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Chapter 1

Introduction

Solidification is a key processing step for the manufacture of most metal
products. During casting or additive manufacturing the base microstruc-
ture for all subsequent processing stages is formed. Defects and nonunifor-
mity of structure and chemical composition can be introduced at different
scales, from the scale of phase interfaces to the scale of the whole product.
The properties of the final product are conditioned by the structure formed
during solidification.

The genesis of solidification micro- and macrostructures and defects is
difficult to understand because the phenomena that need to be described
span a wide range of scales and involve many aspects of physics. For ex-
ample, the macrostructure (distribution of grain size and shape across a
solidified piece) is the result of a complex interaction between the nucle-
ation of solid grains, their growth and their transport. The growth of the
crystal grains is controlled by diffusion and convection of solutes at the scale
of the dendrite branches – the microscopic scale, and by collective solutal in-
teractions between grains at the scale of a grain ensemble – the mesoscopic
scale. The distribution across the casting is further governed by convec-
tion transport at the process scale – the macroscopic scale. The formation
of defects such as macro- and microsegregation or microporosity, is tightly
coupled with the establishment of the macrostructure.

Models of solidification need to describe the elementary phenomena at
the different scales and their coupling. Because of the range of scales involved
spans at least six orders of magnitude (roughly from a µm to a meter), a
direct description by microscale models will not be viable in the foreseeable
future. Multiscale models are therefore employed. They are based on clev-
erly simplified models of phenomena at smaller scales that are incorporated
into models of larger scales to give a multiscale description. The assump-
tions introduced by simplifications of the microscale modeling are a key to
the limitations of multiscale models. As I will show, the simplifications in-
troduced at the microscopic scale can have a significant influence on the
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predictions on the macroscopic scale.
The research presented in this memoir is driven by industrial applications

for the production of high-performance materials. Prominent examples of
major current concern include:

• Nuclear safety: macrosegregation in large steel ingots for the manu-
facture of nuclear reactor parts;

• Lightweighting: microstructure, microporosity and macrosegregation
in aluminum alloys for aircraft structures and in TiAl-based alloys for
the manufacture of aircraft engine turbine blades.

An essential driving force for my research are the collaborations with in-
dustrial partners. Starting with the collaboration with Impol Aluminium
Industry (Slovenia) during my PhD, industrial partnerships thrived in the
environment of the Solidification group of IJL; in chronological order: Con-
stellium C-TEC, Sciences & Computers Consultants, Erasteel, Aubert &
Duval, ArcelorMittal Industeel, Ascometal, Safran Aircraft Engines, Fram-
atome, EDF, O2M Solutions, ArcelorMittal Maizieres Research, and ABS.
Key to succsess are the academic collaborations. I need to point out the
most important ones: Access–RWTH Aachen, Sintef Industry, Cemef–Mines
ParisTech, and the Solidification Lab of the University of Iowa.

The structure of this memoir reflects the motivation and the rationale of
my research. The investigation of industrial problems opens questions and
problems of more fundamental nature that need to be answered to respond
to the industrial issues. In a similar way, the improvement of the predic-
tive power of multiscale models for industrial processes triggers the need
for refining the description of micro- and mesoscale phenomena. Specific
models at smaller scales are developed and the results are to be fed back
to the macroscopic models through upscaling methods. The modeling is
complemented by lab and industrial experiments. I will therefore guide you
through the principal results of my research in the last 13 years following
this line.

The second chapter of this memoir presents the work on industrial pro-
cesses, focusing on the modeling of the coupling of process-scale transport
and microsctructure nucleation and growth. Through the results, the limi-
tations of the macroscopic multiscale models in the description of small scale
phenomena are also presented. In the third chapter applications and devel-
opments of a mesoscopic model are presented with one of the key objectives
being to use it for upscaling to macroscopic models in order to improve the
description of microstructure growth kinetics at the process scale. The first
steps in upscaling are presented in the fourth chapter. The last, fifth, chap-
ter presents research projects that will evolve in the coming years from the
solid trunk grown today.
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Chapter 2

Macroscopic modeling

2.1 Introduction

For the metallurgical industry, numerical simulation is a valuable tool that
helps gain understanding leading to reduction of defects, enhancement of
material structure, and improvement of processes. In our work on process-
scale modeling of solidification the focus is on industrial applications in steel
ingot casting, DC casting of aluminum alloys, and more recently on centrifu-
gal casting of TiAl based alloys. The objective is to explain the interactions
between the microstructure, the macrostructure, and the macroscopic trans-
port in order to enable a better control of the structural and chemical ho-
mogeneity of castings.

The models of all these elementary phenomena must be formulated in
a way that makes it possible to incorporate and couple them in a closed
model. When formulating such models, one faces several challenges: (i)
the decisive physical phenomena must be described in a simplified way that
enables their solution at the process scale, (ii) all models must be coupled
in a common framework, (iii) numerical algorithms to solve the strongly
nonlinear models, consisting of a large number of coupled equations, must
be developed. With utility as the objective, the essence of the art of modeling
lies in smartly balancing the intricacy of the couplings with our ability to
understand them, and the completeness of the models with the capabilities
of the computing tools available to resolve them.

To couple micro-, meso-, and macroscopic phenomena, mean-field models
are used in multiscale and multiphysics modeling of processes. For solidifica-
tion, the volume-averaging approach is the most established. These models
are based on the seminal work of Beckermann et al. [1] and Rappaz et al. [2,3]
in the late 1980s and early 1990s. They were the first to couple models of
dendritic microstructure growth kinetics to macroscopic heat transfer cal-
culations in cast parts. The volume-averaging framework was applied to
solidification at around the same time by Beckermann & Viskanta [4] and
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Ganesan & Poirier [5]. Beckermann et al. [6–10] then extended these cou-
pled approaches to include convection and grain motion. Later, modeling of
multicomponent alloys, the consideration of the microscopic solute diffusion,
and of the grain morphology were refined by Appolaire et al. [11] and Wu
& Ludwig [12,13]. Models of mixed columnar-equiaxed solidification, aimed
at describing the columnar-to-equiaxed transition (CET) with grain motion
were developed by Wu et al. [14, 15] and Leriche et al. [16, 17].

Despite the advance of model formulations, only little work with full-
featured models has been done on industrial scale castings. The main rea-
sons are the complexity of the model implementation, of the numerical so-
lution schemes, and excessive computing times. A further considerable bar-
rier to reliable simulations is the considerable lack of information on the
generation of equiaxed grains by nucleation and fragmentation. Most mod-
eling has been therefore done using simplified binary-alloy simulations with
fixed-solid. Industrial applications with models of equiaxed grain motion
started only around 10 years ago [18–21] and are in dynamic development
today [17,22–26].

The specificities of the models developed in our research group and
through our academic collaborations are the comprehensive and detailed
description of the macroscopic transport and the kinetics of microscopic
growth, the strong coupling of the two scales, as well as clever numerical
implementations. We developed industrial applications that are unprece-
dented for a model of such complexity: the numerical model allows the
simulation of industrial castings and the study of the effects of operating
conditions on the establishment of structures and macrosegregation.

The investigations and developments that I have been heavily involved
with since 2001, first during my PhD (2001–2006, University of Nova Gor-
ica, Slovenia) and then as a postdoc (2006–2009) and permanent researcher
(from 2009) in Nancy, are motivated by industrial applications in steel ingot
casting and DC casting of aluminum alloys. Model extensions were there-
fore developed with the objective of improving the predictive power of the
models for these processes. The models were refined, extending the physics
of the micro-macro couplings that they capture. For example, we were the
first to explain the macroscopic picture of nucleation in DC casting, based
on a model of nucleation and growth coupled with the transport of grains
and nuclei [27, 28]. The general philosophy of the models developed is that
they should be as computationally cheap as possible, provide a fine and
physically faithful description of the phenomena, and avoid a complexity
overload that could make them unmanageable even for an expert user. Fur-
thermore, improvements of numerical algorithms for micro-macro coupling
helped bring the models to full industrial maturity. Today, these models
are built into Solid R⃝, an industrial simulation software. A new software
generation is currently under development in collaboration with Sciences &
Computers Consultants (process simulation software company), O2M Solu-
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tions (startup specialized in process modeling) and a consortium of industrial
partners.

In this chapter I will present the most salient developments: we explained
the link between microstructure and macrosegregation in steel ingots and
DC casting (Section 2.2), we proposed a multiscale theory of nucleation in
grain-refined aluminum alloys that elucidates the formation of microstruc-
ture in DC casting (Section 2.3), we addressed meso-scale phenomena in
equiaxed grain packing (Section 2.4), and we developed flexible algorithms
for coupling of micro- and macro-models (Section 2.5).

2.2 Transport of equiaxed grains and macrosegre-
gation

During solidification of metal alloys, solid often nucleates and grows from
liquid in the form of dendritic crystal grains that freely float in the liquid
melt. Because in alloys of technical interest the solid phase has a higher
density than the liquid, the grains settle and eventually pack at the bottom
of the solidifying zone. This happens in a wide variety of industrial solid-
ification processes, for example, in large castings or in welding. The way
the grains move and pack has important consequences on the distribution of
the microstructure across the solidified piece (grain size, shape, morphology,
crystallographic texture, and formation of secondary solid phases) and on
several types of defects (porosity and chemical segregation) that can form
during solidification.

The framework for the modeling of these phenomena was set in the
1990s by the pioneering work of Beckermann et al. [6–10, 29–32], who first
extended micro-macro models of solidification with convection and grain
motion. Development and application of this type of coupled micro-macro
models in the Solidification Group in Nancy started around 20 years ago.
The model is based on that proposed by Wang and Beckermann [10]. It
has been supplemented by detailed micro-modeling of dendritic growth for
multicomponent alloys and of transitions between dendritic and globular
grain morphology [11], aspects that have not been investigated in detail
in the earlier seminal work. In parallel, it has been pushed to sufficient
maturity to allow first simulations at the full scale of industrial processes [33,
34]. This has not been attained in earlier studies, where applications of this
type of models were limited to small lab-scale castings [35–37], or to partial
descriptions of industrial processes [38,39].

The modeling of grain motion was mainly motivated by the prediction
of macrosegregation in steel ingots and in DC casting of aluminum alloys.
A prime concern in our investigations is to recognize that the microstruc-
ture of the growing equiaxed grains has a decisive impact on their settling
and packing and on the contribution of grain motion to macrosegregation.
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The first decisive microstructure property is the morphology of the equiaxed
grains. To illustrate this, consider on the one hand the settling of completely
globular grains, and on the other hand the settling of strongly dendritic
grains. As they settle, globular grains form a tightly packed sedimentation
layer. This means that in this layer the volume fraction of the solute-lean
solid that has displaced the solute-rich liquid is high, the effect of solute
transport therefore strong. Conversely, grains with a pronounced dendritic
morphology pile up into a loosely packed layer and displace less liquid. The
solute mass transport induced by this settling is considerably weaker. Once
packed, the grain morphology also controls the hydrodynamic permeability
of the packed layer. Macrosegregation in the packed layer is largely created
by the flow of liquid, which depends on the permeability. The permeability
depends on the liquid fraction (higher for dendritic grains) and the charac-
teristic length scale for microscale flow (typically, SDAS for dendritic and
grain size for globular grains).

We showed and analyzed this effect, which we can intuitively understand
by the foregoing illustration, in much more detail in [18], where we used a
fully coupled multiscale solidification model to simulate a 3.3-ton steel ingot
with either fully dendritic or fully globular grain morphology. The impact
of the morphology is shown in a simple, but striking example in Fig. 2.1.
Three simulations with different assumptions on grain motion and on the
morphology of the moving equiaxed grains are shown and compared to ex-
perimental macrosegregation characterizations in a 3.3 ton steel ingot [18].
We can see that the intensity of macrosegregation is grossly overestimated
by the simulation that assumes globular equiaxed grains (Fig 2.1(a)). A
much better and actually quite accurate prediction is obtained by the sim-
ulation where the grain morphology is calculated with a model of dendritic
grain growth that is coupled to the macroscopic transport and captures the
influence of the local cooling rate, solute concentration, grain density, etc.
on the morphology (Fig 2.1(b)). Surprisingly, in this particular case the pre-
diction of the dendritic model is very close to the simulation with a much
simpler model that assumes that the grains do not move at all (Fig 2.1(c))!
The reason is that the loose packing of settled dendritic grains causes only
negligible macrosegregation and most of the macrosegregation is built up by
the flow of interdendritic liquid, which follows a very similar pattern as in a
mushy zone with fixed solid.

In practice, the grain morphology in fairly large castings experiences
transitions [40–45]; we generally find globular regions at the bottom and
dendritic regions in the central part of the ingot. The reason for this is
that the grains in the bottom pile up and the higher grain density favors
globular morphology. Higher grain density means that we have a large
number of small grains instead of having a small number of large grains. At
a given solid fraction, small grains have a larger surface area of the solid-
liquid interface and smaller distances between the grains. The consequence
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elements, carbon exerts the strongest buoyancy force.
However, in contrast to Reference 33, our thermophys-
ical data, presented in Table II, indicate that
mLbTj j< bCj j. This means that the solutal effect of
carbon dominates over the thermal effect. Because
carbon has a density lower than iron, its solutal
buoyancy force opposes the thermal buoyancy, i.e., bT

has a negative sign and bC has a positive sign; thus, with
a dominant solutal force, we can expect an inversed flow
direction (ascending along the chill).

The simplification to a binary alloy also requires a
careful consideration of the solidification path. The
solidification of the multicomponent steel specified in
Table I starts with the formation of austenite. There-
fore, we considered the solidification of our model, 0.36
pct carbon steel, as austenitic, as well, although a binary
0.36 pct carbon steel would start to solidify, with the
formation of ferrite. To model this, we used the binary
liquidus slope and the partition coefficient of the
austenite region.

A. Fixed Solid Phase

The final map of carbon segregation from the
simulation with a fixed solid phase (case 1) is compared
with the experimental map, in Figure 4 (a), and with a

centerline profile, in Figure 2. Following the centerline,
the simulation predicts a strong positive segregation of
carbon in the hot-top part, a negative segregation below,
a positive spot at the centerline, and a transition to
negative segregation in the downward direction. Off the
centerline, we observe a conically shaped negative
segregation zone at the bottom of the ingot that extends
upward along the centerline. This is in good agreement
with the measured tendencies. Next to this zone, in the
central part of the ingot, we seem to observe at first
glance a slight tendency toward the conically shaped
positive segregations found experimentally. However,
this zone is neutral to slightly negative in the simulation;
only several slightly positive bands appear near the
surface. Note also that there is no certainty about the
continuity of the central positive bands shown on
the experimental map, because there are not enough
measurement points at approximately two-thirds of the
ingot height, as shown in Figure 1(c). Likewise, there are
not enough measurement points close to the surface to
be able to judge the positive spots at the outer surface.
We can say the same about the zone of strong negative
segregation predicted by the model at the surface of the
hot top. A striking feature of the numerical results are
the predicted A segregates: strong, banded mesosegre-
gations in the top part of the ingot. These segregations

Fig. 4—Segregation ratio (C – C0)/C0 for carbon. Left: experimental results. Right: numerical simulation. (a) Case 1: fixed solid phase. (b) Case
2: dendritic free-floating grains, N0 = 109 m-3. (c) Case 3: globular free-floating grains, N0 = 109 m-3.

METALLURGICAL AND MATERIALS TRANSACTIONS B

(a) globular

elements, carbon exerts the strongest buoyancy force.
However, in contrast to Reference 33, our thermophys-
ical data, presented in Table II, indicate that
mLbTj j< bCj j. This means that the solutal effect of
carbon dominates over the thermal effect. Because
carbon has a density lower than iron, its solutal
buoyancy force opposes the thermal buoyancy, i.e., bT

has a negative sign and bC has a positive sign; thus, with
a dominant solutal force, we can expect an inversed flow
direction (ascending along the chill).

The simplification to a binary alloy also requires a
careful consideration of the solidification path. The
solidification of the multicomponent steel specified in
Table I starts with the formation of austenite. There-
fore, we considered the solidification of our model, 0.36
pct carbon steel, as austenitic, as well, although a binary
0.36 pct carbon steel would start to solidify, with the
formation of ferrite. To model this, we used the binary
liquidus slope and the partition coefficient of the
austenite region.

A. Fixed Solid Phase

The final map of carbon segregation from the
simulation with a fixed solid phase (case 1) is compared
with the experimental map, in Figure 4 (a), and with a

centerline profile, in Figure 2. Following the centerline,
the simulation predicts a strong positive segregation of
carbon in the hot-top part, a negative segregation below,
a positive spot at the centerline, and a transition to
negative segregation in the downward direction. Off the
centerline, we observe a conically shaped negative
segregation zone at the bottom of the ingot that extends
upward along the centerline. This is in good agreement
with the measured tendencies. Next to this zone, in the
central part of the ingot, we seem to observe at first
glance a slight tendency toward the conically shaped
positive segregations found experimentally. However,
this zone is neutral to slightly negative in the simulation;
only several slightly positive bands appear near the
surface. Note also that there is no certainty about the
continuity of the central positive bands shown on
the experimental map, because there are not enough
measurement points at approximately two-thirds of the
ingot height, as shown in Figure 1(c). Likewise, there are
not enough measurement points close to the surface to
be able to judge the positive spots at the outer surface.
We can say the same about the zone of strong negative
segregation predicted by the model at the surface of the
hot top. A striking feature of the numerical results are
the predicted A segregates: strong, banded mesosegre-
gations in the top part of the ingot. These segregations

Fig. 4—Segregation ratio (C – C0)/C0 for carbon. Left: experimental results. Right: numerical simulation. (a) Case 1: fixed solid phase. (b) Case
2: dendritic free-floating grains, N0 = 109 m-3. (c) Case 3: globular free-floating grains, N0 = 109 m-3.

METALLURGICAL AND MATERIALS TRANSACTIONS B

(b) dendritic

elements, carbon exerts the strongest buoyancy force.
However, in contrast to Reference 33, our thermophys-
ical data, presented in Table II, indicate that
mLbTj j< bCj j. This means that the solutal effect of
carbon dominates over the thermal effect. Because
carbon has a density lower than iron, its solutal
buoyancy force opposes the thermal buoyancy, i.e., bT

has a negative sign and bC has a positive sign; thus, with
a dominant solutal force, we can expect an inversed flow
direction (ascending along the chill).

The simplification to a binary alloy also requires a
careful consideration of the solidification path. The
solidification of the multicomponent steel specified in
Table I starts with the formation of austenite. There-
fore, we considered the solidification of our model, 0.36
pct carbon steel, as austenitic, as well, although a binary
0.36 pct carbon steel would start to solidify, with the
formation of ferrite. To model this, we used the binary
liquidus slope and the partition coefficient of the
austenite region.

A. Fixed Solid Phase

The final map of carbon segregation from the
simulation with a fixed solid phase (case 1) is compared
with the experimental map, in Figure 4 (a), and with a

centerline profile, in Figure 2. Following the centerline,
the simulation predicts a strong positive segregation of
carbon in the hot-top part, a negative segregation below,
a positive spot at the centerline, and a transition to
negative segregation in the downward direction. Off the
centerline, we observe a conically shaped negative
segregation zone at the bottom of the ingot that extends
upward along the centerline. This is in good agreement
with the measured tendencies. Next to this zone, in the
central part of the ingot, we seem to observe at first
glance a slight tendency toward the conically shaped
positive segregations found experimentally. However,
this zone is neutral to slightly negative in the simulation;
only several slightly positive bands appear near the
surface. Note also that there is no certainty about the
continuity of the central positive bands shown on
the experimental map, because there are not enough
measurement points at approximately two-thirds of the
ingot height, as shown in Figure 1(c). Likewise, there are
not enough measurement points close to the surface to
be able to judge the positive spots at the outer surface.
We can say the same about the zone of strong negative
segregation predicted by the model at the surface of the
hot top. A striking feature of the numerical results are
the predicted A segregates: strong, banded mesosegre-
gations in the top part of the ingot. These segregations

Fig. 4—Segregation ratio (C – C0)/C0 for carbon. Left: experimental results. Right: numerical simulation. (a) Case 1: fixed solid phase. (b) Case
2: dendritic free-floating grains, N0 = 109 m-3. (c) Case 3: globular free-floating grains, N0 = 109 m-3.

METALLURGICAL AND MATERIALS TRANSACTIONS B

(c) fixed solid

elements, carbon exerts the strongest buoyancy force.
However, in contrast to Reference 33, our thermophys-
ical data, presented in Table II, indicate that
mLbTj j< bCj j. This means that the solutal effect of
carbon dominates over the thermal effect. Because
carbon has a density lower than iron, its solutal
buoyancy force opposes the thermal buoyancy, i.e., bT

has a negative sign and bC has a positive sign; thus, with
a dominant solutal force, we can expect an inversed flow
direction (ascending along the chill).

The simplification to a binary alloy also requires a
careful consideration of the solidification path. The
solidification of the multicomponent steel specified in
Table I starts with the formation of austenite. There-
fore, we considered the solidification of our model, 0.36
pct carbon steel, as austenitic, as well, although a binary
0.36 pct carbon steel would start to solidify, with the
formation of ferrite. To model this, we used the binary
liquidus slope and the partition coefficient of the
austenite region.

A. Fixed Solid Phase

The final map of carbon segregation from the
simulation with a fixed solid phase (case 1) is compared
with the experimental map, in Figure 4 (a), and with a

centerline profile, in Figure 2. Following the centerline,
the simulation predicts a strong positive segregation of
carbon in the hot-top part, a negative segregation below,
a positive spot at the centerline, and a transition to
negative segregation in the downward direction. Off the
centerline, we observe a conically shaped negative
segregation zone at the bottom of the ingot that extends
upward along the centerline. This is in good agreement
with the measured tendencies. Next to this zone, in the
central part of the ingot, we seem to observe at first
glance a slight tendency toward the conically shaped
positive segregations found experimentally. However,
this zone is neutral to slightly negative in the simulation;
only several slightly positive bands appear near the
surface. Note also that there is no certainty about the
continuity of the central positive bands shown on
the experimental map, because there are not enough
measurement points at approximately two-thirds of the
ingot height, as shown in Figure 1(c). Likewise, there are
not enough measurement points close to the surface to
be able to judge the positive spots at the outer surface.
We can say the same about the zone of strong negative
segregation predicted by the model at the surface of the
hot top. A striking feature of the numerical results are
the predicted A segregates: strong, banded mesosegre-
gations in the top part of the ingot. These segregations

Fig. 4—Segregation ratio (C – C0)/C0 for carbon. Left: experimental results. Right: numerical simulation. (a) Case 1: fixed solid phase. (b) Case
2: dendritic free-floating grains, N0 = 109 m-3. (c) Case 3: globular free-floating grains, N0 = 109 m-3.

METALLURGICAL AND MATERIALS TRANSACTIONS B
Figure 2.1: The influence of the modeled morphology of equiaxed grains on the
prediction of macrosegregation in a steel ingot. The segregation ratio (C −C0)/C0

for carbon is shown, where C0 is the nominal alloy concentration. Left: experi-
mental results. Right: numerical simulation. (a) Globular moving grains with a
predefined morphology. (b) Dendritic moving grains with morphology calculated
by a grain growth model. (c) Fixed solid phase. The density of nucleation sites is
109 m−3 in all cases.
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of this is that the constitutional (solutal) undercooling of the liquid between
the grains is lower if grains are small. The growth of dendrite branches is
stifled more by lower undercooling than the growth of the solid phase. The
grains thus globularize. Conversely, if the grain density is low, growth of
branches is favored and dendritic morphologies develop. This happens in
the upper part of the casting that solidifies later in the process and where
less nucleation sites are available.

The competition between branch growth and solid growth can be roughly
illustrated by comparing scaling laws for the growth of the solid-liquid in-
terface and for the primary tip of an equiaxed dendrite. First, consider the
local solute balance at the solid-liquid interface that reads

(1− kp)C
∗
l v

∗ = Dl
∂Cl

∂n

∣∣∣∣
∗
, (2.1)

where C∗
l is the liquid concentration at the solid-liquid interface, kp is the

equilibrium partition coefficient, v∗ is the interface velocity, Dl is the liquid
diffusion coefficient, and the superscript ∗ stands for the interface. It follows
that the interface velocity scales linearly with the dimensionless supersatu-
ration, Ω =

C∗
l −Cl

(1−kp)C∗
l
:

v∗ =
Dl

δl
Ω , (2.2)

where Cl is the liquid concentration far from the solid-liquid interface and δl
is a characteristic diffusion length in the liquid at the interface. On the other
hand, the link of the velocity of the primary tips to the undercooling can
be expressed by the Ivantsov solution, Ω = Iv(Petip) and the tip selection
criterion, R2

tipvtip = d0Dl/σ∗. If we approximate the inverse of the Ivantsov
funciton by Petip = 0.61(Ω/(1−Ω))1.32 and combine it with the tip selection
criterion, we obtain the scaling for the tip velocity

vtip =
1.49σ∗Dl

d0

(
Ω

1− Ω

)2.64

. (2.3)

For low supersaturations (Ω < 0.1, applicable in all practical situations in
casting) we can simplify the relation and show that the tip velocity scales
with a bit more than the square of the supersaturation.

vtip ∼ Ω2.64 (Ω ≪ 1) (2.4)

Very similar concepts are used in volume-averaged models of dendritic
microstructure, where an “average” grain is conceptually represented by a
dendrite envelope that contains solid and intragranular (or interdendritic)
liquid, as shown in Fig. 2.2. The liquid outside the grain envelopes is called
extragranular (or extadendritic). The growth of the envelope is determined
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Figure 2.2: Representation of a dendritic grain by an envelope containing a solid
skeleton and an interdendritic liquid.

by the speed of the primary dendrite tips, which depends on the undercool-
ing of the extragranular liquid. The envelope has a predefined geometry
and the tips correspond to the surface of a spherical or the vertices of an
octahedral envelope, for example. The growth of the solid phase in the en-
velope is represented by diffusion-controlled growth of a shape characteristic
for the internal microstructure of the grain (for example, sphere for globular
grains; cylinder or plate for secondary dendrite arms) and depends on the
undercooling of the liquid, as well as on the diffusion in the solid. With
this representation of a dendrite, the grain morphology is quantified by the
volume fraction of solid in the envelope, called the internal solid fraction:

gsi =
Vs

Venv
=

gs
genv

, (2.5)

where V is the volume, g is the volume fraction and subscripts ’s’ and ’env’
denote the solid and the envelope, respectively.

Globular-dendritic morphology transitions in the casting imply that mac-
rosegregation is dominated by grain settling in the bottom part of the cast-
ing and by interdendritic flow in the upper equiaxed part. In such cases the
morphology transition has to be accounted for in the solidification model
to properly describe the macrosegregation formation. These ideas were al-
ready formulated in the past by Lesoult et al. [42, 43]. Coupled multiscale
models that are able to capture the grain morphology were developed by
Beckermann et al. [10], but the aspect of morphology was not investigated
in detail. Detailed investigation of morphology evolution during grain mo-
tion was limited to simplified 1D models of grain settling [11]. The novelty
of our studies is in the comprehensive analysis through multiscale process
simulation using state-of-the-art models.

The grain density in the ingot depends on the density of nucleation sites.
To explore the morphology transition we therefore varied the nucleation den-
sity in the simulations of the ingot shown before. Starting from a nucleation
density of N0 = 109 m−3, we increased it up to N0 = 1012 m−3 along a geo-
metrical series with a multiplier of 10. Fig. 2.3 shows the maps of the final
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Figure 2.3: Predicted grain density (left half) and morphology (right half) in the
solidified ingot for different nucleation densities, N0.

grain density (Npack) and of a morphology parameter – the internal solid
fraction at packing (gpacksi ) – in the solidified ingot. The internal solid frac-
tion at the instant of packing is taken as a quantifier for the final grain mor-
phology. If gsi ≪ 1, the grains are considered dendritic, if gsi → 1, they are
globular. With a nucleation density of N0 = 109 m−3 (Fig. 2.3(a)) the grains
are strongly dendritic (gpacksi ∼ 0.1) throughout the ingot. They settle with
a relatively small velocity and form a very permeable sedimentation layer.
When the nucleation density is increased to N0 = 1010 m−3 (Fig. 2.3(b)),
the grains initially develop a globular morphology. During this initial phase
a globular tightly packed sedimentation layer at the bottom of the ingot is
formed. Later on, the free-floating grains in the ingot core develop to a more
dendritic shape and pile up in a manner similar to the previous case. The
dendritic morphology is less pronounced (gpacksi ∼ 0.3). With a nucleation
density of N0 = 1011 m−3 (Fig. 2.3(c)) the grains in the whole ingot are
already clearly globular; an exception is only the hot top, where the grain
density is reduced by the settling and the large grains develop into a more
dendritic morphology.

The morphology developments observed in the simulations are summa-
rized in a plot of the internal solid fraction versus the local grain density,
shown in Fig. 2.4. We can see a clear trend and a transition that occurs at
a local grain density slightly above 1010 m−3. This transition is achieved in
ingot B (N0 = 1010 m−3), where due to grain settling the grain density is
above the transition limit at the ingot bottom, and below the limit in the
main part of the ingot.
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Figure 2.4: The final grain morphology in dependence of the local grain density.
The trend is constructed from a compilation of results in all mesh points from four
computations with different nucleation densities N0. The grains are dendritic for
gpacksi ≪ 1 and globular for gpacksi → 1.

It is now interesting to take another look at the intensity of the mac-
rosegregation induced by grain settling. We must realize that the packing
front is macroscopically a discontinuity. The grain volume fraction jumps
from gmov in the moving grain zone just above the packed layer to gpack in
the packed layer. Upon packing, solid, with concentration Cs, ejects liquid,
with concentration Cl. The total average concentration therefore undergoes
a jump from Cmov above the packing front to Cpack,∗ below the packing
front. For simplicity, we can assume that the concentration of solid and
liquid (Cs and Cl, respectively), and the grain morphology (in terms of the
internal solid fraction, gi) do not change across the packing front. Further-
more, we assume that solid and liquid are in equilibrium (Cs = kCl). The
solute balance across the packing front then gives the concentration right
after packing:

Cpack,∗ = Cmov − gi(g
pack − gmov)(1− k)Cl (2.6)

This shows that the settling-induced segregation, characterized by the jump
(Cpack,∗ − Cmov(, is the more pronounced the more globular the grains (al-
ready discussed earlier in this section) and the larger the jump of grain
fraction upon packing, (gpack − gmov).

We can now point to the hydrodynamic behavior of the equiaxed grains
in the flow as the second key ingredient in the link between microstructure,
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Figure 4: Evolution of the solidification of the ingot. Left half: solid fraction, solid velocity
and coherency front (line for genv = 0.4). Right half: macrosegregation and liquid velocity.

size the ratio of interfacial drag to buoyancy also changes and they are more easily entrained
by the flow. The velocity difference between the phases and therefore the settling velocity
of the grains becomes smaller. Hence there is also a smaller degree of macrosegregation in
case D than in case C. Globally we observe a typical settling-induced macrosegregation field
in the body of the ingot. At the transition to the hot top there is a discontinuity where the
strongly positive composition passes to strongly negative and then again constructs a strong
vertical gradient. The reason is the insulation of the hot top. When the ingot is already
almost completely solidified the hot top is still mostly liquid. Due to the lateral insulation
the heat is extracted from the hot top from the bottom. The grains forming in the hot top
are globular and settle towards the bottom of the hot top. This creates the typical vertical
positive segregation gradient. At the end of the solidification the grain density at the top of
the hot top is strongly reduced and a small dendritic zone is indicated.

Conclusions

We modeled and studied the grain morphology evolution and its influence on the macroseg-
regation in an industrial steel ingot. This work represents the first application of a fully
coupled multiscale model to an industrial casting. As we had recently shown [3], the grain
morphology is decisive to induce the dominance of either grain settling or of interdendritic
flow on the macrosegregation. Our model now successfully predicted the globular sedimenta-
tion zone found experimentally in the cast ingot and the transition to dendritic morphology
in the rest of the ingot. It also reproduced rather well the macrosegregation in cases where
the ingot was predominantly dendritic. Investigating the dependence of the grain morphology
on the local grain density we found a rather sharp morphology transition to occur at around
N = 1010 m−3, where lower grain densities lead to dendritic and higher grain densities to
globular grains.
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size the ratio of interfacial drag to buoyancy also changes and they are more easily entrained
by the flow. The velocity difference between the phases and therefore the settling velocity
of the grains becomes smaller. Hence there is also a smaller degree of macrosegregation in
case D than in case C. Globally we observe a typical settling-induced macrosegregation field
in the body of the ingot. At the transition to the hot top there is a discontinuity where the
strongly positive composition passes to strongly negative and then again constructs a strong
vertical gradient. The reason is the insulation of the hot top. When the ingot is already
almost completely solidified the hot top is still mostly liquid. Due to the lateral insulation
the heat is extracted from the hot top from the bottom. The grains forming in the hot top
are globular and settle towards the bottom of the hot top. This creates the typical vertical
positive segregation gradient. At the end of the solidification the grain density at the top of
the hot top is strongly reduced and a small dendritic zone is indicated.

Conclusions

We modeled and studied the grain morphology evolution and its influence on the macroseg-
regation in an industrial steel ingot. This work represents the first application of a fully
coupled multiscale model to an industrial casting. As we had recently shown [3], the grain
morphology is decisive to induce the dominance of either grain settling or of interdendritic
flow on the macrosegregation. Our model now successfully predicted the globular sedimenta-
tion zone found experimentally in the cast ingot and the transition to dendritic morphology
in the rest of the ingot. It also reproduced rather well the macrosegregation in cases where
the ingot was predominantly dendritic. Investigating the dependence of the grain morphology
on the local grain density we found a rather sharp morphology transition to occur at around
N = 1010 m−3, where lower grain densities lead to dendritic and higher grain densities to
globular grains.

(b) N0 = 1010 m−3, left: 450 s, right: 900 s.

Figure 2.5: Evolution of the solidification of the ingot. Left half: solid fraction,
solid velocity and packing front (line for genv = 0.4). Right half: macrosegregation
and liquid velocity.

macrostructure and macrosegregation. It determines the packing fraction
and the grain fraction in the slurry flow prior to packing. Further, it deter-
mines the time during which the grains grow during settling and therefore
determines their morphology and their final size once they are packed. Last,
but not least, it determines the time the packed layer takes to build up and
therefore the time during which the liquid flow through the packed layer
generates macrosegregation.

Let us look at the formation of the packed layer in the 3.3 ton ingot with
different grain size and morphology. With a nucleation density of N0 =
109 m−3, i.e., an average final grain size of ∼ 1mm, the whole equiaxed zone
is composed of grains with a pronounced dendritic morphology. Fig. 2.5(a)
shows that the dendritic grains pile up to packed layer the reaches around
1/3 of the ingot height after 15 min of solidification. With a nucleation
density of N0 = 1010 m−3 (average final grain size of ∼ 0.5mm) most of the
equiaxed grains are still dendritic, but with a higher internal solid fraction
(Fig. 2.5(b)). Although the grain size is now smaller, their apparent weight is
several times higher, due to the less pronounced dendritic morphology. The
settling velocity therefore increases drastically and in 15 min the packed
layer is twice as high as in the previous case.

A mass balance across the packing front gives the velocity of the packing
front, vpack,∗, as a function of the packing fraction, gpack, the moving grain
fraction, gmov, and the settling velocity of the grains above the packing front,
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vmov
s :

(gpack − gmov)v
pack,∗ = gmovvmov

s (2.7)

vpack,∗ =
gmov

gpack − gmov
vmov
s (2.8)

The packed layer thus grows with a rate that depends on the grain settling
velocity and on the jump of grain fraction. Using a weight-drag balance one
can show that at low grain Reynolds numbers (Re = dg(1−genv)|v⃗s−v⃗l|

νl
) the

drift velocity of the grains, i.e., the difference of the solid and liquid velocity
can be approximated by [46]

v⃗s − v⃗l ∼ d2ggi , (2.9)

where dg is the diameter of the grain envelope and gi is the internal solid
fraction in the grain envelope. For globular grains gi = 1 and the drift
velocity increases with the square of the grain size. For dendritic grains the
situation is somewhat more complex because the drift velocity also depends
on the grain morphology. It turns out that for grains that are close to
the transition between globular and dendritic the drift velocity increases
with grain size. For pronounced dendritic grains (very low gi), on the other
hand, the effect of the decreasing internal solid fraction prevails and the
drift velocity decreases with the grain size.

The determination of the packing fraction and the grain fraction in the
region above the packing layer is more complex. The packing fraction for
equiaxed dendrites is cannot be easily determined. A partial answer to this
open question is presented in Section 2.4. The grain fraction in the moving
zone depends on the packing fraction, on the rate of settling and on the
growth of the moving grains.

Grain motion is a decisive phenomenon for the columnar-to-equiaxed
transition (CET). The classical representation of the CET accounts for the
competition of the two growth modes due to the undercooling in front of the
columnar front. A key parameter is the number density of equiaxed grains,
represented by a nucleation density [47]. In realistic conditions the eqiuaxed
grain density does not depend only on nucleation, but also on grain transport
and can strongly vary with time and space. Furthermore, equiaxed grains
do not form exclusively on heterogeneous nuclei in the liquid zone, but often
(even predominantly) on dendrite fragments spreading from the columnar
zone. The source of the grains (fragments or heterogeneous nuclei) is impor-
tant for their distribution across the casting and for the competition with
the columnar grains. An example of the CET in the 3.3 ton ingot predicted
by a CET model that accounts for grain motion (PhD of Nicolas Leriche) is
shown in Fig. 2.6. We have shown that the CET observed experimentally
could not be explained realistically by heterogeneous nucleation, but only by
fragments as the main source of equiaxed grains. The CET depends signifi-
cantly on the fragment flux, because the columnar front is blocked earlier if
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En premier lieu, les résultats pour la macroségrégation chimique en carbone sont comparés 
sur la Figure IV.2-6. En plus des résultats du calcul de référence et des mesures expérimentales, on a 
rajouté une carte obtenue précédemment avec SOLID sur ce lingot (K. A. Combeau H. 2009). Pour ces 
précédentes simulations, la germination est réalisée uniquement en volume pour une classe unique 
de germes = . −  et � ≈  . Les structures colonnaires sont simplement 
modélisées en considérant une épaisseur de 6 cm à partir du moule où le solide est fixe. 

 
Figure IV.2-6  Cartes finales de macroségrégation en carbone. Les résultats expérimentaux (à 
gauche) sont comparés avec le calcul de référence (milieu) et les anciens résultats du 
programme SOLID (Z. M. Combeau H. 2009).  
 

(b)

Figure 2.6: CET in the 3.3 ton ingot. (a) Experimental characterization of the
macrostructure. (b) Model prediction of the CET assuming dendrite fragments
from the columnar zone as the only source of equiaxed grains. The shape of
the columnar zone depending on the flux of the fragments at the columnar front
[fragments/(m2 s)] is shown.

more equiaxed grains are generated by the fragments. Detailed analyses of
CET and grain transport have been made on other ingots and can be found
in Refs. [16,17,26,45].

We used similar principles as for steel ingot casting in the modeling
and in the analysis of the DC casting of aluminum alloys. We have been
working on DC casting in collaboration with Constellium (Phillippe Jarry,
Emmanuel Waz). Starting with my postdoc at LSG2M (later merged into
Institut Jean Lamour), supervised by Hervé Combeau, the investigations
expanded through collaboration with Arvind Kumar and the PhD theses
of Marie Bedel and Laurent Heyvaert. Key to success of this work was
the close collaboration with the group of Mohammed M’Hamdi of Sintef
Materials and the co-supervision of the PhD theses of Knut O. Tveito and
Akash Pakanati.

We performed the first comprehensive analysis of the interplay of the mi-
crostructure formation (nucleation and grain growth kinetics) and the main
transport phenomena (natural convection, solidification shrinkage and grain
transport) on macrosegregation in DC casting [27, 48]. This work reaches
well beyond the few earlier studies on grain motion in literature, which made
rather simplistic assumptions on grain growth and on nucleation [49–56] and
did therefore not correctly capture the impact of grain morphology and of
grain refinement. We have provided an answer, but alas, not a simple one,
to the longstanding controversy on which transport phenomenon is domi-
nant in macrosegregation formation in DC casting. We have shown that
the answer depends on the alloy [25] and on the microstructure [24]. This
is in line with earlier experimental studies [42, 50, 57–60] and affirms that
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microstructure is a key aspect in the formation of macrosegregation.
For example, we have shown that the transition of the grain morphology

between dendritic and globular is the key to the explanation of the mac-
rosegregation profiles measured experimentally in Al alloy billets and slabs
cast with and without grain refiner [24, 25, 61–65]. Figure 2.7a shows the
radial profiles of Cu concentration in grain-refined and non-grain-refined Al–
6 %Cu billets [24]. Simulations are compared with experimental data from
literature [50]. The non-grain-refined billet is simulated by using an inoc-
ulant particle density a 100 times smaller than for the grain-refined billet.
Figure 2.7b shows that the progressive decrease of the inoculant density
triggers a morphology transition from globular to dendritic. Further, it
shows that the macrosegregation intensity, quantified by the segregation in-
dex, SI, defined as the standard deviation of the solute concentration across
the billet radius, is a non-monotonous function of the microstructure that
peaks for large globular grains just at the onset of the transition to den-
dritic morphology. We have also shown that the size of the grains and their
morphology strongly depend on the transport of the inoculant particles and
the grains through the mushy zone [22, 25, 27, 28, 66], which I discuss in de-
tail in Section 2.3. Furthermore, the models enabled us to investigate the
influence of process practices, such as the inlet nozzle [25,63] and the grain-
refiner addition level [24, 61]. Recently, we presented the first applications
of a 3D DC casting model and comparisons to experiments on an industrial
scale [63,67,68].

