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Chapter 1

Introduction History of Light Fields

Photography has undergone an upheaval over the last years due to the bloom of new capturing devices compared with conventional image or video acquisition systems. In particular, there are new devices that are able to capture not only the intensity of light rays of a scene but also its traveling directions in space. The theoretical concept of such capturing devices belongs to the Nobel laureate Gabriel Lippmann1 who presented his research about Integral Photography in 1908 [START_REF] Lippmann | Epreuves reversibles donnant la sensation du relief[END_REF]. In 1936, Arun Gershun defined the Light Field concept [START_REF] Gershun | The light field[END_REF], which gives the amount of light traveling in every direction through every point in space. But Lippman's integral photographs or Gershun's Light Fields could not become practical until the advent of computers and digital sensors. In 1991, Adelson and Wang [START_REF] Adelson | The plenoptic function and the elements of early vision[END_REF] brought this theory to computer vision and defined the so-called plenoptic function and in 1996 two different research teams formalized Light Fields with the two planes parameterization: the Light Field rendering [START_REF] Levoy | Light field rendering[END_REF] and the lumigraph [START_REF] Gortler | The lumigraph[END_REF].

Since then, the research on Light Fields has become an interdisciplinary area joining optics, computational photography, image processing, computer vision and computer graphics. This research community has followed a number of lines. On the practical side, researchers have experimented with literally dozens of ways to capture Light Fields, ranging from camera arrays to kaleidoscopes, as well as plenoptic cameras or camera gantries. This variety of capturing devices sample the Light Field very differently and has forced the development of spatial and frequency domain analyses of Light Field sampling along with specific algorithms to process and exploit the different captured Light Fields. In the display side, the industry has been recently pushing several disruptive technologies that may radically change the way we visualize Light Field content.

At Technicolor and Interdigital we have first focused on plenoptic cameras and then on camera arrays for its potential to address immersive technologies. Our different research works range from studies that are very close to the capturing system to the final rendering, proposing end-to-end pipelines for the different capturing systems.

Light Field Formalism

The plenoptic function [START_REF] Adelson | The plenoptic function and the elements of early vision[END_REF] describes the information available to an observer at any point in space and time. More precisely, it measures the intensity of all light rays in a three dimensional space (x, y, z), in any direction (θ, φ), at any wavelength λ, and at any time t so the plenoptic function takes the form: , y, z, θ, φ, λ, t) .

P = P (x
(1.1)

Now, the Light Field is a four-dimensional subset of the plenoptic function encoding the set of light rays crossing a space between two dimensional planes. Formally, L(p, q, u, v) encodes the radiance L of a light ray in the space of light rays where (p, q) are the angular coordinates and (u, v) the spatial coordinates.

Given a sampled Light Field, Subaperture Images (SAIs) or views are slices of L(p, q, u, v) where (p, q) are fixed values. Epipolar Plane Images (EPIs) are slices whith fixed values of (p, u) or (q, v). Such representation in slices has been largely used as a convenient manner to manipulate and understand Light Fields.

Light Field Capturing Devices

Plenoptic cameras have obtained a lot of popularity because they are able to measure the amount of light traveling along each ray bundle that intersects the sensor, thanks to a microlens array (MLA) placed between the sensor and the main lens. Regarding the optical design, depending on the arrangement of the main lens and the MLA, we can distinguish between type 1 and type 2 or focused plenoptic cameras. For type 1 plenoptic cameras, the main lens is focused in the same manner as a conventional camera but the microlenses are focused at infinity. This is, the distance between the MLA and the sensor is equal to the microlenses focal length. As a consequence, each microlens is defocused and only a single pixel in the image can be rendered from it. This means that this type of plenoptic cameras produce final rendered images with low resolution. More precisely, the number of pixels per rendered view is equal to the number of microlenses in the MLA2 . On the contrary, type 2 or focused plenoptic cameras [START_REF] Lumsdaine | The focused plenoptic camera[END_REF] achieve a better spatial resolution focusing the microlenses at the focal plane of the main lens. However, this optical design has a lower angular resolution compared to the traditional approach.

Given the important differences in the optical design of plenoptic cameras, it is mandatory to develop specifically tailored pipelines that take into account the different light ray sampling of each camera. Chapter 2 presents the solutions we have proposed for each type of plenoptic camera. In fact, both models have been commercialized. Lytro launched two different cameras, the original (pocket camera) and the Lytro Illum (hand-held camera) that were able to refocus after the shoot. And while Lytro focused on the consumer market, Raytrix3 is more oriented to the industry and sells focused plenoptic cameras for 3D and metrology purposes. Nonetheless, it is true that we do not see the same enthusiasm about plenoptic cameras compared to some years ago and even Lytro ceased operations in 2018. But recent papers are still pushing further the quality limits of plenoptic imaging [START_REF] Matysiak | High quality light field extraction and post-processing for raw plenoptic data[END_REF] and other optic designs can be seen as an evolution of the plenoptic cameras. For instance, Canon has designed new dual pixel sensors for its DSLR cameras 4 and K-lens has combined conventional sensors with tunnel mirrors 5 .

On the other hand, multi-camera systems have emerged as another way to capture Light Fields [START_REF] Stankiewicz | Multiview video: Acquisition, processing, compression, and virtual view rendering[END_REF]. The pioneer Takeo Kanade and his team at Carnegie Mellon University built already in the 1990s a multi-camera system (called stereo machine) 6 . Later one of the first camera rigs was built at Stanford [START_REF] Wilburn | High performance imaging using large camera arrays[END_REF] in Marc Levoy's lab. At that time, such capturing systems were extravagant devices that were not intended to see daylight outside the research labs. But a big step forward has been done ever since. For instance at Fraunhofer 7 professional cameras are used for the moving picture industry. And even at a larger scale, Intel has installed multi-camera system in stadiums 8 to capture volumetric data and broadcast immersive media to different devices. Concerning smaller devices, while Pelican Imaging technologies 9 has never come into existence, the company light 10 has deployed new multicamera devices such as the Light L16. A fully calibrated multisensor array has also been built into smartphones such as the Nokia9 Pureview 11 , that mimics the Lytro depth-sensing functionality among others.

In our lab we have also built our own camera rig and we have developed algorithms to process and exploit the captured Light Fields. Our results are the object of Chapter 3.

Light Fields for Immersive Technologies

We are at the cusp of a major revolution concerning immersive technologies that will fundamentally alter how we interact with the content we watch. In the future, users will not simply observe the content on legacy displays but will be placed at the center of a virtual or augmented world. The idea behind is to provide a new immersive user experience that goes beyond higher image quality and higher realism.

Originally, 360-degree content was presented as the required media to address virtual reality (VR) [START_REF] Anderson | Jump: Virtual reality video[END_REF] so the user could turn around. In this case, the VR headset uses the inbuilt sensors to measure the head movements and adapts the content in real-time. Later, it has been shown 12 that it is fundamental to have motion parallax to attain a high level of realism and avoid cybersickness. In this manner, the user can shift his head to see behind an object or get closer to see the details of it. The scene perspective will change rapidly to accommodate to the user's head motion. In the VR community, when considering roll, yaw and pitch it has been named three Degrees of Freedom (3DoF), and when adding elevation, strafe and surge, so the user can move around instead of standing in one spot, it has been named 6DoF 13 . Well-known VR headsets include Occulus14 and HTC Vive 15 .

While VR has received great attention in the past, it is certainly Augmented or Mixed Reality (AR/MR) applications that will see the greatest progress in the future. This is because there is a wide variety of AR/MR applications16 compared to VR. Most of them are still in their infancy, but they do have enormous potential. Games and social media are the driving forces to this industry but it will likely pervade other fields like medicine, education or marketing, to cite only a few examples. Nowadays, Hololens17 and MagicLeap18 are the most relevant examples of AR/MR glasses already in the market, without forgetting popular mobile apps such as Pokemon Go.

As for today, it has been proved that immersion and interaction can be successfully achieved for synthetically generated content, but all that much more needs to be done to achieve the same quality results for captured scenes of the real world. Indeed, immersive technologies for real world scenes still need to reach important milestones before consumers adopt them. Good news is that the research on the field is moving at a faster pace today than ever before.

As VR with Computer Generated Images (CGI), the sense of depth is also of foremost importance to achieve high-quality immersive experiences in real world scenes. In order to have the motion parallax that enables the sense of depth in such real scenarios, it is mandatory to capture Light Fields [START_REF] Yu | A light-field journey to virtual reality[END_REF], instead of a single viewpoint as in conventional video. So, the challenge behind real world immersive experiences is the capture of Light Fields with dynamic rendering to achieve motion parallax. For this reason, companies such as Google [START_REF] Overbeck | A system for acquiring, processing, and rendering panoramic light field stills for virtual reality[END_REF], 8i19 , Otoy20 or Lytro Immerge have been focusing on capturing highquality Light Fields for VR.

Note however that it is unfeasible to capture a continuous Light Field with an infinity number of light rays. Indeed, only a limited number of viewpoints can be recorded regardless of the capturing system, producing a sparsely sampled Light Field. This observation motivates our work in view synthesis. Formally, given a set of input views of a scene, the goal view synthesis addresses is the reconstruction of a completely dense Light Field. This is, the recovery of all the light rays that pass through a volume of space, from which one can generate any view within an appropriate region. In fact, synthesizing new viewpoints for a given scene from a set of captured images has attracted the attention of the vision and graphics community for some time past. We can classify view synthesis methods in classical methods and learning methods. In this manuscript we have addressed the view synthesis problem with a classic approach in Chapter 3 and with learning-based models in Chapter 4.

Chapter 2

Plenoptic Light Fields: Capture and Processing

Introduction

Plenoptic cameras have become popular because they are able to capture a Light Field thanks to a microlens array (MLA) placed between the main lens and the sensor. Depending on the MLA position, plenoptic cameras are divided into type 1 [START_REF] Ng | Digital Light Field Photography[END_REF] such as the Lytro cameras1 , and type 2 or focused [START_REF] Lumsdaine | The focused plenoptic camera[END_REF] such as the Raytrix cameras2 . Fig. 2.1 illustrates the two camera designs. In the type 1, the main lens is focused on the microlenses and the microlenses are focused at infinity. More precisely, assuming the lens equation 1 a + 1 b = 1 f , the distance b between the MLA and the sensor is forced to be equal to f the microlenses focal length which makes a the microlenses focus distance to be equal to infinity. With this design, each pixel images only one part of the main lens corresponding to one light ray direction. In the type 2, the MLA is placed such that b = f , so each pixel images an area of the entrance pupil, integrating light rays with different directions. Also, type 2 cameras have a better spatial resolution but less angular resolution compared to type 1 cameras. Depending on the application, one type of camera or the other would be more advantageous.

Another difference due to the distinct plenoptic designs concerns the Subaperture Images (SAI) and Epipolar Plane Images (EPIs) computation. Considering the two plane parameterization to represent a 4D Light Field L(p, q, u, v) as in [START_REF] Gortler | The lumigraph[END_REF] and [START_REF] Levoy | Light field rendering[END_REF], SAIs and EPIs are nothing else than slices of L(p, q, u, v). Each SAI, also called view, is an image of the same scene for a fixed viewing angle (u, v) and each EPI is an image obtained fixing (q, v). By construction, SAIs are easily generated for type 1 plenoptic cameras but not for type 2. Indeed, for type 1 cameras, each SAI is created taking all pixels at the same relative position in the microlens with respect to the microlens center [START_REF] Ng | Digital Light Field Photography[END_REF]. On the contrary, generating SAIs without strong artifacts on type 2 cameras requires to first estimate the depth [START_REF] Wanner | Generating epi representations of 4d light fields with a single lens focused plenoptic camera[END_REF], [START_REF] Georgiev | Full resolution lightfield rendering[END_REF]. Besides, generating SAIs also causes aliasing artifacts, as pointed out by [START_REF] Liang | A light transport framework for lenslet light field cameras[END_REF].

In this chapter, we propose two complete pipelines for plenoptic cameras specially adapted to the optical designs of type 1 and type 2 cameras. First, in Section 2.2 we propose a microlens calibration algorithm and we model the demultiplexing process of images acquired with a type 1 camera, and then, we present a novel algorithm for disparity estimation specially designed for the singular qualities of demultiplexed type 1 plenoptic data. In particular, we show that estimating disparities from mosaicked views is preferred to using views obtained through conventional linear demosaicking on the raw data. Finally, such estimated disparities from the mosaicked data guide the demosaicking, resulting in minimum artifacts compared to the state-of-the-art methods.

Then, in Section 2.3 we present a complete pipeline for focused plenoptic cameras including microlens calibration, depth estimation and rendering. First, we have designed a calibration algorithm, entirely in the Fourier domain, that has proved to be fast, insensitive to noise and robust. While our calibration is independent of the type of plenoptic camera, the method we propose for depth estimation is specialized for type 2 cameras. Indeed, the main asset of our approach is that SAIs or EPIs are not computed. Instead, the data captured in the sensor plane is directly projected into the rendering plane, in which depth estimation is performed. Finally, we show how the generated depth maps in the image domain can be used during the rendering step. In particular, we show how to render all-in-focus images and how to correct angular aliasing.

Related Work

Regarding plenoptic camera calibration several solutions have already been explored either in the spatial domain [START_REF] Dansereau | Decoding, calibration and rectification for lenselet-based plenoptic cameras[END_REF][START_REF] Bok | Geometric calibration of micro-lens-based light field cameras using line features[END_REF] or using a combination of Fourier and spatial analysis [START_REF] Fiss | Refocusing plenoptic images using depth-adaptive splatting[END_REF], [START_REF] Cho | Modeling the calibration pipeline of the lytro camera for high quality light-field image reconstruction[END_REF].

In the literature, plenoptic depth estimation has aroused great interest and many research works have been published. We classify them in four different approaches depending on the image type they consider as input: SAIs, microlens images, EPIs or refocused images.

First, SAI-based depth estimation methods rely on the fact that computed SAIs from plenoptic cameras are well rectified images with constant baseline. Among these techniques, we can find local block-matching [START_REF] Adelson | Single lens stereo with a plenoptic camera[END_REF], [Bishop and Favaro, 2009], [START_REF] Navarro | Robust and dense depth estimation for light field images[END_REF], and global matching methods including variational formulations [START_REF] Bishop | Full-resolution depth map estimation from an aliased plenoptic light field[END_REF], [START_REF] Bishop | The light field camera: Extended depth of field, aliasing, and superresolution[END_REF], [START_REF] Heber | Variational shape from light field[END_REF], [START_REF] Kim | Cost-aware depth map estimation for lytro camera[END_REF] and [START_REF] Jeon | Accurate depth map estimation from a lenslet light field camera[END_REF]. Then, microlens-based depth estimation methods consider each microlens image as separated camera images with a very small baseline. For this type of methods local and global approaches are also adapted to the plenoptic framework. In [START_REF] Georgiev | Focused plenoptic camera and rendering[END_REF], [START_REF] Perwass | Single lens 3d-camera with extended depth-of-field[END_REF], [START_REF] Chang | A pixel-based depth estimation algorithm and its hardware implementation for 4-d light field data[END_REF] a block-matching algorithm for microlens images is used, and [START_REF] Tulyakov | Quadratic formulation of disparity estimation problem for light-field camera[END_REF], [START_REF] Fleischmann | Lens-based depth estimation for multi-focus plenoptic cameras[END_REF], [START_REF] Uliyar | Pixel resolution plenoptic disparity using cost aggregation[END_REF] formalize the problem as an energy minimization task in which cost volumes are computed for each microlens.

Another type of method for plenoptic depth-estimation uses EPIs [Wanner and Goldluecke, 2013], [START_REF] Wanner | Globally consistent multi-label assignment on the ray space of 4d light fields[END_REF], [START_REF] Kim | Scene reconstruction from high spatio-angular resolution light fields[END_REF], [START_REF] Uliyar | Fast epi based depth for plenoptic cameras[END_REF], [START_REF] Tao | Depth from shading, defocus, and correspondence using light-field angular coherence[END_REF], [START_REF] Dansereau | Gradient-based depth estimation from 4d light fields[END_REF]. Indeed, the slope of the line composed of corresponding pixel in an EPI is proportional to the depth of the pixel [START_REF] Bolles | Epipolar-plane image analysis: An approach to determining structure from motion[END_REF].

Finally, other approaches use refocused images or images in a focal stack to perform depth computation [START_REF] Kao | Depth detection of light field[END_REF], [START_REF] Mousnier | Partial light field tomographic reconstruction from a fixed-camera focal stack[END_REF]. However, when defocus cues are used they are usually combined with other measures [START_REF] Tao | Depth from combining defocus and correspondence using light-field cameras[END_REF], [START_REF] Kim | Cost-aware depth map estimation for lytro camera[END_REF] because of their poor accuracy. Recently other approaches using deep learning have been proposed. We address them in Chapter 4.

A New Pipeline for Plenoptic Type 1 Cameras

In this section we present a post-processing pipeline to recover the views (or SAIs) from the raw data of a type 1 plenoptic camera such as Lytro. Most of the works in the literature propose to first demosaick the raw data and then demultiplex (pixel reordering) to recover the views, but we have observed that this leads to color artifacts on the views. Indeed, by construction, neighbor pixels in a plenoptic raw image contain different angular information (each pixel under a microlens corresponds to a different view). So, demosaicking the raw plenoptic image as it was a conventional image wrongly mixes angular information. Indeed, classical algorithms interpolate neighbor color values creating the so-called view cross-talk artifacts. For this reason, in our strategy, the raw image is demultiplexed without demosaicking, meaning that demosaicking is done on the views and not on the raw data. So, the demultiplexing step transforms the Bayer pattern on the raw data in a new color pattern on the views. Then, we have presented a new block-matching algorithm to estimate disparities for plenoptic views that have not been demosaicked. The algorithm takes into account the new color pattern but also the geometry given by the plenoptic camera. This is, the views are horizontally and vertically rectified and have the same baseline, so at each point the vertical and horizontal disparities are the same. Finally, classical demosaicking algorithms applied on the views with the new color pattern poorly recover highly textured areas. Hence, in this work we propose a new demosaicking algorithm inspired by multi-frame demosaicking approaches [START_REF] Farsiu | Multiframe demosaicing and super-resolution of color images[END_REF]. The goal is to increase the chromatic resolution of one target view, exploiting the redundant sampling of the scene using the other low-resolution views. In particular, our strategy is to estimate and use pixel disparities to guide our demosaicking algorithm. Fig. 2.2 illustrates our full pipeline for type 1 plenoptic cameras.

Calibration and Image Demultiplexing

Demultiplexing type 1 plenoptic cameras is the conversion from the 2D raw microlenses image to the 4D Light Field composed of the matrix of views. This process reorganizes the pixels in such a way that pixels in which the light rays have the same angle of incidence are stored in the same image. The restored images are the SAIs. The angular information of the light rays is given by the relative pixel position in the subimage3 . In our work, the subimage center positions are estimated and used as reference for the pixel reorganizing. After this process, the number of restored views corresponds to the number of pixels covered by one microlens and each restored view has as many pixels as number of microlenses.

Figure 2.2: Pipeline of our method for type 1 plenoptic cameras. After calibration, demultiplexing is performed on the raw image and disparity estimation on the mosaicked SAIs (views). Demosaicking is performed using the disparity estimate and all the views.

Estimating Subimage Centers The microlenses array is placed in front of the sensor but the microlenses centers are not necessarily well aligned with pixels of the image sensor. Indeed, the microlenses diameter does not cover an integer value of pixels. Furthermore, there is a rotation offset between the sensor and the microlenses plane. Thus, in order to estimate robustly the microlenses centers we estimate the coordinate system transform between the Cartesian coordinate system given by the pixels of the sensor to the microlenses coordinate system defined as follows: the origin is given by the center of the topest and righest microlens and the director vectors are the two vectors from the origin to the adjacent microlenses centers (see Fig. 2.3). Formally, we compute the microlens image diameter D, the translation offset o = (o x , o y ) and the rotation α with respect to the coordinate system given by the sensor array. Then, the microlens image center coordinates C = (C x , C y ) in the pixel coordinates are computed as:

C = Tx + o , (2.1)
where x = (x, y) ∈ Z 2 are the elements of an integer grid and the system transformation matrix is defined as

T = D √ 3 1 1/2 0 √ 3/2 cos(α) -sin(α) sin(α) cos(α) . (2.2)
In practice, the subimage centers are computed from a white image (see in , this is an image taken through a white Lambertian diffuser. Actually, the subimage centers C i in the raw image are computed as the local maximum positions of the convolution between the white image and the mask shown in Fig. shows the subimage center estimation obtained with the method described above. Since the raw white image has a Bayern pattern, we have compared the results when estimating the centers using only red, blue or green pixels or using all color pixels at the same time. We observe that the results are essentially the same. Indeed, demosaicking the raw white image does not create image cross-talk since the three color channels are the same for all pixels in the center of the subimages

Reordering Pixels In the following, we assume that the raw image has been divided by the white image. This division corrects considerably the microlens vignetting4 and is enough for our purposes but we refer to [START_REF] Dansereau | Decoding, calibration and rectification for lenselet-based plenoptic cameras[END_REF] for a precise vignetting modeling for plenoptic images. Now, in order to recover the different views, pixels in the raw image need to be reorganized. Pixels under each microlens at the same relative position with respect to the microlens center belong to the same view. In particular, pixels are organized as illustrated in Fig. 2.5. In order to preserve the pixel configuration in the raw image (hexagonal pixel grid due to the quincunx microlens placement) and avoid aliasing, empty spaces are left between pixels on the views as shown in Fig. 2.6. Notice that, since the raw image has not been demosaicked, the views inherit new color patterns. Because of the shift and rotation of the microlenses with respect to the sensor, the microlens centers (as well as the other relative positions) do not always correspond to the same color. As a consequence, each view has its own color pattern (mainly horizontal color lines in Lytro) as shown in Fig. 2.6. In fact, the color pattern of views in odd positions of the matrix are very similar to each other, as well as the color patterns of views in even positions. However the color pattern between odd and even positions are not the same. This is because the Lytro camera has a microlens diameter close to an even number of pixels (D ≈ 10 pixels). As a matter of fact, the color pattern would be the same for all the views (odd and even) if the microlens diameter was an exact odd number of pixels After demultiplexing, the views could be demosaicked without risking to fuse pixel information from different angular light rays. However, classic demosaicking algorithms are not well adapted to these new color patterns, specially on high frequencies. Instead, for the moment, we simply fill the empty pixels (white pixels in Fig. 2.6) when the right and left pixels have the same color information. For example, if an empty pixel of the raw data has a green pixel on the right and on the left, then the empty pixel is filled with a green value by interpolation (1D Piecewise Cubic Hermite interpolation). We will show in the next section that there is enough information to robustly estimate the disparity from such undemosaicked views.

