
N� d’ordre NNT : 2021LYSEI003

Th�ese de doctorat de l'Universit�e de Lyon
opérée au sein de

L'INSA Lyon

Ecole Doctorale N� 512
Math�ematiques et Informatique (InfoMaths)

Sp�ecialit�e / discipline de doctorat : Informatique

À soutenir publiquement le 12/01/2021 par

Corentin Lonjarret

Sequential recommendation and explanations

Devant le jury composé de:

Josiane Mothe Professeur, INSPE de l’Académie
de Toulouse

Rapporteure

Arnaud Soulet Mâıtre de conférences HDR,
Université de Tours

Rapporteur

Sihem Amer-Yahia Directrice de recherche, CNRS Examinatrice
Elisa Fromont Professeur, Université Rennes 1 Examinatrice
Céline Robardet Professeur, INSA-Lyon Directrice de thèse
Marc Plantevit Mâıtre de conférences HDR,

Université Claude Bernard Lyon 1
Co-directeur
de thèse

Roch Auburtin Directeur R&D, Visiativ Invité

Département FEDORA – INSA Lyon - Ecoles Doctorales – Quinquennal 2016-2020

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE

CHIMIE CHIMIE DE LYON

http://www.edchimie-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
secretariat@edchimie-lyon.fr
INSA : R. GOURDON

M. Stéphane DANIELE
Institut de recherches sur la catalyse et l’environnement de Lyon
IRCELYON-UMR 5256
Équipe CDFA
2 Avenue Albert EINSTEIN
69 626 Villeurbanne CEDEX
directeur@edchimie-lyon.fr

E.E.A. ÉLECTRONIQUE,
ÉLECTROTECHNIQUE,
AUTOMATIQUE

http://edeea.ec-lyon.fr
Sec. : M.C. HAVGOUDOUKIAN
ecole-doctorale.eea@ec-lyon.fr

M. Gérard SCORLETTI
École Centrale de Lyon
36 Avenue Guy DE COLLONGUE
69 134 Écully
Tél : 04.72.18.60.97 Fax 04.78.43.37.17
gerard.scorletti@ec-lyon.fr

E2M2 ÉVOLUTION, ÉCOSYSTÈME,

MICROBIOLOGIE, MODÉLISATION

http://e2m2.universite-lyon.fr
Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
INSA : H. CHARLES
secretariat.e2m2@univ-lyon1.fr

M. Philippe NORMAND
UMR 5557 Lab. d’Ecologie Microbienne
Université Claude Bernard Lyon 1
Bâtiment Mendel
43, boulevard du 11 Novembre 1918
69 622 Villeurbanne CEDEX
philippe.normand@univ-lyon1.fr

EDISS INTERDISCIPLINAIRE

SCIENCES-SANTÉ

http://www.ediss-lyon.fr
Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
INSA : M. LAGARDE
secretariat.ediss@univ-lyon1.fr

Mme Sylvie RICARD-BLUM
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
(ICBMS) - UMR 5246 CNRS - Université Lyon 1
Bâtiment Curien - 3ème étage Nord
43 Boulevard du 11 novembre 1918
69622 Villeurbanne Cedex
Tel : +33(0)4 72 44 82 32
sylvie.ricard-blum@univ-lyon1.fr

INFOMATHS INFORMATIQUE ET

MATHÉMATIQUES

http://edinfomaths.universite-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
Tél : 04.72.43.80.46
infomaths@univ-lyon1.fr

M. Hamamache KHEDDOUCI
Bât. Nautibus
43, Boulevard du 11 novembre 1918
69 622 Villeurbanne Cedex France
Tel : 04.72.44.83.69
hamamache.kheddouci@univ-lyon1.fr

Matériaux

MATÉRIAUX DE LYON

http://ed34.universite-lyon.fr
Sec. : Stéphanie CAUVIN
Tél : 04.72.43.71.70
Bât. Direction
ed.materiaux@insa-lyon.fr

M. Jean-Yves BUFFIÈRE
INSA de Lyon
MATEIS - Bât. Saint-Exupéry
7 Avenue Jean CAPELLE
69 621 Villeurbanne CEDEX
Tél : 04.72.43.71.70 Fax : 04.72.43.85.28
jean-yves.buffiere@insa-lyon.fr

MEGA MÉCANIQUE, ÉNERGÉTIQUE,

GÉNIE CIVIL, ACOUSTIQUE

http://edmega.universite-lyon.fr
Sec. : Stéphanie CAUVIN
Tél : 04.72.43.71.70
Bât. Direction
mega@insa-lyon.fr

M. Jocelyn BONJOUR
INSA de Lyon
Laboratoire CETHIL
Bâtiment Sadi-Carnot
9, rue de la Physique
69 621 Villeurbanne CEDEX
jocelyn.bonjour@insa-lyon.fr

ScSo ScSo*

http://ed483.univ-lyon2.fr
Sec. : Véronique GUICHARD
INSA : J.Y. TOUSSAINT
Tél : 04.78.69.72.76
veronique.cervantes@univ-lyon2.fr

M. Christian MONTES
Université Lyon 2
86 Rue Pasteur
69 365 Lyon CEDEX 07
christian.montes@univ-lyon2.fr

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie

Abstract

Recommender systems have received a lot of attention over the past decades with the proposal
of many models that take advantage of the most advanced models of Deep Learning and
Machine Learning. With the automation of the collect of user actions such as purchasing of
items, watching movies, clicking on hyperlinks, the data available for recommender systems is
becoming more and more abundant. These data, called implicit feedback, keeps the sequential
order of actions. It is in this context that sequence-aware recommender systems have emerged.
Their goal is to combine user preference (long-term users’ profiles) and sequential dynamics
(short-term tendencies) in order to recommend next actions to a user.

In this thesis, we investigate sequential recommendation that aims to predict the user’s
next item/action from implicit feedback. Our main contribution is REBUS, a new metric
embedding model, where only items are projected to integrate and unify user preferences and
sequential dynamics. To capture sequential dynamics, REBUS uses frequent sequences in
order to provide personalized order Markov chains. We have carried out extensive experiments
and demonstrate that our method outperforms state-of-the-art models, especially on sparse
datasets. Moreover we share our experience on the implementation and the integration of
REBUS in myCADservices, a collaborative platform of the French company Visiativ.

We also propose methods to explain the recommendations provided by recommender sys-
tems in the research line of explainable AI that has received a lot of attention recently. Despite
the ubiquity of recommender systems only few researchers have attempted to explain the rec-
ommendations according to user input. However, being able to explain a recommendation
would help increase the confidence that a user can have in a recommendation system. Hence,
we propose a method based on subgroup discovery that provides interpretable explanations
of a recommendation for models that use implicit feedback.

Keywords: Recommender Systems, Collaborative Filtering, Sequential Recommendation,
Explanations

iii

Résumé

Ces dernière années, les systèmes de recommandation ont reçu beaucoup d’attention avec
l’élaboration de nombreuses propositions qui tirent parti des nouvelles avancées dans les do-
maines du Machine Learning et du Deep Learning. Grâce à l’automatisation de la collecte
des données des actions des utilisateurs tels que l’achat d’un objet, le visionnage d’un film
ou le clic sur un article de presse, les systèmes de recommandation ont accès à de plus en
plus d’information. Ces données sont des retours implicites des utilisateurs (appelé ! im-
plicit feedback " en anglais) et permettent de conserver l’ordre séquentiel des actions de
l’utilisateur. C’est dans ce contexte qu’ont émergé les systèmes de recommandations qui
prennent en compte l’aspect séquentiel des données. Le but de ces approches est de combiner
les préférences des utilisateurs (le goût général de l’utilisateur) et la dynamique séquentielle
(les tendances à court terme des actions de l’utilisateur) afin de prévoir la ou les prochaines
actions d’un utilisateur.

Dans cette thèse, nous étudions la recommandation séquentielle qui vise à prédire le
prochain article/action de l’utilisateur à partir des retours implicites des utilisateurs. Notre
principale contribution, REBUS, est un nouveau modèle dans lequel seuls les items sont
projetés dans un espace euclidien d’une manière qui intègre et unifie les préférences de
l’utilisateur et la dynamique séquentielle. Pour saisir la dynamique séquentielle, REBUS
utilise des séquences fréquentes afin de capturer des châınes de Markov d’ordre personnalisé.
Nous avons mené une étude empirique approfondie et démontré que notre modèle surpasse les
performances des différents modèles de l’état de l’art, en particulier sur des jeux de données
éparses. Nous avons également intégré REBUS dans myCADservices, une plateforme collab-
orative de la société française Visiativ. Nous présentons notre retour d’expérience sur cette
mise en production du fruit de nos travaux de recherche.

Enfin, nous avons proposé une nouvelle approche pour expliquer les recommandations
fournies aux utilisateurs. Le fait de pouvoir expliquer une recommandation permet de con-
tribuer à accrôıtre la confiance qu’un utilisateur peut avoir dans un système de recommanda-
tion. Notre approche est basée sur la découverte de sous-groupes pour fournir des explications
interprétables d’une recommandation pour tous types de modèles qui utilisent comme données
d’entrée les retours implicites des utilisateurs.

Mots clés: Système de recommandation, Filtrage collaboratif, recommandation séquentielle,
Explications.

iv

Remerciements

Je remercie Josiane Mothe, Professeur à l’INSPE de l’Académie de Toulouse et Arnaud Soulet,
Mâıtre de conférences HDR à l’Université François Rabelais de Tours, d’avoir accepté le rôle
de rapporteur de ma thèse, ainsi que pour leur travail de lecture approfondie.

Je remercie également Sihem Amer-Yahia, Directrice de recherche CNRS et Elise Fromont,
Professeur à l’Université Rennes 1, d’avoir accepté de participer au jury de ma thèse.

Je remercie l’entreprise Visiativ qui m’a accueilli durant ces trois années et m’a permis
de réaliser la majorité de mes expériences rapportées dans cette thèse. Je tiens à remercier
tout particulièrement Roch Auburtin, Directeur R&D de Visiaitv, pour son encadrement et
sa bienveillance.

Par ailleurs, je tiens à remercier mes encadrants de thèse, Céline Robardet, Professeur à
l’INSA de Lyon et Marc Plantevit, Mâıtre de conférences HDR à l’Université Claude Bernard
Lyon 1 qui m’ont guidé et aidé durant ces trois années de thèse. Leur encadrement scientifique
m’a été d’un grand soutien, en particulier dans les situations difficiles, et m’a permis de
prendre le recul nécessaire sur mes travaux de recherche. Je remercie les doctorants de
l’équipe DM2L notamment Romain, Alexandre et Aimene pour leur aide précieuse.

Enfin, je remercie ma famille et mes amis proches qui m’ont toujours soutenu durant ces
trois années. Je tiens tout particulièrement à remercier ma femme, Mathilde, qui a toujours
été à mes côtés et qui m’a encouragé et motivé dans mes nouveaux projets.

Table of contents

Table of contents v

Notations ix

1 Introduction 1
1.1 Context . 1
1.2 Sequential recommendation . 2
1.3 Problems addressed in this thesis . 3
1.4 Contributions . 4
1.5 Structure of the thesis . 5
1.6 List of publications . 6

2 Sequential recommendation: State of the Art 7
2.1 Overview of Recommender Systems . 7

2.1.1 Recommender systems in a nutshell 8
2.1.2 Input data used by recommender systems 9
2.1.3 Types of recommender systems . 10
2.1.4 Recommender systems problem formulations 13
2.1.5 The long-term and short-term dynamics 14

2.2 General recommendation . 15
2.2.1 Matrix Factorization . 16
2.2.2 Factorization Machines . 17
2.2.3 Neighborhood-based methods . 18
2.2.4 Deep learning models . 19

2.3 Sequential recommendation . 21
2.3.1 Sequential recommendation based on Markov Chains 21
2.3.2 Sequence-aware extensions for neighborhood-based methods 22
2.3.3 Unifying user preferences and sequential dynamics 23
2.3.4 Deep learning models . 24

2.4 Evaluation of sequential recommendation . 27
2.4.1 Empirical study . 27
2.4.2 Industrial Study . 29

2.5 Conclusion . 30

3 Sequential recommendation with metric models based on frequent se-
quences 31

v

vi Table of contents

3.1 Introduction . 31
3.2 Notations . 33
3.3 REBUS . 34

3.3.1 Long-term metric-based model . 34
3.3.2 Short-term dynamics modeled by frequent patterns 35
3.3.3 The long-term and short-term metric embedding model 37
3.3.4 Bayesian Personalized Ranking optimization criterion 37
3.3.5 Model training . 38
3.3.6 Applying the model for recommendation 38
3.3.7 Customization of REBUS . 39
3.3.8 Discussion . 40

3.4 Experiments . 40
3.4.1 Datasets and aims . 40
3.4.2 Comparison methods . 42
3.4.3 Experimental settings . 43
3.4.4 Performance study . 46
3.4.5 Cold-start user study . 51
3.4.6 Study of the impact of user preferences and sequential dynamics in the

recommendation . 53
3.4.7 Study of the used user preferences window 56
3.4.8 Study of the used personalized sequences 56
3.4.9 Relative importance of user preferences on sequential dynamics 59
3.4.10 Examples of recommendations . 61

3.5 Conclusion . 62

4 Explaining the Recommendation of any Model 63
4.1 Introduction . 63
4.2 Notations . 66
4.3 Related work . 67

4.3.1 Model Explanation . 67
4.3.2 On Explanation in Recommender Systems 68

4.4 Identifying the active data used for recommendation 68
4.4.1 Neighborhood Generation . 68
4.4.2 Subgroup Discovery for Analyzing Recommendations 69
4.4.3 Running example . 71
4.4.4 Complexity . 72

4.5 Experiments . 72
4.5.1 Datasets . 72
4.5.2 Considered models . 73
4.5.3 Aims . 74
4.5.4 Applying UPSD and SDSD . 75
4.5.5 Local Explanations . 75
4.5.6 Assessing Local Explanations Regarding Other Users 80
4.5.7 Towards Global Explanation of Black Box Models for Sequential Rec-

ommendation . 83
4.6 Conclusion . 86

Table of contents vii

5 Implementing a Recommender System: The Visiativ experience 87
5.1 Introduction . 87
5.2 Implementation of a recommender system in Visiativ context 88

5.2.1 The different components . 89
5.2.2 Exchanges between the different components 90
5.2.3 Which model to choose? . 91

5.3 Empirical study . 92
5.3.1 General study . 92
5.3.2 Focus on the myCADservices dataset 92

5.4 Industrial study . 94
5.4.1 Impact of recommender systems . 96
5.4.2 A/B Test 1: REBUS versus POP (2019/06/10 – 2020/01/23) 98
5.4.3 A/B Test 2: REBUS1MC versus SASRec (2020/01/23 – 2020/09/06) 100

5.5 Conclusion . 102

6 Conclusion 105
6.1 Summary . 105
6.2 Perspectives . 106

6.2.1 Improving REBUS . 106
6.2.2 Extend our work on explanation of sequential recommendation 107

7 Appendix 109

Bibliography 123

Notations

R Recommender system.

U User set.

I Item set.

S Set of user sequences.

F Set of frequent substrings of S. F � tx1y, x2y, x4y, x5y, x4, 5yu

su Sequence of items associated to user u. su � x1, 2, 3, 2, 2, 4, 5y

Isu Set of items that appear in su. Isu � t1, 2, 3, 4, 5u, Isur1,4s � t1, 2, 3u

msu Sequence of F that best matches su. msu � x4, 5y

su
t Item that appears in su at position t. su

5 � 2

msu
t Item that appears in msu at position t. msu

2 � 5

s
r1,tr
u

Substring of su starting at position 1 and ending at position t� 1.

su
r1,5r � x1, 2, 3, 2y

m
s
r1,tr
u

Sequence of F that best matches s
r1,tr
u . msu

r1,5r � x2y

ppu,i,t Prediction that measures the probability for user u to choose item i while

only considering s
r1,tr
u .

¡u,t Personalized total order of user u at position t.

Rpsuq Recommendations produces by R for su.

Rorderpsuq Ordered recommendations produces by R for su.

rsui Numerical value that measures the probability for user u to choose item i.

i� Top-1 recommended item (item to explain).

N1psuq
Neighborhood of su made of sequences by removing one or several items
from su.

N2psuq
Neighborhood of su made of sequences where only the items order of su
changes.

I Subgroup description language for UPSD defined as all possible sets of
items from I.

S Subgroup description language for SDSD made of all sequences of items
of I without repetition.

d A descriptive pattern.

SGpdq Pattern cover of d.

ix

Chapter 1

Introduction

1.1 Context

This thesis has been implemented in both Visiativ company and DM2L group thanks to a
CIFRE grant, i.e., an academia/industry partnership. Visiativ is a French software editor
company that provides solutions to stimulate innovation, to streamline customer/supplier
relationships, to improve information sharing and to develop knowledge. To this end, this
company bases its development on several complementary businesses: the integration of
specialized software solutions of Dassault Systèmes, the edition of a community-oriented
collaborative platforms, as well as management consulting and financing innovation.

One important feature of Visiativ is the myCADservices collaborative platform that pro-
vides to engineers and design offices, a set of applications and services related to Computer
Aided Design (CAD). CAD softwares include many functionalities and evolve regularly, which
requires users to be kept informed. To this end, they use the documentation made available
on the platform, via the resource center functionality. This digital documentation is made of
tutorials, best practices and divers documents on CAD products.

At the beginning of my PhD, three years ago, myCADservices was not featured with a
recommender system: no resource was recommended to the users who only had access to
digital documents using potentially time-consuming search engines. Hence, they were able to
only (1) filter resources by category, domain, or product, (2) search through a text query, and
(3) sort document according to their popularity or date. All these features were accessible
within an information retrieval system that waited for explicit query from the user without
suggesting itself relevant resources to the users. That was obviously a limitation of the system
because users were not omniscient (i.e., they did not always know what they searched and
how to search it), some users were not aware of new updates, or specific software features.
This lack of interaction between the system and the users was at the origin of my work whose
main goal is to feature the myCADservices platform with a recommender system to make to
the user personalized suggestions.

Recommending to a specific user documents that may interest him requires to capture
both his preferences (i.e., the general interest of the user – for instance, which software he
uses – also known as the long-term dynamics) and his short-term dynamics which is related
to his recent actions allowing to characterize what he is doing and what he is going to do. We
claim that the simultaneous consideration of these two aspects is important in the context

1

2 Chapter 1. Introduction

of myCADservices because the digital resources require a variable level of expertise to be
understood (i.e., there may exist a “learning path” between them). Therefore, this leads
us to study and tackle a problem much wider than its application to Visiativ context: the
sequential recommendation problem.

1.2 Sequential recommendation

As society becomes ever more digital, the number of situations where users are faced with
a huge number of choices increases. Digital platforms such as Amazon, Youtube, or Netflix,
provide more and more digital contents or digital descriptions of real objects called hereafter
items. In this context, a selection process by exhaustive examination of all possibilities is not
feasible. To overcome this, and improve the user experience, these platforms generally use
two tools:

� Information Retrieval (IR) system that allows users to query the items or category of
items they are looking for. Then, depending on the algorithm used, the retrieval system
returns the items that best match the user’s query.

� Recommender Systems (RS) that automatically generates recommendations for users
based on their previous interactions with items. A benefit of recommender system is
that it allows users to discover relevant but also unexpected items.

Information Retrieval and Recommender Systems are complementary: The first one allows
to give items according to a query where the second one gives items according to users’
tastes. Notice that their interaction is not empty. Indeed, the results of a query can be
sorted according to some user preference that has to be modeled by the system.

Figure 1.1: Global overview of interactions between users, recommender systems and a plat-
form that display items.

In this thesis, we focus on recommender systems which are widely used in different do-
mains (Aggarwal, 2016) such as e-commerce websites (e.g. Amazon and Alibaba), news
websites (e.g. Google news), streaming platforms (e.g. Spotify and Youtube) and social net-
works (e.g. Facebook and Twitter). One of the main goals of recommendation systems is to
create and maintain user faithfulness, and for this purpose, they have to provide items that

1.3. Problems addressed in this thesis 3

users want to interact with. Figure 1.1 gives a general description of what a recommender
system does: users interact with the items available on the platform, these interactions are
stored in order to be used to recommend new items. Such interactions are called feedback
and are divided into two types:

� Implicit feedback which is automatically recorded as soon as the user interacts (e.g.
buys/watches/clicks) with an item;

� Explicit feedback that is given by the user after interacting with an item. It usually
takes the form of a rating (e.g., 1 to 5 stars) that gives an opinion on an item.

Despite the fact that the information contained in the explicit feedback is more precise for a
recommender system, it is obtained at the cost of additional actions for the user who is not
always ready to do so. This is why most of recommender systems use implicit data (Rendle
et al., 2009).

In general, implicit feedback is ordered by time, allowing recommender systems to cap-
ture sequential dynamics while capturing general user tastes (i.e. user preferences). This
kind of recommender systems is part of the sequential recommendation model. Therefore,
it is through the combination of these two aspects (i.e. user preferences and sequential dy-
namics) that we obtain personalized and relevant recommendations for each user without
using additional information such as user profiles or item content information. As with ex-
plicit feedback, information about users or items are often unavailable or may need to be
processed before it can be used. Note that recommender systems that use information other
than feedback are part of Content/Context-based recommender systems and those that only
use feedback fall into the family of collaborative filtering models. We will discuss these two
types of recommendation systems in more details in Chapter 2.

Considering (1) that on myCADservices platform, it is possible to collect implicit feedback
from actions of the users, and (2) that recommendations may benefit from taking into account
the order relationships between digital documents, we consider the problem of sequential
recommendation whose goal is to predict the next user item/action from an implicit feedback.
Behind the general problem of sequential recommendation leads, we will consider several
challenges.

1.3 Problems addressed in this thesis

In this thesis, our main objective is to devise and transfer to Visiativ a sequential recommen-
dation model. Sequential recommendation have been widely investigated for two decades.
The first recommender systems focused exclusively on modeling user preferences (Koren and
Bell, 2015, Koren et al., 2009) and did not consider sequential dynamics. However, by using
sequential dynamics present in implicit feedback, the sequential recommendation models out-
perform the traditional recommender systems. The problem of sequential recommendation
lies in the successful combination of the whole user’s history and his recent actions (sequential
dynamics) to provide personalized recommendations. To capture the sequential dynamics the
existing models use the concept of Markov Chains which models the probability of choosing
an item knowing an ordered list of already selected items. However the seminal models only
use fixed-order Markov Chains regardless of the users and their considered items. On the

4 Chapter 1. Introduction

other hand, recent approaches based on deep neural network architecture considers varying
sequence lengths in nonlinear models which are much more difficult to interpret and requires
a high level of expertise to be set up and maintained. To cope with these limitations, the
first problem addressed in this thesis is:

� Problem #1: How to define a simple yet efficient sequential recommendation model?

As previously mentioned, this thesis is motivated by the industrial case study brought by
Visiativ and the need to feature the myCADservices platform with a recommender system.
Defining a prototype and assess it on several benchmarks according to several competitors is
far from actual use in practice. This leads to the second problem addressed in this thesis.

� Problem #2: How to implement and assess our recommender system in the myCAD-
services platform?

Despite their obvious interest, recommender systems behave as black boxes which raises
many ethical issues and may limit their usage in practice. Indeed, functioning as a black
box results in a lack a transparency and may have a negative impact on the confidence
the user has for the related services. As a user, one may wonder why a specific item is
recommended? Is it fully relevant to the user? It even raises ethical questions about the
choice made in some cases (Gender/Race etc). In this context, Explainable AI has received
a lot of attention over the past decade, with many proposed methods explaining black box
models. One of the best known is certainly Lime from Ribeiro et al. Ribeiro et al. (2016),
that aims to understand the model by perturbing the input of data samples and observing
how the predictions change. However LIME returns explanation trough a vector of relative
importance of features which create an unclear coverage because there is no way of knowing
how generalizable the explanation is. Unclear generalization can lead to low human precision
and misleading interpretation. This is why the same authors propose a new method call
aLime Ribeiro et al. (2018) that cope this problem of unclear generalization. It uses the same
idea as Lime but the explanations are described by if-then rules called “Anchor”. In their
paper, the authors argue that Anchors are intuitive, easy to understand, and have extremely
clear coverage. This leads to the last problem tackled in this thesis:

� Problem #3: How to explain the recommendation made by any (sequential-based)
recommender system?

1.4 Contributions

Given the problems we tackle in this thesis, our main contributions are the following.

A novel model for sequential recommendation based on the embedding of fre-
quent sequences:

We propose REBUS – for Recommendation Embedding Based on freqUent Sequences
– that uses frequent sequences to capture the sequential dynamics and identify the part of
user history that is the most relevant for recommendation. These sequences allow to estimate
Markov Chains of variable orders. REBUS uses a unified metric embedding model based
on user preferences and user sequential dynamics. An extensive empirical study demonstrate

1.5. Structure of the thesis 5

that our model outperforms state-of-the-art sequential recommendation models including
deep neural neural based models, especially on sparse datasets. We also show that the sub-
sequences identified by the model are relevant and makes it possible to have insight of the
recommendations

The implementation of the recommender system in an industrial context: the
Visiativ experience:

REBUS has not remained in the prototype, it has been implemented in an industrial
context and now used in myCADservices platform. We present how we have chosen and
implemented such a recommender system and the strategy adopted to monitor its perfor-
mances in production (A/B Testing and choice of key performance indicators). Furthermore,
it was a great opportunity to test performance of REBUS in a real use case instead of public
benchmarks.

A novel model-agnostic method for explaining the sequential recommendations:
We propose a method rooted in subgroup discovery to explain the recommendations made

by any recommender system. This method, inspired from aLime, considers different pattern
languages (i. e., itemsets and sequences) and consist of two main steps. The user sequence is
perturbed. For each perturbation, the recommendation of the studied recommender system
is stored. Then, we use subgroup discovery to give intuitive explanation about the recom-
mendation. This makes it possible to identify which items in the user history were used for
the recommendation, and if the order of the user actions accounts or not.

1.5 Structure of the thesis

The remainder of this thesis is organized as follows:

� Chapter 2 first provides in a general overview of recommender systems. Then, we
introduce the problem of sequential recommendation and present an extensive review
of the literature related to this problem.

� In Chapter 3, we presents our first contribution which tackle the problem of sequential
recommendation (prediction of the next item). We propose REBUS a unified metric
model that embeds items based on user preferences and sequential dynamics. The
thorough empirical study demonstrates that our model outperforms state of the art
models of sequential recommendation. This contribution has been partially published in
the proceeding of the French conference Extraction et Gestion de Connaissances, EGC
2019 (Lonjarret et al., 2019). Then an extended and improved version of REBUS is
currently under review for the journal Data Mining and Knowledge Discovery DAMI
(accepted on October 24th) Lonjarret et al. (2021).

� Chapter 4 is dedicated to the explanation of sequential recommendations based on
subgroup discovery. This contribution has been published in the proceeding of the 7th
IEEE International Conference on Data Science and Advanced Analytics DSAA 2020
(Lonjarret et al., 2020)

6 Chapter 1. Introduction

� We explain, in Chapter 5, how we chose and implement a recommender system in
an industrial context as well as the strategy adopted to monitor its performances in
production (A/B Testing and choice of key performance indicators) in Visiativ’s my-
CADservices platform.

� Chapter 6 concludes and give future directions of this work.

1.6 List of publications

Peer-reviewed French national conferences:

� Corentin Lonjarret, Marc Plantevit, Céline Robardet and Roch Auburtin. Recom-
mandation séquentielle à base de séquences fréquentes. In Extraction et Gestion des
Connaissances : EGC 2019, Metz, France, January 21-25, 2019, pages 267–272.

Peer-reviewed international conferences with proceedings:

� Corentin Lonjarret, Céline Robardet, Marc Plantevit, Roch Auburtin, and Martin
Atzmueller. Why should i trust this item ? explaining the recommendations of any
model. In 2020 IEEE International Conference on Data Science and Advanced Analytics
(DSAA), 2020, pages 526–535.

International journals:

� Corentin Lonjarret, Céline Robardet, Marc Plantevit and Roch Auburtin. Sequential
recommendation with metric models based on frequent sequences. In Data Mining and
Knowledge Discovery. (Accepted in October 2020).

Chapter 2

Sequential recommendation: State
of the Art

In this chapter, we introduce the problem of sequential recommendation whose goal is to
predict the next user item/action from an implicit feedback. Before reviewing related work on
sequential recommendation models, we provide in Section 2.1 an overview of Recommender
Systems (RS) that includes a presentation of their objectives, the different types of input
data they use, a typology of the different prediction function and their formulation in term of
prediction tasks. In section 2.2, we introduce general recommendation models which include
traditional models where sequential information (the order of actions performed by a user) is
not considered. Then, in Section 2.3, we present sequential recommendation models. Finally,
we describe in Section 2.4 the evaluation protocol for sequential recommender systems.

2.1 Overview of Recommender Systems

From a business point of view, the primary goal of a recommender system is to increase
the profits generated by a company. Indeed, by providing the right item to the right user,
the recommender system allows to increase sales in the case of an e-commerce website (e.g.
Amazon, Alibaba , Ebay, etc...) or to increase the time spent by a user on a digital platform
in the case of a Entertainment website or Social Network (e.g. Youtube, Spotify, Netflix,
Facebook, Twitter, etc...).

From the user’s point of view, the goal of a recommender system is to improve his expe-
rience on the platform by selecting the most relevant items and filtering the most irrelevant
ones. Providing a good recommendation reduces the search time for users and increases their
efficiency. In fact, digital platforms are increasingly providing more and more content, which
makes it almost impossible for a user to exhaustively explore all available items. Addition-
ally, being able to provide an explanation of a recommended item would help to increase
the confidence that the user have in the recommender system, and thus increase the user
experience. Full details will be further discussed in Chapter 4.

Because of their great usefulness, recommender systems are now present in many appli-
cations in various domains: E-commerce, Entertainment, Services, Social Network, Online
News, etc... Each domain has its own objectives but it is still linked to the two main ob-
jectives presented above: (1) To increase the revenue of a company and (2) to improve the

7

8 Chapter 2. Sequential recommendation: State of the Art

user experience. To achieve this, recommender system has to be able to handle the following
operational and technical objectives (Aggarwal, 2016):

� Accuracy: The primary function of a recommender system is to provide users with
relevant items. The more attractive an item is to a user, the more likely it is to be
consumed;

� Novelty and Serendipity: A recommender system should be able to provide items
that will surprise the user (Hurley and Zhang, 2011). Novelty refers to the ability of a
recommender system to provide items unknown to the user but in a category of items
that he likes. Serendipity, on the other hand, refers to the ability of a recommender
system to provide unexpected items (i.e. an item belonging to a category unknown
to the user). Novelty and Serendipity are two important functions for a recommender
system, which allow recommender systems not to recommend only items already known
by the user. Indeed, the user may lose interest in the platform if the system only provides
him items that he already knows. In addition, providing serendipitous items can create
new interests for users and thus increases the profits generated by the platform in the
long term. However, attention should be paid to the proportion of novel/serendipitous
items provided.

� Diversity: Recommender systems generally provide a list of the k most relevant items.
This list should be composed of items of different types to increase the chances that the
user likes one of the listed items (Aggarwal, 2016). Diversity should not be confused
with novelty. The novelty refers to how different the recommended item are, with
respect to “what has already been seen by the user” while Diversity is related to how
different the items are with respect to each other (Castells et al., 2011).

Much of the work on recommender systems puts aside novelty and diversity aspects to
focus on the accuracy of recommendations. Indeed, it is more natural to optimize a model
on the accuracy of its recommendations, while novelty and diversity can be obtained by
a post-processing in order to find the right proportion of new items to insert in the list
of recommended items. In certain application domains such as news recommendation or
computational advertising, it is important to bring novelty and diversity to keep the interest
of the user. In these cases, models using multi-armed bandit algorithms (Li et al., 2010,
Louëdec et al., 2015) can be relevant. In this thesis, we also focus on improving the accuracy
of recommendations and give little importance to novelty and diversity.

2.1.1 Recommender systems in a nutshell

Recommender systems can be seen as specific prediction models. Their common points are
that they both use training data to learn a model capable to make predictions. The specificity
of recommender systems lies in the training data, and also the output of the model. The
training data are made of the items that a user has enjoyed so far, among the whole set of
possible items. As a user generally considers a very small number of items compared to the
whole set of items, this makes the data very sparse. Considering the output data, Machine
learning models usually predict few values, while Recommender Systems associate a value to
each item of the whole set of items, that is generally huge.

2.1. Overview of Recommender Systems 9

These two differences are important enough to require the development of methods specific
to the recommendation problem, even though there are commonalities with classical machine
learning methods1. From Figure 2.1, we can see the common points between machine learning
and recommender models. A model whose parameters Θ are learnt with training data and
that is then used to make predictions from input data. Learning the model means adjusting
the parameters Θ using the training input and the output of the prediction function via
a loss function that evaluates the veracity of the model. The figure also illustrates the
specificities of recommender models: the type of input data, detailed in Subsection 2.1.2, the
prediction models that can predict a large set of output, presented in Subsection 2.1.3, and
the prediction tasks (the type of output considered), as well as the loss functions used to
evaluate the difference between predicted and expected data, explained in Subsections 2.1.4.

Figure 2.1: Representation of a recommender system.

2.1.2 Input data used by recommender systems

Nowadays, recommender systems have access to more and more data to understand users’
tastes. The primary data available are the interactions between users and items, also known
as feedback. There are two types of feedback:

� Explicit feedback: An explicit feedback is given by a user and usually takes the
form of rating. It shows how much an item is appreciated by the user. The two most
commonly forms are a score of 1 to 5 or a thumbs up/down mark. Explicit feedback
provides detailed information on user preferences, but it is more difficult to collect
compared to implicit one as users do not rate all the items with which they interact.
Additionally, ratings can be biased due to the fact users do not rate items the same
way (for example, some users can have an extreme rating method and will only award
5 points for what they like and 1 point for what they dislike);

� Implicit feedback: Implicit feedback (Oard et al., 1998) is retrieved automatically
when the user watches, buys or clicks on an item. Implicit feedback is therefore very
abundant because it does not require any effort from the user. It is also possible to
transform explicit feedback into implicit feedback. The most common approach is to
convert ratings into binary data. For instance, if we have a 1-to-5 score, we can convert

1Note that it is possible to have a recommender system based on non-parametric models such as neigh-
borhood models. This type of models will be detailed later in this chapter.

10 Chapter 2. Sequential recommendation: State of the Art

all ratings above 3 to be positive feedback and other ratings to be negative/unobserved
feedback. Another approach can be to convert all ratings as positive feedback.

Early recommender systems used explicit feedback (Koren et al., 2009, Ricci et al., 2011,
Weimer et al., 2008). In recent years, the trend has reversed and more and more recommender
systems use implicit feedback (Bayer et al., 2017, Hu et al., 2008, Kang and McAuley, 2018,
Pan and Chen, 2013, Rendle et al., 2010, Sun et al., 2019, Tang and Wang, 2018, Yuan et al.,
2020). It is important to note that the feedback, whether explicit or implicit, is ordered, which
allows to exploit its sequential dynamics. In this thesis, we are interested in recommender
system that use implicit feedback only. The primary characteristics of implicit feedback are:

� Only positive feedback is available ;

� Negative and missing feedback are mixed together ;

� Datasets with implicit feedback are very sparse (i.e. there is much more missing/negative
feedback than positive one). In our experiments, the datasets used have a sparsity close
to 99%. This has the advantage of reducing the complexity of some approaches, but
also the disadvantage of providing less reliable recommendations. In all cases, this
characteristic of datasets must be taken into account by recommendation methods.

Other sources of data are also used by recommender systems:

� Item features (Name, Category, Author, etc...) ;

� User features (Age, Gender, Jobs, etc...) ;

� Context of the recommendation (Location, Time, Social friends, weather, etc...).

To clarify the rest of the document, content information refers to item characteristics and
context information refers to user features as well as the context of the recommendation. All
of this information (Content/Context) can be difficult to collect. In addition, there can be
a large disparity in the available information (i.e. some users have filled out their profiles
completely while others have only partially completed their profile).

The data used by the recommendation system defines the problem addressed by it. We
thus obtain a typology of the methods that we present in the following subsection.

2.1.3 Types of recommender systems

The commonly accepted typology of recommendation systems consists of grouping them into
five classes: (1) Collaborative Filtering models, (2) Content/Context-based recommender
systems (3) Knowledge-based recommender systems, (4) Demographic recommender systems
and (5) Hybrid-based recommender systems. Their main differences are the way recommen-
dations are generated and the way input data is processed. In the following, we briefly review
knowledge-based recommender systems and demographic recommendation systems as they
are not widely used due to their performance or their restricted use cases. We develop more
widely the other three which gave rise to numerous contributions.

2.1. Overview of Recommender Systems 11

Knowledge-based recommender systems (Burke D., 2000) are used to recommend
infrequently purchased items such as cars, travel, financial services, etc. In these cases, it
is difficult to know the user’s tastes and their preferences are likely to change between two
interactions. For this type of system, it is the users who will explicitly give information about
the item they are looking for. Then, the system will return the items according to the needs
expressed by the user.

Demographic recommender systems (Krulwich, 1997, Pazzani, 1999) rely on user de-
mographic information, such as age and country, to assign a class. Then, from a rule-based
system, the recommendation is made based on the user’s class. These methods are not very
effective because using demographic information alone does not fully model the user tastes.
Nevertheless, this information can be useful for creating hybrid models.

Collaborative Filtering models are one of the most common types of models used in
recommendations. The idea of these models is to provide a recommendation based exclusively
on user-item interactions (explicit or implicit feedback). Collaborative filtering models assume
that if user u1 has the same tastes as other users for example u2 and u3, then user u1 is
inclined to like items liked by u2 and u3. Historically, collaborative filtering models have
been separated into two groups: Memory-based approaches and model-based approaches.

Memory-based methods, also known as neighborhood-based methods, were the first meth-
ods of collaborative filtering. They are generally separated into two types (Desrosiers and
Karypis, 2011):

1. User-based Collaborative Filtering (User-based CF) (Herlocker et al., 1999) methods
assume that similar users like the same items. User-based CF looks for users similar
to a target user u using a similarity function based on an explicit or implicit feedback.
Similar users or “neighbors” are users who have a similar rating pattern.

2. Item-based Collaborative Filtering (Item-based CF) (Sarwar et al., 2001) methods as-
sume that users like items similar to items they have already liked. Item-based CF
looks for items similar to a target item i using a similarity function based on explicit
or implicit feedback. Two items are similar if they have been rated the same way by
several users.

In Memory-based methods, the most commonly used similarity functions are cosine sim-
ilarity, Pearson correlation and Jaccard coefficient. Once the nearest neighbors of a given
item i have been identified (top-N neighbors), the score of i is calculated as the weighted
sum of the similarity scores based on the neighbor ratings (in case of implicit feedback, the
ratings can be replaced by the value 1). The great advantage of neighborhood-based methods
is their simplicity (they are easy to understand and explain) and they can perform well as
shown in (Kamehkhosh et al., 2017, Verstrepen and Goethals, 2014).

Model-based Collaborative Filtering is based on Machine Learning, Data mining and deep
learning models to automatically learn user preferences. Model-based Collaborative Filter-
ing has received a lot of attention over the past decades and many approaches have been
proposed, such as Bayesian methods (Miyahara and Pazzani, 2000), restricted Boltzmann
machines (Salakhutdinov et al., 2007), factorization machines (Rendle, 2012), matrix factor-
ization (Koren and Bell, 2015, Koren et al., 2009), metric embedding model (Chen et al.,

12 Chapter 2. Sequential recommendation: State of the Art

2012a) and neural network(He et al., 2017b). Among these methods matrix factorization,
metric embedding models, Neural networks are the most widely used and efficient methods.

The major problem with Collaborative Filtering methods is that it suffers from the cold-
start problem. Item cold-start issue arises when an item does not have enough user inter-
actions to be recommended, while user cold-start problem arises when a user has a number
of feedback that is not enough to be eligible for a recommendation. We provide a detailed
description of collaborative filtering models in Sections 2.2 and 2.3.

Content/Context-based recommender systems use item information (content infor-
mation) such as name, author, category, keywords to make recommendations (Lops et al.,
2011, Pazzani and Billsus, 2007). Unlike collaborative filtering models, content-based models
only use user feedback and do not use feedback from other users to make a recommendation.
This makes the model to focus on the user’s interests and to recommend unknown items
based on the categories of items the user has liked in the past. For example, if a user gives a
positive feedback for a science fiction movie, the recommendation model is likely to recom-
mend another science fiction movie because it has learnt that the user likes this category of
movie. Unlike collaborative filtering methods, content-based models do not suffer from the
cold-start item problem (i.e. the ability of a recommender system to recommend a new item
while it has no interactions with users) because some users have probably already interacted
with items similar to the new item. However, content-based models have some disadvantages:

� The provided recommendations lack diversity as they are always part of the same area
of interest that the user likes (the model is centered on the user tastes only);

� In order to make relevant recommendations, the user must give sufficient feedback.
These types of methods are strongly impacted by the user’s cold-start problem (i.e. the
ability of a recommender system to be able to recommend items to a new user).

