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A B S T R A C T

With the massive increase of video content on Internet and beyond, the auto-
matic understanding of visual content could impact many different application
fields such as robotics, health care, content search or filtering. The goal of this
thesis is to provide methodological contributions in Computer Vision (CV) and
Machine Learning (ML) for automatic content understanding from videos. We
emphasis on problems, namely fine-grained human action recognition and visual
reasoning from object-level interactions.

In the first part of this manuscript, we tackle the problem of fine-grained human
action recognition. We introduce two different trained attention mechanisms
on the visual content from articulated human pose. The first method is able
to automatically draw attention to important pre-selected points of the video
conditioned on learned features extracted from the articulated human pose. We
show that such mechanism improves performance on the final task and provides
a good way to visualize the most discriminative parts of the visual content. The
second method goes beyond pose-based human action recognition. We develop
a method able to automatically identify unstructured feature clouds of interest
in the video using contextual information. Furthermore, we introduce a learned
distributed system for aggregating the features in a recurrent manner and taking
decisions in a distributed way. We demonstrate that we can achieve a better
performance than obtained previously, without using articulated pose information
at test time.

In the second part of this thesis, we investigate video representations from
an object-level perspective. Given a set of detected persons and objects in the
scene, we develop a method which learns to infer the important object interactions
through space and time using the video-level annotation only. That allows to
identify important objects and object interactions for a given action, as well as
potential dataset bias.

Finally, in a third part, we go beyond the task of classification and supervised
learning from visual content by tackling causality in interactions, in particular
the problem of counterfactual learning. We introduce a new benchmark, namely
CoPhy, where, after watching a video, the task is to predict the outcome after
modifying the initial stage of the video. We develop a method based on object-
level interactions able to infer object properties without supervision as well as
future object locations after the intervention.
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R É S U M É

Avec l’augmentation massive du contenu vidéo sur Internet et au-delà, la
compréhension automatique du contenu visuel pourrait avoir un impact sur de
nombreux domaines d’application différents tels que la robotique, la santé, la
recherche de contenu ou le filtrage. Le but de cette thèse est de fournir des contri-
butions méthodologiques en vision par ordinateur et apprentissage statistique
pour la compréhension automatique du contenu des vidéos. Nous mettons l’ac-
cent sur les problèmes de la reconnaissance de l’action humaine à grain fin et du
raisonnement visuel à partir des intéractions entre objets.

Dans la première partie de ce manuscrit, nous abordons le problème de la recon-
naissance fine de l’action humaine. Nous introduisons deux différents mécanismes
d’attention, entrainés sur le contenu visuel à partir de la pose humaine articulée.
Une première méthode est capable de porter automatiquement l’attention sur des
points pré-sélectionnés importants de la vidéo, conditionnés sur des caractéris-
tiques apprises extraites de la pose humaine articulée. Nous montrons qu’un tel
mécanisme améliore les performances sur la tâche finale et fournit un bon moyen
de visualiser les parties les plus discriminantes du contenu visuel. Une deuxième
méthode va au-delà de la reconnaissance de l’action humaine basée sur la pose.
Nous développons une méthode capable d’identifier automatiquement un nuage
de points caractéristiques non structurés pour une video à l’aide d’informations
contextuelles. De plus, nous introduisons un système distribué entrainé pour
agréger les caractéristiques de manière récurrente et prendre des décisions de
manière distribuée. Nous démontrons que nous pouvons obtenir de meilleures
performances que celles illustrées précédemment, sans utiliser d’informations de
pose articulée au moment de l’inférence.

Dans la deuxième partie de cette thèse, nous étudions les représentations vidéo
d’un point de vue objet. Étant donné un ensemble de personnes et d’objets
détectés dans la scène, nous développons une méthode qui a appris à déduire
les interactions importantes des objets à travers l’espace et le temps en utilisant
uniquement l’annotation au niveau vidéo. Cela permet d’identifier une interaction
inter-objet importante pour une action donnée ainsi que le biais potentiel d’un
ensemble de données.

Enfin, dans une troisième partie, nous allons au-delà de la tâche de classifi-
cation et d’apprentissage supervisé à partir de contenus visuels, en abordant la
causalité à travers les interactions, et en particulier le problème de l’apprentissage
contrefactuel. Nous introduisons une nouvelle base de données, à savoir CoPhy,
où, après avoir regardé une vidéo, la tâche consiste à prédire le résultat après avoir
modifié la phase initiale de la vidéo. Nous développons une méthode basée sur
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vi résumé

des interactions au niveau des objets capables d’inférer les propriétés des objets
sans supervision ainsi que les emplacements futurs des objets après l’intervention.
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1.1 Context

The field of Artificial Intelligence (AI) has received increasing attention over
the last decades with the underlying objective being to make machines reach

human capacities on specific tasks (“narrow AI”), or surpass them. Most of us use
AI-powered applications in our everyday life without realizing it. For instance, to
access a specific video content based on keywords, we employ a retrieval system.
We also use a recommendation system to watch videos with similar or related
semantic content. And if we want to communicate with someone from the other
side of the world who does not speak our language, automatic translation tools
can make our life easier.

Recently great progress has been demonstrated in Computer Vision (CV), a
subfield of AI, which consists in automatically extracting high-level understanding
from images or videos. This domain is of high interest given the increase of
visual digital content since the advent of Internet and the popularization of digital
photography. Everyday 300 millions photos are uploaded every day on Facebook
(Noyes 2015) and 500 hours of videos per minute (Hale 2019) on YouTube. Nearly
80% of the internet traffic is due to the transfer of video data. Given this large
amount of data shared every single second in the world, it becomes crucial to
automatically process this visual content with machines. A classical task in CV
called object recognition consists in classifying an image among a set of pre-
defined objects. Object recognition methods extract semantic information at the
image-level. More sophisticated tasks have been proposed such as human pose

1
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Figure 1.1 – Output of detection methods. (Left) Panoptic segmentation combines
instance segmentation and semantic segmentation by assigning a
semantic label to each part of the scene. — (Right) Dense human pose
estimation produces a human body mesh for each detected person.
Figure reproduced from (Wu et al. 2019c).

estimation or image captioning, which can take decisions on a finer level detail, or
decisions of different types. The common point is that they all propose to extract
semantic content of different nature.

Machine Learning (ML) algorithms play an important role in modern CV meth-
ods. This is mainly due to the semantic gap (Smeulders et al. 2000) between raw
signals representing low-level information (i.e. pixel colors) and the high-level
semantic meaning of this content. Bridging this gap requires the extraction of
high-level discriminative features, and for many years a solution for this has
been to design handcrafted image descriptors such as Scale-Invariant Feature
Transform (SIFT) and to aggregate them with a method like Bags-of-Words Bag-
of-Words (BoW) to produce a single feature vector. ML and classifiers have been
employed on top of these representations to solve CV tasks such as object recogni-
tion.

The downside of this strategy is that it requires extensive expert knowledge
to design powerful features, which cannot be easily extendable to any type of
data, and the discriminative power of this kind of descriptors is quite limited.
The introduction of Deep Learning (DL), and in particular Convolutional Neural
Network (CNN), aims at solving this issue. They consist in jointly learning feature
extractors and the classifier to solve a given task. CNNs are the de facto standard
since 2012 for solving CV tasks, although they were actually introduced a few
decades ago (Fukushima 1980; LeCun et al. 1997). There are some (admitted,
limited) analogies with the brain, as they are inspired by the receptive field
representation (Hubel et al. 1959). The recent success of CNNs is mainly due to
the introduction of large scale annotated image datasets to avoid overfitting and
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Figure 1.2 – Moving Light Displays attached to the human body. The action
performed by a human can be recognized by a few moving light
displays attached to the human body (Johansson 1973).
(Left): a person is walking. — (Right) a person is running.
Figure reproduced from (Johansson 1973).

the use of graphics processing units for speeding up the computational time by a
factor of ∼ 20 compared to central processing units.

CNNs learn hierarchical representations from low-level to high-level features,
which also allows to transfer representations learned for one task to a different task.
Indeed, features learned by training on a large scale object recognition dataset
(i.e. Imagenet (Russakovsky et al. 2015)) have shown to be easily transferable for
solving detection tasks such as shown in Figure 1.1.

However, the situation is a little bit different when video content is considered.
Despite the efforts to annotate large scale video datasets (Kay et al. 2017), CNNs
designed for extracting semantic content from videos are still highly biased
towards context and background information. This is relatively annoying when
we target systems required to extract fine-grained information, as for instance
human action recognition or human-object interaction. Moreover, handcrafted
methods are still achieving good performance on standard benchmarks (Wang
et al. 2013a), which (arguably) indicates that we are not yet able to fully exploit
the power of large capacity networks on these problems.

The goal of this manuscript is to provide DL based models and methods for
solving these issues. To do so, we propose approaches which structure deep
neural networks, and which are inspired by human abilities with a focus on visual
attention and visual reasoning, which we will develop below.
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1.2 Motivations

1.2.1 Visual attention

Laptev (2013) observed that about 35% of pixels in videos contained people, which
makes this category extremely specific and important for identifying semantic
concepts. While humans are highly complex and deformable objects, Johansson
(1973) demonstrates that the visual interpretation of a few moving light displays
attached to the human body can be sufficient for categorizing the action per-
formed by a person, as shown in Figure 1.2. This indicates that a high-level
understanding of motion can be achieved from a structured and low-dimensional
representation. This has been applied to CV through the description of visual
content of humans through articulated pose, mostly as a set of coordinates of
selected joints or key points. Recent works (Liu et al. 2017b; Song et al. 2016)
achieve high performance at predicting human actions using human articulated
pose only. However, these pose-only methods remain limited in extracting in-
formation related to humans only, whereas understanding complex situations in
videos often requires understanding context information and interactions between
humans and the environment.

Complementary information can be extracted by gathering visual cues in the
scene. Humans are particularly efficient in extracting information in the spatio-
temporal domain. The human perception focuses selectively on parts of the scene
to acquire information at specific places and times, a process known as visual
attention. Yarbus (1967) demonstrate this principle by showing that eye gazes over
an image depend on the task that the observer needs to perform.

In ML and CV this kind of process is referred to as an attention mechanism,
and has drawn increasing interest in several fields and on tasks dealing with
languages, images and data (Ba et al. 2015; Larochelle et al. 2010). Integrating
attention can potentially lead to improvements of the overall system, as it may
focus on parts of the data relevant to the task. Up to our knowledge, in CV, visual
attention mechanisms are first introduced by Itti et al. (1998) inspired by works
in neuroscience (Jonides 1983) and a learning component is integrated few years
later by Larochelle et al. (2010).

Recent works in video understanding have shown that coupling a CNN with
attention mechanisms can boost the performance of the overall system by attend-
ing to selected parts of the visual content given contextual information (Sharma
et al. 2016; Wang et al. 2018a). Girdhar et al. (2017) propose to use the human
pose estimation as an inductive bias for extracting visual cues around persons
present in the scene.

Visual attention is a key point of the contributions we develop in this thesis.
In particular, we study the role of articulated pose as source for attention on



1.2 motivations 5

Figure 1.3 – Example of daily life video. The right-side baby is stealing the
silencer from the left-side baby. Understanding the content of such a
video goes beyond extracting high-level semantic information such
as human actions. For instance, explaining why the left-side baby
is crying at the end of the video needs to reason about what about
happened during the video.
Images from youtu.be/UOlOrACAj6o.

visual data (Chapter 3), and we study attention mechanisms, which freely attend
to points in spatio-temporal data, exploiting the fact that (unlike humains) an
artificial agent is not bound to the physical notion of time and can attend to
several glimpses (points) sequentially for a given time instant, only bound by
restrictions on computational complexity and latency (Chapter 4).

1.2.2 Towards visual reasoning

Efficient information extraction plays an important role in human perception. Hu-
mans are able to infer what happened in a video given only a few sample frames.
This faculty is called reasoning and is a key component of human intelligence. As
an example we can consider the images in Figure 1.3, which show a complex
situation involving articulated objects (two babies and a silencer), the change of
location and composition of objects. For humans it is straightforward to draw a
conclusion on what happened. The right-side baby steals the silencer from the
left-side baby and the left-side baby starts crying.

Humans have this extraordinary ability to perform visual reasoning on very
complicated tasks while this currently remains unattainable for contemporary
CV algorithms (Fleuret et al. 2011). The goal of modern CV methods is to create
(and therefore mostly train) systems with increased reasoning capacity, which
thus rely less on memorizations and exploiting biases in training datasets. A
particular task where this visual reasoning aspect has been introduced is Visual
Question Answering (VQA) (Malinowski et al. 2016), which consists in answering
any question formulated in a natural language question about any image. Recent
approaches develop systems that take into account object interactions (Teney et al.
2017) and which require multi-hop reasoning (Ben-Younes* et al. 2019).

The notion of causality and causal chains of reasoning is at the heart of these
considerations. For instance, recent works model video content by leveraging time
as an explicit causal signal to identify causal object relations (Wang et al. 2018b;

https://youtu.be/UOlOrACAj6o
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Pickup et al. 2014). Such approaches rely on the concept of the arrow of the time
involving the asymmetric nature of time. For the case of human action recognition,
it is desirable to identify causal events or causal object relations happening in a
video which affect its label, and mostly from an object level point of view (Sun
et al. 2018). Object-level representations are at the heart of our contributions, in
particular in Chapter 5 on object-level visual reasoning, and in Chapter 6, which
reasons on physical interactions at an object level.

Humans show an incredible capacity at discovering causal effects from obser-
vations only. We make sense of fundamental concepts that ensures ability to
leverage such experiences for robust generalization to new scenarios (Martin-Ordas
et al. 2008). This can be explained by the ability that humans have to employ
retrospection by accessing their past experiences and being able to judge them.
Beyond modeling object interactions, humans are able to anticipate what would
be a similar situation under a different scenario. For instance in Figure 1.3, would
the left-side baby be crying at the end of the video if the silencer was not present
in the first frame? It is likely that the answer is no, because the silencer seems
to be the point of contention between the two babies. This way of expressing
causality is based on the concept of counterfactual reasoning, which deals with
a problem containing an ’if statement’, which is untrue of unrealized. Using
counterfactuals has been shown to be a way to perform reasoning over causal
relationships between variables of low dimensional spaces (Balke et al. 1994; Tian
et al. 2002; Tian et al. 2002). Recent works in ML (Bottou et al. 2013; Johansson et al.
2016) are trying to investigate this concept for bringing more cognitive ability to
the learned system. In this thesis, we develop counterfactual reasoning on image
content in chapter Chapter 6.

1.3 Contributions

Funded by ANR project “Deepvision” 1, in this thesis we propose DL based methods
for tackling the problem of video analysis.

First, we focus on the problem of fine-grained human action recognition on
trimmed videos and propose visual attention mechanisms. In Chapter 3, we
present our first contribution which proposes human articulated pose to draw
attention the most relevant part of images. Our model automatically selects
discriminative patches of the video over a set of pre-defined potential attention
points. Then, in Chapter 4 we introduce a method using RGB images without
using articulated human pose at inference time. We build a model able to

1. Deepvision (https://projet.liris.cnrs.fr/deepvis/) is a joint French-Canadien
ANR/NSERC projet involving partners INSA-Lyon/LIRIS, Sorbonne University/LIP6, Univer-
sity of Guelph, Simon Fraser University which focuses on structured deep learning for human
understanding.

https://projet.liris.cnrs.fr/deepvis/
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automatically find discriminative points of interest in the video as well as a
distributed recognition module.

Second, we propose video analysis methods from an object-level perspective
pushing towards visual reasoning. In Chapter 5, we present a video classification
method based on object interactions. We assume that a given scene is decomposed
into a set of semantically identified visual concepts (persons and objects) using a
trained object mask detector and we introduce a model able to learn important
object interactions through time and space, an to aggregate them for video
classification. In Chapter 6, we introduce a new problem of counterfactual learning
from visual input. Given an initial sequence, we ask the system to produce a
counterfactual prediction. We tackle this problem by introducing a new benchmark
for intuitive physics and a new method for counterfactual learning. Given an
observed sequence we encode the object properties into a latent space which is
then used for predicting the outcome after the intervention in the initial stage.

List of publications — This manuscript is based on the material published in
the following papers:

• Fabien Baradel, Christian Wolf, and Julien Mille (2017b). “Human Action
Recognition: Pose-based Attention draws focus to Hands”. In: Proceedings of
the IEEE International Conference on Computer Vision (ICCV) - Workshop "Hands
in Action" - Chapter 3;

• Fabien Baradel, Christian Wolf, and Julien Mille (2018b). “Human Activity
Recognition with Pose-driven Attention to RGB”. in: Proceedings of the British
Machine Vision Conference (BMVC) - Chapter 3;

• Fabien Baradel, Christian Wolf, Julien Mille, and Graham Taylor (2018c).
“Glimpse Clouds: Human Activity Recognition from Unstructured Feature
Points”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) - Chapter 4;

• Fabien Baradel, Natalia Neverova, Christian Wolf, Julien Mille, and Greg
Mori (2018a). “Object Level Visual Reasoning in Videos”. In: Proceedings of
the IEEE European Conference on Computer Vision (ECCV) - Chapter 5;

• Fabien Baradel, Natalia Neverova, Julien Mille, Greg Mori, and Christian
Wolf (2020a). “CoPhy: Counterfactual Learning of Physical Dynamics”. In:
Proceedings of the International Conference on Learning Representations (ICLR) -
(spotlight presentation) - Chapter 6.

We voluntary omit the following papers in this manuscript:

• Fabien Baradel, Natalia Neverova, Julien Mille, Greg Mori, and Christian
Wolf (2020b). “CoPhy++: Counterfactual Learning of Physical Dynamics
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from Visual Input”. In: to be submitted to IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI);

• Chen Sun, Fabien Baradel, Kevin Murphy, and Cordelia Schmid (2019).
“Learning Video Representations using Contrastive Bidirectional Trans-
former”. In: arXiv preprint arXiv:1906.05743.

The first one corresponds of an journal extension of the work presented in Chap-
ter 5 and will be submitted in the next weeks. The second one corresponds to work
that has been conducted during an internship at Google and is under submission.

Software and dataset contributions — The work conducted in this thesis has
led to the following list of software and released datasets:

• Glimpse Clouds: The code for training the model and evaluating on the
validation and test set is released as part of the project presented in Chapter 4:
https://github.com/fabienbaradel/glimpse_clouds

• Object level visual reasoning in videos: The code for training and evalu-
ating the model on the test set is released as well as the pre-trained model
weights as part of the project presented in Chapter 5: https://github.com/
fabienbaradel/object_level_visual_reasoning. We have extracted extra
information for VLOG (Fouhey et al. 2018) and EPIC (Damen et al. 2018)
datasets. For every image in each video we have run a pre-trained Mask-
RCNN (He et al. 2017) for detecting the objects present in the scene as well
as their spatial location (bounding box) and the estimated pixel mask. This
data is available on the project page.

• CoPhy: The benchmark composed of 3 datasets, the code including the
dataloaders for each of the dataset, the scripts for training and evaluating
our model are released as part of the project presented in Chapter 6: https:
//github.com/fabienbaradel/cophy.

https://github.com/fabienbaradel/glimpse_clouds
https://github.com/fabienbaradel/object_level_visual_reasoning
https://github.com/fabienbaradel/object_level_visual_reasoning
https://github.com/fabienbaradel/cophy
https://github.com/fabienbaradel/cophy
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In this thesis, we are interested in learning meaningful representations for
visual data with a focus on videos. First, in Section 2.1 we give an overview
of the main concepts used for representation learning in Machine Learning
(ML) with a focus on Deep Learning (DL). Second, Section 2.2 we present the
origin of Computer Vision (CV) and the different strategies for extracting visual
representations.

2.1 Background in Machine Learning

In this section, we review the different ways used in ML for representation
learning from supervised learning to unsupervised learning. We also describe the
link between ML and causal inference and its possible applications in CV.

2.1.1 Supervised learning

In short, supervised learning implied training a system to automatically predict
an output value to an input, given a set of labeled examples. If the output value

9
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Figure 2.1 – Examples of supervised learning problems. (Left) Object recognition:
The goal is to predict which object is present in the input image. —
(Middle) Object detection: The goal is to detect objects by predicting
the bounding box locations as well as the object categories. — (Right)
Instance segmentation: This task goes beyond the object detection task,
ones need to predict the pixel mask for each detected object.

is a continuous quantity then this is a regression problem. Otherwise if the output
value is discrete class label, this is a classification problem. In this section we restrain
our case to the classification task however the explanations are easily transferable
to the regression task.

Different types of supervised learning problems in computer vision can be
visualized in Figure 2.1.

Problem formulation — We assume x ∈ X and y ∈ Y respectively as the
input and the output to our system. X and Y represent respectively the input and
output space. For example, in the case of object recognition x is an image and
y is the object category index whose values are ranging from 1 to C where C is
to the number of classes. We assume a training set D = {(xi, yi)}N

i=1 ⊂ X × Y
composed of N training samples. The goal is to learn a mapping f ∈ F that can
correctly predict the label y given the input x. The predicted label denoted ŷ
produced by the system f is obtained using the following mapping:

f (x) = ŷ (2.1)
ŷ = arg max

c
ŷc (2.2)

where ŷ is a C-dimensional prediction vector which can be assimilated to a
probability distribution over the set of possible classes such that ∑C

c=1 ŷ
c = 1 and

yc > 0 ∀c = 1 . . . C. The value ŷc corresponds to the probability that the input x
belongs to the c-th category.

Function f is learned using the training examples provided by D, with the
underlying goal of generalizing to unseen examples.

Neural networks — We restrict our mapping function f to feedforward neural
networks since all the approaches proposed in this manuscript belong to this
category. Neural networks are composed of many different functions or layers,
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Figure 2.2 – Feedforward neural networks as directed acyclic graphs. A map-
ping function f which is a feedforward neural network can be com-
posed of n layers or functions. The green node corresponds to the
input while the orange node is the output. The information flows
feedforward (from left to right) for producing an output given an
input. And the system is trained by backpropagating the error in a
backward manner (from right to left).

where each layer is itself a neural network. The term feedfoward means that the
information flows strictly in a forward direction from the input to the output such
as shown in Figure 2.2.

The mapping function f is composed of n layers and is reparameterized such
that:

f (x) = fθ(x) = fθn( fθn−1(. . . fθk(. . . fθ1(x) . . . ) . . . )) (2.3)

hk = fθk(hk−1) (2.4)

where θ = {θ1, . . . , θn} ∈ Θ is the set of trainable parameters of f , Θ is the
parameters space and fk is the k-th layer whose input, output and trainable
parameters are respectively hk, hk+1, θk. We present in pages 14 and 16 a set of
commonly used neural network layers and (activation) functions.

Since the system f is parametrized by the trainable parameters θ (assuming
the hyper-parameters of each layer fixed) the space of all possible mappings F is
restricted to the space of all possible parameters denoted Θ. Hence in the rest of
this section we use fθ for denoting the mapping function.

A feedfoward neural network fθ can be seen as acyclic directed graph from an
information flow point of view such as shown in Figure 2.2. It means that for
producing the output we need to iterate through each layer.

Optimization problem — For learning the function fθ in Θ we use a loss
function L : Y × Y → R+ defined on a data point which corresponds to the cost
of predicting ŷ when the label is actually y.
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A commonly used function in classification is the cross-entropy (LeCun et al.
1997):

LCE(ŷ, y) = −
C

∑
c=1

yc log ŷ (2.5)

, y is a one-hot vector representation of the groundtruth class such that y ∈ {0, 1}C

and ∑C
c=1 y

c.
We follow the principle of Empirical Risk Minimization (ERM) for learning the

best system f where the risk is defined as the expectation of the loss function L.
Since we do not know the joint distribution of the data points we cannot compute
the true risk, instead, we minimize the empirical risk by averaging the output of
the loss function L on the training set D. Hence, the optimization problem for
obtaining the set of best parameters θ∗ is of the general form

J (θ) = ∑
(x,y)∈D

L( fθ(x), y) +R(θ) (2.6)

θ∗ = arg min
θ∈Θ

J (θ) (2.7)

where J is the objective function composed of the loss function J and a R a
regularization term.

Solving this optimization problem is not trivial since it is a non-convex problem
due to the usage of non-linear functions in the mapping function (more details
in 14). We employ the Stochastic Gradient Descent (SGD) (Bottou 1991) and the
backpropagation rule (Rumelhart et al. 1986) for estimating the parameters such
as described below.

Stochastic gradient descent — The standard way to minimize an objective
function on the training set D for the case of neural network is to use SGD (Bottou
1991). This implies that fθ should be differentiable with respect to every parameter
in θ.

In short, the method corresponds to compute the gradient of the objective
function ∂J (θ)

∂θ on the training set D and update the parameters in the oppositive
direction of the gradient given the current state of the parameters.

However computing the gradient of the objective function can be quite inefficient
if the number of training examples is large. To overcome this problem, one solution
is to use a variant called the mini-batch SGD which consists of replacing the true

gradient of the objective by an estimation ∂Ĵ (θ)
∂θ computed from a set of training

examples S randomly sampled from the training set D such that:

∂J(θ)
∂θ
≈ ∂Ĵ (θ)

∂θ
=

∂

∂θ

[
1
|S| ∑

(x,y)∈S
L( fθ(x), y) +R(θ)

]
(2.8)
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Figure 2.3 – Gradient descent: toy example. This graphs shows the iterative
process of the gradient descent. There is a local minimum where
the iterative process can get stuck, since it is initialization-dependent.
The optimal solution is not guaranteed to be found.

For making sure that ∂Ĵ (θ)
∂θ is a good estimation of ∂J (θ)

∂θ , one need to enforce that
the set S is representative of the training set D. This can be done by enforcing S
to contain enough number of training examples.

Then the update the parameters in the opposite direction of the gradient is
done by following this updating rule:

θ ← θ − η
∂Ĵ (θ)

∂θ
(2.9)

where is η is the learning rate.
Mini-batch SGD is an iterative process which starts with a random initilization

of the trainable parameters in θ. An epoch consists in running over all mini-batches
once. This training is an iterative process such that epochs are repeated until
convergence of the descent on the training set. The learning rate η and the
initilization of the trainable parameters are critical for the training procedure. If
the learning rate is too small, the training procedure can be slow or/and gets
stuck in a local minima due to a bad initialization of the trainable parameters. On
the opposite, if the learning rate is too high the optimization may never converge.
Figure 2.3 shows an example of iterative process of the gradient descent algorithm.

Since we want to generalize to unseen elements (i.e. outside of the training
examples), most of the time we keep a validation set, which is used for stopping
the iterative training procedure as soon as the metric computed on the validation
set is not improving or reaching a plateau.

Backpropagation rule — Training the mapping function fθ using mini-batch

SGD involves computing the gradient ∂Ĵ (θ)
∂θ such as demonstrated in Equation 2.9.
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However computing L( fθ(x),y)
∂θ , which is a subpart of the overall gradient could be

cumbersome as soon as the mapping function fθ becomes very deep.
One way to alleviate this issue is to use the chain rule and to compute the

gradient one layer at a time such that:

∂L( fθ(x), y)
∂θl

=
∂L( fθ(x), y)

∂θn

(
n

∏
k=l+1

∂hk
∂hk−1

)
∂hl
∂θl

(2.10)

This principle is known as the backpropagation rule (Rumelhart et al. 1986) and
consists of an iterative backward from the last layer such as shown in Figure 2.2.

We now have introduced all the key components used for training neural
network system in a supervised manner. When all parameters of a network
architecture can be updated with the same instance of gradient descent, the
network is said to be trained end-to-end.

A brief history of Artificial Neural Network — The first Artificial Neural
Network (ANN), called Perceptron, is introduced by Rosenblatt (1957). Originally
it consists of a single layer network that has n input values and a single output
value. The input values are multiplied by their associated parameters and summed.
Finally a activation function is applied for producing the final output value.

Fukushima (1980) introduce a hierarchical multilayered neural network Neocog-
nitron which is the first application of neural network for the handwritten char-
acter recognition. Finally the first notable results appear in the fields of speech
recognition (Lang et al. 1988) and are mainly due to the use of backpropagation
(Rumelhart et al. 1986).

Common neural network layers — In CV, the first notable results are achieved
on the task of handwritten character recognition by LeCun et al. (1997). They
propose the first successful CNN called Graph Transformer Network (GTN) (Le-
Cun et al. 1997) shown in Figure 2.4. A CNN is a feedforward neural network
composed of at least one convolutional layer. We give a summary of common
layers/functions that are employed in CNN architecture which takes visual data
as input:

• Convolutional layers are a key component of CNN models. It consists of
applying a convolutional operation with a learnable spatial kernels. The
input hk−1 and output hk are feature maps respectively of size mk−1

1 ×
mk−1

2 ×mk−1
1 and mk

1 ×mk
2 ×mk

1. A convolutional layer consists of a bank of
m1 filters and each filter detects a particular spatial feature at every location.
The i-th output feature map denoted hk

i is given by

hi
k = Bk

i +
mk−1

1

∑
j=1

Kk
ij ∗ hi

k−1 (2.11)
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Figure 2.4 – Graph Transformer Network architecture. The Convolutional Neu-
ral Network (CNN) proposed by LeCun et al. (1997) for the task of
handwritten character recognition is composed of convolutions, sub-
sampling and full connections operations.
Figure reproduced from (LeCun et al. 1997).

where ∗ is the convolution operator, Bk
i is a learnable bias matrix and Kk

ij
is the learnable spatial kernel filter of connecting the j-th feature map of
hk−1 with the i-th feature map of hk. The success of this convolutional layer
is mainly due to the weight sharing strategy employed for learning the
convolution kernels (LeCun et al. 1989).

• Pooling layers consist of subsampling the information from feature maps.
This can be done at any stage k of the neural network by employing a mean
or max operator given a spatial extend Fk and a stride Sk. Hence the pooling
layer that takes as input a feature map of size mk−1

1 ×mk−1
2 ×mk−1

1 produces
a feature map of size mk

1 ×mk
2 ×mk

1 with

mk
1 = mk1

1 (2.12)

mk
2 = (mk1

2 − Fk)/Sk + 1 (2.13)

mk
3 = (mk1

3 − Fk)/Sk + 1 (2.14)

It is often employed after a convolutional layer to reduce the spatial dimen-
sion of a feature map.

• Activation functions denoted σ, allow to a introduce non-linearity (LeCun
et al. 1998) into neural network. Given an activation function σ the output
at stage k of a neural network is given by

hk = σ(hk−1) (2.15)
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It has been empirically demonstrated that this helps during the training
procedure. The Rectified Linear Unit (ReLU) operation is a common non-
linear activation function used in modern architecture.

• Fully-connected layers are an extension of the Perceptron (Rosenblatt 1957).
They take as input and predict as output multiple values. This layer applies
a linear transformation on the input a vector hk−1 of dimension mk−1 for
producing an output vector hk of dimension mk such as

hk = Wkhk−1 + bk (2.16)

where Wk is a matrix and bk is an bias parameter. Stacking multiple fully-
connected layers is known as multi-layer perceptron. In general, we employ
activation functions after fully-connected layers.

Recurrent neural networks — For the moment we described systems that takes
as input spatial signals such as images. However in this manuscript we are also
interested in working with sequential data since we want to extract information
from videos. In this case the input data x = (x1, . . . ,xt, . . . ,xT) is a sequence
composed of T elements.

Other types of neural network layers are proposed for tackling sequential data
such as Recurrent Neural Network (RNN) (Jordan 1986) and Long-Short Term
Memory (LSTM) (Hochreiter et al. 1997). RNNs employ hidden vector denoted h

which is recursively updated at each timestep using the element from the input,
and from which the output v is predicted,

ht = σh(Whxt + Uhht−1 + bh) (2.17)
vt = σy(Wyht + by) (2.18)

where σh and σy are activations function and Wh, Wy, bh, by, U are parameters
matrixes and biases.

RNNs suffer from the vanishing and exploding gradient problem (Bengio et al.
1994) especially when dealing with long sequences. This is due to the explosion
(or vanishing) of the product of derivatives during the computation of the gradient
using the backpropagation through time. One solution is to use LSTMs which em-
ploy a gating mechanism. This mechanism allows the gradient to backpropagate
more easily essentially by smoothing out the update of the hidden vector h at each
timestep by using activation functions. Gated Recurrent Unit (GRU) is also another
option which employs a simplified version of the LSTM gating mechanism.

Limitations — While supervised learning in CV has shown great success in
many tasks ranging from object recognition to object detection, this type of
learning raise several issues and constraints.
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In many cases, having enough labeled data is problematic. Annotating large
scale datasets is expensive and cumbersome. While it can be considered as a
reasonable task at an image-level, adding pixel annotations such as bounding
boxes or instance segmentation is extremely time-consuming and prone to error
depending on the annotator. (Dias et al. 2019) For example, labeling a single
image with pixel-level annotations in the COCO-Stuff takes 19 minutes Caesar
et al. 2018. Thus annotating the 164’000 images of this dataset would take around
53’000 hours.

Since it is easy to have access to unannoted visual content for free, we wish
to construct a representation without having to deploy large-scale annotations.
Motivations for learning systems without annotations comes from the fact that
humans learn how the world works mainly by observations (Gopnik et al. 2000).
In the next section we present alternatives to strong supervision.

2.1.2 Unsupervised learning

Unsupervised learning consists in learning meaningful representations of data
without having access to manual annotations. We review different unsupervised
methods and introduce recent self-supervised methods.

Problem formulation — Our training set is simply D = {xi}N
i=1 ⊂ X , com-

posed of N training samples.Space X ⊂ Rp being assumed to be a high-dimensional
space, the underlying goal of an unsupervised method is to learn a function f that
maps an input to a representation z lying in a lower-dimensional space Z ⊂ Rk

where inputs with similar semantical meanings are close to each other. In some
sense we want to infer the underlying structure of X with k� p.

Pre-training — We are interested in unsupervised learning method as a pre-
training strategy. The term pre-training means that we want to learn a representa-
tion z in an unsupervised manner with the ultimate goal that this representation
could be helpful for solving supervised task (also called downstream tasks) with a
limited number of annotated examples.

Clustering analysis — A common way for dealing with unannoted data is to
employ clustering methods (Jolliffe 2005; Hartigan et al. 1979; McLachlan et al.
2008), which is the process of grouping similar entities together. Clustering is a
traditional task in unsupervised learning, but classically it is used in contexts,
where the discovery of clusters is the goal itself, as opposed to finding a suitable
representation for further processing, which is our problem. Clustering can aso
be used for representation learning. Although not widely used, we will give and
example based on the popular K-means algorithm.
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The key ingredient is a distance function and one common choice is to employ
the Euclidean distance:

d(xi,xi′) =

√√√√ p

∑
j=1

(xij − xi′ j)2 (2.19)

K-means algorithm (Likas et al. 2003), that aims at providing a vector quantization
for each data point. This also corresponds to the final representation z provided
by this method with the following constraint in z, zk ∈ {0, 1} and ∑K

k=1 zk = 1.
zik is a binary indicator set to 1 if the ith data point belongs to the kth cluster.

The goal is to assign each data point to a cluster, among K clusters, which
involves to learn the cluster centroids µk for k in 1 . . . K. The loss function L
consists of computing the distance between a data point x and its assigned
centroid such as:

L(x, µ)
K

∑
k=1

zkd(x, µk) (2.20)

where µ = {µ1, . . . , µK} ∈ Π is the set of cluster centroids and Π represents their
space.

And the optimization problem is defined by the objective function J defined
as followed:

J (µ) = ∑
x∈D
L(x, µ) (2.21)

µ∗ = arg min
µ∈Π

J (θ) (2.22)

where the cluster centroids µ are computed by averaging the vectors belonging to
them cluster.

At initialization, centroids are randomly set. Then, the minimization process
consists of two steps that are repeated until convergence of the algorithm. First,
each data point is assigned to its nearest cluster centroid. Second, each cluster
centroid is updated by averaging vectors assigned to the cluster.

The final representation z obtained after using the K-means algorithm is quite
limited and lack expressivity since it is a one-hot vector. This is the only part
of the model which is learned during the optimization of the objective function
since the computation of the cluster centroid is only parametrized by z. Moreover
fine-grained information which is important for visual data can easily be lost
since no intermediate representation are learned. This lack of expressivity is
not solved with more advanced clustering methods such as Gaussian Mixture
Model (Reynolds 2009), Hierarchical k-means (Moore 2001) or spectral clustering
(Von Luxburg 2007) that all require low-dimensional input for working properly.
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Figure 2.5 – Denoising autoencoder. A percentage of pixels’ input are pertur-
bated and feed to the autoencoder that needs to generate the non-
perturbated input.
Figure reproduced from (Vincent et al. 2008).

Autoencoder — An autoencoder (Hinton et al. 1994) is a feedforward neural
network for encoding data in unsupervised manner. The goal is to build a low-
dimensional representation z of data called the code that contains all the important
high-dimensional information of x. To do so, the output is constrained to be equal
to the input while trying to compress as much as possible the intermediate repre-
sentation within the neural network. Making sure that the code is low-dimensional
enough is an important assumption otherwise the autoencoder only consists of
an identify mapping.

This method is composed of two networks: an encoder and a decoder. The encoder,
denoted f , compresses the input x into a low-dimensional vector representation
denoted z (the compressed or hidden representation, also known as code). The
decoder g takes as input z and should re-generate the initial input x such as:

z = fθ1(x) (2.23)
x̂ = gθ2(z) (2.24)

where θ = {θ1, θ2} is the set of trainable parameters respectively the encoder and
the decoder. We want the dimension of code z to be as small as possible, while z
being as representative as possible of the input x.

The loss function L consists of penalizing reconstruction error,

L(x) =
N

∑
i=1
‖xi − x̂i‖ (2.25)

We employ an objective function J similar to the one presented in Equation 2.6
and solve the optimization problem the same way as described in Section 2.1.1.

Some works extend the expressivity of autoencoder by proposing variants (Ng
et al. 2011; Rifai et al. 2011; Kingma et al. 2014; Vincent et al. 2008). Vincent
et al. (2008) propose the denoising autoencoder which consists in perturbing a
percentage of the input x and still encode and decode the input such that we
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can generate the initial non-perturbated input x. An illustration of the procedure
is shown in Figure 2.5. Similarly, the contractive autoencoder (Rifai et al. 2011)
is proposed by forcing the model to be robust to slight variations of the input
values. They propose a regularization term R that imposes strong constraints on
the learnable parameters. Ng et al. (2011) focus on encouraging sparsity within
the autoencoder by reducing the number of units and exploiting the Kullback-
Leiber (KL) divergence. Finally, Kingma et al. (2014) propose to build a generative
model using the autoencoder framework. They incorporate strong assumptions
on the latent variables z by using a variational approach such that the latent
variable should follow a prior distribution. This encourages independance of the
values of the code, and often leads to the discovery of semantically meaningful
representations.

Pre-training with autoencoders — Vincent et al. (2010) show that training an
autoencoder as a pre-training strategy can be helpful. For solving the downstream
tasks they initialize the parameters of the mapping function of the supervised
system by using the parameters from the encoder. They show better results
following this two-stage strategy compared to start solving the downstream tasks
from random weights. While extremely encouraging these results have not been
extended to real world images.

However this reconstructing technique demonstrates its effectiveness on discrete
data. Devlin et al. (2018) propose a BERT (Bidirectional Encoder Representations
from Transformers) in the field of Natural Language Processing (NLP), which
can be seen as a denoising autoencoder (Vincent et al. 2008) (also called masked
autoencoder) from a sequential discrete signal. The authors propose to mask a
percentage (15%) of the input sentence and train the autoencoder at reconstructing
the missing words given the context of the sentence. They show that training on
a large-scale unannoted corpus is an effective pre-training strategy for solving
downstream NLP tasks ranging from sentimental analysis to text summarization.

Data points in NLP are discrete since most of the works (Devlin et al. 2018;
Vaswani et al. 2017) assume a pre-defined dictionary of all possible words. Hence
the unsupervised task of reconstruction can be seen as a prediction task. Indeed
given a masked word we need to find the more appropriate word over a set of
possible words (usually around 30’000). This could be a potential explanation
of why this unsupervised strategy is effective on discrete signal but not on
continuous signal such as visual data, at least not when applied trivially.

Self-supervised learning — In CV, recent works in unsupervised learning (Gi-
daris et al. 2018; Hénaff et al. 2019; Caron et al. 2018; Novotny et al. 2018a; Novotny
et al. 2018b) follow this strategy of predicting instead of reconstructing. This kind
of representation learning is called self-supervised learning and consists of using
the naturally available relevant context and embedded data as supervisory signal.
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For example, Gidaris et al. (2018) propose to train the parameters of a CNN
function trained on predicting a rotation randomly applied to an input image.
While being simple, the authors show that this pretext task learns low-level and
mid-level features as good as learning them in a fully-supervised way from a
large-scale annotated dataset (e.g. Imagenet (Krizhevsky et al. 2012)). Caron et al.
(2018) adapt clustering methods to end-to-end training by jointly learning the
parameters of a CNN and the cluster assignments of the resulting features. They
use a K-means procedure for grouping features and use output vector quantization
as supervision signal. Oord et al. (2018) propose to predict the future in latent
space in an autoregressive manner by using a probabilistic contrastive loss. This
way they ensure to capture semantical information that is useful to predict the
future. Following a similar strategy, Hjelm et al. (2018) introduce DeepInfoMax
that consists in maximizing the mutual information between the input and the
output of the neural network.

These methods show great results on downstream tasks such as image classi-
fication with limited number of training examples per class. However as soon
as the number of training examples increases the usefulness of the pre-training
strategy gets limited or even null.

Moreover using unsupervised algorithms does not solve the problem of learning
dataset biases that can still exists even in unannoted data. One way to deal with
such issue is to introduce causal inference that we are going to describe in the
coming section.

2.1.3 Towards counterfactual reasoning

Reasoning is an essential ability of intelligent agents that enables them to
understand causal relationships and to leverage this understanding to anticipate
the future and act accordingly. In this section, we discuss the importance of causal
inference in machine learning. We introduce a few important notions and focus
on counterfactual prediction.

Human thinking and causal reasoning — Human cognitive processes can be
assigned to two distinct systems as described by Kahneman (2011) (winner of the
Nobel prize in 2002). System 1 is fast, automatic and unconscious. It can detect
and localize objects, understands simple sentences, solves very simple numerical
problesm like 1+ 1, but it is also prone to errors due to its continuously generated
assessments. System 2 is slow, effortful, logical, conscious. It can count the number
of cars in a street, performs logical reasoning, solves more complex numerical
problems like 121× 28, generates questions and answers them. System 2 is more
reliable but requires effort. These two systems are used for solving different types
of cognitive tasks such as shown in Figure 2.6.
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Figure 2.6 – System 1 and System 2 in Computer Vision. (Fast) The question
"Is there a cow in the picture?" is straightforward to answer. system 1
handles this question and gives a positive answer almost automati-
cally. — (Slow) Answering the question "How many cows are present
in the image?" requires identifying each cow despite occlusions and
counting the total number of cows. This requires attention and can
be seen as a multi-steps procedure. Such a task is solved by System 2
and requires effort. However, verifying that the answer is NOT equal
to 5 Billion is, again, done fast and by System 1.

Broadly stated, current DL methods are able to reach good performance on
tasks tackled by System 1 by humans. Up to a certain performance, CNNs may
provide a good decomposition of a scene into visual entities. However reasoning
and planning is more difficult for current DL methods. At the moment it is
difficult to manipulate semantic concepts that can be recombined combinatorially.
Such behavior might be important for being able to solve issues related to out-of-
distribution and transfer. In this manuscript we believe that developing models
for high-level cognition requires tackling compositionality and causality.

Causal reasoning gained mainstream attention relatively recently in the ML
community (Lopez-Paz et al. 2017a; Lopez-Paz et al. 2017b; Kocaoglu et al.
2018; Rojas-Carulla et al. 2018; Mooij et al. 2016; Schölkopf et al. 2012), due
to limitations of statistical learning becoming increasingly apparent such as
discussed earlier (Pearl 2018; Lake et al. 2017; Scholkopf 2019). The hope is
to introduce causal inference to build more robust models able to generalize
(Scholkopf 2019). Moreover, the ultimate goal is to move from machine learning to
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machine reasoning and let machines be able to discover causal concepts and think
in an imagined space. In the rest of this section, we focus on causal inference and
highlight important notions that can bring more reasoning abilities for machine
learning systems.

Seeing versus doing — We assume a set of training examplesD = {(xi, yi, zi)}N
i=1

composed of N training examples and the respective associated random vari-
ables are denoted as upper case letters X, Y and Z (as opposed to lower case
realizations). The training examples in D are drawn from the joint probability
distribution P(X, Y, Z).

In Section 2.1.1, we were interested in modeling Y given X = x which cor-
responds to modeling the conditional distribution P(Y|X = x). The mapping
function f defined in Equation 2.1 that predicts an output y given an input x is an
estimation of the conditional expectation E(Y|X = x) using the training examples
D. This procedure is observational and consists of computing statistics from data
that we see. While being very useful for solving many tasks ranging from object
detection to human pose estimation it has some limitations such as often learning
the dataset bias rather than causal relationships and reasoning.

