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Abstract

MACHINE LEARNING TO PREDICT IMPULSE CONTROL
DISORDERS IN PARKINSON’S DISEASE

by Johann Faouzi

Impulse control disorders are a class of psychiatric disorders characterized by impul-
sivity. These disorders are common during the course of Parkinson’s disease, decrease
the quality of life of subjects, and increase caregiver burden. Being able to predict
which individuals are at higher risk of developing these disorders and when is of high
importance.

The objective of this thesis is to study impulse control disorders in Parkinson’s
disease from the statistical and machine learning points of view, and can be divided
into two parts. The first part consists in investigating the predictive performance of
the altogether factors associated with these disorders in the literature. The second part
consists in studying the association and the usefulness of other factors, in particular
genetic data, to improve the predictive performance.

In the first chapter, we present Parkinson’s disease and impulse control disorders,
review the literature on impulse control disorders in Parkinson’s disease, introduce the
main concepts of machine learning, and describe the databases from which we obtained
data and the software used to analyze these data. In the second chapter, we investigate
the predictive performance of several machine learning algorithms using features that
have been associated with impulse control disorders in Parkinson’s disease. In the third
chapter, we investigate the association between impulse control disorders in Parkinson’s
disease and genetic risk scores for a broad range of phenotypes. In the last chapter,
we investigate different approaches to integrate static data in recurrent neural networks
and evaluate their predictive performance in the use case of predicting impulse control
disorders in Parkinson’s disease, with genetic data used as static data.

Across these works, we highlight the importance of using machine learning algo-
rithms, cross-validation and replication cohorts to unbiasedly estimate the predictive
power of known and putative risk factors of impulse control disorders in Parkinson’s
disease.
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Résumé

APPRENTISSAGE AUTOMATIQUE POUR LA PRÉDICTION
DES TROUBLES DU CONTRÔLE DE L’IMPULSIVITÉ DANS LA

MALADIE DE PARKINSON

par Johann Faouzi

Les troubles du contrôle de l’impulsivité sont une classe de troubles psychiatriques car-
actérisés par des difficultés dans la maîtrise de ses émotions, pensées et comportements.
Ces troubles sont courants dans la maladie de Parkinson et associés à une baisse de la
qualité de vie des patients ainsi qu’à une augmentation de la charge des aidants. Pou-
voir prédire quels sont les sujets les plus à risque de développer ces troubles et quand
ces troubles apparaissent est de grande importance.

L’objectif de cette thèse est d’étudier les troubles du contrôle de l’impulsivité dans
la maladie de Parkinson à partir des approches statistique et de l’apprentissage automa-
tique, et se divise en deux parties. La première partie consiste à analyser la performance
prédictive de l’ensemble des facteurs associés à ces troubles dans la littérature. La sec-
onde partie consiste à étudier l’association et l’utilité d’autres facteurs, en particulier
des données génétiques, pour améliorer la performance prédictive.

Dans un premier chapitre, nous présentons la maladie de Parkinson et les trou-
bles du contrôle de l’impulsivité, effectuons une revue de la littérature sur les trou-
bles du contrôle de l’impulsivité dans la maladie de Parkinson, introduisons les prin-
cipaux concepts de l’apprentissage automatique et présentons les bases de données sur
lesquelles nous avons travaillé et les logiciels utilisés pour analyser ces données. Dans
un deuxième chapitre, nous étudions la performance prédictive de plusieurs algorithmes
d’apprentissage automatique en utilisant comme variables d’entrée les facteurs asso-
ciés aux troubles du contrôle de l’impulsivité dans la maladie de Parkinson. Dans
un troisième chapitre, nous étudions l’association entre les troubles du contrôle de
l’impulsivité dans la maladie de Parkinson et des scores de risque génétique pour un
large panel de phénotypes. Dans un dernier chapitre, nous étudions différentes ap-
proches d’intégrer des données statiques dans des réseaux de neurones récurrents et
évaluons leur performance dans le cas de la prédiction des troubles du contrôle de
l’impulsivité dans la maladie de Parkinson, en utilisant des données génétiques pour les
données statiques.

À travers ces travaux, nous mettons en avant l’importance d’utiliser des algorithmes
d’apprentissage automatique, des méthodes de validation croisée et des cohortes de
réplication pour évaluer la puissance prédictive de facteurs de risque connus ou supposés
des troubles du contrôle de l’impulsivité dans la maladie de Parkinson.
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Introduction

Context

Parkinson’s disease (PD) is a neurodegenerative disease with no cure to date. Besides
its characteristic motor symptoms, numerous non-motor symptoms have been reported
to occur in the course of the disease (Chaudhuri et al., 2006). A specific symptom has
recently been increasingly acknowledged: impulse control disorders.

Impulse control disorders (ICDs) are a class of psychiatric disorders involving prob-
lems in the self-control of emotions and behaviors (American Psychiatric Association,
2013). They include pyromania, kleptomania, Internet addiction disorder and inter-
mittent explosive disorder for instance. In Parkinson’s disease, the four most common
impulse control disorders are pathological gambling, binge eating disorder, compulsive
sexual behavior and compulsive buying disorder (Weintraub and Claassen, 2017).

Many factors have been associated with impulse control disorders in Parkinson’s
disease (Grall-Bronnec et al., 2018). Socio-demographic factors (age of PD onset, sex),
psychiatric comorbidities (anxiety, depression), sleep disorders, and PD medication have
been associated with ICDs in PD among others. Dopamine agonists (DAs), a class of
PD medication, have been the most strongly correlated with ICDs. Dopamine agonists
still have their advantages as they delay the initiation of levodopa, another class of PD
medication with its own adverse effects.

Impulse control disorders are associated with a decrease in quality of life, strained
interpersonal relationships, financial distress, medical complications, and higher care-
giver burden (Weintraub and Claassen, 2017). Prompt identification and treatment
of the symptoms are usually imperative to improve the quality of life of the subjects.
However, managing impulse control disorders implies that they are already present. Ac-
curately predicting which subjects are at higher risk of developing these disorders and
when they occur could allow for early management, decrease their negative impact, and
potentially prevent their apparition.
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Objective

The general objective of this thesis is to study impulse control disorders in Parkinson’s
disease from the machine learning point of view, with a focus on their predictability.
Despite the rise of machine learning, this approach has been little to not used in the
context of ICDs in PD.

Our first objective is to study the how well ICDs in PD can be predicted by combining
the factors reported in the literature. The known risk factors come from univariate
association studies that do not take into account the other risk factors. Machine learning
allows for learning from a set of features at once and thus leveraging information from all
the factors. Using machine learning comes with specific methodological requirements
to assess their predictive performance in an unbiased manner. These methods, such
as cross-validation, are not always well-known in the medical field but are necessary
not to report overly optimistic results. We describe and apply such methods in this
application.

Our second objective is to investigate the genetic factors of ICDs in PD, as little
is known about these risks. A few associations from candidate genes analyses have
been reported, but these studies have not been replicated. On the other hand, genome-
wide association studies (GWAS) investigate the combined risk of the whole genome
by computing a genetic risk score (GRS), but none has been published on ICDs in
PD. Instead of performing a GWAS, which requires a large sample size, we study the
association between ICDs in PD and genetic risk scores of other phenotypes, for which
large GWAS exist.

Contributions

Our contributions in the field of impulse control disorders in Parkinson’s disease are
three-fold. First, we study the added value of combining the reported factors associated
with ICDs in PD to predict them, by training machine learning algorithms using these
factors as input. Second, we investigate the association between ICDs in PD and genetic
factors for a broad range of phenotypes, including other psychiatric disorders. Third,
we study how to integrate time-dependent features, such as clinical measurements, and
time-independent information, such as socio-demographic and genetic factors, in pre-
dictive models, with an application in the prediction of ICDs in PD using recurrent
neural networks.

Only two studies have reported a classification task of impulse control disorders in
Parkinson’s disease (Erga et al., 2018; Kraemmer et al., 2016). However, both studies
lack a replication cohort and have major methodological issues (lack of cross-validation,
biased feature selection) that alter the trust in the reported predictive performance. We
propose the first study evaluating in an unbiased manner the predictive performance
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of several machine learning algorithms using known risk factors as input data. We
investigate the use of five standard machine learning classification algorithms (logistic
regression, support vector machines with linear and RBF kernels, random forest and
gradient tree boosting) and recurrent neural networks to predict the presence or absence
of ICDs for a given patient at their next visit. In order to make the variable-length
sequences of visits suitable as input data for the standard machine learning algorithms,
we reduce each variable-length sequence of visits into one “summary” visit using a
convex combination. We investigate several reduction approaches, each giving different
weights to each visit. We evaluate the predictive performance on two research cohorts
with different characteristics to assess the generalization capability of the models.

Secondly, we investigate the association between genetic risk scores and impulse
control disorders in Parkinson’s disease. Many phenotypes are known to be heritable,
yet less is known about which parts of the genomes and how they contribute to this
heritability. A genetic risk score is a single score indicating, given one’s genome, their
risk of developing a given phenotype (Wray et al., 2007). For instance, genetic risk scores
for schizophrenia and bipolar disorder have been associated with creativity (Power et al.,
2015). Recently, the genetic risk score of Parkinson’s disease has been reported not to be
associated with ICDs in PD (Ihle et al., 2020). We investigate the association between
40 generic risk scores representing a broad range of phenotypes, and ICDs in PD, in
two research cohorts.

Finally, we investigate the integration of static data in recurrent neural networks.
We review the literature on this topic and identify four approaches. Besides the dummy
approach consisting in removing static data, the most common approach is to have static
and dynamic data in their own branches in the network. This approach is not specific to
combining static and dynamic data, and is commonly used to integrate multimodal data
in artificial neural networks (Hao et al., 2019; Mobadersany et al., 2018). The two other
identified approaches consist in treating static data as dynamic data (Leontjeva and
Kuzovkin, 2016; Rahman et al., 2020) and initializing the parameters of the recurrent
neural unit using the static features (Kristensen and Burelli, 2019). We propose a new
approach consisting in modifying the dynamic features using the static features. We
investigate the predictive performance of the five approaches in the use case of predicting
ICDs in PD, where the static features are socio-demographic and genetic features.
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Chapter 1

Background

Parkinson’s disease is the second most frequent neurodegenerative disorder after
Alzheimer’s disease (Nussbaum and Ellis, 2003). In France, 150,000 people were af-
fected by PD in 2010 and over 250,000 are expected to be affected in 2030 (Wanneveich
et al., 2018). To date, no cure for this disease exists and the quality of life of the pa-
tients slowly but steadily decreases until death. Its economic impact is substantial as
the cost in the United Kingdom was estimated to be between £449 million and £3.3
billion annually in 2007 (Findley, 2007). The social impact of PD is also important as
the quality of life of PD cases is heavily reduced due to the large range of impairing
symptoms, increasing caregiver burden.

Besides the three cardinal motor symptoms of PD that are tremor, bradykinesia, and
rigidity (Jankovic, 2008), many non-motor symptoms often occur during the course of
the disease including cognitive, sleep, dysautonomic, and behavioral disorders (Chaud-
huri et al., 2006). There is no cure for PD. The dopamine replacement therapy alleviate
motor symptoms, but is hampered by motor complications (fluctuations, dyskinesia)
and adverse effects. Impulse control disorders, a class of behavioral psychiatric disor-
ders characterized by impulsivity, is a frequent adverse effect of replacement dopamine
therapy (Corvol et al., 2018). Predicting which subjects will develop these disorders and
when is challenging, but of great importance because of their familial, social, economic
or legal impact.

In this section, we introduce Parkinson’s disease, from pathophysiology to symptoms
to medications. Then we define impulse control disorders and detail in which popula-
tions they have been studied, and review the literature on impulse control disorders in
Parkinson’s disease. Next we introduce the main concepts of machine learning. Finally
we discuss how machine learning can be helpful to tackle impulse control disorders in
Parkinson’s disease.
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6 Chapter 1. Background

1.1 Parkinson’s disease

1.1.1 History

The first clear clinical description of Parkinson’s disease was provided in 1817 by James
Parkinson in his Essay on the Shaking Palsy (Parkinson, 2002), in which he defined
shaking palsy as:

Involuntary tremulous motion, with lessened muscular power, in parts not
in action and even when supported; with a propensity to bend the trunk
forwards, and to pass from a walking to a running pace: the senses and
intellects being uninjured

and used the term paralysis agitans to describe individuals with this disorder. In his
essay, he reported six cases that he had seen as patients or that he had observed during
his wanderings through the streets near his home in Hoxton Square (Lees, 2007).

Jean-Martin Charcot, the father of modern neurology (Gomes and Engelhardt,
2013), deepened the knowledge on this disorder with his studies between 1868 and
1881, notably distinguishing between rigidity, weakness and bradykinesia (Lees, 2007).
He also advocated the renaming of the disorder in honor of James Parkinson (Lees,
2007).

Landmarks on the understanding of the disease include the description of micro-
scopic particles, later called Lewy bodies, in the brains of PD cases by Friedrich Lewy
in 1912 (Holdorff, 2006), the report that the substantia nigra was the main structure
affected in the brain by Konstantin Tretiakoff in 1919 (Goedert et al., 2013), the un-
derlying biochemical changes in the brain by Arvid Carlsson and Oleh Hornykiewicz in
the 1950s (Lees, 2007), and the discovery of alpha-synuclein being the main component
of Lewy bodies by Spillantini and others in 1997 (Spillantini et al., 1997).

Antiparkinsonian effects of anticholinergics were first described in 1868 by Leopold
Ordenstein, a student of Jean-Martin Charcot (Kim et al., 2017). In his thesis, he states
that “Monsieur Charcot has begun to prescribe 2 or 3 granules of hyoscyamine daily,
approximately 1 mg each. This medication was able to provide several hours of rest
for some patients. Apparently, further observations are necessary to make a decision
about this medication”. In 1957, Arvid Carlsson showed that levodopa reversed the
akinetic effect of reserpine, a drug that lowers blood pressure and slows heart rate, in
rabbits (Carlsson et al., 1957). In 1960, Oleh Hornykiewicz published a landmark paper
showing for the first time a significant depletion of dopamine in the caudate and putamen
of patients only with PD or postencephalitic parkinsonism (Ehringer and Hornykiewicz,
1960). The successful introduction of high dosage levodopa therapy occurred in 1967
(Cotzias et al., 1967). Before, anticholinergics remained the only available medical
therapy for Parkinson’s disease. The 1960s were also marked by the first observation of
the antiparkinsonian effects of amantadine. In the 1980s, dopamine agonists were tested
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1.1. Parkinson’s disease 7

as monotherapy in early PD and two catechol-O-methyltransferase (COMT) inhibitors
were found to be orally active, following the discovery of monoamine oxidase (MAO) as
the mechanism for inactivating the monoamines levodopa decarboxylase enzyme in the
1930s (Kim et al., 2017).

1.1.2 Classification

In the tenth revision of the International Statistical Classification of Diseases and Re-
lated Health Problems, the code for Parkinson’s disease is G20, belonging to the group of
extrapyramidal and movement disorders (G20–G26) among the diseases of the nervous
system (G00–G99).

The main motor symptoms of PD, called parkinsonism, consist of bradykinesia and
one of two other physical signs: muscular rigidity and tremor at rest (Jankovic, 2008).
Parkinson’s disease is the most prevalent form of parkinsonism and is often called id-
iopathic parkinsonism, that is parkinsonism with no identifiable cause (Samii et al.,
2004). Drugs, toxins, infections, and brain lesions such as stroke can lead to parkin-
sonism. Parkinsonism is not exclusive to PD and can be found in a group of other
diseases often called atypical parkinsonism, consisting of other features differentiating
them from PD. This group includes multiple system atrophy, progressive supranuclear
palsy, Lewy body dementia and corticobasal degeneration (Samii et al., 2004).

1.1.3 Pathophysiology

The pathological hallmark of PD is cell death in the basal ganglia, particularly in the
ventral component of the substantia nigra pars compacta (Davie, 2008). By the time
of death, the substantia nigra pars compacta has lost up to 70% of its neurons in
comparison to unaffected individuals. Death of astrocytes and a significant increase in
the number of microglia in the substantia nigra also occur (Dickson, 2018).

Figure 1.1 illustrates the primary motor circuits in the basal ganglia. The basal
ganglia are functionally connected to other brain regions via the motor, oculo-motor,
associative, limbic, and orbitofrontal pathways (Obeso et al., 2008). The motor pathway
connects the basal ganglia to the motor cortex, which is involved in the planning,
control, and execution of voluntary movements. The oculo-motor pathway links the
basal ganglia to the frontal eye fields, which is responsible for saccadic and voluntary
eye movements. The cerebral cortex is connected to the basal ganglia via the associative
pathway, and enable to support abstract thinking and language, produce a meaningful
perceptual experience of the world, and enable us to interact effectively. The limbic
pathway connects the basal ganglia to the limbic system, which supports a variety
of functions including emotion, behavior, motivation, long-term memory, and olfaction.
The orbitofrontal cortex is connected to the basal ganglia via the orbitofrontal pathway,
which is involved in the cognitive process of decision-making.
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8 Chapter 1. Background

Figure 1.1: Schematic overview of the primary motor circuits in the basal ganglia, the
indirect (left) and direct (right) pathways (reproduced from (Harris et al., 2020b)).
D1: D1 receptors; D2: D2 receptors; DA: dopamine; ENK: enkephalin; GLU: glutamate;
NUC: nucleus; PPN: pedunculopontine nucleus; SP: substance P; SUB: substantia.

Dopamine neurons of the substantia nigra pars compacta mainly innervate the motor
pathway, hence the predominance of the motor symptoms. However, the mesolimbic
and mesocortical pathways have their somas in the ventral tegmental area, which is
relatively sparsely impacted in PD. The motor symptoms are actually assumed to be
caused by the impairment of these pathways rather than the motor pathway (Obeso
et al., 2008).

1.1.4 Diagnosis

A definite diagnosis of Parkinson’s disease requires autopsy, the final proof being the
presence of Lewy bodies in the midbrain (Samii et al., 2004). Nonetheless, clinical diag-
nosis of this disorder has become more rigorous and several criteria have been proposed
(Calne et al., 1992; Hughes et al., 1992; Postuma et al., 2015; Ward and Gibb, 1990).
They include confidence levels such as clinically possible, clinically probable and clini-
cally definite, and rely on the presence of parkinsonism, response to antiparkinson drugs
and exclusion criteria that would favor another cause for the presence of parkinsonism
(Samii et al., 2004).

8



1.1. Parkinson’s disease 9

1.1.5 Symptoms

The symptoms of Parkinson’s disease are numerous and have a substantial negative
impact on the quality of life of the individuals (Jankovic, 2008). Apart from the recog-
nizable motor symptoms, many other symptoms occur frequently during the course of
the disease. Particularly, a wide range of neuropsychiatric disorders have been reported
in individuals with PD (Balestrino and Martinez-Martin, 2017).

Motor symptoms

The three cardinal motor symptoms of Parkinson’s disease are bradykinesia, rigidity,
and rest tremor (Jankovic, 2008). Other typical symptoms of parkinsonism include
postural instability, flexed posture and freezing usually occurring later in the course of
the disease and leading to falls (Jankovic, 2008; Kalia and Lang, 2015).

Akinesia, bradykinesia and hypokinesia are the hallmarks of basal ganglia disor-
ders, and includes difficulties with planning, initiating and executing movement, and
with performing sequential and simultaneous tasks. Bradykinesia refers to slowness of
movement and is the most characteristic clinical feature of PD. Bradykinesia may be
associated with hypokinesia (reduction in movement amplitude) or akinesia (poverty of
action and difficulty initiating movements) (Moustafa et al., 2016).

The initial manifestation is usually slowness in performing activities of daily living,
slow movement and reaction times (slowness of walking), including difficulties with tasks
requiring fine motor control such as handwriting (micrographia), using utensils and
buttoning. Assessment of bradykinesia usually includes having patients perform rapid,
repetitive, alternating movements of the hand and heel taps and observing slowness and
decreasing amplitude (Jankovic, 2008).

Rigidity is characterised by increased resistance and is usually accompanied by the
“cogwheel” phenomenon, that is a circular jerking rigidity in flexion and extension in a
background of tremor. Rigidity can occur at many locations, including neck, shoulders,
hips, wrists and ankles. Reinforcing manoeuvres tend to increase rigidity and can be
used to detect mild cases of rigidity (Jankovic, 2008).

Tremor at rest is the most recognizable symptom of PD. Tremors are typically
unilateral at disease onset, occur in the rest position at a frequency between 4 and 6
Hz, disappear during action, and are usually prominent in the distal part of extremities
(Jankovic, 2008). In particular, hand tremors consist of the tendency of the thumb and
the index finger to approximate one another while trembling as if an object was being
rolled between the two fingers. The term “pill-rolling” is often used to describe these
tremors because of the similarity to the technique used by pharmacists to fashion a pill
by rolling a substance between the two fingers (Cooper et al., 2008). Rest tremor in
patients with PD can also involve the lips, chin, jaw and legs (Jankovic, 2008).

Postural instability due to loss of postural reflexes is usually a symptom of the late
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10 Chapter 1. Background

stages of PD and generally occurs after the onset of other clinical features. The pull test
is often used to assess postural instability: the patient is quickly pulled backward by the
shoulders to assess the degree of retropulsion. Taking more than two steps backwards or
the absence of any postural response indicates an abnormal postural response. Postural
instability and freezing of gait are the most common causes of falls and contribute
substantially to the risk of hip fractures (Jankovic, 2008).

Rigidity and postural deformities can result in flexed posture (camptocormia), such
as flexed neck, and usually occur in a late stage of the disease (Jankovic, 2008).

Although the dopamine denervation is always bilateral in PD, it is commonly asym-
metric, and the symptoms typically occur unilaterally at the onset of the disease, af-
fecting the other part of the body during disease progression. Akinesia, tremor, and
rigidity are responsive to the dopamine replacement therapy which typically improve
the symptoms by more than 70% in most patients. By contrast, postural instability
and gait disturbance are not poorly responsive to treatment.

Non-motor symptoms

Many non-motor symptoms have also been reported in Parkinson’s disease and can
impact the quality of life of the subjects and caregiver burden more than the motor
symptoms (Hiseman and Fackrell, 2017). Indeed, these symptoms are not responsive to
the treatment and may even worsen with dopamine replacement therapy, and largely
contribute to the burden of the disease for the patients and the caregivers. Neuropsy-
chiatric symptoms are particularly common during the course of the disease (Balestrino
and Martinez-Martin, 2017).

Major depressive disorder is frequent in PD, with an approximated 17% prevalence.
Comorbid depression worsens cognition, function, and quality of life, and increases care-
giver burden and mortality. Symptomatic overlap between major depression disorder
and PD can make appropriate detection and treatment difficult (Goodarzi et al., 2016).

Up to 55% of PD patients experience substantial anxiety symptoms, and up to
40% have an anxiety disorder as defined by the criteria of the Diagnostic and Statistical
Manual of Mental Disorders. The most common anxiety disorders in PD are generalized
anxiety disorder, and social and other phobias (Broen et al., 2016).

Most PD patients suffer from cognitive decline or dementia during the course of the
disease. The prevalence of mild cognitive impairment is around 25% in individuals with
PD but without dementia (Litvan et al., 2011). The point prevalence of PD dementia
is approximately 30% and its cumulative prevalence is at least 75% for PD patients
surviving more than 10 years (Litvan et al., 2011). Cognitive impairment mostly affect
executive and visuo-spatial functions, rather than memory disturbances, and heavily
impacts functioning, caregiver burden and mortality (Goldman et al., 2018).

Sleep disturbances are common in PD and consist mainly of nighttime sleep dif-
ficulties such as insomnia, restless legs syndrome, rapid eye movement sleep behavior

10



1.1. Parkinson’s disease 11

disorder, and sleep-disordered breathing, but also of excessive daytime sleepiness. The
prevalence of insomnia, based on physician interview, is estimated to be around 30–59%
(Chahine et al., 2017). Daytime sleepiness can make individuals with PD quit driving,
increasing caregiver burden. Sleepiness can be related to the disease itself, but is also
an adverse effect of dopamine replacement therapy.

The majority of PD subjects also suffer from gastrointestinal symptoms, constipa-
tion being considered the most prominent (Mertsalmi et al., 2017). Other gastrointesti-
nal symptoms include drooling, taste impairment, swallowing disorders (Fasano et al.,
2015), and irritable bowel syndrome (Mertsalmi et al., 2017).

Apart from constipation, other autonomic dysfunction occurs frequently, the most
common symptoms being orthostatic hypotension, urinary and sexual dysfunction, ab-
normal sweating and seborrhoea (Jankovic, 2008).

A number of neuro-ophthalmological abnormalities may be seen in patients with PD,
including visual hallucinations, ocular surface irritation, decreased blink rate, altered
tear film, blepharospasm and decreased convergence (Biousse et al., 2004).

Impulse control and related behaviors are common comorbidities and are strongly
associated with dopamine replacement therapy. Almost half of PD patients are expected
to develop impulse control disorders five years after PD onset (Corvol et al., 2018). The
four major ICDs that have been reported in PD are pathological gambling, compulsive
shopping, binge eating and hypersexuality (Weintraub and Claassen, 2017). Other
related impulsive-compulsive behaviors include dopamine dysregulation syndrome (Cilia
et al., 2014), punding (Evans et al., 2004) and hobbyism (Callesen and Damholdt, 2017).

1.1.6 Medications and their limitations

Contrary to Alzheimer’s disease, for which there exists no treatment that substantially
decreases the magnitude of the main symptoms, several therapies are effective at limit-
ing the decrease in quality of life of individuals with PD (Fahn, 2008). The most simple
yet efficient therapy is dopamine replacement therapy, which consists in replacing the
loss of dopamine due to the cell death in the basal ganglia. Its main classes of medi-
cations consist of levodopa, dopamine agonists, and inhibitors. Other therapies include
deep brain stimulation (Herrington et al., 2016) and exercise programs (Ahlskog, 2011).
Figure 1.2 and Figure 1.3 summarize the treatment options for PD.

Levodopa Levodopa is an abbreviation of L-3,4-dihydroxyphenylalanine and is the
precursor to dopamine (Fahn, 2008). Contrary to levodopa, dopamine itself is unable
to cross the blood-brain barrier and cannot be used to treat PD (Zahoor et al., 2018).
After absorption and transit across the blood-brain barrier, levodopa is converted into
the neurotransmitter dopamine by DOPA decarboxylase. Patients are usually adminis-
tered low dose of levodopa, with the dose being adjusted based on the patient’s response
to treatment and balanced against the adverse effects experienced. Although levodopa
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Early PD to prevent/delay disease progression

• Clinically useful: None to date
• Not useful: Pramipexole; Co Q10, Creatine
• Investigational: Selegiline, rasagiline, ropinirole, vitamin D, exercise

Early PD requiring symptomatic therapy

• Clinically useful: Non-ergot DA (piribedil, pramipexole IR and ER, ropini-
role IR, rotigotine), Ergot DA (cabergoline, pergolide); Levodopa prepara-
tions (IR, CR, ER), MAO-B inhibitors (selegiline and rasagiline); anticholin-
ergics

• Possibly useful: Non-ergot DA (ropinirole PR), Ergot DA (bromocriptine),
amantadine

Early or stable PD requiring adjunct therapy to levodopa

• Clinically useful: Non-ergot DA (piribedil, pramipexole IR and ER, ropini-
role IR, rotigotine), rasagiline, zonisamide; anticholinergics

• Possibly useful: Ergot DA (bromocriptine), amantadine
• Investigational: selegiline, early (up to 4 years) bilateral STN DBS
• Unlikely useful: Tolcapone
• Not useful: Entacapone, safinamide

Figure 1.2: Evidence-based medicine review of treatment options for motor symptoms
of early PD (reproduced from (Fox et al., 2018)).
CR: controlled release; DA: dopamine agonist; DBS: deep brain stimulation; ER: ex-
tended release; IR: immediate release; PR: prolonged release; STN: subthalamic nucleus.

