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Notations and abbreviations

General notations

• < x, y >: dot product of x and y

• ∇f : gradient of f

• ∂f
∂x
: partial derivative of f with respect to x

• I: identity matrix in R3×3

• tr(A): trace of A

• div(f): divergence of f

• u̇: first derivative of u

• ü: second derivative of u

• p ∼ N (µ, σ): variable p follows a normal distribution of mean µ and standard
deviation σ

Chapter 2

• fext: external forces

• fint: internal forces

• m: body mass

• a: acceleration

• ρ: mass density

• v: velocity

• u: displacement field

• Ω: computational domain

• Γ: boundary of Ω

• ΓD: subpart of Γ with Dirichlet boundary conditions
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• ΓN : subpart of Γ with Neumann boundary conditions

• p: initial position of a particle in Ω

• p̄: deformed position of p

• φ: transformation undergone by the solid

• F: deformation gradient in R3×3

• ε: strain tensor

• εc: right Cauchy-Green strain tensor

• εg: Green-Lagrange strain tensor

• n: surface normal

• tn: stress vector linked to normal n

• dS: infinitesimal surface

• dV : infinitesimal volume

• V e: volume of element e

• σ: stress tensor

• σc: Cauchy stress tensor

• σp: first Piola-Kirchhoff stress tensor

• σs: second Piola-Kirchhoff stress tensor

• C: constitutive matrix (stress-strain matrix)

• W (ε): strain energy function

• λ and µ: Lamé coefficients

• ρ: density of the material

• f s: surface forces

• f v: volume forces

• E: Young’s modulus

• ν: Poisson’s ratio

• Ni: shape function at node i

• K: global stiffness matrix

• K̇: tangent stiffness matrix in the Newton-Raphson solver
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• r: internal elastic force vector

• N e: number of elements in the finite-element mesh

Chapter 3

• f : neural network function

• x = (x1, ..., xd): input of f

• y: output of f

• θ: parameters of the network

• hj: artificial neuron j

• wj = (wj,1, ..., wj,d): weights linked to neuron j

• bj: bias of neuron j

• φ: activation function

• L: number of hidden layers

• k: layer index

• z(k)(x): output of a neuron in layer k before activation

• a(k)(x): output of a neuron in layer k after activation

• W (k): weights matrix at layer k (number of rows equal to the number of neurons
in layer k and number of columns equal to number of neurons in layer k − 1

• b(k): weights vector at layer k

• ψ: last layer activation function

• K: convolution kernel

• L: loss function

• α: learning rate

• m: batch size

• N : number of samples in training data set

Chapters 4, 7, 8 and 9

• h: network function

• nx × ny × nz: resolution of the grid

• C: input constraints (expressed in the grid nodes)
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• Us: input surface displacement (expressed at grid nodes)

• Uv: output volumetric displacement field (expressed at grid nodes)

• N : number of samples in training data set

• M : number of samples in testing data set

• n: number of degrees of freedom of the FE mesh (e.g. number of nodes in
sparse grid)

• c: number of channels in the first layer of the U-Net

• k: number of steps in the U-Net

• ΓN : surface area on which forces are applied (its location varies such that the
boundary of the computation domain is completely covered)

• Λ: number of samples per ΓN

• e: mean norm error of a sample (mean euclidian error in Chapter 8)

• ē: average error over the testing data set

• σ(e): standard deviation of the error over the testing data set

Chapter 5

• p: sought parameter

• µ0 and σ0: initial mean value and standard deviation of p

• n: number of nodes

• k: number of stiffness parameters

• m: number of elements in the stochastic state vector

Chapter 6

• fp: external force due to intraocular pressure

• fn: needle pushing on the surface of the sclera

• fg: gravitational force

• S: surface area of the eye

• P : intraocular pressure

• (fn, I): sample of the data set. fn is the input force and I is the corresponding
OCT image
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Abbreviations

• ANN: artificial neural network

• AR: augmented reality

• BC: boundary condition

• CAI: computer-assisted interventions

• CAS: computer-aided surgery

• CNN: convolutional neural network

• CT: computerized tomography

• FC: fully-connected

• FE: finite-element

• FEM: finite-element method

• FSS: feature space size

• FUS: freehand ultrasound system

• GPU: graphics processing unit

• H8: 8-node hexahedral elements

• HPOD: hyperreduced proper orthogonal decomposition

• IBM: immersed-boundary method

• ICP: iterative closest point

• IOP: intraocular pressure

• MIS: minimally-invasive surgery

• ML: machine learning

• MLP: multi-layer perceptron

• MRI: magnetic resonance imaging

• NN: neural network

• OCT: optical coherence tomography

• PBD: position based dynamics

• PCA: principal-component analysis

• PDF: probability density function
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• PGD: proper generalized decomposition

• POD: proper orthogonal decomposition

• ReLU: rectified linear unit activation function

• ROUKF: reduced-order unscented Kalman filter

• SGD: stochastic gradient descent

• T4: 4-node tetrahedral elements

• TRE: target registration error

• US: ultrasound

• VR: virtual reality
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Chapter 1
General Introduction

There are many applications in engineering where the deformation of nonlinear struc-
tures needs to be simulated in real time, or would benefit from being computed
interactively. Some important examples can be found in the field of medicine, in
order to develop training systems for learning surgical skills [Ayache et al., 2006]
or in the field of surgical navigation, where augmented reality combined with
interactive simulations can bring significant improvements to clinical practice
[Haouchine et al., 2013a]. Medical robotics, involving flexible robots or interactions
with soft tissues, is another important area where real-time simulation of flexible
structures is essential, in order to have a better control of the robot [Duriez, 2013].

In the context of minimally-invasive surgery (MIS) or laparoscopic surgery for in-
stance, extensive surgical training is mandatory to support the success of the in-
tervention [Rosser et al., 2000]. During this type of surgery, usually three to four
small incisions are done in the abdomen, through which surgical tools and a camera
are inserted in the abdominal cavity. The abdomen is then inflated with gas, thus
creating a working space for the surgeons to operate guided by the images from the
camera, displayed on a screen. MIS offers several benefits to the patient such as
reducing the bleeding and the risk of infection as well as shortening recovery time
[Li et al., 2017]. However, the reduced field of view of the endoscopic camera and
the lack of tactile information, make it difficult to succeed in such interventions
[Plantefeve et al., 2016]. Surgeons need a lot of dexterity so an extensive training
is required. Instead of practicing on animals or on cadavers, virtual laparoscopic
training allows surgeons to practice on a completely virtual environment. Through
virtual reality and simulation, it is possible to reproduce with high fidelity what the
surgeon experiments during the surgery. Apart from the deformation of the organs,
the interactions between surgical tools and the tissues are also modeled using haptic
devices to mimic tactile sensation. To obtain a stable haptic feedback, simulations
must run at 500 frames per second (FPS) [Courtecuisse et al., 2015]. Interventional
radiology is another example of intervention requiring specific surgeon training due
to its difficulty [Messina et al., 2002]. Indeed, the anatomy is visualized through X-
ray images, and the surgical gesture is performed with flexible instruments (such as
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catheters) through the vascular tree towards the target. In such training systems,
the surgical tools are deformable objects and the vessels are generally considered
to be rigid. Such models need to be interactive, therefore the simulations must be
computed in real-time (e.g. 30 FPS for visual interaction [Duriez, 2013]).

Computer-assisted interventions (CAI) also require the computation of nonlinear
deformations in real-time. For example the use of surgical robots is revolutionizing
the field of MIS as they can overcome several human limitations [Troccaz, 2012].
The control loop of the robot is often based on intraoperative images and it must
take into account the interactions of the robot with soft tissues, as well as its own
deformation in the case of soft robotics. In needle insertion procedures for instance,
both the needle and the tissue usually deform as the insertion proceeds and authors in
[Adagolodjo et al., 2016] proposed to control the robot through real-time numerical
simulations.

On another hand, in the context of hepatic surgery, the objective is to accurately
locate the internal structures such as tumors and blood vessels (that need to be
preserved for the post-operative regeneration of the liver tissue). While the ini-
tial position of these structures is known from the preoperative images, their actual
position during surgery is often hidden or uncertain (even for well-trained and exper-
ienced surgeons). To help the surgeon overcome these difficulties, augmented reality
(AR) techniques are used to enrich visual information through a fusion of intraop-
erative images and a preoperative 3D model of the patient’s anatomy. However,
correctly aligning preoperative data to intraoperative images remains an unsolved
problem, especially when large deformations are involved and only sparse input data
is available. This is typically the case when trying to provide an augmented view of
an organ during surgery. In most cases, just about 30% of the surface of the organ
is visible due to the limited field of view of the laparoscopic camera or size of the
incision [Plantefeve et al., 2016].

In all the cited examples, the considered structures are deformable and can
be very soft. Surgical manipulations cause the organs to deform and interact
with the surrounding anatomy. Several works have demonstrated the benefits of
physics-based models, particularly patient-specific biomechanical models, for accur-
ate registration between different preoperative 3D anatomical model and intraop-
erative data [Clements et al., 2008, Haouchine et al., 2013b, Suwelack et al., 2014,
Alvarez et al., 2018]. While there are different numerical strategies for solving these
models, we only consider the finite-element (FE) method throughout this manuscript,
for its accuracy and ability to simulate a large range of materials on potentially com-
plex domains. It gives a numerical approximation of a partial derivatives equation
discretizing the considered object using nodes connected by elements. The choice of
the constitutive model, and its parameterization, are obviously key to an accurate
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registration. It is usually acknowledged that a registration of internal structures be-
low 5mm is needed for best clinical impact, such as targeting relatively small tumors
[Ruiter et al., 2006]. Achieving the demanded accuracy within real-time constraints
raises several challenges that are far from being solved.

When considering augmented reality or, more generally, real-time tracking of the
organ deformation to provide up-to-date guidance, the computational efficiency
of the FE method is essential. Indeed, if the simulations are not up-to-date,
they might simply be ignored by the clinicians. In the case of augmented hep-
atic surgery for instance, intraoperative images are acquired at about 20Hz
leading to update times of less than 50ms. During this small amount of time,
acquisition and processing of the images as well as model update need to take
place. As a result, FE computation times should require less than 30ms. If
only small deformations take place, achieving such computation times is feasible
[Meier et al., 2005]. However, if large nonlinear deformations happen, computation
times become incompatible with such constraints. A solution might be the use
of the co-rotational FE method, where geometrical nonlinearities can be handled
in real-time [Haouchine et al., 2013a, Petit et al., 2018]. Nevertheless, when more
complex biomechanical models need to be used these optimizations no longer
hold. Alternative solutions have been proposed with different trade-offs regarding
the ratio between computation time and model accuracy [Peterlík et al., 2012,
Suwelack et al., 2014, Modrzejewski et al., 2018, Niroomandi et al., 2008,
Johnsen et al., 2015, Allard et al., 2007]. [Marchessau et al., 2010] proposed
the Multiplicative Jacobian Energy Decomposition (MJED) that allows for fast and
realistic liver deformations including hyperelasticity, porosity and viscosity. Also,
[Miller et al., 2007] introduced Total Lagrangian explicit dynamics (TLED) which
can achieve real-time performances when coupled with explicit time integration and
GPU-based solvers [Joldes et al., 2010].

In recent years, machine learning (ML) started to revolutionize several fields (vision,
language processing, image recognition, genomics). With sufficient ground truth
data, machine learning algorithms can map the input of a function to its output
without any mathematical formulation of the problem. The high inferring speed of
these methods can be useful for many applications where the prediction speed is of
critical importance. Due to this characteristic and the fact that they are driven dir-
ectly by data, these methods seem promising for the learning of the entire mechanical
behavior of the anatomy without relying on prior models.

Some first attempts that exploit learning methods to estimate the deformation
of biological tissues have recently been made. By implicitly encoding soft tis-
sue mechanical behavior in the trained ML models, they proved successful to
predict the entire 3D organ deformation starting either by applied surface forces
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[Morooka et al., 2008, Tonutti et al., 2017, Rechowicz et al., 2013] or by surface dis-
placements [Lorente et al., 2017]. The accuracy of a ML model highly depends on
the network architecture and on the quality and on the amount of data used to train
it. In an ideal scenario, such a model would be trained with an infinite amount of
real patient-specific noise-free data, which is in practice not possible. Within this
framework, FE simulations can be exploited to generate synthetic data that is highly
representative of the reality, to be used as training samples.

Among the various ML techniques, the use of neural networks (NN) has considerably
increased. This is due to the fact that they are the building blocks of deep learning,
a class of methods which is able to learn data representations and has demonstrated
strong abilities at extracting high-level representations of complex processes. For ex-
ample, NN are used by [Tonutti et al., 2017] and [Rechowicz et al., 2013] to predict
the displacement of brain tumors and of the rib cage surface respectively, starting
from the acting forces. However, both these works do not predict whole volume de-
formation but only surface displacements. NN based methods have been also used to
predict liver deformation in augmented surgery. [Morooka et al., 2008] trained a NN
to predict liver deformations for a given input force. They use their model together
with principal-component analysis to compress the size of the output deformation
modes, and thus reduce the training time. Although the model proved able to learn
the deformation modes, it was only applied to simulated data and not to real cases.
From all these works it emerges that the main advantage of using neural networks
to predict anatomical deformations is that the prediction speed is in the order of few
milliseconds and is not affected by the complexity of the model used to generate the
training dataset.

To ensure the aforementioned requirements in terms of model parameterization and
computational efficiency, we propose to combine patient-specific FE simulations with
deep learning techniques. Within this thesis work, our main contribution is the use of
deep neural networks for real-time numerical simulations of nonlinear deformations.

This manuscript is divided in two main parts. The first part is dedicated to generic
real-time simulations with deep neural networks. The first two chapters establish
the theoretical foundations of the problems we are looking at. We first present
the mechanical formulation of our problem and the finite-element method used for
its numerical resolution. In a next chapter, the fundamentals of artificial neural
networks are introduced and we give a brief explanation on how such networks are
trained. In the third chapter, we present the main contribution of our work: the
U-Mesh framework. It consists of a data-driven deep neural network that learns the
desired biomechanical model to predict complex nonlinear deformations in real-time
on simple geometries.
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The second part of this thesis deals with adapting the finite-element method and the
deep learning algorithms to patient-specific modeling. We look at the importance of
correct model parameterization and we describe a stochastic assimilation method to
identify the patient-specific parameters. Chapter 4 describes how to perform patient-
specific modeling using Kalman filtering. Chapter 6 concerns medical robotics. A
neural network for robotic force estimation is trained with patient-specific finite-
element simulations. The objective is to estimate forces during robotized intravitreal
injections using a neural network for image classification. Chapters 7 and 8 extend
the U-Mesh framework to patient-specific geometries. We demonstrate its potenti-
ality in computer-assisted interventions, in particular augmented liver surgery and
US-guided breast biopsy. In the last chapter of this manuscript, we propose several
strategies in order to adapt the network’s prediction to patient-specific properties.
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Real-time numerical simulations
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Chapter 2
Biomechanical Problem Formula-
tion

2.1 Elasticity equations for soft tissue simulation
A biomechanical model is a mean to represent the physical behavior of an organ
whose mechanical properties and boundary conditions are difficult to determine. In
order to construct such a model, we explain the physical phenomena considered in
this work using the theory of continuum mechanics (assumption that the studied
object fills entirely the space it occupies). The goal of a simulation is to predict the
behavior of a deformable body from the knowledge of the external forces fext applied
to the body. There are two types of forces undergone by an object: the external
forces (such as gravity and contacts) and the internal forces that are given by the
stress tensor. The internal forces maintain the coherence of the body: a deformable
body cannot be infinitely stretched or compressed. Applying forces on a deformable
body leads to the creation of constraints (stress) and deformations (strain) inside of
it. Such quantities will be defined in next sections. From Newton’s second law of
motion we have that:

fext + fint = ma, (2.1)

where fint are the internal forces, m the body mass and a the acceleration. In the
static case we can rewrite this equation as:

fext = −fint. (2.2)

2.1.1 A measure of deformation: the strain tensors
We observe a continuum solid occupying a volume Ω whose boundary is Γ. We
consider a Lagrangian description of the movement meaning that the deformed state
of a particle p ∈ Ω at time t is given by

p = φ(p̄, t), p̄ = φ(p̄, 0) (2.3)
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where p̄ is the initial position of particle p and φ is the transformation undergone
by the solid with φ : Ω× R+ → Ω.

A naive approach to quantify the deformation between two infinitesimally close
points p̄1 and p̄2 is to measure their respective distances in the initial and deformed
configurations. In the initial configuration, such distance reads as

dp̄ = p̄2 − p̄1 (2.4)

and in the deformed configuration:
dp = p2 − p1 = φ(p̄1 + dp̄, t)− φ(p̄1, t) (2.5)

where p1 and p2 are two infinitesimally close points in the deformed configuration
and dp the distance between them. For each particle in the rest configuration, there
exists a displacement vector u, u : Ω × R+ → Ω, describing its deformed position
such that

u(p̄, t) = φ(p̄, t)− p̄. (2.6)

The displacement field u characterizes the movement of the solid. Nevertheless note
that for a rigid deformation, u is different from zero even if the object is not deformed.
Hence, a better definition of the deformation must be introduced.

Let us introduce the deformation gradient in R3×3:
F = ∇u+ I, (2.7)

where I ∈ R3×3 is the identity matrix and ∇u is the gradient of u. F describes the
variation of the distance between the particles in all the directions. Equation (2.5)
can be rewritten as

dp = Fdp̄. (2.8)

The square of distance dp leads to
(dp)2 = dp · dp = (Fdp̄) · (Fdp̄)

= (Fdp̄)T (Fdp̄)
= dp̄TFTFdp̄
= dp̄Tεcdp̄,

where εc = FTF is known as the right Cauchy-Green strain tensor. However, when
the difference in angle between the rest and deformed configuration is null, εc is not
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null. Indeed, if dp = dp̄, εc = I. Therefore, we compute the difference between the
squared distances

(dp)2 − (dp̄)2 = dp̄Tεcdp̄− (dp̄ · dp̄)
= dp̄T (εc − I)dp̄
= 2dp̄Tεgdp̄,

where εg = 1
2(εc− I) is known as the Green-Lagrange strain tensor satisfying εg = 0

when dp = dp̄. It can be rewritten as:
εg = 1

2(FTF− I)

= 1
2
(
(∇u+ I)T (∇u+ I)− I

)
= 1

2
(
∇uT∇u

)
+ 1

2
(
∇uT +∇u

)
.

The Green-Lagrange tensor consists of a linear component εlinear = 1
2

(
∇uT +∇u

)
and a nonlinear one εnonlinear = 1

2

(
∇uT∇u

)
. By linearization of εg, for small de-

formations εnonlinear can be neglected and εg can be approximated by:

ε := εlinear = 1
2
(
∇uT +∇u

)
. (2.9)

The infinitesimal strain tensor ε considerably simplifies the equations. However,
as soon as the deformations get large, this linearization is no longer valid and the
complete εg must be considered.

2.1.2 A measure of internal forces: the stress tensor
We now need a way to account for the internal forces of an object that constrain its
deformation (avoiding infinite stretch or compression for instance). Let tn be the
stress vector at point p whose normal to the surface is n:

tn = f
dS
, (2.10)

where f is the average force applied on the infinitesimal surface dS. The stress vector
tn depends on the normal n, hence it does not completely describe the impact of the
force in the whole volume. If we consider an infinitesimal volume dV , for example
a tetrahedron (see Figure 2.1), the force at the wider face whose normal is n is
expressed as:

f = tndS, (2.11)

Biomechanical Problem Formulation 12



Figure 2.1: Infinitesimal volume tetrahedron. The stress vectors t1, t2, t3 and tn are
linked to the normals −x1, −x2, −x3 and n.

where dS is the area of the considered face. On the other faces, the force is expressed
as:

fi = −tidSi i ∈ {1, 2, 3}, (2.12)

where ti is the stress vector and dSi is the area of the i-th face of the tetrahedron. The
minus sign comes from the normals that are equal to the negative of the coordinate
axis. Let fvdV be the volume force inside the tetrahedron. From the conservation
of linear momentum we have that:

f + f1 + f2 + f3 + fvdV = ρdV
dv
dt
, (2.13)

where ρ is the mass density, v is the velocity of the tetrahedron. Using equations
(2.11), (2.12) and expliciting dV , Equation(2.13) can be rewritten as:

tndS − t1n1dS − t2n2dS − t3n3dS + fvhcdS = ρhcdS
dv
dt
, (2.14)

where h is the height of the tetrahedron, c is a constant independent of h and
(n1, n2, n3) are the coordinates of the normal n. If we devide by dS and make h tend
to 0 we get that:

tn − t1n1 − t2n2 − t3n3 = 0. (2.15)

In other words, if the stress vectors acting on three faces of normal parallel to the
coordinate axes is known, we can compute the stress vector for any normal direction
n:

tn =
(
t1 t2 t3

)
n1

n2

n3

 =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



n1

n2

n3

 = σc · n (2.16)
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where σc is called the Cauchy stress tensor.

There exist other definitions for the stress tensor such as the first Piola-Kirchhoff
tensor σp:

σp = J · σc · F−T , (2.17)

where J = det(F) is the matrix allowing to pass from the rest to the deformed config-
uration. However, σp is not symmetric and is based on the deformed configuration.
On the contrary, the second Piola-Kirchhoff tensor defines the stress based on the
rest configuration:

σs = JF−1 · σc · F−T . (2.18)

2.1.3 Constitutive law: linking stress and strain
There is a relation between the strain tensor ε and the stress tensor σ that depends on
the mechanical properties of the material. Such function translates the link between
the forces applied on the considered body and its deformation. Even if it can be
very complex, for small displacements we can assume its linearization using Hooke’s
constitutive law.

Figure 2.2: Linearization of the relation between stress and strain. Source: www.
simsolid.com

Linear elasticity: Hooke’s law The simplest relation is given by Hooke’s law
claiming that the elongation is directly proportional to the force. This linear con-
stitutive equation relates two symmetric tensors:

σ = Cε, (2.19)
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where C is the constitutive matrix (see [Slawinski, 2007] for detailed equations). If
the material studied is isotropic, such equation can be written as:

σ = 2µε + λtr(ε)I. (2.20)

where λ and µ are the so-called Lamé coefficients, which in the present case are re-
lated to the material properties of the soft body (introduced later in Equation(2.41)).
Note that Hooke’s law is linear in ε but also in ∇u because we used the linearized
strain tensor. If we do not work with small displacements, we need to take ac-
count for nonlinearities of the displacement and of the material, and the relation
between strain and stress is no longer linear in ∇u (cf Figure 2.2). The material
should therefore be modeled using an hyperelastic constitutive law such as the Saint
Venant-Kirchhoff, Ogden, Neo-Hookean or Mooney-Rivlin models.

Hyperelasticity: the Saint Venant-Kirchhoff model If we rewrite the Equa-
tion (2.20) with εg instead of the linearized ε, we obtain the Saint Venant-Kirchhoff
model where σ is not linear in ∇u anymore. It is the simplest and most efficient ex-
tension of a linear elastic material to the nonlinear regime. In the following chapters,
we will most of the time use the Saint Venant-Kirchhoff model.

It goes without saying that the constitutive law can be made more complex in order to
model a higher degree of nonlinearity but the computational needs also increase. For
a given mesh resolution and configuration (constant material properties and bound-
ary conditions) the computation time needed for solving linear elasticity equations
can be much smaller than that needed for hyperelasticity equations. Therefore, it is
crucial to adapt the choice of the constitutive model to the considered deformations
(to avoid using unnecessarily complex and computationally expensive models).

2.1.4 Forces and weak formulation
In the previous sections, we have defined the strain tensor linking the deformation
and the displacement. Then, we have described the stress tensor translating the
internal forces undergone by the soft body. Finally we have characterized the relation
function between the strain and the stress tensors. To balance the internal forces
with the external forces, we can express the force equilibrium over the computational
domain Ω such that:

div(σ) + fext = ρü, (2.21)

where ρ is the density of the material and fext the external forces. The Equation
(2.21) is known as the strong formulation. It represents the fundamental principle
of dynamics at each particle of the body. As we will only consider static problems

Biomechanical Problem Formulation 15



throughout this manuscript, we can set the second derivative of the displacement to
zero. Hence, Equation (2.21) reads as:

− div(σ) = fext. (2.22)

To ensure the uniqueness of the solution to this equation, we must impose Dirichlet
boundary conditions to function u on a subset ΓD of the boundary of the domain Ω
such that

u(x, t) = uD, ∀x ∈ ΓD, (2.23)

where uD is a constant. Also surface forces f s are applied on a subset ΓN of the
boundary Γ (the so-called Neumann conditions) such that

σ(x).~n(x) = f s, ∀x ∈ ΓN . (2.24)

The boundary conditions will be further detailed in Section 2.3.2.

In order to distinguish the forces that are applied at the boundaries of the body
such as pressure and contacts (denoted f s) from the volume forces such as gravity
(denoted f v), we introduce the weak formulation of Equation (2.22). The weak form
consists of multiplying the strong form by a test function v (verifying v = 0 on ΓD)
and integrating over the domain Ω. It is given by Equation (2.28) using Green’s
formula:

−
∫

Ω
div(σ).v dΩ =

∫
Ω
fext.v dΩ (2.25)

⇔
∫

Ω
σ : ε(v) dΩ−

∫
Γ

σ.~n.v dΓ =
∫

Ω
fext.v dΩ (2.26)

⇔
∫

Ω
σ : ε(v) dΩ−

∫
ΓN

f s.v dΓ−
∫

ΓD

σ.~n.v dΓ =
∫

Ω
f v.v dΩ (2.27)

⇔
∫

Ω
σ : ε(v) dΩ︸ ︷︷ ︸

Material stiffness

−
∫

ΓN

f s.v dΓ︸ ︷︷ ︸
Boundary conditions

=
∫

Ω
f v.v dΩ︸ ︷︷ ︸

Volume forces

(2.28)

We remark that the spaces of the solution u and the test function v are different:
u = uD on ΓD, whereas v = 0 on ΓD. In the following, for the sake of simplicity, we
will set uD = 0.

These equations must be applied to all the points that form the body but this would
take an infinite amount of time. Hence, we need a method that approximates the
solution to this formulation: the finite-element method that will be explained in the
next section.
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2.2 The Finite-Element Method
The equations of the previous section must be integrated all over the domain Ω,
which leads to an infinite number of equations. The finite-element method (FEM)
is a numerical method that gives a numerical approximation of a partial derivatives
equation discretizing the object using nodes connected by elements. Positions inside
the elements are interpolated from the element nodes. Continuum mechanics pro-
duces a stiffness matrix for each element that relates nodal displacements to nodal
forces. FEM has interesting properties for our application domain such as accuracy
and robustness. However, its computation time and sensitivity to the mesh resolu-
tion raise several challenges in the context of real-time simulation of organs. In this
section, we will present the FEM for the simulation of deformable objects.

2.2.1 Domain discretization
The first step is the domain discretization. It consists of generating a mesh composed
of simple geometrical shapes (for example triangles or quadrilaterals in 2-D or tetra-
hedra or hexahedra in 3-D) that composes a non-gap and no intersection subdivision
of the computational domain. We then obtain a finite number of points that are
linked by elements. The main idea is to solve the equations at these elements and
then approximate the solution over the entire domain Ω by a linear combination of
element-wise continuous polynomial functions called the shape functions. The order
of the polynomial gives the order of the element (usually linear elements or quadratic
elements).