On the other hand, context-based recommender systems use information related to user
profiles as well as location, time, weather, or any other contextual information. For example,
there are many works that exploit time information from previous actions to provide recom-
mendations. This kind of methods is know as Time-Aware Recommender Systems (TARS)
(Campos et al., 2014). Most TARS methods also use collaborative filtering techniques making
them hybrid models.

Hybrid-based recommender systems (Burke, 2002, 2007) combine several types of
models to improve performance and overcome weaknesses related to the type of recommender
systems used. One of the most common combinations is to mix a content-based method with
a collaborative filtering method. This reduces the cold start problem of collaborative filtering
methods. For instance, CHAMELEON (de Souza Pereira Moreira, 2018), a deep Learning
hybrid-based recommender system, uses the interaction between user and item, item content
and user context to address the specific challenges of news recommendation. This architecture
allows CHAMELEON to reduce the problem of cold-start. However, as for content/context-
based recommender systems, hybrid-based recommender systems use content and context
input data which can be difficult to collect.

2.1. Overview of Recommender Systems 13

2.1.4 Recommender systems problem formulations

The recommendation problem consists to learn the preferences and tastes of a user. It can
therefore be seen as a learning problem from examples. From this angle, recommender systems
try to predict the rate of an item. A more robust approach consists to no longer predict the
rate of an item, but its relative ranking with respect to other items. We detail these two
approaches in the following.

Prediction of the rating: It is common to define the recommendation problem as pre-
dicting a user’s rating on an item. For example, Netflix launched a competition in 2009 to
predict user ratings for movies (Koren, 2009b). The dataset was made of a m � n matrix,
with m the number of users and n the number of items, which contained some user ratings
on the items (i.e. explicit feedback), but also many missing values. The goal of the challenge
was to predict the missing value via a recommender model. This can be seen as a matrix
completion problem, since we have an incomplete matrix that is filled in by a learning algo-
rithm (Aggarwal, 2016). However, this framework has two main drawbacks: (1) The rating
predicted by a model would be in the best case the rating of how a user likes an item when
interacting with it and not how he likes the item before the interaction (Yuan, 2018); (2)
By optimizing the accuracy of the ratings, the model is trained to have good accuracy in
rating items that will not be recommended, as most of them will not appreciated by the user
(Guillou, 2016). This explains why, in most application cases, this problem formulation is
not used and many approaches focus on optimizing a list of items the user wants to interact
with, as explained below.

Item ranking: In real-world scenario, recommender systems return a list of N items to
users. This list of items is made up of the Top-N items that have the best chance of being
chosen or liked by the user. Hence, it is common to consider the recommendation problem as
an item ranking problem, called Top-N recommendation problem. In this case, the prediction
model builds the list of the Top-N items by taking the ones having the highest prediction
value. More generally, models that tackle the item ranking problem are part of the Learning-
To-Rank (LtR) models (Liu, 2011). Notice that, for this formulation, models can use implicit
or explicit feedback as well as content and context features.

Let us now focus on Collaborative Filtering models – that is, models that only use implicit
or explicit feedback – as this is the type of recommender systems we consider in this thesis.
The objective is to compute a predicted score ppu,i for the interaction between user u and item
i. This score is obtained by the prediction function f with parameters Θ: ppu,i � fpu, i | Θq.
There are three main approaches to determine the model parameters Θ by minimizing a loss
function:

� Pointwise approaches consist to minimize a loss function between the predicted
score and the target value for an entry. The two most commonly used loss functions
are the weighted square loss function (Pan et al., 2008) and the logistic loss (Mikolov
et al., 2013). However, as explained before, there are only few observed feedbacks. Two
strategies are then possible: We can assume that all unobserved feedback is either a
negative feedback – also known as AMAN (all missing as negative) – or an unknown
feedback – also know as AMAU (all missing as unknown). Nevertheless, these two

14 Chapter 2. Sequential recommendation: State of the Art

strategies are a bit too extreme and impact the accuracy of recommendations. Another
approach consists to balance the proportion of unobserved feedback treated as negative
feedback (Pan et al., 2008). The model parameters are then adjusted using a Stochastic
Gradient Descent (SGD) and negative sampling (i.e. uniformly sample a portion of the
negative feedback that is use to evaluate the loss functions) for efficient optimization.
However, pointwise approaches do not take into account the interdependence between
items. As a result, the final position of many items in the list is ignored by the loss
function and the model estimates are somewhat imprecise;

� Pairwise approaches rely on the assumption that a user prefers an observed feedback
over an unobserved one. As for the pointwise approaches, the pairwises approaches aim
to predict the interest of a user for all items. But it focus on the relative order of
preferences between items. To that end, the loss function examines a pair of items and
try to produce higher scores for observed feedback than unobserved ones: i ¡u j with i
the observed feedback, also called positive item, and j the unobserved feedback, called
negative item. The loss functions optimize the model directly on the item ranking
unlike the pointwise functions that optimize an absolute value.

One of the best-known functions is Bayesian Personalized Ranking (BPR) Rendle et al.
(2009), which is formalizes as maximizing the posterior probability of the model pa-
rameters given the order relation between the positive item i and the negative item
j. Similar to pointwise approaches, pairwise approaches must process a large number
of items, making it difficult to achieve a full gradient. Moreover, using a full gradient
descent for loss optimization leads to slow convergence. To cope with this problem,
pairwise approaches also apply negative sampling, where a user u, a positive item i
and a negative item j are uniformly sampled to form a training triple pu, i, jq. This
reduces the computational cost of the loss optimization. It is common to optimize the
function using a Stochastic Gradient Descent (SGD), but it is also possible to use other
optimization algorithms such as Adam optimizer (Kingma and Ba, 2014);

� Listwise approaches (Shi et al., 2012) use all the observed feedback and try to directly
optimize ranking functions that are generally non-differential or non-continuous. For
the moment this type of approach brings limited advantages compared to pairwise
approaches.

In this thesis, we focus on pairwise approaches that directly optimizes the ranking of items.
Indeed, this is a more realistic approach to tackle the problem of sequential recommendation.
It is important to note that the main difference between pointwise, pairwise and listwise
approaches comes from the loss function. Therefore, using the same prediction function can
be optimized by pointwise, pairwise, or listwise approaches.

2.1.5 The long-term and short-term dynamics

The work carried out in this thesis focuses on the study of sequential recommendation that
aims to predict the next item that will interest a user based on the sequence of items that
he previously purchased/consumed. More generally, sequential recommendation models are
part of sequence-aware recommendation presented in (Quadrana et al., 2018).

2.2. General recommendation 15

To achieve the best possible recommendation, sequential models aim to capture two as-
pects in the recommendation: (1) the user preferences – that is to say the general tastes of
the user – also called long-term dynamics, and (2) the sequential dynamics – that is to say the
context of users’ activities – also called short-term dynamics. To understand the importance
of these two aspects, let us consider a dummy example to illustrate the importance of the long
and short-term dynamics: If a user buys a laptop, a sequential recommendation model may
recommend a black laptop backpack, which may be relevant. This recommendation is based
on the sequential dynamics which allows the model to recommend a ”laptop backpack”. The
”black” color of the backpack is derived from the user preferences known by the model. In
this dummy example only implicit data is used by the model.

In the following of this chapter, methods that only model user preferences are called
“General recommendation” methods (presented in Section 2.2) and methods that only model
sequential dynamics and methods that model long-term and short-term dynamics will be
called “Sequential recommendation” (presented in Section 2.3).

There are several variants to this problem which lie outside the scope of this thesis. For
instance, temporal recommendation (Ding and Li, 2005, Koren, 2009a, Wu et al., 2017, Xiong
et al., 2010) takes into account the timestamps of users’ actions to make recommendations
based on a specific time (e.g. recommending a glass of wine in the evening but not in the
morning). Also, we exclude content/context-aware (Chen et al., 2012b, Huang et al., 2018,
Pasricha and McAuley, 2018, Rendle, 2012, Sanchez and Belloǵın, 2020, Zhang et al., 2016), as
these approaches require contextual information (timestamps, item categories, user features,
etc...) which limits their use to specific data. Hence, in the remaining of this Chapter, we
limit ourselves to methods that only take as input users’ sequences to make recommendation,
without considering additional information. In our case the actions are ordered but we do
not use the timespan as a feature of our model.

There are other approaches, called session-based models (Wang et al., 2019) that are part
of sequence-aware recommendation (Quadrana et al., 2018). Session-based models give more
weight to recent events by construction: The user sequences is divided in sessions. Therefore,
they focus on shorter user sequences (i.e., the sessions) fostering short term dynamics. Con-
sidering sessions makes it possible to focus the recommendation on similarities with recent
items. Some of these methods, are widely used and are presented in Section 2.3.

Note that as mentioned in (Quadrana et al., 2018), sequence-aware recommender systems
can be considered as special forms of context-aware recommender systems because they try to
understand via the short-term dynamics the ‘context’ of users’ activities. However to simplify
the reading of this thesis, we have delimited context-aware recommender systems as models
that use explicit contextual data such as time, location, or similar features.

2.2 General recommendation

A recommender system can be seen as two separate modules (Yuan, 2018): (1) a prediction
function and (2) a loss function. In the previous section we presented the three main classes
of loss functions (i.e. Pointwise, Pairwise, Listwise). In sections 2.2 and 2.3, we present in
detail the different prediction functions that can be used for a collaborative recommender
system.

16 Chapter 2. Sequential recommendation: State of the Art

Seminal recommendation methods aim at identifying user preferences using Collaborative
Filtering techniques while ignoring the sequential dynamics. They are presented in this
section, starting by matrix factorization – which is one of the most known and used methods
–, followed by factorization of machines, neighborhood models – which despite their simplicity
achieve good results –, and deep learning models.

2.2.1 Matrix Factorization

Matrix Factorization (MF) (Koren et al., 2009) is one of the most widely used methods in
recommendation systems. It has gained a lot of popularity through the Netflix challenge
(Koren, 2009b). MF-based models are part of the latent factor model and their purpose
is to model the interactions between users and items. More formally, implicit feedback is
transformed into a matrix, Duser�item � pdu,iq where du,i � 1 if and only if u gave a
feedback on i (i P Isu). Matrix Factorization consists in decomposing this matrix into a
product of two k-ranked matrices:

Duser�item � R�Q

The prediction ppu,i, that user u chooses item i, is then estimated by the inner product of the
corresponding vectors:

ppu,i9xRu,Qiy �
ķ

x�1

Ru,xQi,x,(2.1)

where Ru and Qi are the latent vectors of dimension k associated to user u and item i. Note
that the greater the value of ppu,i the more the recommendation of item i is relevant for u. To
fully understand what Ru and Qi model, let us consider a concrete example: let I represent a
set of movies. Then we can imagine that each dimension k models a genre of movies and each
vector value of a latent vector of Q is the degree of affinity between a movies and a genre.
On the other hand, each vector value of a latent vector of R models the affinity that a user
has to the corresponding movie genre. It is therefore from the inner product of the affiliation
of an item to a genre of movie (Qi) and the affinity of a user for a movie genre (Ru), that
we can estimate whether item i is relevant for user u. Note that this is an example and in
practice it is very difficult to know what a dimension/feature of a latent vector corresponds
to.

Early MF models generally used explicit feedback and to overcome the problem of rating
bias (users with extreme rating behavior, popular items tend to be rated higher), bias terms
can be added. This idea can also be apply to MF using implicit data:

ppu,i9βi � βu � xRu,Qiy,(2.2)

where βi, βu are biases respectively associated to item i and user u. In case of explicit feedback
the average of ratings can be add as bias term.

SVD++ (Koren, 2008) enhances traditional matrix factorization models using explicit
data by adding user information with implicit feedback. According to the authors of (Koren
and Bell, 2015), even if independent implicit feedback is missing, this is not a problem for the
method as it can capture a signal from rated items, regardless of their rating value. To that

2.2. General recommendation 17

end, SVD++ add a new set of latent vector P that correspond to the items of I. P is used
to model users, based on the items they already have rated. SVD++ is defined as follows:

ppu,i9βi � βu � β � xRu � |Isu |
� 1

2

¸
jPIsu

Pj ,Qiy,(2.3)

where Isu is the set of rated items by u and β is the average rating of all observed ratings.
Unlike traditional matrix factorization models, each user is modeled by two components:

� Ru is learned from explicit feedback (it can be learned from implicit feedback);

� |Isu |
� 1

2
°
jPIsu

Pj is learned from implicit feedback.

It is also possible to add several sources of implicit feedback using several sets of latent
vectors corresponding to items. For instance, the first kind of implicit feedback could come
from clicks without purchase on items, and the second kind of implicit feedback could come
from purchased items. This can be modeled as follows:

ppu,i9βi � βu � β � xRu � |N1puq|�
1
2

¸
jPN1puq

P
p1q
j � |N2puq|�

1
2

¸
jPN2puq

P
p2q
j ,Qiy,(2.4)

where N1puq and N2puq are respectively the set of clicked items and the set of bought items
by u. Pp1q and Pp2q are the two new latent matrices of items.

However, as usually users give implicit feedback on few items of I, the matrix D is sparse
and these approaches suffer from loss of precision when the numbers of users and items
grow. In order to overcome these problems, other approaches such as FISM (Kabbur et al.,
2013) – which is an improvement of SLIM (Ning and Karypis, 2011) – decompose an implicit
item-to-item similarity matrix in two k-ranked matrices P and Q:

ppu,i9βi � βu �
1

|Isuztiu|
α

¸
jPIsuztiu

xPj ,Qiy,(2.5)

where βi, βu are biases respectively associated to item i and user u, 1
|Isuztiu|

normalized large
sets of items, and α is used to control the degree of agreement between items. Hence,
the more i is similar to items already chosen by user u, the more likely i will be a good
recommendation for u. Taking into account these transitive relations between items makes
it possible to increase the quality of the recommendation.

2.2.2 Factorization Machines

Factorization machines (FMs) (Rendle, 2010, 2012) are generic factorization approaches that
combine the advantages of Support Vector Machines (SVM) with factorization models. In
contrast to SVM predictors, using factorized parameters FMs can deal with very sparse
data. The architecture of FMs allow them to be versatile, that is to say they can be used
for ranking tasks, regression, or classification depending on the loss function. According
to (Rendle, 2010), Factorization Machines can mimic most of the factorization models like
Matrix Factorization (Koren et al., 2009, Salakhutdinov and Mnih, 2008, Srebro et al., 2005),
SDV++ (Koren, 2008), PITF (Rendle and Schmidt-Thieme, 2010) and FPMC (Rendle et al.,

18 Chapter 2. Sequential recommendation: State of the Art

Figure 2.2: Representation of input data of FMs. This figure comes from (Rendle, 2010).

2010). As shown in Figure 2.2, all input variables are concatenated into a feature vector x.
The blue and red columns represent variables for the active user and active item, respectively.
The other columns are the real values of content and context data.

The model equation for a FM of degree d � 2 is the following:

ppu,i9w0 �
ņ

i�1

wixi �
ņ

i�1

ņ

j�i�1

xVi,Vjyxixj ,(2.6)

where w0 is the global bias (w0 P R), wi models the strength of the i-th variable (w P Rn)
and xVi,Vjy models the interaction between the two variables.

Recently, TransFM (Pasricha and McAuley, 2018) has adapted ideas of FMs into translation-
based sequential recommendation 2. However, to take full advantage of FMs or TransFMs,
content and context information are needed. As shown in (Pasricha and McAuley, 2018), whit
only implicit feedback (our scope), these methods barely outperforms Matrix Factorization
techniques.

2.2.3 Neighborhood-based methods

One of the simplest Neighborhood-based recommendation methods is certainly the one used
in (Hidasi et al., 2016a) called Item-KNN (IKNN). It only uses the last item of the sequence of
user actions (su) to make the recommendation (i.e. the most similar items to the last item). In
the case of implicit feedback, we have a matrix Duser�item � pdu,iq with du,i � 1 ô i P Isu .
The similarity between two items i and j, noted simpi, jq, is usually determined by the cosine
similarity measure. The length of the list of recommendation is controlled by the number
k of neighbors. IKNN, as defined in (Hidasi et al., 2016a), can be extended as proposed by
(Deshpande and Karypis, 2004) in order to consider all the items of the user feedback to

2We will give details about translation-based sequential recommendation in the next section when we
introduce TransRec (He et al., 2017a).

2.2. General recommendation 19

influence the score of item i for user u:

ppu,i9 ¸
jPIsu

simpj, iq1jpiq,(2.7)

where 1jpiq is a function that return 1 if i is in the neighborhood of j and 0 otherwise.
Recently Session-based KNN (SKNN) has become popular in session-based recommen-

dation because it improves GRU4REC (Jannach and Ludewig, 2017), a recurrent neural
networks with Gated Recurrent Units for session recommendation. Unlike IKNN, which only
uses the last item, here all the items of the current session3 are used to find the k most
similar sessions in the training data. First, given a session s, SKNN finds the k most similar
sessions of s (Ns) using similarity measure such as the Jaccard index or the cosine similarity
on binary vector. According to (Ludewig and Jannach, 2018), using k � 500 led to good
performances on many datasets. Then, using the set of k most similar session Ns and the
chosen similarity function simps1, s2q, the prediction score of item i for the current session s
is defined as (Bonnin and Jannach, 2014):

pps,i9 ¸
nPNs

simps, nq1npiq,(2.8)

where 1npiq is a function that return 1 if session n contains i and 0 otherwise.
Note that, in practice all the similarities are pre-computed and ordered during the training

phase which allows to make quick recommendations. For more details on scalability consider-
ation see (Ludewig and Jannach, 2018) which gives an implementation of Neighborhood-based
recommendation methods.

Despite their simplicity, neighborhood-based methods (or memory-based methods) often
perform equally or better than complex methods like deep neural networks as discussed in
(Jannach and Ludewig, 2017, Ludewig and Jannach, 2018, Verstrepen and Goethals, 2014).
Neighborhood-based methods are generally good baseline on many datasets.

2.2.4 Deep learning models

Recently, deep learning techniques have been introduced in many recommender systems. The
advantage of neural networks compared to factorization models is that they are able to ap-
proximate continuous functions. The first model based on a neural networks architecture is
certainly Restricted Boltzmann Machine (RBM) based recommender provided by Salakhut-
dinov et al. (Salakhutdinov et al., 2007). RBM targets rating prediction and its architecture
is difficult to adapt to item ranking.

After RBM, another category of deep neural network called Autoencoder emerged with
the work of (Sedhain et al., 2015). AutoRec uses user rating vectors or item rating vectors
as input and try to reconstruct them in output Layers. Two variants are possible, (1) one
based on item interactions called item-based AutoRec (I-AutoRec) and (2) one based on
user actions called user-based AutoRec (U-AutoRec). I-AutoRec performs better than U-
AutoRec due to the higher variance of user rating. However like RBM, I-AutoRec and U-
AutoRec are designed for rating prediction using explicit feedback. A Collaborative Denoising
AutoEncoder (CDAE) (Wu et al., 2016) has been proposed to tackle the problem of item

3In our case a user only have one session.

20 Chapter 2. Sequential recommendation: State of the Art

ranking using implicit feedback. As can be seen in the figure 2.3, CDAE uses one hidden layer
as standard Denoising Autoencoder. The input layer has |I| � 1 nodes where the last node
is specific for the user and the others nodes correspond to items. If the user has interacted
with an item, the input node is equal to 1, otherwise it is equal to 0. The output layer has
|I| nodes for the reconstruction of the input data. The prediction value of item i for user u
is defined by:

ppu,i9fpW1T
i hpW

T ryu �Vu � βq � βiq,(2.9)

where W
1
P R|I|�|k| and W P R|I|�|k| are weight matrices, Vu P R|k| are weight vectors for

the user input node and β and βi are bias vectors. fpq and gpq are mapping functions such
as identity or sigmoid functions.

Figure 2.3: Illustration of CDAE for one user. This figure comes from (Wu et al., 2016).

Another line of work uses Multilayer Perceptron (MLP) (Hornik et al., 1989) in order
to replace the matrix factorization. For instance, the Neural Collaborative Filtering (NCF)
model called NeuMF (He et al., 2017b) provides a combination of a generalized matrix fac-
torization (GMF) – which is a generalized and extended matrix factorization model – with
a Multilayer Perceptron (MLP). According to the authors of (He et al., 2017b), to obtain
better performance it is preferable for GMF and MLP to learn separate embeddings and
concatenate their last hidden layer (see Figure 2.4) as follow :

ppu,i9σphT �φMLP

φGMF

�
q,(2.10)

where hT is an activation function and φGMF and φMLP are respectively the GMF and the
MLP models.

For more information, on RBM, Autoencoder and Neural Collaborative Filtering see
(Zhang et al., 2019). Note that, we focus here on neural network models that do not take

2.3. Sequential recommendation 21

Figure 2.4: Architecture of NeuMF. This figure comes from (He et al., 2017b).

into account the sequential aspect of the data, as the other ones are presented in the next
section.

2.3 Sequential recommendation

Sequential dynamics have been considered more recently as an important aspect to be taken
into account by recommender systems. Represented by the order of the items in the user
sequences, it can indeed be an important source of information for making relevant recom-
mendations. In this section, we present the first models that took into account the sequen-
tial dynamics while omit the long-term dynamics, followed by sequence-aware extensions
of Neighborhood-based methods. We then explain models that unify user preferences and
sequential dynamics. Finally, we describe deep learning models.

2.3.1 Sequential recommendation based on Markov Chains

In order to take into account the sequential dynamics in recommender systems, many models
use first order Markov Chains (Norris, 1998). It consists in using the probability ppi | jq
of predicting item i given the last item in the user sequence is j. From this, a simple
recommender system can directly be derived based on first order Markov Chains (as presented
in Ludewig and Jannach (2018)). Basically, this simple model is equivalent to counting the
number of times item i is found after item j in all user sequences. More formally, the
prediction score of item i given the last item j in a user sequence can be defined by the
following maximum-likelihood estimation (MLE):

ppi|j9
°
uPU

°|su|�1
x�1 1EQpj, su

xq1EQpi, su
x�1q°

uPU

°|su|�1
x�1 1EQpj, suxq

,(2.11)

22 Chapter 2. Sequential recommendation: State of the Art

where su
x is the item at position x in sequence of user u and the function 1EQpa, bq return 1

if a is equal to b and 0 otherwise. The numerator counts the number of times item i is found
after item j in all user sequences, and the denominator counts the number of times item j
appears in the sequences. Shani et al. (2005) propose to enhance the maximum-likelihood
estimates (MLE) of the Markov chains transition using several heuristics (e.g. clustering
and skipping). However, MLE easily fails due to the sparsity of feedback, and also because
important properties, such as minimal variance and Gaussian distribution, are not met.

To overcome the problem of sparsity of the data, Rendle et al. (2010) propose the methtod
Factorized Markov Chains (FMC) that decomposes the transition matrix pppi | jqqij in a
product of two k-ranked matrices M and N. Mj and Ni represent the latent or embedding
vectors of item j and i so that the probability of having item i after j is estimated by the
inner product:

ppi|j9xMj ,Niy(2.12)

It is also possible to consider high order Markov Chains with the same principle. However,
FMC models use inner products which do not satisfy the triangle inequality property. For
instance, if the transitions AÑ B and B Ñ C have high probability, we can expect that the
transition AÑ C is also of high probability. But FMC do not guarantee this because of the
independent assumption between MB and NB.

To guarantee the triangle inequality condition, Chen et al. (2012a) propose a Logistic
Markov Embedding (LME) that maps each item in a latent Euclidean space. The probability
ppi | jq of predicting i given the last item j in the user sequence is estimated by the Euclidean
distance between i and j:

ppi|j9� ||Pj � Pi||
2
2,(2.13)

with ||Pj � Pi||
2
2 �

°k
x�1pPxj � Pxiq

2, and Pj and Pi are the latent vectors associated to
items j and i of dimension k. Note that, we take the opposite of the Euclidean distance
because it makes possible to maximize the prediction score ppi|j . In this model, each item is
represented by a single vector, unlike in FMC model that uses two independent vectors for
each item. Furthermore, the triangle inequality is now satisfied.

In this subsection, we presented the first models taking into account the sequential dy-
namics. Compared to methods that model only the long-term dynamics (user preferences),
sequential recommendation models only based on Markov Chains are a slightly less efficient.
It is by unifying the user preferences and the sequential dynamics that the best sequential
recommendations are obtained.

2.3.2 Sequence-aware extensions for neighborhood-based methods

In the previous section, we presented two neighborhood-based methods (SKNN and IKNN)
that do not take into account the order of the items when determining the nearest neighbors.
As mentioned several times above, it is important to consider the sequential aspect of feed-
back. For this purpose, Ludewig and Jannach (2018) provide three extensions of SKNN to
take into account the sequential dynamics:

1. Vector Multiplication Session-Based KNN (V-SKNN): The idea of this variant
is to give more importance to recent items of a session when calculating similarity.

2.3. Sequential recommendation 23

Instead of encoding the current session as a binary vector, V-SKNN uses a linear decay
function to assigned a real value depending on the item’s position in the user sequence.
The more recent an item, the closer its value will be to 1. The prediction function is
the same as SKNN, the modification is the similarity function;

2. Sequential Session-Based KNN (S-SKNN): It is the same idea as V-SKNN which
is to give more importance to recent items in a session. However, this time the weight
is applied directly to the prediction function as follows:

pps,i9 ¸
nPNs

simps, nqwnpsq1npiq,(2.14)

where 1npiq is the function that returns 1 if the session n contains i, and 0 otherwise.
The function 1npiq is weighted by wnpsq �

x
|s| , where |s| is the number of items in the

current session s and x is the position of the most recent item of s that also appears
in the neighboring session n. For instance, if |s| � 5 and the third most recent item
of s (x � 3) is the most recent item in the neighboring session n, the weight would be
wnpsq �

3
|5| ;

3. Sequential Filter Multiplication Session-Based KNN (SF-SKNN): This one
also modify the prediction function but in a more restrictive way. The idea is to be able
to recommend an item only if the sequence of items xs|s|, iy (i.e. last item of the current
session s followed by the candidate item exists at least once in all user sequences). The
prediction function is defined as follows :

pps,i9 ¸
nPNs

simps, nq1npxs
|s|, iyq,(2.15)

where 1npxs
|s|, iyq returns 1 if it exists a past session that contains the sequence xs|s|, iy

and 0 otherwise. Note that the current session s still need to contain i to returns 1.

2.3.3 Unifying user preferences and sequential dynamics

Current recommendation methods accommodate user preferences and sequential dynamics
as it has been observed that it increases their performances. Factorized Personalized Markov
Chains (FPMC) (Rendle et al., 2010) is one of the first method that uses both Matrix
Factorization and first-order factorized Markov Chains in order to unify the long and short-
term dynamics. The probability that user u chooses item i just after having taken item j is
estimated by the sum of two inner products:

ppu,i|j9xRu,Qiy � xMj ,Niy,(2.16)

with Ru, Qi Mi and Mj the latent vectors associated respectively to user u, item i and j.
FPMC has been extended by Wang et al. (2015) with a Hierarchical Representation

Model (HRM) that uses aggregation operations such as max or average pooling to model
more complex interactions :

ppu,i|j9xaggregationpRu,Qjq,Qiy(2.17)

24 Chapter 2. Sequential recommendation: State of the Art

More recently, FactOrized Sequential prediction with item SImilarity modeLs (Fossil) (He
and McAuley, 2016) proposed the association of methods based on the similarity between
items, like FISM (Kabbur et al., 2013), with Markov Chains of order L. Given the most L
recent items, the probability that user u chooses item i as the next item is defined as follows:

ppu,i|surt�L,tr9βi � x
� 1

|Isuztiu|
α

¸
jPIsuztiu

Mj

�
�
� Ļ

x�1

pηk � ηuk qMsut�x

�
,Niy(2.18)

The first part which is the weighted sum of interacted items by the user corresponds to user
preferences and the second part which is the weighted sum of the last L items corresponds to
the sequential dynamics. t is the position (time step) of the last item in the user’s sequence,
βi the bias term for the item i, ηk is a global weight shared by all the users, and ηuk is a
personalized weighting factor that controls the relative importance of the long and short-
term dynamics of user u. Fossil outperforms FPMC especially by using L order Markov
Chain and similarity-based methods like FISM to model user preferences. However, like
FMC, Fossil, HRM and FPMC do not guarantee the triangle inequality.

On top of that, Personalized Ranking Metric Embedding (PRME) (Feng et al., 2015)
enhances FPMC and Fossil by replacing the inner products with Euclidean distances. As
argued in (Chen et al., 2012a, Feng et al., 2015), metric embedding model brings better
generalization ability than Matrix Factorization to represent Markov chains because of the
triangle inequality assumption. The probability that user u takes the item i after item j is
estimated by the sum of the following Euclidean distances:

ppu,i|j9�
�
α � ||Ru �Qi||

2
2 � p1� αq � ||Mj �Mi||

2
2

�
,(2.19)

with α a weight that controls the long-term and short-term dynamics. The major drawback
of PRME is that the user preferences and sequential dynamics are two separated components
which can damage the performance because these two components are highly correlated.

Another recent work, Translation-based Recommendation (TransRec) (He et al., 2017a)
proposed a novel metric embedding model that unifies user preferences and sequential dy-
namics into a “transition space”. To achieve this, items are embedded as points Pi in a latent
transition space and users are modeled as translation vectors Tu in the same space:

ppu,i|j9βi � dpPj � Tu, Piq,(2.20)

with dpq a distance (L1 or squared L2), Tu a translation vector representing u, and Pi, Pj
points in the transition space related to items i and j. The sequential dynamics is captured
with first order Markov chains.

However, all of these models suffers from a lack of personalization on the short term part
due to the fact that Markov chains have a fixed length regardless of the users and their
considered items.

2.3.4 Deep learning models

Deep learning models learn multiple levels of representations of data using multiple layers.
These methods have improved the state-of-the-art in many domains such as speech recog-
nition, visual recognition, natural language processing and images processing (LeCun et al.,

2.3. Sequential recommendation 25

2015). Recently, a growing research effort has been dedicated to the investigation of the use
of deep learning models for sequential recommendation (Zhang et al., 2019). Here we present
the most common Deep learning models used for sequential recommendation.

Recurrent Neural Network (RNN) (Goodfellow et al., 2016) are widely used to model se-
quential data as for speech recognition (Graves et al., 2013) or machine translation (Sutskever
et al., 2014). In this context, Recurrent Neural Networks (RNN) have been widely used for
session-based recommendation where users are not identified and their long-term dynamics
is usually missing. Such networks use Long short-term Memory (LSTM) or Gated Recurrent
Units (GRU) and have shown good results to model user sequential Dynamics (Devooght
and Bersini, 2017, Hidasi et al., 2016a, Jannach and Ludewig, 2017). Hidasi et al. (2016a)
proposed GRU4Rec which uses Gated Recurrent Unit (GRU) (Cho et al., 2014). GRU4Rec
is tailored for session-based recommendation. The input of the network is the actual state of
the current session, that is to say a binary vector of size |I|, the number of items, where only
the active items (items in the current session) are equal to one, the other items being equal
to zero. The output of the network gives for each item the probability of being the next item.
Figure 2.5 shows the whole architecture of GRU4Rec. To accelerate the training phase, the
authors propose a session-parallel mini-batches algorithm and a sampling method for output.
GRU4Rec has been proposed with two pairwise loss function: Bayesian Personalized Ranking
(Rendle et al., 2009) and TOP1.

Figure 2.5: Illustration of the general architecture of GRU4Rec. This figure comes from
(Hidasi et al., 2016a).

On top of GRU4Rec, Tan et al. (2016) propose three techniques to improve model perfor-
mance : (1) Data augmentation with sequence preprocessing and dropout regularization, (2)
Model pre-training tailored for temporal shifts in the data distribution and (3) Distillation
with privileged information to learn on small datasets. Quadrana et al. (2017) propose a
Hierarchical RNN (HRNN) which add GRU layers to model user information across several
sessions. This allows HRNN to track the long-term dynamics more efficiently than GRU4Rec.

26 Chapter 2. Sequential recommendation: State of the Art

There are others RNN models (Beutel et al., 2018, Hidasi et al., 2016b, Smirnova and Vasile,
2017) that use side information, which means that they are outside the scope of this thesis.

Another line of work has investigated the use of Convolutional Neural Network (CNN)
for recommendation. These methods use convolution layers and pooling operations. Tradi-
tionally, CNN are used to capture local features for image recognition (Karpathy et al., 2014)
or for natural language processing (Kim, 2014). Convolutional Sequence Embedding Rec-
ommendation Model (CASER) (Tang and Wang, 2018) is the first CNN-based method that
captures both user preferences and user sequential dynamics. CASER embeds L previously
considered items as an L�d matrix E (d is the number of latent dimensions). This embedding
matrix E is then processed as an “image”. Using various convolution filters, CASER extracts
sequential patterns as local features. Note that the “image” E is learnt simultaneously with
all filters. CASER is made of 3 components :

1. Embedding Look-up: Given a user u and a time step t, the embedding look-up
retrieves the L previous items and stack them to create the matrix E (E P RL�d);

2. Convolutional Layers: The convolutional layers have two different filters: Horizontal
filters capture union-level patterns (i.e. several ordered items that jointly influence the
target item) and vertical filters that capture point-level sequential patterns (i.e. several
previous items that influence individually the target item);

3. Fully-connected Layers: This component concatenates the horizontal and vertical
convolutional layers in a fully-connected neural network layer to produce the convo-
lutional sequence embedding. User preferences are captured using a user embedding
vector which is concatenated in a final fully-connected neural network layer with the
convolutional sequence embedding. The output of these layers gives for each item the
probability for user u at time step t to interact with it.

Recently, Yuan et al. (2019) propose a 1D CNN model called NextItNet that uses 1D di-
lated convolution (Yu and Koltun, 2016) rather than standard 2D convolution like CASER.
According to the authors, NextItNet outperforms CASER and GRU4Rec.

Attention-based models have shown their effectiveness to model sequential data in the
case of machine translation (Bahdanau et al., 2015). The idea of the attention mechanism is
that each input data does not influence each output of the model in the same way. One of
the advantages of attention-based models is that they are more interpretable than other deep
leaning architectures thanks to the attention weights. Some models have integrated attention
mechanisms into recommender models (Chen et al., 2017, Li et al., 2017, Xiao et al., 2017).
However, attention mechanisms were only an additional component (e.g. RNN+attention).
Inspired by a purely attention-based sequential model for machine translation tasks named
Transformer (Vaswani et al., 2017), Self-Attentive Sequential Recommendation (SASRec)
(Kang and McAuley, 2018) is a new sequential recommendation model based on self-attention
(Vaswani et al., 2017) that outperforms many advanced sequential models on sparse and dense
datasets. SASRec is composed of 3 components :

1. Embedding Layer: From the sum of the item embedding matrix and a positional
embedding matrix, the embedding layer creates an input embedding matrix E P Rn�d
with n the maximum sequence length and d the number of latent dimensions ;

2.4. Evaluation of sequential recommendation 27

2. Self-Attention Block: The input matrix E is converted into three matrices by linear
projection and feed the attention layer which is defined as a scaled dot-production
attention (Vaswani et al., 2017). After this, a point-wise two-layer feed-forward network
is applied on the output of the attention layer to endow the model with non-linearity.
It is also possible to stack several Self-Attention blocks;

3. Prediction Layer: After b Self-Attention blocks, SASRec uses Matrix Factorization
to predict the probability of a user to choose an item.

Recently, Sun et al. (2019) proposed a new sequential recommendation model called BERT4Rec
(Bidirectional Encoder Representations from Transformers for sequential Recommendation)
that outperforms SASRec. BERT4Rec is inspired from BERT (Devlin et al., 2019) a multi-
head self-attention model for text sequence modeling.

2.4 Evaluation of sequential recommendation

When designing a new recommendation model, it is important to properly evaluate it. There
are two ways to test a recommender system, and these two ways are complementary. The first
way is to conduct an empirical study (offline evaluation), where the goal is to compare the
performance of a model to the state-of-the-art using scientific metrics. This offline evaluation
is performed on several datasets and uses several metrics. All new sequential recommendation
models require an empirical study. The second way is to perform an industrial study (online
evaluation), where the goal is to evaluate recommender systems in real situation. Online
evaluation is often carried out via A/B Testing. However this can be difficult to set up and
takes time.

2.4.1 Empirical study

The goal of an empirical study is to compare recommender systems using several datasets
and evaluation metrics. The datasets need to be carefully chosen. It is important to select
datasets from different domains and with different levels of sparsity to better understand
the strengths and weaknesses of the tested models. There is no universal evaluation proto-
col for recommender systems. Indeed, there are several specificities regarding the type/task
of the recommender system. In the case of evaluation of sequential recommendation mod-
els, we present below the preprocessing of feedbacks, data splitting for training/testing and
evaluation Metrics.

Data preprocessing: For sequential recommendation models that use implicit feedback,
it is common to filter users and items to only keep those having enough interactions. One
of the most common configurations is to only consider users and items that have at least 5
interactions. Note that in case of explicit feedback, ratings can be converted into implicit
feedback.

Data splitting: The dataset partition strategy is an important settings for the evaluation
protocol and have a considerable impact on the recommendation performance. The partition

28 Chapter 2. Sequential recommendation: State of the Art

strategy is applied on each user sequence and the most common are as follows (Quadrana
et al., 2018) :

� Time-based split strategy consists in select a point in time to separate training data
and test data. Each interaction prior to that point will be in the train set and each
interaction after this point will be in the test set;

� Percentage-based split strategy consists in putting x% of sequence items in the train set,
and the remaining 100 � x% in test set. Usually x � 80%. Furthermore, it is possible
to complete this strategy with a 5-fold cross validation Yuan et al. (2016);

� Fixed-size split strategy consists in putting the k more recent items of each user sequence
in the test set and the remaining item in the train set. The most commonly used size
is 1, which means separating the user sequence in 2 parts (also known as leave-one-out
evaluation): The most recent item is used for the test set and other items of the user
sequence are used as train set.

Note that it is common to use a validation set in addition to the train and test set for a
better selection of model hyperparameters.

Evaluation Metrics: The problem of sequential recommendation is directly related to
ranking problems. This is why the metrics used to evaluate the performance of sequential
recommendation models are based on ranking metrics. In addition to performance metrics
there are other metrics to evaluate the diversity, novelty (Hurley and Zhang, 2011) or popular-
ity of the recommendations provided by a recommender system. Note that, the ground-truth
item for user u (gu) is the item present in the test set for user u. In case of leave-one-out
evaluation, the ground-truth item gu is the last item of u. Hence, the performances of the
sequential recommendation models can be assessed by the following metrics:

� Area Under the ROC Curve (AUC, Rendle et al. (2009)): This measure
computes how high the ground-truth item of each user has been ranked in average:

AUC �
1

|U |

¸
uPU

1

|IzIsu |

¸
jPIzIsu

1pppu,gu,t ¡ ppu,j,tq,(2.21)

where the indicator function 1pppu,gu,t ¡ ppu,j,tq returns 1 if the ground-truth item gu
(the positive item) is rank higher (i.e. have a higher prediction score) than the negative
item j, 0 otherwise.

� Hit Rate at position X (HIT X): The HIT X metric returns the average number
of times the ground-truth item is ranked in the top X items :

HIT X �
1

|U |

¸
uPU

1pRgu ¤ RXq,(2.22)

where the indicator function 1pRgu ¤ RXq return 1 if the ranking of the ground-truth
item Rgu is smaller than the Xth ranking RX ;

2.4. Evaluation of sequential recommendation 29

� Normalized Discounted Cumulative Gain at position X (NDCG X): The
NDCG X is a position-aware metric which assigns larger weights to higher positions
in order to evaluate the relevance of the recommended items :

NDCG X �
DCG X

IDCG X
,DCG X �

X̧

x�1

1pRx ¤ RXq

log2px� 1q
,(2.23)

where Rx is the rank of the candidate item at position x. Here we replace form the
original formulas 2reli�1 by 1pRx ¤ RXq because we use a binary value to represents the
relevance score (1 if it’s relevance, 0 otherwise). IDCG X is the ideal DCG calculate
form the ground-truth. NDCG X is usually reported as an average of all individual
metrics of all users.