12
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Treating motor fluctuations

• Clinically useful: Non-ergot DA (pramipexole, ropinirole, rotigotine,
apomirphine intermittent injections, pergolide); levodopa ER; COMT in-
hibitors (entacapone; opicapone); MAO-B inhibitors (rasagiline, safinamide,
zonisamide); LCIG; bilateral DBS (STN or GPi)

• Possibly useful: Ergot DA (bromocriptine, cabergoline); istradefylline; tol-
capone; Non-ergot DA (apomorphine infusion)

• Investigational: Selegiline, rasagiline, ropinirole, vitamin D, exercise

Treating dyskinesia

• Clinically useful: Amantadine; clozapine; LCIG, bilateral DBS surgery
(STN or GPi); unilateral pallidotomy

Treating specific/general motor symptoms

• Clinically useful: Physiotherapy
• Possibly useful: Rivastigimine (gait and balance); Exercise-based move-

ment strategy training (gait and balance); formalized patterned exercises (gait
and balance); speech therapy (speech and swallowing); occupational therapy;
thalamic surgery (DBS or thalamotomy) (tremor)

• Investigational: Donepezil (gait and balance); methylphenidate (gait and
balance); memantine (gait and balance); cannibidiol; technology-based move-
ment strategies; acupuncture; rTMS; tDCS

Figure 1.3: Evidence-based medicine review of treatment options for motor symptoms
of treated PD optimized on levodopa (reproduced from (Fox et al., 2018)).
COMT: catechol-O-methyltransferase; CR: controlled release; DA: dopamine agonist;
DBS: deep brain stimulation; ER: extended release; GPi: globus pallidus interna; IR:
immediate release; LCIG: levodopa-carbidopa intestinal gel; MAO-B: monoamine oxi-
dase B PR: prolonged release; rTMS: repetitive transcranial magnetic stimulation; STN:
subthalamic nucleus; tDCS: tDirect Current Stimulation.
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14 Chapter 1. Background

is effective against the main motor symptoms, it comes up with side effects such as
dyskinesia (involuntary movements) and fluctuations in effectiveness (National Clinical
Guideline for Diagnosis and Management in Primary and Secondary Care, 2006). Lev-
odopa is also ineffective against several motor (gait, speech) and non-motor (cognitive,
sensory, vegetative) PD symptoms (You et al., 2018).

Dopamine agonists An agonist is a chemical that binds to a receptor and activates
the receptor to produce a biological response. Dopamine agonists stimulate the activity
of the dopamine system by binding to the dopaminergic receptors and, unlike levodopa,
do not need to be converted into dopamine (Zahoor et al., 2018). Initial treatment
with dopamine agonists allows for a delay in the use of levodopa, which may curtail the
impact of the problematic motor complications (Rascol et al., 2000). However dopamine
agonists are less potent than levodopa, and are less tolerated than levodopa with higher
rate of nausea and vomiting, insomnia, sleepiness, and hallucinations, particularly in the
elderly. Ergot DAs have also been progressively abandoned because of their association
with heart valve fibrosis (Corvol et al., 2007; Van Camp et al., 2004). One of the most
troublesome characteristic side effects of dopamine agonists is probably impulse control
disorders and related behaviors, including pathological gambling, hypersexuality, binge
eating, compulsive shopping, punding, and hobbyism.

Inhibitors of levodopa metabolism An inhibitor is a substance that decreases
the rate of, or prevents, a chemical reaction. Inhibiting enzymes that are involved
in dopamine degradation is the main feature of this class of medications. Monoamine
Oxidase B (MAO-B) is one of the main enzymes involved in the breakdown of dopamine,
thus reducing the activity of this enzyme results in increased dopaminergic activity
within the striatum (Zahoor et al., 2018). The intake of MAO-B inhibitors relieves
motor symptoms in PD patients, and as with dopamine agonists they may be used as
an initial treatment option. The main side effects of MAO-B inhibitors are increased
dyskinesia and headaches (Connolly and Lang, 2014). Catechol-O-methyl transferase
is another enzyme involved in dopamine as well as in levodopa degradation. COMT
inhibitors are used as adjunctive therapy to levodopa by prolonging its duration of
action (Zahoor et al., 2018). The most common adverse effects of both entacapone and
tolcapone, the most-used COMT inhibitors, are increased dyskinesia and diarrhoea in
up to 20% of the treated patients (You et al., 2018).

Others Levodopa, dopamine agonists and inhibitors are all designed to increase
dopaminergic activity in the striatum. A few drugs that act through non-dopaminergic
mechanisms are also used in the treatment of PD (Zahoor et al., 2018). Anticholinergics,
by acting as antagonists at cholinergic receptors, limit the activity of the neurotrans-
mitter acetylcholine. Their most common adverse effects include hallucinations, blurred
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vision, dry mouth, constipation, drowsiness, memory problems, and increased dyskine-
sia (Zahoor et al., 2018). Amantadine, which was initially developed as an antiviral
drug for treating flu, has subsequently been used for the treatment of PD. It may be
used to treat rigidity, rest tremor, and is also used to treat levodopa-induced dyskinesia
(Ory-Magne et al., 2014; Zahoor et al., 2018). While generally well tolerated, possible
adverse effects associated with the use of amantadine include hallucinations, confusion,
blurred vision, impaired concentration, nausea and vomiting (Zahoor et al., 2018).

1.1.7 Motor complications

Despite its spectacular effects on the core motor symptoms of Parkinson’s disease, lev-
odopa is not a perfect drug as it does not fulfil all the needs of PD patients. The long-
term outlook for PD patients is hampered by the occurrence of motor complications:
motor fluctuations and dyskinesia. Levodopa and inhibitors of levodopa metabolism are
notably associated with increased dyskinesia (You et al., 2018). Dyskinesia and motor
fluctuations affect virtually all patients but the delay in their occurrence is highly vari-
able. More than 90% of PD patients are expected to experience motor complications
after 10 years (Hely et al., 1999; Mazzella et al., 2005).

Motor fluctuations Motor fluctuations are characterised by wearing-off, that is wors-
ening or reappearance of motor symptoms before the next levodopa dose resulting in an
“off” state that improves when the next dose is taken (“on” state) (You et al., 2018).
There are two kinds of response to levodopa: the short duration response (SDR) and
the long-duration response (LDR). The former corresponds to the motor improvement
following a single dose of levodopa and lasts from minutes to hours (Muenter and Tyce,
1971). Its effect is immediately lost if levodopa is stopped. The latter has a slower
development and builds up during repeated levodopa dosing, taking days to weeks to
come into effect, but also decays gradually over a similar span of time after levodopa
has been withdrawn (Anderson and Nutt, 2011). Both mechanisms are present from
the beginning of PD treatment. The SDR accounts for a half to two thirds of the mo-
tor response, while the LDR accounts for the remaining part (Ogasahara et al., 1984).
However, their effects are not strictly additive but overlapping and even show a different
time course as the disease progresses. In the early stages of PD, the LDR predominates
and masks most of the SDR, thus patients have a stable response to levodopa (Nutt
and Holford, 1996). With disease progression and long-term levodopa treatment, the
LDR decreases and the SDR shortens, with a more immediate onset and decline and
a greater difference between baseline and peak response. Therefore, the masking of
the SDR by the LDR dwindles and patients experience motor fluctuations (Nutt and
Holford, 1996).
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Levodopa-induced dyskinesia Dyskinesias are abnormal movements of the limbs,
the trunk and the face induced by the dose of levodopa. Many patients do not recognize
levodopa-induced dyskinesias and do not experience any disability from the movements.
As is, treating every dyskinesia is not necessarily essential, and clinicians focus on
preventing worsening or reducing only disabling, bothersome dyskinesia with medical
or surgical strategies (Aquino and Fox, 2015). Dyskinesia is most common at the peak-
level of levodopa action, and consists of chorea, dystonia, and ballism, and to a lesser
extent myoclonus (Nutt, 1990). Choreic movements in the limbs are the most common
form of peak-dose dyskinesia, but dystonic posturing in the limbs can also occur. These
involuntary movements may be initially mild and mainly involve the neck, and less
commonly affect lips and jaw. They later spread to involve the trunk and can become
more bothersome movements (Aquino and Fox, 2015). Myoclonus is a brief, involuntary,
irregular twitching of a muscle or a group of muscles. Levodopa-induced myoclonus has
been described as either spontaneous, action induced, or stimulus sensitive, and occurs
within 10 to 20 minutes of levodopa administration (Aquino and Fox, 2015). Dyskinesia
also occurs at low dose of levodopa action. Dyskinesia occurring during off-period is
predominantly dystonic and mostly affects the legs and feet (Luquin et al., 1992). Off-
period dystonia may completely disappear after withdrawal of levodopa for a few days
or weeks (Aquino and Fox, 2015). When the levels of levodopa are rising and falling,
at the beginning or end-of-dose respectively, dyskinesia can also occur and is known
as “diphasic dyskinesia”. Diphasic dyskinesias are less common, tend to mainly affect
the legs, and can involve slow stereotypical alternating leg movements (Luquin et al.,
1992).

1.2 Impulse control disorders

Impulse control disorders include conditions involving problems in the self-control of
emotions and behaviors such as pyromania or kleptomania (American Psychiatric As-
sociation, 2013). The fifth edition of the Diagnostic and Statistical Manual of Mental
Disorders (American Psychiatric Association, 2013) has a specific chapter on disruptive,
impulse-control and and conduct disorders. Impulse control disorders have been studied
among college students (Leppink et al., 2016b; Odlaug and Grant, 2010) and elderly
patients (Tamam et al., 2014), as well as in several other disorders.

1.2.1 Definition of specific impulse control disorders

Intermittent explosive disorder The main feature of intermittent explosive dis-
order is recurrent behavioral outbursts representing a failure to control aggressive im-
pulses. They are manifested by either verbal or physical aggression, or destruction
or belongings. The magnitude of aggressiveness during these outbursts highly exceeds
the provocation or any anticipated psychosocial stressors. The recurrent outbursts
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1.2. Impulse control disorders 17

are not purposeless, unpremeditated, and cause either impairment in occupational or
interpersonal functioning, or marked distress in the individual (American Psychiatric
Association, 2013).

Kleptomania Kleptomania is characterized by recurrent failures to resist impulse to
steal objects that are not needed for their monetary value or for personal use. Individuals
with kleptomania feel an increasing sense of tension shortly before committing the
theft, then pleasure, relief or gratification at the time of commitment. Stealing is not
committed in response to a hallucination or a delusion, or to express vengeance or anger.
(American Psychiatric Association, 2013)

Pyromania Pyromania is characterized by the multiple episodes of deliberate and
purposeful fire setting. Persons with pyromania experience affective or tension arousal
before setting a fire. They are interested in fire in situational contexts and are often
regular watchers at fires. The fire setting is not done for profit and does not result from
impaired judgement (American Psychiatric Association, 2013).

Pathological gambling The main feature of pathological gambling is recurrent and
persistent dysfunctional patterns of gambling behavior leading to clinically significant
distress or impairment. Pathological gamblers may need to gamble increasing amounts
of money in a bid to achieve the desired excitement, may be irritable or restless when
trying to cut down or stop gambling, often gamble when feeling distressed or lie to
conceal the amount of involvement with gambling. The gambling behavior is not better
explained by a manic episode. (American Psychiatric Association, 2013).

Compulsive sexual behavior Compulsive sexual behavior, also called hypersexual-
ity, is characterized by persistently or recurrently present sexual or erotic thoughts or
fantasies and desire for sexual activity (American Psychiatric Association, 2013). Indi-
viduals with this disorder feel driven or compelled to perform the behavior, which may
cause distress (Dell’Osso et al., 2006). Impulsive-compulsive sexual disorder include
unconventional sexual behaviors with a disturbance in the object of sexual gratification
or in the expression of sexual gratification, and conventional sexual behaviors that have
become excessive or uncontrolled (Dell’Osso et al., 2006).

Internet addiction disorder Internet addiction disorder is defined as a persistent
and recurrent use of the Internet (American Psychiatric Association, 2013). Major
symptoms of this disorder include preoccupation with the Internet, unsuccessful re-
peated efforts to decrease Internet use, staying online longer than intended, jeopardizing
significant relationship, job, educational or career opportunity because of the Internet,
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lying to relatives or physicians about the involvement with the Internet, and using the
Internet a way of escaping from problems or of regulating mood (Young, 1998).

Compulsive buying disorder Compulsive buying disorder is characterized by ex-
cessive shopping cognitions and buying behavior that leads to distress or impairment
(Black, 2007). Individuals with compulsive buying disorder are preoccupied with shop-
ping and spending, and devote significant time to these behaviors. Shopping and spend-
ing are highly associated as window shopping is an uncommon pattern. Compulsive
buying behaviors can be split into four phases: anticipation, preparation, shopping,
and spending (Black, 2007). In the first phase, individuals develop preoccupations and
thoughts with either shopping or having a specific item. The second phase consists in
preparing for shopping and spending, such as deciding where to go. The third phase
involving shopping and spending itself, which often procures high excitement and even
sexual feelings (Schlosser et al., 1994). The fourth phase consists of the moment after
the purchase, which is often experienced as a disappointment or a letdown. Common
purchased items during these behaviors include clothing, shoes, and household items
(Christenson et al., 1994; Miltenberger et al., 2003; Schlosser et al., 1994).

Binge eating disorder The main feature of binge eating disorder is recurrent episodes
of binge eating. An episode of binge eating is characterized by eating, in a discrete span
of time, a much larger amount of food than most people would eat under similar cir-
cumstances and in a similar period of time, and a sense of lack of control over eating
during this span of time. These episodes are often associated with eating much more
quickly than normal, eating until feeling uncomfortably full, eating large food quantities
when not feeling physically hungry, eating alone because of embarrassment, and feel-
ing disgusted with oneself, depressed, or very guilty afterward. (American Psychiatric
Association, 2013)

Excoriation disorder Excoriation disorder, also called skin picking disorder, is char-
acterized by recurrent skin picking resulting in skin lesions (American Psychiatric Asso-
ciation, 2013). Individuals with excoriation disorder experienced repeated attempts to
curtail or stop skin picking. The skin picking causes significant distress or impairment
in important areas of functioning and cannot be attributed to the physiological effects
of any medical condition. Although it is now classified as an obsessive-compulsive disor-
der (American Psychiatric Association, 2013), excoriation disorder used to be classified
in the impulse disorder category in the tenth revision of the International Statistical
Classification of Diseases and Related Health Problems (Black and Grant, 2014).
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1.3. Impulse control disorders in Parkinson’s disease 19

1.2.2 Studies on impulse control disorders in subpopulations

Impulse control disorders have been studied in subpopulations, defined by an age range
or another disorder.

Besides Parkinson’s disease, which we will detail in the next section, the most studied
disorders are obsessive-compulsive disorders (Fontenelle et al., 2005; Grant et al., 2006).
ICDs and obsessive-compulsive disorders overlap in their phenomenology, co-morbidity,
pathophysiology and family history (Fontenelle et al., 2011). Compulsive and impulsive
disorders have been viewed at the opposite ends of a single dimension: the former
motivated by a desire to avoid harm and the latter by reward-seeking behavior (Fineberg
et al., 2010). The prevalence of ICDs in patients with obsessive-compulsive disorders
is estimated to be around 11–35%, skin picking being the most common comorbid ICD
(Fontenelle et al., 2005; Grant et al., 2006, 2010).

A review on ICDs and bipolar disorder highlighted the high number of common
features for both disorders: phenomenological similarities, including pleasurable, dan-
gerous, or harmful behaviors, impulsivity, and similar affective symptoms and dysregu-
lation; onset in late childhood or early adulthood with episodic and/or chronic course;
high comorbidity with one another and comparable comorbidity with other psychiatric
disorders; high familial rates of mood disorder; and response to mood stabilizers and
antidepressants (McElroy et al., 1996).

Impulse control disorders have been reported in Tourette syndrome (Jankovic and
Kurlan, 2011), restless leg syndrome (Cornelius et al., 2010) and Perry syndrome (Mishima
et al., 2015).

Impulse control disorders have also been studied in university students. In this
subpopulation, the prevalence is estimated to be around 10% (Odlaug and Grant, 2010)
and are associated with stress (Leppink et al., 2016b) and depression (Leppink et al.,
2016a). Among elderly people, the prevalence is estimated to be around 17% and ICDs
are associated with childhood conduct disorder and alcohol/substance abuse (Odlaug
and Grant, 2010).

1.3 Impulse control disorders in Parkinson’s disease

Since the first reports of impulse control disorders in Parkinson’s disease in the early
2000s, impulse control disorders have been increasingly recognized. Given their potential
impact on life functioning, including activities of daily living, interpersonal relationships,
and social-occupational functioning, clinicians growingly pay specific attention to these
impulsive behaviors (Weintraub and Claassen, 2017). ICDs are actually not symptoms
of Parkinson’s disease itself, but adverse effects of dopamine replacement therapy (de la
Riva et al., 2014). ICDs have been broadly studied in PD, from prevalence to assessment
to comorbidities.
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1.3.1 Epidemiology

One of the earliest case reports dates back to 2003, which identified nine patients (0.5%
of the sample) with pathological gambling (Driver-Dunckley et al., 2003). In 2010, the
DOMINION study aimed at evaluating the point prevalence estimates of the four main
ICDs among 3090 medicated PD patients in the United States and Canada (Weintraub
et al., 2010a). One or more ICDs were identified in 13.6% of patients (compulsive
buying in 5.7%, gambling in 5.0%, binge-eating disorder in 4.3%, and compulsive sex-
ual behavior in 3.5%), with 3.9% of participants having two or more ICDs. A more
recent longitudinal analysis of ICDs in a French research cohort estimated the 5-year
cumulative incidence to be about 46% (Corvol et al., 2018).

As for any psychiatric disorder, environmental factors may influence the presence
of ICDs in PD. In particular, cultural factors seem to impact the prevalence of specific
ICDs. Studies in Turkey and India reported very low prevalences for pathological gam-
bling (Kenangil et al., 2010; Sarathchandran et al., 2013), while this ICD has one of the
highest prevalence in most Western studies (Baig et al., 2019; Garcia-Ruiz et al., 2014;
Hurt et al., 2014; Weintraub et al., 2010a). Gambling is illegal in Turkey and heavily
restricted in India, whereas it is legal in Western countries, and an important part of
the American culture. Various studies lack uniformity to assess ICDs, and the definition
itself of ICDs is subject to cultural differences (Weintraub and Claassen, 2017).

1.3.2 Assessment and diagnosis

As impulse control disorders have been increasingly recognized in Parkinson’s disease,
several screening tools and rating scales have been developed and used to assess and
diagnose them.

The Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Dis-
ease Rating Scale (MDS-UPDRS) has an item entitled Features of dopamine dysregu-
lation syndrome in the part assessing non-motor aspects of experiences of daily living
(Goetz et al., 2008). This single item encompasses impulse control disorders, dopamine
dysregulation syndrome, punding, and hobbyism.

The Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease (QUIP)
was developed as a screening instrument for ICDs and related behaviors and is struc-
tured to be consistent with diagnostic criteria or defining clinical characteristics as de-
scribed in the Diagnostic and Statistical Manual of Mental Disorders (Weintraub et al.,
2009). Its three sections focus on (i) the four most common ICDs, (ii) punding and
hobbyism, and (iii) compulsive medication use.

The Rating Scale version of the QUIP (QUIP-RS) was derived from the QUIP to
measure the severity of ICDs (Weintraub et al., 2012). Each item is rated on a 5-point
Likert scale and assesses the frequency of the symptoms with a range of scores from 0
(never) to 4 (very often). The sections are similar than the ones in the QUIP, although a
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1.3. Impulse control disorders in Parkinson’s disease 21

slight difference is that punding and hobbyism have been grouped together (Evans et al.,
2019). This scale has been validated in several countries (Choi et al., 2020; Marques
et al., 2019; Probst et al., 2014).

The Ardouin Scale of Behavior in Parkinson’s Disease consists of eighteen items
addressing non-motor symptoms, grouped in four parts: general psychological evalua-
tion, apathy, non-motor fluctuations and hyperdopaminergic behaviors (Ardouin et al.,
2009).

The Scale for Outcomes in Parkinson’s Disease – Psychiatric Complications is a
screening and severity scale that consists of a 7-item questionnaire (Visser et al., 2007).
Two items are related to impulsive control disorders: one item for compulsive shopping
and pathological gambling, and another one for hypersexuality. Each item score range
from 0 (no symptoms) to 3 (severe symptoms) (Evans et al., 2019).

The Minnesota Impulsive Disorders Interview was originally developed in 2008 for
the diagnosis of compulsive buying, trichotillomania, kleptomania, pyromania, intermit-
tent explosive disorder, pathological gambling, and compulsive sexual behavior (Cham-
berlain and Grant, 2018; Grant, 2008). The original version was revised to match the
changes made in the fifth edition of the Diagnostic and Statistical Manual of Mental
Disorders (Chamberlain and Grant, 2018).

1.3.3 Associations

A wide range of factors have been associated with impulse control disorders in Parkin-
son’s disease, from personality traits to psychiatric comorbidities to medications.

Demographics Significant differences between sexes have been observed, with men
developing more pathological gambling and hypersexuality disorders and women devel-
oping more compulsive buying and eating disorders (Weintraub and Claassen, 2017).
A younger age has been associated with ICDs in PD in numerous studies (Callesen
et al., 2014; Poletti et al., 2013; Pontieri et al., 2015; Weintraub et al., 2010a). The DO-
MINION study, with 3090 PD patients from the United States and Canada, reported
that PD patients with ICDs were most likely unmarried and living in the United States
(Weintraub et al., 2010a).

Personality traits Unsurprisingly, the most assessed personality trait was impul-
sivity, with studies reporting higher impulsivity scores (Sáez-Francàs et al., 2016; Voon
et al., 2011) and greater choice impulsivity (Sáez-Francàs et al., 2016). PD patients with
ICDs were described as individuals with a higher level of neuroticism and lower levels of
agreeableness and conscientiousness (Callesen et al., 2014), particularly among PD pa-
tients with pathological gambling (Gescheidt et al., 2016) or hypersexuality (Sachdeva
et al., 2014). These patients were also reported to have ineffective coping skills (Olley
et al., 2015).
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Addictive disorders A family history of pathological gambling was significantly
more prevalent among PD patients with ICDs than those without (Weintraub et al.,
2010a). Past and current cigarette smoking has been associated with ICDs (Valença
et al., 2013; Weintraub et al., 2010a), so was substance use of caffeine (Bastiaens et al.,
2013; Gescheidt et al., 2016), tea, and alcohol (Ramírez Gómez et al., 2017).

Psychiatric comorbidities Mental illness was reported to be associated with the
presence of ICDs, in particular anxiety and depression (Grall-Bronnec et al., 2018;
Olley et al., 2015). Higher score of depression (Callesen et al., 2014; Joutsa et al., 2012;
Vela et al., 2016; Voon et al., 2011), symptoms of depression (Gescheidt et al., 2016;
Pontone et al., 2006), and a history of depression (Auyeung et al., 2011) have been
found to be correlated with ICDs. Higher score of anxiety (Leroi et al., 2012; Pontieri
et al., 2015; Sachdeva et al., 2014; Voon et al., 2011), trait anxiety (Sáez-Francàs et al.,
2016), and a history of anxiety (Auyeung et al., 2011) were also found to be associated
with ICDs. Only one study reported a higher obsessive-compulsive score (Voon et al.,
2011), although both disorders share several features.

Sleep disturbances PD patients with ICDs have been reported to have an increased
prevalence of sleep disturbances, including daytime sleepiness, worse sleep efficiency,
and restless leg syndrome symptoms (Marques et al., 2018; O’Sullivan et al., 2011;
Pontieri et al., 2015; Scullin et al., 2013). A strong association was shown between ICD
symptoms, specially pathological gambling, and rapid eye movement sleep behavior
disorder (Fantini et al., 2015, 2018, 2019, 2020; Ramírez Gómez et al., 2017).

Disease-related factors Several disease-related factors have been associated with
ICDs. Younger age of PD onset (Callesen et al., 2014; Lee et al., 2010; Pontieri et al.,
2015; Ye et al., 2011) and longer disease duration (Callesen et al., 2014; Lee et al., 2010;
Pontieri et al., 2015) have been found correlated with ICDs. Association between ICDs
and higher motor impairment has also been reported (Bastiaens et al., 2013; Callesen
et al., 2014; Leroi et al., 2012). A negative association between motor fluctuations or
dyskinesias and ICDs has been reported in one study (Ramírez Gómez et al., 2017).
In particular, a higher score on the MDS-UPDRS Part I was found in two studies
(Rodríguez-Violante et al., 2014; Sáez-Francàs et al., 2016), but it must be noted that
one of the item of the MDS-UPDRS Part I is about dopamine dysregulation syndrome.

Medications Dopamine replacement therapy, specially dopamine agonists, has been
strongly associated with ICDs. Ever use, longer cumulative duration, and higher cu-
mulative dose of DAs have been correlated with ICDs (Corvol et al., 2018). The six
dopamine agonists that have been approved by the US Food and Drug Administration
(pramipexole, ropinirole, cabergoline, bromocriptine, rotigotine, and apomorphine) have
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all been associated with ICDs (Grall-Bronnec et al., 2018). Dopamine agonists with a
preferential affinity for D2-like receptors (D2 and D3 receptors), that is pramipexole and
ropinirole, have been reported to have the strongest associations (Moore et al., 2014).
To a lesser extent, associations with levodopa (Pontieri et al., 2015; Weintraub et al.,
2010a) and amantadine (Weintraub et al., 2010b) have also been reported.

Genetic factors Association between ICDs and several single-nucleotide polymor-
phisms (SNPs) have been suggested in the following genes: DRD3 (Castro-Martínez
et al., 2018; Krishnamoorthy et al., 2016; Lee et al., 2009), GRIN2B (Lee et al., 2009;
Zainal Abidin et al., 2015), HTR2A (Kraemmer et al., 2016; Lee et al., 2012), ANKK1
(Hoenicka et al., 2015), DRD1 (Erga et al., 2018; Zainal Abidin et al., 2015), DRD2
(Kraemmer et al., 2016; Zainal Abidin et al., 2015), OPRM1 (Cormier-Dequaire et al.,
2018), DAT1 (Cormier-Dequaire et al., 2018), LRRK2 (Simuni et al., 2020), GBA
(Simuni et al., 2020), OPRK1 (Cormier-Dequaire et al., 2018; Kraemmer et al., 2016),
and SLC22A1 (Redenek et al., 2019). However a few studies did not report associations
between ICDs and several SNPs from the following genes: DRD2 (Cormier-Dequaire
et al., 2018; Vallelunga et al., 2012), COMT (Vallelunga et al., 2012), DAT1 (Vallelunga
et al., 2012), GRIN2B (Cormier-Dequaire et al., 2018), and HTR2A (Cormier-Dequaire
et al., 2018). The Parkinson’s disease polygenic risk score has been reported not to be
associated with ICDs (Ihle et al., 2020).

1.3.4 Prediction

While the literature on correlates with ICDs is large, studies focusing on the prediction
of ICDs are very scarce: only three studies with a prediction task have been identified
(Erga et al., 2018; Jesús et al., 2020; Kraemmer et al., 2016).

Kraemmer and others (Kraemmer et al., 2016) developed a clinical-genetic model to
predict incident impulse control disorders in PD. The clinical features consisted of age,
sex, PD treatment and duration of follow-up. The genetic variables consisted of thirteen
candidate variants selected from the following genes: DRD2-3, DAT1, COMT, DDC,
GRIN2B, ADRA2C, SERT, TPH2, HTR2A, OPRK1, and OPRM1. They worked on
the Parkinson’s Progression Markers Initiative (PPMI) database, which is an ongoing
longitudinal multi-centre international study designed to identify biomarkers of PD
progression in de novo and drug-naïve (at baseline) patients with PD. The algorithm
trained with the aforementioned variables was a logistic regression.