In causal inference we are interested in modeling the interventional distribution
P(Y|do(X = x)) which is (in general) different from the observational distribution
P(Y|X = x). The main difference between these two conditional distributions is
that for P(Y|do(X = x)) we set the value of X to x in the data generating process
such as denoted by the do-operator while for P(Y|X = x) we observe variable X
at value Y. The interventional distribution differs from a observational one mainly
because the samples does not comes from the same generating process.

We illustrate this with a simple example. If we interested in estimating the
future GDP (gross domestic product) of different countries given the current GDP
and some features in the form of key economic observations, we perform classical
forecasting, which can be statically modeled as a conditional distribution estimated
from observed data, hoping that our model is capable of generalizing to unseen
realizations of the same type of data. On the other hand, if we were interested
in verifying what the future GDP of the UK were given in the hypothetical case
where the UK hadn’t left he European Union in 2020, we can’t learn a model from
observed data, since this case has never been observed before. This case requires
the design of a structural model of the effects of the do-operator on key random
variables.
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A concrete toy example has been proposed by Lopez-Paz (2016), given as
follows. We consider a joint distribution P(X, Y, Z) described by the following
data generation process,

zi ∼ N (0, 1) (2.26)
xi ← 5zi (2.27)

yi ← xi + 5zi (2.28)

We can simulate thousands data points and estimate E(Y|X = 1) ≈ 2 by observing
data in a passive way. Now we set X to 1, such that we should consider the
joint distribution Pdo(X=1)(X, Y, Z). This can be done by intervening on the data
generation process as follows

zi ∼ N (0, 1) (2.29)
xi ← 1 (2.30)

yi ← xi + 5zi (2.31)

We can draw thousands of data points and compute the mean for estimating that
E(Y|do(X = 1)) ≈ 1, which does not correspond to the observational quantity.

In practice modeling this quantity is of high interest for identifying the relations
between variables. For example, in medicine, if x is a treatment and y is the out-
come, it is of high interest to understand what is the impact of a specific treatment.
Randomized controlled trials can be conducted for generating data from the joint
distribution pdo(x)(X, Y, Z). However very frequently such experiments cannot
be performed in practice, for example due to ethical issues. Causal inference
provides a way to answer interventional questions from observational data points.

Estimating the consequences of doing by seeing — One way to solve this
problem is to make an assumption about the underlying causal structure of the
data generation process. This type of information cannot be captured in the joint
distribution; causal structure adds expressivity to the data generation mechanism.

A Structural Causal Model (SCM)M is represented by a triplet < U, P(U), V, F) >
where:

• U is a set of exogenous variables of any types. An joint distribution P(U) is
defined over U.

• V is a set of endogenous variables. In our case we assume V to be composed
of the three random variables X, Y and Z.

• F is a set of mapping functions. It gives the mapping of any endogenous
variables X ∈ V by

X = fx(Pa(X), Ux)

where fx is the mapping function of X, Pa(X) is the set of endogenous
variables for determining the value of X, and Ux ∈ U.



2.1 background in machine learning 25

Figure 2.7 – Directed Acyclic Graph: (Left) A causal graph showing that both
X and Z are causing Y; Z is a confounder of, both, X and Y. —
(Right) A mutilated version of the causal graph shown in (Left). An
intervention on X leads to removing the causal relationships from
its ancestors, in this case Z, as X is now determined directly by the
intervention does not depend on Z anymore. The data generation
process is not the same as in the original graph in (left).

An exogenous variable is a variable whose value is determined outside the model
while an endogenous variable is determined inside the model.

A SCM is associated to a causal graph G where each node represents a endoge-
nous variables V, and each edge represents a causal relation that is present in the
set of mapping functions F.

As an example, we show in Figure 2.7 (Left) a DAG representing the causal
relationships X ← Z → Y ← X. Here Z is a confounder variable which means that
Z is a cause for, both, X and Y.

Intervening with the do-operator on a variable X corresponds to replacing its
function fX by the value x. The SCM model M after the intervention is the
submodel denotedMx. In the causal graph representation that corresponds to
cutting all the edges coming to the variable X such as shown in Figure 2.7 (Right).
The effect of such an intervention on another endogenous variable, for instance
Y, is denoted Yx and corresponds to the interventional variant of Y in the sub-
modelMx. The distribution of Yx is our quantity of interest denoted p(y|do(x)).
Pearl (2012) propose three rules of do-calculus to infer post-intervention distri-
butions from observational data, by converting post-intervention distributions to
observational distributions.

The do-calculus illustrates the power of causal inference, allowing us to reason,
just by seeing, on the consequences of doing. Modeling intervention rather than
association allows to answer what if? questions which is a necessary first step
towards machine reasoning. However, humans go one step further by being
able to imagine and retrospect potential outcome by expressing counterfactual
conditions.
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Expressing causality from counterfactuals — The philosopher Hume (1748)
introduces the concept of counterfactuals as a way to express causal relationships.
Answering counterfactual queries requires the existence of a twin/alternative
world where everything is the same except the hypothetical intervention and its
effects (Lopez-Paz 2016). Counterfactuals are the top level of the causal hierarchy
proposed by (Pearl 2018) such as shown in Figure 2.8, and as such are seen
as being a more difficult problem than the base problems in the hierarchy. In
general, a query is a “counterfactual” if it contains an “if” portion that is untrue
or unrealized.

Since the algorithmization of counterfactuals is an extension of the do-calculcus,
the assumptions about the SCM still hold. Modeling counterfactual queries
consists of modeling the probability distribution

p(y|x′, y′, z′, do(x)).

In other words, it consists of what would be Y if I had set X = x given that I
have observed (x′, y′, z′). It is important to notice that x′, y′ and z′ are observed
values while the quantities x and y are unobserved and belong to the alternative
and hypothetical world. The distribution is thus conditioned on two different
values for X, before and after intervention.

Answering a counterfactual query from observational data can be done using a
three-step procedure (Balke et al. 1994; Tian et al. 2002):

• the abduction consists of updating the joint probability distribution over the
endogenous variables P(U) given the observations o = (x′, y′, z′) to obtain
P(u|o).

• the action corresponds to modifying the modelM by the intervention do(x)
to obtain the model Mx(x).

• the prediction step uses the modified modelMx as well as P(u|o) to com-
pute Yx

Several extensions (Shpitser et al. 2009) are proposed to overcome the lack of
complete knowledge of the causal model.

Limitations — The framework presented above offers an elegant solution for
solving counterfactual queries, however it suffers from some criticisms as well.
The definition itself of counterfactuals is not a concept approved by the entire
causal inference community (Dawid 2000). This is mainly due to the fact that
they are never observed so they are not empirically testable. Another source of
criticism comes from the fact that we require a pre-defined structure of the causal
world, in terms of machine learning, a handcrafted causal structure. While it
is possible to express this statement for applications with low-dimensional data
(Balke et al. 1994; Tian et al. 2002; Pearl et al. 2018) it seems difficult to scale up



2.2 visual representations 27

Figure 2.8 – Causal hierarchy defnied by Judea Pearl. The causal hierarchy is
split into three categories: association, intervention and counterfactu-
als. The most high-level category is the counterfactuals one. Judea
Pearl assesses that cause-effect relationships can only be expressed
from this category.
Figure reproduced from (Pearl 2018).

this principle to high-dimensional data such as visual data (images and videos).
Moreover, the concept of intervention is not clear for all fields of applications. In
CV the list of possible interventions is long and complex. Interventions with the
do-operator can be done directly on a pixel level, in feature space or at an object-
level representation. Lopez-Paz et al. (2017a) suggest to perform interventions in
the semantic space to align with works dealing with meaningful low-dimensional
data (Rubin 1986). However, it is not clear how to define an intervention in a
semantic space for visual data.

In our own work, presented in Chapter 6, we propose to supervise the do-
operator as a first step to solve counterfactual from visual data by generating
videos using a physical engine, where a scene is composed of objects. This allows
to easily perform do-interventions on the positions of the objects and provide
alternative world. On the upside, this allows to perform counterfactual queries on
high-dimensional data, as images. However, on the downside, since we (for the
moment) supervised the do-operator, this corresponds to performing statistics on
observational data.

2.2 Visual Representations

In this section, we describe the strategies used in the last decade for extracting
visual representations and their applications in associated active research topics.
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Figure 2.9 – Timeline of active topis in CV.
Figure reproduced from (Szeliski 2010).

2.2.1 Origin of Computer Vision

The first attempt to automatically extract information from an image dates
back from 1963 by the Laurence Roberts who proposes in his PhD thesis (Roberts
1963) to infer the 3D structure of a cube from a picture. At that time pioneers
(Seymour 1966; Marr 1982) in artificial intelligence thought that solving the vision
problem would be an easy step toward more difficult tasks such as planning
and high-level reasoning (Szeliski 2010). Seymour Papert conducts a summer
vision project (Seymour 1966) with his undergraduate students with sub-goals
ranging from foreground-background segmentation to scene analysis with simple
non-overlapping objects. However as we will see in this manuscript, solving these
tasks took decades. In the meantime, researchers focus on low-level processing
tasks such as line labelling (Huffman 1971; Clowes 1971; Duda et al. 1972) and
then move towards edge detection (Davis 1975; Canny 1986) with the underlying
goal of simplifying the visual content of images.

Inspired by discoveries on the visual system from Hubel et al. (1959), David Marr
proposes bottom-up approach for the vision pipeline. The first stage corresponds of
using low-level image processing applied to 2D images leading to a primal sketch
of the scene. Then a 2.3D sketch is obtained by using binocular stereo. Finally
the final representation is a 3D model of the scene in a 3-dimensional map using
structural analysis. Researchers (Huttenlocher 1987; Weiss 1988) get inspired from
this paradigm for recognizing object in images either by fitting a corresponding
3D Computer-Aided Design (CAD) model based on image features (Huttenlocher
1987) or by using geometrical properties of the visible shape that are invariant to
point of view (Weiss 1988).

However, geometry-based methods show difficulties due to illuminations Burns
et al. (1993) and approaches move towards the use of appearance features. Sirovich
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et al. (1987) propose to decompose face images onto a low-dimensional space
with PCA which is the first statistical approach for solving a vision task. This
approach is improved by introducing the eigenfaces decomposition in 1991, a
near-real-time system that can recognize faces using an Euclidean distance in the
PCA space (Turk et al. 1991). The use of appearance features is then successfully
applied to more tasks such as described in the next section. This quick summary
of the origin of CV illustrates the general tendency leading towards the learning
paradigm now used in the field. Figure 2.9 shows a historical timeline of active
topics.

2.2.2 Object recognition

Humans recognize objects in images with little effort, no matter what is the
camera view point, the size, scale and rotation of the object. They can even infer
the category of an object which is partially occluded in the image. The goal of
object recognition systems is to mimic this behavior which consists to categorize
the object present in an image. To do so, object recognition systems need to
construct invariant, robust and discriminative representations for each object.

Object recognition is a classification task that corresponds to assigning a pre-
defined label to an input image. This is a standard task in CV which has been used
for decades for juging the quality of image descriptors. Historically computer
vision systems have employed two types of descriptors for extracting image repre-
sentations. Local descriptors that aim to extract low-level features around points of
interest in the images and global descriptors which encode a compressed represen-
tation of the entire image from the set of local features. These two descriptors are
used by handcrafted methods which consists of a manually crafted vision pipeline
from the pixels to a vector representation based on solid mathematical modeling.
Recently, the field has moved towards end-to-end learning systems based on CNN
where the goal is to learn at the same time low-level to high-level feature using a
hierarchical structure.

Histograms, vocabularies and local descriptors — The notion of histogram is
introduced by Swain et al. (1991) for image indexing. They propose to associate
objects to a histogram of their colors and they develop a method called histogram
intersection for indexing. The introduction of histogram allow to avoid explicit
point correspondences and to model relations between different image points
implicitly coded in the receptive field responses. The histogram approach is
extended by going beyond the color and considering response of convolution
filters such as Gabor filters and Gaussian derivatives applied to image patches
(Schiele et al. 1996).

Following the same principle Leung et al. (2001) propose to consider histograms
of local features called textons. The method consists of constructing a vocabulary



30 related works

Figure 2.10 – Local Greyvalue Invariants for Image Retrieval. (Left) Red crosses
represent the Interest Points detected on the same scene under
rotation. – (Right) Vector representation of an image.
Figure reproduced from (Schmid et al. 1997).

of prototype tiny surface patches with associated local geometric and photometric
properties. The idea of local descriptor is finally popularized (Schmid et al. 1997)
by using the idea of representing images with local image descriptors based
on image gradients (Koenderink et al. 1987). Schmid et al. (1997) applied this
procedure to the task of image retrieval and image matching. A visualization is
shown in Figure 2.10.

Scale Invariant Feature Transform — The success of local descriptors for ob-
ject recognition and image matching largely inspired the work of David Lowe
(Lowe 1999; Lowe 2004), leading to the highly influential Scale-Invariant Feature
Transform (SIFT) descriptor. SIFT features are extracted using a multi-step proce-
dure. First the algorithm detects point of interest also called keypoints (Scale-space
Extrema Detection). This done by convolving the image with difference Gaussian
filters and then taking the difference of successive Gaussian-blurred (also called
"Difference of Gaussians" - DoG) images. Keypoints are taken from the extrema
values from the difference of gaussians. Second the number of detected keypoint
is reduced (Keypoint Localization) by discarding low-contrast keypoints and elimi-
nating edge responses. Third each keypoint is assigned an orientation (Orientation
Assignment) based on local image gradients directions for achieving invariance to
rotation. Finally we assign a descriptor to each keypoint (Keypoint Descriptor). To
do so we compute we create a set of orientation histograms of image gradients
magnitude and orientation values in the 4× 4 pixel neighborhoods region with
8 bins each around the keypoint. The magnitudes are weighted by a Gaussian
function and the final keypoint detector is a vector of 128 elements (4× 4× 8).

A visual explanation of the final step of the SIFT algorithm is given in Figure 2.11

and an application of SIFT descriptor is given in Figure 2.12. An extension of
SIFT called SURF (Bay et al. 2006) is developed with the objective to be a fast
approximation of SIFT.

Bag-of-words approaches — The objective of Bag-of-Words (BoW) is to produce
a vector representation given an input image. The BoW approach is inspired from
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Figure 2.11 – Explanation of the SIFT descriptor. (Left) Image gradients. –
(Right) Keypoint descriptor.
Figure reproduced and caption from (Lowe 2004).

Figure 2.12 – Application of SIFT. (Left) The training images for two objects. –
(Middle) These can be recognized in a cluttered image with extensive
occlusion. – (Right) The results of recognition. A parallelogram is
drawn around each recognized object, showing the boundaries of
the original training image under the affine transformation solved
for during recognition.
Figure reproduced and caption from (Lowe 2004).

text information retrieval (Salton et al. 1986) where the idea is to represent a
document as a histogram of occurrence rates of words from a dictionary. While
initially proposed for visual recognition by Ma et al. (1999), (Csurka et al. 2004)
popularized this approach for the task of object recognition. The BoW approach
for representing an image consists of a three-step procedure.

First, local descriptors are extracted from patches of the images at different scales.
SIFT is the most used local descriptor and converts patches to 128 dimensional
vectors as described previously. Hence an image is a collection of vectors of same
dimension.

Second, the codebook generation (also called coding) step encodes the local descrip-
tors as a function of the dictionary visual words, and outputs visual codes. One



32 related works

simple method is performing k-means clustering over all the vectors. Codewords
are then defined as the centers of the learned clusters, and local descriptors are
hard-assigned to clusters. However more sophisticated functions (Perronnin et al.
2010; Jegou et al. 2010) are proposed with the underlying goal to better represent
the visual content. Perronnin et al. (2010) find that encoding first and second order
statistics leads to improved performances, by decreasing the codebooke size. The
proposed method called Fisher Vector (FV) copes with large sets of images, using
Fisher Kernels in a Gaussian Mixture Model framework with computationally effi-
cient linear classifiers. Jegou et al. (2010) introduces Vector of Locally Aggregated
Descriptors (VLAD) following a simpler aggregation technique, which does not
require storing second-order statistics. It can be considered as a more efficient
variant of FV and was originally introduced for image retrieval. An extension of
this approach is introduced by (Zhou et al. 2010) namely Super-Vector Coding
(SVC).

Third, the pooling (also called aggregation) stage constructs a single vector
representation from the set of local visual codes collected across the image.
The standard approaches consist of average pooling (Sivic et al. 2003) or max
pooling. However such pooling function looses spatial information about the
disposition of the local visual codes. Lazebnik et al. (2006) develop Spatial Pyramid
Matching (SPM) for taking into account the spatial information using the pyramid
matching method introduced by Grauman et al. (2005). SPM consists in applying
the histogram computations to a pyramid of image regions such as shown in
Figure 2.13.

Finally the classifier can be learned using any ML classifier methods. The most
popular in CV are k-NN (T.Cover et al. 1967), decision trees (Breiman et al. 1984)
and Support Vector Machine (SVM) (Boser et al. 1992).

The introduction of large-scale datasets pushes the limits of the visual recog-
nition system. The Pascal VOC challenge (Everingham et al. 2010) is the first
competition followed by the introduction of Imagenet in 2009 (Russakovsky et
al. 2015), which corresponds of more than 1.3 million annotated images spread
among 1k classes.

End-to-end learning with Convolutional Neural Networks — The big concep-
tual shift from hand-crafted features to end-to-end learned features appears in
2012, when AlexNet (Krizhevsky et al. 2012) won the Imagenet object recogni-
tion challenge. Instead of proposing a multi-stage procedure, in the pipeline
of traditional hand-crafted methods, Krizhevsky et al. (2012) propose to use an
end-to-end differentiable neural network composed of convolution, pooling and
fully-connected layers for mapping the input image to the predicted vector of
probability. In some sense the different stages present in handcrafted methods
still exist but they are all connected and learned during the training procedure.
The only hand-crafted stage is to correctly design the neural network. It consists



2.2 visual representations 33

Figure 2.13 – Spatial Pyramid Matching. Toy example explaining the SPM strat-
egy. Point of interests are extracted using different image regions
and they are then combined.
Figure reproduced from (Lazebnik et al. 2006).

of choosing the neural networks architectures and the hyperparameters of each
layers such as presented in Section 2.1.1.

This breakthrough allows the application oto many different tasks after realizing
that the features learned on Imagenet were transferable to other tasks (Donahue
et al. 2014; Zeiler et al. 2014).

Modern Convolutional Neural Networks — The performance on the Imagenet
challenge keeps improving year after year with the release of more powerful CNN
models (Simonyan et al. 2015; Szegedy et al. 2015; He et al. 2016). The increase
in performance is highly correlated with the network depths such as shown in
Figure 2.15.

Simonyan et al. (2015) propose the VGG architecture composed of small convo-
lution filters. Szegedy et al. (2015) develop GoogleNet (also called InceptionV1)
composed Inception module that reduce the number of trainable weights. They
also employ Global Average Pooling (GAP) from the last feature map for extracting
a final fixed size vector representation of the input image which drastically reduce
the number of paramaters. He et al. (2016) introduce Resnet which is very deep
neural network composed of residual module and batch normalization (Ioffe et al.
2015) for facilitating backpropagation and hence the training of the parameters.
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Figure 2.14 – Samples from the Pascal VOC dataset.
Figure reproduced from (Everingham et al. 2010).

2.2.3 Object detection

Images may contain multiple objects and this is often the case in real-word
scenarios. Hence for having a more fine-grained understanding of complex
images, CV systems need to go one step further object recognition by detecting
instances of semantic objects. This is the purpose of object detection systems that
aims at finding potential locations in the input image that contain objects and
classify them. Hence solving an object detection problem consists of a supervised
learning task where the system should output localisations of objects present in
the images (a bounding box) as well as their categories. The varying number of
objects present in the images make this problem very challenging.

Historically, this task has been solved by methods (Dalal et al. 2005; Felzen-
szwalb et al. 2008) operating with sliding windows at different scales on the images
using. Then this problem has been tackled using a two-stage procedure (Ren et al.
2015). First, detecting potential locations that may contains an object and then,
recognizing the category of the object of each of these locations. Finally a third
category of methods (He et al. 2017) proposes to detect objects using a one-stage
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Figure 2.15 – Evolution of the Imagenet results through time.
Figure reproduced from (Bottou et al. 2016).

procedure by predicting the locations and the category of an object at the time.
We refer the reader to Liu et al. (1809) for a survey on this topic.

Handcrafted methods — A new feature descriptor called Histogram of Ori-
ented Gradients (HOG) is proposed by Dalal et al. (2005) for the task of person
detection. This method consists of counting occurrences of gradient orientation in
localized portions of an image. While HOG share some similarities with SIFT, the
main difference is that the features are computed on a dense grid. They employ
a sliding window detection and employ non-maxima suppression during infer-
ence time. For the task of object detection, Felzenszwalb et al. (2008) introduce
Deformable Part-based Model (DPM) by combining HOG and SPM, and finally
using a Latent Support Vector Machine (LSVM).

Object proposals — The localization of objects by operating on sliding window
technique at different scales is unefficient and very slow. To encounter this issue,
some works (Alexe et al. 2010; Sande et al. 2011) propose to define a first step
that onsists of generating parts of the images that may contained objects. This
procedure is called object proposal and is used as a first stage of the object detection
pipeline. Alexe et al. (2010) propose a generic objectness measure describing
how likely it is for a window to contain an object rather than background or a
small parts of objects. They employ a Bayesian framework where they measure
characteristics of objects, such as appearing different from their surroundings and
having a closed boundary. The computations of the objectness takes around 4
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seconds per image. Finally, a more robust method called Selective Search window
proposals (Sande et al. 2011) has becomed the key component for building state-
of-the-art object detector. It consists of using a bottom-up grouping of image
regions for generating a hierarchy of regions (from small to large) by using the
image structure to guide the sampling process.

Two-stages CNN methods — The field of object detection gains in popularity
with the introduction of CNN approaches as well as new large-scale datasets such
as MSCOCO (Lin et al. 2014). RCNN (Girshick et al. 2014) is the first method
employing CNN features. They use the Selective Search algorithm for localizing
potential object locations, then wrap the Region of Interest (RoI), compute CNN
features using a pre-trained Alexnet and finally classify the region. The extension
called Fast-RCNN (Girshick 2015) simplifies the process by feeding the entire
image to a CNN and then extracting features using a RoI pooling layer. They also
propose to jointly learn the object proposals. Faster-RCNN (Ren et al. 2015) speeds
up the object proposal stage by introducing the Region Proposal Network sharing
full-image convolutional features with the detection network enabling cost-free
region proposals.

Representing an object shape by its bounding box localisation is sometimes not
enough when objects have very specific shape. This can be solved by solving the
task of instance segmentation goes one step being object detection and which
consists of predicting the pixel masks of an object. He et al. (2017) extend Faster-
RCNN by adding a mask prediction head on top of the framework. They predict
a fixed size mask that can be wrap in the original image using the coordinates of
the bounding boxes. They also propose to extract better features from the regions
of interests by replacing the RoI Pool by a RoI Align operation. An overview of the
Mask-RCNN model is given in Figure 2.16. Recent extensions are proposed for a
better fine-grained description of the visual content of the scene with TensorMask
(Chen et al. 2019) and the Panapoptic task (Kirillov et al. 2018).

Single-stage object detection — Two-stage object detection methods provide
high quality predictions, however they cannot run on real time on a Graphics
Processing Unit (GPU). This is mainly due to the two-stages strategy of first
predicting the proposals and then recognizing the object categories. To encounter
this issue, recent works (Redmon et al. 2016; Liu et al. 2016b; Lin et al. 2017)
propose to tackle the problem of object detection using a single stage procedure.
Single Shot Detector (SSD) (Liu et al. 2016b) propose to discretize the output space
of bounding boxes into a set of default boxes over different aspect ratios and scales
per feature map location. They also combine prediction from multiple feature
maps with different resolutions. At the same time, You Only Look Once (YOLO)
(Redmon et al. 2016) apply a single neural network to the full image which divides
the image into regions. And for each region they predict bounding boxes and
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Figure 2.16 – Overview of Mask-RCNN. First, a CNN backbone extracts features
from the input image. Second, fixed-size feature maps are extracted
using the RoI Align operation given the object proposals. Finally,
the object class, box offset and object masked are predict from the
object features.
Figure reproduced from (He et al. 2017).

probabilities. Since the predictions are local the network needs to take attention at
the global context of the image. They use non-maximal suppression at test time for
getting ride of redundant object predictions. In follow-up papers (Redmon et al.
2017; Redmon et al. 2018), the authors boost the performance of the method by
training at the same time the classification task as well as the object detection task.
Since the object classes from object detection and recognition datasets (COCO
and Imagenet) does not overlap they use hierarchical three structure based on
WordTree.

2.2.4 Human pose estimation

The task of human pose estimation consists of identifying persons in an image
as well as the location of their joints (arms, head, hands, . . . ). Approaches can be
categorized into two categories: top-down or bottom-up approaches. Top-down
approaches first localize humans present in the scene and then estimate the pose
of each person, while bottom-up approaches start by identifying human joints
and then group them into person instances. In this section we review these two
kinds of approaches using handcrafted and CNN features.

Human body definition and geometry — Pose estimation is a difficult and
active research topic in CV which is mainly due to the fact that the human body
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is a deformable object compared to solid common objects encountered in object
detection, such as a chair. The human body is composed of 230 joints and has
244 degrees of freedom. However, most of the works are simplying definition
by considering that it is composed of 10 parts and 20 degrees of freedom which
already makes the problem challenging. A first definition of the human body in
term of cylinders in given by O’Rourke et al. (1979) and the first works (Hogg
1983; Lee et al. 1985) in this topic focus on fitting a 3D human body model given
a single image. However, recovering 3D model is very challenging and may even
be a ill-posed problem due for example to occlusion.

Handcrafted methods — Build on the seminal work on pictorial structures
from Fischler et al. (1973), Forsyth et al. (1997) define body plans. This method
corresponds to a sequential grouping of parts for finding people present in an
image. Following a similar trend, Mori et al. (2004) develop a method for detecting
human body parts one by one and assemble them by enforcing global constraints.
Ramanan (2006) propose an iterative parsing process for learning better and better
features without relying on face or skin detection. Agarwal et al. (2005) propose
to first extract a shape descriptor vector extracted from the image silhouettes and
then to regress each joint of the predifined 3D human pose. Following the success
of DPM (Felzenszwalb et al. 2008) in object detection, Yang et al. (2011) capture
the orientation with a mixture of templates for each body part which is useful
for capturing the notion of local rigidity and hence dealing with human body
constraints. This method is then extended by Gkioxari et al. (2014) which define
k-poselets where a each poselet corresponds to a body part.

End-to-end 2D Human Pose — The first work to proposed DL architecture for
human pose estimation is DeepPose (Toshev et al. 2014) which is casting the task
of human pose estimation as a regression problem allowing end-to-end learning.
The proposed model is much simpler than previous approaches using graphical
models. They improve the predictions done by the model by employing a cascade
of pose regressors at different resolutions. However they need to use a person
detector for the first stage.

On the same spirit Chen et al. (2014) also use the fact that the local appearance of
a joint can help in predicting the appearance of neighboring joints by employing a
graphical model. Carreira et al. (2016) expend the expressive power of hierarchical
feature extractors such a CNN to encompass both input and output space by using
a top-down feedback. They propose to self-correct the predicted human joints in
a iterative manner with a mechanism called Iterative Error Feedback.

Following this self-correction strategy, human pose estimation methods start
employing more context features (Wei et al. 2016; Newell et al. 2016; Luvizon
et al. 2019). Newell et al. (2016) propose Stacked Hourglass Networks which the
main motivation being that repeating bottom-up and top-down processing with
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Figure 2.17 – Visualization of OpenPose results.
Figure reproduced from (Cao et al. 2017).

intermediate supervision leads to better performance. They employ successively
pooling and upsampling operations before outputing the final predictions. Wei et
al. (2016) introduce Convolution Pose Machines which is a sequence of convolution
networks producing a 2D belief map for each human body part. This strategy
enforces the network to implicitly learn spatial arrangements between human
body parts.

The next generations of human pose estimation models (Pishchulin et al. 2016;
Cao et al. 2017) tackle more real world images with occlusions and high number
of people in the scene. Pishchulin et al. (2016) employ a method that jointly detect
the number of people in the image and predict the human joint locations. The
method is able to identify occluded body parts and disambiguates body parts
between people close to each other. A major advance in mult-person 2D pose
estimation is done by the introduction of OpenPose (Cao et al. 2017). The method
proposed by the authors consists of predicting confidence maps for detecting body
parts and part affinity fields for body parts association which has the advantage
of being a nonparametric representations. An overview of the OpenPose method
is shown in Figure 2.17. OpenPose is a open-source and real-time system on CPU
for multi-person 2D pose detection. The method has also been extended to hand
and facial keypoints. Neverova et al. (2017) propose to add topological constraints
to hand pose estimation, formulated as a weakly and semi-supervised problem.
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Beyond 2D human pose — 2D human pose estimation methods show excellent
performance on current benchmarks however occlusion still remain a big challenge.
One way to solve this issue is to recover the full body part locations by reasoning
about the full human body. Recent works propose to predict the the full-body 3D
human pose (Rogez et al. 2019; Mehta et al. 2017). Rogez et al. (2019) introduce a
method that generates and scores a number of pose proposals per image. It does
not require an approximate localization of the humans for initialization but the
pose is refined in a second stage. Mehta et al. (2017) propose a similar three-stages
procedure. First they extract the actor bounding box from 2D detections, second
they regress 3D pose and third they compute the global root position by aliging
3D to 2D human pose.

Finally, recent works (Rza Alp Guler 2018; Kanazawa et al. 2018) go one step
further by predicting a human body mesh which allows to model at the same
time the human pose and shape. DensePose (Rza Alp Guler 2018) is a variant
of Mask-RCNN which instead of predicting a pixel mask, they densely regress
part-specific UV coordinates. Kanazawa et al. (2018) introduce Human Mesh
Recovery which aims at minimizing the reprojection loss of keypoints. This allows
to train the model on ground truth 2D annotations only.

2.2.5 Video representations

Moving from image to video understanding requires modeling the temporal
information. This dimension cannot be treated as the spatial ones and plays a
crucial role for extracting information such as motion that cannot be estimated
from static image only. A common task of interest when dealing with video
content is to predict the action happening in the video. Since actions are (most of
the time) performed by humans it is of high interest to model human behavior as
first step before extracting semantic content. Initial works on action recognition
(Ramanan et al. 2007; Efros et al. 2003) relies on body parts or person detectors
for predicting the action that happens in the video. However such detectors
cannot always be deployed in practice and/or can be noisy. Unconstraint methods
have been proposed to encounter this issue (Laptev et al. 2003; Wang et al.
2013a). Similar to image understanding frameworks, the introduction of end-to-end
methods (Carreira et al. 2017) with deep learning methods has changed the field
of action recognition both for unconstrained and human related methods.

Articulated human model based methods — An important question to answer
when modeling actions in videos from a human body perspective is to know what
is the minimal information for recognizing motion. Johansson (1973) demonstrates
that the visual interpretation of few moving light displays attached to the human
body can be enough for categorizing the action performed by a person. This
seminal work motivated approaches (Ali et al. 2007; Parameswaran et al. 2006;
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Yilmaz et al. 2005) using trajectories of joint positions, landmark points or body
parts based on 3D or 2D human models for recognizing the human action. The
localization of body parts (Ramanan et al. 2007; Ferrari et al. 2008) shows excellent
results: however, it is still a difficult problem especially for unconstrained videos
which limits its applicability.

Human global dynamic methods — For solving this issue of noisy baody parts
localisation researchers developed a less constrained approach which consists of
modeling the global human dynamic given a region of interest centered on the
human body (Polana et al. 1994). The modeling of the human dynamic can be
split into two categories.

The first one makes use of the shape masks and silhouette information. Yamato
et al. (1992) propose the first approach based on silhouette images using the ratio
of foreground-background among a grid over the silhouette. Bobick et al. (2001)
develop a method based on shape masks. They propose to recognize human
actions using motion energy images and motion history images, hence they are
the first to propose temporal template for action recognition. Blank et al. (2005)
propose to use space-time shapes from silhouette information computed using
background substraction. They extract features such as local saliency and shape
structure.

The other one uses optical flow (Gibson 1950) and shape information. The first
work by Polana et al. (1994) propose to use spatio-temporal grids of optical flow
magnitudes. Efros et al. (2003) propose a two stage strategy by first tracking
soccer players in videos and then computing a descriptor on the stabilized tracks
using blurred optical flow. Fathi et al. (2008) employ a similar technic by building
mid-level features from low-level optical flow information. Laptev et al. (2007)
propose to detect drinking actions in movie using HOG, motion features and a
pre-filtering operation using a human detector.

Handcrafted unconstrained local descriptors — Relying on a person detector
or a tracking system propagates the error made on the first stage of the system.
For solving this issue, several works propose handcrafted unconstrained methods
similar to the method employed in object recognition. However since the input
signal is spatio-temporal they adapt the local descriptors to this data type.

A first category of work focuses on modeling low-level representations. Laptev
introduce Space-Time Interest Points (STIP) (Laptev et al. 2003; Laptev 2005) by
extending the notion of spatial interest point to the spatio-temporal domain. They
use the Harris and Förstner interest point operator (Harris et al. 1988) for detecting
local spatio-temporal structures that have significant structure. A visualization
of STIP is shown in Figure 2.18. Kläser et al. (2008) build on HOG from Dalal
et al. (2005) by proposing HOG3D which consists of computing gradients in
space and time. Scovanner et al. (2007) extend SIFT to the video domain. SPM
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Figure 2.18 – Space-Time Interest Points. Difference between Space-Time Interest
Points (Laptev 2005) and pure spatial point of interests (Mikolajczyk
et al. 2002).
Figure reproduced from (Laptev 2005).

(Lazebnik et al. 2006) is also extended to video data by Laptev et al. (2005) with
Histograms of Optical Flow (HOF). Local features are extracted from several video
volumes and then aggregated by concatenation. Dalal et al. (2006) introduce
Motion Boundary Histograms (MBH) by matching HOG local features extracted
from two images. In a similar spirit, the Hessian detector proposed by Willems
et al. (2008) is an extension of the blob detector (Beaudet 1978) in images. Dollar
et al. (2005) develop spatio-temporal interest point detectors to find local regions
of interest in space and time. It allows to extract cuboids that are finally used for
behavior recognition.

Trajectory features — After adapting low-level descriptors from space to space-
time signal, works focus on developing mid-level representations (Wang et al.
2013b; Wang et al. 2013a; Gaidon et al. 2013). Matikainen et al. (2009) propose to
recognize human actions by analyzing the motion based on quantized trajectory
snippets of tracked features. They show that feature trajectories are efficient for
representing videos. Following this strategy, Wang et al. (2013b) propose the
Dense Trajectories (DT) descriptor by showing that descriptor sampling along
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Figure 2.19 – Improved Dense Trajectories. Overview of the method for extract-
ing and aggregating dense trajectories.
Figure reproduced from (Wang et al. 2013a).

dense trajectories outperforms sparse sampling. They introduce a novel descriptor
based on MBH robust to camera motion. The extension, namely Improved Dense
Trajectories (IDT) (Wang et al. 2013a), improves the representation by using camera
motion calibration. This can be done through the estimation of a homography
with RANSAC after macthing the feature points between frames using SURF
descriptors and optical flow. An overview of the proposed approach is shown in
Figure 2.19. IDT is still a very competitive baseline compared to CNN approaches.
In a final extension, Wang et al. (2015) find a better way to aggregate descriptors
using FV.

Handcrafted temporal modeling — Some works (Fernando et al. 2015; Sand
et al. 2008) focus on the modeling of the temporal dynamic with a focus to long
videos with the oal to build high-level representaions. Fernando et al. (2015)
explicitly represent the temporal representation by learning a ranking function
per video via a ranking machine. Another approach is to model the temporal
evolution of some point coordinates based on long-term trajectories (Sand et al.
2008; Brox et al. 2010; Lezama et al. 2011). Lezama et al. (2011) aim to capture
long-range temporal interactions among objects.

Early days of CNN on space-time data — The first method that introduces
neural networks in the context of action recognition is proposed by Baccouche
et al. (2011). The authors employ 3D convolutions for extracting spatio-temporal
features in a CNN architecture as well as LSTM for modeling long-range temporal
dependencies in the sequence. It is interesting to notice that same authors extend
this architecture with an unsupervised training (Baccouche et al. 2012). This
seminal work motivated most of the DL approaches for video analysis that employ
similar architectures. We split them in three distinct categories:
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• First, some works extend the spatial convolution kernels to spatio-temporal
one by incorporating 3D convolutions instead fo 2D convolutions (Taylor et al.
2010; Ji et al. 2013; Karpathy et al. 2014; Tran et al. 2015). It is the simpliest
extension which consists of learning space-time kernel filters instead of
space kernel filters only. However moving from 2D to 3D convolutions
greatly increase the number of learnable parameters which requires more
computational power and bigger dataset Karpathy et al. 2014.

• Second, researchers combine 2D CNN with RNN (Baccouche et al. 2011;
Donahue et al. 2015; Ng et al. 2015). For each image of the video sequence
a feature vector is extracted using a 2D CNN shared over all frames. And
then a RNN is employed for modeling the temporal representation of the
sequence of spatial features. This approach shows some difficulties to model
fine-grained action since local motion cannot be modeled.

• Finally, the third categories is composed of two-stream approaches (Si-
monyan et al. 2014; Feichtenhofer et al. 2016) which combine appearance
and motion features. Appearance features are extracted from the RGB
stream using a 2D CNN while the motion features are computed using a 2D
CNN from the optical flow. This needs to pre-extract the optical flow since
it is computationally extensive to compute.

However handcrafted video representations such as IDT (Wang et al. 2013a) are
still competitive approaches on standard bechnmarks such as UCF-101 (Soomro
et al. 2012) or HMDB-51 (Kuehne et al. 2011) compared to the works based on CNN
models explained above. They obtain similar performances on standard action
recognition benchmarks UCF-101 (Kuehne et al. 2011) and HMDB-51 (Soomro et al.
2012). Some work proposed to boost the performance of DL technics by modeling
of the temporal aggregation (Wang et al. 2016a), employing long-term convolution
(Varol et al. 2018) or using spatio-temporal multiplier (C. Feichtenhofer 2017).

Inflated 3D ConvNet — Finally a breakthrough in action recognition and more
generally in video analysis is due to the introduction of a large-scale annotated
dataset called Kinetics (Kay et al. 2017) composed of more than four hundreds
thousands of clips. Carreira et al. (2017) propose to train a CNN composed of 3D
convolutions (called I3D) by inflating 2D Imagenet pre-trained weights into 3D at
the start of the training procedure. The I3D network (Carreira et al. 2017) shows
great performance on smaller datasets by transfer learning and even state-of-the-
art performances on tasks such as action localization and action detection.

Since 3D convolutions are taking a long time to train, some works (Xie et al.
2017; Tran et al. 2018) propose to decompose 3D kernels into spatial 2D kernels
followed by a 1D temporal kernels (called (2+1)D kernel) which allow to reduce
the number of trainable parameters while still being able to model space-time
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Figure 2.20 – Overview of the two-stream approach for action recognition.
The appearance features are extracted from the RGB stream using a 2D CNN. The
motion features are extracted by first computing the optical flow and then feeding
it to a 2D CNN. The aggregation is done at the logits level.
Figure reproduced from (Simonyan et al. 2014).

feature. Xie et al. (2017) demonstrate that good performance can be reach by intro-
duce (2+1)D convolutions only on the last layers while keeping 2D convolutions
at the bottom of the network which greatly reduce the training and inference time.
Tran et al. (2018) show that increasing the number of temporal channels can lead
to better performance on action recognition tasks.

In a different topic, Wang et al. (2018a) show that the local space-time features
can be improved by taking into account context information. They propose to use
non-local neural network after each convolutional block for updating local feature
map values based on context information.

While previous presented approaches handle short clips of a few seconds only,
Wu et al. (2019a) introduce a Long-Term-Feature-Bank method for representing
long videos.

They propose to use a feature bank for storing important information while
iterating over the video. Feichtenhofer et al. (2019) extend the idea of two-stream
approaches but without the need of optical flow as input by introducing SlowFast
network. It consists of having two networks with skip connections taking as
inputs the same video but with different frame rates. An overview of SlowFast
network is shown in Figure 2.21.

Current action recognition methods are not efficient at training and inference
time. They require a massive amount of GPUs for training which is not available
for most academic research laboratories. To encounter this issue, Lin et al. (2019)
propose a CNN based on 2D convolutions only using a temporal shifting strategy
while maintaining good performance on popular benchmarks. The proposed
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Figure 2.21 – SlowFast network. The Slow network (in blue) takes as input low
temporal resolution while the Fast network (in green) takes fast
temporal resolution. There are lateral connections from the fast
pathway to the slow pathway.
Figure reproduced from (Feichtenhofer et al. 2019).

strategy consists of taking into account some spatial features from neighbouring
frames.

Skeleton-based human action recognition — While offering excellent perfor-
mances on standard action recognition benchmarks unconstrained video represen-
tations suffer of learning dataset bias by cheating on the context and background
information. To encounter this issue researchers propose large-scale fine-grained
human activity datasets such as NTU RGB+D (Shahroudy et al. 2016a) or UESTC
(Ji et al. 2018). The task is to predict the action from the trajectories of skeleton
joints (Du et al. 2015a; Yan et al. 2018; Zhu et al. 2016; Du et al. 2015b; Liu
et al. 2017b; Ke et al. 2017). Du et al. (2015a) use a hierachical RNN for modeling
long-term contexual information by dividing the human skeleton into subparts.
Following a similar structured strategy, Yan et al. (2018) propose to see the skele-
ton joints as a space-time graph and train a Spatio-Temporal Graph Convolutional
Networks (described on the next section). It leads to strong generalization ca-
pability. From a different perspective, Ke et al. (2017) propose to rearrange the
sequence of skeleton joints positions as an image and to train a CNN. However,
the main inconvenient of these approaches is that some human actions cannot
be estimated from the skeleton trajectories only. It is sometimes important to
look at the appearance for distinguishing two human actions sharing the same
skeleton trajectory pattern. To encounter this issue, Luvizon et al. (2020) introduce
a multi-task framework which jointly estimates human poses for each image and
classifies the whole video sequence into human actions. The proposed method
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outperforms skeleton-based methods while working in real-time from RGB data
only (Luvizon et al. 2018).

Multi-modal approaches — Some works (Neverova et al. 2016; Wang et al.
2018b; Sun et al. 2018) combine unconstrained approaches with human based
methods with the leading gaol to build a more robust methods. A pose-based
CNN features is proposed by (Chéron et al. 2015). The main motivation is that the
representation for action recognition should derived from human pose. Hence
they use a human pose detector for identifying joints locations and extract features
using pre-trained CNN. Girdhar et al. (2017) propose to use the human pose as
complementary information for learning an attentional pooling over the last
feature map. This method allows to guide the extraction of features around
the person detected in the video. Neverova et al. (2016) propose a multi-modal
training strategy for fusing information from human pose, audio and appearance
streams. Recently, researchers model the person-object interactions (Wang et al.
2018b; Sun et al. 2018) for improving the final video representation. Wang et al.
(2018b) propose to handle a video as a space-time graph where the nodes are
represented by the object detected using a pre-trained object detectors. Following
a similar strategy, Sun et al. (2018) introduce an actor-centric method which is
specifically modeling the interactions between the persons detected in the scene
and their surrounding objects.

2.2.6 Attention mechanisms

Human perception focuses selectively on parts of the scene to acquire infor-
mation at specific places and times as shown in Figure 2.22. In ML, this kind of
processes is referred to as attention mechanism (Itti et al. 1998), and has drawn
increasing interest when dealing with language (Bahdanau et al. 2014; Kim et al.
2017b), images (Larochelle et al. 2010) and other data. Integrating attention can
potentially lead to improved overall performance, as the system can focus on
parts of the data, which are most relevant to the task. Attention mechanisms are
at the head of ou contributions, we therefore present them in more details in this
chapter.

Attention mechanisms for Machine Translation — The first attention mecha-
nism in DL was proposed in the field of NLP and more specially for the task of
Machine Translation (Bahdanau et al. 2014). This task can be cast as a sequence-
to-sequence problem where the input is a variable length sequence from one
language and the output is the translated sentence in another language. The
architectures devoted to this task are based on an encoder-decoder pipeline where
the encoder and decoder are both RNN. This is mainly due to the fact that the
final hidden representation output by the encoder should encode the information
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Figure 2.22 – Human attention: gaze patterns. Humans use spatial attention to
prioritize the processing of visual information, by selecting parts of
the visual field. This mechanism is an iterative process for gathering
information about a visual content.
Figure reproduced from (Roger et al. 2012).

about the full sentence and this is difficult for generating a good output for the
decoder.

For solving this issue, Bahdanau et al. (2014) propose a global attention-based
mechanism where the main idea is to automatically attend to the most important
parts of the sequence of hidden representations output by the encoder while
generating the new sequence with the decoder. We give an overview of the
proposed mechanism.

