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Permutation entropy (PE) and multiscale permutation entropy (MPE) are extensively used to measure regularity in the analysis of time series, particularly in the context of biomedical signals. As accuracy is crucial for researchers to obtain optimal interpretations, it becomes increasingly important to take into account the statistical properties of MPE.

Therefore, in the present work we begin by expanding on the statistical theory behind MPE, with an emphasis on the characterization of its first two moments in the context of multiscaling. Secondly, we explore the composite versions of MPE in order to understand the underlying properties behind their improved performance; we also created an entropy benchmark through the calculation of MPE expected values for widely used Gaussian stochastic processes, since that gives us a reference point to use with real biomedical signals. Finally, we differentiate between muscle activity dynamics in isometric contractions through the application of the classical and composite MPE methods on surface electromyographic (sEMG) data.

As a result of our project, we found MPE to be a biased statistic that decreases with respect to the multiscaling factor, regardless of the signal's probability distribution. We also noticed that the variance of the MPE statistic is highly dependent on the value of MPE itself, and almost equal to its Cramér-Rao lower bound -in other words, confirming it is an efficient estimator. Despite showing improved results, we realized that the composite versions also modify the MPE estimation due to the measuring of redundant information. In light of our findings, we decided to replace the multiscaling coarse-graining procedure with one of our own, with the intention of improving our estimations. Since our team observed the MPE statistic to be completely characterized by the model parameters when applied to correlated Gaussian models, we developed a general formulation for expected MPE with low-embedding dimensions. When applied to real sEMG signals, we were able to distinguish between fatigue and non-fatigue states with all methods, especially for high-embedding dimensions. Moreover, we found that our proposed MPE method makes an even clearer difference between the two aforementioned activity states.
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Nadie puede dudar de que las cosas recaen un señor se enferma y de golpe un miércoles recae...

-Julio Cortázar, Me caigo y me levanto

The use of information entropy measurements has made it possible to successfully assess the "amount of information" or "complexity" in a system. Among the areas that can benefit from applying these specific measurements, the biomedical field is worth mentioning as an insight-rich discipline in which researchers have access to considerable amounts of information through their examinees. Moreover, biological processes are remarkably complex in nature, usually involving elaborate steps, simultaneous events, and self-correcting feedback loops. To further illustrate the point, bioelectrical activity is difficult to interpret, as it is usually available only as an aggregate of multiple simultaneous elementary signals that, even when understood in an isolated level, grow in complexity in their interactions when observed from outside the body. It is for this very reason that the application of entropy measurements through novel techniques and processes offers a promising solution to this dilemma, as long as we can significantly differentiate between process dynamics by measuring complexity.

Additionally, existing literature strongly associates the reduction of entropy with the advancement of motor diseases. The idea is as follows: the decline in variability suggests a stereotypical motor activity, impeding the adjustments needed to switch tasks or adapt to changing conditions; standing up or walking, for example, are actions that require a constant, fluctuating compensation of gravity, wind, and other external forces to maintain balance. Therefore, a complex and dynamic set of instructions must be present to accomplish any of these tasks, and an individual with a related impairment will either struggle or fail to perform them due to a lack of proper compensation. This is explained as a reduction of the complexity of the instructions each muscle receives.

We have decided to approach this situation by applying multiscale permutation entropy (MPE). This particular measurement has a unique set of features that we deem suitable for the characterization of this problem. First of all, permutation entropy works with ordinal information, a quality that ensures that the method is robust with respect to the amplitude of the source signals and the probability distribution contained within. Given the wide range of possible signal amplitude outputs from different subjects -a desirable property-and the fact that MPE requires a minimum set of parameters to operate, it becomes easy to obtain meaningful results out of the system due to its simplified requirements. Furthermore, the MPE computation is simple and straightforward to perform, with a clear range of maximum and minimum values. The multiscaling preprocessing also allows the researcher to explore signals at different time scales, thus allowing the identification of hidden long-range information that is not necessarily available from direct raw signal acquisition.

Although MPE measurements and its variants have been successfully applied before, the discussion of this method in literature is usually treated from an algorithmic point of view. Since entropy measurements -especially MPE-are defined as a function of the source's probability distribution, it makes sense to complement these techniques by including a statistical point of view and approach; for instance, we would only obtain an approximation of the real distribution of the phenomenon as a consequence of the limited information present on signal sources.

Previous work exists on the characterization on this problem [START_REF] Little | Permutation entropy of finite-length whitenoise time series[END_REF], with special emphasis on the embedding dimension and signal length, yet the interaction of the statistic with the coarse-graining procedure has not been previously addressed in literature.

It is also worth mentioning that some statistical properties -particularly biashave been reported in literature before, but they are usually only mentioned as an afterthought. Also, there is little knowledge on the MPE variance, and this is a measurement that does not necessarily conform to the widely applied assumption of normality. Considering the aforementioned reasons, it is possible to misinterpret observed MPE behavior as an emerging property of the phenomenon in question, when the statistic itself can be the source of these unwanted effects.

Our first objective in the present work is to further develop the theory behind MPE measurement, as well as to understand its behavior over known signal models and stochastic processes. With this knowledge, we would be able to state and develop our second goal: to propose a new MPE technique as an improvement over other well-established methods, including the original computation and its refinements. Lastly, we will apply these methods to real electromyographic (EMG) signals, with the intention of obtaining an updated interpretation of the MPE measurement over real biological systems, and to improve the precision of existing ordinal techniques for the purpose of classification.

In the interest of clarity, as we present our findings throughout this research project, we will also discuss results previously published by our team and expand on said findings: a study pertaining to the statistical properties of MPE measurement in [START_REF] Dávalos | Theoretical study of multiscale permutation entropy on Finite-Length fractional gaussian noise[END_REF] and [START_REF]On the statistical properties of multiscale permutation entropy: Characterization of the estimator's variance[END_REF], and findings concerning the interaction of MPE with autoregressive and moving average processes [START_REF] Dávalos | Multiscale permutation entropy: Statistical characterization on autoregressive and moving average processes[END_REF].

In Chapter 1 we begin by introducing readers to the overall landscape of available entropy techniques, classifying them in a way that readers can differentiate between the nature of the possible options available to researchers. In Chapter 2 we focus on the statistical properties of multiscale permutation entropy, providing a closed form for the approximation of the MPE statistic -taking in consideration its distribution and the effect of the signal's length-and general expressions for its first two moments. In Chapter 3 we apply the MPE estimation over widely common signal models and stochastic processes to further evaluate entropy properties under known conditions, resulting in a theoretical MPE expected value for Gaussian stochastic processes. In Chapter 4 we explore the properties of MPE refinements in order Introduction to obtain a deeper understanding of the reasons behind their improved precision, subsequently producing an MPE method to further reduce the entropy estimation uncertainty. Finally, in Chapter 5 we tackle the complex problem of real surface electromyographic (sEMG) signals by applying the methods discussed so far in a variety of experimental setups, and provide an updated interpretation of entropy measurements in this context, both from a statistical and biological perspective.

Chapter 1 Information Entropy -Concepts and Definitions

Teóricamente a nada o a nadie se le ocurriría recaer pero lo mismo está sujeto sobre todo porque recae sin conciencia recae como si nunca antes.

-Julio Cortázar, Me caigo y me levanto

Introduction

With his seminal paper [START_REF] Shannon | A mathematical theory of communication[END_REF], C.E. Shannon established the basis of information theory.

The author defined the concept of information measurements, including information entropy.

In layman's terms, entropy is a measure of unpredictability [START_REF] Shannon | A mathematical theory of communication[END_REF]. Given a string of symbols, a high entropy level implies that any given symbol cannot be easily predicted by looking at its preceding symbols in the string; conversely, a low entropy value implies that each symbol can be deduced from its history. A completely unpredictable string of symbols will yield the maximum entropy possible by the system, whereas the minimum entropy will occur when only one symbol repeats itself without fail; in a more general sense, however, it is usual that there is a certain probability for each symbol to appear in any given string. Hence, it can be inferred intuitively that this measurement requires some knowledge of the probability distribution and, consequently, that the entropy must be a function of the probability function associated with the string.

Although entropy measures a precise property of a random set based on raw data, a proper interpretation depends heavily on context, since there is a lack of a universal interpretation of said measurements. While entropy is defined in the context of thermodynamics -the discipline that entropy took its inspiration from-as a measure of the irreversibility of any thermodynamic process (by the definition of Rudolph Clausius [START_REF] Clausius | The Mechanical Theory of Heat: With Its Applications to the Steam-engine and to the Physical Properties of Bodies[END_REF]), entropy is referred to as content, diversity, or complexity in the context of information. Nonetheless, the use of information entropy can still be MPE Statistics with sEMG Applications justified from a pragmatic perspective, as it has been used successfully in a wide variety of applications, such as data compression and applications in both finances and biomedicine [START_REF] Costa | Multiscale entropy analysis of biological signals[END_REF], [START_REF] Yin | Weighted multiscale permutation entropy of financial time series[END_REF], [START_REF] Zunino | Monitoring the informational efficiency of european corporate bond markets with dynamical permutation min-entropy[END_REF]. Even when the true nature and meaning of information entropy is up to debate, this measurement has its uses and implementations.

Since its original formulation in 1948, a large number of entropy variants have been proposed [START_REF] Humeau-Heurtier | The multiscale entropy algorithm and its variants: A review[END_REF]. The sheer amount of options to date are daunting: for each small change in the in method, data source, or application, there exists an entropy measurement with a proper name and its own considerations. Not only that, but each variant comes with its own advantages and disadvantages, further establishing that there is not a one-size-fits-all solution as of today.

In the following chapters, we will focus our efforts in the proper use and characterization of multiscale permutation entropy, including its statistical properties, expected results from known time series models, and real-life applications on electromyographic signals. Before we can delve directly in the inner workings of this method, we need first to present a proper landscape for the use of information entropy, including its variants and common applications.

In Figure 1.1, we present a general map of the practical entropy analysis on time series. Any step in this process can have its own set of variants, either addressing different problems or trying to capture different phenomena within the same dataset.

We will outline throughout this chapter the most common entropy variants at each level of analysis. We will then explore the methods with an "inside-out" approach, beginning with the variations of the core entropy definition. Afterwards we will follow the possible variants in the formulation of the event set pertaining to the phenomenon. The last step will consist in reviewing the possible preprocessing variants on the source signal -where the raw data is prepared for entropy analysisand briefly discussing the refinements made and the reasoning behind their selection.

Although we provide a general landscape of all the entropy variants, the presented list and accompanying discussion are far from exhaustive.

Figure 1.1: Entropy analysis stage components. We can conceptualize the components of any entropy measure in the following three consecutive steps: we must select the proper entropy formulation to use, define the partition that properly describes the system we are to measure, and decide which kind of pre-processing (if any) will be performed on the experimental data This chapter ends with the discussion of the multiscale permutation Entropy (MPE), since its general characteristics and properties are particularly suited to our intended application within the analysis of electromyographic signals.

Entropy Formulations

To properly define and measure the "quantity of information", Shannon outlined the minimum requirements for it to work. If we have a set of n events whose probabilities of occurrence are p 1 , p 2 , . . . , p n , where n i=1 p i = 1, the measure of uncertainty H(p 1 , p 2 , . . . , p n ) must have the following properties [START_REF] Shannon | A mathematical theory of communication[END_REF],

1. H should be continuous on p i .

2. If all the probabilities are the same p i = 1 n , then H should be a monotonically increasing function of n. In this section we will review the most common entropy formulation from the perspective of information theory. We will first discuss the original Shannon's entropy, as well as some of its alternatives, which also satisfy the properties above.

Classical Shannon's Entropy

After proposing the properties of the measure of uncertainty, Shannon defined the following equation,

H = -K n i=1 p i log p i , (1.1) 
where K is any real positive constant. This equation is strikingly similar to the definition of the Boltzmann-Gibbs entropy in a thermodynamic system [START_REF] Clausius | The Mechanical Theory of Heat: With Its Applications to the Steam-engine and to the Physical Properties of Bodies[END_REF],

H = -k b n i=1 p i log p i , (1.2) 
where k b is the Boltzmann constant, and each p i represents the probability of a microstate in the context of statistical mechanics -and later, in quantum physics. Therefore, the name "entropy" for Shannon's equation seems fit for the task. Moreover, by removing the equation from the physical phenomenon, it is possible to apply this measurement to any system with appropriate partitions that obey the fundamental axioms of probability. Instead of particle microstates, we can talk about alphabets, patterns, or symbols, as long as they form an appropriate event set.

Some interesting properties arise from Shannons's entropy definition (1.1),
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1. H = 0 if and only if p i = 1 for any particular i, and zero otherwise. Any other case yields to a positive value for H.

2.

For any given n, H is maximum when all p i = 1 n . This is the case of maximum uncertainty, and corresponds with the discrete uniform distribution.

3. For any two joint events r and s, the joint entropy obeys the inequality,

H(r, s) ≤ H(r) + H(s), (1.3) 
when equality is achieved only when the events r and s are independent.

4. Any change of probabilities that makes the probability distribution approach the uniform case increases the value of H.

5.

Given two joint events r and s (not necessarily independent) for any particular value of r, there is a conditional probability p r (s), given by p r (s) = p(r, s)

s p(r, s)

.

Shannon defined the conditional entropy of s, labeled H r (s) [START_REF] Mackay | Information Theory, Pattern Recognition and Neural Networks: The Book[END_REF], as the weighted average of the entropy s for each value of r.

H r (s) = - r,s p(r, s) log p r (s)
Therefore, H(r, s) = H(r) + H r (s).

Equation (1.1) is the most straightforward equation that meets the properties described above. We must note that this is a deterministic equation of the probability distribution of the phenomenon to describe. This implies that, if we work in a practical, data-driven application, we can only approximate the mass probability function. Therefore, the event probabilities p i need to be estimated, and thus, H would become a statistic. This will be extensively discussed in Chapter 2.

Tsallis Entropy

If the Shannon's recursivity property is not strictly enforced, the logarithmic function in (1. For a complete discrete set of probabilities {p i }, and a real parameter q, the Tsallis entropy is defined as [START_REF] Tsallis | Possible generalization of Boltzmann-Gibbs statistics[END_REF] H

q = K q -1 1 - i p q i .
(1.4)
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In the case where q approaches the value of 1, the Tsallis entropy converges with Shannon's entropy

lim q→1 H q = -K n i=1 p i log p i = H.
By contrast, the main difference in the Tsallis entropy comes from the fact that it is not completely additive. For any two joint independent events r and s, such that P (r, s) = P (r)P (s), (1.5) the Tsallis entropy satisfies the following relationship:

H q (r, s) = H q (r) + S q (s) + (1 -q)H q (r)S q (s).
Hence, the parameter q, in this case, produces a deviation from the traditional constraints of entropy additivity, which is particularly well-suited for physical systems with long-range interactions, long-term memory, or fractal properties [START_REF] Leubner | A nonextensive entropy approach to kappa-distributions[END_REF]. Tsallis Entropy is specially useful in the description of particle velocity which present power-law distributions [START_REF] Livadiotis | Introduction to special section on origins and properties of kappa distributions: Statistical background and properties of kappa distributions in space plasmas[END_REF] -conditions that are widely present in the field of plasma astrophysics [START_REF] Plastino | Stellar polytropes and tsallis' entropy[END_REF]. Additionally, Tsallis entropy has been used in other fields, most notably image processing for segmentation [17] [18], where the images present similar properties as described above [START_REF] Leubner | A nonextensive entropy approach to kappa-distributions[END_REF].

Rényi's Entropy

In a similar fashion, Alfred Rényi proposed a generalized entropy measurement [START_REF] Renyi | On the measures of entropy and information[END_REF].

For a real non-negative value α ≥ 0 and α = 1, Rényi's entropy is defined as

H α = 1 α -1 log n i=1 p α i , (1.6) 
where each p i , as usual, represents the probabilities of all the possible events in the event set, and n is the number of such events.

Rényi's entropy is heavily modulated by the parameter α, since it modifies the influence of the events in the final entropy measurement. For values of α close to zero, all events tend to have the same weight, regardless of their probability of occurrence. For high values of α (close to infinity) only the most probable events have an influence in the final entropy value.

There are some interesting special cases for the Rényi's Entropy. In the case that α = 0, we obtain the max-entropy -or Hartley entropy-as long as the probabilities are not zero,

H α=0 = log(n), (1.7) 
which is the logarithm of the cardinality of the event set (the number of the events in the set). Conversely, when the value of α approaches infinity, we have the minentropy, defined as [START_REF] Renyi | On the measures of entropy and information[END_REF] 

lim α→∞ H α = min(-log(p i )) = -max(log(p i )) = -log(max(p i )), (1.8) 
which takes only the most probable event in account.

In the limit case when α approaches 1, we have,

lim α→1 H α = - n i=1 p i log p i , (1.9) 
which is, once again, Shannon's entropy.

Rényi's entropy generalization is particularly well-suited to analyze phenomena with probability distributions which are notoriously different from a Gaussian behavior [START_REF] Beadle | An overview of renyi entropy and some potential applications[END_REF]. This adds flexibility in the application of spectral estimations, pattern recognition, and source separation [START_REF] Beadle | An overview of renyi entropy and some potential applications[END_REF]. Some applications can be found in biomedical engineering [START_REF] Lake | Renyi entropy measures of heart rate gaussianity[END_REF], such as the measurement of Gaussianity of heart rate signals.

Entropy Formulations Remarks

Tsallis and Rényi's entropies are some of the most widely used generalizations of the classical Shannon entropy. Other generalized entropies are also available [START_REF] Amigó | A brief review of generalized entropies[END_REF], which present further ways to add flexibility by introducing weights to the probability distributions of the phenomena they describe. Once again, the context and applications will define the suitability of each entropy measurement.

Event Partitions for Entropy

All entropy measurements, as defined here so far, act over a discrete probability function. It is possible to extend these procedures for a continuous probability density function (pdf). In practice, however, we are interested in particular events. Therefore, even continuous distributions are partitioned in such a manner that they reflect the events we are interested in measuring, and the definition of the sample space Ω is utterly important.

Shannon's work [START_REF] Shannon | A mathematical theory of communication[END_REF] portrays the original source as a string of symbols. These can be directly in binary code format -the reason behind the use of log 2 -or any other set of symbols, like the Latin alphabet. By having a string of symbols, it is possible to interpret the entropy of the signal as a measure of the quantity of information [START_REF] Shannon | A mathematical theory of communication[END_REF].

It is obvious that for a binary code, Ω = {0, 1}, there are only two possible events: a random string of bits will produce either maximum entropy (each bit is completely unpredictable, given the knowledge of previous bits) or an entropy value
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of zero if we receive a string consisting of the same value (the knowledge of the first bit is enough to predict the whole string). For the Latin alphabet, we have 26 different events for each letter if we exclude spaces, special symbols, uppercase, accents, or punctuation marks. Although the logic behind the entropy measurement does not change, the sample space is completely different. For example, we obtain a binary string if we translate the Latin alphabet to binary code by using the ASCII convention, but the events will be defined as Ω = { a , b , . . . , z } = {0000000001100001, 0000000001100010, . . . , 0000000001111010}, using 16 bits for encoding. In literature, the event set partition Ω is enough to rename entropy measurements altogether. Since there is a potentially infinite number of sample space definitions, context and application, once again, will suggest the most useful approach.

Even though information entropy seems to be so far constrained to the use of symbols, this limitation can be easily bypassed in the case of a time series composed of measurements with continuous distributions. If we carefully select the partitions for the sample space, a continuous distribution becomes discrete as the events are clearly -and mutually exclusive-defined. This opens the entropy measurement to any time series.

The most common approach for defining the event set in this scenario is to define the sample set Ω by using patterns within the raw signal. By comparing the occurrence of a certain pattern among the rest of the signal, it is possible to have an estimator of the occurrence of that pattern. This, in turn, estimates its probability, which allows entropy analysis to occur. We will briefly discuss some of the most commonly used techniques in the context of signal processing.

Approximate Entropy

S. M. Pincus first developed and proposed [START_REF] Pincus | Approximate entropy as a measure of system complexity[END_REF] approximate entropy (ApEn) specifically for the analysis of medical data. ApEn compares, for a particular cardinal pattern, the similarity with all other patterns of the same length contained in the signal. Typically, ApEn is presented in algorithmical form. The steps for calculating ApEn are as follows:

1. We obtain a time series x = [x 1 , x 2 , . . . , x N ], with a uniform sampling rate. N refers to the signal's length; i.e. the number of samples.

2. We fix the parameter m for the size of the pattern, consisting of the number of successive data points used for analysis.

3. We form a sequence of vectors x 1 , x 2 , . . . , x N -m+1 , where each vector is defined as

x i = [x i , . . . , x i+m-1 ] ∈ R m .

4.

For each vector i, we count the number of vectors j whose distance is equal or less than a fixed tolerance r ∈ R + ,

C m i = #(d[x i , x j ] ≤ r) N -m + 1 , (1.10) 
where the symbol # denotes cardinality, and the distance d[x i , x j ] is defined
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that is, the position a within the vector that has the maximum difference among their scalar elements. This distance measure is known as the Chebyschev's Distance [START_REF] Cantrell | Modern Mathematical Methods for Physicists and Engineers[END_REF].

5. We build up the following measurement,

Φ m (r) = N -m+1 i=1 log(C m i ) N -m + 1 , (1.12)
which is the average of the logarithm of all calculated C m i . 6. Finally, the ApEn measurement is:

ApEn = Φ m (r) -Φ m+1 (r).
(1.13)

As we can see, the event partition for ApEn does not include all the possible patterns in the signal, since that would require a large amount of data to make a proper estimation [START_REF] Pincus | Approximate entropy as a measure of system complexity[END_REF]. The method herein uses the present time series, and assumes all possible patterns included within -this is the "approximate" part. Although not an exact solution, this allows researchers to construct an appropriate partition to use as an entropy measurement.

This method is reported to have satisfactory results for a short signal length, and it is fast to compute [START_REF] Pincus | Approximate entropy as a measure of system complexity[END_REF]. Nonetheless, ApEn is still dependent on the signal length and the choice of a proper tolerance parameter, since the value of r is not a trivial choice. In practice, the value r is chosen as a proportion of the signal's standard deviation.

We notice here that ApEn includes vector self-comparisons. Without this feature, the individual C m i could be zero, making it impossible to compute ApEn. However, proceeding in such a manner makes ApEn report a higher regularity than it should, which is only a problem when working with short time series.

Sample Entropy

Sample entropy (SampEn) is a refinement over ApEn proposed by Richman and Moorman [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF]. In principle, the process is identical, yet with some key modifications:

1. We follow steps 1 to 3 from ApEn.

2. We define C A and C B in a way that

C A = #(d[x i , x j ] ≤ r) for vector size m + 1 C B = #(d[x i , x j ] ≤ r) for vector size m
for all i = j (that is, without vector self-comparisons).

We calculate SampEn as:

SampEn = -log C A C B .
(1.14)
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In the case of SampEn, the vector comparisons are done in a way that no vector is compared with itself, which is indeed done in ApEn. Since count variables A and B have a small chance of being undefined, as they are the sum of all possible vector comparisons, the regular overestimation of ApEn is not present here. Given that the method is similar to ApEn, the event set partition approximation is almost equal. The authors found SampEn results that agree better than ApEn when tested over random numbers with known probability distributions [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF]. In the particular case of short time series, SampEn also shows a reduced bias in respect to ApEn [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF]. These properties make SampEn a more widely used entropy measurement, specially as the base formulation for more elaborate algorithms [START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF].

Permutation Entropy

Permutation entropy (PE), proposed by Bandt and Pompe [START_REF] Bandt | Permutation entropy: A natural complexity measure for time series[END_REF], uses the pattern approach with the ordinal information. Instead of relying on approximate distance measurements, PE only takes the order of the data points inside the pattern segments. This has the advantage of offering a full partition, which consists of all the possible order permutations for the segment size at the cost of losing information concerning the signal amplitude. This issue is addressed in [START_REF] Azami | Amplitude-aware Permutation entropy: Illustration in Spike Detection and Signal Segmentation[END_REF] by weighting the contributions to the probability distribution based on the amplitude of the patterns.

Since the event set is automatically defined by the pattern size d -the embedding dimension-we can estimate the mass probability distribution by counting the number of patterns of each type within the signal,

p i = #{t| t < N -d, (x t , . . . , x t+d-1 ) has type i} N -d + 1 , (1.15) 
for each of the i = 1, . . . , d! possible patterns. With this distribution, PE is obtained by calculating the classical Shannon's entropy. The PE algorithm is also fast to compute for a small dimension, and it is invariant to nonlinear monotonous transformations [START_REF] Bandt | Permutation entropy: A natural complexity measure for time series[END_REF].

Nonetheless, by working on a complete event set, PE takes the opposite approach of ApEn, where the set itself is approximated. This implies that he signal length must be large to have a proper estimation, yet it is recommended in practice to work with the restriction N d! to have an adequate probability distribution estimation [START_REF] Kowalski | Bandt-pompe approach to the classical-quantum transition[END_REF]. Some applications include the stock market [START_REF] Zunino | Forbidden patterns, permutation entropy and stock market inefficiency[END_REF], where PE was successfully used as a measure of market efficiency; in mechanical engineering, PE has been used on motor bearing fault diagnosis [START_REF] Zhang | A novel bearing fault diagnosis model integrated permutation entropy, ensemble empirical mode decomposition and optimized SVM[END_REF], where the method proposed was not only capable of detecting anomalies, but also in discriminating between fault types and fault severity. In [START_REF] Morabito | Multivariate multi-scale permutation entropy for complexity analysis of alzheimer's disease EEG[END_REF], where the authors implemented multivariate approach to PE on electroencephalograms from patients with Alzheimer's disease, PE was successful in detecting the "slowing" effect related to the disease, as well as in detecting anomalies in synchronicity between channels. Further examples of PE applications in market analysis and medical research are presented in [START_REF] Zanin | Permutation entropy and its main biomedical and econophysics applications: A review[END_REF].

Fuzzy Entropy

At this level of analysis, we have so far worked with clearly delimited, mutually exclusive partitions. This is the place where set theory and probability theory intersect (pun intended). A novel approach to analyze the problem of quantifying information is to use fuzzy logic as an alternative to classic probability definitions of event sets and partitions. For the sake of brevity, we will only discuss fuzzy entropy briefly, outlining its basic tenets as a variation to the event set definitions used so far.

In the context of fuzzy logic, the boundaries between partitions are not strongly defined, and the membership to a certain event is replaced by a membership function, usually a ramp or a sigmoid [START_REF] Ahmad | Introduction to Applied Fuzzy Electronics[END_REF]. Any particular event can be a member of different partitions, with a particular weight defined by its membership.

De Luca and Termini [START_REF] De Luca | A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory[END_REF] defined a set of axioms for fuzzy entropy, which are analogous to the properties outlined by Shannon. Being A and B partitions defined in a fuzzy set, x i representing any particular event, and both m A (x i ) and m B (x i ) being corresponding membership functions of A and B, respectively, then H F is an entropy measure if it satisfies the following conditions:

1. H F (A) = 0 if and only if A is not Fuzzy (partitions are defined and mutually exclusive).

2. H F (A) = 1 if and only if m A (x i ) = 0.5 for all i (all events are "halfway" members of A).

H

F (A) ≤ H F (B) if A is less fuzzy than B; i.e. m A (x) ≤ m B (x) if m B (x) ≤ 0.5, and m A (x) ≥ m B (x) if m B (x) ≥ 0.5.