Disparity Estimation

In this section, we present a new block-matching disparity estimation algorithm adapted to plenoptic images. In particular, we assume that a matrix of views is available (obtained as explained in the previous section) such that the views are horizontally and vertically rectified, i.e., satisfying the epipolar constraint. Therefore, given a pixel in a reference view, its corresponding pixels from the same row of the matrix are only shifted horizontally. Similar reasoning is valid for the vertical pixel shifts among views from the same column of the matrix. Furthermore, consecutive views have always the same baseline b (horizontally and vertically). As a consequence, for each point, its horizontal and vertical disparities with respect to nearest views are equal provided the point is not occluded. In other words, given a point in the reference view, the corresponding point in its consecutive right view is displaced horizontally by the same distance as the corresponding point in its consecutive bottom view is displaced vertically. By construction, the plenoptic camera provides a matrix of views with small baselines, which means that the possible occlusions are small. In fact, each point of the scene is seen from different points of views (even if it is occluded for some of them). Thus, the horizontal and vertical disparity equality is true for almost all the points of the scene. Since the available views have a color pattern as in Fig. 2.6, we propose a block-matching method so that only pixels in the block having the same color information are compared. We propose to use a similarity measure between blocks based on the ZSSD (Zero-Mean Sum of Squared Differences). Formally, let I be a reference view of the matrix of views and let I := I p ,q and I := I p ,q be two views belonging to the same matrix row q as I. Let b and b be the respective baselines with respect to I (multiples of b). Then, the cost function between I and I at the center (u 0 , v 0 ) of a block B 0 in I is defined as a function of the disparity d: 

ZSSD p ,p (u 0 , v 0 , d) = u,v∈B 0 w(u , u , v) I (u , v) -I -I (u , v) + I 2 u,v∈B 0 w(u , u , v) (2.
w(u , u , v) = G 0 (u, v) 1(u , u , v) , (2.5)
where G 0 is a Gaussian function centered at (u 0 , v 0 ) and supported in B 0 and 1 is the indicator function controlling that only pixels in the block with same color information are taken into account in the cost function

1(u , u , v) = 1 if I (u , v
) and I (u , v) have the same color, 0 otherwise.

(2.6)

The cost function is similarly defined when I and I are views from the same matrix column. In that case we define v := v + b d and v := v + b d. Note that if I = I, then b = 0 and the cost function defined in Eq. 2.3 is similar to a cost function for binocular stereovision with the particularity that it is adapted to our specific color pattern. Now, our algorithm takes advantage of the multitude of views given by the Light Field and estimates the disparity through all the lines and columns of the matrix. Let Υ be the set of index-view pairs such that the disparity can be computed horizontally or vertically with respect to the reference view I. In other words, Υ is the set of index-view pairs from the same row and column than I. In fact, for the Lytro camera, consecutive views are not considered in Υ since consecutive color patterns are essentially different as explained above. Besides, views on the borders of the matrix of views do not capture as much light as the views in the center. So, it is reasonable to only consider the center views. For the Lytro camera 6 × 6 matrix of views are considered. Fig. 2.7 depicts the pairs of considered images for disparity estimation in a matrix line. Finally, given a reference view I the disparity at (u 0 , v 0 ) is given by

d(u 0 , v 0 ) = Med p ,p ∈Υ arg min d ZSSD p ,p (u 0 , v 0 , d) , (2.7) 
where Med stands for the 1D median filter. This median filter is used to remove outliers that may appear on a disparity map computed for a single pair of views, specially in low-textured areas. Note that disparities computed from vertical views are more prone to errors since the color pattern between the reference block and the sliding block differ more than in the vertical direction (the color pattern in Fig. 2.6 tends to have horizontal color lines).

Removing Outliers Block-matching methods tend to provide noisy disparity maps when there is a matching ambiguity, e.g., for repeated structures in the images or on poorly textured areas. Inspired by the well-known cross-checking in binocular stereovision [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF] (i.e., comparing left-to-right and right-to-left disparity maps), our method can also remove unreliable estimations comparing all possible estimations. Since a large amount of views are available from a Light Field, it is straightforward to rule out inconsistent disparities. More precisely, points (u 0 , v 0 ) are considered unreliable if

Std p ,p ∈Υ arg min d ZSSD p ,p (u 0 , v 0 , d) > , (2.8)
where Std stands for standard deviation and is the accuracy in pixels. In practice, we consider an accuracy of an eighth of a pixel, = 1 8 and a block size of 13 × 13.

Sub-pixel Disparity Estimation

The baseline between the plenoptic views is small by construction, specially between views with close positions in the matrix. So the disparity estimation for plenoptic images must achieve sub-pixel accuracy. Such precision can be achieved in two different ways: either by upsampling the views or by interpolating the cost function. Usually the first method achieves better accuracy but at a higher complexity burden, unless GPU implementations are preferred [START_REF] Drazic | A precise real-time stereo algorithm[END_REF]. For this reason, the cost function interpolation is usually used. However, it has been proven [START_REF] Sabater | How accurate can block matches be in stereo vision[END_REF] that block-matching algorithms with a quadratic cost function as in Eq. 2.3 achieve the best trade-off between complexity and accuracy only by firstly upsampling the images by a factor of two and then interpolating the cost function. We follow this rule in our disparity estimation algorithm.

Dispariy-Guided Demosaicking

Given a target view of the matrix of views that we aim to demosaick, the idea is to gather all color information from all the pixels from all the views imaging the same point in the scene. First we consider the matrix of views with horizontal filled colors as explained in Sect. 2.2.1. Then, if the target view has a missing color at a given pixel (I ch (u, v) = ∅) we estimate it as

I ch (u, v) = M ed p,q I ch p,q (u p , v q ) / ∈ ∅ , (2.9)
where ch=r,g,b is the color channel and (u p , v q ) denotes the corresponding points of (u, v) in the other views I p,q . In order to find corresponding points the filtered disparity estimates are used. Note that after demosaicking with Eq. 2.9, it may remain some missing colors. For this reason a further low-complexity demosaicking method recovers the missing colors without introducing color artifacts. In particular, a bilinear color value interpolation of neighboring pixels on the same view is used.

Experimental Results

In this section we show the results obtained with our algorithm. First of all we have compared the disparity maps obtained with and without demosaicking the raw image. Intuitively one can think that demosaicking the raw image will get better results since more information is available on the views. However we observe in Fig. 2.8 that this is not the case. Fig. 2.9 shows the demultiplexing and disparity estimation results for a Lytro image. In particular, we observe the obtained color pattern when demultiplexing directly the raw data without demosaicking it beforehand. In a zoomed version of this image, Fig. 2.9-(d) shows the result of horizontally filling empty pixels when the neighbor pixels have the same color information. This simple processing does not cause any image artifact. In this figure, we also compare the different disparity maps when using our algorithm only with the views of the same column, the views of the same row or all the views in Υ. Note that the computed disparities from views of the same column are more prone to errors compared to disparities views of the same row. This is because the color pattern between two blocks in the same row are more similar than in the same column (color patterns on the views tend to have horizontal color lines). However, it is clear that considering all the views gives the best disparity map.

In Fig. 2.10 we compare our resulting demosaicked images with the method in [START_REF] Tao | Depth from combining defocus and correspondence using light-field cameras[END_REF] that demosaicks raw images. So, our demultiplexing mosaicked data strategy not only avoids artifacts on disparity maps but also on full RGB view rendering. Similarly, in Fig. 2.11 we show the resulting demosaicked views with our pipeline and we compare our results with the method in [START_REF] Dansereau | Decoding, calibration and rectification for lenselet-based plenoptic cameras[END_REF]. Note that in our results the letters are easily readable while important artifacts appear on the results from [START_REF] Dansereau | Decoding, calibration and rectification for lenselet-based plenoptic cameras[END_REF]. Besides, our method takes into account the microlenses Light Field sampling avoiding aliasing on the views. Finally, the Coffee image also shows the same view obtained by demosaicking the raw data as it was a conventional image and then demultiplexing with the same algorithm (instead of demultiplexing and then demosaick as we propose). As mentioned beforehand, the results suffer from view cross-talk and aliasing. 2.3 A New Pipeline for Type 2 Cameras

Calibration on the Fourier Domain

In order to estimate the microlens centers (C x , C y ) we consider again Eq. 2.1 but contrary to the approach we had with type 1 plenoptic cameras, here we estimate the microlens diameter D, the offset o and the rotation α, in the Fourier domain. In fact, our approach leans on the observation that a white plenoptic image I w can be modeled as a sum of three 2D cosines, oscillating at different angles:

I w (x, y) = 1 3 2 j=0 cos 2π D c j (x, y) ,
(2.10)

c j (x, y) = cos jπ 3 +α (x-o x ) + sin jπ 3 +α (y-o y ).
Consequently, its Fourier transform F (I w ) is a Dirac comb function from which we can estimate all calibration parameters α, D and o directly. Indeed, the microlens images diameter and the rotation are computed as

D = N 1 6 6 i=1 ρ i , (2.11) α = 1 6 6 i=1 mod θ i , π 3 , (2.12) 
where θ i and ρ i are the polar coordinates of ξ i , i = 1, . . . , 6. the peaks (local maxima) of F m the magnitude of F (I w ), N is the size of the white input image and mod is the modulo function. Fig. 2.13 illustrates the white images I w and its Fourier magnitude F m for a synthetic (ideal) case and a real captured white image with our Raytrix camera. Then, the lines along which the three cosines oscillate, intersect at the offset phase o (see Fig. 2.12). Considering only three peaks out of the total six not being symmetric, we define the oscillation lines as The Fourier transform of an ideal white image is a perfect Dirac comb with six peaks ξ i , i = 1, . . . , 6; at a constant frequency radius. On the real white image many replicas appear. Our algorithm selects the six concentric peaks with highest energy.

L i=1,2,3 (x) := x sin θ i + π 2 -y cos θ i + π 2 + F p (ξ i ) 2π = 0 , ( 2 

Depth Estimation

Unlike other depth estimation methods, our strategy is to compute a focus map which gives the in-focus value of each pixel without using defocus cues but stereo matching. The novelty is that we first compute a so-called stereo focal stack and perform stereo matching for each of the pairs of images of the stereo focal stack. The obtained disparities are combined to obtain a focus map.

Stereo Focal Stack Computation

A focal stack is a collection of images focused at different depths. In order to render each image slice I s of the focal stack, refocused at the focal value s, we use the projection algorithm as in [START_REF] Fiss | Refocusing plenoptic images using depth-adaptive splatting[END_REF], [START_REF] Yu | An analysis of color demosaicing in plenoptic cameras[END_REF]. This is, each pixel (x, y) of the raw plenoptic Light Field R lf belonging to the microlens with center coordinates (C x , C y ), is projected at position

(X, Y ) = h s(x -C x ) + C x , h s(y -C y ) + C y , (2.14)
where h controls the size of the rendered image. Formally, the refocused image is computed as

I s (m, n) = 1 W (m, n) x,y K(X -m, Y -n)R lf (x, y) , (2.15) where W (m, n) = x,y K(X -m, Y -n) , (2.16) 
and

K(u, v) = 1 u 2 +v 2 , if ||(u, v)|| < 0.5 0 , otherwise.
(2.17)

K being a fixed kernel with a very small support.

A stereo focal stack is rendered using Eq. 2.14 and Eq. 2.15 but separately for pixels (x, y) belonging to the left part and the right part of the microlens images (see Fig. 2.14). This strategy creates a stereo pair of images I s l and I s r for each focus value s. The size h depends on the desired image size. A too large h leads to a low density in the refocusing plane of the projected points (X, Y ), requiring interpolation to fill the areas with no splatted pixels. In contrast, if h is too small, small details will be lost. Also, given a fixed size h, the spatial resolution on the refocus plane depends on the depth of the scene as pointed out in [START_REF] Yu | An analysis of color demosaicing in plenoptic cameras[END_REF]. In practice, h is chosen to be a good compromise for the range of depth values in the scene and the range of s is picked manually depending on the scene content. Besides, after fixing h, the projected points (X, Y ) falling outside the refocus image plane are not considered, so all slices on the focal stack have the same size. Also inspired by [START_REF] Yu | An analysis of color demosaicing in plenoptic cameras[END_REF], demosaicking is done during the rendering step, so the color channels separately are projected with Eq. 2.14. ). For each s, I s l and I s r is a rectified pair of stereo images such that points at the focus plane s appear sharp.

Focus Map Estimation from the Stereo Focal Stack

In the following the pixels coordinates will be omitted but note that images, and focus and disparity maps are defined for each pixel (m, n).

Proposition 1. Let s f be the value for which a certain scene point is in-focus. Then, for any focus value s, the difference between s and s f is proportional to the disparity d s of this point in the stereo pair of images I s l and I s r . Also, a point appears in-focus in the refocused images I s l and I s r (i.e., s = s f ) if and only if its corresponding disparity is null (d s = 0).

Proof. Let us consider a scene point seen by two microlenses (Fig. 2.15). The same reasoning is valid for more microlenses but we consider only two for the sake of clarity. Let x 1 and x 2 be the x-coordinates in R lf of this point and δ the distance between them. Using Eq. 2.14 we know that for each s, the disparity d s of the corresponding points in I s l and I s r is

d s = X 2 -X 1 = h(s(x 2 -C 2 )+C 2 ) -h(s(x 1 -C 1 )+C 1 ) = h(s(δ -D) + D) .
(2.18) Now, d s = 0 if and only if

s = D D -δ , (2.19)
which turns out to be the value s f for which a point is in-focus (i.e., image points of a same scene point are projected at the same position). From Eq. 2.18 and 2.19 we get the relationship between the refocusing parameter s used for rendering and s f the value at which the point is in-focus

s = 1 h(δ -D) d s + s f . (2.20)
From the previous proposition we know that there is a linear relationship between s and d s and estimating the focus s f is equivalent to estimating the value s such that d s = 0. In practice, s f is estimated as the root of the line passing through two points (s 1 , d s 1 ) and (s 2 , d s 2 ) for two particular focus values s 1 and s 2 . Precisely,

s f = d s 2 -s 2 d s 1 -d s 2 s 1 -s 2 .
(2.21)

In order to compute Eq. 2.21, it is sufficient to render two pairs of stereo images at s 1 and s 2 and to estimate the corresponding disparities d s 1 and d s 2 with any binocular stereo algorithm robust to blur. In our case, we have used the algorithm presented in [START_REF] Drazic | A precise real-time stereo algorithm[END_REF] because it is multi-scale (thus robust to blur), real-time and accurate. 
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Depth-Based Rendering

Refocusing Inspired by [START_REF] Fiss | Refocusing plenoptic images using depth-adaptive splatting[END_REF] and [START_REF] Liang | A light transport framework for lenslet light field cameras[END_REF] we define a splatting kernel K to be used instead of K in Eq. 2.15. K adaptively changes for each point of the scene. In particular, we exploit the focus map obtained previously to define a Gaussian splatting kernel

K (u, v) = exp - (X -u) 2 + (Y -v) 2 λ |s f (u, v) -s| + ε , (2.22)
where ε is a very small value to avoid dividing by zero and λ controls the ratio among the spatial distance to (X, Y ) and the s focus difference. The Gaussian kernel K aims to penalize distant points from (X, Y ) while its standard deviation results from the difference in absolute value between the refocusing value s and the in-focus value of the point s f (u, v).

The idea behind the weighting is that the kernel K has a small support when the point is in-focus (i.e., s = s f (u, v)). On the contrary, the farther s is from s f , the bigger the support of K which increases blurriness at that particular point. Besides, the splatting strategy also helps to densify the rendered image. Indeed, we know that in particular cases several values of (x, y) are projected to the same point (X, Y ) or different values of (X, Y ) but very close from each other creating areas with few, or no pixel contributions [START_REF] Yu | An analysis of color demosaicing in plenoptic cameras[END_REF].

One problem that rises, when using splatting is the spreading of background out-of-focus pixels intensities on foreground pixels, creating unwanted artifacts around edges of foreground objects. To overcome this issue we use a bilateral filter. We alter the kernel such that background pixel values are not propagated on the kernel area where the depth is inferior to the depth of the splatted pixel. The depth reshaped kernel is defined as

K = K • 1 s f where 1 s f (u, v) = 1 , if s f ([X], [Y ]) > s f (u, v), 0 , otherwise. (2.23) Thus, 1 s f is not null when the point (u, v) is behind ([X], [Y ]
). The refocusing is performed as in Eq. 2.15, replacing K with K .

All-in-Focus Rendering Splatting can also be seen backwards. Instead of spreading the ray values around the splatting coordinates, it is possible for a pixel (m, n) in the refocused image, knowing s f , to compute the corresponding set of coordinates (x, y) of pixels in the raw Light Field that see (m, n):

(x, y) = u h -C x s f (u, v) + C x , v h -C y s f (u, v) + C y .
(2.24)

We call this approach gathering, in the sense that we aim at integrating ray-pixels from the raw Light Field rather than projecting them into a refocused image. Doing so, we integrate only the pixel describing the same scene point, creating an image that is sharp everywhere. This is similar to the approach proposed in [START_REF] Perwass | Single lens 3d-camera with extended depth-of-field[END_REF], but in our case, the depth information is contained directly in the refocused image domain, not in the raw Light Field domain. Formally, the all in-focus image is computed as

I(m, n) = 1 W (m, n) Cx,Cy K Cx,Cy (m, n)R lf ([x], [y]) , (2.25) 
where

W (m, n) = Cx,Cy K Cx,Cy (m, n) , (2.26) and K Cx,Cy (m, n) = 1 {x} 2 +{y} 2 , if ||(x, y)-(C x , C y )|| < D 2 , 0, otherwise, (2.27)
where {a} is the decimal part of a and K checks if the back-projected pixel is visible on a microlens image of center (C x , C y ) (i.e., it is null if the back-projected pixel coordinates (x, y) is outside of the microlens image) and otherwise, weights the pixel contribution according to its distance from the (non-integer) back-projected image coordinates. Carrying the microlens image visibility test for all microlens images can be extremely heavy. However, a pixel (m, n) can only be seen within a small radius around (m/h, n/h) in the raw Light Field. That is why, in practice, the search for the microlens images can be bounded to few microlenses.

Experimental Results

In our experiments we divide the raw LF by its corresponding white image to correct vignetting, and we fix h = 0.5. Our focus map is neither filtered nor regularized. 

Conclusion

In this chapter we have presented two pipelines that are designed for two different plenoptic camera designs depending on the distance between the MLA and the sensor.

On the one hand, we have presented a complete algorithm to estimate the depth and recover the views of a type 1 plenoptic camera. We have shown that to avoid color artifacts mainly produced by view crosstalk, the raw data requires to be demultiplexed into views of the scene, without being demosaicked. Then, an adapted block-matching method for plenoptic data is proposed to estimate pixel disparities and they are used to demosaick the views.

On the other hand, we have introduced a novel pipeline for processing focused plenoptic camera images. First, we have presented a detailed description of our calibration algorithm that fully estimates all parameters in the Fourier domain allowing a fast and robust microlens images center estimation on white images. Then, we have proposed a new algorithm for depth estimation from a stereo focal stack. Our algorithm does not require estimating SAIs or EPIs but can bring into play any stereo algorithm. Moreover, it provides a depth map in the refocused image domain, and does not require any knowledge about the camera parameters (except the microlens images centers, estimated at the beginning of our pipeline). Finally, our image rendering is guided by the estimated scene depth and allows to refocus the images or render all-in-focus images.

Note that our research has been guided by the available plenoptic devices. Indeed, in the early 2010s the available plenoptic cameras on the market were Lytro and Raytrix that had the particularity that the MLA was not well aligned with the sensor. Such plenoptic camera manufacturers assemble individual optic components producing an unavoidable rotation offset between the MLA and the pixel matrix. For this reason, like us, many research works in the field have focused on calibration methods as well as image processing algorithms taking into account such misalignment. However, camera manufacturers can rely on wafer-level fabrication to assemble micro-optical components like MLAs onto pixel matrix with great accuracy. Such ideal plenoptic sensors provide a new paradigm for Light Fields processing since no camera calibration is required and SAIs or EPI's are simply extracted without interpolation. In fact, very simple ideal plenoptic sensors already exist in the consumer market with a reduced angular sampling. This is the case of dual-pixels (comparable to left and right views of stereo camera) in high-end smartphones such as the last models of Samsung since the Samsung S7 [START_REF] Choi | An all pixel pdaf cmos image sensor with 0.64µmx1.28µm photodiode separated by self-aligned in-pixel deep trench isolation for high af performance[END_REF], and DSLR (Digital Single Lens Reflex) cameras such as the Canon 5D MarkIV. We have analyzed the advantages and constraints of ideal plenoptic sensors in [START_REF] Vandame | Plenoptic sensor: application to extend field-of-view[END_REF]. In particular, we focused on the so-called quad-pixel sensor where a micro-lens covers 2 × 2 pixels. In our study, we have described the relationship between the SAIs and the corresponding portions of the main-lens pupil through which light rays photons have travelled.

All in all, plenoptic cameras such as the ones built by Lytro or Raytrix, that addresses a niche market, may not be the type of cameras that will be deployed massively in the future to capture Light Fields. Certainly because the new possibilities they bring come at the cost of limited quality or resolution. However, the existence of such cameras has motivated the research community to push further the technical limitations and important achievements have been done during the last decade. Such research works will be of paramount interest for the new Light Field acquisition systems and applications to come.

