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C H A P T E R 1

Main research activities since my

PhD

The research works done in my PhD thesis, defended at the end of 2007, focused on the

parallelization of combinatorial optimization algorithms. During this thesis, we mainly

presented a new approach, called B&B@Grid [MMT07b], for the parallelization of Branch-

and-Bound (B&B) algorithms.

The results of our experiments show that the coding of B&B@Grid divides the size

of the communicated information by an average of 766. These experiments have also

shown that the coding of the communicated information, performed using B&B@Grid,

is on average 92 smaller than the coding of the token approach of PICO [EPH00], and

465 smaller than the coding of the variable approach published in [IF00]. These experi-

ments demonstrate the advantage of using B&B@Grid in clusters to reduce the size of the

communicated information, and therefore the communication delays.

On the other hand, despite the high number of CPU cores in our clusters, about 1111

on average, the experiments, carried out with the master-worker paradigm, showed that

the master exploits its processor at 1.29% on average, and that workers spend an average

of 99.94% of their time in computing. These two percentages are good indicators of the

quality of B&B@Grid’s load balancing strategy and its ability to scale up.

The B&B@Grid approach is used to solve an instance of the flowshop problem, known

as Ta056 (50 jobs and 20 machines), and published in [Tai93] which has never been

optimally solved before. In terms of the used computing power, the Ta056 resolution ranks

second among the large-scale challenges tackled in combinatorial optimization field before

2007. On average, 328 processors were used for more than 25 days, and a peak of about

1200 CPU cores was recorded during this resolution.

In the recent years, GPU-powered clusters appeared to be as more and more inter-

esting alternatives for the parallelization of some algorithms. GPU accelerators are often

used in today’s largest high performance computing systems for regular and data parallel

applications. However, B&B algorithms are highly irregular in terms of workload, control

flow and memory access patterns. The research works, presented in this document, are
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a continuation of B&B@Grid to adapt B&B algorithms, having an irregular structure, to

GPU-powered clusters, having accelerators with a highly regular architecture.

Before presenting our contributions, in the parallelization of B&B algorithms, this

chapter describes our main industrial and academic research activities, done after my PhD

and which are not presented in this manuscript. This industrial and academic research is

presented in Subsection 1 and Subsection 1, respectively.

2.1 Industrial research

Our industrial research is mainly carried out in the railway field. These research works

allowed us to have several contributions, such as the development of a train simulator,

the development of a train autopilot, reducing the energy consumption of a rail network,

or automatic learning of the technical parameters of a train. In general, our work for the

railway industry is not intended for scientific publications. One of our main industrial

partners, Alstom, prefers to keep confidentiality for promising results.

G-Drive : an automatic train operation

• Problem description: The cost of energy, for the traction of passenger trains, is

estimated at ∼100 million euros during 2006 in Belgium, and at ∼850 million euros

during 2008 in France. Some studies show that, in the same journey and the same

driving conditions, a train can consume up to 50 % more energy than another train.

Therefore, the cost of the wasted energy for train traction is relatively high.

• Conventional approach: To reduce this cost, railway operators use two types of ap-

proaches. The first approach is to give the driver a list of expected times at some track

positions during journey. And the second is to equip trains with a driver assistance

system.

• Our approach: In collaboration with Alstom, we developed an automatic train con-

trol system. This system automatically controls and drive train by optimizing energy

consumption and respecting the constraints.

• Obtained results: Simulator tests show that our system saves from 15% to 25%

energy compared to drivers of the National Railway Company of Belgium.

• Publications: We decided to do not publish the used optimization method because

Alstom plans to market this system in the coming months. An international patent is

under submission. In this patent, I am one of the authors of the developed system.
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Energy-efficient railway traffic control

• Problem description: In modern railway system, most of the energy required by

trains is supplied by the electric network. In recent years, the reduction of energy

consuming has become one of the main concerns of the railway managers.

• Conventional approach: Although railway traffic control is an important topic in

the modern railway management system, few results about the studies on railway

traffic control, especially real-time energy-efficient traffic control for general rail-

way system, have been published in the literature. Most of the studies simplify the

problem by using average velocities or constant speeds to estimate the energy con-

sumption of the trains along their journeys.

• Our approach: Our method proposes suitable driving profiles for the trains that run

in the same railway network in order to reduce the total energy consumption of the

whole railway network. To minimize the total energy consumption of a targeted rail-

way network, it is important to not only propose ecodriving driving profile for each

train but also to synchronize the operations of different trains. This synchronization

introduces a high reutilization rate of the energy regenerated by dynamic braking

operations of the trains.

• Obtained results: Experimental data used in to evaluate our approach are supplied

by the Belgian railway infrastructure manager.

• Publications: This work is published in Mathematical Problems in Engineering jour-

nal [TFMJ13]. According to the experimental results, our proposed method can

generate energy-efficient traffic control solution, where the driving profile of a train

is defined by a suitable mono-train driving strategy that can be different from the

driving strategy used by another train part in the same railway network.

Learning the parameters of a train

• Problem description: In some algorithms, it is important to modelize the train. The

obtained train model is defined by a set of parameters. These parameters are related

to: (1) the train traction system; (2) its braking system; (3) its aerodynamic; (4) the

different masses of the train; and (5) its length; In total, any realistic train model is

defined by more than 100 parameters.

• Conventional approach: For each train, it is important to know the values of these

parameters. To find these values, the conventional approach is (1) to contact the
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manufacturer of the train to get the values of some parameters, and (2) to measure

the values of the other parameters. However, this approach has two disadvantages:

(1) measuring the value of a parameter can be an expensive operation; and (2) some

parameters, such as the total mass of a train, are constantly changing;

• Our approach: Our learning algorithm deduces the values of the parameters by only

observing the behavior of the train. The train is seen as a system which receives input

commands. These commands can be traction, braking, or no control. A command

changes the state of the train. This state is defined by the position of train, its velocity,

and its acceleration. The state of the train can be measured by an odometer, and

this state is measured with a certain noise. The role of the learning algorithm is to

deduce the parameters of the train using a great number of pair of values. Each pair

is defined by (1) an input command and (2) the obtained state.

• Obtained results: With our method, we are able to learn the exact values of all

parameters when the states of train is known without noise. If the states contain

noise, the algorithm is able to learn these values with an average error of less than

2%.

• Publications: These results are obtained in January 2017. Next weeks, we will

discuss with our partners the possibility of publishing this work.

Developing a train simulator

• Problem description: In the optimization algorithm of the railway sector, the cost

function is sometimes based on the simulation of a train.

• Conventional approach: At the beginning of a project, we received a professional

simulator, where the simulation is based on a time discretization. However, we

observed that the obtained simulations are not sufficiently accurate, and some values

do not match those of the train’s mathematical model.

• Our approach: So we developed a train simulator, based on a time discretization,

and with a better accuracy. This simulator takes into account, not only, the control

system, the traction and braking systems, and the aerodynamic of the train, but also,

the track topology, namely gradients and curves.

• Obtained results: With negligible maximum errors in the positions, velocities and

accelerations, the obtained simulations correspond to those of the train’s mathemat-

ical model.
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• Publications: This simulator is more a development work than a research one. As

the scientific contribution is not important, we do not plan to publish this work.

Multi-objective optimized railway timetable

• Problem description: A timetable can be improved according to different criteria,

such as robustness, which measures the sensitivity of a timetable to disturbances, and

total energy consumption. As the Belgian network is relatively dense, it is important

to improve the timetable by taking into account these two criteria.

• Conventional approach: To the best of our knowledge, there is no work in the

literature which optimize the timetable according to the robustness and the energy

consumption, using a realistic energy model. In addition, some works try to optimize

the timetable by building a new timetable from scratch. However, the users do not

like having lot of changes in the timetable.

• Our approach: The objective of our algorithm is not to generate a new timetable

but to improve the current one, transparently to the user. Between two successive

stations, a timetable defines the moments at which the train must pass at certain

intermediate positions of the track (i.e. between two stations). Our algorithm does

not modify the arrivals and departures times at the stations, but updates only the

times of these intermediate positions.

• Obtained results: The evaluation of the energy consumed by a network requires the

use of a special simulator. In this project, our role was not to develop this simulator,

but only the optimization algorithm. Our optimization software was provided to

our partners approximately six months before the end of the implementation of the

simulator.

• Publications: This work is not published.

Energy-aware railway timetable re-scheduling during disturbances

• Problem description: Disturbance management can be seen as a three-step process.

The first step is the detection of a disturbance. Then, a decision is made to manage

this event. And finally, this decision is implemented.

• Conventional approach: In our work, we assume that another system is responsible

for detecting disturbances. Decision-making, such as the removal of a train, its devi-

ation, or its slowdown, is a complicated process, which is hard to automate. When a
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decision is taken to change the path of a train, the Belgian railway operator, Infrabel,

manually generates a local timetable for this path.

• Our approach: The software, which we have developed, allows to generate this

local timetable automatically by optimizing at the same time the tardiness and the

energy consumption.

• Obtained results: The evaluation of the energy consumed by a network requires the

use of a special simulator. In this project, our role was not to develop this simulator,

but only the optimization algorithm. Our optimization software was provided to

our partners approximately six months before the end of the implementation of the

simulator.

• Publications: This work is not published.

2.2 Academic research

Simultaneously with industrial research, we also had contributions in the academic re-

search. This section presents only our main academic works which are not related to B&B

algorithms. These contributions belong to three different domains, namely combinatorial

optimization, cloud computing and machine learning.

Hyper-heuristic GRASP

• Problem description: GRASP is a well-known two-phase metaheuristic. First, a

construction phase builds a complete solution iteratively component by component

by a greedy randomized algorithm. After that, a local search phase improves this

solution. The basic GRASP configuration is defined by (1) a cost function, (2) a

probabilistic parameter of greediness, and (3) a neighborhood structure.

• Conventional approach: Traditionally, the choice of a GRASP configuration (greed-

iness, cost function, and neighborhood) is guided by the theoretical studies or by

manually testing the different parameter values. However, hyper-heuristic frame-

work exists to design and adapt automatically heuristics to solve hard computational

search problems. The feature of this framework is a protocol (also called a high-level

heuristic or mechanism) that manages with the low-level heuristics (tabu search,

genetic algorithms, etc.) looking for the best configuration of their parameters.

• Our approach: Therefore, in our work we propose a hyper-heuristic that runs

GRASP configurations in accordance with several predefined configurations. Each
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configuration manages a set of one-iteration GRASPs with different parameter. The

goal is to automatically test multiple GRASPs and collect performance measures in

order to detect the leading configurations for given test instances. We consider 7

well-known neighborhood structures, 9 greediness values, and 5 cost functions (in-

cluding a cost function based on a bounding which is integrated for the first time in

GRASP).

• Obtained results: Our computational experiments have not revealed one leading

configuration, however the winning one is a stochastic mix of several configurations.

• Publications: This work is published in CCPE journal [AMTM17] (Concurrency and

Computation: Practice and Experience).

Optimization of precedence-constrained parallel application problem

• Problem description: Parallel programs can be represented by a directed acyclic

graph where each node represents a task and each edge from a node A toward a

node B means that the task B starts after the end of the task A. In this graph, The

weight of a node A represents the computation cost of the task A, and the weight

of an edge (A,B) represents the communication cost from the task A to the task B.

These parallel tasks must be deployed on several computing units. Each computing

unit can work with different voltage levels. For each voltage level, a computing unit

has a processing speed and an energy consumption. Precedence-constrained parallel

applications are one of the most typical application models used in scientific and

engineering fields.

• Conventional approach: In the literature, usually the goal is to deploy this applica-

tion in order to minimize the total processing time only.

• Our approach: Our objective was to minimize not only the total processing time

but also the total energy consumption.

• Obtained results: Experiments show that our method improves on average the

results of the literature for about 10, 000 standard instances. The energy consumption

is reduced by about 50% and the processing time by 10%.

• Publications: This work is published in JPDC [MMK+11] (Journal of Parallel and

Distributed Computing) which is an A*-journal. According to Google Scholar, this

paper is the third most cited paper in JPDC during the last 5 years (more than 120

citations).
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Solving Tuberculosis Transmission Control (TTC) problem using parallel simulation-
and surrogate-assisted optimization

• Problem description: Tuberculosis is the most lethal infectious disease with 10 mil-

lion cases of active tuberculosis recognized in 2017. The World Health Organization

(WHO) proposed the End Tuberculosis Targets, with the objective to cut new cases

by 90% between 2015 and 2035.

• Conventional approach: The AuTuMN simulator [TRDM17] implements a tubercu-

losis transmission dynamic model and facilitates predictions of future tuberculosis

epidemic trajectories across diverse scenarios. Besides, the coupling with an eco-

nomic model allows to compare and analyze different control policies, which then

helps decision makers in their effort to decrease local tuberculosis burden. How-

ever, solving TTC problem using AuTuMN simulator, like many simulation-based

optimization resolutions, are computationally expensive.

• Our approach: In the PhD thesis of Guillaume Briffoteaux, which I co-supervise, we

investigate Evolution Controls (ECs) strategies that define the alternation between

the simulator and the surrogate within the optimization process. The challenge

is to find the best trade-off between the quality (in terms of precision) and the

efficiency (in terms of execution time) of the resolution. We consider several ECs

from the literature including the mechanism built on the distance-based concept of

Hyper-sphere Confident Regions (HCR) and a mechanism derived from Monte Carlo

dropout (MCDropout), a technique originally dedicated to quantify uncertainty in

deep learning. The investigation of this latter uncertainty-aware EC is uncommon in

surrogate-assisted optimization.

• Obtained results: We identify some characteristics common to several ECs and

then derive from them different variants that are compared considering a pioneer-

ing application to the TTC problem. The reported results show that HCR- and

MCDropout-based EC coupled with massively parallel computing outperforms the

literature strategies.

• Publications: A first part of this work is published in the HPCS’2018 conference

[BMMT18], the second part is under minor revision for the Future Generation Com-

puter Systems (FGCS) journal (Impact Factor of 5.768), and the third part is submit-

ted to the Swarm and Evolutionary Computation (SWEVO) journal (Impact Factor

of 6.330).



C H A P T E R 2

Introduction

This manuscript gives an overview of my research activities focused mainly on two PhD

theses that I co-supervised, namely those of Rudi Leroy [Ler15a] and Jan Gmys [Gmy17]

defended respectively in 2015 and 2017. Other activities conducted within the context of

academic and industrial collaborations are summarized in the CV part of this manuscript

(Chapter 1).

Many industrial and economic problems, like flowshop scheduling, are permutation

combinatorial optimization problems. Solving these problems consists in finding an opti-

mal permutation of elements among a large finite set of possible permutations. A wide

range of these problems is known to be large in size and NP-hard to be solved. The Per-

mutation Branch-and-Bound (Permutation B&B or PB&B) algorithms are one of the most

used exact methods to solve these permutation optimization problems. These algorithms

are based on an implicit enumeration of all the feasible permutations of the problem to

be tackled. Building and exploring the PB&B tree are performed using four main opera-

tions: branching, bounding, selection and pruning. In PB&B algorithms, if the lower bound

for some tree node A is greater than the best permutation found so far, then A may be

discarded from the search. This key idea of the PB&B algorithms significantly reduces

the number of explored nodes. However, the execution time of a PB&B notably increases

with the size of the tackled problem instance, and often only small or moderately sized

instances can be practically solved.

For this reason, over the last decades, parallel computing has been revealed as an attrac-

tive way to deal with larger instances of combinatorial optimization problems. Recently,

multi-core processors (CPUs), Graphics processing units (GPUs) and computing clusters

have been used for the parallelization of several algorithms. To the best of our knowledge,

all parallel PB&B algorithms developed in the literature are based on using one centralized

or distributed pool which stores nodes [GC94]. In these conventional approaches, PB&B

threads cooperate by adding nodes to or removing them from this or these pool(s), usually

implemented as a linked list (LL) [Cra06]. A parallel PB&B algorithm stops when this or

these pool(s) is/are empty. In the two theses, our work has led to the development of

four approaches, renamed in this manuscript PB&B@CORE, PB&B@CPU, PB&B@GPU and

PB&B@CLUSTER.
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2.1 PB&B on single-core processors

A single-core processor is a microprocessor able to run one single thread at any time.

Processors remained single-core until it was difficult to improve their computing power

by increasing clock speed or the number of transistors. Therefore even processors of

smartphones are nowadays no longer single-core processors.

However before developing a parallel approach of an algorithm, it is often important

to optimize the serial approach of this algorithm. A serial algorithm can be optimized in

order to run it more rapidly or use less memory. If code optimization can be done using

new procedures or functions, memory optimization often requires the development of a

new data structure.

In our work, we propose an original and pioneering single-core PB&B@CORE algo-

rithm, based on a new data structure, called Integer-Vector-Matrix (IVM), and the factorial

number system. This special numbering system [Lai88a], also called factoradic number

system, is a mixed radix numeral system adapted to numbering permutations. The objec-

tive of our new IVM-based PB&B approach is to accelerate the management of the PB&B

pools and to reduce the size of the memory used to store these pools.

Our new PB&B@CORE is compared with a typical LL-based approach [MMT13] in

terms of memory usage and CPU time used to manage the PB&B pool. This comparison

shows that our PB&B@CORE approach outperforms this typical LL-based PB&B approach.

2.2 PB&B on multi-core processors

As indicated before, for decades it was possible to improve performance of a general-

purpose CPU by increasing its operating frequency. However in about 2012, manufacturers

encounter two main technical barriers to improve the CPU performance, namely the power

barrier (i.e. the power consumption exponentially increases with each factorial increase of

operating frequency), and the memory barrier (i.e. the gap between memory and processor

speeds is increasing). In order to continue delivering regular performance improvements

for general-purpose processors, manufacturers such as Intel and AMD have turned to multi-

core designs. Multi-core processors embed two or more independent execution CPU cores

into a single processor.

By providing multiple execution cores, each sequence of instructions, or thread, has

a hardware execution environment entirely to itself. This enables each thread run in a

truly parallel manner. Nowadays, most processors can be considered as parallel machines.

When designing an algorithm for a multi-core processor, it is therefore important to take

into account a certain number of issues, such as the definition of work unit and work
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sharing/stealing strategies. A major advantage of multi-core processors is the possibility

to parallelize using threads instead of processes. Unlike processes, which have their own

virtual memory, the threads of a process share the same virtual memory. Therefore, com-

munications between these threads are faster than between processes. Many programming

methods (such as [EPS09a], [PŽ09], and [SECG11]) based on the use of threads have

been developed.

Our new method PB&B@CPU is based on a new approach to manage the pools of nodes

of a PB&B parallel algorithm using five different work stealing strategies. This approach

aims at reducing the CPU time used to manage the thread private PB&B pools, the memory

behavior of the algorithm, the number of performed work stealing operations and finally

the total execution time. It is based on the use of the IVM data structure to manage the

thread private PB&B pools. In our stealing strategies, work units stolen by threads are

intervals of factoradics instead of sets of nodes. The IVM-based PB&B@CPU is compared

with the LL-based PB&B approach by solving some hard flowshop scheduling problem

instances using the five work stealing strategies.

2.3 PB&B on GPU accelerators

Commodity Graphics Processing Units (GPUs) have rapidly evolved to become high per-

formance accelerators for data-parallel computing. Recent GPUs, like Tesla V100, contain

more than 5000 of processing units, capable of achieving up to 14 TFLOPS for single-

precision arithmetic, and 7 GFLOPS for double-precision calculations. In addition, modern

high-performance computing optimized GPUs contain up to 32GB of on-board memory,

and are capable of sustaining memory bandwidths up to 900GB/sec. GPU-based accel-

erators are also becoming popular because of their extraordinary energy efficiency, as

illustrated by The Green500 List1. The maximum power consumption of Tesla V100 is

300W. However, the parallelization of an application on a GPU can not be done directly.

It is important to take into account a certain number of issues, such as the optimization

of data transfer between CPU and GPU, the reduction of thread divergence, an efficient

mapping of data on the GPU cores, and the best location of data on the different memories

of the GPU. Because of all these issues, the usage of GPU is often restricted to regular and

data parallel applications.

The irregular nature, in terms of workload, control flow and memory access patterns,

of applications such as PB&B may seriously degrade the performance of the GPU. The

acceleration of PB&B algorithms using GPUs is therefore a challenging task which is

1http://www.green500.org
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addressed by only a few works in the literature, such as [CM13], using flowshop as a test

case, [CMNLdC11], applied to the traveling salesman problem and [LEB12], applied to

the knapsack problem where the search tree is binary. All these approaches use linked lists

(deques, stacks, etc.) to store and manage the pool of nodes, likewise most parallel PB&B

algorithms in the literature. Such data structures are very difficult to handle on the GPU

and often induce prohibitive performance penalties. For this reason all GPU accelerated

PB&B algorithms at our knowledge perform the management of the pool of nodes at least

partially on the CPU, requiring costly data transfers between host and device. In [MCB14]

it is shown that the bounding operation for flowshop consumes 97− 99% of the execution

time of a sequential PB&B and that the GPU based parallelization of this operation can

provide a substantial acceleration of the algorithm. However, as the management of a list

of pending nodes is performed on the CPU, the transfer of data between CPU and GPU

constitutes a bottleneck for GPU accelerated B&B algorithms.

This manuscript describes our new PB&B@GPU approach, which is based on the par-

allelization of PB&B on GPU. This parallel PB&B@GPU algorithm is, to the best of our

knowledge, the first one that implements all PB&B operations on the GPU, requiring vir-

tually no interaction with the CPU during the exploration process. It is based on the IVM

data structure, which allows the efficient storage and management of the pool of nodes

in permutation based combinatorial optimization problems. The IVM structure provides

some regularization as it allows to store and manage the pool of nodes with data structures

of constant size. However, the IVM-based parallel PB&B is still highly irregular in terms

of workload, control flow and memory access patterns. None of these three issues can be

ignored when implementing the PB&B algorithm on the GPU and all three are addressed

in PB&B@GPU. The focus is put on the reduction of thread divergence which arises in

CUDA’s SIMD execution model as a consequence of control flow irregularities.

2.4 PB&B on GPU-powered clusters

Large-scale GPU clusters are gaining popularity in high performance computing commu-

nity. In November 2019, nearly 40% of the total compute power on the TOP500 clusters2

(i.e. 626 petaflops) comes from GPU-accelerated systems. Just over a decade ago, no

supercomputers and clusters on the list were accelerated.

By gathering GPU processing power distributed across multiple computing nodes, it

is possible to run advanced, large-scale applications efficiently, reliably, and quickly. This

acceleration delivers a dramatic boost in throughput and cost savings, paving the way

2https://www.top500.org
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to exascale science applications. The massively parallel hardware architecture and high

performance of floating point arithmetic and memory operations on GPUs make them

particularly well-suited to many of the same scientific and engineering workloads that

occupy HPC clusters, leading to their incorporation as HPC accelerators.

To distribute an algorithm on the computing nodes of a GPU-powered cluster, it is

necessary to rethink the conventional parallel mechanisms in order to adapt them to the

characteristics of this environment. Taking into account of such characteristics can be

done by the resolution of the issues related to communication delays (i.e. optimizing the

communication cost) and processor’s heterogeneity (i.e. optimizing the load-balancing

strategy).

In our work, we have developed a new method, called PB&B@GPU, based on the

coordinator-worker B&B@Grid approach [MMT07c]. In order to enable the use of a hybrid

CPU-GPU cluster in PB&B@GPU, a redefinition of work units is proposed using interval

lists. A detailed description of the coordinator and worker new operations is provided,

focusing on the revisited communication scheme. Finally, PB&B@GPU is experimented on

three different GPU-enhanced clusters with up to 36 GPUs. The experimental evaluation

includes scalability and stability analysis on solving very large flowshop instances.

2.5 Document contents

In addition to Chapter 3, which gives a state of the art of B&B algorithms, this manuscript

is organized in four main chapters. Chapter 4 proposes an original and pioneer serial

PB&B@CORE algorithm, based on a new data structure. Chapter 5 explains our PB&B@CPU,

designed to work on multi-core CPUs. Chapter 6 describes the new PB&B@GPU approach,

which is based on the parallelization of PB&B on GPUs. And finally, Chapter 7 presents

our new PB&B@GPU approach for GPU-powered clusters.
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3.1 Introduction

The exact resolution methods used in combinatorial optimization are often B&X algo-

rithms. These methods are mainly available in three variants: Branch-and-Bound (B&B),

Branch-and-Cut (B&C) and Branch-and-Price (B&P). There are other less known B&B

variants like Branch-and-Peg [GGS04], Branch-and-Win [PC04] and Branch-and-Cut-and-

Solve [CZ06]. This list is certainly not exhaustive. It is also possible to consider a simple

tree-based algorithm like Divide-and-Conquer as a base for the B&B algorithm. It is enough

to remove the pruning operation of the B&B, explained later, to obtain the Divide-and-

Conquer algorithm. Some authors consider the B&C, B&P algorithms and other variants

as separate B&B algorithms. In the remainder of the manuscript, the B&B algorithm desig-

nates the simple B&B itself or any other variant of this algorithm. In addition, permutation
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B&B (PB&B) designates any B&B algorithm or its variants when it solves a permutation

problem.

Many problems, solved by B&B algorithms, are permutation problems, where the goal

is to find the optimal scheduling in a set of elements. To the best of our knowledge, these

permutation problems are solved using B&B without taking into account the permutation

aspect of these problems. With taking into account this aspect, it is possible to significantly

improve B&B algorithms. Therefore, the remainder of this manuscript focuses primarily

on PB&B. In other words, our manuscript focuses on solving permutation problems using

B&B algorithms.

In addition to this introduction and a conclusion, this chapter is divided into three

sections. In Section 3.2 and Section 3.3, a background is given on respectively permutation

problems and the conventional PB&B algorithm based on linked-list. Finally, Section 3.4

gives a state of the art of B&B algorithms.

3.2 Permutation problems

This section presents a brief background on permutations focusing on the flowshop prob-

lem considered as a test case to validate our approaches.