Erga and others (Erga et al., 2018) also developed a clinical-genetic model, with
slight differences compared to the previous study. The clinical features consisted only
of age and PD treatment. The genetic variables consisted of fifty-six candidate variants
selected from the following genes: ADRA2C, DRD1-5, SLC6A3, DDC, COMT, SLC6A4,
TPH2, HTR2A, OPRM1, OPRK1, GRIN2B, and BDNF. The research cohort used
was the Norwegian ParkWest study, which is a population-based longitudinal study of
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incident PD. The trained algorithm was a logistic regression with an elastic-net penalty
(Zou and Hastie, 2005).

Jesús and others (Jesús et al., 2020) also developed a clinical-genetic model. The
clinical features consisted of sex, age, age at PD onset, years of disease evolution, DA
equivalent daily dose, and levodopa equivalent daily dose. The genetic variables con-
sisted of twenty genetic variants selected from the following genes: DDC, DRD1, DRD2,
DRD3, COMT, HTR2A, GRIN2B, TPH2, OPRM1, OPRK1, ADRA2C, and BDNF.
They worked on a research cohort from the Movement Disorder Clinic of the University
Hospital Virgen del Rocío in Seville, Spain. They also trained logistic regression models
with the aforementioned variables.

1.3.5 Other behavioral addictions

Although they are not impulse control disorders, several other related behaviors have
been reported in Parkinson’s disease and can have a substantial negative impact on the
quality of life of the patients. They are often referred to as other behavioral addictions
or related behaviors in the literature and consist of dopamine dysregulation syndrome,
punding and hobbyism (Weintraub and Claassen, 2017).

Dopamine dysregulation syndrome is characterized by the intake of large doses of
dopaminergic drugs in excess of that required to control motor symptoms, endless re-
quests to physicians for larger doses of dopamine replacement therapy or self-escalation
of these medications without medical approval despite severe social destructive behav-
iors (Cilia et al., 2014). The prevalence is estimated to be around 34% in an advanced
stage of PD (Cilia et al., 2014). A few cases have been reported in restless leg syndrome
(Leu-Semenescu et al., 2009; Salas et al., 2009). A recent systematic review identified
only nine case reports of dopamine dysregulation syndrome in non-Parkinson’s disease
(Cartoon and Ramalingam, 2019).

Punding was first used to describe the behavior of people addicted to amphetamine
(Rylander, 1972; Schiørring, 1981). Punding is a complex stereotyped behavior charac-
terized by an intense fascination with repetitive manipulations of technical equipment,
hoarding, grooming, continual handling, examining, and sorting common objects, point-
less driving or walkabouts, and the engagement in extended monologues devoid of con-
tent (Evans et al., 2004). Punding behaviors often arise from particular habits or pas-
times: people who regularly tinkered with technical objects are more likely to develop
this kind of punding. Punding is also influenced by subject’s previous occupation: office
workers and clerks may shuffle papers or fiddle purposelessly with computers while a
seamstress may collect and arrange buttons (Spencer et al., 2011). A study reported
the case of a 23-year-old Parkinsonian woman who developed unusual behaviors such
as ceaseless sewing, disassembly and reassembly of phones, and coloring of drawings
(El Otmani et al., 2015).
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Hobbysim is defined as an excessive interest in one or several hobbies such as physical
activity, artistic endeavor, do-it-yourself or gardening. For instance, a study reported a
77-year-old Parkinsonian man who started to show excessive hobbyism of painting four
years after disease onset (Matsuda et al., 2018).

1.4 Machine learning

Machine learning is the process of automatically learning from data. Examples of tasks
that machine learning can address include (Hastie et al., 2009):

• Predict the 10-year risk of future coronary heart disease.

• Estimate the amount of glucose in the blood of a diabetic person given the infrared
absorption spectrum of that person’s blood.

• Recognize the numbers in a handwritten ZIP code from a digitized image.

• Identify the risk factors for prostate cancer based on clinical and demographic
variables.

In most scenarios, one has a target (outcome) measurement that one wants to predict
from a set of features. The outcome can be quantitative (amount of glucose) or qual-
itative (presence or absence of a specific disease). Quantitative outcomes correspond
to regression tasks, while qualitative outcomes correspond to classification tasks. One
has a training set to train an algorithm and a test set (replication set) to evaluate its
performance. These scenarios are supervised learning problems, because the learning
process is supervised by the target.

The next sections introduce the notations used for the data and some of the most
common machine learning algorithms.

1.4.1 Notations

Let n be the number of samples and m be the number of features. We consider data sets
consisting of a n×m matrix X representing the input data and a n vector representing
the target data:

X =


x1

...
xn

 =


x11 . . . x1m
... . . . ...

xn1 . . . xnm

 , y =


y1
...
yn
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When longitudinal data is available, that is data at several time points, a time index is
added:

X(t) =


x
(t)
1
...

x
(t)
n

 =


x
(t)
11 . . . x

(t)
1m

... . . . ...
x
(t)
n1 . . . x

(t)
nm

 , y(t) =


y
(t)
1
...

y
(t)
n


and the input matrices and target vectors are available at several time points:(

X(1), . . . ,X(t), . . . ,X(T )
)

,
(
y(1), . . . ,y(t), . . . ,y(T )

)
When only one sample is considered, the sample index is omitted. Likewise, when

only one time point, the time index is omitted. The input data is thus the vector x and
the target data is y.

In the case of regression, y is a real number. In the case of classification, y is a single
label. In particular, for binary classification, we consider that both classes are denoted
+1 and −1, that is y ∈ {−1,+1}.

The objective is to predict y given x. The prediction is denoted ŷ. The most general
formulation is:

ŷ = g(f(x))

where f is the decision function and g is the final prediction. For regression tasks, g is
the identity function, and the decision function is the final prediction.

1.4.2 Algorithms

Linear models

A linear model is a model that linearly combines the features:

f(x) = x⊤β = β0 +
m∑
j=1

βjxj

The vector β consists of:

• the intercept (constant) β0, and

• the coefficients (β1, . . . , βm), where each coefficient βj is associated to the feature
xj .

The vector β defines an hyperplane and f(x) corresponds to the distance of x to this
hyperplane. A hyperplane is a subspace whose dimension is one less than that of the
original space. For instance, in the two-dimensional case, a hyperplane is a line. In the
the three-dimensional case, a hyperplane is a plane.
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Figure 1.4: Ordinary least squares linear regression. When the input data consists of
a single feature, the input and target variables can be visualized on a 2D plot. The
ordinary least squares linear regression finds the best linear relationship (line) between
both variables.

Ordinary Least Squares Linear Regression

The ordinary least squares linear regression is a linear regression model that is trained
by minimizing the residual sum of squares between the observed targets in the data set,
and the targets predicted by the linear approximation (Hastie et al., 2009):

ŷ = f(x) = x⊤β = β0 +

m∑
j=1

βjxj

min
β

n∑
i=1

(yi − ŷi)
2 = min

β

n∑
i=1

(
yi − x⊤

i β
)2

= min
β

∥y −Xβ∥22

Figure 1.4 illustrates the main concept of the algorithm. When the input data
consists of a single feature, the input and target variables can be visualized on a 2D
plot. The ordinary least squares linear regression finds the best linear relationship
between both variables. In this particular case, a linear relationship is simply a line.

Logistic Regression

For binary classification tasks, an hyperplane splits a space into two subspaces. In one
subspace, the signed distance to the hyperplane is positive; in the other subspace, the
signed distance to the hyperplane is negative. The decision of the algorithm depends
on the sign of the signed distance:

ŷ = g(f(x)) =

+1 if f(x) > 0

−1 if f(x) < 0
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Figure 1.5: Decision function of a logistic regression model. A logistic regression is
a linear model, that is its decision function is linear. In the two-dimensional case, it
separates a plane with a line.

The logistic regression model transforms the signed distance to the hyperplane into
a probability using the sigmoid function (Hastie et al., 2009):

f(x) = β0 +
m∑
i=j

βjxj

P (y = +1|x) = σ(f(x)) =
1

1 + exp (−f(x))

By applying the inverse of the sigmoid function, which is known as the logit func-
tion, one can see that the natural logarithm of the odds ratio is modeled as a linear
combination of the features:

log

(
P (y = +1|x)
P (y = −1|x)

)
= log

(
P (y = +1|x)

1− P (y = +1|x)

)
= f(x) = β0 +

m∑
j=1

βjxj

Figure 1.5 illustrates the decision function in the two-dimensional case where both
classes are linearly separable.

Support Vector Machine

The original support vector machine (SVM) algorithm was invented in 1963 (Vapnik
and Lerner, 1963). Figure 1.6 illustrates the main concept of this algorithm. When
both classes are linearly separable, there exists an infinite number of hyperplanes that
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Figure 1.6: Support vector machine classifier. When two classes are linearly separa-
ble, there exists an infinite number of hyperplanes separating them (left). The decision
function of the support vector machine classifier is the hyperplane that maximizes the
margin, that is the distance between the hyperplane and the closest points to the hy-
perplane (right).

separate both classes. The SVM algorithm finds the hyperplane that maximises the
distance between the hyperplane and the closest points of both classes to the hyperplane.

The SVM algorithm was extended in 1992 to non-linear decision functions using the
kernel trick (Boser et al., 1992) and in 1995 to non-strictly separable classes (Cortes
and Vapnik, 1995). The general form of this algorithm is:

f(x) = α0 +
n∑

i=1

αik(xi,x)

where k is the kernel. Popular kernels include:

• linear kernel: k(x,x′) = x⊤x′

• polynomial kernel: k(x,x′) =
(
γx⊤x′ + c0

)d with c0 ≥ 0, d ∈ N∗

• sigmoid kernel: k(x,x′) = tanh
(
x⊤x′ + c0

)
with c0 ≥ 0

• RBF kernel: k(x,x′) = exp
(
−γ∥x− x′∥22

)
with γ > 0

Figure 1.7 illustrates the decision functions for these kernels. Non-linear kernels allow
for more complex decision functions. This is particularly useful when the data is not
linearly separable, which is the most common use case.
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Figure 1.7: Impact of the kernel on the decision function of a support vector machine
classifier. A non-linear kernel allows for a non-linear decision function.
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Figure 1.8: A decision tree: (left) the rules learned by the decision tree, and (right) the
corresponding decision function.

Decision Tree

A decision tree is an algorithm containing only conditional statements and can be rep-
resented with a tree-like graph (Breiman et al., 1984). This graph consists of:

• decision nodes for the first condition,

• branches for the potential outcomes of each decision node, and

• leaf nodes for the final decision.

Figure 1.8 illustrates a decision tree and its corresponding decision function. For a given
sample, the final decision is obtained by following its corresponding path, starting at
the root node.

Random Forest

One limitation of decision trees is that they have a low bias but a high variance. An
approach to overcome this limitation is to build an ensemble of trees. In order to
have trees that are not perfectly correlated, subsets of the samples and the features
are considered, introducing randomness. For each decision tree, only a subset of the
samples are considered, usually drawn uniformly with replacement from the whole set.
For each decision node of each tree, only a subset of the features are considered to find
the best split. Both characteristics explain the name given to this algorithm: random
forest (Breiman, 2001).

Gradient Tree Boosting

Each tree of a random forest is built independently from the other trees. This algorithm
can easily take advantage of parallelization, which is an upside. An apparent limitation
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is that each tree starts the training process all over again. Boosting is a technique
that sequentially trains weak algorithms and sums them to obtain a strong algorithm
(Breiman, 1996). Gradient boosting is a generalization of boosting by allowing opti-
mization of an arbitrary loss function (Breiman, 1997). Gradient boosting algorithms
can be seen as iterative functional gradient descent algorithms (Friedman, 2001; Ma-
son et al., 2000). Gradient boosting is often used with decision trees, hence the name
gradient tree boosting.

More specifically, a gradient boosting algorithm is the sum of weak algorithms:

f(x) = f0(x) + f1(x) + . . .+ fH(x) =
H∑

h=0

fh(x)

and each weak algorithm is trained using functional gradient descent on the precedent
weak algorithm:

fh(x) = fh−1(x)− γh

n∑
i=1

L (yi, fh−1(xi))

γh = argmin
γ

n∑
i=1

L
(
yi, fh−1(xi)− γ∇fh−1

L (yi, fh−1(xi))
)

where L is the loss function that measures how good the predictions are. The lower,
the better the predictions are, thus γh is the argument of the minimum.

Artificial Neural Network

Artificial neural networks are algorithms that can represented by a network diagram as
in Figure 1.9. They consist of a sequence of layers, allowing for extraction of high-level
features from structured or unstructured data. A layer is often called an artificial neuron
due to its similarity with a biological neuron. The artificial neuron receives one or more
inputs and combines them to produce an output. The output is analogous to the axon
of a biological neuron, and its value propagates to the input of the next layer, similarly
to a synapse. Like electrical circuits, layers can be connected in series or in parallel,
the former being much more common than the latter. The first layer is the input layer,
consisting of the input data, and the final layer is the output layer, consisting of the
prediction.

Several types of layers have been developed to deal with different types of data.
Fully connected layers apply a linear transformation of the input followed by a non-
linear activation function. Convolutions are commonly used for images and time series
because each element of the input is strongly correlated to its neighbors. Recurrent
units are dedicated to sequential data as they can take as input a variable number of
elements. A typical application is natural language processing, because the number of
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h3

...

hH

ŷ
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Figure 1.9: Example of an artificial neural network. This neural network has three
layers: the input layer with the input features (x1, . . . , xm), the hidden layer with the
hidden features (h1, . . . , hH) extracted from the input features, and the output layer
with the prediction ŷ made from the hidden features. This type of architecture is
known as a multilayer perceptron.

words in a sentence is not constant. They can also be applied to longitudinal data.
Artificial neural networks typically have many parameters to be learned, with or-

ders of magnitude ranging from thousands to billions of parameters. Training such
algorithms is difficult as it requires a lot of data and computing power to estimate these
parameters. Although research on artificial neural networks dates back to the late 1960s
(Ivakhnenko and Lapa, 1967), their rise only occurred in the early 2010s. In 2012, the
winning team of the ImageNet LSVRC-2010 contest used deep convolutional neural net-
works (Krizhevsky et al., 2012). The large increase of data and the constant progress in
hardware broadened the applications of artificial neural networks and deep learning to
many fields, including machine translation, object detection, image classification, chat
bots, and so on.

As longitudinal cohorts naturally provide longitudinal data, the next section de-
scribes more precisely how recurrent neural networks work.

Recurrent neural networks

One of the key concepts of recurrent neural networks (RNNs) (Rumelhart et al., 1986)
is sharing parameters across different parts of a model. Parameter sharing makes it
possible to extend and apply the model to examples of different lengths, and generalize
across them (Goodfellow et al., 2016).

A recurrent neural network is defined by the following recurrent equation

h(t) = f(h(t−1),x(t);θ)

and is illustrated in Figure 1.10. The hidden state at time t, h(t), is driven by:
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h(1)
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h(τ−1)

x(τ−1)

. . .

. . .

h(τ)

x(τ)

Figure 1.10: Main concept of a recurrent neural network. The hidden state at time t,
h(t), is derived from the hidden state at time t − 1, h(t−1), and the external signal at
time t, x(t).

• the hidden state at time t− 1, h(t−1),

• an external signal at time t, x(t), and

• the parameters of the RNN, θ.

There is no time index for θ since θ is shared across the different time points. Intuitively,
h(t) represents the information extracted by the RNN at time t from (x(1), . . . ,x(t)) and
is computed from:

• the information extracted by the RNN at time t− 1, h(t−1), and

• the external signal at time t, x(t),

which simply means that the extracted information is updated based on the new obser-
vation of the external signal.

The function f defines the relationship between h(t), h(t−1) and x(t). Several func-
tions have been developed and evaluated in the literature. We will briefly present the
most used functions, often called units.

Vanilla Recurrent Neural Network The vanilla RNN unit was introduced by
Rumelhart et al. (1986) and is illustrated in Figure 1.11. The hidden state at time t, h(t),
is a linear combination of the hidden state at time t− 1, h(t), and of the external signal
at time t, x(t), followed by an activation function, generally the hyperbolic tangent:

h(t) = tanh
(
Wihx

(t) + bih +Whhh
(t−1) + bhh

)
One of the appeals of RNNs is their theoretical capability of connecting previous

information to the present task. Unfortunately, the vanilla RNN unit is too simple to
handle long dependencies in practice and suffers from the vanishing gradient problem.

Long Short-Term Memory The Long Short-Term Memory (LSTM) unit, intro-
duced by Hochreiter and Schmidhuber (1997), was explicitly designed to avoid the
long-term dependency problem and is illustrated in Figure 1.12. The LSTM unit has a
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x(t)

h(t−1) h(t)

h(t)

tanh

Figure 1.11: Vanilla recurrent neural network unit. The hidden state at time t, h(t), is
a linear combination of the hidden state at time t − 1, h(t), and of the external signal
at time t, x(t), followed by an activation function.

cell state (C) and four gates (f , C̃, i and o) that are updated at each time using the
following equations:

f (t) = σ
(
Wifx

(t) + bif +Whfh
(t−1) + bhf

)
i(t) = σ

(
Wiix

(t) + bii +Whih
(t−1) + bhi

)
o(t) = σ

(
Wiox

(t) + bio +Whoh
(t−1) + bho

)
C̃(t) = tanh

(
Wigx

(t) + big +Whgh
(t−1) + bhg

)
C(t) = f (t) ×C(t−1) + i(t) × C̃(t)

h(t) = o(t) × tanh
(
C(t)

)
The cell state is the key component of the LSTM unit. The LSTM unit has the ability
to add or remove information to the cell state, carefully regulated by the gates. The
forget gate f controls what the cell state must forget, while the input gate i and the
candidate gate C̃ regulates the new information added to the cell state. Finally, the
output gate o controls which information of the cell state goes in the hidden state.

Gated Recurrent Unit The Gated Recurrent Unit was introduced by Cho et al.
(2014) and is a variant of the LSTM unit with no output gate. The GRU has fewer
parameters than the LSTM unit and has been reported to exhibit better performance
on some smaller datasets (Chung et al., 2014). The GRU consists of three gates (r, z
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Figure 1.12: Long Short-Term Memory unit. The hidden state is updated via the the
new observation, the cell state, and the four gates.

and h̃) that are updated using the following equations:

z(t) = σ
(
Wizx

(t) + biz +Whzh
(t−1) + bhz

)
r(t) = σ

(
Wirx

(t) + bir +Whrh
(t−1) + bhr

)
h̃(t) = tanh

(
Winx

(t) + bin + r(t) ×
(
Whnh

(t−1) + bhn

))
h(t) =

(
1− z(t)

)
× h(t−1) + z(t) × h̃(t)

The reset gate r allows for resetting the hidden state with the observation x, creating
the candidate gate h̃. The update gate z allows for updating the hidden state with the
candidate gate h̃.

1.4.3 Regularization

Most machine learning algorithms are trained by minimizing a cost function:

min
θ

c(θ)

The cost function c measures the difference between the predictions of the algorithm
and the true values of the target. The lower the loss function, the better the predictions.
Fitting the training data consists in iteratively updating the parameters of the algorithm
θ to minimize the loss function. However, if the model is too complex, its error on the
training set is much lower than on the test, that is generalization (replication) on new
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h̃(t)

Figure 1.13: Gated Recurrent Unit. The Gated Recurrent Unit is a variant of the Long
Short-Term Memory unit with no output gate (and therefore no cell state). The hidden
state is updated via the new observation and the three gates.

observations is suboptimal. This phenomenon is known as overfitting (see Figure 1.14).

A common approach to avoid overfitting is to add a regularization term in the cost
function that limits the complexity of the model:

min
θ

c(θ) + λ× Reg(θ)

The value of λ corresponds to the weight of the regularization in the loss function: the
higher, the lower the complexity of the model. To illustrate the effect of regularization,
we generate a toy data set from the following distributions (see Figure 1.15 for an
example of a generated data set with 100 points):

x
iid∼ U[0,10]

y ∼ N (sin(x), 0.5)

A kernel ridge regression algorithm (Murphy, 2012) is trained on this data set for
different values of λ (see Figure 1.16). When the value of λ is too high, the model
does not fit the data enough (underfitting). When the value of λ is too low, the model
fits the data too much (overfitting). An appropriate trade-off between fitting the data
and limiting the complexity of the model gives the best results. This is known as the
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Figure 1.14: Relationship between error and model complexity. A too low complexity
leads to underfitting. A too high complexity leads to overfitting.

Figure 1.15: Toy regression data set with a non-linear relationship.
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bias-variance trade-off. If the loss function is the squared difference between the true
value y (fixed) and the predicted value ŷ (random variable), then its expected value is
the sum of the squared bias of ŷ and its variance:

E
[
(y − ŷ)2

]
= E

[
y2 − 2yŷ + ŷ2

]
= y2 − 2yE [ŷ] + E

[
ŷ2
]

= y2 − 2yE [ŷ] + E
[
ŷ2
]
+ E [ŷ]2 − E [ŷ]2

= (E [ŷ]− y)2 + E
[
ŷ2
]
− E [ŷ]2

= (E [ŷ]− y)2 + E
[
ŷ2 − E [ŷ]2

]
= (E [ŷ]− y)2 + E

[
ŷ2 − 2E [ŷ]2 + E [ŷ]2

]
= (E [ŷ]− y)2 + E

[
ŷ2 − 2ŷE [ŷ] + E [ŷ]2

]
= (E [ŷ]− y)2 + E

[
(ŷ − E [ŷ])2

]
E
[
(y − ŷ)2

]
= (E [ŷ]− y)2︸ ︷︷ ︸

bias2

+ V [ŷ]︸ ︷︷ ︸
variance

When the model does not capture the regularities of the data, its bias is high but its
variance is low (underfitting). When the model captures the noise of the data, its bias
is low but its variance is high (overfitting).

The most common regularization terms for structured (tabular) data are the ℓ2-
penalty, ℓ1-penalty, and the elastic net.

ℓ2-penalty

The ℓ2-penalty of θ is the squared ℓ2-norm of θ, that is the sum of the squared elements
in θ:

ℓ2(θ) = ∥θ∥22 =
∑
i

θ2i

Adding this term to the loss function has several advantages: (i) it makes the optimiza-
tion problem strictly convex; (ii) it forces each value θi not to be too large; (iii) for
linear models, the coefficients become more robust to collinearity. Linear regression
with ℓ2-penalty is commonly known as ridge regression (Tikhonov et al., 1977):

min
β

∥y −Xβ∥22 + λ∥β∥22

ℓ1-penalty

The ℓ2-penalty forces the values of the parameters not to be too large, but does not
incentive to make small values tend to 0. Indeed, the square of a small value is even
smaller. When the number of features is large, or when interpretability is important,
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Figure 1.16: Illustration of regularization. A kernel ridge regression algorithm is fitted
on this data with different values of λ, which is the weight of the regularization in the
loss function. The smaller values of λ, the smaller the weight of the ℓ2 regularization.
The algorithm underfits (respectively overfits) the data when the value of λ is too large
(respectively low).
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Figure 1.17: Unit balls of the ℓ0, ℓ1 and ℓ2 norms. For each norms, the set of points in
R2 whose norm is equal to 1 is plotted. The ℓ1 norm is the best convex approximation
to the ℓ0 norm. Note that the lines for the ℓ0 extend to −∞ and +∞, but are cut for
plotting reasons.

it can be useful to make the algorithm select the most important features. The corre-
sponding norm is the ℓ0-norm, defined as the number of nonzero elements:

ℓ0(θ) = ∥θ∥0 =
∑
i

1 (θi ̸= 0)

However, the ℓ0-norm is not differentiable and not convex. The best convex approx-
imation of the ℓ0-norm is the the ℓ1-norm (see Figure 1.17), defined as the sum of the
absolute values of each element:

ℓ1(θ) = ∥θ∥1 =
∑
i

|θi|

Linear regression with ℓ1-penalty is commonly known as LASSO (Tibshirani, 1996):

min
β

∥y −Xβ∥22 + λ∥β∥1

Elastic net

The ℓ1-penalty has several limitations. When the number of features is larger than the
number of samples, the LASSO selects at most n variables before it saturates. When
there is a group of highly correlated variables, the LASSO tends to select only one
variable from a group and ignore the others (Zou and Hastie, 2005).

To overcome these limitations, the elastic net penalty linearly combines the ℓ2- and
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ℓ1-penalties to get the best of both penalties (Zou and Hastie, 2005):

EN(θ) = λ∥θ∥22 + ν∥θ∥1

1.4.4 Metrics

Metrics are a key component of machine learning as they evaluate how well models
perform. There exist many ways of evaluating models, and choosing metrics must be
based on the most important evaluation criteria, which depend on the task. In this
section we will present the two metrics that we chose to evaluate the algorithms: the
area under the receiver operating characteristic curve and the average precision. But
first, we provide some reminder on binary classification and introduce the confusion
matrix.

Confusion matrix

For classification tasks, a confusion matrix is matrix that reports all the possible com-
binations between the predicted output and the true output. Each row consists of the
true classes, while each column consists of the predicted classes. For binary classification
tasks, the four entries are known as:

• True positives (TP ): the true class and the predicted class are both positive;

• False positives (FP ): the true class is negative, and the predicted class is positive;

• True negatives (TN): the true class and the predicted class are both negative;

• False negatives (FN): the true class is positive, and the predicted class is negative.

Table 1.1 illustrates the concept of the confusion matrix for binary classification tasks,
and the most common statistics derived therefrom. Since most of these statistics have
several names, we recall them to avoid any confusion:

True positive rate = Sensitivity = Recall = TP

TP + FN

True negative rate = Specificity =
TN

TN + FP

Positive predictive value = Precision =
TP

TP + FP

Negative predictive value =
TN

TN + FN

The true positive rate (TPR), also known as sensitivity or recall, is the proportion of
true positives among all the positives. The true negative rate (TNR), also known as
specificity, is the proportion of true negatives among all the negatives. The positive
predictive value (PPV), also known as precision, is the proportion of true positives
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Predicted classes

Positive Negative

True classes
Positive TP FN TPR =

TP

TP + FN

Negative FP TN TNR =
TN

TN + FP

PPV =
TP

TP + FP
NPV =

TN

TN + FN

Table 1.1: Confusion matrix for binary classification. Each row represents the true pos-
itive and negative classes. Each column represents the predicted positive and negative
classes. The entries of the confusion matrix correspond to all the possible outcomes.
TP : True positives; FN : False negatives; FP : False positives; TN : True negatives;
TPR: True positive rate; TNR: True negative rate; PPV: Positive predictive value;
NPV: Negative predictive value.

among all the predicted positives. The negative predictive value (NPV) is the proportion
of true negatives among all the predicted negatives.

A perfect classifier is classifier with no error, that is such that FN = FP = 0. For
instance, a classifier is perfect if and only if:

• TPR = TNR = 1 since TPR = 1 ⇐⇒ FN = 0 and TNR = 1 ⇐⇒ FP = 0

• TPR = PPV = 1 since TPR = 1 ⇐⇒ FN = 0 and PPV = 1 ⇐⇒ FP = 0

Except if the binary classification task is relatively easy, having a perfect classifier
is extremely rare. Sometimes, the scores of a classifier, such as probabilities, are as
important as the predicted classes. For instance, clinicians are often more interested
in the risks (i.e. probabilities) of a given disorder, rather than just a prediction. As a
reminder, most binary classification algorithms consist of two steps:

1. Computing a score f(x) for sample x

2. Deriving the predicted class from the score f(x) using a threshold ϵ:

ŷ =

+1 if f(x) > ϵ

−1 if f(x) < ϵ

For linear classifiers, f(x) = β0 +
∑m

j=1 βjxj represents the signed distance to the
hyperplane. Instead of comparing the true classes and the predicted classes

y = (y1, . . . , yn) , ŷ = (ŷ1, . . . , ŷn)
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one can compare the true classes and the scores

y = (y1, . . . , yn) , f(X) = (f(x1), . . . , f(xn))

Two popular metrics to compare the true classes and the scores are the area under the
receiver operating characteristic curve (ROC AUC), derived from the receiver operating
characteristic (ROC) curve, and the average precision (AP) score, derived from the
precision-recall (PR) curve.