H

F (A) = H F (A c
) (the entropy of A is equal to the entropy of the complement of A).

Given these conditions, de Luca and Termini defined the fuzzy analog to information entropy as follows [START_REF] De Luca | A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory[END_REF],

H F,k (A) = D F (A) + D F (A c ), (1.16) 
where

D F (A) = -k n i=1 m A (x i ) log m A (x i ).
(1.17)

A more generalized version is proposed by Kosko [START_REF] Kosko | Fuzzy entropy and conditioning[END_REF], based on the relative distances between the fuzzy set and its non-fuzzy counterparts,

R p (A) = l p (A, Ā) l p (A, A) , (1.18) 
where the distance l p is defined as

l p (A, B) = i |m A (x i ) -m B (x i )| p 1/p , (1.19) 
where Ā is the closest non-fuzzy set to A, and A is the farthest one.

In this context, entropy refers to the "vagueness" of the membership of any event to subset A. Therefore, the interpretation of fuzzy entropy is not grounded on probability, as Shannon entropy is. Nonetheless, fuzzy entropy has been used as a suitable alternative to SampEn in the analysis of surface electromyographic signal dynamics [37] [38]. In general, fuzzy entropy provides a better relative consistency than methods such as SampEn and ApEn, as well as improving on its statistical stability [START_REF] Azami | Fuzzy entropy metrics for the analysis of biomedical signals: Assessment and comparison[END_REF].

Signal Pre-Processing: Multiscaling

Now we have explored and visited some of the possible variants for entropy analysis at the level of the core equation and the event set partition. These calculations can be done on the raw signal directly, but it is beneficial to explore the information content at different time scales -a particularly desirable approach when we are looking for information contained inside longer trends. Costa et al. [START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF] introduced the concept of multiscale entropy (MSEn) to take longer correlations and trends within the signal. The process consists on applying a coarse-graining procedure to the original signal, and implementing an entropy measurement afterwards. This process has several variants, as pointed out by Humeau-Heurtier [START_REF] Humeau-Heurtier | The multiscale entropy algorithm and its variants: A review[END_REF], and some of them will be mentioned in this section. The coarse-graining procedure is completely decoupled from the entropy equations, so it can be applied in conjunction with any of the previous techniques as long as the proper event set is defined.

Multiscale Entropy

Given an arbitrary time series x = [x 1 , . . . , x N ] (where the symbol denotes transposition), the MSEn [START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF] consists of two main steps;

1. The coarse-graining procedure. For a particular time scale m, we build a coarse signal

x (m) = [x (m) 1 , . . . , x (m) 
N/m ] by dividing the original signal in nonoverlapping segments of m data points in length. The coarse-graining procedure consists on taking the mean value of the segment,

x (m) j = 1 m jm i=m(j-1)+1 x i , (1.20) 
where j = 1, . . . , m ∈ N.

2. Compute SampEn (1.14) in this new coarse signal.

A schematic representation is provided in Figure 1.2.

With this procedure, it is possible to find long-range measures of regularity hidden within the signal. For the purposes of classification and diagnosis -the original context of [START_REF] Costa | Multiscale entropy analysis of complex physiologic time series[END_REF]-we are not bound to the raw data. When we compare MSEn from different sources, we can choose the scale with the most pronounced differences, and thus, improve the classification process.

Figure 1.2: The coarse-graining procedure takes the average of all the data points within non-overlapping segments of size m. This diagram is based on the one presented in [START_REF] Azami | Improved multiscale permutation entropy for biomedical signal analysis: Interpretation and application to electroencephalogram recordings[END_REF].

There are, of course, some drawbacks to this method, which we will take into account. The coarse-graining procedure can be further described as a process with two steps:

1. A moving average filtering with window size m.

2. A downsampling of the averaged signal by a factor m.

This implies that the coarse-grained signal's length is reduced by a factor of 1/m. This length reduction yields an increasingly imprecise sampling of the possible events in the set, and thus, compromises the reliability of the entropy measurement.

We should also observe the frequency properties of the coarse-graining procedure, which is equivalent to a finite-impulse low-pass filter that cannot prevent aliasing when the downsampling procedure is applied [START_REF] Valencia | Refined Multiscale entropy: Application to 24-h Holter Recordings of Heart Period Variability in Healthy and Aortic Stenosis Subjects[END_REF].

It is also necessary to revisit the SampEn tolerance parameter r. As previously mentioned, r is usually chosen as a percentage of the signal's standard deviation [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF]. The coarse-graining procedure yields signals with a reduced variance, and therefore can lead to increased coincidences between patterns. Therefore, r must be revisited at each scale to adequately maintain proportion.

Refined Multiscale Entropy

Valencia et al. [START_REF] Valencia | Refined Multiscale entropy: Application to 24-h Holter Recordings of Heart Period Variability in Healthy and Aortic Stenosis Subjects[END_REF] proposed a series of refinements to address these drawbacks on the original MSEn. The modifications can be summarized as follows:

To avoid the aliasing problem in the frequency domain present by using the coarsegraining procedure as a filter, the authors proposed the use of a Butterworth low-pass CHAPTER 1. INFORMATION ENTROPY -CONCEPTS AND DEFINITIONS filter instead of a moving average filter,

|H(e 2πif )| 2 = 1 1 + (f /f c ) 2η
where η is the filter order, f c is the cutoff frequency, and i = √ -1. This reduces the aliasing when the filtered time series is subsequently downsampled. This measurement is known as refined multiscale entropy (rMSE). By testing the method in white Gaussian noise and 1/f noise, they found significant differences: rMSE keeps the entropy flat on white Gaussian noise and shows an increase in 1/f noise, while MSEn presents a monotonic decrease for both signals along the time scale. These effects are most notorious on short time series, where fast oscillations are dominant.

Composite and Refined Composite Multiscale Entropy

Both the composite multiscale entropy (cMSE) [START_REF] Wu | Time series analysis using composite multiscale entropy[END_REF] and refined composite multiscale entropy (rcMSE) [START_REF] Wu | Analysis of complex time series using refined composite multiscale entropy[END_REF] aim to increase the number of coarse-grained segments obtained from a single raw signal. Given an original signal x = [x 1 , . . . , x N ] and a time scale m, we can get a different partition from x by starting the partition process at different points; for the original MSEn, it is assumed that the segments starts at x 1 . If we set a starting point at k = 1, 2, . . . , m, we can build up to m different coarse-grained signals for that time scale. Thus, the composite coarse-crained procedure can be written as This measurement takes advantage of the reduced variance of a mean value to increase the precision of the entropy measurement. Wu et al. [START_REF] Wu | Time series analysis using composite multiscale entropy[END_REF] show the improved precision of cMSE over MSEn on white noise -1/f noise-and real fault-bearing vibration signals.

Refined Composite Multiscale Entropy

The rcMSE [START_REF] Wu | Analysis of complex time series using refined composite multiscale entropy[END_REF] uses a similar approach and utilizes the same composite coarsegraining procedure in equation (1.21). Nonetheless, the procedure first makes the MPE Statistics with sEMG Applications pattern count along all the coarse signals for scale m, and then performs a single SampEn calculation. Hence,

rcM SE = -log m k=1 C A,k m k=1 C B,k , (1.23) 
where

C A,k = #(d[x (m) k (i), x (m) 
k (j)] ≤ r) for vector size m + 1 (1.24)

C B,k = #(d[x (m) k (i), x (m) 
k (j)] ≤ r) for vector size m.

(1.25)

This calculation further improves the precision of the cMSE by relying on the increased number of sample pair comparisons, instead of the average of SampEn over composite signals. This allows rcMSE to maintain accurate entropy estimations on shorter time series [START_REF] Wu | Analysis of complex time series using refined composite multiscale entropy[END_REF].

Modified Multiscale Entropy

In order to reduce the effect of the coarse-graining procedure on the signal length, Wu et al. [START_REF] Wu | Modified multiscale entropy for short-term time series analysis[END_REF] propose a modification to the original MSEn algorithm named, appropriately, modified multiscale entropy (mMSEn) . The authors applied a moving average filtering without the subsequent downsampling, effectively taking all the possible segments within the signal with overlap.

This approach presents the advantage of increasing the number of pattern comparisons, and thus, reducing the variance of the probability estimation. This is particularly well-suited for short time series, where there are less samples to work with. Nonetheless, the comparison of segments with common data points can lead to unexpected pattern matches, a phenomenon that will be further explored in Chapter 4.

Generalized Multiscale Entropy

In order to explore other properties of the signal, such as the dynamics of the variance, Costa et al. [START_REF] Costa | Generalized multiscale entropy analysis: Application to quantifying the complex volatility of human heartbeat time series[END_REF] propose the use of the generalized MSEn by using higher moments in the coarse-graining procedure, other than the average:

1. The signal is divided into nonoverlapping segments, as it is done with the classical MSEn.

2. Instead of obtaining the mean value of each of the elements within the segment's higher-order moments -such as the variance of each segment-are used. We build the coarse-grained signal from these calculations.

3. We calculate the SampEn for each generalized coarse-grained signal.

This type of coarse-graining leads to the analysis of a completely different aspect of the signal. Generalized MSEn follows the signal's volatility changes when applying CHAPTER 1. INFORMATION ENTROPY -CONCEPTS AND DEFINITIONS the second moment; for the third moment, we have a measure of the variation in symmetry.

There are multiple versions of multiscale entropy analysis, each built with a different type of filtering, procedure or decomposition -giving place to an endless amount of possibilities. Once again, the proper choice of multiscaling procedure depends heavily on the properties of interest in the time series, as well as the suitability of the properties of each method. The list here is by no means exhaustive.

A Case for Permutation Entropy

With all the possible options, variations and refinements available for the measurement of information entropy, the question of the appropriate method to use remains open. This is not an easy task, in and by itself. As we have hinted through this chapter, the answer lies in the context, the particular application, and the interactions with the specific properties of the entropy variant.

We must state here some of the peculiarities concerning the analysis of surface electromyographic (sEMG) signals. This analysis consists of the superposition of multiple signal sources from motor neurons, which greatly vary in amplitude and frequency, the latter two being influenced by multiple factors. The result is an sEMG signal with a complex behavior, and particularly prone to respond to artifacts. Therefore, it is imperative to decompose the effects of each of these factors to properly establish their effect on the measurement, especially when the aim is to diagnose a particular anomaly in motor control.

Here, the properties of permutation entropy seem notably appealing, since the analysis of ordinal patterns takes away the variations regarding the amplitude of the signal. This implies that PE analysis is naturally invariant to the force output of the measured sEMG signal. Also, the ordinal analysis is particularly robust in the presence of noise: when noise is sufficiently small in comparison to the signal, these variations do not affect the order of the data points, which lead to the same entropy measurement. While this has its limits, it is convenient to have a method that is inherently resistant to the effects of noise, since this quality remains even if the noise is not white or normally distributed.

We will also take advantage of the multiscale coarse-graining procedure in conjunction with PE, a measurement known as multiscale permutation entropy (MPE) [START_REF] Aziz | Multiscale permutation entropy of physiological time series[END_REF]. This variant allows us to explore the long-trend components within the signal, and look for regularity in muscle activity that can otherwise remain obscured by the fine resolution of the sampling frequency used for data acquisition. Since the firing frequency of the motor units has a biological upper limit, the exploration and emphasis on lower frequencies (and thus, longer trends) is justified.

Since one of the main goals of this project is to properly characterize the statistical properties of multiscale permutation entropy, it is necessary to approach this method with the least possible number of modifications. Hence, we are using the classical Shannon's entropy as proposed by Bandt and Pompe for PE. Other entropy formulations, like Tsallis or Rényi, contain an additional level of complexity, worthy of a vast exploration work on their own. At this moment, even when MPE is widely studied for its biomedical applications, its statistical properties are not completely explored. Therefore, before we take into consideration further entropy equations -or alternative multiscaling techniques and refinements-we need the proper statistical characterization for the original MPE.

Closing Remarks

Thus far we have reviewed and summarized a wide array of entropy measurements, starting with the original information theory formulation by Shannon [START_REF] Shannon | A mathematical theory of communication[END_REF]. We have explained the variations in entropy formulations, event partition definitions, and signal multiscaling. We covered the general spirit behind these entropy measurement proposals, as well as the specific motivations behind them. Despite not being fully comprehensive, this chapter provides a "big picture" regarding information entropy.

For the purposes of this project, we will focus on multiscale permutation entropy, as explained above, because its particular properties suit the needs and requirements of bioelectrical signal analysis. The particular mathematical and statistical properties will be explored and discussed in Chapters 2 and 4, while the MPE applicability will be further explored in Chapter 5.

Chapter Summary

• Information entropy is a measure of unpredictability within a particular system. It is also interpreted as complexity, diversity or amount of information, depending on the context.

• Entropy analysis is structured as:

-Equation: the actual computation of the entropy measurement.

-Event partition: the possible events within the system, as defined by researchers. This implies corresponding probabilities assigned to each event.

-Data Preprocessing: in most cases, entropy analysis and the event partition are not applied directly to the system data, but a transformation of it. This is specially relevant when working on time series at different scales.

• Shannon's entropy is the classical formulation. A couple of example generalizations include the measurements postulated by Tsallis and Renyi, where different weights are assigned to different events.

• Since entropy works with probabilities, it is equally important to define event partitions. Since we will work within the context of time series, some of the most prominent examples include -Approximate/sample Entropy: approximate partitions taken directly from the raw signal, which define the event set by similarity between signal
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segments.

-Permutation entropy: measures the rank patterns within segments in a signal. Since all possible rank permutations are defined by the embedded dimension, the event set is completely characterized.

-Fuzzy entropy. Based on membership functions with imperfect classifiers, the entropy here measures "fuzziness" of the event set instead of the probabilities of delimited, mutually exclusive events.

• In this context, signal preprocessing deals mainly with the filtering of the original signal before defining the adequate event partitions for entropy analysis.

-Multiscale entropy applies a Coarse-Graining procedure: a moving average filter with downsampling, such that there is no overlap between data points. This procedure captures the information contained inside longrange trends. Several refinements of multiscaling exist, mainly to address the problem of signal length reduction.

-Generalized multiscale entropy computes the multiscale information not only from the average filter, but also taking advantage of higher moments.

• For the purposes of this work, we will use Multiscale Permutation Entropy, a procedure which is particularly suitable for sEMG analysis:

-The MPE procedure is fast to compute and robust over outliers.

-MPE is invariant to signal amplitude, which eliminates the problem of variability in signal strength proper of subject biological variability. This implies MPE is also invariant to force output.

-Although there is sufficient development in literature regarding PE, the multiscale variant is not completely understood from a statistical point of view, which limits the interpretation of the results. We will develop the necessary theory in the next chapter.

Chapter 2

Multiscale Permutation Entropy -Theoretical Statistics

Pero el problema, para nosotros los que pensamos nuestra vida, es confuso y casi infinito...

-Julio Cortázar, Me caigo y me levanto

Introduction

So far, we have explored the diverse entropy analysis options we have available when trying to measure the amount of information in a system. From all these possibilities, we made a case in favor of multiscale permutation entropy (MPE) [START_REF] Aziz | Multiscale permutation entropy of physiological time series[END_REF] as an extension from the classical Permutation Entropy (PE) [START_REF] Bandt | Permutation entropy: A natural complexity measure for time series[END_REF]. MPE can be conceptualized as follows:

• Equation: Shannon's entropy.

• Event partition: ordinal patterns.

• Preprocessing: coarse-graining procedure.

In Section 1.5 we briefly stated the reasons for this particular choice in the context of biomedical signals. Working with ordinal patterns produces an entropy measurement which is invariant respect to the signal's amplitude, and particularly to the presence of outliers [START_REF] Bandt | Permutation entropy: A natural complexity measure for time series[END_REF]. Although there is relevant information contained within the amplitude, we are more concerned with the functional shape of the signal -a noteworthy scenario would include when the biological variability between subjects makes comparisons difficult. Additionally, MPE also presents the advantage of having a defined event set prior to the introduction of the data set to analyze, avoiding the necessity of working with approximate event partitions.

The simplicity of MPE analysis also keeps the need of parameter calibration to a bare minimum, since no tolerance value is needed. Also, computationally speaking, the count of ordinal patterns is a fast process, a factor that can potentially lead to real-time applications. The multiscaling process, added to the original PE, allows MPE Statistics with sEMG Applications researchers to explore the information content in time scales not directly measured with the raw signal, which expands the scope of the original analysis. Nonetheless, the method is not without drawbacks: the ordinal pattern count requires the use of a sufficiently large dataset to be reliable [START_REF] Zunino | Permutation entropy of fractional brownian motion and fractional gaussian noise[END_REF], a matter that becomes crucial when we explore the multiscale approach in a situation where the signal length is reduced with increasing scales. Any initial considerations regarding the MPE analysis must take the signal length in account.

It is important to remember that the MPE formulations are typically presented in algorithmic form and the ordinal pattern distribution is measured directly from the source signal, since this implies that any information collected in this manner is only an estimation of the true pattern distribution, and hence, the MPE measurement itself is also an estimation. Therefore, the statistical theory behind MPE is not extensively explored in literature, with some notable exceptions [START_REF] Little | Permutation entropy of finite-length whitenoise time series[END_REF]. This justifies the approach of considering MPE as a statistic.

Having said this, in this Chapter we will provide a deeper development of the statistical properties of MPE as well as improving the existing theoretical framework by expanding on the results we first presented in [START_REF] Dávalos | Theoretical study of multiscale permutation entropy on Finite-Length fractional gaussian noise[END_REF] and [START_REF]On the statistical properties of multiscale permutation entropy: Characterization of the estimator's variance[END_REF]. We will begin with a formal definition of MPE and the coarse-graining process, which were already briefly explained in Sections 1.3.3 and 1.4.1. We will also comment on the considerations regarding the source signal as a random process, followed by us developing a statistical model of the MPE measurement by means of the Taylor series polynomial expansion. This will allow us to have an approximate expression of the expected value, bias, and variance of MPE. We will also provide the expression for the Cramér Rao lower bound to assess the efficiency of the estimator. Next, we will test our theoretical results against a surrogate model with an easily-modifiable parameter set. Lastly, we will discuss and comment on the preliminary insights we obtained from the development of the MPE statistical theory. This will allow us to better understand the behavior of MPE, which in turn will improve the interpretation of the results obtained when we apply this analysis to real data.

Multiscale Permutation Entropy Background

Permutation Entropy

For a signal x = [x 1 , x 2 , ..., x N ] with N elements, we define ordinal patterns of embedded dimension d as any possible ordinal permutation between adjacent d points of the signal. For example, for d = 2, only two possible ordinal patterns exist: x t < x t+1 and x t > x t+1 ; if dimension d = 3, we could obtain pattern x t < x t+1 < x t+2 , one of the six possible patterns. In general, for embedded dimension d, there are d! possible patterns.

For the aforementioned signal, we will assume no particular structure or statistical properties and establish that said signal must be uniformly sampled as the only restriction. Since this assumption implies that no further information is known, we can only estimate the probability of each pattern by measuring the pattern 

y i = #{n| n < N -(d -1),(x n , . . . , x n+d-1 ) has pattern i}, (2.1) 
where y i is the number of patterns of type i in the signal x. Some examples of possible ordinal patterns are shown in Figure 2.1. We can now use y i to build an estimate of the pattern probability p i :

p i = #{n| n < N -(d -1), (x t , . . . , x t+d-1 ) has pattern i} N -d + 1 . (2.2)
We use the symbol p i here to denote that this is an estimation of the pattern probability, as opposed to p i , which represents the true value. For a given dimension d, the estimate probabilities for all possible patterns i form a mass probability distribution function (pmf). Therefore, it is possible to obtain the permutation entropy measurement using Shannon's definition (1.1),

H = - d! i=1 p i ln p i , (2.3) 
which was already presented in Section 1.2.1. Here, the value H is an estimation, MPE Statistics with sEMG Applications and thus, a statistic. We can also write the normalized version of (2.3) as follows,

H = H ln(d!) = -1 ln(d!) d! i=1 p i ln p i (2.4)
which guarantees an entropy value between zero and one.

From the algorithmic point of view, PE is easy to implement and fast to compute given a signal x and a dimension d. Since the nature of this procedure is ordinal, PE is invariant to nonlinear monotonous transformations [START_REF] Bandt | Permutation entropy: A natural complexity measure for time series[END_REF], which is in turn a desired property when we expect to work with signals containing different amplitudes, noise, or outliers. On the other hand, this robustness works against us if we intent to extract information from the signal's amplitude.

Another obvious constraint is the length of the signal. For very short signals, the pattern counts in (2.2) are not sufficient to provide a precise estimation of the pattern distribution. There are several proposed guidelines for the minimum length required, with the condition N d! [START_REF] Bandt | Permutation entropy: A natural complexity measure for time series[END_REF] being the most notable one -this, however, offers no practical guidelines to the proper size of N . Other length constrain formulations are N ≥ 5d! [START_REF] Matilla-García | A non-parametric test for independence based on symbolic dynamics[END_REF] and N > (d + 1)! [START_REF] Amigó | True and false forbidden patterns in deterministic and random dynamics[END_REF], which were chosen empirically. Later in this chapter we will propose a more specific length criterion, based on theoretical guidelines.

We should note, for the sake of completeness, that the PE definition usually includes a downsampling factor τ [49] [START_REF] Zunino | Forbidden patterns, permutation entropy and stock market inefficiency[END_REF], since its use is beneficial to avoid oversampling scenarios. For the purposes of this chapter, we will assume that the signal is uniformly sampled and that τ = 1, since the coarse-graining procedure fulfills a similar function in the latter case. However, we will revisit τ in Chapter 4.

Multiscale Coarse-Graining Procedure

Using the original signal x, we can construct coarse-grained signals for a fixed time scale m, following a similar route to the one taken by the MSE method explained in Section 1.4.1. We partition the data points in consecutive, nonoverlapping segments of size m, computing the average of each segment afterwards and constructing

x (m) = [x (m) 1 , . . . , x (m) N/m ] , where each element is, x (m) j = 1 m jm i=m(j-1)+1 x i , (2.5) 
where j ∈ N and m ∈ N. The MPE measurement consists on calculating the permutation entropy on each x (m) for different time scales.

However, MPE also has the disadvantage of being sensitive to signal length: as N decreases, the estimation of MPE will be less reliable. This effect becomes more pronounced with increasing scales, where the size of the coarse-grained signal decreases by a factor of 1/m. The general condition N/m d! must be satisfied.
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The motivation behind the coarse-graining procedure is to capture long-term information, usually lost in the ordinal comparisons between adjacent data points. The assessment of this information can be useful in detecting trends or recurring patterns that are not usually evident in raw data.

Multiscale Permutation Entropy Statistics

Previous Considerations

Before exploring the statistical properties of MPE, we will first present the following assumptions regarding the pattern counts:

1. For any particular set of consecutive data points in x (m) , the occurrence of any of the possible patterns can be modeled as a random variable in and into itself. This random variable is defined as an indicator function, with a Bernoulli distribution with multiple outcomes

I i (x (m) t ) = 1, [x (m) t , . . . , x (m) 
t+d-1 ] has type i 0, otherwise.

(

2. All the elements

I i (x (m) 
t ) are independent, and identically distributed (iid). These conditions guarantee that the sum of all the indicator functions leads to a pattern count with a binomial random variable. While the first assumption holds true -by definition-for any signal, the second one requires the signal to be completely uncorrelated, which is not true in the general case. Therefore, when the indicator functions are independent, but not identically distributed, the most appropriate model is a Poisson binomial distribution [START_REF] Wang | On the number of successes in independent trials[END_REF]; if they are not independent, the distribution has no closed form, and approximations are needed [START_REF] Teerapabolarn | An improvement of poisson approximation for sums of dependent bernoulli random variables[END_REF]. As a first approach to the statistical problem, we will assume that the pattern counts satisfy both assumptions. This approach is justified, to an extent, by the fact that the practical application of the MPE algorithm does not take in account the evolution of ordinal patterns in time. Since the pattern probability distribution is built around the pattern counts of the raw signal as an aggregate, the pattern probability is not computed as a function of time.

At this point, it is useful to define the appropriate values for the time scale m. First and foremost, m is a positive integer, so it cannot take the value of zero or any negative number. Secondly, the maximum theoretical value is m = N , the length of the original time scale itself, where the resulting coarse-grained signal consists of a single data point -a nonfeasible trait for MPE analysis. If we define m/N as a normalized scale, then 0 < m/N ≤ 1; consequently, we will consider m/N to be very close to zero for practical reasons, as this will help explore the MPE statistic in a standardized manner.

Before proceeding any further, we will also introduce a vectorial form of Shannon's entropy. Since the mathematical expressions that follow require a considerable use MPE Statistics with sEMG Applications of linear algebra, it is convenient to rewrite equation (2.3) as,

H = -l p, (2.7) 
where,

p =    p 1 . . . p d!    , l =    ln p 1 . . . ln p d!    . (2.8)
As long as l (l transposed) is an horizontal vector and p is a vertical vector, the scalar product in equation (2.7) is identical to the sum expressed in (2.3). Similarly we will take advantage of the scalar product and matrix quadratic forms whenever possible to simplify the long summations that could naturally arise.

MPE Taylor Series Approximation

It is necessary for us to build an explicit model before properly exploring the statistical properties of H. Even though building the distribution function of H can be a daunting challenge, it is not strictly necessary to know this function to extract practical information. We have particular interest in knowing the expected value and variance of H, and as we explain below, this can be accomplished by using equation (2.7) along with a pattern count with a binomial distribution.

In this section we will explicitly formulate a statistical model to estimate H by means of Taylor series expansions. For any coarse grained signal x (m) of length n m = N/m -d + 1 at time scale m ∈ N + and dimension d ∈ N + , we can define the random vector Y of size d! as the pattern count vector, and p as the pattern pmf in vectorial form: The random variable p works as an estimator of p -the true pattern pmf vector. ∆Y is the random part of (2.9), which is a multinomial random variable. ∆Y has zero mean and the same probability distribution as Y .

Y =    Y 1 . . . Y d!    =    n m p 1 + ∆Y 1 . . . n m p d! + ∆Y d!    = n m p + ∆Y , Y ∼ M u(n m , p) (2.9) p = 1 nm Y = p + 1 nm ∆Y . ( 2 
The next step is to consider the following modifications for equation (2.3): first, the size of the coarse-grained signal will approximately be N/m instead of N . The
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true multinomial parameter is n m = N/m -d + 1, but since N/m d, we can use the approximation n m ≈ N/m; additionally, we should also note that the ordinal pattern count Y can depend on m. For fractional Gaussian noise [START_REF] Dávalos | Theoretical study of multiscale permutation entropy on Finite-Length fractional gaussian noise[END_REF], the pattern probabilities remain constant (See Section 3.3.2). This will, in general, not be the case for other signals. For the purposes of this section, we will assume that the pattern probabilities remain constant along m, and analyze the interaction between these parameters at a later point.