Tetrahedral finite-element meshes are usually preferred over hexahedral meshes
as the latter are extremely difficult to generate automatically, and its genera-
tion takes several orders of magnitude longer than tetrahedral mesh generators
[Shepherd et al., 2008]. However, in this manuscript we will mainly use hexahed-
ral finite element meshes. The main motivation for this choice is that we want to
use the FE simulations to train Convolutional Neural Networks that work on regular
grids (see Chapter 4 for details). Moreover, hexahedral meshes offer several benefits
over tetrahedral finite element meshes. They present smaller error and less elements
are usually needed to reach a given accuracy, and tetrahedral elements can exhibit
a too stiff behavior [Shepherd et al., 2008]. Moreover, trilinear hexahedral elements
(Q1 elements) provide similar accuracy and convergence characteristics as quadratic
tetrahedral elements (P2 elements) [Cifuentes et al., 1992, Benzley et al., 1995]. For
all these reasons, we will use trilinear hexahedral elements in our simulations.

To compute accurately the deformation of the considered object, the finite-element
mesh needs to be sufficiently fine (to avoid discretization errors). The more we refine,
the better the solution but at the cost of higher computational resources. Therefore,
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a compromise must be found in order to obtain the desired accuracy within an
acceptable amount of time.

2.2.2 Shape functions
In this section, we will explain how to build the finite-element space in which we
will search the numerical solution. For the sake of readability, we will only present
the case of a linear constitutive law associated to the small displacement regime,
since handling the linearized version is similar. We will now express the shape func-
tions (also known as basis functions) that allow us to interpolate the value of the
displacement field through each element based on the nodal values. Throughout
this manuscript we only consider linear or trilinear shape functions e.g. first degree
polynomials. Note that we could use higher degree polynomials but at the cost of
higher computation times. For triangular or tetrahedral elements, the P1 nodal shape
function Ni at node i reads as:

Ni(x, y, z) =
∑

j+k+l≤1
αjklx

jykzl, (2.29)

where αjkl are real coefficients defined such that Ni = 1 at node i and Ni = 0 at
other nodes. For quadrilateral or hexahedral elements, the Q1 shape function reads
as:

Ni(x, y, z) =
∑

j,k,l≤1
αjklx

jykzl, (2.30)

where, again, αjkl are real coefficients defined such that Ni = 1 at node i and Ni = 0
at other nodes.

At any point p, the discretized displacement uh can be expressed as:

uh(p) =
N∑
i=1

Ni(p).uhi, (2.31)

where uhi is the displacement at node i and N is the number of nodes in the mesh
(excluding those on the Dirichlet boundary).There is one shape function Ni for each
node i in the mesh and such function must have a local support and be piece-wise
continuous.

For readability reasons, we rewrite ∑N
i=1Ni as

∑
kNk in the following equations.

Biomechanical Problem Formulation 18



2.2.3 Build the system matrices
In order to write the system in a matrix form, we first need to write Equation (2.28)
in its discrete form. The problem we aim at solving reads as:
∃?uh ∈ Vh,0 such that

∫
Ω

σ(uh) : ε(vh) dΩ−
∫

ΓN

f sh.vh dΓ =
∫

Ω
f vh .vh dΩ, ∀vh ∈ Vh,0.

(2.32)
uh is the discretized version of the displacement u and is given by:

uh(p) =
∑
k

Nk(p).uhk. (2.33)

f sh and f vh are the discretized forms of the surface and volume forces expressed with
the shape functions. They read as follows:

f sh(p) =
∑
k

Nk(p).f shk, (2.34)

f vh(p) =
∑
k

Nk(p).f vhk. (2.35)

Space Vh,0 is the discretization of the Hilbert space H1
0 (Ω).

If in addition, we apply the Galerkin theorem suggesting to replace the test function
by the shape function Nn(p), by linearity we get that:∑

k

uhk

(∫
Ω

σ(Nk(p)) : ε(Nn(p)) dΩ
)
−
∑
k

f shk

(∫
ΓN

Nk(p).Nn(p) dΓ
)

=

∑
k

f vhk

(∫
Ω
Nk(p).Nn(p) dΩ

)
.

Let us define the stiffness matrix K:

K =


∫
Ω σ(N1(p)) : ε(N1(p)) dΩ ...

∫
Ω σ(N1(p)) : ε(NN(p)) dΩ

... ... ...∫
Ω σ(NN(p)) : ε(N1(p)) dΩ ...

∫
Ω σ(NN(p)) : ε(NN(p)) dΩ

 , (2.36)

and the displacement vector Uh:

Uh =


uh1
...

uhN

 . (2.37)

Let us also define the volume and surface force vectors as:

F s
h =


f sh1
...

f shN

 and F v
h =


f vh1
...

f vhN

 . (2.38)
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Then, the full system reads as:
KUh = F s

h + F v
h . (2.39)

To derive the stiffness matrix we made the assumption of small displacements. How-
ever, most of the times, the stiffness matrix cannot be expressed explicitly due to
the material nonlinearity (relation linking the stress and the strain tensors) or to the
geometrical nonlinearity (relation between the strain tensor and the displacement).
Hence, it is some times impossible to separate the material stiffness from the dis-
placement u. In such case, the weak formulation will be solved iteratively thanks to
the Newton-Raphson algorithm (presented in next section) and K will be replaced
by the associated tangent stiffness matrix.

Note that in the case of small displacements, we suppose that the matrix K does
not change over time (meaning that we can compute its inverse once for all at the
beginning of the simulation thus accelerating the computations considerably). For
more complex materials, K will need to be recomputed at every simulation step.
Intuitively, the matrix K explains the influence of a point on the other points of the
mesh. It will be used to know the internal forces generated over the nodes by their
displacement.

2.2.4 Solving the system of equations
Equation (2.39) represents the static system that aims at studying the equilibrium
states of the deformation. The solution is the displacement for which the internal
forces are equal to the external forces applied to the object. In this case, any linear
system solver could be used for solving the equation. In the nonlinear case, we can
obtain the solution of the system by iterating in the Newton-Raphson method for
example. Basically we build a sequence in which we make the displacement vary
until the difference of the forces vanishes. From an initial displacement u0, we try to
find a correction δnu after n iterations that balances the linearized set of equations:

K̇n−1(un−1)δnu = r(u0 + δn−1
u ) + f (2.40)

where K̇ is the tangent stiffness matrix and r is the internal elastic force vector.
At each iteration, both the matrix K̇ and the vector r need to be computed, and
the linear system needs to be solved. Since the convergence of the Newton-Raphson
method is only valid for a displacement u0 near the solution, large external loads
must be applied by small increments and can require a large number of iterations to
converge.

If we were to consider dynamics, in Equation (2.21), ü would be different from
0. Dynamic systems aim at studying the deformations that depend on the time,
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thus taking into account the acceleration of the system. We want to know all the
transitory states of the movement. In this case, a temporal integration scheme has
to be used before the linear system solver. For that, we must define a time-step h
and a time integration scheme in order to define the new positions in terms of the
old ones. There are two possible strategies: explicit temporal integration or implicit
integration. We will not go any further in the time integration since we only deal
with static problems throughout this manuscript.

2.3 Model parameterization

2.3.1 Material properties
The proper modeling of an object requires the identification of the constitutive law
(presented in Section 2.1.3) and the related material properties. These paramet-
ers play a major role in the estimation of the displacement field. Therefore, their
understanding and identification is crucial for the accuracy of the method.

However, identifying such parameters can be very difficult in practice, mostly for
soft tissues. Indeed, the typical approach for estimating them relies in traction
experiments where different known forces are applied on a sample of the material.
The sample elongation and the change in its cross section are measured in order to
estimate the Young’s modulus E and the Poisson’s ratio ν. The Young’s modulus
defines the ratio of stress to strain. It is a measure of the stiffness of the material.
The Poisson’s ratio characterizes the compressibility of the material (change in the
volume). While the Young’s modulus can take any positive value, the Poisson’s
ratio is positive and smaller than 0.5. Incompressible materials (such as soft tissues)
have a Poisson’s ratio close to 0.5. The Lamé coefficients λ and µ are theoretical
material-dependent quantities that are in practice obtained form the values of E and
ν through the following relations:

λ = Eν

(1 + ν)(1− 2ν) , µ = E

2(1 + ν) . (2.41)

Note that such definition is only valid for linear elasticity and for some cases of hy-
perelasticity (such as the Saint-Venant Kirchhoff model that is the only hyperelastic
law used in this manuscript).

For biological tissues, the traction experiments are controversial because the bio-
logical samples are examined ex vivo. Therefore, the mechanical properties ob-
tained may differ from the in vivo properties. Other methods such as elastography
[Sarvazyan et al., 1998, Muthupillai et al., 1995, Xu et al., 2007] or Bayesian filter-
ing [Peterlík et al., 2017] attempt to determine these parameters in vivo. Whereas
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in the first part of this manuscript we will consider average material properties, in
the second part we will identify them with Bayesian filtering (see Chapter 5).

2.3.2 Boundary conditions
In order to guarantee the uniqueness of the solution of Equation (2.22), boundary
conditions must be imposed on the unknown function u. The boundary conditions
describe the effect of the exterior environment on the considered object. There are
two types of boundary conditions: Dirichlet and Neumann. We recall that Γ is the
boundary of the domain Ω. Let ΓD be the subpart of Γ on which Dirichlet conditions
are applied and ΓN the subpart on which Neumann conditions are applied (such that
ΓD∩ΓN = ∅). Dirichlet conditions specify the value of the function u on the domain
boundary, while the Neumann conditions impose a traction at the boundary. In the
first part of this manuscript, we assume the Dirichlet conditions on ΓD are known a
priori, while Neumann boundary conditions on ΓN can change at any time step. In
the context of soft tissue simulation, the correct estimation of boundary conditions is
a non-trivial problem [Nikolaev et al., 2018]. For instance, the structures attaching
the organs (such as ligaments or muscles) are difficult to locate and characterize
based on medical images. Therefore, in the second part of this manuscript, we will
propose a way to characterize them using Bayesian filtering (similarly to material
properties).

2.4 Conclusion
In this chapter we have presented elastic biomechanical models for soft-tissue simu-
lation in order to estimate the displacement field u that is the quantity of interest.
Moreover, the finite-element method is depicted with an emphasis on the discret-
ization choices considering the further use of convolutional neural networks for dis-
placement field estimation. In addition, we introduced the model parameters and
boundary conditions that play a major role in the accuracy of the prediction as we
will see in Chapter 5.
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Chapter 3
Artificial Neural Networks: Funda-
mentals

3.1 Components of an artificial neural network

3.1.1 Definition
An artificial neural network (ANN) is a sequence of equations that approximates
the underlying relationships in a given data set. Such a system learns the patterns
in the data by analyzing examples, generally without receiving any task-specific
rules. An ANN is an application f , nonlinear with respect to its parameters θ that
associates an output y to an input x such that y = f(x, θ). A neural network (NN)
can be used for solving regression or classification problems and it can be trained
with labeled (supervised learning) or unlabeled data (unsupervised learning). The
universal approximation theorem [Cybenko, 1989, Hornik, 1991] states that a feed
forward neural network made of artificial neurons can approximate any real-valued
continuous function on compact subsets of Rn.

In Figure 3.1 a simple NN is depicted. The input layer appears in orange and
consists of five inputs. It receives the information supposed to explain the function
to be approximated. Then, there are two hidden layers with two and five artificial
neurons respectively. A hidden layer is an intermediate layer allowing to model the
nonlinear process. In such a feed forward NN, the outputs of each layer are the inputs
to the next layers. The output layer appears in green and is the NN prediction.

3.1.2 Artificial neuron and activation functions
Each artificial neuron consists of a function hj of the input x = (x1, ..., xd), weighted
by a vector of connection weights wj = (wj,1, ..., wj,d), completed by a neuron bias
bj, and associated to an activation function φ such that

yj = hj(x) = φ(< wj, x > +bj). (3.1)
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Figure 3.1: Multi-layer perceptron with five inputs, five outputs and two hidden
layers of neurons. Source: https://towardsdatascience.com

The activation function φ introduces the nonlinearity and converts the signal entering
a neuron into an output signal. The bias bj allows to shift the activation function
curve up or down leading to greater learning opportunities for the network. An
activation function can be linear or nonlinear. Here are some examples of activation
functions:

• The identity function
φ(x) = x,

• The sigmoid function
sigmoid(x) = 1

1 + e−x
,

• The hyperbolic tangent
tanh(x) = ex − e−x

ex + e−x
,

• The rectified linear unit (ReLU)
ReLu(x) = max(0, x),
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• The hard threshold function
φβ(x) = 1x≥β.

Historically, the Sigmoid was the most used activation function as it is differentiable
and translates the input ranged in [−∞; +∞] to the range [0; 1]. However, the
exponential function is computationally expensive and the Sigmoid has the problem
of vanishing gradients (the same problem arises for the hyperbolic tangent). The
problem of vanishing gradients is inherent to the backpropagation optimization. As
we move backwards in the NN, the gradients tend to get smaller and smaller leading
to difficulties in training the first layers. In particular, training the model with
vanishing gradients can be very time consuming and lead to low accuracy in the
prediction.

On the other hand, the ReLU activation function does not suffer from vanishing
gradients. It is cheap to compute and it accelerates the convergence of the Stochastic
Gradient Descent algorithm (that will be explained later). However, as the ReLU
function and its derivative are equal to 0 for negative values, no information can
be obtained in that case for the concerned neuron. To overcome this issue, a small
positive bias can be added to the activation function to ensure that each neuron is
active:

φ(x) = max(x, 0) + εmin(x, 0), (3.2)

where ε is either a fixed parameter set to a small positive value, or a parameter to
estimate (e.g. to learn).

ReLU is used only within hidden layers. For the output layer, a different activa-
tion function can be used depending on the type of problems we are dealing with
(regression or classification). In binary classification, the output is a prediction of
P(Y = 1/X) since it ranges in [0, 1] so the Sigmoid activation function can be con-
sidered. However, for multi-class classification, the output layer has one neuron per
class i, giving a prediction of P(Y = i/X). The sum of all these values has to be
equal to 1. Hence one can use the Softmax activation function that reads as:

softmax(z)i = e(zi)∑
j e

(zj) . (3.3)

On the other hand, for regression problems one can use as activation of the output
layer the hyperbolic tangent, a linear function or the identity function (meaning no
activation function).
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3.2 Specific types of neural networks
In this section we will present the two types of neural networks used in this thesis: the
multi-layer perceptron with fully connected layers and convolutional neural networks.

3.2.1 Multi-layer perceptron
A multilayer perceptron (MLP) is a feedforward neural network composed by at least
three layers of neurons where the output of a neuron of a layer becomes the input
of a neuron of the next layer. In a MLP, each neuron of a layer is linked to all the
neurons of the next layer but has no link with the neurons of the same layer. The
mathematical formulation of a MLP with L hidden layers reads as follows:
We set a(0)(x) = x.
For k = 1, ..., L (hidden layers)

z(k)(x) = b(k) +W (k)a(k−1)(x),
a(k)(x) = φ(z(k)(x)). (3.4)

For k = L+ 1 (output layer)
z(k)(x) = b(k) +W (k)a(k−1)(x),
a(k)(x) = ψ(z(k)(x)). (3.5)

where φ is the activation function of the hidden layers and ψ is the output layer
activation function. Superscript (i) stands for the i-th layer. At each step, W (k) is
a matrix with number of rows the number of neurons in the layer k and number of
columns the number of neurons in the layer k − 1.

The number of parameters of such a network is equal to the sum of the multiplications
of the number of neurons between each consecutive layer, which in practice can be
very high. Moreover, since the input of an MLP must be a vector, depending on
the dimension of the problem, this approach might be inefficient when dealing with
images or higher dimension inputs.

3.2.2 Convolutional neural networks
In this section we will present Convolutional neural networks (CNN). For the sake
of simplicity we will explain them in 2 dimensions. The main advantage of CNNs is
that they work directly with tensors of any dimension. As depicted in figure 3.2, a
CNN is made of several types of layers: convolutional layers, pooling layers and fully
connected layers. In the following, each type of layer will be detailed.
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Figure 3.2: CNN to classify handwritten digits. Source: https://
towardsdatascience.com

Convolutional layer A convolutional layer is composed of 2 main parts: the
object and the filters. Filters or kernels are matrices of learnable weights that extract
the features from an input signal. The discrete convolution of two functions f and
g reads as:

(f ∗ g)(x) =
∑
t

f(t)g(x+ t). (3.6)

For a 2D image I, the 2D-convolution with convolution kernel K is given by:
(K ∗ I)(i, j) =

∑
m,n

K(m,n)I(i+ n, j +m). (3.7)

The convolution kernel is dragged on the image. At each position, we compute
the convolution between the kernel and the patch of image over which the kernel is
hovering. Then, the kernel slides by a number s of pixels (s being the stride) till it
parses the complete image. To control the size of the output, zero padding can be
added around the image (margin of zeros).

After the convolution operations, a ReLu activation function is generally added.
If K is a convolution kernel of size k × k and x is a patch of the image of size
k × k pixels, the activation is obtained by sliding the k × k window and computing
z(x) = φ(K ∗ x+ b) where b is a bias.

Several convolution layers can follow one another where the output of a convolution
becomes the input of the next one.
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Pooling layer Pooling layers reduce the spatial dimension of the convolved fea-
tures by taking the mean or the maximum on patches of the input (mean-pooling
or max-pooling). These layers also act on small patches so there is also a pooling
stride. This step allows to extract the dominant features which are rotational and
positional invariant.

Fully connected layer A CNN generally ends with one or various fully connected
layers (e.g. perceptron layers) in order to learn nonlinear combinations of the high-
level features extracted by the convolutional layers. The output of the convolutions
must be flattened into a column vector before being fed to the dense layers.

In the same manner as for MLP, depending on the problem, a final activation function
can be added (Softmax for classification for example).

Important remark CNNs have been widely used to extract features from images
consisting of 2D or 3D matrices of values that are spatially connected. Note that
the use of convolutional filters expects the input to be encoded in a grid structure
as such filters have a spatial representation of the inputs. This is a key point to
keep in mind for next chapters, where we will compute the deformations of an object
using CNNs. Indeed, we cannot directly feed a CNN with the mesh of an object.
Instead, we will first have to express the physical quantities of interest in a regular
grid structure. We will explain in detail this procedure in chapters 4 and 7.

3.3 Training a neural network

Once the architecture of the network is set, the optimal parameters (weights and
biases) must be found. To do that we perform a gradient descent minimization of a
loss function that is chosen by the user. The general procedure for training a network
consists of 7 main steps:

1. Initialize the weights with close to zero values;

2. Feed the network with an input;

3. Forward propagation: neurons are activated depending on their weights.
Spread activations until the prediction is computed;

4. Compute the error between the prediction and the expected value using the
loss function;

5. Backpropagation: spread the error back into the network. Update the weights
such that the error is minimized and adjust the learning rate;
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6. Repeat steps 1 to 5 and adjust weights after a batch of samples;

7. When the entire data set has been seen by the network, it is called an epoch.
Repeat more epochs.

In next section we will present the different loss functions available and some vari-
ations of the gradient descent algorithm. Then we will explain the backpropagation
algorithm.

3.3.1 Loss functions
To learn, the network must know the committed error over each batch. To do that,
the gap between the prediction f(x, θ) and the expected value y is measured using
a loss function L. There are several options for the loss function depending on the
considered problem. A common way for finding the parameters of a network is to
maximize the likelihood (or the log likelihood), which is equivalent to minimizing
the loss function (which is the opposite of the log likelihood). For a distribution D
of pairs (X, Y ), the expected loss function reads as

L(θ) = −E(X,Y )∼D (log(pθ(Y/X)) . (3.8)

If the model is Gaussian, that is to say if pθ(Y/X = x) ∼ N (f(x, θ), I), maximizing
the likelihood is equivalent to minimizing the quadratic loss

L(θ) = E(X,Y )∼D
(
‖Y − f(X, θ)‖2

)
. (3.9)

In the case of binary classification, maximizing the log likelihood is equivalent to
minimizing the cross-entropy. Setting f(X, θ)) = pθ(Y = 1/X),

L(θ) = −E(X,Y )∼D [Y log(f(X, θ)) + (1− Y )log(1− f(X, θ))] . (3.10)

This loss function is well adapted to the Sigmoid activation as the logarithm pre-
vents small values of the gradient. Finally, for a multi-class classification problem, a
generalization of the previous loss function to k classes is considered

L(θ) = −E(X,Y )∼D

 k∑
j=1

1Y=jlog(Y = j/X)
 . (3.11)

Alternatively, one could encode the knowledge of the data domain in the cost
function. For instance, in the case of modeling biomechanics with a NN, the
cost function can correspond to the strong formulation of the elasticity equations
[Raissi et al., 2019]. We will not enter into detail for this type of loss functions as
they are not consider throughout this manuscript.
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3.3.2 Minimization with Stochastic gradient descent
To minimize a cost function, the gradient descent algorithm is one of the most
popular methods. In the case of neural networks, the minimization is performed
over the network parameters (weights and biases). For the sake of visual clarity, in
the following the biases {bj}j=1,...r are contained in the weights {wj}j=1,...n.

The gradient descent canonical formula reads as:
θ := θ − α.∇L(θ), (3.12)

where θ = [w1, w2, ..., wn]T is the parameters vector, α is the learning rate and ∇L(θ)
is the gradient of the cost function such that ∇L(θ) =

(
∂L
∂w1

, ∂L
∂w2

, ..., ∂L
∂wn

)
.

The learning rate α is an hyperparameter of the minimization. It determines the
step size at each iteration while moving towards a minimum. It impacts the learning
speed and the convergence. A large value of α might lead to fluctuation around an
optimum thus making the optimization diverge (can result in underfitting). On the
contrary, a too small value of α can slow down the convergence speed and converge
to a local minimum. In this case, the network can adjust too well to the training
data set and it is no longer able to generalize (overfitting). The optimal value of α
cannot be analytically calculated for a given model on a given dataset. It is usually
advised to adapt it during training but there is however no general rule. It is usually
acknowledged that it should be initialized at a large enough value (0.1 for instance)
and progressively be reduced during successive iterations of the training process.

Gradient descent needs the cost function to be convex. When this is not the case,
taking the steepest slope is no longer enough (due to local minimums and saddle
points). The risk is therefore to drastically slow down the backpropagation and to
fall on a local minimum. The Stochastic gradient descent (SGD) algorithm addresses
this issues. Its canonical formula is given by:

θ := θ − α.∇L(θ;x(i); y(i)). (3.13)

Let {(xn, yn)}Nn=1 be the training data set made of N samples. Instead of computing
the gradient over all the samples of the data set, SGD computes the gradient over
one randomly selected sample or subset of samples called a batch. At each step, m
training samples are randomly selected without replacement and a combination of
the m corresponding gradients is computed (usually the average). m is called the
batch size. This process is repeated until the network has seen the entire training
data set: this is called an epoch. The maximal number of epochs is usually fixed
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in advanced and the training stops when this value is reached or when an accuracy
criterion is satisfied (early stoping).

Algorithm 1: Stochastic Gradient Descent algorithm
Initialize N : size of the training set;
Initialize α: learning rate;
Initialize m: batch size;
Initialize nb_e: number of epochs;
for epoch = 1 to nb_e do

for batch = 1 to N
m
do

Take a random batch of size m without replacement (xi, yi)i=1,...m;
Forward pass;
Compute the gradients with the backpropagation algorithm:
∇̃θ = 1

m

∑m
i=1∇θL(f(xi, θ), yi) ;

Update the parameters θnew = θold = α∇̃θ;
end

end

SGD is faster than standard (deterministic) gradient descent and provides more
fluctuations of weights, which augments the probability of not being stuck in a non
optimal local minimum.

Due to the high sensitivity of the SGD to the learning rate, variations of the al-
gorithm have been proposed with adaptive learning rates. One of the most famous is
the Adam optimizer [Kingma and Ba, 2014] with adaptive moment estimation. The
method computes individual adaptive learning rates for different parameters from
estimates of first and second moments of the gradients.

3.3.3 Backpropagation
The backpropagation of the gradient was proposed by [Le Cun, 1988] as an efficient
way to compute the gradient of a neural network through a method called chain rule.
After each forward pass through a network, backpropagation performs a backward
pass to adjust the network’s parameters computing the gradient one layer at a time,
iterating backward from the last layer to avoid redundant calculations of intermediate
terms in the chain rule.

In this section we will explain how to compute the gradient of Equation (3.9) using
the backpropagation algorithm. The empirical quadratic loss of Equation (3.9) is
proportional to

N∑
i=1

Ri(θ), (3.14)
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with
Ri(θ) =

K∑
k=1

(Yi,k − fk(Xi, θ))2, (3.15)

where K is the size of the network’s output. In a regression model, the output
activation function ψ is generally the identity function, to be more general, we assume
that

ψ(z1, ..., zK) = (g1(z1), ..., gK(zK)), (3.16)

where g1, ..., gK are functions from R to R. Let us compute the partial derivatives of
Ri with respect to the weights of the output layer. Recalling that

z(L+1)(x) = b(L+1) +W (L+1)a(L)(x), (3.17)

we get
∂Ri

∂W
(L+1)
k,m

= −2(Yi,k − fk(Xi, θ))g′k(z
(L+1)
k (Xi))a(L)

m (Xi). (3.18)

Differentiating now with respect to the weights of the previous layer
∂Ri

∂W
(L)
m,l

= −2
K∑
k=1

(Yi,k − fk(Xi, θ))g′k(z
(L+1)
k (Xi))

∂z
(L+1)
k (Xi)
∂W

(L)
m,l

. (3.19)

with
z

(L+1)
k (x) =

∑
j

W
(L+1)
k,j a

(L)
j (x), (3.20)

a
(L)
j (x) = φ

(
b

(L)
j + < W

(L)
j , a(L−1)(x) >

)
. (3.21)

This leads to
∂z

(L+1)
k (x)
∂W

(L)
m,l

= W
(L+1)
k,m φ′

(
b(L)
m + < W (L)

m , a(L−1)(x) >
)
a

(L−1)
l (x). (3.22)

Let us introduce the notations
δk,i = −2(Yi,k − fk(Xi, θ))g′k(z

(L+1)
k (Xi))

sm,i = φ′
(
z(L)
m (Xi)

)∑K
k=1W

(L+1)
k,m δk,i.

(3.23)

Then we have
∂Ri

∂W
(L+1)
k,m

= δk,ia
(L)
m (Xi),

∂Ri

∂W
(L)
m,l

= sm,ia
(L−1)
l (Xi).