� Precision X (PREC X) and Recall X (REC X): Precision and recall evaluate
the relevance of the first X candidate items as follows :

PREC X �
|LXzL1:X |

X
,REC X �

|LXzL1:X |

|L|
,(2.24)

where L is the list of ground-truth items and zL1:X is the list of predicted items. PREC X
and REC X are usually reported as an average of all individual metrics of all users. Note
that in case of leave-one-out split strategy HIT X is equal to REC@X and proportional
to PREC@X;

� Mean Reciprocal Rank (MRR, Shi et al. (2012)): The reciprocal rank is the
multiplicative inverse of the rank of the first relevant item (according to the ground-
truth item) given by a model for a user. The MRR is the average of reciprocal rank for
all users :

MRR �
1

|U |

¸
uPU

1

ranku
,(2.25)

with ranku the rank of the first relevant item for the user u.

All these metrics are computing on the test set. To avoid heavy computation, in some
articles (He et al., 2017b, Huang et al., 2018, Kang and McAuley, 2018), the authors follow
the strategy of taking a sample of x negative items during the evaluation (also known as
RelPlusN (Said and Belloǵın, 2014)). In this thesis, we compute the metrics with all possible
negative items (also known as TrainItems (Said and Belloǵın, 2014)) to have an impartial
assessment of all methods with exact measures instead of approximated ones. We also use
the leave-one-out split strategy to create our test, validation and train set.

2.4.2 Industrial Study

To carry out an industrial study (or online evaluation), it is necessary to have direct access
to a platform on which a recommendation system can be deployed. In this case, it is possible
to perform evaluation on real users and have their interactions with the recommended items.
The most common method used to evaluate a new recommendation model is A/B testing.

30 Chapter 2. Sequential recommendation: State of the Art

The purpose of A/B testing is to compare several models by randomly separating users into
groups. For example, consider the case where a new model has to be compared to a currently
used model on the platform. Users are randomly separated and each group is assigned to
one of the two models. This makes possible to measure and compare the activity of the two
groups, such as the number of clicks on the recommendations, the time spent on the platform,
etc. It is therefore interesting to carry out an A/B test to validate the assumptions made
during an empirical study. In order not to bias the results between the two groups of the A/B
test, it is important to not implement other modifications on the platform (e.g. interface).
An A/B test can last weeks or even months, depending on the platform’s activity.

The use of multi-armed bandit can be a good alternative to A/B testing to find differ-
ences (number of clicks on the recommendations, the time spent on the platform, etc.) of
performance between arms (i.e. here the recommendation models) (Scott, 2015). The ad-
vantage of multi-armed bandit compared to A/B testing is that it can adjust (i.e. gradually
favoring the best model) while simultaneously exploring the performances of the two models
and exploiting the best results. This generally saves time and resources.

It is also possible to carry out user surveys. The goal is to ask a part of the users to
try the new recommendation system. This allows to collect their interactions and feedback.
However, many users have to be included in the survey to obtain unbiased results.

In general, industrial studies are more complex to set up compared to empirical studies
because they require time and a real platform environment. This is why in most of the works
on recommender systems, only empirical studies are carried out. In this thesis we have been
able to implement our recommendation model in a real platform and perform an industrial
study.

2.5 Conclusion

In this chapter, we have introduced many models that address the problem of sequential rec-
ommendation using implicit feedback. However, on one hand, “traditional” sequential recom-
mendation models (i.e. model without deep learning architecture) have two main drawbacks:
(1) a lack of short-term personalization due to the fact that Markov chains have a fixed
length regardless of the users and their considered items, and (2), if we exclude TransRec
and Fossil, the other models are not fully unified as user preferences and sequential dynamic
are two independent components. This damages the recommendation. On the other hand,
recent approaches based on deep learning architecture considers varying sequence lengths in
nonlinear models. Such models are much more difficult to interpret and their complex archi-
tecture requires a strong expertise during the implementation and the maintenance. In the
next Chapter 3, we will present our proposed model that cope with the limitations of “tra-
ditional” sequential recommendation models without using complex architecture like deep
learning, while having performance equal or better than these approaches.

Chapter 3

Sequential recommendation with
metric models based on frequent
sequences

Modeling user preferences (long-term dynamics) and user sequential dynamics (short-term
dynamics) is of greatest importance to build efficient sequential recommender systems. The
challenge lies in the successful combination of the whole user’s history and his recent actions
(sequential dynamics) to provide personalized recommendations. Existing methods capture
the sequential dynamics of a user using fixed-order Markov chains (usually first order chains)
regardless of the user, which limits both the impact of the past of the user on the recom-
mendation and the ability to adapt its length to the user profile. In this chapter, we propose
to use frequent sequences to identify the most relevant part of the user history for the rec-
ommendation. The most salient items are then used in a unified metric model that embeds
items based on user preferences and sequential dynamics. Extensive experiments demon-
strate that our method outperforms state-of-the-art of sequential recommendation models,
especially on sparse datasets. We show that considering sequences of varying lengths im-
proves the recommendations and we also emphasize that these sequences provide insight on
the recommendation.

This chapter is based on Lonjarret et al. (2021), that has just been accepted for publi-
cation in Data Mining and Knowledge Discovery journal. Also, datasets and code are made
available1.

3.1 Introduction

Digital companies aim to build user loyalty and thus maximize the time spent by their users
on their platforms. The more time a user spends on a platform, the more profitable it is
for the company. As platforms have a large number of choices, it making difficult for a user
to find relevant items. To cope this problem and build user loyalty, it has become essential
to provide to users the most appropriate items based on their previous actions. This is

1https://bit.ly/3gwZAOF

31

https://bit.ly/3gwZAOF

32 Chapter 3. Sequential recommendation with metric models based on frequent sequences

what recommender systems is built for. In this chapter, we tackle the problem of sequential
recommendation that aims to predict/recommend to a user the next item from implicit
feedback. This is a challenging problem whose importance has been gradually recognized
by researchers. Indeed, user preferences (i.e., the long-term dynamics) and user sequential
dynamics (i.e., the short-term dynamics) need to be fruitfully combined to account for both
personalization and sequential transitions. There are several variants to this problem which lie
outside the scope of this problem. Hence, we restrain our study to methods that only take as
input users’ sequences to make recommendation, without considering additional information.

The first methods, which paved this research field, aim at capturing either user preferences
or user sequential dynamics. User preferences have been identified using methods such as
Matrix Factorization (MF) (Koren, 2009a, Koren and Bell, 2015) that uses inner products to
decompose a compatibility matrix between users and items, or FISM (Kabbur et al., 2013)
that splits a similarity matrix between items to better account for transitive relationships
between items. Sequential dynamics has been caught by Markov Chains (MC) for the cal-
culation of the conditional probability of appearance of an item according to a fixed number
L of passed items. The next generation of recommender systems is based on models that
combine both sequential dynamics and user preferences, like FPMC (Rendle et al., 2010)
or FOSSIL (He and McAuley, 2016) which fuse Matrix Factorization and Markov Chains.
PRME (Feng et al., 2015) improves FOSSIL and FPMC by replacing inner product with
Euclidean distance. Such a metric embedding brings a better generalization, mostly due to
the respect of the triangle inequality. However, it still suffers from a lack of personalization
on the short term part, for example due to the fact that Markov chains have a fixed length
regardless of the users and their considered items. Moreover, these models combine the user
preferences and sequential dynamics using two embeddings – one for the user preferences and
another one for the sequential dynamics – which can damage the quality of the model. More
recently, and especially since the traces left by the users become longer, a growing research
effort (Chen et al., 2018, Tang and Wang, 2018, Zhang et al., 2019) has been dedicated to
the investigation of the use of deep learning technique for sequential recommendation. Yet,
this kind of methods have a complex architecture which need large amounts of data and can
have troubles on sparse datasets. These statements are confirmed by our experiments.

To cope with these limitations, we propose a new model REBUS (Recommendation
Embedding Based on freqUent Sequences) that uses (1) frequent sequences to identify the
part of user history that is the most relevant for recommendation and using these sequences
to estimate Markov Chains of variable orders and (2) a unified metric embedding model based
on user preferences and user sequential dynamics.

Figure 3.1 illustrates how REBUS works. It consists of embedding items into latent
vectors and using these vectors to represent user preferences and user sequential dynamics:

� In Figure 3.1 (A), user preferences are represented by the weighted sum of all the items
of the user history ;

� in Figure 3.1 (B) user sequential dynamics is represented by the weighted sum of the
most representative recent items of the user history. These most representative items are
those that match frequent sequences over the entire dataset. These frequent sequences
are used as a proxy to know which items in the user history are important to capture
sequential dynamics ;

3.2. Notations 33

� In Figure 3.1(c), REBUS recommend the item that is the nearest to the vector resulting
from the weighted sum of user preferences and sequential dynamics.

Figure 3.1: Overview of REBUS that accommodates user preferences and sequential dynam-
ics through Euclidean distances. (a) User preferences are represented by the embedding
of all the user’s history items. (b) Sequential Dynamics is represented by the embedding
of the user’s items that match a frequent sequence. The temporal order of the items is taken
into account with a temporal damping factor. (c) REBUS takes the nearest item of the
weighted sum of user preferences and sequential dynamics for recommendation.

Our contributions are summarized as follows. We develop a new method, REBUS,
that integrates and unifies metric embedding models to capture both user preferences and
sequential dynamics. Especially, the use of personalized sequential patterns makes it possible
to select the part of the recent user’s history that is of most interest for the recommendation.
In an empirical study over 12 datasets, we show that REBUS outperforms 9 state-of-the-
art algorithms (that cover the different types introduced in Chapter 2) on sparse dataset
and have nearly the same performance on dense datasets. Furthermore, we show that the
sequences we use to model user sequential dynamics can provide additional insights on the
recommendations. Finally, for reproducibility purposes, data and code are made available
here: https://bit.ly/3gwZAOF.

The remaining of this chapter is organized as follows. Section 3.2 introduces the notations.
REBUS model is defined in Section 3.3. We report an extensive empirical study in Section
3.4 and conclude in Section 3.5.

3.2 Notations

In this section, we introduce the notations we use throughout this chapter to define our
proposal.

https://bit.ly/3gwZAOF

34 Chapter 3. Sequential recommendation with metric models based on frequent sequences

U and I are used to respectively denote the set of users and the set of items. The symbols
u and i stand for individual users and items (i.e., u P U and i P I). The trace left by a user u
is the sequence of items su � xi1, . . . , ipy, with i` P I, ` � 1 . . . p, and ip being the most recent

item. Let s
r1,ts
u be the substring of su starting at the 1st and oldest item, and ending at the

tth and more recent one. We use Isu to denote items that appear in su and I
s
r1,ts
u

for those

that belong to s
r1,ts
u . Notations used throughout this chapter are summarized and exemplified

in the Table page ix. Notice that, this table contains all the notations of this thesis.

3.3 REBUS

Our proposed model, REBUS is a metric embedding model in which only items are projected.
Their corresponding embedding vectors are influenced by both the preferences of the user and
their sequential dynamics. The user preferences are wrapped in the model by constraining
the latent vector Pi of an item that should be recommended to a user to be as close as possible
to the average vector of the embedding of the items contained in the user history. In order
to identify the part of the sequence that is most characteristic of a user, we consider frequent
sequential patterns. These frequent sequences are both present in the history of several users
(whose minimum number is specified by a threshold) while allowing to ignore certain items
which are not sufficiently characteristic of their general behavior. Once the most important
items are identified for a user, their order is taken into account in the model thanks to a
damping factor based on the position of the item in the sequence. This allows sequences of
different lengths to be used in a unified manner. The embedding vectors are then learned
using the Bayesian personalized ranking optimization method (Rendle et al., 2009) on our
model. These steps are detailed below.

3.3.1 Long-term metric-based model

To model user preferences, we follow the way paved by FISM (Kabbur et al., 2013) and
FOSSIL (He and McAuley, 2016) while replacing inner product with Euclidean distance.
The objective is to compute a latent vector Pi for each item i, so that the prediction for a
user u to choose i varies in the opposite way to the distance between the sum of the items
already chosen by u and the item i. Moreover, in order to not overweight items that appear
in long transactions – items selected with many others – we normalize the user preferences
by the inverse of the number of items in the sequence of user u:

ppu,i 9 � ||
1

|Isuztiu|
α

¸
jPIsuztiu

Pj � Pi||
2
2.

As in FISM or FOSSIL, the hyperparameter α controls the degree of agreement between
items: When α � 1, the long-term part is equivalent to the barycenter of the latent vectors;
The closer α is to 0, the more it is equivalent to the sum of latent vectors. In our experiments,
we observed that the best values of α lie between 0.7 and 1.

In the learning phase, we estimate the prediction associated to item i and user u at
position t, where i is the tth item taken by u. Note that, for a user u, the first item is the
most older one (t � 1) and the last taken item is the most recent one (t � |su|). It seems
also rightful to restrict the set of items to be considered to those older than t (I

s
r1,tr
u

) (even if

3.3. REBUS 35

it is not the choice made by FISM and FOSSIL). This choice was confirmed empirically. In
addition, we limit the number of items to be considered to the recent ones with max length
hyperparameter. It allows REBUS to be more flexible by controlling the temporal window
that influences the user’s preferences and to get rid of the old past. All in one, this leads to
the following equation for estimating user long-term preferences:

ppu,i,t9� ||
1

|I
s
rx,tr
u

ztiu|α

¸
jPI

s
rx,tr
u

ztiu

Pj � Pi||
2
2,(3.1)

with x � max pt�max length, 1q.

3.3.2 Short-term dynamics modeled by frequent patterns

As explained in Section 2.3.3, it has been shown that taking into account short-term individual
dynamics improves the recommendation. However, existing approaches only consider a fixed,
short and consecutive part of the history to make the recommendation. In contrast, REBUS
takes into account parts of the user history which may be of different lengths for each user
and also not necessarily consecutive. Finding the most adapted sequential pattern for a user
u at a position t is accomplished in two steps:

1. Computing a set F of representative sequences of users’ histories;

2. Identifying a sequence that personally represents a user u.

We have explored two scenarios. In the first scenario, we extract frequent subsequences
from user’s histories, and identify the subsequence that perfectly matches the history of a
given user when making the recommendation. In the second scenario, we extract frequent
substrings from user’s histories and identify the substring that best characterizes a user using
a string alignment algorithm that allows to skip some uninformative items. We implemented
both scenarios and found that the quality of the results are very similar. However, the model
based on frequent subsequences (i.e. Scenario 1) has a higher cost due to the size of the
collection of frequent subsequences, that is much greater than the one of frequent substrings
(i.e. Scenario 2). We thus detail below the second scenario.

Computing representative sequences from users’ histories

A recommendation made for a user is a generalization of behaviors observed for many other
users of the system. To capture the short-term dynamics of users, we want to identify sub-
strings of interacted items that characterize the possible short-term dynamics in the system.
That is to say, we want to get sets of items ordered in time that the users of the system
are likely to consider in the same order. Substrings that can account for user sequential
dynamics are the ones that appear in many user’s histories. We identify them by extracting
frequent substrings (Gusfield, 1997) that appear in at least minCount user sequences and
are at most of size L. minCount and L are hyperparameters of our model. The obtained
substrings constitute the set F. Three important points should be stressed here:

� The set F is computed once at the beginning of REBUS and then is used during the
learning phase;

36 Chapter 3. Sequential recommendation with metric models based on frequent sequences

� The computation time of F takes less than a minute in our experiments and is therefore
not a computational bottleneck;

� Each substring of a frequent substring is also frequent and thus belongs to F.

Deriving from F a personalized sequence for u

Once F is computed, the objective is to find which substring to use as personalized context for
user u at position t. This substring, denoted m

s
r1,tr
u

, must be included in the user’s history

while allowing the latter to contain additional items. To do that, we adapt the “Exact
matching with wildcards” algorithm (Gusfield, 1997) to compute the longest substring among

the substrings in F that end to the most recent item in s
r1,tr
u that belongs to F. The function

is presented in Algorithm 1. It consists to pick up the most recent item of s
r1,tr
u that matches

a substring of F . After that, it identifies the longest substring in F that ends with the
previously found item and which is contained in the user sequence. If this process ends
without any substring matching, su

t�1 is taken as personalized context for u at position t,
where su

t�1 is the most recent item considered by u excluding stu, the ground truth item. It
allows our model to always consider sequential dynamics. It is important to notice that the
personalized context for a given user relies on its last actions and therefore varies according
to position t.

As an example, let us consider the set of frequent substrings F � tx0y, x1y, x2y, x3y, x4y,

x0, 1y, x1, 3y, x0, 1, 3y, x1, 2y, x2, 4y, x1, 2, 4yu and consider the user sequence s
r1,7r
u � x0, 1, 2, 3, 4,

5y. The most recent item that can be exploited is 4 as item 5 does not appear in F . The

longest sequence of F that ends with 4 and that only contains items of s
r1,7r
u in the same order

is m
s
r1,7r
u

� x1, 2, 4y. Indeed, the substring x1, 2, �, 4y matches s
r2,5s
u with � a wildcard. If the

user sequence is s
r1,4r
u � x7, 8, 9y, none of the substrings of F matches s

r1,4r
u , and m

s
r1,4r
u

� x9y.

Constraining Pi with short-term dynamics

The personalized sequence m
s
r1,tr
u

is then used to constrain the latent vector Pi to be as close

as possible to the items contained in m
s
r1,tr
u

. A damping factor ηr, depending on the item

position r, is used to increase the importance of recent items of m
s
r1,tr
u

. With Pmr

s
r1,tr
u

be the

vector corresponding to the item of m
s
r1,tr
u

at position r, we have:

ppu,i,t9� ||
Ŗ

r�1

ηrPmr

s
r1,tr
u

� Pi||
2
2.(3.2)

where R � |m
s
r1,tr
u

| is the number of items in m
s
r1,tr
u

. The value of ηr increases with r to

give more weight to recent items. To normalize the short-term part of REBUS, we make ηr
follow the softmax (normalized exponential) (Bishop, 2006) of the following linear function:

ηr �
e

r
R
�1°R

r�1 e
r
R
�1

Let us consider the same example as above where m
s
r1,7r
u

� x1, 2, 4y and x1, 2, �, 4y matches

s
r2,5s
u . Positions of items x1, 2, 4y are respectively 1, 2 and 3 and |m

s
r1,7r
u

| � 3 because we do

3.3. REBUS 37

Algorithm 1: ExactMatchWithWildCardps
r1,tr
u , F q

Input: A user sequence s
r1,tr
u � xsu

1, � � � , su
t�1y and the set of frequent sequences F

Output: m
s
r1,tr
u

, the longest substring among the substrings in F that end to the

most recent item in s
r1,tr
u that belongs to F, or su

t�1 if any.
1 sequenceÐ xsu

1, � � � , su
t�1y

2 pathÐ xy
3 for i � t� 1 downto 1 do
4 itemÐ siu
5 if path � xy then
6 if item P F then
7 pathÐ xitemy

8 else
9 if xitemy � path P F then

10 pathÐ xitemy � path � The concatenation of strings xitemy and path

11 if path � xy then
12 pathÐ xsu

t�1y
13 return path � Here m

s
r1,tr
u

Ð path

not take into consideration wildcard item �. Thus η1 � 0.23, η2 � 0.321 and η3 � 0.448. As
expected the most recent item 4 has a greater importance compared to items 1 and 2.

3.3.3 The long-term and short-term metric embedding model

The embedding of items into a metric space has two main advantages. First, it brings better
generalization as Euclidean distances preserve the triangle inequalities. Second, it makes
it possible to fully unify the long and short-term dynamics (as expressed by equations 3.1
and 3.2) of each item into a single embedding vector resulting from the computation of one
distance:

ppu,i,t9� ||pLong-term� Short-termq � Pi||
2
2.

It is also usual to add a bias term βi specific to each item, and a hyperparameter γ to weigh
the importance between long-term and short-term dynamics:

ppu,i,t9�
�
βi � ||

�
γ

1

|I
s
rx,tr
u

ztiu|α

¸
jPI

s
rx,tr
u

ztiu

Pj � p1� γq
Ŗ

r�1

ηrPmr

s
r1,tr
u

�
� Pi||

2
2

	
(3.3)

3.3.4 Bayesian Personalized Ranking optimization criterion

The goal for a sequential recommender system is, for all users, to rank the ground-truth
item higher than all other items. Bayesian Personalized Ranking (BPR) (Rendle et al., 2009)
formalizes this problem as maximizing the posterior probability of the model parameters θ,
given the order relation ¡u,t on items: ppθ | ¡u,t q. Using Bayes’ rule, the probability is
proportional to pp ¡u,t | θqppθq. The goal is thus to identify the parameters that maximize

38 Chapter 3. Sequential recommendation with metric models based on frequent sequences

the likelihood of correctly ordering items. It is formally expressed as having i ¡u,t j, which
means that i is ranked higher than item j for user u at position t with i � stu the ground
truth item. Assuming independence of items, their orders and users, this leads to estimate
the model parameters by the maximum a posteriori probability (MAP):

arg max
θ

� ln
¹
uPU

|su|¹
t�2

¹
j�stu

ppstu ¡u,t j|θq ppθq

�
¸
uPU

|su |̧

t�2

¸
j�stu

ln ppstu ¡u,t j|θq � ln ppθq(3.4)

The parameters of REBUS model are the embedded vectors Pi and the bias terms βi
for i P I. ppstu ¡u,t j|θq is the probability that the ground truth item stu is correctly ranked
with respect to j by the model, that is:

ppstu ¡u,t j | θq � ppppu,stu,t ¡u,t ppu,j,t|θq
� ppppu,stu,t � ppu,j,t ¡u,t 0|θq

This quantity is approximated by σpppu,stu,t�ppu,j,tq, where σpzq � 1
1�e�z is the logistic sigmoid

function. Taking as prior probability for θ a normal distribution with zero mean and λθI as
variance-covariance matrix, the criterion to optimize (equation 3.4) becomes:

arg max
θ

�
¸
uPU

|su |̧

t�2

¸
j�stu

lnσpppu,stu,t � ppu,j,tq � λθ||θ||
2,(3.5)

where λθ is a regularization hyperparameter.

3.3.5 Model training

REBUS learns the embedded vectors Pi and the bias terms βi by maximizing equation 3.5.
Hyperparameters – that is to say α, γ, L, minCount, regularization hyperparameters of the
bias terms βi and regularization hyperparameters λθ – are chosen using a grid search strategy.
The learning rate as well as k, the length k of embedded vectors, are fixed by the analyst.
The hyperparameter k must be chosen knowing that the larger it is, the more precise the
item vectors and the more costly the computation of the model.

Item embedding Pi are randomly initialized using Xavier initialization (Glorot and Bengio,
2010) and the bias terms βi are initialized to zero.

The parameters are learned using a variant of Stochastic Gradient Descent (SGD) called
Adam optimizer (Kingma and Ba, 2014) with a batch size of 128 examples. For each batch,
it consists in uniformly sampling a user u, a position t, that gives the positive item i � stu,
and a ’negative’ item j.

3.3.6 Applying the model for recommendation

Once REBUS has been trained, it can be used to make recommendations. Considering the

past actions of a user s
r1,ts
u , the most appropriate frequent sequence m

s
r1,ts
u

is found using

3.3. REBUS 39

Algorithm 1 and used in Equation 3.3, with i a candidate item. The item with the highestppu,i,t value (or equivalently the smallest Euclidean distance) is recommended. The complexity
for making recommendation for the user u is equal to OpREBUSComp � |IzIsu | � kq where
REBUSComp is the complexity of REBUS operations. Note that REBUS can recommend
more than one item, e.g. the Top-N items associated to the N smallest Euclidean distances.

To illustrate how it works, let us consider the following example:

� I � tA,B,C,D,E, F u, su � xA,By

� ppu,C � 0.9, ppu,D � 0.6, ppu,E � 0.1, ppu,F � 0.7

In this example, REBUS will recommend item C at the first position, followed closely by F
and D. The last recommended item will be E. In this example E have a low recommendation
score as it is never or rarely found in sequences containing items A and B.

3.3.7 Customization of REBUS

REBUS can be easily customized, allowing it to adapt even more precisely to the data.
Directly from REBUS, two variants can be realized by taking the extreme values for the
parameter γ:

� If γ � 1, only the long-term part of Equation 3.3 is considered. This variant is called
hereafter REBUS UP;

� If γ � 0, only the short-term part of Equation 3.3 is considered. This variant is called
hereafter REBUS SD;

Furthermore, we consider other variants of REBUS, named REBUSXMC , where Markov
chains with a fixed order X are used to model the short-term dynamics instead of the per-
sonalized sequence m

s
r1,tr
u

. The damping factor ηr is also used to increase the importance

of recent items. Notice that REBUSXMC is less personalized on the short-term part than
REBUS, but it focuses more on the user’s recent actions which can be an advantage on
some datasets. The substitution of the personalized sequence by Markov chains with a fixed

order X is straightforward and consists in replacing m
s
r1,tr
u

by s
rt�X,tr
u in R in order to have

R � |s
rt�X,tr
u | and replace mr

s
r1,tr
u

by s
pt�X�1q�r
u in Equation 3.3. The final equation of RE-

BUSXMC is:

ppu,i,t9�
�
βi � ||

�
γ

1

|I
s
rx,tr
u

ztiu|α

¸
jPI

s
rx,tr
u

ztiu

Pj � p1� γq
Ŗ

r�1

ηrPspt�X�1q�r
u

�
� Pi||

2
2

	
(3.6)

As for REBUS, a variant can be directly created from REBUSXMC when γ � 0. In
this case, only the short-term part of Equation 3.6 is considered. This variant is named
REBUS SDXMC , where X represent the order of the Markov Chains.

We have shown here that REBUS can be simply declined in four variants, allowing to
simply adapt to the specificities present in some datasets. Moreover, all these variants will
allow us to analyze how the long-term and short-term dynamics individually impact REBUS
and compare the personalized sequence against fixed-order Markov chains.

40 Chapter 3. Sequential recommendation with metric models based on frequent sequences

3.3.8 Discussion

As said before, one of the key characteristics of REBUS is to only embed items, like SASRec
and FMC do. This characteristic brings two advantages compared to other models that embed
items and users (like FPMC, PRME, TransRec and CASER). First, it has a smaller space
complexity and second, it suffers less from the cold start problem. These two aspects are
evaluated below.

Space Complexity: The learned parameters of REBUS are the item embeddings – each
being of dimension k – and the items bias terms. This results in a number of parameters in
Op|I| � k� |I|q. Thus, the complexity of our model does not grow with the number of users,
unlike other models that embed users and items.

Recommending items to new users: We can say that REBUS suffers less from the
cold-start problem, since it can make recommendations to new users who have interacted
only with a single item of the system. We show in the next section that REBUS has good
performance compared to other models when it comes to the problem of cold start users.

3.4 Experiments

In this section, we present a thorough empirical study. We first begin by describing the 12
real-world datasets we consider, as well as the questions these experiments aim to answer.
Then, we report an extensive comparison of REBUS with 9 state-of-the-art algorithms for
sequential recommendation. Results demonstrate that REBUS outperforms state-of-the-
algorithms according to several metrics in most of the cases. Finally, we provide a deeper
analysis of REBUS, especially how frequent substrings are actually used in sequential rec-
ommendation, the impact of the user preferences with regard to the sequential dynamics and
how REBUS can be tuned to give better results. For reproducibility purposes, the source
code and the data are made available 2.

3.4.1 Datasets and aims

To evaluate the performance of REBUS on both sparse and dense datasets from different
domains, we consider 5 well-known benchmarks and introduce a new dataset:
Amazon was introduced by (McAuley et al., 2015). It contains Amazon product reviews
from May 1996 to July 2014 from several product categories. We have chosen to use the 3
following diversified categories: Automotive, Office product and video games.
MovieLens 1M3 (Harper and Konstan, 2015) is a popular dataset including 1 million movie
ratings from 6040 users between April 2000 and February 2003. We used the datasets pre-
processed by selecting the most recent x ratings for each user, x P t5, 10, 20, 30, 50u. These
datasets allow us to study the performance of REBUS on the same dataset but with dif-
ferent levels on sparsity (i.e. MovieLens with the 5 most recent ratings will be more sparse
than MovieLens with the 50 most recent ratings). -

2https://bit.ly/3gwZAOF
3http://grouplens.org/datasets/movielens/1m/

https://bit.ly/3gwZAOF
http://grouplens.org/datasets/movielens/1m/

3.4. Experiments 41

Epinions describes consumer reviews for the website Epinions from January 2001 to Novem-
ber 2013. This dataset was collected by the authors of (Zhao et al., 2014).
Foursquare depicts a large number of user check-ins on the Foursquare website from De-
cember 2011 to April 2012.
Adressa (Gulla et al., 2017) includes news articles (in Norwegian). The dataset was offered
by Adresseavisen, a local newspaper company in Trondheim, Norway.
Visiativ4 is a new dataset that is made of resource downloads from myCADservices plat-
form from November 2014 to August 2018. This dataset is relevant to us because it is the
case study of this thesis and from there, we can assess sequential recommendation since the
downloaded documents are tutorials that users read to train themselves and improve their
comprehension of some specific software.

For each dataset, ratings are converted into implicit feedback and we only consider users
and items that have at least 5 interactions. The main characteristics of these datasets before
and after preprocessing are reported in Tables 3.1 and 3.2. This preprocessing allows models
to focus on users that have enough actions in order to make good recommendation. We can
notice that for Epinions, Foursquare and Amazon datasets, there are a large number of users
and items that are deleted by the preprocessing.

Table 3.1: Main characteristics of the datasets before preprocessing.

Datasets #Users #Items #Actions #A/#U #A/#I Sparsity

O
th

er
s Epinions 117323 42447 193662 1.65 4.56 99.996%

Foursquare 485381 83999 1021966 2.11 12.17 99.997%
Adressa 607805 13522 2624554 4.32 194.1 99.968%
Visiativ 5068 945 23573 4.65 24.94 99.508%

A
m

az
. Ama-Auto 851432 320116 1373794 1.61 4.29 99.999%

Ama-Office 909314 130006 1243186 1.37 9.56 99.999%
Ama-Game 826767 50210 1324753 1.60 26.38 99.997%

M
ov

ie
L

en
s ML-5 6040 2848 30175 5.00 10.60 99.825%

ML-10 6040 3114 59610 9.87 19.14 99.683%
ML-20 6040 3324 111059 18.39 33.41 99.447%
ML-30 6040 3391 152160 25.19 44.87 99.257%
ML-50 6040 3467 215676 35.71 62.21 98.970%

4https://www.visiativ.com/en-us/

https://www.visiativ.com/en-us/

42 Chapter 3. Sequential recommendation with metric models based on frequent sequences

Table 3.2: Main characteristics of the datasets after preprocessing (users and items that have
at least 5 interactions).

Datasets #Users #Items #Actions #A/#U #A/#I Sparsity

O
th

er
s Epinions 5015 8335 26932 5.37 3.23 99.94%

Foursquare 43110 13335 306553 7.11 22.99 99.95%
Adressa 141933 3257 1861901 13.12 571.66 99.60%
Visiativ 1398 590 16417 11.74 27.83 98.01%

A
m

az
. Ama-Auto 34316 40287 183573 5.35 4.56 99.99%

Ama-Office 16716 22357 128070 7.66 5.73 99.97%
Ama-Game 31013 23715 287107 9.26 12.11 99.96%

M
ov

ie
L

en
s ML-5 6040 2848 30175 5.00 10.60 99.82%

ML-10 6040 3114 59610 9.87 19.14 99.68%
ML-20 6040 3324 111059 18.39 33.41 99.45%
ML-30 6040 3391 152160 25.19 44.87 99.26%
ML-50 6040 3467 215676 35.71 62.21 98.97%

To evaluate the performance and the limits of REBUS, we propose to answer the fol-
lowing questions:

� What are the performances of REBUS compared to those of state-of-the-art algorithms
for sequential recommendation for sparse and dense datasets? What about REBUS’s
performance in presence of cold-start users?

� Does REBUS take benefit from sequential behaviors in a better way than Markov
chains of fixed order do?

� What is the most important component? The user preferences? The sequential dy-
namics or both?

� What about the recommendations? Does REBUS provide diverse recommendations?

3.4.2 Comparison methods

We compare REBUS to 9 state-of-the-art methods designed for both item and sequential
recommendation:

� Popularity (POP), the naive baseline that ranks items according to their popularity
(Aggarwal, 2016);

� Matrix Factorization with Bayesian Personalized Ranking (BPR) (Rendle et al., 2009),
that recommends items by considering only user preferences with matrix factorization
techniques;

� Factorized Markov Chains (FMC) (Rendle et al., 2010), that is based on the factor-
ization of the item-to-item transition matrix;

3.4. Experiments 43

� Factorized Personalized Markov Chains (FPMC) (Rendle et al., 2010), that considers
both user preferences and user dynamics thanks to matrix factorization and first-order
Markov chains;

� Personalized Ranking Metric Embedding (PRME) (Feng et al., 2015), that embeds
user preferences and user dynamics into two Euclidean distances;

� Translation-based Recommendation (TransRec) (He et al., 2017a), that unifies user
preferences and sequential dynamics with translations;

� Convolutional Sequence Embedding Recommendation (CASER) (Tang and Wang,
2018), a CNN-based method that captures both user preferences and user sequential
dynamics;

� Self-Attentive Sequential Recommendation (SASRec) (Kang and McAuley, 2018), a
self-attention based model that captures both user preferences and user sequential dy-
namics ;

� Session-based KNN (S-KNN) (Jannach and Ludewig, 2017), a nearest-neighbor-based
approach designed for session-recommendation. S-KNN compares the current session
with past sessions in training data. In our experiments, a user’s sequence is assimilate
to a session 5.

Table 3.3 provides a comparison of the above methods according to several criteria:
whether they are personalized, sequentially aware, metric-based, integrated into a unified
model, based on personalized order Markov chains or on a model that only embed items.
Indications about the time needed to train the models are also reported in the last column.
For fair comparisons, we return the time required for 25 epochs on Amazon Office. As we
can see, the time needed for REBUS is comparable to the one of other methods. It includes
the time needed to extract frequent substrings.

3.4.3 Experimental settings

We apply the same partition as (Bayer et al., 2017, He et al., 2017a,b, Kang and McAuley,
2018) for user sequences (also known as leave-one-out evaluation). Indeed, for each dataset,
the user sequences are split into 3 parts:

1. The most recent item is used for the test. It is named ground-truth item and denoted
gu;

2. The second most recent item is used for the validation when learning the model;

3. Other items of the user sequence are used to train the models.

5Note that we did not make experiments with GRU4Rec as it has already been shown that it is outper-
formed by both CASER (Tang and Wang, 2018) and SASRec (Kang and McAuley, 2018), and sometimes
also by S-KNN (Ludewig and Jannach, 2018).

44 Chapter 3. Sequential recommendation with metric models based on frequent sequences

Table 3.3: Overview of the different models. P: Personalized?, S: Sequentially-aware?, M:
Metric-based?, U: Unified model?, O: personalized Order Markov chains?, I: embed only
items?, T: Time (in seconds) for the Amazon Office dataset with 25 epochs.

Property P S M U O I T

Pop 7 7 7 7 7 7 �1s

BPR 3 7 7 7 7 7 �21s

FMC 7 3 7 7 7 3 �19s

FPMC 3 3 7 7 7 7 �26s

PRME 3 3 3 7 7 7 �25s

TransRec 3 3 3 3 7 7 �27s

S-KNN 3 3 7 7 7 7 �1s

CASER 3 3 7 3 7 7 �75s

SASRec 3 3 7 3 7 3 �20s

REBUS 3 3 3 3 3 3 �30s

Contrary to (He et al., 2017b, Huang et al., 2018, Kang and McAuley, 2018), which follow
the strategy of taking a sample of x negative items during the evaluation (i.e. items that
a user has not interacted with), we compute the metrics with all possible negative items
(also known as TrainItems (Said and Belloǵın, 2014)) to have an impartial assessment of all
methods with exact measures instead of approximated ones. The performances of the models
are assessed by three widely used metrics for sequential recommendation (He et al., 2017a,
Kang and McAuley, 2018, Rendle et al., 2009):

Area Under the ROC Curve (AUC):

AUC �
1

|U |

¸
uPU

1

|IzIsu |

¸
jPIzIsu

1pppu,gu,t ¡ ppu,j,tq,

where the indicator function 1pbq returns 1 if its argument b is True, 0 otherwise. This
measure calculates how high the ground-truth item of each user has been ranked in average.

Hit Rate at position X (HIT X):

HIT X �
1

|U |

¸
uPU

1pRgu ¤ RXq,

where Rgu is the ranking of the ground-truth item and RX is the Xth ranking. The HIT X
function returns the average number of times the ground-truth item is ranked in the top X
items. We compute HIT 5, HIT 10, HIT 25 and HIT 50.

Normalized Discounted Cumulative Gain at position X (NDCG X):

NDCG X �
1

|U |

¸
uPU

1pRgu ¤ RXq

log2pRgu � 1q
.

3.4. Experiments 45

The NDCG X is a position-aware metric which assigns larger weights to higher positions. We
compute NDCG 5, NDCG 10, NDCG 25 and NDCG 50. Note that, as we use the leave-one-
out split strategy, INDCG X is always equal to 1 because we only have one ground-truth
item.

We also consider two metrics to assess how diverse are the recommendations made by a
model.

Popularity rate X (Pop X): The POP X is the proportion of predicted items that are
similar to the X most popular items. We can note that the POP model (the most popular)
should have a Pop X value equal to 1. However, it is not always the case since already
consumed items are not recommended to user.

Diversity rate X (Div X): The DIV X is the proportion of items that are predicted at
least once to all users (the number of unique predicted items divided by the total number
of items). Div X is sometimes referred to as aggregate diversity (Adomavicius and Kwon,
2012).

REBUS is implemented using TensorFlow and the Adam optimizer (Kingma and Ba,
2014). In order to make a fair comparison, we implement BPR, FMC, FPMC, PRME,
TransRec with the same architecture as REBUS. For CASER and SASRec, we use the code
provided by the authors. And for S-KNN, we used the implementation of the authors of
(Ludewig and Jannach, 2018) which we modified to have equivalent evaluation. To limit the
numbers of combinations to explore with grid search, we fix the following parameters for all
models: The learning rate is set to 0.001, the batch size to 128 for every dataset, except for
Adressa dataset where we fixed the batch size to 1024 in order to reduce the computation
time of the learning phase 6, the dimension of the learned latent vectors k is set to 10
and we stop the training if there is no improvement of the AUC validation for 250 epochs.
We compute the AUC validation every 25 epochs. All regularization hyperparameters are
taken in t0, 0.001, 0.01, 0.1, 1u. For models with other hyperparameters we have tried those
given by the authors, except for CASER which requires too many hyperparameters: There
are about 50000 possible combinations. Regarding specific hyperparameters of REBUS,
α P t0.1, . . . , 1.0u, γ P t0.0, 0.1, . . . , 1.0u 7, max length is fixed to 105, minCount has
for default value 2, and L takes its value between 3 and 5 for small datasets (Visiativ,
Epinions, ML-5) and between 8 and 15 for other datasets. Best hyperparameters for each
dataset are reported in Appendix 7 Table 7.1 for BPR, FMC, FPMC, PRME, TransRec
and REBUS, Table 7.2 for SASRec, Table 7.3 for CASER and Table 7.4 for S-KNN. The
Best hyperparameters are also reported in repository (https://bit.ly/3gwZAOF) in CSV
and Excel format to facilitate the reading of the data.

6Increasing the batch size speed up the learning phase as this makes possible to benefit even more from
TensorFlow parallelization. Furthermore it has a limited effect on the performance of the model.

7Only for Foursquare dataset, we observed that it is better not to have γ (remove γ and p1 � γq in
Equation 3.3). It is noteworthy that recommendations may be different to the case where γ � 0.5 due to the
bias terms βi.

https://bit.ly/3gwZAOF

46 Chapter 3. Sequential recommendation with metric models based on frequent sequences

3.4.4 Performance study

The performances of the different methods on every dataset are reported in Table 3.4 and
Table 3.58. We can observe that REBUS outperforms other models on most of the datasets,
having the best AUC value. REBUS also performs well on all other metrics, with an average
rank between 2.83 to 3.75, an improvement between 1.35% to 6.94% over the best competitor,
and the best HIT 25, HIT 50, NDCG 25 and NDCG 50 in overall. For HIT 5, HIT 10,
NDCG 5 and NDCG 10, we respectively found improvements of 7.15%, 3.22%, 11.56% and
8.74% compared to the best competitor. However, these high percentages have to be nuanced
because the obtained values are often low (i.e., in comparison to AUC) and the results vary
a lot from one dataset to another.

