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Abstract

The �eld of complex systems is a broad scienti�c area which spans across di�erent disciplines, such
as mathematics, physics, chemistry, biology, medicine, engineering and many others. One of their
most typical traits is the presence of di�erent interacting components which may exhibit individually
regular or chaotic (unpredictable but not random) behaviour. Such type of interactions may result
in phenomena whose evolution is not trivial (i.e. complex) to predict, even when the underlying
mechanisms happen to be deterministic. This complexity arises from the type of interactions, one
of, which is the nonlinear terms in the dynamical equations of the models which are able to better
approximate observable data. Nonlinear dynamical systems provide with theoretical concepts and
tools for the analysis of a large variety of problems. For example, the investigation of systems where the
motion can be chaotic, pattern formation, synchronization phenomena. Nonlinear dynamical systems
are typically divided into conservative and dissipative according to whether or not the total energy
of the system or some other relevant quantity is conserved. One example of a powerful tool, from
this �eld with many applications in di�erent systems, is the so-called bifurcation analysis. Such an
analysis provides an underlying theoretical explanation and model-based prediction of the qualitative
variables' time evolution (periodic, quasi-periodic or chaotic) according to given model parameters
(�xed or time-dependent). However, when aiming to model systems with di�erent components and
study their long term evolution, things become more di�cult and complex. Their interplay often gives
rise to phenomena that can not be predicted simply by the dynamics of each component separately, its
initial conditions and parameters, even when that is well understood. Hence, the emerging dynamics
of the whole ensemble can be very di�erent. Examples and applications of such systems can be
found in dynamical astronomy, quantum mechanics, brain dynamics and elsewhere. This habilitation
thesis aims to summarize a collection of recent results which span along these three research �eld
areas. Namely, results in (i) quantum chaotic systems, anomalous transport and localization of
quantal eigenfunctions, (ii) classical chaotic systems with application in galactic dynamics and (iii)
brain dynamics and synchronization phenomena with applications in medical treatments of certain
diseases. In each respective subject, di�erent questions and problems are posed as well as adequate
tools for tackling them, which originate from the �eld of nonlinear dynamical systems.
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Résumé

Le domaine des systèmes complexes est un vaste domaine scienti�que qui couvre di�érentes disciplines,
telles que les mathématiques, la physique, la chimie, la biologie, la médecine, l'ingénierie et bien
d'autres. L'un de leurs traits les plus typiques est la présence de di�érents composants en interaction
qui peuvent présenter un comportement individuellement régulier ou chaotique (imprévisible mais
pas aléatoire). Un tel type d'interactions peut aboutir à des phénomènes dont l'évolution n'est
pas triviale (donc �complexe") à prédire, même lorsque les mécanismes sous-jacents se trouvent être
déterministes. Cette complexité émerge du type d'interactions, comme c'est le cas des termes non
linéaires dans les équations dynamiques des modèles qui sont capables de mieux approcher les données
observables. Les systèmes dynamiques non linéaires fournissent des concepts et des outils théoriques
pour l'analyse d'une grande variété de problèmes tels que l'étude de systèmes où le mouvement
peut être chaotique (imprévisible mais non aléatoire), la formation de motifs et les phénomènes de
synchronisation. Les systèmes dynamiques non linéaires sont soit conservatifs soit dissipatifs, selon
que l'énergie totale du système ou une autre quantité pertinente est conservée ou non. Un exemple
d'outil puissant, issu de ce domaine avec de nombreuses applications dans di�érents systèmes, est
l'analyse dite de bifurcation. Une telle analyse fournit une explication théorique sous-jacente et une
prédiction basée sur un modèle de l'évolution temporelle des variables qualitatives (périodique, quasi-
périodique ou chaotique) selon les paramètres des modèles donnés (�xes ou dépendants du temps).
Cependant, lorsqu'on cherche à modéliser des systèmes avec di�érents composants et à étudier leur
évolution à long terme, les choses deviennent plus di�ciles et complexes. Leurs interactions donnent
souvent lieu à des phénomènes qui ne peuvent être prédits simplement par la dynamique de chaque
composant séparément, ni par ses conditions initiales et ses paramètres, même si cela est bien compris.
Par conséquent, la dynamique émergente de l'ensemble peut être très di�érente. Des exemples et
des applications de tels systèmes peuvent être trouvés dans l'astronomie dynamique, la mécanique
quantique, la dynamique cérébrale et ailleurs. Cette thèse d'habilitation vise à résumer un ensemble de
résultats récents qui couvrent ces trois domaines de recherche. À savoir, il en résulte (i) des systèmes
chaotiques quantiques, un transport anormal et une localisation de fonctions propres quantiques, (ii)
des systèmes chaotiques classiques avec application dans la dynamique galactique et (iii) la dynamique
cérébrale et des phénomènes de synchronisation avec des applications dans les traitements médicaux
de certaines maladies. Pour chacun de ces sujets, di�érentes questions et problèmes sont posés. Pour
les aborder, des outils adéquats issus du domaine des systèmes dynamiques non linéaires sont utilisés.



viii



ix

General introduction

Nonlinear Dynamical Systems and complexity

The theoretical background and framework of dynamical systems have been and still are broadly
used on a large spectrum of research areas. Applications of dynamical systems, employing di�erential
equations, are found in mathematics, physics, chemistry, engineering, economics, sociology, medicine
etc. Dynamical systems are divided into two main categories, linear and nonlinear according to the
underlying process one aims to describe. Linear dynamical systems are to a large extent simpler, well
understood and have limited applications. A plethora of phenomena in nature are better and more
accurately described by employing nonlinear terms in our models. Such deterministic systems are
able to generate complex and often counterintuitive variables' time evolution, like for example chaotic
motion (unpredictable but not random). Dynamical systems together with other research �elds such
as network dynamics, pattern formation, game theory, collective behavior and others, can help us to
model and better understand complex interactions in nature and self-organization phenomena, i.e.
the so-called complex systems [Vemuri 1978].

Nonlinear dynamical systems can be further divided into conservative (Hamiltonian) and dissipa-
tive. For the former, the type of evolution (qualitatively) is associated with the number of conserved
quantities (e.g. total energy, angular momentum etc.) and the degrees of freedom, while for the
latter one can use dissipative quantities (e.g. Lyapunov functions). Furthermore, the bifurcation
analysis provides an underlying theoretical explanation and model-based prediction of the qualita-
tive variables' time evolution (periodic, quasi-periodic or chaotic) according to given model (�xed or
time-dependent) parameters [Strogatz 2000].

This habilitation thesis aims to summarize a collection of recent results which span along three
quite (at a quick �rst glance) di�erent and fascinating research �eld areas. Nevertheless, there are
many links among them when one models their evolution and collective behavior using concepts and
properties from nonlinear dynamical systems theory. Hence, we present here results in (i) quantum
chaotic systems, anomalous transport and localization of quantal eigenfunctions, (ii) classical chaotic
systems with applications in galactic dynamics and (iii) brain dynamics and synchronization phenom-
ena with applications in medical treatments of certain diseases. Evidently, in each respective subject,
di�erent questions and problems are posed, as well as di�erent tools for tackling them.

Setting as a starting point the classical dynamical systems, there is a well-developed framework
for the description of di�erent natural phenomena, i.e. their evolutionary mechanisms, their potential
sensitivity to initial conditions, the transition from one state to another (often associated with some
model parameter, e.g. bifurcations), potential model limitations etc. Stellar dynamics is one example
where physical models are used for the description of stars' motion (e.g. in galaxies), tested for
supporting su�ciently well observed complex structural patterns as well their stability and much more.
When switching to the study of quantum systems there are evidently major di�erences compared
to classical systems in many aspects. Yet, they are related to each other. For example, several
properties observed in quantum (chaotic) systems, such as localization of eigenfunctions and kinetic
energy di�usion, are directly associated with their classical corresponding model, at least up to certain
time scales. In this framework, understanding the classical models can help in the better description
and prediction of the quantum ones. In brain dynamics, and when setting out to model collective
(e.g. electrical) activity and dynamics of networks, composed either by point neurons (micro-scale)



x

or mean activity of larger areas (meso/macro scale), systems of nonlinear ordinary (and partial)
di�erential equations also provide an adequate tool. There is a large spectrum of mathematical
models which are constructed and actively (re-)validated by (new) empirical data for the description
for di�erent (from a physiological point of view) neuron populations whose distinct spiking patterns
a�ect their collective (healthy or abnormal) activity. The latter is often quanti�ed by the concept of
the so-called synchronization which, roughly speaking, measures the degree of the relative rhythmic or
repetitive patterns of neural activity. Switching from one rhythmic state to another can be modeled
via parameter changes of the model, associated to attractors in the phase space, bifurcations and
network analysis.

In this thesis, several concepts of chaos in classical systems are also mentioned and used in
the quantum ones, hence, we opt to list the chapter order as follows: in Chapter 1, we start
with the discussion classical chaos in astrophysics, then, in Chapter 2, we discuss a few re-
cent �ndings on quantum chaos, transport and localization and �nally in Chapter 3 we focus on
neural (de-)synchronization phenomena in the human brain related to healthy vs pathological activity.

Classical Chaos in Astrophysics

The main concepts of classical chaos lie on the so-called sensitivity to initial conditions in low�
dimensional systems and their origins go back to Henri Poincaré, the 3�body problem, the fact that
it is not integrable and the coexistence of quasi-periodic and chaotic dynamics in such Hamiltonian
systems. In addition the basic de�ning property of deterministic chaos, i.e. the divergence of initially
nearby phase space trajectories, is quanti�ed by the positivity of the largest Lyapunov exponent
[Lichtenberg and Lieberman 1992]. In astrophysics, one employs nonlinear dynamical systems to
model astronomical systems, e.g. celestial bodies, planetary satellites, pulsating stars, and their
evolution. To this end, one may consider the gravitational N�body problem (GNBP), in order to
model planetary systems, star clusters of various richness, galaxies and galaxy clusters and super�
clusters (clusters of clusters). In this framework all types of interactions, except the gravitational one,
are not taken into account, as the body distances are much larger than their typical sizes and thereby
are not a�ecting their dynamics. A special case of the GNBP, is the N = 2 case which is equivalent
to the one�body (Kepler) problem. In such models, the body evolution is determined only by their
gravitational self-interactions and the relative motion and patterns are self-organized. An alternative
approach to the GNBP, is the use of Hamiltonian systems, namely dynamical systems that follow
Hamilton's equations with conservation properties linked to symmetries of the Hamiltonian function
which describes the system and its phase space (periodic, quasi-periodic and chaotic) dynamics. The
Hénon & Heiles model [Hénon and Heiles 1964] is considered one of the �rst such Hamiltonian systems,
exhibiting deterministic chaos which considers point mass stars in a mean �eld model approximation
of an axially symmetric galaxy.

Orbits of stars are the fundamental building blocks of any galactic structure and their properties
give important insight for understanding the formation and evolution of such structures [Binney and
Tremaine 2008]. Our understanding relies signi�cantly on the adequacy and e�ciency of the models
used either in the time-dependent (TD) self-consistent models or in the rather `simpler' analytical
time-independent (TI) ones. It is by now well accepted that the chaotic or regular nature of orbits
in�uences the general stability of the N -body simulations, which is straightforwardly related to the
underlying dynamics. Therefore, studying the general stability and the detailed structure of the
phase (but also of the con�guration) space of analytical models can be proven to be very useful,
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provided that the gravitational potentials are realistic in terms of representing density distribution
pro�les close to those derived by simulations. In this Chapter, we summarize some recent results
on TD analytical models, their, in general, good agreement with N -body simulations, the presence
and evolution of periodic orbits associated with the main galaxy features like the barred shape, the
distribution of regular and chaotic motion in the phase as well as con�guration space.

Quantum Chaos, Di�usion and Localization

Quantum chaos or wave chaos is a more recent branch of chaotic dynamical systems and its main
goal is to study the properties of quantum systems which, in their classical limit, exhibit classical
(deterministic) chaotic dynamics [Stöckmann 1999; Haake 2001]. Applications of quantum chaos
can be found in many areas, such as nuclear, atomic and molecular physics, quantum transport,
mesoscopic solid-state systems, wave propagation, acoustics, quantum computers etc.

With the term quantum motion, one refers to the time evolution of the wavefunctions. Even
though quantum motion of bound systems with purely discrete energy spectrum is ultimately (after
su�ciently long time) stable and regular (almost periodic), it exhibits many features of the classical
motion such as for example di�usion in a chaotic domain, for time up to the Heisenberg time. The
Heisenberg time, also called break time, is an important time scale in any quantum system, and
is given by tH = 2π~/∆E, where h = 2π~ is the Planck constant and ∆E is the mean energy
level spacing, such that the mean energy level density is ρ(E) = 1/∆E. For time shorter than
approximately tH the quantum di�usion follows the classical chaotic di�usion, but is stopped at
larger times, just due to the interference phenomena (similar to Anderson localization occurring for
particles in disordered solids). Pictorially speaking, for time up to tH the quantum system behaves
as if its evolution operator has a continuous spectrum, like the classical one has in the chaotic
regime, but at later times it senses the discreteness of the spectrum. If the quantum di�usion stops,
while the classical chaotic di�usion continues, we speak about the dynamical localization, or quantum
localization or Chirikov localization, �rst observed in time-dependent systems [Casati, Chirikov, et al.
1979]. The problem of quantum or dynamical localization is related to the Anderson localization
model, within the framework of the tight-binding approximation, with hopping transitions between
the nearest neighbors [Fishman, Grempel, and Prange 1982]. We here summarize some recent results
on dynamical localization in time-dependent periodic (Floquet) systems and di�usion properties,
exempli�ed by the quantum kicked rotator.

Modeling Neurons and the Dynamics of the Brain

Biological systems is another �eld where nonlinear dynamical systems have also been used for the
description and understanding of complex collective activity. One of the most important applications
is in the dynamics of nerve membranes via the so-called action potential. Such a biological activity
resembles the one used for the dynamics of electric circuits and ideas from the �eld of nonlinear
dynamical systems are also used here, associating the type of activity of individual cells/neurons or
the interaction as ensembles (networks) with bifurcations of certain parameters resulting in periodic,
quasi-periodic or chaotic activity.

Alan Hodgkin and Andrew Huxley pioneered the �eld of dynamical neuroscience when in 1952
introduced a mathematical model of nonlinear di�erential equations to describe and explain the
mechanisms of the electrophysiological activity of squid giant axons (i.e. nerve membranes), based
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on their experimental data. When a squid giant axon is not sending any signal is said to be at
rest. One can modulate the dynamical activity of such nerve by modifying external ionic (such as the
calcium) concentrations around the axon and induce self-sustained oscillations [Huxley 1959; Hodgkin
and Huxley 1952], a state at which the nerve membrane acts as a neural oscillator. Linking these
behaviors to dynamical systems' terminology, the resting state corresponds to a stable equilibrium
point while the oscillatory to a stable limit cycle. Non-periodic (chaotic) oscillations can also be
observed [Izhikevich 2007]. Transitions from one state to another take place via bifurcations associated
to model parameters and/or external electrical input.

When aiming to understand the collective behavior of neural systems (ensembles of neurons), be-
sides the individual's neuron activity pattern, the concept of synchronization becomes rather relevant.
Namely, the adjustment of rhythmic activity of self-sustained periodic (neural) oscillators due to the
type of (network) connectivity and interaction they have which, in a more physiologically realistic
description, can be time dependent (plasticity). Such a collective activity is usually associated to the
dynamics of the neurons' phases (neurons can be modeled as oscillators), their relative phase di�er-
ence which may result to phase locking, frequency entrainment or asynchronous activity [A. Pikovsky,
Rosenblum, and Jürgen Kurths 2003; Strogatz 2003].

Neuronal synchronization processes are relevant under normal as well as abnormal conditions. A
number of brain disorders are associated with abnormal neuronal synchrony, for example Parkinson's
disease (see e.g. [Hammond, Bergman, and Brown 2007]), tinnitus (see e.g. [Elgoyhen et al.
2015]) and epilepsy (see e.g. [Wong, Traub, and Miles 1986]). To speci�cally counteract abnormal
neuronal synchrony and, hence, related symptoms, a number of invasive and non-invasive techniques
have been developed over the last years. Coordinated Reset (CR) stimulation is a rather recent
protocol which employs basic plasticity and dynamic self-organization principles of the nervous
system. Its fundamental goal is to induce long-lasting desynchronizing e�ects that persist cessation
of stimulation. The latter are key to reducing side e�ects of invasive therapies such as the standard
high-frequency (> 100 Hz) deep brain stimulation [Deuschl et al. 2006] which has only acute clinical
and electrophysiological e�ects, present only during stimulation as well as a number of adverse
events, such gait disturbances and speech problems. We here summarize some recent results on
e�cient and optimized CR stimulation signal patterns which induce long-lasting desynchronization
of abnormal activity that may occur in Parkinson's disease and tinnitus.

The thesis consists of three Chapters based largely on published papers. Each Chapter is dedicated to
one of the above described topics with a separate and extensive introduction of the topic's background
and general concepts, the models' presentation, a few representative results from the related published
papers and a summary accompanied with perspectives for future investigation. Each Chapter is self-
contained in order to give the reader a good overview of the published work in the respective eleven
papers listed in the �List of publications" section. All journals gave permission to use these papers in
their published versions and to be inserted after each respective Chapter. However, that choice would
substantially increase the thesis' size, and for this reason we opted for a more dense and concise
style, still enabling an independent reading. A collection of all the aforementioned papers can be
found either on the respective online journals' web-pages or alternatively on my personal web-page:
https://sites.google.com/site/thanosmanos/Publications. At the end of the thesis one can �nd the
full bibliography for all chapters.

https://sites.google.com/site/thanosmanos/Publications
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Chapter 1

Classical chaos in astrophysics

1.1 Background and introduction

Orbits of starts are generally regarded as the backbone of structure in galaxies. Exploring orbital
properties in general � and in particular the evolution of their dynamical stability � is a fundamental
aspect in improving our understanding of galactic structures as a whole [Binney and Tremaine 2008].
Our ability to explore the details of orbital stability in galaxies depends considerably on the adequacy
of analytical models, which can be time-independent (TI) or time-dependent (TD). Studying the
stability and the phase space structure via analytical models (see e.g. [Manos and Athanassoula
2011]) has proven to be quite useful (for a review, see [Contopoulos 2002]), as long as those potentials
are realistic, in the sense of adequately representing the density distributions of real galaxies. It is well
accepted that the chaotic or regular nature of orbits in�uences the general stability of the N -body
simulations, which is straightforwardly related to the underlying dynamics (self-consistent, i.e. the
motions are caused from the forces generated by the masses themselves). Hence, studying the general
stability and the detailed structure of the phase and con�guration space of analytical models can be
proven to be very useful, provided that these potentials are realistic in terms of representing density
distribution pro�les close to those derived by simulations or extracted from observational data.

The general nature of an orbit, in conservative (Hamiltonian) TI-systems, can only be one of the
following: periodic (stable or unstable), quasi-periodic or chaotic [Lichtenberg and Lieberman 1992].
Nevertheless, there are cases where chaos can be characterized as weak, suggesting that orbits spend a
signi�cant fraction of their time in con�ned regimes and do not �ll up phase space as `homogeneously'
as the strongly chaotic ones. In these cases, the di�erent rate of di�usion in the phase space plays an
important role, associating for example the weak chaotic motions with barred or spiral galaxy features,
giving rise to a number of interesting results, see e.g. [Athanassoula, Romero-Gómez, Bosma, et al.
2009; Athanassoula, Romero-Gómez, and Masdemont 2009; Athanassoula, Romero-Gómez, Bosma,
et al. 2010; Harsoula and Kalapotharakos 2009; Harsoula, Kalapotharakos, and Contopoulos 2011a;
Harsoula, Kalapotharakos, and Contopoulos 2011b; Contopoulos and Harsoula 2013; Kaufmann and
Contopoulos 1996; Patsis, Athanassoula, and Quillen 1997; Patsis 2006; Romero-Gómez, Masdemont,
et al. 2006; Romero-Gómez, Athanassoula, et al. 2007; T. Bountis, Manos, and C. Antonopoulos
2012]. There are also several results in the recent literature showing that strong local instability
does not necessarily imply widespread di�usion in phase space [Cachucho, Cincotta, and Ferraz-Mello
2010; Giordano and Cincotta 2004]. In [Contopoulos and Harsoula 2008; Contopoulos and Harsoula
2010] `stickiness' was studied thoroughly in 2-degrees of freedom (d.o.f.) while in [Katsanikas, Patsis,
and Pinotsis 2011; Katsanikas and Patsis 2011; Katsanikas, Patsis, and Contopoulos 2011] and in
[Manos, C. Skokos, and C. Antonopoulos 2012] the role of `sticky' chaotic orbits and the di�usive
behavior, in the neighborhood of invariant tori surrounding periodic solutions of the Hamiltonian in
the vicinity of periodic orbits in conservative systems, was also studied.
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Lyapunov exponents (see e.g. [C. Skokos 2010] for a review and references therein) have been
extensively used for the detection of chaotic motion in several di�erent models. However, there are
often disadvantages which hinder their use, for example their slow convergence. Several approaches
exist to detect and quantify chaos, whose di�erences and e�cacy have been thoroughly compared and
discussed in the recent literature (see [Contopoulos 2002; Ma�one et al. 2011; Ma�one et al. 2013]
and references therein). In [Ch. Skokos, Gottwald, and Laskar 2016] the reader may �nd a special
volume with a more complete and recent review of the several broadly used chaos detection methods
and their predictability as well as all the relevant references regarding their theoretical background,
numerical implementation and applications in various models. We use the Generalized Alignment
Index (GALI) method [C. Skokos, T. C. Bountis, and C. Antonopoulos 2007; Manos, T. Bountis,
and C. Skokos 2013; C. Skokos and Manos 2016]. In [Manos, T. Bountis, and C. Skokos 2013], a
study was carried out focusing on the dynamics of a barred galaxy model containing a disc and
a bulge component. Considering a TD analytical model � extending a TI one [Manos, C. Skokos,
Athanassoula, et al. 2008; Manos and Athanassoula 2011; T. Bountis, Manos, and C. Antonopoulos
2012] � whose mass parameters of the bar and disc potential vary linearly as functions of time (the one
at expense of the other). Two very general conceivable cases in barred galaxies were analyzed: (a) a
model where the mass of bar grows, considering a common trend found in N -body simulations due to
the exchange of angular momentum (see e.g. [Athanassoula and Misiriotis 2002; Athanassoula 2003])
and (b) a case where the bar gets weaker by losing mass (see e.g. [Combes 2008a; Combes 2008b]).
There, a reliable way of using the GALI chaos detection method was used for estimating the relative
fraction of chaotic vs. regular orbits in such TD potentials. We stress here that in the TD models,
individual trajectories may display sudden transitions from regular to chaotic behavior and vice versa
during their time evolution and in general the `sticky' behaviour, as discussed in the literature, is less
pronounced. This is also the typical case in the N -body simulations where, generally speaking, the
motion may also be either: (i) regular throughout the whole evolution, (ii) chaotic throughout the
whole evolution, (iii) alternate between chaotic and regular motion with simultaneously orbital shape
change (but not necessarily), e.g. from disc to bar like, etc.

Regarding the galaxies' evolution and formation of their several features, it is generally accepted
that the most appropriate way to study them is by analyzingN -body simulations. The self-consistency
of the models in this approach captures much better several details of the general dynamics. The di-
rect application of chaos detection methods to individual orbits is still a rather di�cult task while, for
a large ensemble of particles, it is even harder if not unfeasible. To overcome this obstacle, mean �eld
potentials have been used in the literature in order to study in more detail the dynamical properties
of a speci�c N -body simulation. These potentials are referred to as `frozen' are TI and are derived
at speci�c snapshots of the simulations. Hence, one can apply chaos detection tools to the mean
�eld potential instead of the N -body simulation. For example, [Muzzio, Carpintero, and Wachlin
2005] used an elliptical galaxy simulation (no bar or halo) without dissipation which collapses and
eventually reaches an equilibrium state. Then, by taking a quadrupolar expansion of the frozen snap-
shot, they derive a stationary smooth potential. In [Voglis, Stavropoulos, and Kalapotharakos 2006]
and references therein, the authors deal with disc galaxies, focusing mainly on the spiral structures
rather than bars (no halo) while the extraction of the mean �eld potential is again performed in
a similar manner. Following this approach, the role of chaotic motion and di�usion rate in barred
spiral galaxies has also been studied [Harsoula and Kalapotharakos 2009; Harsoula, Kalapotharakos,
and Contopoulos 2011a; Harsoula, Kalapotharakos, and Contopoulos 2011b; Ma�one et al. 2013;
Contopoulos and Harsoula 2013] while some applications to the Milky Way bar can be found in [Y.
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Wang et al. 2012] and recently a new code for orbit analysis and Schwarzschild modelling of triaxial
stellar systems was given in [Vasiliev 2013]. Nevertheless, following this approach one only derives a
stationary mean �eld model for an equilibrium state of the simulation under study. Furthermore, it
does not incorporate an appropriate type set of parameters that would be able to describe and repro-
duce the time-dependencies in axis ratios, masses, pattern speed, etc. of the several components of a
model, like for example the growth of the bar component or the evolution of the disc in time. Let us
point out here, the fact that in all these approaches the orbits under study can be only either regular
or chaotic. The latter ones may be further distinguished to strongly or weakly chaotic, depending on
their di�usion properties, sticky e�ects etc... during the whole evolution.

We here consider an N -body simulation of a disc galaxy embedded in a live halo (i.e. both the
stellar disc and the dark matter halo are represented by responsive particles). Disc-halo interaction
leads to the formation of a strong bar. We then measure how the galaxy components vary in time
during the simulation. The time evolution of the structural parameters is provided as input to the
analytical TD model we build. This `candidate' analytical mean �eld potential is meant to mimic
the N -body simulation evolution and more importantly to generate orbits with more similar (and
in some sense `richer') morphological behaviour to those of the N -body simulation, i.e., permitting
for individual orbits the interplay between regular and chaotic epochs as time evolves and providing
a stable structure at the same time. Note that, in TI frozen models an orbit cannot convert from
chaotic to regular. Our TD model is composed of three components (bar, disc and halo) whose
parameters were �tted with the N -body measurements, via the rotation curves. Note that many
simplifying assumptions are made. For example, our TD model considers an (ellipsoidal) analytical
bar component which is not always an excellent approximation of the shape of the actual N -body
bar. Likewise, the analytical description of the halo and the disc cannot be expected to behave
identically, either. However, our goal is to study the general dynamical impact in stability caused by
the bar's growth in time (as it happens in the N -body simulation). Thus, by using a realistic TD
model, without aiming to describe of the exact detailed dynamics yielding from the simulation, we
can use chaos detection tools and quantify general trends of the fraction of regular and chaotic orbits
in the phase and con�guration space. Keeping this in mind, we draw (disc) initial conditions directly
from the simulation and we evolve them in time with the mean �eld TD potential.

1.2 The N−body and time-dependent analytical models

The N−body simulation

To serve as the base reference for the analytical model, we use one of the simulations described in
[Machado and Athanassoula 2010]. For simplicity, we select initial conditions with a spherical halo.
The mass of the stellar disc is Md = 5× 1010 M⊙, with an exponential density pro�le of radial scale
length Rd = 3.5 kpc, and vertical scale height z0 = 0.7 kpc:

ρd(R, z) =
Md

4πz0R2
d

exp

(
− R

Rd

)
sech2

(
z

z0

)
, (1.1)

The spherical dark matter halo has a [Hernquist 1993] density pro�le and it is �ve times more
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massive than the disc:

ρh(r) =
Mh

2π3/2
α

rc

exp (−r2/r2c )
r2 + γ′2

, (1.2)

where Mh = 2.5× 1011 M⊙ is the mass of the halo, γ′ = 1.7 kpc is a core radius and rc = 35 kpc is a
cuto� radius. The normalisation constant α is de�ned by

α = {1−
√
πq exp (q2)[1− erf(q)]}−1 (1.3)

where q = γ′/rc. For additional details on the initial conditions, see [Machado and Athanassoula
2010].

This is a fairly representative collisionless simulation of a strongly barred galaxy. Four snapshots
of the disc particles are displayed in the upper row of Fig. 1.1. It was performed with the N -body
code gyrfalcon [Dehnen 2000; Dehnen 2002] using a total of 1.2 million equal-mass particles, with
a gravitational softening length of 0.175 kpc, resulting in 0.1 per cent energy conservation. The
simulation was carried out for approximately one Hubble time.

N -body simulations have been employed to study chaotic motion in simpli�ed models of disc
galaxies. For example, [Voglis, Stavropoulos, and Kalapotharakos 2006] study chaos and spiral
structure in rotating disc galaxies, but those galaxies are not embedded in dark matter haloes.
The connection between chaos and bars was also analysed by [El-Zant and Shlosman 2002], with
models were set up by the addition of disc, bar and halo components. They found that in centrally
concentrated models, even a mildly triaxial halo lead to the onset of chaos and the dissolution of the
bar in a timescale shorter than the Hubble time.

The time-dependent analytical model

We construct an analytical model that is described by its total gravitational potential
V = VB(t) + VD(t) + VH(t), where the three components correspond to the potentials of the bar,
disc, and halo, respectively. These components will evolve in time, in accordance with the behaviour
we measure from the simulation (see [Manos and Machado 2014] for a detailed motivation and justi-
�cation).