The Machine Translation problem can be seen as a sequence-to-sequence task
where we have a sequence x = (x1, . . . , xs, . . . , xn) as input and we wish to predict
another sequence denoted y = (y1, . . . , yt, . . . , ym) as output. Both sequences
may differ in term of length. The input sequence x is encoded sequentially
using a (bidirectional) LSTM denoted gE such that h̄s = gE(xs, h̄s−1) resulting in
a sequence of hidden states denoted h̄ = (h̄1, . . . , h̄s, . . . , h̄n). The prediction of
the output sequence is also done in a recurrent manner by incorporating the
mechanism system as a way to pay attention to the most discriminative parts
of the encoded input sequence. To do so we employ a context vector ct which is
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automatically encoding contextual information within the whole sequence about
the most related information regarding to the current timestep.

ht = gD(yt−1, ht−1) (2.32)

h̃t = f (ht, ct) (2.33)

yt = softmax(Wyh̃t) (2.34)

where h is the hidden state of the output sequence, h̃ is the hidden state of the
output sequence updated by the context vector c, gD is the recurrent decoder, f is a
Multi-Layer Perceptron (MLP) and Wy is a learnable matrix (including bias). To do
so we compute attention weights (can also be described as a alignment score) such
that:

ats = align(ht, h̄s) =
exp

(
score(ht, h̄s)

)
∑s′ exp

(
score(ht, h̄s′)

) . (2.35)

The score function may have different forms such that:

score(ht, h̄s) =


h>t h̄s dot product
h>t Wah̄s bilinear operator
fa(ht, h̄s) concatenation

(2.36)

And finally we compute the context vector using a weighted sum over hidden
states of the input sequence,

ct = ∑
s

atsh̄s. (2.37)

The computation context vector is a key component of an attention mechanism
since it should encoded the contextual information about the sequence. The
proposed mechanism is shown in Figure 2.23.

We may notice that this mechanism is computationally intensive since we need
to compute n × m scores for computing the context vectors. For solving this
issue Luong et al. (2015) introduce a local attention mechanism. It consists of a
more elegant way to compute the attention weights and the context vector. Many
extensions (Rocktäschel et al. 2015; Shen et al. 2018; Hu 2019; Zhou et al. 2016;
Shen et al. 2018; Yin et al. 2016) of global and local attentions have been explored
in the fields of NLP with a focus on simplifying the attention mechanism.

The CV community has also incorporated attention mechanisms, which can
be split into two categories: hard and soft attention mechanisms. The example
presented below for NLP corresponds to a soft-attention mechanism. We present
both categories below.
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Figure 2.23 – Attention mechanism for Machine Translation. (Left) Computa-
tional graph for the global attention mechanism. – (Right) Computa-
tional graph for the local attention mechanism..
Figure reproduced from (Luong et al. 2015).

Hard-attention mechanism — Hard attention consists in choosing some parts
of the input and completely omitting the remaining parts. It greatly reduces
the computation time since a large part of the input data is not taken into
account for solving the final task. However taking such hard decisions makes
the overall pipeline not differentiable end-to-end. For training such models we
need to lie on stochastic algorithms, which cannot be easily learned through
gradient descent and back-propagation. In a seminal paper, Mnih et al. (2014)
proposed visual hard-attention for image classification built around on RNN,
which implements the policy of a virtual agent. Visualization of the proposed
method is shown in Figure 2.24. A reinforcement learning problem is thus
solved during learning using the REINFORCE algorithm (Williams 2012). The
model selects the next location to focus on, based on past information. Similar
approaches have been applied for tackling multiple object recognition (Ba et
al. 2015), saliency map generation (Kuen et al. 2015), action detection (Yeung
et al. 2016) and image generation (Eslami et al. 2016). Malinowski et al. (2018)
demonstrate, with the Hard Attention Network, that a soft-attention mechanism
can be efficiently replaced by a hard selection of multiple regions in the image
that are relevant for a given question.

Soft-attention mechanism — Soft attention was proposed for image (Cho et al.
2015) and video understanding (Sharma et al. 2016; Song et al. 2016; Yeung et al.
2015), with spatial, temporal and spatio-temporal variants. The common key
components of soft-attention mechanisms on visual data is to assign higher im-
portance to the most discriminative parts of the signal (e.g. timesteps, areas in the
image). Xu et al. (2015) propose to benchmark hard and soft attention mechanisms
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Figure 2.24 – Hard attention mechanism for image recognition. (A)) The
glimpse sensor for extracting visual features at a specific location. –
(B)) The glimpse network is associating visual as well as spatial fea-
tures. – (C)) The overall architecture employs a recurrent system on
top of the glimpse network for solving the task of image recognition
in a iterative manner.
Figure reproduced from (Mnih et al. 2014).

for the task of image captioning. They show that similar performances can be
achieved using both soft and hard mechanism. However, the training procedure
of the sof-attention mechanism is easier and more robust. Sharma et al. (2016)
develop a recurrent mechanism for action recognition from RGB data, which
integrates convolutional features from different parts of a space-time volume such
as shown in Figure 2.25. They propose to automatically assign more weights to
the most discriminative parts of the images given the information leveraged from
the past. Song et al. (2016) propose to separate spatial and temporal attention
networks for action recognition from pose. At each frame, the spatial attention
model gives more importance to the joints most relevant to the current action,
whereas the temporal model selects most important timesteps. For the task of
Visual Question Answering (VQA), several works (Fukui et al. 2016; Kim et al.
2017a; Yu et al. 2017a) propose to use multi-glimpse soft-attention mechanisms.
Different glimpses can also be computed in an iterative fashion, as in the Stacked
Attention Network (Yang et al. 2016). Authors show that it helps for answering
multi-hop questions.

Attention and Memory — Early attention mechanisms were based on the RNN
model. However, this type of network has shown problem for learning long-term
dependencies. To alleviate this problem, memory networks (Sukhbaatar et al.
2015; Graves et al. 2014; Weston et al. 2015) were developed. They include an
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Figure 2.25 – Soft attention mechanism for action recognition. (Left) The pro-
posed attention mechanism is updating the values within the feature
map based on a context vector. – (Right) The overall architecture
is composed of a recurrent network which is predicting a spatial
attention map at each timestep.
Figure reproduced from (Sharma et al. 2016).

external memory where the system can read and write for recording an retrieving
important content.

Initially, memory networks (Weston et al. 2015; Sukhbaatar et al. 2015) were
proposed for NLP, especially for the task of Question Answering, which consists
in reading a long document and answering questions relative to the text.

In a different area, Graves et al. (2014) propose a Neural Turing Machine
which consists of a neural network controller (a LSTM) combined with an external
memory. The controller interacts with the external memory through an attention
mechanism system. It can performed read and write operation depending on the
input and its internal state. The overview of the proposed approach is shown in
Figure 2.26.

Self-attention — For solving the issue of learning long-term dependencies in
sequential data, Vaswani et al. (2017) develop self-attention with the transformer ar-
chitecture still in the field of NLP for the machine translation task. The transformer
architecture is based solely on attention mechanisms and does not employ any recur-
rence or convolution. The overall architecture is still based on an encoder-decoder
architecture where the input sequence x = (x1, . . . , xn) is mapped to a sequence
of hidden representations z = (z1, . . . , zn), and z is input to the decoder that
generates the output predictions y = (y1, . . . , ym). Each encoder and decoder is
composed of N identical layers composed respectively of a multi-head self attention
mechanism and a positional mechanism. The self-attention mechanism (also called
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Figure 2.26 – Overview of the Neural Turing Machine.
At each timestep the controller may read or write into the external memory for

retrieving or storing important content.
Figure reproduced from (Graves et al. 2014).

"Scaled Dot-Product" attention) is a type of attention that uses scaled dot product
for computing similarity.

The attention function corresponds to mapping a query and a set of key-value
pairs to an output. q, k and v are respectively called queries, keys and values
obtained using linear mappings from input sequence x;

ki = Wkxi (2.38)
vi = Wvxi (2.39)
qi = Wqxi (2.40)

where Wk, Wv and Wq are learnable matrices.
Attention weights α are obtained by computing the dot-product similarity,

αij = softmax(
q>i k j√

dk
) (2.41)

where dk is the vector dimension of vi.
And finally the output vector is computed such as,

zi = ∑
j

αijvj. (2.42)

The attention function can be seen as mapping a query and a set of key-value
pairs to an output. In practice, there are multiple head attentions at the same stage
of the network and we concatenate the output. Visualization of the self-attention
mechanism and the Transformer architecture are shown in Figure 2.27.

Transformer is now the standard architecture in NLP and its applications have
shown recent successes with self-supervised training using the Masked Language
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Figure 2.27 – Self-attention and Transformer architecture. (Left) Self-attention
using the dot-product attention. – (Middle) Multi-head attention by
performing several self-attention modules in parallel and concate-
nating their outputs. – (Right) The overall Transformer architecture
that consists of stacking multiple multi-head attention layers.
Figure reproduced from (Vaswani et al. 2017)

Modeling tasks (Devlin et al. 2018; Yang et al. 2019; Lan et al. 2020). Dai* et al.
(2019) extend the Transformer architecture for dealing with long sequences. They
incoporate a transferable memory which make the full pipeline possible to operate
on sequence of any length. The success of self-attention encountered in NLP has
not yet reached similar performance in CV however some works are going into
this direction. Ramachandran et al. (2019) propose to replace convolution by
self-attention layers. They show that self-attention can learn feature as good as
the one obtained with convolution operations. Wang et al. (2018a) incorporate
self-attention for updating feature map values with context information for the
task of action recognition. They show that updating local feature with context
information can be benificial for improving the local descriptors. Hu et al. (2018)
develop the Squeeze-and-Excitation block for including global information in the
decision process of the network.
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2.2.7 Relational reasoning

Reasoning is a key component of human intelligence. While CV systems show
excellent performance on task such as object recognition, they show limited
abilities to reason from a visual content.

Humans are able to reason from the visual space by solving simple task such as
understanding simple physical laws by solving intuitive physic task. But more
interesting they are able to identify more abstract concepts such as human-object
relations. A common practice in CV is to express visual content as a graph where
each nodes corresponds to (semantic) visual entities. In this section we discuss
what are common methods that are employed for achieving reasoning from such
representation and their applications in tasks relying on reasoning such as VQA.

Intuitive Physics — Fundamental studies on cognitive psychology have shown
that humans perform poorly when asked to reason about expected outcomes of a
dynamic-based event, demonstrating striking deviations from Newtonian physics
in their intuitions (McCloskey et al. 1983; McClooskey et al. 1980; McClooskey et al.
1983; Kubricht et al. 2017). The questions of approximating these mechanisms,
learning from noisy observed and non-observed physical quantities (such as sizes
or velocities vs masses or gravity), as well as justifying importance of explicit
physical concepts vs cognitive constructs in intelligent agents, have been raised
and explored in recent works on deep learning (Wu et al. 2015).

Lerer et al. (2016) train a network for predicting the stability of a block tower
composed of cubes as well as the future mask segmentations. While they show
great results compared to copying baselines, the model performs poorly under
high-uncertainty and outputs blurry predictions. Groth et al. (2018) extend
this approach by predicting the stability of towers composed of different type
of objects (cubes, cylinders, balls). They present a analysis for identifying the
unstable objects in the visual domain but they do not try to predict the future
neither in the visual or the physical space.

Ye et al. (2018) build an interpretable intuitive physical model from visual
signals using full supervision on the physical properties of each object. A two
steps procedure is proposed by (Wu et al. 2017) to solve this task. First, they
infer object physical properties using an object detector. Second, they predict the
future object properties in the physical world. Finally, they render the objects in
the visual domain using a graphical engine. Similarly but without making use of
rendering engine, Zheng et al. (2018) propose to solve this task by first extracting
a visual perception of the world state and then predict the future.

Beyond the identification of physical laws, more abstract concepts can be
extracted from images. An example of such concept is the identification of
human-object relations.
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Figure 2.28 – Learning Physical Intuition of Block Towers by Example. In (Lerer
et al. 2016), a CNN is trained at predicting the future object masks.
Figure reproduced from (Lerer et al. 2016).

Visual Object Relations — Recent object detectors (Girshick 2015; Ren et al.
2015) show great performance at localizing and detecting pre-defined objects
in an image. For a better fine-grained scene understanding, recent works focus
on detecting object relations within an image. Understanding an image from
an object relations point of view allows to solve many different tasks such as
image captioning or visual question answering. Visual relationship detection is
highly correlated to the action recognition since (most of the time) it corresponds
to identifying human actions in their context. The relationships (also called
interactions) can be seen as a triplet: t =(subject-predicate-object). That allows also
to connect language and vision. For example in Figure 2.29 (second image from
left), a person is on a motorcycle. Person, on and motorcycle corresponds respectively
to the subject, the predicate and the object. But one image may be described by
multiple visual relationships such as shown in Figure 2.29.

Recent datasets such as MS-COCO (Lin et al. 2014), Visual Genome (Krishna
et al. 2017) or Visual Relationship Dataset (Lu et al. 2016) drive the field into more
robust methods (Dai et al. 2017; Sadeghi et al. 2011). Approaches can be cast
into two categories. The first one is composed of methods (Dai et al. 2017) that
propose a compositional approach which consists of learning a separate detector
for each subject, predicate and object. Whereas the other category of methods
(Sadeghi et al. 2011) treat the entire triplet t as a visual phrase and train a detector
for each visual phrase. Both type of approaches perform poorly when evaluated
on unseen visual relations at test time. One way to solve this issue is to combine
compositional and visual phrase approaches (Peyre et al. 2019). They also propose
to use language priors in the word embeddings for transferring to similar objects.

In real world applications, complex relationships cannot be expressed by triplet
containing only three elements. The number of elements could vary and could
depend of the contextual information. A way to deal with such abstract relation-
ships is to express visual content from a graph structure perspective where each
node represent a detected visual entities.

Graph Convolution Network — Graph Convolutional Network (GCN) are a
type of neural network that can be used for extracting information from graph
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Figure 2.29 – Example of visual relationships.
Figure reproduced from (Lu et al. 2016).

structures (Kipf et al. 2017). This method explores relational inductive biases
within deep learning architectures can facilitate learning about entities, relations,
and rules for composing them. We give a quick review of GCN in the following
and refer the reader to Battaglia et al. (2018) for a complete survey on this topic.

We assume a graph G defined by the triplet (V, E, u). V = {vi}i=1...N is the set
of N nodes and a node correspond to a pre-defined entity defined by its attributes
vi (e.g. position, appearance, semantic). E = {(ek, rk, sk)}k=1...M is the set of edges
where ek is the edge’s attribute, rk and sk correspond respectively to the index of
the receiver and sender nodes. Most of the time there is no prior knowledge about
the graph structure such that we have to assume a fully-connected graph. Finally
u represents the global attribute of the system. For example, u can represent the
gravitational coefficients of a physical system. An example of graph G can be seen
in Figure 2.30 a) and the associated attributes in Figure 2.30 b).

The goal of a GCN (Kipf et al. 2017) is to update the node attributes by taking into
account its relations with its neighbors within the global system. This updating
scheme can be decomposed into three distinct steps.

First, edge attributes are updated given the nodes attributes of the receiver and
sender,

e′k = fe(ek, vrk , vsk , u) (2.43)
ē′i = ge→v(E′i) (2.44)

where E′i = {(e′k, rk, sk)}rk=i,k=1...M is the set of edges connected to the receiver
node i, fe is a MLP and ge→v is an aggregation function (e.g. mean, maximum, ...).
In the rest of the GCN equations, f∗ and g∗ are the same types of function. It is
important that g∗ should be invariant to inputs permutations and invariants to
the number of inputs.

The second step is a node update which corresponds to updating the node
attribute given the new edges attributes such that:

v′i = fv(ē′i , vi, u) (2.45)
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a) Initial graph b) Attributes c) Edge update d) Node update e) Global update

Figure 2.30 – Graph Convolutional Network. Figures a) and b) show the initial
graph and the definition of the node attributes, edges and global
attributes. Figures c), d) and e) show the three-step procedure
updates respectively edge, node, global updates.
Figure reproduced from (Battaglia et al. 2018).

Finally we perform a global update which corresponds to updating the global
attribute by taking into account the global nodes and edges attributes such that:

ē′ = ge→u(E′) (2.46)
v̄′ = gv→u(V′) (2.47)

u′ = fu(ē′, v̄′, u) (2.48)

where E′ = {(e′k, rk, sk)}k and V′ = {v′i}1...N.
This three-step procedure is shown in Figure 2.30 c), d), and e).

Applications of Graph Convolution Network — GCN show great success ina
large number of tasks. Battaglia et al. (2016) introduce a fully-differentiable
network physics engine called Interaction Network for reasoning about physical
systems (gravitational systems, rigid body dynamics, and mass-spring systems).
Their method is able to predict the future object positions accurately by taking
the object interactions into account. Moreover the method is able to generalize
to unseen numbers of objects. However this system assumes ground truth object
properties such as mass, gravity, friction coefficient. Recent approaches (Chang
et al. 2017; Janner et al. 2019; Battaglia et al. 2018; Veličković et al. 2018) based
on GCN (Kipf et al. 2017) have shown promising results on learning physics but
are restricted to setups where physical properties need to be fully observable.For
solving this issue, Steenkiste et al. (2018) focus on discovering objects and their
interactions in a unsupervised manner from a virtual environment from raw visual
images. The proposed approach is able to handle occlusion and to extrapolate to
different numbers of objects.

Visual Question Answering on Synthetic Data — VQA is an active topic which
deals with reasoning about the visual input. The task consists of answering a
question given the visual content provided by an input image. Many recent works
(Hu et al. 2017; Hudson et al. 2018a; Johnson et al. 2017; Mao et al. 2019; Perez
et al. 2018; Santoro et al. 2017) focus on synthetic data since the dataset bias can be
more controlled compared to real data. Relation Network (RN) (Santoro et al. 2017)
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Figure 2.31 – Relation Network for VQA. Architecture proposed by Santoro et
al. (2017). A CNN is extracting local visual features while a LSTM
is infering a text representation. Solving the VQA task is done by
learning the relations between visual and textual features using a
GCN.
Figure reproduced from (Santoro et al. 2017).

can be seen as a fully-differentiable trainable layer for reasoning in deep networks.
It is a specific and simplified version of GCN where the nodes correspond to
each discrete cell in the feature map produced by the CNN. Figure 2.31 shows an
overview of the proposed model. From a different perspective, Perez et al. (2017)
show that relational reasoning can be learned for visual reasoning in a data driven
way without any prior. They use conditional batch normalization with a feature-
wise affine transformation based on conditioning information. In an opposite
approach, Hudson et al. (2018b) focus on learning a strong structural prior in the
form of a complex attention mechanism. An external memory module combined
with attention processes over input images and text questions, performing iterative
reasoning. Finally for going beyond the task of VQA on synthetic data, Santoro et al.
(2018) build a challenging dataset for solving the problem of abstract reasoning on
the visual domain. They focus on tasks that require interpolation or extrapolation
mechanisms.

Visual Question Answering on Real Data — Answering relational questions
on real data needs understanding the relationships between objects present in
the image. Initially methods based on attention showed great performance by
integrating multiple attention maps (Yu et al. 2017b; Ben-Younes* et al. 2017). A
more structured attention mechanism is employed by Chen et al. (2017b). They
generate a locally-connected graphical structure for inferring region saliency
scores. Teney et al. (2017) incorporate the structure in the scene and in the
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Figure 2.32 – Visualization of the MuRel approach. MuRel is an iterative process
which is at each step refining the information extracted from the
image. Three steps are shown in this figure.
Figure reproduced from (Ben-Younes* et al. 2019).

question. They first build a graph over the scene objects and the question words.
And then they employ this structure for solving the task. Following the same line,
Li et al. (2019) first detect objects and then propose to learn the most important
object relationships using a GCN with attention mechanism. Ben-Younes* et al.
(2019) propose to use bilinear fusion methods for better modelling pairwise object
relationships. They also employ an iterative process which allows to refine the
visual information extracted from the image. Figure 2.32 shows an example of
this procedure. Following another line of work, Hudson et al. (2019) propose to
predict a probabilistic graph given an image which serves as a structured world
model and then to perform sequential reasoning over the graph. This modeling
allow the model to operates on abstract latent space since transform the visual
and linguistic modalities into semantic concept-based representations.

Recent success of such well structured methods on VQA has been extended to
other domain where the need of structuring the incoming information is of high
interest as well.

Reasoning in videos — While most of the works on visual reasoning tackle
problems which consists of analysing singe image, moving to video allow to
incorporate the temporal information for a better understanding of the scene.
Reasoning in videos on a mask or segmentation level is attempted for video
prediction (Luc et al. 2017), where the goal is to leverage semantic information to
be able predict further into the future. For the task of action recognition, Bolei et al.
(2017) propose Temporal Relation Network which is an extension of RN for video
stream. They propose to model the frames relations from the visual embedding.
They deploy relationships at different time scales such as two-frames or three-
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Figure 2.33 – Illustration of the Temporal Relation Network. Bolei et al. (2017)
propose to model frame relations. They go from two frames to four
frames relations. Only a subset of the frame relations are shown in
this figure.
Figure reproduced from (Bolei et al. 2017).

frames relations. Figure 2.33 shows an overview of the system. Detected persons
and objects are used for building a spatio-temporal graph structure in videos (Sun
et al. 2018; Wang et al. 2018b) with the final goal to classify the video. Wang et al.
(2018b) show that the representation learned from the graph structure could be
befinicial in addition to the global information. In a similar line, a gated energy
function parametrization that learns adaptive relations conditioned on visual
observations is proposed by Tsai et al. (2019). They propose an computationally
efficient optimization strategy.

GCN are also employed for skeleton-based action recognition (Yan et al. 2018;
Shi et al. 2019). Yan et al. (2018) build a spatio-temporal graph from the detected
human joints. They show that they can learn good representation from ground
truth human pose as well as noisy an incomplete detected human joints. Shi
et al. (2019) extend this work by proposing a two-stream adapative GCN by
modeling both the first and second orders information simultaneously. They
propose a method where the topology of the graph can be either uniformly
or individually learned in a data-driven way which brings more generality for
adapting to different data samples.

In the next chapter, we will present the four contributions of this thesis. In
Chapter 3 and Chapter 4, we propose new soft-attention mechanisms for identi-
fying human actions in videos. First, in Chapter 3 we introduce a method that
use human pose information for automatically drawing attention to pre-defined
points of interest in the video. Second, we go one step further in Chapter 3 by
using the contextual information for selecting locations of interest in the video
in a free manner. In Chapter 5, we propose to model videos as a space-time
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graphes where each node represents an object. We introduce a method based on
space-time object interactions for classifying video content. Finally in Chapter 6

we go beyond supervised learning task from video content and propose to tackle
counterfactual learning from high-dimensional data.
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Chapter abstract

Articulated human pose carries useful information for human action recogni-
tion. However, this type of information is limited for modeling fine-grained
actions, where gathering visual cues is crucial.
In this chapter, we propose a method based on articulated pose and RGB
data for addressing the human action recognition task. We process the pose
stream using a Convolutional Neural Network (CNN) for extracting spatio-
temporal features with a specific joint ordering. Moreover, we introduce a
spatio-temporal soft mechanism conditioned on pose features for extracting
discriminative visual cues over a set of pre-defined image locations: the four
hands. Appearance features give important cues on hand motion and on objects
held in each hand. We show that it is of high interest to shift the attention to
different hands at different time steps depending on the activity itself.
We experiment our method on the largest dataset for human activity recog-
nition, namely NTU RGB+D, where we show state-of-the-art results. In
addition we also show transfer learning results on two small datasets, MSR
Daily Activity and SBU Interaction Dataset.
The work in this chapter has led to the publication of conference papers:

• Fabien Baradel, Christian Wolf, and Julien Mille (2017b). “Human
Action Recognition: Pose-based Attention draws focus to Hands”. In:
Proceedings of the IEEE International Conference on Computer Vision (ICCV) -
Workshop "Hands in Action";

• Fabien Baradel, Christian Wolf, and Julien Mille (2018b). “Human
Activity Recognition with Pose-driven Attention to RGB”. in: Proceedings
of the British Machine Vision Conference (BMVC).
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3.1 Introduction

Videos contain a high amount of information which makes them challenging
to process for extracting the underlying semantical meaning. As described in
Section 2.2.5, recognizing human actions in videos remains a challenging task
and current methods focus on modeling global context, which is clearly not
sufficient for discriminating fine-grained human actions. One way to extract
meaningful information about the video content is to use human pose data that
can be captured from consumer depth cameras and that can help at structuring the
visual content. In this chapter we assume having access to this type of information
using RGB-D cameras. Recent works (Liu et al. 2017b; Shahroudy et al. 2016a)
using skeleton data only have shown great success in standard benchmarks such
as shown in Figure 2.2.5. However, they are by definition restricted to human
behavior understanding only, and cannot extract information about objects that
humans are interacting with. To solve this issue, a common way is to downsample
the video stream and the full resolution at certain positions only, that may help
extracting important cues on small or distant objects (or people). In this regard,
models of visual attention (Mnih et al. 2014; Cho et al. 2015; Sharma et al. 2016)
have drawn considerable interest recently as described in Section 2.2.6. Since
these models are able to focus their attention to specific important points, their
parameters are not wasted on input parts which are considered of low relevance
to the task at hand.

In this chapter, we present a method for human activity recognition, which
addresses this problem by using articulated pose and raw RGB input in a novel
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way: our method attends to some parts of the RGB stream given information from
the pose stream. In our approach, pose has three complementary roles:

• It is used as an input stream in its own right, providing important cues for
the discrimination of activity classes.

• Raw pose, made up of body joints, serves as an input for the model handling
the RGB stream, selecting positions where glimpses are taken in the image.

• Features learned on pose serve as an input to the soft-attention mechanism,
which weights each glimpse output according to an estimated importance
w.r.t. the task at hand, in contrast to unconstrained soft-attention on the RGB
video (Sharma et al. 2016). We give an overview of our model in Figure 3.1.

The RGB stream model is recurrent (a Long-Short Term Memory (LSTM)), whereas
our pose representation is learned using a Convolutional Neural Network (CNN)
taking as input a sub-sequence of the video. The benefits are twofold: a pose
representation over a large temporal range allows the attention model to assign
an estimated importance for each glimpse point and each time instant taking into
account knowledge of this temporal range. As an example, the pose stream might
indicate that one of the person’s hand moves towards another person, which still
leaves several possible choices for the activity class. These choices might require
attention to be moved to this hand at a specific instant to verify what kind of
object is held, which itself may help to discriminate activities.

The contributions of this chapter are as follows:
• We propose a spatial attention mechanism in Section 3.3.1 on RGB videos

which is conditioned on deep pose features from the full sub-sequence.
• We propose a temporal attention mechanism in Section 3.3.2 which learns

how to pool features output from the recurrent (LSTM) network over time in
an adaptive way.

• As an additional contribution, we experimentally show in Section 3.4 that
knowledge transfer from a large activity dataset like NTU (57’000 activities)
to smaller datasets like SBU Interaction Dataset 3D (300 videos) or MSR Daily
Activity (300 videos) is possible.

3.2 Related work

Activities, gestures and multimodal data — Recent gesture/action recogni-
tion methods dealing with several modalities typically process 2D+T RGB and/or
depth data as 3D. Sequences of frames are stacked into volumes and fed into
convolutional layers at first stages (Baccouche et al. 2011; Ji et al. 2013; Molchanov
et al. 2016; Neverova et al. 2016; Wu et al. 2016) such as discussed in Section 2.2.5.
When additional pose data is available, the 3D joint positions are typically fed
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Abstract

We address human action recognition from multi-modal
video data involving articulated pose and RGB frames and
propose a two-stream approach. The pose stream is pro-
cessed with a convolutional model taking as input a 3D
tensor holding data from a sub-sequence. A specific joint
ordering, which respects the topology of the human body,
ensures that different convolutional layers correspond to
meaningful levels of abstraction.

The raw RGB stream is handled by a spatio-temporal
soft-attention mechanism conditioned on features from the
pose network. An LSTM network receives input from a set of
image locations at each instant. A trainable glimpse sensor
extracts features on a set of predefined locations specified
by the pose stream, namely the 4 hands of the two people
involved in the activity. Appearance features give impor-
tant cues on hand motion and on objects held in each hand.
We show that it is of high interest to shift the attention to
different hands at different time steps depending on the ac-
tivity itself. Finally a temporal attention mechanism learns
how to fuse LSTM features over time.

We evaluate the method on 3 datasets. State-of-the-
art results are achieved on the largest dataset for human
activity recognition, namely NTU-RGB+D, as well as on
the SBU dataset. Performance close to state-of-the-art is
achieved on the smaller MSR Daily Activity 3D dataset.

1. Introduction
Human activity recognition is a field with many applica-
tions ranging from video surveillance, HCI, robotics, to au-
tomated driving and others. Consumer depth cameras are
currently dominating the field for indoor applications with
close ranges, as they allow to estimate articulated poses eas-
ily. We address similar settings, namely activity recognition
problems where articulated pose is available. As comple-
mentary information we also use the RGB stream, which
provides rich contextual cues on human activities, for in-
stance on the objects held or interacted with.

Recognizing human actions accurately remains a chal-

Figure 1: We recognize human activities fusing a model
trained on pose sub-sequences and a spatio-temporal atten-
tion model on RGB video conditioned on pose features.

lenging task, compared to other problems in computer
vision and machine learning. We argue that this is in
part due to the lack of large datasets. While large scale
datasets have been available for a while for object recog-
nition (ILSVRC [29]) and for general video classification
(Sports-1M [16] and lately Youtube8M [1]), the more time-
consuming acquisition process for videos showing close
range human activities limited datasets of this type to sev-
eral hundreds or a few thousand videos. As a consequence,
the best performing methods on this kind of datasets are ei-
ther based on handcrafted features or suspected to overfit on
the small datasets after years the community spent on tun-
ing methods. The recent introduction of datasets like NTU-
RGB-D [30] (⇠ 57 000 videos) will hopefully lead to better
automatically learned representations.

One of the challenges is the high amount of information

1

Figure 3.1 – Overview of the proposed pose-driven model. We recognize human
activities fusing a model trained on pose sub-sequences and a spatio-
temporal attention model on RGB video conditioned on pose features

into a separate network. Preprocessing pose is reported to improve performance
in some situations. Examples of preprocessing are the augmention of pose coordi-
nates with velocities and accelerations (Zanfir et al. 2013), or the normalization
of bone lengths and view point (Neverova et al. 2016). Fusing pose and raw
video modalities can be done in a late stage, e.g averaging softmax scores output
by several subnetworks, as in (Molchanov et al. 2016), or in an earlier through
multiple fusion layers (Wu et al. 2016). We believe that information extracted from
different modalities are complementary but at the same time redundant. Our
approach addresses this issue by using learned features from one modality (pose)
to attend to some part of another modality (RGB). Hence it can attend to some
parts of the RGB stream which give discriminative features that can be detected
from the pose data.

Architectures for pose data — Recent fine-grained activity recognition meth-
ods using pose data are based on recurrent neural networks and/or convolutional
neural networks.

Regarding recurrent networks, part-aware LSTMs (Shahroudy et al. 2016a) sepa-
rate the memory cells of LSTM networks (Hochreiter et al. 1997) into part-based
sub-cells and let the network learn long-term representations individually for each
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part, fusing the parts for output. Similarly, (Du et al. 2015b) use bi-directional
LSTM layers which fit anatomical hierarchy. Skeletons are split into anatomically-
relevant parts (legs, arms, torso, etc), so that each subnetwork in the first layers
gets specialized on one part. Features are progressively merged as they pass
through layers. Multi-dimensional LSTMs (Graves et al. 2009) are models with
multiple recurrences from different dimensions. Originally introduced for images,
they also have been applied to activity recognition from pose sequences (Liu et al.
2016a). One dimension is time, the second is a topological traversal of the joints in
a bidirectional depth-first search, which preserves the neighborhood relationships
in the graph.

On the other side, convolutional architectures are used from pose data. CNN
(Ke et al. 2017; Hou et al. 2016; Wang et al. 2016b) are also used to handle pose
sequences. Such approaches require a 3D tensor as input. To satisfy this condition,
they encode the sequence of pose as a trajectory (Ke et al. 2017) or into a RGB-
like image for benefiting from an Imagenet initialization of the weights (Hou
et al. 2016). Our solution is close to (Wang et al. 2016b), which stacks the 3D
coordinates into a Tensor. However, we follow a topological ordering to extract a
better representation of the pose sequence.

3.3 Model

A single or multi-person activity is described by a sequence of two modalities:
the set of RGB input images I = {It}, the set of articulated human poses x={xt}
and we wish to predict the activity class y. We do not use raw depth data in
our method, although the extension would be straightforward. Both signals
are indexed by time t. Poses xt are defined by 3D coordinates of K joints per
subject, for instance delivered by the middleware of a depth camera. In our case
we restrict our application to activities involving one or two people and their
interactions. We propose a two-stream model, which classifies activity sequences
by extracting features from articulated human poses and RGB frames jointly. Our
main contribution comes from the fact that we use features learned from the
pose stream to attend to some parts of the RGB stream where all the features are
end-to-end learnable.

3.3.1 Spatial Attention on RGB videos

The sequence of full-HD RGB input images {It} is arguably not compact
enough to easily extract an efficient global representation with a feed-forward
neural network. We opt for a recurrent solution, where, at each time instant,
glimpses on the seen input is selected using an attention mechanism.
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Figure 3.2 – The spatial attention mechanism. We propose to use the pose fea-
tures for drawing the attentions on the set of available hands.

In some aspects similar to (Mnih et al. 2014), we define a trainable bandwidth
limited sensor. However, in contrast to (Mnih et al. 2014), our attention process is
conditional to the pose input xt, thus limited to a set of N discrete attention points.
In our experiments, we selected N=4 attention points, which are the 4 hand joints
of the two people involved in the interaction. We choose hands as attention points
because humans use their hands for performing most of their daily actions. Our
method can be extended to more attention points. The goal is to extract additional
information about hand shape and about manipulated objects. Many activities
such as Reading, Writing, Eating, Drinking are similar in motion but can be highly
correlated to manipulated objects. As the glimpse location is not output by the
network, this results in a differentiable soft-attention mechanism, which can be
trained by gradient descent.

The glimpse representation for a given attention point i is a CNN fg with
parameters θg, taking as inputs a crop taken from image It at the position of joint
i from the set xt:

vt,:,i = fg(crop(It,xt, i); θg) i ∈ {1, . . . , N} (3.1)

Here and in the rest of the chapter, subscripts of mappings fg and their parameters
θg choose a specific mapping, they are not indices. Subscripts of variables and
tensors are indices. vt,:,i is a (column) feature vector for time t and hand i. For a
given time t, we stack the vectors into a matrix Vt=[vt,j,i]i,j, where i is the index
over hand joints and j is the index over features. Vt is a 2D tensor, since t is fixed
for a given instant.

A recurrent model receives inputs from the glimpse sensor sequentially and
models the information from the seen sequence with a componential hidden state
ht:

ht = fh(ht−1, ṽt; θh) (3.2)
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We chose a fully gated LSTM model including input, forget and output gates and a
cell state. To keep the notation simple, we omitted the gates and the cell state from
the equations. The input to the LSTM network is the context vector ṽt, defined
further below, which corresponds to an integration of the different attention points
(hands) in Vt.

An obvious choice of integration are simple functions like sum and concate-
nation. While the former tends to squash feature dynamics by pooling strong
feature activations in one hand with average or low activations in other hands, the
latter leads to high capacity models with low generalization. The soft-attention
mechanism dynamically weights the integration process through a distribution pt,
determining how much attention hand i needs with a calculated weight pt,i. In
contrast to unconstrained soft-attention mechanisms on RGB video (Sharma et al.
2016), our attention distributions not only depend on the LSTM state h, but also on
the pose features s (explained in Section 3.3.3) extracted from the sub-sequence,
through a learned mapping with parameters θp:

pt = fp(ht−1, s; θp) (3.3)

Attention distribution pt and features Vt are integrated through a linear combina-
tion as

ṽt = Vtpt , (3.4)

which is input to the LSTM network at time t (see Equation 3.2). The conditioning
on the pose features in Equation 3.3 is important, as it provides valuable context
derived from motion. Note that the recurrent model itself (Equation 3.2) is not
conditional (Mikolov et al. 2016), this would significantly increase the amount of
parameters.

3.3.2 Temporal Attention

Recurrent models can provide predictions for each time step t. Most current
work in sequence classification proceeds by temporal pooling of these predictions,
e.g. through a sum or average (Sharma et al. 2016). We show that it can be
important to perform this pooling in an adaptive way. In recent work on dense
activity labelling, temporal attention for dynamical pooling of LSTM logits has
been proposed (Yeung et al. 2015). In contrast, we perform temporal pooling
directly at feature level. In particular, at each instant t, features are calculated by
a learned mapping given the current hidden state:

u:,t = fu(ht; θu) (3.5)

The features for all instants t of the sub-sequence are stacked into a matrix
U={uj,t}, where j is the index over the feature dimension. A temporal attention
distribution p′ is predicted through a learned mapping. To be efficient, this



70 human activity recognition with pose-driven attention to rgb

Features Features Features FeaturesFeatures Features Features Features

Temporal Attention 
(Dynamic Pooling)

Spatial 
Attention

Spatial 
Attention

Spatial 
Attention

Spatial 
Attentions

P Spatial attention weights 
 during the whole sequenceP

Cues from RGB crops
ũ

Figure 3.3 – Temporal attention mechanism. We use the spatial attention weights
as well as the pose features for attenting the most relevant part of the
sequence features.

mapping should have seen the full sub-sequence before giving a prediction for an
instant t, as giving a low weight to features at the beginning of a sequence might
be caused by the need to give higher weights to features at the end. In the context
of sequence-to-sequence alignment, this has been addressed with bi-directional
recurrent networks (Bahdanau et al. 2014). To keep the model simple, we benefit
from the fact that (sub) sequences are of fixed length and that spatial attention
information is already available. We conjecture that (combined with pose) the
spatial attention distributions pt over time t are a good indicator for temporal
attention, and stack them into a single vector P , input into the network predicting
temporal attention:

p′ = fp′(P , s; θ′p) (3.6)

This attention is used as weight for adaptive temporal pooling of the features
U , i.e. ũ = U × p′. A visual explanation of the temporal attention is given in
Figure 3.3.



3.3 model 71

3.3.3 Convolutional pose features

Given the K body joints, we wish to extract features which model i) the temporal
behaviour of the pose(s) and ii) correlations between different joints. An attention
mechanism on poses could have been an option, similar to (Song et al. 2016). We
argue that the available pose information is sufficiently compact to learn a global
representation and show that this is efficient. In our case, attention is performed
on RGB conditioned on pose instead, as described earlier. We also argue for
the need to find a hierarchical representation which respects the spatio-temporal
relationships of the data. In the particular case of pose data, joints also have
strong neighbourhood relationships in the human body.

In the lines of (Liu et al. 2016a), we define a topological ordering of the joints
in a human body as a connected cyclic path over joints. The path itself is not
Hamiltonian as each node can be visited multiple times: once during a forward
pass over a limb, and once during a backward pass over the limb back to the joint
it is attached to. The double entries in the path are important, since they ensure
that the path preserves neighbourhood relationships.

In (Liu et al. 2016a), a similar path is used to define an order in a multi-
dimensional LSTM network. In contrast, we propose a CNN which takes three-
dimensional inputs (tensors) calculated by concatenating pose vectors over time.
In particular, input tensors X are defined as X={Xt,j,k}, where t is the time index,
j is the joint & coordinate index, and k is a feature index: each line corresponds to
a time instant; the first three columns correspond to the x, y and z coordinates of
the first joint, followed by the x, y and z coordinate of the second joint, which is a
neighbour of the first etc. The first channel corresponds to raw coordinates, the
second channel corresponds to first derivates of coordinates (velocities), the third
channel to second derivates (accelerations). Poses of two people are stacked into a
single tensor along the second dimension.

We learn a pose network fsk with parameters θsk on this input, resulting in the
pose feature representation s:

s = fsk(X ; θsk) (3.7)

fsk is implemented as a CNN alternating convolutions and max-pooling.

3.3.4 Stream fusion

Each stream, pose and RGB, leads to its own set of features, with the particular-
ity that pose features s are input to the attention mechanism for the RGB stream.
We first train the pose stream and then the RGB stream. The final model fuse
both streams on logit level. More sophisticated techniques, which learn fusion
(Neverova et al. 2016), do not seem to be necessary.
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(a) (b)

Figure 2: (a) the topological ordering of joints (similar to [23]): blue arrows visit joints for the first time and orange arrows
go back to the “middle spine”. (b) the ordering is reproduced in the matrix input to the pose learner)

below.
We learn a pose network fsk with parameters ✓fk on this

input, resulting in a pose feature representation s:

s = fsk(X, ✓sk) (1)

Here and in the rest of the paper, subscripts of mappings f
and their parameters ✓ choose a specific mapping, they are
not indices. Subscripts of variables and tensors are indices.

fsk is implemented as a convolutional neural network
alternating convolutions and max-pooling. Combined with
the topological ordering of the columns of the input ten-
sor, this leads to a specific hierarchical representation of the
feature maps. The first layer of convolutions will extract
features from the correlations between coordinates, mostly
of the same joints (or neighboring joints). Subsequent con-
volutions will extract features between neighboring joints,
and even higher layers in the network correspond to extrac-
tions of features which are further away in the human body,
in the sense of path lengths in the graph. The last layers
correspond to features extracted between the two different
poses corresponding to two different people.

One design choice of this representation is to stack dif-
ferent coordinates (x, y, z) of the same joint into subsequent
columns of the tensor, opposed to the alternative of dis-
tributing them over different channels. This ensures, that
the first layer calculates features on different coordinates.
Experiments have confirmed the interest of this choice. The
double entries in the input tensor X artificially increase its
size, as some joints are represented multiple times. How-
ever, this cost is compensated by the fact that the early con-

volutional layers extract features on joint pairs which are
neighbors in the graph (in the human body).

3.2. Spatial Attention on RGB videos

The sequence of RGB input images {It} is arguably not
compact enough to easily extract an efficient global repre-
sentation with a feed-forward neural network. We opt for a
recurrent solution, where, at each time instant, a glimpse on
the seen input is selected using an attention mechanism.

In some aspects similar to [26], we define a trainable
bandwith limited sensor. However, in contrast to [26], our
attention process is conditional to the pose input xt, thus
limited to a set of N discrete attention points. In our ex-
periments, we selected N=4 attention points, which are
the 4 hand joints of the two people involved in the inter-
action. The goal is to extract additional information about
hand shape and about manipulated objects. A large number
of activities such as Reading, Writing, Eating, Drinking are
similar in motion but can be highly correlated to manipu-
lated objects. As the glimpse location is not output by the
network, this results in a differentiable soft-attention mech-
anism, which can be trained by gradient descent.

The glimpse representation for a given attention point i
is a convolutional network fg with parameters ✓g , taking as
inputs a crop taken from image It at the position of joint i
from the set xt:

vt,:,i = fg(crop(It, xt, i), ✓g) i={1, . . . N} (2)

Here, vt,:,i is a (column) feature vector for time t and hand
i. For a given time t, we stack the vectors into a matrix

4

Figure 3.4 – Topological ordering of joints. blue arrows visit joints for the first
time and orange arrows go back to the “middle spine”.

3.3.5 Training

Architectures — The pose network fsk consists of 3 convolutional layers of
respective sizes 8×3, 8×3, 5×75. Inputs are of size 20×300×3 and feature maps
are, respectively, 10×150, 5×75 and 1×1×1024. Max pooling is employed after
each convolutional layer, activations are Rectified Linear Unit (ReLU). The glimpse
sensor fg is implemented as an Inception V3 network (Szegedy et al. 2016). Each
vector vt,:,i corresponds to the last layer before output and is of size 2048. The
LSTM network fh has a single recurrent layer with 1024 units. The spatial attention
network fp is an Multi-Layer Perceptron (MLP) with a single hidden layer of 256

units and sigmoid activation. The temporal attention network f ′p is an MLP with
a single hidden layer of 512 units and sigmoid activation. The feature extractor
fu is a single linear layer with ReLU activation. The output layers of both stream
representations are linear layers followed by softmax activation. The full model
(without glimpse sensor fg) has 38 millions trainable parameters.

Training — All classification outputs are softmax activated and trained with
cross-entropy loss. The glimpse sensor fg is trained on the ILSVRC 2012 data (Rus-
sakovsky et al. 2015). The pose learner is trained discriminatively with an addi-
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tional linear+softmax layer to predict action classes. The RGB stream model is
trained with pose parameters θsk and glimpse parameters θg frozen.

Implementation details — Following (Shahroudy et al. 2016a), we cut videos
into sub sequences of 20 frames and sample sub-sequences. During training a
single sub-sequence is sampled, during testing we sample 10 sub-sequences and
average the logits. We apply a normalization step on the joint coordinates by
translating them to a body centered coordinate system with the “middle of the
spine” joint as the origin. If only one subject is present in a frame, we set the
coordinates of the second subject to zero. We crop sub images of static size on
the positions of the hand joints (50×50 for NTU, 100×100 for SBU and MSR).
Cropped images are then resized to 299×299 and fed into the Inception model.