In general, BPR-MF outperforms FMC. This confirms that user preferences have a more
important role than the sequential dynamics in the recommendations of the next-item. As
expected, SASRec performs very well on dense datasets (i.e., ML30, ML50 where #A{#U ¡
20). However, this model is outperformed by several others on sparse datasets. We can
observe that REBUS also outperforms PRME and FPMC on sparse datasets. It gives
evidence that having independent latent vectors to model user preferences and sequential
dynamics is not an advantage for sparse datasets. S-KNN exhibits bad AUC performance
because of its architecture : S-KNN cannot rank items that are not in the neighborhood
of the user target. Besides, S-KNN reports fair performance on HIT X and NDCG X and
outperforms all models on Amazon datasets – this confirms the observations made by the
authors of (Ludewig and Jannach, 2018) – but it is outperformed by REBUS for all other
datasets.

The improvement of REBUS according to each model is reported in Table 3.6. Con-
sidering all datasets, REBUS outperforms all the studied models. However, some models
exhibits better performances when only focusing on MovieLens datasets (e.g., SASRec, Tran-
sRec, FPMC and FMC for which REBUS has negative improvements).

In Figure 3.3, we study the effect of the size of the latent vectors (k P t10, 20, 30, 40, 50u) 9

on AUC, HIT 25, HIT 50, NDCG 25 and NDCG 50. In most of the cases, REBUS has the
best performances for each k value for AUC, HIT 25, HIT 50 and is one of the best models
for NDCG 25 and NDCG 50. It is worth to mention that REBUS obtains better results
when the size of the latent vectors increases, which is not always the case of other methods.
For instance, SASRec does not progress when the number of latent dimensions increases for
3 of 4 datasets on AUC, HIT 25, HIT 50.

Eventually, we study the diversity of recommendations provided by each model. Figure 3.2
reports POP X and DIV X for each model. For POP X, the higher the value, the more
the model tends to recommend popular items. For DIV X the higher the value, the more
the model tends to recommend different items. These results give evidence that REBUS’
recommendations are rarely based on the most popular items. However, only a subset of
items (between 20% and 50%) is recommended to the users, which remains comparable to
most of the other models.

8We only show HIT 25, HIT 50, NDCG 25 and NDCG 50 in these tables. HIT 5, HIT 10, NDCG 5 and
NDCG 10 are reported in Appendix 7 Tables 7.5 and 7.6.

9To avoid running again the grid search, we took the best combinations of hyperparameters that we
previously found for k = 10.

3.4. Experiments 47

Table 3.4: AUC, HIT 25, HIT 50, NDCG 25 and NDCG 50 for the different models on
Epinions, Foursquare, Adressa, Visiativ, Amazon-Automotive, Amazon-Office-Product and
Amazon-Video-Games datasets. The last row, called Improv. vs Best, shows the improvement
in percentage of our method compared to the other best model (best obtained results are in
bold and best obtained results for concurrent models are underlined). The last column is the
average performance on these 7 datasets, the average of all datasets is included in Table 3.5.

Metric Epinions Foursq Adressa Visiativ Auto Office Games Avg

POP AUC 0.4575 0.9169 0.9582 0.7864 0.5856 0.6412 0.7484 0.7277
HIT25 2.25% 46.66% 19.39% 32.04% 2.54% 0.62% 3.50% 15.29%
HIT50 3.42% 55.65% 30.89% 48.24% 3.75% 1.67% 5.16% 21.25%

NDGC25 0.80% 18.92% 7.21% 12.87% 0.96% 0.15% 1.37% 6.04%
NDGC50 1.03% 20.68% 9.40% 15.97% 1.19% 0.36% 1.69% 7.19%

FMC AUC 0.5421 0.9508 0.9842 0.8354 0.6251 0.6771 0.8473 0.7803
HIT25 1.67% 53.06% 64.23% 45.66% 2.57% 1.35% 10.64% 25.60%
HIT50 2.63% 64.19% 77.99% 58.78% 3.78% 2.67% 15.71% 32.25%

NDGC25 0.77% 26.13% 29.19% 23.24% 1.05% 0.52% 4.19% 12.15%
NDGC50 0.95% 28.29% 31.84% 25.75% 1.28% 0.77% 5.16% 13.44%

BPR AUC 0.5593 0.9474 0.9656 0.8270 0.6649 0.7072 0.8590 0.7901
HIT25 2.88% 46.95% 25.83% 42.72% 2.90% 1.58% 7.82% 18.67%
HIT50 4.49% 58.38% 40.16% 57.42% 4.59% 2.59% 12.42% 25.72%

NDGC25 1.20% 20.44% 9.35% 17.13% 1.10% 0.63% 2.85% 7.53%
NDGC50 1.51% 22.66% 12.10% 19.95% 1.43% 0.82% 3.73% 8.88%

FPMC AUC 0.5536 0.9492 0.9848 0.8433 0.6482 0.6958 0.8777 0.7932
HIT25 1.63% 56.46% 65.36% 46.67% 2.36% 1.60% 12.28% 26.62%
HIT50 2.51% 65.38% 79.39% 60.36% 3.64% 2.53% 18.33% 33.16%

NDGC25 0.70% 30.88% 30.14% 22.68% 0.88% 0.56% 4.71% 12.94%
NDGC50 0.87% 32.61% 32.85% 25.35% 1.13% 0.74% 5.87% 14.20%

PRME AUC 0.6071 0.9538 0.9849 0.8572 0.6749 0.7154 0.8759 0.8099
HIT25 1.88% 55.64% 64.78% 45.09% 2.34% 2.78% 12.63% 26.45%
HIT50 2.72% 67.23% 78.19% 59.43% 3.85% 4.87% 18.74% 33.58%

NDGC25 0.85% 30.71% 30.33% 24.86% 0.85% 0.95% 4.89% 13.35%
NDGC50 1.01% 32.97% 32.92% 27.61% 1.14% 1.34% 6.07% 14.72%

TransRec AUC 0.6138 0.9619 0.9852 0.8647 0.6991 0.7320 0.8869 0.8205
HIT25 1.98% 58.67% 65.70% 51.25% 3.98% 3.97% 10.76% 28.04%
HIT50 3.14% 67.81% 78.81% 64.73% 5.99% 6.37% 16.51% 34.77%

NDGC25 0.94% 33.13% 31.99% 26.66% 1.56% 1.38% 4.08% 14.25%
NDGC50 1.16% 34.90% 34.52% 29.26% 1.95% 1.84% 5.18% 15.55%

S-KNN AUC 0.0684 0.8330 0.9367 0.8369 0.1476 0.2938 0.6322 0.5355
HIT25 2.51% 63.90% 27.77% 44.87% 5.15% 5.36% 13.94% 23.36%
HIT50 3.70% 70.75% 40.33% 61.15% 6.71% 7.32% 19.54% 29.93%

NDGC25 1.32% 45.92% 12.97% 21.83% 2.49% 2.77% 5.82% 13.30%
NDGC50 1.55% 47.25% 15.36% 24.95% 2.79% 3.15% 6.89% 14.56%

CASER AUC 0.6238 0.9259 0.9750 0.8544 0.6872 0.7510 0.8282 0.8065
HIT25 2.44% 46.45% 60.65% 46.74% 2.63% 1.42% 6.45% 23.83%
HIT50 3.88% 56.73% 74.86% 61.08% 3.64% 2.50% 10.23% 30.42%

NDGC25 0.96% 18.39% 26.29% 21.35% 0.94% 0.45% 2.37% 10.11%
NDGC50 1.24% 20.40% 29.04% 24.12% 1.14% 0.66% 3.10% 11.38%

SASRec AUC 0.6251 0.9617 0.9870 0.8731 0.6861 0.7392 0.8812 0.8219
HIT25 2.60% 55.04% 67.30% 51.76% 2.55% 3.65% 9.16% 27.44%
HIT50 4.00% 64.97% 82.15% 65.38% 4.07% 6.12% 14.54% 34.46%

NDGC25 1.03% 30.70% 29.23% 25.00% 0.95% 1.30% 3.56% 13.11%
NDGC50 1.30% 32.62% 32.10% 27.61% 1.24% 1.77% 4.59% 14.46%

REBUS AUC 0.6524 0.9677 0.9854 0.8735 0.7184 0.7507 0.8934 0.8345
HIT25 3.39% 62.77% 66.73% 53.33% 4.24% 4.12% 9.30% 29.13%
HIT50 5.32% 70.41% 79.77% 67.17% 6.20% 6.24% 14.61% 35.68%

NDGC25 1.31% 46.02% 32.00% 24.20% 1.68% 1.52% 3.52% 15.75%
NDGC50 1.68% 47.49% 34.52% 26.86% 2.05% 1.92% 4.54% 17.01%

Rank AUC 1 1 2 1 1 2 1 1.29
of HIT25 1 2 2 1 2 2 3 1.86

REBUS HIT50 1 2 2 1 2 3 6 2.43
NDGC25 2 1 1 4 2 2 7 2.71
NDGC50 1 1 1 4 2 2 7 2.57

Improv. AUC 4.37% 0.60% -0.16% 0.05% 2.76% -0.04% 0.73% 1.53%
vs Best HIT25 17.71% -1.77% -0.85% 3.03% -17.67% -23.13% -33.29% 3.89%

HIT50 18.49% -0.48% -2.90% 2.74% -7.60% -14.75% -25.23% 2.62%
NDGC25 -0.76% 0.22% 0.03% -9.23% -32.53% -45.13% -39.52% 10.53%
NDGC50 8.39% 0.51% 0.00% -8.20% -26.52% -39.05% -34.11% 9.39%

48 Chapter 3. Sequential recommendation with metric models based on frequent sequences

Table 3.5: AUC, HIT 25, HIT 50, NDCG 25 and NDCG 50 for the different models on ML-5,
ML-10, ML-20, ML-30 and ML-50 datasets. The last row, called Improv. vs Best, shows the
improvement in percentage of our method compared to the other best model (best obtained
results are in bold and best obtained results for concurrent models are underlined). The last
column is the average performance on the 12 datasets, including datasets of Table 3.4.

Metric ML-5 ML-10 ML-20 ML-30 ML-50 Avg(ML) Avg(All)

POP AUC 0.7352 0.7722 0.7919 0.7981 0.8032 0.7801 0.7496
HIT25 7.48% 7.60% 7.57% 7.57% 7.72% 7.59% 12.08%
HIT50 12.65% 12.93% 12.82% 12.72% 13.13% 12.85% 17.75%

NDGC25 2.64% 2.75% 2.73% 2.66% 2.70% 2.70% 4.65%
NDGC50 3.63% 3.76% 3.74% 3.64% 3.74% 3.70% 5.74%

FMC AUC 0.7414 0.8054 0.8446 0.8560 0.8689 0.8233 0.7982
HIT25 9.84% 13.84% 16.44% 16.74% 18.63% 15.10% 21.22%
HIT50 15.25% 20.60% 24.95% 25.58% 27.72% 22.82% 28.32%

NDGC25 3.57% 5.72% 6.62% 6.69% 7.36% 5.99% 9.59%
NDGC50 4.61% 7.01% 8.25% 8.39% 9.11% 7.47% 10.95%

BPR AUC 0.7623 0.8241 0.8517 0.8570 0.8629 0.8316 0.8074
HIT25 9.65% 11.96% 11.49% 10.66% 11.24% 11.00% 15.47%
HIT50 15.98% 19.74% 19.56% 18.74% 18.56% 18.52% 22.72%

NDGC25 3.52% 4.16% 4.06% 3.68% 3.87% 3.86% 6.00%
NDGC50 4.73% 5.65% 5.61% 5.22% 5.27% 5.30% 7.39%

FPMC AUC 0.7309 0.8150 0.8629 0.8766 0.8891 0.8349 0.8106
HIT25 7.82% 14.65% 17.42% 18.65% 18.96% 15.50% 21.99%
HIT50 13.26% 22.90% 26.28% 27.60% 28.63% 23.74% 29.23%

NDGC25 2.87% 5.57% 6.63% 7.27% 7.41% 5.95% 10.02%
NDGC50 3.91% 7.15% 8.33% 8.99% 9.26% 7.53% 11.42%

PRME AUC 0.7771 0.8302 0.8645 0.8765 0.8867 0.8470 0.8254
HIT25 10.51% 15.58% 14.56% 16.19% 18.00% 14.97% 21.67%
HIT50 16.94% 23.81% 24.39% 25.55% 27.14% 23.57% 29.41%

NDGC25 3.78% 5.79% 5.16% 5.94% 6.62% 5.46% 10.06%
NDGC50 5.01% 7.37% 7.04% 7.72% 8.37% 7.10% 11.55%

TransRec AUC 0.7900 0.8477 0.8736 0.8816 0.8883 0.8563 0.8354
HIT25 14.36% 16.99% 16.49% 16.00% 17.09% 16.18% 23.10%
HIT50 22.45% 25.60% 26.51% 26.30% 27.87% 25.75% 31.01%

NDGC25 5.33% 6.30% 5.96% 5.95% 6.35% 5.98% 10.80%
NDGC50 6.88% 7.95% 7.89% 7.93% 8.42% 7.81% 12.32%

S-KNN AUC 0.2778 0.7164 0.8115 0.8297 0.8421 0.6955 0.6022
HIT25 9.46% 14.99% 12.85% 12.62% 11.97% 12.38% 18.78%
HIT50 13.08% 22.62% 21.13% 20.50% 19.27% 19.32% 25.51%

NDGC25 3.87% 5.55% 4.54% 4.48% 4.26% 4.54% 9.65%
NDGC50 4.57% 7.01% 6.13% 5.99% 5.66% 5.87% 10.94%

CASER AUC 0.7493 0.8118 0.8534 0.8650 0.8764 0.8312 0.8168
HIT25 7.40% 11.36% 14.27% 15.95% 18.66% 13.53% 19.54%
HIT50 13.58% 18.20% 22.62% 24.57% 28.18% 21.43% 26.67%

NDGC25 2.63% 4.06% 5.35% 5.89% 7.07% 5.00% 7.98%
NDGC50 3.82% 5.37% 6.95% 7.54% 8.90% 6.52% 9.36%

SASRec AUC 0.8000 0.8537 0.8760 0.8860 0.8957 0.8623 0.8387
HIT25 12.77% 15.91% 16.11% 18.26% 18.55% 16.32% 22.80%
HIT50 20.83% 25.32% 25.96% 28.20% 29.29% 25.92% 30.90%

NDGC25 4.53% 6.08% 5.81% 6.97% 7.09% 6.10% 10.19%
NDGC50 6.08% 7.89% 7.70% 8.87% 9.15% 7.94% 11.74%

REBUS AUC 0.8031 0.8563 0.8772 0.8826 0.8884 0.8615 0.8458
HIT25 14.42% 15.27% 15.60% 15.80% 16.72% 15.56% 23.48%
HIT50 22.79% 25.50% 26.01% 26.21% 26.91% 25.48% 31.43%

NDGC25 5.32% 5.59% 5.60% 5.80% 6.03% 5.66% 11.55%
NDGC50 6.92% 7.55% 7.59% 7.80% 7.98% 7.57% 13.07%

Rank AUC 1 1 1 2 3 1.60 1.42
of HIT25 1 4 5 7 7 4.80 3.08

REBUS HIT50 1 2 3 4 7 3.40 2.83
NDGC25 2 5 5 7 7 5.20 3.75
NDGC50 1 3 5 5 7 4.20 3.25

Improv. AUC 0.39% 0.30% 0.14% -0.38% -0.82% -0.09% 0.85%
vs Best HIT25 0.42% -10.12% -10.45% -15.28% -11.81% -4.66% 1.65%

HIT50 1.51% -0.39% -1.89% -7.06% -8.13% -1.70% 1.35%
NDGC25 -0.19% -11.27% -15.54% -20.22% -18.62% -7.21% 6.94%
NDGC50 0.58% -5.03% -8.88% -13.24% -13.82% -4.66% 6.09%

3.4. Experiments 49

Table 3.6: Average improvement of REBUS compared to each model on others datasets
(e.g., Epinions, Foursquare, Adressa, Visiativ and Amazon datasets), ML datasets (e.g., ML-
5, ML-10, ML-20, ML-30 and ML-50) and all datasets.

M
etr

ic

SASRec

Tra
nsR

ec

PRM
E

CASER

FPM
C

BPR
FM

C
POP

S-K
NN

AUC 1.53% 1.71% 3.04% 3.47% 5.21% 5.62% 6.95% 14.68% 55.84%
HIT5 13.98% 7.15% 17.98% 55.76% 15.28% 116.18% 22.41% 169.83% 20.41%
HIT10 7.25% 3.22% 12.58% 34.88% 9.62% 79.79% 13.66% 119.54% 21.85%
HIT25 6.16% 3.89% 10.13% 22.24% 9.43% 56.03% 13.79% 90.52% 24.70%

Avg HIT50 3.54% 2.62% 6.25% 17.29% 7.60% 38.72% 10.64% 67.91% 19.21%
Others NDGC5 23.31% 11.56% 21.48% 77.11% 22.75% 153.87% 30.78% 229.32% 16.15%

NDGC10 17.84% 8.74% 17.98% 59.40% 18.27% 121.25% 24.09% 179.30% 17.40%
NDGC25 20.14% 10.53% 17.98% 55.79% 21.72% 109.16% 29.63% 160.76% 18.42%
NDGC50 17.63% 9.39% 15.56% 49.47% 19.79% 91.55% 26.56% 136.58% 16.83%

AUC -0.09% 0.61% 1.71% 3.65% 3.19% 3.60% 4.64% 10.43% 23.87%
HIT5 -10.74% -7.49% 0.00% 11.92% -13.43% 53.74% -17.56% 113.86% 25.58%
HIT10 -6.75% -5.38% -0.26% 11.21% -7.19% 48.85% -9.15% 95.45% 26.47%
HIT25 -4.66% -3.83% 3.94% 15.00% 0.39% 41.45% 3.05% 105.01% 25.69%

Avg HIT50 -1.70% -1.05% 8.10% 18.90% 7.33% 37.58% 11.66% 98.29% 31.88%
ML NDGC5 -12.13% -8.22% 2.68% 10.74% -14.92% 57.65% -20.00% 123.33% 23.50%

NDGC10 -9.38% -6.68% 1.34% 10.23% -10.66% 53.25% -14.51% 107.14% 24.42%
NDGC25 -7.21% -5.35% 3.66% 13.20% -4.87% 46.63% -5.51% 109.63% 24.67%
NDGC50 -4.66% -3.07% 6.62% 16.10% 0.53% 42.83% 1.34% 104.59% 28.96%

AUC 0.85% 1.24% 2.47% 3.55% 4.34% 4.76% 5.96% 12.83% 40.45%
HIT5 20.33% 10.48% 22.18% 68.47% 23.22% 134.12% 35.03% 184.29% 19.34%
HIT10 11.74% 5.73% 16.61% 43.00% 15.07% 90.24% 21.79% 126.63% 20.59%
HIT25 2.98% 1.65% 8.35% 20.16% 6.78% 51.78% 10.65% 94.37% 25.03%

Avg HIT50 1.72% 1.35% 6.87% 17.85% 7.53% 38.34% 10.98% 77.07% 23.21%
All NDGC5 31.67% 15.51% 25.15% 95.49% 32.10% 181.02% 45.22% 256.01% 15.07%

NDGC10 25.16% 12.45% 21.94% 74.68% 26.31% 142.58% 36.21% 200.44% 16.06%
NDGC25 13.35% 6.94% 14.81% 44.74% 15.27% 92.50% 20.44% 148.39% 19.69%
NDGC50 11.33% 6.09% 13.16% 39.64% 14.45% 76.86% 19.36% 127.70% 19.47%

Figure 3.2: Performance of POP X (first row) and DIV X (second row) with X P t1, 5, 25u
for each model. Values are averaged over all datasets.

50 Chapter 3. Sequential recommendation with metric models based on frequent sequences

Figure 3.3: Influence on AUC, HIT 25, HIT 50, NDCG 25 and NDCG 50 (in ordinate) of
the dimension k (in abscissa) of the latent vectors (k � t10, 20, 30, 40, 50u).

3.4. Experiments 51

3.4.5 Cold-start user study

We now investigate how REBUS behaves when dealing with cold-start users, i.e., users
whose sequence of actions is too short to take benefit from. We compare REBUS to solely 4
methods – POP, FMC, SASRec and S-KNN – since the other ones are not applicable for cold-
start user recommendation. Only models that just embed items can make recommendations
in this context. To evaluate the performance of REBUS and its competitors, we have chosen
7 datasets: Epinion, Foursquare, Adressa, Visiativ, Amazon-Automotive, Amazon-Office and
Amazon-VideoGames. We then split each dataset into two parts:

1. One that contains users and items with at least 5 interactions. This is the same filter
we used previously since we want to train the model with the same configuration and
have the same hyperparameters;

2. A second one that contains cold-start users, that is to say users who do not appear in
the first part but who interact with items that appear in the first part. Here, the users
have a short history (between 1 and 4 items). This part is not used to train the models
but only to evaluate their performance on the cold-start users.

For each dataset, the first parts are used as done in the previous studies. The second
parts are split as follows:

1. The most recent item is used for the test;

2. The other items of the user sequence are used to predict the test item.

The performances of the different methods on every dataset are reported in Table 3.7
10. We can observe that REBUS outperforms other models except S-KNN on most of the
datasets, having the best AUC and HIT 50 values. S-KNN returns the best score for HIT 25
and NDCG X. This can be explained by the fact that user sequences in this testbed are
similar to those used in session-based recommendations (short sequences). In this context, S-
KNN is well adapted for cold-start users. We report in Figure 3.4 some additional indicators
(i.e., POP X and DIV X) of the recommendations made for cold-start users. Results are
similar to those obtained in Figure 3.2. S-KNN provides more diverse recommendations
than other models. This may explain it is the best model for HIT 25 and NDCG X. This
study demonstrates that REBUS outperforms other models for the cold-start user problem
for some performance metrics (i.e., AUC and HIT 50). For others metrics, REBUS is
outperformed by only S-KNN. These good performances are mainly due to the embedding
we use to model the data which is applicable on short user sequences.

10We only show AUC, HIT 25, HIT 50, NDCG 25 and NDCG 50 in the Table. HIT 5, HIT 10, NDCG 5
and NDCG 10 are shown in Appendix 7 Table 7.7.

52 Chapter 3. Sequential recommendation with metric models based on frequent sequences

Table 3.7: AUC, HIT 25, HIT 50, NDCG 25 and NDCG 50 for the different models that do
not suffer of the problem of cold-start users. The 3 last rows, called Improv. vs Best, Improv.
vs SASRec and Improv. vs S-KNN, shows the improvement in percentage of our method
compared to the best model, SASRec and S-KNN (best obtained results are in bold and best
obtained results for concurrent models are underlined).

M
et

ri
c

E
p
in

io
n
s

F
ou

rs
q

A
d
re

ss
a

V
is

ia
ti

v

A
u
to

O
ffi

ce

G
am

es

A
v
g

POP AUC 0.5741 0.8862 0.9689 0.7810 0.6400 0.6933 0.7702 0.7591
HIT25 3.62% 41.38% 43.41% 31.21% 2.78% 0.46% 3.98% 18.12%
HIT50 5.41% 51.93% 59.32% 46.08% 4.06% 1.69% 5.89% 24.91%

NDGC25 1.41% 15.82% 18.55% 12.98% 1.09% 0.12% 1.55% 7.36%
NDGC50 1.76% 17.88% 21.59% 15.81% 1.34% 0.36% 1.91% 8.66%

FMC AUC 0.5829 0.9326 0.9776 0.8316 0.6644 0.7020 0.8529 0.7920
HIT25 2.28% 48.89% 59.37% 45.54% 3.32% 1.32% 10.88% 24.51%
HIT50 3.61% 60.15% 72.33% 57.97% 4.84% 2.72% 15.63% 31.04%

NDGC25 0.91% 22.98% 27.35% 23.84% 1.50% 0.54% 4.27% 11.63%
NDGC50 1.16% 25.16% 29.84% 26.22% 1.79% 0.81% 5.19% 12.88%

S-KNN AUC 0.0495 0.7012 0.9515 0.8048 0.1138 0.1297 0.4103 0.4515
HIT25 3.09% 54.48% 58.82% 51.01% 6.91% 7.20% 14.83% 28.05%
HIT50 3.90% 61.65% 70.61% 61.18% 8.21% 8.62% 18.93% 33.30%

NDGC25 1.74% 34.67% 34.60% 27.89% 3.68% 4.15% 6.91% 16.24%
NDGC50 1.90% 36.06% 36.87% 29.84% 3.93% 4.43% 7.70% 17.25%

SASRec AUC 0.6504 0.9407 0.9806 0.8655 0.6893 0.7340 0.8698 0.8186
HIT25 3.36% 47.57% 61.29% 49.11% 2.85% 2.96% 9.26% 25.20%
HIT50 5.07% 58.44% 74.98% 61.59% 4.20% 4.84% 14.12% 31.89%

NDGC25 1.29% 23.12% 29.14% 24.56% 1.12% 1.05% 3.66% 11.99%
NDGC50 1.61% 25.22% 31.77% 26.97% 1.38% 1.41% 4.60% 13.28%

REBUS AUC 0.6253 0.9537 0.9815 0.8612 0.7267 0.7309 0.8747 0.8220
HIT25 3.94% 53.75% 63.42% 51.61% 4.57% 5.09% 10.46% 27.55%
HIT50 6.01% 64.47% 75.65% 62.78% 6.76% 7.65% 15.88% 34.17%

NDGC25 1.58% 30.21% 33.22% 26.23% 1.79% 2.07% 4.04% 14.16%
NDGC50 1.97% 32.28% 35.58% 28.39% 2.21% 2.56% 5.08% 15.44%

Rank AUC 2 1 1 2 1 2 1 1.43
of HIT25 1 2 1 1 2 2 3 1.71

REBUS HIT50 1 1 1 1 2 2 2 1.43
NDGC25 2 2 2 2 2 2 3 2.14
NDGC50 1 2 2 2 2 2 3 2.00

Improv. AUC -3.86% 1.38% 0.09% -0.50% 5.43% -0.42% 0.56% 0.42%
VS HIT25 8.84% -1.34% 3.48% 1.18% -33.86% -29.31% -29.47% -1.78%

Best HIT50 11.09% 4.57% 0.89% 1.93% -17.66% -11.25% -16.11% 2.61%
NDGC25 -9.20% -12.86% -3.99% -5.95% -51.36% -50.12% -41.53% -12.81%
NDGC50 3.68% -10.48% -3.50% -4.86% -43.77% -42.21% -34.03% -10.49%

Improv. AUC -3.86% 1.38% 0.09% -0.50% 5.43% -0.42% 0.56% 0.42%
VS HIT25 17.26% 12.99% 3.48% 5.09% 60.35% 71.96% 12.96% 9.33%

SASRec HIT50 18.54% 10.32% 0.89% 1.93% 60.95% 58.06% 12.46% 7.15%
NDGC25 22.48% 30.67% 14.00% 6.80% 59.82% 97.14% 10.38% 18.10%
NDGC50 22.36% 27.99% 11.99% 5.27% 60.14% 81.56% 10.43% 16.27%

Improv. AUC 1163% 36.01% 3.15% 7.01% 538.58% 463.53% 113.19% 82.06%
VS HIT25 27.51% -1.34% 7.82% 1.18% -33.86% -29.31% -29.47% -1.78%

S-KNN HIT50 54.10% 4.57% 7.14% 2.62% -17.66% -11.25% -16.11% 2.61%
NDGC25 -9.20% -12.86% -3.99% -5.95% -51.36% -50.12% -41.53% -12.81%
NDGC50 3.68% -10.48% -3.50% -4.86% -43.77% -42.21% -34.03% -10.49%

3.4. Experiments 53

Figure 3.4: Performance of POP X (first row) and DIV X (second row) with X P t1, 5, 25u
for the different models that do not suffer of the problem of cold-start users. Values are
averaged over all datasets.

3.4.6 Study of the impact of user preferences and sequential dynamics in
the recommendation

We have demonstrated that REBUS outperforms the state-of-the-art algorithms in most
of the configurations (i.e., datasets and metrics). We now study how our model effectively
behave. Especially, we investigate the impact of both user preferences and sequential dy-
namics on recommendation. To this end, we consider independently these two components.
Furthermore, we also examine fixed-order Markov chains in our model instead of frequent
sequences to capture the sequential dynamics. REBUS UP refers to the long term part,
REBUS SD refers to the short term part using personalized context via frequent sequences,
XMC means that the model uses Markov chains with a fixed-order X. The performances of
the different configurations on each dataset are reported in Tables 3.8 and 3.911.

As expected, we can observe that the configurations of our model that combine user
preferences and sequential dynamics (i.e. REBUS and REBUSXMC) outperform other
configurations – that only model either user preferences or the sequential dynamics – (1) for
all metrics on sparse datasets and (2) only for AUC on dense datasets. Indeed, surprisingly,
REBUS SDXMC (when X ¡ 1) outperforms on dense datasets all models tested in our
experimental study, SASRec included, for HIT X and NDGC X (see Table 3.5). Despite
the fact that REBUS SDXMC (when X ¡ 1) outperforms all non-combining configurations

11We only show AUC, HIT 25, HIT 50, NDCG 25 and NDCG 50 in these tables. HIT 5, HIT 10, NDCG 5
and NDCG 10 are reported in Appendix 7 Tables 7.8 and 7.9.

54 Chapter 3. Sequential recommendation with metric models based on frequent sequences

Table 3.8: AUC, HIT 25, HIT 50, NDCG 25 and NDCG 50 for REBUS and his variants on
Epinions, Foursquare, Adressa, Visiativ, Amazon-Automotive, Amazon-Office-Product and
Amazon-Video-Games datasets (best obtained results are in bold). The last column is the
average performance on these 7 datasets, the average of all datasets is included in Table 3.9.

M
et

ri
c

E
p
in

io
n
s

F
ou

rs
q

A
d
re

ss
a

V
is

ia
ti

v

A
u
to

O
ffi

ce

G
am

es

A
v
g

R
E
B
U
S

U
P

AUC 0.6495 0.9661 0.9828 0.8521 0.7147 0.7484 0.8860 0.8285
HIT25 3.21% 61.16% 63.48% 43.80% 4.08% 3.88% 8.83% 26.92%
HIT50 5.00% 69.20% 76.93% 59.64% 6.02% 6.06% 14.14% 33.86%

NDGC25 1.27% 42.07% 31.80% 18.29% 1.62% 1.53% 3.28% 14.26%
NDGC50 1.61% 43.62% 34.40% 21.34% 1.99% 1.94% 4.30% 15.60%

R
E
B
U
S

S
D

1
M

C AUC 0.6257 0.9624 0.9846 0.8591 0.6855 0.7184 0.8710 0.8153
HIT25 2.65% 55.12% 64.26% 50.97% 3.80% 4.08% 9.16% 27.15%
HIT50 3.84% 65.09% 77.89% 63.58% 5.55% 6.74% 13.74% 33.78%

NDGC25 1.19% 28.93% 30.23% 27.11% 1.47% 1.52% 3.59% 13.44%
NDGC50 1.42% 30.85% 32.87% 29.55% 1.81% 2.03% 4.47% 14.71%

R
E
B
U
S

S
D

2
M

C AUC 0.6428 0.9660 0.9852 0.8720 0.7132 0.7440 0.8872 0.8301
HIT25 3.00% 55.26% 64.75% 53.55% 4.11% 4.40% 9.01% 27.73%
HIT50 5.30% 65.07% 78.66% 66.45% 5.96% 6.93% 13.95% 34.62%

NDGC25 1.29% 30.11% 30.67% 25.82% 1.61% 1.59% 3.47% 13.51%
NDGC50 1.73% 32.01% 33.36% 28.31% 1.96% 2.08% 4.42% 14.84%

R
E
B
U
S

S
D

3
M

C AUC 0.6485 0.9663 0.9850 0.8725 0.7192 0.7536 0.8892 0.8335
HIT25 3.35% 55.21% 64.56% 52.90% 4.15% 4.60% 8.68% 27.64%
HIT50 5.30% 64.92% 78.17% 66.31% 6.15% 7.31% 13.57% 34.53%

NDGC25 1.34% 30.91% 30.36% 24.23% 1.60% 1.66% 3.36% 13.35%
NDGC50 1.71% 32.79% 32.99% 26.81% 1.99% 2.18% 4.30% 14.68%

R
E
B
U
S

S
D

AUC 0.6114 0.9653 0.9849 0.8610 0.6904 0.7232 0.8796 0.8166
HIT25 3.02% 55.37% 64.78% 51.25% 3.89% 4.11% 9.09% 27.36%
HIT50 4.25% 65.20% 78.41% 63.80% 5.84% 6.69% 13.78% 34.00%

NDGC25 1.20% 30.72% 30.47% 26.35% 1.51% 1.49% 3.53% 13.61%
NDGC50 1.43% 32.62% 33.10% 28.78% 1.89% 1.99% 4.43% 14.89%

R
E
B
U
S
1
M

C

AUC 0.6584 0.9682 0.9854 0.8751 0.7190 0.7542 0.8935 0.8363
HIT25 3.67% 63.21% 66.45% 53.48% 4.11% 4.27% 9.28% 29.21%
HIT50 5.18% 70.81% 79.71% 67.60% 5.99% 6.44% 14.73% 35.78%

NDGC25 1.46% 46.16% 31.77% 24.59% 1.62% 1.55% 3.53% 15.81%
NDGC50 1.75% 47.63% 34.33% 27.31% 1.99% 1.97% 4.57% 17.08%

R
E
B
U
S
2
M

C

AUC 0.6660 0.9676 0.9855 0.8754 0.7189 0.7537 0.8936 0.8372
HIT25 3.25% 62.76% 66.61% 52.40% 4.16% 4.15% 9.17% 28.93%
HIT50 5.56% 70.26% 79.68% 66.16% 6.07% 6.51% 14.55% 35.54%

NDGC25 1.31% 45.92% 31.92% 23.58% 1.62% 1.60% 3.46% 15.63%
NDGC50 1.75% 47.37% 34.44% 26.21% 1.99% 2.05% 4.49% 16.90%

R
E
B
U
S
3
M

C

AUC 0.6624 0.9669 0.9849 0.8729 0.7179 0.7528 0.8923 0.8357
HIT25 3.49% 62.92% 64.60% 50.39% 4.13% 4.19% 8.82% 28.36%
HIT50 5.44% 70.24% 78.53% 64.95% 6.01% 6.32% 14.06% 35.08%

NDGC25 1.35% 46.14% 30.36% 22.57% 1.62% 1.61% 3.31% 15.28%
NDGC50 1.73% 47.55% 33.05% 25.36% 1.98% 2.02% 4.32% 16.57%

R
E
B
U
S

AUC 0.6524 0.9677 0.9854 0.8735 0.7184 0.7507 0.8934 0.8345
HIT25 3.39% 62.77% 66.73% 53.33% 4.24% 4.12% 9.30% 29.13%
HIT50 5.32% 70.40% 79.77% 67.17% 6.20% 6.24% 14.61% 35.67%

NDGC25 1.31% 46.04% 32.00% 24.20% 1.68% 1.52% 3.52% 15.75%
NDGC50 1.68% 47.52% 34.52% 26.86% 2.05% 1.92% 4.54% 17.01%

3.4. Experiments 55

Table 3.9: AUC, HIT 25, HIT 50, NDCG 25 and NDCG 50 for REBUS and his variants on
ML-5, ML-10, ML-20, ML-30 and ML-50 datasets (best obtained results are in bold). The
last column is the average performance on the 12 datasets, including datasets of Table 3.8.

M
et

ri
c

M
L
-5

M
L
-1

0

M
L
-2

0

M
L
-3

0

M
L
-5

0

A
v
g(

M
L
)

A
v
g(

A
ll
)

R
E
B
U
S

U
P

AUC 0.7941 0.8428 0.8603 0.8631 0.8671 0.8455 0.8356
HIT25 12.95% 12.49% 11.97% 11.61% 11.39% 12.08% 20.74%
HIT50 21.51% 20.72% 19.99% 19.47% 19.49% 20.24% 28.18%

NDGC25 4.80% 4.40% 4.10% 4.06% 3.88% 4.25% 10.09%
NDGC50 6.43% 5.97% 5.64% 5.56% 5.43% 5.81% 11.52%

R
E
B
U
S

S
D

1
M

C AUC 0.7848 0.8207 0.8556 0.8657 0.8725 0.8399 0.8255
HIT25 13.45% 15.66% 17.83% 18.08% 18.20% 16.65% 22.77%
HIT50 20.83% 23.22% 26.38% 27.14% 27.39% 24.99% 30.12%

NDGC25 5.10% 6.18% 6.74% 6.99% 7.03% 6.41% 10.51%
NDGC50 6.52% 7.63% 8.39% 8.73% 8.80% 8.01% 11.92%

R
E
B
U
S

S
D

2
M

C AUC 0.7954 0.8468 0.8718 0.8773 0.8850 0.8553 0.8406
HIT25 14.06% 18.15% 19.32% 19.71% 19.75% 18.20% 23.76%
HIT50 22.07% 26.89% 29.03% 30.02% 30.29% 27.66% 31.72%

NDGC25 5.17% 6.75% 7.28% 7.74% 7.49% 6.88% 10.75%
NDGC50 6.71% 8.43% 9.14% 9.71% 9.50% 8.70% 12.28%

R
E
B
U
S

S
D

3
M

C AUC 0.7969 0.8531 0.8763 0.8804 0.8879 0.8589 0.8441
HIT25 13.78% 17.34% 19.56% 19.44% 19.47% 17.92% 23.59%
HIT50 21.87% 27.57% 29.92% 29.86% 30.44% 27.93% 31.78%

NDGC25 5.03% 6.48% 7.35% 7.51% 7.28% 6.73% 10.59%
NDGC50 6.58% 8.44% 9.34% 9.51% 9.39% 8.65% 12.17%

R
E
B
U
S

S
D

AUC 0.7758 0.8282 0.8572 0.8677 0.8756 0.8409 0.8267
HIT25 13.96% 16.05% 17.50% 18.26% 18.43% 16.84% 22.98%
HIT50 21.29% 23.88% 26.73% 27.77% 27.79% 25.49% 30.45%

NDGC25 5.16% 6.13% 6.49% 7.03% 6.83% 6.33% 10.58%
NDGC50 6.57% 7.64% 8.26% 8.86% 8.62% 7.99% 12.02%

R
E
B
U
S
1
M

C

AUC 0.8023 0.8555 0.8770 0.8829 0.8883 0.8612 0.8466
HIT25 14.82% 15.17% 15.80% 16.58% 16.87% 15.85% 23.64%
HIT50 22.67% 24.66% 26.61% 27.21% 27.34% 25.70% 31.58%

NDGC25 5.44% 5.48% 5.68% 6.08% 6.21% 5.78% 11.63%
NDGC50 6.95% 7.30% 7.76% 8.12% 8.21% 7.67% 13.16%

R
E
B
U
S
2
M

C

AUC 0.8012 0.8557 0.8770 0.8837 0.8905 0.8616 0.8474
HIT25 14.46% 14.85% 15.35% 16.48% 15.91% 15.41% 23.30%
HIT50 22.31% 24.82% 25.53% 27.17% 26.78% 25.32% 31.28%

NDGC25 5.24% 5.38% 5.45% 6.04% 5.83% 5.59% 11.45%
NDGC50 6.74% 7.29% 7.40% 8.09% 7.92% 7.49% 12.98%

R
E
B
U
S
3
M

C

AUC 0.8000 0.8538 0.8764 0.8825 0.8894 0.8604 0.8460
HIT25 14.03% 14.41% 14.82% 15.78% 15.63% 14.93% 22.77%
HIT50 21.96% 24.06% 25.30% 26.31% 25.62% 24.65% 30.73%

NDGC25 5.08% 5.25% 5.29% 5.67% 5.53% 5.36% 11.15%
NDGC50 6.61% 7.10% 7.29% 7.69% 7.45% 7.23% 12.68%

R
E
B
U
S

AUC 0.8031 0.8563 0.8772 0.8826 0.8884 0.8615 0.8458
HIT25 14.42% 15.27% 15.60% 15.80% 16.72% 15.56% 23.48%
HIT50 22.79% 25.50% 26.01% 26.21% 26.91% 25.48% 31.43%

NDGC25 5.32% 5.59% 5.60% 5.80% 6.03% 5.66% 11.55%
NDGC50 6.92% 7.55% 7.59% 7.80% 7.98% 7.57% 13.08%

56 Chapter 3. Sequential recommendation with metric models based on frequent sequences

(that is to say REBUS SD1MC , REBUS SD and REBUS UP), there is no improvement
when XMC is used in REBUS (i.e. REBUSXMC with X ¡ 1). In overall, REBUS SD
provides better performances than REBUS SD1MC , which proves that there is an interest in
using personalized sequences to model sequential dynamics. To conclude, the most consistent
configurations are REBUS1MC and REBUS.