(3.24)

known as the backpropagation equations.
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The values of the gradient are used to update the parameters in the gradient descent
algorithm. At step r + 1, we have:

W
(L+1,r+1)
k,m = W

(L+1,r)
k,m − αr

∑m
i=1

∂Ri

∂W
(L+1,r)
k,m

W
(L,r+1)
m,l = W

(L,r)
m,l − αr

∑m
i=1

∂Ri

∂W
(L)
m,l

,
(3.25)

where αr is the learning rate that satisfies αr → 0, ∑r αr = ∞, ∑r α
2
r < ∞, for

example αr = 1/r. We use the backpropagation equations to compute the gradient
by a two pass algorithm. In the forward pass, we fix the value of the current weights
θ(r) = (W (1,r), b(1,r), ...,W (L+1,r), b(L+1,r)), and we compute the predicted values
f(Xi, θ

(r)) and all the intermediate values (z(k)(Xi), a((k)(Xi) = φ(z(k)(Xi)))1≤k≤L+1

that are stored. Using these values, we compute during the backward pass the quant-
ities δk,i, and sm,i and the partial derivatives given in Equation (3.23). We have
computed the partial derivatives of Ri only with respect to the weights of the output
layer and the previous ones, but we can go on to compute the partial derivatives of
Ri with respect to the weights of the previous hidden layers.

In the backpropagation algorithm, each hidden layer gives and receives information
from the neurons it is connected with. Hence, the algorithm is adapted for parallel
computations. The computations of the partial derivatives involve the function φ′,
where φ is the activation functions. φ′ can generally be expressed in a simple way
for classical activation functions. The backpropagation algorithm is also used for
classification with the cross-entropy but we will not enter into details for this aspect.

3.4 Conclusion
The objective of this thesis is to train neural networks for estimating physical quant-
ities such as displacement fields or forces applied to an object. For this reason, in
this chapter we have presented the different network architectures that we will use,
and defined their constitutive elements for a better understanding of the approach
that will be presented in next chapters. As seen in Section 3.3.3, the backpropaga-
tion equations involve a lot of tedious calculations that are fortunately automatically
handled by frameworks such as Tensorflow 1 and Pytorch 2 that are both used during
this thesis. In order to train the networks, large amounts of high fidelity data are
needed which is the main difficulty of the approach, in particular when considering
medical applications where acquiring thousands of real samples can be delicate. In
the following chapters, we will demonstrate how to use FE simulations as accurate
data generators to overcome the lack of real patient data. As seen in Section 3.2.2,
the generated data must be expressed in a "network interpretative manner", namely

1https://www.tensorflow.org/
2https://pytorch.org/
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a regular grid structure (for the case of CNNs). This is one of the main challenges
that will be treated in next chapters.

Artificial Neural Networks: Fundamentals 35



Artificial Neural Networks: Fundamentals 36



Chapter 4
The U-Mesh Framework

4.1 Introduction and related work
As said in the general introduction, there are many applications in engineering where
nonlinear deformations need to be simulated in real-time. Some important examples
can be found in the field of medicine but also in other areas of mechanical engineering,
such as training of complex industrial processes [Amundarain et al., 2004] or virtual
prototyping [Barbic and James, 2008] just to name a few.

While there are different numerical strategies for solving equations associated with
elastic materials, we only consider the finite-element method (FEM), for its accuracy
and ability to simulate a large range of materials on potentially complex domains.
However, obtaining real-time simulations with this method when considering non-
linear materials, becomes a real challenge, in particular if this has to be done on
consumers level hardware rather than a high-end parallel computer.

In order to speed up FEM simulations, several techniques have been proposed. We
review here only some of the main ideas that were proposed. First, since solving the
system of equations resulting from the FEM discretization is usually the bottleneck of
the computation, many works have focused on linear solvers. Domain decomposition
methods are based on the “divide & conquer” paradigm. Such methods consist of
splitting the global problem domain into smaller independent sub-domains, making
the approach suitable for parallel computing. This allows to build efficient precondi-
tioners even though additional computation is required to synchronize the solution
between neighboring sub-domains. Under the right conditions, in particular if the
number of processors of the computer matches the number of sub-domains, a super-
linear speedup can be obtained [Haferssas et al., 2017]. This is, however, impossible
to achieve when considering problems (even if relatively small) which need to be
solved in real-time on consumers level hardware. This is mainly due to the limited
number of cores (only 10 cores on the latest Intel i9 processor) and communication
costs which are significant compared to the expected computation times (about 50
ms per time step for an interactive simulation).
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Another option for speeding up simulation times is to lower the computational com-
plexity of the problem through a reduction of the model’s degrees of freedom. De-
pending on the problem, and acceptable loss of accuracy, it is possible to obtain
speedups of several orders of magnitude. Proper Orthogonal Decomposition (POD)
is one of the main model order reduction methods. POD techniques compute off-line
the solution to several complete models and extract the modes that describe best
the solution to the complete problem. Based on a priori knowledge of the solution,
it encodes the high dimensional problem in a smaller subspace defined by a trun-
cated basis of singular vectors. The dimension of such basis determines the ratio
between accuracy of the method and computation times (the smaller the basis, the
larger the error). In the context of real-time simulation of nonlinear solids, several
examples of POD have been proposed. [Niroomandi et al., 2008] proposed a POD
method to simulate the palpation of the cornea. Haptic feedback rates were achieved,
but with a relative error of about 20%. If more accurate solutions are needed, the
number of modes used in the POD can be increased at the cost of higher computa-
tion times. Thus, to keep the method numerically efficient in the case of nonlinear
materials, hyperreduction can be used in order to further reduce the computation
times while reducing the error [Ryckelynck, 2005]. [Goury and Duriez, 2018] applied
the hyperreduced POD to control and simulate soft robots with very good accur-
acy in 25 ms per time step. However the POD may be in some cases insufficient
to capture correctly the high degrees of nonlinearity that can be found for example
in biological soft tissues as it relies on a linear combination of few basis vectors
[Bhattacharjee and Matous, 2016]. To precisely account for nonlinearities it might
be necessary to recompute the entire stiffness matrix which is burdensome and not
always possible [Niroomandi et al., 2017]. Another model order reduction algorithm
is the proper generalized decomposition (PGD), which, contrarily to POD, builds a
reduced-order approximation without relying on the knowledge of the solution of the
complete problem. PGD assumes that the solution of a multiparametric problem
can be expressed as a sum of separable functions that are constructed by success-
ive enrichment by invoking the weak form of the considered problem. An approach
based on PGD is proposed in [Niroomandi et al., 2013] for the simulation of hyper-
elastic soft tissue deformation at high frequency. However, when the solution is
non-separable, PGD offers no particular advantage over classical FEM techniques.

A last class of worth mentioning solutions consists of using the Graphics Processing
Unit (GPU) as a particular type of parallel machine. Although each core of the GPU
is very limited in its computational performance, the very high number of cores avail-
able (several thousand) makes it possible to obtain significant speedups on compu-
tationally heavy problems. For instance, NiftySim [Johnsen et al., 2015] is a GPU-
based nonlinear finite element toolkit for the simulation of soft tissue biomechanics
where speedups of 300x are obtained. SOFA [Allard et al., 2007] is an Open-source
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Framework focused on real-time simulation of complex interactions with deformable
structures, which provides GPU-compatible FEM codes [Comas et al., 2008].

Recently, machine learning started to revolutionize several fields (vision, language
processing, image recognition, genomics) due to the continuously increasing amount
of data available and the development of new algorithms and powerful GPUs. Deep
learning, a class of machine learning methods based on learning data representa-
tions, as opposed to task-specific algorithms, has demonstrated strong abilities at
extracting high-level representations of complex processes. With sufficient ground
truth data, machine learning algorithms can map the input of a function to its
output without any mathematical formulation of the problem, thus actuating like a
black box. The term black box relates to the non-clarity in the way the model uses
training data to reach particular conclusions. These ambiguities make it difficult
to know the reasons why the system behaves the way it does. In this chapter
we will put a lot of effort in clarifying such ambiguities by exploring connections
of the chosen architecture with model order reduction techniques. To fulfill the
need for ground truth data, since FEM can provide as much noise-free data as
required, it seems interesting to train learning algorithms with such virtually gen-
erated data [Lorente et al., 2017, Luo et al., 2018, Roewer-Despres et al., 2018,
Tonutti et al., 2017, Fetene et al., 2018, Runge et al., 2017]. For example
[Lorente et al., 2017] proposed a machine learning approach for modeling the
mechanical behavior of the liver during breathing in real-time. They trained several
regression models using external displacement and elasticity parameters as input, and
the FEM-based nodal displacements as output. Although they reached good accur-
acy their method is restricted to small displacements. [Roewer-Despres et al., 2018]
proposed a preliminary work using a deep-autoencoder to approximate the de-
formations of a nonlinear muscle actuated object. They showed that their method
produces lower reconstruction errors than the equivalently sized PCA model. How-
ever the computational gain of their method is not clear and it was limited to a very
simple model and coarse mesh. [Tonutti et al., 2017] treated a simple problem using
two different networks, one to predict the magnitude of the displacement and the
other one to predict its direction. However, it seems that these two networks require
a specific training for each node of interest, which could be prohibitive for large
meshes. Moreover their model is limited to small deformations on relatively simple
shapes, with restricted input forces. For instance, the considered displacements
never exceed 5 mm (for an organ of size 20 cm) and only 11 nodes of the mesh are
excited. On the contrary our approach can handle complex and complete volume
deformations of arbitrary shapes with one single network for any force application
point. All the cited references propose to train neural networks with FEM generated
data for various purposes. However, none of them is justifying the choice of the
network architecture used to do this. In this chapter, we explore connections of
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the chosen architecture with model order reduction techniques in order to support
interpretability and explainability to go beyond the black-box usage of neural
networks.

The objective of our work, whose preliminary results are presented in this chapter,
is to go beyond the state of the art on machine learning applied to computational
mechanics. In particular we show that we can predict, in real-time, the shape of a
nonlinear elastic structure with a very good accuracy using a deep network inspired
by model order reduction methods. Our solution relies on a U-Net architecture
trained on FEM-generated data sets; both aspects are presented in Section 4.2 while
results and their comparison against a model order reduction algorithm are presented
in Sections 4.3.

4.2 Displacement field estimation with deep
neural networks

As mentioned previously, an important area of applications for real-time simulation
of nonlinear material is in the field of computer-aided surgery where accuracy is
also very important, but often left aside for the sake of rapidity. Achieving a better
trade-off between accuracy and computation time is therefore mandatory to tackle
more ambitious problems. From this chapter on, we propose a method that does not
need such a compromise. It allows for extremely fast and accurate simulations by
using an artificial neural network that partially encodes the stress-strain relation in
a low-dimensional space. Such a network can learn the desired biomechanical model,
and predict deformations at haptic feedback rates with very good accuracy. This
section is divided in two main segments. First the selected network architecture
is detailed, followed by our strategy to encode the stress-strain relationship and
boundary conditions into the network and the data set generation used to train the
network.

4.2.1 Network architecture
Formally, our network h is a parameterized function that accepts a 3× nx× ny × nz
tensor of input constraints C and produces a tensor of volume displacements Uv

of the same size as output. The domain Ω is sampled by a 3-dimensional grid of
resolution nx × ny × nz. Practically speaking, the nodes of this grid match the
nodes of the FEM mesh, although this is not required and an interpolation could
be used instead. The tensor C represents the constraints applied over the surface
boundary Γ of the domain. In particular, C can be seen as a traction t applied to
ΓN or as an imposed surface displacement Us on ΓD. The tensor Uv contains the

The U-Mesh Framework 40



volumetric displacement at the nodes of the mesh in response to the constraint C. In
particular, each vector C[:, i, j, k] represents the constraint vector (cx, cy, cz) applied
over the node (i, j, k) of the grid. Similarly, the vector Uv[:, i, j, k] represents the
displacement (ux, uy, uz) of each node (i, j, k) of the grid.

Our problem consists of finding the function h that produces the best estimation of
the displacement field given prescribed constraints C (in this chapter we only deal
with contact forces e.g. traction). This is performed by minimizing the expected
error over the distribution D of pairs (C,Uv):

min
θ

E(C,Uv)∼D
[
‖h(C)−Uv‖2

2

]
, (4.1)

where θ is the set of parameters of the network h. In practice, the expecta-
tion of Equation (4.1) is approximated by Monte-Carlo sampling with a training
set {(Cn,Uvn)}Nn=1 of N samples:

min
θ

1
N

N∑
n=1
‖h(Cn)−Uvn‖2

2. (4.2)

We build our training set by randomly applying forces on the mesh and running
FEM simulations to produce corresponding displacements.

Let us characterize the architecture chosen for our network h. We propose to use
the U-Net [Ronneberger et al., 2015], a modified fully convolutional network initially
built for precise medical image segmentation. Note that the use of convolutional fil-
ters expects the input to be encoded in a grid, due to their spatial representation
of the inputs. As depicted in Figure 4.1, the network is similar to an auto-encoder,
with an encoding path to transform the input space into a low-dimensional repres-
entation, and a decoding path to expand it back to the original size. Additional skip
connections transfer detailed information along matching levels from the encoding
path to the decoding path.

The encoding path consists of k sequences of two padded 3×3×3 convolutions (k = 4
in [Ronneberger et al., 2015]) and a 2×2×2 max pooling operation (see Figure 4.1).
Intuitively, each 3D convolution filter learns to isolate the different characteristics
of the displacement field (orientation, direction, amplitude). At each step, each
feature map doubles the number of channels and halves the spatial dimensions. We
assume that the number of channels is directly related to the amount of detectable
variations in the displacement field. In the bottom part there are two extra 3× 3×
3 convolutional layers leading to a (c × 2k)-dimensional array. This feature space
is intuitively similar to the Galerkin projection of the equations of motion onto the
reduced space in POD, where the order of the singular vector truncation is equivalent
to the number of neurons in the latent space. A difference however remains with
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Figure 4.2: Network architecture for a beam with 28 × 12 × 12 nodes, padded to
32× 16× 16, 64 channels in the first layer and 4 steps (see Figure 4.1 for notations).
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the presence of convolutional operations at each layer. In a symmetric manner,
the decoding path consists of k sequences of an upsampling 2 × 2 × 2 transposed
convolutions followed by two padded 3× 3× 3 convolutions. The features from the
encoding path at the same stage are cropped and concatenated to the upsampled
feature maps. At each step of the decoding path, each feature map halves the number
of channels and doubles the spatial dimensions. There is a final 1×1×1 convolutional
layer to transform the last feature map to the desired number of channels of the
output (3 channels in our case).

The number of steps k and the number of channels c control the accuracy of the
prediction just like the number of singular vectors in POD. Higher values of k and c
lead to a more complex network suitable for difficult meshes at the expenses of longer
computational times for both training and prediction, and higher requirements of
training data. We tested several values for k and c in order to select the most
appropriate values for our experiments depending on the desired accuracy and the
eventual time restrictions.

4.2.2 Offline training data generation
Without lack of generality, we consider the boundary value problem of computing the
deformation of a hyperelastic material under both Dirichlet and Neumann boundary
conditions described in Chapter 2. Hexahedral (H8) elements are used to discretize
the computational domain. This choice is not only motivated by the good conver-
gence and stability of such elements: hexahedral elements are also required for our
convolutional neural network (see Section 4.2.1).

In order to train such a network, we build a data set of pairs (C,Uv) obtained with
the FEM. Once we are given a 3D mesh with its corresponding constitutive law,
material properties and boundary conditions, we perform multiple simulations by
applying random forces to nodes of the object. After each simulation, the pair of
applied forces and obtained deformation is stored as an element of the data set. To
speed up the generation of the training and testing data sets, the linearized system
of Equation (2.40) is solved using an iterative preconditioned conjugate gradient
method [Shewchuk, 1994].

The variability of the data relies on the force magnitude, its direction and its ap-
plication point. In this chapter, a force is applied on a local surface area ΓN whose
location varies such that the boundary of the computation domain is completely
covered. The force direction is uniformly sampled on the unit sphere and the force
magnitude is a uniform random value between 0 and 1. At each sample of the data
set, one force is applied on a small region ΓN . There are Λ samples for each ΓN ,
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meaning that Λ different forces are applied per region. We can consider one force
per sample or several forces applied simultaneously at different locations.

The network is trained minimizing Equation (4.2) with training data generated
as explained above. The minimization is performed using the Adam optim-
izer [Kingma and Ba, 2014] (see Chapter 3 for details).

4.3 Results on synthetic objects
In this section, we perform a model selection over the space of hyperparameters k
and c in order to find the combination that leads to the best results in a cantilever
beam. Then we apply our method, with the selected hyperparameters, to two bench-
mark examples: a cantilever beam and an L-shaped object under point loads. All
our experiments are performed in a GeForce 1080 Ti using a batch size of 4 and
100, 000 iterations for training. We use a PyTorch implementation of the U-Net. We
recall that the batch size is the number of samples that are given to the network at
each iteration of the minimization process.

4.3.1 Validation metrics
To assess the efficiency of our method, we perform a statistical analysis of the mean
norm error e over a testing data set {(Cm,Uvm)}Mm=1, which is built similarly as the
training data set. Note that the training data set and the testing data set are disjoint.
Let Uvm be the ground truth displacement tensor for sample m generated using the
FEM described in Section 2.2 of Chapter 2 and h(Cm) the U-Mesh prediction. The
mean norm error between Uvm and h(Cm) for sample m reads as:

e(Uvm, h(Cm)) = 1
n

n∑
i=1
|Uv

i
m − h(Cm)i|. (4.3)

where n is the number of degrees of freedom of the mesh. We compute the average
e and standard deviation σ(e) of such norm over the testing data set:

e = 1
M

M∑
m=1

e(h(Cm),Uvm), (4.4)

and

σ(e) =

√√√√ 1
M − 1

M∑
m=1

[e(h(Cm),Uvm)− e ]2. (4.5)
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c k FSS e σ(e) pred_t train_t
in m in m in ms in min

64 2 256 0.0028 0.0008 2 24
16 4 256 0.0012 0.0009 3.2 40
32 4 512 0.0009 0.0008 3.2 40
64 3 512 0.0007 0.0007 2.5 80
64 4 1024 0.0007 0.0007 3.3 95

128 3 1024 0.0007 0.0006 2.5 35
64 5 2048 0.0006 0.0005 4 426
128 4 2048 0.0006 0.0005 3.45 320

Table 4.1: Error measures for a beam having 135 H8 elements. Rows are sorted in
decreasing e . The selected architecture appears in bold.

4.3.2 U-Mesh applied to a cantilever beam
We consider a deformable beam of size 4 × 1 × 1m3 subjected to fixed boundary
on one end. The beam follows the Saint-Venant-Kirchhoff behavior described in
Section 2.1.3 of Chapter 2 with a Young’s modulus E of 500 Pa and a Poisson’s
ratio of 0.4, and is discretized with 135 H8 elements. To generate the data set, 100
forces are applied on each of the 64 nodes of the upper face (that is Λ = 100), up
to a total of 6, 400 samples. 80% of the samples are used for training (N = 5, 120)
and the remaining 20% are kept for testing (M = 1, 280). Using this data set, we
select the best architecture by training several U-Nets with different combinations of
hyperparemeters k and c. In Table 4.1 are reported the training and prediction times
as well as e and σ(e). As seen in this table, the higher the feature space size (FSS),
the lower the errors. Prediction time is proportional to the depth of the network.
Choosing the best model is a tradeoff between network performance and speed, and
we will show that the selected hyperparameters lead to good results also on different
problems. Choosing k = 3 and c = 128 seems to be a good compromise for our
needs. The selected parameters appear in bold text in Table 4.1. For the selected
set of parameters, e over the data set is equal to 0.0007 ± 0.0006m for a maximal
deformation of 0.724m. In Figure 4.3, we show the sample with maximal error.
We perform a sensitivity analysis of the method to the amplitude of deformation.
The results are plotted in Figure 4.4. We perform a least squares line fit to find
the relation between the maximal deformation and the mean norm error e. We
can observe a very small sensitivity of the error e with respect to the deformation
amplitude, and a very small error in the estimation of the displacement field in
general. This shows an important characteristic of our method, in addition to its
very limited computational cost.

In Table 4.2 are shown the prediction errors for 3 simultaneous input forces and their
corresponding training and prediction times. In this scenario, the Young’s modulus
is set to 400 Pa and three forces are applied simultaneously on three different regions
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Figure 4.3: Front and side views of the maximal error sample obtained with a network
having 3 steps and 128 channels. U-Mesh output is in blue and the reference is in
green. The red arrow represents the force applied. Note that the difference between
the two meshes is very small. The relative l2 norm at the tip of the beam is of 5.1%
and the deformation amplitude is 0.45m

Figure 4.4: The point cloud represents the e for some randomly selected samples of
the testing data set. The regression line of equation y = 0.00352× x shows the low
sensitivity of the U-Mesh to the deformation amplitude.
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c k FSS e σ(e) pred_t train_t
in m in m in ms in min

64 4 1024 0.0007 0.0003 3.5 100

Table 4.2: Error measures for a beam having 135 H8 elements and three simultaneous
force application.

Figure 4.5: Largest deformation for 3 simultaneous force applications (side and front
view for the same sample). U-Mesh output is in blue, the reference is in green and
the rest shape is in grey.

of the upper face of the beam. In order to avoid mechanical coupling, such regions
must be far enough from each other. There are 12, 360 possible combinations of nodes
fulfilling the above stated condition. Only one force (Λ = 1) is applied per viable
combination up to a total of 12, 360 samples (N = 9, 888 samples for training and
M = 2, 472 samples for testing). We can see that the errors and the time needed
for the prediction are comparable to that needed for only one force application.
It is important to note that there are 2x more samples in this data set (than in
previous ones) due to the large number of possible combinations. This explains the
particularly low error in this case. The sample with maximal deformation (1.0035 m)
is shown in Figure 4.5. At the tip of the beam, the relative l2 norm is equal to 1.5%.

So far we have seen that U-Mesh is able to predict the displacement field due to
one or several forces with high accuracy and in an extremely short amount of time.
Nevertheless, FEM codes are also able to compute the solutions on such meshes in
limited computation times, even for hyperelastic models. Hence, in order to put
ahead the real contribution of our work, we test our method on a computationally
expensive problem.

We consider the same beam as previously but this time discretized in 3, 267 H8
elements (see Figure 4.7). There are 336 nodes on the upper face and Λ is set to
100. Overall the data set has 33, 600 samples (N = 26, 880 samples for training
and M = 6, 720 samples for testing). The U-Net is trained with the previously
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c k FSS e σ(e) pred_t train_t
in m in m in ms in min

128 3 1024 0.0019 0.0018 3 210

Table 4.3: Error measures for a beam having 3267 H8 elements and one simultaneous
force application.

Figure 4.6: Sensitivity of e to the deformation amplitude for a 3, 267 H8-elements
beam. The point cloud represents the values of e for randomly selected samples of
the testing data set. The regression line of equation y = 0.0083 × x shows the low
sensitivity of the U-Mesh to the deformation range. The average computation time
is 3ms.

selected parameters, that is, 128 channels for the first layer and 3 steps. The metrics
computed over the testing data set are shown in Table 4.3. The most interesting
result is the low prediction time (only 3ms). A very optimized version of the Saint-
Venant-Kirchhoff FEM using a Pardiso solver [Kourounis et al., 2018] that is among
the most efficient solvers available, takes more than 300ms to solve such simulation.
The speedup obtained with U-Mesh is of 100x. All the samples of the testing data
set have an error bellow 0.0265m and an average error of 0.0019m for a maximal
deformation of 1.011m.

In the following paragraphs we will show that U-Mesh generalizes well on other
geometries. In particular, we will see the performance of U-Mesh applied to an
L-shaped object.

4.3.3 U-Mesh applied to an L-shaped object
We apply U-Mesh on an L-shape of size 28.424 × 10 × 40 m3 discretized in 335 H8
elements. Since the U-Net requires a regular grid as input, the L-shaped object is
embedded in a regular grid (with zero-padding). The Young’s modulus is equal to
500 Pa and the Poisson’s ratio is 0.4. To build the data set, external forces ranging
from 0 to 40N are applied on the bottom face of the L (with Λ = 100) up to a
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Figure 4.7: Beam mesh with 3267 H8 elements deformed with U-Mesh, front and
side views. U-Mesh output is in blue, the reference is in green and the rest shape
is in grey. The computation time is equal to 2.9ms for this sample. The relative l2
norm at the tip of the beam is 1.6% and the deformation amplitude is 0.4m

c k FSS e σ(e) pred_t train_t
in m in m in ms in min

128 3 1024 0.00648 0.00493 3.2 97

Table 4.4: Error measures computed over the testing data set (M = 1, 200 samples)
for the L-shaped object.

total of 6, 000 samples (N = 4, 800 and M = 1, 200). We train a U-Net with 128
channels in the first layer and 3 steps. In Figure 4.8 are shown some samples of
deformed L-shapes. The U-Mesh output is in blue and the reference solution is in
green. In order to perceive the amount of deformation, the rest position is also shown
(thin grey lines). The average and maximal errors are given in Table 4.4, and the
prediction times are in the same range as for the beam scenario. The average error
is equal to 0.00648m where the maximal deformation is 8.9016m. The slope of the
regression in Figure 4.9 shows that the increase of the error with the deformation
amplitude is controlled. It is worth noting that the outliers of this graph (such as
the one marked in red) still correspond to small errors (see Figure 4.10).

4.3.4 Comparison of U-Mesh and POD
In this section we compare the predictions made by U-Mesh to the simulations
computed on a reduced model using POD. We used the POD code available at
https://github.com/SofaDefrost/ModelOrderReduction that works as a plugin
of the SOFA framework [Allard et al., 2007]. The POD consists of three phases.
First, an offline phase where all the potential movements of the beam are sampled and
stored in the so-called snapshot. This offline phase is the equivalent to the data gen-
eration phase in U-Mesh and is also computationally intensive since it performs many
fine simulations. In a second phase, the snapshot space is condensed in a reduced
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Figure 4.8: Samples of deformed L-shapes. In green is shown the reference solution,
in blue the output of U-Mesh and in grey the rest shape.

basis using singular value decomposition and a truncation [Goury and Duriez, 2018].
This phase "corresponds" to the training of the U-Net and is generally faster. Finally,
the resulting reduced model allows for faster simulations since there are fewer degrees
of freedom. We applied the simple POD and the hyperreduced-POD (HPOD) to the
fine beam depicted previously (see Figure 4.7) in order to compare the performance
of POD and U-Mesh.

We first compare the computation times for a given accuracy. The truncature error
of the POD was set such that the mean norm error obtained with POD is similar
to the one obtained with U-Mesh. To reach the desired accuracy in the considered
deformation range, 3 modes were preserved. Computation times are reported in
Table 4.5. With the selected number of modes, POD is about 6 times faster than
the full FEM model whereas U-Mesh is more than 200 times faster than the full
FEM model.

Let us now compare the relative errors of the two methods for a given computation
time. The fastest version of the reduced model is the one considering only one
deformation mode and using hyperreduction. As presented in Table 4.6, HPOD can
compute deformations in 5ms but with an error that is 14 times larger than the one
produced by U-Mesh.
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Figure 4.9: Sensitivity of e to the deformation amplitude for the L-shape. The point
cloud represents the e all the samples of the testing data set. The regression line of
equation y = 0.002046×x shows the low sensitivity of the U-Mesh to the deformation
range. Maximal error sample highlighted in red and shown in Figure 4.10.

Prediction time e
in s in m

FEM 0.740 0.000
POD 0.120 0.006

U-Mesh 0.003 0.006

Table 4.5: Comparison at same error: computation times of the full FEM model, of
the POD and of the U-Mesh, for the same mean norm error e. The number of modes
used in the POD is 3.