(i) A triaxial Ferrers bar [Ferrers 1877], whose density is given by:

ρ(x, y, z) =

{
ρc(1−m2)2 if m < 1,

0 if m ≥ 1,
(1.4)

where ρc = 105
32π

GMB(t)
abc is the central density, MB(t) is the mass of the bar, which changes in

time, and m2 = x2

a2
+ y2

b2
+ z2

c2
, a > b > c > 0, with a, b and c being the semi-axes of the ellipsoidal

bar. The corresponding bar potential is:

VB(t) = −πGabcρc
3

∫ ∞

λ

du

∆(u)
(1−m2(u))3, (1.5)

where G is the gravitational constant (set to unity), m2(u) = x2

a2+u
+ y2

b2+u
+ z2

c2+u
, ∆2(u) =

(a2 + u)(b2 + u)(c2 + u), and λ is the unique positive solution of m2(λ) = 1, outside of the bar
(m ≥ 1), while λ = 0 inside the bar. The analytical expression of the corresponding forces are
given in [Pfenniger 1984]. In our model, the shape parameters (i.e. the lengths of the ellipsoid
axes a, b and c are) are also functions of time.
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(ii) A disc, represented by the Miyamoto�Nagai potential [Miyamoto and Nagai 1975]:

VD(t) = − GMD(t)√
x2 + y2 + (A+

√
z2 +B2)2

, (1.6)

where A and B are its horizontal and vertical scale-lengths, and MD(t) is the mass of the disc.
Here, `disc mass', refers to the stellar mass excluding the bar. As the bar grows, its mass
increases at the expense of the remainder of the disc mass, such that the total stellar mass is
constant: MB(t) +MD(t) = 5× 1010 M⊙. The parameters A and B are also functions of time.

(iii) A spherical dark matter halo, represented by a Dehnen potential [Dehnen 1993]:

VH(t) =
GMH

aH
×

 − 1
2−γ

[
1−

(
r

r+aH

)2−γ
]

, γ 6= 2,

ln r
r+aH

, γ = 2.
(1.7)

MH is the halo mass, aH is a scale radius and the dimensionless parameter γ (within 0 ≤ γ < 3)
governs the inner slope. The halo mass is constant throughout, but the parameters aH and γ
are functions of time. For γ < 2 its �nite central value is equal to (2− γ)−1GMH/aH .

Instead of attempting to use the (disc and halo) pro�les from the N -body simulations, we opted
to represent the bar, disc and halo using respectively the Ferrers, Miyamoto�Nagai and Dehnen
pro�les. There are two reasons for such a choice. First, our approach requires analytical simplicity
that could not be a�orded by the pro�les used in the initial conditions of the numerical simulation.
Secondly, due to bar formation and evolution, the initial disc pro�le in the simulation soon becomes
a poor representation in the inner part of the galaxy, where the bar resides. In this sense, it is not
advantageous to continue using the initial pro�les to model later times. A Miyamoto�Nagai disc
provides a su�cient approximation for our purposes. Likewise, even though the [Hernquist 1993]
halo pro�le is well suited for numerical purposes, it is inconvenient from the analytical point of
view. We experimented with simple logarithmic halo pro�les (because their rotation curves are also
appropriate), but the [Dehnen 1993] pro�le was preferable, as it provided equally acceptable rotation
curves, and a more satisfactory global approximation of the mass distribution. Similarly, �tting the
bar by a Ferrers ellipsoid is a justi�able approximation. Surely, it fails to capture the N -body bar in
all its complexity, particularly after the buckling instability, when the bar is substantially strong and
develops the peanut-shaped feature. In general, the N -body bar will be more boxy than the Ferrers
shape would allow. Nevertheless, �tting an ellipsoid of the same extent allows us to obtain plausible
shapes, to determine the bar orientation and to estimate its mass adequately. Ultimately, regardless
of small deviations in the density pro�les, our goal is to obtain an analytical total potential that is
approximately comparable to the overall potential of the simulation. From the simulation, we are
able to measure several quantities as a function of time, which are then used to inform the analytical
model.

For the bar, and following [Manos and Machado 2014], the required parameters are the bar mass,
the bar shape and the bar pattern speed Ωb. First, we estimate the bar length as a function of time.
This is done by measuring the relative contribution of the m = 2 Fourier component of the mass
distribution as a function of radius, for each time step, and �nding the radius at which the m = 2

has its most intense drop after the peak. This radius a is associated with the bar length. Then we



6 Chapter 1. Classical chaos in astrophysics

Figure 1.1: Snapshots of the N -body simulation (upper panels) at four di�erent times, displaying
stellar density, on the same range, projected on the xy plane. Each frame is 40 by 40 kpc. To
illustrate bar lengths and shapes, we overlay ellipses (which are not isophotal �ts). The lower panels
display the result of evolving an ensemble of initial conditions in the presence of the constructed TD
analytical potential.

estimate the bar shape by calculating the axis ratios b/a and c/a from the eigenvalues of the inertia
tensor in this region. The bar mass is measured by simply adding up the mass enclosed within an
ellipsoid of axes a, b, c. Finally, the successive orientations of the major axis as a function of time are
used to compute the pattern speed. The resulting time evolution of all these quantities are displayed
in the fourth, �fth and sixth panels of Fig. 1.2. Each of these parameters is measured at several time
steps, a sample of which is shown, along with the resulting polynomial �ts.

The disc mass MD(t) is known once the bar mass has been measured, and the halo mass MH is
constant. One still requires the time evolution of two disc parameters (A, B) and two halo parameters
(aH , γ). This is achieved by measuring the rotation curves directly from the simulation (at each time
step), and then �tting the analytical vc(R) to these data. Since the disc and halo potentials are
known from equations (1.6) and (1.7), we obtain their respective analytical circular velocities from
v2c = RdV

dR :

v2c,D(R) = R2 GMD

[R2 + (A+B)2]3/2
(1.8)

v2c,H(R) = GMH
r2−γ

(r + aH)3−γ
(1.9)
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Figure 1.2: Time evolution of the halo, disc and bar parameters, measured from theN -body simulation
(points) and supplied to the analytical model (�tted polynomials). First and second panel: parameters
of the Dehnen halo pro�le. Third: parameters of the Miyamoto�Nagai disc. Fourth: bar mass and
disc mass. Fifth: semi-major axes of the bar. Sixth: bar pattern speed.
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Figure 1.3: (Colour online) Parameters of the Dehnen halo pro�le and of the Miyamoto�Nagai disc
are obtained by �tting the circular velocity curves at each time. Here we display four di�erent times.
The fourth column exhibits total, halo and disc circular velocity curves. The �rst and second columns
show the disc density pro�les (radial and vertical, respectively). The third column has the halo density
pro�le. Points come from measurements of the N -body simulation, while lines are �tted pro�les.

Fitting Eq. (1.9) to the measured halo rotation curve, we obtain aH and γ. In the case of the disc,
it is not enough to �t Eq. (1.8). One must simultaneously �t the Miyamoto�Nagai density pro�le to
disambiguate the A+B (ignoring the inner part of the disc). When �tting the disc rotation curve, we
assume the total stellar mass (i.e. we take both disc and bar mass into account). Since the circular
velocities rely on azimuthally averaged quantities, the presence of the bar does not greatly interfere
with the quality of the �ts, while its removal would lead to spurious results. The measured rotation
curves (disc, halo and total), as well as the resulting �tted circular velocities, are displayed in the
fourth column of Fig. 1.3 (at four illustrative instants in time). Errors in the �tted parameters of
rotation curves were typically of about 5 per cent or less. Also shown in the �rst, second and third
panels of Fig. 1.3, are the disc (radial and vertical) and halo density pro�les. The points correspond
to simulation measurements and the lines give the resulting �ts.

One of the main arguments in favor of the adequacy of our analytical model is evidenced by the
fact that its total rotation curves are in good agreement with those measured from the simulation.
This indicates that the choices of pro�les were not unreasonable, as they result in a globally similar
gravitational potential. Even if individually the densities of the components are idealized simpli�-
cations, the similarity of the total potential ensures that the overall dynamical evolution should be
su�ciently well approximated.
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Finally, the resulting time evolution of the halo and disc structural parameters, measured in
the manner described above, are displayed in the �rst to fourth panels of Fig. 1.2. With these,
the time-dependence of the analytical model is fully speci�ed. In Table 1 in [Manos and Machado
2014], we summarize the analytical model by showing a sample of parameters for the Ferrers bar,
Miyamoto�Nagai disc and Dehnen halo potential as �tted by the N -body simulation, at four times.

Bar strength

In order to measure the bar strengths in analytical models, [Manos and Athanassoula 2011] had
employed the Qb parameter [R. Buta, Block, and Knapen 2003; R. Buta, Laurikainen, and Salo
2004], which is a measure of the relative strength of the non-axisymmetric forces. Here, we opt
instead to use a method more familiar to N -body simulations, namely measurements of the m = 2

Fourier component of the mass distribution. For the N -body simulation, we measure this component
straightforwardly as a function of radius and then take the maximum amplitude to be the A2 (see
e.g. [Athanassoula, Machado, and Rodionov 2013a]. We refer to this quantity as the bar strength.

For the analytical model, we proceed in a way that allows us to treat it as if it could be represented
by particles. We extract from the simulation a random sample of 100 000 initial conditions (i.e.
positions and velocities of disc particles) at a time t0 = 1.4 Gyr, where we use this ensemble of
orbits to further study dynamical trends). The orbits of each of these `test particles' are then evolved
forward in time in the presence of our time-dependent analytical potential. Their successive positions
can be treated as if they were simulation particles. By stacking them at each time step, we produce
the snapshots in the bottom row of Fig. 1.1. These mock snapshots display a striking resemblance
to the N -body snapshots, specially bearing in mind that they were obtained by very indirect means.
While this comparison cannot be expected to yield a perfect morphological equivalence, one notices
that the bar lengths are in quite good agreement, and that in both cases rings are present (although
not of the same extent). The point is that the dynamics that arises from the analytical model will
give rise to very similar disc and bar morphologies. In fact, the relative importance of the bar is also
quite comparable, as indicated by the A2 parameter. Analogously to the N -body case, we compute
the A2 of these mock snapshots and compare them in Fig. 1.4.

We must stress here that this comparison is an a posteriori veri�cation, i.e. the bar strength of
the N -body simulation was in fact not used as an input to the analytical model. The fact the A2 do
agree well counts as a further sign of the consistency of the constructed analytical model.

It is clear, of course, that the variation of the bar strength modi�es the values of several parameters
and yields richer information about the dynamics of a self-consistent model. N -body simulations show
that in general, variations of the bar mass also change the mass ratios of the model's components, the
bar shape and the pattern speed of the galaxy. Hence, if one wishes to use a mean �eld potential to
`mimic' a self-consistent model as accurately as possible, one should allow for all the parameters that
describe the bar (together with all other axisymmetric components) to depend on time, assuming
that the laws of such dependence were explicitly known. In our case, however, we adopt a simpler
approach and vary only the masses of the bar and the disc, as a �rst step towards investigating
such models when time-dependent parameters are taken into account. Thus, we do not pretend to
be able to reproduce the exact dynamical evolution of a realistic galactic simulation. Rather, we
wish to understand the e�ects of time dependence on the general features of barred galaxy models
and compare the e�ciency of chaos indicators like the GALI method and the Maximal Lyapunov
Exponent (MLE) in helping us unravel the secrets of the dynamics in such problems.
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Figure 1.4: Bar strength, measured from the simulation (line) and from the analytical model (points).
A2 is the maximum relative contribution of the m = 2 Fourier component of the mass distribution in
the disc.

We stress that the method we introduced to construct the analytical model does not rely � at
all � on frozen potentials. Instead, it is grounded on the detailed features of a fully time-dependent,
self-consistent N -body simulation.

Unless otherwise stated, the units of the analytical model are given as: 1 kpc (length), 1000 km·
sec−1 (velocity), 1 Myr (time), 2 × 1011M⊙ (mass) and km· sec−1· kpc−1 (Ωb) while the parameter
G = 1. The total mass Mtot =MB(t)+MD(t)+MH is set equal to 3× 1011M⊙ and since the halo's
mass MH is kept constant, the disc's mass MD(t) is varied as MD(t) =Mtot − (MH +MB(t)).

1.3 Chaos detection techniques

Let us brie�y recall how the two main chaos detection methods used throughout the manuscript,
namely the GALI and the MLE, are de�ned and calculated. Considering the following TD 3-d.o.f.
Hamiltonian function which determines the motion of a star in a 3 dimensional rotating barred galaxy:

H =
1

2
(p2x + p2y + p2z) + V (x, y, z, t)− Ωb(t)(xpy − ypx). (1.10)

The bar rotates around its z�axis (short axis), while the x direction is along the major axis and the y
along the intermediate axis of the bar. The px, py and pz are the canonically conjugate momenta, V
is the potential, Ωb(t) represents the pattern speed of the bar and H is the total energy of the orbit
in the rotating frame of reference (equal to the Jacobi constant in the TI case).
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The corresponding equations of motion are:

ẋ = px +Ωb(t)y,

ẏ = py − Ωb(t)x,

ż = pz,

ṗx = −∂V
∂x

+Ωb(t)py,

ṗy = −∂V
∂y

− Ωb(t)px,

ṗz = −∂V
∂z

,

(1.11)

while the equations governing the evolution of a deviation vector w = (δx, δy, δz, δpx, δpy, δpz) needed
for the calculation of the MLE and the GALI, are given by the variational equations:

˙δx = δpx +Ωb(t)δy,

δ̇y = δpy +Ωb(t)δx,

δ̇z = δpz,

˙δpx = − ∂2V

∂x∂x
δx− ∂2V

∂x∂y
δy − ∂2V

∂x∂z
δz +Ωb(t)δpy,

˙δpy = − ∂2V

∂y∂x
δx− ∂2V

∂y∂y
δy − ∂2V

∂y∂z
δz − Ωb(t)δpx,

˙δpz = − ∂2V

∂z∂x
δx− ∂2V

∂z∂y
δy − ∂2V

∂z∂z
δz.

(1.12)

Regarding the estimation of the value of the MLE, λ1, of an orbit under study we follow numerically
its evolution in time together with its deviation vectors w, by solving the set of Eqs. (1.11) and (1.12)
respectively. For this task we use a Runge-Kutta method of order 4 with a su�ciently small time step,
which guarantees the accuracy of our computations, ensuring the relative errors of the Hamiltonian
function (in the TI case) are typically smaller than 10−6. Furthermore, we need to have a �xed time
step in order to ensure that in the TD case the orbits vary simultaneously with the potential.

In general, the derivatives of the potential V depend explicitly on time and the ordinary di�erential
equations (ODEs) [Eqs. (1.11)] are non-autonomous. Hence, one has to solve together the equations
for the deviation vectors [Eqs. (1.12)] with the equations of motion [Eqs. (1.11)]. Transforming
the Eqs. (1.11), and consequently [Eqs. (1.12)], to an equivalent autonomous system of ODEs by
considering time t as an additional coordinate (see e.g. section 1.2b [Lichtenberg and Lieberman
1992]), is not particularly helpful, and is better to be avoided as shown in [Grygiel and Szlachetka
1995].

So, in order to compute the MLE and the GALI we numerically solve the time-dependent set of
ODEs [Eq,. (1.11) and (1.12)]. Then, according to [Benettin, Galgani, and Strelcyn 1976; Contopoulos,
Galgani, and Giorgilli 1978; Benettin, Galgani, Giorgilli, et al. 1980] the MLE λ1 is de�ned as:

λ1 = lim
t→∞

σ1(t), (1.13)

where:

σ1(t) =
1

t
ln

‖w(t)‖
‖w(0)‖

, (1.14)
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is the so-called `�nite time MLE', with ‖w(0)‖ and ‖w(t)‖ being the Euclidean norm of the deviation
vector at times t = 0 and t > 0 respectively. A detailed description of the numerical algorithm used
for the evaluation of the MLE can be found in [C. Skokos 2010].

This computation can be used to distinguish between regular and chaotic orbits, since σ1(t) tends
to zero (following a power law ∝ t−1) in the former case, and converges to a positive value in the
latter. But the Hamiltonian [Eq. 1.10)] is TD in this case, which means that its orbits could change
their dynamical behavior from regular to chaotic and vice versa, over di�erent time intervals of their
evolution. In such cases, the MLE (1.13) does not behave exactly as in TI model (presenting in general
stronger �uctuations) and its computation might not be able to identify the various dynamical phases
of the orbits, since by de�nition it characterizes the asymptotic behavior of an orbit (see e.g. [Manos,
T. Bountis, and C. Skokos 2013] and also [T. Bountis, Manos, and Christodoulidi 2009; Manos and
Ru�o 2011; Moges, Manos, and Ch. Skokos 2020] for some relevant applications). Nevertheless, we
will show the MLE for a number of orbits throughout the paper, for a more global discussion of the
several dynamical properties observed.

Thus, in order to avoid such problems in our study, we use the GALI method of chaos detection
[C. Skokos, T. C. Bountis, and C. Antonopoulos 2007]. The GALI index of order k (GALIk) is
determined through the evolution of 2 ≤ k ≤ N initially linearly independent deviation vectors
wi(0), i = 1, 2, . . . , k, with N denoting the dimensionality of the phase space of our system. Thus,
apart from solving Eqs. (1.11), which determines the evolution of an orbit, we have to simultaneously
solve Eqs. (1.12) for each one of the k deviation vectors. Then, according to [C. Skokos, T. C. Bountis,
and C. Antonopoulos 2007], GALIk is de�ned as the volume of the k-parallelogram having as edges
the k unit deviation vectors ŵi(t) = wi(t)/‖wi(t)‖, i = 1, 2, ..., k. It can be shown, that this volume
is equal to the norm of the wedge product (denoted by ∧) of these vectors:

GALIk(t) =‖ ŵ1(t) ∧ ŵ2(t) ∧ . . . ∧ ŵp(t) ‖ . (1.15)

We note that in the above equation the k deviation vectors are normalized but their directions are
kept intact.

In principal and for TI systems, the GALIk(t) for regular orbits remains practically constant
and positive if k is smaller or equal to the dimensionality of the torus on which the motion occurs,
otherwise, it decreases to zero following a power law decay. For the chaotic ones, all GALIk(t) tend
exponentially to zero with exponents that depend on the �rst k LEs of the orbit [C. Skokos, T. C.
Bountis, and C. Antonopoulos 2007; C. Skokos, T. Bountis, and C. Antonopoulos 2008]. Nevertheless,
in the TD case studied in [Manos, T. Bountis, and C. Skokos 2013] and also here, the way the
theoretical estimation of the GALI's exponential rates are strongly related to the LEs, being more
complicated and still open to further inquiry.

The procedure used for the detection of the several di�erent dynamical epochs of the TD system is
the following: We evolve the GALIk with k = 2 or k = 3 (i.e., using 2 or 3 deviation vectors) for the 2-
d.o.f or 3-d.o.f. cases respectively and whenever GALIk reaches very small values (i.e. GALIk ≤ 10−8)
we re-initialize its computation by taking again k new random orthonormal deviation vectors, which
resets the GALIk = 1. We allow then these vectors to evolve under the current dynamics. For time
intervals where the index decays exponentially corresponds to chaotic epochs while in the other cases
to non-chaotic. The reason in doing this is that we need to follow the current dynamical stability of
an orbit under-study which in principle can interplay between chaotic and regular for di�erent epochs
during the total time evolution. Thus, let us assume that a trajectory experiences chaotic dynamics
and later on drifts to a regular regime. The volume formed by the deviation vectors will �rst shrink
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exponentially to very small values and remain small throughout the whole evolution unless one re-
initializes the deviation vectors and their volume, in order to allow them to `feel' the new current
dynamics. However, when we are interested in more general dynamical trends in time (less details),
we will �x time intervals and we will re-initialize the deviation vectors in the beginning of each one.

1.4 Results

The 2 D.O.F. Time-Independent Case

Shedding some light on the underlying TI dynamics is an important step for understanding the more
complicated case of the fully 3-d.o.f. TD model where all parameters vary simultaneously in time.
By setting z, pz equal to zero at t = 0 (remaining zero at all times) in the Hamiltonian Eq. (1.10), the
orbits' motion is then restricted in the 2 dimensional (x, y) space. Note that here t = 0 refers to the
t0 = 1.4 Gyr of the N -body simulation. We can then study, in a frozen potential, individual orbits and
the stability of the phase space, in terms of detecting and locating chaotic and regular motion, for the
several sets of the potential parameters at deferent times, as derived from the N -body simulation. We
shall begin by choosing �xed parameters from four time snapshots, i.e., at t = 1.4 Gyr, t = 4.2 Gyr,
t = 7.0 Gyr and t = 11.2 Gyr and we integrate orbits for 10 Gyr.

In Fig. 1.5, we present the Poincaré Surface of Section (PSS) de�ned by x = 0, px ≥ 0 with
H = −0.19, for three typical orbits being integrated for 10 Gyr. The set of parameters for the bar,
disc and halo components are chosen from the �ts with the 3-d.o.f. TD Hamiltonian at t = 7.0 Gyr of
the N -body simulation (see see Table 1 in [Manos and Machado 2014] for more details). The blue (∗)
points on the PSS correspond to a disc regular orbit, forming a curve by the successive intersections
with the plane x = 0, having initial condition (y, py) = (−1.5, 0.0) with x = 0 and px = H(x, y, py)

(called `DR' from now on). Its projection on the (x, y)-plane is shown in the top left inset panels
of Fig. 1.5 and coloured in blue. The GALI2 for this orbit con�rms that its motion is regular by
oscillating to a positive value during its evolution in time as well as the MLE σ1 following a power
law decay [see second and third top inset panels of Fig. 1.5 respectively (blue), note that the axis here
are in lin-log scale]. The three small black curves in the central part of Fig. 1.5, marked with (×), are
formed by the successive intersections of an initial condition with (y, py) = (−0.4, 0.0) (we will call it
`BR'). From its projection on the (x, y)-plane [�rst bottom inset panel of Fig. 1.5 (black)], it is evident
that it is a bar-like orbit elongated along the long x-axis. It surrounds a stable periodic orbit of period
3 in the center of these islands and its regular dynamics is clearly revealed from the evolution of the
GALI2 and the MLE σ1 evolution [second and third top (black) inset panels of Fig. 1.5 respectively,
note that the axis are again in lin-log scale]. The central scattered red points on the PSS, marked
with (+), correspond to a chaotic orbit with initial condition (y, py) = (2.5, 0.0) (called `DC' from
now on). In the three inset panels positioned vertically in the right part of the Fig. 1.5 (red), we
depict its projection on the (x, y)-plane (top panel). Its GALI2 successive and exponential decrease
to zero in time (middle panel) indicates its chaotic nature. Notice that we re-initialize the deviation
vectors each time the index becomes small (≤ 10−8). Its MLE σ1, as expected, converges to a positive
value (bottom inset).

Exploiting this information, we �rst choose a sample of 2-d.o.f. Hamiltonian function values (for
the four times mentioned above and the respective sets of parameters), from the interval of energies
where the majority of the N -body simulation's particles is more probable to be found. From this



14 Chapter 1. Classical chaos in astrophysics

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

−4 −2  0  2  4  6

p y

y

−4

−2

 0

 2

 4

−4 −2  0  2  4

x

y (DR)

−8

−6

−4

−2

 0

 0  2  4  6  8  10

time (Gyr)

Log10(GALI2)

(DR)

−4

−3

−2

−1

 0  2  4  6  8  10

time (Gyr)

Log10(σ
1
)

(DR)

−4

−2

 0

 2

 4

−4 −2  0  2  4

x

y (BR)

−8

−6

−4

−2

 0

 0  2  4  6  8  10

time (Gyr)

Log10(GALI2)

(BR)

−4

−3

−2

−1

 0  2  4  6  8  10

time (Gyr)

Log10(σ
1
)

(BR)

−4

−2

 0

 2

 4

−4 −2  0  2  4

x

y (DC)

−10
−8
−6
−4
−2
 0
 2

 0  2  4  6  8  10

time (Gyr)

Log10(GALI2)

(DC)

−4

−3

−2

−1

 0  2  4  6  8  10

time (Gyr)

Log10(σ
1
)

(DC)

Figure 1.5: The Poincaré Surface of Section de�ned by x = 0, px ≥ 0 with H = −0.19, for three
typical orbits (two regular and one chaotic) being integrated for 10 Gyr. The set of parameters for
the bar, disc and halo components are chosen from the �ts with the 3-d.o.f. TD Hamiltonian at
t = 7.0 Gyr of the N -body simulation. In the insets we depict their projection on the (x, y)-plane
together with the GALI2 and MLE σ1 evolution in time (see Table 1 in [Manos and Machado 2014]
for the exact parameters).
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sample, we select a subset of representative energies to illustrate typical phase space structures,
focusing at this point on the underlying dynamics. Then, we chart the regular and chaotic regimes
of the phase space with GALI2. In Fig. 1.6, we have used a grid of 100 000 initial conditions on the
(y, py)-plane of the corresponding PSS and we have constructed a chart of the chaotic and regular
regions similar to the PSS, but with more accuracy and higher resolution, in a similar manner just
like in [Manos and Athanassoula 2011], using the GALI2 method. The di�erent colour corresponds to
the di�erent �nal value of the GALI2 after 10 Gyr (10 000 time units) for orbits representing each cell
of the grid. The yellow colour corresponds to regular orbits (and areas) where the GALI2 oscillates
around to relatively large positive values, the black color represents the chaotic orbits where GALI2
tends exponentially to zero (10−16), while the intermediate colors in the colour-bars between the two
represent `weakly chaotic or sticky' orbits, i.e. orbits that `stick' onto quasi-periodic tori for long
times but their nature is eventually revealed to be chaotic. Note that the model in this case is TI and
hence there is no need for re-initialization of the deviation vectors, since the asymptotic dynamical
nature of the orbits does not change in time. The �rst row refers to a set of potential parameter given
at t = 1.4 Gyr for Hamiltonian values H = −0.31,−0.28,−0.25,−0.22, the second row at t = 4.2 Gyr
for H = −0.28,−0.25,−0.22,−0.19, the third row at t = 7.0 Gyr for H = −0.28,−0.25,−0.22,−0.19

and the fourth row at t = 11.2 Gyr for H = −0.28,−0.25,−0.22,−0.19.
Using the above approach, we can measure and quantify the variation of the percentage of

regular orbits in the phase space as the total energy increases for a speci�c choice of potential
parameters at same �xed times. The chosen values of the Hamiltonian functions cover the range
of the available energy interval up to the value of the escape energy which in general is di�erent.
Although the main general trend is that this percentage decreases as the energy grows, its behavior
changes at high energy values where it is no more monotonic. Note that this happens for energy
values H > −0.19 out of the range of N -body simulation orbits. In Fig. 1.7 we show the variation
of percentages of regular motion as a function of the energy H for the di�erent sets of parameters
at t = 1.4 Gyr, t = 4.2 Gyr, t = 7.0 Gyr and t = 11.2 Gyr. The threshold GALI2 ≥ 10−8 was
used to characterize an orbit as regular and GALI2 < 10−8 as chaotic which will also be the chaos
criterion/threshold throughout this paper. We should emphasize that these percentages refer to a
set of initial conditions that cover uniformly the whole 2-d.o.f. phase space. On the other hand,
an ensemble of trajectories extracted from the N -body simulation does not necessarily populate
`democratically' the phase space. By simply inspecting these percentages one can claim that the
fraction of regular motion is systematically larger for later times, and for all energies. When
looking and comparing the phase space for early times, i.e., t = 1.4, 4.2 Gyr (�rst and second
row) and late times, i.e., t = 7.0, 11.2 Gyr (third and fourth row) in Fig. 1.6, we may see that
the central island of stability, originating bar-like orbits, is becoming larger as the time grows and
this is even more evident for the relatively larger energies (see the third and fourth row from top
to bottom). This indicates that the bar component becomes gradually more important and dominant.

The 3 D.O.F. Time-Dependent Case

In Fig. 1.8 we show the evolution of an orbit from the ensemble of the N -body simulation with initial
condition:

(x, y, z, px, py, pz) ≈ (−4.543100, 0.499639,−0.162627, 0.048798,−0.218718, 0.002898)

(we will refer to this orbit from now on as B1), which is iterated for 10 Gyr (10 000 time units) for
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Figure 1.6: The (in)stability map for the 2-d.o.f. frozen potential case using a grid of ≈ 100 000
initial conditions on the PSS and integrating them for 10 Gyr. The colour-bar represents the �nal
GALI2 values of each initial condition in the end of the iteration. The �rst row refers to a set of
potential parameter given at t = 1.4 Gyr for Hamiltonian values H = −0.31,−0.28,−0.25,−0.22, the
second row at t = 4.2 Gyr for H = −0.28,−0.25,−0.22,−0.19, the third row at t = 7.0 Gyr for H =

−0.28,−0.25,−0.22,−0.19 and the fourth row at t = 11.2 Gyr for H = −0.28,−0.25,−0.22,−0.19.
The yellow (light-grey in b/w) colour corresponds to regular orbits where the GALI2 oscillates around
to relatively large positive values, the black color represents the chaotic orbits where GALI2 tends
exponentially small values, while the intermediate colors in the colour-bars between the two represent
`weakly chaotic or sticky' orbits. The exact set of parameters used at each t = 1.4, 4.2, 7.0, 11.2 Gyr
are given in [Manos and Machado 2014] (Table 1).

the TD potentials mentioned above. The starting and complete set of parameters for the TD model
is taken at t0 = 1.4 Gyr by the �ts with the N -body simulation. Note that in all �gures' panels, we
set everywhere the t0 equal to zero instead of t0 = 1.4 Gyr.