3.4.7 Study of the used user preferences window

We study the effect of the hyperparameter max length. It allows REBUS to be more
flexible by controlling the temporal window that influences the user’s preferences and to get
rid of the old past: max length 15 means that only the recent actions of the user are
considered, whereas greater values of max length enable older past actions to impact the
representation of the user preferences. As max length only affects the user preferences, it
also influences REBUSXMC .

In Figure 3.5, we analyze the impact of max length (max length P t5, 10, 15, 25, 35, 50,
75, 100, 200u) on AUC, HIT 25, HIT 50, NDCG 25 and NDCG 50. We can observe different
cases:

1. In most of the cases, all metrics follow nearly the same behavior. There are some
exceptions, for instance on ML-50 dataset when 5 ¤ max length ¤ 15 the AUC
increases while the HIT 25, HIT 50, NDCG 25 and NDCG 50 decrease. However, when
max length ¡ 15, all metrics follow nearly the same behavior;

2. The best performance appears when REBUS consider high values of max length
(max length ¡ 30) (e.g., Adressa dataset, γ � 0.3) ;

3. The best performance appears when REBUS consider low values of max length
(max length ¤ 15) (e.g., ML-50 dataset) ;

4. There is no real trend that appears when we change max length (e.g., Office and
Visiativ dataset).

Also, the green ellipse in Figure 3.5 is the fixed max length used for REBUS in Section
3.4.4 but we can see that if we change max length for REBUS and REBUSXMC we can
sometimes obtain better performance on AUC, HIT 25, HIT 50, NDCG 25 and NDCG 50
than those reported on Tables 3.4 and 3.5.

We can conclude that the choice of max length has an influence on the performance of
REBUS. With only few tests (4 or 5 trials), a solution close to the best one can be quickly
found.

3.4.8 Study of the used personalized sequences

We study the characteristics of the sequences used by REBUS for recommendation. The
first five columns (from (A) to (E)) of Table 3.10 12 report the percentage of sequences m

s
r1,tr
u

that are equivalent to: (A) no matched items, (B) a first order Markov chain. Column (A)
and (B) are both equivalent to a first order Markov chain but we split it into two different

12The two numbers after the name of the dataset are respectively the value of minCount and L.

3.4. Experiments 57

Figure 3.5: Influence on AUC, HIT 25, HIT 50, NDCG 25 and NDCG 50 (in ordinate) of
max length (in abscissa)for REBUS REBUS1MC , REBUS2MC and REBUS3MC . The
green ellipse is the fixed max length use in 3.4.4

58 Chapter 3. Sequential recommendation with metric models based on frequent sequences

columns to point out the fact that it is very uncommon that no item from F matches s
r1,tr
u ,

(C) a first order Markov chain but not with the most recent item (D) a L order Markov
chain (L ¡ 1). In column (E) we report the percentage of sequences m

s
r1,tr
u

that cannot be

modeled by Markov chains (sequences that are not strings). The column (A) confirms that

it is very uncommon that none of the sequences of F match the sequence s
r1,tr
u . REBUS

often takes into account the most recent item within the user’s sequence, but there are some
cases for which older items are used. This cannot be obtained by first order Markov chains.
Furthermore, depending on the dataset, between 10% to 40% (Columns (C) + (E)) of the
sequences are different from Markov Chains. The added value of our approach can be assessed
by (C), (D) and (E).

The two last columns13 of Table 3.10 reports the mean of m
s
r1,tr
u

sizes (F) and the mean

of their occupation in su (G), i.e., difference between the last position and the first position
in m

s
r1,tr
u

(here we count the wildcards). In most cases, short sequences are exploited to

model the sequential dynamics. Nevertheless, we have observed that there are different sizes
ranging from 1 to 15. The mean of the occupation of the sequences is rather low. REBUS
often uses compact sequences. This can explain the good results of short Markov chains to
capture sequential dynamics in REBUS. We can also observe that REBUS sometimes uses
non-consecutive items with an arbitrary number of spaces between items. Such sequences
cannot be obtained by fixed order Markov chains. This is why frequent sequences outperforms
Markov chain when focusing only on the sequential dynamics (see Table 3.8).

Table 3.10: The first five columns show the percentage of substrings m
s
r1,tr
u

that are equivalent

to: (A) no matched items, (B) a first order Markov chain, (C) a first order Markov chain
but not with the most recent item, (D) a L order Markov chain (L ¡ 1). (E) shows the
percentage of substrings m

s
r1,tr
u

that cannot be modeled by Markov chains (substrings that

are mapped in a non-consecutive way on the user history). The two last columns show the
mean of m

s
r1,tr
u

sizes (F) and the mean of their occupation length (here the wildcards are

taken into account) in the user sequence (G).

Dataset (A) (B) (C) (D) (E) (F) (G)
no match MC1 MC1 old MCL Seq. Size Occup.

Epinions 2 3 3.39% 62.21% 34.06% 0.16% 0.18% 1.01 1.01
Foursquare 2 15 0.06% 26.15% 1.39% 43.85% 28.54% 2.36 2.93

Adressa 2 2 0.00% 1.66% 0.02% 93.05% 5.26% 1.98 2.07
Visiativ 2 10 0.00% 40.27% 0.21% 28.97% 30.54% 1.71 2.91

Ama-Auto 2 8 2.12% 72.82% 22.48% 1.31% 1.27% 1.03 1.04
Ama-Office 2 8 1.19% 72.86% 20.79% 2.69% 2.48% 1.05 1.10

Ama-Games 2 10 0.06% 80.74% 5.57% 6.13% 7.50% 1.14 1.38
ML-5 2 3 0.00% 87.05% 7.50% 3.08 % 2.37% 1.06 1.08
ML-10 2 8 0.00% 79.35% 1.94% 8.06 % 10.65% 1.20 1.48
ML-20 2 8 0.00% 59.11% 0.81% 13.41% 26.67% 1.42 2.90
ML-30 2 10 0.00% 47.37% 0.51% 16.71% 35.41% 1.55 4.21
ML-50 2 10 0.00% 35.33% 0.17% 20.94% 43.56% 1.68 5.96

13Sequences that do not match any substring of F are omitted for columns (F) and (G).

3.4. Experiments 59

3.4.9 Relative importance of user preferences on sequential dynamics

The user preferences modeling part is very important to provide accurate recommendations.
Models that only focus on user preferences (e.g., BPR-MF, REBUS UP) outperform those
that only consider the sequential dynamics (e.g., FMC, REBUS SD, REBUS SD1MC) on
the AUC metric. However, there are also models that only focus on sequential dynamics and
outperform those that only consider the user preferences on HIT X or NDGC X. The trade
off between user preferences and sequential dynamics is very important to make REBUS the
most robust and accurate as possible for all kind of datasets and metrics. The γ hyperpa-
rameter makes it possible to weight the importance given to each part of the model: γ � 0.5
means that the two parts have the same importance, whereas the greater the γ, the greater
the importance of the user preferences in the recommendations. The best values of γ deter-
mined by grid search (γ P t0.0, 0.1, . . . , 1.0u) are reported in Appendix 7 Table 7.1. For most
of datasets, γ is between 0.3 and 0.7. This means that both user preferences and sequential
dynamics are important, but one may dominate the other to get accurate recommendations.

In Figure 3.6, we analyze the impact of γ on AUC, HIT 25, HIT 50, NDCG 25 and
NDCG 50. We can observe different cases:

1. γ does not really have an impact on AUC performance of REBUS (e.g., Adressa
dataset);

2. The best performance on AUC appears when REBUS focused on the sequential dy-
namics (e.g., ML-50 dataset, γ � 0.3);

3. The best performance on AUC appears when REBUS is focus on the user preferences
(e.g., Office dataset, γ � 0.7);

4. The best performance on AUC is reached by REBUS when the user preferences and
the sequential dynamics have the same importance (e.g., Visiativ).

Notice that for Office dataset, HIT 25, HIT 50, NDCG 25 and NDCG 50 do not follow the
same behavior as AUC: a greater γ increases the AUC performance but decreases the HIT 25,
HIT 50, NDCG 25 and NDCG 50 performances.

Finally, the green ellipse in Figure 3.6 is the best γ identified for REBUS in Section
3.4.4 but we can see as in the previous experiment with max length that if we change γ
for REBUSXMC we can sometimes obtain better performance on AUC, HIT 25, HIT 50,
NDCG 25 and NDCG 50 than those reported on Tables 3.4 and 3.5.

60 Chapter 3. Sequential recommendation with metric models based on frequent sequences

Figure 3.6: Influence on AUC, HIT 25, HIT 50, NDCG 25 and NDCG 50 (in ordinate) of γ
(in abscissa) for REBUS REBUS1MC , REBUS2MC and REBUS3MC .The green ellipse is
the best γ identified in 3.4.4.

3.4. Experiments 61

3.4.10 Examples of recommendations

Figure 3.7 shows some recommendations made by REBUS on Amazon-Video Games. As can
be seen on these examples, REBUS captures the sequential dynamics and recommends items
which are similar to the ground truth. For instance, for the first user, REBUS recommends
Final Fantasy X-2 because the user sequentially bought the previous editions of the Final
Fantasy games (the red squared items). The ground truth is a similar game: The Legend
of Dragoon. On this example, the sequential dynamics is captured with a 4-item substring
mapped with a discontinuity (a wildcard) on the user sequence. Some recommendations are
based on smaller and more compact sequences, e.g., the two last recommendations use only
the most recent item to capture the sequential dynamics. Based on the last user action
– Pokemon Mystery Dungeon on Nintendo 3DS and Zumba Fitness on Nintendo Wii –
REBUS respectively recommends The Legend of Zelda: Ocarina of Time on Nintendo 3DS
(instead of Nintendo 3DS XL) and a Nintendo Wii.

These examples of recommendations illustrate how REBUS can provide insight to explain
recommendations. Indeed, thanks to m

s
r1,tr
u

(The red squares in Figure 3.7) we know what

influenced REBUS for the sequential dynamics. However, this is not enough to explain
the whole recommendation. Indeed m

s
r1,tr
u

does not explain the user preferences part of the

recommendation and the trade-off between user preferences and sequential dynamics.

Figure 3.7: Recommendations for a random sample of users by REBUS on Amazon Video
Games. The red squares are items in m

s
r1,tr
u

.

62 Chapter 3. Sequential recommendation with metric models based on frequent sequences

3.5 Conclusion

In this chapter, we introduced REBUS, a new metric embedding model that only project
items and addresses the problem of sequential recommendation. It uses frequent substrings
as a proxy to learn conditional distributions of item appearance in the sequential history of
the user in order to provide personalized order Markov chains and thus capture sequential
dynamics. Our model learns a representation of the user preferences and the sequential
dynamics in the same Euclidean space. We have carried out thorough experiments on multiple
real-world datasets. These experiments demonstrate that our sequential recommendation
model REBUS provides the most accurate recommendations for most of the datasets. Indeed
REBUS outperforms other methods in sparse data. When considering dense data, our
model remains competitive and we have seen that the performances of REBUS can even
be increased with the use of shorter users’ histories to model the sequential dynamics. For
instance, REBUS SD – that uses Markov chains of length 2 and the damping factor to
model the sequential dynamics – outperforms the state-of-the-art models on dense data (e.g.,
ML-50 or ML-30). In addition, we can use the substrings that support the recommendations
to understand the mechanisms at work in this process. This empirical study also gives
evidence that REBUS has good performance with respect to the cold-start user problem, as
it outperforms most of state-of-the-art models. Actually, the item embedding is powerful even
if the history of the user is very short (e.g., 1 or 2 items). In Chapter 5, thanks to Visiativ,
we have been able to implement and test the performance of REBUS in myCADservices
platform.

This work opens up several avenues for further research such as the investigation of more
sophisticated pattern mining techniques to both better model the user preferences and the
sequential dynamics. Moreover an improvement could be to learned γ during the learning
phase.

We have shown that REBUS can provide some insight to explain a recommendation
based on the personalized sequences which capture the sequential dynamics. However, this
is not enough to explain the whole recommendation in particular the user preferences part of
the recommendation. In Chapter 4, we propose a method, based on subgroup discovery with
different pattern languages (i. e., itemsets and sequences), that provides interpretable expla-
nations of the recommendations for REBUS but also for other models. Such an approach
is useful for comparing different models and explaining the rationale for recommendations.

Chapter 4

Explaining the Recommendation of
any Model

Explainable AI has received a lot of attention over the past decade, with the proposal of
many methods explaining black box classifiers such as neural networks. Despite the ubiquity
of recommender systems in the digital world, only few research has attempted to explain their
functioning, whereas it raises problems such as ethical issues. Indeed, recommender systems
direct to a large extent user choices and their impact is important as they give access to only a
small part of the range of items (e. g., products and/or services), as the submerged part of the
iceberg. Consequently, they limit access to other resources. The potentially negative effects
of these systems have been pointed out as phenomena like echo chambers and winner-take-all
effects, because the internal logic of these systems is to likely enclose the consumer in a “déjà
vu” loop. Therefore, it is crucial to provide explanations of such recommender systems and
to identify the user data that led the system to make a specific recommendation. This makes
it possible to evaluate recommender systems not only regarding their efficiency (i. e., their
capability to recommend an item that was actually chosen by the user), but also w.r.t. the
diversity, relevance and timeliness of the active data used to make the recommendation. In
this chapter, we propose a deep analysis of 7 state-of-the-art models learnt on 9 datasets
based on the identification of the items or the sequences of items actively used by the models.
The proposed method, which is based on subgroup discovery with different pattern languages
(i. e., itemsets and sequences), provides interpretable explanations of the recommendations –
useful to compare different models and explain the reasons behind the recommendation to
the user.

This chapter has been published In 2020 IEEE International Conference on Data Science
and Advanced Analytics (DSAA) (Lonjarret et al., 2020). Also for reproducibility purposes,
all the datasets, source code, and experimental results are made available in a repository1.

4.1 Introduction

A recommender system offers personalized recommendations that are based on the history
of users in the system and their respective resemblance to the histories of other users. Per-

1https://bit.ly/2DD0H0f

63

https://bit.ly/2DD0H0f

64 Chapter 4. Explaining the Recommendation of any Model

sonalizing a suggestion then consists of filtering the content in order to keep only the most
relevant items for a given user. Since such processes are typically opaque, being able to
explain a recommendation should increase the user’s confidence and trust in the system (Pu
and Chen, 2006). This question has already been considered, for classification problems (e. g.,
(Ribeiro et al., 2016)), but also in the scope of recommender systems, e. g., (Tintarev and
Masthoff, 2011) to some extent. However, these approaches did not extend to a deep analysis
of complex recommendation models nor to methods providing model-agnostic explanations.
This is the task we tackle in this chapter, restricting our analysis to recommender systems
that only use the user’s history in the system (the users’ sequences), without taking into
account external information such as user profile data or item content (i.e. collaborative
filtering model).

Recommender systems are used to retrieve information and products that are most rele-
vant to a user. Existing techniques and methods are numerous and – even if we can under-
stand them from a theoretical point of view – it is usually difficult to understand a particular
recommendation. However, being able to identify the “foundations” of a recommendation –
i. e., answering the “why” question using an explanation – would help to increase the confi-
dence that one can have in it (Tintarev and Masthoff, 2011), and also to assess and compare
different methods that may only differ slightly.

The term explanation has been widely investigated in different disciplines, such as cog-
nitive science, artificial intelligence, linguistics, philosophy of science, etc. Essentially, expla-
nations support human beings in their decision-making (Schank, 1986), in order to enhance
understandability and transparency, and thus increasing trust in a system. This is also
the way we understand explanation in the context of recommender systems. According to
Tintarev and Masthoff (2007), we can distinguish between different goals of an explanation,
i. e., transparency, validity, trustworthiness, persuasiveness, effectiveness, efficiency, satisfac-
tion, relevance, comprehensibility and education. Here, we mainly relate to validity with
respect to a recommendation and its effectiveness, i. e., helping a user to discover her prefer-
ences in order to increase the transparency and trustworthiness of a recommender system.

As we have seen in the previous chapters, it is generally accepted that a recommendation
can be based on a “global” characterization of the user, which generally relates to her “user
preferences” in the literature. It can also depend on recent user activity, and/or sequential
relations between a set of items (like watching episodes of a series in order). In our thesis,
we call this “sequential dynamics”.

Thus, we propose a method for explaining recommender systems with the objective to
answer the following questions, which we address in this chapter:

1. Which actions in the past are behind the recommendation?

2. Is the order of the actions (i. e., their sequence) important for the recommendation?

3. In the case that the order of actions is important, which sequences of actions do support
the recommendation?

4. Furthermore, can we interpret a model globally by identifying a typology of possible
recommendations?

5. Finally, how can we compare the “explanations” of several models?

4.1. Introduction 65

The proposed method (see Figure 4.1 for an overview) exploits the neighborhood of the user’s
sequence to study the variability of the recommendation made by the model:

1. Given a user sequence su, it generates sequences of items close to su. Two different
neighborhoods are considered:

a) N1psuq consists of all subsets of the items contained in the user sequence, where
the items are ordered as in the user sequence. With this neighborhood, the goal
is to identify items that strongly impact the recommendation;

b) The second neighborhood N2psuq focuses on the impact of the item order on the
recommendation. To this end, N2psuq consists of perturbed sequences, resulting
from the permutation of two consecutive items in the user sequence – a random
number of times (i. e., given su an arbitrary number of permutations is applied).

2. The recommender model R is then used to compute the recommendations based on the
new sequences. We then apply subgroup discovery (Atzmueller, 2015, Wrobel, 1997)
to identify the past actions that play an important role in the recommendation of the
initial item i�. Subgroup discovery is part of the family of rule-based models which are
widely accepted as the most interpretable ones (Fürnkranz et al., 2020). We then have
two options:

a) On the sequences of N1, the subgroup discovery approach we propose identifies
user actions that lead the model to recommend i� in one of the top positions. To
that end, we use an itemset description language and apply the SD-Map algo-
rithm (Lemmerich et al., 2016);

b) For the sequences N2, we first check whether the order between past actions mat-
ters via a simple distributional test. We use sequences as the description language
and the algorithm SeqScout (Mathonat et al., 2019) to identify the patterns that
lead to the recommendation of i� at the first position.

3. For both, the best subgroup allows us to identify conditions on the user’s actions max-
imizing the score of i�.

Our contributions are summarized as follows:

1. We present an approach for explaining recommendations of specific models of recom-
mender systems exploiting the recommendation history and where a perturbation on
the original user sequence has an effect on the provided recommendation. For instance,
we cannot explain a matrix factorization approach, as BPR-MF Rendle et al. (2009),
that only models user preferences because once the model has been trained a pertur-
bation on the original user sequence will have no effect on the recommendation. This
methodological approach for generating specific sets of recommendation histories is
itself model-agnostic and thus broadly applicable.

2. Instantiating this approach, we present an explanation method utilizing subgroup dis-
covery (Wrobel, 1997) for identifying active data used for recommendation.

3. Finally, we present experiments performing a deep analysis of 5 state-of-the-art models
and our model REBUS, together with one of its variant REBUS UP – known to only
consider user preferences while others also integrate user dynamics in their decisions
– learnt on 9 datasets, including Visiativ dataset. We specifically target this dataset
for a case study, while we include other datasets to be used as benchmarks in order to

66 Chapter 4. Explaining the Recommendation of any Model

Figure 4.1: Overview of how the explanation is created given a user sequence and the corre-
sponding recommended item i�.

show the applicability of the proposed approach and method. We provide an extensive
discussion of our results in context.

The rest of the chapter is structured as follows: Section 4.2 introduces the notations. we
review the literature in Section 4.3. After that, Section 4.4 presents the applied method.
Next, Section 4.5 describes our experiments and discusses their results. Finally, Section 4.6
concludes with a summary and interesting directions for future work.

4.2 Notations

In this section, we introduce the notations we use throughout this chapter to define our
proposal. Let us consider a set of users U : Each user u P U is described by a history of traces

4.3. Related work 67

of her interactions with the system su – a sequence of actions. Interactions can be diverse:
Listening to music, watching a movie, buying a product, reading a document, etc. We denote
products or services made available by the system as a set of items I. A user interacts with
an item if she takes it. Her interactions are ordered in time. Then, the user history of u is
defined as su � xi1, . . . , iky, i1, . . . , ik P I and ij being an action prior to ik, for j k. We
use Isu to denote items that appear in su.

A recommender system R takes as input a user history su and produces recommendations:
Rpsuq � tpi, rsui q, i P Iu. For each item i P I a value rsui P R is associated, such that the
higher this value, the more the respective item is recommended to user u. The numerical
value rsui of item i can only be interpreted relative to the values rsuj , j � i associated with
other items, yielding the ordered recommendations: Rorderpsuq � xi1, . . . , i|I|y with rsuik ¥
rsui` @k `, k, ` P t1 . . . |I|u .

We propose to represent an explanation by a pattern, given a description language, re-
flecting the items having an important influence on the ranking of i� which is the Top-1
recommended item (the item whose recommendation has to be explained).

Notations used throughout this chapter are summarized and exemplified in the Table
page ix. Notice that, this table contains all the notations of this thesis.

4.3 Related work

4.3.1 Model Explanation

Recently, the concept of transparent and explainable models has gained a strong focus and
momentum in the data mining and machine learning community, specifically regarding model-
agnostic explanations e. g., (Biran and Cotton, 2017, Guidotti et al., 2019, Li and Huan, 2017,
Ribeiro et al., 2016). In this chapter, we specifically focus on such model-agnostic methods,
utilizing subgroup discovery techniques, as interpretable and explainable patterns are known
to significantly improved model assessment and evaluation (Atzmueller and Roth-Berghofer,
2010, Fürnkranz et al., 2020).

Several methods focus on specific model types, e. g., tree-based models (Tolomei et al.,
2017) or local pattern-based approaches(Bloemheuvel et al., 2019, Duivesteijn and Thaele,
2014), e. g., for enhancing explanation or for getting a better understanding of where a clas-
sifier does not work. While the methods sketched above focus on specific modeling methods,
there are several approaches for model agnostic explanation methods, e. g., (Ribeiro et al.,
2016, 2018). In particular, general directions are given by methods considering counter fac-
tual explanation, e. g., (Mandel, 2007). Furthermore, other general methods consider data
perturbation and randomization techniques as the basis for the investigation of black box
models, e. g., (Henelius et al., 2014). Our proposed approach also considers perturbation
techniques, where we specialize these for the particular case of recommender systems. In
particular, we apply subgroup discovery methods for providing post-hoc explanations which
provides the following benefits: (1) The approach can be applied to black-box recommenda-
tion model where a perturbation on the original user sequence has an effect on the provided
recommendation – making it model-agnostic; (2) subgroup discovery is a prominent method
for obtaining descriptive patterns (rules) which are assessed as one of the most interpretable
models (Fürnkranz et al., 2020).

68 Chapter 4. Explaining the Recommendation of any Model

4.3.2 On Explanation in Recommender Systems

Explanation and explanation-aware approaches have been widely investigated in different
disciplines, e. g., in artificial intelligence, data science, etc. e. g., (Roth-Berghofer et al., 2007,
Schank, 1986, Wick and Thompson, 1992). Roth-Berghofer and Cassens (2005) outline the
combination of goals and kinds of explanations, in the context of case-based reasoning. Sørmo
et al. (2005) suggest a set of explanation goals addressing transparency, justification, rele-
vance, conceptualization, and learning. Explanation goals specifically help to focus on user
needs and expectations towards explanations. They aim to understand what and when the
system has to be able to explain (something). For recommender systems, different approaches
for providing explanations have been studied, e. g., (McSherry, 2005, Tintarev and Masthoff,
2011) targeting mainly content-based, collaborative filtering, and case-based approaches since
explanation-awareness is an important factor for supporting the user, e. g., (Tintarev and
Masthoff, 2011). Here, explanation is mainly integrated into the respective method. In con-
trast, for (black box) machine learning methods to be used for recommendation, explanations
have been largely neglected. Our chapter investigates and tackles this problem, proposing a
framework and method for model-agnostic explanations only utilizing the recommendation
history.

4.4 Identifying the active data used for recommendation

We propose a model-agnostic 2 approach for local explanation in the context of recommender
systems. Here, we consider a specific user, and analyze the recommendations according to
her user history (i. e., her previous system interactions). Similar to (Ribeiro et al., 2016), we
explore the neighborhood of these recommendations. Specifically, our objective is to isolate
the items from the user’s history which lead to a particular recommendation or favor an
item. First, we generate profiles close to that of the studied user and calculate what the
model associates as recommendations to these profiles. Second, we analyze them in order to
isolate the groups or sequences of items for which the item initially recommended exhibits a
high rank or a high score in a recommendation using subgroup discovery.

4.4.1 Neighborhood Generation

To identify the active items used for the recommendation, we explore two neighborhoods of
user sequence su:

1. To focus on the impact of a group of items on the recommendation, we generate neigh-
borhood histories N1psuq by removing one or several items from su. The possible
number of such sequences is equal to 2|su|. If the recommendation is mainly based on
a group of items, then removing these items from the respective sequence would have
a great impact on the recommendation;

2. To assess the importance of the item order on the user history su we consider another
neighborhood N2psuq consisting of sequences where only the order changes. Starting
with the observed sequence su, we shuffle it by randomly picking an item of the sequence
and swapping it with one of its neighbors. This process is repeated n times where n

2With the limitation that the model must be able to provide different score/rank for user u and item i if
the input sequence is modified.

4.4. Identifying the active data used for recommendation 69

is chosen randomly in the interval r5, 25s. Thus, the parameter n is used to control
the amount of disturbance incurred by the sequence. At the end of this process, the
perturbed sequence is added to the neighborhood. We produce K such perturbed
sequences to form the neighborhood3. The function is presented in Algorithm 2.

Algorithm 2: N2 Generationpsu,Kq

Input: A user sequence su and the number of desired perturbed sequences K
Output: N2psuq, Neighborhood of su made of sequences where only the items order

of su changes.
1 N2 Ð rsus
2 for k � 0 to K do
3 pertubSeq Ð su
4 N Ð random number between 5 and 25
5 for n � 0 to N do
6 itemÐ random item in pertubSeq
7 pertubSeq Ð SwapItemWithNeighbors(pertubSeq,item) � Swap the random

selected item with one of his neighbors and retrun the new perturbed
sequence

8 N2 Ð N2 � pertubSeq � Append pertubSeq to N2

9 return N2

10

4.4.2 Subgroup Discovery for Analyzing Recommendations

We propose to apply subgroup discovery (Wrobel, 1997) to identify the active data used for
recommendation – essentially, to provide an overview on the relationships between a target
variable (or target attribute) and explaining variables, i. e., a subset of su in our context.
In contrast to analyzing a recommendation sequence as a whole, typically only items at the
top of the ranking are relevant. Therefore, we target a particular item i�, i. e., the top-1
recommended item. The target attribute is the numerical attribute prsi�qsPN for sequences s
taken in a set N .

We are interested in two types of explanations: (1) What are the items that ”trigger” the
recommendation of a particular item? (2) Is the order of those items important? Therefore,
we consider two different subgroup description languages.

User Preferences via Subgroup Discovery (UPSD) The subgroup description lan-
guage I used for active item identification is defined as all possible sets of items from I:
I � 2|i|. A descriptive pattern d P I covers a user history su iff d � Isu , the set of items that
appear in su. Thus, considering a given set of user sequences N , the subgroup of N described
by d, i. e., the pattern cover, is made of the sequences of N that contain all the items of d:
SGpdq � ts P N | d � Isu where Is is the set of items that appear in the sequence s.

For characterizing the items of the sequence su that lead to the recommendation of the
item i�, we consider subgroups of N � N1psuq whose associated target values are large com-

3NB: we remove duplicated perturbed sequences in a post-processing step.

70 Chapter 4. Explaining the Recommendation of any Model

pared to the remaining sequences of N1psuq. More formally, we are looking for descriptions d
such that the average value ri�pdq of values rsi� , s P SGpdq is large. As proposed in (Lemmerich
et al., 2016), there exists several quality measures that consider subgroups with respect to
numeric target variables. In our case, we aim to find subgroups that are relatively large
while also having large values for a numerical target attribute. This then corresponds to
having large deviations compared to the mean of the target attribute computed on the whole
dataset. For subgroup discovery, we apply the SD-Map algorithm instantiated for numeric
target variables (Lemmerich et al., 2016), which discovers the top-k subgroups according to a
given quality function, taking into account specific user sequences. In our context, we apply
the qmean function (inspired by the simple binomial quality function for numerical target
attributes, c. f., (Lemmerich et al., 2016)). This quality function considers the deviation of
the mean of the target attribute in the subgroup and the total dataset (given by the set of
neighboring sequences for a user sequence). So, for a user u and her user sequences su, with
N � N1psuq, we compute

qmeanpd, i�, Nq �
a
|SGpdq| � pri�pdq � ri�pHqq ,

where ri�pHq is the mean of ri� over N and the pattern cover SGpdq is computed on N
accordingly. We also assessed further adaptations of the quality functions proposed in (Lem-
merich et al., 2016) like the Piatetsky-Shapiro adaptation for numeric targets; the results were
similar, while the qmean function resulted in slightly better subgroups in our application con-
text concerning the deviations of the target attribute. Hence, for UPSD explanations, we
consider the top-1 pattern that maximizes qmean function.

Sequential Dynamics via Subgroup Discovery (SDSD) To identify the potential
order effect on the recommendation, we consider the subgroup description language S made

of all sequences of items of I without repetition: S � Π
|I|
k�02

|i|�k. A pattern d P S covers a
sequence s, d � s, iff d appears in s in the same order: Let d � xi1, . . . , iky and s � xs1, . . . , s`y,
there exists indices j1 � � � jk such that sjh � ih, @h � 1 . . . k. The subgroup of a set of user
sequences N described by d is the set of sequences selected by d: SGpdq � ts P N | d � su.
We can assume that there is an effect of the item order on the recommendation if the first
recommended item changes for some sequences of N2psuq (i. e., the variance of the rank of i�

is different from 0).
In this case, we can look for the sub-sequence that favors the target item i�. To the

best of our knowledge, there does not exist any subgroup discovery approach considering
sequences with numerical target. Therefore, we propose to use SeqScout (Mathonat et al.,
2019) designed to identify discriminating sequences when the target is categorical. For this,
SeqScout evaluates the quality of a pattern d with the precision measure that is the proportion
of sequences selected by d that lead to the recommendation of i� at the first position:

PrecpSGpdqq �
ts P SGpdq | rsi� ¥ rsj , @j �� i�u

ts P SGpdq | Dj �� i�, rsj ¡ rsi�u

To prevent obtaining very precise but small subgroups, SeqScout provides a measure
inspired by the weighted relative accuracy (WRAcc) measure, e. g., (Lemmerich et al., 2016):

WRAccpSGpdqq �
|SGpdq|

|N2psuq|
pPrecpSGpdqq � PrecpHqq,

4.4. Identifying the active data used for recommendation 71

where PrecpHq is the precision measure over N � N2psuq, since SGpdq is computed relative
to N as discussed above. SeqScout is a sampling approach that searches for a set of patterns
that locally optimize WRAcc, following an exploration-exploitation trade-off. At this end,
we only consider the top-1 pattern with respect to WRAcc.

4.4.3 Running example

As an example, we report in Table 4.1 the neighborhood generation for N1psuq and N2psuq
with su � x4, 223, 373y and the target item i� � 374 for user u. The numbers 4, 223, 373
and 374 identify items. As there are 3 items in su, there are 7 sequences in N1psuq – 23 � 1
because we remove the sequence without items – and 6 possible sequences for N2psuq. For
each perturbed sequence, we computed the score of i� for N1psuq and the rank of i� for
N2psuq.

Table 4.2 shows the generation of explanations by UPSD and SDSD, using the neigh-
borhoods N1psuq and N2psuq of Table 4.1. The best explanations of UPSD and SDSD are
respectively t373u and x223, 373y. These results seem relevant. Indeed, for N1psuq, we can
see that the best scores come when t373u is present. For N2psuq, we can observe that i� is
ranked first when t373u is the last item. This is why x223, 373y and x4, 373y have the same
WRAcc value.

Table 4.1: Example of neighborhood generation for N1psuq and N2psuq with su � x4, 223, 373y
and the target item i� � 374.

N1psuq N2psuq

Perturbed sequence Reco. Score # Perturbed sequence Reco. Rank

1 x4, 223, 373y 0.99 1 x4, 223, 373y 1
2 x∅,∅, 373y 0.84 2 x373, 223, 4y 23
3 x∅, 223,∅y -3.73 3 x4, 373, 223y 62
4 x∅, 223, 373y 0.88 4 x223, 4, 373y 1
5 x4,∅,∅y -2.75 5 x223, 373, 4y 23
6 x4,∅, 373y 1.18 6 x373, 4, 223y 62
7 x4, 223,∅y -2.93

Table 4.2: Example of generation of explanation by UPSD and SDSD with N1psuq and
N2psuq of Table 4.1.

UPSD SDSD

Explanations qmean # Explanations WRAcc

1 t373u 3.52 1 x223, 373y 0.17
2 t4, 373u 2.65 2 x4, 373y 0.17
3 t223, 373u 2.44 3 x4, 223, 373y 0.11
4 t4, 223, 373u 1.78 4 x223, 4, 373y 0.11

72 Chapter 4. Explaining the Recommendation of any Model

4.4.4 Complexity

The complexity of our methods is due to the complexity related to the neighborhood genera-
tions and the one due to the computation of the explanations on them. The prediction of the
score or rank of i� by the recommender system has an important impact on the complexity
of the neighborhood generations. Each recommender system has its own computational com-
plexity, denoted RSComp. Thus, computing N1psuq has a complexity in OpRSComp � 2|su|q,
while the complexity of N2psuq is in OpRSComp � |IzIsu | �Kq, where K is number of gener-
ated sequences. We limit the complexity related to the computation of N1 and N2 by only
considering users with a history size |su| between 2 and 15. Considering the computation
of the explanations based on N1psuq, we use SD-Map (Atzmueller and Lemmerich, 2009) in-
stantiated for numeric target attributes. As discussed in (Atzmueller and Lemmerich, 2009)
the complexity of SD-Map grows exponentially with the number of items. However, with
the efficient pruning approaches implemented by SD-Map (Atzmueller and Lemmerich, 2009,
Lemmerich et al., 2016) the runtime is typically significantly reduced in practical applications.
The explanations based on N2psuq are obtained thanks to SeqScout that has a time-budget
parameter which allows to tune the runtime easily given a suitable time-budget for controlling
the algorithm’s complexity.

4.5 Experiments

In this section, we report on our experimental study using several datasets and recommender
systems. For reproducibility purposes, all the datasets, the source code, and the experimental
results are made available in a repository4.

4.5.1 Datasets

To evaluate our framework on both sparse and dense datasets from different domains, we
have selected 9 datasets from the ones considered in Chapter 3:
Amazon was introduced by (McAuley et al., 2015). It contains Amazon product reviews
from May 1996 to July 2014 from several product categories. We have chosen to use the 3
following diversified categories: Automotive, Office product and video games.
MovieLens 1M5 (Harper and Konstan, 2015) is a popular dataset including 1 million movie
ratings from 6040 users between April 2000 and February 2003. We pre-processed the dataset
by selecting the most recent x ratings for each user, x P t5, 10, 20, 50u. The resulting datasets
allow us to consider different levels on sparsity (i.e. MovieLens with the 10 most recent rat-
ings will be more sparse than MovieLens with the 50 most recent ratings).
Visiativ6 is a real-world dataset that gathers the downloads of computer-aided design re-
sources on the myCADservices platform of Visiativ from November 2014 to August 2018.

For each dataset, we pre-process the data as explained in Chapter 3: Ratings are converted
into implicit feedback and we only consider users and items that have at least 5 interactions.
The main characteristics of these datasets before and after preprocessing are reported in
Table 3.1 and Table 3.2 of Chapter 3. Also, as explained earlier, we constrain the size of |su|

4https://bit.ly/2DD0H0f
5http://grouplens.org/datasets/movielens/1m/
6https://www.visiativ.com/en-us/

https://bit.ly/2DD0H0f
http://grouplens.org/datasets/movielens/1m/
https://www.visiativ.com/en-us/

4.5. Experiments 73

between 2 and 15 in order to limit the computation time of N1 and N2. Table 4.3 shows the
dataset characteristics after we apply the constrain on |su|.

Table 4.3: Main characteristics of the datasets after we constrain the size of |su| between 2
and 15 : # U is the number of users for which an explanation is produced; AvgpN1q is the
average of the sizes of the neighborhoods N1; AvgpN2q is the same for N2.

Datasets #U AvgpN1q AvgpN2q
A

m
az

. Auto 28666 442 659
Office 15109 830 971
Video 28283 1034 1307

M
L

ML-5 6039 16 25
ML-10 6039 493 3422
ML-20 1091 7801 5016
ML-50 1091 7801 5016

Epinions 4219 434 698
Visiativ 1111 1808 1900

4.5.2 Considered models

We consider 7 different models designed for sequential recommendation:

� Factorized Markov Chains (MC) (Rendle et al., 2010), models sequential dynamics by
factorizing the item transition matrix;

� Factorized Personalized Markov Chains (FPMC) (Rendle et al., 2010) models both user
preferences and sequential dynamics using matrix factorization and first-order Markov
chains;

� Personalized Ranking Metric Embedding (PRME) (Feng et al., 2015), embeds user
preferences and sequential dynamics into two Euclidean distances;

� Self-Attentive Sequential Recommendation (SASRec) (Kang and McAuley, 2018), is a
self-attention based model that captures both user preferences and sequential dynamics;

� Finally, Translation-based Recommendation (TransRec) (He et al., 2017a), is a model
unifying user preferences and sequential dynamics with translations;

� Recommendation Embedding Based on freqUent Sequences (REBUS) (Lonjarret et al.,
2021), our model presented in Chapter 3. It is an item embedding model that also
uses frequent substrings as a proxy to learn conditional distributions of items in users’
histories;

� REBUS UP, is a variant of REBUS that does not model the sequential dynamics,
but only the user preferences.

To avoid running a grid search to find the best combinations of hyperparameters, we use
those previously found in Section 3.4.4 of Chapter 3. We have seen that these combina-
tions make it possible to have good performance on the selected datasets. As a reminder,
we summarize in Table 4.4 the performances of these models (the full table is available in
Section 3.4.4 of Chapter 3).

Figure 4.2 illustrates the diversity of the recommendations provided by each model. We
compute the percentage of items recommended at least once – i. e., the number of unique

74 Chapter 4. Explaining the Recommendation of any Model

Table 4.4: Performance of the models on 9 datasets – AUC, HIT10 and HIT50. Top scores
for each dataset/metric in bold.

M
od

el
s

M
et

ri
c

E
pi

ni
on

s

V
is

ia
ti

v

A
ut

o

O
ffi

ce

V
id

eo

M
L
-5

M
L
-1

0

M
L
-2

0

M
L
-5

0

F
P
M
C

AUC 0.5536 0.8433 0.6482 0.6958 0.8777 0.7309 0.815 0.8629 0.8891
HIT10 0.0084 0.3125 0.0116 0.0071 0.0692 0.0411 0.0752 0.0947 0.1035
HIT50 0.0251 0.6036 0.0364 0.0253 0.1833 0.1326 0.229 0.2628 0.2863

M
C

AUC 0.5421 0.8354 0.6251 0.6771 0.8473 0.7414 0.8054 0.8446 0.8689
HIT10 0.0102 0.3197 0.0146 0.0076 0.0598 0.0546 0.0821 0.0937 0.1012
HIT50 0.0263 0.5878 0.0378 0.0267 0.1571 0.1525 0.206 0.2495 0.2772

P
R
M
E

AUC 0.6071 0.8572 0.6749 0.7154 0.8759 0.7771 0.8302 0.8645 0.8867
HIT10 0.01 0.3269 0.0116 0.0118 0.0683 0.053 0.083 0.0729 0.0944
HIT50 0.0272 0.5943 0.0385 0.0487 0.1874 0.1694 0.238 0.2439 0.2714

S
A
S
R
ec

AUC 0.6251 0.8731 0.6861 0.7392 0.8812 0.8 0.8537 0.876 0.8957
HIT10 0.0156 0.3563 0.0124 0.0167 0.0502 0.0593 0.0816 0.0792 0.0965
HIT50 0.04 0.6538 0.0407 0.0612 0.1454 0.2083 0.2532 0.2596 0.2929

T
ra
n
sR

ec AUC 0.6138 0.8647 0.6991 0.732 0.8869 0.79 0.8477 0.8736 0.8883
HIT10 0.0126 0.3663 0.0227 0.0183 0.0564 0.0758 0.0876 0.083 0.0841
HIT50 0.0314 0.6473 0.0599 0.0637 0.1651 0.2245 0.256 0.2651 0.2787

R
E
B
U
S AUC 0.6524 0.8735 0.7184 0.7507 0.8934 0.8031 0.8563 0.8772 0.8884

HIT10 0.0174 0.3534 0.0247 0.0214 0.0482 0.0734 0.0753 0.0767 0.0825
HIT50 0.0532 0.6717 0.062 0.0624 0.1461 0.2279 0.255 0.2601 0.2691

R
E
B
U
S

U
P AUC 0.6495 0.8521 0.7147 0.7484 0.886 0.7941 0.8428 0.8603 0.8671

HIT10 0.016 0.271 0.0234 0.0211 0.0445 0.0654 0.0578 0.053 0.0502
HIT50 0.05 0.5964 0.0602 0.0606 0.1414 0.2151 0.2072 0.1999 0.1949

recommended items divided by the number of item |I| in each dataset. We can observe that
the models REBUS, REBUS UP, SASRec and TransRec often recommend the same
item, compared to other models, while having good AUC or HIT values. As we will see below,
this characteristic has an impact on the identified subgroups and their ability to explain a
model.