4.4 Conclusion
In this chapter we have proposed a U-Net architecture that can learn the relation
function between an input force and an output deformation for regular geometries
and make predictions with high accuracy in a record amount of time. The take-home-
message of this chapter is that for a given network architecture, the prediction time is
nearly constant (and very short), regardless of the size of the problem. Furthermore
the accuracy of the prediction, which depends on the quality and the size of the data
set, is controllable since we generate this data. We believe that such an approach

Prediction time e
in s in m

FEM 0.740 0.000
HPOD 0.005 0.084
U-Mesh 0.003 0.006

Table 4.6: Comparison at similar computation time: the mean norm errors of the
full FEM model, of the HPOD and of the U-Mesh are given, for a computation time
in the range of the millisecond. Only one mode is kept in the HPOD.
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Figure 4.10: Maximal error sample (e = 0.0327m for a nodal deformation reaching
3.08m). Reference solution is in green and U-Mesh prediction is in blue.

has a tremendous potential for problems requiring very fast simulations of objects
undergoing interactions. Such interactions could be user-driven or the result of
contacts with other structures.

Despite the promising results of our method, with the current U-Mesh, it is not
possible to make very accurate predictions when applying a force somewhere out of
the sampled input domain of the training data set. This limitation is also inherent
to POD. In the same manner, we are restricted to the geometry used to train the
network. This is due to the fact that neural networks are not good at extrapolating,
hence the importance of a good sampling of the input domain when generating the
training data sets.

Yet, there are several directions to investigate to make this approach more broadly
usable. In particular in the context of biomechanics, the geometries are non regular
structures, the inputs can be different from forces and the object characteristics
(such as material parameters and boundary conditions) can vary from one patient
to another. In next chapters we will see how to generalize the U-Mesh framework to
patient-specific modeling of soft tissues.
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Contributions of this chapter:
• The U-Mesh framework: nonlinear dimensionality reduction for displacement

field estimation trained with controlled finite-element simulated data
• Predictions on two benchmark examples (cantilever beam and L-shaped struc-

ture) with very high accuracy in only 3ms
• Constant computation time regardless of the size of the problem
• Publication: Mendizabal, A., Márquez-Neila, P., and Cotin, S., 2020. Sim-
ulation of hyperelastic materials in real-time using deep learning.
Medical Image Analyses. Volume 59, 101569 10.1016/j.media.2019.101569
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Part II

Patient-specific real-time
simulations
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Chapter 5
Patient-specific modeling

5.1 Introduction
In part I of this thesis work, we have explored how to simulate objects in real-
time without taking care about the parameterization of the models. However, when
considering computer-assisted interventions, the accuracy of the simulations and con-
sequently their parameterization are essential. Depending on the surgical interven-
tion, the demanded precision is variable but a target registration error of 5mm is
usually accepted [Ruiter et al., 2006]. For instance, in image guided biopsies (where
our mechanical model can be used to enrich the medical images), the tip of the
puncturing needle must be in contact with the tumors whose size can be relatively
small (less than 2 cm). To guarantee this level of precision the modelisation should
be adapted to the patient anatomy and to its mechanical properties. As a matter of
fact, the reliability of a biomechanical model highly depends on its parameterization.
Therefore, once the constitutive law is chosen, the patient-specific material proper-
ties and boundary conditions must be carefully set in order to achieve the desired
accuracy [Bosman et al., 2014].

Our finite-element simulations depend on parameters of the constitutive model such
as Young’s modulus, Poisson’s ratio and the boundary conditions (BCs) (see Sec-
tions 2.3.1 and 2.3.2). Since soft tissues may be represented with an incompressible
material, Poisson’s ratio can be safely set to a value close to 0.5. However, the value
of Young’s modulus E is more difficult to estimate for a given organ as it varies
with the age of the patient or even with treated pathology. For instance, considering
hepatic surgeries, a cirrhotic liver is significantly stiffer than average livers. There-
fore, values from the literature do not directly match each patient. Besides that, the
location and the elastic properties of the attachments of the organ play a major role
in the accurate approximation of the displacement field. Such BCs are not visible in
the preoperative images and it is difficult to estimate them intraoperatively as they
are often out of the field of view of the surgery.

The elastic properties of materials can be identified by solving inverse prob-
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lems [Zhao et al., 2009, Gee et al., 2010, Lu et al., 2009, Sinkus et al., 2010] or
using elastography techniques [Sarvazyan et al., 1998, Muthupillai et al., 1995,
Xu et al., 2007] initially developed for diagnosis purposes. Some works have fo-
cused on the estimation of BCs intraoperatively such as [Peterlík et al., 2014],
[Plantefeve et al., 2016] and [Johnsen et al., 2015] but these methods are difficult
to use in practice as either additional intraoperative scanning is required or they are
sensitive to anatomical variations. Moreover, when acquiring information intraoper-
atively, observational errors may occur, thus introducing uncertainty to the system.
Alternative solutions accounting for such uncertainty rise from the use of Bayesian
methods. For instance, authors in [Nikolaev et al., 2018, Peterlík et al., 2017], em-
ployed the reduced-order unscented Kalman filter (ROUKF) to model the BCs of a
liver as stochastic parameters, leading to more accurate simulations of the deforma-
tions of the organ.

In this chapter we will briefly see how to obtain a patient-specific geometry
of the patient’s anatomy and then, similarly to works in [Nikolaev et al., 2018,
Peterlík et al., 2017], we will describe a method to determine the patient-specific
parameters of an organ using the ROUKF algorithm.

5.2 Patient-specific geometry
The first step towards patient-specific modeling is the patient-specific geometry of
the organ. Generally, the 3D anatomical model of the organ is constructed from
preoperative volumetric medical images such as computerized tomography (CT) scan
or magnetic resonance imaging (MRI). Both acquisitions consist of a sequence of 2D
slices that are merged into a 3D image using volume rendering. The color intensity
of each voxel translates variation in material properties thus allowing to distinguish
the different structures. Then, a process called segmentation is performed with
a medical imaging software such as 3D Slicer1 or with deep learning algorithms
[Zhou et al., 2019] in order to extract a volumetric surface of the organ and its in-
ternal structures (see Figure 5.1 for an example).

5.3 Model parameterization
We present here the procedure to estimate the value of Young’s modulus and the
BCs of an organ using observations of the target model using the ROUKF. To this
end, each sought parameter p is described as a stochastic parameter associated to
a Gaussian probability density function (PDF). Initially p ∼ N (µ0, σ0) with µ0 the
mean value of p reported in the literature and σ0 its standard deviation. The aim

1www.slicer.org
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Figure 5.1: Sequence of 2D CT images of the liver and resulting surface mesh.

of the assimilation process is to iteratively reduce the standard deviation σ of p in
order to find the most likely value for µ. To this end, the PDF of the parameter p is
transformed based on observations. The transformation of the PDF is modelled using
a ROUKF which can handle non-linear processes, and is computationally efficient
[Moireau et al., 2011].

5.3.1 ROUKF: Overview of the algorithm
Once the FE model of the organ is built (from a preoperative CT scan for instance),
the constraints imposed on the surface ΓD need to be identified in order to generate a
deformation. In other words, the organ attachments representing Dirichlet boundary
conditions and the traction or displacement imposed on the free part of the boundary
need to be identified. In this work, the former can be either fixed (Section 9.2.1) or
set as a stochastic set of parameters (Section 9.2.2) and the latter can be determined
intraoperatively. During the intervention, points in the surface of the organ can be
tracked in each video frame. Such points are called features and are separated into
control features and observation features. The control features govern the deform-
ation of the liver model (imposed displacement on ΓD or traction if a force sensor
is available) and the observation features correspond to ground truth data (used in
the filter correction phase to compute the Kalman gain). The control features can
be selected close to the surgical tool and be used to prescribe displacements in the
mechanical model.

An efficient implementation of a Bayesian inference method able to process nonlinear
systems like our models is the unscented Kalman filter (UKF) [Julier et al., 1995].
Compared to an extended Kalman Filter, it does not require to compute the Jac-
obian of the system, which would be prohibitive given the size of our problem. The
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unknown data to be estimated (the stochastic state of the system) is described as
a Gaussian distribution, which transformation through the nonlinear system is per-
formed using an unscented transformation (see [Julier et al., 1995] for details). The
main idea is to parameterize the Gaussian distribution using a set of sigma points,
which hold the mean and covariance information, but are easier to transfer through
a nonlinear function. The general algorithm is described in Algorithm 2. It consists
of a loop that contains two main steps. During the prediction step we form the new
hypothesis about the estimated state, while during the correction step we correct it
by comparing the predicted measurements with (noisy and partial) observations.

Algorithm 2: Main steps of unscented Kalman filter
1: Initialize data:
2: set x1 - model positions and unknown parameters
3: set T = T (x1) - finite element model
4: set I, P1, Q, W - initial filter parameters
5: for each simulation step i do
6: Compute prediction phase:
7: xσ∗

i = xi +
√

PiI - generate sigma points
8: for each sigma point k do
9: x̃σk

i+1 = T (xσk
i ) get result from deformation step

10: end for
11: x̃i+1 = E

(
x̃σ∗
i+1
)
- compute predicted state as mean of sigma points

12: P̃i+1 =
(
x̃σ∗
i+1 − x̃i+1

)(
x̃σ∗
i+1 − x̃i+1

)T + Q - compute predicted covariance
13: Compute correction phase:
14: get q(o)

i+1 - observation features
15: for each sigma point k do
16: q̃(o)

i+1

σk

= H(x̃σk
i+1) - get predicted observation

17: end for
18: Pxq(o) =

(
x̃σ∗
i+1 − x̃i+1

)(
q̃(o)
i+1

σk

− E
(
q̃(o)
i+1

σ∗)T - compute cross covariance

19: Pq(o) =
(
q̃(o)
i+1

σk

− E
(
q̃(o)
i+1

σ∗)(
q̃(o)
i+1

σk

− E
(
q̃(o)
i+1

σ∗)T + W - comp. obs. cov.
20: Ki+1 = Pxq(o)P−1

q(o) - compute Kalman gain

21: xi+1 = x̃i+1 + Ki+1
(
q(o)
i+1 − E

(
q̃(o)
i+1

σ∗))
- compute corrected state

22: Pi+1 = P̃i+1 −Pxq(o)P−1
q(o)PT

xq(o) - compute corrected covariance
23: end for

The prediction step can be very costly when using a model with many degrees of
freedom, as it is the case when using a FEM method. Using the simplex method
to generate the sigma points would require m + 1 simulations if m is the number
of elements in the stochastic state vector (line 9 of the algorithm). With a mesh
of n nodes and k stiffness parameters, this would mean 3n + k + 1 simulations. A
simple FEM mesh of only a few hundred nodes would be too time-consuming for a

Patient-specific modeling 60



clinical application, as it would require more than 300 simulations for each step of
the assimilation process. To solve this issue, we use a ROUKF instead of the UKF.
This method significantly reduces the computation cost since only k+ 1 simulations
(in the best case) are required. This approach was proposed in [Peterlík et al., 2017].

Let us assume there are k unknown parameters in our model, so k different paramet-
ers to estimate that can be either the elasticity of the material or the elasticity of
the organ attachments. Since we are using the simplex version of the ROUKF, there
are k+ 1 sigma points meaning that k+ 1 evaluations of the model are performed in
each prediction step of the assimilation process. At each step of the assimilation, the
control features are extracted from the actual video frame and mapped onto the FE
model through barycentric coordinates, in order to prescribe displacements. At the
first step, µ and σ are initialized to µ0 and σ0 for each parameter. Then, k+1 vectors
of parameters are sampled and k + 1 simulations are performed. Each simulation
corresponds to one of the sampled k + 1 values of the parameter and they can be
done in parallel as they are independent. After the simulations for all sigma points
are performed, the a priori expected value and covariance matrix are updated. This
is called the prediction phase. Later, in a correction phase, the extracted observation
features are compared to the model predicted positions to compute the innovation
that is used to compute the Kalman gain. The a posteriori expected values and the
covariance matrix are computed based on the Kalman gain.

5.4 Conclusion
In this chapter we have seen the importance of the patient-specific parameterization
of the finite-element models. The ROUKF allows for real-time estimation of the
sought parameters based on intraoperative observations. In chapters 7, 8 and 9 we
will see how to introduce this knowledge into the U-Mesh for allowing patient-specific
predictions of the displacement field of an organ. In next chapter, we will see how
this data assimilation process can help in robotic interventions.
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Chapter 6
Force Estimation in Robotized In-
jections

6.1 Introduction and related work
The work presented in this chapter was produced at the beginning of this PhD. It
consists of a thematically isolated example of combining finite-element simulations
with neural networks in the context of robotized intravitreal injections.

Intravitreal injections are among the most common surgical interventions in
ophthalmology with more than 4 million injections worldwide in 2014 alone
[Ullrich et al., 2016]. This procedure is principally used in the treatment of dia-
betic maculopathy and for injecting vascular endothelial growth factor inhibitors in
the treatment of age-related macular degeneration. Besides, we observe an increas-
ing demand for such therapy due to the growing prevalence of diabetic patients and
aging demographics. Intravitreal injections are mostly performed by doctors and the
cost of such therapy has to be reduced. The increasing workload and the reduced re-
imbursement makes it difficult for hospitals to handle the situation. The time spent
by the clinicians performing the injections has to be minimized while preserving the
precision and the safety of the patient.

At the same time, robotic assistance in ophthalmology provides the ability to improve
manipulation skills, along with shorter and safer surgeries [Meenink et al., 2012]. To
this end, [Ullrich et al., 2016] proposed a robotized intravitreal device capable of
assisting injections into the vitreous cavity. However, designing such robotic systems
requires to solve multiple challenges in terms of safety, cost and time efficiency and
usability. The position accuracy and the orientation of the needle are of particular
interest since the injection must be performed in a small region (the pars plana) of
the eye. If the region is missed, damage of the eye lens or the retina might occur. In
addition to accurate positioning, the ability to estimate or measure the force exerted
by the needle on the sclera during the procedure could offer an important additional
safety for the patient [Jagtap et al., 2004].
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As a matter of fact the knowledge of the force plays a central role in the con-
trol loop of surgical robots for patient safety during robotic assisted interventions
[Weber et al., 2017]. The force can be either measured through force sensors or es-
timated through vision-based methods. The use of force-based control algorithms
allows for an improved human-machine interaction, more realistic sensory feedback
and telepresence. Beyond this, force sensing or force estimation can facilitate the de-
ployment of essential safety features [Haidegger et al., 2017]. A considerable amount
of work relying on force sensors has previously been done, focusing on the develop-
ment of miniaturized devices to ease their integration with actual systems. Force
sensors usually need to meet several additional requirements, such as being water res-
istant, sterilizable and insensitive to changes in temperature [Haouchine et al., 2018].
The major limitation of conventional sensors is thus the associated cost since most
surgical tools are disposable [Haidegger et al., 2017]. To overcome this point, altern-
ative solutions have been proposed, such as qualitative estimation of forces based
on images [Mura et al., 2016, Haouchine et al., 2018].[Mura et al., 2016] introduced
a vision-based haptic feedback system to assist the movement of an endoscopic device
using 3D maps generated with a Shape-from-Shading method where the 3D shape
of the surface is recovered from a 2D image of that surface. [Haouchine et al., 2018]
incorporated the use of a biomechanical model of the organ in addition to the 3D
maps to estimate force feedback in robot-assisted surgery. This approach is, how-
ever, limited to the ability to evaluate tissue properties of the organ quantitatively
[Aviles et al., 2014].

Deep learning has already been suggested to improve existent characterist-
ics of robotic assisted surgeries such as instrument segmentation and detec-
tion [Pakhomov et al., 2017], as well as force estimation. For instance, in
[Aviles et al., 2014], interaction forces in minimally invasive surgeries are estimated
with recurrent neural networks using camera acquisitions combined with kinematic
variables and deformation mappings. In a follow-up paper, [Aviles et al., 2015] used
a neuro-vision based approach for estimating applied forces in the same context. In
[Aggarwal et al., 2018], authors used two neural networks to classify muscle force
exertion levels to prevent musculoskeletal disorders based on features extracted from
video data and blood volume changes. However, in all these approaches an interme-
diate step to determine the surface deformation is required.

In this chapter, we present a method for estimating contact forces directly from an
OCT image of the scleral deformation without the need for a specific image feature
extraction method beforehand, as in [Aviles et al., 2015, Aviles et al., 2014]. The
technique relies on an image classifier for estimating force quantiles during robotized
intravitreal injections. An imperative requirement for machine learning algorithms
to work is the huge quantity of data to train on. Currently since intravitreal injec-
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tions are executed manually, there is no available information on the force induced
by the needle. Hence, we propose to build a patient-specific biomechanical model
of the sclera to generate a very large number of force-OCT image pairs, which are
then used for training any supervised machine learning method. We will show that
this approach allows us to avoid the need for large data sets of real OCT images.
The simulations are parameterized to match experimental results and compensate
for the absence of real data. The parameterization can be carried out with different
approaches. For instance, simple optimization algorithms could be used to minimize
the errors between the output of the simulation and the OCT image over the set of
possible parameters. However, in the view of an online estimation of the parameters,
we choose to use a Reduced-Order Unscented Kalman filter [Moireau et al., 2011] to
estimate the stiffness of the scleras. We then train a two-layer image classifier al-
gorithm with the generated images and their corresponding forces. This solution
allows a straightforward force estimation process to take place. This two-stage pro-
cess makes it possible to classify force ranges with 93% accuracy while requiring very
few experimental data, as demonstrated on several ex vivo porcine eyes undergoing
robotically-controlled needle insertions.

6.2 Method
In this work, we first construct a numerical model of the interesting portion of the
eye to synthesize images of the deformed sclera under needle-induced forces. To be as
close as possible to the actual organ behavior, we propose to use Bayesian inference
as a means of identifying material parameters. Then, a data generation process takes
place in order to train a neural network.

6.2.1 Training data generation
Biomechanical model We simulate the deformation of the sclera under needle-
induced forces by modeling the eye as an elastic half-sphere subject to Dirichlet
boundary conditions (see Figure 6.1a and Chapter 2 for details). Since applied forces
and resulting deformations remain small, we choose to describe the stress-strain
relationship as linear, using Hooke’s law from Equation (2.19). Dirichlet boundary
conditions are added to prevent rigid body motion of the sclera, while a constant
pressure is applied to the inner domain boundary to simulate the intraocular pressure
(IOP), as illustrated in Figure 6.1a. The intraocular pressure plays an important
role in the apparent stiffness of the eye and its variability is well studied, as high
eye pressure can be an indication for glaucoma. It is worth-mentioning that the
common IOP measurement devices are influenced by the stiffness of the eye. The
value measured by the tonometer is not absolute but linearly related to the Young’s
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modulus [Hamilton et al., 2008]. The external force due to IOP is given by fp = S×P
where S is the surface area of the eye (in m2) and P the intraocular pressure, given
in Pa. Note that fp is normal to the surface. To simulate the needle pushing on the
sclera, we apply a local force fn in a small region of interest near the virtual needle
tip. The external forces of the system are then formed by the IOP, the force induced
by the needle and the gravitational force fg applied in the negative y direction.

(a) Simplified model of the sclera

(b) Deformed hexahedral mesh. Note that
the colors of the hexahedra are just for visib-
ility

Finite Element simulation We solve the equation for the constitutive model
using the finite element method presented in Chapter 2. The eyeball is considered
as nearly spherical and is discretized using a quadrilateral surface mesh of a half
sphere of radius 12 mm, discretized using the Catmull-Clark subdivision method.
The obtained quadrilateral surface is extruded conforming to the scleral thickness in
order to generate almost regular hexahedra (see Figure 6.1b). Scleral thickness plays
an important role in the deformation of the sclera. Under a given force, a thick sclera
is less deformed than a thin one, therefore it is important to take this thickness into
account.

In our simulation, we use a mesh composed of 14, 643 hexahedral elements, resulting
in about 5 seconds of computation time to obtain the static solution of the deform-
ation. All the experiments from this chapter are run on a Dell Precision laptop
equipped with an intel Core i7 2.90GHz, a Quadro M1200 Graphics Processing Unit
and 16Go of RAM. Since this computation has to be repeated thousands of times to
generate the training data set, we take advantage of the linearity of the model and
pre-compute the inverse of K to speed up the generation of the training data. This
leads to a substantial computational speed-up (x10).
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Model parameterization Our finite element simulations depend on parameters
of the constitutive model and the geometry of the eye: Young’s modulus, Poisson’s
ratio, intraocular pressure and scleral thickness. It is therefore essential to under-
stand which parameters can be assumed constant, and which ones vary (and within
what range) to properly generate training data.

Data from the literature [Olsen et al., 2002] report a thickness for corneal-scleral
limbus in porcine eyes ranging from 630 µm to 1030 µm. We perform thickness
measurements on porcine eyes and get a variation in thickness of more than 35%.
Hence, we choose to consider the thickness as a parameter in the training, and we
simulated scleras with five different thicknesses: 400 µm, 500 µm, 600 µm, 700 µm
and 800 µm.

The IOP is also known to vary from patient to patient, and can be measured using
a tonometer. So if we were to apply our method on a patient, we could use this
information to parameterize the simulations used for the training. However, this is
different for the porcine eyes used in our study. The IOP decreases gradually with
postmortem time [Balci et al., 2010] and is halved only three hours after death. The
IOP we measured ranged from 1 to 4 mmHg which is very small and does not affect
much the deformation of the sclera. Therefore we considered the IOP constant and
equal to 2 mmHg (266 Pa) for our experiments and simulations.

The Poisson’s ratio ν is a constant value for the sclera according to the literature
[Asejczyk-Widlicka et al., 2008] and can be set to ν = 0.45. This leads to a nearly
incompressible behavior during the deformation. With this in mind, we can reason-
ably assume that our training data set can be generated from numerical simulations
in which the thickness, Poisson’s ratio and IOP are known and constant.

The value of Young’s modulus E, however, is more difficult to estimate as it varies
depending on the porcine breed and experimental conditions. Therefore, values
from the literature are not directly applicable. On the other hand, measuring it
using a "classical" experimental biomechanics approach would be burdensome. For
this reason, we propose to use a Bayesian approach to estimate the value of E using
observations from our OCT images. Such an approach could also be used to perform
data assimilation on actual patients.

The knowledge of the elasticity parameters is key to build a good model of the sclera.
The goal of this work being the estimation of the force range based on the shape of
the sclera, it is therefore very important to correctly estimate E to avoid introducing
errors in the force prediction. Since the exact value of E is not a priori known (only
its average value based on data from the literature), we describe it as a stochastic
parameter associated to a Gaussian probability density function (see Section 5.3 in
Chapter 2).
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Data set generation Once the model is correctly parameterized, we generate a
synthetic data set {(fnk, Ik)}Nk=1 of N samples where fnk is the needle-induced force
for sample k and Ik is the corresponding simulated image of the deformation. The
forces range from 0.0 N to 0.06 N and are applied at random locations and normally
to the scleral surface for each of the different thicknesses. For each sample, a 2D
cross-section of the complete 3D mesh is extracted in order to simulate the OCT
image Ik. The simulated images have to be informative of the scleral thickness and its
deformation, hence a binary image suffices for our purpose. Therefore the images are
post-processed with a contour detection algorithm (findContours OpenCV function)
and binarized (threshold function).

6.2.2 Neural network for image classification
We look into modelling a function that can estimate the range of forces applied by
a needle when observing a single OCT image and the deformation within it. To
do this, we make use of an artificial neural network (NN) to provide a robust and
reliable function capable of estimating forces applied to the sclera (see Chapter 3
for details). In our case, the input to the model is the cross-sectional OCT image
that depicts anatomical information of the sclera, from its surface to 1 millimeter
below. In order to provide high-frame rate imaging, we opt to use 2D OCT cross-
sections as the imaging modality over 3D volumetric OCT scans that are more com-
mon but slower to acquire. In our set up, we use the low-cost solution introduced
in [Apostolopoulos et al., 2017] to image 2D OCT cross-sections.

While we are interested in estimating the force applied by the needle, we choose to
categorize the applied forces into three interval ranges. This reduces the need to be
sensitive to exact force values, which not only is unnecessary in this instance, but
also allows us to set up our inference task as a classification problem, whereby forces
are grouped into ranges of clinical relevance.

To do this, our NN consists of two fully connected hidden layers and a classifier as
output layer (see Figure 6.2). The input layer has 5600 neurons (corresponding to
the size of the input images 140 × 40) while the hidden layers have 600 neurons.
These optimal values are found through a grid search. We use ReLu activations
throughout the network and a softmax activation at the output layer. The network
was implemented using Tensorflow and the Keras Python library.

Given the above simulation model, we can train our NN with virtually an infinite
amount of synthetically generated data. With the objective of stopping an incumbent
needle from damaging the sclera, we use our simulation model to generate OCT
images with forces between 0.0 N and 0.06 N applied on the Finite Element mesh of
the sclera. This range was then divided into three ranges, or classes, consisting of:
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Figure 6.2: Artificial neural network used for image classification. The input is an
image of size 140× 40 pixels resulting in an array of size 5600.

• Class 0: force values smaller than 0.005 N

• Class 1: force values from 0.005 N to 0.03 N

• Class 2: force values bigger than 0.03 N

whereby class 0 corresponds to virtually no danger to the sclera, class 1 indicates
a considerable force and class 2 is a dangerous force that should trigger a needle
removal signal. The complexity of our problem makes it challenging to establish a
clear cut between "no danger to the sclera" and "a needle removal is advised". For this
reason we introduced an intermediate class which can be seen as a gray area between
the two bounding classes. If the force is classified in this gray area, it becomes the
clinician’s responsibility to stop or continue the insertion.

We train our NN from scratch using a gradient descent and the cross-entropy loss.
A 0.8 dropout factor between layers was used to help with generalization.

6.3 Experimental results
In this section, we first describe how data acquisition on ex vivo porcine eyes was
performed. Then, we present the virtually generated data set, and associated train-
ing, with an emphasis on the parameterization of the biomechanical model. Finally,
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we validate the neural network on unseen real data to demonstrate the high level of
accuracy of our approach at classifying contact forces.

6.3.1 Experimental set up
To validate the predictive accuracy of the NN on real data, we acquired a collection of
M samples {(fnk, Ik)}Mk=1 from ex vivo porcine eyes. Five porcine eyes were obtained
from the local abattoir and transported to the experiment room while kept at low
temperature. Experiments began within 3 hours of death, and we ensured they
were completed less than 10 hours postmortem. During the tests, the eyes were
moisturized with water and fixed with super glue on a 3D-printed holder to ensure
fixed boundary conditions on the lower half of the eyeball. We choose super glue
as it preserves the tightness of the eyeball. We then measured the IOP with a
tonometer and obtained, for all the eyes, an IOP close to 2 mmHg (about 266 Pa).
The intraoperative pressure is lower than usual since it decreases dramatically after
death [Balci et al., 2010]. However, for the results presented here, we did not inject
any fluid during the experiments to compensate for this low IOP.

