imposing
different motion to the cube. In this chapter, we focus solely on the oculomotor
analysis of this data set, because the manipulation failed to induce any change in
the reversal rate between the percept nor any observable percept modulation.

2.3.1 Methods

Apparatus

The display used was a 40 cm by 30 cm (20 inches) VisionMaster Pro 513 screen
of resolution 1024 by 768 pixels and a 75 Hz refresh rate, located 57 cm from the
participants, with mean grey luminance at 68 cd.m-2. Eye movements were recorded
using the Eyelink 1000 (SR Research, Ottawa, Ontario, Canada). Both eyes were
tracked with a 1000 Hz sampling rate. The head was stabilised using a chin rest. A
nine-point calibration routine was carried out at the beginning of each task and was
repeated at the beginning of each block (every 15 trials) or when drift correction,
performed every 5 trials, reported a mean error superior to 0.5 deg.

Experimental paradigm & Participants

We imposed three type of motion to an ambiguous Necker cube of 2.6 by 2.5 deg
(Fig. 2.1-A): (1) ’FX’ the control condition with no motion, (2) ’RW’ an unpredictable
motion condition with a random walk and (3) ’LJ’ the predictable motion condi-
tion where the cube moved along Lissajous trajectories (see Fig. 2.1-B). Random
walk trajectories were implemented by choosing at each time step an amplitude
chosen from an exponential-Gaussian distribution and an orientation from a uniform
distribution on (−π, π). The exponential-Gaussian distribution was built from the
sum of two independent variables, % = G + E where G ∼ N (µ = 1.1; σ = 0.2) is
the Gaussian component, and E ∼ E(λ = 0.1) is the exponential one—units are in
pixels (pix) and the ∼ symbol stands for "distributed according to". A radial limit
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A

C

B

100-500 msec

Subject self paced

Necker experiment

Trial duration: 5-9 reports

Square & Cross experiments

Trial duration: 34 sec

Figure 2.1. Experimental protocols.
A is a timeline of a trial for all three experiments (Necker, Square, Cross). For
the Necker experiment, a Necker cube was displayed and the trial finished if
the participant had reported a randomly picked number of perceptual reversals.
For the Square and Cross experiments, a plain square was displayed and trial
lasted approximately 34 seconds. A fixation cross was shown during a randomly
chosen interval between 100 and 500 msec.
B shows the three different stimulus motion conditions; (1) FX, for the control
no-motion condition, (2) RW, for the unpredictable random walk condition,
and (3) LJ, for the predictable motion based on Lissajous trajectories.
C are representations of the stumuli’s luminance. For the Square & Cross
experiments, luminance changed randomly between 5 levels in order to provide
the participants with a perceptual report task, while the Necker cube always
kept a constant luminance.
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of 10 pix (0.329 deg) with respect to the centre of the screen was implemented
so that a step that would exceed the limit would have its orientation reversed
such that the step would bounce back towards the centre. Lissajous trajectories
in the LJ condition were defined by x(t) = A sin(cθt) and y(t) = B sin(dθt + φ)
with, in our setup, A = B = 14 pix (0.5497 deg) and φ = 0 rad. The Lissajous
ratio between signal frequencies randomly (uniformly) chosen across trials so that
(c, d) ∈ (2, 3), (3, 2), (−2, 3), (−3, 2) and θ = 2π (30/2.21)

415 = 0.2 Hz. The parameters’
values were chosen empirically through ad hoc tests.

Stimulus spatial displacement due to movement was controlled across motion
conditions. Indeed their inertia with respect to screen distribution were similar, with
RW and LJ generating displacement of the same order of magnitude on average over
trials (IRWscreen = 0.2995± 0.1988, ILJscreen = 0.2747± 0.1372).

23 healthy adults participated in the experiment (15 females and 8 males; age range
= 20–71 years, µ = 28.35± 10.93 years, whose tasks were two-fold:

• fixate a fixation cross at the centre of the screen for a random interval between
100 and 500 ms (uniform distribution);

• report percept reversals of an ambiguous Necker cube by pressing the arrows
of a keyboard when perceptual changes occurred.

The experiment followed a continuous viewing paradigm in which trials had variable
(random) durations (µ = 34.00 ± 13.26 sec, see Fig. 2.1-A) and ended based on
which of the following condition happened first

number completion of a trial-based randomly (unifromly) set integer number
(nrev ∼ U(5, 9)) of perceptual reversals on the ambiguous stimulus (see Fig. 2.1-
A);

time-out maximal percept duration of 20 sec.

The experiment was programmed using the PsychToolBox in MATLAB (Brainard,
1997). All participants gave their informed written consent before participating in
the study, which was carried out in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki) for experiments involving humans and
as approved by the ethics’ committee of University Grenoble Alpes.
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Data analysis

Data pre-processing: in our data analysis, only fixations of sufficient duration
(> 80 ms) were considered. The duration threshold was set based on (1) the lack of
significant fixations of interest in shorter time windows and (2) the necessity for the
MPC metric to have a sufficient number of samples (see Appendix B.1). Gaze signals
were first passed through a corrective process to adjust for pupil area deformation
as described in Choe and colleague’s work (Choe et al., 2016). As the gaze and
stimulus signals were systematically compared and computed together, we then
applied a Butterworth filter (second order low-pass filter with a cut-off frequency
of fc = 35 Hz) to smooth the gaze data and down-sampled the gaze signal at the
same frequency as the refresh rate of the stimulus (75Hz). Thus, all analyses are
done with data down sampled from 1000 Hz to 75 Hz. Fixations generating inertia
with respect to screen values beyond two standard deviation from the mean or NaN
(due to missing samples) were considered as samples with faulty or jittery gaze
recording and were removed from analyses. Data for Fig. 2.3 and statistical tests
had fixations with micro-saccades, detected—by the algorithm proposed by Engbert
and Kliegl (Engbert and Kliegl, 2003) without the binocularity criterion, that uses
relative thresholds based on median absolute deviation of the eye velocity, here
over a fixation—and removed, while data for Fig. 2.2 and Fig. 2.5 was visualised
with micro-saccades. Outliers were defined as data points3 beyond two standard
deviation from the mean, and were systematically removed from analyses. The
results presented do not show these outliers, for better readability, but we also
conduct the analyses with the outlier and found the same effects for all tests and
experiences.

Statistical methods: statistical tests were conduct to assess difference between
motion condition both within subjects (group analysis) and at the subject level
(individual analysis). For both levels, we applied non parametric tests, since we
did not have any priors on the data distribution for inertia and MPC. For group
analysis, statistical tests were conducted using 10000 permutations on non para-
metric approximate (Monte Carlo) Friedman test for inertia, and if significant
differences were inferred, approximate (Monte Carlo) Wilcoxon signed-rank tests
were used for pairwise comparisons between conditions (with a decision criterion at
p = 0.05/3 = 0.017). For MPC, a Wilcoxon signed-rank test was carried out All these
tests were delivered using bootstraps based on 10000 permutations conditional on
subjects for every experiments (Necker, Cross and Square) and metrics (Istimulus,

3Here, data points refer to a statistic of a fixation period, for a given experiment, subject and condition.
We also have outliers subject (71 years old) that is not removed.
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Ifixation and MPC) using the packages coin (Hothorn, Hornik, Van De Wiel, et al.,
2006) and rstatix (Kassambara, 2020). Effect size were computed from the χ2 statis-
tics and using the transformation described by Tomczak and Tomczak (M. Tomczak
and E. Tomczak, 2014) to get a Kendall W, that vary between 0 and 1, with 1 the
maximum effect size:

W = χ2

N(k − 1) . (2.3)

With W , the Kendall’s W value, χ2 the Friedman test statistic value, N the sample
size and k the number of measurements per subject. For each test, we report the χ2

Friedman test statistic, with the p-value (p) computed with the bootstrap, it’s effect
size (Kendall W). For individual statistical analyses, we carried out an approximate
Kruskal-Wallis test for inertia and an approximate Wilcoxon-Mann & Whitney test
for MPC and pairwise comparisons using the same bootstrap package, with 10000
permutations. To compare experiments’ data, Kruskal-Wallis tests were used over
the three experiments’ RW and LJ data, respectively, and Wilcoxon-Mann & Whitney
tests were used to infer differences between pairs of experiment data-sets in each
condition, with the same packages.

Additional analyses. Two analyses were conducted (after submission) and are
presented here to provide further depth and insight on the data. First, we looked
at MPC on the signals’ velocities to verify that we replicated the results found on
positions. Analyses were identical to position MPC, and the velocity was obtained
by using the method proposed by Engbert and Kliegl (2003), for the Engber-Kliegl
(EK) algorithm, by computing a moving average of velocities over 5 data samples,
in order to reduce noise. The second addition analysis consisted in looking at the
similarity between the two eyes’ position signals, to verify whether the gaze data
was conjugated or not. MPC scores were computed for each fixation between the
directing and the non-directing eye, with the former acting as the reference, and
statistical analysis was carried out, using the same procedure as for inertia, over all
conditions.

2.3.2 Results—Corrected in Appendix C

When fixations with detected micro-saccades were kept, data pre-processing led
to the removal of 12.32% of fixations for the Necker experiment based on fixation
duration and outlier removal for inertia with respect to screen. When fixations with
detected micro-saccades were removed, data pre-processing led to the removal of
54.53% of fixations. Results presented in this section were computed on the fixations
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without micro-saccades, however when doing these analyses with fixations with
micro-saccades, results led to the same conclusions.

Main sequence (and secondary sequence)

In the first column of Fig. 2.2, we described detected micro-saccades (n = 27101),
using the algorithm from Engbert and Kliegl’s work (Engbert and Kliegl, 2003), by
amplitudes, peak velocities and rates. When plotting micro-saccades’ amplitudes
versus peak velocities, we observed two main sequences (Bahill et al., 1975) with a
second main sequence with low velocity micro-saccades. The second main sequence
appeared more in the LJ condition than in the RW. Furthermore, when using the
MPC score, one can observe that the slow micro-saccades are mostly detected in
fixations with gaze patterns highly similar to the stimulus’, namely micro-pursuits,
which is indicated by the dominance of yellow dots. Micro-saccade rates also seem
to suggest that the LJ condition has more occurrences, over all amplitudes. This will
be further analysed with the evaluation of dispersion of FEM and the similarity of
their trajectories with the stimulus.

Inertia & MPC

We looked at the impact of the cube motion on eye movement and retinal image
displacement. The former is made explicit through the inertia of gaze with respect
to its average position within a fixation, see Fig. 2.3-B, whereas the latter is given by
the inertia of the gaze with respect to the stimulus’ centre of gravity, see Fig. 2.3-A.
Descriptive statistics and statistical tests’ summary are given in Table 2.1.

Dispersion of eye movements around the fixation, computed with median inertia
of the eye with respect to mean fixation position (Ifixation; see Fig. 2.3-C) differed
with motion condition (χ2 = 36.261; p < 0.0001;W = 0.788). Paired comparisons
of Ifixation showed differences between FX, RW and LJ (ZFX−RW = −5.9052, p <
0.0001;ZRW−LJ = −5.9052, p < 0.0001 and ZFX−LJ = −5.9052; p < 0.0001). Thus,
when computing retinal image displacement, we found that the median inertia
differed across cube motion conditions (see Fig. 2.3-A). Indeed, we find a difference
in inertia computed with respect to the centre of gravity of the stimulus (Istimulus)
with motion condition (χ2 = 28.783; p < 0.0001;W = 0.626). Median inertia
differed in the conditions where the stimulus was in motion (ZFX−RW = 2.890, p =
0.0032;ZFX−LJ = 2.890, p = 0.0028 and ZLJ−RW = 5.9052, p < 0.0001).
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Figure 2.2. Micro-saccade analysis.
A shows the main sequences when plotting micro-saccades’ amplitudes versus
peak velocities for all three experiments (Necker, Cross and Square) and condi-
tions. The colour codes for each the micro-saccade’s fixation similarity score
(using MPC) in the LJ and RW conditions. The LJ condition in Necker and
Cross experiments shows a secondary main sequence correlated to micro-pursuit
occurrences. Left side, marginal distributions of peak velocity depending on the
experiment and condition are given, while below, marginal distributions for
amplitudes are shown.
B shows mean micro-saccade rates over experiments and conditions with, in
black, 95% confidence intervals computed using bootstrap (n = 200 iterations).

90 Chapter 2 Micro-pursuits: a class of fixational eye movements



When considering that stimulus inertia was equivalent for both motion conditions
(IRWscreen = 0.2995 ± 0.1988,ILJscreen = 0.2747 ± 0.1372), the results suggest that both
types of motion applied on the stimulus generated different effects on eye move-
ments. Indeed, eye trajectories were more similar in the predictable LJ motion
condition (ρ̃∗LJ = 0.869 ± 0.081) than in the unpredictable RW motion condition
(ρ̃∗RW = 0.477 ± 0.035) with significant differences (χ2 = 23; p < 0.0001;W = 1
and ZRW−LJ = −5.9052; p < 0.0001). The data is reported in Fig. 2.3-E. We eval-
uated the effect of the cube motion for every subject and found similar results
(Fig. 2.3-B-D-F) that will be described in more details later.

(N = 23) FX RW LJ χ2 p W

Ĩstimulus 0.458± 0.151 194.404± 20.301 173.708± 12.018 42.348 < 0.0001 0.921
Ĩfixation 0.018± 0.010 0.020± 0.012 0.070± 0.042 36.261 < 0.0001 0.788
ρ̃∗ n/a 0.477± 0.035 0.869± 0.081 23 < 0.0001 1

Table 2.1. Left, Summary statistics of three measures for the Necker experiments in the FX,
RW and LJ motion conditions; inertia w.r.t. stimulus centre of gravity (Istimulus),
inertia w.r.t. fixation centre of gravity (Ifixation), and MPC (ρ∗). For each condition
in the Necker experiment, median values over participants’ data are given with
median absolute deviation (mad) following the ± sign.
Right, Approximate Friedman test results (χ2; p) and size effect (W ) are given.

Binocularity & velocity

To confirm the MPC results on position signals, we proceeded to the same analysis
with velocities. In fact, as for the position analysis, LJ’s predictable motion (ρ̃∗LJ =
0.784± 0.087) led to velocities more similar between the eyes and the target than
for RW’s unpredictable motion (ρ̃∗RW = 0.207± 0.042) with significant differences
(χ2 = 23; p < 0.0001;W = 1 and ZRW−LJ = −5.9052; p < 0.0001). The data is
reported in Fig. 2.4-C, along with analyses for each participants Fig. 2.4-D.

We also looked at the similarity of gaze between the directing and non-directing
eye, to look at how conjugated the eyes were. We found overall differences across
conditions (χ2 = 39.39; p < 0.0001;W = 0.856). Paired comparisons of eye versus
eye similarity showed differences between FX, RW and LJ (ZFX−LJ = −5.9052, p <
0.0001;ZFX−RW = −5.9052, p < 0.0001 and ZLJ−RW = −5.9052, p < 0.0001).
Results are reported in Fig. 2.4-A, along with analyses for each participants Fig. 2.4-
B.
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Figure 2.3. Micro-pursuit analysis.
A is a box plot of Istimulus over the three experiments (Necker, Cross and Square)
and three motion condition (FX, RW and LJ). Stars represent significant dif-
ferences in pairwise comparisons using the Wilcoxon-Mann-Whitney test in a
bootstrap. B plots the individual analysis results for Istimulus in all three exper-
iments’ participants using an approximate Kruskal-Wallis test in a bootstrap.
All the participant have significant (p < 0.05) results. For individual analysis,
statistics (Z score or χ2) that fall inside the 95 % confidence interval were drawn
with light colour whereas statistics values outside the 95% confidence interval
were drawn in plain colour. The grey area defines a conservative confidence
interval corrected for multiple comparisons (Bonferroni), i.e. 42 comparisons
for the 42 tests computed on each subjects. C is a box plot of Ifixation over all
experiments and conditions. D plots the individual analysis results for Ifixation.
The outcome of the statistical test per participant are given through different
lightness value, with 1 (darker) meaning that p ≤ 0.05 and 0 (lighter) the oppo-
site. E is a box plot of MPC (ρ∗) over all experiments and the RW and LJ motion
conditions. F plots the individual analysis results for ρ∗ in all participants using
an approximate Wilcoxon-Mann-Whitney test.
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Figure 2.4. Micro-pursuit additional analysis.
A is a box plot of directing vs non-directing eye similarity over the three exper-
iments (Necker, Cross and Square) and three motion condition (FX, RW and
LJ). Stars represent significant differences in pairwise comparisons using the
Wilcoxon-Mann-Whitney test in a bootstrap. B plots the individual analysis
results for directing vs non-directing eye similarity in all three experiments’
participants using an approximate Kruskal-Wallis test in a bootstrap. For indi-
vidual analysis, statistics (Z score or χ2) that fall inside the 95 % confidence
interval were drawn with light colour whereas statistics values outside the 95%
confidence interval were drawn in plain colour. The grey area defines a conser-
vative confidence interval corrected for multiple comparisons (Bonferroni), i.e.
42 comparisons for the 42 tests computed on each subjects. C is a box plot of
MPC based on velocity vectors over all experiments and conditions. D plots the
individual analysis results for MPC based on velocity vectors. The outcome of
the statistical test per participant are given through different lightness value,
with 1 (darker) meaning that p ≤ 0.05 and 0 (lighter) the opposite.
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2.3.3 Intermediary discussion

Micro-pursuits. When looking at our descriptive statistics (Table 2.1 and Fig. 2.3,
A-B-C), participants’ median similarity based on MPC is centred on values of high
correlation in the predictable motion condition (LJ) compared to the other motion
condition (RW). This means that FEM gaze trajectories were, for most subjects,
highly similar to that of the stimulus moving on screen. On the other hand, the
unpredictable motion condition (RW) led to much lower similarity measurements;
an observation that can be explained by the incapacity of the oculomotor system to
predict the motion of the Necker cube as motion followed random walk dynamics.

(Un)attended motion. Therefore, globally, participants’ gaze was influenced by the
cube motion significantly more in LJ, where motion was predictable, than in RW,
where motion was unpredictable, even though the oculomotor instructions were to
fixate the cross in the middle of the screen for both. Moreover, the gaze in LJ showed
similarity with the stimulus trajectories. All these measures were gathered on gaze
data within fixation events and the difference between LJ and RW conditions show
that oculomotor drift alone, as defined above, within FEM cannot account for this
similarity. The oculomotor system would have to integrate visual information in
order to quasi-systematically track the stimulus. We therefore refer to these detected
FEM as micro-pursuits, in an effort to keep the analogy with the micro-saccades,
while respecting the definition and metrics given above. Given the non-dedicated and
unpredicted observation of the oculomotor phenomenon in the Necker experiment,
we carried out a second set of experiments to replicate the generation of micro-
pursuit using a simpler stimulus, and to verify that the phenomenon is not caused
by the presence of a bi-stable stimulus—namely the Necker cube.
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2.4 Replication Experiments: Square & Cross

The experimental protocol is similar to the previous one (Necker experiment) except
that the Necker cube is replaced by a grey square and subjects have to report changes
in luminance in either the fixation cross (Cross experiment) or the square (Square
experiment). In the Cross experiment, we set the participants’ tasks and stimuli such
that they had to follow a moving cross and detect changes of luminance on it. In the
Square experiment, the setup aimed to investigate whether a complete reproduction
of the Necker experiment, with a square instead of the Necker cube would still lead
to the observation of micro-pursuits.

2.4.1 Methods

Material and stimuli were identical to the previous experiment unless specified.

Apparatus

The stimulus was displayed on a 36 cm by 27.5 cm (19 inches) Dell M993s CRT
screen of resolution 1280 by 1024 pixels and a 75 Hz refresh rate, located 57 cm
from the participants, with white luminance at 70.89 cd.m-2, black at 0.09 cd.m-2

and mean grey at 15 cd.m-2. Eye tracking was done using an EyeLink 1000+
(SR Research). Calibration was applied using a 5 points procedure between each
block and if drift correction failed. Drift correction was applied between each trial.
Participants had their head stabilised by sitting and resting their chin on a rest and
their forehead against a bar.

Experimental paradigm & Participants

As in Experiment 1, we replicated the three motion conditions (FX, RW, & LJ) using
the same parameters with balanced mean inertia. Trials lasted 34 seconds (the mean
time duration of Experiment 1: Necker Cube) in which the same fixation cross was
presented, and a moving object followed its trajectories depending on the condition
(see Fig. 2.1-A).

The participants had to fixate a fixation cross surrounded by a square (2.5 deg by
2.5 deg), displayed in Fig. 2.1-A. They also had a perceptual task in which they had
to report luminance changes using the same keys of the keyboard as in the Necker
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Experiment. However, here the alternations were randomly selected among 5 levels
of luminance (levels at 30%, 40%, 50%, 60% and 70% of white) and duration of
a level was selected using a log-normal probability law Log−N ∼ (µ = 1, σ = 1)
seconds (see Fig. 2.1-C for a schematic representation of luminance over time). Two
conditions were contrasted:

1. Implicit pursuit - Square Attended: fixate the fixation cross at the centre of
screen, and report changes in luminance of the surrounding square moving
with the three types of motions.

2. Explicit pursuit - Cross Attended: fixate the fixation cross and report changes in
luminance of the fixation cross moving with the three types of motions. Do
not pay attention to the surrounding square.

The 19 participants (17 females and 2 males; age range = 18-30 years, µ =
20.63± 2.61 years) were randomly oriented in one of the two experiments (Cross;
n = 9, and Square; n = 10). We estimated the number of participants to be included
in the protocol based on a power analysis using g*power (Faul et al., 2009) with
α = 0.05 and 1− β = 0.95. We found that we needed a minimum sample size of 9
participants (with 45 trials) to replicate the observations with a power of 0.95.

Data analysis

Data analyses were identical to the previous experiment.

2.4.2 Results—Corrected in Appendix C

The data was analysed by applying the same signal processing procedures and
statistical methods as in the Necker experiment for inertia or MPC. When fixations
with micro-saccades were kept, data pre-processing led to the removal of 8.79%
and 9.23% of fixations for the Cross and Square experiments, respectively, based
on fixation duration and outlier removal for inertia with respect to screen. When
fixations with micro-saccades were removed as well, data pre-processing led to
the removal of 52.88% and 52.59% of the data, in Cross and Square, respectively.
Results presented in this section were computed on the fixations without micro-
saccades, however when doing these analyses with fixations with micro-saccades,
results led to the same conclusions.
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Cross experiment: explicit micro-pursuits

When participants had to explicitly follow the fixation cross, on which the motion
and luminance signals were applied, similar patterns to the Necker experiment
were found for inertia of gaze. Dispersion of eye movements around the fixation,
computed with median inertia of the eye with respect to mean fixation position
(Ifixation; see Fig. 2.3-C) differed with motion condition (χ2 = 9.556; p = 0.0071;W =
0.531). Moreover, paired comparisons revealed differences between FX, RW and LJ
(ZFX−RW = −3.7236, p < 0.0001;ZRW−LJ = −3.7236; p < 0.0001 and ZFX−LJ =
−3.7236; p < 0.0001). Retinal image displacement differed with cube motion (see
Fig. 2.3-A). We also found a difference in inertia computed with respect to the
centre of gravity of the stimulus (Istimulus) with motion condition (χ2 = 12.667; p =
0.0005;W = 0.704). All pairwise comparisons showed differences too (ZFX−RW =
−3.576, p < 0.0001;ZFX−LJ = −3.576, p < 0.0001 and ZRW−LJ = −3.7236, p <
0.0001).

Given the fact that stimulus inertia was equivalent for both motion conditions, this
suggests that motion of the stimulus generated different effects on eye movements.
Indeed, eye trajectories were more similar in the predictable LJ motion condition
(ρ̃∗LJ = 0.830±0.064) than in the unpredictable RW motion condition (ρ̃∗RW = 0.535±
0.056) with significant differences (χ2 = 9; p = 0.0039;W = 1 and ZRW−LJ =
−3.7236; p < 0.0001). The data is visualised in Fig. 2.3-E. We evaluated the effect of
the cube motion for every subject and found similar results (Fig. 2.3-F).

Square experiment: implicit micro-pursuits

Dispersion of eye movements around the fixation, computed with median inertia
of the eye with respect to mean fixation position (Ifixation; see Fig. 2.3-C) did not
differ with motion condition (χ2 = 5.6; p = 0.0659;W = 0.28). But retinal image
displacement differed with cube motion (see Fig. 2.3-A). Indeed, we find a difference
in inertia computed with respect to the centre of gravity of the stimulus (Istimulus)
with motion condition (χ2 = 7.2; p = 0.03;W = 0.36). Pairwise comparisons had a
difference only between the motion conditions RW and LJ (ZFX−RW = 1.8666, p =
0.0654;ZFX−LJ = 1.8666; p = 0.0645 and ZRW−LJ = 3.9199, p < 0.0001).

Given the fact that stimulus inertia was equivalent for both motion conditions,
this suggests that motion of the stimulus did not generate different effects on eye
movements. Unlike in the other experiments, eye trajectories were not more similar
to stimulus trajectories in the predictable LJ motion condition (ρ̃∗LJ = 0.569± 0.129)
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or in the unpredictable RW motion condition (ρ̃∗RW = 0.519 ± 0.039) with no
inferred statistical difference (χ2 = 1.6; p = 0.345;W = 0.16). The data is visualised
in Fig. 2.3-E. We evaluated the effect of the cube motion for every subject and found
similar results (Fig. 2.3-F).

Individual analyses

We conducted the same analysis on every subject and results are displayed for the
three experiments and three motion conditions in figure (Fig. 2.3-B-D-F). For every
subject, we plotted the χ2 or Z score statistics for the approximate Kruskal-Wallis and
Wilcoxon-Mann-Whitney tests against their overall rank according to these statistics.
For all subject we observed a main effect of inertia with reference to the stimulus
(Istimulus, with identical inertia between LJ and RW compare to FX. When looking at
retinal displacement, we find the same pattern of result, i.e. a main effect of motion,
with inertia with reference to the fixation (Ifixation) similar for FW and RW but lower
to LJ for Necker and Cross experiments. For the Square experiment results were
mixed within subject suggesting idiosyncratic behaviours. Finally, we observe more
similar gaze pattern (high MPC) for the LJ condition both in the Necker and Cross
experiments for every subject (except one out of nine in Cross) but mixed results for
the square experiment. Thus individual analyses show that results observed at the
group level are replicated at the subject level.

Binocularity & velocity

To confirm the MPC results on position signals, we proceeded to the same analysis
with velocities. For the Cross experiment, LJ’s predictable motion (ρ̃∗LJ = 0.623±
0.146) led to velocities more similar between the eyes and the target than for
RW’s unpredictable motion (ρ̃∗RW = 0.264 ± 0.032) with significant differences
(χ2 = 5.44; p = 0.0434;W = 0.605 and ZRW−LJ = −3.7236; p < 0.0001). For the
Square experiment, LJ’s predictable motion (ρ̃∗LJ = 0.335± 0.068) led to velocities
more similar between the eyes and the target than for RW’s unpredictable motion
(ρ̃∗RW = 0.216± 0.027) with significant differences (χ2 = 6.4; p = 0.0227;W = 0.64
and ZRW−LJ = −3.9199; p < 0.0001). The data is reported in Fig. 2.4-C, along with
analyses for each participants Fig. 2.4-D.

We also looked at the similarity of gaze between the directing and non-directing eye,
to look at how conjugated the eyes were. Group median values and median absolute
deviations for FX (0.77± 0.048), RW (0.794± 0.041) and LJ (0.927± 0.048) describe
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the most binocular similarity, in fixations, in LJ. We found overall differences across
conditions for the Cross experiment (χ2 = 14.889; p < 0.0001;W = 0.827). Paired
comparisons of eye versus eye similarity showed differences between FX, RW and
LJ (ZFX−LJ = −3.723, p < 0.0001;ZFX−RW = −3.723, p < 0.0001 and ZLJ−RW =
−3.723, p < 0.0001). We did not find overall differences across conditions for the
Square experiment (χ2 = 5.6; p = 0.0709;W = 0.28). Results are reported in
Fig. 2.4-A, along with analyses for each participants Fig. 2.4-B.
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2.5 Comparing Necker, Cross and Square
experiments—Corrected in Appendix C

To summarise, descriptive statistics of detected micro-saccades in terms of main
sequences (amplitude, peak velocity and MPC; see Fig. 2.2-A) and micro-saccade
rates (Fig. 2.2-B) in all three experiments show similar patterns under the condition
LJ for both Necker and Cross. The Square condition seems to exhibit a different
behavior. More specifically, the secondary, slower—in terms of peak velocity—main
sequence observed in LJ-Necker and LJ-Cross is less present in LJ-Square and all
RW conditions. The micro-saccade rates also seem to be higher in LJ-Necker and
LJ-Cross, over other conditions and experiments. These aspect of the detected
micro-saccades over all experiments suggest that the predictable LJ condition under
Necker and Cross led to a slow, small amplitude, oculomotor phenomenon.

Fig. 2.5 provides a focus on MPC for fixations in all data sets, as well as for some
selected signals that showcase some typical examples of gaze-stimulus pairs for dif-
ferent values of MPC. Since one cannot track the RW movements, the distribution of
MPC under this condition serves as a baseline or null hypothesis control distribution.
It can be seen that under RW, the empirically observed MPC distributions for all
three experiments are confounded, indicating independence of MPC with respect to
the experiment. Furthermore, it is also possible to observe a bias—the distribution is
skewed toward the maximum value of 1—introduced by (i) the maximisation of the
correlation through the projection of the data into another coordinate system, and
(ii) the RW movement being low-pass filtered by the observer, hence there exists a
correlation at longer time scales. Indeed, the distribution under RW is not symmetric
about 0 as would be the case for mere correlation between variables of multivariate
independent Gaussian processes. On the other hand, under the LJ condition the
distribution skews even further to one, resulting in a high probability for MPC values
near one, specifically in Necker and Cross. This is less so in Square.

When we removed fixations with detected micro-saccades and carried out inertia and
MPC analyses, we found a difference for MPC in the LJ condition across experiments
(χ2 = 19.078; p < 0.0001). When looking at pairwise comparisons (subscripts N
for Necker, C for Cross, and S for Square), no significant differences were found
between Necker and Cross (ZN−C = −1.572; p = 0.121), but Square differed from
the other two (ZS−C = 2.939; p < 0.0025 and ZN−S = 4.113; p < 0.0001).

For RW inter-experiment comparisons, we found an overall difference (χ2 =
10.617; p = 0.0036). Paired comparisons showed a difference between Necker and
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the two other experiments (ZN−C = 2.955; p = 0.0020 and ZN−S = −2.076; p =
0.0350) but none for Square versus Cross (ZS−C = 1.061; p = 0.3114).

Finally, results for individual analyses show that most participants in the Square
experiment had no significant differences between MPC in RW and LJ, while on the
contrary, all 23 participants in the Necker and 8 out 9 participants in Cross do.

Overall, these results indicate that Cross did replicate the micro-
pursuit phenomenon observed in the Necker experiment even with
a smaller sample size, while Square did not.

Median inertia with respect to the stimulus’ centre of gravity (Istimulus) differed with
motion conditions suggesting that the nature of stimulus motion, manipulated in
each condition (fixed, unpredictable, and predictable) affects global spatio-temporal
dynamics of FEM. Median inertia with respect to the fixation’s mean gaze position
(Ifixation) showed the emerging pattern of a common oculomotor phenomenon
occurring in Necker and Cross, where differences across conditions were measured.
Again, this was not the case in Square (see Fig. 2.3-C). When looking at similarity
between stimulus and gaze trajectories, integrated over fixation events using MPC,
we found that the predictable motion condition (LJ) generated highly similar gaze
trajectories in the Necker and Cross experiments, with large effect sizes. But we did
not observe the same pattern for the Square experiment (see Fig. 2.3-E).

The contrast given by diverging results (Necker-LJ and Cross-LJ being different
from Square-LJ) is interesting as it gives us a graduation of how likely, the same
predictable motion (LJ) can make observers generates micro-pursuit. It also suggests
that a coupling between the oculomotor and cognitive systems in the occurrence of
micro-pursuits, which could be predicted and interpreted by a modelling framework
we proposed when encountering the original observations. To go further, we propose
a model, in Chapter 3, that can describe all FEM in a single mechanism and can take
into account the competition between multiple stimuli.

2.5 Comparing Necker, Cross and Square experiments—Corrected in
Appendix C

101



-1 -0.5 0 0.5 1
Maximally projected correlation

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
P

ro
b
a
b
ili

ty

RW

-1 -0.5 0 0.5 1
Maximally projected correlation

LJ

Motion

RW

LJ

Necker

Cross

Square

Figure 2.5. Focus on MPC results. Histogram of fixations by maximised correlation ρ∗

(MPC) scores in the Necker Cube experiment. Illustrations of signals for values
in some typical score intervals are presented to give a graphical intuition
of the computed measure. We picked high similarity near a score of 1, no
correlation near 0 and anti-correlation near −1. Dotted trajectories correspond
to stimulus signals and continuous trajectories correspond to gaze signals.
Temporal discourse is represented by lighter to darker samples.

2.6 Discussion—Corrected in Appendix C

2.6.1 Micro-pursuits

The proposed working definition of micro-pursuits in this chapter, is based on a class
of fixations. Moreover, the MPC metric proposed can be applied directly to measure a
fixation’s similarity between gaze and stimulus, because it features scale, translation,
and spatial offset invariances. Therefore, the results presented are based on entire
fixations, rejecting those for which micro-saccades were detected. It is noteworthy
that even when fixations containing micro-saccades are kept for analysis, our main
results and trends, especially with respect to MPC are still valid at all three levels:
individual, group and inter-experiment analyses. This can be partially observed from
Fig. 2.5, where the MPC is obtained over all fixations, whether they contain micro-
saccades or not. Indeed, we observe a clear difference between MPC distributions in
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LJ versus RW. The trends in these observed differences were systematically obtained
with (i) entire data including detected micro-saccades, (ii) when gaze samples of the
detected micro-saccades were removed, or (iii) when considering only the fixations
without detected micro-saccades—the reported data for analyses and Fig. 2.3 being
the most conservative. In this work we thus focused on a proof of micro-pusuits’
existence through the results obtained from the Necker experiment as well as results
from the replication experiments (Cross or Square).

The additional analyses on binocular similarity and velocity similarity also provide
more information on micro-pursuits. The former’s results suggest that micro-pursuits
tend to feature conjugated dynamics between both eyes since the LJ condition, in
they were measured, showed more eye-to-eye similarity, in particular in the two
data set where micro-pursuit are systematically measured (Fig. 2.4-A). Secondly, the
replication of the MPC results on position and velocity signals adds weight to the
reliability of the measure, with the same trends across experiments being observed
(Fig. 2.3-E and Fig. 2.4-C).

A limitation of this data resides in the granularity of the working definition. Indeed,
micro-pursuits should theoretically be treated as a class of FEM, at the same level
as micro-saccades and drifts. However, to link the theoretical definition to our
working definition, the experimental data would need to be recorded with more
precise and more accurate systems than video-based eye-trackers (Wyatt, 2010;
Choe et al., 2016). Hence, it is an invitation to research further into this oculomotor
phenomenon. We provide a basic field guide to pursue investigation and charac-
terisation of such a phenomenon, by providing a key metric, namely MPC which
measures similarity of the gaze trajectory with respect to that of a target.

Eye movement research is gradually considering an oculomotor continuum. For
instance, it is becoming less and less credible to consider a hard separation between
micro-saccades and saccades because of their common neural origins in oculomotor
programming (Krauzlis et al., 2017), their common properties, and mathematical
models that can account for both (Sinn and Engbert, 2016). One may thus also
consider that large amplitude smooth-pursuits share physical properties as well as
neural correlates with micro-pursuits. Further work is needed to discriminate them
from other FEM, like micro-saccades, and to develop detection algorithms, which
will need to cleverly combine physical characteristics with a robust estimation of
similarity between gaze and target based on very short episodes.
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2.6.2 Micro-saccades define a main sequence

Micro-saccades, a class of FEM, have been characterised by (i) their ballistic
properties—like saccades,—(ii) their small amplitudes, and (iii) the relationship
between their peak velocity and amplitude. This resulted in the definition of a main
sequence (Bahill et al., 1975). The latter stipulates that as micro-saccades have
larger amplitudes, their associated, measured peak velocity will increase, and this
relationship is linear. Indeed, this can be explained by the fast, ballistic nature of
the micro-saccade, which, in essence, re-positions the fovea in the context of visual
perception (Rolfs, 2009; Ko, Poletti, et al., 2010; Poletti and Rucci, 2016; Sinn and
Engbert, 2016), similar to saccades at larger scales (i.e., not contained within FEM).
The execution of this rapid movement is typically over a short period, under 80 ms.
The physical properties of the oculomotor system constrain these ballistic motions
of the eye to exhibit the linear velocity-amplitude relationship, characteristic of the
classic main sequence.

The main sequence has been very reproducible, and appears in over decades of
eye movement research (Rolfs, 2009; Hicheur et al., 2013). It has been used to
develop robust micro-saccade detection algorithms such as the one proposed by
Engbert and Kliegl (Engbert and Kliegl, 2003), which is the one also used in this
work. Their detection is based on a lower relative velocity threshold computed from
a sliding window—such that the detection threshold is dependent on the contextual
oculomotor activity. Using this detection method, our data presented in Fig. 2.2
shows a clear secondary main sequence under the predictable motion condition (LJ)
in both Necker and Cross experiments.

The detection of slow micro-saccades in our data set with this algorithm can be
explained by the dependency of the detection algorithm on the fixations’ mean
velocities, and the adaptive threshold based thereupon. The conditions created by
the use of small amplitude predictable Lissajous trajectories on an ambiguous Necker
Cube on one hand (Necker), and an explicit pursuit task on the other hand (Cross),
could explain the detection of slow micro-saccades.

This interpretation suggests that the classic main sequence can be composed of
erratic micro-saccades such as under FX or act as catch-up micro-saccades for a
micro-pursuit movement just as we might have at a macroscopic scale with smooth
pursuit movements. For further understanding of this phenomenon, a more detailed
break down of FEM data into gaze before and after micro-saccades is needed, which
we consider outside the scope of this work.
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2.6.3 Micro-pursuits might define a secondary sequence

Our graphical results in Fig. 2.2 suggest that we do have a secondary sequence under
the LJ condition in both the Necker and Cross experiments. Moreover, detected
micro-saccades that give high MPC scores are mainly associated with the secondary
sequence and vice versa (see Fig. 2.2-A). Under the RW condition, however, the
secondary sequence is less pronounced. Thus, a contrast can be observed between
predictable and unpredictable motion conditions, suggesting that detected micro-
saccades in FEM are more diverse than initially assumed. We propose to focus on
this secondary sequence, i.e. the slow main sequence.

The differences in rate shown in Fig. 2.2-B also suggest that the secondary sequence
may represent detected micro-saccades of different nature than those contained
in the classical main sequence. Given the recent and older observations of small
amplitude pursuit in monkey (Skinner et al., 2018) and human data (Heywood
and Churcher, 1971; Heywood and Churcher, 1972; Martins et al., 1985; Poletti,
Listorti, et al., 2013), as well as the contrast between unpredictable (RW) and
predictable (LJ) stimulus motion in our experiments, a credible hypothesis is that
the secondary sequence mainly covers an additional class of FEM, namely micro-
pursuits. Alternative hypotheses might classify these as ocular drift (C.-Y. Chen and
Hafed, 2013; M. Watanabe et al., 2019) or slow motor control (Kowler and Steinman,
1979a; Kowler and Steinman, 1979b; Kowler and Steinman, 1981; Kowler, Martins,
et al., 1984; Epelboim and Kowler, 1993), although these do not track on a target
(stimulus) and would thus contradict with the aforementioned correlation observed
between membership of the secondary sequence and high MPC scores.

2.6.4 Micro-pursuits could be detected through similarity with a
target

The MPC measure proposed to quantify similarity between two multi-variate signals—
such as the bi-variate gaze and stimulus trajectories in the context of pursuit and
micro-pursuit,—can be subjected to a finer analysis. It features robustness with
respect to (i) additive noise degradation, (ii) scale, and (iii) spatial offset and
translation, making it convenient for a study of similarity. It’s limitation resides
mostly in its variance and thus the number of (temporally correlated) samples
needed to accurately measure similarity. This is illustrated through Fig. B.1 in
Appendix B.1. While on the one hand, physical properties (amplitude, peak velocity,
see discussion on the secondary sequence) can be used to discriminate micro-pursuits
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from micro-saccades, on the other hand, functional characterisation will help provide
discrimination between drift, slow motor control, and micro-pursuit. Indeed, the
first two may be slow FEM, but have no requirement for target tracking, like pursuit,
whereas the latter does (Martins et al., 1985; Spering and Montagnini, 2011).
Furthermore, its link to visual perception remains speculative, though interpreting
our data suggests that attention may lead to a tentative explanation (Spering and
Montagnini, 2011).

2.6.5 Influence of attentional context on target locking

The three experiments (Necker, Cross and Square) presented show three different
contexts of tasks and stimuli. In the Necker experiment, the ambiguous Necker cube
was subject to motion and participants had to report how they perceived the cube’s
orientation while fixing a central cross. The context was challenging as perceptual
changes were endogenous. The two tasks—oculomotor and perceptual—required
a split of attention as one had to focus gaze on a central fixation while observing
a moving, ambiguous cube (VanRullen, Reddy, et al., 2004). We consider this a
difficult attentional context, which forces the observer to split attention between
to elements, or perceptual objects, of the visual field, that can thus be considered
competing (attentional) attractors. There have been previous reports showing that
an ambiguous stimulus can reveal attentional modulations (Kohler et al., 2008).
In the Cross experiment, we created an explicit context, where the fixation cross
was moving as it underwent illumination changes. Participants were asked to fixate
the cross, while a static, unchanging square remained in the background. One can
consider that participants had to focus all their attention on the cross, and as it was
moving in a predictable, tractable fashion (LJ), the cross induced micro-pursuits. In
the Square experiment, the attention had to be split, like in the Necker experiment.
However, the square was unambiguous, and its changes required less attention
to detect. Thus, one can consider the Square experiment to have attention split
between two attractors, as well, but given the results obtain (Fig. 2.3-E-F) and
the lack of observed micro-pursuits, one can interpret the competition between
attractors as unbalanced. This approach considers attention qualitatively, based on
the manipulation of tasks and stimulus motion, but a more quantitative approach
would provide a better view on the possible interactions—e.g. by means of an
efference copy (Astrand et al., 2015)—of the oculomotor and attentional systems
for micro-pursuits.
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2.6.6 Modelling attention to generate gaze patterns

A first step towards a quantitative characterisation of how attention may influence
oculomotor dynamics is proposed in Chapter 3, by a competing attractor model
based on gravitational-like field model. The model simplifies the visual stimulation
by considering perceptual objects as gravitational attractors with dynamically vary-
ing masses modelling the attention whereas gaze position is modelled through a
unit-mass particle evolving in time subject to the gravitational field, and subject
to additive velocity noise (Langevin dynamics). By manipulating the attractor’s
positions, masses, and the curvature of their energy potential, it is possible to gen-
erate (micro-)saccades, (micro-)pursuits, fixations, and drift. This mathematical
model offers a quantitative method that may be interpreted in terms of spatial
attentional loads with respect to oculomotor programming and execution. It is an
extension of some models already proposed in the field of FEM modelling based on
energy potential (Engbert, Mergenthaler, et al., 2011; C. Herrmann et al., 2017)
as well as modelling work on bi-stable perception and processes (Moreno-Bote,
Rinzel, et al., 2007; Shpiro, Moreno-Bote, et al., 2009; Moreno-Bote, Knill, et al.,
2011; Moreno-Bote and Drugowitsch, 2015), to incorporate the influence of, e.g.,
ambiguous figures like the Necker cube.

2.6.7 Future works

Further studies based on quantitative approaches to spatial attention (Corbetta et al.,
1998; Cavanagh and Alvarez, 2005; Engbert, Trukenbrod, et al., 2015; Gide, Karam,
et al., 2017; Esterman and Rothlein, 2019), combined with the use of MPC on the
gaze and salient points of the stimulus—rather than the simpler centre of gravity
–, should constitute promising methods to investigate the relationship between
attention and micro-pursuits.

Our model, as well as existing and competing models, feature stochastic pro-
cesses (Gammaitoni et al., 1998; Kim et al., 2006; Engbert and Kliegl, 2004; J.
Braun and Mattia, 2010) which could provide insights to further understand how
FEM act as noise. The question remains on how that noise might impact percep-
tion, such as through hyper-acuity phenomenon (Rucci, Iovin, et al., 2007; Zozor
et al., 2009; Rucci and Victor, 2015). An extension of the presented modelling
approach in Chapter 3 incorporating additional, competing attractors living in a
complex, possibly high-dimensional, perceptual space coupled with the already
existing oculomotor model, constitute a framework to study the interaction between

2.6 Discussion—Corrected in Appendix C 107



oculomotor, attentional, and visual systems in a goal-oriented complex system like
the brain (Kelso, 2012; Schwartz et al., 2012).
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2.7 Conclusion

In this work, micro-pursuits are proposed as a type of FEM occurring at small
amplitude, within a fixation, as the gaze follows a target. We proposed two metrics:
inertia and MPC to measure gaze displacement within a fixation and to quantify
gaze-target trajectory similarity, respectively. When searching for micro-saccades,
our data showed the presence of a secondary sequence, contrasting with the well-
known main sequence exhibited by micro-saccades. Detected micro-saccades that
belonged to this secondary sequence showed lower peak velocities as well as higher
similarity with the target, which has led us to classify these movements as micro-
pursuits. Upon further inspection of the data, both the Necker experiment and the
Cross experiment showed fixations with high similarity values under predictable
target trajectories. Micro-pursuit here is presented as a class of fixation, but further
research is needed to identify the physical properties and distinguish it from other
FEM. Moreover, this work calls for further investigation on the functional role of
micro-pursuits, and how the oculomotor and perceptual systems interact during
such movements.
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Modelling eye movements &
multi-stable perception

3
„Between my consciousness and my body as I

experience it, between the phenomenal body of
mine and that of another as I see it from the
outside, there exists an internal relation which
causes the other to appear as the completion of
the system. The possibility of another person’s
being self-evident is owed to the fact that I am
not transparent for myself, and that my
subjectivity draws its body in its wake.

— Maurice Merleau-Ponty
"Phenomenology of Perception"

1945.

Eye movements and multi-stable perception have been further understood and
deciphered with the study of mathematical models capable to produce analogous
behaviours. Models, however, offer a key advantage: they can be manipulated and
understood in fine details through theoretical studies and numerical simulations.
In this thesis, we proposed a model based on gravitational energy potentials to
generate eye movements. This approach is described in this chapter by presenting
numerical empirical results. Furthermore, perceptual tri-stability was studied in
order to begin an investigation of how one can expand some of the results found
for bi-stability, and generalise them for multi-stability. The proposed framework is a
first step towards the construction of formal models that bind perception and action;
here, in particular, ambiguous perception and oculomotricity.

Publication.
The work presented in this chapter is exploratory and partially completed. Its aim is to
provide the reader with some understanding of the theoretical framework used to develop
the experimental work in the following chapters.
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3.1 Gravitational fixational eye movements

Models come in a variety of forms, depending on the mathematical framework used
to formalise and compute their mechanics. Two main families can be differentiated:
descriptive statistical and generative mechanistic models. Here, we focus on the
latter. The motivation is the following: generative models can produce simulated and
synthetic results that can be compared to observed empirical data. The model can
then be studied and decomposed such that each internal force can be characterised,
and their functional role in creating the analogous behaviour can be investigated. All
together, models remain key to understand a phenomenon and make predictions for
empirical and experimental work. We focused here on FEM in an attempt to explain
and understand the data observed and reported in Chapter 2. Eye movements are
modelled by various techniques.

Probabilistic modelling - scan-paths

For instance, gaze data in scene exploration task, also known as scan paths, have
been studied through probabilistic models of spatio-temporal dynamics (Marat et al.,
2009; Ho-Phuoc et al., 2009; Tatler et al., 2011). These models are often based on
saliency maps, which draw the empirical two dimensional distribution of fixation
location convoluted with a spread function (Gide, Karam, et al., 2017), and have
provided researchers with a better understanding of natural image’s statistics for the
perceptual, oculomotor and attentional systems. Scan path models add a temporal
dependency to saliency maps, and allow the generation of synthetic gaze patterns
linked to an image or video’s observation. However, they often neglect the role of
intention and task (see Fig. 1.1 in Chapter 1), as they are estimated bottom-up from
gathered data.

Accumulation processes - saccade generation

Another known approach is derived from the field studying decision making in which,
the cognitive system is considered to accumulate evidence or information up to a
threshold. When the threshold is reached, a decision is made. For eye movements,
the decision is materialised by the execution of a saccade, for instance (Orquin and
Loose, 2013). Accumulation processes are implemented by drift diffusion models,
in which, a particle influenced by a deterministic force, e.g., the evidence, and
a stochastic force, e.g., the internal noise, drifts in a space until a threshold is
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reached. This type of models are also close to integrate and fire neuronal models, in
which information is accumulated, in weights that correspond to dendrites, until
a threshold is reached and synaptic spiking occurs (Gerstner et al., 2014). This
approach is effective to understand how intentions can be linked to a decision, and
subsequently to an action. However, they often neglect the role of attention and the
stimulus’ statistical properties.

Energy potential models

Some research teams have attempted to merge both paradigms by proposing models
using energy potential models. In fact, FEM phenomenology offers an interesting
perspective for such unification because FEM have historically been considered
as unconscious ocular events linked to the visual stimulus on the fovea (Thaler
et al., 2013), but is also known to reflect conscious perception, attention and
expectation (Kowler, Martins, et al., 1984; Laubrock et al., 2008). Recently, Engbert
and colleagues (Engbert, Mergenthaler, et al., 2011) proposed a generative model
that could reproduce the statistical properties of FEM stationary displacement,
namely the short term persistence and long term anti-persistence of drift and tremors.
They used a self-avoiding walk (Freund and Grassberger, 1992) in a discretised
quadratic energy potential: at each iteration, the gaze, represented by a particle in
the energy potential landscape, can either go left, right, up or down. The walker
will choose the slot with the lowest energy. Once a step is made, the slot of the
previous iteration is set to a high energy value, and the entire energy landscape
follows a linear relaxation law. Hence, FEM bottom-up dynamics can be reproduced.
Furthermore, the model also proposed to integrate micro-saccade generation by
a threshold rule: when the particle is surrounded by options with energy higher
than the threshold, it jumps to the global minimum of the energy landscape. Here,
the authors provide an accumulation process linked to a global integration of the
oculomotor field.

The integrated FEM model described above is a key foundation to bridge the oculo-
motor modelling communities and accounts for multiple FEM phenomena (e.g., drift
displacement, micro-saccade, spatial orientation biases). However, it did not possess
a mechanism to account for micro-pursuit, as these are hardly studied and reported.
The observation of micro-pursuits presented in Chapter 2 implies that the dynamics
of the gaze within a fixation can be affected and attracted by motion of a perceptual
object in or nearby the foveal field. Therefore, we propose modelling approach,
gravitational fixational eye movements (GraFEM), inspired by gravitational energy
field theory to model motion of eye movements (Parisot, Chauvin, Guérin-Dugué,
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et al., 2017; Parisot, Chauvin, Phlypo, et al., 2018) and derived from the work on
integrating FEM in energy potential models (Engbert, Mergenthaler, et al., 2011).

3.1.1 Gravitational potential energy field modelling

Integrated and generative FEM models make use of energy potentials to generate
self-avoiding walks, constrain the walks and replicate oculomotor biases (Engbert,
Mergenthaler, et al., 2011). In fact, the latter is used to constrain the pseudo
random walk’s spatial horizon. Furthermore, it can be considered as an attractor of
the energy landscape. Thus, the use of the particle in an energy potential framework
can be adjusted to provide biases of the stimulus on the FEM generation. Combining
attractors in the energy fields, that increase the probabilities of having the gaze at
some spatial coordinates, and adding stochasticity to the movement of the particle
can provide a simple mechanism for FEM generation.

Attractors.
Attractors in energy landscape are local minimums into which a particle will roll by gradient
descend, i.e., gravity. However, if one considers the problem from a probabilistic point
of view, energy landscape correspond to negative inverted probability distributions, with
minimums corresponding to modes with higher probabilities. The advantage of considering
the gaze dynamics as a physics problem is that it offers an intuition of the dynamics when the
attractors’ masses and positions are known, since humans all have an intuitive understanding
of Newtonian gravity by experiencing life on earth.

Model description

The attractors’ properties can be manipulated over time to affect the energy field and
thus dynamics of the FEM generated. The energy field that is mapped to the visual
field can be populated by an arbitrary number of n attractors of varying strength
(see Fig. 3.1a). Inspired by the formalism of gravitational fields, one can generate
fields with the following equations. Let Φi represent the field generated by the ith

attractor given by:

Φi(q, t) = − 1
‖q(t)− ai(t)‖2βi(t) + δi(t)

(3.1)

with q and ai corresponding to the spatial x-y coordinates (at time t) of the observer’s
gaze position and the ith attractor, respectively. The potential landscape can be fine
tuned according to assumptions on attentional attributes of the stimulus and the
tasks. First, it is necessary to set how many attractors are present and give them
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spatial coordinates in the plane over time. Secondly, it is possible to handle the mass
of those attractors and their subsequent force of attraction and distortion of the field
by tuning two parameters; δ for the depth of the well and β for the concavity of its
slope. Summation and normalisation of the field allow for the fusion of the multiple
attractors.

Φ(q, t) =
n∑
i=1

Φi(q, t) (3.2)

A logarithmic attenuation is added to allow the possibilities of exploring high energy
areas of the visual/foveal field, giving the energy E:

E = − ln(−Φ) (3.3)

Memory of attractor motion (Fig. 3.1b) are modelled by adding a moving average
(MA) process (Hannan, 2009) on the field at a given time t:

EFEM (q, t) = E(q, t) +
K∑
k=1

λ

k + 1E(q, t− k∆t) (3.4)

where K is the temporal parameter limiting how far in time will the fields be
summed over and with λ the relaxation rate parameter and ∆t is the temporal
step size. It is also possible to set the impact of memory and anticipation through
parameters that define the iteration window over which the field is deformed using
traces of the attractor in the past of a given current iteration and the rate λ at which
the deformation affects for a given lag.