Using the vectorial form of Shannon's entropy (2.7) and the vectorial pmf p in (2.10), we can write the MPE estimator as

Ĥ = H( p) = - d! i=1 p i ln ( p i ) = -l p, (2.11) 
which is the vectorial form for the MPE estimator in (2.3). Although H is a function of the vector p, the result is a scalar value. This allows us to use the multivariable version of the Taylor series. In this case, we will use the following quadratic approximation around the point p [START_REF] Hörmander | Linear Partial Differential Operators, ser. Grundlehren der mathematischen Wissenschaften[END_REF],

H( p) ≈ H(p) + ∇H(p) ( p -p) + 1 2! ( p -p) ∇ 2 H(p)( p -p), (2.12) 
where ∇H(p) is the gradient of H( p) at point p, and ∇ 2 H(p) is the Hessian matrix.

Next, using equation (2.11), we will obtain the explicit expression for the gradient and the hessian of H( p), as follows,

∇H(p)| p =    ∂H(p) ∂p 1 . . . ∂H(p) ∂p d!    p =    -(1 + ln p 1 ) . . . -(1 + ln p d! )    = -(1 + l) (2.13) ∇ 2 H(p)| p =     ∂ 2 H(p) ∂p 2 1 • • • ∂ 2 H(p) ∂p 1 ∂p d! . . . . . . . . . ∂ 2 H(p) ∂p d! ∂p 1 • • • ∂ 2 H(p) ∂p 2 d!     p = -    p -1 1 • • • 0 . . . . . . . . . 0 • • • p -1 d!    = -diag(p •-1 ), (2.14)
where 1 is a vector of ones, and p •-1 is the Hadamard power (element-wise) of p [START_REF] Horn | Matrix Analysis[END_REF]. diag(p •-1 ) is a diagonal matrix with all the elements of p •-1 . With these expressions, we can write equation (2.12) more explicitly:

H( p) ≈ H(p) -(1 + l) ( p -p) -1 2 ( p -p) diag(p •-1 )( p -p). (2.15)
We note from (2.9) that pp = 1 nm ∆Y . We will use this fact to write (2.15) in terms of ∆Y :

H( p) ≈ H(p) -1 nm (1 + l) ∆Y -1 2 1 nm 2 ∆Y diag(p •-1 )∆Y . (2.16)
To simplify the calculations of the moments of H( p) , it is desirable to rewrite the last term in (2.16) using the following rearrangement,

∆Y diag(p •-1 )∆Y = ∆Y    p -1 1 • • • 0 . . . . . . . . . 0 • • • p -1 d!    ∆Y =    p -1 1 ∆Y 1 • • • 0 . . . . . . . . . 0 • • • p -1 d! ∆Y d!    ∆Y = p •-1    ∆Y 1 • • • 0 . . . . . . . . . 0 • • • ∆Y d!    ∆Y = p •-1 ∆Y •2 , (2.17) 
where ∆Y •2 is the Hadamard square of ∆Y . By replacing (2.17) with (2.16), we finally arrive to our MPE statistic approximation:

H( p) ≈ H(p) - 1 n m (1 + l) ∆Y - 1 2 1 n m 2 p •-1 ∆Y •2 . (2.18) 
At this point, the only term that is not explicitly shown in (2.18) is m. If we use the approximation n m ≈ N/m, we get,

H( p) ≈ H(p) - m N (1 + l) ∆Y - 1 2 m N 2 p •-1 ∆Y •2 , (2.19) 
which is a polynomial with respect to m.

This approximation for the MPE statistic has several advantages. The dependence of ∆Y (the error of the ordinal pattern count), a variable with a binomial distribution, is evident even if the distribution of H( p) is not. Moreover, the deterministic and random parts of H( p) are clearly shown here. Also, the role of the time scale m is polynomial, which simplifies future calculations of moments. Although p can be a function of m in general, this expression is compact and relatively easy to handle. In practice, we expect p to be different at each time scale m, so we cannot immediately assume that p and m are independent. For the purposes of exploring the properties of equation (2.19), we will assume m is a fixed parameter. The relationship between p and m will be directly addressed on Chapter 3, section 3.3.

MPE Expected Value and Bias

Since we have a polynomial form of the MPE statistic (2.19) it is possible to obtain the first moment directly. From the definition of Y in (2.1), we know that

E[∆Y i ] = 0 CHAPTER 2. MULTISCALE PERMUTATION ENTROPY -THEORETICAL STATISTICS and var(∆Y i ) = E[∆Y 2 i ] = n m p i (1 -p i ). It follows that E[H( p)] ≈ H(p) - 1 2 m N p •-1 (p -p •2 ). (2.20)
We can rewrite the expressions as,

p •-1 p = d! i=1 p i p i = d! i=1 1 = d! p •-1 p •2 = d! i=1 p 2 i p i = d! i=1 p i = 1, (2.21) 
so we can express (2.20) as k.

(2.22)

It is interesting that the expected value of the MPE statistic approximation is biased, but said bias is not dependent on the pattern probabilities. The only major variable is m, and this means that the expected value bias decreases linearly with scale, and that it can be corrected regardless of the pattern distribution. The expression of the bias of the expected value is,

B[H( p)] ≈ - 1 2 (d! -1) m N . (2.23)
The MPE bias is rarely taken into account in the interpretation of MPE of real-life applications. Without the knowledge that MPE is a biased estimator, the gradual decrease in entropy with respect to m can be mistaken for a real effect from the phenomenon. This is our first contribution to the MPE theory, which we presented in [START_REF] Dávalos | Theoretical study of multiscale permutation entropy on Finite-Length fractional gaussian noise[END_REF].

MPE Variance

The calculation of the variance of the MPE estimator is, not surprisingly, more complex to compute than the expected value. If we compute the variance of equation (2.19), we get:

var (H( p)) = E[H 2 ( p)] -E 2 [H( p)] ≈H(p) 2 -( m N ) 2 (p •-1 ) E ∆Y •2 H(p) + ( m N ) 2 (1 + l) E [∆Y ∆Y ] (1 + l) + ( m N ) 3 (1 + l) E ∆Y (∆Y •2 ) (p •-1 ) + 1 4 ( m N ) 4 (p •-1 ) E ∆Y •2 (∆Y •2 ) (p •-1 ) + ( m N )(d! -1)H(p) -1 4 ( m N ) 2 (d! -1) 2 -H(p) 2 .
(2.24)
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We will proceed to simplify this equation by cancelling the terms H(p) 2 . We also note that the expression

p •-1 E ∆Y •2 = ( N m )(p •-1 ) (p -p •2 ) = ( N m )(d! -1) (2.25)
effectively cancels ( m N )(d! -1)H(p). We can now rewrite equation (2.24) as

var (H( p)) ≈ ( m N ) 2 (1 + l) E [∆Y ∆Y ] (1 + l) -1 4 (d! -1) 2 + ( m N ) 3 (1 + l) E ∆Y (∆Y •2 ) (p •-1 ) + 1 4 ( m N ) 4 (p •-1 ) E ∆Y •2 (∆Y •2 ) (p •-1 ).
(2.26)

We know that E [∆Y ∆Y ] is the covariance matrix of ∆Y , matrix E ∆Y (∆Y •2 ) is the coskewness matrix, and

E ∆Y •2 (∆Y •2
) is the cokurtosis. If we obtain these matrices explicitly, we obtain:

E [∆Y ∆Y ] = N m (diag(p) -pp ) = N m Σ p (2.27) E ∆Y (∆Y •2 ) = 2 N m p •2 p -diag(p •2 ) + N m (diag(p) -pp ) (2.28) = N m Σ p (I -2diag(p)) E ∆Y •2 (∆Y •2 ) = 3 N m ( N m -2)p •2 (p •2 ) -N m ( N m -2)(p •2 p + p(p •2 ) ) + ( N m ) 2 pp -4 N m ( N m -2)diag(p •3 ) + 2 N m ( N m -3)diag(p •2 ) + N m (diag(p) -pp ). (2.29) 
(For the calculation of covariance, coskewness and cukortisis, see Appendix A).

After taking out the term H(p) from equation (2.24), we substitute the expressions for the covariance, coskewness, cokurtosis, and the expected value of ∆Y 

var (H( p)) ≈ ( m N )l Σ p l + ( m N ) 2 1 l + d!H(p) + 1 2 (d! -1) + 1 4 ( m N ) 3 1 p •-1 -(d! 2 + 2d! -2) . (2.30)
This expression is a cubic polynomial equation with respect to the normalized time scale m/N . Recalling the domain limitations in Section 2.3.1, m/N will tend to have values very close to zero, implying that the high degree terms have a tendency to vanish, regardless of the values of p. Furthermore, since the original Taylor series approximation is quadratic, the cubic term of var (H( p)) (and higher order elements) would be incomplete. For these reasons, it is justifiable to further simplify equation (2.30) to at least a quadratic function in respect to m.
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Written in scalar form, (2.31) read as follows:

var (H( p)) ≈ ( m N ) d! i=1 p i ln 2 p i -H 2 (p) + ( m N ) 2 d! i=1 ln p i + d!H(p) + 1 2 (d! -1) . (2.32)
This is the result we presented on [START_REF]On the statistical properties of multiscale permutation entropy: Characterization of the estimator's variance[END_REF], where not only did we obtain this expression, but we also tested the accuracy of the approximations from (2.32), using surrogate signals with constant pattern distribution for d = 2. We will comment on these results later in Section 2.5.

MPE Cramér-Rao Lower Bound

To assess and evaluate our MPE estimator, we need it to compare the variance we obtained from equation (2.31). If we want to evaluate H( p) as an estimator of H(p), we can obtain the Cramér-Rao lower bound [START_REF] Geary | Review of mathematical methods of statistics[END_REF] as follows:

var(H( p)) ≥ 1 -dB(H( p)) dH(p) 2 I(H( p)) = CRLB(H(p)), (2.33) 
where B(H( p)) is the MPE bias from equation (2.23) and I(H( p) is the Fisher's information, which is defined as:

I(H(p)) = -E ∂ 2 ln(f H( p) (H(p); n m , p)) ∂H 2 (p) . (2.34) 
(Note that by having a bias that is constant with respect to p, its derivative is zero).

We need the distribution function for H( p) -a function we do not explicitly knowto get Fisher's information. Moreover, H(p) is not a given parameter, but a measure dependent of p.

However, there is a way around these limitations. First, although we do not directly know the distribution of H, we are certain that the distribution of its parameter estimator is multinomial. From equation (2.10), we know that p = Y nm is an unbiased estimator for p. We know that the explicit pmf of Y is:

f Y (y; n m , p) = n m ! d! i=1 p y i i y i ! . (2.35)
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We can calculate the Cramér-Rao bound for p by stating the multivariate form of its definition:

I(p) -1 = CRLB(p), (2.36) 
where the elements of I(p) are

I j,k (p) = -E ∂ ∂p j ln(f Y (y; n m , p)) ∂ ∂p k ln(f Y (y; n m , p)) .
(2.37)

Before going any further, we must note that I(p) is a square matrix of size d!. It is convenient to remember that vector p is constrained by

d! i=1 p i = 1, (2.38) 
since the parameters p i of p represent all the probabilities of the event set. Therefore, if we know the values of p 1 , . . . , p d!-1 , we know the last probability p d! as a consequence is

p d! = 1 - d!-1 i=1 p i . (2.39)
The particular choice of p d! is arbitrary. Since we lose no information, we can take p d! out from our calculations and subsequently recover this value from equation (2.39). This fact allows to define an auxiliary parameter vector p * as

p * = [p 1 , . . . , p d!-1 ] . (2.40)
Because p * does not lose information, then 

CRLB(p) = CRLB(p * ) = I(p * ) -1 , ( 2 
H(p) = - d! i=1 p i ln p i = - d!-1 i=1 p i ln p i -p d! ln p d! ∂H ∂p j = -1 -ln p j -ln p d! ∂p d! ∂p j -p d! ∂ ln p d! ∂p j = -1 -ln p j + ln p d! + p d! 1 p d! = ln p d! -ln p j ∂H ∂p * = ln p d! 1 -l * , (2.44) 
where 1 is a column vector of ones with size d! -1, and

l * = [ln(p 1 ), . . . , ln(p d!-1 )] . (2.45) 
We now need to obtain the explicit expression for CRLB(p * ). To obtain the elements of the Fisher matrix from equation (2.37), we need to obtain the natural logarithm of the multinomial distribution (2.35) and its derivatives:

ln(f Y (y; n m , p)) = ln(n m !) + d!-1 i=1 y i ln(p i ) - d!-1 i=1 ln(y i !) + y d! ln(p d! ) -ln(y d! !) ∂ ln(f Y ) ∂p j = y j p -1 j -y d! p -1 d! ∂ 2 ln(f Y ) ∂p 2 j = -y j p -2 j -y d! p -2 d! ∂ 2 ln(f Y ) ∂p j ∂p k = -y d! p -2 d! -E ∂ 2 ln(f Y ) ∂p 2 j = n m p -1 j + n m p -1 d! -E ∂ 2 ln(f Y ) ∂p j ∂p k = n m p -1 d! ∴ I(p * ) = n m diag(p * •-1 ) + p -1 d! 1 • 1 , (2.46) 
where 1 • 1 is a square matrix of ones, and n m ≈ N/m. The derivatives here retain the probability p d! , since it remains a function of all the other elements of p * , as stated in equation (2.39).
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The next step is to find the inverse of I(p * ). Here, it is useful to use the following lemma [START_REF] Miller | On the inverse of the sum of matrices[END_REF]: if A and A + B are nonsingular matrices, and B has rank 1, then Therefore,

(A + B) -1 = A -1 - 1 1 + tr(BA -1 ) A -1 BA -1 . ( 2 
CRLB(p * ) = I(p * ) -1 = 1 nm (diag(p •-1 * ) + p -1 d! 1 • 1 ) -1 = 1 nm diag(p * ) - p -1 d! 1 + p -1 d! (1 -p d! ) p * p * I(p * ) -1 = 1 nm (diag(p * ) -p * p * ) .
( 

CRLB(H(p * )) = 1 nm (ln(p d! ) 1 -l * ) (diag(p * ) -p * p * ) (ln(p d! ) 1 -l * ) = 1 nm (ln 2 (p d! ) 1 diag(p * )1 -ln 2 (p d! ) 1 p * p * 1 + l * diag(p * )l * -l * p * p * l * -2 ln(p d! ) 1 T diag(p * )l * + 2 ln(p d! ) 1 p * p * l * ). (2.49)
By noting the following relations,

CHAPTER 2. MULTISCALE PERMUTATION ENTROPY -THEORETICAL STATISTICS 1 diag(p * )1 = d!-1 i=1 p i = 1 -p d! 1 p * = d!-1 i=1 p i = 1 -p d! 1 p * p * 1 = (1 p * ) 2 = (1 -p d! ) 2 l * diag(p * )l * = d!-1 i=1 p i ln 2 p i l * p * = D-1 i=1 p i ln p i = -H -p d! ln p d! l * p * p * l * = (l * p * ) 2 = H 2 + 2Hp d! ln p d! + p 2 d! ln 2 p d! 1 diag(p * )l * = p * l * = -H -p d! ln p d! 1 p * p * l * = -(1 -p d! )(H + p d! ln p d! ) = -H -p d! ln p d! + p d! H + p 2 d! ln p d! .
(2.50)

we can simplify and rewrite equation (2.49) as

CRLB(H(p)) = 1 nm d! i=1 p i ln 2 (p i ) -H 2 = m N l Σ p l. (2.51)
By referring back to (2.31), we note that the CRLB(H(p)) is exactly the first term in our MPE's model variance (2.32). As long as we stay in the low end of the time scale, we can be sure that the MPE statistic will be approximately efficient (i.e. m/N is close to zero), regardless of the pattern probability distribution. This is one more reason to try to stay in the lower end of the time scales when doing a multiscale analysis. Here, the upper practical constraint of m will only depend on the original signal's data length N .

Simulations and Results

So far we have found some relevant information regarding the statistical properties of MPE. first, the MPE statistic (2.3) is not unbiased, and this bias is completely independent of the pattern distribution (2.23), since it is only affected by the embedding dimension d. Secondly, we found the MPE variance (2.32) to closely resemble the Cramér Rao lower bound (2.51), suggesting that the MPE estimator, although not unbiased, is close to the minimum variance for the MPE.

In this section, we will test these properties of MPE. In order to simplify the visualization, we will restrict ourselves to the dimension d = 2, where the pattern distribution is binomial and only has one parameter: p = P (x t < x t+1 ). We will
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propose and design a surrogate model with an explicit p as a parameter, for the purpose of controlling the pattern distribution, and thus generate the appropriate random signals for testing. We will then compute MPE using (2.3), and compare both the mean results and variance with our corresponding predictions from equations (2.22) and (2.31).

Surrogate Model

To test the results here obtained (2.22), (2.31), we need to design a proper signal model with the following goals in mind: the model must preserve the pattern probabilities across all of the signal, and the function must have the pattern probability as an explicit parameter -which, in turn, is easily modifiable. The following equation,

x t = x t-1 + t -δ(p), (2.52) 
where t is a discrete time step that satisfies these criteria for dimension d = 2. Here, t is a Gaussian noise term with variance σ 2 = 1 without loss of generality [START_REF] Zunino | Permutation entropy of fractional brownian motion and fractional gaussian noise[END_REF]. The function δ(p) represents the trend function, which is built up from the Gaussian cumulative distribution function (cdf) as follows: 

p = P (x t < x t+1 ) = 1 2 1 -erf δ(p) √ 2 (2.53) δ(p) = √ 2 erf -1 (1 -2p). ( 2 

Results

Figure 2.4a displays the value of the expected normalized MPE value versus the pattern probability p, with each curve representing a different value of m. As we can see, the general shape of the curve is preserved across time scales, with a small shift downward for each increasing scale. In fact, as we can see from Figure 2.4c, the decrease along m is almost linear, which agrees with the predicted MPE bias (2.23). Moreover, all the lines present the same downward slope, regardless of pattern probability.

Figure 2.4b shows the shape of the MPE variance along p. We can see that the symmetry around p = 0.5, which corresponds to the maximum entropy. We note, interestingly, that the curves present clearly defined maxima near the extremes of the distribution, and they preserved along all time scales. We can also note, unsurprisingly, that the variance greatly increases with the time scale m; as shown in Figure 2.4d, where we can see that, for almost all fixed pattern probabilities, the variance increase linearly. This is both present in the theoretical lines and the simulation results, further supporting the MPE variance formulation in (2.31). Lastly, we notice that the variance from simulations is consistently over the predicted values from equations (2.22) with regards to the mean MPE and (2.31) the MPE variance.

We observe a notable exception in the behavior of the MPE variance curve with respect to the time scale. In the case of a uniform pattern distribution and maximum entropy (where all p i = 1 d! , ∀i = 1, . . . , d!), the linear term of (2.31) vanishes, leaving only a quadratic curve; for any distribution which deviates from uniformity, the linear term dominates. This effect is clearly shown in Figure 2.5. 

Discussion

We need to compare our results with previous literature regarding the MPE moments. In the specific case pertaining white noise (i.e. uniform pattern distribution), Little and Kane [START_REF] Little | Permutation entropy of finite-length whitenoise time series[END_REF] developed the expected value of classical PE that is subject to finite-length constraints. They found the normalized MPE expected value and variance to be

E[ H] ≈ 1 - d! -1 2N ln d! (2.55) var( H) ≈ d! -1 2N 2 (ln d!) 2 .
( 

p i = 1 d! , ∀i = 1, . . . , d!,
we replicate Little's results [START_REF] Little | Permutation entropy of finite-length whitenoise time series[END_REF] (note that the results in equation (2.55) are normalized by 1/ln(d!), which is obtained by using the normalized MPE definition of (2.4) instead of the one found in (2.3)). Now, the MPE variance presents some interesting properties worth discussing. As we can see in Figure 2.4b, the variance is particularly sensitive to the pattern distribution. The points of minimum variance correspond to the maximum MPE at p = 0.5, and the minimum MPE at points p = 0 and p = 1; on the other hand, it is interesting to know the distribution which yields the maximum variance (and thus, uncertainty) of the MPE statistic. Since the first term in (2.31) 

( Ĥ) ≈ m N l T Σ p l| d=2 = m N p(1 -p) ln 2 p 1 -p . (2.57) 
The minimum points become obvious if we look for the zeros of (2.57): if p = 0.5, p = 0, or p = 1, then (2.57) vanishes. The maximum variance, on the other hand, does not correspond to a particularly value of interest in the MPE curve. To find the maximum points, we need to take the derivative of equation (2.57):

m N d dp l T Σ p l| d=2 = m N ln p 1 -p (1 -2p) ln p 1 -p + 2 = 0. (2.58)
When equation (2.58) is equal to zero, we find the extreme points of the variance MPE curve. It is obvious, once again, that p = 0.5 corresponds to a minimum value.

The maximum points are found by solving the transcendental function

ln p 1 -p = 2 2p -1 . (2.59)
The maximum entropy variance for d = 2 is found at points p = 0.083 and p = 0.917, both equidistant from p = 0.5. This implies that we need to be cautious with the MPE measurement we obtain from the signal, as the MPE variance changes nonlinearly with respect to MPE itself.

The second interesting property of the MPE variance is its relationship with the time scale. As we can see from figure 2.4d, the variance increases almost linearly with m. This is true for almost any pattern probability p, even the most unbalanced values. Nonetheless, when MPE is close to its maximum value, the first (linear) term in (2.31) is almost zero, so we need to take into account the second (quadratic) term
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of the MPE variance (2.31). This is actually displayed in Figure 2.5, where this particular plot increases in a parabolic curve, both in theory and in simulations.

When solving (2.59) for p, we found that the points p = 0.083 and p = 0.917 correspond to the maximum variance for any given m/N , and that they both lead to a normalized MPE value of H = H/ln d! = 0.413. Therefore, the entropy value around this point produces the maximum variance possible for the MPE statistic. We can clearly see these maximum points on Figure 2.4b.

Further elaborating on this result, it is in our interest to know the distribution of p that produces the maximum uncertainty H( p) for all dimensions d, since it would provide us with information about the worst-case scenario regarding the precision of the MPE statistic. For this purpose, we will define the following maximization problem: we want to maximize the first term of the MPE variance,

l T Σ p l = d! j=1 p j (ln p j ) 2 - d! j=1 p j ln p j 2 , (2.60) 
subject to restriction

d! j=1 p j = 1. (2.61) 
For this very purpose, we capitalize on the advantages offered by the Lagrangian method of multipliers. First, we define the function as

L(λ, p) = d! j=1 p j (ln p j ) 2 - d! j=1 p j ln p j 2 -λ d! j=1 p j -1 . (2.62)
By taking the partial derivative of L with respect to p i , ∀ i = 1, . . . , d!, we obtain the following equation system: 

∂L ∂p i = ln 2 p i + 2 ln p i -2(ln p i + 1) d! j=1 p j ln p j = λ, ∀ i. ( 2 
ln p i + ln p d! + 2 -2 d! j=1 p j ln p j = 0, ∀ i = d!.
(2.66)

We can rewrite equation (2.66) as

ln p i + ln p d! = -2 + 2 d! j=1 p j ln p j , ∀ i = d!. (2.67) 
We note that the right side of the equation is constant for all i. Once again, this implies that

ln p i + ln p d! = ln p j + ln p d! p i = p j , ∀ i, j = d!. (2.68)
Once again, all probabilities p i are identical, given i = d!. By using the constraint in equation (2.61), we see that 

p d! = 1 -(d! -1)p i . ( 2 
H(p) = - d! j=1 p j ln p j = - d!-1 j=1 p j ln p j -p d! ln p d! = -(d! -1)p i ln p i -p d! ln p d! .
(2.71)

We then substitute (2.71) into (2.70),

ln p i + ln p d! + 2 -2(d! -1)p i ln p i -2p d! ln p d! ) = 0, (1 -2(d! -1)p i ) ln p i + (1 -2p d! ) ln p d! + 2 = 0. (2.72)
Finally, by introducing once again our expression for p d! (2.69), we obtain the following:

(1 -2(d! -1)p i ) ln p i + (1 -2(d! -1)p i ) ln 1 -(d! -1)p i + 2 = 0 ln p i + ln 1 -(d! -1)p i = -2 1 -2(d! -1)p i ln p i 1 -(d! -1)p i = 2 2(d! -1)p i -1 . (2.73)
This is a transcendental equation for p i . With this information at hand, we know that the critical points that yield maximum variance for an arbitrary dimension d must have a pattern probability distribution that satisfies (2.59):

ln p i 1 -(d! -1)p i = 2 2(d! -1)p i -1 , ∀ i = d! p d! = 1 -(d! -1)p i . (2.74)
As long as we have this structure in the pattern distribution, we will have a maximum variance for the system. For d = 2, this equation is reduced to equation (2.59).

By computing the results in (2.74) for dimensions d = 3, . . . , 7, we found the particular distributions which maximize the MPE variance (2.31) for each case. These are the worst-case scenarios regarding the precision of our MPE statistic. The results are shown in 

MPE Length Criterion

By knowing the moments of the MPE statistic (2.22) (2.31), we are now able to propose some improvements on this technique's implementation on real signals. We will revisit the problem of the length constraint N/m d!, which is not sufficiently clear as a criteria for a long signal. We present a reformulation of this constraint as follows: we know that a signal consisting of uncorrelated noise will lead to a uniform pattern probability distribution, and thus, to the maximum possible entropy value for the system. We also know that uncorrelated noise will retain maximum MPE, regardless of scale [START_REF] Dávalos | Theoretical study of multiscale permutation entropy on Finite-Length fractional gaussian noise[END_REF]. Therefore, with these assumptions in mind, the decrease of MPE with scale comes exclusively from the bias in equation (2.23). We then define a maximum deviation tolerance α that measures the percentage of the MPE decline from the maximum possible MPE. We propose a length criterion where the maximum bias is less than the value of α, such that 

|B[H( p)]| < α 1 2 d! -1 ln d! m N < α N m > 1 2α d! -1 ln d! . ( 2 

Closing Remarks

In this chapter, we have developed the multiscale permutation entropy statistic, presenting its expected value, bias, and variance by means of a Taylor series approximation. We also tested our theoretical results against previous literature [START_REF] Little | Permutation entropy of finite-length whitenoise time series[END_REF], as well as with simulations from a suitable surrogate model. In both cases, the results match our predictions, further supporting our initial formulations.

We first found that the MPE expected value is a biased estimator. Moreover, the bias is solely dependent on the parameters of the MPE analysis, particularly dimension, scale, and signal length. This implies that the MPE will present the same bias with respect to time scale, regardless of the pattern probability distribution of the signal.

Secondly, we found the MPE variance to increase almost linearly with increasing time scale for almost any pattern distribution. The exception emerges when the MPE is close to a maximum value (uniform probabilities). In this scenario, the variance increases quadratically in respect to the time scale. Our formulation closely resembles the Cramér-Rao lower bound for the MPE statistic, which means it is almost as efficient. We must also add that the variance presents a maximum value for specific MPE values and pattern probability distributions, as this informs other researchers about an MPE region where we have maximum uncertainty.

Finally, we were able to suggest a more precise criterion for signal length than N/m d!-which is usually found in literature. By defining a maximum allowed bias, we were able to specify a minimum length (and maximum time scale) based solely on the pattern dimension for the analysis. We are aware of the possible refinements available for MPE, which are reported to increase the precision of the measurement [START_REF] Humeau-Heurtier | Refined composite multiscale permutation entropy to overcome multiscale permutation entropy length dependence -IEEE journals & magazine[END_REF]. This chapter's main purpose is to develop the theory on classical MPE; a necessary approach to understand the increasingly refined methods that will be discussed in Chapter 4. Furthermore, the relationship between pattern distribution and time scale were left out of the analysis intentionally, since it is necessary to first establish the most simplified model possible. The evolution of the pattern distribution with respect to scale will be discussed in Chapter 3 for well-known stochastic processes.