Training is done using the Adam Optimizer (Kingma et al. 2015) with an
initial learning rate of 0.0001. We use minibatches of size 64 and dropout with a
probability of 0.5. Following (Shahroudy et al. 2016a), we sample 5% of the initial
training set as a validation set, which is used for hyper-parameter optimization and
for early stopping. All hyper-parameters have been optimized on the validation
sets of the respective datasets. When transferring knowledge from NTU to SBU,
the target networks were initialized with models pre-trained on NTU. Skeleton
definitions are different and were adapted. All layers were finetuned on the
smaller datasets with an initial learning rate 10 times smaller then the learning
rate for pre-training.

Runtime — For a sub-squence of 20 frames, we get the following runtimes
for a single Titan-X (Maxwell) Graphics Processing Unit (GPU) and an i7-5930

CPU: A full prediction from features takes 1.4ms including pose feature extraction.
This does not include RGB pre-processing, which takes additional 1sec (loading
Full-HD video, cropping sub-windows and extracting Inception features). Clas-
sification can thus be done close to real-time. Fully training one model (w/o
Inception) takes ∼4h on a Titan-X GPU. Hyper-parameters have been optimized
on a computing cluster with 12 Titan-X GPUs. The proposed model has been
implemented in Tensorflow.

3.4 Experiments

3.4.1 Comparison with leading methods

Datasets — The proposed method has been evaluated on three datasets: NTU
RGB+D (NTU), SBU Kinect Interaction (SBU) and MSR Daily Activity (MSR). NTU
(Shahroudy et al. 2016a) is the largest dataset for human activity recognition with
56K videos and 60 different activities. We follow the cross-subject and cross-view
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Methods Pose RGB CS CV Avg

Part-aware LSTM (Shahroudy et al. 2016a) X - 62.9 70.3 66.6
ST-LSTM + TrustG. (Liu et al. 2016a) X - 69.2 77.7 73.5

STA-LSTM (Song et al. 2016) X - 73.4 81.2 77.2
GCA-LSTM (Liu et al. 2017a) X - 74.4 82.8 78.6

JTM (Wang et al. 2016b) X - 76.3 81.1 78.7
MTLN (Ke et al. 2017) X - 79.6 84.8 82.2

VA-LSTM (Zhang et al. 2017) X - 79.4 87.6 83.5
View-invariant (Liu et al. 2017c) X - 80.0 87.2 83.6

DSSCA - SSLM (Shahroudy et al. 2016b) X X 74.9 - -
C3D† (Tran et al. 2015) - X 63.5 70.3 66.9

Resnet50+LSTM† - X 71.3 80.2 75.8
Ours (pose only) X - 77.1 84.5 80.8
Ours (RGB only) ◦ X 75.6 80.5 78.1

Ours (pose +RGB) X X 84.8 90.6 87.7

Table 3.1 – Results on the NTU RGB+D dataset. With Cross-Subject (CS) and
Cross-View (CV) settings (accuracies in %); († indicates method has
been re-implemented).

split protocol from (Shahroudy et al. 2016a). We extensively tested on NTU and
we shows two transfer experiments on smaller datasets SBU and MSR. SBU is an
interaction dataset features with two people with a total of 282 sequences and 8

activities while MSR is an daily action dataset features with one people with a
total of 320 videos and 16 actions. We follow the standard experimental protocols
of (Yun et al. 2012) and (Wang et al. 2012) respectively for SBU and MSR.

Comparisons to the State Of The Art (SOTA) — We show comparisons
of our model against the SOTA methods in Table 3.1, Table 3.3 and Table 3.2
respectively. At the time of the publication of this work, we achieved state of the
art performance on the NTU dataset with the full model fusing both streams.

We also show a good generalization of our model by showing competitive
results on SBU and MSR.

We conducted extensive ablation studies to understand the impact of our design
choices.

3.4.2 Ablation studies and further analysis

Joint ordering — The joint ordering in the input tensor X has an effect on
performance, as shown in Table 3.4. Following the topological order described in
Section 3.3.3 gains >1.6 percentage point on the NTU dataset w.r.t. random joint
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Methods Pose RGB Depth Acc.

Raw skeleton (Yun et al. 2012) X - - 49.7
Joint feature (Yun et al. 2012) X - - 80.3
Raw skeleton (Yun et al. 2014) X - - 79.4
Joint feature (Yun et al. 2014) X - - 86.9

Co-occurence Recurrent Neural Network (RNN) (Zhu et al. 2016) X - - 90.4
STA-LSTM (Song et al. 2016) X - - 91.5

ST-LSTM + Trust Gate (Liu et al. 2016a) X - - 93.3
DSPM (Lin et al. 2015) - X X 93.4

VA-LSTM (Zhang et al. 2017) - X X 97.5

Ours (Pose only) X - - 90.5
Ours (RGB only) ◦ X - 72.0

Ours (Pose + RGB) X X - 94.1

Table 3.2 – Results on SBU Kinect Interaction dataset. Accuracies in %.

Methods Pose RGB Depth Acc.

Action Ensemble (Wang et al. 2012) X - - 68.0
Efficient Pose-Based (Eweiwi et al. 2014) X - - 73.1

Moving Pose (Zanfir et al. 2013) X - - 73.8
Moving Poselets (Tao et al. 2015) X - - 74.5

MP (Shahroudy et al. 2016b) X - - 79.4

Depth Fusion (Zhu et al. 2015) - - X 88.8
MMMP (Shahroudy et al. 2016b) X - X 91.3

DL-GSGC (Luo et al. 2013) X - X 95.0
DSSCA - SSLM (Shahroudy et al. 2016b) - X X 97.5

Ours (Pose only, no finetuning) X - - 72.2
Ours (Pose only) X - - 74.6
Ours (RGB only) ◦ X - 75.3

Ours (Pose + RGB) X X - 90.0

Table 3.3 – Results on MSR Daily Action dataset. Accuracies in %.

order, which confirms the interest of a meaningful hierarchical representation. As
anticipated, keeping the redundant double joint entries in the tensors gives an
advantage, although it increases the amount of trainable parameters.

The effect of the attention mechanism — The attention mechanism on RGB
data has a significant impact in term of performance as shown in Table 3.5. We
compare it to baseline summing (B) or concatenating (C) features. In these cases,
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Methods CS CV Avg

Random joint order 75.5 83.2 79.4
Topological order w/o double entries 76.2 83.9 80.0

Topological order 77.1 84.5 80.8

Table 3.4 – Effect of joint ordering. Results on NTU using pose only, accuracies
in %.

Methods P RGB Attention CS CV Avg
S T P

A P only X - - - - 77.1 84.5 80.8

B RGB only, no attention (sum of features) - X - - - 61.5 65.9 63.7
C RGB only, no attention (concat of features) - X - - - 63.2 67.2 65,2

E RGB only + spatial attention ◦ X X - X 67.4 71.2 69.3
G RGB only + spatio-temporal attention ◦ X X X X 75.6 80.5 78.1

H Multi-modal, no attention (A+B) X X - - - 83.0 88.5 85.3
I Multi-modal, spatial attention (A+E) X X X - X 84.1 90.0 87.1
K Multi-modal, spatio-temporal attention (A+G) X X X X X 84.8 90.6 87.7

Table 3.5 – Affect of attention. Results on NTU, ◦ means that pose is only used
for the attention mechanism, S, T, and P means respectively Spatial,
Temporal and Pose.

hyper-parametres where optimized for these meta-architectures. The performance
margin is particularly high in the case of the single stream RGB model (methods
E and G). In the case of the multi-modal (two-stream) models, the advantage of
attention is still high but not as high as for RGB alone. A part of the gain of
the attention process seems to be complementary to the information in the pose
stream, and it cannot be excluded that in the one stream setting a (small) part of
the pose information is translated into direct cues for discrimination through an
innovative (but admittedly not originally planned) use of the attention mechanism.
However, the gain is still significant, with ∼2.5 percentage points compared to
the baseline.

Figure 3.5 shows an example of the effect of the spatial attention process: during
the activity of Putting an object into the pocket of somebody, the attention shifts to the
“putting” hand at the point where the object is actually put.

Pose-conditioned attention mechanism — Making the spatial attention model
conditional to the pose features s is confirmed to be a key design choice, as can
be seen in Table 3.6. In the multi-modal setting, a full point is gained, >12 points
in the RGB only case.



3.5 conclusion 77

Figure 3.5 – Spatial attention over time. Putting an object into the pocket of
someone will make the attention shift to this hand.

Methods Attention CS CV Avg
Conditional to pose

RGB only - 66.5 72.0 69.3
RGB only X 75.6 80.5 78.1

Multi-modal - 83.9 90.0 87.0
Multi-modal X 84.8 90.6 87.7

Table 3.6 – Conditioning the attention mechanism on pose. Results on NTU
with RGB only, accuracies in %.

Comparison with RGB only methods — There is a clear gap between our
approach and standard methods for action recognition on RGB data such as C3D
and CNN+LSTM (+21.8 for C3D and +12.1 for CNN+LSTM) as shown in Table 3.1.
These methods need to downsample the RGB stream to a lower resolution, which
leads to poor performances for fine-grained action recognition. Using some parts
of the high resolution RGB stream such as done by our method is important for
extracting discriminative features.

3.5 Conclusion

In this chapter, we propose a general method for dealing with pose and RGB
video data for human action recognition. A CNN processes input tensors encoding
pose data, where features are organized in an anatomically-relevant order. A soft-
attention mechanism crops on hand joints and allows the model to collect relevant
features on hand shapes and on manipulated objects. Adaptive temporal pooling
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further increases performance. Our method shows SOTA results on the NTU
RGB+D dataset and competitive performance by performance transfer learning
on SBU Interaction dataset and MSR Daily Activity.

In the next chapter, we focus on finding an alternative method able to work
without having access to articulated pose data as input to the system. We also
develop an attention mechanism that can attend to all parts of the video data in an
unconstrained manner, in particular, compared to this chapter, without limitation
to attend to joint positions only.
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Chapter abstract

Articulated human pose is not always available and moreover it has not been
demonstrated to be the best representation for estimating human actions.
In this chapter, we propose a method for human activity recognition from
RGB data only. Moreover our method does not explicitly compute the pose
information internally. Instead, a visual attention module learns to predict
glimpse sequences in each frame. These glimpses correspond to interest points
in the scene which are relevant to the classified activities. No spatial coherence
is forced on the glimpse locations, which allows the module to explore different
points at each frame and better optimize the process of scrutinizing visual
information. Tracking and sequentially integrating this kind of unstructured
data is a challenge, which we address by separating the set of glimpses from
a set of recurrent tracking/recognition workers. These workers receive the
glimpses, jointly performing subsequent motion tracking and prediction of
the activity itself. The glimpses are soft-assigned to the workers, optimizing
coherence of the assignments in space, time and feature space using an external
memory module. No hard decisions are taken, i.e. each glimpse point is
assigned to all existing workers, albeit with different importance.
We improve the results shown in Chapter 3 without the use of articulated
human pose on the the NTU RGB+D dataset and also show state-of-the-art
results on the Northwestern UCLA dataset.
The work in this chapter has led to the publication of a conference paper:

• Fabien Baradel, Christian Wolf, Julien Mille, and Graham Taylor (2018c).
“Glimpse Clouds: Human Activity Recognition from Unstructured Fea-
ture Points”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).
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4.1 Introduction

In Chapter 3, we saw that articulated human pose data obtained by RGB-
D cameras is a useful information for recognizing fine-grained human actions.
However depth data is not always available for example on resource-constrained
robots or low-resource embedded devices such as smartphone. Moreover the
question whether articulated pose is the optimal intermediate representation for
activity recognition is unclear. For solving this issues we aim at providing a
method for fine-grained human action recognition relying on RGB images only.
Compared to common unconstrained approaches which rely on the modeling of
the global context, as shown in Section 2.2.6, we explore a strategy which consists
in learning a local representation of the video through a visual attention process.

We conjecture that the replacement of articulated pose should keep one im-
portant property, which is its collection of local entities, which can be tracked
over time and whose motion is relevant to the activity at hand. Instead of fixing
the semantic meaning of these entities to the definition of a subset of the joints
in the human body, we learn it discriminatively. In our strategy, the attention
process is completely free to attend to arbitrary locations at each time instant.
In particular, we do not impose any constraints on spatio-temporal coherence of
glimpse locations, which allows the model to vary its focus within and across
frames. Certain similarities can be made to human gaze patterns which saccade
to different points in a scene.

Activities are highly correlated with motion, and therefore tracking the motion
of specific points of visual interest is essential, yielding a distributed representation
of the collection of glimpses. Appearance and motion features need to be collected
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Figure 4.1 – Overview of the proposed model. We recognize human activities
from unstructured collections of spatio-temporal glimpses with dis-
tributed recurrent tracking/recognition and soft-assignment among
glimpse points and trackers.

over time from local points and integrated into a sequential decision model.
However, tracking a set of glimpse points, whose location is not spatio-temporally
smooth and whose semantic meaning can change from frame to frame, is a
challenge. Our objective is to match new glimpses with past ones of the same (or
a nearby) location in the scene. Due to the unconstrained nature of the attention
mechanism, we do not know when a point in the scene has been last scrutinized,
or if it has been attended to in the past.

We solve this issue by separating the problem into two distinct parts:

• Selecting a distributed and local representation of G glimpse points through
a sequential recurrent attention model

• Tracking the set of glimpses by a set of C recurrent workers which sequentially
integrate features, and participate in the final recognition of the activity
(Figure 4.1)

In general, G can be different from C, and the assignment between glimpses
and workers is soft. Each worker is potentially assigned to all glimpses, albeit to a
varying degree. This assignment attention distribution is calculated with external
memory based on regularities in space, time and feature space.

We summarize the main contributions of this chapter as follows:

• We present a method for human activity recognition which does not require
articulated pose during testing and which models activities using two atten-
tional processes; one extracting a set of glimpses per frame in Section 4.3.1
and one reasoning about entities over time in Section 4.3.2.
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• This unstructured “cloud” of glimpses produced by the attention process is
tracked over time using a set of trackers/recognizers, which are soft-assigned
using external memory. Each tracker can potentially track multiple glimpses.

• Articulated pose is used during training time as an additional target, encour-
aging the attention process to focus on human structures.

• All attentional mechanisms are executed in feature space which is calculated
jointly with a global model processing the full input image.

• In Section 4.4 we evaluate our method on the NTU RGB-D dataset, the largest
available human activity dataset, where we outperform the State Of The
Art (SOTA) by a large margin at the time of publication of this work.

4.2 Related work

Recurrent architectures for action recognition — Recurrent neural networks
(and their variants) are employed in much contemporary work on activity recogni-
tion, and a recent trend is to make recurrent models local. Part-aware Long-Short
Term Memory (LSTM)s (Shahroudy et al. 2016a) separate the memory cell of
anLSTM network (Hochreiter et al. 1997) into part-based sub-cells and let the
network learn long-term representations individually for each part, fusing the
parts for output. Similarly, (Du et al. 2015b) use bi-directional LSTM layers that fit
an anatomical hierarchy. Skeletons are split into anatomically-relevant parts (legs,
arms, torso, etc.) and let subnetworks specialize on them. Lattice LSTMs partition
the latent space over a grid that is aligned with the spatial input space (Sun et al.
2017).

On the other hand, our method soft-assigns parts of the scene over multiple
recurrent workers, where each worker can potentially integrate all points of the
scene.

Tracking and distributed recognition — Structural Recurrent Neural Network
(RNN)s (Jain et al. 2016) bear a certain resemblance to our work. They handle the
temporal evolution of tracked objects in videos with a set of RNNs, each of which
corresponding to cliques in a graph that models the spatio-temporal relationships
between these objects. However, this graph is hand-crafted manually for each
application, and object tracking is performed using external trackers, which are
not integrated into the neural model.

Our model does not rely on external trackers and does not require the manual
creation of a graph, as the assignments between objects (glimpses) and trackers
are learned automatically.
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4.3 Model

We first introduce the following notation. We want to map our input video
sequence X ∈ RT×H×W×3 to a corresponding activity label y where H, W, T
denote, respectively, the height, the width and the number of time steps. The
sequence X is a set of RGB input images Xt ∈ RH×W×3 with t = 1...T. We do
not assume any other kind of prior information on the input data. We do not
use any external information during testing such as pose data nor depth nor
motion. However, if pose data is available during training time, our method is able
to integrate it in the form of additional inputs, which increases the performance
of the system, as shown in Section 4.3.3.

4.3.1 Dynamic sequential attention

Most of the RGB-only SOTA methods, which do not use pose data, extract
features at a frame level by feeding the entire video frame to a pre-trained deep
network. This leads to global features, which do not capture local information that
would be relevant to the activities at hand. Reasoning at a local level has, up till
now, been achieved using pose features, or attention processes which were limited
to attention maps (e.g. (Sharma et al. 2016; Li et al. 2017)). Here, we propose an
alternative approach, where an attention process runs statically over each time
instant and over time, creating sequences of sets of glimpse points, from which
features are extracted.

Our model processes videos using several key components, also illustrated in
Figure 4.1:

• A recurrent spatial attention model that extracts features from different local
glimpses following an attention path in each video frame predicted by the
same model

• Recurrent soft-tracking workers which process these spatial features sequen-
tially. The input data being unstructured, the spatial glimpses are soft-
assigned to the workers, such that no hard decisions are taken at any point.

• To this end, an external memory module keeps track of the glimpses seen in
the past, their features, as well as of past soft-assignments, and produces new
soft-assignments optimizing spatio-temporal consistency.

Our approach is fully-differentiable, such that the full model is trained end-to-end.
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Joint global/local feature space

We recognize activities based on global and local features jointly. In order to
speed up calculations and to avoid extracting redundant calculations, we use a
single feature space computed by a global model. In particular, we map an input
sequence X to a spatio-temporal feature map Z ∈ RT×H′×W ′×C′ using a deep
neural network f (·) with 3D convolutions. Pooling is performed on the spatial
dimensions but, not in time. This allows retention of the original temporal scale
of the video, and thus access to features in each frame. It should, however, be
noted, that due to the 3D convolutions used, the temporal receptive field of a
single “temporal” slice of the feature map is greater than a single frame. This
is intended, as it allows the attention process to utilize motion. In an abuse of
terminology, we will still use the term frame to specify the slice Zt of a feature
map with a temporal length of 1. More information on the architecture of f (·) is
given in Section 4.3.4.

A recurrent model of spatial attention

Inspired by human behavior when scrutinizing a scene, we extract a fixed
number of features from a series of G glimpses within each frame. The process
of moving from one glimpse to another is achieved with a recurrent model.
Glimpses are indexed by index g=1 . . . G, and each glimpse Zt,g corresponds to

a sub-region of Zt using coordinates and scale lt,g =
[

xg, yg, sx
g, sy

g

]>
t

output by a
differentiable glimpse function, which will be defined in Figure 4.3.1. Features
are extracted from the glimpse region Zt,g using Global Average Pooling (GAP),
resulting in a 1D feature vector zt,g:

zt,g = Γ(Zt,g) =
1

H′W ′ ∑m ∑
n
Zt,g(m, n) (4.1)

where W ′ × H′ is the size of the glimpse region. The glimpse locations and scales
lg for g=1 . . . G are predicted by a recurrent network, which runs over glimpses.
As illustrated in Figure 4.2, the model predicts a fixed-length sequence of glimpse
points for each frame. It runs over the video, i.e. it is not restarted/reinitialized
after each frame. The hidden state thus carries information across frames and
creates a globally coherent scrutinization process over the video. In Equation 4.2
and Equation 4.3 we index glimpses with a linear index g. The recurrent model
is given as follows (we use Gated Recurrent Unit (GRU)s (Cho et al. 2014), for
notational simplicity we omit gates and biases in the rest of the equations):

hg = Ω(hg−1,
[
zg−1, rt

]
|θ) (4.2)

lg = W>l
[
hg, ct

]
(4.3)
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Figure 4.2 – Dynamic attention process. A dynamic attention process produces
several glimpses for each frame and also runs over frames. The
process is free to explore different scene points in different frames.

where h denotes the hidden state of the RNN running over glimpses g, ct is a
frame context vector for making the process aware of frame transitions (described
in Equation 4.3.2) and rt carries information about the high level classification
task. In essence, rt corresponds to the global hidden state of the recurrent workers
performing the actual recognition, as described in Section 4.3.2, Equation 4.7.

Differentiable glimpse module

In order to create a model which can be trained end-to-end, we use a simple
version of Spatial Transformer Network (STN) (Jaderberg et al. 2015) to perform a
differentiable crop operation on each feature map. Given an input feature map
Zt ∈ RH×W×C and the glimpse parameters

lg=
[

xg, yg, sx
g, sy

g

]
where (xg, yg) is the central focus point and (sx

g, sy
g) corresponds to the scale, we

output a feature map Zt,g ∈ RH′×W ′×C. Note that the output size can differ from
the input size.

We constrain the STN to implement a simple 2D affine transformation Alg which
allows cropping, translation and isotropic scaling on a regular grid point xt

i , yt
i

according to the given glimpse parameters lg:
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(
xs

i
ys

i

)
= Alg

 xt
i

yt
i

1

 =

[
sx

g 0 xg

0 sy
g yg

] xt
i

yt
i

1

 (4.4)

where xt
i , yt

i are the target coordinates of the regular grid in the output feature
map Zt,g and xs

i , ys
i are the source coordinates in the input feature map that define

the sample points.
We must define a sampler which takes the set of sampling points (xs

i , ys
i ), along

with the input feature map Zt and produces the sampled output feature map Zt,g.
We employ bilinear interpolation which implements the following mapping:

Zt,g(xs
i , ys

i ) =

∑H′
n ∑W ′

m Zt(m, n)max(0, 1−|xs
i−n|)max(0, 1−|ys

i−m|).
The STN is differentiable, which allows us to train the parameters Wl for the
prediction of focus point parameters lg together with the rest of the network using
gradient descent.

4.3.2 Distributed Reasoning on Unstructured Glimpse Clouds

The attended points (glimpses) predicted in each frame Zt have a semantic
meaning in the input video (e.g. a patch around the hands or shoulders; an object
held or pointed at by a person etc.). The goal is to reason about their positions,
motion, changes in appearance, relationships or other properties. This is made
difficult by the sequential attention process described in Section 4.3.1, which can
provide very different glimpse sequences for each frame, since we avoid any
direct supervision. This is intentional, in order to give the spatial attention process
complete freedom. In particular, it can choose to jump to different glimpse points
at each frame, and/or decide to revisit certain glimpses attended to in the past.
Since frame features Zt also encode motion due to the 3D convolutions in f (·),
the attention process can learn to revisit attended points, compensating for their
motion. In Section 4.4 we describe experiments performed which justify this kind
of attention process compared to an alternate choice of spatio-temporally coherent
attention.

As a consequence, extracting motion cues from semantic points in the scene
requires associating glimpse points from different frames over time. Due to
the freedom of the attention process and fixed number of glimpses, subsequent
glimpses of the same point in the scene are generally not in subsequent frames,
which excludes conventional tracking mechanisms known from the Computer
Vision (CV) literature. Instead, we avoid hard tracking and hard assignments
between glimpse points in a temporal manner. We propose a soft associative
model for automatically associating similar spatial features over time.
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Distributed soft-tracking workers

As given in Equation 4.1, we denote by zt,g the features extracted from the gth

glimpse in feature map Zt for g = 1...G and t = 1...T. We are interested in a joint
encoding of spatial dimensions and feature dimensions and employ “what” and
“where” features vt,g introduced in (Larochelle et al. 2010) defined by:

vt,g = zt,g ⊗Λ(lt,g|θΛ) (4.5)

where ⊗ is the Hadamard product and Λ(lt,g|θΛ) is a network which provides
an embedding of the spatial patch coordinates into a space which is of the same
dimensionality as the features zt,g. The vector vt,g contains joint cues about motion
and appearance, but also the spatial localization of those features.

Evolution over time of this information is modeled with a number (C) of so-
called soft-tracking workers Ψc for c = 1...C. Each worker corresponds to a recurrent
model capable of tracking entities over time. We never hard assign glimpses to
workers. Inputs to each individual worker correspond to weighted contributions
from all of the G glimpses. In general, the number of glimpse points G can be
different from the number of workers C. At each time instant, focal points are
thus soft-assigned to the workers on the fly but changing the weights of the
contributions, which will be described further below.

A worker Ψc is a recurrent network following the usual update equations based
on the past state rt−1,c and its input ṽt,c:

rt,c = Ψc(rt−1,c, ṽt,c|θΨc) (4.6)
rt = ∑

c
rt,c (4.7)

where Ψc is a GRU and rt is carrying global information about the current state
(needed as input of the recurrent model of spatial attention). The input ṽt,c to each
worker Ψc is a linear combination of the different glimpses {vt,g}, g = 1 . . . G
weighted by a soft attention distribution pt,c = {pt,g,c}, g = 1 . . . G:

ṽt,c = Vtpt,c (4.8)

where Vt is a matrix whose rows are the different glimpse features vt,g. Workers
are independent from each other in the sense that they do not share parameters
θΨc . This can potentially lead to specialization of the workers on types of tracked
and integrated scene entities.

Soft-assignment using External Memory

The role of the attention distribution pt,c is to give higher weights to glimpses
which have been soft-assigned to this worker in the past. Thus workers extract
different kinds of features from each other. To do so, we employ an external
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Figure 4.3 – Memory network. An external memory module determines an at-
tention distribution over workers (a soft assignment) for each new
glimpse vt,g based on similarities with past glimpses M and their past
attention probabilities w. Shown for a single glimpse and 3 workers.

memory bank denoted M = {mk} which is common to all workers. In particular,
M is a fixed-length array of K entries mk each capable of storing a feature vector
vt,g. Even if the external memory is common to each worker, they have their
own ability to extract information from it. Each worker Ψc has its own weight
bank denoted Wc = {wc,k}. The scalar wc,k holds the importance of the entry
mc,k for worker Ψc . Hence the overall external memory is defined by the set
{M ,W1, . . .Wc}.

Attention from memory reads — The attention distribution pt,c is a distribu-
tion over glimpses g, i.e.

pt,c = {pt,c,g}, 0 ≤ pt,c,g ≤ 1

and

∑
g

pt,c,g=1.

We want the glimpses to get distributed appropriately across the workers, and
encourage worker specialization. In particular, at each timestep we want to assign
a glimpse high importance to a worker if this worker has been soft-assigned
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similar glimpses in the past with high importance. To this end, we define a fully
trainable distance function φ(., .) which is implemented as a quadratic form:

φ(x, y) =
√
(x− y)>D(x− y) (4.9)

where D is a learned weight matrix. Within each batch we normalize φ(·, ·) by
min-max normalization to scale it to lie between 0 and 1.

A glimpse g is soft-assigned to a given worker c with a higher weight pt,c,g if vt,g
is similar to vectors mk from the memory bank M which had a high importance
for the worker in the past Ψc :

pt,c,g = σα

(
∑
k

e−tmk × wc,k
[
1− φ(vt,g,mk)

])
(4.10)

where σ is the softmax function over the G glimpses and e−tmk is an exponential
rate over time to give higher importance to recent feature vectors compared to
those in the distant past. tmk is the corresponding timestep of the memory bank mk.
In practice we add a temperature term α to the softmax function σ. When α→ 0
the output vector is sparser. The negative factor multiplied with φ is justified by
the fact that φ is initially pre-trained as a Mahalanobis distance by setting D to
the inverse covariance matrix of the glimpse data. The factor therefore transforms
the distance into a similarity. After pre-training, D is trained end-to-end.

The attention distribution pt,c is computed for each worker Ψc. Thus each
glimpse g potentially contributes to each worker Ψc through its input vector ṽt,c
(c.f. Equation 4.8), albeit with different weights.

Memory writes — for each frame, the feature representations vt,g are stored in
the memory bank M . However, the attention distribution pt,c = {pt,c,g} is used
to weight these entries for each worker Ψc. If a glimpse feature vt,g is stored in
a slot mk, then its importance weight wc,k for worker Ψc is set to pt,c,g. The only
limitation is the size K of the memory bank. When the memory is full, we delete
the oldest memory slot. More flexible storing processes, e.g. trained mappings,
are left for future work.

Recognition

Since workers proceed in a independent manner through time, we need an
aggregation strategy to perform classification. Each worker Ψc has its own
hidden state {rt,c}t=1...T and is responsible for its own classification through a
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fully-connected layer. The final classification is done by averaging logits of the
workers:

qc = Wc · rc (4.11)

ŷ = softmax

(
C

∑
c
qc

)
(4.12)

where ŷ is the probability vector of assigning the input video X to each class.

Context vector

In order to make the spatial attention process (Section 4.3.1) aware of frame
transitions, we introduce a context vector ct which contains high level information
about humans present in the current frame t. ct is obtained by GAP over the
spatial domain of the penultimate feature maps of a given timestep. We regress
the 2D pose coordinates of humans from the context vector ct using the following
mapping:

y
p
t = W>p ct (4.13)

Pose y
p
t is linked to ground truth pose (during training only) using a supervised

term described in Section 4.3.3. This leads to incorporate hierarchical feature
learning in a sense that the penultimate feature maps have to detect human joints
present in each frame.

4.3.3 Training

We train the model end-to-end with the sum of a collection of loss terms, which
are explained below:

L = LD(ŷ, y) + LP(ŷ
p, yp) + LG(l, yp) (4.14)

Supervision — LD(ŷ, y) is a supervised loss term (cross-entropy loss on activity
labels y).

Pose prediction — Articulated pose yp is available for many datasets. Our goal
is to not depend on pose during testing; however, its usage during training can
provide additional information to the learning process and reduce the tendency
of activity recognition methods to memorize individual elements in the data for
recognition. We therefore add an additional term LP(ŷ

p, yp), which encourages
the model to perform pose regression during training only from intermediate
feature maps (described in Equation 4.3.2). Pose regression over time leads to a
faster convergence of the overall model.
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Making glimpses similar to humans — LG(l, yp) is a loss encouraging the
glimpse points to be as sparse as possible within a frame, but at the same time,

close to humans in the scene. Recall that lt,g =
[

xt,g, yt,g, sx
t,g, sy

t,g

]T
, so LG is

defined by:

Lt
G1
(l, yp) =

1
1 + ∑G

g1 ∑G
g2
||lt,g1 , lt,g2 ||

(4.15)

Lt
G2
(l, yp) =

G

∑
g

min
j
||lt,g, yp

j || (4.16)

LG(l, yp) =
T

∑
t

(
Lt

G1
(l, yp) + Lt

G2
(l, yp)

)
(4.17)

where y
p
j denotes the 2D coordinates of joints j, and Euclidean distance on lt,g

is computed using the central focus point (xt,g, yt,g). LG1 encourages diversity
between glimpses within a frame. LG2 ensures that all the glimpses are not taken
too far away from the subjects.

4.3.4 Pretraining

We designed the 3D Convolutional Neural Network (CNN) f (·) by computing
the global feature maps in Section 4.3.1, such that the temporal dimension is
maintained (i.e. without any temporal subsampling). We advance from the
Resnet-50 network(He et al. 2016) and inflate the 2D spatial convolutional kernels
into 3D kernels, artificially creating new a temporal dimension, as described by
Carreira et al. (Carreira et al. 2017). This allows us to take advantage of the 2D
kernels learned by pre-training on image classification on the Imagenet dataset.
The Inflated ResNet f (·) is then trained as a first step by minimizing the loss
LD + LP. The supervised loss LD on the global model is applied on a path
attached to GAP on the last feature maps, followed by a fully-connected layer that
is subsequently removed.

The recurrent spatial attention module Ω(·) is a GRU with a hidden state of
size 1024; Λ(·) is an Multi-Layer Perceptron (MLP) with a single hidden layer of
size 256 and a Rectified Linear Unit (ReLU) activation; the soft-trackers Ψc are GRU
with a hidden state of size 512. There is no parameter sharing between them.

4.4 Experiments

This section contains a description of the datasets, a summary of the implemen-
tation parameters, and the results of several experiments.
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Figure 4.4 – Illustration of the glimpse distribution. Shown for several se-
quences of the NTU dataset. Here we set 3 glimpses per frame
(G=3, Red: first, Blue: second, Yellow: third).

4.4.1 Datasets

The proposed method has been evaluated on two human action recognition
datasets: NTU RDB+D Dataset (Shahroudy et al. 2016a) and Northwestern-UCLA
Multiview Action 3D Dataset (Wang et al. 2014).

NTU RDB+D Dataset (NTU) — NTU was acquired with a Kinect v2 sensor
and contains more than 56K videos and 4 million frames with 60 different activ-
ities including individual activities, interactions between multiple people, and
health-related events. The actions were performed by 40 subjects and recorded
from 80 viewpoints. We follow the cross-subject and cross-view split protocol
from (Shahroudy et al. 2016a). Due to the large number of videos, this dataset is
highly suitable for Deep Learning (DL) modeling.

Northwestern-UCLAMultiview Action 3D Dataset (N-UCLA)— This dataset
contains 1494 sequences, covering ten action categories, such as drop trash or sit
down (Wang et al. 2014). Each sequence is captured simultaneously by 3 Kinect
v1 cameras. RGB, depth and human pose are available for each video, and each
action is performed one to six times by ten different subjects. Most actions in-
volve human-object interaction, making this dataset challenging. We followed the
cross-view protocol defined by (Wang et al. 2014), and we trained our method on
samples from two camera views, and tested it on samples from the remaining
view. This produced three possible cross-view combinations: V3

1,2, V2
1,3, V1

2,3. The
combination V3

1,2 means that samples from view 1 and 2 are used for training, and
samples from view 3 are used for testing.
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4.4.2 Implementation details

Similar to (Shahroudy et al. 2016a), we cut videos into sub-sequences of 8 frames
and sample sub-sequences. During training, a single sub-sequence is sampled.
During testing, 5 sub-sequences and logits are averaged. RGB videos are rescaled
to 256× 256 and random cropping of size 224× 224 is done during training and
testing.

Training is performed using the Adam Optimizer (Kingma et al. 2015) with
an initial learning rate of 0.0001. We use minibatches of size 40 on 4 Graphics
Processing Unit (GPU)s. Following (Shahroudy et al. 2016a), we sample 5% of
the initial training set as a validation set, which is used for hyper-parameter
optimization and for early stopping. All hyperparameters have been optimized
on the validation sets of the respective datasets. We used the model trained on
NTU as a pre-trained model and fine-tuned it on N-UCLA.

4.4.3 Results

Comparison with the state of the art — At the time of publication of this
wok, our method outperformed SOTA methods on NTU and N-UCLA by a large
margin, and this also includes several methods which use multiple modalities, in
addition to RGB, depth and pose. Table 4.1 and Table 4.2 provide detailed results
compared to the SOTA on the NTU dataset. Sample visual results can be seen in
Figure 4.4.

Ablation study — Table 4.3 shows several experiments to study the effect of
our design choices. Classification from the Global Model (GM) alone (Inflated-
Resnet-50) is clearly inferior to the distributed recognition strategy using the
set of workers (+1.9 points on NTU and +4.4 points on N-UCLA). The bigger
gap obtained on N-UCLA can be explained by the larger portion of the frame
occupied by people and therefore higher efficiency of a local representation. The
additional loss predicting pose during training helps, even though pose is not
used during testing. An important question is whether the Glimpse Cloud could
be integrated with an easier mechanism than a soft-assignment. We tested a
baseline which sums glimpse features for each time step and which integrates
them temporally (row #3). This gave only a very small improvement over the
global model. Distributed recognition from Glimpse Clouds with soft-assignment
clearly outperforms the simpler baselines. Adding the global model does not gain
any improvement.

Importance of losses — Table 4.3 also shows the importances of our three
loss functions. Cross-entropy only LD gives 89.1%. Adding pose prediction LP
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Methods Data V3
1,2 V2

1,3 V1
2,3 Avg

DVV (Li et al. 2012b) D 58.5 55.2 39.3 51.0
CVP (Zhang et al. 2013) D 60.6 55.8 39.5 52.0
AOG (Wang et al. 2014) D 45.2 - - -

HPM+TM (Rahmani et al. 2016) D 91.9 75.2 71.9 79.7
Lie group (Vemulapalli et al. 2014) P 74.2 - - -

HBRNN-L (Du et al. 2015b) P 78.5 - - -
Enhanced viz. (Liu et al. 2017c) P 86.1 - - -

Ensemble TS-LSTM (Lee et al. 2017) P 89.2 - - -
Hankelets (Li et al. 2012a) V 45.2 - - -
nCTE (Gupta et al. 2014) V 68.6 68.3 52.1 63.0

NKTM (Rahmani et al. 2015) V 75.8 73.3 59.1 69.4
Global model V 85.6 84.7 79.2 83.2

Glimpse Clouds V 90.1 89.5 83.4 87.6

Table 4.1 – Results on the Northwestern-UCLA Multiview Action 3D dataset.
With Cross-View Setting (accuracy as a percent). V, D, and P mean
Visual (RGB), Depth, and Pose, respectively.

we gain 0.6 points and adding pose attraction LG we gain 0.4 points, which are
complementary.

Unstructured vs. coherent attention — We also evaluated the choice of
unstructured attention, i.e. the decision to give the attention process complete
freedom to attend to a new (and possibly unrelated) set of scene points in each
frame. We compared this with an alternative choice, where glimpses are axis-
aligned space-time tubes over the whole temporal length of the video. In this
baseline, the attention process is not aligned with time. At each iteration, a new
tube is attended in the full space-time volume, and no tracking or soft-assignment
to worker modules is necessary. As indicated in Table 4.4, this choice is sub-
optimal. We conjecture that tubes cannot cope with moving objects and object
parts in the video.

Attention vs. saliency vs. random — We evaluated whether a sequential at-
tention process contributes to performance, or whether the gain is solely explained
from the sampling of local features in the space-time volume. We compared our
choice with two simple baselines: (i) complete random sampling of local features,
which leads to a drop of more than 6 points, indicating that the location of the
glimpses is clearly important; and (ii) with a saliency model, which predicts
glimpse locations in parallel through different outputs of the location network.
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Methods Pose RGB CS CV Avg

Lie Group (Vemulapalli et al. 2014) X - 50.1 52.8 51.5
Skeleton Quads (Evangelidis et al. 2014) X - 38.6 41.4 40.0

Dynamic Skeletons (Hu et al. 2015) X - 60.2 65.2 62.7
HBRNN (Du et al. 2015b) X - 59.1 64.0 61.6

DeepLSTM(Shahroudy et al. 2016a) X - 60.7 67.3 64.0
Part-awareLSTM(Shahroudy et al. 2016a) X - 62.9 70.3 66.6

ST-LSTM + TrustG. (Liu et al. 2016a) X - 69.2 77.7 73.5
STA-LSTM (Song et al. 2016) X - 73.2 81.2 77.2

Ensemble TS-LSTM (Lee et al. 2017) X - 74.6 81.3 78.0
GCA-LSTM (Liu et al. 2017a) X - 74.4 82.8 78.6

JTM (Wang et al. 2016b) X - 76.3 81.1 78.7
MTLN (Ke et al. 2017) X - 79.6 84.8 82.2

VA-LSTM (Zhang et al. 2017) X - 79.4 87.6 83.5
View-invariant (Liu et al. 2017c) X - 80.0 87.2 83.6

DSSCA - SSLM (Shahroudy et al. 2016b) X X 74.9 - -
STA-Hands (Baradel et al. 2017b) X X 82.5 88.6 85.6

Hands Attention (Baradel et al. 2017a) X X 84.8 90.6 87.7
C3D† - X 63.5 70.3 66.9

Resnet50+LSTM† - X 71.3 80.2 75.8
Glimpse Clouds - X 86.6 93.2 89.9

Table 4.2 – Results on the NTU RGB+D dataset. With Cross-Subject and Cross-
View settings (accuracies in %); († indicates method has been re-
implemented).

Methods Spatial Attention Soft Workers LD LP LG CS CV Avg

GM - - X - - 84.5 91.5 88.0
GM - - X X - 85.5 92.1 88.8

GM+∑ Glimpses + GRU - - X X - 85.8 92.4 89.1
Glimpse Clouds X X X - - 85.7 92.5 89.1
Glimpse Clouds X X X X - 86.4 93.0 89.7
Glimpse Clouds X X X - X 86.1 92.9 89.5
Glimpse Clouds X X X X X 86.6 93.2 89.9

Glimpse Clouds + GM X X X X X 86.6 93.2 89.9

Table 4.3 – Ablation study. Results on NTU. Note: GM means Global model.

This is not a full attention process in that a glimpse prediction does not depend
on what the model has seen in the past. This choice is also sub-optimal.
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Glimpse Type of attention CS CV Avg

3D tubes Attention 85.8 92.7 89.2

Seq. 2D Random sampling 80.3 87.8 84.0
Seq. 2D Saliency 86.2 92.9 89.5
Seq. 2D Attention 86.6 93.2 89.9

Table 4.4 – Different attention and alternative strategies. Results on the NTU.

Learned weight matrix — Random initialization and fine-tuning of D matrix
in Equation 4.9 loses 0.4 points and leads to slower convergence by a factor of 1.5.
Fixing D (to inverse covariance) w/o any training loses 0.8 points.

The Joint encoding — “What and where” features are important for correctly
weighting their respective contribution. Plainly adding concatenating coordinates
and features loses 1.1 points.

Hyper-parameters C, G, T — Number of glimpses and workers: C and G
were selected by cross-validation on the validation set by varying them from 1 to
4, giving an optimum of G=C=3 over all 16 combinations. More leads the model
to overfit. The size of the memory bank K is set to T where T=8 is the length of
the sequence.

Runtime — The model has been trained on a GPU cluster with a single job
spread over 4 Titan Xp GPUs. Pre-training the global model on the NTU dataset
takes 16h. Training the Glimpse Cloud model end-to-end then takes a further 12h.
A single forward pass over the full model takes 97ms on 1 GPU. The method has
been implemented in PyTorch.

4.5 Conclusion

In this chapter, we proposed a method for human activity recognition that
does not rely on depth images or articulated pose, though it is able to leverage
pose information during training. The method achieves SOTA performance on
the NTU and N-UCLA datasets even when compared to methods that use pose,
depth, or both at test time. An attention process over space and time produces an
unstructured Glimpse Cloud, which is soft-assigned to a set of tracking/recognition
workers. In our experiments, we showed that this distributed recognition outper-
forms a global convolutional model, as well as local models with simple baselines
for the localization of glimpses.
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The method proposed in this chapter works well in constrained environment
such as demonstrated on the two datasets that we have used. However in real
life scenarios, the camera may be moving or the background could vary over
time which could potentially affect the performance of our method. In the next
chapter, we focus on building a more structured video representation based on
object-interactions with the goal to extract the semantic of daily life videos.
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Chapter abstract
Human activity recognition is typically addressed by detecting key concepts
like global and local motion, features related to object classes present in the
scene, as well as features related to the global context. The next open challenges
in activity recognition require a level of understanding that pushes beyond
this and call for models with capabilities for fine distinction and detailed
comprehension of interactions between actors and objects in a scene.
We propose a model capable of learning to reason about semantically mean-
ingful spatio-temporal interactions in videos. The key to our approach is a
choice of performing this reasoning at the object level through the integration
of state-of-the-art object detection networks. This allows the model to learn
detailed spatial interactions that exist at a semantic, object-interaction relevant
level.
We evaluate our method on three standard datasets (Twenty-BN Something-
Something, VLOG and EPIC Kitchens) and achieve state-of-the-art results
on all of them. We also show visualizations of the interactions learned by the
model, which illustrate object classes and their interactions corresponding to
different activity classes.
The work in this chapter has led to the publication of a conference paper:

• Fabien Baradel, Natalia Neverova, Christian Wolf, Julien Mille, and Greg
Mori (2018a). “Object Level Visual Reasoning in Videos”. In: Proceedings
of the IEEE European Conference on Computer Vision (ECCV).
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5.1 Introduction

In the previous chapters, we developed end-to-end attention-based mechanisms
for human action recognition. We show in Chapter 3 that the articulated human
pose is an important information for selecting points of interest in the video
stream. Furthermore, we show in Chapter 4 that attention-free mechanisms can be
developed without relying on internal pose information. In this chapter, we push
the modeling of video content one step further by focusing on human-objects
interactions. We focus on a human-centric viewpoint of activity recognition where
it is not only the human positions or the presence of certain objects / scenes
that dictate the current activity, but the manner, order, and effects of human
interactions with these scene elements that are necessary for understanding.

Humans are able to infer what happened in a video given only a few sam-
ple frames. This faculty is called reasoning and is a key component of human
intelligence. As an example we can consider the pair of images in Figure 5.1,
which shows a complex situation involving articulated objects (human, carrots
and knife), the change of location and composition of objects. For humans it is
straightforward to draw a conclusion on what happened (a carrot was chopped
by the human). Humans have this extraordinary ability to perform visual reason-
ing on very complicated tasks while it remains unattainable for contemporary
Computer Vision (CV) algorithms (Stabinger et al. 2016; Fleuret et al. 2011).