3.2.1 Permutations

Let’s assume a permutation problem where the objective is to find the best permutation

in a set of N elements. These elements can be jobs, cities, locations, and so on. It is

always possible to assign a number to each of these N elements. The first element can be

designated by 1, the second element by 2, ..., and the last byN . Therefore, any permutation

problem ofN elements can be represented as a permutation problem of the firstN positive

natural numbers.

A permutation is obtained after the assignment of numbers to positions. Before making

this assignment, all numbers are free and the positions are empty. At the end of the

assignment, all numbers are assigned and positions are occupied. During the assignment,

some numbers are free, others assigned, some positions are occupied and others empty. In

the rest of the manuscript, a number can be said free or assigned, and a position can

be said occupied or free.

After the assignment of all numbers to all positions, the permutation is called com-

plete. For example, (2, 3, 1, 4) is a complete permutation where the numbers 2, 3, 1 and

4 are respectively assigned to positions 1,2, 3 and 4. Before starting the assignment, the

permutation is said to be empty. For example, {1, 2, 3, 4} is an empty permutation where
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all numbers are free and all positions are empty. During an assignment, the permutation is

said to be partial. For example, (2, 3, {1, 4}) is a partial permutation, where numbers 2 and

3 are assigned, numbers 1 and 4 are free, positions 1 and 2 are occupied, and positions 3

and 4 are free. A partial permutation can also have the form (2, {1, 4}, 3). In this example,

positions 1 and 4 are occupied and the other positions are empty.

Among the empty positions, it is possible to specify the first, the second, ... and

the last empty position. For example, in (2, {1, 4}, 3), the first empty position is 2 and

the last empty position is 3. Among the assigned numbers, it is possible to specify also

the first, the second, ... and the last number assigned. For example, in (2, {3, 1, 4}),
the last number assigned is 2. On the other hand, looking at the (2, {1, 4}, 3), it is not

possible to find the first and the last number assigned. This manuscript defines the size

of a permutation as the number of free numbers or empty positions. For example, the

permutations (2, {1, 4}, 3), {1, 2, 3, 4} and (2, 3, 1, 4) respectively have as sizes 2, 4 and 0.

Any permutation, whether empty, partial or complete, contains a certain set of com-

plete permutations. For example, the partial permutation (2, {1, 4}, 3) contains the two

permutations (2, 1, 4, 3) and (2, 4, 1, 3). The empty permutation {1, 2, 3, 4} contains all 4!

possible permutations. In the same way, the complete permutation (2, 3, 1, 4) contains only

one complete permutation. The space of a permutation P , denoted Space(P ), is defined

as the set of the complete permutations contained in P .

3.2.2 Flowshop problem

The four approaches presented in this document are validated using the flowshop problem.

In manufacturing environments, it is common to find permutation flowshop scheduling

problems [BG76, KS80, AGA99] where n jobs have to be processed on m machines where

the goal is to optimize an objective function. The objective of the flowshop is to schedule

a set of n jobs on a set of m machines where each job J1, J2, ..., Jn is processed on the

machines M1, M2, ..., Mm organized in the line. Each job Ji with i = 1, 2, ..., n is made

of a sequence of m operations Oi1, Oi2, ...,Oim where operation Oik is the processing of

job Ji on machine Mk for a processing time pik that can not be interrupted. The objective

of the flowshop is to find a processing order on each machine Mk which minimizes the

time necessary to complete all jobs, also known as the makespan. In this manuscript, each

reference to the flowshop is actually a reference to the permutation flowshop [AGA99,

HS05]. Using Johnson’s algorithm [Joh54], it is possible to find an optimal schedule for

the flowshop in O(n log n) steps when m = 2. The problem is NP-hard when m ≥ 3

[GJS76]. This is why it is often tackled using metaheuristics [Bas05] to deal with large

problem instances. Figure 3.1 shows an example of a flowshop instance where n = 3 and
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m = 4, it also shows the optimal complete permutation.
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Figure 3.1: Illustration of a permutation flowshop where n = 3 and m = 4. The table

shows the processing times of the jobs on each machine. The Gantt diagram shows the

optimal complete permutation for this particular instance.

These are the constraints that a valid flowshop complete permutation should satisfy:

• A machine can not start processing a job before the preceding machines have finished

the processing of that job. In other words, machine Mj can not process operation

Oij before it is completed on machine Mj−1.

• An operation can not be interrupted, and since a machine processes one job at a

time, the machines are critical resources.

• The sequence of jobs must be the same on all machines, e.g. if job J3 is processed

in second position on the first machine, job J3 must also be processed in second

position on all the other machines.

The lower bound proposed by Lageweg et al. [LLK78] is used in our bounding op-

eration. This bound is known for its good results and has complexity of O(m2nlog(n)),

where n is the number of jobs and m the number of machines. This lower bound is mainly

based on Johnson’s theorem [Joh54] which provides a procedure for finding an optimal

complete permutation for a flowshop scheduling problem with 2 machines.

3.3 Linked-list based PB&B

This section describes the conventional PB&B algorithm based on a linked-list. As indicated

by its name, the PB&B is based on two main operations, namely branching and bounding.
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In addition to these two operations, the PB&B algorithm is defined by other operations, as

shown in Figure 3.2.

Figure 3.2: The conventional PB&B algorithm

and its operations.

Two of the PB&B operations are called initializing and finalizing operations. The main

role of the initializing operation is to allocate memory for the data structures of the

algorithm, to initialize them, and to add the empty permutation to the PB&B pool. The

finalizing operation is invoked when this PB&B pool is empty. Its role is to provide the

decision maker by the best found permutation, and to release the allocated data structures.

Between these two operations, the PB&B algorithm runs a large number of iterations.

At each iteration, the operations of selection, costing, updating, branching, bounding, and

pruning always intervene in this order. The selection operation takes a permutation from

the pool. Two cases may arise: in the first case, the selected permutation is complete, and

in the second case, the permutation is empty or partial.

If the first case occurs, then the costing operation calculates the cost of the permutation.

If the calculated cost improves the cost of the best known complete permutation, then

the updating operation saves this complete permutation as the new best known complete

permutation. In the second case, costing and updating operations are not used. On the

other hand, the operations of branching, bounding and pruning intervene. The role of the

branching operation is to divide the selected permutation into several permutations. The

bounding operation calculates the bound of each of the obtained permutations, and the

pruning operation removes a certain number of permutations and puts into the pool the
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un-deleted permutations. Each of the following subsections presents in more details one

of the main operations of the conventional PB&B.

3.3.1 Branching

The branching operation works according to the political and sociological strategy Divide

and rule (from Latin d̄ıvide et imperā). The idea here is to divide a partial permutation P

into a set of E sub-permutations. Of course, there are different ways to divide the same

permutations P and, for each division, a different set of E of sub-permutations can be

obtained. For example, the permutation (1, {2, 3, 4}) can be divided into two different

ways:

• E1 =
{
(1, 2, {3, 4}), (1, 3, {2, 4}), (1, 4, {2, 3})

}
.

• E2 =
{
(1, {3, 4}, 2), (1, {2, 4}, 3), (1, {2, 3}, 4)

}
.

The two divisions are made by filling respectively the first and last empty positions,

using one of the three free numbers. In our work, we use only the first free and last

positions. However, from a theoretical point of view, it is also possible to use the other

empty positions, such as the second empty position, the third position, etc. The branching

operation can use any division of a permutation P in a permutation set P1, P2, ..., Pn that

meets both of the following conditions:

• ∀(Pi, Pj), Space(Pi) ∩ Space(Pj) = ∅. This first condition indicates that the sub-

permutations of P must be disjoint.

• Space(P ) = ∪i=n
i=1 Space(Pi). This second condition is that the permutation space P

equals the union of all sub-permutation spaces of P .

The same permutation P can not be split simultaneously with different techniques. For

example, P can not be split using both first and last free positions simultaneously. However,

it is possible to use a certain technique of division of the permutation P , and another

division technique to divide one of the sub-permutations of P . Therefore, it is possible to

use a single division technique, but it is also possible to combine several techniques in the

same PB&B algorithm. The example, Figure 3.3 shows the result of a complete division

from an empty permutation of size 4. In this example, the division technique used is the

one that is based on the first empty position.
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Figure 3.3: Example of a complete branching tree using the first empty position division

technique.

A PB&B always starts with the division of the empty permutation of sizeN . The division

of this empty permutation produces N partial sub-permutations of size (N − 1). The

division of each of these partial sub-permutations produces (N − 2) sub-sub-permutations

of size (N − 2). This process continues until the obtained permutations are complete and

have size 0. These successive divisions make it possible to define a tree, called branching

tree, where the empty permutation is the root of the tree, the complete permutations are

the leaves of the tree, and partial permutations constitute the internal nodes of the tree.

The branching tree obtained is constituted of 1 empty permutation, N partial permu-

tations of size N , N(N − 1) partial permutations of size (N − 1), N(N − 1)(N − 2) partial

permutations of size (N − 2), ..., and finally, N ! complete permutations. As the size of this

tree is exponential, it is impossible to explore, in a reasonable time, all permutations when

N exceeds a certain threshold value.

3.3.2 Bounding

To avoid exploring the entire branching tree, the PB&B algorithm uses another operation

called the bounding. This operation receives a permutation, as input, and returns a cost, as

output. If it is a minimization problem (i.e searching a permutation of minimal cost), then

the bounding operation returns a lower bound. On the other hand, if it is a maximization

problem, then this operation returns an upper bound. In the remainder of the manuscript,

a problem of minimization is considered, but the proposed approaches are also valid for

maximization problems.

As explained previously, the space of a partial permutation P, denoted Space(P ), is

equal to the set of complete permutations contained in P. For example, the permutation

space of (1, {2, 3}, 4) includes the permutations (1, 2, 3, 4) and (1, 3, 2, 4). If a bounding

operation receives as input the partial permutation (1, {2, 3}, 4), then this operation should

return a value Bounding(P ) such that the costs of (1, 2, 3, 4) and (1, 3, 2, 4) must be greater

than Bounding(P ). In the general case, the following condition must always be satisfied.
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• ∀P ′ ∈ Space(P ), Bounding(P ) ≤ Costing(P ′)

For a permutation P , the higher the value of Bounding(P ) is, the better the bounding

operation which is used. Let P ′ be the complete permutation with the minimal possible cost

in Space(P ). The best bounding operation is the one that returns a value of Bounding(P )

equals Costing(P ′). In addition to the values of Bounding(P ), bounding operations can

also be compared according to their computation times. The faster a bounding operation

is, the better is this operation. If a permutation P is complete, this manuscript assumes

that Bounding(P ) is always equal to Costing(P ).

Figure 3.4: Example of a bounding tree with bound values of each node.

3.3.3 Pruning

Subsection 3.3.1 shows that the branching tree is very large. To find the permutation with

minimum cost, it is impossible to explore the entire tree for large problem instances. By

knowing the lower bound of each partial permutation, it is possible to avoid exploring a

large part of this tree. Let’s assume that the algorithm knows a complete permutation P ,

which has a cost equal to Costing(P ), and that this algorithm encounters a partial permu-

tation P ′, which has a lower bound equal to Bounding(P ′). In other words, all complete

permutations in Space(P ′) have a cost greater than Bounding(P ′). If Costing(P ) is less

than Bounding(P ′), then there is no complete permutation of Space(P ′) that can have a

better cost than P . Therefore, it is unnecessary to further divide the partial permutation

P ′. This permutation P ′ can be ignored and pruned from the branching tree. The pruning

operation receives a cost Costing(P ) of complete permutation P and the lower bound

Bounding(P ′) of a partial permutation P ′ and returns a boolean value indicating whether

P ′ should be branched or pruned. Figure 3.5 gives an example of the bounded part of a

branching tree. The bounded part of a tree is composed by all the nodes of the tree where

the bounds are computed.
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Figure 3.5: An example of the bounded part of a branching tree

3.3.4 Selection

The role of the selection operation is to determine the order in which the permutations of

the tree are explored. In other words, its role is always to choose the next permutation, of

the pool, coded using a linked-list, to branch. In a PB&B, there are three main strategies

for selecting the next permutation of the pool to be branched.

• Best first: The permutation of the pool having the smallest bound is chosen first.

The advantage of this strategy is to increase the probability of finding more quickly

a complete permutation of minimum cost. But its disadvantage is that the number

of permutations of the pool increases rapidly.

• Largest first: This strategy selects the permutation of the pool with the largest size.

In other words, it first selects the permutation close to the root of the branching tree.

This strategy makes it possible to considerably increase the number of permutations

of the pool. In parallel computing, the advantage of this strategy is to generate a

pool large enough to occupy lot of computing units.

• Depth first: This strategy selects the permutation with the smallest size. In other

words, it first selects the furthest permutation from the root of the branching tree.

In our four PB&B approaches, the strategy used is a combination of depth and best

first strategies. As already explained, a permutation is defined by its size, its bound and

its last assigned number. These concepts of the last assigned number and the size of a

permutation are explained in Subsection 3.2.1. Using these three values, the selection

operation in our PB&B approaches combines depth and best first strategies. More exactly,

the Selection operation (1) receives a permutation pool as input, (2) makes sure this pool

is not empty, (3) determines the largest size S of all the permutations of the pool, (4)

selects the set E of the permutations of the pool having this size S, (5) determines the

best bound B of all the permutations of E, (6) selects the subset E′ of all the permutations
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of E having the bound B, (7) selects the permutation P having the lowest last number

assigned, (8) removes this permutation P from the pool, and (9) returns the permutation

P as the output of this Selection operation.

Figure 3.6: Example of the best found complete permutation and the content of the pool,

coded using a linked-list, when using the depth best first strategy.

For example, Figure 3.6 shows the PB&B tree during its construction and exploration.

All the empty nodes of the tree are not explored, the gray permutations are already

branched, the green permutations are pruned because of their bounds, the red complete

permutation is the one having the minimal cost so far, and black permutations are nei-

ther pruned nor branched. In this tree, it is useless to keep in the memory the gray and

green permutations. The only permutations that must be kept are those in black and red.

Non-branched and non-pruned permutations are generally kept in a data structure called

a linked-list, and the best complete permutation found so far can be kept in an array.

3.4 Related works

The related works of this section is already published in the thesis of Jan Gmys [Gmy17].

The design of parallel B&B algorithms is strongly influenced by the target architecture and

the characteristics of the problem being solved [BHP05]. Therefore, and in spite of the

simple and generic formulation of B&B, a large number of parallel algorithms have been

proposed for different problems and architectures. [GC94] provides a complete, but over

twenty year old survey of parallel B&B.

3.4.1 Parallel CPU B&B

Because of the simple basic formulation of B&B it is interesting to have a framework that

allows users to easily customize B&B to solve their problems. Many software frameworks
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have been proposed, including Bobpp [Men17, Bob], PEBBL [EHP15] and PICO [EPH01],

parts of the ACRO project [ACR], ALPS/BiCePS [RLS04], BCP and SYMPHONY, which are

parts of the COIN-OR project [CO].

This list includes only those frameworks which appear to be maintained at the time of

writing. B&B frameworks establish an interface between the user and the parallel machine

by defining abstract types for search tree nodes and solutions. As a user, one provides con-

crete implementations of these types as well as branching and bounding procedures, while

the framework handles more generic parts of parallel B&B. The mentioned frameworks

differ by the variant(s) of B&B they provide, the type of parallel model they propose and

the parallel programming environment. They are implemented with these frameworks

are usually designed as multi-layered class libraries, integrating additional features by

building on top of existing layers. For example, BiCePS is built on top of ALPS to provide

data handling capabilities required for implementing relaxation-based B&B, and PEBBL

began its existence as the “core” layer of the parallel mixed integer programming (MIP)

solver PICO.

The older versions of these frameworks are often based on master-worker approaches.

In order to avoid that the master processor becomes a bottleneck, hierarchical organiza-

tions revealed more efficient than pure master-worker implementations [EHP15, Men17,

BMT12b]. In these approaches groups of workers form clusters, cooperating locally and

interacting with the master through a form of middle management. The idea is to im-

prove locality and relieve the master process by introducing hubs, each handling several

workers (master-hub-worker approach). In general, the role of hubs consists in providing

work units to a set of workers and coordinating the search process locally, while limiting

interaction with the master and worker processes. For the PEBBL framework near-linear

speedups on over 6 000 CPU cores are obtained for large B&B trees and node evaluation

costs of about 10 seconds [EHP15].

Recently, [HSH+17] compared three implementations of a global optimization (GO)

B&B algorithm using different levels of abstraction: the Bobpp framework, Intel Thread

Building Blocks and a custom P-thread implementation. While they find the Bobpp im-

plementation easiest to code, the authors show that the two other solutions offer better

scalability for the used test case. For the optimized test functions, the authors report node

processing rates of about 1 million nodes per second (Mn/s) for the sequential version of

their custom implementation on a 2 GHz Sandy Bridge CPU.

[EPS09b] presents a software platform called BNB-Solver, allowing the use of serial,

shared memory and distributed memory B&B. The proposed approach uses a global work

pool and local work pools for each thread. Each thread stores generated nodes in its local

pool during N B&B iterations. After N iterations a part of the local nodes are transferred
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to the global pool. When the local pool of a thread is empty, the thread attempts to

take nodes from the global pool and blocks if the global pool is empty. The algorithm

terminates when the global pool is empty and all threads are blocked. The authors compare

the performance of BNB-Solver with the ALPS and PEBBL frameworks and obtain results

similar to [HSH+17], in the sense that, for a knapsack problem (with a reported sequential

node processing rate in the order of 1Mn/s) BNB-Solver outperforms both frameworks.

[CMGH08] proposes two schemes for parallelizing B&B algorithms for global optimiza-

tion on shared memory multi-core systems, Global and Local PAMIGO (Parallel advanced

multidimensional interval analysis global optimization). Both algorithms are parallelized

using POSIX threads. In Global PAMIGO, threads share a global work pool and therefore a

synchronization mechanism is used for mutually exclusive accesses to the pool. For Local

PAMIGO, where thread has its own pool of nodes, a dynamic load balancing mechanism

is implemented. A thread stops when its local pool of nodes is empty. When the number

of running threads is less than the number of available cores, and a thread has more than

one node in its local pool it creates a new thread and transfers a portion of its pool to

the new thread. Local PAMIGO ends when there exists no more running threads, and

Global PAMIGO ends when the global pool is empty. The authors report profiling results

for PAMIGO which show that memory management represents a large percentage of the

computational burden. As a very large number of nodes are created in a relatively short

amount of time, the kernel needs to satisfy memory allocation and deallocation requests

from all threads, creating memory contention. The vast majority of parallel B&B algo-

rithms in the literature store nodes in one or several pool(s) implemented as linked-lists

(e. g. priority queues, stacks, deques).

3.4.2 Parallel GPU B&B

The study of [JAO+11] provides a good overview of the challenges faced when imple-

menting parallel backtracking on GPUs. Most of their conclusions from the investigation

of GPU-based backtracking paradigm remain valid for B&B algorithm using a depth first

search strategy. A fine-grained parallelization of the search space exploration and/or the

node evaluation is necessary in order to make use of the GPU’s massive parallel processing

capabilities. This strongly depends on the nature of the problem being solved and on the

choice of the parallelization model. Other critical factors include latency hiding through

coalescence, saturation, and shared memory utilization [JAO+11]. Generally speaking,

the algorithmic properties of B&B, irregularity of the search space, irregular control flow

and memory access patterns are at odds with the GPU programming model. Also, memory

requirements for backtracking and B&B algorithms are often difficult to estimate and may
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exceed the amount of memory available on GPUs. Several approaches for GPU-accelerated

B&B algorithms have been proposed. These approaches correspond to different paralleliza-

tion models and their design is often motivated by the nature of the problem being solved.

According to the characteristics of the bounding function one may distinguish among

approaches for fine-, medium- and coarse-grained problems.

The GPU B&B and backtracking algorithms for fine-grained problems proposed in [CMNLdC11,

CNNdC12, FRvLP10, LLW+15, RS10, ZSW11] perform massively parallel searches on the

GPU, based on the parallel tree exploration model. The evaluation of a node for the n-

Queens problem in [FRvLP10, LLW+15, ZSW11] requires only a few registers of memory

and only a couple of bit operations. The lower bound for the Asymmetric Traveling Sales-

man Problem (ATSP) used in [CMNLdC11, CNNdC12] is incrementally obtained by adding

the cost of the last visited edge to the current cost and therefore has a complexity of O(1).
It requires an access to the distance matrix which can be stored in constant or texture mem-

ory. The size of the problems being solved is < 20 for both the ATSP and the n-Queens

problems. These algorithms for fine-grained problems share a common approach: the

search is split in two parts, an initial CPU search and a final GPU search. The upper tree

of depth dcutoff is processed in sequential or weakly parallel manner on CPU, generating

a set of active nodes at depth dcutoff . This active set is sent to the GPU, where the lower

part of the tree is processed in parallel. Each node of the active set is used as root node

for an independent search, which is mapped either to a thread or a warp. This approach

requires very careful tuning of the cutoff depth, which strongly influences granularity and

load balancing.

Because of varying thread granularities, one of the major issues faced by such ap-

proaches is load imbalance. In all of these works the GPU search is performed without

dynamic load balancing. However, as noted by [RS10], if "a job is divided into sufficiently

many parts, an idle processor will be instantly fed with waiting jobs" and the "GPU’s Thread

Execution Manager performs that task automatically". This approach assumes two things:

first, the initial CPU search is able to generate a large amount of nodes in a reasonable

amount of time, and second, the work distribution among independent B&B searches is

not too irregular.

For many combinatorial optimization problems the cost of the bounding operation is

very high, compared to the rest of the algorithm. For instance, the most used lower bound-

ing function for the flowshop consumes 97−99% of the sequential execution time [MCB14].

However, the cost of evaluating one node is sufficiently small to be efficiently performed

by a single GPU thread. We therefore refer to this type of problem as medium-grained.

For these problems, existing GPU-accelerated B&B algorithms in the literature use the

GPU to evaluate large pools of nodes in parallel [CMMB13, VDM13, LEB12]. They use
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conventional stacks or queues to store and manage the B&B tree on the host, offloading

the parallel evaluation of bounds to the device. Indeed, for these problems substantial

speedups can be achieved despite sequentially performing pool management on the host.

Substantial efforts have been made to port larger portions of the algorithm to the GPU

and to reduce overheads incurred by data transfers between CPU and GPU. For instance,

branching nodes on the device allows to copy only parent nodes to the GPU. Similarly,

pruning evaluated nodes on the device reduces the sequential portion and requires only

the transfer of non-pruned children nodes back to the host. Further performance im-

provements can be obtained by overlapping data transfers with GPU computations, as for

example in [VDM13]. For fine-grained problems this approach is likely to perform poorly.

For coarse-grained problems the best way to use the GPU may be as an accelerator

for the bounding function itself. In [ABEB+16] a GPU-accelerated B&B algorithm for the

jobshop scheduling problem is proposed. The approach also offloads nodes to the GPU

but uses a block-based parallelization for each node evaluation. The number of nodes that

need to be offloaded in order to saturate the GPU is therefore smaller than for medium-

grained problems. A GPU-accelerated algorithm for problems with linear programming

bounds is proposed in [MCA13]. Using a GPU-based LP-solver to accelerate this type of

problems is very challenging. However, the authors report that for large problems above a

certain density threshold their hybrid GPU-accelerated solver outperforms the sequential

CLP solver of the open-source COIN-OR library.

3.4.3 Cluster B&B

There are very few works on the parallelization of B&B using multiple GPUs and CPUs in

distributed heterogeneous systems. In [VDM13] a linked-list based fully distributed hybrid

B&B algorithm combining multiple GPUs and CPUs is proposed. As a test case 20 jobs-on-20

machines flowshop instances are considered in their experiments using a platform com-

posed of 20 GPUs and 128 CPUs. For load balancing a random work stealing mechanism is

used. The authors propose an adaptive granularity policy to adapt the amount of stolen

nodes at runtime to the normalized computing power of thief and victim. The algorithm

is based on a 2-level parallel model, using GPUs for parallel evaluation of lower bounds.

In order to reduce CPU-GPU communication overhead, an asynchronous implementation

with overlapping host and device computations is proposed. Experimentally, near-linear

mixed scalability is shown up to 20 GPUs and 128 CPUs. In [CMMT13] the combined

usage of multi-core and GPU processing is investigated. An experimental comparison of

concurrent and cooperative approaches shows that the cooperative approach improves the

performance with respect to a GPU-only approach while the concurrent approach is not
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beneficial. Among other issues, the authors identify the reduction of CPU-GPU communi-

cation overhead as a major challenge and propose overlapping communication schemes

and auto tuning of the offloaded pool sizes to answer this challenge.

Some of the largest known exact resolutions of combinatorial optimization problems

have been performed using the master-worker paradigm in combination with grid com-

puting technologies (e. g. nug30 [ABGL02]). The B&B@Grid platform [MMT07c] uses an

interval encoding for work units which significantly reduces the size of messages commu-

nicated in distributed B&B. Designed for volatile computing environments, B&B@Grid is

fault tolerant thanks to its checkpointing mechanism.

In [BMT12a] an adaptive multi layer hierarchical master-worker approach is applied

to the B&B algorithm, using flowshop as a test case. The proposed approach evolves

as new resources join the computation, and integrates three types of processes, a super

master, masters and workers. Results obtained at the scale of up to 2 000 CPUs show that

the multi-layered hierarchical approach clearly outperforms single-layered and classical

master-worker approach in terms of efficiency for instances smaller than Ta056, as it

minimizes bottlenecks at the level of the master and reduces idle time of the workers.

In [BMT14] the authors extend their approach, proposing a fault tolerance mechanism.

3.5 Conclusions

This chapter presents the permutation problems, the PB&B algorithms and a state of the art

of the B&B algorithm. To the best of our knowledge, permutation problems are solved with

the B&B without permutation awareness. The objective of this manuscript is to present

new approaches to solve permutation problems, using a B&B that takes into account the

permutation aspect of these problems. The next chapters of the manuscript present four

new approaches, noted PB&B@CORE, PB&B@CPU, PB&B@GPU and PB&B@CLUSTER.