MPE Statistics with sEMG Applications

Chapter Summary

• Permutation entropy (PE) measures the information content within the probability distribution of the ordinal patterns in a signal for a given embedding dimension.

• Multiscale permutation entropy (MPE) performs the PE calculation over a coarse-grained signal that aims to capture the ordinal information content over longer trends.

• The pattern probability distribution is assumed to follow a multinomial distribution. This is in general, not true, since the patterns present along time are generally neither independent nor identically distributed. Nonetheless, the multinomial approach is justified, since PE and MPE estimate the probabilities from pattern counts.

• Since the pattern counts estimate the true pattern probability distribution, the MPE must be regarded as a statistic. We propose a Taylor series expansion on MPE in order to obtain its moments.

• The MPE expected value is a biased statistic, which decreases its value when the time scale increases. Moreover, the bias' linear approximation is independent of the estimated pattern probability distribution, and hence, the same could be stated for any given time series.

• The MPE variance, on the other hand, does not depend on the pattern distribution. The variance tends to be small when the MPE itself is close to its maximum value or really close to zero. Regardless, the variance presents maximum points for specific pattern probability distributions.

• The Taylor approximation to the MPE variance is close to the Cramér-Rao lower bound for the MPE estimator, with the first term being exactly the CRLB. The variance deviates from the CRLB only when the MPE is close to its maximum.

• We tested the accuracy of our MPE model against surrogate signals, which further valides our results, specially in the case of the downward MPE bias and the almost linearly increasing variance with respect to the scale.

• To address the ambiguity of the length constraint of MPE, we proposed a precise criterion based on a maximum bias tolerance. This provides a more explicit rule for parameter selection than the often cited N/m d!.

• With the MPE variance, we were also able to specify a particular MPE region where the variance will be maximum, regardless of scale and almost independently of the embedding dimension of choice.

nal models, addressing first the expected MPE from common deterministic signals.

Since we expect the MPE to be robust to perturbations [27] [45] [58], we will also analyze the effect of noise, with the intention of assessing when the noise dominates over the signal and testing the robustness limits of the methods. Although our exploration of MPE contemplates random processes, Gaussian signals are particularly relevant in the present work; more specifically, we will characterize -as we already did in [START_REF] Dávalos | Theoretical study of multiscale permutation entropy on Finite-Length fractional gaussian noise[END_REF]-both white Gaussian noise (wGn) and fractional Gaussian noise (fGn).

Additionally, we will explore -as done by our team in [START_REF] Dávalos | Multiscale permutation entropy: Statistical characterization on autoregressive and moving average processes[END_REF]-first order autoregressive (AR) and moving average (MA) models. Since all Gaussian signals present particular symmetries [START_REF] Bandt | Order patterns in time series[END_REF], we will propose an explicit, general formulation of the theoretical MPE for this type of random processes, and conclude by testing our proposed technique on more elaborated models, such as the general Autoregressive and Moving average model (ARMA). These results will allow researchers to better gauge the expected MPE results from well-established models. We will provide the appropriate benchmark MPE to compare the information content between real datasets and the models used to describe them.

MPE on Models with Deterministic Signals

In this section we will briefly discuss the MPE results we should expect from deterministic signals. For known functions of time, we would expect to observe a low value of MPE, since the signal is easily predictable if we know its analytic function. We will also discuss the effects of the sampling rate, since we will work with discrete signals in practice. Finally, we will evaluate the introduction of random noise and gauge its overall effect on our entropy measurements. In this section, without loss of generality, we will limit our analysis to the time scale m = 1.

Deterministic Signals

First and foremost, we need to approach the simplest signal models available: deterministic curves. By introducing a signal shape with a known function and absence of randomness, it is almost trivial to obtain the pattern probabilities, regardless of the embedded dimension d used for the analysis. Nevertheless, we can address here some of the most basic concepts regarding the MPE implementation.

A continuous signal can be regarded as a series of points with an infinitesimal distance between them. If we were able to measure such a system, we will only find two possible patterns: either an always increasing (pattern 1) or always decreasing (pattern d!). For simplicity, we will call them monotonic patterns. These cases correspond with the regions where the slope of the curve is positive and negative, respectively. The only special case here comes from the local maxima and minima of the curve, where the slope is zero -we exclude the case where the curve is horizontal, since patterns with data points of equal value must be properly classified by the researcher. In the case of reaching its limits, all the nonmonotonic pattern probabilities p 2 , . . . , p d!-1 are zero almost surely. Thus, we would only measure the monotonic pattern probabilities by measuring the proportion of time where the curve CHAPTER 3. MPE ON COMMON SIGNAL MODELS has the corresponding slope. More formally, given an embedding dimension d and a continuous function x = g(t) within a bounded time t, such that t min ≤ t ≤ t max , we can obtain the probability of the pattern p 1 (increasing) and pattern p d! (decreasing) by measuring the proportion of time where the derivative of g(t) is positive, such that

p 1 = k∈K (g -1 (x max,k ) -g -1 (x min,k )) | dx dt > 0 t max -t min (3.1)
p d! = 1 -p 1 , (3.2) 
where k ∈ K is the number of local minima within t max -t min , g -1 (x) is the inverse function of x = g(t), x min,k and x max,k are the local minima and maxima, and g -1 (x min,k ) < g -1 (x max,k ) for all k. As we can see, the probability p d! is just the complement of p 1 . All other probabilities p 2 , . . . , p d!-1 = 0.

Therefore, we can write the normalized PE of such a system as

lim p 2 ,...,p d!-1 →0 H = -1 ln(d!) (p 1 ln(p 1 ) + p d! ln(p d! )]). (3.3) 
We use the limit since, strictly speaking, ln(0) is not defined. Figure 3.1 shows an example of such a calculation with a deterministic cubic polynomial equation.

There is an additional effect we will discuss, given that we are working with discrete signals. In the regions close to the maximum and minimum points of x = g(t), we would expect non-monotonic patterns to appear. Intuitively, we can see that sampled signals from f (t) would not exactly adhere to equation (3.1). For a sufficiently large sampling rate, the nonmonotonic patterns probabilities would tend toward zero, so (3.1) would still be a good approximation. On the contrary, when the pattern size is comparable to the number of data points between local maxima and minima, the nonmonotonic pattern probabilities would be comparable to the monotonic ones. In figure 3.2, we can observe the effect of the sampling frequency f s over the measured MPE (m = 1 and d = 3) of a sine wave. As we increase f s , the number of patterns that overlap with a local maximum or minimum decreases considerably. Therefore, as we increase the sampling rate, the overall MPE slowly converges with the theoretical value predicted by (3.3).

From these examples we can offer the following observations. First, even if f s satisfies the Nyquist-Shannon theorem f s > 2f max , this criterion is not enough to guarantee an accurate MPE estimation from a continuous deterministic signal. It is necessary that f s f max to avoid any significant deviations from the theoretical PE value in (3.3). Second, contrary to the bias effect discussed in Section (2.3.3), a small f s produces an overestimation of MPE. The source of this effect comes from the number of patterns that overlap with a maxima or minima. Therefore, this is a geometric effect, rather than a statistical one.

CHAPTER 3. MPE ON COMMON SIGNAL MODELS

So far, we can observe two important factors that have an effect on the MPE of deterministic signals: the sampling rate and the presence of maximum and minimum points. Since we have not explored neither non-differentiable functions nor chaotic systems, we cannot claim this list of factors is exhaustive. Nonetheless, here we present the basic considerations regarding the properties of deterministic functions for MPE calculations.

Deterministic Signals with Noise

It is a well-known fact that white noise yield the maximum permutation entropy value. This corresponds to a uniformly distributed pattern mass probability function, where each pattern has the exact same chance of appearing in the signal. This presents itself in stark contrast to a deterministic signal, which will present a low entropy value if we measure it with a high enough sampling rate. As a consequence, it is natural to ask what would we expect from the MPE measurement of deterministic signal in the presence of noise. This is particularly relevant, since we expect to have at least a small amount of noise from a real signal measurement, and the MPE method is regarded as a robust method.

Intuitively, there will be no difference between noisy and clean signals from the perspective of entropy if the amount of noise is small in comparison to the amplitude of the patterns. Nonetheless, if the added noise has a sufficiently large variance, it will override the deterministic pattern, as described in Figure 3.3. Therefore, in the case of deterministic signals with added noise, the magnitude of the slope becomes important -in contrast to the direction of the slope, as we saw in Section 3.2.1). In the case of a completely horizontal line, the addition of noise, regardless of its amplitude, will inevitably shift the MPE from zero to its maximum value. In contrast, curves with a pronounced slope should preserve their ordinal patterns, even in the presence of noise. Therefore, for a signal with clear local maxima and minima, we should see an increased number of nonmonotonic patterns as a product of noise, since the regions near these points have a slope close to zero. An example of one of such cases is shown in Figure 3.4.

In order to gauge the effect of amplitude over MPE of deterministic signals with white noise, we will test the case of a parabolic curve x = t 2 for 0 ≤ t ≤ 15 seconds. The parabola has a slope that increases linearly with time for this region. This is particularly well-suited for our experiment. We thereby add white noise to the parabola, testing for different standard deviation values σ. We will calculate local Figure 3.3: The presence of noise does not affect the signal patterns, as long as the variation is small compared to the curve's slope. As we could expect, as we increase the slope of the signal, MPE is reduced from a region where the noise dominates (maximum entropy) to a region where the deterministic line has most effect (minimum entropy). Figure 3.5b confirms this trend. The opposite effect occurs when we increase the standard deviation of the noise, as it moves from minimum to maximum entropy. Surprisingly, the shift from one regime to the other is not sharp. Instead, we observe a transition curve which depends on the exact slope and standard deviation values. Here, we will not attempt to characterize this behavior formally. It suffices to say that there is a strong interaction between the geometry of the signal and the intensity of the noise, regarding the overall resulting MPE measurement. Now that we know the overall MPE effect of the interaction between noise amplitude and slope, we should reintroduce the sampling rate. Geometrically, if the sampled data points for a noisy signal are close together in time, the vertical distance between values decreases, even for a pronounced slope. Therefore, for a constant noise standard deviation, we should expect an increase of MPE values when the sampling frequency increases.

To test this effect over the MPE of noisy signals, we revisit the example of the sinusoidal wave function x = sin(2πf t) from 0 ≤ t ≤ 5 seconds, with increasing sampling frequency f s . We perform the MPE calculation for m = 1 at different values of SNR. The results are shown in Figure 3.6.

At first glance, we can see in Figure 3.6a that the SNR has a profound impact on the overall results, compared to the noiseless MPE vs. f s curve in Figure 3.2d. Instead of reducing MPE asymptotically to the theoretical continuous entropy, the value of noisy sine waves presents a minimum, and then increases with higher f s . For a sufficiently large sampling frequency, the noise effect dominates over the signal, regardless of SNR. In Figure 3.6b, we present an MPE surface, respect to both f s and SNR. We can see a clear frontier between the regions where the sine wave dominates (in blue), and the region where the noise effect prevails (in yellow). As we increase the SNR, the noise effect requires higher sampling frequencies to appear, and the frontier within regions is not linear.

This entropy increase with sampling rate can be explained by the vertical distance between data points: the closer the data points are in time, the closer they are in vertical distance, even for a steep slope. Therefore, we should also be wary of oversampling the signal, since we are increasing the effect of noise, as exemplified in Fortunately, the coarse-graining procedure, characteristic of the MPE, acts as a downsampling parameter, which can correct this effect. Therefore, a careful exploration of the MPE signals with respect to noise is always recommended before further analysis.

MPE on Models with Random Gaussian Signals

In contrast to the previous section, here we will focus on characterizing the MPE of random stochastic processes, focusing on Gaussian processes. Here, the information content from the signal does not come directly from the geometry of the model, but from its autocorrelation function [START_REF] Bandt | Order patterns in time series[END_REF]. White Gaussian noise (wGn), as we discussed before, produces a uniform ordinal pattern distribution. Since wGn is uncorrelated, we can make no inferences regarding possible future patterns, given the information we have. This is not the case when we have an autocorrelation other than zero.

The models in this section share the following characteristics. First, it is evident that each data point in the series has at least one Gaussian error term. Second, the signals are stationary -this property is not strictly necessary, as we can see from section 3.2.2. Third, the Gaussian random variable has a constant variance, and hence, presents homoscedasticity. Models with nonconstant variance will be studied in future work. Lastly, and most importantly, we will not restrict ourselves to white Gaussian noise (wGn). As we will see, the autocorrelation in this process presents some information content, manifest in the MPE.

The coarse-graining procedure presents an additional challenge for the calculation of Gaussian ordinal patterns. In the general case, there is no guarantee that the pattern probability distribution of these signals will remain the same across time scales. Therefore, as part of our analysis of Gaussian models, we will also provide the evolution of the pattern probabilities as a function of time scale. This step is essential to obtain the MPE as a function of the process parameters.

Gaussian Ordinal Pattern Distributions

Bandt and Shiha [START_REF] Bandt | Order patterns in time series[END_REF] first observed the pattern distributions of Gaussian noise by taking advantage of the pattern symmetries present in these models. For embedded dimension d = 2, the two patterns have the exact same probability p 1 = p 2 = 1/2, with no effect stemming from the autocorrelation in the noise. This is true because of the stationary constraint outlined before, and the fact that, for a Gaussian random variable, the median is equal to the mean. By the definition of the median, the probability of having an increasing pattern is P (X t > X t+1 ) = 1/2. Therefore, unless the signal is non-stationary, the signal will be balanced [START_REF] Bandt | Order patterns in time series[END_REF]. Since the coarsegraining procedure is an averaging transformation, the resulting coarse signal is also Gaussian and stationary. Although this is a general result, it is also not useful in the characterization of the Gaussian process. For d = 3, the patterns present an interesting structure. By exploiting the general symmetry properties of patterns of dimension three, applied to Gaussian distributions, the following relationships arise between pattern probabilities [START_REF] Bandt | Order patterns in time series[END_REF],

p 1 = p 6 p 2 = p 3 = p 4 = p 5 = 1 4 (1 -2p 1 ), (3.4) 
being p 1 the monotonically increasing pattern, and the remaining p i follow the lexicographic order of the permutations [START_REF] Keller | Time series from the ordinal viewpoint[END_REF]. By using Plackett's lemma [START_REF] Bandt | Order patterns in time series[END_REF], they found an explicit relationship between the autocorrelation function of the process (ρ(λ)), and the increasing pattern probability,

p 1 = 1 π arcsin 1 2 1 -ρ(2) 1 -ρ(1) , (3.5) 
where ρ(1) is the autocorrelation between adjacent points, and ρ( 2) is the autocorrelation between data points two steps apart.

As we can clearly see, all of the pattern's distribution is completely characterized by computing the first pattern probability. This reduces the problem from five dimensions (3!-1 degrees of freedom) to just one. We also note that this relationship will hold for any stationary Gaussian process. Any coarse-grained signal whose source time series is a Gaussian process, will itself be a Gaussian process, and will still obey equation (3.5). From this point, we rewrite the original PE definition (2.3) using the pattern symmetries in (3.4):

H = -2p 1 ln(p 1 ) -(1 -2p 1 ) ln 1 4 (1 -2p 1 ) . (3.6)
The problem now lies in obtaining the autocorrelation functions for the coarsegrained versions of these models. By introducing the time scale to the autocorrelation function, we can easily obtain the pattern probability p (m) 1

(the pattern probability at scale m) and the theoretical MPE value for the model. Before exploring more specific Gaussian processes, we should address the embedded dimension. For the purposes of this section, we will limit our analysis to the case of d = 3. Although there are explicit symmetries obtained for d = 4, some of the resulting pattern probabilities lie in the complex plane, which complicates its interpretation. For d ≥ 5, the pattern probabilities have no closed form [START_REF] Bandt | Order patterns in time series[END_REF].

White Gaussian Noise and Fractional Gaussian Noise

As described by Manderlbrot [START_REF] Mandelbrot | Fractional brownian motions, fractional noises and applications[END_REF], the fGn models a surprisingly large amount of natural phenomena across time, from hydrology to stock markets. Interestingly, fGn does include white Gaussian noise as a special case. The fGn fractal properties are of special interest under the MPE approach.

In this section we will lay down the necessary theory about fGn, with special emphasis on its autocorrelation function, as we have previously published in [START_REF] Dávalos | Theoretical study of multiscale permutation entropy on Finite-Length fractional gaussian noise[END_REF]. This will allow us to build a model for coarse-grained fGn signals (cgfGn). By obtaining the autocorrelation function of cgfGn, we will completely characterize the pattern distribution function, and thus, the theoretical MPE with respect to the time scale m.

It is not necessary to state the explicit form of the fGn signals, but we will need to relate it to the fractional Brownian motion (fBm). For n ∈ N, we will write fBm signal as X B (n) and fGn as X G (n), corresponding to time t n . Since fGn and fBm are continuous, we need to work with the discrete sampled version.

These models are dependent of the Hurst exponent 0 < h < 1, which is used to model long-term autocorrelations that are proportional to t h [START_REF] Mandelbrot | Fractional brownian motions, fractional noises and applications[END_REF] (the Hurst exponent is usually found in literature as uppercase H. Here, we use lowercase h to avoid using H, which we use for MPE). For h > 0.5, each new data point is positively correlated to all previous ones. For h < 0.5, each new point is inversely correlated to all its history. In the case of h = 0.5, the model is identical to uncorrelated Gaussian noise. For this reason, we will consider wGn as a special case of fGn. Therefore, all the results for fGn also apply to the classical, uncorrelated wGn.

CHAPTER 3. MPE ON COMMON SIGNAL MODELS E[X (m) G (n)] = 0 (3.10) var(X (m) G (n)) = E[X (m) G 2 (n)] = 1 m 2 E (X B (mn) -X B (m(n -1))) 2 = σ 2 m 2(h-1) .
(3.11)

We will take advantage of the variance and covariance of fBm in equation (3.7), where λ = m. More importantly, we need to obtain the autocovariance and autocorrelation of (3.9). This can be done by using the same reasoning as with the cgfGn variance, as follows,

cov(X (m) G (n),X (m) 
G (n + λ)) = E[X (m) G (n)X (m) G (n + λ)] = 1 m 2 E (X B (mn) -X B (m(n -1))) (X B (m(n + λ)) -X B (m(n + λ -1)) = σ 2 2 m 2(h-1) |λ + 1| 2h + |λ -1| 2h -2λ 2h (3.12) ρ (m) Ḡ (λ) = 1 2 |λ + 1| 2h + |λ -1| 2h -2λ 2h = ρ G (λ). (3.13) 
By dividing (3.12) by (3.11), we get the autocorrelation of the coarse-grained signal, which is exactly the same as the autocorrelation of the original fGn signal in (3.8). This is consistent with the self-similarity property of the fractional Gaussian noise signals [START_REF] Zunino | Permutation entropy of fractional brownian motion and fractional gaussian noise[END_REF],

X G (n) d = c h X G (c -1 n), (3.14) 
which are equal in distribution. Therefore, by revisiting the pattern probabilities for Gaussian signals in equation (3.5), the MPE of coarse-grained fGn remains constant for all time scales and for any given Hurst exponent h. As a consequence of this result, the MPE of white Gaussian noise is invariant to the time scale coarse-graining transformation. When we compute the pattern probabilities from (3.5), we obtain,

p (m) 1,f Gn = 1 π arcsin 1 4 1 + 2 2h+1 -3 2h 1 -2 2(h-1) , (3.15) 
which we use to obtain the MPE of fGn by means of equation (3.6).

In Figure 3.9 we observe the mean MPE from 1500 fGn signal simulations (length N = 5000). Contrary to the result found in (3.13), we observe a linear downward trend for the MPE with respect to time scale m. This is easily explained by the MPE bias from equation (2.23). We included the bias in the theoretical prediction (dotted lines) in Fig. 

First-Order AR Models

Autorregressive (AR) [START_REF] Brockwell | Time Series Analysis, Forecasting and Control[END_REF] Gaussian processes are ubiquitous tools in signal processing, used to represent complicated time series phenomena. The AR process takes into account the influence of the parameter p (not to be confused with p, which refers to probability) past data points in a new iteration of the process, plus a new random Gaussian innovation. The general AR (p) process is described as,

X AR(p) (n) = c + ε n + p i=1 φ i X AR(p) (n -i), (3.16) 
for time t n , where the n terms are assumed to be Gaussian, independent and identically distributed (iid), with mean zero and constant σ 2 variance. The term p denotes the number of elements, or lags, taken in account for the AR model.

The first degree AR (p = 1) is expressed as,

X AR(1) (n) = c + ε n + φX AR(1) (n -1), (3.17) 
where

E[X AR(1) (n)] = c/(1 -φ) (3.18) var(X AR(1) (n)) = σ 2 /(1 -φ 2 ) (3.19) ρ AR(1) (λ) = φ |λ| . (3.20)
At this point, we will limit the analysis to the first-order AR processes, so that we can ensure the coarse-grained pattern probabilities have a closed form. More general cases will be explored in Section 3.3.5.

As we have previously done in [START_REF] Dávalos | Multiscale permutation entropy: Statistical characterization on autoregressive and moving average processes[END_REF], we will apply the coarse-grained procedure to the AR(1) processes. We here set the constant c = 0, without loss of generality. If we apply the coarse-graining procedure expression in (2.5) into first-order AR process (3.17), we get,

X (m) AR(1) (n) = φ m 1 -φ m 1 -φ X AR(1) (m(n -1)) + 1 m m j=1 1 -φ j 1 -φ ε mn+1-j . (3.21)
The variance of (3.21) is

var(X (m) AR(1) (n)) = σ 2 m 2 (1 -φ 2 ) m 1 + φ 1 -φ - 2φ 1 -φ 1 -φ m 1 -φ . (3.22)
The autocovariance function γ λ for (3.21) is given by

γ λ = cov X (m) AR(1) (n), X (m) 
AR(1) (n + λ) = φ mλ+2 m 2 1 -φ m 1 -φ 2 var(X AR(1) (m(n -1))) + σ 2 m 2 φ m(λ+1) 1 -φ m 1 -φ m j=1 1 -φ j 1 -φ φ j . (3.23)
and the autocorrelation is

ρ (m) AR(1) (λ) = φ m(λ-1)+1 (1 -φ m ) 2 m(1 -φ 2 ) -2φ(1 -φ m ) . (3.24) 
for |λ| > 0, and ρ (m) AR(1) (0) = 1. From this point, it is straightforward to obtain the probability of obtaining the increasing pattern probability for embedded dimension d = 3 by using this autocorrelation function (3.24) to obtain the first pattern probability (3.5), and the PE equation in (3.6). We note here that (3.21) is not itself an AR(1) process. Nonetheless, it is still a stationary Gaussian process, so the assumptions required for (3.5) still apply. Therefore, the increasing ordinal pattern for coarse-grained AR(1) is As we can observe from Figure 3.10, increasing time scales tend to increase the MPE, except for φ values close to 1. For high φ, the signal presents a minimum entropy at a scale different than m = 1. Consequently, we would want to find the critical value of φ above which this effect begins to occur. Therefore, in the limit case, where we set the probabilities p m=1 1,AR(1) = p m=2 1,AR(1) to be equal, we get

p (m) 1,AR(1) = 1 π arcsin 1 2 m(1 -φ 2 ) -φ(2 -φ m )(1 -φ 2m ) m(1 -φ 2 ) -φ(1 -φ m )(3 -φ m ) . ( 3 
1 -ρ (m=1) AR(1) (2) 1 -ρ (m=1) AR(1) (1) = 1 -ρ (m=2) AR(1) (2) 1 -ρ (m=2) AR(1) (1) φ(φ -1)(φ 2 + φ -1) = 0 φ = -1/2 + √ 5/2 ≈ 0.618. (3.26)
Thus, as we previously published in [START_REF] Dávalos | Multiscale permutation entropy: Statistical characterization on autoregressive and moving average processes[END_REF], this result states that coarse-grained AR(1) models a φ parameter greater than the Golden Ratio, presents more regularity and structure on longer time scales than the original signal.

First-Order MA Models

As in section 3.3.3, the moving average process [START_REF] Brockwell | Time Series Analysis, Forecasting and Control[END_REF] is also one of the most referenced techniques in the modelization of random time series. Contrary to the AR model, the
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MA process computes each data point as the weigthed sum of q previous innovations, in addition to the present one. The general MA(q) process is described as,

X M A(q) (n) = c + ε n + q j=1 θ j ε n-j . (3.27) 
for time t n , where the terms are assumed to be Gaussian, independent and identically distributed (iid), with mean zero and constant σ 2 variance. The term q, is the number of lags taken in account for the MA model. The first degree MA (p = 0, q = 1), which is the simplest case, is explicitly written as

X M A(1) (n) = c + ε n + θε n-1 , (3.28) 
with moments

E[X M A(1) (n)] = c (3.29) var(X M A(1) (n)) = σ 2 (1 + θ 2 ). (3.30) 
The normalized autocorrelation is given by

ρ M A(1) (λ) =      1, if λ = 0 θ/(1 + θ 2 ), if |λ| = 1 0, otherwise, (3.31) 
where λ is the time shift between data points X M A(1) (n) and X M A(1) (n ± λ).

As previously done in [START_REF] Dávalos | Multiscale permutation entropy: Statistical characterization on autoregressive and moving average processes[END_REF], we will apply the coarse-grained procedure to M A(1) processes. We will, once again, take the coarse-grained definition from equation (2.5), as in section 3.3.3. We will once again set c = 0 without loss of generality.

For any time scale m, the coarse-grained MA(1) (cgMA(1)) process is,

X (m) M A(1) (n) = θ m ε m(n-1) + 1 m ε mn + 1 + θ m mn-1 j=m(n-1)+1 ε j , (3.32) 
being n ∈ N the index variable of the new coarse-grained signal, and m the scale.

From this expression, we will derive the autocovariance function,

Cov X (m) M A(1) (n), X (m) M A(1) (n + λ) =        σ 2 m 1 + θ 2 + 2 m-1 m θ , if λ = 0 θ m σ 2 , if |λ| = 1 0,
otherwise.

(3.33)
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For λ = 0, we have the variance of the coarse-grained MA(1) model. If we divide (3.33) by its own variance, we obtain the autocorrelation function,

ρ (m) M A(1) (λ) =      1, if λ = 0 θ m(1+θ 2 )+2(m-1)θ , if |λ| = 1 0, otherwise. (3.34)
Once again, it is straightforward to calculate the probability of obtaining the increasing pattern probability for embedded dimension d = 3, by using this autocorrelation function (3.34) to obtain the first pattern probability (3.5), and the PE equation in (3.6). The new cgMA(1) process is still Gaussian, even when the original properties of MA(1) do not apply. Therefore, the use of (3.5) is still valid. The increasing ordinal pattern for coarse-grained MA(1) is

p (m) 1,M A(1) = 1 π arcsin 1 2 m(1 + θ 2 ) + (2m -2)θ m(1 + θ 2 ) + (2m -3)θ . (3.35) 
Here, in contrast to the case of fractional Gaussian noise, the pattern probabilities do not stay constant across time scale. Nonetheless, we have an explicit equation that governs the evolution of the pattern probability distribution, based solely on the MA(1) parameter θ and time scale m. It is cumbersome to express the MPE of MA(1) using this expression, but the MPE value can be easily computed by using Equation (3.6). We must note here that the expression inside the arcsin function is almost equal to 0.5, which yields a pattern probability of 1/6, even for small m. This implies that, other than the case where m = 1, the coarse-grained MA(1) process will be virtually indistinguishable from noise. Figure 3.11 shows the MPE for the coarse-grained MA(1) process for different values of θ and time scale m.

