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Abstract

This thesis presents the measurement of the R(D∗) ≡ B(B0→D∗−τ+ντ )
B(B0→D∗−µ+νµ)

ratio with 2 fb−1

of pp collisions collected at
√
s = 13TeV by LHCb during 2015-2016 using 3-prong tau

decays. The study comprises a test of the Lepton Flavour Universality in b→ cℓνℓ decays
to help resolve the tension between the Standard Model R(D∗) estimation and the ex-
perimental results from the B-factories and LHCb. The analysis builds upon a previous
LHCb measurement [1, 2] with a new dataset and improved techniques. Most impor-
tantly, a novel fast simulation technique, ReDecay, is used to generate large simulated
samples and Multivariate Analysis techniques are exploited in signal selection. Since
the analysis has yet to undergo an internal LHCb review, and several systematic uncer-
tainties must be computed, the R(D∗) value is blinded. Nonetheless, nearly complete
documentation of the analysis is presented in this thesis. The current relative statistical
uncertainty on the R(D∗) is 5.56%.
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Synthèse

Cette thèse présente la mesure du rapport R(D∗) ≡ B(B0→D∗−τ+ντ )
B(B0→D∗−µ+νµ)

avec les données
accumulées par l’expérience LHCb en 2015 et 2016, en utilisant les désintégrations du
tau en trois pions. L’étude comprend un test de l’universalité de la saveur leptonique
dans les désintégrations b→ cℓνℓ pour aider à résoudre la tension entre l’estimation
de R(D∗) dans le Modèle Standard et les résultats expérimentaux des usines à B et
de LHCb. L’analyse s’appuie sur une mesure précédente LHCb [1, 2] avec un nou-
vel ensemble de données et des techniques améliorées. En particulier, une nouvelle
technique de simulation rapide, ReDecay, est utilisée pour générer de nombreux échan-
tillons simulés ainsi que les techniques d’analyses multivariées sont exploitées dans la
sélection des candidats. Étant donné que l’analyse n’a pas encore fait l’objet d’une revue
interne dans la collaboration LHCb et que plusieurs incertitudes systématiques doivent
être calculées, la valeur du R(D∗) est cachée. Néanmoins, une documentation presque
complète de l’analyse est présentée dans cette thèse. L’incertitude statistique relative
sur R(D∗) est égale actuellement à 5,56%.
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Introduction

The approach to explain the matter and its interactions at the most fundamental level
is the subject of particle physics. Its best theoretical framework is the Standard Model
(SM), formulated in the 70’s. The theory has been extraordinarily successful, with-
standing the most stringent experimental tests in particle accelerators. Its pinnacle was
the discovery of the Higgs boson by ATLAS and CMS in 2012 [3, 4]. Nonetheless,
the SM remains an effective theory and fails to explain several fundamental questions.
Therefore, quests for New Physics effects have been ongoing for the past decades by
either direct searches of new particles or indirectly contradicting its predictions.

One of the assumptions of the SM is the Lepton Flavour Universality (LFU). It states that
the electroweak couplings are independent of the lepton flavour, apart from its mass.
Consequently, the decay rates of hadrons into (semi)leptonic final states should differ
only due to the invariant masses of the leptons involved. Should a greater discrepancy
be found, the LFU must be violated.

The LFU has been intensely tested over the recent years. Several tensions with the SM
have been found in b→ cℓνℓ and b→ sℓℓ channels as measured by the B-factories and
LHCb. The usual observables investigated are the ratios of branching fractions of such
processes with different charged lepton in the final state, ℓ = e, µ, τ .

This thesis documents the R(D∗) ≡ B(B0→D∗−τ+ντ )
B(B0→D∗−µ+νµ)

measurement performed with the
2015-2016 LHCb dataset. The project builds upon the LHCb analysis of the 2011-2012
data with three-prong tau decays [1, 2], where the τ+ is reconstructed in two modes:
τ+ →π+π−π+ντ and τ+ →π+π−π+π0ντ . The measured observable is K(D∗), defined as
the ratio of branching fractions of B0→ D∗−τ+ντ over a normalisation channel, B0→
D∗−3π±, K(D∗) ≡ B(B0→D∗−τ+ντ )

B(B0→D∗−π+π−π+)
. R(D∗) is derived from K(D∗) and the branching

fractions of B0→ D∗−µ+νµ and B0→ D∗−3π±, known from other measurements (PDG
world averages): R(D∗) = K(D∗−)B(B

0→D∗−π+π−π+)
B(B0→D∗−µ+νµ)

.

Since this analysis has yet to undergo the LHCb internal review, and several systematic
uncertainties have to be computed, the R(D∗) result remains blinded. Nonetheless,
nearly complete documentation of the project is laid out in this thesis.

15



Chapter 1 introduces the Standard Model of particle physics. An emphasis is put on the
Lepton Flavour Universality from both phenomenological and experimental perspec-
tives. Chapter 2 describes the LHCb detector and software. Chapter 3 lays out strategy
of the R(D∗) measurement. In Chapter 4 the data samples are described. Chapter 5
documents the selection steps for the main decay modes of the analysis. Chapter 6
explains the use of the control samples. The main result is reported in Chapter 7.
Systematic uncertainties are discussed in Chapter 8 before the conclusions and future
prospects.
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Chapter 1
Phenomenology of R(D∗)

This chapter introduces the theoretical framework behind the measurements described
in this thesis. The underlying theory, the Standard Model of particle physics is treated
briefly in Section 1.1. Then, Section 1.2 summarises phenomenology of the Lepton
Flavour Universality searches, driven by an interplay between effective field theory
approaches and experimental results. The two genres of anomalies, concerning the
b → cℓνℓ and b → sℓℓ processes, notably the target of this analysis, the R(D∗) ratio,
are explained there. Finally an overview of possible New Physics models awaiting
experimental or phenomenological verification is laid out. Throughout, prospects of
improving current results in the near future are mentioned.

1.1 The Standard Model of particle physics

The Glashow-Weinberg-Salam Model [5, 6, 7], or the Standard Model (SM), is a
Quantum Field Theory (QFT) describing fundamental fields (particles) and interac-
tions (forces). It comprises a synthesis of the Electroweak and Strong interactions with
the Higgs mechanism. The following sections shortly highlight its basic properties.

1.1.1 Particles and their interactions

The Standard Model (SM) of particle physics groups the 12 elementary particles and
anti-particles, referred to as fermions, into three generations as depicted below.

I II III(
u
d

) (
c
s

) (
t
b

)
(
e
νe

) (
µ
νµ

) (
τ
ντ

)
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CHAPTER 1. PHENOMENOLOGY OF R(D∗)

The second and third generation particles replicate the properties of those from the first
one, except they are increasingly heavier: e.g. the muon is heavier than the electron,
whereas the tau is heavier than the muon. Similar relationship occurs among quarks:
the mass of up- and down-type quarks goes up with generation. This rule, however,
does not hold for neutrinos: their absolute masses are not known and the Standard
Model assumes they are massless particles. This has been, nonetheless, contradicted
historically in solar neutrino oscillations [8, 9] and the long baseline experiments [10],
governed by the PMNS matrix [11].

The matter all around us is built exclusively from the first generation. The second and
third generation fermions are unstable, so they cannot build matter.

There are three distinct interaction types or ’forces’ accounted for in the SM: electro-
magnetic, strong and weak. The gravity is ignored in the model as it is too feeble in
particle interactions. Nonetheless, it would be important to include it in a more com-
plete theory. Apart from it, the electromagnetism governs most of the phenomena that
we perceive in our lives.

The strong force is short ranged and bonds the nucleons together. Without it atoms
would not exist. The weak nuclear force is responsible for nuclear decays (e.g. the beta
decay) and is essential in the nuclear fusion fuelling the Sun.

Each of these interactions is mediated by a boson exchange as listed in Table 1.1. Be-
sides, there exists a Higgs field that gives mass to fermions and weak interaction medi-
ators.

Table 1.1 – Fundamental interactions and their force carriers. Gravity is included for complete-
ness and, due to lack of its QFT, the graviton remains hypothetical.

Interaction Mediator
Electromagnetic photon
Strong gluons
Weak W± and Z0 bosons
Gravity graviton?

The SM is a quantum field theory and its particles are described in the language of
fields whereby an excitation of a field manifests itself in a particle being produced.

The three charges
At the core of each interaction is a specific charge.

The charged leptons carry the electric charge Q = −1, whereas their corresponding
neutrinos, none, disqualifying them from electromagnetic interactions. The up-type
quarks are of Q = +2/3 charge, while the down-type ones have Q = −1/3.

The weak interaction stems from the isospin, usually expressed by its third compo-
nent T3. The charged currents exhibit the vector minus axial vector (V − A) structure,
making only left-handed particles sensitive to this interaction. The left-handed quarks

18



1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

and leptons are ordered in isospin doublets (T3 = ±1/2), whereas the right-handed
particles form singlets (T3 = 0). The neutrinos are only left-handed in the SM and
they couple only to V − A structures. This implies their zero mass, which assumption
has, nonetheless, been proven wrong by the observation of neutrino oscillations [8, 9].
The existence of massive neutrinos necessitates the Physics Beyond the Standard Model
(BSM).

Only quarks carry the colour charge that results in the strong interaction. It can have
three distinct positive values (red, green and blue). Quarks hadronise into ’colourless’
mesons (colour-anticolour) or baryons (three different colours).

Weak interaction
The weak interaction is the sole one that violates parity. This stems from the V − A
structure of the charged current interactions (i.e. mediated by W± bosons), that is
required to preserve the Lorentz invariance of the weak interaction. Table 1.2 lists
bilinear terms for various types of currents. Consequently, the charged current weak
interactions, such as in the b→ cℓνℓ processes, imply a vertex factor:

−igW√
2

1/2γµ(1− γ5), (1.1)

where gW denotes the weak coupling constant and γ are the Dirac matrices.

Table 1.2 – Lorentz-invariant bilinear currents for 2 spinors: ψ and ϕ [12].

Type Form Boson spin
Scalar ψϕ 0
Pseudoscalar ψγ5ϕ 0
Vector ψγµϕ 1
Axial vector ψγµγ5ϕ 1
Tensor ψ(γµγν − γνγµ)ϕ 2

Only left-handed particles and right-handed antiparticles are subject to the weak
charged current.

1.1.2 Gauge Bosons in the SM formalism

The SM describes the particles and their interaction in a language of fields. It is based
on the Lagrangian density L dependent on the fields ψ(x) and their derivatives ∂ψ(x).
The quantities that cannot be observed reflect theory invariances under symmetries. For
instance, in electromagnetism one cannot measure the absolute phase of the field (that
depends on x), which choice remains arbitrary by applying a local gauge transformation
i.e. multiplying the field by eiθ. Such operations belong to the U(1) symmetry group
under which the L is invariant. In this case, we change the field accordingly:

ψ(x) → eiθ(x)ψ(x). (1.2)

19



CHAPTER 1. PHENOMENOLOGY OF R(D∗)

This, however, affects the derivative as follows:

∂ψ(x) → eiθ(x)∂ψ(x) + ieiθ(x)ψ(x)∂θ(x), (1.3)

which renders the lagrangian density L non-invariant. To remedy this problem, the
covariant derivative is used that corresponds to a new so-called gauge field. This way
the new lagrangian density L is obtained which is invariant and carries a term for the
kinetic energy of the gauge field. Each of the fundamental interactions has at least one
such gauge field identified by corresponding gauge boson(s):

• In electromagnetism the gauge boson is the photon γ;

• In weak interaction there are three gauge bosons: W± and Z0;

• In strong interaction there are eight gluons.

1.1.3 Electroweak interactions

The Cabibbo-Kobayashi-Maskawa (CKM) matrix [13] describes the strength of flavour-
changing weak interaction. Formally, it relates the weak eigenstates of quarks to their
mass eigenstates. Historically, the CKM matrix is a generalisation of the 2 × 2 Cabibbo
matrix, relating u, d, s quarks transitions, to all six quarks. The magnitude of each
matrix element, |Vij|, represents an amplitude of the transition of the qi quark into qj
quark (or vice versa). Its square, |Vij|2, is the probability of that transition.

By allowing the matrix elements to be complex numbers, CP violation can be introduced
resulting in different decay rates of particles and antiparticles. The CKM matrix is
written as

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

,

and with the matrix elements expanded in Wolfenstein parametrisation as

VCKM =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4),

where [14]

λ = 0.22453± 0.00044, A = 0.836± 0.015

ρ̄ ≡ ρ(1− λ2/2 + . . . ) = 0.122+0.018
−0.017 η̄ ≡ η(1− λ2/2 + . . . ) = 0.355+0.012

−0.011.

(1.4)
(1.5)

The CKM matrix unitarity implies:
∑

k|Vik|2=
∑

i|Vik|2= 1 and
∑

k VikV
∗
jk = 0.

The relationships between the CKM matrix elements or parameters can be represented
graphically using the ’unitarity’ triangle shown in Figure 1.1 (left). The two sides of the
triangle, expressed in terms of the CKM matrix elements, as well as the vertex (ρ̄, η̄), can
be obtained experimentally to find out if they indeed form the triangle, testing the CKM
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1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

matrix unitarity. Figure 1.1 (right) depicts how constraints from various measurements
average out providing the ρ̄ and η̄ values.

γ
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α

dm∆
Kε

Kε

sm∆ & dm∆

ubV
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Figure 1.1 – (Left) the unitarity triangle with its two sides measurable experimentally; (right)
experimental constraints on the (ρ̄, η̄) plane [14].

The non-zero off-diagonal elements allow for quark mixing between the generations,
which in case of flavour-changing charged currents (FCCC), like for the b→ cℓνℓ de-
cays, can occur at tree level. On the other hand, the flavour-changing neutral currents
(FCNC), such as the b → sℓℓ transitions are forbidden at the tree level by the GIM
mechanism [15], hence they comprise loop processes.

1.1.4 Higgs mechanism

To accommodate the electroweak symmetry breaking, that makes the W± and Z0

bosons massive, a spinless quantum field is introduced [16, 17, 18, 19], usually called
the Higgs field. The field comprises a complex scalar isospin doublet with the compo-
nents ϕ1 and ϕ2. Its generic potential V (ϕ), invariant under rotation around the axes
perpendicular to ϕ1 and ϕ2, depends on two parameters, m and g:

V (ϕ) = m2(ϕ2
1 + ϕ2

2) + g(ϕ2
1 + ϕ2

2)
2. (1.6)

For positive m2, the potential has a paraboloid shape with an equilibrium at the bot-
tom, with two degenerate values of m. When m2 is negative, the potential resembles
the Mexican hat and its equilibrium is in the hat’s trough. Then the ϕ1 and ϕ2 terms
designate two different particles: a massive Higgs boson and a massless Goldstone bo-
son. The latter has a screening effect rendering the interaction short-ranged. From the
uncertainty principle, short-range interaction allows for massive bosons. Hence, the
weak interaction bosons may obtain their masses.

The existence of the Higgs-boson-like particle has been confirmed in 2012 indepen-
dently by ATLAS and CMS experiments [3, 4].
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The Higgs mechanism also gives rise to the masses of fermions.

1.1.5 Strong interactions

Strong interaction is governed by Quantum Chromodynamics (QCD). It has SU(3)C
representation in the SM. All particles carrying colour charge are subject to it. The
SU(3)C group has 8 generators spawning 8 types of gluons that carry this interaction.
As they themselves carry the colour charge, they can couple one to another. The in-
variance under SU(3)C results in confinement that requires hadrons to have a zero net
colour by forming usually mesons or baryons. Moreover, states with 4 or 5 quarks have
been observed [20, 21, 22]. Quarks, consequently, do not exist as free particles. An
important feature of the Strong Interaction is that the strong coupling increases with
distance. Once the energy of the interaction is high enough, a quark-antiquark pair is
produced in a process called hadronisation. The thus made hadrons are observable in
particle detectors.

In the hadronic effects in the non-perturbative region are factorised into so-called form
factors. They reflect the spin-structure of the hadrons involved and impact the effec-
tive Hamiltonian operators, which are sensitive to New Physics, as discussed in Sec-
tion 1.2.3. The form factors parameters are obtained from computationally costly lat-
tice QCD calculations combined with experimental studies.

The branching fractions of the B0 → D∗−ℓνℓ transitions, studied in this thesis, have
large uncertainties due to the hadronic effects. It is much more precise to determine
the ratios of the branching fractions of such processes with different charged lepton, ℓ
in the final state. Therefore, the Lepton Flavour Universality tests, briefly covered in
Section 1.2, study the ratios, such as R(D∗).

1.1.6 Limitations of the Standard Model

Even though the Standard Model is a highly successful theory, it has to be comple-
mented [12]. First of all, there are 26 free parameters whose numbers are fitted exper-
imentally. These are:

• the masses of the 12 fermions;

• the 3 coupling constants of the electromagnetic, weak and strong interactions: α,
GF and αS;

• the 2 parameters describing the Higgs field, µ and λ or, equivalently the vacuum
expectation value and mass of the Higgs field, v and mH;

• the PMNS 1 and CKM matrices parameters: θ12, θ13, θ23, δ, and λ, A, ρ and η;

1The PMNS matrix parameters are not included in the SM. Nevertheless, their detachment from the
SM can be considered a shortcoming of the theory.
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• Possibly the QCD Lagrangian can have non-zero phase leading to CP violation in
the strong interaction, which, nonetheless, is measured to be extremely small,
θCP ≈ 0.

The large number of these free parameters suggests that the Standard Model is merely
an effective theory of some more complete and higher energy one. Moreover, there are
a few unresolved questions expected to be addressed by a more complete theory:

• How to fully explain the matter-antimatter asymmetry?

• What is the nature of dark matter?

• What is the dark energy?

• Where does the hierarchy of fermion masses stem from (see Figure 1.2)?

• How can gravity be incorporated within a more complete theory?

Figure 1.2 – Mass hierarchy of the fermions arranged by their generation [12]. It is noteworthy
how different masses of charged fermions of different generations are whilst being quite similar
within a generation.

The searches to complement the Standard Model are generically denoted by the so-
called New Physics. Perhaps the leptons and quarks are remnants of degenerate states
named leptoquarks that would exist at higher energies?

1.2 Lepton Flavour Universality

The aim of this project is to test Lepton Flavour Universality (LFU). This SM principle
is laid out in Section 1.2.1, followed by brief overview of the experimental LFU tests in
Section 1.2.2 and introduction of the Effective Field Theory (EFT) formalism, relevant
for R(D∗) prediction, both within and beyond the SM, in Section 1.2.3. Finally, possible
New Physics models to address these anomalies are discussed in Section 1.2.4.
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1.2.1 LFU in the Standard Model

Let us consider the charged-current leptonic decays of the charged leptons, µ→ eνeνµ,
τ → eνeντ and τ → µνµντ , as presented in Fig. 1.3 [12]. These are well-studied pro-
cesses that occur in the Standard Model via the W boson emission. The SM assumes
that the coupling at each Wℓνℓ vertex, where ℓ = e, µ, τ , is the same and equals the
Fermi constant, GF . Let us, however, abandon this assumption momentarily, allow-
ing for breaking the LFU in these processes. Hence, each vertex implies now a non-
universal Gℓ

F .

µ νµ
W

νe

e

(a) µ→ eνeνµ

τ ντ
W

νe

e

(b) τ→ eνeντ

τ ντ
W

νµ

µ

(c) τ→ µνµντ

Figure 1.3 – Feynman diagrams of the leptonic decays of the charged leptons.

To the next-to-leading order precision, the decay rate of µ→ eνeνµ is

Γ(µ→ eνeνµ) =
Ge
FG

µ
Fm

5
µ

192π3
× f(m(e)2/m(µ)2), (1.7)

and the one of the τ→ ℓνℓντ reads

Γ(τ → ℓνℓνµ) =
Gℓ
FG

τ
Fm

5
τ

192π3
× f(m(ℓ)2/m(τ)2), (1.8)

where f(x) = 1 − 8x + 8x3 − x4 − 12x2 log x is the phase-space correction factor [23,
24].

Because µ→ eνeνµ is the sole decay of the µ, its decay rate is the inverse of the muon
lifetime, τµ

Γ(µ→ eνeνµ) = Γtot(µ→ X) =
1

τµ
. (1.9)

The decay rate of τ → ℓνℓντ similarly depends on its lifetime, but also on its branching
fraction to allow for alternative decay modes

B(τ → ℓνℓντ ) =
Γ(τ → ℓνℓντ )

Γtot(τ → X)
= Γ(τ → ℓνℓντ )× ττ , (1.10)

hence, combining 1.8 and 1.10 yields

ττ = B(τ → ℓνℓντ )
192π3

Gℓ
FG

τ
Fm

5
τ

× 1/f(m(ℓ)2/m(τ)2). (1.11)

By comparing the µ and τ lifetimes, we obtain the ratio of non-universal Fermi constants

Gτ
FG

ℓ
F

Ge
FG

µ
F

=
τµm

5
µ

ττm5
τ

B(τ → ℓνℓντ )×
f(m(e)2/m(µ)2)

f(m(ℓ)2/m(τ)2)
. (1.12)
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Substituting ℓ = e and putting values for the observables reported in Tab.1.3, we obtain

Gτ
F

Gµ
F

=
τµm

5
µ

ττm5
τ

B(τ → eνeντ )×
f(m(e)2/m(µ)2)

f(m(e)2/m(τ)2)
= 1.002± 0.003. (1.13)

Combining 1.10 and 1.12 for ℓ = e, µ one can obtain

Ge
F

Gµ
F

=
B(τ → eνeντ )

B(τ → µνµντ )
= 0.997± 0.003. (1.14)

Therefore, to next-to-leading order corrections, within the uncertainties, the experi-
mental results are consistent with Ge

F = Gµ
F = Gτ

F = GF in the weak charged current
decays of the charged leptons.

This section considered purely leptonic decays of the charged leptons. The next sec-
tion introduces semileptonic decays of b-hadrons, where the LFU is, nonetheless, ques-
tioned.

Table 1.3 – Input values to the LFU derivation in leptonic decays of the charged leptons [14].

Quantity Value
m(e) (0.5109989461± 0.0000000031)MeV/c2

m(µ) (105.6583745± 0.0000024)MeV/c2

m(τ) (1776.86± 0.12)MeV/c2

τ(µ) (2.1969811± 0.0000022)× 10−6 s
τ(τ) (2.903± 0.005)× 10−13 s
B(τ→ eνeντ ) (17.82± 0.04)%
B(τ→ µνµντ ) (17.39± 0.04)%

1.2.2 Tests of Lepton Flavour Universality

There are many observables that can verify LFU. In the following, an emphasis is put
on the ones that are relevant to either the flavour changing charged current (FCCC)
processes, like b → cℓνℓ or the flavour changing neutral current (FCNC) ones, like
b→ sℓℓ.

The first one occurs at the tree level, while the second one happens at the loop level.
Both of them exhibit tensions between the SM prediction and experimental results. The
next two Sections overview the recent measurements in these two modes. A selected
few other tensions are covered afterwards.

1.2.2.1 Overview of the b→ cℓνℓ measurements

The LFU in b→ cℓνℓ decays has been recently studied in quite a few measurements of
the R(D∗) and R(D) ratios defined as:
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R(D∗) ≡ B(B0→ D∗−τ+ντ )

B(B0→ D∗−µ+νµ)
(1.15) R(D) ≡ B(B0→ D−τ+ντ )

B(B0→ D−µ+νµ)
(1.16)

where ℓ = µ+, e+.

R(D∗) in the SM was originally estimated in 2012 as [25]

R(D∗)SM = 0.252± 0.003. (1.17)

Then, several other estimations followed, most importantly, using improved form-factor
estimations [26, 27, 28] based on the BGL parametrisation, derived from the Belle
paper [29], resulting in the current arithmetic average, provided by HFLAV [30]:

R(D∗)SM;wa = 0.258± 0.005. (1.18)

In 2012 BaBar measured R(D∗), with ℓ = µ, e in the denominator, as [31, 32]
0.332 ± 0.024 (stat) ± 0.018 (syst), i.e. 2.7σ away from the then SM prediction. It
spawned a follow-up measurement by Belle (with hadronic tag and leptonic τ recon-
struction) [33] and LHCb (with muonic tau reconstruction) [34] published in 2015.
The Belle result was in-between the SM prediction and the BaBar result, while LHCb
confirmed the BaBar result. It resulted in further checks: in 2016 by Belle with semilep-
tonic tag [35]; in 2017 by Belle using a hadronic tag (τ → πντ and τ → ρντ) [36, 37]; in
2018 by LHCb with hadronic tau reconstruction [38, 39]; and in 2019 Belle re-analysed
the full dataset using semileptonic tag and measured both R(D∗) and R(D) [40] (this
supersedes the result in [35]). Figure 1.4 summarises the theoretical and experimental
R(D∗) results. Currently the theoretical-experimental tension, based on world aver-
ages as published by HFLAV [30] exhibits ≈ 2.5σ tension as depicted in Figure 1.5,
where R(D∗) is plotted with respect to R(D). The latter shows 1.4σ deviation from
the SM. Exploiting the −0.38 correlation between the two observables, the combined
world average manifests approximately 3.1σ tension with the SM. However, a recent
measurement of B0

s → D+
s
(∗) form factors [41] increases the tension to 3.8σ.
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0.2 0.3 0.4
R(D*)

BaBar (2012), had. tag
 0.018± 0.024 ±0.332 

Belle (2015), had. tag
 0.015± 0.038 ±0.293 

Belle (2017), (had. tau)
 0.027± 0.035 ±0.270 

Belle (2019), sl.tag
 0.014± 0.018 ±0.283 

LHCb (2015), (muonic tau) 
 0.030± 0.027 ±0.336 

LHCb (2018), (had. tau)
 0.029± 0.018 ±0.280 

Average 
 0.008± 0.011 ±0.295 

SM pred. average 
 0.005±0.258 

PRD 95 (2017) 115008 
 0.003±0.257 

 JHEP 1711 (2017) 061  
 0.008±0.260 

JHEP 1712 (2017) 060 
 0.005±0.257 

HFLAV
Spring 2019

/dof = 0.4/ 1 (CL = 52.00 %)2χ

0.2 0.4
R(D)

BaBar (2012), had. tag
 0.042± 0.058 ±0.440 

Belle (2015), had. tag
 0.026± 0.064 ±0.375 

Belle (2019), sl. tag
 0.016± 0.037 ±0.307 

Average 
 0.013± 0.027 ±0.340 

SM pred. average
 0.003±0.299 

PRD 94 (2016) 094008 
 0.003±0.299 

PRD 95 (2017) 115008 
 0.003±0.299 

JHEP 1712 (2017) 060 
 0.004±0.299 

FNAL/MILC (2015) 
 0.011±0.299 

HPQCD (2015) 
 0.008±0.300 

HFLAV
Spring 2019

/dof = 0.4/ 1 (CL = 52.00 %)2χ

Figure 1.4 – Overview of world measurements of R(D∗) and R(D) by HFLAV [30].
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Figure 1.5 – Overview of combined world results on R(D)-R(D∗) by HFLAV [30].

This 3.1σ tension is intriguing because the process considered is at the tree level and
that most of possible New Physics explanations require new states up to one TeV [42].

Therefore it is crucial to further investigate R(D∗) and similar ratios in the b → cℓν
family.
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Another b→ cℓνℓ observable isR(J/ψ ) ≡ B(B+
c →J/ψ−τ+ντ )

B(B+
c →J/ψ−µ+νµ)

[43]. Its resultR(J/ψ ) = 0.71±
0.17 (stat) ± 0.17 (syst) exhibits ≈ 2σ tension with the SM prediction of R(J/ψ )SM =
0.2601± 0.0036 [44].