A particle of position (q) with negligible mass (or with very high friction) is dropped
in the field and is disturbed by noisy force, in order to generate and simulate gaze
dynamics. Therefore, given the fundamental relation for dynamics, where the
accelerating second order component is neglected, the gaze particle’s motion is
derived by the Langevin equation (Langevin, 1908), in which mq̈ is equal to the
sum of forces applied to the particle, and can be rewritten as follows:

mq̈ = −γq̇ −∇EFEM (q, t) + ξ(t) (3.5)

with m the negligible mass, γ the friction and where ξ is an external force, here an
oculomotor noise (η) applied to the gaze, such that η(t) = ξ(t)

γ . With the assumption
of low mass and after normalisation1, such that EFEM = EFEM

γ , the dynamics can
be expressed as:

q̇ = −∇EFEM (q, t) + η(t) (3.6)

1Note that in the next equation, we use EFEM with the same notation as above, which is not exact
writing though it simplifies reading. We refer to a normalised term by γ in the next equation.
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(a) GraFEM with 3 attractors. (b) GraFEM with 2 attractors.

Figure 3.1. Examples of energy landscape surface plots setup using the GraFEM model for:
(a) 3 attractors (n = 3) with all attractors i having no motion and the following
parameters: β = 2; δ = 1; K = 5; λ = 0.9.
(b) 2 attractors (n = 2) with all attractors i having the following parameters:
β1 = 2; β2 = 4; δ1 = δ2 = 1; K = 15; λ = 0.9 and attractor motion computed
with the following arbitrary sinusoidal motion: a1(t) = (0, 0); a2(t) = a2(0) +
(−5 sin (2t), 5 sin (3t)), with a time step of ∆t = 13 ms. The figure is extracted
from on the 75th time step corresponding to the 975 ms into the simulation.
The motion of a2 is shown in white, with a2(0) = (0, 0).
Though the model has many parameters, those manipulated in this work’s
results are exclusively the depth δ (or mass) of the attractors and the slope β by
affecting the concavity of the attractors’ field. White spots between attractors
are rendering errors by the visualisation method.

The evolution of the gaze particle’s dynamics can be computed by making the
problem a discrete one using the Euler-Maruyama method (Kloeden and Platen,
2013), for instance.

3.1.2 Model simulations: what are the parameters corresponding to
ocular events & interpretation?

Fixations of 3.5 seconds, with a discretisation Euler-Maruyama step ∆t = 13 ms equal
to the time step, were simulated using the GraFEM model with two attractors, across
corresponding to the attractor of a fixation cross at the centre and astim, the attractor
representing the stimulus, with a Lissajous motion: astim = (sin(2t), sin(3t)). Only
the slope and depth parameters were manipulated: βstim ∈ [0; 15] and δstim ∈
[0; 500]. All other parameters were kept constant with the other attractor position
at across = (0, 0) with βcross = 1 and δcross = 100, the relaxation rate parameter
λ = 0.9, the memory temporal limit K = 5 and noise ξ ∼ U [−0.5; 0.5]. These
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simulated fixations were then analysed using the measures presented in this article,
namely, inertia, MPC and micro-saccade detection using the EK algorithm based on
relative velocity thresholds (Engbert and Kliegl, 2003). Fig. 3.3a shows that higher
inertia follows a diagonal region along the {βstim, δstim} space. When looking at
Fig. 3.3b, one can see that the same area in the parameter space has systematically
high MPC. Finally, the EK algorithm was applied (without the binocularity criterion)
to measure detected micro-saccades, and summed over the time of a fixation. The
results (Fig. 3.3c) show that micro-saccades are detected when concavity is high due
to a larger βstim parameter.

3.1.3 Discussion and perspectives: attentional, oculomotor and
perceptual multi-stability

The simulation results presented above show:

• Fixations’ dynamics can be modelled including a variety of FEM such as drift,
tremors, micro-saccades and micro-pursuits.

• Attractor dynamics can be intuitively manipulated by two parameters that
control their slope and depth, hence imposing, by gravity, faster or slower
dynamics on the gaze-particle.

• Generalisation to more complex stimuli or tasks can be manoeuvred by such a
model as attractors can be multiplied, if necessary.

However, this work remains preliminary and calls for further investigation. Such
perspectives are discussed in the following paragraphs.

Model interpretation for eye movements

The GraFEM model proposed in this paper is capable of generating micro-saccade,
drift and tremor FEM (see Fig. 3.2) as classified in the literature (Martinez-Conde,
Macknik, and D. Hubel, 2004) as well as the micro-pursuits presented and detected
in Chapter 2 as reported in Fig. 3.3 & Fig. 3.4. By using classified data (observations),
the parameters of the model that allow the generation of these FEM could be inferred,
and insights on the mechanics of micro-saccades, micro-pursuit, drift and tremor
generation and their interaction can be studied. The diagram Fig. 3.4 already gives
a useful and overall understanding of the model, with respect to the manipulated
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(a) Example of a simulated fixation with
GraFEM.

(b) Example of a simulated micro-pursuit with
GraFEM.

(c) Example of a simulated micro-saccade
with GraFEM.

Figure 3.2. Simulation examples generated with the GraFEM model.
Simulations of fixations of 3.5 seconds with Euler-Maruyama time steps of
∆t = 13 ms, with variable fixation dynamics generated through by manipulat-
ing of δstim and βstim parameters. Constant parameters of the model were:
number of attractors n = 2, with one for the fixation cross across = (0, 0)
and another for the motion of the stimulus following a Lissajous trajecto-
ries with the same parameters as in the three experiments from Chapter 2;
astim(t) =

(
sin(2t), sin(3t)

)
. The relaxation rate parameter λ = 0.9, memory

temporal limit parameter K = 5 and noise ξ ∼ U [−0.5; 0.5] were used.
(a) A simulated fixation with stable fixation dynamics with δcross = 100; δstim =
100; βcross = 1; βstim = 1.
(b) A simulated fixation with micro-pursuit dynamics with δcross = 100; δstim =
25; βcross = 1; βstim = 1.
(c) A simulated fixation with micro-saccade dynamics with δcross = 100; δstim =
25; βcross = 1; βstim = 12 and detected using the EK algorithm for micro-
saccade detection.
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(a) Inertia over the GraFEM simulations.
(b) Similarity (MPC) over the GraFEM simu-

lations.

(c) Micro-saccades detected over the GraFEM
simulations.

Figure 3.3. Simulations and analyses of the GraFEM model.
Simulations of fixations of 3.5 seconds with Euler-Maruyama time steps of
∆t = 13 ms, with variable fixation dynamics generated through the variation
of δstim ∈ [0; 500] and βstim ∈ [0; 15] parameters. Constant parameters of
the model were: number of attractors n = 2, with one for the fixation cross
(across = [0, 0]) and another for the motion of the stimulus following Lissajous
trajectories with the same parameters as in the Necker cube experiment (Chap-
ter 2): astim(t) =

(
sin(2t), sin(3t)

)
. The relaxation rate parameter λ = 0.9,

memory temporal limit parameter K = 5 and noise ξ ∼ U [−0.5; 0.5] were used.
(a) Behaviour of inertia over the parameter space of the GraFEM model.
(b) Behaviour of the similarity between stimulus and simulated fixation motion
using the MPC ρ1.
(c) Number of micro-saccades detected by the EK micro-saccade detection
algorithm.
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Figure 3.4. GraFEM oculomotor interpretation. Schematic interpretation of oculomotor
dynamics generated in the parameter space of the GraFEM model with manip-
ulation of the δ and β parameters of the stimulus attractor, while keeping all
other parameters constant.

parameters, but the work on parameter inference should be addressed in a near
future in more details.

Given the observed data and the proposed model to account for it, questions and
perspectives can be redefined with a novel angle for interpretation of fixational eye
movements. Inversion and a full analysis of a model, like GraFEM, with multiple
free parameters is a complex task out of the scope of this thesis but should be tackled
and reported in a near future.

The model presented here gives a mathematical framework in which eye movement
phenomena can be generated and interpreted. Attractors are interesting as tools
to explain and interpret cognitive and physiological behaviours as they allow an
intuitive understanding of the evolution of dynamical systems (T. Watanabe et al.,
2014; Kelso, 2012). Furthermore, complex learning systems—i.e., neural networks—
are known to develop such properties as the parameters of their processes tend
to learn the statistics of the environment by creating attractors in the parameter
space (Moreno-Bote, Rinzel, et al., 2007; Shpiro, Moreno-Bote, et al., 2009; Moreno-

3.1 Gravitational fixational eye movements 121



Bote, Knill, et al., 2011; Moreno-Bote and Drugowitsch, 2015). With this modelling
framework, the FEM classification of the literature can be described and interpreted
in terms of attractor spatio-temporal dynamics (Fig. 3.3 & 3.4).

A stable fixation (Fig. 3.2a) in the GraFEM model corresponds to a stabilisation of
an attractor with the energy landscape having little change. The gaze-particle is
stuck and only the noise affecting its position may lead to small random movements
of the eyes, as in other generative FEM models (Engbert, Mergenthaler, et al., 2011;
C. Herrmann et al., 2017). In these models, constraints to the energy field of the
fixation are used in an analogous fashion to reflect the higher probabilities of having
FEM in horizontal and vertical directions. A fixation attractor can thus be predicted
by the task or the stimulus controlled by the experiments, and its parameters can
be inferred by a priori information and data. Hence, the model gives predictive
capabilities that can be tested and requires assimilation of data to constrain its range
of possibilities.

Micro-saccades (Fig. 3.2c) correspond to sudden changes in the energy depth of
attractors, with a new one emerging or deepening while the attractor of fixation
has suddenly disappeared. They are likely to emerge as the gaze-particle rushes
down a gradient to the centre of an attractor, giving it sufficient velocity. The depth
and slope of the attractor can be manipulated (following the dynamics described
in Fig. 3.4), thus making it possible to infer, based on observed velocities and
amplitudes, the saliency of that attractor. The GraFEM model does not use an
explicit and separated mechanism for micro-saccade generation—as the model
presented in Engbert, Mergenthaler, et al. (2011)—though it is not incompatible.

Drifts correspond to a stability of the gaze-particle with respect to the attractor by
which it is transported. However, the attractor might itself slowly drift away in the
visual space (independently from the target motion) or alternatively, the shape of
the well might get larger (by manipulating the parameter β), allowing for the noisy
gaze-particle to explore further. These are two hypotheses that could be tested,
in future work, by inferring the model parameters given sufficient data. These
FEM are known to help reduce visual redundancy and extract features in complex
visual stimuli (Kuang et al., 2012) but are mostly considered to be consequences
of the eye muscles and their neural control properties. Therefore, they have mostly
been considered as independent processes from the visual stimulus presented. The
micro-pursuits detected and described in Chapter 2 could be interpreted as a form
of stimulus related drift, as its signal dynamics place it in similar ranges, and is
capture by the proposed metric; namely MPC. Consequently, this argues in favour of
our proposition that drifts are composed of two categories—stimulus independent
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and dependent—and micro-pursuits logically fall within visually dependent ocular
drifts. This dependency can be interpreted as the interference of bottom-up salient
elements interrupting the top-down task of fixation.

Micro-pursuits (Fig. 3.2b) are therefore close to drifts in the energy landscape
dynamics.

Model mechanics

The model sets the gaze as a particle in an evolving gravitational energy potential
field. When the system has no dynamics added to the potentials’ landscapes, the
particle will fall into its nearest local minimum. In this implementation, at each
iteration—here a discrete time step using Equation (3.6) –, the first derivative is
computed to update the position of the particle in the plane, corresponding to the
screen. Noise is then added to the deterministic dynamics and can drive fixational
oculomotor decision-making with respect to attractors if its amplitude is sufficiently
large (Shpiro, Moreno-Bote, et al., 2009; Moreno-Bote, Rinzel, et al., 2007). This
mechanism is similar to bi-stable energy potential models, though it extends on the
dimensions of the system. In a set of simulations reported in Fig. 3.3, we show that
through two continuous parameters applied to a target attractor, it is possible to
generate and interpret oculomotor dynamics observed in FEM. However, here, there
is no prior requiring the existence of different systems for each class of movements
observed (Liversedge et al., 2011). FEM dynamics can be reproduced through a
unique mechanism as shown by the simulated examples in Fig. 3.2.

Top-down intention processes can be tested and simulated, given the context of a
task, by applying changes in the model’s β and δ parameters. Fig. 3.4 can be used
as a road map of the oculomotor dynamics and regimes expected, depending on
parameter values. Moreover, bottom-up attentional effects can also be taken into
account. This can be done with simpler assumptions, such as the ones presented
here for the task used in Chapter 2, but can be more complex if using natural scene
tasks, for instance. An interesting and practical perspective in this context lays in
investigating how salience models, which derive probability distribution based on
the statistics of images or videos, can be integrated such that only attractors are fed
into a GraFEM oculomotor execution system.
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How would this be implemented in the brain?

Anatomically, oculomotor programming has been shown to be highly correlated and
linked to a network of areas involving neural activity in the SC, the FEF and the
LIP cortex (Hafed, Goffart, et al., 2009; Krauzlis, 2004; Krauzlis, 2005; Krauzlis
et al., 2017; Astrand et al., 2015; Peel et al., 2016; Taouali et al., 2015). There are
inter-individual differences in anatomy and behaviour for fixational eye movements
measuring and observed dynamics. For instance, it has been shown that not only
oculomotor behaviour between trained and untrained participants vary a lot, but
that drift accounts for more fixation correction motion than micro-saccades (Cherici
et al., 2012). The observations of micro-pursuits presented in Chapter 2 suggest that
the dynamics of the gaze within a fixation can be affected and attracted by motion
of an object in or nearby the foveal field.

However, rather than having an attractor with a pseudo-random displacement, its
motion follows a deterministic and predictable trajectory, that can be computed and
estimated by the oculomotor system. Moreover, that attractor is, given our observa-
tions so far, only related to a target motion. This could, for instance, be implemented
in the brain by the means of an efference copy (Astrand et al., 2015), though this
idea remains speculative and further modelling and neuro-physiological research is
needed. The low energy attributed to a decoded and perceived object moving across
space encourages the oculomotor system to track it as it tries to minimise the energy
of the gaze-particle. Finally, tremors are generated and explained by the noise given
to the particle over all FEM events.

This model complements the eye movement field of research with the possibility to
program intentions, salience, and their effects on the gaze dynamics by simply using
attractors and setting out their dynamics in terms of motion on the visual field, depth
and memory. For instance, the model can predict the different dynamics reported
based on the eccentricity of an attractor corresponding to an afterimage, as observed
in (Heywood and Churcher, 1972). Thus, one can use the model to generate
statistical predictions of eye movement dynamics. Given an understanding of the
visual attention effects of their stimulus and take into account all the associated
intentions to the tasks that participants are required to be operated during a trial,
it is possible to use this modelling to generate quantitative predictions on the
oculomotor dynamics. Moreover, the generative properties makes it possible to work
on simulated data and extract dynamics’ statistics in terms of eye movements, and
this is possible using the traditional algorithms for eye movements classification.
Inversely, obtaining the parameters of the model that replicate the dynamics of
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observations could help understand better the internal processes that drive eye
movements.

3.1.4 Perspectives: towards oculomotor multi-stability.

A key aspect of this family of models is that it showcases multi-stability regarding
their attractors. This phenomenon can emerge in many complex biological systems
and is present in many cognitive processes (Schwartz et al., 2012). It is linked to
coordination dynamics between sub-systems which have varying levels of coupling,
leading to mono-stable, multi-stable or meta-stable dynamics (Kelso, 2012). The
consequent interpretation is that the oculomotor system could have multi-stable
dynamics with respect to visual attractors. In this case, the oculomotor dynamics
are likely driven by noisy signals (J. Braun and Mattia, 2010) representing other
interfering systems, such as perception, attention, and other cognitive systems. This
framework connects to the growing body of studies linking perceptual decisions and
multi-stable system dynamics. It also creates a link for motor systems to studies
of noise as a component that helps a perceptual system operate through stochastic
resonance2 (Gammaitoni et al., 1998; Patel and Kosko, 2005; Kim et al., 2006).

2Stochastic resonance refers to phenomena in which a system is able to detect a weak signal because
noise boosts it, by providing the energy needed for the signal’s frequencies to resonate mutually.
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3.2 Multi-stable perception

As suggested by the conclusion of the previous section, the GraFEM models can
be interpreted as multi-stable oculomotor models. One of the aims of this thesis
was to propose a framework in which both action and perception can be linked,
in order to investigate how visual perception, when stimulation is ambiguous, is
dependent and constrained by active oculomotor behaviour. Moreover, works on
modelling multi-stable perception has been extensively investigated for two state
systems, e.g., bi-stability, (Shpiro, Curtu, et al., 2007; Shpiro, Moreno-Bote, et al.,
2009; Moreno-Bote, Knill, et al., 2011) but less is known for states with three or
more quasi-stable states. This section uses the framework and model developed
above to look at perceptual multi-stability.

3.2.1 Extension for multi-stability

An advantage of the GraFEM model’s formalism is that it can gain in dimension for
its energy space and the number of attractors quite easily. Indeed, Equation (3.1)
can be summed and normalised over n attractors in a two-dimensional space. But if
q and ai, the coordinates vector of the particle and the ith attractor, respectively, are
considered as two-dimensional vectors with (x, y) coordinates on the screen plane
for GraFEM, it can be extended to p-dimensional vectors in the perceptual space. We
then have, for (q,ai) ∈ Rp, for n attractors and by computing the l-norm3:

Φi(q, t) = − 1
‖q(t)− ai(t)‖2βi(t)p + δi(t)

(3.7)

Therefore, the model extends the classic bi-stable model (Gammaitoni et al., 1998).
However, the larger p-dimensional space remains abstract and symbolic, as com-
puting such a model with a realistic level of complexity comparable to the human
visual system would formulate the computations in a highly dimensional space—see
Appendix A.1.2. The perceptual model also integrates all attractors’ energy fields
by summation and normalisation, and the logarithmic attenuation is applied such
that:

V (q, t) = − ln
[
−

n∑
i=1

Φi(q, t)
]

(3.8)

3The formalism with the l-norm is presented as such to show the flexibility of such energy potential
models such as the one presented here, which could, in theory, allow to approach complexity levels
close to the human visual system. However, in the rest of this section, given we have no hypotheses
on that complexity, we work on p = 2 and l = 2.
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Figure 3.5. Tri-stable perception space. Visualisation of the simulated tri-stable percep-
tual space with three equi-distant attractors. Note that the white forms are due
to errors in the visualisation method.

However, unlike the GraFEM model, we do not apply the MA process as attractors
did not move in our simulations and no perceptual phenomenon, to the author’s
knowledge, justifies for now, adding this computational cost. Finally, as for GraFEM,
the particle’s gradient was computed by iterations and a noise (η) was forced upon
its first order derivative:

q̇ = −∇V (q, t) + η(t) (3.9)

Particle trajectories in the perceptual energy space then need to be processed and
interpreted as percepts.

3.2.2 Simulation methods

We simulated 100 bi-stable systems in R2 with attractors ‖a1−a2‖ = 22.06 (arbitrary
units) over 40 seconds per simulation, with a Euler-Maruyama time step of 1 ms.
Attractors did not move in the energy space. The following parameters, kept constant
over time and simulations, were used; β = (3, 3), δ = (0.01, 0.01). Noise samples
were drawn from a Gaussian distribution with mean µ = 0 and standard deviation
σ = 1 and samples were then multiplied by a noise amplitude value that varied
across simulations. Only noise amplitude varied over simulations ranging from
0.45% to 13.6% as a ratio of attractor distance ‖a1 − a2‖. The particle was initiated
outside the two attractors at a distance of ‖a(0)− q(0)‖ = 8.7633. The generated
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Figure 3.6. Tri-stable perception interpreter. Example the tri-stable interpreter based
on finding the minimal distance between the particle’s samples of the filtered
trajectories. In colour, distances to the three simulated moving plaid percept
(for more details on the stimulus, please refer to Section 4.1) are plotted and
in black the interpreter’s time series with 0 for coherency (coh), 0.5 for right
transparency (tr) and -0.5 for left transparency (tl).

particle trajectories were processed to interpret them as percepts. First, noise was
removed using a 100th order median filter (see Fig. 3.7). The signals were then
interpreted into percepts p associated with each attractor, by finding the attractor
with closest distance over each iteration (Fig. 3.6) using the following rule:

pi = arg min
i=1,n

‖ai − q(t)‖ (3.10)

over n the total number of attractors.

The obtained time series were then analysed using the following procedure. A first
order derivative was used to find moments of simulated perceptual change—the first
and last 50 iterations were removed to avoid boundary effects. Percept durations
were thus extracted and normalised as fractions of the total simulation time (40s).
They were then fed to the default MATLAB function estimating parameters to
fit Gamma and a Log-normal distributions, using maximum likelihood. We used
Kolmogorov-Smirnov goodness-of-fit tests (Massey Jr, 1951), which quantifies the
distance between empirical distribution function of the sample and the cumulative
distribution function of the referred distribution, at α = 0.05 to determine whether
the estimated Gamma and Log-Normal distributions could be considered as adequate
for analysis. One test was done for the Gamma distribution as reference, and one
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test was applied with the Log-Normal distribution as reference. Noise amplitude
varied across all 100 simulated bi-stable systems.

The same analysis was carried for tri-stability, i.e., 3 attractors, with constant pa-
rameter values identical to the bi-stable case described above. The third attractor
was placed in a equi-distant manner (Fig. 3.5) and simulations were initiated in that
attractor to reflect first percept biases of the moving plaid stimulus—see Chapter 1
and Section 4.1 in Chapter 4 for more details on the stimulus. The results are
visualised together with bi-stability in order to facilitate comparison.

3.2.3 Bi-stability

The simulations presented show how the model can change its regime of stability:
the system may become unstable, even after the interpretation step, or it can show
only one stable state, i.e., mono-stability, or it can have two stable states, i.e., bi-
stability. Hence, multi-stability is not the only regime. In Fig. 3.8, one can see how,
for low noise levels, the system displays detected changes only at initiation, or at
the end (suggesting a boundary effect) and can be considered as mono-stable. The
particle is stuck in the first attractor it dives into and remains so. On the other hand,
when noise is high, the system becomes so unstable that the percept decoder cannot
interpret stable states. This is represented by the decoder’s erratic trajectory in the
bottom part of Fig. 3.8, where the system enters an unstable regime. In between,
however, we do observe bi-stability, with number of switches observed increasing as
noise increases in the system.

Because we are interested in multi-stable behaviour, we report Gamma and Log-
normal distribution fits only on the simulations for noise amplitude levels of 1.91% to
5.61%—the others are considered mono-stable or unstable simulations. As described
in the literature (reviewed in Chapter 1 and Appendix A.4), the percept durations
observed in the experimental data can fit to Gamma and Log-Normal distribution
functions—however, further goodness of fit tests need to be applied to solidify these
results—, as these distribution are typically used in the multi-stability literature
(see Chapter 1). Fig. 3.10-bottom reports the spread of the estimated distribution
parameters, while Fig. 3.10-middle shows the computed log-likelihood and the
number of switches as noise in the system increases. Both functions seem to perform
similarly to describe the simulated data, based on the log-likelihood values reported
and none of the analysed simulation were rejected by the Kolmogorov-Smirnov
goodness-of-fit tests for both Gamma and Log-Normal estimations. As expected,
higher system noise amplitude leads to an increase in the system’s number of
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Figure 3.7. Figures are both rotated 90° anti-clockwise.
Bi-stable perception simulation. Example of bi-stable simulation of 40000
iterations, with β = (3, 3), δ = (0.01, 0.01) and noise amplitude of 2.72% of
attractor distance. In black, the raw signals from particle simulation and in red,
the signal filtered by a 100th order median filter.
Tri-stable perception simulation. Example of tri-stable simulation of 40000
iterations, with β = (3, 3, 3), δ = (0.01, 0.01, 0.01) and noise amplitude of
2.9166% of attractor distance. In black, the raw signals from particle simulation
and in red, the signal filtered by a 100th order median filter.
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Figure 3.8. Bi-stability simulations. Figure is rotated by 90° anti-clockwise. The arrows
show the direction, when rotated, of increasing noise levels along lines and
down columns, respectively (read like a matrix)). All 100 simulation results,
after interpretation of percepts. This figure shows (qualitatively) how noise
impacts the model, with simulations with lowest (top-left, when rotating) to
highest (corner bottom-right, when rotating) noise amplitudes.
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Figure 3.9. Tri-stability simulations. Figure is rotated by 90° anti-clockwise. The arrows
show the direction, when rotated, of increasing noise levels along lines and
down columns, respectively (read like a matrix)). All 100 simulation results
(some low noise simulations did not vary enough to yield interpretations), after
interpretation of percepts. This figure shows (qualitatively) how noise impacts
the model, with simulations with lowest (top-left, when rotating) to highest
(corner bottom-right, when rotating) noise amplitudes.
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switches (Fig. 3.10-middle), thus replicating the observations from previous studies
on the role of noise in bi-stable systems. This appears to be also correlated to less
performing distribution fits (see Fig. 3.10-middle).

3.2.4 Tri-stability

Here as well as in bi-stability, we observe a reproduction of system stability regimes,
shown in Fig. 3.9. For tri-stability, the particle was initiated in the coherency attractor.
Again, when noise is high, the system becomes so unstable that the percept decoder
cannot interpret stable states. This is represented by the decoder’s erratic trajectory
in the bottom part of Fig. 3.9, where the system enters an unstable regime. In
between, however, we do observe tri-stability, with number of switches observed
increasing as noise increases in the system.

Because we are interested in multi-stable behaviour, we report Gamma and Log-
Normal distribution fits only on the simulations for noise amplitude levels of 1.91%
to 5.61%—the others are considered mono-stable or unstable simulations. Fig. 3.10-
bottom reports the spread of the estimated distribution parameters and the evolution
of computed log-likelihood and the number of switches as noise in the system
increases. Gamma and Log-Normal distribution fit the tri-stable data similarly, across
noise levels, alike to bi-stable simulations (Fig. 3.10-middle). However, 14.82%
of estimations were rejected by the Kolmogorov-Smirnov test for the Log-Normal
distribution across the considered noise interval, while no rejections were observed
for the Gamma distribution. Moreover, higher system noise amplitude appears to be
correlated to a large increase in the system’s number of switches (Fig. 3.10-middle),
thus generalising the observations from previous studies on the role of noise in
bi-stable systems to tri-stability.

3.2.5 Discussion

With these simulations we have provided:

• A description of empirical computational works on a multi-stable model based
on gravitational energy potentials.

• A generalisation from bi-stable models to multi-stable models, with a showcase
of tri-stability simulations as a first step.
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Figure 3.10. Figure is rotated by 90° anti-clockwise.
Bi-stability analysis. Top: Number of perceptual switches as a function of
noise level in the system. Middle: Computed log-likelihood values for estimated
distributions as a function of noise level in the system, for the Gamma (red)
and Log-Normal (blue) distributions. Bottom: Scatter of estimated parameters
for Log-Normal and Gamma distribution fits. Kolmogorov-Smirnov goodness of
fit tests were computed and estimations rejected at α = 0.05 are not displayed;
here 0% of the data for both Gamma and Log-Normal.
Tri-stability simulations. Top: Number of perceptual switches as a function
of noise level in the system. Middle: Computed log-likelihood values for
estimated distributions as a function of noise level in the system. Bottom:
Scatter of estimated parameters for Log-Normal and Gamma distribution fits.
Kolmogorov-Smirnov goodness of fit tests were computed and estimations
rejected at α = 0.05 are not displayed; here 0% of the data for Gamma and
14.82% for Log-Normal.
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• A framework based on oculomotor modelling that can be applied to perceptual
ambiguity.

Differences between bi-stability and tri-stability.

The simulations presented above provide a computational view of the differences
that may arise in multi-stable systems, going bi-stability to tri-stability. Both Gamma
and Log-Normal fitted parameters are concentrated in small sub-spaces in tri-stability
and bi-stability (Fig. 3.10). Also, while both Gamma and Log-Normal described
the data in a similar fashion in the bi-stable system, we observed a difference
between the two functions’ performance for tri-stable system, with the Log-Normal
distribution estimations being rejected by a Kolmogorov-Smirnov goodness-of-fit test
for 14% of the considered simulations. Finally, the tri-stable system, for the same
noise levels, goes through more perceptual changes than the bi-stable system, thus
suggesting that as the number of attractors increases, residual durations in attractors
decrease and system changes are more frequent.

In fact, this last point raises question on the view proposed by (Kelso, 2012) that
mono-stability is a regime in the region between multi-stability and meta-stability
(see Fig. 1.21 in Chapter 1). If meta-stability typically produces unstable behaviours,
our study links it to noise amplitude in the system; i.e., for both bi-stability and
tri-stability, the models produced highly unstable behaviours as noise took over the
gradient force and allowed the particle to roam (see dynamics presented in the
bottom half of the visualisation matrix in Figs. 3.8 and 3.9), regardless of the slope in
the energy field. Furthermore, given the results for numbers of detected perceptual
changes shown in Fig. 3.10-top, one can expect that increasing the number of
attractors in a multi-stable system will generate less stable observations. However,
these would differ from instability driven solely by noise, as we can expect short
term dynamics to show persistence, and longer ones anti-persistence.

Model fusion and predictions

The last point links back to the data and model proposed for FEM that inspired our
framework (Engbert, Mergenthaler, et al., 2011). Indeed, an aim of this work has
been to propose a methodology that can combine eye movements and perception.
If an agent’s next oculomotor action can be motivated by top-down intentional
(decision making) and bottom-up salient (attention) processes, multi-stable percep-
tion provides an interesting paradigm to study how such interactions emerge and
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operate. In fact, the data observed in the Necker experiment (Chapter 2) suggested
such interactions too. Here, both models were studied separately, but a future
work would consist in investigating how motion attractors in the oculomotor space
can act as perceptual attractors. For instance, this can be done with motion based
multi-stable stimuli such as the moving plaid, where perceived motion directions
alternate (Moreno-Bote, Shpiro, et al., 2008; Moreno-Bote, Shpiro, et al., 2010).
Interestingly, works have shown that energy potential bi-stable systems provide an
elegant mechanism to simulate Bayesian sampling (Moreno-Bote, Knill, et al., 2011).
And this argument has been investigated with the moving plaid stimulus, strictly
from a perceptual viewpoint. A promising perspective is to formulate such a problem
as an active vision one.

Perspectives: investigating the role of adaptation

Lastly, a force often described in bi-stable perception model is adaptation. However
its meaning is somewhat unclear, and sometimes it is referred as synaptic depression
for percept competition, at other times, it is linked to neural adaptation. Nevertheless,
it gives a system a deterministic force related to the current state, namely the
attractor, the system is in. In this work, adaptation was not manipulated and
only the noise’s role was considered. But an interesting future work would be to
test how, depending on the defined adaptation function applied on the attractors’
depths, the results vary. And furthermore, the presented model provides a method
to investigate adaptation’s extension and generalisation to multi-stability. This form
of computational investigation could derive key insight on the role of adaptation in
multi-stable perception.
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3.3 Synthesis

In this chapter, we have looked at computational methods for eye movements,
in particular FEM, and for perceptual multi-stability. Models based on the same
framework, gravitational energy potential fields, have been use to generate and
study both eye movement and perceptual dynamics. Thus, an active vision modelling
of multi-stable perception taking into account oculomotor dynamics can be rendered
and studied. While the data presented in Chapter 2 suggested that oculomotor
dynamics can produce multi-stable behaviours, the work presented in Chapter 4
aims to investigate this experimentally, based on the theoretical understanding and
gains from this chapter’s work.
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Multi-stability: manipulating
perceptual ambiguity

4
„Many people would accept that we do not really

have knowledge of the world; we have knowledge
only of our representations of the world. Yet we
seem condemned by our constitution to treat
these representations as if they were the world,
for our everyday experience feels as if it were of a
given and immediate world.

— Francisco Varela
The Embodied Mind, 1991.

In this chapter, the results of multiple experiments are presented. The ideas and
design are driven from the models proposed in Chapter 3, and aim to investigate
the multi-stable dynamics of perception with the moving plaid stimulus on one
hand, and the dynamics of the oculomotor system on the other. The emergence of
multi-stability is the result of combining a stimulus with specific signal properties
and competing inferences for the visual system. It is possible to stabilise or bias these
perceptions by changing the stimulus through expectations or task manipulation
or also by modifying the oculomotor dynamics. The perceptual and oculomotor
systems being interlinked, acting on one of them has an impact on the other. This
principle will be shown and described empirically in this chapter (and the next),
with two experiments in which ambiguity is manipulated. The aim being to reach
a situation where it is possible to show that motor control can be a physiological
marker of perceptual content, in a no-report paradigm. The aim of this chapter
is also to show that the models and theoretical ideas covered in Chapter 3 can be
transcribed into an empirical and experimental investigation.
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4.1 Hypotheses

In this section, we present the reasoning and rationale making possible the derivation
of the major hypotheses.

Using the theoretical and computational frameworks developed in
this thesis (Chapter 3), namely the gravitational energy field mod-
els for eye movements and perception, and by applying them to the
moving plaid, an experimental design is conceived and proposed.
Its aim is to investigate how active vision theories can be applied to
link oculomotor and perceptual dynamics for the moving plaid.

The experimental design is driven from theoretical work, inspired from premotor
theories of attention (Rizzolatti, Riggio, Dascola, et al., 1987; Rizzolatti, Craighero,
et al., 1998), linking motor control, attention, and visual perception as three inter-
acting spaces using attractor models.

4.1.1 Building a framework combining theoretical and experimental
methods

Eye movements expected: (micro-)pursuits and (micro-)saccades

In Chapter 3, the model for multi-stable perception extended on current bi-stable
models based on a particle in an energy potential framework (Moreno-Bote, Rinzel,
et al., 2007; Shpiro, Moreno-Bote, et al., 2009; Moreno-Bote, Knill, et al., 2011;
Engbert, Mergenthaler, et al., 2011). Furthermore, the proposed GraFEM model has
multi-stable dynamics with respect to attractors in the visual fields. The oculomotor
and perceptual models, are similar in dynamics and mechanisms, however, they
differ in terms of interpretation and physiology. While the first model remains a large
simplification of a highly multi-dimensional neuronal space in which a conscious
percept is coded for the visual system, the latter could relate to efference copies in
the SC, the FEF or the LIP cortex (Keating, 1991; Krauzlis, 2005; Krauzlis, 2004;
Hafed, Goffart, et al., 2009; Astrand et al., 2015; Krauzlis et al., 2017). In the
context of enacted and embodied cognition, the markers of perception could be
detected and interpreted in the active mechanisms of the observer. Therefore, eye
movements could partly reflect the internal state of perception.

The GraFEM model can reproduce pursuit mechanisms by having an attentional
attractor, implemented on a gravitational energy field, draw the gaze particle, as
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described in Chapter 3. If combined with a multi-stable stimulus in which the
percepts are related to ambiguous motion decoding, a simple hypothesis drawn
from an enacted cognition view (see Appendix A.1) can be formulated such that
an attractor in the observable eye movement space corresponds to an attractor in
the less accessible space of perception. The main hypothesis in this work can be
formulated as follows:

Eye movements dynamics are driven by underlying visual multi-
stability over plausible and competing motion percepts. Thus, eye
movements may reflect, at times, the content of perception.

In this framework, the above statement translates in the merging of the interpreta-
tions of attractors in the perceptual and the visual spaces. In other words, when
one perceives a motion1, one’s gaze dynamics are highly influenced by its corre-
sponding visual attractor, thus leading to oculomotor dynamics correlated to the
motion. Hence, the detection of pursuits and micro-pursuits could be linked to
the detection of motion perception. As seen in Chapter 3, when a visual attractor
becomes more influential with by generating a deeper field or widening its read,
changes will be applied to the observed gaze dynamics; one can expect switching
between attractors to produce saccades and pursuits, based on the properties of
the attractors. Furthermore, pursuits can be associated with catch-up saccades and
micro-saccades, as the former precedes the latter in tasks where gaze should remain
at the centre of screen and visual motion is displayed. They could be predictors of
changes in dynamics (L. C. v. Dam and Ee, 2006b; L. v. Dam and Ee, 2005; Laubrock
et al., 2008; Rolfs, 2009; Spering and Montagnini, 2011; Engbert and Kliegl, 2003;
Hicheur et al., 2013) and these eye movements would be considered as physiological
and active markers of the internal state of perception (Aleshin et al., 2019; Frässle
et al., 2014; Einhäuser, Thomassen, et al., 2017).

Moreover, our hypothesis was that eye movements will be marked by maximal
perceptual information at the moment of perceptual reversal, and in the moments
that follow up. Based on the description and explanation of the oculomotor model
given in Chapter 3, one can predict that a change of oculomotor attractor (e.g.,
moving in a different direction) brings about new motion for the gaze for an epoch.
Another possibility is that the switch of attractor will generate a saccade as the gaze
particle is rushed to the new attractor. With the hypothesis given above, the same
applies to perceptual attractors as they are merged with the oculomotor ones. As the
perceptual state particle reaches rapidly a new perceptual attractor, the inhibition of
competing perception is at its maximum.

1i.e., a perceptual attractor for the visual system
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Finally, though this approach showcases an association between the oculomotor and
the perceptual spaces, it is possible, through experimental manipulation, to observe
the influence of one system on the other.

Therefore, the following precise hypotheses can be derived:

1. Percepts: in visual multi-stability, they correspond to stable states
of the perceptual system compete for dominance, i.e., perceived
motion direction, for instance, and they thus act as perceptual
attractors;

2. Ambiguity: perceptual attractors can be manipulated by control-
ling the stimulus’ parameters and thus the dynamics of visual
multi-stable perception can be influenced (Hupé and Rubin, 2003;
Moreno-Bote, Shpiro, et al., 2008);

3. Eye movements: markers such as pursuits followed by corrective
saccades can be detected to infer perceptual dynamics;

In the context of visual ambiguity leading to multi-stable perception, one can ma-
nipulate the visual properties of the stimulus to bias a percept over another, and
observe whether the changes in oculomotor dynamics correspond to the associ-
ated predictions. Alternatively, it should theoretically be possible to manipulate
the oculomotor dynamics and measure how this affects the perceptual dynamics.
Investigating causal links and temporal correlations between the oculomotor and
perceptual sub-systems and their respective attractors also raises question regarding
organisation and hierarchy.

Overall, the framework proposed and applied here, gives an understanding of
visual multi-stability as a multi-system phenomenon, here involving eye movements
and perception. Its characterisation will be done by identifying the interactions
and dynamics between sub-systems as well as those between the attractors within
each sub-system. In this work, the focus is on the oculomotor system and the
perceptual system, when facing a physically stationary ambiguous stimulus that
leads to perceptual shifts. Among the possible known stimuli from the literature,
one particularly fits the criteria needed to implement this framework: the moving
plaid.
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4.1.2 The multi-stable moving plaid stimulus

Among the variety of multi-stable stimuli studied in psychology and neurosciences
(presented in Chapter 1), the moving plaid (Fig. 4.1a), a stimulus consisting of
two superimposed gratings with different angular orientation moving in opposite
directions presented through an aperture, presents many features that can be ex-
ploited in our framework. Here, the motion ambiguity and its link to perception
shall be presented, followed by a description of the moving plaid’s parameters and
finally, empirical results, specific to it, from psycho-physics, neurosciences and eye
movement studies are reported.

Motion ambiguity

The ambiguity of the moving plaid stimulus is related to motion perception, segmen-
tation and integration (Welch, 1989; Hupé and Rubin, 2003; Hupé and Rubin, 2004;
Rubin, Hupé, et al., 2005; Moreno-Bote, Shpiro, et al., 2008; Moreno-Bote, Shpiro,
et al., 2010). Essentially the direction (Hupé and Rubin, 2004) and the depth order-
ing (Moreno-Bote, Shpiro, et al., 2008) of the scene cannot be clearly interpreted by
the visual system—illustrated in Fig. 4.1b; figure taken from (Wuerger et al., 1996).
Because the observer cannot see the edges of the gratings’ bar move (see Fig. 4.1a),
its perceived motion is ambiguous. All the dashed arrows in Fig. 4.1b show the
possible interpretations for a real physical motion shown by the continuous arrow
(which can also be perceived). This motion ambiguity is further mixed with a depth
ordering ambiguity dictated by the gratings’ bar transparency properties. Depending
on how the parameters are set for the stimulus, it is possible to generate more or less
stable states of perception. For example, the grating with higher spatial frequency
will be mostly likely perceived as behind, and the same goes for the grating with the
smaller duty cycle (Moreno-Bote, Shpiro, et al., 2008). If the gratings have different
velocities, the faster one will tend to be more perceived as behind too.

The percepts are defined and usually reported by the participants using keys from
the keyboard referring to each percept.

The depth ordering competition corresponds to the transparency
percepts, in which the gratings are seen as two different objects
moving in opposite direction, with one being on closer to the ob-
server than the other. When the grating moving rightward is per-
ceived as closer, the percept is said to be transparency right. And
when it is moving leftward, the percept is called transparency left.
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(a) Moving plaid. (b) Motion ambiguity.

Figure 4.1. Motion ambiguity in the moving plaid.
(a) Static image of the moving plaid, showing the superimposed gratings dis-
played behind an aperture.
(b) Diagram of the relationship between the direction of motion and the
interpreted sensations of motion for the aperture problem. Figure taken
from (Wuerger et al., 1996).

The bi-stable dynamics of the moving plaid have been deeply stud-
ied (castelo2000neural hupe2003dynamics; Stone et al., 1990; Stoner and Al-
bright, 1992; Moreno-Bote, Shpiro, et al., 2008; Moreno-Bote, Shpiro, et al., 2010)
and is mostly generated when the relative angle is relatively small (less than 45° or
π
4 radians) or with non square wave gratings.

The moving plaid has also been studied for its tri-stability in which
the two transparency percepts are present. The third percept is
named coherency and is experienced as the fusion of the two grat-
ings into a single grid, typically moving upwards.

Tri-stability also raises questions on hierarchy of competition—more details on
hierarchy of percepts in the box below.

More generally its direction is the sum of the motion vectors of the transparency
percepts (Welch, 1989; Gorea and Lorenceau, 1991). More formally, one can
consider the problem to be defined as follows. The perception is a random variable
X, that can become one of the three percepts of coherency (c), transparency left (l)
and right (r)—i.e., X = x with x ∈ {c, l, r}.
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Is there a hierarchy for percepts? And for spaces?
Supposing that oculomotor and perceptual attractors are tightly linked, in an enactive
or embodied approach to cognition context for instance, the perceptual and oculomotor
manipulation can provide insights on the relationships between percepts in their respective
spaces. The question arises when moving beyond bi-stability to multi-stability. A hierarchy
of percepts implies that the emerging percepts do not compete within the same neural
network or the same visual decoding process. The question has been of interest in the
literature (Friston and Kiebel, 2009; Huguet et al., 2014; Megumi et al., 2015; Hupé,
Signorelli, et al., 2019). The approach presented in this chapter addresses this issue by
measuring asymmetrical relationships between perceptual dynamics—i.e., a percept acts as
a systematic transition, or can never be suppressed by stimulus manipulation, etc. Or, on
the contrary, if the data collected can be modelled with attractors of identical properties,
this would form a body of evidence against a hierarchical view. A more neutral and less
biased conceptualisation is to consider that attractors can be considered to influence each
other directly, in a unique neural network, with no hierarchical organisation. On the other
hand, an indirect relationship would suggest that the percepts can be coded over multiple
networks interlinked by relatively reduced interdependent connections. The consequence
is that these networks could be seen to synergetic or competitive behaviours. The more
isolated and specialised the networks, the more likely they are to generate a hierarchical
organisation.

Parameters description

The moving plaid relies on the aperture problem to generate ambiguity (Wuerger
et al., 1996). The gratings are composed of transparent square waves (Fig. 4.2).

It is composed of two grids, generated as gratings stimuli—the one moving leftwards
(GL) and rightwards (GR) from the observer’s perspective, respectively—with a
relative angle θdiff computed from the difference of orientation of these gratings
(θL, θR ∈ [−180; 180]2 in degrees or ∈ [−π;π]2 in radians) so that θdiff =

∣∣θL − θR∣∣.
The luminance of the gratings is set by parameters LL, LR but are eventually mod-
ified by manipulating their transparency. The gratings also have levels of trans-
parency (αL, αR ∈ [0; 1]2) that generate further ambiguity on depth ordering of the
objects and change the physically observed luminance and contrasts. The perception
changes are based on the direction of the structure of perceived movements. The
motions of the gratings have velocities (vL, vR). Other aspects that can be controlled
are the spatial frequencies of the grating (fL = 1/λL, fR = 1/λR with λL, λR the
wavelengths) and the associated duty cycles (DL =, DR). The aperture radius rA
can also be manipulated, as well as the fixation circle area’s radius rF . Background
and aperture luminances can also be controlled with LBG and LA, respectively. The
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Figure 4.2. Moving plaid parameters.
Left: diagram of a moving plaid stimulus with parameter visualisation for
the parameters from Tab. 4.1. Luminances L and transparencies α are not
represented spatially as they refer to pixel brightness. The three continuous
arrows represent the three percept of moving plaid’s tri-stability. The gratings’
orientation θ are shown relative to the vertical axis. The gratings’ motion
velocity is shown as the horizontal dashed lines vL and vR. Finally, duty cycle
DL is shown as well as spatial frequencies’ wavelengths λL.
Right: the moving plaid, when presented is occluded by a layer with an aperture
hole, such that the bars’ edges are not visible, thus creating an ambiguous
motion. rA and rF define the radius for the aperture and the fixation area,
respectively.

parameters described here, are summarised in Tab. 4.1 and Fig. 4.2 with further
information on their values for our experiments.

There are a number of reasons why the moving plaid was chosen as a stimulus to
investigate the links between perceptual and oculomotor multi-stability. First, this
stimulus has a high number of parameters that can be manipulated. This gives more
possibilities to control ambiguity and experimental conditions over more classical
complex images such as the rabbit/duck, old/young women or Rubin’s Vase (Chap-
ter 1). But it also make parameter space exploration a problem with high complexity
due to the high number of possible combinations. Unlike these cited stimuli where
the bi-stability seems to occur at higher abstraction level of interpretation (for more
details, read the box below), the ambiguity in the moving plaid is generated in visual
signals that are simple, straightforward and not dependent on semantic competition,
but on motion vectors that can be identified in time and space. The stimulus can be
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Formal symbol Description Values Units

θ orientation ±30 deg
L base-line luminance 0.35 ∅

α transparency (0, 1) ∅

v velocity ±1.5 deg.s-1

f spatial frequency 0.01 Hz.pix-1

D duty cycle 0.35 ∅

rA aperture radius 6.37 deg
rF fixation disk radius 1.25 deg

Table 4.1. Moving plaid parameters. Parameters manipulated to generate a single square
wave grating. Background (LBG), gratings’ (LL,LR) and aperture (LA) lumi-
nances are provided as normalised numerical values which are then translated
into physical light emitted by the screen an measured in candela for a surface
(cd.m-2). Their numerical values change according to computations described in
Section 4.2.2. ∅: ratios with no units.

manipulated in subtle fashion, by tweaking the difference of grating orientations
(θdiff) or the transparency of the gratings (α). The moving plaid can also be ma-
nipulated to generate multiple states of perception, notably a tri-stability that has
been studied (Huguet et al., 2014). Fig. 4.3 shows a schematic view of the percepts
presented in (Hupé and Rubin, 2003).

Where does bi-stable competition occur in the visual system?
The level in visual processing at which the bi-stable competition is thought to occur is at
later stages of the visual pathways. This can be explained by the semantic competition of the
percepts. In fact, cross-modal studies of bi-stability have shown how giving a cue in audio on
a visual rivalry can modulate the perceptual dynamics, thus suggesting that for complex and
semantic perceptual objects, the brain accumulates evidence from different sensory inputs
and binds them (Y.-C. Chen et al., 2011). A review of perceptual binding and cross-modal
work on multi-stable perception can be read for further details (Schwartz et al., 2012).

The moving plaid has been studied extensively in the context of perceptual bi-
stability (Rubin, Hupé, et al., 2005). Hupé and Rubin (2003) showed that the
duration of the first percept can be linked to the relative dominance coherency
perception over time, in a first experiment—see comparison between both measures
in Fig. 4.4A. Their results were obtained for a bi-stability task, where transparency
(t) and coherency (c) percepts were reported. They provided three key observations:
(i) over time, the distribution of percept durations are stable, (ii) coherency (c) was
systematically the first percept, and (iii) the first percept was considerably longer
than the other ones. In fact, in a first experiment, they showed that the first percept’s
log-duration ln (RTransp) was linearly correlated to the trials’ empirical dominance
of coherency C/[C + T ]—where C is the sum of durations in which coherency
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Figure 4.3. Moving plaid perception. Diagrams presenting the perceptual dynamics of
the multi-stable moving plaid stimulus.
A: diagram showing the two different perceptual interpretation considered in
the case of the bi-stable plaid.
B: diagram showing a schematic example of the temporal discourse of percep-
tion.
Figure taken from (Rubin, Hupé, et al., 2005).

was perceived, without counting the first percept duration, and T the same for the
transparency percept.

Based on this method, they showed, in a second experiment, that the difference
of angles between the gratings (θdiff) impacts the dominance of the coherency; the
smaller θdiff, the more the transparency percepts dominate (Fig. 4.4B left). Likewise,
when manipulating both gratings’ velocities (v), they showed the following effect:
coherency dominance decreased as velocity increases, though the effect was weaker
than for angles (Fig. 4.4B right). Finally they manipulated both duty cycles (D)
simultaneously and showed a reinforcement of coherency dominance as duty cycle
tends towards 0.5 (Fig. 4.4B bottom). In their third experiment, spatial frequency
(f) and the wave functions—e.g., square, sinusoidal or rectangular wave pattern
for the gratings—were investigated as control parameters on perception, and f was
reported to impact the intercept of the monotonic decrease function for the rate of
coherency dominance along the θdiff variations while the wave shape changed the
rate of decrease (Fig. 4.4C).

In a subsequent study, Hupé and Rubin (2004) showed that simultaneous direction
changes of the gratings’ motion led to percepts’ motion direction changes as shown
in Fig. 4.5. Furthermore, the relationship between coherency dominance and θdiff

was replicated while investigating the global motion orientation changes. The
plaid’s depth order for transparency was characterised in a series of experiments
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Figure 4.4. Moving plaid literature results.
A: the relative dominance of coherency (C/[C +T ] with C and T the coherency
and transparency percepts’ total durations over a trial, respectively) follows the
same dynamics as the logarithm of the first percept duration (RTransp) over
variations of relative orientation differences—here named Alpha, but referred
to as θdiff in this thesis, not to be confused with the transparency parameters.
B left shows the decrease of RTransp over Alpha (θdiff) for three groups of
participants tested over different plaid parameter values, while right shows the
effect of grating velocity, referred to as velocity v in this thesis. Bottom, shows
how dominance of coherency increases gradually as duty cycle tends towards
0.5.
C: provides the results for different spatial frequencies (SF here, but f in this
thesis) as Alpha (θdiff) is manipulated, while below illustrations of the plaid
with different function patterns are given.
Figures were taken from Hupé and Rubin (2003).
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Figure 4.5. Motion orientation in the moving plaid. Polar plot showing the coherency
dominance (C/[C + T ]) as a function of orientations (0°, 45°, 90°, 135°, 180°,
225°, 270° and 315°). Examples of perceived directions at orientations (45°,
180° and 270°) are shown, with global motion direction being shifted. Taken
from Hupé and Rubin (2004).

that focused on disassociating the parameter values for each grating (Moreno-Bote,
Shpiro, et al., 2008). The authors showed that the grating most likely to appear
behind was the one with (i) the higher spatial frequency, (ii) the smaller duty cycle,
and (iii) the higher velocity. As depth ordering was studied, the tri-stability of the
moving plaid was demonstrated (Moreno-Bote, Shpiro, et al., 2010). The authors
showed a moving plaid on one hand in binocular rivalry and on the other hand as
an ambiguous dynamic figure with two competitions; coherency vs transparency and
depth ordering within transparency—e.g., transparency left vs right—and showed
that perceptual reversal velocity is maximised at equi-dominance for all three bi-
stability. They also showed that this feature was predictable by double well bi-stable
models.

Furthermore, an argument for choosing the moving plaid to study multi-stability
with eye-tracking methods is that these percepts are based on perceived motion.
And as motion can be tracked by the eyes in the form of pursuit eye movements,
the moving plaid provides an interesting setup to investigate both oculomotor and
perceptual multi-stability. A review of works on oculomotor studies with the moving
plaid stimulus is provided in Appendix A.6.

Finally, the moving plaid stimulus has been studied in the context of energy potential
models (Moreno-Bote, Shpiro, et al., 2010; Moreno-Bote, Knill, et al., 2011), a
theoretical approach also used in our modelling work (Chapter 3). The authors
also used fraction of time dominance—similar to the percept dominance discussed
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above—for each percepts, which they interpreted as a measure of "percept strength",
to study the dynamics binocular rivalry, plaids (coherency C vs transparency T ) and
depth reversals (right transparency r vs left transparency l). They also compared
their results to double well energy models and neural competition models with cross-
inhibition and input normalisation, and showed that equi-dominance—i.e., percept
equi-probability, when each percept occur over time as much as the other—led to
maximum changes of percepts. Furthermore, the perceptual change rate against
dominance results showed symmetry around the equi-dominance point. Although
they provide perspectives for generalisation to multi-stability beyond bi-stability,
the expected symmetry around the equi-dominance point(s) and the relationship
between perceptual switch rate and perceptual dominance is less clear.

Choosing a control parameter: the transparency of gratings

As described at the beginning of this chapter, many parameters can be used to
control the properties of the moving plaid stimulus. Thus, it is necessary to isolate a
restrained number of parameters that can manipulate perceptual dynamics efficiently,
in order to minimise the number of manipulated variables.

The approach undertaken in this work was to focus on the grat-
ings’ transparency parameters (α = [αL, αG]) and to verify that all
percepts can be biased in order to control ambiguity levels (Castelo-
Branco et al., 2000). Transparency was chosen as it does not affect
the geometry of the stimulus, unlike the orientation. It also does
not impact the spatio-temporal dynamics and remains subtle.

The luminance and contrast are however affected, though the global mean luminance
of the stimulus can be modelled and compensated by augmenting the background
luminance for instance—we provide a solution in Section 4.2.2. The transparency
parameters are normalised and their values can vary in the following space: α ∈
[0; 1]2.