2.3 Transport of inoculant particles
Multiscale process models have brought a lot of valuable insight into the di-
rect chill (DC) casting process for Al alloys. DC casting of aluminum alloys
is remarkably different from steel ingot casting in terms of the solidification
time, the size of the mushy zone, the nucleation, and the size and the mor-
phology of the microstructures. DC casting is a semi-continuous process and
the mushy zone is most of the time in a steady state. The formation of the
microstructure and the macrosegregation in DC casting of aluminum alloys
is also characterized by an intricate interplay of the melt flow, the motion
of free-floating equiaxed grains and of inoculant particles, and the flow of
extragranular liquid through the packed zone (Fig. 2.9).

A particular feature of this process is the control of the grain size by
addition of Al-Ti-B or Al-Ti-C grain refiners into the molten metal. This
practice introduces TiB2 or TiC inoculant particles, which act as nucleation
sites for equiaxed grains. According to the athermal nucleation theory [69],
an inoculant particle becomes active and initiates the growth of a grain at the
critical undercooling that is inversely proportional to the size of the particle.
The size distribution of the inoculant particles (Fig. 2.10(a)) follows an
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(a) (b)

Figure 2.7: Macrosegregation and microstructure in an Al–6 %Cu DC cast billet.
(a) Radial macrosegregation profiles in the grain-refined and the non–grain-refined
billet. Profiles of copper concentration from simulations with different nucleation
densities. N0 refers to the estimated nominal density of nuclei for the grain-refined
billet. The model predictions are compared to the experimental profiles and to
the simulations of Vreeman et al. [50]. (b) Mean internal solid fraction at packing
(gpacksi ) and mean segregation index (SI = [(2/R2

b)
∫ Rb

0 (C − C0)2 r dr]1/2). Full
symbols indicate globular and empty symbols dendritic grain morphology. Note
that results for two different dendrite tip models (paraboloidal and hemispherical),
which give different predictions of the grain morphology, are represented (details in
Ref. [24].)

Figure 2.8: The influence of the morphology transition on the macrosegregation.
Flow and fields of the average copper composition in the liquid and the solidification
zone. Left: Nino = N0/10 = 0.1 kg/t, which gives globular grains. Right: Nino =
N0/100 = 0.01 kg/t of grain refiner, which gives dendritic grains.
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Figure 2.9: Phenomena involved in the formation of the microstructure in DC
casting.

exponential distribution density function that corresponds to a distribution
of activation undercooling (Fig. 2.10(b)). Due to the substantial spread
of the particle sizes, nucleation occurs across a certain temperature range.
A classical analysis of the ongoing nucleation events and of the concurrent
growth of already nucleated grains during cooling shows that the latent heat
release and the solute rejection from the growing grains at some point stifle
further nucleation [69]. We call this phenomenon the nucleation-growth
competition (NGC). A purely local analysis of the NGC indicates that the
number of nucleated grains is then simply determined by the maximum
undercooling reached during the NGC.

In casting processes the local population of both the inoculant particles
and the nucleated equiaxed grains is continuously altered due to convective
transport at the process scale. A local analysis of the NGC is therefore not
sufficient anymore. The modeling of the grain formation requires a detailed
description of the coupling of the nucleation and growth kinetics with the
macroscopic transport of grain and inoculant particles. Past models were
not able to capture these couplings because they used various simplifica-
tions1. With a coupled modeling of nuclei transport and nucleation with
all other solidification and transport phenomena we have succeeded for the
first time to explain the mechanism of formation of the microstructure in
DC casting [22, 25, 27, 28, 66]. This work also contributed to the realistic

1Most models were based on simple equilibrium models of phase change and lacked a
description of the kinetics of the microstructure nucleation and growth [49,70–73]. Models
that included grain growth kinetics did not account for grain motion [52,74].
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Figure 2.10: Distribution density function of the inoculant particle population
with respect to the particle size (a) and activation undercooling (b), for an Al-5Ti-
1B grain refiner added at 5 kg/t.

prediction of macrosegregation, as presented in Section 2.2.
To consider the transport of nuclei and the variation of the inoculant par-

ticle size distribution, the continuous distribution is discretized into classes,
as shown in Fig. 2.10. Each class has its own activation undercooling, de-
pending on the mean particle size in the class, and an initial density, calcu-
lated from the known distribution density. Moreover, the transport of nuclei
is considered, assuming that they move at the velocity of the liquid. The
conservation equation for nuclei of class i is

∂N i
nucl

∂t
+∇ ·

(
v⃗lN

i
nucl

)
= Φi (2.10)

Φi =

{
−N i

nuclδ(t) if ∆Tuc > ∆T i
nucl

0 else
(2.11)

∆T i
nucl =

4Γ

dinucl
(2.12)

where N i
nucl is the volume density of nuclei of class i, v⃗l is the intrinsic ve-

locity of the liquid, Φi is the nucleation source term, δ is the Dirac delta
function, ∆Tuc = −mL(C∗

l −Cl) is the local undercooling, mL is the liquidus
slope, C∗

l is the concentration of liquid at the solid-liquid interface, Cl is the
local average concentration of the liquid, ∆T i

nucl is the activation undercool-
ing for the nuclei particles of class i, Γ is the Gibbs-Thomson coefficient,
and dinucl is the diameter of inoculant particles of class i. At the same time
the conservation equation for grains is

∂N

∂t
+∇ · (v⃗sN) = −

∑

i

Φi , (2.13)

where N is the local volume density of grains and v⃗s is the velocity of the
solid grains. The source term accounts for nucleation of grains from the
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inoculant particles. The nucleation is solved coupled with the macroscopic
transport and the likewise local (microscopic) phase-change.

I will use our study on the solidification of a 5182-alloy industrial scale
sheet ingot [61] to illustrate the phenomena involved in microstructure for-
mation in DC casting. We modeled the solidification of an ingot that was
cast partly with 1 kg/t of Al-3Ti-1B grain refiner and partly without grain
refiner. The cross-section of the ingot was 510 × 1897mm and the casting
speed was 1mm/s. These experiments had been done earlier in the frame-
work of the BRITE EURAM project EMPACT and included extensive char-
acterizations of the microstructure and the micro- and macrosegregation in
the ingots [42,57,58]. In the simulation, the inoculant particle size distribu-
tion introduced into the molten alloy during the casting of the grain-refined
part of the ingot was approximated by the distribution of TiB2 particles
measured for an Al-5Ti-1B grain refiner [75] and corresponded to the same
addition level as used in the experiments. The non-grain-refined part was
modeled by the same distribution reduced by a factor of 8. This is a rough
estimate that corresponds to the observed increase of the average grain size
by a factor of around 2. The growth of the equiaxed grains was modeled
by a three-phase volume-averaged model that calculates the grain morphol-
ogy [24,64]. The predicted grain morphologies were globular. The equiaxed
grains were supposed to pack at a grain volume fraction of 0.3. In addition
to the refined and non-refined case, a hypothetical case without motion of
equiaxed grains and of inoculant particles was simulated. A comparison
with this case shows the importance of accounting for grain and inoculant
motion in the modeling of microstructure in DC casting.

Fig. 2.11(a) shows the predicted grain size across the ingot thickness.
The simulations with moving grains and inoculant particles correctly pre-
dict the order of magnitude of the grain size in both the grain-refined and
the non grain-refined case. All details of the grain size variations are not
captured however. Note that no parameters were fitted in the grain-refined
case. In the non grain-refined case the nuclei population was reduced by the
same factor as the population of grains observed experimentally in the cast
structure. Yet such an estimate is not enough to ensure a correct predic-
tion. Because of the nonlinearity of the NGC, the grain density of the cast
structure cannot be inferred a priori. A physically correct description of the
coupled phenomena is required.

It is striking to see that the simulation without grain motion entirely
fails to reproduce the grain size and its variation across the ingot thick-
ness. In absence of grain motion, the variation of the cooling rate across
the thickness is the only mechanism that controls the NGC and thus the
grain size. The higher the cooling rate, the higher is the maximum under-
cooling attained due to the NGC and the larger is the number of activated
nuclei. In a DC casting the cooling rate and thus the maximum reached
undercooling are the largest at the ingot surface and decrease towards the

19



(a) (b)

Figure 2.11: Predictions of the grain size profile across the ingot thickness. (a)
Profiles of equivalent grain diameter. (b) Profiles of maximum undercooling as an
indicator of the activation of inoculant particles.

centerline (Fig. 2.11(b)). If grains cannot move, the predicted grain size
therefore increases from the surface to the center, as shown in Fig. 2.11(a)
(“fixed solid”). This mechanism alone obviously fails to capture the essential
physics.

The simulation with moving equiaxed grains and inoculant particles
shows an entirely different picture. The NGC-controlled link between max-
imum undercooling and grain size does not hold anymore; any correlation
fails. The reason is that the local population of grains is not only a result
of the NGC, but also of grain and nuclei particle transport. In this way the
micro-scale coupling between the nucleation and the growth of the equiaxed
grains is strongly influenced by the flow at the process scale. It is therefore
important to understand the flow structure, shown in Fig. 2.12. We can
see a flow loop that runs as a fast current downward along the solidification
front (mushy zone) to the centerline and then slowly ascends in the center.
The free-floating equiaxed grains are entrained by the flow and basically
follow this trajectory. They also tend to settle towards the bottom of the
mushy zone because the solid grains have a higher density than the liquid.

With such a flow structure the downward current is continuously sup-
plied with “fresh” melt carrying inoculant particles from the mold inlet.
The undercooled area just below the liquidus isotherm can be imagined as
a “grain factory”2 in which a part of the incoming particles nucleates and
forms grains. The nucleated grains are continuously drained off with the
downward oriented flow current. The nucleation rate in the grain factory
depends on the local undercooling (the part of the particle distribution that
is activated) and on the flow rate of particles passing through the grain fac-
tory. A higher flow velocity does not only supply the inoculant particles at

2Term coined in [66] by Ph. Jarry and M. Rappaz in reference to our work.
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Figure 2.12: Nucleation, growth, and transport of free-floating equiaxed grains.
Left: grain size and solid velocity streamlines. Note that the streamlines give
a good approximation of the grain trajectories because the flow structure is in a
steady state. Right: undercooling and liquid velocity streamlines in the liquid zone.
Note that nucleation occurs only at undercooling of more than 0.1K. Solid fraction
contours indicate the liquidus (gs = 0), the packing (gs = 0.3), and the solidus
(gs = 1) fronts.
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a higher rate, but also carries away the nucleated grains faster. Through the
NGC, a faster evacuation of growing grains further increases the undercool-
ing and promotes nucleation. Incidentally, the cooling rate in this part of the
mushy zone is also rather high, ensuring efficiency of nucleation. We can also
note that the undercoolings are much higher than in the simulation without
grain motion, thus activating a larger portion of the nuclei particle distri-
bution. In the non grain-refined ingot the reached maximum undercoolings
are almost twice as high as in the grain-refined ingot (Fig. 2.11(b)). Due
to the smaller population density of growing grains in this case, the NGC
results in higher undercooling and a much larger portion of the inoculant
particle size distribution is activated in the nucleation process.

The most interesting thing is that all the melt that enters the mushy zone
first passes through the grain factory. This can be seen from the streamlines
in Fig. 2.12. Furthermore, the map of undercooling in Fig. 2.12 shows that
the highest undercooling in the whole mushy zone is reached in the grain-
factory area. This means that all sufficiently large inoculant particles that
enter the mushy zone are activated in the nucleation area. Only smaller
particles that require larger undercoolings remain. They cannot be activated
later on their trajectory because the undercooling in the rest of the slurry
zone is much lower. This means that nucleation happens exclusively in the
thin grain factory area running along the sloped part of the mushy zone
(marked in Fig. 2.12). This area is the generator of equiaxed grains for the
whole casting.

A part of the grains that nucleate in the grain factory is carried directly
to the bottom to the packed zone. A part is first spread out throughout the
slurry zone and settles later. The undercooling map of the grain-refined ingot
in Fig. 2.12 shows the different areas of grain nucleation and growth. An
undercooling higher than 0.1K indicates a nucleation area. An undercooling
higher than 0K indicates an area of grain growth. Higher undercooling
results in faster growth. A negative undercooling means superheat and
indicates dissolution of the solid grains. The model thus reveals four regions
of grain nucleation and growth in the slurry zone: (i) the “grain factory”, a
very small nucleation region at the packing front close to the entry point of
the melt flow, (ii) a region of fast solidification next to the inclined packing
front, (iii) a stagnation region in the core of the slurry zone, and (iv) a
remelting region close to the liquidus front. The model results also indicate
the disparate origin and evolution of the grains found in different parts of the
cast structure across the ingot thickness. The grains in the outer parts of the
ingot undergo a short period of fast growth before packing at the inclined
part of the packing front. The grains in the center are a mix of two types of
grains with different histories. The fast-growing grains packed immediately
after settling from the descending flow current, and the slow-growing grains
settled to the bottom only after a prolonged trajectory through the stagnant
growth region. The two types of grains form a duplex structure, observed
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in many experiments [42, 57, 59, 76–84]. Such a duplex structure consists
of slowly growing coarse (cellular) grains and fast growing dendrites. Apart
from the grain morphology, microsegregation characterizations indicate a
mark of a different thermal history for the two types of grains.

Formerly, nucleation in DC casting was thought to take place across the
whole mushy zone, in a wide region just below the liquidus isotherm [66,
74]. Our analysis, assisted by modeling [22,27,28,48,85,86] showed us that
nucleation events are limited to an extremely small region. This region
generates all grains that constitute the entire ingot. Together with the flow
in the mushy zone, the growth and nucleation kinetics in this zone govern
the final grain size across the whole ingot cross-section.

Key to the modeling of the NGC in presence of grain and nuclei motion is
an accurate description of grain growth kinetics and of interactions, needed
to ensure a realistic prediction of the undercooling. This aspect would war-
rant further investigation with the objective of refining the volume-averaged
models. Both well controlled lab scale experiments and mesoscopic simula-
tions could contribute to an accurate characterization of the growth kinetics
in the nucleation zone. Upscaling to macroscopic models could then improve
the predictive power of process-scale models of microstructure. I will discuss
this further in Chapters 4 and 5.

2.4 Packing of equiaxed grains
We have shown that the formation of the packed layer of equiaxed grains is
one of the keys to the understanding of macrosegregation and of macrostruc-
ture in various processes. We were able to distinguish between the packing
of different grain morphologies by making the rudimentary assumption that
grains pack at a certain envelope volume fraction. It followed that the solid
fraction of packing depends on the grain morphology.

Unfortunately, little is really known about the packing of dendritic grains.
Even the most elementary piece of information on the packing, the packing
fraction, is poorly characterized. Because of the particular morphology of
the dendrites, packing fractions of spheres or other particles of simple con-
vex shape cannot be used. Models of casting processes, where the packing
fraction is one of the key parameters, resort to values in a very wide range,
from 0.20 up to 0.637 [16, 18, 24, 27, 50, 87]. The choice is mostly justified
indirectly, by a good fit of the model prediction to experimental character-
izations of the piece, for example, in terms of chemical segregation [18, 24].
The disparities in packing fraction are speculated to be due to differences
in grain morphology and in hydrodynamic conditions during the settling of
the grains; however, clear understanding is lacking.

Particle packing has historically been an important problem in physics,
essential for the understanding of the properties of granular media as well
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as of the atomic structure and state transitions in matter [88]. Extensive
work has been done on assemblies of spherical particles. Much less knowl-
edge exists on nonspherical particles and most studies tackle only convex
particles [89–91]. Dendritic crystal grains have a nonconvex shape and the
packing properties of such particles are strikingly different from convex par-
ticles. The packing fraction depends strongly on their topology and various
shape parameters. Values of solid fraction as low as ∼ 0.1 have been reported
for random arrangements of dendrite-like spiky equiaxed particles [92]. Re-
search on nonconvex particles is scarce and is only emerging [93,94].

The packing fraction for random arrangements of particles does not only
depend on their shape. It also depends on mechanical interactions with
the fluid and contact interactions of the particles prior to packing. Imagine
tapping on the side of a coffee can. For example, for monodisperse hard
noncohesive spheres, the random packing fraction has theoretically been
shown to be between 0.536 (random loose packing) and 0.634 (random close
packing) [95]. Viscous dissipation is expected to play a dominant role in
packings resulting from settling of dendritic grains during solidification. The
inertia of the grains is low due to the small solid-liquid density difference
(e.g., (ρsρl)/ρs = 0.06 in an Al-Zn alloy).

In a mushy zone, the two phase flow with free-floating grains goes through
the whole range of possible flow regimes, from dilute to dense. It undergoes
a particularly sharp transition at the packing front, where the dynamics
changes entirely across a length scale of several grains. The description of
this transition in macroscopic models is certainly not satisfactory. In macro-
scopic models the transition is described by an abrupt change in flow regime
at the packing front. Above the packing front a gradual change of grain frac-
tion is assumed. The question is at what length scale does the transition
from free-floating to packed state take place and which are the governing
phenomena for the grain motion dynamics in this transition zone.

Our work on grain packing gravitated around two central questions. The
first is that of the structure of the packed layer. At what volume fraction
do the grains pack and how does the packing fraction depend on the grain
morphology? The second question is that of the dynamics of grain motion
on the transition from free-floating grains to packed immobile grains. Over
what length and traveling time does the transition occur and which forces
govern the dynamics of the grains during this transition?

These questions were clarified in our study of the dynamics of motion
and packing of solid particles in a viscous liquid. Within the framework of
the PhD thesis of Antonio Olmedilla we used an approach that combines
experiments of sedimentation of model particles and the modeling of the
granular medium based on the discrete element method (DEM). Following
the principles of hydrodynamic similarity we were able to reproduce the
conditions of the metallurgical processes in a lab experiment using a trans-
parent liquid and model particles. The key in the design of the experiment
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III. EXPERIMENTS

A. Setup

An experimental setup is used to investigate the pack-
ing dynamics of sedimenting grains for both sequential
and collective packing protocols. It consists of a vertical
sedimentation cylindrical column with an inner diameter,
Din, of 120 mm filled up with pure glycerol (of density
1262 kg/mm3 and dynamic viscosity of 1180 mPa s, [23]).

Two grain geometries are employed: spherical and non-
convex dendritic grains. The spheres are made of corn-
starch with a density of ⇢s = 1391 ± 6 kg/mm3 and di-
ameter of 5.92 ± 0.05 mm. The non-convex dendritic
grains which are based on six quadrilateral pyramids of
apex-angle 45� are made by additive manufacturing with
a bulk density of ⇢s = 1484±17 kg/mm3, and equivalent
diameter of deq = 7.70 ± 0.31 mm, and a widest grain
length (tip-to-tip length passing along the grain center)
of lc = 12.59±0.22 mm. In case of the spheres, the widest
grain length is simply the grain diameter. More details
of the setup and grain characteristics are given in [14].
In this way, the grain-to-fluid density ratio remains close
to unity with a Stokes number of St = o(10�3) for both
grain collections, which are conditions typically achieved
in metal casting processes.

In the sequential packing protocol, the grains are
poured manually one by one in the liquid, where they
sediment and pack over an existing bed of packed grains
(see Figs. 2a and 2b for sequential packing of sedimenting
spherical and non-convex dendritic grains, respectively).

(a) (b) (c)

FIG. 2. Snapshot of the packing of sedimenting grains by
means of the sequential packing protocol for a) the spherical
grains, and b) the non-convex dendritic grains; c) schematic
representation of the circumscribing sphere for non-convex
dendritic grains.

In the collective packing protocol, the grains are
poured to the sedimentation chamber of the column from
the grain reservoir by means of a hopper (see Fig. 3).
An equivalent collective condition between the spherical
and the non-convex dendritic grain collections is desired
in order to compare the packing dynamics of them. As-
suming the sedimenting grains are uniformly distributed,
we define the circumscribed volumetric fraction of sedi-
mentation, �sed

circ, by the volume of the grain circumscrib-
ing spheres to the volume of the sedimentation zone. In
case of spherical grains �sed

circ is equivalent to the volu-
metric solid fraction of sedimentation, �sed

s . In case of

packed grains

sedimenting grains

grain reservoir

hopper

FIG. 3. Snapshot of the packing of sedimenting non-convex
dendritic grains by means of the collective packing protocol.
We zoomed the zone where the grains decelerate and pack.

the non-convex dendritic grains the relation between the
circumscribed volumetric fraction of sedimentation and
the volumetric solid fraction of sedimentation is given
by �sed

circ = (lc/deq)3�sed
s (see the circumscribing sphere

for the non-convex dendritic grains in Fig. 2c). We also
define the mean free distance between the circumscrib-
ing spheres of every couple of neighboring grains in sed-
imentation as Lsed

free ⇡ [(�sed
circ)

�1/3 � 1] lc. The hopper
permits to control the rate of grain pouring, Ṅ (and con-
sequently controlling the circumscribing fraction) in the
sedimentation chamber of the column. In the experi-
ments the hopper opening was set such that a �sed

circ of
approximately 0.20 was achieved for both spherical and
non-convex dendritic grain collections (this corresponds
to �sed

s ⇡ 0.20 for the spherical collection and �sed
s ⇡ 0.05

for the dendritic collection). With this condition, Lsed
free

is approximately 0.71lc for both spheres and non-convex
dendritic grains.

B. Grain trajectory

The characterization of the grain motion in the tran-
sition from the initial steady-state sedimentation to the
final packing is carried out by means of grain visual track-
ing for both sequential and collective protocols (see Fig. 4
as an example of the collective case for spheres). A fixed
HD video camera is used to record the trajectory of the

(a)
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FIG. 5. Grains used in the experiments: (a) spherical particles of
5.92 ± 0.05 mm diameter and (b) equiaxed dendrite envelopes of
θ = 45◦ of widest length lenv = 12.59 ± 0.22 mm.

in the vicinity of a container wall as a function of the distance
from the wall, determined by Mueller [39]. A wall effect of the
same order of the spheres is assumed for the dendrites. This
was verified by means of the DEM simulations.

The collection of dendrites was formed by approximately
4400 envelopes [see Fig. 5(b)]. The nonconvex equiaxed
particles were made by additive manufacturing. An innovative
material based on quasicrystal-polymer composites [40] was
used to achieve a target density and to avoid open porosities
that could lead to fluid absorption and consequently to particle
density variation. The resulting bulk density of the composite
material was ρs = 1484 ± 17 kg/m3, measured by means of
a pycnometer according to the protocol in [41]. A sample
of 30 nonconvex particles was randomly chosen for mass
measurement in a precision balance. The particle mass was
0.3541 ± 0.0357 g, with a level of confidence of 95%. Their
equivalent diameter denv was 7.70 ± 0.31 mm and the widest
length lenv was 12.59 ± 0.22 mm. The density of the spherical
particles was similar to that of the dendrites (ρs = 1391 ±
6 kg/m3, measured with a pycnometer). The sphere mass was
0.1532 ± 0.0074 g, with a level of confidence of 95%. The
sphere diameter denv was 5.92 ± 0.05 mm.

The spherical and dendritic grain collections were packed
in four different hydrodynamic conditions provided by four
different fluids: pure glycerol, a glycerol–22.3 vol. % water
solution, water, and air. Each fluid provides a different ratio
between the particle inertia and the fluid viscous dissipa-
tion, expressed by the dimensionless Stokes number St =
ρsdenvv

sed
s /9µf , where µf is the fluid viscosity and vsed

s is the
theoretical settling velocity for a single particle. Table II shows
the theoretical Stokes numbers achieved by each protocol
(see Appendix A for more details). Despite the glycerol,
glycerol-water solution, and water protocols being enough to
reproduce the Stokes number range in grain sedimentation

TABLE II. Theoretical Stokes number.

Particle Glycerol Glycerol and water Water Air

sphere 1.2 × 10−3 0.5 198 o(105)
dendrite 5.0 × 10−3 1.7 368 o(105)

during solidification, the air protocol (dry packing) is added
in order to widen the range of Stokes numbers.

C. Packing fraction

The volume-averaged packing fraction in the packed bed
was calculated as the ratio of the total volume of the particles
to the total volume occupied by the packed bed g

pack
env =

Vs/Vt . Similar techniques were often used in the literature
[10,18,19,42]. The total solid volume Vs was obtained from
the total mass and from the solid density measured by the
pycnometer (Vs = ms/ρs). The volume of the packed bed
was determined from its height in the cylindrical vessel by
reconstruction of the volume from a 2D image for each
packing. Details of the measurement procedure are given in
Appendix B.

V. RESULTS AND DISCUSSION

A. Influence of the particle shape on the packing fraction:
Low Stokes conditions

The average packing fractions obtained by the DEM simu-
lations (with a protocol that mimics the low Stokes conditions
of the experiments in glycerol) are shown as a function of
the particle sphericity in Fig. 6. The experimental packings of
spheres and dendrites in glycerol are added for comparison
with the model. Additionally, our results are compared to
data from the literature obtained under similar conditions.
Packing fractions of spheres and prolate revolution ellipsoids
of axis ratio 1.25:0.8:0.8, obtained by DEM simulations of
sedimentation in low inertia-to-dissipation conditions [43],
are shown, as well as the packing fractions of nonconvex
frictionless particles with six branches (C-shaped particles),
packed via a sequential deposition protocol [13].

The influence of the particle shape on the packing is
often expressed by the relation of the packing fraction to
the particle sphericity, shown in the plot in Fig. 6. From this

FIG. 6. Averaged packing fraction ⟨gpack
env ⟩# as a function of the

particle sphericity $. The experimental sphere and dendrite packings
in glycerol are shown with red rhomboid markers. The numerical
results from the literature for settling frictionless spheres and rev-
olution ellipsoids of axis ratio 1.25:0.8:0.8 [43] (Lit. sph. & ellip.)
and the numerical results of C-shaped particles packed by sequential
deposition under gravity [13] (Lit. C-shaped) are also included.

012910-6

(b)

Figure 2.13: Experimental setup for the study of particle sedimentation and pack-
ing: (a) sedimentation column, (b) dendrite-like model particles used in the exper-
iments.

was the right combination of materials and fluids. It enabled us to build a
sedimentation column, shown in Fig. 2.13(a), large enough to eliminate con-
finement effects on the grain population and small enough for easy handling
of a large number of experiments. The dendrite-like model particles, shown
in Fig. 2.13(b), were built by additive manufacturing using a quasicrystal-
polymer composite that ensured an accurate and stable target density – a
critical parameter due to the very small density difference between solid and
liquid. The DEM model was used to simulate settling configurations. Ex-
amples of settling simulations and of the particles used in the simulations
are shown in Figs. 2.14 and 2.15, respectively. DEM simulations gave us
access to information on the collective grain dynamics that cannot be ob-
tained experimentally, such as the individual grain trajectories, rotations,
and contacts, or the time evolution of the local solid fraction. A larger va-
riety of grain morphologies was also studied by numerical simulation. The
originality of the in-house model GGDEM [96–99], entirely developed by
Antonio Olmedilla, is the simplified description of the influence of the liq-
uid (drag, lubrication) by smartly formulated constitutive models. Thanks
to this simplification, the computation time is several orders of magnitude
smaller than with coupled CFD-DEM models that resolve the flow of the
liquid directly.

We have shown that the most important influence on the packing fraction
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interval from o(10−3) up to o(10) are obtained for these values,
which are low inertia-to-dissipation conditions [16].

III. NUMERICAL MODEL OF PACKING

A. Description

A DEM model is used to solve the dynamics of a granular
system that simultaneously sediments and packs at the bottom
of a square prism domain. The domain walls are semirigid
in order to reduce the wall effect. This is done by decreasing
the wall stiffness and permitting the particles in contact with
the walls to be partially outside the domain, but keeping the
center of the particle inside. Our DEM model can account for
arbitrary particle geometry and solves for both translation and
rotation of each individual particle based on balances of forces
and momenta [34,35].

The liquid is not modeled directly. Instead, a special inter-
particle contact model is used in order to mimic the hydraulic
lubrication effects prior to impact between particles. As shown
by the estimations in the preceding section, the ratio between
the grain inertia and viscous dissipation in solidification-
process conditions is relatively low [St ∼ o(10−3) · · · o(10)].
This means that the lubrication effect dissipates most of the
kinetic energy of the grain during its approach, just before
impact on the packed bed. Due to this dissipation the effective
restitution coefficient upon impact is nil [36]. This is valid for
hydrodynamic conditions characterized by a particle Stokes
number lower than approximately 10 [36]. In our model the
dissipation is reproduced by using critical damping in the
classical Kelvin-Voigt inter-particle contact model. Addition-
ally, the grains are ensured to have a low kinetic energy;
they are introduced with a very small vertical acceleration
(a = 10−5g0). In this way the kinetic energy is dissipated
during the contact, which successfully mimics the viscous
dissipation due to lubrication in low-St conditions. This contact
model does not account for the transformation between liquid
and crystal when a pair of crystals enter in contact.

A clumped-sphere model is used to describe the nonspher-
ical morphology of the equiaxed grains. In the case of the
dendrite envelopes a surface discretization is carried out by
means of small monodisperse nonoverlapping spheres [see
Fig. 1(a)]. The spheres are arranged such that the outer tangent
planes coincide with the envelope surface. For the globular
envelopes, six overlapping monodisperse spheres are used to
discretize the volume of the particle. Note that the spheres are
only used for contact detection. The mass and the inertia tensor
of each particle are defined independently.

Each envelope is characterized by its position and orien-
tation. The positions of the envelopes in the container are
initialized by a random sequential addition, whereas the initial
random grain orientations are initialized by the Shoemaker
algorithm [37].

B. Simulations

Packings were simulated for six different monodisperse
noncohesive frictionless equiaxed dendritic and globular enve-
lope collections, generated with the aforementioned geometric
models (Sec. II A). The possible cohesive forces between par-
ticles are not considered in this paper, but the role of cohesive

TABLE I. Simulated grain collections.

Geometry model Collection characteristics

dendrite 1000 grains, θ = 45◦ (nonconvex)
dendrite 1000 grains, θ = 60◦ (nonconvex)
dendrite 1000 grains, θ = 90◦ (convex,

rhomboid dodecahedron)
globular 1000 grains, ξ = 1.0
globular 1000 grains, ξ = 0.8
globular 1000 grains, ξ = 0.6
spherical 2000 grains,
ellipsoidal 1000 grains, axis ratio 1.25:0.8:0.8

forces in the nonconvex dendrite envelopes is discussed in [35].
Due to the wet contact between the particles (fluid acting as a
lubricant), the interparticle friction is neglected in this paper.
The effect of the interparticle friction on the packing fraction
is studied in detail in [35].

Dendritic particles with three different apex angles and
globular particles with three different eccentricities were used.
Thus, a wide range of morphologies, in terms of the properties
shown in Fig. 2, are represented. Moreover, two other monodis-
perse noncohesive frictionless collections were packed in order
to validate our model by comparison with results from the
literature: spheres and revolution ellipsoids (prolate spheroids).
The details of the simulated grain collections are presented in
Table I. An envelope density of 1400 kg/m3 and an equivalent
diameter of 7 mm were employed for all collections. The same
square-prism simulation domain of 84 × 84 × 500 mm3 was
used for all collections, except for the spheres. For the spheres
the dimensions were 84 × 84 × 1000 mm3.

Two examples of packings of dendrite and globular en-
velopes are shown in Fig. 3. For both collections the three-

FIG. 3. (a) and (b) Packing of 1000 dendritic envelopes of apex
angle θ = 45◦ [a 3D view and a vertical slice through the packed layer
are shown in (a) and (b), respectively]. (c) and (d) Packing of 1000
globular envelopes of ξ = 1.0 [a 3D view and a vertical slice of the
packed layer are shown in (c) and (d), respectively].
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interval from o(10−3) up to o(10) are obtained for these values,
which are low inertia-to-dissipation conditions [16].

III. NUMERICAL MODEL OF PACKING

A. Description

A DEM model is used to solve the dynamics of a granular
system that simultaneously sediments and packs at the bottom
of a square prism domain. The domain walls are semirigid
in order to reduce the wall effect. This is done by decreasing
the wall stiffness and permitting the particles in contact with
the walls to be partially outside the domain, but keeping the
center of the particle inside. Our DEM model can account for
arbitrary particle geometry and solves for both translation and
rotation of each individual particle based on balances of forces
and momenta [34,35].

The liquid is not modeled directly. Instead, a special inter-
particle contact model is used in order to mimic the hydraulic
lubrication effects prior to impact between particles. As shown
by the estimations in the preceding section, the ratio between
the grain inertia and viscous dissipation in solidification-
process conditions is relatively low [St ∼ o(10−3) · · · o(10)].
This means that the lubrication effect dissipates most of the
kinetic energy of the grain during its approach, just before
impact on the packed bed. Due to this dissipation the effective
restitution coefficient upon impact is nil [36]. This is valid for
hydrodynamic conditions characterized by a particle Stokes
number lower than approximately 10 [36]. In our model the
dissipation is reproduced by using critical damping in the
classical Kelvin-Voigt inter-particle contact model. Addition-
ally, the grains are ensured to have a low kinetic energy;
they are introduced with a very small vertical acceleration
(a = 10−5g0). In this way the kinetic energy is dissipated
during the contact, which successfully mimics the viscous
dissipation due to lubrication in low-St conditions. This contact
model does not account for the transformation between liquid
and crystal when a pair of crystals enter in contact.

A clumped-sphere model is used to describe the nonspher-
ical morphology of the equiaxed grains. In the case of the
dendrite envelopes a surface discretization is carried out by
means of small monodisperse nonoverlapping spheres [see
Fig. 1(a)]. The spheres are arranged such that the outer tangent
planes coincide with the envelope surface. For the globular
envelopes, six overlapping monodisperse spheres are used to
discretize the volume of the particle. Note that the spheres are
only used for contact detection. The mass and the inertia tensor
of each particle are defined independently.

Each envelope is characterized by its position and orien-
tation. The positions of the envelopes in the container are
initialized by a random sequential addition, whereas the initial
random grain orientations are initialized by the Shoemaker
algorithm [37].

B. Simulations

Packings were simulated for six different monodisperse
noncohesive frictionless equiaxed dendritic and globular enve-
lope collections, generated with the aforementioned geometric
models (Sec. II A). The possible cohesive forces between par-
ticles are not considered in this paper, but the role of cohesive

TABLE I. Simulated grain collections.

Geometry model Collection characteristics

dendrite 1000 grains, θ = 45◦ (nonconvex)
dendrite 1000 grains, θ = 60◦ (nonconvex)
dendrite 1000 grains, θ = 90◦ (convex,

rhomboid dodecahedron)
globular 1000 grains, ξ = 1.0
globular 1000 grains, ξ = 0.8
globular 1000 grains, ξ = 0.6
spherical 2000 grains,
ellipsoidal 1000 grains, axis ratio 1.25:0.8:0.8

forces in the nonconvex dendrite envelopes is discussed in [35].
Due to the wet contact between the particles (fluid acting as a
lubricant), the interparticle friction is neglected in this paper.
The effect of the interparticle friction on the packing fraction
is studied in detail in [35].

Dendritic particles with three different apex angles and
globular particles with three different eccentricities were used.
Thus, a wide range of morphologies, in terms of the properties
shown in Fig. 2, are represented. Moreover, two other monodis-
perse noncohesive frictionless collections were packed in order
to validate our model by comparison with results from the
literature: spheres and revolution ellipsoids (prolate spheroids).
The details of the simulated grain collections are presented in
Table I. An envelope density of 1400 kg/m3 and an equivalent
diameter of 7 mm were employed for all collections. The same
square-prism simulation domain of 84 × 84 × 500 mm3 was
used for all collections, except for the spheres. For the spheres
the dimensions were 84 × 84 × 1000 mm3.

Two examples of packings of dendrite and globular en-
velopes are shown in Fig. 3. For both collections the three-

FIG. 3. (a) and (b) Packing of 1000 dendritic envelopes of apex
angle θ = 45◦ [a 3D view and a vertical slice through the packed layer
are shown in (a) and (b), respectively]. (c) and (d) Packing of 1000
globular envelopes of ξ = 1.0 [a 3D view and a vertical slice of the
packed layer are shown in (c) and (d), respectively].
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Figure 2.14: DEM simulations of packings of (a) dendritic and (b) globular grains.
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hydrodynamically similar to those encountered in metal alloys.
With a combination of carefully designed experiments and
simulations we are able to determine packing fractions in
a range of hydrodynamic conditions and for a variety of
particle shapes, both representative of solidification systems.
We quantify the influence of the grain morphology, expressed
by a shape parameter, and of the hydrodynamic conditions,
expressed through the Stokes number, on the random packing
fraction.

II. PACKING OF EQUIAXED DENDRITIC GRAINS

A. Grain morphology and geometrical models

Metal alloys most often solidify in the form of dendritic
crystal grains. The morphology of equiaxed dendrites growing
freely in idealized conditions has been characterized in detail
[24,25]. In realistic process conditions the grain morphology
is affected by interactions (soft impingement) between the
growing grains and by convection. The resulting grain mor-
phologies are observed to range from clearly dendritic, with
two or three levels of fine ramifications, to coarse dendritic
(also called globular or cellular), with only coarse primary
branches [26,27]. The grain morphology depends on the
chemical composition of the alloy and on the solidification con-
ditions (cooling rate, population density of nucleated grains,
and convection). In certain casting processes, morphological
transitions [3] or mixed dendritic and globular structures [4,28]
can be observed within the same cast piece.

In models of solidification at the mushy-zone scale, den-
dritic grains are often described by a dendrite envelope [29–
31], which is a smooth surface connecting the tips of the
dendrite branches. The concept of the envelope is used to
describe the particular shape of the grain without having to
account for all the fine-scale features of the branched structure.
Envelopes are also used to define dendritic grains in the
numerical and experimental models presented in this paper.
To account for the wide variety of grain morphologies, two
simplified envelope models with variable shape parameters
are employed: a dendrite envelope and a globular envelope.
Both models are shown in Fig. 1. They both represent grains
with six primary branches growing in ⟨100⟩ directions of
a cubic structure. Three geometrical parameters are used to
describe each grain morphology. The sphericity ! is the ratio
of the surface area of a sphere with the same volume as the
nonspherical particle (equivalent sphere) to the surface area
of the particle. The ratio of the equivalent diameter of the
envelope to the widest length of the envelope χ is defined by
the diameter of the equivalent sphere denv and the widest length
of the envelope lenv (the length of the line segment that joins the
tip of two branches and passes through the envelope center).
The third parameter η is the ratio of the equivalent diameter
of the principal cross section to the perimeter of the principal
cross section. The principal cross section is the section made by
the plane that contains the envelope center and four branch tips.
Note that both envelope models have octahedral symmetry.

(i) The dendrite envelope model [see Fig. 1(a)] is based on
six quadrilateral pyramids with an apex angle θ , attached to a

FIG. 1. (a) Model of the dendrite envelope, consisting of six
pyramids with an apex angle θ around a central cube. The surface
discretization used in the DEM numerical model is also shown.
It consists of 527 clumped spheres arranged on the surface of
the particle, internally tangential to the surface. The body and the
global coordinate systems are shown to visualize the orientation. (b)
Model of the globular envelope, where six clumped spheres form the
envelope. The same representation is used in the DEM model.
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Figure 2(a) shows the geometrical properties of the dendrite
envelope !, η, and χ as a function of the apex angle θ .
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hydrodynamically similar to those encountered in metal alloys.
With a combination of carefully designed experiments and
simulations we are able to determine packing fractions in
a range of hydrodynamic conditions and for a variety of
particle shapes, both representative of solidification systems.
We quantify the influence of the grain morphology, expressed
by a shape parameter, and of the hydrodynamic conditions,
expressed through the Stokes number, on the random packing
fraction.

II. PACKING OF EQUIAXED DENDRITIC GRAINS

A. Grain morphology and geometrical models

Metal alloys most often solidify in the form of dendritic
crystal grains. The morphology of equiaxed dendrites growing
freely in idealized conditions has been characterized in detail
[24,25]. In realistic process conditions the grain morphology
is affected by interactions (soft impingement) between the
growing grains and by convection. The resulting grain mor-
phologies are observed to range from clearly dendritic, with
two or three levels of fine ramifications, to coarse dendritic
(also called globular or cellular), with only coarse primary
branches [26,27]. The grain morphology depends on the
chemical composition of the alloy and on the solidification con-
ditions (cooling rate, population density of nucleated grains,
and convection). In certain casting processes, morphological
transitions [3] or mixed dendritic and globular structures [4,28]
can be observed within the same cast piece.