Chapter 3

Wide-Baseline Light Fields: Capture and Processing

Introduction

In Chapter 2 we have presented the plenoptic cameras, but Light Fields can also be captured with other acquisition systems such as camera arrays [START_REF] Wilburn | High performance imaging using large camera arrays[END_REF]. Each acquisition system samples the plenoptic function (light rays in the three-dimensional space) [START_REF] Adelson | The plenoptic function and the elements of early vision[END_REF] very differently. In fact, the baseline, the resolution and the number of views makes each acquisition system very specific and suitable for the needs of a given application. The availability of wide-baseline Light Field videos opens the door to new applications such as Free-view Television (FTV) [START_REF] Zhang | Multiview imaging and 3dtv[END_REF] or mixed and augmented reality. In the past, it has already been proved in a number of related papers that camera arrays are also interesting for other applications such as tracking through occlusions [START_REF] Joshi | Synthetic aperture tracking: tracking through occlusions[END_REF], multi-object detection [START_REF] Pei | A novel multi-object detection method in complex scene using synthetic aperture imaging[END_REF], reconstructing occluding surfaces [START_REF] Vaish | Reconstructing occluded surfaces using synthetic apertures: Stereo, focus and robust measures[END_REF][START_REF] Pei | Synthetic aperture imaging using pixel labeling via energy minimization[END_REF], creating All-In-Focus images [START_REF] Yang | Allin-focus synthetic aperture imaging[END_REF] or fast realistic refocusing for sparse Light Fields [START_REF] Huang | Fast realistic refocusing for sparse light fields[END_REF].

In this chapter we focus on camera arrays as a video Light Field capturing system. In particular we present a 4 × 4 synchronized camera rig. Our system belongs to the multi-view category and shares the same assumptions as [START_REF] Furukawa | Multi-view stereo: A tutorial[END_REF] concerning the captured scenes. This is, we assume to capture Lambertian textured surfaces. However, we would like to make the difference between the general multi-view framework in [START_REF] Furukawa | Multi-view stereo: A tutorial[END_REF] and a Light Field multi-view setup. The difference remains in the density of views (and the number of light rays imaging each point of the scene) which requires different algorithms in order to optimally process the data.

Existing Light Field datasets, [Honauer et al., 2016a] [Wilburn et al., 2005[START_REF] Marwah | Compressive light field photography using overcomplete dictionaries and optimized projections[END_REF]] [Kim et al., 2013[START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF][START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF][START_REF] Daudt | Inria lytro illum light field dataset[END_REF], either synthetic or from real acquisition systems (plenoptic cameras, camera arrays or gantries) are essentially still Light Fields. The only exception is the video Light Field dataset recently proposed by [START_REF] Dkaba La | Efficient multi-image correspondences for on-line light field video processing[END_REF] which turns out to be the closest work to ours. [Basha et al., 2012a] also deals with multi-view video but their dataset is not available. The Light Field video dataset we have captured with our camera rig is available to the community1 , providing original sequences, calibration parameters and the pseudo-rectified views.

Along with the dataset, we also have proposed a complete pipeline for Light Field video. The presented algorithms are specially designed to process sparse and wide-baseline multiview videos captured with a camera rig and are completely different compared to plenoptic algorithms. Our pipeline includes algorithms such as geometric calibration, color homogenization, view pseudo-rectification and depth estimation (Sec. 3.2). Such elemental algorithms are well known by the state-of-the-art but they must achieve high accuracy to guarantee the success of other algorithms using our data. Our pipeline outputs the volumetric representation of the scene in the form of Multi-View plus Depth (MVD) which is the set of processed images that form the Light Field and its corresponding depth maps. Finally, in Sec. 3.3 we address the problem of view synthesis to render views that have not originally been captured. In particular we present a compact representation of Light Field videos in the form of an atlas and we demonstrate its efficiency for real-time view synthesis.

Related Work Geometric calibration is a well studied problem [START_REF] Hartley | Multiple view geometry in computer vision[END_REF] but it is generally not addressed by multi-view pipelines even if it is of paramount importance for the accuracy of the sequel processing. Camera manufacturers do not provide this information neither, specially when their cameras are used to build camera rigs. Previous work on multi-camera calibration includes [START_REF] Vaish | Using plane+ parallax for calibrating dense camera arrays[END_REF] that studies a calibration method for planar camera arrays and [START_REF] Xu | Camera array calibration for light field acquisition[END_REF] that assumes a more general camera setup but imposes a rigid constraint between the viewpoints. Other techniques specifically developed for Structure from Motion (SfM) such as Sparse Bundle Adjustment [START_REF] Lourakis | Sba: A software package for generic sparse bundle adjustment[END_REF] can also provide multi-view calibration.

Regarding color calibration, when the cameras are not known, a family of algorithms using image correspondences allows to tonally stabilize videos [Frigo et al., 2016a] or to color homogenize different cameras of the same scene [START_REF] Vazquez-Corral | Color stabilization along time and across shots of the same scene, for one or several cameras of unknown specifications[END_REF]. With the same philosophy, [START_REF] Lu | Spatio-temporally consistent color and structure optimization for multiview video color correction[END_REF] uses spatio-temporal correspondences for multi-view video color correction. Nevertheless, in our pipeline we exploit the fact that we have full knowledge of our cameras and the capture setup. So we have an approach more similar to [START_REF] Joshi | Automatic color calibration for large camera arrays[END_REF] in which a method for calibrating large camera arrays is presented.

All the applications mentioned in the introduction share the fact that they estimate and exploit the depth map of the captured scene. More precisely, in [START_REF] Pei | Synthetic aperture imaging using pixel labeling via energy minimization[END_REF], depth estimation is formulated as an energy minimization problem with an intensity consistency and a smoothness term. In [START_REF] Yang | Allin-focus synthetic aperture imaging[END_REF] a Light Field visibility term is also considered in the energy. In [START_REF] Vaish | Reconstructing occluded surfaces using synthetic apertures: Stereo, focus and robust measures[END_REF] different cost functions for large camera arrays are compared in terms of robustness to occlusions. It is interesting to point out that most of the proposed methods estimate the depth for a viewpoint that is not necessarily one of the available viewpoints in the Light Field. We have observed that this strategy is more prone to errors and instead we estimate a depth map for each available view-point in the Light Field. Finally, in [START_REF] Lu | A survey on multiview video synthesis and editing[END_REF] a survey on multi-view video synthesis and editing is presented.

Concerning view synthesis, traditional methods generate novel views of scenes and objects from an arbitrary collection of images from the scene, which is known as Image-Based Rendering (IBR). Generally, these methods first predict the scene geometry and then generate the novel image from the warped views. There are methods that use the global geometry and compute a mesh from a set of input images [START_REF] Hedman | Casual 3d photography[END_REF]. But it is very difficult to estimate high quality meshes since they are directly affected by geometric inaccuracies of multi-view stereo (MVS) and they suffer from significant artifacts. Usually, manual post-processing is mandatory to remove artifacts from the final meshes [START_REF] Schreer | Capture and 3d video processing of volumetric video[END_REF]. Other IBR methods avoid estimating the cumbersome mesh estimation. This is the case of [START_REF] Chaurasia | Depth synthesis and local warps for plausible image-based navigation[END_REF] that proposes a depth-synthesis approach using graphs operating over an over-segmentation of the input views or [START_REF] Goesele | Ambient point clouds for view interpolation[END_REF] that introduced ambient point clouds to represent areas with uncertain depth. Other methods estimate the novel image without explicitly estimating geometry. [START_REF] Fitzgibbon | Image-based rendering using imagebased priors[END_REF] avoids the explicit depth computation and uses image-based priors and [START_REF] Shechtman | Regenerative morphing[END_REF] uses a patch-based optimization framework. Among the non-learning view synthesis methods for Light Field images we find the variational model from [Wanner and Goldluecke, 2013]. Given the disparity maps at the input views, the energy functional penalizes deviations between each warped input onto the novel position and the unknown view. This term incorporates a mask to account for occlusions. Also, a smoothness term for the novel image using total variation is included. Finally, the state-of-the-art method of [START_REF] Penner | Soft 3d reconstruction for view synthesis[END_REF] generates novel views of plenoptic Light Fields and camera arrays by means of a soft 3D model of the scene geometry. Note that besides traditional approaches, recent view synthesis advances are evolving towards deep learning. A complete description of the corresponding state-of-the-art will be done in Chapter 4 which is dedicated to deep learning Light Field view synthesis.

Multi-View plus Depth (MVD) Computation for Wide-Baseline Light Fields

In this chapter we also consider the two plane parameterization such that the 4D Light Field L(p, q, u, v) has views (p, q) and pixels (u, v). We also consider that the light rays coming from the same scene point should be captured with the same radiance in the different views when the object is Lambertian. This is, corresponding pixels from different views should have the same color. As a consequence, we have included in our pipeline a color homogenization step. Besides, our camera rig has carefully been calibrated. Calibration parameters are used to project the images to a reference plane while removing its distortion. We call such images pseudo-rectified images to differentiate them from epipolar rectified images. Our strategy has the advantage that point correspondences between images can be found with simple translations without the need to deproject in the space and project in a new view each image point, which accelerates our algorithms considerably. Our pipeline also includes a depth estimation step, which provides a depth for each camera. Our algorithm is multi-scale and uses all images for estimating each depth map.

Capture

Our camera rig is made of 16 cameras with sensors manufactured by CMOSIS (CMV2000) and packaged by IDS. The 16 cameras are controlled through the UEye API. Our multi-view Light Field video is fully synchronized. Fig. 3.1 shows our camera setup.

Color Homogenization and Demosaicking

Let RAW c : Ω ⊂ N 2 → N 3 be the c-th captured raw image. In particular,

RAW c = (RAW r c , RAW g c , RAW b c ) , (3.1)
where

RAW g c (u, v) = RAW b c (u, v) = 0 if (u, v
) is a red pixel in the Bayer pattern (and respectively for green and blue pixels). Our goal is to homogenize the color of all captured images with respect to a reference camera c 0 . In order to do so, we describe here all the steps that need to be done before and after capturing the sequences.

• Black level setting -The black level is a hardware parameter that allows to control the pixel sensitivities in total darkness. It is important to tune this parameter for each camera to correctly capture intensities in low light conditions. Indeed, if the black level is set to 0, the sensor looses information because it records an intensity of 0 in dark scenes instead of low intensities. In order to avoid this to happen, we set our camera rig in total darkness (covering the cameras) and we increment the black level of each camera until 95% of pixels record an intensity different of 0.

• Bias map estimation -After the black level setting, we capture a dozen of raw images in total darkness for each camera c. Averaging such captured images for each camera c, we obtain the bias map B c , which records the minimum count for each pixel.

• Aperture rig calibration -In order to calibrate the apertures of the cameras, we first set the desired aperture on the reference camera c 0 . Afterwards, a flat illuminated led panel covered with a diffuser (white scene) is placed in front of the camera rig, so all cameras observe it while white raw images W c are captured with the same exposure time. After subtracting the corresponding bias map to the raw white images, the average intensity µ c is computed:

µ c = 1 |Ω| (u,v)∈Ω ch=r,g,b W ch c (u, v) -B ch c (u, v) . (3.2)
Finally, the aperture rings of the other cameras c = c 0 are tuned until µc µc 0 = 1 ± 0.02.

• Gain map estimation -When the apertures of all cameras are homogeneous, we capture new raw white images for each camera W c,i , i = 1, • • • , N and we compute the gain map as:

G c (u, v) = 1 N N i=1 W c,i (u, v) -B c (u, v) µ c 0 . (3.3)
Then, the raw image corrected with the bias and gain maps is computed as

RAW c = RAW c -B c G c , (3.4)
Figure 3.2: Left: Captured white scene with exposure time of 2ms. Images are demosaicked for the sake of visualization. Before correction the cameras capture a greenish color with many differences for each camera. Right: raw white images after bias and gain map correction. The corrected intensities have been clipped to [200,210] to better evaluate the similarity. Vignetting is also corrected by applying the gain map.

The resulting image is vignetting-free and homogeneous in colors with the remaining images. Fig. 3.2 shows the 16 captured images with our rig of a white scene before and after bias and gain correction. Note that the intensity values of all cameras after correction are very similar and independently of the color channel, meaning that all color channels are homogeneous. However the bias and gain correction may not be sufficient to have homogeneous colors with a different exposure. Indeed, the gain map is estimated with a reference exposure time but not all cameras have the same response with a different exposure. For this reason, we have a last step in our color homogenization method.

• Color correction -In order to be robust to the different exposures, we measure the average µ ch c of each color channel ch and each camera c for different exposures exp. Then, we estimate the regression line via least squares fitting of µ ch c (exp) for each ch and c. Let α ch c and β ch c be the slope and offset of each regression line. In this manner, the color corrected raw images are defined as

RAW ch c (u, v) = α ch c • RAW ch c (u, v) + β ch c . (3.5)
After color homogenization, the images RAW c are demosaicked using the algorithm in [START_REF] Duran | A Demosaicking Algorithm with Adaptive Inter-Channel Correlation[END_REF] which has proved to outperform with respect to the state-of-the-art. In the sequel, the resulting demosaicked images are noted I color c . In order to measure the accuracy of our colorimetric correction we have captured a Mac-Beth color chart. After correcting the images with the aforementioned processing, we have measured the color average of 25×25 homogeneous patches for each color in the MacBeth color chart. We have measured the standard deviation among all views. We have observed that the red channel has a slightly less accurate homogenization (σ r = 2.2 compared to σ g = 0.8 and σ b = 0.9). See Fig. 3.3 illustrating the color correction for some of the MacBeth colors.

Note that the described method needs to be done once for all. Then, the bias and gain maps, as well as the 16 × 3 slopes and offsets α and β are registered and used during each capture. However, if the aperture has to be changed, the homogenization of the aperture needs to be done again before the capture. It is worth noting that the procedure for color correction defines a linear correction which follows the assumption of linear sensitivity of the pixels. It is also interesting to point out that our method aims to homogenize the colors and intensities of all cameras with respect to a reference camera but we have not tried to calibrate our rig to a referent illuminant. In the case that we require such a calibration, it would be enough to calibrate the reference camera with the desired illuminant before we run our homogenization method.

Calibration and Geometry Processing

Our rig has carefully been arranged trying to place the cameras in the same plane, having parallel principal axis and being equidistant (same horizontal and vertical baseline). However, the manual alignment not being perfect, a calibration has been implemented in our pipeline. Intrinsic and extrinsic parameters are estimated with Sparse Bundle Adjustement, based on the software package in [START_REF] Lourakis | Sba: A software package for generic sparse bundle adjustment[END_REF]. The cameras are calibrated to fit a distorted pinhole projection model similar to the one proposed in [Bouguet, 2015]. In particular, the calibration module considers a set of corner pixel positions computed from several checkerboard captured images. Considering a camera, we denote P = [R T] ∈ R 3×4 the camera pose matrix in the World coordinate system and Q

= [R -1 -R -1 T] ∈ R 3×4 its extrinsic matrix. Now if X w is a 3D point in the World coordinate system and X is the corresponding point in the camera coordinate system, then X w = P • X 1 and X = Q • Xw 1 . Let K =   f γ u 0 0 λ • f v 0 0 0 1
  be the intrinsic matrix of the camera, where f is the distance from the optical center to the sensor expressed in pixels, (u 0 , v 0 ) is the principal point, λ is the aspect ratio, and γ is the skew coefficient. Let W be the distortion warping operator that affects 3D points projections in the cameras coordinate system. The radial distortion is expressed as a polynomial function in the plane z = 1m. as

W a b = (1 + λ 1 c 2 + λ 2 c 4 ) a b , where c = √ a 2 + b 2 .
Then, given a 3D point X w in the World coordinate system, its projection in pixel coor-dinates (u, v) in the camera image plane is determined by

  u v 1   = K • W a b 1 , (3.6)
where

  a b 1   ≡ Q • X w 1 . (3.7)
Note that, using homogeneous coordinates

  a b 1   ≡   x y z   ⇐⇒ a = x z b = y z . (3.8)
Image Pseudo-Rectification After calibration, K, W and Q are known for each camera c, which allows to determine for a given depth z correspondent points in different images using Eq. 3.6 and Eq. 3.7. However, the projection and deprojection process has a high computational complexity due to the non linear distortion. In order to accelerate our pipeline, our images are warped such that corresponding points between images are found with simple translations. This assumption stands in our setup because our cameras are almost coplanar. Formally, let I color c be the original color images that have been color corrected and demosaicked, where c = (p, q); p, q = 0, . . . , 3; is the camera index of the camera placed at the p-th column and q-th row of the camera array. From I color c we compute the so-called pseudorectified views I c , which are the projections onto a reference camera c 0 at a reference depth z 0 of the original images I color c . More precisely, the pseudo-rectified images I c are defined at pixel (u, v) ∈ N 2 as

I c (u, v) = I color c (u , v ) , (3.9) 
where

  u v 1   = K c • W c a b 1 (3.10) and   a b 1   ≡ Q c • P c 0 0 0 0 1 •     z 0 K c 0 -1   u v 1   1     , (3.11) 
W c , K c and Q c being the distortion, the intrinsic and extrinsic matrices of camera c, P c 0 the pose matrix of the reference camera c 0 and K c 0 the intrinsic matrix of a virtual pinhole camera derived from K c 0 which skew coefficient and aspect ratio are respectively set to 0 and 1:

K c 0 =   f 0 u 0 0 f v 0 0 0 1   . (3.12)
Note that in order to compute I c in Eq. 3.9, the images I color c need to be interpolated since (u , v ) ∈ R 2 . In our pipeline, a Lanczos kernel has been used for interpolation. Note does not ensure the image domains to be equal. This is, (u , v ) in Eq. 3.9 may not belong to the image domain of I color c . In that case, empty pixels are colored with pure green RGB=(0, 255, 0). Nevertheless, in order to minimize the number of such empty pixels, the reference depth z 0 has been set to an arbitrarily large distance from the cameras.

Using Pseudo-Rectified Images With the notations above, let Z c 0 : N 2 → R be the depth map of the reference camera c 0 . Then, given a pixel (u c 0 , v c 0 ) ∈ N 2 in the pseudorectified image I c 0 , its correspondent point (u c , v c ) ∈ R 2 in I c can be found with a simple pixel translation:

u c v c = u c 0 v c 0 + D(u c 0 , v c 0 ) • δu c δv c , (3.13) 
where D : N 2 → R is defined as

D(u c 0 , v c 0 ) = 1 Zc 0 (uc 0 ,vc 0 ) -1 z 0 1 z 1 -1 z 0 , (3.14)
and (δu c , δv c ) is the disparity shift which corresponds to the shift in pixels between the projected point at depth z 1 = z 0 and the projected point at the reference depth z 0 . Thanks to the coplanar assumption, for each camera c, the disparity shift (δu c , δv c ) is constant over the whole image. Nevertheless, if the cameras are not coplanar, Eq. 3.13 does not stand. For this reason, since our rig may not be perfectly coplanar (Fig. 3.4-(a)), we have evaluated the different pixels positions when computing exact pixel correspondences via projection and deprojection (Eq. 3.6 and Eq. 3.7) and the approximate pixel correspondences via pixel translation (Eq. 3.13). We have measured that in average the difference is only 0.32 pixels at a distance of 1.9m., which is totally acceptable, knowing the computational complexity drop of using Eq. 3.13 instead of shows the largest and the average error per camera.

Therefore, Synthetic Aperture Refocusing can be computed easily. In particular, a refocused image at depth z can be computed with the provided images I c for each pixel (u, v) ∈ N 2 as

S z (u, v) = 1 16 c I c u + d(z) • δu c , v + d(z) • δv c , (3.15)
where

d(z) = 1 z -1 z 0 1 z 1 -1 z 0 .
(3.16)

Depth Estimation

In order to estimate the depth, our pipeline has a multi-resolution matching approach that estimates a depth map for each image of the camera rig. The multi-resolution strategy allows to compute accurately the depth maps in a fast manner.

In this sense, the closest work to ours is [START_REF] Dkaba La | Efficient multi-image correspondences for on-line light field video processing[END_REF]. However our algorithm uses a different similarity measure and does not impose a coherence matching among all views at each scale. Compared to other existing depth estimation methods [START_REF] Vaish | Reconstructing occluded surfaces using synthetic apertures: Stereo, focus and robust measures[END_REF][START_REF] Pei | Synthetic aperture imaging using pixel labeling via energy minimization[END_REF][START_REF] Yang | Allin-focus synthetic aperture imaging[END_REF], our approach is significantly different since depth estimates are not done for one single and virtual view. In our experiments we have observed that this is a key factor on the depth estimation quality.

Correspondence Matching Let us first present the correspondence matching done at each scale of our multi-resolution algorithm. We assume that the images are at the current resolution and we consider the Zero-mean Normalized Cross-Correlation (ZNCC) as the similarity measure. More precisely, we note µ(I(u, v), n) the average of image I in a squared neighborhood of size (2n + 1) 2 centered at (u, v), I(u, v) := I(u, v) -µ(I(u, v), n) and σ(I(u, v), n) the standard deviation of image I in the same neighborhood. We also define

I(u, v, i, j) = I(u + i, v + j) -µ(I(u, v), n) σ(I(u, v), n) . (3.17)
Then, given a reference view c 0 , the ZNCC is defined as

ZN CC(u c 0 , v c 0 , z) = 1 15(2n + 1) 2 c =c 0 n i,j=-n I c 0 (u c 0 , v c 0 , i, j) • I c (u c , v c , i, j) . (3.18) where (u c , v c ) = (u c 0 + d(z) • δu c , v c 0 + d(z) • δv c ).
With the notations above, depth estimation at each image point (u c 0 , v c 0 ) ∈ I c 0 is performed minimizing the cost function

Z c 0 (u c 0 , v c 0 ) = arg min z∈[z min ,zmax] ZN CC(u c 0 , v c 0 , z) . (3.19)
Multi-Resolution Strategy Multi-resolution is a well-know strategy in stereo matching [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF]. Here, we have considered a pyramid in which, by definition, I

c = I c , ∀c, and at each scale k = 0, . . . , K, the image

I (k) c is a downsampling of I (k-1) c
by a factor of 2. Now, if we aim to estimate the depth of a reference view c 0 , we start estimating the depth Z (K) at the coarsest scale K using Eq. 3.19 (for the sake of simplicity we avoid writing the index c 0 ). The cost function is tested for all z = z (K) min + l • ∆z (K) ; l = 0, ..., L where ∆z (K) = (z

(K) max -z (K) min )/L.
Then, for the estimation of Z (K-1) we minimize again Eq. 3.19 but using a different depth range depending on the pixel position. Indeed, for each (u, v) ∈ I (K-1) , we consider the depth estimated values in the previous scale in a given neighborhood

z (K) i,j = Z (K) ( u /2 + i, v /2 + j); i, j = -n, ..., n (3.20)
and the depth ranges z

(K) i,j -∆z (K) 2 , z (K) i,j + ∆z (K)

2

. So, our algorithm minimizes Eq. 3.19 for all

z = z (K) i,j - ∆z (K) 2 + m • ∆z (K) M , i, j = -n, ..., n; m = 0, ..., M. (3.21)
The same reasoning is valid for the next scales until the finest scale k = 0. In our implementation we have fixed a squared neighborhood of size 3 × 3 (n=1), we consider K = 4, L = 50 (subdivisions at the coarsest scale) and M = 2 (subdivisions for the other scales). Note that the initial depth range in the coarsest scale [z

(K) min , z (K) max ] varies for each Light Field sequence.
It is interesting to point out that our depth estimation benefits from the fact that the previous algorithms in our pipeline are extremely accurate, so our simple but efficient algorithm produces precise depth estimates. Therefore, our pipeline does not include any particular filtering of the depth maps. Also, our video sequences are processed independently for each view and without temporal constraints. This strategy allows us to capture and process in a very fast manner Light Field videos.