It is curious that all the results of R(D∗), R(D) and R(J/ψ ) deviate systematically above
the SM estimations. To complement these searches, several other observables are cur-
rently studied in b→ cℓνℓ modes, for example, R(D(∗)

s ), R(Λ
(∗)
c ), with different or more

spectator quarks than in R(D∗) and possibly with an excited charm hadron in the final
state.

1.2.2.2 Overview of the b→ sℓℓ measurements

One of the most striking anomalies are in the ratios of branching fractions of B → Kℓℓ,
where ℓ = µ, e and K = K+ or K = K∗0, denoted by R(K) ≡ B(B+→K+µ+µ−)

B(B+→K+e+e−)
[45, 46,

47, 48] and R(K⋆) ≡ B(B0→K∗0µ+µ−)
B(B0→K∗0e+e−)

[49, 47, 48]. Despite their prior measurements
by BaBar and Belle that agreed with the SM (< 1σ tensions), the recent, more precise,
results from LHCb show 2.5σ and 2.2−2.4σ deviation from the SM for R(K) and R(K⋆)
respectively. To complement, LHCb extended the investigation to the baryon decays
by studying the ratio R−1

pK ≡ B(Λ0
b→pK−e+e−)

B(Λ0
b→pK−µ+µ−)

[50], which, nonetheless, turned out to
be consistent with the SM. Another searches for New Physics are the measurements of
angular observables such as P ′

5 studied in the B0 → K∗0µ+µ− decay [51]. Itself the
variable is 2.5− 2.9σ away from the SM prediction in selected q2 regions, but combined
with other angular variables, the global discrepancy reaches 3.3σ. Curiously, the effect
seems to be well explained by altered only one vector coupling Re(C9)

2 that was found
to be 1.04 ± 0.25 below the SM value [51]. All these measurements are enlisted in
Table 1.4 and summarised in Figure 1.6.

2C9 is a Wilson coefficient of the Effective Field Theory, which is briefly introduced in Section 1.2.3.
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Table 1.4 – Selected observables in b→ sℓℓ decays from LHCb, BaBar and Belle.

Parameter Value q2[GeV 2/c4] Ref. Experiment SM tension
R(K) superseded by [46] 0.745+0.090

−0.074 ± 0.036 [1.0, 6.0] [45] LHCb 2.6σ
R(K) 0.846+0.060

−0.054
+0.016
−0.014 [1.1, 6.0] [46] LHCb 2.5σ

R(K) 0.74+0.40
−0.31 ± 0.06 [0.10, 8.12] [47] BaBar < 1σ

R(K) 1.43+0.65
−0.44 ± 0.12 > 10.11 [47] BaBar < 1σ

R(K) 1.01+0.28
−0.25 ± 0.02 [0.1, 4.0] [52] Belle < 1σ

R(K) 0.85+0.30
−0.24 ± 0.01 [4, 8.12] [52] Belle < 1σ

R(K) 1.03+0.28
−0.24 ± 0.01 [1, 6] [52] Belle < 1σ

R(K) 1.97+1.03
−0.89 ± 0.02 [10.2, 12.8] [52] Belle < 1.1σ

R(K) 1.16+0.30
−0.27 ± 0.01 > 14.18 [52] Belle < 1σ

R(K) 1.10+0.16
−0.15 ± 0.02 whole range [52] Belle < 1σ

R(K⋆) 0.66+0.11
−0.07 ± 0.03 [0.045, 1.1] [49] LHCb 2.2σ

R(K⋆) 0.69+0.11
−0.07 ± 0.05 [1.1, 6.0] [49] LHCb 2.4σ

R(K⋆) 1.06+0.48
−0.33 ± 0.08 [0.10, 8.12] [47] BaBar < 1σ

R(K⋆) 1.18+0.55
−0.37 ± 0.11 > 10.11 [47] BaBar < 1σ

R(K⋆) 0.52+0.36
−0.26 ± 0.06 [0.045, 1.1] [53] Belle ≈ 1σ

R(K⋆) 0.96+0.45
−0.29 ± 0.11 [1.1, 6] [53] Belle < 1σ

R(K⋆) 0.90+0.27
−0.21 ± 0.10 [0.1, 8] [53] Belle < 1σ

R(K⋆) 1.18+0.52
−0.32 ± 0.11 [15, 19] [53] Belle < 1σ

R(K⋆) 0.94+0.17
−0.14 ± 0.08 > 0.045 [53] Belle < 1σ

R−1
pK 1.17+0.18

−0.16 ± 0.07 [0.1, 6.0] [50] LHCb 1σ

P ′
5 cf. Figure 1.6 [4,6] [51] LHCb 2.5σ
P ′
5 cf. Figure 1.6 [6,8] [51] LHCb 2.9σ

all angular observables n/a ≈ [0, 19] [51] LHCb 3.3σ
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Figure 1.6 – (Top left) R(K) results from LHCb [45, 46], BaBar [47] and Belle [48]; (Top
right) R(K⋆) LHCb result compared to various theoretical predictions [49]; (Bottom left) LHCb
P ′
5 result [51]; (Bottom right) ∆χ2 distribution of various Re(C9) values with its minimum

1.04± 0.25 below the SM prediction [54].

1.2.3 Effective Field Theory computation of R(D∗)

The branching fractions in the R(D∗) ratio are theoretically computed in the Effective
Field Theory (EFT) formalism introduced in the following.

The EFT [55, 56] is a common approach in tackling computations of branching frac-
tions of weak decays. It allows to separate out effects from different energy scales,
as e.g. around a b-hadron mass, O(mXb

), as opposed to around the W -boson mass,
O(mW ). Various contributions are summed up in a series as shown in Eq. 1.19, which
comprises the SM effective Hamiltonian. Another advantage of this formalism is that
it accommodates the potential New Physics effects by adding extra operators whose
contributions are normalised by their coefficients. Some ongoing analyses exploit this
feature by ’injecting’ New Physics candidates there.

The EFT ignores theW boson in the diagram Fig. 1.7 and assumes a four-fermion vertex
resulting in the four-vector operator, OV ℓ, as depicted in Fig. 1.8.
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b c

d

B0 D∗−

W+

τ+/µ+

ντ/νµ

Figure 1.7 – The leading order SM Feynman diagram of the decays in the R(D∗) numerator,
B0→ D∗−τ+ντ , and denominator, B0→ D∗−µ+νµ, respectively.

b c

d

B0 D∗−

OV ℓ

τ+/µ+

ντ/νµ

Figure 1.8 – The leading order SM Feynman diagram of the decays in the R(D∗) numerator,
B0→ D∗−τ+ντ , and denominator, B0→ D∗−µ+νµ, respectively as in the effective Hamiltonian
approach.

The effective Hamiltonian in the b→ cℓ−νℓ decays is as follows [57]:

Heff(b→ cℓ−νℓ) =
4GF√

2
Vcb

∑
i

CiOi, (1.19)

where the index i runs over the various 4-fermion operators.

In fact, due to the universality of the lepton couplings, the operator product expansion
in Eq. 1.19 boils down to the dominant SM operator, OV ℓ, as follows:

CV ℓOV ℓ = (cγµPLb)(ℓγ
µPLνℓ), (1.20)

where PL is a function of the Dirac γ5 matrix, PL = (1− γ5)/2 and CV ℓ is normalised to
unity. Potential New Physics contributions would manifest themselves in extra terms is
the series in Eq. 1.19.

The estimation of bilinears cΓb, as in eq. 1.20 (or in a beyond-the-SM form), where Γ is
a 4×4 matrix resulting from the product of the Dirac γ-matrices, relies on form factors
that depend on the spin of the decaying hadron as shown in Tab. 1.5. In the case of the
B0→ D∗−τ+ντ , the A0,1,2 and V form factors have to be known.
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Table 1.5 – Relevant form-factors in B → H transition as a function of the spin of the H hadron
and the bilinear cΓb [57].

JP (H) Γ Form factors
0− γµ f0, f+
0− σµν fT
1− γµ A0, A1, A2

1− γµγ5 V
1− σµν T2, T3
1− σµνγ5 T1

The differential decay rate of the R(D∗) numerator or denominator (B0 → D∗−ℓ+νℓ,
where ℓ = τ+, µ+ respectively), and the R(D∗) itself neglecting the mass of the light
lepton, can be expressed in terms of hadronic helicity amplitudes Hmn [25], which
depend on the form factors:

dΓℓ
dq2

=
G2
F |Vcb|2|p|q2

96π3m2
B

(
1− m2

ℓ

q2

)2

×
[
(|H++|2+|H2

−−|+|H00|2)(1 +
m2
ℓ

2q2
) +

3m2
ℓ

2q2
|H0t|2

]
,

R(D∗) ≡ dΓτ/dq
2

dΓℓ/dq2
mℓ=0
≈

(
1− m2

τ

q2

)2 [
(1 +

m2
τ

2q2
) +

3m2
τ

2q2
|H0t|2

|H++|2+|H2
−−|+|H00|2

]
,

(1.21)

(1.22)

where q2 is the four-momentum transfer to the lepton system, q2 = (pB − pD∗)2, |p| is

the 3-momentum of D∗ in B rest frame, |p|=
√
λ(m2

B ,m
2
D∗ ,q2)

2mB
, λ(a, b, c) = a2 + b2 + c2 −

2(ab+ bc+ ca). The helicity amplitudes are q2 functions dependent on the A0,1,2 and V
form-factors:

HSM
±± (q2) = (mB +mD∗)A1(q

2)∓ 2mB

mB +mD∗
|p|V (q2),

HSM
00 (q2) =

1

2mD∗
√
q2

[
(m2

B −m2
D∗)A1(q

2)− 4m2
B|p|2

mB +mD∗
A2(q

2)

]
,

HSM
0t (q2) =

2mB|p|√
q2

A0(q
2).

(1.23)

(1.24)

(1.25)

These form factors are further expressed in terms of the universal form factor, hA1(w),
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and the ratios R0,1,2(w) as follows:

hA1(w) = A1(q
2)

1

Rm

2

w + 1
,

A0(q
2) =

R0(w)

Rm

hA1(w),

A2(q
2) =

R2(w)

Rm

hA1(w),

V (q2) =
R1(w)

Rm

hA1(w),

(1.26)

(1.27)

(1.28)

(1.29)

where Rm = 2
√
mBmD∗/(mB +mD∗) and w = vB · vD∗ = (m2

B +m2
D∗ − q2)/(2mBmD∗),

with mB(D∗) being the mass of the B (D∗) meson. The minimum value, w = 1, corre-
sponds to zero recoil of the D∗ meson in the B rest frame, i.e., the largest kinematically
allowed value of q2.

They can be obtained from lattice QCD, light-cone sum rules, heavy-quark expansion
theory and others. The following section briefly introduces the two common form factor
parametrisations: CLN and BGL.

Form factor parametrisations
The Caprini-Lellouch-Neubert (CLN) parametrisation [58] relies on the heavy-quark
spin symmetry in the B(∗) and D(∗) mesons), a dispersion technique and introduces the
short-distance and 1/mQ (where Q denotes both the b and c quark) corrections near
zero recoil (w = 1). The form factor results are valid within approximately 2% in the
semileptonic region. The four above-mentioned form factors are written as [58]

hA1(w) = hA1(1)
[
1− 8ρ2z + (53ρ2 − 15)z2 − (231ρ2 − 91)z3

]
,

R0(w) = R0(1)− 0.11(w − 1) + 0.01(w − 1)2 ,

R1(w) = R1(1)− 0.12(w − 1) + 0.05(w − 1)2 ,

R2(w) = R2(1)− 0.11(w − 1)− 0.06(w − 1)2 ,

(1.30)
(1.31)
(1.32)
(1.33)

where z ≡
√
w+1−

√
2√

w+1+
√
2
.

These depend only on five parameters: ρ2, R0(1), R1(1), R2(1) and hA1(1) (the latter is
often referred to as F(1)). They are all, except R0(1), extracted from the differential
spectrum of the B0 → D∗−ℓ+νℓ decays, and have been measured most precisely by
BaBar and Belle. R0(1) is helicity suppressed in Equation 1.21, where it is incorporated
in the H0t term (see Equations 1.25 and 1.27), so it cannot be measured similarly,
however it still is important for the R(D∗) theoretical result.

Another approach to the form factors is the Boyd-Grinstein-Lebed (BGL) parametriza-
tion [59, 60, 61], which is more general and relies on a series expansion with arbitrary
precision. Recently, there has been some doubts concerning validity of the CLN as-
sumptions at the current precision: e.g. as argued in [27] the residual uncertainty is
not negligible; some precise lattice QCD calculations should be considered. Therefore,
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many measurements try to compare results of, for instance, Vcb and R(D∗) as obtained
with the both methods. The form factors relevant to B → D∗ℓν decays depend on three
functions, f(w), g(w) and F1(w):

hA1(w) =
f(w)

√
mBmD∗(1 + w)

,

R1(w) = (w + 1)mBmD∗
g(w)

f(w)
,

R2(w) =
w − r

w − 1
− F1(w)

mB(w − 1)f(w)
,

(1.34)

(1.35)

(1.36)

which are expressed in terms of convergent power series of z as:

f(z) =
1

P1+(z)ϕf (z)

∞∑
n=0

bnz
n ,

g(z) =
1

P1−(z)ϕg(z)

∞∑
n=0

anz
n ,

F1(z) =
1

P1+(z)ϕF1(z)

∞∑
n=0

cnz
n .

(1.37)

(1.38)

(1.39)

The terms P1±(z) are Blaschke factors and ϕf,g,F1(z) are ’outer functions’, both detailed
e.g. in [62].

The Table 1.6 gives the world averages of the form factor parameters as of Summer
2019 HFLAV summary [30]. The hA1(1) parameter is written (i) as obtained in an
HFLAV experimental world average, with the electroweak corrections ηEW and multi-
plied by |Vcb|; (ii) as calculated from lattice QCD by Fermilab/MILC or HPQCD. It is
noteworthy that hA1(1) is the only form factor that remains in the zero-recoil (w = 1)
limit in the BGL parametrisation.

Table 1.6 – HFLAV world average of the CLN form factor parameters as of the Summer 2019 [30].

Parameter HFLAV world average
ρ2 1.122± 0.015 (stat)± 0.019 (syst)
R1(1) 1.270± 0.026
R2(1) 0.852± 0.018
ηEWhA1(1)|Vcb| 35.27± 0.11 (stat)± 0.36 (syst)

Lattice QCD [63]
hA1(1) Fermilab/MILC 14 [64] 0.906± 0.004 (stat)± 0.012 (syst)
hA1(1) HPQCD 17B [65] 0.895± 0.010 (stat)± 0.024 (syst)

The R0(1) in the HQET limit equals [R0(1)]HQET = 1, but was more precisely estimated
in [25] as R0(1) = 1.14 ± 0.11, and later in [26] as R0(1) = 1.17 ± 0.02. These form
factor parameters are subject to future updates from lattice computations, especially be-
yond the zero-recoil, as well as experimental studies. Preliminary results by the JLQCD
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Collaboration [66] and by Fermilab/MILC [67] at the Lattice2019 Symposium already
demonstrate the recoil-dependent form factors of B → D(∗)ℓνℓ decays. Arriving at a
consensus between the CLN vs. BGL parametrisation (cf. the long-standing discrepancy
between the inclusive/exclusive determination of |Vcb| may stem from differences in
the CLN/BGL parametrisations) would be desirable. Last but not least, Beyond-the-SM
form factors, combined from experiment and LQCD, would shed light on raison d’être
of possible New Physics models.

1.2.4 New Physics models

Recent years have brought harvest as much to the experimental as the theoretical re-
sults on Lepton Flavour Universality. With the appearance of new measurements, some
models were encouraged or dismissed.

There are three [68] typical candidates to account for the R(D∗) and R(D) anomalies:

• Two-Higgs-doublet models [69]

• Heavy vector bosons, e.g. W ′ [70]

• Leptoquarks [71, 72]

Charged Higgses lead to too large B+
c lifetime and result in disfavoured q2 distribu-

tions [68]. The W ′ imply also Z ′ of unnaturally large widths.

Leptoquarks (LQs) are postulated as particles that carry both lepton and baryon num-
bers. They appear in grand unification theories. LQs might be more fundamental par-
ticles decaying into a lepton and a quark (usually from the same generation) at lower
energies. Their quantum numbers like spin, electric charge and weak isospin depend
on a specific model as it is represented in Table 1.9.

Figure 1.9 – Possible LQs with respect to their baryon (B) and lepton (L) numbers, QCD
and weak isospin representation and the weak hypercharge. Their allowed coupling to the SM
fermions is also shown [14].

Essentially, leptoquarks are classified as either scalar (spin 0) or vector (spin 1) type
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particles. LQs might help explain why there are exactly 3 generations of quarks and
leptons, and why this number is equal for these two groups of particles. Moreover,
their existence would allow for transitions between leptons and quarks.

ATLAS and CMS searches of LQs of the first and seconds generations [73, 74, 75] and
the third generation [76, 77, 78, 79, 80] excluded such particles below the mass of 1.3-
1.5TeV and 740-1002GeV, respectively. A CMS study allowing for a mixed generation
leptoquark [81] excluded such a LQ candidate below the mass of 1420GeV.

Attempts [82] at resolving both R(D∗) and R(K⋆) puzzles simultaneously rules out the
possibility of a single scalar LQ of mass around 1TeV, but allow for a vector LQ. This LQ
poses, however, a challenge of UV completion that has to be specified to compute the
loop effects. The LQ proposed is the weak singlet vector U1 of mass 1-2TeV. Prospective
constraints might be obtained from LHCb and Belle II from B(B → Kµτ) upper limits.

The paper [68] argues that any two of the three anomalies: R(D∗), R(K) and µ mag-
netic moment, aµ (exhibiting 3.3σ tension with the SM [14]), can be explained simul-
taneously by a C9 = −C10 contribution. The authors propose a model with two LQs
of the same mass and coupling to quarks and leptons, with one SU(2) singlet and the
other SU(2) triplet.

Another attempt at explaining the anomalies with two scalars [83] originates from two
SU(5) operators and can accommodate all observed B meson anomalies.

The most recent model-independent analysis [54] interestingly explains both b→ sℓℓ
and b→ cℓνℓ anomalies by introducing lepton flavour universal NP CU

9 besides lepton
flavour violating CV

9µ = −CV
10µ (’Scenario-8’ in the paper). Figure 1.10 shows fits to the

(CV
9µ = −CV

10µ, C
U
9 ) plane for (left) only b → sℓℓ anomalies and (right) also R(D(⋆)).

Inclusion of the latter one, however, increases the pull of that fit to 7.0σ.

In [84] the authors discuss the angular observables in B0 → D(∗)ℓνℓ that can pinpoint
the probable New Physics structures even if the R(D∗) tension with the SM disappears.
The angular observables can be obtained in an unbiased way despite the missing neu-
trinos, as proposed in [85].
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Figure 1.10 – Fits to the (CV9µ = −CV10µ, CU9 ) plane based on (left) b → sℓℓ from various
experiments and (right) global b→ sℓℓ and R(D(⋆)) results [54].
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Chapter 2
The LHCb experiment

The Large Hadron Collider Beauty (LHCb) experiment was initially designed to search
for New Physics by studying decays of the beauty hadrons. Its physics programme
has, however, been much extended and now covers the charm, strange and top quark
physics, heavy ions, electro-weak physics and the Higgs physics.

So far , the LHC produced O(1012) bb pairs in the acceptance of the LHCb detector [86].
This is a record number in a b-hadron physics experiment.

The LHCb experiment is situated at the Large Hadron Collider briefly described in the
following section. Next, the LHCb detector and its software will be covered with an
emphasis put on their importance for the R(D∗) measurement.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [87] comprises a two-ring hadron accelerator in-
stalled in the 27 km toric tunnel bored in 1984-1989 for the LEP machine. It has 8
straight segments and 8 arcs between 45 m and 170 m underground and two 2.5 km
transfer tunnels that inject particles from the CERN accelerator complex shown in Fig-
ure 2.1. The proton (or heavy ions) beams rotate in opposite directions in the two rings
with ultra-high vacuum. They are accelerated by radio-frequency cavities and curved
by superconducting dipole magnets that operate at extremely low temperatures. The
protons collide at four points, which are equipped with very specialised and complex
detectors: ATLAS, ALICE, CMS and LHCb.

ATLAS and CMS are general-purpose experiments, whose programme includes searches
for the Higgs boson, t-quark physics and supersymmetry. ALICE studies quark-gluon
plasma properties at heavy ion collisions.

Before the particles enter the LHC, they undergo many stages illustrated in Figure 2.1.
Protons are extracted from a hydrogen ion source and accelerated in a linear accelerator
LINAC-2 up to an energy of 50MeV. Then they enter three increasingly larger circular
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Figure 2.1 – CERN accelerator complex [88] with the proton acceleration route from LINAC-2
to the LHC.

accelerators: Proton Synchrotron Booster (PSB) of 1.4GeV, Proton Synchrotron (PS)
of 28GeV and the Super Proton Synchrotron (SPS) of 450GeV. Finally, the protons
enter the LHC. The route of heavy ions is similar, except that it starts at LINAC-3, then
goes through the Low Energy Ion Ring (LEIR), before proceeding to the PS.

The beams are accelerated using radio-frequency (RF) cavities whereby they get some
energy from the electric field. Their trajectory is curved at the 8 arcs with superconduct-
ing dipole magnets of 8.3 Tesla and tightened at the collision points with quadrupole
magnets.

In head-on collisions of protons of energy Ep each, the centre-of-mass energy equals√
s = 2Ep. Therefore, it grows linearly with the proton energy.

To date there has been two data-taking periods at LHC: Run1 in 2011-2012 and Run2
in 2015-2018. In Run1 the LHC operated at centre-of-mass energy of

√
s = 7 − 8TeV

while in Run2 at
√
s = 13TeV.

The particles in LHC circulate at 40MHz frequency grouped in bunches. There are
about 3000 bunches per beam with ∼ 1011 protons in each at the beginning of each
around 20-hour collision period, so-called fill.

Number of events, Nevents, produced at an LHC collision depends on the event cross-
section σevent and the machine luminosity L:

Nevents = σevent

∫
Ldt, (2.1)
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where

L =
N2
b nbfrevγr
4πεnβ∗ F, (2.2)

with Nb particles per bunch, nb bunches per beam, revolution frequency frev, relativistic
gamma factor γr, the normalised transverse beam emittance ϵn, the beta function β∗

and factor F accounting for collision geometry.

The LHC peak instantaneous luminosity at the beginning of a fill is L = 1034 cm−2s−1

during Run2.

2.2 The LHCb Detector

The bb pairs produced in pp collision at LHC are heavily boosted either in the forward or
background direction of the beam (z) axis. Therefore, LHCb being a forward detector,
can observe almost half of the bb decay products in its pseudorapidity range η ∈ [2, 5].

The LHCb [89] geometrical acceptance is shown in Figure 2.2 (left) and also there
(right) it is compared with the one of ATLAS and CMS.
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Figure 2.2 – Left: Distribution of simulated bb pairs of quarks as a function of their polar angles
θ1 and θ2. In red is shown angular acceptance of the LHCb detector. Right: Pseudorapidity
distribution of the pairs of b quarks. The red region lies within the LHCb acceptance, whereas
the yellow marks the one of ATLAS or CMS.

LHCb operates at L = 4 × 1032 cm−2s−1, in order to reduce event occupancy to the
desired average of µ = 1.1 interactions per bunch crossing. This luminosity is decreased
with respect to the LHC one by the luminosity levelling procedure, whereby the two
beams are offset such that constant luminosity is maintained as long as possible. The
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instantaneous luminosity within a typical LHCb fill is depicted in 2.3 (left), while the
integrated luminosities gathered in between 2010-2016 are shown in 2.3 (right).
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Figure 2.3 – Left: Instantaneous luminosity as a function of time compared between ATLAS,
CMS and LHCb. The LHCb maintains approximately constant value thanks to tuning the
distance between the two beams. Right: Recorded integrated luminosity at LHCb for different
years with their corresponding energies per single proton.

The analysis presented in this thesis is performed using the 2015-2016 dataset with its
∼ 2 fb−1 gathered at the centre-of-mass energy of

√
s = 13TeV per proton-proton (pp)

collision. The previous R(D∗) analysis with hadronic τ reconstruction was based on
the ∼ 3.2 fb−1 from the 2011-2012 (Run1) dataset. The running conditions for the two
collected datasets are compared in Table 2.1.

Table 2.1 – Comparison of the integrated luminosity, centre-of-mass energy per pp collision,
√
s,

and the resulting number of bb pairs produced in the LHCb acceptance. This number reflects
the à priori relative dataset yields, with no trigger nor selection taken into account, for the
Run1 (2011-2012) and this analysis (2015-2016).

Period Integrated luminosity
√
s Number of bb

2011-2012 3.2 fb−1 7-8TeV 2.5× 1011

2015-2016 2.0 fb−1 13TeV 2.9× 1011

The three major ingredients of most LHCb analyses are: tracking, particle identification
(PID) and trigger.

The tracking allows to reconstruct ’tracks’ representing the trajectories of the charged
particles passing through the LHCb detector (see Section 2.2.1, while the PID allows
to infer the nature of those particles (see Section 2.2.2). The trigger selects the events
that are kept for further treatment (see Section 5.2).

These procedures are intertwined as partial reconstruction is sufficient to pass or not
early trigger conditions and then run more complete reconstruction before the final
trigger steps.
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The following sections introduce these indispensable components, where the relevant
LHCb subdetectors, depicted in Figure 2.4, are introduced.

M1
M3

M2

M4 M5

RICH2

HCALECAL
SPD/PS

Side View

Magnet

z5m

y

5m

10m 15m 20m

TT
RICH1

T1
T2

T3

Vertex
Locator

Figure 2.4 – A profile view of the LHCb detector in the non-bending y − z plane with its
subdetectors along the beam (z) axis.

2.2.1 Tracking

The tracking system reconstructs trajectories of charged particles. It uses information
from points where they interacted with the detector spawning ’hits’. The tracking sys-
tem is composed of a vertex detector surrounding the interaction point, and tracking
stations, which are located on either side of a dipole magnet. Particle momentum is
deduced from the deflection angle in the magnetic field. The following sections briefly
describe these components as well as the track reconstruction techniques.

2.2.1.1 The vertex detector

The Vertex Locator (VELO) is a silicon micro-strip detector surrounding the interaction
point at a minimum distance of 8mm. Its geometrical acceptance is in the range 1.6 <
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η < 4.9. Its role is to measure the trajectories of particles that originate at the primary
vertex (PV) and subsequently reconstruct the PV. It also reconstructs the secondary
vertices (SV) where heavy quark hadrons decay (e.g. B0 in the signal of this analysis).

The VELO has 42 modules along the beam axis, split vertically into two halves either
side of it, each enveloped in an aluminium foil. The foil allows for close proximity of
the VELO’s silicon sensors to the beam, while protecting the LHC primary vacuum from
the secondary vacuum at the detector.

The modules along the beam axis are shown in Figure 2.5 (right). Each module has
two types of sensors: one measuring the radius, r, where the strips are concentric, 38-
102µm apart; and one measuring the azimuthal angle, ϕ, where the strips are oriented
radially with denser segmentation in the inner region due to higher occupancy. The
VELO sensors are depicted in Figure 2.5 (left).

Figure 2.5 – Left: The VELO r and ϕ sensors. Right: The VELO modules alongside the beam
axis.