A surgical robotic arm that was designed for high-precision drilling during robotic
cochlear implantation [Weber et al., 2017] was used to measure the force applied
by a needle. The robotic arm is fitted with a six-axis force/torque sensor (Mini40,
ATI) at its wrist underneath a quick release for the end effector. After mounting
a 22G Fine-Ject needle (0.7 x 30 mm) at the tip of the end effector, the robotic
arm guided the needle forward along its axis. The needle was positioned as close as
possible to the B-scan without intersecting it to bypass the generation of shadows in
the OCT image. The margin between the needle and the B-scan was considered in
the simulation. The robot was programmed to move towards the center of the eye
along a path normal to the sclera. Contact and insertion forces, in the direction of
motion, were continuously recorded during the insertion process. We also recorded
the associated OCT images by storing B-scans over time. The custom-designed
OCT device uses a 840 nm ± 40 nm wavelength light source, with an A-scan rate
of 50 kHz for a resulting 2D image of resolution 512 × 512 pixels with 12 bits per
pixel, corresponding to an area of 15 × 4 mm2. In these images, the black bands
surrounding the OCT focus are removed leading to images of size 140× 40 pixels.

In Figure 6.3, a fragment of the collected data including 5 complete acquisitions is
shown. To each trial corresponds one OCT image captured at a punctual time and
a continuous flow of force values. The forces are filtered so that the noise is reduced.
As the images were collected at a lower frequency than the forces, the corresponding
forces were averaged over an interval of two seconds around the imaging time. The
vertical lines correspond to the imaging times. The relaxation properties of soft
tissue explain the slight decrease of the force a few seconds after the force is applied.
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Figure 6.3: Continuous acquisition of the robot force sensor and corresponding punc-
tual OCT images for one eye. The vertical lines give the imaging times.

eye ID 1 2 3 4 5 Total
scleral thickness in µm 800 500 650 560 800 -

number of samples in class 0 0 1 2 2 2 7
number of samples in class 1 11 2 0 1 1 15
number of samples in class 2 14 2 3 2 2 23

Total 25 5 5 5 5 45

Table 6.1: Distribution of samples in the three force ranges and scleral thickness for
each eye.

The computed average force is used as ground truth for the following supervised
learning. For each eye, one position near the corneal-scleral limbus was selected and
the needle moves forward 0.5 or 1 mm in the same direction. Note that the pierced
samples are excluded from the data set. Overall, 45 valid trials were performed on
different eyes. The spread of each acquisition among the force classes is depicted in
Table 6.1.

6.3.2 Identification of the Young’s modulus
According to the collected porcine data, the Young’s modulus E of the biomechanical
model is estimated using the ROUKF. The PDE of E is transformed based on
observations taken on the OCT images acquired during the experiment on an eye
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(see Figure 6.4a). We consider the corresponding ground truth force (measured with
the robot’s force sensor) to run the simulations.

(a) (b) (c)

Figure 6.4: (a) Observation points in the real OCT image. (b) Predicted observations
(in red) and real observations (in yellow) for the first estimation of E. (c) Predicted
observations (in red) and real observations (in yellow) for the final estimation of E.

According to [Asejczyk-Widlicka et al., 2008], we set µ0 and σ0 to 0.49 MPa and
0.34 MPa respectively. We estimated the Young’s modulus for each eye independ-
ently based on all OCT images where observation points can be extracted. We
extract 10 observations on each OCT image for a given eye (see Figure 6.4a). The
finite element mesh is registered to the OCT image using rigid registration. To each
observation in the OCT (yellow dots) corresponds a predicted observation attached
to the model (red dots). During the assimilation, the known force is applied and the
observations obtained are used by the filter correction phase to compute the Kalman
gain. We employ the simplex version of the ROUKF, and since we only want to es-
timate one parameter, two evaluations of the model are performed in each prediction
phase of the assimilation process (i.e. there are two sigma points). The evolution
of µ and σ with the iterations of the ROUKF for eye 1 are shown in Figure 6.5.
After convergence, we see that the final value of µ is 0.27 MPa, as reported in first
column of Table 6.2. When applied to other porcine eyes, estimated values of E vary
only slightly, as seen in Table 6.2. Therefore we consider the Young’s modulus E to
be constant across all our experiments, with an average value of 0.25 MPa. Using
this values leads to very good visual agreement between the OCT images and the
simulations for the three force ranges for all the eyes (see Figures 6.6 and 6.7) thus
validating the assumption of linearity.

eye 1 eye 2 eye 3 eye 4
µ in MPa 0.27 0.22 0.24 0.29
σ in MPa 4.7e−3 6.7e−3 3.9e−3 4.9e−3

Table 6.2: Mean and standard deviation of the estimated Young’s modulus in 4
different porcine eyes after performing a data assimilation with a ROUKF. The fifth
eye is not included since the observations required in the assimilation process are
not consistent across the OCT acquisitions for this eye.
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Figure 6.5: Variation of µ and σ for the Young’s modulus estimation using the
ROUKF for 24 OCT images. The value of the parameter converges to 0.27 MPa.

Figure 6.6: Real OCT images of the eye used for the data assimilation and matching
simulated images with E = 0.25 MPa for the three force ranges.
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Figure 6.7: Real OCT images of the sclera and their matching simulated images with
E = 0.25 MPa for the three different force ranges.

6.3.3 Training data generation
Data set generation To run our simulations we used the Simulation Open Frame-
work Architecture1. We generated 3200 images of deformed scleras undergoing nor-
mal forces going from 0.0 N to 0.045 N for the smallest thickness. For each of
the other four thicknesses, we generated 4000 images of deformed scleras where the
forces vary from 0.0 N to 0.06 N at different random locations. For each thickness,
the simulation took approximately half an hour. In Figure 6.7 are shown different
examples of the output of the simulation (bottom) matching the OCT images (top).
Overall, we created a data set having 19200 synthetic images within 2 hours and a
half (see Figure 6.8b). In Figure 6.7 below we show some synthetic images.

Neural network training The generated labelled data set is split such that 90%
of the images is used for training and the remaining 10% is left for validation. All
in all, 17280 images are used to train the artificial neural network that is validated
on the other 1920 images. Figure 6.8a depicts the accuracy and the loss of the
neural network on both training and validation data sets over each epoch. The
validation accuracy curve displays 100% accuracy when classifying unseen synthetic
images. This curve is above the training accuracy curve probably because of the
high dropout applied during the training.

6.3.4 Validation on unseen real data
Our work aims at classifying force levels using only OCT data of the deformed scleras
as input. All the OCT images collected during the experiments are filtered to obtain
inputs similar to the synthetic ones (see Figures 10.2, 6.9b and 6.8b).

Once the OCT images have been processed to look like the simulated ones, we can use
them as input to the NN and perform force predictions. For each OCT acquisition,
the force measured by the robot is converted into a class label (0, 1 or 2) and is

1https://www.sofa-framework.org/
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(a) Loss and Accuracy curves for
training and validation sets

(b) Fragment of the training data set generated by
our numerical simulation

(a) Unprocessed OCT image (b) Filtered OCT image

taken as the ground truth (target class). A class with label 0 corresponds to a
minimal force for which there is no risk of damaging the sclera. A class with label
1 corresponds to forces ranging from 0.005N to 0.03N and indicates that the sclera
is being considerably deformed. A force class with label 2 means that the sclera is
potentially being damaged and that a withdrawal of the needle is advised.

The performance of the classification is reported in the confusion matrix in Table 6.3.
Each row of the table gives the instances in a target class, and each column gives the
instances in a predicted class. For each category, we highlighted the correct decisions
in red and show that the overall accuracy of the classifier is very high (93%). For all
the experimental data set, the lowest score of the NN was obtained for the force class
0 with 71% accuracy. For target class 2, the precision reached 100%. In Figure 6.10
are shown the raw force values (measured with the robot’s force sensor) and the force
range thresholds. The plot shows that the forces measured are uniformly spread
throughout the force ranges. Note that the three misclassified samples are close to
the upper bound of the force range and they are overestimated. We believe that
misclassification of contact forces in the lowest ranges has a limited impact since the
risk of damaging the sclera with such forces is almost null. On the other hand, it is
essential that the forces of range 2 are predicted correctly, which appears to be the
case on our (limited) data set.
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Target
Prediction Class 0 Class 1 Class 2 Precision

Class 0 5 2 0 0.71
Class 1 0 14 1 0.93
Class 2 0 0 23 1.00
Recall 1.00 0.88 0.96

Table 6.3: Confusion matrix

Figure 6.10: Filtered force values corresponding to the 45 OCT acquisitions. The
three misclassified samples are overestimated. Note that we only kept the samples
under 0.06N which is the point of rupture of the thinnest scleras. To correctly
account for the elements above that point of rupture, the puncturing process should
be included in our model which would complicate the simulation without bringing
any gain.

6.4 Conclusion
This chapter introduces a method for improving the safety features of robotized
intravitreal injections. We show that our vision-based method, which combines nu-
merical simulation and neural networks, can accurately predict the level of force
applied by a needle, using only 2D OCT images of the scleral deformation. By being
real-time, this classification can lead to an immediate withdrawal of the needle once
it reaches a certain alarm threshold. To cope with the issue of performing a large
number of experiments to populate our training data sets, the NN is trained on syn-
thetic images generated from simulations of sclera deformations. To automatically
parameterize the simulations from the experimental data, we use a Kalman filter
which performs data assimilation using the sequence of OCT images.

This work was carried out at the beginning of the PhD. At that time, we were
inexperienced in deep learning algorithms so we selected the simplest network ar-
chitecture for solving our classification problem. With the current experience, if we
were to do this work again we would probably use a CNN instead. Indeed, CNNs are
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aimed to deal with images and they are usually faster to train than fully connected
neural networks (due to the smaller number of learnable parameters). Moreover,
CNNs are less sensitive to image framing and scaling and would be better suited if
we were to add real OCT images in our data sets.

Moreover, in order to use our method in clinical practice (e.g. in vivo eyes) fur-
ther simulation efforts should be performed. For instance, anatomically reasonable
boundary conditions should be considered such as muscle fixation and eye movement
should equally be included. It also seems essential to include the intraocular pressure
as an additional input in the data set. Indeed, IOP is known to play a role in the de-
formation of the sclera and cornea of patients. To perform the prediction, a measure
of the IOP would simply need to be performed on the patient using a tonometer. The
reason we have not done it yet comes from the inaccuracy of the IOP measurement
which is influenced by the stiffness of the eye. This coupling makes it more challen-
ging to parameterize our simulations. Another improvement of the method would be
to use adaptive force thresholds depending on the scleral thickness and stiffness as
for thinner or softer scleras, the puncture force is lower. The simulated images could
also be improved to match actual surgical scenarios better. In particular, adding the
shadows generated by the needle in the OCT image would be an essential feature.
We also propose to address the sensitivity of the NN predictions to image framing
and scaling by randomly cropping each simulated image, and augmenting the data
set with these additional images. Note that in our data generation process, the
optical interference phenomenon happening in OCT is not simulated. Instead, the
synthetic and real images are binarized. This skeletonization is a way of filtering the
complicated aspects of the OCT images that are a priori non-informative for our
purpose. Training a network directly from the OCT images without the skeletoniz-
ation would lead to a significantly more complex problem requiring the simulation
of light propagation and the use of Convolutional Neural Networks.

Finally, the objective of this work was to estimate a force range, but it would also be
pertinent to estimate the location and the angle of the force as a slight error in the
latter might damage the retina or the eye lens. In this context we could augment
the data set by including various needle insertion angles and locations, and use a
regressor to predict the complete force vector.
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Contributions of this chapter:
• Simple fully connected neural network for force classification
• Image-based force estimation in robotized procedures (no force sensor needed)
• Training data generated with a simplified finite-element model of the eye
• Identification of the stiffness of the sclera using Kalman filters
• 93% accuracy in the force classification on real porcine data
• Publications:

– Mendizabal, A., Fountoukidou, T., Hermann, J., Sznitman, R., Cotin,
S., 2018. A Combined Simulation and Machine Learning Ap-
proach for Image-Based Force Classification During Robotized
Intravitreal Injections. In International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 12-20.

– Mendizabal, A., Sznitman, R., Cotin, S., 2019. Force classification
during robotic interventions through simulation-trained neural
networks. International journal of computer assisted radiology and sur-
gery, 14(9), pp. 1601-1610.
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Chapter 7
The U-Mesh for Augmented Hep-
atic Surgery

7.1 Introduction
In Chapter 4, we have presented the performance of the U-Mesh framework on
simple geometries, matching the required grid-like structure for the input to the
network. In this chapter, we will see how to extend the method to any kind of
geometry. In particular, we will first show the ability of the U-Mesh in predicting
the deformations of a liver geometry. Second, we will apply it to augmented hepatic
surgery by registering the preoperative images to the intraoperative ones.

In liver surgery, it is essential to locate the internal structures (such as tumors and
blood vessels) that need to be preserved for the post-operative regeneration of the
liver tissue. While the initial position of these structures is known from the preop-
erative images, their actual position during surgery is often hidden or uncertain. To
guide the surgeon, augmented reality techniques are used to enrich visual information
through fusion of intraoperative images and a preoperative 3D model of the patient’s
anatomy. This is usually done by overlaying a virtual representation of the liver built
from preoperative images over intraoperative images or through augmented reality
glasses. However, surgical manipulations and interactions with the surrounding ana-
tomy can induce significant deformations to the patient’s liver. As a consequence, the
virtual model of the liver has to account for non-rigid transformations and produce
its deformed state in real-time, which is difficult given the complexity of the physical
systems needed for accurate biomechanical modeling. Therefore, in order to build an
augmented view of a liver during surgery we need to perform an elastic registration
of the preoperative model to the intraoperative images acquired with a 3D imaging
device (see Figure 7.1). While in minimally-invasive surgeries a laparoscopic camera
can be used to acquire a video of the abdominal cavity, in open surgeries an RGB-D
sensor can capture the surface deformation of the tissues. From such images, a par-
tial point cloud of the liver surface can be extracted using one of the methods listed
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in [Petit et al., 2018]. In this chapter we will see how the U-Mesh can produce an
estimation of the complete displacement field given such a point cloud.

Preoperative 
3D model

Preoperative 
FEM model

Intraoperative 
live image

Partial surface 
point cloud

Elastic registration 
showing internal 

structures

Figure 7.1: Augmented reality pipeline: preoperative internal structures are mapped
in real-time onto the live image of the organ using a FEM model.

This chapter is divided in two main segments. To start with, the U-Net learns to
predict the displacement field of a virtual liver given an input contact force. In a
follow-up, the U-Net is used in an augmented reality context, where the full volu-
metric displacement field needs to be estimated from a partial surface deformation.
In both cases the network is trained with FEM-generated data and the procedure is
very similar to the one presented in Chapter 4 except from the meshing procedure.

7.2 Displacement field on regular grids
To train our network, we need to generate many samples consisting of a volumetric
output displacement field Uv, given an input constraint C (contact force or surface
displacement). The simulation that generates this data needs to be as accurate as
possible, yet computationally efficient to make it possible to generate data and train
the network in less than a day (i.e. in the shortest amount of time available between
preoperative data acquisition and surgery). As seen in Section 4.2, the input to the
U-Net must be a regular grid. In the following we will present two options to fulfill
this requirement.

First, the nodes of the finite-element mesh can be mapped into the nodes of the in-
put grid. That way, the FE mesh and the U-Net input grid are independent and any
type of elements can be used to mesh the object (tetrahedral elements, non regular
hexahedral elements, linear or quadratic elements etc). In order to mesh complex
geometries (in particular to handle the boundaries of an object), using 4-node tet-
rahedral elements can be more convenient than using 8-node hexahedral elements
[Wang et al., 2004]. Therefore we propose to start discretizing a liver geometry with
tetrahedral elements and map a regular grid onto the tetrahedral mesh. The regular
grid follows the deformation of the FEM mesh (see Figure 7.4b). Only the nodes
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of the grid that are inside the liver volume are mapped and the outer nodes are
zero-valued. Indeed, the mapping is only exact for inner grid nodes since we can
use the FE shape functions which is not the case when solving the grid nodal values
outside the geometry (ill-posed problem). The objective being to find the location
of the internal structures, this simplification is not a limitation.

The second option consists of building the FE mesh such that it directly matches
the U-Net grid. Here we will rely on 8-node hexahedral elements known for their
better convergence, and lock-free behavior, especially with close to incompressible
materials (such as the liver) and strong shear stresses [Benzley et al., 1995]. In addi-
tion, we combine this choice of elements with an Immersed-boundary method (IBM),
which allows us to create an hexahedral mesh directly from the segmented CT or
MRI image (see Figure 7.2). The surface mesh is embedded into a sparse hexahedral
grid (Figure 7.5a), that is in turn embedded into a regular grid (Figure 7.5b) which
matches the structure of the first layer of our U-Net. The sparse grid consists of
rectangular cuboid cells. Cells that are overlapping the domain boundary are kept,
therefore approximating the exact shape and volume of the object. The choice of

Figure 7.2: Example of sparse grid discretization generated from a preoperative
CT. Combined with an Immersed boundary method, it allows the use of regular
hexahedral meshes to simulate the deformation of the organ, and can be used with
our CNN.

discretizing the initial domain with a sparse and regular grid brings several benefits.
The usual trilinear interpolation functions of an 8-nodes hexahedral element are re-
duced to a linear mapping, and, similar to 4-nodes tetrahedral elements, its jacobian
remains constant inside the element. However, using such discretization requires
particular care of the boundary elements. Volume integration of the displacement
field inside these partially filled cells is carried on by recursively subdividing the cell
into 8 sub-cells. The stiffness matrix inside a boundary cell is then accumulated
from its sub-cells using the linear mapping, as in [Düster et al., 2008]. Since we are
using a fine mesh of the domain, only one level of subdivision is enough to obtain
an accurate approximation of the volume integral. Note that the finer the grid, the
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smaller is the difference between the exact volume and the one represented by the
sparse grid.

7.3 The U-Mesh applied to a liver

7.3.1 Results on a synthetic liver
A surface mesh is obtained from a preoperative CT scan of a human liver. The
length of the liver is 0.2m. We will first mesh the liver using T4 elements and then
using H8 elements. In both cases the Young’s modulus will be set to 5, 000Pa and
the Poisson’s ratio to 0.48.

Liver meshed with tetrahedral elements In this paragraph the liver geometry
is discretized into 4859 tetrahedral elements (1059 nodes in total). A 16 × 15 × 16
regular grid is mapped onto the tetrahedral mesh and follows the deformation of the
FEM mesh (see Figure 7.4b). Dirichlet boundary conditions are then added by fixing
some nodes in the area separating the two lobes to mimic the effect of the vascular
tree and of the falciform ligament of the liver [Abdel-Misih and Bloomston, 2010].
For the training data generation, normal forces of random magnitudes are computed
on the liver surface and mapped to the grid nodes using barycentric coordinates.
Only one force is applied at each time step on a small region of the surface. We
decided to limit the size of the data set to fit the time requirements of a clinical
routine where sometimes only a few hours are available between the preoperative
CT scans and the surgery. Hence a data set of only 2, 000 samples is generated in
135min. N = 1, 600 samples are used to train the network in 149min and M = 400
samples are left for validation.

Once the network is trained, we make predictions over the validation set. The results
are reported on Table 7.1. The sample with maximal error is shown in Figure 7.4a.
The outputs are predicted in only 3ms. In Figure 7.3 are shown some samples of
U-Mesh-deformed livers and their corresponding relative errors computed at one of
the lobe tips. The output of U-Mesh is in green whereas the reference solution is in
red.

c k FSS e σ(e) pred_t train_t
in m in m in ms in min

128 3 1024 5.33e-05 6.03e-05 3 149

Table 7.1: Error measures on a liver of length 0.2m discretized with tetrahedral
elements. The maximal error in the testing data set is equal to 4.9e− 04m (sample
in Figure 7.4a) for a maximal deformation over the testing data set of 0.088m.
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(a) Relative l2 norm 2.4%
(b) Relative l2 norm 1.9%

(c) Relative l2 norm 8.4%
(d) Relative l2 norm 10%

Figure 7.3: Various liver samples from the testing data set and corresponding relative
errors computed on the tip of the deformed lobe for the tetrahedral topology. The
rest shape of the liver is shown in grey.

(a) (b)

Figure 7.4: (a) Maximal average nodal error. (b) Regular grid mapped onto a FE
tetrahedral mesh.

Liver simulation using hexahedral grids This time the surface mesh is Im-
mersed in a 16 × 15 × 16 grid (see Figure 7.5b) resulting in 732 H8 elements (see
Figure 7.5a). Dirichlet boundary conditions are then added by fixing 54 nodes in
the area separating the two lobes. For the data generation, normal forces of random
magnitudes are computed on the liver surface and applied on the hexahedral grid
through a mapping in order to generate a data set of 2, 000 samples (N = 1600
samples for training and M = 400 samples for validation). The metrics obtained on
the validation set are reported in Table 7.2. The maximal error is of only 4.07e−04m
for a maximal deformation of 0.0536m. The outputs are predicted in only 3ms. In
Figure 10.6 are shown some samples of U-Mesh-deformed livers and their corres-
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(a) (b)

Figure 7.5: (a) Hexahedral simulation sparse grid of 1109 nodes. (b) Input to the
U-Net: regular grid of size 16× 15× 16.

c k FSS e σ(e) pred_t train_t
in m in m in ms in min

128 3 1024 2.89e-05 3.41e-05 3 149

Table 7.2: Error measures on a liver of length 0.2m Immersed in a 16×15×16 grid.
The maximal error is 4.07e− 04m and the maximal deformation of 0.0536m.

ponding relative errors computed at one of the lobe tips. Furthermore, the slope of
the regression in Figure 7.8 shows that the increase of the error with the deformation
amplitude is also controlled for this scenario.

(a) Relative l2 norm 3.2% (b) Relative l2 norm 2.6%
(c) Relative l2 norm 8.5% (d) Relative l2 norm 2.4%

Figure 7.6: Various liver samples from the testing data set and corresponding relative
errors computed on the tip of the deformed lobe. The rest shape of the liver is shown
in grey.
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Figure 7.7: Sample with maximal maximal nodal error (0.0153m) for the hexahedral
mesh. The reference solution is shown in red and the U-Mesh predictions is in green.
The rest shape is shown in grey.

Figure 7.8: Sensitivity of e to the deformation amplitude for the liver. The point
cloud represents the error e of all the samples of the testing data set. The regression
line of equation y = 0.0021 × x shows the low sensitivity of the U-Mesh to the
deformation range.

7.3.2 Results in augmented surgery
To apply the U-Mesh in order to generate an augmented view of an hepatic surgery,
it needs to learn to predict full volumetric displacements from partial surface point
clouds that give information about the position of some points of the surface of the
liver. These positions can be translated as prescribed constraints. We choose to use
a FEM combined with an Immersed-boundary method to generate the data sets.

We can assume that during an open liver surgery, half of the surface of the liver is
visible to the camera. As depicted in Figure 7.10a, 100 points are uniformly sampled
in the visible part of the surface to mimic a point cloud. Then, 100 simultaneous
forces of random magnitude and direction are applied to these points in order to
generate nearly random displacements. The training data set consists of pairs of
(Us,Uv) where the input to the network Us corresponds to the surface point cloud
mapped onto the regular grid. For the same reasons stated in previous section, we
limited the size of the data set to 2, 000 samples (N = 1, 600 for training andM = 400
for testing). The reader may refer to Figure 7.9 for examples of the generated
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deformations. It is worth mentioning that no patient-specific parameterization of
the biomechanical model is required since for homogeneous materials, the relation
between the surface and the volumetric displacements is independent of the stiffness
of the object [Miller et al., 2013], and only depends on the Poisson’s ratio (set to
0.49 as soft tissues can generally be described as incompressible).

Figure 7.9: Examples of generated deformations to train the network.

Ex vivo liver Once the network is trained, we assess our approach on ex vivo
human liver data, on which ten markers are embedded to compute target registra-
tion errors (TRE). Note that the network is trained on the considered ex vivo liver
geometry. During the experiments, surface data is obtained with an RGB-D sensor
and ground truth data acquired at different stages of deformation using a CT scan.
Before computing the displacement field, the point cloud needs to be cropped to the
portion of the surgical image that contains the liver. This is done by segmenting the
associated color image, similarly as in [Petit et al., 2015]. The RGB-D point clouds
can be interpolated onto the regular grid to obtain per-node displacements on the
surface and can be given as input to the network that in turn predicts the volumetric
displacement fields.

The marker predicted positions are compared to our ex vivo ground truth by com-
puting TREs (see Figure 7.10b). The average TRE at the 10 markers is of 7.5mm
with a maximal value of 10.5mm. The solution of the Saint Venant-Kirchhoff model,
used to train our model, gives nearly the same error (which was expected) but for a
computation time of 1550ms.

In vivo liver With a PyTorch implementation of the U-Net running on a GeForce
1080 Ti, the network can predict the volumetric deformation of the liver in only 3ms.
We can then apply this prediction each time the RGB-D camera generates a point
cloud. The RGB-D point cloud is then interpolated onto the grid to obtain per-node
displacements on the surface (i.e. Us). Given this input, the network predicts the
volumetric deformation, and the next point cloud can be processed. Each new RGB-
D point cloud can be fed to the network, thus generating a continuous visualization of
the internal structures of the organ. We show some frames of the obtained augmented
reality view in Figure 7.11. The quality of the registration seems acceptable in the
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(a)

(b)

Figure 7.10: (a)Virtual point cloud on the visible surface of the liver to generate
random displacements (top view). (b)The U-Mesh prediction appears in red and the
intraoperative CT scan is in gray (side view).

frames on top. However, in the bottom frames, where occlusions appear, the quality
is far from being satisfactory. We observe very similar behaviors when using the FEM
(both with the Saint-Venant Kirchhoff or the co-rotational model). This means that
the issue probably comes from the iterative closest point (ICP) algorithm, used for
matching the points from the RGB-D point cloud to the surface model. As a matter
of fact, our implementation of the ICP does not necessarily handle occlusions and
when very large deformations happen between two consecutive frames, the matching
fails. Another possible source of error is the model parameterization. Indeed, the
liver model is only fixed at nodes that are close to the falciform ligament (whose
location is approximate) whereas some other areas of the vascular tree might be stiff
enough to consider them as fixed. In order to overcome this source of inaccuracy,
in Chapter 9 we propose to estimate such fixations intraoperatively using Kalman
filters.

7.4 Conclusion
In this chapter we have shown the ability of the U-Mesh framework in learning
complex elastic deformations of any type of geometry. In particular, the U-Mesh
learns the mechanical behavior of a liver and generates its deformed state about 500x
faster than a reference FE solution. Since the network takes as input a regular sparse
grid where displacements are imposed, we have shown an efficient FE Immersed-
boundary method based on the same hexahedral discretization from which thousands
of deformed configurations are generated to train the network. Complex and accurate
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Figure 7.11: Augmented reality frames obtained with U-Mesh predictions. The
vascular tree appears in blue, the tumors are in gray and the parenchyma is in
brown.

deformation of a preoperative organ model are computed in only a few milliseconds.
Driven by surface displacement data, it makes this approach an ideal candidate for
providing augmented reality during surgery.