In the �rst row of the �rst block in Fig. 1.8(a,b,c,d), we show its projection on the (x, y)-plane
for four successive time intervals of ∆t = 2.5 Gyr, i.e., all the three potential components VB, VD, VH
are time-dependent and the total energy is not in general conserved. The colour bar next to each
panel corresponds to the time (in Gyr), hence the most recent epochs of the orbit are coloured with
yellow while those in the earlier ones with dark blue or black. In Fig. 1.8(e) we show its GALI3,
capturing accurately the chaotic nature of the orbit during the �rst [Fig. 1.8(a)], third [Fig. 1.8(c)]
and fourth [Fig. 1.8(d)] time windows by decaying exponentially to zero. On the other hand, in
the second [Fig. 1.8(b)] time window its regular (even by just looking its projected morphologically
on the (x, y)-plane) behaviour is successfully revealed by the �uctuates to a non-zero value of the



1.4. Results 17

 0

 20

 40

 60

 80

 100

-0.35 -0.3 -0.25 -0.2 -0.15 -0.1

%
 o

f 
re

g
u

la
r 

m
o

ti
o
n

energy

t =  1.4 (Gyr)
t =  4.2 (Gyr)
t =  7.0 (Gyr)
t =11.2 (Gyr)

Figure 1.7: Percentages of regular motion for the 2-d.o.f. frozen case as a function of the energy H
for the di�erent sets of parameters at t = 1.4 Gyr, t = 4.2 Gyr, t = 7.0 Gyr and t = 11.2 Gyr.

index. Note that the plot is in lin-log scale and the deviation vectors are re-initialized, by taking
again k new random orthonormal deviation vectors, each time the GALI3 becomes very small
(i.e. GALI3 ≤ 10−8). It turns out that the B1 begins as a regular disc-like orbit during the �rst
2.5 Gyr and, as the bar starts forming and growing, it gradually evolves to a chaotic bar-like orbit
until the end of the integration. We may notice how hard it is for the �nite time MLE σ1 [Fig. 1.8(f)]
to capture these di�erent dynamical di�erent transitions and epochs due to its time-averaged
de�nition (see also [Manos, T. Bountis, and C. Skokos 2013]). Furthermore, its power law decay for
regular time intervals and its tendency to positive values for chaotic ones are of the same order of
magnitude making it rather hard to use the temporary value σ1 as a safe criterion of regular and
weak or strong chaotic motion.

In Fig. 1.9, and in a similar manner as in Fig. 1.8, we show another characteristic disc-like orbit
for most of the total of integration with initial condition:

(x, y, z, px, py, pz) ≈ (−5.14416,−1.345540, 0.277956, 0.140120,−0.219648, 0.000338)

(we will refer to this orbit from now on as `D1'). The evolutionary scenarios are again the same as
before, i.e., in the �rst row of the �rst block in Fig. 1.9(a,b,c,d), we present its projection on the (x, y)-
plane for di�erent time windows. The D1 orbit experiences a regular epoch during its �rst 2.5 Gyr,
then gradually becomes chaotic switching to a bar-like shape and �nally becomes a chaotic but disc-
like now orbit. Its regular and chaotic epochs are accurately captured by the GALI3 [Fig. 1.9(e)],
�uctuating to constant value for the �rst 2.5 Gyr and then successively decaying exponentially to
zero for the rest of the integration. The MLE σ1 [Fig. 1.9(f)] also reveals this dynamical evolution,
by decaying with a power law for the regular part and converging to non-zero value for the three last
time windows. However, here the motion does not present any further transition and/or interplay
between regular and chaotic motion and again (as for the B1 orbit) the order of magnitude for the
σ1 is not varying su�ciently enough to lead to a safe conclusion at certain times without seeing its
whole time evolution.

In [Manos and Machado 2014], it was found that the overall fraction of chaotic motion in the disc
decreases as the bar grows stronger. Figure 1.10 indicates the tight correlation between the decrease
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Figure 1.9: Same as in Fig. 1.8 but for the 3-d.o.f. disc-like orbit D1 . Note, that here the disc-
like pattern slightly varies from cases to case. The di�erent degree of chaoticity can be accurately
captured by the frequency and fast decay to zero of the GALI3 [Fig. 1.9(e)], indicating that the orbits
is relatively `strongly chaotic' . This information can not be revealed in such a way by the MLE σ1
shown in Figs. 1.9(f).

in chaos and the growth of the bar, as indicated by the fraction of chaotic motion � measured within
the bar � as a function of relative bar mass (i.e. the bar-to-disc mass ratio). One also notices that
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most of the disappearance of chaos takes place during the �rst half of the evolution, which is the
period of more intense bar growth.
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Figure 1.10: Fraction of chaotic motion within the bar as a function of relative bar mass.

If bar growth is partially driving the rise of regular motion, the question then arises as to the
spatial distribution of regular versus chaotic motions. In which regions of the stellar disc are regular
and chaotic motion predominantly found? Is the global rise of regularity accompanied by some
spatially localized increase of chaos? In order to address such questions, we de�ne four distinct
morphological regions: (i) the bar; (ii) the ring; (iii) the intermediate low-density region between the
bar and the ring, referred to as the gap region, for brevity; and (iv) the outer disc. These regions are
selected somewhat arbitrarily (via visual inspection of the morphology), but they do re�ect distinctive
structural components, regarding density, as can be seen in the two upper rows of Fig. 1.11 with face-
on and edge-on views, where the ellipses used to de�ne them are shown.1

To explore the spatially resolved evolution of chaos throughout the stellar disc, we resort to the
analysis of an ensemble of orbits. From the N -body simulation, we select a sample of 1 × 105 disc
particles at the time t0 = 1.4 Gyr where the bar has already started to be formed and starts growing
from that point on. Then, their coordinates are used as an ensemble of initial conditions to be evolved
in the presence of the time-dependent analytical potential. We evolve these orbits for 10 Gyr and
study their dynamical behaviour. In order to avoid confusion, from now on we reset the t0 to be zero
(starting point of our simulations). We divide the total integration time in four intervals of ∆t = 2.5

Gyr, re-initializing the GALI3 index at the beginning of each window [Manos and Machado 2014].
The orbit is considered regular (non-chaotic) if its GALI3 remains greater than 10−8 during a given
time window; and it is considered chaotic if it reaches GALI3 ≤ 10−8. In this manner, we are able
to compute fractions of chaotic motion within each time window. Additionally, at a given instant in
time, we can also compute spatially resolved chaos fractions in di�erent regions of the disc.

A global picture of the spatial distribution of regular and chaotic motion in the disc can be seen in
the two bottom rows of Fig. 1.11, which displays the face-on and edge-on views of the ensemble of disc
particles at the end of each time window, coloured by the GALI3 index (being chaotic towards the

1In Fig. 1.11 and in all other such projections, the particles and orbits are displayed in the reference frame that

rotates with the bar. Thus, the bar major axis always lies along the direction of the x-axis.
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Figure 1.11: Upper rows: face-on and edge-on views of the ensemble of orbits at the end of each time
window. Lower rows: face-on and edge-on views of projected GALI3 indices for the disc ensemble.
Chaotic orbits are those with GALI3 ≤ 10−8. The face-on views also display the ellipses used to
de�ne the regions referred to as: bar, ring, gap and outer disc. Each frame is 20 kpc wide, and the
particles are displayed in the reference frame that rotates with the bar.

blue, and regular towards the yellow). Some major results are already noticeable even by eye. First,
the striking decrease of chaos within the bar region can be clearly seen. Secondly, even though the
gap is a very low density region, it seems to hold a good portion of the chaotic orbits. Third, the outer
disc � as well as the ring, to a degree � seem quite dominated by regular motion. Finally, another
outstanding feature is the peanut-shaped view of the bar seen in the edge-on projection (sometimes
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called X-shaped bulge). Remarkably, particles that depart considerably from the z = 0 plane are
mostly chaotic.

In order to quantify in more detail these results, we measure the fraction of chaotic orbits as a
function of time in each region (i.e. at the end of each time window, we obtain the number of particles
having GALI3 ≤ 10−8 in a region divided by the total number of particles within that region). The
result is shown in Fig. 1.12. The fraction of chaotic motion within the bar drops from nearly 40
per cent to less than 10 per cent. The outer disc remains essentially regular, with a non-zero but
negligible appearance of chaos throughout the evolution. The fact that the ring region undergoes an
initial increase in chaos can be ascribed in good measure to the edges of the bar. The gap region
displays some interesting behaviour. Between the �rst and second time windows, the gap becomes
depleted in terms of total number of particles, but at the same time its fraction of chaotic motion
increases. From then on, it decreases, but the gap continues to be the region holding the highest
local fraction of chaotic motion in the disc. The large amount of chaotic motion seen in the gap
region is not unexpected. In fact it is well known that orbits that oscillate between the Lagrangian
points L1 and L2 are unstable and therefore the transition zone between the bar and the disk is
expected to be chaotic, see e.g. [Harsoula and Kalapotharakos 2009; Athanassoula, Romero-Gómez,
and Masdemont 2009].
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Figure 1.12: Fraction of chaotic motion as a function of time, measured within di�erent regions of the
disc. These regions are schematically indicated in the right-hand panels, and more clearly detailed in
Fig. 1.11.

Instead of considering the state (chaotic or regular) of each particle at speci�c instants � the ends
of the four time windows, we here account for the changes of their state. For example, one given orbit
that was found to be regular at the end of the evolution might have been chaotic at the beginning, or
it might have been continuously regular. In either case, where did such particles originate? Do the
particles that change dynamical state (and those that don't) share a common locus at the beginning
of the evolution? To explore these issues, we will examine separately the orbits that change dynamical
behaviour and those that do not. This will allow us, in a sense, to map the origins and the destiny of
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regular and chaotic motion.
By selecting those orbits which are permanently regular (64.3 per cent) and those which are

permanently chaotic (only 0.9 per cent). The remainder (34.8 per cent) change their nature at least
once during the evolution. Let us consider �rst those orbits that do not undergo any change of regime
throughout the evolution (upper rows of Fig. 1.13).

Figure 1.13: Evolution of regular/chaotic regimes separated in di�erent con�gurations. Upper rows:
face-on and edge-on vies of the orbits that are permanently regular (cyan), and those that are per-
manently chaotic (red). Bottom rows: face-on and edge-on views of the orbits that start regular and
end chaotic (green), and those that start chaotic and end regular (purple).

Orbits that are permanently regular. As regards morphology, the permanently regular ones are
qualitatively unremarkable, in the sense that they occupy almost any region of the galactic disc. There
is thus little qualitative distinction between them and the entire ensemble and they merely map the
normal evolution of the galactic disc as a whole. The only noticeable structures that are not quite
covered by these orbits are the gap region, and, vertically, the peanut. (Due to the method employed
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to create the initial conditions in the N -body simulation of [Machado and Athanassoula 2010], there
is a residual transient seen as a vague spiral pattern at t = 0 and it subsides on a short time scale.)

Orbits that are permanently chaotic. The permanently chaotic orbits, on the the other hand,
display peculiar features. They are tightly restricted to the region of the bar, and partially to the
gap. Indeed, they spend nearly the entire evolution con�ned within this region. There is not one
single permanently chaotic orbit to be found in the outer regions of the disc. At the instant t = 0,
these particles � whose future destiny is to be permanently chaotic � are initially located within a
reasonably well-de�ned ring, i.e. they are mostly found within 2 kpc < r < 4 kpc.

For the remainder of the orbits, we will focus on two regimes: those that start regular and end
chaotic (6.1 per cent), and those that start chaotic and end regular (20.8 per cent), regardless of the
intermediate states (i.e. the transitions in the second and third time windows). Finally, there is a
subset of orbits (7.9 percent) that do undergo two changes of regime, but nevertheless �nish as they
started; these will be disregarded. Let us consider now the two cases where the �nal state di�ers from
the initial state (lower rows of Fig. 1.13):

Orbits that begin regular and end chaotic. These start at t = 0 from a similar locus as the
permanently chaotic, but here the ring is slightly larger and more di�use. This subset also includes
some orbits very close to the origin (r < 0.5 kpc) in the beginning, which are not present in the
permanently chaotic case. The volume occupied by these orbits contracts gradually, but they are
more extended than the permanently chaotic ones, encompassing the region of the gap at later times
as well. They are also vertically extended, being the major contributors to the structure of the peanut.
In fact, this is the only subset of particles which signi�cantly populates the peanut, in the regions
of about 2.5 kpc < |z| < 5 kpc of height. The gap region, and mainly the peanut, are regions where
chaos is important. However, it is only the initially regular � and �nally chaotic � orbits that depart
considerably from the plane. The orbits that were already chaotic from the beginning do not visit
such heights.

Orbits that begin chaotic and end regular. Interestingly, the initial locus of this subset is
approximately the complement of the previous case. Here, the orbits at t = 0 occupy the region
internal to the ring de�ned by the previous case, while avoiding the very centre. In the third row of
Fig. 1.13, the purple points overlap green points in the t = 2.5 − 10 Gyr frames. But in the t = 0

frame, the purple points �ll precisely an empty region. Subsequently, the initially chaotic orbits
evolve to be essentially part of the bar and end regular.

Origin and morphology of boxy orbits

Regular and chaotic two-dimensional and three-dimensional orbits of stars in such models of a galactic
potentials provide with boxy orbital structures, which are the largest part of the bar galaxy component.
Boxiness in the equatorial plane is associated either with quasi-periodic orbits in the outer parts of
stability islands, or with sticky orbits around them, which can be found in a large range of energies.
In the 3D barred models in [Patsis and Katsanikas 2014a; Patsis and Katsanikas 2014c] it has been
suggested that inner boxy features can be built by means of quasi-periodic orbits at the edges of the
stability islands of the x1 family, as well as with sticky orbits just beyond the last invariant torus
around the stable x1 periodic orbit (see e.g. [Manos, C. Skokos, and C. Antonopoulos 2012] for
applications of the GALI index for periodic orbits of di�erent stability and their vicinity). It has been
also proposed that such orbits support boxiness both in face-on, as well as in edge-on projections at
the central region of the bar (about within half the way to the end of the bar). A similar dynamical
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phenomenon was leading to the boxy features on the galactic plane in the bars of 2D barred-spiral
models in [Tsigaridi and Patsis 2015]. By considering snapshots of the N−body simulation and for
the orbital study we treat each snapshot independently, as an autonomous (TI) Hamiltonian system
and calculate regular, sticky and chaotic orbits and hence examine the degree of chaoticity of the
bar-supporting orbits.

In [Chaves-Velasquez et al. 2017], the location of boxy orbits in diagrams was indicated for certain
TI analytical models for snapshots of the TD one. They are always found about the transition region
from order to chaos. By perturbing such orbits in the vertical direction a class of 3D non-periodic
orbits, which have boxy projections both in their face-on and side-on views, was found. Furthermore,
the kind of orbits supporting double boxy morphologies in the successive snapshots was investigated,
and the manner they evolve in time, i.e. from the model of the earlier snapshot to the model for the
�nal one.

In a rotating Ferrers bar, the elliptical periodic orbits of the main families are characterized by a
single non-zero initial condition along the minor axis of the bar, namely their position along the y-axis
in our models. The curve of zero velocity (ZVC) in a (EJ , y0) diagram separates the region where
orbital motion is allowed from the region where it is not. Since the main family consists of direct
periodic orbits, only the y0 > 0 part of such a diagram is of interest for us. An (EJ , y0) diagram is the
projection of a complete (EJ , y0, py0) �gure with all possible initial conditions. However, it is su�cient
for describing the properties of the orbits we present below. The line that gives the y0 initial condition
of the main family of periodic orbits is the characteristic curve of the model. Since we want to study
chaoticity in a large range of energies, we have created such (EJ , y0) diagrams for the potentials of the
three snapshots we study. In order to calculate the degree of chaoticity of the planar orbits around
the main family of periodic orbit as we move from the center of the system towards corotation, we
use the GALI2 index. We have used the GALI2 index to color-code each point in the allowed region
in the (EJ , y0) areas. The shade of the color indicates the GALI2 index that a given orbit, i.e. a point
in the (EJ , y0) diagram, has at the end of the integration. In other words, the color of an (EJ , y0)

point indicates if the orbit with y0 initial condition at EJ will lead to regular (large log10(GALI2)
values) or chaotic (very small log10(GALI2) values) motion. At the borders between these regions we
�nd points with intermediate log10(GALI2) values, which correspond to sticky chaotic orbits.

In Fig. 1.14, we show the chaoticity of the planar orbits on the equatorial plane of a TI model
based on the 2nd snapshot (at t=4.2 Gyr from Fig. 1.1). We sample the GALI2 index at two time
windows. First after time t1, corresponding to 1 Gyr and then after time t2, corresponding to 10 Gyr.
In this way we investigate both the relatively short-term as well as the long-term behaviour of the
orbits. Darker shades indicate more chaotic orbits. The color for each orbit is determined according
to its log10(GALI2) value and is taken from the colour bars given to the right of the �gures.

1.5 Summary and outlook

The adequacy of the TD model and its veri�cation is shown by (i) the similarity of the rotation curve
with the one from the N -body simulation, ensuring the global dynamics are well approximated, (ii)
the morphological similarity of the disc and bar features with those of the N -body simulation. and,
(iii) the very good quantitative agreement of the length and strength of the bar in the resulting mock
snapshots with the N -body bar. Such comparisons indicate that the TD model is able to adequately
capture both the dynamics and the morphology of the barred galaxy model in question.
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Figure 1.14: The chaoticity of the planar orbits on the equatorial plane of model based on the 2nd
snapshot (see Fig. 1.1) is given color coded in (EJ , y0) diagrams. The colour of each orbit (each
point in the �gures) corresponds to the value of the log10(GALI2) quantity calculated for it and is
taken from the color-bar on the right hand side of the �gures. In (a) we calculate log10(GALI2) for
t1 = 1 Gyr, while in (b) for t2 = 10 Gyr. In both �gures the zero velocity curve is indicated with
�ZVC�. The continuous black line in the region where motion is allowed is the characteristic of the
main family. Capital letters (A,B,...,F) and arrows pointing to the points �C� and �D� are used for
facilitating the description of the evolution of the curve (see [Chaves-Velasquez et al. 2017] for more
details). We observe that in general the orbits with the smaller GALI2 index in (a), which reach
values log10(GALI2)/ −5, become strongly chaotic in (b). However, in (b) appear also additional
features indicating chaotic behavior, that are absent in (a). Such features are the dark blue tails above
the characteristic for −0.27 / EJ / −0.17. The six heavy dots at EJ = −0.2 indicate the initial
conditions of the orbits we use to demonstrate the relation between GALI2 and their morphology (see
[Chaves-Velasquez et al. 2017] for more details). Arrows point to the 1st and 6th of them. The �ve
heavy, yellow dots at EJ = −0.206,−0.195,−0.18798,−0.17 and −0.162 indicate the initial conditions
of the boxy orbits we presented in [Chaves-Velasquez et al. 2017].

Regarding the TD analytical model, we established stability trends in terms of estimating the
amount of regular and chaotic motion in di�erent time-windows. In this case, we used a more
realistic set of initial conditions coming directly from the simulation itself and iterated them under
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the constructed TD potential. Even though, we did not manage to span the whole orbital richness of
our ensemble of initial conditions, we have rather achieved to give a �avor of the possible evolutions
for individual trajectories. It turns out that the complete set of orbits tends to become relatively
more `regular' in time.

By directly following the dynamical evolution of ensembles of orbits within the analytical potential,
we were able to calculate the fractions of chaotic and regular motion resolved in both time and space.
With this information we could evaluate not only the global trends in time, but also across several
regions of the galactic disc and of the halo, associating them with distinct morphological features.
We scrutinized the di�erent changes of regime during the evolution, tracing the types of orbits back
to their common origins.

The time-dependence of the analytical model ensures rather realistic dynamical transitions similar
to an N -body simulation, i.e. bar formation and growth, development of a ring, a dynamical halo,
etc. At the same time, this setup serves ideally to apply the GALI chaos detection method and in
this way to determine the current chaotic (or otherwise) dynamical state of any given orbit at a �xed
time interval, something that it is extremely hard to do in an N -body simulation. Moreover, the
TD model has the advantage over a derived frozen potential from an N -body simulation, from the
point of view that it incorporates smooth dynamical evolution via its time-dependent parameters and
allows us to follow the both dynamical and morphological transitions.

A recipe for building two- and three-dimensional boxy structures in rotating bars was presented
in [Chaves-Velasquez et al. 2017]. The basic idea is based on �rst starting with the planar backbone
of periodic orbits for building a bar, namely with the well known x1 family. Then, instead of populat-
ing the model with regular quasi-periodic orbits encountered in the immediate neighborhood of the
periodic orbit, one considers either periodic orbits close to the last Kolmogorov-Arnold-Moser torus
(see e.g. [Contopoulos 2002]) or, more e�ciently, the sticky chaotic orbits that surround the islands
of stability, as they appear in the surfaces of section. In this way, such a selection of orbits secures a
boxy morphology on the plane.

In a 3D model, when we eject out of the plane particles that follow the 2D boxy orbits by adding
a pz 6= 0 perturbation, we �nd that there is always a ∆pz range of perturbations for which all three
projections of the 3D orbits are boxy. A remarkable property of these sticky boxy orbits is the
formation of an X feature embedded in the bar in the face-on projections. For as long as we have
the usual ellipses of the x1 family (or the x1-tree in 3D models according to [Ch. Skokos, Patsis, and
Athanassoula 2002]) in a rotating bar, we can �nd a class of boxy 2D and 3D orbits. They are sticky
chaotic orbits as their GALI2 index indicates and they can support the bar, or a part of the bar, for
many Gyr.

Observational features that can be reproduced by using such orbits as building blocks, can �rstly
be the boxy- or peanut-shaped bulges in the central parts of the bars. In these cases in the face-on
views of the galaxies, we will observe boxy isophotes in their central parts, inside the bar, as in
the sample of galaxies presented by [Erwin and Debattista 2013]. On the other hand, the work in
[Chaves-Velasquez et al. 2017] indicates that in cases of slow rotating bars as in the TD models, the
3D boxy structure may constitute a major part of the bar. The presence of the X feature in the
face-on views of the orbits, as well as the presence of a ring surrounding the bar, raises the question
whether a dynamical mechanism as the one proposed by [Tsigaridi and Patsis 2015], acts in galaxies
like IC 5240 presented in [R. J. Buta, Corwin, and Odewahn 2007].

Perspectives
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Such an analytical TD model has the advantage of o�ering a fully time-dependent and astrophysically
realistic galaxy model, as indicated by the fact that it was successful in recovering several dynamical
and morphological features of a barred galaxy. Similar adequate TD models, exhibiting similar
dynamical evolution like N -body simulations, are potentially suited to a broad class of applications
in galactic dynamics (e.g. double bars, central mass concentrations and even bar dissolution). Once
the output of an N -body simulation has been modeled into a time-dependent analytical potential,
a variety of analyses could then be undertaken, particularly regarding orbital studies. Work that
generally relied on highly simpli�ed (and usually frozen) analytical potentials could take advantage
of more astrophysically realistic galaxy models. This bridging would a�ord an approximation to the
richness of detail of an N -body simulation, at a lower computational cost and with the versatility of
a simple analytical formulation.

This work focused on one particular galaxy simulation, but the method may be extended to
di�erent galaxy types, taking as input the results of other N -body simulations. Here we focused on
a strongly barred galaxy to maximise the e�ects we wished to explore. Clearly a natural extension
would be to compare the present results with alternative galaxy models of varying bar strengths,
disc masses, halo pro�les, etc. Such a systematic exploration would reveal to which parameters
the dynamical stability is most sensitive. For example, given the high fraction of chaotic motion
found in the inner halo, the question arises as to what is the role of the dark matter pro�le in
determining that behaviour. One might explore whether a more cuspy inner halo would help or
rather hinder the rise of regular motion. A further development would be the inclusion of models
containing gas [Patsis, Kaufmann, et al. 2009] and star formation. To this end, the hydrodynamical
simulations of [Athanassoula, Machado, and Rodionov 2013b] would be ideally suited, since they
already o�er a systematic grid of models for galaxies with di�erent halo triaxialities and di�erent
initial gas fractions, thus resulting in a variety of bar strength evolutions. More broadly, models
derived from a fully cosmological hydrodynamical simulation of galaxy formation would o�er an even
more realistic scenario (e.g. [Valluri et al. 2013]) than the usual models of isolated galaxies. Finally,
a speci�c issue that merits further analysis is the behaviour of the X-shaped (or boxy/peanut) bulge
[Patsis and Katsanikas 2014b; Patsis and Katsanikas 2014d], particularly in light of the recent interest
in the kinematics and structure of the Milky Way's own bulge [Saito et al. 2011; Zoccali et al. 2014].

In [Marostica D. A., Machado R. E. G., Manos T. and Athanassoula E., �From stellar to halo bars:
quantifying the dark matter response�, (submitted), 2020.], we aim to characterise the structure and
kinematics of the halo bar, with the goal of correlating them with the properties of the stellar bar.
Finally, and regarding families of orbits that can contribute to boxy morphologies, one can extend the
work in [Chaves-Velasquez et al. 2017] (in frozen time snapshots) and study their robustness in fully
TD analytical models [Manos T., Skokos Ch., Patsis P. A., �Orbits supporting bars in 3D, rotating,
non-autonomous Hamiltonian systems� (in preparation), 2020].





Chapter 2

Complex phenomena in quantum systems

2.1 Background and introduction

Quantum chaos, or wave chaos, is the study of the phenomena in the quantum domain which corre-
spond to the classical chaos in the Hamiltonian systems [Stöckmann 1999; Haake 2001]. Although
quantum motion (time evolution of the wavefunctions) of bound systems with purely discrete energy
spectrum is ultimately (after a su�ciently long time, asymptotically) stable and regular, in fact al-
most periodic, it exhibits many features of the classical motion such as e.g. di�usion in a chaotic
domain, for times up to the Heisenberg time. The Heisenberg time, also called break time, is an
important time scale in any quantum system, and is given by tH = 2π~/∆E, where h = 2π~ is the
Planck constant and ∆E is the mean energy level spacing, such that the mean energy level density is
ρ(E) = 1/∆E. For times shorter than approximately tH the quantum di�usion follows the classical
chaotic di�usion, but is stopped at larger times, just due to interference phenomena, which occur due
to the wave nature of the underlying system, and are typically destructive.

Pictorially speaking, for times up to tH the quantum system behaves as if its evolution operator
has a continuous spectrum, like the classical one has in the chaotic regime, but at later times it
senses the discreteness of the spectrum. If the quantum di�usion stops, while the classical chaotic
di�usion continues, we speak about the dynamical localization, or quantum localization or Chirikov
localization, �rst observed in time-dependent systems [Casati, Chirikov, et al. 1979; Stöckmann 1999;
Haake 2001]. Through the Fourier transform connection between the time and energy, the dynamical
localization re�ects itself also in the time-independent eigenfunctions, both in the eigenstates of
the Floquet operator in time-periodic systems and in the eigenfunctions of the time-independent,
classically chaotic, systems. Namely, if all classical transport times like the di�usion time (time
necessary to occupy the entire classically available chaotic part of the phase space) are all shorter
than the Heisenberg time tH , we �nd extended eigenstates. In the contrary case, one observes localized
eigenstates.

Another important aspect of quantum chaos is the statistics of the energy spectra of classically
chaotic quantal systems. One of the main cornerstones in the development of quantum chaos [Stöck-
mann 1999; Haake 2001] is the �nding that in classically fully chaotic, ergodic, autonomous Hamilto-
nian systems with purely discrete spectrum the �uctuations of the energy spectrum around its mean
behavior obey the statistical laws described by the Gaussian Random Matrix Theory (RMT) [Mehta
1991; Guhr, Müller-Groeling, and Weidenmüller 1998], provided that we are in the su�ciently deep
semiclassical limit. The latter condition means that all relevant classical transport times are smaller
than Heisenberg time tH . This statement is known as the Bohigas - Giannoni - Schmit (BGS) con-
jecture [Bohigas, Giannoni, and Schmit 1984; Casati, Valz-Gris, and Guarneri 1980]. Since ∆E ∝ ~f ,
where f is the number of degrees of freedom (the dimension of the con�guration space), we see that
for su�ciently small ~-value the stated condition will always be satis�ed. Alternatively, �xing the ~,
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we can go to high energies such that the classical transport times become smaller than tH . The role of
the antiunitary symmetries that classify the statistics in terms of di�erent ensembles of RMT, namely
Gaussian Orthogonal Ensemble (GOE), Gaussian Unitary Ensemble (GUE) or Gaussian Symplectic
Ensemble (GSE), has been elucidated in [Robnik and Berry 1986; Stöckmann 1999; Haake 2001;
Mehta 1991]. The theoretical foundation for the BGS conjecture has been initiated �rst by Berry
[Berry 1985], and later further developed by Richter and Sieber [Sieber and Richter 2001], arriving
�nally in the almost-�nal proof proposed by the group of F. Haake [Müller, Heusler, Braun, et al.
2004; Heusler et al. 2004; Müller, Heusler, Braun, et al. 2005; Müller, Heusler, Altland, et al. 2009].

On the other hand, if the system is classically integrable, then Poisson statistics applies (see
e.g. [Stöckmann 1999; Haake 2001] and references therein, and for recent advances [Robnik and
Veble 1998]). In the mixed type regime, where classical regular regions coexist in the classical phase
space with chaotic regions, being a typical KAM-scenario which is the generic situation, the so-called
Principle of Uniform Semiclassical Condensation (of the Wigner functions of the eigenstates; PUSC)
applies, see e.g. [Berry 1977]. Consequently the Berry-Robnik statistics [Berry and Robnik 1984;
Prosen and Robnik 1999a] is observed, again under the same semiclassical condition stated above,
requiring that tH is larger than all classical transport times. For more details about the mixed type
regime, see [Berry and Robnik 1984; Prosen and Robnik 1993; Prosen and Robnik 1994a; Prosen and
Robnik 1994b; Prosen and Robnik 1998; Prosen and Robnik 1999b; Grossmann and Robnik 2006]
, while some more recent developments in the �eld were published in [Batisti¢ and Robnik 2010;
Batisti¢, Manos, and Robnik 2013; Batisti¢ and Robnik 2013a; Batisti¢ and Robnik 2013b].