2.2.1.2 The tracking stations

There is one tracking station upstream of the magnet (Tracker Turicensis, TT) and three
downstream of it (cf. Figure 2.4). The Tracker Turicensis reconstructs tracks coming
from particles decaying outside the VELO.It consists of four layers of silicon microstrip
sensors of 183µm pitch. In the first and last layers the strips are vertical while, to
improve the reconstruction precision, the strips are rotated by a stereo angle of −5◦

and 5◦ in the second and third layers, respectively.

The three upstream tracking stations (T1-T3) are implemented with two technologies:
in the inner region close to the beam pipe, the Inner Tracker (IT) is a silicon tracker
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similar to the TT, while, in the outer region as the required granularity is lower due to
the smaller track density, the Outer Tracker (OT) is made of straw-tubes detectors.

2.2.1.3 The magnet

The warm dipole magnet, illustrated in Figure 2.6, is used to determine particles mo-
menta. To achieve a relative momentum resolution at 5GeV/c of 0.4%, the magnet pro-
vides an integrated magnetic field of 4 Tm between the VELO and the most upstream
tracking station. The relative resolution obtained is 4×10−3 that requires an integrated
magnetic field of 4 Tm between the VELO and the three downstream tracking stations.

The magnet is composed of two coils with 5.85 kA current installed in a rectangular
yoke with a window inside, spanning the detector’s acceptance.

The magnet polarity is flipped regularly to record approximately equal amounts of data
at each polarity to mitigate potential bias due to the detector asymmetry.

Figure 2.6 – A schematic of the bending dipole magnet projected onto the x− y plane.

2.2.1.4 The tracking algorithm

The trajectories of the charged particles are reconstructed from all hits collected in the
tracking system. The tracks are classified according to the set of subdetectors their cor-
responding particles pass through, as shown in Figure 2.7. In this analysis only ’long’
tracks, which pass through all the tracking subdetectors, are considered. Their recon-
struction starts with finding a straight line segment in the VELO. Then two independent
algorithms follow: the ’forward tracking’ and the ’track matching’.
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The forward tracking appends a single hit in one of the T1-T3 stations to a VELO seg-
ment. Then additional hits are searched in the remaining T1-T3 stations, in a window
around the initial trajectory. Thus reconstructed track needs to then pass certain quality
cuts.

The track matching, instead, attempts to combine the VELO tracks with those from
T1-T3 stations by extrapolating the both sets through the magnet. The tracks from the
both algorithms are considered, duplicates are removed and relevant hits from the TT
are added to improve the momentum resolution.

Finally, a Kalman filter is applied to the tracks, accounting for multiple scattering and
energy losses. Track quality is measured with the χ2 per degree of freedom metric.

’Ghost’ tracks consist in trajectories that do not correspond to a real particle passage.
They mostly stem from incorrect matching of the VELO and T1-T3 tracks. In repre-
sentative pp inelastic collisions they amount to typically 6.5% tracks per event, but can
comprise up to 20% events in case of large-multiplicity. The ’ghost’ tracks are removed
with a neural network that allows to choose a working point with 60% ’ghost’ track
rejection while keeping 99% of genuine tracks [90].

Figure 2.7 – Track types depending on the subdetectors where hits occurred overlaid with the
magnetic field distribution along the beampipe.

2.2.1.5 The tracking performance

The tracking system allows for primary vertex (PV) reconstruction with a resolution up
to 10-40 µm in the x and y coordinates (perpendicular to the beam) and 50-300 µm
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along the beam z coordinate. The lower boundaries are achieved for large number of
tracks in PV, as depicted in Figure 2.8.

Figure 2.8 – Primary vertex (PV) resolution in the x (left) and z (right) coordinate as a function
of number of tracks in the PV [91].

One of the most important geometrical variables in tracking is impact parameter (IP),
defined as the distance between the PV and the track direction, measured perpendicu-
larly to the track, in the plane containing the PV and the track.

Individual tracks have IP resolution in the x and y axis down to around 12 µm for high
momentum particles as depicted in Figure 2.9.

Figure 2.9 – IP x (left) and y (right) coordinate dependence on the transverse momentum
pT [91].

The tracking efficiency is 96% as measured for the muons that pass through all the
tracking stations. The relative momentum resolution for charged tracks is around 0.5%
for tracks whose corresponding particles have momentum below 20GeV/c and around
0.8% for ones with momentum around 100GeV/c. See Figures 2.10 for the tracking
efficiency and momentum resolution as a function of particle’s momentum.
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Figure 2.10 – Tracking efficiency as a function of track momentum (left) and momentum reso-
lution as a function of momentum [92] (right) as measured in Run1.

2.2.2 Particle Identification

Particle identification (PID) is crucial in this analysis. It allows to identify the pions and
the kaons that form the candidates for the signal and normalisation modes. This section
describes the PID system of the LHCb detector. It is composed of the three elements:

• Ring-Imaging Cherenkov detectors (RICH); they identify long-lived charged
hadrons: pions, kaons and protons;

• electromagnetic and hadronic calorimeters (ECAL and HCAL) that measure en-
ergy of photons, electrons and hadrons;

• muon stations that identify and measure momentum of the muons in the first
trigger level.

2.2.2.1 The Ring Imaging Cherenkov Detectors

There are two Ring Imaging Cherenkov detectors (RICH) that are designed to distin-
guish proton, charged pions and charged kaons. They rely on the Cherenkov effect
whereby a radiation is emitted when a charged particle passes through a dielectric of
refractive index n with a speed, β, greater than the speed of light in that medium, 1/n
(in units where c ≡ 1). Consequently, the light is emitted at the Cherenkov angle, θC ,
thus forming a cone of an opening angle relative to the particle direction given by the
formula:

cosθC =
1

nβ
. (2.3)

Once the cone of light arrives at either RICH detector, it produces a ring whose radius
depends on θC . Hence the radii of the Cherenkov rings are used to deduce the speed
of the particle. Once matched with tracks of known momenta, the particle mass can be
obtained. Figure 2.11 shows momentum distributions for different particle species.

48



2.2. THE LHCB DETECTOR

Momentum (GeV/c)Momentum (GeV/c)
210 102

50

45

40

35

30

25

20

15

K p
C
he
re
nk
ov
A
ng
le
(m
ra
d)

µ

220
200
180
160
140
120
100
80
60
40
20
0

Figure 2.11 – Cherenkov angle distribution as a function of momentum for various particle
species as reconstructed in one of the RICH detectors.

The two RICH detectors are between the VELO and TT, and after the tracking sys-
tem. They have different angular and momentum coverages: the first one, RICH1,
covers low momentum particles, around 1-60GeV/c. It covers the full LHCb accep-
tance of ±25−±300mrad horizontally and ±250mrad vertically. the RICH2 allows for
a momentum range from about 15GeV/c to over 100GeV/c. Its acceptance is lowered
to ±120mrad horizontally and ±100mrad vertically, as high-momentum particles are
boosted forwards.

RICH1 uses aerogel and fluorobutane (C4F10) and RICH2 uses CF4. Both RICH detec-
tors are shown in Figure 2.12
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Figure 2.12 – Left: Side view of RICH1. Right: Top-down view of RICH2.

The Cherenkov light emitted in any of the RICH detectors is detected by the Hybrid Pho-
ton Detectors (HPDs). They are vacuum phototubes that convert photons to electrons
that are detected at the silicon sensors at the anode end.

2.2.2.2 The calorimeters

The calorimeters distinguish electrons, photons and hadrons by measuring their en-
ergies and positions. Also, they provide transverse energy measurement that is used
by the first level trigger, described in the following Section 5.2. They need to, there-
fore, provide relevant information fast. This requirement drives the calorimeter system
design.

The calorimetry system is situated between the first and remaining muon stations.
It consists of two main detectors: the electromagnetic calorimeter (ECAL) and the
hadronic calorimeter (HCAL). The ECAL is more upstream and is preceded with two
additional detectors: the scintillator Pad Detector (SPD) and the Preshower Detector
(PS). They detect backgrounds for the electron trigger such as pions. To contain high
energy photons, the ECAL thickness is 25 radiation lengths, after 2.5 of the SPD and
PS. HCAL contains only 5.6 interaction length, because the trigger requirements on
the HCAL resolution do not impose a stringent shower confinement condition. The
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calorimeters angular coverage matches that of the RICH1. Their segmentation varies,
similarly to other subdetectors, to account for higher occupancy near the beam.

The ECAL and HCAL have alternating layers of absorber and detector. The absorber
is lead (ECAL) or iron (HCAL), whereas the detector is a plastic scintillator. Particles
interact with the absorber generating showers of secondary particles that are detected
by the scintillators which generate light read out by photomultipliers.

The SPD and PS detectors are made of two planes of scintillating pads separated with
a lead layer. The SPD detects charged particles and with the ECAL they distinguish
e.g. electrons from pions. The PS helps discriminate between electrons and charged
hadrons based on smaller energy deposit from the hadrons.

2.2.2.3 The muon detector

There are five muon stations (µ) as shown in Figure 2.13 (left). The first one is between
the RICH2 and the calorimeters and helps improve the pT measurement for the first
level trigger.

The four remaining stations are interleaved with a muon shield, which is comprised
of the electromagnetic and hadronic calorimeters. It has three iron filters and has a
total absorber thickness of 20 interaction lengths. They measure positions of charged
particles passage. With a fine segmentation, the first three stations allow for transverse
momentum, pT, reconstruction with about 20% resolution. The other stations are less
precise and they identify highly penetrating muons. The muon stations are composed
of logical pads with binary readout each, and whose segmentation is more fine closer
to the beam as depicted in Figure 2.13 (right). Most pads use multi-wire proportional
counters. Only an inner region of M1 uses triple gas electron multipliers (GEMs) due
to high flux and considerable ageing.
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Figure 2.13 – Left: Side view of the five muon stations along the beam axis. Right: A front
view of a muon station quadrant. Varying segmentation for four regions, R1-4, of roughly equal
occupancy is shown.
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2.2.2.4 PID variables and performance

The PID variables allow to assign a mass hypothesis to a given track. They rely on
likelihood functions L for each particle type, computed based on the information from
the RICH detectors and the calorimeters. Initially all tracks are assumed to be pions.
Each track is sequentially assumed to be the electron, muon, kaon and proton, and the
corresponding likelihood functions are computed. Each hypothesis is used to compute
the ’delta-log-likelihood’ (DLL) function, where the difference is with respect to the
previously computed log-likelihood of the pion hypothesis, as follows:

DLL(x) = logL(x)− logL(π) (2.4)

LHCb features a good separation between the kaons and pions. Figure 2.14 demon-
strates the efficiency of two illustrative cuts on ∆ logL(K − π) for genuine kaons (red)
and for pions that pass the DLL cut and are hence mis-identified as kaons (black). The
momentum range up to 100GeV/c covers almost entirely the phase-space of the kaons
and pions in this project. For a loose cut of DLL > 0 The kaon efficiency on average is
roughly 95%, while a chance of identifying a pion as kaon is around 10%. For a harsher
cut, of DLL > 5 these values shift to around 80% and 3%, respectively.
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Figure 2.14 – ∆logL(K − π) cut efficiency in data as a function of momentum for genuine
kaons identified as such (red) and for pions misidentified as kaons (black). Two different cuts
are shown (empty vs. filled in shapes) [92].

Figure 2.15 provides another perspective on the kaons-pion separation depending on
the number of tracks or primary vertices in the event. With increased track multiplicity
or number of PV’s, the kaon identification efficiency drops while pion mis-identification
becomes more likely.
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Figure 2.15 – Pion misidentification fraction as a function of kaon efficiency as obtained by
cutting on the ∆logL(K − π) depending on the number of tracks in the event (left) or number
of reconstructed primary vertices (right). Specific working point on the curves is subject to the
cut value.

Another set of variables, ProbNNx, is based on a neural network combining information
from the RICH, calorimeters, muon stations and the tracking system [93]. It includes
and complements the DLL variables, enabling a more complete PID determination.
The ProbNNx variables are in range ∈ [0, 1] and can be interpreted as probabilities of
a given charged track (i.e. π,K, µ, p, e). Each variable stems from a separate neural
network. The neural network is implemented as a Multi Layer Perceptron (MLP) with
the TMVA package integrated in ROOT [94] and trained on simulated events. Its per-
formance is measured with calibration samples from data. In this analysis, two such
variables are used in selection, probNNpi and probNNk, to select or reject pions and
kaons respectively. They are calibrated globally at LHCb using pions and kaons ex-
tracted, for high momentum tracks, from D0 →K−π+, where D0 originates from D∗+

→D0π+. The samples are extracted using the sPlot technique [95].

To facilitate the measurement of the PID efficiencies, the LHCb software has a dedicated
Particle Identification Calibration (PIDCalib) package [96]. It provides a parametrisa-
tion of track PID efficiency based on its phase-space e.g. (transverse) momentum, η,
multiplicity. By comparison of the phase-space between the LHCb calibration samples
and the simulated ones from this analysis, a weighted average is computed resulting in
the estimated PID efficiency.

In this analysis, loose cuts are applied on the DLL variables (e.g. PIDK) in preselection
and, more stringent ones, using the ProbNNpi and ProbNNk variables in further selection
as described in Chapter 5.

2.2.3 The trigger

Trigger [97] is a system that decides if a given event (i.e. ensemble of detector signals
in a time window) should be recorded in a mass storage. Recording all events is tech-
nically impossible: the LHC operates at 40MHz bunch-crossing rate while the LHCb
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detector processes signals at 10MHz rate. Therefore it is important to rapidly decide
if the current event is likely to be of physics interest to LHCb. This is a complex task
performed in a pipeline of three subsequent steps:

• Level-0 Trigger (L0): Hardware-based; operates at the bunch crossing rate of
40MHz, reduces the event rate to around 1MHz;

• High Level Trigger 1 (HLT1): software-based; inclusive filter of events, re-
duces the event rate to 150 kHz;

• High Level Trigger 2 (HLT2): software-based; combines inclusive and exclu-
sive selections of b- and c-hadron decays reducing the event rate to 12.5 kHz.

A schematic overview of the trigger is shown in Figure 2.16. Each step verifies if certain

Figure 2.16 – An overview of the trigger flow used in Run2 (2015-2018).

conditions, referred to as ’lines’ are satisfied. The following sections detail the three
stages of the LHCb trigger.

2.2.3.1 The hardware trigger

The L0 is made with custom electronics and use only fast available sub-detector infor-
mation to be able to operate at the LHC bunch crossing (40MHz) rate. It performs a
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loose selection, which reduces the event rate down to a maximum of 1MHz at which
the full detector information can be read-out and treated by the next trigger stage.

The b- and c-hadrons, due to their high masses decay into products that have high
transverse momenta, pT, and energies, ET. These properties are computed by two
components of the L0: the calorimeter trigger, L0CALO, and the muon trigger, L0MUON.
This information is combined in the L0 decision unit to compute the decision to accept
an event or not.

L0CALO uses information mostly from the electromagnetic and hadron calorimeters,
ECAL and HCAL. SPD and PS are also used to distinguish hadrons, photons and elec-
trons. Consequently its decisions is a logical ’or’ of its three subsystems: L0Hadron,
L0Photon and L0Electron (this split is shown in Figure 2.16).

L0Hadron records the maximum transverse energy, ET, deposited in a cluster of 2 × 2
HCAL cells. In case there is an energy deposit in the ECAL, just in front of the HCAL
cell, both energies are summed up.

L0Photon measures the same quantity in the ECAL, requires 1-2 hits in the PS and none
in the SPD. L0Electron is similar to L0Photon except there has to be at least one SPD
hit.

L0MUON considers straight tracks in the 5 muon stations. Using their directions, and
assuming their origin at the interaction point, their pT, are computed with a resolution
of about 20%. There are two relevant lines: L0Muon and L0DiMuon. The former verifies
if the maximum pT of the set of tracks exceeds certain threshold. The latter takes into
account the product of the two highest pT tracks. Typical thresholds are reported in
Table 2.2.

An event is kept if any of the three subsystems has ET greater than certain threshold
values, as reported in the Table 2.2, where typical trigger conditions in Run-2 are given.
If there are many SPD hits, the event becomes too occupied and slow to reconstruct and
is, therefore, rejected with no significant loss in typical signal efficiencies.

Table 2.2 – Selection values used for the L0 hardware trigger in Run-2 collision data [91] for
given data-taking years. Dimuon line is a product of the highest and second highest transverse
momenta, pT.

L0 trigger ET/pT threshold SPD threshold
2015 2016

Hadron > 3.6GeV > 3.7GeV < 450
Photon > 2.7GeV > 2.78GeV < 450
Electron > 2.7GeV > 2.4GeV < 450
Muon > 2.8GeV > 1.8GeV < 450
Muon high pT > 6.0GeV/c > 6.0GeV/c none
Dimuon > 1.69GeV/c2 > 2.25GeV/c2 < 900
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2.2.3.2 The software triggers

With a maximum rate of events of 1MHz, the next trigger steps are processed in the
Event Filter Farm (EFF). These are split into High-Level-Trigger-1 (HLT1) and High-
Level-Trigger-2 (HLT2). HLT1 performs an inclusive selection looking at 1-2-track sig-
natures or muon/dimuon track(s) displaced from the PV. Its output is written to disk
to allow processing in-between the fills and re-calibrate the detector. HLT2 fully recon-
structs events using a combination of inclusive and exclusive lines.

2.2.3.3 Trigger for R(D∗)

Trigger lines used in this analysis are classified as ’trigger on signal’ (TOS) or ’trigger
independently of signal’ (TIS). The TOS events are triggered independently of the pres-
ence of the rest of the event, while the TIS events are recorded independently of the
signal part within the event.

The trigger conditions are reported in Table 2.3. They consist in a logical ’or’ of the
topological B0 requirements and the exclusive B0→ D∗− decays with D∗−→ π−D0(→
K+π−). The topological lines allow to select 2-4 body decays of the B0 meson that
ensures that both signal (B0 → D∗−τ+ντ) and normalisation (B0 → D∗−3π±) modes
should be selected.

Table 2.3 – Trigger requirement in this analysis is a logical ’or’ between ’B0 topology’ and
’B0 → D∗− exclusive’. The logical ’or’ is implied between the lines in each cell for a given
trigger step (i.e. L0, HLT1 and HLT2) and the logical ’and’ is implied between the three trigger
steps of a given column.

Level B0 topology B0→ D∗− exclusive
L0 B0_L0Global_TIS

B0_L0HadronDecision_TOS
B0_L0Global_TIS
Dst_L0HadronDecision_TOS

HLT1 B0_Hlt1TrackMVADecision_TOS
B0_Hlt1TwoTrackMVADecision_TOS

B0_Hlt1TrackMVADecision_TOS
B0_Hlt1TwoTrackMVADecision_TOS

HLT2 B0_Hlt2Topo2BodyDecision_TOS
B0_Hlt2Topo3BodyDecision_TOS
B0_Hlt2Topo4BodyDecision_TOS

D0_Hlt2RareCharmD02KPiDecision_Dec
D0_Hlt2CharmHadDstp2D0Pip\
_D02KmPipTurboDecision_Dec

2.3 Software

The LHCb software is based on the GAUDI framework [98]. Figure 2.17 represents a
schematic overview of the LHCb data flow.

In case of collision data, the first software tool used is MOORE that runs the software
triggers, HLT1 and HLT2 described in Section 2.2.3.2. Then, the events are recon-
structed with BRUNEL and undergo preselection with DAVINCI, where additional useful

56



2.3. SOFTWARE

information about the events is computed with custom algorithms and some cuts are
applied. The preselection is the first step specific to each analysis. This results in ’ntu-
ples’ in the ROOT format, ready for a specific analysis.

Simulation is an indispensable part of many analyses and this one in particular. It is con-
ducted by the GAUSS [99] that runs three steps: pp collision generation (PYTHIA [100]),
decay of resulting particles (EVTGEN [101]) and their propagation through the detector
(GEANT4 [102]). Next, the GEANT4 output is digitised with BOOLE mimicking resolu-
tion of the real detector. The subsequent steps of the simulated samples are identical to
those of the collision data.

Figure 2.17 – The LHCb data and simulation flow with steps and software tools used shown.
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Chapter 3
Methodology of the R(D∗)
measurement

This chapter provides an overview of the R(D∗) measurements. Section 3.1 compares
the various methods used to measure R(D∗) at LHCb and the B-factories. Section 3.2
defines the method used to measure R(D∗) with three-prong tau decays. Section 3.3
discusses the backgrounds involved in this measurement. Section 3.4 describes the
reconstruction techniques of the decay kinematics. Finally, an overview of the analysis
is covered in Section 3.5.

3.1 Measuring R(D∗) at LHC

R(D∗) has been measured by the BaBar, Belle and LHCb experiments.

BaBar and Belle, detecting e+e− collisions, produce the Υ(4S) resonance spawning two
B mesons. One B meson is signal, reconstructed from its decay to a charm meson
(D or D∗). The other one, Btag, reconstructed from its either hadronic or semileptonic
decay, enables to constrain the kinematics of the total BBtag system and hence measure
the missing mass due to neutrinos. In the R(D∗) measurements at the B factories, the
τ+ is reconstructed through its leptonic modes, τ+ → ℓντ ν̄ℓ, where ℓ = e+, µ+ (the
charged conjugate is implied throughout the text) or through the modes with a hadron,
τ → πντ or τ → ρντ . At the R(D∗) numerator, the B0 → D(∗)τ+ντ mode, spawns 2-3
neutrinos (depending on the mode), while at the denominator, B0 → D(∗)ℓνℓ spawns
only 1 neutrino, since the ℓ is reconstructed directly. The resulting missing mass can
be obtained from M2

miss = (pe+e− − pBtag − pD(∗) − pℓ)
2 (in units of c ≡ 1), where pe+e−,

pBtag, pD(∗) and pℓ are the 4-momenta of the beam or the corresponding particles. For
the signal events, the Mmiss distribution peaks above zero, due to missing 2-3 neutrinos,
while it peaks at zero in case of B0 → D(∗)ℓνℓ, where only 1 neutrino is missing, making
it possible to distinguish the two. Beside the missing mass, another variable is used in
the fit, for example the magnitude of the three-momentum of the lepton, measured in
the B rest frame, |p∗

ℓ | [31, 32] or an output of a neural network [33].
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The LHC, in its pp collisions has no information about the energy of the interacting
partons. Therefore the energy of the bb produced is unknown. Even if the bb system
decays entirely in the LHCb acceptance, one cannot constrain the kinematics of its
hadronisation. Furthermore, hadron colliders have higher multiplicities making the
events significantly more contaminated. Consequently, the semileptonic decays in the
R(D∗) ratio can be only partially reconstructed (cf. Section 3.4). Moreover, to measure
R(D∗), the analysts rely on large simulation samples of events or ’cocktails’ thereof (cf.
Chapter 4) to obtain their templates, as well as on complex multivariate selection (cf.
Chapter 5).

There are two branches of the R(D∗) measurements at LHCb: with the muonic τ recon-
struction, τ→ µνµντ , used in Ref. [34], and the 3-prong decay, τ+→ π+π−π+(π0)ντ

1,
used in Refs. [38, 39] and the analysis presented in this thesis. The hadronic mode
allows for precise reconstruction of the τ+ vertex thanks to the intersection of the three
charged pions trajectories.

3.2 The signal, normalisation and K(D∗)

Let us return to the R(D∗) definition:

R(D∗) ≡ B(B0→ D∗−τ+ντ )

B(B0→ D∗−µ+νµ)
. (3.1)

The mode in the numerator of R(D∗), B0 → D∗−τ+ντ , will be referred to throughout
as the signal. Let us discuss how its decay products can be observed. The D∗− in-
stantly decays mostly2 ((67.7 ± 0.5)%) into D0π− and then D0 decays into K+ and π−

((3.950 ± 0.031)%). The two decay modes of the τ considered for R(D∗) at LHCb are
the muonic one, τ+ → µ+νµντ (≈ 17.4%), and the hadronic one, τ+ → π+π−π+(π0)ντ
(≈ 13.5%). The latter one is chosen in this analysis. Neutrinos are not detected, making
it impossible to reconstruct a clear B0 mass peak for the signal mode. There is, how-
ever, a technique to cope with it as discussed in Section 3.4. Thus, the visible final state
of the signal mode consists of 5π± and one K+. The signal mode topology is shown in
Figure 3.1 (left).

1The branching fractions of the two modes are: B(τ→ µνµντ ) ≈ 17.4%
and B(τ+→ π+π−π+(π0)ντ ) ≈ 13.5%.

2See Table A.1 in Appendix A for a review of the relevant branching fractions.

60



3.2. THE SIGNAL, NORMALISATION AND K(D∗)

p

PV

p
p -

p +

p +

nt

D0

B0

p -

B0 ® D*-t +nt

p - K +

t +

nt

D*-

p

PV

p
p -

p +

p +

D0

B0

p -p - K +

D*-

B0→ D*-π+π-π+B0→ D*-π+π-π+

Figure 3.1 – Schematic view of the B0 → D∗−τ+ντ signal decay (left) and the B0 → D∗−3π±

normalisation mode (right).

The three-prong decays allow for the τ vertex reconstruction. Also, that decay mode
enables angular analysis studies, which go beyond the scope of the work presented in
this thesis, that would be sensitive to New Physics parameters. This latter feature is
currently used in ongoing analyses at LHCb.

The denominator of Eq. 3.1, has been measured by B-factories and LHCb [103] as:
B(B0→ D∗−ℓνµ) = (5.06± 0.02± 0.12)%, where ℓ = e+, µ+.

At this point we have all the ingredients to measure R(D∗) hadronically. Nonetheless,
introducing the normalisation mode, B0→ D∗−3π±, of the same visible final state as the
signal, whose topology is depicted in Figure 3.1 (right), can improve the experimental
precision, because it cancels out systematic detector and reconstruction effects. Then,
the target measurement, denoted by K(D∗), becomes:

K(D∗) =
B(B0→ D∗−τ+ντ )

B(B0→ D∗−π+π−π+)
, (3.2)

which can be expressed in terms of the relative yields of the signal and normalisation
modes, Nsig, Nnorm, obtained from fitting the data, divided by their respective effi-
ciencies, εsig and εnorm obtained mostly from MC studies, divided by the sum of the
branching fractions of the τ+ decay modes considered:

K(D∗−) ≡ B(B0 → D∗−τ+ντ )

B(B0 → D∗−3π)
=

Nsig

Nnorm

εnorm
εsig

1

B(τ+ → 3πντ ) + B(τ+ → 3ππ0ντ )
. (3.3)

Finally, R(D∗) is obtained as:

R(D∗) = K(D∗−)
B(B0→ D∗−π+π−π+)

B(B0→ D∗−µ+νµ)
. (3.4)

The normalisation mode has been measured by LHCb [104], BaBar [105] and
Belle [106] with a weighted average: (7.21± 0.28)× 10−3.
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3.3 Backgrounds

The most important backgrounds are:

• 3π directly from B decays; so called prompt backgrounds

• B0 → D∗−DX decays where D → 3πX; so-called double charm backgrounds

• Feed-down from excited D∗− mesons; denoted by D∗∗

• Non-physical wrong-sign (WS) decays D∗±τ±, where the D∗ and τ candidates
have the same charge

• Combinatorics, where particles from different decays are accidentally combined
in one signal candidate

3.4 Reconstruction of decay kinematics

In the signal decay the two neutrinos are not reconstructed. However, thanks to pre-
cisely measured decay vertices of the D0, 3π± system and B0 (this is enabled by the
VELO detector), and exploiting some vectorial algebra, it is possible to mitigate that
shortcoming. Also, similar techniques are used in reconstructing backgrounds with
missing neutral particles.

The following sections describe the reconstruction techniques in the signal and B →
D∗−D+

s (X), with D+
s → 3πN hypotheses. These methods were described in the R(D∗)

Run-1 analysis [107] and are summarised in the following two sections.