Dataset and Experimental Results

We provide a set of synchronized Light Field video sequences captured by a 4 × 4 camera rig at 30 fps. Each camera has a resolution of 2048 × 1088 pixels and a 12mm lens. The Field Of View (FOV) is 50 • × 37 • . Fig. 3.6 shows one camera image of one frame of the Light Field sequences we have captured. Our dataset has a number of close-ups sequences that are interesting for some specific use cases such as realistic telepresence. Indeed, recovering 3D accurate information of faces is still a challenging problem because very small errors may create unpleasant results. We have also captured medium angle scenes (Painter, Birthday) and other animated scenes where the movement does not come from a human (Automaton, Theater, Train).

In our dataset, we consider the reference camera c 0 = (1, 1). This is p = q = 1. For each Light Field sequence, we will provide the intrinsic matrix of the reference pinhole camera K c 0 , the reference depth z 0 and the chosen depth z 1 for which the shifts (δu c , δv c ) in Eq. 3.13 are computed. For example, for the sequence Painter, we have chosen z 0 = 100m. and z 1 = 1.630m. and Table 3.1 shows the shifts (δu c , δu c ). Note that, a different shift table has to be computed for each sequence with different calibration settings. Besides, given the geometric position of our cameras in the rig and the fact that they -197.68 -1.22 -198.14 -99.26 -198.89 -198.36 -199.37 Table 3.1: Values of the shifts (δu c , δv c ) for the sequence Painter with the reference camera c 0 = (1, 1). Fig. 3.5 shows the depth maps for the first frame of the sequence Painter. The scene has many different objects and a person walking on it. Fig. 3.7 shows the point clouds obtained with our pipeline for the sequences Remy and Rugby. In particular, since our rig has been calibrated, our 16 depth maps are all projected into a precise point cloud. Our pipeline does not have a proper filtering of the depth maps. Instead, the only manipulation that has been done in the point clouds is to remove completely isolated points and points that have not been coherently estimated by at least half of the cameras (8 cameras). While our camera rig is not intended to provide complete 3D points clouds of objects as 360-camera rigs would do, the visualization of the point clouds from different viewpoints allows to assess the accuracy of our depth estimates.

Computational time Our first goal is to implement an accurate pipeline that precisely captures and manipulates data. We have also implemented our pipeline in GPU to meet the computational time requirements of some applications. In particular, our fast implementation captures data in real time using the registered geometry and color calibration parameters. Demosaicking is done with a linear algorithm in this case. Depth estimation, the step with highest complexity, is performed at 22fps at the full image resolution (2048 × 1088 color images) on an NVidia GTX 1080 Ti and at 32fps on a Nvidia Quadro P6000. Our image rendering for dynamic parallax is achieved in real time in GPU.

Image-Based Rendering

Considering the MVD video representation explained in the previous section, different options for depth-based image rendering are possible. With the formalism we have already described it is straightforward to render novel views. More precisely, the MVD data is turned into a point cloud {X w (c, u, v); I c (u, v)} c,u,v as follows:

X w (c, u, v) = P c •     Z c (u, v) • K c -1 •   u v 1   1     . (3.23)
Then the novel view is rendered by projecting the point cloud onto a virtual pinhole camera defined by its intrinsic and extrinsic matrices K R and Q R . Fig. 3.8 shows an image rendered from a virtual position different from the camera positions of the camera rig using Eq. 3.23. The rendering of such images allows to render the scene with dynamic parallax. Such strategy view synthesis is simple but it is not efficient for Light Field video and does not leverage the multi-view aspect to reduce the error estimates. In the sequel of this section we will present a more effective solution based on a compact representation called AMPI (Atlas of Multi-Plane Images) that requires a limited memory footprint and enables real-time view synthesis of video content with limited computer power requirements.

This approach is built upon the view synthesis method Soft3D [START_REF] Penner | Soft 3d reconstruction for view synthesis[END_REF]]. An important aspect of their solution is that they reconstruct the scene geometry using a discretized projective volume representation. For each voxel, they achieve softness by explicitly modeling confidence. Similarly, the Multi-Plane Image (MPI) representation presented in [START_REF] Zhou | Stereo magnification: Learning view synthesis using multiplane images[END_REF], that consists of a set of fronto-parallel RGBα planes sampled within a virtual camera frustum also slices the scene in depth layers. However, [START_REF] Zhou | Stereo magnification: Learning view synthesis using multiplane images[END_REF]] models transparency at each depth layer rather than confidence which leads to a different method of compositing and rendering. Also, a single representation of the scene is built, instead of one volume representation per input view to further interpolate between them as in Soft3D. Moreover, it is important to point out that Soft3D requires a lot of computation since it is proportional to the number of pixels of the input color images, the number of cameras and the number of slices. The high memory footprint of one scene representation limits the number of views that can hold in memory. Generally, the number of depth slices is beyond one hundred, and must increase to almost a thousand for large camera baselines.

Atlas Computation

The proposed AMPI representation is made of tiles. In particular, depth slices of an MPI are partitioned in regular tiles (patches), and only those being significant with non-null α are kept and backed up into an atlas.

Let us consider the RGB images I c and depth-maps D c (MVD) of the original Light Field with size N x ×N y pixels. Note that the atlas computation can be done with the original images I color c (Eq. 3.9) before pseudo-rectification, but for the sake of simplification, we will note I c the set of input images. Now, we define a virtual camera placed at the center of the original cameras with a view frustum defined as the accumulated frustums of the initial cameras. The object space is discretized into depth planes P s , s = 1, • • • , N s that are fronto-parallel to the virtual camera. Each depth plane corresponds to a depth sampled linearly in 1/z between z min and z max :

z(s) = 1 s( 1 /z min -1 /zmax) Ns + 1 /z min . (3.24)
Then, we define the MPI M of the virtual camera as the volumetric representation of size [e x N x , e y N y , N s ], where (e x , e y ) are the enlargement factors to encompass the frustums of the original cameras. Each slice of the MPI is a RGBα image where the alpha component corresponds to the consensus of the different depth estimates for each point in the object space.

Consensus Let c 0 be one selected camera that is considered temporarily as reference. For each pixel (u, v) from camera c 0 , we consider the light ray originating from the optical center of camera c 0 and passing through pixel (u, v). This light ray intersects the plane P s at point X w in the world coordinate system. Then, this point is projected into each camera c at coordinates (u c , v c ). Now, if [u] is the nearest integer value of u, we consider the 3D points

X c = u c , v c , D c ([u c ], [v c ]
) , ∀c and convert them in the world coordinate system. If P s is the closest plane to X c , then we consider that point X c belongs to slice s and we write sl(X c ) = s. The thickness of slice s is ∆ z = z(s + 1/2) -z(s -1/2). Therefore, the consensus of camera c 0 is defined as

C s c 0 (u, v) = c 1 sl(X c ) = s max c 1 sl(X c ) ≤ s , N , (3.25)
where 1 is the indicator function. The consensus C s c 0 can be thought as the agreement of all the depth-map estimates D c for a given slice s (Fig. 3.9). The value N is to prevent a division by 0. It also ensures that at least N cameras agree to get the maximum consensus of 1. The consensus for a given slice s is computed iteratively for all the cameras c 0 . Also, the consensus is filtered for each camera and slice (bilateral filter) to decrease depth-map errors.

Visibility The visibility V s c 0 softly quantifies how much objects from camera c 0 at slice s are visible (see Fig. 3.9): from fully visible (value of 1) to invisible (null value). The first visibility slice has all pixels set to 1 and the other slices are defined as

V s+1 c 0 = max V s c 0 -C s c 0 , 0 . (3.26)
In practice, one single visibility and consensus slice need to be kept in memory. At each slice, the visibility will be updated. Virtual Image Slice Estimation The MPI of the virtual camera M is built iteratively from the closest to the farthest slice. At slice s, each pixel (u, v) of M s is projected in the object space at (X, Y, z(s)) and projected back to I c at coordinates (u c , v c ). Then, the RGB and α components of the virtual image M s are defined as:

M s rgb (u, v) = c I c (u c , v c ) V s c (u c , v c ) c V s c (u c , v c ) , M s α (u, v) = max c C s c (u c , v c ), c V s c (u c , v c ) , (3.27)
where bilinear interpolation is used (benefiting from the hardware optimization of GPU's) for all non integer pixel coordinates.

Tile Retrieval The volume representation described above is rather sparse since the virtual images M s α are mostly equal to zero. This is because each slice corresponds to a thin depth layer of the object space. The idea behind our compact representation is to keep the significant pixels of the MPI volume and to group them into an image called atlas. Our strategy consist in partitioning each image M s in tiles (patches) of size (N T +1) × (N T +1) and discard the tiles having small α values for all of its pixels. So, if there is at least one pixel (u, v) in tile T such that M s α (u, v) > α min ∈ [0, 1], then the tile T is stored in the AMPI. T tot being the total number of significant tiles kept in the AMPI. Our tiles are scanned from foreground to background slices of the original MPI volume and organized in the AMPI from left to right and top to bottom creating an RGBα image of size N A (N T +1) × T tot /N A (N T +1), where

• is the integer function and N A = 1000 balances the width and height of the atlas (see Fig. 3.10). At each slice the AMPI is updated with new significant tiles. And in practice, N T = 7.

At the same time as the AMPI is filled, pixel correspondances are saved in image A ind of size N A × T tot /N A . More precisely, given a significant tile T ∈ 1, • • • , T tot with position (u, v, s) in the original MPI volume, T is saved in the AMPI at position (T mod N a )(N T + 1), T /N a (N T +1) and A ind (T mod N a ), T /N a = (u, v, z(s)).

Virtual View Computation from MPI

By definition, the novel virtual view is the stack along the z dimension of all slices M s :

I virt (u, v) = s M s rgb (u, v) M s α (u, v) s M s α (u, v)
.

(3.28) Note that M s has already been computed with the virtual camera sampling, so Eq. 3.28 does not require interpolation (see Fig. and A ind instead of using all slices M s . This strategy requires significantly less computations since the size of our atlas is at least 10 times smaller than the size of the original volume.

Besides, the AMPI representation has another important advantage. Indeed, computing several virtual images for Free Viewpoint Navigation does not require to compute an AMPI for a new virtual position. Instead, the perspective projection of the AMPI computed at one fixed virtual position is sufficient, guaranteeing the smoothness of the rendered virtual views (no flickering due to different view estimates). While the AMPI stacking in the z dimension is straightforward, the AMPI perspective projection requires the definition of triangles in the object space as for conventional graphic rendering pipelines. Indeed, after characterizing a projection camera corresponding to the new virtual position, we define two 3D triangles per corresponding tile T . Then, the 3D triangles coordinates (red triangles in Fig. 3.11-(c)) are projected into 2D coordinates (blue triangles) and resampled to the pixel grid of I virt (rasterization) and pixels of the projected triangles (so-called rasterized pixels) inherit the texture associated to tile T .

Conclusion

The eagerness for new technologies such as AR/VR with dynamic parallax and the ability of Image Based Rendering (IBR) techniques to create new images of real scenes has generated great interest in capturing environments from multiple viewpoints. However, multi-view Light Field systems with a great number of views are generally impractical due to the amount of data and the complexity of the capturing system. Even more when Light Field videos are to be captured.

In this chapter we have presented our complete pipeline for accurately capture and process Light Fields. In particular, we have created a dataset that is publicly available since 2017 and has proven to be of interest for the scientific community due to the scarcity of similar datasets. After capturing the dataset, our pipeline creates MVDs which is a generic volumetric representation format. Moreover, we have also presented a more compact representation that we have called AMPI which is the atlas of other well-known volume representations such as the MPI. The advantage of the MPI is that it enables real-time applications and by construction, it guarantees the smoothness of the final renderings.

At this moment we believe that one of the major challenges for the community is to address the problem of Light Field video compression that is beyond the scope of our study. Indeed, many capturing systems generating a huge amount of data and many applications having very constrained transmission requirements, compression is of utmost importance for the technology to become popular. Currently, this topic is being investigated by the MPEG group (MPEG-I Part 122 ) [START_REF] Hinds | Toward the realization of six degrees-offreedom with compressed light fields[END_REF].

Chapter 4

Learning Light Field View Synthesis

Introduction

Deep learning is a booming class of machine learning methods that have proved its superiority in many challenging computer vision problems. In particular, Convolutional Neural Networks (CNN) have permitted several major breakthroughs in view synthesis, which can be seen as a supervised learning problem.

Even though learning view synthesis is still in its early stages and most of the concerned research is quite recent, the literature is already vast. Earlier methods, such as [START_REF] Yoon | Learning a deep convolutional network for light-field image super-resolution[END_REF], jointly models spatial and angular Light Field super resolution with a CNN. [START_REF] Wu | Light field reconstruction using deep convolutional network on epi[END_REF] reconstructs any view of the Light Field given a sparse set of views by using a CNN on epipolar plane images. Similarly, [START_REF] Wang | End-to-end view synthesis for light field imaging with pseudo 4dcnn[END_REF] combines 2D and 3D convolutions applied on epipolar plane images to reconstruct the entire Light Field. From the four corner views of a Light Field, [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF] proposes two CNN to synthesize any view in between. They manually extract features by first warping the input images at different disparity levels and then computing mean and variance at each level. Given these features, the first network computes one disparity map for the unknown view, which is used to warp each corner image. The four warpings are combined through another CNN which outputs the predicted view. In contrast, [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF] aims at reconstructing the whole Light Field given just the center view. A first network estimates a 4D depth map from the input image. This disparity map is used to warp the center view and obtain an initial estimate of the 4D Light Field, which is further refined through a residual network.

Then, as opposed to previous deep learning strategies for view synthesis designed for plenoptic Light Fields, DeepStereo [START_REF] Flynn | Deepstereo: Learning to predict new views from the world's imagery[END_REF] deals with wide-baseline images thanks to a new data representation, namely a Plane Sweep Volume (PSV). More precisely, a PSV consists of a stack of images generated from reprojecting the original image into a reference view at a set of varying depths. In [START_REF] Flynn | Deepstereo: Learning to predict new views from the world's imagery[END_REF], the PSVs of four original images are the input to two different networks, one that outputs for each pixel and depth the probability of that pixel having that depth, and the other generates a color image at each depth plane. The point-wise product between probabilities and color images provides the novel view. Now, very recent state-of-the-art methods [START_REF] Zhou | Stereo magnification: Learning view synthesis using multiplane images[END_REF], [START_REF] Srinivasan | Pushing the boundaries of view extrapolation with multiplane images[END_REF], [START_REF] Mildenhall | Local light field fusion: Practical view synthesis with prescriptive sampling guidelines[END_REF], [START_REF] Flynn | Deepview: View synthesis with learned gradient descent[END_REF]] not only have in common the use of PSVs as network inputs but also the use of Multi-Plane Images (MPI) as network outputs. An MPI, originally introduced by [START_REF] Zhou | Stereo magnification: Learning view synthesis using multiplane images[END_REF] and already described in Sec. 3.3, is a scene representation that consist of a set of frontoparallel planes at a fixed range of depths with 53 respect to a reference coordinate frame, where each plane encodes an RGB color image and an alpha/transparency map.

In [START_REF] Zhou | Stereo magnification: Learning view synthesis using multiplane images[END_REF] the authors develop a method for view extrapolation given two images with narrow baseline, using an encoder-decoder architecture in which the input is composed of one reference view and a PSV of the second view. The network outputs the alpha components of the MPI along with a background color image and blending weights. The final MPI colors consists on blending the color of the reference image with the generated background image using the blending weights. Built upon this method, [START_REF] Srinivasan | Pushing the boundaries of view extrapolation with multiplane images[END_REF] further extends the possible lateral movement and improves reconstructions at disocclusions. A two stage MPI generator network using 3D convolutions is proposed, enabling a variable amount of depth planes. A first 3D encoder-decoder network makes an initial MPI prediction from two input PSVs. After removing the occluded content, a second 3D CNN with a similar architecture outputs the opacities and a 2D flow which is used to sample colors located behind each voxel to force occluded regions not to repeat textures from the foreground. Recently, [START_REF] Mildenhall | Local light field fusion: Practical view synthesis with prescriptive sampling guidelines[END_REF] proposes a different strategy to synthesize novel views given an irregular grid of input images from the scene. The network predicts an MPI per input view and new views are rendered via the blending of neighboring MPIs. Finally, DeepView [START_REF] Flynn | Deepview: View synthesis with learned gradient descent[END_REF] is based on a 2D CNN using a permutation invariant architecture to process the features of each view. Inspired by learned gradient descent methods and residual networks, their solution estimates the MPI iteratively using visual cues.

Problem Statement

Let Ω ⊂ R 2 be an open bounded domain, usually a rectangle in R 2 , and let us consider a Light Field with (N + 1) × (N + 1) views, with N ∈ N, N ≥ 2. Let us denote by I p,q : Ω → R 3 the view at the angular position (p, q), with p, q ∈ [0, N ] and with the (0, 0) image being the one at the top-left corner.

Given the four corner images I 0,0 , I 0,N , I N,0 and I N,N and the angular coordinates (p, q) of any in-between view, the goal is to estimate the view I p,q , this is, we aim at finding a function f such that Îp,q = f (p, q, I 0,0 , I 0,N , I N,0 , I N,N ) . (4.1)

In this chapter we present two deep learning approaches to estimate f for (p, q) = (c p , c q ) the center angular coordinates. Note however, that the same architectures can be used for any value of (p, q). In our first contribution, in Sec. 4.2, we use recurrent neural networks (RNNs). More precisely, we use Long Short-Term Memory (LSTM) networks with the depth as the iterative dimension to render novel views. Then, in Sec. 4.3 we estimate f using convolutional neural networks. We split the problem into feature extraction, disparity estimation and view selection.

Recurrent Neural Networks for View Synthesis

RNNs are a class of neural networks where the output from the previous step is fed as input to the current step. In traditional neural networks, all the inputs and outputs are independent of each other but RNNs are adapted to cases where it is important to know the past estimate to compute the current one (e.g.predict the next word of a sentence). Unlike feedforward neural networks, RNNs can use their internal state (memory) to remember some information about the processed data sequence. A RNN can be thought of as multiple copies of the same network, each passing a message to a successor. Now, LSTM networks [START_REF] Hochreiter | Long short-term memory[END_REF]] are a modified version of RNNs, which make it easier to remember past data in memory and solve the problem of vanishing gradients [START_REF] Hochreiter | Gradient flow in recurrent nets: the difficulty of learning long-term dependencies[END_REF]. A common LSTM unit is composed of a cell, an input gate σ i that filters relevant information in the previous cell output and the current input, an output gate σ o that selects relevant features to pass on to the RNN loop and an update layer T anh u and gate σ u that computes and selects the update to be done to the cell state. In other words, the cell remembers values over arbitrary time intervals and the three gates regulate the flow of information into and out of the cell. Such network structure has several advantages. First and foremost the number of parameters is very small compared with CNNs, since the cells have the same weights. Second, by changing the number of cells, the network can be used with different sequence lengths. Also, the recurrent loop can be run sequentially during the forward pass, making the GPU memory requirement a lot smaller than a conventional CNN.

LSTMs for Light Field View Synthesis

LSTM networks are typically used to process temporal sequences (e.g.text, sound), so each cell is run on temporal steps noted t. If we denote C the cell memory, the cell state is updated from C t-1 to C t by removing information (with a point-wise multiplication) and then by adding new information (with an addition step). In our case, because we are dealing with images, we use convolutional LSTM networks [START_REF] Xingjian | Convolutional lstm network: A machine learning approach for precipitation nowcasting[END_REF], a variant of LSTMs that replaces the matrix multiplication done at each layer with convolutions, making the LSTM cell effectively capturing both spatial and sequence information. The main idea behind our proposal is that, instead of establishing links in the z-dimension of the PSV via a single or multiple layers, we learn how to do it with a RNN. In particular, we learn directly the image to synthesize Îd from the PSV, without any depth or selection map estimation. Fig. 4.1 offers an overview of our cell structure. Each LSTM cell takes as input the 4 corner views projected at the depth plane d and concatenated along the color dimension (the tensor depth of the input is 12). So, we treat the depth dimension of the PSV d as a temporal dimension for traditional LSTMs networks. In our approach, the cell memory is used to encode the most probable color for each pixel of the new view. One could expect our LSTM to behave as follows. The input and update gates σ i and σ u will select the most relevant color features from the previous cell output h d-δ d and from the current PSV slice. The update gate σ u will deduce, from the previous RNN iterations and the current PSV slice color values what color features are unlikely to compose the true new view colors. The update gate and layer σ u and T anh u will then compute the new color features to save, presumably because they are more likely. After the new cell memory state is updated, the output gate σ o will filter out the color features that are important to pass on to the next cell.