We describe in Figure 2.2.7 that there are several attempts to equip neural
models with reasoning abilities.
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person 0.86
person 0.87

knife 0.98
carrot 0.99

carrot 0.72

carrot 0.98

person 0.65

knife 0.99

carrot 0.97

carrot 0.97

carrot 0.93

carrot 0.86
carrot 0.95

Figure 5.1 – Reasoning from two consecutive frames. Humans can understand
what happened in a video (“the leftmost carrot was chopped by the
person”) given only a pair of frames. Along these lines, the goal of this
work is to explore the capabilities of higher-level reasoning in neural
models operating at the semantic level of objects and interactions.

We extend these efforts to object level reasoning in videos. Since a video is a
temporal sequence, we leverage time as an explicit causal signal to identify causal
object relations. Our approach is related to the concept of the “arrow of the
time" (Pickup et al. 2014) involving the “one-way direction” or “asymmetry” of
time. In Figure 5.1 the knife was used before the carrot switched over to the
chopped-up state on the right side. For a video classification problem, we want to
identify a causal event A happening in a video that affects its label B. But instead
of identifying this causal event directly from pixels we want to identify it from an
object level perspective.

Following this hypothesis, we propose to make a bridge between object de-
tection and activity recognition. Object detection allows us to extract low-level
information from a scene with all the present object instances and their semantic
meanings. However, detailed activity understanding requires reasoning over these
semantic structures, determining which objects were involved in interactions, of
what nature, and what were the results of these. To compound problems, the
semantic structure of a scene may change during a video (e.g. a new object can
appear, a person may make a move from one point to another one of the scene).

We propose an Object Relation Network (ORN), a neural network module for
reasoning between detected semantic object instances through space and time.
The ORN has potential to address these issues and conduct relational reasoning
over object interactions for the purpose of activity recognition. A set of object
detection masks ranging over different object categories and temporal occurrences
is input to the ORN. The ORN is able to infer pairwise relationships between
objects detected at different moments in time.
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Code and object masks predictions is publicly available 1.

5.2 Related work

Action Recognition — Pre-deep learning approaches in action recognition
focused on handcrafted spatio-temporal features including space-time interest
points like SIFT-3D, HOG3D, IDT and aggregated them using bag-of-words
techniques. Some hand-crafted representations, like dense trajectories (Wang et al.
2011), still give competitive performance and are frequently combined with deep
learning.

In the recent past, work has shifted to deep learning. Early attempts adapt 2D
Convolutional Neural Network (CNN)s to videos through temporal pooling and
3D convolutions (Baccouche et al. 2011; Tran et al. 2015). 3D convolutions are now
widely adopted for activity recognition with the introduction of feature transfer
by inflating pre-trained 2D convolutional kernels from image classification models
trained on ImageNet/ILSVRC (Russakovsky et al. 2015) through 3D kernels (Car-
reira et al. 2017). The downside of 3D kernels is their computational complexity
and the large number of learnable parameters, leading to the introduction of 2.5D
kernels, i.e. separable filters in the form of a 2D spatial kernel followed by a
temporal kernel (Xie et al. 2017). An alternative to temporal convolutions are
Recurrent Neural Network (RNN)s in their various gated forms (Gated Recurrent
Unit (GRU), Long-Short Term Memory (LSTM)) (Hochreiter et al. 1997; Chung et al.
2014).

Karpathy et al. (2014) presented a wide study on different ways of connecting
information in spatial and temporal dimensions through convolutions and pooling.
On very general datasets with coarse activity classes they have showed that there
was a small margin between classifying individual frames and classifying videos
with more sophisticated temporal aggregation.

Simonyan et al. (2014) proposed a widely adopted two-stream architecture for
action recognition which extracts two different streams, one processing raw RGB
input and one processing pre-computed optical flow images.

In slightly narrower settings, prior information on the video content can allow
more fine-grained models. Articulated pose is widely used in cases where humans
are guaranteed to be present (Shahroudy et al. 2016a). Pose estimation and activity
recognition as a joint (multi-task) problem has recently shown to improve both
tasks (Luvizon et al. 2018).

Attention models are a way to structure deep networks in an often generic
way. They are able to iteratively focus attention to specific parts in the data
without requiring prior knowledge about part or object positions. In activity
recognition, they have gained some traction in recent years, either as soft-attention

1. https://github.com/fabienbaradel/object_level_visual_reasoning

https://github.com/fabienbaradel/object_level_visual_reasoning
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on articulated pose (joints) (Song et al. 2016), on feature map cells (Sharma et
al. 2016), on time (Yeung et al. 2015) or on parts in raw RGB input through
differentiable crops (Baradel et al. 2018c).

When raw video data is globally fed into deep neural networks, they focus
on extracting spatio-temporal features and perform aggregations. It has been
shown that these techniques fail on challenging fine-grained datasets, which
require learning long temporal dependencies and human-object interactions. A
concentrated effort has been made to create large scale datasets to overcome these
issues (Goyal et al. 2017; Fouhey et al. 2018; Krishna et al. 2017; Gu et al. 2017).

Relational Reasoning — Relational reasoning is a well studied field for many
applications ranging from visual reasoning (Santoro et al. 2017) to reasoning
about physical systems (Battaglia et al. 2016). Battaglia et al. (2016) introduce a
fully-differentiable network physics engine called Interaction Network (IN). IN
learns to predict several physical systems such as gravitational systems, rigid body
dynamics, and mass-spring systems. It shows impressive results; however, it learns
from a virtual environment, which provides access to virtually unlimited training
examples. Following the same perspective, Santoro et al. (2017) introduced
Relation Network (RN), a plug-in module for reasoning in deep networks. RN
shows human-level performance in Visual Question Answering (VQA) by inferring
pairwise “object” relations. However, in contrast to our work, the term “object”
in (Santoro et al. 2017) does not refer to semantically meaningful entities, but to
discrete cells in feature maps. The number of interactions therefore grows with
feature map resolutions, which makes it difficult to scale. Furthermore, a recent
study (Kim et al. 2018) has shown that some of these results are subject to dataset
bias and do not generalize well to small changes in the settings of the dataset.

In the same line, a recent work (Steenkiste et al. 2018) has shown promising
results on discovering objects and their interactions in an unsupervised manner
using training examples from virtual environments. In (Veličković et al. 2018),
attention and relational modules are combined on a graph structure. From
a different perspective, Perez et al. (2017) show that relational reasoning can
be learned for visual reasoning in a data driven way without any prior using
conditional batch normalization with a feature-wise affine transformation based
on conditioning information. In an opposite approach, a strong structural prior is
learned in the form of a complex attention mechanism: in (Hudson et al. 2018b),
an external memory module combined with attention processes over input images
and text questions, performing iterative reasoning for VQA.

While most of the discussed work has been designed for VQA and for pre-
dictions on physical systems and environments, extensions have been proposed
for video understanding. Reasoning in videos on a mask or segmentation level
has been attempted for video prediction (Luc et al. 2017), where the goal was to
leverage semantic information to be able predict further into the future. Bolei et al.
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(2017) have recently shown state-of-the-art performance on challenging datasets
by extending Relation Network to video classification. Their chosen entities are
frames, on which they employ RN to reason on a temporal level only through
pairwise frame relations. The approach is promising, but restricted to temporal
contextual information without an understanding on a local object level, which is
provided by our approach.

5.3 Model

Our goal is to extract multiple types of cues from a video sequence: interactions
between predicted objects and their semantic classes, as well as local and global
motion in the scene. We formulate this objective as a neural architecture with two
heads: an activity head and an object head. Figure 5.2 gives a functional overview
of the model. Both heads share common features up to a certain layer shown
in red in the figure. The activity head, shown in orange in the figure, is a CNN-
based architecture employing convolutional layers, including spatio-temporal
convolutions, able to extract global motion features. However, it is not able to
extract information from an object level perspective. We leverage the object head to
perform reasoning on the relationships between predicted object instances.

Our main contribution is a new structured module called Object Relation
Network (ORN), which is able to perform spatio-temporal reasoning between
detected object instances in the video. ORN is able to reason by modeling how
objects move, appear and disappear and how they interact between two frames.

In this section, we will first describe our main contribution, the ORN network.
We then provide details about object instance features, about the activity head,
and finally about the final recognition task. In what follows, lowercase letters
denote 1D vectors while uppercase letters are used for 2D and 3D matrices or
higher order tensors. We assume that the input of our system is a video of T
frames denoted by X1:T = (Xt)T

t=1 where Xt is the RGB image at timestep t. The
goal is to learn a mapping from X1:T to activity classes y.

5.3.1 Object Relation Network

ORN (Object Relation Network) is a module for reasoning between semantic
objects through space and time. It captures object moves, arrivals and interactions
in an efficient manner. We suppose that for each frame t, we have a set of objects
k with associated features ok

t . Objects and features are detected and computed by
the object head described in Section 5.3.2.

Reasoning about activities in videos is inherently temporal, as activities follow
the arrow of time (Pickup et al. 2014), i.e. the causality of the time dimension
imposes that past actions have consequences in the future but not vice-versa. We
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spatio-temporal
block
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object head
<latexit sha1_base64="I0wT7S5QKSPfCmhqWZ9Vmd66HwA=">AAACD3icbVDLSgMxFM3UVx1foy7dBIvoqsx0Y90V3Lis4NhCW0omc9vGZpIhyQhl6Ce48VfcuFBx69adf2P6ELT1QOBwzr3cnBOlnGnj+19OYWV1bX2juOlube/s7nn7B7daZopCSCWXqhkRDZwJCA0zHJqpApJEHBrR8HLiN+5BaSbFjRml0ElIX7Aeo8RYqeudtiPoM5FTEAbU2JXRHVCDB0Bitw0i/jG6Xskv+1PgZRLMSQnNUe96n+1Y0iyx65QTrVuBn5pOTpRhlMPYbWcaUkKHpA8tSwVJQHfyaaAxPrFKjHtS2ScMnqq/N3KSaD1KIjuZEDPQi95E/M9rZaZX7eRMpJkBQWeHehnHRuJJOzhmysbnI0sIVcz+FdMBUYTaDrRrSwgWIy+TsFK+KAfXlVKtOm+jiI7QMTpDATpHNXSF6ihEFD2gJ/SCXp1H59l5c95nowVnvnOI/sD5+AaXkJ0c</latexit><latexit sha1_base64="I0wT7S5QKSPfCmhqWZ9Vmd66HwA=">AAACD3icbVDLSgMxFM3UVx1foy7dBIvoqsx0Y90V3Lis4NhCW0omc9vGZpIhyQhl6Ce48VfcuFBx69adf2P6ELT1QOBwzr3cnBOlnGnj+19OYWV1bX2juOlube/s7nn7B7daZopCSCWXqhkRDZwJCA0zHJqpApJEHBrR8HLiN+5BaSbFjRml0ElIX7Aeo8RYqeudtiPoM5FTEAbU2JXRHVCDB0Bitw0i/jG6Xskv+1PgZRLMSQnNUe96n+1Y0iyx65QTrVuBn5pOTpRhlMPYbWcaUkKHpA8tSwVJQHfyaaAxPrFKjHtS2ScMnqq/N3KSaD1KIjuZEDPQi95E/M9rZaZX7eRMpJkBQWeHehnHRuJJOzhmysbnI0sIVcz+FdMBUYTaDrRrSwgWIy+TsFK+KAfXlVKtOm+jiI7QMTpDATpHNXSF6ihEFD2gJ/SCXp1H59l5c95nowVnvnOI/sD5+AaXkJ0c</latexit><latexit sha1_base64="I0wT7S5QKSPfCmhqWZ9Vmd66HwA=">AAACD3icbVDLSgMxFM3UVx1foy7dBIvoqsx0Y90V3Lis4NhCW0omc9vGZpIhyQhl6Ce48VfcuFBx69adf2P6ELT1QOBwzr3cnBOlnGnj+19OYWV1bX2juOlube/s7nn7B7daZopCSCWXqhkRDZwJCA0zHJqpApJEHBrR8HLiN+5BaSbFjRml0ElIX7Aeo8RYqeudtiPoM5FTEAbU2JXRHVCDB0Bitw0i/jG6Xskv+1PgZRLMSQnNUe96n+1Y0iyx65QTrVuBn5pOTpRhlMPYbWcaUkKHpA8tSwVJQHfyaaAxPrFKjHtS2ScMnqq/N3KSaD1KIjuZEDPQi95E/M9rZaZX7eRMpJkBQWeHehnHRuJJOzhmysbnI0sIVcz+FdMBUYTaDrRrSwgWIy+TsFK+KAfXlVKtOm+jiI7QMTpDATpHNXSF6ihEFD2gJ/SCXp1H59l5c95nowVnvnOI/sD5+AaXkJ0c</latexit><latexit sha1_base64="I0wT7S5QKSPfCmhqWZ9Vmd66HwA=">AAACD3icbVDLSgMxFM3UVx1foy7dBIvoqsx0Y90V3Lis4NhCW0omc9vGZpIhyQhl6Ce48VfcuFBx69adf2P6ELT1QOBwzr3cnBOlnGnj+19OYWV1bX2juOlube/s7nn7B7daZopCSCWXqhkRDZwJCA0zHJqpApJEHBrR8HLiN+5BaSbFjRml0ElIX7Aeo8RYqeudtiPoM5FTEAbU2JXRHVCDB0Bitw0i/jG6Xskv+1PgZRLMSQnNUe96n+1Y0iyx65QTrVuBn5pOTpRhlMPYbWcaUkKHpA8tSwVJQHfyaaAxPrFKjHtS2ScMnqq/N3KSaD1KIjuZEDPQi95E/M9rZaZX7eRMpJkBQWeHehnHRuJJOzhmysbnI0sIVcz+FdMBUYTaDrRrSwgWIy+TsFK+KAfXlVKtOm+jiI7QMTpDATpHNXSF6ihEFD2gJ/SCXp1H59l5c95nowVnvnOI/sD5+AaXkJ0c</latexit>

visual reasoning
module

<latexit sha1_base64="fBWZg+aPOFAImknIghA1Bu9U+88=">AAACHXicbVDLSgMxFM3UVx1foy7dBIvgqswUxLoruHFZwdpCp5RM5rYNzSRDkimUoV/ixl9x40LFhRvxb0wfgrYeCBzOOTfJPVHKmTa+/+UU1tY3NreK2+7O7t7+gXd4dK9lpig0qORStSKigTMBDcMMh1aqgCQRh2Y0vJ76zREozaS4M+MUOgnpC9ZjlBgrdb2LMII+EzkFYUBN3BHTGeHYXqGlYKIfhjiRccbBDUHEP7GuV/LL/gx4lQQLUkIL1LveRxhLmiV2nHKidTvwU9PJiTKMcpi4YaYhJXRI+tC2VJAEdCefrTfBZ1aJcU8qe4TBM/X3RE4SrcdJZJMJMQO97E3F/7x2ZnrVTs5EmhkQdP5QL+PYSDztCsdMATV8bAmhitm/YjogilDbgXZtCcHyyqukUSlflYPbSqlWXbRRRCfoFJ2jAF2iGrpBddRAFD2gJ/SCXp1H59l5c97n0YKzmDlGf+B8fgM5O6NX</latexit><latexit sha1_base64="fBWZg+aPOFAImknIghA1Bu9U+88=">AAACHXicbVDLSgMxFM3UVx1foy7dBIvgqswUxLoruHFZwdpCp5RM5rYNzSRDkimUoV/ixl9x40LFhRvxb0wfgrYeCBzOOTfJPVHKmTa+/+UU1tY3NreK2+7O7t7+gXd4dK9lpig0qORStSKigTMBDcMMh1aqgCQRh2Y0vJ76zREozaS4M+MUOgnpC9ZjlBgrdb2LMII+EzkFYUBN3BHTGeHYXqGlYKIfhjiRccbBDUHEP7GuV/LL/gx4lQQLUkIL1LveRxhLmiV2nHKidTvwU9PJiTKMcpi4YaYhJXRI+tC2VJAEdCefrTfBZ1aJcU8qe4TBM/X3RE4SrcdJZJMJMQO97E3F/7x2ZnrVTs5EmhkQdP5QL+PYSDztCsdMATV8bAmhitm/YjogilDbgXZtCcHyyqukUSlflYPbSqlWXbRRRCfoFJ2jAF2iGrpBddRAFD2gJ/SCXp1H59l5c97n0YKzmDlGf+B8fgM5O6NX</latexit><latexit sha1_base64="fBWZg+aPOFAImknIghA1Bu9U+88=">AAACHXicbVDLSgMxFM3UVx1foy7dBIvgqswUxLoruHFZwdpCp5RM5rYNzSRDkimUoV/ixl9x40LFhRvxb0wfgrYeCBzOOTfJPVHKmTa+/+UU1tY3NreK2+7O7t7+gXd4dK9lpig0qORStSKigTMBDcMMh1aqgCQRh2Y0vJ76zREozaS4M+MUOgnpC9ZjlBgrdb2LMII+EzkFYUBN3BHTGeHYXqGlYKIfhjiRccbBDUHEP7GuV/LL/gx4lQQLUkIL1LveRxhLmiV2nHKidTvwU9PJiTKMcpi4YaYhJXRI+tC2VJAEdCefrTfBZ1aJcU8qe4TBM/X3RE4SrcdJZJMJMQO97E3F/7x2ZnrVTs5EmhkQdP5QL+PYSDztCsdMATV8bAmhitm/YjogilDbgXZtCcHyyqukUSlflYPbSqlWXbRRRCfoFJ2jAF2iGrpBddRAFD2gJ/SCXp1H59l5c97n0YKzmDlGf+B8fgM5O6NX</latexit><latexit sha1_base64="fBWZg+aPOFAImknIghA1Bu9U+88=">AAACHXicbVDLSgMxFM3UVx1foy7dBIvgqswUxLoruHFZwdpCp5RM5rYNzSRDkimUoV/ixl9x40LFhRvxb0wfgrYeCBzOOTfJPVHKmTa+/+UU1tY3NreK2+7O7t7+gXd4dK9lpig0qORStSKigTMBDcMMh1aqgCQRh2Y0vJ76zREozaS4M+MUOgnpC9ZjlBgrdb2LMII+EzkFYUBN3BHTGeHYXqGlYKIfhjiRccbBDUHEP7GuV/LL/gx4lQQLUkIL1LveRxhLmiV2nHKidTvwU9PJiTKMcpi4YaYhJXRI+tC2VJAEdCefrTfBZ1aJcU8qe4TBM/X3RE4SrcdJZJMJMQO97E3F/7x2ZnrVTs5EmhkQdP5QL+PYSDztCsdMATV8bAmhitm/YjogilDbgXZtCcHyyqukUSlflYPbSqlWXbRRRCfoFJ2jAF2iGrpBddRAFD2gJ/SCXp1H59l5c97n0YKzmDlGf+B8fgM5O6NX</latexit>

RoI pool
<latexit sha1_base64="4Rn5dqov7d08Zkstz1UFiuPjd8o=">AAACDHicbVDLSgMxFM34rOOr6tJNsAquykw31l3Bje6qOLbQDiWTuW1DM8mQZIQy9Afc+CtuXKi49QPc+TemD0FbDwQO59zDzT1Rypk2nvflLC2vrK6tFzbcza3tnd3i3v6dlpmiEFDJpWpGRANnAgLDDIdmqoAkEYdGNLgY+417UJpJcWuGKYQJ6QnWZZQYK3WKx+0IekzkFIQBNXJv5BVOpeRuG0T8o3aKJa/sTYAXiT8jJTRDvVP8bMeSZomNU060bvleasKcKMMoh5HbzjSkhA5ID1qWCpKADvPJNSN8YpUYd6WyTxg8UX8ncpJoPUwiO5kQ09fz3lj8z2tlplsNcybSzICg00XdjGMj8bgaHDMF1PChJYQqZv+KaZ8oQm0H2rUl+PMnL5KgUj4v+9eVUq06a6OADtEROkU+OkM1dInqKEAUPaAn9IJenUfn2Xlz3qejS84sc4D+wPn4Bg4mm7k=</latexit><latexit sha1_base64="4Rn5dqov7d08Zkstz1UFiuPjd8o=">AAACDHicbVDLSgMxFM34rOOr6tJNsAquykw31l3Bje6qOLbQDiWTuW1DM8mQZIQy9Afc+CtuXKi49QPc+TemD0FbDwQO59zDzT1Rypk2nvflLC2vrK6tFzbcza3tnd3i3v6dlpmiEFDJpWpGRANnAgLDDIdmqoAkEYdGNLgY+417UJpJcWuGKYQJ6QnWZZQYK3WKx+0IekzkFIQBNXJv5BVOpeRuG0T8o3aKJa/sTYAXiT8jJTRDvVP8bMeSZomNU060bvleasKcKMMoh5HbzjSkhA5ID1qWCpKADvPJNSN8YpUYd6WyTxg8UX8ncpJoPUwiO5kQ09fz3lj8z2tlplsNcybSzICg00XdjGMj8bgaHDMF1PChJYQqZv+KaZ8oQm0H2rUl+PMnL5KgUj4v+9eVUq06a6OADtEROkU+OkM1dInqKEAUPaAn9IJenUfn2Xlz3qejS84sc4D+wPn4Bg4mm7k=</latexit><latexit sha1_base64="4Rn5dqov7d08Zkstz1UFiuPjd8o=">AAACDHicbVDLSgMxFM34rOOr6tJNsAquykw31l3Bje6qOLbQDiWTuW1DM8mQZIQy9Afc+CtuXKi49QPc+TemD0FbDwQO59zDzT1Rypk2nvflLC2vrK6tFzbcza3tnd3i3v6dlpmiEFDJpWpGRANnAgLDDIdmqoAkEYdGNLgY+417UJpJcWuGKYQJ6QnWZZQYK3WKx+0IekzkFIQBNXJv5BVOpeRuG0T8o3aKJa/sTYAXiT8jJTRDvVP8bMeSZomNU060bvleasKcKMMoh5HbzjSkhA5ID1qWCpKADvPJNSN8YpUYd6WyTxg8UX8ncpJoPUwiO5kQ09fz3lj8z2tlplsNcybSzICg00XdjGMj8bgaHDMF1PChJYQqZv+KaZ8oQm0H2rUl+PMnL5KgUj4v+9eVUq06a6OADtEROkU+OkM1dInqKEAUPaAn9IJenUfn2Xlz3qejS84sc4D+wPn4Bg4mm7k=</latexit><latexit sha1_base64="4Rn5dqov7d08Zkstz1UFiuPjd8o=">AAACDHicbVDLSgMxFM34rOOr6tJNsAquykw31l3Bje6qOLbQDiWTuW1DM8mQZIQy9Afc+CtuXKi49QPc+TemD0FbDwQO59zDzT1Rypk2nvflLC2vrK6tFzbcza3tnd3i3v6dlpmiEFDJpWpGRANnAgLDDIdmqoAkEYdGNLgY+417UJpJcWuGKYQJ6QnWZZQYK3WKx+0IekzkFIQBNXJv5BVOpeRuG0T8o3aKJa/sTYAXiT8jJTRDvVP8bMeSZomNU060bvleasKcKMMoh5HbzjSkhA5ID1qWCpKADvPJNSN8YpUYd6WyTxg8UX8ncpJoPUwiO5kQ09fz3lj8z2tlplsNcybSzICg00XdjGMj8bgaHDMF1PChJYQqZv+KaZ8oQm0H2rUl+PMnL5KgUj4v+9eVUq06a6OADtEROkU+OkM1dInqKEAUPaAn9IJenUfn2Xlz3qejS84sc4D+wPn4Bg4mm7k=</latexit>

activity loss
<latexit sha1_base64="BcPLS//JtZk28cnHPQ8Mz/Eh5ig=">AAACEXicbVBNS8NAFNzUrxq/oh69LBZBLyXpxXorePFYwdpCG8pm89ou3WzC7qYQQn+DF/+KFw8qXr1589+4bSNo68DCMPOGt2+ChDOlXffLKq2tb2xulbftnd29/QPn8Ohexamk0KIxj2UnIAo4E9DSTHPoJBJIFHBoB+Prmd+egFQsFnc6S8CPyFCwAaNEG6nvXPQCGDKRUxAa5NQmVLMJ0xnmsVJ2D0T4Y/Wdilt158CrxCtIBRVo9p3PXhjTNDJxyolSXc9NtJ8TqRnlMLV7qYKE0DEZQtdQQSJQfj4/aYrPjBLiQSzNExrP1d+JnERKZVFgJiOiR2rZm4n/ed1UD+p+zkSSahB0sWiQcqxjPOsHh0wC1TwzhFDJzF8xHRFpejEt2qYEb/nkVdKqVa+q3m2t0qgXbZTRCTpF58hDl6iBblATtRBFD+gJvaBX69F6tt6s98VoySoyx+gPrI9vwk+eVQ==</latexit><latexit sha1_base64="BcPLS//JtZk28cnHPQ8Mz/Eh5ig=">AAACEXicbVBNS8NAFNzUrxq/oh69LBZBLyXpxXorePFYwdpCG8pm89ou3WzC7qYQQn+DF/+KFw8qXr1589+4bSNo68DCMPOGt2+ChDOlXffLKq2tb2xulbftnd29/QPn8Ohexamk0KIxj2UnIAo4E9DSTHPoJBJIFHBoB+Prmd+egFQsFnc6S8CPyFCwAaNEG6nvXPQCGDKRUxAa5NQmVLMJ0xnmsVJ2D0T4Y/Wdilt158CrxCtIBRVo9p3PXhjTNDJxyolSXc9NtJ8TqRnlMLV7qYKE0DEZQtdQQSJQfj4/aYrPjBLiQSzNExrP1d+JnERKZVFgJiOiR2rZm4n/ed1UD+p+zkSSahB0sWiQcqxjPOsHh0wC1TwzhFDJzF8xHRFpejEt2qYEb/nkVdKqVa+q3m2t0qgXbZTRCTpF58hDl6iBblATtRBFD+gJvaBX69F6tt6s98VoySoyx+gPrI9vwk+eVQ==</latexit><latexit sha1_base64="BcPLS//JtZk28cnHPQ8Mz/Eh5ig=">AAACEXicbVBNS8NAFNzUrxq/oh69LBZBLyXpxXorePFYwdpCG8pm89ou3WzC7qYQQn+DF/+KFw8qXr1589+4bSNo68DCMPOGt2+ChDOlXffLKq2tb2xulbftnd29/QPn8Ohexamk0KIxj2UnIAo4E9DSTHPoJBJIFHBoB+Prmd+egFQsFnc6S8CPyFCwAaNEG6nvXPQCGDKRUxAa5NQmVLMJ0xnmsVJ2D0T4Y/Wdilt158CrxCtIBRVo9p3PXhjTNDJxyolSXc9NtJ8TqRnlMLV7qYKE0DEZQtdQQSJQfj4/aYrPjBLiQSzNExrP1d+JnERKZVFgJiOiR2rZm4n/ed1UD+p+zkSSahB0sWiQcqxjPOsHh0wC1TwzhFDJzF8xHRFpejEt2qYEb/nkVdKqVa+q3m2t0qgXbZTRCTpF58hDl6iBblATtRBFD+gJvaBX69F6tt6s98VoySoyx+gPrI9vwk+eVQ==</latexit><latexit sha1_base64="BcPLS//JtZk28cnHPQ8Mz/Eh5ig=">AAACEXicbVBNS8NAFNzUrxq/oh69LBZBLyXpxXorePFYwdpCG8pm89ou3WzC7qYQQn+DF/+KFw8qXr1589+4bSNo68DCMPOGt2+ChDOlXffLKq2tb2xulbftnd29/QPn8Ohexamk0KIxj2UnIAo4E9DSTHPoJBJIFHBoB+Prmd+egFQsFnc6S8CPyFCwAaNEG6nvXPQCGDKRUxAa5NQmVLMJ0xnmsVJ2D0T4Y/Wdilt158CrxCtIBRVo9p3PXhjTNDJxyolSXc9NtJ8TqRnlMLV7qYKE0DEZQtdQQSJQfj4/aYrPjBLiQSzNExrP1d+JnERKZVFgJiOiR2rZm4n/ed1UD+p+zkSSahB0sWiQcqxjPOsHh0wC1TwzhFDJzF8xHRFpejEt2qYEb/nkVdKqVa+q3m2t0qgXbZTRCTpF58hDl6iBblATtRBFD+gJvaBX69F6tt6s98VoySoyx+gPrI9vwk+eVQ==</latexit>

object class loss
<latexit sha1_base64="52a627od74BeVjKBj74VpiEI2Rg=">AAACFXicbVBNSwMxEM3Wr7p+rXr0EiyCF8tuL9ZbwYvHCq4ttKVk02kbm02WJCuUpb/Ci3/FiwcVr4I3/41pu4K2Pgg83puZzLwo4Uwb3/9yCiura+sbxU13a3tnd8/bP7jVMlUUQiq5VM2IaOBMQGiY4dBMFJA44tCIRpdTv3EPSjMpbsw4gU5MBoL1GSXGSl3vrB3BgImMgjCgJq6M7oAaTDnRGnOptdsG0fuxu17JL/sz4GUS5KSEctS73me7J2ka2/bZyFbgJ6aTEWUY5TBx26mGhNARGUDLUkFi0J1sdtYEn1ilh/tS2SfsTlP1d0dGYq3HcWQrY2KGetGbiv95rdT0q52MiSQ1IOj8o37KsZF4mhHuMWVD4GNLCFXM7orpkChCbQbatSEEiycvk7BSvigH15VSrZqnUURH6BidogCdoxq6QnUUIooe0BN6Qa/Oo/PsvDnv89KCk/ccoj9wPr4Bd6SfvQ==</latexit><latexit sha1_base64="52a627od74BeVjKBj74VpiEI2Rg=">AAACFXicbVBNSwMxEM3Wr7p+rXr0EiyCF8tuL9ZbwYvHCq4ttKVk02kbm02WJCuUpb/Ci3/FiwcVr4I3/41pu4K2Pgg83puZzLwo4Uwb3/9yCiura+sbxU13a3tnd8/bP7jVMlUUQiq5VM2IaOBMQGiY4dBMFJA44tCIRpdTv3EPSjMpbsw4gU5MBoL1GSXGSl3vrB3BgImMgjCgJq6M7oAaTDnRGnOptdsG0fuxu17JL/sz4GUS5KSEctS73me7J2ka2/bZyFbgJ6aTEWUY5TBx26mGhNARGUDLUkFi0J1sdtYEn1ilh/tS2SfsTlP1d0dGYq3HcWQrY2KGetGbiv95rdT0q52MiSQ1IOj8o37KsZF4mhHuMWVD4GNLCFXM7orpkChCbQbatSEEiycvk7BSvigH15VSrZqnUURH6BidogCdoxq6QnUUIooe0BN6Qa/Oo/PsvDnv89KCk/ccoj9wPr4Bd6SfvQ==</latexit><latexit sha1_base64="52a627od74BeVjKBj74VpiEI2Rg=">AAACFXicbVBNSwMxEM3Wr7p+rXr0EiyCF8tuL9ZbwYvHCq4ttKVk02kbm02WJCuUpb/Ci3/FiwcVr4I3/41pu4K2Pgg83puZzLwo4Uwb3/9yCiura+sbxU13a3tnd8/bP7jVMlUUQiq5VM2IaOBMQGiY4dBMFJA44tCIRpdTv3EPSjMpbsw4gU5MBoL1GSXGSl3vrB3BgImMgjCgJq6M7oAaTDnRGnOptdsG0fuxu17JL/sz4GUS5KSEctS73me7J2ka2/bZyFbgJ6aTEWUY5TBx26mGhNARGUDLUkFi0J1sdtYEn1ilh/tS2SfsTlP1d0dGYq3HcWQrY2KGetGbiv95rdT0q52MiSQ1IOj8o37KsZF4mhHuMWVD4GNLCFXM7orpkChCbQbatSEEiycvk7BSvigH15VSrZqnUURH6BidogCdoxq6QnUUIooe0BN6Qa/Oo/PsvDnv89KCk/ccoj9wPr4Bd6SfvQ==</latexit><latexit sha1_base64="52a627od74BeVjKBj74VpiEI2Rg=">AAACFXicbVBNSwMxEM3Wr7p+rXr0EiyCF8tuL9ZbwYvHCq4ttKVk02kbm02WJCuUpb/Ci3/FiwcVr4I3/41pu4K2Pgg83puZzLwo4Uwb3/9yCiura+sbxU13a3tnd8/bP7jVMlUUQiq5VM2IaOBMQGiY4dBMFJA44tCIRpdTv3EPSjMpbsw4gU5MBoL1GSXGSl3vrB3BgImMgjCgJq6M7oAaTDnRGnOptdsG0fuxu17JL/sz4GUS5KSEctS73me7J2ka2/bZyFbgJ6aTEWUY5TBx26mGhNARGUDLUkFi0J1sdtYEn1ilh/tS2SfsTlP1d0dGYq3HcWQrY2KGetGbiv95rdT0q52MiSQ1IOj8o37KsZF4mhHuMWVD4GNLCFXM7orpkChCbQbatSEEiycvk7BSvigH15VSrZqnUURH6BidogCdoxq6QnUUIooe0BN6Qa/Oo/PsvDnv89KCk/ccoj9wPr4Bd6SfvQ==</latexit>

pairwise
temporal sampling

<latexit sha1_base64="IMkmLAb5bdMJnxwm+q7K1alA/fA=">AAACIHicbVBNSwMxFMz6WdevqkcvwSJ4Kru9WG8FLx4ruFrolvI2fa2hSXZJskpZ+le8+Fe8eFDRm/4a01pBqwOBYWYeeW+STHBjg+DdW1hcWl5ZLa356xubW9vlnd1Lk+aaYcRSkepWAgYFVxhZbgW2Mo0gE4FXyfB04l/doDY8VRd2lGFHwkDxPmdgndQt1+MEB1wVDJVFPfYz4PqWG4xjalFmqQZBDUi3ihr4Mared7JbrgTVYAr6l4QzUiEzNLvlt7iXsly6cSbAmHYYZLZTgLacCRz7cW4wAzaEAbYdVSDRdIrphWN66JQe7afaPWXpVP05UYA0ZiQTl5Rgr828NxH/89q57dc7BVdZblGxr4/6uaA2pZO6aI9rZFaMHAGmuduVsmvQwFwHxnclhPMn/yVRrXpSDc9rlUZ91kaJ7JMDckRCckwa5Iw0SUQYuSMP5Ik8e/feo/fivX5FF7zZzB75Be/jE9LypLg=</latexit><latexit sha1_base64="IMkmLAb5bdMJnxwm+q7K1alA/fA=">AAACIHicbVBNSwMxFMz6WdevqkcvwSJ4Kru9WG8FLx4ruFrolvI2fa2hSXZJskpZ+le8+Fe8eFDRm/4a01pBqwOBYWYeeW+STHBjg+DdW1hcWl5ZLa356xubW9vlnd1Lk+aaYcRSkepWAgYFVxhZbgW2Mo0gE4FXyfB04l/doDY8VRd2lGFHwkDxPmdgndQt1+MEB1wVDJVFPfYz4PqWG4xjalFmqQZBDUi3ihr4Mared7JbrgTVYAr6l4QzUiEzNLvlt7iXsly6cSbAmHYYZLZTgLacCRz7cW4wAzaEAbYdVSDRdIrphWN66JQe7afaPWXpVP05UYA0ZiQTl5Rgr828NxH/89q57dc7BVdZblGxr4/6uaA2pZO6aI9rZFaMHAGmuduVsmvQwFwHxnclhPMn/yVRrXpSDc9rlUZ91kaJ7JMDckRCckwa5Iw0SUQYuSMP5Ik8e/feo/fivX5FF7zZzB75Be/jE9LypLg=</latexit><latexit sha1_base64="IMkmLAb5bdMJnxwm+q7K1alA/fA=">AAACIHicbVBNSwMxFMz6WdevqkcvwSJ4Kru9WG8FLx4ruFrolvI2fa2hSXZJskpZ+le8+Fe8eFDRm/4a01pBqwOBYWYeeW+STHBjg+DdW1hcWl5ZLa356xubW9vlnd1Lk+aaYcRSkepWAgYFVxhZbgW2Mo0gE4FXyfB04l/doDY8VRd2lGFHwkDxPmdgndQt1+MEB1wVDJVFPfYz4PqWG4xjalFmqQZBDUi3ihr4Mared7JbrgTVYAr6l4QzUiEzNLvlt7iXsly6cSbAmHYYZLZTgLacCRz7cW4wAzaEAbYdVSDRdIrphWN66JQe7afaPWXpVP05UYA0ZiQTl5Rgr828NxH/89q57dc7BVdZblGxr4/6uaA2pZO6aI9rZFaMHAGmuduVsmvQwFwHxnclhPMn/yVRrXpSDc9rlUZ91kaJ7JMDckRCckwa5Iw0SUQYuSMP5Ik8e/feo/fivX5FF7zZzB75Be/jE9LypLg=</latexit><latexit sha1_base64="IMkmLAb5bdMJnxwm+q7K1alA/fA=">AAACIHicbVBNSwMxFMz6WdevqkcvwSJ4Kru9WG8FLx4ruFrolvI2fa2hSXZJskpZ+le8+Fe8eFDRm/4a01pBqwOBYWYeeW+STHBjg+DdW1hcWl5ZLa356xubW9vlnd1Lk+aaYcRSkepWAgYFVxhZbgW2Mo0gE4FXyfB04l/doDY8VRd2lGFHwkDxPmdgndQt1+MEB1wVDJVFPfYz4PqWG4xjalFmqQZBDUi3ihr4Mared7JbrgTVYAr6l4QzUiEzNLvlt7iXsly6cSbAmHYYZLZTgLacCRz7cW4wAzaEAbYdVSDRdIrphWN66JQe7afaPWXpVP05UYA0ZiQTl5Rgr828NxH/89q57dc7BVdZblGxr4/6uaA2pZO6aI9rZFaMHAGmuduVsmvQwFwHxnclhPMn/yVRrXpSDc9rlUZ91kaJ7JMDckRCckwa5Iw0SUQYuSMP5Ik8e/feo/fivX5FF7zZzB75Be/jE9LypLg=</latexit>

activity features
<latexit sha1_base64="r+7eRHfo+xMX1EIiEEcQFlIGw6w=">AAACFXicbVC7SgNBFJ2Nr7i+opY2g0GwMeymMXYBG8sIxgSSEGYnd5Mhs7PLzN1AWPIVNv6KjYWKrWDn3zh5CJp4YOBwzj3cuSdIpDDoeV9Obm19Y3Mrv+3u7O7tHxQOj+5NnGoOdR7LWDcDZkAKBXUUKKGZaGBRIKERDK+nfmME2ohY3eE4gU7E+kqEgjO0Urdw0Q6gL1TGQSHoics4ipHAMQ2BYarBuG1QvR+7Wyh6JW8Gukr8BSmSBWrdwme7F/M0snEumTEt30uwkzGNgkuYuO3UQML4kPWhZaliEZhONjtrQs+s0qNhrO1TSGfq70TGImPGUWAnI4YDs+xNxf+8VophpZMJlaQIis8XhamkGNNpR7QnNHCUY0sY18L+lfIB07Yb26RrS/CXT14l9XLpquTflovVyqKNPDkhp+Sc+OSSVMkNqZE64eSBPJEX8uo8Os/Om/M+H805i8wx+QPn4xsNc6Ab</latexit><latexit sha1_base64="r+7eRHfo+xMX1EIiEEcQFlIGw6w=">AAACFXicbVC7SgNBFJ2Nr7i+opY2g0GwMeymMXYBG8sIxgSSEGYnd5Mhs7PLzN1AWPIVNv6KjYWKrWDn3zh5CJp4YOBwzj3cuSdIpDDoeV9Obm19Y3Mrv+3u7O7tHxQOj+5NnGoOdR7LWDcDZkAKBXUUKKGZaGBRIKERDK+nfmME2ohY3eE4gU7E+kqEgjO0Urdw0Q6gL1TGQSHoics4ipHAMQ2BYarBuG1QvR+7Wyh6JW8Gukr8BSmSBWrdwme7F/M0snEumTEt30uwkzGNgkuYuO3UQML4kPWhZaliEZhONjtrQs+s0qNhrO1TSGfq70TGImPGUWAnI4YDs+xNxf+8VophpZMJlaQIis8XhamkGNNpR7QnNHCUY0sY18L+lfIB07Yb26RrS/CXT14l9XLpquTflovVyqKNPDkhp+Sc+OSSVMkNqZE64eSBPJEX8uo8Os/Om/M+H805i8wx+QPn4xsNc6Ab</latexit><latexit sha1_base64="r+7eRHfo+xMX1EIiEEcQFlIGw6w=">AAACFXicbVC7SgNBFJ2Nr7i+opY2g0GwMeymMXYBG8sIxgSSEGYnd5Mhs7PLzN1AWPIVNv6KjYWKrWDn3zh5CJp4YOBwzj3cuSdIpDDoeV9Obm19Y3Mrv+3u7O7tHxQOj+5NnGoOdR7LWDcDZkAKBXUUKKGZaGBRIKERDK+nfmME2ohY3eE4gU7E+kqEgjO0Urdw0Q6gL1TGQSHoics4ipHAMQ2BYarBuG1QvR+7Wyh6JW8Gukr8BSmSBWrdwme7F/M0snEumTEt30uwkzGNgkuYuO3UQML4kPWhZaliEZhONjtrQs+s0qNhrO1TSGfq70TGImPGUWAnI4YDs+xNxf+8VophpZMJlaQIis8XhamkGNNpR7QnNHCUY0sY18L+lfIB07Yb26RrS/CXT14l9XLpquTflovVyqKNPDkhp+Sc+OSSVMkNqZE64eSBPJEX8uo8Os/Om/M+H805i8wx+QPn4xsNc6Ab</latexit><latexit sha1_base64="r+7eRHfo+xMX1EIiEEcQFlIGw6w=">AAACFXicbVC7SgNBFJ2Nr7i+opY2g0GwMeymMXYBG8sIxgSSEGYnd5Mhs7PLzN1AWPIVNv6KjYWKrWDn3zh5CJp4YOBwzj3cuSdIpDDoeV9Obm19Y3Mrv+3u7O7tHxQOj+5NnGoOdR7LWDcDZkAKBXUUKKGZaGBRIKERDK+nfmME2ohY3eE4gU7E+kqEgjO0Urdw0Q6gL1TGQSHoics4ipHAMQ2BYarBuG1QvR+7Wyh6JW8Gukr8BSmSBWrdwme7F/M0snEumTEt30uwkzGNgkuYuO3UQML4kPWhZaliEZhONjtrQs+s0qNhrO1TSGfq70TGImPGUWAnI4YDs+xNxf+8VophpZMJlaQIis8XhamkGNNpR7QnNHCUY0sY18L+lfIB07Yb26RrS/CXT14l9XLpquTflovVyqKNPDkhp+Sc+OSSVMkNqZE64eSBPJEX8uo8Os/Om/M+H805i8wx+QPn4xsNc6Ab</latexit>