The resulting momenta are exploited by the MVA described in Section 5.8. They also
allow for derivation of the q2 and lifetime of the tau-candidate, τ . These are all three
variables used in the signal yield fit in Section 7.

3.4.1 Reconstruction in the signal hypothesis

Despite the two missing neutrinos, the well-measured vertices of B0 and τ+ allow for
reconstruction of their flight directions (where the B0 one is a line from the primary
vertex to the B0 decay vertex; the τ+ one is a line between the B0 and τ+ decay
vertices). Using their known masses allows to derive the magnitude of the momenta
up to 2-fold ambiguities in the laboratory frame, in units where c = 1.

From the energy conservation in the decay τ → 3πντ one can derive the magnitude
of the τ momentum as a function of the angle between the τ and 3π vectors, θτ,3π, to
two-fold ambiguity:

|p⃗τ |=
(m2

3π +m2
τ )|p⃗3π|cos θτ,3π ± E3π

√
(m2

τ −m2
3π)

2 − 4m2
τ |p⃗3π|2sin2 θτ,3π

2(E2
3π − |p⃗3π|2cos2 θτ,3π)

, (3.5)
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Figure 3.2 – Illustration of the angle between the 3πν system and the τ (left) and between the
D∗−τ+ system and the B0 (right).

where θτ,3π is the angle between the 3π system three-momentum and the τ line of flight,
illustrated in Figure 3.2 (left); m3π, |p⃗3π| and E3π are the mass, three-momentum and
energy of the 3π system, respectively; and mτ is the known τ mass.

Using an approximation θτ,3π = θmax that gives

θmax
τ,3π = arcsin

(
m2
τ −m2

3π

2mτ |p⃗3π|

)
, (3.6)

making the square root in Eq. 3.5 vanish, yielding a non-ambiguous estimate of the τ
momentum.

The B0 momentum is obtained similarly:

|p⃗B0| =
(m2

Y +m2
B0)|p⃗Y |cos θB0,Y ± EY

√
(m2

B0 −m2
Y )

2 − 4m2
B0 |p⃗Y |2sin2 θB0,Y

2(E2
Y − |p⃗Y |2cos2 θB0,Y )

(3.7)

with

θmax
B0,Y = arcsin

(
m2
B0 −m2

Y

2mB0|p⃗Y |

)
, (3.8)

where Y represents the D∗−τ system. The angle between the D∗−τ system and B0 is
illustrated in Figure 3.2 (right). The three-momentum and energy of the D∗−τ system,
using the estimated τ momentum are:

p⃗Y = p⃗D∗− + p⃗τ , EY = ED∗− + Eτ , (3.9)

where p⃗D∗− and p⃗τ are the three-momenta of the D∗− and the τ candidates, and ED∗−

and Eτ their energies.

This method is applied to obtain the rest frame variables
q2 ≡ (pB0 − pD∗−)2 = (pτ + pντ )

2 and the τ decay time, tτ , with sufficient preci-
sion to discriminate the signal from the D∗−D X backgrounds in the signal yield fit in
Section 7.
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Figure 3.3 compares the reconstructed and truth-matched distribution of q2 for the
simulated signal B0→ D∗−τ+ντ sample after initial selection(Section 5.4). The agree-
ment is satisfactory, although one can observe a small bias in the lower values of the q2

distribution. This bias should be addressed in systematics.
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Figure 3.3 – Comparison of reconstructed and true q2 for the simulated signal B0→ D∗−τ+ντ
sample after initial selection(Section 5.4).

3.4.2 Reconstruction assuming a double-charm origin for the
candidate

Figure 3.4 – Flight directions of the B0 and D+
s in the decay B0 → D∗−D+

s (→ π+π−π+N).
The original B0 flight direction ûB0 is compared to the improved one by accounting for neutral
particles in the D+

s decay, ûB0,n.

The dominant backgrounds after the selection comprise the B0 → D∗−DX decays,
especially B0 → D∗−D+

s (→ π+π−π+N) where N denotes a system of unreconstructed
neutral particles. The anti-D+

s MVA in Section 5.8 requires kinematic reconstruction of
this mode described here.

Knowing the flight directions of the B0 and D+
s , the D∗− vertex and using the known

B0 mass, allows us to write the momentum conservation here as:

|p⃗B|ûB = |p⃗D+
s
|ûD+

s
+ p⃗D∗− . (3.10)

64



3.5. WORKFLOW

The solutions can be obtained through a vectorial or scalar product techniques as:

| ⃗PB,v|=
|p⃗D∗− × ûD+

s
|

|ûB × ûD+
s
|
,

| ⃗PB,s|=
p⃗D∗− · ûB − (p⃗D∗− · ûD+

s
)(ûB · ûD+

s
)

1− (ûB · ûD+
s
)2

,

(3.11a)

(3.11b)

for the B0 momentum, and

| ⃗PDs,v|=
|p⃗D∗− × ûB|
|ûD+

s
× ûB|

,

| ⃗PDs,s|=
(p⃗D∗− · ûB)(ûB · ûD+

s
)− p⃗D∗− · ûD+

s

1− (ûB · ûD+
s
)2

,

(3.12a)

(3.12b)

for the D+
s momentum.

These methods are equivalent in the absence of extra particles, but not otherwise, there-
fore the both results are used in the anti-D+

s MVA. Since this partial reconstruction
works without imposing a mass to the 3πN system, the reconstructed 3πN mass can be
used as a discriminating variable.

The reconstructed B0 momenta, | ⃗PB,v| and | ⃗PB,s|, can be further improved by account-
ing for the presence of neutral particles in the D+

s decay, denoted by | ⃗PB,vn| and | ⃗PB,sn|.

At this point one might be tempted to think that this technique can discriminate the
B0 → D∗−D+

s backgrounds from the signal, which has two missing neutrinos. Unfor-
tunately other backgrounds, such as B→ D∗−D0(X) and B→ D∗−D+(X) decays, also
have missing energy (due to two unreconstructed kaons from the B0 and 3π± vertices),
making them similar to the signal. Therefore, the just described reconstruction must be
exploited by a precise MVA described in the next chapter.

3.5 Workflow

The workflow of this analysis is quite involved. To facilitate reading the following
chapter, Figure 3.5 represents a simplified workflow of the project. It can be described
in the following sequence:

1. Dataset: Simulation software is tailored to produce all the samples required.
Here Generator cuts and Filtering scripts are made or adapted to spare CPU us-
age and/or disk space for the huge Monte Carlo (MC) samples to be produced.
Filtering (Stripping) is applied as a means of pre-selection. Also physics checks
are made for both (i) the correct decay chains in the decay-describing simulation
inputs (so-called DEC files) and (ii) first ReDecay validation. Preparing, request-
ing and producing simulation took us around one year of work.

2. Selection: This step involves reprocessing the ’raw’ simulation and collision data
to the analysis-ready ntuple format using the DAVINCI software. Initial cut-based

65



CHAPTER 3. METHODOLOGY OF THE R(D∗) MEASUREMENT

selection is applied there. Then MC is reweighted (kinematics and, for signal only,
form-factors) to agree better with the expected collision data. Lastly, the data and
simulation undergo cut-based and multivariate cuts, which differ for the signal,
normalisation and control samples modes.

3. Obtaining K(D∗): here the normalisation and signal (final fit) yields are ex-
tracted, efficiencies are computed and K(D∗) is inferred.

4. Result: combining the K(D∗) value and the external branching fractions results
in R(D∗). Systematics are estimated to account for the uncertainty on the result.

Filter scripts

MC production

Generator cuts

Isolation weights

nTuple creation

Systematics

Simulation Data

MC reweighting

Cut-based selection

Multivariate selection

Control sample fits

EfficienciesNormalisation fit Final fit

Result

External measurements

Figure 3.5 – Analysis workflow from the simulation setup, through the selection, to the signal
and normalisation fits, efficiencies computation, systematics and final R(D∗) result.
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The next chapter describes the collision and simulation datasets, comprising the first
step in the list above. A special emphasis is put on the validation of the fast simulation
algorithm ReDecay.
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Chapter 4
Dataset

This chapter presents the collision and simulated dataset used for the project in Sec-
tion 4.1. Then, Section 4.2 discusses various fast simulation techniques available at
LHCb and validates the chosen one, ReDecay.

4.1 Collision and simulated datasets

In this section are given the real data and MC samples used to perform our analysis.

4.1.1 Real data samples

The real data are the full datasets recorded by LHCb during the year 2015 and 2016,
i.e. 2 fb−1 of data. The centre-of-mass energy for this period was 13TeV.

4.1.2 MC samples

This analysis requires very large MC samples, to model the shape of the background
used in the final signal fit. We generated 2.5 billions of simulated events, during the
year 2018. To achieve that, we pioneered the use of the ReDecay software [108], within
the LHCb semileptonic group. Table 4.1 summarised the MC samples produced. The
signal modes are simulated using the TAUOLA package [109].
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Table 4.1 – Monte Carlo samples produced for this analysis.

Decay No. events produced [M]
B0→ D∗−τ+(→ π+π−π+ντ )ντ 29
B0→ D∗−τ+(→ π+π−π+π0ντ )ντ 49
B0→ D∗−π+π−π+ 10
B0→ D∗∗−τ+(→ π+π−π+ντ )ντ 20
B0
s→ D∗−D+

s X 23
B+→ D∗∗0D+

s X 13
B0→ D∗−D+

s X 12
B0→ D∗∗−D+

s X 1
bb→ D∗−π+π−π+X 34
bb→ D∗−D{0,+}X 3
total 194

In B0 → D∗∗τ+(→ 3π±ντ )ντ , D∗∗ denotes any of the states:
D1(2420)

0,−, D∗
0(2300)

0,−, D
′
1(2430)

0,+ or D2(2460)
0,+. In B+ → D∗∗0D+

s X and
B0 → D∗∗−D+

s X, D∗∗ denotes: D1(2420)
0,−, D

′
1(2430)

0,+ or D2(2460)
0,+. Table 4.2

reports the branching fractions and the visible contributions of various D∗∗ species as
simulated in the inclusive bb→ D∗−3π±X sample.

Table 4.2 – List of branching fractions of various D ^** decays in the inclusive bb→ D∗−3π±X
MC.

D∗∗ state B(B → D∗∗τντ ) [%] B(D∗∗ → D∗−) [%] visible contribution [%]
D

′
1(2430)

0 0.2 0.66 0.132
D1(2420)

0 0.13 0.67 0.09
D∗

2(2460)
0 0.2 0.21 0.042

D0(2400)
0 0.2 0 0

Total from B+ 0.264
D

′
1(2430)

+ 0.2 0.33 0.066
D1(2420)

+ 0.13 0.33 0.04
D∗

2(2460)
+ 0.2 0.1 0.02

D0(2400)
+ 0.2 0 0

Total from B0 0.13

4.2 Fast simulation with ReDecay

A necessary condition to make this measurement competitive is to improve its system-
atic precision with respect to the previously published Run-1 R(D∗) with hadronic τ
reconstruction [39, 38]. The major factor contributing to the systematic uncertainty
was the sample size of the simulated events. To lower that uncertainty such that it
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becomes equal to the statistical one, required approximately 4-6 times increased sam-
ple size for most of the event types. Discussions with the Run-1 analysis proponents
resulted in finally producing the simulated samples as reported in Table 4.1.

Given the demanded size of the simulation, typical production times (queues within
LHCb computing resources) and the analysts’ time constraints (PhD, post-doc contracts
duration), it was clear from the beginning that a much faster simulation approach was
needed.

Therefore, one of the first tasks in the project was to research the fast simulation tech-
niques available within LHCb, including validating them specifically for this project.

In LHCb there exist several such techniques. Some of them reduce the simulated event
to one decay mode (so-called signal, but it may refer to a background event) by reject-
ing all ’underlying’ tracks, which do not come from the same ’mother’ hadron. We could
not, however, choose such strategy, because we need information from the full event to
develop charged track isolation algorithms.

Another way to speed up the simulation is used by the ReDecay algorithm [110]. The
idea is to decay the mother hadron multiple times (usually 100 times) while sharing
the underlying part of the event (i.e. all tracks that do not originate from the mother
hadron) for all decays. This way the original event is fully simulated once, but spawns
99 extra events, produced at low computing cost. Two facts are noteworthy:

• The ’mother’ hadron combined with the remainder of the event ensures energy
and momentum conservation;

• Each of 100 decays of the ’mother’ hadron decays generally at a different point,
following the exponential lifetime distribution. Hence, each decay ’could have
happened’ in a full simulation.

4.2.1 ReDecay rationale

ReDecay is designed to shorten the simulation time by factor O(10). If it were just for
the sake of speed, the Particle Gun or Tracker-only techniques could have been used.
The former simulates only a decay of one of the modes listed in Table 4.1, while the rest
of the event, vital for the charged isolation study, is ignored, disqualifying possibility
of using this method. The Tracker-only simulation misses information from the RICH
detectors, implying no PID variables such as ProbNNpi and ProbNNk. ReDecay preserves
the full event information and is compatible with simulating the full detector, therefore
was the only solution, readily available in 2018, up to the task.

4.2.2 ReDecay validation

Before launching the simulation jobs, the ReDecay applicability had to be carefully
checked. Figure 4.1 illustrates the concept of ReDecay in the signal mode.
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• First, a single event is fully simulated (e.g. Figure 4.1 left).

• The B0 at its origin (not decay) vertex is saved with its momentum.

• The underlying (i.e. non-signal) tracks are also saved.

• The followingN−1 (here 100−1) events occur as a merge of (i) the tracks/vertices
from a new decay of the stored B0 and (ii) the tracks from the preserved under-
lying event. One such event is depicted on the RHS in Figure 4.1.

• The above procedure constitutes one ReDecay block. There is as many blocks as
number of events requested divided by the size of a single block, N . Consequently
each block corresponds to one ’original’ complete event.

The main concern with ReDecay was potential correlations within its blocks. Recycling
the underlying event and the B0 origin vertex might reduce event-to-event variation
resulting in a dataset of smaller statistical power than a fully-simulated one of the same
size. Whether, or to what extend, that was the case had to be found out by inspect-
ing distributions of the most important variables from small-size validation samples
produced.

p
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ntD0
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underlying 
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Figure 4.1 – Illustration of two B0 → D∗−τ+ντ (τ+ → 3π±ντ ) events as simulated in one
ReDecay block. Note that the vertices and tracks of the signal mode differ, while the underlying
event remains the same.

Figure 4.2 (left) shows agreement of η(B0) between ReDecay and full simulation. This
variable has the worst, but still acceptable, agreement. Other variables are reported
in Appendix B. Figure 4.2 (right) depicts bin-to-bin correlation matrix due to using
ReDecay. The off-diagonal datapoints point to correlation of events within one block.
Therefore, the statistical uncertainty of a histogram of any quantity does not follow the
Poisson distribution, but has to be obtained otherwise, for example by bootstrapping
the full ReDecay blocks. See Appendix B for details.
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Figure 4.2 – Left: η(B0) distribution for the 28k B0 → D∗−τ+ντ (τ+ → 3π±ντ ) mode events
after stripping; full simulation is in yellow and ReDecay in bars with uncertainty. Right: Bin-
to-bin correlation of η(B0).

Another check concerns the uncertainties in bin counts for any observables in the sam-
ples obtained with ReDecay. Due to the possibility of having more than one event in
the ReDecay block, the bin content uncertainty might differ from the Poissonian one
(i.e.

√
N for N entries in a bin). Figures 4.3 and 4.4 compare the bin contents and un-

certainties between the usual approach, block- and event-bootstrapped samples for the
signal yield fit variables after full selection, respectively for signal and bb → D∗−3π±X
inclusive background. The top panel shows the distribution of a given variable for
reference. The middle one demonstrates that the bin content is the same in all three
methods and is meant as a technical check of the bootstrapping implementation. The
bottom one compares the bin uncertainties, where the bootstrapped cases usually, but
not always, exhibit larger uncertainties than as calculated with the

√
N method. The

difference is usually below 2% and frequently below 1%. This observation motivates
investigating the impact of ReDecay on the signal yield templates uncertainties and
possibly using the bootstrapped templates in future updates of the analysis.

The conclusion from this chapter is that ReDecay is perfectly applicable for the analysis,
however one has to be careful assessing its bin-content uncertainties, where the safest
approach is block-bootstrapping.

Having both the collision and simulated datasets ready, the next step is to apply selec-
tion as explained in the next chapter.
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Figure 4.3 – Signal yield fit variables from the B0→ D∗−τ+ντ MC. For each variable top panel
shows the distribution itself; the middle panel shows the difference between the default bin
content (blue) and those obtained with block (red) or event (black) bootstrapping; the bottom
panel shows the uncertainty ratio of the Poisson method (blue) and block (red) or event (black)
bootstrapping.
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Figure 4.4 – Signal yield fit variables from the bb→ D∗−π+π−π+X MC. For each variable top
panel shows the distribution itself; the middle panel shows the difference between the default bin
content (blue) and those obtained with block (red) or event (black) bootstrapping; the bottom
panel shows the uncertainty ratio of the Poisson method (blue) and block (red) or event (black)
bootstrapping.
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Chapter 5
Selection of signal and normalisation
modes

This chapter discusses how the signal, normalisation and control samples (cf. Chapter 4)
are selected. Most of the selection workflow is common for all the samples until the last
steps of the offline selection. An exception is made for the combinatorial background
which is studied with Wrong Sign (WS) 1 candidates, that need to have a distinct selec-
tion already at the first stage, the preselection (’stripping’ in LHCb jargon). Then they
follow the same steps as for the other modes.

Data and MC selection is a multi-step process that can be split in the following cate-
gories:

• ’Online’ selection, which consists of all the steps before the data is saved in the
ROOT ntuples format.

• ’Offline’ selection, which consists of all the steps after the data is saved in the
ROOT ntuples format.

The ’online’ selection includes the geometrical acceptance of the LHCb detector (Sec-
tion 5.1), its trigger (Section 5.2) and preselection (Section 5.3).

The ’offline’ selection starts by applying initial cuts that are common to all samples
(Section 5.4). Next, the Multivariate Analysis techniques are treated in Sections 5.5,
5.6, 5.7 and 5.8. The distinction between the signal and normalisation modes is made
in Sections 5.9 and 5.10. Finally the efficiencies are summarised in Section 5.11, where
the normalisation to signal mode efficiency ratio is computed. This ratio is the first
intermediate result obtained that enters the R(D∗) formula.

1Where the D∗± are required to be of the same charge as τ± as a proxy for combinatorial B0 decays
whereby the D∗± and τ± come from two different b-hadrons.
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5.1 Geometrical acceptance

Due to the geometrical coverage of the LHCb detector, only a part of the events of inter-
est are recorded. This effect impacts efficencies of the signal and normalisation modes
and is studied for the simulated samples with EVTGEN. The geometrical acceptance
obtained is reported in Table 5.9.

5.2 Trigger

The trigger system, as described in Chapter 2, saves on disk events of potential inter-
est to the LHCb physics programme in general. In this analysis it is fundamental to
precisely measure the ratio of the normalisation and signal efficiencies. This is stud-
ied with simulation and requires knowing the yields before and after the trigger cuts.
Therefore, in simulation trigger cuts are postponed to a later stage in the pipeline: after
the ROOT ntuples have been made. Obviously, that changes the selection order with
respect to the real collision data, but does not impact the total efficiencies being the
product of efficiencies of all the steps. Furthermore, due to the altered order, the trig-
ger efficiencies as measured for the simulated samples do not reflect those of real data.
The trigger efficiencies as measured after the geometrical acceptance and preselection
are reported in Table 5.10.

5.3 Preselection

After the geometrical acceptance and trigger cuts have been applied to data, the next
step is preselection, referred to at LHCb as ’stripping’. It comprises generic selections
(’lines’) used usually by more than one analysis. In this project we rely on the two ’lines’
written by the proponents of the previous R(D∗) measurement [38, 39]:

• StrippingB0d2DstarTauNuForB2XTauNuAllLines,

• StrippingB0d2DstarTauNuWSForB2XTauNuAllLines.

For most parts of the project the selection with the first line is used. The second one is
needed only to study combinatorial background, often denoted by ’Wrong Sign’ (WS).

The first one, StrippingB0d2DstarTauNuForB2XTauNuAllLines, forms a B0 candidate
by combining a D∗−→ D0(→ K+π−)π− candidate with a τ+→ 3π±ντ candidate.

The second one, StrippingB0d2DstarTauNuWSForB2XTauNuAllLines, forms a B0 can-
didate from a same-sign combination of a D∗± and a τ±.

Apart from these sign differences, the cuts are the same in the two lines and are sum-
marized in Table 5.1, where
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• DIRA(particle, PV) is the cosine of the angle between the particle momentum
and the line of flight from the best primary vertex to the particle decay vertex
(see Figure 5.1);

• DOCA(particlei, particlej) is the distance of closest approach between the flight
directions of the particlei and particlej.

PV
p⃗(particle)

θDIRA

Figure 5.1 – Illustration of DIRA(particle, PV).

The stripping versions used are 24r1 for the 2015 data and 28r1 for the 2016 data.

First, the K−π+ system is formed by requirements concerning K−π+ track momenta
(p and/or pT), vertex quality χ2/ndf, track ghost probability (i.e. probability that a
given track does not correspond to a real particle passage), sufficient distance from
the PV (the variables χ2 and χ2

IP relative to the PV), and particle identity (PIDK is a
DLL variable describing a probability that a particle is a kaon; the DLL variables are
discussed in Section 2.2.2.4). Then, a D0 candidate is built by constraining the absolute
difference from the known D0 mass. Moreover, the K− and π+ from the D0 need to
satisfy DOCA(K−, π+) < 0.5mm and form a vertex of a χ2-quality of χ2

DOCA(K−,π+) < 15.
Next, similar track quality requirements as for K− and π+ are applied to the π− from
D∗−. Then, the D∗− candidate is constructed based on the thus obtained π+D0 system
by the requirements of χ2

vtx/ndf < 25 on the D0 − π− vertex, a requirement of 135 <
m(D∗−) −m(D0) < 160MeV/c2, pT > 1250MeV/c and m(D∗−) within 50MeV/c2 of the
known D∗− mass.

The τ+ → 3π±ντ candidate is formed by cuts on its reconstructed mass
m(3π±) ∈ [400, 3500]MeV/c2, track quality χ2

track/ndf < 25, DIRA(τ+, PV) > 0.99,
max[DOCA(π±

i, π
±
j)] < 0.15mm (where π±

i and π±
j are the π± candidates in the

3π± system), min[m(π+π−)] < 1670MeV/c2, at most one daughter with pT < 300MeV/c
and at least one daughter with min[χ2

IP ] 2 w.r.t. any PV > 5.

Furthermore, each π± candidate needs to satisfy pT > 250MeV/c, min[χ2

IP ] w.r.t. any
PV > 4, track quality χ2

track/ndf < 4 and PIDK < 8.

2Impact parameter chi squared is the difference between the χ2 of the PV reconstructed with and
without the given track; its minimum, for all PV’s is denoted by min[χ2

IP].

79



CHAPTER 5. SELECTION OF SIGNAL AND NORMALISATION MODES

Table 5.1 – List of Stripping cuts.

variable cut
D∗−

vertex quality χ2
track/ndf < 25

m(D∗−)−m(D0) ∈ [135, 160]MeV/c2

pT > 1250MeV/c
|m(D0π−)−m(D∗−(PDG))| < 50MeV/c2

π− from D∗−

pT > 50MeV/c
vertex quality χ2

track/ndf < 30
Track ghost probability < 0.6
D0

pT > 1.2GeV/c
|m(K−π+)−m(D0(PDG))| < 40MeV/c2

DIRA(D0,PV) > 0.995
χ2 separation from related PV, > 36
vertex quality χ2

track/ndf < 10
DOCA(K−, π+) < 0.5mm
χ2

DOCA(K−,π+) < 15

π− from D0

p > 2GeV/c
pT > 250MeV/c
vertex quality χ2

track/ndf < 3
Track ghost probability < 0.4
PIDK < 50
Min χ2

IP w.r.t. any PV > 10

K+ from D0

p > 2GeV/c
pT > 250MeV/c
vertex quality χ2

track/ndf < 30
Track ghost probability < 0.4
PIDK > −3
Min χ2

IP w.r.t. any PV > 10

τ+

m(3π±) ∈ [400, 3500]MeV/c2

vertex quality χ2
track/ndf < 25

DIRA(τ+, PV) > 0.99
max[DOCA(π±

i, π
±
j)] < 0.15mm

min[m(π+π−)] < 1670MeV/c2

At most 1 daughter with pT < 300MeV/c
At least 1 daughter with min χ2

IP w.r.t. any PV > 5

π± from τ+

pT > 250MeV/c
min[χ2

IP ] w.r.t. any PV > 4

vertex quality χ2
track/ndf < 4

PIDK < 8
B0

m(D∗−3π) ∈ [m(B0)− 2579MeV/c2, m(B0) + 300MeV/c2]
DIRA(B0, PV) > 0.995
DOCA(D∗−, 3π±) < 1mm

The B0 candidate is formed by combining the aforementioned D∗− and τ+ candidates,
and the following cuts are made on the combination: the difference between m(D∗−τ+)
and the known B0 mass is required to be in [−2579, 300]MeV/c2, the DIRA(B0, PV) is
required to be greater than 0.995 and the DOCA(D∗−, 3π±) between the D∗− and τ+

candidates is required to be less than 15mm.

These ’stripping’ cuts are applied in the DAVINCI framework. In this analysis, to speed
up the computing workflow, we have put several highly performant cuts already at
this stage. These extra cuts are reported in Table 5.2. They comprise: transverse mo-
mentum of the ’slow’ pion from D∗− to be pT(π

−
from D∗−) > 110MeV/c; good-quality

τ+ vertex of vtx(χ2/ndof)τ+ < 10; the radial distance of τ+ from the primary ver-
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tex of τ+ radial distance from PV ∈ [0.2, 5.0]mm to avoid spurious pions from the
LHC beampipe; the significance of the impact parameter of the D0 and the π± from
the τ+ with respect to the primary vertex to be respectively χ2[IPPV (D

0)] > 10 and
χ2[IPPV (π

±)], π± from τ+ > 15; either the flight distance significance of the τ+ from
the B0 vertex to be tau_FDCHI2_ORIVX to pre-select the signal or the mass of the B0 to
bem(B0) > 5GeV/c2 to pre-select the normalisation mode, which is fully reconstructed.

Table 5.2 – Initial cut-based selection for all the modes applied in DaVinci.

variable cut background targeted
pT(π

−
from D∗−) > 110MeV/c combinatorial

vtx(χ2/ndof)τ+ < 10 combinatorial
τ+ radial distance from PV ∈ [0.2, 5.0]mm spurious
χ2[IPPV (D

0)] > 10 prompt
χ2[IPPV (π

±)], π± from τ+ > 15 combinatorial
tau_FDCHI2_ORIVX > 4 prompt

or m(B0) > 5GeV/c2 partially reconstructed

The ’stripping’ cuts merged with these few other requirements form our custom prelim-
inary selection whose efficiency is reported in Table 5.9. The following sections tackle
the ’offline’ selection defined as occurring after the ROOT samples have been produced.