Architecture Design and Implementation Details

For all the gates, we use a fixed kernel size of 3 × 3 for all and a depth tensor size of 32. Using fewer filters has a negative impact on the approach performance and interestingly, adding more as well. On the very last RNN iteration, we pass the state of the cell through a simple convolutional layer σ d with a kernel size of 1 × 1 and depth of 3 in order to decode the learned features into the final image. Interestingly, we have noticed that using a deeper decoding step provides drastically worse results. Since the gates of the LSTM are composed of only one layer, the learned filters and update function are rather limited. In order to learn more complex representations of each slice of the PSV, we use a small CNN. In contrast to what has been done in the past [START_REF] Luo | Efficient deep learning for stereo matching[END_REF], we learn the features on the set of four views and not on each view independently. Equally, we do not replace the cell input with the learned features but concatenate them. This is to introduce more context in-between views rather than simple image features, but without replacing the input signal, and in practice, we find out that it improves significantly the results justifying the added parameters. The used network for the feature extraction is a simple CNN composed of 5 layers of 32 depth tensor with a kernel size of 3 × 3. We perform the RNN loop warping the views from foreground to background (as in the rendering step of [START_REF] Penner | Soft 3d reconstruction for view synthesis[END_REF]). Note that reversing the order provides a significantly worse result. Using a bi-directional scheme, as in [START_REF] Schuster | Bidirectional recurrent neural networks[END_REF] gives slightly worse results. We hypothesize this is due to the way the network deals with occlusions, performing an operation akin to z-clipping in the LSTM loop. Finally, because it has been shown to provide sharper image results [START_REF] Mathieu | Deep multi-scale video prediction beyond mean square error[END_REF], our loss function is the L1 difference between the groundtruth image I and the reconstructed image Î at the very last iteration of the LSTM loop: || Îd -I|| 1 . We use Lytro Illum subaperture images as training input and groundtruth. The central 7 × 7 views are extracted from the microlens images, as they do not suffer from vignetting and chromatic aberrations. The PSV is rendered for each integer disparity in the range [-12, 12] for the central view. The groundtruth central view is used as a reference to compute the loss and the test metrics. In order to avoid color and optical aberrations that are specific to each camera, our training dataset is composed of the training dataset of [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF] that we denote Diverse because they are mostly outdoor images from diverse scenarios and 3 other Lytro Illum datasets [START_REF] Sunder Raj | Stanford lytro light field archive[END_REF][START_REF] Rerabek | New light field image dataset[END_REF][START_REF] Daudt | Inria lytro illum light field dataset[END_REF]. The network is trained using ADAM [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF], with a learning rate of 0.0003, and for 200K iterations. We use a batch size of 10 and we train our network on 
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Model Validation

In order to verify that the network learns as expected we employ the following strategy. We manually unroll the RNN loop and apply the decoding layer σ d of the last iteration to the cell memory state at each iteration. Although it is not strictly what the LSTM memory saves, this technique allows us to visualize and understand the iterative process in our approach. On Fig. 4.2, we see that zones that have been in focus in the previous iterations adopt their final color, overwriting the previous features, at a current time step. This is done independently at each scene depth plane, showing that our LSTM strategy learns features about the best color its has seen so far. This result is consistent across the entire test set. Also, we observe a correlation between the artifacts in the selection done at each step and artifacts in the final image. These artifacts mostly occur at the edge of objects (as in the third slice of Fig. 4.2) and usually yield blurred borders in the final image.

Comparisons with State-of-the-Art

The implementation of the Learning-Based View Synthesis (LBVS) [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF] done by its authors is used as a baseline to evaluate our method. We also use their test set composed of 30 Lytro Illum images. Note that, as in their experiments, the interpolation and metrics are computed on the input under-exposed images, but gamma-corrected images are shown. For the sake of comparison, we also re-implemented and re-trained the frame interpolation method in [START_REF] Van Amersfoort | Frame interpolation with multi-scale deep loss functions and generative adversarial networks[END_REF] that we call FIGAN, by adapting slightly for the view synthesis case. This method uses a deep, hierarchical network, estimating an optical flow residual at 3 different scales.

We compare the three approaches for all the images of the test set Diverse. Table 4.1 shows the results for the examples in [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF] and the average for the entire dataset. First, we note that our approach performs better than FIGAN. This is because we rely on full-resolution images for the entire pipeline while in FIGAN the depth estimation is hierarchical and when small details are not well captured in the coarsest scale they are prone Table 4.1: Quantitative evaluation between the approaches of FIGAN [van Amersfoort et al., 2017], LBVS [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF] and our approach using the same test set than [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF]. to disappear from the recovered image. Then, we note that our approach is on a par with LBVS. Visually, it is also hard to distinguish the results from the two approaches. We show a visual comparison in Fig. 4.3 (note that in [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF] an important portion of the image is cropped). We observe that most of their error is contained in the objects boundaries.

Diverse

Our approach suffers slightly less from these artifacts (e.g.with the foreground leaf). This could be explained by the fact that our network has to reconstruct colors, while LBVS warps the input textures. However, in terms of parameters, LBVS has 1, 644, 204 parameters while ours only has 114, 400 parameters.

Towards Variable Baseline View Synthesis

One of the interest of LSTMs is that they can be used on sequences with variable length.

We have shown how generalizable is the proposed network trained on small disparities to a wide disparity setup. We use the Beergarten sequence in [START_REF] Dkaba La | Efficient multi-image correspondences for on-line light field video processing[END_REF], as it is close to a Lytro Illum sequence (i.e.a rectified Light Field with the same vertical and horizontal baseline). The PSV is composed of 43 slices against 25 for the Lytro case. On Fig. 4.4 we notice that the results are not as good as for the densely sampled dataset, but the network exhibits the same behavior at each iteration, even if it has not trained for this kind of data.

Learning Occlusion-Aware View Synthesis for Light Fields

Inspired by other current state-of-the-art methods [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF][START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF] that use CNNs for view estimation, we split the view synthesis problem into feature extraction, disparity estimation and view selection and use three different convolutional neural networks, one for each purpose. In our approach, features extracted from the four input images are concatenated and used to estimate disparity. Then, input views are warped according to this disparity and four selection masks that will serve to perform a weighted average of the four warpings are estimated. In the following we will detail each network.

Architecture Design

Features CNN Compared to [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF] that extracts features manually, we use a convolutional neural network for this purpose. The features extraction network (f e ) is applied independently to each input image to compute a feature volume with 32 channels for each one of the four input views. These features should not depend on the image being processed and therefore weights are shared across all views.

The network f e consists of a sequence of five convolutional layers with 3 × 3 kernels, including one residual block [START_REF] He | Deep residual learning for image recognition[END_REF]. Average poolings with kernels 16 × 16 and 8 × 8 are then used to extract features at different scales, providing the network of more global information. Features from different layers are concatenated and finally fused with 3 × 3 convolutions. All convolutional layers are followed by an ELU activation and batch normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF]. This architecture is a simplified version of the feature extraction stage proposed in [START_REF] Chang | Pyramid stereo matching network[END_REF].

Let F i,j = f e (I i,j ) be the computed feature volume for image I i,j , for i, j ∈ {0, N }. Then, the four volumes are concatenated,

F = (F 0,0 , F 0,N , F N,0 , F N,N ), (4.2)
and this 128-channel volume F is the input to the next stage.

Disparity CNN We assume that the views of the Light Field are arranged on a regular grid. Then, horizontal and vertical disparities are the same for consecutive views and thus the same estimated map is used in both components. For the same reason, disparities between each corner view and the virtual view are the same and one common map for the four images should be enough. In practice, however, the matching problem is not defined at occluded areas and, since occluded pixels are different depending on the view, it results in different disparity maps. Therefore, in contrast to [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF], we let the network to estimate four different disparity maps d i,j depicting the displacement between I i,j and the virtual view Î, for i, j ∈ {0, N }.

The disparity maps d = (d 0,0 , d 0,N , d N,0 , d N,N ) are computed from the angular position of the novel view and the four feature volumes, F, through network f d ,

d = f d (F). (4.3)
This network consists of seven convolutional layers, all of them with a filter size of 3 × 3. The first four ones use dilated convolutions at rates 2, 4, 8 and 16, respectively. The use of dilated convolutions permits to combine features at different resolutions and provide the network with more context. All layers but the last one use an ELU activation function and batch normalization. Last layer uses the hyperbolic tangent as activation function and no batch normalization is applied. The tanh rescales the output into the range [-1, 1]. Then, the output disparity is multiplied by a constant d max , which is the maximum allowed disparity magnitude. This way the output disparity will be in the range [-d max , d max ]. For Lytro images, this value is set to d max = 4.

Image Warping

The estimated disparity is used to warp each corner view in order to have them registered with the virtual one. Let I w i,j denote the warped image for view I i,j . Then, for all i, j ∈ {0, N },

I w i,j (x, y) = I i,j x + (i -c p )d i,j , y + (j -c q )d i,j , (4.4) 
where (c p , c q ) are the angular coordinates of the central view and d i,j is evaluated at pixel (x, y). Warped images and disparity maps are concatenated to form the volume W, W = (I w 0,0 , I w 0,N , I w N,0 , I w N,N ). Selection CNN The task of the selection network (f s ) is to determine the contribution of each warped image I w i,j to the final result. This will be achieved by computing four selection masks (m 0,0 , m 0,N , m N,0 , m N,N ) = f s (P, Q, W, d) such that m i,j (x, y) ∈ [0, 1], for all i, j ∈ {0, N }, and

i,j∈{0,N } m i,j (x, y) = 1, ∀(x, y) ∈ Ω. (4.6)
Then, the predicted view is computed as a weighted average of the four warped images using as weights these selection masks, Î(x, y) = i,j∈{0,N } m i,j (x, y) I w i,j (x, y).

(4.7)

The selection network f s consists of seven convolutional layers with 3 × 3 filters. All layers but the last one are followed by an ELU and batch normalization. At the last layer we use tanh and do not use batch normalization. Besides, at the last layer we also apply a softmax normalization along views, x) , ∀i ∈ {1, 2, 3, 4}, (4.8) with x = (x, y) and v i being channel i of the conv6 layer. With the softmax we ensure that the sum of the selection weights over the four views equals one at each pixel. Moreover, we let the network to learn the parameter β. High values of this parameter encourage the network to select a single view, which is important at those areas that are only visible in one of the four images. The network has to be able to detect which regions of the novel view are also visible in the four corner ones. With these masks we discard inaccuracies in the warped images coming from occluded pixels. After training the network, the learned value is β = 8.01.

σ β (v i (x)) = e βv i (x) 4 i=1 e βv i (
Loss Function for Network Optimization The loss energy function proposed to train the model consists of two terms. The first term penalizes deviations between the reconstructed view and groundtruth image and the second imposes the output image to have similar spatial gradients to the groundtruth to better preserve image textures:

E d = I -Î 1 , E g = ∇I -∇ Î 1 . (4.9)
Then, the proposed loss function writes as

E = E d + λ g E g , (4.10)
where we experimentally set λ g = 0.5.

Implementation Details

The model has been implemented using TensorFlow. We train the networks on Lytro Light Fields which have a spatial resolution of 540 × 372. We select 7 × 7 centered views out of 14×14. The four corner views of these 7×7 are the inputs to our method. We randomly extract 192 × 192 patches from the training images to train the model. The network is optimized using the ADAM solver [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with β 1 = 0.9, β 2 = 0.999, = 1e -08, a learning rate of 0.001 and a batch size of 3. Weights are initialized randomly using the Xavier method [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF] and the softmax β is initialized to 1. The method converges after 300K iterations and it approximately takes 1 day and 20 hours on a GeForce GTX 1080 Ti GPU. At test time, it takes less than 2 seconds to synthesize a 540 × 372 image.

In our study we use two different datasets of Lytro Illum images. On the one hand, the dataset from [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF]] that we denote Flowers, which consists of 3343 images of flowers. We randomly divided it into 3243 images for training and 100 for testing the model. On the other hand, the Diverse dataset [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF] containing 100 Light Fields for training and 30 for testing. When reading the images, we apply a gamma correction with γ = 0.4 to both datasets. For the experiments in this section, when nothing specified, the used dataset for training is Flowers.

Experiments

Fig. 4.5 visually illustrates the performance of the proposed model on one example of the Flowers test set and for three different angular coordinates for the novel view. As it can be seen, disparity maps are sharp at all depth discontinuities but they are more blurred at occlusions. At occluded regions, the warped views will be inaccurate. However, with the selection network we are able to discard occluded pixels. Occluded parts are equal to zero in the selection masks and more weight is given to the areas that are visible in only one view. Also, we can appreciate how the selection network has a preference on choosing the warped View (1, 1) To compare our method with other methods, Table 4.2 reports quantitative evaluation compared to the recent learning-based view synthesis method in [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF] (LBVS) and the approach proposed by [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF]] (4DLF). LBVS has been trained on the Diverse training set, while 4DLF was optimized on the Flowers one. The evaluation metrics reported in the table have been averaged over the indicated test set and over the intersection of the views that have to be estimated for the three methods. According to the table, the proposed approach outperforms the other methods in all the metrics and in both datasets.
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Fig. 4.6 visually compares the result from LBVS [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF] with ours. This method uses the same estimated disparity map to warp each corner view. Therefore, disparity maps are less accurate at depth discontinuities than in our case. As it can be seen in both crops, their reconstruction has difficulties at occluded regions, resulting in blurred results and artifacts at these areas. Moreover, the method in LBVS synthesizes the new view using a CNN that outputs the novel color image. In some cases this may produce changes in colors, as it can be noticed in the flower. Besides, their method is unable to recover the tip of the leaf since disparity is not correctly estimated in this thin structure.

In Fig. 4.7 we compare our results with 4DLF [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF]. Inferring a 4D light field from only one view may seem an advantage compared to our method. However, their method does not work properly with other images than flowers and it fails when dealing with complex scenes, where there is more than one object in the foreground. Although both methods have been trained on the same Flowers training set, their method is completely unable to model the geometry of the scene in some cases, resulting in high errors mostly located at object boundaries. On the contrary, our method better estimates disparity, which leads to smaller reconstruction errors. Now, we complete the experimental section with an ablation study of our architecture. and the gradients difference term E g (Eq. (4.9)) and additionally including a term E w that enforces each disparity estimation to be consistent with the warped views: As it is reported in the table, the proposed loss function combining just the reconstruction error and gradients differences outperforms the other settings in both test datasets.

Analysis of the Loss Function

E w = 1 4 i,j∈{0,N } I p,q -I w i,j 1 . (4.11)
Comparison with One Single CNN We compare the proposed approach against using one single CNN to model the view synthesis problem. The implemented single-CNN model consists of a fully-convolutional network of 22 layers with kernel sizes of 3 × 3. Also, as in our disparity network, we use dilated convolutions from the fourth to the seventh layers at rates 2, 4, 8 and 16, respectively. This results in a network with 1.66 millions of parameters.

In Table 4.4 we quantitatively compare both models using the Flowers training set. The single CNN takes in average half a second less than the proposed approach but the performance is significantly worse. As seen in Fig. 4.8, the single CNN reconstruction results are blurry and the network is unable to correctly model the geometry of the scene. We encourage the reader to look at the electronic version of this manuscript to better see the details of the figures in this section.

Advantage of Using Four Disparity Maps

We also show the importance of considering four different disparity estimations compared to the use of one common disparity map for the four views, as it is done in [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF]. In Table 4.4 we quantitatively compare these two strategies to prove that of multiple disparity estimations improves the estimation. Fig. 4.9 illustrates this comparison. The use of a common disparity leads to inaccuracies in the estimation that are located at the union of the occluded parts of the four images. For instance, next to the boundaries of the flower. However, if we look to the case of having four disparities, we can see how the areas of the views corresponding to non-occluded regions are sharp and accurate, while the occluded parts present more difficulties. The effect in the final result is reflected in the error images, where the errors at occlusions are significantly smaller in the case of using four disparities.

Effect of Using the Features CNN Finally, we compare the proposed network against one that does not have a first stage for feature extraction and instead inputs directly to the disparity network the Light Field views, as it is done for instance in [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF]. In this case, in the disparity CNN we include more convolutional layers to have the same number of trainable variables. Table 4.4 reports the gains in performance when using feature extraction and Fig. 4.10 shows a visual example. Without the features network the method produces inaccuracies in the disparity map, which results in a loss of textures and higher reconstruction errors.

Towards Variable Baseline View Synthesis

We have applied the proposed approach to wide-baseline Light Fields. In particular, to Light Field images captured with the camera rig presented in Chap. 3. In this complex case we have to deal with larger disparities than with Lytro Light Fields. Therefore, we cannot use the same networks as for the plenoptic case, since the receptive field of the disparity network will not be enough to match distant pixels.

To increase the receptive field and provide the disparity CNN of more global information without introducing many parameters, we apply the same features CNN f e as before at three different dilation rates for the first five convolutional layers. These dilations are 2, 4 and 8, respectively. The output volumes given from each dilation rate are concatenated along the depth dimension and fused by means of 1 × 1 convolutions to obtain a 32-channel feature volume.

The features CNN outputs a volume for each view. In the previous case, these features were concatenated and were the input to the disparity CNN. Here, as disparities and occluded areas are too large, trying to find correspondences between the four images at the same time might be too difficult for the network. Instead, we propose to compute disparity maps from horizontal and vertical pairs of views separately and then to fuse these disparity estimations by means of a simple convolutional network. With this strategy the disparity network can better establish matches between input images since the overlapping between horizontal or vertical pairs is larger than if we consider the four images at the same time. Once we have computed the four disparity maps, the algorithm follows as before.

The receptive field of the network proposed for the wide-baseline case is 170 pixels, compared to 97 pixels for the plenoptic version. The full model has a total of 2.02 million of parameters to learn. Fig. 4.11 illustrates different view synthesis using the proposed method. It shows very promising results as it can be seen in the figure. The crops from the input views give an intuition of how large are occlusions in each case. In the last example, there are two objects with large disparities and the method is unable to correctly estimate them. This results in a blurred reconstruction and a missing thin structure. This suggests that the receptive field of the network is still not enough to deal with these large disparities. However, the method that was first designed to cope with plenoptic cameras generally yields promising results for this challenging case, being able to detect from each view that parts that are visible in the center one. 

Conclusion

In this chapter we have proposed two learning approaches for Light Field View Synthesis. The first approach has the advantage of the small memory footprint and small number of trainable parameters, without loosing image quality compared to other existing methods. The second approach based on CNNs is closer in essence with other state-of-the-art methods that first estimate depth maps and then blend the warped corner views. However, our novel architecture has proven to outperform existing methods, specially in occlusion areas.

The two proposed solutions have been primarily tailored for plenoptic Light Fields that have small baselines and views that are rectified per se. We have studied with our two networks the view synthesis problem for wide-baseline Light Fields and despite the very promising results, several limitations have arisen. First of all, disparities between the views are larger, so the occlusion regions are broader, making more challenging the recovering of the new view. Then, the different views are captured with a multi-camera setup. So, the views do not have the geometry provided by plenoptic cameras. This is, after demultiplexing, views from plenoptic cameras are assumed to be coplanar with all optical centers placed in regular grid so vertical and horizontal disparities coincide. With a camera rig the rectification of the views as it is known in the stereo (binocular) case [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]] is not possible. Indeed, in the best-case scenario, cameras are accurately placed coplanarly and equidistantly in a fixed camera rig so its rectification errors are as small as possible [START_REF] Sabater | Dataset and pipeline for multi-view light-field video[END_REF], but such ideal physical configuration is arduous and practically unattainable. Current learning approaches circumvent this point using Plane Sweep Volumes (PSVs) as input to the network. In this manner, camera parameters do not need to be supplied to the network and rectification errors are avoided while the epipolar constraint is enforced: by construction, in a PSV corresponding pixels are co-located for a given depth slice. However, the stack of images of a PSV is highly redundant and its computation is memory and time consuming. The number of depth slices of the PSV need to be proportional to the baseline between views. So, for wide-baselines, the number of slices is large, which makes the PSV memory footprint excessive for high resolution images. Because of this reason, state-of-the-art methods that are using PSVs as inputs are constrained to synthetize views with small resolutions. It is undeniable that future research works in the field will need to address this bottleneck and find new forms to provide Light Field data to the networks that are not rectified images or PSVs.

Another future line of research concerns the data representation the network should output. Currently, Multi-Plane Images (MPIs) are becoming increasingly popular for this purpose. MPIs have the advantage to be extremely efficient for view synthesis since rendering different views from an MPI only requires planar transformations with alpha compositing. This capacity enables real-time applications such as VR or AR with dynamic parallax. Besides, synthetizing different views from a single MPI produces smooth renderings, unlike other methods that produce flickering because each (p, q) view requires a new inference with its own artifacts. Furthermore, MPIs are particularly well adapted to represent geometric uncertainty in ambiguous regions creating visually pleasant blur instead of perceptually distracting artifacts. Also, non Lambertian regions are convincingly rendered. In general, MPIs are more flexible than meshes or depth maps and have the capacity to encode a soft representation of the volumetric scene. Despite all these advantages, MPIs causes a memory problem.

Finally, another fundamental aspect to consider is the creation of Light Field datasets to train new architectures. Light Fields allow supervised learning without explicit human annotation but the amount of available datasets is still scarce for deep learning requirements.

Chapter 5

Light Field Editing

Introduction

The volume of data inherent to Light Fields, for all capturing devices, is a real issue for user interaction that requires near real-time processing, potentially on devices having limited computational power such as mobile devices. This becomes even more critical for Light Field videos in terms of running time and memory consumption. Another issue is the ease of use. While users are familiar with 2D image editing, Light Field editing boils down to edit a 3D capture embedded into a 4D signal. So, Light Field editing is a challenging problem that still needs to be thoroughly studied. In this chapter we have addressed the segmentation and over-segmentation of Light Fields as a first stage of Light Field editing.

Image segmentation is a key step in many image processing and computer vision problems. Many powerful solutions for image segmentation have been proposed in the image editing domain to this ill-posed problem. However, user interaction is still necessary to compensate for the lack of high level reasoning of segmentation algorithms. In parallel, the past decade has seen an increasing interest in multi-view content to offer immersive user experiences or personalised applications with higher interactivity, stressing the need to develop new tools to interact with such multi-view content. In our first contribution. in Sec. 5.2. we give a new representation of the Light Field based on a graph structure, where the number of nodes does not strictly depend on the number of considered views, decreasing greatly the running time of further processing. Then, we introduce an energy function for object segmentation using graph-cut on the new graph structure. This strategy provides a coherent segmentation across all views, which is a major benefit for further Light Field editing tasks.