Receiver operating characteristic curve

The receiver operating characteristic curve is the plot representing the true positive rate
against the false positive rate at various threshold settings. The false positive rate is
the proportion of false positives among all the negatives and can be calculated as (1−
specificity). The ROC curve starts at (0, 0), when all the samples are predicted negatives
(TPR = 1−TNR = 0), and ends at (1, 1), when all the samples are predicted positives
(TPR = 1− TNR = 1). The ROC curve is non-decreasing because no sample which is
classified as a negative will ever be classified as a positive for any higher threshold.

The area under the ROC curve summarizes the ROC curve with a single score. ROC
AUC can be computed as

ROC AUC =
1

n+1 × n−1

n∑
i=1

yi=+1

n∑
j=1

yj=−1

1 (f(xi) > f(xj))

where n+1 and n−1 are the number of positives and negatives respectively. ROC AUC
has a simple interpretation: it is the probability that the classifier ranks a randomly
chosen positive sample higher than a randomly chosen negative one. ROC AUC has the
following properties:

• It is always between 0 and 1;

• The higher, the better;

• ROC AUC = 0 if and only if all the negative samples have higher scores than all
the positive samples;

• ROC AUC = 1 if and only if all the positive samples have higher scores than all
the negative samples (i.e. there exists a threshold yielding a perfect classifier);

• The expected ROC AUC of random guess is 0.5, independently of the distribution
of the classes.
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Precision-recall curve

The precision-recall curve is the the plot representing the precision against the recall at
various threshold settings. Since the recall is the true positive rate, the only difference
with the ROC curve is the replacement of the false positive rate with the precision. The
PR curve starts at (0, 1), when all the samples are predicted negatives (TPR = 0,PPV =

1), and ends at (1, p), when all the samples are predicted positives (TPR = 1,PPV = p),
p being the prevalence of the positive class. Precision is actually ill-defined when all
the samples are predicted negatives (both the numerator and denominator are equal to
0), but the precision is expected to tend to 1 when the number of predicted positive
samples tend to 0.

Contrary to the ROC curve, which takes into account the four possible outcomes
(TP , FN , TN , FP ), the precision-recall curve does not take into account the true
negatives. Intuitively, precision is the ability of the classifier not to label as positive a
sample that is negative, and recall is the ability of the classifier to find all the positive
samples. The PR curve measures how well the classifier finds all the positive samples
without labeling negative samples as positives.

The precision-recall curve is particularly useful for rare event detection, where false
negatives are much more serious than false positives. For instance, let’s consider a low-
cost, fast, non-invasive diagnostic test for a serious disease. If this test is positive, the
subject have a more advanced, costly, invasive exam to confirm the diagnosis. If this
test is negative, the subject will have another test in a few years. We would like this
test to find all the subjects with this disease while labeling the least healthy subjects as
ill. Finding the healthy subjects is of much smaller interest than finding the ill ones.

The average precision score summarizes a precision-recall curve as the weighted mean
of precisions achieved at each threshold, with the increase in recall from the previous
threshold used as the weight:

AP =
∑
k

(Rk −Rk−1)Pk

where Pk and Rk are respectively the precision and recall at the k-th threshold. Average
precision is also the area under the precision-recall curve, but computed with a different
technique than the one used to compute ROC AUC. AP is the area under the PR curve
computed using the Riemann integral, while ROC AUC is the area under the ROC
curve computed using the trapezoidal rule. A linear interpolation (with the trapezoidal
rule) of points on the precision-recall curve provides an overly-optimistic measure of
classifier performance (Davis and Goadrich, 2006; Flach and Kull, 2015). AP has the
following properties:

• It is always between 0 and 1;

• The higher, the better;
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Figure 1.18: Receiver operating characteristic and precision-recall curves. The curves
are represented in blue, and the expected curves of random guess are highlighted in red.
The area under the ROC curve is computed with the trapezoidal rule, while the average
precision score is the area under the PR curve computed with the Riemann integral.

• AP = 1 if and only if all the positive samples have higher scores than all the
negative samples (i.e. there exists a threshold yielding a perfect classifier);

• The expected AP of random guess is equal to p, the prevalence of the positive
class.

Figure 1.18 illustrates the ROC and PR curves. On the ROC curve, the lower the
threshold, the higher the true positive and negative rates. The PR curve does not have a
monotonicity property, as precision can increase when recall increases. Expected curves
of random guess are highlighted.

1.5 Putting it all together

Given the association between impulse control disorders in Parkinson’s disease and po-
tential medical, financial, and/or legal medical complications, worse quality of life and
function, high rates of psychiatric comorbidity, and strained interpersonal relationships
and caregiver burden, identification and treatment of the symptoms are typically im-
perative (Weintraub and Claassen, 2017). Accurate prediction of ICDs ahead of time
may allow avoiding their potentially terrible consequences and would enable to keep
prescribing dopamine agonists with less fear of their adversarial effects.

Most of the literature on ICDs in PD is focused on associations, that is features
that are correlated with ICDs, in cross-sectional studies. These associations, although
important, have important limitations:

46



1.6. Materials 47

• Since these associations are cross-sectional, they may not hold true to predict
ICDs in advance;

• Associations may be correlated, so that finding a new association may not be
helpful to predict ICDs;

• Even new uncorrelated associations may not be helpful to predict ICDs.

Knowing associated factors may not be enough to prevent the irreversible consequences
of ICDs. One of the earliest studies on pathological gambling in PD reported losses
of hundreds of thousands of dollars for several patients (Gschwandtner et al., 2001).
Being able to predict ICDs in advance could help preventing these life-changing events.
A couple of studies focused on predicting ICDs, but the lack of cross-validation, that is
evaluating a model on different data than the data used to train the algorithm, affects
the confidence in their results.

Being able to accurately predict ICDs in advance would be of great interest clinically.
Managing ICDs is not an easy task, as patients may not be aware of their behaviors,
or can lie to their relatives and clinicians. Raising awareness in PD patients and their
relatives would be more impactful if they could be told precisely when ICDs will be
developed. ICDs may even be prevented, as case reports suggest that ICDs often resolve
after reducing the dose of the existing dopamine agonists, in particular with complete
discontinuation of DA treatment (Weintraub and Claassen, 2017).

Moreover, the genetic factors of ICDs in PD are mostly unknown. A few associations
from candidate gene analyses have been reported, but these studies have not been
replicated. Using machine learning algorithms to learn genetic factors from the whole
genome, instead of picking a few genes based on prior information, may shed some new
light on these genetic factors.

The interaction between putative genetic factors and clinical risk factors is also un-
known, and may play an important role for the onset of ICDs in PD. Investigating
different approaches modelling different types of interaction may help better under-
standing these disorders.

The association between known factors and impulse control disorders is complex
(Grall-Bronnec et al., 2018). Impulse control disorders have been mainly studied from
the statistical point of view, and machine learning has been underused. Machine learn-
ing, by automatically extracting information from data, could improve the predictability
of ICDs and leverage the knowledge on this topic, but also improve the quality of life
of patients and decrease caregiver burden.

1.6 Materials

Data analysis requires two essential components: data sets, to provide data, and soft-
ware, to analyze data. Data sets can be private or publicly available, the former being

47



48 Chapter 1. Background

much more common than the latter in medicine. Software, by providing implementa-
tions of algorithms and utility tools, are at the core of data analysis.

In this section, we present the data sets from which we obtained data, and the
software that we used to perform the analysis of these data.

1.6.1 Data sets

Medical data sets are not easy to collect and share for ethical, legal and privacy reasons.
Nonetheless, data sets are needed to better understand disorders and to further advance
scientific knowledge. In particular, publicly available data sets are very relevant because
they give anyone access to data, regardless of their institution or employer. They also
allow for tackling the reproducibility crisis that science is currently facing. Their main
drawback is their possible overuse, leading to biases in the results.

In our work, we used two data sets: the Parkinson’s Progressive Markers Initiative
(PPMI) database and the Drug Interaction With Genes in Parkinson’s Disease (DIGPD)
database.

Parkinson’s Progressive Markers Initiative

In the field of Parkinson’s disease therapeutics, the ultimate goal is to develop disease-
modifying treatments that slow, prevent or even reverse the underlying disease process.
Validated biomarkers of disease progression would dramatically accelerate PD thera-
peutics research. However, current progression biomarkers are not optimal and are not
fully validated.

The Parkinson’s Progression Markers Initiative (www.ppmi-info.org) is a landmark
observational clinical study to comprehensively evaluate cohorts of significant interest
using advanced imaging, biologic sampling and clinical and behavioral assessments to
identify biomarkers of Parkinson’s disease progression. PPMI is taking place at clinical
sites in the United States, Europe, Israel, and Australia (see Table 1.2 for the full list
of clinical sites).

Data and samples acquired from study participants enable the development of a
comprehensive Parkinson’s database and biorepository, which is currently available to
the scientific community to conduct field-changing research. PPMI follows standardized
data acquisition protocols to ensure that tests and assessments conducted at multiple
sites and across multiple cohorts can be pooled in centralized databases and repositories.
The clinical, imaging and biologic data is easily accessible to researchers in real time
through their website.

Drug Interaction With Genes in Parkinson’s Disease

The Drug Interaction With Genes in Parkinson’s Disease study is a longitudinal cohort
study of patients with PD consecutively recruited from May 2009 to July 2013 in 4
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Location Organization
Athens, GREECE National and Kapodistrian University of Athens

Atlanta, GA Emory University
Baltimore, MD Johns Hopkins University

Barcelona, SPAIN Hospital Clinical de Barcelona
Birmingham, AL University of Alabama at Birmingham
Boca Raton, FL PD and Movement Disorders Center of Boca Raton

Boston, MA Boston University
Chicago, IL Northwestern University

Cincinnati, OH University of Cincinnati
Cleveland, OH Cleveland Clinic Foundation
Houston, TX Baylor College of Medicine

Innsbruck, AUSTRIA Innsbruck University
Kassel, GERMANY Paracelsus-Elena Clinical Kassel / University of Marburg

London, UK Imperial College London
New Haven, CT Institute for Neurodegenerative Disorders
New York, NY Columbia University Medical Center
New York, NY Beth Israel Medical Center
Paris, France Pitié-Salpêtrière Center

Philadelphia, PA University of Pennsylvania
Portland, OR Oregon Health & Science University
Rochester, NY University of Rochester
Salerno, ITALY University of Salerno
San Diego, CA University of California, San Diego

San Francisco, CA University of California, San Francisco
San Sebastian, SPAIN Hospital Universitario Donostia

Seattle, WA University of Washington
Sun City, AZ Arizona Parkinson’s Disease Consortium

Sunnyvale, CA The Parkinson’s Institute & Clinical Center
Sydney, AUSTRALIA Macquarie University

Tampa, FL University of South Florida
Tel Aviv, ISRAEL Tel Aviv Sourasky Medical Center

Trondheim, NORWAY Norwegian University of Science and Technology
Tübingen, GERMANY Universität Tübingen

Table 1.2: PPMI clinical sites.
GA: Georgia; MD: Maryland; AL: Alabama; FL: Florida; IL: Illinois; OH: Ohio; TX:
Texas; UK: United Kingdom; CT: Connecticut; NY: New York; PA: Pennsylvania; OR:
Oregon; CA: California; WA: Washington; AZ: Arizona.
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French university hospitals and 4 general hospitals (Corvol et al., 2018). Eligible pa-
tients were patients with PD (UK Parkinson’s Disease Society Brain Bank criteria) with
disease duration shorter than 5 years at recruitment. After the baseline visit, annual
clinical evaluations were performed over 5 years by movement disorders specialists who
checked whether patients still fulfilled UK Parkinson’s Disease Society Brain Bank cri-
teria at each visit and filled out standardized questionnaires. All patients had a blood
sampling for DNA extraction and genome-wide genotyping. The study was conducted
according to Good Clinical Practice Guidelines, and sponsored by Assistance Publique
Hôpitaux de Paris. All patients provided informed consent, and the study was approved
by local ethical committee and regulation authorities.

Assessed phenotypes

Parkinson’s disease is characterized by a wide range of symptoms. In order to diagnose
them and assess their severity, screening tools and rating scales are used. General screen-
ing tools are often administered, but questionnaires and scales specific to Parkinson’s
disease have also been developed.

For most phenotypes, several screening tools are available. Apart from the Move-
ment Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating
Scale, which quantifies the severity of Parkinson’s disease, there is no real consensus on
the scales to use, and different databases may use different scales to assess some phe-
notypes. These differences can cause some issues for machine learning algorithms that
expect the same features in the sets used to train and evaluate the models. Table 1.3
lists the questionnaires and scales used in PPMI and DIGPD for the main symptoms
of Parkinson’s disease. Several symptoms that have been associated with impulse con-
trol disorders, such as anxiety and depression, are assessed with different scales in both
databases.

1.6.2 Software

We describe in this section the software that we used, grouped by programming lan-
guages: Python for machine learning, C/C++ for genetic analyses, and R for meta-
analysis.

Python

Python (Van Rossum and Drake, 2009) is a programming language that is easy to
pick up regardless of past programming experience. Python is developed under an
open source license, making it freely usable and distributable, even for commercial use.
Python has a large community of users and developers, with over two hundred and fifty
thousand projects referenced on the Python Package Index (https://pypi.org).
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Phenotype PPMI DIGPD
Depression GDS HADS

Anxiety STAI HADS
Parkinson’s Disease MDS-UPDRS MDS-UPDRS

REM Sleep Behavior Disorder RBDSQ Binary variable
Cognition MoCA MMSE

Activities of Daily Living Schwab and England ADL Schwab and England ADL
Autonomic dysfunction SCOPA-AUT SCOPA-AUT

Impulsive behaviors QUIP Investigator diagnosis
Sleepiness ESS ESS

Non-motor symptoms NMSS NMSS

Table 1.3: Questionnaires and scales used in PPMI and DIGPD.
ADL: Activities of Daily Living; DIGPD: Drug Interaction With Genes in Parkinson’s
Disease; ESS: Epworth Sleepiness Scale; GDS: Geriatric Depression Scale; HADS: Hospi-
tal Anxiety and Depression Scale; MDS-UPDRS: Movement Disorder Society-sponsored
revision of the Unified Parkinson’s Disease Rating Scale; MoCA: Montreal Cognitive As-
sessment; MMSE: Mini-Mental State Examination; NNMS: Non-Motor Symptoms Scale
for Parkinson’s Disease PPMI: Parkinson’s Progressive Markers Initiative; SCOPA-
AUT: Scales for Outcomes in Parkinson’s Disease – Autonomic Questionnaire; STAI:
State-Trait Anxiety Inventory; UPSIT: University of Pennsylvania Smell Identification
Test.

A large part of the growing popularity of Python is due to the increasing interest in
data science and the availability of maintained, well-documented, high-quality Python
packages for science. From data manipulation to machine learning to data visualization,
Python is the de facto programming language for data science. We will briefly introduce
the packages that we used to perform analyses.

NumPy numpy (Harris et al., 2020a) is the fundamental package for scientific comput-
ing with Python. Fast and versatile, the NumPy vectorization, indexing, and broadcast-
ing concepts are the standards of array computing today. numpy offers many numerical
computing tools: comprehensive mathematical functions, random number generators,
linear algebra routines, Fourier transforms, and more.

SciPy scipy (Virtanen et al., 2020) is a package dedicated to scientific computing.
It provides many user-friendly and efficient numerical routines, such as routines for
numerical integration, interpolation, optimization, linear algebra, and statistics, as well
as sparse matrices.

pandas pandas (McKinney, 2010) is a fast, powerful, flexible and easy to use open
source data analysis and manipulation tool. It provides tools for reading and writing
data, fast and efficient data manipulation, and high performance merging and joining
of data sets.
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Statsmodels statsmodels (Seabold and Perktold, 2010) is a Python module that
provides classes and functions for the estimation of many different statistical models.
It also provides utilities to conduct statistical tests and statistical data exploration.

UMAP UMAP (McInnes et al., 2018) is a Python package providing an implementation
of the Uniform Manifold Approximation Projection (UMAP) algorithm, which is a
popular dimension reduction techniques that can be used for visualization but also for
general non-linear dimension reduction (McInnes et al., 2018).

Scikit-learn scikit-learn (Pedregosa et al., 2011) is a popular package for machine
learning in Python. It is a versatile toolbox for data mining and data analysis, making
available numerous machine learning algorithms and utility tools under a unified ap-
plication programming interface. scikit-learn is easily accessible to everybody and
usable in various contexts.

XGBoost xgboost (Chen and Guestrin, 2016) is an optimized distributed gradient
boosting library designed to be highly efficient, flexible and portable. xgboost imple-
ments machine learning algorithms under the gradient boosting framework that solve
many data science problems in a fast and accurate way.

PyTorch pytorch (Paszke et al., 2019) is an open source machine learning framework
dedicated to deep learning. A rich ecosystem of tools and libraries extends pytorch and
supports development in computer vision, natural language processing and more.

Matplotlib matplotlib (Hunter, 2007) is a comprehensive library for creating static,
animated, and interactive visualizations in Python. Several toolkits are available which
extend matplotlib functionality.

C/C++

C is a general-purpose programming language that is widely used for systems program-
ming in implementing operating systems and embedded system applications. C++, an
extension of C, was designed with performance, efficiency, and flexibility as its core.

Thanks to low overhead, C and C++ enable programmers to create efficient im-
plementations of algorithms and data structures, useful for computationally intense
programs. Most of the Python packages with intensive computations are partially writ-
ten in C or one of its variants under the hood. Nonetheless, some scientific libraries are
completely written in C/C++, in particular for genetic analyses.
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PLINK PLINK (Chang et al., 2015) is a widely used C/C++ tool set for research
in population genetics and genome-wide association studies. PLINK provide utilities
for data management, basic statistics, linkage disequilibrium calculation, population
stratification, association analysis, and tests for epistasis.

GCTA GCTA (Yang et al., 2011) is a C/C++ tool for genome-wide complex trait
analysis. GCTA was initially designed to estimate the proportion of phenotypic variance
explained by all genome-wide single SNPs for complex traits. It has been subsequently
extended for many other analyses to better understand the genetic architecture of com-
plex traits, such as estimation of SNP-based heritability and genomic risk prediction.

R

R is a popular programming language for statistical computing and many packages
have been developed to perform statistical analyses. R provides a wide variety of sta-
tistical (linear and nonlinear modelling, classical statistical tests, time-series analysis,
classification, clustering, etc.) and graphical techniques, and is highly extensible.

meta meta (Balduzzi et al., 2019) is a user-friendly general package providing standard
methods for meta-analysis. meta provides fixed effects and random effects models and
several plots for meta-analysis among other tools.
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Chapter 2

Prediction of impulse control
disorders in Parkinson’s disease

This chapter has been submitted to the Annals of Neurology journal as:

Johann Faouzi, Samir Bekadar, Baptiste Couvy-Duchesne, Fanny Artaud,
Alexis Elbaz, Graziella Mangone, Olivier Colliot and Jean-Christophe Cor-
vol. “Prediction of impulse control disorders in Parkinson’s disease”.

Abstract

Objective To predict the (future) occurrence of impulse control disorders (ICDs) in
Parkinson’s disease (PD) using longitudinal data, the first study using cross-validation
and replication in an independent cohort.
Methods We included data from two longitudinal PD cohorts (training set: PPMI,
Parkinson’s Progression Markers Initiative; replication: DIGPD, Drug Interaction With
Genes in Parkinson’s Disease). Patients with at least two visits and with genetic data
available were included into the analysis. We trained three logistic regressions and a
recurrent neural network to predict ICD at the next visit using clinical risk factors
and genetic variants previously associated with ICDs. We quantified performance using
the area under the receiver operating characteristic curve (ROC AUC) and average
precision.
Results We included 380 PD subjects (2,728 visits) from PPMI and 388 PD subjects
(2,101 visits) from DIGPD in our analyses. The number of patients presenting ICDs
during follow-up were 143 (38%) in PPMI and 192 (49%) in DIGPD. All the models
performed relatively well at predicting the ICDs at the next visit (PPMI: ROC AUC
= 0.81 [0.75 - 0.85], DIGPD: ROC AUC = 0.77 [0.67 - 0.80]). Taking previous data
from all visits into account improved the predictive performance (PPMI: ROC AUC =
0.83 [0.80 - 0.85], DIGPD: ROC AUC = 0.80 [0.80 - 0.80]), as compared to only using

55



56 Chapter 2. Prediction of impulse control disorders in Parkinson’s disease

the baseline visit (PPMI: ROC AUC = 0.75, DIGPD: ROC AUC = 0.67). Recurrent
neural networks did not improve the predictive performance.
Interpretation ICDs in PD can be predicted with acceptable accuracy, which may
be used to improve the management of PD patients and diminish the potentially dev-
astating impacts of ICDs.

2.1 Introduction

Although Parkinson’s disease (PD) is mostly known for its motor symptoms, numer-
ous non-motor symptoms have been reported to occur during the course of the disease
(Hiseman and Fackrell, 2017). Impulse control disorders (ICDs), a class of psychiatric
disorders characterized by impulsivity, are common in PD, with half of PD cases ex-
pected to experience some of them by 5 years after disease onset (Corvol et al., 2018).
The four most common ICDs in PD are pathological gambling, compulsive eating, hyper-
sexuality, and compulsive eating disorder. ICDs are associated with reduced quality of
life, strained interpersonal relationships, increased caregiver burden, and require prompt
addressing (Weintraub and Claassen, 2017). Several case reports suggest that partial
and total discontinuations of dopamine agonist (DA) treatment leads to a resolution of
ICDs (Mamikonyan et al., 2008; Nirenberg and Waters, 2006).

Many factors have been associated with ICDs in PD, including socio-demographic,
clinical and genetic biomarkers (Grall-Bronnec et al., 2018). In particular, men tend
to develop more pathological gambling and hypersexuality disorders while women de-
velop more compulsive buying and eating disorders (Weintraub and Claassen, 2017). A
younger age has been associated with ICDs in PD in numerous studies (Callesen et al.,
2014; Poletti et al., 2013; Pontieri et al., 2015; Weintraub et al., 2010a). Anxiety (Leroi
et al., 2012; Pontieri et al., 2015; Voon et al., 2011), depression (Callesen et al., 2014;
Voon et al., 2011), and rapid eye movement (REM) sleep behavior disorders (Fantini
et al., 2015; Ramírez Gómez et al., 2017) have also been correlated to ICDs. Dopamine
replacement therapy, in particular dopamine agonists, has been strongly associated with
ICDs. Finally, associations between ICDs and several single-nucleotide polymorphisms
(SNPs) in dopamine signaling pathway genes have been suggested (Castro-Martínez
et al., 2018; Cormier-Dequaire et al., 2018; Erga et al., 2018; Krishnamoorthy et al.,
2016; Lee et al., 2009; Zainal Abidin et al., 2015).

The predictive performance of these factors altogether has been underexplored. Only
two studies report predictions at the patient level (Erga et al., 2018; Kraemmer et al.,
2016). In both studies, authors trained a logistic regression using clinical and genetic
data, and measured its predictive performance using the area under receiver operating
characteristic (ROC) curve (ROC AUC). None of these studies had cross-validation or
a replication cohort, altering the confidence in the reported performance (Koul et al.,
2018).

56



2.2. Materials and methods 57

Our main objective was to predict ICDs from clinical and genetic using machine
learning approaches. We utilized two longitudinal cohorts to train and cross-validate
the models on one cohort, but also assess the generalization capability of these models
on the second cohort. The objective was to predict the risk of ICDs at the next visit,
knowing the clinical history of the patient and their genotyping data.

2.2 Materials and methods

2.2.1 Populations

We used data from two research cohorts: the Parkinson’s Progression Markers Initiative
(PPMI) database and the Drug Interaction With Genes in Parkinson’s Disease (DIGPD)
study.

PPMI (https://www.ppmi-info.org) is a multicenter observational clinical study
using advanced imaging, biologic sampling, and clinical and behavioral assessments
to identify biomarkers of PD progression (Marek et al., 2011). Data was gathered
during face-to-face visits every 6-12 months. PD subjects were de novo and drug-naïve
at baseline. We downloaded the clinical and genetic data from the PPMI database
(https://www.ppmi-info.org/data) on the 17th of October, 2019.

DIGPD is a French multicenter longitudinal cohort with annual follow-up of PD
patients (Corvol et al., 2018). Eligible criteria consist in recent PD diagnosis (UK
Parkinson’s Disease Society Brain Bank criteria) with disease duration less than 5 years
at recruitment. Data was gathered during face-to-face visits every 12 months following
standard procedures.

Both studies were conducted according to good clinical practice, obtained approval
from local ethic committees and regulatory authorities, and all patients provided in-
formed consent prior to inclusion.

2.2.2 Participants and clinical measurements

Inclusion criteria consisted of having: (i) a PD diagnosis, (ii) a baseline visit and at
least another visit, (iii) clinical and genetic data available, and (iv) PD medication
taken available.

We included socio-demographics and clinical variables that have been associated
with ICDs in the literature: age of PD onset, length of follow-up, sex, past ICDs,
continuous scales of anxiety, depression and REM sleep, and the motor exam (part III)
of the Movement Disorders Society-sponsored revision of the Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS). ICDs were assessed at each visit using the Questionnaire
for Impulsive-Compulsive Disorders in Parkinson’s Disease - Rating Scale (Weintraub
et al., 2012) in PPMI, and through semi-structured interviews by a movement disorder
specialist in DIGPD. We standardized each feature since some of them were assessed
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with different scales and because it is a common requirement for most machine learning
estimators.

We took into account PD medication with three binary variables corresponding to
the main classes of treatment (levodopa, dopamine agonists, others) and we derived
more specific variables for dopamine agonists: mean daily, maximum daily and total
doses (expressed in levodopa equivalent) and cumulative duration.

2.2.3 Genetic variants

In absence of genome-wide association study on ICDs in PD, we considered 50 ge-
netic variants selected as previously described: 20 variants from 16 genes involved in
dopamine, serotonin, glutamate, norepinephrine and opioid systems and previously as-
sociated with ICD in PD or in the general population (Cormier-Dequaire et al., 2018);
30 additional variants from 10 genes differentially expressed after an acute challenge
of levodopa in the striatum in a mouse model of dopamine denervation (Charbonnier-
Beaupel et al., 2015).

Genotyping data were collected using NeuroX (Nalls et al., 2015) arrays in PPMI
(267,607 variants measured), and Illumina Multi-Ethnic Genotyping Arrays in DIGPD
(1,779,819 variants). We excluded variants with missing rates greater than 2% and
variants deviating from Hardy-Weinberg equilibrium (p < 10−8). We excluded related
individuals (third-degree family relationships), individuals with mismatch between re-
ported sex and genetically determined sex, and individuals with outlying heterozygosity
(± 3 standard deviation). We imputed missing SNPs using the Michigan Imputation
Server (Das et al., 2016) for PPMI and the Sanger Imputation Server (McCarthy et al.,
2016) for DIGPD, using the reference panel of the Haplotype Reference Consortium
(release 1.1) (McCarthy et al., 2016). We filtered variants based on their imputation
quality (R2 > 0.6 for PPMI, INFO score > 0.9 for DIGPD).