5.4 Initial offline selection cuts

The initial selection applied ’offline’ is common to all the modes and is reported in
Table 5.3. It consists of: removal of the combinatorial backgrounds by requiring the D0

share the primary vertex with the τ+; accepting events with only one B0 →D∗−τ+ντ
candidate, totCandidates = 1 to avoid candidate multiplicity; for the same reason
number of hits in the SPD detector, reflective of the event occupancy, is limited to below
450. Finally, either signal or normalisation events are ’promoted’ by requiring either
[vtxz(τ+) − vtxz(B0)]/error > 2 to remove the prompt background in the signal case
or, in case of normalisation mode, the D0 vertex is required to be 4 significance units
downstream of the τ+ one, to select the 3π± system coming directly from the B0, and
the B0 mass must be m(B0) > 5150MeV/c2. This last logical ’or’ is motivated merely by
computing reasons and is reported for consistency with the efficiencies measured. The
efficiencies of the initial selection are measured line-by-line and reported in Table 5.10.

Figure 5.2 shows the importance of the [vtxz(τ+)− vtxz(B0)]/error > 2 cut after all the
initial cuts except the last three lines of Table 5.3. It is evident how this cut removes
the ’prompt’ background (in grey).

At this stage the prompt background, whereby the 3π± system comes directly from the
B0 is the most dominant, as can be seen in the simulated inclusive bb → D∗−3π±X
sample, whose composition will be discussed later and is shown in Figure 5.27. The
second largest background is the B →D∗−D+

s . Figure 5.3 shows the invariant mass
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Table 5.3 – Initial cut-based selection for all the modes applied after preselection (cf. Section 5.3).
The last three cuts comprise merely a computing trick to keep events that pass a logical ’or’
of signal or normalisation conditions. These cuts are reported here for consistency with the
efficiencies computation in Table 5.10.

variable cut background targeted
PV (D0) = PV (τ+) combinatorial
totCandidates = 1 track multiplicity
[vtxz(τ+)− vtxz(PV )]/error > 10 prompt
nSPDHits < 450 track multiplicity
[vtxz(τ+)− vtxz(B0)]/error > 2 remove prompt (for signal)

OR
[vtxz(D0)− vtxz(τ+)]/error > 4 require prompt (for normalisation)
AND m(B0) > 5150MeV/c2 partially reconstructed (for normalisation)

0 10 20

]σ z[∆

0

1000

2000

3000

)σ
C

an
di

da
te

s 
/ (

0.
28

 

0 10 20

]σ z[∆

1

10

210

310

)σ
C

an
di

da
te

s 
/ (

0.
28

 

Figure 5.2 – ∆z/uncertainty distribution in linear (left) and logarithmic (right) scale of the
simulated signal (red), double charm background (black) and prompt background (grey), after
the initial cuts except the last three lines of the Table 5.3. A cut at 2σ is shown.

distribution of the 3π± system in the collision data, after the initial selection. The D+
s

peak is clearly visible.
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Figure 5.3 – m(π+π−π+) after the initial selection in the collision 2015-2016 data. D+
s and D+

peaks are visible.

5.5 Anti combinatorial background BDT

The objective of the first MVA algorithm is to remove the combinatorial backgrounds
events, where the τ+ and D∗− systems do not originate at the same B0 vertex. The
following variables are used for the anti-combinatorial-background BDT with the TMVA
package integrated in ROOT [94]:

• pT(D
∗−) and pT(τ+)

• η(D∗−) and η(τ+)

• log(χ2[IPPV(B
0)]) and log(χ2[IPPV(D

∗−)]), logarithm of the quality (χ2) of the
impact parameter of a given particle w.r.t. the best PV of that particle

• log [vtx(χ2/ndof)B0 ], logarithm of the B0 decay vertex quality

• log(acos(DIRA(B0,PV))), logarithm of the angle between the B0 momentum and
the line of flight from the PV to the B0 decay vertex

• log(acos(|DIRA(D∗,ORIVX(D∗)))), logarithm of the acos of the magnitude of the
angle between the D∗− momentum and the line of flight from the D∗− origin to
decay vertex

• log(acos(DIRA(τ,ORIVX(τ)))), logarithm of the acos of the magnitude of the angle
between the τ+ momentum and the line of flight from the τ+ origin to decay
vertex

• BPVVDR(τ), radial distance between the τ decay vertex and the PV

The signal training samples are B0 → D∗−τ+ντ MC and for background the wrong-
sign data is used, where D∗± and τ± have the same charge and come from different
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b−hadrons (see Section 5.3). The training samples are selected with the initial selection
(see Section 5.4) and a loose detachment cut [vtxz(τ+)− vtxz(B0)]/error > 2.

The Figures 5.4 and 5.5 show the discrimination power of the input variables for the
signal and background as defined above.
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Figure 5.4 – Distributions of input variables for the combinatorial BDT for the signal (blue)
and background (red).
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Figure 5.5 – Distributions of input variables for the combinatorial BDT for the signal (blue)
and background (red) training samples.

Figure 5.6 depicts correlations between the input variables of the combinatorial BDT.
The variables exhibit relative correlations below 50-60%, except η(τ) vs. η(D∗) (corre-
lation 81% (75%) for signal (background)).
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Figure 5.6 – Correlation matrices for the input variables to the combinatorial BDT for signal
(top) and background (bottom) training samples.
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The BDT performance is inspected on testing samples that are statistically independent
of the ones used in the training. Figure 5.7 (right) shows the background rejection as
a function of signal efficiency for three BDT algorithms considered: Ada Boost (BDT),
Ada Boost with decorrelated variables (BDTD) and Gradient Boost (BDTG). The most
performant (with curve closest to the top-right corner), BDTD is chosen as the default
one. Figure 5.7 (left) shows the combinatorial BDTD distribution for the training signal
and background samples. A cut is applied in the middle of the anti-combinatorial BDT
range, i.e. at 0, as a preliminary working point. This preserves approximately 85% of
the signal and rejects around 70% of the combinatorial background.
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5.5. ANTI COMBINATORIAL BACKGROUND BDT

Figure 5.7 – Left: Distribution of the combinatorial BDT for the testing samples, for signal and
background. Right: Signal efficiency as a function of background rejection for the combinatorial
BDT for the testing samples.

Figure 5.8 compares the MC/data distribution of the combinatorial BDT for the fully
reconstructed B0 → D∗−3π± mode. The data sample used has been s-weighted [95]
with respect to the B0 mass to select approximately pure B0→ D∗−3π± sample.
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Figure 5.8 – Data (black points) / MC (coloured bins) comparison for the combinatorial BDTD
distribution as for the B0→ D∗−3π± mode. See Appendix D for the distributions of the input
variables.

Despite a small shift towards higher BDTD values for data w.r.t. MC, the agreement is
rather satisfactory. This variables is used only once, in the selection of all the samples.
Therefore, a correction should be applied by cutting at a slightly smaller value of the
combinatorial BDTD. Nonetheless, as long as the optimisation remains coarse, there is
no need for such a correction.
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5.6 Charged isolation

In order to reject background events that have additional charged tracks besides the
signal candidates, a charged isolation technique is used. It detects charged tracks
forming good vertices with the signal tracks as shown in Figure 5.9, where the decay
B0 → D∗−D0(→ K−π+π−π+)K+ has two extra charged tracks (K+ and K− marked
magenta) on top of those compatible with the B0→ D∗−τ+ντ tracks (green).

Figure 5.9 – The B0→ D∗−D0(→ K−π+π−π+)K+ decay, where the green tracks are compatible
with the B0→ D∗−τ+ντ . The charged isolation detects the non-isolating (magenta) tracks.

The isolation algorithms use track-based and vertex-based isolation variables. The for-
mer, for a given signal-candidate track, reflect how close it is with the non-signal (un-
derlying) tracks in the event. Therefore each out of 6 charged tracks in B0→ D∗−τ+ντ
has such a variable. The vertex based ones, however, scan all the tracks usually con-
strained to a given cone around the flight direction of the particle whose vertex is
considered.

Regardless of the decay mode considered (i.e. signal, normalisation or backgrounds),
the isolation variables are, in this analysis, always computed relative to the signal can-
didate.

The variables considered are based on the LHCb packages TupleToolIsoGeneric and
TupleToolVtxIsolnPlus and are enlisted here:

• 6 track isolation variables from a customised TupleToolIsoGeneric:
IsoSumBDT(<particle>), where <particle> is any of the 6 final states
charged tracks, i.e., π± from the D∗−, D0 and τ+ vertices, and a K+ from the D0

vertex.

• 4 vertex isolation variables from (or derived from) TupleToolVtxIsolnPlus:
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5.6. CHARGED ISOLATION

– tau_isoPlus_nGood – number of charged tracks forming ’good’ vertex with
the τ+;

– B0_isoPlus_nGood – number of charged tracks forming ’good’ vertex with
the B0;

– nTauIso0 – number of charged tracks compatible with the τ+ vertex after
removing the tracks from the D∗−

– nB0Iso25sig – number of charged tracks compatible with the B0 vertex that
worsen the B0 vertex χ2 by not more than 25, after removing the tracks from
the D∗−

The pairs of variables tau_isoPlus_nGood and nTauIso0 as well as B0_isoPlus_nGood
and nB0Iso25sig are very similar. They indeed exhibit 55% and 94% correlations,
respectively, for the signal events, as shown in Figure 5.12 (top) and 69% and 92%, re-
spectively, for the isolation backgrounds Figure 5.12 (bottom). Nonetheless, to exploit
maximum information, all four variables are considered.

Instead of relying on rectangular cuts on a these track/vertex-based variables, a custom
BDT is used, incorporating them into a single event-based one.

The training is performed on MC samples extracted from the bb → D∗−3π±X after
the initial selections as described in Section 5.4 with additional cuts as reported in
Table 5.4. There, the common selection for the two modes comprises loose vertex de-
tachment requirement and the B0 mass cut, to focus on more signal-like phase-space
region (i.e. the signal mode will eventually be required to meet the vertex detachment
and lower B0 reconstructed mass criteria). The distinction between ’signal’ and ’back-
ground’ is made using the MC-truth information by requiring no extra charged tracks
(π± or K±) in the signal decay tree and at least one extra track (a π± or K±) for the
background. The isolation background is required to have either more than one K± or
more than five π± excluding those from K0

S decays (that 69% of the time spawn π+π−

pair) that decay outside VELO thus being ’well-isolated’ from the signal candidate.

Table 5.4 – Selection of the training samples for the charged isolation BDT applied on top of
the initial cuts discussed in Section 5.4.

signal background
1 K± and 5 π± in decay > 1 K± or > 5 π±not from K0

S

[vtxz(τ+)− vtxz(B0)]/error > 2
m(B0) < 5225MeV/c2

The Figures 5.10 and 5.11 show the discrimination power of these input variables for
the signal and background as defined above.
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Figure 5.10 – Distributions of input variables for the charged isolation BDT for the isolation
signal (blue) and background (red).
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Figure 5.11 – Distributions of input variables for the charged isolation BDT for the isolation
signal (blue) and background (red).
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Figure 5.12 – Correlation matrices for the input variables to the metaIsoBDT for signal (top)
and background (bottom) training samples.

100 67 66 64 64 65 30 26 19 25

67 100 66 64 64 65 30 26 18 25

66 66 100 64 64 65 30 25 19 25

64 64 64 100 67 61 28 26 17 25

64 64 64 67 100 68 26 25 15 24

65 65 65 61 68 100 28 26 16 26

30 30 30 28 26 28 100 60 55 57

26 26 25 26 25 26 60 100 30 94

19 18 19 17 15 16 55 30 100 31

25 25 25 25 24 26 57 94 31 100

)τ
 f

ro
m

 
0π

Is
oS

um
B

D
T

(

)τ
 f

ro
m

 
1π

Is
oS

um
B

D
T

(

)τ
 f

ro
m

 
2π

Is
oS

um
B

D
T

(

)0
 f

ro
m

 D
π

Is
oS

um
B

D
T

(

 f
ro

m
 D

*)
π

Is
oS

um
B

D
T

(

)0
Is

oS
um

B
D

T
(K

 f
ro

m
 D

nT
au

Is
o0

nB
0I

so
25

si
g

ta
u_

is
oP

lu
s_

nG
oo

d

B
0_

is
oP

lu
s_

nG
oo

d

)τ from 
0

πIsoSumBDT(

)τ from 1πIsoSumBDT(

)τ from 2πIsoSumBDT(

)
0

 from DπIsoSumBDT(

 from D*)πIsoSumBDT(

)
0

IsoSumBDT(K from D

nTauIso0

nB0Iso25sig

tau_isoPlus_nGood

B0_isoPlus_nGood

100−

80−

60−

40−

20−

0

20

40

60

80

100

LHCb Simulation

100 72 72 64 64 65 32 20 30 21

72 100 72 65 64 66 31 20 29 21

72 72 100 64 63 65 31 20 29 21

64 65 64 100 65 66 26 22 25 22

64 64 63 65 100 67 24 21 21 21

65 66 65 66 67 100 27 22 26 22

32 31 31 26 24 27 100 56 69 54

20 20 20 22 21 22 56 100 39 92

30 29 29 25 21 26 69 39 100 43

21 21 21 22 21 22 54 92 43 100

)τ
 f

ro
m

 
0π

Is
oS

um
B

D
T

(

)τ
 f

ro
m

 
1π

Is
oS

um
B

D
T

(

)τ
 f

ro
m

 
2π

Is
oS

um
B

D
T

(

)0
 f

ro
m

 D
π

Is
oS

um
B

D
T

(

 f
ro

m
 D

*)
π

Is
oS

um
B

D
T

(

)0
Is

oS
um

B
D

T
(K

 f
ro

m
 D

nT
au

Is
o0

nB
0I

so
25

si
g

ta
u_

is
oP

lu
s_

nG
oo

d

B
0_

is
oP

lu
s_

nG
oo

d

)τ from 
0

πIsoSumBDT(

)τ from 1πIsoSumBDT(

)τ from 2πIsoSumBDT(

)
0

 from DπIsoSumBDT(

 from D*)πIsoSumBDT(

)
0

IsoSumBDT(K from D

nTauIso0

nB0Iso25sig

tau_isoPlus_nGood

B0_isoPlus_nGood

100−

80−

60−

40−

20−

0

20

40

60

80

100

LHCb Simulation

Figure 5.13 shows the metaIsoBDT distribution for the signal and background and its
background rejection as a function of signal efficiency. The AdaBoost algorithm (de-
noted by BDT) is the most performant and has, therefore, been chosen as the default
one.
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Figure 5.13 – Left: Distribution of the metaIsoBDT for the testing samples, for signal and
background. Right: Signal efficiency as a function of background rejection for metaIsoBDT for
the testing samples.

Figure 5.14 compares the MC/data distribution of the isolation BDT for the B0 →
D∗−3π± mode. The data sample used has been s-weighted with respect to the B0 mass
to select approximately pure B0→ D∗−3π± sample.
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Figure 5.14 – Data (black points) / MC (coloured bins) comparison for the isolation BDT
distribution as for the B0→ D∗−3π± mode. See Appendix D for the distributions of the input
variables.

The agreement is satisfactory, especially around the cut region at isolation BDT = 0.0.

5.7 Detachment BDT

To remove the background where the 3π± system comes directly from the B0, a vertex
detachment BDT is used. It separates the 3π± vertex from the B0 one to match the
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signal topology.

The input variables are as follows:

• log([vtxz(τ)−vtxz(B0)]/error)), z−coordinate of the distance between the τ+ and
B0 decay vertices

• log([r(τ) − r(B0)]/error), radial coordinate of the distance between the τ+ and
B0 decay vertices

• [vtxz(D0) − vtxz(τ)]/error), z−coordinate of the distance between the D0 and τ
decay vertices

• log(acos(DIRA(τ,ORIVX(τ)))), logarithm of the angle between the τ+ momentum
and the line of flight from the τ+ origin to decay vertex

• log(χ2[τ(τ)]), τ+ decay vertex χ2

• log(χ2[ORIV X(τ)]), χ2 of the τ+ production vertex

The training samples are MC B0 → D∗−τ+ντ for the detachment BDT signal and
the inclusive bb → D∗−3π±X sample for the background, selected as specified in
Table 5.5. Both samples need to meet the loose vertex detachment requirement,
[vtxz(τ+) − vtxz(B0)]/error > 2 (that eventually will be imposed for the final selec-
tion) and have the τ+ candidates further from the beampipe than the B0 decay vertex,
r(τ+) − r(B0) > 0. In addition, the signal is truth-matched with the B0 → D∗−τ+ντ
decay, whereas the background must not originate from the τ+ nor the charm mesons:
D0, D+, D+

s . This way, the prompt 3π±, coming directly from the B0 candidate are
selected.

Table 5.5 – Selection of the training samples for the detachment BDT applied on top of the
initial cuts discussed in Section 5.4.

signal background
[vtxz(τ+)− vtxz(B0)]/error > 2

r(τ+)− r(B0) > 0
Truth-matched signal 3π± not from τ+ nor D0,D+,D+

s

Figure 5.15 shows the discrimination power of these input variables for the signal and
background as defined above.
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Figure 5.15 – Distributions of input variables for the detachment BDT for the signal (blue) and
background (red).
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Figure 5.16 – Correlation matrices for the input variables to the detachment BDT for signal
(top) and background (bottom) training samples.
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Figure 5.17 shows the detachment BDT distribution for the signal and background and
its background rejection as a function of signal efficiency. The Gradient Boost BDT
(BDTG) is the most performant and has, therefore, been chosen as the default one.
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Figure 5.17 – Left: Distribution of the detachment BDT for the testing samples, for signal and
background. Right: Signal efficiency as a function of background rejection for detachment BDT
for the testing samples.

A cut is applied at detachment_BDTG > 0.2, which keeps 70% of the signal mode,
relative to the yield after the isolation cut, while rejecting around 90% of the prompt
background. The cut value is a preliminary working point and is subject to further
optimisation. Nonetheless, the rather flat distributions of both signal and background
in the region [−0.2, 0.2] of the detachment BDT, suggests the optimal working point
should not be very sensitive to exact cut value.

Figure 5.18 compares the MC/data distribution of the detachment BDT for the B0 →
D∗−3π± mode. The data sample used has been s-weighted with respect to the B0 mass
to select approximately pure B0→ D∗−3π± sample.
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Figure 5.18 – Data (black points) / MC (coloured bins) comparison for the detachment BDT
distribution as for the B0→ D∗−3π± mode. See Appendix D for the distributions of the input
variables.

The small peak at high detachment BDTG score for data is due to B0 →D∗−D+
s (→ 3π±)
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events, as depicted in Figure 5.19, where the m(π+π−π+) is shown for the detachment
BDTG > 0.8 in the relevant data sample.
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Figure 5.19 – Distribution of m(π+π−π+) for the detachment BDTG > 0.8 in the data sample
used in the data/MC comparison. The D+

s mass peak is visible.

Despite a small shift between data and MC distributions, the agreement is satisfactory.
It is, nonetheless, possible to apply a correction to MC while optimising the cut. As long
as the optimisation remains coarse, there is no need for such a correction.

5.8 Anti D+
s BDT

The most important background category after rejecting the prompt background are
events with D∗−D+

s X in the final state. Figure 5.27 shows that this background is
the most abundant after the full selection. To control the D∗−D+

s X contributions a
dedicated BDT is made with the following 17 input variables:

• Partial reconstruction variables

– Reconstruction as a signal event (cf. 3.4.1)

⋄ |p⃗(B0)|−|p⃗(τ)|−|p⃗(D∗)|, where |p⃗(B0)| and |p⃗(τ)| come from the partial
reconstruction under the signal hypothesis (cf. Section 3.4.1)

– Reconstruction as a double charm background event (cf. 3.4.2)

⋄ |P⃗B,sn|: the B0 momentum reconstructed using the scalar product
method, using the corrected B0 decay vertex accounting for the neu-
tral tracks from the D+

s candidate

⋄ log
(∣∣∣|P⃗B,v|/P⃗ (B0)|

∣∣∣): the reconstructed B0 momentum with the vec-
tor method, normalised to the one reconstructed based on the charged
tracks only

⋄ log
(∣∣∣|P⃗B,vn|/|P⃗ (B0)|

∣∣∣): the reconstructed B0 momentum with the vec-

tor method, using the corrected B0 decay vertex accounting for the
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neutral tracks from the D+
s candidate, normalised to the reconstructed

based on the charged tracks only

⋄ log
(∣∣∣|P⃗B,sn|−|P⃗B,vn|)/|P⃗B,vn|

∣∣∣): the normalized difference of B0 mo-

menta between the scalar and vector method, using the corrected B0

decay vertex for neutral tracks from the D+
s candidate, normalised to

the one obtained with the vector method

⋄ m(N)2v = m(B0)2+m(B0)2PDG+2(p⃗B,v·p⃗D∗Ds−E(B0)vE(B
0)): the squared

mass of the reconstructed neutral vector, N , in D+
s → 3πN

⋄ log(
√

|(m(Ds)2vn|), where m(Ds)
2
vn is the reconstructed mass squared of

the D(∗,∗∗)
(s) system

• neutral and charged isolation variables

Background events where the 3π system is coming from D+
s decays are often

accompanied by a large neutral energy coming from the rest of the D+
s decay.

This neutral energy is searched in cones around the 3π system.

The background events with D+
s → 3π± X often carry significant energy in the

neutral particles that is deposited in the LHCb electromagnetic calorimeter. The
neutral energy around the 3π± system is measured with the EWTupleIsolation
tool by the three variables:

– tau_0_40_nc_mult: the multiplicity of neutral objects in a cone of 0.4 open-
ing (defined in the ∆ϕ, ∆η reference frame) centred around the 3π vector;

– tau_0_40_nc_PZ: the sum of the neutral energy contained in the cone of 0.4
opening around the 3π vector;

– tau_0_30_nc_PZ: the sum of the neutral energy in a cone of 0.3 opening
around the 3π vector.

Despite that the charged isolation BDT is already applied at an earlier stage, two
charged track isolation variables are included in the BDT:

– tau_0_20_cc_mult: the multiplicity of charged tracks in the cone of 0.2
opening angle around the 3π± system

– tau_0_20_cc_PZ: the energy due to charged tracks in the cone of 0.2 opening
angle around the 3π± system

• 2 variables related to the π+π− dynamics: min[m(π+π−)] and max[m(π+π−)]
The signal decays through τ+ → 3π±ντ that occurs purely via the a1 mode that
decays to ρπ. Consequently the π+π− reconstructed mass should peak around
the ρ mass. On the other hand, the D+

s decays mostly through η and η′: η →
π+π−π0 and η′ → ηπ+π−. This puts the upper boundary on the π+π− mass of
around 400MeV. These phase-space differences justify using the minimum and
maximum masses of the π+π− system in the BDT and can be seen in Figure 5.21.
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• kinematic variables

– BPVVDR(B0): the radial distance between the primary vertex and the B0

decay vertex

– log(E(3π)): where E(3π) is the energy of the 3π system

– m(B0): the mass of the B0 candidate computed on the six-track system.
This variable distinguishes fully reconstructed D+

s → 3π± from the partially
reconstructed signal in τ+ → 3π±ντ . Also, it discriminates against the 3π±

system where the pions do not share the same vertex. Its importance is
shown in Figure 5.20.

The BDT is trained using as signal the MC signal sample where the τ+ decays into
3 pions, requiring the events to be true B0 → D∗−τ+ντ decays (MC truth). For the
background, MC-truth-matched B0 → D∗−D+

s X events are used. Table 5.6 reports all
cuts used for the training sample applied in addition to the initial cut-based selection
(cf. Section 5.4).

Table 5.6 – Anti-D+
s BDT cuts for signal and background applied on top of the initial cut-based

selection (cf. Section 5.4).

variable cut
ranges

|P⃗B,s| > 0
m(N)2v reject if unreconstructed
|p⃗(B0)|−|p⃗(τ)|−|p⃗(D∗)| reject if unreconstructed

detachment
[vtxz(τ+)− vtxz(B0)]/error > 2

signal only
Signal MC truth

background only
B0 →D∗ D X MC truth
(τ) candidate true ID = D+

s

Figures 5.20, 5.21, 5.22 show the distribution of the input variables for the train-
ing samples. Correlations between the variables are reported in Figure 5.23, where
log(abs(|P⃗B,v|/P⃗(B0)|)) exhibits 96% and 93% correlation with log(abs(|P⃗B,vn|/|P⃗(B0)|))
for signal and background respectively. Despite the very high correlation both variables
are kept to maximally exploit them.
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Figure 5.20 – Input variables distributions for the anti-D+
s BDT for signal (blue) and background

(red).
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Figure 5.21 – Input variables distributions for the anti-D+
s BDT for signal (blue) and background

(red).
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Figure 5.22 – Input variables distributions for the anti-D+
s BDT for signal (blue) and background

(red).
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Figure 5.23 – Input variables correlation matrix for the signal (top) and background (bottom)
training samples of the anti-D+

s BDT.
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Figure 5.24 depicts (left) the anti-D+
s BDT distribution for the training samples and

(right) the background rejection as a function of signal efficiency. The AdaBoost BDT
(BDT) is the most performant and has, therefore, been chosen as the default one.
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5.8. ANTI D+
S BDT

Figure 5.24 – Left: BDT distribution for the signal (blue) and background (red) testing samples.
Right: background rejection as a function of signal efficiency for the testing samples.

The cut applied to the anti-D+
s BDT is anti-D+

s BDT > −0.2, which keeps almost all the
signal (signal efficiency: 99.7%) and rejects around 31% of the background. The cut is
very loose since this variable is used for the signal yield fit. Its primary objective is to
distinguish the signal from the double-charm (mostly withD+

s ) components. Therefore,
the cut rejects only the most obvious B0 →D∗−D+

s X events, without sacrificing the
signal statistics for the final fit in Chapter 7.

This BDT most importantly should discriminate the signal from the double-charm back-
grounds. Since it relies on the resonant structure of the 3π± system, it is more mean-
ingful to see its data/MC agreement for the double-charm modes rather than for the
prompt pions in the normalisation mode. Therefore, the validation shown in this sec-
tion does not follow the scheme for the three preceding BDTs.

Let us examine the BDT distributions for the data control samples. Because the B →
D∗−D+

s X control sample is selected using that BDT, we cannot use it in this exercise,
unless we modify the BDT. We can, nonetheless, inspect the data/MC agreement in the
other double-charm modes, i.e. the B →D∗D0 X and B →D∗D+ X control samples,
which are selected with no cuts correlated with the BDT. Their selection is documented
in Chapter 6.
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Figure 5.25 – Top: Anti D+
s BDT comparison for data and MC samples of the B →D∗D0 X

(left) and BD∗D+ X (right) modes; pull distributions are shown below each subplot. Bottom:
similar distributions after shifting the MC distribution by −0.02 BDT score.

Figure 5.25 (top) shows the data/MC comparison for the anti D+
s BDT distributions

of the B →D∗D0 X (left) and B →D∗D+ X (right) modes. In both cases there is
a little shift towards higher BDT scores in MC (with usually negative (positive) pulls
below (above) the anti-D+

s BDT= 0). Figure 5.25 (bottom) depicts similar graphs with
a shift of −0.02 BDT score applied to MC that slightly improves the agreement for the
B0 →D∗D+ X modes (bottom right). However, it results in another ‘dip’ in the pull
distribution of the B →D∗D0 X mode around the BDT score 0.4 − 0.5 (bottom left).
Therefore, is is not straightforward to mitigate the data/MC discrepancy simultaneously
for the two modes. Nonetheless, given that the background structure is different in data
and the inclusive MC, the agreement is rather acceptable, especially in the fit region
(i.e. anti-D+

s BDT> −0.2). The comparison of the data/MC distributions of the input
variables to the BDT is shown in the Appendix D. Discrepancies are found in the B
→D∗−D0 X case and they should be investigated in the next steps of the analysis. The
comparison with the B →D∗−D+ X samples, gives rather satisfactory agreement.
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5.9. REMAINING SIGNAL CUTS

5.9 Remaining signal cuts

To select the signal mode, further cuts are applied, as reported in Table 5.7. The
τ+ decay vertex lies 2σ downstream of the B0 decay vertex to remove the 3π± from
B0 (referred to as ’prompt’ background). The D∗− mass is constrained to satisfy
m(D∗−) − m(D0) ∈ [143, 148]MeV/c2. This way the D∗(2010)− meson is selected.
To avoid the double charm backgrounds, an upper boundary is put on the τ+ mass:
m(τ+) < 1825MeV/c2. Due to the partial reconstruction of the decay, an upper bound-
ary is also put on the B0 mass: m(B0) < 5350MeV/c2. The reconstructed q2 has to be in
the range [0, 11]GeV2/c4 to remove the combinatorial backgrounds. As explained in the
previous sections, the four MVA cuts are applied. Finally, the PID requirements are put
on: the pion from D∗−, ProbNNpi above 0.1; the 3π± from the τ+ candidate, ProbNNpi
above 0.6; for the opposite-sign pion ProbNNk less than 0.1.