n⇥2D sets of
object features

<latexit sha1_base64="viP+YHsQOd91KFvZysvFMJg/WIY=">AAACK3icbVBNSwMxFMz67fpV9egl2Aqeym4v6k3Qg8cKVgvdUrLp2xrNJkvyVihLf5AX/4ogHqx49X+Y1graOhAYZt6Q9ybOpLAYBENvbn5hcWl5ZdVfW9/Y3Cpt71xbnRsODa6lNs2YWZBCQQMFSmhmBlgaS7iJ789G/s0DGCu0usJ+Bu2U9ZRIBGfopE7pLIqhJ1TBQSGYgV9RRYQiBTuonVeoBbRUJ1Hk6/gOONIEGOYGrB+B6v6EOqVyUA3GoLMknJAymaDeKb1EXc3z1MW5ZNa2wiDDdsEMCi5h4Ee5hYzxe9aDlqOKuX3axfjYAT1wSpcm2rinkI7V34mCpdb209hNpgxv7bQ3Ev/zWjkmx+1CqCxHUPz7oySXFDUdNUe7wrgKZN8Rxo1wu1J+ywzjrgPruxLC6ZNnSaNWPamGl7Xy6fGkjRWyR/bJIQnJETklF6ROGoSTR/JM3sjQe/JevXfv43t0zptkdskfeJ9f7xuoOQ==</latexit><latexit sha1_base64="viP+YHsQOd91KFvZysvFMJg/WIY=">AAACK3icbVBNSwMxFMz67fpV9egl2Aqeym4v6k3Qg8cKVgvdUrLp2xrNJkvyVihLf5AX/4ogHqx49X+Y1graOhAYZt6Q9ybOpLAYBENvbn5hcWl5ZdVfW9/Y3Cpt71xbnRsODa6lNs2YWZBCQQMFSmhmBlgaS7iJ789G/s0DGCu0usJ+Bu2U9ZRIBGfopE7pLIqhJ1TBQSGYgV9RRYQiBTuonVeoBbRUJ1Hk6/gOONIEGOYGrB+B6v6EOqVyUA3GoLMknJAymaDeKb1EXc3z1MW5ZNa2wiDDdsEMCi5h4Ee5hYzxe9aDlqOKuX3axfjYAT1wSpcm2rinkI7V34mCpdb209hNpgxv7bQ3Ev/zWjkmx+1CqCxHUPz7oySXFDUdNUe7wrgKZN8Rxo1wu1J+ywzjrgPruxLC6ZNnSaNWPamGl7Xy6fGkjRWyR/bJIQnJETklF6ROGoSTR/JM3sjQe/JevXfv43t0zptkdskfeJ9f7xuoOQ==</latexit><latexit sha1_base64="viP+YHsQOd91KFvZysvFMJg/WIY=">AAACK3icbVBNSwMxFMz67fpV9egl2Aqeym4v6k3Qg8cKVgvdUrLp2xrNJkvyVihLf5AX/4ogHqx49X+Y1graOhAYZt6Q9ybOpLAYBENvbn5hcWl5ZdVfW9/Y3Cpt71xbnRsODa6lNs2YWZBCQQMFSmhmBlgaS7iJ789G/s0DGCu0usJ+Bu2U9ZRIBGfopE7pLIqhJ1TBQSGYgV9RRYQiBTuonVeoBbRUJ1Hk6/gOONIEGOYGrB+B6v6EOqVyUA3GoLMknJAymaDeKb1EXc3z1MW5ZNa2wiDDdsEMCi5h4Ee5hYzxe9aDlqOKuX3axfjYAT1wSpcm2rinkI7V34mCpdb209hNpgxv7bQ3Ev/zWjkmx+1CqCxHUPz7oySXFDUdNUe7wrgKZN8Rxo1wu1J+ywzjrgPruxLC6ZNnSaNWPamGl7Xy6fGkjRWyR/bJIQnJETklF6ROGoSTR/JM3sjQe/JevXfv43t0zptkdskfeJ9f7xuoOQ==</latexit><latexit sha1_base64="viP+YHsQOd91KFvZysvFMJg/WIY=">AAACK3icbVBNSwMxFMz67fpV9egl2Aqeym4v6k3Qg8cKVgvdUrLp2xrNJkvyVihLf5AX/4ogHqx49X+Y1graOhAYZt6Q9ybOpLAYBENvbn5hcWl5ZdVfW9/Y3Cpt71xbnRsODa6lNs2YWZBCQQMFSmhmBlgaS7iJ789G/s0DGCu0usJ+Bu2U9ZRIBGfopE7pLIqhJ1TBQSGYgV9RRYQiBTuonVeoBbRUJ1Hk6/gOONIEGOYGrB+B6v6EOqVyUA3GoLMknJAymaDeKb1EXc3z1MW5ZNa2wiDDdsEMCi5h4Ee5hYzxe9aDlqOKuX3axfjYAT1wSpcm2rinkI7V34mCpdb209hNpgxv7bQ3Ev/zWjkmx+1CqCxHUPz7oySXFDUdNUe7wrgKZN8Rxo1wu1J+ywzjrgPruxLC6ZNnSaNWPamGl7Xy6fGkjRWyR/bJIQnJETklF6ROGoSTR/JM3sjQe/JevXfv43t0zptkdskfeJ9f7xuoOQ==</latexit>

n⇥2D sets of
object masks

<latexit sha1_base64="wsaTEZjazwjgqpKPonLLv8b2h38=">AAACKHicbVDLSgMxFM3UVx1fVZdugq3gqsx0Y90VdOGygrWFTimZ9E4bm0mGJCOUob/jxl9xo6DSrV9i+hC09UDgcM495N4TJpxp43kTJ7e2vrG5ld92d3b39g8Kh0f3WqaKQoNKLlUrJBo4E9AwzHBoJQpIHHJohsOrqd98BKWZFHdmlEAnJn3BIkaJsVK3UAtC6DORURAG1NgtiSwwLAY9rlyXsAajsYyCwJXhA1CDY6KH2g1A9H4S3ULRK3sz4FXiL0gRLVDvFt6CnqRpbOOUE63bvpeYTkaUYZTD2A1SDQmhQ9KHtqWC2GU62ezSMT6zSg9HUtknDJ6pvxMZibUexaGdjIkZ6GVvKv7ntVMTVTsZE0lqQND5R1HKsZF4WhvuMWXv5yNLCFXM7orpgChCbQfatSX4yyevkkalfFn2byvFWnXRRh6doFN0jnx0gWroBtVRA1H0hF7QO/pwnp1X59OZzEdzziJzjP7A+foGUQGm2w==</latexit><latexit sha1_base64="wsaTEZjazwjgqpKPonLLv8b2h38=">AAACKHicbVDLSgMxFM3UVx1fVZdugq3gqsx0Y90VdOGygrWFTimZ9E4bm0mGJCOUob/jxl9xo6DSrV9i+hC09UDgcM495N4TJpxp43kTJ7e2vrG5ld92d3b39g8Kh0f3WqaKQoNKLlUrJBo4E9AwzHBoJQpIHHJohsOrqd98BKWZFHdmlEAnJn3BIkaJsVK3UAtC6DORURAG1NgtiSwwLAY9rlyXsAajsYyCwJXhA1CDY6KH2g1A9H4S3ULRK3sz4FXiL0gRLVDvFt6CnqRpbOOUE63bvpeYTkaUYZTD2A1SDQmhQ9KHtqWC2GU62ezSMT6zSg9HUtknDJ6pvxMZibUexaGdjIkZ6GVvKv7ntVMTVTsZE0lqQND5R1HKsZF4WhvuMWXv5yNLCFXM7orpgChCbQfatSX4yyevkkalfFn2byvFWnXRRh6doFN0jnx0gWroBtVRA1H0hF7QO/pwnp1X59OZzEdzziJzjP7A+foGUQGm2w==</latexit><latexit sha1_base64="wsaTEZjazwjgqpKPonLLv8b2h38=">AAACKHicbVDLSgMxFM3UVx1fVZdugq3gqsx0Y90VdOGygrWFTimZ9E4bm0mGJCOUob/jxl9xo6DSrV9i+hC09UDgcM495N4TJpxp43kTJ7e2vrG5ld92d3b39g8Kh0f3WqaKQoNKLlUrJBo4E9AwzHBoJQpIHHJohsOrqd98BKWZFHdmlEAnJn3BIkaJsVK3UAtC6DORURAG1NgtiSwwLAY9rlyXsAajsYyCwJXhA1CDY6KH2g1A9H4S3ULRK3sz4FXiL0gRLVDvFt6CnqRpbOOUE63bvpeYTkaUYZTD2A1SDQmhQ9KHtqWC2GU62ezSMT6zSg9HUtknDJ6pvxMZibUexaGdjIkZ6GVvKv7ntVMTVTsZE0lqQND5R1HKsZF4WhvuMWXv5yNLCFXM7orpgChCbQfatSX4yyevkkalfFn2byvFWnXRRh6doFN0jnx0gWroBtVRA1H0hF7QO/pwnp1X59OZzEdzziJzjP7A+foGUQGm2w==</latexit><latexit sha1_base64="wsaTEZjazwjgqpKPonLLv8b2h38=">AAACKHicbVDLSgMxFM3UVx1fVZdugq3gqsx0Y90VdOGygrWFTimZ9E4bm0mGJCOUob/jxl9xo6DSrV9i+hC09UDgcM495N4TJpxp43kTJ7e2vrG5ld92d3b39g8Kh0f3WqaKQoNKLlUrJBo4E9AwzHBoJQpIHHJohsOrqd98BKWZFHdmlEAnJn3BIkaJsVK3UAtC6DORURAG1NgtiSwwLAY9rlyXsAajsYyCwJXhA1CDY6KH2g1A9H4S3ULRK3sz4FXiL0gRLVDvFt6CnqRpbOOUE63bvpeYTkaUYZTD2A1SDQmhQ9KHtqWC2GU62ezSMT6zSg9HUtknDJ6pvxMZibUexaGdjIkZ6GVvKv7ntVMTVTsZE0lqQND5R1HKsZF4WhvuMWXv5yNLCFXM7orpgChCbQfatSX4yyevkkalfFn2byvFWnXRRh6doFN0jnx0gWroBtVRA1H0hF7QO/pwnp1X59OZzEdzziJzjP7A+foGUQGm2w==</latexit>

activity loss
<latexit sha1_base64="BcPLS//JtZk28cnHPQ8Mz/Eh5ig=">AAACEXicbVBNS8NAFNzUrxq/oh69LBZBLyXpxXorePFYwdpCG8pm89ou3WzC7qYQQn+DF/+KFw8qXr1589+4bSNo68DCMPOGt2+ChDOlXffLKq2tb2xulbftnd29/QPn8Ohexamk0KIxj2UnIAo4E9DSTHPoJBJIFHBoB+Prmd+egFQsFnc6S8CPyFCwAaNEG6nvXPQCGDKRUxAa5NQmVLMJ0xnmsVJ2D0T4Y/Wdilt158CrxCtIBRVo9p3PXhjTNDJxyolSXc9NtJ8TqRnlMLV7qYKE0DEZQtdQQSJQfj4/aYrPjBLiQSzNExrP1d+JnERKZVFgJiOiR2rZm4n/ed1UD+p+zkSSahB0sWiQcqxjPOsHh0wC1TwzhFDJzF8xHRFpejEt2qYEb/nkVdKqVa+q3m2t0qgXbZTRCTpF58hDl6iBblATtRBFD+gJvaBX69F6tt6s98VoySoyx+gPrI9vwk+eVQ==</latexit><latexit sha1_base64="BcPLS//JtZk28cnHPQ8Mz/Eh5ig=">AAACEXicbVBNS8NAFNzUrxq/oh69LBZBLyXpxXorePFYwdpCG8pm89ou3WzC7qYQQn+DF/+KFw8qXr1589+4bSNo68DCMPOGt2+ChDOlXffLKq2tb2xulbftnd29/QPn8Ohexamk0KIxj2UnIAo4E9DSTHPoJBJIFHBoB+Prmd+egFQsFnc6S8CPyFCwAaNEG6nvXPQCGDKRUxAa5NQmVLMJ0xnmsVJ2D0T4Y/Wdilt158CrxCtIBRVo9p3PXhjTNDJxyolSXc9NtJ8TqRnlMLV7qYKE0DEZQtdQQSJQfj4/aYrPjBLiQSzNExrP1d+JnERKZVFgJiOiR2rZm4n/ed1UD+p+zkSSahB0sWiQcqxjPOsHh0wC1TwzhFDJzF8xHRFpejEt2qYEb/nkVdKqVa+q3m2t0qgXbZTRCTpF58hDl6iBblATtRBFD+gJvaBX69F6tt6s98VoySoyx+gPrI9vwk+eVQ==</latexit><latexit sha1_base64="BcPLS//JtZk28cnHPQ8Mz/Eh5ig=">AAACEXicbVBNS8NAFNzUrxq/oh69LBZBLyXpxXorePFYwdpCG8pm89ou3WzC7qYQQn+DF/+KFw8qXr1589+4bSNo68DCMPOGt2+ChDOlXffLKq2tb2xulbftnd29/QPn8Ohexamk0KIxj2UnIAo4E9DSTHPoJBJIFHBoB+Prmd+egFQsFnc6S8CPyFCwAaNEG6nvXPQCGDKRUxAa5NQmVLMJ0xnmsVJ2D0T4Y/Wdilt158CrxCtIBRVo9p3PXhjTNDJxyolSXc9NtJ8TqRnlMLV7qYKE0DEZQtdQQSJQfj4/aYrPjBLiQSzNExrP1d+JnERKZVFgJiOiR2rZm4n/ed1UD+p+zkSSahB0sWiQcqxjPOsHh0wC1TwzhFDJzF8xHRFpejEt2qYEb/nkVdKqVa+q3m2t0qgXbZTRCTpF58hDl6iBblATtRBFD+gJvaBX69F6tt6s98VoySoyx+gPrI9vwk+eVQ==</latexit><latexit sha1_base64="BcPLS//JtZk28cnHPQ8Mz/Eh5ig=">AAACEXicbVBNS8NAFNzUrxq/oh69LBZBLyXpxXorePFYwdpCG8pm89ou3WzC7qYQQn+DF/+KFw8qXr1589+4bSNo68DCMPOGt2+ChDOlXffLKq2tb2xulbftnd29/QPn8Ohexamk0KIxj2UnIAo4E9DSTHPoJBJIFHBoB+Prmd+egFQsFnc6S8CPyFCwAaNEG6nvXPQCGDKRUxAa5NQmVLMJ0xnmsVJ2D0T4Y/Wdilt158CrxCtIBRVo9p3PXhjTNDJxyolSXc9NtJ8TqRnlMLV7qYKE0DEZQtdQQSJQfj4/aYrPjBLiQSzNExrP1d+JnERKZVFgJiOiR2rZm4n/ed1UD+p+zkSSahB0sWiQcqxjPOsHh0wC1TwzhFDJzF8xHRFpejEt2qYEb/nkVdKqVa+q3m2t0qgXbZTRCTpF58hDl6iBblATtRBFD+gJvaBX69F6tt6s98VoySoyx+gPrI9vwk+eVQ==</latexit>

U
<latexit sha1_base64="7MGsePtR5b4Fn9+IJvBQ7gwy4pE=">AAACFHicbVBNS8NAEN34WeNX1KOXYCt4kJL0ot6KXjxWMLbQhLLZTNqlm03Y3Qgl9E948a948aDi1YM3/42btoK2Diz7eG8eM/PCjFGpHOfLWFpeWV1br2yYm1vbO7vW3v6dTHNBwCMpS0UnxBIY5eApqhh0MgE4CRm0w+FVqbfvQUia8ls1yiBIcJ/TmBKsNNWzTv0Q+pQXBLgCMTZrfpiySI4S/RXeuGb6wKMftWdVnbozKXsRuDNQRbNq9axPP0pJnmg7YVjKrutkKiiwUJQwGJt+LiHDZIj70NWQ4wRkUEyuGtvHmonsOBX6cWVP2N+OAieyXFR3JlgN5LxWkv9p3VzF50FBeZYr4GQ6KM6ZrVK7jMiOqACi2EgDTATVu9pkgAUmOgNp6hDc+ZMXgdeoX9Tdm0a1eTlLo4IO0RE6QS46Q010jVrIQwQ9oCf0gl6NR+PZeDPep61LxsxzgP6U8fENqWOfVw==</latexit><latexit sha1_base64="7MGsePtR5b4Fn9+IJvBQ7gwy4pE=">AAACFHicbVBNS8NAEN34WeNX1KOXYCt4kJL0ot6KXjxWMLbQhLLZTNqlm03Y3Qgl9E948a948aDi1YM3/42btoK2Diz7eG8eM/PCjFGpHOfLWFpeWV1br2yYm1vbO7vW3v6dTHNBwCMpS0UnxBIY5eApqhh0MgE4CRm0w+FVqbfvQUia8ls1yiBIcJ/TmBKsNNWzTv0Q+pQXBLgCMTZrfpiySI4S/RXeuGb6wKMftWdVnbozKXsRuDNQRbNq9axPP0pJnmg7YVjKrutkKiiwUJQwGJt+LiHDZIj70NWQ4wRkUEyuGtvHmonsOBX6cWVP2N+OAieyXFR3JlgN5LxWkv9p3VzF50FBeZYr4GQ6KM6ZrVK7jMiOqACi2EgDTATVu9pkgAUmOgNp6hDc+ZMXgdeoX9Tdm0a1eTlLo4IO0RE6QS46Q010jVrIQwQ9oCf0gl6NR+PZeDPep61LxsxzgP6U8fENqWOfVw==</latexit><latexit sha1_base64="7MGsePtR5b4Fn9+IJvBQ7gwy4pE=">AAACFHicbVBNS8NAEN34WeNX1KOXYCt4kJL0ot6KXjxWMLbQhLLZTNqlm03Y3Qgl9E948a948aDi1YM3/42btoK2Diz7eG8eM/PCjFGpHOfLWFpeWV1br2yYm1vbO7vW3v6dTHNBwCMpS0UnxBIY5eApqhh0MgE4CRm0w+FVqbfvQUia8ls1yiBIcJ/TmBKsNNWzTv0Q+pQXBLgCMTZrfpiySI4S/RXeuGb6wKMftWdVnbozKXsRuDNQRbNq9axPP0pJnmg7YVjKrutkKiiwUJQwGJt+LiHDZIj70NWQ4wRkUEyuGtvHmonsOBX6cWVP2N+OAieyXFR3JlgN5LxWkv9p3VzF50FBeZYr4GQ6KM6ZrVK7jMiOqACi2EgDTATVu9pkgAUmOgNp6hDc+ZMXgdeoX9Tdm0a1eTlLo4IO0RE6QS46Q010jVrIQwQ9oCf0gl6NR+PZeDPep61LxsxzgP6U8fENqWOfVw==</latexit><latexit sha1_base64="7MGsePtR5b4Fn9+IJvBQ7gwy4pE=">AAACFHicbVBNS8NAEN34WeNX1KOXYCt4kJL0ot6KXjxWMLbQhLLZTNqlm03Y3Qgl9E948a948aDi1YM3/42btoK2Diz7eG8eM/PCjFGpHOfLWFpeWV1br2yYm1vbO7vW3v6dTHNBwCMpS0UnxBIY5eApqhh0MgE4CRm0w+FVqbfvQUia8ls1yiBIcJ/TmBKsNNWzTv0Q+pQXBLgCMTZrfpiySI4S/RXeuGb6wKMftWdVnbozKXsRuDNQRbNq9axPP0pJnmg7YVjKrutkKiiwUJQwGJt+LiHDZIj70NWQ4wRkUEyuGtvHmonsOBX6cWVP2N+OAieyXFR3JlgN5LxWkv9p3VzF50FBeZYr4GQ6KM6ZrVK7jMiOqACi2EgDTATVu9pkgAUmOgNp6hDc+ZMXgdeoX9Tdm0a1eTlLo4IO0RE6QS46Q010jVrIQwQ9oCf0gl6NR+PZeDPep61LxsxzgP6U8fENqWOfVw==</latexit>

V
<latexit sha1_base64="OvpqHdnJr07GAq4B5qFqQBwG38Y=">AAACFHicbVA9T8MwEHXKVwlfBUYWixaJAVVJF2CrYGEsEmkrNVXlONfWquNEtoNURf0TLPwVFgZArAxs/BuctkjQcpLlp/fu6e5ekHCmtON8WYWV1bX1jeKmvbW9s7tX2j9oqjiVFDwa81i2A6KAMwGeZppDO5FAooBDKxhd53rrHqRisbjT4wS6ERkI1meUaEP1Smd+AAMmMgpCg5zYFT+IeajGkfmy5qRi+yDCH7VXKjtVZ1p4GbhzUEbzavRKn34Y0zQydsqJUh3XSXQ3I1IzymFi+6mChNARGUDHQEEiUN1setUEnxgmxP1Ymic0nrK/HRmJVL6o6YyIHqpFLSf/0zqp7l90MyaSVIOgs0H9lGMd4zwiHDIJVPOxAYRKZnbFdEgkoSYDZZsQ3MWTl4FXq15W3dtauX41T6OIjtAxOkUuOkd1dIMayEMUPaAn9IJerUfr2Xqz3metBWvuOUR/yvr4Bqr1n1g=</latexit><latexit sha1_base64="OvpqHdnJr07GAq4B5qFqQBwG38Y=">AAACFHicbVA9T8MwEHXKVwlfBUYWixaJAVVJF2CrYGEsEmkrNVXlONfWquNEtoNURf0TLPwVFgZArAxs/BuctkjQcpLlp/fu6e5ekHCmtON8WYWV1bX1jeKmvbW9s7tX2j9oqjiVFDwa81i2A6KAMwGeZppDO5FAooBDKxhd53rrHqRisbjT4wS6ERkI1meUaEP1Smd+AAMmMgpCg5zYFT+IeajGkfmy5qRi+yDCH7VXKjtVZ1p4GbhzUEbzavRKn34Y0zQydsqJUh3XSXQ3I1IzymFi+6mChNARGUDHQEEiUN1setUEnxgmxP1Ymic0nrK/HRmJVL6o6YyIHqpFLSf/0zqp7l90MyaSVIOgs0H9lGMd4zwiHDIJVPOxAYRKZnbFdEgkoSYDZZsQ3MWTl4FXq15W3dtauX41T6OIjtAxOkUuOkd1dIMayEMUPaAn9IJerUfr2Xqz3metBWvuOUR/yvr4Bqr1n1g=</latexit><latexit sha1_base64="OvpqHdnJr07GAq4B5qFqQBwG38Y=">AAACFHicbVA9T8MwEHXKVwlfBUYWixaJAVVJF2CrYGEsEmkrNVXlONfWquNEtoNURf0TLPwVFgZArAxs/BuctkjQcpLlp/fu6e5ekHCmtON8WYWV1bX1jeKmvbW9s7tX2j9oqjiVFDwa81i2A6KAMwGeZppDO5FAooBDKxhd53rrHqRisbjT4wS6ERkI1meUaEP1Smd+AAMmMgpCg5zYFT+IeajGkfmy5qRi+yDCH7VXKjtVZ1p4GbhzUEbzavRKn34Y0zQydsqJUh3XSXQ3I1IzymFi+6mChNARGUDHQEEiUN1setUEnxgmxP1Ymic0nrK/HRmJVL6o6YyIHqpFLSf/0zqp7l90MyaSVIOgs0H9lGMd4zwiHDIJVPOxAYRKZnbFdEgkoSYDZZsQ3MWTl4FXq15W3dtauX41T6OIjtAxOkUuOkd1dIMayEMUPaAn9IJerUfr2Xqz3metBWvuOUR/yvr4Bqr1n1g=</latexit><latexit sha1_base64="OvpqHdnJr07GAq4B5qFqQBwG38Y=">AAACFHicbVA9T8MwEHXKVwlfBUYWixaJAVVJF2CrYGEsEmkrNVXlONfWquNEtoNURf0TLPwVFgZArAxs/BuctkjQcpLlp/fu6e5ekHCmtON8WYWV1bX1jeKmvbW9s7tX2j9oqjiVFDwa81i2A6KAMwGeZppDO5FAooBDKxhd53rrHqRisbjT4wS6ERkI1meUaEP1Smd+AAMmMgpCg5zYFT+IeajGkfmy5qRi+yDCH7VXKjtVZ1p4GbhzUEbzavRKn34Y0zQydsqJUh3XSXQ3I1IzymFi+6mChNARGUDHQEEiUN1setUEnxgmxP1Ymic0nrK/HRmJVL6o6YyIHqpFLSf/0zqp7l90MyaSVIOgs0H9lGMd4zwiHDIJVPOxAYRKZnbFdEgkoSYDZZsQ3MWTl4FXq15W3dtauX41T6OIjtAxOkUuOkd1dIMayEMUPaAn9IJerUfr2Xqz3metBWvuOUR/yvr4Bqr1n1g=</latexit>

B<latexit sha1_base64="iJdXLwSzYTGEjcqRLfw6lR+3IoY=">AAACFHicbVA9T8MwEHXKVwlfAUaWiBaJAVVJF2CrysJYJEorNVXlONfWqmNHtoNURf0TLPwVFgZArAxs/BuctkjQcpLlp/fu6e5emDCqtOd9WYWV1bX1jeKmvbW9s7vn7B/cKZFKAk0imJDtECtglENTU82gnUjAccigFY6ucr11D1JRwW/1OIFujAec9inB2lA95ywIYUB5RoBrkBO7HISCRWocmy+rT8p2ADz6UXtOyat403KXgT8HJTSvRs/5DCJB0tjYCcNKdXwv0d0MS00Jg4kdpAoSTEZ4AB0DOY5BdbPpVRP3xDCR2xfSPK7dKfvbkeFY5YuazhjroVrUcvI/rZPq/kU3ozxJNXAyG9RPmauFm0fkRlQC0WxsACaSml1dMsQSE5OBsk0I/uLJy6BZrVxW/JtqqVafp1FER+gYnSIfnaMaukYN1EQEPaAn9IJerUfr2Xqz3metBWvuOUR/yvr4BouNn0Q=</latexit><latexit sha1_base64="iJdXLwSzYTGEjcqRLfw6lR+3IoY=">AAACFHicbVA9T8MwEHXKVwlfAUaWiBaJAVVJF2CrysJYJEorNVXlONfWqmNHtoNURf0TLPwVFgZArAxs/BuctkjQcpLlp/fu6e5emDCqtOd9WYWV1bX1jeKmvbW9s7vn7B/cKZFKAk0imJDtECtglENTU82gnUjAccigFY6ucr11D1JRwW/1OIFujAec9inB2lA95ywIYUB5RoBrkBO7HISCRWocmy+rT8p2ADz6UXtOyat403KXgT8HJTSvRs/5DCJB0tjYCcNKdXwv0d0MS00Jg4kdpAoSTEZ4AB0DOY5BdbPpVRP3xDCR2xfSPK7dKfvbkeFY5YuazhjroVrUcvI/rZPq/kU3ozxJNXAyG9RPmauFm0fkRlQC0WxsACaSml1dMsQSE5OBsk0I/uLJy6BZrVxW/JtqqVafp1FER+gYnSIfnaMaukYN1EQEPaAn9IJerUfr2Xqz3metBWvuOUR/yvr4BouNn0Q=</latexit><latexit sha1_base64="iJdXLwSzYTGEjcqRLfw6lR+3IoY=">AAACFHicbVA9T8MwEHXKVwlfAUaWiBaJAVVJF2CrysJYJEorNVXlONfWqmNHtoNURf0TLPwVFgZArAxs/BuctkjQcpLlp/fu6e5emDCqtOd9WYWV1bX1jeKmvbW9s7vn7B/cKZFKAk0imJDtECtglENTU82gnUjAccigFY6ucr11D1JRwW/1OIFujAec9inB2lA95ywIYUB5RoBrkBO7HISCRWocmy+rT8p2ADz6UXtOyat403KXgT8HJTSvRs/5DCJB0tjYCcNKdXwv0d0MS00Jg4kdpAoSTEZ4AB0DOY5BdbPpVRP3xDCR2xfSPK7dKfvbkeFY5YuazhjroVrUcvI/rZPq/kU3ozxJNXAyG9RPmauFm0fkRlQC0WxsACaSml1dMsQSE5OBsk0I/uLJy6BZrVxW/JtqqVafp1FER+gYnSIfnaMaukYN1EQEPaAn9IJerUfr2Xqz3metBWvuOUR/yvr4BouNn0Q=</latexit><latexit sha1_base64="iJdXLwSzYTGEjcqRLfw6lR+3IoY=">AAACFHicbVA9T8MwEHXKVwlfAUaWiBaJAVVJF2CrysJYJEorNVXlONfWqmNHtoNURf0TLPwVFgZArAxs/BuctkjQcpLlp/fu6e5emDCqtOd9WYWV1bX1jeKmvbW9s7vn7B/cKZFKAk0imJDtECtglENTU82gnUjAccigFY6ucr11D1JRwW/1OIFujAec9inB2lA95ywIYUB5RoBrkBO7HISCRWocmy+rT8p2ADz6UXtOyat403KXgT8HJTSvRs/5DCJB0tjYCcNKdXwv0d0MS00Jg4kdpAoSTEZ4AB0DOY5BdbPpVRP3xDCR2xfSPK7dKfvbkeFY5YuazhjroVrUcvI/rZPq/kU3ozxJNXAyG9RPmauFm0fkRlQC0WxsACaSml1dMsQSE5OBsk0I/uLJy6BZrVxW/JtqqVafp1FER+gYnSIfnaMaukYN1EQEPaAn9IJerUfr2Xqz3metBWvuOUR/yvr4BouNn0Q=</latexit>

RNN
<latexit sha1_base64="WNqRVHooK3MRbsx3jlRlp53Ez9s=">AAACB3icbVBNS8NAFNzUrxq/oh49GCyCp5L0Yr0VvHgqVYwttKFsNi/t0s0m7G6EEnr04l/x4kHFq3/Bm//GbRtBWwcWhpk3vH0TpIxK5ThfRmlldW19o7xpbm3v7O5Z+wd3MskEAY8kLBGdAEtglIOnqGLQSQXgOGDQDkaXU799D0LShN+qcQp+jAecRpRgpaW+ddwLYEB5ToArEBPzptk0e8DDH6FvVZyqM4O9TNyCVFCBVt/67IUJyWIdJwxL2XWdVPk5FooSBhOzl0lIMRnhAXQ15TgG6eezQyb2qVZCO0qEflzZM/V3IsexlOM40JMxVkO56E3F/7xupqK6n1OeZgo4mS+KMmarxJ62YodUAFFsrAkmguq/2mSIBSa6A2nqEtzFk5eJV6teVN3rWqVRL9oooyN0gs6Qi85RA12hFvIQQQ/oCb2gV+PReDbejPf5aMkoMofoD4yPbx1cmZE=</latexit><latexit sha1_base64="WNqRVHooK3MRbsx3jlRlp53Ez9s=">AAACB3icbVBNS8NAFNzUrxq/oh49GCyCp5L0Yr0VvHgqVYwttKFsNi/t0s0m7G6EEnr04l/x4kHFq3/Bm//GbRtBWwcWhpk3vH0TpIxK5ThfRmlldW19o7xpbm3v7O5Z+wd3MskEAY8kLBGdAEtglIOnqGLQSQXgOGDQDkaXU799D0LShN+qcQp+jAecRpRgpaW+ddwLYEB5ToArEBPzptk0e8DDH6FvVZyqM4O9TNyCVFCBVt/67IUJyWIdJwxL2XWdVPk5FooSBhOzl0lIMRnhAXQ15TgG6eezQyb2qVZCO0qEflzZM/V3IsexlOM40JMxVkO56E3F/7xupqK6n1OeZgo4mS+KMmarxJ62YodUAFFsrAkmguq/2mSIBSa6A2nqEtzFk5eJV6teVN3rWqVRL9oooyN0gs6Qi85RA12hFvIQQQ/oCb2gV+PReDbejPf5aMkoMofoD4yPbx1cmZE=</latexit><latexit sha1_base64="WNqRVHooK3MRbsx3jlRlp53Ez9s=">AAACB3icbVBNS8NAFNzUrxq/oh49GCyCp5L0Yr0VvHgqVYwttKFsNi/t0s0m7G6EEnr04l/x4kHFq3/Bm//GbRtBWwcWhpk3vH0TpIxK5ThfRmlldW19o7xpbm3v7O5Z+wd3MskEAY8kLBGdAEtglIOnqGLQSQXgOGDQDkaXU799D0LShN+qcQp+jAecRpRgpaW+ddwLYEB5ToArEBPzptk0e8DDH6FvVZyqM4O9TNyCVFCBVt/67IUJyWIdJwxL2XWdVPk5FooSBhOzl0lIMRnhAXQ15TgG6eezQyb2qVZCO0qEflzZM/V3IsexlOM40JMxVkO56E3F/7xupqK6n1OeZgo4mS+KMmarxJ62YodUAFFsrAkmguq/2mSIBSa6A2nqEtzFk5eJV6teVN3rWqVRL9oooyN0gs6Qi85RA12hFvIQQQ/oCb2gV+PReDbejPf5aMkoMofoD4yPbx1cmZE=</latexit><latexit sha1_base64="WNqRVHooK3MRbsx3jlRlp53Ez9s=">AAACB3icbVBNS8NAFNzUrxq/oh49GCyCp5L0Yr0VvHgqVYwttKFsNi/t0s0m7G6EEnr04l/x4kHFq3/Bm//GbRtBWwcWhpk3vH0TpIxK5ThfRmlldW19o7xpbm3v7O5Z+wd3MskEAY8kLBGdAEtglIOnqGLQSQXgOGDQDkaXU799D0LShN+qcQp+jAecRpRgpaW+ddwLYEB5ToArEBPzptk0e8DDH6FvVZyqM4O9TNyCVFCBVt/67IUJyWIdJwxL2XWdVPk5FooSBhOzl0lIMRnhAXQ15TgG6eezQyb2qVZCO0qEflzZM/V3IsexlOM40JMxVkO56E3F/7xupqK6n1OeZgo4mS+KMmarxJ62YodUAFFsrAkmguq/2mSIBSa6A2nqEtzFk5eJV6teVN3rWqVRL9oooyN0gs6Qi85RA12hFvIQQQ/oCb2gV+PReDbejPf5aMkoMofoD4yPbx1cmZE=</latexit>

RNN
<latexit sha1_base64="WNqRVHooK3MRbsx3jlRlp53Ez9s=">AAACB3icbVBNS8NAFNzUrxq/oh49GCyCp5L0Yr0VvHgqVYwttKFsNi/t0s0m7G6EEnr04l/x4kHFq3/Bm//GbRtBWwcWhpk3vH0TpIxK5ThfRmlldW19o7xpbm3v7O5Z+wd3MskEAY8kLBGdAEtglIOnqGLQSQXgOGDQDkaXU799D0LShN+qcQp+jAecRpRgpaW+ddwLYEB5ToArEBPzptk0e8DDH6FvVZyqM4O9TNyCVFCBVt/67IUJyWIdJwxL2XWdVPk5FooSBhOzl0lIMRnhAXQ15TgG6eezQyb2qVZCO0qEflzZM/V3IsexlOM40JMxVkO56E3F/7xupqK6n1OeZgo4mS+KMmarxJ62YodUAFFsrAkmguq/2mSIBSa6A2nqEtzFk5eJV6teVN3rWqVRL9oooyN0gs6Qi85RA12hFvIQQQ/oCb2gV+PReDbejPf5aMkoMofoD4yPbx1cmZE=</latexit><latexit sha1_base64="WNqRVHooK3MRbsx3jlRlp53Ez9s=">AAACB3icbVBNS8NAFNzUrxq/oh49GCyCp5L0Yr0VvHgqVYwttKFsNi/t0s0m7G6EEnr04l/x4kHFq3/Bm//GbRtBWwcWhpk3vH0TpIxK5ThfRmlldW19o7xpbm3v7O5Z+wd3MskEAY8kLBGdAEtglIOnqGLQSQXgOGDQDkaXU799D0LShN+qcQp+jAecRpRgpaW+ddwLYEB5ToArEBPzptk0e8DDH6FvVZyqM4O9TNyCVFCBVt/67IUJyWIdJwxL2XWdVPk5FooSBhOzl0lIMRnhAXQ15TgG6eezQyb2qVZCO0qEflzZM/V3IsexlOM40JMxVkO56E3F/7xupqK6n1OeZgo4mS+KMmarxJ62YodUAFFsrAkmguq/2mSIBSa6A2nqEtzFk5eJV6teVN3rWqVRL9oooyN0gs6Qi85RA12hFvIQQQ/oCb2gV+PReDbejPf5aMkoMofoD4yPbx1cmZE=</latexit><latexit sha1_base64="WNqRVHooK3MRbsx3jlRlp53Ez9s=">AAACB3icbVBNS8NAFNzUrxq/oh49GCyCp5L0Yr0VvHgqVYwttKFsNi/t0s0m7G6EEnr04l/x4kHFq3/Bm//GbRtBWwcWhpk3vH0TpIxK5ThfRmlldW19o7xpbm3v7O5Z+wd3MskEAY8kLBGdAEtglIOnqGLQSQXgOGDQDkaXU799D0LShN+qcQp+jAecRpRgpaW+ddwLYEB5ToArEBPzptk0e8DDH6FvVZyqM4O9TNyCVFCBVt/67IUJyWIdJwxL2XWdVPk5FooSBhOzl0lIMRnhAXQ15TgG6eezQyb2qVZCO0qEflzZM/V3IsexlOM40JMxVkO56E3F/7xupqK6n1OeZgo4mS+KMmarxJ62YodUAFFsrAkmguq/2mSIBSa6A2nqEtzFk5eJV6teVN3rWqVRL9oooyN0gs6Qi85RA12hFvIQQQ/oCb2gV+PReDbejPf5aMkoMofoD4yPbx1cmZE=</latexit><latexit sha1_base64="WNqRVHooK3MRbsx3jlRlp53Ez9s=">AAACB3icbVBNS8NAFNzUrxq/oh49GCyCp5L0Yr0VvHgqVYwttKFsNi/t0s0m7G6EEnr04l/x4kHFq3/Bm//GbRtBWwcWhpk3vH0TpIxK5ThfRmlldW19o7xpbm3v7O5Z+wd3MskEAY8kLBGdAEtglIOnqGLQSQXgOGDQDkaXU799D0LShN+qcQp+jAecRpRgpaW+ddwLYEB5ToArEBPzptk0e8DDH6FvVZyqM4O9TNyCVFCBVt/67IUJyWIdJwxL2XWdVPk5FooSBhOzl0lIMRnhAXQ15TgG6eezQyb2qVZCO0qEflzZM/V3IsexlOM40JMxVkO56E3F/7xupqK6n1OeZgo4mS+KMmarxJ62YodUAFFsrAkmguq/2mSIBSa6A2nqEtzFk5eJV6teVN3rWqVRL9oooyN0gs6Qi85RA12hFvIQQQ/oCb2gV+PReDbejPf5aMkoMofoD4yPbx1cmZE=</latexit>

u
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Figure 5.2 – Functional overview of the model. A global convolutional model
extracts features and splits into two heads trained to predict, respec-
tively activity classes and object classes. The latter are predicted by
pooling over object instance masks, which are predicted by an addi-
tional convolutional model. The object instances are passed through
a visual reasoning module.

handle this by sampling: running a process over time t, and for each instant t,
sampling a second frame t′ with t′<t. Our network reasons on objects which
interact between pairs of frames and their corresponding sets of objects Ot′ ={

ok
t′
}K′

k=1 and Ot =
{

ok
t
}K

k=1. The goal is to learn a general function defined on the
set of all input objects from the combined set of both frames:

gt = g(o1
t′ , . . . , oK′

t′ , o1
t , . . . , oK

t ). (5.1)

The objects in this set are unordered, aside for the frame they belong to.
Inspired by relational networks (Santoro et al. 2017), we chose to directly model

inter-frame interactions between pairs of objects (j, k) and leave modeling of
higher-order interactions to the output space of the mappings hθ and the global
mapping fφ:

gt = ∑
j,k

hθ(o
j
t′ , ok

t ) (5.2)

It is interesting to note that hθ(·) could have been evaluated over arbitrary cliques,
like singletons and triplets — this has been evaluated in the experimental section.
In order to better directly model long-range interactions, we make the global
mapping fφ(·, ·) recurrent, which leads to the following form:

rt = fφ(gt, rt−1) (5.3)

where rt represents the recurrent object reasoning state at time t and gt is the global
inter-frame interaction inferred at time t such as described in Equation 5.2. In
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random frame t00 2 [0 . . . t� 1]
<latexit sha1_base64="pQc8hWCujEgRbM7Df6Vp60c5+u0=">AAACJ3icbVDLSgMxFM34rOOr6tJNsIpuLDNudCWCG5cVrAqdoWQyd2owkwzJHaEM/Rs3/oobQUV06Z+Y1gq+DgQO55xL7j1JIYXFIHjzJianpmdma3P+/MLi0nJ9ZfXc6tJwaHMttblMmAUpFLRRoITLwgDLEwkXyfXx0L+4AWOFVmfYLyDOWU+JTHCGTurWD6MEekJVHBSCGfiGqVTnNDMsB7qJ29uRUJ0gkqlGS3E3jDf9CFT6le/WG0EzGIH+JeGYNMgYrW79MUo1L3M3ziWzthMGBcYVMyi4hIEflRYKxq9ZDzqOKreGjavRnQO65ZSUZtq4p5CO1O8TFcut7eeJS+YMr+xvbyj+53VKzA7iSqiiRFD886OslBQ1HZZGU2GAo+w7wrgRblfKr5hh3HVgfVdC+Pvkv+R8rxkGzfB0r3G0M66jRtbJBtkhIdknR+SEtEibcHJL7skTefbuvAfvxXv9jE5445k18gPe+wcdMaVa</latexit><latexit sha1_base64="pQc8hWCujEgRbM7Df6Vp60c5+u0=">AAACJ3icbVDLSgMxFM34rOOr6tJNsIpuLDNudCWCG5cVrAqdoWQyd2owkwzJHaEM/Rs3/oobQUV06Z+Y1gq+DgQO55xL7j1JIYXFIHjzJianpmdma3P+/MLi0nJ9ZfXc6tJwaHMttblMmAUpFLRRoITLwgDLEwkXyfXx0L+4AWOFVmfYLyDOWU+JTHCGTurWD6MEekJVHBSCGfiGqVTnNDMsB7qJ29uRUJ0gkqlGS3E3jDf9CFT6le/WG0EzGIH+JeGYNMgYrW79MUo1L3M3ziWzthMGBcYVMyi4hIEflRYKxq9ZDzqOKreGjavRnQO65ZSUZtq4p5CO1O8TFcut7eeJS+YMr+xvbyj+53VKzA7iSqiiRFD886OslBQ1HZZGU2GAo+w7wrgRblfKr5hh3HVgfVdC+Pvkv+R8rxkGzfB0r3G0M66jRtbJBtkhIdknR+SEtEibcHJL7skTefbuvAfvxXv9jE5445k18gPe+wcdMaVa</latexit><latexit sha1_base64="pQc8hWCujEgRbM7Df6Vp60c5+u0=">AAACJ3icbVDLSgMxFM34rOOr6tJNsIpuLDNudCWCG5cVrAqdoWQyd2owkwzJHaEM/Rs3/oobQUV06Z+Y1gq+DgQO55xL7j1JIYXFIHjzJianpmdma3P+/MLi0nJ9ZfXc6tJwaHMttblMmAUpFLRRoITLwgDLEwkXyfXx0L+4AWOFVmfYLyDOWU+JTHCGTurWD6MEekJVHBSCGfiGqVTnNDMsB7qJ29uRUJ0gkqlGS3E3jDf9CFT6le/WG0EzGIH+JeGYNMgYrW79MUo1L3M3ziWzthMGBcYVMyi4hIEflRYKxq9ZDzqOKreGjavRnQO65ZSUZtq4p5CO1O8TFcut7eeJS+YMr+xvbyj+53VKzA7iSqiiRFD886OslBQ1HZZGU2GAo+w7wrgRblfKr5hh3HVgfVdC+Pvkv+R8rxkGzfB0r3G0M66jRtbJBtkhIdknR+SEtEibcHJL7skTefbuvAfvxXv9jE5445k18gPe+wcdMaVa</latexit><latexit sha1_base64="pQc8hWCujEgRbM7Df6Vp60c5+u0=">AAACJ3icbVDLSgMxFM34rOOr6tJNsIpuLDNudCWCG5cVrAqdoWQyd2owkwzJHaEM/Rs3/oobQUV06Z+Y1gq+DgQO55xL7j1JIYXFIHjzJianpmdma3P+/MLi0nJ9ZfXc6tJwaHMttblMmAUpFLRRoITLwgDLEwkXyfXx0L+4AWOFVmfYLyDOWU+JTHCGTurWD6MEekJVHBSCGfiGqVTnNDMsB7qJ29uRUJ0gkqlGS3E3jDf9CFT6le/WG0EzGIH+JeGYNMgYrW79MUo1L3M3ziWzthMGBcYVMyi4hIEflRYKxq9ZDzqOKreGjavRnQO65ZSUZtq4p5CO1O8TFcut7eeJS+YMr+xvbyj+53VKzA7iSqiiRFD886OslBQ1HZZGU2GAo+w7wrgRblfKr5hh3HVgfVdC+Pvkv+R8rxkGzfB0r3G0M66jRtbJBtkhIdknR+SEtEibcHJL7skTefbuvAfvxXv9jE5445k18gPe+wcdMaVa</latexit>