2.2.4 Data processing

Processing genetic data and extracting variants of interest matching inclusion criteria
was performed using the PLINK (Chang et al., 2015) software. Processing of the different
text-like files was performed using the pandas (McKinney, 2010) and NumPy (Harris
et al., 2020a) Python packages. Missing values were imputed in a forward-fill fashion:
for a given subject and a given feature, missing values were imputed using the most
recent non-missing value for this subject and this feature. Baseline missing values were
imputed using the mean baseline values on the training set.

2.2.5 Machine learning algorithms

We investigated five standard machine learning algorithms implemented in the scikit-
learn (Pedregosa et al., 2011) and XGBoost (Chen and Guestrin, 2016) Python packages:

58



2.2. Materials and methods 59

GRU

h(t) s
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ŷ(t+1)

x(1) x(2) x(t). . .

Figure 2.1: Architecture of the recurrent neural network. The clinical features assessed
at several visits are used as input of the Gated Recurrent Unit (GRU). The GRU extracts
information from these clinical features into a vector h(t). This vector and the time-
independent variables, namely the socio-demographic and genetic data denoted as s),
are used as input of a Fully Connected (FC) function followed by a sigmoid activation,
returning the probability of having an impulse control disorder at the next visit.

logistic regression, support vector machines with a linear kernel and a RBF kernel (Boser
et al., 1992; Cortes and Vapnik, 1995), random forest (Breiman, 2001) and gradient tree
boosting (Friedman, 2001; Mason et al., 2000). These algorithms expect a fixed number
of features as input. In order to deal with varying numbers of visits, we reduced all
the previous visits into one “summary” visit using a convex combination. A convex
combination is a linear combination such that the weights are all non-negative and sum
to one. The weights indicate how much each visit contributes to this “summary” visit.
A weight of 1 for the first visit means that the “summary” visit is simply the baseline
visit, while a weight of 1 for the latest visit means that the summary visit is simply
the most recent visit. One can also give uniform weights, so that each visit contributes
equally to this summary visit, or higher weights to most recent visits if they are assumed
to be more important than older visits.

As the prediction task is longitudinal, we also investigated the use of recurrent neural
networks. Recurrent neural networks are a class of artificial neural networks dedicated to
sequential data. We employed a simple architecture (Figure 2.1) with a Gated Recurrent
Unit (Cho et al., 2014) to extract information from the clinical measurements, followed
by a concatenation of this vector with the socio-demographic and genetic data, followed
by a Fully Connected function with a sigmoid activation. We use the PyTorch (Paszke
et al., 2019) Python package to build and train the recurrent neural network.
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Figure 2.2: Cross-validation procedure. We employed a nested cross-validation proce-
dure on the PPMI cohort. In the outer loop, we split the PPMI subjects into training
and test sets, while the inner loop was a 5-fold subject-level cross-validation to opti-
mize the hyper-parameters of the model. The model with the optimal values for the
hyper-parameters was evaluated on the test set of PPMI and on the whole DIGPD
cohort.

2.2.6 Cross-validation

We used PPMI as the training (discovery) cohort, and DIGPD as the testing (repli-
cation) cohort. To unbiasedly estimate the predictive performance of the models, we
employed a nested cross-validation procedure that is illustrated in Figure 2.2. In the
outer loop, we randomly split 80% of the PPMI subjects into the training set and the
remaining 20% into the test set. In the inner loop, we performed a 5-fold subject-
level cross-validation procedure to optimize the hyper-parameters of the models on the
training set. These hyper-parameters control how the algorithms fit the training data.
For instance, these hyper-parameters included the type (l1 or l2 penalty) and amount
(lambda parameter) of regularization for the linear models. In particular, logistic regres-
sion models were regularized. After finding the optimal values for the hyper-parameters,
each model was evaluated on the test set. Finally, we evaluated the performance of each
model on the whole DIGPD cohort.

2.2.7 Statistical analysis

Baseline characteristics in both cohorts were compared with chi-squared tests for cate-
gorical variables and t-tests for continuous variables using the SciPy (Virtanen et al.,
2020) Python package. Predictive performance was mainly evaluated using the area
under the receiver operating characteristic curve and average precision (AP). AP sum-
marizes a precision-recall curve as the weighted mean of precisions achieved at each
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threshold, with the increase in recall from the previous threshold used as the weight.
The precision-recall curve is similar to the ROC curve, but plots the precision (positive
predictive value) against the recall (sensitivity). The precision-recall curve does not take
into account the true negatives, and is particularly useful when the positives are more
important than the negatives (false negatives are more serious than false positives).
Other metrics included accuracy, balanced accuracy, sensitivity and specificity. ROC
and precision-recall curves were plotted using the matplotlib (Hunter, 2007) Python
package, and all the metrics were computed using the scikit-learn (Pedregosa et al.,
2011) package. Comparison between ROC AUC was measured using DeLong test (De-
Long et al., 1988). P-values were adjusted for multiple comparisons using Bonferroni
correction. We did not statistically compare AP scores as we were not aware of a relevant
statistical test to do so, and reported 95% confidence intervals using bootstrapping.

2.3 Results

2.3.1 Population characteristics

Out of the 423 PD subjects in PPMI, we excluded 1 subject for not having a baseline
visit, 2 for not having medication records and 40 for not having genetic data. Out of
the 415 PD subjects in DIGPD, we excluded 27 for having only a baseline visit. No
subjects were excluded based on their genetic data. Thus, we included 380 PD subjects
from PPMI and 388 PD subjects from DIGPD in our analyses. The 380 PPMI subjects
had a total of 2,728 visits, while the 388 DIGPD subjects had a total of 2,101 visits.
Since our objective was to predict the occurrence of ICDs at the next visit, the number
of observations for a given subject is equal to their number of visits minus 1. Thus, the
total number of observations was equal to 2,348 in PPMI and 1,713 in DIGPD.

Clinical characteristics are presented in Table 2.1. Age and sex in both cohorts
were not significantly different. PPMI subjects had significantly more visits and smaller
intervals between back-to-back visits, as well as longer follow-ups. DIGPD subjects
had significantly lower scores in the motor exam of the MDS-UPDRS. The prevalence
of ICDs at baseline was significantly higher in DIGPD than in PPMI, as well as their
lifetime prevalence. Both differences might be explained by the fact that PD subjects
are de novo and drug-naïve at baseline in PPMI whereas they are not in DIGPD.
Other phenotypes (anxiety, depression, and REM sleep disorders) were not statistically
compared due to the different scales used.

Concerning genetic data, we excluded 1 genetic variant for being a variable number
of tandem repeat polymorphism. Furthermore, we excluded 18 SNPs for having too low
imputation quality scores. Finally, 31 SNPs were included in our analyses (Table A.1).
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Characteristic PPMI DIGPD p-value

Age (in years) 60.67± 9.71 58.99± 9.75 1.71× 10−2

Sex (F/M) 127/253 (33%) 155/233 (40%) 7.16× 10−2

Length of follow-up (in years) 5.86± 1.95 4.82± 1.83 7.07× 10−14

Number of visits per subject 7.18± 2.96 5.41± 1.66 4.21× 10−35

Interval between visits (in years) 0.95± 0.35 1.090.33 3.24× 10−39

Anxiety STAI: 93.55± 7.96 HAD: 6.82± 3.77

Depression GDS: 5.25± 1.47 HAD: 4.59± 3.16

REM sleep RBDSQ: 4.17± 2.71 1/0: 86/302(22%)

MDS-UPDRS III 20.87± 8.86 9.91± 5.33 3.77× 10−72

Baseline ICD (1/0) 42/338 (13%) 76/312 (20%) 5.34× 10−3

Lifetime ICD (1/0) 143/237 (38%) 192/196 (49%) 1.12× 10−3

Table 2.1: Baseline characteristics. For continuous variables, mean ± standard deviation
is reported. For binary variables, the count for both categories is reported as well as the
proportion of the first category. Statistical differences were assessed using independent
t tests for continuous variables and chi-squared tests for categorical variables.
HAD: Hospital Anxiety and Depression Scale; ICD: Impulse control disorders; MDS-
UPDRS: Movement Disorders Society-sponsored revision of the Unified Parkinson’s Dis-
ease Rating Scale; QUIP: Questionnaire for Impulse-Compulsive Disorders in Parkin-
son’s Disease; REM: Rapid eye movement; RBDSQ: Rapid eye movement Sleep Behav-
ior Disorder Screening Questionnaire; STAI: State-Trait Anxiety Inventory.

2.3.2 Predictive performance

Table 2.2 presents the predictive performance for the four main models: logistic regres-
sion using the baseline visit, the most recent visit, and the mean over all the past visits,
and the recurrent neural network. The logistic regression using the baseline visit had
the lowest scores on both cohorts (ROC AUC = 0.75 and AP = 0.44 in PPMI, ROC
AUC = 0.67 and AP = 0.43 in DIGPD). By contrast, the recurrent neural network
yielded the highest scores in PPMI (ROC AUC = 0.85, AP = 0.61), while the logistic
regression using the most recent visit yielded the highest scores in DIGPD (ROC AUC
= 0.802, AP = 0.64). Figure 2.3 and Figure 2.4 show the ROC and precision-recall
curves for the four main models in PPMI and in DIGPD respectively. The recurrent
neural network models had sensitivities of 61% and 70% and specificities of 90% and
82% in PPMI and DIGPD respectively, at the default threshold (probability > 0.5).
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Logistic regression
using only the
baseline visit

Logistic regression
using only the
previous visit

Logistic regression
using the mean
over past visits

Recurrent
neural

network

ROC AUC
PPMI 0.75 ([0.69, 0.81]) 0.80 ([0.73, 0.86]) 0.84 ([0.77, 0.89]) 0.85 ([0.79, 0.90])

DIGPD 0.67 ([0.64, 0.70]) 0.80 ([0.78, 0.83]) 0.80 ([0.77, 0.82]) 0.80 ([0.78, 0.83])

Average precision
PPMI 0.44 ([0.33, 0.56]) 0.45 ([0.36, 0.58]) 0.60 ([0.49, 0.72]) 0.61 ([0.49, 0.73])

DIGPD 0.43 ([0.39, 0.48]) 0.64 ([0.60, 0.69]) 0.62 ([0.57, 0.67]) 0.62 ([0.58, 0.68])

Accuracy
PPMI 0.77 ([0.74, 0.81]) 0.82 ([0.78, 0.85]) 0.84 ([0.80, 0.87]) 0.86 ([0.83, 0.89])

DIGPD 0.57 ([0.54, 0.59]) 0.59 ([0.57, 0.61]) 0.64 ([0.62, 0.67]) 0.78 ([0.76, 0.80])

Balanced accuracy
PPMI 0.69 ([0.63, 0.75]) 0.76 ([0.71, 0.82]) 0.77 ([0.70, 0.82]) 0.76 ([0.70, 0.82])

DIGPD 0.60 ([0.58, 0.63]) 0.67 ([0.65, 0.69]) 0.69 ([0.67, 0.72]) 0.76 ([0.73, 0.78])

Sensitivity
PPMI 0.57 ([0.46, 0.68]) 0.69 ([0.58, 0.79]) 0.66 ([0.54, 0.77]) 0.61 ([0.50, 0.73])

DIGPD 0.68 ([0.64, 0.73]) 0.84 ([0.80, 0.87]) 0.81 ([0.77, 0.84]) 0.70 ([0.66, 0.74])

Specificity
PPMI 0.81 ([0.77, 0.85]) 0.84 ([0.81, 0.88]) 0.87 ([0.84, 0.91]) 0.90 ([0.87, 0.93])

DIGPD 0.52 ([0.49, 0.55]) 0.50 ([0.47, 0.53]) 0.58 ([0.56, 0.61]) 0.82 ([0.80, 0.84])

Table 2.2: Results of the four main models. Predictive performance for the four main models on both cohorts are reported. 95% confidence
intervals were estimated using 2000 bootstrap samples.
DIGPD: Drug Interaction With Genes in Parkinson’s Disease; PPMI: Parkinson’s Progression Markers Initiative; ROC AUC: area under
the receiver operating characteristic curve.
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All four models were statistically better than random guess (p < 0.001). Logistic
regression using only the baseline visit was statistically worse than at least two other
models in both cohorts (Figure 2.5). The three other models were not statistically
different from each other in both cohorts.

Although AP scores for the three best models were higher in DIGPD than in PPMI,
the prevalence of ICDs, computed over all the (patient, visit) pairs, was twice higher in
DIGPD than in PPMI (27% in DIGPD, 14% in PPMI). As AP scores of random guess
are equal to the prevalence of the positive class, the differences between AP scores in
both cohorts should be interpreted with much caution.

The other machine learning algorithms (support vector machines with linear and
RBF kernels, random forest, and gradient tree boosting) and other reduction approaches
(giving positive weights to all the past visits, but higher weights to more recent visits)
yielded comparable results (Table A.3 and Table A.4).

To evaluate the impact of the splitting of PPMI into training and test sets on the
predictive performance, we repeated the cross-validation procedure 10 times and also
evaluated the 10 models on DIGPD. All iterations yielded comparable results (Table A.5
and Table A.6).

2.3.3 Contribution of the different features

Since the genetic factors of ICDs in PD are mostly unknown and genotyping data is not
usually collected in clinical routine, we investigated the predictive performance of the
same algorithms without the genetic variants as input, in order to assess their added
value in the models. Table 2.3 presents the ROC AUC of the models with and without
genetic variants and their statistical comparison. Only one comparison was statistically
different: the logistic regression model using the most recent visit had a higher ROC
AUC with genetic variants than without genetic variants (ROC AUC = 0.80 with genetic
variants, ROC AUC = 0.79 without genetic variants, p < 0.001). The genetic variants
did not seem to be major contributors to the decision function of the logistic regression
models.

Table 2.4 presents the coefficients of the three logistic regression models without
genetic variants as input (see Table A.2 for the coefficients of the three logistic regression
models with genetic variants as input). As the logistic regression model using the
baseline visit performed significantly worse, and the variables for PD medication were
all null (PD patients in PPMI are de novo drug-naive at baseline, and the medical
history of PD patients in DIGPD was not available before their baseline visit), we
only interpreted the other two models. The following features had positive coefficients:
sex, past ICDs, depression, REM sleep, motor exam, being on other PD medication
than levodopa and dopamine agonists, and maximum dose and cumulative duration of
dopamine agonists. On the other hand, the following features had negative coefficients:
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Figure 2.3: ROC and Precision-recall curves on PPMI. The ROC and precision-recall
curves were computed for the four models, with 95% confidence intervals behind es-
timated using 2000 bootstrapping samples: (A) logistic regression using the baseline
visit; (B) logistic regression using the most recent visit; (C) logistic regression using the
mean over the past visits; (D) recurrent neural networks using all the past visits.
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Figure 2.4: ROC and Precision-recall curves on DIGPD. The ROC and precision-recall
curves were computed for the four models, with 95% confidence intervals behind es-
timated using 2000 bootstrapping samples: (A) logistic regression using the baseline
visit; (B) logistic regression using the most recent visit; (C) logistic regression using the
mean over the past visits; (D) recurrent neural networks using all the past visits.
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Figure 2.5: Statistical comparison of ROC AUC for the four main models. 95% confi-
dence intervals were computed using 2000 bootstrap samples. P-values were computed
using the DeLong test. P-values below the 0.05 threshold after adjustment for multi-
ple comparison using Bonferroni correction are highlighted with at least one asterisk:
p ≤ 0.05 (∗), p ≤ 0.01 (∗∗), p ≤ 0.001 (∗ ∗ ∗).
CI: confidence interval; DIGPD: Drug Interaction With Genes in Parkinson’s Disease;
PPMI: Parkinson’s Progression Markers Initiative; ROC AUC: area under the receiver
operating characteristic curve.
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Logistic regression
using only the
baseline visit

Logistic regression
using only the
previous visit

Logistic regression
using the mean
over past visits

Recurrent
neural

network

PPMI
With genetic variants 0.753 ([0.687, 0.814]) 0.795 ([0.727, 0.860]) 0.838 ([0.773, 0.893]) 0.850 ([0.794, 0.899])

Without genetic variants 0.751 ([0.683, 0.816]) 0.807 ([0.745, 0.865]) 0.843 ([0.782, 0.894]) 0.845 ([0.789, 0.895])
p-value 0.885 0.0971 0.637 0.451

DIGPD
With genetic variants 0.666 ([0.637, 0.695]) 0.802 ([0.776, 0.827]) 0.797 ([0.772, 0.823]) 0.802 ([0.777, 0.828])

Without genetic variants 0.682 ([0.653, 0.710]) 0.786 ([0.758, 0.812]) 0.788 ([0.763, 0.813]) 0.803 ([0.778, 0.828])
p-value 0.0143 0.000252 0.109 0.757

Table 2.3: Statistical comparison of ROC AUC for the four main models with and without genetic variants. Differences in ROC AUC
between the models with and without genetic variants were assessed with the DeLong test. Significant differences after Bonferroni
correction are highlighted in bold font.
DIGPD: Drug Interaction With Genes in Parkinson’s Disease; PPMI: Parkinson’s Progression Markers Initiative; ROC AUC: area under
the receiver operating characteristic curve.



Baseline
visit

Most recent
visit

Mean over
past visits

Socio-demographic
Sex 0.174 0.182 0.344
Age -0.318 -0.312 -0.184

Clinical

Past ICDs 1.582 1.921 3.958
Depression 0.000 0.131 0.887

State anxiety 0.000 -0.358 0.000
Trait anxiety 0.000 -0.332 -0.562
REM sleep 0.723 0.533 0.639
Motor exam 0.000 0.128 0.343

PD medication

On levodopa 0.000 -0.029 -0.300
On dopamine agonists 0.000 0.063 0.000

On other PD medication 0.000 0.171 0.063
Mean daily dose of dopamine agonists 0.000 -0.130 -0.049

Maximum daily dose of dopamine agonists 0.000 0.253 0.563
Total dose of dopamine agonists 0.000 -0.393 -3.392

Cumulative duration on dopamine agonists 0.000 0.355 2.109
Time to prediction Time to prediction 0.106 0.032 0.039

Table 2.4: Coefficients of the three logistic regression models without genetic variants as input.
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age, anxiety, being on levodopa, and mean daily and total dose of dopamine agonists.
The features corresponding to being on dopamine agonists and time to prediction had
coefficients close to zero. The variables with the largest absolute values were past ICDs,
and total dose and cumulative duration of dopamine agonists.

2.4 Discussion

To the best of our knowledge, this study is the first one evaluating the predictability
of ICDs in PD in an unbiased manner using two longitudinal cohorts, including one
independent replication cohort.

Two previous studies reported ROC AUC for a prediction task of ICDs in PD (Erga
et al., 2018; Kraemmer et al., 2016). Kraemmer and colleagues reported ROC AUC
of 0.65 (95% CI 0.58-0.73) with clinical variables only and of 0.76 (95% CI 0.70-0.83)
with clinical and genetic variables, while Erga and colleagues reported ROC AUC of
0.68 (95% CI 0.59-0.78) with clinical features only and of 0.70 (95% CI 0.61-0.79) with
clinical and genetic features. However, the methods and prediction tasks were different.
Erga and colleagues performed a cross-sectional analysis of 119 PD patients from the
Norwegian ParkWest study, while Kraemmer and colleagues performed a longitudinal
analysis of 276 PD patients from PPMI. In their studies, each patient corresponds to
a unique observation, leading to much lower sample sizes. Moreover, both studies did
not use cross-validation and did not have a replication cohort, which might lead to
overly optimistic reported results (Koul et al., 2018). By contrast, our study uses cross-
validation on the training cohort (PPMI) and has a replication cohort (DIGPD), with
comparable results in both cohorts. Moreover, both cohorts have different character-
istics (de novo drug-naive patients in PPMI, already-treated patients in DIGPD) and
some variables (anxiety, depression, REM sleep) were not measured with the same in-
struments, suggesting good generalizability of the models in different settings. We also
detail our methodology and provide the coefficients of the logistic regression models, so
that others can investigate the predictive performance of our models in their cohorts.

The logistic regression coefficients were overall consistent with the literature. For
the socio-demographic variables, sex and age have respectively a positive and negative
coefficients, in accordance with a younger age and a male sex previously associated with
ICDs in PD (Weintraub and Claassen, 2017). Depression, REM sleep and motor exam
scores also had positive coefficients, consistent with their positive association (Grall-
Bronnec et al., 2018). Anxiety scores had negative coefficients although previously
reported to be positively associated with ICD. The maximum dose and cumulative
duration of dopamine agonists had positive coefficients, confirming the important role
of the dose and the duration of dopamine agonist therapy in the risk to develop ICDs in
PD (Corvol et al., 2018). Interestingly, the types of PD medication sparsely contributed
to the decision function of the models, with very small coefficients. The mean daily and
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total doses of dopamine agonists had negative coefficients, although these coefficients
were almost null for the mean daily dose. These derived features have rarely been
investigated altogether, making the comparison with the literature difficult. It should
be noted that the coefficients are estimated altogether and that the logistic regression
models were regularized, so interpretation should be performed with caution.

Although the predictive performance of the models can be considered acceptable,
the use of such models in clinical practice would deserve improving their accuracy. We
used features that have been associated with ICDs in PD as input of our models, but
there are probably more unknown risk factors to be discovered. In addition, as a class
of psychiatric disorders, ICDs are particularly complex, with qualitative environmental
factors that might play important roles, are difficult to measure, and are not captured
by clinical scales used in PD. Assessment of ICDs may also be noisy (e.g. patients
hiding or not aware of their behavior), and thus ICDs are probably less predictable in
practice than other comorbidities in PD, such as dementia (Liu et al., 2017). Finally,
little is known about the genetic factors of ICDs in PD. In absence of genome-wide
association study and genetic risk scores for ICDs in PD, we used associated genetic
variants from candidate gene analyses (Cormier-Dequaire et al., 2018; Erga et al., 2018;
Kraemmer et al., 2016). As variation in complex traits is caused by numerous genetic
variants, such analyses have important limitations and many association studies could
not be replicated, particularly in psychiatric conditions like schizophrenia (Johnson
et al., 2017). More studies, in particular genome-wide association studies, are needed
to better understand the genetic landscape of ICDs in PD.

We used ROC AUC as the main metric to evaluate the models, and recurrent neural
network models did not have much added value over logistic regression models for this
metric. ROC AUC is the area under the ROC curve, plotting the sensitivity against
the specificity, and summarizes how much sensitivity and specificity change for different
thresholds. However, in practice, a single threshold is generally used. Using the default
threshold (probability > 0.5) yielded higher balanced accuracy (mean of sensitivity and
specificity) scores in the replication cohort for the recurrent neural network model than
the logistic regression models, whereas this was not observed in the training cohort.
This might suggest better generalizability of the recurrent neural network model than
the logistic regression models when using a single threshold.

Being able to predict ICDs is of critical importance due to their potential medical,
financial, and/or legal medical complications. Identifying patients at high risk to de-
velop ICDs at the next visit may lead to changes in the dopaminergic treatment strategy
(e.g. decrease the dose of dopamine agonists and increase levodopa) and/or recommend
a closer monitoring of behavioral changes by the caregiver. The efficacy of such pre-
ventive strategies based on a predictive model remains however to be evaluated. In this
perspective, the model may be adapted depending on the relative importance for iden-
tifying positives (patients who will develop ICDs) or negatives (patients who will not
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develop ICDs). The balanced accuracy scores were equal to 76% for the recurrent neu-
ral network models in both cohorts, but the sensitivities (61% vs 70%) and specificities
(90% vs 82%) differed, which might be explained by the different prevalences in both
cohorts. Using the default threshold (probability > 0.5) made the models more specific
than sensitive, which might be a limitation if finding the positives is more important
than the negatives. On the other hand, models being more specific than sensitive might
be more relevant if the main objective is to propose treatment changes only to patients
who are really at risk, and avoid unnecessary modifications in more patients. The
threshold can still be adjusted depending on the main objective. Prospective studies
are required to validate the models and allow their relevance in clinical routine.

Our study has several limitations. First, the sample sizes are relatively small, in
particular on the test set of PPMI due to the use of cross-validation, leading to large
confidence intervals. Second, each observation is a (subject, visit) pair and thus the ob-
servations are not independent (the intra-subject observations are not independent, but
the inter-subject observations are independent), which could lead to underestimating
p-values when assessing the statistical difference between ROC AUC. Third, in absence
of genome-wide association study and genetic risk scores for ICDs in PD, we used as-
sociated genetic variants from candidate gene analyses. Genetic risk scores are more
robust estimators of the genetic liability of a phenotype and should be preferred when
available (Wray et al., 2007).

In conclusion, our study shows that ICDs in PD can be predicted with a relatively
good accuracy. The developed models were unbiasedly evaluated in two research co-
horts, with comparable results. Our study highlights the utility of machine learning to
automatically extract information from data and its potential to improve patient care.
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Chapter 3

Exploratory analysis of the genet-
ics of impulse control disorders in
Parkinson’s disease using genetic
risk scores

This chapter has been submitted to the Parkinsonism and Related Disorders journal
as:

Johann Faouzi, Baptiste Couvy-Duchesne, Samir Bekadar, Olivier Col-
liot and Jean-Christophe Corvol. “Exploratory analysis of the genetics of
impulse control disorders in Parkinson’s disease using genetic risk scores”.

Abstract

Objective To study the association between impulse control disorders (ICDs) in
Parkinson’s disease (PD) and genetic risk scores (GRS) for 40 known or putative risk
factors (e.g. depression, personality traits).
Background In absence of published genome-wide association studies (GWAS), little
is known about the genetics of ICDs in PD. GRS of related phenotypes, for which large
GWAS are available, may help shed light on the genetic contributors of ICDs in PD.
Methods We searched for GWAS on European ancestry populations with summary
statistics publicly available for a broad range of phenotypes, including other psychiatric
disorders, personality traits, and simple phenotypes. We separately tested their pre-
dictive ability in two of the largest PD cohorts with clinical and genetic available: the
Parkinson’s Progression Markers Initiative database (N = 368, 33% female, age range =
[33 - 84]) and the Drug Interaction With Genes in Parkinson’s Disease study (N=373,
40% female, age range = [29 - 85]).
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Results We considered 40 known or putative risk factors for ICDs in PD for which
large GWAS had been published. After Bonferroni correction for multiple comparisons,
no GRS or the combination of the 40 GRS were significantly associated with ICDs from
the analyses in each cohort separately and from the meta-analysis.
Conclusion Albeit unsuccessful, our approach will gain power in the coming years
with increasing availability of genotypes in clinical cohorts of PD, but also from future
increase in GWAS sample sizes of the phenotypes we considered. Our approach may be
applied to other complex disorders, for which GWAS are not available or limited.

3.1 Introduction

Although the cardinal symptoms of Parkinson’s disease (PD) are motor, many non-
motor symptoms frequently occur during the course of the disease, including psychi-
atric comorbidities. Impulse control disorders (ICDs), a class of psychiatric disorders
characterized by impulsivity, are common in PD, with half of PD cases expected to
experience them within 5 years of the disease onset (Corvol et al., 2018). The four most
common ICDs in PD are pathological gambling, compulsive eating, hypersexuality, and
compulsive eating disorder. ICDs are associated with reduced quality of life, strained in-
terpersonal relationships, increased caregiver burden, and require prompt management
(Weintraub and Claassen, 2017).

Numerous factors have been associated with ICDs in PD, including socio-demographic,
clinical and genetic variables (Grall-Bronnec et al., 2018). Associations from candidate
gene analyses between ICDs and several genetic variants have been reported in the fol-
lowing genes: ANKK1 (Hoenicka et al., 2015), DAT1 (Cormier-Dequaire et al., 2018),
DRD1 (Erga et al., 2018; Zainal Abidin et al., 2015), DRD2 (Kraemmer et al., 2016;
Zainal Abidin et al., 2015), DRD3 (Castro-Martínez et al., 2018; Krishnamoorthy et al.,
2016; Lee et al., 2009), GRIN2B (Lee et al., 2009; Zainal Abidin et al., 2015), HTR2A
(Kraemmer et al., 2016; Lee et al., 2012), OPRK1 (Cormier-Dequaire et al., 2018;
Kraemmer et al., 2016), OPRM1 (Cormier-Dequaire et al., 2018), and SLC22A1 (Re-
denek et al., 2019). Several studies also reported no consistent associations with variants
from some of the same genes (Cormier-Dequaire et al., 2018; Vallelunga et al., 2012),
highlighting the variability and the lack of replication of the reported associations.