In models of solidification at the mushy-zone scale, den-
dritic grains are often described by a dendrite envelope [29–
31], which is a smooth surface connecting the tips of the
dendrite branches. The concept of the envelope is used to
describe the particular shape of the grain without having to
account for all the fine-scale features of the branched structure.
Envelopes are also used to define dendritic grains in the
numerical and experimental models presented in this paper.
To account for the wide variety of grain morphologies, two
simplified envelope models with variable shape parameters
are employed: a dendrite envelope and a globular envelope.
Both models are shown in Fig. 1. They both represent grains
with six primary branches growing in ⟨100⟩ directions of
a cubic structure. Three geometrical parameters are used to
describe each grain morphology. The sphericity ! is the ratio
of the surface area of a sphere with the same volume as the
nonspherical particle (equivalent sphere) to the surface area
of the particle. The ratio of the equivalent diameter of the
envelope to the widest length of the envelope χ is defined by
the diameter of the equivalent sphere denv and the widest length
of the envelope lenv (the length of the line segment that joins the
tip of two branches and passes through the envelope center).
The third parameter η is the ratio of the equivalent diameter
of the principal cross section to the perimeter of the principal
cross section. The principal cross section is the section made by
the plane that contains the envelope center and four branch tips.
Note that both envelope models have octahedral symmetry.

(i) The dendrite envelope model [see Fig. 1(a)] is based on
six quadrilateral pyramids with an apex angle θ , attached to a

FIG. 1. (a) Model of the dendrite envelope, consisting of six
pyramids with an apex angle θ around a central cube. The surface
discretization used in the DEM numerical model is also shown.
It consists of 527 clumped spheres arranged on the surface of
the particle, internally tangential to the surface. The body and the
global coordinate systems are shown to visualize the orientation. (b)
Model of the globular envelope, where six clumped spheres form the
envelope. The same representation is used in the DEM model.
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Figure 2(a) shows the geometrical properties of the dendrite
envelope !, η, and χ as a function of the apex angle θ .
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hydrodynamically similar to those encountered in metal alloys.
With a combination of carefully designed experiments and
simulations we are able to determine packing fractions in
a range of hydrodynamic conditions and for a variety of
particle shapes, both representative of solidification systems.
We quantify the influence of the grain morphology, expressed
by a shape parameter, and of the hydrodynamic conditions,
expressed through the Stokes number, on the random packing
fraction.

II. PACKING OF EQUIAXED DENDRITIC GRAINS

A. Grain morphology and geometrical models

Metal alloys most often solidify in the form of dendritic
crystal grains. The morphology of equiaxed dendrites growing
freely in idealized conditions has been characterized in detail
[24,25]. In realistic process conditions the grain morphology
is affected by interactions (soft impingement) between the
growing grains and by convection. The resulting grain mor-
phologies are observed to range from clearly dendritic, with
two or three levels of fine ramifications, to coarse dendritic
(also called globular or cellular), with only coarse primary
branches [26,27]. The grain morphology depends on the
chemical composition of the alloy and on the solidification con-
ditions (cooling rate, population density of nucleated grains,
and convection). In certain casting processes, morphological
transitions [3] or mixed dendritic and globular structures [4,28]
can be observed within the same cast piece.

In models of solidification at the mushy-zone scale, den-
dritic grains are often described by a dendrite envelope [29–
31], which is a smooth surface connecting the tips of the
dendrite branches. The concept of the envelope is used to
describe the particular shape of the grain without having to
account for all the fine-scale features of the branched structure.
Envelopes are also used to define dendritic grains in the
numerical and experimental models presented in this paper.
To account for the wide variety of grain morphologies, two
simplified envelope models with variable shape parameters
are employed: a dendrite envelope and a globular envelope.
Both models are shown in Fig. 1. They both represent grains
with six primary branches growing in ⟨100⟩ directions of
a cubic structure. Three geometrical parameters are used to
describe each grain morphology. The sphericity ! is the ratio
of the surface area of a sphere with the same volume as the
nonspherical particle (equivalent sphere) to the surface area
of the particle. The ratio of the equivalent diameter of the
envelope to the widest length of the envelope χ is defined by
the diameter of the equivalent sphere denv and the widest length
of the envelope lenv (the length of the line segment that joins the
tip of two branches and passes through the envelope center).
The third parameter η is the ratio of the equivalent diameter
of the principal cross section to the perimeter of the principal
cross section. The principal cross section is the section made by
the plane that contains the envelope center and four branch tips.
Note that both envelope models have octahedral symmetry.

(i) The dendrite envelope model [see Fig. 1(a)] is based on
six quadrilateral pyramids with an apex angle θ , attached to a

FIG. 1. (a) Model of the dendrite envelope, consisting of six
pyramids with an apex angle θ around a central cube. The surface
discretization used in the DEM numerical model is also shown.
It consists of 527 clumped spheres arranged on the surface of
the particle, internally tangential to the surface. The body and the
global coordinate systems are shown to visualize the orientation. (b)
Model of the globular envelope, where six clumped spheres form the
envelope. The same representation is used in the DEM model.
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Figure 2(a) shows the geometrical properties of the dendrite
envelope !, η, and χ as a function of the apex angle θ .
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hydrodynamically similar to those encountered in metal alloys.
With a combination of carefully designed experiments and
simulations we are able to determine packing fractions in
a range of hydrodynamic conditions and for a variety of
particle shapes, both representative of solidification systems.
We quantify the influence of the grain morphology, expressed
by a shape parameter, and of the hydrodynamic conditions,
expressed through the Stokes number, on the random packing
fraction.

II. PACKING OF EQUIAXED DENDRITIC GRAINS

A. Grain morphology and geometrical models

Metal alloys most often solidify in the form of dendritic
crystal grains. The morphology of equiaxed dendrites growing
freely in idealized conditions has been characterized in detail
[24,25]. In realistic process conditions the grain morphology
is affected by interactions (soft impingement) between the
growing grains and by convection. The resulting grain mor-
phologies are observed to range from clearly dendritic, with
two or three levels of fine ramifications, to coarse dendritic
(also called globular or cellular), with only coarse primary
branches [26,27]. The grain morphology depends on the
chemical composition of the alloy and on the solidification con-
ditions (cooling rate, population density of nucleated grains,
and convection). In certain casting processes, morphological
transitions [3] or mixed dendritic and globular structures [4,28]
can be observed within the same cast piece.

In models of solidification at the mushy-zone scale, den-
dritic grains are often described by a dendrite envelope [29–
31], which is a smooth surface connecting the tips of the
dendrite branches. The concept of the envelope is used to
describe the particular shape of the grain without having to
account for all the fine-scale features of the branched structure.
Envelopes are also used to define dendritic grains in the
numerical and experimental models presented in this paper.
To account for the wide variety of grain morphologies, two
simplified envelope models with variable shape parameters
are employed: a dendrite envelope and a globular envelope.
Both models are shown in Fig. 1. They both represent grains
with six primary branches growing in ⟨100⟩ directions of
a cubic structure. Three geometrical parameters are used to
describe each grain morphology. The sphericity ! is the ratio
of the surface area of a sphere with the same volume as the
nonspherical particle (equivalent sphere) to the surface area
of the particle. The ratio of the equivalent diameter of the
envelope to the widest length of the envelope χ is defined by
the diameter of the equivalent sphere denv and the widest length
of the envelope lenv (the length of the line segment that joins the
tip of two branches and passes through the envelope center).
The third parameter η is the ratio of the equivalent diameter
of the principal cross section to the perimeter of the principal
cross section. The principal cross section is the section made by
the plane that contains the envelope center and four branch tips.
Note that both envelope models have octahedral symmetry.

(i) The dendrite envelope model [see Fig. 1(a)] is based on
six quadrilateral pyramids with an apex angle θ , attached to a

FIG. 1. (a) Model of the dendrite envelope, consisting of six
pyramids with an apex angle θ around a central cube. The surface
discretization used in the DEM numerical model is also shown.
It consists of 527 clumped spheres arranged on the surface of
the particle, internally tangential to the surface. The body and the
global coordinate systems are shown to visualize the orientation. (b)
Model of the globular envelope, where six clumped spheres form the
envelope. The same representation is used in the DEM model.
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Figure 2(a) shows the geometrical properties of the dendrite
envelope !, η, and χ as a function of the apex angle θ .
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Figure 2.15: Clumped-sphere particle models used in the DEM simulations to
represent: (a) dendrite envelopes, (b) globular grains.
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FIG. 7. Average packing fraction ⟨gpack
env ⟩! as a function of η. The

experimental sphere and dendrite packings in glycerol are shown with
red rhomboid markers. The numerical results of hexapod particles
(C-shaped) packed by sequential deposition under gravity [13] (Lit.
C-shaped ) are also included.

classification we can conclude that the packing becomes looser
with decreasing envelope sphericity, for both dendritic and
globular envelopes. However, different tendencies are found
for the dendrite and globular geometries, with a much stronger
influence of the sphericity for the dendritic envelopes.

Good agreement between the numerically simulated pack-
ing fraction and the experimental packing fractions of the
dendrite envelope of θ = 45◦ ($ = 0.7) is achieved. In the
case of the spheres ($ = 1), a 5% higher packing fraction is
obtained by the DEM model. This difference can be attributed
to the importance of the interparticle friction for the sphere
packing. Friction is not accounted for in the DEM model.
However, our DEM results for spheres and ellipsoids show
very good agreement with the DEM simulations of frictionless
particles by Delaney et al. [43]. For dendrite envelopes, a
similar dependence of the packing fraction on sphericity is
found as in the numerical simulations of nonconvex particles
(C-shaped particles) by Malinouskaya et al. [13]. Because the
packing fractions of dendrite and globular envelopes follow
very different trends with sphericity, we can conclude that
sphericity is not a universally suitable geometrical property
to describe the influence of the nonconvex envelope shape on
the packing fraction.

In Fig. 7 the packing fraction of the monodisperse col-
lections is plotted as a function of the parameter η. In this
case, the packing fraction follows different tendencies with
η for the globular envelopes, dendritic envelopes, and C-
shaped particles from [13]. Equivalently to the sphericity,
the parameter η (geometrical property of the principal cross
section of the particle) does not give a more general functional
relationship.

Finally, in Fig. 8 the packing fraction is shown as a function
of the parameter χ . The packing fraction becomes looser with
decreasing χ . Most importantly, the relation of the packing
fraction to χ is very similar for the globular envelopes, dendrite
envelopes, and C-shaped particles from [13]. Among the three
geometrical parameters studied, χ seems the best parameter to
account for the influence of the shape on the packing fraction
for the nonconvex models under study (globular and dendrite

FIG. 8. Average packing fraction ⟨gpack
env ⟩! as a function of χ .

Experimental sphere and dendrite packings in glycerol are shown
in red rhomboid markers. The numerical results of hexapod particles
(C-shaped) packed by sequential deposition under gravity [13] (Lit.
C-shaped ) are also included.

envelopes) and C shapes from [13]. This data collapse indicates
a single functional relation between χ and the packing fraction
for the three types of hexapod particles.

The shape parameter χ can relate the nonconvexity of the
hexapod particles to their capability to fill up the space in a
more general manner than other geometry measures. It seems
that the distance between the packed particles is governed by
the largest length of the particle branches in a way that is
common to all the hexapods investigated in our simulations
and in the work by Malinouskaya et al. [13]. For hexapods the
parameter χ appears to reflect the spatial arrangement in the
packing in a way somewhat more general than the sphericity,
which relates to the particle surface area, or the parameter
η, which relates to the cross section equivalent diameter to
perimeter ratio. Based on our data, we propose an empirical
relation of g

pack
env as a function of χ , valid for equiaxed hexapod

particles:

gpack
env = 0.616 + 0.084(1 − χ ) − 1.340(1 − χ )2. (11)

The proposed function tends to the sphere packing as χ tends
to unity in a similar asymptotic manner as indicated by the
data from the DEM simulations. In addition, this proposed
function follows the same tendency of C-shaped particles of
Malinouskaya et al. [13].

B. Influence of the hydrodynamic conditions
on the packing fraction

The influence of the hydrodynamic conditions on the pack-
ing was studied by settling experiments in four different fluids.
In Fig. 9 the measured packing fractions of spheres (green
circles) and dendrites (blue triangles) are shown as a function
of the theoretical Stokes number. Each of the experiments
is repeated a certain number of times (10 times for glycerol
and glycerol-water protocols and 30 times for water and air
protocols).

The packings become looser with decreasing Stokes num-
ber. A similar tendency of the packing fraction with the
Stokes number was found by Farrell et al. [16] for sequential
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Figure 2.16: Universal relation between the shape of hexapod (dendrite-like) par-
ticles and the average packing fraction. The shape is characterized by the parameter
χ, the ratio between the equivalent diameter and the widest length of the particle.
Data from DEM simulations and from experimental results for sphere and dendrite
packings in glycerol are shown. Simulation results for hexapod particles packed by
sequential deposition under gravity (“Lit. C-shaped”) of Malinouskaya et al. [92]
are also included.

of dendrite-like hexapod particles is that of the envelope shape. As the shape
of the particles changes from spherical (globular) towards more nonconvex
(dendritic), the packing fraction decreases. This trend is shown in Fig. 2.16
in a manner that appears to be universally valid for hexapod particles. To
describe the influence of the hexapod particle shape on the packing fraction
we proposed the ratio between the equivalent diameter and the widest length
of the particle as a universal shape parameter [98].

The influence of the fluid in which the grains settle is defined by the
particle Stokes number, St3. Grain settling in solidification processes is
clearly in the low inertia regime, St ≈< 10. We have shown that in this
range the packing fraction depends only weakly on St and is close to the limit
of random loose packing [98]. The influence of hydrodynamic conditions on
packing in solidification processes is thus much smaller than the impact of
the particle morphology.

The dynamics of grain sedimentation near the packing front has also
been characterized [99]. We have shown that the grains begin to decelerate
at a distance from the packing front of approximately 6 times the equivalent
diameter of the grain. This gives a length scale for the transition zone be-
tween bulk settling and final packing. In this zone the interactions between
grains are dominated by the effects of lubrication, by collisions, as well as

3St is the ratio of the viscous relaxation time to the characteristic time scale of particle
motion, dp/vss, where dp is the particle diameter and vss is the steady-state settling speed.
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by the effect of the liquid ejected upwards. These collective effects consider-
ably increase the residence time of the grains in the sedimentation zone in
comparison with the sedimentation of an single grain.

The impact of this work reaches beyond solidification; it also represents
an important contribution in the field of granular media. Indeed, these works
are among the rare ones to address packing of nonconvex particles as well
as the packing in viscous fluids. Possible future work should investigate the
influence of particle growth during the settling on packing. More complex
hydrodynamic conditions that can be present in solidification processes, such
as settling to an inclined packing front and in the presence of a shear flow,
should also be investigated. Additionally, the results provided in this work
can be applied to improve the current modeling tools of industrial casting
processes.

2.5 Flexible models and algorithms for coupling
micro-and macro-models

This section presents the highlights of our model and algorithm develop-
ments for macroscopic models.

We developed a new algorithm for the coupling of the governing equa-
tions of macroscopic solidification models [100, 101]. Most of the conser-
vation equations in such Euler-Euler type models are convection-reaction
equations. As an example, consider the volume-averaged solute conserva-
tion equation for phase k,
∂

∂t

(
gk

〈
C i
k

〉k)
+∇ ·

(
gk

〈
C i
k

〉k ⟨v⃗k⟩k
)
=

1

ρ

(
J i
k
j

︸︷︷︸
Interphase

solute
diffusion

+ J i
k
Γ

︸︷︷︸
Phase
change

+ J i
k
Φ

︸︷︷︸
Grain

nucleation

)
,

(2.14)
where gk is the phase volume fraction,

〈
C i
k

〉k is the volume-average solute
concentration in phase k, and ⟨v⃗k⟩k is the volume-average velocity of phase k.
We can see that this equation involves an advection operator that operates
on the macroscopic scale and reaction operators that describe the nucleation
and the solid-liquid phase change and operate locally. In the full model,
six equations of this type are involved (conservation of grain population,
phase fractions, solute concentrations, etc.). They are all coupled with the
equations of momentum and heat transport, and with each other via the
reaction terms. In a general notation we can write this type of equation as

∂φ

∂t
= Aφ+Bφ, (2.15)

where the operators A and B represent the advection and the reaction, re-
spectively. There are different ways of solving the equation system. We
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proposed an algorithm based on the ideas of the separation of time scales.
We show that a time scale separation between the microscopic and macro-
scopic phenomena allows the use of a so-called operator splitting proce-
dure [102, 103]. This procedure solves and integrates the macroscopic ad-
vection in a first solution step (transport – tr) and the contributions of
the microscopic phenomena (growth – gr) in a second solution step that is
initialized with the result of the transport step.

∂φtr

∂t
= Aφtr, φtr(t0) = φ0 on [t0, t0 +∆t]

∂φgr

∂t
= Bφgr, φgr(t0) = φtr(t0 +∆t) on [t0, t0 +∆t].

(2.16)

The final value of the integration is then given by φgr(t0+∆t). This scheme
allows one to integrate the macroscopic advection operator separately for
each equation, i.e., in a decoupled way, because it only involves the velocity
field. The growth operator involves other quantities φ and is nonlinear. It is
therefore solved in a coupled way using a custom coupling algorithm. The
developed splitting algorithm is attractive for several reasons: (i) improved
stability of the solution scheme due to the separation of the stiff (nucle-
ation, growth) from the nonstiff operators, (ii) possibility of using different
timesteps for different operators, (iii) better flexibility of code development.

In static ingot casting and in continuous casting of steel the columnar-
to-equiaxed and the equiaxed-to-columnar structural transitions (CET end
ECT) are important features of the macrostructure. They are the result of
a competition between the two modes of growth. In the modeling of these
transitions it is necessary to take into account the motion of equiaxed grains
that can either nucleate heterogeneously in the bulk liquid or result from
the fragmentation of columnar dendrites [17,26,104]. These phenomena are
also determining for the evolution of the morphology of the grains (globu-
lar/dendritic) and for the macrosegregation [26,45,105]. In the framework of
the PhD of Nicolas Leriche [16] we developed a novel model of the CET end
ECT, where the growth of the columnar zone is described and is fully coupled
with the motion of equiaxed grains and macrosegregation. An original nu-
merical strategy has been developed, which allows application on industrial
size castings. The main characteristic of the model is that it considers cou-
pled growth of both types of structures only in the zone where they coexist,
i.e., near the tips of the primary columnar dendrites. In this zone a specially
designed constitutive model of concurrent columnar and equiaxed growth is
used. It accounts for six hydrodynamic phases (solid, extra-granular liq-
uid, and intra-granular liquid for each structure type). Everywhere else, the
structure is considered to be either fully columnar or fully equiaxed. The
columnar front is tracked with a simple grid-based method. Furthermore,
we developed a clever formulation of the model [64] that reduces the number
of solute transport equations (PDEs) that need to be solved, from five to
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only two. These features allow for reasonable computational times even in
industrial size castings, while describing the solutal and mechanical block-
ing phenomena responsible for the CET. The model has been successfully
applied on industrial steel ingots of up to 100 tons. Comparisons with ex-
perimental characterizations of macrosegregation and macrostructure (CET
and ECT, grain size, grain morphology) of ingots cast under different con-
ditions were made. The model studies show that: (i) the structure of the
ingots strongly depends on the origin of the equiaxed grains (heterogeneous
nucleation or fragmentation) and (ii) that it can be predicted realistically
only by taking into account the motion of the grains. Further, they show
that fragmentation of the columnar dendrites is often the main source of
equiaxed grains in the ingots analyzed and that the hot top part is the main
source of fragments.

All model developments reported here have been implemented in the
industrial version of the software SOLID R⃝, distributed by Sciences & Com-
puters Consultants, and are therefore available to our industrial partners.
Currently, a new generation of industrial software is being developed in a
collaboration joining forces of IJL, O2M Solutions (an startup originating
from IJL), Sciences & Computers Consultants, and several partners from
the metallurgical industry.
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Chapter 3

Mesoscopic modeling

3.1 Introduction

Dendritic (treelike) crystals or grains are the most common growth form in
solidification of metal alloys. Their growth is governed by an intricate inter-
play between diffusions or convection of heat and chemical species (solutes)
and capillary effects. Furthermore, in castings the growth of dendritic crys-
tals is influenced by adjacent grains. The grains can “feel” each other due
to the overlap of thermal and solutal fields surrounding each growing grain.
Analytical solutions of dendritic growth are limited to the description of a
single isolated dendrite tip that grows by diffusion in an infinite, uniformly
undercooled melt [106,107].

Complex dendritic structures can be simulated directly by phase-field
methods, which directly resolve the dendritic structure in detail but are
computationally expensive. These and other microscopic methods thrived
and matured in the last decade [108–113]. Phase-fields methods have be-
come the most common approach to the numerical simulation of dendrite
growth. However, because phase-field methods need a very fine mesh, com-
puting and memory requirements are large. Most simulations are limited
to the scale of a few dendrites, to two dimensions and purely diffusive con-
ditions. Only recently simulations of large ensembles of grains in 3D have
been reported [114, 115]. They required complex high-performance parallel
computing algorithms and massive supercomputing resources.

A number of approaches has been proposed at the scale of grains –
the mesoscopic scale. The common denominator of these approaches is
that the description of the grain geometry is simplified in order to lower
the required mesh resolution. Several models are based on the tracking of
a dendrite envelope [116–122]. Another approach for dendritic growth is
a simplified description of the branched dendritic arrays by a network of
thin needles [123–125]. Models for globular growth are based on tracking
of polyhedral geometries defined by Voronoi tesselation [126, 127]. Some
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models lower the computational cost and reach to mesoscopic scales by a
simplified, less accurate description of the solid-liquid interface [128–130].

The interest of mesoscopic methods is in the simulation of phenomena
at the scale of an ensemble of grains where collective interactions need to
be described. These interactions can be thermal, solutal, hydrodynamic, or
mechanical. Phenomena such as grain interactions in equiaxed growth, grain
competition and texture in columnar growth, equiaxed growth during grain
settling, CET, freckles, and hot tearing can be simulated. Furthermore,
mesoscopic methods are necessary to bridge the gap between microscopic
and macroscopic methods in upscaling. Simulations at the scale of an REV
used in macroscopic methods is only possible with mesoscopic methods.
With this objective in mind, we chose to use the mesoscopic grain enve-
lope model (GEM) of Steinbach, Beckermann et al. as the most promising
method. The GEM is particularly suitable for our applications because it
gives an accurate description of solutal interactions, it naturally provides a
conservative description of solute transport and of phase fractions, and can
accommodate the description of convection. Another convenient aspect is
that it is built on the same volume-averaging formalism as the macroscopic
methods we use for process-scale modeling, and thus on very similar equa-
tions. This means that similar numerical methods and coupling algorithms
can be used as for macroscopic models.

3.2 The Mesoscopic Grain Envelope Model
The mesoscopic Grain Envelope Model (GEM) was originally developed
for diffusion-controlled dendritic growth in pure substances by Steinbach
et al. [118, 131]. It was later extended to binary alloys [132] and to con-
vection [133, 134]. In the envelope model the complex branched shape of a
dendritic grain is described in a simplified way by an envelope, a smooth
surface that links the tips of the actively growing dendrite branches and
by a continuous solid fraction field inside the envelope. The growth of the
envelope is calculated from the growth velocities of the tips, using a consti-
tutive model. In an alloy, the growth of the dendrite tips is governed by the
solute flux that the tips eject into the liquid and is therefore determined by
the local supersaturation of the liquid in the vicinity of the envelope. The
details of the branched dendritic structure inside the envelope are not re-
solved; the interior of the envelope is instead described in a volume-averaged
sense by a phase-fraction field, as shown in Fig. 3.1. The phase change that
determines the evolution of the structure, i.e., of the phase fraction field,
inside the growing envelope is controlled by the exchange of solute with the
surroundings of the grain. The transport of solute at the mesoscopic scale
is described by volume-averaged transport equations.

Two key assumptions of the mesoscopic model are: (i) the phenomena
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Liquid concentration, Cl [at%] Liquid fraction, gl

Figure 3.1: Example of results of a simulation with the mesoscopic model. Left:
four interacting equiaxed grain envelopes. Right: a slice across showing the liquid
fraction field in the interior of the envelopes and the concentration field in the liquid
outside the envelopes.

controlling the growth of a dendrite tip are universal and are therefore valid
for tips of any order (primary, secondary, tertiary, . . . ) and (ii) the charac-
teristic time of the solute transport at the small (tip) scale is much smaller
than at the large (grain) scale. These assumptions enable us to use the
Ivantsov analytical solution [135] in the stagnant-film formulation of Cantor
& Vogel [136] to describe the growth of all dendrite tips.

The Cantor & Vogel solution of steady-state diffusion around a growing
parabolic tip relates the tip growth Péclet number, Petip, to the supersat-
uration, Ωδ, in the liquid at a finite distance, δ, from the tip. For a 3D
tip,

Ωδ = Petip exp(Petip)

{
E1(Petip)− E1

[
Petip

(
1 +

2δ

Rtip

)]}
(3.1)

The Péclet number is defined by Petip = RtipVtip/(2Dl), where Rtip is the tip
radius, Vtip is tip growth velocity, and Dl is the solute diffusion coefficient
in the melt. The supersaturation is defined by Ωδ = (C∗

l −Cδ
l )/((1−kp)C∗

l )
where C∗

l is the liquid equilibrium solute concentration (concentration at the
interface), Cδ

l is the solute concentration in the liquid at the distance δ from
the tip, and kp is the alloy partition coefficient. The tip velocity is obtained
from Petip by a tip selection criterion that reads R2

tipVtip = d0Dl/σ∗, where
d0 = Γ/(mLC∗

l (kp − 1)) is the capillary length, mL is the liquidus slope, Γ
is the Gibbs-Thomson coefficient, and σ∗ is the tip selection parameter. It
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follows that the tip speed is given by

Vtip =
4σ∗DlPe

2
tip

d0
. (3.2)

The tips are assumed to grow in prescribed preferential growth directions.
For example, a typical cubic crystal dendrite is given six possible growth
directions perpendicular to each other (⟨100⟩ directions). The normal enve-
lope growth velocity, v⃗n, is then calculated from the local tip speed, Vtip, by
the relation

v⃗n = Vtipn⃗ cos θ, (3.3)
where θ is the angle between the outward drawn normal to the envelope,
n⃗, and the preferential growth direction that forms the smallest angle with
the local envelope normal. To propagate the envelope on a numerical mesh
an interface-capturing method [137] is used, combined with a surface recon-
struction method for improved accuracy [119].

The fluid flow and the solute transport by diffusion and by convection
at the mesoscopic scale are described by volume averaged equations that
are valid in the whole domain, i.e., both inside and outside the envelopes.
Solidification inside the envelope is modeled using the Scheil assumptions:
thermodynamic equilibrium at the solid-liquid interface, negligible diffusion
in the solid and instantaneous diffusion in the liquid. This implies that
the concentration of the binary liquid inside the envelope is linked to the
temperature field by C∗

l = (T − Tf)/mL, where C∗
l is the liquid equilibrium

concentration, T is the temperature, and Tf is the melting temperature of
the pure solvent. These assumptions lead to the conservation equation for
the solute in the liquid phase:

gl
∂Cl

∂t
+∇ · (glv⃗lCl) = Dl∇ · (gl∇Cl) + Cl(kp − 1)

∂gl
∂t

, (3.4)

where v⃗l is the volume averaged liquid velocity. This solute transport equa-
tion is identical to the one in the diffusive model [138], but has an additional
convection term.

The solution of Eq. (3.4) gives Cl outside the envelope and gl inside the
envelope. Outside the envelope, the material is fully liquid (gl = 1) and
Eq. (3.4) reduces to a single phase convection-diffusion equation. Inside
the envelope, the liquid is in thermodynamic equilibrium, such that Cl =
(T − Tf)/mL, where the temperature is assumed to be known. With Cl

known, Eq. (3.4) gives the evolution of the liquid fraction inside the envelope.
The concentration of the solid, Cs, inside the envelope is given by

∂(gsCs)

∂t
= −kpCl

∂gl
∂t

, (3.5)

where gs = 1− gl is the solid fraction.
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In the modeling of the liquid flow the interior of the envelopes is con-
sidered as a porous medium. The drag on the liquid flowing through the
envelopes depends on the permeability of the porous medium. The flow is
described by the volume averaged mass and momentum conservation equa-
tions:

∇ · (glv⃗l) = 0 (3.6)

∂ (glv⃗l)

∂t
+∇ · (glv⃗l ⊗ v⃗l) = − gl

ρ0
∇p+∇ · (glνl∇v⃗l)

−
νlg2l
K

v⃗l + gl [1− βC (Cl − C0)− βT (T − T0)] g⃗ (3.7)

where ρ0 is the reference density, p the pressure, νl the kinematic viscos-
ity, K the hydrodynamic permeability, βC and βT the solutal and thermal
volume expansion coefficients, respectively, C0 and T0 the reference solute
concentration and reference temperature, respectively, and g⃗ the gravity ac-
celeration. Note that the Boussinesq approximation for buoyancy-driven
flow is used and that the thermal expansion of the liquid is neglected in this
work, but can easily be incorporated in the model. The permeability of the
intra-granular dendritic structure is modeled by the isotropic Blake-Kozeny
relation and depends on the liquid fraction and on a characteristic length of
the porous structure, ℓc:

K =
ℓ2cg

3
l

180 (1− gl)
2 . (3.8)

This relation is certainly an oversimplification, but it provides the basic
physical ingredients of permeability. An accurate determination of ℓc is
not trivial, however it is expected to be of a similar order of magnitude
as the secondary dendrite arm spacing. Note that permeability models for
dendrites at this scale do not exist. We may speculate however, that they
would need to account for anisotropy due to the branch directions and for
more than one characteristic length scale.

To propagate the envelope on a numerical mesh the phase-field sharp-
interface capturing method [137] is used. In this method the tracked front
is given by the level set of a continuous indicator field φ. The transition of
φ from 1 to 0 in the vicinity of the front follows a hyperbolic tangent profile
given by the so-called kernel function [139]

φ(n) =
1

2

[
1− tanh

( n

2W

)]
, (3.9)

where n is the distance from the center of the profile. The phase-field equa-
tion that is used to propagate the field ensures that the profile is self pre-
serving and retains its shape and its characteristic width W . The phase-field
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equation for the propagation of the indicator function φ is [139]:

∂φ

∂t
+ vn n⃗ ·∇φ =

− b

[
∇2φ− φ (1− φ) (1− 2φ)

W 2
− |∇φ|∇·

(
− ∇φ

|∇φ|

)]

︸ ︷︷ ︸
stabilization term

(3.10)

The term on the right hand side of the equation is a stabilization term that
ensures that the phase-field φ retains the hyperbolic tangent profile. The co-
efficient b is a relaxation factor. The parameters W , b, the mesh spacing, and
the timestep have to be chosen appropriately to ensure good accuracy and
stability of the method. Guidelines are given by Sun & Beckermann [137]
and by Souhar et al. [119].

3.3 Growth of interacting equiaxed grains
Solutal grain interactions are a crucial aspect for the description of the grain
growth kinetics in an ensemble. They determine

• microstructural characteristics: the distribution of grain size, mor-
phology, elongation [140], hydrodynamic permeability of the mushy
zone [127,141];

• the solidification path of the grain ensemble: the evolution of solid
fraction, the grain (envelope) fraction, the solute concentration of the
different phases;

• the formation of defects: intergranular segregation, microporosity [142],
hot tearing [143].

The mesoscopic grain envelope model (GEM) can simulate the solutal
interactions leading to these phenomena. It can provide some of the resulting
microstructural characteristics and, combined with a suitable scale-bridging
method, it can give detailed information on the behavior of the ensemble.
Consider, for example, the shapes of randomly arranged equiaxed grains,
growing at different grain densities (mean distances between grains), shown
in Fig. 3.2. The dependence of the grain shape on the interaction level can
be quantified by a mean shape parameter, the mean sphericity of all grains,
shown in Fig. 3.3.

The objective of our work on solutal interactions during equiaxed growth,
presented in this section, is twofold. We use modeling to gain insight into the
3D structure and interactions that goes beyond readily measurable experi-
mental data. Further, we need to assess the capacity and the limitations of
the GEM to accurately simulate the interactions. This is important because
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⌧= 6.7⌧= 6.7 ⌧= 13.3⌧= 13.3 ⌧= 20.0⌧= 20.0

(a) 27 grains with a mean distance of dcc = 22 ldiff (N ldiff
V = 1.25 · 10−4).

⌧= 4.8⌧= 4.8 ⌧= 9.6⌧= 9.6 ⌧= 14.4⌧= 14.4

(b) 27 grains with a mean distance of dcc = 11 ldiff (N ldiff
V = 10−3).

⌧= 2.6⌧= 2.6 ⌧= 5.2⌧= 5.2 ⌧= 7.8⌧= 7.8

(c) 108 grains with a mean distance of dcc = 7 ldiff (N ldiff
V = 4 · 10−3).

Figure 3.2: Snapshots from simulations of randomly distributed and oriented
grains growing isothermally in a cubic enclosure at an initial supersaturation of
Ω0 = 0.05 and at three different mean distances between the grain centers, dcc,
where ldiff = Dl/VLGK is the diffusion length for a freely growing dendrite tip
that grows at the steady-state speed VLGK. The grain arrangement can also be
expressed as a grain population density, N ldiff

V , where N ldiff
V is the number of grains

in a volume of l3diff .
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Figure 3.3: Evolution of the average sphericity of the envelope over the dimension-
less time for four grain densities: from a free, non-confined grain (blue) to strongly
confined grains (red).

we want to be able to perform reliable mesoscopic simulations of grain struc-
ture and defects, and to obtain quantitative results on the growth kinetics
of grain ensembles, to be used in upscaling to macroscopic models.

The assessment of the capacity of a model to give accurate predictions
is called validation. Validation can be done by comparing simulations of
carefully chosen representative configurations to experiments or to quanti-
tative models that provide a more detailed and accurate description of the
physics. Apart from telling us how accurate a model is, validation helps
to determine in which range of conditions (physical parameters) it can be
reliably used. The process of validation can also help to form a guideline
for the choice of model parameters, i.e., of parameters that stem from the
model formulation and do not have a simple link to measurable quantities
or material properties. Beckermann, Steinbach et al. [118, 131–133] have
performed validation of the GEM on some aspects, such as the quantita-
tive simulation of the grain envelope shape [118], of the velocity transients
during interaction of two dendrite tips [131], and of the solid fraction dis-
tribution within a grain [131, 132]. These applications have clearly shown
the potential of the model. We found that a more systematic approach was
needed to clearly define the accuracy and the limitations of the model. The
first efforts of our group to provide general validation and guidelines for
the simulation of equiaxed growth were made by Souhar et al. [119]. Fur-
ther investigations followed and consisted of validations and comparisons to
phase-field simulations and to careful and well-controlled experiments. This
work is presented in this section. Recent advances made in the framework
of an ongoing benchmark study are presented in Section 3.6.

In experiments certain quantities can be difficult to measure. The lack
of information can limit the interpretation of the observations and of the
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measurable data. In situ observations of solidification by X-ray transmis-
sion imaging are an example. These formidable experiments provide the
possibility to observe and to measure various phenomena during solidifica-
tion of opaque alloys. To ensure sufficient transmission the samples need to
be thin, typically of the order of 100–300µm. Such a confinement is much
larger than the smallest radius of curvature of the solid-liquid interface –
that of the dendrite tip, typically ∼ 10µm – but much smaller than the
size of a dendritic grain, typically ∼ 1mm. The structure of the samples is
therefore essentially three-dimensional, but the growth is strongly confined
in the direction of the sample thickness. Like in a shadow theater play,
transmission imaging can only provide a two-dimensional projection image.
The lacking information on the 3D structure of the samples can limit the
usefulness of the quantitative information from these experiments. 3D nu-
merical simulations can provide further insight into the 3D structure and
can thus help in the quantitative analysis of the observations.

To study grain interactions we chose a recent, rather well documented
experiment of Murphy et al. [144, 145]. In this experiment the growth of
equiaxed dendrites under the influence of solutal interactions was observed
in situ by X-ray transmission projection imaging. Growth rates of individ-
ual grain envelopes and of dendrite tips were measured from the projected
images. Murphy et al. have clearly shown that models of a freely growing
dendrite tip cannot explain the observed growth rates and attributed this
to the strong solutal interactions and to the confinement due to the thin
dimension of the sample.

In the experiment of Murphy et al., an Al-20 wt%Cu alloy sample, grain
refined with 0.1 wt% Al-5Ti-1B master alloy, of 200µm thickness was so-
lidified at a constant cooling rate of 0.05 K/s in a furnace that ensures a
virtually homogeneous temperature in the sample [144]. The furnace was
oriented horizontally, i.e., with the thickness direction parallel to the terres-
trial gravity, in order to minimize natural convection in the melt. During
the cooling stage 15 equiaxed dendritic grains progressively nucleated in the
observation window, shown in Fig. 3.4. Their irregular shapes indicate that
they are strongly affected by solutal interactions.

The results of our 3D simulations, shown in Fig. 3.5, are presented in
form of transmission images, which were obtained by calculating light trans-
mission through the thickness of the simulation domain using the Beer-
Lambert law1. Although only approximate in terms of intensity, the simu-
lated transmission images can be used to measure the area and the shape
of the grain projections, as well as the growth velocity of the primary tips.
We made several interesting observations on the 3D structure of the samples

1The transmitted intensity across the domain thickness, z, is thus TI =

exp
(
−
∫ Lz

0
µdz

)
, where the transmission coefficient, µ, depends on the solute concen-

tration.
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(a) XRMON-SOL experiment.

simulation (RC) to a 2D simulation case (C2d). In C2d the solute
diffusion is solved in two dimensions (in the xey plane) assuming
zero gradients of solute concentration in the liquid along the di-
rection z. For the envelope growth the same three-dimensional tip
growth kinetics model is used as in RC. Such simulations could be
interesting because of the substantially smaller computation time.
The mesh was composed by approximately 105 volume elements
(Lx =Dx ¼ 378, Ly =Dy ¼ 252, and Lz =Dz ¼ 1), which is 20 times less
compared to the three-dimensional simulations. The computa-
tional cost, however, decreased by 768 times. C2d was run in a
single processor in around 12 h whereas the 3D simulation needed
around 288 h on 32 processors.

In Fig. 4c, the numerical Beer-Lambert transmission of C2d at
130 s is shown. Large differences compared to both the three-
dimensional case and to the experiment are found. The most
striking difference is the much smaller size of the equiaxed grains
at the same instant. The reason is that the dendrite tips in a 2D
diffusion field grow slower than if the solute diffuses around 3D
envelopes. This is because the solute concentration gradients
resulting from diffusion around a 3D envelope are higher than in

two dimensions, where the envelope is plane in the z direction. The
effect can be understood through Fig. 3, where the solute concen-
tration field in the thickness of the 3D sample is shown. In C2d, the
transmission image shows a higher level of contrast between the
envelopes and the surrounding liquid. Since there is no thickness
integration to compute the transmission (TI ¼ expð# mLzÞ) in this
case, more vivid transmission images are obtained.

In this way we show that the sample thickness Lz e despite
being smaller than the tip diffusion lengths, ranging from 190 mm
to 1000 mm e plays a fundamental role on the solute diffusion and
consequently on the grain growth kinetics.

In RC we have used a common estimate for the selection
parameter: s% ¼ ð2pÞ#2. Yet the selection parameter is not uni-
versal and depends on the anisotropy of the surface energy [33]. It
can also be modified by the effect of the confinement of the walls
[34] but only in very thin geometries, which is not the case here. As
shown by Clarke et al. [35] by phase-field simulations of columnar
growth in 200 mm thin samples, the product R2tipVtip & 1=s% re-
mains constant at least down to confinement thicknesses that are
five times the primary tip radius. For the present case an estimate of

the dendrite tip radius is obtained by Rtip ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0Dl=ðs%VtipÞ

q
, with

d0 zG=ðmLC0ðkp # 1Þ. This gives radii between 5 mm and 10 mm for
the four tips of the RG during the initial growth stage, before the
solutal interactions strongly slow down the tips, i.e., up to tz80 s.
The primary tip radii are thus 10 to 20 times smaller than the
confinement thickness. Another reason for the variation of s% is the
transient nature of the growth. Due to the cooling, the supersatu-
ration of the tip is evolving throughout the whole growth process
and in principle the tip never grows in a steady-state growth mode.
Recently, Boukellal et al. [3] studied transient equiaxed growth in
confined geometries under similar cooling conditions by phase-
field simulations and have shown that s% can vary by more than
30% of the average value during growth.

Accurate data on s% for AleCu alloys are not available in litera-
ture. Tourret et al. [36] estimated a value of s% ¼ 0:03 for an Al-24.3
wt%Cu alloy, based on a surface energy anisotropy of ε4 ¼ 0:012. In
order to check the sensitivity of the predicted time evolution of the
solidification microstructure to the selection parameter, a com-
plementary simulation case (Case Cs%) is considered. In Cs% a 40%
larger value of the selection parameter is used, s% ¼ 0:035, all other
parameters are identical to those of RC. The numerical Beer-
Lambert transmission for Cs% is shown in Fig. 4b and we can
observe similar grain shapes and transmission levels as in RC. We
can infer that the selection constant has a negligible influence on
the morphology of the grains. As we show later, it slightly affects
the growth speed.