If the couplings between the regular eigenstates and chaotic eigenstates become important, due
to the dynamical tunneling, we can use the ensembles of random matrices that capture these e�ects
[Vidmar et al. 2007]. As the tunneling strengths typically decrease exponentially with the inverse
e�ective Planck constant, they rapidly disappear with increasing energy, or by decreasing the value
of the Planck constant. In such cases the regular and chaotic eigenstates can be separated and
the dynamical localization in the chaotic eigenstates can be studied (see [Prosen 2000] for a review
and references therein). In such a situation it turns out that the Wigner functions of the chaotic
eigenstates no longer uniformly occupy the entire classically accessible chaotic region in the classical
phase space, but are localized on a proper subset of it. Indeed, this has been analyzed with unprece-
dented precision and statistical signi�cance in [Batisti¢ and Robnik 2010; Batisti¢ and Robnik 2013a;
Batisti¢ and Robnik 2013b] for the case of mixed type systems. The important discovery is that
the level spacing distribution of the dynamically localized chaotic eigenstates in periodic, as well as
time-independent systems, is exceedingly well described by the Brody distribution (see e.g. [Brody
et al. 1981] and references therein) with the Brody parameter values βBR within the interval [0, 1],
where βBR = 0 yields the Poisson distribution in case of the strongest localization, and βBR = 1 gives
the Wigner surmise (2D GOE, as an excellent approximation of the in�nite dimensional GOE). The
Brody distribution was found to �t the empirical data much better than the distribution function
proposed in [Izrailev 1988; Izrailev 1990] and the references therein, characterized by the parameter
βIZ. It is well known that the Brody distribution so far has no theoretical foundation, but there
are many empirical results showing that we have to consider it seriously thereby being motivated for
seeking its physical foundation.

In this chapter, we review the work published mainly in [Manos and Robnik 2013; Batisti¢, Manos,
and Robnik 2013; Manos and Robnik 2014; Manos and Robnik 2015], where the quantum kicked rota-
tor (QKR) [Casati, Chirikov, et al. 1979] was explored from the classical point of view (the standard
map, SM), its quantum analog was analyzed using the N -dimensional model of Izrailev, and the
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semiclassical connection between the two pictures was considered. We shall treat the cases with the
classical dimensionless kick parameter K in the range K ∈ [5, 35], and for some purposes even up
to K = 70, and in the end shall focus on the case K = 10, which is the most chaotic one in the
sense that it is fully chaotic with minimal (in fact practically undetected) regular regions among all
cases K ∈ [5, 70] and among them best exhibits normal di�usion. Izrailev's N -dimensional model
introduced and discussed in [Izrailev 1986; Izrailev 1987; Izrailev 1989; Izrailev 1990] is treated for
various N ≤ 3000 values, which in the limit N → ∞ tends to the QKR. Due to the �niteness of
N the observed (dimensionless) localization length of the eigenfunctions in the space of the angular
momentum quantum number does not possess a sharply de�ned value, but has a certain distribu-
tion instead. Its reciprocal value is almost Gaussian distributed. This might be expected on the
analogy with the �nite time Lyapunov exponents in the Hamiltonian dynamical systems. In order
to corroborate the theoretical �ndings on this topics we perform the numerical analysis of the �nite
time Lyapunov exponents in the SM (classical kicked rotator), especially the decay of the variance.
Indeed, in the Shepelyansky picture [Shepelyansky 1986] the localization length can be obtained as
the inverse of the smallest positive Lyapunov exponent of a �nite 2k-dimensional Hamiltonian system
associated with the band matrix representation of the QKR, where k is the quantum kick parameter
(to be precisely de�ned below) and where N plays the role of time.

However, unlike the chaotic classical maps or products of transfer matrices in the Anderson tight-
binding approximation, where the mean value of the �nite time Lyapunov exponents is usually equal
to their asymptotic value at in�nite time and the variance decreases inversely with time, as we also
carefully checked, here the distribution is found to be independent of N : It has a nonzero variance
even in the limit N → ∞. This happens because the quantum kicked rotator at N = ∞ cannot be
exactly modeled with �nite bandwidth (equal to 2k) band matrices, but only approximately. Hence,
the underlying Hamiltonian system of the Shepelyansky picture has a growing dimension with N ,
implying asymptotically an in�nite set of Lyapunov exponents and behavior di�erent from the �nite
dimensional Hamiltonian systems. The observation of the distribution of the localization length
around its mean value with �nite variance also explains the strong �uctuations in the scaling laws
of the kicked rotator, such as e.g. the entropy localization measure as a function of the theoretical
scaling parameter Λ, to be discussed below. On the other hand, the two di�erent empirical localization
measures, namely the mean localization length as extracted directly from the exponentially localized
eigenfunctions and the measure based on the information entropy of the eigenstates, are perfectly
well linearly connected and thus equivalent. Therefore these results call for a re�ned theory of the
localization length in the quantum kicked rotator and similar systems, where we must predict not only
the mean value of the inverse localization length but also its (Gaussian) distribution, in particular
the variance [Manos and Robnik 2015].

2.2 The classical and quantum kicked rotator models

The classical kicked rotator model: the standard map

The kicked rotator was introduced in [Casati, Chirikov, et al. 1979] and is one of the key model systems
in classical and quantum chaos, especially for time-periodic (Floquet) systems. The Hamiltonian
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function is:

H =
p2

2I
+ V0 δT (t) cos θ. (2.1)

Here p is the (angular) momentum, I the moment of inertia, V0 is the strength of the periodic kicking,
θ is the (canonically conjugate, rotation) angle, and δT (t) is the periodic Dirac delta function with
period T . Between the kicks the rotation is free, therefore the Hamilton equations of motion can be
immediately integrated, and thus the dynamics can be reduced to the SM, or so-called Chirikov-Taylor
map, given by: pn+1 = pn + V0 sin θn+1,

θn+1 = θn +
T

I
pn,

(2.2)

where the quantities (θn, pn) refer to their values just immediately after the n-th kick. Then, by
introducing new dimensionless momentum Pn = pnT/I, we get:{

Pn+1 = Pn +K sin θn+1,

θn+1 = θn + Pn,
(2.3)

where the system is now governed by a single classical dimensionless kick parameter K = V0T/I, and
the mapping is area preserving.

The generalized di�usion process of the SM [Eq. (2.3)] is de�ned by:

〈(∆P )2〉 = Dµ(K)nµ, (2.4)

where n is the number of iterations (kicks), and the exponent µ is in the interval [0, 2], and all variables
P , θ and K are dimensionless. Here Dµ(K) is the generalized classical di�usion constant. In the case
µ = 1 we have the normal di�usion, and D1(K) is then the normal di�usion constant, whilst in the
case of anomalous di�usion we observe subdi�usion when 0 < µ < 1 or superdi�usion if 1 < µ ≤ 2.
In the case µ = 2 we have the ballistic transport which is associated strictly with the presence of
accelerator modes.

In the case of the normal di�usion µ = 1 the theoretical value of D1(K) is given in the literature,
e.g. in [Izrailev 1990]:

D1(K) =

{
1
2K

2 [1− 2J2(K) (1− J2(K))] , if K ≥ 4.5

0.15(K −Kcr)
3, if Kcr < K ≤ 4.5

, (2.5)

where Kcr ' 0.9716 and J2(K) is the Bessel function. Here we neglect higher terms of order K−2.
However, there are many important subtle details in the classical di�usion further discussed below.

The dependence of the di�usion constant for the growth of the variance of the momentum on
K is very sensitive, and described in the theoretical result [Eq. (2.5)], and fails around the period 1
accelerator mode intervals

(2πn) ≤ K ≤
√
(2πn)2 + 16, (2.6)

n any positive integer. In these intervals for the accelerator modes n = 1 we have two stable �xed

points located at p = 0, θ = π − θ0 and p = 0, θ = π + θ0, where θ0 = arcsin(2π/K). There are two
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unstable �xed points at p = 0, θ = θ0 and p = 0, θ = 2π − θ0. For example, in the case K = 6.5

we have θ0 ≈ 1.31179. Moreover, as the di�usion might even be anomalous, we have recalculated the
e�ective di�usion constant Deff = 〈(∆P )2〉/n numerically, which in general is not equal to the Dµ

de�ned in Eq. (2.4). In Fig. 2.1 we show the Deff for the SM as a function of K for three discrete
times n, i.e., the number of the iterations of the SM, n = 1000 (lower red dashed line), n = 5000

(intermediate blue solid) and n = 10000 (upper black dot-dashed). In the background we have plotted
the theoretical di�usion constant D1 taking into account only the normal di�usion (gray dotted line)
[Eq. (2.5)]. The presence of accelerator modes at certain intervals ofK (and the sticky objects around)
generates anomalous di�usion which is rendered by peaks. Here we used ≈ 100000 (314× 314) initial
conditions uniformly distributed in a grid on the entire phase space [0, 2π] × [0, 2π]. We see that
the dotted theoretical curve stemming from Eq. (2.5) describes the di�usion constant well outside
the accelerator mode intervals. In general, however, the di�usion might be non-normal, described in
Eq. (2.4). There are also accelerator modes of higher period (2,3,4...) observed and examined in this
work.
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Figure 2.1: The classical di�usion constant Deff = 〈(∆P )2〉/n for the SM as a function of K (δK =

0.05) for three discrete times n, i.e., the number of the iterations of the SM, n = 1000 (lower red
dashed line), n = 5000 (intermediate blue solid) and n = 10000 (upper black dot-dashed). In the
background we have plotted the classical di�usion constant D1 (gray dotted line) [Eq. (2.5)]. The
presence of accelerator modes at certain intervals of K (and the sticky objects around) generate
anomalous di�usion which is rendered by peaks. Here we used ≈100000 (314× 314) initial conditions
uniformly distributed in a grid on the entire phase space [0, 2π]× [0, 2π].

In Fig. 2.2 we show the variance of the momentum P in the SM [Eq. (2.3)] with K = 6.5 (red
crosses) where small islands and accelerator mode of period 1 are present and K = 10.0 (blue stars)
where the phase space is fully chaotic for the same initial conditions as in Fig. 2.1 as a function of
the discrete time n (number of iterations), in log-log representation. The two slopes associated with
di�erent types of di�usion are µ(K = 6.5) = 1.61252 (dotted), µ(K = 10.0) = 0.991334 (solid) with
standard deviation errors ±0.01271 (0.7881%) and ±0.0009537 (0.0962%) respectively.

In this manner we have calculated the di�usion exponent µ for all K on the interval K ∈ [Kcr, 70]

and the result is shown in Fig. 2.3. We show the di�usion exponent µ as a function ofK after n = 5000
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Figure 2.2: The variance of the momentum P in the SM [Eq. (2.3)] with K = 6.5 (red crosses) where
small islands and accelerator mode of period 1 are present and K = 10.0 (blue stars) where the phase
space is fully chaotic for the same initial conditions as in Fig. 2.1 as a function of the discrete time
n (number of iterations), in log-log representation. The two slopes associated with di�erent types of
di�usion are µ(K = 6.5) = 1.61252 (dotted), µ(K = 10.0) = 0.991334 (solid) with standard deviation
errors ±0.01271 (0.7881%) and ±0.0009537 (0.0962%) respectively.

iterations, using a �ne grid of 314 × 314 (≈ 100000) initial conditions on the plane (θ, P ) = (0, 2π).
The µ is calculated by the slopes, of the lines of the variance of the momentum P as a function
of iterations, as it is described in [Eq. (2.4)] and for a grid of cells on the entire phase space. The
intervals on the black horizontal line µ = 0.9 indicate the intervals of stable accelerator modes of
period 1 [Eq. (2.6)]. All intervals of K with exponent µ ≈ 1 are associated with normal di�usion
processes. The large peaks (appearing mainly for K > 2π marked with full black circles) re�ect the
anomalous di�usion due to accelerator modes [of period 1, being located inside the intervals predicted
by the Eq. (2.6)]. However, there is a number of relatively smaller peaks for K < 2π (more clearly
presented in the inset panel of Fig. 2.3), whose origin is accelerator modes of higher period as we will
see later, and also for 2π < K < 4π, both these sets are marked with empty circle. With the symbol
(×) we mark few typical examples, close to those peaks, for which the di�usion is normal and are
studied in detail in [Manos and Robnik 2014].

All the large peaks for K > 2π, marked with full black circles in Fig. 2.3, correspond to regimes
with accelerator modes of period 1 and they decrease monotonically as a power law:

f(x) = axb, (2.7)

where a = 2.41645 and b = −0.195896 [blue dotted line in Fig. 2.3, with asymptotic standard
error ±0.04294 (1.777%) and ±0.00537 (2.741%) respectively] indicating that for K > 70 their e�ect
decreases signi�cantly. On the other hand, the size of the successive accelerator modes of period 1
intervals decays with a power law de�ned simply and analytically by the Eq. (2.6).

In order to understand the e�ect of the presence of accelerator modes in the di�usion and transport
properties of the phase space in the SM, we �rst picked an, as much as possible, representative sample
of K-values. In more detail, we included in our test-cases all the K-values which correspond to all
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Figure 2.3: The di�usion exponent µ as a function of K after n = 5000 iterations and for ≈100000
(314 × 314) initial conditions on the plane (θ, P ) = (0, 2π). The intervals on the black horizontal
line µ = 0.9 indicate the intervals of stable accelerator modes of period 1 [Eq. (2.6)]. All intervals of
K with exponent µ ≈ 1 are associated with normal di�usion processes. The large peaks (appearing
mainly for K > 2π marked with full black circles) re�ect the anomalous di�usion accelerator modes
(mainly of period 1). The smaller peaks for K < 2π (more clearly presented in the inset panel)
originate by accelerator modes of higher period together with those for 2π < K < 4π marked with
empty circle and a few typical examples close to those peaks [marked with the symbol (×)], for
which the di�usion is normal, are studied thoroughly in [Manos and Robnik 2014]. The blue dotted
line corresponds to the power law which describes the decay of the exponent µ of the main peaks'
amplitude due to accelerator modes of period 1.

the main peaks appearing in Fig. 2.3 with K > 2π together with a few cases from the `plateaus' of
this curve. Furthermore, we took into account the peaks occurring for 1 . K . 2π (see the empty
black circles in the inset zoom in Fig. 2.3) which are associated with accelerator modes of higher
periodicity, as it will be seen thereupon. The case with K = 3.8, whose µ value is ≈ 1, is chosen for
comparison reasons from the plateau and as it turns out has no accelerator modes in its phase space
causing anomalous di�usion. Here we should stress that we repeated the same procedure for larger
number of iterations n = 10000 and it turns out that the exponent µ has well converged to the values
shown in Fig. 2.3.

The distribution of the momenta in the case of normal di�usion is found to be perfect Gaussian,
whilst for anomalous di�usion a strong departure from the Gaussian distribution is observed, being
well �tted by a stable Lévy distribution, characterized by the parameter α ∈ [0, 2]. The details are
given in reference [Manos and Robnik 2014]. For each one of the K-values of the nonlinearity kick
parameter of Fig. 2.3, we have performed a thorough study by calculating and comparing the following
quantities:

(a) The index of stability α-parameter of the Lévy stable distribution.

(b) The di�usion exponent µ as described in Eq. (2.4).

In the case of normal di�usion (Gaussian statistics) for the above quantities, one expects to �nd
α = 2 for the Lévy stable distribution and di�usion exponent µ = 1, while in the general case
we �nd other values. We have calculated the µ exponent emerging from a small box/ensemble



36 Chapter 2. Complex phenomena in quantum systems

of initial conditions in the phase space and thus produced the µ-landscape in the phase space of
the SM. Furthermore, we have also employed the GALI-method [Ch. Skokos, T. Bountis, and Ch.
Antonopoulos 2007; C. Skokos and Manos 2016] to calculate the GALI-index in order to identify the
regular and chaotic regions in the phase space of the SM, which also quanti�es the degree of chaos
(indirectly). The GALI-landscape and the µ-landscape are found to correspond very well to each
other, where it seems that the µ-plot contains more information than GALI-plot [Manos and Robnik
2014]. Hence, the SM exhibits normal di�usion for most of the K values on the interval [Kcr, 70],
except for the accelerator mode intervals where anomalous di�usion is observed, with the exponent
µ typically being larger than 1. Using these plots and the described methodology we found that the
case K = 10 is the closest to full chaos (no regular islands present) and exhibits the normal di�usion
for all initial conditions in the phase space of the SM.

The quantum kicked rotator model

The quantum kicked rotator (QKR) is the quantized version of Eq. (2.1), namely:

Ĥ = −~2

2I

∂2

∂θ2
+ V0 δT (t) cos θ. (2.8)

The Floquet operator F̂ acting on the wavefunctions (probability amplitudes) ψ(θ), θ ∈ [0, 2π), upon
each period (of length T ) can be written as (see [Stöckmann 1999]):

F̂ = exp

(
− iV0

~
cos θ

)
exp

(
− i~T

2I

∂2

∂θ2

)
, (2.9)

where now we have two dimensionless quantum control parameters:

k =
V0
~
, τ =

~T
I
, (2.10)

which satisfy the relationshipK = kτ = V0T/I, K being the classical dimensionless control parameter
of Eq. (2.3). By using the angular momentum eigenfunctions:

|n〉 = an(θ) =
1√
2π

exp(i n θ), (2.11)

where n is any integer, we �nd the matrix elements of F̂ , namely:

Fmn = 〈m|F̂ |n〉 = exp

(
− iτ

2
n2
)
in−mJn−m(k), (2.12)

where Jν(k) is the ν-th order Bessel function. For a wavefunction ψ(θ) we shall denote its angular
momentum component (Fourier component) by:

un = 〈n|ψ〉 =
∫ 2π

0
a∗n(θ)ψ(θ) dθ =

1√
2π

∫ 2π

0
ψ(θ) exp(−inθ) dθ. (2.13)

The QKR has very complex dynamics and spectral properties. As the phase space is in�nite (cylinder),
p ∈ (−∞,+∞), θ ∈ [0, 2π), the spectrum of the eigenphases of F̂ , denoted by ϕn, or the associated
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quasienergies ~ωn = ~ϕn/T , can be continuous, or discrete. It is quite well understood that for the
resonant values of τ :

τ =
4πr

q
, (2.14)

q and r being positive integers without common factor, the spectrum is continuous, as rigorously
proven by Izrailev and Shepelyansky [Izrailev and Shepelyansky 1980], and the dynamics is (asymp-
totically) ballistic, meaning that starting from an arbitrary initial state the mean value of the momen-
tum 〈p̂〉 increases linearly in time, and the energy of the system E = 〈p̂2〉/(2I) grows quadratically
without limits. For the special case q = r = 1 this can be shown elementary. Such behavior is a
purely quantum e�ect, called the quantum resonance. Also, the regime of quadratic energy growth
manifests itself only after very large time, which grows very fast with the value of the integer q from
Eq. (2.14), such that for larger q this regime practically cannot be observed.

For generic values of τ/(4π), being irrational number, the spectrum is expected to be discrete but
in�nite. But the picture is very complicated. Casati and Guarneri [Casati and Guarneri 1984] have
proven that for τ/(4π) su�ciently close to a rational number, there exists a continuous component
in the quasienergy spectrum. So, the absence of dynamical localization for such cases is expected as
well. Without a rigorous proof, we �nally believe that for all other (�good�) irrational values of τ/(4π)
we indeed have discrete spectrum and quantum dynamical localization. In such case the quantum
dynamics is almost periodic, and because of the e�ective �niteness of the relevant set of components
un and of the basis functions involved, just due to the exponential localization (see below), it is
even e�ectively quasiperiodic (e�ectively there is a �nite number of frequencies), and any initial state
returns after some recurrence time arbitrarily close to the initial state. Thus the energy cannot grow
inde�nitely.

2.3 Localization and Di�usion Properties

The asymptotic localized eigenstates are exponentially localized. The (dimensionless) theoretical lo-
calization length in the space of the angular momentum quantum numbers is given below, and is
equal (after introducing some numerical correction factor αµ) to the dimensionless localization time
tloc [Eq. (2.16)]. We here denote it by L unlike in reference [Izrailev 1990] and [Manos and Robnik
2013]. Therefore, an exponentially localized eigenfunction centered at m in the angular momentum
space [Eq. (2.11)] has the following form:

|un|2 ≈
1

L
exp

(
−2|m− n|

L

)
, (2.15)

where un is the probability amplitude [Eq. (2.13)] of the localized wavefunction ψ(θ). The argument
leading to tloc in Eq. (2.16) originates from the observation of the dynamical localization (see e.g.
[Casati, Chirikov, et al. 1979]), and is well explained in [Stöckmann 1999], in case of normal di�usion
µ = 1, whilst for general µ we gave a theoretical argument in [Manos and Robnik 2013]. We shall
denote σ = 2/L, and will later on determine the σ's directly from the individual numerically calculated
eigenstate.

But where one is able to observe such phenomena (spectral statistics, namely Brody-like level
spacing distribution) analogous in the quantum chaos of time-independent bound systems with dis-
crete spectrum? To see these e�ects the system must have e�ectively �nite dimension, because in
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the in�nite dimensional case we simply observe Poissonian statistics. Truncation of the in�nite ma-
trix Fmn in Eq. (2.12) in tour de force is not acceptable, even in the technical case of numerical
computations, since after truncation the Floquet operator is no longer unitary.

The only way to obtain a quantum system which shall in this sense correspond to the classical
dynamical system [Eqs. (2.1), (2.2) and (2.3)] is to introduce a �nite N -dimensional matrix, which
is symmetric unitary, and which in the limit N → ∞ becomes the in�nite dimensional system with
the Floquet operator [Eq. (2.9)]. The semiclassical limit is k → ∞ and τ → 0, such that K = kτ =

constant. As it is well known [Izrailev 1990], for the reasons discussed above, the system behaves very
similarly for rational and irrational values of τ/(4π). Such a N -dimensional model [Izrailev 1988] will
be introduced below.

Following [Manos and Robnik 2013] and references therein, we �nd that the dimensionless Heisen-
berg time (also called break time or localization time and denoted by tloc in units of kicking period
T ) is equal to the dimensionless localization length L (see Eq. (2.20 below). Here we repeat brie�y
the main steps to derive this result:

L ≈ tloc =

(
αµ
Dµ(K)

τ2

) 1
2−µ

. (2.16)

where αµ is a numerical constant to be determined empirically, and in case of normal di�usion µ = 1

is close to 1/2. Since this semiclassical approach and derivation is quite important, we repeat the
arguments given in [Manos and Robnik 2013].

The generalized di�usion process of the SM [Eq. (2.3)] is de�ned by Eq. (2.4). As the real physical
angular momentum p and P are connected by P = pT/I we have for the variance of p the following
equation:

〈(∆p)2〉 = I2

T 2
Dµn

µ. (2.17)

Now we argue as follows: The general rule in quantum chaos is that the quantum di�usion follows
the classical di�usion up to the Heisenberg time (or break time, or localization time), de�ned as:

tH =
2π~
∆E

, (2.18)

where ∆E is the mean energy level spacing. In our case we have the quasienergies and ∆E = ~∆ω,
where ∆ω = ∆ϕ/T , and ∆ϕ is the mean spacing of the eigenphases. This might be estimated at
the �rst sight as ∆ϕ = 2π/N , but this is an underestimate, as e�ectively we shall have due to the
localization only L levels on the interval [0, 2π). Therefore ∆ϕ = 2π/L and we �nd:

tH =
2πT

∆ϕ
= TL. (2.19)

Since T is the period of kicking, and tH is the real physical continuous time, we get the result that the
discrete time [number of iterations of Eq. (2.3) at which the quantum di�usion stops], the localization
time tloc is indeed equal to the localization length in momentum space, i.e.:

tloc ≈ L. (2.20)

Since our derivation is not rigorous, we use the approximation symbol rather than equality, in par-
ticular as the de�nition depends linearly on the de�nition of the Heisenberg time. Now the �nal
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step: By inspection of the dynamics of the Floquet quantal system [Eqs. (2.8),(2.9)] one can see (the
derivation can be found in [Stöckmann 1999]) that the value of the variance of the angular momen-
tum at the point of stopping the di�usion 〈(∆p)2〉 is proportional to ~2L2, and to achieve equality we
introduce a dimensionless numerical (empirical,correction) factor αµ by writing 〈(∆p)2〉 = ~2L2/αµ,
which on the other hand must be equal just to the classical value at stopping time tloc, namely equal
to (I/T )2DµLµ. From this it follows immediately Eq. (2.16). The numerical constant αµ is found
empirically by numerical calculations, for instance in the literature the caseK = 5 with µ = 1 is found
to be α1 = 0.5 (however, we �nd numerically α1 = 0.45, taking into account Eq. (2.16) when studying
the model's localization properties). Thus, we have the theoretical formula for the localization length
in the case of generalized classical di�usion [Eqs. (2.4),(2.17)], which we use in de�ning the scaling
parameter Λ below.

2.4 The Floquet (Izrailev) model

The motion of the QKR [Eq. (2.8)] after one period T of the ψ wavefunction can be described also
by the following symmetrized Floquet mapping, describing the evolution of the kicked rotator from
the middle of a free rotation over a kick to the middle of the next free rotation, as follows:

ψ(θ, t+ T ) = Ûψ(θ, t), (2.21)

Û = exp

(
i
T~
4I

∂2

∂θ2

)
exp

(
−iV0

~
cos θ

)
exp

(
i
T~
4I

∂2

∂θ2

)
.

Thus, the ψ(θ, t) function is determined in the middle of the rotation, between two successive kicks.
The evolution operator Û of the system corresponds to one period. Due to the instant action of the
kick, this evolution can be written as the product of three non-commuting unitary operators, the

�rst and third of which correspond to the free rotation during half a period Ĝ(τ/2) = exp
(
i τ4

∂2

∂θ2

)
,

τ ≡ ~T/I, while the second B̂(k) = exp(−ik cos θ), k ≡ V0/~, describes the kick. Like before, we have
only two dimensionless parameters, namely τ and k, and K = kτ = V0T/I. In the case K ≡ kτ � 1

the motion is well known to be strongly chaotic, for K = 10 certainly without any regular islands
of stability, as mentioned, and also there are no accelerator modes, so that the di�usion is normal
(µ = 1). We have carefully checked that the case K = 10 is the closest to the normal di�usion µ = 1

for all K ∈ [Kcr, 70]. The transition to classical mechanics is described by the limit k → ∞, τ → 0

while K = const. We shall consider the regimes on the interval 3 ≤ k ≤ 20, but will concentrate
mostly on the semiclassical regime k ≥ K, where τ ≤ 1.

In order to study how the localization a�ects the statistical properties of the quasienergy spectra,
we use the model's representation in the momentum space with a �nite number N of levels [Izrailev
1988; Izrailev 1990; Izrailev 1986; Izrailev 1987; Izrailev 1989], which we refer to as Izrailev model:

un(t+ T ) =
N∑

m=1

Unmum(t), n,m = 1, 2, ..., N . (2.22)

The �nite symmetric unitary matrix Unm determines the evolution of anN -dimensional vector, namely
the Fourier transform un(t) of ψ(θ, t), and is composed in the following way:

Unm = Gnn′Bn′m′Gm′m (2.23)
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where Gll′ = exp
(
iτ l2/4

)
δll′ is a diagonal matrix corresponding to free rotation during a half period

T/2, and the matrix Bn′m′ describing the one kick has the following form:

Bn′m′ =
1

2N + 1
× (2.24)

2N+1∑
l=1

{
cos

[(
n′ −m′) 2πl

2N + 1

]
− cos

[
(n′ +m′)

2πl

2N + 1

]}
× exp

[
−ik cos

(
2πl

2N + 1

)]
.

The Izrailev model [Eqs. (2.22-2.24)] with a �nite number of states is considered as the quantum
analogue of the classical SM on the torus with closed momentum p and phase θ, where Unm describes
only the odd states of the systems, i.e. ψ(θ) = −ψ(−θ), provided we have the case of the quantum
resonance, namely τ = 4πr/(2N+1), where r is a positive integer, as in Eq. (2.14). The matrix (2.24)
is obtained by starting the derivation from the odd-parity basis of sin(nθ) rather than the general
angular momentum basis exp(inθ).

Nevertheless, we shall use this model for any value of τ and k, as a model which in the resonant
and in the generic case (irrational τ/(4π)) corresponds to the classical kicked rotator, and in the limit
N → ∞ approaches the in�nite dimensional model [Eq. (2.21)], restricted to the symmetry class of the
odd eigenfunctions. It is of course just one of the possible discrete approximations to the continuous
in�nite dimensional model.