The main limitation of our approach relies in the encoding of the RGB-D point
cloud into the U-Net input grid. Each point of the acquired point cloud has to be
associated to one (or possibly more) nodes on the hexahedral grid. The problem is
that a generic point p2 from the intraoperative RGB-D point cloud corresponds to a
point p1 on the preoperative liver surface (found using ICP), which is not necessarily
a node of the grid (see figures 7.12a and 7.12b). However, our method requires that
p2 coordinates are mapped into grid coordinates. This problem does not have a
unique solution. For example, we could set the value of p2 to the grid node that is
closest to p1 (Figure 7.12a) or spread its value to the 8 nodes of the cell containing
p1 (Figure 7.12b). These two options introduce an approximation error that can be
minimized by increasing the grid resolution.

In order to avoid such error, we decided to use the FE shape functions to obtain
the nodal grid values. In particular, we computed the FE solution with the Saint-
VenantKirchhoff model on the hexahedral grid by imposing the acquired surface
displacement. Then, we stored the positions of the grid nodes associated to those
cells containing the points of the RGB-D point-cloud to build a virtual point cloud
that is in turn fed to the network (see Figure 7.12c). The main limitation of this
approach is that we are also giving some volumetric information as input to the
network (n3, n4, n6 and n7 are grid nodes inside the volume), which is not optimal.
An alternative solution worth trying is depicted in Figure 7.12d. It consists of
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encoding each point of the point cloud as a distance field from each of the grid
nodes, similarly as works in [Pfeiffer et al., 2020].

(a) (b)

(c) (d)

Figure 7.12: Overview of the possible approaches to map a point-to-point displace-
ment in grid coordinates. Blue curve: preoperative surface model. Red curve: in-
traoperative surface (i.e. the RGB-D point cloud). Purple curve: surface solution
computed with the FEM. p2 is the position of a point in the RGB-D point cloud
and p1 is the position of its corresponding point in the undeformed surface mesh
(correspondence found with the ICP algorithm). (a) Set p2 to the grid node that
is the closest to p1. (b) Set p2 to the 8 nodes of the cell containing p1. (c) Store
the positions of the deformed grid nodes obtained with FEM for each point of the
RGB-D point cloud, and create a virtual point cloud {ni}i=1...n in grid coordinates.
(d) For each node in the grid, compute its distance with the closest point in the
RGB-D point cloud.
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Contributions of this chapter:
• The U-Mesh applied to non regular geometries
• Immersed-boundary method to encode the displacement fields in a regular grid

structure given as input to the network
• The U-Mesh for augmented hepatic surgery with a simple set-up (one single

RGB-D camera)
• Publication: Mendizabal, A., Brunet, J.N., Petit, A., Golse, N., Vibert, E.,

Cotin, S., 2019. Physics-based deep neural network for augmented
reality during liver surgery. International Conference on Medical image
computing and computer-assisted intervention, pp. 137-145
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Chapter 8
The U-Mesh for Ultrasound-guided
Breast Biopsy

8.1 Introduction and related work
To demonstrate the generality of our approach, we propose to apply it to a differ-
ent organ and a different intervention: US-guided breast biopsy. Breast biopsy is
the preferred technique to evaluate the malignancy of screening-detected suspicious
lesions. To direct the needle towards the target, biopsy procedures are performed
under image guidance, normally done with ultrasound (US) probes due to their abil-
ity to provide real-time visualization of both the needle and the internal structures
[O’Flynn et al., 2010]. However, proper needle placement with US remains a chal-
lenging task. First, malignant lesions cannot always be adequately visualized due
to the poor image contrast of US. Furthermore, navigation towards complex 3D le-
sion geometries is commonly achieved using 2D freehand US (FUS) systems, which
provide information in a lower-dimensional space [Krücker et al., 2011]. Since highly
sensitive preoperative images (such as MRI or CT) can provide accurate positions
of the lesions, finding a method to update these positions from real-time US images
during an intervention would highly benefit current biopsy procedures. Several com-
mercial and research platforms have implemented image fusion techniques that align
preoperative and intraoperative data, exploiting rigid or affine registration methods
[Guo et al., 2017]. However, when dealing with breast anatomy, large deformations
arise due to compression forces applied by the US probe. To provide accurate probe-
tissue coupling and acceptable image quality, an appropriate alignment procedure of
the preoperative and US data is required.

Although FE models have been successfully employed for multimodal breast image
registration, they have never been applied to registration between preoperative data
and intraoperative US, due to difficulties in providing a prediction within real-time
constraints [Hipwell et al., 2016]. This is especially true when considering large,
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non-linear deformations which involve hyperelastic objects, as it is the case for the
breast.

As mentioned in Chapter 4, various techniques have been proposed to simplify the
computational complexity of FEM in order to meet real-time compliance. The
most optimized approach used to model breast biomechanics is the one proposed
by [Han et al., 2013], which relies on GPU-based TLED formulation. Despite the
significant simulation speedup achieved, solving the FE system took around 30 s,
which is still not compatible with real-time. Modelling methods that do not rely
on continuum mechanics laws have also been used to approximate soft tissues beha-
vior. Among these, the position-based dynamics (PBD) approach has been used to
predict breast lesions displacement due to US probe pressure in real-time, providing
comparable accuracy with FE models [Tagliabue et al., 2019]. However, not being
based on real mechanical properties, such model requires an initial optimization of
simulation parameters to obtain a realistic description of the deformation.

In this chapter we propose to use the U-Mesh framework to estimate breast tis-
sue behavior in US-guided biopsy. Using FE simulations for model training in
the context of MRI-US deformable image registration has already been proposed
in [Hu et al., 2016], where the authors build a statistical model of prostate motion
which can account for different properties and boundary conditions. In the case
of the breast, the potentiality of employing machine learning techniques has been
already shown in [Martínez et al., 2017], where several tree-based methods have been
employed to estimate breast deformation due to compression between biopsy plates.
These methods have been trained on 10 different patient geometries with a very spe-
cific FE simulation, where the upper plate is displaced vertically towards the lower
one.

In this chapter, we propose to train the U-Mesh to predict the deformation of internal
breast tissues starting from the acquired surface displacements induced by the US
probe. Our network can be seen as a patient-specific model. We train it on a single
patient geometry before surgery, with a relatively small amount of training data.
However, in contrast to the work of [Martínez et al., 2017], FE simulations that
compose the training set are generated with several random input displacements,
making our approach able to generalize to different probe positions and compression
extents.

Similarly to Chapter 7, we propose to use an Immersed-boundary method for generat-
ing patient-specific simulations. Results presented in Section 8.3 show the efficiency
of the method when applied to both synthetic and phantom data. The contribu-
tion of this chapter consists of a novel method to generate a real-time capable soft
tissue model to improve target visualization during needle-based procedures. The
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position of lesions identified beforehand on preoperative images can be updated from
intraoperative ultrasound data and visualized by the surgeon in real-time.

8.2 Method
This chapter consists of a data-driven method to estimate in real-time the displace-
ment of the breast internal structures due to probe pressure during US scanning.
In our pipeline, we assume to have a patient-specific geometric model of the breast,
obtained from preoperative imaging such as MRI, and to know the position and ori-
entation of the US probe at each time, thanks to a spatial tracking system. If the
tracking coordinate system and the coordinate system of preoperative imaging are
registered, knowledge about the 3D pose and the geometry of the US probe directly
allows to identify the contact surface between the breast and the probe. Since the
US probe is represented as a rigid body, we can reasonably assume that when the
anatomy is deformed by the probe during the image acquisition process, points on
the breast surface below the US probe will be displaced to the same exact extent
as the probe itself. As a consequence, our method can predict the displacements
of all the points within the anatomy given as input the displacement of the surface
nodes in contact with the US probe. The decision of relying on surface displacement
inferred from the spatial tracking of the US probe instead of directly tracking surface
deformations (through, for example, an RGB-D camera) was taken from the fact that
probe-induced deformations are large but local, and the probe itself would occlude
most of the deformed surface to the sensor, thus preventing an accurate estimation
of the contact surface displacements.

8.2.1 Simulation of breast tissue
The training data set consists of pairs of (Us,Uv) where Us is the input partial
surface displacement and Uv is the volumetric displacement field. Even though the
data generation process takes place in an offline phase, in order to generate enough
training data with FE simulations within clinically acceptable times (the intervention
can be performed on the day after preoperative scan is acquired), it is important to
have simulations that are both accurate and computationally efficient.

We consider the boundary value problem of computing the deformation on a domain
Ω under both Dirichlet and Neumann boundary conditions. Let Γ be the boundary
of Ω (in our case, Γ corresponds to breast external surface, while Ω represents the
entire breast volume). We assume that Dirichlet boundary conditions are applied to
ΓD and are a priori known, whereas Neumann boundary conditions are applied to
ΓN , a subset of Γ that represents probe-tissue contact area and changes depending
on current US probe position.
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Figure 8.1: Breast surface mesh obtained from a preoperative CT scan Immersed in
a hexahedral grid for FEM computations.

We choose to discretize the domain into 8-node hexahedral elements not only for
their good convergence properties and lock-free behavior, but also because it is the
required structure for the input to the network. To do that, the 3D breast geometry
is embedded in a regular grid of hexahedral elements (see Figure 8.1) and we use an
Immersed-boundary method to correctly approximate the volume of the object in the
FE method computations (see Section 7.2 in Chapter 7 for details).

8.2.2 Training data generation
The input to the network corresponds to the displacement Us of the points belong-
ing to the breast-probe contact area. The punctual displacements are spread to
the nodes of the surrounding cuboid cell through a barycentric mapping and the
corresponding volume displacement Uv is obtained by the previously explained FE
approach in response to Us. The data used to train the network must be represent-
ative of the application scenario and must allow the network to extract the pertinent
features of the tissue behavior. In order to train our model to estimate breast volume
deformation in response to pressure imposed with the US probe, we simulate several
random probe-induced deformations using the following strategy:

• Select a random node p in the breast surface

• Select an oriented bounding box A centered in point p and normal to the breast
surface, whose dimensions match those of the US probe lower surface, which
represents current probe-tissue contact area

• Select all the surface points P falling within the box A

• Select as force direction ~d the normal to the surface at point p plus a random
angle α (α ∈

[
−π

4 ,
π
4

]
)
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• Apply the same force ~f of random magnitude (|f | ∈ [0.0, 0.8]) along direction
~d to the P selected points simultaneously

• Store the displacement at the set of points P (input to the network) and the
displacement of all the points in the volume (output to the network)

• Repeat the procedure until N +M samples are generated

The choice of applying force ~f allowing some angle deviation from normal direction
enables us to include in our dataset samples where the probe compression is not
precisely normal to the surface, as it can be the case in freehand US acquisitions.
The maximal force magnitude (e.g. 0.8N) is set such that the amount of max-
imal deformation reproduced in the training dataset never exceeds too much that
observed in real clinical settings. The described strategy is used to generate the
set {(Us

n,Uv
n)}Nn=1 of N samples which is used to train the network, and the set

{(Us
n,Uv

n)}Mn=1 of M samples which is left for validation. The training dataset is
generated with the SOFA framework [Allard et al., 2007] on a laptop equipped with
an Intel i7-8750H processor and 16GB RAM.

8.3 Experiments and Results
The network presented in this work is used to predict US probe-induced deformations
of a realistic multi-modality breast phantom (Model 073; CIRS, Norfolk, VA, USA).
The 3D geometry model of the phantom surface and 10 inner lesions (diameter of
5-10mm) is obtained by segmenting the corresponding CT image, relying on ITK-
SNAP and MeshLab frameworks [Yushkevich et al., 2006, Cignoni et al., 2008]. A
Freehand Ultrasound System (FUS) based on a Telemed MicrUs US device (Telemed,
Vilnius, Lithuania) equipped with a linear probe (model L12-5N40) is used to ac-
quire US images of the 10 segmented lesions. The dimension of the probe surface is
(5x1cm). For each lesion, we acquire US images in correspondence of four different
input deformations. The MicronTracker Hx40 (ClaronNav, Toronto, Canada) op-
tical tracking system is used to track US probe in space (Figure 8.2a). The overall
probe spatial calibration error is below 1mm (±0.7147), estimated through the PLUS
toolkit [Lasso et al., 2014]. Landmark-based rigid registration is performed to refer
the CT-extracted 3D model, the US probe and the US images to the same common
coordinate system, exploiting 3D Slicer functionalities [Fedorov et al., 2012]. The re-
gistration process does not only enable us to extract the breast-probe contact area,
as described in Section 8.2, but also to know in real-time the 3D position of any
point belonging to the US image. In this way, it is possible to refer lesions position
extracted from US images to the 3D space.
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(a)
(b)

Figure 8.2: (a) Experimental setup. From left to right: monitor showing real-time
US images; CIRS breast phantom during FUS acquisition; optical tracking system
that allows to map the real positions of the CIRS breast phantom and the US probe
to the preoperative geometry model. (b) External surface and inner lesions of the
CIRS breast phantom.

8.3.1 Predictions on synthetic data
Elastic properties of the physics model used to generate training data are set in
accordance with the values estimated in [Visentin et al., 2018] for the same breast
phantom considered in this study. However, as we are imposing surface displace-
ments, the values of the elasticity parameters do not affect the displacement field
inside the simulated volume as long as the ratio of the different stiffness values is
maintained [Miller et al., 2013], thus making the method reliable for any patient spe-
cificity. Dirichlet boundary conditions are imposed by constraining the motion of all
the nodes belonging to the lowest phantom surface.

Using the method described in Sections 8.2.1 and 8.2.2, we discretized the breast
phantom into 2174 hexahedral elements and we simulated several probe-induced dis-
placements. Overall we generated N = 800 samples for training and M = 200
samples for testing. The U-Net is trained in a GeForce GTX 1080 Ti using a batch
size of 4, 100000 iterations and the Adam optimizer. We used a Pytorch implement-
ation of the U-Net. To assess the learning capability of the network, we perform
a statistical analysis of the mean norm error e over the testing data set following
Equation (4.3). We compute the average e, standard deviation σ(e) and maximal
value of such norm over the testing data set. The obtained results are shown in Table
8.1. The maximal error is of only 0.266mm and corresponds to the sample shown
in Figure 8.3b. The most striking result is the small computation time required to
make the predictions: only 3.14 ± 0.56ms. In contrast, the FE method takes on
average 407.7± 64ms to produce the solution. Obviously, the resolution of the FE
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e σ(e) max
m∈M

e Prediction Total training
(mm) (mm) (mm) time (ms) time (min)
0.052 0.050 0.266 3.14± 0.56 278

Table 8.1: Error measures over the testing data set for a breast having 2174 H8
elements, with maximal nodal deformation of 79.09mm.

mesh could be reduced to accelerate the computations but at the cost of an accuracy
loss.

(a) (b) (c)

Figure 8.3: (a) Sample with maximal deformation (79.09mm). (b) Sample with
maximal mean norm error (0.266mm). The green mesh is the U-Net prediction and
the red mesh is the FEM solution. The initial rest shape is shown in grey. (c) U-Net
prediction on phantom data.

8.3.2 Predictions on phantom data
In our experiments, we consider one lesion at a time and we reposition the US probe
on the surface of the breast such that the lesion considered is visible on the US
image. In order to validate our model, we manually extract lesions position from US
image acquired at rest (i.e., without applying any deformation, when the probe is
only slightly touching the surface) and we consider it as a landmark to track. We
then impose four deformations of increasing extent for each lesion, and we compare
the U-Net-predicted displacement with real displacements extracted from US images.
The comparison is performed computing target registration error (TRE) between the
predicted position of the lesion and its ground-truth position. The performance of
our method is compared to that of the FE model used for data generation. In Table
8.2 are shown the target registration errors for each phantom lesion with respect to
the applied deformation. The input deformations are classified into five ranges based
on the probe displacements. Displacement ranges indicated as D15, D20 and D25
have a fixed length of 5 mm each and are centered at 15, 20 and 25 mm respectively.
D10 and D30 contain the extreme cases under 12.5 mm or above 27.5 mm.

Values in Table 8.2 highlight that the average TRE for all the tumors and for all
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Table 8.2: Target registration errors in millimeters for different tumors and different
deformation ranges in the breast phantom. The first table is for the proposed method,
while the second table reports results obtained with the FE model used for data
generation. Not-acquired data is reported as (-).

U-Net predictions
TumorID D10 D15 D20 D25 D30 Mean STD

1 - 1.936 2.002 1.506 3.053 2.124 0.569
2 3.211 2.905 4.068 - 4.137 3.580 0.534
3 2.032 - 4.709 7.134 10.90 6.194 3.262
4 0.505 2.225 5.313 5.903 - 3.486 2.217
5 0.932 2.768 3.454 - 4.893 3.012 1.425
6 3.923 6.349 5.625 - 6.724 5.655 1.075
7 3.454 3.864 4.543 6.710 - 4.643 1.255
8 2.422 3.261 4.320 5.136 - 3.785 1.030
9 - 3.928 4.214 4.578 4.858 4.394 0.353
10 5.529 3.272 3.940 4.846 - 4.397 0.860

Mean 2.751 3.390 4.219 5.116 5.761
STD 1.638 1.294 1.007 1.854 2.788

FE method
TumorID D10 D15 D20 D25 D30 Mean STD

1 - 1.326 2.151 2.075 3.759 2.328 0.887
2 1.956 2.738 3.945 - 4.025 3.166 0.865
3 1.595 - 4.748 7.044 10.932 6.080 3.404
4 0.755 1.991 4.544 5.120 - 3.103 1.795
5 1.029 2.863 3.330 - 4.541 2.941 1.262
6 2.579 3.409 2.871 - 2.337 2.799 0.400
7 2.605 3.219 4.095 6.750 - 4.167 1.582
8 2.695 2.748 4.321 5.411 - 3.794 1.139
9 - 2.745 2.497 2.510 4.193 2.986 0.704
10 2.916 2.542 3.015 3.868 - 3.085 0.485

Mean 2.016 2.620 3.552 4.682 4.964
STD 0.765 0.593 0.856 1.803 2.757

the deformations is smaller than 6.194mm which is comparable to the maximum
value obtained with the FE method (6.080mm). The average error increases with
the deformation range just like in the FE method. There is no significant difference
between the values of the two tables, meaning that in terms of accuracy, our method
is comparable to the data generation method used to train it. In order to compute
each deformation, the FE method needs about 407.7ms whereas the U-Net predicts
the deformation in only 3ms.
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8.4 Conclusion
In this chapter we have proposed to use the U-Mesh framework to learn the deform-
able behavior of the breast from numerical simulations based on the finite-element
method, in order to bypass the high computational cost of the FEM. Our approach
represents an interface between precise biomechanical FE modeling (not capable
of real-time) and clinical applications requiring both high accuracy and very high
speed. We have shown that our framework allows for extremely fast predictions of
US probe-induced displacements of the breast during US scanning, achieving com-
parable accuracy to other existing methods. Therefore, it has the potential to be
employed to update in real-time the estimated position of breast lesions identified on
a preoperative scan on US images, enabling continuous visualization of the biopsy
target, even when sonography fails to render it.

Although the FE model used to train our network does not perform in real-time, its
prediction delay of less than 1 s might be considered already acceptable for our spe-
cific application. However, such good computational performance is achieved since
in this preliminary evaluation we use a very simplistic model, that does not account
for heterogeneity or complex boundary conditions happening in clinical cases. Us-
age of a more complex FE model will certainly cause an increase of computation
load. On the contrary, an important feature of our approach is that the prediction
time remains close to 3ms regardless of the grid resolution and of the biomechan-
ical model used for the data generation process. This means that increasing the
complexity of the model used to generate the data set will not affect the prediction
speed. Moreover, our pipeline allows the method to be insensitive to patient specific
elastic properties as it imposes surface displacements. It is worth noting that for
inhomogeneous objects, the displacement field still depends on the ratio of the dif-
ferent stiffnesses [Miller et al., 2013]. Another advantage of our method is the easy
meshing process. Any geometry can be embedded in a sparse grid and through the
use of Immersed boundary simulations the deformations are correctly estimated.

The main limitation of our method remains the training process, which is burdensome
and has to be repeated for every new geometry or application. However, we have
shown that a limited amount of training data can be sufficient to train a U-Net such
that it obtains accurate prediction within clinically acceptable times.
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Contributions of this chapter:
• U-Mesh applied to simulate breast deformation
• Data generation strategy adapted to the studied phenomena (simulation of

probe-induced displacements)
• Accurate estimation of target location (∼ 4mm error) in real-time
• Publication: Mendizabal, A., Tagliabue, E., Brunet, J-N., Dall’Alba,D.,

Fiorini, P., Cotin, S., 2019. Physics-based Deep Neural Network for
Real-Time Lesion Tracking in Ultrasound-guided Breast Biopsy.
Computational Biomechanics for Medicine Workshop
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Chapter 9
Towards Patient-Specific Networks

9.1 Introduction
In Chapter 7, we have shown the potential of the U-Mesh for augmented hepatic
surgery. However, we made the assumption that the boundary conditions (BCs), the
material properties and even the constitutive law were known a priori. As seen in
Chapter 5, this assumption can be reductive. The location and the elastic properties
of the BCs are patient-specific and are not visible on preoperative images. There-
fore, they cannot be identified in advance, which is necessary for the training data
generation process. On the other hand, the identification of the elasticity parameters
was not crucial in the previously considered scenario as we were dealing with surface
displacements as input [Miller et al., 2013]. Nevertheless, if we were to consider a
scenario where the input to the network is a traction force, the material parameters
do have an impact on the deformation and need to be correctly estimated. Further-
more, the material properties and BCs are relative to a constitutive law that can
itself be inappropriate. Therefore, it is important to see how the U-Mesh performs
in such situations and how it can be adapted.

This chapter is a proof of concept that explains how the U-Mesh could be integrated
in a real clinical routine for patient-specific predictions of the displacement field.
It consists of a set of possible research directions with some preliminary results
or bibliographic references supporting their feasibility. The variety of parameters
intervening in a simulation, may require several strategies in order to adapt the
networks to patient-specificity. We will propose here two major solutions relying on
two opposite paradigms.

The first one consists of training the network with all possible combinations of per-
tinent parameters, namely with exponentially large amounts of training data. Such
parameters must be sampled and explicitly encoded in the input to the network (in
particular the domain of possible geometries, elasticity parameters and even BCs).

The second option, more subtle, relies on transfer learning techniques where the net-
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work’s weights are updated based on patient-specific data acquired intraoperatively.
As a matter of fact, when more primary components of the simulation (such as the
constitutive law) must be revised, it seems pertinent to explore this alternative as
the learned underlying function must be modified. In an ideal scenario, we could use
real patient data to retrain our model. An interesting point of this solution is that
the parameters do not need to be explicitly identified as they are encoded in the data,
meaning that the material properties, the BCs and the constitutive model can sim-
ultaneously differ from the ones learned preoperatively. However, as seen previously,
collecting volumetric data on a patient without exposing him or her to radiation is
in practice very difficult. To overcome this issue, we can generate new synthetic data
(where the simulation has been parametrized using intraoperative observations) and
retrain the neural network with these new simulations. The BCs and the material
properties are relative to a constitutive law (that is difficult to characterize intra-
operatively), meaning that their correct estimation can overcome the inaccuracy of
the constitutive law (if any). Therefore, we will demonstrate how transfer learning
can be used to adapt the network to patient-specific material parameters and BCs.
Once the network is trained as described in Chapter 7, we propose to estimate the
boundary conditions and the relevant material parameters intraoperatively in or-
der to update the network parameters with patient-specific FE simulations. To do
that, we first use an image-driven stochastic assimilation method based on Kalman
filtering to identify the BCs on the one hand, and the elasticity parameters on the
other hand. Then, the pre-trained model is adapted to the patient specific properties
through transfer learning. In this chapter we only show some preliminary results on
a cantilever beam to showcase the potential of transfer learning in our applications.

This chapter is divided in three main segments. First of all we will see how to use
Kalman filters to identify the BCs on the one hand, and the elasticity parameters on
the other hand. Second of all, we will briefly explain how the identified parameters
and other patient-specific properties (such as the geometry) can be encoded in the
input to a generic network, in order to make patient-specific predictions. Lastly, we
will demonstrate how the parameters identified in the first section can be used to
update the network’s weights using transfer learning.

9.2 Stochastic identification of patient-specific
properties

We propose to use the ROUKF presented in Section 5.3, to estimate the value of
Young’s modulus and the BCs of a liver using observations of the target model. In
this section, the ROUKF algorithm is first used to estimate the Young’s modulus of
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a synthetic liver, and in a second time used to estimate the boundary conditions of
an in vivo liver.

9.2.1 Elastic modulus

(a)
(b)

Figure 9.1: (a) Liver simulation mesh made of 11, 000 tetrahedral elements. The red
points highlight the fixed points (Dirichlet boundary conditions), the yellow points
correspond to the observed features, and the green arrows illustrate the direction of
the applied forces. (b) Variation of µ and σ for Young’s modulus estimation using
the ROUKF. The value of the parameter converges to 4992± 15Pa in 500 seconds.

In this paragraph, we aim at estimating the value of the Young’s modulus of the
liver using the ROUKF. This estimation is done using synthetic data, but a similar
process can be followed for real data. We build a biomechanical model of the liver,
with fixed boundary conditions (red points in Figure 9.1a) to mimic the effect of the
falciform ligament and of the vascular tree. A force of fixed magnitude and varying
amplitude is continuously applied to one of the liver lobes to generate observations
(yellow points in Figure 9.1a). The amplitude of such force follows the sinusoidal
function 1

2×(1−cos(2×π×τ)) where τ is a period. In this case, the control features
defined in Section 5.3.1 correspond to the force applied (that is known). The Young’s
modulus is set to 5, 000Pa in the reference simulation.

For the initialization of the ROUKF, we set µ0 to 1, 000Pa and σ0 to 200Pa. The
state vector contains all the degrees of freedom of the mesh and the parameters to
estimate (one parameter in our case). Hence, there are only 2 sigma points which
allows a very fast assimilation process to take place as only two evaluations of the
model need to be performed at each prediction phase. As depicted in Figure 9.1b,
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the value of the Young’s modulus reaches rapidly a value close to the ground truth
(at iteration 150, µ = 4948 and σ = 97). The value of the parameter converges to
4992± 15Pa in 631 iterations (that is 500 seconds). Such assimilation process could
take place before the surgery starts. Note that if the assimilation needs to be done
in real-time, the simulations could be parallelized and simplified (we chose here a
relatively high mesh resolution).

9.2.2 Boundary conditions

(a)

(b)

Figure 9.2: (a) The first frame of the video sequence with features. (b) Temporal
evolution of the assessment error computed for each assessment point.

Apart from material properties, the same approach can be employed to estimate the
unknown attachments of the liver. We consider a scenario where an in vivo porcine
liver is deformed with laparoscopic pincers. A video sequence of 7 s was acquired
with a laparoscopic monocular camera inserted in the porcine abdomen inflated with
gas. We assume there is a region Σ on which hidden boundary conditions are applied.
Before the intervention, a CT scan was collected from the organ’s geometry and a FE
model was built following the pipeline described in Section 2.2. A tetrahedral mesh
having 315 nodes was generated. The obtained model is fixed with elastic springs in
a region Σ that is hidden to the laparoscopic camera view. There are 35 nodes in Σ
meaning that 35 nodes were attached with springs to mimic the boundary conditions
at these specific locations. The elasticity parameters of such springs are modelled as
stochastic parameters (see Section 5.3.1). The elasticity values can range from 0 (no
attachment) to high values (stiff attachment). A different elasticity is associated with
each spring. Known surface displacements are prescribed on a small area of the visible
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surface to mimic the effect of the surgical tool based on the control features. The
considered scenario falls within the category of displacement-zero traction problems,
where the relation between surface and volume displacements is independent of the
Young’s modulus, for homogeneous materials [Miller et al., 2013]. As a consequence,
without lack of generality we set Y to the fixed value of 5, 000Pa, which is the
average stiffness value for a liver. For the initialization step of the ROUKF, µ = 0
and σ = 0.01 for each parameter. Three assessment points are placed on the surface
of the liver mesh in order to compute the prediction error between the observed data
and the model. We ensure that the assessment points are different from the control
and the observation features (see Figure 9.2a). In Figure 9.2b is shown the temporal
evolution of the prediction error computed over the three assessment points. The
error achieved with the stochastic simulation is compared to the error obtained with
either fixed BCs (e.g. stiff attachment) or without BCs (e.g. spring stiffness set to
zero). Results show that the stochastic simulation leads to smaller errors than the
deterministic simulation.