4.2. Envelope growth rate and tip speed

With the exception of one grain (marked “RG” e reference grain
e in Fig. 4) all grains are adjacent to the boundaries of the field of
view and thus under influence of interactions with grains that are
not visible and cannot be accounted for. Detailed quantitative
comparisons with the experimental results will therefore focus on
the RG. This grain is surrounded by other equiaxed grains and in-
teracts with the top and bottom sample walls. These interactions
are fully described in the simulations.

In Fig. 5 we show the time-evolution of the projected envelope
area fraction, f2d, which is the envelope area visible by the nu-
merical Beer-Lambert transmission, A2d, divided by the surface area
of the field of view (Lx ' Ly). A very similar evolution of f2d over
time is found for RC, Cs% and the experimental observations of [22].
RC shows slightly lower values of f2d over time than the

Fig. 4. Numerical Beer-Lambert transmission at the final instant tsim ¼ 130 s for a)
reference case (RC), 3D simulation with s% ¼ 0:0253, b) Cs% case, 3D simulation with a
higher value of the selection parameter (s% ¼ 0:035), and c) C2d case, 2D simulation
with s% ¼ 0:0253. The reference grain, RG, is indicated. The gray scale bar refers to the
transmission coefficient, TI .
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(b) 2D simulation

simulation (RC) to a 2D simulation case (C2d). In C2d the solute
diffusion is solved in two dimensions (in the xey plane) assuming
zero gradients of solute concentration in the liquid along the di-
rection z. For the envelope growth the same three-dimensional tip
growth kinetics model is used as in RC. Such simulations could be
interesting because of the substantially smaller computation time.
The mesh was composed by approximately 105 volume elements
(Lx =Dx ¼ 378, Ly =Dy ¼ 252, and Lz =Dz ¼ 1), which is 20 times less
compared to the three-dimensional simulations. The computa-
tional cost, however, decreased by 768 times. C2d was run in a
single processor in around 12 h whereas the 3D simulation needed
around 288 h on 32 processors.

In Fig. 4c, the numerical Beer-Lambert transmission of C2d at
130 s is shown. Large differences compared to both the three-
dimensional case and to the experiment are found. The most
striking difference is the much smaller size of the equiaxed grains
at the same instant. The reason is that the dendrite tips in a 2D
diffusion field grow slower than if the solute diffuses around 3D
envelopes. This is because the solute concentration gradients
resulting from diffusion around a 3D envelope are higher than in

two dimensions, where the envelope is plane in the z direction. The
effect can be understood through Fig. 3, where the solute concen-
tration field in the thickness of the 3D sample is shown. In C2d, the
transmission image shows a higher level of contrast between the
envelopes and the surrounding liquid. Since there is no thickness
integration to compute the transmission (TI ¼ expð# mLzÞ) in this
case, more vivid transmission images are obtained.

In this way we show that the sample thickness Lz e despite
being smaller than the tip diffusion lengths, ranging from 190 mm
to 1000 mm e plays a fundamental role on the solute diffusion and
consequently on the grain growth kinetics.

In RC we have used a common estimate for the selection
parameter: s% ¼ ð2pÞ#2. Yet the selection parameter is not uni-
versal and depends on the anisotropy of the surface energy [33]. It
can also be modified by the effect of the confinement of the walls
[34] but only in very thin geometries, which is not the case here. As
shown by Clarke et al. [35] by phase-field simulations of columnar
growth in 200 mm thin samples, the product R2tipVtip & 1=s% re-
mains constant at least down to confinement thicknesses that are
five times the primary tip radius. For the present case an estimate of

the dendrite tip radius is obtained by Rtip ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0Dl=ðs%VtipÞ

q
, with

d0 zG=ðmLC0ðkp # 1Þ. This gives radii between 5 mm and 10 mm for
the four tips of the RG during the initial growth stage, before the
solutal interactions strongly slow down the tips, i.e., up to tz80 s.
The primary tip radii are thus 10 to 20 times smaller than the
confinement thickness. Another reason for the variation of s% is the
transient nature of the growth. Due to the cooling, the supersatu-
ration of the tip is evolving throughout the whole growth process
and in principle the tip never grows in a steady-state growth mode.
Recently, Boukellal et al. [3] studied transient equiaxed growth in
confined geometries under similar cooling conditions by phase-
field simulations and have shown that s% can vary by more than
30% of the average value during growth.

Accurate data on s% for AleCu alloys are not available in litera-
ture. Tourret et al. [36] estimated a value of s% ¼ 0:03 for an Al-24.3
wt%Cu alloy, based on a surface energy anisotropy of ε4 ¼ 0:012. In
order to check the sensitivity of the predicted time evolution of the
solidification microstructure to the selection parameter, a com-
plementary simulation case (Case Cs%) is considered. In Cs% a 40%
larger value of the selection parameter is used, s% ¼ 0:035, all other
parameters are identical to those of RC. The numerical Beer-
Lambert transmission for Cs% is shown in Fig. 4b and we can
observe similar grain shapes and transmission levels as in RC. We
can infer that the selection constant has a negligible influence on
the morphology of the grains. As we show later, it slightly affects
the growth speed.

4.2. Envelope growth rate and tip speed

With the exception of one grain (marked “RG” e reference grain
e in Fig. 4) all grains are adjacent to the boundaries of the field of
view and thus under influence of interactions with grains that are
not visible and cannot be accounted for. Detailed quantitative
comparisons with the experimental results will therefore focus on
the RG. This grain is surrounded by other equiaxed grains and in-
teracts with the top and bottom sample walls. These interactions
are fully described in the simulations.

In Fig. 5 we show the time-evolution of the projected envelope
area fraction, f2d, which is the envelope area visible by the nu-
merical Beer-Lambert transmission, A2d, divided by the surface area
of the field of view (Lx ' Ly). A very similar evolution of f2d over
time is found for RC, Cs% and the experimental observations of [22].
RC shows slightly lower values of f2d over time than the

Fig. 4. Numerical Beer-Lambert transmission at the final instant tsim ¼ 130 s for a)
reference case (RC), 3D simulation with s% ¼ 0:0253, b) Cs% case, 3D simulation with a
higher value of the selection parameter (s% ¼ 0:035), and c) C2d case, 2D simulation
with s% ¼ 0:0253. The reference grain, RG, is indicated. The gray scale bar refers to the
transmission coefficient, TI .
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(c) 3D simulation – Reference Case (RC)

growth direction. Furthermore, the position of the grain in the
sample thickness can influence the confinement that the solute
diffusion around the grain “feels” and may affect its growth speed.
The primary solid phase growing from an Al-20 wt%Cu melt has a
lower density than the liquid and the grains can be expected to float
towards the top wall [30,37,38]. In this section we analyze the ef-
fects of rotation and of position in the sample thickness on the
growth and we show that they may play a fundamental role on the
time-evolution of the grain shape.

To investigate the influence of the rotation the RC simulation
was used as starting point and the RG was rotated around the axis
berot, a line that runs through tips P1 and P3. berot is contained in the
xey plane and is coincident with the grain body coordinate axis xb
(see Figs. 7 and 8a).We run three cases with three different rotation
angles around berot: 15! (C15), 30! (C30), and 45! (C45).

In Fig. 7aec, we show the numerical Beer-Lambert transmission
at the final instant for C15, C30, and C45. The rotation around berot
has a clear effect on the shape of the grain under study. The primary
arms P1 and P3 remain in the plane xey, whereas a new notation is
used for the other two visible primary arm tips: P26 and P45. P26 is
the result of the projection of P2 and P6 on the plane xey, where P6
grows in direction ð0;0; # 1Þ in body coordinates, and P45 is the

result of the projection of P4 and P5 on the plane xey, where P5
grows in direction ð0;0;1Þ in body coordinates. The higher the
rotation angle, the shorter are P26 and P45, however with only
negligible effect on P1 and P3. Additionally, the bright line joining
P1 and P3 becomes darker with the rotation angle, whereas the line
joining P26 and P45 becomes brighter. A similar strong brightness
difference between the two lines can be seen in the experimental
images (see Fig. 1). In the experiment, an alignment of secondary
dendrite arms in a plane perpendicular to the x # y plane amounts
to a large proportion of solute-lean solid in the sample thickness.
Such an alignment therefore results in a brighter transmission line
along the primary dendrite trunk. Conversely, if the secondary arms
lie in a plane oblique to the x # y plane, the amount of solid in the

Fig. 7. Numerical Beer-Lambert transmission at the final instant tsim ¼ 130s for a
rotation angle of RG around the axis berot by: a) 15! (C15), b) 30! (C30), and c) 45! (C45).
The gray scale bar refers to the transmission coefficient, TI .

Fig. 8. RG at the time of 60s for: a) the reference simulation case (RC) that is sym-
metric with respect to the xey plane, b) the case with RG rotated 30! (C30), non
symmetric with respect the xey plane. The rotation direction berot is contained in the
xey plane and normal to the vertical plane illustrated. The image (c) shows the
simulation case C100 where the center of RG is set at the z ¼ # 100 mm wall of the
sample. The image (d) shows simulation case C45 þ 100 where the center of RG is set
at the z ¼ # 100 mm wall of the sample, and the rotation axis berot contained in the
plane z ¼ # 100 mm.
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(d) 3D simulation with rotation and displace-
ment

Figure 3.4: X-ray transmission projection images of growing grains. (a) XRMON-
SOL experiment [144]. Image courtesy of D.J. Browne. Numerical Beer-Lambert
transmission for (a) 2D mesoscopic simulation, (c) 3D mesoscopic simulation refer-
ence case (RC), and (d) 3D mesoscopic simulation with rotated and displaced grain
RG. The reference grain (RG) and its tips are indicated. The gray scale bar refers
to the transmitted light intensity, TI .
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Figure 3.5: 3D simulation of the XRMON-SOL experiment. a) initial configura-
tion with the seeds, tsim = 0, b) tsim = 50 s, and c) tsim = 130 s. The color map
indicates the normal growth velocity of the envelopes, Vn.

Figure 3.6: 3D solute diffusion around a grain in the thin sample. A slice across
the 3D domain by a (100) plane containing the grain center is shown. The liquid
concentration, Cl, is shown in the left and the liquid fraction, gl, in the right half;
the thin white line is the grain envelope.

through the analyses of these results [146].
First, we could clearly show that the three-dimensional diffusion around

the grains must be accounted for to explain the grain growth rates observed
in the experiment. Fig. 3.4(b) shows that grains obtained by simulating a
2D domain are much smaller than observed in the experiment. Note that
only the diffusion field around the grains was assumed to be two-dimensional
in these simulations. A 3D dendrite tip kinetics law was used to calculate
the envelope growth in this simulations. With a 2D growth law the growth
would be even slower. The three-dimensional diffusion is further illustrated
in Fig. 3.6, which shows the concentration field around the primary tip of
an envelope in a plane perpendicular to the tip growth direction and to the
sample thickness.

While the 3D simulations give grain sizes similar to the experiment,
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we can clearly see that shapes of some grain projections are considerably
different. We shall closely examine the grain labeled RG (reference grain) in
Fig. 3.4. Its direct neighbors are all visible in the field of view, the solutal
interactions can thus be correctly simulated. The length of branches P1
and P3 of the RG are similar as in the experiment, but branches P2 and
P4 are much longer in the simulation. Interactions with neighboring grains
do not seem to be the cause; the lengths of the neighbors’ branches in the
direction towards RG are all predicted rather well. We have shown that the
most important effects on the arm length are the position of the grain in
the sample thickness and the rotation of the grain.

The position of the grain in the sample thickness can influence the con-
finement that the solute diffusion around the grain “feels” and may affect its
growth speed. The primary solid phase growing from an Al-20 wt%Cu melt
has a lower density than the liquid and in the experiments the grains can
be expected to float towards the top wall [144,147,148]. Figs. 3.7(c)–3.7(d)
shows the influence of the grain position on the primary arm growth. We
can see that small shifts of position out of the central plane do not affect
the growth speed significantly. Only a shift by 100µm, i.e., onto the top
sample wall causes a significant acceleration of the tip. The effect is thus
not as simple as it might seem. When the tip is only partly shifted from
the central position towards one of the walls, the confinement on one side
increases, but decreases on the other side. It appears that the resulting effec-
tive confinement effect is very close to the symmetric situation. Only when
the tip is shifted to the wall, the non-symmetry is removed and the “half”
branch grows in a confinement with an effectively twice larger spacing. The
growth speed thus increases significantly.

Because of the small thickness of the sample, the interaction of a den-
drite branch with the confining walls is very sensitive to the orientation of
its growth direction. In the experiment, the spatial orientation of the prefer-
ential growth directions ⟨100⟩ of the dendrites with respect to the sample is
arbitrary. Figs. 3.7(a)–3.7(b) show the length of the four primary arms seen
in the projection images as a function of the rotation angle around the axis
êrot (Fig. 3.4(d)). We can see that the rotation slows down the growth of
the tips P26 and P45, which grow perpendicular to the rotation axis. When
rotated out of the central plane, these tips interact with the top and bottom
walls of the furnace and slow down early. The rotation does not affect the
growth speed of the arms aligned with the rotation axis (P1 and P3), which
is easy to understand.

The study on the interacting confined growth was extended to investi-
gate the influence of solute convection. Even in the horizontal experimental
configuration solutal buoyancy drives a flow that can be strong enough to
enhance the solute flux ejected by the dendrite tips. The flow speed and
the solute flux enhancement depend a lot on the geometry of the flow and
on the position of the tip in the flow. Our simulations indicate a flow with
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(a) (b)

(c) (d)

Figure 3.7: Evolution of the length of the primary arms, Lp, for the reference
grain, RG. See Fig. 3.4 for the tip labeling (P1, P2, P3, P4, P26, P45). (a–b)
Three cases with RG rotated by an angle θ (crystF | Cθ). (c–d) Three cases with
the grain nucleus of GR located at distance ∆z from the sample mid-plane, in all
cases with RG rotated by θ = 45◦ (crystF | C45 + ∆z [µm] ). Additionally, the
reference case (crystF | RC) and the experimental results of Murphy et al. [144]
(XRMON) are also shown.
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RG

P1

(a) Center (case RC)

RG

P1

(b) Wall (case C100)

Figure 3.8: The influence of natural convection on the primary arm growth in a
thin sample depends on the grain position: (a) grain in the center of the sample
thickness; (b) grain at the top wall. Left: simulated X-ray radiographs. Right:
envelope growth velocity, Vn, and liquid velocity, Ul, in a plane perpendicular to
the x-y plane and containing the grain center and the tip P1.

two horizontal boundary layers, the top stream carrying solute-lean liquid
towards the grain and the bottom stream carrying solute-rich away from the
grain2. A tip growing in the middle between the furnace walls thus experi-
ences a cross flow, shown in Fig. 3.8(a), and is only weakly affected by the
convection. A tip growing along the top wall, on the other hand, grows in
the counterflow direction – a configuration that maximizes the convection
effect on the growth, shown in Fig. 3.8(b). In this case the convection effect
alone is as important as the effect of the grain position. We can see this in
Fig. 3.9, where the influence of convection on the evolution of the primary
tip is shown for a centered and a wall-adjacent tip.

We can see that the GEM gives quantitatively sound predictions on grain
interactions in rather complex conditions. How far can these simulations
reach? When do the limitations due to simplifying assumptions inherent
in the model or due to numerical approximations of the solution methods

2This flow structure corresponds to the shallow enclosure regime of natural convection
in an enclosure subject to an imposed horizontal concentration difference [149]
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(a) (b)

Figure 3.9: (a) Length evolution of the primary arm P1 over time for the simula-
tion cases RC (reference case: grain center at mid sample thickness, no rotation),
C30 (rotation by 30◦), C100 (grain center at the top wall), C45+100 (rotation by
45◦ and grain center at the top wall). Cases with gravity (dotted line) and without
gravity (solid line) are shown and compared to the experiment (XRMON) of Mur-
phy et al. (with gravity). (b) Relative difference between the projected final area
of P1 in the simulation cases and the experiment of Murphy et al. [144].

weaken the predictions and make them inaccurate or unphysical? A way to
find this out is to compare the model to a phase-field model that provides
a more detailed description of the physics and reaches to smaller space and
time scales. The phenomena of interest: growth transients, grain morphol-
ogy, interactions at small distances, departure from the assumption of a
paraboloidal tip are inherently predicted with accuracy and the simulations
can be used as a reference for models at higher scale. Efforts on comparing
to phase-field model have been made on several frontlines. The close col-
laboration with Access (Alexandre Viardin and Markus Apel) provides the
opportunity to make detailed comparisons to phase-field simulations. An
example is shown in Fig. 3.10, where 2D simulations of equiaxed growth
in a Ti–45 at.%Al alloy are compared for purely diffusive growth and for
growth in a forced flow. These comparisons, detailed in [150], have shown
a high fidelity of the mesoscopic predictions for transient growth in both
diffusive and convective regimes.

Another set of comparisons was made for diffusive growth in 3D in col-
laboration with Damien Tourret (IMDEA Materials, Madrid). It addresses
specifically the transient growth from nucleation until the final interactions
between grains [151]. It also provides a comprehensive investigation into the
influence of model and numerical parameters with the objective of provid-
ing generally valid guidelines for the selection of parameters for quantitative
simulation with the GEM. An illustration of grains in interaction is shown
in Fig. 3.11. These comparisons have shown that quantitatively reliable
growth velocities and grain shapes are obtained even well into the interact-
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Figure 3.10: Evolution of the equiaxed grain during (a) purely diffusive growth
and (b) growth in a forced flow. Simulations by the mesoscopic envelope model
(MS) and by the phase field model (PF). Fields of liquid concentration, streamlines,
dendrite envelope (MS), and solid-liquid interface (PF) are shown.
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(a) GEM, Ω0 = 0.05/0.25 (top/bottom) (b) PF, Ω0 = 0.05/0.25 (top/bottom)

Figure 3.11: Evolution of the grain shape (1/8 of an equiaxed dendrite) during
isothermal equiaxed growth with interaction (in a cubic confinement). Comparison
of the grain envelope model (GEM) and the phase-field model (PF) for two differ-
ent supersaturations, Ω = 0.05 and 0.25. (phase-field images courtesy of Damien
Tourret, IMDEA Materials).

ing regime. We have shown that the growth can be simulated down to a
distance of only a small fraction of the diffusion length (Dl/Vtip). This is an
important message, because it tells us that the assumptions on which the
method is based (paraboloidal tip, Ivantsov diffusion field around the tip,
steady state at the tip scale) are not as restrictive as one might expect. This
is particularly important for simulations that reproduce conditions found in
casting processes – low supersaturation and small distances between grains.
Such simulations are required for upscaling to macroscopic models (Chap-
ter 4), where most of the growth is in a transient interacting regime.

3.4 Growth interactions in columnar growth
So far we have seen how the mesoscopic envelope model can describe the
growth of a smooth envelope. In the examples covered in the previous
section, the primary branches of an equiaxed grain envelope develop due to
the imposed growth anisotropy. The envelope of the resulting hexapod or
cross-shaped grain remains smooth and does not develop any higher-level
branches. However, for a realistic representation of dendritic microstructure
a model must be able to describe branching events from secondary or higher-
order branches in certain conditions.
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Such conditions are encountered in growth of polycrystalline columnar
structures. The interactions between columnar grains are essentially gov-
erned by the creation of new branches and by elimination of branches at
grain boundaries [152]. The sequence of rebranching and elimination events
governs the evolution of the grain boundary and thus the survival or the
extinction of a given grain. The grain size and crystalline texture result-
ing from this growth competition affect various properties of the solidified
structure. It is important to understand that the competition occurs at the
scale of a primary dendrite branch and can only be described if the model
represents the individual branches, their creation, and their extinction.

Similar mechanisms occur in primary spacing adjustments within a sin-
gle columnar grain. Let us take the ideal example of a grain growing at
a steady growth speed in a constant temperature gradient with the ⟨100⟩
crystallographic direction parallel to the temperature gradient. Such a grain
develops a stable structure of primary arms. If the growth velocity or the
temperature gradient increase, the conditions are favorable for the develop-
ment of tertiary dendrite arms. These tertiary arms can now develop into
new primary arms and the PDAS decreases. Since they act as a generator of
new primary branches, these branching events are determinant for the de-
velopment of the PDAS. In conditions that favor an increase of the PDAS,
another spacing adjustment mechanism appears. Certain primary arms are
eliminated to favor the growth of the remaining arms with a larger spacing.
The elimination happens due to solutal interactions. A branch that has a
slight advance ahead of its neighbor can stifle the neighbor’s growth due to
the solute field it emits. Such events are the more likely the smaller the
spacing between the branches.

It does not appear obvious that the mesoscopic envelope model can de-
scribe these phenomena crucial for spacing adjustments. Several elementary
phenomena that play a role are not directly described in the GEM: capillary
forces that figure in the destabilization of the solid-liquid interface leading
to the development of new branches, the solute field at the scale of the pri-
mary tip, transient effects in the solute diffusion at the dendrite tip scale.
Through a detailed study of GEM simulations for various cases of columnar
growth [138, 153, 154] we have shown that the mesoscopic envelope model
does correctly describe most of these phenomena and can thus be a power-
ful tool for studying columnar dendritic solidification. We looked into many
aspects of the columnar structure predicted by the model and we quantita-
tively compared them to two-dimensional phase-field simulations that were
used as a reference. These comparisons showed that the mesoscopic model
accurately reproduces the primary branch structure, the undercooling of
the dendrite tips, and the solidification path in the columnar mushy zone.
We further showed that it can correctly describe transient adjustments of
primary spacing and the growth competition in polycrystalline columnar
structures.
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Figure 3.12: Liquid concentration profiles along the axis of a primary arm and
along a groove between two arms. Comparison of a phase-field and a mesoscopic
simulation in steady-state growth. The Ivantsov solution for a free tip growing at
the pulling speed is also shown for comparison. The inset shows the full concentra-
tion fields from the phase-field (PF) and mesoscopic (MS) simulations, the envelope
of the mesoscopic model is shown as a black line.

To demonstrate the detail of the mesoscopic representation we first ex-
amine a steady-state microstructure and the solute diffusion field surround-
ing the primary branches in directional solidification. Fig. 3.12 shows the
branches and the solute concentration field in the liquid (inset) and com-
pares the concentration profiles ahead of the tip and in the center of the
groove between the two central branches. We can see that the profiles and
the tip concentrations match very well. We can also see that the solute con-
centration of the interacting tips of the columnar front is higher than that
of a single free dendrite tip growing at the same speed in an infinite melt
(Ivantsov). This indicates solutal interaction between the tips. The meso-
scopic model captures such interactions with good accuracy. The remaining
difference of tip undercooling between phase field and the mesoscopic model
is mostly due to the capillary undercooling, which is not accounted for in the
mesoscopic model. Note that the mesh spacing used in the GEM simulations
is around one steady-state tip radius, five times larger than in phase-field.
The computation time was two orders of magnitude smaller.

Spacing adjustments were investigated for two configurations: an initial
spacing larger and smaller than the stable spacing range, which is of the or-
der of λstab ∼ 80µm. The results are illustrated in Fig. 3.13. In both cases
the initial spacing, λ0, is imposed onto undercooled semicircular nuclei and
the microstructure goes through a rather complex initial transient that first
establishes an unstable branch structure. The spacing of this initial struc-
ture is then adjusted and finally a stable spacing is obtained. It is interesting
that in both cases the phase-field simulation predicts an initially dense spac-
ing. For λ0 = 1000µm ≫ λstab, the initial branch structure is made up of
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Figure 3.13: The evolution of the columnar grains from an initial spacing larger
than the stable PDAS range, λ0 = 1000µm (left column) and smaller than the
stable range, λ0 = 50µm (right column). Stable PDAS were obtained in the range
of 70–115µm. The concentration field is shown for phase field (PF) and the average
concentration field and the envelope (black line) are shown for the mesoscopic model
(MS). The domain size shown is 500× 1000 mm.

secondary branches. For λ0 = 50µm < λstab, it is simply made up of pri-
mary branches growing from the initial nuclei. A competition between these
new branches then takes place, eliminating most of them. In the mesoscopic
simulation for λ0 ≫ λstab the appearance of the vertical secondary branches
is mimicked by a vertical spread of the envelope that corresponds to the
lateral secondary dendrite arms. The vertically expanding envelope is ini-
tially smooth (4 s). Later on it is gradually destabilized by protuberances
(8–10 s) that finally evolve into a steady pattern of well pronounced primary
branches (50 s). When λ0 ≪ λstab the phase-field model (PF) predicts a
fast spacing adjustment that proceeds by a sudden elimination of vertical
branches (14 s). The mesoscopic model (MS) gives an entirely different ad-
justment process. The elimination of branches proceeds symmetrically from
the left and right edges of the domain by elimination of vertical branches in
a cascade (14–18 s). Both models give almost the same final spacing.

Interactions of dendrite branches, elimination and rebranching at grain
boundaries are decisive in competition of misoriented columnar grains. A
general macroscopic theory of grain competition (that would go beyond em-
pirical rules [140]) has not yet been established. Well-controlled experiments
with a systematic control of grain orientation are difficult [155]. Recently,
high-performance phase-field codes [152,156] and mesoscopic methods [157]
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became promising tools that can provide “virtual experiments”, mapping
the parameter space of crystal angles through a large number of accurate
simulations. We assessed the capability of the GEM to simulate grain com-
petition, first in 2D simulations. We have shown that the main phenomena
that determine the competition at the grain boundaries, i.e., tertiary branch-
ing at the diverging grain boundary and tip overgrowth at the converging
grain boundary, are both reproduced by the GEM. This is illustrated in
Fig. 3.14(b). In the long run, repeated branching and elimination events
result in a migration of the grain boundary. The prediction of such grain
boundaries is shown in Fig. 3.15. The main conclusion of the study is that
in many circumstances the GEM can correctly reproduce the phenomena at
the grain boundaries that lead to GB migration and thus grain competition.
These phenomena include tertiary branching on both the well-oriented and
the misoriented grain at the diverging GB (Fig. 3.15, α0 = 5 ◦ and 20 ◦) and
overgrowth of the misoriented grain (Fig. 3.15, all angles) or the well ori-
ented grain (Fig. 3.15, α0 = 5 ◦) at the converging GB. The latter is present
only at small convergent misorientation angles α0 and is known as “anoma-
lous overgrowth” [114, 152, 158–160]. In the example shown here, the GEM
fails at angles higher than 30 ◦. The most likely reason is that the dendritic
growth becomes degenerate and that such structures are not correctly de-
scribed by the GEM. An example is the grain competition at α0 = 45 ◦,
shown in Fig. 3.15. In this case the degenerate misoriented grain in the
PF simulation grows at a substantially lower undercooling and is eliminated
very rapidly, whereas it persists as a periodically branching structure in the
GEM simulation. The grain competition as a function of the misorientation
angle α0 is reported in Fig. 3.16, through the grain elimination angle, the
difference of the grain boundary angles, θC − θD, as a function of α0. The
grain elimination angle characterizes the growth length needed to eliminate
the misoriented grain. Note that the prediction with the GEM depends
on the stagnant-film thickness, a key model parameter, which has to be
chose appropriately. A discussion on the parameter choice can be found in
Ref. [138].

In summary, we can see that the mesoscopic model gives excellent pre-
dictions of steady state growth patterns of columnar growth. Furthermore,
spacing adjustments both by tertiary rebranching and by elimination of
primary branches are reproduced. The sequence of events adjusting a spac-
ing outside the stability range to a stable spacing is however clearly dif-
ferent and takes about twice as much time as predicted by the phase-field
model. Branching and elimination are also critical phenomena at the ori-
gin of growth competition between differently oriented grains. We have
demonstrated that the mesoscopic model can reproduce these phenomena
and thus the macroscale growth competition for small and moderate misori-
entation angles, i.e., up to 30 ◦. The results also depend to some extent on
the stagnant film thickness used in the mesoscopic simulations. This will be
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Figure 3.14: (a) Schematics of the prototype configuration for grain competition,
the grain inclination angle, α0, and the calculation domain. (b) Snapshot of the
growing dendrite structure given by the phase-field (PF) and by the mesoscopic
model (MS) for α0 = 20 ◦ for the same physical time.
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Figure 3.15: Spatiotemporal plots of growth competition predicted by the phase-
field (left) and the mesoscopic model (right). The well-oriented grains are shown
in red and the grain misoriented by the angle α0 is shown in yellow (full for phase
field, contour for mesoscale where solid fraction is superimposed). Note that the
horizontal length is displayed compressed by a factor of 0.3.
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Figure 3.16: Grain elimination angles as function of the crystal misorientation an-
gle α0 of the misoriented grain. Comparison between mesoscopic (MS) simulations
for two stagnant-film thicknesses and the phase-field (PF) simulations. Note that
the stagnant-film thickness is specified in terms of the steady-state diffusion length,
ldiff = Dl/Vpull, where Vpull is the pulling speed of the directional solidification.

discussed further in Section 3.6.
Recently, we used the GEM to model dendritic columnar grain growth in

selective laser melting. The main challenge are the solidification conditions
in additive manufacturing processes, which operate at high temperature
gradients and cooling rates. They are characterized by a less pronounced
disparity of the length scales involved in the microstructure formation (cap-
illary length, tip radii, diffusion length and PDAS) and of those represented
by the GEM (diffusion length and PDAS). For example, the ratio of PDAS
to the diffusion length increases by almost an order of magnitude, while the
ratio of diffusion length to tip radius decreases by an order of magnitude
and becomes close to one. Encouraging results were obtained [161]. PDAS
observed in experiments were reproduced and GB trajectories are similar as
observed in our SLM experiments.

3.5 Convection effects
Convection has a significant influence on microstructure growth during so-
lidification. This is of interest in many situations. Convection affects the
growth speed of dendrite tips in equiaxed growth. In columnar growth,
where the growth speed is controlled by the heat transfer, it modifies the tip
undercooling and the extent of the undercooled zone in the liquid ahead of
the columnar front. This can have an influence on nucleation and growth of
equiaxed grains and on the columnar-to-equiaxed transition (CET). In case
of strong flow, as in case of forced flow or buoyancy-driven flow in hyper-
gravity, convection can modify the microstructure in terms of the primary
dendrite arm spacing [162] and growth morphology [163].
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The motion of equiaxed grains is another convection phenomenon. It
enhances the relative velocity of the liquid and thus direct convection effects
on an equiaxed grain. Beyond that, grain motion causes rearrangement
of grains in terms of the number density and of the spatial distribution.
Such rearrangement alters the interaction between equiaxed grains and thus
the grain size, morphology, as well as the growth kinetics of the ensemble.
Furthermore, macroscopic grain transport affects the competition with the
columnar front and is thus a key phenomenon for the CET.

I will discuss two different cases where convection is a key element for
the growth of grains. In columnar growth under the influence of amplified
buoyancy-driven flow (natural convection) in hypergravity we investigated
the adjustment of the dendrite arm spacing and of the microstructure mor-
phology. In the case of equiaxed growth I will briefly look into growth dur-
ing settling, particularly during the transition from free-floating to packed
grains. While detailed results are not available yet, this reflection gives
a starting point and motivation for the model developments presented in
Section 3.6.

Centrifugation is employed in many metal casting processes, for exam-
ple for cast iron pipes, aluminum tubes, continuous casting of steel billets,
investment casting, etc. Our interest was motivated by centrifugal cast-
ing for manufacturing Ti–Al low-pressure turbine blades for aircraft en-
gines [164–166]. Effective gravity in this process reaches up to tens of ter-
restrial gravity levels and buoyancy-driven convection of liquid is therefore
strongly intensified. The influence of the strong convection on the growth
of the solidification microstructure (including columnar morphology, CET,
equiaxed grain size, and the role of the peritectic transformation) was inves-
tigated in the framework of the Gradecet project. One of the key elements
is the columnar structure. Its growth morphology affects microsegregation,
the creation of fragments, the undercooling ahead of the columnar zone, and
the CET.

Recently, Viardin et al. [163] investigated the influence of hypergravity
on the columnar dendritic microstructure during directional solidification of
a Ti–48 at.%Al using phase-field simulations. They have shown that the di-
rection and the level of hypergravity triggers changes of the primary dendrite
arm spacing (PDAS) and of the grain morphology. These changes are partic-
ularly striking in conditions representative of industrial centrifugal processes:
gravity direction opposite to the temperature gradient and gravity levels of
∼ 20 g. Under the influence of strong convection, the microstructure is re-
fined and the grain morphology changes from clearly structured dendrites
to branched structures with less clearly defined growth directions. Viardin
et al. have shown that this is linked to the transition of the growth and of
the mesoscale flow from a steady-state regime at moderate hypergravity to
oscillatory regimes at high hypergravity levels. These findings are consistent
with experimental post mortem characterizations of Ti–Al microstructures
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produced in hypergravity [166,167].
Significant influence of the flow on the PDAS was also reported in prior

investigations on gravity effects on columnar growth, based on experiments [168]
and on phase-field simulations [162,169,170]. Notably, these studies showed
that the primary dendrite arm spacing decreases for specific fluid flow con-
figurations that promote growth of tertiary dendrite arms, while inhibiting
growth of primary dendrite tips through advection of solute. These spac-
ing adjustments are a result of interactions of diffusion of heat and solute,
capillarity, and fluid flow across a range of scales: from the microscale (den-
drite tip) to the mesoscale (flow structures at the scale of several PDAS). A
comprehensive explanation of these interactions is yet to be developed.

Quantitative numerical simulations are indispensable as a complemen-
tary tool for the analysis of post mortem characterizations available from
hypergravity experiments [166, 167]. The remarkable power of phase-field
models for the detailed description of the interaction between solidifica-
tion microstructures and flow [162, 163, 169–173] is impaired by their high
computational cost. Mesoscopic models are particularly interesting in prob-
lems involving flow, because a larger range of scales needs to be tackled
than in diffusive growth. We used the mesoscopic envelope model to sim-
ulate columnar solidification of a technical β-solidifying Ti–Al alloy under
the influence of buoyancy-driven convection in hypergravity of up to 20 g.
Through detailed comparisons to a phase-field model we showed that the
mesoscopic model correctly predicts the main microstructure features due
to convection: adjustments of primary dendrite arm spacing and the transi-
tion between dendrites and branched structures. Prior to the application to
the rather complex case of columnar solidification, we thoroughly validated
the model by comparisons to phase field for a case of equiaxed solidification
with forced convection (see Fig. 3.10(b)).

We simulated columnar dendritic growth of Ti–45 at.%Al for different
gravity levels ranging from micro- to hyper-gravity. In Fig. 3.17 the spa-
tiotemporal plots of the microstructure obtained with the envelope model
are shown. They can be directly compared to the phase-field simulations in
Fig. 3.18. The same observations can be made as in the phase-field predic-
tions. From −3 g to +15 g a single primary branch is stable. With decreas-
ing gravity the primary tip undercooling increases and the dendrite envelope
widens, representing an increasing length of the secondary branches. At −4 g
the microstructure starts to destabilize and tertiary branching events occur.
At −15 g the PDAS finally decreases and two stable primary branches are
observed. While the destabilization of the microstructure is predicted at
the same gravity level as by phase field and results in a similar reduction of
PDAS, the mechanism leading to the spacing adjustment is not the same.
The tip splitting events predicted by phase field cannot be correctly repro-
duced by the envelope model because they are governed by interface kinetics
that is out of the scope of the parabolic tip model that is used to describe the
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envelope propagation. Nevertheless, in the mesoscopic simulations the mor-
phological instabilities are triggered but they appear as tertiary branching
events.

These microstructure evolutions are closely correlated with the fluid flow
patterns. Gravity drives the solutal natural convection in the liquid around
the growing dendrites. Depending on the gravity direction with respect to
the growth direction, very different flow regimes form and result in a stable
or unstable dendritic growth [163]. In Fig. 3.19 flow streamlines and solute
concentration fields for different gravity levels are shown. Note that the
solutal expansion coefficient for Al in Ti is such that the density decreases
with increasing Al concentration. When gravity and the growth direction
are aligned (g > 0), the macroscopic density gradient in the mushy zone
is parallel to gravity and is therefore hydrodynamically stable. Convection
is induced by a lateral density gradient in the space between the primary
dendrites. The size of the convection rolls is controlled by the PDAS. The
dendrite tips experience a downward flow that stabilizes growth and the
PDAS and decreases the tip undercooling. When gravity and growth are in
opposite directions, the situation is more complex. In addition to the lateral
gradient in the interprimary space, which is now in the opposite direction,
an unstable (antiparallel to gravity) macroscopic density gradient is present
in the mushy zone. An upward flow at the dendrite tips is created that
destabilizes growth, leading to a drastic decrease of the PDAS and to a
so-called “branched” microstructure [163] at higher gravity levels.

Our objective was to check if the mesoscopic model can predict the mi-
crostructure evolution and the fluid flow pattern during directional growth
coupled with natural convection in hypergravity. The flow patterns are very
similar for phase field and mesoscopic model from −3 g to 15 g, and differ
only for high negative gravity levels, where a branched microstructure ap-
pears. For all positive gravity levels the convection rolls are symmetric with
respect to the primary dendrite and the dendrite tip grows opposite to a
downward flow that advects solute-lean liquid to the tip. In this case, the
dendrite tip has “favorable” growth conditions [162]. The convection in this
sense increases the concentration gradient that drives the solute rejection
from the tip into the surrounding liquid. As a consequence, the solutal un-
dercooling required for the tip to grow at the externally imposed pulling
speed is reduced. The microstructure remains dendritic with a single den-
drite predicted by both the phase field and the mesoscopic simulations. For
moderate negative gravity levels (−1 g to −3 g) the central dendrite remains
dominant, with symmetric convection rolls but with an upward flow at the
dendrite tip. Upward flow advects solute-enriched liquid from the interden-
dritic region to the dendrite tip. Compared to the purely diffusive case the
solute gradient at the tip is reduced and the tip undercooling increases as a
result.

At high negative g (upward flow at the dendrite tip at early stage of
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Figure 3.17: Columnar microstructure at different gravity levels predicted by the
mesoscopic model. Spatiotemporal plots of the solid-fraction field after 200 s are
shown. At positive gravity, the gravity vector is oriented in the growth direction, at
negative gravity it is opposite to the growth direction. The red rectangle represents
the moving calculation domain.
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Figure 3.18: Columnar microstructure at different gravity levels predicted by the
phase-field model. Spatiotemporal plots of the solid-liquid interface after 200 s are
shown. At positive gravity, the gravity vector is oriented in the growth direction, at
negative gravity it is opposite to the growth direction.The red rectangle represents
the moving calculation domain.

growth) the flow destabilizes the dendritic growth pattern. For −20 g to
−5 g, a change of the PDAS is observed in the phase-field results. This
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Figure 3.19: Columnar dendrite growth in Ti–45 at.%Al as function of gravity
level for the phase field (PF) and the mesoscopic model (MS). Flow streamlines are
superimposed onto concentration maps. Note that the maximum velocity magni-
tude Vmax is different for each frame.

change occurs at −10 g for the envelope model. The mechanism of spacing
adjustment predicted by the two models is quite different. In the phase-field
simulations it proceeds through a splitting of the primary tip with the two
resulting branches initially growing tilted to the temperature gradient. One
of the branches then gets eliminated and the surviving branch continues to
grow roughly in the direction of the temperature gradient. In the mesoscopic
simulation such events of branch splitting do not occur. Even if they did,
the physical meaning could not be the same since the tips of the branches
are not directly represented in the envelope model. The spacing adjustment
rather occurs through tertiary branching. Although the mesoscopic envelope
model cannot reproduce branched microstructures, it does predict the PDAS
reduction at the correct gravity level. Instead of tip splitting, the spacing
reduction is achieved by tertiary branching.

Naturally, a perspective of this work is to extend the mesoscopic sim-
ulations of columnar growth in hypergravity to larger domains and to 3D.
The geometry and the dimension of the problem play a critical role on the
flow characteristics [163,174] especially on its velocity. The smaller compu-
tational cost than for phase field allows 3D simulations coupled with flow to
be done at the scale of the experiments without using a massive supercom-
puter. Grain motion can also be included to investigate the effect of moving
equiaxed dendrite on columnar growth during CET. Further, the effect of
evolving solidification conditions (temperature gradient and growth speed),
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such as in realistic process conditions, on the columnar microstructure is of
interest.

The most obvious effect of convection on equiaxed growth is due to
the relative motion of liquid. In Section 3.3 I discussed the influence of
mesoscale natural convection on growth of stationary grains. We can see
that it affects the growth of individual dendrite tips and slightly also the
grain shape. It is interesting to quantify only for a detailed analysis of
growth and grain interactions, such as in in situ experiments. For packed
dendrites we can expect the natural convection in the intergranular liquid
to be of no significance because the solutal gradients in the liquid pockets
quickly vanish when the grains pack.

Convection can be of importance for the growth of settling grains. Sev-
eral studies [31, 175–177] show that settling grains grow much faster than
under diffusive conditions. Badillo & Beckermann [178], on the other hand,
argue that the average of the growth speed over all branches of a settling
dendrite is very close to the rate in diffusive growth.

Transport of equiaxed grains is important because it causes rearrange-
ment of grains in terms of their number density and of their spatial distri-
bution. Such rearrangements alter the solutal interactions between grains
and thus have an influence on the growth kinetics of the ensemble.