Table 5.7 – Remaining cuts for the signal modes. See text for further explanation.

variable cut background targeted
[vtxz(τ+)− vtxz(B0)]/error > 2 prompt
m(K−π+) ∈ [1840, 1890]MeV/c2 combinatorial D0

m(D∗−)−m(K−π+) ∈ [143, 148]MeV/c2 combinatorial D∗−

m(τ+) < 1600MeV/c2 double-charm
m(B0) < 5100MeV/c2 combinatorial
q2 ∈ [0, 11]GeV2/c4 combinatorial
ProbNNpi π− from D∗− > 0.1 misidentification
ProbNNpi π± from τ+ > 0.6 misidentification
ProbNNk π− from τ+ < 0.1 misidentification
anti D+

s BDT > −0.2 D∗−D+
s X

isolation BDT > 0.0 double-charm
combinatorial BDTD > 0.0 combinatorial
detachment BDTG > 0.2 prompt
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Figure 5.26 – m(K−π+) as a function of m(D∗−)−m(K−π+) for the data sample after the full
selection except the cuts on these variables, which are marked by arrows.
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To assure the selection achieves its objectives, composition of the inclusive bb →
D∗−3π±X MC sample is inspected after the initial selection (Figure 5.27 top) and after
the full selection (Figure 5.27 middle). Only D∗− candidates with matched tracks are
considered, since combinatorial D0 and D∗− events are removed with a data-driven
technique, as discussed in Section 7.1.1.2. Moreover, the composition is depicted with
a more stringent anti-D+

s BDT cut at anti-D+
s BDT > 0 (Figure 5.27 bottom), which

shows an increased signal purity (obtained at the price of reducing the signal statistics
by around 20%). Future datasets will therefore enable to exploit higher BDT regions.
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Figure 5.27 – Inclusive MC sample composition after the initial selection (top), after the full
signal selection (middle) and with a harsher anti-D+

s BDT cut at anti-D+
s BDT > 0. The

‘prompt’ category encompasses events where the 3π± system originates at the b-hadron decay
vertex.
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5.10. SELECTION FOR THE NORMALISATION MODE

After the full selection, almost all candidates originate from a b-hadron and a vast
majority of them come from the B0 meson. Most importantly, the ‘prompt’ background
is reduced and the dominant backgrounds are the three double charm decay modes,
especially D∗−D+

s X. The latter one is controlled by the anti-D+
s BDT in the signal-yield

fit, hence the loose cut on this variable.

The selection reported here is reasonably optimised. Even though it is possible to still
fine-tune it, the PhD constraints require the author to quickly converge on this part of
the project.

5.10 Selection for the normalisation mode

The normalisation mode selection should exploit the unique characteristics of this
mode: the fully reconstructed B0 →D∗− 3π± decay and the 3π± system coming di-
rectly from the B0. At the same time, it should be as similar to the signal selection as
possible, to cancel out biases in the R(D∗) ratio.

The first requirement is met by constraining the B0 mass spectrum to the range
[5150, 5400]MeV. The second criterion is satisfied by demanding a different 3π± vertex
topology. This is ensured by demanding that the D0 decay vertex lie further down-
stream of the 3π± one: [vtxz(D0) − vtxz(τ+)]/error > 4, instead of the vertex detach-
ment as in the signal mode.

Regarding the MVA selection, the normalisation mode does not use the detachment
BDT, since the B0 → D∗−3π± decay has the 3π± ’attached’ to the B0 decay vertex.
Furthermore, the anti-D+

s BDT, relying on the intermediate resonant states in the 3π±

system would be irrelevant for the normalisation mode. The other two BDTs, the com-
binatorial and isolation ones, are kept with the same cuts as for the signal mode.

The PID requirements are the same as for signal. Even though they might be reported
in the initial selection, they are reported here for consistency with the efficiencies com-
putation.

The other cuts are kept at the same values to reduce bias in the relative signal-to-
normalisation yields.

The selection of the normalisation mode is reported in Table 5.8.
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Table 5.8 – Remaining cuts for the normalisation mode. See text for further explanation.

variable cut targeted background
m(B0) ∈ [5150, 5400]MeV combinatorial
m(D∗−)−m(D0) ∈ [143, 148]MeV/c2 combinatorial D∗−

[vtxz(D0)− vtxz(τ+)]/error > 4 non-prompt
ProbNNpi π− from D∗− > 0.1 misidentification
ProbNNpi π± from τ+ > 0.6 misidentification
ProbNNk π− from τ+ < 0.1 misidentification
isolation BDT > 0.0 double-charm
combinatorial BDTD > 0.0 combinatorial

Figure 5.28 shows the invariant mass spectrum of the D∗− 3π± system after the full
normalisation-mode selection. The peak around the B0 mass is clearly visible. The
lower mass tail stems from the B0 →D∗− 3π± X events. Moreover, the peak may
contain feeddown from D+

s , i.e.D+
s → 3π±, which events are subtracted as described in

Chapter 7.
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Figure 5.28 – m(D∗−π+π−π+) in data after full normalisation-mode selection

5.11 Efficiencies

The total efficiency to select any sample is computed as a product of the ’online’ and
’offline’ efficiencies,

εtot = εonlineεoffline, (5.1)

which are factorised as follows:

ε’online’ = εgeom. acceptanceεpreselection, (5.2)
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5.11. EFFICIENCIES

εoffline = εinitialεmode-specificεPID, (5.3)

where the εmode-specific stands for the signal or normalisation efficiencies.

The ’online’ efficiencies for the two signal modes and the normalisation mode are re-
ported in Table 5.9.

Table 5.10 reports the ’offline’ (i.e. starting from the ROOT ntuples saved on disk end-
ing at the final selection) selection efficiencies per step of the initial selection, common
to all the modes, and then for the signal and normalisation modes. The signal selec-
tion is applied to all MC samples, therefore the bb→ D∗−3π±X efficiencies are shown
whenever possible. The absolute and cumulative efficiencies are shown in the second
and third columns. In the initial selection, the first three lines are the trigger cuts. They
are applied also for the remaining initial cuts, hence the indentation. The signal and
normalisation efficiencies are quoted as measured on the samples with the initial cuts
already applied, hence the discontinuity in the cumulative efficiencies between the ini-
tial and signal cuts, and between the initial and normalisation cuts. The PID efficiencies
are computed with a data-driven approach (see 2.2.2.4) that requires all the other cuts
be already applied. Therefore only the PID absolute efficiencies are measured.

Table 5.9 – ’Online’ efficiencies (in %) for the two signal modes and the normalisation mode
split into the geometrical acceptance and preselection steps.

Selection Step 3πντ 3ππ0ντ B0→ D∗−3π±

geometrical acceptance 16.44± 0.19 15.86± 0.15 15.56± 0.14
preselection 0.449± 0.001 0.370± 0.004 1.183± 0.003

113
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Table 5.10 – ’Offline’ selection absolute and cumulative efficiencies (in %) as a function of the
selection stage for the simulated bb→ D∗−3π±X, B0 → D∗−τ+ντ and B0 → D∗−3π± modes.
The cells group cuts into the selection stages, where each cell assumes all the cuts from the
previous stage have been applied. Uncertainties are of the order of last digit shown. See
Table C.1 for more details.

Cut Absolute efficiencies Cumulative efficiencies
B0→ D∗−τ+ντ B0→ D∗−3π± B0→ D∗−τ+ντ B0→ D∗−3π±

3πντ 3ππ0ντ 3πντ 3ππ0ντ

Initial selection
L0 89.51 86.60 89.08 89.51 86.60 89.08
Hlt1 89.76 87.32 90.92 87.14 83.88 88.02
Hlt2 79.90 77.31 90.33 73.25 69.02 85.10

PV (D0) = PV (τ+) 69.76 65.73 79.94 69.76 65.73 79.94
totCandidates = 1 60.89 52.22 71.97 58.06 49.87 67.75
[vtxz(τ+)− vtxz(PV )]/error > 10 71.66 66.59 78.60 57.01 48.29 62.64
nSPDHits < 450 72.24 67.78 83.97 56.37 47.56 61.99

Signal selection
m(D∗−)−m(K−π+) ∈ [143, 148]MeV/c2 94.63 93.98 - 94.63 93.98 -
m(K−π+) ∈ [1840, 1890]MeV/c2 97.36 97.39 - 92.28 91.70 -
m(3π) < 1825MeV/c2 98.24 98.77 - 90.73 90.68 -
m(B0) < 5100MeV/c2 99.29 99.03 - 90.46 90.27 -
q2 ∈ [0, 12]GeV2/c4 97.52 97.22 - 88.74 88.53 -
combinatorial BDTD > 0 80.37 76.71 - 74.72 71.89 -
[vtxz(τ+)− vtxz(B0)]/error > 2 99.81 99.78 - 74.72 71.89 -
isolation BDT > 0 87.85 83.86 - 67.42 62.41 -
anti D+

s BDT > −0.2 98.30 86.10 - 67.12 54.87 -
PID 76.23 78.86 - - - -

Normalisation selection
[vtxz(D0)− vtxz(τ+)]/error > 4 - - 94.30 - - 94.30
m(D∗3π±) ∈ [5150, 5400]MeV - - 97.87 - - 93.32
m(D∗−)−m(D0) ∈ [143, 148]MeV - - 94.97 - - 89.04
combinatorial BDTD > 0 - - 81.37 - - 74.19
isolation BDT > 0 - - 88.33 - - 66.94
PID - - 73.96 - - -

Table 5.11 – Summary of total efficiencies of the signal and normalisation modes. The signal
efficiency is a weighted average of the 3π±ντ and 3π±π0ντ modes where the weights are the
branching fractions of these modes.

quantity value
εB0→D∗−τ+ντ (3πντ ) (1.2± 0.03)× 10−4

εB0→D∗−τ+ντ (3ππ0ντ ) (7.0± 0.2)× 10−5

εB0→D∗−τ+ντ (1.03± 0.01)× 10−4

εB0→D∗−3π± (2.91± 0.03)× 10−4

εB0→ D∗−3π±/εB0→ D∗−τ+ντ 2.81± 0.04

Finally, the ratio of the total efficiencies of the normalisation to the signal modes is
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computed and shown in Table 5.11. This ratio enters the K(D∗) formula.

The next chapter describes the data-driven control samples fits that help constrain
the final signal and normalisation fits. Their selections are described there for con-
venience.
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Chapter 6
Control samples fits

The previous chapter described the full selection, in particular, for the signal mode.
Before the signal yield fit is performed, it is useful to apply data-driven corrections to
the simulated samples of the most important backgrounds. The data samples used to
this end are referred to as the control samples. They are described in this chapter.

First of all, the resonant structure of the D+
s decay is corrected as explained in Sec-

tion 6.1. Next, in Section 6.2 the composition of the B →D∗−D+
s X inclusive mode

is fitted, providing constraints for the final fit. Finally, in Section 6.3 the B →D∗−D+

X and B →D∗−D0 X samples are used to correct the q2 distribution of the respective
decay modes in the final fit templates.

6.1 D+
s decay model

The anti-D+
s BDT used in the final signal yield fit relies on the modelling of the 3π±X

system as in the decays of, most importantly, the τ → 3π±ντ (signal) and D+
s → 3π±X

(background). The τ+ decays usually through the a1(1260)+ state, which in turn goes
into ρ0π+. The D+

s may also decay to the a1(1260)
+, but the branching fraction is

unknown. Nonetheless, the branching fraction of the D+
s decay to ρ0 through the η′

state has been measured as B(D+
s → η′X) = (10.3± 1.4)%, where η′ decays to ρ0γ with

the branching fraction B(η′ → ρ0γ) = (29.5 ± 0.4)%. See Table A.2 for the relevant
D+
s branching fractions. Consequently, the ρ0 contribution from the D+

s decay can be
mistakenly attributed to the one from the τ+.

Therefore it is crucial that contributions from various resonances, especially the η′,
be correctly normalised in the simulation to reflect the real data as closely as possible.
Moreover, the branching fractions of certain decay modes are not well-known. To select
the data sample enriched in the D+

s → 3π±X decays, the signal-mode selection is
applied (cf. Tab. 5.7) with the reverse requirement on the anti-D+

s BDT: anti-D+
s BDT <

−0.2. A simultaneous maximum likelihood binned fit is performed to the four variables:
min[m(π+π−)], max[m(π+π−)], m(π+π+) and m(3π±). The variables min[m(π+π−)],
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max[m(π+π−)] and m(π+π+) are reconstructed masses of all the combinations of two-
pion systems. Therefore, they enable to pinpoint the invariant masses of the resonances
spawning two pions. The last variable, m(3π±) allows to distinguish the exclusive D+

s

→π+π−π+ from events where an extra energy is carried by additional neutral particles,
e.g. D+

s →τ+ (→π+π−π+ντ) ντ or D+
s → 3π± X, where X escapes detection.

Besides, the fitting range of the four variables is constrained by phase-space i.e. the
lower ranges are around the double or triple of the π± invariant mass, whereas the
upper limits are usually around the D+

s invariant mass, except the min[m(π+π−)] with
the limit of 1200MeV/c2 as heavier resonances producing π+π− occur very rarely in D+

s

decays. Table 6.1 shows differences of the D+
s decay model selection with respect to

the signal cuts. This control sample comprises 8821 events of the collision data.

Table 6.1 – Selection of the D+
s decay model control sample

variable cut
anti-D+

s BDT < −0.2
m(π+π+) ∈ [240, 1600]MeV
max[m(π+π−)] ∈ [280, 1700]MeV
min[m(π+π−)] ∈ [280, 1200]MeV
m(π+π−π+) ∈ [440, 1840]MeV

Figure 6.1 shows projections of the simulated D+
s → 3π±X templates to the four fitted

variables: min[m(π+π−)], max[m(π+π−)], m(π+π+) andm(π+π−π+). The components
are: D+

s → η′π+(π0) (green); D+
s → ηπ+(π0) (red); D+

s → ωπ+(π0) and D+
s → ϕπ+(π0)

(orange); other D+
s modes (yellow); non-D+

s background(blue).

The components are broken down into:

• decays with at least one pion from η: D+
s → ηπ+(π0)

• decays with at least one pion from η′: D+
s → η′π+(π0)

• decays with at least one pion from ω or ϕ: D+
s → ωπ+(π0) or D+

s → ϕπ+(π0)

• decays where none of the pions originates from an intermediate resonance: D+
s →

3π±X modes

• Non-D+
s background (e.g. D+

s → τ+ντ)
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Figure 6.1 – Projections of the D+
s → 3π± X components for the variables: min[m(π+π−)],

max[m(π+π−)], m(π+π+) and m(π+π−π+) in the fit to the control data samples. The compo-
nents are: D+

s → η′π+(π0) (green); D+
s → ηπ+(π0) (red); D+

s → ωπ+(π0) and D+
s → ϕπ+(π0)

(orange); other D+
s modes (yellow); non-D+

s background(blue).

These modes are sub-divided more finely as reported in Table 6.2, where their relative
fractions (normalised to all D+

s → 3π± X decays), obtained from the fit, are shown.
Importantly, the estimated fractions of the D+

s → a1 X are reported. The last column
represents a multiplicative correction factor to be applied to the MC templates in order
to correctly normalise the modes to match the fitted fractions. That correction is applied
to the relevant MC samples to the signal-fit templates, discussed in Chapter 7, after
accounting for the efficiency differences between the D+

s and signal-mode selections.
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CHAPTER 6. CONTROL SAMPLES FITS

Table 6.2 – Relative fractions of various D+
s → 3π±X templates obtained from the fit to the

collision data D+
s control sample (see Figure 6.1) and the corresponding corrections factors

applied to the simulation.

Template D+
s → 3π± X fraction MC Correction factor

η3π± 0.069± 0.019 1.26± 0.35
η′3π± 0.034± 0.023 0.71± 0.48
ω3π± 0.187± 0.033 6.0± 1.1
ϕ3π± 0.0300± 0.0070 0.97± 0.22
K03π± 0.0120± 0.0030 0.91± 0.20
D+
s → τ+ντ 0.0160± 0.0040 0.94± 0.21

Xnr3π
± 0.051± 0.061 3.8± 4.6

a1η 0.0080± 0.0020 1.34± 0.37
a1η

′ 0.0040± 0.0030 0.66± 0.45
a1ω 0.0210± 0.0040 3.36± 0.59
a1ϕ 0.0030± 0.0010 0.76± 0.17
a1K

0 0.00± 0.00 1.37± 0.31
ωρ+ or ϕρ+ 0.071± 0.019 0.38± 0.10
ωπ+ or ϕπ+ 0.0500± 0.0090 1.29± 0.24
ηρ+ 0.162± 0.019 0.94± 0.11
ηπ+ 0.014± 0.010 0.65± 0.46
η′ρ+ 0.189± 0.015 0.690± 0.056
η′π+ 0.079± 0.018 1.02± 0.23

6.2 B → D∗−D+
s (X) control mode

The B → D∗−D+
s (X) modes form an important family of backgrounds in the signal

yield fit. Their relative abundances in the double-charm cocktail simulation samples are
corrected by performing a fit to a data sample enriched in B→ D∗D+

s (→ 3π±)X events.
The selection of the control sample differs from the nominal selection by requiring the
3π invariant mass to be within 20MeV/c2 of the D+

s mass and skipping the anti-D+
s BDT

cut, as well as the B0 and τ+ mass constraints.

Consequently, only the exclusive D+
s → 3π± modes are considered. Nonetheless, the

relative fractions of the B → D∗−D+
s (X) decays are valid for the inclusive D+

s → 3π±

X decays, as it is the case in the signal yield fit 1.

This control sample comprises 2878 events collision data events.

The fit is performed to m(D∗−π+π−π+) shifted by subtracting m(K−π+)D0 and m(3π±)
for better resolution, and to q2 ≡ (pB0 − pD∗−)2. The probability density function used

1The D+
s → 3π± X decay model corrections, discussed in the previous section, are not applicable

here, because they concern the inclusive D+
s → 3π± X modes, while here we discuss the exclusive D+

s

→ 3π± events only.
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in the fit is

P = fc.b.Pc.b. +
(1− fc.b.)

k

∑
i

fiPi, (6.1)

where fc.b. and Pc.b. are fractions and probability density function of the combinatorial
background, modelled with the D∗±3π± system, where the D∗± has the same charge as
the 3π±; fi are floating-in-the-fit fractions of the B → D∗−D+

s X components as defined
in Table 6.4, relative to the most abundant B0 →D∗−D∗+

s decays; k = 1+ fD+
s
+ fD∗+

s0
+

fD′+
s1
+ fD∗∗DsX + fBs→D∗D+

s X
and fD∗+

s
= 1 by definition. The shapes of each component

are taken from binned templates from simulation.

The fit projections on the fitted variables and also onto tτ and anti-D+
s BDT are depicted

in Figure 6.2.
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Figure 6.2 – Data-fit projections of the B → D∗−D+
s X components for the variables:

m(D∗−π+π−π+)−m(K−π+)D0 −m(3π±), q2, tτ and anti-D+
s BDT. The first two variables are

used in the fit.

The B → D∗−D+
s (X) modes can be grouped into the exclusive B0 → D∗−D

+(∗)
s modes,

and the inclusive B → D∗∗−D+
s X and B0

s → D∗−D+
s X modes.
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CHAPTER 6. CONTROL SAMPLES FITS

The exclusive modes include the exclusive B0 → D∗−D+
s mode and those with excited

states of the D+
s , denoted by D∗+

s , D∗+
s0 and D′+

s1 . Their q2 = (pB0 − pD∗−)2 peaks at the
mass of the given D+

s states as can be seen in the top-right of Figure 6.2 for the mass
squared of the D+

s species reported in Table 6.3.

Table 6.3 – Invariant mass and its square for the D+
s states of interest [14]. Uncertainties are

smaller than the last digit shown.

D+
s state mass[MeV/c2 ] mass2[GeV2/c4 ]

D+
s 1968 3.9

D∗+
s 2112 4.5

D∗+
s0 2318 5.4

D′+
s1 2460 6.1

The inclusive B → D∗−D+
s X modes often have at least one extra particle, possibly

from a feed-down from excited D∗− and excited D+
s states. These additional particles

carry momentum that contributes to the q2, hence shifting this distribution to higher
values as can be seen in top-right of Figure 6.2 for the modes B0 → D∗∗−D+

s X and
B0
s → D∗−D+

s X.

Table 6.5 reports the B0 → D∗−D+
s and combinatorial background yields obtained in

the fit to the simulation sample and the fractions of the other modes.

Table 6.4 – List of components in the D∗D+
s X control fit and how they are normalised.

Component Normalisation
B0→ D∗−D+

s ND+
s
× fD+

s
/k

B0→ D∗−D∗+
s ND+

s
× 1/k

B0→ D∗−D∗+
s0 ND+

s
× fD∗+

s0
/k

B0→ D∗−D′+
s1 ND+

s
× fD′+

s1
/k

B→ D∗∗−D+
s X ND+

s
× fD∗∗DsX/k

B0
s→ D∗−D+

s X ND+
s
× fBs→D∗D+

s X
/k

Background Nbkg

Table 6.5 – D∗D+
s X control fit parameters. The fractions are normalised relative to

B0 → D∗− D∗+
s , as defined in Table 6.4.

Parameter Fit result
NDs 2757± 37
fDs 0.58± 0.03
fD∗+

s0
0.12± 0.03

f
D

′+
s1

0.35± 0.03

fD∗∗DsX 0.34± 0.04
fBs→D∗DsX 0.06± 0.02
Nbkg 0± 3
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6.3. B → D∗−D0(X) AND B → D∗−D+(X) CONTROL MODES

The various B → D∗−D+
s X components contribute significantly in the signal fit, there-

fore their relative fractions derived in this section are used as constraints in the signal
yield fit (cf. Chapter 7), leaving their normalisation, ND+

s
, unconstrained.

6.3 B → D∗−D0(X) and B → D∗−D+(X) control modes

B → D∗−D+(X) and B → D∗−D0(X) are the other major double-charm backgrounds
present in the signal fit. It is important to inspect and correct their q2 distribution.

They are selected similarly to signal except that no MVA is used to keep high statistics
and no requirements are put on the B0 and τ+ masses.

The D0 → 3π± X in B → D∗−D0X is dominated by the decay D0 →K−π+π−π+ whose
branching fraction is B(D0 → K−π+π−π+) = (8.23 ± 0.14)%. The isolation tool scans
the 3π± vertex in search of the extra kaon. The kaon mass is assigned to it and the
invariant mass of the thus created K−π+π−π+ system has to be within ±50MeV/c2 of
the D0 mass.

To select the B → D∗−D+X control sample, the decay D+ →π+K−π+ (B(D+ →
π+K−π+) = (9.38 ± 0.16)%) is used. The opposite-sign pion in the π+π−π+ system,
the π−, is required to be a genuine K−. This is achieved by inverting its PID cut such
that probNNK>0.1. The mass of the π+K−π+ has to be within ±20MeV/c2 of the mass
of D0.

Moreover, the events where some tracks come from one B meson and the other from
another one are removed. This condition is satisfied by requiring good alignment of the
B0 reconstructed momentum relative to the B0 flight direction from the primary vertex
with the cut acos(B0_BPVDIRA) < 0.02.

The B → D∗−D0(X) and B → D∗−D+(X) control samples comprise 10901 and 4059
events, respectively, from the collision data.

Figure 6.3 shows the q2 distributions for the simulated (left) B → D∗−D0(X) and
(right) B → D∗−D+(X) modes (top) before and (bottom) after the q2 reweighting
with GBReweighter [111].

Thus q2-reweighted simulated samples are used to build templates for the signal yield
fit described in Chapter 7.
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Figure 6.3 – Simulated (filled-in green bins) q2 distributions for (left) B → D∗−D0(X) and
(right) B → D∗−D+(X)modes (top) before and (bottom) after reweighting with GBReweighter
based on the data control samples (data points shown).
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Chapter 7
Signal and normalisation fits

The previous chapters discussed the selection (see Chapter 5) and control samples fits
(see Chapter 6). The former provided the selected datasets (collision data and MC),
while the latter, constraints and corrections for the double-charm backgrounds. In this
chapter the signal and normalisation yields are extracted and the final R(D∗) result is
computed, following closely the strategy pioneered by Refs. [1, 2].

The fits to extract the signal and normalisation yields are described in Sections 7.1 and
7.2 respectively. The signal yield is currently blinded as the analysis has to undergo the
LHCb review process after which the result will be unblinded. Finally, all the ingredients
of the R(D∗) ratio are combined and its value is computed in Section 7.3.

7.1 The signal yield fit

The signal yield is determined from a 3-dimensional maximum likelihood binned fit to
q2 (8 bins), lifetime of the τ+-candidate (8 bins), tτ , and the anti-D+

s BDT (6 bins).

There are 16 templates, 13 of them come from MC and three from data. The latter
ones are combinatorial B, D0 and D∗ events. The templates are grouped into the 12
following categories, due to similar shapes:

• B0→ D∗−τ+ντ – the signal; includes τ+ → 3π−ντ and τ+ → 3π±π0ντ

• B0→ D∗∗−τ+ντ – excited D∗− states

• B0→ D∗−D+
s
(∗) – includes B0→ D∗−D+

s , B0→ D∗−D+
s , B0→ D∗−D∗+

s0

and B0→ D∗−D′+
s1

• B→ D∗∗−D+
s X

• B0
s→ D∗−D+

s X

• B→ D∗−D+X

• B→ D∗−3π±X
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CHAPTER 7. SIGNAL AND NORMALISATION FITS

• B→ D∗−D0X SV, ’Same Vertex’ where all 3 pions come from D0

• B → D∗−D0X DV, ’Different Vertices’ where at least 1 of the 3 pions does not
come from the D0 vertex, e.g. the slow pion from D∗− is reconstructed as coming
from the D0

• combinatorial B0 whose template is made from the collision data with the D∗± of
the same sign as the 3π± system (i.e. wrong sign data w.r.t. the signal)

• combinatorial D0

• combinatorial D∗− but genuine D0

The templates that come from MC are extracted with the MC-truth requirements.

7.1.1 The fit model

The model used to fit the data is the sum of 16 components, listed in the first column in
Table 7.1. The shape of each component is modelled using histogram templates created
from simulation samples and from the collision data samples in 3 cases. The parameters
of the fit control the relative normalisation of each component in combinations listed
in the second column of Table 7.1.

The meaning of each parameter is as follows:

• Nsig is the number of B0 → D∗−τ+ντ events, which is used as input when calcu-
lating K(D∗−).

• fτ+→3π±ντ is the fraction of τ+→ 3π±ντ decays relative to the sum of τ+→ 3π±ντ
and τ+→ 3π±π0ντ .

• fD∗∗τν is the amount of B→ D∗∗τ+ντ decays relative to B0→ D∗−τ+ντ decays.