Variation in complex traits is caused by numerous genetic variants. Each genetic
variant usually provides limited information because the relative causal risk of each
variant is small (Wray et al., 2007). On the other hand, the combined risk of numerous
low-risk variants can explain a significant proportion of the genetic variance. Genetic
risk scores (GRS), obtained from genome-wide association studies (GWAS), linearly
summarize the contribution of these numerous variants into a single score. Using such
GRS allows for studying traits not collected in the PD cohorts or diseases that would
be too rare to allow direct evaluation of the comorbidities.
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ICDs in PD have been rarely studied using GRS. Only one study looked for associa-
tions between GRS and ICDs in PD (Ihle et al., 2020). In this study, authors computed
a GRS of PD using 90 SNPs reaching genome-wide significance in a meta-analysis of 17
GWAS (Nalls et al., 2019) and did not find an association between this GRS and ICDs
in PD. Their power was limited due to the small sample size. Furthermore, the GRS
may only capture part of the genetic risk factors and would benefit from larger GWAS
(Dudbridge, 2013). ICDs are not associated with PD itself (de la Riva et al., 2014),
and may be associated with personality traits or psychiatric endophenotypes, which has
been little studied.

Our main objective was to evaluate the predictive accuracy of a broad range of GRS
in order to shed light on the genetic determinants of ICDs in PD. We were particularly
interested in GRS for other psychiatric disorders, but also personality traits, including
impulsivity, some of which have been associated with ICDs in PD (Callesen et al., 2014;
Sáez-Francàs et al., 2016; Voon et al., 2011).

3.2 Materials and methods

3.2.1 Populations

We used data from two research cohorts: the Parkinson’s Progression Markers Initiative
(PPMI) database and the Drug Interaction With Genes in Parkinson’s Disease (DIGPD)
study.

PPMI (https://www.ppmi-info.org) is a multicenter observational clinical study
using advanced imaging, biologic sampling and clinical and behavioral assessments to
identify biomarkers of PD progression. Data was gathered during face-to-face visits ev-
ery 6–12 months. PD subjects were de-novo and drug-naïve at baseline. We downloaded
the clinical and genetic data from the PPMI database (https://www.ppmi-info.org/
data) on the 17th of October, 2019.

DIGPD is a French multicenter longitudinal cohort with annual follow-up of PD
patients (Corvol et al., 2018). Eligible criteria consist in recent PD diagnosis (UK
Parkinson’s Disease Society Brain Bank criteria) with disease duration less than 5 years
at recruitment. Data was gathered during face-to-face visits every 12 months following
standard procedures.

Both studies were conducted according to good clinical practice, obtained approval
from local ethic committees and regulatory authorities, and all patients provided in-
formed consent prior to inclusion.

3.2.2 Participants

Inclusion criteria in our analyses included having: (i) a PD diagnosis, (ii) at least two
visits measuring ICDs, (iii) clinical and genetic data available, and (iv) a European

75

https://www.ppmi-info.org
https://www.ppmi-info.org/data
https://www.ppmi-info.org/data


76 Genetic risk scores and impulse control disorders in Parkinson’s disease

genetic ancestry. We identified 378 subjects in PPMI and 382 subjects in DIGPD
matching the first three criteria.

ICDs were assessed at each visit using the Questionnaire for Impulsive-Compulsive
Disorders in Parkinson’s Disease - Rating Scale (Weintraub et al., 2012) in PPMI, and
through semi-structured interviews by a movement disorders specialist in DIGPD. The
ICD phenotype was defined as the lifetime presence of ICDs.

3.2.3 Genetic ancestry

To date, most GWAS have been conducted in populations of European ancestry, which
limits the use of GWAS-derived GRS in non-European ancestry populations (Wang
et al., 2020), and their transferability to other populations depends on many factors
such as linkage disequilibrium, allele frequencies, and genetic architecture. Directly
computing GRS in another ancestry group that the one from the corresponding GWAS
can lead to biased GRS (Martin et al., 2017).

To estimate the genetic ancestry of the PD subjects in PPMI and DIGPD, we used
data from the 1000 genomes (1000G) project to learn a low-dimensional representation
of the genetic data, which captures the main dimension of ancestry. Using the 50,842
common raw SNPs between 1000G, PPMI and DIGPD, we applied the Uniform Mani-
fold Approximation Projection (McInnes et al., 2018) (UMAP) algorithm on the 1000G
data to learn a low-dimensional space of the raw SNPs. Finally, we projected the PPMI
and DIGPD subjects onto the main principal components to identify in which clusters
they were the closest to. Subjects projected on another cluster than the European
cluster were excluded.

3.2.4 Genotyping and quality control

Genotype data was acquired using NeuroX (Nalls et al., 2015) arrays in PPMI (267,607
variants measured), and Illumina Multi-Ethnic Genotyping Arrays in DIGPD (1,779,819
variants). We excluded variants with missing rates greater than 2% and variants devi-
ating from Hardy-Weinberg equilibrium (p < 10−8). We excluded related individuals
(third-degree family relationships), individuals with mismatching between reported sex
and genetically determined sex, and individuals with outlying heterozygosity (± 3 stan-
dard deviation). We then imputed missing SNPs using the Michigan Imputation Server
(Das et al., 2016) for PPMI and the Sanger Imputation Server (McCarthy et al., 2016)
for DIGPD, using the reference panel of the Haplotype Reference Consortium (release
1.1) (McCarthy et al., 2016).

For GRS calculation, we selected SNPs that were (i) biallelic, (ii) frequent enough
(minor allele frequency > 1%), and (iii) imputed with sufficient accuracy (R2 > 0.8 for
PPMI, INFO Score > 0.9 for DIGPD).
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3.2.5 Phenotypes and genome-wide association studies

Phenotypes of interest included known or putative factors associated with ICDs in PD,
such as anxiety, depression, personality traits including impulsivity, eating and sleep
disorders. We were also interested in more general phenotypes such as body height,
body mass index (BMI), intelligence, and number of years of education, more because
of the sample size of the corresponding GWAS rather than their prior association with
ICDs in PD. In particular, body height and body mass index are phenotypes that are
easy to collect with precision, and for which very large GWAS are available and the
corresponding GRS explain a large part of the variance. These phenotypes are also
usually collected in research cohorts, allowing for comparing the GRS with the true
phenotypes, and thus validating our computation of the GRS.

We used the NHGRI-EBI GWAS Catalog (Buniello et al., 2019) to select the largest
GWAS to date on samples of European ancestry. When summary statistics from several
GWAS were available for a given phenotype, we only included the largest study.

3.2.6 Computation of genetic risk scores

When summary statistics were fully available, we estimated the coefficients of the GRS
using the SBLUP (Robinson et al., 2017) algorithm implemented in the GCTA (Yang
et al., 2011) software. SBLUP directly estimates GRS coefficients from summary statis-
tics, using a reference sample to estimate the linkage disequilibrium between SNPs.
When summary statistics were not available in full, we computed small GRS by per-
forming clumping to select the most significant, low correlated variants, and directly
using the coefficients provided in the summary statistics. Clumping and GRS compu-
tation were performed using the PLINK (Chang et al., 2015) software.

3.2.7 Statistical analyses

We estimated the association between the binary ICD phenotype and GRS using logistic
regression, while correcting for age, sex, genetic ancestry (first four components), and
the number of visits. We added the correction for the number of visits to reflect the
fact that lifetime phenotype may be more likely as the number of visits increases. We
performed the analyses in each cohort independently as the contributions of all the SNPs
were estimated altogether, and the number of SNPs was much lower in PPMI than in
DIGPD. We applied per-sample Bonferroni correction for multiple comparisons. We also
investigated the association of the combination of the 40 GRS with the likelihood-ratio
test.

As the sample sizes were relatively small in both cohorts, we also performed a
meta-analysis to estimate the combined effects of each GRS separately and combined
altogether using fixed effects models with the inverse-variance weighting method.
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Logistic regressions were performed using the statsmodels (Seabold and Perktold,
2010) Python package. Meta-analyses were performed using the meta (Balduzzi et al.,
2019) R package. Processing of the different text-like files was performed using the
pandas (McKinney, 2010) and NumPy (Harris et al., 2020a) packages.

3.3 Results

3.3.1 Participants and genetic variants

Out of the 378 PPMI subjects and 382 DIGPD subjects who matched the first three
inclusion criteria, we excluded 10 subjects from PPMI and 9 subjects from DIGPD for
being projected too far from the European cluster (Figure 3.1). Thus, we included 368
subjects from PPMI and 373 subjects from DIGPD.

Out of the 39,235,157 genetic variants of the Haplotype Reference Consortium ref-
erence panel, 601,370 SNPs in PPMI and 6,294,320 SNPs in DIGPD matched the in-
clusion criteria. The high discrepancy in the numbers is due to the genotyping arrays:
the NeuroX array is known to have a low coverage of the genome (Nalls et al., 2015).

3.3.2 Genome-wide association studies

We identified 40 GWAS that matched the inclusion criteria. Table 3.1 presents the char-
acteristics of these studies, including the phenotype of interest, the number of SNPs, the
heritability estimated from these SNPs, and the number of common SNPs between the
GWAS and PPMI and DIGPD. The included phenotypes consisted of other psychiatric
disorders (anxiety, depression, obsessive compulsive, and attention-deficit hyperactiv-
ity disorders (ADHD), anorexia nervosa), personality traits (impulsivity, agreeableness,
conscientiousness, extraversion, openness), risk taking behaviors (automobile speeding,
alcohol consumption, smoking status, sexual activity), and simple traits (body height,
body mass index, intelligence, education).

Two groups of GWAS included genetic data from 23andMe1, and only the top 10,000
SNPs were made publicly available. We requested access to the whole summary statistics
from 23andMe with no success.

3.3.3 Association analyses

Table 3.2 presents the unadjusted p-values for the 40 GRS from the analyses on each
cohort separately and from the meta-analysis. For the analysis in each cohort separately,
among the 2 sets of 40 unadjusted p-values (correction is per-sample), only one was
smaller than 0.05 (nominal significance), corresponding to the GRS of body mass index
in PPMI (p = 0.0079). The association did not survive after Bonferroni correction.

1www.23andme.com
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Figure 3.1: Genetic ancestry estimation. (A) A two-dimensional representation of the
raw genetic data was learned on 1000G, which consists of 5 super populations. The
PPMI (B) and DIGPD (C) subjects were projected on this space to estimate their
genetic ancestry, and excluded if their projection was too far from the European cluster.
Excluded subjects are highlighted with a black circle.
1000G: 1000 Genomes Project; DIGPD: Drug Interaction With Genes in Parkinson’s
Disease; PPMI: Parkinson’s Progression Markers Initiative.
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Study Phenotype h2
SNP (SE) # subjects # SNPs # SNPs ∩ DIGPD # SNPs ∩ PPMI

(Howard et al., 2019) Major depression disorder 0.089 (0.003) 807,553 7,743,682 5,975,580 502,668
(Nalls et al., 2019) Parkinson’s disease 0.22 (0.024) 900,238 8,164,949 6,123,638 521,258

(IOCDF, 2018) Obsessive compulsive disorder 0.28 (0.04) 9,725 6,813,688 5,717,746 493,510
(Otowa et al., 2016) Anxiety disorder 0.138 (0.028) 17,31 6,330,995 5,035,054 414,627
(Watson et al., 2019) Anorexia nervosa 0.14 (0.01) 72,517 3,448,674 2,814,932 263,385

(Karlsson Linnér et al., 2019)

Automobile speeding propensity 0.079 (0.003) 404,291 7,779,359 6,173,839 519,927
Number of sexual partners 0.128 (0.003) 370,711 7,779,445 6,173,866 519,928

Risk-taking tendency 0.156 (0.004) 315,894 7,779,520 6,173,864 519,925
General risk tolerance 0.045 (0.001) 975,353 7,779,339 6,173,819 519,927

(Sanchez-Roige et al., 2019)

Drug experimentation measurement 0.1116 (0.0242) 22,572 6.442 4,850 475
Impulsivity (attentional) 0.0541 (0.0225) 21,876 5.715 4,183 293

Impulsivity (motor) 0.0443 (0.0193) 21,806 5.77 4,312 424
Impulsivity (non-planning) 0.0657 (0.0254) 21,786 6.412 4,785 447

Impulsivity 0.066 (0.0224) 21,495 5.697 4,178 268
Lack of perseverance 0.0791 (0.019) 22,861 6.254 4,720 367

Lack of premeditation 0.0452 (0.0199) 22,774 6.161 4,674 267
Negative urgency 0.0796 (0.0236) 22,795 6.387 4,805 339
Positive urgency 0.0682 (0.0233) 22,738 6.299 4,787 367
Sensation seeking 0.0811 (0.0211) 22,745 6.769 5,342 289

(Luciano et al., 2018) Neuroticism 0.108 (0.005) 452,688 7,625,696 6,033,335 511,477
(Savage et al., 2018) Intelligence 0.197 (0.009) 269,867 7,445,515 6,021,486 511,723

(Demontis et al., 2019) Attention-deficit hyperactivity disorder 0.216 (0.014) 53,293 6,921,780 5,597,529 493,284
(van den Berg et al., 2016) Extraversion 0.050 (0.072) 72,813 6,576,855 5,411,885 452,537

(Lo et al., 2017)

Agreeableness 0.085 (0.009) 76,551 7.208 5,932 803
Conscientiousness 0.096 (0.009) 123,132 7.267 5,777 518

Extraversion 0.181 (0.010) 169,507 8.582 5,551 1,209
Openness 0.107 (0.009) 76,581 7.515 5,984 447

(Pulit et al., 2019) Body mass index 0.279 (0.002) 806,834 7,837,070 6,147,810 517,713
(Yengo et al., 2018) Height 0.483 (0.037) 456,426 2,333,797 2,143,637 169,576

(ILAE, 2018) Epilepsy 0.321 (0.0145) 38,752 4,988,035 4,731,775 450,99

(Liu et al., 2019)

Age of smoking initiation 0.0468 (0.0027) 341,427 7,788,606 6,139,297 520,186
Smoking behaviour 0.0804 (0.0076) 377,334 7,788,737 6,139,286 520,188
Smoking cessation 0.0464 (0.0018) 547,219 7,837,671 6,176,531 520,050
Smoking initiation 0.0777 (0.0021) 1,232,091 7,683,723 6,061,508 516,602

Alcohol consumption 0.0419 (0.0018) 941,280 7,784,169 6,136,554 519,930

(Neale lab, 2018)

Ever addicted to any substance or behaviour 0.0526 (0.0278) 26,402 8,242,335 6,017,163 511,372
Sleeplessness / insomnia 0.0624 (0.00349) 360,738 8,247,437 6,017,509 511,412

Trouble falling or staying asleep 0.0581 (0.00728) 117,822 8,247,396 6,017,506 511,412
Age first had sexual intercourse 0.1614 (0.00586) 317,694 8,247,440 6,017,509 511,412

Recent poor appetite or overeating 0.0493 (0.0074) 117,907 8,247,393 6,017,506 511,412
Age completed full time education 0.1047 (0.00473) 240,547 8,247,414 6,017,509 511,413

Table 3.1: Characteristics of the genome-wide association studies. DIGPD: Drug Interaction With Genes in Parkinson’s Disease; PPMI:
Parkinson’s Progression Markers Initiative; SE: standard error; SNP: Single nucleotide polymorphism.



PPMI DIGPD Meta-analysis
Phenotype OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

(Howard et al., 2019) Major depression disorder 2.46 (0.54-11.28) 0.2449 0.64 (0.15-2.78) 0.5480 1.23 (0.43-3.53) 0.7059
(Nalls et al., 2019) Parkinson’s disease 1.47 (0.24-9.04) 0.6758 2.65 (0.77-9.12) 0.1224 2.20 (0.79-6.11) 0.1306

(IOCDF, 2018) Obsessive compulsive disorder 4.46 (0.91-21.94) 0.0657 0.91 (0.21-3.90) 0.9039 1.88 (0.64-5.48) 0.2501
(Otowa et al., 2016) Anxiety disorder 0.41 (0.11-1.52) 0.1829 0.74 (0.24-2.27) 0.5958 0.58 (0.25-1.35) 0.2044
(Watson et al., 2019) Anorexia nervosa 1.20 (0.32-4.47) 0.7882 1.08 (0.32-3.60) 0.9037 1.13 (0.46-2.75) 0.7867

(Karlsson Linnér et al., 2019)

Automobile speeding propensity 2.46 (0.69-8.80) 0.1660 1.42 (0.40-5.12) 0.5885 1.87 (0.76-4.62) 0.1728
Number of sexual partners 0.55 (0.14-2.17) 0.3914 0.54 (0.15-1.91) 0.3403 0.54 (0.21-1.38) 0.1998

Risk-taking tendency 0.95 (0.20-4.49) 0.9482 0.99 (0.27-3.55) 0.9828 0.97 (0.36-2.61) 0.9538
General risk tolerance 0.45 (0.10-2.07) 0.3067 1.16 (0.33-4.04) 0.8178 0.79 (0.30-2.08) 0.6368

(Sanchez-Roige et al., 2019)

Drug experimentation measurement 0.74 (0.19-2.89) 0.6691 1.32 (0.42-4.15) 0.6383 1.04 (0.43-2.49) 0.9339
Impulsivity (attentional) 0.72 (0.16-3.16) 0.6629 2.04 (0.46-9.10) 0.3512 1.20 (0.42-3.45) 0.7297

Impulsivity (motor) 1.04 (0.27-3.99) 0.9525 0.48 (0.14-1.58) 0.2266 0.67 (0.28-1.65) 0.3883
Impulsivity (non-planning) 3.69 (0.83-16.43) 0.0865 1.82 (0.45-7.36) 0.4002 2.53 (0.91-7.02) 0.0742

Impulsivity 2.47 (0.77-7.95) 0.1294 1.58 (0.37-6.71) 0.5365 2.07 (0.83-5.14) 0.1168
Lack of perseverance 5.17 (0.96-27.86) 0.0557 0.86 (0.24-3.09) 0.8197 1.66 (0.60-4.59) 0.3295

Lack of premeditation 0.33 (0.10-1.10) 0.0721 0.29 (0.08-1.10) 0.0689 0.31 (0.13-0.76) 0.0107
Negative urgency 1.61 (0.44-5.89) 0.4730 1.48 (0.47-4.69) 0.5024 1.54 (0.65-3.64) 0.3281
Positive urgency 1.33 (0.34-5.23) 0.6798 1.89 (0.59-6.06) 0.2852 1.63 (0.67-3.96) 0.2797
Sensation seeking 0.46 (0.13-1.59) 0.2180 0.76 (0.19-3.12) 0.7062 0.57 (0.23-1.45) 0.2409

(Luciano et al., 2018) Neuroticism 1.37 (0.42-4.47) 0.6024 1.54 (0.40-5.88) 0.5276 1.44 (0.59-3.50) 0.4188
(Savage et al., 2018) Intelligence 0.52 (0.15-1.82) 0.3061 2.68 (0.55-13.16) 0.2248 0.97 (0.36-2.61) 0.9596

(Demontis et al., 2019) Attention-deficit hyperactivity disorder 1.41 (0.31-6.47) 0.6578 0.32 (0.08-1.25) 0.1018 0.62 (0.22-1.71) 0.3568
(van den Berg et al., 2016) Extraversion 0.67 (0.18-2.42) 0.5386 0.46 (0.12-1.86) 0.2796 0.57 (0.22-1.45) 0.2358

(Lo et al., 2017)

Agreeableness 2.88 (0.73-11.32) 0.1302 1.37 (0.44-4.25) 0.5857 1.85 (0.77-4.43) 0.1662
Conscientiousness 3.12 (0.66-14.71) 0.1514 0.85 (0.23-3.20) 0.8139 1.47 (0.54-4.02) 0.4532

Extraversion 1.06 (0.26-4.26) 0.9358 0.52 (0.16-1.71) 0.2837 0.70 (0.28-1.74) 0.4456
Openness 1.14 (0.30-4.31) 0.8422 1.98 (0.55-7.14) 0.2981 1.52 (0.60-3.82) 0.3755

(Pulit et al., 2019) Body mass index 23.92 (2.30-249.19) 0.0079 1.18 (0.17-8.29) 0.8696 4.04 (0.90-18.10) 0.0680
(Yengo et al., 2018) Height 0.57 (0.06-5.09) 0.6139 1.72 (0.26-11.32) 0.5730 1.07 (0.26-4.49) 0.9215

(ILAE, 2018) Epilepsy 0.83 (0.11-6.36) 0.8580 1.57 (0.35-6.98) 0.5566 1.25 (0.38-4.18) 0.7128

(Liu et al., 2019)

Age of smoking initiation 1.57 (0.34-7.21) 0.5590 2.03 (0.50-8.28) 0.3253 1.80 (0.64-5.07) 0.2632
Smoking behaviour 0.48 (0.10-2.25) 0.3519 2.21 (0.43-11.20) 0.3396 0.99 (0.32-3.04) 0.9875
Smoking cessation 1.80 (0.29-11.30) 0.5290 0.89 (0.23-3.37) 0.8626 1.13 (0.39-3.34) 0.8181
Smoking initiation 1.31 (0.12-14.97) 0.8256 1.42 (0.35-5.84) 0.6235 1.40 (0.41-4.73) 0.5925

Alcohol consumption 1.48 (0.29-7.43) 0.6362 0.37 (0.10-1.35) 0.1309 0.63 (0.23-1.74) 0.3770

(Neale lab, 2018)

Ever addicted to any substance or behaviour 0.88 (0.28-2.79) 0.8242 1.50 (0.35-6.33) 0.5837 1.08 (0.44-2.66) 0.8657
Sleeplessness / insomnia 1.46 (0.35-6.13) 0.6055 1.25 (0.37-4.17) 0.7207 1.33 (0.53-3.35) 0.5444

Trouble falling or staying asleep 1.00 (0.23-4.37) 0.9993 0.84 (0.18-3.94) 0.8255 0.92 (0.32-2.68) 0.8796
Age first had sexual intercourse 1.11 (0.17-7.15) 0.9120 2.88 (0.83-9.99) 0.0951 2.15 (0.76-6.04) 0.1472

Recent poor appetite or overeating 0.37 (0.10-1.39) 0.1418 2.68 (0.74-9.69) 0.1330 1.03 (0.41-2.58) 0.9572
Age completed full time education 1.58 (0.45-5.58) 0.4783 1.00 (0.27-3.63) 0.9960 1.26 (0.51-3.11) 0.6144

Table 3.2: Results of the association analyses. Unadjusted p-values are reported for both cohorts separately and for the meta-analysis.
DIGPD: Drug Interaction With Genes in Parkinson’s Disease; OR: Odds ratio; PPMI: Parkinson’s Progression Markers Initiative.
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In the meta-analysis, among the 40 unadjusted p-values, only one was smaller than
0.05, corresponding to the GRS lack of premeditation (p = 0.0107). The association
did not survive after Bonferroni correction.

The combination of the 40 GRS altogether was not associated with ICDs, both from
the analyses in each cohort independently (p = 0.0969 in PPMI, p = 0.5166 in DIGPD)
and from the meta-analysis (p = 0.0764).

In order to validate our GRS calculation, we assessed the quality of the GRS of body
mass index by using a linear regression model with correction for age, sex and genetic
ancestry. BMI was available in both cohorts, and is well studied in genetics, leading
to robust GRS-based prediction (Dudbridge, 2013). In particular, the corresponding
GWAS has a very large sample size (N = 806,834), making the estimation of each SNP
contribution more robust. In both cohorts, BMI GRS were strongly associated with
the measured BMI (p = 0.000058 in PPMI, p = 0.000038 in DIGPD) and the Pearson
correlation coefficients were positive and high (r = 0.21 in PPMI, r = 0.19 in DIGPD).
These results gave us confidence in our methodology and in the quality of the computed
GRS.

3.4 Discussion

To our knowledge, this is the first study investigating the association between ICDs in
PD and genetic risk scores for a broad range of phenotypes, including phenotypes that
have been associated with ICDs in PD (Grall-Bronnec et al., 2018). Compared to a
previous study that only investigated the PD GRS computed from a small number of
SNPs (Ihle et al., 2020), we explored 40 phenotypes for which we computed GRS using
a large number of SNPs. However, the results were mainly negative, as we did not find
a single association after correction for multiple comparisons.

The main limitation of our study is the small sample size of our clinical samples,
which limits discovery of small associations. The size of the GWAS is also a limitation,
as GRS are imperfect predictors of the genetic liability of traits. It is known that
discouraging results in many studies were due to low number of participants, and that
an increase in the sample size would allow more successful results (Dudbridge, 2013).
The genetic correlations between the traits for which GRS were calculated and ICDs are
also unknown. Another limitation is the incomplete summary statistics made available
for two groups of studies focusing on impulsivity and personality traits (collaborations
with 23andMe, we contacted 23andMe but did not receive a response). For these traits,
we had to compute GRS from a small number of SNPs. Computing the GRS using the
whole summary statistics would likely increase the quality of these GRS.

Little is known about the genetic factors of ICDs in PD. Several studies reported
associations for a few genetic variants, but they all suffer from the lack of replication,
and there exists no GRS for ICDs yet. Our study could not conclude about the asso-
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ciation between ICDs in PD and GRS for a broad range of phenotypes, but highlights
the methodology to compute GRS and study their association with ICDs in PD for
future studies, and shows how to investigate the genetic factors of a phenotype with-
out performing a GWAS. Such study would deserve from being repeated when larger
GWAS or clinical samples get available, which may boost power to detect significant
associations.
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Chapter 4

Combining static and dynamic data
in recurrent neural networks

4.1 Introduction

Most entities that produce data at several time points have characteristics that do not
depend on time. For instance, sensors provide measurements at many timestamps,
but they have characteristics, such as their components, that are time-independent.
Humans, as living beings, also have both types of characteristics. Their genetic data
will stay identical for their whole lives, but most of their characteristics evolve over
time, such as their blood pressure or blood sugar levels.

Numerous genetic and environmental factors can impact the evolution of a time-
dependent characteristic. Twin studies, where subjects share identical genetic and en-
vironmental factors, have shown that many phenotypes are substantially heritable. En-
vironmental factors, in particular qualitative ones, can be harder to measure, but their
impact on many disorders have been reported. For example, smokers and coffee drinkers
have a lower risk of Parkinson’s disease (Hernán et al., 2002).

Disease progression is a particular example of the evolution of a time-dependent
characteristic. Many disorders are complex, with numerous comorbidities, and disease
progression may greatly vary between patients. Being able to predict the future state
of a patient may improve understanding of the disease and patient care.

Mathematically, the objective is to predict the future value of a dynamic target vari-
able y at time t+ τ , y(t+τ), given input features from the present and the past. These
features consist of static features s, that do not depend on time, and dynamic features
x, at time (1, . . . , t), (x(1), . . . ,x(t)). Typically, the static features correspond to genetic
and socio-demographic data, while the dynamic features correspond to clinical mea-
surements. Environmental factors can be either static or dynamic feature, depending
on their nature. Without loss of generality, the target variable can be included in the
dynamic input features if its past and present values are relevant to predict its future
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value. This machine learning task has the following mathematical formulation

ŷ(t+τ) = f
(
s,x(1), . . . ,x(t);θ

)
where f is the function predicting ŷ(t+τ) given the static features s and input dynamic
features (x(1), . . . ,x(t)), and θ are the parameters of function f . The function f de-
termines which information is extracted from the static and input dynamic features,
independently but also dependently on each other. Different functions f allow for dif-
ferent modelling of the interaction between the static and input dynamic features. We
restrict the choice of f to the class of recurrent neural networks (RNNs).