Meanwhile, superpixels have been introduced to circumvent the computational complexity issue in traditional image processing. The term superpixel, first coined in [START_REF] Ren | Learning a classification model for segmentation[END_REF] is often described as the partitioning (or clustering) of image pixels into a set of perceptually uniform regions. Ideally superpixels should be compact (uniform in size), adhere well to the boundaries of objects and be fast to compute. Because of these properties, superpixels efficiently represent the image content and are often used as an alternative to pixel representations. Superpixels allow reducing the computational complexity of many image processing tasks such as object segmentation or object tracking, while providing useful region-based information.

Our goal is instead to propose a solution for unsupervised Light Field over-segmentation which would in addition be angular sampling agnostic and rely less on depth estimation. Our approach is motivated by the observation that, for most editing applications, it might be more important to have accurate object boundaries, even with coarse depth information, than having a refined depth map. In particular, in Sec. 5.3 we introduce the concept of super-ray which is the counterpart of superpixels for Light Fields. The major difference with conventional superpixels and super-voxels is that super-rays group perceptually similar and corresponding pixels across several views. In other words, super-rays are groups of rays of similar color coming from the same scene area. We then propose what we believe to be the first Light Field over-segmentation algorithm. It is inspired by SLIC [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF], a state-of-the-art superpixel generation method with good properties in terms of accuracy over complexity and parallelism.

Finally, we generalize the concept of super-rays to dynamic super-rays for video Light Fields in Sec. 5.4. Our approach is parallelizable to take advantage of a GPU implementation, it processes different frames sequentially and on-the-fly, so the memory footprint is reasonable and the dynamic super-rays are consistent not only across views but also across frames in the temporal dimension.

Related Work

In the literature, few papers focus on interactive Light Field editing. One solution consists in propagating the user edits. In [START_REF] Jarabo | Efficient propagation of light field edits[END_REF] the Light Field and input edits are first downscaled using a clustering based on color and spatial similarity. While the complexity problem is solved, the propagated edit greatly depends on the quality of the clustering. On the other hand, the solution of [START_REF] Seitz | Plenoptic image editing[END_REF] relies on a space voxelisation to establish correspondences between rays of different views. The approach has been demonstrated on circular Light Fields but needs dense user inputs.

Concerning Light Field segmentation, two approaches have been proposed. In [START_REF] Berent | Unsupervised extraction of coherent regions for image based rendering[END_REF], [START_REF] Dragotti | Efficient segmentation and representation of multiview images[END_REF] and [Berent and Dragotti, 2007a], level sets are used to extract objects with coherent depth in a scene. The method is fully automatic but is unfortunately limited to layer extraction. In [START_REF] Wanner | Globally consistent multi-label assignment on the ray space of 4d light fields[END_REF], the authors use a random forest to learn a joint color and depth ray classifier from a set of input scribbles on the central view. The output of the random forest classification is then regularized to obtain a segmentation close to the groundtruth on synthetic images. Nevertheless, the authors report an important running time for the regularization, over 5 minutes on a modern GPU, to compute the segmentation on 9 × 9 views of size 768×768.

The problem of extracting one or more visible objects in a set of images has been addressed in the co-segmentation and multi-view segmentation literature using Markov Random Fields (MRF) and graph representations. The authors in [START_REF] Rother | Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs[END_REF]] present a co-segmentation approach which extracts a common object from a set of images. Other approaches build an appearance model based on color [START_REF] Rother | Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs[END_REF] or more advanced cues [START_REF] Mukherjee | Scale invariant cosegmentation for image groups[END_REF] and then use a MRF for each view to iteratively extract the objects with the graph-cut technique [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF]. In [START_REF] Hochbaum | An efficient algorithm for co-segmentation[END_REF], the authors propose to model explicitly the correspondences between pixels that are similar in appearance by linking them to an introduced similarity node. Image geometry has also been used in a similar way to establish correspondences between pixels of the different views. Indeed, to avoid handling a space voxelisation [START_REF] Reinbacher | Fast variational multi-view segmentation through backprojection of spatial constraints[END_REF], pixels or superpixels are linked directly using epipolar geometry [START_REF] Campbell | Automatic object segmentation from calibrated images[END_REF] or as in [START_REF] Djelouah | Multi-view object segmentation in space and time[END_REF] where extra nodes, corresponding to 3D scene samples, are used to propagate the labelling across a set of calibrated views. Equally, in [START_REF] Sormann | Graph cut based multiple view segmentation for 3d reconstruction[END_REF], a graph structure is used to propagate a presegmented silhouette, assumed constant, to another view. Those works show how powerful MRF modelling is to represent arbitrarily defined relationships between arbitrarily defined nodes. However, the problem of Light Field segmentation differs from those approaches in two points. First, the Light Field views are much more correlated than in co-segmentation and multi-view segmentation, therefore labelling consistency can be furtherly enforced. Second, where multi-view and co-segmentation considers a relatively limited number of views, Light Fields typically consist in a dozen to a hundred of views, causing a serious increase in running time during the energy minimization part. For instance, a straightforward implementation of [START_REF] Boykov | Graph cuts and efficient nd image segmentation[END_REF], using one node per ray of the Light Field and a simple 8-neighbourhood on the four Light Field dimensions, has a high computational complexity (about one hour of computation for a Lytro Light Field image). This is the approach of [START_REF] Mihara | 4d light-field segmentation with spatial and angular consistencies[END_REF] in which the authors admit memory and computational time issues and experiment with only 25 of the 81 available views.

Regarding over-segmentation, many superpixel approaches have been proposed which can be classified into two main categories (see [START_REF] Van Den Bergh | Seeds: Superpixels extracted via energy-driven sampling[END_REF] for an overview). The first type of methods concerns graph based approaches [START_REF] Shi | Normalized cuts and image segmentation[END_REF], [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF], [START_REF] Moore | Superpixel lattices[END_REF], [START_REF] Veksler | Superpixels and supervoxels in an energy optimization framework[END_REF], [START_REF] Zhang | Superpixels via pseudo-boolean optimization[END_REF]. While these methods offer a good accuracy, they either do not provide control on the shape of superpixels, are either very computationally expensive or are not parallelisable, hence not suitable for our applications. The second category of approaches, which are usually faster than graph-based solutions, aims at growing or evolving existing superpixels. This category includes a variety of methods such as the multi-scale watershed segmentation approach proposed in [START_REF] Meyer | Multiscale morphological segmentations based on watershed, flooding, and eikonal pde[END_REF], the turbopixels which segment the image into a lattice-like structure of compact regions by dilating seeds [START_REF] Levinshtein | Turbopixels: Fast superpixels using geometric flows[END_REF], and the quick shift clustering technique [START_REF] Vedaldi | Quick shift and kernel methods for mode seeking[END_REF]. In the latter category, one also finds the SLIC [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF] and the SEEDS [ [START_REF] Van Den Bergh | Seeds: Superpixels extracted via energy-driven sampling[END_REF] methods for superpixels on which we focus for our Light Field over-segmentation. In particular, Simple Linear Iterative Clustering (SLIC) superpixels [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF] rely on a reformulation of Loyd's algorithm for the k-means problem with two novelties. First, the distance metric is a weighted sum of the CIELab color distance and the Euclidean pixel distance. Second a search window around the centroid is used to reduce the complexity of the algorithm. This approach has been extended in [START_REF] Wang | Structure-sensitive superpixels via geodesic distance[END_REF] to take into account a geodesic distance between pixels. Color and spatial information are integrated along the shortest path between two pixels in order to guarantee compactness, color consistency and connectivity. SEEDS superpixels [ [START_REF] Van Den Bergh | Seeds: Superpixels extracted via energy-driven sampling[END_REF] take quite the opposite approach. The method starts from a regular, coarse grid segmentation, and iteratively updates blocks of pixels at the edge for the current segmentation. That update is done such that each block can change its superpixel labelling if it decreases a total energy function of the color distribution of the superpixels. The block size is reduced along the iterations at a given rate.

Over-segmentation has also been studied for reducing the complexity of video analysis tasks. Two main categories of approaches exist for video over-segmentation, either considering a set of consecutive frames as a volume or processing either image separately and updating superpixels as a new frame arrives. In [START_REF] Xu | Evaluation of super-voxel methods for early video processing[END_REF], super-voxels are computed for a set of consecutive frames. The authors assess five super-voxel algorithms in terms of spatio-temporal coherence, object and region boundary detection, region compression and parsimony. Redundancy between frames in the temporal dimension is hence exploited to construct the super-voxels as it is in the inter-view dimension for multi-view data. The authors in [START_REF] Levinshtein | Spatiotemporal closure[END_REF], [Chang et al., 2013a], [START_REF] Reso | Temporally consistent superpixels[END_REF], [ [START_REF] Van Den Bergh | Online video seeds for temporal window objectness[END_REF], [START_REF] Reso | Fast label propagation for real-time superpixels for video content[END_REF] instead try to compute temporally consistent superpixels. The approaches hence consist in updating the superpixels as each frame arrives, either by deleting, creating or updating superpixels to account for the scene motion. Optical flow is equally often used both as an additional clustering information, but also when large displacements are involved. Although applicable to densely sampled Light Fields, the first kind of approaches is likely to fail in the case of sparsely sampled Light Fields as they usually fail for videos in the case of large object displacements. The second type of approaches applies to Light Fields but does not exploit the fact that object displacements from one view to the other is, due to the scene geometry, uniform.

Light Field Segmentation with a Ray Based Graph

In this section, we define the proposed graph structure to perform the Light Field segmentation.

Free Rays and Ray Bundles

We consider an input Light Field L(p, q, u, v) represented with the two plane parametrization. Let r i be a light ray represented by its 4D coordinates (p i , q i , u i , v i ) in the Light Field. We note (u j , v j ) := P Z p j ,q j (u i , v i ) ∈ R 2 the spatial pixel position in view (p j , q j ) imaging the same scene point, at a distance Z, as (u i , v i ) in view (p i , q i ). This is, (u i , v i ) and P Z p j ,q j (u i , v i ) are corresponding points imaging the same scene point in different views. In particular, in the case of a uniformly sampled Light Field we have

P d p j ,q j (u i , v i ) = d (p i -p j ) + u i , d (q i -q j ) + v i , (5.1) 
where the depth Z is replaced by the disparity d by abuse of notation. However, if the Light Field has been acquired with a camera array, P should take into account the extrinsic and intrinsic matrices of each camera. With this framework, we note r i ∼ r j the corresponding rays imaging the same scene point, where r j := (p j , q j , P d p j ,q j (u i , v i )). Now, the depth (or disparity) of a given ray d r i is an estimation along p and/or q in the adjacent views. For instance, using traditional disparity estimators for sparsely sampled Light Fields, or by studying intensity variations on epipolar images [START_REF] Wanner | Globally consistent multi-label assignment on the ray space of 4d light fields[END_REF] for densely sampled Light Fields. Thus, we define a ray bundle b i as the set of all rays describing the same 3D scene point, according to its depth measurement d r i . Formally, two rays r i and r j belong to the same bundle if and only if they satisfy the left-right coherence check [P

dr i p j ,q j (u i , v i )] = (u j , v j ) , [P dr j p i ,q i (u j , v j )] = (u i , v i ) , (5.2)
where [x] denotes the rounded value of x. A ray bundle gathers all rays emitted by the same 3D scene point according to their local depth measurement. On the contrary, a ray is called free if it has not been assigned to any ray bundle. Generally free rays correspond to occlusions or light rays having wrong depth estimates. Now let R be the set of all free rays and B the superset that contains all ray bundles. In this setup, if LF denotes the set of all rays (i.e., the Light Field), regardless if they are free or not, then LF = R ∪ B. 5.2)). Similarly r 4 and r 5 are assigned to b 2 . On the contrary, r 3 has an incoherent (noisy) depth estimate and is classified as a free ray and not as a ray of b 1 . Finally, the red scene point occludes the green scene point in the first view, so r 6 is also classified as a free ray and not as a ray of b 2 .

Graph Construction

For constructing the graph, we need to define the neighbouring relationships between free rays and ray bundles. Let N (r i ) be the 4-connect neighbourhood of r i on each view, this is the set of rays {r j , r k , r l , r m } with r j of coordinates (p i , q i , u i -1, v i ), r k of coordinates (p i , q i , u i + 1, v i ), r l of coordinates (p i , q i , u i , v i -1) and r m of coordinates (p i , q i , u i , v i + 1). One ray r i is neighbour of a ray bundle b i if and only if one ray element of b i is neighbour of r i :

r i ∈ N (b i ) ⇐⇒ b i ∩ N (r i ) = ∅.
(5.3)

Similarly, two ray bundles b i and b j are neighbours if they have at least one element in the neighbourhood of the elements of each other, i.e., b i ∩ N (b j ) = ∅.

(5.4)

Finally, we build the graph G = {V, E} where each node V corresponds to either one element of R or one element of B, and the edges E are defined by the neighbouring relationships between two rays, two bundles, and between rays and bundles:

     V = B ∪ R , E = (r i , r j ), r j ∈ N (r i ) ∪ (b i , r i ), r i ∈ N (b i ) ∪ (b i , b j ), b i ∩N (b j ) = ∅ , ∀r i , r j , b i , b j ∈ V .
(5.5) The main motivation behind our graph construction is to reduce the amount of data to process compared to a naive graph (one node per light ray). With our approach, in the best case scenario, when the depth is perfect and almost all light rays are grouped in bundles, the number of nodes of our graph is roughly divided by the number of views with respect of the number of nodes of the naive graph (minus the occlusions). This is of a particular interest for problems that need global or semi global optimisations, such as image segmentation, which are usually not solvable in polynomial time (they are NP-complete problems).

The strategy of keeping free rays which are not grouped in bundles allows the use of a relatively coarse, and fast, depth estimation methods. With our approach, a low quality depth estimation only affects the number of free rays compared to the number of ray bundles, increasing the running time, but it has limited impact on the segmentation quality. However, one problem arises when two rays r i and r j have wrong depth estimates, while still satisfying the left-right coherence check (Eq. 5.2). In practice, these errors do not have many consequences on the overall result, since the mismatch usually happens on rays having very similar appearances, thus likely to belong to the same object.

Energy Function

The goal is now to express the energy function for the segmentation such that it takes into account the proposed hybrid graph structure. Let us denote L the labelling function that assigns a label α to each free ray and ray bundle. The energy we seek to minimise is of the form:

ϕ L = r i ∈R U (r i ) + b i ∈B U (b i ) + τ r i , r j r i ∈R, r j ∈N (r i ) P (r i , r j ) + b i , r i b i ∈B, r i ∈N (b i ) P (b i , r i ) + b i , b j b i ∈B, b j ∩N (b i ) =∅ P (b i , b j ) , (5.6)
where U denotes the data terms and P the smoothness terms. As, in conventional noniterative graph-cut, τ is the parameter that balances the data term with the smoothness term. In practice, we find the labelling L that yields the minimum energy using the alpha-expansion algorithm [START_REF] Kolmogorov | What energy functions can be minimized via graph cuts[END_REF][START_REF] Boykov | An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[END_REF].

We now give the details of the energy function terms.

Unary Energy Terms An annotated image is obtained by asking the user to draw scribbles of different colors over the objects he wants to segment on the reference view of the Light Field. We call I S the scribble image of the same size as the reference view. Each pixel value under a scribble represents a label code (from 1 to the number of scribbles) and 0 otherwise. These scribbles are used to build a color and depth model for each free ray and ray bundle using the following approach.

Defining and learning a color and depth model jointly is still an active research problem. Color and depth are by nature hard to fuse because they represent different physical attributes. One solution is to learn a separate color and depth model and use a weighted fusion for classification, but that introduces extra data-dependent parameters to be either fine-tuned [START_REF] Dal Mutto | Scene segmentation by color and depth information and its applications[END_REF] or approximated [START_REF] Mutto | Fusion of geometry and color information for scene segmentation[END_REF]. On the other end, multivariate Gaussian Mixture Models (GMM) have proven to be efficient to model color. The learning step of GMM however can be very time consuming depending on the number of mixture components. Fortunately, 5 to 8 components have been shown to be enough for most cases [START_REF] Rother | Grabcut: Interactive foreground extraction using iterated graph cuts[END_REF]. In our approach, a joint color and depth GMM is learnt for each label. A fixed number of K = 8 components is used to infer the GMM with the Expectation Maximisation algorithm [START_REF] Bilmes | A gentle tutorial of the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models[END_REF]]. While mixtures of Gaussian are sub-optimal to infer depth, previous work [START_REF] Harville | Foreground segmentation using adaptive mixture models in color and depth[END_REF] has shown convincing results and we will see that it suffices to demonstrate the interest of the proposed graph structure. Now, since our segmentation method is a human-guided task, we first convert the input Light Field from RGB to CIELab color-space to have a perceptually uniform color distance in the segmentation process. Let the color value of a ray r i be denoted Lab r i . Then, the color of a ray bundle is defined as the average color of its element rays

Lab b i = 1 |b i | r i ∈b i Lab r i .
Similarly, the depth of a bundle is the mean depth of its components

d b i = 1 |b i | r i ∈b i d r i .
The data term of a ray bundle b i for a label α is then defined as the negative log likelihood of the bundle joint color and depth probability P to belong to an object of label α, i.e. the data term is computed as

U (b i ) =        -log P Lab b i , d b i |L(b i ) = α if ∃r i ∈ b i , I S (r i ) = 0, ∞ if ∃r i ∈ b i , I S (r i ) = α, 0 otherwise.
(5.7)

The joint color and depth probability P is computed from the GMM. In Eq. (5.7) above, we use the input scribbles as hard constraints by setting U (b i ) to 0 and ∞ if at least one of the rays of b i is under a scribble. Unfortunately, the depth information for free rays is unreliable. To compute P we assume the color and depth values for a given ray to be independent. Hence, we can compute the probability P of the 3-dimensional sample r i from the 4-dimensional multivariate mixture Gaussian by removing the depth component from the covariance matrix and mixture component means. Similarly to ray bundles, the scribbles are used as a hard constraint to compute the unary term for free rays as

U (r i ) =        -log P Lab r i |L(r i ) = α if I S (r i ) = 0, ∞ if I S (r i ) = α, 0 otherwise.
(5.8)

Pairwise Energy Terms Because of the new graph structure, we need to define three types of pairwise energy terms (edge weights): between two rays, between one ray and one bundle and between two bundles. One of the specificity of the proposed graph structure is that the connectivity between ray bundles depends on the captured geometry of the scene. One solution could be to define ray bundles connectivity from the 3D scene points they represent and keep the free ray pairwise energy as in conventional monocular segmentation. However, the combination of the two terms in a single energy function would require tuning an extra coefficient to balance their relative importance. Moreover, it involves surface reconstruction which is still a challenging and computationally expensive problem. Instead, we propose to derive the energy function from a classical monocular framework. We start from the classical 4-connect neighbourhood to define the pairwise energy for free rays and ray bundles in order to obtain consistent energy terms.

The pairwise term between two rays is not different from the one used in classical image segmentation and is defined from the color distance of the rays:

P (r i , r j ) = 1 L(r j ) =L(r i ) exp -∆E(Lab r i , Lab r j ) σ Lab , (5.9)
where σ Lab is the local image color variance, ∆E the Euclidean distance in the CIELab color space and 1 is the indicator function so that our term is on the form of a contrast sensitive Potts model [START_REF] Boykov | An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[END_REF]. Similarly, since one ray bundle can only have one of its component as a neighbour of a free ray r, the pairwise between a free ray and a ray bundle is defined as:

P (b i , r i ) = 1 L(b i ) =L(r i ) exp - ∆E(Lab b i , Lab r i ) σ Lab .
(5.10)

One specificity of the proposed graph structure is that the connectivity is dependent of the scene geometry. In fact, as illustrated in Fig. 5.2, an occlusion yields a duplicated neighbourhood for points at the border of foreground objects. If the weights on the corresponding edges were defined between two bundles having at least one neighbouring ray (minimal connectivity), red nodes corresponding to points at the border of foreground objects would be more connected to background points than to their foreground neighbours. To overcome this issue, we define the strength of the connections between two scene points as the sum of the color differences of its corresponding rays (summed connection), which is a major twist to conventional pairwise energy design. Doing so, the sum of edge weights at the border of objects compensates for the over-connectivity.

In addition, we use the depth information of each bundle to favor the assignment of the same label to two neighbouring bundles which are on the same depth layer. The bundle pairwise probability term is then expressed as (5.11) where σ Lab and σ d are the local color and depth variances.

P (b i , b j ) = 1 L(b i ) =L(b j ) |b j ∩ N (b i )| exp - ∆E(Lab b i , Lab b j ) σ Lab - (d b i -d b j ) 2 σ d ,

Experiments

We first perform a quantitative evaluation of our Light Field segmentation approach using the dataset proposed in [Wanner et al., 2013a]. It is composed of four densely sampled synthetic Light Fields with known depth and groundtruth labels, along with a set of predefined input scribbles. The input data contains 9×9 views of 768×768 pixels. We compare the obtained segmentation with the results in [START_REF] Wanner | Globally consistent multi-label assignment on the ray space of 4d light fields[END_REF] using the same input scribbles. Fig. 5.3 shows that our method yields a segmentation which is visually closer to the groundtruth segmentation than the one obtained with the method of [Wanner et al., 2013a]. Tab. 5.1 gives the percentage of successfully segmented rays with respect to the groundtruth. We can observe that this percentage is very close in terms of accuracy to the groundtruth segmentation. It is also close to the one obtained in [START_REF] Wanner | Globally consistent multi-label assignment on the ray space of 4d light fields[END_REF], even if in some cases it can be slightly lower. We have seen that our wrongly labeled pixels (less than 1% of total) are on the 1-pixel wide outskirt of the segmented objects. However, the big advantage of the method is the very significant gain in terms of running time. With a mono-thread CPU implementation of alpha-expansion1 , we perform the optimisation in four to six seconds depending on m, on an Intel Xeon E5640. Using the groundtruth depth, we typically reduce the number of nodes by a factor of 50 (from 4.77 • 10 7 to 8.19 • 10 5 on Budha).