These approaches are developed for four hardware architectures, namely a multi-core

computing node, a CPU-accelerator of cores, a GPU and a cluster of computing nodes.

• PB&B@CORE is a serial method, unlike the other three approaches which are parallel

methods.

• PB&B@CPU is a method dedicated to a multi-core CPU deployment. Since several

years, all commercialized CPUs contain several computing cores, and each CPU can

be seen as a parallel machine.

• PB&B@GPU uses a data parallelism, unlike the other three methods based only on

the parallelism of instructions. In a GPU, the same instruction can run on several data
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simultaneously, according the Single Instruction Multiple Data (SIMD) computing

model.

• PB&B@CLUSTER is an approach dedicated to an architecture with distributed mem-

ory, while the other three approaches are all dedicated to an architecture with shared

memory.

These PB&B@CORE, PB&B@CPU, PB&B@GPU and PB&B@CLUSTER approaches are pre-

sented respectively in the chapters 4, 5, 6 and 7.
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4.1 Introduction

Conventional B&B algorithm is designed to work on all optimization problems. Conversely,

the new approach PB&B@CORE is especially dedicated to the resolution of permutation

problems. In other words, the B&B algorithm is generic to all optimization problems, while

our new PB&B@CORE approach is specific to permutation problems. Compared to the

generic B&B algorithm, the PB&B@CORE approach manages a partial permutation pool

more efficiently. This PB&B@CORE efficiency, in terms of memory and CPU usage, can be

explained by our new data structure.

While B&B algorithms use a linked-list to encode a pool, our approach PB&B@CORE

uses a new data structure, called Integer-Vector-Matrix (IVM). The operations of the con-

ventional B&B, explained in Chapter 3, are designed to work on a pool encoded by a
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linked-list. It is therefore necessary to rethink these operations to work effectively on an

IVM structure. This chapter, which contains three main sections, explains IVM and the

PB&B@CORE operations.

Section 4.2 describes our new IVM structure, used for the PB&B pool coding. Section

4.3 explains the PB&B operations designed to work on this IVM structure. Finally, Section

4.4 presents the experiments carried out to validate the PB&B@CORE approach.

4.2 IVM data structure

Figure 4.1: Example of representing a pool with a linked-list and an IVM structure.

Figure 4.1 shows an example of the representation of a pool with, on the one hand, a

linked-list and, on the other hand, our IVM structure. This figure shows the PB&B tree

during its construction and exploration. In the tree, the gray permutations are already

branched, green permutations are pruned because of their bounds, and black permutations

are neither branched nor pruned. In the linked-list, there is no need to keep gray and

green permutations. The only permutations that must be kept are those which are black.

Using the depth best first strategy described in Chapter 3, the size of the linked-list can

reach N
∑i=N−1

i=1 i integers, N being the size of the permutation problem. The objective

of the IVM structure is twofold, namely the reduction of the pool size and accelerating
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the processing of this pool by its operations. The IVM structure is composed of six main

sub-structures:

• Permutation Matrix (M): This structure is a matrix, denoted M in Figure 4.1, of

size N2, where N is the size of the permutation. In this matrix, only half of the cells

are occupied. In order to encode a PB&B tree using this matrix, five rules are used:

– Rule 1: Each cell Mi,j of the matrix corresponds to a permutation Perm(Mi,j)

of the PB&B tree. For example, Perm(M0,1) is equal to ({1, 3, 4, 5}, 2).

– Rule 2: The permutations of depth i of the tree are encoded at the row i of

the matrix. For example, the depth 3 of the tree contains the permutations

(5, 4, {1}, 3, 2) and (5, 1, {4}, 3, 2). These permutations are therefore encoded at

the row 3 of the matrix, more exactly at cells M3,0 and M3,1.

– Rule 3: In the same row of the matrix, the permutations are ordered according

to their lower bound values. For example, in the row 3, Bounding(5, 4, {1}, 3, 2)
is smaller than Bounding(5, 1, {4}, 3, 2) (i.e. 21 < 23). Therefore, Perm(M3,0)

is equal to (5, 4, {1}, 3, 2), and Perm(M3,1) is equal to (5, 1, {4}, 3, 2).

– Rule 4: Each cellMi,j contains only the last number assigned to its permutation

Perm(Mi,j). For example, the cell M0,1 has as permutation ({1, 3, 4, 5}, 2) and

2 is the last number assigned in this permutation. Therefore, the value of M0,1

is equal to 2.

– Rule 5: If k is the last element assigned to Perm(Mi,j) and Perm(Mi,j) must

be pruned, then Mi,j is equal to −k. For example, since Perm(M0,4) is equal

to ({1, 2, 4, 5}, 3), the last integer assigned to this permutation is 3 and the

permutation ({1, 2, 4, 5}, 3) must be pruned, then M0,4 is equal to −3.

• Selection positions (S): This structure is a vector, denoted S in Figure 4.1, of sizeN ,

where N is the size of the permutation. Each position Si of this vector corresponds

to the depth i of the PB&B tree. The value of Si is equal to the rank of the last

permutation selected at the depth i of the tree. For example, (5, {1, 3, 4}, 2) is the

last permutation selected in the depth 2 of the tree. This permutation occupies the

rank 1 in this depth. Therefore, S2 is equal to 1. This vector is called the selection

vector because it keeps the ranks of the selected permutations at each level of the

tree. As shown in Figure 4.1, each cell Si of the vector can be seen as a pointer to a

cell of the row i of the matrix M .

• Branching positions (B): This structure is a vector, denoted B in Figure 4.1, of

size N , where N is the size of the permutation. Each position Bi of this vector
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corresponds to the depth i of the PB&B tree. The value Bi is equal to the position

filled by the branching operation at the depth i of the tree. For example, at the depth

0 of the tree, integers are assigned to the position 4 of the permutation. Therefore

B0 is equal to 4. This vector is called branching vector because it keeps the filling

positions at each level. Each cell Bi of the vector is therefore associated with a row

i of the matrix M .

• Depth position (D): This structure is an integer, denoted D in Figure 4.1, which

saves the depth of the next permutation to be selected. For example, in Figure 4.1,

the next permutation to select is (5, 4, {1}, 3, 2). In the PB&B tree, this permutation

belongs to the depth 3. As a result,D is equal to 3. The value ofD can also be viewed

as a pointer to the last filled row of M .

• Permutation structure (P ) and its limits (L1 and L2): This structure is composed

of a vector, denoted P in Figure 4.1, and two integers, denoted L1 and L2. It allows

to store any empty, full or partial permutation using the limits L1 and L2.

• Bounding structure (C): This structure, denoted C in the Figure 4.1, allows to store

the lower bounds calculated by the bounding operation. The role of this structure is

explained when the bounding operation is presented in Subsection 4.3.3.

4.3 PB&B Operations

Figure 4.2: Overview of the PB&B@CORE approach and its operations.

The linked-list data structure is well suited for the conventional B&B algorithm. On the

other hand, the IVM structure is exclusively designed for the PB&B algorithm, which is a
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special case of the B&B algorithm. As another data structure is proposed, it is necessary to

adapt the operations of B&B to this structure.

4.3.1 Selection

Figure 4.3: Illustration of the IVM-based selection of PB&B.

Like its linked-list counterpart, the selection operation returns a permutation, and writes

it in the structures P , L1 and L2. This permutation is obtained using four steps:

• Update of the depth integer D and the selection vector S: This step works using

five rules. These rules must be repeated until Rule 3 or Rule 5 indicates to stop the

step. The five rules are given below:

– Rule 1: In the beginning, SD is incremented.

– Rule 2: If MD,SD
is negative, then SD is incremented. The negative value of

MD,SD
means that Perm(MD,SD

) is pruned.

– Rule 3: IfMD,SD
is positive, then the step is stopped. In this case, a permutation

is found and the pool is still not empty.

– Rule 4: If SD points after the last cell of the row, then the depth D is decre-

mented and SD is incremented.

– Rule 5: If D points before the first row of the matrix, then the step is stopped.

In this case, there is no permutation and the pool is empty.

In the left side of Figure 4.3, SD (i.e. S2) points to M2,0. After applying the five

previous rules, the right side of Figure 4.3 is obtained. The application of these rules

is done as follows:

– The step starts by incrementing S2, for the first time, and points it to M2,1.

– Because of the negative value of M2,1, the S2 is incremented, for the second

time, to point to M2,2.



36 Chapter 4. Single-core IVM-based permutation B&B

– Since M2,2 is also negative, S2 is incremented, for the third time, to point to

M2,3.

– Because M2,3 is located after the last cell of the row, D is decremented and SD
(i.e. S1) is incremented.

– Because S1 points to M1,1, which is a positive value, the step is stopped and the

right side of Figure 4.3 is obtained.

• Copying the cells pointed by the selection vector S to the permutation vector

P: In addition to S, the copy of this step also takes into account the values of the

branching vector B. In the general case, all the elements M0,S0 , M1,S1 , ..., MD,SD
in

this order, and depending on whether each of the B0, B1, ..., BD are equal to zero

or not, the elements are respectively placed at the first or the last free position of the

vector P .

In Figure 4.3, the elements copied during this step are written in blue. In this

example, there are only two copies to be made since the depth D points to S1:

– Since S0 points to M0,2, which is equal to 1, the integer 1 is copied to the vector

P . Because B0 is not equal to 0, the integer 1 is copied to the last free position

of P , which is P4.

– Since S1 points to M1,1, which equals 5, the element 5 is copied to the vector

P . Because B1 is equal to 0, the element 5 is copied to the first free position of

P , which is P0.

• Copying the elements from the last filled row of M to the permutation vector

P: The integer D always indicates the last filled row. On the right side of Figure 4.3,

the elements of the last filled row are 4, 5, 2 and −3. Except the element 5, which is

pointed by SD, all these elements are still not copied into P . Therefore, the elements

4, 2 and 3 are copied into the three free positions of the vector P . The elements,

copied during this step, are written in green in the Figure 4.3.

In the general case, this step copies all the absolute values of the elements MD,0,

MD,0, ..., MD,N−D, except the element MD,SD
, to the free positions of the vector P .

• Update of the limits L1 and L2: These two pointers indicate the free positions of

the permutation P . In other words, all L1, L1 + 1, ..., L2 positions of P are empty,

and the elements PL1 , PL1+1, ..., PL2 are free. The value of the pointer L1 is equal

to the number of zeros of the vector B, and the value of the pointer L2 is equal to N

minus the number of non-zero values of B, where N is the size of the permutation.

In this example, L1 and L2 are equal to 1 and 3, respectively.
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4.3.2 Branching

Figure 4.4: Example showing how branching operation works on IVM.

The branching operation is much simpler than the selection operation. This operation is

done in three steps.

• Step 1: This step copies elements from the last filled row of M to the first empty row

of M . During this operation, all the absolute values of the elements, except the one

pointed to by SD are copied. For example, in the left part of Figure 4.4, the elements

of M , written in red, namely 4, 2 and −3, are copied. In the right part of Figure 4.4,

it is possible to see these copied elements written in blue.

• Step 2: The role of this step is to increment the pointer D. In Figure 4.4, the value

of D, which was 1 in the left side of the figure, becomes 2 in the right side.

• Step 3: This step points SD to MD,0 by writing 0 in SD. As shown in Figure 4.4, S2
points to M2,0.

4.3.3 Bounding

Figure 4.5: Illustration of the IVM-based bounding of PB&B.

The objective of the bounding operation is to update the elements of the last filled row of

M , and the last filled position of B. Figure 4.5 shows an example of the state of the IVM

structure before and after a bounding operation. This update is done using three steps:
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• Compute of all possible lower bounds: In Figure 4.5, the permutations of the last

filled row of the left IVM are written in red. The cells in this row correspond to those

obtained after the branching of (2, {5, 1, 3}, 4). Since the position B2 is still empty, it

is not known yet whether the elements {5, 1, 3} are placed at the first empty position

of the permutation P or at the last empty position of this permutation. Depending

on the value of B2, there are two cases:

– Case B2 = 0: This case corresponds to the case where one of the free elements

is written in the first empty position of the permutation. As a result, the partial

permutations of the last filled row correspond to (2, 1, {3, 5}, 4), (2, 3, {1, 5}, 4)
and (2, 5, {1, 3}, 4).

– Case B2 = 3: This case corresponds to the case where one of the free elements

is written in the last empty position of the permutation. In this case, the par-

tial permutations of the last filled row are (2, {3, 5}, 1, 4), (2, {1, 5}, 3, 4) and

(2, {1, 3}, 5, 4).

For each of these six permutations, the obtained bound values are placed in cells

C1,0, C1,1, C1,2, C2,0, C2,1 and C2,2. In this example, the value of these six bounds

are assumed to be 50, 70, 80, 90, 85 and 75, respectively.

• Choice of the bounding group: The objective of this step is to choose either to place

the free elements in the first free position or to place them at the last free position.

In other words, the objective of this step is to determine if the value of B2 is 0 or 3.

In our algorithm, this choice is made by comparing the sum of the bounds of each

group. Since the sum (50 + 70 + 80 = 200) is smaller than (90 + 85 + 75 = 250), the

bounding operation chooses to place the free elements at the last empty position.

This is why, in the right IVM of the figure, B2 is equal to 3.

• Sorting of the permutations according to the bound values: In the second step,

the selected partial permutations have the bounds 90, 85 and 75. These bounds cor-

respond respectively to the filling of the fee elements 5, 1 and 3 in the last empty

position of the permutation (2, {5, 1, 3}, 4). The objective of this third step is to sort

these free elements 5, 1 and 3 according to the increasing values of their corre-

sponding bounds. As shown in the right IVM of Figure 4.5, the elements are sorted

according to the ascending order of their bounds.
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4.3.4 Pruning

Figure 4.6: Example showing how pruning operation works on IVM.

At the end of the bounding operation, the bounds of the permutations corresponding to

the cells of the last filled row of the IVM are calculated. The objective of the pruning

operation is to eliminate some permutation of this last filled row. As explained before, any

permutation, which has a higher bound than the cost of the best complete permutation

found so far, must be pruned.

In the left IVM of Figure 4.6, the last filled row contains three cells. These cells cor-

respond to the placement of the free elements 3, 1 and 5 in the last empty positions of

the permutation (2, {3, 1, 5}, 4). The obtained three sub-permutations are therefore respec-

tively (2, {1, 5}, 3, 4), (2, {3, 5}, 1, 4) and (2, {3, 1}, 5, 4). These permutations respectively

have the bounds 75, 85 and 90. As the best complete permutation found so far has a cost of

80, the two permutations (2, {3, 5}, 1, 4) and (2, {3, 1}, 5, 4) are pruned. In our approach,

pruning is done by multiplying cells by −1. Therefore, the elements in the last filled row

are equal to 3, −1 and −5 respectively, as shown by the right IVM of Figure 4.6.

4.3.5 Initialization and finalization

Figure 4.7: Example showing how initialization and finalization operations work on IVM.
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In addition to the four previous basic operations, any PB&B must also use an operation to

initialize the IVM, and another operation to detect the end of PB&B. The left IVM of Figure

4.7 shows the status of the IVM at its initialization, and the right IVM of this figure shows

the state of IVM at its end. As shown in the figure, the structure is initialized as follows:

• The value of depth D is equal to 0;

• The first position P0 of the position vector is equal to 0;

• The first row of the matrix M is initialized to 1, 2, ..., N , where N is the size of the

permutation;

• The limits L1 and L2 are initialized to the values −1 and N ;

The right IVM of the figure shows the state of the structure at the end of the PB&B

algorithm. When the IVM is in this state, the PB&B algorithm must be stopped. The value

of depth D is equal to −1.

4.4 Experiments

4.4.1 Experimental protocol

• Hardware testbed: All the experiments were run on the computer Poincaré which

belongs to Maison de la Simulation (Saclay, Paris). Each of Poincaré’s 92 CPU nodes

is composed of 2 8-core Intel Xeon Sandy Bridge E5-2670 processors running at

2.60 GHz and has 32 Gb of memory. Each of the 16 physical cores has 32 KB of L1

instruction cache, 32 KB of L1 data cache and 256 KB of L2 cache. Each of the 2

processors has 20 MB of L3 cache. The 32 GB of memory are spread across 2 NUMA

nodes, one for each processor.

• Software tools: The serial LL-based PB&B and PB&B@CORE have been imple-

mented in C++ and compiled using GCC 4.6 with −O3 option. For each instance

tested, the computational time spent in managing the pool of permutations is mea-

sured using the clock_gettime function with a nanosecond precision.

• Problem instances: In our experiments, we used the flowshop instances defined by

Taillard [Tai93]. These standard instances are often used in the literature to evaluate

the performance of methods that minimize the makespan. In the experiments of this

chapter, we used the 10 instances defined with 20 jobs and 20 machines (these

instances are named Ta021, Ta022, ..., and Ta030), and the 10 instances defined

with 50 jobs and 10 machines (these instances are named Ta041, Ta042, ..., and
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Ta050). The other instances are not used in our validation because they are either

easy or difficult to solve with a serial algorithm.

• Theoretical memory study: It is possible to make a theoretical study of the maxi-

mum memory needed by the LL and IVM approaches to store their pool. For both

approaches, the maximum size depends only on the number of jobs N of an instance.

The size of the memory used by an IVM structure is always constant. In bytes, this

size can be calculated using Equation (4.1).

Maximum− size(IV M) = [
N (N + 1)

2
+ 3 N + 1] bytes

= [
1

2
N2 +

7

2
N + 1] bytes

(4.1)

Unlike IVM, the advantage of LL is to not require additional CPU calculation time

for generating a permutation. In the LL approach, a conventional coding of a per-

mutation is to write the list of scheduled jobs and the list of unscheduled jobs. By

assuming that a job is encoded with 1 byte, the size of a permutation of an instance

defined by N jobs is always equal to N bytes, and therefore, the size of a pool LL,

which contains X permutations, is equal to N ×X bytes. In LL, a pool reaches its

maximum size when visiting the first complete permutation. At this moment, the

pool contains N − 1 permutations with 1 job scheduled, N − 2 permutations with 2

jobs scheduled, ..., until N − (N − 1) (i.e. 1) permutation with N − 1 jobs scheduled.

The maximum size of a pool LL can be calculated using Equation (4.2).

Maximum− size(LL) = [

i=N−1∑
i=1

(N − i)] permutations

= [
k=N−1∑
k=1

k] permutations

= [
N (N − 1)

2
] permutations

= [
N2 (N − 1)

2
] bytes

= [
1

2
N3 − 1

2
N2] bytes

(4.2)

In terms of space, this means that the IVM structure has a maximum of O(N2) com-

plexity, while the LL data structure has a maximum of O(N3) complexity. Therefore,

IVM approach can be up to N better than the LL approach in terms of memory size.
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Besides, Table 4.1 concretely shows the ratio between the two approaches. These

ratios are computed using Equation (4.1) and Equation (4.2). The values of this

table are given for different sizes of jobs (i.e. 20, 50, 100, 200 and 500) of Taillard

instances.

Instance LL max. IVM max. IVM/LL max.

size memory size (Bytes) memory size (Bytes) memory ratio

20 3800 271 14.07

50 61250 1426 42.98

100 495000 5351 92.52

200 3980000 20701 192.27

500 62375000 126751 492.11

Table 4.1: Comparison of PB&B@CORE and LL PB&B algo-

rithms in terms of maximum memory.

However, the comparison of Table 4.1, in terms of maximum memory of both ap-

proaches, is not the best indicator to get an idea about the ratio of memory sizes

really used by LL and IVM approaches. It is therefore important to compare the IVM

and LL structures in terms of their memory size really used during a resolution. The

average size of IVM is constant and is the same than the value given in Equation

(4.2), while the average size of LL can not be deduced from a theoretical study. It is

therefore necessary to solve an instance to know its average memory size when the

resolution uses an LL structure.

4.4.2 Obtained results

• Memory evaluation: Tables 4.2 and 4.3 give the average obtained sizes for the

instances defined with 20 jobs and 50 jobs, respectively. In these two tables, the

first column gives the name of the instance, the second column the average number

of permutations when using LL, the third column the average size in bytes for LL,

the fourth column the average size in bytes for IVM which is constant, and the last

column the ratio between the sizes of LL and IVM. The last row of the table gives

the average of the values of each column.

According to Table 4.1, the maximum expected ratio between the sizes of LL and IVM

is equal to 20 for the instances defined by 20 jobs and 50 for the instances defined

by 50 jobs. The experiments show that the average obtained ratios are respectively 9

and about 35. These results show that on average an IVM structure clearly occupies

much less memory space than LL data structure.
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Instance LL average size LL average size IVM size LL/IVM size ratio

(Permutations) (Bytes) (Bytes)

Ta021 118 2360

271

8.74

Ta022 127 2540 9.41

Ta023 111 2220 8.22

Ta024 123 2460 9.11

Ta025 117 2340 8.67

Ta026 122 2440 9.04

Ta027 115 2300 8.52

Ta028 127 2540 9.41

Ta029 124 2480 9.19

Ta030 131 2620 9.70

Average 121.50 2430.00 271 9.00

Table 4.2: Comparison of the size of IVM and the average

size of LL when solving the ten instances defined with 20

jobs.

Instance LL average size LL average size IVM size LL/IVM size ratio

(Permutations) (Bytes) (Bytes)

Ta041 961 48050

1426

33.72

Ta042 980 49000 34.39

Ta043 1059 52950 37.16

Ta044 1085 54250 38.07

Ta045 824 41200 28.91

Ta046 1056 52800 37.05

Ta047 1038 51900 36.42

Ta048 1049 52450 36.81

Ta049 1094 54700 38.39

Ta050 993 49650 34.84

Average 1013.90 50695.00 1426 35.58

Table 4.3: Comparison of the size of IVM and the average

size of LL when solving the ten instances defined with 50

jobs.

• CPU Time evaluation: As written in the previous subsection, it is clear that the

IVM approach uses much less memory than the LL approach. However, unlike LL,

IVM requires coding and decoding mechanisms of the permutations of the pool.

A question then arises about the cost of IVM encoding and decoding mechanisms.

Indeed, the gain in IVM memory should not be to the detriment of an additional

computing cost to manage the pool. Therefore, the objective of this subsection is to

compare the LL and IVM approaches in terms of pool management CPU time.

In our comparative study, the pool management time does not only include the CPU
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time spent by reading and writing operations in the LL and IVM structures. This time

also includes the CPU time spent by the selection, pruning and branching operations.

In other words, the pool management time includes all the operations made in the

PB&B algorithm except the the part of the bounding operation which computes the

bounds.

Table 4.4 gives the average time obtained for the instances defined with 20 jobs, and

Table 4.5 for the instances defined with 50 jobs. In both tables, the first column gives

the name of the instance, the second column the pool management CPU time of the

LL approach, the third column the pool management CPU time of the IVM approach,

and the last column the ratio between the pool management CPU times of LL and

IVM. The last row of the table gives the average of the values of each column.

The previous paragraphs show that the IVM structure uses much less memory space

than the LL structure. As the information is encoded in IVM, unlike LL, it is intuitively

logical to expect that the management of a pool coded with IVM takes more time

than the management of a pool coded with LL. However, Table 4.4 shows that the

management of the IVM pool takes on average about 2.75 less CPU time than the

LL pool when solving instances defined by 20 jobs. In addition, Table 4.5 shows that

this pool management takes on average about 3 times less CPU time than the LL

pool when solving instances defined by 50 jobs.

These average ratios can be certainly explained by the adaptation made for the PB&B

operations. The bounding, selection, branching and pruning operations are more

optimized in the IVM approach compared to the LL approach. For example, the LL

branching operation involves dynamically creating a certain number of permutations,

and each permutation must contain a permutation almost similar to the permutation

which is branched. Unlike this LL operation, the IVM branching operation merely

copies the content of a matrix row to another row.

4.5 Conclusions

In this chapter, we proposed a new data structure, called IVM (Integer Vector Matrix), to

implement the pool of permutations generated by a PB&B algorithm for solving permuta-

tion optimization problems. The bounding, selection, branching and pruning operations

have been revisited to operate on this new data structure.

This new approach is validated using standard instances of the flowshop which is a

permutation problem presented in the previous chapter. This evaluation is performed in

terms of memory and CPU time usages. Experiments show that the use of IVM does not
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only greatly reduce the used memory size, but also reduces the CPU time spent for the

pool management. Indeed, compared to LL, these experiments show that on average the

IVM structure (1) occupies 9 times less memory space for the instances defined with 20

jobs, (2) uses about 35 times less memory for the instances with 50 jobs, (3) manages the

pool about 2.5 times faster for instances with 20 jobs, and (4) manages the pool about 3

times faster for instances with 50 jobs.

Instance LL time IVM time LL/IVM ratio

Ta021 411.09 149.66 2.75

Ta022 538.89 195.10 2.76

Ta024 393.28 146.01 2.69

Ta026 1425.14 537.28 2.65

Ta027 767.72 281.55 2.73

Ta028 133.54 47.71 2.80

Ta029 424.42 153.27 2.77

Ta030 76.45 28.10 2.72

Average 521.32 192.34 ≈ 2.75

Table 4.4: Comparison of PB&B@CORE and LL-based PB&B

algorithms in terms of the CPU time used for the management

of the pool when solving the instances defined with 20 jobs.

Instance LL time IVM time LL/IVM ratio

Ta041 7.45 2.44 3.05

Ta042 3235.67 1030.24 3.14

Ta043 690.58 228.17 3.03

Ta044 3.59 1.30 2.76

Ta045 19.60 6.08 3.22

Ta046 34.43 11.54 2.98

Ta047 153.76 51.66 2.98

Ta048 66.59 22.14 3.01

Ta049 4.74 1.78 2.66

Ta050 1396.59 452.31 3.09

Average 561.30 180.77 ≈ 3.00

Table 4.5: Comparison of PB&B@CORE and LL-based PB&B

algorithms in terms of the CPU time used for the management

of the pool when solving the instances defined with 50 jobs.
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5.1 Introduction

When running PB&B@CORE, the values of the position vector S are continuously updated.