The di�erence of behavior between the generic case and the quantum resonance shows up only
at very large times, which grow fast with (2N + 1), as explained above. It turns out that also the
eigenfunctions and the spectra of the eigenphases at �nite dimension N of the matrices that we
consider do not show any signi�cant di�erences in structural behavior for the rational or irrational
τ/(4π), which we have carefully checked. Indeed, although the eigenfunctions and the spectrum of
the eigenphases exhibit sensitive dependence on the parameters τ and k, their statistical properties
are stable against the small changes of τ and k. This is an advantage, as instead of using very
large single matrices for the statistical analysis, we can take a large ensemble of smaller matrices
for values of τ and k around some central value of τ = τ0 and k = k0, which greatly facilitates the
numerical calculations and improves the statistical signi�cance of our empirical results. Therefore our
approach is physically meaningful. Similar approach was undertaken by Izrailev (see [Izrailev 1990]
and references therein). In Figs. 2.4 and 2.5 (from [Manos and Robnik 2013]), we show the examples
of strongly exponentially localized eigenstates by plotting the natural logarithm of the probabilities
wn = |un|2 versus the momentum quantum number n, for two di�erent matrix dimensions N . By
calculating the localization length L from the slopes σ = 2/L of these eigenfunctions using Eq. (2.15)
we can get the �rst quantitative empirical localization measure to be discussed and used later on. The
new �nding in [Manos and Robnik 2015] is that σ has a distribution, which is close to the Gaussian
(but cannot be exactly that, because σ is a positive de�nite quantity). It does not depend on N and
survives the limit N → ∞. Therefore also L has a distribution whose variance does not vanish in the
limit N → ∞.
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Figure 2.4: (a) A sample of strong localized eigenstates for K = 7, r = 222, k ≈ 2.00 and N = 398

(b) Same for K = 7, r = 444, k ≈ 2.00 and N = 796.
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Figure 2.5: (a) A sample of weak localized eigenstates for K = 7, r = 63, k ≈ 7.05 and N = 398 (b)
Same for K = 7, r = 127, k ≈ 6.99 and N = 796.

2.5 Dynamical (Chirikov) Localization

Following [Manos and Robnik 2013] and [Izrailev 1990] we introduce another measure of localization.
For each N -dimensional eigenvector of the matrix Unm the information entropy is:

HN (u1, ..., uN ) = −
N∑

n=1

wn lnwn, (2.25)

where wn = |un|2, and
∑

n |un|2 = 1.
In case of the random matrix theory being applicable to our system [Eqs. (2.21) and (2.22-2.24)],

namely the Circular orthogonal ensemble (COE) (or GOE), due to the isotropic distribution of the
eigenvectors of a COE of random matrices, we have the probability density function of |un| on the
interval [0, 1]:

wN (|un|) =
2Γ(N/2)√

πΓ((N − 1)/2)
(1− |un|2)(N−3)/2. (2.26)

It is easy to show that in the limit N → ∞ this becomes a Gaussian distribution:

wN (|un|) =
√

2N

π
exp

(
−N |un|2

2

)
, (2.27)
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and the corresponding information entropy [Eq. (2.25)] is equal to:

H GOE
N = ψ

(
1

2
N + 1

)
− ψ

(
3

2

)
' ln

(
1

2
Na

)
+O(1/N), (2.28)

where a = 4
exp(2−γ) ≈ 0.96, while ψ is the digamma function and γ the Euler constant (' 0.57721...).

For a uniform distribution over M states wn = 1/M we get HN ≈ logM , and thus M ≈ exp(HN ).
Thus, we get the insight that the correct measure of localization must be proportional to exp(HN ),
but properly normalized, such that in case of extendedness (GOE/COE) it is equal to N .

Therefore the entropy localization length lH is de�ned as:

lH = N exp
(
HN − H GOE

N

)
. (2.29)

Indeed, for entirely extended eigenstates lH = N . Thus, lH can be calculated for every eigenstate
individually. However, all eigenstates, while being quite di�erent in detail, are exponentially localized,
and thus statistically very similar. Therefore, in order to minimize the �uctuations one uses the mean
localization length d ≡ 〈lH〉, which is computed by averaging the entropy over all eigenvectors of the
same matrix (or even over an ensemble of similar matrices):

d ≡ 〈lH〉 = N exp
(
〈HN 〉 − H GOE

N

)
. (2.30)

The localization parameter βloc is then de�ned as:

βloc =
d

N
≡ 〈lH〉

N
. (2.31)

The parameter that determines the transition from weak to strong quantum chaos is neither the
strength parameter k nor the localization length L, but the ratio of the localization length L to the
size N of the system in momentum p:

Λ =
L
N

=
1

N

(
αµDµ(K)

τ2

) 1
2−µ

, (2.32)

where L ≈ tloc, the theoretical localization length Eq. (2.16), was derived in [Manos and Robnik 2013].
Λ is the scaling parameter of the system. The relationship of Λ to βloc is discussed e.g. in [Casati,
Guarneri, et al. 1990; Izrailev 1990] and further developed in [Manos and Robnik 2013] (Sect. VII).
Here we just summarize by showing the empirical scaling property of Λ versus βloc in Fig. 2.6, where
the approximate analytical description is given by the function:

βloc =
γΛ

1 + γΛ
, γ = 4.04, (2.33)

which is similar to the scaling law in in [Casati, Guarneri, et al. 1990], but not the same. Namely, the
value γ = 4.04 di�ers somewhat from γ ≈ 3.2 in [Casati, Guarneri, et al. 1990], where βloc is plotted
versus x ≈ 4Λ.

In producing this plot we have used Eqs. (2.16),(2.32) for Λ, which is just a rough estimate.
Indeed, as we shall show below, following [Manos and Robnik 2015], Λ is not a number in a given
system, at �xed K, k and N , but has a distribution, whose reciprocal is approximately Gaussian
distributed, and Eq. (2.16) is just a rough estimate of the mean value of Λ. Therefore we should
not be surprised any more to see large �uctuations in the scaling law of Fig. 2.6, an observation
entirely unexplained so far, but clari�ed in [Manos and Robnik 2015]. The statistical properties of
the localization measure will be discussed below.
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Figure 2.6: The parameter βloc vs. Λ for 161 × 398 elements for various values of K and for a wide
range of k values, where the scaling law [Eq. (2.33)] is shown with the black line.

2.6 Level spacing distribution: P (S), W (S) and U(S)

To study the eigenvalue statistics of quantum Floquet systems and quantum maps one considers the
eigenphases ϕn ∈ [0, 2π) de�ned by λn = eiϕn . In such case the spectral unfolding procedure is very
easy, as the mean level density is N/(2π), i.e. the mean level spacing is 2π/N . The histogram of
the level spacing distribution P (S) is the distribution of the spacings Sn := N

2π (ϕn+1 − ϕn) with
n = 1, ..., N and ϕN+1 := ϕ1, in the bins of certain suitable size ∆S. The factor N/2π ensures that
the average of all spacings Sn is 1, and thus P (S) is supported on the interval [0, N ], and its upper
limit goes to ∞ when N → ∞.

The cumulative distribution W (S), or integrated level spacing distribution, preserving the full
accuracy of all numerical eigenvalues/spacings, useful especially when the number of levels N is
small, is de�ned as:

W (S) =

∫ S

0
P (x)dx ≡ #{n|Sn ≤ S}

N
. (2.34)

Finally, we shall use also the so-called U -function (see Appendix A in [Manos and Robnik 2015]):

U(S) =
2

π
arccos

√
1−W (S). (2.35)

The U -function has the advantage that its expected statistical error δU is independent of S, being
constant for each S and equal to δU = 1/(π

√
N s), where Ns is the total number of objects in the

W (S) distribution. The numerical pre-factor 2/π in Eq. (2.35) is determined in such a way that U(S)

∈ [0, 1] when W (S) ∈ [0, 1]. The U -function is an excellent and re�ned criterion used to assess the
goodness of the �t of the theoretical level spacing distribution.

The important special level spacing distributions that we are using are the following:

� The Poisson distribution:

PPoisson(S) = e−S , WPoisson(S) = 1− e−S . (2.36)

� The COE or GOE distribution:

PCOE(S) ≈ PWigner(S) =
π

2
exp

(
−π
4
S2
)
, WCOE(S) = 1− exp

(
−πS2

4

)
. (2.37)



44 Chapter 2. Complex phenomena in quantum systems

� The Brody distribution, [Brody et al. 1981]:

PBR(S) = C1S
β exp

(
−C2S

β+1
)
, (2.38)

where the two parameters C1 and C2 are determined by the two generic normalization conditions
that must be obeyed by any P (S):∫ ∞

0
P (S)dS = 1, 〈S〉 =

∫ ∞

0
SP (S)dS = 1, (2.39)

thus with 〈S〉 = 1 being the mean distance between neighboring levels (after unfolding). Hence:

C1 = (β + 1)C2, C2 =

[
Γ

(
β + 2

β + 1

)]β+1

, (2.40)

where Γ(x) denotes the Gamma function. In the strongly localized regime β = 0 we observe
Poissonian statistics while in the fully chaotic one β = 1 and the RMT applies. The Brody
cumulative level spacing distribution is:

WBR(S) = 1− exp(−C2S
β+1). (2.41)

� Izrailev distribution: In [Izrailev 1988; Izrailev 1989], Izrailev suggested the following distri-
bution in order to describe the intermediate statistics, i.e. the non-integer β in the following
PDF could be associated with the statistics of the quasienergy states with chaotic localized
eigenfunctions, also approximating the level spacing distribution arising from the Dyson COE
joint probability distribution [Porter 1965]:

PIZ(S) = A

(
1

2
πS

)β

exp

[
− 1

16
βπ2S2 −

(
B − 1

4
πβ

)
S

]
, (2.42)

where again the two parameters A and B are determined by the two normalization conditions
〈1〉 = 〈S〉 = 1 given above.

Of course, we must be fully aware of the fact that both, Brody and Izrailev distributions, are ap-
proximations. It is clear that at βBR = 1 we get precisely Wigner surmise [Eq. (2.37)], which is the
exact GOE only for two-dimensional Gaussian random matrices, and thus only an (excellent) approx-
imation for the in�nite dimensional GOE case. Indeed, if we try to �t the exact in�nite dimensional
GOE level spacing distribution with the Brody distribution, we do not get βBR = 1, but instead
βBR = 0.953, see [Brody et al. 1981]. Also, we should mention that Izrailev et al. have published an
improved distribution function [Casati, Izrailev, and Molinari 1991], which we have also tested, and
is de�ned by:

P new
IZ (S) = ASβ(1 +BβS)f(β) exp[−π

2

16
βS2 − π

2
(1− β

2
S)] (2.43)

where f(β) =
2β(1−β

2
)

β − 0.16874 and A,B are the normalization parameters. We found (see below)
that in our applications it is even worse than the original version [Eq. (2.42)].
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2.7 Lévy stable distribution

The physical origin and relevance of the Lévy stable distribution to this kind of problems, like the
SM, is well summarized in e.g. [Zaslavsky 2007; Zaslavsky, Edelman, and Niyazov 1997; Klafter and
Zumofen 1994; Geisel, Nierwetberg, and Zacherl 1985; Zaslavsky and Edelman 2000]. In probabil-
ity theory, an α-Lévy skew stable distribution is a four parameter family of continuous probabil-
ity distributions, characterizing the location, scale, skewness and kurtosis. Following [Nolan 2013],
for a random variable X with distribution function F (x), the characteristic function is de�ned by
ϕ(u) = E exp(iuX) =

∫∞
−∞ exp(iux)dF (x). Then, a random variable X is stable if and only if

X
δ
= aZ + b, with a > 0, b ∈ R and Z is a random variable with characteristic function:

E exp(iuZ) =

{
e−|u|α[1−iβ tan πα

2
(signu)], α 6= 1

e−|u|[1+iβ tan 2
π
(signu)] log |u|, α = 1

, (2.44)

where 0 < α ≤ 2 and −1 ≤ β ≤ 1 (the symbol
δ
= indicates that both expressions have the same

probability law). We then adopt the parametrization k = 0, S(α, β, γ, δ; 0) for which the random
variable X given by:

X
δ
=

{
γ(Z − β tan(πα2 )) + δ, α 6= 1

γZ + δ, α = 1
, (2.45)

has characteristic function:

S(α, β, γ, δ; 0) ≡ E exp(iuX) =

{
eiuδ−γα|u|α(1+iβ(−1+|uγ|1−α)sign(u) tan(πα

2
)), α 6= 1

eiuδ−
γ|u|(π+2iβ log(|uγ|))sign(u)

π , α = 1
, (2.46)

where Z = Z(α, β) is de�ned as described in Eq. (2.44), α ∈ (0, 2] is the index of stability or
characteristic exponent, β ∈ [−1, 1] the skewness parameter, γ > 0 the scale parameter and δ ∈ R
location parameter. For the �ts with data we used the Stable Distribution package of Mathematica

[Rimmer and Nolan 2005]. Two important special cases are the Gaussian distribution with α = 2 and
the Cauchy-Lorentz with α = 1 which are the only ones with an explicit closed formula.

2.8 Results

In Fig. 2.7, we present the probability distribution function of the momentum P after n = 5000

iterations (black �lled circles) and the �ts with the α-Lévy stable distribution (solid blue line) for a
sample of K-values associated with the principal peaks (presence of accelerator modes of period 1) of
the Fig. 2.3, i.e., K = 6.50, 11.90, 13.20, 18.95. In Fig. 2.7(a),(d),(e),(f) α is generally not equal to 2
and two K-values without accelerator modes, i.e., K = 7.0, 10.0, are shown in Fig. 2.7(b),(c) where
α is equal to 2. Here, and for comparison reasons with the best-�t function depicted in the �gures,
the Gaussian distribution (red dashed line) is derived by the S(α, β, γ, δ; 0) probability distribution
by setting α = 2 and keeping all the remaining parameters the same as given by the �ts generally for
α 6= 2. The total number of initial conditions is ≈100000 (314× 314) on a uniform grid in the entire
phase plane (θ, P ) ∈ [0, 2π] × [0, 2π]. For larger K-values with accelerator modes of period 1, their
e�ect in the di�usion process is becoming gradually weaker, as can also be seen by the decay of the µ
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value in Fig. 2.3, and the probability distributions tend to Gaussian-like ones. We have also calculated
the χ2-test for all the density distributions of Fig. 2.7. However, the derived quantitative information
turns out, not to di�er much to what the panels show. Let us also stress that the goodness of the
several �ts is not the main point here but rather the deviation from the Gaussian pro�le which is
evident when the e�ect of the accelerator mode is relatively strong as shown in panel (a) and expressed
by α parameter value far from 2. Moreover, due to our main motivation, i.e., to focus on the relevant
quantum time scales, we do not expect to capture very accurately the tails, which are expected to
follow the theoretical curve at much larger times. More examples and the details regarding the whole
set of parameters can be found in [Manos and Robnik 2014]. Note that, for K < 2π the �t was done
for an ensemble in a cell around the origin (θ, P ) = (0, 0) instead of a grid uniform in the entire phase
space, in order to exclude the data coming from islands of stability whose momenta do not di�use at
all and mix up the distribution.
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Figure 2.7: The probability distribution function of the momentum P after n = 5000 iterations
(black �lled circles) and the �ts with the stable α-Lévy distribution for a sample of K-values as-
sociated with the principal peaks (presence of accelerator modes of period 1) of the Fig. 2.3, i.e.,
K = 6.5, 11.9, 13.2, 18.95 (a),(d),(e),(f) where α is generally not equal to 2 and two K-values without
accelerator modes, i.e., K = 7.0, 10.0 (b),(c) where α is equal to 2. Here, the Gaussian distribution
(red dashed line) for comparison reasons with the best-�t function, depicted in the �gures, is derived
by the S(α, β, γ, δ; 0) probability distribution by setting α = 2 and keeping all the rest parameters
same as the given by the �ts in general α 6= 2. The total number of initial conditions is ≈100000
(314× 314) on a uniform grid in the entire phase plane (θ, P ) ∈ [0, 2π]× [0, 2π]. For larger K-values
with accelerator modes of period 1, their e�ect in the di�usion process is becoming gradually weaker,
as can be seen also by the decay of the µ value in Fig. 2.3, and the probability distributions tend to
Gaussian-like ones.

In Fig. 2.8(a) we present the outcome of the calculation of the GALI2 on the whole phase plane
(θ, P ) ∈ [0, 2π]×[0, 2π] for K = 3.1, for 500×500 initial conditions uniformly distributed. Each initial
condition is colored according to the color scale seen at the right side of the panel. For chaotic orbits,
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having small GALI2 value (≈ 10−8) are colored black, while the yellow color corresponds to regular
motion, found here to be ≈ 13.52% of the whole plane, with high - close to zero - values (the color
bar is in a logarithmic scale). Thus, we can clearly identify even tiny regions of regular motion which
are not easily seen in the phase space portraits given often by simple Poincaré surface of sections.
Having located the stable region of the phase space, the next point of interest is to distinguish among
them, those that are due to accelerator modes from those due to islands of stability.

The distinction can be e�ciently achieved with the use of the di�usion exponent µ color-plot
in Fig. 2.8(b), where we �rst consider again a grid of 500 × 500 cells (on the entire phase space
(θ, P ) ∈ [0, 2π] × [0, 2π]) with 50 × 50 initial conditions in each and evolve all of them together for
n = 5000 iterations. Then, for each ensemble of each cell separately, we calculate numerically the
di�usion coe�cient Dµ(K) as a function of the iterations n and perform a �t procedure just like
in Fig. 2.2 to calculate the di�usion exponent µ [represented in the color bar of Fig. 2.8(b)] that
characterizes the di�erent kind of di�usion of this small area. Depending on the relative location of
each ensemble one may expect to �nd: (i) normal di�usion (µ = 1) inside chaotic regimes without
the presence of accelerator modes, (ii) subdi�usion (0 < µ < 1) inside islands of stability, (iii)
superdi�usion (1 < µ < 2) inside chaotic regimes with the presence of accelerator modes in the phase
space and (iv) ballistic transport (µ ≈ 2) inside and in the very close vicinity of accelerator modes.

It turns out that the stable regions around (π/2, 0), (3π/2, 0), (π/2, π), (3π/2, π) and (π/2, 2π),
(3π/2, 2π) are indeed islands of stability since their di�usion exponent µ is smaller than 1. The
remaining tiny stable areas correspond to stable higher period accelerator modes with µ ≈ 2.
Here we manage to locate the accelerator modes of higher periods 2,3,4,... which in general
are not so easy to be calculated analytically. In Fig. 2.8(c) we show two examples (marked
with an empty square and empty circle in panel b) following di�erent di�usion processes, i.e.,
for a trajectory oscillating between islands of stability (empty dotted boxes) and for one trans-
ported ballistically (with P < 0) by the e�ect of an accelerator mode (full circles). The period
of both is 4 (when projected on the (θ, P ) ∈ [0, 2π]), as it can be seen by iterating them for a few steps.
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Figure 2.8: (a) The GALI2 for K = 3.1 with 50 × 50 initial conditions on a grid 500 × 500 on the
entire phase space (θ, P ) ∈ [0, 2π]× [0, 2π]. (b) the di�usion exponent µ for the same kick parameter
value for 50× 50 initial conditions on a 500× 500 cell grid of the entire phase space calculated after
n = 5000 iterations (see text for more details). (c) Two examples (marked with an empty square and
empty circle in panel b) following di�erent di�usion processes: a trajectory transported ballistically
(with P < 0) by the e�ect of an accelerator mode of period 4 (•) and one oscillating between islands
of stability (�) of period 4 too.
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Analysis of the level spacing distribution of numerical spectra

For the numerical calculations and results regarding the spacing distributions P (S) (and W (S)) for
the eigenphases ϕj , we have considered a range of 41-values of the quantum parameter k (= 2, 3, ..., 42)
keeping �xed the classical parameter K = 7, where the phase space is fully chaotic (see [Manos and
Robnik 2013]). In order to ameliorate the statistics we considered a sample of 161 matrices Unm of
size N = 398 (≈ 64, 000 elements), in a similar manner as in [Izrailev 1988]) with slightly di�erent
values of k (with the step size ∆k = ±0.00125 � k). For some samples we reached up to 641 matrices
Unm of size N = 398 acquiring qualitatively the same results.

For the ensemble of M = 641 matrices of size N = 398, in case K = 7 and k = 11, using the
χ2 best �tting procedure (described in more detail below) we found βBR = 0.421 and all three
representations clearly show excellent agreement with the best �tting Brody distribution. In Fig. 2.9a
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Figure 2.9: Intermediate statistics (panel (a)) for distribution P (S) (histogram - black line) of the
model �tted with distribution PBR (blue-solid line), PIZ (red-dashed line pointed by the arrow in the
inset �gure) and P new

IZ (black-dotted line) for M × N = 641 × 398, K = 7 and k = 11 (see text for
discussion). In panels (b),(c),(d) we show the di�erence of the numerical data and the best �tting
Brody (blue-thick line), �old� Izrailev (red-medium line) and Izrailev �new/improved� (black-thin line;
always the outer one) PDFs by using the U -function and W -distribution. Thus, in case of the ideal
�tting the data would lie on the abscissa. In this case, based on the P (S) �t we get βBR=0.421,
βIZ(old)=0.416 and βIZ(new)=0.376, and based on the W (S) �t we get βBR=0.421, βIZ(old)=0.401,
βIZ(new)=0.350.

we show the histogram. It is seen that Brody distribution is better �tting the data than the Izrailev
distribution. Since the deviations are really small, the statistical signi�cance very high, we plot in
Fig. 2.9b the di�erences U(data) − U(Brody/Izrailev) versus UBR. Thus if data are on the abscissa
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the agreement is perfect. As can be seen, the deviations from that are really small, and clearly
smaller for Brody. In Fig. 2.9c we show the �ne di�erences of W (data)−W (Brody/Izrailev) versus
WBR, and again we clearly see that Brody is better. Finally, in Fig. 2.9d we show the same thing as
in Fig. 2.9c, except not versus W but versus S instead.

Residues and χ2 test:

In the best �tting procedure we have calculated both the residues and the χ2 as follows:

� PDFs residues: RPDFs =
∑N

i=1(PBR,IZ(i)− data(i))2.

� χ2: χ2
PDFs =

∑N
i=1

(PBR,IZ(i)−data(i))2

PBR,IZ(i)
.

In Fig. 2.10 we show three examples for the χ2 as a function of the �tted parameter βBR or βIZ.
It is clearly demonstrated that Brody �t is signi�cantly better than Izrailev. In Fig. 2.11 we show the
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scaling of the Brody spectral parameter βBR vs. the localization parameter βloc. They are linearly
related almost like identity, but we also observe rather large �uctuations, probably due to the fact
that βBR is di�cult to calculate accurately enough with small matrices.
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Figure 2.11: The �t parameter βBR as a function of βloc for 161× 398 elements for various values of
K and for a wide range of k values. The best �tting straight line is very close to identity.
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The distribution of the localization measures

Following [Manos and Robnik 2015], we here present the results about the distribution of the local-
ization measures. We restricted our analysis exclusively to the case K = 10, as this case is the closest
to the normal di�usion regime µ = 1. First we demonstrate that the localization measures L = 2/σ

and lH are very well de�ned, linearly related and thus equivalent. In Fig. 2.12 we showed this in the
diagram of the mean 〈σ〉 versus 2/〈lH〉, where both averagings are over all eigenfunctions for matrices
of dimension N = 3000, for 7 nearby values of k around k0, namely k = k0 ± jδk, where j = 0, 1, 2, 3

and δk = 0.00125, for k0 = 3, 4, 5, . . . , 19.
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Figure 2.12: 〈σ〉 versus 2/〈lH〉 for matrices of dimension N = 3000, for 7 nearby values of k, namely
k = k0 ± jδk, where j = 0, 1, 2, 3 and δk = 0.00125, for k0 = 3, 4, 5, . . . , 19. The two empirical
localization measures are clearly well de�ned, linearly related and thus equivalent.

In the Fig. 2.13, we show the relationship of the theoretical L in Eq. (2.16) and the mean value
of the empirical 2/〈σ〉 for k0 = 3, 4, 5, ..., 19. It is clearly seen in Fig. 2.13(a) that there are strong
�uctuations which we attribute to the fact that 2/σ has a certain distribution with nonvanishing
variance, to be presented and described below, and that the theory of L resulting in Eq. (2.16) is too
simple, as it corresponds only roughly to the value of 2/〈σ〉. On the other hand, in Fig. 2.13(b) we see
again that the two empirical localization measures are exactly linearly related. We should mention
that in the cases of larger k > 19 the slopes σ are so small, and the localization too weak, that we
cannot get reliable results. Therefore we limit ourselves to the interval 3 ≤ k ≤ 19.

We have thereby demonstrated that the empirical localization measures are well de�ned, while the
theoretical prediction for their mean values is not good enough. The reason is that the localization
measures of a given �xed system (with �xed K = 10 and k) have a distribution with nonvanishing
variance, which is out of the scope of current semiclassical theories, as they do not predict this
distribution and the corresponding variance. This �nding, as the central result of the paper [Manos
and Robnik 2015], is demonstrated in Fig. 2.14. The distributions are clearly seen to be close to a
Gaussian, but cannot be exactly that, as σ is always a positive de�nite quantity. Its inverse, the
localization length equal to L = 2/σ, has a distribution whose empirical histograms are much further
away from a Gaussian, so that in this sense σ is the fundamental quantity. Indeed, it corresponds to
the �nite time Lyapunov exponent known in the theory of dynamical systems.

As lH and 2/σ are equivalent localization measures, the former one is expected also to have a
distribution, which we demonstrate in the histograms of Fig. 2.15. We have also analyzed how the
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Figure 2.13: (a) L versus 2/〈σ〉 for matrices of dimension N = 1000 (crosses and solid �t line) and
for matrices of dimension N = 3000 (stars and dashed �t line), for 7 nearby values of k, namely
k = k0 ± jδk, where j = 0, 1, 2, 3 and δk = 0.00125, for k0 = 3, 4, 5, ..., 19. (b) We plot the mean
value of 2/(N〈σ〉) versus βloc for k0 = 3, 4, 5, . . . , 19 and 7 matrices of dimension N = 3000 with
k = k0 ± jδk, where j = 0, 1, 2, 3 and the step size δk = 0.00125.
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Figure 2.14: The histograms of the slopes σ for four systems, matrices of dimension N = 3000, for
each of them with seven di�erent values of k close to k0 = 5, 9, 13, 17, namely k = k0 ± jδk, where
j = 0, 1, 2, 3 and δk = 0.00125: (a) k0 = 5, (b) k0 = 9.

localization measures vary in the semiclassical limit of the increasing value of the quantum parameter
k, at �xed classical parameter K = 10. Indeed, the theoretical estimate of L in Eq. (2.16), at �xed K,
and remembering k = K/τ , shows that approximately the mean value of the localization length should
increase quadratically with k, or equivalently, the slope σ should decrease inversely quadratically with
k. This prediction is observed, and is demonstrated in Fig. 2.16.

This is also in agreement with the prediction based on the tight-binding approximations in refer-
ence [Kottos et al. 1996] [Eq. (6)]. We give, in [Manos and Robnik 2015] (Table I), the mean slope
σ and the standard deviation of σ, as well as the mean value of the related quantity 2/lH and its
standard deviation for various k = k0 = 3, 4, 5, . . . , 19, for each of them taking seven nearby values of
k, namely k = k0 ± jδk, where j = 0, 1, 2, 3 and δk = 0.00125, for matrices of dimension N = 3000.
Each histogram for all k0 was �tted with the Gaussian distribution and then the mean values and the
standard deviations were extracted. All four quantities decrease to zero with increasing k, meaning
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Figure 2.16: Log-log plots in (a) the mean slope 〈σ〉 as a function of k, and in (b) the standard
deviation of σ as a function of k. The �tting by a straight line is only on the semiclassical interval
10 ≤ k ≤ 19. In the former case the behavior is roughly as 1/k2, in agreement with the theoretical
estimate 1/k2 of Eq. (2.16), and in the latter case also like 1/k2, surely not as the theoretical estimate
1/k based on the Lyapunov exponents method in [Kottos et al. 1996] [Eq. (9)].

that in the semiclassical limit the localization lengths monotonically increase to in�nity, so that in
this limit we have asymptotically extended states (no localization), and their standard deviation also
goes to zero as 1/k2, which is di�erent from the tight-binding approximations in reference [Kottos
et al. 1996] [Eq. (9)].

Next we studied how does the distribution of the localization measure σ behaves as a function
of the dimension N of the Izrailev model Eqs. (2.22-2.24). Since in the limit N → ∞ the model
converges to the in�nitely dimensional quantum kicked rotator, we would at �rst sight expect that
following the Shepelyansky picture [Shepelyansky 1986] σ should converge to its asymptotic value,
which is sharply de�ned in the sense that the variance of the distribution of σ goes to zero inversely
with N . Namely, at �xed K and k Shepelyansky reduces the problem of calculating the localization
length to the problem of the �nite time Lyapunov exponents of the approximate underlying �nite
dimensional Hamilton system with dimension 2k. The localization length is then found to be equal
to the inverse value of the smallest positive Lyapunov exponent. In our case, the dimension of the



2.8. Results 53

matrices N of the Izrailev model plays the role of time. As it is known, and analyzed in detail in
[Manos and Robnik 2015], the �nite time Lyapunov exponents have a distribution, which is almost
Gaussian, and its variance decays to zero inversely with time. Thus on the basis of this we would
expect that the variance of σ decays inversely with N .

However, this is not what we observe. In [Manos and Robnik 2015] (Table II) we clearly see
that at constant K = 10 and k = 10 the mean value of σ is constant and obviously equal to its
asymptotic value of N = ∞, while the variance of σ does not decrease with N , as 1/N , but is
constant instead, independent of N . This is in disagreement with the banded-matrix models of the
tight-binding approximations and thus disagrees with the Eq. (9) of reference [Kottos et al. 1996],
and also disagrees with the Shepelyansky picture. The reason is that the associated Shepelyansky's
Hamilton system is only approximate construction, because with increasing N the matrix elements
of the Floquet propagator (matrix) outside the diagonal band of width 2k become important, and
thus the dimension of the Hamilton system cannot be considered �nite, constant and equal to 2k, but
increases with N . As a consequence we have the constant value of the variance of σ, and thus constant
variance of the localization length L = 2/σ, and therefore the localization length has a distribution
with nonvanishing variance even in the limitN = ∞. This is precisely the reason why the semiclassical
prediction of the localization length in Eq. (2.16) fails in detail and we �nd strong �uctuations in
the plot of L against the 2/σ of Figs. 2.6 and 2.13. The proper theory of the localization length
must predict its distribution rather than just its approximate mean value. The problem of quantum
or dynamical localization is related to the Anderson localization model, within the framework of the
tight-binding approximation, with hopping transitions between the nearest neighbors only [Fishman,
Grempel, and Prange 1982].