The first row in Fig. 5.4 shows the segmentation result on a 4×4 synthetic sparsely sampled Light Field we generate. The segmentation result is very close to the groundtruth showing Input images and scribbles

GT labels [START_REF] Wanner | Globally consistent multi-label assignment on the ray space of 4d light fields[END_REF] Our results [Wanner et al., 2013a]. From left to right, we show, the input central view with scribbles, the groundtruth labelling, the results in [START_REF] Wanner | Globally consistent multi-label assignment on the ray space of 4d light fields[END_REF]and our results. While both algorithms have a similar performance, in general, our results are more accurate in some challenging cases (see Horses 2).

Budha

that our approach is not limited to densely sampled Light Fields. The approach has also been validated on the real, sparsely sampled Light Field of the Middlebury dataset [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF] Tsukuba. The input Light Field is composed of 5×5 rectified views of 288×384 pixels. We estimate, for each view, a disparity map using the algorithm presented in [START_REF] Drazic | A precise real-time stereo algorithm[END_REF], which is real-time and accurate. More precisely, we only compute 25 right-to left conventional disparity maps for each view, without any fusion of the obtained depth maps. The first row of Fig. 5.5 shows the input image, the scribbles, the depth map and the segmentation result using τ = 20. The segmentation step takes three seconds. As shown on the second row of Fig. 5.5, we further tested the approach on the densely sampled Legos dataset from the new Stanford Light Field archive [Andrew, 2016]. The images have been downsampled by a factor of two to decrease the effect of rectification errors. We see that our approach can handle challenging setups, where very few elements differentiate the scene objects.

We also tested the method on several 3D sparse Light Fields from the Middlebury [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF] dataset. Initially proposed for multiview depth estimation, the Light Fields are composed of seven high resolution views with important baselines. As visible on the three last rows of Fig. 5.5, we see that the free ray strategy copes efficiently with errors in the depth maps, while being able to segment arbitrarily defined objects.

Finally, a major advantage of the proposed method is that a coherent segmentation across all views is available. This is of particular interest for Light Field editing tasks. As an example, we show (see second row of Fig. 5.4) how the obtained segmentation can be used to remove an occluding object from a scene during synthetic aperture refocusing [START_REF] Yang | Allin-focus synthetic aperture imaging[END_REF].

Figure 5.4: Experiments with our synthetic, sparsely sampled Light Field. The first row shows, from right to left, the input image and scribbles, the groundtruth and our result. The second row shows an example of application for the Light Field segmentation: object removal via synthetic aperture [START_REF] Yang | Allin-focus synthetic aperture imaging[END_REF]. From right to left, the obtained Light Field segmentation with only two labels (the object to remove in red), the image refocused using the full Light Field and the image refocused using the segmented Light Field.

Discussion Our experiments allow us to draw conclusions at several levels. First, we show that the proposed framework is an efficient solution to reduce the computational load of MRF-based Light Field processing problems. In terms of accuracy, objective, groundtruth comparison with the state-of-the-art shows competitive results. We also validate our approach on real data, showing the flexibility of the proposed framework and its robustness to faults in depth estimation. The running time for the graph-cut on CPU being of the order of the second, a GPU implementation as in [START_REF] Vineet | Cuda cuts: Fast graph cuts on the gpu[END_REF] will most likely give real-time performances. As a limitation of our approach, we see that it requires a relatively accurate depth estimation on all the views. Indeed, a too incoherent depth estimation will result in too many free rays, greatly increasing the running time but also loosing segmentation coherence. Hopefully, this is mitigated by the fact that research on disparity estimation is nowadays mature, proposing a lot of reliable and fast disparity estimation. Anyhow, the angular neighbourhood concept introduced in [START_REF] Mihara | 4d light-field segmentation with spatial and angular consistencies[END_REF] (for densely sampled Light Fields) or interactive scribbling of several views (for sparsely sampled Light Fields) could be good workarounds.

Input images and scribbles

Estimated Depth Our results , 2002] and [Andrew, 2016].

Tsukuba

Light Field Over-Segmentation

Given a Light Field, our goal now is to group all perceptually similar rays corresponding to the same scene area in the so-called super-rays. Formally, we aim to compute the mapping A : LF ⊂ Z 4 → Z, such that each light ray r of the Light Field is assigned with a superray label γ. We define SR γ the set of rays r such that A(r) = γ. Each super-ray SR γ is characterised by a centroid ray r γ . By definition, the angular coordinates (p γ , q γ ) of r γ correspond to the fixed reference view. Besides, each centroid ray has a depth d rγ (that we will note d γ in the sequel for the sake of simplicity) associated to it.

Method Description

Initialisation and Depth Estimation for Centroids First of all, the spatial positions (u γ , v γ ) of the centroid rays are initialized on a regular grid of step S in the reference view.

The corresponding CIELab color values on such positions are the initial color values of the centroid rays Lab rγ . Then, a depth d γ is estimated for each centroid ray r γ . As this step is important for the rest of the algorithm the depth estimation needs to be robust. Thus, inspired by the recent works on Light Field depth estimation [START_REF] Wang | Occlusion-aware depth estimation using light-field cameras[END_REF], we consider a multi-baseline block-matching strategy with angular patches in order to be more robust to occlusions and fattening errors. Let Ω be the set of angular patches where each patch o ∈ Ω is defined such that o(p, q) is 1 if a ray is visible on the view (p, q), and 0 otherwise. Each angular patch can be seen as a visibility mask. In practice, we define Ω as predefined set of angular patches, one patch that corresponds to the full view visibility and eight patches corresponding to different half view visibilities (top-bottom, right-left and diagonals). See an example for a 3 × 3 Light Field in Fig. 5.6. Hence, the depth for the centroid γ is estimated by minimizing the color distance in the RGB color space using the different angular patches

d γ = arg min d min o∈Ω p,q o(p, q) ∆ B RGB (r γ , r) , (5.12) 
where r = p, q, P d p,q (u γ , v γ ) and

∆ B RGB (r γ , r) = (x,y)∈[-B,B] 2 RGB rγ (x, y) -RGB r (x, y) 2 , ( 5.13) 
is the patch color distance between the patch in the reference view (p γ , q γ ) and the patch in (p, q) = (p γ , q γ ). In particular, RGB rγ (x, y) is the RGB-color value of the ray (p γ , q γ , u γ + x, v γ + y). In this work, we fix B = 3 and we consider 9 angular patches (its size being equal to the number of views in the Light Field). Since the depth is estimated for a few number of points (the centroids), this choice is acceptable for low complexity applications.

Assignment

Step At each iteration, each light ray r = (p, q, u, v) of the Light Field is assigned a super-ray label. First, the depth estimation in the previous step is used to compute the corresponding rays of r γ . Formally, we compute r γ = (p , q , P dγ p ,q (u γ , v γ )) such that r γ ∼ r γ . Then, each ray in a neighbourhood N S (r γ ) of size S around r γ , is assigned to the super-ray SR γ if it minimizes the color and spatial distances:

A(r) = arg min γ ∆ Lab (r, r γ ) + m ∆ uv (r, r γ ) , (5.14) where ∆ Lab (r, r γ ) = ||Lab r -Lab rγ || 2 , (5.15) ∆ uv (r, r γ ) = ||(u, v) -P dγ p ,q (u γ , v γ )|| 2 ; (5.16)
and m is the parameter weighting the color and spatial distance. A visual explanation can be found in Fig 5 .7. Note that, when r belongs to the reference view, r γ = r γ in Eq. 5.14 and our assignment step is equivalent to the SLIC assignment step. However, our approach allows to coherently assign a label to all rays in the other Light Field views.

(p γ , q γ ) (u γ , v γ ) (p i , q i ) P dγ p i ,q i (u γ , v γ ) (p j , q j ) P dγ p j ,q j (u γ , v γ ) S (u, v) ∆ r γ r Figure 5
.7: Assignment step. r is a ray inside the search window of the super-ray SR γ , defined according to the projection of its centroid r γ , P dγ p ,q (u γ , v γ ) in the view where r lies. The color and spatial distance in Eq. 5.14 is denoted ∆.

Experiments

In order to quantitatively evaluate the proposed approach, well-known superpixel quality measures can be trivially extended considering all views, such as the Achievable Segmentation Accuracy (ASA), the Boundary Recall (BR) [START_REF] Neubert | Superpixel benchmark and comparison[END_REF] or the Corrected Under-segmentation Error (CUE) [ [START_REF] Van Den Bergh | Seeds: Superpixels extracted via energy-driven sampling[END_REF]. However, these measures do not evaluate the coherence through the Light Field views. For this reason, we introduce a new evaluation measure called View Consistency (VC). This new measure assumes that the groundtruth depth d is known and uses it to select the light rays to consider. Indeed, given a light ray r, our measure aims at evaluating the assignment consistency for the set of corresponding rays imaging the same scene point as r:

L (r) = r ∈ LF (u , v ) = P d(r) p ,q (u, v), (u, v) = P d(r ) p,q (u , v ), (p , q ) = (p, q) . (5.19)
Note that the reprojection check using the groundtruth d takes into account the occlusions and guarantees that L (r) contains light rays imaging the same scene point. This definition is very similar to the left-right coherence defined in Eq. 5.2 but considering the groundtruth depth instead of local depth estimates. Therefore, we define

V C(A) = 1 |LF | r∈LF 1 |L (r)| r ∈L (r) 1 A(r)=A(r ) (5.20)
This metric is somehow related to the Inter-Frame Label Consistency [Chang et al., 2013a] for superpixel evaluation in the case of videos, but instead of computing the consistency from frame to frame using the groundtruth optical-flow, we measure the consistency between all Light Field views simultaneously using the groundtruth depth.

(p γ , q γ ) (p i , q i ) (p j , q j ) (u i , v i ) P dγ pγ ,qγ (u i , v i ) (u γ , v γ ) P dγ pγ ,qγ (u j , v j ) (u j , v j )
Figure 5.8: Update step. Each ray of the super-ray SR γ is reprojected on the reference view using the depth of the super-ray. Here we show r i and r j being reprojected on the reference view (p γ , q γ ). The projection are averaged, giving the new centroid ray position on the reference view (u γ , v γ ). Green means good score while red represent bad score. For the sake of readability, the axes are flipped differently for each metric.

Our quantitative evaluation is performed on synthetic datasets, with segmentation and depth groundtruth. We use the dataset in [START_REF] Wanner | Globally consistent multi-label assignment on the ray space of 4d light fields[END_REF], that is composed of 9×9 densely sampled views of 768 × 768 pixels (Papillon 2, Horses 2, Stilllife 2, Budha). We also use our own datasets: Scene 4, which is a 4 × 4 sparsely sampled views of 640 × 360 pixels and Tricycle, which has 5 × 5 views of 640 × 480 pixels.

First, we observe that our approach converges in 10-15 iterations, similarly to SLIC, as shown in Fig. 5.9, for both dense and sparse Light Fields.

We compare the proposed super-rays construction method with what we would obtain by separately computing superpixels on each view, and then merging superpixels having the highest number of corresponding rays across views. In particular, we use the groundtruth depth in the synthetic datasets to re-project rays onto the central view, and we then merge the superpixels of different views with the superpixels on the central view having the highest number of re-projected rays (V C is maximised). Fig. 5.10 and Fig. 5.11 show the superiority of our strategy compared to the merging of independent super-rays. Fig. 5.10 shows the behaviour of the four quality metrics (ASA, BR, CUE, VC), when varying the different parameters, i.e., the size S of the super-rays and the compactness parameter m, for the dataset Scene 4. We observe in Fig. 5.10a that when increasing the values of S and m, the super-rays do not well segment the objects in the scene, as it was observed with SLIC superpixels. We also remark that ASA, BR and CUE have similar behaviours with similar numerical values when varying S and m, but the proposed metric VC has an opposite behaviour. Indeed, decreasing S and m decreases the view consistency. This can be explained by the fact that decreasing S and m increases the number of super-rays, hence of super-ray edges near which rays are more prone to labelling errors. So, the view consistency decreases. Fig. 5.10b shows that merging independent superpixels has no impact on the superpixel metrics (ASA, BR, CUE) as one may expect, but view consistency is severely deteriorated. The same observations generalizes to the rest of our test set. Fig. 5.11 shows how the two approaches compare when fixing one of the parameters. To be able to compare Light Fields of different spatial resolution, we use k, the number of visible super-rays per view. Once again, we observe very close results when changing k and the spatial weighting parameter m for the ASA, BR and CUE. However, enforcing the super-rays to have the same centroid ray imaging the same scene point, yields superpixel consistency across views. Our approach allows the segmentation consistency to be independent of the k and m parameters, whereas when computing superpixels on each view, one superpixel on a view can be described at two (or more) disjoint pieces of superpixels on another, depending mostly on the initial seeding.

The other thing we notice is the significant difference in terms of over-segmentation performance between densely sampled and sparsely sampled Light Fields. The over-segmentation of sparsely sampled Light Fields is less consistent across views, and usually slightly less accurate than for dense Light Fields. This can be explained by errors in the initial depth estimation, leading to some inconsistent super-rays. Fig. 5.12 and 5.13 show the super-rays constructed by the proposed algorithm, with m = 1 for the smoothness parameter and S = 15 and S = 20 for the superpixels size respectively. Note that we only display 3 × 3 views for the sake of readability. Each super-ray is reassigned a random color, the projection of each centroid ray on the different views is represented with a small cross. Qualitatively, the super-rays on each view look like regular superpixels. We invite the reader to zoom in to see that the super-rays are consistent from one view to another. We see that super-rays are overall consistent from a view to another, despite occlusions. 

Light Field Video Over-Segmentation

The proposed approach is inspired from techniques proposed to generate temporally consistent superpixels [START_REF] Reso | Temporally consistent superpixels[END_REF], [START_REF] Chang | A video representation using temporal superpixels[END_REF], that can be decomposed into three main steps: (i) initialize the current frame segmentation by temporally propagating the segmentation of previous frames, (ii) adapt the segmentation to changes in geometry, and (iii) create and delete segments to take into account occlusions and objects entering or leaving the scene. Our algorithm is illustrated in Fig. 5.14.

Sparse Temporal Propagation

Computing a dense and accurate optical flow for Light Fields can be a quite tedious task, especially when memory and time requirements are taken into account. Moreover, because super-rays embed a depth information per segment, the problem we aim to resolve is a scene flow estimation problem. That is, we aim to find the displacements of 3D points in the scene rather than pixels shifts in the image plane. Fortunately, in the case of super-rays, the scene flow estimation needs to be estimated only for centroids and not for all rays of the Light Field. One way of computing the scene flow (δ u γ , δ d γ ) with u = (u, v) is to compute exhaustively a cost function for each possible motion vector. However, this 3-dimensional cost function being quite expensive to minimize, we have split the problem into optical flow and depth estimation, like other methods for Light Field scene flow estimation in the literature [START_REF] Basha | Structure and motion from scene registration[END_REF], [START_REF] Srinivasan | Oriented light-field windows for scene flow[END_REF]. Now, in state-of-the-art optical flow estimation methods Deep Flow [START_REF] Weinzaepfel | DeepFlow: Large displacement optical flow with deep matching[END_REF] stands out for its performance in terms of quality and run-time [START_REF] Baker | A database and evaluation methodology for optical flow[END_REF]. Deep flow first searches for sparse matches using Deep Match [START_REF] Revaud | Deepmatching: Hierarchical deformable dense matching[END_REF] between downsampled versions of the input frames, and then the matches are densified by regularizing a selected set of sparse matches. Deep Match has many properties which are interesting for our problem. It is robust and efficient since it can be implemented on GPU and the matches are searched in a limited local window. Thus, we solve the sparse flow estimation using deep matches. In contrast to Deep Flow, we do not seek to obtain a dense and precise optical flow, but rather a robust and fast sparse flow for each centroid.

We compute the set of deep matches [START_REF] Revaud | Deepmatching: Hierarchical deformable dense matching[END_REF] from two downsampled frames f and f + 1. Then, the estimated flow δ u m = u f +1 m -u f m , using the deep matches in the full resolution coordinate system, is used to compute the flow of each centroid δ u γ using a simple and fast bilinear interpolation. Precisely, δ u γ is the distance-weighted average flow δ u m of its 4 nearest matches. Using the notation above, the depth is updated using the same strategy as we have done for the super-rays (Eq. 5.12): where r f +1 is the light ray with coordinates (p, P d p (u)) with p = (p, q) in the frame f + 1 and Ω is a family of spatio-angular patches.

Centroid Creation and Deletion

Because of object movements in the scene, the super-ray topology can change in time. For instance, parts of the super-rays can be occluded or disoccluded, or completely appear or disappear due to objects entering or leaving the scene. For this reason, creating and deleting super-rays might be necessary. While the superpixel size or color consistency has been used to determine the creation or deletion in other research works, we propose to leverage the depth information associated to the super-ray to detect occlusions and disocclusions.

In particular, a new super-ray is candidate to be created at the midpoint of two superrays when their centroid distance exceeds a given threshold S * ν. Conversely, a super-ray will be a candidate to be deleted if two super-rays are too close from each other, this is their centroid distance is lower than a threshold S/ν. In particular, the occluded super-ray (with the smallest disparity or biggest depth) is the candidate for deletion. For the sake of efficiency, and to avoid duplicates, we search the candidate centroids to be deleted or created in a 4nearest neighborhood, computed as illustrated in Fig. 5.14. Specifically, the approximate neighborhood of a centroid γ is defined as N (γ) = {γ lef t , γ right , γ up , γ down } where (5.22) and similarly for the other neighbor centroids. Now, in order to maintain the number of super-rays constant, we create the same number of super-rays we delete. If the number of candidates for deletion is smaller (resp. bigger) than the number of candidates for creation, only the centroids with the biggest (resp. smallest) centroid distance are created (resp. deleted). Finally, because objects can move inside or outside of the reference view, the super-rays near the image borders are treated as follows. New super-rays are created in the reference view between the image borders and the closest centroids. For instance, if a centroid γ does not have a neighbor γ right , a new centroid will be ( uγ +Nu 2

γ lef t = arg min γ |v γ -v γ | s.t. u γ < u γ , |v γ -v γ | < S ,
, v γ ), N u being the reference view width. Super-rays that leave the reference view image plane are automatically deleted.

Note that the centroid neighborhood can be used for further processing, as it is a convenient way of representing the super-rays structure.

New Frame Over-Segmentation

In the new frame, after defining the set of centroids in the reference view, all the rays of the Light Field are assigned to a centroid. Similarly to super-rays, the assignment is done using Eq. 5.14 in an iterative process with color and position centroid updates. While the centroid color is updated with the same color average strategy as super-rays, the centroid position update changes for dynamic super-rays. So Eq. 5.18 becomes

u f +1 γ = λ |SR f +1 γ | r∈SR f +1 γ P dγ p γ (u f r ) + (1 -λ)(u f γ + δ u γ ), (5.23) 
where λ is a parameter controlling how much the super-rays are allowed to move from their theoretical position. When λ = 1, this step corresponds to the same SLIC iteration as in Eq. 5.18, and when λ = 0, the super-ray centroids are not updated at all, providing the best temporal consistency. Newly created centroids (as described in Sec. 5.4.2) are updated using λ = 1, allowing them to adapt to scene changes.

In [START_REF] Reso | Temporally consistent superpixels[END_REF], five SLIC iterations are run, where the centroids are allowed to move freely. As a consequence, superpixels of static objects tend to move since they are affected by the creation, deletion and movements of nearby superpixels. On the contrary, our dynamic super-rays movement is congruous with the objects movement in the scene, providing a more consistent temporal over-segmentation.

Experiments

As an effort to quantitatively assess the efficiency of the proposed approach, we use the Monka dataset proposed in [N. et al., 2016], composed of groundtruth images, disparity, optical flow and object labels for pairs of cameras. This can arguably be considered as a small Light Field, but to the best of our knowledge such dataset does not exists for more than 2 views. We use the standard superpixel quality metrics [START_REF] Neubert | Superpixel benchmark and comparison[END_REF] (ASA, BR, UE) along with a Temporal Consistency (TC) measure, which is the analog of the angular consistency (Eq. 5.20) in the temporal dimension.

We compare our approach with static super-rays computed on each frame and put into correspondence using the groundtruth optical flow such that the TC is maximized. In average, we find the dynamic super-ray to be slightly better for classical over-segmentation metrics but not significantly so. This can be explained by the fact that at each new frame, the previous over-segmentation is re-used, meaning that each frame iteration is refining the previous segmentation. However, we see that super-rays computed separately give worse temporal constancy, despite being advantaged by the fact that superpixel matching is perfect. The cameras baseline is quite important, especially for the second dataset. We use a fixed set of hyper parameters, that we did not fine tune for each sequence. Fig. 5.15 shows the output of our algorithm for a small area of the dataset Birthday. For the sake of visualization, results are only shown for two views, the reference view p γ = (1, 1) and another view p = (1, 0), and three non-consecutive frames f = 95, 100, 105. For each view, we show the input image with the optical flow only on the reference view (top left), the color-coded assignment (top right), the super-ray average color (bottom left) and finally the super-ray contours (bottom right).

We compare our method with the algorithm in [START_REF] Reso | Temporally consistent superpixels[END_REF] which is the stateof-the-art for temporal consistent superpixels on videos. Note that in this experiment we focus on the temporal aspect since computing superpixels on each of the views separately does not guarantee angular consistency. Fig. 5.16 shows this comparison on five frames, f = 260, 262, 263, 264, 265, of the central view. In particular, on the top row, we show the neighborhood structure described in Sec. 5.4.2. Each centroid appears as a blue dot, and horizontal and vertical neighborhoods are illustrated with cyan and magenta edges respectively. Centroids of deleted super-rays are represented in red, while new super-rays are represented in yellow. The second and third rows correspond to our results and the results of [START_REF] Reso | Temporally consistent superpixels[END_REF] respectively. We observe that the update step in [START_REF] Reso | Temporally consistent superpixels[END_REF] allows the superpixels on the static background to move freely. On the contrary, our super-rays are not moving so the scene movement is consistent with the super-rays movement. We believe this is a major benefit if dynamic super-rays are to be used in further editing tasks.