As described in Chapter 4, when the end of row is reached the algorithm backtracks to

the previous level. Therefore, at level D = 0, 1, . . . , N − 1 the value of SD is bounded

by SD < N − I. The vector is equal to 00000 when the algorithm points to the first

complete permutation of the PB&B tree, and equal to 43210 when it points to the last

complete permutation. Between these values, the vector successively takes the values

00010, 00100, 00110, 00200, 00210, . . . , 43210. For each of these values, the algorithm

points to a different complete permutation. There are 120 possible values because there
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are 120 complete permutations (i.e. 5!). These 120 position vector values correspond to

the numbering of the 120 complete permutations using a special numbering system, called

factorial number system [Knu97]. The factorial number system, also called factoradic, is a

mixed radix numeral system adapted to numbering permutations. For this number system,

the French term used in 1888 [Lai88b] is numération factorielle.

In a multi-threaded approach, it is possible to ask a thread to explore only the complete

permutations with factoradic numbers in the interval [a, b[, where a and b are factoradic

numbers. In order to explore only these numbers, the thread initializes the vector position

S to factoradic number a, launches the PB&B@CORE algorithm, and stops this algorithm

when the number of the vector position S is equal to b. In this approach, the work unit

of a PB&B thread is therefore an interval of factoradics. When a thread finishes exploring

its interval, this thread can steal from another thread a portion of its interval in order to

explore this portion. In a PB&B@CPU approach, these PB&B threads can be on the same

CPU, or on multiple CPUs but sharing the same memory.

Figure 5.1 gives an overview of the PB&B@CPU approach, based on units of work de-

fined by factoradics intervals. In this approach, only one thread is started at the beginning

of a resolution. The role of this thread is (1) to initialize some data structures of the algo-

rithm, (2) to launch a number of PB&B threads to explore the entire interval [0, N ![, and

(3) to restitute the complete permutation found, when the PB&B threads have finished ex-

ploring [0, N ![. Compared to the PB&B@CORE approach, this new PB&B@CPU approach

has an additional operation to allow the work stealing between the PB&B threads.

Figure 5.1: Overview of the PB&B@CPU approach and its operations.

This chapter is divided into three sections. Section 5.2 section gives an overview of
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the factorial number system, on which the work units of our approach are based. Section

5.3 describes the work stealing of the PB&B@CPU approach. Section 5.4 presents the

experiments carried out to validate the PB&B@CPU approach using the flowshop problem.

5.2 Factoradic intervals

As the work unit of PB&B@CPU is defined by an interval of factoradic numbers, this

section recalls some concepts related to number systems and describes the factorial number

system.

5.2.1 Number systems

A number system, called also numeral system or system of numeration, is a writing system

or a mathematical notation in order to express and represent a set of numbers using

symbols in a consistent manner. A number system is defined by its digits, its bases, also

called radixes, and its place values. This subsection reminds these concepts before their

definitions for the factorial system are given in Subsection 5.2.2.

Digits:

Etymologically, the word digit comes from ancient Latin word digit which means fingers.

Therefore, this word is related to the decimal system where ten digits are used like the ten

fingers. However, the word digit is used nowadays for all other number systems including

the binary system where the word bit is more appropriate. A number is a sequence of digits

which can have an arbitrary length. Each digit, in a number system, represents an integer.

In the decimal and the hexadecimal systems, for instance, the digits 1 and A represent

the integers one and ten, respectively. In Roman numerals, where seven symbols are used,

each symbol represents also a different integer as shown in Table 5.1.

Symbol Value

I 1

V 5

X 10

L 50

C 100

D 500

M 1,000

Table 5.1: Roman digits and their values.
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There is a particular number system defined only with one digit. This simplest numeral

system is called the unary numeral system, and can be used to represent all natural num-

bers. In order to represent any number N , an arbitrarily symbol, which represents the

integer 1, is simply repeated N times. This system is often used in tallying. For example,

using the tally mark |, the number 5 is represented as |||||. Unlike multiplication or divi-

sion, the other operations, namely addition, subtraction and comparison, are particularly

simple to be implemented in the unary system. Compared to other numeral systems, the

unary system is not used in practice for large calculations but can be convenient for small

operations, like representing a number with fingers. Unary system is used in some data

compression algorithms such as Golomb coding [Gol66].

Place value:

Roman system, used in ancient Rome, employs combinations of letters from the Latin

alphabet in order to express numbers. For example, the first ten numbers can be expressed

as follows: I, II, III, IV, V, VI, VII, VIII, IX, X. In this system, numbers are written by combin-

ing symbols and adding or subtracting the values these symbols. For example, XIII means

thirteen by adding a ten and three ones, and IX means nine by subtracting one from ten.

Unlike the decimal system, there is no zero in Roman system and symbols do not represent

tens or hundreds according to their positions. Therefore, unlike Roman system, which is

not a positional system, decimal system is a positional numeral system.

Ancient number systems, like Roman system, were not positional, and all of the number

systems most commonly used today, like binary system, are positional systems. Place value

is a positional system of notation in which the position of a number determines its value.

In other words, the value of a number in such system is determined not just by the digits

but also by the positions of each of the digits. For example, all place values, also called

order of magnitudes, in the unary system are equal to 1, the places values of decimal are

powers of ten, like ones place, tens places, hundreds place, etc. One of the advantages of

positional notation is the use of the same symbols for different order of magnitudes. This

greatly simplifies arithmetic operations.

Radix:

Etymologically, the word radix is a Latin word for the word root, and root is a synonym

for base in the arithmetical sense. In a positional numeral system, the radix is the number

of unique digits, including zero, used to represent numbers. For example, the radix is

ten for decimal system since this system uses ten digits from 0 through 9 in order to

represent its numbers. In a positional numeral system, the number X and the radix Y are
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conventionally written as (X)Y . However, the radix can be implicitly assumed and not

written for some systems like decimal or unary systems.

Mixed radix numeral systems are non-standard positional numeral systems. Unlike

most common systems, where the base is similar to all positions, the numerical base can

vary from position to position. Such representation is used when a value or a number

is written using a sequence of units that are each a multiple of the next smaller unit.

For example, this type of number systems can be found when expressing time. A time of

10 hours, 30 minutes, and 50 seconds might be expressed as 10 : 30 : 50 in mixed radix

notation where the radix of the second and third positions is 60 and the radix of the first

position is 24.

In positional fixed radix number system, where the base R is fixed, each digit ai in any

number (an−1...a0)R is an integer in the range 0 to (R− 1) and the number is interpreted

as shown in Equation (5.1).

(an−1...a0)R = an−1R
n−1 + ...+ a1R

1 + a0R
0 (5.1)

Since Equation (5.1) is a polynomial in R, fixed radix system can be also called polyno-

mial system. The decimal and binary systems are both fixed radix systems, with a radix of

10 and 2, respectively. Fractional values can also be represented with the same polynomial

notation.

0.a1a2...an = a−1R
−1 + a2R

−2 + ...+ anR
−n (5.2)

In mixed-base or radix number system, the digit ai in any number belongs to the

interval 0 to Ri, where Ri is not the same for all the values of i. The number is then

interpreted as shown in Equation (5.3).

an−1...a0 = (...((an−1 Rn−1) + an−2)Rn−2 + ...+ a1)R0 + a0 (5.3)

5.2.2 Factorial number system

Factorial system, also called factoradic, is a mixed radix number system which is well

adapted for numbering permutations. This system is not named like most numeral systems.

For example, unary, binary and decimal are named like this because their radixes are one,

two and ten, respectively. Unlike these systems, the factorial system is named according

to its place value instead of its mixed radix. The term factorial number system is used the

first time recently in 1998 [Knu98] while the French name numération factorielle is first

used in 1888 [Lai88c]. The term factoradic appears to be much more recent [McC03].

General properties of mixed radix number systems also apply to the factorial system.
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As explained in Table 5.2, the ith digit from the right has base i and the place value i! .

Therefore, the ith digit must be less than i. And in order to compute the value of a number,

the value of the ith digit must be multiplied by i!. From this, it follows that the rightmost

digit is always 0, the second can be 0 or 1, the third 0, 1 or 2, and so on.

Place ... 7th 6th 5th 4th 3rd 2nd 1st

Radix/base ... 7 6 5 4 3 2 1

6! 5! 4! 3! 2! 1! 0!

Place value ... = = = = = = =

720 120 24 6 2 1 1

0 0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2

Allowed digits ... 3 3 3 3

4 4 4

5 5

6

Table 5.2: Factorial system and its radixes, place values and digits for the seven first

positions.

It is possible to define factorial numbers without writing the rightmost digit since it

is always equal to zero. In our report, a factorial number representation will be flagged

by a subscript "!", so for instance (322110)! stands for (35!24!23!12!11!00!). In principle, the

factorial system may be extended to represent fractional numbers. However, the natural

extension of place values (-1)!, (-2)!, etc. are undefined. In factorial system, the symmetric

choice of radix values n = 0, 1, 2, 3, 4, etc. after the point may be used instead. The

corresponding place values are therefore 1/(0!), 1/(1!), ..., 1/(n!), etc. In our work, factorial

fractional numbers are not used.

Decimal to factoradic:

When converting a decimal number into its factorial representation, digits are produced

from right to left. This conversion consists in repeatedly dividing the number by the

radixes 1, 2, 3, etc. After each division, the remainder should be considered as the digit.

The division operation continues with the integer quotient until this quotient becomes 0.

Let assume a decimal number D = 349 to convert into a factorial number. This conversion
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is done using successive Euclidean divisions as shown in Equation (5.4).

349 = 1× 349 + 0

349 = 2× 174 + 1

174 = 3× 58 + 0

58 = 4× 14 + 2

14 = 5× 2 + 4

2 = 6× 0 + 2

(5.4)

Euclidean division is the operation of division of two integers, which produces a

quotient and a remainder. Each line of Equation (5.4) represents an Euclidean division

Qi = i×Qi+1 +Ri such as:

• Qi+1 is the quotient of the division Qi

i

• Ri is the reminder of this division

• Q1 = A is the decimal number to convert

• Qn+1 is always equal to zero and is the last quotient

• R1 is always equal to zero and is the first remainder

The factorial representation F ofA is equal to concatenation of all reminders, as shown

in Equation (5.5), is F = (Rn...R2R1)! = 242010.

349 = 1× 349 + 0

= 1× (2× 174 + 1) + 0

= 1× (2× (3× 58 + 0) + 1) + 0

= 1× (2× (3× (4× 14 + 2) + 0) + 1) + 0

= 1× (2× (3× (4× (5× 2 + 4) + 2) + 0) + 1) + 0

= 1× (2× (3× (4× (5× (6× 0 + 2) + 4) + 2) + 0) + 1) + 0

= 2 5! + 4 4! + 2 3! + 0 2! + 1 1! + 0 0!

= (242010)!

(5.5)

Algorithm 1 explains the used method to perform this conversion.
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Algorithm 1 DECIMAL-TO-FACTORIAL(D)

1: Place← 1

2: while D 6= 0 do

3: Fi−1 ← D mod i

4: D← D div i

5: i← i+1

6: end while

7: return F

Factoradic to decimal:

Converting a factorial number to a decimal number is simpler. Let (Rn−1...R1R0)! a fac-

torial number. In order to have its decimal equivalent, it suffices to calculate the value of

the polynomial
∑i=n−1

i=0 Ri i!. The conversion of a factorial number to its decimal equiv-

alent is therefore a sum of multiplications, while the conversion of a decimal number to

its factorial equivalent is a concatenation of divisions. Algorithm 2 explains this sum of

multiplications.

Algorithm 2 FACTORIAL-TO-DECIMAL(F)

1: Place-value← 1

2: D← 0

3: for i← 1 to n do

4: Place-value← Place-value × i

5: D← D + Fi × Place-value

6: end for

7: return D

Addition:

Let assume two factorial numbers A = (An−1...A1A0)! and B = (Bn−1...B1B0)! to be

added and both having the size n. As these numbers are factorial, both conditions ∀i, Ai ≤ i
and ∀i, Bi ≤ i are always true. The addition of A and B would be simple if ∀i, Ai+Bi ≤ i.
In this case, the result of the addition would be C = (Cn−1...C1C0)! such as ∀i, Ci = Ai+Bi.

However, the condition ∀i, Ai + Bi ≤ i is not always satisfied. Let assume i such as
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Ai +Bi > i. The value of Ci can be calculated as explained in Equation (5.6).

Ci = Ai i! +Bi i!

= [Ai +Bi]i!

= [(i+ 1)− (i+ 1) + (Ai +Bi)]i!

= (i+ 1)i! + [−(i+ 1) + (Ai +Bi)]i!

= (i+ 1)! + [(Ai +Bi)− (i+ 1)]i!

(5.6)

Therefore, there is a carry +1 for the calculation of Ci+1, and Ci = (Ai +Bi)− (i+ 1)

since the rule of Equation (5.7) is always true.

[(Ai ≤ i) and (Bi ≤ i) and (Ai +Bi > i)]⇒ 0 ≤ [(Ai +Bi)− (i+ 1)] ≤ i (5.7)

Equation (5.8) gives the value of Ci for any values of Ai and Bi.

Ci =

{
(Ai +Bi) If (Ai +Bi) ≤ i
(Ai +Bi)− (i+ 1) Otherwise

(5.8)

Algorithm 3 explains the method used for the addition of A and B. The algorithm

proceeds from the least significant position to the most significant one, in other words,

from right to left. So, it is possible to check whether there is a carry +1 when computing

Ci. If this is the case, this carry is taken into account when computing Ci+1.

Algorithm 3 FACTORIAL-ADDITION(A, B)

1: for i← 0 to (n-1) do

2: Ci ← Ci +Ai +Bi

3: if Ci > i then

4: Ci ← Ai − (i+ 1)

5: Ci+ 1← 1

6: end if

7: end for

8: return C

Subtraction:

Let assume two factorial numbers A = (An−1...A1A0)! and B = (Bn−1...B1B0)!. As these

numbers are factorial, both conditions ∀i, Ai ≤ i and ∀i, Bi ≤ i are always satisfied.

The objective of this subsection is to explain how to perform a subtraction A − B when
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assuming A ≥ B. To facilitate the explanation, both numbers are assumed to have the

same size n. If the size of B is smaller than A, then it is possible to complete B with zeros

at the left.

The subtraction A − B would be simple if ∀i, Ai ≥ Bi. In this case, the result of the

subtraction would be C = (Cn−1...C1C0)! such as ∀i, Ci = Ai−Bi. However, the condition

∀i, Ai ≥ Bi is not always satisfied. Let assume i such as Ai < Bi. The value of Ci can be

computed as explained in Equation (5.9).

Ci = Ai i!−Bi i!

= [Ai −Bi]i!

= [−(i+ 1) + (i+ 1) + (Ai −Bi)]i!

= [−(i+ 1)]i! + [(i+ 1) + (Ai −Bi)]i!

= [−1](i+ 1)! + [(i+ 1) + (Ai −Bi)]i!

(5.9)

Therefore, there is a carry −1 to be taken into account when computing Ci+1, and

Ci = (Ai +Bi)− (i+ 1) since the rule of Equation (5.10) is always true.

[(Ai ≤ i) and (Bi ≤ i) and (Ai < Bi)]⇒ 0 ≤ [(Ai −Bi) + (i+ 1)] ≤ i (5.10)

Equation (5.11) gives the value Ci for any values of Ai and Bi.

Ci =

{
(Ai −Bi) If (Ai −Bi ≥ 0)

(Ai −Bi) + (i+ 1) Otherwise
(5.11)

Algorithm 4 explains the operation of the subtraction A − B. Like the addition, the

subtraction algorithm proceeds from the least significant position to the most significant

position. It is possible to check if there is a carry −1 when computing Ci. If this is the case,

this carry is taken into account when computing Ci+1.

Algorithm 4 FACTORIAL-SUBTRACTION(A, B)

1: for i← 0 to (n− 1) do

2: Ci ← Ci +Ai −Bi

3: if Ci < 0 then

4: Ci ← Ci + (i+1)

5: Ci+1 ← -1

6: end if

7: end for

8: return C
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5.3 Interval-based work stealing

A work stealing strategy can be defined by three major components: a work unit definition,

a victim selection policy and a granularity policy. The victim selection policy determines

how a thief thread R chooses its victim S. The granularity policy determines the amount

and which part of work thread R steals from thread S. An ideal victim selection strategy

is one which (1) chooses the victim S with the largest amount of work, (2) and makes

this choice as rapidly as possible. A good granularity policy reduces the number of work

stealing operations, meaning that it allows both victim and thief to work as long as possible

without initiating another work stealing event. This section presents respectively the work

unit of our approach, its victim selection policy and its granularity policy.

5.3.1 Work unit: interval of factoradics

Dynamic load balancing is well suited for multi-core parallel PB&B algorithms. All threads

must share their work. To the best of our knowledge, except in rare works such as

[MMT07a], work units exchanged between threads (or processes) are sets of nodes. Since

the nodes explored in our approach are numbered, it is possible to define an interval of

node numbers as the work unit. Let’s assume the interval that must be explored by a PB&B

algorithm is [00000, 43210[. It is therefore possible to have two threads T1 and T2 such as

T1 explores [00000, X[ and T2 explores [X, 43210[. If T2 ends exploring its interval before

T1, then T2 sends a request to T1 to recover a portion of its interval. Therefore, T1 and

T2 can exchange their interval portions until the exploration of the whole [00000, 43210[

interval.

In order to emphasize on the difference between a conventional set of nodes and an

interval of factoradics, it should be noted that the notion of work is slightly different. In-

deed, a work unit [A,B[ does not necessarily contain any nodes to branch. In that sense it

rather represents a potential amount of work. The processing of an interval of factoradics

amounts to scanning the corresponding part of the search space. In contrast, the set of

pending permutations contains only nodes that have actually been generated and not been

removed from the tree.

In [MMT07a], we have presented an original load balancing strategy where the work unit

is an interval of integers. Compared to [MMT07a], the new strategy presented in this

chapter brings two new contributions. The first contribution is that the PB&B is based on

a matrix of integers instead of a linked-list of permutations of integers, and the second

is that it is not necessary to use the fold and unfold operations defined in [MMT07a] to

transform an interval into a linked-list of nodes and vice versa. Besides, the integers of
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[MMT07a] are coded using the decimal system, while in this chapter, the integers are

coded using the factoradic system.

5.3.2 Work unit communication

In this subsection two alternative protocols for the communication of work units between

PB&B@CPU threads are described. An illustration of both procedures is shown in Fig-

ure 5.2.

• Work unit splitting at an arbitrary position: An integer interval [B,E[ can be

split at any integer C that is convex linear combination of B and E, i. e. C =

b(1− α)A+ αBc , 0 < α < 1. The computation of a splitting point C can be per-

formed either by using decimal arithmetic operations or by implementing elementary

arithmetic operations for factoradic numbers. The granularity of this procedure is

controlled by the value of α. In the example shown in Figure 5.2a, the interval of

the victim is split in two parts of equal size, setting α = 0.5.

In both cases it is necessary to have a procedure that initializes the IVM structure

at an arbitrary valid position vector V = C. For that, it is not enough to build the

matrix by iterative application of the branching operation, selecting the jobs pointed

by V , because the information about pruned nodes is lost.

Initialization of the IVM structure at any position vector V = C can be achieved as

follows. Starting from I = 0 all nodes pointed by V are expanded, bounded and

pruned until the last line is reached, i. e. until I = n. In other words, n iterations of a

modified PB&B algorithm, selecting the permutations indicated by V , are performed.

As this initialization procedure involves the bounding operation, initialization over-

head can become significant.

A first observation can be made: this initialization process can actually be stopped

when V points to a pruned permutation. This reduces the number of initialization

steps considerably. A second observation allows to further decrease the amount of

time spent in initialization: Suppose that an IVM structure was used to explore an

interval [B,E[ and that it has reached the end of this task, that is B = E. Let l be

the level at which the exploration stopped. Now we want to initialize this IVM at

a new position V = B̃. If B[i] = B̃[i] for i = 0, 1, ..., k with k < l, then these first

k lines of the matrix M are already correctly initialized. The initialization process

described before can thus begin at I = k.
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(a) Arithmetic interval splitting

(b) Subtree-based interval splitting

Figure 5.2: Illustration of work unit splitting.

• Subtree-based work unit splitting: In [Ler15b] a method for exchanging work

units between PB&B@CPU threads without initialization is proposed. This procedure

is based on splitting the interval of the victim IVM directly in its factoradic form,

without converting it to decimals. In addition to the new position and end vectors,

an initialized matrix is transferred from the victim IVM to the thief IVM. Figure 5.2b

illustrates this procedure. The transfer of a work unit from IVM S (Sender) to IVM R

(Receiver) can be performed as follows.

1. Let [BS , ES [ be the interval to split. Let l be the smallest index such that BS [l] 6=
ES [l].

2. For i = 0, 1, . . . , l − 1, copy row i of IVM from S to R (position, end, direction

vectors and matrix).

3. Split the tree at level l by choosing C such that BS [l] < C ≤ ES [l]. For the

receiving IVM R, set BR[l] = C and ER[l] = ES [l]. For the sending IVM S,

ES [l] = C − 1.
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4. For i = l + 1, . . . , n− 1, set ES [i] = n− i− 1 and BR[i] = 0.

5. The receiving IVM R is now initialized and exploration can start at level l.

Therefore IR is set to IR = l.

This initialization method proposed by [Ler15b] requires no additional computation of

bounds. Therefore it reduces the overhead induced by work stealing operations, compared

to the previously introduced initialization procedure. Another important advantage of

this method is that it avoids redundant computations. Indeed, if intervals are split at

arbitrary points, some permutations may be branched redundantly. In this example, thread

T1 explores interval [0000, 1100[ and thread T2 explores [1110, 2110[, which may cause

redundant computation of bounds along the frontier 11XX.

However, there are also disadvantages. Especially in a distributed memory setting the

size of data transfers should be kept low. Indeed, this is the primary motivation for using

interval encoded work units [MMT07c]. Also, in the subtree-based interval splitting, the

granularity is controlled in a coarser way because full subtrees are communicated. This

method is similar to stack splitting strategies where nodes (and implicitly the subtrees

rooted in these nodes) are transferred from non-empty to empty pools. Dividing intervals

by the first method allows a finer control of granularity.

We use the second (subtree-based) work splitting method for communicating work

units via shared memory and the first method in distributed memory contexts.

5.3.3 Victim selection policies

In this Subsection, four victim selection policies are described. Two of them, the random

and ring policies have a low computational complexity and require no access to shared

data structures or knowledge about the global workload repartition. The two other se-

lection policies, namely the largest and the honest policies, use simple heuristics which

aim at selecting a stealing victim holding a large or difficult piece of work. These victim

selection policies use the available information about the workers’ activity and require

some additional computation and protected accesses to shared data structures.

• Ring victim selection policy: In this deterministic policy, threads are connected to

each other with an unidirectional ring. A thread R always steals its precedent thread

R′. If the thread R is different from the thread 1, then the thread R′ is equal to

the thread R − 1. Otherwise, the thread R′ is equal to the thread T , where T is

the number of threads. In this policy, the work stealing operation of a thread R is

a blocking event when the thread R′ has no work. In this case, the work stealing

operation will be satisfied when the thread R′ will receive work. This policy is
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also used, for instance in [KRR88]. If the thread numbering is matched with the

underlying architecture the deterministic nature of this policy can be used to reduce

communication costs.

The average distance to another thread is T/2. For a large number of threads this

distance should be decreased and each thread should have more than one neigh-

bor. Moreover the possibility of two threads selecting each other mutually must be

excluded. For instance, the lifeline scheme [SKK+11], based on cyclic hypercubes,

satisfies these properties and has been shown to be scalable to clusters of several

thousand cores. The ring strategy corresponds indeed to the simplest form of the

lifeline scheme, to which it could be extended when a large number of threads is

used. As shown in function choose-ring, the cost of the victim selection function is

very low. The main issue of this strategy is that work units may not propagate fast

enough through the ring. No locking or access to shared data structure is required

by this strategy: the only information an idle worker needs to select a victim is its

own thread/process ID.

• Random victim selection policy: The random selection policy is provably efficient [BL99]

and the most frequently used in the literature. In this policy, a thread victim R′ is

randomly selected when a thread R initiates a work stealing operation. Unlike the

ring policy, this work stealing operation is not a blocking event. In other words, the

thread R continues to choose other threads randomly as long as it does not find a

thread with a non-empty interval or linked-list. Besides its own thread/process ID a

thief only needs to access a variable that indicates the state of the randomly selected

victim.

• Largest victim selection policy: In a PB&B algorithm, it is often impossible to de-

termine the hardness of a work item. This policy is based on a simple heuristic to

choose the thread with the most difficult work to finish. Indeed, the largest policy

assumes that probably the larger the size of a work is, the more difficult this work

will be. Therefore, this policy computes the amount of work of each thread, chooses

the thread with the biggest size, and returns the rank R′ of this thread. In the linked-

list based approach, the size of a linked-list is equal to the number of its nodes, and

in the interval-based approach, the size of an interval [A,B[ is equal to B − A. As

shown in function choose-largest, this policy has a higher computational complexity

than the three other victim selection policies. In particular a thief requires locked

accesses the length or size variable of each busy worker. Although this polling may

compromise the scalability of this strategy, good results for this policy are reported

in [ASW+14].
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Algorithm 5 Pseudocode of the victim selection policies.
1: function C H O O S E -T H R E A D(R, strategy)

2: switch strategy do

3: case RING:

4: return C H O O S E - R I N G(R)

5: case RANDOM:

6: return C H O O S E - R A N D O M(R)

7: case LARGEST:

8: return C H O O S E - L A R G E S T(R)

9: case HONEST:

10: return C H O O S E - H O N E S T(R)

11: end function

12: function C H O O S E - R I N G(R)

13: return (R− 1)%T

14: end function

15: function C H O O S E - R A N D O M(R)

16: while true do

17: R’←random(1,T)

18: if (has-work(R’) AND (R’6=R)) then

19: return R’

20: end if

21: end while

22: end function

23: function C H O O S E - L A R G E S T(R)

24: max-size←0

25: for all R" ∈ {1, 2, ..., T} AND (R" 6=R) do

26: if (size(R")> max-size) then

27: R’←R"

28: max-size←size(R")

29: end if

30: end for

31: return R’

32: end function

33: function C H O O S E - H O N E S T(R)

34: remove(rank-threads,R)

35: while not-empty(rank-threads) do

36: R’←pop-front(rank-threads)

37: if (has-work(R’) then

38: push-back(rank-threads,R)

39: return R’

40: end if

41: end while

42: end function
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• Honest victim selection policy: This strategy is based on another heuristic to deter-

mine the thread with the most difficult work to finish. The heuristic assumes that if

a thread R1 has stolen work less recently than a thread R2, then the thread R1 has

probably a work which is more difficult than the work of the thread R2. Therefore,

the thread R steals the work from the thread victim R′ which is the least recent thief.