4.5.3 Aims

The experiments aim to assess the capacity of our method to provide relevant explanations
about recommendations provided by any model, and to bring local explanations that give
insights about the models themselves. Taking this into account for the experimental design
this empirical study aims to answer the following questions:

1. Can the explanation be interpreted? What are the elements responsible for the recom-
mendation? Is the user’s sequential dynamics taken into account? Answers to these
questions will make it possible to assess if the local explanations are relevant or not.

2. Are local explanations generalizable?

3. To what extent are the models based on their local explanations?

4. Can we build an interpretable global model based on local explanations?

4.5. Experiments 75

Figure 4.2: Percentage of items that are recommended at least once for each model. Values
are averaged over all datasets

4.5.4 Applying UPSD and SDSD

To explain the recommendations made by the models on the different datasets, we compute
the top-1 subgroup with UPSD and SDSD for all users such that 2 ¤ |su| ¤ 15. For
instance, considering user u,

1. UPSD generates the set of all possible neighbors N1psuq – i. e., all subsets of Isu – and
for each sequence s in N1psuq and each model, it computes the recommendation score
of i�.

2. SDSD generates the neighborhood N2psuq with K � 10000, as explained in Sec-
tion 4.4.1. To evaluate whether the item order has an effect on the recommendation, it
computes the rank of the target item i� for each model.

Table 4.3 gives the average sizes of N1 and N2 for each dataset. The objective of the two
methods is to evaluate the robustness of the recommendation for user u of the item i�, the
first item recommended to u based on the sequence su.

4.5.5 Local Explanations

Examples of Local Explanations: Figure 4.3 reports some examples of explanations
of recommendations provided by REBUS and SASRec. These local explanations are the
results of UPSD and SDSD, and reflect the most decisive items in the recommendation
(UPSD) as well as the sub-sequence of items that is characteristic for the recommended
item (SDSD). In the first row, REBUS and SASRec make a relevant yet different rec-
ommendation, as highlighted by UPSD and SDSD, on products related to the Nintendo
Wii. On the second row, REBUS and SASRec make a more questionable recommendation:
They both recommend item related to Sony PlayStation while the last 3 purchased items of
the user are related to Computer. Moreover, we can see that REBUS and SASRec recom-
mend these items in other contexts (as in row 3 for REBUS and row 5 for SASrec), but
here the recommendation is relevant as shown by the local explanations. To sum-up, we can

76 Chapter 4. Explaining the Recommendation of any Model

see that local explanations found by UPSD are very close for both models, whereas there
are more differences on the local explanations found by SDSD.

Figure 4.3: Explanation examples in the Video dataset. An orange (resp. blue) line points to
the important items for REBUS (resp. SASRec). If the item is important for both models,
then the line is green. The lines above an item mean that the item is important according to
the SDSD method, while the lines below mean that the item is important according to the
UPSD method.

Figure 4.4 reports some local explanations for the REBUS and SASRec models for the
Visiativ dataset. These examples involve users’ navigation through Computer-aided design
(CAD) resources (i. e., documentation, macro, library) of the myCADservices platform. For
the first sequence, the local explanations for both models are similar except the first item
provided by SDSD method. The recommendation provided by SASRec is relevant because
it suggests an item related to the PIPING components. Notice that this recommendation is
correct. REBUS provides a popular item that is relevant but less personalized. In the sec-
ond sequence, REBUS and SASRec provide two different, yet relevant, recommendations.
SASRec identifies materials, and color as active items to recommend an item related to tex-
ture. REBUS build its recommendation on materials, and outdoor images to recommend
a new persona image library. For the third sequence, the recommendations are the same as
for the second one because the sequences are almost similar. Notice that, SASRec does
not identify any particular order on the items that may explain the recommendation. For
REBUS, SDSD sheds light on the two last items of the user sequence. This demonstrates
that a same (recommended) item can be explained in different ways even if the user sequences
are almost similar.

4.5. Experiments 77

Macro -
Welding
processes

Macro - Center
of Gravity

Macro -
Conversion

Doc - Pipe and
connection
point dimensions

Components for
 PIPING (ISO-DIN)

Library of
mechanical
elements

Components for
PIPING (ANSI)

Material
 library

Image library -
 Outdoor
 environments

Lib - Outdoor
environments

Lib - indoor
 environments RAL color charts

Furniture
Library -
Persona

Textures Library -
 Wood

Lib - indoor
 environments

Lib - Outdoor
 environments

Lib - Outdoor
 environments

Images Lib -
Plastic Textures

 RAL color charts
Furniture
Library -
Persona

Textures -
Wood

User sequence Recommendation

REBUS SASREC

Sequential dynamics

User preferences

REBUS SASREC BOTH

Figure 4.4: Examples of recommendation explanations in Visiativ dataset. Orange (resp.
blue) line points to the important items for REBUS (resp. SASRec). If the item is
important for both models, then the line is green. The lines above the item mean that the
item is important according to the SDSD method, while the lines below the item mean that
the item is important according to the UPSD method.

Analysis of Local Explanations: Table 4.5 reports the proportion of user sequences for
which an explanation is given by UPSD and SDSD.

In most cases, UPSD identifies items related to user preferences, with the exception
of REBUS UP for which there is no explanatory item in 7% of the user sequences. The
distribution of the number of items in the explanations provided by UPSD is given in
Figure 4.5. Explanations are often made up of a single item for most of the models, with the
exception of REBUS, REBUS UP and SASRec for which longer explanations are given
(i. e., with 2 or 3 items in the descriptions of the subgroups). These results were expected
since FPMC, MC, PRME and TransRec are built with one-order Markov chains. Thus,
only a perturbation on the last item can have an effect on the recommendation score.

Table 4.5: Proportions of users who get local explanations from UPSD and SDSD. Propor-
tions are averaged over all the datasets.

FPMC MC PRME REBUS REBUS UP SASrec TransRec

UPSD 1.00 1.00 1.00 1.00 0.93 1.00 1.00
SDSD 0.85 0.97 0.96 0.69 0.00 0.80 0.93

For the sequential dynamics, we can report slightly different observations. For the RE-
BUS UP model, the SDSD method does not provide any explanations regardless of the
dataset (see Table 4.5). Thus, it seems that the order between the items does not influ-
ence the recommendation made by the model, which is indeed the case by construction of the
method (Lonjarret et al., 2021). Some models take sequential dynamics into account for some
datasets (e. g., SASRec for the ML-50 dataset see Fig 4.6), while the order of the items taken
by the user clearly has no impact for other datasets (e. g., REBUS for Auto where some users
have no explanation). Box plots of the explanation size for sequential dynamics are shown
in Figure 4.6. We observe that the descriptions which explain the sequential dynamics of the
users are longer compared to those w.r.t. the user preferences. However, it is important to

78 Chapter 4. Explaining the Recommendation of any Model

Figure 4.5: Number of items in the explanations given by UPSD.

4.5. Experiments 79

Figure 4.6: Number of items in the explanations given by SDSD.

80 Chapter 4. Explaining the Recommendation of any Model

note that there is no sequence of size 1, otherwise it would mean that the order of the item
has no impact on the recommendation. That being said, most of the explanations contain
two items and are simplest in terms of sequence structure. It is also normal that SDSD finds
explanation for FPMC, MC, PRME and TransRec even if they use a Markov chains of
order one. The search for explanations shows that the order of the items is important, which
is indeed the case by construction of these models. However, when the explanations consist
of more than 2 items, this is due to the fact that they are items close to the last items of the
explanation.

It is important to note that our method cannot fully explain models that embed a user
vector to make recommendations such as FPMC, MC, PRME and TransRec. The expla-
nation for these models is partial in the sense that it is personalized to the user reducing the
coverage for the explanation on other users. On the contrary, it can fully explain the recom-
mendation of REBUS or SASrec because only items are used to make a recommendation.

Comparison of local explanations: The goal in this experiment is to compare one by one
explanations found by UPSD and SDSD for each model, and see if there are any similarities
between model explanations. In figures 4.7 and 4.8, we respectively report Jaccard similarity
between each model explanation found by UPSD and a normalization of the longest com-
mon subsequence (LCS) between each model explanation found by SDSD. For UPSD and
SDSD, we can report that two groups stand out. The first one gathers TransRec, PRME,
MC and FPMC models that have more than 50% of similar explanations. And the second
one is made of REBUS and SASRec which have more than 40% of similar explanations.
REBUS UP is close to REBUS but this is not the case for the others models. Note that
for SDSD, similar explanations of REBUS UP with all other models occur when there is
no explanation.

4.5.6 Assessing Local Explanations Regarding Other Users

We are now studying how local explanations can be generalized to other users. Table 4.6
reports the proportion of explanations that are user-specific (i. e., only applicable for a single
user), applicable to a small number of users (i. e., less than 6) and applicable to at least 6
users. We can observe that the explanations provided by UPSD are much more generalizable
than the explanations provided by SDSD: Less than 20% of the UPSD explanations are not
applicable to other users while in contrast this holds for more than 50% for the explanations
provided by SDSD. More than 60% of the UPSD explanations are applicable to at least 6
users while it is barely 10% for the explanations provided by SDSD.

Explanations which are generalizable, i.e. descriptions which are also present in other
user sequences, are also of high quality (w.r.t. AUC, HIT1 and HIT25). HIT1 is equal to
the proportion of the item explained by subgroups that are equal to the recommendation
made by the model, while HIT25 is a less restrictive measure. AUC estimates how high the
item explained by subgroups is ranked on average by the model. In Figure 4.9, we report the
aggregated quality 7 over all the datasets of generalizable explanations which are applicable
to at least 6 users. Two groups of models emerge from these experiences. The explanations

7The individual results of each dataset are reported in Appendix figures 7.1 and 7.2 for UPSD and
figures 7.3 and 7.4 for UPSD.

4.5. Experiments 81

Figure 4.7: Jaccard similarity between each model explanation found by UPSD.

Figure 4.8: Normalization of the longest common subsequence (LCS) between each model
explanation found by SDSD.

82 Chapter 4. Explaining the Recommendation of any Model

Table 4.6: Proportion of explanations that apply (1) to a single user (user-specific), (2)
between 2 and 5 users, and (3) equal or greater than 6 users.

UPSD

FPMC MC PRME REBUS REBUS UP SASrec TransRec

User-specific 0.02 0.03 0.04 0.14 0.20 0.20 0.04
2 to 5 users 0.17 0.16 0.15 0.12 0.15 0.15 0.16
¥ 6 users 0.81 0.81 0.81 0.74 0.57 0.65 0.80

SDSD

FPMC MC PRME REBUS REBUS UP SASrec TransRec

User-specific 0.60 0.68 0.68 0.48 0.00 0.60 0.67
2 to 5 users 0.15 0.17 0.17 0.14 0.00 0.13 0.17
¥ 6 users 0.10 0.11 0.11 0.08 0.00 0.07 0.10

of REBUS, REBUS UP, SASRec and TransRec get a better performance than those of
other models for all metrics. These four models are the best in the state of the art. They make
it possible to model some user habits which cannot be achieved with other models. Thus,
their explanations are more accurate when applied to other users. In the case of TransRec,
it is interesting to note that despite the embedding of a user vector to make recommendations,
the explanation is still relevant and applicable to other users.

Figure 4.9: Performance metrics (AUC, HIT1 and HIT25) evaluated on UPSD subgroups
descriptions found in at least 6 users (Top) and on SDSD patterns found in at least 6 users
(Bottom) for each model. Values are averaged over all the datasets.

4.5. Experiments 83

Figure 4.10 shows the ratio of unique explanations over the total number of explanations
(the number of users). Thus, the lower the ratio, the lower the number of different explana-
tions. The explanations hold for several users since the average ratio is around 0.5 for UPSD.
For SDSD, the aforementioned models (that find explanatory sequences) have a high ratio.
Most of the explanations on the sequential dynamics are different. This observation does not
hold for models that best exploit the order of user items to make recommendation (REBUS
and SASRec): They return explanations that hold for other users.

Figure 4.10: Ratio of unique explanations over the total number of explanations obtained by
UPSD (left) and SDSD (right) with respect to the model used. Values are averaged over
all datasets.

4.5.7 Towards Global Explanation of Black Box Models for Sequential
Recommendation

We now investigate how a set of local explanations can explain most of the recommendations
of a recommendation model. This experiment aims to study how many local explanations we
need in order to provide a global explanation of a black box model for sequential recommen-
dation. Indeed, a set of high quality of local explanations, here called global explanation, can
give the expert/administrator of the recommender system a good overview of the recommen-
dation that will be made by the model.

Identifying good local explanations is similar to the weighted set cover problem. We thus
use a greedy strategy to iteratively select the local explanation that has the best cover of the
remaining users (i. e., those that are not yet covered by an already chosen local explanation).
Figures 4.11 and 4.12 report the fidelity of the global explanation related to a recommendation
model according to the number of local explanations (greedily selected). The higher the metric
(e. g., AUC, HIT1 and HIT25), the higher the fidelity of the global explanation to the related
black box.

In figures 4.11 and 4.12, the global explanations (set of local explanations) built from black
box models quickly reach an AUC value close to 1 in most of the cases. For instance, 40 local
explanations from UPSD related to REBUS, REBUS UP, SASRec and TransRec are
enough to obtain an AUC of 0.9 for all of the users on Visiativ. For HIT1, the best global

84 Chapter 4. Explaining the Recommendation of any Model

Figure 4.11: AUC, HIT1 and HIT25 values with respect to the number of UPSD patterns
selected to build the global explanation related to a recommendation model for Visiativ (first
row), ML-50 (second row) and Video (last row) datasets. The higher the value, the higher
the fidelity of the global explanation to the black box recommender model.

4.5. Experiments 85

Figure 4.12: AUC, HIT1 and HIT25 values with respect to the number of SDSD patterns
selected to build the global explanation related to a recommendation model for Visiativ (first
row), ML-50 (second row) and Video (last row) datasets. The higher the value, the higher
the fidelity of the global explanation to the black box recommender model.

86 Chapter 4. Explaining the Recommendation of any Model

explanations are close to 0.4 for Visiativ and Video datasets with about one quarter of the
selected subgroups, which means that one quarter of the local explanations allow to exactly
explain the next recommended item for 40% of the users. Notice that providing a faithful
explanation of the recommended item is very challenging. The results are much better when
considering a relaxed HIT version (e.g., HIT25). As an example, a global explanation of
REBUS on the Video dataset provides some items that are in the top 25 recommended
items considering the recommendations made by REBUS for 80% of the users. The results
for SDSD are similar but need more local explanations because SDSD provides sequences
as local explanations which are more restrictive than itemset. The main difference is related
to the fact that the AUC value for each global explanation is more distant from 1, because
SDSD does not provide an explanation when the order of the items has no impact on the
recommendation. For instance, this happens for around 20% of the user sequences of Visiativ
with REBUS. However, other SDSD local explanations (from other users of Visiativ) can
be applied, resulting in an AUC value larger than 0.8 (i.e, 0.9 with 460 SDSD patterns).

4.6 Conclusion

In this chapter, we presented an approach for explaining recommendations made by spe-
cific models of recommender systems. We made use of the recommendation history utilizing
subgroup discovery techniques to identify the active data used for recommendation. In gen-
eral, this methodological approach for generating according recommendation histories itself is
model-agnostic and thus has broad applicability. For evaluating and assessing the proposed
approach, we presented a set of experiments performing a deep analysis of 7 state-of-the-art
models constructed on 9 datasets, including one real-world dataset. We presented an ex-
tensive discussion of our results in context. Our results show that the proposed approach
provides local explanations based on the user preferences (UPSD) or on the order of actions
performed by the user (SDSD) if this order actually impacts the recommendation. These
explanations are easy to interpret, make it possible to identify the past items at the ori-
gin of the recommendation, and allow a better transparency for user. Moreover, we have
seen that explanations can be apply to other users. Hence, the most explainable models are
those for which explanations cover most of the users and have a high quality with respect
to AUC and HIT X. The most explainable models with our methods are REBUS, SASrec
and TransRec. This result was expected as they do not model the users. Indeed, REBUS
and SASrec only model items and do not exploit user embedding, while in TransRec, the
impact of user embedding is light. Our experiments have shown that the sequential explana-
tions generalize to other users for models that take the order of user items into account, which
validates both our approach and the fact that these models make recommendations based on
the sequential aspect of the user history. It is also possible to provide global explanations of
a model based on a wisely selected set of local explanations.

The proposed approach focus of the explanation of the Top-1 recommended item. For
future work, we aim to extend our approach in order to provide explanations for a list of
recommended items. Also, we aim to investigate interpretable recommender system based
on the local explanations in more details. This requires the combination of patterns of both
the UPSD and SDSD methods. Further interesting options concern exploiting additional
information about the time and the respective attributes of the item interactions.

Chapter 5

Implementing a Recommender
System in an industrial context:
The Visiativ experience

Recommender systems have received a lot of attention over the past decades, with the pro-
posal of many models. Researchers have set up new systems by taking advantage of the most
advanced and sophisticated models of Artificial Intelligence and Machine Learning, making
them more powerful but also more complex. However, the level of adoption of these new
models by companies is rather limited, if we exclude the largest companies in the information
technology sector. Indeed, the implementation of a recommender system for a company is
not trivial. It requires expertise which can be costly and undoubtedly hinders the imple-
mentation of sophisticated recommender systems for many businesses. Actually, there are
still many companies that only recommend the most popular items. For others that wish to
implement an advanced recommender system, the abundance of models and their complexity
make the choice difficult. In this chapter, we share our experience on the implementation
and the integration of a recommender system for the collaborative platform of the French
company Visiativ. We present how we chose and implemented a recommender system and
the strategy adopted to monitor its performances in production (A/B Testing and choice of
key performance indicators). This was also a good opportunity to test in a real-world our
model presented in Chapter 3.

5.1 Introduction

Collaborative filtering recommender systems offer personalized recommendations that are
based on the history of users in the system and their resemblance to the histories of other
users. In the ’digital era’, they are a bridge between users and products of a company. As a
consequence, they have received a lot of attention over the past decades, with the proposal
of many models. Every company tries to take benefit from recommender system to improve
users experience. However, as discussed in (Paraschakis, 2016), companies rarely go beyond
the trivial most popular item lists, neighborhood-based methods, or matrix factorization
models. While a sophisticated recommender system would provide relevant personalized

87

88 Chapter 5. Implementing a Recommender System: The Visiativ experience

recommendations using interactions between users and company’s resources (e.g., products,
tutorials), its implementation requires expertise and is costly.

In this chapter, we share our feedback about the implementation and the integration of a
recommender system within the collaborative platform of Visiativ, the company behind this
work. This recommender system aims to identify Computer Aided Design (CAD) resources
relevant for the users of the myCADservices platform. Initially, no recommender system
was offered on this platform, but users could rank resources according to their popularity.
Starting from the observation that the downloadable resources on this platform require a
variable level of knowledge (that is to say that there is a learning logic between them), we were
interested in sequential recommendation systems. We decided to limit the scope of our study
to methods that are only based on user sequences to make recommendations (in our case,
interactions between users and resources), without taking into account information such as
content. The objective here was to ease the implementation of such a system. However, most
of the existing methods of sequential recommendation based only on user sequences capture
the sequential dynamics (recent actions) of a user without personalization, which limits the
impact of the user’s past on the recommendations. This led us to propose REBUS, presented
in Chapter 3, a new metric embedding model where only items are projected and which uses
frequent substrings as a proxy to learn conditional distributions of item appearance in the
user’s sequential history. We were able to assess and compare the performance of REBUS
with other recommender systems on benchmarks used for research purposes and to show that
our method outperforms state-of-the-art models, especially on sparse datasets.

In this chapter, we study the implementation of REBUS in an industrial context and the
evaluation of the impact of this new recommender system from a business point of view. First,
we discuss the implementation of a recommender system inside myCADservices platform in
Section 5.2. We report an empirical study of several state-of-the-art models in Section 5.3.
In Section 5.4, these empirical results are compared with the ones obtained in production,
using the A/B testing evaluation method. Finally, Section 5.5 provides concluding remarks.

5.2 Implementation of a recommender system in Visiativ
context

Implementing a recommender system into a service in production is not a trivial task and
requires expertise. This is especially true when the recommendation model has been coded as
a prototype for research purposes, meaning it is not ready to be directly used in production.
In this section, we discuss the implementation strategy used in myCADservices and the
difficulties encountered.

Figure 5.1 illustrates the implementation of the recommender system into myCADser-
vices. We have chosen to use a web service that controls the recommender system. A daily
script retrieves the data necessary for the recommender system. Then, it requests the new
recommendations from the web service and finally updates the myCADservices database
with these new recommendations. The myCADservices database and website communicate
continuously to display the recommendations and track when a user clicks on a recommen-
dation. The web service, the recommender system and the daily script are located in distinct
IT environments from myCADservices database and website for security reasons, and also to
ease their evolution.

5.2. Implementation of a recommender system in Visiativ context 89

Figure 5.1: Overview of the implementation of a recommender system for myCADservices.

It is important to note that not all users are eligible to a personalized recommendation.
Indeed, to have a personalized recommendation the user must have already downloaded at
least 1 resource. As the myCADservices platform provides a multitude of services, a large
proportion of users are currently not eligible. For ineligible users, the platform provides the
25 most popular resources as a recommendation.

5.2.1 The different components

To implement a recommender system inside myCADservices, the following components are
needed:

� A recommender system: The ones we used are coded in Python using Tensor-
flow. Several recommendation models are included such as Most Popular model,
BPR-MF (Rendle et al., 2009), FMC (Rendle et al., 2010), FPMC (Rendle et al., 2010),
PRME (Feng et al., 2015), TransRec (He et al., 2017a), SASRec (Kang and McAuley,
2018), REBUS and all its variants presented in Chapter 3. After the training step,
the recommender system returns the Top-25 recommendations and the evaluation of
the models used in two separated csv files;

� A web service: It is based on Flask, a micro web service framework written in
Python, and Celery, an asynchronous task queue which is based on exchange of
distributed messages (in our case Redis). The web service controls the recommender
system according to the requests received. There are two possible requests:

90 Chapter 5. Implementing a Recommender System: The Visiativ experience

1. A POST request to launch the recommender system. A task identifier 1 is given
in order to follow the execution. This request needs three files: (1) a file that con-
tains all the user’s histories, (2) another file that contains the list of recommender
models to use, (3) and a last file that contains the list of users with their affected
recommendation model. The two last files allow us to use several recommender
model and perform A/B testing ;

2. A GET request to track the execution of the recommender system. If the task
is ended, it returns a zip file with all the recommendations and the evaluations
– using scientific metrics – of the models used, otherwise the execution state is
returned (e.g RUNNING, UNKNOWN or FAILURE) with the associated error
message.

� A daily script: Initially, myCADservices had to communicate directly with the web
service (hence its creation). However, due to the workload of the myCADservices
development team, direct communication between the web service and myCADservices
environment could not be achieved. We then developed this script which explains why
this script is in the recommendation environment as can be seen in Figure 5.1 and why
the web service does not communicate directly with myCADservices environment. The
negative effect of this change is that the recommender environment – which contains
the recommender system, the web service and the daily script – has direct access to
myCADservices database. The purpose of this script is to request data relating to
the recommendation from myCADservices database in order to create the three files
necessary for the POST request of the Web service and to update the database with
the information given by the recommender system. This daily script is called by a task
planner of Celery;

� The myCADservices database: It stores recommendations, related data and com-
municates with the daily script as well as myCADservices website. It is through this
database that the administrator pilots the recommender system. Indeed, the adminis-
trator can modify three tables that have an impact on the recommendations provided
to users:

1. A table to choose which model to use and to define its hyperparameters ;

2. A table to manage users affectation to the recommendation model ;

3. A table to manage A/B testing in progress.

� The myCADservices website: It displays the recommendations and notify the
database when a user clicks on a recommendation.

5.2.2 Exchanges between the different components

Figure 5.2 shows the exchange of information between all components during the daily task
in order to update the top 25 recommendations for each eligible user. There are six steps to
accomplish this daily task:

1This task identifier corresponds to the ID task given by Celery.

5.2. Implementation of a recommender system in Visiativ context 91

1. The daily script requests the myCADservices database to get the data needed for the
recommender system. This includes user’s histories, recommendation models to use,
and the assignment of users to the recommendation model;

2. The daily script sends the obtained data via a POST request to the web service. The
web service checks the data and, if the data is in the correct format, it returns the ID
task to the daily script ;

3. The web service launches the recommender system;

4. Every 30 seconds the daily script requests the recommendations via the GET request
using the ID task until the recommender system ends;

5. When the recommender system ends, the web service returns the recommendations and
evaluations of the models to the daily script ;

6. The daily script pre-processes the recommendations and evaluations, and sends them
to the database in order to update the top 25 recommendations for each eligible user.

As we can see in Figure 5.1, myCADservices database and website communicate contin-
uously to display recommendations to users and also to track back when a user clicks on a
recommendation.

Figure 5.2: Overview of the exchanges between the different components during the daily
task.

5.2.3 Which model to choose?

The profusion of recommender systems makes it difficult to choose the system adapted to a
particular context. To make an informed choice, we adopted a two-step methodology. The
first step was to perform an empirical study on several datasets, including myCADservices,

92 Chapter 5. Implementing a Recommender System: The Visiativ experience

to compare several recommender systems. The second step consisted in studying a small
number of recommender systems selected during the first step, within the myCADservices
environment, in order to compare and measure their impact in this context.

5.3 Empirical study

We carry out this empirical study in two steps. First, we compare different recommendation
models across several datasets, including the myCADservices dataset. This allows us to
identify the best performing recommendation models. In a second step, we carry out a
deep study on the myCADservices dataset with the models that seem to us to be the most
promising from the first step.

5.3.1 General study

In the Chapter 3, we present a thorough empirical study of 10 recommendation models –
including our model REBUS – over 12 datasets – including myCADservices dataset. The
performances of the different methods on each dataset is reported in Section 3.4.4. We can
observed that REBUS outperforms other models on most of the datasets, having the best
AUC value. REBUS works well on all other metrics as well. Additionally, we can see that
SASRec is a promising model, it performs well on myCADservices dataset and have the
second best AUC value in overall. TransRec is also a promising model as it performs well
on myCADservices dataset having the best NDCG 25 and NDCG 50. It also has the second
best value for HIT 25, HIT 50, NDCG 25 and NDCG 50 in overall.

This study saved us time, because it led us to abandon the underperforming models.
From it, we retain the three models REBUS, TransRec and SASrec as they are the most
efficient models. In addition, we keep REBUSXMC , a variant of REBUS, which shows good
performance (see Tables 3.8 and 3.9) and the Most Popular model, called hereafter POP, as
it is the model we propose to use for not eligible users (those who have not yet downloaded
a resource).

5.3.2 Focus on the myCADservices dataset

Now let us present an in-depth study of the five previously select recommender systems on
the myCADservices dataset.

Datasets: To evaluate the performance of the selected models, we consider 3 different
configurations of the myCADservices dataset obtained by modifying two parameters during
the preprocessing: userMin and itemMin that are respectively the minimum number of
interactions that a user and an item must have to be retained in the dataset. The main
characteristics of the 3 different configurations of the myCADservices dataset are reported in
Table 5.1. The control of the minimum number of interactions that an item and a user must
have, allows us to evaluate the performance of the 5 selected models for different configura-
tions of myCADservices dataset. We can see from Table 5.1 that if we decrease userMin
and itemMin, the numbers of considered users and items increase. The advantage of using a
smaller userMin is that it increases the number of eligible users who will have a personalized
recommendation. Notice that, the dataset named Visiativ in Chapter 3 and 4 comes from

5.3. Empirical study 93

myCADservices dataset. The difference is that we update the myCADservices dataset for
this study in order to have the downloads from November 2014 to December 2019.

Table 5.1: Main characteristics of myCADservices dataset with different preprocessing. user-
Min and itemMin are the minimum number of interactions a user and an item must have
to be considered. The first row is the initial dataset without preprocessing.

userMin itemMin #Users #Items #Actions #A/#U #A/#I Sparsity

1 1 6274 1004 32081 5.11 31.95 99.49%
3 3 2822 804 27317 9.68 33.98 98.80%
4 4 2191 731 25270 11.53 34.57 98.42%
5 5 1812 684 23637 13.04 34.56 98.09%

Experimental settings: We apply the same experimental setting as in Section 3.4.3 Chap-
ter 3. That is, the models are evaluated on the most recent item. The second most recent
item is used for tuning model hyperparameters, and other items are used for training models.
Model performance is assessed by three metrics widely used in sequential recommendation:
(1) the Area Under the ROC Curve (AUC) that estimates how high each user’s ground-truth
item is ranked on average; (2) the Hit Rate at position X (either 5, or 25) that returns the
average number of times the ground-truth item of each user is ranked in the top X items;
(3) the Normalized Discounted Cumulative Gain at position X (either 5, or 25) that is a
position-aware metric which assigns larger weights to higher positions.

We modify the grid search in order to explore more combinations of hyperparameters.
We fix the following parameters for all models: The learning rate is set to 0.001, the batch
size to 128 and we stop the training if there is no improvement of the AUC validation for
250 epochs. We compute the AUC validation every 25 epochs. The dimension of the learned
latent vectors k are taken in t10, 20, 30, 40, 50u. All regularization hyperparameters are taken
in t0, 0.001, 0.01, 0.1, 1u. For models with other hyperparameters we have tried those given
by the authors. Regarding specific hyperparameters of REBUS, α P t0.1, . . . , 1.0u and
γ P t0.0, 0.1, . . . , 1.0u.

Performance study: The performances of the different methods on every dataset are
reported in Table 5.22. REBUS and REBUSXMC have almost the same performance for
each metrics and outperforms other models having the best AUC value and HIT 25 value.
TransRec shows fair performance having the best HIT X and NDCG X value when userMin
and itemMin are equal to 3 and 5. Also, SASRec outperforms TransRec on AUC value
and has fair performance on HIT X and NDCG X.

For all models, we can observe that AUC performance increases when userMin and
itemMin are small while HIT X and NDCG X tend to slightly decrease. This is interesting
because it shows that we can take a small value of userMin and itemMin (e.g userMin
and itemMin equal to 3) while preserving good performance. This configuration allows us to
maximize the number of eligible users. This is why we have chosen userMin and itemMin
equal to 3 to be the configuration tested in the industrial study.

2We only show HIT 5, HIT 25, NDCG 5 and NDCG 25 in this table. HIT 10, HIT 50, NDCG 10 and
NDCG 50 are reported in Appendix 7 Table 7.10.

94 Chapter 5. Implementing a Recommender System: The Visiativ experience

Notice that we do not evaluate performance of models with userMin and itemMin under
3 because a user needs at least 3 items to be evaluated in our experimental setting. According
to the performance observed when userMin and itemMin equal to 3, we have selected 4
models that have been evaluated in the myCADservices environment:

1. The first two models are REBUS and REBUSXMC because they outperform other
models on AUC and have comparable performance on other metrics;

2. The third model is SASRec. We can see that TransRec is better than SASRec
and REBUS on HIT X and NDCG X. However SASRec and REBUS do not suffer
from the cold-start problem, since they can make recommendations to users who have
interacted only with a single item of the system as discuss in Subsections 3.3.8 and 3.4.5.
For instance, SASRec and REBUS are able to make a recommendation for 6252 users
(number of users who interacted with a single item that has at least 3 interactions in
the dataset) where TransRec is able to make a recommendation for only 2822 users
(number of users who have at least 3 interactions with items that also have at least 3
interactions);

3. The last model is POP because it is the model we propose to use for ineligible users.

5.4 Industrial study

We report here a thorough industrial study to evaluate the selected models into the myCAD-
services platforms. The aim here is twofold : (1) to confirm that the results obtained in the
empirical study are still observable in the real-world environment, and (2) to measure the
impact of the recommendation system on myCADservices.

To confirm that the hypotheses made in the empirical study are relevant for our applica-
tion (i.e Model A outperform Model B), we used the A/B testing methodology. In our case,
this involves to randomly split eligible users into two groups and affect them to a different
recommendation model. The two groups have the same interface: a banner that displays 3
recommendations. Furthermore, the user can navigate through the Top-25 recommendations.
Due to the relatively low activity of the platform (about 15 downloads per day) and in order
to limit some effects that could bias our study (e.g. one-off increased activity, novelty effect,
etc.), we chose to perform this study over 6 months. Consequently, it was not possible to
compare all models. Our analysis is based on the following business indicators:

� Evolution of users (total number of users and percentage of eligible users);

� Evolution of downloads (total number and daily progression);

� Evolution of the performance of scientific metrics for sequential recommendation;

� Evolution of clicks on recommendations (total number, daily progression, and con-
version rate from a click on a recommendation to the download of the recommended
resource).

5.4. Industrial study 95

Table 5.2: AUC, HIT 5, HIT 25, NDCG 5 and NDCG 25 for myCADservices dataset with
different preprocessing. The two numbers after myCAD are respectively the value of user-
Min and itemMin in the Table 5.1. Best obtained results are in bold, second best obtained
results are underline. The last column is the average performance on these 3 different pre-
processing.

M
et

ri
c

m
y
C

A
D

3
3

m
y
C

A
D

4
4

m
y
C

A
D

5
5

A
v
g(

A
ll
)

AUC 0.8255 0.8128 0.8110 0.8286
HIT5 15.09% 15.05% 15.35% 15.36%

POP HIT25 33.71% 33.67% 34.46% 34.58%
NDGC5 9.10% 9.11% 9.53% 9.32%
NDGC25 14.15% 14.13% 14.66% 14.47%

AUC 0.8975 0.8946 0.8967 0.9007
HIT5 32.32% 28.68% 34.62% 30.25%

TransRec HIT25 55.01% 55.86% 58.37% 55.32%
NDGC5 25.21% 20.78% 26.31% 22.49%
NDGC25 31.44% 28.19% 32.78% 29.34%

AUC 0.9041 0.8995 0.8993 0.9060
HIT5 28.04% 30.60% 31.64% 30.03%

SASRec HIT25 53.51% 55.63% 56.71% 55.10%
NDGC5 20.58% 22.51% 24.25% 22.40%
NDGC25 27.55% 29.36% 31.12% 29.26%

AUC 0.9060 0.9020 0.9012 0.9070
HIT5 28.33% 28.45% 30.43% 29.00%

REBUS HIT25 56.23% 56.95% 57.26% 56.13%
NDGC5 19.91% 20.07% 21.25% 20.65%
NDGC25 27.56% 27.92% 28.68% 28.11%

AUC 0.9065 0.9021 0.9016 0.9073
HIT5 28.18% 30.05% 31.75% 30.05%

REBUS1MC HIT25 55.98% 57.55% 57.65% 56.25%
NDGC5 19.98% 21.02% 22.28% 21.45%
NDGC25 27.61% 28.57% 29.40% 28.66%

Each of these indicators are calculated on each group of the A/B test and are considered to
be useful to measure the impact of the recommender system on myCADservices.

It is important to notice that we have two categories of users:

� The eligible users who downloaded at least one resource. They are randomly assigned
either to group A or to group B of the tests.

� The ineligible users who have not yet download any resources. For them, the platform
provides 25 most popular resources without personalization as a recommendation, later

96 Chapter 5. Implementing a Recommender System: The Visiativ experience

call Default RS. Default RS are obtained by the POP model.

We first begin by analyzing the impact of the recommender systems on myCADservices.
Then, we report an analysis of two A/B tests: the first one compares REBUS and POP
models; The second one compares REBUS1MC and SASRec.

5.4.1 Impact of recommender systems

To analyze the impact of recommender systems on myCADservices, we report the business
indicators starting 6 months before the beginning of the first A/B test.

In a first step, we analyze the impact of the implementation of a recommendation system
on the whole myCADservices platform using two indicators: the evolution of the number of
users and the evolution of the number of downloads. As can be seen on the left of figures 5.3
and 5.4, the number of users and the number of downloads increase steadily during the obser-
vation period, that is to say before and during the evaluation periods of the recommendation
systems. When we look closely at the progress of these two indicators (On the right of fig-
ures 5.3 and 5.4), we observe a decrease in the average number of new users and downloads
per week for A/B Test 2. For instance, there were on average 160 new users per week (resp.
110 downloads per week) before using a recommender system, compared to 110 new users
per week (resp. 75 downloads per week) at the end of the A/B Test 2.

From these two indicators, we can conclude that the recommender system had no impact
on the platform overall activity. Note that the significant drop of activity observed for A/B
Test 2 is potentially linked to the COVID-19 crisis. Nevertheless, this can be explained by
the fact that the recommender system is only present in the resource center which is a small
part of the whole myCADservices platform. From Figure 5.5 (right), we notice that a large
part of the users do not use the resource center (today more than 90% of users have never
downloaded any resources).

Figure 5.3: Evolution of the cumulative number of users (left) and number of new users per
week (right). Orange (resp. green) line refers to the start of A/B Test 1 (resp. A/B Test 2).

In a second step, we analyze the impact of the implementation of a recommendation
system in the resource center of myCADservices platform. From the left of Figure 5.5,
we can see the evolution of the cumulative numbers of clicks on recommendation for the

5.4. Industrial study 97

Figure 5.4: Evolution of the cumulative number of downloads (left) and number of downloads
per week (right). Orange (resp. green) line refers to the start of A/B Test 1 (resp. A/B Test
2).

eligible users, of ineligible users and the combination of both type of users. There were 1395
clicks on recommendations within 14 months. About 60% of those clicks are made from
the personalized recommender system (models in A/B testing) provided to eligible users
which represent 8.5% of myCADservices users. The other 40% of those clicks comes from
non-eligible users – which represent 91.5% of myCADservices users – who clicked on the
recommendations provided by Default RS (Default RS are obtained by the POP model).
This confirms that a large part of the users do not use the resource center and more than
the half of the activity of the resource center is due to 8.5% of myCADservices users (eligible
users). If we compare the two A/B tests using Figure 5.6, we can notice that there is no
significant difference and the decrease activity related to COVID-19 is not visible here. In
fact, there are more clicks in overall for A/B Test 2 than for A/B Test 1 (728 against 663).
We have also calculated the conversion rate of a click on a recommendation into a download of
the related resource. We can observe that the two A/B tests have almost the same conversion
rate, 38.6% for the A/B Test 1 and 41.7% for the A/B Test 2. However, the conversion rate
is much lower for the Default RS, 27.4% which it is normal because the recommendation
aren’t personalized. Nonetheless, this allows to convert more than a quarter of the ineligible
users who clicked on a recommendation to eligible user.

With these observations, we can conclude that the activity related resource center is
mainly due to regular users of the resource center (eligible users) and the recommendation
system have a positive impact on them. Indeed, if we consider all recommender systems
of both test A/B, there are 487 downloads due to them. Note that, for the same period
there were 7477 downloads. Although, personalized recommender systems are more effective
(i.e. More clicks on recommendation) and provide better recommendations (i.e. Better
conversion rate) than Default RS. However, it seems advisable to provide recommendations
via Default RS on the homepage of the platform to promote the resource center to ineligible
users.

98 Chapter 5. Implementing a Recommender System: The Visiativ experience

Figure 5.5: Evolution of the cumulative number of clicks on recommendations (left) and
evolution of the percentage of eligible users (right). Orange (resp. green) line refers to the
start of A/B Test 1 (resp. A/B Test 2).

Figure 5.6: Number of clicks on recommendations per week (left) and conversion rate of clicks
to downloads (right).

5.4.2 A/B Test 1: REBUS versus POP (2019/06/10 – 2020/01/23)

In this first A/B test, we have compared REBUS and POP model (model that recommends
the most popular items) during 227 days. The aim of this first test is to confirm the superiority
of REBUS over POP observed in empirical study. And also to see if choosing POP as the
default recommender system for ineligible users is relevant.