Recurrent neural networks are a class of neural networks dedicated to sequential
data. The main part of a recurrent neural network is a RNN unit that takes as input
a sequence of dynamic features and outputs a vector, corresponding to the information
extracted from the dynamic features by this unit. However, a target dynamic feature is
usually impacted not only by other dynamic features, but also by static features. Adding
static features in recurrent neural networks raises the question of their integration with
dynamic features.

4.2 Related work

The starting point is a recurrent neural network with no static data as illustrated in
Figure 4.1. We consider a simple architecture with three layers:

• the input layer, consisting of the dynamic features;

• the hidden layer, consisting of the features extracted by the Gated Recurrent Unit
from the dynamic features; and

• the output layer, consisting of the output obtained by linearly combining the
hidden layer with a Fully Connected function.

A dummy way of integrating static features is to simply remove them, and we refer to
this approach as static=none.

Static and dynamic data can be considered as a particular combination of multi-
modal data. Several studies in the medical field integrated several sources of data to
improve the prediction of a phenotype. The modalities used are often imaging data, such
as T1-weighted magnetic resonance imaging (T1-MRI), T2-MRI and Fluid-attenuated
inversion recovery (FLAIR), and genetic data. Ge et al. (2018) integrated images from
T1-MRI, T2-MRI and FLAIR modalities for glioma classification, while Punjabi et al.
(2019) used T1-MRI and positron emission topography images for Alzheimer’s disease
classification. Mobadersany et al. (2018) and Hao et al. (2019) integrated histopatho-
logic images and genetic data to predict cancer outcome.
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GRU

h(t)

FC

ŷ(t+τ)

x(1) x(2) x(t). . .

Figure 4.1: Recurrent neural network with no static data.

Integrating multimodal data is usually tackled with separate branches in the artificial
neural networks, with the independently extracted features being concatenated near the
end of the network. The corresponding architecture is illustrated in Figure 4.2, in the
particular case where the raw genetic data are used. We refer to this approach as
static=after. One limitation of this approach is the late interaction between the
static and dynamic features, as each branch extracts information from the input data
independently. If the static and dynamic features are correlated, we may want to provide
both kinds of features to the GRU.

Most studies focusing on the integration of static and dynamic data have been
identified in the literature of churn prediction. In these studies, the objective was to
predict which customers will unsubscribe to a service or which users will not log at
least once into a platform in the near future. The dynamic features consisted of the
activity of the users, while the static features included socio-demographic information
about the users. Besides the two aforementioned methods, two other approaches have
been proposed. The first one consists in treating static data as dynamic data (Leontjeva
and Kuzovkin, 2016; Rahman et al., 2020). The static features are repeated at each
time point by being concatenated to the vector of dynamic features. This approach is
illustrated in Figure 4.3 and is referred to as static=dynamic. One obvious limitation
of this method is that static data is treated as dynamic data, which may be suboptimal
because of the different nature of these features.

The other approach consists in initializing the parameters of the GRU with the
static features (Kristensen and Burelli, 2019). A Fully Connected function is used to
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GRU

h(t) s

FC

ŷ(t+τ)

x(1) x(2) x(t). . .

Figure 4.2: Recurrent neural network with static data on its own branch. Information is
independently extracted from the dynamical and static features, in their own branches.
The extracted information is then concatenated before the fully connected layer. In this
example, the raw static features are directly used.

GRU

h(t)

FC

ŷ(t+τ)

[x(1), s] [x(2), s] [x(t), s]. . .

Figure 4.3: Recurrent neural network with static data treated as dynamic data. The
static features are repeated at each time point and concatenated to the dynamic features.
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GRU

h(t)

FC

FC

s

ŷ(t+τ)

x(1) x(2) x(t). . .

Figure 4.4: Recurrent neural network with static data initializing the GRU layer. Linear
combinations of the static feature are used to initialize the parameters of the GRU layer.

linearly combine the static features into a vector with appropriate size. This approach
is illustrated in Figure 4.4 and is referred to as static=init. One limitation of this
approach is that the information from the static features is added in the initialisation of
the GRU and may vanish after a few time points. Otherwise, having to keep the infor-
mation from the static features may prevent it from extracting other useful information
from the dynamic features.

To summarize the four identified approaches, static features can be:

• removed (static=none),

• put after the GRU (static=after),

• treated as dynamic features (static=dynamic), or

• put at the same level as the GRU (static=init).

These approaches allow for modelling different interactions between the static and dy-
namic features.

4.3 Proposed approach

We propose another approach to integrate static data in recurrent neural networks.
Similarly to the static=dynamic method, this approach introduces the static features
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GRU

h(t)

s

FC

FC

ŷ(t+τ)

x̃(1) x̃(2) x̃(t). . .

Figure 4.5: Recurrent neural network with static data modifying the dynamic features.
Each dynamic feature is multiplied by a linear combination of the static features.

before the GRU. However, instead of putting the static features at the same level as the
dynamic ones, they are put before and used to modify them.

More specifically, the new dynamic feature x̃i is the product between the original
dynamic feature xi and a linear combination of the static features:

x̃i = xi ×

(
b+

p∑
k=1

sk

)

and the sequence of new dynamic features
(
x̃(1), . . . , x̃(t)

)
is used as input of the GRU.

This approach is illustrated in Figure 4.5 and is referred to as static=before. An
element-wise multiplication with a linear combination of the input boils down to adding
a Fully Connected function followed by an element-wise product between the static and
dynamic features.

This method models a high level of interaction between the static and dynamic
features. Similarly to the static=dynamic and static=init approaches, the GRU is
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provided the static features and can thus extract information from both the dynamic
and static features. Instead of treating static features as dynamic ones, which does not
take into account the difference in modalities, or initializing the GRU with the static
features, which may dilute the information of the static features over time, this approach
models a time-independent interaction between the static and dynamic features.

4.4 Experiments

We investigated the five approaches to integrate static data in recurrent neural networks
to predict impulse control disorders in Parkinson’s disease. The objective was identical
to the one presented in chapter 2, that is predicting the presence or absence of ICDs
(binary variable) at the next visit for a given subject given all the current information
on this subject:

ŷ(t+1) = f
(
s,x(1), . . . ,x(t);θ

)
In addition to the clinical, socio-demographic and SNP data used, we integrated ge-
netic ancestry and genetic risk scores as input of the models. These new features were
naturally considered as static data.

We use genetic data from the 1000 Genomes project1 to learn a low-dimensional
representation of high-dimensional raw genetic data. We then projected the subjects
from the PPMI and DIGPD cohorts onto this low-dimensional space and removed the
subjects not being projected on the European cluster. Genetic ancestry was derived as
the first ten components of this low-dimensional space and added as static features.

Genetic risk score were computed using only the common SNPs between PPMI
and DIGPD. Out of the 40 GRS presented in chapter 3, 13 were removed because the
provided summary statistics were too small. The corresponding genome-wide associa-
tion studies were performed using data from 23andMe2, and only the top 10k variants
were made available. Table 4.1 presents the characteristics of the 27 GWAS and the
corresponding GRS were added as input to the models.

The cross-validation was similar to the one presented in chapter 2 and is illustrated
in Figure 4.6. We employed a nested cross-validation on PPMI that was used as the
discovery cohort, and also evaluated the models on DIGPD that was used as the repli-
cation cohort, with 10 repetitions of the whole process. The 10 models were used to
compute the mean and standard deviation for the area under the ROC curve and the
average precision.

Results are presented in Table 4.2. The five approaches yielded comparable results,
with ROC AUC around 0.83 and 0.79 on PPMI and DIGPD respectively, and average
precision around 0.53 and 0.61 on PPMI and DIGPD respectively. The static=dynamic
method had the lowest scores on both cohorts, suggesting that this approach may be

1https://www.internationalgenome.org
2https://www.23andme.com
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Study Phenotype # subjects h2
SNP # SNPs

(IOCDF, 2018) Obsessive compulsive disorder 9,725 0.2800 495,612
(Demontis et al., 2019) Attention-deficit hyperactivity disorder 53,293 0.2160 493,519
(Howard et al., 2019) Major depression disorder 807,553 0.0890 499,639

(ILAE, 2018) Epilepsy 38,752 0.3210 449,734

(Karlsson Linnér et al., 2019)

Risk-taking tendency 315,894 0.1560 516,198
Number of sexual partners 370,711 0.1280 516,203

Smoking status 518,633 0.1090 516,204
General risk tolerance 975,353 0.0450 516,205

Automobile speeding propensity 404,291 0.0790 516,206
Alcohol consumption 414,343 0.0850 516,200

(Liu et al., 2019)

Smoking behaviour 377,334 0.0800 516,112
Alcohol consumption 941,280 0.0420 515,914

Smoking initiation 1,232,091 0.0780 512,648
Age of smoking initiation 341,427 0.0470 516,112

Smoking cessation 547,219 0.0460 515,985
(Luciano et al., 2018) Neuroticism 452,688 0.1080 518,481

(Nalls et al., 2019) Parkinson’s disease 900,238 0.2600 518,569

(Neale lab, 2018)

Trouble falling or staying asleep 117,822 0.0581 517,205
Sleeplessness / insomnia 360,738 0.0624 517,204

Age first had sexual intercourse 317,694 0.1614 517,205
Ever addicted to any substance or behaviour 26,402 0.0526 516,916

Age completed full time education 240,547 0.1047 517,205
Recent poor appetite or overeating 117,907 0.0493 517,205

(Otowa et al., 2016) Anxiety disorder 17,31 0.1380 413,915
(Pulit et al., 2019) Body mass index 806,834 0.2790 513,153

(Savage et al., 2018) Intelligence 269,867 0.2050 507,254
(Watson et al., 2019) Anorexia nervosa 72,517 0.1400 263,451
(Yengo et al., 2018) Height 456,426 0.4830 169,402

(van den Berg et al., 2016) Extraversion 72,813 0.0500 452,260

Table 4.1: Genome-wide association studies from which genetic risk scores were derived.
Columns are: study, phenotype, number of subjects in the study, variance explained by
the SNPs, and the number of common SNPs between the study, ADNI, PPMI and
DIGPD.

92



4.5. Conclusion 93

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Training set Test set
Outer

cross-validation

Inner
cross-validation

PPMI

10 times
=⇒

Replication DIGPD

Figure 4.6: Cross-validation procedure. PPMI was used as the discovery cohort, on
which we performed a nested cross-validation to estimate the performance. This process
was repeated 10 times, and the corresponding 10 models were applied on DIGPD, used
as the replication cohort.

Method
ROC AUC Average Precision

PPMI DIGPD PPMI DIGPD

static=none 0.837 (±0.027) 0.788 (±0.007) 0.543 (±0.041) 0.614 (±0.013)

static=after 0.832 (±0.031) 0.789 (±0.007) 0.520 (±0.047) 0.612 (±0.014)

static=dynamic 0.816 (±0.038) 0.782 (±0.008) 0.494 (±0.063) 0.606 (±0.015)

static=init 0.837 (±0.033) 0.793 (±0.007) 0.537 (±0.047) 0.619 (±0.011)

static=before 0.839 (±0.030) 0.800 (±0.007) 0.536 (±0.054) 0.635 (±0.016)

Table 4.2: Predictive performance of the five approaches. Mean (standard deviation)
over the 10 repetitions are reported.

suboptimal. Overall, the different approaches to integrate static data in recurrent neural
networks had little to no impact on the predictive performance with these data.

4.5 Conclusion

Combining static and dynamic data is an underexplored topic. We reviewed the lit-
erature on integrating static data in recurrent neural networks and identified four ap-
proaches. We proposed a new method modelling a high-level interaction between the
static and dynamic features, consisting in multiplying each dynamic feature by a linear
combination of the static features. We experimented the five approaches in the predic-
tion of future impulse control disorders in Parkinson’s disease. The dynamic features
consisted in clinical measurements, while the static features corresponded to genetic
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and socio-demographics data. The results showed that the five approaches yielded com-
parable results. This use case has been underexplored from a machine learning point of
view and little is known on the association between genetics and impulse control disor-
ders in Parkinson’s disease, which could explain why changing the approach had little
to no impact on the predictive performance. Future work includes applying the five
approaches to another use case, where the interaction between the static and dynamic
features is known to be high, and simulating data to gather more knowledge on which
approach works best based on the interaction.
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Conclusion

We proposed several approaches to investigate the predictability of impulse control
disorders in Parkinson’s disease. First, we investigated the predictability of ICDs in PD
using as input a broad range of features that have been associated with ICDs. Second,
we studied the association between ICDs in PD and genetic risk scores for numerous
phenotypes, including other psychiatric disorders and personality traits. Third, we
investigated the integration of static (time-independent) features in recurrent neural
networks with an application in the prediction of ICDs in PD. We summarize here our
conclusions regarding each of these studies.

In a first study, we investigated the predictability of ICDs in PD using as input
a broad range of features that have been associated with ICDs (with varying degrees
of confidence and replication). Our objective was to predict the presence or absence
of ICDs at the next visit for a given patient. We trained several machine learning al-
gorithms, representing a broad range of complexity and relationships, on a discovery
cohort. We highlighted that this longitudinal binary classification task could be ad-
dressed with relatively good accuracy, and that only a subset of the associated factors
was involved in the decisions of the simplest models. We also evaluated the models in
an independent cohort and obtained comparable results.

In a second study, we investigated whether the genetic factors of many traits were
associated with ICDs in PD. The genetic factors of ICDs in PD are poorly known and
most studies focus on candidate genetic variants. However, complex traits are likely to
be affected by numerous variants and genes. In this case, single genetic variants usually
provide limited information because the relative risk of each variant is small. On the
other hand, the combined risk of numerous low-risk variants can explain a significant
proportion of the genetic variance. The risk of each variant is linearly combined to derive
a genetic risk score. We computed genetic risk scores for a broad range of phenotypes,
including other psychiatric disorders, personality traits, and simple phenotypes. We
assessed the associations between these genetic risk scores and ICDs in PD and found
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no association.

In a third study, we investigated the integration of static features in recurrent neural
networks. We reviewed the existing literature and identified several approaches. We
proposed a new approach consisting in modifying the dynamic features using a linear
combination (or more generally a function) of the static features, modelling a high level
of interaction between the static and dynamic features. We evaluated all the approaches
in the use case of predicting the presence or absence of ICDs at the next visit for a
given patient. The static features consisted of socio-demographic and genetic features.
All the approaches (including removing the static features) led to very similar results,
suggesting that the static features do not provide more information than the dynamic
features in this use case.

Perspectives

A natural perspective when developing machine learning models for a medical applica-
tion is the increase of sample size.

First, a larger sample size on the training cohort can improve the generalization
capability of the fitted models. Learning curves in machine learning usually show that,
when the sample size is relatively small, an increase in sample size leads to a signifi-
cant improvement in predictive performance, but when the sample size is already large
enough, a similar increase in sample size has little to no impact on the predictive per-
formance. Learning curves, and thus the definition of low and large sample sizes, highly
depend on the algorithm and the difficulty of the task.

Second, a larger sample size increases the statistical power and can allow for the dis-
covery of associations with small effects. Both research cohorts from which we obtained
data had only a few hundreds subjects, making the discovery of associations with small
effects very unlikely. A larger sample size could shed a new light on the common genetic
factors between ICDs in PD and other phenotypes, notably other psychiatric disorders
and personality traits.

Third, we could evaluate our models in other research cohorts. We showed that
the replication on an independent cohort with different characteristics was possible.
Evaluating our models in other research cohorts would be a big step towards estimating
their generalization capability.

Fourth, we did not evaluate our models in real-life clinical cohorts, which is an essen-
tial step to assess the generalization capability of the models and to deploy the models
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in clinical routine. Clinical cohorts usually have different characteristics from research
cohorts: more missing data, less clean data, more varying time gaps between consec-
utive visits, less standardized protocols. All these differences can negatively impact
the predictive performance of models that have not been trained on data with these
characteristics.

Fifth, we showed that predicting impulse control disorders at the next clinical visit
can be achieved with correct accuracy, but the predictive performance of these models
may still be too low to be used in clinical routine. Investigating which threshold to
binarize the predicted probabilities into decisions is the most adapted in practice would
be of great interest. Combining the predictions of the models and the expertise of
clinicians may also improve the predictive performance.

Finally, impulse control disorders have been reported in a few other diseases treated
with dopamine replacement therapy, notably restless leg syndrome. Evaluating our
models in cohorts with another disease could be interesting in order to see if ICDs in
PD have different characteristics than ICDs in other diseases.
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Appendix A

Supplementary materials for the
prediction of impulse control dis-
orders from clinical and genetic data
with replication in an independent
cohort

A.1 Reduction approaches

Algorithms like logistic regression expect a fixed number of features as input. In order
to deal with varying numbers of visits, we reduced all the previous visits into one “sum-
mary” visit using a convex combination. A convex combination is a linear combination
such that the weights are all non-negative and sum to one. The weights indicate how
much each visit contributes to this summary visit. A weight of 1 for the first visit means
that the summary visit is simply the baseline visit, while a weight of 1 for the latest
visit means that the “summary” visit is simply the most recent visit. One can also
give uniform weights, so that each visit contributes equally to this “summary” visit,
or higher weights to most recent visits if they are assumed to be more important than
older visits.

Mathematically, if we have observations x at T time points:

(x(1), . . . ,x(t), . . . ,x(T ))

a convex combination is simply:

T∑
t=1

wtx
(t) such that ∀t, wt ≥ 0 and

T∑
t=1

wt = 1
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Each wt is the weight of time point t in this “summary” visit. The following table
summarizes the different convex combinations that we investigated:

Name Weight wt

Reduction 1 ∀t ∈ {1, . . . , T}, wt =

{
1 if t = 1

0 otherwise

Reduction 2 ∀t ∈ {1, . . . , T}, wt =

{
1 if t = T

0 otherwise

Reduction 3 ∀t ∈ {1, . . . , T}, wt =
1

T

Reduction 4 ∀t ∈ {1, . . . , T}, wt =
exp(

√
t)∑T

l=1 exp(
√
l)

Reduction 5 ∀t ∈ {1, . . . , T}, wt =

√
t∑T

l=1

√
l

Reduction 6 ∀t ∈ {1, . . . , T}, wt =
exp(t)∑T
l=1 exp(l)

Reduction 7 ∀t ∈ {1, . . . , T}, wt =
t∑T
l=1 l

Reduction 8 ∀t ∈ {1, . . . , T}, wt =
exp(t2)∑T
l=1 exp(l

2)

Reduction 9 ∀t ∈ {1, . . . , T}, wt =
t2∑T
l=1 l

2

Reduction 1 corresponds to the baseline visit, while reduction 2 corresponds to the
previous visit, and reduction 3 corresponds to the mean over the past visits.

A.2 Supplementary Tables
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Gene rs

ANKK1 rs1800497
ARC rs10097505

BDNF rs6265
C8B rs617283
C8B rs725330
C8B rs591730

CA12 rs1075456
CA12 rs7166946
CA12 rs1043239
CA12 rs4984241
CA12 rs1043256
CA12 rs9989288
CA12 rs2046484
CA12 rs16946963

CCRN4L rs938836
COMT rs4680
DBH rs1108580
DBH rs1611115
DRD2 rs6277
DRD3 rs6280
FOSB rs1049739
FOSB rs2282695
FOSB rs2276469

GRIN2B rs1806201
HTR1B rs6296
MOSC1 rs1109103
MOSC1 rs2984657
OPRM1 rs1799971
TPH1 rs1800532
TPH2 rs1352250
DBH rs1108580

Table A.1: Genetic variants included in the analyses.

101



102 Supplementary materials

Baseline
visit

Most recent
visit

Mean over
past visits

Socio-demographic Sex 0.205 0.073 0.168
Age -0.309 -0.299 -0.221

Clinical

Past ICDs 1.735 2.125 3.617
Depression 0.000 0.000 0.182

State anxiety 0.000 0.000 0.000
Trait anxiety 0.000 0.000 0.000
REM sleep 0.721 0.461 0.546

Motor exam 0.000 0.000 0.000

PD medication

On levodopa 0.000 0.000 0.000
On dopamine agonists 0.000 0.000 0.200

On other PD medication 0.000 0.069 0.000
Mean daily dose of dopamine agonists 0.000 0.000 0.000

Maximum daily dose of dopamine agonists 0.000 0.074 0.094
Total dose of dopamine agonists 0.000 0.000 0.000

Cumulative duration on dopamine agonists 0.000 0.116 0.000
Time to prediction Time to prediction 0.117 0.036 0.052

Genetic

rs10097505 -0.240 0.000 -0.267
rs1043239 0.000 0.000 0.000
rs1043256 0.000 0.030 0.000
rs1049739 0.000 0.000 0.000
rs1075456 0.000 0.000 0.000
rs1108580 0.000 0.000 0.000
rs1109103 0.000 0.000 0.000
rs1352250 0.000 0.000 0.000
rs1611115 0.000 0.000 0.000
rs16946963 0.000 0.000 -0.047
rs1799971 -0.106 -0.051 0.000
rs1800497 0.000 0.000 0.001
rs1800532 -0.086 0.000 -0.075
rs1806201 0.050 0.000 0.037
rs2046484 0.000 0.000 0.000
rs2276469 -0.232 -0.096 0.000
rs2282695 0.427 0.000 0.000
rs2984657 0.000 0.000 0.000

rs4680 0.000 0.000 0.000
rs4984241 0.000 0.000 0.000
rs591730 0.000 0.000 0.000
rs617283 0.000 0.000 -0.082
rs6265 0.030 0.000 0.000
rs6277 -0.109 0.000 -0.100
rs6280 0.000 0.000 -0.033
rs6296 -0.044 -0.018 0.000

rs6582078 -0.120 -0.009 -0.024
rs7166946 0.000 -0.044 -0.093
rs725330 -0.210 -0.090 -0.023
rs938836 0.365 0.164 0.234
rs9989288 0.000 0.000 0.000

Table A.2: Coefficients of the three logistic regression models with genetic variants as
input.
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Reduction
Metric Algorithm 1 2 3 4 5 6 7 8 9

ROC AUC

LogisticRegression 0.753 0.795 0.838 0.839 0.793 0.832 0.794 0.809 0.794
LinearSVC 0.754 0.786 0.827 0.828 0.815 0.823 0.816 0.795 0.815
SVC 0.757 0.809 0.840 0.841 0.835 0.838 0.836 0.826 0.836
RandomForestClassifier 0.652 0.765 0.797 0.809 0.803 0.789 0.808 0.811 0.797
XGBClassifier 0.696 0.825 0.822 0.842 0.829 0.841 0.836 0.834 0.839

Average precision

LogisticRegression 0.441 0.453 0.603 0.589 0.491 0.558 0.495 0.461 0.495
LinearSVC 0.425 0.457 0.588 0.582 0.531 0.553 0.535 0.468 0.530
SVC 0.509 0.504 0.628 0.603 0.570 0.589 0.573 0.521 0.574
RandomForestClassifier 0.367 0.397 0.501 0.488 0.503 0.459 0.509 0.484 0.471
XGBClassifier 0.399 0.448 0.476 0.502 0.506 0.459 0.547 0.476 0.539

Accuracy

LogisticRegression 0.774 0.819 0.841 0.847 0.819 0.843 0.824 0.837 0.819
LinearSVC 0.761 0.841 0.854 0.860 0.862 0.849 0.856 0.841 0.845
SVC 0.813 0.877 0.875 0.869 0.873 0.877 0.873 0.877 0.877
RandomForestClassifier 0.873 0.776 0.849 0.856 0.854 0.849 0.869 0.847 0.862
XGBClassifier 0.609 0.697 0.798 0.815 0.809 0.798 0.787 0.794 0.789

Balanced accuracy

LogisticRegression 0.691 0.764 0.765 0.775 0.770 0.761 0.773 0.763 0.758
LinearSVC 0.683 0.771 0.767 0.777 0.784 0.753 0.780 0.748 0.756
SVC 0.696 0.752 0.791 0.782 0.778 0.757 0.773 0.752 0.775
RandomForestClassifier 0.584 0.639 0.659 0.668 0.667 0.665 0.676 0.663 0.678
XGBClassifier 0.629 0.751 0.775 0.779 0.752 0.763 0.745 0.767 0.758

Sensitivity

LogisticRegression 0.571 0.686 0.657 0.671 0.700 0.643 0.700 0.657 0.671
LinearSVC 0.571 0.671 0.643 0.657 0.671 0.614 0.671 0.614 0.629
SVC 0.529 0.571 0.671 0.657 0.643 0.586 0.629 0.571 0.629
RandomForestClassifier 0.171 0.443 0.386 0.400 0.400 0.400 0.400 0.400 0.414
XGBClassifier 0.657 0.829 0.743 0.729 0.671 0.714 0.686 0.729 0.714

Specificity

LogisticRegression 0.810 0.843 0.873 0.878 0.841 0.878 0.846 0.868 0.846
LinearSVC 0.795 0.871 0.891 0.896 0.896 0.891 0.889 0.881 0.884
SVC 0.863 0.932 0.911 0.906 0.914 0.929 0.916 0.932 0.922
RandomForestClassifier 0.997 0.835 0.932 0.937 0.934 0.929 0.952 0.927 0.942
XGBClassifier 0.600 0.673 0.808 0.830 0.833 0.813 0.805 0.805 0.803

Table A.3: Predictive performance on DIGPD of the five machine learning algorithms with the nine reduction approaches.



Reduction
Metric Algorithm 1 2 3 4 5 6 7 8 9

ROC AUC

LogisticRegression 0.666 0.802 0.797 0.811 0.817 0.813 0.819 0.804 0.821
LinearSVC 0.679 0.802 0.796 0.812 0.809 0.815 0.811 0.805 0.812
SVC 0.623 0.784 0.758 0.786 0.780 0.800 0.787 0.791 0.790
RandomForestClassifier 0.593 0.764 0.751 0.737 0.717 0.734 0.715 0.728 0.715
XGBClassifier 0.639 0.791 0.774 0.796 0.789 0.799 0.798 0.796 0.802

Average precision

LogisticRegression 0.429 0.644 0.615 0.643 0.635 0.650 0.636 0.644 0.640
LinearSVC 0.420 0.641 0.611 0.636 0.639 0.642 0.644 0.640 0.645
SVC 0.389 0.614 0.579 0.624 0.618 0.634 0.633 0.623 0.626
RandomForestClassifier 0.339 0.605 0.512 0.537 0.509 0.523 0.528 0.527 0.541
XGBClassifier 0.394 0.652 0.540 0.618 0.609 0.629 0.639 0.639 0.649

Accuracy

LogisticRegression 0.566 0.592 0.645 0.666 0.500 0.643 0.511 0.609 0.515
LinearSVC 0.590 0.582 0.658 0.688 0.652 0.674 0.651 0.624 0.647
SVC 0.566 0.838 0.696 0.759 0.719 0.797 0.760 0.838 0.748
RandomForestClassifier 0.719 0.711 0.757 0.764 0.753 0.746 0.751 0.763 0.762
XGBClassifier 0.546 0.630 0.738 0.769 0.748 0.764 0.761 0.760 0.756

Balanced accuracy

LogisticRegression 0.603 0.668 0.695 0.708 0.634 0.696 0.640 0.676 0.641
LinearSVC 0.621 0.661 0.705 0.728 0.703 0.717 0.702 0.689 0.700
SVC 0.588 0.783 0.703 0.752 0.727 0.768 0.754 0.783 0.746
RandomForestClassifier 0.501 0.704 0.632 0.608 0.614 0.562 0.584 0.610 0.604
XGBClassifier 0.588 0.683 0.746 0.764 0.746 0.759 0.751 0.759 0.750

Sensitivity

LogisticRegression 0.684 0.838 0.805 0.801 0.929 0.814 0.924 0.823 0.920
LinearSVC 0.690 0.838 0.810 0.816 0.814 0.812 0.814 0.831 0.818
SVC 0.636 0.662 0.719 0.736 0.745 0.703 0.740 0.662 0.742
RandomForestClassifier 0.022 0.688 0.357 0.262 0.307 0.154 0.216 0.273 0.253
XGBClassifier 0.682 0.801 0.764 0.753 0.742 0.749 0.729 0.758 0.738

Specificity

LogisticRegression 0.522 0.499 0.584 0.616 0.338 0.578 0.356 0.529 0.362
LinearSVC 0.552 0.485 0.601 0.639 0.591 0.622 0.590 0.546 0.582
SVC 0.540 0.905 0.688 0.768 0.710 0.833 0.768 0.905 0.750
RandomForestClassifier 0.981 0.719 0.907 0.954 0.921 0.970 0.952 0.948 0.954
XGBClassifier 0.495 0.565 0.728 0.775 0.750 0.769 0.773 0.761 0.763

Table A.4: Predictive performance on DIGPD of the five machine learning algorithms with the nine reduction approaches.