As shown in function choose-honest, this policy has a higher computational complex-

ity than the ring and random policies but a smaller computational complexity than

the largest policy. In the largest victim selection policy, it is important to compute

the amount of work of each pool and computing the size of any pool is a blocking

operation for the thread which owns this pool. In the honest victim selection policy,

one operation of removing is performed on the rank threads list, and this operation

is non-blocking. The operations on the global rank threads list must be protected by

locks.

5.3.4 Granularity policies

When a thread R′ is contacted by a thread R, the thread R must determine the amount of

work of its thread victim R′ to steal. In this chapter, two granularity policies are used.

• Steal half policy: This policy indicates that the thread R steals the second half of the

work of the thread R′ and leaves the other half for the thread R′. In the linked-list

based approach, the work of a thread R′ is constituted by a set of N nodes. The

thread R steals the last N/2 nodes and leaves the other nodes for the thread R′.

Nodes are always stolen from the tail, i.e. from the end which is opposite to the

working end of the private deque. While in the interval-based approach, the work

of a thread R′ is constituted by an interval [A,B[. The thread R steals the interval

[(A+B)/2, B[ and leaves the interval [A, (A+B)/2[ for the thread R′. Leaving the

first half of the interval [A,B[ avoids the thread R′ to initialize its matrix and vectors.

• Steal Tth policy: Theoretically, steal half policy may not be appropriate for certain

victim selection policies. Suppose, for instance, four threads where thread 1 has a

certain amount of work W , and threads 2, 3 and 4 have completed their work. The

amount of work W may be the number of nodes or the size of the interval. In a ring

selection, the threads 2, 3 and 4 steal work from the threads 1, 2 and 3, respectively.

Using the steal half policy and the ring selection, the amounts of work W/2, W/4,

W/8 and W/8 are allocated to the threads 1, 2, 3 and 4, respectively. Steal T th policy

indicates that the thread R leaves W/T of the work to its thread victim R′, where

T is the number of threads, and steals (T − 1)W/T of the work. In the previous
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example, using steal T th policy and the ring selection allocate the amount of works

W/4, 3W/16, 9W/64 and 27W/64 to the threads 1, 2, 3 and 4, respectively. For this

example, steal Tth policy gives a better granularity policy than the steal half policy.

In our experiments, steal Tth policy is tested only for the ring selection. Indeed,

steal half policy seems to be theoretically appropriate for the other victim selection

policies.

5.4 Experiments

In this section, we present an experimental study to evaluate the performance of the

different work stealing strategies for our PB&B@CPU approach on a multi-core system.

These strategies are compared with the multi-threaded linked-list based PB&B (CPU LL

PB&B) approach when solving some hard flowshop scheduling problem instances.

5.4.1 Experimental protocol

• Hardware testbed: All the experiments are run on a computer composed of 2 8-core

Sandy Bridge E5-2650 processors and 32 GB of memory.

• Software testbed: The operating system installed is a CentOS 6.5 Linux distribution.

The UNIX time command is used to measure the elapsed execution time for each

flowshop instance and time measures for specific parts of the algorithms are obtained

using the clock_gettime function with nanosecond precision.

• Problem instances: In our experiments, we used only the 10 instances where the

number of machines and the number of jobs are equal to 20. Instances where the

number of machines is equal to 5 or 10 are easy to solve. For these instances, the

used bounding operation gives such good lower bounds that it is possible to solve

them in few seconds using a multi-core PB&B. Instances where the number of jobs

is equal to 50, 100, 200, or 500, and the number of machines is equal to 20 are very

hard to solve.

• PB&B initialization: When an instance is solved twice using a PB&B performing

a parallel tree exploration, the number of explored permutations is often different

between the two resolutions, because the nodes are expanded in a different order.

Moreover, the parallel algorithm is likely to explore a (much) larger or smaller

number of nodes than the serial version of the algorithm. This may lead to speed-up

anomalies, i.e. speed-ups greater that P on P cores.
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To compare the performance of two PB&B algorithms, the explored search space

should be exactly the same between the different tests. In order to study the perfor-

mance of the parallel algorithm in the absence of speed-up anomalies, we choose to

always initialize our PB&B by the optimal complete permutation of the instance to

be solved. With this initialization it is ensured that both, the sequential and parallel

algorithms explore exactly the critical subtree. The critical subtree is composed of

all nodes for which the bounding operation gives a lower bound smaller than the

cost of the optimal complete permutation. It corresponds to the part of the search

space which a PB&B algorithm must explore to prove the optimality of the optimal

complete permutation.

It is not unusual to use this technique in the study of parallel PB&B algorithms (see,

for instance [KRR88]). Although this situation is not realistic in practice, an initial-

ization to ∞ (or −∞ in the case of a maximization problem) is neither realistic in

practice. Indeed, the number of branched nodes that do not belong to the critical

subtree can be reduced by improving the selection strategy or by initializing the

algorithm with a good, suboptimal complete permutation produced by a metaheuris-

tic. However, even with a suboptimal initialization of the algorithm the size of the

explored search space still varies between two parallel resolutions. The initialization

of the algorithm to the optimal cost ensures that the size and share of the search tree

do not depend on the decrease of the best complete permutation found so far and

that the number of explored permutations is the same between the two sequential

or parallel resolutions. This allows a fair comparison between the two versions.

• Sequential PB&B: Table 6.1 shows the number of nodes branched during the reso-

lution of instances Ta021–Ta030 initialized with the optimal complete permutation.

This number represents the total amount of work to be done and ranges from 1.6 for

the smallest to 140.8 million nodes for the largest instance. It also shows the elapsed

execution times for the resolution of these instances with sequential linked-list PB&B

and PB&B@CORE algorithms. It should be noted that the resolution time is not

directly proportional to the number of branched nodes. The node processing speed

(in nodes/sec), also shown in Table 6.1, varies from one instance to another, as a

result of the trees irregularity (the cost of the bounding operation depends on the

depth of a permutation). As the flowshop bounding operation consumes between

97% and 99% of the elapsed time, the choice of the data structure, LL or IVM, has

no significant impact on the elapsed execution time. In order to speed up the explo-

ration process which lasts on average for more than 6 hours, parallel processing is

necessary.
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Inst. Branched nodes Elapsed time (sec) Nodes/sec Rate

×106 CPU LL PB&B PB&B@CPU CPU LL PB&B PB&B@CPU

Ta021 41.4 24489 23889 1691 1734 1.03

Ta022 22.1 11758 11450 1877 1927 1.03

Ta023 140.8 79322 77298 1776 1822 1.03

Ta024 40.1 19753 19367 2028 2069 1.02

Ta025 41.4 25332 24661 1636 1680 1.03

Ta026 71.4 34562 33722 2065 2117 1.02

Ta027 57.1 28295 27535 2018 2074 1.03

Ta028 8.1 4569 4440 1770 1822 1.03

Ta029 6.8 3674 3583 1845 1892 1.03

Ta030 1.6 898 873 1835 1888 1.03

Avg 43.1 23265 22682 1854 1902 1.03

Table 5.3: Number of branched permutations during the resolution of Taillard’s

instances Ta021–Ta030 initialized with the optimal cost (in millions of permutations)

and sequential execution times using LL-based and IVM-based pool management.

5.4.2 Pool management evaluation

Inst. Random 1/2 Honest 1/2 Largest 1/2 Ring 1/2 Ring 1/T

CPU LL PB&B PB&B@CPU Rate CPU LL PB&B PB&B@CPU Rate CPU LL PB&B PB&B@CPU Rate CPU LL PB&B PB&B@CPU Rate LL IVM Rate

Ta021 1275 121 10.6 1304 121 10.8 1276 121 10.6 1284 1727 0.7 3189 121 26.3

Ta022 704 67 10.5 706 67 10.5 682 67 10.1 657 1675 0.4 1393 68 20.5

Ta023 4700 399 11.8 4442 400 11.1 4620 400 11.5 4645 10117 0.5 9009 401 22.5

Ta024 1248 111 11.2 1256 111 11.3 1290 111 11.6 1247 1714 0.4 2529 112 22.6

Ta025 1197 115 10.5 1176 115 10.3 1192 115 10.4 1216 6419 0.2 1965 116 16.9

Ta026 2177 203 10.7 2175 203 10.7 2169 203 10.7 2160 2431 0.9 4498 204 22.1

Ta027 1894 156 12.1 1934 156 12.4 1953 156 12.5 1917 5926 0.3 3556 156 22.7

Ta028 262 24 11.1 261 24 11.0 263 24 11.1 261 1556 0.2 600 25 24.5

Ta029 216 20 11.0 219 20 11.2 220 19 11.3 225 1415 0.2 396 21 19.0

Ta030 54 5 11.1 55 5 10.8 53 5 10.9 54 374 0.1 118 6 20.0

Avg 1373 122 11.3 1353 122 11.1 1372 122 11.2 1367 3487 0.4 2725 123 22.2

Table 5.4: Comparison of CPU LL PB&B and PB&B@CPU in terms of time spent managing

the pool of permutations (in seconds).

Inst. Random 1/2 Honest 1/2 Largest 1/2 Ring 1/2 Ring 1/T

CPU LL PB&B PB&B@CPU Rate CPU LL PB&B PB&B@CPU Rate CPU LL PB&B PB&B@CPU Rate CPU LL PB&B PB&B@CPU Rate LL IVM Rate

Ta021 14.0 14.3 1.02 14.0 14.3 1.02 14.0 14.3 1.02 14.0 13.0 0.93 11.0 14.3 1.30

Ta022 13.7 14.0 1.02 13.7 14.1 1.03 13.8 14.1 1.03 13.8 11.7 0.85 11.4 14.1 1.21

Ta023 13.8 14.1 1.02 13.8 14.0 1.02 13.8 14.0 1.02 13.8 12.1 0.88 11.6 14.1 1.22

Ta024 13.6 13.9 1.03 13.6 13.9 1.03 13.6 13.9 1.02 13.6 11.7 0.86 11.0 13.9 1.27

Ta025 14.2 14.4 1.01 14.2 14.4 1.02 14.2 14.4 1.02 14.1 10.9 0.77 12.9 14.4 1.12

Ta026 13.7 14.0 1.02 13.7 14.0 1.02 13.7 14.0 1.02 13.7 12.9 0.94 11.1 14.0 1.27

Ta027 13.6 13.7 1.01 13.5 13.8 1.02 13.5 13.7 1.02 13.5 11.0 0.82 11.2 13.7 1.22

Ta028 13.9 14.2 1.02 13.9 14.1 1.02 13.9 14.2 1.02 13.8 10.0 0.72 11.1 14.0 1.26

Ta029 13.8 14.1 1.02 13.8 14.1 1.02 13.8 14.0 1.02 13.7 9.7 0.70 12.0 14.0 1.17

Ta030 13.6 13.8 1.02 13.6 13.6 1.00 13.7 13.5 0.98 13.7 9.7 0.71 11.2 13.4 1.19

Avg 13.8 14.0 1.02 13.8 14.0 1.02 13.8 14.0 1.02 13.8 11.3 0.82 11.4 14.0 1.2

Table 5.5: Comparison of multi-core IVM-based and linked-list based parallel PB&B algo-

rithms in terms of speed-up over their sequential counterparts.

In our experiments five work stealing strategies are evaluated, Ring-1/T, Ring-1/2,

Random-1/2, Largest-1/2 and Honest-1/2. As explained in Subsection 5.3.4 the steal-Tth

policy is theoretically not appropriate for the random, largest and honest victim selection
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policies. For each of the ten instances Ta021–Ta030 Table 5.4 shows the time spent man-

aging the pool of permutations. The time spent managing the pool is the cumulated time

spent outside of bound computation. For each work stealing strategy, the table shows the

obtained results for the LL-based approach, the IVM-based approach, and the ratio between

these two approaches. For example when solving instance Ta021 using the Random-1/2

strategy the LL-based approach spends 1275 seconds managing the linked-lists of permu-

tations, while the IVM-based approach spends 121 seconds managing the IVM structure,

which makes the IVM-based pool management 10.6 times faster than the LL-based pool

management.

Except for the Ring-1/2 strategy the IVM-based approach performs on average at least

11 times better than its LL-based counterpart. While the Ring-1/2 is clearly inappropriate

for the PB&B@CPU, this strategy shows good performances, comparable with Random, for

the LL-based approach. Conversely, the steal-Tth granularity policy leads to good results

for the IVM-based approach while it is not well-suited to the LL-based approach. Table 5.5

shows the speed-up over the respective serial algorithm for the different work stealing

strategies and both approaches. Our PB&B@CPU algorithm reaches a reasonable average

speed-up of up to about 14× using 16 threads. For work stealing strategies Largest, Honest,

Random the PB&B@CPU solves the ten flowshop instances on average 14.0 times faster

than the serial PB&B@CORE, while the LL-based multi-core algorithm yields a slightly

inferior average speed-up of 13.8 over its serial counterpart, so the PB&B@CPU shows

a slightly better scalability. Although the use of the IVM structure allows a significant

reduction of the pool management time (for most strategies) this has only a modest impact

on the overall execution time. For all strategies the total execution time for the IVM-based

approach is only 4− 5% faster than its LL-based counterpart (comparing Ring-1/T for IVM

with Ring-1/2 for LL). This is due to the predominant cost of the bounding operation.

5.4.3 Interval-based work stealing evaluation

In this subsection we report more detailed experimental results comparing the five pro-

posed work stealing strategies. For each strategy and both approaches, CPU LL PB&B and

PB&B@CPU, Table 5.6 shows the time spent by threads waiting for new work units. The

waiting time is the cumulated time, for all threads, that elapses between the moment an

idle thread starts searching for a victim and the reception of a non-empty interval or set of

nodes, i.e. a successful steal attempt. These measured time intervals completely cover the

time a victim thread is answering the request. The double of this waiting time is therefore

an upper bound for the time spent outside of useful work, i.e. waiting and communication

time.
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For example, using the Random strategy and solving instance Ta021, LL-based threads

wait 4.67 seconds for new nodes, which is 15.9 times longer than IVM-based threads, which

wait 0.29 seconds for new intervals. For all instances and both approaches, the Largest

strategy results in the lowest waiting time, between 0.10 and 0.17 seconds. The Random

and Honest strategies result in longer waiting times which, however, remain below < 0.5

seconds for all tested instances. For all these three strategies the average waiting time for

the LL approach is at least 10 times higher. When using the ring topology, if one wants

to keep the waiting time low, then the granularity policy must be chosen in accordance

with the data structure used for the pool management. For instance, using the Ring-1/2

strategy in combination with the IVM approach threads wait on average for 3360 seconds,

which corresponds to ≈ 15% of the of the average serial execution time. Similarly, using

the Ring-1/T strategy in a LL-based PB&B algorithm results in an average waiting time

of 1176 seconds and over 2 million work stealing operations on average. These important

waiting times explain the high pool management times reported for these strategies in

Table 5.4. Choosing the unsuitable granularity policy for the ring topology, i.e. Steal-1/2

for IVM and Steal-Tth for LL, limits the average speed-up over the serial algorithm to 11.3,

respectively 11.4.

It can be seen from Table 5.6 that the waiting time for the IVM-based approach is

much less sensitive to the instance’s size and shape than for the LL-based approach. To

illustrate this, Figure 5.3 shows the number of performed work stealing operations and

the time spent waiting for new work units as a function of the instance size. In order to

analyze the behavior of the proposed work stealing strategies according to varying tree

sizes, the figure shows the averaged values for groups of instances in which the number

of branched nodes is similar: Ta028–Ta030 are considered as a group of small instances,

Ta021, Ta022, Ta024 and Ta025 as medium, Ta026 and Ta027 as large, and finally Ta023

as a very large instance. Figure 5.3 does not show the unsuitable strategies, i.e. Ring-1/2

using IVM and Ring-1/T using LL. In this figure the experimental results for the IVM-based

approach using strategies Random, Honest and Largest are barely distinguishable because

these values are very small compared to the LL-based approach for large instances.

Figure 5.3 illustrates an interesting feature of the IVM-based work stealing strategies.

The resolution of the largest instance Ta023 requires less work stealing operations and

induces less waiting time than the smallest instance Ta030, even though its exploration

lasts 80 times as long. While the LL-based PB&B@CPU algorithm shows a strong variation

in the number of work stealing operations according to the size of the instance being solved,

this correlation is apparently very weak or even absent in the IVM-based algorithm.

The largest policy is also the most costly selection policy in terms of time spent per

victim selection (including the time spent in synchronization on shared data). Selecting
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a victim with the largest policy takes more than twice as much time as with the honest,

and almost 10 times as much as with the random selection policy. However, the total time

measured for victim selection with the largest policy is 13 ms against 3 ms for the random

policy, which corresponds to about 10% of the waiting time for Largest, respectively 1%

of the waiting time for random. As a percentage of the total elapsed time this cost for

the victim selection is certainly negligible – however, if the thread-count is increased the

cost of the Largest and Honest strategies may become important, due to contention on the

shared data structures accessed by the victim selection function.

Inst. Random 1/2 Honest 1/2 Largest 1/2 Ring 1/2 Ring 1/T

CPU LL PB&B PB&B@CPU Rate CPU LL PB&B PB&B@CPU Rate CPU LL PB&B PB&B@CPU Rate CPU LL PB&B PB&B@CPU Rate CPU LL PB&B PB&B@CPU Rate

Ta021 4.67 0.29 15.9 8.95 0.35 25.5 2.84 0.12 24.4 3.98 1610 <0.01 1677 1.11 >100

Ta022 1.89 0.29 6.8 3.69 0.32 11.4 1.07 0.17 6.4 1.49 1609 <0.01 616 1.20 >100

Ta023 7.87 0.30 26.0 15.78 0.44 35.5 6.09 0.13 46.1 6.33 9699 <0.01 3850 1.63 >100

Ta024 2.68 0.25 10.7 3.83 0.28 13.7 0.97 0.16 6.2 3.04 3114 <0.01 1076 0.70 >100

Ta025 3.39 0.33 10.4 3.83 0.34 11.3 1.18 0.13 9.1 3.01 6288 <0.01 670 1.69 >100

Ta026 3.08 0.26 11.9 5.77 0.30 19.0 1.81 0.10 17.3 3.20 2234 <0.01 1983 1.34 >100

Ta027 2.68 0.31 8.7 4.25 0.37 11.4 1.76 0.11 15.8 2.33 5758 <0.01 1365 0.83 >100

Ta028 1.34 0.22 6.2 2.87 0.40 7.1 0.88 0.12 7.2 1.49 1529 <0.01 303 1.02 >100

Ta029 0.85 0.25 3.4 1.60 0.27 5.9 0.48 0.13 3.8 1.51 1392 <0.01 157 1.56 >100

Ta030 0.56 0.25 2.3 1.42 0.39 3.6 0.42 0.13 3.2 1.51 368 <0.01 57 1.25 45.8

Aver. 2.90 0.27 10.6 5.20 0.35 14.9 1.75 0.13 13.9 2.79 3360 <0.01 1176 1.23 >100

Table 5.6: Comparison of multi-core IVM and LL-based parallel PB&B algorithms in terms

of time spent waiting for work units; cumulated waiting time for 16 threads (in seconds)

Figure 5.3: Number of work stealing operations and waiting time for the CPU LL PB&B

and PB&B@CPU using different work stealing strategies.

5.5 Conclusions

In this chapter, we propose a new approach to manage the pools of permutations of a

parallel PB&B algorithm using work stealing parallel strategies. Our new PB&B approach
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aims at reducing the number of work stealing operations and the total execution time of

the algorithm.

To the best of our knowledge, all other parallel PB&B algorithms published in the

literature are based on conventional structures, like linked-lists for the depth first strategy,

to store the permutations of each thread-private pool. Our new approach is based on the

factorial number system, which is a mixed radix numeral system adapted to numbering

permutations, and the use of an IVM structure to manage the permutations of the private

pools.

A work stealing strategy can be defined by its victim selection policy and its granularity

policy. The victim selection policy indicates the thread victim that a thread can steal,

and the granularity policy determines the amount of work stolen by the thread. In this

chapter, five work stealing strategies are defined for the CPU LL PB&B and the PB&B@CPU

algorithm. These strategies are Ring 1/T, Ring 1/2, Random 1/2, Largest 1/2, and Honest

1/2.

The obtained results, on 10 flowshop instances, demonstrate that our new IVM-based

approach outperforms the conventional linked-list based approach in terms of total elapsed

CPU time and performed work stealing operations. Also, compared to the linked-list based

approach, the IVM-based approach allows to reduce the idle time of workers. We have

shown that, especially for large instances, the IVM-based work stealing performs much

less work stealing operations than the LL-based approach..

Moreover, the IVM-based approach, contrary to the linked-list based approach, has

constant and controllable memory requirements. The memory usage pattern is a huge

advantage for many-core architectures, such as GPUs, where the performance depends a

lot on memory usage and memory access patterns. For 20-job instances, more than 100

IVM structures fit easily into 48KB of shared memory available per multiprocessor on most

devices. Although the implementation of a deque, a stack, etc. is theoretically feasible

in CUDA, this type of data structure would necessarily reside in global memory, which is

much slower than shared memory. The introduction of Unified Memory since CUDA 6 is

likely to make the use of linked-lists on the GPU more practical. However, fitting into the

fastest part of the hierarchical GPU memory, the IVM is clearly the better adapted data

structure for the GPU architecture. The next chapter introduces the PB&B@GPU approach

based on the use of IVM and interval concepts on GPU accelerators.
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6.1 Introduction

In this chapter, the PB&B@CPU algorithm is revisited for GPUs. In contrast to the other

existing GPU-accelerated B&B algorithms, this chapter deals with a GPU-centric implemen-

tation of PB&B, meaning that it completely bypasses the CPU. To the best of our knowledge,

our PB&B@GPU algorithm is the first to perform all PB&B operations on the GPU device.

The key idea to achieving this is to use the IVM structure for pool management, which

is much better suited for GPUs than dynamic LL data structure. In addition, the use of

intervals, as work units, makes work stealing strategies on GPUs more efficient. As shown



72 Chapter 6. GPU-centric permutation Branch-and-Bound

in Figure 6.1, the PB&B@GPU approach is very similar to the PB&B@CPU approach. How-

ever, PB&B@GPU differs from PB&B@CPU in several aspects:

• The number of PB&B threads of PB&B@GPU is much higher than the number of

PB&B threads of PB&B@CPU.

Figure 6.1: Overview of the PB&B@GPU approach and its operations.

• The work stealing operation of PB&B@GPU is different from the work stealing

operation of PB&B@CPU; Subsection 6.3.3 describes the work stealing operation of

the PB&B@GPU.

• In addition to the other operations, the PB&B@GPU approach also uses a supplemen-

tary operation called a bound mapping and IVM mapping operations; Subsection

6.3.1 and Subsection 6.3.2 present respectively these bound mapping and IVM map-

ping operations.

• Unlike the bounding operation of PB&B@CPU, where this operation calculates the

set of bounds of all the sub-permutations of a partial permutation, the bounding op-

eration of PB&B@GPU calculates the bound of a single sub-permutation. Therefore,

for each sub-permutation, it is necessary to launch up to N GPU threads, where N

is the size of the permutation problem. Each of these threads calculates the bound
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of a single sub-permutation. In a PB&B@GPU approach with T PB&B threads, it is

possible to run up to N × T threads for a single bounding operation.

• In PB&B@CPU, the operations of the different PB&B threads are run asynchronously.

In other words, in this approach, a PB&B thread may run the branching operation

at the same time when another PB&B thread runs the bounding operation. On the

other hand, in the PB&B@GPU approach, the operations of different PB&B threads

are executed synchronously. It means that, if a PB&B thread of PB&B@GPU executes

a certain operation, then all the other threads perform the same operation. For

example, if a PB&B thread runs the bounding operation, then all the other threads

run this operation. The synchronization between all the operations is represented in

Figure 6.1 by the synchronization points, drawn in green.

This chapter is divided into three main sections. In addition to Section 6.2 and Section

6.3, which respectively describe the data structures and the operations of PB&B@GPU,

Section 6.4 presents the experiments performed to validate PB&B@GPU approach.

6.2 IVM-based Data structures

This section focuses on the data structure of our PB&B@GPU based on IVM. The memory

requirements of the IVM structure are very advantageous for a GPU implementation of

the PB&B algorithm. The required amount of memory and possible data placements in

the hierarchical device memory are discussed in Subsection 6.2.1. The amount of used

memory depends on the number of IVM structures used by the algorithm. This number

also has a direct impact on the degree of parallelism which is analyzed in Subsection 6.2.2.

6.2.1 Memory requirements

Compared to a conventional LL-based approach, the IVM structure allows to reduce the

CPU time and memory required for the storage and management of the pool of permuta-

tions [MLMT14b]. Contrary to LL, the IVM structure is well adapted to the GPU memory

model. Instead of using a variable length queue that requires dynamic memory allocations

and tends to be scattered in memory, the IVM structures are constant in size and need

only one allocation of contiguous memory. For a problem instance with N elements, the

storage of the matrix M requires N2 bytes of memory (for N < 127, using 1-byte integers).

Moreover 3N bytes are needed to store the position, end and branching vectors, 1 byte to

store the depth, and N bytes to store permutations before calling the bounding operation.