In [Manos and Robnik 2015], we have numerically analyzed the behavior of the �nite time Lya-
punov exponents for a classical Hamilton system exempli�ed by the SM, following Fujisaka [Fujisaka
1983] and Ott [Ott 1993] and also for the 2× 2 random transfer matrices of the tight-binding approx-
imation to describe the Anderson localization. In both cases we have shown that the distribution of
the positive Lyapunov exponent is excellently described by a Gaussian distribution, whose mean value
converges with time to the asymptotic value of the in�nite time, while the variance decays inversely
with time t (the number of iterations in the case of the SM), and n, the number of random matrices in
the product. The latter are random unimodular transfer matrices of the tight-binding approximation,
of the form:

Tn =

(
W −1

1 0

)
(2.47)

whereW = E−E0
n is drawn from a distribution, de�ned by a given model. E is the eigenenergy of the

system, and E0
n is the �uctuating on-site potential. We have tested three quite di�erent distributions

for W , namely Gaussian, box distribution and the Cauchy-Lorentz distribution [Manos and Robnik
2015], and found that the shape of the distribution of the positive Lyapunov exponent for any n

(=number of matrices in the product) depends very weakly on the overall shape of theW -distribution,
while the mean value and the variance depend only on the variance of W . Indeed, the evidence for
the predicted decay of the variance of the �nite time Lyapunov exponents is overwhelming, as shown
in Fig. 2.17, where we plot the standard deviation as a function of time in log-log plot, showing that
it decays inversely with the square root of time.

In the context of our Izrailev model the dimension N of the matrix plays the role of time. The
width of the diagonal band is equal to 2k. Shepelyansky reduces the problem of the localization
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length to the determination of the smallest positive Lyapunov exponent (its inverse is the localization
length) of the underlying �nite dimensional Hamilton system with dimension 2k. Then, the �nite
time Lyapunov exponent should have some almost Gaussian distribution, whose mean tends to the
asymptotic Lyapunov exponent with N → ∞ and the variance should decrease to zero as 1/N .

If this picture were exact, then the mean localization length as a function of N should converge
to the asymptotic value, while the variance does not decay to zero, but rather remains constant,
independent of N as clearly demonstrated in [Manos and Robnik 2015]. From this we conclude that
even in the limit N → ∞ the localization length has a certain distribution with nonvanishing variance,
or more precisely, its inverse (the slope σ) has an almost Gaussian distribution with nonvanishing
variance. We believe that this is the cause of the strong �uctuations observed for example in Figs. 2.6
and 2.13(a).

2.9 Summary and outlook

We have reviewed some recent results [Manos and Robnik 2013; Batisti¢, Manos, and Robnik 2013;
Manos and Robnik 2014; Manos and Robnik 2015] on the dynamical localization in the N -dimensional
Izrailev model. The analysis of the classical system (SM) and of the quantum kicked rotator has been
performed for many di�erent values of the classical kick parameter K on the interval [Kcr, 70] ≈
[0.97, 70], of the quantum parameter k and matrix dimensions N in the interval [400, 3000]. The
aspects of classical generally anomalous di�usion have been studied and the important relevance of
the accelerator modes were elucidated, and the semiclassical approximation for the average localization
length L has been derived. The entropy localization measure lH [Eq. 2.29] has been calculated, and
the corresponding parameter βloc = 〈lH〉/N was de�ned. The scaling law of βloc versus Λ = L/N was
found, in agreement with previous results, e.g. see [Izrailev 1990] and references therein. However,
even after a great numerical e�ort in maximally improving the statistical relevance of this scaling
law, large �uctuations around the mean value have been observed. Also, we have shown, that the
Brody distribution describes the energy level spacing distribution very well, and the spectral Brody
parameter βBR, determining the level spacing distribution, was found to be linearly related to βloc.

The main conclusion of our analysis is the empirical fact based on numerical computations of the
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eigenfunctions of the N -dimensional Izrailev model, that the localization length has a distribution
with nonvanishing variance not only for �nite N , but even in the limit N → ∞. This is the reason,
we believe, for the strong �uctuations in the scaling laws which involve the empirical localization
measures and the theoretical semiclassical value of the localization length. In the Shepelyansky picture
[Shepelyansky 1986] this might seem to be a contradiction, but the resolution of the puzzle is that in
the limit of large N the �nite dimensional Hamiltonian system extracted from the Floquet propagator
of the quantum kicked rotator is not good enough, and therefore the matrix elements outside the main
diagonal band of width 2k play a role, even if they are small, but nevertheless plentiful, making the
Hamiltonian system e�ectively in�nite dimensional, with in�nitely many Lyapunov exponents. This
�nding is a challenge for the improved semiclassical theory of the localization length, to derive and
explain the discovered distribution function.

On the other hand, the simple model of the Anderson localization based on the tight-binding
approximation, with only nearest neighbor interactions, described by the product of 2×2 unimodular
matrices, has a �nite dimension, as the transfer matrices are exactly two-dimensional, and therefore
the variance vanishes in the limit of large times n (number of matrices in the product) as 1/n. The
same conclusion applies to such a model with a �nite number of interacting neighbors. Indeed,
according to e.g. [Kottos et al. 1996] the variance of σ should vanish as V ar(σ) ∝ 1/(Nk2), but our
work shows that in the quantum kicked rotator this is not observed: the variance does not depend on
N , and decays with k faster than 1/k2, namely as 1/k4. Thus, we found some important di�erences
between the dynamical localization in the quantum kicked rotator and the Anderson tight-binding
model of localization, and the Shepelyansky picture, which rest upon the banded matrix models with
rigorously �nite bandwidth.

Perspectives

The problem of calculating the distribution of the localization length (or its inverse) in the semiclassi-
cal framework is open for the future work. Also, the theoretical derivation of the Brody distribution to
explain the level spacing distribution of the energies [Batisti¢ and Robnik 2010; Batisti¢ and Robnik
2013a; Batisti¢ and Robnik 2013b] in time-independent systems, and of the quasienergies [Izrailev
1990; Manos and Robnik 2013; Batisti¢, Manos, and Robnik 2013] in time-periodic systems, of chaotic
eigenstates, is still open for the future.

Furthermore, in the classical kicked rotor model, one can extend these �ndings on di�usion prop-
erties and potential scaling laws for 1D and 2D lattices and investigate how the fraction of the chaotic,
regular motion along with the presence of accelerator modes may impact systems with more complex
con�gurations, e.g. when varying the system size, the kick parameter per rotor and coupling type and
strength within the lattice [Moges H., Manos T. and Skokos Ch., �Anomalous di�usion and chaotic
motion in standard map lattices� (in preparation), 2020].





Chapter 3

Complex neuronal activity patterns in

the human brain

3.1 Background and introduction

Synchronization of oscillations is a generic mechanism in animate and inanimate systems (see e.g.
[A. Pikovsky, Rosenblum, and Jürgen Kurths 2003]). In fact, oscillators of qualitatively di�erent type
may share fundamental synchronization mechanisms. Synchronization processes may occur within as
well as between di�erent systems of the human body, e.g. between heartbeat intervals and respiratory
cycles [Bartsch et al. 2012]. Neuronal synchronization processes are relevant under normal as well as
abnormal conditions. A number of brain disorders are associated with abnormal neuronal synchrony,
for example Parkinson's disease (see e.g. [Lenz et al. 1994; Nini et al. 1995; Hammond, Bergman, and
Brown 2007]), tinnitus (see e.g. [Ochi and Eggermont 1997; Eggermont and P. A. Tass 2015; Elgoyhen
et al. 2015]), migraine (see e.g. [Angelini et al. 2004; Bjørk and Sand 2008]) and epilepsy (see e.g.
[Wong, Traub, and Miles 1986]). Neuronal dynamics and, in particular synchronization processes,
crucially depend on the patterns and types of neuronal connections [Sporns 2011]. For instance,
according to computational studies it makes a signi�cant di�erence whether neurons interact through
gap-junctions or synapses. This is relevant for the emergence of di�erent kinds of synchronization
patterns [Esfahani, Gollo, and Valizadeh 2016] and epileptic seizures [Volman, Perc, and Bazhenov
2011].

Connectivity and function are strongly connected and may undergo plastic changes throughout
the life course [Hübener and Bonhoe�er 2014]. The timing pattern of neuronal activity may strongly
determine the strength of neuronal connections [Bliss and Lømo 1973]. Spike-timing-dependent plas-
ticity (STDP) is a pivotal mechanism by which neurons adapt the strength of their synapses to the
relative timing of their action potentials (see e.g. [H. Markram, W. Gerstner, and Sjostrom 2012]).
Based on seminal experimental studies [Henry Markram et al. 1997] a series of computational studies
focused on how adaptive coupling and activity dependent synaptic strength in�uence the collective
neuronal dynamics was performed. In the presence of STDP a plethora of qualitatively di�erent
stable dynamical regimes emerge [Zhang et al. 2013]. In fact, multistability (the coexistence of mul-
tiple attractors in the phase space) is a typical feature of neuronal networks and oscillator networks
equipped with STDP. Multistability was found in di�erent neural network models comprising dif-
ferent STDP models, e.g. in phase oscillator networks with both symmetric and asymmetric phase
di�erence-dependent plasticity, a time continuous approximation of STDP [Maistrenko et al. 2007]
as well as in phase oscillator networks with STDP and in di�erent types of neuronal networks with
STDP [P�ster and P. Tass 2010; O.V. Popovych and P. Tass 2012; Ebert, Hauptmann, and P. Tass
2014] and other types of neural network models (e.g. [Proix et al. 2017] and references therein).

A number of computational studies were dedicated on desynchronizing synchronized ensembles or
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networks of oscillators or neurons [Winfree 1980; P. A. Tass 1999]. The clinical need for stimulation
techniques that cause desynchronization irrespective of the network's initial state [P. A. Tass 2001],
thereby being reasonably robust against variations of system parameters and, hence, not requiring
time-consuming calibration, motivated the design of the so-called Coordinated Reset (CR) stimu-
lation [P. A. Tass 2003b; P. A. Tass 2003a]. CR stimuli aim at disrupting in-phase synchronized
neuronal populations by delivering phase resetting stimuli typically equidistantly in time, separated
by time di�erences Ts/Ns, where Ts is the duration of a stimulation cycle, and Ns is the number
of active stimulation sites [P. A. Tass 2003b; P. A. Tass 2003a]. The spatiotemporal sequence by
which all stimulation sites are activated exactly once in a CR stimulation cycle is called the stimu-
lation site sequence, or brie�y sequence. Taking into account STDP in oscillatory neural networks
qualitatively changed the scope of the desynchronization approach: Computationally it was shown
that CR stimulation reduces the rate of coincident �ring and, mediated by STDP, also decreases the
average synaptic weight, ultimately preventing the network from generating abnormally increased
synchrony. This anti-kindling, i.e., unlearning of abnormally strong synaptic connectivity and of ex-
cessive neuronal synchrony, causes long-lasting sustained e�ects that persist cessation of stimulation.
As shown computationally, anti-kindling can robustly be achieved in networks with plastic excitatory
and inhibitory synapses, no matter whether CR stimulation is administered directly to the soma or
through synapses [O.V. Popovych and P. Tass 2012; P. A. Tass and O. Popovych 2012]. In line with
these computational �ndings, long-lasting CR-induced desynchronization and/or therapeutic e�ects
were accomplished with invasive as well as non-invasive stimulation modalities.

Long-lasting desynchronization was induced by electrical CR stimulation in rat hippocampal slices
rendered epileptic by magnesium withdrawal [P. Tass, A. Silchenko, et al. 2009]. Electrical CR deep
brain stimulation (DBS) caused long-lasting therapeutic after-e�ects in parkinsonian non-human pri-
mates. Bilateral therapeutic after-e�ects for at least 30 days were caused by unilateral CR stimulation
delivered to the subthalamic nucleus (STN) of parkinsonian MPTP monkeys for only 2 h per day
during 5 consecutive days. In contrast, standard permanent high-frequency deep brain stimulation
did not induce any sustained after-e�ects (see e.g. [P. Tass, Adamchic, et al. 2009]). In patients
with Parkinson's disease electrical CR-DBS delivered to the STN caused a signi�cant and cumulative
reduction of abnormal beta band oscillations along with a signi�cant improvement of motor function
[Adamchic, Hauptmann, et al. 2014]. Non-invasive, acoustic CR stimulation was developed for the
treatment of patients su�ering from chronic subjective tinnitus [P. A. Tass and O. Popovych 2012;
P. A. Tass, Qin, et al. 2012a]. In a proof of concept-study acoustic CR stimulation caused a sta-
tistically and clinically signi�cant sustained reduction of tinnitus symptoms [P. A. Tass, Qin, et al.
2012a; Adamchic, Langguth, et al. 2012] together with a concomitant decrease of abnormal neuronal
synchrony [Adamchic, Toth, Hauptmann, and P. A. Tass 2014], abnormal e�ective connectivity [A. N.
Silchenko et al. 2013] as well as abnormal cross-frequency coupling [Adamchic, Langguth, et al. 2014]
within a tinnitus-related network of brain areas (see [Manos, Zeitler, and P. A. Tass 2018a] and
references therein).

So far, the pre-clinical [P. Tass, A. Silchenko, et al. 2009; P. A. Tass, Qin, et al. 2012a] and
clinical [P. Tass, Adamchic, et al. 2009; Adamchic, Hauptmann, et al. 2014] proof of concept studies
for invasive and non-invasive CR stimulation were driven by computationally derived hypotheses and
predictions. Theoretically predicted phenomena and mechanisms, such as long-lasting stimulation
e�ects [Peter A. Tass and Majtanik 2006; O.V. Popovych and P. Tass 2012; Hauptmann and P. A.
Tass 2007], cumulative stimulation e�ects [Hauptmann and P. A. Tass 2009], and improvement by
weak stimulus intensity [Lysyansky, O. V. Popovych, and P. A Tass 2011], were veri�ed based on
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dedicated theory-driven study protocols for pre-clinical and clinical proof of concepts [P. Tass, A.
Silchenko, et al. 2009; P. Tass, Adamchic, et al. 2009; P. A. Tass, Qin, et al. 2012a; Adamchic,
Hauptmann, et al. 2014].

3.2 Investigation goals, hypotheses and protocols

In this chapter, we set out to investigate the impact of the CR stimulation frequency and intensity
on the e�ects during stimulus delivery (so-called acute e�ects), on transient e�ects emerging directly
after cessation of stimulation (so-called acute after-e�ects), and on e�ects outlasting cessation of
stimulation (so-called sustained after-e�ects). The ultimate goal of this study is to improve the
calibration of CR stimulation, in particular, by providing computationally generated predictions that
can be tested in subsequent pre-clinical and clinical studies. The computational study presented here
is organized around three hypotheses:

� Hypothesis #1: Due to the inherently periodic structure of CR stimulation the relation between
CR stimulation frequency and the spontaneous neuronal �ring rates (prior to stimulation) mat-
ters. Periodic delivery of CR stimuli with �xed sequence basically constitutes a time-shifted
entrainment of the di�erent neuronal subpopulations [P. A. Tass 2003b; P. A. Tass 2003a].
A particular closed loop embodiment of CR stimulation, periodic stimulation with demand-
controlled length of high-frequency pulse train, is basically a time-shifted entrainment of the
di�erent neuronal subpopulations with stimulus intensities adapted to the amount of undesired
synchrony. Accordingly, the duration of a stimulation cycle was selected to be reasonably close
to the mean period of the synchronized neuronal oscillation. In STDP-free networks of Ku-
ramoto [Kuramoto 1984] and FitzHugh-Nagumo [Fitzhugh 1961] model neurons the impact of
CR stimulation intensity and frequency on the desynchronizing outcome of CR was studied in
detail [Lysyansky, O. V. Popovych, and P. A Tass 2011].

� Hypothesis #2: Di�erent embodiments of CR stimulation may di�er with respect to e�ect
size and robustness. In a series of computational studies (see e.g. [P. A. Tass 2003b; P. A.
Tass 2003a] and references therein) and in all pre-clinical [P. Tass, A. Silchenko, et al. 2009;
P. Tass, Adamchic, et al. 2009] and clinical studies [P. A. Tass, Qin, et al. 2012b; Adamchic,
Langguth, et al. 2012; damchic et al. 2012; Adamchic, Hauptmann, et al. 2014; Adamchic,
Toth, Hauptmann, and P. A. Tass 2014; A. N. Silchenko et al. 2013] performed so far, CR
was applied either with �xed sequences or rapidly varying sequences (RVS), where the sequence
was randomly varied from cycle to cycle. In a recent computational study, it was shown that
at intermediate stimulation intensities the CR-induced anti-kindling e�ect may signi�cantly be
improved by CR with slowly varying sequences (SVS), i.e. by appropriate repetition of the
sequence with occasional random switching to the next sequence [Zeitler and P. A. Tass 2015].
However, this study was not performed for a larger range of CR stimulation frequencies. By
de�nition, SVS CR stimulation features signi�cantly more periodicity of the stimulus pattern.
Accordingly, the dependence of resonance and/or anti-resonance e�ects on the CR stimulation
frequency might be more pronounced for SVS CR as opposed to RVS CR.

� Hypothesis #3: Pronounced acute e�ects might provide a necessary, but not su�cient condi-
tion for pronounced sustained after-e�ects. In a pre-clinical study in Parkinsonian monkeys
with CR-DBS delivered at an optimal and a less favorable intensity, it was shown that long
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and pronounced acute therapeutic after-e�ects coincide with long-lasting, sustained after-e�ects
[P. A. Tass, Qin, et al. 2012a]. However, according to computational studies the relationship
between acute after-e�ects and sustained long-lasting e�ects might be more involved, at least
for particular parameter combinations [Zeitler and P. A. Tass 2015].

Related to these hypotheses, to assess the robustness of CR stimulation against initial network
conditions we performed our numerical simulations for di�erent network initializations. Here, we
did not systematically vary the stimulation duration. Rather, based on a pre-series of numerical
simulations, we here used a �xed stimulation duration that is reasonably short, but nevertheless
enabled to robustly achieve an anti-kindling for properly selected values of stimulation frequency and
intensity. In fact, our goal was to �nd stimulation parameters enabling short, but notwithstanding
e�ective CR stimulation. Keeping the stimulation duration at moderate levels may be bene�cial for
applying the CR approach to di�erent invasive as well as non-invasive stimulation modalities. For
instance, standard high frequency (HF) DBS, i.e. permanent electrical high-frequency pulse train
stimulation delivered to dedicated target areas through implanted depth electrodes, used for the
treatment of, e.g. Parkinson's disease [Benabid et al. 1991; Krack et al. 2003; Deuschl et al. 2006]
may cause side e�ects. If side e�ects are caused by stimulation of non-target tissue, they may be
reduced by adapting the spatial extent of the current spread to the target's anatomical borders by
appropriate electrode designs as introduced, e.g. by [Martens et al. 2011; Dijk et al. 2015; Bour et al.
2015], in particular, to spatially tailor stimuli by means of directional DBS (see e.g. [Contarino et al.
2014]). However, some side e�ects may, at least partly, be caused by stimulating the target region
itself (see e.g. [Jahanshahi et al. 2015]. Accordingly, no matter how precisely stimuli are delivered to
DBS targets, the amount of stimulation should be decreased as much as possible.

HF DBS may not only cause side e�ects by electrical current spreading outside of the target region,
but also by chronic stimulation of the target itself or by functional disconnection of the stimulated
structure (see e.g. [Ferraye et al. 2008]). Accordingly, it is key to reduce the integral stimulation
current. Electrical CR stimulation of the STN employs signi�cantly less current compared to HF
DBS [P. A. Tass, Qin, et al. 2012b; Adamchic, Hauptmann, et al. 2014; J. Wang et al. 2016]. How-
ever, to further improve the CR approach, in a previous computational study the spacing principle
[Ebbinghaus, Bussenius, and Ruger 1913] was used to achieve an anti-kindling at subcritical inten-
sities, i.e. particularly weak intensities rendering permanently delivered CR stimulation ine�ective
[O. V. Popovych, Xenakis, and P. A. Tass 2015]. According to the spacing principle [Ebbinghaus,
Bussenius, and Ruger 1913], learning e�ects can be improved by repeated stimuli spaced by pauses as
opposed to delivering a massed stimulus in a single long stimulation session. Spaced CR stimulation
at subcritical intensities might possibly be applied to CR DBS. However, for clinical applications,
in particular, for non-invasive applications of CR stimulation, such as acoustic CR stimulation for
tinnitus or vibrotactile stimulation for PD, it is crucial to achieve therapeutic e�ects within a rea-
sonable amount of time. Applications of non-invasive medtech devices typically rely on the patients'
compliance and should favorably require short stimulation durations. Accordingly, we here set out to
apply the spacing principle to CR stimulation at supercritical intensities, i.e. intensities that enable
an anti-kindling for moderate stimulation duration and properly selected stimulation frequencies. The
overall goal is to design short-term dosage regimen that improve CR stimulation e�cacy, while keep-
ing the integral amount of stimulation as well as the overall duration of the protocols at comparably
low levels.

To come up with favorable combinations of stimulation parameters, in our numerical study we
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used di�erent data analysis methods, e.g. macroscopic measures assessing the average amount of
the population's synchrony and synaptic connectivity. These measures are appropriate to demon-
strate relevant stimulation e�ects, such as stimulation-induced transitions from pronounced neuronal
synchrony to desynchronized states.

To establish a pharmacological treatment for clinical use, in humans typically a 4-phase sequence
of clinical trials is performed [Friedman, Furberg, and Demets 2010]. In pre-clinical studies pharma-
cokinetic, toxicity and e�cacy are studied in non-human subjects. In human-studies (phase I ) safety
and tolerability of a drug are studied in healthy volunteers. Proof of concept studies (phase IIA) de-
termine whether a drug can have any e�cacy, whereas dose-�nding studies (phase IIB) are performed
to reveal optimum dose at which a drug has biological activity with minimal side-e�ects. E�ective-
ness and the clinical value of a new intervention are studied in a randomized controlled trial (phase
III ), compared with state of the art treatment, if available. Finally, post-marketing surveillance trials
(phase IV ) are performed to detect rare or long-term adverse e�ects within a much larger patient
population and over longer time periods. There might also be combinations of di�erent phases.

In principle, this 4-phase pattern is also valid for medical technology, e.g. neuromodulation
technologies. However, if neuromodulation technologies aim at the control of complex dynamics
of e.g. neural networks, di�erent parameters and dosage regimens may have complex, non-linear and
even counterintuitive e�ects, see e.g. [O. V. Popovych, Xenakis, and P. A. Tass 2015]. The latter work
illustrates how computational modelling can be used to generate hypotheses for dose-�nding studies.
In general, performing dose-�nding studies simply by trial and error may be impossible because of the
substantial parameter space to be tested, with trial durations and related costs getting out of hands.

The development of proper dosage strategies and regimens enables favorable compromises between
therapeutic e�cacy and detrimental factors such as side-e�ects or treatment duration. This is relevant,
e.g. for the development of pharmaceutical [Dash, Singh, and Tolman 2014] or radiation therapy
[Symonds et al. 2012]. DBS is the standard treatment of medically refractory movement disorders
[Benabid et al. 1991; Krack et al. 2003; Deuschl et al. 2006]. The clinical [Temperli et al. 2003]
and electrophysiological [Kühn, Kempf, et al. 2008] e�ects of standard HF DBS occur only during
stimulation and cease after stimulation o�set.

In [Manos, Zeitler, and P. A. Tass 2018a], we studied the in�uence of the CR stimulation frequency
and the intensity on the outcome of CR stimulation with RVS and SVS [Zeitler and P. A. Tass
2015]. CR stimulation consists of sequences of stimuli delivered to each sub-population. For RVS
CR stimulation, the CR sequence is randomly varied from one CR stimulation period to another
[Peter A. Tass and Majtanik 2006]. Conversely, SVS CR stimulation is characterized by repeating
a sequence for a number of times before randomly switching to the next sequence. In [Manos,
Zeitler, and P. A. Tass 2018a], we demonstrated that the e�cacy of singleshot CR stimulation
with moderate stimulation duration depends on the stimulation parameters, in particular, on the
intensity as well as the relationship between CR stimulation frequency and intrinsic �ring rates.
RVS CR stimulation turned out to induce pronounced long-lasting desynchronization, e.g. at weak
intensities and CR stimulation frequencies in a certain range around the neurons' intrinsic �ring
frequencies. In contrast, SVS CR stimulation enabled even more pronounced anti-kindling, however,
at the cost of a signi�cantly stronger dependence of the stimulation outcome on the CR stimulation
frequency. Dosage regimen design is an integral part of pharmacokinetic methodology, aiming at an
optimization of drug delivery and e�ects [Williams 1992]. By a similar token, we hypothesize that
appropriate dosage regimens might further enhance the e�cacy of RVS and SVS CR stimulation.
To probe di�erent dosage regimens, we considered di�erent stimulation singleshot and multishot
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CR stimulation protocols. Protocols A and B have identical integral stimulation duration, whereas
Protocols C and D may require less stimulation.

Protocol A: Spaced multishot CR stimulation with �xed stimulation parameters. Instead of one
singleshot CR stimulation we deliver the identical CR shot �ve times, where the duration of each sin-
gle pause equals the duration of each identical singleshot. Intersecting singleshot stimuli by pauses to
increase stimulation e�cacy, resembles the so-called spacing principle, a learning-related mechanism
that is well-established in psychology [Ebbinghaus, Bussenius, and Ruger 1913], education [Kelley
and Whatson 2013], and neuroscience [Naqib, Sossin, and Farah 2012]. According to the spacing
principle, learning e�ects can be enhanced by delivering a stimulus in a spaced manner, as opposed
to administering a massed stimulus in a single long stimulation session. Computationally, it was
shown that subcritical CR stimulation at subcritical (ine�ective) intensities may become e�ective if
intersected by rather long pauses and delivered su�ciently often, e.g. eight times [O. V. Popovych,
Xenakis, and P. A. Tass 2015]. However, shorter pauses were not su�cient. As yet, spaced CR stim-
ulation at supercritical intensities was not studied. Here, we focus on comparably short stimulation
protocols. Accordingly, we use CR stimulation of su�cient intensity and deliver �ve single CR shots
intersected by pauses. We consider a symmetric dosage regimen, with identical duration of single
shots and pauses.

Protocol B: Long singleshot CR stimulation with �xed stimulation parameters. To assess the
impact of the spacing principle, as a control condition we simply stimulate �ve times longer, without
any pause and with stimulation parameters kept constant. Protocol B is shorter, but employs the
same integral stimulation duration as Protocol A.

Protocol C: Spaced multishot CR stimulation with demand-controlled variation of the CR stim-
ulation frequency and intensity. As in Protocol A, we deliver spaced CR stimulation comprising �ve
identical CR shots, intersected by pauses, where all shots and pauses are of equal duration. However,
at the end of each CR shot we monitor the stimulation e�ect and perform a three-stage control: (i)
If no pronounced desynchronization is achieved, the CR stimulation frequency of the subsequent CR
shot is mildly varied by no more than ±3%. (ii) If an intermediate desynchronization is observed, the
CR stimulation frequency remains unchanged and CR stimulation is continued during the subsequent
shot. (iii) If a pronounced desynchronization is achieved, no CR stimulation is delivered during the
subsequent shot. Note, for stage (i) we do not adapt the CR stimulation frequency to a measured
quantity. We consider two di�erent variation types employed for stage (i): with regular and with
random variation of the CR stimulation frequency. Regular variation means to increase or decrease
the CR stimulation frequency in little unit steps. In contrast, random variation stands for randomly
picking the CR stimulation frequency from a restricted interval.

Protocol D: Long singleshot CR stimulation with demand-controlled variation of the stimulation
frequency. To assess the speci�c pausing-related impact of the evolutionary spacing principle, as a
direct control condition we perform Protocol C without pauses. To this end, we string �ve CR shots
together, without pauses, and evaluate the stimulation e�ect at the end of each CR shot. If no
pronounced desynchronization is achieved, the CR stimulation frequency is slightly varied by no more
than ±3% for the subsequent CR shot. During each single CR shot stimulation parameters are kept
constant. Only from one CR shot to the next the CR stimulation frequency can be varied. Overall,
Protocol D is shorter than Protocol C, but uses the same integral stimulation duration as in Protocols
A-C.

CR stimulation and, especially, SVS CR stimulation has pronounced periodic characteristics.
Accordingly, the CR stimulation frequency turned out to be a sensitive parameter, in particular, for
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SVS CR stimulation (see [Manos, Zeitler, and P. A. Tass 2018a]). For this reason, for stage (i)
of Protocol C and D we perform a demand-controlled variation of the CR stimulation frequency to
prevent from, e.g. unfavorable resonances or phase locking dynamics. Note these demand-controlled
changes of the CR stimulation frequency are mild and hardly change the networks' �ring rates.

In [Manos, Zeitler, and P. A. Tass 2018b], we tested the performance of the di�erent Protocols
A-D by selecting unfavorable stimulation parameters, which render CR stimulation ine�ective
according to [Manos, Zeitler, and P. A. Tass 2018a]. By design, Protocols C and D work well for all
parameter pairs (K,Ts) related to e�ective singleshot CR stimulation. In that case, CR stimulation
actually ceases due to lack of demand. Note, in all four stimulation protocols we keep the stimulation
intensity �xed. Only Protocols C and D require feedback of the stimulation outcome.