random frame t0 2 [0 . . . t� 2]
<latexit sha1_base64="7hc2YIEwvhEbu1xwzNBqlYmxhuo=">AAACJnicbVDLSsQwFE19W1+jLt0ER9GNQzsb3QiCG5cKzihMy5Cmt2MwTUpyKwxlvsaNv+LGhSLizk8x8xB8HQgczjmX3HuSQgqLQfDuTU3PzM7NLyz6S8srq2u19Y221aXh0OJaanOdMAtSKGihQAnXhQGWJxKuktvToX91B8YKrS6xX0Ccs54SmeAMndStHUcJ9ISqOCgEM/ANU6nOaWZYDnQH9yKhOkEkU42W4kEz3vEjUOlXvFurB41gBPqXhBNSJxOcd2vPUap5mbtxLpm1nTAoMK6YQcElDPyotFAwfst60HFUuS1sXI3OHNBdp6Q008Y9hXSkfp+oWG5tP09cMmd4Y397Q/E/r1NidhRXQhUlguLjj7JSUtR02BlNhQGOsu8I40a4XSm/YYZx14H1XQnh75P/knazEQaN8KJZP9mf1LFAtsg22SchOSQn5Iyckxbh5J48kmfy4j14T96r9zaOTnmTmU3yA97HJ64dpSo=</latexit><latexit sha1_base64="7hc2YIEwvhEbu1xwzNBqlYmxhuo=">AAACJnicbVDLSsQwFE19W1+jLt0ER9GNQzsb3QiCG5cKzihMy5Cmt2MwTUpyKwxlvsaNv+LGhSLizk8x8xB8HQgczjmX3HuSQgqLQfDuTU3PzM7NLyz6S8srq2u19Y221aXh0OJaanOdMAtSKGihQAnXhQGWJxKuktvToX91B8YKrS6xX0Ccs54SmeAMndStHUcJ9ISqOCgEM/ANU6nOaWZYDnQH9yKhOkEkU42W4kEz3vEjUOlXvFurB41gBPqXhBNSJxOcd2vPUap5mbtxLpm1nTAoMK6YQcElDPyotFAwfst60HFUuS1sXI3OHNBdp6Q008Y9hXSkfp+oWG5tP09cMmd4Y397Q/E/r1NidhRXQhUlguLjj7JSUtR02BlNhQGOsu8I40a4XSm/YYZx14H1XQnh75P/knazEQaN8KJZP9mf1LFAtsg22SchOSQn5Iyckxbh5J48kmfy4j14T96r9zaOTnmTmU3yA97HJ64dpSo=</latexit><latexit sha1_base64="7hc2YIEwvhEbu1xwzNBqlYmxhuo=">AAACJnicbVDLSsQwFE19W1+jLt0ER9GNQzsb3QiCG5cKzihMy5Cmt2MwTUpyKwxlvsaNv+LGhSLizk8x8xB8HQgczjmX3HuSQgqLQfDuTU3PzM7NLyz6S8srq2u19Y221aXh0OJaanOdMAtSKGihQAnXhQGWJxKuktvToX91B8YKrS6xX0Ccs54SmeAMndStHUcJ9ISqOCgEM/ANU6nOaWZYDnQH9yKhOkEkU42W4kEz3vEjUOlXvFurB41gBPqXhBNSJxOcd2vPUap5mbtxLpm1nTAoMK6YQcElDPyotFAwfst60HFUuS1sXI3OHNBdp6Q008Y9hXSkfp+oWG5tP09cMmd4Y397Q/E/r1NidhRXQhUlguLjj7JSUtR02BlNhQGOsu8I40a4XSm/YYZx14H1XQnh75P/knazEQaN8KJZP9mf1LFAtsg22SchOSQn5Iyckxbh5J48kmfy4j14T96r9zaOTnmTmU3yA97HJ64dpSo=</latexit><latexit sha1_base64="7hc2YIEwvhEbu1xwzNBqlYmxhuo=">AAACJnicbVDLSsQwFE19W1+jLt0ER9GNQzsb3QiCG5cKzihMy5Cmt2MwTUpyKwxlvsaNv+LGhSLizk8x8xB8HQgczjmX3HuSQgqLQfDuTU3PzM7NLyz6S8srq2u19Y221aXh0OJaanOdMAtSKGihQAnXhQGWJxKuktvToX91B8YKrS6xX0Ccs54SmeAMndStHUcJ9ISqOCgEM/ANU6nOaWZYDnQH9yKhOkEkU42W4kEz3vEjUOlXvFurB41gBPqXhBNSJxOcd2vPUap5mbtxLpm1nTAoMK6YQcElDPyotFAwfst60HFUuS1sXI3OHNBdp6Q008Y9hXSkfp+oWG5tP09cMmd4Y397Q/E/r1NidhRXQhUlguLjj7JSUtR02BlNhQGOsu8I40a4XSm/YYZx14H1XQnh75P/knazEQaN8KJZP9mf1LFAtsg22SchOSQn5Iyckxbh5J48kmfy4j14T96r9zaOTnmTmU3yA97HJ64dpSo=</latexit>

frame t
<latexit sha1_base64="B53xiQSslkMZYFpryorb1eHdgW0=">AAACDnicbVDLSsNAFJ34rPEVdelmsC10VZJudFlw47KCfUAbymRy0w6dTMLMRCihX+DGX3HjQhG3rt35N07bCNp6YOBwzj3cuSdIOVPadb+sjc2t7Z3d0p69f3B4dOycnHZUkkkKbZrwRPYCooAzAW3NNIdeKoHEAYduMLme+917kIol4k5PU/BjMhIsYpRoIw2d6iCAERM5BaFBzuxIkhhwRVfsAYjwRx46ZbfuLoDXiVeQMirQGjqfgzChWWzilBOl+p6baj8nUjPKYWYPMgUpoRMygr6hwixVfr44Z4arRglxlEjzhMYL9XciJ7FS0zgwkzHRY7XqzcX/vH6moys/ZyLNNAi6XBRlHOsEz7vBIZNANZ8aQqhk5q+Yjokk1HSgbFOCt3ryOuk06p5b924b5WatqKOEztEFqiEPXaImukEt1EYUPaAn9IJerUfr2Xqz3pejG1aROUN/YH18A9x7m+I=</latexit><latexit sha1_base64="B53xiQSslkMZYFpryorb1eHdgW0=">AAACDnicbVDLSsNAFJ34rPEVdelmsC10VZJudFlw47KCfUAbymRy0w6dTMLMRCihX+DGX3HjQhG3rt35N07bCNp6YOBwzj3cuSdIOVPadb+sjc2t7Z3d0p69f3B4dOycnHZUkkkKbZrwRPYCooAzAW3NNIdeKoHEAYduMLme+917kIol4k5PU/BjMhIsYpRoIw2d6iCAERM5BaFBzuxIkhhwRVfsAYjwRx46ZbfuLoDXiVeQMirQGjqfgzChWWzilBOl+p6baj8nUjPKYWYPMgUpoRMygr6hwixVfr44Z4arRglxlEjzhMYL9XciJ7FS0zgwkzHRY7XqzcX/vH6moys/ZyLNNAi6XBRlHOsEz7vBIZNANZ8aQqhk5q+Yjokk1HSgbFOCt3ryOuk06p5b924b5WatqKOEztEFqiEPXaImukEt1EYUPaAn9IJerUfr2Xqz3pejG1aROUN/YH18A9x7m+I=</latexit><latexit sha1_base64="B53xiQSslkMZYFpryorb1eHdgW0=">AAACDnicbVDLSsNAFJ34rPEVdelmsC10VZJudFlw47KCfUAbymRy0w6dTMLMRCihX+DGX3HjQhG3rt35N07bCNp6YOBwzj3cuSdIOVPadb+sjc2t7Z3d0p69f3B4dOycnHZUkkkKbZrwRPYCooAzAW3NNIdeKoHEAYduMLme+917kIol4k5PU/BjMhIsYpRoIw2d6iCAERM5BaFBzuxIkhhwRVfsAYjwRx46ZbfuLoDXiVeQMirQGjqfgzChWWzilBOl+p6baj8nUjPKYWYPMgUpoRMygr6hwixVfr44Z4arRglxlEjzhMYL9XciJ7FS0zgwkzHRY7XqzcX/vH6moys/ZyLNNAi6XBRlHOsEz7vBIZNANZ8aQqhk5q+Yjokk1HSgbFOCt3ryOuk06p5b924b5WatqKOEztEFqiEPXaImukEt1EYUPaAn9IJerUfr2Xqz3pejG1aROUN/YH18A9x7m+I=</latexit><latexit sha1_base64="B53xiQSslkMZYFpryorb1eHdgW0=">AAACDnicbVDLSsNAFJ34rPEVdelmsC10VZJudFlw47KCfUAbymRy0w6dTMLMRCihX+DGX3HjQhG3rt35N07bCNp6YOBwzj3cuSdIOVPadb+sjc2t7Z3d0p69f3B4dOycnHZUkkkKbZrwRPYCooAzAW3NNIdeKoHEAYduMLme+917kIol4k5PU/BjMhIsYpRoIw2d6iCAERM5BaFBzuxIkhhwRVfsAYjwRx46ZbfuLoDXiVeQMirQGjqfgzChWWzilBOl+p6baj8nUjPKYWYPMgUpoRMygr6hwixVfr44Z4arRglxlEjzhMYL9XciJ7FS0zgwkzHRY7XqzcX/vH6moys/ZyLNNAi6XBRlHOsEz7vBIZNANZ8aQqhk5q+Yjokk1HSgbFOCt3ryOuk06p5b924b5WatqKOEztEFqiEPXaImukEt1EYUPaAn9IJerUfr2Xqz3pejG1aROUN/YH18A9x7m+I=</latexit>

visual reasoning
module

<latexit sha1_base64="tmImLkTZF+O5YGbg8oTN856phj0=">AAACHnicbVDLSgMxFM3UVx1fVZdugkXoqswURJcFNy4r2Ad0SslkbtvQTDIkmUIZ+iVu/BU3LhQRXOnfmLYjaOuBwOGcc5PcEyacaeN5X05hY3Nre6e46+7tHxwelY5PWlqmikKTSi5VJyQaOBPQNMxw6CQKSBxyaIfjm7nfnoDSTIp7M02gF5OhYANGibFSv3QZhDBkIqMgDKiZO2E6JRzbK7QUTAyDwI1llHJwAxDRT6xfKntVbwG8TvyclFGORr/0EUSSprEdp5xo3fW9xPQyogyjHGZukGpICB2TIXQtFSQG3csW683whVUiPJDKHmHwQv09kZFY62kc2mRMzEivenPxP6+bmsF1L2MiSQ0IunxokHJsJJ53hSOmgBo+tYRQxexfMR0RRajtQLu2BH915XXSqlV9r+rf1cr1Sl5HEZ2hc1RBPrpCdXSLGqiJKHpAT+gFvTqPzrPz5rwvowUnnzlFf+B8fgO3uKNd</latexit><latexit sha1_base64="tmImLkTZF+O5YGbg8oTN856phj0=">AAACHnicbVDLSgMxFM3UVx1fVZdugkXoqswURJcFNy4r2Ad0SslkbtvQTDIkmUIZ+iVu/BU3LhQRXOnfmLYjaOuBwOGcc5PcEyacaeN5X05hY3Nre6e46+7tHxwelY5PWlqmikKTSi5VJyQaOBPQNMxw6CQKSBxyaIfjm7nfnoDSTIp7M02gF5OhYANGibFSv3QZhDBkIqMgDKiZO2E6JRzbK7QUTAyDwI1llHJwAxDRT6xfKntVbwG8TvyclFGORr/0EUSSprEdp5xo3fW9xPQyogyjHGZukGpICB2TIXQtFSQG3csW683whVUiPJDKHmHwQv09kZFY62kc2mRMzEivenPxP6+bmsF1L2MiSQ0IunxokHJsJJ53hSOmgBo+tYRQxexfMR0RRajtQLu2BH915XXSqlV9r+rf1cr1Sl5HEZ2hc1RBPrpCdXSLGqiJKHpAT+gFvTqPzrPz5rwvowUnnzlFf+B8fgO3uKNd</latexit><latexit sha1_base64="tmImLkTZF+O5YGbg8oTN856phj0=">AAACHnicbVDLSgMxFM3UVx1fVZdugkXoqswURJcFNy4r2Ad0SslkbtvQTDIkmUIZ+iVu/BU3LhQRXOnfmLYjaOuBwOGcc5PcEyacaeN5X05hY3Nre6e46+7tHxwelY5PWlqmikKTSi5VJyQaOBPQNMxw6CQKSBxyaIfjm7nfnoDSTIp7M02gF5OhYANGibFSv3QZhDBkIqMgDKiZO2E6JRzbK7QUTAyDwI1llHJwAxDRT6xfKntVbwG8TvyclFGORr/0EUSSprEdp5xo3fW9xPQyogyjHGZukGpICB2TIXQtFSQG3csW683whVUiPJDKHmHwQv09kZFY62kc2mRMzEivenPxP6+bmsF1L2MiSQ0IunxokHJsJJ53hSOmgBo+tYRQxexfMR0RRajtQLu2BH915XXSqlV9r+rf1cr1Sl5HEZ2hc1RBPrpCdXSLGqiJKHpAT+gFvTqPzrPz5rwvowUnnzlFf+B8fgO3uKNd</latexit><latexit sha1_base64="tmImLkTZF+O5YGbg8oTN856phj0=">AAACHnicbVDLSgMxFM3UVx1fVZdugkXoqswURJcFNy4r2Ad0SslkbtvQTDIkmUIZ+iVu/BU3LhQRXOnfmLYjaOuBwOGcc5PcEyacaeN5X05hY3Nre6e46+7tHxwelY5PWlqmikKTSi5VJyQaOBPQNMxw6CQKSBxyaIfjm7nfnoDSTIp7M02gF5OhYANGibFSv3QZhDBkIqMgDKiZO2E6JRzbK7QUTAyDwI1llHJwAxDRT6xfKntVbwG8TvyclFGORr/0EUSSprEdp5xo3fW9xPQyogyjHGZukGpICB2TIXQtFSQG3csW683whVUiPJDKHmHwQv09kZFY62kc2mRMzEivenPxP6+bmsF1L2MiSQ0IunxokHJsJJ53hSOmgBo+tYRQxexfMR0RRajtQLu2BH915XXSqlV9r+rf1cr1Sl5HEZ2hc1RBPrpCdXSLGqiJKHpAT+gFvTqPzrPz5rwvowUnnzlFf+B8fgO3uKNd</latexit>

visual reasoning
module

<latexit sha1_base64="tmImLkTZF+O5YGbg8oTN856phj0=">AAACHnicbVDLSgMxFM3UVx1fVZdugkXoqswURJcFNy4r2Ad0SslkbtvQTDIkmUIZ+iVu/BU3LhQRXOnfmLYjaOuBwOGcc5PcEyacaeN5X05hY3Nre6e46+7tHxwelY5PWlqmikKTSi5VJyQaOBPQNMxw6CQKSBxyaIfjm7nfnoDSTIp7M02gF5OhYANGibFSv3QZhDBkIqMgDKiZO2E6JRzbK7QUTAyDwI1llHJwAxDRT6xfKntVbwG8TvyclFGORr/0EUSSprEdp5xo3fW9xPQyogyjHGZukGpICB2TIXQtFSQG3csW683whVUiPJDKHmHwQv09kZFY62kc2mRMzEivenPxP6+bmsF1L2MiSQ0IunxokHJsJJ53hSOmgBo+tYRQxexfMR0RRajtQLu2BH915XXSqlV9r+rf1cr1Sl5HEZ2hc1RBPrpCdXSLGqiJKHpAT+gFvTqPzrPz5rwvowUnnzlFf+B8fgO3uKNd</latexit><latexit sha1_base64="tmImLkTZF+O5YGbg8oTN856phj0=">AAACHnicbVDLSgMxFM3UVx1fVZdugkXoqswURJcFNy4r2Ad0SslkbtvQTDIkmUIZ+iVu/BU3LhQRXOnfmLYjaOuBwOGcc5PcEyacaeN5X05hY3Nre6e46+7tHxwelY5PWlqmikKTSi5VJyQaOBPQNMxw6CQKSBxyaIfjm7nfnoDSTIp7M02gF5OhYANGibFSv3QZhDBkIqMgDKiZO2E6JRzbK7QUTAyDwI1llHJwAxDRT6xfKntVbwG8TvyclFGORr/0EUSSprEdp5xo3fW9xPQyogyjHGZukGpICB2TIXQtFSQG3csW683whVUiPJDKHmHwQv09kZFY62kc2mRMzEivenPxP6+bmsF1L2MiSQ0IunxokHJsJJ53hSOmgBo+tYRQxexfMR0RRajtQLu2BH915XXSqlV9r+rf1cr1Sl5HEZ2hc1RBPrpCdXSLGqiJKHpAT+gFvTqPzrPz5rwvowUnnzlFf+B8fgO3uKNd</latexit><latexit sha1_base64="tmImLkTZF+O5YGbg8oTN856phj0=">AAACHnicbVDLSgMxFM3UVx1fVZdugkXoqswURJcFNy4r2Ad0SslkbtvQTDIkmUIZ+iVu/BU3LhQRXOnfmLYjaOuBwOGcc5PcEyacaeN5X05hY3Nre6e46+7tHxwelY5PWlqmikKTSi5VJyQaOBPQNMxw6CQKSBxyaIfjm7nfnoDSTIp7M02gF5OhYANGibFSv3QZhDBkIqMgDKiZO2E6JRzbK7QUTAyDwI1llHJwAxDRT6xfKntVbwG8TvyclFGORr/0EUSSprEdp5xo3fW9xPQyogyjHGZukGpICB2TIXQtFSQG3csW683whVUiPJDKHmHwQv09kZFY62kc2mRMzEivenPxP6+bmsF1L2MiSQ0IunxokHJsJJ53hSOmgBo+tYRQxexfMR0RRajtQLu2BH915XXSqlV9r+rf1cr1Sl5HEZ2hc1RBPrpCdXSLGqiJKHpAT+gFvTqPzrPz5rwvowUnnzlFf+B8fgO3uKNd</latexit><latexit sha1_base64="tmImLkTZF+O5YGbg8oTN856phj0=">AAACHnicbVDLSgMxFM3UVx1fVZdugkXoqswURJcFNy4r2Ad0SslkbtvQTDIkmUIZ+iVu/BU3LhQRXOnfmLYjaOuBwOGcc5PcEyacaeN5X05hY3Nre6e46+7tHxwelY5PWlqmikKTSi5VJyQaOBPQNMxw6CQKSBxyaIfjm7nfnoDSTIp7M02gF5OhYANGibFSv3QZhDBkIqMgDKiZO2E6JRzbK7QUTAyDwI1llHJwAxDRT6xfKntVbwG8TvyclFGORr/0EUSSprEdp5xo3fW9xPQyogyjHGZukGpICB2TIXQtFSQG3csW683whVUiPJDKHmHwQv09kZFY62kc2mRMzEivenPxP6+bmsF1L2MiSQ0IunxokHJsJJ53hSOmgBo+tYRQxexfMR0RRajtQLu2BH915XXSqlV9r+rf1cr1Sl5HEZ2hc1RBPrpCdXSLGqiJKHpAT+gFvTqPzrPz5rwvowUnnzlFf+B8fgO3uKNd</latexit>

frame t� 1
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Figure 5.3 – Object Relation Network. ORN in the object head operating on
detected instances of objects.

practice, this is implemented as a GRU, but for simplicity we omitted the gates in
Equation 5.3. The pairwise mappings hθ(·, ·) are implemented as an Multi-Layer
Perceptron (MLP). Figure 5.3 provides a visual explanation of the object head’s
operating through time.

Our proposed ORN differs from (Santoro et al. 2017) in three main points:

• Objects have a semantic definition — we model relationships with respect to
semantically meaningful entities (object instances) instead of feature map cells
which do not have a semantically meaningful spatial extent. We will show in
the experimental section that this is a key difference.

• Objects are selected from different frames — we infer object pairwise rela-
tions only between objects present in two different sets. This is a key design
choice which allows our model to reason about changes in object relationships
over time.

• Long range reasoning — integration of the object relations over time is recur-
rent by using a RNN for fφ(·). Since reasoning from a full sequence cannot be
done by inferring the relations between two frames, fφ(·) allows long range
reasoning on sequences of variable length.
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5.3.2 Object instance features

The object features Ot =
{

ok
t
}K

k=1 for each frame t used for the ORN module
described above are computed and collected from local regions predicted by a
mask predictor. Independently for each frame Xt of the input data block, we
predict object instances as binary masks Bk

t and associated object class predictions
ck

t , a distribution over C classes. We use Mask-RCNN (He et al. 2017), which is
able to detect objects in a frame using Region Proposal Network (RPN) (Ren et al.
2015) and produces a high quality segmentation mask for each object instance.

The objective is to collect features for each object instance, which jointly describe
its appearance, the change in its appearance over time, and its shape, i.e. the shape
of the binary mask. In theory, appearance could also be described by pooling the
feature representation learned by the mask predictor (Mask R-CNN). However, in
practice we choose to pool features from the dedicated object head such as shown
in Figure 5.2, which also include motion through the spatio-temporal convolutions
shared with the activity head:

uk
t = ROI-Pooling(Ut, Bk

t ) (5.4)

where Ut is the feature map output by the object head, uk
t is a D-dimensional vector

of appearance and appearance change of object k.
Shape information from the binary mask Bk

t is extracted through the following
mapping function: bk

t = gφ(Bk
t ), where gφ(·) is a MLP. Information about object k

in image Xt is given by a concatenation of appearance, shape, and object class:
ok

t = [ bk
t uk

t ck
t ].

5.3.3 Global Motion and Context

Current approaches in video understanding focus on modeling the video from a
high-level perspective. By a stack of spatio-temporal convolution and pooling they
focus on learning global scene context information. Effective activity recognition
requires integration of both of these sources: global information about the entire
video content in addition to relational reasoning for making fine distinctions
regarding object interactions and properties.

In our method, local low-level reasoning is provided through object head and
the ORN module such as described above in Section 5.3.1. We complement this
representation by high-level context information described by Vt which are feature
outputs from the activity head (orange block in Figure 5.2).

We use spatial global average pooling over Vt to output T D-dimensional feature
vectors denoted by vt, where vt corresponds to the context information of the
video at timestep t.
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We model the dynamics of the context information through time by employing
a RNN fγ(·) given by:

st = fγ(vt, st−1) (5.5)

where s is the hidden state of fγ(·) and gives cues about the evolution of the
context though time.

5.3.4 Recognition

Given an input video sequence X1:T, the two different streams corresponding
to the activity head and the object head result in the two representations h and r,
respectively where h = ∑tht and r = ∑trt. Each representation is the hidden state
of the respective GRU, which were described in the preceding subsections. Recall
that h provides the global motion context while r provides the object reasoning
state output by the ORN module. We perform independent linear classification
for each representation:

y1 = W h (5.6)

y2 = Z r (5.7)

where y1, y2 correspond to the logits from the activity head and the object head,
respectively, and W and Z are trainable weights (including biases). The final
prediction is done by averaging logits y1 and y2 followed by softmax activation.

5.3.5 Architectures

The input RGB images Xt are of size R3×W×H where W and H correspond to
the width and height and are of size 224 each. The object and activity heads
(orange and green in Figure 5.2) are a joint convolutional neural network with
Resnet50 architecture pre-trained on ImageNet/ILSVRC (Russakovsky et al. 2015),
with Conv1 and Conv5 blocks being inflated to 2.5D convolutions (Xie et al. 2017)
(3D convolutions with a separable temporal dimension). This choice has been
optimized on the validation set, as explained in Section 5.4 and shown in Table 5.5.

The last conv5 layers have been split into two different heads (activity head
and object head). The intermediate feature representations Ut and Vt are of
dimensions 2048×T×7×7 and 2048×T×14×14, respectively. We provide a higher
spatial resolution for the feature maps Ut of the object head to get more precise
local descriptors. This can be done by changing the stride of the initial conv5
layers from 2 to 1. Temporal convolutions have been configured to keep the same
time temporal dimension through the network.

Global spatial pooling of activity features results in a 2048 dimensional feature
vector fed into a GRU with 512 dimensional hidden state st. Region of Interest (RoI)-
Pooling of object features results in 2048 dimensional feature vectors uk

t . The
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encoder of the binary mask is a MLP with one hidden layer of size 100 and outputs
a mask embedding bk

t of dimension 100. The number of object classes is 80, which
leads in total to a 2229 dimensional object feature vector ok

t .
The non-linearity hθ(·) is implemented as an MLP with 2 hidden layers each with

512 units and produces an 512 dimensional output space. fφ(·) is implemented as
a GRU with a 256 dimension hidden state rt. We use Rectified Linear Unit (ReLU)
as the activation function after each layer for each network.

5.3.6 Training

We train the model with two different losses:

L = L1

( ŷ1 + ŷ2

2
, y
)
+ ∑

t
∑
k
L2(ĉk

t , ck
t ). (5.8)

where L1 and L2 are the cross-entropy loss. The first term corresponds to su-
pervised activity class losses comparing two different activity class predictions
to the class ground truth: ŷ1 is the prediction of the activity head, whereas ŷ2

is the prediction of the object head, as given by Equation 5.6 and Equation 5.7,
respectively.

The second term is a loss which pushes the features U of the object towards
representations of the semantic object classes. The goal is to obtain features related
to, both, motion (through the layers shared with the activity head), as well as as
object classes. As ground-truth object classes are not available, we define the loss
as the cross-entropy between the class label ck

t predicted by the mask predictor
and a dedicated linear class prediction ĉk

t based on features uk
t , which, as we recall,

are ROI! (ROI!)-pooled from U:

ck
t = R uk

t (5.9)

where R trainable parameters (biases integrated) learned end-to-end together with
the other parameters of the model.

We found that first training the object head only and then the full network was
performing better. A ResNet50 network pretrained on ImageNet is modified by
inflating some of its filters to 2.5 convolutions (3D convolutions with the time
dimension separated), as described in Section 5.3.5; then by fine-tuning.

We train the model using the Adam optimizer (Kingma et al. 2015) with an
initial learning rate of 10−4 on 30 epochs and use early-stopping criterion on the
validation set for hyper-parameter optimization. Training takes ∼50 minutes per
epoch on 4 Titan XP Graphics Processing Unit (GPU)s with clips of 8 frames.



110 object level visual reasoning in videos

5.4 Experiments

5.4.1 Comparison with existing methods

We evaluated the method on three standard datasets, which represent difficult
fine-grained activity recognition tasks: the Something-Something dataset, the
VLOG dataset and the recently released EPIC Kitchens dataset.

Something-Something (SS) — is a recent video classification dataset with
108,000 example videos and 157 classes (Goyal et al. 2017). It shows humans
performing different actions with different objects, actions and objects being
combined in different ways. Solving SS requires common sense reasoning and the
State Of The Art (SOTA) methods in activity recognition tend to fail, which makes
this dataset challenging.

VLOG — is a multi-label binary classification of human-object interactions
recently released with 114,000 videos and 30 classes (Fouhey et al. 2018). Classes
correspond to objects, and labels of a class are 1 if a person has touched a certain
object during the video, otherwise they are 0. It has recently been shown, that
SOTA video based methods (Carreira et al. 2017) are outperformed on VLOG
by image based methods like ResNet-50 (He et al. 2016), although these video
methods outperform image based ResNet-50 on large-scale video datasets like
the Kinetics dataset (Carreira et al. 2017). This suggests a gap between traditional
datasets like Kinetics and the fine-grained dataset VLOG, making it particularly
difficult.

EPIC Kitchens (EPIC) — is an egocentric video dataset recently released
containing 55 hours recording of daily activities (Damen et al. 2018). This is
the largest in first-person vision and the activities performed are non-scripted,
which makes the dataset very challenging and close to real world data. The
dataset is densely annotated and several tasks exist such as object detection, action
recognition and action prediction. We focus on action recognition with 39’594

action segments in total and 125 actions classes (i.e verbs). Since the test set is not
available yet we conducted our experiments on the training set (28’561 videos).
We use the videos recorded by person 01 to person 25 for training (22’675 videos)
and define the validation set as the remaining videos (5’886 videos).

For all datasets we rescale the input video resolution to 256×256. While training,
we crop space-time blocks of 224×224 spatial resolution and L frames, with L=8
for the SS dataset and L=4 for VLOG and EPIC. We do not perform any other
data augmentation. While training we extract L frames from the entire video
by splitting the video into L sub-sequences and randomly sampling one frame
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Methods Top1

C3D + Avg (Goyal et al. 2017) 21.50

I3D (Goyal et al. 2017) 27.63

MultiScale TRN (Bolei et al. 2017) 33.60

Ours 35.97

Table 5.1 – the Something-Something dataset. Classification accuracy in % on
the test set.

Methods Top1

R18 (He et al. 2016)∗ 32.05

I3D-18 (Carreira et al. 2017)∗ 34.20

Ours 40.89

Table 5.2 – Results on the EPIC Kitchens dataset. Accuracy in % on the valida-
tion set – methods with ∗ have been re-implemented).

per sub-sequence. The output sequence of size L is called a clip. A clip aims to
represent the full video with less frames. For testing we aggregate results of 10

clips 2.
The ablation study is done by using the train set as training data and we report

the result on the validation set. We compare against other SOTA approaches on
the test set. For the ablation studies, we slightly decreased the computational
complexity of the model: the base network (including activity and object heads)
is a ResNet-18 instead of ResNet-50, a single clip of 4 frames is extracted from a
video at test time.

Comparison with other approaches — Table 5.3 shows the performance of
the proposed approach on the VLOG dataset. At the time of publication, we
outperformed the state of the art on this challenging dataset by a margin of
≈4.2 points (44.7% accuracy against 40.5% by (He et al. 2016)). As mentioned
above, traditional video approaches tend to fail on this challenging fine-grained
dataset, providing inferior results. Table 5.1 shows performance on SS where we
outperform the state of the art given by very recent methods (+2.3 points). On
EPIC we re-implement standard baselines and report results on the validation set
(Table 5.2) since the test set is not available. Our full method reports an accuracy
of 40.89 and outperforms baselines by a large margin (≈+6.4 and ≈+7.9 points
respectively for against CNN-2D and I3D based on a ResNet-18).

2. We use lintel (Duke 2018) for decoding video on the fly.
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R50 (He et al. 2016) 40.5 29.7 68.9 65.8 64.5 58.2 33.1 22.1 19.0 23.9 54.0 45.5 28.6 49.2 28.7 49.6 19.4 37.5 62.9 48.8 23.0 36.9 39.2 12.5 55.9 58.8 31.1 57.4 26.8 39.6 22.9

I3D (Carreira et al. 2017) 39.7 24.9 71.7 71.4 62.5 57.1 27.1 19.2 33.9 20.7 50.6 45.8 24.7 54.7 19.1 50.8 19.3 41.9 54.0 27.5 21.4 37.4 42.9 12.6 42.5 60.4 33.9 46.0 23.5 59.6 34.7

Ours 44.7 30.2 72.3 70.7 64.9 59.8 38.2 24.6 26.3 22.4 64.5 47.2 35.4 57.9 25.2 48.5 24.5 40.2 72.0 54.1 26.5 39.9 48.6 15.2 53.5 60.7 36.8 52.8 27.9 64.0 37.6

Table 5.3 – Results on VLOG. Results on Hand/Semantic Object Interaction Clas-
sification (Average Precision! (Average Precision!) in % on the test set)
on VLOG dataset. R50 and I3D implemented by (Fouhey et al. 2018).

Method Object type
EPIC VLOG SS

obj. head 2 heads obj. head 2 heads obj. head 2 heads

Baseline - - 38.33 - 35.03 - 31.31
ORN pixel 23.71 38.83 14.40 35.18 2.51 31.43

ORN COCO 29.94 40.89 27.14 37.49 10.26 32.12
ORN-MLP COCO 28.15 39.41 25.40 36.35 - -

ORN COCO-visual 28.45 38.92 22.92 35.49 - -
ORN COCO-shape 21.92 37.16 7.18 35.39 - -
ORN COCO-class 21.96 37.75 13.40 35.94 - -

ORN COCO-intra 29.25 38.10 26.78 36.28 - -
ORN clique-1 COCO 28.25 40.18 26.48 36.71 - -
ORN clique-3 COCO 22.61 37.67 27.05 36.04 - -

Table 5.4 – Ablation study. With ResNet-18 backbone. Results in %: Top-1 accu-
racy for EPIC and SS datasets, and mAP for VLOG dataset.

5.4.2 Further analysis

Effect of object-level reasoning — Table 5.4 shows the importance of reasoning
on the performance of the method. The baseline corresponds to the performance
obtained by the activity head trained alone (inflated ResNet, in the ResNet-18

version for this table). No object level reasoning is present in this baseline. The
proposed approach (third line) including an object head and the ORN module
gains 0.8, 2.5 and 2.4 points compared to our baseline respectively on SS, on
EPIC and on VLOG. This indicates that the reasoning module is able to extract
complementary features compared to the activity head.

Using semantically defined objects proved to be important and led to a gain of 2

points on EPIC and 2.3 points on VLOG for the full model (6/12.7 points using
the object head only) compared to an extension of (Santoro et al. 2017) operating
on pixel level. This indicates importance of object level reasoning. The gain on
SS is smaller (0.7 point with the full model and 7.8 points with the object head
only) and can be explained by the difference in spatial resolution of the videos.
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Object detections and predictions of the binary masks are done using the initial
video resolution. The mean video resolution for VLOG is 660×1183 and for EPIC
is 640×480 against 100×157 for SS. Mask-RCNN has been trained on images of
resolution 800×800 and thus performs best on higher resolutions. The quality of
the object detector is important for leveraging object level understanding then for
the rest of the ablation study we focus on EPIC and VLOG datasets.

The function fφ in Equation 5.3 is an important design choice in our model. In
our proposed model, fφ is recurrent over time to ensure that the ORN module
captures long range reasoning over time, as shown in Equation 5.3. Removing the
recurrence in this equation leads to an MLP instead of a (gated) RNN, as evaluated
in row 4 of Table 5.4. Performance decreases by 1.1 point on VLOG and 1.4
points on EPIC. The larger gap for EPIC compared to VLOG and can arguably
be explained by the fact that in SS actions cover the whole video, while solving
VLOG requires detecting the right moment when the human-object interaction
occurs and thus long range reasoning plays a less important role.

Visual features extracted from object regions are the most discriminative, how-
ever object shapes and labels also provide complementary information. Finally,
the last part of Table 5.4 evaluates the effect of the cliques size for modeling the
interactions between objects and show that pairwise cliques outperform cliques of
size 1 and 3.

CNN architecture and kernel inflations — The convolutional architecture of
the model was optimized over the validation set of the SS dataset, as shown in
Table 5.5. The architecture itself (in terms of numbers of layers, filters etc.) is
determined by pre-training on image classification. We optimized the choice of
filter inflations from 2D to 2.5D or 3D for several convolutional blocks. This has
been optimized for the single head model and using a ResNet-18 variant to speed
up computation. Adding temporal convolutions increases performance up to 100%
w.r.t. to pure 2D baselines. This indicates, without surprise, that motion is a strong
cue. Inflating kernels to 2.5D on the input side and on the output side provided
best performances, suggesting that temporal integration is required at a very low
level (motion estimation) as well as on a very high level, close to reasoning. Our
study also corroborates recent research in activity recognition, indicating that 2.5D
kernels provide a good trade-off between high-capacity and learnable numbers
of parameters. Finally temporal integration via RNN outperforms global average
pooling over space and time.

Visualizing the learned object interactions — Figure 5.4 shows visualizations
of the pairwise object relationships the model learned from data, in particular
from the VLOG dataset. Each graph is computed for a given activity class.
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Conv1 Conv2 Conv3 Conv4 Conv5 Aggreg
SS

2D 3D 2.5D 2D 3D 2.5D 2D 3D 2.5D 2D 3D 2.5D 2D 3D 2.5D GAP RNN

X - - X - - X - - X - - X - - X - 15.73

X - - X - - X - - X - - X - - - X 15.88

- X - - X - - X - - X - - X - X - 31.42

- - X - - X - - X - - X - - X X - 27.58

X - - X - - X - - X - - - X - X - 31.28

X - - X - - X - - - X - - X - X - 32.06

X - - X - - - X - - X - - X - X - 32.25

X - - X - - X - - X - - - - X X - 31.31

X - - X - - X - - - - X - - X X - 32.79

X - - X - - - - X - - X - - X X - 33.77

- X - X - - X - - X - - X - - X - 28.71

- X - - X - X - - X - - X - - X - 31.42

- - X X - - X - - X - - X - - X - 20.05

- - X - - X X - - X - - X - - X - 22.52

Table 5.5 – Effect of the CNN architecture. Choice of kernel inflations on a single
head ResNet-18 network. Accuracy in % on the validation set of
Something-Something is shown. 2.5D kernels are separable kernels:
2D followed by a 1D temporal.

Figure 5.4 – Object pairwise interactions. Example of object pairwise interac-
tions learned by our model on VLOG for four different classes. Ob-
jects co-occurrences are at the top and learned pairwise objects inter-
actions are at the bottom. Line thickness indicates learned importance
of a given relation. Interactions have been normalized by the object
co-occurrences.

Visualizing of failure cases. Figure 5.5 and Figure 5.6 show failure cases. The
model is either making confusion between semantically similar objects or having
difficulties with small objects.
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teddy bear

teddy bear

teddy bear

bed

cell phone

person
personbed

teddy bear

Figure 5.5 – Failure cases 1. Small sized objects. Our model detects a cell phone
and a person but fails to detect hand-cell-phone contact.

bottle
wine glass

person person personperson

bottle

Figure 5.6 – Failure cases 2. Confusion between semantically similar objects. The
model falsly predicts hand-cup contact instead of hand-glass-contact
even though the wine glass is detected. !25

person 0.81

bowl 1.00

spoon 0.62

bowl 1.00

person 0.66

person 1.00

book 0.65

person 1.00

book 0.76

person 0.69

bowl 1.00
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bowl 1.00

person 0.64 person 1.00

book 0.74

person 1.00

book 0.77

cup 1.00
cup 0.87

person 0.58

cup 0.99
cup 0.93

scissors 0.92

person 0.64

scissors 0.51

Qualitative Results

Hand-book touching

Moving something apart of something

Something-SomethingFigure 5.7 – Learned object interactions 1. The model learned that the most im-
portant object interactions for the class hand-book touching corresponds
to the relation between a person and a book.

Visualizing of the important object interactions — Finally we visualize in
Figure 5.7 and Figure 5.8 the most important learned object interactions. We apply
a threshold for showing only the top object interactions.
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!25
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Qualitative Results

Hand-book touching

Moving something apart of something

Something-Something

Figure 5.8 – Learned object interactions 2. The model detects that the most
important object interactions correspond to relation between person
and scissors for the high-level class moving something apart of something.

5.5 Conclusion

In this chapter, we present a method for activity recognition in videos which
leverages object instance detections for visual reasoning on object interactions over
time. The choice of reasoning over semantically well-defined objects is key to our
approach and outperforms state of the art methods which reason on grid-levels,
such as cells of convolutional feature maps. Temporal dependencies and causal
relationships are dealt with by integrating relationships between different time
instants. We evaluated the method on three difficult datasets, on which standard
approaches do not perform well, and report SOTA results.

In the next chapter, we go one step further by moving towards a more chal-
lenging task towards visual reasoning. We still model the video content from an
object-level perspective but with the underlying goal to estimate each object prop-
erties in an unsupervised manner for being able to estimate the causal relations
between them.
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C O P H Y: C O U N T E R FA C T U A L L E A R N I N G O F
P H Y S I C A L D Y N A M I C S

Chapter abstract
Understanding causes and effects in mechanical systems is an essential com-
ponent of reasoning in the physical world. This chapter poses a new problem
of counterfactual learning of object mechanics from visual input.
We develop the CoPhy benchmark to assess the capacity of the State Of The
Art (SOTA) models for causal physical reasoning in a synthetic 3D environment
and propose a model for learning the physical dynamics in a counterfactual
setting. Having observed a mechanical experiment that involves, for example,
a falling tower of blocks, a set of bouncing balls or colliding objects, we learn
to predict how its outcome is affected by an arbitrary intervention on its initial
conditions, such as displacing one of the objects in the scene. The alternative
future is predicted given the altered past and a latent representation of the
confounders learned by the model in an end-to-end fashion with no supervision
of confounders.
We compare against feedforward video prediction baselines and show how
observing alternative experiences allows the network to capture latent physical
properties of the environment, which results in significantly more accurate
predictions at the level of super human performance.
The work in this chapter has led to the publication of a conference paper:

• Fabien Baradel, Natalia Neverova, Julien Mille, Greg Mori, and Christian
Wolf (2020a). “CoPhy: Counterfactual Learning of Physical Dynamics”. In:
Proceedings of the International Conference on Learning Representations (ICLR) -
(spotlight presentation).
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6.1 Introduction

In Chapter 5, we demonstrated that describing video stream from an object-level
point of view is helpful for producing more robust video representation. It allows
us to discover important object interactions patterns. In this chapter, we extend
this idea of modeling object interactions by moving towards a reasoning task.

Reasoning is an essential ability of intelligent agents that enables them to under-
stand complex relationships between observations, detect affordances, interpret
knowledge and beliefs, and to leverage this understanding to anticipate future
events and act accordingly. The capacity for observational discovery of causal
effects in physical reality and making sense of fundamental physical concepts,
such as mass, velocity, gravity, friction, etc., may be one of differentiating properties
of human intelligence that ensures our ability to leverage such experiences for
robust generalization to new scenarios (Martin-Ordas et al. 2008).

In Section 2.1.3, we introduce the concept of counterfactual reasoning for express-
ing the causality that deals with a problem containing an if statement, which is
untrue or unrealized.

Predicting the effect of the interventions based on the given observations
without explicitly observing the effect of the intervention on data is a hard task
and requires modeling of the causal relationships between the variable on which
the intervention is performed and the variable whose alternative future should be
predicted (Balke et al. 1994). Using counterfactuals has been shown to be a way to
perform reasoning over causal relationships between variables in low dimensional
spaces. However, it has been an unexplored direction for high dimensional signals
such as videos.
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Figure 6.1 – Overview of the proposed benchmark. We train a model for per-
forming counterfactual learning of physical dynamics. Given an
observed frame A = X0 and a sequence of future frames B = X1:τ,
we ask how the outcome B would have changed if we changed X0 to
X̄0 by performing a do-intervention (e.g. changing the initial positions
of objects in the scene).

In this chapter, we develop the Counterfactual Physics benchmark (CoPhy) and
propose a framework for causal learning of dynamics in mechanical systems with
multiple degrees of freedom, as illustrated in Figure 6.1.
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For a number of scenarios, such as tower of blocks falling, balls bouncing against
walls or objects colliding, we are given the starting frame A = X0 and a sequence
of following frames B = X1:τ, where τ covers the range of 6 sec. The observed
sequence B, conditioned on the initial state A, is a direct effect of the physical
principles (such as inertia, gravity or friction) applied to the closed system, that
cause the objects to change their positions and 3D poses over time.

The task is formulated as follows: having observed the tuple (A, B), we wish to
predict positions and poses of all objects in the scene at time t=τ, if we had changed
the initial frame X0 by performing an intervention. The intervention is formalized by
the do-operator introduced by Pearl et al. (Pearl 2009; Pearl et al. 2018) for dealing
with causal inference (Spirtes 2010). In our case, it implies modification of the
variable A to C, defined as C = do(X0=X̄0). Accordingly, for each experiment
in the CoPhy benchmark, we provide pairs of original sequences X0:τ and their
modified counterparts X̄0:τ sharing the same values of all confounders.

We note the fundamental difference between this problem of counterfactual future
forecasting and the conventional setup of feedforward future forecasting, like video
prediction (Mathieu et al. 2016). The latter involves learning spatio-temporal
regularities and thereby predicting future frames X1...τ from one or several past
frame(s) X0 (the causal chain of this problem is shown in Figure 6.2a). On the other
hand, counterfactual forecasting benefits from additional observations in the form
of the original outcome X1:τ before the do-operator. This adds a confounder variable
U into the causal chain (Figure 6.2b), which provides information not observable
in frame X0. For instance, in the case of the CoPhy benchmark, observing the pair
(A, B) might give us information on the masses, velocities or friction coefficients of
the objects in the scene, which otherwise cannot be inferred from frame X̄0 alone.
Therefore, predicting the alternative outcome after performing counterfactual
intervention then involves using the estimate of the confounder U together with
the modified past do(X0=X̄0).

Overall, we employ the idea of counterfactual intervention in predictive mod-
els and argue that counterfactual reasoning is an essential step towards human-like
reasoning and general intelligence. More specifically, the key contributions of this
chapter include:

• a new task of counterfactual prediction of physical dynamics from high-
dimensional visual input, as a way to access capacity of intelligent agents
for causal discovery;

• a large-scale CoPhy benchmark with three physical scenarios and 300k syn-
thetic experiments including rendered sequences of frames, metadata (object
positions, angles, sizes) and values of confounders (masses, frictions, gravity). This
benchmark was specifically designed in bias-free fashion to make the counter-
factual reasoning task challenging by optimizing the impact of the confounders
on the outcome of the experiment. The dataset will be made publicly available.



6.2 related work 121

(a) feedforward future forecasting
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(b) counterfactual future forecasting
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

initial state
(positions, 3D poses)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

outcome
(positions, 3D poses)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

initial state
(positions, 3D poses)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

outcome
(positions, 3D poses)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

modified outcome
(positions, 3D poses)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

modified initial state
(positions, 3D poses)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

confounder U = {uk}
(masses, gravity, friction)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

confounder U = {uk}
(masses, gravity, friction)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

A : Xt=0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

A : Xt=0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

B : Xt=1...⌧<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

B : Xt=1...⌧<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D : X̄t=1...⌧
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

C : do(X0 = X̄0)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 6.2 – Causal graph. The difference between conventional video prediction
(a) and counterfactual video prediction (b). The causal graph of
the latter includes a confounder variable, which passes information
from the original outcome to the outcome after do-intervention. The
initially observed sequence (A, B) (on the left) and the counterfactual
sequence after the do-intervention (on the right).

• a counterfactual neural model predicting an alternative outcome of a physical
experiment given an intervention, by estimating the latent representation of the
confounders. The model outperforms State Of The Art (SOTA) solutions imple-
menting feedforward video prediction. It successfully extrapolates its behavior
to unseen initial states and does not require supervision on the confounders.
We provide extensive ablations on the different effects of key design choices
and compare our results with human performance as evaluated in our studies,
that show that the task is hard for humans to solve.