The aim, in the manipulation of a visual parameter of the stimulus, is to contrast
conditions in which trials are considered ambiguous and non-ambiguous for the
observer. This has been done with Necker cube lattices (Ehm et al., 2011; Kornmeier
and Bach, 2012; Kornmeier and Bach, 2014) where the authors could contrast:

• endogenous perceptual reversals, in which the observer changes perception
through internal cognitive processes and,
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• exogenous perceptual reversals, in which changes of perception is induced by
controlled experimental manipulation.

The manipulation of the transparency of a grating changes the contrast between
gratings and therefore, the probability of seeing that grating’s motion. It can be inter-
preted as a manipulation of percept strength, as is done in binocular rivalry (Levelt,
1966; Chopin, 2012), especially for the transparency rivalry l vs. r, as demon-
strated in Moreno-Bote, Shpiro, et al. (2010). Indeed, as transparency impacts the
luminance of each grating, it impacts the strength of the percept.

4.1.3 Hypotheses & experimental protocol designs for perceptual
and oculomotor investigation of multi-stability

In Chapter 3, the models proposed for eye movements and perception are based
on gravitational energy fields and the phenomena are dependent on attractors’
dynamics and noise. A first simple prediction to test is whether perception leaves
markers in oculomotor dynamics. This corresponds to having a direct link between
spaces of oculomotor programming and perception. A minimal set of predictions
can be articulated as follows:

• perceptual changes generate oculomotor markers—as perception changes,
the saliency of features related to the new percept will drive attentional focus
and thus, the active visual system will generate eye movements linked to the
perceived motion (here pursuits or micro-saccades),

• oculomotor dynamics lead to perceptual changes—if gaze dynamics fol-
lows a visual attractor, it will accumulate evidence for a percept, and gaze
dynamics will precede a perceptual change.

The approach to test these predictions was to design an experiment (presented
further in Appendix A.8) in which different conditions are applied:

• ambiguity (A) versus non-ambiguity (A)—manipulate the transparency pa-
rameters to bias the level ambiguity so that we maximise ambiguity in one
condition and bias a chosen percept in the other; this will allow to test the
impact of perceptual changes on eye movements,

• oculomotor control (F ) versus free oculomotor dynamics (F )—vary the
oculomotor restriction so as to manipulate eye movements implicitly; this
will allow to test the impact of oculomotor dynamics changes on multi-stable
perception;
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• fixation (F ) versus no fixation (F )—vary the oculomotor task so that partici-
pants restrict their eye movements or let them be free to follow their percepts,
to test the scale of oculomotor influences on ambiguity;

• report (R) versus no report (R)—vary the perceptual task so that participants
are asked to report their subjective perception using key press or not, to test
the impact of motor action on perception and eye movement dynamics; the
goal here is to be able to predict perception when there are no key presses.

Four pilot experiments (in this chapter, only the first two are presented, the latter two
are presented in Chapter 5) were carried out to test each condition and hypothesis:

• the Percepts experiment to verify that all three percepts could be identified
with transparency manipulation,

• the Ambiguity experiment for ambiguity control using transparency,

• the Eye Movements experiment (Chapter 5) to verify that oculomotor dynamics
can be influenced implicitly and,

• the Noisy Motor Events experiment (Chapter 5) to verify that perceptual dy-
namics can be inferred from oculomotor dynamics.

The diagram Fig. 4.6 shows an overview of the experiments, the studied systems
and the observed phenomena.

The methods developed to estimate the maximal level of ambiguity and ambiguity
control will be described in details in the Ambiguity experiment. The methods
detecting changes in the oculomotor dynamics and thus allowing the inference of
perception with eye movement data will be presented in the Eye Movements and
Noisy Motor Events experiments. The complete experiment was designed to combine
these separate investigation, with the addition of EEG recording for neural correlates
exploration—the experimental design is presented in Appendix A.8.

Overall, based on the models proposed in this work (Chapter 3)
and our proposed interpretations, a set of hypotheses, defining a re-
lationship between eye movements and visual signal motion, were
applied on the multi-stable moving plaid stimulus. This approach
enabled the conception and design of an experimental protocol that
will provide data that may characterise the relationships between
perception and action.
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Figure 4.6. Active multi-stable perception. Diagram showing a simplified representation
of the motor and perceptual systems, and their interactions for visual percep-
tion. The experiments listed are placed as they test specific interactions when
observing a multi-stable moving plaid stimulus.

Note.
In this chapter, only the Percepts and Ambiguity experiments are reported because the
analyses for the other experiments did not yield clear results and further investigation is
needed. However, some preliminary results from the Eye Movements and Noisy Motor Events
experiments are discussed in Chapter 5.
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4.2 Percepts experiment: identifying the motion
percepts

The basis of the empirical investigation was to identify the percepts of the moving
plaid by finding recurrent states of perceived motion. For that stimulus, it has been
studied in depth as a bi-stability problem, but few studies have investigated its
tri-stable features.

Our main hypothesis for this experiment was that three stable
states of perceived motion could be controlled, for the first percept,
by manipulating the transparency of the gratings.

If the visual motion can be easily characterised because it is controlled by the
experiment, the perceived motion should be estimated as an elementary step before
further manipulation can be applied.

Publication.
This section’s work and results were published in a GRETSI conference paper in 2019, in
french: Modélisation de l’ambiguïté d’une multi-stabilité visuelle., Kevin Parisot, Alan Chauvin,
Ronald Phlypo, & Steeve Zozor, GRETSI, 2019 (Parisot, Chauvin, Phlypo, et al., 2019). The
results presented here, however, expand on this publication.

4.2.1 Motivation

The moving plaid stimulus is known to be ambiguous in terms of motion direction
perceived (Hupé and Rubin, 2003; Hupé and Rubin, 2004). However, as discussed
in the previous section, the ambiguity emerging from an aperture problem may lead
to an infinite number of directions being interpreted by the visual system (Wuerger
et al., 1996). This first experiment’s aim was to collect data showing that the
percepts experienced are stable across participants. Another aspect was to verify
that the link to the keys used on the keyboard in the literature could be justified in
the case of a tri-stable plaid and subjective reporting task. Finally, a third element
was to investigate the transparency parameter manipulation, for each grating.

As introduced in Section 4.1, motion ambiguity arises when the most salient points,
based on contrast, of a moving object are made hidden, thus reducing the capacities
of the brain to infer direction of movement. In Fig. 4.7, the problem of motion
ambiguity and motion direction inference in the context of the moving plaid stimulus
is presented in more details. The visual system decodes a perceptual object’s motion
direction by using that object’s higher contrast points’ motion to infer overall motion
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direction. For the bars composing the gratings of the moving plaid stimulus, these
are the corners shown by the continuous arrows of Fig. 4.7a, but they remain hidden
when the bars are viewed through an aperture, as shown by Fig. 4.7b. In the latter
case, the possible inferred directions are based on the wave front, and they are
numerous and link direction and velocity. Moreover, when two gratings are overlaid,
as shown in Fig. 4.7c, the expected perceived motion directions are dependent
on perceptual organisation: if two grids are perceived, each have the most likely
direction, namely the direction orthogonal to the wave front, and if one grid is
perceived, the perceived motion direction vectors are summed. This is the expected
tri-stability with the left (l) and right (r) transparency percepts on one hand, and
the coherency (c) percept on the other.

Thus our hypothesis for this experiment is that we can find three
regular states in the observers’ responses to perceived motion di-
rection that follow the rules listed above. And furthermore, these
states’ probabilities of being perceived at stimulus onset can be ma-
nipulated by the gratings’ transparencies as they impact the lumi-
nance and contrast of the visual stimulus.

Finally, the first percept of the moving plaid stimulus is known to have particular
dynamics (Hupé and Rubin, 2003). The coherency percept (c) is known to be more
likely to be perceived at stimulus onset. However, it cannot dominate when the α of
a grating is too low and the grating nearly disappears. Also, Hupé and Rubin (2004)
showed that overall motion orientation affects the dominance of coherency in what
they called the oblique plaid effect. Moreover, orientation preferences or biases in the
visual processing of motion are also known to exist (Werkhoven et al., 1990). Thus
overall motion orientation of the moving plaid should be considered to verify that
reported perceived motion are not due to biases.

The transparency of both gratings is controlled by the parameters (αL, αR), each
corresponding to the level of transparency (or alternatively of opacity) for the objects
generated using the PsychToolBox in MATLAB (Brainard, 1997). The subscripts refer
to the leftward and rightward moving gratings, respectively. When varying their
value between 0 and 1, one can make the grating fully transparent and opaque,
respectively (see Fig. 4.8). The manipulation of transparency can be defined in the
following parameter space: α = (αL, αR) ∈ [0; 1]2. Our hypothesis is the following;
it is possible to control and bias each of the three percepts (c, l, r) by varying only
the transparency parameters. However, the total luminance and contrast should
be maintained constant across the screen of stimulus presentation. Indeed, this is
essential as the strength of the visual signal is known to be linked to the perceptual
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(a) Bar motion.

(b) Bar motion with aperture. (c) Gratings’ motion.

Figure 4.7. Grating motion.
For all these figures, dashed lines show physical motion and full lines show
perceived motion.
(a) Diagram showing the motion of a bar, horizontally as shown by the dashed
arrow, over three time steps δ. The continuous black arrows show how the
visual system will identify the corners as the most salient points, based on
contrast, and will track their motion to infer the perceptual object’s motion.
(b) Diagram showing the motion of a bar implemented in the experimental
code, as shown by the dashed arrow, over one iteration. A circular hole is drawn
to describe the aperture problem: when the visual system has no information on
the hidden corners of the bar, it uses the square wave front, as it is the most con-
trasted area of the stimulus, to estimate and infer motion direction. However,
as shown by the multiple arrows at the central point, without the corners, the
brain can infer multiple directions, with velocity of perceived motion varying
depending on the direction. Note that this occurs along the entire wave front.
(c) Diagram showing the physical motion of two gratings, with different direc-
tions as shown by the dashed arrows, over one iteration. Here the most salient
points, based on contrast, are the edges of the diamonds formed at the relatively
transparent gratings. Two types of motion can be predicted based on perceptual
depth organisation: (1) if the system infers two distinct grating objects, the
system will infer motion going along the wave front with the lowest velocity
as it will be the most present and central vector in the inference problem, and
(2) if the system infers a single uniform grid object, the addition of the two
transparent grating vectors will provide a unique displacement vector with
higher velocity.
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Figure 4.8. Moving plaids over α. Examples of plaids generated with varying values for
transparencies: αL = [1, 0.75, 0.5, 0.25, 0] and αR = 1− αL.

dynamics (Levelt, 1966; Levelt, 1967). Hence, as the luminance relates directly to
the strength of the visual signal and transparency affects the final luminance, the
latter is a parameter for perceptual strength manipulation.

A key bias that requires verification is linked to the keys chosen to be used for
subjective perceptual reports in the literature. This is linked to the absolute orienta-
tion of the stimulus and the motion. In most studies, the configuration used is the
following; the gratings are set to move with constant velocities of vL = 1.5 deg.s-1

and vR = −1.5 deg.s-1 along the orthogonal directions of the square wave fronts (see
dashed arrows in Fig. 4.7c.). Meanwhile the orientation of each gratings (θL, θR)
are usually set between 0° and ±45° in a symmetric fashion about the vertical axis2

(for more details on gratings’ orientations, read the box below, in the Methods.

To summarise, in this experiment, the following two hypotheses
were tested: (i) the α parameters control the first percept such that
a tri-stability can be observed, and (ii) overall motion orientation
of the moving plaid setup does not affect the observation of a tri-
stable perception.

4.2.2 Methods

Stimulus

The stimulus, the moving plaid, was generated using the PsychToolBox on MAT-
LAB (Brainard, 1997), with a code produced and developed by the author, from
scratch. The values of the parameters for the two gratings were kept constant
(provided in Tab. 4.1) except for transparency (α) which was the controlled variable

2At θ = ±45° the coherency percept dominates so much that the multi-stability phenomenon
disappears for most inexperienced observers. Going beyond the gratings’ 45° rotation means that the
coherency becomes the mono-stable percept. One can test this with the online moving plaid demo
developed by J.M. Hupé: http://www.cerco.ups-tlse.fr/~hupe/plaid_demo/demo_plaids.
html
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and gratings’ orientations (θ). To explore the entire α parameter space—in practice,
we did not pick very low values for α as this would translate into imperceptible
gratings –, their values were selected from a uniform distribution independently for
each trial:

αL ∼ U(0.1; 1)

αR ∼ U(0.1; 1)

Therefore, some trials had very contrasted gratings, such as the ones shown on the
extreme left and right examples of Fig. 4.8.

Luminance and contrast control

For reminders, we refer to luminance L as the amount of light—as a numeric value
of the screen’s candela output for a surface area (cd.m-2)—generated by the screen
at a spatial location, namely a pixel. Contrast C is the spatial difference between
two points.

Because the manipulation of α leads to variations in luminance and given there
were no relationship between αL and αR to keep an equilibrium, an algorithm
was implemented to compute the total luminance of the stimulus and was used
to compensate the manipulation on the gratings by adjusting the luminance of
the background (LBG) and contrast. The area for each structure of the stimulus
were computed. Given a pair of α values, we can define the sum of the vector as:
S = αL + αR and product of the vector as: P = αLαR. Hence, the global luminance
Lall was computed as follows:

Lall = LBG +D(P ×D − S)(LBG − LG)

with LG a vector of the grating mean luminance3, LBG the luminance value for the
background and D the duty cycle of the grating square wave. Contrast (C) was
then estimated using the geometrical properties of each object of the stimulus. The
various contrast components computed are defined as follows:

CG = D2((1 + P − S)LBG + (S − P )LG
)2

CLR = (1−D)D
((
LBG + αL(LG − LBG

)2 +
(
LBG + αR(LG − LBG)

)2)
CBG = (1−D)2LBG − Lall

3More precisely, a central value between the light and dark values from the square wave was given,
such that the luminance of the dark component of the square was L− = LG − k and the light
component was L+ = LG + k. In our experiments, we set k = 0.15 and LG = 0.35 for the
normalised luminance values, before the control was applied.

160 Chapter 4 Multi-stability: manipulating perceptual ambiguity



with CG corresponding to the gratings’ contributions, CLR the areas of intersections’
contributions and CBG the background contribution. These are all compounded in
the following equation.

Call =
√
CG + CLR + CBG (4.1)

The luminance and contrast values (Lall, Call) are then fed into an equalising func-
tion with reference values (Lref , Cref ):

Γ = Cref/Call (4.2)

that is applied to the background to compensate the variations on mean stimulus
global contrast by manipulating transparency. A luminance offset (Ω) is also obtained
with:

Ω = Lref − ΓLall (4.3)

The new luminance values for the two gratings and the moving plaid background
are calculated using the relationship:

L′ = ΓL+ Ω (4.4)

Though the local contrasts varied, the global luminance and contrast generated
remained the same in the aperture. The foreground, the fixation disk at the centre,
the mouse response circle, the fixation dot and the mouse dot were kept constant.

The other variable manipulated was the orientation offset (θoffset). The offset was
thus also selected from a uniform distribution for each trial:

θoffset ∼ U [−π;π]

Given the changes of absolute orientation due to the variability of the offset value
over each trial (see the box below for more details), the use of the keyboard was
rendered impracticable to collect fine data on motion direct. Therefore, a circle was
added on the periphery of the stimulus (as shown in Fig. 4.9) where the participants
had to click to respond.
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Gratings’ orientations.
We choose θL ∈ [0; 45] degrees as orientation shifts applied on the gratings. Therefore, we
define relationship of the orientation of the gratings to be symmetric such that:

θL = −θR (4.5)

Therefore we can define the gratings’ orientation difference θdiff as follows:

θdiff =
∣∣θL − θR

∣∣ = 2
∣∣θL

∣∣ (4.6)

where 0° is set on the vertical axis in the direction of the top of the screen for simplicity
of interpretation. The absolute overall orientation of the moving plaid system can be
manipulated by computing the relative angles (θdiff) from the gratings’ angles (θL, θR) by
adding an arbitrary polar offset:

θabs = θdiff + θoffset (4.7)

which can also be expressed as follows.

θL,abs = θL + θoffset

θR,abs = θR + θoffset

Procedure

Participants were asked to click with the mouse’s left button in the circle area at
the location in which they saw the perceived motion going, as soon as they were
confident. The experiment was composed of 10 blocks of 50 trials restricted to the
first percept, giving us 500 data points per participants in the α space. Participants
had up to 5 seconds (s) to respond on their first percept and stimulus presentation
ended once the mouse button was pressed. The moving plaid stimulus appeared
after an interval in which, only the central fixation area was presented and which
lasted between 900 ms and 1300 ms (Fig. 4.9). This interval was established using
a random distribution (in seconds):

tfix ∼ U [0.9; 1.3]

The mouse’s location on screen was displayed as a dot and reset at the beginning of
trial in the centre of the screen (see Fig. 4.9). The experiment was carried out on 11
participants (6 naive, 5 women, mean age 33.27 years old with standard deviation
9.89 years), with 500 trials each. Between blocks, participants were given short
breaks to rest.
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Figure 4.9. Protocol. Experimental trial protocol structure for the Percepts experiment. The
arrow represents the direction of time.

Analysis

The mouse key press responses were pre-processed such that their coordinates in
the screen plane were recovered and the angular component extracted. The random
orientation offset θoffset introduced was then subtracted. A Rayleigh test was carried
out and if rejected, a three Von Mises distribution mixture was estimated for the
data. The data was then fitted to a mixture of Von Mises distribution mix using an
expectation maximisation method (Agostinelli and Lund, 2017; Bee, 2020):

f(x
∣∣µ, κ) =

3∑
k=1

βk
eκk cos (x−µk)

2πI0(κk)
(4.8)

with I0(κ) the modified Bessel function of order 0, µk the parameter relating to the k
distribution’s location, κk the parameter relating to the dispersion of the distribution,
and βk ∈ [0; 1] the weight of each Von Mises in the mixture such that

∑
k βk = 1. We

used the following criteria to stop the algorithm: a maximum of 105 iterations or
a maximum difference in log-likelihood between successive iterations of 10-6. We
imposed the algorithm to search for a mixture of three Von Mises distributions as
expected from a tri-stable motion perception. We call estimated threshold values the
approximate angular direction where two estimated Von Mises function meet.

For group data, we carried statistical tests on the estimated Von Mises mean pa-
rameters by grouping them along their orientation with respect to the vertical axis
of the screen: left (l), centre (c) and right (r). We conducted a non-parametric
approximate (Monte Carlo) Friedman test using a bootstrap method with 10000
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permutations. We also computed approximate (Monte Carlo) Wilcoxon signed rank
tests for pairwise comparisons (with a decision criterion at α = 0.05/3 = 0.017).

Expectation maximisation algorithm.
We consider a sample of x = (x1, ...,xn) of n independent observations, following a proba-
bility density function f(xi,Θ), with Θ its unknown parameters. The aim is to determine
the values of Θ by using the maximum log-likelihood given by:

L(x; Θ) =
n∑

i=1
ln f(xi,Θ)

Based on the assumption that an unknown data vector z = (z1, ..., zn) exists, we can define
the complete log-likelihood as:

L((x, z); Θ) =
n∑

i=1

[
ln f(zi

∣∣xi,Θ) + ln f(xi,Θ)
]

and thus,

L(x; Θ) = L((x, z); Θ)−
n∑

i=1
ln f(zi

∣∣xi,Θ)

Then, the expectation maximisation algorithm is an iterative procedure based on the updated
completed data with a current parameter set Θc and can be written as:

E
[
L(x; Θ)

∣∣Θc

]
= E

[
L((x, z); Θ)

∣∣Θc

]
− E

[ n∑
i=1

ln f(zi

∣∣xi,Θ)
∣∣Θc

]
The maximisation is operated as follows:

Θc+1 = arg max
Θ

(
E
[
L((x, z); Θ)

∣∣Θc

])
The expectation maximisation algorithm is often used in data classification, machine learning
or artificial vision problems, for instance, where latent variables are the labels of the classes.

4.2.3 Results

The mouse tracking responses were analysed in terms of direction of the mouse
button press with respect to the centre of screen and stimulus. A participant’s
response signals are shown as an example in Fig. 4.10 where one can see the
trajectories of the mouse over the trial until button press before (Fig. 4.10a) and
after (Fig. 4.10b) correction for θoff. Interestingly, the data shows that some paths to
response were highly deviated by other motion components perceived.

164 Chapter 4 Multi-stability: manipulating perceptual ambiguity



(a) Raw mouse responses (S1). (b) Corrected mouse responses (S1).

Figure 4.10. Mouse responses.
(a) Plot of all raw mouse tracking responses for S1, showing the dispersion
over all orientation due to the uniform random sampling of θoffset.
(b) Plot of all the mouse tracking responses for S1 once θoffset is compensated.
We can see that the responses concentrate in the upper part of the screen, with
three main paths being systematically taken.

Von Mises density estimation

A Rayleigh test of circular uniformity was carried out and the null hypothesis was
rejected (T = 0.8436; p < 0.0001). The estimation was done for a mixture of
three Von Mises distributions (Fig. 4.11b) and we obtained the following estimated
Von Mises parameters4: (µ1 = 55.62°; κ1 = 30.823; β1 = 0.166), (µ2 = −0.72°;
κ2 = 40.799; β2 = 0.666) and (µ3 = −55.62°; κ3 = 14.751; β3 = 0.168). Therefore,
the Von Mises mixture fit from the expectation maximisation algorithm provides a
good estimation of the data in terms of how many functions are mixed and whether
the use of a mixture of Von Mises distributions is justified.

Thresholds between percepts were inferred by using the relative probability density
of percepts; i.e., finding the points in Fig. 4.11a where the probability densities are
equal for two neighbouring percepts. Here we found the transitions—once shifted
by -90°—to be at 25.56°, 142.38° and -22.50°.

A clear result that was expected and is present in this data set, is the dominance
of the coherency percept: β2 = 0.666 which is associated to the Von Mises near 0°
(µ = −0.72°) weights more that the other two. Another key result is the measured
direction of motion perceived for the transparency percepts. Though the physical
motion is horizontal in the implementation, the aperture driven ambiguity impedes

4Values are given in degrees and corrected for the -90° shift, such that 0° corresponds to the top of
the vertical axis.
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any possibility to infer the true direction of motion. However, the visual system
interprets this motion’s direction at -55.62°, -0.72° and 55.62°, which corresponds
to a quasi perpendicular shift from the direction orientations (θ = [−30, 30]) for
the transparency percepts, corresponding to the shortest line of motion in Fig. 4.7b.
Meanwhile, coherency corresponds to the sum of motion vectors for both trans-
parency percepts (longest arrow in Fig. 4.7c).

Individual & group data

We also looked at individual’s data; Von Mises estimated parameters, estimated
thresholds between distributions and Rayleigh tests are reported in Tab. 4.2. All par-
ticipants showed non-uniform responses, based on Rayleigh tests results. However,
the Von Mises estimation varied across participants with S10 reporting responses
so centred near 0° that fitting three Von Mises distributions with our method led to
asymmetric means, and for S11, the algorithm did not find an adequate mixture.
Specifically, S11 had responses that were centred around 0°, and did not have
other mode. In fact, when doing the estimation for one Von Mises distribution, the
algorithm yielded the following estimated parameters: µ = −0.43°; κ = 45.39. S10’s
data had a similar uni-modal aspect and when applying the estimation for one Von
Mises distribution, the estimation yielded the following parameters: µ = −3.42°;
κ = 11.42.

When averaging5 participant’s estimated Von Mises parameters (µr, µc, µl correspond
to the mode on the right, centre and left of the vertical axis), the group had more
variance over the non vertical upwards (r and l): µr = −49.6± 18.4, µc = −1.37±
1.41 and µl = 65.77±44.54. In fact, we carried out an approximate Friedman Test and
found differences (χ2 = 16; p < 0.0001) when grouping the data according to clusters
corresponding to the expected percepts. More specifically, approximate Wilcoxon-
Mann-Whitney tests showed differences for all contrasts (Zlr = 3.3607; p < 0.0001,
Zcr = 3.3607; p = 0.0002, Zlc = 3.3607; p < 0.0001).

Overall, group data shows, on a small sample (N = 8), three different modes can be
estimated, even though some participants showed unexpected responses (S10 and
S11).

5· correspond to means and numbers following ± correspond to standard deviations.
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(a) Angular histogram of all participants’ data.

(b) Estimated Von Mises density functions.

Figure 4.11. Von Mises estimation.
(a) Histogram of participants’ responses’ orientations (count for 9 participants
with 500 trials each) with respect to the centre of screen. Angles have been
corrected of the randomly picked orientation offsets θoffset.
(b) Von Mises functions estimated (no units) using the expectation maximi-
sation algorithm with estimated parameters (µ1 = 55.62°; κ1 = 30.823),
(µ2 = −0.72°; κ2 = 40.799) and (µ3 = −55.62°; κ3 = 14.751).
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Subj. (µr, µc, µl) (deg) (κr, κc, κl) Est. Thres. (deg) Rayleigh test (T )

S1 (−58.45,−1.74, 57.64) (89.87, 88.02, 60.58) (−30.23, 25.27) 0.778; p < 0.0001
S4 (−52.90,−2.53, 53.05) (43.23, 48.23, 41.73) (−27.09, 24.33) 0.9274; p < 0.0001
S5 (−59.93, 0.53, 49.19) (74.10, 114.61, 3.42) (−85.77, 12.46) 0.7187; p < 0.0001
S6 (−58.56,−3.27, 38.30) (26.07, 12.98, 8.66) (−34.64, 16.97) 0.8659; p < 0.0001
S7 (−45.21,−1.08, 34.97) (25.56, 47.12, 13.56) (−20.48, 13.68) 0.9383; p < 0.0001
S8 (−58.7, 0.81, 60.31) (154.9, 31.67, 145.89) (−39.74, 40.97) 0.825; p < 0.0001
S9 (−57.42,−1.14, 59.22) (91.19, 36.08, 71.71) (−35.95, 33.90) 0.6004; p < 0.0001
S10 (−5.66,−1.85, 173.50) (6.91, 74.12, 36.71) (9.48, 89.99) 0.9552; p < 0.0001
S11 ∅ ∅ ∅ 0.9889; p < 0.0001

Table 4.2. Individual data. This table provides the estimated Von Mises distributions
parameters and inferred approximate estimated thresholds, as well as Rayleigh
test results. ∅ refer to subjects where the estimation algorithm could not yield a
result for a mixture of three Von Mises functions.

Perceived motion with respect to gratings’ transparencies

The relationship to the manipulated variables, gratings’ transparencies (α =
[αL, αR]), is shown in Fig. 4.12a. The mouse button presses for each trial are
represented as coloured dots—with the colour variation giving the angular direction
of the perceived motion—in the transparencies (αL, αR) space. One can observe
three clear plateau (i.e., clusters) corresponding to the three percepts. More interest-
ingly, the response orientation data seems to vary little in the αL = αR projection
line but greatly in the αL + αR = 1 projection line. Therefore, the perceptual
manipulation dynamics may be simplified to reduce this redundancy. Reaction times
were homogeneous across the data set, with strictly positive tailed distribution.

In this data set, three clusters were identified for response orientations based on
perceived motion directions. This data was projected on a sub-space of α ∈ [0; 1]2

such that αL + αR = 1, and is presented in Fig. 4.12b (read the box for more details).
The data in proj(αL) is still organised in three clusters, suggesting that the reduced
space can be investigated and manipulated to generate tri-stability. The distance
between the clusters in the response orientation dimension shows that motion
perception changes and stabilises in another state.
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(a) Responses over entire space.

(b) Transparency sub-space projection.

Figure 4.12. Response orientation as a function of α.
(a) Direction of mouse responses’ orientations, with respect to screen centre,
depending on the randomly picked α = [αL, αR] values during all trials. Data
has been corrected so that 0° corresponds to the top of the screen, vertically.
(b) Data projected on the line in the α space that satisfies αL + αR = 1.
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Data projection.
The projection is computed by finding the closest point on a line L on which a data point b
will be projected. In this case, we consider L to be the diagonal in the α space that satisfies
αL + αR = 1. Its associated vector, considered is a = (−1, 1) and as such, a shift on b is
operated such that bs = b + (−1, 0). To find the projected coordinates, one needs to find
the point in span a closest to b. This is computationally achieved by finding the projected
ps = bs·a

a·a · a. Finally, the projected point is set back into the euclidean space to obtain
p = ps − (−1, 0).

4.2.4 Discussion

To summarise, with this experiment:

• We confirmed that the tri-stability in the moving plaid can be linked to motion
perception at 55.62° for left transparency (l), -0.72° for coherency (c) and -
55.62° for right transparency (r)—Fig. 4.11—which could be fit to a mixture of
three Von Mises density functions, thus providing inferred relevant boundaries
at 25.56° and -22.50°.

• We showed that the transparency parametersα can generate the three percepts,
as the almost entire (αL, αR) space was uniformly explored (Fig. 4.12a).

Coherency, the more stable percept

This experiment shows that three percepts exist for motion direction perception in
the moving plaid. Hence it is tri-stable when manipulating gratings’ transparencies.
However, individual data showed that two participants (S10 and S11) perceived
motion in conditions that explained by a simpler uni-modal fit. Furthermore, esti-
mated threshold were, for some participants (S5, S6, 10) less symmetrical along the
vertical axis than for the others. This suggests that the direction of the transparency
percepts (r and l) may vary more than for the coherency (c) percept. Indeed, we
see similar results when looking at the standard deviations of estimate Von Mises
means (µr, µc, µl) with little variance for the centre direction, corresponding to the
coherency percept.

From two alphas to one alpha

Fig. 4.11 confirmed the presence of the three percepts and the physical basis.
However, the interesting result here is the invariance described along the αL = αR
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direction in Fig. 4.12. Indeed, the aim of this experiment was to confirm that the
tri-stable nature of the percepts are linked to perceived motion. Also, it aimed to
investigate whether visual manipulation of the stimulus could be controlled by the
transparencies parameters α, in order to impact perception. The results showed that
α manipulation could be reduced to one of its component, e.g., αL, while keeping
the following relationship in order to remain in a reduced sub-space. The following
equation can be used to reduce control parameter exploration:

αL + αR = 1 (4.9)

This means that given a picked αL, we obtain its counterpart with αR = 1−αL. The
practical consequences of these findings imply that it is possible to manipulate the
first perception of the multi-stable moving plaid stimulus using α. Studies in the
literature have shown that the duration of the first percept can give information about
the dynamics on longer presentations (Hupé and Rubin, 2003; Hupé and Rubin,
2004; Rubin, Hupé, et al., 2005; Huguet et al., 2014). Therefore, one can expect the
results of this experiment to be correlated to the evolution of perceptual dynamics,
given changes to the transparencies of the gratings. The generalisation of first percept
measures to continuous viewing paradigm and multi-stable perceptual dynamics
was further investigated in the Ambiguity experiment, presented in Section 4.3.

Conclusion

To synthesise, this experiment aimed at, (i) finding the physical ba-
sis of the perceived motion, and (ii) investigate the manipulation of
transparency and its effects on the first percept. Both of these goals
were achieved and besides, a redundancy in the relationship be-
tween gratings’ transparencies and percepts were found, showing
a potential for simplification of the control variable in the following
experiments.

Mouse tracking was used to obtain data to answer the first point. The stimulus
was implemented with luminance and contrast mechanisms to balance viewing
conditions across trials, for the second point. The next step was therefore to
investigate this simplified relationship between α and perception. Furthermore,
this experiment focused on the first percept but many questions remained about its
generalisation to longer observation dynamics, which are the main interest in the
phenomenon of perceptual multi-stability.
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4.3 Ambiguity experiment: percept probabilities w.r.t.
transparency

The Percepts experiment investigated the first percept but did not give answers about
the dynamics over time, in a continuous viewing paradigm.

Hence the question: how are the perceptual dynamics affected by
this stimulus manipulation over a continuous viewing of the moving
plaid?

The Ambiguity experiment also aimed at estimating the inter-individual differences
regarding ambiguity in order to reduce potential variability that could be introduced
by this manipulation. The experiment was organised in two phases6: a first one
that reproduces the results of the Percepts experiment using key press, and a second
one that uses the phase 1 data to model the observer in order to investigate the
generalisation to continuous viewing paradigms. The section is presented following
this structure for readability purposes.

Publication.
This section’s work and results were published in a GRETSI conference paper in 2019, in
french: Modélisation de l’ambiguïté d’une multi-stabilité visuelle., Kevin Parisot, Alan Chauvin,
Ronald Phlypo, & Steeve Zozor, GRETSI, 2019 (Parisot, Chauvin, Phlypo, et al., 2019). The
results presented here, however, expand on this publication.

Investigating the reduced parameter space

In this second experiment, the focus was on the manipulation and modulation of
the moving plaid’s ambiguity. Though percepts were defined and identified in the
Percepts experiment—presented in Section 4.2—the reduction of control parameters
was key such that the number of trials and the amount of time needed to complete
the experiment could be kept to bearable levels for participants. If the entire gratings’
transparency parameter space was to be explored, the experiment would require at
least double the time. In the Percepts experiment, three clusters were identified for
response orientations based on perceived motion directions.

Perceived state changes have been studied by psycho-physics research (Green, Swets,
et al., 1966; S. Palmer, 1999). Logistic functions, also known as Sigmoid functions,

6In fact, the experiment was composed of three phases, though the third one will not be presented in
details as it did not yield any significant or interesting results.

172 Chapter 4 Multi-stability: manipulating perceptual ambiguity



have been used for decades to model this type of phenomenon in perceptual studies.
Their general formal expression is as follows:

f(x) = L

1 + e−k(x−x0) (4.10)

where e is the natural logarithm base, x0 the x-value of the Sigmoid’s midpoint, L the
curve’s maximum value and k the logistic growth rate (Verhulst, 1838). However, for
the moving plaid, there are not two, but three categories. With some modifications
to the Equation (4.10), it is possible to account for that aspect of the problem—this
is described in more details in this section’s methods. The logistic function models
classification of visual input into perceptual objects, and here as possible percepts of
tri-stability. In fact, these categories can be recorded using the keys of a computer
keyboard to simplify perceptual report and measuring.

Key press report for multi-stable perception.

In the literature (Hupé and Rubin, 2003), participants are typically asked to report
their perception by using keyboard keys, thus applying hard discretisation on the
measure7. However, this enables participants to report perceptual dynamics over
continuous viewing of the stimulus, hence enabling multi-stable perception (see
Chapter 1 for a detailed review). Methods may vary on the instruction given to
participants for key press use: some research teams use the key press as an impulse
variation to report perceptual change (Kornmeier, Ehm, et al., 2007) others require
the observers to keep the key pressed as long as percepts are visible (Hupé and
Rubin, 2004). The latter method is typically used in longer procedures as it keeps
participants’ motor commands active, thus this approach was considered over the
former, which tends to be used in discontinuous viewing paradigms.

The results in the Percepts experiment concerned only the first percept, as a result
of observation time constraints imposed by the protocol itself. The first percept
is known to showcase special properties and be subject to strong biases, making
it more predictable and reliable than the rest of the perceptual discourse (Hupé
and Rubin, 2003; Hupé and Rubin, 2004; Rubin, Hupé, et al., 2005; Huguet et
al., 2014; Moreno-Bote, Shpiro, et al., 2008; Moreno-Bote, Shpiro, et al., 2010;
Mamassian and Goutcher, 2005). In particular, Hupé and Rubin (2003) showed
that the duration of the first percept is a predictor of the empirical probabilities
in continuous viewing paradigms (by a logarithmic relationship) and that it is an

7As a reminder, the orientation responses measured with the mouse key press in the Percepts
experiment was also discrete, though its resolution was multiple orders of magnitude higher.
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indicator of idiosyncratic differences and biases. In this experiment, an aim was
to validate that the data obtained in short trials in the Percepts experiment, and
more specifically the apparent thresholds, could be generalised to the longer viewing
dynamics. This meant that, given a set of α values, it is possible to estimate the
empirical probability of the percepts p̂(X = x

∣∣α). So even if the percepts change
in continuous viewing, on the long run, the perceptual durations relative to the
observation time reflect the psycho-physical probabilities estimated. This implied
developing a psycho-physical observer model, based on the Bayesian framework
(see box for more details) and using a set of rules to infer the probabilities of each
percept (l, c, r) given a chosen αL. The parameters Θ of a model must then be
estimated by a data-driven procedure, and the computation of p(α

∣∣X,Θ). That
procedure should also be subject to a constraint of small duration (a few minutes), as
it may be merely a step to estimate the profile of a participant in order to manipulate
ambiguity in a larger protocol (presented in Section 4.1).

Building a model of the tri-stable perception relative to the transparency parameter
is a powerful tool to gain quantitative insight on the characteristics of a participant.
Indeed, the model can then be used to reduce uncontrolled perceptual dynamics
variability in the data set that could be introduced by the use of α values to bias
for a percept, without accounting for potential individual internal biases. This type
of approach is analogous to step wise procedures that estimate an adapted level of
difficulty in psycho-physics task (Green, Swets, et al., 1966; S. Palmer, 1999). The
aim is therefore to develop a custom procedure to adapt stimulus parameters to
inter-individual differences, since the essential variable that requires manipulation is
the level of ambiguity. This type of work has been done in psycho-physics also with
Bayesian methods, though they often require a large number trials, are not tested
on their generalisation to longer viewing times and tasks, and consider two category
problems (Watson and Pelli, 1983; Watson, 2017).

Aims and hypotheses

To synthesise, the Ambiguity experiment aimed to (i) verify that
tri-stability could be obtained using a reduced α space by using key
press report, (ii) model the level of ambiguity through probabilistic
methods and (iii) investigate the models’ extensions and validity in
longer observation durations.

The hypothesis driving this work was the following: ambiguity when observing the
moving plaid stimulus over continuous viewing paradigm can be estimated and
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manipulated through probabilities. To investigate the ideas described above, a two
phase experimental protocol was designed and carried out, as well as a probabilistic
model. First the experimental protocol will be described, followed by the model
construction and the methods for parameters’ estimation.

4.3.1 Methods

The experiment was composed of two phases that contrasted the continuous and
discontinuous observation paradigms. While phase 1 was built upon the Percepts
experiment’s protocol, with the introduction of key press reporting, phase 2 fea-
tured long trials. Furthermore, a probabilistic model was studied to infer maximal
ambiguity in the control varibale space.

Psycho-physical observer model

The model is constructed on the measures of percept duration in a continuous
viewing trial. For a given αL, constant across a trial, one can measure the durations
(sometimes also known as perceptual residence) that participants spent reporting
the perception of each percept: tl, tc, tr. These durations can be normalised so that
the empirical probability of a percept (w.r.t. total reported perceptual time8), as a
marginalisation of t:

p̂(X = l
∣∣αL) = tl

tl + tc + tr
(4.11)

This equation can be used for all percepts’ empirical probability measurement in
a given trial. The model construction will be illustrated with the left transparency
percept (l) as a basis as it can be used as an growing function with respect to αL.
Thus, the model aims to characterise p(X = l

∣∣αL), the probability of observing the
grating moving to the left as the closest object, given a set of grating transparency
values. A first hypothesis of symmetry was introduced in the model: given the
stimulus is symmetric along the vertical axis (αL = 0.5), and given the method
for selection α such that it follows αL + αR = 1. Therefore, the opposite left
transparency percept can be linked to the right transparency as follows:

p(X = r
∣∣αL) = p(X = l

∣∣1− αL) (4.12)

The remaining coherency percept can then be inferred by doing the second hy-
pothesis of the percepts being complementary, due to the tri-stability reducing the

8Note that one can also consider total trial time, which would include key press transition latencies.
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problem to only three states and them being mutually exclusive (Chopin, 2012).
The following expression shows the complete inter-dependency of the percepts:

p(X = l
∣∣αL) + p(X = c

∣∣αL) + p(X = r
∣∣αL) = 1 (4.13)

Hence, it is possible to obtain all probabilities starting with the right transparency
percept’s one and by following the hypotheses that the transparency percepts are
symmetric and all are complementary. The left transparency can be modelled using
the Sigmoid function, a classic in psychometrics (further justified by the data in the
results section when showing p(α‖X)):

p(X = l
∣∣αL,Θ) = 1

1 + e−Θ1(αL− 1
2 )+Θ2

(4.14)

where Θ = (Θ1,Θ2), with Θ1 can be interpreted as the slope of the Sigmoid curve
and Θ2 the intercept-like parameter. Thus, we can derive the probability functions
for the other percepts, with right transparency (r):

p(X = r
∣∣αL,Θ) = 1

1 + eΘ1(αL− 1
2 )+Θ2

(4.15)

and for coherency (c), by combining Equations (4.13) to (4.15):

p(X = c
∣∣αL,Θ) = e2Θ2 − 1

1 + 2eΘ2 cosh
[
Θ1(αL − 1

2)
]

+ e2Θ2
(4.16)

For simpler reading, we will use the following notation in the paragraphs below:
pl ≡ p(X = l

∣∣αL,Θ), pc ≡ p(X = c
∣∣αL,Θ) and pr ≡ p(X = r

∣∣αL,Θ).

The following constraints apply for the probabilities p(X
∣∣αL,Θ) ∈ [0; 1] and

αL ∈ [0; 1]. Because Equation (4.14) provides a relationship between a percept’s
probability and transparency, which ultimately affects luminance, we can assume that
the Sigmoid function of the probability of left transparency (l) must increase with
αL and vice-versa for the right transparency (r). Thus, on can say that, for physical
reasons, Θ1 ≥ 0, since Θ1 dictates the slope of the psycho-physics function.

Also, we need pc ≥ 0. That is achieved when e2Θ2 ≥ 1, i.e., Θ2 ≥ 0.

Furthermore, pc ≤ 1, and therefore, e2Θ2 − 1 ≤ 1 + 2eΘ2 cosh
[
Θ1(αL − 1

2)
]

+ e2Θ2 ,
i.e., eΘ2 cosh

[
Θ1(αL − 1

2)
]
≥ −1, which is always true.

The model construction is schematised in Fig. 4.13.
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Figure 4.13. Model construction. Diagram showing the composition of the psycho-
observer model. On the left, the Sigmoid function for the X = l percept,
see Equation (4.14). At the centre, the model when adding the X = r percept
using the hypothesis of symmetry between transparency percepts. On the
right, the full model when adding the X = c percept using the hypothesis of
complementarity of the 3 percepts.

Maximal ambiguity

If we look for the αL such that pl(αL) = pc(αL) = pr(αL) = 1
3 , then, using the

symmetry property, having pl(αL) = pr(αL) requires that αL = 1
2 . And hence,

eΘ2 = 2, which is possible if and only if Θ2 = ln 2.

However, having one point of equi-probability is a very restrictive case and, in
practice, never truly occurs. Therefore, a solution is to impose only that pc(αL) = 1

3 ,
and by symmetry, we will find α± = (α+, α−) the symmetric points around 1

2 . If
we randomly choose between (α+, α−) with probabilities Π+ = 1

2 and Π− = 1
2 ,

then we obtain p̃c = 1
2pc(α+) + 1

2pc(α−) = 1
3 . And also, p̃l = 1

2pl(α+) + 1
2pl(α−) =

1
2pl(α+)+ 1

2pl(1−α+) = 1
2pr(1−α+)+ 1

2pr(α+) = p̃r, which means that p̃l = p̃r = 1
3 .

In this more realistic case, solving for coherency pc(αL) = 1
3 (Equation (4.16)), we

obtain the two points:

α± = 1
2 ±

cosh−1(eΘ2 − 2e−Θ2)
Θ1

(4.17)

Which exist if, and only if, eΘ2 − 2e−Θ2 ≥ 1, i.e., Θ2 ≥ ln 2. Moreover, due to
the constraint α± ∈ [0; 1], we must have cosh−1(eΘ2−2e−Θ2 )

Θ1
≤ 1

2 , which imposes:

Θ2 ≤ ln
( cosh

(Θ1
2

)
+
√

cosh
(Θ1

2

)2
+8

2

)
. For a visualisation, see Fig. 4.14.

The α± are thus considered as the maximal ambiguity points αamb such that
α± = αamb = (α+, α−). At such points, we expect to observe tri-stable equi-
probability when the (α+, α−) are picked randomly with probabilities Π+ = Π− = 1

2 ,
respectively.
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Figure 4.14. Maximal ambiguity space. Domain (Θ1,Θ2) allowing to derive α± as speci-
fied in the text.

Participants

The experiment was carried out on 16 participants (12 naive, 11 females, mean age
of 27.4 years old with standard deviation of 9.6 years) and participants were given
a resting break between the two phases. All the naive participants signed a written
form that follow the guidelines of the Declaration of Helsinki.

Stimulus

The stimulus used was the moving plaid, presented without any global orientation
offset manipulation, unlike the first experiment (see Section 4.2), i.e., θoffset =
0 over all trails. Thus, the coherency percept was aligned in the vertical axis—
here considered as 0°, to simplify data interpretation–, with motion of the percept
towards the top of the screen. The percepts were associated to the arrow keys on a
keyboard, with the left, up and right arrows corresponding to the left transparency
(l), coherency (c) and right transparency (r) percepts, respectively. X is the random
variable with its space of realisation {c, l, r}, measured by the key presses. The
transparency parameters were manipulated with αL ∈ [0; 1] and its counterpart
being defined by the relation of Equation (4.9): αL + αR = 1. All the other moving
plaid parameters had the same values as in the Percepts experiment (described in
Section 4.1 and Section 4.2).
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Protocol

Phase 1: short trials. Participants were asked to report their first percept in trials
similar to those of the Percepts experiment (see Fig. 4.15A). A jittered fixation
interval was displayed before the moving plaid’s appearance and participants were
asked to keep their eyes fixed on the dot at the screen’s centre. Trials ended
when participants pressed a response key press using one of the three arrows of
the keyboard designated. The transparency parameters of the gratings (α) were
randomly selected, using a uniform distribution ranging from 0 to 1:

αL ∼ U [0; 1]

and the symmetric grating’s (GR) transparency was set by αR = 1− αL. The phase
was composed of a 200 trials block, with participants being free to rest their eyes
between trials, if needed, but remained seated on a chin rest.

Phase 2: long trials. The second phase was composed of 10 trials that lasted 120
seconds, in which participants were asked to continuously report their perception
using the same arrows of the key board as in phase 1, and by maintaining the key
pressed while the percepts lasted (see Fig. 4.15B). Participants chose when to launch
the trials, giving them the possibility to rest in between, if needed. A jittered fixation
interval remained, as in phase 1, and participants were asked to keep their eyes
fixed on the dot at the screen’s centre. α values were constant over the trial duration
and were still chosen using the αL + αR = 1 relationship, but αL was picked using
ambiguity parameters inferred using the model. This is detailed further down in the
model section.

Parameter estimation

In phase 1, we considered Bayes law (see the box below, Equation (4.24)) to jus-
tify the choice of using a Sigmoid function (Equation (4.14)), given the empiri-
cal observation can be linked to the theoretical probability law of the percept by
f(αL

∣∣X) ∝ p(X
∣∣αL), since here, the uniform sorting meant p(αL) = 1. f(αL

∣∣X) is
estimated by a mixture of truncated Gaussian distributions described further down.
Therefore, at the end of the phase, we estimated the Θ parameters using a maximum
likelihood estimator.

To estimate the model’s parameters given a data set x = (x1, ...,xn) of n = 200
independent observations from a participant, we used a maximum log-likelihood
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Figure 4.15. Protocol.
A: Phase 1 short trial timeline of stimulus presentation.
B: Phase 2 long trial timeline of stimulus presentation.

estimator. The method consists in finding the set of parameters Θ that yield the
maximum log-likelihood, given the first percept observations x with their associated
picked αL,i for first percept response trials (phase 1: n = 200). Here, we fed 200
observations of (αL,i, xi) into:

L(x; Θ) =
n∑
i=1

ln
[
p(X = xi

∣∣αL,i,Θ)
]

(4.18)

Finding the log-likelihood function’s (L) maximum then becomes an optimisation
problem with:

ΘML = arg max
Θ

L(x; Θ) (4.19)

In phase 2, however, as participants had continuous viewing of the stimulus with a
constant αL control variable, but provided key press responses reporting the duration
of perception, we extracted fractions of dominance as defined by Equation (4.11).
Thus, for each trial, three pairs associating

(
αL,i, p̂(xi

∣∣αL,i)) were fed to the maxi-
mum likelihood estimator to update the model such that αL,i+1 ≈ αamb. We chose
the parametric family by the functions for empirical observations to be defined by a
multinomial9 function.

p̂(x
∣∣α,Θ) = T !

tl!tc!tr!
[
p(xi = l

∣∣αL,i,Θ)
]tl[p(xi = c

∣∣αL,i,Θ)
]tc[p(xi = r

∣∣αL,i,Θ)
]tr

(4.20)
tl, tc, tr correspond to the fraction of dominance (i.e., the number of realisation, if
we assume independence) for each first percept, in phase 2 trials of duration T .

9We assume percepts are independent, even though this is unlikely.
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Thus, a psycho-physical observer model and an associated method for estimating
its parameters were implemented in the protocol. This required that the procedure
be divided in a sampling phase for inference, and a testing phase to verify the
generalisation.

Maximum likelihood estimation.
The maximum likelihood estimation aims at inferring the parameters that best explain
a set of samples, more precisely the joint probability distribution of random variables
{y1, y2, ...}, which are not necessarily independent and identically distributed—in our case,
we have sample independence, but they are not identically distributed. A unique vector
ϑ = [ϑ1, ϑ2, ..., ϑk]T of parameters that index the probability distribution within a parametric
family

{
f(.;ϑ)

∣∣ϑ ∈ O}—where O is the parameter space, a finite-dimensional subset of
Euclidean space—is associated with each distribution. One can evaluate the joint density
for an observed set of data samples: y =

(
y1, y2, ..., yn

)
. A real-valued function, called the

likelihood function, can then be obtained as:

Ln(ϑ̂) = Ln(ϑ;y) = fn(y;ϑ) (4.21)

For the maximum likelihood estimation, the aim is to find the values of the model parameters
that maximise this likelihood function over the parameter space. Formally, this can be written
as:

Ln(ϑ̂;y) = sup
ϑ∈O

Ln(ϑ;y) (4.22)

Online use of the model

Here, using the Bayesian framework (read the box below for a reminder), parameter
estimation was done at the end of phase 1, with the entire data set of first percept
observations x. Each data entry had a unitary weight in the estimation procedure
input. But for phase 2, the estimation was carried out using p̂(X = x

∣∣αL), and for
one trial, one probability per percept was fed, making the observation weighted by
their observed probabilities10. The model updating was implemented by adding the
likelihood with currently estimated parameters at a given trial in phase 2, which
provided a prior. The Bayesian update can be expressed as:

p(X = x
∣∣αL)p(αL) = f(X = x, αL) = f(αL

∣∣X = x)p(X = x) (4.23)

10Note that this is a bias as phase 1 data will have much more weight than phase 2 data. However, to
counter act this, one would need to define p(X

∣∣αL, t) with t a time duration of observation. Here,
we did not carry out such generalisation.
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where in phase 1, we read the equation from right to left, and in phase 2, from left
to right. We can say that f(αL

∣∣X = x) ∝ p(X = x
∣∣αL) provides a justification for

choosing the Sigmoid function family in our model.

Phase 1. First, f(αL
∣∣X = x) is estimated using a truncated Gaussian kernel, as

the probability function for f(αL) is uniform over [0; 1]. Given that p(X = x) is a
normalisation term, we can derive the probability p̂(X = x

∣∣αL).

Phase 2. Now if we take Π(αL) as a mixture of two Gaussian functions (µ =
α±;σ = 0.05; approximating a Dirac on α+ or α− chosen randomly with Π+ =
Π− = 1/2) centred each on α+ and α−, and chose αL according to this probability
function, we can observe the observers’ response over time Xt = x. Thus, by
repeating the process, and by considering the law of large numbers, we obtain an
estimation of p(X = x

∣∣αL), here by using the faction of dominance of percepts
(Equation (4.11)).

Therefore, if we also setup the family of laws as p(X = x
∣∣αL,Θ) and f(αL

∣∣X =
x,Θ), as well as Π(αL

∣∣Θ), we obtain a model that can be updated with data from
first percept (phase 1) and continuous viewing (phase 2) responses.

Bayesian models.
As a reminder of Chapter 1, Bayes’ rule stipulates that

p(Θ|X) = p(X|Θ)p(Θ)
p(X) (4.24)

where X is a set of data (i.e., sensory information) and Θ is a set of parameters, here
considered as random variables. p(Θ) is the prior which corresponds to the probability
that the brain have such a state, independent of the sensory information. p(X|Θ) is the
conditional probability, i.e., the sensory evidence, of observing the sensory inputs given
the current state of the system, also referred to as the likelihood or sampling distribution.
p(X) is the marginal probability that normalises p(Θ|X), the posterior distribution which
corresponds to the probability of the brain being in a state, defined by a set of combinations
of Θ, given the sensory input.

Analyses

For the analyses listed below, the parameter estimations for the models were done
offline, with a nonlinear programming solver from MATLAB which can address
multidimensional unconstrained minimisation problems more efficiently than the
optimisation process we applied to our original, experiment maximum likelihood
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estimator. It is based on the simplex method for function minimisation proposed
by Nelder and Mead (1965). In the results, when the data was analysed using the
model estimation with this optimisation method, it will be referred to as post-hoc.
However, in the experiment, for the online estimation in phase 2, a Newton-Raphson
method was used.

Empirical probability density estimation. We represent the histogram of obtained
responses for each percepts by estimating a probability density using a density kernel.
Because the data is in a bounded interval [0; 1], it is not possible to do a convolution
of Gaussian distributions. However, to obtain these probability densities, we used
a mixture of truncated Gaussian laws centred on the samples with weights 1/n
for each of the n samples. The only free parameters is the standard deviation of
the Gaussian laws σ. Thus, we applied a truncated Gaussian law centred on αL,i

with standard deviation σ = 0.2, also defined as fGauss(X
∣∣αL,i, σ = 0.2)/p(X ∈

[0; 1]
∣∣X) ≈ fGauss(;

∣∣αL,i, σ = 0.2)). The resulting visualisation is analogous to a box
histogram.

First percept model cross-validation. The models inferred at the end of phase 1
(short trials) are evaluated using a cross-validation with 50% of the phase 1 data be-
ing randomly picked and used for training, and the rest for test. The log-likelihood—
Equation (4.18)—was used on both training, testing, and a null hypothesis set (in
which percept labels were randomly sorted). Approximate Wilcoxon-Mann-Whitney
tests using a bootstrap method with 10000 permutations was carried out using
the coin package on R (Hothorn, Hornik, van de Wiel, et al., 2008). This test was
chosen as it is non-parametric (the log-likelihood cannot be positive) and it allows to
compare two samples’ medians for nominal categories with non-normal quantitative
measures. Thus, the estimation of the model’s parameters can be validated if the
median log-likelihood value for the train and test data sets are closer to 0 than the
null hypothesis (H0).