We can imagine two limiting cases of concurrent grain settling and
growth. In both cases the undercooling of the liquid through which they
settle is identical, the only difference is the initial distance between the
grains. In the first case the distance between grains is very large, such that
the time needed for the grains to impinge by growth is much larger than the
time needed to settle to the bottom of the container. In this case the size
of a grain at packing depends only on the settling time. In the second case
the distance between the grains is very small, such that the time needed for
the grains to impinge is much smaller than the time needed to settle to the
bottom of the container. In this case the grains impinge and pack due to
growth and the final grain size depends only on the initial distance between
the grains.

Our estimations from process simulations [179] show that realistic con-
ditions fall between these two limiting cases. Rearrangements due to grain
motion happen at time scales that are not much smaller than the solidifi-
cation time. The most important rearrangement is the packing of equiaxed
grains. We have shown that prior to packing, a densification of the grain
population occurs above the packing front in a layer with a thickness of only
about six times the grain size (see Section 2.4). The time spent in this layer
is governed by the progressive deceleration due to lubrication effects and
collective mechanical interactions with the average velocity around 5 times
smaller than the settling velocity [99].

These ideas on concurrent grain growth and motion led us to the devel-
opment of a mesoscopic model with grain motion. First model studies were
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able to show the interactions of the settling grains with the packed layer and
are presented in Section 3.6.

3.6 Methodological developments
This section regroups various methodological developments, which include
major model developments, smaller improvements, and benchmarking.

The first improvements were made in the work of Souhar et al. [119]. We
improved the calculation of the envelope velocity that is used in the interface
capturing method for the description of the motion of the envelope front.
All versions of the mesoscopic solidification model [118,119,131,132] use the
interface capturing method of Sun & Beckermann [137], which is a general
method for the tracking of any moving interface. This method is very robust
in many situations. Excellent accuracy is obtained, for example, when the
calculation of the interface velocity does not depend on the phase indicator
function itself, or in case of interface curvature driven motion [137].

In the phase-field like interface capturing method the whole indicator
field, φ, must evolve in order to describe interface motion. This implies
that the interface velocity must be defined everywhere and the field must
be advected everywhere in the domain. In practice it is sufficient to de-
fine the interface velocity in a relatively narrow band around the interface
(φ ∈ [0.02, 0.98] in practice), where the gradients of the indicator field are
significant. In order to preserve the hyperbolic tangent shape in φ, the prop-
agation velocity should be constant across a cross-section perpendicular to
the envelope, i.e., in the direction of the envelope normal. Since the elements
of the computational grid are generally not aligned along this direction, it
is not possible to obtain the propagation velocity across the whole width
of the transition at once. The propagation velocity has to be actually cal-
culated for every grid cell within the transition region. The propagation
velocity depends on the supersaturation of the liquid at a given distance
from the envelope in the normal direction. The calculation of the velocity
is very sensitive to the distance provided. Therefore, at each point within
the interface band, the distance to the envelope and the distance to the
stagnant film need to be determined with high accuracy. With the kernel
function being known (Eq. (3.9)), the calculation of these distances can be
based on the values of the function φ via the inverse of the kernel function.
The problem of this method is that it gives erroneous calculation of the
distances if the function φ is slightly deformed in the normal direction. We
have shown that this error is self-reinforcing, i.e. the error that results from
the deformation of the φ profile, produces a further deformation of the φ
profile. The deformation is limited by the stabilization term, however the
coefficients b that can be used, are not sufficient to avoid significant errors.
We introduced a new, more accurate method for the determination of the
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distance from a grid cell to the dendrite envelope and to the stagnant film.
This improves the accuracy of the calculation of the envelope growth veloc-
ity and thus increases the application range of the mesoscopic model. The
improved accuracy is achieved with the help of markers, points distributed
on the level set of the φ field that defines the envelope. The average dis-
tance between the markers is much smaller than the grid spacing, they thus
give an accurate reconstruction of the envelope surface. The distance be-
tween a point in space and the envelope surface is then approximated by the
distance between the point and the closest marker. This method requires
a certain additional computational cost for the surface reconstruction (the
distribution of markers) and for the search of the closest markers. The clear
advantage is a much better control over the interface capturing method and
an improved accuracy of the velocity computation.

While the raison d’être of a model is to reach beyond known configura-
tions, measurable quantities, and established solutions, it seems reasonable
to expect that its soundness needs to be tested in some way. We expect
to know to what degree a model is capable of representing material reality
and to delineate its limits. I will not discuss the somewhat controversial
(and often unclear) concepts of verification, validation, and confirmation of
models [180, 181] here. It shall suffice to state that a model should demon-
strate to what accuracy and fidelity it can describe the elementary physical
phenomena that constitute the processes it needs to simulate. Of course,
this is not a proof, nor quantification of accuracy for the simulation of the
more complex processes for which the mode is used. It is rather an element
of reassurance and of course if the elementary phenomena are accurately
represented, this increases the likelihood that the more complex processes
in which these phenomena are essential, are also accurately described.

With this rationale, several validation, comparison, and benchmarking
actions were taken. In the work by Souhar et al. [119,182] we compared the
simulations of steady-state growth of equiaxed grains in a binary alloy at
constant supersaturation to reference data. For the steady-state primary tip
speed the analytical solution of an LGK-type dendrite tip model3 was used
as a reference. For the steady-state dendrite shape the scaling laws from the
experiments of Melendez & Beckermann [183] were used as a reference. The
comparison to such careful experiments seems to be an ultimate validation
exercise. Of course, the measurable quantities are limited even in such
experiments. For example, the solute concentration field around the grain
cannot be measured. Apart from this, simplifying assumptions taken in the
model neglect certain effects inevitably present in the experiments: (i) in
experimental conditions the dendrites are not only solutally undercooled but
also have some thermal undercooling and (ii) the conditions are not purely

3consisting of the Ivantsov solution and a tip selection criterion of the form R2
tipVtip =

Dld0/σ
∗
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Figure 3.20: Benchmark comparisons of mesoscopic methods for isothermal
equiaxed growth at two different supersaturations, Ω0.

diffusive – some (although weak) natural convection is present in the liquid.
Although this did not preclude the use of the experimental scaling laws
(see [119, 183] for discussion), more detailed and easily comparable results
would be valuable.

Phase-field simulations of dendrites can give all the information for sim-
ulations of physically identical configurations. The difficulty of phase-field
simulations is the relatively high computational cost in terms of CPU time
and memory requirements. Until recently, the cost of well-resolved simula-
tions of non-confined equiaxed growth in 3D made such simulations impracti-
cable. Only recently, we were able to obtain such simulations in collaboration
with Damien Tourret (IMDEA Materials) who employs a high-performance
GPU phase-field code [184]. We made first benchmark comparisons of the
GEM and the dendrite-needle-network model (DNN) [185] to these results
for equiaxed growth [151]. An illustration of the comparison is shown in
Fig. 3.20. The comparisons investigated the dependence of the model pre-
dictions on the stagnant-film thickness, δ, and on numerical parameters,
grid spacing, ∆x, and timestep, ∆t. Additional comparisons including more
detailed parameter studies and configurations of columnar growth are under
way.

The stagnant-film thickness is a key parameter of the mesoscopic enve-
lope model. It is the distance at which the locally valid analytical solution
of diffusion around the dendrite tip is matched to the numerical solution of
the concentration field in the vicinity of the envelope. In this way it is a
parameter that controls the way the growth speed of the envelope is cou-
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pled to the concentration field around the envelope. This is illustrated in
Fig. 3.22. We can see that if δ → ∞, the envelope speed tends to the speed
of an isolated Ivantsov tip growing at the solutal undercooling of the liquid
at distance δ. For a single, essentially isolated dendrite this means that the
theoretical primary tip velocity (the “Ivantsov velocity”) is recovered by con-
struction of the model if δ is much larger than the diffusion length D/Vtip.
This might lead one to believe that a large stagnant film thickness should
be used in order to ensure good accuracy of the model. Clearly, however, if
δ ≫ D/Vtip, the dendrite tips are not affected by the concentration field in
the vicinity of the envelope anymore, but only by the far field. This carries
several disadvantages. First, the variations of concentration limited to the
vicinity of the envelope, for example to a boundary layer in presence of con-
vection, might not be captured. Second, any transients due to variation in
undercooling (say, due to cooling) are damped due to the time necessary for
the diffusion to reach the stagnant film. Third, because interactions with
other grains are limited distances larger than δ, short distance interactions
cannot be described. And finally, the grain shape becomes incorrect because
the relations of growth speed between the primary and secondary tips are
not properly reproduced. As an example we can look at an isolated equiaxed
dendrite growing in an undercooled liquid. An example of the dependence
of the grain shape on δ is shown in Fig. 3.21. If the stagnant film thickness
is much larger than the diffusion length, δ ≫ D/Vtip, the confocal envelope
lies beyond the diffusion layer that surrounds the grain and the concentra-
tion at the stagnant film is uniform for the whole grain. The tip speeds
are then also identical along the whole envelope and the grain then takes
an octahedral shape. The detail in the description of the envelope shape is
thus lost.

It is thus clear that δ must be of the order of the diffusion length or
smaller. Detailed investigations in this range have shown a dependence of
the primary tip speed on δ that is not general and depends on the su-
persaturation, Ω0, of the grain. As δ decreases, the primary tip speed is
underestimated for low Ω0 and overestimated for high Ω0. This is shown
in Fig. 3.22 [119]. These trends result from the matching of the Ivantsov
solution for the tip-scale diffusion field to the numerical solution of the meso-
scopic diffusion field at distance δ. Comparisons of the predicted envelope
shape to an experimental reference [183] done in parallel have shown that
more accurate envelopes are obtained with a small stagnant-film thickness,
i.e., δ < D/Vtip. In summary, both the primary tip speed and the envelope
shape depend on the stagnant-film thickness: δ > D/Vtip is favorable to
obtain an accurate tip velocity and δ < D/Vtip is favorable to obtain an
accurate envelope shape.

As a compromise of these opposing tendencies, a general calibration
guideline was proposed as δ = D/Vtip [119]. It was shown to give accurate
results for the steady-state primary tip speed and envelope shape. This
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Figure 3.21: Equiaxed grain envelopes obtained with different values of the nor-
malized stagnant film thickness, δ/ldiff .
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Figure 3.22: Dependence of the relative error of the predicted primary tip speed
on the normalized stagnant film thickness, δ/ldiff .
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Figure 3.23: Evolution of the primary dendrite tip velocity for Ω0 = 0.05 from
GEM simulations compared to phase-field. The influence of the stagnant-film thick-
ness, δ, on the velocity transient is shown. The final length of the primary arm, L,
is two times the diffusion length, lD = Dl/Vtip, where Vtip is the steady-state tip
speed.

is relevant for configurations where the grains are relatively far away. In
this case most of the growth is in the steady-state regime and the initial
growth transient is of minor importance. Also, we have to keep in mind
that the interactions of grains at distance < δ cannot be described because
the stagnant film overlaps with the interior of the adjacent grain envelope.
A large δ is therefore limiting for the description of close interactions.

More recently, a detailed investigation for transient growth regimes was
made. Comparisons were made to phase-field simulations. This inves-
tigation suggests a different scaling for the stagnant-film thickness: δ ≈
8Ω1.6D/Vtip [151]. This recommendation is slightly less accurate in steady
state (with a difference of < 10%) but is more accurate during transients,
especially during the initial transient after nucleation. The main disadvan-
tage compared to the rough general calibration (D/Vtip) is that it needs to
be adapted to the expected tip supersaturation, which is not known in ad-
vance in general situations. Another disadvantage is that finer meshes must
be used at low Ω, where smaller δ/(D/Vtip) must be used. The constraint
on the grid spacing is ∆x < 0.5δ. The advantages and disadvantages of
the calibration methods for δ are summarized in Table 3.1. An example
of the dependence of the tip speed transient on δ in the range close to the
optimal calibration and a comparison to the phase-field simulation is shown
in Fig. 3.23.

A particular configuration is encountered in case of narrow confinements,
smaller than the characteristic diffusion length, D/Vtip. To simulate growth
in such confinements the stagnant film thickness must naturally be consider-
ably smaller than the confinement. Examples of such confinements are thin
crucibles in in situ X-ray imaging experiments (see Section 3.3) and growth
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Table 3.1: Advantages (+) and disadvantages (–) of calibration methods for the
stagnant-film thickness, δ.

General Transient
steady-state calibration
calibration
δ = D/V δ = f(Ω)

steady-state tip speed accuracy + + +
initial transient accuracy – – +
interaction transient accuracy + + +
grain shape accuracy – +
generality (independence of conditions) ++ –
required ∆x + –

of grains at a distance smaller than D/Vtip. The latter case is encountered
with large grain population densities and with low undercoolings (i.e., large
diffusion lengths).

The concurrent motion and growth of equiaxed grains is a key phe-
nomenon in the formation of the solidification microstructure. A description
of collective interactions of moving grains is lacking, especially in regimes
with steep transitions of grain size, population density, cooling rate, or other
macroscopic quantities (see Sections 2.2 and 3.3). A model that could de-
scribe the concurrent motion and growth of equiaxed grains at the meso-
scopic scale could make a considerable contribution to the understanding of
these collective interactions. Today, no model exists, capable of describing
grain motion at this scale. The principal reason is the complexity of devising
a robust numerical algorithm for this type of problems. I need to mention
that several efforts of developing phase field models of solidification with
grain motion were undertaken in the past [186] and more recently [187–189].
These formulations were limited to 2D, some of them suffered from excessive
numerical errors or were limited to unrealistic physical parameters, far from
those encountered in solidification in metal alloys. Of course phase-field
models are also computationally very expensive.

We recently extended the mesoscopic envelope model to describe grain
motion. This is a major model extension and consists of several elements. In
addition to the existing framework, the model needs to describe and resolve:

• the advection of all fields associated to grain envelopes and to the solid
phase;

• the dynamics of motion of every grain following from the balance of
all forces acting on it;
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• the interactions of the grains with the liquid (drag, lubrication, and
pressure forces);

• the forces due to contacts between grains.

We can already notice that the “single domain” description of solute trans-
port and of momentum transport in the liquid needs to be combined with
a description of grain dynamics that accounts for the identity of each grain.
This is the main shift in the concepts used in the model.

The advection of mass and solute due to solid motion was included in
the model quite naturally. It consists of adding advection terms to all fields
linked to the solid phase: solid fraction, solid concentration and grain in-
dicator field. For example, for the solid concentration field the equation
reads

∂(gsCs)

∂t
+∇ · (gsCsv⃗s) = kpC

∗
l
Γs

ρ
, (3.11)

where v⃗s is the velocity field of the solid phase that is defined in the whole
simulation domain. This field is such that it gives the translation and ro-
tation velocity of all grains and is thus composed of the velocities of the
individual grains. The main difficulty here is not the mathematical formu-
lation, but the numerical solution of the advection operators (such as the
second term on the LHS of Eq. (3.11)). In most discretization methods
advection operators are prone to discretization errors that result in a non-
physical diffusive effect (“numerical diffusion”) or in instabilites in form of
oscillations. These errors are indeed the main obstacle for a robust model
with grain motion. Sophisticated techniques have been proposed in the
past [186, 188] and they have allowed to simulate the transport of a grain
over long distances (more than 10 times the grain size) with good numerical
accuracy. Our ambition was a little more modest. The objective was to be
able to simulate the motion of grains over distances that correspond to the
extent of the packing region (see Section 2.4), i.e., maximum of 10 times the
grain size, with reasonable accuracy. However, it was is absolutely essen-
tial that the model can be used in 3D with acceptable computation times.
The most viable solution is to use sufficiently fine numerical grids and high-
precision discretization schemes. Many such schemes are already available
in OpenFOAM, the finite-volume numerical library used by CrystalFoam,
our GEM code implementation. The SuperBee scheme was identified as the
best compromise.

The dynamics of grain motion is that of rigid bodies. The dynamics
of each grain is described individually by the motion of its center of mass
and by the rotation around the center of mass. The linear velocity, v⃗igr, and
the angular velocity, ω⃗i

gr, of grain i are described by balances of forces and
moments:

mi
gr

dv⃗igr
dt

= F⃗ i
bw + F⃗ i

dr + F⃗ i
col (3.12)
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Ii
gr

dω⃗i
gr

dt
= M⃗ i

dr + M⃗ i
col , (3.13)

where F⃗ i
dr and M⃗ i

dr are the drag force and moment, respectively, F⃗ i
col and

M⃗ i
col are the force and moment due to collisions with other grains, and F⃗ i

bw
is the force of buoyancy-weight.

To describe the interactions of a grain with the liquid it is necessary
to calculate the forces and moments of drag and lubrication. Because the
solid-liquid interface, where these forces act, is not described in the meso-
scopic model, some sort of constitutive model must be used. We should
recall that every dendritic grain is defined by its envelope that contains a
dendritic skeleton and intragranular liquid and is thus permeable. An idea
that comes naturally is to calculate the drag on the grain from the integral
of the drag force, given by the “porous medium” formulation and charac-
terized by a hydrodynamic permeability (see Eq. (3.8)), over the envelope.
Such modeling would certainly require careful calibration of the permeabil-
ity law used for the envelope, but it is possible in principle. Our attempts of
such modeling have however shown that the coupled calculation of force and
motion is numerically very unstable. We therefore resorted to a modeling of
drag at the scale of the grain. This means that the total drag force on the
grain is calculated from the difference between the velocity of the center of
mass of the grain and the mean velocity of the liquid in the domain. Drag
coefficients formulated for low-Reynolds-number flow that account for the
shape and the permeability of the grain envelope [32] are used.

Lubrication forces between two nearby grains are calculated from the
distance between the facing envelope surfaces and the relative velocity of
the two grains. The calculation is based on a rather sophisticated algorithm
that detects facing surfaces that are closer than a given threshold distance
and on that calculates the average distance and relative velocity of these two
facing surfaces. This model has been validated and calibrated by comparison
to experiments and simulations of settling particles [99] and has shown good
accuracy. Its disadvantage is the sensitivity to numerical parameters. Be-
cause of lacking robustness when coupled to the full model, this lubrication
model remains at a prototype stage.

Moving grains can collide and transfer forces. To describe these phe-
nomena, the discrete element method (DEM) is most commonly used. The
non-convex shape of the dendrite envelopes adds complexity to the model-
ing. One reason is that the detection of contacts between non-convex objects
is much more difficult than for convex objects [190]. A second reason is that
multiple contacts between two objects are possible. An advantage of the
formulation of grains by indicator functions is that it can strongly facilitate
contact detection. The key idea is that contacts between objects are detected
and calculated from the overlap of the indicator functions (Fig. 3.24). Just
like in DEM models, the contact force is then calculated from the overlap.
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Instead of using the overlap distance, the overlap (intersection) volume is
used. The force is expressed by a model equivalent to the Kelvin-Voigt
(spring-dashpot) model.

F⃗ i
col = E

√
V∩ + η · ℓ , (3.14)

where V∩ is the intersection volume, ℓ is the overlap length, E is the rigidity
and η is the viscous constant. A linear equation of motion is thus obtained:

mℓ̈+ ηℓ̇+ E
√
Rcℓ = 0 (3.15)

where Rc is the curvature of the envelope at the contact point. Realistic
rigidity and viscous constant would be difficult to obtain for dendrites during
solidification. In the framework of the present model we do not need a
quantitative description of the contact itself, since it occurs over a very short
timescale. We merely seek to represent the stop of the grain on contact and
to do this in a numerically robust manner. The rigidity E is thus calibrated
to give a maximum allowed overlap. It therefore depends on the mass of
the grain, its maximum expected speed, and on the minimum expected
curvature. The critical damping of a mass-spring-dashpot system is used.
Effectively, most of the kinetic energy of the grain is dissipated by lubrication
forces directly prior to the contact.

We used the model to simulate the settling of growing equiaxed grains
in an undercooled liquid. An illustration of such a simulation is shown in
Fig. 3.25. It represents the settling of an equiaxed grain towards a group
of fixed (packed) grains. The parameters of the simulations were extracted
from process simulations of direct-chill casting of aluminum alloys: alloy
composition, undercooling, cooling rate, temperature gradient, grain den-
sity, initial solid fraction in the settling region, and thermophysical prop-
erties. Such a configuration is the focus of our interest for future work on
upscaling from mesoscopic simulations to macroscopic models. This is of
interest because the description of solidification kinetics in the packing zone
is one of the weakest links in macroscopic models.
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Figure 3.24: Collision between two moving 3D dendritic envelopes: a) External
view; b) Internal view of the intersected volume; c) Internal view of the intersected
volume (zoomed).
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Figure 3.25: Simulation of settling and growth of an equiaxed Al-4%Cu grain
and packing on a layer of packed grains. The color of the envelope surface shows
the envelope growth velocity [m/s]. Arrows show liquid velocity vectors colored by
speed, Ul [m/s].
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Chapter 4

Upscaling

4.1 Introduction

Because of strong interscale coupling between the phenomena occurring at
the different length scales, a model that simulates the macroscale behavior
of a solidifying system needs to incorporate the microscale and mesoscale
phenomena. Incorporating these phenomena by simulating them directly
would require computing power that will clearly be out of reach in the fore-
seeable future [191]. My ambition is to develop a method of micro → meso
→ macroscopic upscaling for modeling of solidification of metal alloys that
will be able to use simulations at the small scales to define constitutive laws
used at the larger scales. This is a so-called hierarchical multiscale model-
ing approach. Currently, efforts for the development of different multiscale
methodologies for materials modeling (ICME – integrated computational
materials engineering) are under way all over the world. Their objective
are modeling-assisted platforms for concurrent development of materials,
processes and products.

Micro- and mesoscale phenomena can be incorporated in macroscopic
solidification models using volume-averaging methods [4, 192]. Volume-
averaged models are derived by formally averaging the local equations (valid
at the microscopic scale) for each phase over a Representative Elementary
Volume (REV). Such models are used to simulate solidification in large cast-
ings, as discussed in Chapter 2. Apart from terms that account for macro-
scopic transport, the resulting volume-averaged equations contain source
terms, which account for the micro- and mesoscale phenomena occurring
at the interfaces between the different phases. They depend on lower-scale
variables that are not predicted by the macroscopic model because the infor-
mation that they represent has been lost in the averaging process. The crux
of the art of modeling now lies in formulating constitutive relations that ac-
curately express the source terms as a function of the averaged macroscopic
variables. Currently, even the most sophisticated available constitutive re-
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lations [11,14] are based on rather simplistic assumptions. These simplifica-
tions are one of the principal barriers on the way to quantitative modeling
of microstructure in state-of-the-art process-scale models. Following the de-
velopments in the last 30 years, macroscopic models have reached a degree
of maturity that allows them to finely describe the couplings between the
microstructure and the convective macroscopic transport and to thus ex-
plain the link between the chemical segregation and the microstructure in
casting processes. More precisely, the capability of macroscopic simulations
to give predictive and quantitative results is mostly limited by an insufficient
description of:

• microstructure growth kinetics in presence of convection and of collec-
tive effects;

• steep transitions of phase fraction, composition, microstructure, etc. at
the mesoscopic scale: packing front formed during settling of equiaxed
grains, columnar front, channels (freckles) in the mushy zone.

In first place, it is necessary to formulate more accurate representations of
the solute fluxes at the solid-liquid interface, which control the phase change,
of grain morphology (dendritic/globular) transitions, and of structural tran-
sitions between columnar and equiaxed structures.

Formulation of accurate constitutive relations can be done by directly
simulating the REV scale and then upscaling the results to a larger scale
by formal averaging. Such upscaling has never been done before in the
field of solidification, mainly because of the large remaining gap between
the involved micro and REV length scales. Only the recent development
of quantitative mesoscopic models [118, 119, 123, 134, 138, 146, 151, 157, 185,
193] bridged this gap and opened the way to such simulations. Mesoscopic
models directly resolve the transport phenomena on the REV scale and
use constitutive models to incorporate microscale phenomena (such as tip
growth and microsegregation). The computational power requirement of
these models is much lower than the models that resolve the microscale
phenomena directly, such as phase field models. This allows one to perform
3D simulations of a REV at realistic process conditions.

4.2 Methods
Substantial progress in process-scale (or macroscopic) modeling of solidifi-
cation started in the mid-1980s with the advent of so-called single-domain
models [194]. Prior models used a multidomain approach where distinct
equations were considered in the mushy and the fully liquid zones, and
boundary conditions were explicitly imposed on the liquid-mush bound-
ary [195]. Single-domain models are based on equations valid in all re-
gions (solid, liquid and mushy). This reduces the need to track the region
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boundaries and enforce internal boundary conditions and thus facilitates
implementation.

Different scale-bridging approaches were used to couple micro- and macro-
scopic phenomena. Models based on multiphase mixture theory were pio-
neered by Bennon & Incropera [196–198] and were later extended to more
complex physics: ternary alloys [199,200], equiaxed grain motion [201], and
diffusion-controlled growth kinetics [202].

Today, most state-of-the-art process-scale models of solidification are
based on the volume-averaging approach [7]. They have reached a good
degree of maturity and can provide a detailed description of the complex
couplings and interactions between the microstructure development and the
macroscopic transport (heat transfer, flow, chemical segregation) in casting
processes. In this way they can, for example, provide the links between
the microstructures and defects of chemical segregation [44], porosity [203]
or hot tearing. For example, they have contributed to improved under-
standing of the role of the equiaxed grain morphology [11, 14, 18, 46, 204]
and of the columnar-to-equiaxed transition [16, 19] in macrosegregation in
steel ingots [44]. Another example is the recent work on the influence of
multiphase flow on the grain size distribution and the macrosegregation in
DC cast Al alloys [27, 28, 61, 205]. An accurate description of the the grain
growth kinetics is of prime importance in all these examples.

Ensemble averaging [206] is a more general theoretical framework and
was used by Furmański [207,208] and Ciobanas & Fautrelle [209,210].

Whichever the scale bridging approach, the complexity of the macro-
scopic models lies in the required closure relations [211–215] and constitutive
relations [11, 30, 177, 216, 217]. These relations provide a way of describing
the microscopic phenomena that depend on microscopic quantities that have
been lost in the scale-bridging process, through macroscopic quantities.

4.3 New constitutive laws for equiaxed growth
Recently, we performed upscaling by volume averaging to develop new con-
stitutive relations for macroscopic modeling of equiaxed dendritic solidifi-
cation [218]. We used the mesoscopic envelope model to perform three-
dimensional simulations of equiaxed growth on a spatial scale that corre-
sponds to a REV. We then upscaled the results by averaging them over
the volume of the REV. The mesoscopic simulations were done for the sim-
plest prototypal problem of interacting equiaxed growth, that is isothermal
growth of periodically arranged grains at constant undercooling. We per-
formed simulations for several initial undercoolings and distances between
grains (final grain sizes). The upscaled results were then examined in detail
(using expert intuition) and used to develop new, more accurate constitu-
tive relations for macroscale solidification models. Unlike formerly available
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relations, these new relations do not rely on highly simplified assumptions
about the grain envelope shape or the solute diffusion conditions around it.
The new constitutive relations were finally verified by comparing the pre-
dictions of the volume-averaged macroscopic model with mesoscopic results
at different realistic solidification conditions that involve heat extraction.

In a volume-averaged model of equiaxed solidification the dendritic grains
are described by envelopes and by the solid phase contained in the envelopes.
This description reflects the fact that the kinetics that govern the growth
of the envelopes and of the solid are different. The growth of the envelopes
depends on the solute rejection from the dendrite tips. The growth of the
solid phase depends on the solute rejection all across the complex shaped
solid-liquid interface. Furthermore, the liquid contained in the envelopes
(intragranular) and the liquid between the envelopes (extragranular) are
considered as distinct “hydrodynamic” phases. Two liquid phases are in-
troduced in the model because the solute diffusion is governed by length
scales of different orders of magnitude: the secondary arm spacing in the
inter-dendritic liquid and the distance between grains in the extra-dendritic
liquid. The system thus consists of three “hydrodynamic” phases: the solid,
the intragranular liquid and the extragranular liquid.

The volume-averaged equation for conservation of the mass contained
in the envelope in the absence of melt convection and solid motion, and
assuming equal densities of all phases, reads

∂genv
∂t

=
1

V0

∫

Aenv

v⃗env · n⃗env dA = Senvvenv , (4.1)

where genv is the envelope volume fraction (i.e., grain fraction), Aenv is the
envelope surface area, v⃗env is the local envelope growth velocity vector, n⃗env

is the outward pointing normal to the envelope surface, Senv = Aenv/V0 is
the envelope surface area per unit volume of the REV, and venv is the average
envelope growth velocity. This equation indicates how the envelope volume
fraction increases as a function of an envelope surface area and average
growth velocity.

The volume-averaged solute conservation equation for the extragranular
liquid reads

∂(glex ⟨Clex⟩e)
∂t

= − 1

V0

∫

Aenv

C∗
l v⃗env · n⃗env dA+

1

V0

∫

Aenv

Dl∇Clex · n⃗env dA

= SenvvenvC
∗
l +

SenvDl

ℓlex

(
C

∗
l − ⟨Clex⟩e

)
, (4.2)

where glex = 1 − genv is the extragranular liquid fraction, ⟨Clex⟩e is the av-
erage solute concentration in the extragranular liquid, C∗

l is the equilibrium
solute concentration in the liquid, Dl is the liquid diffusion coefficient, and
ℓlex is the and average diffusion length in the liquid around the envelopes.
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Figure 4.1: Evolution of the shape of an equiaxed grain envelope and of the
concentration field around the envelope. Iso-surfaces of concentration are shown.

The two terms on the right hand side of the equation describe the exchange
of solute between the envelope and the extragranular liquid due to envelope
growth and the diffusion of solute from the envelope into the extragranular
liquid.

In Eqs. (4.1) and (4.2), the quantities Senv, venv, and ℓlex all depend on
local, microscale information that has been lost in the averaging process:
the shape of the envelope of the dendrites, the distribution of the growth
velocity on the envelope surface, and the solute concentration field in the
liquid surrounding the dendrites. They therefore need to be obtained from
constitutive relations.

To date, macroscopic models use highly simplified constitutive relations
for these three quantities. Senv is determined assuming a predefined en-
velope shape: spherical [219, 220], octahedral [11, 12], or hexapodal [14].
This does not account for the evolution of the grain shape, such as shown
in Fig. 4.1, from a compact (close to spherical) initial shape to a branched
shape with elongated primary branches in later stages, and finally to a shape
with widening envelope branches due to growth of secondary and slowdown
of primary branches.

venv is calculated from the velocity of the primary tips, vtip, assuming
homothetic growth of the envelope. The primary tip velocity is determined
from the Ivantsov relation and a tip selection criterion. The principal sim-
plifying assumption of the tip model is the effective far-field undercooling,
Ωeff , that is used in the Ivantsov relation

Ωeff = Petip exp(Petip)E1(Petip) (4.3)

All models so far use the volume-average extragranular concentration, ⟨Clex⟩e
to determine the effective far-field undercooling, i.e. Ωeff = (C∗

l −⟨Clex⟩e)/[(1−
k)C∗

l ]. It is easy to illustrate that such an approximation systematically gives
underestimated dendrite tip velocities. Let us consider the growth of peri-
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Figure 4.2: Profiles of liquid solute concentration between the primary tips of two
dendrites growing towards each other (solid lines) and average concentration in the
whole extragranular liquid volume (dashed lines). Different curves show the profiles
at different times. The grains are arranged periodically in a BCC arrangement.

odically arranged equiaxed grains. Fig. 4.2 shows the concentration profile
between two facing primary dendrite tips. We can see that the hypotheti-
cal far-field concentration, which is a prolongation of the profile to infinity,
is always lower than the average concentration in the liquid. This is true
already in the early growth stage when the solutal fields of the grains do
not interact and the primary tips grow as free tips. It becomes even more
pronounced in the later, interacting growth stages.

ℓlex, the volume-averaged diffusion length is simply modeled as a dif-
fusion length around a sphere in macroscopic models. This means that it
is determined from the concentration gradient on the surface of a volume-
equivalent sphere growing at the same volume growth rate as the enve-
lope [1,10,11,28,220–222]. Effects of solutal interactions, of convection, and
of cross-diffusion [217] have been incorporated in these relations. However,
none of the developed relations accounts for the fact that the envelope dif-
fusion length is determined by the diffusion field around the envelope. It is
therefore, in general, a complicated function of the envelope shape, size and
growth velocity. This assumption might have reasonable accuracy during
the initial stages of growth, when the envelope is spherical; however, as the
envelope becomes dendritic with growth, the assumption can be expected
to become increasingly inaccurate.

These simplistic relations have done a fairly good job, but they are one
of the principal limiting factors for macroscopic models today. Their limita-
tions have been shown, for example, already by Rappaz and Thevoz [219],
who compared the cooling curves measured in the experiments with the
ones predicted by their solute diffusion model and noticed that their model
does not predict the recalescence very well. They attributed this partly to
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the fact that in their model, the envelopes were assumed to be spherical
during the entire growth. As another example, Wu et al. [14, 15] simulated
the columnar to equiaxed transition (CET) with different relations for the
envelope shapes and found that the CET position is highly sensitive to the
envelope shape.

The new constitutive relations that we proposed [218] are based on sev-
eral postulates that were formulated from the analysis of the results of the
averaged mesoscopic simulations. The key ideas are the following.

• While the grains are interacting only weakly, the relation between the
average envelope velocity and the primary tip velocity depends only
on the geometry of the envelope.

• In later stages, when the grains interact strongly and the grain ge-
ometry does not evolve any more, the relation between the average
envelope velocity and the primary tip velocity depends on a normal-
ized average supersaturation of the extragranular liquid.

• The relation between the average diffusion length at the envelope and
that at a sphere of equivalent volume growing at the same volume
growth rate depends only on the geometry of the envelope.

• The geometry of the envelope can be fully described by the ratio of
the primary tip length to the radius of the equivalent sphere.

• The primary tip velocity depends on the average supersaturation that
is corrected by a function that depends on the ratio of the remaining
distance between the primary tips and the instantaneous tip diffusion
length. The idea is that the Ivantsov function can mimic the growth
of an interacting dendrite tip if fed by a correctly formulated effective
supersaturation.

These postulates were then used to fit constitutive functions onto the data
from the averaged mesoscopic simulations. Relations for the average enve-
lope velocity, the specific surface area, the effective supersaturation driving
the primary tip and the volume averaged diffusion length were obtained.
For details the reader is referred to the article of Torabi Rad et al. [218].

The constitutive relations were verified by comparing the predictions
of the macroscopic model using the new relations with upscaled (volume-
averaged) mesoscopic simulations. An example is shown in Fig. 4.3. Fig-
ure 4.3(a) compares the primary tip velocities obtained from a mesoscopic
simulation of interacting grains and Ivantsov primary tip velocities that cor-
respond to the average supersaturation in the extragranular liquid (standard
constitutive law). We can see that the model based on the approximation
of the far-field concentration by the average concentration grossly underes-
timates the tip velocity. Figure 4.3(b) makes the same comparison with the
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Fig. 7. Comparison between the mesoscopic primary tip velocities and the 
Ivantsov primary tip velocities corresponding to the average undercooling in 
the extra-dendritic liquid. 
sphericity stages based on the sign of !" ∗ # is an important premise that 
is proposed in this study and will be used in Section 4 , where the con- 
stitutive relations are developed. 

Variations of " ∗ # during these two stages can be understood by follow- 
ing the variations of l t and V t , shown in Fig. 6 (e) and (f), respectively, 
and focusing on how the nominator and denominator of Eq. (15) change 
with time. During the first stage, V t is relatively high (i.e., greater 
than 0.8 ×V Iv ( Ω0 )) and therefore, l t , which appears in the nominator 
of Eq. (15) , increases relatively fast; this causes " ∗ # to increase with time 
during the first stage. When the second stage starts, V t has an interme- 
diate value and, more importantly, is decreasing fast. Therefore, unlike 
in the first stage, the increase in " # is not fast anymore and becomes in- 
significant compared to the fast increase in " d $ f % , which appears in the 
denominator of Eq. (15) ; this causes, " ∗ # to decrease with time during the 
second stage. 

There is one last interesting point about Fig. 6 (c) that can be dis- 
cussed now because the first and second stages of growth were defined. 
It can be seen from this figure that the variations of the sphericity during 
the second stage of growth (i.e., the right-hand side of the squares) are 
negligible compared to these variations during the first stage of growth 
and, therefore, the sphericity can be assumed to be constant during the 
second stage of growth. Consequently, in the rest of the paper, the first 
and second stages of growth are referred to as variable-sphericity and 
constant-sphericity stages, respectively. 

Fig. 6 (i) shows the time variations of the non-dimensional sphere ve- 
locity. From the figure, it can be seen that during the variable-sphericity 
stage of growth (i.e., the left-hand side of the squares), the multigrain 
curves collapse on the single grain curves. This indicates that during the 
variable-sphericity stage of growth, w sp for multigrain and single grain 
cases can be expected to be predicted by the same relation. When the 
constant-sphericity stage starts, however, the multigrain curves cease to 
collapse on the single grain curves, and they start decreasing relatively 
rapidly. This indicates that w sp during the constant-sphericity stage of 
growth needs to be predicted from a separate relation. 

Comparing the time variations of V t , shown in Fig. 6 (f), and time 
variations of w sp , shown in Fig. 6 (i), reveals another interesting obser- 
vation. Focusing first on the low grain density cases (the blue curves), 
one can see that at & ∼8, V t is zero: the primary tips have fully stopped. 
At the same time, however, w sp is still greater than zero: the envelopes 

are still growing. This indicates that growth continues (at least until 
& ∼10) even after the primary tips stop. A similar trend is observed for 
the low grain density curves. Growth of an envelope after the primary 
tips stop is due to the growth of the secondary arms. 

In Fig. 7 , the mesoscopic primary tip velocities (the thin curves) are 
compared with the Ivantsov tip velocities, predicted using Eq. (13) with 
Ω#,'%% = Ω' (the thick curves). Data are shown only for the multigrain 
cases. One can see from the figure that, as expected (see the discussion 
below Eq. (14) ), setting Ω#,'%% = Ω' in the Ivantsov solution significantly 
underpredicts the tip velocities. 

Finally, this section is ended by summarizing the important observa- 
tions that can be made from the upscaled mesoscopic results: (1) for the 
multiple grain cases, the entire growth period can be divided into the 
variable-sphericity and constant-sphericity stages and these two stages 
correspond to the positive and negative values of !" ∗ # , respectively; (2) 
for the single grain cases, the growth takes place entirely in the first 
stage; (3) setting Ω#,'%% = Ω' in the Ivantsov relation will significantly 
underpredict the tip velocities. 
4. Constitutive relations 
4.1. Postulates 

It is postulated that during the variable-sphericity stage of growth, 
( is a function of l t / R sp only and during the constant-sphericity stage of 
growth, ( is, obviously, constant. 
!" ∗ # > 0 → ( = ( ( 

" # 
) *+ 

) 
!" ∗ # < = 0 → !( = 0 (20) 

It is known from the literature [27] that the shape of a dendrite 
depends on the surface tension anisotropy; therefore, one might wonder 
why such a dependence is not introduced in Eq. (20) . This is because in 
this equation (and through the entire paper) ( is the sphericity of the 
dendrite envelope and, therefore, depends on the envelope shape (which 
shall not be confused with the dendrite shape). From what is available 
in the literature, it is not clear whether the envelope shape depends on 
the surface tension anisotropy or not. What is known from the literature 
is that the envelope shape, and therefore, the sphericity predicted by the 
mesoscopic model, has been validated against experiments of equiaxed 
solidification of SCN-acetone [1,15] and of directional solidification of 
Al-Cu [14] . Since, as will be shown in Section 5 , the mesoscopic values of 
( are accurately predicted by taking the sphericity as a function of l t / R sp 
only, introducing surface tension anisotropy effects in Eq. (20) does not 
seem to be necessary. 

To develop a relation for w sp , one first needs to recognize that the 
average growth kinetics, and therefore w sp , are in general determined by 
the growth of both the primary and the secondary arms. At early stages 
of growth, the primary arms grow much faster than the secondary arms. 
Therefore, their velocity can be expected to be the main factor in deter- 
mining w sp . As the growth continues, the primary arms slow down and 
finally stop, but the secondary arms and therefore the sphere continue 
to grow, until the undercooling in the extra-dendritic liquid fully van- 
ishes (i.e., the average undercooling in the extra-dendritic liquid reaches 
zero). In other words, at some intermediate time during growth, the 
main mechanism that drives the envelope growth, and thus determines 
w sp , transitions from the primary tip velocity to the average undercool- 
ing of the extra-dendritic liquid. This transition and the time at which it 
occurs need to be properly taken into account in developing the relation 
for w sp . In this paper, it is first postulated that the transition occurs when 
the constant-sphericity stage of growth starts. The postulates to deter- 
mine w sp during the variable-sphericity and constant-sphericity stages 
are discussed next. 