For the MA(1) process, we can appreciate that only the first time scale m = 1 presents a noticeable deviation from the maximum entropy. This implies that the coarse-graining procedure, in fact, nullifies the autocorrelation effect on the original signal. For scales greater than m = 1, the process is indistinguishable from noise, regardless of the model parameter θ. This is not surprising, since distant points in a MA(1) process are not correlated. The coarse-graining procedure reflects this.

General Formulation for Correlated Gaussian Models

When we consider the general formulation of the Gaussian models, we observe the coarse-grained signals are still Gaussian, albeit with different autocorrelation functions. This property still allows the use of the symmetries in (3.4) Therefore, in this section we will obtain the autocorrelation function for the general coarse-grained Gaussian stationary signal. First we need to recall the coarse-grained procedure definition from Equation (2.5), now for a random process,

X (m) (n) = 1 m mn j=m(n-1)+1 X(j),
where n is the time index of the original signal and m is the time scale. We will rewrite this expression in vectorial form as a dot product, as follows,

X (m) (n) = 1 m 1      X(m(n -1) + 1) X(m(n -1) + 2) . . . X(mn)      = 1 m 1 X (m) (n (m) ). (3.36)
Without any knowledge of the signal, we cannot know its expected value a priori. Nonetheless, we can at least state the form the general expression for the covariance.
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cov(X (m) (n), X (m) (n + λ)) = E X (m) (n)X (m) (n + λ) -E X (m) (n + λ) E X (m) (n + λ) = 1 m 2 E 1 X (m) (n)X (m) (n + λ) 1 - 1 m 2 E 1 X (m) (n + λ) E X (m) (n + λ) 1 = 1 m 2 1 E X (m) (n)X (m) (n + λ) -E X (m) (n + λ) E X (m) (n + λ) 1 = 1 m 2 1 K (m) X (m) (n), X (m) (n + λ) 1. (3.37)
In this expression, K is the mxm covariance matrix:

K (m) X (m) (n), X (m) (n + λ) =      cov(X(m(n -1) + 1), X(m(n + λ -1) + 1)) . . . cov(X(m(n -1) + 1), X(m(n + λ))) cov(X(m(n -1) + 2), X(m(n + λ -1) + 1)) . . . cov(X(m(n -1) + 2), X(m(n + λ))) . . . . . . . . . cov(X(mn), X(m(n + λ -1) + 1)) . . . cov(X(mn), X(m(n + λ)))      (3.38)
It is evident from equation (3.37) that the sum all the elements of K (m) will lead to the cov(X (m) (n), X (m) (n + λ)) we are looking for. This sum is written in a compact form by means of a matrix quadratic form. Regarding the inner structure of K, we observe the distance between data points change in a predictable way. Each time we move one diagonal below, the distance between data points compared by the covariance is reduced by one. The opposite is true if we move above the main diagonal of K. If the signal model has constant variance σ 2 x , we can extract this common element from the covariance matrix. This will help in the display of the diagonal properties:

K (m) X (m) (n), X (m) (n + λ) = σ 2 x R (m) (mλ) = σ 2 x      ρ(mλ) ρ(mλ + 1) . . . ρ(mλ + m -1) ρ(mλ -1) ρ(mλ) . . . ρ(mλ + m -2) . . . . . . . . . . . . ρ(mλ -m + 1) ρ(mλ -m + 2) . . . ρ(mλ))      (3.39)
Here, we define the autocorrelation matrix R(mλ) as a Toeplitz matrix, with the same geometric properties as K. The time shift in the autocorrelation function decreases one point as we go down in the diagonals, and increases as we go up. At this point, we must address a special case where this behavior is not true. If we CHAPTER 3. MPE ON COMMON SIGNAL MODELS compute the autocorrelation matrix between a vector segment X (m) (n) and itself, we obtain,

R (m) (0) =      ρ(0) ρ(1) . . . ρ(m -1) ρ(1) ρ(0) . . . ρ(m -2) . . . . . . . . . . . . ρ(m -1) ρ(m -2) . . . ρ(0))      , (3.40) 
since ρ(-λ) = ρ(λ). R(0) is the only instance where the autocorrelation matrix is symmetric, and the strictly increasing distance with the matrix diagonals do not apply.

From Equation (3.37) we can now compute the autocorrelation function of the coarse-grained signal as follows,

ρ (m) (λ) = cov(X (m) (n), X (m) (n + λ)) var(X (m) (n)) = 1 K (m) (X (m) (n), X (m) (n + λ))1 1 K (m) (X (m) (n), X (m) (n))1 . (3.41)
If we have a signal with homoscedasticity, the equation further simplifies to

ρ (m) (λ) = 1 R (m) (mλ)1 1 R (m) (0)1 . (3.42)
These equations can, in practice, be difficult to compute in an explicit, scalar form. Nonetheless, (3.41) can be used with any evenly sampled signal. If, furthermore, the signal is itself stationary and homoscedastic, we can use (3.42) to obtain its coarse-grained autocorrelation function. If we go even further, if we only know the autocorrelation values for λ = 1, 2, . . . , m -1, we can obtain the coarse-grained autocorrelation value without even knowing the underlying functions. It is sufficient for the signal to be Gaussian to use the results in (3.41) and (3.42) to obtain the pattern probability distribution (3.5), and thus, the MPE (3.6).

ARMA Models Revisited

At this point, we can return to our results in section 3.3.3 and 3.3.4, to use the MA(1) and AR(1) models as an example of an explicit computation for (3.42). In the case of MA( 1), the coarse-grained autocorrelation is, MPE Statistics with sEMG Applications

ρ (m) M A(1) (λ) = 1 R (m) (mλ)1 1 R (m) (0)1 , for |λ| = 1 = θ 1+θ 2 m + 2(m -1) θ 1+θ 2 , for |λ| = 1 = θ m(1 + θ 2 ) + 2(m -1)θ , for |λ| = 1 ∴ ρ (m) M A(1) (λ) =      1, if λ = 0 θ m(1+θ 2 )+2(m-1)θ , if |λ| = 1 0, otherwise. (3.43)
which is the same result as obtained in (3.34). For the AR(1) process, we have,

ρ (m) AR(1) (λ) = 1 R (m) (mλ)1 1 R (m) (0)1 = φ m(λ-1) (1 + φ m ) φ (1-φ) 2 (1 + (m -1)φ m -mφ m-1 ) + mφ m 1-φ m 1-φ 2m 1-φ m 1-φ -m -2 φ (1-φ) 2 (1 + (m -1)φ m -mφ m-1 ) = φ m(λ-1)+1 (1 -φ m ) 2 m(1 -φ 2 ) -2φ(1 -φ m )) , (3.44) 
which is, again, equal to equation (3.24). Now, we can use equation (3.42) to obtain the general coarse-grained autocorrelation for an arbitrary ARM A(p, q). Since the explicit derivation would be long and cumbersome, it would suffice to have a general form for the autocorrelation function of the original ARMA process, to obtain the coarse-grained version.

If we already know the ARMA parameters, it is enough to obtain the autocorrelation for X ARM A(p,q) (n). This can be accomplished solving the generalized Yule-Walker (YW) equations for the autocovariance function γ. If p > q,

γ 0 = φ 1 γ 1 + • • • + φ pφ p + σ 2 + θ 1 E[X n n-1 ] + • • • + θ qE[X n n-q ] γ 1 = φ 1 γ 0 + • • • + φ pφ p-1 + 0 + θ 1 σ 2 + • • • + θ qE[X n n-q+1 ] . . . γ q = φ 1 γ q-1 + • • • + φ pφ p-q + 0 + 0 + • • • + θ qσ 2
. . . With a high sampling rate, the MPE slowly converges with the MPE of a theoretical continuous curve. The addition of white noise was also considered. We found noise's effect on MPE depends heavily on the relationship between the curve's slope and the noise amplitude. If the slope is sufficiently high, the noise has no visible effect on MPE. For regions with low slopes, in contrast, the noise dominates. Nonetheless, if the sampling rate of a noisy signal is too high, we will obtain MPE values characteristic of white noise, regardless of the slope.

γ p = φ 1 γ p-1 + • • • + φ pφ 0 . . . γ λ = φ 1 γ λ-1 + • • • + φ pφ λ-p . ( 3 
We also studied the expected MPE for commonly-used correlated Gaussian processes. By means of pattern symmetries for these signals, we are able to compute the MPE as a function of the signal's autocorrelation function. Since the coarsegraining procedure is a linear combination of the signal's elements, the resulting coarse-grained signal is also Gaussian. Therefore, it is sufficient to know the coarsegrained autocorrelation function to obtain the MPE for any scale.

CHAPTER 3. MPE ON COMMON SIGNAL MODELS

By exploring white Gaussian noise and fractional Gaussian noise, we conclude that the MPE is invariant to time scale for these processes. First order Autoregressive and Moving Average processes have an elaborate, but ultimately closed, expression for the pattern probability distribution, which depends only on the models' parameters and the time scale.

In this chapter we also proposed a general expression for the coarse-grained autocorrelation for an arbitrary signal, by means of matrix quadratic forms. This allows us to compute the theoretical MPE of a signal without knowing the coarse-grained autocorrelation function explicitly. We presented some examples of ARMA models with an arbitrary number of parameters, and tested the theoretical results against simulations, with satisfactory results.

This analysis pretends to be an in-depth exploration on the multiple factors that influence the MPE of an arbitrary signal. The signal's slope, sampling rate, and autocorrelation functions prove to be paramount in the expected MPE value. The research of the interactions between these factors, and the study of arbitrary dimensions, will be subject of future work.

Chapter Summary

• The MPE of deterministic, noiseless continuous signals depends solely on the proportion of time the curve has positive or negative slope.

• For sampled deterministic signals, the sampling rate also has the effect of increasing the theoretical MPE. When the sampling frequency increases, the measured MPE slowly converges with the theoretical continuous case.

• The addition of uncorrelated noise to deterministic signals adds a new factor to the MPE measurement. MPE sensitivity to noise depends heavily on the relationship between the noise's amplitude and the curve's slope. Near the maximum and minimum points, random patterns appear, and the pattern distribution is uniform. In zones with high enough slope, the presence of noise presents no modification to the MPE.

• A high sampling rate enhances the effect of noise over deterministic signals. If the sampling rate is high enough, the noise dominates, regardless of the slope.

• Correlated Gaussian processes have a particular structure which can be exploited to obtain the theoretical expected MPE, reducing the degrees of freedom of the system. We focus our study to dimension d = 3, since d = 2 yields trivial results, d = 4 yields to complex probability distributions, and d ≥ 5 has no closed form.

• For Gaussian processes, pattern probability distributions (and MPE) depend explicitly on the signal's autocorrelation function. Therefore, if we obtain the autocorrelation function for coarse-grained Gaussian signals, we can obtain a closed expression for their MPE as a function of the models' parameters and time scale.

• White Gaussian noise and fractional Gaussian noise, having the property of self-similarity, are invariant to the coarse-graining process and time scale. The signal only presents a downward trend, explained by the bias in Chapter 2.

• We obtained the expressions for the coarse-grained first-order autoregressive and moving average processes, validated by simulations.

• A general coarse-grained autocorrelation function is presented by means of matrix quadratic forms. This formulation allows us to compute coarse-grained autocorrelations of elaborate Gaussian models without a closed form. Several examples are presented for autoregressive and moving average models of arbitrary order. 

m for any given m.

This refinement allows us to access previously unaccounted ordinal patterns in the series, thus increasing their number for the purposes of building the empirical pattern probability distribution. Therefore, utilizing composite coarse signals allows us to partially overcome the length constraints imposed by the multiscaling process.. We can make some comments regarding procedure (4.1). Since we are working with ordinal patterns, there is no need to perform the averaging by 1/m for each coarse signal element; this implies that, if x

(m) k=1,j < x (m) k=1,j+1 , then mx (m) k=1,j < mx (m)
k=1,j+1 . Thus, in stark contrast to the cardinal entropy techniques, we do not need to take the average of each segment to preserve the patterns. The sum of the elements is enough.

But more importantly, we will discuss now one of the main shortcomings present in this approach that is not mentioned in existing literature. If we compare the same elements from different coarse signals at a given m and revisit the definition in (4.1), we observe that the elements share information with another and that segments from different coarse signals overlap. For example, a closer look at Fig. ?? reveals that the first elements of the coarse signals

x (m) 1 and x (m) 2 are x (m=3) k=1,1 = 1 m (x 1 + x 2 + x 3 ) x (m=3) k=2,1 = 1 m (x 2 + x 3 + x 4 ).
Since elements x 2 and x 3 appear in both signals, all the information that we could measure from coarse signals x will have some level of redundancy. This will become more evident as we increase the value of m, and consequently, the number of shared elements increases.

CHAPTER 4. COMPOSITE MPE REFINEMENTS

This redundancy is bound to create cross-correlation between coarse signals, even if the original signal is uncorrelated noise. This effect will influence the overall MPE estimators that rely on composite signals, possibly resulting in an increased variance due to this redundant information. For the remainder of this chapter, we will refer to this effect as an artifact cross-correlation: the presence of correlation between coarse signals originating from shared elements and not from the inherent dynamics of the signals in question.

In the following subsections we will outline the most common composite methods: composite MPE (cMPE) [START_REF] Azami | Improved multiscale permutation entropy for biomedical signal analysis: Interpretation and application to electroencephalogram recordings[END_REF] and the refined composite MPE (rcMPE) [START_REF] Humeau-Heurtier | Refined composite multiscale permutation entropy to overcome multiscale permutation entropy length dependence -IEEE journals & magazine[END_REF]. The characterization of the explicit statistical properties of these methods, including their moments, is beyond the scope of this work. Nonetheless, we will provide some guidelines regarding their performance over classical MPE.

Composite MPE

Following the composite coarse-graining procedure in equation (4.1) [START_REF] Azami | Improved multiscale permutation entropy for biomedical signal analysis: Interpretation and application to electroencephalogram recordings[END_REF] makes it possible to achieve better precision by averaging the MPE result for all the composite signals with the same time scale. Even though this approach was originally named "improved multiscale permutation entropy" [START_REF] Azami | Improved multiscale permutation entropy for biomedical signal analysis: Interpretation and application to electroencephalogram recordings[END_REF], we will refer to this procedure as composite MPE due to its shared similarities with composite multiscale entropy -as proposed by Wu et al. [START_REF] Wu | Modified multiscale entropy for short-term time series analysis[END_REF] using SampEn-in its mathematical approach.

Given the original time series x and embedding dimension d, we compute the classical MPE on each of the possible composite coarse signals x 

H c ( p (m) ) = 1 m m k=1 H k ( p (m) ), (4.2) 
where H k ( p (m) ) are the k possible entropy values for scale m. The approach of this method relies on reducing the variance by taking the average of multiple MPE measurements.

If we suppose all H(x (m) k , d) are independent for k = 1, . . . , τ , we expect to obtain the traditional moments for the mean of H, namely

E[H c ( p (m) )] = 1 m m k=1 E[H( p (m) k )] ≈ H(p (m) ) - 1 2 (d! -1) m N . (4.3)
We assume all the values of H( p 

k 1 ), H( p (m) k 2 )) > 0, ∀k. (4.4)
Therefore, the general expression of the cMPE variance can be written as

var H c ( p (m) ) = 1 m 2 var( m k=1 H( p (m) k )) = 1 m 2 m k=1 var(H( p (m) k )) + 1 m 2 m i =j cov(H( p (m) k 1 ), H( p (m) k 2 )) = 1 m var(H( p (m) k )) + 1 m 2 m i =j cov(H( p (m) k 1 ), H( p (m) k 2 )), ∀k ≥ ( 1 N )l (m) Σ (m) p l (m) + ( 1 N )( m N ) 1 l (m) + d!H(p (m) ) + 1 2 (d! -1) , (4.5) 
where k 1 = 1, . . . , m and k 2 = 1, . . . , m. The measure of equality should be reached when the H k ( p (m) ) are not correlated.

As we can see from equation ( 4.3), it should not come as a surprise that the expected value does not change with respect to classical MPE. Nonetheless, the variance in equation (4.5) is indeed reduced by a factor of 1/m. This has a visible effect on the polynomial approximation, reducing the degree by one. Now the first element is constant with respect to m, and the second term is linear. Equation (4.5) provides a benchmark for the minimum variance the cMPE can obtain in the presence of uncorrelated coarse signals.

Refined Composite MPE

Originally proposed by Humeau-Heutier et al. [START_REF] Humeau-Heurtier | Refined composite multiscale permutation entropy to overcome multiscale permutation entropy length dependence -IEEE journals & magazine[END_REF], rcMPE approaches composite coarse signals through a different mechanism. Instead of using the average MPE, this method counts all the ordinal patterns contained in composite coarse signals for a given scale m. This results in a single pattern probability estimation, which is used thereafter to obtain the entropy measurement. Computing rcMPE requires us to first take the average estimation for each pattern probability,

p(m) =       p(m) 1 p(m) 2 . . . p(m) d!       = 1 m       m k=1 p (m) k,1 m k=1 p (m) k,2 . . . m k=1 p (m) k,d!       , ( 4.6) 
where the pattern probability estimator p

(m)
k,i is obtained using equation (2.2) for each composite coarse signal k = 1, . . . , m. At this point, it is enough to make a single MPE computation over this pattern probability,

H rc ( p (m) ) = - d! i=1 p(m) i ln p(m) i , (4.7) 
following the same procedure as the original MPE definition (2.4), using p(m) instead of p (m) .

The explicit representation of the first two moments H c ( p (m) ) require further explanation. First, we modify the original multinomial pattern count expression from equations 2.9 and 2.10 (from Chapter 2) as follows,

Y =    Y 1 . . . Y d!    =    n m p 1 + ∆Y 1 . . . n m p d! + ∆Y d!    = n m p + ∆Y , ∼ M u(n m , p) p = 1 nm Y = p + 1 nm ∆Y ,
where the random variable Y represents the counts for each possible ordinal pattern and n m = N/m. Similarly, we can define the estimated probability vectors p k for k = 1, . . . , τ as follows,

Y k =      Y k,1 Y k,2 . . . Y k,d!      =      n m p 1 + ∆Y k,1 n m p 2 + ∆Y k,2 . . . n m p d! + ∆Y k,d!      = n m p + ∆Y k , ∼ M u(n m , p) p k = 1 nm Y k = p + 1 nm ∆Y k . (4.8) 
Before making the entropy computation, we obtain the average of all the pattern counts along the composite signals k:

Y = m k=1 Y k = 1 m m k=1 N m p + 1 m m k=1 ∆Y k Y = N m p + 1 m m k=1 ∆Y k mY = N p + m k=1 ∆Y k . (4.9) 
We note that mY is the vector containing the sum of the patterns contained in all composite signals. We proceed to define that

Z = mY (4.10) ∆Z = m k=1 ∆Y k , (4.11) 
where vector ∆Z contains the sum of all the errors for each pattern. The new variable Z is defined as

Z = N p + ∆Z (4.12) p = p + 1 N ∆Z. ( 4.13) 
Rewriting the refined composite technique in such a way is revealing: equation (4.13) is identical to the probability estimation in (4.6) and this formulation shows explicitly that the estimation is now independent of the time scale value in m. However, the existing artifact cross-correlation effect indicates that all the ∆Y k in (4.11) are not uncorrelated; therefore, Z ∼ M u(N, p) is not satisfied in a general sense.

If we use (4.12) in our classical MPE Taylor series approximation (2.19) from section 2.3.2, we obtain

H( p) ≈ H(p) - 1 N (1 + l) ∆Z - 1 2 1 N 2 p •-1 ∆Z •2 . (4.14)
Obtaining the expected value of (4.14) is enough to also obtain the mean rcMPE. Since Z is not strictly multinomial, the moments of ∆Z do not correspond to the results in Appendix A. However, we assume all ∆Y k have a positive correlation, since we expect all ∆Y k measurements to have similar results. Therefore,

C γ = cov(∆Y k 1 , ∆Y k 2 ) > 0, CHAPTER 4. COMPOSITE MPE REFINEMENTS so E[∆Z •2 ] = N (p -p •2 ) + C γ ≥ N (p -p •2 ). (4.15) 
where C γ represents added value due to artifact cross-correlations. Therefore, we can clearly write the expected value as,

E[H rc ( p(m) )] ≤ H(p (m) ) - 1 2 (d! -1) 1 N , (4.16) 
and its variance as,

var(H rc ( p (m) )) ≥ ( 1 N )l (m) Σ (m) p l (m) + ( 1 N ) 2 1 l (m) + d!H(p (m) ) + 1 2 (d! -1) . (4.17) 
Despite the fact that there is still bias in the rcMPE expected value and its variance, having eliminated the m dependence indicates that we now have a constant bias which relies solely on the signal's original length and the embedded dimension.

Thanks to this refinement, it is possible for us now to explore higher m values without worrying about loss of precision due to signal length reduction.

The artifact cross-correlation effect does not allow the rcMPE moments (4.16) and (4.17) to achieve equality, since the definition of the composite coarse-graining procedure (4.1) itself imposes some level information redundancy. Therefore, we should look for alternatives to the classical coarse-graining to further improve the precision of rcMPE (and cMPE).

Composite Downsampling Techniques

Composite Downsampling Procedure

Instead of fully characterizing this artifact cross-correlation effect, a complex and time-consuming mathematical endeavor, we will present an alternative that is exempt of this redundancy from the beginning: composite downsampling. Downsampling in the context of PE is not a new concept. Most modern literature [START_REF] Zunino | Fractional brownian motion, fractional gaussian noise, and tsallis permutation entropy[END_REF] define the pattern probability estimation for PE as

p i = #{n| n < N/τ -(d -1), [x n , . . . , x n+d-1 ] has pattern i} N/τ -(d -1) . (4.18) 
The downsampling parameter τ ∈ N + is reintroduced in this definition of the pattern probability estimator. From the cardinal point of view, the coarse-graining procedure represents a better smoothing filter than a simple downsampling procedure, since the former incorporates more signal information and the latter implies a loss of resolution as a trade-off. Nonetheless, both procedures behave similarly for the purpose of ordinal patterns.

If we introduce the composite approach to the classical downsampling procedure, we can define composite downsampled signals as follows for k = 1, . . . , τ :

x (τ ) k,j = x k+τ (j-1) . (4.19) 
Changing the starting element k allows us to obtain a τ number of downsampled signals from the original signal x. This implies no information loss, since all the elements in x are still present in the composite signals x

k (see Fig. 4.1). Additionally, since we can also appreciate that the resulting signals have no elements in common, we know that the artifact cross-relation effect will not be present. This is justified if we regard the process (4.19) as a systematic sampling, where each downsampled signal is a sample of the "population" signal x, with the constraint that no samples share mutual elements.

It is necessary for us to first revisit some concepts from Chapter 2 before going into detail about the effects of composite approaches on MPE. For a signal x of length N , the MPE estimator is expected to have the following moments (see Sections 2.3.3 and 2.3.4):

CHAPTER 4. COMPOSITE MPE REFINEMENTS E[H( p (m) )] ≈ H(p (m) ) - 1 2 (d! -1) m N var H( p (m) ) ≈ ( m N )l (m) Σ (m) p l (m) + ( m N ) 2 1 l (m) + d!H(p (m) ) + 1 2 (d! -1) .
Both the expected value and the variance depend on time scale m, both implicitly (by means of p (m) )) and explicitly. It is also worth mentioning that these moments are heavily dependent on signal length N and the embedding dimension d.

Since the downsampling procedure also reduces the signal length in a similar fashion, it stands to reason that applying a classical downsampling procedure with any given τ value will present the moments as follows:

E[H( p (τ ) )] ≈ H(p (τ ) ) - 1 2 (d! -1) τ N (4.20) var H( p (τ ) ) ≈ ( τ N )l (τ ) Σ (τ ) p l (τ ) + ( τ N ) 2 1 l (τ ) + d!H(p (τ ) ) + 1 2 (d! -1) . (4.21) 
Given that the only explicit change is switching from τ instead of m, we can capitalize on the MPE theory and apply it to the downsampling case.

Certainly, we cannot expect to obtain the same pattern probabilities from these two procedures due to the fact that, in general, p (τ ) = p (m) . Still, we expect to get the exact same pattern distribution (i.e. uniform) for both procedures in some specific circumstances, such as in the presence of uncorrelated noise.

Having said that, we now present the new entropy measurements: composite downsampling permutation entropy (cDPE) and refined composite downsampling permutation entropy (rcDPE).

Composite Downsampling Permutation Entropy

Similarly to the case of cMPE, utilizing the composite downsampling procedure (4.19) allows us to define cDPE as:

H c ( p (τ ) ) = 1 τ τ k=1 H k ( p (τ ) ). (4.22)
It is by means of the downsampling procedure (4.19) that we can deduce that all H(

k , d) are independent for k = 1, . . . , τ . Therefore, we find the traditional moments for the mean of H, namely

E[H c ( p (τ ) )] = 1 τ τ k=1 E[H( p (τ ) k )] ≈ H(p (τ ) ) - 1 2 (d! -1) τ N , (4.23) 
and

var(H c p (τ ) ) = 1 τ 2 var( τ k=1 H( p (τ ) k )) = 1 τ 2 τ k=1 var(H( p (τ ) k )) = 1 τ var(H( p (τ ) k )), ∀k ≈ ( 1 N )l (τ ) Σ (τ ) p l (τ ) + ( 1 N )( τ N ) 1 l (τ ) + d!H(p (τ ) ) + 1 2 (d! -1) . (4.24) 
Once again, the cDPE expected value (4.23) does not change with respect to classical MPE, and we still have a downward bias whose only dependencies are the embedding dimension (d), signal length (N ), and the downsampling parameter (τ ). Conversely, the cDPE variance (4.24) is reduced by a factor of 1/τ in this case, and we expect it to be approximately close to (4.24) due to the lack of an artifact cross-correlation by virtue of the definition shown in (4.19). This implies an improvement over the cMPE variance (4.5), where the cross-correlations will invariable reduce the estimator's precision.

Refined Composite Downsampling PE

By following the same reasoning as with rcMPE, rcDPE takes the average pattern probability distribution from all the downsampled signals for the parameter τ . As with (4.6), we proceed to define the probability vector,

p(τ) =       p(τ) 1 p(τ) 2 . . . p(τ) d!       = 1 τ       τ k=1 p (τ ) k,1 τ k=1 p (τ ) k,2 . . . τ k=1 p (τ ) k,d!       . ( 4.25) 
where the pattern probability estimator p

(τ )
k,i is obtained using equation (2.2) for each composite coarse signal k = 1, . . . , m. At this point, it suffices to apply a single MPE computation to produce this pattern probability.

For the composite downsampling procedure, we present rcDPE by using the exact same approach as before,

H drc ( p(τ) ) = - d! i=1 p(τ) i ln p(τ) i , (4.26) 
CHAPTER 4. COMPOSITE MPE REFINEMENTS and following the same procedure as the original MPE definition (2.4), using p(τ) instead of p(m) .