First percept model to continuous viewing model cross-validation. For the analysis
of continuous viewing perceptual durations, all epochs with no key pressed, two or
more keys pressed were removed. Thus, empirical probabilities for percepts were
computed based on Equation (4.11).

To validate whether the model was relevant in phase 2 trials, when stimulus obser-
vation was long and continuous, the Kullback-Leibler divergence (DKL) between
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theoretical probabilities issued by the model p(X
∣∣α = [α̂L, α̂R]; Θ) and the ob-

served empirical probabilities p̂(X
∣∣α = [α̂L, α̂R]; Θ) was computed. The divergence

between the two distributions can be expressed as:

DKL = −
3∑

x=1

[
p̂(xi

∣∣α) ln
(
p(xi

∣∣α; Θ)
p̂(xi

∣∣α)

)]
(4.25)

The divergence was computed for the each subject’s phase 2 trial values, and
averaged for group comparisons. For the null hypothesis (H0), all 6 combinations
of percept label permutation for p(xi

∣∣α; Θ) were used for each trial. Approximate
Wilcoxon-Mann-Whitney tests using a bootstrap method with 105 permutations was
carried out using the coin package on R. This test was chosen as it is non-parametric
(the divergence cannot be negative) and it allows to compare two samples’ medians
for nominal categories with non-normal quantitative measures. Hence, to validate
the model, the computed Kullback-Leibler divergence would need be lower than for
the null hypoethsis (H0).

Continuous viewing trials. We used the empirical probabilities to compute the
models’ entropy over trials, in phase 2, to investigate the stability and convergence
of the method, towards a maximally ambiguous perceptual phenomenon. Shannon
entropy was computed using the following classic form:

H = −
3∑
i=1

p̂(X = xi
∣∣α) ln

(
p̂(X = xi

∣∣α)
)

(4.26)

with H the computed entropy, xi the percept’s observations for the ith percept out
of 3. If equi-probability over the 10 long trials was to be achieved, participants
would showcase behaviours that would generate empirical probabilities such that
the entropy H = − ln (3) = 1.10, the maximal entropy for a three state system
such as in tri-stable perception. Mean entropy values and standard deviations are
reported in a table in the results section and provide a description of individual
behaviours and their models’ relative ambiguity control.

4.3.2 Results

Short trial data description

Empirical probability were estimated based on the continuous histogram method
using Gaussian kernels above. The data was fed into the model to infer a set
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Figure 4.16. Empirical data & model example. Density functions are displayed in this
figure. It shows an example resulting empirical f(αL

∣∣X) density estimation
using a bounded convoluted Gaussian kernel and the theoretical probability
densities p(X

∣∣αL) computed, based on the parameters estimated from phase 1
data using maximum log-likelihood, for participant S15. Dashed lines repre-
sent the empirical density functions, while the continuous lines represent the
estimated model’s probability densities. And the dotted black lines represent
the inferred α+ and α− points of maximal ambiguity αamb. Data points
collected in phase 1 are displayed below.

of Θ parameter for an observer, and probability density function are displayed.
Fig. 4.16 shows an example of such computation for participant S1, with dashed
line representing the empirical density function. Data points collected in phase 1
are displayed below. Qualitatively, the sigmoidal model densities, issued by the
simplex method maximum log-likelihood estimation, proposes an interesting fit to
the empirical data—note that the Gaussian mixture, as it is constructed is biased
towards the centre of the αL space. Here, the empirical density function suggested
that p(αL

∣∣X) = p(X
∣∣αL)p(αL) and thus p(αL

∣∣X) ∝ p(X
∣∣αL). It further provides

clear threshold values, with rapid drops. In fact, this differed from the Newton-
Raphson optimisation algorithm used and report in Parisot, Chauvin, Phlypo, et al.
(2019)—a comparison is given below in Tab. 4.3. In this older work, the optimisation
algorithm was more susceptible to remain stuck in a local log-likelihood maximum
and thus, the parameters estimated showed less steep Sigmoid slopes (Θ1).

Fig. 4.17 shows empirical and theoretical densities for all participants and Tab. 4.3
provides maximal ambiguity points αamb associated to the parameters estimated
using the post-hoc and the original methods. S1 only had complex solutions for
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N = 16 Post-hoc Post-hoc Parisot et al., 2019 Parisot et al., 2019

Participant αamb = (α+, α−) Θ = (Θ1,Θ2) αamb = (α+, α−) Θ = (Θ1,Θ2)

S1 ∅ (28.11, 3.23) ∅ (7.04, 0.90)
S3 (0.73, 0.27) (38.46, 8.33) (0.76, 0.24) (8.34, 1.57)
S9 (0.73, 0.27) (19.32, 3.72) (0.71, 0.29) (8.86, 1.31)

S10 (0.69, 0.31) (11.53, 1.64) (0.70, 0.30) (7.92, 1.15)
S11 (0.90, 0.10) (27.72, 10.30) (0.99, 0.01) (10.59, 4.47)
S12 (0.82, 0.18) (25.56, 7.51) (0.85, 0.15) (10.20, 2.92)
S13 (0.63, 0.37) (21.56, 2.13) (0.50, 0.50) (7.07, 0.65)
S14 (0.73, 0.27) (24.92, 4.98) (0.76, 0.24) (8.28, 1.59)
S15 (0.67, 0.33) (31.01, 4.63) (0.66, 0.34) (7.45, 0.93)
S16 (0.72, 0.28) (19.46, 3.55) (0.71, 0.29) (8.37, 1.24)
S17 (0.63, 0.37) (26.32, 2.78) (0.55, 0.45) (7.17, 0.71)
S18 (0.75, 0.25) (38.04, 8.73) (0.75, 0.25) (9.05, 1.68)
S19 (0.50, 0.50) (0.03, 0.36) (0.50, 0.50) (6.51, 0.67)
S20 (0.78, 0.22) (18.96, 4.55) (0.81, 0.19) (9.15, 2.19)
S21 (0.58, 0.42) (22.56, 1.31) (0.50, 0.50) (6.17, 0.44)
S22 (0.70, 0.30) (16.23, 2.54) (0.63, 0.37) (8.02, 0.88)

Table 4.3. Model estimation over short trials. The resulting maximal ambiguity points
given the estimated Θ parameters for each participant using the post-hoc method
and the original method from Parisot, Chauvin, Phlypo, et al. (2019). ∅ corre-
sponds to data sets with no αamb solutions in R.

αamb, while S19’s parameters do not respect the constraints described above in the
methods section. Overall, the post-hoc method finds solutions with much higher Θ1

values, meaning that the slopes in the probabilistic models are steeper, and that the
optimisation algorithm finds higher log-likelihood maximums11.

Cross-validation of first percept models

Cross-validation, for models based on phase 1 data, was done by splitting the 200
first percept responses in two equal parts, with data points being selected randomly
in the set. Log-likelihood values were computed on training, testing and randomly
mixed labels (H0) sets and are reported in Fig. 4.18a. Approximate Wilcoxon-
Mann-Whitney tests showed no difference between train and test data sets over all
participants (Z = −1.4707; p = 0.1514), while differences between train and H0
were significant (Z = −3.5311; p < 0.0001). Differences between test and H0 were
also significant (Z = −3.5932; p < 0.0001). These results validate the stability of
the models for phase 1 data sets.

11Though the implementation searches a minimum on a positive transformation the log-likelihood.
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Figure 4.17. Empirical data & model. Left column, the p(αL

∣∣X) (normalised) densities
using the empirical probability density estimation method. Right column, the
p(X

∣∣αL) using the observer model after estimating Θ for each participant over
the 200 short trial data set, using the post-hoc approach. Subject numbers are
listed on each row.
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Cross-validation of model generalisation to continuous viewing

An aim of the experiment was to investigate whether first percept data, when used
to infer the parameters of a probabilistic model, would generalise to longer viewing
conditions. To verify whether this worked in our data set, we computed the Kullback-
Leibler divergence on observed data in phase 2 and on model distribution inferred on
phase 1 data, using the post-hoc optimisation method. We compared these values to
divergence when the model probabilities were randomly shuffled; a null hypothesis
condition. An approximate Wilcoxon-Mann-Whitney test was carried out to verify if
group medians differed and revealed a significant difference between data and H0
(Z = −3.6228; p < 0.0001). The data is shown in Fig. 4.18b.

Continuous viewing data description

Entropy was computed on the empirical probabilities for percepts in the phase 2 data
set. The α values were selected based on the models’ probabilities and the derived
maximal ambiguity points αamb, using a truncated Gaussian distribution centred
on the latter. The computed entropy for each participants provides a quantitative
measure of the distance to equi-probability, where H = ln (3) = 1.1 can be expected,
and are reported in Tab. 4.4. Group mean entropy was at 0.53 with mean standard
deviation at 0.21. The data shows that the procedure led to very different perceptual
dynamics across the observer population. S11 and S19 displayed bi-stable behaviour
and remained stuck as far from equi-probable tri-stability as possible. Moreover, the
empirical mean entropy derivative is reported in Tab. 4.4, giving information on
the evolution of entropy over phase 2. Most participants had positive slopes and
finished with higher entropy than at the start of the phase.

4.3.3 Discussion

To summarise, in this experiment:

• We showed that the manipulation of ambiguity and tri-stability can be achieved
efficiently by using the αL + αR = 1 sub-space of the α by replicating the
results from the Percepts experiment with a key press method.

• We proposed a probabilistic model to account for individual differences and
infer the points of maximal ambiguity in the αL space. The model parameters
were estimated using maximum likelihood and cross-validation tests for both
phase 1 and phase 2 data sets provided evidence of stability and coherency.
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(a) Log-likelihood cross-validation.

(b) Kullback-Leibler divergence cross-validation.

Figure 4.18. Cross-validation.
(a) Box-plot of log-likelihood computed over train, test, and H0 data sets show
the stability of the model over phase 1 data. Individual data points are shown
as points.
(b) Box-plot of Kullback-Leibler divergences (DKL) computed over the data
and H0 show the stability of the model over phase 2 data and phase 1 estima-
tion. Individual data points are shown as points.
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Participant µ(H) σ(H) µ(∆H) µ(p̂l) µ(p̂c) µ(p̂r)

S1 0.82 0.27 0.0552 0.24 0.31 0.45
S3 0.43 0.37 −0.0040 0.24 0.19 0.57
S9 0.80 0.37 0.1119 0.42 0.22 0.37

S10 0.68 0.34 0.0387 0.2 0.25 0.55
S11 0 0 0 0.5 0 0.5
S12 0.62 0.05 −0.0128 0.47 0.34 0.19
S13 0.98 0.17 0.0626 0.3 0.38 0.33
S14 0.32 0.26 0 0.46 0.16 0.38
S15 0.50 0.22 0.0733 0.5 0.26 0.25
S16 0.43 0.24 −0.0011 0.47 0.33 0.2
S17 0.48 0.34 0.0719 0.19 0.4 0.41
S18 0.75 0.26 0.0597 0.36 0.33 0.3
S19 0.01 0.04 0 0.4 0 0.6
S20 0.45 0.28 0.0544 0.24 0.45 0.31
S21 0.58 0.07 0.0208 0.37 0.26 0.36
S22 0.67 0.15 0.0050 0.31 0.34 0.35

Table 4.4. Empirical probability entropy. Phase 2 data observed entropy for all partici-
pants, averaged (µ(H)) over all 10 trials, and with standard deviation (σ(H))
reported. For reference, the maximal entropy expected for a tri-stable system
is ln (3) = 1.1. The mean entropy derivative over phase 2 trials is also reported
under µ(∆H) and mean perceptual fraction of dominance for l, c and r are
reported under µ(p̂l), µ(p̂c) and µ(p̂r).
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• We investigated the relationship between first percept (short trials) and con-
tinuous viewing (long trials) dynamics, and we provided quantified results of
observers’ and models’ stability in the continuous multi-stable perception.

Results interpretation

In this Ambiguity experiment, the manipulation of the moving plaid’s transparencies
α to generate a tri-stable perceptual phenomenon, as described in the Percepts
experiment, was replicated with the phase 1 short trial protocol, using key press as a
reporting method. In fact, the manipulation of theα parameters was simplified to the
manipulation one of the gratings’ transparency, and deriving the other grating’s one
by symmetry using: αL + αR = 1. Moreover, a psycho-physical observer model was
proposed to account for and quantify observers’ perception in a Bayesian framework,
and to estimate the point of maximal ambiguity in the transparency space. More
precisely, this work shows that when using first percept responses (phase 1), which
can be obtained in a quick procedure with short trials, one can infer and estimate
observers’ parameters that are consistent with the continuous viewing of a multi-
stable stimulus (phase 2). This was validated by two cross-validation analyses. This
is a complementary result to previous reports that the first percept’s duration was a
predictor of the tri-stable percepts’ empirical probabilities in a continuous viewing
trial (Hupé and Rubin, 2003). This result opens perspectives for the calibration of
ambiguity in a tri-stable stimulus like the moving plaid. It also raises questions on
how to choose the next control variables’ values when the model is running online
and what are its limitations. These points are discussed below.

Stimulus calibration

The diversity in the individuals’ profiles in the collected data set solidify the need
for quantitative tools to adapt the stimulus in order to reduce inter-individual
variance. Finding a set of stimulus parameters generating true ambiguity for all
participants is not trivial as inter-individual biases exist, especially in a tri-stable
example like the moving plaid used here. In a bi-stable example, one can envision
taking central values (α = 0.5), however, here, given the histograms presented in
Fig. 4.17, one can see that this choice would heavily bias the likelihood of observing
coherency percept reports. Therefore, given that the estimation is relatively stable
(see Tab. 4.4) and that the 200 short trials of phase 1 took approximately 10 minutes
to be completed, it is possible to use phase 1 as a calibration procedure. This
calibration can optimise the parameters associated with ambiguity manipulation in
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order to generate ambiguous and non-ambiguous trials (as presented in Section 4.1).
The post-hoc method also shows much better performances than the method used for
this work in Parisot, Chauvin, Phlypo, et al. (2019) with higher log-likelihood values,
and efficient exploration of the parameter space, given the data. It is noteworthy
that results remained consistent across the use of both methods.

Limitations

This calibration is dependent on the model proposed here, which, as shown by
Tab. 4.4 is not systematically adaptable to all observers, though it fits a large majority
of profiles. However, the procedure could be used to select participants that could
be confidently manipulated with regards to visual ambiguity in the moving plaid
stimulus. Indeed, participants showing contradictory responses would disqualify in
the calibration procedure, in an analogous manner to those that cannot be calibrated
with the eye-tracker, as their ambiguity manipulation would not be guaranteed.
For such a procedure, it is however important to make the procedure short and
efficient to estimate a participant’s profile. The model proposed here is specific to
the phenomenon and characteristics of the multi-stable moving plaid. Further work
could be carried out on varying the formal description of the probability function
with less constraints and a higher potential for generalisation. It is also dependent
on the optimisation algorithm used to estimate the maximum likelihood and infer
the parameters for an observer.

A part of this work which has not received sufficient attention and needs addressing
is around the definition of the model with respect to time. This would provide a
function that can be used to link in a balanced fashion the data from first percept and
continuous viewing trials. Here, however, the weights between the two data sets is
highly unequal as the former has 200 data points of unitary weight while the latter is
only composed of 30 data points, which are weighted by the empirical probabilities.
A key perspective for improvement would consist in finding a relationship that
can set a weight on first percept observation, for instance, by taking into account
reaction time. However, it is unsure how reaction may relate to perceptual time and
further studies need to investigate this relationship. An alternative path would be to
consider a method to weight empirical probabilities based on a sliding window over
time. But here, a potential obstacle is the risk of turning first percept responses as
impulse samples while the rest becomes large masses over time. Indeed, this is due
to the difference of use of the key press for perceptual report sampling, and solving
such an issue may offer a bridge between continuous and discontinuous viewing
paradigms.

192 Chapter 4 Multi-stability: manipulating perceptual ambiguity



Adaptive experimental designs

The online use of the model was done here to verify whether observers would tend
towards equi-probability if phase 2 trial α were sampled near the αamb values
inferred. However, the arbitrary choice of using a truncated Gaussian distribution
centred on one of the randomly chosen αamb could be further investigated. If the
model is fed live data, and that an ambiguous and non-ambiguous contrast exist in
a protocol, it may be useful to sample the non-ambiguous α couple in a way such
that it maximises the information fed into the model by the Bayesian procedure. For
instance, looking at the Sigmoid’s inflexion points might provide more information
to maximum likelihood estimator and reduce sampling redundancy.

Adaptive experimental approaches have been developed over the past decades,
notably in tasks where the difficulty level needs to be adapted for each participants.
Classical approaches use stair case procedures in which the controlled parameter is
gradually increased with regards to a performance measure. However, this has some
inconveniences; stair case procedures are, for instance, sensitive to hysteresis (Green,
Swets, et al., 1966; Treutwein, 1995; García-Pérez, 1998). Other methods (QUEST
or ZEST) have been developed, using the Bayesian framework for instance, to
estimate the internal threshold of a participants (Watson and Pelli, 1983; Watson,
2017; Bak and Pillow, 2018). Though they are mostly conceived for 2-alternatives
forced choice (2AFC), they show versatility to many psychology problems.

The more recent works by Bak and Pillow (2018) is, to the author’s knowledge,
a first attempt to extend the problem to more than two categories. The fact that
this work was published after the Ambiguity experiment was designed and carried
out is unfortunate. Their approach uses an information theory criterion computed
by Markov-chain Monte Carlo (MCMC) and combined with a Bayesian inference
of a psycho-metric observer model. Though the simulated tasks are based on
the 2AFC paradigm, they report and show that considering omissions as a third
type of response is important to estimate the model properly. This work shows
similarities to the methods presented here. But the approach reported in Bak
and Pillow (2018) does not relate to specific stimulus parameters, but rather to
performance or detection tasks from psycho-physics. Adaptive experiments still need
to address limitations around the speed at which it adapts to an observer leaving a
stationary behaviour, in which case, the model has over fitted the data and may be
stuck in a local minimum of its parameter space, unable to account for unexpected
new behaviour. In Bayesian framework, this is manifested by the weight of prior
distribution on the learning and model updating process.
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Conclusion

In this experiment, a method for adapting the ambiguity control parameter α to
individual participants was presented. It relies on implementing a probabilistic
pscyho-physical observer model for tri-stability. Inferring its parameters was carried
out using the maximum likelihood approach. The methods were tested in an
experimental protocol that featured two phases; the first with many short trials
for an initial estimation, the second with long trials to test and update online the
estimation. Results showed that the estimation was effective within a short time,
and that it remained robust to longer trial generalisation. However, many features
could be enhanced as discussed, allowing to account for participants with incoherent
behaviours, optimising the procedure and the possibility to generalise the methods.
Overall, the experiment shows satisfactory results to select participants and calibrate
the stimulus to reduce inter-individual variability.

This work provides results on the moving plaids’ multi-stability: it
is possible to manipulate ambiguity, in a quantitative and individual
manner, based on observers’ first percept’s choice responses.
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4.4 Conclusion

The work presented in this chapter provide further empirical insight on the moving
plaid stimulus’ multi-stable dynamics. In particular, the role of the gratings’ trans-
parency parameters was investigated. The Percepts experiment described the ground
truth of a tri-stable perception being linked to motion perception. The Ambiguity
experiment showed that this tri-stability can be manipulated and controlled in a
sub-space of the transparency parameters. Furthermore, the development of a
probabilistic model provides quantified inferred information on the maximal ambi-
guity level for each observer, making ambiguity control possible with the moving
plaid. These results can be used to build up more complex experiments, in order
to investigate the relationship between oculomotor and perceptual systems when
facing ambiguous stimulation.
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Multi-stability as a probe of
synergy between action and
perception?

5

„Perception is never passive. We are not only
receivers of the world; we also actively produce it.
There is a hallucinatory quality to all perception,
and illusions are easy to create.

— Siri Hustvedt
"The Summer Without Men"

2011.

This chapter reflects on the works presented in this thesis. Its aim is to synthesise
and provide perspectives. Data and analyses from partially completed experiments,
will be presented to illustrate and provide insights on this thesis’ conclusions. In
Chapter 2, we reported the systematic measurement of FEM that we propose to call
micro-pursuits. The task in which micro-pursuit behaviour emerged was linked to
the bi-stable perception of an ambiguous Necker cube. This prompted the investi-
gation of oculomotor and perceptual multi-stable models, presented in Chapter 3.
Hypotheses were derived from this theoretical framework in order to investigate
multi-stability in perception and eye movement in experimental work in the moving
plaid stimulus. Results on the manipulation of ambiguity for the moving plaid were
reported in Chapter 4. However, the investigation of oculomotor manipulation, in
the context of moving plaid multi-stability, remains incomplete and is discussed in
the following pages. Finally, new paths for investigation are proposed, inviting the
reader to think beyond multi-stability and consider it as a complex system’s regime
of behaviours.
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5.1 Synthesis of contributions

The following paragraphs summarise the results presented in the previous chap-
ters.

5.1.1 Micro-pursuits reveal bi-stability in the oculomotor dynamics

Human vision and eye movements are intrinsically linked as the latter change the
visual input projected on the retina. Though our visual representation is stable, the
eyes never truly stay still and generate small amplitude FEM that can be interesting
markers of cognitive states. Research in the field of FEM has been extensive on micro-
saccades, but less is known about drift and slow movements. When searching for
micro-saccades, our data showed the presence of a secondary sequence, contrasting
with the well-known main sequence exhibited by micro-saccades. Detected micro-
saccades that belonged to this secondary sequence showed lower peak velocities as
well as higher similarity with the target, which has led us to classify these movements
as micro-pursuits.

Micro-pursuits are proposed as a type of FEM occurring at small amplitude, within
a fixation, as the gaze follows a target while being constrained to a fixation, for
instance. Drift and slow movements tend to be considered as independent from
visual stimulation, since larger eye movements are typically used to explore the
visual field. In addition, the gaze showed high similarity with the target trajectory,
measured through maximally projected correlation. Individual and group analyses
gave significant results both in an implicit (Necker) and an explicit (Cross) pursuit
task experiment, but not in a secondary implicit (Square) pursuit task experiment.
The inter-experiment analysis results suggest that the manipulation of task, stimulus
target motion, and the complexity of the stimulus may play a role in the generation
of micro-pursuits.

Micro-pursuit here is presented as a class of fixation, but further research is needed
to identify the physical properties and distinguish it from other FEM. Moreover, this
work calls for further investigation on the functional role of micro-pursuits, and how
the oculomotor and perceptual systems interact during such movements.

Indeed, the data suggested a link between perceptual and oculomo-
tor multi-stability as micro-pursuits were observed in an ambiguous
bi-stable perception condition (Necker) and an explicit pursuit task
(Cross), but not in an implicit pursuit task (Square). We interpreted
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this result as a sign of competition between parts of the stimulus
to attend to: the fixation cross or the target object (Necker cube or
square).

Micro-pursuits.
The work is presented in detail in Chapter 2 and has been accepted for publication to
the Journal of Vision, as an article under the title Micro-pursuit: a class of fixational eye
movements correlating with smooth, predictable, small-scale target trajectories, Kevin Parisot,
Steeve Zozor, Anne Guérin-Dugué, Ronald Phlypo, & Alan Chauvin, and is excepted to be
published shortly after the time of writing this manuscript.

5.1.2 Energy field attractors reproduce oculomotor and perceptual
dynamics

Eye movements and multi-stable perception have been further understood and
deciphered with the study of predictive models capable of producing analogous
behaviours. Models, however, offer a key advantage: they can be manipulated and
understood in fine details through theoretical studies and numerical simulations.
We proposed a model based on gravitational energy potentials to generate eye
movements. Perceptual tri-stability was studied in order to investigate the generali-
sation results found for bi-stability and how they fit multi-stability. The proposed
framework provides tools and results towards the construction of formal models
that bind perception and action.

The models gave explanations on how the oculomotor system
might produce micro-pursuits and other eye movements. It also
provided a framework in which active vision processes can be gen-
erated, for the moving plaid stimulus for instance, and thus, predic-
tions could be made to drive the experimental investigation.

Models were based on the same framework, gravitational energy potential fields,
and were used to generate and study both eye movement and perceptual dynamics.
Differences in the perceptual durations generated by bi-stable and tri-stable models
were described, suggesting that noise plays a crucial role in model stability, but the
number of attractors may also explain rapidly changing behaviours. An interpretation
worth researching lays in considering the context of multi-stability and how this
regime might interact with other stability regimes (e.g., mono-stability, meta-stability,
instability).
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Gravitational potential energy models.
The predictive models are presented in detail in Chapter 3 and served to design the experi-
ments in Chapter 4. However, this work could be extended by inferring parameters given
data for both models, and combining both oculomotor and perceptual models into a fused
model of active perception.

5.1.3 Ambiguity manipulation of a tri-stable moving plaid

The ideas and design were driven from the models proposed in Chapter 3, and
aimed to investigate the multi-stable dynamics of perception with the moving plaid
stimulus on one hand, and the dynamics of the oculomotor system on the other.
The emergence of multi-stability is the result of combining a stimulus with specific
signal properties and contradictory inferences for the visual system. It is possible to
stabilise or bias these perceptions by changing the stimulus through expectations or
task manipulation or also by modifying the oculomotor dynamics. The perceptual
and oculomotor systems being interlinked, acting on one of them has impact on the
other.

We provided further empirical insight on the moving plaid stimulus’ multi-stable
dynamics. In particular, the role of the gratings’ transparency parameters was
investigated.

The Percepts experiment described the observer’s perceived direc-
tion of a tri-stable perception being linked to motion perception.
The Ambiguity experiment showed that this tri-stability can be ma-
nipulated and controlled in a sub-space of the transparency pa-
rameters. Furthermore, the development of a probabilistic model
provides quantified inferred information on the maximal ambigu-
ity level for each observer by controlling gratings’ transparencies
simultaneously.

These results can be used to build up more complex experiments, in order to
investigate the relationship between oculomotor and perceptual systems when
facing ambiguous stimulation. The aim was to reach a situation where it is possible
to show that motor control is a physiological marker of perceptual content, in a
no-report paradigm.

However methods to control oculomotor dynamics need further investigation and
validation. Some have been explored and are presented in the following section.
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Multi-stable moving plaid experiments.
This work is presented in detail in Chapter 4 and some of the results were published in a
GRETSI conference paper in 2019, in french: Modélisation de l’ambiguïté d’une multi-stabilité
visuelle., Kevin Parisot, Alan Chauvin, Ronald Phlypo, & Steeve Zozor, GRETSI, 2019 (Parisot,
Chauvin, Phlypo, et al., 2019). The results presented there, however, expand on this
publication.

202 Chapter 5 Multi-stability as a probe of synergy between action and percep-
tion?



5.2 Influencing gaze control with random dot
kinematograms

Eye Movements experiment.
In this section, we cover our attempts to manipulate the oculomotor behaviour of the
observers by manipulating the moving plaid stimulus. Some results are presented in
Appendix B.2, though they remain preliminary. They may still provide some insights for the
reader. Here, only a summary is provided.

The Eye Movements experiment focused on the central disk of the stimulus that is
used to generate the gaze fixation point. Given our understanding of the GraFEM
model (see Chapter 3) and if the attractors in the perceptual and oculomotor
spaces are merged as hypothesised in Section 4.1, one can expect the attractors to
move in direction of the motion perceived, as identified in the Percepts experiment
(Section 4.2). We know from our simulations on GraFEM that the motion of an
attractor can lead to the generation of spatio-temporal patterns for the gaze signals
that can be interpreted and classified as pursuits or saccades. It is however possible
that a perceptual attractor is not strong enough, i.e., its parameters make it relatively
shallow and wide enough to detach the gaze particle from the attractor linked to the
fixation point. Competition between attractors is key in driving the dynamics of the
model, therefore the predictions will depend on their relative strength. The aim in
this experiment was to test whether a visual stimulus can be added to the moving
plaid, so that the strength of attraction of the motion perceived are manipulated in
an excitatory or inhibitory way.

One method to induce oculomotor biases was to use a RDK at the centre of the
stimulus. Our aim was to establish a coherence ratio that would generate implicit
micro-pursuit movements in the same direction as the signal and corrective micro-
saccades in the opposite direction.

Hypothesis: there exist some interaction between the direction of
induced eye movements by a RDK, and the moving plaid percepts’
durations, i.e., one can influence percept durations by manipulat-
ing the RDK. If true, one could then deduce that a bottom-up pro-
cess explains the perceptual dynamic, partially. If no interactions
are measured, one can only conclude that eye movements induced
by the RDK cannot influence percepts’ durations.

The relationship was not expected to be necessarily symmetrical; indeed inhibition
should be less powerful as excitation.
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Random-dot kinematogram.
A RDK is a set of points that have random movements in a defined area. Different imple-
mentations exist (Scase et al., 1996) with the three main noise methods combined with two
dot signal selection methods (see Fig. 5.1).

• Random position—when a dot is selected as noise, its next position will be chosen
using a random distribution—mostly a uniform distribution over an area, but not
necessarily—and it will be relocated at that position at the next iteration.

• Random walk—when a dot is selected as noise, it will follow a random walk, also
known as Brownian motion (Einstein, 1956), in which the dot’s direction and ampli-
tude are randomly picked over each iteration.

• Random direction—when a dot is selected as noise, it will have a fixed motion
direction which is drawn once for its entire life time, at birth.

• Same—when a dot is selected as noise, it remains so for its entire life time.

• Different—dots are selected as noise at each iteration.

These methods generate different spatio-temporal dynamics, visually and perceptively, and
the coherence ratio—e.g., the percentage of dots that are associated to the signal—affects
visual decoding with varying degrees of efficacy (Scase et al., 1996; Pilly and Seitz, 2009).
In other words, the threshold for the correct detection of the signal’s direction varies across
RDK methods. Moreover, it has been reported that the smooth pursuit latency and early
eye acceleration are not affected by the type of RDK, but late eye acceleration, pursuit
gain and perceived velocity were dependent on RDK type (Schütz, D. I. Braun, Movshon,
et al., 2010). Perception and pursuit performance also showed correlated dynamics. The
authors interpreted their results as the pursuit system showing a capacity to integrate across
directions of the RDK’s signal, but not velocity.

The Eye Movements experiment used a RDK to verify whether oculomotor dynamics
could be manipulated over a continuous observation trial of a multi-stable moving
plaid stimulus. The experiment explored the combination of RDK with and without
the moving plaid, a variety of orientations for the RDK signal direction, different
proportions of RDK dots being attributed to the manipulated signal, and control
trials without RDK and full noise RDK. The experiment, for now, does not find
empirical evidence that a RDK based on same random direction, 10% or 20% of dots
moving in a coherent direction and presented in the gaze fixation circle area at the
centre of screen, and in the fovea, will influence oculomotor dynamics. In fact, when
presented with the moving plaid, these dynamics seemed to be dominated by the
multi-stable perceptual changes. In other words, the use of RDK was not effective
enough for oculomotor modulation, such that excitatory and inhibitory behaviours’
impact on perceptual dynamics may be tested in our Gaze-EEG experiment (more
details on the design in Appendix A.8). However, the algorithm developed to analyse

204 Chapter 5 Multi-stability as a probe of synergy between action and percep-
tion?



Figure 5.1. Random-dot kinematogram. Schematic illustration of the six types of sig-
nal/noise display generated by the rules described in the text. The figure shows
examples with 50% coherence and rightward signal motion in each case. Dots
designated as signal dots for the following displacement are shown as open
circles, those designated as noise dots are solid circles. In the random-position
case, the displacement vectors shown join each noise dot to its new position
selected by the plotting algorithm; for the visual system, these are not necessar-
ily the most effective pairings for generating motion signals. Figure taken from
Scase et al. (1996).

gaze data, in the context of RDK or moving plaid influences, can be used for further
investigation of the impact of eye movements in multi-stable perception.

To provide answers to the hypothesis given above, we would need to carry another
version of this experiment with less RDK orientation conditions (e.g., a minimum of
three directions: -60°, 0°, and 60°) and with at least two conditions for RDK ampli-
tude values (e.g., presence vs absence of RDK). Based on this initial exploration, the
size, or spatial location, of the RDK should also be investigated: pursuit movement,
OKN, or OFR eye movements are best generated when affecting peripheral vision,
rather than central vision, as is the case in the presented setup. Disentangling eye
movements produced by the moving plaids from an additional oculomotor manipu-
lation is not a trivial task, from an experimental perspective. It is however crucial to
strike a controlled balance between the percepts and a oculomotor manipulation, so
as to investigate the influence of the latter on the former.
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5.3 Eye movements as objective markers in ambiguous
perception

Noisy Motor Events experiment.
In this section, we cover a first attempt at implementing a no-report paradigm for the
experimental investigation of the moving plaid. This work was carried out in the context
of Eva April’s internship, in which she carried out most of the experimental work, which
had to be finished in a reduced time frame. This is why, some of the methods developed
in Chapter 4 (e.g., the probabilistic observer model) were not applied in the protocol. The
presented analyses were carried out after the internship. The results presented here remain
preliminary but may provide insights for the reader.

An experiment to test the blind condition, proposed in Section 4.1, was carried out
to verify that perceptual dynamics could be inferred based on indirect, objective,
and physiological markers. Few attempts have managed to achieve this feature, and
dependency on subjective report remains a large scientific gap in the study of multi-
stable perception. The aim of this experiment was to show that perceptual dynamics
could be inferred from gaze signals. We contrasted trials in which participants were
asked to report their perception, and those in which they simply had to observe
the moving plaid stimulus. Furthermore, we evaluated whether removing the gaze
fixation task constraint would enable to have more powerful effects in the oculomotor
signals, or not. An algorithm to detect micro-pursuits and pursuits tracking moving
percepts is presented and was used to estimate perceptual epochs in our data.

5.3.1 Motivation

Bi-stability, eye movements and no-reporting literature review

Neural correlates of consciousness.
The no-reporting research field is related to research for NCC, in which the former is often a
methodological basis for the investigation of the latter. A short review of this growing area
of cognitive research is provided in Appendix A.7.

Attempts on inferring perceptual dynamics based on pupil dynamics have been
reported (Einhäuser, Stout, et al., 2008) though they have also been contested (Hupé,
Lamirel, et al., 2009). A more successful approach has been based on exploiting
the OKN associated with motion perceived on a large part of the visual field in a
binocular rivalry setting (Naber et al., 2011; Frässle et al., 2014; Aleshin et al.,
2019). The motion of gaze is directly associated to the illusory percept (Madelain
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Figure 5.2. No-report perceptual inference example.
A: Cumulative smooth pursuit (CSP) over time in an example trial showing the
temporal dynamics of OKN eye movements for a binocular rivalry. The arrows
show that ocular response is faster than key press report.
B: Violin plots showing the distribution of latencies for ocular responses and
key press report, thus confirming the tendency for faster perceptual change
reports using eye movements.
C: Violin plots of the latencies relative to key press, showing yet again, that
ocular response is systematically faster than key press volitional report.
Figures taken from Aleshin et al. (2019).

and Krauzlis, 2003) and is used to interpret the oculomotor data to estimate the
perceptual temporal series (see Fig. 5.2, taken from Aleshin et al. (2019)).

Key press and motor programming

As presented briefly in Chapter 1, multi-stable perception relies almost entirely on key
press subjective report to obtain perceptual dynamics. This is specially true for the
moving plaid stimulus (Hupé and Rubin, 2003; Hupé and Rubin, 2004; Rubin, Hupé,
et al., 2005; Moreno-Bote, Shpiro, et al., 2008; Moreno-Bote, Shpiro, et al., 2010;
Huguet et al., 2014; Hupé, Signorelli, et al., 2019). Key press report require the
observer to engage in motor programming and in cognitive processes that transfer
the perceptual representation experienced into the mapping on the keyboard and the
necessary associated action. This process can be cognitively expensive, depending
on the participant’s habituation (Ballanger and Boulinguez, 2009), and is subject
to variability in learning performances across individuals (Veltman and Gaillard,
1998).
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Given the results provided in Kornmeier and Bach (2012), we know that the motor
response is highly variable in the case of disambiguated bi-stable stimuli such as the
Necker Cube. This variability affects the precision of the measurement method of key
press for perceptual time series. In turn, if other phenomena are studied jointly with
multi-stability, correlations are hard to estimate. To the author’s knowledge, though
there have been attempts to measure multi-stable perception by other means than
key press (Naber et al., 2011; Frässle et al., 2014; Aleshin et al., 2019)—and these
have focused on using eye movements, but see Rees (2007) and Sterzer et al. (2009)
for attempts at decoding bi-stability with neural signals—these studies have not tried
to estimate the reliability of key press report. However, some studies have looked at
the issue from a neuroscience methodology point of view, in order to reduce issues
with signal synchronisation (Kornmeier, Ehm, et al., 2007), but questions remain
as to whether their solutions give rise to a phenomenon equivalent to multi-stable
perception (VanRullen and Koch, 2003; VanRullen, Busch, et al., 2011). Another
interesting approach has also been oriented on taking advantage of multi-sensory
binding to manipulate perception across modalities (Schwartz et al., 2012).

The aim of replacing key press and motor programming is to reduce the attentional
shifts that are linked to such actions, as explained in Section 4.1. Attention is known
to affect the dynamics of multi-stable perception (Kohler et al., 2008; Li et al., 2017),
though its effects differ between binocular rivalry and ambiguous figures (Dieter
et al., 2016). Attention is also known to have an impact on motor action and
learning (Song, 2019).

Other ways to report perception: eye movement

Recent results and methods using a combination of moving gratings in a binocular
rivalry setup has shown that a no-report experimental setup is possible to study
multi-stability using eye movements, and more specifically OKN, a reflexive type
of pursuit (Naber et al., 2011; Frässle et al., 2014; Aleshin et al., 2019), but other
types of eye movements seem to provide information on perception (Ee, Van Dam,
et al., 2005; Laubrock et al., 2008). In fact, in Aleshin et al. (2019), the oculomotor
analysis to detect pursuits for perceptual dynamics inference is improved using an
algorithm (see Fig. 5.3) that (1) removes unwanted oculomotor events—e.g., blinks,
saccades and fixations—and retain pursuit epochs, (2) shifts the signal’s position
to compensate the introduced offsets due to these events and obtain a CSP and (3)
obtain velocities to estimate changes of direction of the CSP. This method allows to
obtain epochs that can then be classified as linked to one of the competing percepts,
based on velocity’s direction and velocity.
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The similarities between the moving plaid stimulus, used in our experiments, and the
binocular rivalry stimulus used in Aleshin et al. (2019) are advantageous. Indeed,
the moving plaid stimulus has perceived movements with same directional properties
in the case of the transparent percept, as established in Section 4.2. Only a class for
the coherent upward moving percept needs to be added. Therefore, this approach
shows great potential to be applied in our experimental setup, in order to have a
technique to infer perceptual dynamics based on the oculomotor signals. Questions
remained however on whether the oculomotor fixation task given to reduce retinal
image variations across the trials is not a factor that can reduce the pursuit effect
expected to be exploited. Interestingly, the micro-pursuits defined in Chapter 2 may
be a key type of oculomotor events to interpret perceptual dynamics for the moving
plaid, when the oculomotor fixation task applies.

For this experiment, our hypotheses were the following:

• Oculomotor markers of perception exist and can be detected
in order to investigate perceptual dynamics in a no-report
paradigm;

• The oculomotor task plays a role in amplifying the oculomotor
markers;

• Key press and exogenous (non-ambiguous) changes show la-
tencies (> 200 ms) larger than those observed for oculomotor
markers (Aleshin et al., 2019).

Noisy Motor Events experiment
The Noisy Motor Events experiment’s methods and preliminary results are presented in
Appendix B.3.

5.3.2 Expected results

Based on the preliminary results and exploration of the data collected in the Noisy
Motor Events experiment, we will present some of the expected, and necessary,
results required to achieve a reliable no-report paradigm for the study of multi-stable
perception with the moving plaid.
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Figure 5.3. Cumulative smooth pursuit algorithm. Diagrams explaining the different
steps of gaze analysis presented in Aleshin et al. (2019) by using an example
temporal series.
A: Plot showing the original data (grey) and the detection of smooth pursuit
epochs (red) and rejected parts of the signal.
B: Plot showing the effect of the cumulative smooth pursuit shift (blue) such
that spatial offsets introduced by saccades and blinks are compensated.
C: Plot showing the first order derivative, velocity, of the gaze signal in green
with shades for±95% confidence intervals, with the inferred percepts in red, the
threshold area used in the algorithm for perceptual inference in grey, detected
and rejected perceptual switches marked by dots on the time series. Below,
snap shots of C showcasing I a remain in percept scenario, II an extended and
prolonged transition from one percept to the other with rejected threshold
crossings within, and III a clear transition from one percept to another.
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Perceptual inference based on eye movements

To achieve a reliable no-report paradigm, we need to have signal processing and
percept inference algorithms, based on eye movement data, that provide results
highly similar to the reported perceptual changes, in the report condition. For that
purpose, the metric, used to compute the similarity between reported subjective
perceptual timelines and the timelines inferred from physiological markers, needs to
be chosen adequately. For instance, we can expect eye movement percept reversal
to precede key press, as the former is associated to lower latencies, around 100 ms,
while the latter tends to be closer to 400 ms. In fact, this was observed in some of
our data, in qualitative manner, and is coherent with the results reported by Aleshin
et al. (2019).

Given good perceptual inference results could be achieved, we would be able to
contrast perceptual dynamics, based on objective markers, and compare latencies,
percept duration distributions and investigate how the key press motor effort may
affect the perceptual (and oculomotor) dynamics. For instance, our theoretical
prediction predicts that pressing a keyboard key requires some level of attentional
shift (see Section 1.3 in Chapter 1), which should in turn, introduce noise in the
perceptual system, thus increasing the probability of perceptual change. This could
be analysed by looking at how often rapid consecutive changes, i.e., short consecutive
percept durations, occur in report versus no-report conditions. Such a result would
provide further evidence for the Premotor theory of attention, and the necessity
to consider its consequences in continuous viewing paradigms with subject motor
report.

A last non negligible point is the following: not all three moving plaid’s percepts
are equal. Our preliminary analysis and the results presented in Section 4.2 in
Chapter 4 show that transparency percepts are harder to discriminate, based on
perceived motion direction. Indeed, unlike for coherency where the entire stimulus
moves in one direction, the transparency percepts have two direction of motion,
and the competition relies on depth ordering. This may lead to observer reporting
one transparency percept, e.g., left transparency, but tracking with the eyes the
grating perceived at the back moving rightwards. Furthermore, as explained in
Section 4.1 in Chapter 4, the ambiguity rising from the aperture problem leads to
slower perceived motion in the direction that is orthogonal to the bars’ square wave
front. This may pose problems if pursuit is selected as a physiological marker, since
pursuit operates best in a restraint target velocity interval. For instance, participants
may track the transparency percepts’ motion, while moving gaze along the bar, thus
creating elliptical motion in space and over time.
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Choosing an oculomotor task

Intention, or top-down processes, also play a role in trials lasting over 20 sec-
onds. In the Noisy Motor Events experiment (presented in Appendix B.3), we tried
to manipulate the oculomotor task given to participants by having blocks where
participants had to fixate a static dot at the centre of the stimulus, and blocks in
which, participants could explore the stimulus freely. We expected to observe more
percept pursuits and micro-pursuits in the latter condition, which would provide
clearer perceptual signature to decipher perception blindly. However, manipulating
the oculomotor task makes controlling the visual input on the retinal projection
much harder. Even though fixation tasks are hardly immune to FEM, they greatly
reduce the variations on the retinal projection, hence giving more certainty on the
interpretation of the perceptual behaviours observed.

A third possible oculomotor task, which was not investigated here, would consist in
asking the participants to explicitly track, with their eyes, their percepts. With such a
task, decoding perception would be easier, as pursuit suppression would be expected
to be less present; for instance, the OKN is a powerful oculomotor phenomenon
hardly suppressed. Another argument for this approach can be derived from the
results observed in the explicit micro-pursuit task’s results, reported in Chapter 2.
These results suggested that intentional pursuit can be detected more efficiently,
when the task is to explicitly follow a target, than for a distractor target. In future
works, this third oculomotor task should be explored, and we expect to observe
better pursuits, and thus, better perceptual inference.

Ambiguity manipulation

As explored in Section 4.3 in Chapter 4, manipulating the ambiguity of the moving
plaid can be achieved by controlling the gratings’ transparencies, and improved when
a probabilistic model allows to compute the points of maximal ambiguity. In the
Noisy Motor Events experiment, unfortunately, we could not implement this method,
and brutal exogenous changes to the stimulus were carried out. These trials provide
a third time series to compare with the key press and the eye movement time series.
This part of the data can be useful to characterise the differences between report and
no-report conditions; for instance, for latency, i.e., reaction time, with exogenous
changes, one can access a precise onset. Finally, the non-ambiguous data is key
to infer neural correlates and signatures, using neuro-imaging techniques, such as
presented and designed for the Gaze-EEG experiment, presented in Appendix A.8.
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Synthesis & perspectives

This last experiment shows that moving towards no-report paradigms in on a tri-
stable moving plaid stimulus is a complex procedure. Unlike the bi-stable stimulus
used in (Aleshin et al., 2019) which generated OKN reflex eye movements, here
the role of attention and top-down processes may be more important, making eye
movement behaviour less systematic. A change in the oculomotor task phrasing
might be an interesting path to improve such an approach and have more confidence
in the data processing, such that data in the no-report condition can be analysed
and interpreted. Finally, the data processing methods may be improved, as in Ap-
pendix B.2, by the use of model library (such as the GraFEM model from Chapter 3)
in order to make links between formally understood model parameters and observed
data. This may be achieved by comparing measured gaze trajectories to a library
of simulated gaze trajectories, using, for instance, the similarity metric of MPC
presented in Chapter 2, or also by computing the probability that the data has been
generated by a model given fixed parameters such as the one presented in Chapter 3.
Another interesting perspective would consist in finding characteristics in the Fourier
domain of the gaze signals. Quaternion Fourier analysis has been recently applied to
different bi-variate signal problems (Flamant, 2018) and exploring the gaze’s elliptic
properties through such analyses could offer new insights.
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5.4 What does stability mean for perception?

In this thesis, we have looked at multi-stability, a regime of stability where multiple
stable exist for a system. We have looked at it in eye movements, in perception and
in models. Here we reflect on the larger context, and how this regime might relate
to other regimes of stability (e.g., instability).

5.4.1 Oculomotor multi-stability

The work presented in Chapter 2 on micro-pursuit, combined with the GraFEM
model simulations, presented in Chapter 3, provides a view of eye movements
as a multi-stable process, in the experimental conditions where a fixation target
and a perceived target co-exist. This approach provides a way to read oculomotor
dynamics, such as the ones presented by Yarbus (1967) (see Chapter 1), as driven by
a system that has multiple stable attractors, in the visual field. These attractors may
be due to bottom-up processes (e.g., salience, attention) or top-down signals (e.g.,
task, intention). The measured and observed gaze dynamics thus live in multi-stable
regime, where multiple varying and dynamical attractors co-exist and compete for
eye movement programming.

The framework proposed allows to reproduce all FEM (and possibly macro eye
movements) as shown in Chapter 3, and provides a theoretical tool that can be
interpreted intuitively—the gravitational basis of the model is understood by most
who experience gravity on earth—and formally, as it has been a extensively re-
searched and documented family of models in Physics. Furthermore, this type of
approach could be adapted to more ecological contexts as the number of attractors
may increase, and attractors may represent aggregated features, in a similar way as
perceptual objects are aggregation of visual features, interpreted by the brain.

Going beyond eye movements, one may look at integrating them with neural corre-
lates, by making joint neuro-imaging measurements. Indeed, this is something that
motivated the experiments presented in Chapter 4, Appendix B.2 and Section 5.3.
Though a design is proposed in Appendix A.8, based on the results presented in the
thesis and the theoretical analysis conducted in Section 4.1, many challenges remain
to be solved, before having sufficiently robust methods to investigate the NCC of
multi-stable perception. To summarise them, one should (i) further develop an
oculomotor manipulation method on the stimulus, (ii) enhance perceptual inference
and detection algorithms, based on eye movements, (iii) anticipate issues with
temporal synchronisation using EEG (or MEG), and (iv) find practical solution to
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solve attention variation in continuous viewing paradigms, especially with multiple
measurement instruments interacting on participants.

5.4.2 Model extension

In Chapter 3, an oculomotor model and a perceptual model were presented, and
briefly studied for the goals of the experiments presented in Section 4.1 (Chapter 4).
But a lot of work remains to be done on such models. The GraFEM, oculomotor,
model has been used to reproduce only FEM, but simulating other oculomotor
phenomena (e.g., saccade deviation, anti-saccade, scene exploration, reading, visual
search, etc) should be feasible. Interpreting the model’s parameter for each phe-
nomenon may provide a holistic vision of oculomotricity and how these observations
relate to one another. Each phenomenon would require to inverse the model, a
considerable theoretical work, which far exceeded the scope of this thesis, but would
probably provide a lot of predictions that could be tested experimentally.

As such, the perceptual model studied in Chapter 3, based on GraFEM, was also
studied in a very limited way here. More theoretical work on the role of the
deterministic force, namely adaptation, is needed to understand its relationship
perceptual dynamics, and provide predictions for experimental work. Indeed, as
mentioned in Chapter 1, this point remains unclear to the research community, in
particular on how it may be implemented in the brain. Though this model may not
provide direct answers, it could be a tool to model multi-stable perception beyond
bi-stability. By investigating the phenomenon with more states, the properties of
adaptation, or mutual inhibition between percepts, may be exposed further since it
is the force that chooses the percept.

One of the proposed framework’s strength is its flexibility to provide models for
perception and eye movements. Although these have been shown separately in
Chapter 3, model fusion was not investigated, unfortunately. Indeed, an interesting
perspective lays in the possibility of looking at both models simultaneously, and
proposing different architectures, i.e., hierarchies, to study an enacted multi-stable
perception, and to test and identify the best fitting models that explain the data.
This approach could provide insights on how the oculomotor and perceptual system
are coupled together when facing motion ambiguity. This research question further
extends to understanding whether multi-stability is a regime of stability linked to
system coupling, and what this regime means for the studied system; the brain.
Similar approaches exist for data analysis of neural activity. For instance, T. Watanabe
et al. (2014) investigated macro dynamics of fMRI activity using methods based on
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Figure 5.4. fMRI activity in multi-stable energy landscapes. Schematic illustration of the
methods used to analyse fMRI data during a bi-stable perception. As different
regions of the brain display changing fMRI activity pattern, the activation is
considered as a system in its parametric space, where attractor states exist. The
energy landscape provides probabilistic information on the system’s behaviour
patterns. Figure taken from T. Watanabe et al. (2014).

energy potential modelling, where attractors provide stable states for the system.
Hence they were able to interpret activation over various anatomical structure in the
brain to individual’s bi-stable behaviour (see Fig. 5.4 for a schematic illustration).

5.4.3 Meta-, mono-, & multi-stability

A higher level of abstraction and investigation consists of placing multi-stability
in its context of behaviour regimes. As mentioned in Chapter 1 and Chapter 3,
theoretical research are investing questions underlying how, in the brain, system
interact and couple their processes. In this context, multi-stability can be interpreted
as a behavioural marker of system’s synergy and degeneracy1 state (Kelso, 2012). It
provides information on how complementary sub-systems of the visual one are, and
invites researchers in the field to learn new tools of analysis. One of these new tools
is the bifurcation analysis proposed by Henri Poincaré in 1885 (Poincaré, 1885),
where the changes on the topological structure of the integrated curves of a family of
vector fields is studied by finding the solutions of a family of differential equations.
For instance, bifurcation theory has been applied to bi-stable models to isolate the
role of the system’s internal noise on the observed dynamics (Pisarchik et al., 2014;
Magallón-Garcıa et al., 2017). This method was also applied to investigate the
impact of attention on binocular rivalry by combining, and comparing, model and
experimental data (Li et al., 2017). This study provided a complete demonstration

1Degeneracy is value of component independence to generate a function in a complex system.
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of how attention is necessary for binocular rivalry to occur, and what regimes drive
the changes; namely, equal activity, oscillation or winner-take-all. These regimes
depended on percepts’ mutual inhibition and attentional modulation.

Further research is still needed to compare meta-stable, mono-stable and multi-stable
phenomena. Investigating such different regimes experimentally, while keeping
some level of control to compare data set may be challenging. However, multi-
modal investigation of multi-stable perception research have shown promising
potential (Schwartz et al., 2012). Studies coupling bi-stable auditory and visual
stimuli provide evidence that sensory modality binding occurs such that the brain
infers the most coherent interpretation of the stimulation. If methods to quantify
and control maximal ambiguity in a modality, such as the ones presented in the
Ambiguity experiment in Chapter 4, while a mono-stable or meta-stable stimulus is
presented in another modality, one could contrast stability regimes and ambiguity
interactions. Hence, such an approach may provide a first step towards empirical
and experimental characterisation of stability regimes with regards to multi-stable
perception.
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5.5 Conclusion

The works presented in this thesis show results from a trans-disciplinary approach to
visual multi-stable perception and eye movement research. By combining methods
from the signal processing, psychology and physics communities, we showed that
the oculomotor system can provide micro-pursuit eye movements in an explicit and
implicit context, with the latter being linked to bi-stable perception (Chapter 2).
We proposed an energy field particle model for eye movements and multi-stable
perception, thus providing a theory for how the two systems might be coupled, and
by using a formalism that allows the study of more than two state multi-stability
(Chapter 3). In a series of experiments, we laid ground work for the design of an
experimental design that can investigate the link between oculomotor and perceptual
system in the context of multi-stability, e.g., the moving plaid stimulus (Chapters 4
and 5). This approach featured the use of Bayesian methods on an observers’
probabilistic model of ambiguity, investigation of stimulus manipulation for the
inhibition or excitation of eye movements correlated with perceived motion, and
a first approach at a no-report protocol for the moving plaid. Overall, this thesis
aimed to provide a fresh look at a fascinating phenomenon that has been studied
over centuries. One of the most promising perspectives is to start looking beyond
multi-stability to study it. Understanding the context in which such a phenomenon
emerges, to identify contrasts with other complex dynamic systems’ regimes should
provide fundamental, and radically, new observations and understanding.
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Complementary information
on the literature review

A
A.1 Theoretical context

Before diving into the puzzling and complex mysteries of visual perception, one
should step back to see where does this phenomenology stand in our current scien-
tific culture. The study of visual phenomena has been linked to many disciplines
covering physics, philosophy, biology, cognitive psychology, neurosciences, applied
mathematics, signal processing, and more. This work is inscribed in this trans-
disciplinary tradition, now referred to as Cognitive Sciences, and aims to address
how visual ambiguity is treated and processed in the human brain by combining
methods from signal processing, physics, psychology and neuro-imaging, to research
original approaches. Therefore, covering the context and background of this research
work is essential to give light to the reader, regarding the inspiration it draws from,
but also its potential application perspectives.