Before starting to compare with the business indicators for the two models of the A/B Test
1. We recorded daily, and with the same empirical study evaluation protocol as Section 5.3,
the performances of the two models with the scientific metrics: AUC, HIT X and NDCG X.
The aim was to monitor the “scientific” performance of the models and to ensure that the
chosen hyperparameters allow the model to perform well over time. From Figure 5.7, we can

5.4. Industrial study 99

see that REBUS outperforms POP on all the scientific metrics during the entire A/B Test
1. Furthermore, there is no significant variation of these metrics of both models and the gap
remains constant. These results show that we can keep the hyperparameters during a long
time period while maintaining the same level of “scientific” performance. This is certainly
due to the activity of the platform and we can only apply this conclusion to our case study.

Figure 5.7: Evolution of the “scientific” performance (AUC, HIT 5 and HIT 25) of REBUS
and POP during the entire A/B Test 1.

Now that we know that “scientific” performance persists over time for both models, we
can then analyze the business indicators to compare them. To our great surprise, regarding
the number of clicks on the recommendations shown in Figure 5.8, the recommendation model
POP and REBUS gets almost the same number of clicks, 205 clicks for POP against 195
for REBUS. It can also be noted that POP had taken a quite significant lead at the middle
of the A/B Test 1 but in the long term REBUS filled the gap. Indeed, REBUS seems
more regulated on the number of clicks on the recommendations per week (see center of
Figure 5.8). Moreover, the conversion rate of clicks to downloads is also very similar, 38.5%
for POP against 39.3% for REBUS.

In addition to this, we can see in Figure 5.9 that users with REBUS tend to click on the
first 3 recommended resources displayed in the banner3 while users with POP model click
more on recommended resources beyond the third rank. The first three recommendations of
REBUS seem to be more relevant than that of POP.

Nevertheless from these observations, the superiority of REBUS shown in the empirical
study (see Section 5.3) is not evident here. This can be explained by the fact that the func-
tionality was new. Indeed, during the implementation of the A/B Test 1 we have modified
the user interface to add a banner that displays the recommendations. It would have been
wise to wait a few months before the start of this A/B test to remove the novelty aspect
which certainly biased a bit the beginning of the A/B Test 1. Despite this, these results
confirmed our choice to use the most popular resources for ineligible users. Moreover, it also
seems relevant to provide two types of recommendations to eligible users: (1) recommenda-
tions based on a personalized recommendation system (e.g. REBUS or SASRec) and (2)
recommendations from the most popular resources. This strategy is also adopted in many
platforms such as Netflix, Youtube or Spotify.

3The banner displays 3 recommendations and users can navigate through the Top-25 recommendations

100 Chapter 5. Implementing a Recommender System: The Visiativ experience

Figure 5.8: Evolution of the cumulative number of clicks on recommendations (left), number
of clicks on recommendations per week (center) and conversion rate of clicks to downloads
(right) for A/B Test 1.

Figure 5.9: Repartition of the rank of the clicked recommendation for REBUS (left) and for
Pop (right) during the A/B Test 1. The rank is the position of the recommended resources
in the banner displayed to users.

5.4.3 A/B Test 2: REBUS1MC versus SASRec (2020/01/23 – 2020/09/06)

In this second A/B test, we have compared REBUS1MC and SASRec during 227 days.
The aim of this second test is to confirm the small superiority of REBUS over SASRec
observed in empirical study.

Similar to A/B Test 1, we have monitored the “scientific” performance of REBUS1MC

and SASRec using AUC, HIT X and NDCG X. Like the results observed for A/B Test 1,
there is no significant variation for the scientific metrics and the two models are equivalent.
These results confirm our conclusion from A/B Test 1 that we can keep the hyperparameters
chosen for a model and have the same performance for a long time. In addition to this,
from the Figure 5.10 we changed the Y axis scale in order to zoom and see which models
stand out. On the AUC value, we can see that REBUS1MC outperforms SASRec while
SASRec REBUS1MC outperforms on the HIT 5. For HIT 50, both models have the same
performance.

5.4. Industrial study 101

Figure 5.10: Evolution of the “scientific” performance (AUC, HIT 5 and HIT 25) of
REBUS1MC and SASRec during the entire A/B Test 2.

Now that we confirm that “scientific” performance persists over time for both models,
we can then analyze the business indicators to compare them. In Figure 5.11, we see that
REBUS1MC gets more clicks than SASRec (225 against 190). Both models have almost
the same conversion rate, 41.3% for REBUS1MC compared to 42.1% for SASRec. From
Figure 5.12, we can observe that users of REBUS1MC and SASRec have almost the same
behavior and click mostly on the 3 first recommended resources. More than 70% of clicks come
from the first three recommendations, whether for REBUS1MC or SASRec. The banner’s
interface has been modified to facilitate the exploration of the recommended resources. This
explains the minor difference observed between A/B Test 1 and A/B Test 2 for REBUS
and REBUS1MC .

This A/B test shows that it remains complex in practice to determine the best recom-
mendation model even if REBUS1MC seems slightly ahead.

Figure 5.11: Evolution of the cumulative number of clicks on recommendations (left), number
of clicks on recommendations per week (center) and conversion rate of clicks to downloads
(right) for A/B Test 2.

102 Chapter 5. Implementing a Recommender System: The Visiativ experience

Figure 5.12: Repartition of the rank of the clicked recommendation for REBUS1MC (left)
and for SASRec (right) during the A/B Test 2. The rank is the position of the recommended
resources in the banner displayed to users.

5.5 Conclusion

We reported our experience about the deployment of a recommender system in an industrial
context (the French SME Visiativ). Recommender systems are essential to provide personal-
ized and relevant recommendations to users. Thus the choice of the system must be carefully
made. Nevertheless, the comparison between different models is difficult. There are numerous
recommendation models and each of them has it pros and cons. We used 3 different metrics
(i.e., AUC, HIT X and NDCG X). No model outperforms all others for every dataset and
metric. Note that, other evaluation metrics could be used such Precision, Recall, MAP and
MRR. Furthermore, as discussed in (Said and Belloǵın, 2014) and in Section 2.4, there are
several possible evaluation strategies. Given all these elements, determining which is the best
model is extremely difficult and requires expertise to choose the metrics and the evaluation
strategy fitting to the problem. We identified some good candidates based on their perfor-
mances in our empirical studies on several benchmarks. A further study in the industrial
application reports some mitigated results: while REBUS model significantly outperforms
the Popularity-based model in the previous study, its superiority is not obvious when consid-
ering business indicators (i.e., #clicks, conversion rate). This makes the identification of the
good model even more complex. However, this does not mean that we cannot be confident
in the results of the empirical evaluation on benchmarks. Many other factors have to be con-
sidered when launching an evaluation in an industrial context: the interface, the advertising
campaign and the attraction of novelty (users tend to click when something is new whatever
the model), the users of the platform. Moreover, we report that the implementation of the
recommender system in the resource center of myCADservices platform had a positive im-
pact despite the decline in activity related to COVID-19, for instance 6% of downloads are
due to the recommendation system.

In future work, it would be interesting to use multi-armed bandit instead of traditional
A/B testing. The advantage of the multi-armed bandit compared to A/B testing is that it can

5.5. Conclusion 103

simultaneously explore the performance of several models and gradually favor the exploitation
of the best one. This could certainly reduce the duration of the test (Scott, 2015) and allows
to iterate more quickly. In the future, potential test could be done with either a new model
or a new user interface. We also plan to implement our method of explanations presented
in Chapter 4 on the myCADservices platform and see if this has a positive impact on the
recommendation system.

Chapter 6

Conclusion

6.1 Summary

The work presented in this thesis aims at addressing the problem of sequential recommen-
dation. First, regarding this problem, we have proposed in Chapter 3 REBUS, that uses
a simple architecture based on a metric embedding model. REBUS is a unified metric
model that only embeds items in a Euclidean space in order to learn a representation of the
user preferences and sequential dynamics. While other existing models only use fixed-order
Markov Chains, regardless of the users and their considered items, one of the strengths of
REBUS is that it uses frequent sequences to identify the part of user history that is the most
relevant for recommendation. These sequences are then used to estimate Markov Chains of
variable orders, adapted to the user’s profile. Also by using frequent sequences, we can have
some insight to explain a recommendation. Despite its simple architecture, we have demon-
strated in an extensive empirical study on numerous datasets that REBUS outperforms the
state-of-the-art sequential recommendation models on sparse datasets – which is the most
standard configuration in real cases – and has comparable performances on dense datasets.
This empirical study also provides evidences that REBUS has good performance even if the
user histories are very short (that corresponds to cold-start users). Finally, REBUS is easily
customizable, as it is based on a trade-off between sequential dynamics and user preferences
fixed by the hand-user with the hyperparameters γ, and also as it relies on the use of a set of
sequences that can be automatically learnt or replaced by any other Markov Chains (of fixed
or variable order). These elements makes it possible to adapt REBUS to different contexts,
such as sparse or dense datasets.

Second, thanks to the link of this research with the company Visiativ, we were able to im-
plement and test the performance of REBUS on the myCADservices platform (Chapter 5).
The objectives of this study were to determine the efficiency of a recommender system in a
real environment, and using A/B testing methodology, to confirm that the hypotheses made
in the empirical study are relevant for our application (i.e Model A outperforms Model B).
In a general way, the implementation of the recommender system in the resource center of
myCADservices platform had a positive impact on the activity of the platform where 6% of
downloads are a direct consequence of the recommendation system. On the other side, the
A/B tests show some mitigated results. For the first A/B test, despite the fact that REBUS
significantly outperforms the Popularity-based model in the empirical study, its superiority

105

106 Chapter 6. Conclusion

was not obvious when considering business indicators. For the second A/B test, the slight
superiority of REBUS over SASRec observed in empirical study was visible only on the
number of clicks. These two A/B tests show that assumptions made in the empirical study
are not always satisfied in real case studies using business indicators. However, this does not
mean that we cannot be confident in the results of the empirical evaluation on benchmarks.
Many other factors have to be considered when launching an evaluation in an industrial con-
text: the interface, the advertising campaign and the attraction of novelty (users tend to
click when something is new whatever the model), as well as the users of the platform. New
A/B tests will be launched on myCADservices platform in order to test new recommenda-
tion models or even to modify the user recommendations display interface. To speed up test
iterations, A/B tests could be replaced by multi-armed bandit which have the advantage of
gradually favoring the best solution while simultaneously exploring the performances of the
two solutions and exploiting the best results.

Finally, regarding the lack of works that attempted to explain recommender systems, we
proposed, in Chapter 4, a model-agnostic approach for explaining recommendations made by
sequential recommendation models based on implicit feedback. We used the recommendation
history using subgroup discovery techniques to identify the active data used for recommen-
dation. The results of our experimental study demonstrate that our method provides (1)
explanations that are easy to interpret providing itemset or sequence of items at the origin
of the recommendation, and (2) explanations that are generalizable (i.e. explanations can be
applied to other users). Moreover, it is also possible to provide “global explanations” (i.e. a
set of local explanations that explains most of the recommendations) of a model based on a
wisely selected set of local explanations. It could be interesting to implement our approach
for explaining recommendations in myCADservices platform and see if this has a positive
impact on the recommendation system.

6.2 Perspectives

The work presented in this manuscript opens several research avenues toward both relevant
and explainable recommendations.

6.2.1 Improving REBUS

Learning and personalizing the trade-off between long-term and short-term
dynamics.

A first easy way of improvement for REBUS would be to learn the trade-off (hyperparameter
γ) between long-term and short-term dynamics. The advantage of learning γ is that it
facilitates the configuration of REBUS because the trade-off between long-term and short-
term dynamics would be automatic. To go even further we could learn two parameters for
the trade-off between long-term and short-term. The first one would be a global parameter
to all users (γ) and the second one would be a vector of personalized parameters associated
to each user (γu a vector of size |U |). This would allow REBUS to give more weight to the
sequential dynamics in the case of a new user and potentially give more weight to the user
preferences in the case of a regular user with a long history.

6.2. Perspectives 107

Improving the selection of items for the user preferences and the sequential
dynamics.

Another direction of improvement for REBUS would be to enhance the selection of items
in the user preferences part. Currently to model user preferences, REBUS uses all items
from the user’s history and each item has the same weight. However, it seems reasonable
to think that the general tastes (user preferences) of regular users evolve over time. One
proposition that may be interesting to investigate would be to find a function that assigns a
weight to items based on frequency of their occurrences and their distribution over the user’s
history. However, it is necessary to make sure that this function would capture different
phenomenon from the sequential part of REBUS. In the same line of work that the one
used to identified short-term dynamics, where frequent sequences are used to identify the
part of user history that best match the sequential dynamics, a more challenging proposal
could be to identify one or several itemsets that best represent the current user tastes using
pattern mining techniques.

Eventually, REBUS represents the sequential dynamics with a single sequence. It could
be interesting to take into account several sequences, provided by different pattern mining
techniques. We will have to deal with several sets of representative sequences of users’ histories
and choose the most relevant ones from each set. At the end, all of chosen sequences will have
to be carefully unified in order to not overwhelming the user preferences part of REBUS.

Create a content/context-aware recommender system using the architecture of
REBUS.

Our model, REBUS, only used the implicit feedback to predict the next user item. If
content and/or context information is available, it would be interesting to use them in order
to improve the performance of recommendations. It would be interesting to create a new
model with the same architecture as REBUS, which embeds items in a Euclidean space, but
where context and content information would be embedded too. For instance, if we have the
categories of items, we can embed this information in order to find out which item category
the user prefers. The main challenge is to find a way to learn and unify different embedding
in a metric model1.

6.2.2 Extend our work on explanation of sequential recommendation

Explanation for a list of recommended items.

One of the limitations of our proposed approach in Chapter 4 is that we only explain one
recommendation at a time (in our case the Top-1 recommendation) using subgroup discovery.
Indeed, subgroup discovery provides an overview on the relationships between a target variable
(or target attribute) and explaining variables. However, a recommender system generally
does not return a single item, but gives a larger order set of items. Therefore, it would be
interesting to extend our approach in order to be able of explaining a set or a sequence of
recommendations. We can identify four possible extensions of explanations:

1. An un-ordered set of items that explains an un-ordered set of recommended items;

1Without using Factorization Machine as in (Pasricha and McAuley, 2018).

108 Chapter 6. Conclusion

2. An un-ordered set of items that explains a sequence of recommended items;

3. A sequence of items that explains an un-ordered set of recommended items;

4. A sequence of items that explains a sequence of recommended items.

For the first two extensions, it is possible of using aggregation functions (e.g. weighted sum
for the first one and Kendall rank correlation coefficient for the second one) to keep the
protocol of UPSD, i.e. perturbation using item suppression and use of SD-MAP. For the
third extension, it is possible of using aggregation functions to keep the protocol of SDSD,
i.e. perturbation using item permutation and use of SeqScout algorithm. The challenge is
in the aggregation function which will have to reflect the quality of the list of recommended
items for each perturbation in order to determine the relevant itemsets or relevant sequence
of items. The fourth extension is more complicated to realize because it is necessary to have
an algorithm that makes possible to detect discriminant sequences with a numerical target.

Creation of interpretable recommender system based on explanations.

It may also be interesting to investigate an interpretable recommender system based on local
explanations. The goal would be to make a recommendation model based on the knowledge
acquired from black box models. The advantage of an explanation-based recommender system
is that its recommendations are fully explainable by the rules used by the system. A first
version of the model could be created from the rules found by UPSD and SDSD for only
one model. The challenge relies on finding the best rules using two sets of rules. We can go
even further, by creating a model that uses N sets of rules from several models.

Extend our methods to explain more type of recommender system.

For the moment, our approach is a model that is agnostic of the recommendation system used,
as much as it is based on implicit feedback. However, if a model embeds a user vector to make
a recommendation, our approach is currently not able to fully explain the recommendation.
There is still a part of shadow on user embedding. A first improvement would be to explain
how the model embeds the user. In addition, there are models that use content/context
information in addition to user feedback. It would be interesting to be able to explain these
models as well. This would lead to a fully model agnostic approach.

Chapter 7

Appendix

109

110 Chapter 7. Appendix

Table 7.1: Best hyperparameters for BPR, FMC, FPMC, PRME, TransRec and REBUS on
each dataset.

Dataset Models minCount L λθ bias reg α γ

Epinions BPR ∅ ∅ 0.1 0.1 ∅ ∅
Epinions FPMC ∅ ∅ 0.1 ∅ ∅ ∅
Epinions FMC ∅ ∅ 0.1 ∅ ∅ ∅
Epinions PRME ∅ ∅ 0.01 ∅ 0.2 ∅
Epinions TransRec ∅ ∅ 0.001 0.001 0.1 ∅
Epinions REBUS 2 3 0.001 0.001 1 0.7

Foursq BPR ∅ ∅ 0.01 0.001 ∅ ∅
Foursq FPMC ∅ ∅ 0.001 ∅ ∅ ∅
Foursq FMC ∅ ∅ 0.01 ∅ ∅ ∅
Foursq PRME ∅ ∅ 0.001 ∅ 0.5 ∅
Foursq TransRec ∅ ∅ 0.001 1 0.001 ∅
Foursq REBUS 2 15 0.001 0.001 0.3 ∅
Adressa BPR ∅ ∅ 0.001 0 ∅ ∅
Adressa FPMC ∅ ∅ 0 ∅ ∅ ∅
Adressa FMC ∅ ∅ 0 ∅ ∅ ∅
Adressa PRME ∅ ∅ 0 ∅ 0.2 ∅
Adressa TransRec ∅ ∅ 0 0 0.001 ∅
Adressa REBUS 2 2 0 0 0.3 0.2

Visiativ BPR ∅ ∅ 0.01 0 ∅ ∅
Visiativ FPMC ∅ ∅ 0.01 ∅ ∅ ∅
Visiativ FMC ∅ ∅ 0.01 ∅ ∅ ∅
Visiativ PRME ∅ ∅ 0.1 ∅ 0.2 ∅
Visiativ TransRec ∅ ∅ 0.01 0 0.1 ∅
Visiativ REBUS 2 10 0.01 0.01 1 0.5

Auto BPR ∅ ∅ 0.1 0.1 ∅ ∅
Auto FPMC ∅ ∅ 0.1 ∅ ∅ ∅
Auto FMC ∅ ∅ 0.1 ∅ ∅ ∅
Auto PRME ∅ ∅ 0.01 ∅ 0.5 ∅
Auto TransRec ∅ ∅ 0.01 0.001 0.01 ∅
Auto REBUS 2 8 0.001 0.001 1 0.7

Office BPR ∅ ∅ 0.1 0.1 ∅ ∅
Office FPMC ∅ ∅ 0.1 ∅ ∅ ∅
Office FMC ∅ ∅ 0.1 ∅ ∅ ∅
Office PRME ∅ ∅ 0.01 ∅ 0.5 ∅
Office TransRec ∅ ∅ 0.01 0.001 0.01 ∅
Office REBUS 2 8 0.001 0.001 1 0.7

Video BPR ∅ ∅ 0.01 0.01 ∅ ∅
Video FPMC ∅ ∅ 0.01 ∅ ∅ ∅
Video FMC ∅ ∅ 0.01 ∅ ∅ ∅
Video PRME ∅ ∅ 0.001 ∅ 0.5 ∅
Video TransRec ∅ ∅ 0.01 0.01 0.01 ∅
Video REBUS 2 10 0.001 0.001 0.3 0.3

ML-5 BPR ∅ ∅ 0.1 0.1 ∅ ∅
ML-5 FPMC ∅ ∅ 0.1 ∅ ∅ ∅
ML-5 FMC ∅ ∅ 0.1 ∅ ∅ ∅
ML-5 PRME ∅ ∅ 0.1 ∅ 0.2 ∅
ML-5 TransRec ∅ ∅ 0.01 0 0.1 ∅
ML-5 REBUS 2 3 0.01 0.01 0.3 0.5

ML-10 BPR ∅ ∅ 0.01 0.001 ∅ ∅
ML-10 FPMC ∅ ∅ 0.01 ∅ ∅ ∅
ML-10 FMC ∅ ∅ 0.01 ∅ ∅ ∅
ML-10 PRME ∅ ∅ 0.01 ∅ 0.2 ∅
ML-10 TransRec ∅ ∅ 0 0.001 0.1 ∅
ML-10 REBUS 2 8 0.001 0.001 1 0.7

ML-20 BPR ∅ ∅ 0.01 0.001 ∅ ∅
ML-20 FPMC ∅ ∅ 0.01 ∅ ∅ ∅
ML-20 FMC ∅ ∅ 0.01 ∅ ∅ ∅
ML-20 PRME ∅ ∅ 0.01 ∅ 0.5 ∅
ML-20 TransRec ∅ ∅ 0.01 0.001 0.01 ∅
ML-20 REBUS 2 8 0.001 0.001 0.7 0.5

ML-30 BPR ∅ ∅ 0.01 0.001 ∅ ∅
ML-30 FPMC ∅ ∅ 0.01 ∅ ∅ ∅
ML-30 FMC ∅ ∅ 0.01 ∅ ∅ ∅
ML-30 PRME ∅ ∅ 0.01 ∅ 0.5 ∅
ML-30 TransRec ∅ ∅ 0.01 0.001 0.01 ∅
ML-30 REBUS 2 10 0.001 0 0.6 0.4

ML-50 BPR ∅ ∅ 0.01 0.001 ∅ ∅
ML-50 FPMC ∅ ∅ 0.01 ∅ ∅ ∅
ML-50 FMC ∅ ∅ 0.01 ∅ ∅ ∅
ML-50 PRME ∅ ∅ 0.01 ∅ 0.5 ∅
ML-50 TransRec ∅ ∅ 0.01 0 0.01 ∅
ML-50 REBUS 2 10 0.001 0.001 0.6 0.3

111

Table 7.2: Best hyperparameters for SASRec on each dataset.

Dataset Models num blocks num heads l2 emb maxlen droprate

Epinions SASRec 2 1 0.01 50 0.5
Foursq SASRec 2 1 0.001 200 0.2
Adressa SASRec 2 1 0 50 0.2
Visiativ SASRec 2 1 0 200 0.5

Auto SASRec 2 1 0.001 50 0.5
Office SASRec 2 1 0.001 50 0.5
Video SASRec 2 1 0.001 100 0.2
ML-5 SASRec 2 1 0.001 50 0.5
ML-10 SASRec 2 1 0 200 0.5
ML-20 SASRec 2 1 0.001 200 0.2
ML-30 SASRec 2 1 0 200 0.2
ML-50 SASRec 2 1 0 50 0.2

Table 7.3: Best hyperparameters for CASER on each dataset.

Dataset Models neg samples L T l2 nv nh droprate ac conv ac fc

Epinions CASER 3 5 3 0 2 32 0.5 relu tanh
Foursq CASER 3 5 3 0.001 16 64 0.5 sigm iden
Adressa CASER 3 5 3 0 4 16 0.3 relu relu
Visiativ CASER 3 5 2 0.001 2 4 0.5 iden relu

Auto CASER 3 5 3 0.001 16 16 0.5 relu relu
Office CASER 3 5 1 0.001 16 4 0.5 tanh relu
Video CASER 3 5 3 0 16 16 0.5 relu relu
ML-10 CASER 3 5 2 0.001 1 4 0.5 relu relu
ML-20 CASER 3 9 2 0.001 8 8 0.5 iden iden
ML-30 CASER 3 5 1 0.001 4 32 0.5 relu iden
ML-5 CASER 3 5 3 0.001 8 8 0.5 tanh relu
ML-50 CASER 3 5 1 0 8 4 0.5 relu iden

Table 7.4: Best hyperparameters for S-KNN on each dataset.

Dataset Models k sample size sampling similarity

Epinions sknn 200 500 recent binary
Foursq sknn 500 500 recent jaccard
Adressa sknn 500 1000 random cosine
Visiativ sknn 500 500 recent jaccard

Auto sknn 500 500 recent binary
Office sknn 500 500 recent cosine
Video sknn 500 500 recent cosine
ML-5 sknn 500 500 recent jaccard
ML-10 sknn 500 2000 recent jaccard
ML-20 sknn 500 2000 recent jaccard
ML-30 sknn 500 2000 recent jaccard
ML-50 sknn 500 2000 recent jaccard

112 Chapter 7. Appendix

Table 7.5: HIT 5, HIT 10, NDCG 5 and NDCG 10 for the different models on Epinions,
Foursquare, Adressa, Visiativ, Amazon-Automotive, Amazon-Office-Product and Amazon-
Video-Games datasets. The last row, called Improv. vs Best, shows the improvement in
percentage of our method compared to the other best model. The last column is the average
performance on these 7 datasets, the average of all datasets is included in Table 7.6.

Metric Epinions Foursq Adressa Visiativ Auto Office Games Avg

POP HIT5 0.77% 17.59% 7.00% 11.68% 0.96% 0.02% 1.20% 5.60%
HIT10 1.37% 29.33% 11.80% 18.35% 1.59% 0.05% 1.90% 9.20%

NDGC5 0.40% 10.94% 3.82% 7.42% 0.54% 0.02% 0.76% 3.41%
NDGC10 0.59% 14.72% 5.41% 9.56% 0.74% 0.02% 0.99% 4.57%

FMC HIT5 0.81% 25.15% 28.69% 22.72% 0.96% 0.46% 3.72% 11.79%
HIT10 1.02% 35.84% 42.82% 31.97% 1.46% 0.76% 5.98% 17.12%

NDGC5 0.55% 18.48% 19.39% 16.87% 0.62% 0.28% 2.34% 8.36%
NDGC10 0.61% 21.93% 23.95% 19.86% 0.78% 0.38% 3.06% 10.08%

BPR HIT5 1.12% 19.56% 8.02% 15.27% 0.86% 0.52% 2.24% 6.80%
HIT10 1.53% 30.12% 14.26% 24.52% 1.57% 0.74% 3.96% 10.96%

NDGC5 0.74% 12.93% 4.53% 9.76% 0.55% 0.36% 1.37% 4.32%
NDGC10 0.87% 16.33% 6.55% 12.73% 0.78% 0.43% 1.92% 5.66%

FPMC HIT5 0.67% 31.56% 30.36% 22.72% 0.70% 0.41% 4.05% 12.92%
HIT10 0.84% 41.36% 44.62% 31.25% 1.16% 0.71% 6.92% 18.12%

NDGC5 0.46% 24.03% 20.47% 16.22% 0.45% 0.25% 2.49% 9.19%
NDGC10 0.51% 27.18% 25.06% 18.97% 0.60% 0.35% 3.41% 10.87%

PRME HIT5 0.72% 29.32% 30.10% 25.52% 0.66% 0.69% 4.16% 13.03%
HIT10 1.00% 38.69% 43.65% 32.69% 1.16% 1.18% 6.83% 17.88%

NDGC5 0.55% 23.57% 20.80% 19.56% 0.41% 0.40% 2.63% 9.70%
NDGC10 0.63% 26.58% 25.16% 21.84% 0.57% 0.56% 3.49% 11.26%

TransRec HIT5 0.91% 35.06% 31.79% 27.46% 1.41% 1.00% 3.27% 14.41%
HIT10 1.26% 44.62% 45.77% 36.63% 2.27% 1.83% 5.64% 19.72%

NDGC5 0.65% 26.62% 22.61% 20.11% 0.88% 0.60% 2.08% 10.51%
NDGC10 0.76% 29.70% 27.11% 23.07% 1.15% 0.86% 2.84% 12.21%

S-KNN HIT5 1.26% 47.16% 12.46% 21.58% 2.56% 2.97% 5.37% 13.34%
HIT10 1.65% 54.09% 18.31% 31.18% 3.53% 3.90% 8.35% 17.29%

NDGC5 0.99% 41.28% 8.78% 15.42% 1.79% 2.12% 3.50% 10.55%
NDGC10 1.12% 43.53% 10.67% 18.51% 2.10% 2.42% 4.46% 11.83%

CASER HIT5 0.81% 16.56% 25.17% 20.86% 0.58% 0.36% 1.79% 9.45%
HIT10 1.37% 25.86% 38.94% 30.90% 1.24% 0.54% 3.19% 14.58%

NDGC5 0.52% 10.39% 16.56% 14.29% 0.38% 0.18% 1.14% 6.21%
NDGC10 0.70% 13.39% 20.99% 17.50% 0.60% 0.24% 1.59% 7.86%

SASRec HIT5 0.98% 32.64% 28.65% 25.52% 0.78% 0.98% 3.05% 13.23%
HIT10 1.56% 41.56% 43.98% 35.63% 1.24% 1.67% 5.02% 18.66%

NDGC5 0.60% 24.53% 18.58% 17.82% 0.49% 0.60% 1.93% 9.22%
NDGC10 0.78% 27.41% 23.50% 21.08% 0.63% 0.82% 2.56% 10.97%

REBUS HIT5 1.14% 47.10% 32.18% 25.45% 1.48% 1.21% 2.90% 15.92%
HIT10 1.74% 53.14% 46.30% 35.34% 2.47% 2.14% 4.82% 20.85%

NDGC5 0.71% 41.72% 22.45% 16.64% 0.93% 0.74% 1.82% 12.14%
NDGC10 0.91% 43.67% 27.00% 19.81% 1.25% 1.04% 2.44% 13.73%

HIT5 -9.52% -0.13% 1.23% -7.32% -42.19% -59.26% -46.00% 10.48%
Improv. HIT10 5.45% -1.76% 1.16% -3.52% -30.03% -45.13% -42.28% 5.73%
vs Best NDGC5 -28.28% 1.07% -0.71% -17.26% -48.04% -65.09% -48.00% 15.07%

NDGC10 -18.75% 0.32% -0.41% -14.13% -40.48% -57.02% -45.29% 12.45%

113

Table 7.6: HIT 5, HIT 10, NDCG 5 and NDCG 10 for the different models on ML-5, ML-
10, ML-20, ML-30 and ML-50 datasets. The last row, called Improv. vs Best, shows the
improvement in percentage of our method compared to the other best model. The last
column is the average performance on the 12 datasets, including datasets of Table 7.5.

Metric ML-5 ML-10 ML-20 ML-30 ML-50 Avg(ML) Avg(All)

POP HIT5 1.92% 2.25% 2.07% 1.94% 1.94% 2.02% 4.11%
HIT10 3.76% 3.81% 4.02% 3.99% 4.21% 3.96% 7.01%

NDGC5 1.13% 1.33% 1.25% 1.12% 1.13% 1.20% 2.49%
NDGC10 1.74% 1.83% 1.88% 1.79% 1.86% 1.82% 3.43%

FMC HIT5 2.90% 5.10% 6.08% 5.80% 6.31% 5.24% 9.06%
HIT10 5.46% 8.21% 9.37% 9.46% 10.12% 8.52% 13.54%

NDGC5 1.70% 3.35% 3.84% 3.76% 4.10% 3.35% 6.27%
NDGC10 2.52% 4.35% 4.91% 4.94% 5.32% 4.41% 7.72%

BPR HIT5 2.82% 2.78% 2.96% 2.72% 2.75% 2.81% 5.13%
HIT10 5.13% 5.53% 5.25% 4.80% 5.27% 5.20% 8.56%

NDGC5 1.69% 1.74% 1.84% 1.59% 1.63% 1.70% 3.23%
NDGC10 2.43% 2.62% 2.58% 2.26% 2.43% 2.46% 4.33%

FPMC HIT5 2.25% 4.54% 5.78% 6.16% 6.24% 4.99% 9.62%
HIT10 4.11% 7.52% 9.47% 10.23% 10.35% 8.34% 14.04%

NDGC5 1.38% 2.90% 3.53% 3.93% 4.02% 3.15% 6.68%
NDGC10 1.97% 3.85% 4.71% 5.24% 5.34% 4.22% 8.10%

PRME HIT5 2.90% 4.49% 3.86% 4.97% 5.38% 4.32% 9.40%
HIT10 5.30% 8.30% 7.29% 8.49% 9.44% 7.76% 13.67%

NDGC5 1.75% 2.80% 2.30% 2.95% 3.27% 2.61% 6.75%
NDGC10 2.52% 4.03% 3.39% 4.07% 4.57% 3.72% 8.12%

TransRec HIT5 4.22% 5.33% 4.24% 4.67% 4.87% 4.67% 10.35%
HIT10 7.58% 8.76% 8.30% 7.85% 8.41% 8.18% 14.91%

NDGC5 2.62% 3.22% 2.69% 2.96% 3.12% 2.92% 7.35%
NDGC10 3.68% 4.32% 3.99% 3.98% 4.25% 4.04% 8.81%

S-KNN HIT5 3.28% 4.29% 3.49% 3.15% 3.00% 3.44% 9.21%
HIT10 5.46% 7.40% 6.06% 5.98% 5.70% 6.12% 12.63%

NDGC5 2.19% 2.73% 2.07% 1.97% 1.89% 2.17% 7.06%
NDGC10 2.89% 3.73% 2.89% 2.87% 2.76% 3.03% 8.16%

CASER HIT5 1.92% 2.83% 4.21% 4.42% 5.91% 3.86% 7.12%
HIT10 3.76% 5.27% 7.48% 8.10% 10.22% 6.96% 11.41%

NDGC5 1.15% 1.81% 2.64% 2.81% 3.67% 2.42% 4.63%
NDGC10 1.76% 2.59% 3.70% 3.99% 5.04% 3.42% 6.01%

SASRec HIT5 3.43% 5.08% 4.29% 5.66% 5.73% 4.84% 9.73%
HIT10 5.93% 8.16% 7.92% 9.84% 9.65% 8.30% 14.35%

NDGC5 2.07% 3.23% 2.68% 3.60% 3.68% 3.05% 6.65%
NDGC10 2.87% 4.21% 3.84% 4.94% 4.93% 4.16% 8.13%

REBUS HIT5 4.19% 4.31% 3.92% 4.50% 4.65% 4.32% 11.09%
HIT10 7.34% 7.53% 7.67% 7.90% 8.25% 7.74% 15.39%

NDGC5 2.59% 2.68% 2.49% 2.80% 2.84% 2.68% 8.20%
NDGC10 3.59% 3.73% 3.69% 3.89% 3.98% 3.77% 9.58%

HIT5 -0.71% -19.14% -35.53% -26.95% -26.31% -17.56% 7.15%
Improv. HIT10 -3.17% -14.04% -19.01% -22.78% -20.29% -9.15% 3.22%
vs Best NDGC5 -1.15% -20.00% -35.16% -28.75% -30.73% -20.00% 11.56%

NDGC10 -2.45% -14.25% -24.85% -25.76% -25.47% -14.51% 8.74%

114 Chapter 7. Appendix

Table 7.7: HIT 5, HIT 10, NDCG 5 and NDCG 10 for the different models that do not
suffer of the problem of cold-start users. The 3 last rows, called Improv. vs Best, Improv.
vs SASRec and Improv. vs S-KNN, shows the improvement in percentage of our method
compared to the best model, SASRec and S-KNN.

M
et

ri
c

E
p
in

io
n
s

F
ou

rs
q

A
d
re

ss
a

V
is

ia
ti

v

A
u
to

O
ffi

ce

G
am

es

A
v
g

POP HIT5 1.22% 14.06% 14.83% 15.93% 1.08% 0.04% 1.46% 6.94%
HIT10 2.10% 24.42% 29.40% 20.69% 1.70% 0.06% 2.12% 11.50%

NDGC5 0.76% 8.39% 10.30% 8.97% 0.64% 0.03% 0.89% 4.28%
NDGC10 1.04% 11.72% 15.19% 10.50% 0.83% 0.03% 1.10% 5.78%

FMC HIT5 0.79% 21.72% 26.51% 23.78% 1.45% 0.48% 3.70% 11.20%
HIT10 1.17% 31.82% 39.01% 33.06% 2.08% 0.83% 6.20% 16.31%

NDGC5 0.52% 15.58% 18.34% 17.80% 1.00% 0.31% 2.34% 7.98%
NDGC10 0.64% 18.82% 22.42% 20.81% 1.20% 0.43% 3.14% 9.64%

S-KNN HIT5 1.64% 34.85% 36.37% 28.24% 3.91% 4.43% 7.03% 16.64%
HIT10 2.17% 42.53% 45.38% 38.53% 5.05% 5.45% 9.94% 21.29%

NDGC5 1.35% 29.27% 28.41% 21.55% 2.85% 3.40% 4.79% 13.09%
NDGC10 1.52% 31.75% 31.32% 24.85% 3.22% 3.72% 5.72% 14.59%

SASRec HIT5 1.11% 23.18% 31.45% 25.74% 0.97% 0.80% 3.20% 12.35%
HIT10 1.93% 32.17% 42.46% 35.73% 1.66% 1.43% 5.14% 17.22%

NDGC5 0.68% 16.46% 20.95% 18.14% 0.61% 0.48% 2.05% 8.48%
NDGC10 0.94% 19.36% 24.48% 21.33% 0.83% 0.68% 2.68% 10.04%

REBUS HIT5 1.37% 30.19% 34.83% 27.35% 1.63% 1.76% 3.40% 14.36%
HIT10 2.18% 39.42% 45.55% 37.81% 2.60% 2.80% 5.62% 19.43%

NDGC5 0.89% 23.76% 25.42% 19.50% 1.00% 1.18% 2.16% 10.56%
NDGC10 1.16% 26.73% 28.89% 22.86% 1.31% 1.51% 2.87% 12.19%

Improv. HIT5 -16.46% -13.37% -4.23% -3.15% -58.31% -60.27% -51.64% -13.70%
VS HIT10 0.46% -7.31% 0.37% -1.87% -48.51% -48.62% -43.46% -8.74%

Best NDGC5 -34.07% -18.82% -10.52% -9.51% -64.91% -65.29% -54.91% -19.33%
NDGC10 -23.68% -15.81% -7.76% -8.01% -59.32% -59.41% -49.83% -16.45%

Improv. HIT5 23.42% 30.24% 10.75% 6.25% 68.04% 120.00% 6.25% 16.28%
VS HIT10 12.95% 22.54% 7.28% 5.82% 56.63% 95.80% 9.34% 12.83%

SASRec NDGC5 30.88% 44.35% 21.34% 7.50% 63.93% 145.83% 5.37% 24.53%
NDGC10 23.40% 38.07% 18.01% 7.17% 57.83% 122.06% 7.09% 21.41%

Improv. HIT5 -16.46% -13.37% -4.23% -3.15% -58.31% -60.27% -51.64% -13.70%
VS HIT10 0.46% -7.31% 0.37% -1.87% -48.51% -48.62% -43.46% -8.74%

S-KNN NDGC5 -34.07% -18.82% -10.52% -9.51% -64.91% -65.29% -54.91% -19.33%
NDGC10 -23.68% -15.81% -7.76% -8.01% -59.32% -59.41% -49.83% -16.45%

115

Table 7.8: HIT 5, HIT 10, NDCG 5 and NDCG 10 for REBUS and his variants on Epinions,
Foursquare, Adressa, Visiativ, Amazon-Automotive, Amazon-Office-Product and Amazon-
Video-Games datasets. The last column is the average performance on these 7 datasets, the
average of all datasets is included in Table 7.9.