3.3 The Hodgkin-Huxley spiking neuron model

In this study we use the conductance-based Hodgkin-Huxley neuron model [Hodgkin and Huxley
1952] for the description of an ensemble of spiking neurons. The set of equations and parameters read
(see [Hansel, Mato, and Meunier 1993; O.V. Popovych and P. Tass 2012]):

C
dVi
dt

= Ii − gNam
3
ihi(Vi − VNa)− gKn

4
i (Vi − VK)− gl(Vi − Vl) + Si + Fi (3.1)

dmi

dt
= αm(Vi)(1−mi)− βm(Vi)mi (3.2)

dhi
dt

= αh(Vi)(1− hi)− βh(Vi)hi (3.3)

dni
dt

= αn(Vi)(1− ni)− βn(Vi)ni (3.4)

The variable Vi with i = 1, . . . , N , describes the membrane potential of neuron i, and:

αm(V ) = (0.1V + 4)/[1− exp(−0.1V − 4)], (3.5)

βm(V ) = 4 exp[
−V − 65

18
], (3.6)

αh(V ) = 0.07 exp[
−V − 65

20
], (3.7)

βh(V ) =
1

[1 + exp(−0.1V − 3.5)]
, (3.8)

αn(V ) =
0.01V + 0.55

[1− exp(−0.1V − 5.5)]
, (3.9)

βn(V ) = 0.125 exp[
−V − 65

80
]. (3.10)

The total number of neurons is N = 200, while gNa = 12 mS/cm2, gK = 36 mS/cm2, gl = 0.3

mS/cm2 are the maximum conductance per unit area for the sodium, potassium and leak currents
respectively. The constants VNa = 50 mV, VK = −77 mV and Vl = −54.4 mV refer to the sodium,
potassium and leak reversal potentials respectively. C is the constant membrane capacitance (C = 1

µF/cm2), Ii the constant depolarizing current injected into neuron i, determining the intrinsic �ring
rate of the uncoupled neurons. For the realization of di�erent initial networks, we used random initial
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conditions drawn from uniform distributions, i.e. Ii ∈ [I0 − σI , I0 + σl ] ( I0 = 11.0 µA/cm2 and
σl = 0.45 µA/cm2), hi,mi, ni ∈ [0,1] and Vi ∈ [−65, 5] mV. The initial values of the neural synaptic
weights cij are picked from a normal distribution N(µc = 0.5 µA/cm2, σc = 0.01 µA/cm2). Hence,
in this setup the neurons are not identical. The Si term refers to the internal synaptic input of the
neurons within the network to neuron i, while Fi represents the current induced in neuron i by the
external CR stimulation. In addition, in order to model variations of the model parameters, we add a
sinusoidal external current input of the form Ivar = A ·sin(2π ·f · t) to the right-hand side of Eq. (3.2),
where f and A are the frequency and the amplitude of the signal respectively.

3.4 Network and neuron coupling description

The N = 200 spiking Hodgkin-Huxley neurons are placed on a ring and the Ns = 4 stimulations sites
are equidistantly placed in space at the positions of neurons i = 25, 75, 125, 175. The neurons interact
via excitatory and inhibitory chemical synapses by means of the postsynaptic potential (PSP) si
which is triggered by a spike of neuron i [Wulfram Gerstner et al. 1996; Izhikevich 2005] and modelled
using an additional equation:

dsj
dt

=
0.5 (1− sj)

1 + exp [− (Vj + 5) /12]
− 2sj . (3.11)

Initially we draw si ∈ [0 , 1 ] (randomly from a uniform distribution). The coupling term Si from
Eq. (3.1) (see [O.V. Popovych and P. Tass 2012]) contains a weighted ensemble average of all postsy-
naptic currents received by neuron i from the other neurons in the network:

Si = N−1
N∑
j=1

(Vr,j − Vi) cij |Mij |sj , (3.12)

where Vr,j is the reversal potential of the synaptic coupling (20 mV for excitatory and �40 mV for
inhibitory coupling), and cij is the synaptic coupling strength from neuron j to neuron i. There are
no neuronal self-connections within the network (cii = 0 mS/cm2). The variable:

Mij =

(
1−

d2ij
σ21

)
exp

(
−

d2ij(
2σ22
)) (3.13)

describes the spatial pro�le of coupling between neurons i and j and is of a Mexican hat-type [Wilson
H. R 1973; Dominguez et al. 2006; Rocha et al. 2008] with strong short-range excitatory (Mij > 0)

and weak long-range inhibitory interactions (Mij < 0). Here dij = d|i − j| is the distance between
neurons i and j, while:

d =
d0

N − 1
(3.14)

determines the distance on the lattice between two neighboring neurons within the ensemble. d0
is the length of the neuronal chain d0 = 10. σ1 = 3.5 , and σ2 = 2.0. In order to limit boundary
e�ects, we consider that the neurons are distributed in such a way that the distance dij is taken as:
d ·min (|i− j|, N − |i− j|) for i, j > N/2.
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Spike-Timing-Dependent Plasticity

The synaptic weights cij are dynamical variables that depend on the time di�erence, ∆tij = ti − tj ,
between the onset of the spikes of the post-synaptic neuron i and the pre-synaptic neuron j, denoted
by ti and tj , according to [Bi and Poo 1998; O.V. Popovych and P. Tass 2012]:

∆cij =

 β1e
−∆tij
γ1τ , ∆tij ≥ 0

β2
∆tij
τ e

∆tij
γ2τ , ∆tij < 0

(3.15)

with parameters β1 = 1 , β2 = 16 , γ1 = 0.12, γ2 = 0.15, τ = 14 ms and δ = 0.002, According to
the value of ∆tij , the synaptic weight cij is updated in an event-like manner, i.e. we add or subtract
an increment δċij for excitatory or inhibitory connections respectively, with learning rate δ > 0 every
time a neuron spikes. Furthermore, we restrict the values of cij on the interval [0,1] mS/cm2 for both
excitatory and inhibitory synapses, ensuring in this way that their strengthening or weakening remains
bounded. The maximal inhibitory synaptic weight cmax was set to be 1 in all our stimulations.

The time window of the plasticity is adjusted with respect to the intrinsic �ring rate of the
neuron population in order to exhibit multistability. There, di�erent time-windows (via di�erent
choices of parameters) were selected for the STDP for two di�erent neuron models, i.e. one
with bursting neurons (FitzHugh-Rinzel) and one for spiking neurons (Hodgkin-Huxley). In our
simulations, the STDP tends to simply stabilize the ongoing ensemble evolution and does not, by
itself, (de-)synchronize the network. The parameters were, in general, chosen such that the ratio ∆tij

γ1,2τ

is normalized, and the plasticity takes place within a time interval associated with the spiking period
of the individual neurons. We analyzed two additional cases for small variation of the plasticity
time-window (τ = 12 and τ = 16) and obtained very similar general e�ects. The selected �xed value
τ = 14, used throughout the entire study, also allows us to compare our results with previously
published studies.

Coordinated Reset Stimulation

Coordinated Reset (CR) stimulation was applied to the neuronal ensemble of N spiking Hodgkin-
Huxley neurons. This was done sequentially via Ns (= 4 in this study) equidistantly spaced stimula-
tion sites [P. A. Tass 2003a]: one stimulation site was active during Ts/Ns , while the other stimulation
sites were inactive during that period. After that another stimulation site was active during the next
Ts/Ns period. All Ns stimulation sites were stimulated exactly once within one stimulation ON-cycle.
Therefore, the duration of each ON-cycle is Ts (in ms). The spatiotemporal activation pattern of
stimulation sites is represented by the indicator functions ρk(t)(k ∈ [1, . . . , N ]), taking the value 1
when the kth stimulation site is active at t and 0 else.

The stimulation signals induced single brief excitatory post-synaptic currents. The evoked time-
dependent normalized conductances of the postsynaptic membranes are represented by α-functions
as follows [O.V. Popovych and P. Tass 2012]:

Gstim (t) =
t− tk
τstim

e−(t−tk)/τstim , tk ≤ t ≤ tk+1. (3.16)

Here τstim = Ts
6Ns

denotes the time-to-peak of Gstim, and tk is the onset of the kth activation of
the stimulation site. Note that the period (or frequency) through the τstim parameter of the CR
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stimulation determines not only the random onset timing of each single signal but also its temporal
duration. The spatial spread of the induced excitatory postsynaptic currents in the network is de�ned
by a quadratic spatial decay pro�le given as a function of the di�erence in index of neuron i and the
index xk of the neuron at stimulation site k:

D (i, xk) =
1

1 + d2 (i− xk)
2 /σ2d

, (3.17)

with d the lattice distance between two neighboring neurons as de�ned in Eq. (3.14) and σd = 0.8

the spatial decay rate of the stimulation current. Thus the total stimulation current is expressed by
the following equations:

Fi = [Vr − Vi (t)] ·K
Ns∑
k=1

D (i, xk) ρk (t)Gstim (t) , (3.18)

where Vr = 20 mV denotes the excitatory reversal potential, Vi the membrane potential of neuron i,
K the stimulation intensity, and ρ, G,D as described above.

Figure 3.1: Time evolution of CR stimulation signals. (A) RVS CR stimulation signal with period
Ts = 10 ms for the �rst 90 ms of an activated CR period. The vertical lines indicate the successive
ON- and OFF cycles and the temporal distance between two successive vertical lines correspond to
the period Ts of each cycle (every stimulation site is activated exactly once during the ON cycles).
A change of color indicates a change of sequence. (B) SVS-4 CR stimulation signal with the same
period but here the total time spans up to two completed ON-and OFF cycles (∼ 125 ms) while the
color changes as a new sequence is drawn.

For the RVS CR stimulation, sequences are randomly chosen from a set of Ns!(= 24) di�erent
possible sequences during each ON-cycle (an example is shown in Fig. 3.1A for CR stimulation
period Ts = 10 ms for the �rst 90 ms of an activated CR period). Each newly drawn sequence is
indicated by a di�erent color and lasts exactly one ON cycle. On the other hand, for the SVS−l CR
stimulation, one �rst randomly picks a sequence and repeats it l times before switching to another
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one, as shown by the example in Fig. 3.1B (again for Ts = 10 ms) for l = 4. The administered
stimulation protocol consists of m : n = 3 : 2 CR ON-OFF cycles (see [O.V. Popovych and P. Tass
2012; Lysyansky, O. V. Popovych, and P. A Tass 2011; Zeitler and P. A. Tass 2015]). Depending
on the Ts value, more (or less) ON-cycles may be administered within a �xed time interval. In this
panel, the total time spans up to two completed ON-and OFF cycles (up to ∼125 ms in this case)
and the color changes at each new sequence.
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Macroscopic measurements and statistical tools

The synaptic weights, being a�ected by the STDP and the di�erent intrinsic periods of the neurons,
change dynamically in time. One e�cient way to measure the strength of the coupling within the
neuronal population at time t is given by the following synaptic weight (averaged over the neuron
population):

Cav(t) = N−2
∑
i,j

sgn(Mij)cij(t), (3.19)

where Mij is de�ned in Eq. (3.13) and sgn is the sign-function. Furthermore, one may additionally
measure the degree of the neuronal synchronization within the ensemble, using the order parameter
[Haken 1983; Kuramoto 1984]:

R(t) = |N−1
∑
j

eiφj(t)| (3.20)

where φj(t) =
2π(t−tj,m)
tj,m+1−tj,m

for tj,m ≤ t < tj,m+1 is a linear approximation of the phase of neuron

j between its mth and (m+ 1)th spikes at spiking times tj,m and tj,m+1. R (t) is in�uenced by the
synaptic weights, as the latter are time dependent due to the STDP. The order parameter R measures
the extent of phase synchronization in the neuronal ensemble and takes values between 0 (absence of
in-phase synchronization) and 1 (perfect in-phase synchronization).

In our numerical calculations, we estimate Cav [see Eq. (3.19)] and Rav. The latter quantity is
averaged over the last 100 · Ts. Whenever we plot the order parameter versus time, we determine the
moving average < R > over a time window of 400 ·Ts , because of the presence of strong �uctuations.
For the statistical description and analysis of the non-Gaussian distributed Cav and Rav data (n = 11

samples), we use the median as well as the Inter-Quartile Range (IQR).

3.5 Results

Initial simulation setup

For each initial network of N = 200 non-identical-neurons and parameter conditions (or simply
�network�), we apply RVS and SVS CR signals (di�erent per network). For each network, the initial
conditions for each neuron were randomly drawn from random distributions as given in the Hodgkin-
Huxley Spiking Neuron Model subsection. We start the simulation with an equilibration phase, which
lasts 2 s. Later on, we evolve the network under the in�uence of STDP (which will be present until
the end of the simulation). We then integrate the network for 60 s with STDP without any external
stimulation yet, where a rewiring of the connections takes place, resulting in a strongly synchronized
state. Next, we apply CR stimulation for 128 s (resetting the starting time to t = 0 s). During this
CR-on period three stimulation ON-cycles (the stimulation is on) alternated with two OFF-cycles (the
stimulation is o�) as in the example stimulation signals shown in Fig 2. Each ON- and OFF-cycle
lasts Ts. After 128 s the CR stimulation ceases permanently and we continue the evolution of the
CR-o� period for extra 128 s.

In order to probe and chart the CR stimulation intensity and frequency parameter space, we
restrict the CR stimulation intensity to values in the interval (K ∈ [0.20, ..., 0.50]). This particular
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choice is based on our previous experience and numerical studies (see e.g. [O.V. Popovych and
P. Tass 2012; Zeitler and P. A. Tass 2015]) where it was found that weaker intensities were not
able to su�ciently desynchronize the neuron ensemble while larger intensities did not signi�cantly
improve (or sometimes even worsen) the outcome of RVS and SVS CR stimulation signals. We then
set an initial-central value for the CR stimulation period (that de�nes the initial/starting frequency)
which in principle is selected close to the intrinsic �ring rate of the strongly synchronized network. In
this case, and before applying the CR stimulation, the intrinsic �ring rate of the network is ≈71 Hz
which corresponds to Ts ≈ 14 ms. Hence, we begin with the CR stimulation period T0 = 16 ms which
gives an initial stimulation frequency f0 = 1/T0 (in a similar manner just like in [O.V. Popovych
and P. Tass 2012; Zeitler and P. A. Tass 2015] and adjusted to a value close to the intrinsic one).
Then we de�ne such a period interval [Tsmin, Tsmax] in ms (Ts: integer) that allows us to create an
�approximately� equidistant grid on the frequency space: fstim ∈ [25%f0, ..., 175%f0]. This initial T0-
value is also well studied for di�erent types of signal patterns aiming to optimize the CR e�ect with
the use of di�erent type of CR stimulation sequences (see e.g. [Zeitler and P. A. Tass 2015]). Then,
we de�ne the ratio (%) of CR sequence frequency per ON-cycle (fstim) over the frequency of the
reference stimulation frequency (f0 = 62.5 Hz, T0 = 16 ms) as r0 = (fstim/f0) · 100 and we end up in
studying the intensity and frequency-ratio (K, r0)� parameter space. In Table 1 in [Manos, Zeitler,
and P. A. Tass 2018a], we show the conversion between the stimulation frequency-ratio and period.
For comparison reasons, we also give the corresponding ratios rint (%) of CR stimulation frequency
per ON-cycle (fstim) over the frequency of the intrinsic �ring rate of the network frequency (fint =
71.4 Hz, Tint = 14 ms) without any external stimulation.

Impact of CR Stimulation Duration and Signals on Di�erent Initial Networks

Before presenting the core of our �ndings, let us �rst start by discussing how the RVS CR stimulation
duration a�ects the long-lasting anti-kindling of di�erent initial randomly chosen networks. In Fig. 3.2,
we show the evolution of the mean synaptic weight Cav as a function of time for di�erent total CR-on
time durations: t = 64 s (Fig. 3.2A), t = 128 s (Fig. 3.2B), and t = 256 s (Fig. 3.2C). 128 s is the
standard CR-on period used throughout the paper. The CR stimulation intensity is K = 0.20, and
the period Ts = 10 ms. A general trend appears in this sequence of panels, i.e. the longer the CR
stimulation lasts, less spread of the Cav regarding the long-lasting anti-kindling e�ect is observed after
stimulation o�set. This is shown in Fig. 3.2D with boxplots. The last box (corresponding to t = 256

s of total CR-on period) has no outliers and shows a more �uniform� long-lasting e�ect (as shown in
Fig. 3.2C) for all 11 network initializations, not only during the CR-on period but also afterwards
during the CR-o� period. However, there is no statistically signi�cant decrease of the median of the
Cav from t = 64 s to t = 128 s (right-sided Wilcoxon rank sum test, p = 0.0209, 5% signi�cance level).
Moreover, the median value of the Cav does not change signi�cantly between t = 128 s (Fig. 3.2B)
and t = 256 s (Fig. 3.2C, both-sided Wilcoxon rank sum test, p = 0.8955). Hence, the intermediate
stimulation duration t = 128 s provides fairly good results. Furthermore, for considerably larger
stimulation durations the anti-kindling is typically, but not always more pronounced. From a clinical
standpoint, it is desirable to achieve reasonably pronounced stimulation e�ects without excessive
stimulation durations. Accordingly, in this computational study we choose t = 128 s as total CR-on
time, and t = 256 s as total CR-on/o� time.

For the di�erent simulations, we use di�erent random initial networks and CR signals. For the
sake of generality, we do not pick any optimal combination of random initial network and RVS CR
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Figure 3.2: Impact of the total CR-on time on the mean synaptic weight Cav for di�erent initial
random networks and RVS CR. (A) Time evolution of the Cav for di�erent total CR-on time durations,
t = 64 s, (B) t = 128 s (this is the standard CR-on period used throughout the paper) and (C) t = 256

s. In all these cases, 11 di�erent initial networks were stimulated with di�erent RVS CR stimulation
signals during the CR-on period. The thick red horizontal lines indicate the CR-on/o� stimulation
periods (the end is marked with a vertical gray line) while the horizontal gray dashed lines are visual
cues for mutual comparison. (D) Boxplots of the mean synaptic weights presented in (A)-(C), showing
the median values (black lines within the boxes). The box frames depict the middle 50%, the upper
and lower whiskers the �rst and last 25% respectively while the outliers (black dots) are set as 1.5
times the length of the box (above/below). There is no statistically signi�cant di�erence between
the data sets at t = 128 s and t = 256 s (p = 0.8955 two-sided Wilcoxon rank sum test). The total
CR-on/o� time is twice as long as the CR-on period. (E) An identical RVS CR stimulation signal
(the one of network 1) was used for all 11 initial networks for t = 128 s [comparison with (B)]. In all
cases, the CR stimulation intensity is K = 0.20 with period Ts = 10 ms.

stimulation signal that would induce a favorable or biased behavior. This is to assess whether CR
e�ects are robust with respect to di�erent initial conditions. Fig. 3.2B shows a typical example
where 11 di�erent random stimulation signals where applied to 11 di�erent initial networks during
the CR-on period, with CR stimulation intensity K = 0.20 and stimulation period Ts = 10 ms.
The CR-on/o� period lasts 128 ms respectively. During the CR-on period the mean synaptic
weights Cav evolve in a similar manner for all networks, with little deviations between the di�erent
curves. They reach approximately the same small value at the end of the CR-on period. The latter
corresponds to weak excitatory synaptic connectivity and, in most cases in this paper, to globally
well-desynchronized states. However, the post-stimulation dynamics of Cav may be quite diverse.
Some networks retain their weak average connectivity while others, like network 2 and 9 (Fig. 3.2B)
relapse back to states with strong synaptic connectivity. Next, we study what happens if we �x the
CR stimulation signal for the 11 di�erent initial networks (Fig. 3.2E). The results are similar to
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Fig. 3.2B: The outcome at the end of the CR-on period is fairly uniform, while the post-stimulation
dynamics of Cav is diverse. Replacing one random external stimulation signal by another one may
improve the long-term outcome in some cases (e.g. network 8 � green dotted line), but worsen the
outcome in others (e.g. network 3 � blue solid line). These plots indicate that both the random
initialization of the network and the di�erent stimulation signals during the CR-on period impact on
the �nal outcome at the end of the CR-o� period in a complex manner.

Impact of RVS CR Stimulation Intensity and Frequency on Sustained After-E�ects

Fig. 3.3 presents a global overview of the long-lasting impact of CR at the end of the CR-o� period.
Fig. 3.3A shows the median of the mean synaptic weight Cav, and Fig. 3.3B the median of the order
parameter Rav. Figs. 3.3C and 3.3D display the corresponding IQRs, showing that the dispersion
around the median of the Cav results is very small in large parts of the parameter plane. In contrast,
small IQRs are found only for small Rav, in regions with strong desynchronization. Figs 3.3A and
3.3B display two main bands in the (K, r0)−parameter space associated with small dispersion: The
�rst band is aligned along the horizontal axis, for weak stimulation intensities (i.e. K = 0.20 and
K = 0.25) and stimulation frequencies greater than 40% of the standard f0 corresponding to a
stimulation period of T0 = 16 ms. The second band runs along the vertical stimulation intensity K
axis, and for relatively high frequencies, i.e. for fstim = 160%f0 (Ts = 10 ms) and fstim = 175%f0
(Ts = 9 ms) which correspond to ≈ 155% and ≈ 140% of the �ring rate of the synchronized neurons,
respectively. For these (bottom-horizontal and right-hand-side-vertical bands) the dispersion around
the median values is quite small for both Cav and Rav (Figs. 3.3C and 3.3D). In addition, the
vertical stripe at the reference frequency value f0 (100%, Ts = 16 ms), studied in [Zeitler and P. A.
Tass 2015], but with a t = 64 s CR-on period, is also associated with robust long-lasting anti-
kindling and desynchronization for all CR stimulation intensity values K. Another region with similar
characteristics lies at the center of Figs 3.3A and 3.3B for intermediate stimulation intensity and
frequency values.

At a �rst glance, among those two bands in Figs 3.3A and 3.3B, where dark color dominates
suggesting long-lasting anti-kindling after cessation of CR stimulation, the horizontal band seems
especially intriguing. Along the lines of our model analysis, the horizontal band corresponds to
pronounced desynchronizing outcome at favorably weak CR stimulation intensities within a range
of stimulation frequencies. However, we have to keep in mind that the discrete grid is not very
dense. Hence, in order to investigate whether this conclusion is justi�ed, we calculated Cav and
Rav for all the integer period Ts values for K = 0.20, ranging from fstim = 175%f0 (Ts = 10 ms)
to fstim = 40%f0 (Ts = 40 ms). Fig 3.4 shows this �ne-grained analysis. The boxplot for Cav

is shown in Fig 3.4A, and for the Rav in Fig 3.4B. Note, in this �gure the horizontal axis shows
the CR stimulation period instead of the frequency. And it is sorted from larger to smaller values
for an easier comparison between the two representations. The red and green dots indicate the
reference stimulation period T0 = 16 ms and intrinsic �ring rate period Tint =14 ms respectively. For
Ts ∈ [9, · · · , 24 ms] we observe robust anti-kindling e�ects. In contrast, for Ts ∈ [25, · · · , 28 ms] many
networks tend to be in a synchronized state, while for Ts ∈ [29, · · · , 38 ms] the anti-kindling is found
to be robust again, before �nally reaching the largest Ts value where the CR stimulation signals
are not e�ective at all. In summary, at weak stimulation intensities favorable stimulation outcomes
are achieved within wide ranges of the stimulation frequency. For further analyses of stimulation
induced e�ects observed in particular ranges of the stimulation intensity/frequency parameter plane,
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Figure 3.3: Global overview of the mean synaptic weight and synchronization at the end of the CR-
o� period using RVS CR stimulation. (A) Median of the mean synaptic weight Cav, (B) median of
the order parameter Rav (11 di�erent random initial network con�gurations and 11 di�erent RVS
CR random signals). Long-lasting anti-kindling is achieved in all dark regions as indicated by the
corresponding color-bars. Panels (C) and (D) show the dispersion around these median values by
plotting their IQR respectively. All IQR values being close to zero indicate that the middle 50% of
the distribution are very close to the median value.

we refer to the Supporting Information in [Manos, Zeitler, and P. A. Tass 2018a]. For particular
stimulation parameters, similar acute e�ects, as assessed with macroscopic quantities Rav and Cav,
may lead to qualitatively di�erent results. Neither prominent features of the connectivity matrix nor
the dynamical states of the individually stimulated subpopulations at the end of the CR-on period
enabled us to predict the long-term outcome. Furthermore, this analysis revealed that CR may be
e�ective without causing side-e�ects that are time-locked to the individual stimuli.

Simulation description for short-term CR dosage regimen

We investigate two singleshot and two multishot, spaced CR stimulation protocols (Fig. 3.5). The
multishot Protocols A and C consist of �ve single CR shots of 128 s duration, each followed by a pause
of 128 s, respectively (Figs. 3.5A,3.5C). The CR singleshot Protocol B consists of a long singleshot
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Figure 3.4: Fine-grained Ts-period grid analysis for RVS CR stimulation at intensity K = 0.20. (A)
Boxplots of Cav (mean synaptic weight) and (B) Rav (order parameter) for �xed and weak stimulation
intensity K = 0.20 for a �ner sample on the Ts integer value interval at the end of the CR-o� period.
The red and green dots indicate the reference stimulation period T0 = 16 ms and intrinsic �ring rate
period Tint = 14 ms, respectively.

of 5 × 128 s followed by a pause of 5 × 128 s (Fig. 3.5B). The CR singleshot Protocol D consists of
a long singleshot consisting of �ve single shots of 128 s duration, strung together without pauses in
between, followed by a pause of 5×128 s (Fig. 3.5D). The integral stimulation duration is identical for
Protocols A and B. In Protocols A and B all stimulation parameters are kept constant. In contrast,
in Protocol C at the end of each pause the amount of synchrony is evaluated in a time window of
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100 stimulation periods length (Fig. 3.5) and a three-stage control scheme is put in place: (i) If the
amount of synchrony does not fall below a pre-de�ned threshold, the CR stimulation frequency is
mildly varied. (ii) If the desynchronization e�ect is moderate, the CR stimulation frequency remains
unchanged. (iii) If desynchronization is achieved, the stimulation intensity is set to zero for the
subsequent shot. Analogously, in Protocol D at the end of each single shot the amount of synchrony
is evaluated in a time window of 100 stimulation periods length (Fig. 3.5) and the three-stage control
scheme is executed. The di�erence between Protocol C and D is that the evaluation for the control
intervention is performed in a pause subsequent to a single shot (Protocol C) as opposed to during a
single shot (Protocol D).

For the stage (i) control, the variation of the CR stimulation frequency is not adapted to
frequency characteristics of the neuronal network. Rather a minor variation of the CR stimulation
frequency is performed to make a fresh start with the subsequent single CR shot. These minor
changes of the CR stimulation frequency do not lead to changes of the neurons' intrinsic �ring
rates of more than ±3%. Due to the stage (iii) control, the demand-controlled shutdown of
CR stimulation, the maximum integral stimulation duration of Protocol C and D can reach the
level of Protocols A and B, but may well fall below. We use the order parameter to assess the
amount of synchronization. We here present a few representative results regarding Protocols A and
C only. The complete analysis for all Protocols can be found in [Manos, Zeitler, and P. A. Tass 2018b].

Protocol A: Spaced multishot CR stimulation with �xed stimulation parameters.

For this stimulation protocol all stimulation parameters are kept constant (Fig. 3.5). Accordingly,
the CR stimulation period Ts remains constant, too. We study the stimulation outcome of only
�ve symmetrically spaced consecutive single CR shots. To this end, for both RVS CR and SVS CR
(not shown here) stimulation we consider two unfavorable parameter pairs of �xed CR stimulation
period and intensity, respectively. One example refers to cases where CR stimulation induces acute
e�ects, but no long-lasting desynchronizing e�ects. The other example concerns the case where CR
stimulation causes neither acute nor long-lasting desynchronizing e�ects in a reliable manner.

RVS CR stimulation: Case I: (K,Ts) = (0.30, 11). At a stimulation duration of 128 s these
parameters caused only an acute, but no long-lasting desynchronization in the majority of networks
studied (Fig. 3.6), where Ts = 11 ms corresponds to ≈ 127% of the intrinsic �ring rate (or ≈ 91

Hz)]. Case II: (K,Ts) = (0.20, 28). In the majority of networks tested, these parameters did neither
lead to acute nor long-lasting desynchronization after administration of a single CR shot (Fig. 3.4)
where Ts = 28 ms corresponds to ≈ 50% of the intrinsic �ring rate (or ≈ 36 Hz)]. For both cases,
we investigate the order parameter < R > averaged over a sliding window for 11 di�erent networks
(marked with di�erent color/line types, Figs 3.6A,C). Boxplots of the order parameter Rav averaged
over a window of length 100 ·Ts at the end of each pause demonstrate the overall stimulation outcome
for all tested 11 networks (Figs. 3.6B,D).

Case I: RVS CR stimulation induces a desynchronization during the CR shots (Fig. 3.6A), but no
reliable, long-lasting desynchronization in the subsequent pauses (Fig. 3.6B). The spacing protocol
with �ve identical RVS CR shots does not signi�cantly improve the desynchronizing outcome of a
single RVS CR shot. In fact, in the boxplots the large dispersion around the median value remains
almost unchanged in the course of this protocol (Fig. 3.6B). Case II: Neither during the RVS CR
shots nor during the subsequent pauses a su�cient desynchronization is observed (Figs. 3.6C,D).
The spacing protocol does not cause an improvement of the stimulation outcome in this case, too
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Figure 3.5: Schematic summary of the CR stimulation protocols. (A) Protocol A: Spaced multishot
CR stimulation with �xed stimulation parameter. (B) Protocol B: Long singleshot CR stimulation
with �xed stimulation parameters. (C) Protocol C: Spaced multishot CR stimulation with demand-
controlled variation of the CR stimulation frequency and intensity. (D) Protocol D: Long singleshot
CR stimulation with demand-controlled variation of the stimulation frequency and intensity (see text).