Once again we can enunciate the explicit moments of rcDPE, for the downsampled signals display no artifact cross-correlation. By following the procedure outlined for rcMPE in section 4.2.3, we obtain the rcDPE expected value,

E[H drc ( p(τ) )] ≈ H(p (τ ) ) - 1 2 (d! -1) 1 N , (4.27) 
and the rcDPE variance,

var(H drc ( p (τ ) )) ≈ ( 1 N )l (τ ) Σ (τ ) p l (τ ) + ( 1 N ) 2 1 l (τ ) + d!H(p (τ ) ) + 1 2 (d! -1) . (4.28)
In contrast to rcMPE, we do not expect in this case for the expected value (4.27) and its variance (4.28) to raise above the aforementioned mathematical expressions, since the artifact cross-correlation is not present. We still have the advantage of taking the explicit τ parameter dependence out of the equation, which suggests a stable behavior across τ .

Results and Discussion

Results

Composite Methods

We know from [START_REF] Azami | Improved multiscale permutation entropy for biomedical signal analysis: Interpretation and application to electroencephalogram recordings[END_REF] that cMPE is indeed more accurate than MPE. Since the composite coarse-grained signals are bound to present artifact autocorrelation, we expect the variance to be significantly more than the one predicted in (4.5).

Therefore, we will proceed to test these results against simulations in order to assess the precision of both cMPE and cDPE. For this purpose, we will apply both procedures on simulated white Gaussian noise, with 500 signals of length N = 1000 for d = 3 as our sample. We will also set max(m/N ) = max(τ /N ) = 0.01, which is well within the length criterion defined in Chapter 2.5.

As we can see from Figure 4.2, cMPE and cDPE closely follow the path of classical MPE, with a reduced variance. Nonetheless, when we compare both composite entropy methods (Figure 4.2d), we can see that the cDPE variance follows the theoretical curve (dotted) while the cMPE variance consistently shows higher values. While cDPE does follow equation (4.24) and validates our assumptions, it follows that cMPE does not adhere to equation (4.5), since it requires the absence of artifact cross-correlations between coarse-grained signals. In other words, if we look for an entropy ordinal statistic with reduced variance, cDPE outperforms cMPE, specially when utilizing large time scales. It is worth mentioning that, although cDPE follows the theoretical variance, the expected value for all PE follow a different path than the previously predicted linear bias. This effect did not manifest in previous chapters due to our experimental setup, and deserves further comments. We will revisit this discrepancy in Section 4.4.2.

Refined Composite Methods

By following the same experimental setup, we now compare the differences in performance between the rcMPE and rcDPE algorithms. As we can see in Figure 4.3, the refined composite approach outperforms their composite entropy counterparts by reducing the estimator's variance even further. When we compare both composite procedures, we can observe again that rcDPE follows the theoretical variance (Fig. 4.3f) while rcMPE is considerably higher. This is explained again by the presence of artifact cross-correlation between coarse-grained signals. In terms of precision, the rcDPE is the best approach discussed in this work so far.

Regarding the expected value, we observe that rcDPE presents no scale-dependent bias, as predicted from equation (4.28). On the other hand, rcMPE does indeed show a decrease in time scale, albeit not as pronounced as in the case of cMPE (Fig. 4.3a). This effect, once again, can be attributed to the artifact cross-correlations from composite coarse-grained signals.

Even when the rcDPE bias is scale-independent, we can observe that the results from simulations are slightly higher than the predicted rcDPE line. This is the same effect as the discrepancy found between the theoretical linear bias and the simulation results present in MPE, DPE, cMPE and cDPE. Thus, this divergence is not a product of the different composite techniques and must be analyzed independently (see Section 4.4.2).

Discussion

Expected Value Divergence

The first topic to discuss is the pervasive discrepancy between the MPE expected value and the simulation results, since these discrepancies are present regardless of the PE technique used. When we observe a difference between a composite coarsegraining and a composite downsampling method, we can be sure that said difference comes from the presence or absence of artifact cross-correlations, respectively. If the deviations appear on all instances, this implies that such artifact cross-correlations are not the main source. As we see in Figure 4.4a, this effect is not only present across all pattern dimensions d, but it is also more noticeable when d is high.

If cross-correlations are not the source of these differences, the next step is to revisit our assumptions from Chapter 2.3.1. Our assumptions therein mention that every ordinal pattern stemming from an uncorrelated random process is itself uncorrelated. If we simulate pattern counts directly from a multinomial variable instead of using an uncorrelated noise signal -under the same parameters (N = 1000, d = 3, and 500 signals)-we indeed recover predicted the linear bias that was mentioned in Chapter 2, as shown in Figure 4.4b. This fact implies that the pattern distribution is not constant across scales, as previously expected from white Gaussian noise in Section 3. This apparent contradiction can be explained by further reexamining our assumptions from the pattern counts for PE -even before taking into account multiscaling or other refinements. Strictly speaking, when we assume a multinomial distribution, we accept that the patterns inside the signal are uncorrelated and identically distributed. However, we know this is not the case for a general signal, which changes its properties over time; according to [START_REF] Keller | Time series from the ordinal viewpoint[END_REF] and [START_REF] Berger | Teaching ordinal patterns to a computer: Efficient encoding algorithms based on the lehmer code[END_REF], a more appropriate description of an ordinal process would be a first-order Markov chain. Even when we obtain our patterns from uncorrelated noise, the patterns themselves are not independent, since they share most of their elements. Considering these circumstances, we expect the pattern distribution, under these circumstances, to not remain invariant across scales, therefore producing a deviation from the expected linear downward trend. The characterization of this phenomenon is beyond the scope of the present work, but its exploration is nonetheless worthy of attention.

Composite Techniques and Precision

Regarding the precision of the different MPE refinements presented in this chapter, we observe rcDPE to present both the smallest variance across time scales and a desired scale-independent bias. The refined composite approach, in conjunction with a composite downsampling process instead of traditional coarse-graining, renders the problem of the artifact cross-correlations obsolete.

If we revisit the length constraints discussed in Section 2.6, since the time scale is no longer a problem, the only limiting factor is the signal's original length N . Table 4.1 shows the minimum length required for rcDPE analysis at different embedded dimensions, for a precision of α = 0.05. For practical purposes, the maximum τ for rcDPE is such that N τ > d, in order to ensure that composite downsampled signals contain at least one pattern of dimension d; a signal this short is still not advisable.

Lastly, we should note that the experimental rcDPE line is horizontal with respect to time scale, hence proving that the rcDPE result is independent of the downsam- Figures from [START_REF] Berger | Teaching ordinal patterns to a computer: Efficient encoding algorithms based on the lehmer code[END_REF].

d ln d! d!-1 min N 3 2.79 333 4
7.23 643 5 24. [START_REF] Cashaback | Muscle fatigue and contraction intensity modulates the complexity of surface electromyography[END_REF] 1,667 6 109. [START_REF] Azami | Amplitude-aware Permutation entropy: Illustration in Spike Detection and Signal Segmentation[END_REF] 5,724 7 591. 86 25,164 Table 4.1: Minimum length N for rcDPE at embedded dimension d and α = 0.05. With these conditions in mind, coarse signal length is not dependent on τ (or m). pling parameter τ . Albeit not truly an unbiased estimator, the bias present in our calculations is guaranteed to be stable. Furthermore, we can approximate this bias by knowing signal length (N ) and dimension (d) values, regardless of the pattern distribution present.

Closing Remarks

We have explored and expanded on throughout this chapter the theory behind the composite refinements over classical MPE analysis. We also presented composite downsampling as an alternative to the composite coarse-graining procedure, with the intention of shedding the artifact cross-correlations between composite coarse signals at the same time scale.

We found that composite downsampling techniques vastly reduce the variance of the • So far, rcDPE is the only ordinal entropy measurement whose expected value is explicitly independent from time scale for uncorrelated noise.

• An unexpected result arises when comparing white Gaussian noise entropy measurements, which diverge from the theoretical expected value. This effect challenges our assumptions of scale-independent pattern probability distributions for uncorrelated noise. Nonetheless, rcDPE is sufficiently stable across scales to mitigate these scale-dependent probabilities.

Chapter 5

Bioelectrical Signal Applications

Hagamos una cosa: usted se rehabilita y yo la observo -Julio Cortázar, Me caigo y me levanto

Introduction

We have so far developed and expanded on the statistical properties of multiscale permutation entropy, including the functional forms for its first two moments (Chapter 2). These new theoretical improvements were tested by us on common signal models and stochastic processes (Chapter 3), and our latest contribution has consisted in further developing MPE by exploring the method's refinements, including the proposal of an alternative to the widely used coarse-graining procedure (Chapter 4). The progress has done more than just leading to a greater, in-depth understanding of MPE algorithm and methods, since it also has contributed to the correction of the MPE bias while increasing the statistical precision of the method. As hinted in Chapter 1, we now have the necessary tools to apply these methods on real data sets. Therefore, we will now proceed to introduce the biomedical applications of MPE.

Ordinal pattern metrics have been useful in recent years to measure complexity in biological systems, particularly the ones related to electrical activity [START_REF] Zanin | Permutation entropy and its main biomedical and econophysics applications: A review[END_REF]. These types of signals are characterized by complex dynamics, even when on resting conditions [START_REF] Goldberger | Fractal dynamics in physiology: Alterations with disease and aging[END_REF]. Some noteworthy cases involve spontaneous brain activity presenting complex, non-random behavior [START_REF] Beggs | Neuronal Avalanches in Neocortical Circuits[END_REF] [66], and even pathological activity from epileptic seizures are characterized by an ordered sequence of events [START_REF] Schindler | Forbidden ordinal patterns of periictal intracranial EEG indicate deterministic dynamics in human epileptic seizures[END_REF]. While most methods require further assumptions regarding the signal's deterministic and random features, PE measurements have the added advantage of being model-free and robust [START_REF] Zanin | Permutation entropy and its main biomedical and econophysics applications: A review[END_REF]. Finally, as we have previously discussed, PE techniques are fast to execute, an attractive feature for real-time applications without further pre-processing, such as contexts involving bioelectrical signals.

Placing electrodes in the skin's surface allows us to measure electric fields generated by the heart (electrocardiogram, ECG), the brain (electroencephalogram, EEG) or the neuromuscular system (electromyography, EMG). In the latter case, electromyography has been widely used to gain fundamental knowledge on the recruitment process of the muscular functional unit -known as motor unit [START_REF] Liddell | Recruitment and some other features of reflex inhibition[END_REF]-since Piper's first work using EMG signals [START_REF] Piper | Elektrophysiologie menschlicher Muskeln[END_REF].

The aforementioned studies have shown so far that EMG methods are well-suited to analyze behavior that involve muscle contraction. Beyond fundamental aspects, their application domains are diverse: there is the case of sports and ergonomics, whether performing isometric or dynamic exercises [70] [71]; in clinical and technological applications, such as rehabilitation, biofeedback, and myoelectric interfaces for the control of prosthetic devices or computer interaction [START_REF] Hakonen | Current state of digital signal processing in myoelectric interfaces and related applications[END_REF]. Additionally, this technique also sheds light on motor learning [START_REF] Dimitriou | Enhanced muscle afferent signals during motor learning in humans[END_REF] and neurological disorder [START_REF] Parry | Rethinking gait and motor activity in daily life: A neuroergonomic perspective of Parkinson's disease[END_REF].

This chapter will delve into the PE applications over EMG signals, particularly surface EMGs (sEMG). Since acquiring sEMG data from the surface of the skin is significantly less invasive than the traditional needle and wire detection techniques, the former can be implemented in a much more diverse and flexible set of conditions, while the latter maintains limited clinical applications.

That being said, we will begin this chapter by presenting the necessary biological background involving the neuromuscular dynamics of muscle contraction and the general characteristics of EMG methods. We will then move on to explain the factors affecting the EMG signal shape and defining the biological complexity within it from an information entropy perspective. Lastly, we will apply the MPE techniques on a series of isometric muscle contractions datasets for the purpose of characterizing the information content both on fatigue conditions and contractions at different force level outputs.

Motivation

Before going further, we must first express the motivations behind the proposed experiments in the chapter. So far, our approach to PE techniques has been purely theoretical, even when testing our methods and models. This is necessary and desirable from the academic perspective. Nonetheless, if the intention of this work is to eventually contribute to biomedical applications, we must address the practical, data driven viewpoint. For this reason, it is necessary to test the performance of the MPE methods on real datasets with complex biological dynamics. In particular, we choose to work with isometric force contractions, since these are the best documented experiments-and easiest to reproduce-in literature [75] [76]. Likewise, the signal length of the datasets was chosen to be large in order to minimize bias and variance from the different MPE estimators. This will properly measure the methods' interaction and performance with the biological information, with the least amount of interference from the statistical properties previously discussed. Further testing of the MPE moments on biological datasets with more challenging conditions will be addressed in future work, after these methods' feasibility is confidently established.

CHAPTER 5. BIOELECTRICAL SIGNAL APPLICATIONS

EMG Signals and Biological Complexity

Physiology

If we consider all the possible demands that the human body can be subjected to,, the nervous and motor systems must be able to regulate the muscle force outputs for both powerful and precise movements, as well as to maintain balance, posture, locomotion, and even gestures. This process implies a vastly complex and adaptable set of instructions and processes, for voluntary movement and reflex reactions alike.

When we see a muscle as an actuator, the most fundamental component is the motor unit (MU) -the end-effector of the motor control. The MU consists of a single alpha-motoneuron -with the body of the cell located in the spinal cordand the individual muscle fibers (MF) it connects through its long axon. The alphamotoneuron integrates all the input from the higher-level central control system (the brain), the peripheral reflex system, and the activity coming from other muscles by means of afferent feedback [START_REF] Boonstra | Information decomposition of multichannel EMG to map functional interactions in the distributed motor system[END_REF]. MU fibers are activated/inhibited through this process, leading to muscle contraction or a lack of thereof (see Figure 5.1). MU activation is supported through membrane voltage polarity reversal due to an increase of the sodium and potassium conductance across the cell membrane. This transient membrane voltage variation is labelled action potential (AP) and grows for the duration -typically between 2 and 5 ms-of a few milliseconds, after which the membrane returns to its state of restom voltage; step by step, this phenomenon propagates along the cell membrane from the neuromuscular junction to the tendon's ending. At the MF, there are regularly spaced invaginations along the membrane (tubular system) and radially oriented inside the cell. This allows to provide the AP to the middle of the cell, where the electromechanical coupling is being done. Indeed, at the tubular system, the AP leads to the release of the calcium (Ca+) accumulated inside the storage tank toward the intracellular surroundings. Hence, Ca+ concentration increases close to the contractile protein's structure (myofibril), which allows it to uncover the binding site between the myosin filaments and the actin filaments -the functional protein for MF contraction. This provides the actomyosin bridges association in order to produce the filament sliding (Huxley theory [START_REF] Huxley | Structural changes in muscle during contraction: Interference microscopy of living muscle fibres[END_REF]) and therefore the MF contraction.

However, a unique sequence of bridges does not have the ability to develop mechanical force. This is achieved by a close succession of bridge formations and dissociations, produced by a train of AP. There are two ways in which the neuromuscular control system drives MU to adjust force development: increasing or CHAPTER 5. BIOELECTRICAL SIGNAL APPLICATIONS decreasing these interspike AP intervals -defined as the MU firing frequency (rate coding or temporal recruitment) [START_REF] Enoka | Rate coding and the control of muscle force[END_REF]-and the modulation of the number of active MU (spatial recruitment).

AP is a phenomenon localized in a restricted area along the MF that, for any given moment, is surrounded by two areas in which their voltage membrane is at resting state and thus in reverse polarity. This phenomenon can be modelled as a tripole (+ --+), with two parts have to be taken into account: one for the rising edge -the leading dipole pairs (-+)-and one for the tail -the trailing dipole pair (+ -)- [START_REF] Merletti | Electromyography: Physiology, Engineering, and Non-Invasive Applications[END_REF]. As this phenomenon propagates along the muscle fibre,the contribution of each part on the final voltage result -which can be observed with electrodes-changes in accordance to the angle of view thus changes the measured potential (Figure 5.2) [START_REF] Kimura | Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice[END_REF]. Therefore, the conduction velocity of this phenomenon will be affected and, consequently, have a defining effect on the frequency content in the signal.

Motor Units and EMG

Since any given motoneuron activates all of the muscle fibres within a MU, the "remote sensor" will not detect the activity of one muscle fiber, but the voltage field of several muscle fibers. Therefore, one MU produces an individual signal -known as motor unit action potential (MUAP)-that is equal to the sum of all voltage fields stemming from every muscle fiber pertaining to a specific MU. Furthermore, the geometric characteristics of the muscle fibers (such as size, number and location) will determine the shape of the MUAP (Figure 5.3). Lastly, the resulting sEMG signal will emerge by taking into account the interference from a set of generated MUAP.

There are other factors besides the intrinsic characteristics of the MU that influence the surface EMG measuring -or any EMG signal. Indeed, the MUAP propagation medium acts as a low-pass filter, which in turn is composed of several types of tissue that include fat, skin, and the interface between the skin and the sensor. With that in mind, we can see that, the bigger the distance between the MU and the sensor, the greater the decrease in the MUAP amplitude and frequency content [START_REF] Merletti | Electromyography: Physiology, Engineering, and Non-Invasive Applications[END_REF]. Moreover, there are different MU types available inside a single muscle: MU with greater fiber diameter (large vs. small MU) present an increased AP conduction velocity, which in turn increases the frequency content of the MUAP wave; MU of a larger size contain more muscle fibers, which in turn produce a sEMG amplitude increase [START_REF] Basmajian | Muscles Alive: their functions revealed by electromyography, 5th Edition[END_REF]. Further complications arise if we opt for sEMG data acquisition through classical surface sensors, since that would not allow us to isolate activity of an individual MU, limiting our detection capacity to only the overall activity of a particular target muscle. The most common spatial recruitment patterns for the latter follow a recruitment order in accordance to the size of all the MU involved [START_REF] Goldberger | Non-linear dynamics for clinicians: Chaos theory, fractals, and complexity at the bedside[END_REF] (i.e. the smaller ones activate first and the larger ones follow afterwards) to increase the force output; nonetheless, this canonical recruitment order is affected in the presence of several factors, such as contraction speed, fatigue, or stretch reflex. All these parameters show how difficult it is to apprehend and interpret sEMG signals. 

EMG and Complexity

Adaptability and survival are usually seen together in the biological sciences, as it has become a hallmark of living organisms that are fit to prolong their survival. Among the myriad of known adaptability strategies, it is common for them to express multiscale, nonlinear variability, since said feature allows the subject to quickly adapt to any situation; unsurprisingly, it is also the reason why numerous functional or structural studies in the living system report such complex behavior and structures [START_REF] Goldberger | Non-linear dynamics for clinicians: Chaos theory, fractals, and complexity at the bedside[END_REF]. With that in mind, it becomes necessary to develop analysis techniques that contemplate these types of behaviours, and sEMG is not the exception to the rule. Complex by nature of its own genesis, they consist of a greater number of MU [START_REF] Miyano | Theoretical analysis of surface EMG in voluntary isometric contraction[END_REF], and are composed of various MUAP shapes with a nonlinear mixture. Additionally, sEMG expresses different behaviors, including stochastic and deterministic components that confer a notable level of complexity to its signals [START_REF] Cashaback | Muscle fatigue and contraction intensity modulates the complexity of surface electromyography[END_REF]. At the same time, just as there is no universal definition for biological complexity, there is also a lack of a single formulation capable of characterizing all the dynamical behaviours in a biological system to date [START_REF] Cashaback | Muscle fatigue and contraction intensity modulates the complexity of surface electromyography[END_REF]. Despite that fact, we have previously discussed in Chapter 1 that entropy measurements can be regarded as a measure of information complexity, therefore making it possible for us to use it in order to obtain some insight regarding EMG signals.

Permutation entropy techniques were selected due to their two previously mentioned CHAPTER 5. BIOELECTRICAL SIGNAL APPLICATIONS properties: invariance to amplitude and robustness with respect to noise. In particular, we expect to isolate the effect of pattern shape from the force output (increased amplitude) by using the ordinal pattern approach -an approach that complements other EMG analysis techniques, such as fractal analysis [START_REF] Ravier | An EMG fractal indicator having different sensitivities to changes in force and muscle fatigue during voluntary static muscle contractions[END_REF]. Therefore, it stands to reason that PE and MPE measurements have become widespread tools in the study of bioelectrical signals [START_REF] Aziz | Multiscale permutation entropy of physiological time series[END_REF] [33] [START_REF] Goldberger | What is physiologic complexity and how does it change with aging and disease?[END_REF] [76] [START_REF] Liu | Refined generalized multiscale entropy analysis for physiological signals[END_REF].

By taking into account our mathematical contributions -from Chapter 2 to 4-in the present work, we can further contribute to the interpretation of PE and MPE results. Our first advancement is acknowledging the bias effect, which improves our interpretations whenever we observe a monotonic (or even linear) MPE decrease with respect to a time scale. We also studied the properties of the MPE variance and presented improvements on MPE techniques by removing variance artifact sources within the estimator itself. Lastly, our new permutation entropy proposed methods allow us to correctly assign observed variations to biological factors and possibly artifacts from measuring protocols [START_REF] Hermens | European recommendations for surface Elec-troMyoGraphy[END_REF], rather than labeling them as estimation errors.

MPE on Real sEMG Signals

We will work directly with real EMG signals in this section as a means to illustrate the applicability of the MPE technique and outline both its practical limits and shortcomings. For the purpose of this research project, we will focus our efforts in the analysis of isometric contractions.

It is usual to observe a decrease of the EMG frequency parameters -the mean or median frequency computed on the power spectral density-during sustained isometric exercise at challenging intensity levels (above 20% of the maximal voluntary force) [START_REF] Luca | Myoelectrical manifestations of localized muscular fatigue in humans[END_REF] [91] along with an increase of the EMG amplitude, often quantified by means of the root Mean square (RMS), during the first stage of exercise. While the first measurement provides information about some AP conduction propagation disturbances along the muscle fibres, the second one suggests compensatory strategies provided by the neuromuscular system in order to sustain the requested task [START_REF] Merletti | Surface EMG signal processing during isometric contractions[END_REF], such as increasing the firing rate. However, these parameters are also sensitive to other factors (i.e. force variation); to illustrate further, an increase in force involves MU recruitments (spatially and temporally) [START_REF] Kukulka | Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor pollicis during isometric contractions[END_REF] and, consequently, an increase in EMG amplitude [START_REF] Hogrel | Use of surface EMG for studying motor unit recruitment during isometric linear force ramp[END_REF]. Such modifications will lead to changes in the nature of the mixture of active MU and in their activities, which results in the modification of the shapes of the MUAP and, eventually, the shape of the sEMG signal.

In view of this, we propose to explore the consequences of this physiological upheaval as a function of the force factor and as a function of fatigue through entropic indicators of sEMG.

Methods

Experimental Setup

Data was collected during a previous study conducted by the signal team of the PRISME laboratory, in which ten healthy subjects (three women and seven men, ages 24 ± 1.5 year, all right-handed) participated in this study. They were fully informed about the experimental procedures and every subject gave their signed consent.

An isometric ergometer was specifically designed for this experiment in order to secure the subject's body on a chair, focusing on the trunk and joints involved in the isometric flexion of the right elbow (shoulder and elbow); in regards to the arm, it was positioned as to rest horizontally -perpendicular in relation to the the rest of body, with the elbow joint angle being immobilized at a 100 o of extension-and the hand was oriented midways between a supination and pronation position. Subjects had to pull on a rigid wire, which in turn was connected to a strain gauge, to activate the measuring of the isometric force output by means of a wrist-cuff attached close to the styloid process. Moreover, a visual feedback displayed the supplied force in comparison to the requested level.

The sEMG signal of the biceps brachii was recorded by means of electrodes located on the muscle belly, halfway between the motor innervation point and the tendon, and was also boosted by a bipolar isolated amplifier. Force and sEMG signals acquisitions were synchronized by an analog-to-digital card (PCI 6023E, National Instrument, USA) at a 10 kHz sampling frequency.

The protocol was built around maximal isometric elbow flexion contractions as its cornerstone activity: subjects would sustain each contraction for three seconds each, and have a three-minute rest between each contraction; additionally, it was determined that the trial would revolve around the subjects' maximum voluntary contraction (MVC). The pre-exercise test had subjects perform at least three contractions as a warm-up, while the main phase of the trial had subjects perform the same kind of contractions at 20%, 40%, 60% and 80% MVC in a randomized order. After a final three-minute rest, subjects were asked to perform a sustained 70% MVC contraction until exhaustion, when they could not support the required force level.

Data Setup and Entropy Techniques

MPE has been so far explored as a function of the fatigue factor by carrying out calculations on datasets obtained during the sustained force until exhaustion. Each sample obtained during this work were split in four non-overlapping segments of equal length, labeled as windows (W 1 , W 2 , W 3 , W 4 ), in chronological order (0% -25%, 25% -50%, 50% -75% and 75% -100% time to exhaustion, respectively). MPE has also been explored as a function of the force level factor by carrying out calculations on datasets obtained from the four short contraction exercises at 20%, 40%, 60%, and 80% MVC.

MPE, rcMPE and rcDPE calculations were applied to each segment at different CHAPTER 5. BIOELECTRICAL SIGNAL APPLICATIONS values of scale (m), from 1 to 100 in 1-step increments and at dimension (d) values of 3, 4, and 5. Since the average signal from the trials is N = 274,000 data points, the maximum dimension of analysis is set at d = 5 and the length criterion adheres to the aforementioned discussion on classic MPE (Chapter 2.6). For practical purposes, the down sampling parameter for rcDPE was set to τ = m.

Statistical Tests

The entropy averages were calculated on eleven values for each of the conditions present in this study: MPE methods, scale, dimension, fatigue step, and force level.

The study of the differences between methods and their parameters (scale and dimension) has been carried out on gross results from segment W 1 to W 4 (fatigue condition) and from segment 20% to 80% (force level condition), as well as the difference between these segment results. For the fatigue (delta step) and the force level (delta force) conditions, five and six combinations have been taken into account, respectively:

[W 1 -W 2 ; W 1 -W 3 ; W 1 -W 4 ; W 2 -W 3 ; W 3 -W 4 ]
, and [20% -40%; 20% -60%; 20% -80%; 40% -60%; 40% -80%; 60% -80%].

Statistical analysis was performed by means of the Statistica 7.1 Software (Stat Soft. Inc.). Given that samples were drawn by normality and equal variances in all groups (evaluated by the Lilliefors and the Levene tests [START_REF] Brown | Robust tests for equality of variances[END_REF], respectively) in the case of the fatigue study, statistics were conducted by means of three-way repeated measures analysis of variance (ANOVA). The repeated measure is the step fatigue (or the delta step fatigue) and corresponds to the first factor. The other two factors were the method (MPE, rcMPE, rcDPE) and the dimension [START_REF]On the statistical properties of multiscale permutation entropy: Characterization of the estimator's variance[END_REF][START_REF] Dávalos | Multiscale permutation entropy: Statistical characterization on autoregressive and moving average processes[END_REF][START_REF] Shannon | A mathematical theory of communication[END_REF]. When a significant difference was observed, the Bonferroni comparison procedure was used in order to isolate the differing groups.