6.2 Related work

This chapter is inspired by a significant number of prior studies from several
subfields, including visual reasoning, learning intuitive physics and perceived
causality.

Intuitive physics — Fundamental studies on cognitive psychology have shown
that humans perform poorly when asked to reason about expected outcomes of a
dynamic based event, demonstrating striking deviations from Newtonian physics
in their intuitions (McCloskey et al. 1983; McClooskey et al. 1980; McClooskey et al.
1983; Kubricht et al. 2017). The questions of approximating these mechanisms,
learning from noisy observed and non-observed physical quantities (such as sizes
or velocities vs masses or gravity), as well as justifying importance of explicit
physical concepts vs cognitive constructs in intelligent agents have been raised
and explored in recent works on deep learning (Wu et al. 2015). We summarized
these works in Section 2.2.7.
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Other physics benchmarks and simulators — The main objective for the cre-
ation of our benchmark is (a) to focus specifically on evaluating capabilities of
state-of-the-art models for performing counterfactual reasoning, (b) to be unbiased
in terms of distributions of parameters to be estimated and balanced with respect
to possible outcomes, and (c) to have sufficient variety in terms of scenarios
and latent physical characteristics of the scene that are not visually observed
and therefore can act as confounders. To the best of our knowledge, none of
existing intuitive physics benchmarks have these properties. IntPhys (Riochet et al.
2018) focuses on a high level task of estimating physical plausibility in a black
box fashion and modeling out distribution events at test time. Phyre (Bakhtin
et al. 2019) is an environment for solving physics-based puzzles, where achieving
sample efficiency may implicitly require counterfactual reasoning. However, this
component is not explicitly evaluated. Construction of parallel data with several
alternative outcomes is not straightforward, and the trivial baseline performance
levels are not easy to estimate. Adapting these benchmarks to counterfactual
reasoning would require significant refactoring and changing the logic of the data
sampling.

Perceptual causality — As already discussed in Section 2.1.3, causal reasoning
gained mainstream attention relatively recently in the Machine Learning (ML)
community (Lopez-Paz et al. 2017a; Lopez-Paz et al. 2017b; Kocaoglu et al. 2018;
Rojas-Carulla et al. 2018; Mooij et al. 2016; Schölkopf et al. 2012), due to limitations
of statistical learning becoming increasingly apparent (Pearl 2018; Lake et al.
2017). The concept of perceived causality has been however explored in cognitive
psychology (Michotte 1963), where human subjects have be shown to consistently
report causal impressions not aligned with underlying physical principles of the
events (Gerstenberg et al. 2015; Kubricht et al. 2017). Exploiting the colliding objects
scenario as a standard testbed for these studies led to discovery of a number of
cognitive biases, e.g. Motor Object Bias (i.e. false perceived association of object’s
velocity with its mass).

In this chapter, we bring the domains of visual reasoning, intuitive physics and
perceived causality together in a single framework to tackle the new problem of
counterfactual learning of physical dynamics. Following prior literature (Battaglia
et al. 2013), we also compare counterfactual learning with human performance
and expect that, similarly to learning intuitive vs Newtonian physics, modeling
perceived vs true causality will get more attention from the ML community in the
future.
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6.3 Benchmark

In this paper we investigate visual reasoning problems involving a set of
K physical objects and their interactions, while considering a specific setting
of learning counterfactual prediction with the objective of estimating objects’
alternative 3D positions from images after the do-intervention.

We introduce the Counterfactual Physics benchmark suite (CoPhy) for coun-
terfactual reasoning of physical dynamics from raw visual input. It is composed
of three tasks based on three physical scenarios: BlocktowerCF, BallsCF and
CollisionCF, defined similarly to existing SOTA environments for learning intu-
itive physics: Shape Stack (Groth et al. 2018), Bouncing balls environment (Chang et
al. 2017) and Collision (Ye et al. 2018) respectively. This was done to ensure natural
continuity between the prior work in the field and the proposed counterfactual
formulation.

Each scenario includes training and test samples, that we call experiments. Each
experiment is represented by two sequences of τ synthetic RGB images (covering
the time span of 6 sec at 5 fps):

• an observed sequence X={X0, . . . , Xτ} demonstrates evolution of the dynamic
system under the influence of laws of physics (gravity, friction, etc.), from its
initial state X0 to its final state Xτ. For simplicity, we denote A the initial state
X0 and B the observed outcome {X1, . . . , Xτ};

• a counterfactual sequence X̄={X̄0, . . . , X̄τ}, where X̄0 (C) corresponds to the
initial state X0 after the do-intervention, and X̄1, . . . , X̄τ (D) correspond to the
counterfactual outcome.

A do-intervention is a visually observable change introduced to the initial physi-
cal setup X0 (such as, for instance, object displacement or removal).

Finally, the physical world in each experiment is parameterized by a set of
visually unobservable quantities, or confounders (such as object masses, friction
coefficients, direction and magnitude of gravitational forces), that cannot be
uniquely estimated from a single time step. Our dataset provides ground truth
values of all confounders for evaluation purposes. However, we do not assume
access to this information during training or inference, and do not encourage it.

Each of the three scenarios in the CoPhy benchmark is defined as follows (see
Figure 6.1 for illustrations).

blocktowercf — Each experiment involves K=3 or K=4 stacked cubes, which are
initially at resting (but potentially unstable) positions. We define three different
confounder variables: masses, m∈{1, 10} and friction coefficients, µ∈{0.5, 1}, for
each block, as well as gravity components in x and y direction, gx,y∈{−1, 0, 1}.
The do-interventions include block displacement or removal. This set contains
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146k sample experiments corresponding to 73k different geometric block con-
figurations.

ballscf — Experiments show K bouncing balls (K=2 . . . 6). Each ball has an
initial random velocity. The confounder variables are the masses, m∈{1, 10}, and
the friction coefficients, µ∈{0.5, 1}, of each ball. There are two do-operators: block
displacement or removal. There are in total 100k experiments corresponding to
50k different initial geometric configurations.

collisioncf — This set is about moving objects colliding with static objects
(balls or cylinders). The confounder variables are the masses, m∈{1, 10}, and
the friction coefficients, µ∈{0.5, 1}, of each object. The do-interventions are limited
to object displacement. This scenario includes 40k experiments with 20k unique
geometric object configurations.

Given this data, the problem can be formalized as follows. During training, we
are given the quadruplets of visual observations A, B, C, D (through sequences X
and X̄, including GT object positions for supervision), but do not have access to
the values of the confounders. During testing, the objective is to reason on new
visual data unobserved at training time and to predict the counterfactual outcome
D, having observed the first sequence (A, B) and the modified initial state C after
the do-intervention, which is known.

The CoPhy benchmark is by construction balanced and bias free w.r.t. (1) global
statistics of all confounder values within each scenario, (2) distribution of possible
outcomes of each experiment over the whole set of possible confounder values (for
a given do-intervention). We make sure that the data does not degenerate to simple
regularities which are solvable by conventional methods predicting the future
from the past. In particular, for each experimental setup, we enforce existence of
at least two different confounder configurations resulting in significantly different
object trajectories. This guarantees that estimating the confounder variable is necessary
for visual reasoning on this dataset.

More specifically, we ensure that, for each experiment, the set of possible
counterfactual outcomes is balanced w.r.t. (1) tower stability for BlocktowerCF and
(2) distribution of object trajectories for BallsCF and CollisionCF. As a result, the
BlocktowerCF set, for example, has 50± 5% of stable and unstable counterfactual
configurations. The exact distribution of stable/unstable examples for each
confounder in this scenario is shown in Figure 6.3.

All images for this benchmark have been rendered into the visual space (RGB,
depth and instance segmentation) at a resolution of 448× 448 px with PyBullet
(only RGB images are used in this chapter). We ensure diversity in visual ap-
pearance between experiments by rendering the pairs of sequences over a set of
randomized backgrounds. The ground truth physical properties of each object (3D
pose, 4D quaternion angles, velocities) are sampled at a higher frame rate (20 fps)
and also stored. The training / validation / test split is defined as 0.7 : 0.2 : 0.1
for each of the three scenarios.
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Figure 6.3 – Stability distribution for each confounder variable. For heights
K=3 and K=4 of the BlockTowerCF task. Masses, friction cooefficients:
2 configurations per block, 2K total; gravity: 3 configurations for each
axis ∈{x, y}, 9 total.

6.4 Model

The task as described in Section Section 6.3 requires reasoning from visual
inputs.We propose a single neural model which can be trained end-to-end, as
shown in Figure 6.4. We address this problem by adding strong inductive biases
to a deep neural network, structuring it in a way to favor counterfactual reasoning.
More precisely, we add structure for:

• estimating physical properties from images,

• modelling interactions between objects through Graph Convolutional Network
(GCN),

• estimating latent representations of the confounder variables,

• exploiting these representations for predictions of the output object positions.

At this point we would like to stress again, that the representation of the con-
founders U is latent and discovered from data without supervision.

6.4.1 Unsupervised estimation of the confounders

While our method is capable of handling raw RGB frames as input, its internal
reasoning is done on estimated representations in object-centric viewpoints. We
train a convolutional neural network to detect the K objects and their 3D position
in the scene, denoted as O={ok}, k=0 . . . K−1 where ok corresponds to the 3D
position of object k. The de-rendering module is explained in Section 6.4.3.
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Predicting the future of a given block k requires modelling its interactions
(through friction and collisions) with the other blocks in the scene, which we do
with GCN (Kipf et al. 2017; Battaglia et al. 2018). The set of K objects in the scene
is represented as a graph G=(V , E) where the nodes V are associated to objects
{ok}, and the object interactions to edges (ok, oj) ∈ E in the fully-connected graph.
Object embeddings {ok} are updated classically and as follows, resulting in new
embeddings {õk}:

ek =
1
|Ωk| ∑

oj∈Ωk

f (ok, oj) (6.1)

e =
1
K ∑

k
ek (6.2)

õk = g(ok, ek, e) (6.3)

where Ωk is the set of neighboring objects of ok. f (.) and g(.) are non-linear
mappings (Multi-Layer Perceptron (MLP)s), and their inputs are by default con-
catenated. For simplicity, in what follows, the update of an object ok with a GCN
will be denoted by õk = GCN(ok, O).

As mentioned above, we want to infer a latent representation U of the confound-
ing quantities for each object k given the input sequence X0:τ (the original past A
and the original outcome B), without any supervision. This latent representation
U is trained end-to-end by optimizing the counterfactual prediction loss. To this
end, we pass the updated object states õk through a recurrent network to model
the temporal evolution of this representation. In particular, we run a dedicated
RNN for each object, each object maintaining its own hidden state hk:

hk
t = φ(õk

t , hk
t−1) (6.4)

where we index objects and states with subscript t indicating time, and φ is a
Gated Recurrent Unit (GRU) (gate equations have been omitted for simplicity).
The recurrent network parameters are shared over objects k, which results in a
model which is invariant to the number of objects present in the set. This allows
to use do-operators which change the number of objects in the scene (removal).
We set the latent representation of the confounders to be the set U={uk}, where
uk , hk

τ is the temporally last hidden state of the recurrent network.

6.4.2 Trajectory prediction gated by stability

We predict the counterfactual outcome D, i.e. the 3D positions of all objects
of the sequence X̄1:τ, with a recurrent network, which takes into account the
confounders U. We cast this problem as a sequential prediction task, at each time
step t predicting the residual position ∆k

t w.r.t. to position t−1, i.e. the velocity
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Figure 6.4 – CoPhyNet. Our model learns counterfactual reasoning in a weakly su-
pervised way: while we supervise the do-operator, we do not supervise
the confounder variables (masses, frictions, gravity). Input images of
the original past (A) and the original outcome (B) are de-rendered
into latent representations which are converted into fully-connected
attributed graphs. A GCN updates node features to augment them
with contextual information, which is integrated temporally with a
set of Recurrent Neural Network (RNN), one for each object, running
over time. The last hidden RNN state is taken as an estimate of the
confounder U. A second set of GCN+RNN predicts residual object
positions (D) using the modified past (C) and the confounder repre-
sentation U. For clarity we draw arrows for the red object only. Not
shown: stability prediction and gating.

vector. As in the rest of the model, this prediction is obtained object-wise, albeit
with explicit modelling of the inter-object relationships through a graph network.
More precisely,

˜̄ok
t = GCN(ōk

t , {[ōk
t : uk]}) (6.5)

rk
t = ψ( ˜̄ok

t , rk
t−1) (6.6)

∆k
t = W rk

t , (6.7)

where rk
t is the hidden state of the GRU network denoted by ψ, and W is the

weight matrix of a linear output layer. GCN is a GCN as described in Equation 6.3
and thereafter.

At each moment of time, each object can either remain stationary or move under
the influence of external physical forces or by inertia. The first task for the model
is therefore to detect which objects are moving (i.e. affected by the environment)
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and then estimate parameters of the motion if it occurs. This is aligned well
with the concepts of whether-causation and how-causation defined in the field
of perceived causality (Gerstenberg et al. 2015). In our work, the whether-cause is
estimated in the form of a binary stability indicator sk

t described below (for each
object, updated at each time step) that is then leveraged to gate the object position
predictor (how-cause estimator):

ōk
t+1 = ōk

t + σ

(
1− sk

t
λ

)
∆k

t , (6.8)

where σ(.) is the sigmoid function and λ is a sparsifying temperature term.

Counterfactual estimation of stability — Estimation of object stability sk
t is

a counterfactual problem, as stability depends on the physical properties, and
therefore on the latent confounder representation uk. We combine the confounders
U={uk} with the past after do-intervention (C), encoded in object states denoted
as Ōt={ōk

t } at time step t. In particular, for each node we concatenate its object
features with its confounder representation and we update the resulting object
state with a graph network to take into account inter-object relationships:

s′kt = GCN([ōk
t : uk], {[ōk

t : uk]}) (6.9)

sk
t = V s′kt , (6.10)

where sk
t corresponds to the logits of stability of object k at time t and V is the

weight matrix of a linear layer (for simplifying notations we omit bias here and in
the rest of the chapter).

6.4.3 Neural de-rendering

We train a convolutional neural network to detect the K blocks and their 3D
position in the scene, denoted as O={ok}, k=0 . . . K−1 where ok corresponds to
the 3D position of object k. The Convolutional Neural Network (CNN) is inspired
by recent methods for object detection (He et al. 2017) and takes as input an
RGB image of resolution 224×224. All convolution kernels are of size 3×3. We
restrict our object detector to detections of a single instance per object type. The
extension to detecting multiple object of the same type would be straightforward
using from example a Region Proposal Network (RPN) (He et al. 2017). We define
a double convolution as a stack of a convolution layer, a batch norm layer and a
Rectified Linear Unit (ReLU) layer, repeated two times, where the output number
of channels corresponds to the number of channels in the hidden layers. We run
a double convolution followed by a max pooling operator of kernel 2 two times
where the number of output channels is respectively 64 and 128. And finally
we run a double convolution with 256 output channels leading to a feature map
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of size 256×56×56. We have to detect objects of K categories (K=4 in our case)
and their 3D position in the environment. We design K different heads with the
architecture which corresponds to a double convolution with 512 output channels
followed by a convolution of kernel size 28×28 and with 128 output channels, a
batch norm layer and a ReLU. Each head outputs a feature map of size 128×1×1
which is resized into a vector of size 128. Finally we detect the presence of an
object using a linear regression and we regress its 3D coordinates.

6.4.4 Training & Architectures

Training — We first pre-train the de-rendering module alone without the model
parts responsible for reasoning in the graph space. In particular, we de-render
images X̄ randomly sampled from A, B, C and D into its object representations
O={ok}k=1...K and train with the following supervised loss:

Lderender =
K

∑
k=1
Lmse(ok, ok∗) (6.11)

where ōk∗ are the ground truth 3D positions and Lmse corresponds to the mean
square error.

Then the full counterfactual prediction model is trained end-to-end in the graph
space only (i.e. not over the derendering engine) with the following losses:

Le2e =
K

∑
k=1
Lce(sk, sk∗) +

τ

∑
t=0

[
K

∑
k=1
Lmse(ōk

t, ōk∗
t )

]

where Lce is the binary cross entropy loss between the stability groundtruth of
object k and its prediction.

Architectures — The de-rendering engine corresponds to a stack of 3 × 3
convolutions and max-pooling.

The mapping f and g are both MLP with respectively 4 and 2 layers. They both
have hidden layer of size 32 and ReLU as activation function. φ is a GRU with 2

layers and a hidden state h of dimension 32. ψ is a GRU with 2 layers and a hidden
state r of dimension 32.

Below are the descriptions of other networks used for our method:

• f , g — The mappings f and g are both MLP with 4 and 2 layers respectively.
They both have hidden layers of size 32 and ReLU as activation function.

• φ — is a GRU with 2 layers and a hidden state h of dimension 32.

• ψ — is a GRU with 2 layers and a hidden state r of dimension 32.
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Scenario Top Middle Bottom Mean σ

Human
Non-CF 108.89 53. 15 13.67 58.57 33.61

CF 99.98 49.65 13.99 54.54 34.15

Copying
C→D 65.41 25.51 7.36 32.76 N/A
B→D 92.60 35.85 18.54 49.00 N/A

CophyNet
Non-CF 77.97 33.10 2.39 37.81 N/A
CF 57.10 23.26 4.40 28.25 N/A

Table 6.1 – Comparison with human performance. In the BlockTowerCF scenario
obtained with AMT studies. We report 2D pixel error for each block,
as well as global mean and variance σ (reference resolution 448× 448)
on the test set with K=3 blocks.

• Confounders — (mass and friction coefficients) are predicted with a single
fully-connected layer on top of the “confounder” representation of each object
denoted uk.

6.5 Experiments

Training details — All models were implemented in PyTorch. We used the
Adam optimizer (Kingma et al. 2015) and a learning rate of 0.001. For training the
de-rendering pipeline, 200k frames were sampled for each of the three scenarios.

Human performance — We empirically measured human performance in the
BlockTowerCF scenario with crowdsourcing (Amazon Mechanical Turk (AMT)).
For this study, we have collected predictions from 100 participants, where each
subject was given 20 assignments in both non-counterfactual (Figure 6.5) and
counterfactual (Figure 6.6) settings. The human subjects were given 10 sec to click
on the final positions of each block in the image C after the tower has fallen (or
remained stable). The obtained quantitative results for both settings are reported
in Table 6.1. We compare against copying baselines (i.e. predicting block positions
in the frame D by either copying them from C or from B).

We observe that humans perform slightly better in the counterfactual setup
after having observed the first dynamic sequence (A, B) together with C com-
pared to the classical prediction where only C is shown. This behavior has also
been previously observed in experiments on intuitive physics in cognitive psy-
chology (Kubricht et al. 2017) that revealed poor human abilities to extrapolate
physical dynamics from a single image. Similar human studies have also been
conducted in (Battaglia et al. 2013) in a more simplistic setup of predicting the
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Figure 6. [Probably subsamplie for a single column figure]Examples for human performance on the task predicting the future (non
counterfactual), as performed by mechanical turkers. Each turker has been confronted with the past only (a single image of block positions,
shown). Dots correspond to human estimates of the objects’ resting positions. Larger circles indicate ground truth final positions of each of
the block.

Non-CF: C ! D A B CF: C ! D

Figure 7. Examples for human performance on the task of coun-
terfactual prediction, as performed by mechanical turkers. Each
turker has been confronted with the data (A,B,C) — past, outcome,
past after do-intervention. Dots correspond to human estimates of
the objects’ resting positions (outcome after do-intervention).

as with 4 blocks. And the set of possible masses is fixed to
M = {1, 10}. Each sequence is of length 5 seconds. We ren-
der the physical world into the visual space (RGB, depth and
segmentation) every 0.5 second at a resolution of 448⇥ 448.
RGB, deth and segmentation images are encoded as png files.
The full dataset is composed of 2 millions of frames. We
record the physical properties of each object (3D pose, 4D
quaternion angles, velocities) at frame rate of 20 fps. We
split the dataset such that the training set if composed of
200K samples. The validation set and test set are of size
50K each. Table 6 gives an overview of the dataset. The
full set of data, including synthetic images, is 326GB. This
data will be made available publicly after acceptance of this
paper. We use Pybullet as physical engine.

We sample 200K frames (20K unstable sequences) for
training the de-rendering and rendering part. We split into a
train, val and test sets (120K, 40K, 40K) There are roughly
the same number of towers with 3 and 4 blocks.

Training details All models were implemented in PyTorch
and trained on a cluster of Titan-X GPUs. We used the XXX
optimizer and a learning rate of XXX. Training a full model
until convergence takes XXXh.

Qualitative evaluation Figure ?? illustrates several prob-
lem instances and predictions by our model.

Human performance We measured human performance
on this challenging dataset by ...
Natalia: NOTES. 100 workers, 20 assignments each, both
in counterfactual and non-counterfactual settings. Same
experiment in the counterfactual setting, but limiting the time
when the first sequence A ! B is observed to 5 seconds.
Conclusion: CF setup is slightly better in terms of mean
error, but it looks like it generally boils down to simple
indictive biases, such as ”observed (un)stability”!”predict
(un)stability” [prove empirically by clustering trajectories /
calculating correlations]. This is shown in Figure ?: variance
after having observed a stable sequence is decreased (first
row), after having observed a falling case - increased (second
row). Overall, variance in predictions is slightly higher.
Humans are doing much worse than copying baselines.

Performance and comparisons we evaluate the counter-
factual prediction performance against various baselines:
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past after do-intervention, denoted as C ! D;

• assuming no do-intervention and copying the (ob-
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Figure 6. [Probably subsamplie for a single column figure]Examples for human performance on the task predicting the future (non
counterfactual), as performed by mechanical turkers. Each turker has been confronted with the past only (a single image of block positions,
shown). Dots correspond to human estimates of the objects’ resting positions. Larger circles indicate ground truth final positions of each of
the block.

Non-CF: C ! D A B CF: C ! D

Figure 7. Examples for human performance on the task of coun-
terfactual prediction, as performed by mechanical turkers. Each
turker has been confronted with the data (A,B,C) — past, outcome,
past after do-intervention. Dots correspond to human estimates of
the objects’ resting positions (outcome after do-intervention).
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segmentation) every 0.5 second at a resolution of 448⇥ 448.
RGB, deth and segmentation images are encoded as png files.
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full set of data, including synthetic images, is 326GB. This
data will be made available publicly after acceptance of this
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training the de-rendering and rendering part. We split into a
train, val and test sets (120K, 40K, 40K) There are roughly
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Figure 6.5 – Examples for human performance 1. On the task predicting the
future (non counterfactual), as performed by mechanical turkers.
Each turker has been confronted with the past only (a single image of
block positions, shown). Dots correspond to human estimates of the
objects’ resting positions. Larger circles indicate ground truth final
positions of each of the block.

direction of falling, where the authors also reported that the task appeared to be
challenging for human subjects.

The empirical results indicate that the participants decisions may have been how-
ever driven by simple inductive biases, e.g. “observed (in)stability in (A, B)"→"predict
(in)stability in (C, D)”. The evidence for this approach is demonstrated qualita-
tively in Figure 6.6: the variance in predictions after having observed a stable
sequence is decreased (first row), after having observed a falling case – increased
(second row). In all cases, human performance remains inferior w.r.t. the copying
baselines.

The last part of Table 6.1 shows results of our model (denoted by CophyNet in
the rest of the discussion) after projecting the estimated 3D positions of all objects
back into the 2D image space. CophyNet significantly outperforms both human
subjects and copying baselines.

Performance and comparisons — We evaluate the counterfactual prediction
performance of the proposed CophyNet model against various baselines (shown
in Table 6.2-Table 6.3 separately for each of the three scenarios of the CoPhy
benchmark). The evaluated Network Physics Engine (NPE) (Chang et al. 2017)
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Figure 6.6 – Examples for human performance 2. On the task of counterfactual
prediction, as performed by mechanical turkers. Each turker has
been confronted with the data (A,B,C) — past, outcome, past after
do-intervention. Dots correspond to human estimates of the objects’
resting positions (outcome after do-intervention).

and Interaction Network (IN) (Battaglia et al. 2016), are both non-counterfactual
baselines, that predict future block coordinates from past coordinates after do-
intervention without taking the confounders into account. Both methods assume
GT object positions are available as input at training and test time, so they directly
work on GT positions. They both predict the next position of each object using a
GCN. IN is modeling object pairwise interaction between all objects in the scene
while NPE is taking into account only neighbours objects for estimating the object
interactions.

Our method consistently outperforms NPE and IN by a large margin in all
scenarios. The CophyNet model also usually (but not always) outperforms the
augmented variants of these methods that include the GT confounder quantities
as input (a not comparable setting).

Figure 6.7 illustrates several randomly sampled experimental setups and corre-
sponding counterfactual predictions by the CophyNet model in the BlocktowerCF
scenario.

Generalization — We evaluate the ability of the CophyNet model to generalize
to new physical setups which were not observed in the training data. In Table 6.2
we show model performance on unseen confounder combinations and on unseen
number of blocks in the BlocktowerCF scenario (lines marked with †). Our
proposed solution generalizes well under unseen settings compared to other
methods. In Table 6.4 we also demonstrate that our method outperforms the
baselines by a large margin on unseen numbers of balls in the BallsCF setup.
Finally, in the CollisionCF scenario (Table 6.3) we train on one type of moving
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Train→Test Copy C Copy B IN NPE CophyNet IN sup.

3→ 3 0.470 0.601 0.318 0.331 0.294 0.296
3→ 3 † 0.365 0.592 0.298 0.319 0.289 0.282
3→ 4 0.754 0.846 0.524 0.523 0.482 0.467

4→ 4 0.735 0.852 0.521 0.528 0.453 0.481
4→ 4 † 0.597 0.861 0.480 0.476 0.423 0.464
4→ 3 0.480 0.618 0.342 0.350 0.301 0.297

Table 6.2 – Results in BlocktowerCF. MSE on 3D pose average over time. IN
sup. methods in the last column exploit the ground truth confounder
quantities as input and thus represent a soft upper bound (are not
comparable). †Test confounder configurations not seen during training
(50/50 split).

Train→Test Copy C Copy B IN NPE CophyNet IN sup.

all→all 4.370 0.665 0.701 0.697 0.173 0.332
sphere→cylinder 4.245 0.481 0.715 0.710 0.220 0.435
cylinder→sphere 4.571 0.932 0.720 0.699 0.152 0.586

Table 6.3 – Results in CollisionCF. MSE on 3D pose average over time. IN sup.
methods in the last column exploit the ground truth confounder quanti-
ties as input and thus is not directly comparable (still showing inferior
performance).

Train→Test Copy C Copy B IN NPE CophyNet IN sup.

4→ 2 7.271 3.267 5.060 4.989 2.307 2.109
4→ 3 6.820 2.865 4.895 4.901 1.990 1.886
4→ 4 6.538 2.688 4.785 4.821 1.978 2.069
4→ 5 6.221 2.568 4.732 4.817 1.958 2.346
4→ 6 6.045 2.488 4.661 4.668 1.899 2.564

Table 6.4 – Results in BallsCF. MSE on 3D pose average over time. IN sup. meth-
ods in the last column exploit the ground truth confounder quantities
as input and thus is not directly comparable.

objects and test on another type (spheres vs cylinders). In this case we also show
that our method is able to generalize to the new object types even when it has not
seen such a combination of <moving-object, static-object >before. Our method is
able to estimate the object properties when an object is moving or initially stable.
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Figure 6.7 – Visual examples of the counterfactual predictions. Produced by
CophyNet (in the BlocktowerCF scenario). Circles denote GT position
and crosses correspond to predictions.

Impact of the confounder estimate — Our model does not rely on any super-
vision of the confounders; we do, however, explore what effect supervision could
have on performance, as shown in Table 6.5. Adding the supervision increases
the performance of the model for K=3 but the difference seems marginal (0.004

for K=3 and 0.020 for K=4). Directly feeding the confounder quantities as input
leads to better performance, which is expected (but not comparable).

Model architecture — All design choices of CophyNet are ablated in Table 6.6
to fully illustrate the impact of each submodule. Estimating the stability once
for the whole sequence D decreases the performance by 0.020 for K=3 and
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Subset
Feedforward Counterfactual

confounders: confounders:
input – supervision –

K=4 0.248 0.349 0.281 0.285

K=3 0.410 0.552 0.458 0.478

Table 6.5 – Ablation study on BlockTowerCF. Impact of the confounder estimate
(MSE on 3D pose average over time, on the validation set). Feedfor-
ward prediction methods do not estimate the confounder, counterfac-
tual methods do. We compare against soft upper bounds which use the
ground truth confounder as input, or which supervise its estimation.

Method 3→ 3 3→ 4

Static gating 0.305 0.496

GCN replaced by MLP 0.289 0.764

Single-step prediction 0.295 0.492

CophyNet 0.285 0.478

Table 6.6 – Ablation study on BlockTowerCF. Impact of each component of our
model (MSE on 3D pose average over time).

0.018 for K=4 compared to predicting the stability per object at each time step.
Replacing the GCN by a MLP (i.e. concatenating the object representation) hurts
the performance of the overall system by increasing the MSE by 0.286 when
tested in the K=4 setting. Finally we compare our approach against a single-step
counterfactual prediction. Non-surprisingly, predicting the future autoregressively
in a step-by-step fashion turns out to be more effective than predicting the whole
sequence at once.

Confounder estimation — After training for predicting the target CF sequences,
we evaluate the quality of the learned latent representation. In this experiment,
we predict the confounder quantities of each object (mass, friction coefficient)
from their latent representation by training a simple linear classifier, freezing
the weights of the whole network network. The obtained results are shown in
Table 6.7. A prediction is correct if both the mass and the friction coefficient
are correctly predicted. Our model outperforms the random baseline by a large
margin suggesting that the confounder quantities are correctly encoded into the
latent representation of each object during training.
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Method 3→ 3 4→ 4

Random 25.0 25.0
CophyNet 65.7 68.9

Table 6.7 – Ablations on BlockTowerCF: confounder prediction. Masses, friction
coefficients estimated from the joint latent representation U. Metric:
4-way classification accuracy: Random=random classification.

Method 3→ 3 3→ 4

Copy C 71.0 69.8
Copy B 69.9 68.5
GCN(C) 71.8 70.1

CophyNet 76.8 73.8

Table 6.8 – Ablation study on BlockTowerCF. Stability prediction (accuracy per
block). With the ground truth values of the confounders provided
as an input to the GCN, GCN(C) reaches performance of 85.4 and 77.3
in the 3 → 3 and 3 → 4 settings respectively (a soft upper bound, not
comparable).

Stability prediction — We studied the performance of the stability estimation
module in the BlockTowerCF scenario and compared it to several baselines, as
shown in Table 6.8. Our method predicts stability of each block from the con-
founder estimate U and the frame C. It outperforms the baselines estimating
stability from a single input C or from the sequence (A, B) by a large margin,
further indicating the efficiency of the confounder estimation and the complemen-
tarity of this non-visual information w.r.t. the visual observation C.

Training from estimated positions — In Table 6.9 we report the impact of the
de-rendering module on performance. In particular, we compare performance
of our model (CophyNet w/o GT, as described in the main part of the paper)
with a version where we use ground-truth positions (CophyNet GT) for training.
During training time, GT positions are fed to the full model with the exception of
the derendering module, not needed. For testing, we do, however, use positions
estimated by the de-rendering module in both versions.

We can see, that training using the ground-truth positions gives slighly better
performance than training from estimated positions, which is expected.
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Train→Test Copy C Copy B CophyNet GT CophyNet w/o GT (=ours)

3→ 3 0.470 0.601 0.294 0.309

3→ 3 † 0.365 0.592 0.289 0.298

3→ 4 0.754 0.846 0.482 0.504

Table 6.9 – Results in BlocktowerCF. MSE on 3D pose average over time. We
investigate different type of training procedures: from the ground-
truth positions (GT) or from the estimated positions (w/o GT). †Test
confounder configurations not seen during training (50/50 split).

6.6 Conclusion

We formulated a new task of counterfactual reasoning for learning intuitive
physics from images, developed a large-scale benchmark suite and proposed
a practical approach for this problem. The task requires to predict alternative
outcomes of a physical problem (3D block positions) given the original past and
outcome and an alternative past after do-intervention. Our suite of challenging
benchmarks cannot be solved by classical methods predicting by extrapolation, as
the alternative future depends on confounder variables, which are unobservable
from a single image of the alternative past.

We train a neural model by supervising the do-operator, but not the confounders.
Our experiments show that the CF setting outperforms conventional forecasting,
and that the latent representation is related to the GT confounder quantities.
We report human performance on this task, show its challenging nature, and
corroborating the advantage of CF prediction also for humans.

We believe that counterfactual reasoning in high-dimensional spaces is a key
component of AI and hope that our task will spawn new research in this area
and thus contribute to bridging the gap between the causal reasoning and the
Deep Learning (DL) literature. We also expect the proposed benchmark to become
a testbed for perception modules in model based Reinforcement Learning (RL),
which employs predictive models of an environment for learning agent behavior.
Forward models are classically used in this context, but we conjecture that coun-
terfactual reasoning will contribute to disentangling representations and inferring
causal relationships between different factors of variation.
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7.1 Summary of Contributions

In this manuscript, we proposed several approaches for learning video repre-
sentations. Ours contributions can be summarized into three categories.

Attention mechanisms — Finding features of interest in videos is a key com-
ponent for recognizing fine-grained human actions. To address this problem
we proposed different attention mechanisms both in the spatial and temporal
domains with the underlying objective to collect relevant features in an automatic
manner.

In Chapter 3, we exploited high-level information learned from articulated
human pose data as context information to draw attention over pre-defined visual
subparts of the video at each time instant. We defined a set of possible locations
of interest, the human hands, and the contextual information extracted of pose
features automatically weight visual features extracted around the hands. We have
also introduced a temporal attention mechanism that automatically learns to pay
more importance to timesteps which are more relevant to the task. We showed
that such spatio-temporal attention mechanism improved the performance in
term of human action recognition metrics and was also able to automatically
discard noisy visual features such as for example provided by bad hand position
estimation.

In Chapter 4, we went one step further by deploying an attention mechanism
without using the external information of the articulated human pose at test time.
Moreover, we did not restrain the attention mechanism and gave to the model the
liberty to freely explore different points at each frame. This mechanism produced
an unstructured "glimpse cloud", which corresponds to local spatio-temporal
features and which are soft-assigned to a set of recognition workers based on the
similarity with previously assigned features. Our method achieved State Of The
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Art (SOTA) performance at time of publication of this work, and we showed that
the key design choices were responsible for this performance improve: creating
multiple glimpses per frame; sequential attention; and finally, distributed decision
making.

Object interactions — While human behavior understanding is a necessary
first step, we have also focused on more challenging tasks such human-object
interactions in videos. In Chapter 5, we proposed a method able to predict the
semantic content of a video by modeling the interactions between humans and
objects detected in the scene. We represented the video as a fully-connected
space-time graph where each node is an object and its attributes is described by
its visual features, its spatial locations and its semantic information. We learned
the human-objects interactions using Graph Convolutional Network (GCN) with
the underlying goal to solve a problem of video classification. We showed that
such a representation leads to improvements in the overall performance and,
more importantly, it allows to highlight the importance of learned human-object
interactions for each video label, which we illustrate in the form of new graphs.

Counterfactual prediction — Being able to associate a pre-defined label to a
given visual content is a classical task in Computer Vision (CV), but training such
systems does not necessarily lead to the emergence of high-level reasoning, as we
discussed in Section 2.1. In Chapter 6, we went one step further by proposing to
tackle more reasoning-like problems such as predicting counterfactuals. We used
the same scene representation as presented in Chapter 5 by modeling a scene from
its object interactions through space and time. We focused on videos representing
physical interactions such as colliding objects or stacked cubes. Given a seen
video we proposed to predict what would be the outcome of a minimal change
in the initial geometrical configuration. To do so, we introduced an end-to-end
method that, first, detects the objects present in the scene and regresses their
positions. Second, the method estimates unobserved object properties such as
mass or friction coefficients by examining the initial sequence. And third, we
predict the outcome of the minimal change at the initial stage using the estimated
object latent embeddings and the newly estimated geometrical object properties.
We constructed a new large-scale benchmark composed of 3 challenging datasets
for solving the counterfactual learning task in high-dimensional space.

7.2 Perspectives for Future Work

The work conducted during this thesis and the recent advances in the field
open the door towards a wide range of possible perspectives and exciting research
directions. In the following we highlight some possible future work directions
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related to the tasks tackled in this thesis as well as more general problems for the
community.

Disentangling appearance and motion for human action recognition In this
manuscript the task of human action recognition has been common thread during
several consecutive chapters. We proposed spatio-temporal methods based on
attention mechanisms and human-object relations for identifying human actions.
However often a single image is sufficient for inferring a human action. We think
that developing methods which bridge the gap between human-object interactions
from static images (Gkioxari et al. 2018) and human action recognition in videos
(Kay et al. 2017) could help to better understand how to model efficiently the
motion information. It would be of high interest to automatically understand how
motion features should be interpreted for being complementary to the information
that can already be extracted from static images. This open the door toward a more
sparse and disentangled representation of a human action. Such representation
are nowadays widely used in generative modeling (Chen et al. 2017a) and could
be a source of inspiration for discriminative systems.

Toward long and complex human activities Recognizing short human actions
is a necessary first step towards the understanding of semantically meaningful
complex activities. Such activities could be composed of multiple subjects in the
scene whereas in this thesis most of the human actions that we have been working
with where restricted to one or two subjects. Extracting semantic information
at a human group level could be of high interest for better understanding the
contextual information of a scene. Graph representations (Ibrahim et al. 2016;
Ibrahim et al. 2018) have been proposed with success for representing human
group activities where each node corresponds to a detected person. We think
that understand human group information from a semantic level could be benefi-
cial for better understanding human behavior since it allows to give us context
information about the scene.

Counterfactual learning to more realistic scenarios In Chapter 6, we have
presented a method for counterfactual learning operating from the pixel space.
Our system was a two-stage procedure where we were first extracting object
properties from the visual space and then predicting counterfactuals from this
low-dimensional space. An interesting direction would be to simplify this system
by predicting counterfactual from visual embeddings directly. We are at the
moment working on this type of extension for a journal submission. While
it seems mandatory at the moment to supervise the object properties such as
the 3D pose for obtaining semantically meaningful embeddings, a long-term
goal would be to predict counterfactuals from the visual space without this
intermediate supervision. In some sense the model would need to find objects by
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itself and model the interactions without having access to the explicit modeling
extracted from the object visual properties supervision. A final question concern
the applications of counterfactual learning to real-word data. We have seen
in Chapter 6 that they can be learned from simulated data but an interesting
directions would be to extend them to real scenarios where we cannot supervise
the do-operator and we do not have access to the intervention itself.

Self-supervised learning — While manual annotations are necessary for evalu-
ating visual representations, constructing large-scale well-annotated datasets is
costly and difficult in practice. The annotation practice becomes a real problem in
itself when we want to annotate high-level concepts and/or very accurate labels.
The mental representation of high-level concepts is not the same for every one
and for example annotating the start and the end of long and complex human
actions could be a ill-posed problem. One way to overcome this issue is to rely on
self-supervised training procedure for constructing visual representations. While
videos themselves provide signal supervisions such as the temporal dimension
(Misra et al. 2016; Pickup et al. 2014), associated metadata such as audio, com-
ments, title or descriptions is a potential source of supervision for learning video
representations without using manual annotations. Instructional videos are an
interesting type of videos where the audio content is more or less aligned with
the visual content. While a lot of noise exists in such data, recent work (Miech
et al. 2019a) shows that powerful video representations can be learned from a
large-scale instructional video dataset (Miech et al. 2019b). This opens the door
for improving video representations without the need for human annotations.

Efficient learning of semantic concepts — Current deep neural networks
typically require hundreds or more training examples of the same semantic class
for being able to learn a high-level representation. This is not efficient and not
scalable to thousands of semantic concepts. Moreover, recent work (Tommasi et al.
2017; Torralba et al. 2011) shows that the learned representation is highly biased
by the data collection process and more generally by the datasets biases. However,
humans are capable of grabbing semantic concepts from a few examples only. This
is mainly due to their ability to synthetize and to the use of existing knowledge of
previously learned semantic concepts for learning new ones. Learning such robust
representations is of interest and has been tackled so far by meta-learning methods
(Finn et al. 2017) for solving classification task in few-shot learning scenarios where
the number of training examples is limited. Recent works (Gidaris et al. 2019)
show that self-supervised training objectives as auxiliary losses could be helpful
for improving visual representation. We believe that generalizing such evaluation
setup scenarios is a necessary step towards more robust and generalizable feature
representations.
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Unifying image and video representations — Classifying the video content in
a pre-defined human actions class is a necessary first step similar to the object
recognition task in image understanding. However, for real world applications
we want to extract more precise information such as the spatio-temporal volume
in the video containing the action of interest. Current action detection methods
(Kalogeiton et al. 2017; Peng et al. 2016; Chéron et al. 2018) are multi-stage
procedures and rely on a pose detector for detecting potential actors in the scene.
Bridging the gap between human pose estimation, object detection and human-
object interactions would be a good way to solve this problem in a end-to-end
manner following a training strategy based on (Redmon et al. 2017).

Efficient video models — Training video models composed of 3D convolutions
is extremely resource demanding. For example training I3D (Carreira et al. 2017)
on the Kinetics dataset (Kay et al. 2017) requires 64 GPUs and the training time
is approximately around 2 days. While being a real disaster in term of CO2

consumption, such large-scale experiments are reproducible only by big industrial
labs. Recent works focus on training with a single GPU (Wu et al. 2019b), or
speeding up the training procedure by restricting the convolution operations (Xie
et al. 2017) or relying on 2D convolutions only using a shift procedure (Lin et al.
2019). While these methods show good performance at inference time using GPUs,
they are really bad when it comes to inference time using CPUs only. Scaling
video models to inference on CPUs or low-consumption embedded devices is an
important step towards bringing perception module to robotics applications for
examples.

Video analysis from compressed representation — Daily videos that we are
watching on TV screens, laptops or smartphones are transferred through internet
in a compressed representation (e.g. h264, vp9). Video compression algorithms
are generally based on the removal of redundancy in the original signal. In short,
I-frames are selected with a certain frequency and the entire image is compressed
using an image compression technique while the remaining frames are encoded
by computing the residuals and motion vector from the previous and consecutive
I-frames (called P and B frames). Employing neural networks to reduce the size
of the compressed video has shown great success over the last year (Ma et al.
2019) and improving these methods is an interesting research topic since 80%
of the internet bandwidth is due to video traffic. On the other side, solving CV
task (Wu et al. 2018) such as action recognition has shown to be possible from
the compressed representation while speeding up the training and inference time.
This opens new perspectives for building more efficient video representation from
compressed signals.
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Visual reasoning with learnable causal structure — Visual Question Answer-
ing (VQA) is a task of interest in the subfield of visual reasoning which consists
at learning a joint vision/text embedding. Current methods are showing a clear
overfitting to concepts and examples from the training set (Shrestha et al. 2019;
Marino et al. 2019; Manjunatha et al. 2019). We think that such behaviors are
observed because most recent approaches are tackling the problem by training a
system to associate each visual example to its textual information. In Section 2.1
and Chapter 6, we have stressed out that causal relationships cannot be learned
by employing the association level only. Hence the reasoning ability of such system
are quite limited since no external knowledge is built during the learning of the
system and they cannot solve typical activities such as imagining or retrospection
mandatory for moving towards causal reasoning. Reasoning is about combining
concepts and we think that this issue can be solved by introducing an external
causal structure that the model should exploit and extend through its training
procedure. This can be seen as constructing ontologies that correspond to a hi-
erarchical structure of semantically meaningful concepts with their associated
relationships. Hence new concepts should be constructed from existing basic
concepts. Such causal structure can be seen as step towards data integration
where ontologies are to data what grammar is to language. The construction of
such external structure should enable reusable knowledge representation and the
learning of such relations between concepts should enable automated reasoning
about data.

Computer vision & Robotics — Finally, for the moment, we have highlighted
different future work perspectives where the representation is learned in a purely
passive way. Data are collected and a system is trained in a supervised or
unsupervised manner depending on the data type. While it has been shown that
babies learn largely by observation at the first stage of their lives (Gopnik et al.
2000), the role of interactions with the environment plays an important role in
the development of perception, navigation, planing and more generally reasoning
capacities. This is somehow related to the area of active vision initially suggested
for improving the perceptual quality of tracking algorithm (Aloimonos et al. 1988).
Tackling vision tasks in an active way could help at producing better predictions
to cope with problems related to limited view points or occlusions. An active
vision system also involves the introduction of visual attention mechanism which
is an essential part of the human visual system. We have seen in Chapter 3 and
Chapter 4 that visual attention mechanisms are particularly helpful for gathering
important local information from a fix camera viewpoint and extending their
behavior with systems that allow active camera view point would be of great
interest. We think that bridging the gap between computer vision and robotics is
a necessary step towards the construction of more robust visual representations
(Pinto et al. 2016) and intelligent systems.
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