(Fig. 3.6D).
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Figure 3.6: Protocol A: Spaced multishot RVS CR stimulation with �xed stimulation period Ts. (A,C)
Time evolution of the order parameter < R > averaged over a sliding window during 5 consecutive
RVS CR shots with �xed CR stimulation period. Di�erent colors correspond to di�erent networks.
Stimulation parameters are unfavorable for anti-kindling in Case I (A,B) and Case II (C,D) (see
text). (A,C) The horizontal solid red lines indicate the CR shots, while the horizontal dashed grey
lines serve as visual cues. Spacing is symmetrical, i.e. CR shots and consecutive pauses are of the
same duration. (B,D) Boxplots for Rav, averaged over a window of length 100 · Ts at the end of each
pause, illustrate the overall outcome for all tested 11 networks. Case I: (K,Ts) = (0.30, 11). Case II:
(K,Ts) = (0.20, 28).

Protocol C: Spaced multishot CR stimulation with demand-controlled variation of

stimulation period Ts and intensity.

We study the stimulation outcome of only �ve symmetrically spaced consecutive single CR shots with
stimulation period Ts and intensity varied according to a three-stage control scheme. To this end,
for both RVS CR and SVS CR (not shown here) stimulation we consider two unfavorable parameter
pairs of �xed CR stimulation period and intensity, respectively. One example refers to cases where
CR stimulation induces acute e�ects, but no long-lasting desynchronizing e�ects. The other example
concerns the case where CR stimulation causes neither acute nor long-lasting desynchronizing e�ects
in a reliable manner. We consider a regular and a random type of demand-controlled variation of the
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CR stimulation period Ts. Note, in both cases the CR stimulation period is not adapted to frequency
characteristics of the network. We consider the time courses of the time-averaged order parameter
< R > and Rav, the order parameter averaged over a window of length 100 · Ts at the end of pause.

Demand-controlled regular variation of the CR stimulation period and demand-controlled variation
of the intensity: At the end of each pause we calculate the order parameter Rav averaged over a
window of length 100 ·Ts. We vary the CR stimulation period and intensity according to the amount
of synchrony, based on a three-stage control scheme:

1. Insu�cient desynchronization: If Rav > 0.4, we decrease the CR stimulation period of the
subsequent RVS shot by Ts(j + 1) = Ts(j) − 1 ms, where the index j stands for the j−th CR
shot. As lower bound we set Ts = 9 ms (corresponding to ≈ 156% of the intrinsic �ring rate),
in order to avoid undesirably high CR stimulation frequencies. In a previous computational
study the latter turned out to be unfavorable for desynchronization (see [Manos, Zeitler, and
P. A. Tass 2018a]). As soon as Ts reaches its lower bound of 9 ms, it is reset to Ts(1) + 1 ms.

2. Moderate desynchronization: If 0.2 ≤ Rav ≤ 0.4, we preserve the CR stimulation period for
the subsequent CR shot: Ts(j + 1) = Ts(j), where the index j denotes the j−th CR shot.
0.2 ≤ Rav ≤ 0.4 is considered to be indicative of a desynchronization e�ect.

3. Su�cient desynchronization: If Rav < 0.2, the CR stimulation is suspended for the subsequent
shot by setting K = 0 for the next shot and until 0.2 ≤ Rav. Rav < 0.2 is considered a su�cient
desynchronization.

Spaced multishot RVS CR stimulation with demand-controlled regular variation of the stimulation
period Ts and demand-controlled variation of the intensity: In both Cases (I and II) this protocol
reliably induces a desynchronization for all networks tested (Figs. 3.7A,C). After the second RVS CR
shot the median of the time-averaged order parameter Rav at the end of the corresponding pauses
falls below 0.4, with moderate dispersion (Figs. 3.7B,D). Note, already after the �rst mild variation
of the CR stimulation period Ts the amount of synchrony is strongly reduced. In several networks
and pauses, the desynchronization criterion, Rav < 0.2, is ful�lled, so that during the subsequent
CR shots no stimulation is delivered (Figs. 3.7A,C). Accordingly, Protocol C enables to reduce the
integral amount of stimulation.

In realistic biological systems intrinsic (model) parameters typically vary over time. These varia-
tions may be of complex dynamical nature [see e.g. [Timmer et al. 2000; Yulmetyev et al. 2006]. To
obtain some indication as to whether Protocol C is robust against low-amplitude intrinsic variations
of the neuronal �ring rates, we added a low-amplitude term Ivar = A · sin(2π · f · t) to the right-hand
side of Eq. (3.1). In the stimulation-free case, Ivar causes variations of the neurons' �ring rates in the
order of ±3% and no qualitative changes of the network dynamics. For di�erent frequencies f this
type of variation does not signi�cantly a�ect the long-term desynchronization outcome of Protocol C
(f = 0.004 Hz, 4 Hz and 20 Hz, see Figs. 3.8 and 3.9). By the same token, the neuronal �ring rates
are not signi�cantly altered by the additional periodic force.

Note, this is not intended to be a comprehensive study of the impact of periodic forcing of ar-
bitrary frequency on the spontaneous or stimulation-induced dynamics of the model network under
consideration. Rather, the slow oscillatory forcing is meant to model slow physiological modulatory
processes in an illustrative manner. In the extreme case of f = 0.004 Hz the slow oscillatory modula-
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Figure 3.7: Protocol C: Spaced multishot RVS CR stimulation with demand-controlled regular varia-
tion of the stimulation period Ts and with demand-controlled variation of the intensity. (A,C) Time
evolution of the order parameter < R > averaged over a sliding window during 5 consecutive RVS CR
shots. If Rav, the order parameter averaged over a window of length 100 · Ts at the end of a pause,
exceeds 0.4, the CR stimulation period of the subsequent RVS shot is decreased by Ts 7→ Ts − 1

ms (see text). Stimulation parameters are unfavorable for anti-kindling in Case I (A,B) and Case II
(C,D) (see text). (A,C) The horizontal solid red lines indicate the CR shots, while the horizontal
dashed grey lines serve as visual cues. Spacing is symmetrical, i.e. CR shots and consecutive pauses
are of the same duration. (B,D) Boxplots for the time-averaged order parameter Rav at the end of
each pause, illustrate the overall outcome for all tested 11 networks. Case I: (K,Ts) = (0.30, 11).
Case II: (K,Ts) = (0.20, 28).

tion acts on the same time scale as a cycle comprising shot and pause and, hence smoothly emulates
the step-wise modulation of the CR stimulation frequency in Protocol C.

3.6 Summary and outlook

By systematically varying the CR stimulation frequency and intensity and comparing the stimula-
tion outcome of the two di�erent CR protocols, RVS and SVS CR stimulation [Manos, Zeitler, and
P. A. Tass 2018a], RVS CR proved to be more robust with respect to variations of the stimulation
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Figure 3.8: Protocol C in the presence of intrinsic variations of the �ring rates caused by a modulatory
low-amplitude current input Ivar = A · sin(2π · f · t), with A = 1, f = 0.004 Hz (A, B), f = 4 Hz (C,
D) and f = 20 Hz (E, F). Spaced multishot RVS CR stimulation with demand-controlled random
variation of the stimulation period Ts and with demand-controlled variation of the intensity. The
low-amplitude variation Ivar is active during the entire simulations, respectively. Its low amplitude
A = 1 ensures that the dynamics of the network is not drastically a�ected. (A, C, E) Time evolution
of the order parameter < R > averaged over a sliding window during 5 consecutive RVS CR shots
respectively. If Rav at the end of a pause exceeds 0.4, the CR stimulation period of the subsequent
SVS shot is decreased by Ts 7→ Ts − 1 ms (see text). (B, D, F) Boxplots for the time-averaged
order parameterRav at the end of each pause, illustrate the overall outcome for all tested 11 networks
respectively. The horizontal solid red lines indicate the CR shots, while the horizontal dashed grey
lines highlight the two control thresholds (see text). Case I stimulation parameters are unfavourable
for anti-kindling: (K,Ts) = (0.30, 11).

frequency. However, in accordance with a previous computational study, restricted to a �xed value
of the stimulation frequency [Zeitler and P. A. Tass 2015], SVS CR stimulation can induce stronger
anti-kindling e�ects. In our study, we obtained speci�c parameter ranges related to particularly fa-
vorable stimulation outcome. If no closed loop adaptation for the stimulation frequency is available,
RVS CR stimulation at weak intensities and with stimulation frequencies in the range of the neuronal
�ring rates enables us to e�ectively and robustly achieve an anti-kindling.

To the best of our knowledge, in our study in a plastic network the CR stimulation frequency
and intensity were systematically varied for the �rst time to investigate the impact on acute and
long-lasting stimulation outcome. Remarkably, pronounced acute desynchronization (as measured by
means of the standard order parameter) does not necessarily lead to long-lasting desynchronization.
On the one hand, this �nding might inspire future computational and pre-clinical studies aiming at
speci�cally designing stimulation protocols for long-lasting (as opposed to acute) desynchronization.
On the other hand, this �nding is signi�cant for the development of clinical calibration procedures
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Figure 3.9: Protocol A in the presence of intrinsic variations of the �ring rates caused by a modulatory
low-amplitude current input Ivar = A · sin(2π · f · t), with A = 1, f = 0.004 Hz (A, B), f = 4 Hz
(C, D) and f = 20 Hz (E, F). Spaced multishot RVS CR stimulation with �xed stimulation period
Ts. Same series of simulations and analysis as in Fig.3.8. (A, C, E) Time evolution of the order
parameter < R > averaged over a sliding window during 5 consecutive RVS CR shots respectively.
(B, D, F) Boxplots for the time-averaged order parameter Rav at the end of each pause, illustrate
the overall outcome for all tested 11 networks respectively. Spacing is symmetrical, i.e. CR shots
and consecutive pauses are of the same duration. Case I stimulation parameters are unfavourable for
anti-kindling: (K,Ts) = (0.30, 11).

for CR stimulation, see [Adamchic, Toth, Hauptmann, Walger, et al. 2017].

We cannot expect a stimulation technique to be generically e�ective, irrespective of the neural
network model used. Nevertheless, stepwise adding further physiologically and anatomically relevant
features to the neural network models employed may help to generate speci�c predictions and, ul-
timately, to further improve stimulation protocols and dosage regimes. In that sense, the �nding
that RVS CR stimulation at weak to moderate intensities and stimulation frequencies adapted to the
neurons' intrinsic �ring rates causes a desynchronization in neural network models without STDP
[Lysyansky, O. V. Popovych, and P. A Tass 2011] and with STDP as shown in this study, is relevant
and, in fact, in accordance with pre-clinical �ndings [J. Wang et al. 2016; P. A. Tass, Qin, et al.
2012a]. Furthermore, the fact that SVS CR stimulation might even be more e�ective, but requires
more careful parameter adaptation may guide future development of calibration techniques as put
forward in [Manos, Zeitler, and P. A. Tass 2018b].

We demonstrated that over a wide range of stimulation parameters favorable acute e�ects do not
automatically lead to favorable long-lasting, sustained after-e�ects. This is in agreement with a com-
putational study in the same model, but performed in only a restricted parameter range [Zeitler and
P. A. Tass 2015], as well as with an electroencephalograms (EEG) experiment performed in tinnitus
patients [Adamchic, Toth, Hauptmann, Walger, et al. 2017]. To characterize stimulation induced ef-
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fects, we here used the average synaptic weight and the average amount of neuronal synchrony. These
macroscopic quantities enabled us to e�ectively investigate the impact of variations of stimulation
parameters on the stimulation outcome.

In neural networks without STDP tested so far, CR stimulation works at higher intensities as
well, see e.g. [Lysyansky, O. V. Popovych, and P. A Tass 2011]. In that case, pronounced cluster
states are induced, but coherent synchrony is reliably suppressed. This is not the case in the neural
network model with STDP studied here. For both RVS CR and SVS CR, for several parameters
tested the long-term outcome deteriorates with increasing stimulation intensity. Accordingly, based
on our results, in pre-clinical and clinical applications stimulation at higher intensities should be
avoided. Another important aspect refers to the more pronounced periodicity of SVS CR pattern. In
previous papers (lacking a wider scan of the parameter space), SVS CR stimulation appeared to be
superior to RVS CR stimulation [Zeitler and P. A. Tass 2015; Zeitler and P. A. Tass 2016]. Here,
we showed that SVS CR stimulation decisively depends on the appropriate choice of the stimulation
frequency. This sensitivity may signi�cantly reduce the performance in the presence of biologically
realistic variations of the neuronal �ring rates and might, hence, be the very reason, why the outcome
of SVS CR stimulation is signi�cantly better for smaller numbers of sequence repetitions.

In contradiction to the results obtained in networks without STDP [P. A. Tass 2003b; P. A.
Tass 2003a; Lysyansky, O. V. Popovych, and P. A Tass 2011], CR stimulation may cause a full-
blown anti-kindling without any phase resets of the subpopulations time locked to the corresponding
stimuli (see S4 Fig. in [Manos, Zeitler, and P. A. Tass 2018a]). This is relevant for two reasons:
(i) Since e�ective CR stimulation does not require phase resets time-locked to the individual stimuli,
further computational studies should elucidate whether it makes sense to calibrate CR stimuli for pre-
clinical and clinical applications by selecting stimulus parameters that favorably achieve phase resets.
Corresponding results might be relevant for the design of calibration procedures and, in addition,
challenge existing patents that are based on selecting parameters that optimally achieve phase resets
of the stimuli delivered to the individual sub-populations. (ii) By the same token, our results do not
only challenge current hypotheses on the mechanism of CR stimulation, but also fundamental patents
in the �eld of invasive as well as non-invasive CR stimulation. Accordingly, future computational
studies should focus on the mechanism of action of CR stimulation in networks with STDP in order
to actually understand and possibly improve anti-kindling protocols.

Our goal was to accomplish an anti-kindling in a way as robust as possible, complying with clin-
ically motivated constraints. For instance, striving for anti-kindling induced at minimal stimulation
intensities led to the computational development of spaced CR stimulation [O. V. Popovych, Xenakis,
and P. A. Tass 2015] and two-stage CR stimulation with weak onset intensity [Zeitler and P. A. Tass
2016]. The motivation behind these developments was to avoid side e�ects by substantially reducing
stimulation intensities. In this context, it might turn out to be bene�cial that RVS CR stimulation
causes sustained after-e�ects over a wide range of stimulation frequencies even at weak intensity
(Fig. 3.3). Accordingly, RVS CR stimulation might provide an appropriate stimulation protocol, in
particular, if applied in an open-loop manner, without the ability to calibrate the stimulation pa-
rameters, especially the stimulation frequency by adapting it to the dominant peaks in the frequency
spectrum of electrophysiological signals such as local �eld potentials or EEG signals.

By comparing spaced CR stimulation with �xed stimulation parameters (Protocol A) and massed,
continuous CR stimulation with equal integral duration (Protocol B) with a �exible spaced CR stim-
ulation with demand-controlled variation of CR stimulation frequency and intensity (Protocol C),
and with a �exible non-spaced CR stimulation with demand-controlled variation of CR stimulation
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frequency and intensity (Protocol D), we demonstrated [Manos, Zeitler, and P. A. Tass 2018b] that
Protocol C enables to signi�cantly improve the long-term desynchronization outcome of both RVS
and SVS CR stimulation, even at comparatively short integral stimulation duration. Remarkably,
spacing alone (Protocol A) is not su�cient to provide an e�cient short-term dosage regimen. In fact,
in particular cases �vefold longer stimulation duration might even be more e�cient than �ve consec-
utive single CR shots with identical integral stimulation duration, at least for RVS CR stimulation
[Manos, Zeitler, and P. A. Tass 2018b]. The low performance of pure spacing (Protocol A) might
be due to the low number of single CR shots, here �ve, as opposed to slightly larger numbers of CR
shots, say eight, tested for the case of subcritical CR stimulation before [O. V. Popovych, Xenakis,
and P. A. Tass 2015]. However, more important might be the approx. �fty-fold longer stimulation
and pause duration used for the spaced subcritical CR stimulation protocol. The long spaced sub-
critical CR stimulation protocol might be bene�cial for invasive application, such as DBS, and help
reduce side-e�ects by substantially reducing stimulation current intake of the issue.

We computationally showed that a spacing with rigid �ve-shot timing structure, but �exible,
demand-controlled variation of stimulation frequency and intensity (Protocol C) provides a short-term
dosage regimen that signi�cantly improves the long-term desynchronization outcome of RVS and SVS
CR stimulation. At the end of each pause between CR shots, the stimulus after-e�ect is assessed. If
the desynchronization is considered to be insu�cient, a mild variation of the CR stimulation frequency
is performed to possibly provide a better �t between network and CR stimulation frequency, without
actually adapting the stimulation frequency to frequency characteristics of the network stimulated. If
desynchronization is considered to be moderate, the subsequent CR shot is delivered with parameters
unchanged. If desynchronization is su�cient, CR stimulation is suspended during the subsequent shot.
Intriguingly, in the vast majority of parameters and networks tested, this short-term dosage regimen
induces a robust and reliable long-lasting desynchronization. This protocol might be a candidate
especially for non-invasive, e.g. acoustic [P. Tass, Adamchic, et al. 2009] or vibrotactile [Syrkin-
Nikolau et al. 2018; P. A. Tass 2017], applications of CR stimulation to increase desynchronization
e�cacy, while keeping the stimulation duration at moderate levels.

Demand-controlled variation of CR stimulation frequency and intensity (Protocol D) alone (i.e.
without inserting pauses) is not su�cient to signi�cantly improve the outcome of RVS and SVS
stimulation [Manos, Zeitler, and P. A. Tass 2018b]. Hence, introducing pauses signi�cantly improves
the e�ect of the demand-controlled variation of CR stimulation frequency and intensity. In principle,
stimulation parameters other than the CR stimulation frequency might be varied depending on the
stimulation outcome. However, in this study we have chosen to vary the CR stimulation frequency,
since the latter turned out to be a sensitive parameter, especially for SVS CR stimulation (see [Manos,
Zeitler, and P. A. Tass 2018a]). In fact, the short-term dosage regimen with demand-controlled
variation of stimulation parameters (Protocol C) might help to turn SVS CR stimulation in a method
that causes a particularly strong anti-kindling in a robust and reliable manner.

Protocol C does not require a direct adaption of the CR stimulation frequency to measured
quantities re�ecting frequency characteristics of the network. We have chosen this design, since it
might be an advantage not to rely on speci�c biomarker-type of information. For instance, in the
case of PD a number of relevant studies were devoted to closed-loop DBS (see e.g. [Graupe et al.
2010; Rosin et al. 2011; Little et al. 2013; Rosa et al. 2015]). A relevant issue in this context is the
availability of a biomarker adequately re�ecting the individual patient's extent of symptoms [Beudel
and Brown 2016; Kühn and Volkmann 2017]. In fact, it is not clear whether low or high frequency
beta band oscillations might be more appropriate as biomarker-type of feedback signal [Beudel and
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Brown 2016]. For several reasons, beta band oscillations might possibly not be an optimal feedback
signal (see e.g. [Kühn and Volkmann 2017]). Enhanced beta band oscillations are not consistently
found in all PD patients [Beudel and Brown 2016; Kühn and Volkmann 2017]. The clinical score of
PD patients might more appropriately be re�ected by the power ratio of two distinct bands of high
frequency oscillations around 250 Hz and 350 Hz [Özkurt et al. 2011]. Appropriate biomarkers might
depend on the patient phenotype [Quinn et al. 2015]: In tremor dominant (compared to akinetic
rigid) PD patients resting state beta power may decrease during tremor epochs [Bronte-Stewart et
al. 2009; Quinn et al. 2015]. By a similar token, theta and beta oscillations interact with high-
frequency oscillations under physiological [Yanagisawa et al. 2012] as well as pathological [Yang et al.
2014] conditions. Also, quantities assessing the interaction of brain oscillation, e.g. phase amplitude
coupling might be used as biomarker to represent the amount of symptoms [Beudel and Brown 2016].
Also, activity in the beta band might be relevant for compensatory purposes, as recently shown in a
parkinsonian monkey study with sensorimotor rhythm neurofeedback [Philippens et al. 2017].

It might be another potential advantage for clinical applications that the three-stage control of the
proposed short-term dosage regimen (Protocol C) could possibly be approximated by scores re�ecting
the patient's state or the amount symptoms. A simple three-stage rating of the patient's state (bad,
medium, and good) might replace the feedback signal-based stages (i), (ii), and (iii). Assessments
of the patient's state might be performed in a pause after a CR shot. Depending on the rating, the
CR stimulation frequency or intensity of the subsequent CR shot may be varied. In particular, for
non-invasive application of CR stimulation a non-invasive assessment of the stimulation e�ect might
straightforwardly be realized.

Intrinsic variations of su�cient size might naturally mimic variations of the relationship between
CR stimulation frequency and intrinsic neuronal �ring rates as introduced on purpose in Protocol C.
Accordingly, already the purely spaced stimulation without demand-controlled variability (Protocol
A) might display some variability of the relationships between intrinsic �ring rates and CR stimulation
frequency simply due to the intrinsic variability. However, at least with the frequencies 0.004 Hz, 4
Hz and 20 Hz in the low-amplitude term Ivar = A · sin(2π · f · t) added to the right-hand side of
Eq. (3.1), we were not able to observe any substantial improvement of the desynchronizing outcome
of Protocol A (Fig. 3.9 from Supplementary Fig. 2 in [Manos, Zeitler, and P. A. Tass 2018b]).
However, more physiological patterns of �ring rate modulations might have a more signi�cant impact
on the stimulation outcome of Protocol A. In future studies typical variations of the signals relevant
to a particular pre-clinical or clinical application might be taken into account to further improve
desynchronizing short-term dosage regimen. The additional periodic forcing considered here was
meant to illustrate the stability of the suggested control approach. However, future studies could
also provide a detailed analysis of the interplay of one or more periodic inputs and noise, thereby
focusing on stochastic resonance and related phenomena (e.g. [A. S. Pikovsky and J. Kurths 1997]).
The number of stimulation sites and CR stimulation spatial decay was based on [Lysyansky, O. V.
Popovych, and P. A Tass 2011]. In accordance to that study, adding more stimulation sites does
neither lead to qualitatively di�erent results nor does it improve the stimulation outcome.

The short-term dosage regimen proposed here provides a closed-loop CR stimulation concept that
enables to signi�cantly increase the robustness and reliability of the stimulation outcome. Our results
motivate to further improve the CR approach by closed loop or feedback-based dosage regimen.
Compared to the computationally developed initial concept of demand-controlled CR-induced
desynchronization of networks with �xed coupling constants [P. A. Tass 2003b; P. A. Tass 2003a],
the focus will now be on a feedback-adjusted modulation of synaptic patterns to induce long-lasting



84 Chapter 3. Complex neuronal activity patterns in the human brain

therapeutic e�ects. Currently, clinical proof of concept (phase IIa) is available for deep brain CR
stimulation for the therapy of Parkinson's disease [Adamchic, Hauptmann, et al. 2014] and acoustic
CR stimulation for the treatment of chronic subjective tinnitus [P. Tass, Adamchic, et al. 2009]. In
addition, promising �rst in human (phase I ) data are available for vibrotactile CR stimulation for the
treatment of Parkinson's disease showing pronounced and highly signi�cant sustained therapeutic
e�ects [Syrkin-Nikolau et al. 2018]. For the clinical development of these treatments it is mandatory
to perform dose-�nding studies (phase IIb) to reveal optimal stimulation parameters and dosage
regimens, for comparison see [Friedman, Furberg, and Demets 2010]. The latter are required to
get properly prepared for large e�cacy (phase III ) trials [Friedman, Furberg, and Demets 2010].
Since CR stimulation modulates complex neuronal dynamics, dose-�nding studies are sophisticated,
since stimulation parameters as well as dosage patterns have to be chosen appropriately. Selecting
appropriate stimulation parameters and dosage regimens by trial and error may neither be e�ective
nor a�ordable, since it would require a huge number of patients. In contrast, this work illustrates
the important role of computational medicine in generating hypotheses for dose-�nding studies.
Speci�cally, we show that spacing (i.e. adding pauses in between stimulation epochs) as well as
moderate and unspeci�c parameter variations adapted in the course of the therapy are not su�cient
to overcome limitations of CR stimulation. Intriguingly, the combination of both, spacing plus
adaptive moderate parameter variation increases the robustness of the stimulation outcome in a
signi�cant manner. This computational prediction can immediately be tested in dose-�nding studies
and, hence, help to optimize the CR therapy, shorten the development time and reduce related costs.

Perspectives

Besides the spike timing-dependent plasticity (modulating relative synaptic strength connectivity
between neurons on a time scale of seconds to minutes) there is also the structural plasticity (deletion
pre-existing or generation new synapses in order to homeostatically adapt the �ring rate of the neurons
on a time scale of days to months), see e.g. [Diaz-Pier et al. 2016]. The latter one is not extensively
studied while combining both types of plasticity is a rather complicated task as one should design
models that can operate at di�erent time scales. An interesting future task could be to investigate the
role of structural plasticity in explaining long-term deep brain stimulation e�ects. In this framework,
we aim to set up a rather detailed network and incorporate physiologically relevant mechanisms, such
as dynamical evolution of synaptic connections between neurons, in order to optimize the stimulation
protocols [Manos T., Diaz-Pier S. and Tass P.A. �Long-term desynchronization by coordinated reset
stimulation in a neural network model with synaptic and structural plasticity�, (in revision) 2020].
This type of investigation is not able to take place at a clinical setting and hence one needs to employ
theoretical and computational studies in order to ultimately improve the quality of life of patients
and minimize side e�ects of the deep brain stimulation after surgery.

Nonlinear dynamical systems have been recently employed in the study of the human brain also
at larger spatio-temporal scales. The human brain is a complex neural network able to self-organise
into di�erent emergent states crucial for its healthy and pathological functioning. At a meso- and
macro-scale level, a brain connectivity network consists of nodes (grey matter regions) and edges.
Edges can represent white matter tracts in structural networks connectome, the so-called structural
connectivity, or correlations between for example, two blood-oxygen-level-dependent (BOLD) or EEG
time series in functional networks, the so-called functional connectivity (FC), see e.g. [Sporns, Tononi,
and Kötter 2005]. Interdisciplinary approaches using concepts from nonlinear dynamics, physics, bi-
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ology and medicine, have allowed us to understand in more depth how the human brain functions. A
dynamical-model approach, can provide links between attractors, bifurcations, synchronisation pat-
terns and empirical neuroimaging data, such as EEG, BOLD functional magnetic resonance imaging
(fMRI), etc. By choosing adequate model parameters (e.g. via a parameter sweep exploration), it is
feasible to build customised virtual brain activity for individual subjects. These parameters can serve
as dynamical biomarkers and predictors of di�erent brain states (healthy vs diseased) and behavioural
modes [O. V. Popovych, Manos, et al. 2019]. Following such concepts, the virtual epileptic patient
has been recently proposed [Jirsa et al. 2017], where such medical-treatment approaches using per-
sonalised mathematical models for epileptic patients has been illustrated. By better understanding
the pathological activity as opposed to health, one aims to optimize appropriately the treatment.
Furthermore, such brain networks nodes and edges are not uniquely de�ned. Typically, the voxel
parcellation is based on certain criteria from the analysis of the neuroimaging data. These criteria
may be based for example on structural neural information of the areas or their functionality or co-
activation during a task, see e.g. [Stanley et al. 2013; Thirion et al. 2014; Eickho�, Yeo, and Genon
2018]. Ultimately, one is able to reduce the dimensionality of the brain data by merging hundred
thousands of voxels from the high-resolution neuroimaging data into a few brain regions. So far, there
is no uni�ed brain parcellation. One important bene�t for such a result would be the interpretability
and comparability of the results for di�erent subjects and studies.

There are many ways to design such a parcellation map (brain atlas). Recently, we investigate two
paradigmatically distinct cases [Popovych O. V., Kyesam J., Manos T., Diaz-Pier S., Ho�staedter
F., Schreiber J., Yeo, B. T. T. and Eickho� S. B., �Impact of brain parcellation and empirical data
on modeling of the resting-state brain dynamics�, (submitted) 2020]: (i) a parcellation of the cortex
regions according to its folding properties, e.g., into gyral-based parcels encircled by tracing from the
depth of one sulcus to another [Desikan et al. 2006] and (ii) a parcellation approach based on the
brain function, where the patterns of the resting-state FC can be used to group the voxels (or vertices)
into parcels of similar connectivity [Schaefer et al. 2018]. Thus, we can model and investigate the
e�ects of brain parcellation in great detail with a dynamical system, e.g. coupled phase oscillators
suggested for modeling cortical oscillations and resting-state BOLD dynamics [Breakspear, Heitmann,
and Da�ertshofer 2010; Cabral et al. 2011; Ponce-Alvarez et al. 2015; Fukushima and Sporns 2018].
In this approach, each node is modeled by a phase oscillator (e.g. [Kuramoto 1984]), the total
number of brain node is assigned by the given brain atlas, the relative connectivity strength and
delay signal propagation can be estimated by the empirical neuroimaging data (for each subject) as
well as estimates about the nodes' frequency. All the above can be used as inputs into the dynamical
system and allow for a relatively small free set of parameters (physiologically relevant, such as global
coupling, delay scaling etc.) to be explored and tuned in a way that can describe and ultimately
explain adequately the dynamics of certain resting-states or brain activity during tasks as well as
distinguish between healthy and pathologically states.
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