Since both the assumptions of normality and homogeneity of variances failed in the first part of the force study, the Kruskal-Wallis multicomparison test was performed to compare the methods' ability to discriminate between the different levels of force (20%-40%; 20%-60%; 20%-80%; 40%-60%; 40%-80%; 60%-80%) and to evaluate the effect of the dimension factor (3, 4, and 5). In the second part of this study, from the previous results, only one method, scale and dimension have been selected. Under these conditions, the assumption on conducting parametric models has been satisfied, hence repeated measures ANOVA were carried out to investigate the entropy evolution together with force level. Following this analysis, the Bonferroni comparison procedure was used to isolate the force level groups (20%, 40%, 60%, and 80% of MVC) that differ. All significance thresholds were fixed at α < 0.05.

Results

Comparison between methods and their settings

Fatigue

As a first approach, four mean MPE curves were plotted as a function of time scale m at dimension d = 3 (Figure 5.4, left-hand column) for all four window MPE Statistics with sEMG Applications segments (W 1 to W 4 ) while contemplating the three methods (MPE, rcMPE, rcDPE ; 3 subplots). Two phases can be observed in these curve kinematics: first, a rapid increase is achieved on shorter time scales (from m = 1 to m ≈ 60), followed by a steady state (m > 60) for the three algorithms. The four curves belonging to the four segments differ below this value m = 60 and are superimposed above it.

Regarding the methods, the curve profiles are similar, although both of the two refined composite methods show smoother lines in comparison to MPE, matching our previous results from Chapter 4. Presentation of MPE as the difference between segment results (∆M P E) allows us to refine the scale area that serves as the best differentiator between segments(Figure 5.4, right-hand column). Indeed, the curves present a greater difference in the 8 to 15 m value range, and since this area remains unchanged regardless of the method applied, we can deduce that it corresponds to the optimal scale range of analysis for this particular dataset. This range prevails even if a higher embedding dimension is selected (Figure 5.5). Therefore, for the subsequent steps in our analysis, we kept the m = 10 value fixed.

The method factor has a significant effect (Figure 5.6a) on the ∆M P E value (F (2, 486) = 4.091, p = 0.0077), with rcDPE producing higher differences than the other two methods (MPE and rcMPE, p = 0.017 and p = 0.025, respectively). Dimension also has a significant effect (Figure 5.6b) on the ∆M P E value (F (2, 486) = 94.837, p < 0.001), with dimension d = 5 producing higher differences than d = 4 (p < 0.001) or d = 3 (P < 0.001). No evidence of interaction between factors has been reported.

Force Levels

Similarly to the isometric sustained contraction dataset, the four MPE curves -corresponding to the four force levels (from 20% to 80% MVC) with respect to time scale m-follow a rapid entropy increase (Figure 5.7, left-hand column). The curves achieve a steady state around m ≈ 60, up to the specified maximum (m = 100). As previously seen, the difference is that the two refined composite methods show smoother lines when compared to regular MPE. Differences between force level (Fig- , p < 0.0001], respectively). Additionally, there was a significant rcDPE decrease for both factors: in the case of fatigue, this was associated with time progression to exhaustion (Figure 5.10a) and occurred throughout all stages (p < 0.0001); in the case of force level, this was associated with force level increase (Figure 5.10b) and occurred throughout all force levels (p < 0.0001)

Discussion

Optimal Parameter Settings

We will begin discussing the optimal parameters for this analysis by taking the observed results as our reference. As we saw from the fatigue signals, the time scale with the most pronounced difference between segments is around m = 10 (or τ = 10). Since the original sampling frequency used for the experiment is f s = 10 kHz, the effective sampling rate over the coarse/downsampled signals is f s = 1 kHz, which only captures information the range 0 -500 Hz as a consequence of Shannon's theorem. According to [START_REF] De Luca | The use of surface electromyography in biomechanics[END_REF], this is the frequency range where sEMG information is produced by the MU contractions. Although more evidence is needed in this regard, we expect that the most adequate sampling rate for PE calculations will be close to ences at low time scales. In this particular dataset, a scale around m = 1 is the most appropriate, for this setting seems to be task dependent. Therefore, a preliminary visual exploration is recommended to select the adequate scale. We should also note that, for this case, m = 20 -which corresponds to a 500 Hz sampling frequencyshould be avoided, since any difference between % MVC disappears at this scale.

We found the embedding dimension to be particularly important in the differentiation between entropy values. Here, the maximum dimension used (d = 5) yields the highest differences between segments. As we mentioned in Section 5.4.1, we did not use higher dimensions in order to maintain the MPE bias below acceptable levels, due to the signal length constraints. This restriction does not apply to rcMPE and rcDPE, where we can use higher dimensions (See Section 4.4.2). In the case of rcDPE, signal length allows the use of higher d values without significant increases in bias. Further testing needs to be done regarding the performance of rcDPE at higher dimensions, with a special emphasis on the increasing computational costs involved. Therefore, as a general rule of thumb when working with sEMG signals that include fatigue, occur during isometric contractions and are a product of a high level of force (above 20% MVC), we recommend the use of a time scale that adjusts the coarse (or downsampled) signals close to 1,000 Hz, with at least an embedding dimension close to d = 5. Regarding the time scale, we should adjust our parameter (m or τ ) in order to capture the maximum difference between groups. These parameters will not be standard, and depend on the particular characteristics of the dataset. The differentiation between % MVC offers a better performance when using a scale that fits a high frequency (10 kHz) and dimension d = 5, albeit the advantages of using this dimension instead of d = 4 are negligible.

Entropy Technique Performance

Regarding the different available entropy methods utilized in the present work, we found that the rcDPE method makes the differences between fatigue activity windows at isometric contraction stand out better than methods using either rcMPE or classical MPE. On the other hand, methods are no longer relevant in order to CHAPTER 5. BIOELECTRICAL SIGNAL APPLICATIONS distinguish between force levels, since all MPE algorithms are mathematically identical when we set the dimension value as m = 1. It should be noted, however, that the entropy curves were more stable in both of the refined composite methods when compared them to classical MPE.

Even though all methods have been proven to be valid due to the statistically significant results obtained, it should be noted that choosing a time scale that is either low or too high would be affect the experiment negatively, albeit for very different reasons: while choosing a time scale that is too small would make the differences between methods almost indistinguishable, a time scale that is too high would render all of the methods useless, since they cannot distinguish complexity from noise, even when the length constraints are satisfied.

If we compare these results with the information from previous chapters, we note that the effect of the MPE bias is not evident, even in the case of classical MPE. Since this experiment collected long length signals (the 70% MVC signals averaged a signal length of N = 274, 000, while the other % MVC signals had a N = 30, 000 value each), the bias effect remains small even at high time scales. Also, a high signal length yields a small MPE variance, which contributes little to the overall observed variability between subjects.

By comparing the MPE curves, we observe results which are close to the ones reported by Cashaback [START_REF] Cashaback | Muscle fatigue and contraction intensity modulates the complexity of surface electromyography[END_REF] for multiscale sample entropy over continuous 70% MVF activity. This result is also consistent with the one found by Navaneethakrishna [START_REF] Navaneethakrishna | Multiscale feature based analysis of surface EMG signals under fatigue and non-fatigue conditions[END_REF] when using MPE directly: for short-time scales, the curves present a sharp increase in MPE, while MPE remains almost stationary in long-term scales.

According to [START_REF] Cashaback | Muscle fatigue and contraction intensity modulates the complexity of surface electromyography[END_REF], short-term scales have a significantly different multiscale sample entropy at different stages of fatigue while the long term scales report no statistical significance, although they present a noticeable difference. In the context of MPE, high-time scale entropy stability suggests that there is no difference between sEMG and uncorrelated noise [START_REF] Navaneethakrishna | Multiscale feature based analysis of surface EMG signals under fatigue and non-fatigue conditions[END_REF]; this is supported by previous work present in Chapters 2 and 4. While the exact scale between the two regions is not available before the MPE calculation, MPE stabilizes around scale m ≈ 60 for the fatigue and % MVC sEMG data sets.

In regards to the% MVC signals case, the fact that the MPE methods were able to distinguish between force outputs is worthy of notice. By the definition of these ordinal patterns, no information concerning sEMG amplitude was used, therefore suggesting that the differences in MPE do not come from a measurement of force output, but from the information contained within the sEMG ordinal patterns. This indicates the presence of different dynamics within the signals while using different force outputs.

Physiological Findings

The study contrasts with the present work, as a decrease in entropy is observed as the force level increases in the latter, while an increase and then a decrease in this sEMG indicator is reported in the former under the same circumstances. However, this discrepancy can be explained by different force levels, since they ranged from 40%, 70% and 100% MVC in the former whereas the latter utilized a 20% to 80% with 20% increments. Moreover, our research shows more pronounced kinematics in the entropy indicator.

Observed entropy depletion can be explained through the relationship between force intensity and the increase in probability of temporal overlap between MUAP [START_REF] Fuglevand | Models of recruitment and rate coding organization in motor-unit pools[END_REF], with firing rate and the number of recruited MU showing a similar behavior in the presence of force output. Although the main recruitment strategy used by the motor command to increase the force level up to 80% MVC is the spatial mode (the number of active MU, in the case of the biceps brachii muscle), rate coding is also expressed [START_REF] Gabriel | Analysis of surface EMG spike shape across different levels of isometric force[END_REF]. Moreover, MU firing rate synchronization may also play a part in this phenomenon due to the fact that it takes place at higher levels of force (from 80% MVC) [START_REF] Miyano | Theoretical analysis of surface EMG in voluntary isometric contraction[END_REF]. All these modifications can reduce variations in the sEMG path as reported in the study by Gabriel et al. [START_REF] Gabriel | Analysis of surface EMG spike shape across different levels of isometric force[END_REF] and consequently reduce the entropy signal . Indeed, the present work reports a continuous decrease in the average number of peaks per spike when force intensity increases (from 40% to 100% MVC). Here, "spike" is defined as the consecutive succession of a peak and a valley (positive and negative, respectively) that crosses the isoelectric line, while "peak" corresponds to a fluctuationdeflection that does not cross that line.

Some of the factors that contribute to entropy decrease in the force intensity condition may also explain the effect of fatigue in entropy decrease, for it has been reported that MU firing rate synchronization increases continuously until exhaustion during sustained effort [START_REF] Holtermann | Motor unit synchronization during fatigue: Described with a novel sEMG method based on large motor unit samples[END_REF]. Another factor which is fully expressed during CHAPTER 5. BIOELECTRICAL SIGNAL APPLICATIONS peripheral fatigue is the reduction of muscle fibre conduction velocity (MFCV) [START_REF] Merletti | Surface EMG signal processing during isometric contractions[END_REF], with part of this reduction being attributed to an increase of AP duration due to disruptive electrophysiological phenomena [START_REF] Luttmann | Physiological basis and concepts of electromyography[END_REF]. Furthermore, this increased duration of the AP phenomena should widen the MUAP waveform [START_REF] Bingham | Normalised mutual information of high-density surface electromyography during muscle fatigue[END_REF].

Lastly, the biological interpretation of the time scale deserves further comments. We know the information content inside sEMG lies in the range of 20 Hz -500 Hz [START_REF] De Luca | The use of surface electromyography in biomechanics[END_REF], the most appropriate sampling frequency for measurements is f s = 1, 000 Hz (due to the Shannon's Sampling theorem), as shown by the Fatigue signal dataset. By having the original signal sampled at f s = 1 kHz with scale m = 10 (or τ = 10), we capture only the desired range where the information is meaningful. For the refined composite methods, it is better to use this setup, since we are measuring multiple coarse/downsampled signals which improve the final entropy precision. Furthermore, the use of rcMPE or rcDPE avoids the overemphasis of the noise due to high sampling frequency; an effect already discussed in section 3.2.2. In this context, we still recommend the use of rcDPE over rcMPE, since the latter does not perform the filtering effect discussed in section 1.4.1.

The % MVC dataset is harder to interpret. Here, the higher differences were obtained at m = 1, suggesting high frequency information content is important for classification. Moreover, for m = 20, the information comes from the effective range 20 Hz -83 Hz, which lead to no difference between force levels whatsoever. This implies that no relevant information content is present at low frequencies for ordinal entropy techniques. Further experiments are needed to properly understand and interpret this result.

Closing Remarks

Throughout this chapter we have reviewed the properties and physiological mechanisms behind sEMG signals, from the perspective of both biomedicine and information theory. We designed an experiment concerning isometric contractions that contemplated different force output and fatigue conditions, with the intention of gauging the validity and performance of different permutation entropy measurements (MPE, rcMPE, and rcDPE). Thereafter, as we looked for the optimal parameters to maximize the entropy difference between muscle contraction conditions, we decided to test these calculations under the effect of the time scale and embedding dimension variables. Finally, we performed a battery of statistical tests in order to determine the statistical significance of the results obtained.

First and foremost, we determined that the rcDPE method outperforms the other methods in the differentiation of fatigue levels in isometric contractions. We found the maximum entropy differences at a time scale corresponding to a frequency of 1,000 Hz, and we concluded that the embedding dimension is an important factor, since an increase in the dimension value makes the entropy difference more evident.

These entropy methods were also able to detect differences between force levels. Since the optimal time scale for MPE differentiation was the first time scale, the MPE methods yield the exact same results -with rcDPE offering small benefits when used in this scale. Nonetheless, the embedding dimension still proved to be important by showing an increased differentiation capacity at higher values, albeit less pronounced than in the case of the fatigue dataset.

All observed contractions have a rapid entropy increase at low time scales and stabilize afterwards. Since we know from previous chapters that this horizontal entropy line cannot be distinguished from uncorrelated noise, it is implied that high-time scales provide no information regarding sEMG dynamic activity.

From the biomedical point of view, the results in this chapter agree with current literature. The observed reduction of MPE is linked to the reduction of the sEMG signal's complexity, which are well-established effects of fatigue. Regarding the force output levels, the difference in MPE suggests a different activity pattern at different percentages of maximum voluntary contraction. It is interesting to note that MPE, by definition, disregards the information contained in the amplitude of the sEMG signal. Therefore, any differentiation from the signals at different force levels must originate in a different pattern of motor unit recruitment and firing rate.

Chapter Summary

• Surface electromyographic (sEMG) signals are measurements of the electrical activity stemming from muscle motor units (MU), which are in turn responsible for muscle contraction. Skin electrodes record the aggregate activity of all the MU involved in the contraction.

• The final shape of the sEMG signal is the result of several intrinsic and extrinsic factors, such as MU size, conduction velocity, firing rate, MU recruitment strategy, sensor distance, intermediate tissue filter, as well as the subject's age, fatigue level, and possible motor pathologies.

• sEMG signals, being complex by their own genesis, can be characterized by the amount of information contained within them. Particularly, ordinal entropy methods provide a good measure of the aggregate sEMG patterns.

• It has been observed that a compromised biological system presents a systematic reduction of entropy, and thus, can help in the detection and differentiation of different activity states.

• In our experiment, ten subjects performed a series of isometric contractions of their right biceps brachii at different levels of maximum voluntary contraction (MVC), followed by a sustained force effort until exhaustion. We took several permutation entropy measurements (MPE, rcMPE, and rcDPE) at different dimensions (d = 3, 4,and 5) in order to observe the difference between force levels and fatigue states. We also explored the signals at different time scales (m = 1, . . . , 100) in order to gauge the appropriate value which maximizes the differences in each case.

• When analyzing sustained isometric contractions, we found that the rcDPE method outperforms the other methods with statistical significance. We also found the highest dimension used (d = 5) to be the best parameter to differentiate between fatigue states.

• When analyzing different % MVC signals, we found that rcDPE has a slight comparative advantage in the differentiation between force levels. We found again d = 5 to be the best dimension value, albeit its improvement being small when compared to d = 4, suggesting diminishing returns for higher dimensions.

• The time scale range that maximizes differences for sustained contraction was found to be between m = [8, . . . , 15], regardless of method. The highest differences between % MVC levels were found in the first time scales.

• When we applied the rcDPE method with d = 4, we found significant results between the different entropy values at different sections of the fatigue (at m = 10) and force levels (m = 1) datasets.

• These different rcDPE measurements are consistent with existing literature, where a reduction of entropy is observed in the presence of fatigue.

• The reduction of rcDPE at high % MVC can be explained by a synchronization of the MU firing rate, as well as an overlap between MUAP.

Conclusions

. . . y será tan hermoso decir . . . ahora nos vamos al centro y nos compramos un helado el mío todo de frutilla y el de usted con chocolate y un bizcochito.

-Julio Cortázar, Me caigo y me levanto

In the present work we have explored the hidden, underlying properties of multiscale permutation entropy (MPE). Our first goal was to set and further enrich the theoretical body of knowledge behind the MPE algorithm, since that would allow us to have a proper assessment of its statistical properties, advantages, and limitations.

Our second goal was to propose a new MPE method that takes advantage of said theoretical findings. Our third and last goal was to apply this knowledge in a complex biomedical problem, such as electrical muscle activity, in order to differentiate between fatigue and force output as states of performance.

To better position ourselves in the context of information theory, we proposed in Chapter 1 a general criterion for classifying the most commonly used entropy measurements with respect to its core formulation, the definition of the event set, and the preprocessing techniques used prior to entropy computation. Although many different expansions, improvements and generalizations have been proposed since Shannon's original work, there is no current universal best method for entropy computation, since the peculiarities of the phenomenon in question must be taken into account; even the mere definition and nature of entropy can only be interpreted within the context of the specific experiment (complexity, amount of information, etc.). Therefore, our aim is to provide a broad view of the entropy variants we can implement and explore, from the mathematical and statistical point of view.

We introduced our main theoretical development of MPE in Chapter 2. By mean of a polynomial expansion, we were able to find an analytical approximation for the MPE measurement, which allowed us to find a closed expression for its first two moments. We found the bias of MPE, whose approximation is independent of the pattern distribution, by only taking into account the embedding dimension, signal length, and scale. We also characterized the MPE variance, which is tightly linked to the MPE measure itself. Here, we found our MPE variance approximation to closely resemble the Cramér-Rao lower bound for minimum variance. Even as a biased statistic, the estimation is almost efficient. Armed with this newfound knowledge, we proposed a more precise minimum length criterion for MPE. We also pointed at the MPE values with maximum uncertainty along the normalized entropy range.

We explored the expected results for different signal models in Chapter 3, with the aim of exploring the effect of different signal properties on the overall MPE results. We found the entropy of deterministic signals to be affected by the slope of the signal, the sampling rate, and the amplitude of the noise -albeit the method is quite robust to noise when the signal has a pronounced slope. Subsequently, we explored the MPE of stochastic processes, particularly fractional Gaussian noise (which is fractal) and ARMA models, where we found that it is possible to estimate a theoretical MPE result from the processes' parameters. In a general sense, this implies that the parameters that define a random process contain all the information from the process itself, and it is possible to test real signals vs. proposed models by comparing entropy measurements.

At this point, our mathematical base was sufficient to tackle the statistical properties of more refined MPE methods. We explored the properties of the well-established composite MPE (cMPE) and refined composite MPE (rcMPE). While the improvement of the MPE estimation -particularly rcMPE, where both the bias and the variance are reduced-is well-established, we found that composite coarse-graining introduces an artifact cross-correlation between the possible coarse signals. Although the overall variance is reduced with respect to the original MPE algorithm, this effect adds an artificial source of uncertainty. Here, we proposed a composite downsampling procedure as a substitute to the classical coarse-graining used for multiscale entropy techniques. This approach avoided the problem of artifact cross-correlation entirely, yielding an increase in precision over the methods in existing literature. In particular, refined composite downsampling permutation Entropy (rcDPE), on top of having the smallest variance among the methods discussed herein, also has the added benefit of a constant bias for any particular scale/downsampling parameter. In contrast to the other two methods, this allows the method to utilize higher values in both scale and dimension, and therefore, it is the technique we recommend for an ordinal entropy approach.

Finally, in Chapter 5 we were in the position to test these tools and methods on real signals. Our chosen datasets consisted of surface electromyographic (sEMG) signals, which are convenient to implement due to their methods being noninvasive in nature. Nonetheless, some of the challenges present in this technique are noise sources and the superposition of multiple signals, which turns depend on factors such as geometry, conductivity, and a myriad of biological considerations. We found that MPE methods -with rcDPE showing the better results among them-are able to consistently discriminate between different states of muscle fatigue, specially for high-embedding dimensions. Despite the fact that the MPE methods were not as consistent when attempting to find differences between various force outputs, we were still able to differentiate the maximum voluntary contraction (MVC) percentages with statistically significative results. Since ordinal methods normally exclude amplitude, this divergence implies that there are still undiscovered muscle contraction dynamics when different force outputs are applied. On the other hand, choosing the right parameters is important for this classification, and an adequate value selection for both dimension and scale is not necessarily obvious a priori : generally speaking, higher-embedding dimensions (within a reasonable range) yield a better differentiation between activity states, albeit with diminishing returns; conversely, there is no universally defined time scale to choose for a proper analysis, and they Conclusions must be evaluated on a case-by-case basis. Regarding the biomedical implications of these results, we found a significant entropy reduction when muscles become fatigued. One possible explanation points to the action potential elongation -a product of electrophysiological changes-due to continuous contraction. We also found a significant entropy decrease in the presence of contractions with a high-force output, which can be explained by overlaps with motor unit action potentials, as well as observed motor unit fire rate synchronization.

There is ample room for further research on the theoretical front of this topic, such as utilizing new core entropy definitions in the ordinal context, exploring further event partitions, or even testing more general stochastic models. Most importantly, it would be possible to revisit some of the well-established biomedical datasets and obtain a more in-depth interpretation of the results, particularly when exploring entropy behavior at high scales. On account of the improved precision of the methods herein proposed, they can be applied to search for previously hidden dynamic behavior. We hope this research project will contribute both to broaden the existing mathematical body of knowledge and to further improve the use of entropy techniques at the service of the medical sciences.

Additionally, the research on ordinal entropy methods is far from complete. From the theoretical perspective, we can explore the statistical properties of MPE using core formulations that differ from Shannon's original definition. Of course, we should also incorporate the dynamics of "amplitude-aware" techniques to the general MPE statistical behavior theory. In the domain of MPE signal models, the difference between complexity and randomness is still not completely settled, and we believe that further light could be shed on this topic by studying more elaborate statistical processes and chaotic deterministic signals.

Regarding composite methods, understanding the interaction between coarse signals remains incomplete due to a lack of the proper characterization of the artifact cross-correlation effect. Theoretically speaking, a better proposition concerning the probability distribution of ordinal patterns is fundamental, which is quite similar -yet not strictly the same-to a multinomial distribution.

Finally, the study of MPE methods for the characterization of bioelectrical signals is still a fertile area for study. We expect our proposed entropy methods -particularly rcDPE-to better differentiate between sEMG signals in a variety of conditions. These methods could even be brought to real-life conditions due to their short processing time and the improved precision, since these scenarios usually lack the luxury of good measuring conditions, thanks to factors such as external noise sources or long duration activity bursts. Furthermore, the effect of the MPE bias and variance will become crucial in later studies involving short signals and more dynamic conditions, as these effects will affect the resulting MPE more directly. Additionaly, the study of sEMG signal simulations can further shed light in the underlying dynamics of these entropy methods, particularly for different force level contractions, which require more in-depth exploration.

The present work shows the rich complexity behind ordinal entropy techniques and their subsequent, potential applications on biological systems. Even when the theoretical body still remains incomplete, the possible refinements in the results allow researchers to make finer, more accurate calculations and predictions concerning health issues, such as motor processes. Having said that, we hope that this research project offers more clarity regarding the aforementioned methods, as well as lighting the way for further research and technology implementations.

H

Normalized multiscale permutation entropy. We obtain this measure by dividing H by ln d!.

m Time scale of MPE. By following the coarse-graining procedure, m represents the size of the non-overlapping segments inside the signal x. Pattern probability i = 1, . . . , d! in the coarse grained signal x (m,k) . Likewise, when the starting point is not specified for the coarse-graining procedure, we can write p (m) i

and assume k = 1.

X A vector which represents a sequential random process with a given model. Not to be confused with x, which corresponds to a given time series with unknown a priori properties. 
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 25 MPE variance (2.31) for d=2 with respect to normalized time scale m/N . (a) Pattern probability p = 0.3. We observe an almost linear increase with scale, where the first term of (2.31) is dominant. (b) Pattern probability p = 0.5, which corresponds to uniform pattern distribution. Here, the linear term in (2.31) vanishes, leaving only a quadratic increase with scale. . . . . . . . . . . . . . . . . . . . . . . xiii MPE Statistics with sEMG Applications 3.1 Sampled cubic polynomial x = 1 3 t 3 -( 2 3 )t 2 + 2t -1 2 for t = [0, 3] seconds. The regions t = [0, 1] and t = [2, 3] sec have a positive slope; therefore p 1 = 2/3 and p d! = 1/3. It follows from equation (3.3) that the normalized PE is H = 0.3552 for d = 3. . . . . . . . . . . . . . . . 3.2 Sine wave x = sin (2πf t) with wave frequency f = 1, from 0 ≤ t ≤ 5 seconds. Here we show the sampled signals with sampling frequency (a) f s = 8 Hz, (b) f s = 32 Hz, and (c) f s = 216 Hz, with their corresponding values of normalized PE at dimension d = 3. (d) shows the PE of the sine wave x at different sampling frequencies f s . The measured PE converges with the theoretical normalized PE (3.3) for the continuous sine wave (H = 0.387). . . . . . . . . . . . . . . . . .
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 5 (a) Parabolic curve x = t 2 for 0 ≤ t ≤ 15 seconds, with added white noise at σ = {0.005, 0.001, 0.002}. (b) MPE at d = 3 within respect to the linearly increasing slope of the parabolic curve at different values of σ. (c) Straight line x = At with added white noise at increasing σ = [1e -9, 1e -6]. (d) MPE at d = 3 within respect to a linearly increasing σ at different values for the slope A. The MPE values in (b) and (d) come from a local sliding window of ∆t = 0.05 sec. The sampling rate for this measurements is f s = 6670Hz. . . . . . . . . . 3.6 Sine wave function x = sin(2πf t) from 0 ≤ t ≤ 5 seconds, with increasing sampling frequency f s , in the presence of white noise at different signal-to-noise ratio (SNR). (a) Mean MPE vs. f s at SNR = 10 dB, 20 dB, and 30 dB. The MPE follows the MPE of the noiseless sine wave for low f s , and approaches maximum entropy at high sampling rates. (b) MPE surface representation, with f s and SNR as independent variables. Low entropy values are shown in blue, and high entropy in yellow. We observe a clear frontier between regions where noise dominates (yellow), or the underlying deterministic signal is more important (blue). . . . . . . . . . . . . . . . . . . . . . . . . .
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 3 If a choice is broken into two successive choices, the original H should be the weighted sum of the individual values of H associated with each step.(Recursion Property)

  are the elements of the segment vector x (m) k . The cMSE consists of the average SampEn measured for all possible coarse-grained signals x
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 221 Figure 2.1: Ordinal pattern examples. The figures represent discrete data points from a uniformly sampled signal. There are 24 possible patterns for d = 4.

. 10 )

 10 When we measure the random variables Y 1 , . . . , Y d! , we will obtain the individual pattern counts y 1 , . . . , y d! from equation (2.1).