• N same
D0 is the number of B→ D∗−D0X events where all pions in the 3π± system

originate from the D0 vertex.

• f v1v2D0 is the ratio of B → D∗−D0X decays where at least one pion originates from
the D0 vertex and the other pion(s) from a different vertex, normalised to N same

D0 .
This is the case when the soft pion from a D∗− decay is reconstructed as if it was
produced at the 3π vertex.

• fD+ is the ratio of B → D∗−D+X decays with respect to those containing a D+
s

meson.

• NDs is the yield of events involving a D+
s . The parameters fD+

s
, fD∗+

s0
, fD′+

s1
,

fD∗∗DsX , fBs→D∗D+
s X

, obtained in Sec. 6.2, are used as constraints, after correcting
for efficiency differences between the B →D∗−D+

s X and signal selections.

• NB→D∗3πX is the yield of B → D∗−3πX events where the three pions come from
the B vertex. This value is constrained by using the observed ratio between B0 →
D∗−3π exclusive and B → D∗−3πX inclusive decays, corrected for efficiency.
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Table 7.1 – List of components in the signal yield extraction fit and how they are normalised.

Component Normalisation
B0→ D∗−τ+ντ (τ+→ 3π±ντ ) Nsig × fτ+→3π±ντ

B0→ D∗−τ+ντ (τ+→ 3π±π0ντ ) Nsig × (1− fτ+→3π±ντ )
B→ D∗∗τ+ντ Nsig × fD∗∗τν

B→ D∗−D0X same vertex (SV) N same
D0

B→ D∗−D0X different vertex (DV) N same
D0 × f v1−v2D0

B→ D∗−D+X ND+
s
× fD+

B0→ D∗−D+
s ND+

s
× fD+

s
/k

B0→ D∗−D∗+
s ND+

s
× 1/k

B0→ D∗−D∗+
s0 ND+

s
× fD∗+

s0
/k

B0→ D∗−D′+
s1 ND+

s
× fD′+

s1
/k

B→ D∗∗−D+
s X ND+

s
× fD∗∗DsX/k

B0
s→ D∗−D+

s X ND+
s
× fBs→D∗D+

s X
/k

B→ D∗−3π±X NB→D∗−3π±X

Combinatoric B NB1−B2

Combinatoric D0 Nfake D0

Combinatoric D∗ Nfake D∗

• NB1−B2 is the yield of combinatorial background events where the D∗− and the
3π system come from different B decays. Its yield, scaling from MC, is found
negligible, hence it is fixed to zero. Nonetheless, a more precise, data-driven
estimation is being developed.

• NfakeD0 is the combinatorial background yield with a fake D0. Its value is fixed
from a fit to m(K−π+) and m(D∗−)−m(K−π+)

• NfakeD∗ is the combinatorial background yield with a fake D∗−. Its value is fixed
from a fit to m(K−π+) and m(D∗−)−m(K−π+)

The total probability density function, for Ntotal events total, is therefore:
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Ptotal(q
2, tτ ,BDT) = 1/Ntotal × {

Nsig[fτ+→π+π−π+ντPτ+→π+π−π+ντ

+ (1− fτ+→π+π−π+ντ )Pτ+→π+π−π+π0ντ

+ fD∗∗τνPB→D∗∗τ+ντ ]

+N same
D0 [PB→D∗−D0X SV

+ f v1−v2D0 PB→D∗−D0X DV]

+ND+
s
/k × [PB0→D∗−D∗+

s

+ fD+
s
PB0→D∗−D+

s

+ fD∗+
s0
PB0→D∗−D∗+

s0

+ fD′+
s1
PB0→D∗−D′+

s1

+ fD∗∗DsXPB→D∗∗−D+
s X

+ fBs→D∗D+
s X

PB0
s→D∗−D+

s X
]

+ND+
s
fD+PB→D∗−D+X

+NB→D∗−3π±XPB→D∗−3π±X

+NB1−B2Pcombinatoric B

+Nfake D0Pcombinatoric D0

+Nfake D∗Pcombinatoric D∗−},

where each Pi = Pi(q2, tτ ,BDT) is one of the 15 histogram templates and k = 1+fD+
s
+

fD∗+
s0

+ fD′+
s1
+ fD∗∗DsX + fBs→D∗D+

s X
.

The 16 fit parameters can be grouped into three categories depending whether they are
free, Gaussian-constrained or fixed in the fit:

• free parameters (5): Nsig, ND+
s

,NB→D∗−3π±X , fD+ and f v1−v2D0

• Gaussian-constrained parameters (5): fD+
s

, fD∗+
s0

, fD′+
s1

, fD∗∗DsX , fBs→D∗D+
s X

• fixed parameters (6): NB1−B2, Nfake D0, Nfake D∗, N same
D0 , fD∗∗τν and fτ+→3π±ντ

7.1.1.1 The Gaussian-constrained parameters

Most of the Gaussian-constrained parameters are constrained by Gaussian distributions
of µ and σ corresponding to the mean and uncertainty as obtained in the D∗D+

s X
fit (see Section 6.2). An exception is made for NB→D∗−3π±X , whose central value is
approximated by the relative yield of such events in the inclusive bb→ D∗−3π±X MC
sample, normalised to the total number of events in the fitted sample that equals 783
events. Since the relative yield of the ‘prompt’ events in the collision data sample may
differ, a tentative standard deviation of 200 events is chosen in the Gaussian constraint.
The normalisation of NB→D∗−3π±X is a work-in-progress in the analysis.

The yield of prompt events is estimated from MC with a data-driven correction. The
prompt events can be from the exclusive B0 →D∗− 3π± or inclusive B0 →D∗− 3π± X
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modes. The former are straightforward to pinpoint as they form the peak inm(D∗−3π±)
around the mass of the B0. The latter, are hard to distinguish from other backgrounds
and it is them that remain after the full selection (due to the cut m(D∗−3π±) <
5100MeV/c2). Selecting truth-matched prompt events from the inclusive bb →D∗− 3π±

X enables to estimate the ratio of inclusive to exclusive prompt events after the full
selection (except for the m(D∗−3π±) cut) as rMC = 6.06. Multiplying this result by the
exclusive yield in the data sample, Nprompt, peak = 182 events, yields 673 expected prompt
events in the fit region. However, rMC, might not model well the data sample. To tackle
this issue, the derived result needs to be corrected by the factor c = rdata/rMC. To select
a pure prompt sample from data, one may apply a negative requirement on the 3π±

vertex detachment, e.g. [vtxz(τ+) − vtxz(B0)]/error < −2. Because the positive vertex
detachment is already applied in the workflow, dedicated samples are made with the
negative vertex detachment requirement, detachment BDT skipped and with all other
signal selection cuts applied. This brings the correction factor of 1.72, resulting in the
final estimate of the prompt yield as Nprompt, fit = c × rMC × Nprompt, peak ≈ 1894. An
arbitrary uncertainty of ±200 events is assigned as 1σ of the Gaussian constraint on the
prompt yield in the fit.

7.1.1.2 The fixed parameters

The combinatoric B is estimated from the wrong-sign (WS) sample. First, full selec-
tion is applied to the WS sample, except for the combinatorial and isolation BDT’s, and
the m(D∗−3π±). The BDT’s skipped would reject the combinatorial B events. Then,
acos(DIRA(B0,PV)) > 0.03 and reversed isolation requirement, isolation BDT < 0 are
applied to obtain a pure combinatorial B sample. The ratio of the selected events in the
fitted m(D∗−3π±) region, i.e. m(D∗−3π±) < 5100MeV/c2 to those in high m(D∗−3π±)
region, m(D∗−3π±) > 5100MeV/c2 is measured. Finally, this ratio is multiplied by the
yield of events in the fitted (right-sign) data sample in the high m(D∗−3π±) region, re-
quiring acos(DIRA(B0,PV)) > 0.03, thus obtaining an estimated yield of combinatorial
B events in the fit region, NB1−B2 = 237.

The combinatoric D0 and D∗− yields are obtained from a two-dimensional unbinned
maximum-likelihood fit to the reconstructed mass of the D0, m(K−π+), and the differ-
ence of the reconstructed masses of the D∗− and D0, ∆M ≡ m(D∗−)−m(K−π+). Their
distributions are shown in Figure 7.1.

The combinatorial D0 events do not peak in either of the fit variables. To ensure no
overlap of the two categories, only such combinatorial D∗− events are chosen which
correspond to the genuine D0, i.e. where the K−π+ system comes from the D0, while
the pion from D∗− and D0 do not come from the same D∗−. These events peak in
m(K−π+), but not in ∆M , separating the two categories.

The signal, defined as genuine D0 and D∗− candidates, is modelled in m(K−π+) with a
sum of the Crystal Ball and Gaussian, whereas in ∆M , with a sum of two Crystal Balls
(with left- and right-hand tails) and Gaussian. The combinatorial D0 is modelled with
an exponential in m(K−π+) and a dedicated RooFit function, RooDstD0Bkg, in ∆M .
The combinatorial D∗− (but genuine D0) is modelled by the signal PDF in m(K−π+)
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and like the combinatorial D0 in ∆M . In addition, in the fitted sample there are mis-
identified D∗− events, whose shape is obtained from MC samples by requiring MC-truth
criteria. They are modelled similarly to the signal.

Figure 7.2 shows the fit projections on the two fitted variables and the pull distributions,
where the agreement, mostly within 3σ and occasionally within around 4σ, is observed.
The constructed templates are used in the signal fit, normalised to the obtained yields
of fake D0, Nfake D0 = 466 and fake D∗−, Nfake D∗− = 547.
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Figure 7.2 – Projections of the two-dimensional fit to the m(K−π+) (left) and δM ≡ m(D∗−)−
m(K−π+) (right) for the collision data sample after the full selection. Signal (red), combinato-
rial D0 (blue), combinatorial D∗− (magenta), mis-identified D∗− (green). See text for details.

Number of D0 events decaying into three pions, N same
D0 , is obtained by scaling the truth-

matched yield from simulation by the ratio of yields of D0 →K−π+π−π+ decays in
data and MC respectively as shown in Figure 7.3. The yields are extracted from fitting
a Gaussian for signal and an exponential for the combinatorial backgrounds. Thus
obtained value equals N same

D0 = 967± 31.
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Figure 7.3 – Fit to m(K−π+π−π+) in MC (left) and data (right) around the mass of D0. The
D0 yields are used to scale the MC sample in order to deduce the N same

D0 parameter.

The fraction of B0 → D∗∗τν events relative to the signal ones is temporarily fixed as
fD∗∗τν = 11%, as a midpoint of the theoretically estimated range [5.5, 16.5]%.

The relative abundance of the τ+→ 3π±ντ to the sum of τ+→ 3π±ντ and τ+→ 3π±π0ντ

is computed as: fτ+→3π±ντ =
ετ+→3π±ντ

B(τ+→3π±ντ )

ετ+→3π±ντ
B(τ+→3π±ντ )+ετ+→3π±π0ντ

B(τ+→3π±π0ντ )
= 0.7742 ±

0.0035, with the efficiencies of the two signal modes, ετ+→3π±ντ and ετ+→3π±π0ντ , are
reported in Section 5.11.

7.1.1.3 The blinding scheme

The signal yield shown, Nsig, is blinded at this stage of analysis in order not to bias the
analysts by the preliminary results. To verify the fit quality and to study systematics,
we chose to blind it by multiplying the signal yield, Nsig, by a random number, x, from
the Gaussian distribution of µ = 1.0 and σ = 0.3 constrained to the range [0.1, 1.9].
To preserve the correct normalisation of the components parametrised by Nsig, what
is actually passed to the fit is Nsig/x, i.e. the actual signal yield, while the blinded
Nsig is reported by the fitting program 1. Consequently, both Nsig and its uncertainty
are multiplied by the same factor, hence the relative uncertainty, σNsig/Nsig, remains
unblinded and can be monitored.

At this point, even though Nsig is blinded, one might deduce it from the known dataset
size, after subtracting all the background yields. Therefore, the difference between the
blinded and actual yields of the three Nsig-dependent components, (Nsig − Nsig/x)(1 +
fD∗∗τν), is split evenly among the backgrounds, skipping those whose yields are fixed
before the fit is performed.

To summarise, the fitting procedure uses unchanged probability density function and
only the reported values of floating parameters are altered.

1 The fit adjusts only the blinded Nsig, since x is a constant. Because only the floating parameters
are reported during the fit, x remains undisclosed, rendering the actual signal yield Nsig/x blinded.
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7.1.2 Fit results and projections

The results of a preliminary fit are reported in Table 7.2 and projected in Figure 7.5.
The fit quality expressed in χ2 per number of degrees of freedom is χ2/374 = 1.20. The
agreement of the fit model and data may be inspected also in the flattened distribution
shown in Figure 7.6, where the content of each 3-dimensional bin is compared against
the fitted model.

Figure 7.4 shows the correlation coefficients between the fitted parameters. The NDs

parameters exhibits correlations above 50% with fBs→D∗DsX , fD∗∗DsX , fD+ and f v1−v2D0 .
This may point to a difficulty in separating the relevant categories from one another in
the fit.

The relative statistical uncertainty of the signal yield, Nsig, equals
σNsig

Nsig
= 5.91%. To

compare it with the Run1 result, the parameters fD+ and f v1−v2D0 need to be fixed to
their central values obtained from the nominal fit (as it was the case in Run1, where the
uncertainties of these two parameters were incorporated in the systematic uncertainty).
Consequently, the resulting relative statistical uncertainty drops to 5.42%.

This value is lower from the Run1 value of 6.64% [1, 2]. In Run2, with, approximately
factor 1.5 more data 2 and improved signal efficiency one would expect a value below
6%, as it is indeed the case.

2 Taking into account approximately twice the bb cross-section in Run2 than Run1, relative luminosi-
ties,

∫
L(Run2)/

∫
L(Run1) = 2 fb−1/3.2 fb−1, and improved Run2 trigger efficiency by around 15%, one

would expect roughly factor 2× 2
3.2 × 1.15 = 1.5 more signal events in Run2 (2015-16).
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Table 7.2 – The signal yield fit to the 2015-2016 data sample. The signal yield, Nsig, and other
floating parameters are blinded (see text).

Parameter Fit result
free

NDs 18447± 348
Nsig 1997± 118
fD+ 0.13± 0.01
f v1−v2D0 3.5± 0.3

constrained
NB→D∗−3π±X 2323± 175
fBs→D∗DsX 0.06± 0.02
f
D

′+
s1

0.39± 0.03

fDs 0.59± 0.02
fD∗+

s0
0.09± 0.03

fD∗∗DsX 0.39± 0.03
fixed

NB1−B2 226
N same
D0 971

NfakeD0 458
NfakeD∗ 562
fD∗∗τν 0.11
fτ+→3π±ντ 0.77

NDs NB
D

* 3
± X

Nsig fBs
D

* DsX

fD
* * DsX

fD
+ fD

′ +
s1 fDs fD

* +
s0 f

v1
v2

D
0

NDs

NB D* 3 ±X

Nsig

fBs D*DsX

fD* * DsX

fD+

fD ′ +
s1

fDs

fD* +
s0

fv1 v2
D0

1.00 -0.21-0.24-0.50 0.57 -0.65-0.04-0.06-0.18-0.59

-0.21 1.00 0.19 0.04 0.03 0.01 -0.01-0.07 0.03 -0.24

-0.24 0.19 1.00 0.15 -0.14 0.31 -0.04-0.01 0.10 0.32

-0.50 0.04 0.15 1.00 0.02 0.34 0.13 -0.03 0.02 0.44

0.57 0.03 -0.14 0.02 1.00 -0.47 0.22 0.09 -0.05-0.46

-0.65 0.01 0.31 0.34 -0.47 1.00 0.04 0.06 0.14 0.17

-0.04-0.01-0.04 0.13 0.22 0.04 1.00 -0.21 0.37 0.01

-0.06-0.07-0.01-0.03 0.09 0.06 -0.21 1.00 0.21 0.07

-0.18 0.03 0.10 0.02 -0.05 0.14 0.37 0.21 1.00 0.15

-0.59-0.24 0.32 0.44 -0.46 0.17 0.01 0.07 0.15 1.00 0.6

0.4

0.2

0.0
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0.4
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Figure 7.4 – Correlation matrix of the signal yield fit parameters for the 2015-2016 dataset. See
Table E.2 for a more precise format.
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Figure 7.5 – The signal fit projections on the fit variables to the 2015-2016 data sample. The
components are not drawn to prevent unblinding. The total PDF is unblinded.
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Figure 7.6 – The signal fit flattened projection across its 256 bins for the 2015-2016 data sample
(top) and its pull distribution (bottom). The x−axis represents an arbitrary bin index.

The subsequent Table 7.3 and plots, Figures 7.7 7.8 and 7.9, show the similar distribu-
tions for the fit with fixed fD+ and f v1−v2D0 . The fit quality expressed in χ2 per number
of degrees of freedom is χ2/376 = 1.20. Interestingly, the previously seen correlations
disappear and the only correlation above 50% is between NDs and NB→D∗−3π±X and
equals −56%.
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Table 7.3 – The signal yield fit with fixed fD+ and fv1−v2
D0 to the 2015-2016 data sample. The

signal yield, Nsig, and other floating parameters are blinded (see text).

Parameter Fit result
free

Nsig 1997± 108
NDs 18446± 205

constrained
NB→D∗−3π±X 2324± 170
fBs→D∗DsX 0.06± 0.02
f
D

′+
s1

0.39± 0.03

fDs 0.59± 0.02
fD∗+

s0
0.09± 0.03

fD∗∗DsX 0.39± 0.02
fixed

NB1−B2 226
N same
D0 971

NfakeD0 458
NfakeD∗ 562
fD∗∗τν 0.11
fτ+→3π±ντ 0.77
fD+ 0.13± 0.01
f v1−v2D0 3.5± 0.3

NDs NB
D

* 3
± X

Nsig fBs
D

* DsX

fD
* * DsX

fD
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s1 fDs fD

* +
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NDs
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fBs D*DsX
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Figure 7.7 – Correlation matrix of the signal yield fit parameters with fixed fD+ and fv1−v2
D0 for

the 2015-2016 dataset. See Table E.2 for a more precise format.

137



CHAPTER 7. SIGNAL AND NORMALISATION FITS

)2 (GeV2q

0

2000

4000

6000

8000 )2
E

ve
nt

s 
/ (

 1
.3

75
 G

eV

LHCb Preliminary

0 5 10

)2 (GeV2q

5−

0

5

P
ul

l

BDT

0

5000

10000

E
ve

nt
s 

/ (
 0

.1
16

66
7 

)

LHCb Preliminary

0.2− 0 0.2 0.4

BDT

5−

0

5

P
ul

l

 (ps)τt

0

5000

10000

E
ve

nt
s 

/ (
 0

.2
5 

ps
 )

LHCb Preliminary

0 0.5 1 1.5 2

 (ps)τt

5−

0

5

P
ul

l

Figure 7.8 – The signal fit projections on the fit variables with fixed fD+ and fv1−v2
D0 to the

2015-2016 data sample. The components are not drawn to prevent unblinding. The total PDF
is unblinded.
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Figure 7.9 – The signal fit flattened projection across its 256 bins for the 2015-2016 data sample
(top) and its pull distribution (bottom). The parameters fD+ and fv1−v2

D0 are fixed. The x−axis
represents an arbitrary bin index.
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7.1.3 The Monte Carlo pseudo-experiment study

The fit is validated using simulated pseudo-experiments, referred to as toys. After
the nominal fit is performed to the data sample of Ntot events, N = 1000 pseudo-
experiments are made. In each the Poisson(Ntot) events are generated from the nominal
fit model and the fit is performed, yielding Nsig toy and other parameters.

Figure 7.10 shows the pull distribution, defined as pull(Nsig) =
Nsig toy−Nsig

σNsig
.
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Figure 7.10 – Pull distribution, Nsig toy−Nsig
σNsig

(right), from a toy study with 1000 generated
events (left) and the uncertainty, σNsig , distribution of Nsig.

The pull mean and standard deviation are compatible with zero and unity, respectively.
Therefore, there is no evidence of bias in the signal yield nor in its uncertainty, as
obtained from the fit.

Distributions of the other fit parameters are shown in Appendix F, where all parameters
exhibit pull distributions of mean and standard deviation compatible with zero and
unity, respectively.

Table 7.4 confirms the correlation coefficients of the nominal signal fit, whereby only
NDs with NB→D∗−3π±Xexhibit absolute correlation above 50%, specifically −57%.

Table 7.4 – Correlation coefficients of the signal fit variables in the 2015-2016 collision MC
pseudo-experiment fit.

NDs NB→D∗−3π±X Nsig fBs→D∗DsX fD∗∗DsX f
D

′+
s1

fDs fD∗+
s0

NDs 1.00 −0.57 −0.15 0.20 0.17 0.02 0.02 −0.04
NB→D∗−3π±X −0.57 1.00 −0.30 −0.17 −0.07 0.02 −0.05 0.05
Nsig −0.15 −0.30 1.00 −0.07 −0.15 −0.06 0.05 −0.02
fBs→D∗DsX 0.20 −0.17 −0.07 1.00 −0.49 0.14 0.07 0.09
fD∗∗DsX 0.17 −0.07 −0.15 −0.49 1.00 −0.30 0.18 0.10
f
D

′+
s1

0.02 0.02 −0.06 0.14 −0.30 1.00 0.23 −0.37

fDs 0.02 −0.05 0.05 0.07 0.18 0.23 1.00 0.22
fD∗+

s0
−0.04 0.05 −0.02 0.09 0.10 −0.37 0.22 1.00
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7.1.4 The fit to an MC sample

To verify the fitting procedure a similar fit is performed to a simulated inclusive bb→
D∗−3π±X sample. This fit is still very preliminary.

The bb → D∗−3π±X is split into two approximately equal in size datasets, based on
the LHCb magnet polarity 3. One half is used to extract the templates, most of which
come from the bb→ D∗−3π±X MC. The other half is used as a pseudo-data sample, to
independently evaluate the fit quality. The fitted MC sample is factor 2.45 larger than
the collision data, whose fit is described in the previous section.

The fixed parameters are extracted from the MC-truth values in the fitted sample. In
particular, fD∗∗τν is found to be around 6% in the simulation, while this parameter is
fixed to 11% in the data sample fit.

The fit results are reported in Table 7.5, compared against the truth-matched parame-
ters, and projected in Figure 7.12. The fit quality expressed in χ2 per number of degrees
of freedom is χ2/374 = 1.28. The agreement of the fit model and data may be anal-
ysed also in the flattened distribution shown in Figure 7.13, where the content of each
3-dimensional bin is compared against the fitted model.

The signal yield, Nsig, is found to be compatible within 2 standard deviations (σ) with
the MC-truth value. The relative signal yield uncertainty is

σNsig

Nsig
= 3.6%, significantly

smaller than in the fit to the collision data, despite a worse fit quality as expressed in
χ2/ndf. However, ND+

s
, ND+, fD′+

s1
, and fD∗∗DsX are, respectively, 18σ, 17σ, 21σ and 6σ

different with respect to the MC-truth values. These large discrepancies might not be
correct, since they arise from truth-matching criteria used to select the templates, some
of which come from dedicated MC samples. In case of the inclusive MC sample, more
stringent requirements need to be used, which is a subject of ongoing improvements.

Figure 7.11 shows the correlation coefficients between the fitted parameters. The high-
est correlation is between ND+

s
and fD+ and equals −66%. The correlations above 50%

are found between the same parameters as in the data fit and pseudo-experiment MC
study, confirming the effect.

3At LHCb approximately half of the Run2 pp collisions took place with either magnet down or up
polarity. The impact of the polarity on the measured observables is negligible for this exercise.
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Table 7.5 – The unblinded signal yield fit to the 2015-2016 MC. The parameters fD+ and fv1−v2
D0

have been fixed to their values from a previous fit to MC.

Parameter Fit result MC-truth rel. difference [σ]
free

NDs 21647± 332 15505 18
Nsig 4720± 172 4085 4
fD+ 0.30± 0.01 0.47 17
f v1−v2D0 2.3± 0.2 1.8 3

constrained
NB→D∗−3π±X 1512± 176 2319 5
fBs→D∗DsX 0.09± 0.02 0.21 6
f
D

′+
s1

0.53± 0.02 0.10 21
fDs 0.49± 0.02 0.49 0.09
fD∗+

s0
0.07± 0.03 0.08 0.4

fD∗∗DsX 0.33± 0.03 0.15 6
fixed

NB1−B2 278
N same
D0 1617

NfakeD0 30
NfakeD∗ 64
fD∗∗τν 0.060
fτ+→3π±ντ 0.78

NDs NB
D

* 3
± X

Nsig fBs
D

* DsX

fD
* * DsX

fD
+ fD

′ +
s1 fDs fD

* +
s0 f

v1
v2

D
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NB D* 3 ±X
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Figure 7.11 – Correlation matrix of the signal yield fit parameters for the 2015-2016 MC. See
Table E.3 for a more precise format.
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Figure 7.12 – The signal fit projections on the fit variables to the inclusive bb→ D∗−3π±X MC
sample.
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Figure 7.13 – The signal fit flattened projection across its 256 bins for the MC sample (top)
and its pull distribution (bottom). The x−axis represents an arbitrary bin index.
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7.2 The normalisation yield fit

The normalisation data sample is extracted as explained in Section 5.10. Its yield is
obtained from an unbinned maximum likelihood fit to the mass of the D∗−π+π−π+

system as shown in Figure 7.14 (left). Its signal is modelled as a sum of the Gaussian
and the Crystal Ball of the same mean values, whereas the combinatorial background
is modelled with an exponential. The D∗−π+π−π+ yield obtained in the fit equals
29999± 201.

As shown in Figure 7.14, some events come from the D+
s → 3π± decay.
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Figure 7.14 – Distribution of m(π+π−π+) in the fitted normalisation data sample.

The result is corrected by subtracting the D+
s →π+π−π+ decays in the mass range 1.8 <

m(3π±) < 2.1GeV/c2 fitted with double Gaussian as signal and an exponential to model
the combinatorial pions, as shown in Figure 7.15 (right). The D+

s →π+π−π+ yield
obtained in the fit equals 426± 34.

Finally, the normalisation yield is taken as 29572± 167.
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Figure 7.15 – m(D∗−π+π−π+) fit (left) and m(π+π−π+) fit (right) to extract the normalisation
yield.
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CHAPTER 7. SIGNAL AND NORMALISATION FITS

7.3 R(D∗) determination

The external branching fractions used for K(D∗) and R(D∗) are reported in Table 7.6.
They depend on the R(D∗) central value and introduce 0.09 absolute uncertainty to it.

Using the obtained signal and normalisation yields, the K(D∗) is:

K(D∗) =
Nsig

Nnorm

εnorm
εsig

1

B(τ+ → 3πντ ) + B(τ+ → 3ππ0ντ )
= 1.389± 0.079. (7.1)

Finally, R(D∗) is obtained as:

R(D∗) = K(D∗−)
B(B0→ D∗−π+π−π+)

B(B0→ D∗−µ+νµ)
= 0.198± 0.011 (stat)± 0.009(ext), (7.2)

where the first uncertainty is statistical and the second one stems from the uncertainty
of the external branching fractions.

Table 7.6 – The external branching fractions used for the K(D∗−) and R(D∗) computation.