M
et

ri
c

E
p
in

io
n
s

F
ou

rs
q

A
d
re

ss
a

V
is

ia
ti

v

A
u
to

O
ffi

ce

G
am

es

A
v
g

R
E
B
U
S

U
P

HIT5 1.05% 43.73% 31.86% 18.06% 1.43% 1.32% 2.61% 14.30%
HIT10 1.60% 50.30% 44.45% 27.10% 2.34% 2.11% 4.45% 18.91%

NDGC5 0.70% 37.30% 23.09% 11.37% 0.90% 0.85% 1.64% 10.84%
NDGC10 0.88% 39.42% 27.15% 14.26% 1.20% 1.10% 2.23% 12.32%

R
E
B
U
S

S
D

1
M

C HIT5 1.26% 29.45% 29.99% 27.74% 1.25% 1.14% 3.21% 13.44%
HIT10 1.74% 39.60% 43.20% 37.71% 2.06% 1.99% 5.08% 18.77%

NDGC5 0.82% 21.89% 20.84% 20.68% 0.79% 0.75% 2.01% 9.68%
NDGC10 0.97% 25.15% 25.08% 23.89% 1.05% 1.02% 2.61% 11.40%

R
E
B
U
S

S
D

2
M

C HIT5 1.02% 31.34% 30.40% 27.38% 1.48% 1.31% 2.94% 13.70%
HIT10 1.60% 40.95% 43.83% 37.20% 2.23% 2.21% 4.90% 18.99%

NDGC5 0.77% 23.52% 21.22% 18.63% 0.91% 0.78% 1.86% 9.67%
NDGC10 0.96% 26.61% 25.54% 21.83% 1.15% 1.06% 2.49% 11.38%

R
E
B
U
S

S
D

3
M

C HIT5 1.14% 32.12% 30.25% 25.02% 1.44% 1.29% 2.82% 13.44%
HIT10 2.00% 41.70% 43.64% 35.13% 2.23% 2.31% 4.70% 18.82%

NDGC5 0.73% 24.53% 20.93% 16.64% 0.88% 0.77% 1.80% 9.47%
NDGC10 1.01% 27.61% 25.24% 19.89% 1.14% 1.11% 2.40% 11.20%

R
E
B
U
S

S
D

HIT5 0.91% 31.50% 30.22% 27.81% 1.30% 1.21% 3.11% 13.72%
HIT10 1.53% 41.04% 44.00% 36.99% 2.14% 1.99% 4.87% 18.94%

NDGC5 0.63% 24.14% 20.95% 19.90% 0.82% 0.72% 1.95% 9.87%
NDGC10 0.83% 27.21% 25.38% 22.88% 1.09% 0.98% 2.52% 11.56%

R
E
B
U
S
1
M

C

HIT5 1.28% 47.24% 31.81% 25.52% 1.46% 1.24% 2.93% 15.92%
HIT10 1.88% 53.24% 46.19% 36.70% 2.35% 2.14% 4.88% 21.06%

NDGC5 0.83% 41.80% 22.17% 16.93% 0.91% 0.75% 1.84% 12.18%
NDGC10 1.03% 43.74% 26.81% 20.53% 1.20% 1.04% 2.47% 13.83%

R
E
B
U
S
2
M

C

HIT5 1.21% 47.15% 32.02% 23.58% 1.52% 1.32% 2.85% 15.66%
HIT10 1.74% 53.00% 46.21% 34.77% 2.30% 2.13% 4.83% 20.71%

NDGC5 0.78% 41.66% 22.35% 15.69% 0.93% 0.85% 1.79% 12.01%
NDGC10 0.94% 43.55% 26.93% 19.28% 1.18% 1.11% 2.42% 13.63%

R
E
B
U
S
3
M

C

HIT5 1.16% 47.15% 30.39% 23.23% 1.42% 1.27% 2.72% 15.33%
HIT10 1.86% 53.15% 44.07% 33.33% 2.29% 2.19% 4.55% 20.21%

NDGC5 0.75% 41.82% 20.93% 15.17% 0.90% 0.83% 1.70% 11.73%
NDGC10 0.97% 43.76% 25.34% 18.41% 1.18% 1.13% 2.29% 13.30%

R
E
B
U
S

HIT5 1.14% 47.10% 32.18% 25.45% 1.48% 1.21% 2.90% 15.92%
HIT10 1.74% 53.14% 46.30% 35.34% 2.47% 2.14% 4.82% 20.85%

NDGC5 0.71% 41.75% 22.45% 16.64% 0.93% 0.74% 1.82% 12.15%
NDGC10 0.91% 43.70% 27.00% 19.81% 1.25% 1.04% 2.44% 13.73%

116 Chapter 7. Appendix

Table 7.9: HIT 5, HIT 10, NDCG 5 and NDCG 10 for REBUS and his variants on ML-5,
ML-10, ML-20, ML-30 and ML-50 datasets. The last column is the average performance on
the 12 datasets, including datasets of Table 7.8.

M
et

ri
c

M
L
-5

M
L
-1

0

M
L
-2

0

M
L
-3

0

M
L
-5

0

A
v
g(

M
L
)

A
v
g(

A
ll
)

R
E
B
U
S

U
P

HIT5 3.58% 3.30% 2.85% 2.78% 2.47% 2.99% 9.59%
HIT10 6.54% 5.78% 5.30% 5.63% 5.02% 5.65% 13.39%

NDGC5 2.29% 1.99% 1.72% 1.71% 1.53% 1.85% 7.09%
NDGC10 3.25% 2.79% 2.50% 2.62% 2.34% 2.70% 8.31%

R
E
B
U
S

S
D

1
M

C HIT5 4.19% 5.61% 5.70% 6.08% 6.13% 5.54% 10.15%
HIT10 6.94% 8.96% 9.60% 9.84% 9.85% 9.04% 14.71%

NDGC5 2.65% 3.50% 3.52% 3.79% 3.84% 3.46% 7.09%
NDGC10 3.53% 4.56% 4.77% 4.99% 5.03% 4.58% 8.55%

R
E
B
U
S

S
D

2
M

C HIT5 4.12% 5.51% 6.11% 6.54% 6.44% 5.75% 10.38%
HIT10 7.07% 9.55% 10.20% 10.76% 10.37% 9.59% 15.07%

NDGC5 2.55% 3.38% 3.76% 4.22% 3.95% 3.57% 7.13%
NDGC10 3.50% 4.68% 5.07% 5.58% 5.21% 4.81% 8.64%

R
E
B
U
S

S
D

3
M

C HIT5 3.94% 5.18% 5.88% 6.16% 5.73% 5.38% 10.08%
HIT10 7.00% 9.27% 10.08% 10.53% 9.84% 9.35% 14.87%

NDGC5 2.42% 3.23% 3.72% 3.96% 3.62% 3.39% 6.94%
NDGC10 3.39% 4.54% 5.07% 5.36% 4.95% 4.66% 8.48%

R
E
B
U
S

S
D

HIT5 4.07% 5.02% 5.33% 5.90% 5.68% 5.20% 10.17%
HIT10 6.97% 8.58% 9.02% 9.99% 9.90% 8.89% 14.75%

NDGC5 2.56% 3.20% 3.25% 3.73% 3.43% 3.23% 7.11%
NDGC10 3.48% 4.34% 4.43% 5.04% 4.78% 4.41% 8.58%

R
E
B
U
S
1
M

C

HIT5 4.11% 4.44% 4.09% 4.62% 4.65% 4.38% 11.11%
HIT10 7.37% 7.75% 7.82% 8.28% 8.25% 7.89% 15.57%

NDGC5 2.59% 2.64% 2.58% 2.91% 2.96% 2.74% 8.24%
NDGC10 3.64% 3.71% 3.77% 4.08% 4.12% 3.86% 9.68%

R
E
B
U
S
2
M

C

HIT5 4.12% 4.32% 4.16% 4.60% 4.42% 4.33% 10.94%
HIT10 7.29% 7.58% 7.22% 8.10% 8.26% 7.69% 15.29%

NDGC5 2.50% 2.60% 2.52% 2.91% 2.76% 2.66% 8.11%
NDGC10 3.51% 3.64% 3.50% 4.02% 3.99% 3.73% 9.51%

R
E
B
U
S
3
M

C

HIT5 3.96% 4.12% 4.11% 4.17% 4.02% 4.08% 10.64%
HIT10 7.00% 7.20% 7.17% 8.00% 7.50% 7.38% 14.86%

NDGC5 2.41% 2.53% 2.47% 2.58% 2.44% 2.49% 7.88%
NDGC10 3.38% 3.52% 3.45% 3.80% 3.56% 3.54% 9.23%

R
E
B
U
S

HIT5 4.19% 4.31% 3.92% 4.50% 4.65% 4.32% 11.09%
HIT10 7.34% 7.53% 7.67% 7.90% 8.25% 7.74% 15.39%

NDGC5 2.59% 2.68% 2.49% 2.80% 2.84% 2.68% 8.20%
NDGC10 3.59% 3.73% 3.69% 3.89% 3.98% 3.77% 9.58%

117

Figure 7.1: Performance metrics for Visiativ, Epinions and Amazon dataset (AUC, HIT1 and
HIT25) evaluated on UPSD subgroups descriptions found in at least 6 users for each model.

118 Chapter 7. Appendix

Figure 7.2: Box plots of the performance metrics for ML datasets (AUC, HIT1 and HIT25)
evaluated on UPSD subgroups descriptions found in at least 6 users for each model.

119

Figure 7.3: Performance metrics for Visiativ and Amazon dataset (AUC, HIT1 and HIT25)
evaluated on SDSD subgroups descriptions found in at least 6 users for each model.

120 Chapter 7. Appendix

Figure 7.4: Box plots of the performance metrics for ML datasets (AUC, HIT1 and HIT25)
evaluated on SDSD subgroups descriptions found in at least 6 users for each model.

121

Table 7.10: HIT 10, HIT 50, NDCG 10 and NDCG 50 for myCADservices dataset with dif-
ferent preprocessing. The two numbers after myCAD are respectively the value of userMin
and itemMin in the Table 5.1. The last column is the average performance on these 3 dif-
ferent preprocessing.

M
et

ri
c

m
y
C

A
D

3
3

m
y
C

A
D

4
4

m
y
C

A
D

5
5

A
v
g(

A
ll
)

POP HIT10 20.98% 20.86% 20.82% 21.04%
HIT50 46.70% 46.94% 48.32% 47.42%

NDGC10 11.04% 11.01% 11.31% 11.17%
NDGC50 16.65% 16.70% 17.33% 16.94%

TransRec HIT10 41.38% 38.88% 43.13% 39.75%
HIT50 67.71% 67.52% 70.18% 67.44%

NDGC10 28.12% 24.06% 29.05% 25.55%
NDGC50 33.89% 30.43% 35.06% 31.68%

SASRec HIT10 37.78% 40.12% 41.52% 39.55%
HIT50 67.25% 68.62% 69.96% 68.22%

NDGC10 23.72% 25.58% 27.42% 25.48%
NDGC50 30.20% 31.87% 33.68% 31.79%

REBUS HIT10 38.85% 39.71% 41.19% 39.68%
HIT50 68.28% 68.98% 70.18% 68.44%

NDGC10 23.31% 23.73% 24.74% 24.10%
NDGC50 29.90% 30.23% 31.17% 30.48%

REBUS1MC HIT10 38.74% 40.71% 42.02% 40.55%
HIT50 68.43% 68.80% 70.29% 68.69%

NDGC10 23.41% 24.47% 25.58% 24.83%
NDGC50 30.01% 30.74% 31.85% 31.06%

Bibliography

Gediminas Adomavicius and YoungOk Kwon. Improving aggregate recommendation diversity
using ranking-based techniques. IEEE Transactions on Knowledge & Data Engineering,
24(05):896–911, may 2012. 45

Charu C. Aggarwal. Recommender Systems: The Textbook. Springer Publishing Company,
Incorporated, 1st edition, 2016. 2, 8, 13, 42

Martin Atzmueller. Subgroup discovery. Wiley Interdiscip. Rev. Data Min. Knowl. Discov.,
5(1):35–49, 2015. 65

Martin Atzmueller and Florian Lemmerich. Fast Subgroup Discovery for Continuous Target
Concepts. In Proc. International Symposium on Methodologies for Intelligent Systems,
volume 5722 of LNCS, pages 1–15, Berlin/Heidelberg, Germany, 2009. Springer. 72

Martin Atzmueller and Thomas Roth-Berghofer. The Mining and Analysis Continuum of
Explaining Uncovered. In Proc. Research and Development in Intelligent Systems XXVII.
SGAI 2010, pages 273–278. Springer, 2010. 67

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. In 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
ings, 2015. 26

Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. A generic coordinate
descent framework for learning from implicit feedback. In Proceedings of the 26th Interna-
tional Conference on World Wide Web, WWW ’17, page 1341–1350, Republic and Canton
of Geneva, CHE, 2017. International World Wide Web Conferences Steering Committee.
10, 43

Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H Chi.
Latent cross: Making use of context in recurrent recommender systems. In Proceedings
of the Eleventh ACM International Conference on Web Search and Data Mining, pages
46–54, 2018. 26

Or Biran and Courtenay Cotton. Explanation and Justification in Machine Learning: A
Survey. In IJCAI-17 Workshop on Explainable AI, 2017. 67

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. 36

123

124 Bibliography

Stefan Bloemheuvel, Benjamin Kloepper, Jurgen van den Hoogen, and Martin Atzmueller.
Enhancing Sequential Pattern Mining Explainability with Markov Chain Probabilities. In
Proc. Dutch-Belgian Database Day. Jheronimus Academy of Data Science, Den Bosch,
Netherlands, 2019. 67

Geoffray Bonnin and Dietmar Jannach. Automated generation of music playlists: Survey
and experiments. ACM Comput. Surv., 47(2):26:1–26:35, 2014. 19

Robin D. Burke. Hybrid recommender systems: Survey and experiments. User Model. User
Adapt. Interact., 12(4):331–370, 2002. 12

Robin D. Burke. Hybrid web recommender systems. In The Adaptive Web, Methods and
Strategies of Web Personalization, pages 377–408, 2007. 12

Robin Burke D. Knowledge-based recommender systems. Encyclopedia of library and infor-
mation systems, 69(Supplement 32):175–186, 2000. 11

Pedro G Campos, Fernando Dı́ez, and Iván Cantador. Time-aware recommender systems:
a comprehensive survey and analysis of existing evaluation protocols. User Modeling and
User-Adapted Interaction, 24(1-2):67–119, 2014. 12

Pablo Castells, Saúl Vargas, and Jun Wang. Novelty and diversity metrics for recommender
systems: Choice, discovery and relevance. Proceedings of International Workshop on Di-
versity in Document Retrieval (DDR), 01 2011. 8

Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua. At-
tentive collaborative filtering: Multimedia recommendation with item-and component-level
attention. In Proceedings of the 40th International ACM SIGIR conference on Research
and Development in Information Retrieval, pages 335–344, 2017. 26

Shuo Chen, Joshua L. Moore, Douglas Turnbull, and Thorsten Joachims. Playlist prediction
via metric embedding. In The 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’12, Beijing, China, August 12-16, 2012, pages 714–722,
2012a. 11, 22, 24

Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong Yu. Svdfea-
ture: a toolkit for feature-based collaborative filtering. The Journal of Machine Learning
Research, 13(1):3619–3622, 2012b. 15

Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and Hongyuan
Zha. Sequential recommendation with user memory networks. In Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining, WSDM ’18,
pages 108–116, New York, NY, USA, 2018. ACM. 32

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder-decoder approaches. In Proceedings of
SSST@EMNLP 2014, Eighth Workshop on Syntax, Semantics and Structure in Statistical
Translation, Doha, Qatar, 25 October 2014, pages 103–111, 2014. 25

Bibliography 125

Gabriel de Souza Pereira Moreira. CHAMELEON: a deep learning meta-architecture for
news recommender systems. In Proceedings of the 12th ACM Conference on Recommender
Systems, RecSys 2018, Vancouver, BC, Canada, October 2-7, 2018, pages 578–583, 2018.
12

Mukund Deshpande and George Karypis. Item-based top-n recommendation algorithms.
ACM Trans. Inf. Syst., 22(1):143–177, January 2004. 18

Christian Desrosiers and George Karypis. A comprehensive survey of neighborhood-based
recommendation methods. In Recommender systems handbook, pages 107–144. Springer,
2011. 11

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June
2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186, 2019. 27

Robin Devooght and Hugues Bersini. Long and short-term recommendations with recurrent
neural networks. In Proceedings of the 25th Conference on User Modeling, Adaptation and
Personalization, UMAP ’17, pages 13–21, New York, NY, USA, 2017. ACM. 25

Yi Ding and Xue Li. Time weight collaborative filtering. In Proceedings of the 14th ACM
International Conference on Information and Knowledge Management, CIKM ’05, pages
485–492, New York, NY, USA, 2005. ACM. 15

Wouter Duivesteijn and Julia Thaele. Understanding Where Your Classifier Does (Not) Work
– The SCaPE Model Class for EMM. In Proc. ICDM, pages 809–814. IEEE, 2014. 67

Shanshan Feng, Xutao Li, Yifeng Zeng, Gao Cong, Yeow Meng Chee, and Quan Yuan.
Personalized ranking metric embedding for next new poi recommendation. In Proc. IJCAI,
pages 2069–2075. AAAI, 2015. 24, 32, 43, 73, 89

Johannes Fürnkranz, Tomás Kliegr, and Heiko Paulheim. On cognitive preferences and the
plausibility of rule-based models. Mach. Learn., 109(4):853–898, 2020. 65, 67

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9 of
Proceedings of Machine Learning Research, pages 249–256, Chia Laguna Resort, Sardinia,
Italy, 13–15 May 2010. PMLR. 38

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, vol-
ume 1. MIT press Cambridge, 2016. 25

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep
recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and
signal processing, pages 6645–6649. IEEE, 2013. 25

126 Bibliography

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and
Dino Pedreschi. A survey of methods for explaining black box models. ACM Comput.
Surv., 51(5):93:1–93:42, 2019. 67

Frédéric Guillou. On recommendation systems in a sequential context. PhD thesis, Université
de Lille, 2016. 13

Jon Atle Gulla, Lemei Zhang, Peng Liu, Özlem Özgöbek, and Xiaomeng Su. The adressa
dataset for news recommendation. In Proceedings of the International Conference on Web
Intelligence, WI ’17, page 1042–1048, New York, NY, USA, 2017. Association for Comput-
ing Machinery. 41

Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Compu-
tational Biology. Cambridge University Press, 1 edition, May 1997. 35, 36

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context.
ACM TiiS, 5(4):19:1–19:19, December 2015. 40, 72

Ruining He and Julian McAuley. Fusing similarity models with markov chains for sparse
sequential recommendation. In ICDM, pages 191–200. IEEE, 2016. 24, 32, 34

Ruining He, Wang-Cheng Kang, and Julian McAuley. Translation-based recommendation.
In Proc. RecSys, pages 161–169, New York, NY, USA, 2017a. ACM. 18, 24, 43, 44, 73, 89

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th International Conference on World Wide
Web, WWW 2017, Perth, Australia, April 3-7, 2017, pages 173–182, 2017b. 12, 20, 21,
29, 43, 44

Andreas Henelius, Kai Puolamäki, Henrik Boström, Lars Asker, and Panagiotis Papapetrou.
A peek into the black box: Exploring classifiers by randomization. Data Min. Knowl.
Disc., 28(5-6):1503–1529, 2014. 67

Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. An algorithmic
framework for performing collaborative filtering. In Proceedings of the 22nd Annual Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’99, page 230–237, New York, NY, USA, 1999. Association for Computing Machin-
ery. 11

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-
based recommendations with recurrent neural networks. In 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings, 2016a. 18, 25

Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos Tikk. Parallel
recurrent neural network architectures for feature-rich session-based recommendations. In
Proceedings of the 10th ACM conference on recommender systems, pages 241–248, 2016b.
26

Bibliography 127

Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366, 1989. 20

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback
datasets. In 2008 Eighth IEEE International Conference on Data Mining, pages 263–272.
Ieee, 2008. 10

Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y. Chang. Improv-
ing sequential recommendation with knowledge-enhanced memory networks. In The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval, SIGIR ’18, pages 505–514, New York, NY, USA, 2018. ACM. 15, 29, 44

Neil Hurley and Mi Zhang. Novelty and diversity in top-n recommendation – analysis and
evaluation. ACM Trans. Internet Technol., 10(4), March 2011. 8, 28

Dietmar Jannach and Malte Ludewig. When recurrent neural networks meet the neighbor-
hood for session-based recommendation. In Proceedings of the Eleventh ACM Conference
on Recommender Systems, RecSys ’17, pages 306–310, New York, NY, USA, 2017. ACM.
19, 25, 43

Santosh Kabbur, Xia Ning, and George Karypis. Fism: Factored item similarity models
for top-n recommender systems. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’13, pages 659–667, New York,
NY, USA, 2013. ACM. 17, 24, 32, 34

Iman Kamehkhosh, Dietmar Jannach, and Malte Ludewig. A comparison of frequent pattern
techniques and a deep learning method for session-based recommendation. In RecTemp@
RecSys, pages 50–56, 2017. 11

Wang-Cheng Kang and Julian J. McAuley. Self-attentive sequential recommendation. In
Proc. ICDM, pages 197–206, 2018. 10, 26, 29, 43, 44, 73, 89

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and
Li Fei-Fei. Large-scale video classification with convolutional neural networks. In Proceed-
ings of the IEEE conference on Computer Vision and Pattern Recognition, pages 1725–
1732, 2014. 26

Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the
ACL, pages 1746–1751, 2014. 26

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 12 2014. 14, 38, 45

Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 426–434, 2008. 16, 17

128 Bibliography

Yehuda Koren. Collaborative filtering with temporal dynamics. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’09, pages 447–456, New York, NY, USA, 2009a. ACM. 15, 32

Yehuda Koren. The bellkor solution to the netflix grand prize. Netflix prize documentation,
81(2009):1–10, 2009b. 13, 16

Yehuda Koren and Robert M. Bell. Advances in collaborative filtering. In Recommender
Systems Handbook, pages 77–118. Springer, 2015. 3, 11, 16, 32

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009. 3, 10, 11, 16, 17

Bruce Krulwich. Lifestyle finder: Intelligent user profiling using large-scale demographic data.
AI magazine, 18(2):37–37, 1997. 11

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015. 24

Florian Lemmerich, Martin Atzmueller, and Frank Puppe. Fast exhaustive subgroup discov-
ery with numerical target concepts. Data Min. Knowl. Disc., 30(3):711–762, 2016. 65, 70,
72

Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. Neural attentive
session-based recommendation. In Proceedings of the 2017 ACM on Conference on Infor-
mation and Knowledge Management, CIKM 2017, Singapore, November 06 - 10, 2017,
pages 1419–1428, 2017. 26

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach
to personalized news article recommendation. In Proceedings of the 19th international
conference on World wide web, pages 661–670, 2010. 8

Xiaoli Li and Jun Huan. Constructivism learning: A learning paradigm for transparent
predictive analytics. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17, 2017,
pages 285–294, 2017. 67

Tie-Yan Liu. Learning to rank for information retrieval. Springer Science & Business Media,
2011. 13

Corentin Lonjarret, Marc Plantevit, Céline Robardet, and Roch Auburtin. Recommandation
séquentielle à base de séquences fréquentes. In Extraction et Gestion des connaissances,
EGC 2019, Metz, France, January 21-25, 2019, volume 79, pages 267–272. BoD-Books on
Demand, 2019. 5

Corentin Lonjarret, Céline Robardet, Marc Plantevit, Roch Auburtin, and Martin Atz-
mueller. Why should i trust this item? explaining the recommendations of any model.
In 2020 IEEE International Conference on Data Science and Advanced Analytics (DSAA),
pages 526–535. IEEE, 2020. 5, 63

Bibliography 129

Corentin Lonjarret, Céline Robardet, Marc Plantevit, and Roch Auburtin. Sequential recom-
mendation with metric models based on frequent sequences. Data Mining and Knowledge
Discovery, 2021. 5, 31, 73, 77

Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. Content-based recommender
systems: State of the art and trends. In Recommender systems handbook, pages 73–105.
Springer, 2011. 12

Jonathan Louëdec, Max Chevalier, Josiane Mothe, Aurélien Garivier, and Sébastien Gerchi-
novitz. A multiple-play bandit algorithm applied to recommender systems. In FLAIRS
Conference, pages 67–72, 2015. 8

Malte Ludewig and Dietmar Jannach. Evaluation of session-based recommendation algo-
rithms. CoRR, abs/1803.09587, 2018. 19, 21, 22, 43, 45, 46

David R Mandel. Counterfactual and Causal Explanation: From Early Theoretical Views
To New Frontiers. In The Psychology of Counterfactual Thinking, pages 23–39. Routledge,
2007. 67

Romain Mathonat, Diana Nurbakova, Jean-François Boulicaut, and Mehdi Kaytoue. Seqs-
cout: Using a bandit model to discover interesting subgroups in labeled sequences. In Proc.
DSAA, pages 81–90, 2019. 65, 70

Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-
based recommendations on styles and substitutes. In Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago,
Chile, August 9-13, 2015, pages 43–52, 2015. 40, 72

David McSherry. Explanation in recommender systems. Artificial Intelligence Review, 24(2):
179–197, 2005. 68

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems 26: 27th Annual Conference on Neural Information Pro-
cessing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States, pages 3111–3119, 2013. 13

Koji Miyahara and Michael J Pazzani. Collaborative filtering with the simple bayesian clas-
sifier. In Pacific Rim International conference on artificial intelligence, pages 679–689.
Springer, 2000. 11

Xia Ning and George Karypis. Slim: Sparse linear methods for top-n recommender systems.
In Proceedings of the 2011 IEEE 11th International Conference on Data Mining, ICDM
’11, pages 497–506, Washington, DC, USA, 2011. IEEE Computer Society. 17

James R Norris. Markov chains. Cambridge university press, 1998. 21

Douglas W Oard, Jinmook Kim, et al. Implicit feedback for recommender systems. In
Proceedings of the AAAI workshop on recommender systems, volume 83, 07 1998. 9

130 Bibliography

Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz, and Qiang
Yang. One-class collaborative filtering. In 2008 Eighth IEEE International Conference on
Data Mining, pages 502–511. IEEE, 2008. 13, 14

Weike Pan and Li Chen. Gbpr: Group preference based bayesian personalized ranking for one-
class collaborative filtering. In Twenty-Third International Joint Conference on Artificial
Intelligence, 2013. 10

Dimitris Paraschakis. Recommender systems from an industrial and ethical perspective. In
RecSys’16, pages 463–466, 2016. 87

Rajiv Pasricha and Julian McAuley. Translation-based factorization machines for sequential
recommendation. In Proceedings of the 12th ACM Conference on Recommender Systems,
RecSys ’18, pages 63–71, New York, NY, USA, 2018. ACM. 15, 18, 107

Michael J Pazzani. A framework for collaborative, content-based and demographic filtering.
Artificial intelligence review, 13(5-6):393–408, 1999. 11

Michael J Pazzani and Daniel Billsus. Content-based recommendation systems. In The
adaptive web, pages 325–341. Springer, 2007. 12

Pearl Pu and Li Chen. Trust building with explanation interfaces. In Proceedings of the
11th International Conference on Intelligent User Interfaces, IUI 2006, Sydney, Australia,
January 29 - February 1, 2006, pages 93–100, 2006. 64

Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cremonesi. Per-
sonalizing session-based recommendations with hierarchical recurrent neural networks. In
Proceedings of the Eleventh ACM Conference on Recommender Systems, RecSys 2017,
Como, Italy, August 27-31, 2017, pages 130–137, 2017. 25

Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. Sequence-aware recommender
systems. ACM Comput. Surv., 51(4), July 2018. 14, 15, 28

Steffen Rendle. Factorization machines. In 2010 IEEE International Conference on Data
Mining, pages 995–1000. IEEE, 2010. 17, 18

Steffen Rendle. Factorization machines with libfm. ACM Trans. Intell. Syst. Technol., 3(3):
57:1–57:22, May 2012. 11, 15, 17

Steffen Rendle and Lars Schmidt-Thieme. Pairwise interaction tensor factorization for per-
sonalized tag recommendation. In Proceedings of the third ACM international conference
on Web search and data mining, pages 81–90, 2010. 17

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, UAI ’09, pages 452–461, Arlington,
Virginia, United States, 2009. AUAI Press. 3, 14, 25, 28, 34, 37, 42, 44, 65, 89

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized
markov chains for next-basket recommendation. In Proc. WWW, pages 811–820, New York,
NY, USA, 2010. ACM. 10, 17, 22, 23, 32, 42, 43, 73, 89

Bibliography 131

Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should I trust you?”: Ex-
plaining the predictions of any classifier. In Proc. KDD, pages 1135–1144, 2016. 4, 64, 67,
68

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-Precision Model-
Agnostic Explanations. In Proc. AAAI, 2018. 4, 67

Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender systems
handbook. In Recommender systems handbook, pages 1–35. Springer, 2011. 10

Thomas Roth-Berghofer, Stefan Schulz, Daniel Bahls, and David B. Leake, editors.
Explanation-Aware Computing, Papers from the 2007 AAAI Workshop, Vancouver, British
Columbia, Canada, July 22-23, 2007, volume WS-07-06 of AAAI Technical Report, 2007.
AAAI Press. 68

Thomas R. Roth-Berghofer and Jörg Cassens. Mapping Goals and Kinds of Explanations to
the Knowledge Containers of Case-Based Reasoning Systems. In Proc. ICCBR, number
3620 in LNAI, pages 451–464, Berlin/Heidelberg, 2005. Springer. 68

Alan Said and Alejandro Belloǵın. Comparative recommender system evaluation: Bench-
marking recommendation frameworks. In Proceedings of the 8th ACM Conference on Rec-
ommender Systems, RecSys ’14, page 129–136, New York, NY, USA, 2014. Association for
Computing Machinery. 29, 44, 102

Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization using
markov chain monte carlo. In Proceedings of the 25th international conference on Machine
learning, pages 880–887, 2008. 17

Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann machines
for collaborative filtering. In Proceedings of the 24th international conference on Machine
learning, pages 791–798, 2007. 11, 19

Pablo Sanchez and Alejandro Belloǵın. Time and sequence awareness in similarity metrics
for recommendation. Information Processing & Management, 57:102228, 05 2020. 15

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative
filtering recommendation algorithms. In Proceedings of the 10th international conference
on World Wide Web, WWW ’01, pages 285–295. ACM, 2001. 11

Roger C. Schank. Explanation Patterns: Understanding Mechanically and Creatively.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1986. 64, 68

Steven L. Scott. Multi-armed bandit experiments in the online service economy. Applied
Stochastic Models in Business and Industry, 31(1):37–45, January 2015. 30, 103

Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec: Autoen-
coders meet collaborative filtering. In Proceedings of the 24th International Conference
on World Wide Web, WWW ’15 Companion, pages 111–112, New York, NY, USA, 2015.
ACM. 19

132 Bibliography

Guy Shani, David Heckerman, and Ronen I Brafman. An mdp-based recommender system.
Journal of Machine Learning Research, 6(Sep):1265–1295, 2005. 22

Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Nuria Oliver, and Alan
Hanjalic. Climf: learning to maximize reciprocal rank with collaborative less-is-more filter-
ing. In Proceedings of the sixth ACM conference on Recommender systems, pages 139–146,
2012. 14, 29

Elena Smirnova and Flavian Vasile. Contextual sequence modeling for recommendation with
recurrent neural networks. In Proceedings of the 2nd Workshop on Deep Learning for
Recommender Systems, pages 2–9, 2017. 26

Frode Sørmo, Jörg Cassens, and Agnar Aamodt. Explanation in case-based reasoning –
perspectives and goals. Artificial Intelligence Review, 24(2):109–143, 2005. 68

Nathan Srebro, Jason Rennie, and Tommi S Jaakkola. Maximum-margin matrix factorization.
In Advances in neural information processing systems, pages 1329–1336, 2005. 17

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec:
Sequential recommendation with bidirectional encoder representations from transformer.
In Proceedings of the 28th ACM International Conference on Information and Knowledge
Management, pages 1441–1450, 2019. 10, 27

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.
25

Yong Kiam Tan, Xinxing Xu, and Yong Liu. Improved recurrent neural networks for session-
based recommendations. In Proceedings of the 1st Workshop on Deep Learning for Rec-
ommender Systems, DLRS@RecSys 2016, Boston, MA, USA, September 15, 2016, pages
17–22, 2016. 25

Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional
sequence embedding. In Proceedings of the Eleventh ACM International Conference on
Web Search and Data Mining, WSDM ’18, pages 565–573, New York, NY, USA, 2018.
ACM. 10, 26, 32, 43

Nava Tintarev and Judith Masthoff. A survey of explanations in recommender systems. In
Proc. ICDE workshops, pages 801–810. IEEE, 2007. 64

Nava Tintarev and Judith Masthoff. Designing and evaluating explanations for recommender
systems. In Recommender systems handbook, pages 479–510. Springer, 2011. 64, 68

Gabriele Tolomei, Fabrizio Silvestri, Andrew Haines, and Mounia Lalmas. Interpretable
predictions of tree-based ensembles via actionable feature tweaking. In Proc. KDD, pages
465–474. ACM, 2017. 67

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 5998–6008, 2017. 26, 27

Bibliography 133

Koen Verstrepen and Bart Goethals. Unifying nearest neighbors collaborative filtering. In
Proceedings of the 8th ACM Conference on Recommender systems, pages 177–184, 2014.
11, 19

Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and Xueqi Cheng. Learn-
ing hierarchical representation model for nextbasket recommendation. In Proceedings of the
38th International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’15, pages 403–412, New York, NY, USA, 2015. ACM. 23

Shoujin Wang, Longbing Cao, and Yan Wang. A survey on session-based recommender
systems. CoRR, abs/1902.04864, 2019. 15

Markus Weimer, Alexandros Karatzoglou, and Alex Smola. Improving maximum margin
matrix factorization. Machine Learning, 72(3):263–276, 2008. 10

Michael R. Wick and William B. Thompson. Reconstructive expert system explanation.
Artificial Intelligence, 54(1-2):33–70, 1992. 68

Stefan Wrobel. An algorithm for multi-relational discovery of subgroups. In Proc. PKDD,
number 1263 in LNCS, pages 78–87, Berlin/Heidelberg, Germany, 1997. Springer. 65, 69

Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J. Smola, and How Jing. Recurrent
recommender networks. In Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining, WSDM ’17, pages 495–503, New York, NY, USA, 2017.
ACM. 15

Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. Collaborative denoising auto-
encoders for top-n recommender systems. In Proceedings of the Ninth ACM International
Conference on Web Search and Data Mining, pages 153–162, 2016. 19, 20

Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. Attentional
factorization machines: Learning the weight of feature interactions via attention networks.
In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelli-
gence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 3119–3125, 2017.
26

Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff G. Schneider, and Jaime G. Carbonell. Temporal
collaborative filtering with bayesian probabilistic tensor factorization. In Proceedings of
the SIAM International Conference on Data Mining, SDM 2010, April 29 - May 1, 2010,
Columbus, Ohio, USA, pages 211–222, 2010. 15

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. In
4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, 2016. 26

Fajie Yuan. Learning implicit recommenders from massive unobserved feedback. PhD thesis,
University of Glasgow, 2018. 13, 15

134 Bibliography

Fajie Yuan, Guibing Guo, Joemon M Jose, Long Chen, Haitao Yu, and Weinan Zhang.
Lambdafm: learning optimal ranking with factorization machines using lambda surro-
gates. In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management, pages 227–236, 2016. 28

Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xiangnan He.
A simple convolutional generative network for next item recommendation. In Proceedings
of the Twelfth ACM International Conference on Web Search and Data Mining, pages
582–590, 2019. 26

Weihua Yuan, Hong Wang, Xiaomei Yu, Nan Liu, and Zhenghao Li. Attention-based context-
aware sequential recommendation model. Information Sciences, 510:122–134, 2020. 10

Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma. Collaborative
knowledge base embedding for recommender systems. In Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16,
pages 353–362, New York, NY, USA, 2016. ACM. 15

Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender system:
A survey and new perspectives. ACM Comput. Surv., 52(1):5:1–5:38, 2019. 20, 25, 32

Tong Zhao, Julian J. McAuley, and Irwin King. Leveraging social connections to improve
personalized ranking for collaborative filtering. In CIKM, pages 261–270, 2014. 41

FOLIO ADMINISTRATIF

THESE DE L’UNIVERSITE DE LYON OPEREE AU SEIN DE L’INSA LYON

NOM : LONJARRET DATE de SOUTENANCE : 12/01/20201

(avec précision du nom de jeune fille, le cas échéant)

Prénoms : Corentin

TITRE : Sequential recommendation and explanations

NATURE : Doctorat Numéro d'ordre : 2021LYSEI003

Ecole doctorale : InfoMaths (ED 512)

Spécialité : Informatique

RESUME : Ces dernière années, les systèmes de recommandation ont reçu beaucoup d'attention avec l'élaboration de nombreuses

propositions qui tirent parti des nouvelles avancées dans les domaines du Machine Learning et du Deep Learning. Grâce à l'automatisation de
la collecte des données des actions des utilisateurs tels que l'achat d'un objet, le visionnage d'un film ou le clic sur un article de presse, les
systèmes de recommandation ont accès à de plus en plus d'information. Ces données sont des retours implicites des utilisateurs (appelé
«~implicit feedback~» en anglais) et permettent de conserver l'ordre séquentiel des actions de l’utilisateur. C'est dans ce contexte qu'ont
émergé les systèmes de recommandations qui prennent en compte l’aspect séquentiel des données. Le but de ces approches est de combiner
les préférences des utilisateurs (le goût général de l’utilisateur) et la dynamique séquentielle (les tendances à court terme des actions de
l'utilisateur) afin de prévoir la ou les prochaines actions d'un utilisateur.
Dans cette thèse, nous étudions la recommandation séquentielle qui vise à prédire le prochain article/action de l'utilisateur à partir des retours
implicites des utilisateurs. Notre principale contribution, REBUS, est un nouveau modèle dans lequel seuls les items sont projetés dans un
espace euclidien d'une manière qui intègre et unifie les préférences de l'utilisateur et la dynamique séquentielle. Pour saisir la dynamique
séquentielle, REBUS utilise des séquences fréquentes afin de capturer des chaînes de Markov d'ordre personnalisé. Nous avons mené une
étude empirique approfondie et démontré que notre modèle surpasse les performances des différents modèles de l’état de l’art, en particulier
sur des jeux de données éparses. Nous avons également intégré REBUS dans myCADservices, une plateforme collaborative de la société
française Visiativ. Nous présentons notre retour d'expérience sur cette mise en production du fruit de nos travaux de recherche.
Enfin, nous avons proposé une nouvelle approche pour expliquer les recommandations fournies aux utilisateurs. Le fait de pouvoir expliquer
une recommandation permet de contribuer à accroître la confiance qu'un utilisateur peut avoir dans un système de recommandation. Notre
approche est basée sur la découverte de sous-groupes pour fournir des explications interprétables d'une recommandation pour tous types de
modèles qui utilisent comme données d’entrée les retours implicites des utilisateurs.

MOTS-CLÉS : Système de recommandation, Filtrage collaboratif, recommandation séquentielle, Explications

Laboratoire (s) de recherche : Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS)

Directeur de thèse :
Céline Robardet (Professeur des Universités, INSA de Lyon)
Marc Plantevit (Maître de conférences HDR, Université Claude Bernard Lyon 1)

Président de jury :

Composition du jury :
Josiane Mothe (Professeur des Universités, INSPE de l'Académie de Toulouse)
Arnaud Soulet (Maître de conférences HDR, Université de Tours)
Sihem Amer-Yahia (Directrice de recherche, CNRS)
Elisa Fromont (Professeur des Universités, Université Rennes 1)

	Table of contents
	Notations
	Introduction
	Context
	Sequential recommendation
	Problems addressed in this thesis
	Contributions
	Structure of the thesis
	List of publications

	Sequential recommendation: State of the Art
	Overview of Recommender Systems
	Recommender systems in a nutshell
	Input data used by recommender systems
	Types of recommender systems
	Recommender systems problem formulations
	The long-term and short-term dynamics

	General recommendation
	Matrix Factorization
	Factorization Machines
	Neighborhood-based methods
	Deep learning models

	Sequential recommendation
	Sequential recommendation based on Markov Chains
	Sequence-aware extensions for neighborhood-based methods
	Unifying user preferences and sequential dynamics
	Deep learning models

	Evaluation of sequential recommendation
	Empirical study
	Industrial Study

	Conclusion

	Sequential recommendation with metric models based on frequent sequences
	Introduction
	Notations
	REBUS
	Long-term metric-based model
	Short-term dynamics modeled by frequent patterns
	The long-term and short-term metric embedding model
	Bayesian Personalized Ranking optimization criterion
	Model training
	Applying the model for recommendation
	Customization of REBUS
	Discussion

	Experiments
	Datasets and aims
	Comparison methods
	Experimental settings
	Performance study
	Cold-start user study
	Study of the impact of user preferences and sequential dynamics in the recommendation
	Study of the used user preferences window
	Study of the used personalized sequences
	Relative importance of user preferences on sequential dynamics
	Examples of recommendations

	Conclusion

	Explaining the Recommendation of any Model
	Introduction
	Notations
	Related work
	Model Explanation
	On Explanation in Recommender Systems

	Identifying the active data used for recommendation
	Neighborhood Generation
	Subgroup Discovery for Analyzing Recommendations
	Running example
	Complexity

	Experiments
	Datasets
	Considered models
	Aims
	Applying UPSD and SDSD
	Local Explanations
	Assessing Local Explanations Regarding Other Users
	Towards Global Explanation of Black Box Models for Sequential Recommendation

	Conclusion

	Implementing a Recommender System: The Visiativ experience
	Introduction
	Implementation of a recommender system in Visiativ context
	The different components
	Exchanges between the different components
	Which model to choose?

	Empirical study
	General study
	Focus on the myCADservices dataset

	Industrial study
	Impact of recommender systems
	A/B Test 1: REBUS versus POP (2019/06/10 – 2020/01/23)
	A/B Test 2: REBUS1MC versus SASRec (2020/01/23 – 2020/09/06)

	Conclusion

	Conclusion
	Summary
	Perspectives
	Improving REBUS
	Extend our work on explanation of sequential recommendation

	Appendix
	Bibliography