In total, the IVM structure requires a constant amount of 1+4N +N2 bytes of memory, i.e.
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481 bytes per IVM for a 20-element instance. It is possible to store only the upper triangular

part of M , requiring 1 + 4N + N(N+1)
2 bytes per IVM, i.e. 291 bytes when N = 20. For

N = 20 it is therefore possible to fit ≥ 100 IVM structures into 48KB of shared memory. In

our PB&B@GPU, only the upper triangular part of M is stored.

From a programming perspective the IVM structures are easy to handle. The compo-

nents of all IVMs are merged into single one dimensional arrays. For instance, solving a

N -element instance using T IVM structures, the matrices are stored in a one dimensional

array matrices of size T × N(N+1)
2 allocated in global device memory. The element M(i, j)

of the kth IVM is accessed by matrices[indexM(i,j,k)], where indexM is a wrapper func-

tion defined as in Equation (6.1) if M is stored as a square and as in Equation (6.2) if the

upper triangular part of M is stored.

indexM(i, j, k) = k ×N ×N + i×N + j (6.1)

indexM(i, j, k) = k × N(N + 1)

2
+ i×N − i(i− 1)

2
+ j (6.2)

For the flowshop problem, the data needed for the computation of the lower bounds

is mostly read-only and require 34.5KB of memory. These data are stored in the constant

memory space, residing in global device memory but accessed through a cache on each

Streaming Multiprocessor (SMX). Some of the data structures used for the bounding may

be loaded to shared memory during the computation of the lower bounds. Concerning the

use of shared memory for those data structures, this chapter follows the recommendations

made in [Cha13], where this difficult choice is examined.

6.2.2 Memory constraint: Number of IVMs

Often, the bounding operation is by far the most time-consuming part of a PB&B algorithm.

In the case of flowshop it amounts for about 97 − 99% [MCB14] of the total execution

time for a sequential PB&B. It is therefore crucial for the performance of our PB&B@GPU

that the parallel bounding operation makes the best use of the GPU resources. The choice

of the number of PB&B processes (=IVMs) to use is therefore guided by its impact on

the performance of the bounding kernel. On the one hand, if too few IVMs participate

in the exploration process, the bounding kernel under-utilizes the GPU. On the other

hand, if too many IVMs are used, then the number of generated permutations per iteration

exceeds the maximum occupancy of the device and the computation of bounds is partially

serialized. The number of permutations generated per IVM per iteration is variable and

unpredictable in shape and size. However, the workload for the bounding kernel can be

roughly estimated. For flowshop instances of 20 jobs, the bulk of permutations is situated at
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depth 10, leading to approximately 20 bound evaluations per IVM and iteration. Supposing

that the number of empty IVMs is low thanks to dynamic load balancing, and given the

approximative number of 20, 000 concurrent threads at full occupancy, the number T of

used IVMs should be around T = 1000.

6.3 Operations

This section introduces the two mapping operations and the work stealing operation.

6.3.1 Bound mapping operation

The shape of the tree explored by a PB&B algorithm is highly irregular and unpredictable,

resulting in an irregular workload, irregular control flow and irregular memory access

pattern. If not addressed properly, these irregularities may cause a low occupancy of the

device, serialized execution of instructions and poor bandwidth usage due to uncoalesced

memory accesses. Both, the application’s memory access pattern and the divergent behav-

ior of threads depend strongly on the chosen mapping of threads onto the data. When

a GPU application runs, each streaming multiprocessor is assigned one or more thread

block(s) to execute. Those threads are partitioned into groups of 32 threads1, called warps,

which are scheduled for execution. CUDA’s single instruction multiple-thread (SIMT) ex-

ecution model assumes that a warp executes one common instruction at a time. Conse-

quently, full efficiency is realized when all 32 threads of a warp agree on their execution

path. However, if threads of a warp diverge due to a data dependent conditional branch,

the warp serially executes each branch path taken. Threads that are not on that path are

disabled, and when all paths complete, the threads converge back to the same execution

path. This phenomenon is called thread divergence and often causes serious performance

degradations. In a very similar way, if the threads in a warp agree on the location of a

requested piece of data, it may be fetched in single cycle, otherwise serialization of the

data accesses occurs. In this subsection the focus is put on reducing thread divergence and

increasing warp execution efficiency by making judicious mapping choices.

Static mapping method

The most straightforward approach probably consists in mapping each thread onto a child

permutation directly from its threadId. This naive and static approach is shown in Algo-

rithm 6. For instance, launching 2 × N ×#IV M threads (line 2), the first N ×#IV M

1We assume using the GK110 model
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threads place unscheduled elements in the beginning, the second N × #IV M threads

in the end. Regardless of the IVM’s state or current depth in the tree, 2 ×N threads are

reserved for each IVM. Each thread is assigned an IVM to work on and an element to

schedule, like shown in lines 4-6 of Algorithm 6. The approach of Algorithm 6 has several

disadvantages. The if-conditionals in line mask many of the launched threads, precisely

2×k threads per father permutation of depth k, plus 2N threads per empty IVM. Moreover,

different lanes in the same warp work on different IVMs, thus thread divergence occurs

due to different values of L1 and L2. If T × N is a multiple of warp-size, then the if-else

conditional (lines 10 and 14) does not cause any thread divergence.

Algorithm 6 Kernel STATIC-BOUND-MAPPING

IN: Fathers (father,L1,L2)

OUT: Lower bounds begin, lower bounds end, sums of lower bounds

1: kernel N A I V E - B O U N D

2: <<< 2×#elements×#IV M threads>>>

3: thId←blockIdx.x*blockDim.x + threadIdx.x

4: if (state[ivm] == not-empty) then

5: if (L1[ivm] < element < L2[ivm]) then

6: if (dir == 0) then

7: swap( schedule, L1[ivm]+1, element )

8: LB-begin[ivm][element]←computeLB( schedule )

9: sum-begin[ivm] += LB-begin[ivm][element]

10: else if (dir == 1) then

11: swap( schedule, L2[ivm]-1, element )

12: LB-end[ivm][element]←computeLB( schedule )

13: sum-end[ivm] += LB-end[ivm][element]

14: end if

15: end if

16: end if

17: end kernel

Remapping method (First step)

Algorithm 7 describes how to build the maps ivm-map and element-map sequentially. How-

ever, sequential execution of this procedure on the device has prohibitive cost, exceeding

25% of the total execution time. The remapping should therefore be built in parallel. The

parallelization of the outer for-loop (Algorithm 7, line 3) is not straightforward, because
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it is unknown at which location the data for each IVM is to be written to. Computing the

prefix-sum of a vector containing the number of elements to be scheduled per IVM allows

its parallelization.

Algorithm 7 Build mapping (serial)

1: kernel S E R I A L P R E PA R E B O U N D

2: running-index← 0

3: for (ivm = 0→ T)) do

4: if (state[ivm] = not-empty) then

5: for (element = L1[ivm] + 1→ L2[ivm]) do

6: ivm-map[running-index]← ivm

7: element-map[running-index]← element

8: running-index++

9: end for

10: end if

11: end for

12: todo← running-index

13: end kernel

Algorithm 8 STEP1-REMAPPED-BOUND-MAPPING

1: for all (non-empty ivm) do

2: todo-per[ivm]← (L2[ivm]-L1[ivm]-1)

3: end for

4: Aux← parallel-prefix-sum(todo-per)

5: prepare-bound<<< #IV M ×#ELEMENTS >>>

6: kernel [ K E R N E L ] P R E PA R E - B O U N D

7: thId← blockIdx.x*blockDim.x + threadIdx.x

8: ivm← thId / N

9: thPos← thId % N

10: if (thPos < todo-per[ivm]) then

11: ivm-map[Aux[ivm]+thPos]← ivm

12: element-map[Aux[ivm]+thPos]← L1[ivm]+1+thPos

13: end if

14: todo←Aux[#IVM]+todo-per[#IVM]

15: end kernel
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The operation prefix-sum is defined as

prefix−sum : [a0 a1 a2 ... an] 7−→ [0 a0 (a0+a1) (a0+a1+a2) ...
n−1∑
i=0

ai].

Efficient parallel CUDA implementations for this operation have been proposed in the

literature [HSO07]. It is also available in the CUDA Thrust library. However, for relatively

small vectors it may be preferable to reimplement the operation, in order to avoid casting

the input data to a thrust::device_ptr.

A first building step consists in filling an array todo-per-IVM with L2−L1−1 for each IVM.

The element R of prefix-sum(todo-per-IVM) indicates at which position of ivm-map and

element-map the data of an IVM R starts to be written. The complete parallelized building

of the mapping is shown in Algorithm 8. The building of the mapping ranges over several

kernels.

Remapping method (Second step)

Algorithm 9 Kernel STEP2-REMAPPED-BOUND-MAPPING

in:fathers (father,L1,L2), ivm-map, element-map

out:lower bounds begin, lower bounds end, sums of lower bounds

1: kernel R E M A P P E D - B O U N D

2: <<< 2× todo threads>>>

3: thId←blockIdx.x*blockDim.x + threadIdx.x

4: dir←thId mod 2

5: ivm←ivm-map[thId/2]

6: element←element-map[thId/2]

7: schedule←fathers[ivm]

8: toSwap←(1-dir)*(L1[ivm]+1) + dir*(L2[ivm]-1)

9: swap( schedule, toSwap, element )

10: LB[dir][ivm][element]←computeLB( schedule )

11: sum[dir][ivm] += LB[dir][ivm][element]

12: end kernel

The goal of the remapping procedure which prepares the bounding is to build two maps

ivm-map and element-map which contain, for todo threads, the information which IVM

to work on and which element to swap. Using an even/odd pattern these maps provide

sufficient information for both groups of threads. After building these maps, the bounding

kernel (as shown in Algorithm 9) is called with 2× todo threads, where:
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• threads 0 and 1 work on IVM ivm-map[0], swapping element element-map[0] respec-

tively to begin/end,

• threads 2 and 3 work on IVM ivm-map[1], swapping element element-map[1] respec-

tively to begin/end,

• ...

• threads 2×todo−2 and 2×todo−1 work on IVM ivm-map[todo-1],...

The remapped bounding kernel is launched at each iteration with a kernel configuration

of (2 ∗ todo/blockDim) + 1 blocks (simplified in Algorithm 9) which is adapted to the

workload. The proposed approach is known as stream compaction in the literature. It

reduces the number of idle lanes per warp as well as the number of threads launched per

kernel invocation. However, any thread divergence resulting from the begin-end distinction

should also be avoided, as this involves a serialization of the costly computeLB procedure.

To achieve this, the bodies of the if-else conditional (Algorithm 6) can be merged into a

single one (Algorithm 9, lines 8−11). Two different arguments of the same type, occurring

on the right-hand side of a statement can often be re-factored into a single one, like in

Algorithm 9, line 8. The different arrays on the left hand side are merged into larger ones.

This allows to merge the statements of lines 8,9 and 12,13 of Algorithm 6 into single

statements (Algorithm 9, lines 10,11). The separation of data within these merged arrays

is assured by indexing with the variable dir, which evaluates differently for even/odd

threads.

6.3.2 IVM mapping operation

The IVM management kernels (i.e work stealing, branching, selection and pruning) require

a single thread per IVM. The naive approach consists in launching T threads and mapping

thread k on IVM k, for k = 0, 1, ..., T − 1 (see Algorithm 10). Given the high number

of conditional instructions in the IVM management kernels it is very unlikely that all 32

threads in a warp follow the same execution path if this mapping is used. Indeed, in

these kernels control flow divergence results from different IVM states, different numbers

of scheduled elements at both ends of the active permutation and from the search for

the next node which requires an unknown number of iterations. An alternative mapping,

shown in Algorithm 11, can solve this issue. An entire warp is assigned to each IVM, so all

threads belonging to the same warp follow the same execution path. This strategy goes

in the opposite direction of the stream compaction approach proposed for the bounding

kernel. As only one thread per IVM is needed, all lanes in a warp except this first are
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masked. Thus, the kernels are launched with 32× as many threads as necessary (i.e. 32×
T). Using this mapping, the overhead induced by thread divergence completely disappears

(although technically, the disabled threads are diverging at line 5 of Algorithm 11). The

drawback is obviously the launching of 31T idle threads. However, in Subsection 6.2.2 we

argued that T should be chosen around T = 1000, which is small compared to #SM×(max.

threads per SM). This, and the fact that the control flow irregularity is very high, justifies

the approach of using 1 warp per IVM. Moreover, using only 4-8 IVM structures per block

allows to store them into shared memory without limiting the theoretical occupancy of

the device. The loading of data from global to shared memory can be done very efficiently,

using the additional threads which are not used for computation.

Algorithm 10 Kernel THREAD-IVM-MAPPING

1: kernel<<<#IVM threads>>>

2: ivm←blockIdx.x*blockDim.x + threadIdx.x

3: do-something-with[ivm]

Algorithm 11 Kernel WARP-IVM-MAPPING

1: kernel<<<warpsize×#IVM threads>>>

2: thId←blockIdx.x*blockDim.x + threadIdx.x

3: ivm←thId/32

4: thPos←thId%32

5: if (thPos == 0) then

6: do-something-with[ivm]

7: end if

6.3.3 Work stealing operation on GPU

Work stealing is well adapted for irregular applications. Like threads of a PB&B@CPU,

the IVM structures must share their work units. In a multi-core CPU environment, a

thread that runs out of work becomes a thief that attempts to steal a portion of work

from a victim thread which is selected according to a victim selection strategy. The same

principle can be applied to the PB&B@GPU. The proposed load balancing strategy is

conceptually different in the sense that an IVM-based PB&B process does not necessarily

correspond to any particular thread but only to a segment of data. Secondly, compared to

PB&B@CPU work stealing operation, the work stealing PB&B@GPU operations between

IVMs are lock-free and performed synchronously. The kernel implements the 1D-Ring

work stealing strategy. Algorithm 12 shows the pseudo-code of this procedure. Although
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designed for PB&B@CPU, the 1D-Ring strategy suits the synchronous execution mode

of the GPU. The T IVM structures are numbered R = 0, 1, ..., T − 1 and are arranged

as an oriented ring, i.e. such that IVM 0 is IVM (T − 1)’s successor. Each empty IVM R

tries to steal work from its predecessor (R − 1)%T . This operation can be performed in

parallel, as the mapping of empty IVMs onto their respective victims is one-to-one. If the

selected victim has a non-empty interval, then all but 1/T th of its interval is stolen. The

function computeNewPos (line 6) receives the victim’s interval [A,B[ as input and returns

a point M = (1− 1
T )A+ 1

TB. The division of intervals can be performed directly on the

factoradic numbers without explicitly converting them to decimals. The IVM which got

stolen continues the exploration of the remaining interval [A,M [, while the stealing IVM

needs to initialize its matrix at the new position vectorM before starting the exploration of

[M,B[. Its state variable is therefore set to initializing (line 10). Each IVM cycles through

three distinct states, from exploring to empty to initializing and back to exploring. An IVM

can be in one of these three states at any given stage of the algorithm. Depending on

the state of an IVM, different actions are performed during an iteration. In this kernel

one thread per IVM is required. More parallelism can hardly be exposed. However, more

threads can eventually be used to assign vectors in one parallel operation (lines 7− 9).

Algorithm 12 Kernel WORK-STEALING

1: kernel W O R K - S T E A L I N G

2: thId← blockIdx.x*blockDim.x + threadIdx.x

3: ivm← map(thId)

4: victim← (ivm-1)%T

5: if (state[ivm]=empty .and. state[victim]=exploring) then

6: new-pos← computeNewPos( pos[victim], end[victim] )

7: pos[ivm]← new-pos

8: end[ivm]← end[victim]

9: end[victim]← new-pos

10: state[ivm]← initializing

11: end if

12: end kernel

The topology used in the work stealing strategy, already described, is a unidirectional

1-dimensional ring (1D-Ring). The maximal distance between two IVMs in the 1D-Ring is

T . Work units propagate through the ring as they are passed downstream from exploring

to empty IVMs. As most of the explored PB&B nodes are actually contained in a relatively

small interval, the workload tends to be concentrated in some part of the ring. Thus,
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workers situated far away from the source are only kept busy if the overall workload is

large enough. With an increasing number T of IVM structures it becomes more likely that

no work is dripping down to some of the workers. A topology that reduces the maximum

distance between two workers should therefore improve the scaling with T .

The 1D-Ring can be easily generalized to a 2D-Ring, or torus, topology. Instead of using

a single ring, IVMs are arranged in R rings of ring-size C = T/R. In a first step each empty

IVM attempts to steal from its left neighbor within the same ring. A second step connects

the rings between each other: each empty IVM selects the IVM with the corresponding ID

in the preceding ring (with ring R−1 being connected to ring 0). The roles played by both

directions are symmetric. Ideally, the number R is therefore such that R =
√
T , which

is only possible if T is square. In that case the 2D-Ring reduces the maximum distance

between two IVMs to 2
√
T . If C 6= R, then the diameter of the 2D-Ring is (C +R).

The 2D-Ring topology is implemented by two subsequent calls of kernel work stealing

(Algorithm 12), where only line 4 of the algorithm needs to be modified. In particular, line

4 of Algorithm 12 is replaced by the following.

In Step 1 IVM i selects victim(i) =

i− 1, if i mod C 6= 0

i+ (C − 1), otherwise

In Step 2 IVM i selects victim(i) =

i− C, if i > (C − 1)

(R− 1)C + i, otherwise

Figure 6.2 illustrates the 2D-Ring topology in the form of a 2D grid. A torus, used in the

2D-Ring work stealing strategy is obtained by connecting the upper with the lower and the

leftmost with the rightmost cells. Similarly, the topology can be extended to a hypercube,

which is used for instance in [SKK+11] for unbalanced tree search.

Figure 6.2: Illustration of 2D-Ring topology for T IVMs using R rings of ring size C.
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6.4 Experiments

In this section the performance of PB&B@GPU is analyzed for different mapping choices,

a varying number of IVMs and different work stealing strategies. In Subsection 6.4.2, the

two strategies for the bound mapping operation are evaluated. Subsection 6.4.3 compares

the two mapping strategies for the IVM mapping operation. The algorithm’s scalability and

load balancing issues are examined in Subsection 6.4.4. Finally, our PB&B@GPU algorithm

is compared to the GPU LL PB&B algorithm presented in [CM13].

6.4.1 Experimental protocol

• Hardware testbed: All the experiments are run on a computer equipped with an

NVIDIA Tesla K20m GPU based on the GK110 architecture. The device is composed

of 2496 CUDA cores (clock speed 705MHz). Its maximum power consumption is

225W. The CPU is a 8-core Sandy Bridge E5-2650 processor.

• Software tools: Version 6.5.14 of the CUDA Toolkit is used. The operating system

installed is a CentOS 6.5 Linux distribution. For the evaluation of the elapsed exe-

cution time the UNIX time command is used. The duration of each CUDA kernel

and profiling of the kernels is done with the nvprof command line profiler. In order

to reduce the profiling time, sample data was collected every 100 iterations of the

algorithm.

• Configuration choices: The chosen size for the thread blocks is 128. The config-

urable size of the device’s shared memory/L1 cache is set to 48/16KB for kernels

except bound, where the opposite configuration 16/48KB is used. For the compari-

son of the mapping strategies the number of used IVM structures is set to T = 768,

according to preliminary experiments. The best mapping found in Subsection 6.4.2

and Subsection 6.4.3 is used to determine an optimal value for T and the better

work stealing strategy in Subsection 6.4.4.

• Problem instances: In our experiments, the validation is performed using the 10

instances where the number of machines and the number of jobs are equal to 20

which belong to the group 20x20. When an instance is solved twice using a PB&B

performing a parallel tree exploration, the number of explored permutations is often

different between the two resolutions, because the order of exploration varies. To

compare the performance of two PB&B algorithms, the number of explored permu-

tations should be exactly the same between the different tests. Therefore, we choose

to always initialize our PB&B by the optimal complete permutation of the instance
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to be solved. This initialization ensures that the tree-shape does not depend on the

decrease of the best complete permutation found so far and that the number of

explored permutations is the same between the two resolutions. Table 6.1 shows the

number of branched nodes during the resolution of instances Ta021-Ta030 initialized

with the optimal complete permutation. This number represents the total amount of

work to be done and ranges from 1.6 (for the smallest) to 140.8 million nodes (for

the largest) instance.

Instance Ta021 Ta022 Ta023 Ta024 Ta025 Ta026 Ta027 Ta028 Ta029 Ta030 Average

#Nodes (in millions) 41.4 22.1 140.8 40.1 41.4 71.4 57.1 8.1 6.8 1.6 43.1

Table 6.1: Number of branched permutations during the resolution of Tail-

lard’s instances Ta021-Ta030 initialized with the optimal cost (in millions of

nodes).

6.4.2 Evaluation of bound mapping schemes
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Figure 6.3: Execution time for instances Ta021-Ta030 for thread data mappings

static (S) and remap (M) for the kernel bound.

In this subsection the two mapping schemes for the bounding kernel, presented in Subsec-

tion 6.3.1, are compared to each other in terms of elapsed execution time of the algorithm.

The first, using the remapping shown in Algorithm 9 is referred to as remap, the second,

using the static mapping of Algorithm 6, as static. Figure 6.3 shows the total elapsed time

for solving instances Ta021-Ta030. For both mappings and for each instance it shows the

portion of time spent in the kernel bounding, in the IVM management kernels (i.e work

stealing, branching, selection and pruning) as well as in the remapping operation (for
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remapping). However, as the building of the mapping consumes only 0.9% of computation

time, the latter portion is barely visible in Figure 6.3. Table 6.2 shows total elapsed time

as well as the time spent in the different operations of the algorithm as an average over

the 10 instances Ta021-Ta030.

Bound mapping Wall-clock bounding IVM management Bound mapping

method time operation operations operation

(sec) (sec) (%) (sec) (%) (sec) (%)

Static 696.4 632.9 89.4 63.5 10.6 0.0 0.0

Remapping 395.7 329.1 82.0 63.4 17.1 3.4 0.9

Table 6.2: Average elapsed time (in seconds) and average repartition of execution

time among bounding, IVM management and remapping operations. Average

taken over instances Ta021-Ta030.

The compacted mapping remap is clearly advantageous as it reduces the average time

spent in the bound kernel by a factor 1.9. As the bounding operation amounts for more

than 80% of the total execution time, the latter decreases by a factor 1.7. The overhead

induced by compacting the mapping at each iteration is largely compensated by these

performance gains. Indeed, thanks to the parallelization of this operation using the parallel

prefix sum, the remapping operation amounts for less than 1% of the elapsed time. For

comparison, using the CPU for the remapping, it amounts for about 7% of the algorithm’s

total execution time, mainly because of the transfer of the maps back to the device.

Using the more compact mapping remap instead of static improves the control flow

efficiency2 (CFE) of the kernel. For static the average CFE is 0.43, meaning that for an

executed instruction on average more than half of the execution slots are wasted. For the

mapping remap the average CFE is 0.83 - the launched warps are used almost twice as

efficiently. The number of warps launched at each kernel call is 960 for mapping static,

which exceeds theoretical maximum of 13× 64 = 832 resident warps for the K20m. The

average number of warps launched with mapping remap is 300 (average per kernel call

and per instance), the average maximum (per instance) being 825 warps and the minimum

4. These results show that it is a high priority optimization to adapt the configuration of

the algorithm’s most time-depending part to the varying workload.

2defined as CFE =
not_predicated_off_thread_inst_executed

32*inst_executed
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Figure 6.4: Execution time for instances Ta021-Ta030 for different mapping choices in

IVM management kernels.

6.4.3 Evaluation of IVM mapping schemes

In this subsection the two mapping schemes presented in Subsection 6.3.2 are evaluated

and compared to each other. The kernels concerned by these mapping schemes are the

IVM management kernels (i.e work stealing, branching, selection and pruning). Figure

6.4 shows the time spent for completing the exploration with both mapping schemes.

Both, version one-thread-per-IVM (M1) and version one-warp-per-IVM (M2) use the same

bounding kernel (with remapping). Although the time spent managing the IVM structures

is moderate compared to the bounding operation, the mapping M2 allows a reduction of

the total execution time by a factor 1.1 compared to the mapping M1. With respect to M1,

mapping M2 decreases the share of IVM management operations from 18% to 7.5%. Table

6.3 shows the average duration per call of the kernels bound (in msec), branching and

selection (in µsec) and their respective share of the elapsed time (in %). The kernels

pruning and work stealing amount for at less than 2% of total execution time, so they

are not evaluated.

The mapping M2 allows to use the supplementary lanes for efficient loading of the IVM

structures into shared memory. In order to dissociate the impact of shared memory usage

from the impact of remapping, the profiling of mapping M2 is performed with and without

shared memory usage.
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IVM mapping Branching Selection Bounding Wall-clock

method operation operation operation time

(µsec) (%) (IRO%) (µsec) (%) (IRO%) (µsec) (%) (sec)

1 thread/IVM 380 10.0 40.6 168 4.4 40.3 3.07 82.0 395.7

1 warp/IVM 130 4.0 14.0 94 2.8 14.7 3.07 91.1 364.2

1 warp/IVM (shared) 85 2.6 7.9 79 2.4 12.4 3.06 92.5 356.6

Table 6.3: Duration of different kernels per call (in µsec or msec), percentage of

total elapsed time (%) and instruction replay overhead (IRO%), total execution

time of PB&B@GPU. Average values for instances Ta021-Ta030.

Table 6.3 also shows the instruction replay overhead (IRO%)3, which is a measure for

instruction serialization (due to memory operations only). These results show that the

fact of spacing the mapping to 1 warp=1 IVM also substantially improves the memory

access pattern. It should be noted that the metric control flow efficiency, used in Subsection

6.4.2 drops from a poor average 0.22 for M1 to 0.03 ≈ 1/32 for M2 - as intended. Table

6.4 shows, for the different kernels, the number of branch instructions executed (per call

average) and the number of branches that are evaluated differently across a warp. The

results show that, as intended, undesired thread divergence completely disappears. Only

instance Ta022 is evaluated as one instance sufficiently illustrates the behavior.