A brief review of how perception fits into the evolutionary process of living organism’s
complexity will be presented, followed by a more specific picture of the current
understanding of perception in the larger study of the brain and intelligence.

A.1.1 Evolution of natural complex systems with perception

First and foremost, it is important to remind the reader that cognitive sciences relate
to the study of cognitive systems, and in this work, we focus on biological, living
systems, more precisely human cognition. It is necessary to first define what science
considers and defines as living.

"A living thing, or a self, is a part of the universe that sustains itself and
makes more of its kind."

The definition proposed above by Ruiz-Mirazo et al. (2004) is a recent and univer-
sal attempt to constrain the systems of study. In that work, the authors propose
requirements around the boundaries of a living organism, the energy transduction
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apparatus, and the presence of functionally interdependent macro-molecular com-
ponents. Another aspect discussed lies in the relationship between the organism
and its environment, as one needs to interact with it in order to grow and replicate.
More simply, though there is no formal consensus and a unifying theory of biology,
a system is considered as living when it tends to be complex, organised and with
behavioural dynamics. Therefore, living organisms tend to develop and feature
perceptual capacities and mechanisms to draw information from their environment,
from which they can obtain the energy needed to grow and reproduce.

Sensing the environment

Perception has been intensely studied and theorised by philosophers for centuries,
and even more so with the rise of psychology as a science as it poses many prob-
lems linked to the notions of reality, awareness or consciousness (T. Crane and C.
French, 2017). The definition of perception as a phenomenon of study has evolved
since Aristotle, Ptolemy and Ibn al-Haytham’s intro-mission and extra-mission theo-
ries (Hatfield, 2001). Indeed, with the advent of modern science, and with increased
knowledge drawn from psycho-physics, the phenomenon has been centred around
the relationship between a manipulable parameter in a physical stimulus and the
associated cognitive performance for detection, awareness, representation and infer-
ence. As defined in the Oxford English Dictionary:

Perception: the neuro-physiological processes, including memory, by
which an organism becomes aware of and interprets external stimuli.

To perceive, organisms need to interact with their physical environment and process
sensation signals. The physical properties are extracted and converted into informa-
tion through encoding processes. Perception can be described as a three component
phenomenon (Delorme and Flückiger, 2003):

1. physical stimulation,

2. physiological sensing,

3. psychological and cognitive representation.

Essentially, information on the physics of one’s environment varies.
These variations are captured through different modes or channels,
and the information is fused and interpreted by the brain in order
to be used for other cognitive tasks, such as decision making for
instance. Sensory information can be acquired in a variety of ways
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i.e., chemical reaction, acoustical vibrations, photon detection, etc,
which are distinguished as modalities of perception; in other words,
senses.

Perceiving the world can be achieved via various methods. These are often cate-
gorised as modalities or senses. For instance for humans, olfaction relies on chemical
reactions to estimate the composition of the air surrounding, while audition is based
on the vibration of the eardrums, and for the sense of touch, the signals come from
the somatosensory system composed of a variety of receptors (mechanorepectors,
thermoreceptors, pain receptors, etc). In the case of vision, light is sensed through
photoreceptors in the eye, and more specifically, in the retina. The information from
each modality have varying benefits and constraints for the survival of an organism.
While touching enables one to gain information on the heat, the texture and the
size of an object, it requires one to be close to the object of study. On the other
hand, vision for instance enables an organism to obtain information from afar, but is
vulnerable to obstruction, when line of sight is lost. Though these modalities vary
in terms of the physics of the observed phenomenon and the physiology of their
sensors, they are combined to form complex representations of the world that are
referred to as percepts.
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The evolutionary origins of sensations.
From an evolutionary perspective, the emergence of cognitive capacities to sense the envi-
ronment can be explain through random mutation and natural selection of the most adapted
behaviours. Most complex living organisms have evolved to process information about their
environment in order to find and extract energy from it, in order to grow and reproduce. But
some species—i.e., the Trichoplax—do not need to make decisions to move and use random
motion to get food (C. L. Smith et al., 2015). Thus, developing a sense of a self, in contrast
with the environment, can positively help make a moving living organism take a decision on
its next movement. In the study of consciousness and perception, this is an elementary step
to guarantee the survival of species with complex behaviours. In fact, the neuro-physiologic
mechanisms on which conscious cognitive tasks are based use many evolutionary ancient
neuro-biological structures that can also be found in early points of vertebrate brain evolu-
tion (Mashour and Alkire, 2013). This suggests that the development of neural capacities
to represent a self is at least intertwined to, or precedes, the development of perception.
This view might differ from the traditional and popular narrative in which consciousness is
often placed as higher in an often unjustified hierarchy of cognitive functions. As we shall
see, we will argue that the emergence of perception and consciousness are interlinked and
complementary. The capacity to determine a self and process one’s internal state, in other
words to be self-conscious, can be seen in the example of the Dugesia Tigrina worm. It
shows simple behaviours: it can sense its internal state of hunger, and if it is not hungry,
it rests while if it is, it starts sensing its environment in search of food (Sheiman et al.,
2002). Hence, perception serves a purpose for dynamic organisms; it allows them to sense
the world around them when in search of food, but also many other behaviours as their
perceptual capacities grow.

From sensation to perception

Why do living organisms perceive? Fundamentally, perception can be considered
as a means for active and dynamic organisms to obtain and process information of
their environment and themselves, in order to make decisions. In the evolutionary
context, perception can be thought as a plural and complex phenomenon that has
emerged in most, if not all, living species, and facilitates the task of finding new
energy sources for reproduction and survival. It is also linked to having a sense
of self and thus consciousness (Feinberg and Mallatt, 2013; Mashour and Alkire,
2013). For instance, with the rise of vision as a modality, distant information can be
captured, thus making it possible for beings to distinguish their organism from their
environment. The multi-modal aspect of perception and its necessity to constrain the
information of its inputs generates percepts. These percepts are representations of
the world that can be held in the brain and manipulated. Once theses representations
are held, the phenomenon of memory arises as percepts need to be remembered to
be manipulated and exploited (Klein et al., 2002). This is linked to the notion of
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object permanence introduced by Piaget and Cook (1952) as a marker of percepts
being maintained beyond the sensory information flow and raises many questions
regarding how the brain and perception operate this. Furthermore, developmental
studies show that perception is actually a learned phenomenon. Indeed, human
children, for instance, seem to fine tune their perceptual systems before showcasing
further complex cognitive capacities (Tomasello, 2000; Gervain and Mehler, 2010;
Ullman et al., 2012).

To synthesise, perception can be seen as a complex information
processing phenomenon that enables a living organism to make
decision based on its sensing of itself and its environment. As per-
ceptual modalities diversified, in the evolution of species, their cog-
nitive systems adapted and developed novel cognitive functions—
e.g., memory, learning, language, consciousness, meta-cognition,
etc—as perception became more complex.

Perception for building a mental representation of the world

In cognitive sciences, the direction of the information flow is essential in order to
attempt to break down and understand the processes. This leads to representations
of the process and phenomenon with simplified pathways and general views such
as top-down and bottom-up approaches to sensory signal processing. The implied
hierarchical view of perception suggests that at the bottom of the process, sensory
information is captured through the variety of physiological receptors present in
a living organism. At the higher end, cognitive functions (i.e., memory, learning,
consciousness, etc) aggregate information from lower processes to make decisions.

This paradigm is mostly inherited from the cognitivist approach to cognition (Fodor
and Pylyshyn, 1988; Turing, 2009), where the brain operates in an essentially
modular fashion. Hence information can be driven upwards, from sensory to
perception, and further so, the living organism can understand its environment and
interact with it. Philosophers have also proposed alternative paradigms that affect
the very definition of perception and how it can be conceived, and modelled.

In the connexionist approach (Rumelhart and McClelland, 1986; Smolensky, 1988;
Andler, 1990), cognitive functions are considered as emerging phenomena from
highly inter-connected complex networks of neurons and synapses. Though this
view keeps a notion of sensory input being driven by physiological receptors, but
the processing of information is much less modular in the later stages. Thus remains
a notion of direction of information flow, with the nuance that it breaks down once
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it reaches the cortex. In this paradigm, cognitive function are not considered to be
separated and independent, especially spatially, but are driven by the biological and
information processing properties of neurons and their inter-connections.

Finally, a more recent approach has been proposed, the embodied or enacted cog-
nition (Varela, 1996a; Glenberg and Kaschak, 2003; M. L. Anderson, 2003), in
which cognitive functions are considered as emerging phenomena as well, but the
distinction that removed sensory receptors from consideration is removed. Thus,
the properties and constraints of the physiological sensors are considered in the
modelling and understanding of the studied cognitive functions. In other words,
cognitive functions are profoundly active, with abstract and multi-modal representa-
tion of the world being driven and moulded by physiological characteristics. Overall,
these approaches have a common view of perception as an information process-
ing phenomenon in living organism where sensory information is captured and
processed into representations, which can be used to make behavioural decisions.

In other words, cognitivists, connexionists and embodied cognition fields do not
differ on the fundamental reasons that justify the presence of perception, however
they vastly disagree on its implementation and conceptualisation1. Biological systems
tend to do so in an energy efficient manner, as opposed to artificial systems (Friston,
2010; Glasgow, 2018). This can be justified by the evolutionary origins of such
phenomena. Indeed, an efficient approach for a system with high energy constraints
is to extract information from sensory inputs and maintain it in its working space by
doing inferences (Delorme and Flückiger, 2003). Perception is, as of today, widely
acknowledged as an inference mechanism, and therefore, opens up many questions
regarding the computational methods associated to it. In fact, perception is an
interpretation of the captured information, a form of encoding in which information
is abstracted and transformed to be used to orient an organism’s purpose (Wandell,
1995).

The work presented in this thesis is fundamentally derived from
an active cognition perspective, where cognition is embodied or en-
acted and highly interlinked to physiological sensors that capture
the visual information and the perceptual phenomena. The focus,
here, is on how ambiguity arises for the perceptual system, and
how is it dealt with. When considering the inferential mechanisms
that can fit the observed behaviours, ambiguity might emerge from
insufficiently clear sensory information and when competitive in-
terpretations are present.

1Influential researchers from cognitive sciences are mapped in Fig. A.1 (Núñez et al., 2019).
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Figure A.1. Map of cognitive sciences.
a: an overview of the different research fields involved.
b: influential researchers according to research fields (angle) and philosophical
positioning (scalar).
Figure taken from Núñez et al. (2019).
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A.1.2 Perception as a cognitive process of information

Information flows in perception

Neuronal systems treat the information flow in the brain when perceiving. These
biological systems are characterised by their diversity and multi-morphism (Eccles,
1965), but also by their plasticity (Conel, 1959; Fentress, 1999; Brown and P. M.
Milner, 2003). An estimated 1012 neurons lay in the brain and they vary in terms
of connectivity, size, shape, organisation, architectures, etc. In other words, there
is a high diversity of types of neurons. Neurons are connected to other neurons
through synapses which, depending on neurons, can vary between 1 000 and 10
000 synapses for a neuron. It is through these synapses that the information is
transferred in the brain. Neurons react to the level of excitation at its dendrites, its
inputs, and activate its own output through an electric discharge in its axon. The
information is coded in spike rates and trains of incoming electric signals (Gabbiani
and Koch, 1998).

Neurons and their synaptic connections form large complex networks that are able to
produce many operations on the information flowing through them. As information
is manipulated by the operations of neurons and their synaptic connections, the
network applies a variety of filters, classifications, error correction, generalisation
processes and more (Hopfield, 1982). The networks of neurons and their synaptic
inter-connection lead to a variety of structures known to have different functional
roles. For instance, in the olfactory system, the structure makes the sensory informa-
tion converge and diverge, while also showcasing diverse inhibitory processes and a
centralised control of the emerging percept (Hérault and Jutten, 1994). Another ex-
ample, the visual system, shows a layer based structure with columnar organisation
of the information flow, a parallel dispatch of the information content, and matrices
of columns coding for the orientation of the visual information (D. H. Hubel and
Wiesel, 1962; D. H. Hubel and Wiesel, 1968; Hérault, 2010). The difference of
organisations and architectures of neural networks in the brain gives some of these
networks specific functional roles, most notably near the sensory input. However,
once the information is spread in the neo-cortex, the signals’ processing is extremely
vast, done in parallel and asynchronously. It is probably for that reason that complex
behaviour and processes emerge.

262 Appendix A Complementary information on the literature review



Complexity in the brain.
The complexity, briefly described above, provides vertebrates’ brains their capacities to act
and interact with their environment. Complexity, here, is characterised by:

• the number of neural units and their connections,

• the large variability in the biological and chemical composition of these neurons,

• a highly complex metabolism,

• a system that operates at multiple scales (molecular, cellular, network and be-
havioural),

• and with a variety of architectures.

Other interesting properties lie in the robustness, energy efficiency and performances of the
brain as a computing system. Indeed, vertebrates have functioning brains for long life spans,
some loss of components does not necessarily degrade performances and mostly, brains show
high plasticity and capacities to adapt and learn (Dayan et al., 2001). In an evolutionary
context, these features have been useful and essential in the survival of species with such
complex processing system. The highly diverse, parallel, and complex nature of mammal
brains have made them capable to adapt and evolve rapidly to changes in their environment,
giving them more chances to survive (Adami et al., 2000; Godfrey-Smith, 2002). Here again,
nature offers different layers and methods for the evolution of behaviours—e.g., genetic
changes, neural plasticity, social identity, etc. Perception and consciousness are phenomena
that give organisms methods to treat information of their environment, and adapt these
methods.

From perception to consciousness

Perceptual information can sometimes be experienced by human primates con-
sciously. For instance, you, the reader, can be conscious of the visual information you
experience in order to read this manuscript, when considering the text’s visual forms
(e.g., letters, words, spacing, etc) rather than its semantic meaning. This degree
of consciousness is somewhat vague and troublesome to define as, for instance,
experienced and efficient readers run through words with no need to consciously
process letters individually (Rumelhart and McClelland, 1982). This is not the
case for children learning to read who represent an extreme example of readers
with little experience in the task (Casco et al., 1998; Blythe et al., 2009). The
phenomenon of consciousness has remained a mystery to most researchers and
intellectuals as far as written history goes (Van Gulick, 2018). A marking turn in
philosophy has been the work of René Descartes, which led to the view of dual-
ism (Descartes et al., 1970). The idea, that conscious thoughts and objects live in a
world separated from the physical world, has since been discarded by materialist
and scientific approaches (Dennett, 1993; Damasio, 2006). The range of solutions
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are vast and the phenomenon is hard to study as it is deeply linked to introspection
and methodological constraints (Dennett, 1993; Varela, 1996b; Chalmers, 2007),
and many thinkers have proposed creative and wide paradigms—e.g., the absence
of consciousness in Behaviourism, the presence of consciousness in all things in
Pan-Psychism, consciousness as the interpretation of quantum gravity derived from
Gödel’s uncertainty theorem (Penrose and Mermin, 1990) or consciousness as a
cultural construct (Jaynes, 2000).

The link between perception and consciousness is important in
this thesis’ work, as the phenomenon studied historically has re-
lied on conscious subjective reports of dynamics experienced by a
subject. Therefore, the methodological problems addressed in con-
sciousness research are related to those faced in conscious percep-
tual dynamics studies.

Of the philosophical frameworks presented in this section, one is particularly capable
to provide researchers with solutions to these methodological issues: embodied
cognition. It conceives cognition and perception as deeply dependant and inter-
twined with the agent’s body. Though its premises might be found in the study of
metaphors in languages (Glenberg and Kaschak, 2003; Lakoff and Johnson, 2008),
embodied cognition can be defined more generally. The framework mostly considers
the following notions.

• Constraints from the agent’s body, as the sensory inputs to perception and
cognition are parts of the body, their nature and features will mould how
cognitive processes develop.

• Distribution of the agent’s cognitive processes in the body: it implies that not
all cognitive computations are done in the central neural system, the brain,
but also some is done in other organs—e.g., the heart (Park et al., 2014).

• Regulation of the agent’s cognitive processes by the body’s state: meaning that
action and energy from the body is needed to ensure cognitive processes.

To illustrate these general aspects, in the case of vision, the information that en-
ters the eyes can be greatly affected by the dynamics of the eyes themselves. In
Appendix A.2, it will also become evident to the reader, as we review our current un-
derstanding of human vision, that given the physiological properties and capacities
of the sensors, the perceptual processes were likely developed to adapt to those. For
instance, visual percepts may fade out if their image on the retina is stabilised for a
period until the eyes move again (Riggs et al., 1953; Yarbus, 1967; Blakemore et al.,
1971; Cohen et al., 1977; Martinez-Conde, Macknik, and D. Hubel, 2004).
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Hence, it is in the context of the embodied and enacted cognition paradigm that
the works presented in this thesis should be interpreted—though not necessarily
incompatible with the other paradigms. It allows the consideration of the body and
action as parts of the cognitive processes, and more specifically, in our case, we may
look at the links between eye movements and visual perception. However, how is
visual consciousness or awareness approached for research? In order to address
this type of question, it is necessary to define conscious information, and to review
what is considered as visual perception. This step is needed as the first relates to
subjective experience and introspection, while the scientific method aims to model,
predict and measure phenomena as objectively as possible.

The distinction has mostly been drawn through contrasting methods developed over
the decades in psychology and neurosciences. For instance, differences between a
subjective experienced of a perception being reported consciously versus unconscious
perceptions (Baars, 1993). This approach must be reproducible even though it
may have variability from one trial to another, or from one individual to another.
One approach is to work on the masking of a stimulus so that it can be either be
perceived consciously or not in a task, and see how behavioural performance or
neural correlates are affected (Dehaene and Naccache, 2001; Dehaene, Naccache,
et al., 2001). Another approach is to study phenomena where the conscious state of
perception changes, or alternatively, the lack of conscious changes while the physical
stimulus varies (D. A. Leopold, 1997; Mamassian, 2006; Chopin, 2012).

In this section, we have looked at how cognitive behaviours from increasingly
complex organisms have led to the emergence of perception and consciousness. In
the next section (Appendix A.2), we shall focus and present the visual modality of
perception in humans, from photons to percepts.

A.1 Theoretical context 265



A.2 From the eyes to the brain

This section offers an introduction to visual perception. It develops into how the
brain, with the eyes, reconstructs a rich representation of the world, starting at the
physics of light to the neural pathways that feed the visual cortex.

Terminology.
The terminology of vision provides a structure to phenomenon, based on the information
flow and its processing. We shall refer to low-level vision, as is common in the literature,
for the early stages of visual processing (e.g., the eyes, the retina, photoreceptors, lateral
geniculate nucleus, etc). And high-level vision will refer to the perceptual experience and
the processes associated to it in the brain.

The physics of vision

Vision relates to the act of sensing the light of one’s environment. The field in physics
that studies light is known as optics and has provided a strong understanding of the
phenomenon over centuries of scientific research. It is known that light is composed
of photons which act as quantas—i.e., minimal and granular units of energy—and
behave like waves and particles. Photons are mostly considered to have particle
behaviours in vision science (except for colour science) and will be considered as
such in this work. In physics, photons are known to have their source in hot bodies
(e.g., the sun, stars, fire, etc) and to radiate away from their origin. As small particles,
they travel through the air in quasi-straight lines at high speeds (more on photon
displacement in the box below). However, photons rarely hit the eyes directly: they
are usually reflected on many parts of the environment, which correspond to the
illumination of objects. In vision science, we refer to luminance for the physical
quantity that corresponds to the amount of visible light, i.e., the number of photons,
falling on a surface over time (S. Palmer, 1999) and it is expressed in candela per
squared meters—abbreviated to cd.m-2— (BIPM, 2006). It may be linked to a more
familiar notion, brightness, though it is not done so in a straightforward manner.
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Photons.
In vacuum, that speed has been established as the constant c of 299 792 458 meters per
seconds (m.s-1) and corresponds to a single Planck unit. The Planck units were proposed
by Max Planck as the natural constants of physical cosmology because they were defined
solely by properties of free spaces and are not of any chosen object or particle. They set
the granular limits of the standard model of physics. The other four constants are the
gravitational constant (G), the reduced Planck constant (~), the Coulomb constant (ke) and
the Boltzmann constant (kb) (Penrose and Jorgensen, 2006). However, in the air, the speed
of light is affected by the refractive index defined as n = c/v, where v is the velocity of light
in the air. Thus, given the refractive index of air (n = 1.0003), the speed of light in air is
approximately 299 702 547.2358 m.s-1.

Light has three main types of interaction with a surface (see Fig. A.2b):

1. transmission, in which the photons go through (and can be refracted),

2. absorption, in which the photons are trapped and,

3. reflection in which photons bounce back in different directions.

Reflection implies that light interacts with a surface and the direction and angle of
photon propagation changes. For instance, in visual perception, the properties of
reflection help infer on texture properties; a matte surface will be associated to a
different type of surface than a specular (see Fig. A.2b). This is due to how the light is
reflected—in a diffused fashion for the matte surface, a coherent one for the specular.
Surfaces are considered as secondary light sources as they imply an interaction with
the original light that can be perceived to infer an object’s properties.

(a) Transmission, absorption & reflection. (b) Matte versus specular surfaces.

Figure A.2. Light interactions.
(a) Diagram showing the three types of interactions between light and an
object.
(b) Diagram showing differences in light diffusion when interacting with a
matte and a specular surface.
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It is also worth noting that the photons captured can be considered as the ones con-
verging towards the eyes. The converging flow of photons represents the available
visual information for an observer and is named the ambient optic array (AOA) (Gib-
son, 2014). The AOA means that vision is possible because at a point of observation,
the light converges and thus, environmental objects can be sensed, and given the
properties of photons, the light provides, in most cases, a straight forward image
of the environment—i.e., photons move directly to that point and have consistent
behaviours. When adding a time component, we obtain a dynamic AOA which
correspond to the optic flow of photons arriving at a point of observation. Thus, at
such a point of observation, an image of the environment, based on the array, will
provide visual information for a sensing entity, like a human being. There are two
important considerations that are derived from this notion:

1. the observer has a point of view because he has an incomplete access to the
visual information present in the environment and,

2. vision is based on an image of the environment at the sensors’ position, namely
the eyes’ retinas.

The image is often named the retinal image and contains the visual information
that will be treated by the visual system. That image is merely a projection of the
optical flow available on a surface, the retina. Thus, the environmental objects
perceived are considered as stimuli that can either be distal2 or proximal3. The
notions presented here mean that, in vision science, we will consider and specify the
size of a stimulus—e.g., an object—as a visual angle. Visual angles are computed
using the following equation and are measured in visual degrees (deg) or degrees of
arc (Kaiser, 2004).

V = 2 arctan
(
S

2D

)
(A.1)

where V is the visual angle, S the frontal extent of the object in the environment
and D the distance between the eyes and the object (see Fig. A.3). This corresponds
to the size of the object as a proximal stimulus at the point of observation, given an
AOA; in other words, the size on the retinal image for an observer.

The retinal image is two dimensional though we experience the
world as three dimensional. Perception therefore goes beyond sens-
ing; it is also an inverse problem. The brain reconstructs the ob-
server’s environment based on observations, but also what it has

2Distant from the observer.
3The optical image on the retina, at the back of the eye.
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Figure A.3. Retinal image projection. Diagram showing the geometry of retinal image
projection and the computation of visual angle.

learned in the past. This is where one of the key characteristics of
visual perception intervenes; it is an inferential process.

The eye, a biological light sensor

Our understanding of what the eyes are composed of and how they work has evolved
since Plato’s emanation theory4. But the contemporary understanding of the eyes is
founded in Alhazen’s idea that conceived the eye as a pinhole camera (S. Palmer,
1999). As physicists progressed in their understanding of lenses, the derived physics
of light impacted the understanding of how the eyes might work. Johannes Kepler
combined these understandings to propose the first modern theory of physiological
optics.

Anatomically, the eyes are composed of different biological tissues that allow light
to be directed through the aqueous and vitreous humour to the retina (see Fig. A.4).
This is where the retinal image is captured with photoreceptors – cells that can
transform photonic information into neural information – and the visual information
is sent to the visual cortex via the optic nerve. Photons enter the pupil, whose
diameter is controlled by the ciliary muscles, in the iris through the pupil’s cornea

4A view in which eyes were believed to have an "inner fire" propagating rays towards the perceived
objects.
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Figure A.4. The eye. Diagram of an eye and its structure: the cornea, the iris, the lens, the
retina, the fovea, the optic disk and the optic nerve. Figure taken from Wandell
(1995).

and through a lens that focuses the optic flow on the fovea. The fovea is the central
region of the retina where the density of photoreceptors.

The retina. The retina is the region of interest in the eye as it is where the physical
light is projected and captured by a dense heterogeneous lattice of photoreceptors5.
The latter convert the light into neural activity, i.e., visual information, that is sent to
the visual cortex and beyond. The retina’s exposure to light is controlled by the iris
and the pupil as physiological aperture controllers. In other words, if high quantities
of light shine on to the retina, the pupil will constrict, and vice versa, it will dilate as
luminance decreases. However, pupil dilation also depends on internal psychological
factors and is known to be linked to emotional arousal (Hess and Polt, 1960) or
concentrations (Hess and Polt, 1964). Though the pupil acts as an aperture hole,
the cornea focuses the retinal image so that it is sharp6. These components of the

5Over 100 million light-sensitive photoreceptors cover the retina.
6The main ophthalmic conditions, e.g., myopia, hyperopia or presbyopia, are due to the focal point of

the cornea being placed in front or behind the retina. Note that the cornea is elastic and can adjust
the focal point’s position depending on whether the observer focuses on distant or close-by objects.
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eye manage the physiological optics, the front-end of the visual system. Once the
photons hit the retina, the information is transformed into neural signals.

From photons to neurons. The photons interact with cells at the back of the eye
called photoreceptors, composed of two classes: rods and cones. The former are
more numerous (about 120 millions) and are highly sensitive7 to light and located
all across the retina, except at the centre. They are the peripheral photoreceptors
and enable the detection of visual information in low luminance levels (also known
as scotopic conditions), e.g., in the dark or at night. The latter, the cones, are less
present in the retina (about 8 millions) and have lower sensitivity. They are densely
positioned at the centre of the retina, in the fovea, with exponentially decreasing
concentrations as shown by Fig. A.5 (Wandell, 1995). Cones are the receptors
that capture most of our visual experience as they function at medium and high
luminance levels (also known as photopic conditions). The fovea, where cones are
concentrated, covers a small part of the visual field of approximately 2 degrees, the
size of one’s thumbnail at arm’s length. However, this is where the visual system
captures information the most precisely and in colour—i.e., adding more dimensions
to light perceived referred to as chrominance.

Figure A.5. Cones and rods. Density of rods and cones across the human retina. Cones
are highly concentrated in the fovea at 0 degrees while rods are absent. On the
other hand, rods dominate in the periphery. Note the blind spot which has no
photoreceptors. Figures taken from Wandell (1995).

7Sensitivity means that the reactivity of the cell is higher. For instance, a rod needs less luminance,
less photons, and less time to activate.
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But, how do these photoreceptors transform a physical quantity of light, such as pho-
tons, into a neural signals? With a process called transduction (Corbett and J. Chen,
2018). Rods and cones have a similar structure, with an inner segment containing
the nucleus and other cellular components, and the outer segment where billions of
light-sensitive pigment molecules reside. These molecules are called rhodopsin in
rods and are embedded in the membranes of the outer segment. They are respon-
sible for transforming optical information, light, into electro-chemical energy that
can be transferred in neural networks. They absorb photons as these strike them,
thus changing the electric current flowing in and around the pigment molecule. The
outcome is the production of an electrical change in the outer membrane of the
receptor, which gets propagated to the synaptic part of the photoreceptor. From
there on, chemical transmitters relay the charge to the next neuron.

Neural basics.
As the gateway of neural networks for visual perception, the retina is linked to neurons,
the elementary unit of the brain and cognition. Neurons are composed of three parts (see
Fig. A.6) that play different roles in its main function: the transmission of neural activity,
an electric charge. The neuron is often presented in the direction of information flow, and
its input are the dendrites. There are usually many dendrites deployed for a single neuron
and they are sensitive to a graded potential, which correspond to the electrical difference
between the inside and the outside of the dendrite. The central part, the cell body has
the nucleus and integrates the potentials across the dendrites. If the graded potentials
surpass a threshold, the body will execute an all-or-nothing reaction, thus activating the
action potential—it may also be referred to as the nerve impulses or spikes. This has for
consequence to activate the final part of the neuron, the axon, the thin, long and myelin
sheathed—the myelin sheath speeds up the conduction of the action potential throughout
the axon and is composed of Schwann cells interlinked by nodes of Ranvier—part of the cell.
Information wise, the strength of the integrated signal at the dendrites and body is encoded
in the frequency of axonal activity, i.e., the firing rate, which corresponds to the number of
spikes per seconds. Finally, at the end of the axon, the electrical signal is transformed into
a chemical signal by neurotransmitters situated on the terminals. These are connected to
other neurons, thus propagating the neural signal on-wards. This region in between the
terminal of a neuron and the dendrites of the next neuron, where the neurotransmitters
flow, is called the synapse.

In the eyes, the photoreceptors act as the front-end of the neural visual network.
Once the visual information is converted into neural activity, it is passed on by apply-
ing a first set of information processing in retinal neurons—e.g., horizontal, bipolar,
macrine and ganglion cells. The information is integrated, encoded, concentrated
and sent in a highway to the visual cortex through the optic nerve. Interestingly,
the optic nerve is so dense with axons of ganglion cells that no photoreceptors are
present at its location, thus generating an area, almost as large as the fovea, with no
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Figure A.6. Neuron structure. Diagram representing the structures and components of a
neuron. The information flows from left to right, starting in the dendrites, with
graded potentials being integrated and converted into an action potential in
the cell body where the nucleus lies. The spikes are then transferred through
the axon to the terminals where they can be outputted to other neurons using
neurotransmitters. Taken from the internet (wikimedia).

Figure A.7. Blind spot illusion. The blind spot can be found by using the stimulus pre-
sented in this figure. Close one eye and fixate the cross with your eyes and
move gradually the support on which you are reading this thesis towards or
outwards until the dot disappears. When the dot disappears, hold it! This is the
distance at which the retinal image of the stimulus is such that all the visual
information of the dot is inside the blind spot and cannot be inferred, thus it
disappears.

capacities for light detection. This area is called the optic disk or blind spot, and it is
compensated by perception and visual processes. It can however be unmasked by
doing the little experiment shown and presented in Fig. A.7.

The retinal design is actually full of counter intuitive properties. For instance, the
photoreceptors are truly at the back of the eye, and the outer segments and the
following cells are placed in front of them, in the direction of the photons’ arrival.
However, the retinal cells are relatively transparent which allow photons to be still
detected. Another aspect is the presence of numerous dark blood vessels irrigating
the eye’s cells. They are however invisible in perceptual experience. This is explained
by the fact that as light enters the eye, the shadow of such vessels is deported over
different angles, thus the way more numerous photoreceptors still get light, more
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so when the eyes move. Finally, an important counter intuitive properties of the
lower visual system is in the dynamics of neural response to light stimulation of
photoreceptors. One may expect the latter to increase synaptic output as more
light is presented, but the opposite was shown for the receptors of vertebrates8:
the flashing of a light on the eyes of Necturus maculosus and Gekkos showed a
decrease in synaptic activity response (Toyoda et al., 1969). This dynamic is however
recorded in a positive fashion at the next layer of synapses (S. Palmer, 1999).

Visual information pathways to the brain. Once the information has left the eye,
through the axons of the ganglion cells in the optic fibre, it is crossed in the optic
chiasm. The content on the right eye goes to the left hemisphere of the brain, and
the left eye content goes the right one. Part of the information goes first through the
SC, a nucleus in the brain stem, while the rest goes through the LGN of the thalamus.
Following the LGN, the information reaches the occipital cortex (or primary visual
cortex), a brain area at the back of the skull, from where it spreads further after to
other cortical areas. The information that goes through the SC is smaller in quantity
and most of the information flows towards the visual cortex.

Before moving to describe the ways the brain handle visual infor-
mation and perception, it is necessary to review and look at how
the visual sensors, the eyes, interact with the environment (in Sec-
tion 1.1.2). Indeed, so far, we have described the motion of infor-
mation through the low-levels of vision, but that the eyes are not
static and passive components simply treating the visual flow. They
are active and can move to interact with their environment, hence
affecting and changing the retinal flow, and thus the visual content
processed.

A.2.1 Visual information in the cortex

The human cortex refers to the convoluted and folded biological tissue in the brain.
It is composed of high concentrations of neurons, often organised in layers, and
structured in two hemispheres that are approximately symmetrical and split along
the neck to nose axis. Research on damaged brains9 has shown that, though the brain
is a set of highly parallel neural networks, some areas of the cortex are systematically
used for some cognitive functions. For instance, the occipital lobe was discovered to

8More puzzling, the intuitive relationship actually occurs in invertebrate eyes.
9Often due to strokes, head injuries, or brain tissue removal.
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Figure A.8. Brain structure. Drawing of a brain showing the convolutions and folds of the
cortical tissue. The lobes are localised. Image taken from Wandell (1995).

be essential for visual decoding, as it receives the visual information from the LGN for
initial processing before transferring it to other parts of the cortex (Glickstein, 1988).
In fact, the other sensory modalities have similar dedicated area—e.g., temporal for
audition, parietal for motor control; see Fig. A.8 for a visual representation of the
brain.

Primary visual cortex

The occipital cortex has been extensively studied with a lot of data on mammals,
and more specifically macaque rhesus monkeys which have very close visual perfor-
mances to humans (D. H. Hubel and Wiesel, 1959; D. H. Hubel and Wiesel, 1962;
D. H. Hubel and Wiesel, 1968; R. Tootell et al., 1988; Roger B Tootell et al., 1988).
Invasive studies on animals have allowed researchers to probe on cells as the infor-
mation flows during tasks on which the animals are trained. Hence, insights on the
functionality, combined with anatomy studies, are used to improve the literature’s
models of the human visual cortex. We know now that once the information has left
the LGN, it reaches the striate cortex, or primary visual cortex, or even called V1,
in which the information is crossed10 as shown in Fig. A.11b. The information is
therefore divided across the two hemispheres, but is also connected by the corpus
calosum, a large fibre tract that permits information transfer from one hemisphere
to the other. Moreover, the visual information is mapped topographically in the
striate cortex, with respect to the retinal image, an aspect referred to as retinotopic

10The visual information from the left visual field is projected on the right striate cortex, and vice
versa.
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projection (more details in the box below). The visual cortex can then be separated
into functional areas addressing separate areas of the visual fields.

(a) Visual pathways
(b) Cortical layers

Figure A.9. Neurosciences of vision.
(a) Diagram of the visual pathways from the retina to the striate cortex, going
through the optic nerve and the LGN. Coloured patches show how the image is
manipulated to obtain retinotopic projection. Taken from Remington (2012).
(b) Vogt’s scheme of the fundamental plan of cellular (left) and fibre (right)
layering in the cerebral cortex. The cellular layers (I through VI) are those
given in the text and Vogt divides them into sub-layers. Taken from E. Jones
(2004).

Retinotopic projection.
The projection is relatively distorted though it keeps a higher sensitivity for the central
foveal area over the periphery. This is called the cortical magnification factor and is
coherent with the much higher quantities of conic photoreceptors at the centre of the retinal
image. However, once again, perception is not distorted, meaning that the brain operates
computations to build a coherent and stable representation.

Receptive fields

Receptive fields in V1 correspond to areas in the cortex that treat visual information
from an area of the visual field systematically. We know this since the pioneering
work from D. H. Hubel and Wiesel (1959) in which the authors showed that a cat’s
occipital neurons responded specifically to the orientations of a bar stimulus, thus
playing a role in detecting contour and orientation in the visual field. The receptive
fields, each composed of multiple neurons, are connected to each other with some
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Figure A.10. Receptive fields. Diagram showing orientation selectivity of receptive fields in
the primary visual cortex. Each set of central and peripheric circle corresponds
to a neuron that react to an orientation. Each receptive field has an adjacent
excitatory and inhibitory region. Their outputs are then combined by a
summation mechanism and allow the extraction of orientation over a larger
area of the retinotopic projection. Figure taken from Wandell (1995).

level of overlap, thus allowing the detection of contours and of object by using Gabor
filter models for signal processing of early cells in V1 (J. P. Jones and L. A. Palmer,
1987b; J. P. Jones and L. A. Palmer, 1987a; Szulborski and L. A. Palmer, 1990; Nishi-
moto et al., 2006) and by combining receptive fields horizontally, and processing
further up the information through a layered architecture vertically (Wandell, 1995;
Breuil, 2018).

The layers are organised as in most parts of the cortex, with sensory information
coming from the magnocellular and parvocellular pathways—two pathways that
propagate the visual information at different speeds and spatial frequencies—on
layer 6 (see ??) towards the inner layer 1 and further cortical areas (Hendry and
Yoshioka, 1994; Wandell, 1995). The visual signals are therefore carried through
this series of layers, with a variety of selection based on spatial properties and
decoded features. Since there is a retinotopic projection in V1, it acts as the basis
before the information is dispatched across the rest of the brain to interact with
other neural networks and cognitive functions—for instance, the content of visual
awareness can be decoded using neuro-imaging techniques focused on V1 (Haynes
and Rees, 2005; Parkkonen et al., 2008). One should note that, at this stage, the
visual information has already been impacted by feedback mechanisms (in the LGN
or SC for example) and will be in the following cortical areas where it spreads. The
complexity of understanding human vision arises from these multiple loops and
interactions with memory and predictions.
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A.2.2 From visual perception to consciousness

The visual pathways

Once the visual information has been processed by the primary visual cortex in the
occipital lobe, the information is disseminated in other cortical areas towards the
temporal, parietal and frontal lobes. The visual system is thought to be composed
of further areas (V2, V3, V4 and V5) spreading towards the temporal and parietal
lobes (Remington, 2012).

The visual stream is then divided in two into the ventral and dorsal path-
ways (Mishkin et al., 1983). The ventral pathway, often described as the what
system is mostly involved in perceptual object identification and involves areas
that reach the temporal lobe. Meanwhile, the dorsal pathway is also considered
as the where system, involving areas situated towards the parietal cortex, and that
contribute to locating perceptual object.

However, the reader should be aware that interactions over each pathway remain,
and that the information is not processed in a straightforward fashion—see the
diagrams Fig. A.11 for a simplified model of cortical areas involved in vision. This
was shown by the works of Melvyn A Goodale and A David Milner (1992), in which
the visual information is considered in the action-perception dichotomy (A. Milner
and M. Goodale, 1995; A David Milner and Melvyn A Goodale, 2008). Hence, the
visual system is highly interlinked with interactions with most specialised cortical
areas as has been shown by patients with visual agnosia11 (S. Palmer, 1999). Another
body of evidence that supports this view of the visual system comes from unilateral
neglect, a syndrome in which patients are hemi-negligent when one side of their
parietal lobe is damaged. In other words, they are unable to localise or interact with
objects present on one side of their visual field (Sacks, 1985).

Overall, though neuro-imaging techniques such fMRI, EEG, MEG,
positron emission tomography (PET) or electro-physiology exist,
data from brain lesion often provide stronger conclusions with
some level of causality12. These curious phenomena suggest that
the brain handles many visual decoding operations unconsciously,
and that visual awareness or consciousness is not systematic.

11When a patient has a visual deficit for a specific task such as face recognition or reading, for instance.
12Neuro-imaging techniques mostly provide correlative evidence. But the TMS methods provide

non-invasive techniques that permit artificial over-activation or inhibition of specified cortical areas
at the surface of the brain.
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(a) Diagram of the visual areas (b) Diagram of the visual pathways

Figure A.11. Visual system.
(a) Diagram of the visual areas in the macaque. Each area provides specific
functional properties in the processing of visual information. The pathways
between areas represent known reciprocal interactions. Figure taken from
Van Essen and Maunsell (1983).
(b) Diagram of the visual pathways hypothesis, showing how and where
properties of the visual information are encoded into percepts from retina to
the cortex. Reproduced from S. Palmer (1999).

Visual consciousness in the fronto-parietal networks

After tracing back the discourse of information in the visual system, from photons to
the brain, going through the retina, the LGN and the visual cortex, we are confronted
again with questions and problems linked to consciousness, as approached already
at the end of Appendix A.1. Consciousness is considered through multiple definitions
across the literature, with criteria that vary across authors. The notion of having
a self and its capacity to do meta-cognition on perception for instance, is a key as-
pect. More precisely, the capacity for a thinking organism to have second-order and
beyond thoughts, and from there, to be able to construct a narrative that explains
perception and actions, is used to define consciousness. Another criterion is the ne-
cessity for conscious information to flow through multiple feedback connections also
referred to as recurrent processing (Sporns et al., 1991; Lamme, 2006). Finally some
authors refer to consciousness as a rich personal experience that is the qualitative
particularities of sensory experience also known as qualia (Chalmers, 2007).
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Recurrent processing.
Recurrent, or feedback, processing relates to feedback mechanisms in which the processed
information cycles back through a core network and is updated by the various spread
functions of the brain (Dehaene and Naccache, 2001). This differs from feedforward processes
such as the ones described in the visual system so far, where the information is assumed to
go in a unique direction, from the bottom to the top. Recurrent processing is thought to be
necessary for conscious experience as it engenders conditions that satisfy Hebb’s rule (Donald
Olding Hebb and D. Hebb, 1949) of pre-synaptic and post-synaptic simultaneous activation
leading to plasticity processes activation and providing the neural basis of leaning (Lamme,
2006).

In the case of visual perception, we will consider consciousness as visual aware-
ness (D. A. Leopold, 1997). In other words, when a perceptual object can be
subjectively reported on by an observer; this corresponds to the behaviour and
introspective approach, and has helped develop the masking paradigm (Dehaene,
Naccache, et al., 2001; Breitmeyer et al., 2006). These experimental protocols make
it possible to estimate the degree of consciousness at which a stimulus is processed
by inserting it in a series of frames and masking it, so that the time of exposition
can be estimated to process it consciously. Thus, a contrast between consciously
perceived and unconsciously perceived stimuli can be made. When combined with
neuro-imaging techniques, neural correlates of consciousness can be identified. But
the search for NCC has led scientists to take distances from introspection, and to
base the detection of consciousness based on the detection recurrent processing
network activation (Lamme, 2006).

Using neuro-imaging techniques, a body of works have contributed to show that a
fronto-parietal network is activated when visual awareness occurs (Williams et al.,
2003; Windmann et al., 2006; Rees, 2007; Sterzer et al., 2009; Kanai et al., 2010;
Frässle et al., 2014; Tsuchiya et al., 2015; Michel and Morales, 2019). Such results
were obtained using a key paradigm for visual awareness changes, binocular rivalry,
in which conscious perception changes over time though the two stimuli exposed to
each eye separately remain constant. However, the fronto-parietal network is not
the only active area; the visual cortex is necessarily active during visual decoding (D.
Leopold and Logothetis, 1999; Brouwer and Ee, 2007; Haynes and Rees, 2005;
Parkkonen et al., 2008; Van Vugt et al., 2018).

Overall, the literature proposes that once the visual information has been encoded
through the visual system, frontal cortical areas, involved in attention, and parietal
cortical areas, involved in decision making, play a key role in the emergence of a new
conscious representation for a perceptual object. Finally, EEG and MEG studies have
shown long-distance cortico-cortical synchronisation of Beta and Gamma band oscil-
lations, as well as the large scale activation in the fronto-parietal network (Strüber
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and C. S. Herrmann, 2002; VanRullen and Koch, 2003; VanRullen, Busch, et al.,
2011; Dubois and VanRullen, 2011; Dehaene and Changeux, 2011).

Though there is still a lot to uncover around NCC, researchers have
started addressing methodological issues to orient data collection
towards more objective methods. Visual consciousness shows par-
ticularly interesting features such as perceptual reversals when vi-
sual information is ambiguous but constant. Such changes are ex-
plained by one key property of human’s visual system: representa-
tions are constructed by applying inference mechanisms.
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A.3 Tracking the eyes

Eye tracking signals

Eye movement signals are multi-variate, which means that for a time series, there
multiple dimensions associated to each sample. At the time of writing, the most
studied signal is the bi-variate gaze, composed of the estimated foveal position on
the screen in the horizontal and vertical spatial dimensions. Some video-based eye
trackers now provide the gaze signal for each eye, when the binocular recording
option is active. Moreover, the pupil diameter can be recorded, thus giving informa-
tion on the state of pupil dilation and making it possible to combine gaze analysis
with pupil analysis. This may also be applied to both eyes in modern high-end video
eye trackers. Pupil size remains a difficult signal to use in cognitive studies as its
dynamics is highly dependent on luminance; it is adjusted to reduce or increase the
amount of light that reaches the retina. However studies have started character-
ising and contrasting the signatures in pupil dynamics of luminance adjustments
and cognitive tasks (Knapen et al., 2016; White and R. M. French, 2017). Pupil
dynamics are highly affected by blinks and eye movements, and their processing is
challenging since these events become artefacts that degrade dramatically the signal
over epochs (Hupé, Lamirel, et al., 2009).

Eye tracking signals are subject to artefacts, notably, eye blinks during which the
eye lids cover completely or partially the eye. These events are usually detected
by eye trackers as they have signatures that identify them accurately. However,
blinks generate gaps in the temporal series, during which the visual information
flow is physically interrupted, and so is the gaze position measurement, but visual
experience is not necessarily. Our visual experience seems continuous most of the
time though blinks are carried out. Blinks are a relatively less studied oculomotor
phenomenon; they are linked to fatigue as their rates increase over time in a
task (Stern et al., 1994) and they are also known to be dependent on cognitive
tasks (Bentivoglio et al., 1997). Finally, the signals used to study eye movements are
dependent on the technology and apparatus used.

Apparatus and technology

Eye movements can be measured with different techniques and the history of their
development has affected how research has been carried out. The first systems were
developed at the beginning of the 19th century, and since the methods developed
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at the time were invasive, they were used mostly in medical contexts (Dodge and
Cline, 1901; Huey, 1908). The systems used contact lenses on the cornea connected
to an apparatus where light was projected and thus movement was detected, while
other systems used electro-oculography (Heywood and Churcher, 1971; Heywood
and Churcher, 1972).

Methodological apparatus evolved gradually but kept cumbersome and invasive
constraints up until the 1970s (Yarbus, 1967; Cornsweet and H. D. Crane, 1973;
Mele and Federici, 2012). As technology evolved towards digital instruments and
with the advent of better cameras and computers in the 1980s, video-based eye
trackers became more disseminated and accessible for research, and their accuracy
and usability increased.

Eye tracker.
The systems used in this thesis are provided by SR Research and belong to the EyeLink
category of eye trackers, more precisely, the EyeLink1000 and the EyeLink1000+. They
measure gaze and pupilometry signals by projecting infrared light and detecting its reflection
on the cornea. The EyeLink1000+ can sample the data at 2000 Hz when the head is
stabilised on a chin-rest apparatus, with an accuracy between 0.25 deg and 0.5 deg and a
resolution of 0.01 deg, in binocular recording.

The signals are combined with eye models and calibration data to estimate the posi-
tion of gaze and the size of the pupils (Abramov and Harris, 1984). As instruments
have become more off-the-shelf and commercial, the data has gained in standardisa-
tion. However, differences and imprecision persist at very small amplitude and has
been shown to be related to the artificial eye models’ noise structure (Coey et al.,
2012; Wang et al., 2017). Researchers have also started adding their hardware
and software proposals for digital signal processing systems that can provide fast
and accurate real-time gaze position in order to implement gaze contingency13 at
intervals of 10 ms (Santini et al., 2007).

13An experimental paradigm in which the retinal image position is control by feeding back the position
of the gaze to the experimental display computer in order to correct the stimulus.

A.3 Tracking the eyes 283



A.4 Multi-stable perception detailed description

Properties, common to all multi-stable phenomena, are described in the following
paragraphs.

A.4.1 Irrepressible

Multi-stable perception can, up to a certain extent, feel like it is voluntarily con-
trolled. However results on continuous free viewing of stimuli show reversal always
eventually occurs, giving the phenomenon its irrepressible property. Nevertheless, it
is possible to stabilise such ambiguous perceptions by adjusting stimuli presentation
time and ISI (D. Leopold, Wilke, et al., 2002) or by biasing the stimulus. Beyond
given durations of presentation and ISI, which vary given the multi-stable stimuli
used and the observer, reversals will be experienced; thus stimulus presentation
does not need to be continuous, it only needs to be beyond a certain duration
threshold. This characteristic is valid given the observer has perceived more than
one interpretation of the stimuli in ambiguous figures but it has been showed that
children, uninformed about the possible interpretations, between 3 and 4 years old,
do not switch and that only 35% of uninformed children between 5 and 10 years
old only experience reversals (Mitroff et al., 2006).

A.4.2 Mutual exclusivity

Mutual exclusivity of perception is clearly valid for ambiguous figures; however it is
less clear in the case binocular rivalry. Indeed, in the latter experimental paradigm,
subjects report their initial perception as an intertwined mixture of the two different
images presented. The literature reports that alternations in binocular rivalry are
progressive and spread along the visual receptive fields in a wave-like motion
(Fig. A.12) invariant of stimuli visual angle size (Chopin, 2012). Thus, the following
interpretation has been put forward: rivalry emerges from local coding competitions
that have an impact on neighbouring neural populations, thus spreading the reversal.
Hence, mutual exclusivity operates at a much more localised level in binocular
rivalry.
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Figure A.12. Binocular rivalry. Illustration of the propagation of perceptual alternation in
binocular rivalry. Figure taken from Chopin (2012).

A.4.3 Unpredictable

Multi-stability is characterised by the unpredictability of its perceptual reversals.
Indeed, percept durations are thought to be independent from one to another
(Fig. A.13) as it has been showed that one cannot predict the duration of a percept
based on the previous one’s duration. However, the unpredictability does not signify
that multi-stability is random as it could be deterministic, more specifically chaotic.
Lehky (1995) showed that binocular rivalry is stochastic rather than chaotic by using
a method where percept durations data is separated in two blocks and where the
first block of data is used to attempt to predict the second one. This method works
in chaotic physical systems but fails for multi-stability. However, one should note
that this has not be tried and reported yet on ambiguous figures (Chopin, 2012).

A.4.4 Percept durations distribution

A property that has been found across multi-stable phenomena is related to the
density distribution of percept durations (Levelt, 1967; Chopin, 2012). For a
long time, this aspect of the data was not examined into more details and the
scientific community agreed that Gamma distributions modelled all bi-stable percept
durations distribution (Fig. A.14). However, recently, it has been shown that Log-
Normal distribution can sometimes fit the data more precisely—especially for the
Necker Cube, rotating sphere and orientation rivalry stimuli (Hupé and Rubin,
2003; Pressnitzer and Hupé, 2005; Chopin, 2012). Furthermore, looking at reversal
speeds14 gives better results for Gamma distribution fitting (Jan Brascamp et al.,
2005). Hence, reversal speeds have empirically been found to be modelled by a
Gamma distribution while percept durations are better modelled by a log-normal
distribution.

14Percept reversal speed corresponds to the inverse of percept’s (x) durations: vx = 1
tx

.
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Figure A.13. Percept durations.
A & B: The durations of the first seven successive phases are presented for
both the auditory modality (A, dark gray) and the visual modality (B, light
gray).
C & D: The histograms of durations of grouped and split phases are presented,
compiled for all participants (n = 23) and percept types (grouped and split).
E & F: The duration of a percept is shown as a function of the duration of the
previous percept, for all participants (n = 23).
Figure taken from Pressnitzer and Hupé (2006).

Figure A.14. Percept duration distribution. Example of histogram of phase duration
distribution fitted to a Gamma distribution: φ(t) = t3 exp−t/6. Taken from
Levelt (1967).
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A.4.5 First percept

The first percept at stimulus onset has been described as somewhat different and
special from others (Hupé and Rubin, 2003): it is longer and tends to be idiosyncratic,
e.g., biased for each subject (Fig. A.13). In binocular rivalry, the first percept has
been linked to an ocular preference (Chopin, 2012) which disappears with the
following phases. This has led some teams describe the temporal dynamics and
discourse of bi-stable perception as a double regime phenomenon: an initial and a
stationary one (Mamassian and Goutcher, 2005). Thus, using this approach, it is
possible to describe bi-stable perception in a Bayesian framework (Ee, Adams, et al.,
2003) by estimating probabilities a posteriori.

A.4.6 Theories & properties of bi-stable perception

Tab. A.1 provides a synthesis of theories and properties on bi-stable perception
driven by empirical observations.
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Bottom-up evidence Description

Initial adaptation Early trials can be subject to higher number of
reversals reported as participants need to get used
to the experimental setup.

Local adaptation When a stimulus is rotated or moved in the
visual field of the observer, perceptual reversal
rates decrease as shown by
Blake, Sobel, et al. (2003).

Multiple-figure presentation Simultaneous observation of two or more bi-stable
stimuli is characterised by independent reversals
as well as independent adaptation
(Toppino and Long, 1987).

Reverse-bias (priming) A percept can be positively biased if the observer
is exposed in a prolonged fashion to an
unambiguous version of a percept
(Long, Toppino, and Mondin, 1992).

(Dis-)Continuity of presentation Introducing inter-stimulus-interval and making
the presentation of the stimulus discontinuous
affects reversal rates
(D. Leopold, Wilke, et al., 2002).

Viewing parameters The stimulus parameters (e.g., size, speed, etc)
can influence the distribution of observed
percept duration (Hupé and Rubin, 2003).

Top-down evidence Description

Voluntary control Volition has been shown to impact the speed of
perceptual reversal in Wernery (2013). However
it is not possible to prevent perceptual
changes altogether, one can only decrease
or increase the rates.

Knowledge of reversibility Completely naive observers with no description
of bi-stability are more likely to experience
stable perception for long periods of time until
the first change is experienced
(Rock and Mitchener, 1992).

Priming (set effect) Ambiguous perceptual experience can be
influenced by presenting a cue that influence
observers towards a percept,
via binding for instance (Schwartz et al., 2012).