Figure 2 . 2 :

 22 Figure 2.2: Test surrogate model from equation (2.52) for dimension d = 2. (a) Model's sample paths for different values of p = P (x t < x t+1 ). (b) The shift term δ(p) is modified in accordance with the Gaussian cumulative distribution function, in a way that the variation for the next point in the process has probability p.
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 23 Figure 2.3: Three-dimensional theoretical normalized MPE (2.4) for d = 2. (a) Mean MPE value (2.22) in respect to the pattern probability p and normalized time scale m/N . (b) MPE variance (2.31) in respect to p and m/N .

2 :

 2 Critical points for N/m for different values of the embedded dimension d. Minimum signal length N/m at α = 0.05 corresponding signals. Finally, we obtained the mean MPE and variance for each case. The results are shown in Figure 2.4.

Figure 3 . 1 :

 31 Figure 3.1: Sampled cubic polynomial x = 1 3 t 3 -( 2 3 )t 2 + 2t -1 2 for t = [0, 3] seconds. The regions t = [0, 1] and t = [2, 3] sec have a positive slope; therefore p 1 = 2/3 and p d! = 1/3. It follows from equation (3.3) that the normalized PE is H = 0.3552 for d = 3.

Figure 3 . 2 :

 32 Figure 3.2: Sine wave x = sin (2πf t) with wave frequency f = 1, from 0 ≤ t ≤ 5 seconds. Here we show the sampled signals with sampling frequency (a) f s = 8 Hz, (b) f s = 32 Hz, and (c) f s = 216 Hz, with their corresponding values of normalized PE at dimension d = 3. (d) shows the PE of the sine wave x at different sampling frequencies f s . The measured PE converges with the theoretical normalized PE (3.3) for the continuous sine wave (H = 0.387).

Figure 3 . 4 :

 34 Figure 3.4: Sampled cubic polynomial x = 1 3 t 3 -( 2 3)t 2 + 2t -1 2 for t = [0, 3] seconds, with added white Gaussian noise with standard deviation of (a) σ = 0.001 and (b) σ = 0.005. In the regions near the local maximum and minimum, the white Gaussian noise, rather than the polynomial, determines the ordinal patterns present.

Figure 3 . 5 :

 35 Figure 3.5: (a) Parabolic curve x = t 2 for 0 ≤ t ≤ 15 seconds, with added white noise at σ = {0.005, 0.001, 0.002}. (b) MPE at d = 3 within respect to the linearly increasing slope of the parabolic curve at different values of σ. (c) Straight line x = At with added white noise at increasing σ = [1e -9, 1e -6]. (d) MPE at d = 3 within respect to a linearly increasing σ at different values for the slope A. The MPE values in (b) and (d) come from a local sliding window of ∆t = 0.05 sec. The sampling rate for this measurements is f s = 6670Hz.

Figure 3 . 6 :

 36 Figure 3.6: Sine wave function x = sin(2πf t) from 0 ≤ t ≤ 5 seconds, with increasing sampling frequency f s , in the presence of white noise at different signal-to-noise ratio (SNR). (a) Mean MPE vs. f s at SNR = 10 dB, 20 dB, and 30 dB. The MPE follows the MPE of the noiseless sine wave for low f s , and approaches maximum entropy at high sampling rates. (b) MPE surface representation, with f s and SNR as independent variables. Low entropy values are shown in blue, and high entropy in yellow. We observe a clear frontier between regions where noise dominates (yellow), or the underlying deterministic signal is more important (blue).
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 3737 Figure 3.7:For a fixed signal-to-noise ratio (SNR), an increased sampling rate f s implies the data points are closer together, both in time and amplitude. Therefore, when f s is high, the pattern noise dominates over the deterministic signal, and thus, the ordinal pattern is modified.
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 38 Figure 3.8: Three-dimensional surface for (a) MPE, and (b) var(MPE) for Gaussian models and dimension d = 3. This representation is possible since the Gaussian pattern symmetries (3.4) allow the pattern pdf to be dependent on only one variable p 1 .
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 39 Figure 3.9: (a) Average MPE of fGn with respect to the Hurst exponent, for different time scales m. The curves get downshifted with increasing m. (b) MPE of fGn respect to m, for Hurst exponents h = {0.2, 0.5, 0.8}. The dotted lines represent the theoretical predictions, while the solid lines measure the mean MPE from 1500 signals of length N = 5000.
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 310 Figure 3.10: (a) MPE curves for AR(1) with respect to their corresponding model parameter φ. Different curves correspond to different time scales m, as shown directly in the plots. (b) MPE curves with respect to m, with φ = {0.25, 0.50, 0.75, 0.90}. Dotted lines represent theoretical MPE values, while solid lines show the resulting mean MPE from 1500 signals of N = 1000.

Figure 3 .

 3 Figure 3.11: (a) MPE curves for MA(1) with respect to their corresponding model parameter θ. Different curves correspond to different time scales m, as shown directly in the plots. (b) MPE curves with respect to m, with θ = {0.25, 0.5, 0.75}. Dotted lines represent theoretical MPE values, while solid lines show the resulting mean MPE from 1500 signals of N = 1000.
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 312 Figure 3.12: MPE curves vs. time scale for ARM A(p, q) models. Figures (a) and (c) correspond to AR and MA models increasing order, respectively, with only a single parameter (of the highest order). Figure (b) and (d) are models with one fixed AR or MA parameter. The particular values used are shown in their respective plots. Dotted lines represent the theoretical results, and the solid lines show the results from simulations.

  time scale m to obtain the cMPE. The cMPE value is the average of each of the resulting MPE measurements of all m coarse signals:

k

  ) to have a positive correlation, since the coarse signals share almost the same data points cov(H( p (m)

Figure 4 . 1 :

 41 Figure 4.1: Schematic representation of the composite downsampling procedure at τ = 3: we downsample the original signals by taking data points that are τ spaces apart; if we shift the initial position, we can build τ signals. The present downsampling signals share no mutual data points between them.

Figure 4 . 2 :

 42 Figure 4.2: Composite vs. classical MPE measurements for white Gaussian noise, with dimension d = 3 and normalized time scale m/N . (a) Comparison of MPE and cMPE. (b) var(MPE) and var(cMPE). (c) DPE and cDPE. (b) var(DPE) and var(cDPE). (e) Comparison between composite methods: cMPE and cDPE. (b) var(cMPE) and var(cDPE). Solid lines are the product of 500 iterations of wGn signals with N = 1000 and d = 3. Dotted lines are the predicted values from equation (2.23), (2.31), and (4.24).
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 4344 Figure 4.3: Composite vs. refined composite MPE measurements for white Gaussian noise, with dimension d = 3 and normalized time scale m/N . (a) Comparison of cMPE and rcMPE. (b) var(cMPE) and var(rcMPE). (c) cDPE and rcDPE. (b) var(cDPE) and var(rcDPE). (e) Comparison between composite methods: rcMPE and rcDPE. (b) var(rcMPE) and var(rcDPE). Solid lines are the product of 500 iterations of wGn signals with N = 1000 and d = 3. Dotted lines are the predicted values from equation (4.27), (4.5), and (4.28).

Figure 4 . 5 :

 45 Figure 4.5: (a) Markov chain state diagram for an ordinal process of d = 3, where not all states are accessible in one step. (b) Two successive ordinal patterns for d = 4. Given an ordinal pattern, only d possible patterns from the state-space of size d! are accessible. Figures from [63].
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 51 Figure 5.1: Command of the voluntary contraction arising from the cerebral cortex, the latter reaching the motoneuron at the spinal level through projections. The motoneuron axon leaves the spinal cord in order to link with muscle fibres. However, one motoneuron receives several inputs (activation and/or inhibition), with some arriving directly and others via interneurons located at the spinal level. Some of the information it receives stems from proprioceptive feedback. Figure from [78] [79].
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 52 Figure 5.2: Schematic representation of the AP propagating along the muscle fibre, and considered in terms of a leading and trailing dipole pair (extracellular sign depicted) for which the record voltage depends on the angle of electrode (e) view (left panel). The solid angles (Ω) are modified regarding the AP location during its movement and explain the voltage shape detected by the sensor (right panel). Image from [81].
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 53 Figure 5.3: The individual motor units (MU) receive activation/inhibition information from the spinal cord. Each activated MU produces a motor unit action potential (MUAP) with a specific firing rate and conduction velocity. The overall sEMG consists of the aggregate interference of all generated MUAP, which in turn suffer nonlinear transformations due to medium propagation. sEMG signal model from [83].

ure 5. 7 ,Figure 5 . 4 :

 754 Figure 5.4: Left column: mean entropy values as a function of scale (m) for the fatigue steps (from W 1 to W 4 ). Right column: variation in entropy mean values as a function of scale (m) on the pairwise differences between steps of fatigue (only W 1 -W 3 , W 2 -W 4 , and W 1 -W 4 are shown). From top to bottom: MPE (a, b), rcMPE (c, d) and rcDPE (e, f). All values at dimension d = 3.
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 5556 Figure 5.5: Left column: mean entropy values as a function of scale (m) for the fatigue steps (from W 1 to W 4 ). Right column: variation in entropy mean values as a function of scale (m) on the pairwise differences between steps of fatigue (W 1 -W 3 , W 2 -W 4 , and W 1 -W 4 ). Dimension values, from top to bottom: d = 4 (a, b) and d = 5 (c, d).

Figure 5 . 8 :

 58 Figure 5.8: Left column: mean entropy values as a function of the scale (m) for the force level (from 20% to 80% MVC). Right column: variation in entropy mean values as a function of scale (m) on the differences between force levels (from 20% -40% to 20% -80%). Dimension values, from top to bottom: d = 4 (a, b) and d = 5 (c, d).

Figure 5 . 9 :

 59 Figure 5.9: Range boxplots for MPE differences with increasing dimension d = [3, 4, 5]. (a) 20% -40%, (b) 20% -60%, (c) 20% -80%, (d) 40%-80%. Only statistically significant results are shown (Kruskal-Wallis test with α = 0.05).

x

  The coarse-grained version of x, for time scale m. Note that there are k = 1, . . . , m possible coarse-grained signals, each beginning with the k th element of x. When the starting point is not specified, we can write x (m) , and assume k = 1.n m Signal length of x (m,k) . p (m,k) i

  

  [START_REF] Little | Permutation entropy of finite-length whitenoise time series[END_REF] is not the only equation to satisfy the properties outlined for H(p 1 , . . . , p n ). In 1967, Havrda and Charvát proposed a new equation for entropy called Havrda-Charvát structural α-entropy[START_REF] Havrda | Quantification method of classification processes[END_REF]. Later in 1988, Constantino Tsallis proposed a measure now known as Tsallis entropy within the context of thermodynamics. Both formulations are functionally the same.

  .47) From equation (2.46), we have expression p * as the sum of two matrices. The diagonal of p * is nonsingular, by definition, and I(p

* ) is nonsingular too. Since 1 • 1 is rank 1, the lemma (2.47) applies.

  The surrogate model (2.52) was implemented in Matlab, generating 500 signals per each of the 99 different values of p = 0.01, 0.02, . . . , 0.99 we utilized. Additionally, the signal length was also set to N = 1000, and we used the time scales m = 1, . . . , 50; for each value of p and m, we obtained the MPE along all the corresponding signals. Finally, we obtained the mean MPE and variance for each case. The results are shown in Figure2.4.

.54) By using the expression (2.54) in our surrogate model

(2.52)

, we can control the pattern probabilities present in the generated signal just by modifying the value of p; this relationship is illustrated in Figure

2

.2. Consequently, we can compare our resulting mean MPE values with the surface generated by equation (2.22) for d = 2 (higher dimensions lead to hypersurfaces), as well as comparing the resulting MPE variance from our surrogate model simulations with the surface from equation (2.31). We present both surfaces explicitly on Figure

2

.3.

By directly applying the coarse-graining procedure (2.5) to the surrogate signals in

(2.52)

, the probability p will be modified at each scale. Therefore, instead of applying (2.5) directly, we generated a new set of 500 signals using the original surrogate model (2.52) with length N/m at increasing values of m. This will retain the effect of decreasing signal length, without modifying the parameter p. For the purposes of this test, p and m should be completely independent.

  dominates the overall MPE variance curve, as well as corresponding to the CRLB, we will proceed
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Figure 2.4: Normalized MPE (2.4) for d = 2. (a) Mean MPE (2.22) with respect to pattern probability p, which shows a clear maximum at p = 0.5 (the point of equiprobable patterns). (b) MPE variance (2.31) in respect to p. We observe minimum points at p = 0, p = 0.5, and p = 1, as well as maximum points at p = 0.083 and p = 0.917. (c) Mean MPE (2.22) in respect to the normalized time scale m/N . We observe here the linear time scale m/N . (a) Pattern probability p = 0.3. We observe an almost linear increase with scale, where the first term of (2.31) is dominant. (b) Pattern probability p = 0.5, which corresponds to uniform pattern distribution. Here, the linear term in (2.31) vanishes, leaving only a quadratic increase with scale. to find the local maxima and minima. For d = 2, we can write (2.51) as var

  .63) Since all ∂L ∂p i = λ, we can take any probability p i as a reference point, similarly to what we did in Section 2.3.5. We will again use the last variable p d! without loss of generality. By setting ∂L ∂p i = ∂L ∂p d! , we obtain the following equation: This condition can only be met if all the probabilities are the same. Therefore, this condition corresponds to the uniform distribution of p for any dimension d. We know this distribution produces the maximum MPE, and corresponds to a minimum variance (2.61). Now, if the second term in (2.64) is equal to zero, this implies that p i = p d! , ∀i. We can write this second term as

	∀i.	(2.65)

(ln p i -ln p d! ) (ln p i + ln p d! ) + 2 -2 d! j=1 p j ln p j = 0. (2.64) This expression has two multiplied terms. Even if one or both terms turn to be zero, the equation (2.64) still holds true. If the first term is zero, then we have MPE Statistics with sEMG Applications ln p i -ln p d! = 0 p i = p d! ,

Table 2

 2 

	d p i	p d!	H
	3 0.036	0.082	0.425
	4 0.0113 0.7394 0.425
	5 0.0027 0.6811 0.438
	6 0.0005 0.6405 0.450
	7 0.00008 0.61200 0.466

.1.

Although the precise value of the normalized MPE (2.4) differs across dimensions, it is clear that there is a region around H ≈ 0.450 where our normalized MPE statistic will have maximum variance. However, we will not explore the uniqueness of this result in the present work, since any arbitrary signal that presents a distribution close to (2.74) requires particular consideration.

Table 2 .

 2 1: Probability distributions that yield maximum variance for normalized MPE H, at dimensions d = 3, . . . , 7. The probabilities are subject to the restrictions p i = p j for i = j, and p i = p d! .

Table 2 .

 2 .[START_REF] Goldberger | What is physiologic complexity and how does it change with aging and disease?[END_REF] Here we use the normalized MPE estimator H( p)(2.4), so that we can interpret α as a percentage -which should be quantitatively small. Although obtaining the value of d for this equation is not trivial, abiding by the suggestion of Bandt and Pompe[START_REF] Bandt | Permutation entropy: A natural complexity measure for time series[END_REF] gives us the advantage of only working with dimensions d = 3, . . . , 7. Therefore, we provide a table comparison for these values in Table2.2.Although this is in no way a true improvement on the length constraint itself, it allows researchers to have a more precise gauge over the limits of their study. This criterion takes away the ambiguity of the valid parameter selection.
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	d	d!-1 ln d!	min N m
	3	2.79	333
	4	7.23	643
	5 24.86	1,667
	6 109.28	5,724
	7 591.86 25,164

The surrogate model

(2.52) 

was implemented in Matlab, generating 500 signals per each of the 99 different values of p = 0.01, 0.02, . . . , 0.99 we utilized. Additionally, the signal length was also set to N = 1000, and we used the time scales m = 1, . . . , 50; f. For each value of p and m, we obtained the MPE along all the

  .25) Even when the equation(3.25) is cumbersome, we have a closed expression for the pattern distribution in the AR(1) model. Moreover, the distribution is only a function of the model's parameters and the time scale. This means the MPE of this model is completely characterized, and any deviation from these results come from effects outside the statistical properties of the signal. In figure3.10 we can observe the comparison between our MPE models and actual MPE measurements from simulated AR(1) processes.
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  Composite coarse-graining stems from the notion that, for a given time series x and a set time scale m, we can build an m different coarse signals if we change the starting element for the coarse-graining procedure. Up to this moment, classical MPE assumes that the starting point is equal to the first element of the time series (x 1 ). At most, we can have an m number of difference signals for the same time scale that are similar to one another yet contain slightly different information. We apply the general procedure to build all the possible coarse signals for m,

	4.2 Composite Coarse-Graining Techniques	
	4.2.1 Composite Coarse-Graining Procedure	
	x	(m) k,j =	1 m	jm+(k-1) i=m(j-1)+k	x i ,	(4.1)
	with k = 1, . . . , m for the starting element. Applying the procedure in (4.1) gives
	us coarse signals x (m)					

1 , . . . , x

  3.2.
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  Random variable representing the pattern count i = 1, . . . , d!. Unless otherwise specified, Y i is assumed to be a binomial random variable. pi Random variable representing the pattern probability i = 1, . . . , d!. Unless otherwise specified, pi is assumed to be a binomial random variable, identically distributed to Y i . Y Vector of size d! containing all the pattern counts Y i . Unless otherwise specified, Y is assumed to be a multinomial random variable. p Vector of size d! containing all of the pattern probabilities pi . Unless otherwise specified, p is assumed to be a multinomial random variable, identically distributed to Y . Vector of size d! containing all the natural logarithms of the pattern probabilities ln p i . Ĥ Multiscale permutation entropy estimator. This is a scalar function of p. h Hurst parameter for fractional Gaussian motion and fractional Gaussian noise.

	wGn	
		White Gaussian noise.
	fbm Fractional Brownian motion.
	fGn Fractional Gaussian noise.
	cgfGn
		Coarse-grained fractional Gaussian noise.
	AR Autoregressive process.
	MA Moving average process.
	cgAR
		Coarse-grained autoregressive process.
	cgMA
		Coarse-grained moving average process.
	ARMA
		Autoregressive and moving average process.
	ECG	
		Electrocardiogram.
	EEG	
		Electroencephalogram.
	EMG	
		Electromyogram Electromyography.
	sEMG
		Surface electromyography.
	MU Motor unit.
	MF Muscle fibers.
	MUAP
		Motor unit action potential.
	MVC
		Maximum voluntary contraction.
	K Covariance matrix.
	σ 2 Variance.
	ρ	Normalized autocorrelation function.

i p(m) When the vector p is not constant respect to m. l λ Refers to the autocorrelation lag in the autocorrelation function ρ(λ). R Normalized autocorrelation matrix. t Gaussian error innovation with zero mean and variance σ. p Order of the autoregressive model. cgARMA Coarse-Grained autoregressive and moving average process.
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MPE on Common Signal Models

Un jazmín, para dar un ejemplo perfumado.

A esa blancura, ¿de dónde le viene su penosa amistad con el amarillo?

-Julio Cortázar, Me caigo y me levanto

Introduction

So far, we have delved inside the workings of multiscale permutation entropy from both the empirical and -most importantly-the statistical point of view. It is through the Taylor series that we have been able to develop an MPE approximation which allows us to compute its expected value and variance. We know by this point that MPE is a biased estimator with a linear value that only depends on the parameters of the analysis and not the pattern distribution. We also found the variance to be close to the Cramér-Rao lower bound, and thus, approximately efficient. We were also able to propose more precise length criterion for a sufficiently long signal for MPE analysis. Finally, we established a normalized MPE range where the variance is maximum for a given signal length.

Although these results hold true for arbitrary signals, we cannot ignore the fact that the coarse-graining procedure has a noticeable effect on the pattern distribution found at each scale. In Chapter 2 we intentionally left this fact out of the analysis, so that we could isolate the effect of the signal length over MPE statistic. Now it is time we address this relationship directly.

We can apply the MPE analysis on any discrete signal without the need of prior knowledge of its underlying dynamics. In fact, the empirical computation of MPE can give us some insight in this regard. On the other hand, if we know the nature of the process, we can compute a theoretical MPE based on the signal's model. We will know if our proposed signal model can be appropriate for explaining all the relevant information of the phenomenon when the theoretical MPE matches the empirical MPE.

Therefore, in this chapter we will study the MPE values for some well-known sig-Regarding some properties of fBm, we can state that [START_REF] Delignières | Correlation properties of (discrete) fractional gaussian noise and fractional brownian motion[END_REF],

Fractional Brownian motion

where λ is the index shift between data points. The value of X B (n) is the sum of all the prior individual, nonindependent Gaussian steps. The autocorrelation between different points in the fBm depends on the distance between data points, as well as the absolute position in time. Similarly, we can write the properties of fGn as follows,

Fractional Gaussian noise

Here, the fGn is defined with respect to fBm. Each fGn instance is the increment between the fBm at the same time t n , compared to the realization at t n-1 . In this case, the autocorrelation is not dependent directly on the position in time. Instead, it is solely dependent on the relative distance between data points.

Using these properties with the definition of the coarse-graining procedure (2.5), we can express the properties of a cgfGn by introducing the relationship between fBm and fGn (3.8), as follows,

By writing the cgfGn in terms of fBm, we simplify the expression enough to obtain the moments manually.

CHAPTER 3. MPE ON COMMON SIGNAL MODELS

If p < q, the YW equations change sightly,

All the autocovariance terms γ λ must be divided by γ 0 to obtain the first max(p, q) autocorrelations values. Any autocorrelation λ > max(p, q) follows the autorregressive recursive relation, and can be computed a posteriori.

With the YW equation solution for ρ(λ) = γ λ /γ 0 , we can use equation (3.42) utilizing the pattern probability in equation (3.5) (for d = 3) to obtain the MPE in (3.6).

We can observe some examples in Fig. 3.12 with the average MPE of 100 signals at N = 5000 with bias correction. The models shown correspond to:

1. AR(p) with a single parameter φ p = 0.25, with increasing order p, with all lower order parameters set to zero. Fig. 3.12a.

2. ARMA(1,q), with fixed AR parameter φ 1 = 0.5, and adding a new MA term θ 1 = • • • = θ q = 0.1 with increasing order. Fig. 3.12b.

3. MA(q) with a single parameter θ q = 0.25 with increasing q, also with lower order parameters equal to zero. Fig. 3.12c.

4. ARMA(p,1), with fixed MA parameter θ 1 = 0.5, and adding a new AR term

1, also with increasing order. Fig. 3.12d.

Once again, albeit the behavior of each model presents more complications than the AR(1) and MA(1) models, it is evident that the simulations closely follow the MPE predictions. This fact further proves the utility of equation (3.42) to obtain the MPE of elaborate Gaussian models.

Closing Remarks

In [START_REF] Humeau-Heurtier | Refined composite multiscale permutation entropy to overcome multiscale permutation entropy length dependence -IEEE journals & magazine[END_REF] aim to measure the maximum number of possible patterns within the original signal without modifying the underlying idea of the MPE approach. Both of these methods have been experimentally proven to yield better results by reducing the variance of the MPE estimator.

Therefore, in this Chapter we will further expand on the MPE statistical theory by including the cMPE and rcMPE algorithms. We will outline and discuss the improvements they offer over the classical MPE approach, as well as their drawbacks and possible shortcomings. Moreover, we present an alternative to the classic composite coarse-graining approach -which is known as "downsampling"-that further improves these refined methods. Finally, we compare all the previously discussed methods experimentally to evaluate their precision and recommend the most appropriate algorithm for the measurement of ordinal entropy in time series.

CHAPTER 4. COMPOSITE MPE REFINEMENTS

cMPE and the rcMPE approaches found in literature. Specifically, downsampled rcMPE, on top of presenting the minimum variance, also showed an expected value that remained invariant with respect to the time scale. This will be particularly useful, since we will not face noticeable degradations when exploring large time scales. Therefore, for practical purposes, we recommend the use of this method.

We also proposed an updated version of the length constraint criterion presented in Chapter 2 that is independent of scale.

Since the artifact cross-correlation from composite coarse-graining techniques is completely avoided by the use of the composite downsampling process, we did not characterize this phenomenon explicitly for practical purposes -this is, however, an interesting mathematical problem deserving further research.

During the exploration of MPE refinements, we unexpectedly came across a deviation from the MPE expected values and the actual MPE measurements over uncorrelated white Gaussian noise. Since this deviation is present on all techniques tested here, we conclude the artifact cross-correlations is not the source of this effect. Instead, we reevaluated our assumptions over a scale-independent pattern probability distribution from a white Gaussian noise process. Additionally, further literature research [START_REF] Keller | Time series from the ordinal viewpoint[END_REF] [63] revealed that the ordinal pattern count follows a first-order Markov process. Although this effect merits further research, rcDPE makes a sufficient bias correction to justify continuing the use of the multinomial approach.

Chapter Summary

• The composite coarse-graining procedure consists on utilizing the classical coarse-graining algorithm at different starting points, with the intention of increasing the number of coarse signals for a given time scale.

• Although the composite coarse-graining procedure increases the precision of MPE estimation, it also introduces artifact cross-correlations between composite signals, which consequently increases the expected variance.

• To avoid artifact cross-correlations, we present a composite downsampling process by using the classical downsampling procedure in conjunction with the composite techniques.

• Composite MPE produces no deviation from the original MPE expected value. Nonetheless, the variance is reduced with respect to MPE.

• Composite downsampling PE (cDPE) still follows the predicted, biased expected value, but improves the variance beyond the cMPE by virtue of avoiding artifact cross-correlation effects.

• Refined composite MPE, on top of outperforming cMPE, also mitigates the scale-dependent bias.

• Refined composite downsampling PE (rcDPE), a method devised in this research project, presents the minimum variance value over all other refined MPE variants, again by virtue of completely avoiding artifact cross-correlations between composite signals.

Appendix A Covariance, Coskewness, and Cokurtosis Matrices

In this section we will briefly derive the expressions for the covariance, coskewness, and cokurtosis matrices for a multinomial distribution.

First, we recall from equation (2.9) and (2.10) the structure of the pattern count distribution from Chapter 2,

using the same definitions as in Equations (2.1) and (2.2). As before, Y is the random variable which represents the pattern count in the signal while p is the estimator of the pattern probabilities. For an embedded dimension d, there are d! possible patterns.

We should also define m as the time scale for MPE analysis, and let n be the greatest integer number below N/m + d -1, which will represent the length of the coarse-grained signal at scale m.

Additionally, we notice that elements Y i from vector Y are composed of two parts: a deterministic np i constituent and a random ∆Y i constituent.

We note that the elements Y i from the vector Y are composed of a deterministic part np i , and a random part ∆Y i . It should be evident that E[∆Y i ] = 0 and ∆Y i is identically distributed to Y .

We start by obtaining the expected values of the vector multiplication ∆Y ∆Y . We know that

for i = 1, . . . , d! and j = 1, . . . , d!. Thus, if we gather all possible combinations of i and j in the covariance matrix, we get

Similarly, the skewness and coskewness can be expressed as,

which yields to the coskewness matrix

where we use again the vector definitions in Equation (2.27).

Lastly, we follow the same procedure to obtain the cokurtosis matrix, by first obtaining the values

which combines in the matrix as follows

By taking advantage of this expressions, we are able to calculate the MPE variance in Chapter 2.

Appendix B Math Glossary

This is a list of the most relevant symbols used through this thesis.

x

The vector containing all the data points in an arbitrary time series. This is the starting point of the MPE analysis.

x t Refers to the element t of x, from t = 1, . . . , T .

t

The index T will be used to refer to any particular data point in x. 

N