IVM mapping Branching Selection Work stealing Pruning

method operation operation operation operation

Branch Diverge Branch Diverge Branch Diverge Branch Diverge

1 thread/IVM (M1) 11592 802 5875 860 851 15 404 121

1 warp/IVM (M2) 59921 1536 62020 768 3655 0 3131 768

=2×#IVM =#IVM =#IVM

Table 6.4: Per-call average of branch instructions executed and diverging branches

(incremented by one per branch evaluated differently across a warp). Instance

Ta022.

The divergent_branch counter indicates that the average number of diverging branches

is a multiple of the number of IVMs. Indeed, the counter increments by one at the instruc-

tion if(thId%32 == 0) (Algorithm 11, line 5) which masks all but the leading thread in

each warp. However, as the remaining 31 lanes of the warp are simply waiting for lane

0 to complete, no significant serialization of instructions occurs. Besides showing that

the spaced mapping M2 is better adapted to the IVM management kernels, the results

presented in this subsection illustrate that performance metrics for thread divergence or

control flow must be interpreted very carefully.

3defined as IRO% = 100%× instructions_issued−instructions_executed
instructions_issued
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6.4.4 Evaluation of work stealing schemes

In this subsection the behavior of the algorithm according to the instance sizes and its

scalability with the number of used IVM structures (T ) is examined. The algorithm’s per-

formance for problem instances of different sizes is compared in terms of node processing

speed (#branched nodes/second), which is computed from wall-clock time. Obviously,

using more explorers can only be beneficial if they can be supplied with enough work.

Therefore, the relationship between instance size, the node processing speed and T needs

to be studied for both proposed work stealing strategies, as they strongly impact this re-

lationship. For the experimental study of scalability only the best version of the previous

subsection is considered, i.e. the one using parallel remapping for the bounding kernel and

the spaced mapping M2 for the management kernels. Another factor that has a significant

impact on the algorithm’s performance is the irregularity of the explored PB&B tree, which

is very hard to quantify. In order to obtain a clearer dissociation between tree size and tree

irregularity, the average node processing speed for instances of similar size is considered.

The instances have been grouped as shown in Table 6.5.

Instance #branched Flowshop Average

group nodes Instances #branched nodes

small < 10M Ta028,Ta029,Ta030 5.5M

medium ∈ [10M, 50M] Ta021,Ta022,Ta024,Ta025 36.3M

large ∈ [50M, 100M] Ta026,Ta027 64.3M

huge > 100M Ta023 140.8M

Table 6.5: Groups of similar sized flowshop instances (20 jobs × 20 machines)

and the corresponding average number of nodes branched when initialized with

the optimal complete permutation.

Figure 6.5 shows the average node processing speed for these four groups of instances,

according to different values of T and work stealing strategies 1D-Ring and 2D-Ring. T

is chosen as a multiple of 64, as the GK110 architecture allows up to 64 warps per SM

and the management kernels reserve one warp per IVM. The number of rings R in the

2D-Ring work stealing strategy is chosen such that R divides T while being as close to
√
T as possible – the goal being to approach the ideal configuration where R equals the

ring-size C.
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Figure 6.5: Average node processing speed for groups of instances small, medium,

large, huge (Table 6.5), and T = k · 256 (k = 1, 2, ..., 6).

Left: 1D-Ring work stealing ; Right: 2D-Ring work stealing with dimensions R×C
= 16× 16, 16× 32, 24× 32, 32× 32, 32× 40 and 32× 48

From Figure 6.5 one can see that the node processing speed for small instances is lower

than for intermediate sized instances, regardless of parameter T or the used work stealing

strategy. This is partially due to warm-up and shut-down phases of the parallel exploration,

which, for small instances last relatively long with respect to the total exploration time. In

these phases a low overall workload limits the degree of parallelism and the work stealing

mechanism must handle sharp variations of the workload. Using the 2D-Ring topology sig-

nificantly improves the nodes-per-second rate for small instances, as the reduced diameter

of the 2D-Ring accelerates the distribution of the workload. Another reason for the poorer

performance for small instances is that the finer granularity of allocated tasks per IVM does

not allow one to hide the initialization costs as efficiently as for larger instances. Similarly,

the nodes-per-second performance for medium instances is below the performance for

large and huge instances. As the groups large and huge do only count one, respectively two

members, the results for these groups must be interpreted more carefully – however, they

suggest that the node processing speed for large or very large instances is less influenced

by the tree’s size. The size of the instance also impacts the scalability of the algorithm with

T , especially when the 2D-Ring work stealing strategy is used. Using the 2D-Ring topology,

for small sized problems the best value for T improves performance to ≈ 120k nodes/sec

from ≈ 85k nodes/sec for the worst T , while for large sized problems the node processing

speed doubles from ≈ 105 to ≈ 210k nodes/sec, doing the same comparison.

Comparing both work stealing strategies, one can see from Figure 6.5 that the 2D-Ring

topology improves the scalability of the algorithm. Indeed, for the 1D-Ring almost no

performance is gained above T = 768 because additional workers are left idle or ineffi-

ciently initializing. In contrast, the 2D-Ring strategy allows one to use up to T = 1280

IVMs efficiently. For T = 1536, and only when using the 2D-Ring work stealing strategy,
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performance drops significantly for all instance sizes. The most likely explanation for this

performance drop is that the computation of the bounds is partially serialized due to

hardware limitations. On average, each node branching leads to the evaluation of approx-

imately 20 bounds, for all considered instance sizes. So, if all T = 1280 IVMs are busy,

25600 bounds are evaluated per average iteration, which is close to the hardware limit of

26624 concurrent threads (13 SM ×64 warps/SM ×32 threads/warp) for the GK110 ar-

chitecture. Therefore, supposing a well balanced workload, no performance improvement

can be expected from increasing T beyond 1280 on this device and at constant tree size.

Figure 6.6: *IVM-efficiency= branched nodes
iterations×#IVM, measures the overall share of IVM struc-

tures in the exploring state. An IVM efficiency of 1 indicates that each IVM branches a

node at each iteration.

However, Figure 6.6 shows that there is some margin left to increase the percentage of

busy explorers. In order to measure the overall efficiency of the work stealing strategies,

the number of branched nodes is divided by (#iterations×#IVM), which gives a measure

for the portion of IVMs doing meaningful work. If this IVM efficiency equals 1, then each

IVM branches a node at each iteration – if it equals 0, then all IVMs remain idle for an

infinity of iterations. An IVM efficiency of 0.5 indicates that an average IVM spends half of

its iterations idle or initializing. The results shown in Figure 6.6 confirm that the 2D-Ring

work stealing allows to keep more explorers busy. Moreover, the fact that at T = 1536

no sharp degradation of the IVM efficiency occurs, confirms that the performance drop at

T = 1536 is due to hardware limitations. One can also see in Figure 6.6 that for small and

medium instances the IVM efficiency is lower than for larger instances. This explains the

relatively poorer performances for these instances. The smaller the instance being solved,

the likelier it becomes that a given IVM frequently steals intervals that are explored within

a few or zero iterations. In that case, the cost of initialization is not covered by meaningful

work. Without any a priori knowledge concerning the amount of work contained in a

given interval, it seems difficult to resolve this problem.

Concerning the algorithm’s sensitivity towards the irregularity of the tree structure,

the performances obtained when solving same sized instances are compared in Figure 6.7.
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Figure 6.7 zooms on the scalability with T of the three instances with ≈ 40M nodes. For

all three instances the performance drop increasing the number of IVMs from T = 1280 to

T = 1536 is clearly visible.

Figure 6.7: Scaling with T of the medium sized instances

Figure 6.7 also shows that the instance irregularity impacts performance significantly.

Exploring a roughly equal number of nodes, the peak node processing speed attained for

instance Ta024 is 202k nodes/sec while it remains below 175k nodes/sec for instances

Ta021 and Ta025. However, in sequential execution Ta024 has the best nodes-per-second

rate of these three instances, which means that the performance gap is not due to a

higher number of nodes in the upper part of the tree (which are more costly to evaluate).

The performance variety under same sized instances rather seems to be due to sharper

workload variations for instances Ta021 and Ta025. Although for the three instances the

proposed 2D-Ring strategy scales nicely up to 1280 IVM structures, it apparently has a

moment of inertia which makes the algorithm sensitive to rapid workload variations.

Maybe this gap can be closed with a further improved work stealing strategy, in the sense

that the work stealing strategy should deliver a faster response to those variations. This

is a difficult task, in particular because IVM needs to go through initialization after the

reception of a new work unit.

6.4.5 Comparison of PB&B@GPU and GPU LL PB&B

In this subsection the best version (according to the previous experimentations) of the

PB&B@GPU is compared to the GPU-accelerated PB&B presented in [CM13] which uses

a conventional LL for the storage and management of the pool of permutations. Like the

PB&B@GPU, GPU LL performs a depth best-first search, retaining after each branching the

better of two generated pools. Moreover, both algorithms use the same device function

to compute the lower bounds for a given permutation. Table 6.6 shows the elapsed time

for solving each of the ten 20-job instances, as well as the number of branched nodes

per second, in order to take into account the size of the instances. The average time

spent by the PB&B@GPU for exploring the ten instances is 229.7 seconds, while the GPU
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LL PB&B algorithm requires on average 865.6 seconds for the same tasks. In terms of

node processing speed, the PB&B@GPU algorithm branches on average 3.3 times more

nodes per second than its LL counterpart. The PB&B@GPU outperforms GPU LL PB&B

by at least a factor 2 for all ten instances. The highest nodes-per-second performance is

attained for instance Ta027, branching 213, 000 nodes/sec, which is almost 4 times more

than the highest rate attained by the LL-based algorithm. As examined in Subsection 6.4.4,

for the PB&B@GPU algorithm the node processing speed varies from one instance to

another, depending on the instance’s size and irregularity. In contrast, as the GPU LL PB&B

algorithm regularizes the workload by dynamically adapting the size of the offloaded pools

it provides an almost constant node processing speed for all instances. This performance

variation is discussed in Subsection 6.4.4.

Flowshop GPU LL PB&B PB&B@GPU Ratio

instance elapsed (k nodes/sec) elapsed (k nodes/sec)

Ta021 833 49.7 242 171.1 3.4

Ta022 415 53.3 134 163.6 3.1

Ta023 3089 45.6 740 189.6 4.2

Ta024 738 54.3 200 202.2 3.7

Ta025 865 47.9 239 173.1 3.6

Ta026 1292 55.3 348 205.6 3.7

Ta027 1094 52.2 268 213.3 4.1

Ta028 171 47.4 53 152.0 3.2

Ta029 125 54.4 56 121.4 2.2

Ta030 34 47.1 17 94.6 2.0

Average 865.6 50.7 229.7 168.6 3.3

Table 6.6: Elapsed execution time and number of branched

nodes per second (in 1000 nodes/sec) for the PB&B@GPU and

the GPU LL PB&B [CM13]. The PB&B@GPU algorithm uses

the 2D-Ring work stealing strategy and T = 1280 IVMs for all

instances. Results for instances Ta021-Ta030.

6.5 Conclusions

This chapter proposes a GPU-centric PB&B algorithm which performs all PB&B operations

on the GPU. During the exploration of the PB&B tree, the CPU core is only used for

launching the CUDA kernels in a loop until a boolean variable, which the CPU receives

at each iteration from the GPU, indicates the end of the algorithm. To the best of our

knowledge, our PB&B@GPU algorithm is the first one that does not rely on the transfer of

pools of permutations between host and device.

The proposed approach is based on the IVM structure, better adapted to the GPU than
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LL-based data structures, which are conventionally used for the storage and management

of the pool of permutations. The algorithm has two levels of parallelism. On a lower level it

efficiently uses up to 1280 IVM structures to perform the branching, selection and pruning

operations in parallel, exploring different parts of the PB&B tree simultaneously. For each

exploring IVM the bounding operation is in turn parallelized, leading to an increased

overall degree of parallelism in the bounding operation. At the junction of the two levels

a remapping operation is introduced in order to adapt the configuration and the mapping

of the bounding kernel to the varying workload. While the mapping for the bounding is

compacted, the mapping in the management phase – characterized by a very high number

of data dependent conditional instructions – is spaced, adding idle threads to the kernel.

As a result, the bounding operation is accelerated on the one hand, as the control flow

efficiency is improved – on the other hand, in the IVM management phase the opposed

strategy is better adapted, as it reduces thread divergence and improves memory accesses.

We have proposed two work stealing strategies for work load balancing and analyzed

the scalability of our algorithm with respect to both strategies. The reported experimen-

tal results show that the performance of the proposed algorithm depends crucially on

the choice of the mapping, as well as on the used work stealing strategy. The proposed

PB&B@GPU algorithm explores the PB&B trees of 10 Taillard’s flowshop instances Ta021-

Ta030 on average with a 3.3 times higher node processing speed than a GPU LL PB&B

algorithm. For all instances Ta021-Ta030 the PB&B@GPU algorithm outperforms the GPU

LL PB&B algorithm at least by a factor 2.0 and by up to a factor 4.0 on large instances,

where our PB&B@GPU algorithm reaches its best performances.
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7.1 Introduction

This chapter presents a parallel distributed hybrid version of the PB&B algorithm (PB&B@CLUSTER)

for large-scale heterogeneous clusters, integrating multi-core CPU and graphics processing

units (GPUs). PB&B@GPU is based on the B&B@Grid framework [MMT07c]. B&B@Grid

allows to efficiently partition the PB&B tree search among distributed computing nodes,

which host one or several workers. Each worker explores a portion of the search space (an

interval) using a sequential PB&B. Thus, while compute nodes in B&B@Grid may be com-

posed of multi-core processors, the latter are seen as a collection of single-core processors.

Therefore, B&B@Grid is revisited with the goal of adapting it to heterogeneous computing

platforms.
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This chapter is divided into three main sections. Section 7.2 defines a set of operators

used to handle interval-lists. Section 7.3 presents the operations of the coordinator. Section

7.4 describes the experiments carried out to validate the PB&B@CLUSTER approach.

7.2 Interval-list operators

In our approach, there are two types of operators, namely the interval-list and interval

operators. The interval-list operators are based on interval operators. Before presenting

the interval-list operators, this section first describes the interval operators.

7.2.1 Interval operators

Like the PB&B@CPU and PB&B@GPU approaches, a work unit, in the PB&B@CLUSTER

approach, is also an interval, and each interval corresponds to an IVM. An interval can

be seen as a sorted set of positive factorial integers. In order to define our approach, we

have introduced some operators on these intervals. As an interval is a set of integers,

these operators are inspired by operators known in set theory. The interval operators are

therefore the intersection, the subtraction, the right and left divisions, the cardinality and

the norm. Let’s assume:

• I: interval space;

• L: interval-list space;

• N and N+: respectively the space of integers and strictly positive integers;

• [a, b[: an interval;

• [a1, a2[ and [b1, b2[, two other intervals;

• n: a positive integer;

The interval operators and the empty interval are defined as follows:

• Intersection operator (∩):

I× I→ I

[a1, a2[∩[b1, b2[ 7→ [max(a1, b1),min(a2, b2)[

• Substraction operator (\):

I× I→ L

[a1, a2[\[b1, b2[ 7→ {[a1,min(a2, b1)[, [max(a1, b2), a2[}
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• Right division operator (÷):

I× N+ → I

[a, b[÷n 7→


[a, b[, if (b− a) ≤ ε

[b− b(b− a) 1ne, b[, if (b− a) > ε

0, otherwise

• Left division operator (÷):

N+ × I→ I

n÷ [a, b[ 7→


[a, b[, if (b− a) ≤ ε

[a, a+ bn−1n (b− a)e[, if (b− a) > ε

0, otherwise

• Cardinality operator (|.|):

I→ N

|[a1, a2[| 7→

1, if a1 < a2

0, otherwise

• Norm operator (‖.‖):

I→ N

‖[a1, a2[‖ 7→

a2 − a1, if a1 < a2

0, otherwise

• Emptiness value (∅):

([a, b[= ∅) ⇐⇒ (‖[a, b[‖ = 0)

7.2.2 Interval-list operators

A series of intervals form an interval-list. In our approach, each worker handles a list of

IVMs and, therefore, an interval-list. In the same way, the previous subsection defines some

interval operators, this section extends the definition of these operators on interval-lists,

and also defines the concept of empty interval-list. Let’s assume:
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• A = (A1, ..., AI): an interval-list of I intervals;

• B = (B1, ..., BJ): another interval-list of J intervals;

• n: an integer;

Interval-list operators and empty interval-list are defined as follows:

• Intersection operator (∩):

L× L→ L

A ∩B 7→ ∪j=1,J
i=1,I (Ai ∩Bj)

• Substraction operator (\):

L× L→ L

A \B 7→ ∪j=1,J
i=1,I (Ai \Bj)

• Right division operator (÷):

L× N+ → L

(A1, ..., AI)÷ n 7→ (A1 ÷ n, ..., AI ÷ n)

• Left division operator (÷):

N+ × L→ L

n÷ (A1, ..., AI) 7→ (n÷A1, ..., n÷AI)

• Cardinality operator (|.|):

L→ N

|A| 7→
∑
i=1,I

|Ai|

• Norm operator (‖.‖):

L→ N

‖A‖ 7→
∑
i=1,I

‖Ai‖
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• Emptiness value (∅):

(A = ∅) ⇐⇒ (‖A‖ = 0)

Compared to the previous subsection, this subsection also introduces a new operator called

biggest. This operator receives, as input, an interval-list A and a natural integer n, and

returns, as output, another interval-list biggest(n,A) made up of the n largest intervals of

A. The intervals are compared with each other using the ‖.‖ operator.

• Biggest (biggest):

N× I→ L

biggest(n,A) 7→

(Ai)/∀j, ‖Aj‖ ≤ ‖Ai‖ , if n = 1(
biggest(1, A \ biggest(1, A)), biggest(n− 1, A)

)
, otherwise

7.3 Data structures and operations

This section describes the PB&B@CLUSTER approach. Subsection 7.1 and Subsection

7.3.2 present respectively the data structures of this approach and its operations.

7.3.1 Data structures

Figure 7.1: The data structure of the coordinator in PB&B@CLUSTER approach.
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As shown in Figure 7.1, our approach PB&B@CLUSTER is based on a coordinator-workers

architecture. In this architecture, there are a single coordinator process and a large num-

ber of workers. The coordinator process has two roles: On the one hand, it allows PB&B

workers to exchange the best complete permutation found so far and, on the other hand,

this coordinator is used by workers for implementing a work stealing strategy. Compared

with the approaches described in previous chapters, the PB&B@CLUSTER approach intro-

duces a new data structure. This structure allows to save the best complete permutation

found so far, as well as a copy of the interval-lists being processed on each worker. This

data structure is defined as follows:

• Best found permutation: This variable saves the best complete permutation found

so far and the cost of this permutation.

• Work of an IVM: The interval W j
i is the jth interval of the ith worker. In other

words, W j
i is associated with the jth IVM of the ith worker. This interval W j

i is equal

to [P j
i , E

j
i [ such that:

– P j
i : the position vector of IVM j in the worker i;

– Ej
i : the end vector of IVM j in the worker i;

A copy of the interval W j
i , denoted W ′ji , is always stored at the coordinator. The

copy W ′ji is equal to W j
i only when the worker sends a request to the coordinator.

Between two requests, the copy W ′ji is probably not equal to the interval W j
i .

• Work of worker: The work of a worker Wi is an interval-list (W 1
i , ...,W

Si
i ), such

that:

– Si : #IVM in the worker i

– W j
i work of IVM j in the worker i

For example, the worker 2 in Figure 7.1 has 6 intervals. A copy of the interval-list of

worker i, denoted W ′i, is stored at the coordinator. The copy W ′i of the coordinator

is equal to Wi only the first time the worker contacts the coordinator to get work.

• Work of all workers: W ′ is the list of all copies (W ′1, ...,W
′
N ), such that W ′i is the

copy of the interval-list Wi of the worker i. For example, the coordinator of Figure

7.1 manages 3 workers. These workers, numbered 1, 2 and 3, respectively handle 7, 6

and 8 IVMs. Therefore, the copy W ′ has three interval-lists (W ′1,W
′
2,W

′
3), containing

each a list of intervals.
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7.3.2 Work processing operations

In addition to the operators explained in the previous chapters, the PB&B@CLUSTER

approach essentially introduces three new operations, namely a communication operation

of the worker, a checkpointing operation of the coordinator and a work stealing operation

of the coordinator. Figure 7.2 shows the relation between these operations on an example

of a PB&B@CLUSTER approach using three workers.

Figure 7.2: Example of a PB&B coordinator with three PB&B workers.

• Worker communication operation: The worker i contacts the coordinator when

one of the following three conditions occurs:

– The rate of empty IVMs is high: When an IVM of a worker i becomes empty,

it is important that the worker, responsible for managing this IVM, operates

a work steal to fill the empty IVM. However, if this work stealing operation

is done immediately at each empty IVM, then there is a big risk of wasting a

lot of time in communication. As a result, the worker i only operates a work

stealing when the rate of empty of IVMs |Wi|/Si is less than a certain threshold

α, where |Wi| is the number of empty IVMs, and Si is the total number of IVMs

of the worker i.

– New best complete permutation found: When a new best complete permuta-

tion is found by the worker i, this worker communicates to the coordinator this
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new permutation. The interest of this communication is to allow the workers

to be informed as soon as possible of the new permutation found. This allows

these workers to prune more nodes from the PB&B tree. By communicating this

new permutation, the worker i communicates its work Wi to the coordinator

to update its copy W ′i.

– Maximum time limit passed: After a request to the coordinator, the work

Wi of the worker i is equal to the copy W ′i of this work at the coordinator.

Between two requests to the coordinator, the more time passes, the larger the

gap betweenWi andW ′i. Therefore, it is important to configure the worker by a

maximum time limit. If one of the two preceding conditions did not occur within

this maximum time limit, then the worker i must contact the coordinator to

update its copy W ′i. This third condition allows the coordinator to be regularly

informed of the progress of the work of the worker i.

• Work checkpointing operation: As shown in Algorithm 13, the operation of updat-

ing the coordinator’s work W ′ is quite simple. This operation receives as input the

work W ′ of the coordinator, the ID i of the worker and its work Wi. The checkpoint-

ing operation performs an intersection of the two lists Wi and W ′i. In the algorithm,

the result of this intersection, denoted Wtmp, is assigned to the two lists Wi and W ′i.

Algorithm 13 COORDINATOR-WORK-CHECKPOINT(W ′, i, Wi)

1: Wtmp =Wi ∩W ′i
2: W ′i =Wtmp

3: Wi =Wtmp

• Work stealing operation: Algorithm 14 explains the work stealing operation of the

coordinator. As this algorithm shows, this operation is executed only if the interval

Wi is empty. In this case, the first instruction is to seek the greatest interval-list,

denoted W ′j , of all the works in W ′. Once this interval-list is determined, the second

instruction calculates the minimum size, denoted S, between the cardinalities ofW ′j
and W ′i. The cardinality of an interval-list is equal to the number of intervals in this

list. The role of the fourth instruction is to take the larger S intervals, denotedW ′tmp,

from the interval-list W ′j . Then, the intervals of the list W ′tmp are divided into 2

using a right division operation. The interval-list, obtained by this division operation,

is assigned to the variable W ′i, and the list of intervals W ′j \W ′i is assigned to the

variable W ′j . This work stealing operation returns the interval-list Wi to worker i.
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Algorithm 14 COORDINATOR-WORK-STEALING(W ′, i, Wi)

1: if Wi = ∅ then

2: j = argmaxi(‖Wi‖)
3: S = min(|Wi|, |Wj |)
4: W ′tmp = biggest(S,W ′j)

5: W ′i =W ′tmp ÷ 2

6: W ′j =W ′j \W ′i
7: Wi =W ′i

8: end if

7.4 Experiments

This section describes the two experiments performed to validate the PB&B@CLUSTER

approach, on a cluster of GPUs and a hybrid cluster of GPUs and CPUs In addition, the

section presents the obtained results when solving a large instance.

7.4.1 Experiments on a cluster of GPUs

Experimental protocol

• Hardware testbed: The Ouessant cluster is used for this first experiment. This clus-

ter is located at l’Institut du Développement et des Ressources en Informatique Scien-

tifique (IDRIS1). The Ouessant Tier1 (national) cluster is composed of 12 computing

nodes. Each node consists of 2 CPUs POWER8+ (10 core CPUs, 8 threads per core,

so 160 threads per node) and 4 Nvidia GPUs (Generation Pascal P100, and 16 GB

of memory). In total, this cluster is composed of about 170,000 cores CPUs and 240

cores CPUs. For reasons of availability, only 9 nodes are used in our experiments.

• Problem instance: The ten instances of size 20 × 20 (20 jobs and 20 machines),

noted Ta021, Ta022, ... and Ta030, are used in the previous experiments. Among

all instances of this size, the Ta023 instance is the most difficult to solve, and re-

quires approximately 22 hours with the PB&B@CORE approach on a single CPU

core. Therefore, these instances are not difficult enough for a resolution using a

PB&B@CLUSTER on the Ouessant cluster. On the other hand, the ten instances of

size 50× 20, denoted Ta051, Ta052, ... and Ta060, are difficult for a resolution on

the Ouessant cluster. So we used the ten 50× 20 instances to generate 50 instances

1http://www.idris.fr/
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suitable for a resolution on Ouessant. These 50 instances are denoted Ta0i−h, with

i ∈ {51, 52, ..., 60} and h ∈ {1, 2, ..., 5}.

To generate a Ta0i−h instance, the PB&B@CORE approach is deployed with a single

worker. This worker solves the Ta0i instance by using a single GPU of Ouessant for h

hour (s). In addition, this resolution is initialized with the best known permutation

of the instance Ta0i. At the beginning of the resolution, the work to be explored is

the interval [0, N ![, with N = 50 the size of the instance. At the end of these h hours,

it remains a list of intervals Lh
i to continue exploring. Therefore, the interval-list that

is already explored is ([0, N ![) \ Lh
i . So the instance Ta0i − h is defined as (1) the

resolution of the Ta0i instance (2) by initializing the PB&B with the list of intervals

([0, N ![) \ Lh
i and (3) the best known permutation of Ta0i.