Cognitive load Diverting attention to a distractor task has
been shown to slow down the reversal process
for ambiguous figures and binocular rivalry
(Alais et al., 2010).

Table A.1. Bi-stability theories. Synthesis of bottom-up and top-down theories and associ-
ated empirical observations in bi-stable perception.
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A.5 Multi-stability & neurosciences

Using fMRI has allowed researchers to identify regions and neural correlates of
multi-stable perception. The fMRI studies of the blood oxygenation level dependent
(BOLD) signals of V1 have shown that the spatio-temporal dynamics of perceptual
alternations in multi-stability has strong effects on the measured activity. Indeed,
as previously mentioned, this has allowed teams to predict perceptual states in
rivalry based on the BOLD signal measured in V1 by using a multi-voxel pattern
analysis (Haynes and Rees, 2005; Rees, 2007). Studies using MEG (Cosmelli et al.,
2004; Parkkonen et al., 2008) have also shown that it is possible to read the neural
bases of visual consciousness of participants. Interestingly, a team has shown that it is
possible to induce perceptual alternations using TMS on V1, suggesting a causal role
of the information coded at that level in modulating binocular rivalry (Pearson, Tadin,
et al., 2007). However, this seems unlikely for ambiguous figures as competition
seems to occur in higher cortical areas. Hence, these findings suggest that the early
visual areas can be seen as a buffer for visual information and can be modulated by
feedback mechanisms from higher-order areas that inhibit features (Sterzer et al.,
2009).

The classic approach is to use a protocol that includes two perceptually equivalent
conditions: natural rivalry and a biased-stimulus controlled rivalry (D. Leopold and
Logothetis, 1999). The data of the two conditions are then subtracted from each
other in order to mark out the areas where hemodynamic activity exists in bi-stable
rivalry, which involve neural processes resolving conflict of perception, and the
other condition, where vision is unambiguous. The results highlight activations in
several areas of the frontal and parietal cortices in binocular rivalry, and seem to be
systematically lateralised to the right hemisphere of the brain.

A.5.1 EEG: results from continuous viewing paradigms

EEG studies have attempted to characterise perceptual reversals more precisely by
observing the time discourse with high temporal resolution. A classical approach
is the manual response paradigm in which, a P-300 like parietal positivity, 250
milliseconds before key press has been consistently observed, as well as a decrease
of energy in the alpha frequency band and an increase in energy in the gamma
frequency band (Kornmeier and Bach, 2012). Gamma band increase has been
interpreted as linked to attention and top-down processes. However, the paradigm
shows some limits as the data show high inter and intra-individual variability and
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applying signal processing through backward averaging damages the endogenous
ERP.

A.5.2 EEG: results from discrete viewing paradigms

Another recent approach, the stimulus onset paradigm, consisting in having a
discontinuous presentation of the stimulus with control of the ISI, has allowed
researchers to address the issues mentioned above (Kornmeier, Ehm, et al., 2007;
Kornmeier and Bach, 2012; Kornmeier and Bach, 2014). The stimulus is presented
for a period and the participants report whether they have experienced a reversal in
the following ISI. It offers the possibility to manipulate the stimulus presentation
time, the ISI and the ambiguity of the stimulus. Thus, four types of ERP can be
identified:

• Endogenous perceptual reversals (ambiguous stimulus)

• Endogenous perceptual stability (ambiguous stimulus)

• Exogenous perceptual reversals (unambiguous stimulus)

• Exogenous perceptual stability (unambiguous stimulus)

By subtracting reversal condition to stability condition data, one can extract the
differential event related potentials (dERP) and characterise the signatures spe-
cific to endogenous reversals of ambiguous figures. Hence, a reversal positivity
130 ms after onset has been reported with better precision than in the manual
response paradigm (see Fig. A.15). Moreover, early alpha modulations that start
around 130 milliseconds after onset, are restricted to endogenous reversals, have
an opposite sign as the subsequent components, and lasts for approximately 60 ms
(see Fig. A.16). Kornmeier and Bach offered the following interpretation: reversal
positivity could be an indicator of the visual system’s detection of ambiguity while
the alpha modulation could be the disambiguation or stabilisation process. In both
endogenous and exogenous reversals, a reversal negativity is reported followed
by fronto-polar and parietal positivities (Fig. A.15). The authors proposed that
the fronto-polar positivity might indicate a role of working memory related to the
delayed response in the subsequent ISI while the parietal positivity might be an
indicator of attentional and cognitive processes during perceptual reversal and be a
signature of the conscious recognition of the switch. Time frequency analysis showed
Beta and Gamma band modulations have been measured in both exogenous and
endogenous conditions with high similarities (Fig. A.16). Thus, these results provide
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Figure A.15. Differential event related potentials (dERP) analysis. Diagram showing
detected dERP in the discontinuous viewing onset paradigm. The ambigu-
ous conditions shows events that are delayed compared to its unambiguous
counterpart and an extra reversal positivity. Figure taken from Kornmeier and
Bach (2012).

arguments that bring together the top-down and bottom-up understandings of multi-
stability. Their integrated theory is founded upon two processes: a destabilisation,
that can be initiated from top-down, bottom-up processes or noise over variable and
potentially long periods, and a restabilisation or disambiguation, that follows the
reversal positivity and that operates within approximately 60 ms to provide a new
interpretation to the observer. Finally, following a similar paradigm, researchers
have shown that working memory load modulated the observed ERP in reversals of
the Necker cube though the behavioural reversal rates remained unchanged (Intaitė
et al., 2014). Hence, this suggests that in discontinuous presentation of ambiguous
figures, reversals are influenced by an early mechanism and that the effects of the
load on the ERP might correspond to prefrontal cortex outbound top-down processes’
impact on visual processing.

A.5.3 EEG & MEG: frequency tagging

An alternative paradigm has been explored in EEG and MEG by using a stimulus’
frequency attributes to retrieve its content in cortical oscillations. This method
is described as frequency tagging whereby the experimenters will add dynamic
noise at two tagged frequencies for each part of the stimulus that corresponds to
a percept. For instance, this was done on the Face/Vase stimulus which features a
figure-ground ambiguity and percepts can be separated spatially (Parkkonen et al.,
2008)—see Fig. A.17. Another method was to tag the motion of the rival stimuli
to a frequency in binocular rivalry (Cosmelli et al., 2004). Finally, in a more subtle
manner, researchers have shown that when the perceptual competition occurs over
spatial frequencies, these can be exploited to retrieve perceptual information in
EEG (M. Smith et al., 2006).
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Figure A.16. Time-frequency (TF) analysis. Diagram showing the results over time of TF
analysis and sources in the EEG data. On top, the dynamics for the ambiguous
Necker lattice. Below, the results for the unambiguous condition. Figure taken
from Kornmeier and Bach (2012).

Figure A.17. Frequency tagging.
A: Experimental MEG setup with the Face/Vase frequency tagged stimulus.
B: Example of a spectral density at one sensor with peak power on the tagged
frequencies.
C: Example of a time-frequency analysis plot with energy at the tagged fre-
quency over a reported perceptual change. Figure taken from Parkkonen et al.
(2008).
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A.5.4 fMRI: percepts in early visual cortex

Neuro-imaging observations of the extrastriate visual cortex in binocular rivalry and
ambiguous figures show a closer correlation with conscious perception15. Depending
on the nature of the ambiguous figure and the features that initiate the bi-stability,
BOLD activity in specialised areas such as the fusiform face area (FFA) is greater in
Rubin’s face-vase illusion (Sterzer et al., 2009). The lateral occipital complex (LOC)
had higher BOLD activity when the conflict was centred on elements being perceived
as grouped or randomly arranged. Alternatively, some studies have focused on
neural activity in perceptual reversal events rather than perceptual states in multi-
stability. Activity in extrastriate areas is correlated to these changes; for instance
FFA goes through higher excitation before reversal to a face percept following a
grating percept (Sterzer et al., 2009). Furthermore, ambiguous figures have been
classified in two categories—intra-categorical type and cross-categorical type—and
fMRI data has been analysed and contrasted to identify whether all the stimuli share
a common reversal-related neural network (Ishizu and Zeki, 2014). This has been
investigated and could be explained by the presence of coded information of multiple
past percepts in a time window preceding the switch that has been described as a
form of perceptual memory (Pearson and Jan Brascamp, 2008), which seems to play
a role in how perceptual conflicts are resolved in ambiguous vision.

A.5.5 fMRI: blind decoding of percepts

Though it is possible to read the content of conscious perception using neuro-
imaging techniques, the mechanisms involved in resolving conflict in the sensory
inputs remain elusive. These mechanisms relate to unconscious inference processes
that are characteristic to human vision. Studying reversals is more appropriate in
understanding the reconstructions that lead to visual awareness than perceptual
states. When contrasting ambiguous and unambiguous vision, it is mostly activations
in the parietal and prefrontal cortex that stand out (Lumer et al., 1998; D. Leopold
and Logothetis, 1999). Thus, it seems that top-down cognitive processes and
networks seem to be highly involved in multi-stability and might operate through
feedback mechanisms. These areas are typically engaged in cognitive functions such
as working memory, attention and decision making. The feedback process could
serve as a restabilisation of perception following sensory destabilisation (Sterzer
et al., 2009) and take part in the inferential mechanisms. However fMRI studies

15Refer to the following paragraph on electro-physiology results for further evidence of this statement.
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have shown their limits in studying the reversal processes due to their low temporal
resolution.

A.5.6 Electro-physiology

Furthermore, invasive single neurons monitoring of monkeys in visual rivalry have
been studied with probes in the striate visual cortex (V1), the extrastriate visual
cortex (V2, V4), the MT area, the medial superior temporal (MST) sulcus, the
infero-temporal (IT) cortex and the upper and lower bank of the superior temporal
sulcus (STS). This revealed that even though the retinal image remained the same,
some neurons in the observed visual information pathway described above were
consistently modulated by the monkeys’ perceptual changes. However, some neural
populations’ activity (V4, MT, MST) was more correlated to perceptual switches than
others (V1, V2). Furthermore, neurons’ activity patterns in IT and STS were closely
matched to perceptual reporting while activity in the LGN showed no correlation.
This suggests that conflicts in multi-stable perception are solved in higher cognitive
processes. Lesion studies have shown that only patients with unilateral frontal lesions
have an impairment in experiencing switches of subjective perception, while patients
with posterior brain damages, including visual areas, did not have significantly
different behaviours from control subjects.
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A.6 Eye movements & the plaid

An aim of this work is to link motion ambiguity to eye movements. Indeed, these
are physiological dynamics when measuring the gaze’s motion, that can be linked to
the perceptual multi-stability (García-Pérez, 1989). When perceiving motion, the
visual system may lead the oculomotor system to program different types of eye
movements such as saccades (Sabrin and Kertesz, 1980; L. v. Dam and Ee, 2005;
L. C. v. Dam and Ee, 2006a), pursuits (Beutter and Leland Stone, 1998; Madelain
and Krauzlis, 2003), FEM (Laubrock et al., 2008), pupilometry (Hupé, Lamirel,
et al., 2009) and OKN (Einhäuser, Thomassen, et al., 2017; Aleshin et al., 2019).

Saccades were investigated as potential markers of perceptual changes since they
operate great changes on the visual input. Studies on binocular rivalry found that
saccades and micro-saccades are more likely to occur near reported perceptual
changes (Sabrin and Kertesz, 1980; L. v. Dam and Ee, 2005). However, further
analyses suggested that the retinal shift due to saccadic eye movement was a better
criteria (L. C. v. Dam and Ee, 2006a), hence the authors concluded that spatial atten-
tion (highly coupled with eye movements) may be the key modulator of perceptual
dynamics. These studies used a variety of stimuli in binocular rivalry including,
at times, square wave gratings, rather than the more ecological approaches from
ambiguous figures. Though saccades may not be the most correlated eye move-
ments to perceptual changes, micro-saccades seem to provide insights on perceptual
dynamics. In an ambiguous apparent motion discrimination task, Laubrock et al.
(2008) reported an inhibition of micro-saccades before perceptual reversals and
that orientation of the micro-saccades before stimulus onset biased the subsequent
perceptual decision. They interpreted micro-saccadic movements to be used as a cue
for the perceptual system when ambiguity is strong, in order to force a perceptual
decision. Therefore, micro-saccades may be a key marker to analyse and identify in
ambiguous motion perception.

The moving plaid, as a motion ambiguity stimulus, has also sparked investigative
work focusing on pursuit eye movements. In a study looking for evidence on
whether the a motion-processing system links perception and pursuit, using a
plaid stimulus, the authors found shared biases16 in the perceptual and pursuit
analyses (Beutter and Leland Stone, 1998). This suggest that both systems share
a motion processing stage which may be exploited in order to derive perceptual
dynamics in oculomotor signals, by focusing on pursuit analysis. Moreover, Madelain

16Psycho-physical bias measured by how much, observers perceived the plaid motion to be higher or
slower than its physical velocity direction. For eye movements, bias was a measure of the difference
between processed gaze patterns and the physical velocity directions of the plaid.
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and Krauzlis (2003) showed, using ambiguous apparent motion generated by a
series of Kanizsa illusory squares, that pursuit can be a marker of perceived motion
since it is highly correlated to motion-based percepts. They showed that humans are
more likely to track their current percept and may reverse perceived motion with no
need for saccadic eye movements. The motion of this dynamic stimulus has stable
velocities within percepts and with directions of percepts being different, thus it
is possible to conceive methods to detect changes in the gaze signals. Using OKN
as a marker of perceptual states has been used before in binocular rivalry (Frässle
et al., 2014; Aleshin et al., 2019) and similar methods can be applied to other
motion based perceptual multi-stability. In these studies, the authors developed gaze
analysis method to remove artefacts such as blinks and large saccades, in the eye
movement signals, and shifted the slow pursuit components in order to estimate a
cumulative smooth pursuit of the motion. They were then able to analyse their data
by inferring perceived motion exploiting the accumulated pursuit events.

However, it has been shown that these oculomotor markers are not systemati-
cally present, and the responses from the visual and motor systems can be dissoci-
ated (Spering and Gegenfurtner, 2008; Spering, Pomplun, et al., 2011). By reviewing
many studies investigating whether pursuit is impaired, enhanced or unaffected by
stimuli with stationary context, pursuit direction motion context, opposite pursuit
direction motion context and velocity perturbations contexts, the authors showed
that when no orthogonal context perturbations are manipulated, experiments may
generate no effects on pursuit.

But the results shown in these papers were obtained in short viewing paradigm with
the stimulus being presented for less than 500 ms, and without multi-stable dynamics.
Another existing approach has been based on pupil size, though its main results
link most of the pupil changes preceding key press and thus perceptual reversal
report have been linked to the motor programming rather than the endogenous
change (Hupé, Lamirel, et al., 2009). Such results remind us that key press bias
remains a factor present in most multi-stability experiment and may pose challenges
to the interpretation of results.

Overall, one can expect to observe markers that show perceptual re-
versals and indicate which percept just appeared to the observer’s
visual awareness. A combination of methods detecting oculomotor
markers predicting perceptual reversals, such as micro-saccades,
and markers correlated to a percept, such as pursuit for motion
based stimuli like the moving plaid, are needed to adequately infer
perceptual dynamics in eye movement signals.
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Such methods are investigated in the Eye movements and No Report experiments
(presented in Chapter 5, Appendix B.2 & Appendix B.3), where we test methods to
(1) manipulate eye movement dynamics in order to investigate causal influences
of gaze on perception and (2) read perception in gaze data in order to compare
dynamics with and without key press reports of perception.
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A.7 Can we remove subjective reports on the moving
plaid?

Recent studies have attempted to remove subjective key press reports to find more
objective physiological measures of perceptual dynamics (Frässle et al., 2014; Ein-
häuser, Thomassen, et al., 2017; Aleshin et al., 2019). If one considers also the
decoding methods reported when combining multiple neural measures and machine
learning classification methods on EEG and MEG signals, by focusing on detecting
markers of perceptual changes (Cosmelli et al., 2004; M. Smith et al., 2006; Parkko-
nen et al., 2008) or in fMRI signals, by focusing on detecting markers of perceptual
states (Rees, 2007; Sterzer et al., 2009)—for a summary of important neurosciences
results for the moving plaid, read Appendix A.8. Moreover, participants tend to report
attentional shifts associated with the motor action of using the keyboard to report
their perception (Mamassian and Goutcher, 2005). Similarly, observers tend to
report perceptual switches linked to blinking (L. v. Dam and Ee, 2005). In other
psychology paradigms, such as masking based on Signal Detection Theory (Green,
Swets, et al., 1966), the development of methods, that make the measures more
objective has been addressed extensively (King and Dehaene, 2014). The expected
advantages of removing key press reports are the following:

• perceptual noise reduction—motor programming and attentional shift may
act as large noisy signals in the perceptual systems as interpreted by the
models presented in Chapter 1 & 3 (Moreno-Bote, Rinzel, et al., 2007; Shpiro,
Moreno-Bote, et al., 2009; Moreno-Bote, Knill, et al., 2011);

• neural correlates studies—no report paradigm are being developed and used
to explore the neural bases of conscious experience in consciousness re-
search (Frässle et al., 2014; Michel and Morales, 2019);

• evidence of an active perception—the methods of such an approach impose the
necessity to show a strong correlation link between physiological markers and
perceptual events (Laubrock et al., 2008; Einhäuser, Thomassen, et al., 2017;
Aleshin et al., 2019).

Using the theoretical framework presented in Chapter 3, it is possible to derive
hypotheses and associate predictions on perceptual and oculomotor dynamics in
coupled systems.
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Neural correlates of consciousness.
No-report paradigms in experimental neuroscience profit from a growing interest as more
researchers aim to investigate the NCC and this has been made possible by the development
of neuro-imaging techniques (Crick and Koch, 1990). NCC theories differ and the topic
is far from being settled with for instance some authors providing evidence for the Global
Work-Space Theory associated to pre-frontal cortex (PFC) activity (Baars and Franklin, 2007;
Dehaene and Changeux, 2011). Higher-Order Theory also view PFC activity as a NCC (Lau
and Rosenthal, 2011). In opposition, other researchers defend that NCC are situated in
posterior parts of the cortex (Lamme, 2006; Koch et al., 2016). PFC theories have been
criticised as its activity does not correlate with consciousness per se but with cognitive
processes that follow perceptual awareness (Michel and Morales, 2019). This argument
emerges from methodological constraint because experiments require participants to report
whether they have perceived the phenomenon of study consciously or not.
A solution to such arguments is to develop methods that make it possible for experimenters
to infer the consciousness of a percept during a task, or the alteration of an observer’s
perceptual awareness without relying on explicit report. If this is achieved, observers will
not have to introspectively reflect on the content of their consciousness, making them use
their meta-cognitive abilities (Faivre, Filevich, et al., 2018; Faivre, Vuillaume, et al., 2020).
To apply such methods, experimenters must find methods in which they can reliably infer
conscious perceptual dynamics. Multi-stability offers many advantages for such problems.
Indeed, the aspect in which we are interested is perceptual awareness changes; this is
different from contrasting conscious versus unconscious perception. Changes in percep-
tual consciousness may reveal some of the cortical areas necessary to operate perceptual
reorganisation (Kawamoto and J. A. Anderson, 1985; Baå-Eroglu et al., 1993).
The field of consciousness studies, and more specifically NCC, have tried to use binocular
rivalry to develop no-report paradigms.
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A.8 Gaze-EEG experimental design

Note.
The following sub-section provides insight on the Gaze-EEG experiment that was designed
and motivated all the other experiments reported in this chapter. Unfortunately, due to
administration delay—e.g., French "comités de protection des personnes" (CPP) procedure—
and the COVID-19 sanitary crisis, the experiment has only been launched on one participant
at the time of writing. This part aims to provide further details on the experimental design
that motivated the following experiments described in Chapters 4 and 5. It is recommended
to read these chapters before reading this section as some of their results are referred to.

A.8.1 Neurosciences and the plaid

Another set of data that can be investigated are the neural correlates of multi-stability.
These can be obtained with techniques from neurosciences such as electro-physiology,
EEG, MEG or fMRI.

Activity in the middle and higher levels of the visual system pathway has been
correlated to motion perceptual processing, notably in the middle temporal (MT or
V5) area of the cortex (Stoner and Albright, 1992; Ferrera and Lisberger, 1997;
Born et al., 2000; Castelo-Branco et al., 2000; Thiele et al., 2000; Williams et
al., 2003). This cortex area is in fact sensitive for motion perception as lesions in
monkey primates has been shown to degrade significantly performances for direction
detection tasks (Newsome and Pare, 1988). One can therefore expect to observe
changes in activity patterns as the direction of perception changes for an observer,
using neuro-imaging techniques with high temporal resolutions—e.g., EEG, invasive
electro-physiology or MEG.

Perceptual changes can also be expected to generate the P300 component in ERP
analysis as it is associated to a measurement surprise effects and can be reliably
detected (Donchin, 1981; Cecotti et al., 2011). Surprise here is referred to a revision
of internal models. An extensive study of EEG components for a bi-stable lattice of
Necker cubes has reported fronto-polar positivity a little over 300 ms after onset, in
a non-continuous viewing paradigm (Kornmeier and Bach, 2012). This approach
is supported by arguments proposing that perception’s continuous appearance is
an illusion in itself, in which brain or neural rhythmics play a role in attention and
perceptual processing (D. Leopold, Wilke, et al., 2002; VanRullen and Koch, 2003;
VanRullen, Busch, et al., 2011; VanRullen and Dubois, 2011; Dubois and VanRullen,
2011). The use of oscillatory brain activity has been used to relate percepts to spatial
frequencies (M. Smith et al., 2006) and to decode percepts by means of frequency
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tagging and TF analysis in MEG (Cosmelli et al., 2004; Parkkonen et al., 2008). The
Gamma band at 30-80 Hz has been reported to be linked to perceptual changes
and in fronto-parietal networks while alpha band energy is reported to be higher
in stable perceptual phases (Başar-Eroglu et al., 1996; Strüber, Basar-Eroglu, et al.,
2000; Strüber and C. S. Herrmann, 2002; Mathes et al., 2006; Kornmeier and Bach,
2012; Strüber, Rach, et al., 2014; C. S. Herrmann et al., 2016).

Experiments in fMRI have also shown that it is possible to predict and decode the
perception based on activity in cortical areas (Haynes and Rees, 2005; Brouwer and
Ee, 2007; Rees, 2007; Sterzer et al., 2009; Megumi et al., 2015). The methods
presented also showed evidence that the competition in multi-stable perception
occurs at different stages of the visual cortex. Motion rivalry is reported to be
detected in the MT/V5 area for instance, while figure-ground dynamics are decoded
from lower visual area (D. Leopold and Logothetis, 1999).

Overall, parietal and prefrontal cortex activity correlates to perceptual changes
though frontal activity might be related to meta-cognitive and introspective activi-
ties (Kanai et al., 2010; Frässle et al., 2014).

The aims in this experiment are to (1) manipulate ambiguity, (2) manipulate oculo-
motor dynamics and (3) to be able to infer perception without relying on explicit
motor commands, i.e., key presses. Note that this experiment adds EEG mea-
surement to previous experimental setups. An expected challenge from such an
experiment is to show that gaze-EEG coupled analysis can be applied on a continuous
viewing paradigm (Devillez et al., 2015; Kristensen, 2017). Indeed, the issues for
EEG and MEG studies on bi-stable perception studies are centred around temporal
synchronisation for signal analysis (Kornmeier and Bach, 2012). Since most multi-
stable perception experiments rely on key press reports to relate the dynamics of
the subjective perceptual experience, and that the motor response latencies can vary
between 200 ms and 600 ms, the signals are hard to align, unlike in classical on-set
paradigms.

Ambiguity control based on the Ambiguity experiment’s results

The Ambiguity experiment (Section 4.3) led to the development of methods that
allow to control the level of ambiguity of the moving plaid stimulus by relying solely
on gratings’ transparencies (α) as control parameters. We reduced this manipulation
to one of the two gratings’ transparency by constraining the relationship between αL
and αR to (4.9): αL+αR = 1. We introduced a psycho-physical observer model (Bak
and Pillow, 2018) of multi-stable perception in this context, with an associated
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method for its parameters’ estimation. Using an experimental protocol focusing on
the first percept, we could gather many data points in a relatively short amount
of time for estimation. In a second phase, we verified that the maximal ambiguity
point(s) could be established, given the parameters estimated, and whether longer
trials at such points would lead to empirical perceptual equi-probability. Therefore,
for the Gaze-EEG experiment, the aim is to implement the methods of the Ambiguity
experiment such that the stimulus can be calibrated using a procedure composed of
first-percept short trials. These data points can be fed to the estimation algorithm
and a psycho-physical observer profiles of the participants can be used to control
ambiguity.

Oculomotor control based on the Eye Movements experiment’s results

In the Eye Movements experiment (Appendix B.2), we aimed to manipulate oculo-
motor dynamics, in order to able to generate micro-pursuits that are coherent with
a percept motion or micro-saccades in the opposite direction. Using a RDK (Scase
et al., 1996), micro-pursuit can be elicited and according to the direction of its signal,
trials can either be excitatory or inhibitory with respect to a percept. Alternatively,
we expected micro-saccades to be generated as participants would re-centre their
gaze on the fixation dot. However, the lack of conclusive results does not guar-
antee that RDK, as manipulated in the Eye Movements experiment, is sufficiently
effective to generated the expected FEM. Hence, not all the relationships from
Fig. 4.6 can be investigated; namely, the influence of eye movements on perception
cannot be controlled. Therefore, one can only expect micro-pursuits and micro-
saccades to be generated according to the model’s predictions, given in Section 4.1.
The manipulation is still expected to be observed in trials, but it is not possible
to directly distinguish the impact of the perceptual system from the oculomotor
system—presented in the fusion model of Chapter 3. In other words, even if FEM
and oculomotor dynamics cannot be controlled, they are still to be measured in this
Gaze-EEG experiment, and their contribution to the phenomenon of multi-stable
visual perception can still be studied.

No-report perceptual change detection based on the Noisy Motor Events
experiment’s results

The Noisy Motor Events experiment (Section 5.3) led to the development of gaze
signals analysis algorithm that can detect epochs with dynamics suggesting a micro-
pursuit associated to the emergence of a new percept, following a perceptual reversal.
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The algorithm sequences the gaze signal such that periods can be analysed and
interpreted in the following manner: changing oculomotor dynamics with similarities
to the motion dynamics of one of the percepts reveals changes in perception. Though
the results in the Noisy Motor Events experiment shows discordance between key
press reports and oculomotor interpretation, such methods are being used to provide
alternative approaches for perceptual reports (Frässle et al., 2014; Aleshin et al.,
2019). In fact, report and no-report conditions can be used to contrast and adjust
the sensitivity of the algorithm’s interpretation. Though a no-report setup exposes
the data to have higher uncertainty, subjective reports as reported in Chapter 1 also
relies on trusting participants capacity to report their perceptual changes. And the
latter is sensitive to variable reaction times due to variability in motor programming
for key press. Finally, attention is shifted over key press action (Song, 2019), hence
affecting perceptual dynamics (Li et al., 2017). This uncertainty can however be
reduced if neural correlates of perceptual changes are detected jointly with gaze
dynamics changes.

Gaze-EEG

The experimental setup in this experiment adds joint EEG measurements. The
constraints associated with using a dynamic multi-stable stimulus such as the moving
plaid makes the use of a continuous viewing paradigm necessary over discrete
presentation methods (Kornmeier and Bach, 2012). Indeed, interrupting a video
in an analogous fashion to blinks, but with exogenous origins, requires a series of
additional investigations to answer questions related to issues with this approach.
For instance, it is necessary to estimate how the stimulus should evolved over the ISI
period, and whether the valid ISI duration is similar to that of other static bi-stable
stimuli (D. Leopold, Wilke, et al., 2002).

Moreover, neural correlates of multi-stable perceptual dynamics have been studied
(as shown by the literature review above), and can be exploited for no-report blind
condition trials to infer perceptual changes. Indeed, changes in perception are
expected to be marked by higher Gamma band (30-80 Hz) activity (Başar-Eroglu
et al., 1996; C. S. Herrmann et al., 2016) and activity has been reported to occur in
parietal and prefrontal cortices (Kanai et al., 2010; Frässle et al., 2014). Another
component expected to be detected in endogenous perceptual changes is the P300,
as it is an ERP that is detected with precision, so much so that it is exploited in brain
computer interfaces (Donchin, 1981; Cecotti et al., 2011). Hence, EEG signals can
provide additional information and help give an internal neural understanding of
multi-stable perception. Though eye movements can lead to artefact generation in
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the signals, this is less true for small amplitude movements such as the FEM that are
expected to be identified. Moreover, recent algorithms have allowed the development
of joint measures Gaze-EEG, using eye movements as onset for ERP analyses with eye
fixation related potentials (EfRP) and eye saccade related potentials (EsRP) (Devillez
et al., 2015; Rivet et al., 2015; Kristensen et al., 2017; Kristensen, 2017).

Hypotheses

The main hypothesis was that eye movements are physiological markers of multi-
stable perception. More specifically, with the moving plaid stimulus, we expect
perceptual changes to generate oculomotor markers such micro-pursuits in the
direction of percept motion and micro-saccades in opposite direction to that. Our
theoretical work from Chapter 3 also predicts that oculomotor dynamics lead to
perceptual changes, but this aspect will be less controlled given the results of the
investigation in the Eye Movements experiment (Appendix B.2). The main two
contrasts chosen to obtain results with respect to these hypotheses are the ambiguity
and report manipulations. We expect to obtain gaze-EEG markers of perceptual
changes using the non-ambiguity and no-report condition and the ambiguous report
condition. The non-ambiguity with key press report will act as a control condition
where all data is clearly labelled, but stable perception rather than multi-stable
perception occurs. The ambiguity no-report, blind condition is the most challenging
one, where data will not be labelled but will also have the least attentional and
motor programming undesired artefacts. Using the algorithms developed in the Eye
movements and Noisy Motor Events experiments (Chapter 5), and with subsequent
additional EEG analysis, perceptual dynamics will be inferred.
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Experimental metrics,
modules and designs

B

B.1 Maximally Projected Correlation

B.1.1 More details on MPC

We use ·> for the transpose operator and trace(·) will denote the trace operator
(sum over the diagonal elements of a matrix). The identity matrix in dimension 2
will be denoted by Id2.

Variance-covariance and inertia

Let qG(t) = (xG(t), yG(t))>, qS(t) = (xS(t), yS(t))>, and qR = (xR(t), yR(t))> be
the screen Cartesian coordinates (column vectors) at time instant t of the Gaze, the
stimulus, and the retinal image, respectively. Now, having samples at n discrete
times {ti}ni=1, we estimate the centre of gravity of a gaze trajectory {qG(ti)}ni=1 by
its empirical mean mG = n−1∑n

i=1 qG(ti). This estimate approaches the true centre
of gravity if we sample sufficiently regularly and beyond twice the Nyquist frequency,
conditions that are met when working with the EyeLink 1000+, sampling at about
1000 Hz for each eye.

A second-order statistic of interest is the empirical variance-covariance matrix, which
gives the inertia of the gaze trajectory defined as

ΣG = n−1
n∑
i=1
qG(ti)q>G(ti)−mGm

>
G (B.1)

and analogously for the stimulus and retinal image empirical variance-covariance
matrix. The inertia about its centre of gravity is then given by

ImG = n−1
n∑
i=1
‖qG(ti)−mG‖2 = trace (ΣG) . (B.2)
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The inertia Ir of the gaze trajectory qG with respect to any fixed point r having
screen coordinates (xr, yr) is

Ir = trace (ΣG) + (mG − r)> (mG − r) . (B.3)

Maximally projected correlations

Taking now the simultaneously recorded gaze {qG(ti)}ni=1 and stimulus {qS(ti)}ni=1
signals, and their respective empirical variance-covariance matrices ΣG and ΣS , we
denote the inter-covariance matrix by

ΣGS=̇n−1
n∑
i=1

(qG(ti)−mG) (qS(ti)−mS)> = Σ>SG . (B.4)

This matrix is particularly useful when considering the inertia of gaze with respect
to the time-changing coordinates of the stimulus. Indeed, after some manipulations,
we obtain:

IGS = n−1
n∑
i=1
‖qG(ti)− qS(ti)‖2

IGS = trace (ΣG + ΣS −ΣGS −ΣSG) + ‖mG −mS‖2 .

Unfortunately, the inertia does not account for differences in scale, nor for coordinate
translation, two characteristics that are typical aspects for pursuits and for which we
require an invariance. Indeed, we suppose the stimulus will always be at a constant
phase with respect to the gaze, either lacking behind in phase (catching up on the
stimulus) or ahead of phase (prediction), the scale difference is our main objective,
showing that the stimulus trajectory is reproduced at a smaller scale and, finally, the
coordinate translation shows a systematic bias in the trajectories.

Noise robustness & signal size dependency

Fig. B.1 shows results of simulations operated on a Lissajous signal degraded noise
on the position of the stimulus at different signal to noise ratio (SNR) and for
different signal sizes. For signals with more than 167 samples, the behaviour of MPC
scores over SNR remains stable and shows quasi-unchanged dynamics.
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Figure B.1. Behaviour of MPC scores over SNR in simulated similarity computations with a
Lissajous base signal from LJ.

B.2 Eye Movements experiment

B.2.1 Eye movement manipulations

To align our experiment with most of the past research on the stimulus, we chose to
focus on manipulating the central, foveal, part of the stimulus in order to keep the
retinal image relatively stable. By opting for an implicit manipulation method, we
aimed to generate oculomotor markers of attractor dynamics that would generate
FEM. The FEM expected, linked to attractor motion and inhibition levels, can either
be, in this context, micro-saccades or micro-pursuits. Micro-saccades are expected
to appear when attentional or intentional properties of the energy field, or in other
words the parameters of the attractors, have highly unstable dynamics over time,
or alternatively, when many attractors are integrated over a stimulus. On the other
hand, we expected micro-pursuits to occur when attractors are relatively balanced,
but the oculomotor system has sufficient noise to allow the gaze particle to jump into
another attractor. After micro-pursuits, we expected that corrective micro-saccades
or small amplitude saccades would occur as observers remember to focus on the
fixation dot or the central part of the disk (see Fig. B.3). Finally, if the system does
not have sufficient noise, we expected the gaze to stay stable in the fixation area
with mostly some oculomotor drift and tremors FEM being detected.
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Possible methods for eye movement manipulation in moving plaid stimulus

In the literature, moving plaid experiments use a disk area at the centre of the
stimulus (see Fig. B.3) in which a fixation dot is placed, so that observers may keep
their gaze fixated on it. Objects such as crosses, dots and combinations of them,
can be used in psycho-physical experiments to help maintain the eyes in a steady
position (Thaler et al., 2013). This is mostly done to reduce retinal image shifts
and variability in the information flow for the visual system. Furthermore, the size
of this disk is typically of 2-3 deg and added to minimise OKN occurrences, which
means the gratings are present beyond central vision (Hupé and Rubin, 2003). This
area of the stimulus can be manipulated more or less explicitly: for instance, the
fixation dot could have movement that is coherent with percept motion to reinforce
its probabilities of being perceived. Alternatively, it should be possible to generate
motion in the periphery to increase oculomotor motion probabilities (Spering and
Gegenfurtner, 2008). The difficulty lays in finding a balance between explicit
methods that would be prone to top-down biases such as the demand and response
biases (Firestone and Scholl, 2016) and implicit methods with small effect on the
oculomotor dynamics, thus a high number of occurrences are needed because of low
statistical power. A last argument to keep in mind in approaching such a problem is
that in the context of moving plaid perceptual tasks, trials are long (over 30 s) in
order to generate endogenous perceptual reversals.

One method to induce oculomotor biases is to use a RDK at the centre of the stimulus.
Our aim was to establish a coherence ratio that would generate implicit micro-pursuit
movements in the same direction as the signal and corrective micro-saccades in the
opposite direction.

We expected that given the RDK signal has the same direction as
one of the percepts, we would observe micro-pursuits in the direc-
tion of the signal and a bias with percept time reported for the
percept with that same direction. Thus, this condition would be an
excitation of that percept by manipulation of oculomotor dynam-
ics. On the contrary, if the RDK signal has the opposite direction1

as one of the percepts, we would observe micro-pursuits in both
the direction of the RDK signal and the percept, combined with a
bias on lower percept time reported. Here, this condition would be
considered as an inhibition of the percept by manipulation of eye
movements.

1Orthogonality, in retrospective, may be a better option.
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The relationship was not expected to be necessarily symmetrical; indeed inhibition
should be less powerful as excitation.

Random-dot kinematogram.
A RDK is a set of points that have random movements in a defined area. Different imple-
mentations exist (Scase et al., 1996) with the three main noise methods combined with two
dot signal selection methods (see Fig. B.2).

• Random position—when a dot is selected as noise, its next position will be chosen
using a random distribution—mostly a uniform distribution over an area, but not
necessarily—and it will be relocated at that position at the next iteration.

• Random walk—when a dot is selected as noise, it will follow a random walk, also
known as Brownian motion (Einstein, 1956), in which the dot’s direction and ampli-
tude are randomly picked over each iteration.

• Random direction—when a dot is selected as noise, it will have a fixed motion
direction which is drawn once for its entire life time, at birth.

• Same—when a dot is selected as noise, it remains so for its entire life time.

• Different—dots are selected as noise at each iteration.

These methods generate different spatio-temporal dynamics, visually and perceptively, and
the coherence ratio—e.g., the percentage of dots that are associated to the signal—affects
visual decoding with varying degrees of efficacy (Scase et al., 1996; Pilly and Seitz, 2009).
In other words, the threshold for the correct detection of the signal’s direction varies across
RDK methods. Moreover, it has been reported that the smooth pursuit latency and early
eye acceleration are not affected by the type of RDK, but late eye acceleration, pursuit
gain and perceived velocity were dependent on RDK type (Schütz, D. I. Braun, Movshon,
et al., 2010). Perception and pursuit performance also showed correlated dynamics. The
authors interpreted their results as the pursuit system showing a capacity to integrate across
directions of the RDK’s signal, but not velocity.

B.2.2 Methods

Apparatus

The stimulus was displayed on a 36 cm by 27.5 cm (19 inches) Dell M993s CRT
screen of resolution 1280 by 1024 pixels and a 75 Hz refresh rate, located 59 cm
from the participants. Eye tracking was done using an EyeLink 1000+ (SR Research).
Calibration was applied using a 5 points procedure between each block and if drift
correction failed. Drift correction was applied after each trial.
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Figure B.2. Random-dot kinematogram. Schematic illustration of the six types of sig-
nal/noise display generated by the rules described in the text. The figure shows
examples with 50% coherence and rightward signal motion in each case. Dots
designated as signal dots for the following displacement are shown as open
circles, those designated as noise dots are solid circles. In the random-position
case, the displacement vectors shown join each noise dot to its new position se-
lected by the plotting algorithm; for the visual system, these are not necessarily
the most effective pairings for generating motion signals. Figure taken from
Scase et al. (1996).

Stimulus

The moving plaid stimulus was presented in the same orientation setup as in the
Ambiguity experiment (Section 4.3 in Chapter 4) with the coherent percept being
perceived towards the top of the screen. In the central oculomotor fixation disk of
a diameter of 4 deg, a RDK stimulus was implemented using the methods of same
random direction (see box on RDK for more details) with the dots keeping the same
label over their life time. 100 dots were generated with a life time of 40 s (see
Fig. B.3), but they reappeared at new random initial location once they had left
the display area of the RDK. The directions of each noise dot j were picked using a
uniform random distribution over all angles: θj ∼ U(−π;π). All dots had the same
velocity as the gratings of 1.5 deg.s-1, perpendicular to the bars.

Protocol

Two levels of coherency (amplitude) for the RDK were used: 10% and 20% of dots
being as signal. On the other hand, we varied the direction of the RDK signal by
selecting amongst 8 possible levels: 0°, 60°, 90°, 120°, 180°, 240°, 270° and 300°
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Figure B.3. Protocol. Experimental structure of a trial in the Eye Movements experiment.

Figure B.4. RDK orientations. Diagram showing the orientations of the signals used for the
RDK in order to verify the excitation and inhibition hypotheses of oculomotor
dynamics on perception in the Eye Movements experiment.

(see Fig. B.4). There was one trial per combination of coherency level and RDK
direction, and one control trial with no RDK and instead a simple dot (shown as
0% in the results). This summed up to a total of 18 trials per phase. However, two
phases were carried out: one with the moving plaid (with a perceptual reporting task
identical to the Ambiguity experiment) and RDK at the centre, the other with only
the RDK and a grey empty space instead of the gratings. Phase order was selected
randomly, and trials within each phase were shuffled randomly. Hence participants
had to go through 36 trials in total, all with eye-tracking measurements.

Participants

10 individuals (3 males, 7 females; mean age of 26 years old and standard deviation
of 8.52 years) participated in the experiment after signing declarations regard-
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ing their consent and data anonymisation in accordance with the Declaration of
Helsinki.

Eye movement analysis pre-processing.

In order to verify whether gaze was influenced as expected by the RDK manipulation
of amplitude and direction, a method with the following steps of data processing
was developed and implemented, based on the work on smooth pursuit analysis and
perceptual inference in Aleshin et al. (2019). Data extraction was done using the
EDF mex toolbox on MATLAB provided by SR Research Ltd, to extract data from EDF
format to MATLAB. The data selected were samples recorded on both eyes at 1000
Hz on the EyeLink1000+. Raw gaze sample data beyond the screen size horizontally
and vertically were replaced by not a number (NaN) entries such that the length of
the data vector was left unchanged, but interruptions in the data time series were
apparent.

Pursuit extraction.

We used the functions from the toolbox provided by Aleshin et al. (2019) to process
the time series such that pursuits were extracted from the data—however, we did
not generate cumulative smooth pursuits. The bi-variate signals for right and left
eye signals were fed into a forward and a backward low-pass filter that applied
convolutions with a 50 ms time kernel. The output signal was computed as the
mean between both filters for each sample. Pursuit extraction was applied on
the filtered data by selecting parts of the signal below a velocity threshold of 120
deg.s-1 or an acceleration threshold of 471 deg.s-2, and with durations longer than
50 ms. All parts of the signals above thresholds are replaced as NaN entries. To
compute velocities, the removed parts of the vectors were obtained using a linear
one-dimensional interpolation function.

The pursuit extraction step replaces eye blinks and saccades with NaN entries.
We log these events in a table for signal division into epochs. Micro-saccades are
detected, and logged in a table as well, using the EK algorithm—as presented in
Chapter 2 (Engbert and Kliegl, 2003). This algorithm uses a relative thresholds
based on 6 median absolute deviation of the eye velocity, a minimum duration of 3
ms and verifies that the micro-saccade is detected over both eyes.

Hence an epochs table was extracted with the epochs being the periods preceding
micro-saccades, saccades or blinks.
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Circular statistics were carried out on the polar representation of the velocity time
series of the gaze using MATLAB’s CircStat toolbox (Berens et al., 2009). For each
epoch retained, we first tested whether velocity directions of gaze samples were
uniform using a Rayleigh test, after smoothing the signal with a Savitzky-Golay
filter (Press and Teukolsky, 1990) spanning over 50 ms. If the uniformity test was
rejected at α = 0.05, then we computed the mean velocity directions for left and
right eye signals and verified that they did not differ by more than π

2 . If velocity
directions were conjugated, a one-sample circular t-test for the mean angle compared
to the expected value based on the RDK direction was applied. The algorithm is
described in Algorithm 1.

Algorithm 1: (Micro-)pursuit direction detection.
Result: Table of epochs classified as RDK (micro-)pursuits.
Extract left and right eye gaze signals as epochs (gL, gR);
for each epoch do

if Epoch duration ≥ 100 ms then
Apply Savitzky-Golay filter with 50 ms span;
Compute velocity directions (ϑL,ϑR) = arctan

[
(ġL, ġR)

]
;

if Rayleigh test null hypothesis is rejected at α = 0.05 then
Compute velocity directions means (ϑL,ϑR);
if Absolute difference of left and right velocity direction means
‖ϑL − ϑR‖ ≤ π

2 then
Compute conjugated velocity mean direction ϑLR;
if Conjugated velocity mean direction is in a 30° interval around
the RDK directions ϑRDK − π

12 ≤ ϑLR ≤ ϑRDK + π
12 then

Detection=true;
else

Detection=false;
end

else
Detection=false;

end

else
Detection=false;

end

else
Detection=false;

end

end
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Figure B.5. Pursuit score results. Pursuit scores for all RDK orientations, amplitudes
(colour) and in the Plaid On and Plaid Off phases. The control trials with
no RDK had pursuit score computed against the 0° direction to measure the
influence of the coherency percept motion direction.

Once the (micro-)pursuit direction detection was finished, a pursuit score was ob-
tained by computing the ratio between pursuit duration and the sum of epochs
durations in the epochs table. As this work was a pilot experiment and carried out on
a small sample with many different conditions, no statistical analyses are presented
and only a data description will be given.

B.2.3 Results

The data is visualised in Fig. B.5 where pursuit scores against RDK orientation
are displayed, with RDK amplitude levels being discriminated by colours, for the
phases with and without the moving plaid task. RDK seems to have generated few
(micro-)pursuits in the phase without plaid task, except for the -90° trials in which
participants made high pursuit scores. Meanwhile in its counterpart, we measured
pursuits in some directions, namely 0°, -60° and 60°, when the plaid perceptual task
was active. The effect appears to be irrelevant of RDK amplitudes across orientations
and most potent at 0°. These measured pursuits thus occured at the directions
coincidental with the perceived directions of the moving plaid percepts—i.e., 0° for
coherency, -60° for right transparency and 60° for left transparency, as observed
empirically in Section 4.2 in Chapter 4.
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B.2.4 Discussion

Based on the descriptive data presented in Fig. B.5, we concluded that RDK manipu-
lation, in the central fixation circle of the moving plaid stimulus was not efficient as
no systematic pursuit were observed across orientation conditions. Moreover, the
RDK amplitude (i.e. the percentage of dots having a determined direction) did not
influence pursuit detection in both task conditions (Plaid On & Plaid Off).

A curious effect is observed at -90° in the Plaid Off phase, for both amplitude levels,
where high pursuit scores were computed. As this direction coincides with the classic
Latin language reading direction2 and given the participants were french speaking
and reading individuals, an oculomotor bias may exist that triggers (micro-)pursuits
more easily in this direction.

In the Plaid On condition, we observed higher pursuit scores in the RDK direction
orientations that matched the moving plaid’s percepts—e.g., 0°, -60° and 60°. The
RDK amplitude did not generated differences on the other hand, and moreover,
the control trials where no RDK were displayed had similar pursuit scores to the 0°
condition with Plaid On.

Therefore, RDK did not seem to create any oculomotor manipulation sufficiently
potent to inhibit or excite the effects of perceived moving plaid directions. However,
this data suggests that participants followed the moving plaid, providing encouraging
evidence that verifies the hypotheses postulated in this thesis (Section 4.1 in Chap-
ter 4). Namely, that perceived motion can be revealed by measuring (micro-)pursuits
and interpreting them as active and embodied markers of ambiguous multi-stable
perception.

The algorithm developed and used for this work has many restrictive criteria, i.e.
many rejection outcomes, which could be a limitation of this work. Or at least,
more signal processing methods – for instance approaches using MPC, or Quaternion
Fourier transform (Flamant, 2018)—investigation could provide further insight on
this data set. However, methods using the MPC measure, presented in Chapter 2,
were not discriminant enough and threshold identification in the correlation space
was not trivial to determine, whereas the threshold on velocity orientation used here
were chosen through simpler hypotheses. Also, comparing the epochs’ mean velocity
values by computing gain in the Cartesian coordinate space yielded results with
less interpretation potential. A promising future work perspective, for this work,
would be to have the GraFEM model (presented in Chapter 3) generate a library of
trajectories by varying its parameters across and specifying attractor motion, and

2As a reminder, our data has the 0° value at the top of the vertical axis of the polar circle.
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to then compare and find the parameters set that show the most similarity with
the observed data. We could then interpret the data based on the model’s matched
parameters and have further explanation of what occurs to generate these types of
pursuits.
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B.3 Noisy Motor Events experiment

B.3.1 Methods: no-report and no-fixation protocols with the moving
plaid

Apparatus

The stimulus was displayed on a 36 cm by 27.5 cm (19 inches) Dell M993s CRT
screen of resolution 1280 by 1024 pixels and a 75 Hz refresh rate, located 59 cm
from the participants. Eye tracking was done using an EyeLink 1000+ (SR Research).
Calibration was applied using a 5 points procedure between each block and if drift
correction failed. Drift correction was applied between each trial.

Stimulus

The moving plaid stimulus was presented in the same setup as in the Ambiguity
experiment with the coherent percept being perceived towards the top of the screen.
Presentation time was of 40 seconds.

Protocol

The experiment was composed of two crossed conditions. On one side, we contrasted
report versus no-report trials, and on the other, we had an oculomotor restriction task,
i.e., fixing the central dot with the gaze, versus free oculomotor exploration of the
stimulus. Each of these four conditions were organised in blocks of 12 trials with 2
trials being unambiguous. For each participants, the block order was sorted randomly.
The report vs no-report contrast was meant to test the hypothesis on oculomotor
markers of perception. The fixation vs free exploration contrast was meant to test
the hypothesis on oculomotor marker amplification by manipulating the oculomotor
task given to participants. Finally, non-ambiguous stimulus presentations were done
in a few trials in order to obtain a contrast to investigate latencies between key press,
eye movements and exogenous changes.

In non-ambiguous trials, the gratings’ transparencies were dynamically changed
based on exogenous percept durations drawn from a Gamma distribution with a
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Figure B.6. Protocol. Diagram showing trial structure.

shape parameter k = 1 and a scale parameter θ = 5 with the following density
function:

f(x; k, θ) = 1
Γ(k)θk x

k−1e−
x
θ (B.5)

where Γ(k) is the gamma function. The choice of which exogenous percept to
display was done by flipping a coin between the other two percepts, for the fol-
lowing percept duration. Exogenous percepts were displayed as moving plaids
with gratings’ transparency values for coherency (αL, αR) = (0.5, 0.5), for left trans-
parency (αL, αR) = (0.9, 0.1) and right transparency (αL, αR) = (0.1, 0.9). Changes
were done abruptly, from one frame to the other, when a percept duration was
consumed.

Participants

19 individuals (17 women and 2 men, with an age mean of µ = 20.11 and standard
deviation of σ = 1.14) participated in the experiment after signing declarations
regarding their consent and data anonymisation in accordance with the Declaration
of Helsinki.

Eye movement analysis pre-processing

In order to verify whether the gaze was influenced as expected by the percepts and
to detect to which percept belonged a part of the gaze time series, we used similar
signal processing methods to that presented in Appendix B.2. Data extraction was
done using the EDF mex toolbox on MATLAB provided by SR Research Ltd, to extract
data from EDF format to MATLAB. The data selected were samples recorded on both
eyes at 1000 Hz on the EyeLink1000+. Raw gaze sample data beyond the screen
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size horizontally and vertically were replaced by NaN entries such that the length of
the data vector was left unchanged, but interruptions in the data time series were
apparent.

Pursuit extraction

We used the functions from the toolbox provided by Aleshin et al. (2019) to process
the time series such that pursuits were extracted from the data—however, we did
not create cumulative smooth pursuits. The bi-variate signals for right and left
eye signals were fed into a forward and a backward low-pass filter that applied
convolutions with a 50 ms time kernel. The output signal was computed as the
mean between both filters for each sample. Pursuit extraction was applied on
the filtered data by selecting parts of the signal below a velocity threshold of 120
deg.s-1 or an acceleration threshold of 471 deg.s-2, and with durations longer than
50 ms. All parts of the signals above thresholds are replaced as NaN entries. To
compute velocities, the removed parts of the vectors were obtained using a linear
one-dimensional interpolation function.

The pursuit extraction step replaces eye blinks and saccades with NaN entries.
We log these events in a table for signal division into epochs. Micro-saccades are
detected, and logged in a table as well, using the EK algorithm—as presented
in Chapter 2 (Engbert and Kliegl, 2003). This algorithm uses a relative velocity
threshold of 6 standard deviations, a minimum duration of 3 ms and verifies that
the micro-saccade is detected over both eyes.

Hence an epochs table was extracted with the epochs being the periods preceding
micro-saccades, saccades or blinks.

Circular statistics were carried out on the polar representation of the velocity time
series of the gaze using MATLAB’s CircStat toolbox (Berens et al., 2009). For each
epoch retained, we first tested whether velocity directions of gaze samples were
uniform using a Rayleigh test, after smoothing the signal with a Savitzky-Golay
filter spanning over 50 ms. If the uniformity test was rejected at α = 0.05, then we
computed the mean velocity directions for left and right eye signals and verified
that they did not differ by more than π

2 . If velocity directions were conjugated,
a one-sample circular t-test for the mean angle compared to the expected value
based on the possible percept direction (ϑl = 60°, ϑc = 0° & ϑr = −60°, based on
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Percepts experiment results in Section 4.2) was applied. The algorithm is described
in Algorithm 2.

Algorithm 2: (Micro-)pursuit direction detection.
Result: Table of epochs classified as perceptual (micro-)pursuits for percept

inference.
Extract left and right eye gaze signals as epochs (gL, gR);
for each epoch do

if Epoch duration ≥ 100 ms then
Apply Savitzky-Golay filter with 50 ms span;
Compute velocity directions (ϑL,ϑR) = arctan

[
(ġL, ġR)

]
;

if Rayleigh test null hypothesis is rejected at α = 0.05 then
Compute velocity directions means (ϑL,ϑR);
if Absolute difference of left and right velocity direction means
‖ϑL − ϑR‖ ≤ π

2 then
Compute conjugated velocity mean direction ϑLR;
if Conjugated velocity mean direction is in a 30° interval around
the percept directions ϑpercept − π

12 ≥ ϑLR ≤ ϑpercept + π
12 then

Detection=true;
else

Detection=false;
end

else
Detection=false;

end

else
Detection=false;

end

else
Detection=false;

end

end

Inferred percept epoch table simplification

The epochs table with percepts inferred from eye movements was simplified (3) by
(i) merging short identical and consecutive detected percepts, (ii) fusing percepts
when the anterior and current match, (iii) identifying potential long percepts and
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overriding smaller ones and (iv) taking a decision on whether to leave remaining
rejected epochs as such or to integrate them in inferred percepts. The merger and
fusion gives priority to the preceding percept when repetitions are found. Afterwards,
the algorithm applies a fusion of repeated percepts in consecutive epochs, thus
looking for long percepts. Finally, the algorithm looks at un-classified epochs and
takes a decision based on duration, with short epochs (≤ 1000 ms) being fused and
the others being kept as periods without percepts.