Besides the qualitative comparison with [START_REF] Reso | Temporally consistent superpixels[END_REF] we have also observed considerable differences in terms of computational complexity. Depending on the datasets, the Frames Figure 5.16: Over-segmentation comparison with [START_REF] Reso | Temporally consistent superpixels[END_REF] on the reference view over 5 frames. Our dynamic super-rays (second row) are consistent with the scene movement while the superpixels in [START_REF] Reso | Temporally consistent superpixels[END_REF] (third row) move in static regions.

algorithm in [START_REF] Reso | Temporally consistent superpixels[END_REF] takes several hours and up to one day (using the original implementation) to run for all the frames of a single view video. In our case, the biggest advantage is the GPU friendliness. Indeed, the SLIC-based iterations, the deep flow computation and the super-ray creation and deletion, are highly parallelizable. On the same machine (equipped with a Nvidia GTX 1080 GPU hosted by an Intel Xeon E5-2630 CPU) our current Python/PyOpencl implementation gives an average running time for each iteration of 0.157s and 0.059 to 0.083s (depending on the input size), respectively on our Technicolor/Interdigital dataset and the dataset in [START_REF] Dkaba La | Efficient multi-image correspondences for on-line light field video processing[END_REF]. Further improvements are to be expected by a more optimized implementation.

Dynamic super-rays with the neighborhood structure presented in Sec. 5.4.3 offer a useful representation of the scene captured by the Light Field videos. Temporal super-rays can be seen as a powerful tool for efficient Light Field video editing in which the edits in one reference view of the Light Field can be easily propagated to other frames and views. For example, in [Hog et al., 2017a] it is presented how to use super-rays to generate intermediate views to correct the angular aliasing caused by the poor angular sampling of sparse Light Fields. Similarly, dynamic super-rays can be used for temporal image interpolation without flickering caused by an inconsistent interpolation. Other examples of temporal super-rays applications include Light Field video compression, adapting the approach in [START_REF] Fracastoro | Superpixel-driven graph transform for image compression[END_REF], or Light Field color transfer, using the algorithm in [START_REF] Giraud | Superpixel-based color transfer[END_REF].

Limitations

We have observed that our approach has some limitations, in particular, when the depth or the flow estimation becomes erroneous, the super-ray consistency is not guaranteed from one view to another. Such failure case is visible in the dataset Newspeaker [START_REF] Dkaba La | Efficient multi-image correspondences for on-line light field video processing[END_REF], where a very uniform green background challenges both the depth and flow estimations. When the depth is inconsistent, the centroids are wrongly projected, leading to large areas with no nearby centroid for the rays to be assigned to. The other failure case involves small moving objects, because of our sparse flow computation strategy, the optical flow for small object can be wrongly evaluated to the flow value of its surrounding. This is visible on the dataset Train, where centroids struggle to follow the train wagons.

In conclusion, even if depth and flow estimation are mature research topics we have observed that challenging datasets may still produce inaccurate estimates. In particular, the images in the two datasets suffer heavily from motion blur, noise and over and under exposition. Furthermore, the dataset in [START_REF] Dkaba La | Efficient multi-image correspondences for on-line light field video processing[END_REF] has some large texture-less areas. However, loosing consistency in flat areas is not critical. Indeed, if the zone to edit is totally uniform, the editing become trivial (e.g. using a simple color threshold), dismissing the needs for super-rays in the first place.

Conclusion

In this chapter we have presented three contributions that we have done in the field of Light Field editing concerning segmentation and over-segmentation. All of our contributions take into account the nature of Light Fields, namely a large volume of data that is highly redundant. We have imposed angular and temporal consistency, which is a major advantage for Light Field editing and we have proposed solutions that are agnostic to the acquisition system being suitable for sparse and dense Light Fields. Among our contributions, we have first presented a segmentation algorithm that takes input scribbles to learn a color and depth model for each object to segment. Unary and pairwise terms are defined according to the new graph representation and graph-cut is used to find the optimal segmentation. Then, we have introduced the concept of super-ray building upon the existing superpixels. Our solution is fast, easy to implement, and suitable for GPU implementations. Finally, we have generalized super-rays to dynamic super-rays to propose a temporally consistent Light Field video over-segmentation. Our algorithm design enables again a GPU implementation, allowing computational performances that are required to cope with the high volume of data. To the best of our knowledge, this is the first approach to deal with the problem of video Light Field editing.

All in all, we believe that the proposed algorithms for human-guided segmentation and automatic over-segmentation are of particular interest for other editing problems that are for the moment intractable. In particular we have seen the interest for applications such as inpainting-free object removal and removing angular aliasing in sparsely sampled Light Fields [Hog et al., 2017a].

Chapter 6

Conclusion

I do not want to lose a change to have in some years people (including me) pointing this conclusion with derision for wrongly foreseeing the future. So, here are my unfounded speculations. First of all, I share almost without risk now, Marc's Levoy 1 opinion on Light Field cameras. Almost 15 years ago, he postulated [START_REF] Levoy | Light fields and computational imaging[END_REF] that in the future most consumer photographic cameras will be Light Field cameras. In fact we are not very far away from this being true since many mobile phones, which are nowadays massively used for capturing photos, have already three, four or even five cameras. In less than a decade we have moved from the race to the megapixel 2 to the race to the number of cameras. This trend is also true for DSLR cameras with the dual pixel technology (e.g., Canon). All this devices are examples of current Light Field cameras even with a quite small number of viewpoints. With these trends in mind, it is probably safe to predict that many other Light Field cameras will appear with higher densities.

Furthermore, as it has already started, the technological advances in hardware are going to be coupled with the huge changes that the computer vision community is living with Deep Learning. This opens the door to many applications that now seem unfeasible. I also believe that Augmented or Mixed Reality is going to keep expanding and Light Fields are going to be the natural assets for compelling virtual experiences. While this is already possible with Computer Generated (CG) content, it is very difficult to achieve for similar experiences of real worlds scenes. At the most, immersive experiences of the real world are possible when the captured Light Fields come from a professional and very controlled setup and the processing pipelines are extremely accurate. My guess is that deep learning will break down the technological barriers that impose such constraints. At the same time that more and more Light Fields are going to be captured by non professionals (the so-called User Generated Content), new solutions are going to be deployed to achieve virtual renderings from such uncontrolled Light Fields that may not be accurately calibrated or synchronized.

Furthermore, new emerging display technologies will surely change the way Light Fields are to be employed. For example, Holografika 3 has introduced a multi-projector display, Looking Glass Factory 4 has developed a display using the principle of integral imaging in 3 https://holografika.com/722rc 4 https://lookingglassfactory.com 99 which microlenses are placed in front of a high resolution display and Red5 has launched the Hydrogen One smartphone which has a directional backlight system, a reduced version of the display presented by Leia 3D6 . Besides this existing displays, there are other prototypes exploiting different technologies, such as the tensor displays that replaces the microlenses in the integral imaging by a Liquid Crystal Display (LCD), the near-eye prototype presented by NVIDIA or the micro display tiling proposed by Lightfield Labs7 . The question of rendering Light Fields in new displays goes hand-in-hand with the question of the representation format and data compression technique that should be used. The Multiview plus Depth (MVD) has largely been used but it is cumbersome and has the disadvantage that depth estimates are prone to errors for real captured content (e.g., occlusions, poor textured regions or transparencies). Other solutions such as the Multiplane Images (MPIs) have been proposed as better representations of a real scene, but it remains a bulky volumetric representation. To support immersive video, the moving picture experts group (MPEG) is developing standards for immersive video that include architectures for immersive media, versatile video coding and point cloud coding of video and graphics [START_REF] Hinds | Toward the realization of six degrees-offreedom with compressed light fields[END_REF].

  Figure 2.1: Plenoptic camera designs: type 1 (left) and type 2 or focused (right).

  Figure 2.3: Microlens images (of diameter D) are arranged in a hexagonal grid and pixels in a squared grid. Microlens images are misaligned with respect to the pixel grid. There is a rotation of angle α and a translation offset (o x , o y ) between the origins of both grids placed at the most top-left pixel and microlens image respectively.

Figure 2 . 5 :

 25 Figure 2.5: Pixel reordering from the raw image to extract two different raw views. Pixels with the same relative position (same angular information) w.r.t. the subimage centers are stored in the same view. In general, the number of recovered views is equal to the number of pixels per microlens. Color corresponds to sensor color on the original Bayer pattern, and is carried over to assembled raw views.

Figure 2 . 6 :

 26 Figure 2.6: Color patterns of three consecutive vertically-aligned undemosaicked views (even, odd and even positions in the matrix of views) for a Lytro camera with a number of pixels per microlens close to an even number. Color patterns from the views at even positions are very similar while the color pattern at the odd position is significantly different although there are horizontal color stripes too. White pixels correspond to empty pixels (no color information).

  and I and I are the average values of I and I over the block centered at (u 0 + b d, v) and (u 0 + b d, v) respectively and W is a window function defined as follows

Figure 2 . 7 :

 27 Figure2.7: On the left: Light Field (matrix of views). Views in the center get more radiance than views of the border of the matrix (pixels coming from the border of the microlenses). Usually the central 6 × 6 matrix is used. On the right: 6 central views from the same line of the matrix. Odd and even views have different color patterns between them (but very similar patterns between odd views and even views). This is represented with a red circle and a blue triangle. The index-view pairs in Υ corresponding to this matrix line are represented with the red and blue arrows.

  Figure 2.8: (a) Reference view of a slanted surface. (b) Disparity estimation from two horizontal views with raw image demosaicking. (c) Disparity estimation from two horizontal views without raw image demosaicking. Less errors appear on the depth estimate.

  Figure 2.9: (a) Demosaicked Lytro image (for visualization purposes). (b) Undemosaicked view. (c) zoomed red rectangle in view (b). (d) same zoom with horizontal filling of empty pixels (black). (e) Disparity obtained with horizontally aligned views. (f) Disparity obtained with vertically aligned views. (g) Final disparity obtained with all the views aligned (horizontally and vertically). Red corresponds to the background and blue to foreground.

  Figure 2.12: An ideal white plenoptic image is a sum of three 2D cosine images. The intersection of the lines along which the three cosines oscillate defines the offset o of the white image.

Figure 2 .

 2 Figure 2.13: Comparison of a white image synthesized with our model (right) versus a real white Raytrix image (left). The two images are visually similar (top) but the important similarity lies in the Fourier (log) frequency spectrum (bottom).The Fourier transform of an ideal white image is a perfect Dirac comb with six peaks ξ i , i = 1, . . . , 6; at a constant frequency radius. On the real white image many replicas appear. Our algorithm selects the six concentric peaks with highest energy.

r

  Figure 2.14: Points in the raw Light Field are projected separately depending on their positions on the microlens. Points belonging to the left (resp. right) side of the microlens are projected into I s l (resp. I s r). For each s, I s l and I s r is a rectified pair of stereo images such that points at the focus plane s appear sharp.

Figure 2 .

 2 Figure 2.15: (a) Scene point visible on two microlens images of the raw Light Field. (b) Both points are projected at the same position (d s = 0) when the point is infocus in the refocused image (s = s f ). (c) There is a shift (d s = 0) between the projected positions for out-of-focus points in the refocused image (s = s f ). The left (green) and right (orange) parts of the microlenses form the left and right slices of the focal stack respectively.

Fig. 2 .

 2 Figure 2.16: Donkey experiment. Data captured with a Raytrix R5 camera. We invite the reader to zoom-in to see details. (a) Focus map. (b) All-in-focus image. (c) Image refocused at s = 2.6. (d) Image refocused at s = 4.

Figure 3 . 1 :

 31 Figure 3.1: Our camera rig setup.

Figure 3

 3 Figure 3.3: 16 patches side by side from all cameras corresponding to 4 different colors in the MacBeth color chart.

  Figure 3.4: (a) Shift in z with respect to the camera reference c 0 = (1, 1). The rig is almost coplanar since the biggest shift is 2.73mm. (b)In the reference camera c 0 = (1, 1), position differences (in pixels) between corresponding exact points (Eq. 3.6 and Eq. 3.7) and approximate points (Eq. 3.13). The largest errors are located in the border of the images.

Figure 3

 3 Figure 3.5: Depth maps for each camera using our pipeline. No filtering has been done.

Figure 3

 3 Figure 3.6: Reference images for the first frame of the Technicolor/Interdigital Light Field dataset.

Figure 3 . 7 :

 37 Figure 3.7: Point clouds from different viewpoints using one frame of the Light Field sequences Remy and Rugby. Background has been removed for the sake of visualization.

Figure 3 . 8 :

 38 Figure 3.8: Novel virtual view rendered at an intermediate position of our camera rig.

Figure 3 . 9 :

 39 Figure 3.9: Illustration of one image from a camera rig, with its consensus (middle) and visibility (right) image of a slice within the scene.

  Figure 3.10: Example of tiles arranged into an AMPI. (a) RGB values. (b) RGB values multiplied by α .

Figure 4 . 2 :

 42 Figure 4.2: Visualization of the LSTM state at different RNN iterations (to be read from left to right). Top: decoded memory state of the LSTM. Bottom: addition of the 4 projected input views (focal stack slice). In-focus areas correspond to the current valid depth plane.

Figure 4

 4 Figure 4.3: Left: Result of [Kalantari et al., 2016]. Right: Ours. Full images are on top and respective zooms on the bottom.

Figure 4 . 4 :

 44 Figure 4.4: Visualization of the LSTM memory state for a wide baseline dataset.

  channel volume W and the depth maps d are the input to the selection network.

Figure 4 . 5 :

 45 Figure 4.5: Visual results for three different angular positions (p, q) for the novel view. We display the groundtruth and estimated view (top), the predicted disparity maps for each corner image (middle) and the four selection masks (bottom).

  Figure 4.6: Comparison against the method LBVS [Kalantari et al., 2016] on two examples, one from the Flowers test set (left) and the other from Diverse (right). For each method, we show the synthesized view (top), the estimated disparity map (middle) and the reconstruction error (bottom), which is clipped into [0, 0.04].

Figure 4 . 9 :

 49 Figure 4.9: Effect of using one common disparity map or the proposed multiple disparity maps. Reconstruction errors are clipped into the range [0, 0.04] for images in [0, 1].

  Fig. 5.1 summarises this Light Field representation.

Figure 5

 5 Figure 5.1: Proposed Light Field representation of a 2D flatland illustrated as scene/view (left) and EPI (right). We show three scene points as red, green and blue crosses (and their resp. lines in the EPI). Six rays r i (in gray) come from those points and hit three different views. The black arrows represent the local depth measurement. The rays r 1 and r 2 are assigned to the same ray bundle b 1 because their depth measurement satisfies the left-right coherence check (Eq. (5.2)). Similarly r 4 and r 5 are assigned to b 2 . On the contrary, r 3 has an incoherent (noisy) depth estimate and is classified as a free ray and not as a ray of b 1 . Finally, the red scene point occludes the green scene point in the first view, so r 6 is also classified as a free ray and not as a ray of b 2 .

Figure 5 . 2 :

 52 Figure 5.2: Illustration of the over-connectivity problem.We show what happens to the neighbourhood of a ray bundle b 3 in our approach. Given a simple scene with two planes composed of six scene points p i and their corresponding rays bundles b i , we see that b 3 has four different neighbours across the three views (represented in red, green, and blue).

Figure 5

 5 Figure 5.3: Light Field segmentation results obtained with the synthetic Light Field dataset proposed in[Wanner et al., 2013a]. From left to right, we show, the input central view with scribbles, the groundtruth labelling, the results in[START_REF] Wanner | Globally consistent multi-label assignment on the ray space of 4d light fields[END_REF]and our results. While both algorithms have a similar performance, in general, our results are more accurate in some challenging cases (see Horses 2).

Figure 5

 5 Figure 5.5: Light Field segmentation results on real datasets from[START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF] and[Andrew, 2016].

Algorithm 1 :Figure 5 . 9 :

 159 Figure5.9: Average displacement in pixels of the centroid spatial coordinates with respect to the number of iterations.

Figure 5 .

 5 Figure 5.10: Different evaluation metrics across different parameters for Scene 4.Green means good score while red represent bad score. For the sake of readability, the axes are flipped differently for each metric.

  Figure 5.11: Comparison of super-rays versus merged independent superpixels, when varying k, the number of super-rays visible on each view with m = 1 fixed (left column) and when varying m the compactness parameter, with k = 500 fixed (right column).

  Figure5.12: Super-rays for the sparsely sampled Light Field in the Tsukuba dataset[START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF].

  Figure5.14: Proposed dynamic super-ray scheme. Each super-ray is represented by a solid color and its centroid by a black dot. (a): Illustration of our algorithm in a simple case. The red foreground super-ray is tracked over the consecutive frames of a 2 × 1 Light Field. Other super-rays do not move since the background is static. The depth d is used to enforce angular consistency from a view to another, while the scene flow (δ u , δ d ) with u = (u, v) guarantees temporal consistency. On the third frame, the moving red super-ray becomes too close of the pink super-ray and too far from the green one, triggering the creation of the orange super-ray and the deletion of the pink one on the next frame. (b): Super-ray neighborhood. The search area for the left neighbor γ lef t of the red super-ray γ is represented by the blue dotting, and the final neighborhood connections of γ by the black lines.

  Figure 5.15: Video super-rays for three frames and two views of the dataset Birthday

1

  Marc Levoy is an Emeritus Professor at Stanford University and currently a Distinguished Engineer at Google Research. He is noted for pioneering work on Light Fields and Computational Photography 2 In 2012 Nokia launched at the Mobile World Congress in Barcelona the Nokia 808 PureView with 41 megapixels.

  δ d The LSTM cell used in our approach. Each cell takes as input the 4 corner views projected (warped) at a specific depth plane d. It embeds a small CNN to learn features on each slice of the PSV that are later concatenated with the input. At the very last RNN iteration, we pass the cell state into a single layer (in gray) to generate the final image Îd .

	Prev. State					New State
						C d
						Synthetic view
						σ d	Îd
	Prev. Output					New Output
	h d-δ d					h d
		ReLU	ReLU	ReLU	ReLU	ReLU
	4 projected views	I d			
	Figure 4.1:				

Table 4 .

 4 2: Quantitative comparison with LBVS[START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF] and 4DLF[START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF]. The dataset in parenthesis after each method indicates the used training set, where F stands for Flowers and D for Diverse.

			Flowers			Diverse	
	Method	MAE PSNR	SSIM	MAE PSNR	SSIM
	LBVS (D)	1,374	34,37	0,9625	1.053	36.13	0.9799
	4DLF (F)	2.998	33.10	0.9510	3.859	30.61	0.9369
	Proposed (F) 0.878 38.29 0.9778 0.797 38.13 0.9849
	Proposed (D) 0.982	37.34	0.9733	0.805 38.14 0.9846

  Table 4.3 reports evaluation metrics for three different configurations of the training loss. The model trained only with the error term E d , with E d

Table 4 .

 4 3: Analysis of different terms in the loss function.

		Flowers			Diverse	
	E d E g E w MAE PSNR	SSIM	MAE PSNR	SSIM
	0.887	38.07	0.9770	0.820	37.82	0.9834
	0.879 38.28 0.9778 0.799 38.12 0.9848
	0.934	37.74	0.9757	0.820	37.87	0.9846

Table 4 .

 4 4: Comparison against one single network, the use of just one disparity map and without the use of the features network.

	Flowers	Diverse

Table 5 .

 5 1: Segmentation accuracy comparison as the percentage of successfully segmented pixels. The displayed results are for the entire Light Field views.

	Dataset:	Still life 2 Papillon 2 Horses 2 Budha
	[Wanner et al., 2013b]	99.3	99.4	99.3	98.6
	Our results	99.2	99.5	99.1	99.1
	Our results w/o depth	98.91	99.4	95.5	98.8

Lippmann is a Nobel laureate for his work on color photography. He was also the thesis advisor of Marie Curie who also received two Nobel prizes for her work.

The first digital camera in 1975 produced an image of 0.01 Megapixels and the first plenoptic camera in 2005 produced images of 0.1 Megapixels
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we call subimage the microlens image projected onto the sensor of the image captured by the main lens

Light rays hitting the sensor at an oblique angle produce a weaker signal than light rays hitting it with a normal angle. Plenoptic cameras suffer from the main lens vignetting and the microlenses vignetting.

www.interdigital.com/data_sets/LightField-dataset
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http://vision.csd.uwo.ca/code/

https://www.redhydrogen.com

https://www.leia3d.com

https://www.lightfieldlab.com

Acknowledgments

In our assignment step we assume that two light rays from the same view and close spatial coordinates are likely to image two close scene points. Therefore, a ray that is similar in appearance and close to a centroid light ray or close to one of its corresponding rays is considered likely to belong to the same scene object. Therefore, it should belong to the super-ray corresponding to this centroid.

Update

Step In this step, the spatial coordinates of the ray centroid and its corresponding Lab values are updated. In particular, the new color value of r γ is the average of the color values of all rays in SR γ and the new spatial coordinates are the average coordinates of all light rays, r = (p, q, u, v) in SR γ projected on the reference view using the depth d γ :

(5.17) (u, v) .

(5.18)

Note that the centroid rays are defined on a reference view so its angular coordinates (p γ , q γ ) are not changed in our algorithm. On the contrary, the centroid spatial coordinates (p γ , q γ ) are first initialized on a regular grid in Z 2 and then updated in Eq. 5.18, which produces new coordinate values in R 2 . So, r γ is defined as a virtual light ray which is not necessarily one of the light rays captured in the Light Field. We summarize the update step in Fig. 5.8.

When updating the spatial coordinates we assume that rays inside the same super-rays are likely to have similar depth, so Eq. 5.18 is a good approximation with respect to the centroid position we would obtain using the true depth per ray. Furthermore, Eq. 5.18 ensures that two corresponding rays, on two different views, have nearly the same spatial distance ∆ uv (as in Eq. 5.14) from a given centroid ray. This is not necessarily the case when seeding the centroids independently on all the view. Figure 5.6: Example of angular patches in Ω for a Light Field of 3 × 3 views. The orange color corresponds to the reference view (p γ , q γ ) so the angular patches are equal to 1 at this position. White positions correspond to visible rays, so its value is equal to 1, and grey positions are equal to 0. The leftmost patch assumes the ray is visible in all views. Other patches correspond to partial visibility.

Cleanup

Step Similarly to SLIC, our algorithm does not enforce super-ray spatial connectivity, so after our light ray grouping procedure some rays may remain isolated, specially when the spatial term in Eq. 5.14 has a low weight. For this reason, a simple post-processing is performed, that consist in re-labeling super-ray disconnected components (with a number of pixels < 1 4 S 2 ) with the closest super-ray label. The entire proposed algorithm is described in Algorithm 1. 
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