Obtained results

This section presents the results obtained when solving five instances Ta0i − h, with

i ∈ {54, 55, 57, 58, 59} and h ∈ {5}. Each of these instances is solved using six deployment

configurations, namely 1, 4, 8, 16, 24, and 36 GPUs workers. As a result, 30 tests (i.e.

5 ∗ 6) are performed in total. The metrics measured in this experiment are, for example,

percentage of redundantly explored nodes, GPU speedup, number of checkpointing opera-

tions, number of work-stealing operations, elapsed-time, etc. For each of these metrics, an

average is calculated for each of the six deployment configurations.

• Redundant nodes:
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Figure 7.3: Rate of redundant branched

nodes.

One of the few disadvantages of the PB&B@CORE approach is that some nodes of

the PB&B tree can be explored multiple times. Therefore, it is important to estimate
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the percentage of nodes explored more than one time. Figure 7.3 shows that with

a single GPU worker, no node is explored twice. As the number of GPU workers

increases, the percentage of redundant nodes increases. However, the percentage of

redundant nodes is on average equal to 0.8% when 36 GPU workers are used. These

experiments show therefore that the number of redundant nodes is not significant.

• Elapsed time and speedup:
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Figure 7.4: Elapsed time and

speedup over 1 GPU.

Figure 7.4 shows the elapsed time (in minutes) in blue on the right y-Axis and the

speedup with respect to a single GPU in black on the left y-Axis. The red dashed line

corresponds to linear speedup with the number of GPUs. The average execution time

on a single GPU is about 220 minutes. Using 36 GPUs the average execution time

decreases to approximately 7.5 minutes, which corresponds to a relative speedup

of 30× over a single GPU. These experiments show that the speedup remains good

despite the high used computing power.

• Work checkpointing and stealing operations:
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Figure 7.5: Number of checkpointing operations.
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As explained previously, the coordinator essentially performs two operations, namely

work checkpointing and stealing operations. The objective is to study these two op-

erations. In Figure 7.5 the number of checkpointing operations and work stealing

operations is shown in black on the left y-Axis. The number of these two operations

per second is shown in blue on the right y-Axis. Naturally, as the number of GPUs

increases the number of these two operations also increases. For the considered scale,

the rate of increase appears to be constant. A checkpointing operation is counted for

both metrics. Therefore the number of checkpointing operations is always greater

than the number of work stealing operations. One can see that the number of check-

points increases faster than the number of work stealing operations. However, using

more GPUs does not necessarily increase the number of checkpointing operations.

Indeed, if all workers contact the coordinator in fixed and regular intervals, and if

the elapsed time decreases linearly with the number of GPUs, then the total number

of checkpointing operations would remain constant. In contrast, the results show

that workers contact the coordinator more frequently. At near-linear acceleration fac-

tors, the rate at which the coordinator performs checkpointing operations increases

quadratically. Many checkpointing operations are performed by replacing the coor-

dinator’s copy by the current work unit (if the copy wasn’t modified remotely).

• Coordinator operations:
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Figure 7.6: Exploitation of coordinator process.

Lines show the time (in seconds) and bars the per-

centage of total elapsed time.

Figure 7.6 focuses on the activity of the coordinator, which is split into four parts

measured separately. The absolute time (in seconds) spent in these parts is repre-

sented by solid lines. Stacked bars represent this time as a percentage of the total
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elapsed time. Messages are sent and received in the form of a sequence of characters

(stringstream), which must be written/read to/from valid work units. This manip-

ulation of the send-buffer consumes 65-90% of the coordinator’s processing time

(decreasing with the number of GPUs). This overhead is significant and should be

reduced. Rewriting communication routines with MPI, instead of socket program-

ming, in order to take advantage of optimized derived data-types [S+03] may be a

necessary modification of PB&B@CLUSTER. As the number of GPUs increases, the

coordinator spends a greater portion of time actually treating the requests. For 36

GPUs, work unit intersection, division and other checkpoint operations (e. g. period-

ically saving all work units to the disk) consume each 10-12% of the coordinator’s

time. In total, the coordinator is exploited 40% of the time when 36 GPUs are used.

At this rate it is likely that incoming requests from workers are queuing up, causing

the coordinator to become a bottleneck.

• Scalability:
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Figure 7.7: Average node processing rate and GPU efficiency

In order to evaluate the impact of the instance size on the efficiency of PB&B@CLUSTER

the scaling experiment is repeated with instances Ta053-h, with h ∈ {1, 2, 3, 4, 5}.
The obtained node processing rates is shown (in Mn/s) in Figure 7.7b and GPU

efficiencies in Figure 7.7a. GPU efficiency is defined analogous to the conventional

parallel efficiency definition, replacing processors with GPUs. The smallest of these

instances, Ta053-1 is solved in 25 minutes on a single GPU and the largest, Ta053-5,

lasts for 220 minutes on a single device.

Unsurprisingly, efficiency and node processing rates increase as the size of the ex-

plored tree increases. In order to exploit all 36 available GPUs efficiently (> 70%), the

flowshop instance to be solved should at least require 109 node branchings (Ta053-3,
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requiring 2 hours of processing on a single GPU). For smaller instances, the repar-

tition of the search space, represented by the interval [0, N ![, among 36× 16 384 ≈
600 000 IVMs incurs too much overhead. Even for instance Ta053-3, solved in 4.5

minutes on 36 GPUs, each IVM branches on average only ≈ 1 500 permutations.

7.4.2 Experiments on a cluster of GPUs and CPUs

Experimental protocol

• Hardware testbed: In order to evaluate the scalability of PB&B@CLUSTER with

GPUs and CPUs further experiments are performed on the Kepler cluster located at

the Mathematics and Operations Research Department at UMONS University. Kepler

is a cluster of 20 low-power system-on-a-chip (SoC) devices. Each of the 20 nodes

is a Nvidia Tegra K1 SoC featuring a 32-bit quad-core ARM Cortex-A15 CPU and a

Kepler GK20A GPU containing 192 CUDA cores. Tegra K1 is primarily designed for

graphics intensive mobile applications, like gaming, and is used in different tablet

computers. Therefore, battery lifetime is a main design objective and Tegra K1 has a

TDP of less than 10 W.

• Problem instance: As the Kepler cluster is not very powerful, one of the 20 jobs

and 20 machines instances is chosen to validate the PB&B@CLUSTER approach. The

selected instance is Ta022 which can be solved in 196 minutes on a CPU core.

• GPU-CPU efficiency definition: We evaluate the scalability of PB&B@CLUSTER as

follows. For a given problem instance, the node processing rate (in nodes/sec) on

a single CPU (resp. GPU) is measured. Based on these rates the expected node

processing rate on a system using n GPUs and m CPUs is deduced. The efficiency on

a (n GPU+m CPU) system is expressed as a percentage of this achieved rate.

Formally, let α and β be the node processing rates achieved by a single CPU (resp.

GPU), and let τm,n be the processing speed measured for a system composed of m

CPUs and n GPUs. The efficiency ηm,n for this configuration is computed as

ηm,n =
τm,n

mα+ nβ
× 100%

For instance, solving Ta022 on a single CPU (resp. GPU) a node processing rate of

α = 4.90 kn/s (resp. 14.12 kn/s) is achieved. Using 8 GPUs and 4 CPUs, the same

instance is solved with an average node processing rate of 131.6 kn/s. Supposing

linear scalability with CPUs and GPUs one can expect to achieve a node processing

rate of 8× 14.12 + 4× 4.90 = 132.6 kn/s. In this case, PB&B@CLUSTER reaches an

efficiency of η4,8 = 99.2%.



7.4. Experiments 109

Obtained results

Table 7.1 reports the efficiency ηm,n achieved for m,n=4, 8, 12, 16, 20 solving flowshop in-

stance Ta022. The results shown in this table are averages over 5 independent runs and the

relative standard deviation (RSD) is shown on the right-hand side. The initial runs on one

CPU (resp. GPU) were also performed 5 times. The two tables on top (Tables 7.1a and 7.1b)

show results using 128 IVMs per GPU, the two bottom tables (Tables (7.1c and 7.1d) show

results for 1024 IVMs per GPU. Each CPU PB&B process is a 4-threaded (4-IVM) exploration

process. The coordinator process runs on a reserved node (without concurrent exploration

processes) except for the runs where #CPUs=20 or #GPUs=20. The node processing rates

for individual workers are the following:

• (1) 4.90 kn/s for one CPU worker,

• (2) 14.12 kn/s for one GPU worker with T = 128

• and (3) 22.10 kn/s for one GPU worker with T = 1024.

For reference, the sequential processing rate on a Intel E5-2630v3 CPU is about 1.93 kn/s.

For T = 128, resp. T = 1024 IVMs, the maximal rate of the hybrid system is therefore

380 kn/s, resp. 540 kn/s. Using all 20 nodes, the achieved processing rates is 293 kn/s

(η20,20 = 77%) , resp. 373 kn/s (η20,20 = 69%), meaning that Ta022 is solved in 75, resp.

59 seconds.

For all configurations less than 2% of nodes is explored redundantly. However, one

can observe that execution time variability is significant, especially when the number of

CPUs is high and the number of GPU is low. A more detailed analysis of exceptionally slow

explorations reveals that a high number of work allocations occur in the shutdown phase.

While this indicates a better robustness for larger instances, experimental confirmation

is needed. Although a threshold below which work units are not divided, an efficient

handling of the shutdown phase revealed challenging.

7.4.3 Resolution of a big instance

Experimental protocol

• Hardware testbed: The Ouessant cluster, described in Subsection 7.4.1, is used for

the experiments of this subsection.

• Problem instance: The objective is to solve the instance Ta056. To the best of

our knowledge, of the 10 Taillard instances defined by 50 jobs and 20 machines

(Ta051-Ta060), Ta056 is currently the only one for which the best known complete

permutation is proven to be optimal.
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GPU x
Eff 0 4 8 12 16 20
0 95 91 86 82 79
4 100 103 93 87 82 78

GPU x 8 98 99 95 87 81 77
12 96 91 89 89 84 79
16 94 89 89 84 84 78
20 92 86 85 81 79 77

(a) ηm,n - Ta022 - 128 IVM/GPU.

GPU x
Eff 0 4 8 12 16 20
0 0.1 0.8 0.6 0.7 2.3
4 0.1 3.4 0.2 2.0 1.8 1.2

GPU x 8 0.2 4.3 5.0 2.5 4.2 1.8
12 0.4 8.9 6.9 3.4 6.9 5.2
16 0.2 11.4 7.7 8.9 7.5 4.5
20 0.7 6.5 11.2 3.6 9.2 5.9

(b) RSD - Ta022 - 128 IVM/GPU.
GPU x

Eff 0 4 8 12 16 20
0 96 90 86 81 81
4 100 88 87 83 78 75

GPU x 8 102 84 83 82 78 73
12 100 79 88 76 75 71
16 101 77 87 77 78 72
20 99 83 77 79 73 69

(c) ηm,n - Ta022 - 1024 IVM/GPU.

GPU x
Eff 0 4 8 12 16 20
0 0.8 1.3 0.9 1.1 0.9
4 0.1 2.1 2.9 2.4 2.3 1.5

GPU x 8 0.2 2.5 7.7 2.0 4.7 4.2
12 0.4 1.0 1.5 4.5 4.6 4.7
16 0.2 9.6 3.7 4.7 3.8 2.3
20 0.7 13.2 11.7 3.1 8.0 3.0

(d) RSD - Ta022 - 1024 IVM/GPU.

Table 7.1: Mixed GPU-CPU efficiency and Relative Standard Deviation (RSD) for resolution

of flowshop instance Ta022 (22.1×106 nodes) using 20 Tegra K1. The upper (resp. lower)

row shows results for T = 128 (resp. T = 1024) IVMs/GPU. Average efficiency and RSD

over 5 runs.

Obtained results

• Elapsed time:

Serial PB&B B&B@Grid PB&B@CLUSTER

#GPUs 0 0 9× 4 = 36

#CPU cores 1 Aver. 328 9× 2 = 18

Elapsed time 22 years 25 days 9 hours

Table 7.2: Exploration statistics for resolution of flowshop instance Ta056.

The optimal complete permutation of Ta056 was found and proven in 2006 using

B&B@Grid [MMT07c]. The resolution required 25 days of processing, exploiting on

average 328 CPU cores distributed on 9 clusters of the French experimental testbed

Grid’5000 2. This result is used as a reference for the three resolutions of Ta056 which

are performed under identical initial conditions. As in the B&B@Grid experiment

reported in [MMT07c] the initial upper bound is set to the optimal cost plus one

2https://www.grid5000.fr/
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unit, i.e. 3 680, which allows one to verify the correctness of the algorithm. Our new

resolution of Ta056 using PB&B@CLUSTER found the same optimal cost (3 679),

and the same optimal complete permutation.

On Ouessant and using PB&B@CLUSTER, Ta056 is solved in 9 hours. Compared with

the B&B@Grid resolution, the execution time is reduced by a factor of about 65×.

Compared to the estimated sequential execution time of 22 years, the execution time

is reduced by a factor of about 20, 000×.

• Energy consumption:

B&B@Grid PB&B@CLUSTER

#GPUs 0 9× 4 = 36

TDP of a GPU - 300W

#CPUs Aver. 328 9× 2 = 18

TDP of a CPU 30W+ 225W

Elapsed time 25 days 9 hours
Energy consumption ≈6000 kWh ≈130 kWh

Table 7.3: Exploration statistics for resolution of flowshop instance Ta056.

Table 7.3 indicates an approximate value for the energy consumption of each res-

olution. These values are based on the Thermal Design Power (TDP) of CPUs and

GPUs, as listed by the respective vendors. For example, the GTX 980 GPU is listed

with a TDP of 165W and the host Xeon CPUs with 85W, so an indicative value for

the energy consumption is given by (36× 300 + 18× 225)W × 9h ≈ 130 kWh.

For the 2006 resolution using B&B@Grid the energy consumption can only be

roughly estimated. About 2
3 of CPU cores in the computational pool exploited by

B&B@Grid in 2006 are AMD Opteron dual-core CPUs, 90 nm feature size, with clock

rates between 2.0 and 2.2GHz. The remaining 1
3 are Intel Pentium 4 and Celeron

single-core processors with similar clock rates. The most energy efficient models of

this type of CPUs are listed with TDP values above 30W. Taking into account that

most CPUs are dual-core, an optimistic estimation for the energy consumption is

328 CPU cores× 30W × 25d× 24h/d ≈ 6000 kWh.

• Load balancing:

Figure 7.8 illustrates the workload repartition among GPU and CPU based workers,

in terms of branched nodes. In addition to four GPU workers, on each Ouessant node

one multi-threaded CPU based worker with 160 IVM is used (2× 10 cores× 8 threads).
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In this configuration, each multi-core PB&B process branches on average about 1
10

the amount of nodes branched by an average GPU PB&B. Using 4 times as many

GPU based workers as CPU workers, in total less than 3% of node branchings are

performed on a CPU. One can see in Figure 7.8 that workers of the same type

perform a roughly equal amount of work. However, a node branching represents

a variable amount of work. Therefore, the number of branched nodes is only an

approximative indicator for load balancing.

PB&B@CLUSTER

Branched nodes 175.8× 109

Tcoordinator 38.2 min
Coord. exploitation (%) 7.1%

#checkpoints 3 568 368

#work allocations 33 387

Table 7.4: Exploration statistics for resolution of flowshop instance Ta056.

HD-B&B: Resolution of Ta056 - Work repartition 
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Figure 7.8: Number of nodes branched per worker. Resolution of Ta056 on 9 Minsky

nodes (Ouessant), using 9×(4 GPU based workers with 16 384 IVM + 1 CPU based

worker with 160 IVM).

Another indicator for the load imbalance throughout the execution is the number of

work allocations (work stealing operations). A worker only requests new work from

the coordinator when no more work is locally available. The results indicate that

workers run out of work very rarely.

These metrics change significantly for the hybrid resolution on Ouessant. In order

to balance the workload between 36 GPUs and 9 multi-core CPUs, more than 33 000

work unit allocations and 3 500 000 checkpointing operations are performed. In that

case the farmer processor is exploited 7% of the time, i. e. 38 minutes out of 9 hours.
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7.5 Conclusions

In this chapter we revisited the design of B&B@Grid to enable the integration of GPU-

and CPU-based workers. When B&B@Grid was designed in mid-2000 most components of

computational grids were single-core and dual-core CPUs. Today, more than 15 years later,

large-scale HPC platforms are becoming increasingly heterogeneous, integrating GPUs and

CPUs with larger core-counts.

The extension of B&B@Grid to PB&B@CLUSTER, the proposed PB&B for hybrid dis-

tributed HPC clusters, includes the redefinition of work units and a modification of the

communication scheme to allow asynchronous checkpointing operations that overlap with

worker computations.

A very large flowshop instance defined by 50 jobs and 20 machines, Ta056, was suc-

cessfully solved on GPU powered clusters with a total of up to 130 000 GPU cores. A first

resolution of this instance was performed in 2006, using B&B@Grid to exploit on aver-

age 328 CPU cores in a computational grid during 25 days. Using PB&B@CLUSTER the

resolution of Ta056 was performed in 9 hours on a cluster composed of 36 GPUs.

Low exploitation rates of the coordinator process and experiments performed with

smaller instances are indicators for the good scalability of PB&B@CLUSTER. For a set of

50-job flowshop instances requiring 3.7 hours of computation on a single GPU, a relative

speedup of 30× is achieved on 36 GPUs, solving this instance in 7.5 minutes on average.

PB&B@CLUSTER was also experimented on a mini-cluster of 20 systems-on-a-chip

designed for mobile devices. Experimental results show that the availability of efficient

data types for inter-node communication is a key component for the performance of the

central coordinator process.
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Conclusions and perspectives

The research works, presented in this manuscript, are focused on the exact resolution of

a certain type of economic problems, where the objective is to find the best permutation.

A large number of methods, often serial, have been developed to solve these problems. A

wide range of exact methods can be classified as PB&B algorithms. The solution space is

explored by dynamically building a tree, whose size in terms of number of nodes is huge.

Therefore, solving these problems often requires the use of a high performance computing

system.

This last chapter recalls the main contributions, presented in this manuscript, and the

conclusions to draw from these contributions. In addition, the chapter gives an overview

of our other contributions in PB&B algorithms which are not described in this manuscript.

And finally, the chapter indicates our main future works in the field PB&B algorithms.

8.1 Main contributions

Our works led to the development of four approaches, renamed in this manuscript PB&B@CORE,

PB&B@CPU, PB&B@GPU and PB&B@CLUSTER. The first two methods are developed dur-

ing the thesis of Rudi Leroy, and the two others in the thesis of Jan Gmys.

• The PB&B@CORE approach rethinks the conventional data structure used in PB&B.

When exploring the PB&B tree, the nodes, generated but not yet processed, are

often stored in a linked-list. For a single CPU core, we have developed a new

data structure, called IVM, to replace the linked-list. Compared to the linked-list,

the experiments, performed for the resolution of the 50 × 10 (i.e. 50 jobs and 10

machines) flowshop problem instances [Tai93], show that the management of an

IVM pool requires on average ≈ 3 times less memory and ≈ 35 times less computing

power.

• The PB&B@CPU approach, obtained using the IVM structure of PB&B@CORE, allows

the parallelization of the PB&B on multi-core CPU processors. For such architec-

tures, and unlike conventional parallelization, where the work unit is often a
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set of nodes, the work unit of our approach is an interval of factoradics. A fac-

toradic is an integer encoded in the factorial enumeration system. The experiments

performed on a multi-core CPU accelerator, for the resolution of the ten 20 × 20

flowshop instances, show that the management of an IVM pool is on average ≈ 10

times faster than the management of linked-list pool.

• The PB&B@GPU approach, based on the factoradic intervals of PB&B@CPU, allows

the parallelization of PB&B on GPU, which is a processor with a SIMD architecture.

Previously, there have been many attempts in the literature to run the most time-

consuming part (hot spot) of the PB&B on GPU and the rest of the algorithm on CPU.

The advantage of our approach, based on a revisited work stealing method, is

to offload the whole execution of PB&B, whose tree has an irregular structure,

to the GPU accelerator, which has a regular SIMD architecture. When solving

the ten 20× 20 flowshop instances, experiments show that on average the resolution

time is reduced on average by ≈ 3.3 times compared to a GPU linked-list PB&B.

• The PB&B@CLUSTER approach, which is based on the three previous approaches,

allows the deployment of a PB&B on a cluster of CPU processors and GPU acceler-

ators. For a distributed memory architecture, such as a cluster, our approach

uses and redefines a certain number of basic operators known in set theory.

This approach is validated on Ta056, which is a difficult 50× 20 flowshop instance.

The resolution of this instance required ≈ 22 days of computing using on average

328 CPU cores and a total of ≈ 6000 kWh[MMT07a]. Our new approach solved this

instance in ≈ 9 hours with an energy consumption of ≈ 130 kWh.

The PB&B@CLUSTER approach is not yet published while the others are published

mainly in four journals and one conference, namely two CCPE [GMMT17, GLM+16],

one Parallel computing [GMMT16] and one FGCS [MGMT18a], and the 28th IEEE IPDPS

conference [MLMT14a]. The PB&B@GPU approach is also awarded with the Best Paper

Award at the 11th PPAM conference [GMM+15]. As future research directions for this

work, we have identified some challenging perspectives summarized in the following:

8.2 Other contributions

In addition to these four contributions, we have several other contributions in PB&B

algorithms. Some of these contributions are important, but are not presented in this

manuscript. In particular, we would like to describe two of them.
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• Efficient branching and bounding operations: In this contribution, we present a

new node decomposition scheme that combines dynamic branching and lower bound

refinement strategies in a computationally efficient way. To alleviate the computa-

tional burden of the two-machine bound used in the refinement stage, we propose

an online learning-inspired mechanism to predict promising couples of bottleneck

machines. The algorithm offers multiple choices for branching and bounding opera-

tions and can explore the search tree either sequentially or in parallel on multi-core

CPUs.

In order to empirically determine the most efficient combination of these compo-

nents, a series of computational experiments with 600 flowshop benchmark instances

is performed. A main insight is that the problem size, as well as interactions between

branching and bounding operations substantially modify the trade-off between the

computational requirements of a lower bound and the achieved tree size reduction.

Moreover, we demonstrate that parallel tree search is a key ingredient for the resolu-

tion of large problem instances, as strong super-linear speedups can be observed. An

overall evaluation using two well-known benchmarks indicates that the proposed

approach is superior to previously published PB&B algorithms.

For the first benchmark we report the exact resolution - within less than 20 minutes

- of two instances defined by 500 jobs and 20 machines that remained open since

more than 25 years, and for the second a total of 88 improved best known upper

bounds, including proofs of optimality for 71 of them. This contribution is under a

minor revision in EJOR journal.

• PB&B on many-core processors: On the road to exascale, coprocessors are increas-

ingly becoming key building blocks of high performance computing platforms. In

addition to their energy efficiency, these many-core devices boost the performance of

multi-core processors. In this contribution, we revisit the design and implementation

of PB&B algorithms for multi-core processors and Intel Xeon Phi coprocessors con-

sidering the offload mode as well as the native one. In addition, two major parallel

models are considered: the master-worker and the work pool models. We address

several parallel computing issues including processor-coprocessor data transfer opti-

mization and vectorization.

The proposed approaches have been experimented using the flowshop and two

hardware configurations equivalent in terms of energy consumption: Intel Xeon E5-

2670 processor and Intel Xeon Phi 5110P coprocessor. The reported results show that:

(1) the proposed vectorization mechanism reduces the execution time by (resp.) in

the many-core (resp. multi-core) approach; (2) the offload mode allows a faster
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execution on MIC than the native mode for most flowshop problem instances; (3)

the many-core approach (offload or native) is in average twice faster than the multi-

core approach; (4) the work pool parallel model is more suited for many/multi-core

PB&B applied to flowshop than the master-worker model because of its irregular

nature. This contribution is published in the FGCS journal [MGMT18b].

8.3 Perspectives

The contributions presented in this document open up new perspectives. These perspec-

tives are mainly related to the validation of our approaches using other permutation

problems, and a cluster powered with a larger number GPU nodes. Our future works can

be summarized with the following points:

• As a short-term future work, we will validate our approaches on other single per-

mutation permutation problems such as TSP, Job-Shop and QAP, and permutation

problems with more than one permutation like Q3AP [Meh11].

• The experimental results, obtained with PB&B@CLUSTER, indicate that the algo-

rithm is scalable on larger GPU-enhanced clusters. We plan to validate this by at-

tempting the resolution of previously unsolved flowshop instances on a large GPU-

powered supercomputer. To resolve these instances, we obtained 50,000 hours of

computing on the 1,000 GPU nodes of Jean Zay supercomputer. Jean Zay is the

converged platform acquired by the French Ministry of Higher Education, Research

and Innovation through the intermediary of the French civil company, GENCI (Grand

Equipement National De Calcul Intensif). The Jean Zay computer was installed at

IDRIS, national computing centre for the French National Centre for Scientific Re-

search (CNRS), in 2019.

• In order to further improve scalability of the approach, specially in an exascale

environment [CM19], the coordinator process, usually running on a multi-core

CPU, should be parallelized. Also, the checkpointing mechanism should be revis-

ited. PB&B@CLUSTER uses the checkpointing mechanism inherited from B&B@Grid,

making the approach tolerant against node failures. However, as a large portion is

shifted to lower levels it becomes important to make the approach fault-tolerant

against failures at the GPU and multi-core CPU level.

• The IVM data structure revealed itself particularly well suited for fine-grained per-

mutation problems. For example, sampling methods based on the optimization of
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latin hypercubes can be modeled as (multi-)permutation problems. As a future re-

search direction we plan to revisit the IVM-based algorithm to enable the resolution

of multi-permutation problems.

• Experimental results have shown strong performance variations according to the

used node evaluation function. Having different bounds for the same problem match-

ing implementations with underlying hardware. A challenging improvement of the

PB&B algorithm consists in implementing a library of lower bounds for the same

problem, in order to enable the different workers to use the node evaluation function

which is the best fit for the underlying hardware.
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