The identified parameters can now be used to make patient-specific predictions by
feeding them as input to the network (see Section 9.3). On the other hand, the
obtained stochastic simulations can be used to generate new patient-specific data in
order to retrain our network. To this end, in Section 9.4 we will explain how we
can employ transfer learning methods to make the U-Net able to generalize to new
unseen boundary conditions and elastic parameters.

9.3 Patient-specificity as input to the network
In the view of training a general network capable of predicting the displace-
ment field of any liver geometry, with any type of BCs and material paramet-
ers, it is essential to teach the network to elucidate such variables. A solution
might be to encode all these variables in the input to the network. That way,
a universal network can be trained with a large variety of combinations of the
sampled parameters. However, exhaustively sampling all the possible combina-
tions would be extremely time consuming and probably useless to the network.
Instead, a simple option consists of randomly sampling the parameter’s space
as done in [Pfeiffer et al., 2020, Pellicer-Valero et al., 2019]. Contrary to the ap-
proaches presented in chapters 4, 7 and 8 of this manuscript, the data generation
and the training of a generic network would take more than a week as reported by
[Pfeiffer et al., 2020]. Nevertheless, such expensive training is only performed once,
and the trained model can be used for new liver geometries with new parameters
as long as they are identified at prediction time. In this section we will see several
strategies in order to encode patient variability in the input to the network.
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9.3.1 Geometry and heterogeneity
As seen in Chapter 5, the first step towards patient-specific modeling of an organ is
to account for its 3D geometry. The 3D surface of the organ can be segmented on a
preoperative CT scan for instance. In order to encode such geometry surface in the
input, several solutions have been proposed in the literature.

For instance, [Pellicer-Valero et al., 2019] provided a parameterization of the geo-
metry by registering the liver surface to an average liver model. They performed a
non-rigid registration using a modified Coherent Point Drift algorithm in order to
express how much each node of the surface must be displaced (in each direction) in
order to match the average liver surface. Then, Principal Component Analysis was
used in order to reduce the size of the feature vectors to only 27 Principal Compon-
ents. With this encoding procedure, they trained a feedforward neural network with
tens of thousands of simulations on more than 100 liver geometries and obtained
good accuracy on unseen liver geometries. Note that this work was only tested with
synthetic data.

On the other hand, [Pfeiffer et al., 2020] proposed to express the preoperative volume
geometry as a signed distance field. They generated a random 3D surface for each
sample (e.g. 80, 000 different geometries) by extruding and remeshing an icosphere.
They used a very similar network as ours so the obtained surface meshes must be
encoded on a regular grid. To do that, at each grid node, the distance to the nearest
surface point was computed. The points inside the organ volume take a minus sign
thus leading to a signed distance field encoding the geometry. They trained the
network with 460, 000 samples and tested it on real laparoscopic data. The obtained
accuracy is not satisfactory yet.

The preliminary solution we tried consisted in encoding the geometry as a binary
mask over the input grid (ones on the nodes of the sparse grid and zeros elsewhere).
We trained our U-Mesh with ten different geometries generated from a beam to which
some cells were removed. We ensured that each geometry reacted in a significantly
different manner to a given external force. We generated 160, 000 training samples in
total and trained the network for 100 epochs. Each sample ({F,M};Uv) corresponds
to an input tensor {F,M} of size nx × ny × nz × 4 and an output tensor Uv of size
nx×ny×nz×3. F is the applied force encoded in the grid (3 values per node), M is
the binary mask encoding the preoperative geometry (one value per node) and Uv is
the corresponding volumetric displacement. We obtained promising results but we
did not extend these results to liver geometries yet.

The overall idea would be to train a general network with various liver geomet-
ries encoded using one of the above presented strategies and then, during surgery,
make predictions with the patient’s anatomy expressed in the input. Moreover,
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if we were to use a mask, we could encode material heterogeneity (assuming it is
known) by setting the mask value to the normalized Young’s moduli. Note that in
[Pellicer-Valero et al., 2019], the usage of a binary mask was not recommended as
in feedforward neural networks such mask should be flattened into a vector. This
would mean that two voxels in the same location from two different livers represent
the same feature which is not necessarily true.

9.3.2 Material parameters and boundary conditions
The other patient-specific parameters are the material properties and the BCs. Ma-
terial properties such as Young’s modulus and Poisson’s ratio can be given as extra
channels in the input. With the U-Mesh, this means giving an input tensor of size
nx×ny×nz×3+ i, i being the number of extra parameters. We trained the U-Mesh
with variable Young’s modulus lying in [0Pa; 10, 000Pa]. To do that, we sampled the
domain and generated 16, 000 samples of random deformations for different values of
E. We trained the network for 100 epochs and get small and constant errors when
testing on different Young’s modulus falling within the training range. An important
requirement seems to be the normalization of such values over the sampled domain.

On another hand, fixed boundary conditions could also be given as a binary mask
in the input, by setting to one the value of the nodes that are fixed and to zero the
free nodes. However, we did not test this idea since having completely fixed nodes
is a simplification of our FE simulations. Indeed, a better approximation of the
boundaries consists of using springs to model organ’s attachments and encoding those
in the input seems non trivial. In the following section, we will see an alternative to
deal with parameters that are difficult to explicitly encode in the input.

9.4 Transfer learning for patient-specific simula-
tions

Let us assume that we have trained the network for predicting the deformation of a
liver following the procedure described in Chapter 7. At this stage, the U-Mesh has
learnt the chosen stress-strain relationship with average boundary conditions and
material properties. In this context, the geometry is patient-specific as it is obtained
from the patient CT scan. Now, using the intraoperatively estimated parameters
(see Section 9.2) we can build a patient-specific FE model in order to generate a new
small training data set. In this section we will see how to use this data set in order
to update the network’s weights through transfer learning.

As mentioned in Chapter 4, there exists a correlation between our method and
model reduction techniques. There is an important body of work in this area, with a
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well-established understanding of the process linking the fast (macro) model to the
full (micro) model [De Angelo et al., 2019]. Such theory-driven approaches define
how to generate reduced models with adapted parameters that characterize the full
(micro-scale) model [Boutin et al., 2017]. Our deep learning approach does some-
thing similar by learning the key characteristics (deformation and parameters) of
the full-scale model, but using a data-driven approach for this.

When applied in the context of surgery, both approaches share the same limitation.
The full model (micro-model) cannot always be correctly parameterized until the
surgery has started, as some model parameters are not measurable in preoperative
images. In this case, the use of transfer learning methods can offer a natural, data-
driven solution for adapting the neural network to a particular patient. For methods
based on reduced models, Bayesian approaches are probably a good alternative, as
they can estimate material properties from a probability distribution and a priori
knowledge of the parameter value.

As mentioned in the Section 5.3, boundary conditions have a significant impact on
the accuracy of the predictions computed by biomechanical models. However, since
they are hard to identify, we want to ensure the robustness of the U-Mesh to the
variability of the BCs. We will show that a small amount of data is required to learn
patient-specific BCs, when refining a network pre-trained with variable BCs from an
appropriate distribution. This could help to significantly reduce the expensive cost
of the offline data generation phase. Lastly, since real data can be sparse and noisy,
we explore the behaviour of the U-Net when the input tensor C is highly sparse, and
the effect of noise on the quality of the predictions.

9.4.1 Validation metrics
To assess the efficiency of our method, we perform a statistical analysis of the error
over the testing data set {(Cm,Uvm)}Mm=1. Let Uvm be the ground truth displace-
ment tensor for sample m generated using the FEM described in Section 2.2 and
h(Cm) the U-Mesh prediction. We define the mean Euclidean error e between Uvm
and h(Cm) for sample m as:

e(Uvm, h(Cm)) = 1
n

n∑
i=1

∥∥∥Uv
i
m − h(Cm)i

∥∥∥
2

(9.1)

where n is the number of nodes of the mesh. We compute the average e and standard
deviation σ(e) of such norm over the testing data set. The mean Euclidean error
represents the intuitive nodal distance, averaged over all the nodes of the mesh.
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Figure 9.3: Cuboid-like boundary conditions on which the U-Net is pre-trained in
strategies 3 and 5. In strategy 6, there are four more cuboids so that the lower part
of the beam is fully covered. In strategy 7, the U-Net is pre-trained on BC1.

Strategy ID 1 2 3 4 5 6 7
Training data set # N1 N2 N3
Pre training data set – – BC4 – BC4 BC8 BC1

Table 9.1: Summary of the 7 strategies of interest. "BC4" stands for 4 adjacent
cuboids in the middle of the hidden part of the beam. "BC8" stands for 8 adjacent
cuboids fully covering the hidden part of the beam (see Figure 9.3).

9.4.2 Beam with hidden boundary conditions
In this section, we compare the accuracy of the U-Mesh either when trained from
scratch with up to 16, 128 samples, or when pre-trained on various BCs and refined on
the target BCs. We consider a deformable beam (size 4x1x1m3, E = 300 Pa, ν = 0.4,
500 regular hexahedral elements) subject to fixed boundaries on a rectangular cuboid
of its bottom part (see Figure 9.3). The beam follows the Saint-Venant-Kirchhoff
behavior described in Section 2.1.3. We generate three different training data sets
(N1 = 16, 128; N2 = 1, 209; N3 = 100) and one testing data set (M = 4, 032), all
drawn from the same distribution. We performed 10 trainings to compare 7 different
strategies, summarised in Table 9.1. In strategies 1, 2, and 4, the U-Net is trained
from scratch whereas in strategies 3, 5, 6 and 7, the U-Net is refined starting from a
network pre-trained with 16,128 data with different boundary conditions (see Table
9.1).

In Table 9.2 are reported the validation metrics computed for each strategy on the
same testing dataset (M = 4,032), as well as the index of the best iteration over
200,000 (with a saving step of 5,000). We see that strategy 3 performs better than
strategy 2. More impressive yet are the strategies 5, 6 and 7 (especially 5, which, by
refining, led to errors comparable to the one obtained with 12x more data without
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e
in mm

avg max σ(e)
# training
dataset

best
iteration

1 0.45 2.48 0.29 16,128 200
2 0.71 2.96 0.47 1,209 180
3 0.52 2.66 0.32 1,209 40
4 3.49 32.0 3.59 100 200
5 0.80 4.85 0.61 100 15
6 1.11 5.89 0.80 100 5
7 0.98 8.88 0.82 100 5

Table 9.2: Error measures over all seven scenarios. Best iterations are given in
thousands. Transfer learning situations are highlighted in red, first and second best
results in green and blue.

refining). Furthermore, they are substantially better than strategy 4 where no refine-
ment was done. This is an example of a scenario where the U-Net cannot accurately
learn a deformation model from scratch with very few (100) data, whereas it does
learn an accurate model in a few thousands iterations using transfer learning in a
few minutes (less than 15 minutes for scenario 3 and roughly 5 minutes for scenario
5 to reach best iteration).

The mild differences between the metrics obtained for strategies 5, 6 and 7 show
that the data generated for pre-training must be reasonably distributed. Indeed,
even though the network benefits from the diversity of BCs encountered in the pre-
training stage, it is more efficient when these BCs are close enough to the target
boundary conditions. Hence the need for a reasonable distribution.

So far we have seen that refining from an average model significantly reduces the
quantity of data required to learn a deformation model. Results in Table 9.3 highlight
the fact that it also speeds up the model convergence. Computing more metrics, we
found that a good accuracy is reached approximately 20x faster when refining with
100 data than when starting from scratch with either 16,128 or 1,209 samples.

For completeness, we also investigated the case where the constitutive law changed
between pre-training and refining stages. For pre-training, we modelled a beam
with the linear Hooke’s law, and for refining, we chose the Saint-Venant Kirchoff
constitutive equation to model the deformations of the beam. In this scenario as
well, we observed that transfer learning reduces the amount of data required to
reach a given accuracy even when the base equations are complexified.
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e
in mm

avg max σe
# training
dataset iteration

1 5.74 27.4 3.73 16,128 5
2 7.47 42.1 5.36 1,209 5
3 0.55 2.91 0.35 1,209 5
4 5.25 44.2 4.71 100 5
5 0.81 4.1 0.58 100 5
6 1.09 5.37 0.7 100 1.5
7 0.95 8.66 0.84 100 1.15

Table 9.3: Error measures at iteration 5000. We relaunched the training of 6 and
7 with a step of 50 iterations to ensure there was no significant overfitting before
iteration 5,000, hence the values "1.5" and "1.15" (as a matter of fact, iterations 1,500
and 1,150 were actually slightly better than 5,000). Transfer learning situations are
highlighted in red.

9.4.3 New boundary conditions and sparse data
As mentioned in previous paragraphs, real intraoperative data can be sparse and
noisy. In this section, we show that the U-Net can still learn models when the
training input tensors only contain a sparse view of the displacement Us imposed on
the upper surface ΓD. In return, the accuracy is reduced and we show that transfer
learning is barely relevant in such an adverse scenario.

We consider the same beam as described in Section 9.4.2, except that the beam is
supported on both ends (fixed beam). In order to train the network, we built 2 data
sets of sizes N1 = 10, 080 and N2 = 1, 008 (see Section 9.4.2). Here, every tensor
C contains the values of an imposed surface displacement, on a randomly selected
subdomain of the upper surface (in between 13 and 114 non-zero displacements
in the testing data set, 67 in average) - see Figure 9.4. We trained the network
either directly with N1 or N2 samples (strategies 1 and 2), or with N2 data after a
pre-training on a stiffer beam fixed at one end (Young’s modulus of 500 Pa). The
pre-training was done either with sparse data (strategy 4, same distribution as the
refining data set), or dense data (strategy 3, full view of the imposed upper surface
displacement Us).

Figure 9.4: Randomly visible sub-domains of the upper face of the beam (in yellow).

In Table 9.4 are reported the validation metrics at best iteration. The average error
with N1 = 10, 080 is of only 3.03mm and the maximal error is 57.1mm - meaning
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e
in mm

avg max σ(e)
# training
dataset

best
iteration

1 3.03 57.1 3.57 10,080 185
2 5.69 101 7.11 1,008 115
3 7.73 106 9.02 1,008 145
4 5.79 88.3 6.85 1,008 95

Table 9.4: Error measures at best iteration. Transfer learning situations are high-
lighted in red.

less than 1.5 % of the length of the beam as maximal error. This shows that even
though U-Net may learn much more accurate models with dense data, it still deals
pretty well with sparse data when provided with a large enough training dataset. We
should mention that we obtained very similar results by applying an additive white
Gaussian noise of variance N = 10−3 m on the testing dataset. With a variance
N = 10−2 m, the average mean Euclidean error e barely exceeds one centimeter. On
another note, we see that there is no meaningful difference between the validation
metrics of strategy 2 (1,008 data without refining) and strategy 4 (1,008 data with
refining). Eventually, except when the data set is very small, we found that refining
doesn’t enhance accuracy in such a scenario. What is more, these results highlight the
importance of pre-training the network with sparse data whenever the refining data
is sparse. We further investigated the case where only very few data (N3 = 100)
are available, and found that it was not sufficient (with or without pre-training),
although the refined model was more accurate. What remains valid is that in any
scenario, the U-Mesh maintained a better accuracy with transfer learning in the first
thousands of iterations. Reiterating these tests with sparse data without modifying
the Young’s modulus between pre-training and training stage corroborated these
results.

9.5 Conclusion
In this chapter we have proposed several strategies to fulfill the real-time and preci-
sion requirements of patient-specific augmented reality. Based on a priori knowledge
of the biomechanics of the organ, we select a constitutive model describing the rela-
tion between stresses and strains. Such relation is heavily affected by patient-specific
properties such as boundary conditions and material characteristics. While obtain-
ing these properties preoperatively may be troublesome, having information about
them intraoperatively can be straightforward.

In our approach, the parameters of the preoperative finite-element or deep learning
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models are updated based on intraoperative observations exploiting Bayesian filter-
ing. The obtained parameters can be directly given as input to the network or can be
used to retrain it with new data-driven simulations. In the first scenario, expensive
data generation and training phases must take place in order to allow the network
to generalize to any new liver. This brute force solution has led to interesting results
[Pfeiffer et al., 2020, Pellicer-Valero et al., 2019] so it seems worth investigating. On
the contrary, employing transfer learning to update a deep learning model is a more
subtle solution, that would probably require further research efforts. When using
transfer learning, not only the elasticity parameters and the boundary conditions
can be changed simultaneously, but also the constitutive model itself. An interest-
ing point of using deep neural networks is that the parameters do not need to be
explicitly identified as they are encoded in the data (unless required as input as in
Section 9.3). Hence, the network builds its own representation and through transfer
learning, the weights of the network can be modified to match the targeted func-
tion. Moreover, we have reasons to believe that the U-Net learns local correlations
in the displacement field rather than an overall model only. As a consequence, if the
pre-trained model represents an average liver, transfer learning should not break the
constitutive model learned previously. Note that the variability between livers can
be high but it will always vary in a bounded range. For this reason, we believe that
transfer learning is the key to an accurate and fast simulation of the deformations
of a liver.

Note that when using Bayesian filtering, each parameter can only be modified in-
dividually. Indeed, in our pipeline using Kalman filters, in order to estimate the
elasticity of the boundary conditions, the Young’s modulus of the material needs
to be fixed (and vice versa). A simultaneous estimation of both sets of parameters
would be more complicated (yet possible), less precise (variance of the stochastic
parameters will remain high) and would require very tedious fine-tuning of the filter.
An alternative would be to use deep neural networks to estimate simultaneously the
boundary conditions and the material parameters, but this might require a sequence
of deformations as input.

Contributions of this chapter:
• Intraoperative identification of the organ’s boundary conditions and stiffness

for patient-specific finite-element simulations
• Proof of concept: transfer learning to adapt an average network to patient

specificity at the beginning of the surgery
• Publication: Mendizabal, A., Tagliabue, E., Hoellinger, T., Brunet, J.N.,

Nikolaev, S., Cotin, S. (2020)Data-driven simulation for augmented sur-
gery. Advanced Structured Materials, vol 132, Springer
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Chapter 10
General conclusion

The objective of this thesis work was to come up with new strategies for computing
real-time and accurate deformations of a soft structure. Without lack of generality,
we considered the deformation of soft tissue in medical applications. In virtual
laparoscopic training, surgeons practice on a completely virtual environment thanks
to real-time simulations accounting for the interactions between surgical tools and
the tissues. As an additional example, in the context of augmented surgery, in
order to accurately locate the internal structures of an organ, a 3D model of the
anatomy is overlaid on the surgical view by performing an elastic registration between
preoperative and intraoperative images. Also in image-guided biopsy or robotized
procedures, having a better control on the interactions of the robot with soft tissues
can improve the outcome of the procedure and the safety to the patient.

Throughout this manuscript, we showed how combining finite-element simulations
with machine learning techniques can help in robotized interventions and surgical
guidance. For instance, in the context of robotic assisted interventions, where the
knowledge of the force applied by the robot is a key feature for the safety of the
patient, we proposed an image-based method for estimating such force without the
need of any force sensor. We used a simple fully connected neural network for
force classification, where the input to the network is an intraoperative image of
the deformed tissue. The network was trained with synthetic data generated with a
patient-specific finite-element model of the considered organ.

The corpus of this work relies on the U-Mesh framework: a method fulfilling the
real-time and precision requirements of patient-specific augmented reality. Based
on a U-Net architecture, it can learn the relation between a constraint and a de-
formation for various geometries and make predictions with high accuracy in a very
short amount of time regardless of the size of the problem. To make predictions
on irregular geometries, we proposed an Immersed-boundary method to encode the
displacement fields in regular grids handled by the network. In particular, we show-
cased the potentiality of our method in open liver augmented surgery in humans,
with very little equipment (one single RGB-D camera). Based on a preoperative

118



3D model of the organ, we used the U-Mesh as a non-rigid registration method in
order to fit the intraoperative deformations. Our deep learning model is driven by
a surface point cloud acquired with one single RGB-D camera, thus allowing for a
markerless and radiation-free setup for building up an augmented reality. Our ap-
proach could be integrated in any operating room and has great potential in complex
liver surgeries where small tumors must be resected. To demonstrate the general-
ity of our pipeline, we also applied the U-Mesh in the context of US-guided breast
biopsy. The objective was to track the internal tumors in real-time accounting for
the large deformations induced by the US probe. To train our network, we simu-
lated probe-induced compression using the Immersed-boundary method. The reached
target registration errors (4mm in average) was comparable to that obtained with
finite-element numerical simulations not capable of real-time.

In all the presented scenarios, the U-Net is trained with synthetic data based on
finite-element simulations. While some aspects of the simulation can be set pre-
operatively (such as the organ’s geometry and average location of ligaments for
instance), some others (such as material elasticity and boundary conditions) can
only be identified intraoperatively and may require further effort depending on the
demanded accuracy. To this end we proposed to estimate such patient-specific para-
meters based on intraoperative observations through Bayesian filtering. The ob-
tained patient-specific simulations can be used to update our deep learning models
employing transfer learning. In a similar direction, [Chakraborty, 2020] proposes to
train a low-fidelity physics informed model, and refine it with few high-fidelity data
exploiting transfer learning.

Despite the promising results of our method, there are some limitations worth men-
tioning. The accuracy of the U-Mesh is only guaranteed as far as the inputs are
included in the range of the training data sets. In the same manner, we are restric-
ted to the geometry used to train the network (unless encoded in the input). This
is due to the fact that neural networks are not good at extrapolating, hence the
importance of a good sampling of the input domain when generating the data sets.

Moreover, even if the choice of our network was motivated by its similarities with
model order reduction techniques, we cannot claim that it was the best and only
choice. Indeed, we have tried a simple fully-connected network and it seems to
produce similar results in terms of accuracy while being about three times faster to
train. Nevertheless, we observed that the U-Net has better extrapolation capacity
(thus better abstraction of the problem) than the fully-connected networks. This
means that even if it is not possible to make very accurate predictions when applying
a force somewhere out of the sampled input domain of the training data set, the U-
Mesh performs "less bad" than other networks.
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Another limitation of the method is the expensive offline phase. The data generation
can be extremely time consuming in particular when considering large meshes or
when more complex input sequences are needed. It goes without saying that the
larger the data sets, the longer the training. Hence it is important to build smart data
generation strategies to cover all the force ranges without being exhaustive (to reduce
data generation and training times). A possible alternative would be to include in
the dataset only those deformation modes which represent significantly different
deformations. Moreover, we performed a preliminary study on the sensitivity of the
method to the Young’s modulus variations in the training data set. We noticed that
U-Mesh is more accurate when dealing with stiffer objects. This is an important
result to keep in mind for an eventual smart data generation. Indeed, in a low
deformation regime fewer data are needed to reach good accuracy. In a similar
direction, we noticed that when using transfer learning, pretraining the network on
a slightly softer object than the targeted average, accelerates the convergence.

Future research directions In this thesis work, we have shown the potentiality
of using physics-based deep neural networks in computer-assisted interventions. We
have proved that the accuracy of the predictions satisfies the precision requirements
of medical applications such as targeting small tumors. The large field of possibilities
and the trendiness of our topic open space for new exciting research directions.

In particular, if we aim at integrating the U-Mesh in any operating room for aug-
mented surgeries, it seems worth investigating how to generalize our network to any
kind of geometry using more advanced strategies than those proposed in Section
9.3. Indeed, encoding the geometry seems to be a delicate yet important point, in
particular when using regular grids. It is non trivial to express a discrete surface
in a grid without introducing approximation errors. In the view of an optimal data
generation process, we would like to explore statistical atlases to sample the geo-
metry space in a meaningful manner as well as the organ attachments as done in
[Plantefève et al., 2014].

Even if the obtained target registration errors seem compatible with oncological
surgery needs, we could further improve the finite-element modeling used to generate
our training data set. Since the data generation takes place in an offline phase,
we could enrich our models as much as needed. For example we could include
incompressibility, account for heterogeneity, use quadratic hexahedral elements or
simply refine the mesh. If, besides the displacement field, we also want to estimate
the stress distribution within the organ, we could use more complex hyperelastic
laws or expand our model to account for viscoelasticity. Handling models such as
Ogden or Mooney-Rivlin would require no change to our method. Theoretically the
architecture of the neural network is independent of the mechanical model but in
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practice, if the complexity of the model increases it might be relevant to deepen the
network or enlarge the training data sets. On the other hand if we were to handle
viscoelasticity, we would need to include a time term and the current state of the
system in the network input as done by [Meister et al., 2018].

In order to improve the robustness and accuracy of the method, we also plan to
revise the surface point matching between the preoperative and the intraoperative
surfaces. For now, we are using the iterative closest point algorithm but it might
be relevant to also let the network guess the surface correspondences as done in
[Pfeiffer et al., 2020]. However, an accurate initial rigid alignment of the surfaces
seems crucial for such method to work, as the network produces a result in one
iteration. Conversely, we could use the U-Mesh in an iterative process where at each
iteration, a displacement can be imposed on a grid node based on the position of its
closest point in the RGB-D point cloud. In a similar direction, we plan to integrate
multiple RGB-D cameras in our set up, in order to improve the quality of the point
cloud describing the surface deformation (larger field of view and less noise), or to
use the second camera point cloud for validation purposes.

Another scenario worth investigating is the case of contacts between anatomical
structures. Interaction between objects can be seen as external forces applied to
their surfaces (the alternative option being to solve interactions through position
constraints). Assuming we have two objects embedded in two U-Mesh grids, we can
compute their motion until a contact is detected and then apply a simple penalty-
based contact response. This contact response is a force applied on the surface of
each object to cancel out their interpenetration. Using this force, we could then
compute the deformation of each object following our method.

The work presented throughout this manuscript is an interface between precise bio-
mechanical modeling (not capable of real time) and clinical applications requiring
both high accuracy and very high speed. Even if there is still room for improvement,
our pioneer method has proved successful in scenarios such as augmented surgery
and image-guided biopsy.
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Part III

Brief summary in french
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Titre: Combinaison entre simulation numérique et apprentissage auto-
matique – Applications à la formation, la planification préopératoire et
l’assistance peropératoire

10.1 Introduction
Dans un contexte de chirurgie augmentée, il est nécessaire de réaliser un recalage
élastique des données préopératoires sur la vue intraopératoire de l’organe. L’objectif
est de superposer en temps réel un modèle virtuel à la vue du champ opératoire, afin
de visualiser les structures internes de l’organe (tumeurs, réseau vasculaire etc) qui
ne sont pas naturellement visibles pour le chirurgien. Le geste chirurgical est ainsi
mieux maîtrisé et l’intervention peut être planifiée de façon plus adaptée. Faire ce
recalage dans le cas des tissus humains et avec des données intraopératoires très clair-
semées, relève plusieurs défis. Par exemple, dans un contexte de chirurgie hépatique,
seulement 30% de la surface du foie est visible à cause de la taille de l’incision ou le
champ réduit de la caméra laparoscopique [Plantefeve et al., 2016].