Decay B Source
τ− → π+π−π+ντ (excluding K0

S → π+π−) (9.02± 0.05)% PDG [14]
τ− → π+π−π+π0ντ (excluding K0

S → π+π−) (4.49± 0.05)% PDG [14]
B0 → D∗−ℓντ , where ℓ = e, µ (5.06± 0.02 (stat)± 0.12 (syst))% HFLAV [30]
B0 → D∗−π+π−π+ (7.21± 0.29)× 10−3 PDG [14]

The Run1 result as published in Ref. [1, 2] is R(D∗) = 0.291±0.019 (stat)±0.026 (syst)±
0.013(ext). However, HFLAV has since reported an updated average of theB0 → D∗−ℓντ
branching fraction, which shifts the R(D∗) measurement down to R(D∗) = 0.281 ±
0.019 (stat)± 0.026 (syst)± 0.013(ext).

The following chapter discusses the systematic uncertainties to be considered in addi-
tion to the statistical and external ones shown above.
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Chapter 8
Systematic uncertainties

In this chapter the systematic uncertainties of the R(D∗) result are discussed. This
part of the analysis is currently work-in-progress. Therefore, the already measured
uncertainties are quoted, whereas a work plan for the remaining ones is laid out. Some
of the individual systematics are subject to future updates and they are sensitive to
the signal fit being improved. Nonetheless, the methods introduced should remain
applicable.

Sections 8.1 and 8.2 describe the systematic uncertainties due to the signal and back-
ground modelling, respectively. Section 8.3 focuses on those that stem from the selec-
tion. Section 8.4 describes the uncertainty due to the limited size of the templates used
in the signal fit.

Finally, all systematic uncertainties are combined in Section 8.5.

8.1 Signal model uncertainties

The fraction of tau decays to 3 pions is derived, as discussed in Section 7.1.1.2, as
fτ+→3π±ντ =

ετ+→3π±ντ
B(τ+→3π±ντ )

ετ+→3π±ντ
B(τ+→3π±ντ )+ετ+→3π±π0ντ

B(τ+→3π±π0ντ )
= 0.7742 ± 0.0035. In the

signal fit, the central value is taken as a fixed parameter. An alternative fit is per-
formed with this ratio fixed to the central value ±1 standard deviation, resulting in
σ(fτ+→3π±ντ ) =

+0.3%
−0.27% relative uncertainty.

Another source of uncertainties comes from the knowledge of the form factors in B0

→D∗−τ+ντ . Pseudo-experiments should be made varying the form factor parameters
R0(1), R1(1), R2(1) and ρ2.

Other τ decays may contribute to the signal, especially those with three or five charged
tracks in the final state, e.g.K+π−π+, K+K−π+, π+π−π+π0π0. They all have very small
branching fractions relative to the signal modes. We expect the systematic assigned in
the Run1 analysis, σother τ dec. = 1%, is still applicable in Run2.
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CHAPTER 8. SYSTEMATIC UNCERTAINTIES

The feeddown from B → D∗∗τντ is fixed in the final fit as fD∗∗τν = 11% as a midpoint
of the theoretically predicted range 5.5%-16.5%. The upper limit is known from pre-
liminary experimental results from the ongoing R(D∗∗) analysis [112] as 13.3%. Two
alternative fits are performed for the fixed B → D∗∗τντ fractions to 5.5% and 13.3%.
The relative differences with respect to the nominal value of 11% are taken as a sys-
tematic of σfD∗∗τν =+5.95%

−2.18%.

8.2 Background model uncertainties

The background model uncertainties stem from modelling of: the D+
s decay, double-

charm backgrounds and the combinatorial backgrounds.

The D+
s decay model uncertainties can be estimated by varying the weights of the D+

s

contributions according to the Gaussian distribution taking into account their uncer-
tainties. (Only central values are used in the template weights before the signal fit is
performed).

8.3 Uncertainties due to the selection

The particle Identity (PID) variables ProbNNpi and ProbNNk are used to select the
pions from D∗ and τ+ and to reject K− misidentified as π− in the τ+ →π+π−π+ system.
Their efficiencies for the given cut values are factors in the signal and normalisation
efficiencies. In the end, their ratio impacts the K(D∗) result.

The PID efficiencies are estimated from a data-driven method using the LHCb package
PIDCalib [96]. It uses a calibration sample of pions to measure their PID efficiencies
at the cut values required. The efficiency is parametrised by the phase-space region
of a given pion track. Hence efficiency calibration histograms are made. Next, the
MC samples of signal or normalisation, with all selection applied except the PID itself,
are used. The efficiency of each simulated pion is assigned, based on the phase-space
bin it populates, to the corresponding value from the calibration histogram. The total
efficiency for an event is computed as the product of the efficiencies for the tracks
considered.

This approach contributes to the systematic uncertainties in at least two ways:

• The granularity of the binning scheme

• Assumption that the PID efficiency is fully parametrisable by the binning variables
(e.g. track quality is ignored, but might impact the efficiency)
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8.4. TEMPLATE SAMPLES SIZE

8.4 Template samples size

The dominant systematic is due to the limited size of the templates used in the signal
fit. The signal fit templates, as discussed in the previous Chapter 7, are built mostly
from the MC samples. Therefore, their size, after the complete selection, impacts the
signal yield in the final fit, Nsig. The relative uncertainty on Nsig directly translates to
the one of R(D∗).

A usual procedure to estimate this uncertainty relies on bootstrapping the templates
and performing the signal fit to every thus obtained templates set. The bootstrapping in
most analyses comprises resampling with replacement individual events. In this project,
however, for all simulated templates full ReDecay blocks ideally would be resampled, as
discussed already in Section 4.2. Nonetheless, due to negligible bin-to-bin correlations
in ReDecay, event-based bootstrapping is expected to be a very good approximation of
the systematic uncertainty due to the templates size, and is used in the following.

The templates bootstrapping procedure can be summarised as:

1. Generate the nominal templates from MC or data (for combinatorial back-
grounds)

2. Resample with replacement events from the templates, resulting in new ones of
size Poisson(n), where n is the original template size

3. Fit the signal yield Nsig

4. Repeat the steps 2-3 N times and obtain the mean signal yield Nsig and its devia-
tion σbootstrap

5. Infer the relative uncertainty due to the templates size as σtempl. stat. =
σbootstrap
Nsig

Thanks to the multiplicative blinding scheme, both Nsig and its statistical uncertainty
σ are multiplied by the same factor, which vanishes in the relative uncertainty ratio
σ/Nsig.

Figure 8.1 shows the resulting distribution of Nsig. The resulting uncertainty due to
the limited size of the templates is, therefore, σtempl. stat. = 40.65/2047 = 1.99%. This is
a significant decrease with respect to the Run1 R(D∗) hadronic measurement, where
such uncertainty was equal 4.1%.
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Figure 8.1 – Distribution of number of signal events, Nsig, for 1000 fits performed to boot-
strapped templates.

8.5 Summary of systematic uncertainties

To summarise, a break-down of individual systematic uncertainties is reported in Ta-
ble 8.1, where the current total systematic uncertainty, computed by adding the individ-
ual ones in quadrature, is given. This total uncertainty is a preliminary lower boundary
and is expected to increase in the future updates of the analysis. Currently the largest
systematic is due to the knowledge of the feeddown from D∗∗τν to the signal mode.

Table 8.1 – Preliminary summary of relative systematic uncertainties to the R(D∗) ratio, ex-
pressed in [%]. See text for definitions of the contributions.

Quantity systematic uncertainty [%]
σtempl. stat. 2.0
fixing fD+ 1.70
fixing f v1−v2D0 1.86
σ(fD∗∗τν)

+5.95
−2.18

σother τ dec. ≈ 1
σ(fτ+→3π±ντ )

+0.30
−0.27

Total +6.84%
−4.02%
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Conclusions and prospects

The presented work describes the measurement of the R(D∗) ratio using the 2015-16
LHCb proton-proton collision dataset. The τ+ is reconstructed in the τ+ →π+π−π− (π0)
ντ modes.

The techniques used in this analysis improved the ones used in the previous, 2011-
2012, R(D∗) analysis at LHCb [1, 2]. The most important differences are: using the
ReDecay algorithm for fast simulation; implementing an MVA-based charged track iso-
lation and adding an anti-combinatorial background MVA.

Despite this project being constrained to the 2015-2016 datasets, a seamless continu-
ation with the 2017-2018 datasets (i.e. the remainder of the Run2) was ensured. This
was achieved by good software practises and following the reproducible research guide-
lines such as using a version control system and automating the analysis workflow.

The analysis is in a very advanced state, with a preliminary signal fit implemented and
the R(D∗) ratio measured. Almost a complete documentation of the analysis is reported
in this manuscript. Nonetheless, the signal fit needs to be improved and several sys-
tematic uncertainties have to be estimated. For this reason, the final result is blinded
by a multiplicative factor. Therefore, it cannot be yet compared with the other R(D∗)
measurements and their world average. However, the relative uncertainties are not
blinded. The statistical uncertainty on R(D∗) is tentatively estimated as 5.6%.

The author contributed mostly to: validating the new fast simulation algorithm “Re-
Decay”; implementing the selection, especially by tackling the charged track isolation
with an MVA and computing the efficiencies across all the steps; studying the particle
identity uncertainties; computing a systematic uncertainty due to the limited template
size; helping organise the aforementioned analysis workflow.

The analysis described in this thesis will undergo an LHCb review in the upcoming
months and will be sent for a publication afterwards. The measurement contributes
to the cutting edge tests of the Lepton Flavour Universality. The published result shall
update the current R(D∗) world average.

The planned efforts in resolving the Lepton Flavour Universality puzzle shall expand
in three ways: more decay channels considered; new observables measured; more
collision data analysed.
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Examples of R(X) ratios in other decay modes are, in b → cℓνℓ : R(D+), R(D0),
R(D−

s
(∗)
), R(Λ(∗)

c ); and in b→ uτν : R(Λ0
b → pτν), R(B → ppτν).

Apart from the ratios themselves, their spectra as a function of q2 and angular ob-
servables, such as the τ+ polarisation, already measured by Belle [36, 37], will help
constrain the spin-structure of the New Physics models [84, 85].

Last but not least, new datasets are going to be collected and analysed over the next
few years and decades. The remainder of the LHCb Run2 will bring further 3.9 fb−1

collision data, followed by a major detector upgrade, making it possible for LHCb to
record 4 fb−1 each year for a decade, starting in 2022. LHCb is expecting to improve the
precision of LFU observables by a factor of 3-4 by 2025 and by an order of magnitude
with a further 300 fb−1 envisaged after the Phase-II Upgrade to be started around 2030.
The Belle II experiment should bring an unprecedented data sample of 50 ab−1. The
large statistics of the collected data will enable to substantially decrease the systematic
uncertainties, by more stringent signal selection.

Apart from these experimental aspects, new lattice QCD computations of form factors
should help precisely estimate the Standard Model expected values of the LFU observ-
ables.

The upcoming years should reveal whether the New Physics contributions in the flavour
changing charged/neutral currents processes are genuine. In case of a positive answer,
we shall also discover which are these New Physics enhancements.
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Appendix A
PDG review

This is a summary of essential branching fractions, lifetimes, and masses, used through-
out the thesis. All the values come from the Particle Data Group Review [14].

Table A.1 – Selected branching fractions of the particles in the B0 → D∗−τ+ντ signal decay
chain. Highlighted are the modes chosen in this analysis allowing for good vertices reconstruc-
tion.

Particle Decay B[%]

D∗(2010)−
D∗(2010)− → D0π− 67.7± 0.5
D∗(2010)− → D−π0 30.7± 0.5
D∗(2010)− → D−γ 1.6± 0.4

D0 D0 → K+π− 3.950± 0.031

τ−

τ− →µ−νµντ 17.39± 0.04
τ− →e−νeντ 17.82± 0.04
τ− →π−π0ντ 25.49± 0.09
τ− →π−ντ 10.82± 0.05
τ− → π+π−π+ντ (excluding K0

S → π+π−) 9.02± 0.05
τ− → π+π−π+π0ντ (excluding K0

S → π+π−) 4.49± 0.05
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Table A.2 – Selected branching fractions of the particles relevant to the D+
s decay chain.

Particle Decay B[%]

D+
s

η X (29.9± 2.8)%
ηπ+ (1.68± 0.10)%
ηρ+ (8.9± 0.8)%
ηπ+π0 (9.5± 0.5)%

D+
s

η′ X (10.3± 1.4)%
η′π+ (3.94± 0.25)%
η′ρ+ (5.8± 1.5)%
η′π+π0 (5.6± 0.8)%

η′ ρ0 γ (incl. non-resonant π+π−) (29.5± 0.4)%
η′ π+π− η (42.5± 0.5)%
η π+π−π0 (22.92± 0.28)%
η π+π− γ (4.22± 0.08)%
ρ0 π+π− 100%
ρ+ π+π0 100%

Table A.3 – Mean lifetimes of the selected particles relevant to this analysis.

Particle Mean lifetime
B0 (1.519± 0.004)× 10−12 s
D+
s (5.05± 0.04)× 10−13 s

D+ (1.040± 0.007)× 10−12 s
D0 (4.101± 0.015)× 10−13 s
τ+ (2.903± 0.005)× 10−13 s

Table A.4 – Invariant masses of the selected particles relevant to this analysis.

Particle Invariant mass
B0 (5279.65± 0.12)MeV/c2

D∗− (2010.26± 0.05)MeV/c2

D+
s (1968.34± 0.07)MeV/c2

D+ (1869.65± 0.05)MeV/c2

D0 (1864.83± 0.05)MeV/c2

τ+ (1776.86± 0.12)MeV/c2
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Appendix B
Fast simulation

Adapted from D. Müller’s thesis (CERN-THESIS-2017-257).
Bootstrapping is the valid strategy for statistical uncertainty estimation and is adapted
for ReDecay as follows:

• Start with a sample of size n

• Make a pseudo-sample of n′ random entries from the original sample

– n′ is drawn randomly from a Poisson distribution with mean n

• Non-independence of ReDecay events requires sampling whole ‘blocks’

• Make many pseudo-samples and bin in histograms

• Take the mean nbs
i and standard deviation σbs

i of each bin i across all bootstrapped
histograms j to form the bootstrapped distribution with the following mean and
standard deviation per bin, and the bin-to-bin correlations:

nbs
i =

1

N

N∑
j

nji ; σbs
i =

√√√√ 1

N

N∑
j

(
nji − nbs

i

)2
corrbs

k,l =
1

σbs
k σ

bs
l

1

N

N∑
j

(
njk − nbs

k

) (
njl − nbs

l

)
.

(B.1)

(B.2)

ReDecay validation distributions are shown in the following.
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APPENDIX B. FAST SIMULATION
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Figure B.1 – Left: distributions for the 28k B0 → D∗−τ+ντ (τ+ → 3π±ντ ) mode events after
stripping; full simulation is in yellow and ReDecay in bars with uncertainty. Right: Bin-to-bin
correlation of η(B0).
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Figure B.2 – Left: distributions for the 28k B0 → D∗−τ+ντ (τ+ → 3π±ντ ) mode events after
stripping; full simulation is in yellow and ReDecay in bars with uncertainty. Right: Bin-to-bin
correlation of η(B0).
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Figure B.3 – Left: distributions for the 28k B0 → D∗−τ+ντ (τ+ → 3π±ντ ) mode events after
stripping; full simulation is in yellow and ReDecay in bars with uncertainty. Right: Bin-to-bin
correlation of η(B0).
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Appendix C
Selection efficiencies

Selection efficiencies are broken down in more detail in Table C.1.

Table C.1 – ’Offline’ selection absolute and cumulative efficiencies (in %) as a function of the
selection stage for the simulated bb→ D∗−3π±X, B0 → D∗−τ+ντ and B0 → D∗−3π± modes.
The cells group cuts into the selection stages, where each cell assumes all the cuts from the
previous stage have been applied.

Cut Absolute efficiencies Cumulative efficiencies
bb→ D∗−3π±X B0→ D∗−τ+ντ B0→ D∗−3π± bb→ D∗−3π±X B0→ D∗−τ+ντ B0→ D∗−3π±

3πντ 3ππ0ντ 3πντ 3ππ0ντ

Initial selection
L0 91.60± 0.01 89.51± 0.04 86.60± 0.07 89.08± 0.06 91.60± 0.01 89.51± 0.04 86.60± 0.07 89.08± 0.06
Hlt1 91.12± 0.01 89.76± 0.04 87.32± 0.07 90.92± 0.06 88.35± 0.01 87.14± 0.05 83.88± 0.08 88.02± 0.06
Hlt2 79.50± 0.02 79.90± 0.05 77.31± 0.09 90.33± 0.06 73.77± 0.02 73.25± 0.06 69.02± 0.10 85.10± 0.07

PV (D0) = PV (τ+) 69.88± 0.02 69.76± 0.06 65.73± 0.10 79.94± 0.08 69.88± 0.02 69.76± 0.06 65.73± 0.10 79.94± 0.08
totCandidates = 1 42.22± 0.02 60.89± 0.07 52.22± 0.11 71.97± 0.09 39.97± 0.02 58.06± 0.07 49.87± 0.11 67.75± 0.09
[vtxz(τ+)− vtxz(PV )]/error > 10 70.68± 0.02 71.66± 0.06 66.59± 0.10 78.60± 0.08 38.24± 0.02 57.01± 0.07 48.29± 0.11 62.64± 0.10
nSPDHits < 450 72.63± 0.02 72.24± 0.06 67.78± 0.10 83.97± 0.07 37.76± 0.02 56.37± 0.07 47.56± 0.11 61.99± 0.10

Signal selection
m(D∗−)−m(D0) ∈ [143, 148]MeV 92.04± 0.025 94.631± 0.044 93.98± 0.079 92.04± 0.025 94.631± 0.044 93.98± 0.079
m(K−π+) ∈ [1840, 1890]MeV/c2 96.804± 0.016 97.363± 0.031 97.387± 0.053 89.467± 0.028 92.276± 0.052 91.701± 0.091
m(3π) < 1825MeV/c2 69.204± 0.042 98.242± 0.026 98.772± 0.037 61.975± 0.044 90.734± 0.057 90.682± 0.096
m(B0) < 5350MeV/c2 71.093± 0.041 99.29± 0.016 99.031± 0.032 52.578± 0.045 90.463± 0.057 90.267± 0.098
q2 ∈ [0, 12]GeV2/c4 78.073± 0.038 97.52± 0.03 97.224± 0.054 49.047± 0.045 88.736± 0.062 88.53± 0.11
combinatorial BDTD > 0 65.427± 0.043 80.367± 0.077 76.71± 0.14 34.554± 0.043 74.723± 0.085 71.89± 0.15
[vtxz(τ+)− vtxz(B0)]/error > 2 77.028± 0.038 99.8126± 0.0084 99.775± 0.016 34.554± 0.043 74.723± 0.085 71.89± 0.15
isolation BDT > 0 55.935± 0.045 87.849± 0.064 83.86± 0.12 17.31± 0.034 67.415± 0.091 62.41± 0.16
anti D+

s BDT > −0.2 71.018± 0.041 98.296± 0.025 86.1± 0.11 13.925± 0.031 67.123± 0.092 54.87± 0.16
PID - 76.23± 0.20 78.86± 0.16 - - - - -

Normalisation selection
[vtxz(D0)− vtxz(τ+)]/error > 4 - - - 94.30± 0.08 - - - 94.30± 0.08
m(D∗3π±) ∈ [5150, 5400]MeV - - - 97.87± 0.05 - - - 93.32± 0.09
m(D∗−)−m(D0) ∈ [143, 148]MeV - - - 94.97± 0.08 - - - 89.04± 0.11
combinatorial BDTD > 0 - - - 81.37± 0.13 - - - 74.19± 0.15
isolation BDT > 0 - - - 88.33± 0.11 - - - 66.94± 0.16
PID - - - 73.96± 0.24 - - - -
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Appendix D
MC/data comparison

MC/data comparisons of the input variables to the MVA variables from the Chapter 5
are shown here.

161



APPENDIX D. MC/DATA COMPARISON

D.1 Combinatorial BDT

Dst_ETA

0

0.01

0.02

0.03

0.04

2 3 4 5

Dst_ETA

5−

0

5

Pu
ll Dst_PT

0

0.05

0.1

0.15

20000 40000 60000

Dst_PT

5−

0

5

Pu
ll

log_acos_abs_Dst_DIRA_ORIVX

0

0.02

0.04

0.06

10− 5− 0

log_acos_abs_Dst_DIRA_ORIVX

5−

0

5

Pu
ll log_acos_B0_DIRA_OWNPV

0

0.05

0.1

10− 5−

log_acos_B0_DIRA_OWNPV

5−

0

5

Pu
ll

log_acos_tau_DIRA_ORIVX

0

0.2

0.4

10− 5− 0

log_acos_tau_DIRA_ORIVX

5−

0

5

Pu
ll log_B0_ENDVERTEX_CHI2_nDF

0

0.05

0.1

5− 0 5

log_B0_ENDVERTEX_CHI2_nDF

5−

0

5

Pu
ll

Figure D.1 – Data (black points) / MC (coloured bins) comparison for the combinatorialBDTD
input variables.
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Figure D.2 – Data (black points) / MC (coloured bins) comparison for the combinatorialBDTD
input variables.
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D.2 Isolation BDT
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Figure D.3 – Data (black points) / MC (coloured bins) comparison for the charged isolation
input variables.
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Figure D.4 – Data (black points) / MC (coloured bins) comparison for the charged isolation
input variables.
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D.3 Detachment BDT
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Figure D.5 – Data (black points) / MC (coloured bins) comparison for the detachment_BDTG
input variables.
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D.4 Anti-D+
s BDT
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Figure D.6 – Data (black points) / MC (coloured bins) comparison of the anti-D+
s input variables

for the B →D∗−D0 X control mode. The MC sample is extracted from the inclusive bb →D∗−

3π± X with the B →D∗−D0 X control mode selection.
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Figure D.7 – Data (black points) / MC (coloured bins) comparison of the anti-D+
s input variables

for the B →D∗−D0 X control mode. The MC sample is extracted from the inclusive bb →D∗−

3π± X with the B →D∗−D0 X control mode selection.
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Figure D.8 – Data (black points) / MC (coloured bins) comparison of the anti-D+
s input variables

for the B →D∗−D0 X control mode. The MC sample is extracted from the inclusive bb →D∗−

3π± X with the B →D∗−D0 X control mode selection.
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Figure D.9 – Data (black points) / MC (coloured bins) comparison of the anti-D+
s input variables

for the B →D∗−D+ X control mode. The MC sample is extracted from the inclusive bb →D∗−

3π± X with the B →D∗−D+ X control mode selection.
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Figure D.10 – Data (black points) / MC (coloured bins) comparison of the anti-D+
s input

variables for the B →D∗−D+ X control mode. The MC sample is extracted from the inclusive
bb →D∗− 3π± X with the B →D∗−D+ X control mode selection.
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Figure D.11 – Data (black points) / MC (coloured bins) comparison of the anti-D+
s input

variables for the B →D∗−D+ X control mode. The MC sample is extracted from the inclusive
bb →D∗− 3π± X with the B →D∗−D+ X control mode selection.
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Appendix E
Correlation matrices of the signal
yield fits

Table E.1 – Correlation coefficients of the signal fit variables in the 2015-2016 collision data fit.

NDs NB→D∗−3π±X Nsig fBs→D∗DsX fD∗∗DsX fD+ f
D

′+
s1

fDs fD∗+
s0

f v1−v2D0

NDs 1.000 −0.209 −0.243 −0.499 0.572 −0.645 −0.037 −0.059 −0.184 −0.587
NB→D∗−3π±X −0.209 1.000 0.189 0.036 0.034 0.007 −0.015 −0.070 0.028 −0.237
Nsig −0.243 0.189 1.000 0.151 −0.145 0.311 −0.037 −0.013 0.098 0.317
fBs→D∗DsX −0.499 0.036 0.151 1.000 0.016 0.335 0.130 −0.028 0.016 0.436
fD∗∗DsX 0.572 0.034 −0.145 0.016 1.000 −0.475 0.216 0.089 −0.046 −0.457
fD+ −0.645 0.007 0.311 0.335 −0.475 1.000 0.037 0.058 0.141 0.166
f
D

′+
s1

−0.037 −0.015 −0.037 0.130 0.216 0.037 1.000 −0.211 0.371 0.011

fDs −0.059 −0.070 −0.013 −0.028 0.089 0.058 −0.211 1.000 0.213 0.070
fD∗+

s0
−0.184 0.028 0.098 0.016 −0.046 0.141 0.371 0.213 1.000 0.154

f v1−v2D0 −0.587 −0.237 0.317 0.436 −0.457 0.166 0.011 0.070 0.154 1.000

Table E.2 – Correlation coefficients of the signal fit variables with fixed fD+ and fv1−v2
D0 in the

2015-2016 collision data fit.

NDs NB→D∗−3π±X Nsig fBs→D∗DsX fD∗∗DsX f
D

′+
s1

fDs fD∗+
s0

NDs 1.000 −0.563 0.165 0.189 0.169 0.018 0.014 −0.049
NB→D∗−3π±X −0.563 1.000 0.284 −0.152 −0.072 0.015 −0.057 0.062
Nsig 0.165 0.284 1.000 0.073 0.147 0.055 −0.052 0.020
fBs→D∗DsX 0.189 −0.152 0.073 1.000 −0.475 0.135 0.083 0.098
fD∗∗DsX 0.169 −0.072 0.147 −0.475 1.000 −0.297 0.177 0.092
f
D

′+
s1

0.018 0.015 0.055 0.135 −0.297 1.000 0.214 −0.372

fDs 0.014 −0.057 −0.052 0.083 0.177 0.214 1.000 0.201
fD∗+

s0
−0.049 0.062 0.020 0.098 0.092 −0.372 0.201 1.000
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Table E.3 – Correlation coefficients of the signal fit variables in the 2015-2016 MC fit.

NDs NB→D∗−3π±X Nsig fBs→D∗DsX fD∗∗DsX fD+ f
D

′+
s1

fDs fD∗+
s0

f v1−v2D0

NDs 1.000 −0.228 0.055 0.526 −0.508 −0.658 0.031 −0.049 −0.141 −0.485
NB→D∗−3π±X −0.228 1.000 −0.189 −0.002 −0.030 0.046 −0.010 −0.075 0.040 −0.197
Nsig 0.055 −0.189 1.000 0.149 −0.060 −0.226 0.076 0.021 −0.061 −0.263
fBs→D∗DsX 0.526 −0.002 0.149 1.000 0.009 −0.415 −0.065 0.011 −0.008 −0.457
fD∗∗DsX −0.508 −0.030 −0.060 0.009 1.000 0.414 −0.274 −0.104 0.002 0.393
fD+ −0.658 0.046 −0.226 −0.415 0.414 1.000 −0.031 0.042 0.112 0.078
f
D

′+
s1

0.031 −0.010 0.076 −0.065 −0.274 −0.031 1.000 −0.239 0.323 −0.055

fDs −0.049 −0.075 0.021 0.011 −0.104 0.042 −0.239 1.000 0.220 0.066
fD∗+

s0
−0.141 0.040 −0.061 −0.008 0.002 0.112 0.323 0.220 1.000 0.110

f v1−v2D0 −0.485 −0.197 −0.263 −0.457 0.393 0.078 −0.055 0.066 0.110 1.000
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Appendix F
The Monte Carlo pseudo-experiment
studies

In this section all distributions of the pseudo-experiment Monte Carlo studies for the
signal fit parameters (cf. Section 7.1.3) are shown.
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Figure F.1 – Distribution of the relative difference of the fitted and nominal yields (left) and of
the pull from a toy study with 1000 generated events.
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Figure F.2 – Distribution of the relative difference of the fitted and nominal yields (left) and of
the pull (right) from a toy study with 1000 generated events.
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Figure F.3 – Distribution of the relative difference of the fitted and nominal yields (left) and of
the pull (right) from a toy study with 1000 generated events.
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