Percept inference scores

The percept inference process was evaluated by comparing the reported key press
data to the inferred eye movement data. To do so, we computed the percentage
of time in a reported key press percept, during which, the inferred eye movement
percept matched. Scores were then averaged over trials for each percept. We also
looked at the non ambiguous condition, during which exogenous, reported key
press and eye movement inferred perceptual changes were compared. To do so, we
estimated, using a maximum likelihood estimator, the parameters of Gamma and
Log-Normal distribution functions in each trial for the exogenous, key press reported
and eye movement inferred percept durations.

B.3.2 Preliminary results

As a reminder, the results presented here remain preliminary and further analyses
are needed for a better understanding of the data.

Percept inference scores in the condition in which participants reported their per-
cepts with key press were computed by obtaining the percentage of time in a key
press percept that was correctly inferred from eye movements by the procedure
described above. The results presented in Fig. B.7 show that overall, in the ambiguity
contrast and the oculomotor task contrast, similar patterns are visible in the data.
In particular, coherent percept detection was correctly detected more often than
the other transparency percepts. In fact coherency scores seem to be above chance
level—25% as percepts could be either c, l, r or none, though these levels are not
necessarily uniform as they depend on the probability of percept observation—but
the algorithms’ detection seems to agree less with the reported key press data, for
the transparency percepts.

We compared estimated Gamma and Log-Normal distribution parameters based on
the different data types that could be analysed in this experiment: eye movements
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Algorithm 3: Gaze-based percept timeline inference simplification.
Result: Table of simplified epochs classified as perceptual timeline inference

based on gaze.
Provide a table of oculomotor epochs with associated perceptual detection;
for each epoch e(i) = (ep(i), ed(i)) with a percept p = (l, c, r, n) & duration d
(ms), respectively do

if Percepts are the same for ep(i− 1), ep(i), ep(i+ 1) then
if ed(i− 1) > ed(i) ∧ ed(i+ 1) > ed(i) then

Merge: ep(i) = ep(i− 1);
end
if ed(i− 1) > ed(i) ∧ ed(i+ 1) ≤ ed(i) then

Merge: ep(i) = ep(i− 1);
end
if ed(i− 1) ≤ ed(i) ∧ ed(i+ 1) > ed(i) then

Merge: ep(i) = ep(i+ 1);
end
if ed(i− 1) ≤ ed(i) ∧ ed(i+ 1) ≤ ed(i) then

Do not merge;
end

end
if Only anterior & current percepts are the same ep(i− 1), ep(i) then

Fusion: ep(i) = ep(i− 1); ed(i− 1) = ed(i− 1) + ed(i);
Remove e(i);

end
end
while There remain consecutive repeated percepts for epochs do

For each percept p = (l, c, r, n), apply fusion on repeated epochs e into
the first of the same percept;

end
for Remaining un-classified epochs ep(i) = n do

if ed(i) ≤ 1000 ms then
Fusion with e(i− 1);

else
Keep epoch with ep(i) = n;

end
end
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Figure B.7. Percept inference. Box plots of the computed percept inference scores, for
each percept: coherency c, left transparency l and right transparency r. The
fixation task and ambiguity contrast are presented and only data from the trials
with key press report are presented. Note that the box plots for Ambiguous
trials are composed of 557 data points, while the Non-Ambiguous 144 data
points.
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inferred (EM), exogenous changes (EX) in non ambiguous trials and key press
reported (KP) in report trials. The trial-level data for both functions are shown in
Fig. B.8. In both cases, the estimated parameters form clusters and do not generate
similar distributions across data types. This approach shows that the data types
provide very different perceptual information, with the key press data showcasing
shorter percept durations while the eye movement inferred longer ones, based on
the k and µ estimated parameters. It also shows that the ambiguity manipulation in
this experiment did not reproduce patterns similar to key press reports.

B.3.3 Discussing preliminary results

In this experiment, we saw a number of exploratory manipulations—e.g., ambiguity,
oculomotor task, and perceptual report task—and though the results presented
above remain preliminary, they provide interesting insights, useful to the objective
of creating a paradigm where perceptual and (oculo-)motor systems can be studied
jointly, as presented in Section 4.1 in Chapter 4. Some of these points are discussed
in the following paragraphs.

Limitations of EM percept detection: towards a better oculomotor task?

This experiment’s data shows that percept detection in eye movement gaze signals
is challenging. Though we based our methods for gaze processing on the one
developed in Appendix B.2, the reference here were the dynamics percepts, whereas
in the former, the reference was a velocity direction, constant across trial duration.
The inference process was thus subject to sequencing error and temporal shifts,
as key press reports are notoriously late with latencies of approximately 400 ms,
whereas eye movements show much faster responses (Kornmeier and Bach, 2012;
Aleshin et al., 2019). Hence, the score computation is also less trivial than in
Appendix B.2 and generates three scores per trial: one per percept. For instance,
some participants, at times, do not report all three percepts in a trial, which tends to
negatively bias the score.

Furthermore, the results show that the free exploration oculomotor task was not ef-
fective as scores did not improve; in fact they are further dispersed for the coherency
in the ambiguous free trials—see Fig. B.7. The reduced overall performance on the
transparency percepts can be explained by the change of perceived moving objects’
size, leading to eye movements in more directions. Indeed, in coherency, one sees
diamond patterns moving upwards, creating smaller perceived objects to track. The
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Figure B.8. Percepts data comparison.
(a) Estimated parameter space (k, θ) for Gamma distributions function on eye
movement inferred (EM), exogenous changes (EX) and key press reports (KP)
data sets (colours).
(b) Estimated parameter space (µ, σ) for Log-Normal distributions function on
eye movement inferred (EM), exogenous changes (EX) and key press reports
(KP) data sets (colours).
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speed integration also make the motion faster, and potentially more adequate for
the pursuit system. In transparency, the entire un-occluded gratings are perceived
to move; participants may move along the tracked bars. Hence, this makes our
detection algorithm ineffective as it searches for epochs with a velocity direction in
an interval surrounding the percept’s direction.

Therefore, a perspective would be to test the protocol with a more adequate oculo-
motor task: "follow the perceived motion". This would be a more adequate first step
to gather the needed data to develop a robust percept inference algorithm.

Limitations of brutal ambiguity manipulation

Another limitation of this work resides in the method used to manipulate the
stimulus for non ambiguous trials. Because of time constraints and the internship
context, the psycho-observer model developed in Chapter 4 was not integrated and
a simple, brutal approach was used. The spread in distribution parameters shown
in Fig. B.8 provides evidence that the use of an arbitrary Gamma distribution, to
generate exogenous percept changes, has critical limitations in reproducing key
press reports dynamics. Thus, this data set, and the presented analysis, provides
further motivation to estimate an observer’s probabilistic model of the moving plaid
ambiguity with respect to the transparency parameters. This can allow to infer and
identify points of maximal ambiguity and furthermore, to use the points where the
model’s probabilities are highest for a percept to bias the stimulus towards that
percept.

326 Appendix B Experimental metrics, modules and designs



Journal of Vision article C
The following pages present the corrected and revised results from Chapter 2 as they
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Humans generate ocular pursuit movements when a moving target is tracked throughout the visual field. In this
article, we show that pursuit can be generated and measured at small amplitudes, at the scale of fixational eye
movements and tag these eye movements as micro-pursuits. During micro-pursuits, gaze direction correlates with
a target’s smooth, predictable target trajectory. We measure similarity between gaze and target trajectories using a
so-called maximally projected correlation, and provide results in three experimental data sets. A first observation
of micro-pursuit is provided in an implicit pursuit task, where observers were tasked to maintain their gaze fixed
on a static cross at the center of screen, while reporting changes in perception of an ambiguous, moving (Necker)
cube. We then provide two experimental paradigms and their corresponding data sets: a first replicating micro-
pursuits in an explicit pursuit task, where observers had to follow a moving fixation cross (Cross), and a second
with an unambiguous square (Square). Individual and group analyses provide evidence that micro-pursuits exist
in both the Necker and Cross experiments, but not in the Square experiment. The inter-experiment analysis results
suggest that the manipulation of stimulus target motion, task and/or the nature of the stimulus may play a role in
the generation of micro-pursuits.
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Introduction
Eye movements are typically classified at macroscopic scale

as either fixation, pursuit, saccade, or reflexive eye movements.
But, even during fixations, eyes never stay still and a vari-
ety of fixational eye movements have been observed and stud-
ied (Martinez-Conde, Macknik, & Hubel, 2004). As an exam-
ple, micro-saccades have been defined as small amplitude, bal-
listic movements, similar to large scale saccades (Rolfs, 2009).
Based on the hypothesis that eye movements are consistent ob-
servations in an oculomotor continuum (Otero-Millan, Mack-
nik, Langston, & Martinez-Conde, 2013), and in line with micro-
saccades, one can thus expect to observe small-amplitude pur-
suits within fixations. Here, we will focus on this subclass of slow
fixational eye movements, which we term micro-pursuit eye
movements. We provide evidence of micro-pursuit eye move-
ments at a fixation level, with an adapted metric that reveals
their existence. Three different experiments are presented, two
where micro-pursuit occurs and one where it does not. In what
follows, we will first describe the current classes of macro-scale
eye movements, with their functions and metrics, to provide a
starting point for the oculomotor continuum hypothesis that we
defend.

The main function of eye movements is to orient the gaze
towards parts of a visual scene (Yarbus, 1967; Palmer, 1999; Li-
versedge, Gilchrist, & Everling, 2011). To accomplish this goal,
the human oculomotor system has the capacity to generate a
wide variety of movements that can be categorized based on
their spatio-temporal dynamics: amplitude, velocity, and accel-
eration.

Rapid and ballistic eye movements (saccades): classified
based on displacement, speed, and acceleration thresh-
olds, e.g., displacement above 0.15 degrees (deg), velocity
above 30 deg.s-1, acceleration above 9500 deg.s-2, though
other detection criteria exist (Nyström & Holmqvist, 2010;
Behrens, MacKeben, & Schröder-Preikschat, 2010; Mihali,
Opheusden, & Ma, 2017). These criteria have become
their definition. But, absolute threshold criteria have
been criticized for their lack of functional, physiological
or formal justifications. For example: the clear dichotomy
between fixations and saccades has been loosened (Ko,
Poletti, & Rucci, 2010).

Slow eye movements (smooth eye pursuits, slow oculomotor
control):

classified based on a simple velocity criterion, e.g., smooth
pursuit ranges from 20 to 90 or 20 to 100 deg.s-1 (Krauzlis,
2004; Komogortsev & Karpov, 2013; Spering & Montagnini,
2011), though pursuits are considered smooth and precise
only at speeds up to 30 deg.s-1. If target velocity is too
high for the pursuit system, catch-up saccades can com-
pensate for the accumulated position error created by the
difference between target and gaze velocities, also known
as the retinal slip (De Brouwer, Yuksel, Blohm, Missal, &
Lefèvre, 2002).

Eye fixations: usually defined as any eye movement with an
amplitude below 1 deg. They specifically include fixa-
tional eye movements which form a generic class of small-
amplitude eye movements (ocular drift, tremor and micro-
saccades) sharing dynamic characteristics with regular
(macro) eye-movements at smaller scale (Otero-Millan et
al., 2013; Krauzlis, Goffart, & Hafed, 2017).

The article is organized as follows: First, slow eye move-
ments are described with associated with their dimension and
metrics. Secondly, small-amplitude, slow eye movements and
their dependencies on the visual stimulation, the task, and
the experimental paradigm are detailed as well as the met-
rics used for their detection. Then, we introduce a metric for
target-dependent eye movement, maximally projected correla-
tion (MPC), a scale- and translation-invariant metric that mea-
sures similarity between the gaze and a target 2D motion during
small amplitude smooth movement. Finally, we propose three
experiments and their results: a first experiment (Necker) that
allows for the detection of micro-pursuit and two other experi-
ments (Square and Cross) that have been built to replicate the
generation of smooth pursuit with different stimuli and tasks.

Slow eye movements: different kinds of motion
The functional role of (smooth) pursuit is to maintain a—

usually moving—target of interest on the high acuity foveal re-
gion of the retina (Spering & Montagnini, 2011). Tracking is be-
lieved to be controlled by retinal errors, the difference between
gaze and target positions, or retinal slip1, i.e., q R =̇qG − q S , the
difference between gaze and target velocities or speed vectors of
the gaze and of the target stimulus, i.e., q̇ R =̇q̇G − q̇ S . According
to Orban de Xivry and colleagues (Xivry & Lefevre, 2007), pur-
suit relies mostly on reducing retinal slip and is modulated, in a
smaller way, by position and acceleration errors.

In order to detect and measure the quality of slow eye move-
ments, metrics have been defined that associate gaze with the
target stimulus position. For smooth pursuit, tracking quality
is measured through gain (see Micro-pursuits section for more
details). This measure has shown its effectiveness in experi-
mental protocols where a target appears on screen and partic-
ipants are tasked to follow its motion. Pursuit is mostly stud-
ied for tracking a single point on a uniform background, al-
though other stimuli in motion also lead to pursuit movements,
for instance, random-dot kinematograms (Heinen & Watama-
niuk, 1998), line figures (Masson & Stone, 2002), illusory per-
ceptual motion (Madelain & Krauzlis, 2003), or after-effect mo-
tion (D. I. Braun, Pracejus, & Gegenfurtner, 2006). In tasks where
a percept is pursued, rather than a stimulus, the measure of gain
and the associated models have been questioned (Stone, Beut-
ter, & Lorenceau, 2000).

Among the slow eye movements, we also find reflexive
movements such as the vestibulo-ocular reflex (VOR), the oculo-

1For the use of the notations in this manuscript the reader is referred to Ap-
pendix A.
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following reflex (OFR), or the opto-kinetic nystagmus (OKN). The
VOR is a reflex eye movement that compensates head motion in
order to maintain a stable retinal image. Though the VOR expres-
sion may be similar to pursuit, it is only generated when the head
is free to move. The OFR is a reflexive eye movement in response
to a sudden change of a wide-field image (Michalski, Kossut, &
Żernicki, 1977; Miles, Kawano, & Optican, 1986; Gellman, Carl,
& Miles, 1990; Quaia, Sheliga, FitzGibbon, & Optican, 2012). The
reflex is mainly attributed to the tracking of motion in peripheral
vision (Ilg, 1997). The OKN is a composite gaze pattern in which
an object is followed by smooth pursuit until the object leaves
the visual field. At this point, the gaze returns to the object’s ini-
tial position (fast saccadic response) at the starting position of
the pursuit. VOR, OFR and OKN are eye movements solicited in
specific visual stimulation and experimental contexts, which re-
quire the manipulation of a large part of the visual field, not a
smaller perceptual target, as with pursuit.

To summarize, pursuits have been studied as large-scale
eye movements with amplitudes exceeding 1 deg (60 min-arc) in
which a target with motion is tracked by the gaze, such that the
retinal slip is minimized. The metric used to measure pursuit has
been velocity gain.

Do small amplitude pursuits exist?
Fixational eye movements

We have just described the three principal classes of macro-
scopic eye movements, where saccades and pursuits are dis-
tinguished from fixations based on the amplitudes and veloc-
ities involved. However, the fact that during the fixation the
eye never stands still (Ditchburn & Ginsborg, 1953) and con-
tinuously produces fixational eye movements further subdivides
fixations into the following sub-classes (Kowler, 2011): Micro-
saccades, are ballistic small amplitude and fast gaze shifts (Rolfs,
2009; Poletti & Rucci, 2016). Slow drifts are small velocity (<
0.5 deg.s-1) displacements of the gaze (Nachmias, 1961; Yarbus,
1967) and tremors (or physiological nystagmus) are aperiodic
high-frequency oscillations of the eye (30-80 Hz and amplitudes
of up to 50 seconds of arc) (Nachmias, 1961; Martinez-Conde et
al., 2004). Research has also been conducted on tremor, but due
to their small amplitude and high frequency it is impossible to
distinguish them from noise using video-based eye-trackers (Ko,
Snodderly, & Poletti, 2016). Therefore, tremors will not be con-
sidered in our study. The class of slow drifts, and more particular
small-amplitude pursuits, seems less covered in the literature,
which can be explained by the technical difficulties associated
with eye-tracker precision, especially video-based ones, at such
small scales (Wyatt, 2010; Choe, Blake, & Lee, 2016). As we want
to focus on the latter, we will give a detailed review of literature
on slow drifts small-amplitude movements.

Micro-saccades

Micro-saccade is a class of fixational eye movements char-
acterized by (i) ballistic properties—like saccades,—(ii) small

amplitudes, and (iii) a linear relationship between peak veloc-
ity and amplitude, also known as a main sequence (Bahill, Clark,
& Stark, 1975). The latter stipulates that as micro-saccades have
larger amplitudes, their associated (measured) peak velocity in-
creases, and this relationship is linear. In essence, the fast, bal-
listic nature of micro-saccades allow to quickly—typically un-
der 80 ms—re-position the fovea in the context of visual percep-
tion (Rolfs, 2009; Ko et al., 2010; Poletti & Rucci, 2016; Sinn &
Engbert, 2016), similar to saccades at larger scales (i.e., not con-
tained within fixational eye movements). Physical properties of
the oculomotor system constrain these ballistic movements of
the eye to exhibit the linear peak velocity–amplitude relation-
ship.

The main sequence has been very reproducible, and ap-
pears in over decades of eye movement research (Rolfs, 2009;
Hicheur, Zozor, Campagne, & Chauvin, 2013). Other than
providing insight into the oculomotor control system’s proper-
ties (Bahill et al., 1975) it also supports the hypothesis of an ocu-
lomotor continuum (Rolfs, Kliegl, & Engbert, 2008; Sinn & Eng-
bert, 2016). In Engbert and Kliegl (Engbert & Kliegl, 2003), de-
tection of micro-saccades is based on a lower velocity threshold
computed relatively to the overall velocities in an observation
window. As such, the detection threshold is dependent on the
contextual oculomotor activity. This is combined with a binocu-
larity criterion to avoid spurious detections. This is also the ap-
proach we have followed in this work.

Ocular drift: a simple random process or stimulus-
dependent?

These slow and small movements are the consequence of a
slow control system of eye position (Cunitz, 1970) described in
literature as a mere drift of the eye (Dodge, 1907), OFR (Chen
& Hafed, 2013), or—more recently—as small amplitude pur-
suits (Skinner, Buonocore, & Hafed, 2018).

In early studies of fixational eye movements, when subjects
had to fixate a static dot, eyes drifted slowly with an upper veloc-
ity limit at 0.5 deg.s-1 and mean velocity of 5 min-arc.s-1 (Yarbus,
1967). Their trajectories were considered as random and invol-
untary processes since they showed dynamics similar to Brow-
nian random walks (Ratliff & Riggs, 1950; Engbert & Kliegl,
2004) as well as independence between the two eyes (Cornsweet,
1956). However, Ditchburn and Ginsborg’s work (Ditchburn &
Ginsborg, 1953) provided evidence that direction of eye move-
ment is not completely random during drift; it is idiosyncratic.
Nachmias (Nachmias, 1961) replicated this finding in an exper-
iment where a fixation target was switched on and off during 3
seconds cycles. He found that each of the 2 subjects have pre-
ferred drifting direction but this preferred direction can be modi-
fied by changing the visual environment. The author interpreted
the idiosyncratic direction preference as specific to muscular re-
sponse and reasserted that nonrandom ocular drifts occur in fix-
ations while providing evidence that drift direction can be mod-
ulated by the visual environment. More recently, a variety of ex-
periments have shown that drift can take properties and charac-
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teristics close to other known oculomotor phenomena (Poletti,
Listorti, & Rucci, 2010; Chen & Hafed, 2013; Skinner et al., 2018;
M. Watanabe et al., 2019).

As mentioned, drift can be viewed as part of a slow control
system, enabling gaze to capture a target, whether static or dy-
namic. Here, we will discuss two studies that show evidence of
slow eye movements correlating with the target stimulus, and as
such related to our proposition of adding a subclass to the fixa-
tional eye movements: that of micro-pursuits.

Chen and Hafed (Chen & Hafed, 2013) studied the impact
of micro-saccades on visual perception and investigated the re-
lationship between micro-saccades and drift. Their experiment
contained two major tasks. The first task required two mon-
keys to stare at a fixation dot where a change in luminance of
the dot or a peripheral white flash was introduced to induce a
higher probability of micro-saccade generation. Drift velocity
was analyzed before and after the micro-saccades using either
direct velocity measurements or spatial dispersion (by spatial
binning and box counts). Both measures showed an increase
in drift velocity post-micro-saccadic movements with respect to
pre-micro-saccadic movements or baseline movements. They
also showed that eye drift mainly occurs in the direction oppo-
site to the micro-saccade, which is interpreted as corrective slow
control of the gaze position. The second task consisted of a sinu-
soidal grating that started moving at predefined delays after the
onset of a micro-saccade (or after 500 ms if no micro-saccade
was detected). The authors analyzed the speed and direction of
early drift of the eye, namely the OFR, according to the direc-
tion of the grating and the time of grating onset based on micro-
saccade detection. Indeed, they reported that (i) the drift direc-
tions were in the opposite directions of the micro-saccades and
(ii) the eye velocity was reduced when the grating’s motion was
initiated during micro-saccade and was enhanced when the mo-
tion was initiated after micro-saccade. The OFR being an indica-
tor of “the sensitivity of early motion processing to retinal-image
slip after a micro-saccade”, the OFR, and thus motion perception,
are suppressed during the saccade and enhanced after. Their
overall findings suggest that there is a single slow gaze control
system that control both fixation and eye movement position
in the presence of a fixed target or a slow moving background
linked to the motion perception system. Conclusions suggest-
ing a subtle coupling between micro-saccades and drifts are also
reinforce by previous reports (Engbert & Mergenthaler, 2006).

Part of this idea had already put forward by Murphy and
colleagues (Murphy, Kowler, & Steinman, 1975). In their experi-
ment, they asked participants to maintain their gaze on a present
or absent fixation dot while a grating in the background moved
horizontally at velocity ranging from 0.08 deg.s-1 to 8 deg.s-1. In a
second condition, the participants had to follow the grating. Eye
movement velocities were analyzed for trials without saccades.
The study shows that when participants have to stare at the fixa-
tion dot (i) they have an ability to keep gaze fixed when the fixa-
tion dot was present, and (ii) an OFR–—a smooth displacement
of the eye in the direction of the grating’s movement but with

smaller velocities—is detected when the fixation dot was absent.
In contrast, when the task was to follow the grating, participants
showed clear smooth, slow movement in the direction of motion
with velocity as low as 0.08 deg.s-1.

Both these studies confirm the existence of a slow move-
ment within a fixation that track a slow velocity target or coun-
teract the displacement of a micro-saccade. These slow move-
ment of pursuit or fixation stabilization are thought to be under
a same slow control system, although the tracking mechanism
seems not to be triggered when the movement is initiated dur-
ing a micro-saccade.

Ocular drift and slow motor control

Drift has been linked to slow control of the eyes during fixa-
tion in the context of investigating links between visual stimula-
tion and drift motion.

In a series of experiments, Kowler and Steinman (Kowler
& Steinman, 1979a, 1979b) have investigated how expectation,
over a stimulus and task, can induce anticipatory smooth and
slow eye movements. The authors implemented a task in which
participants had to track a dot moving by steps (with three fre-
quencies: 0.25, 0.375 or 0.5 Hz) along a horizontal segment of
3.3 deg amplitude. They showed that eye movements’ direc-
tion and latency depend on predictability of target displace-
ment. Furthermore, they showed this effect to remain even when
the level of predictability was manipulated and when a distract-
ing secondary task was imposed (Kowler & Steinman, 1981). In
fact, they provided evidence that anticipatory eye movements—
which they also named involuntary drifts in the direction of fu-
ture target motion—depended on the history of prior target mo-
tions (Kowler, Martins, & Pavel, 1984). To understand whether
the slow control of ocular drift is driven by position or velocity
signals, they carried out an experiment in which they manip-
ulated drift by changing the configuration of reference points,
thus varying the difficulty of fixation of a central point (Epelboim
& Kowler, 1993). Their analyses used gaze position data and bi-
variate contour ellipse area (BCEA) computation for quantifica-
tion of gaze dispersion. As such, they provided evidence that
the oculomotor system does not rely on visual position signals,
but rather on retinal image slip, in order to implement slow mo-
tor control. This creates a parallel with the known models for
smooth eye pursuit described above.

In addition, in a recent paper, Watanabe and col-
leagues (M. Watanabe et al., 2019) reported a study that links
ocular drift, micro-saccades, and pupil area on voluntary eye
movements preparation. They observed anticipatory drifts prior
to stimulus appearance and they argue that these anticipatory
eye movement may reflect volitional action preparation. Inter-
estingly, the authors provide a replication of previous results on
anticipatory drift with a video-based eye tracker while applying
correction to their gaze signals for pupil deformation.

Overall, these studies show that slow eye movements are
present during fixation. These movements can control for a fixa-
tion position, can track large target and depend on expectation.
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Authors have postulated that all these behaviors are under con-
trol of a unique system.

Small amplitude pursuits

As mentioned higher, smooth pursuits are large-scale eye
movements with amplitudes exceeding 1 deg (60 min-arc). A
small set of studies found eye movements within a fixation that
share characteristics with smooth pursuits, except for their am-
plitude. Though there are references to smooth pursuits of small
amplitude as far as in Yarbus’ book (Yarbus, 1967), most papers
in the literature have reported the phenomenon in an indirect
manner.

In a study on drift in the absence of visual stimula-
tion or with afterimages, horizontal smooth drifts were re-
ported (Heywood & Churcher, 1971). Although their description
corresponds to pursuit dynamics, they did not define the ob-
served movements as such. The authors published a follow-up
paper showing that, depending on the eccentricity of the after-
image, oculomotor dynamics are more or less smooth and show
low velocities, hence could be interpreted as pursuits (Heywood
& Churcher, 1972). Further, while attempting to study oculomo-
tor control capacities when presenting a moving grating back-
ground with a fixation point, Murphy and colleagues (Murphy
et al., 1975) reported eye movements that correspond to small
amplitude pursuits. When investigating the lack of compensa-
tion of the VOR when the head was free, Martins, Kowler and
Palmer (Martins, Kowler, & Palmer, 1985) studied whether a
smooth pursuit system might interact with the VOR. Their data
provided a qualitative description that small amplitude pursuits
are related to the velocity of target motion. The following find-
ing was reported: foremost, the effectiveness of smooth pursuits
varied with target velocities. At the lowest average velocities of
a tracked point2 (0.0025-0.125 deg.s-1), smooth pursuit was the
most effective, i.e., retinal-image speed during smooth pursuit
was about the same as retinal-image speed during low target ve-
locities. At higher target velocities (0.25-1 deg.s-1), smooth pur-
suit was less effective for retinal image stabilization and at the
highest velocities (1.5-2.5 deg.s-1), smooth pursuit was totally in-
effective.

More recently, small amplitude pursuits have been reported
again, in very different contexts. In a study of eye drift and
its relationship to retinal image motion—investigating whether
the latter drives the former through retinal or extra-retinal
information—Poletti and colleagues (Poletti et al., 2010) de-
clared the following observation: "small pursuit-like eye move-
ment with amplitudes comparable to those of fixational drifts are
under precise control of the oculomotor system". Finally, a pre-
cise characterization of rhesus macaque oculomotor control for
rectilinear sinusoidal motion of a target with amplitudes infe-
rior to 0.5 deg and velocities below 2.5 deg.s-1 was recently re-

2Here, we present the velocities rather than frequencies to provide compara-
ble measures across reviewed articles. However, in most cases, the target signal
corresponds to a sinusoidal movement, thus velocity is not constant over a pe-
riod.

ported (Skinner et al., 2018). The amplitude and frequency of
the sinusoidal motion was modulated and gaze signals were an-
alyzed using gain and compared to filter responses; filters are,
here, used as models to show how the oculomotor system could
display different behaviors based on input frequencies—on gaze
position and velocity. Furthermore, they showed that the gaze
signals had eye velocity spectrum with peaks at target frequency
and that pursuit gain was highest at 1 deg.s-1.

Overall, pursuits have been observed for a range of veloc-
ities (0.05-2 deg.s-1) and amplitudes (1.9-30 min-of-arc) which
qualifies them as fixational eye movements. Given the classifi-
cation in the fixational eye movements research field—in which
only micro-saccades, drifts, and tremors are considered—these
observations raise questions on the nature and potential defini-
tion of micro-pursuits or fixational pursuits.

This article focuses on the presentation of micro-pursuits in
three contexts: (i) presentation of metrics that fit the theoretical
requirements to detect micro-pursuit, (ii) detection of the ocu-
lomotor phenomenon in (a) a dual task experiment (Necker) in
which its elicitation was not explicitly made to participants, and
(b) an explicit tracking experiment (Cross) and an implicit dis-
tractor setup (Square). Our hypothesis was that if the perceptual
system has to detect a change in a moving stimulus with a pre-
dictable trajectory, the oculomotor system is likely to follow the
target even if the participant is instructed not to do so (fixation
task). But, since the fixation task inhibits large deviations, only
small amplitude pursuit eye movements are generated. Further-
more, a computational model of pursuit eye movements based
on gravitational energy fields is presented in the supplementary
materials (Appendix C) that accounts for the two contrasting ob-
jectives (fixation vs. pursuit). In our data analyses, we made use
of a measure of inertia for gaze dispersion and MPC for similar-
ity, since they are simple methods that showcase clear advan-
tages in our context. The latter also offers a metric that can be
physically interpreted as it is able to capture similarity between
two trajectories of different scales and spatial offsets.

Micro-pursuits

The study of micro-pursuit should aim to find consistent
characteristics—like the main sequence for the micro-saccade—
that can be measured through an adequate metric. Micro-
pursuit being a slow eye movement, exhibiting strong similar-
ity with the target (stimulus) trajectory, we will consider a fixa-
tion to be of the class micro-pursuit whenever the above criteria
are met. In addition, if the oculomotor continuum holds true,
these slow movements potentially alternate with small ballistic
movements, called catch-up saccades, as is the case at macro-
scopic scale. It is clear that a thorough study of micro-pursuits
thus needs a full characterization of fixational eye movements
(especially micro-saccades) as well as the evaluation of a simi-
larity measure between gaze and target.
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Quantifying pursuit movements (metrics)
To propose a definition of micro-pursuit movements, exist-

ing metrics for ocular movements will be discussed, since they
will orient our choices for proposing metrics and hence our
working definition.

Classical smooth pursuit is measured by velocity—or retinal
slip—gain (gain = ‖q̇G‖

/‖q̇ S‖ with q̇G the gaze velocity and q̇ S
the stimulus velocity), which is consistent with its closed-loop
modeling (Liversedge et al., 2011). Position gain is also used—
although to a lesser extent,—for instance, when dealing with
catch-up saccades (Xivry & Lefevre, 2007). For the various drift
phenomena described in the previous section, a variety of met-
rics have been used to study fixational eye movement dynamics
(e.g., gaze position, velocity, acceleration, gain, and BCEA). For
instance, gain measurement was used for analysis in the case
of the small amplitude pursuits of monkeys on uni-variate sinu-
soidal motion (Skinner et al., 2018). But the authors went fur-
ther and provided a spectral analysis using Fourier transform on
eye signals to identify the fundamental frequency and harmon-
ics with the expected target frequencies. However, gain is a uni-
variate metric which does not extend to multi-variate problems.
Thus, it can be used adequately only for pursuit of a target mov-
ing on a line, rather than a plane, like the visual field. Fourier
analysis shares the same issue as it looks for a frequency in a uni-
variate movement, typically horizontal.

In studies of ocular drift (Epelboim & Kowler, 1993), BCEA3

was used to quantify the spatial variance—inertia, or spread—
of the gaze. The authors obtain orientation preferences through
the inferred relative anisotropy of the ellipse. Though this met-
ric is clearly conceived for bi-variate signals, it does not provide
spatio-temporal correlation between gaze and a target signal in
the way gain does. Meanwhile, the box-count method used in
more recent studies permits to compute dispersion of the gaze
data over time, though it may suffer, like gain, from measure-
ment noise, especially with video-based eye tracker (Engbert &
Mergenthaler, 2006; Chen & Hafed, 2013). To summarize, (i)
some metrics, e.g., BCEA, box count, inertia, can be used as
quantifiers for the spread of a bi-variate gaze signal during an
epoch, and these metrics are useful descriptors for drift and slow
movements, and (ii) other metrics, e.g., gain, Fourier analysis,
correlation, can be used to quantify similarity between two bi-
variate signals, to quantify the quality of a pursuit between gaze
and a stimulus in motion. Each metric presents a trade-off that
should be considered based on a theoretical definition and pre-
diction.

Micro-pursuits: a working definition
Given the reported observations of small amplitude pur-

suits, the following constraints need to be considered to define
a micro-pursuit.

3The surface area of the ellipse such that the data belong to this area with a
probability of 68% when a two dimensional Gaussian fits the data; roughly speak-
ing, up to a factor, it is the determinant of the empirical covariance matrix.

Amplitude as indicated by the prefix of its name, and as an anal-
ogy to micro-saccades, the micro-pursuit must be of small
amplitude, within the range of fixational eye movements;
typically below 1 deg;

Velocity micro-pursuit should consist of slow eye movements,
similarly to drift, or smooth pursuit but at a smaller scale,
with velocities below 2 deg.s-1;

Tracking micro-pursuits occur when a percept with motion
across the observer’s visual field is tracked. But, as pur-
suit involves matching the motion of a target by that of
an observer in real time, micro-pursuit measurement of
tracking should reflect the spatio-temporal interaction be-
tween the dynamics of two bi-variate signals. Hence, sim-
ilarity between gaze dynamics should be evaluated. Be-
cause the eye movement amplitude is within the fovea’s
size, deformation may occur in the tracking of predictable
bi-variate signals. Therefore, any similarity metric should
exhibit both scale and translation invariances—spatial off-
set invariance may also be beneficial for measures from
eye-trackers with lower precision and accuracy;

Duration the phenomenon of tracking a moving target requires
by definition that it is done over a sufficiently long epoch.
Thus, micro-pursuit should not occur over brief epochs
such as saccades and micro-saccades;

Binocularity Conjugated movements on both the guiding and
the complementary eye can be expected, being a strong
indicator of oculomotor planning.

We propose that gaze signal epochs satisfying the above de-
scription be considered as micro-pursuits. As this is a pro-
posed working definition, micro-pursuits may correspond to en-
tire eye fixation periods, making it possible for micro-pursuit
to be punctuated by other fixational eye movements. Once its
properties are defined more precisely than above and detection
algorithms can be developed, it will be possible discriminating
micro-pursuits from other fixational eye movements, like micro-
saccades.

Descriptive statistics for the classification of
micro-pursuits

Choosing an adequate metric for analysis was key, given
the constraints presented in the previous section and our ex-
perimental setup. Two metrics, inertia and maximally pro-
jected correlation (MPC), are used in this work; they provide
complementary information about the data. The first is a mea-
sure of the spatial dispersion of the gaze within a fixation to in-
vestigate the marginal dynamics of the gaze during fixational
eye movements. The second metric gives a quantification of
similarity—and hence interaction—between the gaze and a tar-
get. Compared to works in the literature with similar obser-
vations (Martins et al., 1985; Skinner et al., 2018), an essential
aspect was to have a metric that could reflect similarity with
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noise robustness, as well as scale and translation invariance.
Moreover, this was needed in the context of movements in the
plane, rather than rectilinear ones for which uni-variate mea-
sures are sufficient. A benefit from such considerations is to pro-
pose a generalized metric for micro-pursuit that could be ap-
plied to track perceived motion in the two-dimensional visual
field projected on the retina. MPC offers a method to quantify
spatio-temporal similarity between two bi-variate signals. Fur-
thermore, inertia and MPC can both be applied on the gaze sig-
nals in fixation epochs detected by video-based eye-tracker al-
gorithm. Their mathematical relationship is detailed more in-
depth in the Appendix B.

Measuring gaze dispersion with inertia
The dispersion of gaze within a fixation was computed us-

ing a measure of inertia, a metric used to quantify the spread of
a cloud of data points with respect to a fixed point, usually its
empirical mean. Here, we used a similar, but generalized for-
mula based on the mean quadratic distance from an arbitrary
reference point. As such, in the case of stimulus motion, we can
compute inertia with respect to the stimulus’ center of gravity.
Let qU

.= 1
N

∑N
i=1 q i

U be the empirical mean of a signal whose

samples (i = 1, . . . , N ) are given by q i
U = [

xi
U , y i

U

]>
. We will use

U =G for the observed gaze and U = S for the coordinates of the
stimulus’ (center of gravity). Gaze inertia I was computed over
the stimulus trajectories over a trial as follows:

I = 1

N

N∑
i=1

(
q i

G −q i
O

)> (
q i

G −q i
O

)
= 1

N

N∑
i=1

‖q i
G −q i

O‖2 (1)

where N represents the total number of frames in the trial, qG =
[xG , yG ]> the measured monocular bi-variate gaze signal coordi-
nates and qO = [xO , yO]> the origin reference point coordinates
in the screen plane—however, one can compute inertia with re-
spect to other points in space, e.g., stimulus center of gravity or
the fixation’s mean gaze position. Inertia quantifies gaze dis-
placement as does BCEA (Epelboim & Kowler, 1993) and box-
count measures (Engbert & Mergenthaler, 2006). Its key advan-
tage over the former two is that inertia is a more intuitive mea-
sure of spatial displacement over a fixation period. The box-
count metric is simple and provides similar insight in gaze dis-
persion over an epoch, it is dependent on the size of the box
in space and time used for analysis. Hence, it corresponds to
a down sampling measurement of inertia over a fixed time win-
dow. Finally, inertia provides the advantage of being a metric
relative to a chosen origin or reference point—box count being
independent of the origin—and thus it can be used to look at
spatial displacement in the following three contexts: (1) abso-
lute inertia (Iscreen) is obtained by choosing the center of screen
as a reference (absolute, like box count; qO = [0,0]>), (2) rel-
ative retinal image instability (Istimulus) by choosing the stimu-
lus’ center of gravity (for pursuit; qO = q S = [xS , y S ]>), and (3)
general relative fixational eye movement instability (Ifixation) by
referring to the fixation center of gravity (obtained by choosing

qO = qG = [xG , yG ]> with qG , the empirical mean of the gaze for
a N samples fixation epoch).

Measuring gaze-stimulus similarity with Maxi-
mally Projected Correlation (MPC)

Though humans can intuitively express a qualitative judg-
ment of similarity between two trajectories, obtaining a quanti-
fied and objective value for any two bi-variate signals is not as
trivial as one might suppose. Gain, of gaze velocity over stim-
ulus velocity, has been used as a metric in pursuit data analy-
sis (Skinner et al., 2018), though the stimulus moved in a uni-
variate context: either horizontal or vertical. In bi-variate sig-
nals, however, a gain will be obtained for each dimension of the
signal, and hence some form of projection to obtain a scalar met-
ric is required. Although similarities between the stimulus and
gaze trajectories can be quantified with a diversity of metrics, we
will here focus on a measure based on multi-variate statistical
theory (Anderson, 2003; Muirhead, 2009), quantifying the inter-
action between the stimulus (q S ) and gaze (qG ), in order to infer
on the similarity of their trajectories during fixations. We choose
to determine the direction of the plane for which correlation be-
tween gaze and target within a fixation are maximized, and re-
port the such obtained correlation value, which we call MPC. Our
metric hence inherits the ease of interpretability from (Pearson)
correlation values and has low computational costs (just as gain).
In addition, for unidirectional motion (see, e.g., (Skinner et al.,
2018)), this exactly corresponds to Pearson’s correlation coeffi-
cient between the two time-series.

Let ΣSG
.= 1

N

∑N
i=1 q i

S q i
G
> − q S q>

G the empirical (variance-
)covariance matrix between stimulus (S) and gaze (G). We then
write ρ∗ as the maximal absolute empirical correlation that
can be obtained under simultaneous projections onto a one-
dimensional space, i.e.,

ρ∗ .= max
w

ρ(w ) where ρ(w )
.= w>ΣSG w√

w>ΣSS w
√

w>ΣGG w
(2)

and w represents the coordinates of the vector onto which both
the gaze and the stimulus signal are projected. This method
projects the data in a new space, and provides a quantity
bounded between -1 and 1, where 1 shows perfect correlation
and -1 perfect anti-correlation. By construction, MPC is invari-
ant with respect to scale and to a translation of either or both of
the signals.

To summarize this section, in this work, inertia with respect
to screen (Iscreen) was used as a measure of gaze displacement.
Inertia with respect to stimulus (Istimulus) was used as a measure
of retinal image displacement. Inertia with respect to fixation
(Ifixation) was used as a measure of fixational eye movement dis-
placement. And finally, MPC (ρ∗) was used as a measure of sim-
ilarity between gaze and stimulus trajectory, during a fixation.
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Main Experiment: Necker cube

Micro-pursuits were observed and systematically detected
at first in an experiment in which a moving ambiguous Necker
cube stimulus was presented and participants had to report their
perceived orientation. They were instructed to keep their gaze
fixed on a static fixation cross at the center of the screen and
report which side of the cube was perceived at the front; either
lower-left or upper-right square. The main objectives of the ex-
periment was to manipulate the rate of reversal by imposing dif-
ferent motion to the cube. In this paper, we focus solely on the
oculomotor analysis of this data set, because the manipulation
failed to induce any change in the reversal rate between the per-
cept nor any observable percept modulation.

Methods
Apparatus

The display used was a 40 cm by 30 cm (20 inches) Vision-
Master Pro 513 screen of resolution 1024 by 768 pixels and a 75
Hz refresh rate, located 57 cm from the participants, with mean
gray luminance at 68 cd.m-2. Eye movements were recorded us-
ing the Eyelink 1000 (SR Research, Ottawa, Ontario, Canada).
Both eyes were tracked with a 1000 Hz sampling rate. The head
was stabilized using a chin rest. A nine-point calibration routine
was carried out at the beginning of each task and was repeated
at the beginning of each block (every 15 trials) or when drift cor-
rection, performed every 5 trials, reported a mean error superior
to 0.5 deg.

Stimulus & motion conditions

We imposed three type of motion to an ambiguous Necker
cube of 2.6 by 2.5 deg (Fig. 1-A): (1) ’FX’ the control condition
with no motion, (2) ’RW’ an unpredictable motion condition
with a random walk and (3) ’LJ’ the predictable motion condition
where the cube moved along Lissajous trajectories (see Fig. 1-
B). Random walk trajectories were implemented by choosing
at each time step an amplitude chosen from an exponential-
Gaussian distribution and an orientation from a uniform distri-
bution on (−π,π). The exponential-Gaussian distribution was
built from the sum of two independent variables, %=G+E where
G ∼ N (µ = 1.1; σ = 0.2) is the Gaussian component, and E ∼
E (λ = 0.1) is the exponential one—units are in pixels (pix) and
the ∼ symbol stands for "distributed according to". A radial limit
of 10 pix (0.329 deg) with respect to the center of the screen was
implemented so that a step that would exceed the limit would
have its orientation reversed such that the step would bounce
back towards the center. Lissajous trajectories in the LJ condi-
tion were defined by x(t ) = A sin(cθt ) and y(t ) = B sin(dθt +φ)
with, in our setup, A = B = 14 pix (0.5497 deg) and φ= 0 rad. The
Lissajous ratio between signal frequencies randomly (uniformly)
chosen across trials so that (c,d) ∈ (2,3), (3,2), (−2,3), (−3,2) and
θ = 2π (30/2.21)

415 = 0.2 Hz. The parameters’ values were chosen em-
pirically through ad hoc tests.

A

C

B

100-500 ms

Subject self paced

Necker experiment

Trial duration: 5-9 reports

Square & Cross experiments

Trial duration: 34 s

Figure 1: Experimental protocols. A is a timeline of a trial for
all three experiments (Necker, Square, Cross). For the Necker ex-
periment, a Necker cube was displayed and the trial finished if
the participant had reported a randomly picked number of per-
ceptual reversals. For the Square and Cross experiments, a plain
square was displayed and trial lasted approximately 34 seconds.
A fixation cross was shown during a randomly chosen interval
between 100 and 500 ms. B shows the three different stimulus
motion conditions; (1) FX, for the control no-motion condition,
(2) RW, for the unpredictable random walk condition, and (3)
LJ, for the predictable motion based on Lissajous trajectories. C
are representations of the stumuli’s luminance. For the Square
& Cross experiments, luminance changed randomly between 5
levels in order to provide the participants with a perceptual re-
port task, while the Necker cube always kept a constant lumi-
nance.

Stimulus spatial displacement due to movement was con-
trolled across motion conditions. Indeed their inertia with re-
spect to screen distribution were similar, with RW and LJ gener-
ating displacement of the same order of magnitude on average
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over trials (I
RW
screen = 0.2995±0.1988, I

LJ
screen = 0.2747±0.1372).

Tasks & participants

23 adults, with normal or corrected-to-normal vision (self-
assessed), participated in the experiment (15 females and 8
males; age range = 20–71 years, µ = 28.35± 10.93 years, whose
tasks were two-fold:

• fixate a fixation cross at the center of the screen for a ran-
dom interval between 100 and 500 ms (uniform distribu-
tion);

• report percept reversals of an ambiguous Necker cube
by pressing the arrows of a keyboard when perceptual
changes occurred.

The experiment followed a continuous viewing paradigm in
which trials had variable (random) durations (µ = 34.00±13.26
seconds, see Fig. 1-A) and ended based on which of the following
condition happened first

number completion of a trial-based randomly (uniformly) set
integer number (nrev ∼ U (5,9)) of perceptual reversals on
the ambiguous stimulus (see Fig. 1-A);

time-out maximal percept duration of 20 seconds.

The experiment was programmed using the PsychToolBox in
MATLAB (Brainard, 1997). All participants gave their informed
written consent before participating in the study, which was car-
ried out in accordance with the Code of Ethics of the World Med-
ical Association (Declaration of Helsinki) for experiments involv-
ing humans and as approved by the ethics’ committee of Univer-
sity Grenoble Alpes.

Data analysis

Data pre-processing: in our data analysis, only fixations
of sufficient duration (> 80 ms) were considered. The duration
threshold was set based on (1) the lack of significant fixations
of interest in shorter time windows and (2) the necessity for the
MPC metric to have a sufficient number of samples (see Ap-
pendix B). Guiding eye gaze signals were first passed through
a corrective process to adjust for pupil area deformation as de-
scribed in Choe and colleague’s work (Choe et al., 2016). As
the gaze and stimulus signals were systematically compared and
computed together, we then applied a Butterworth filter (second
order low-pass filter with a cut-off frequency of fc = 35 Hz) to
smooth the gaze data and down-sampled the gaze signal at the
same frequency as the refresh rate of the stimulus (75Hz). Thus,
all analyses are done with data down sampled from 1000 Hz to
75 Hz. Fixations generating inertia with respect to screen values
beyond two standard deviation from the mean or NaN (due to
missing samples) were considered as samples with faulty or jit-
tery gaze recording and were removed from analyses. Data for
Fig. 3 and statistical tests only consider fixations without micro-
saccades, where the latter are detected by an algorithm pro-
posed by Engbert and Kliegl (Engbert & Kliegl, 2003) based on

the binocularity criterion. The algorithm uses relative thresholds
based on median absolute deviation of the eye velocity, here over
a fixation. Data for Fig. 2 and Fig. 5 are analyzed including fixa-
tions containing micro-saccades. Outliers were defined as data
points4 beyond two standard deviation from the mean, and were
systematically removed from analyses. The results presented do
not show these outliers, for better readability, but we also con-
duct the analyses with the outlier and found the same effects for
all tests and experiences.

Statistical methods: statistical tests were conduct to as-
sess difference between motion condition both within subjects
(group analysis) and at the subject level (individual analysis).
For both levels, we applied non parametric tests, since we did
not have any priors on the data distribution for inertia and
MPC. For group analysis, statistical tests were conducted us-
ing 10000 permutations on non parametric approximate (Monte
Carlo) Friedman test for inertia, and if significant differences
were inferred, approximate (Monte Carlo) Wilcoxon signed-rank
tests were used for pairwise comparisons between conditions
(with a decision criterion at p = 0.05/3 = 0.017). For MPC, a
Wilcoxon signed-rank test was carried out All these tests were
delivered using bootstraps based on 10000 permutations con-
ditional on subjects for every experiments (Necker, Cross and
Square) and metrics (Istimulus, Ifixation and MPC) using the pack-
ages coin (Hothorn, Hornik, Van De Wiel, & Zeileis, 2006) and
rstatix (Kassambara, 2020). Effect size were computed from the
χ2 statistics and using the transformation described by Tomczak
and Tomczak (Tomczak & Tomczak, 2014) to get a Kendall W, that
vary between 0 and 1, with 1 the maximum effect size :

W = χ2

N (k −1)
. (3)

With W , the Kendall’s W value, χ2 the Friedman test statistic
value, N the sample size and k the number of measurements per
subject. For each test, we report the χ2 Friedman test statistic,
with the p-value (p) computed with the bootstrap, it’s effect size
(Kendall W). For individual statistical analyses, we carried out an
approximate Kruskal-Wallis test for inertia and an approximate
Wilcoxon-Mann & Whitney test for MPC and pariwise compar-
isons using the same bootstrap package, with 10000 permuta-
tions. To compare experiments’ data, Kruskal-Wallis tests were
used over the three experiments’ RW and LJ data, respectively,
and Wilcoxon-Mann & Whitney tests were used to infer differ-
ences between pairs of experiment data-sets in each condition,
with the same packages.

Results
Micro-saccades

We described peak velocities, amplitudes, and rate of
occurrences of microsaccades detected during fixations (n =

4Here, data points refer to a statistic of a fixation period, for a given experi-
ment, subject and condition. We also have outliers subject (71 years old) that is
not removed.
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21197, for Necker), using the algorithm from Engbert and
Kliegl (Engbert & Kliegl, 2003). Distributions of micro-saccades’
peak velocities and amplitudes across conditions and experi-
ments are shown in Fig. 2-A. Detected micro-saccades showed
similar main sequences across motion conditions. Moreover,
when we add the MPC value of the fixation in which the micro-
saccade was detected (color scale), we observe (i) a higher preva-
lence of fixations with high similarity between gaze and pre-
dictable motion (LJ) than in the random walk (RW) condition,
and (ii) no apparent (qualitative) correlation between MPC and
micro-saccadic properties can be established. Micro-saccade
rates are described in Fig. 2-B, with bootstrapped 95% confi-
dence intervals.

When fixations with detected micro-saccades were kept,
data pre-processing led to the removal of 12.32% of fixations
for the Necker experiment based on fixation duration and out-
lier removal based on inertia with respect to screen. When fix-
ations with detected micro-saccades were removed, data pre-
processing led to the removal of 63.39% of fixations. Results pre-
sented next were computed on fixations not containing micro-
saccades, as they describe the purest form of micro-pursuits.
However, when including fixations containing micro-saccades,
results led to the exact same conclusions.

Inertia & MPC

We looked at the impact of the cube motion on eye move-
ment and retinal image displacement. The former is made ex-
plicit through the inertia of gaze with respect to its average posi-
tion within a fixation, see Fig. 3-B, whereas the latter is given by
the inertia of the gaze with respect to the stimulus’ center of grav-
ity, see Fig. 3-A. Descriptive statistics and statistical tests’ sum-
mary are given in Table 1.

Dispersion of eye movements around the fixation, com-
puted with median inertia of the eye with respect to mean fix-
ation position (Ifixation; see Fig. 3-C) differed with motion con-
dition (χ2 = 37.130; p < 0.0001;W = 0.807). Paired compar-
isons of Ifixation showed differences between FX, RW and LJ
(ZF X−RW = −2.4027, p = 0.016; ZRW −LJ = −4.1973, p < 0.0001
and ZF X−LJ =−4.1973; p < 0.0001). Thus, when computing reti-
nal image displacement, we found that the median inertia dif-
fered across cube motion conditions (see Fig. 3-A). Indeed, we
find a difference in inertia computed with respect to the cen-
ter of gravity of the stimulus (Istimulus) with motion condition
(χ2 = 23.565; p < 0.0001;W = 0.512). Median inertia differed in
the conditions where the stimulus was in motion (ZF X−RW =
−3.9844, p < 0.0001; ZF X−LJ =−3.9539, p < 0.0001 and ZRW −LJ =
0.09124, p = 0.9445).

When considering that stimulus inertia was equivalent

for both motion conditions (I
RW
screen = 0.2995 ± 0.1988,I

LJ
screen =

0.2747 ± 0.1372), the results suggest that both types of motion
applied on the stimulus generated different effects on eye move-
ments. Indeed, eye trajectories were more similar in the pre-
dictable LJ motion condition (ρ̃∗

LJ = 0.921 ± 0.047) than in the
unpredictable RW motion condition (ρ̃∗

RW = 0.509±0.048) with

significant differences (χ2 = 23; p < 0.0001;W = 1 and ZRW −LJ =
−4.1972; p < 0.0001). The data is reported in Fig. 3-E. We eval-
uated the effect of the cube motion for every subject and found
similar results (Fig. 3-B-D-F) that will be described in more de-
tails later.

Binocularity & velocity

As binocularity is an important criteria than can discrimi-
nate between erratic noisy movement and conjugate and func-
tional movement (Fang, Gill, Poletti, & Rucci, 2018), we also
looked at the similarity of gaze between the directing and non-
directing eye, to look at how conjugated the eyes were. We
found overall differences across conditions (χ2 = 37.130; p <
0.0001;W = 0.807). Paired comparisons of eye versus eye sim-
ilarity showed differences between FX, RW and LJ (ZF X−LJ =
−4.1973, p < 0.0001; ZF X−RW =−2.2202, p = 0.023 and ZRW −LJ =
−4.1973, p < 0.0001). Results are reported in Fig. 4-A, along with
analyses for each participants Fig. 4-B.

To further investigate the pursuit description, we computed
the MPC on the velocity signals, calculated on the position sig-
nals, down-sampled at 75 Hz, over 6 samples. In fact, as for the
position analysis, LJ’s predictable motion (ρ̃∗

LJ = 0.798 ± 0.096)
led to higher velocity similarity between the eyes and the target
than for RW’s unpredictable motion (ρ̃∗

RW = 0.246± 0.052) with
significant differences (χ2 = 23; p < 0.0001;W = 1 and ZRW −LJ =
−4.1973; p < 0.0001). The data is reported in Fig. 4-C, along with
analyses for each participant in Fig. 4-D.