Pour modéliser la déformation des tissus mous, la méthode des éléments finis (EF)
est la technique préférée de part sa capacité à résoudre des problèmes complexes,
sa fiabilité et sa robustesse. Pour répondre aux critères de précision de la chirurgie
guidée par l’image (erreur de recalage de l’ordre de 5 mm [Ruiter et al., 2006]), le
model doit prendre en compte les spécificités de chaque patient notamment d’un
point de vue anatomique mais aussi biomécanique et physiologique. Par exemple,
les fixations de l’organe ainsi que ses propriétés biomécaniques jouent un rôle très
important dans le calcul de sa déformation. Par ailleurs, pour qu’il soit pertinant,
le modèle doit faire des prédictions en temps-réel, ce qui est difficile de garantir en
pratique surtout lorsque des déformations non-linéaires sont impliquées.

De nombreux travaux ont visé à repousser les limites de temps de calcul des
méthodes EF. Très souvent, il s’agit d’un compromis entre temps de calcul et
précision. Lorsqu’on cherche à modéliser des petits déplacements, les hypothèses
de linéarité de la loi de comportement accélèrent considérablement les calculs.
Par contre, lorsque les déformations sont plus importantes, ces simplifications ne
sont plus représentatives de la réalité. Une solution serait alors d’utiliser les EF
co-rotationnels qui prennent en compte les non-linéarités géomètriques en temps-
réel [Petit et al., 2018, Haouchine et al., 2013a]. Cependant, cette approche ne
s’étend pas à des lois de comportement plus sophistiquées comme les lois hyper-
lastiques pour lesquelles, d’autres alternatives ont été proposées. Par exemple, dans
[Marchessau et al., 2010], les auteurs utilisent la méthode dite MJED (Multiplicative
Jacobian Energy Decomposition) afin de produire en temps-réel les deformations d’un
foie hyperelastique, poreux et visqueux. Aussi, les auteurs de [Miller et al., 2007] ont
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introduit les TLED (Total Lagrangian Explicit Dynamics) garantissant le temps-réel
lorsqu’il sont associés à des schémas d’intégration explicite et des solveurs GPU
[Joldes et al., 2010].

Plus récemment, l’emmergence des méthodes d’apprentissage automatique (ma-
chine learning (ML) en anglais) ont permis d’approximer une fonction quelconque,
du moment qu’il y a suffisament de données d’entrainement, et ce, sans aucune
connaissance a priori du problème. Aussi, ces méthodes font des prédictions
en des temps très courts ce qui les rend très interessantes pour nos domaines
d’application. En effet, le comportement biomécanique d’un tissus mous peut
être implicitement encodé dans un model ML, pour prédire en temps-réel les dé-
formations d’un organe en réponse à une traction de surface [Morooka et al., 2008,
Tonutti et al., 2017, Rechowicz et al., 2013, Mendizabal et al., 2019] ou bien à un
déplacement imposé [Pfeiffer et al., 2019, Brunet et al., 2019, Lorente et al., 2017,
Mendizabal et al., 2019]. Cependant, la précision de la prédiction d’un réseau est
fortement liée à la qualité et à la quantité des données d’entrainement. Dans l’idéal,
il faudrait une infinité de données réelles et non bruitées du phénomène à approximer,
ce qui est en pratique très difficile à assurer. C’est pour cela que les simulations EF
peuvent être exploitées pour générer des bases d’entrainement représentatives de la
réalité.

Parmis les méthodes de ML, l’utilisation des réseaux de neurones (RN) a considér-
ablement augmenté. Par exemple, Tonutti et al. utilisent un RN pour prédire
les déplacements de tumeurs cérébrales en réponse à des forces. De même dans
[Rechowicz et al., 2013] la déformation de la cage thoracique est prédite par un RN.
Dans ces deux papiers, seul le déplacement surfacique est estimé. Morooka et al.
propose les RN pour estimer la déformation volumique d’un foie. Il utilise une ACP
(analyse en composantes principales) pour compresser les modes de déformation des
sorties du réseau dans le but d’accélérer l’entrainement. Leur model produit des
résultats satisfaisants mais a uniquement était testé sur des données simulées.

Afin de répondre aux contraintes de précision et de temps-réel, on suggère de com-
biner des simulations EF avec des RN pour modéliser le comportement biomécanique
des tissus humains. Cette idée s’intègre très bien dans un contexte de chirurgie guidée
par l’image, puisqu’il est ainsi possible de collecter beaucoup d’information lors d’une
intervention, et ainsi d’apprendre continuellement à améliorer la modélisation. En
particulier, nous proposons la plateforme U-Mesh qui permet de prédire en temps-
réel les déformations d’un organe hautement déformable comme le foie avec une
précision permettant de guider les chirurgiens au cours des interventions où il est
essentiel de suivre cette déformation (par exemple lors d’une biopsie). Les réseaux
sont entrainés avec une très grande quantité de données générées avec la méthode
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des EF. Pour garantir des modèles patient-spécifiques, on combine simulation et
inférence bayésienne afin d’identifier les paramètres des modèles EF.

Le manuscript de thèse est divisé en 7 chapitres principaux. Les deux premiers
pausent les bases théoriques des sujets que l’on considère, à savoir la formulation
du problème bioméchanique et sa résolution par la méthode des EF, ainsi que les
fondements théoriques des réseaux de neurones qui seront utilisés. Le chapitre 4 con-
stitue un projet de classification de force lors d’interventions robotizées. Le chapitre
5 présente la plateforme U-Mesh qui est le coeur de cette thèse. Les chapitres 6 à 8
comportent les applications de U-Mesh dans des contextes chirurgicaux.

10.2 Estimation de force avec des réseaux de
neurones

Les maladies ophtalmologiques nécessitant des injections intravitréales sont en hausse
avec plus de 4 million d’injections dans le monde en 2014 [Ullrich et al., 2016].
C’est pourquoi plusieurs travaux de recherche proposent de robotiser la procédure
[Ullrich et al., 2016] afin de libérer les cliniciens et permettre aux hopitaux d’assurer
une demande toujours en hausse. Pour designer un tel système, il est nécessaire de
développer un robot de précision pour assurer l’efficacité de l’injection ainsi que la
sureté du patient. En effet, l’injection doit être faite dans une région très petite se
situant entre la cornée et la sclère, sinon l’oeil risque d’être endommagé. Aussi il est
important de connaître la force appliquée par l’aiguille sur la sclère afin de garantir
la sécurité du patient [Jagtap et al., 2004]. Les senseurs de forces étant couteux
et compliqués à utiliser en pratique [Haouchine et al., 2018, Haidegger et al., 2017],
il est préférable d’estimer les forces en se basant sur des images intraopératoires
[Mura et al., 2016, Haouchine et al., 2018].

Dans ce chapitre on propose d’utiliser un réseau de neurones pleinement connectées
(c’est à dire sans couche de convolution) pour classifier la force exercée par l’aiguille
en se basant uniquement sur des images OCT de la sclère déformée. En effet pendant
l’intervention, il est possible d’acquérir des images OCT 2D de la sclère (voir les
images en noir et blanc de la figure 10.2) en capturant la déformation induite par
l’aiguille. L’objectif étant d’identifier le moment où le robot excerce une force trop
importante, on se propose de classifier les forces en trois rangs :

• rang 0 : peu ou pas de déformation,

• rang 1 : la sclère se déforme mais il n’y a pas de danger pour le moment,

• rang 2 : la sclère se déforme considérablement et on est sur le point de percer
la sclère. Il est préférable de rétrograder l’aiguille.
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Comme citer précédemment, la qualité de la prédiction d‘un réseau de neurones
dépend fortement des données d’entrainement. On propose donc de construire un
modèle bioméchanique de la sclère afin de générer autant de données que nécessaire.
Pour cela on modélise la sclère comme une demie-sphère avec une épaisseur non nulle,
fixée aux extrémités (conditions aux limites de Dirichlet) et on applique une pression
intraoculaire (IOP) (voire figure 10.1). Pour simuler la force exercée par l’aiguille,
on applique une force locale en une zone petite autour de l’extrémité de l’aiguille.
On résout les équations obtenues avec la méthodes des EF. Pour cela, on discrétize
la demie-sphère avec des élèments hexahédriques (H8) et on cherche l’équilibre des
forces (internes et externes) avec un algorithme de Newton-Raphson.

Figure 10.1: Modéle simplifié de la sclère.

La paramétrization du modèle méchanique ainsi que la géométrie du modèle sont
très importantes pour que les déformations soient représentatives de la réalité. Pour
commencer, l’épaisseur de la sclère joue un rôle non négligeable : pour une force
donnée, une sclère épaisse se déformera moins qu’une sclère fine. On va donc faire
varier l’épaisseur de la sclère de 400 à 800 micromètres [Olsen et al., 2002]. D’un
autre côté, la pression intraoculaire influence aussi la déformation. Elle peut être
mesurée avec un tonomètre disponible en consultation ophtalmologique. Dans nos
expériences, on utilise des yeux de cochons postmortem qui ont des pressions in-
traoculaires négligeables (2 mmHg). On peut donc la considérer comme constante
dans nos simulations. Un autre paramètre important est la raideur de la sclère (le
module d’Young) qui est variable selon les espèces de cochons et selon les conditions
expérimentales. On utilise donc des filtres de Kalman pour estimer sa valeur afin de
paramétrer nos simulations.

Notre base de données d‘apprentissage consiste en des couples (F, I) avec F , le rang
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de force appliquée et I, l’image de la déformation résultante. L’image est obtenue
en prenant une section 2D du modèle EF 3D. La figure 10.2 montre des exemples
d’images OCT réelles vs images simulées pour les trois rangs de force. Une fois
les données générées, on peut entrainer le RN. Il s’agit d’un réseau de classification
avec deux couches cachées de 600 neurones chacune et une couche de sortie avec 3
neurones (un neurone par classe ou rang de force). L’entrée du réseau correspond à
l’image OCT (réelle ou simulée) et la sortie (ou label) correspond au rang de force
appliquée.

Figure 10.2: Images réelles OCT de la sclère ainsi que les simulations correspondantes
pour les trois rangs de force.

Nous avons testé notre méthode sur des yeux de cochons avec 93% de précision dans
les prédictions. Néanmoins, pour inclure cette méthode dans une procédure clinique,
il faudrait impérativement inclure une valeur de pression intra-oculaire spécifique au
patient, ce qui rendrait le modèle bioméchanique plus compliqué. De plus, la mesure
de cette pression est souvent biaisée par la raideur de l’oeil. Il faudrait donc identifier
ces deux paramètres conjointement lors de l’assimilation avec les filtres de Kalman.

10.3 Plateforme U-Mesh: estimation du champ
de déplacement avec des réseaux de neurones

Il existe de nombreuses applications où il est nécessaire de calculer les déformations
de structures non-linéaires en temps-réel. Comme vu en introduction, la méthode
des EF est la plus utilisée pour résoudre ce type de problèmes. Cependant, dès
lors que l’on considère des matériaux non-linéaires, il s’avère difficile d’assurer la
contrainte de temps réel. Pour accélérer les temps de calculs, plusieurs méthodes
ont étaient proposées comme la décomposition de domaine [Haferssas et al., 2017], le
calcul parallèle sur GPU [Allard et al., 2007, Johnsen et al., 2015] et la réduction
de modèle [Niroomandi et al., 2008, Ryckelynck, 2005, Goury and Duriez, 2018].
Plus récemment, les méthodes d’apprentissage automatique ont été proposée
pour modéliser la méchanique des objets [Lorente et al., 2017, Tonutti et al., 2017,
Morooka et al., 2008] pour de petites déformations et un ensemble de forces restreint.
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Figure 10.3: Architecture de réseau de la plateforme U-Mesh.

Dans ce chapitre on présente la plateforme U-Mesh qui produit la déformation de
géométries simples pour de grandes déformations avec un nombre variable de forces
en entrée. On a choisie une architecture de type U-Net [Ronneberger et al., 2015],
pour ses similarités avec la réduction de modèle (voire figure 10.3). Il s’agit d’un
réseau de type encodeur-décodeur avec des filtres de convolutions pour extraire les
traits d’intérêts des entrées du réseau.

Pour entrainer un tel réseau, on génère une base d’apprentissage avec les EF, con-
stituée de couples (F,U) où F est l’entrée du réseau et correspond à la force ap-
pliquée, et U est le déplacement volumique résultant (sortie du réseau). Pour cela,
on construit un modèle EF de l’objet traité et on applique des forces aléatoires à la
surface de l’objet. À chaque simulation, on enregistre le couple (F,U). Un détail
important pour que la méthode fonctionne, réside en la nécessité d’encoder les forces
et les déplacements dans des grilles régulières. En effet, le réseau U-Net nécessite
une structure de grille pour que les filtres de convolutions puissent extraire des in-
formations spatiales cohérentes. On utilise donc des grilles héxahédriques pour nos
simulations EF. Ainsi, les nœuds de la grille contiennent le déplacement ou la force
des nœuds du maillage EF.

On a testé la méthode sur des géométries de références en méchanique, satisfaisant
la structure de grille régulière. Tout d’abord nous avons modéliser le comportement
d’une poutre à section carrée, fixée en une de ses extrémités. Une ou plusieurs forces
sont appliquées aux nœuds de la face supérieure et données au réseau en entrée.
Nous avons aussi modéliser le comportement d’un L. Sur la figure 10.4, apparaissent
en vert les solutions EF et en bleu les prédictions U-Mesh. La différence est quasi
imperceptible à l’oeil nu. En effet, l’échantillon avec l’erreur maximale (image de
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gauche) correspond à une norme l2 relative de 5.1% à l’extrémité libre de la poutre.
Le résultat le plus marquant est que les prédictions sont faites en 3 ms seulement.

Figure 10.4: Comparaison de la prédiction U-Mesh (en vert) et de la solution EF (en
bleu) pour une poutre encastrée et une lettre L.

Néanmoins, il faut noter que pour des maillages aussi grossier, les calculs EF pour-
raient être fait en temps-réel avec quelques optimizations. Pour montrer le potentiel
de notre méthode, nous l’avons appliqué sur un maillage de poutre très fin pour lequel
les EF ne peuvent pas satisfaire la contrainte de temps-réel. Les résultats montrent
que notre méthode est capable de prédire les déformations volumiques d’un objet
maillé très finement en 3 ms aussi (∼ 100 fois plus rapide qu’une version optimisée
des EF). Dans le prochain chapitre, nous allons voir comment étendre l’utilisation
de U-Mesh à n’importequel type de géométrie ne coincidant pas nécessairement avec
une structure régulière.

10.4 U-Mesh pour la chirurgie augmentée du foie
Comme cité précédemment, pour construire une réalité augmentée d’un organe, il est
nécessaire de faire un recalage non rigide entre les images préopératoires (scan CT
et modèle EF) et les images intraopératoires (nuage de points et vue de la surface de
l’organe). Dans ce chapitre nous allons voir comment faire ce recallage élastique en
utilisant U-Mesh, pour prédire la déformation volumique de l’organe à partir d’un
nuage de points surfacique clairsemé.

Comme vu dans le chapitre précédent, pour que U-Mesh puisse faire des prédictions,
il est impératif d’encoder le champ de déplacement dans une grille régulière. Pour ce
faire, plusieurs options s’offrent à nous. La première consiste à mailler la géométrie de
l’objet avec n’importequel type d’éléments (tétrahèdres par exemple) pour y réaliser
les calculs EF. Ensuite, le maillage peut être plongé dans une grille régulière et
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Figure 10.5: Étapes d’une chirurgie augmentée du foie.

les déplacements aux nœuds de la grille peuvent être obtenus par interpolation. Il
faut se souvenir qu’avec cette approche on introduit une erreur d’approximation
du volume non négligeable. Une autre alternative, plus précise, consiste à plonger
la surface de l’objet dans une grille régulière et utiliser une méthode de type IBM
(immersed-boundary method en anglais) pour construire un maillage hexahédrique
régulier. Les cellules traversées par la frontière de l’objet sont subdivisées pour
intégrer correctement le volume de l’objet.

La génération des données va être légèrement différente de celle du chapitre précédent
puisque cette fois-ci on va enregistrer les couples (Us, Uv) où Us est le déplacement
surfacique visible lors de la chirurgie et Uv est le déplacement volumique de l’organe.
On applique des forces aléatoires sur la surface et on génère 2000 échantillons de
foies déformés. La génération des données et l’entrainement du réseau doivent avoir
lieu en un temps réduit puisqu’il peut parfois n’y avoir que quelques heures entre le
moment où le scan CT préopératoire est acquis et le moment de l’intervention. Au
total, les données ont été générées et le réseau entrainé en moins de 5 heures.

Une fois le réseau entrainé, nous avons fait des tests sur un foie synthétique puis
sur des données réelles. Sur les données synthétiques, le réseau fait des prédictions
avec moins de 0.05 mm d’erreur nodale moyenne. Les données réelles proviennent
d’un foie humain ex vivo. Dix marqueurs sont injectés à l’intérieur du foie pour
calculer des TRE (target registration error en anglais) et l’organe est déformé puis
scanné pour avoir une vérité terrain à laquelle se comparer. On obtient un TRE
moyen de 7.5 mm en faisant des predictions avec U-Mesh, ce qui est sensiblement la
même chose que l’erreur obtenue avec les EF avec pour différence le temps de calcul
(U-Mesh est 500 fois plus rapide que les EF). En effet, dans tous les scenarii les
prédictions sont faites en seulement 3 ms. Dans les images ci-dessous sont illustrés
le nuage de point RGB-D donné en entrée au réseau, puis la prediction du réseau
(en blue turquoise). La prédiction peut être supperposée à la vue opératoire pour
construire la réalité augmentée.

Pour faire ces prédictions, nous avons utilisé des propriétés mécaniques moyennes.
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Figure 10.6: Nuage de points RGB-D donné en entrée au réseau et prédiction résult-
ante.

En particulier, le foie est fixé au niveau du ligament falciforme dont l’emplacement
n’est qu’approximatif. Aussi, nous avons choisi un module d’Young moyen (5000
Pa). Dans ce cas, puisque nous travaillons avec des déplacements de surface et que
nous considérons le foie comme étant homogène, le module d’Young n’a pas d’impact
sur la déformation résultante [Miller et al., 2013]. Cependant si on voulait appliquer
des forces, une meilleure approximation du paramètre est recquise. Pour ce faire,
nous proposons dans le dernier chapitre de la thèse, d’estimer les paramètres méca-
niques et les conditions aux limites d’un foie en utilisant des filtres de Kalman. Ainsi,
les simulations EF spécifiques au patient sont utilisées pour rafiner le réseau (préal-
ablement entrainer sur un modèle moyen) en utilisant du transfert de connaissance
(transfer learning en anglais).

10.5 U-Mesh pour la biopsie du sein
Lorsqu’il y a des lésions suspectes dans une mammographie, il est préférable de
réaliser une biopsie afin de vérifier leur malignité. Pour guider l’aiguille vers la lésion,
la biopsie est souvent guidée par des images ultrasons (US) [O’Flynn et al., 2010].
Cependant, il n’est pas toujours facile de suivre les lésions sur ces images. En effet,
elles ne sont pas toujours visibles suite au contraste réduit des US, et de plus, la
navigation 3D est faite en se basant sur des informations 2D. Puisque nous disposons
du scan CT préopératoire avec la localisation exacte des lésions, trouver une méthode
qui mettrait à jour la positions des lésions pendant l’intervention serait très bénéfique.
Comme pour la chirurgie augmentée du foie, on peut faire un recalage élastique entre
le modèle préopératoire et l’image US en utilisant la méthode des EF. Là aussi, le sein
est un organe hautement déformable et donc des équations non-linéaires entrent en
jeu, ce qui rend les calculs incompatibles avec le temps-réel. Dans [Han et al., 2013],
les auteurs proposent d’utiliser une formulation TLED basée sur GPU permettant de
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calculer les déformations du sein en 30 ms, ce qui ne satisfait pas encore la contrainte
de temps-réel.

Dans ce chapitre on propose d’utiliser la plateforme U-Mesh pour prédire la déform-
ation du sein en réponse aux forces de compression induite par la sonde US. Dans
ce cas, l’entrée du réseau comporte les déplacements des nœuds en contact avec la
sonde US. La méthode est validée sur des données issues d’un fantome du sein.

Figure 10.7: Prédiction U-Mesh en réponse à la compression induite par la sonde
US.

Pour générer les données d’entrainement, on construit un modèle EF du sein. À
partir du scan préopératoire on peut reconstruire la géométrie du fantome avec les
lésions internes. On la plonge dans une grille régulière et on utilise une méthode IBM
pour utiliser une grille hexahédrique pour nos simulations EF. Puisque l’entrée du
réseau correspond à des déplacements surfaciques et qu’on considère le sein comme
étant homogène, le module d’Young est arbitrairement initialisé. On génère 2000
échantillons de (Us, Uv) où cette fois-ci, Us correspond au déplacement des nœuds
sous la sonde US. Pour ce faire, à chaque pas de simulation, on choisi un point p à
la surface du sein, on choisit une boite orientée A centrée en p (A ayant la même
dimension que la sonde US), et on applique une force normale à la surface sur tous
les noeuds surfaciques contenus dans A.

Une fois que les données sont générées et que le réseau est entrainé (∼ 5 heures),
on prédit des déplacements sur des données synthétiques. On obtient des erreurs
nodales moyennes de 0.05 mm ce qui montre bien encore une fois que le réseau a
parfaitement appris le modèle avec lequel il a été entrainé. Dans un second temps,
nous avons validé notre approche sur des données d’un fantome en sillicone contenant
10 lésions. On impose des déformations avec une sonde US qui est suivie dans
l’espace. On connaît donc sa position et son orientation à chaque instant. Ainsi, on
peut extraire l’emplacement des nœuds à la surface du sein en contact avec la sonde.
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Pour chacune des 10 lésions, on place la sonde de telle sorte que la lésion considérée
soit visible sur l’image US. Dans un premier temps, la sonde touche à peine le sein
(donc aucune déformation n’est induite). Cette première étape permet de calibrer
le système afin de référencer le modèle et la sonde dans un même repère. Ensuite
on impose 4 déformations d’amplitudes croissantes. Ainsi on obtient 40 acquisitions
avec des déformations variables. Lorsqu’on compare la prédiction U-Mesh avec la
vérité terrain (obtenue à partir de l’image US), on obtient un TRE de 4.2 mm en
moyenne. Encore une fois, on constate que U-Mesh fait aussi bien que la méthode
EF utilisée pour l’entrainer.

En résumé nous avons construit une plateforme faisant l’interface entre des simula-
tions EF précises mais couteuses en temps de calcul, et des applications nécessitant
précision et rapidité simultanément.

10.6 Conclusion
Dans cette thèse nous avons démontré comment l’utilisation d’algorithmes
d’apprentissage automatique en combinaison avec des méthodes numériques
classiques, pouvait améliorer les interventions assistées par ordinateur. En par-
ticulier, nous avons présenté la méthode U-Mesh basée sur des réseaux de neurones
pronfonds, qui modélise le comportement biomécanique d’un organe, tout en respect-
ant les spécificités de chaque patient et en satisfaisant la contrainte de temps-réel
inhérente à la chirurgie guidée par l’image.

Dans une phase préopératoire, on construit un modèle éléments-finis de l’organe
considéré avec des paramètres moyens, afin de générer une base d’apprentissage
pour entrainer le réseau. Ensuite, pendant la chirurgie, les propriétés mécaniques
des organes sont identifiées avec de l’inférence Bayesienne et de nouvelles données
patient-spécifiques peuvent être générées. Les poids des réseaux préalablement en-
trainés, peuvent être mis à jour par transfert de connaissance en utilisant les nouvelles
données simulées.
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Andrea MENDIZABAL

Combinaison entre simulation numérique
et apprentissage automatique

Résumé

Il existe une multitude de domaines en ingénierie nécessitant le calcul de déformations non-linéaires
en  temps  réel,  notamment  dans  le  domaine  de  la  médecine,  avec  les  simulateurs  pour
l'entrainement des chirurgiens ou bien la chirurgie guidée par l'image. Dans un contexte de chirurgie
augmentée, il est nécessaire de réaliser un recalage élastique des données préopératoires sur la
vue  intraopératoire  de  l'organe.  L'objectif  est  de  superposer  en  temps  réel,  un  modèle  virtuel
spécifique à chaque patient, à la vue du champ opératoire dans le but de visualiser les structures
internes de l'organe (tumeurs ou artères par exemple). Afin d'obtenir une précision adaptée, il est
nécessaire  de  construire  un  modèle  bioméchanique  personnalisé  de  l'organe.  Pour  ce  faire,  la
méthode des éléments-finis est la technique préférée afin de prédire la déformation des tissus mous.
Cependant  la  complexité  des  calculs  impliqués  (notamment  dans  le  cas  de  déformations  non-
linéaires)  rend  cette  méthode  incompatible  avec  les  exigences  de  temps  réel  et  de  précision,
inhérentes au domaine d'application visé.

Pour répondre à ces contraintes, on propose de combiner des simulations éléments-finis avec des
réseaux de neurones profonds pour modéliser le comportement biomécanique des tissus humains.
En  particulier  on  présente  la  plateforme  U-Mesh  permettant  de  prédire  en  temps-réel  les
déformations d'un organe comme le foie avec une précision adaptée à la chirurgie augmentée.

Mots clefs : Simulation temps-réel ; Simulation patient-spécifique ; Réseau de neurones pronfond ;
Méthode des éléments-finis ; Chirurgie augmentée

Résumé en anglais

Many engineering applications require  accurate numerical  simulations of  non-linear  structures in
real-time.  Some important  examples  can be found in  the field  of  medicine,  in  order  to  develop
surgical training systems, or in the field of surgical navigation where augmented reality can bring
significant  improvements  to  the  clinical  gesture.  To  guarantee  the  accuracy  of  the  simulations,
patient-specific modeling must be pursued by taking into account personalized material parameters
and boundary conditions. In the context of augmented surgery for instance, it is essential to perform
an  elastic  registration  between  the  preoperative  and  the  intraoperative  images.  To  this  end,  a
patient-specific biomechanical model must be built to produce real-time finite-element simulations of
the deformed organ. This is in practice very difficult to achieve as the problems to be solved are
highly complex, in particular when non-linear deformations are considered. 

In this work, we propose a method combining finite-element simulations and deep neural networks in
order to satisfy the rapidity and accuracy requirements of medical  applications. In particular, we
present the U-Mesh framework, capable of predicting in real-time the shape of a highly deformable
organ like the  liver  in  order  to  guide  surgeons during  interventions where  following the organ's
deformation is crucial for the surgery to be successful.

Keywords:  Real-time;  Deep  neural  networks;  Finite  element  method;  Data-driven  simulation;
Augmented surgery  
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