During the variable-sphericity stage, w sp is assumed to scale with 
the primary tip velocity V t . It should be noted that w sp / V t cannot be 

(a) Standard constitutive
law
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Fig. 13. Comparison between the mesoscopic and macroscopic quantities plotted as a function of non-dimensional time. This comparison is for the isothermal case 
with low grain density and low undercooling: ! " ∕[ # $ ∕ % &' ( Ω0 ) ] = 6  . 31  . 
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Fig. 10. The scaled effective far-field undercooling as a function of the scaled 
length of the liquid region ahead of the tip up to the symmetry line between two 
adjacent grains. The green curve represents our curve fit. 
indicates that the sphericity is indeed a function of l t / R sp only. The 
multigrain data in the plot fall on the same curve as the single grain 
data during the variable-sphericity stage of growth. However, when 

Fig. 11. The ratio of the envelope diffusion length to the sphere diffusion length 
as a function of the envelope sphericity for a single grain at two different initial 
undercoolings. The green curve represents our curve fit. 

the constant-sphericity stage starts, the multigrain data start to devi- 
ate slightly from the sphericity curve for a single grain. The variation of 
! during this stage are, however, extremely small and are disregarded. 
The final fit of the sphericity data for both the single grain and the multi- 

Fig. 12. Comparison between the mesoscopic and macroscopic quantities plotted as a funciton of non-dimensional time. This comparison is for the isothermal case 
with high grain density and low undercooling: " # ∕[ $ % ∕ & '( ( Ω0 ) ] = 4  . 03  . 

(b) Upscaled constitutive law

Figure 4.3: Comparison between mesoscopic primary tip velocities and primary
tip velocities obtained with macroscopic constitutive laws. (a) Standard constitu-
tive law that gives the Ivantsov primary tip velocities corresponding to the average
supersaturation in the extragranular liquid. (b) New upscaled constitutive law that
uses an effective supersaturation.

new upscaled constitutive law, which clearly gives a much more accurate ap-
proximation. Comparisons were also done for cases that are more complex
than the prototype isothermal cases and are representative of realistic so-
lidification processes. These cases involve cooling through an external heat
extraction and a recalescence in the cooling curves. For all the tested cases,
the predicted macroscopic quantities were found to be in good agreement
with the corresponding upscaled mesoscopic results. The principal difference
between the two was a minor difference in the macroscopic and mesoscopic
values of the primary tip velocity, and that was attributed to the presence
of an initial transient stage in the mesoscopic simulations.

4.4 Outlook on upscaling
Necessary work in the near future is the testing of the new constitutive re-
lations coupled to the macroscopic transport equations in casting process
simulations. Only such test cases can asses the impact of the new relations
in process modeling. Further future work on upscaling will first focus on
configurations of grains with random arrangements and orientations. Pre-
liminary results have shown that the relations obtained for periodic arrange-
ments might not be accurate in describing the growth kinetics of randomly
arranged grain ensembles. Some other topics for future work on upscaling
are discussed in Chapter 5.
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Chapter 5

Projects

My research project grows from the trunk formed by the principal quest of
my research in recent years: the understanding of microstructure growth
under the influence of collective interactions. From this trunk the projct
will develop in the form of three main branches:

• Mesoscopic phenomena.

• Methodological developments of the grain envelope model.

• Upscaling.

5.1 Mesoscopic phenomena
Collective interactions at the mesoscopic scale play a determinant role in
the formation of microstructure on several levels. For example, during the
initial stages of equiaxed growth, the heterogeneous nucleation of new grains
depends on the local undercooling of nucleation sites present in the liquid.
The undercooling, in turn, depends on the diffusion and convection of so-
lutes rejected by the already growing grains into the liquid that surrounds
them. As the grain growth progresses, the liquid is gradually enriched in
solute, the undercooling decreases, which progressively stifles further nucle-
ation. This interaction between nucleation and growth, sometimes called the
nucleation-growth competition, determines the number of grains that nucle-
ate per unit volume and thus the mean grain size in the solidified structure.
During later stages of growth, solutal interactions (among other effects) gov-
ern the growth kinetics of the dendrite branches and determine the grain
morphology. The solutal interactions of course strongly depend on the spa-
tial arrangement of the grains and of their growth directions. The fact that
the arrangement of the grains continuously evolves and can strongly change
because of their motion, adds to the complexity of the problem. This exam-
ple shows a few of the principal ingredients that have to be accounted for in
a mesoscale theory.
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Interactions in random grain arrangements

In terms of the fundamental phenomena, it is first necessary to characterize
the growth kinetics of an ensemble of equiaxed grains growing under the
influence of solutal interactions. This has partly been done for a simplified
configuration (periodic grain arrangement, isothermal growth, paraboloidal
tip growth) in our work by Torabi Rad et al. [218]. However, the validity of
these results is limited, mainly due to the assumption of periodic arrange-
ments. Preliminary results have shown that a random arrangement strongly
modifies the diffusion in the extragranular liquid and therefore the growth
of the grain envelopes. This happens because a random arrangement intro-
duces additional length and time scales and thus modifies the link between
the undercooling and the rate of envelope growth and of phase change. This
means that it is necessary to incorporate additional length scales into the
macroscopic model to achieve a more general description of the solidifica-
tion. This work is related to the forthcoming investigations on upscaling
and is part of a more general project on diffusion-controlled phase transfor-
mations (which includes transformations at solid state). A PhD thesis on
this topic is starting in autumn 2020 in collaboration with Benoît Appolaire
(IJL), Alphonse Finel, and Yann Le Bouar (LEM, Onera, Paris).

Packing of equiaxed grains

The gradual pileup of equiaxed grains in the packing zone is a second im-
portant phenomenon. In the packing zone the spatial distribution of grains,
and therefore their growth kinetics, vary considerably on a length scale of
∼ 5 grains [99]. The phenomena involved in the concurrent growth, motion
and packing are hard to investigate experimentally. Observations by in situ
radiography can provide some information, but their quantitative value is
limited due to the small thickness of the sample required for X ray trans-
mission. The confinement by the thin sample is felt by the growth and by
the motion of the grains [223]. 3D modeling appears to be the method of
choice and can be done using the grain envelope method. Ideally, in situ
imaging experiments (in collaboration with IM2NP, Marseille, for example)
will provide complementary information.

Globular-dendritic morphology transition

The development of the grain morphology (dendritic or globular) in equiaxed
growth is also governed by solutal interactions. This morphological transi-
tion is the central topic of a project that has been ready for a few years, is of
increasing relevance, but still in search for funding. Mesoscopic solidification
modeling in combination with in situ X ray imaging experiments (collabo-
rations with IM2NP, Marseille and DLR, Köln) and phase-field modeling
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(collaboration with Access, RWTH Aachen) would enable us to to gain a
better understanding of phenomena that lead to the morphology transition.

Columnar microstructure and convection

The collective interactions discussed above are under a significant influence
of convection at the mesoscopic scale. The influence of natural convection is
also important for the formation of the columnar microstructure, especially
in hypergravity conditions (cf., Section 3.5). An extension of recent work on
this topic [150] is planned in the near future and should tackle two aspects:
(i) the analysis of larger spatial scales in order to avoid confinement effects
on the flow structure and on the evolution of the primary arm arrangement
patterns, and (ii) 3D analysis. These investigations will be done in collab-
oration with Access. Post mortem (IJL, Access) and in situ experimental
observations (IM2NP, HZDR Dresden), can also give important information
on these phenomena.

Mesosegregation

Chemical segregation at the mesoscopic scale (between ∼mm and ∼cm in
the solidified structure) have become an industrial concern in the manufac-
ture components of the primary circuit of nuclear reactors for power plants.
It was shown that the presence of a heterogeneous structure at the mm scale
leads to a decrease of impact toughness of the forged parts. This “mesostruc-
ture” of the forged parts originates from mesosegregations in the as cast ma-
terial. A reduction of the intensity and density of these local heterogeneities
in the ingots will lead to a reduced scatter of the impact toughness. A
research project with this objective has been recently proposed in collab-
oration with Framatome and Industeel ArcelorMittal. It includes a PhD
studentship. The objective of the project is to understand the formation of
intergranular mesosegregations in the equiaxed zone and to propose realis-
tic measures and modifications of the casting practice. The mesostructure
and the mesosegregations in as cast ingots will be characterized in 3D. The
industrial samples will be complemented by samples from lab scale exper-
iments. Solute transport phenomena in a mushy zone at the cm scale will
be analyzed by mesoscopic modeling. Different means of reducing interden-
dritic and intergranular segregation will be explored, for example via minor
modification of the chemical composition of the steel.

Microstructure and texture in additive manufacturing

Currently, the key to progress in the understanding of the microstructure
and the texture in additive manufacturing (Chapter 3) is the implemen-
tation of approaches that will allow us to reveal the 3D structure of the
solidification microstructure. In numerical modeling of the microstructure,
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even the mesoscopic model can present prohibitive computation cost in so-
lidification conditions (high temperature gradient and cooling rate) that
are encountered in additive manufacturing. We are aiming at developing a
model with a coarser description of the microstructure, which must however
keep a description of solutal interactions between neighboring grains, in or-
der to be able to reproduce phenomena that lead to growth competition at
grain boundaries. Experimentally, the challenge is to characterize the mor-
phological, topological and crystallographic distribution of the solidification
structure in 3D. The most suitable characterization technique available to
us is nanotomography in a scanning electron microscope (SEM) equipped
by a focused ion beam (FIB) device that is used for serial milling sam-
ple sections. With this device one can characterize the microstructure and
texture (3D EBSD) with resolutions and for sample sizes relevant for the
AM microstructure. Thi sproject is developed in collaboration with Julien
Zollinger (IJL) and Nathalie Gey (LEM3, Metz)

5.2 Methodological developments of the grain en-
velope model

Several projects on the extension of the grain envelope model or on new
methodological developments are in progress or planned. These develop-
ments are necessary in order to ensure simulations that faithfully reproduce
the physics at the mesoscopic scale (Section 5.1) and to produce quanti-
tative (sufficiently accurate) results for upscaling to macroscopic methods
(Section 5.3).

Benchmarking of mesoscopic solidification models

In order to ensure quantitative simulation of microstructures on the meso-
scopic scale by different models, a benchmarking project was recently started
in collaboration with IMDEA Materials (Madrid) and Access. The objective
of this benchmark is: (i) to rigorously determine the best choice of parame-
ters, (ii) to delimit the relevant range of application of different mesoscopic
models and (iii) to create a set of reference results for benchmarking so-
lidification microstructure models. Two mesoscopic approaches (the grain
envelope model (GEM) and the dendrite needle network model (DNN))
are compared to the reference calculations performed by phase field. Sev-
eral prototype configurations for diffusive solidification, both equiaxed and
columnar, are treated in 3D. The first results on equiaxed solidification are
published [151]. The benchmark is being extended with work on columnar
solidification. An extension of this work to cases with convection is planned
in the future.
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Modeling of grain motion

The recent major extension of the mesoscopic model with equiaxed grain
motion (Section 3.6) requires careful and extensive validation before it can
be used as a quantitative simulation tool. The objective is to describe the
concurrent motion and growth of grains together with their interactions
(solutal, hydrodynamic, and mechanical by contact). This will then allow
us to simulate grain growth in the vicinity of the packing front. The primary
motivation is the formulation of the new constitutive laws specific to this
area for macroscopic volume-averaged models by upscaling.

Envelope destabilization and branching

Recent work on the organization of columnar microstructures, both in diffu-
sive growth and with convection [138, 150] have shown that the mesoscopic
model can represent the phenomena that trigger adjustments of primary
spacing and grain competition at grain boundaries. These phenomena are
the creation of new secondary and tertiary branches and the overgrowth
of primary branches. They are, among others, a consequence of physical
effects that are not directly represented by the envelope model: capillary ef-
fects, destabilization of the solid-liquid interface, diffusion at the dendrite tip
scale. Nevertheless, branching phenomena are mimicked in mesoscopic sim-
ulations in a fairly realistic way by branching of the dendrite envelope [138],
which is a virtual surface with a signification and with properties entirely
different from those of the solid-liquid interface. A sound application of the
envelope model for branching and spacing adjustment simulations would re-
quire a better understanding of the formation of envelope instabilities in the
model. A stability analysis could clarify their physical significance and their
dependence on model parameters and numerical parameters.

Modeling of the dendritic-globular transition

In many processes the equiaxed microstructure undergoes a dendritic-globular
transition (cf. Section 5.1). The envelope method is based on the assumption
that the tips of the branches behave as paraboloidal tips. A significant de-
parture from this form, which occurs during the so-called “globular growth”,
therefore cannot be described in a satisfactory way. This is the case for sec-
ondary tips in advanced growth stages (once the primary tips are essentially
stopped because of the interactions between grains), but especially for the
primary tips during early interaction interaction stages which occur if the
distance between the grains is small (high grain density). Advanced models
for these regimes do not exist today [224] and could be developed with the
help of quantitative phase field simulations (e.g. [225]). These works were
considered in collaboration with Access and DLR (cf., project on morphol-
ogy, section 5.1).
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5.3 Upscaling
Meso → macro upscaling

The objective of meso → macroscopic upscaling is to develop new, more
realistic constitutive laws for the description of the microstructure in macro-
scopic models. This will allow better prediction of microstructures in process
modeling. The models used today are based on overly simplistic assump-
tions. In particular, they do not take into account collective interactions
in an ensemble of grains [218]. We aim at developing a new framework for
enriching macroscale models using extensive calculations at the mesoscale.
This framework is intended to be general, such that it can be applied to any
diffusion-controlled transformations (at the solid-state or solidification).

The first step will be to define and/or identify the best variables (de-
scriptors) able to describe the spatial distribution of microstructures and
to be incorporated into the macroscale models. Contrary to the currently
used averaging procedures, we will pay particular attention to the correla-
tions between the fluctuations of the fields (with respect to their averages),
in order to go beyond the usual mean-field form of the current macroscale
models.

The second step will consist of performing a significant number of meso-
scopic calculations in order to quantify the correlation functions and their
possible time evolution. Depending on the number of mesoscopic calcula-
tions that we will be able to run, the evolution of the fluctuations will be
analyzed using state of the art algorithms of data science (e.g. neural net-
works). We are aiming at the development of a general approach that will
give laws independent of the alloy (at least for the primary solidification of
binary alloys), the density of the grains and the cooling rate. This project
will be carried out in collaboration with the LEM laboratory (Onera, Paris).

In the long run, the upscaling methodology will be applied to physically
more complex configurations. What I have in mind particularly, is the pack-
ing zone of equiaxed grains and the transition between the columnar and
the equiaxed zone in the vicinity of the columnar front.

Micro → meso upscaling

In parallel, efforts of micro → mesoscopic upscaling will be carried out. The
idea is to use phase field calculations as a starting point to refine the model
parameters used in the mesoscopic model. This idea has been pursued for
several years, but until now without success, because of the excessive cost of
the necessary 3D phase field simulations. Modern phase field codes, based
on GPU computation [151, 225], now make it possible can to do these sim-
ulations. A first step towards micro → mesoscopic upscaling is currently
underway with a fairly pragmatic approach via the benchmarking of meso-
scopic models (section 3) [151]. The parameters of the mesoscopic model
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are first calibrated so that the growth of the envelopes is in good agreement
with the dendrites simulated by the phase field. However, these calibration
guidelines are not based on a formalism and are thus difficult to general-
ize. Furthermore, the extensions of the physical model that are underway
or planned (convection, grain movement) introduce additional parameters
and constitutive models. Such models are needed, for example, to describe
the hydrodynamic permeability of the envelope and the distribution of drag
force over the grain. The idea in the long run is to develop a more general
and formal framework for micro → mesoscopic upscaling. This framework
could, at least partly, be based on the same foundations as the meso →
macroscopic upscaling, since the laws of conservation (of mass, momentum,
etc.) are in both cases formulated by volume averaging.
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����ۗ *OUFSBDUJPOT PG NBUFSJBMT BOE QSPDFTTFT .BTUFS 1SPHSBN JO &OHJOFFSJOH &/4(4* /BODZ 'SBODF
����ۗ /VNFSJDBM .FUBMMVSHZ .BTUFS 1SPHSBN JO .FUBMMVSHZ 6OJWFSTJU© EF -PSSBJOF /BODZ 'SBODF

�
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���� /BUVSBM $POWFDUJPO BOE 1IBTF $IBOHF $/34 TVNNFS TDIPPM PO 4PMJE�-JRVJE�7BQPS 1IBTF $IBOHF�
'VOEBNFOUBMT BOE "QQMJDBUJPOT -FT &NCJF[ 'SBODF

����ۗ���� 'MVJE %ZOBNJDT .BTUFS 1SPHSBN JO &OHJOFFSJOH &DPMF EFT .JOFT EF /BODZ 'SBODF
����ۗ 5VUPSJOH PG TUVEFOU QSPKFDUT .BTUFS 1SPHSBN JO &OHJOFFSJOH &DPMF EFT .JOFT EF /BODZ 'SBODF

$PMMBCPSBUJPOT
"DDFTT F�7� 385) "BDIFO (FSNBOZ
4JOUFG *OEVTUSZ 0TMP /PSXBZ
6OJWFSTJUZ PG *PXB *PXB $JUZ 64"
$FNFG .JOFT 1BSJT5FDI 4PQIJB "OUJQPMJT 'SBODF
*.%&" .BUFSJBMT .BESJE 4QBJO
.D.BTUFS 6OJWFSTJUZ )BNJMUPO $BOBEB
*35 .�1 .FU[ 'SBODF
*OTUJUVU $BSOPU #PVSHPHOF -F $SFVTPU 'SBODF
4*.B1 (SFOPCMF */1 (SFOPCMF 'SBODF
-BCPSBUPSZ PG .VMUJQIBTF 1SPDFTTFT 6OJWFSTJUZ PG /PWB (PSJDB 4MPWFOJB
*OTUJUVUF PG .FUBMT BOE 5FDIOPMPHZ -KVCMKBOB 4MPWFOJB
*OTUJUVU +PľFG 4UFGBO -KVCMKBOB 4MPWFOJB
"SDFMPS.JࡇBM "34" .BJ[J¨SFT�M¨T�.FU[ 'SBODF
"SDFMPS.JࡇBM *OEVTUFFM $SFVTPU 'SBODF
"SFWB $SFVTPU 'SBODF
"TDPNFUBM $3&"4 )BHPOEBOHF 'SBODF
"VCFSUࡑ%VWBM -FT "ODJ[FT 'SBODF
$POTUFMMJVN $�5&$ 7PSFQQF 'SBODF
&%' 1BSJT 'SBODF
'SBNBUPNF 1BSJT 'SBODF
4BGSBO "JSDSBࡄ &OHJOFT (FOOFWJMMJFST 'SBODF
4DJFODFT FU $PNQVUFST $POTVMUBOUT 4BJOU��UJFOOF 'SBODF 0�. 4PMVUJPOT /BODZ 'SBODF

-BTU VQEBUFE� +VOF � ���� ۦ 5ZQFTFU JO XƎTEX

�
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1VCMJDBUJPOT
$P�BVUIPS PG � CPPL DIBQUFST �� BSUJDMFT JO QFFS�SFWJFXFE KPVSOBMT �� BSUJDMFT JO DPOGFSFODF QSP�
DFFEJOHT �� JOWJUFE DPOGFSFODF UBMLT �� DPOUSJCVUFE DPOGFSFODF UBMLT �� JOWJUFE TFNJOBST BOE �
TPॏXBSF QBDLBHFT�
$JUBUJPOT� ���� h�JOEFY� �� 	TPVSDF� (PPHMF 4DIPMBS � +VO ����


#ॵॵॱ ३८१ॶॺ५ॸॹ

<#�> .JIB ;BMPľOJL "SWJOE ,VNBS )FSW© $PNCFBV .BSJF #FEFM 1IJMJQQF +BSSZ BOE &N�
NBOVFM 8B[� य़F $PVQMJOH PG .BDSPTFHSFHBUJPO 8JUI (SBJO /VDMFBUJPO (SPXUI BOE
.PUJPO JO %$ $BTU "MVNJOVN "MMPZ *OHPUT� *O +PIO ' (SBOEFME BOE %NJUSZ ( &TLJO
FEJUPST &TTFOUJBM 3FBEJOHT JO -JHIU .FUBMT 7PMVNF � $BTU 4IPQ GPS "MVNJOVN 1SPEVDUJPO
QBHFT ���ۗ���� +PIO 8JMFZ ० 4POT )PCPLFO 	/+
 64" �����

<#�> .JIB ;BMPľOJL $©ESJD -F #PU BOE &SJD "SRVJT� $POWFDUJPO OBUVSFMMF FU DIBOHFNFOU EF
QIBTF� *O )FSW© $PNCFBV BOE -PVO¨T 5BESJTU FEJUPST -FT DIBOHFNFOUT EF QIBTF TPMJEF�
MJRVJEF�WBQFVS� $/34 &EJUJPOT 1BSJT 'SBODF �����

"ॸॺ९३ॲ५ॹ ९ॴ ॶ५५ॸংॸ५ॼ९५ॽ५४ ॰ॵॻॸॴ१ॲॹ

<+�> .JIB ;BMPľOJL *WBO #BKTJÇ BOE #PľJEBS ĠBSMFS� " OPOEFTUSVDUJWF FYQFSJNFOUBM EFUFSNJOB�
UJPO PG UIF IFBU VY EVSJOH DPPMJOH PG EJSFDU�DIJMM DBTU BMVNJOVN BMMPZ CJMMFUT� .BUFSJBMJ JO
5FIOPMPHJKF ��	���
����ۗ��� �����

<+�> .JIB ;BMPľOJL #PľJEBS ĠBSMFS BOE %PNJOJRVF (PCJO� 4JNVMBUJPO PG NBDSPTFHSFHBUJPO JO
UIF %$ DBTUJOH PG CJOBSZ BMVNJOVN BMMPZT� .BUFSJBMT BOE 5FDIOPMPHJFT ��	�
����ۗ��� �����

<+�> .JIB ;BMPľOJL BOE #PľJEBS ĠBSMFS� .PEFMJOH PG NBDSPTFHSFHBUJPO JO EJSFDU�DIJMM DBTUJOH
PG BMVNJOVN BMMPZT� &TUJNBUJOH UIF JOVFODF PG DBTUJOH QBSBNFUFST� .BUFSJBMT 4DJFODF BOE
&OHJOFFSJOH " ����������ۗ�� �����

<+�> 3PCFSU 7FSUOJL .JIB ;BMPľOJL BOE #PľJEBS ĠBSMFS� 4PMVUJPO PG USBOTJFOU EJSFDU�DIJMM BMV�
NJOJVN CJMMFU DBTUJOH QSPCMFN XJUI TJNVMUBOFPVT NBUFSJBM BOE JOUFSQIBTF NPWJOH CPVOE�
BSJFT CZ B NFTIMFTT NFUIPE� &OHJOFFSJOH "OBMZTJT XJUI #PVOEBSZ &MFNFOUT ��	��
����ۗ���
PDU �����

<+�> .JIB ;BMPľOJL 4IJIF 9JO BOE #PľJEBS ĠBSMFS� 7FSJDBUJPO PG B OVNFSJDBM NPEFM PG
NBDSPTFHSFHBUJPO JO EJSFDU DIJMM DBTUJOH� *OUFSOBUJPOBM +PVSOBM PG /VNFSJDBM .FUIPET GPS
)FBU ࡑ 'MVJE 'MPX ��	���
����ۗ��� �����

<+�> .JDIFM #FMMFU )FSW© $PNCFBV :WFT 'BVUSFMMF %PNJOJRVF (PCJO .PIBNFE " 3BEZ &SJD
"SRVJT 0MHB #VEFOLPWB #FSOBSE %VTTPVCT :WFT %VUFSSBJM "SWJOE ,VNBS $IBSMFT�"OES©
(BOEJO #FOP®U (PZFBV .JIB ;BMPľOJL BOE 4BMFN .PTCBI� $BMM GPS DPOUSJCVUJPOT UP B
OVNFSJDBM CFODINBSL QSPCMFN GPS �% DPMVNOBS TPMJEJDBUJPO PG CJOBSZ BMMPZT� *OUFSOBUJPOBM
+PVSOBM PG FSNBMࡋ 4DJFODFT ��	��
�����ۗ���� �����

<+�> )FSW© $PNCFBV "SWJOE ,VNBS BOE.JIB ;BMPľOJL� .PEFMJOH PG &RVJBYFE (SBJO &WPMVUJPO
BOE .BDSPTFHSFHBUJPOT %FWFMPQNFOU JO 4UFFM *OHPUT� 5SBOTBDUJPOT PG UIF *OEJBO *OTUJUVUF PG
.FUBMT ��	���
����ۗ��� KBO �����

<+�> )FSW© $PNCFBV .JIB ;BMPľOJL 4U©QIBOF )BOT BOE 1JFSSF &NNBOVFM 3JDIZ� 1SFEJDUJPO PG
.BDSPTFHSFHBUJPO JO 4UFFM *OHPUT� *OVFODF PG UIF .PUJPO BOE UIF .PSQIPMPHZ PG &RVJBYFE
(SBJOT� .FUBMMVSHJDBM BOE .BUFSJBMT 5SBOTBDUJPOT # ��	�
����ۗ��� �����

�



<+�> "SWJOE ,VNBS #FSOBSE %VTTPVCT .JIB ;BMPľOJL BOE)FSW© $PNCFBV� &FDU PG EJTDSFUJ[B�
UJPO PG QFSNFBCJMJUZ UFSN BOE NFTI TJ[F PO NBDSP� BOE NFTP�TFHSFHBUJPO QSFEJDUJPOT� +PVS�
OBM PG 1IZTJDT %� "QQMJFE 1IZTJDT ��	��
������� �����

<+��> .JIB ;BMPľOJL BOE)FSW© $PNCFBV� "O PQFSBUPS TQMJ॒JOH TDIFNF GPS DPVQMJOHNBDSPTDPQJD
USBOTQPSU BOE HSBJO HSPXUI JO B UXP�QIBTF NVMUJTDBMF TPMJEJDBUJPO NPEFM� 1BSU * ۗ .PEFM
BOE TPMVUJPO TDIFNF� $PNQVUBUJPOBM .BUFSJBMT 4DJFODF ��	�
��ۗ�� KVO �����

<+��> .JIB ;BMPľOJL BOE )FSW© $PNCFBV� य़FSNPTPMVUBM PX JO TUFFM JOHPUT BOE UIF GPSNBUJPO
PG NFTPTFHSFHBUFT� *OUFSOBUJPOBM +PVSOBM PG FSNBMࡋ 4DJFODFT ��	�
�����ۗ���� TFQ �����

<+��> .JIB ;BMPľOJL "SWJOE ,VNBS BOE )FSW© $PNCFBV� "O PQFSBUPS TQMJ॒JOH TDIFNF GPS
DPVQMJOH NBDSPTDPQJD USBOTQPSU BOE HSBJO HSPXUI JO B UXP�QIBTF NVMUJTDBMF TPMJEJDBUJPO
NPEFM� 1BSU ** "QQMJDBUJPO PG UIF NPEFM� $PNQVUBUJPOBM .BUFSJBMT 4DJFODF ��	�
���ۗ�� �����

<+��> %PNJOJRVF %BMP[ 6MSJLF )FDIU +VMJFO ;PMMJOHFS )FSW© $PNCFBV "MBJO )B[P॒F BOE .JIB
;BMPľOJL� .JDSPTFHSFHBUJPO NBDSPTFHSFHBUJPO BOE SFMBUFE QIBTF USBOTGPSNBUJPOT JO 5J"M
BMMPZT� *OUFSNFUBMMJDT ��	�
����ۗ��� KVO �����

<+��> (SFHPS ,PTFD .JIB ;BMPľOJL #PľJEBS ĠBSMFS BOE )FSW© $PNCFBV� " NFTIMFTT BQQSPBDI
UPXBSET UIF TPMVUJPO PG NBDSPTFHSFHBUJPO QIFOPNFOB� $PNQVUFST .BUFSJBMT ࡑ $POUJOVB
��	�
����ۗ��� �����

<+��> "SWJOE ,VNBS .JIB ;BMPľOJL BOE )FSW© $PNCFBV� 1SFEJDUJPO PG FRVJBYFE HSBJO TUSVDUVSF
BOE NBDSPTFHSFHBUJPO JO BO JOEVTUSJBM TUFFM JOHPU� DPNQBSJTPO XJUI FYQFSJNFOU� *OUFSOB�
UJPOBM +PVSOBM PG "EWBODFT JO &OHJOFFSJOH 4DJFODFT BOE "QQMJFE .BUIFNBUJDT �	�
����ۗ���
TFQ �����

<+��> .JIB ;BMPľOJL "SWJOE ,VNBS )FSW© $PNCFBV .BSJF #FEFM 1IJMJQQF +BSSZ BOE &NNBOVFM
8B[� *OVFODF PG 5SBOTQPSU .FDIBOJTNT PO .BDSPTFHSFHBUJPO 'PSNBUJPO JO %JSFDU $IJMM
$BTU *OEVTUSJBM 4DBMF "MVNJOVN "MMPZ *OHPUT� "EWBODFE &OHJOFFSJOH .BUFSJBMT ��	�
����ۗ
��� KVM �����

<+��> .JIB ;BMPľOJL +VMJFO ;PMMJOHFS )FSW© $PNCFBV 6MSJLF )FDIU BOE %PNJOJRVF %BMP[�
0CTFSWBUJPOT FYQ©SJNFOUBMFT FU NPE©MJTBUJPO EF MB NBDSPT©HS©HBUJPO FO DPVM©F DFOUSJGVHF
EBMMJBHFT 5J�"M�/C� 3FWVF EF .©UBMMVSHJF ���	�����
����ۗ��� KVM �����

<+��> 4UFQIBOJF 'JTDIFS .JIB ;BMPľOJL +FBO�.BSJF 4FJMFS .BSLVT 3F॒FONBZS BOE )FSW©
$PNCFBV� &YQFSJNFOUBM WFSJDBUJPO PG B NPEFM PO NFMUJOH BOE SFTPMJEJDBUJPO JO B UFN�
QFSBUVSF HSBEJFOU� +PVSOBM PG "MMPZT BOE $PNQPVOET ������ۗ�� OPW �����

<+��> "SWJOE ,VNBS .JIB ;BMPľOJL BOE )FSW© $PNCFBV� 4UVEZ PG UIF JOVFODF PG NVTIZ [POF
QFSNFBCJMJUZ MBXT PO NBDSP� BOE NFTP�TFHSFHBUJPOT QSFEJDUJPOT� *OUFSOBUJPOBM +PVSOBM PG
FSNBMࡋ 4DJFODFT �����ۗ�� BQS �����

<+��> "SWJOE ,VNBS .JIB ;BMPľOJL )FSW© $PNCFBV #FOP®U (PZFBV BOE %PNJOJRVF (PCJO�
" OVNFSJDBM TJNVMBUJPO PG DPMVNOBS TPMJEJDBUJPO� JOVFODF PG JOFSUJB PO DIBOOFM TFHSF�
HBUJPO� .PEFMMJOH BOE 4JNVMBUJPO JO .BUFSJBMT 4DJFODF BOE &OHJOFFSJOH ��	�
������� KVO
�����

<+��> (FPSHFT 4BMMPVN�"CPV�+BPVEF (VJMMBVNF 3FJOIBSU )FOSJ /HVZFO�य़J )FSW© $PNCFBV
.JIB ;BMPľOJL य़PNBT 4DIFOL BOE 5BN[JO -BPSE� *O TJUV FYQFSJNFOUBM PCTFSWBUJPO PG
UIF UJNF FWPMVUJPO PG B EFOESJUJD NVTIZ [POF JO B YFE UFNQFSBUVSF HSBEJFOU� $PNQUFT
3FOEVT .©DBOJRVF ���	���
����ۗ��� GFC �����

�



<+��> -©B %FJMMPO +VMJFO ;PMMJOHFS %PNJOJRVF %BMP[ .JIB ;BMPľOJL BOE )FSW© $PNCFBV� *O�
TJUV PCTFSWBUJPOT PG TPMVUBM NFMUJOH VTJOH MBTFS TDBOOJOH DPOGPDBM NJDSPTDPQZ� य़F $V�/J
NPEFM TZTUFN� .BUFSJBMT $IBSBDUFSJ[BUJPO ������ۗ��� OPW �����

<+��> .BSJF #FEFM ,OVU 0NEBM 5WFJUP .JIB ;BMPľOJL )FSW© $PNCFBV BOE .PIBNNFE
.)BNEJ� "NPEFM TUVEZ PG UIF JNQBDU PG UIF USBOTQPSU PG JOPDVMBOU QBSUJDMFT PONJDSPTUSVD�
UVSF GPSNBUJPO EVSJOH TPMJEJDBUJPO� $PNQVUBUJPOBM .BUFSJBMT 4DJFODF ������ۗ��� �����

<+��> (FPSHFT 4BMMPVN�"CPV�+BPVEF (VJMMBVNF 3FJOIBSU )FSW© $PNCFBV .JIB ;BMPľOJL
5BN[JO -BPSE BOE )FOSJ /HVZFO�य़J� फ़BOUJUBUJWF BOBMZTJT CZ JO TJUV TZODISPUSPO 9�SBZ
SBEJPHSBQIZ PG UIF FWPMVUJPO PG UIF NVTIZ [POF JO B YFE UFNQFSBUVSF HSBEJFOU� +PVSOBM PG
$SZTUBM (SPXUI ������ۗ�� GFC �����

<+��> )FSW© $PNCFBV .JIB ;BMPľOJL BOE .BSJF #FEFM� 1SFEJDUJWF $BQBCJMJUJFT PG .VMUJQIZTJDT
BOE .VMUJTDBMF .PEFMT JO .PEFMJOH PG 4PMJEJDBUJPO PG 4UFFM *OHPUT BOE %$ $BTUJOH PG "MV�
NJOVN� +0. ��	�
�����ۗ���� BVH �����

<+��> :PVTTFG 4PVIBS 7BMFSJP 'SBODFTDP %F 'FMJDF $ISJTUPQI #FDLFSNBOO )FSW© $PNCFBV BOE
.JIB ;BMPľOJL� य़SFF�EJNFOTJPOBM NFTPTDPQJD NPEFMJOH PG FRVJBYFE EFOESJUJD TPMJEJDB�
UJPO PG B CJOBSZ BMMPZ� $PNQVUBUJPOBM .BUFSJBMT 4DJFODF �������ۗ��� GFC �����

<+��> -BVSFOU )FZWBFSU .BSJF #FEFM .JIB ;BMPľOJL BOE )FSW© $PNCFBV� .PEFMJOH PG UIF $PV�
QMJOH PG .JDSPTUSVDUVSF BOE .BDSPTFHSFHBUJPO JO B %JSFDU $IJMM $BTU "M�$V #JMMFU� .FUBMMVS�
HJDBM BOE .BUFSJBMT 5SBOTBDUJPOT " ��	��
�����ۗ���� �����

<+��> "OES© #� 1IJMMJPO .JIB ;BMPľOJL *SJT 4QJOEMFS /JDPMBT 1JOUFS $IBSMFT�"OUPJOF
"MFEP (FPSHFT 4BMMPVN�"CPV�+BPVEF )FOSJ /HVZFO�य़J (VJMMBVNF 3FJOIBSU (VJMMBVNF
#PVTTJOPU .BSLVT "QFM BOE )FSW© $PNCFBV� &WPMVUJPO PG B NVTIZ [POF JO B TUBUJD UFN�
QFSBUVSF HSBEJFOU VTJOH B WPMVNF BWFSBHF BQQSPBDI� "DUB.BUFSJBMJB �������ۗ��� EFD �����

<+��> "MFYBOESF 7JBSEJO .JIB ;BMPľOJL :PVTTFG 4PVIBS .BSLVT "QFM BOE )FSW© $PNCFBV�
.FTPTDPQJD NPEFMJOH PG TQBDJOH BOE HSBJO TFMFDUJPO JO DPMVNOBS EFOESJUJD TPMJEJDBUJPO�
&OWFMPQF WFSTVT QIBTF�FME NPEFM� "DUB .BUFSJBMJB �������ۗ��� KBO �����

<+��> य़J�य़VZ�.Z /HVZFO $IBSMFT�"OES© (BOEJO )FSW© $PNCFBV .JIB ;BMPľOJL BOE .JDIFM
#FMMFU� 'JOJUF &MFNFOU .VMUJ�TDBMF .PEFMJOH PG $IFNJDBM 4FHSFHBUJPO JO 4UFFM 4PMJEJDBUJPO
5BLJOH JOUP "DDPVOU UIF 5SBOTQPSU PG &RVJBYFE (SBJOT� .FUBMMVSHJDBM BOE .BUFSJBMT 5SBOT�
BDUJPOT " ��	�
�����ۗ���� GFC �����

<+��> "OUPOJP 0MNFEJMMB .JIB ;BMPľOJL #FSOBSE 3PVBU BOE )FSW© $PNCFBV� 1BDLJOH PG TFEJ�
NFOUJOH FRVJBYFE EFOESJUFT� 1IZTJDBM 3FWJFX & ��	�
������� KBO �����

<+��> "LBTI 1BLBOBUJ .PIBNNFE .)BNEJ )FSW© $PNCFBV BOE .JIB ;BMPľOJL� *OWFTUJHBUJPO
PG .BDSPTFHSFHBUJPO 'PSNBUJPO JO "MVNJOJVN %$ $BTUJOH GPS %JFSFOU "MMPZ 4ZTUFNT�
.FUBMMVSHJDBM BOE .BUFSJBMT 5SBOTBDUJPOT " ��	��
�����ۗ���� PDU �����

<+��> ,OVU 0NEBM 5WFJUP "LBTI 1BLBOBUJ .PIBNNFE .)BNEJ )FSW© $PNCFBV BOE .JIB
;BMPľOJL� " 4JNQMJFE य़SFF�1IBTF .PEFM PG &RVJBYFE 4PMJEJDBUJPO GPS UIF 1SFEJDUJPO PG
.JDSPTUSVDUVSF BOE .BDSPTFHSFHBUJPO JO $BTUJOHT� .FUBMMVSHJDBM BOE .BUFSJBMT 5SBOTBDUJPOT
" ��	�
�����ۗ���� KVM �����

<+��> 7BOKB )BUJÇ .BSUO $JTUFSOBT 'FSO¡OEF[ #PġUKBO .BWSJÍ .JIB ;BMPľOJL )FSW© $PNCFBV
BOE #PľJEBS ĠBSMFS� 4JNVMBUJPO PG BNBDSPTFHSFHBUJPO CFODINBSL JO B DZMJOESJDBM DPPSEJOBUF
TZTUFN XJUI B NFTIMFTT NFUIPE� *OUFSOBUJPOBM +PVSOBM PG FSNBMࡋ 4DJFODFT �������ۗ��� BVH
�����

�



<+��> "OUPOJP 0MNFEJMMB .JIB ;BMPľOJL BOE )FSW© $PNCFBV� फ़BOUJUBUJWF �%NFTPTDPQJD NPE�
FMJOH PG HSBJO JOUFSBDUJPOT EVSJOH FRVJBYFE EFOESJUJD TPMJEJDBUJPO JO B UIJO TBNQMF� "DUB
.BUFSJBMJB �������ۗ��� KVM �����

<+��> "OUPOJP 0MNFEJMMB .JIB ;BMPľOJL य़PNBT .FTTNFS #FSOBSE 3PVBU BOE )FSW© $PNCFBV�
1BDLJOH EZOBNJDT PG TQIFSJDBM BOE OPODPOWFY HSBJOT TFEJNFOUJOH BU MPX 4UPLFT OVNCFS�
1IZTJDBM 3FWJFX & ��	�
������� KBO �����

<+��> "LBTI 1BLBOBUJ ,OVU 0NEBM 5WFJUP .PIBNNFE .)BNEJ )FSW© $PNCFBV BOE .JIB
;BMPľOJL� "QQMJDBUJPO PG BO &RVJBYFE (SBJO (SPXUI BOE 5SBOTQPSU .PEFM UP 4UVEZ
.BDSPTFHSFHBUJPO JO B %$ $BTUJOH &YQFSJNFOU� .FUBMMVSHJDBM BOE .BUFSJBMT 5SBOTBDUJPOT
" ��	�
�����ۗ���� BQS �����

<+��> .BIEJ 5PSBCJ 3BE .JIB ;BMPľOJL )FSW© $PNCFBV BOE $ISJTUPQI #FDLFSNBOO� 6QTDBMJOH
NFTPTDPQJD TJNVMBUJPO SFTVMUT UP EFWFMPQ DPOTUJUVUJWF SFMBUJPOT GPS NBDSPTDPQJD NPEFMJOH
PG FRVJBYFE EFOESJUJD TPMJEJDBUJPO� .BUFSJBMJB �������� NBS �����

<+��> .BSUO $JTUFSOBT 'FSO¡OEF[ .JIB ;BMPľOJL )FSW© $PNCFBV BOE 6MSJLF )FDIU� य़FS�
NPTPMVUBM DPOWFDUJPO BOE NBDSPTFHSFHBUJPO EVSJOH EJSFDUJPOBM TPMJEJDBUJPO PG 5J"M BMMPZT
JO DFOUSJGVHBM DBTUJOH� *OUFSOBUJPOBM +PVSOBM PG )FBU BOE .BTT 5SBOTGFS ���������� KVO �����

<+��> :J 'FOH .JIB ;BMPľOJL #�(� य़PNBT BOE "�#� 1IJMMJPO� .FTP�TDBMF TJNVMBUJPO PG MJRVJE
GFFEJOH JO BO FRVJBYFE EFOESJUJD NVTIZ [POF� .BUFSJBMJB �������� NBS �����

"ॸॺ९३ॲ५ॹ ९ॴ ॶ५५ॸংॸ५ॼ९५ॽ५४ ३ॵॴ६५ॸ५ॴ३५ ॶॸॵ३५५४९ॴ७ॹ

<1�> .JIB ;BMPľOJL #PľJEBS ĠBSMFS BOE *WBO #BKTJÇ� %3#&. DPNQVUBUJPOBM NPEFMMJOH BOE OPO�
EFTUSVDUJWF FYQFSJNFOUT GPS TVSGBDF IFBU VY EFUFSNJOBUJPO JO EJSFDU DIJMM DBTUJOH PG BMV�
NJOJVN BMMPZ CJMMFUT� *O #FOHU 4VOE©O BOE $BSMPT " #SFCCJB FEJUPST )FBU 5SBOTGFS 7**�
"EWBODFE $PNQVUBUJPOBM .FUIPET JO )FBU 5SBOTGFS QBHFT ���ۗ��� #PTUPO 4PVUIBNQUPO
����� 8*5 1SFTT�

<1�> .JIB ;BMPľOJL #PľJEBS ĠBSMFS BOE *WBO #BKTJÇ� " OPOEFTUSVDUJWF FYQFSJNFOUBM BQQSPBDI
GPS IFBU VY EFUFSNJOBUJPO PO EJSFDU�DIJMM DBTU BMVNJOJVN BMMPZ CJMMFU TVSGBDF� 1SPDFFEJOHT
JO "QQMJFE .BUIFNBUJDT BOE .FDIBOJDT �	�
����ۗ��� NBS �����

<1�> #PľJEBS ĠBSMFS +BOF[ 1FSLP 3PCFSU 7FSUOJL BOE .JIB ;BMPľOJL� %JVTF BQQSPYJNBUF
NFUIPE GPS DBTUJOH TJNVMBUJPOT� *O " 5BEFV BOE 4BUZB /"UMVSJ FEJUPST"EWBODFT JO $PNQV�
UBUJPOBM ࡑ &YQFSJNFOUBM &OHJOFFSJOH ࡑ 4DJFODFT 
��ڣ4&$$*	 QBHFT ����ۗ����� 5FDI 4DJFODF
1SFTT �����

<1�> #PľJEBS ĠBSMFS .JIB ;BMPľOJL 3PCFSU 7FSUOJL +BOF[ 1FSLP 3BKLP ĠBौBMUFS .BSJOB +FMFO
7JMKFN 4USOBE BOE 'SBODJ 5PNB[JOJ� " TJNVMBUJPO TZTUFN GPS EJSFDU DIJMM DBTUJOH PG BMV�
NJOJVN BMMPZT� *O /BEFľEB 5BMJKBO FEJUPS 1SPDFFEJOHT �OE *OUFSOBUJPOBM 4ZQPTJVN PG -JHIU
.FUBMT BOE $PNQPTJUF .BUFSJBMT ����� .BZ ���� #FMHSBEF QBHFT ��ۗ�� #FMHSBEF 4FSCJB
BOE .POUFOFHSP ����� "TTPDJBUJPO PG .FUBMMVSHJDBM &OHJOFFST 4$(�

<1�> +BOF[ 1FSLP $ 4 $IFO #PľJEBS ĠBSMFS BOE .JIB ;BMPľOJL� /VNFSJDBM EJVTTJPO JO NFTI�
MFTT EJVTF BQQSPYJNBUF NFUIPE� *O 4 . 4JWBLVNBS FEJUPS "EWBODFT JO $PNQVUBUJPOBM ࡑ
&YQFSJNFOUBM &OHJOFFSJOH ࡑ 4DJFODFT 
��ڣ4&$$*	 QBHFT ���ۗ���� 5FDI 4DJFODF 1SFTT �����

<1�> .JIB ;BMPľOJL BOE #PľJEBS ĠBSMFS� /FX JOTJHIUT JOUP PX TUSVDUVSF JO UIF %$ DBTUJOH PG
BMVNJOVN BMMPZT� *O )BMWPS ,WBOEF FEJUPS -JHIU NFUBMT ���� QBHFT ����ۗ���� 8BSSFOEBMF
	1"
 64" ����� 5.4�

�



<1�> .JIB ;BMPľOJL BOE #PľJEBS ĠBSMFS� .FMU PX BOE NBDSPTFHSFHBUJPO JO %$ DBTUJOH PG CJOBSZ
BMVNJOVN BMMPZT� .BUFSJBMT 4DJFODF 'PSVN �������ۗ��� �����

<1�> .JIB ;BMPľOJL BOE #PľJEBS ĠBSMFS� य़FSNPTPMVUBM PX JO NFUBMT BOE JNQMJDBUJPOT GPS %$
DBTUJOH� *O $IBSMFT�"OES© (BOEJO BOE .JDIFM #FMMFU FEJUPST .PEFMJOH PG $BTUJOH 8FMEJOH
BOE "EWBODFE 4PMJEJटDBUJPO 1SPDFTTFT 9* QBHFT ���ۗ��� 8BSSFOEBMF 	1"
 64" ����� 5.4�

<1�> )FSW© $PNCFBV .JIB ;BMPľOJL #PVCFLFS 3BCJB 4ZMWBJO $IBSNPOE 4U©QIBOF )BOT BOE
1JFSSF &NNBOVFM 3JDIZ� 1SFEJDUJPO PG UIF NBDSPTFHSFHBUJPO JO TUFFM JOHPUT� JOVFODF PG
UIF NPUJPO BOE UIF HSPXUI PG UIF FRVJBYFE HSBJOT� *O 1FUFS % -FF " .JUDIFMM +FBO�1JFSSF
#FMMPU BOE "MBJO +BSEZ FEJUPST 1SPDFFEJOHT PG UIF ���� *OUFSOBUJPOBM 4ZNQPTJVN PO -JRVJE
.FUBM 1SPDFTTJOH BOE $BTUJOH QBHFT ���ۗ��� /BODZ 'SBODF �����

<1��> )FSW© $PNCFBV .JIB ;BMPľOJL 4U©QIBOF )BOT BOE 1JFSSF &NNBOVFM 3JDIZ� 1S©EJDUJPO
EFT NBDSPT©HS©HBUJPOT EBOT MFT MJOHPUT EBDJFS � JOVFODF EV NPVWFNFOU FU EF MB DSPJT�
TBODF EFT HSBJOT ©RVJBYFT� *O $POHS¨T EF MB 4PDJFU© 'SBO§BJTF EF FSNJRVFࡋ ���� QBHFT �ۗ��
5PVMPVTF 'SBODF �����

<1��> )FSW© $PNCFBV "SWJOE ,VNBS BOE.JIB ;BMPľOJL� .PEFMJOH PG &RVJBYFE(SBJO &WPMVUJPO
BOE .BDSPTFHSFHBUJPOT %FWFMPQNFOU JO 4UFFM *OHPUT� 5SBOTBDUJPOT PG UIF *OEJBO *OTUJUVUF PG
.FUBMT ��	���
����ۗ��� KBO �����

<1��> "SWJOE ,VNBS #FSOBSE %VTTPVCT .JIB ;BMPľOJL BOE )FSW© $PNCFBV� &FDU PG %JT�
DSFUJ[BUJPO PG 1FSNFBCJMJUZ 5FSN BOE .FTI 4J[F PO .BDSP� BOE .FTP�TFHSFHBUJPO 1SFEJD�
UJPOT� *O ��¨NF $POHS¨T 'SBO§BJT EF .©DBOJRVF �����

<1��> .JIB ;BMPľOJL BOE )FSW© $PNCFBV� &FDUT PG TPMJEJDBUJPO LJOFUJDT BOE MJRVJE EFOTJUZ
JO NPEFMJOH PG NBDSPTFHSFHBUJPO JO DBTUJOHT� *O 4UFWF - $PDLSPॏ BOE %BBO . .BJKFS
FEJUPST .PEFMJOH PG $BTUJOH 8FMEJOH BOE "EWBODFE 4PMJEJटDBUJPO 1SPDFTTFT 9** QBHFT ���ۗ
��� 8BSSFOEBMF 	1"
 64" ����� 5.4�

<1��> .JIB ;BMPľOJL BOE )FSW© $PNCFBV� य़F JOVFODF PG UIF NPSQIPMPHZ FWPMVUJPO PG GSFF�
PBUJOH FRVJBYFE HSBJOT PO UIF NBDSPTFHSFHBUJPO JO B ����UPO TUFFM JOHPU� *O 4UFWF - $PDL�
SPॏ BOE %BBO . .BJKFS FEJUPST .PEFMJOH PG $BTUJOH 8FMEJOH BOE "EWBODFE 4PMJEJटDBUJPO
1SPDFTTFT 9** QBHFT ���ۗ��� 8BSSFOEBMF 	1"
 64" ����� 5.4�

<1��> )FSW© $PNCFBV .JDIFM #FMMFU :WFT 'BVUSFMMF %PNJOJRVF (PCJO &SJD "SRVJT 0MHB #V�
EFOLPWB #FSOBSE %VTTPVCT :WFT %VUFSSBJM "SWJOE ,VNBS 4BMFN .PTCBI .PIBNFE "
3BEZ $IBSMFT�"OES© (BOEJO #FOP®U (PZFBV BOE .JIB ;BMPľOJL� 'PSNBUJPO EF NBDSPT©�
HS©HBUJPOT QFOEBOU MB TPMJEJDBUJPO EVO BMMJBHF 4O�1C � 4ZOUI¨TF EFT QSFNJFST S©TVMUBUT
EVO CFODINBSL� *O .BU©SJBVY ���� QBHFT �ۗ� �����

<1��> )FSW© $PNCFBV .JDIFM #FMMFU :WFT 'BVUSFMMF %PNJOJRVF (PCJO .PIBNFE " 3BEZ &SJD
"SRVJT 0MHB #VEFOLPWB #FSOBSE%VTTPVCT :WFT EV 5FSSBJM "SWJOE ,VNBS $IBSMFT�"OES©
(BOEJO #FOP®U (PZFBV 4BMFN .PTCBI BOE .JIB ;BMPľOJL� #FODINBSL TVS MB TJNVMBUJPO
EFT NBDSPT©HS©HBUJPOT MPST EF MB TPMJEJDBUJPO EVO BMMJBHF � QSFNJ¨SF TZOUI¨TF� *O $POHS¨T
EF MB 4PDJFU© 'SBO§BJTF EF FSNJRVFࡋ ���� �����

<1��> .JIB ;BMPľOJL "SWJOE ,VNBS )FSW© $PNCFBV .BSJF #FEFM 1IJMJQQF +BSSZ BOE &N�
NBOVFM 8B[� *OVFODF PG USBOTQPSU NFDIBOJTNT PO NBDSPTFHSFHBUJPO GPSNBUJPO JO EJSFDU
DIJMM DBTU JOEVTUSJBM TDBMF BMVNJOVN BMMPZ JOHPUT� *O .BU©SJBVY ���� /BOUFT 'SBODF �����

<1��> .JIB ;BMPľOJL +VMJFO ;PMMJOHFS )FSW© $PNCFBV 6MSJLF )FDIU BOE %PNJOJRVF %BMP[�
&UBCMJTTFNFOU FU NPE©MJTBUJPO EF MB NBDSPT©HS©HBUJPO FO DPVM©F DFOUSJGVHF EBMMJBHFT 5J�
"M�/C� *O .BU©SJBVY ���� �����

�



<1��> )FSW© $PNCFBV .JDIFM #FMMFU :WFT 'BVUSFMMF %PNJOJRVF (PCJO &SJD "SRVJT 0MHB #V�
EFOLPWB #FSOBSE %VTTPVCT :WFT %VUFSSBJM "SWJOE ,VNBS #FOP®U (PZFBV 4BMFN.PTCBI
य़JCBVMUफ़BUSBWBVY .PIBNFE " 3BEZ $IBSMFT�"OES© (BOEJO BOE .JIB ;BMPľOJL� " /V�
NFSJDBM #FODINBSL PO UIF 1SFEJDUJPO PG .BDSPTFHSFHBUJPO JO #JOBSZ "MMPZT� *O 'SPOUJFST
JO 4PMJEJटDBUJPO 4DJFODF QBHFT ���ۗ��� 8BSSFOEBMF 	1"
 64" ����� 5.4�

<1��> (SFHPS ,PTFD BOE .JIB ;BMPľOJL� 4PMVUJPO PG TPMJEJDBUJPO PG B CJOBSZ BMMPZ CZ B MPDBM
NFTIMFTT UFDIOJRVF� *O /JLPT & .BTUPSBLJT FEJUPS 1SPDFFEJOHT PG UIF �OE *OUFSOBUJPOBM
$POGFSFODF PO 'MVJE .FDIBOJDT BOE )FBU BOE .BTT 5SBOTGFS ���� 	'-6*%4)&"5 
��ڣ QBHFT
���ۗ��� $PSGV (SFFDF ����� 84&"4�

<1��> .BUIJFV 3FWJM�#BVEBSE "MBJO +BSEZ .JIB ;BMPľOJL )FSW© $PNCFBV 'BVTUJOF -FDMFSD BOE
7FSPOJRVF 3FCFZSPMMF� %FUBJMFENPEFMJOH PG UIF TPMJEJDBUJPO PG WBDVVN BSD SFNFMUFE [JSDP�
OJVN JOHPUT� *O 1SPDFFEJOHT PG UIF ���� *OUFSOBUJPOBM 4ZNQPTJVN PO -JRVJE .FUBM 1SPDFTTJOH
BOE $BTUJOH WPMVNF � /BODZ 'SBODF �����

<1��> .JIB ;BMPľOJL "SWJOE ,VNBS )FSW© $PNCFBV .BSJF #FEFM 1IJMJQQF +BSSZ BOE &N�
NBOVFM 8B[� य़F $PVQMJOH PG .BDSPTFHSFHBUJPO 8JUI (SBJO /VDMFBUJPO (SPXUI BOE .P�
UJPO JO %$ $BTU "MVNJOVN "MMPZ *OHPUT� *O 4 + -JOETBZ FEJUPS -JHIU NFUBMT ���� QBHFT
���ۗ��� 8BSSFOEBMF 	1"
 64" ����� 5.4�

<1��> .BSJF #FEFM .JIB ;BMPľOJL "SWJOE ,VNBS )FSW© $PNCFBV 1IJMJQQF +BSSZ BOE &N�
NBOVFM 8B[� *OVFODF PG USBOTQPSU NFDIBOJTNT PO OVDMFBUJPO BOE HSBJO TUSVDUVSF GPS�
NBUJPO JO %$ DBTU BMVNJOJVN BMMPZ JOHPUT� *01 $POGFSFODF 4FSJFT� .BUFSJBMT 4DJFODF BOE
&OHJOFFSJOH ��������� KBO �����

<1��> )FSW© $PNCFBV .JDIFM #FMMFU :WFT 'BVUSFMMF %PNJOJRVF (PCJO &SJD "SRVJT 0MHB #V�
EFOLPWB #FSOBSE %VTTPVCT :WFT EV 5FSSBJM "SWJOE ,VNBS $IBSMFT�"OES© (BOEJO #FOP®U
(PZFBV 4BMFN.PTCBIय़JCBVMUफ़BUSBWBVY .PIBNFE " 3BEZ BOE.JIB ;BMPľOJL� "OBM�
ZTJT PG B OVNFSJDBM CFODINBSL GPS DPMVNOBS TPMJEJDBUJPO PG CJOBSZ BMMPZT� *01 $POGFSFODF
4FSJFT� .BUFSJBMT 4DJFODF BOE &OHJOFFSJOH ��������� KVM �����

<1��> )FSW© $PNCFBV "SWJOE ,VNBS .JIB ;BMPľOJL *TBCFMMF 1PJUSBVMU (JMCFSU -BDBHOF "O�
ESFX (JOHFMM य़JFSSZ .B[FU BOE (©SBSE -FTPVMU� .BDSPTFHSFHBUJPO QSFEJDUJPO JO B ��
UPO TUFFM JOHPU� *O *OUFSOBUJPOBM $POGFSFODF PO *OHPU $BTUJOH 3PMMJOH BOE 'PSHJOH QBHF ��
"BDIFO (FSNBOZ �����

<1��> 7BMFSJP 'SBODFTDP %F 'FMJDF ,OVU 0NEBM 5WFJUP .JIB ;BMPľOJL )FSW© $PNCFBV BOE .P�
IBNNFE .)BNEJ� य़SFF�EJNFOTJPOBM TUVEZ PG NBDSP� BOE NFTPTFHSFHBUJPO GPSNBUJPO JO
B SFDUBOHVMBS DBWJUZ DPPMFE GSPN POF WFSUJDBM TJEF� *01 $POGFSFODF 4FSJFT� .BUFSJBMT 4DJFODF
BOE &OHJOFFSJOH ��������� KVM �����

<1��> "SWJOE ,VNBS +P«MMF %FNVSHFS +FBO 8FOEFOCBVN .JIB ;BMPľOJL BOE )FSW© $PNCFBV�
&YQFSJNFOUBM BOE /VNFSJDBM 4UVEJFT PO UIF *OVFODF PG )PU 5PQ $POEJUJPOT PO UIF
.BDSPTFHSFHBUJPO JO BO *OEVTUSJBM 4UFFM *OHPU� *O *OUFSOBUJPOBM $POGFSFODF PO *OHPU $BTUJOH
3PMMJOH BOE 'PSHJOH QBHF �� "BDIFO (FSNBOZ �����

<1��> "SWJOE ,VNBS #FSOBSE %VTTPVCT .JIB ;BMPľOJL BOE )FSW© $PNCFBV� *OVFODF PG %JT�
DSFUJ[BUJPO PG 1FSNFBCJMJUZ 5FSN BOE .FTI 4J[F PO UIF 1SFEJDUJPO PG $IBOOFM 4FHSFHBUJPOT�
*01 $POGFSFODF 4FSJFT� .BUFSJBMT 4DJFODF BOE &OHJOFFSJOH ��������� KBO �����

<1��> "SWJOE ,VNBS .JIB ;BMPľOJL )FSW© $PNCFBV #FOP®U (PZFBV BOE %PNJOJRVF (PCJO�
$IBOOFM TFHSFHBUJPO EVSJOH DPMVNOBS TPMJEJDBUJPO� JOVFODF PG JOFSUJB� *O ,BNCJ[ 7BGBJ
FEJUPS 1PSPVT .FEJB BOE JUT "QQMJDBUJPOT JO 4DJFODF &OHJOFFSJOH BOE *OEVTUSZ QBHFT ��ۗ���
"NFSJDBO *OTUJUVUF PG 1IZTJDT �����

�



<1��> .BUIJFV 3FWJM�#BVEBSE "MBJO +BSEZ 'BVTUJOF -FDMFSD .JIB ;BMPľOJL 7FSPOJRVF 3FCFZ�
SPMMF BOE )FSW© $PNCFBV� " .VMUJTDBMF .PEFM GPS UIF 4JNVMBUJPO PG 7�"�3� *OHPU 4PMJEJ�
DBUJPO� *O -BVSFOUJV /BTUBD -JGFOH ;IBOH #SJBO(य़PNBT "ESJBO 4BCBV /BHZ &M�,BEEBI
"EBN $ 1PXFMM BOE )FSW© $PNCFBV FEJUPST $'% .PEFMJOH BOE 4JNVMBUJPO JO .BUFSJBMT
1SPDFTTJOH 5.4 "OOVBM .FFUJOH ���� QBHFT ���ۗ��� 8BSSFOEBMF 	1"
 64" ����� 5.4�

<1��> ,OVU 0NEBM 5WFJUP .BSJF #FEFM .JIB ;BMPľOJL )FSW© $PNCFBV BOE .PIBNNFE
.)BNEJ� य़F FFDU PG OJUF NJDSPTDPQJD MJRVJE TPMVUF EJVTJPO PO NBDSPTFHSFHBUJPO
GPSNBUJPO� *01 $POGFSFODF 4FSJFT� .BUFSJBMT 4DJFODF BOE &OHJOFFSJOH ��������� KBO �����

<1��> ,OVU 0NEBM 5WFJUP .BSJF #FEFM .JIB ;BMPľOJL )FSW© $PNCFBV .PIBNNFE .)BNEJ
"SWJOE ,VNBS BOE 1SBEJQ %V॒B� /VNFSJDBM TUVEZ PG UIF JNQBDU PG JOPDVMBOU BOE HSBJO
USBOTQPSU PO NBDSPTFHSFHBUJPO BOE NJDSPTUSVDUVSF GPSNBUJPO EVSJOH TPMJEJDBUJPO PG BO
"M����$V BMMPZ� *01 $POGFSFODF 4FSJFT� .BUFSJBMT 4DJFODF BOE &OHJOFFSJOH ��������� KVM
�����

<1��> ,OVU 0NEBM 5WFJUP .PIBNNFE .)BNEJ )FSW© $PNCFBV .JIB ;BMPľOJL ,BEFS ;B¯�
EBU 9JBPEPOH 8BOH #BDIJS 4BBEJ BOE :WFT 'BVUSFMMF� /VNFSJDBM BOBMZTJT PG UIF JOVFODF
PG NFMUJOH BOE BQQMJDBUJPO PG FMFDUSPNBHOFUJD TUJSSJOH QSJPS UP TPMJEJDBUJPO PO NBDSPTFH�
SFHBUJPO GPSNBUJPO EVSJOH DBTUJOH PG B CJOBSZ BMMPZ� *O -BVSFOUJV /BTUBD -JGFOH ;IBOH
#SJBO ( य़PNBT "ESJBO 4BCBV /BHZ &M�,BEEBI "EBN $ 1PXFMM BOE )FSW© $PNCFBV
FEJUPST $'% .PEFMJOH BOE 4JNVMBUJPO JO .BUFSJBMT 1SPDFTTJOH 5.4 "OOVBM .FFUJOH ����
QBHFT ���ۗ��� 8BSSFOEBMF 	1"
 64" ����� 5.4�

<1��> .BSJF #FEFM -BVSFOU )FZWBFSU .JIB ;BMPľOJL )FSW© $PNCFBV %PNJOJRVF %BMP[ BOE
(©SBSE -FTPVMU� 1SPDFTT�TDBMF NPEFMJOH PG NJDSPTUSVDUVSF JO EJSFDU DIJMM DBTUJOH PG BMV�
NJOVN BMMPZT� *01 $POGFSFODF 4FSJFT� .BUFSJBMT 4DJFODF BOE &OHJOFFSJOH ��������� �����

<1��> /JDPMBT -FSJDIF )FSW© $PNCFBV $IBSMFT�"OES© (BOEJO BOE .JIB ;BMPľOJL� .PEFMMJOH
UIF $PMVNOBS�UP�&RVJBYFE BOE &RVJBYFE�UP�$PMVNOBS 5SBOTJUJPOT JO *OHPUT 6TJOH B .VM�
UJQIBTF .PEFM� *01 $POGFSFODF 4FSJFT� .BUFSJBMT 4DJFODF BOE &OHJOFFSJOH ��������� �����

<1��> य़J�य़VZ�.Z /HVZFO )FSW© $PNCFBV .JIB ;BMPľOJL .JDIFM #FMMFU BOE $IBSMFT�"OES©
(BOEJO� .VMUJ�TDBMF OJUF FMFNFOU NPEFMMJOH PG TPMJEJDBUJPO TUSVDUVSFT CZ B TQMJ॒JOH
NFUIPE UBLJOH JOUP BDDPVOU UIF USBOTQPSU PG FRVJBYFE HSBJOT� *01 $POGFSFODF 4FSJFT� .BUF�
SJBMT 4DJFODF BOE &OHJOFFSJOH ��������� �����

<1��> *TBCFMMF 1PJUSBVMU %BWJE $BSEJOBVY .JIB ;BMPľOJL )FSW© $PNCFBV BOE $IBOUBM %BWJE�
$IBSBDUFSJ[BUJPO BOE QSFEJDUJPO PG TPMJEJDBUJPO TUSVDUVSFT BOE NBDSPTFHSFHBUJPOT JO
IFBWZ TUFFM JOHPUT� *O 4UFFMTJN ���� #BSEPMJOP *UBMZ �����

<1��> .JIB ;BMPľOJL "MFYBOESF 7JBSEJO :PVTTFG 4PVIBS )FSW© $PNCFBV BOE .BSLVT "QFM�
.FTPTDPQJD NPEFMJOH PG DPMVNOBS TPMJEJDBUJPO BOE DPNQBSJTPOT XJUI QIBTF�FME TJNVMB�
UJPOT� *01 $POGFSFODF 4FSJFT� .BUFSJBMT 4DJFODF BOE &OHJOFFSJOH ��������� �����

<1��> )FSW© $PNCFBV BOE .JIB ;BMPľOJL� .VMUJQIZTJDT BOE NVMUJTDBMF NPEFMJOH BOE TJNVMBUJPO
PG TPMJEJDBUJPO QSPDFTTFT� *O 'SPOUJFST PG 4PMJEJटDBUJPO 4DJFODF 5.4 "OOVBM .FFUJOH ����
QBHFT ���ۗ��� �����

<1��> :PVTTFG 4PVIBS 7BMFSJP 'SBODFTDP %F 'FMJDF .JIB ;BMPľOJL )FSW© $PNCFBV BOE
$ISJTUPQI #FDLFSNBOO� य़F SPMF PG UIF TUBHOBOU�MN UIJDLOFTT JO NFTPTDPQJD NPEFM�
JOH PG FRVJBYFE HSBJO FOWFMPQFT� *01 $POGFSFODF 4FSJFT� .BUFSJBMT 4DJFODF BOE &OHJOFFSJOH
���������� NBS �����

�



<1��> .JIB ;BMPľOJL :PVTTFG 4PVIBS $ISJTUPQI #FDLFSNBOO BOE )FSW© $PNCFBV� 6QTDBMJOH
GSPN .FTPTDPQJD UP .BDSPTDPQJD 4PMJEJDBUJPO .PEFMT CZ 7PMVNF "WFSBHJOH� *O 'SPOUJFST
PG 4PMJEJटDBUJPO 4DJFODF 5.4 "OOVBM .FFUJOH ���� QBHFT ��ۗ��� 5.4 �����

<1��> .JIB ;BMPľOJL "MFYBOESF 7JBSEJO :PVTTFG 4PVIBS )FSW© $PNCFBV BOE .BSLVT "QFM�
.FTPTDPQJD NPEFMMJOH PG DPMVNOBS TPMJEJDBUJPO� *01 $POGFSFODF 4FSJFT� .BUFSJBMT 4DJFODF
BOE &OHJOFFSJOH ���������� �����

<1��> ,BUBSJOB .SBNPS .JIB ;BMPľOJL "MBJO +BSEZ BOE )FSW© $PNCFBV� "TTFTTNFOU PG UIF
FFDU PG TPMVUBM CPVOEBSZ MBZFS UIJDLOFTT PO NBDSPTFHSFHBUJPO GPSNBUJPO EVSJOH 7"3 QSP�
DFTT JO ;JSDPOJVN JOHPUT� *O ; 'BO FEJUPS 4PMJEJटDBUJPO 1SPDFTTJOH ����� 1SPDFFEJOHT PG UIF
�UI %FDFOOJBM *OUFSOBUJPOBM $POGFSFODF PO 4PMJEJटDBUJPO 1SPDFTTJOH QBHFT ���ۗ��� -POEPO
6, ����� #SVOFM 6OJWFSTJUZ�

<1��> "OUPOJP 0MNFEJMMB .JIB ;BMPľOJL BOE )FSW© $PNCFBV� %&. TJNVMBUJPO PG EFOESJUJD
HSBJO SBOEPN QBDLJOH� BQQMJDBUJPO UP NFUBM BMMPZ TPMJEJDBUJPO� &1+ 8FC PG $POGFSFODFT
��������� KVO �����

<1��> .BIEJ 5PSBCJ 3BE .JIB ;BMPľOJL )FSW© $PNCFBV BOE $ISJTUPQI #FDLFSNBOO� $PO�
TUJUVUJWF SFMBUJPOT GPS NBDSPTDPQJD NPEFMMJOH PG FRVJBYFE TPMJEJDBUJPO� *O ; 'BO FEJUPS
4PMJEJटDBUJPO 1SPDFTTJOH ����� 1SPDFFEJOHT PG UIF �UI %FDFOOJBM *OUFSOBUJPOBM $POGFSFODF PO
4PMJEJटDBUJPO 1SPDFTTJOH QBHFT ���ۗ��� -POEPO 6, ����� #SVOFM 6OJWFSTJUZ�

<1��> 6MSJLF )FDIU $BO )VBOH +VMJFO ;PMMJOHFS %PNJOJRVF %BMP[ .JIB ;BMPľOJL .BSUO $JT�
UFSOBT "MFYBOESF 7JBSEJO 4IBVO .D'BEEFO -¡T[M³ (S¡O¡TZ +VSBK -BQJO /JDPMBT -FSJDIF
BOE 'MPSJBO ,BSHM� य़F &4"�."1 QSPKFDU ۡ(3"%&$&5ۡ ۗ "O PWFSWJFX PG UIF KPJOU SFTFBSDI
PO TPMJEJDBUJPO PG 5J"M�CBTFE BMMPZT VOEFS IZQFSHSBWJUZ BOE NJDSPHSBWJUZ DPOEJUJPOT� *O
" 3P³T[ ;T 7FSFT . 4W©EB BOE ( ,BSBDT FEJUPST 4PMJEJटDBUJPO BOE (SBWJUZ ���� QBHFT
��ۗ�� .JTLPMD )VOHBSZ ����� )VOHBSJBO "DBEFNZ PG 4DJFODFT ۗ 6OJWFSTJUZ PG .JTLPMD�

<1��> "LBTI 1BLBOBUJ ,OVU 0NEBM 5WFJUP .PIBNNFE.)BNEJ )FSW© $PNCFBV BOE.JIB ;B�
MPľOJL� *NQBDU PG *OMFU 'MPX PO .BDSPTFHSFHBUJPO 'PSNBUJPO "DDPVOUJOH GPS (SBJO .PUJPO
BOE .PSQIPMPHZ &WPMVUJPO JO %$ $BTUJOH PG "MVNJOJVN� *O 0MJWJFS .BSUJO FEJUPS -JHIU
.FUBMT ���� QBHFT ����ۗ����� 5.4 8BSSFOEBMF 	1"
 64" �����

<1��> .� $JTUFSOBT 'FSO¡OEF[ .JIB ;BMPľOJL )FSW© $PNCFBV $� )VBOH +� ;PMMJOHFS BOE 6MSJLF
)FDIU� &FDU PG UIF $PSJPMJT GPSDF PO UIF NBDSPTFHSFHBUJPO PG BMVNJOVN JO UIF DFOUSJGVHBM
DBTUJOH PG 5J�"M BMMPZT� *01 $POGFSFODF 4FSJFT� .BUFSJBMT 4DJFODF BOE &OHJOFFSJOH ����������
NBZ �����

<1��> :J 'FOH .JIB ;BMPľOJL #SJBO य़PNBT BOE "OES© 1IJMMJPO� " �% EJTDSFUF�FMFNFOU NPEFM
GPS TJNVMBUJOH MJRVJE GFFEJOH EVSJOH EFOESJUJD TPMJEJDBUJPO PG TUFFM� *01 $POGFSFODF 4FSJFT�
.BUFSJBMT 4DJFODF BOE &OHJOFFSJOH ���������� �����

<1��> #FOKBNJO (FSJO )FSW© $PNCFBV .JIB ;BMPľOJL *TBCFMMF 1PJUSBVMU BOE .BZB $IFSJG� 1SF�
EJDUJPO PG TPMJEJDBUJPO TUSVDUVSFT JO B ��� U TUFFM JOHPU� *01 $POGFSFODF 4FSJFT� .BUFSJBMT
4DJFODF BOE &OHJOFFSJOH ���������� NBZ �����

<1��> :V[F -J "OUPOJP 0MNFEJMMB .JIB ;BMPľOJL +VMJFO ;PMMJOHFS -VDBT %FNCJOTLJ BOE "MFYBO�
ESF .BUIJFV� 4PMJEJDBUJPO NJDSPTUSVDUVSF EVSJOH TFMFDUJWF MBTFS NFMUJOH PG /J CBTFE TV�
QFSBMMPZ� FYQFSJNFOU BOE NFTPTDPQJD NPEFMMJOH� *01 $POGFSFODF 4FSJFT� .BUFSJBMT 4DJFODF
BOE &OHJOFFSJOH ���������� �����

<1��> "OUPOJP 0MNFEJMMB .JIB ;BMPľOJL .� $JTUFSOBT 'FSO¡OEF[ "MFYBOESF 7JBSEJO BOE )FSW©
$PNCFBV� य़SFF�EJNFOTJPOBM NFTPTDPQJD NPEFMJOH PG FRVJBYFE EFOESJUJD TPMJEJDBUJPO

�



JO B UIJO TBNQMF� FFDU PG DPOWFDUJPO PX� *01 $POGFSFODF 4FSJFT� .BUFSJBMT 4DJFODF BOE
&OHJOFFSJOH ���������� NBZ �����

<1��> "LBTI 1BLBOBUJ ,OVU 0NEBM 5WFJUP .PIBNNFE.)BNEJ )FSW© $PNCFBV BOE.JIB ;B�
MPľOJL� "OBMZTJT PG UIF *OUFSQMBZ #FUXFFO य़FSNP�TPMVUBM $POWFDUJPO BOE &RVJBYFE (SBJO
.PUJPO JO 3FMBUJPO UP .BDSPTFHSFHBUJPO 'PSNBUJPO JO ""���� 4IFFU *OHPUT� *O $PSMFFO
$IFTPOJT FEJUPS -JHIU .FUBMT ���� 4BO "OUPOJP 	59
 64" ����� 5.4�

<1��> 4BWZB 4BDIJ .JIB ;BMPľOJL )FSW© $PNCFBV $IBSMFT�"OES© (BOEJO .BSWJO (FOOFTTPO
+P«MMF %FNVSHFS .JDIB«M 4UPMU[ BOE *TBCFMMF 1PJUSBVMU� "OBMZTJT PG DPMVNOBS�UP�FRVJBYFE
USBOTJUJPO FYQFSJNFOU JO MBC TDBMF TUFFM DBTUJOH CZ B NVMUJQIBTF NPEFM� *01 $POGFSFODF
4FSJFT� .BUFSJBMT 4DJFODF BOE &OHJOFFSJOH ���������� �����

<1��> #FOKBNJO (FSJO )FSW© $PNCFBV .JIB ;BMPľOJL BOE *TBCFMMF 1PJUSBVMU� 1SFEJDUJPO PG
TPMJEJDBUJPO TUSVDUVSFT JO B ��� UPO TUFFM JOHPU� *01 $POGFSFODF 4FSJFT� .BUFSJBMT 4DJFODF BOE
&OHJOFFSJOH JO QSFTT �����

<1��> "LBTI 1BLBOBUJ .PIBNNFE .)BNEJ )FSW© $PNCFBV BOE .JIB ;BMPľOJL� NPEFMMJOH
NBDSPTFHSFHBUJPO NPEJDBUJPO JO %$ DBTUJOH PG BMVNJOJVN BMMPZT JO TIFFU JOHPUT BDDPVOU�
JOH GPS JOMFU NFMU PX FRVJBYFE HSBJO NPSQIPMPHZ BOE USBOTQPSU� *01 $POGFSFODF 4FSJFT�
.BUFSJBMT 4DJFODF BOE &OHJOFFSJOH JO QSFTT �����

<1��> %BNJFO 5PVSSFU -BT[MP 4UVS[ "MFYBOESF 7JBSEJO BOE .JIB ;BMPľOJL� $PNQBSJOH NFTP�
TDPQJD NPEFMT GPS EFOESJUJD HSPXUI� *01 $POGFSFODF 4FSJFT� .BUFSJBMT 4DJFODF BOE &OHJOFFS�
JOH JO QSFTT �����

*ॴॼ९ॺ५४ ३ॵॴ६५ॸ५ॴ३५ ॺ१ॲॱॹ

<*�> .JIB ;BMPľOJL #PľJEBS ĠBSMFS BOE *WBO #BKTJÇ� %3#&. DPNQVUBUJPOBM NPEFMMJOH BOE OPO�
EFTUSVDUJWF FYQFSJNFOUT GPS TVSGBDF IFBU VY EFUFSNJOBUJPO JO EJSFDU DIJMM DBTUJOH PG BMV�
NJOJVN BMMPZ CJMMFUT� *O #FOHU 4VOE©O BOE $BSMPT " #SFCCJB FEJUPST )FBU 5SBOTGFS 7**�
"EWBODFE $PNQVUBUJPOBM .FUIPET JO )FBU 5SBOTGFS QBHFT ���ۗ��� #PTUPO 4PVUIBNQUPO
����� 8*5 1SFTT�

<*�> #PľJEBS ĠBSMFS .JIB ;BMPľOJL 3PCFSU 7FSUOJL +BOF[ 1FSLP 3BKLP ĠBौBMUFS .BSJOB +FMFO
7JMKFN 4USOBE BOE 'SBODJ 5PNB[JOJ� " TJNVMBUJPO TZTUFN GPS EJSFDU DIJMM DBTUJOH PG BMV�
NJOJVN BMMPZT� *O /BEFľEB 5BMJKBO FEJUPS 1SPDFFEJOHT �OE *OUFSOBUJPOBM 4ZQPTJVN PG -JHIU
.FUBMT BOE $PNQPTJUF .BUFSJBMT ����� .BZ ���� #FMHSBEF QBHFT ��ۗ�� #FMHSBEF 4FSCJB
BOE .POUFOFHSP ����� "TTPDJBUJPO PG .FUBMMVSHJDBM &OHJOFFST 4$(�

<*�> +BOF[ 1FSLP $ 4 $IFO #PľJEBS ĠBSMFS BOE .JIB ;BMPľOJL� /VNFSJDBM EJVTTJPO JO NFTI�
MFTT EJVTF BQQSPYJNBUF NFUIPE� *O 4 . 4JWBLVNBS FEJUPS "EWBODFT JO $PNQVUBUJPOBM ࡑ
&YQFSJNFOUBM &OHJOFFSJOH ࡑ 4DJFODFT 
��ڣ4&$$*	 QBHFT ���ۗ���� 5FDI 4DJFODF 1SFTT �����

<*�> )FSW© $PNCFBV "SWJOE ,VNBS BOE .JIB ;BMPľOJL� .PEFMJOH PG FRVJBYFE HSBJO FWPMV�
UJPO BOE NBDSPTFHSFHBUJPOT EFWFMPQNFOU JO TUFFM JOHPUT� *O �UI *OUFSOBUJPOBM $POGFSFODF PO
4PMJEJटDBUJPO 4DJFODF BOE 1SPDFTTJOH $IFOOBJ *OEJB �����

<*�> )FSW© $PNCFBV .JDIFM #FMMFU :WFT 'BVUSFMMF %PNJOJRVF (PCJO &SJD "SRVJT 0MHB #V�
EFOLPWB #FSOBSE %VTTPVCT :WFT %VUFSSBJM "SWJOE ,VNBS 4BMFN .PTCBI .PIBNFE "
3BEZ $IBSMFT�"OES© (BOEJO #FOP®U (PZFBV BOE .JIB ;BMPľOJL� 'PSNBUJPO EF NBDSPT©�
HS©HBUJPOT QFOEBOU MB TPMJEJDBUJPO EVO BMMJBHF 4O�1C � 4ZOUI¨TF EFT QSFNJFST S©TVMUBUT
EVO CFODINBSL� *O .BU©SJBVY ���� QBHFT �ۗ� �����

�



<*�> .JIB ;BMPľOJL "SWJOE ,VNBS )FSW© $PNCFBV .BSJF #FEFM 1IJMJQQF +BSSZ BOE &NNBOVFM
8B[� *OVFODF PG USBOTQPSU NFDIBOJTNT PO NBDSPTFHSFHBUJPO GPSNBUJPO JO EJSFDU DIJMM DBTU
JOEVTUSJBM TDBMF BMVNJOVN BMMPZ JOHPUT� *O .BU©SJBVY ���� /BOUFT 'SBODF �����

<*�> )FSW© $PNCFBV .JDIFM #FMMFU :WFT 'BVUSFMMF %PNJOJRVF (PCJO &SJD "SRVJT 0MHB #V�
EFOLPWB #FSOBSE %VTTPVCT :WFT EV 5FSSBJM "SWJOE ,VNBS $IBSMFT�"OES© (BOEJO #FOP®U
(PZFBV 4BMFN.PTCBI य़JCBVMUफ़BUSBWBVY .PIBNFE " 3BEZ BOE .JIB ;BMPľOJL� "OBM�
ZTJT PG B OVNFSJDBM CFODINBSL GPS DPMVNOBS TPMJEJDBUJPO PG CJOBSZ BMMPZT� *01 $POGFSFODF
4FSJFT� .BUFSJBMT 4DJFODF BOE &OHJOFFSJOH ��������� KVM �����

<*�> )FSW© $PNCFBV BOE .JIB ;BMPľOJL� .VMUJTDBMF BOE NVMUJQIZTJDT NPEFMT JO $'% NPEFM�
JOH BOE TJNVMBUJPO PG TPMJEJDBUJPO QSPDFTT� *O $'% .PEFMJOH BOE 4JNVMBUJPO JO .BUFSJBMT
1SPDFTTJOH 4ZNQPTJVN 5.4 "OOVBM .FFUJOH ���� 0SMBOEP 	'-
 64" �����

<*�> .JIB ;BMPľOJL )FSW© $PNCFBV "SWJOE ,VNBS BOE 7BMFSJP 'SBODFTDP %F 'FMJDF� 7PMVNF�
"WFSBHFE .PEFMJOH PG $IBOOFM .FTPTFHSFHBUJPO� *O �UI *OUFSOBUJPOBM $POGFSFODF PO 4PMJEJ�
टDBUJPO 4DJFODF BOE 1SPDFTTJOH #IVCBOFTXBS *OEJB �����

<*��> )FSW© $PNCFBV BOE .JIB ;BMPľOJL� .VMUJQIZTJDT BOE NVMUJTDBMF NPEFMT JO NPEFMJOH BOE
TJNVMBUJPO PG TPMJEJDBUJPO QSPDFTTFT� *O / .BTTBSP॒J 1 /JUIJBSBTV BOE #PľJEBS ĠBSMFS
FEJUPST FSNBDPNQࡋ ���� #MFE 4MPWFOJB �����

<*��> .JIB ;BMPľOJL BOE )FSW© $PNCFBV� .VMUJQIZTJDT BOE NVMUJTDBMF NPEFMJOH PG TPMJEJDBUJPO
QSPDFTTFT� *O $PVQMFE 1SPCMFNT ���� 7FOJDF *UBMZ �����

<*��> .JIB ;BMPľOJL )FSW© $PNCFBV :PVTTFG 4PVIBS "MFYBOESF 7JBSEJO BOE .BSLVT "QFM�
.FTPTDPQJD .PEFMJOH PG 4PMJEJDBUJPO JO "MMPZT� *O �UI *OUFSOBUJPOBM $POGFSFODF PO 4PMJEJट�
DBUJPO 4DJFODF BOE 1SPDFTTJOH )ZEFSBCBE *OEJB �����

<*��> )FSW© $PNCFBV BOE .JIB ;BMPľOJL� .VMUJQIZTJDT BOE NVMUJTDBMF NPEFMJOH BOE TJNVMBUJPO
PG TPMJEJDBUJPO QSPDFTTFT� *O 'SPOUJFST PG 4PMJEJटDBUJPO 4DJFODF 5.4 "OOVBM .FFUJOH ����
QBHFT ���ۗ��� �����

<*��> -BVSFOU )FZWBFSU )FSW© $PNCFBV .JIB ;BMPľOJL 1IJMJQQF +BSSZ BOE &NNBOVFM 8B[�
.JDSPQPSPTJUZ 1SFEJDUJPO JO "MVNJOJVN %$ $BTUJOH� *O $'% .PEFMJOH BOE 4JNVMBUJPO JO
.BUFSJBMT 1SPDFTTJOH 5.4 "OOVBM .FFUJOH ���� /BTIWJMMF 	5/
 64" �����

<*��> .JIB ;BMPľOJL BOE )FSW© $PNCFBV� .VMUJQIZTJDT BOE NVMUJTDBMF NPEFMJOH PG TPMJEJDBUJPO
JO DBTUJOH QSPDFTTFT� *O FSNFDࡋ ���� (SB[ "VTUSJB �����

<*��> 6MSJLF )FDIU $BO )VBOH +VMJFO ;PMMJOHFS %PNJOJRVF %BMP[ .JIB ;BMPľOJL .BSUO $JT�
UFSOBT "MFYBOESF 7JBSEJO BOE (VJMMBVNF .BSUJO� य़F DPMVNOBS�UP�FRVJBYFE USBOTJUJPO JO
5J"M�BMMPZT VOEFS IZQFSHSBWJUZ BOE NJDSPHSBWJUZ DPOEJUJPOT� *O ��SE "OOVBM .FFUJOH "NFS�
JDBO 4PDJFUZ GPS (SBWJUBUJPOBM BOE 4QBDF 3FTFBSDI 4FB॒MF 	8"
 64" ����� "NFSJDBO 4PDJFUZ
GPS (SBWJUBUJPOBM BOE 4QBDF 3FTFBSDI�

<*��> .JIB ;BMPľOJL BOE )FSW© $PNCFBV� .VMUJQIZTJDT BOE.VMUJTDBMF .PEFMJOH PG 4PMJEJDBUJPO
JO $BTUJOH 1SPDFTTFT� *O �UI %FDFOOJBM *OUFSOBUJPOBM $POGFSFODF PO 4PMJEJटDBUJPO 1SPDFTTJOH
0ME 8JOETPS 6, �����

<*��> 6MSJLF )FDIU $BO )VBOH +VMJFO ;PMMJOHFS %PNJOJRVF %BMP[ .JIB ;BMPľOJL .BSUO $JT�
UFSOBT "MFYBOESF 7JBSEJO 4IBVO .D'BEEFO -¡T[M³ (S¡O¡TZ +VSBK -BQJO /JDPMBT -FSJDIF
BOE 'MPSJBO ,BSHM� य़F &4"�."1 QSPKFDU ۡ(3"%&$&5ۡ ۗ "O PWFSWJFX PG UIF KPJOU SFTFBSDI
PO TPMJEJDBUJPO PG 5J"M�CBTFE BMMPZT VOEFS IZQFSHSBWJUZ BOE NJDSPHSBWJUZ DPOEJUJPOT� *O
" 3P³T[ ;T 7FSFT . 4W©EB BOE ( ,BSBDT FEJUPST 4PMJEJटDBUJPO BOE (SBWJUZ ���� QBHFT
��ۗ�� .JTLPMD )VOHBSZ ����� )VOHBSJBO "DBEFNZ PG 4DJFODFT ۗ 6OJWFSTJUZ PG .JTLPMD�

��



<*��> :J 'FOH .JIB ;BMPľOJL #SJBOय़PNBT BOE "OES© 1IJMMJPO� " �% EJTDSFUF�FMFNFOUNPEFM GPS
TJNVMBUJOH MJRVJE GFFEJOH EVSJOH EFOESJUJD TPMJEJDBUJPO PG TUFFM� *O $IBSMFT�"OES© (BOEJO
BOE .FOHIVBJ 8V FEJUPST �UI *OUFSOBUJPOBM $POGFSFODF PO "EWBODFT JO 4PMJEJटDBUJPO 1SP�
DFTTFT 	*$"41��
 BOE �UI *OUFSOBUJPOBM 4ZNQPTJVN PO $VࡇJOH &EHF PG $PNQVUFS 4JNVMBUJPO
PG 4PMJEJटDBUJPO $BTUJOH BOE 3FटOJOH 	$44$3��
 4BM[CVSH "VTUSJB �����

<*��> %BNJFO 5PVSSFU -BT[MP 4UVS[ "MFYBOESF 7JBSEJO BOE .JIB ;BMPľOJL� $PNQBSJOH NFTP�
TDPQJD NPEFMT GPS EFOESJUJD HSPXUI� �����

$ॵॴॺॸ९२ॻॺ५४ ३ॵॴ६५ॸ५ॴ३५ ॺ१ॲॱॹ

<$�> )FSW© $PNCFBV "SWJOE ,VNBS BOE.JIB ;BMPľOJL� .PEFMJOH PG FRVJBYFE HSBJO FWPMVUJPO
BOE NBDSPTFHSFHBUJPOT EFWFMPQNFOU JO TUFFM JOHPUT� *O �UI *OUFSOBUJPOBM $POGFSFODF PO
4PMJEJटDBUJPO 4DJFODF BOE 1SPDFTTJOH $IFOOBJ *OEJB �����

<$�> )FSW© $PNCFBV BOE .JIB ;BMPľOJL� .VMUJTDBMF BOE NVMUJQIZTJDT NPEFMT JO $'% NPEFM�
JOH BOE TJNVMBUJPO PG TPMJEJDBUJPO QSPDFTT� *O $'% .PEFMJOH BOE 4JNVMBUJPO JO .BUFSJBMT
1SPDFTTJOH 4ZNQPTJVN 5.4 "OOVBM .FFUJOH ���� 0SMBOEP 	'-
 64" �����

<$�> 7BMFSJP 'SBODFTDP %F 'FMJDF )FSW© $PNCFBV .JIB ;BMPľOJL BOE य़JCBVMU फ़BUSBWBVY�
य़SFF�EJNFOTJPOBM TUVEZ PG DIBOOFM NFTPTFHSFHBUJPO GPSNBUJPO EVSJOH TPMJEJDBUJPO PG B
NFUBM BMMPZ� *O �UI 0QFO'0". 8PSLTIPQ %BSNTUBEU (FSNBOZ ����� 5FDIOJTDIF 6OJWFS�
TJU¤U %BSNTUBEU�

<$�> 7BMFSJP 'SBODFTDP %F 'FMJDF .JIB ;BMPľOJL BOE )FSW© $PNCFBV� .FTPTDPQJD TJNVMBUJPO
PG EFOESJUJD DSZTUBM HSPXUI JO CJOBSZ NFUBM BMMPZT� *O �UI 0QFO'0".8PSLTIPQ %BSNTUBEU
(FSNBOZ ����� 5FDIOJTDIF 6OJWFSTJU¤U %BSNTUBEU�

<$�> ,OVU 0NEBM 5WFJUP .BSJF #FEFM .JIB ;BMPľOJL )FSW© $PNCFBV BOE .PIBNNFE
.)BNEJ� /VNFSJDBM TJNVMBUJPO PG NBDSPTFHSFHBUJPO GPSNBUJPO EVSJOH TPMJEJDBUJPO BD�
DPVOUJOH GPS JOPDVMBOU BOE FRVJBYFE HSBJO USBOTQPSU� *O $'% .PEFMJOH BOE 4JNVMBUJPO JO
.BUFSJBMT 1SPDFTTJOH 4ZNQPTJVN 5.4 "OOVBM .FFUJOH ���� 0SMBOEP 	'-
 64" �����

<$�> .JIB ;BMPľOJL )FSW© $PNCFBV "SWJOE ,VNBS BOE 7BMFSJP 'SBODFTDP %F 'FMJDF� 7PMVNF�
"WFSBHFE .PEFMJOH PG $IBOOFM .FTPTFHSFHBUJPO� *O �UI *OUFSOBUJPOBM $POGFSFODF PO 4PMJE�
JटDBUJPO 4DJFODF BOE 1SPDFTTJOH #IVCBOFTXBS *OEJB �����

<$�> .JIB ;BMPľOJL $©ESJD -F #PU 4U©QIBOF (MPDLOFS 0MHB #VEFOLPWB :WFT EV 5FSSBJM
.BSJVT�7BTJMF #FKJOBSJV %PNJOJRVF (PCJO (SFHPS ,PTFD BOE )FSW© $PNCFBV� " /V�
NFSJDBM #FODINBSL &YFSDJTF PO य़FSNBM BOE य़FSNPTPMVUBM /BUVSBM $POWFDUJPO JO -JRVJE
"MMPZT� *O $'% .PEFMJOH BOE 4JNVMBUJPO JO .BUFSJBMT 1SPDFTTJOH 4ZNQPTJVN 5.4 "OOVBM
.FFUJOH ���� 0SMBOEP 	'-
 64" �����

<$�> 7BMFSJP 'SBODFTDP %F 'FMJDF .JIB ;BMPľOJL )FSW© $PNCFBV BOE $ISJTUPQI #FDLFSNBOO�
.FTPTDPQJD .PEFMJOH PG &RVJBYFE %FOESJUFT ۗ " $MPTFS -PPL� *O 'SPOUJFST PG 4PMJEJटDBUJPO
4DJFODF 5.4 "OOVBM .FFUJOH ���� 4BO "OUPOJP 	59
 64" �����

<$�> -BVSFOU )FZWBFSU )FSW© $PNCFBV BOE .JIB ;BMPľOJL� 5XP�QIBTF 'MPX JO %JSFDU $IJMM
$BTU "MVNJOVN "MMPZ 4IFFU *OHPUT� *O &VSPNBU ���� 4FWJMMB 4QBJO �����

<$��> /JDPMBT -FSJDIF )FSW© $PNCFBV .JIB ;BMPľOJL "SWJOE ,VNBS +P«MMF %FNVSHFS +FBO
8FOEFOCBVN BOE $IBSMFT�"OES© (BOEJO� /VNFSJDBM BOE FYQFSJNFOUBM TUVEJFT PG UIF
HSBJO NPSQIPMPHJDBM USBOTJUJPOT BOE NBDSPTFHSFHBUJPO JO UIF TFEJNFOUBUJPO DPOF PG BO
JOEVTUSJBM TUFFM JOHPU� *O 'SPOUJFST PG 4PMJEJटDBUJPO 4DJFODF 5.4 "OOVBM .FFUJOH ���� 4BO
"OUPOJP 	59
 64" �����

��



<$��> .BSJF #FEFM -BVSFOU )FZWBFSU .JIB ;BMPľOJL )FSW© $PNCFBV %PNJOJRVF %BMP[ BOE
(©SBSE -FTPVMU� 1SPDFTT�TDBMF NPEFMJOH PG NJDSPTUSVDUVSF JO EJSFDU DIJMM DBTUJOH PG BMV�
NJOVN BMMPZT� *O *OUFSOBUJPOBM $POGFSFODF PO "EWBODFT JO 4PMJEJटDBUJPO 1SPDFTTFT � 0ME
8JOETPS 6, �����

<$��> )FSW© $PNCFBV BOE .JIB ;BMPľOJL� .VMUJQIZTJDT BOE NVMUJTDBMF NPEFMT JO NPEFMJOH BOE
TJNVMBUJPO PG TPMJEJDBUJPO QSPDFTTFT� *O / .BTTBSP॒J 1 /JUIJBSBTV BOE #PľJEBS ĠBSMFS
FEJUPST FSNBDPNQࡋ ���� #MFE 4MPWFOJB �����

<$��> -©B %FJMMPO +VMJFO ;PMMJOHFS %PNJOJRVF %BMP[ .JIB ;BMPľOJL BOE )FSW© $PNCFBV� *O�
TJUV *OWFTUJHBUJPO PG 4PMVUBM .FMUJOH VTJOH -BTFS 4DBOOJOH $POGPDBM .JDSPTDPQZ� *O *OUFS�
OBUJPOBM $POGFSFODF PO "EWBODFT JO 4PMJEJटDBUJPO 1SPDFTTFT � 0ME 8JOETPS 6, �����

<$��> -BVSFOU )FZWBFSU .BSJF #FEFM .JIB ;BMPľOJL BOE )FSW© $PNCFBV� .BDSPTFHSFHBUJPO JO
EJSFDU DIJMM DBTUJOH PG BO "M�$V CJMMFU� UIF MJOL CFUXFFO NJDSPTUSVDUVSF BOE IZESPEZOBNJDT�
*O *OUFSOBUJPOBM $POGFSFODF PO "EWBODFT JO 4PMJEJटDBUJPO 1SPDFTTFT � 0ME8JOETPS 6, �����

<$��> /JDPMBT -FSJDIF )FSW© $PNCFBV $IBSMFT�"OES© (BOEJO BOE .JIB ;BMPľOJL� .PEFMMJOH
UIF $PMVNOBS�UP�&RVJBYFE BOE &RVJBYFE�UP�$PMVNOBS 5SBOTJUJPOT JO *OHPUT 6TJOH B .VM�
UJQIBTF .PEFM� *O *OUFSOBUJPOBM $POGFSFODF PO "EWBODFT JO 4PMJEJटDBUJPO 1SPDFTTFT � 0ME
8JOETPS 6, �����

<$��> +VMJFO ;PMMJOHFS -©B %FJMMPO #FOP®U "QQPMBJSF %PNJOJRVF %BMP[ .JIB ;BMPľOJL BOE
)FSW© $PNCFBV� 'VTJPO TPMVUBMF EBOT MF TZTU¨NF $V�/J � PCTFSWBUJPOT JO�TJUV FU NPE�
©MJTBUJPO� *O .BU©SJBVY ���� .POUQFMMJFS 'SBODF �����

<$��> .JIB ;BMPľOJL BOE)FSW© $PNCFBV� .VMUJQIZTJDT BOENVMUJTDBMF NPEFMJOH PG TPMJEJDBUJPO
QSPDFTTFT� *O $PVQMFE 1SPCMFNT ���� 7FOJDF *UBMZ �����

<$��> .JIB ;BMPľOJL )FSW© $PNCFBV :PVTTFG 4PVIBS "MFYBOESF 7JBSEJO BOE .BSLVT "QFM�
.FTPTDPQJD .PEFMJOH PG 4PMJEJDBUJPO JO "MMPZT� *O �UI *OUFSOBUJPOBM $POGFSFODF PO 4PMJEJ�
टDBUJPO 4DJFODF BOE 1SPDFTTJOH )ZEFSBCBE *OEJB �����

<$��> )FSW© $PNCFBV BOE .JIB ;BMPľOJL� .VMUJQIZTJDT BOE NVMUJTDBMF NPEFMT JO NPEFMJOH BOE
TJNVMBUJPO PG TPMJEJDBUJPO QSPDFTTFT� *O $PMMPRVF B-ڧ .©UBMMVSHJF RVFM BWFOJS ڧ� 4BJOU�
�UJFOOF 'SBODF �����

<$��> -BVSFOU )FZWBFSU )FSW© $PNCFBV .JIB ;BMPľOJL 1IJMJQQF +BSSZ BOE &NNBOVFM 8B[�
.JDSPQPSPTJUZ 1SFEJDUJPO JO "MVNJOJVN %$ $BTUJOH� *O $'% .PEFMJOH BOE 4JNVMBUJPO JO
.BUFSJBMT 1SPDFTTJOH 5.4 "OOVBM .FFUJOH ���� /BTIWJMMF 	5/
 64" �����

<$��> "MFYBOESF 7JBSEJO .JIB ;BMPľOJL .BSLVT "QFM BOE )FSW© $PNCFBV� .FTPTDPQJD BOE
QIBTF FME TJNVMBUJPOT PG DPMVNOBS BOE FRVJBYFE EFOESJUJD HSPXUI� *O.VMUJTDBMF .BUFSJBMT
.PEFMJOH ���� %JKPO 'SBODF �����

<$��> .JIB ;BMPľOJL BOE)FSW© $PNCFBV� .VMUJQIZTJDT BOENVMUJTDBMF NPEFMJOH PG TPMJEJDBUJPO
JO DBTUJOH QSPDFTTFT� *O FSNFDࡋ ���� (SB[ "VTUSJB �����

<$��> .JIB ;BMPľOJL :PVTTFG 4PVIBS $ISJTUPQI #FDLFSNBOO BOE )FSW© $PNCFBV� 6QTDBMJOH
GSPN.FTPTDPQJD UP .BDSPTDPQJD 4PMJEJDBUJPO .PEFMT CZ 7PMVNF "WFSBHJOH� *O.VMUJTDBMF
.BUFSJBMT .PEFMJOH ���� %JKPO 'SBODF �����

<$��> 6MSJLF )FDIU $BO )VBOH +VMJFO ;PMMJOHFS %PNJOJRVF %BMP[ .JIB ;BMPľOJL .BSUO $JT�
UFSOBT "MFYBOESF 7JBSEJO BOE (VJMMBVNF .BSUJO� य़F DPMVNOBS�UP�FRVJBYFE USBOTJUJPO
JO 5J"M�BMMPZT VOEFS IZQFSHSBWJUZ BOE NJDSPHSBWJUZ DPOEJUJPOT� *O ��SE "OOVBM .FFUJOH
"NFSJDBO 4PDJFUZ GPS (SBWJUBUJPOBM BOE 4QBDF 3FTFBSDI 4FB॒MF 	8"
 64" ����� "NFSJDBO
4PDJFUZ GPS (SBWJUBUJPOBM BOE 4QBDF 3FTFBSDI�

��



<$��> .JIB ;BMPľOJL BOE )FSW© $PNCFBV� .VMUJQIZTJDT BOE .VMUJTDBMF .PEFMJOH PG 4PMJEJDB�
UJPO JO $BTUJOH 1SPDFTTFT� *O �UI %FDFOOJBM *OUFSOBUJPOBM $POGFSFODF PO 4PMJEJटDBUJPO 1SP�
DFTTJOH 0ME 8JOETPS 6, �����

<$��> +VMJFO ;PMMJOHFS 6MSJLF )FDIU .JIB ;BMPľOJL /JDPMF 3FJMMZ %PNJOJRVF %BMP[ )FSW©
$PNCFBV BOE "MFYBOESF 7JBSEJO� य़F DPMVNOBS�UP�FRVJBYFE USBOTJUJPO JO QFSJUFDUJD 5J"M�
CBTFE BMMPZT VOEFS IZQFSHSBWJUZ BOE NJDSPHSBWJUZ DPOEJUJPOT� *O ��UI &VSPQFBO -PX (SBW�
JUZ 3FTFBSDI "TTPDJBUJPO #JFOOJBM 4ZNQPTJVN BOE (FOFSBM "TTFNCMZ 	&-(3"���
 +VBO�MFT�
1JOT 'SBODF �����

<$��> .BSUO $JTUFSOBT 'FSO¡OEF[ .JIB ;BMPľOJL 6MSJLF )FDIU BOE )FSW© $PNCFBV� .BDSP�
TDPQJDNPEFMJOH PG TPMJEJDBUJPO PG 5J"M BMMPZT JO IZQFSHSBWJUZ� *O 4PMJEJटDBUJPO BOE(SBWJUZ
���� .JTLPMD )VOHBSZ �����

<$��> 6MSJLF )FDIU +VMJFO ;PMMJOHFS $BO )VBOH .JIB ;BMPľOJL .BSUO $JTUFSOBT /JDPMF
3FJMMZ %PNJOJRVF %BMP[ )FSW© $PNCFBV BOE "MFYBOESF 7JBSEJO� (3"WJUZ %&QFOEFOU
$PMVNOBS�UP�&RVJBYFE 5SBOTJUJPO JO 5J"M BMMPZT� 1BSU� *� 4PMJEJDBUJPO PG 5J���"M��/C JO
IZQFS HSBWJUZ BOE NVMUJ�QIZTJDT NPEFMMJOH� *O &4" -%$ )ZQFSHSBWJUZ 8PSLTIPQ /PPSE�
XJKL /FUIFSMBOET �����

<$��> 6MSJLF )FDIU +VMJFO ;PMMJOHFS $BO )VBOH .JIB ;BMPľOJL .BSUO $JTUFSOBT /JDPMF
3FJMMZ %PNJOJRVF %BMP[ )FSW© $PNCFBV BOE "MFYBOESF 7JBSEJO� (3"WJUZ %&QFOEFOU
$PMVNOBS�UP�&RVJBYFE 5SBOTJUJPO JO 5J"M BMMPZT� 1BSU� **� 4PMJEJDBUJPO PG 5J���"M��$S�
�/C JO IZQFS HSBWJUZ BOE NVMUJ�QIZTJDT NPEFMMJOH� *O &4" -%$ )ZQFSHSBWJUZ 8PSLTIPQ
/PPSEXJKL /FUIFSMBOET �����

<$��> "OUPOJP 0MNFEJMMB .JIB ;BMPľOJL #FSOBSE 3PVBU BOE)FSW© $PNCFBV� 1BDLJOH EZOBNJDT
PG TQIFSJDBM BOE OPODPOWFY FRVJBYFE EFOESJUJD HSBJOT TFEJNFOUJOH BU MPX 4UPLFT OVNCFS�
*O &$$. � ڝ �UI &VSPQFBO $POGFSFODF PO $PNQVUBUJPOBM .FDIBOJDT (MBTHPX 6, �����

<$��> "LBTI 1BLBOBUJ .PIBNNFE .)BNEJ )FSW© $PNCFBV BOE .JIB ;BMPľOJL� /VNFSJDBM
*OWFTUJHBUJPO PG .BDSPTFHSFHBUJPO .FDIBOJTNT JO %$ $BTUJOH GPS %JFSFOU "MMPZ 4ZTUFNT�
*O 'SPOUJFST PG 4PMJEJटDBUJPO 4DJFODF 5.4 "OOVBM .FFUJOH ���� 1IPFOJY 	";
 64" �����
5.4�

<$��> "LBTI 1BLBOBUJ .PIBNNFE.)BNEJ .JIB ;BMPľOJL BOE)FSW© $PNCFBV� �%NPEFMMJOH
PG UIF JNQBDU PG JOMFU PX PO NBDSPTFHSFHBUJPO GPSNBUJPO JO %$ DBTUJOH PG BMVNJOJVN
BMMPZT BDDPVOUJOH GPS HSBJO NPSQIPMPHZ BOE USBOTQPSU� *O " 3P³T[ ;T 7FSFT . 4W©EB BOE
( ,BSBDT FEJUPST 4PMJEJटDBUJPO BOE (SBWJUZ ���� QBHFT ���ۗ��� .JTLPMD )VOHBSZ �����
)VOHBSJBO "DBEFNZ PG 4DJFODFT ۗ 6OJWFSTJUZ PG .JTLPMD�

<$��> "MFYBOESF 7JBSEJO .JIB ;BMPľOJL :PVTTFG 4PVIBS .BSLVT "QFM BOE )FSW© $PNCFBV�
.FTPTDPQJD FOWFMPQF NPEFM GPS FRVJBYFE BOE DPMVNOBS EFOESJUJD HSPXUI DPVQMFE XJUI
PX� *O 'SPOUJFST PG 4PMJEJटDBUJPO 4DJFODF 5.4 "OOVBM .FFUJOH ���� 1IPFOJY 	";
 64"
����� 5.4�

<$��> 4BCJOF ;JSJ -BT[MP 4UVS[ "MFYBOESF 7JBSEJO .JIB ;BMPľOJL BOE %BNJFO 5PVSSFU� " RVBO�
UJUBUJWF CFODINBSL PG NVMUJTDBMF NPEFMT GPS EFOESJUJD HSPXUI� *O 4PMJEJटDBUJPO BOE (SBWJUZ
���� .JTLPMD )VOHBSZ �����

<$��> .BSUO $JTUFSOBT '� .JIB ;BMPľOJL )FSW© $PNCFBV BOE 6MSJLF )FDIU� &FDU PG UIF $PSJ�
PMJT GPSDF PO UIF NBDSPTFHSFHBUJPO PG BMVNJOVN JO UIF DFOUSJGVHBM DBTUJOH PG 5J"M BMMPZT�
*O $PMMPRVF B-ڧ .©UBMMVSHJF RVFM BWFOJS ڧ� /BODZ 'SBODF �����

��



<$��> )BOBEJ &॒SPVEJ (JMEBT (VJMMFNPU )FSW© $PNCFBV .JIB ;BMPľOJL BOE $IBSMFT�"OES©
(BOEJO� 'JOJUF FMFNFOU NPEFMJOH PG TPMJEJDBUJPO HSBJO TUSVDUVSFT� *O &VSPNBU ���� �����

<$��> #FOKBNJO (FSJO )FSW© $PNCFBV .JIB ;BMPľOJL *TBCFMMF 1PJUSBVMU BOE .BZB $IFSJG� 1SF�
EJDUJPO PG TPMJEJDBUJPO TUSVDUVSFT JO B ��� U TUFFM JOHPU� *O $PMMPRVF B-ڧ .©UBMMVSHJF RVFM
BWFOJS ڧ� /BODZ 'SBODF �����

<$��> $BO )VBOH "MFYBOESF 7JBSEJO 6MSJLF )FDIU .BSUO $JTUFSOBT .JIB ;BMPľOJL BOE +VMJFO
;PMMJOHFS� 4PMJEJDBUJPO PG 5J���"M��/C JO IZQFS�HSBWJUZ BOE NVMUJ�QIZTJDT NPEFMMJOH�
*O $IBSMFT�"OES© (BOEJO BOE .FOHIVBJ 8V FEJUPST �UI *OUFSOBUJPOBM $POGFSFODF PO "E�
WBODFT JO 4PMJEJटDBUJPO 1SPDFTTFT 	*$"41��
 BOE �UI *OUFSOBUJPOBM 4ZNQPTJVN PO $VࡇJOH
&EHF PG $PNQVUFS 4JNVMBUJPO PG 4PMJEJटDBUJPO $BTUJOH BOE 3FटOJOH 	$44$3��
 QBHF ����
4BM[CVSH "VTUSJB �����

<$��> "OUPOJP 0MNFEJMMB .JIB ;BMPľOJL BOE )FSW© $PNCFBV� .PE©MJTBUJPO EFT JOUFSBDUJPOT
TPMVUBMFT FO DSPJTTBODF EFOESJUJRVF ©RVJBYF EBOT EFT ©DIBOUJMMPOT NJODFT� *O $PMMPRVF B-ڧ
.©UBMMVSHJF RVFM BWFOJS ڧ� /BODZ 'SBODF �����

<$��> "LBTI 1BLBOBUJ .PIBNNFE .)BNEJ )FSW© $PNCFBV BOE .JIB ;BMPľOJL� "OBMZTJT
PG UIF JNQBDU PG JOMFU JOEVDFE GPSDFE DPOWFDUJPO PO NBDSPTFHSFHBUJPO GPSNBUJPO JO %$
DBTUJOH PG BMVNJOJVN TIFFU JOHPUT� *O $IBSMFT�"OES© (BOEJO BOE .FOHIVBJ 8V FEJUPST
�UI *OUFSOBUJPOBM $POGFSFODF PO "EWBODFT JO 4PMJEJटDBUJPO 1SPDFTTFT 	*$"41��
 BOE �UI *OUFS�
OBUJPOBM 4ZNQPTJVN PO $VࡇJOH &EHF PG $PNQVUFS 4JNVMBUJPO PG 4PMJEJटDBUJPO $BTUJOH BOE
3FटOJOH 	$44$3��
 4BM[CVSH "VTUSJB �����

<$��> 4BWZB 4BDIJ .JIB ;BMPľOJL )FSW© $PNCFBV $IBSMFT�"OES© (BOEJO .BSWJO (FOOFTTPO
+P«MMF %FNVSHFS .JDIB«M 4UPMU[ BOE *TBCFMMF 1PJUSBVMU� &UVEF FYQ©SJNFOUBMF FU NPE©MJTB�
UJPO EF MBKPVU EJOPDVMBOU FO DPVM©F EF MJOHPUT EBDJFS� *O $PMMPRVF B-ڧ .©UBMMVSHJF RVFM
BWFOJS ڧ� /BODZ 'SBODF �����

<$��> %BNJFO 5PVSSFU : 4POH "MBJO ,BSNB " 1JOFBV (JMEBT (VJMMFNPU $IBSMFT�"OES© (BOEJO
"MFYBOESF 7JBSEJO -BT[MP 4UVS[ .JIB ;BMPľOJL 4BCSJOF ;JSJ " .B BOE +BWJFS --PSDB�
1IBTF�FME BT B CFODINBSL GPS PUIFS NPEFMT PG TPMJEJDBUJPO BOENJDSPTUSVDUVSF FWPMVUJPO�
*O 1' �� ڝ Fࡋ �UI *OUFSOBUJPOBM 4ZNQPTJVN PO 1IBTFښ'JFME .PEFMMJOH JO .BUFSJBMT 4DJFODF
#PDIVN (FSNBOZ �����

<$��> "MFYBOESF 7JBSEJO .JIB ;BMPľOJL -BT[MP 4UVS[ BOE (FSIBSE ;JNNFSNBOO� .FTPTDBMF
FOWFMPQF NPEFMMJOH PG DPMVNOBS HSPXUI BOE DPOEJUJPOT GPS $&5 JO /1(�%$ BMMPZ� *O
$IBSMFT�"OES© (BOEJO BOE .FOHIVBJ 8V FEJUPST �UI *OUFSOBUJPOBM $POGFSFODF PO "E�
WBODFT JO 4PMJEJटDBUJPO 1SPDFTTFT 	*$"41��
 BOE �UI *OUFSOBUJPOBM 4ZNQPTJVN PO $VࡇJOH &EHF
PG $PNQVUFS 4JNVMBUJPO PG 4PMJEJटDBUJPO $BTUJOH BOE 3FटOJOH 	$44$3��
 4BM[CVSH "VTUSJB
�����

<$��> "MFYBOESF 7JBSEJO +VMJFO ;PMMJOHFS .JIB ;BMPľOJL (VJMMBVNF #PVTTJOPU +BOJO &JLFO
.BSLVT "QFM -BT[MP 4UVS[ 3BMG #FSHFS BOE 6MSJLF )FDIU� .©DBOJRVF EFT VJEFT FU TP�
MJEJDBUJPO   M©DIFMMF NJDSPTDPQJRVF� *O $PMMPRVF B-ڧ .©UBMMVSHJF RVFM BWFOJS ڧ� /BODZ
'SBODF �����

<$��> .BSUO $JTUFSOBT 'FSO¡OEF[ .JIB ;BMPľOJL BOE )FSW© $PNCFBV� .PEFMJOH PG FRVJBYFE
HSBJO NPUJPO EVSJOH TPMJEJDBUJPO PG 5J"M BMMPZT VOEFS DFOUSJGVHBM DPOEJUJPOT� *O.PEFMJOH
PG $BTUJOH 8FMEJOH BOE "EWBODFE 4PMJEJटDBUJPO 1SPDFTTFT 97 %KVS¶O¤TFU 4XFEFO �����

<$��> :V[F -J "OUPOJP 0MNFEJMMB +VMJFO ;PMMJOHFS "MFYBOESF 7JBSEJO BOE.JIB ;BMPľOJL� .FTP�
TDPQJD NPEFMJOH PG QSJNBSZ TQBDJOH BOE HSBJO TFMFDUJPO EVSJOH DPMVNOBS TPMJEJDBUJPO JO
DPOEJUJPOT PG TFMFDUJWF MBTFS NFMUJOH� *O .PEFMJOH PG $BTUJOH 8FMEJOH BOE "EWBODFE 4PMJE�
JटDBUJPO 1SPDFTTFT 97 %KVS¶O¤TFU 4XFEFO �����

��



<$��> "OUPOJP 0MNFEJMMB BOE .JIB ;BMPľOJL� �% NFTPTDPQJD NPEFMJOH PG TF॒MJOH BOE QBDLJOH PG
FRVJBYFE EFOESJUFT� *O .PEFMJOH PG $BTUJOH 8FMEJOH BOE "EWBODFE 4PMJEJटDBUJPO 1SPDFTTFT
97 %KVS¶O¤TFU 4XFEFO �����

<$��> 4BWZB 4BDIJ "OUPOJP 0MNFEJMMB .JIB ;BMPľOJL )FSW© $PNCFBV BOE $IBSMFT�"OES©
(BOEJO� $PVQMJOH B NVMUJQIBTF TPMJEJDBUJPO NPEFM XJUI B OFVSBM�OFUXPSL CBTFE NPEFM
GPS UIFSNPEZOBNJD FRVJMJCSJB JO NVMUJDPNQPOFOU BMMPZT� *O .PEFMJOH PG $BTUJOH 8FMEJOH
BOE "EWBODFE 4PMJEJटDBUJPO 1SPDFTTFT 97 %KVS¶O¤TFU 4XFEFO �����

*ॴॼ९ॺ५४ ॹ५ॳ९ॴ१ॸॹ १ॴ४ ॽॵॸॱॹ८ॵॶ ॲ५३ॺॻॸ५ॹ

<4�> .JIB ;BMPľOJL� .PEFMJOH PG य़FSNPTPMVUBM 'MPX BOE .BDSPTFHSFHBUJPO JO %$ $BTUJOH� *O
"MDBO $37 7PSFQQF 'SBODF �����

<4�> .JIB ;BMPľOJL� 'PSNBUJPO PG NBDSPTFHSFHBUJPO� NPEFMJOH BOE TJNVMBUJPO� *O &DPMF EFT
.JOFT EF /BODZ ڝ -4(�. /BODZ 'SBODF �����

<4�> .JIB ;BMPľOJL� .PEFMJOH PG .BDSPTFHSFHBUJPO *ODMVEJOH (SBJO .PUJPO� *O 4JOUFG .BUFSJBMT
ࡑ $IFNJTUSZ 0TMP /PSXBZ �����

<4�> .JIB ;BMPľOJL� .PEFMJSBOKF JO TJNVMBDJKB MJWBSTLJI QSPDFTPW 	.PEFMJOH BOE TJNVMBUJPO PG
DBTUJOH QSPDFTTFT
� *O *OTUJUVU +PľFG 4UFGBO -KVCMKBOB 4MPWFOJB �����

<4�> .JIB ;BMPľOJL $©ESJD -F #PU BOE &SJD "SRVJT� $POWFDUJPO OBUVSFMMF FU DIBOHFNFOU EF
QIBTF� *O �DPMF UIFNBUJRVF -FT DIBOHFNFOUT EF QIBTFT TPMJEF�MJRVJEF�WBQFVS ڝ GPOEFNFOUT FU
BQQMJDBUJPOT -FT &NCJF[ 'SBODF �����

<4�> )FSW© $PNCFBV #FSOBSE %VTTPVCT "SWJOE ,VNBS BOE .JIB ;BMPľOJL� &UVEF EF MB NJTF
FO QMBDF EFT TUSVDUVSFT EF TPMJEJDBUJPO FU EFT NBDSPT©HS©HBUJPOT� *O +PVSO©F .�1� *OTUJUVU
+FBO -BNPVS /BODZ 'SBODF �����

<4�> .JIB ;BMPľOJL 7BMFSJP 'SBODFTDP %F 'FMJDF BOE )FSW© $PNCFBV� -F NPE¨MF N©TPTDPQJRVF
EV DIBNQ EFOWFMPQQF ۗ MFT QSFNJFST QBT� *O +PVSO©FT (%3 4". &YQ©SJFODFT *O�TJUV FU
4JNVMBUJPOT .BSTFJMMF 'SBODF �����

<4�> .JIB ;BMPľOJL� .PE©MJTBUJPO NVMUJ�©DIFMMFT EF MB TPMJEJDBUJPO� *O *OTUJUVU EF $IJNJF FU EFT
.BU©SJBVY 1BSJT�&TU 	*$.1&
 य़JBJT 'SBODF �����

<4�> .JIB ;BMPľOJL� 4PMJEJDBUJPO EFT BMMJBHFT N©UBMMJRVFT � .PE©MJTBUJPO EF MB [POF Q¢UFVTF� *O
4©NJOBJSF "/3 1SJODJQJB TVS MFT NJMJFVY QPSFVY 1BSJT 'SBODF �����

<4��> .JIB ;BMPľOJL� .BDSPT©HS©HBUJPO� *O �DPMF UIFNBUJRVF 4PMJEJटDBUJPO Eڣ"MMJBHFT .©UBMMJRVFT
4U� 1JFSSF E0M©SPO 'SBODF �����

<4��> .JIB ;BMPľOJL� $PNCJOJOH JO TJUV FYQFSJNFOUT BOE OVNFSJDBM NPEFMJOH PG TPMJEJDBUJPO
PG NFUBMMJD BMMPZT� *O *OUFSOBUJPOBM XPSLTIPQ .FUBMMVSHZ XJUI TZODISPUSPOT /BODZ 'SBODF
�����

<4��> .JIB ;BMPľOJL :PVTTFG 4PVIBS 7BMFSJP 'SBODFTDP%F 'FMJDF BOE)FSW© $PNCFBV� .PEFMJOH
PG DSZTUBM HSPXUI EVSJOH TPMJEJDBUJPO� *O �¨SF +PVSO©F 'SBO§BJTF EFT 6UJMJTBUFVST 0QFO'0".
3PVFO 'SBODF �����

<4��> .JIB ;BMPľOJL "MFYBOESF 7JBSEJO :PVTTFG 4PVIBS .BSLVT "QFM BOE )FSW© $PNCFBV�
4JNVMBUJPO N©TPTDPQJRVF EF MB DSPJTTBODF EFOESJUJRVF FU DPNQBSBJTPOT BWFD MF DIBNQ EF
QIBTF� *O +PVSO©FT BOOVFMMFT EV (%3 4". 	4PMJEJटDBUJPO EFT "MMJBHFT .©UBMMJRVFT
 (SFOPCMF
'SBODF �����

��



<4��> .JIB ;BMPľOJL� .VMUJTDBMF.PEFMJOH PG 4PMJEJDBUJPO� *O6OJWFS[B W /PWJ (PSJDJ "KEPWġÍJOB
4MPWFOJB �����

<4��> .JIB ;BMPľOJL� 5SBOTGFSUT NVMUJ�©DIFMMFT � **� 5SBOTGFSUT EBOT MB [POF Q¢UFVTF� *O �DPMF
UIFNBUJRVF 4PMJEJटDBUJPO Eڣ"MMJBHFT .©UBMMJRVFT FU .PE¨MFT 4U� 1JFSSF E0M©SPO 'SBODF �����

<4��> "OUPOJP 0MNFEJMMB .JIB ;BMPľOJL BOE )FSW© $PNCFBV� .PE©MJTBUJPO EFT JOUFSBDUJPOT
TPMVUBMFT FO DSPJTTBODF EFOESJUJRVF ©RVJBYF EBOT EFT ©DIBOUJMMPOT NJODFT� *O +PVSO©FT BO�
OVFMMFT EV (%3 4". 	4PMJEJटDBUJPO EFT "MMJBHFT .©UBMMJRVFT
 QBHFT 5&$)/FXT '0/%&3*&
OP� �� ���� Q� �� -JMMF 'SBODF �����

<4��> .JIB ;BMPľOJL� .PE©MJTBUJPO NVMUJ�©DIFMMFT EF MB TPMJEJDBUJPO� EF MB NJDSPTUSVDUVSF BV
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