Intermediary discussion
When looking at our descriptive statistics (Table 1 and

Fig. 3, A-B-C), participants’ median similarity based on MPC is
centered on values of high correlation in the predictable motion
condition (LJ) compared to the other motion condition (RW).
This means that fixational eye movement gaze trajectories were,
for most subjects, highly similar to that of the stimulus moving
on screen. On the other hand, the unpredictable motion condi-
tion (RW) led to much lower similarity measurements; an obser-
vation that can be explained by the incapacity of the oculomotor
system to predict the motion of the Necker cube as motion fol-
lowed random walk dynamics.

Therefore, globally, participants’ gaze was influenced by the
cube motion significantly more in LJ, where motion was pre-
dictable, than in RW, where motion was unpredictable, even
though the oculomotor instructions were to fixate the cross in
the middle of the screen for both. Moreover, the gaze in LJ
showed similarity with the stimulus trajectories. All these mea-
sures were gathered on gaze data within fixation events and the
difference between LJ and RW conditions show that oculomo-
tor drift alone, as defined above, within fixational eye move-
ments cannot account for this similarity. The oculomotor sys-
tem would have to integrate visual information in order to quasi-
systematically track the stimulus. We therefore refer to these
detected fixational eye movements as micro-pursuits, in an ef-
fort to keep the analogy with the micro-saccades, while respect-
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Figure 2: Micro-saccade analysis. A shows the main sequences when plotting micro-saccades’ amplitudes versus peak velocities
for all three experiments (Necker, Cross and Square) and conditions (FX, RW, LJ). The color encodes the micro-saccade’s fixation
similarity score (using MPC) in the LJ and RW conditions. Left side, marginal distributions of peak velocity depending on the exper-
iment and condition are given, while below, marginal distributions for amplitudes are shown. B shows mean micro-saccade rates
over experiments and conditions with, in black, 95% confidence intervals computed using bootstrap (n = 200 iterations).

Necker (N = 23) FX RW LJ χ2 p W

Ĩstimulus 0.488±0.189 0.649±0.190 0.629±0.159 23.565 < 0.0001 0.512
Ĩfixation 0.019±0.009 0.024±0.015 0.071±0.051 37.130 < 0.0001 0.807
ρ̃∗ n/a 0.509±0.048 0.921±0.047 23 < 0.0001 1

Table 1: Left, Summary statistics of three measures for the Necker experiments in the FX, RW and LJ motion conditions; inertia w.r.t.
stimulus center of gravity (Istimulus), inertia w.r.t. fixation center of gravity (Ifixation), and MPC (ρ∗). For each condition in the Necker
experiment, median values over participants’ data are given with median absolute deviation (mad) following the ± sign. Right,
Approximate Friedman test results (χ2; p) and size effect (W ) are given.
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Figure 3: Micro-pursuit analysis. A is a box plot of Istimulus over the three experiments (Necker, Cross and Square) and three motion
condition (FX, RW and LJ). Stars represent significant differences in pairwise comparisons using the Wilcoxon-Mann-Whitney test
in a bootstrap. B plots the individual analysis results for Istimulus in all three experiments’ participants using an approximate Kruskal-
Wallis test in a bootstrap. All the participant have significant (p < 0.05) results. For individual analysis, statistics (Z score or χ2) that
fall inside the 95 % confidence interval were drawn with light color whereas statistics values outside the 95% confidence interval
were drawn in plain color. The gray area defines a conservative confidence interval corrected for multiple comparisons (Bonferroni),
i.e., 42 comparisons for the 42 tests computed on each subjects. C is a box plot of Ifixation over all experiments and conditions. D plots
the individual analysis results for Ifixation. The outcome of the statistical test per participant are given through different lightness
value, with 1 (darker) meaning that p ≤ 0.05 and 0 (lighter) the opposite. E is a box plot of MPC (ρ∗) over all experiments and the RW
and LJ motion conditions. F plots the individual analysis results for ρ∗ in all participants using an approximate Wilcoxon-Mann-
Whitney test.
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Figure 4: Micro-pursuit additional analyses. A is a box plot of directing vs non-directing eye similarity over the three experiments
(Necker, Cross and Square) and three motion condition (FX, RW and LJ). Stars represent significant differences in pairwise compar-
isons using the Wilcoxon-Mann-Whitney test in a bootstrap. B plots the individual analysis results for directing vs non-directing
eye similarity in all three experiments’ participants using an approximate Kruskal-Wallis test in a bootstrap. For individual analysis,
statistics (Z score or χ2) that fall inside the 95% confidence interval were drawn with light color whereas statistics values outside the
95% confidence interval were drawn in plain color. The gray area defines a conservative confidence interval corrected for multiple
comparisons (Bonferroni), i.e., 42 comparisons for the 42 tests computed on each subjects. C is a box plot of MPC based on velocity
vectors over all experiments and conditions. D plots the individual analysis results for MPC based on velocity vectors. The outcome
of the statistical test per participant are given through different lightness value, with 1 (darker) meaning that p ≤ 0.05 and 0 (lighter)
the opposite.

ing the definition and metrics given above. Given the non-
dedicated and unpredicted observation of the oculomotor phe-
nomenon in the Necker experiment, we carried out a second set
of experiments to replicate the generation of micro-pursuit us-
ing a simpler stimulus, and to verify that the phenomenon is
not caused by the presence of a bi-stable stimulus—namely the
Necker cube.

Replication Experiments:
Square & Cross

The experimental protocol is similar to the previous one
(Necker experiment) except that the Necker cube is replaced by a
gray square and subjects have to report changes in luminance in

either the fixation cross (Cross experiment) or the square (Square
experiment). In the Cross experiment, we set the participants’
tasks and stimuli such that they had to follow a moving cross and
detect changes of luminance on it. In the Square experiment, the
setup aimed to investigate whether a complete reproduction of
the Necker experiment, with a square instead of the Necker cube
would still lead to the observation of micro-pursuits.

Methods
Material and stimuli were identical to the previous experi-

ment unless specified.
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Apparatus

The stimulus was displayed on a 36 cm by 27.5 cm (19
inches) Dell M993s CRT screen of resolution 1280 by 1024 pix-
els and a 75 Hz refresh rate, located 57 cm from the participants,
with white luminance at 70.89 cd.m-2, black at 0.09 cd.m-2 and
mean gray at 15 cd.m-2. Eye tracking was done using an EyeLink
1000+ (SRT Research). Calibration was applied using a 5 points
procedure between each block and if drift correction failed. Drift
correction was applied between each trial. Participants had their
head stabilized by sitting and resting their chin on a rest and their
forehead against a bar.

Stimulus & motion conditions

As in Experiment 1, we replicated the three motion condi-
tions (FX, RW, & LJ) using the same parameters with balanced
mean inertia. Trials lasted 34 seconds (the mean time duration
of Experiment 1: Necker Cube) in which the same fixation cross
was presented, and a moving object followed its trajectories de-
pending on the condition (see Fig. 1-A).

Tasks & participants

The participants had to fixate a fixation cross surrounded
by a square (2.5 deg by 2.5 deg), displayed in Fig. 1-A. They also
had a perceptual task in which they had to report luminance
changes using the same keys of the keyboard as in the Necker
Experiment. However, here the alternations were randomly se-
lected among 5 levels of luminance (levels at 30%, 40%, 50%, 60%
and 70% of white) and duration of a level was selected using a
log-normal probability law Log−N ∼ (µ= 1,σ= 1) seconds (see
Fig. 1-C for a schematic representation of luminance over time).
Two conditions were contrasted:

1. Implicit pursuit - moving Square luminance change detec-
tion: fixate the fixation cross at the center of screen, and
report changes in luminance of the surrounding square
moving with the three types of motions.

2. Explicit pursuit - moving Cross luminance change detec-
tion: fixate the fixation cross and report changes in lumi-
nance of the fixation cross moving with the three types of
motions.

The 19 participants (17 females and 2 males; age range = 18-
30 years, µ = 20.63 ± 2.61 years), with normal or corrected-to-
normal vision, were randomly oriented in one of the two exper-
iments (Cross; n = 9, and Square; n = 10) and provided their in-
formed written consent before participating in the study, which
was carried out in accordance with the Code of Ethics of the
World Medical Association (Declaration of Helsinki) for experi-
ments involving humans and approved by the ethics’ committee
of University Grenoble Alpes. We estimated the number of par-
ticipants to be included in the protocol based on a power anal-
ysis using g*power (Faul, Erdfelder, Buchner, & Lang, 2009) with
α= 0.05 and 1−β= 0.95. We found that we needed a minimum

sample size of 9 participants (with 45 trials) to replicate the ob-
servations with a power of 0.95.

Data analysis

Data analyses were identical to the previous experiment.

Results
The data was analyzed by applying the same signal process-

ing procedures and statistical methods as in the Necker exper-
iment for inertia or MPC. When fixations with micro-saccades
were kept, data pre-processing led to the removal of 8.79% and
9.23% of fixations for the Cross and Square experiments, respec-
tively, based on fixation duration and outlier removal for inertia
with respect to screen. Micro-saccade analysis (Fig. 2) led to the
extraction of main-sequences with patterns showing no appar-
ent qualitative differences between experiments (Necker, Cross
and Square) for amplitude and peak velocity, across motion con-
ditions (FX, RW and LJ).

When fixations with micro-saccades were removed as well,
data pre-processing led to the removal of 65.43% and 72.73% of
the data, in Cross and Square, respectively. Results presented
in this section were computed on the fixations without micro-
saccades, however when doing these analyses with fixations with
micro-saccades, results led to the same conclusions.

Cross experiment: explicit micro-pursuits

When participants had to explicitly follow the fixation cross,
on which the motion and luminance signals were applied, sim-
ilar patterns to the Necker experiment were found for inertia of
gaze. Dispersion of eye movements around the fixation, com-
puted with median inertia of the eye with respect to mean fixa-
tion position (Ifixation; see Fig. 3-C) differed with motion condi-
tion (χ2 = 8.667; p = 0.0096;W = 0.481). Moreover, paired com-
parisons revealed differences between FX, RW and LJ (ZF X−RW =
−2.403, p = 0.016; ZRW −LJ = −2.5471; p = 0.0083 and ZF X−LJ =
−2.5471; p = 0.0085). Retinal image displacement differed with
cube motion (see Fig. 3-A). We also found no significant differ-
ence in inertia computed with respect to the center of gravity
of the stimulus (Istimulus) with motion condition (χ2 = 4.667; p =
0.103;W = 0.704).

Given the fact that stimulus inertia was equivalent for both
motion conditions, this suggests that motion of the stimulus
generated different effects on eye movements. Indeed, eye tra-
jectories were more similar in the predictable LJ motion con-
dition (ρ̃∗

LJ = 0.880± 0.050) than in the unpredictable RW mo-
tion condition (ρ̃∗

RW = 0.545±0.032) with significant differences
(χ2 = 9; p = 0.0039;W = 1 and ZRW −LJ = −2.6656; p = 0.0043).
The data is visualized in Fig. 3-E. We evaluated the effect of the
cube motion for every subject and found similar results (Fig. 3-
F).

Square experiment: implicit micro-pursuits

Dispersion of eye movements around the fixation, com-
puted with median inertia of the eye with respect to mean fix-

341



Journal of Vision (20??) ?, 1–? Parisot, Zozor, Guérin-Dugué, Phlypo, & Chauvin 15

ation position (Ifixation; see Fig. 3-C) differed with motion con-
dition (χ2 = 8.6; p = 0.0109;W = 0.43). Moreover, paired com-
parisons revealed a difference between RW and LJ (ZRW −LJ =
−2.3953; p = 0.0126) but not with FX (ZF X−RW = 0.866, p =
0.4321 and ZF X−LJ =−1.8857; p = 0.0609). But retinal image dis-
placement differed with cube motion (see Fig. 3-A). Indeed, we
did not find a difference in inertia computed with respect to the
center of gravity of the stimulus (Istimulus) with motion condition
(χ2 = 2.4; p = 0.3621;W = 0.12).

Given the fact that stimulus inertia was equivalent for both
motion conditions, this suggests that motion of the stimulus
did not generate different effects on eye movements. Unlike in
the other experiments, eye trajectories were not more similar
to stimulus trajectories in the predictable LJ motion condition
(ρ̃∗

LJ = 0.637±0.097) or in the unpredictable RW motion condi-
tion (ρ̃∗

RW = 0.573±0.044) with no inferred statistical difference
(χ2 = 1.6; p = 0.3384;W = 0.16). The data is visualized in Fig. 3-E.
We evaluated the effect of the cube motion for every subject and
found similar results (Fig. 3-F).

Individual analyses

We conducted the same analysis on every subject and re-
sults are displayed for the three experiments and three motion
conditions in figure (Fig. 3-B-D-F). For every subject, we plotted
the χ2 or Z score statistics for the approximate Kruskal-Wallis
and Wilcoxon-Mann-Whitney tests against their overall rank ac-
cording to these statistics. For all subject we observed a main ef-
fect of inertia with reference to the stimulus (Istimulus, with iden-
tical inertia between LJ and RW compare to FX. When looking
at retinal displacement, we find the same pattern of result, i.e.,
a main effect of motion, with inertia with reference to the fixa-
tion (Ifixation) similar for FW and RW but lower to LJ for Necker
and Cross experiments. For the Square experiment results were
mixed within subject suggesting idiosyncratic behaviors. Finally,
we observe more similar gaze pattern (high MPC) for the LJ con-
dition both in the Necker and Cross experiments for every sub-
ject (except one out of nine in Cross) but mixed results for the
square experiment. Thus individual analyses show that results
observed at the group level are replicated at the subject level.

Comparing Necker, Cross, & Square
experiments

To summarize, descriptive statistics of detected micro-
saccades in terms of main sequences (amplitude and peak ve-
locity; see Fig. 2-A) and micro-saccade rates (Fig. 2-B) show
that overall, micro-saccades are consistent across Necker, Cross
and Square, for all motion conditions. However, the Cross and
Necker predictable (LJ) condition data seem to exhibit a differ-
ent behavior than the other conditions and experiments when
looking at gaze-target similarity (MPC). The micro-saccades’ fix-
ation MPC display many high correlation values, in contrast to
the other conditions, and unlike the LJ condition in the Square
experiment.

Fig. 5 provides a focus on MPC for fixations in all data sets,
as well as for some selected signals that showcase some typi-
cal examples of gaze-stimulus pairs for different values of MPC.
Since one cannot track the RW movements, the distribution of
MPC under this condition serves as a baseline or null hypothe-
sis control distribution. It can be seen that under RW, the em-
pirically observed MPC distributions for all three experiments
are confounded, indicating independence of MPC with respect
to the experiment. Furthermore, it is also possible to observe
a bias—the distribution is skewed toward the maximum value of
1—introduced by (i) the maximization of the correlation through
the projection of the data into another coordinate system, and
(ii) the RW movement being low-pass filtered by the observer,
hence there exists a correlation at longer time scales. Indeed,
the distribution under RW is not symmetric about 0 as would be
the case for mere correlation between variables of multivariate
independent Gaussian processes. On the other hand, under the
LJ condition the distribution skews even further to one, result-
ing in a high probability for MPC values near one, specifically in
Necker and Cross. This is less so in Square.

When we removed fixations with detected micro-saccades
and carried out inertia and MPC analyses, we found a differ-
ence for MPC in the LJ condition across experiments (χ2 =
20.876; p < 0.0001). When looking at pairwise comparisons
(subscripts N for Necker, C for Cross, and S for Square), no
significant differences were found between Necker and Cross
(ZN−C = −1.6136; p = 0.106), but Square differed from the other
two (ZS−C = 3.4293; p = 0.0002 and ZN−S = 4.1915; p < 0.0001).

For RW inter-experiment comparisons, we found an over-
all difference (χ2 = 10.617; p = 0.0036). Paired comparisons
showed a difference between Necker and the two other experi-
ments (ZN−C = 2.955; p = 0.0020 and ZN−S =−2.076; p = 0.0350)
but none for Square versus Cross (ZS−C = 1.061; p = 0.3114).

Finally, results for individual analyses show that most par-
ticipants in the Square experiment had no significant differences
between MPC in RW and LJ, while on the contrary, all 23 partici-
pants in the Necker and 8 out 9 participants in Cross do.

Overall, these results indicate that Cross did replicate the
micro-pursuit phenomenon observed in the Necker experiment
even with a smaller sample size, while Square did not.

Median inertia with respect to the stimulus’ center of grav-
ity (I stimulus) differed with motion conditions suggesting that
the nature of stimulus motion, manipulated in each condi-
tion (fixed, unpredictable, and predictable) affects global spatio-
temporal dynamics of fixational eye movements. Median in-
ertia with respect to the fixation’s mean gaze position (I fixation)
showed the emerging pattern of a common oculomotor phe-
nomenon occurring in Necker and Cross, where differences
across conditions were measured. Again, this was not the case in
Square (see Fig. 3-C). When looking at similarity between stim-
ulus and gaze trajectories, integrated over fixation events using
MPC, we found that the predictable motion condition (LJ) gen-
erated highly similar gaze trajectories in the Necker and Cross
experiments, with large effect sizes. But we did not observe the
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same pattern for the Square experiment (see Fig. 3-E).
The contrast given by diverging results (Necker-LJ and

Cross-LJ being different from Square-LJ) is interesting as it gives
us a graduation of how likely, the same predictable motion (LJ)
can make observers generates micro-pursuit. It also suggests
that a coupling between the oculomotor and cognitive systems
in the occurrence of micro-pursuits, which could be predicted
and interpreted by a modeling framework we proposed when
encountering the original observations. To go further, we pro-
pose a model, in Appendix C, that can describe all fixational eye
movements in a single mechanism and can take into account the
competition between multiple stimuli.

Discussion

Micro-pursuits
Given our definition of micro-pursuits (see section Micro-

pursuits) which was based on an extrapolation of results avail-
able from the literature and our hypothesis of an oculomo-
tor continuum, we have now gathered sufficient evidence to
validate—at least, partially—our proposed working definition.
We believe that the following characteristics are elementary
building blocks in defining micro-pursuits as a class of oculo-
motor movements or fixational eye movements:

Tracking or similarity with target Probably the most promi-
nent characteristic of micro-pursuits. When measuring
similarity between the stimulus and gaze along the direc-
tion of maximum similarity using the MPC, we are able to
categorize fixations as micro-pursuits, whether or not they
contain micro-saccades. In addition, our proposed mea-
sure of similarity is invariant to scale, translation, and un-
correlated additive noise, compensating respectively for
competition between fixation and tracking of a moving
target as well as for instrumental or oculomotor drift and
for acquisition noise. When the subject’s gaze stays local-
ized within the fixation (Square, all conditions), MPC in-
deed indicates that Square-LJ does no longer has gaze fol-
lowing up on the target motion contrary to Necker-LJ and
Cross-LJ (see Fig. 3).

Velocity and acceleration Based on the literature re-
view (Martins et al., 1985; Skinner et al., 2018) all velocities
of our stimuli were kept below 2 deg.s-1. At these velocities
we have detected potential candidates of micro-pursuits,
especially when the acceleration was moderate (LJ) Fig. 3
(MPC; Necker & Cross). When the acceleration was too
high (RW5), micro-pursuits are no longer produced Fig. 3
(MPC; Necker, Cross, & Square). This advocates for
the inclusion of both velocity and acceleration into the
definition.

Binocularity Binocular conjugacy is an essential ingredient if

5Acceleration is due to rapid changes both in the direction as in the magnitude
of the velocity vector, due to additive white Gaussian perturbations of the latter.

micro-pursuit is to be interpreted as an expression of a
central control over the oculomotor system. Our results
show that micro-pursuits in our experiments appear as
conjugated both at the group and at the individual level
(see Fig. 4).

In contrast to the above, the following elements of our work-
ing definition are no longer retained in our final proposition for
a definition of micro-pursuits:

Amplitude Given we focus solely on fixational eye movements,
we found that there exists a category of movements that
follow the below characteristics whilst staying under 1
deg in amplitude. However, if the oculomotor continuum
holds, amplitude should no longer be a characteristic trait
of (micro-)pursuit.

Duration Although initially thought to be a defining character-
istic of micro-pursuits, duration is a mere operational lim-
itation. Indeed, the oculomotor system exhibits mechan-
ical inertia and is thus intrinsically limited in its velocity
and acceleration, resulting in trajectories with long auto-
correlation times. Hence, for short observation periods,
one has insufficient variability to accurately estimate sim-
ilarity, independent of the method used.

In this work we focused on a proof of micro-pursuits’ ex-
istence through the results obtained from the Necker experi-
ment as well as through results from the replication experiments
(Cross or Square).

Although the above results are obtained retaining only fix-
ations that do not contain any micro-saccades—as such be-
ing maximally conservative,—our conclusions generalize when
we include fixations with micro-saccades. As far as the micro-
saccades are concerned, our data (presented in Fig. 2) show
main sequences that are invariant with respect to conditions
and experiments. Furthermore, when looking at their marginal
amplitude and peak velocity distributions, no clear differences
can be observed across conditions and experiments. A simi-
lar observation can be made regarding their rate of occurrence.
Also, micro-saccades within fixations that show pursuit behav-
ior (high MPC values) show similar characteristics as those that
are found in other fixations, since the MPC statistic does corre-
late with neither the peak velocity, nor amplitude of the micro-
saccade under study. This provides evidence about the fact that
slow fixational eye movements—tagged micro-pursuits in our
work—can indeed be punctuated by micro-saccadic movements
within a single fixation, and these do not interfere with the over-
all trend of the micro-pursuit movement. If the oculomotor
continuum hypothesis indeed holds true, these micro-saccades
could be associated with catch-up saccades. Unfortunately, due
to our limited spatial resolution (video-based gaze tracker), we
can not provide any further evidence for these.

Indeed, eye movement research is gradually considering
an oculomotor continuum. For instance, it is becoming less
and less credible to consider a hard separation between micro-
saccades and saccades because of their common neural origins
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Figure 5: Focus on MPC results. Histogram of fixations by maximized correlation ρ∗ (MPC) scores in the Necker Cube experiment.
Illustrations of signals for values in some typical score intervals are presented to give a graphical intuition of the computed measure.
We picked high similarity near a score of 1, no correlation near 0 and anti-correlation near −1. Dotted trajectories correspond to
stimulus signals and continuous trajectories correspond to gaze signals. Temporal discourse is represented by lighter to darker
samples.

in oculomotor programming (Krauzlis et al., 2017), their com-
mon properties, and mathematical models that can account for
both (Sinn & Engbert, 2016). One may thus also consider that
micro-pursuits share physical properties as well as neural corre-
lates with large-amplitude smooth pursuits.

Alternative interpretations might classify fixations showing
high inertia (w.r.t. fixation) as ocular drift. However, drift is con-
sidered independent from the stimulus, and hence should not
showcase high values of MPC as in the Cross-LJ and Necker-LJ
conditions.

A limitation of this work is that it does not explicitly contrast
experimental stimuli that are known to generate pursuit versus
OFR. Indeed, as presented in the introduction, OFR are reflex-
ive eye movements generated using sudden changes of a wide-

field image (Quaia et al., 2012) and should thus appear invari-
antly w.r.t. our experimental settings, but the lack of replication
in the Square-LJ condition discredits this hypothesis.

A limitation of our similarity measure MPC resides mostly in
its variance and thus the number of (temporally correlated) sam-
ples needed to accurately measure similarity. This is illustrated
through Fig. 6 in Appendix B. While on the one hand, physical
properties (amplitude, peak velocity) can be used to discrim-
inate micro-pursuits from micro-saccades, on the other hand,
functional characterization will help provide discrimination be-
tween drift, slow motor control, and micro-pursuit. Indeed, the
first two may be slow fixational eye movements, but have no
requirement for target tracking, like pursuit, whereas the latter
does.
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Finally, micro-pursuit’s link to visual perception remains
speculative, though interpreting our data suggests that the desig-
nation of the observed object, for perceptual report, and its asso-
ciated motion (static, unpredictable or predictable)—related to
the distribution of cognitive capacities between perceptual and
oculomotor tasks—may lead to a tentative explanation (Spering
& Montagnini, 2011).

Influence of oculomotor and perceptual tasks
on target locking

In our two replication experiments, we have manipulated
the task and target properties. In the Cross experiment, the task
was to follow the moving object (cross) and to report its changes
in illumination, while a static square was present in the back-
ground. In the Square experiment, the task was to fix a cen-
tral fixation cross and report changes on the moving square ob-
ject. Both have a similar relative movement of the cross with
respect to the square object. In the first experiment, one can
consider that participants had to focus on the cross. Whenever
the latter was moving in a predictable, tractable fashion (LJ), the
cross induced micro-pursuits. In the Square experiment, the
competition between the perceptual and oculomotor tasks re-
mained. Thus, one can consider the Square experiment to pro-
vide a competition between two attractors at the level of the
oculomotor control, but given the reduced number of observed
micro-pursuits (Fig. 3-E-F), one can interpret the competition
between its attractors as unbalanced, where the fixation is more
prominent than the follow-up on the moving target.

A first step towards a quantitative characterization of how
a task may influence oculomotor dynamics is proposed in Ap-
pendix C. The proposed model is based on a competing attrac-
tor model inspired by gravitational field models. The model links
the visual stimulation to perceptual objects modeled as gravita-
tional attractors with dynamically varying masses, as such cop-
ing with the attention whereas gaze position is modeled through
a unit-mass particle subject to the gravitational field evolving in
time. To account for perturbations and noise, velocity is subject
to additive white Gaussian noise (Langevin dynamics). By ma-
nipulating the attractor’s positions, masses, and the curvature of
their energy potential, it is possible to generate (micro-)saccades,
(micro-)pursuits, fixations, and drift. This mathematical model
offers a quantitative method that may be interpreted in terms
of spatial attentional loads, saliency, or intention, with respect
to oculomotor programming and execution. It is an extension
of some models already proposed in the field of fixational eye
movements modeling based on energy potential (Engbert, Mer-
genthaler, Sinn, & Pikovsky, 2011; Herrmann, Metzler, & Eng-
bert, 2017) as well as modeling work on bi-stable perception and
processes (Moreno-Bote, Rinzel, & Rubin, 2007; Shpiro, Moreno-
Bote, Rubin, & Rinzel, 2009; Moreno-Bote, Knill, & Pouget, 2011;
Moreno-Bote & Drugowitsch, 2015), to incorporate the influence
of, e.g., ambiguous figures like the Necker cube.

Future work
We proposed to use a set of metrics to detect micro-pursuit,

but we need further experimental work to define the limits, the
functional role, and the specificity of micro-pursuit with respect
to other fixational eye movements.

First, discrimination between OFR and micro-pursuit can
be assessed by contrasting stimuli with a variety of targets and
backgrounds, e.g., gratings (Gellman et al., 1990). One may con-
trast pursuit capacity between tracked motion applied to a back-
ground texture and a target in the foreground.

Second, interaction between saccade and pursuit needs to
be further studied. This can be done by varying speed and
predictability of the target trajectory. When increasing velocity
of the target, and under the oculomotor continuum hypothe-
sis, pursuit movements will get interleaved with catch-up sac-
cades that compensate for the accumulated retinal error (drift).
Beyond a certain speed limit, a sequence of saccades and er-
ratic movements—similar to those observed in our random walk
condition or in the proposed simulation model—should be ob-
served, indicating that micro-pursuits falters beyond an upper
bound velocity. However, we here attain the limits of our appa-
ratus and more precise and accurate eye-tracking methods are
needed to determine whether specific catch-up micro-saccades
do occur in micro-pursuit, and in discriminating them from
more generic micro-saccades.

Third, decreasing the predictability of the trajectories (in-
creasing acceleration) will also lead to a transition from micro-
pursuit over micro-pursuit interleaved with micro-saccades, to
erratic movement. One possibility is to tune noise and inertia
(mass) for a stimulus position driven by Langevin dynamics as
for the particle in our model.

Furthermore, manipulating the scale of the motion could
provide insight into micro-pursuit’s link to large amplitude
smooth pursuit characteristics, and may provide hints on its
functional role.

Finally, the link between perception and oculomotor con-
trol of smooth pursuits have to be studied, e.g., by varying the
relative difficulty of the task (i.e., report changes) or the difficulty
of the tracking. This might help in explaining the absence of pos-
itive results with respect to smooth pursuits within the Square
experiment.

Conclusion
In this work, micro-pursuits are proposed as a type of fix-

ational eye movement occurring at small amplitude, within a
fixation, as the gaze follows a target. We proposed two met-
rics: inertia and MPC to measure gaze displacement within a
fixation and to quantify gaze-target trajectory similarity, respec-
tively. We observed fixations in a predictable motion condition
with higher gaze displacement, and more specifically, for both
the Necker and Cross experiment data-sets, fixations with high
gaze-stimulus similarity values under predictable target trajec-
tories for position and velocity analyses. Binocular conjuga-
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tion of the reported observations also provided evidence sup-
porting the existence of micro-pursuit fixational eye movements.
Micro-pursuit here is presented as a class of fixation, but fur-
ther research is needed to identify the physical properties and
distinguish it from other fixational eye movements. Moreover,
this article calls for further investigation on the functional role
of micro-pursuits, and how the oculomotor and perceptual sys-
tems interact during such movements.
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Appendix A: notations used

In this work, we use q and q̇ for the two-dimensional posi-
tion (in deg) and velocity vectors (in deg·s−1). Subscripts R, G ,
and S will respectively refer to the retinal image, the gaze, and
the stimulus. Over-lined notation will refer to the mean over a
set of trials and a tilde to the median over a set of trials, for all
metrics. Mean values will be reported with their standard devi-
ation and median values with median absolute deviation (mad),
for instance ρ = 2.93±0.01 or ρ̃ = 3.01±0.02.

Appendix B: metrics

We use ·> for the transpose operator and trace(·) will denote
the trace operator (sum over the diagonal elements of a matrix).
The identity matrix in dimension 2 will be denoted by Id2.

Variance-covariance and inertia
Let qG (t ) = [

xG (t ), yG (t )
]>, q S (t ) = (

xS (t ), yS (t )
)>, and

q R = [
xR (t ), yR (t )

]> be the screen Cartesian coordinates (col-
umn vectors) at time instant t of the Gaze, the stimulus, and the
retinal image, respectively. Now, having samples at n discrete
times {ti }n

i=1, we estimate the center of gravity of a gaze trajec-
tory {qG (ti )}n

i=1 by its empirical mean mG = n−1 ∑n
i=1 qG (ti ). This

estimate approaches the true center of gravity if we sample suffi-
ciently regularly and beyond twice the Nyquist frequency, condi-
tions that are met when working with the Eyelink 1000(+), sam-
pling at about 1000Hz for each eye.

A second-order statistic of interest is the empirical
variance-covariance matrix, which gives the inertia of the gaze
trajectory defined as

ΣG = n−1
n∑

i=1
qG (ti )q>

G (ti )−mG m>
G

and analogously for the stimulus and retinal image empirical

variance-covariance matrix. The inertia about its center of grav-
ity is then given by ImG = n−1 ∑n

i=1 ‖qG (ti )−mG‖2 = trace(ΣG ).
The inertia Ir of the gaze trajectory qG with respect to any

fixed point r having screen coordinates (xr , yr ) is

Ir = trace(ΣG )+ (mG − r )> (mG − r ) .

Maximally projected correlations
Taking now the simultaneously recorded gaze

{
qG (ti )

}n
i=1

and stimulus
{

q S (ti )
}n

i=1 signals, and their respective empiri-
cal variance-covariance matrices ΣG and ΣS . Denote the inter-
covariance matrix by

ΣGS=̇n−1
n∑

i=1

(
qG (ti )−mG

)(
q S (ti )−mS

)> =Σ>
SG .

This matrix is particularly useful when considering the inertia of
gaze with respect to the time-changing coordinates of the stim-
ulus. Indeed, after some manipulations, we obtain:

IGS = n−1
n∑

i=1
‖qG (ti )−q S (ti )‖2

IGS = trace(ΣG +ΣS −ΣGS −ΣSG )+‖mG −mS‖2 .

Unfortunately, the inertia does not account for differences
in scale, nor for coordinate translation, two characteristics that
are typical aspects for pursuits and for which we require an in-
variance6.

Noise robustness & signal size dependency
Fig. 6 shows results of simulations operated on a Lissajous

signal degraded by noise on the position of the stimulus at differ-
ent signal to noise ratios (SNR) and for different signal sizes. For
signals with more than 167 samples, the behavior of MPC scores
over SNR remains stable and shows quasi-unchanged dynamics.

Appendix C: model

Models come in a variety of forms, depending on the math-
ematical framework used to formalize and compute their me-
chanics. Two main families can be differentiated: descriptive
statistical and generative mechanistic models. Here, we focus on
the latter. The motivation is the following: generative models can
produce simulated and synthetic results that can be compared
to observed empirical data. The model can then be studied and
decomposed such that each internal force can be characterized,
and their functional role in creating the analogous behavior can
be investigated. All together, models remain key to understand
a phenomenon and make predictions for empirical and experi-
mental work. We focused here on fixational eye movements in

6Indeed, we suppose the stimulus will always be at a constant phase with re-
spect to the gaze, either lacking behind in phase (catching up on the stimulus)
or ahead of phase (prediction), the scale difference is our main objective, show-
ing that the stimulus trajectory is reproduced at a smaller scale and, finally, the
coordinate translation shows a systematic bias in the trajectories.
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Figure 6: Behavior of MPC scores over signal to noise ratios (SNR) in simulated similarity computations with a Lissajous base signal
from LJ, with varying signal sample sizes.

an attempt to explain and understand the data observed and
reported in the article. Generative eye movement models use
different approaches including, for instance, probabilistic mod-
els (Tatler, Hayhoe, Land, & Ballard, 2011; Gide, Karam, et al.,
2017), accumulation process models (Orquin & Loose, 2013), or
energy potential models (Engbert et al., 2011). Here we focus on
the latter approach.

Recently, Engbert and colleagues (Engbert et al., 2011) pro-
posed a generative model that could reproduce the statisti-
cal properties of fixational eye movements stationary displace-
ment, namely the short term persistence and long term anti-
persistence of drift and tremors. They used a self-avoiding
walk (Freund & Grassberger, 1992) in a discretized quadratic en-
ergy potential: at each iteration, the gaze, represented by a parti-
cle in the energy potential landscape, can either go left, right, up
or down. The walker will choose the slot with the lowest energy.
Once a step is made, the slot of the previous iteration is set to a
high energy value, and the entire energy landscape follows a lin-
ear relaxation law. Hence, fixational eye movements bottom-up
dynamics can be reproduced. Furthermore, the model also pro-

posed to integrate micro-saccade generation by a threshold rule:
when the particle is surrounded by options with energy higher
than the threshold, it jumps to the global minimum of the en-
ergy landscape. Here, the authors provide an accumulation pro-
cess linked to a global integration of the oculomotor field.

The integrated fixational eye movements model described
above is a key foundation to bridge the oculomotor modeling
communities and accounts for multiple fixational eye move-
ment phenomena (e.g., drift displacement, micro-saccade, spa-
tial orientation biases). However, it did not posses a mecha-
nism to account for micro-pursuit, as these are hardly studied
and reported. The observation of micro-pursuits presented in
the article implies that the dynamics of the gaze within a fixation
can be affected and attracted by motion of a perceptual object
in or nearby the foveal field. Therefore, we propose modeling
approach, gravitational fixational eye movements (GraFEM), in-
spired by gravitational energy field theory to model motion of
eye movements and derived from the work on integrating fixa-
tional eye movements in energy potential models (Engbert et al.,
2011).
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Gravitational potential energy field modeling
Integrated and generative fixational eye movements mod-

els make use of energy potentials to generate self-avoiding walks,
constrain the walks and replicate oculomotor biases (Engbert et
al., 2011). In fact, the latter is used to constrain the pseudo ran-
dom walk’s spatial horizon. Furthermore, it can be considered as
an attractor of the energy landscape. Thus, the use of the parti-
cle in an energy potential framework can be adjusted to provide
biases of the stimulus on the fixational eye movement genera-
tion. Combining attractors in the energy fields, that increase the
probabilities of having the gaze at some spatial coordinates, and
adding stochasticity to the movement of the particle can provide
a simple mechanism for fixational eye movement generation.

The attractors’ properties can be manipulated over time to
affect the energy field and thus dynamics of the fixational eye
movements generated. The energy field that is mapped to the
visual field can be populated by an arbitrary number of n attrac-
tors of varying strength (see Fig. 7-A). Inspired by the formalism
of gravitational fields, one can generate fields with the following
equations. LetΦi represent the field generated by the i th attrac-
tor given by:

Φi (q , t ) =− 1

‖q(t )−ai (t )‖2βi (t ) +δi (t )
(4)

with q and ai corresponding to the spatial x-y coordinates (at
time t ) of the observer’s gaze position and the i th attractor, re-
spectively. The potential landscape can be fine tuned according
to assumptions on attractive attributes of the stimulus and the
tasks. First, it is necessary to set how many attractors are present
and give them spatial coordinates in the plane over time. Sec-
ondly, it is possible to handle the mass of those attractors and
their subsequent force of attraction and distortion of the field by
tuning two parameters; δ for the depth of the well and β for the
concavity of its slope. Summation and normalization of the field
allow for the fusion of the multiple attractors.

Φ(q , t ) =
n∑

i=1
Φi (q , t ) (5)

A logarithmic attenuation is added to allow the possibilities of
exploring high energy areas of the visual/foveal field, giving the
energy E :

E =− ln(−Φ) (6)

Memory of attractor motion (Fig. 7-B) are modeled by adding a
moving average (MA) process (Hannan, 2009) on the field at a
given time t :

EF E M (q , t ) = E(q , t )+
K∑

k=1

λ

k +1
E(q , t −k∆t ) (7)

where K is the temporal parameter limiting how far in time will
the fields be summed over and with λ the relaxation rate param-
eter and ∆t is the temporal step size. It is also possible to set the
impact of memory and anticipation through parameters that de-
fine the iteration window over which the field is deformed using

traces of the attractor in the past of a given current iteration and
the rate λ at which the deformation affects for a given lag.

A particle of position (q) with negligible mass (or with very
high friction) is dropped in the field and is disturbed by noisy
force, in order to generate and simulate gaze dynamics. There-
fore, given the fundamental relation for dynamics, where the ac-
celerating second order component is neglected, the gaze par-
ticle’s motion is derived by the Langevin equation (Langevin,
1908), in which mq̈ is equal to the sum of forces applied to the
particle, and can be rewritten as follows:

mq̈ =−γq̇ −∇EF E M (q , t )+ξ(t ) (8)

with m the negligible mass, γ the friction and where ξ is an ex-
ternal force, here an oculomotor noise (η) applied to the gaze,

such that η(t ) = ξ(t )
γ . With the assumption of low mass and af-

ter normalization7, such that EF E M = EF E M
γ , the dynamics can be

expressed as:
q̇ =−∇EF E M (q , t )+η(t ) (9)

The evolution of the gaze particle’s dynamics can be computed
by making the problem a discrete one using the Euler-Maruyama
method (Kloeden & Platen, 2013), for instance.

Model simulations: what are the parameters
corresponding to ocular events & interpreta-
tion?

Fixations of 1.5 seconds, with a discretization Euler-
Maruyama step∆t = 1 ms equal to the time step, were simulated
using the GraFEM model with two attractors, across correspond-
ing to the attractor of a fixation cross at the center and astim,
the attractor representing the stimulus, with a Lissajous motion:
astim = (sin(2t ),sin(3t )). Only the slope and depth parameters
were manipulated: βstim ∈ [0;50] and δstim ∈ [0;1200]. All other
parameters were kept constant with the other attractor position
at across = (0,0) with βcross = 1 and δcross = 100, the relaxation
rate parameter λ = 0.9, the memory temporal limit K = 5 and
noise ξ∼U [−0.5;0.5]. These simulated fixations were then ana-
lyzed using the measures presented in this article, namely, iner-
tia, MPC and micro-saccade detection using the Engbert-Kliegl
(EK) algorithm based on relative velocity thresholds (Engbert &
Kliegl, 2003). Fig. 9-A shows that higher inertia follows a diago-
nal region along the {βstim,δstim} space. When looking at Fig. 9-
B, one can see that the same area in the parameter space has
systematically high MPC. Finally, the EK algorithm was applied
(without the binocularity criterion) to measure detected micro-
saccades, and summed over the time of a fixation. The results
(Fig. 9-C) show that micro-saccades are detected when concav-
ity is high due to a larger βstim parameter.

7Note that in the next equation, we use EF E M with the same notation as
above, which is not exact writing though it simplifies reading. We refer to a nor-
malized term by γ in the next equation.
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A B

Figure 7: Examples of energy landscape surface plots setup using the gravitational fixational eye movements (GraFEM) model for:
A shows 3 attractors (n = 3) with all attractors i having no motion and the following parameters: β = 2; δ = 1; τ = 5; λ = 0.9, and
B shows 2 attractors (n = 2) with all attractors i having the following parameters: β1 = 2; β2 = 4; δ1 = δ2 = 1; τ = 15; λ = 0.9 and
attractor motion computed with the following arbitrary sinusoidal motion: a1(t ) = [0,0]; a2(t ) = a2(t = 0)+[−5sin(2t ),5sin(3t )] on
the 75t h iterations. The motion of a2 is shown in white. Though the model has many parameters, those manipulated in this work’s
results are exclusively the depth δ (or mass) of the attractors and the slope β by affecting the concavity of the attractors’ field.

A B C

Figure 8: Simulation examples generated with the GraFEM model. Simulations of fixations of 3.5 seconds with Euler-Muruyama
time steps of ∆t = 13 ms, with variable fixation dynamics generated through by manipulating of δstim and βstim parameters. Con-
stant parameters of the model were: number of attractors n = 2, with one for the fixation cross across = (0,0) and another for the
motion of the stimulus following a Lissajous trajectories with the same parameters as in the three experiments (Necker, Square,
Cross); astim(t ) = (

sin(2t ),sin(3t )
)
. The relaxation rate parameter λ = 0.9, memory temporal limit parameter K = 5 and noise ξ ∼

U [−0.5;0.5] were used. A shows a simulated fixation with stable fixation dynamics with δcross = 100; δstim = 100; βcross = 1; βstim = 1.
B shows a simulated fixation with micro-pursuit dynamics with δcross = 100; δstim = 25; βcross = 1; βstim = 1. C shows a simulated
fixation with micro-saccade dynamics with δcross = 100; δstim = 25; βcross = 1; βstim = 12 and detected using the EK algorithm for
micro-saccade detection.

Discussion and perspectives: attractor, oculo-
motor and perceptual multi-stability

The simulation results presented above show the following
three points. First, fixations’ dynamics can be modeled includ-

ing a variety of fixational eye movements such as drift, tremors,
micro-saccades and micro-pursuits. Second, attractor dynam-
ics can be intuitively manipulated by two parameters that con-
trol their slope and depth, hence imposing, by gravity, faster or
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A B C

Figure 9: Simulations and analyses of the GRAFEM model. Simulations of fixations of 1.5 seconds with Euler-Muruyama time
steps of∆t = 1 ms, with variable fixation dynamics generated through the variation of δstim ∈ [0;1200] and βstim ∈ [0;50] parameters.
Constant parameters of the model were: number of attractors n = 2, with one for the fixation cross (across = [0,0]) and another for
the motion of the stimulus following Lissajous trajectories with the same parameters as in the Necker cube experiment: astim(t ) =(

sin(2t ),sin(3t )
)
. The relaxation rate parameter λ = 0.9, memory temporal limit parameter K = 5 and noise ξ ∼ U [−0.5;0.5] were

used. A shows the behavior of inertia over the parameter space of the GraFEM model. B shows the behavior of the similarity
between stimulus and simulated fixation motion using the MPC ρ1. C shows the number of micro-saccades detected by the EK
micro-saccade detection algorithm.

slower dynamics on the gaze-particle. Third, generalization to
more complex stimuli or tasks can be maneuvered by such a
model as attractors can be multiplied, if necessary. However,
this work remains preliminary and calls for further investigation.
Such perspectives are discussed in the following paragraphs.

Model interpretation for eye movements

The GraFEM model proposed in this paper is capable of
generating micro-saccade, drift and tremor fixational eye move-
ments (see Fig. 8) as classified in the literature (Martinez-Conde
et al., 2004) as well as the micro-pursuits presented and detected
in the article as reported in Fig. 9 & Fig. 10. By using classi-
fied data (observations), the parameters of the model that allow
the generation of these fixational eye movements could be in-
ferred, and insights on the mechanics of micro-saccades, micro-
pursuit, drift and tremor generation and their interaction can be
studied. The diagrams Fig. 10 already give a useful and over-
all understanding of the model, with respect to the manipulated
parameters, but the work on parameter inference should be ad-
dressed in a near future in more details.

Given the observed data and the proposed model to ac-
count for it, questions and perspectives can be redefined with
a novel angle for interpretation of fixational eye movements. In-
version and a full analysis of a model, like GraFEM, with multiple
free parameters is a complex task out of the scope of this thesis
but should be tackled and reported in a near future.

The model presented here gives a mathematical framework
in which eye movement phenomena can be generated and inter-
preted. Attractors are interesting as tools to explain and interpret
cognitive and physiological behaviors as they allow an intuitive

understanding of the evolution of dynamical systems (T. Watan-
abe, Masuda, Megumi, Kanai, & Rees, 2014; Kelso, 2012). Fur-
thermore, complex learning systems—i.e., neural networks—are
known to develop such properties as the parameters of their pro-
cesses tend to learn the statistics of the environment by creating
attractors in the parameter space (Moreno-Bote et al., 2007; Sh-
piro et al., 2009; Moreno-Bote et al., 2011; Moreno-Bote & Dru-
gowitsch, 2015).

With this modeling framework, the fixational eye move-
ments classification of the literature can be described and inter-
preted in terms of attractor spatio-temporal dynamics (Fig. 9 &
10).

A stable fixation (Fig. 8-A) in the GraFEM model corre-
sponds to a stabilization of an attractor with the energy land-
scape having little change. The gaze-particle is stuck and only
the noise affecting its position may lead to small random move-
ments of the eyes, as in other generative fixational eye movement
models (Engbert et al., 2011; Herrmann et al., 2017). In these
models, constraints to the energy field of the fixation are used in
an analogous fashion to reflect the higher probabilities of having
fixational eye movements in horizontal and vertical directions. A
fixation attractor can thus be predicted by the task or the stimu-
lus controlled by the experiments, and its parameters can be in-
ferred by a priori information and data. Hence, the model gives
predictive capabilities that can be tested and requires assimila-
tion of data to constrain its range of possibilities.

Micro-saccades (Fig. 8-C) correspond to sudden changes in
the energy depth of attractors, with a new one emerging or deep-
ening while the attractor of fixation has suddenly disappeared.
They are likely to emerge as the gaze-particle rushes down a gra-
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Figure 10: GraFEM oculomotor interpretation. A is a merger of measures applied on GraFEM synthetic data. Simulated fixations’
inertia, MPC and detected micro-saccades results are assigned to the red, green and blue components of this RGB matrix, respec-
tively. The yellow space provides β and δ values that generate micro-pursuit, the blue pixels show a micro-saccade generation
transition space, the dark area shows stable fixation parameters while the red pixels could be interpreted as slow control. B is a
schematic interpretation of oculomotor dynamics generated in the parameter space of the GraFEM model with manipulation of the
δstim and βstim parameters of the stimulus attractor, while keeping all other parameters constant. Micro-pursuit can be generate in
a restrained subspace (yellow) while micro-saccades are detected in the surrounding space (dark blue). When δstim values are low,
a transition area (light blue) exist where micro-saccades and similarity are high, but inertia is not. Finally, stable fixation sub-space
occupy the rest (gray).

dient to the center of an attractor, giving it sufficient velocity. The
depth and slope of the attractor can be manipulated (following
the dynamics described in Fig. 10), thus making it possible to in-
fer, based on observed velocities and amplitudes, the saliency
of that attractor. The GraFEM model does not use an explicit
and separated mechanism for micro-saccade generation—as the
model presented in (Engbert et al., 2011)—though it is not in-
compatible.

Drifts correspond to a stability of the gaze-particle with re-
spect to the attractor by which it is transported. However, the
attractor might itself slowly drift away in the visual space (inde-
pendently from the target motion) or alternatively, the shape of
the well might get larger (by manipulating the parameter β), al-
lowing for the noisy gaze-particle to explore further. These are
two hypotheses that could be tested, in future work, by inferring
the model parameters given sufficient data. These fixational eye
movements are known to help reduce visual redundancy and ex-
tract features in complex visual stimuli (Kuang, Poletti, Victor, &
Rucci, 2012) but are mostly considered to be consequences of the
eye muscles and their neural control properties. Therefore, they
have mostly been considered as independent processes from the
visual stimulus presented.

The micro-pursuits detected and described in the article

could be interpreted as a form of stimulus related drift, as its
signal dynamics place it in similar ranges, and is capture by the
proposed metric; namely MPC. Consequently, this argues in fa-
vor of our proposition that drifts are composed of two categories
— stimulus independent and dependent — and micro-pursuits
logically fall within visually dependent ocular drifts. This de-
pendency can be interpreted as the interference of bottom-
up salient elements interrupting the top-down task of fixation.
Micro-pursuits (Fig. 8-B) are therefore close to drifts in the en-
ergy landscape dynamics.

Model mechanics

The model sets the gaze as a particle in an evolving grav-
itational energy potential field. When the system has no dy-
namics added to the potentials’ landscapes, the particle will fall
into its nearest local minimum. In this implementation, at each
iteration—here a discrete time step using Equation (9),—the first
derivative is computed to update the position of the particle in
the plane, corresponding to the screen. Noise is then added to
the deterministic dynamics and can drive fixational oculomo-
tor decision-making with respect to attractors if its amplitude is
sufficiently large (Shpiro et al., 2009; Moreno-Bote et al., 2007).
This mechanism is similar to bi-stable energy potential models,
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though it extends on the dimensions of the system. In a set of
simulations reported in Fig. 9, we show that through two con-
tinuous parameters applied to a target attractor, it is possible to
generate and interpret oculomotor dynamics observed in fixa-
tional eye movements. However, here, there is no prior requir-
ing the existence of different systems for each class of move-
ments observed (Liversedge et al., 2011). fixational eye move-
ment dynamics can be reproduced through a unique mecha-
nism as shown by the simulated examples in Fig. 8.

Top-down intention processes can be tested and simulated,
given the context of a task, by applying changes in the model’s β
and δ parameters. Fig. 10 can be used as a road map of the ocu-
lomotor dynamics and regimes expected, depending on param-
eter values. Moreover, bottom-up saliency or attentional effects
can also be taken into account. This can be done with simpler
assumptions, such as the ones presented here for the task used
in the article, but can be more complex if using natural scene
tasks, for instance. An interesting and practical perspective in
this context lays in investigating how salience models, which de-
rive probability distribution based on the statistics of images or
videos, can be integrated such that only attractors are fed into a
GraFEM oculomotor execution system.

How would this be implemented in the brain?

Anatomically, oculomotor programming has been shown to
be highly correlated and linked to a network of areas involving
neural activity in the superior colliculus (SC), the frontal eye field
(FEF) and the lateral intra-parietal (LIP) cortex (Hafed, Goffart, &
Krauzlis, 2009; Krauzlis, 2004, 2005; Krauzlis et al., 2017; Astrand,
Ibos, Duhamel, & Hamed, 2015; Peel, Hafed, Dash, Lomber,
& Corneil, 2016; Taouali, Goffart, Alexandre, & Rougier, 2015).
There are inter-individual differences in anatomy and behavior
for fixational eye movements measuring and observed dynam-
ics. For instance, it has been shown that not only oculomotor
behavior between trained and untrained participants vary a lot,
but that drift accounts for more fixation correction motion than
micro-saccades (Cherici, Kuang, Poletti, & Rucci, 2012). The ob-
servations of micro-pursuits presented in the article suggest that
the dynamics of the gaze within a fixation can be affected and
attracted by motion of an object in or nearby the foveal field.

However, rather than having an attractor with a pseudo-
random displacement, its motion follows a deterministic and
predictable trajectory, that can be computed and estimated by
the oculomotor system. Moreover, that attractor is, given our ob-
servations so far, only related to a target motion. This could, for
instance, be implemented in the brain by the means of an effer-
ence copy (Astrand et al., 2015), though this idea remains specu-
lative and further modeling and neuro-physiological research is
needed. The low energy attributed to a decoded and perceived
object moving across space encourages the oculomotor system
to track it as it tries to minimize the energy of the gaze-particle.
Finally, tremors are generated and explained by the noise given
to the particle over all fixational eye movement events.

This model complements the eye movement field of re-

search with the possibility to program intentions, salience, and
their effects on the gaze dynamics by simply using attractors and
setting out their dynamics in terms of motion on the visual field,
depth and memory. For instance, the model can predict the dif-
ferent dynamics reported based on the eccentricity of an attrac-
tor corresponding to an afterimage, as observed in (Heywood &
Churcher, 1972). Thus, one can use the model to generate sta-
tistical predictions of eye movement dynamics. Given an under-
standing of the visual attention or saliency effects of their stim-
ulus and take into account all the associated intentions to the
tasks that participants are required to be operated during a trial,
it is possible to use this modeling to generate quantitative pre-
dictions on the oculomotor dynamics. Moreover, the generative
properties makes it possible to work on simulated data and ex-
tract dynamics’ statistics in terms of eye movements, and this
is possible using the traditional algorithms for eye movements
classification. Inversely, obtaining the parameters of the model
that replicate the dynamics of observations could help under-
stand better the internal processes that drive eye movements.

Perspectives: towards oculomotor multi-
stability.

A key aspect of this family of models is that it showcases
multi-stability regarding their attractors. This phenomenon can
emerge in many complex biological systems and is present in
many cognitive processes (Schwartz, Grimault, Hupé, Moore, &
Pressnitzer, 2012). It is linked to coordination dynamics between
sub-systems which have varying levels of coupling, leading
to mono-stable, multi-stable or meta-stable dynamics (Kelso,
2012). The consequent interpretation is that the oculomotor sys-
tem could have multi-stable dynamics with respect to visual at-
tractors. In this case, the oculomotor dynamics are likely driven
by noisy signals (J. Braun & Mattia, 2010) representing other in-
terfering systems, such as perception, attention, intention, and
other cognitive systems. This framework connects to the grow-
ing body of studies linking perceptual decisions and multi-stable
system dynamics. It also creates a link for motor systems to stud-
ies of noise as a component that helps a perceptual system oper-
ate through stochastic resonance8 (Gammaitoni, Hänggi, Jung,
& Marchesoni, 1998; Patel & Kosko, 2005; Kim, Grabowecky, &
Suzuki, 2006).
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