Reduction

Metric Algorithm 1 2 3 4 5 6 7 8 9

ROC AUC

LogisticRegression 0.757 (± 0.038) 0.773 (± 0.035) 0.821 (± 0.020) 0.825 (± 0.019) 0.807 (± 0.025) 0.816 (± 0.025) 0.812 (± 0.024) 0.783 (± 0.032) 0.807 (± 0.025)

LinearSVC 0.758 (± 0.040) 0.779 (± 0.035) 0.821 (± 0.016) 0.824 (± 0.019) 0.811 (± 0.022) 0.825 (± 0.019) 0.813 (± 0.024) 0.792 (± 0.033) 0.815 (± 0.022)

SVC 0.696 (± 0.051) 0.767 (± 0.030) 0.826 (± 0.022) 0.828 (± 0.022) 0.816 (± 0.022) 0.816 (± 0.022) 0.811 (± 0.030) 0.788 (± 0.030) 0.805 (± 0.030)

RandomForestClassifier 0.664 (± 0.033) 0.740 (± 0.036) 0.800 (± 0.028) 0.802 (± 0.026) 0.795 (± 0.032) 0.803 (± 0.032) 0.795 (± 0.030) 0.798 (± 0.032) 0.791 (± 0.030)

XGBClassifier 0.691 (± 0.044) 0.782 (± 0.031) 0.815 (± 0.017) 0.832 (± 0.020) 0.820 (± 0.029) 0.829 (± 0.022) 0.821 (± 0.027) 0.824 (± 0.017) 0.823 (± 0.023)

Average precision

LogisticRegression 0.382 (± 0.083) 0.458 (± 0.064) 0.503 (± 0.077) 0.515 (± 0.064) 0.490 (± 0.059) 0.514 (± 0.062) 0.499 (± 0.057) 0.471 (± 0.067) 0.499 (± 0.054)

LinearSVC 0.386 (± 0.084) 0.468 (± 0.051) 0.506 (± 0.075) 0.519 (± 0.063) 0.502 (± 0.062) 0.520 (± 0.065) 0.504 (± 0.060) 0.479 (± 0.051) 0.506 (± 0.057)

SVC 0.336 (± 0.094) 0.458 (± 0.061) 0.511 (± 0.072) 0.528 (± 0.065) 0.514 (± 0.064) 0.532 (± 0.061) 0.514 (± 0.065) 0.486 (± 0.063) 0.515 (± 0.060)

RandomForestClassifier 0.294 (± 0.059) 0.403 (± 0.092) 0.473 (± 0.067) 0.495 (± 0.065) 0.494 (± 0.066) 0.466 (± 0.055) 0.492 (± 0.070) 0.454 (± 0.071) 0.465 (± 0.056)

XGBClassifier 0.338 (± 0.086) 0.455 (± 0.057) 0.477 (± 0.056) 0.529 (± 0.045) 0.513 (± 0.056) 0.507 (± 0.051) 0.527 (± 0.050) 0.479 (± 0.059) 0.510 (± 0.046)

Accuracy

LogisticRegression 0.758 (± 0.026) 0.836 (± 0.036) 0.832 (± 0.030) 0.846 (± 0.032) 0.840 (± 0.028) 0.849 (± 0.025) 0.844 (± 0.030) 0.845 (± 0.029) 0.845 (± 0.030)

LinearSVC 0.765 (± 0.031) 0.849 (± 0.033) 0.847 (± 0.025) 0.856 (± 0.025) 0.856 (± 0.028) 0.857 (± 0.027) 0.855 (± 0.028) 0.855 (± 0.031) 0.854 (± 0.030)

SVC 0.762 (± 0.042) 0.872 (± 0.022) 0.850 (± 0.027) 0.858 (± 0.026) 0.858 (± 0.031) 0.871 (± 0.021) 0.863 (± 0.029) 0.873 (± 0.021) 0.863 (± 0.027)

RandomForestClassifier 0.827 (± 0.043) 0.811 (± 0.034) 0.849 (± 0.041) 0.856 (± 0.026) 0.857 (± 0.037) 0.850 (± 0.029) 0.852 (± 0.040) 0.846 (± 0.027) 0.846 (± 0.038)

XGBClassifier 0.610 (± 0.067) 0.691 (± 0.070) 0.788 (± 0.023) 0.797 (± 0.013) 0.784 (± 0.028) 0.789 (± 0.019) 0.776 (± 0.026) 0.789 (± 0.019) 0.778 (± 0.015)

Balanced accuracy

LogisticRegression 0.690 (± 0.043) 0.734 (± 0.040) 0.773 (± 0.017) 0.782 (± 0.030) 0.774 (± 0.026) 0.770 (± 0.033) 0.777 (± 0.030) 0.748 (± 0.030) 0.761 (± 0.030)

LinearSVC 0.691 (± 0.045) 0.735 (± 0.036) 0.774 (± 0.016) 0.780 (± 0.024) 0.775 (± 0.028) 0.762 (± 0.025) 0.774 (± 0.028) 0.744 (± 0.033) 0.760 (± 0.026)

SVC 0.633 (± 0.046) 0.738 (± 0.026) 0.768 (± 0.022) 0.771 (± 0.024) 0.761 (± 0.018) 0.751 (± 0.022) 0.758 (± 0.024) 0.739 (± 0.027) 0.745 (± 0.026)

RandomForestClassifier 0.581 (± 0.035) 0.649 (± 0.048) 0.684 (± 0.038) 0.690 (± 0.027) 0.687 (± 0.032) 0.692 (± 0.033) 0.674 (± 0.037) 0.687 (± 0.037) 0.675 (± 0.039)

XGBClassifier 0.627 (± 0.045) 0.706 (± 0.036) 0.774 (± 0.016) 0.773 (± 0.017) 0.753 (± 0.032) 0.767 (± 0.016) 0.754 (± 0.033) 0.774 (± 0.015) 0.757 (± 0.021)

Sensitivity

LogisticRegression 0.593 (± 0.101) 0.591 (± 0.065) 0.689 (± 0.031) 0.693 (± 0.053) 0.683 (± 0.050) 0.659 (± 0.073) 0.684 (± 0.057) 0.613 (± 0.057) 0.644 (± 0.064)

LinearSVC 0.587 (± 0.106) 0.574 (± 0.057) 0.673 (± 0.039) 0.673 (± 0.047) 0.662 (± 0.050) 0.630 (± 0.050) 0.661 (± 0.051) 0.588 (± 0.055) 0.630 (± 0.052)

SVC 0.451 (± 0.106) 0.549 (± 0.051) 0.654 (± 0.046) 0.648 (± 0.047) 0.624 (± 0.035) 0.584 (± 0.047) 0.609 (± 0.048) 0.551 (± 0.053) 0.580 (± 0.053)

RandomForestClassifier 0.231 (± 0.095) 0.419 (± 0.113) 0.449 (± 0.089) 0.453 (± 0.073) 0.447 (± 0.080) 0.465 (± 0.073) 0.422 (± 0.097) 0.460 (± 0.087) 0.432 (± 0.098)

XGBClassifier 0.656 (± 0.124) 0.727 (± 0.072) 0.753 (± 0.028) 0.739 (± 0.034) 0.711 (± 0.051) 0.737 (± 0.034) 0.722 (± 0.048) 0.754 (± 0.031) 0.728 (± 0.033)

Specificity

LogisticRegression 0.786 (± 0.035) 0.877 (± 0.036) 0.856 (± 0.033) 0.871 (± 0.033) 0.866 (± 0.029) 0.880 (± 0.029) 0.870 (± 0.030) 0.883 (± 0.030) 0.878 (± 0.033)

LinearSVC 0.796 (± 0.039) 0.896 (± 0.033) 0.876 (± 0.027) 0.886 (± 0.025) 0.888 (± 0.026) 0.895 (± 0.026) 0.887 (± 0.026) 0.900 (± 0.030) 0.891 (± 0.029)

SVC 0.816 (± 0.050) 0.926 (± 0.016) 0.883 (± 0.029) 0.894 (± 0.023) 0.898 (± 0.028) 0.919 (± 0.018) 0.906 (± 0.024) 0.927 (± 0.016) 0.911 (± 0.022)

RandomForestClassifier 0.930 (± 0.046) 0.879 (± 0.039) 0.919 (± 0.041) 0.928 (± 0.030) 0.928 (± 0.036) 0.919 (± 0.028) 0.927 (± 0.048) 0.914 (± 0.027) 0.918 (± 0.045)

XGBClassifier 0.597 (± 0.087) 0.685 (± 0.086) 0.794 (± 0.026) 0.806 (± 0.017) 0.796 (± 0.028) 0.798 (± 0.023) 0.785 (± 0.026) 0.795 (± 0.023) 0.786 (± 0.015)

Table A.5: Predictive performance on DIGPD of the five machine learning algorithms with the nine reduction approaches with 10
repetitions of the nest cross-validation. Mean (standard deviation) over the 10 models are reported.



Reduction

Metric Algorithm 1 2 3 4 5 6 7 8 9

ROC AUC

LogisticRegression 0.653 (± 0.033) 0.796 (± 0.026) 0.780 (± 0.031) 0.804 (± 0.021) 0.796 (± 0.032) 0.811 (± 0.019) 0.804 (± 0.024) 0.801 (± 0.023) 0.806 (± 0.022)

LinearSVC 0.666 (± 0.040) 0.792 (± 0.023) 0.784 (± 0.022) 0.798 (± 0.019) 0.792 (± 0.022) 0.803 (± 0.023) 0.797 (± 0.021) 0.794 (± 0.026) 0.798 (± 0.025)

SVC 0.599 (± 0.025) 0.786 (± 0.006) 0.753 (± 0.015) 0.781 (± 0.009) 0.776 (± 0.012) 0.795 (± 0.009) 0.782 (± 0.012) 0.793 (± 0.006) 0.785 (± 0.012)

RandomForestClassifier 0.576 (± 0.036) 0.762 (± 0.026) 0.733 (± 0.026) 0.737 (± 0.030) 0.737 (± 0.035) 0.738 (± 0.036) 0.737 (± 0.042) 0.733 (± 0.030) 0.736 (± 0.033)

XGBClassifier 0.624 (± 0.018) 0.791 (± 0.007) 0.780 (± 0.010) 0.800 (± 0.004) 0.793 (± 0.007) 0.798 (± 0.007) 0.800 (± 0.005) 0.797 (± 0.010) 0.799 (± 0.012)

Average precision

LogisticRegression 0.427 (± 0.032) 0.626 (± 0.038) 0.597 (± 0.049) 0.634 (± 0.031) 0.621 (± 0.051) 0.638 (± 0.023) 0.635 (± 0.035) 0.631 (± 0.031) 0.633 (± 0.030)

LinearSVC 0.425 (± 0.032) 0.624 (± 0.037) 0.596 (± 0.028) 0.624 (± 0.027) 0.622 (± 0.032) 0.628 (± 0.031) 0.627 (± 0.031) 0.624 (± 0.037) 0.626 (± 0.038)

SVC 0.376 (± 0.029) 0.623 (± 0.013) 0.566 (± 0.024) 0.608 (± 0.019) 0.601 (± 0.024) 0.631 (± 0.017) 0.610 (± 0.023) 0.628 (± 0.012) 0.614 (± 0.022)

RandomForestClassifier 0.343 (± 0.030) 0.584 (± 0.036) 0.502 (± 0.028) 0.526 (± 0.045) 0.534 (± 0.046) 0.524 (± 0.050) 0.545 (± 0.057) 0.518 (± 0.044) 0.536 (± 0.050)

XGBClassifier 0.400 (± 0.021) 0.645 (± 0.021) 0.567 (± 0.028) 0.625 (± 0.010) 0.620 (± 0.010) 0.640 (± 0.014) 0.641 (± 0.007) 0.635 (± 0.040) 0.646 (± 0.017)

Accuracy

LogisticRegression 0.553 (± 0.032) 0.612 (± 0.058) 0.673 (± 0.052) 0.683 (± 0.081) 0.637 (± 0.100) 0.639 (± 0.063) 0.653 (± 0.094) 0.631 (± 0.058) 0.637 (± 0.087)

LinearSVC 0.569 (± 0.036) 0.665 (± 0.050) 0.687 (± 0.030) 0.719 (± 0.037) 0.699 (± 0.040) 0.725 (± 0.049) 0.706 (± 0.043) 0.686 (± 0.054) 0.708 (± 0.052)

SVC 0.556 (± 0.071) 0.832 (± 0.018) 0.699 (± 0.023) 0.732 (± 0.031) 0.714 (± 0.038) 0.787 (± 0.029) 0.737 (± 0.038) 0.838 (± 0.000) 0.761 (± 0.047)

RandomForestClassifier 0.723 (± 0.007) 0.766 (± 0.029) 0.742 (± 0.011) 0.745 (± 0.015) 0.751 (± 0.019) 0.745 (± 0.017) 0.753 (± 0.017) 0.752 (± 0.017) 0.755 (± 0.018)

XGBClassifier 0.564 (± 0.065) 0.698 (± 0.064) 0.743 (± 0.014) 0.769 (± 0.012) 0.758 (± 0.021) 0.763 (± 0.010) 0.759 (± 0.016) 0.756 (± 0.011) 0.757 (± 0.017)

Balanced accuracy

LogisticRegression 0.594 (± 0.021) 0.676 (± 0.026) 0.705 (± 0.034) 0.719 (± 0.041) 0.692 (± 0.049) 0.698 (± 0.030) 0.702 (± 0.044) 0.687 (± 0.028) 0.694 (± 0.039)

LinearSVC 0.608 (± 0.029) 0.698 (± 0.028) 0.716 (± 0.020) 0.736 (± 0.023) 0.721 (± 0.023) 0.738 (± 0.032) 0.725 (± 0.025) 0.711 (± 0.031) 0.727 (± 0.032)

SVC 0.556 (± 0.031) 0.780 (± 0.010) 0.700 (± 0.012) 0.729 (± 0.018) 0.720 (± 0.022) 0.761 (± 0.016) 0.734 (± 0.023) 0.783 (± 0.000) 0.745 (± 0.026)

RandomForestClassifier 0.523 (± 0.028) 0.670 (± 0.065) 0.585 (± 0.072) 0.564 (± 0.065) 0.590 (± 0.075) 0.560 (± 0.058) 0.591 (± 0.073) 0.587 (± 0.049) 0.591 (± 0.066)

XGBClassifier 0.581 (± 0.022) 0.715 (± 0.031) 0.749 (± 0.008) 0.763 (± 0.006) 0.751 (± 0.013) 0.758 (± 0.006) 0.756 (± 0.008) 0.756 (± 0.007) 0.752 (± 0.010)

Sensitivity

LogisticRegression 0.685 (± 0.053) 0.818 (± 0.052) 0.777 (± 0.029) 0.799 (± 0.050) 0.814 (± 0.072) 0.830 (± 0.047) 0.812 (± 0.071) 0.810 (± 0.045) 0.820 (± 0.069)

LinearSVC 0.697 (± 0.056) 0.772 (± 0.029) 0.780 (± 0.030) 0.774 (± 0.025) 0.768 (± 0.029) 0.766 (± 0.022) 0.768 (± 0.027) 0.767 (± 0.030) 0.768 (± 0.026)

SVC 0.555 (± 0.190) 0.665 (± 0.007) 0.702 (± 0.024) 0.723 (± 0.016) 0.733 (± 0.020) 0.703 (± 0.018) 0.727 (± 0.016) 0.663 (± 0.001) 0.710 (± 0.022)

RandomForestClassifier 0.079 (± 0.081) 0.459 (± 0.176) 0.237 (± 0.201) 0.165 (± 0.171) 0.234 (± 0.191) 0.152 (± 0.142) 0.233 (± 0.191) 0.223 (± 0.115) 0.230 (± 0.168)

XGBClassifier 0.619 (± 0.085) 0.753 (± 0.041) 0.763 (± 0.009) 0.751 (± 0.007) 0.736 (± 0.013) 0.747 (± 0.006) 0.748 (± 0.015) 0.757 (± 0.006) 0.741 (± 0.017)

Specificity

LogisticRegression 0.503 (± 0.054) 0.534 (± 0.094) 0.633 (± 0.073) 0.640 (± 0.123) 0.570 (± 0.156) 0.567 (± 0.099) 0.593 (± 0.149) 0.563 (± 0.091) 0.568 (± 0.138)

LinearSVC 0.520 (± 0.054) 0.625 (± 0.074) 0.651 (± 0.043) 0.698 (± 0.053) 0.673 (± 0.059) 0.710 (± 0.069) 0.682 (± 0.063) 0.655 (± 0.078) 0.685 (± 0.074)

SVC 0.557 (± 0.159) 0.896 (± 0.027) 0.697 (± 0.036) 0.736 (± 0.044) 0.707 (± 0.055) 0.819 (± 0.044) 0.741 (± 0.054) 0.904 (± 0.001) 0.780 (± 0.068)

RandomForestClassifier 0.966 (± 0.030) 0.882 (± 0.070) 0.932 (± 0.065) 0.964 (± 0.049) 0.945 (± 0.051) 0.969 (± 0.032) 0.949 (± 0.053) 0.952 (± 0.025) 0.953 (± 0.044)

XGBClassifier 0.543 (± 0.115) 0.678 (± 0.099) 0.736 (± 0.021) 0.775 (± 0.018) 0.767 (± 0.029) 0.769 (± 0.014) 0.764 (± 0.025) 0.756 (± 0.015) 0.763 (± 0.026)

Table A.6: Predictive performance on DIGPD of the five machine learning algorithms with the nine reduction approaches with 10
repetitions of the nest cross-validation. Mean (standard deviation) over the 10 models are reported.



Bibliography

J. Eric Ahlskog. Does vigorous exercise have a neuroprotective effect in Parkinson
disease? Neurology, 77(3):288–294, July 2011. ISSN 1526-632X. doi: 10.1212/WNL.
0b013e318225ab66.

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disor-
ders, 5th Edition. American Psychiatric Pub, May 2013. ISBN 978-0-89042-557-2.

Elise Anderson and John Nutt. The long-duration response to levodopa: Phe-
nomenology, potential mechanisms and clinical implications. Parkinsonism & Re-
lated Disorders, 17(8):587–592, September 2011. ISSN 1353-8020. doi: 10.1016/j.
parkreldis.2011.03.014. URL http://www.sciencedirect.com/science/article/
pii/S1353802011000873.

Camila Catherine Aquino and Susan H. Fox. Clinical spectrum of levodopa-induced
complications. Movement Disorders, 30(1):80–89, 2015. ISSN 1531-8257. doi:
10.1002/mds.26125. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
mds.26125. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/mds.26125.

C. Ardouin, I. Chéreau, P. M. Llorca, E. Lhommée, F. Durif, P. Pollak, and P. Krack.
Évaluation des troubles comportementaux hyper- et hypodopaminergiques dans la
maladie de Parkinson. Revue Neurologique, 165(11):845–856, November 2009. ISSN
0035-3787. doi: 10.1016/j.neurol.2009.06.003. URL http://www.sciencedirect.
com/science/article/pii/S0035378709003439.

M. Auyeung, T. H. Tsoi, W. K. Tang, C. M. Cheung, C. N. Lee, R. Li, and Eric
Yeung. Impulse control disorders in Chinese Parkinson’s disease patients: the effect
of ergot derived dopamine agonist. Parkinsonism & Related Disorders, 17(8):635–637,
September 2011. ISSN 1873-5126. doi: 10.1016/j.parkreldis.2011.06.001.

Fahd Baig, Mark J. Kelly, Michael A. Lawton, Claudio Ruffmann, Michal Rolinski,
Johannes C. Klein, Thomas Barber, Christine Lo, Yoav Ben-Shlomo, David Okai,
and Michele T. Hu. Impulse control disorders in Parkinson disease and RBD: A
longitudinal study of severity. Neurology, 93(7):e675–e687, 2019. ISSN 1526-632X.
doi: 10.1212/WNL.0000000000007942.

107

http://www.sciencedirect.com/science/article/pii/S1353802011000873
http://www.sciencedirect.com/science/article/pii/S1353802011000873
https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.26125
https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.26125
http://www.sciencedirect.com/science/article/pii/S0035378709003439
http://www.sciencedirect.com/science/article/pii/S0035378709003439


108 Bibliography

Sara Balduzzi, Gerta Rücker, and Guido Schwarzer. How to perform a meta-analysis
with R: a practical tutorial. Evidence-Based Mental Health, 22(4):153–160, November
2019. ISSN 1468-960X. doi: 10.1136/ebmental-2019-300117.

Roberta Balestrino and Pablo Martinez-Martin. Neuropsychiatric symptoms, be-
havioural disorders, and quality of life in Parkinson’s disease. Journal of the Neu-
rological Sciences, 373:173–178, February 2017. ISSN 1878-5883. doi: 10.1016/j.jns.
2016.12.060.

Jesse Bastiaens, Benjamin J. Dorfman, Paul J. Christos, and Melissa J. Nirenberg.
Prospective cohort study of impulse control disorders in Parkinson’s disease. Move-
ment Disorders: Official Journal of the Movement Disorder Society, 28(3):327–333,
March 2013. ISSN 1531-8257. doi: 10.1002/mds.25291.

V. Biousse, B. C. Skibell, R. L. Watts, D. N. Loupe, C. Drews-Botsch, and N. J.
Newman. Ophthalmologic features of Parkinson’s disease. Neurology, 62(2):177–180,
January 2004. ISSN 1526-632X. doi: 10.1212/01.wnl.0000103444.45882.d8.

D. W. Black and J. E. Grant. DSM-5 Guidebook: The Essential Companion to
the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Ameri-
can Psychiatric Pub, February 2014. ISBN 978-1-58562-465-2. Google-Books-ID:
lKeTAwAAQBAJ.

Donald W. Black. A review of compulsive buying disorder. World Psychiatry, 6(1):14–
18, February 2007. ISSN 1723-8617. URL https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC1805733/.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algo-
rithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on
Computational learning theory, COLT ’92, pages 144–152, Pittsburgh, Pennsylvania,
USA, July 1992. Association for Computing Machinery. ISBN 978-0-89791-497-0. doi:
10.1145/130385.130401. URL https://doi.org/10.1145/130385.130401.

Leo Breiman. Bias, Variance , AND Arcing Classifiers. Technical Report 460, Statistics
Department University of California, Berkeley, 1996.

Leo Breiman. Arcing the Edge. Technical Report 486, Statistics Department University
of California, Berkeley, 1997.

Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, October 2001. ISSN
1573-0565. doi: 10.1023/A:1010933404324. URL https://doi.org/10.1023/A:
1010933404324.

Leo Breiman, Jerome Friedman, Charles J. Stone, and R. A. Olshen. Classification and
Regression Trees. Taylor & Francis, January 1984. ISBN 978-0-412-04841-8.

108

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1805733/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1805733/
https://doi.org/10.1145/130385.130401
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324


Bibliography 109

Martijn P. G. Broen, Nadia E. Narayen, Mark L. Kuijf, Nadeeka N. W. Dissanayaka,
and Albert F. G. Leentjens. Prevalence of anxiety in Parkinson’s disease: A systematic
review and meta-analysis. Movement Disorders: Official Journal of the Movement
Disorder Society, 31(8):1125–1133, 2016. ISSN 1531-8257. doi: 10.1002/mds.26643.

Annalisa Buniello, Jacqueline A. L. MacArthur, Maria Cerezo, Laura W. Harris, James
Hayhurst, Cinzia Malangone, Aoife McMahon, Joannella Morales, Edward Mountjoy,
Elliot Sollis, Daniel Suveges, Olga Vrousgou, Patricia L. Whetzel, Ridwan Amode,
Jose A. Guillen, Harpreet S. Riat, Stephen J. Trevanion, Peggy Hall, Heather Junk-
ins, Paul Flicek, Tony Burdett, Lucia A. Hindorff, Fiona Cunningham, and Helen
Parkinson. The NHGRI-EBI GWAS Catalog of published genome-wide association
studies, targeted arrays and summary statistics 2019. Nucleic Acids Research, 47
(D1):D1005–D1012, 2019. ISSN 1362-4962. doi: 10.1093/nar/gky1120.

M. B. Callesen, D. Weintraub, M. F. Damholdt, and A. Møller. Impulsive and compul-
sive behaviors among Danish patients with Parkinson’s disease: prevalence, depres-
sion, and personality. Parkinsonism & Related Disorders, 20(1):22–26, January 2014.
ISSN 1873-5126. doi: 10.1016/j.parkreldis.2013.09.006.

Mette Buhl Callesen and Malene Flensborg Damholdt. Phenomenology and gender char-
acteristics of hobbyism and punding in Parkinsons disease: A self-report study. Basal
Ganglia, 9:1–6, August 2017. ISSN 2210-5336. doi: 10.1016/j.baga.2017.06.002. URL
http://www.sciencedirect.com/science/article/pii/S2210533616300600.

D. B. Calne, B. J. Snow, and C. Lee. Criteria for diagnosing Parkinson’s disease. Annals
of Neurology, 32 Suppl:S125–127, 1992. ISSN 0364-5134. doi: 10.1002/ana.410320721.

Arvid Carlsson, Margit Lindqvist, and Tor Magnusson. 3,4-Dihydroxyphenylalanine
and 5-Hydroxytryptophan as Reserpine Antagonists. Nature, 180(4596):1200–1200,
November 1957. ISSN 1476-4687. doi: 10.1038/1801200a0. URL https://www.
nature.com/articles/1801200a0. Number: 4596 Publisher: Nature Publishing
Group.

Jodi Cartoon and Jothi Ramalingam. Dopamine dysregulation syndrome in non-
Parkinson’s disease patients: a systematic review. Australasian Psychiatry: Bulletin
of Royal Australian and New Zealand College of Psychiatrists, 27(5):456–461, October
2019. ISSN 1440-1665. doi: 10.1177/1039856219839476.

Xochitl Helga Castro-Martínez, Pedro J. García-Ruiz, Carlos Martínez-García,
Juan Carlos Martínez-Castrillo, Lydia Vela, Marina Mata, Irene Martínez-Torres,
Cici Feliz-Feliz, Francesc Palau, and Janet Hoenicka. Behavioral addictions in early-
onset Parkinson disease are associated with DRD3 variants. Parkinsonism & Related
Disorders, 49:100–103, 2018. ISSN 1873-5126. doi: 10.1016/j.parkreldis.2018.01.010.

109

http://www.sciencedirect.com/science/article/pii/S2210533616300600
https://www.nature.com/articles/1801200a0
https://www.nature.com/articles/1801200a0


110 Bibliography

Lama M. Chahine, Amy W. Amara, and Aleksandar Videnovic. A systematic review of
the literature on disorders of sleep and wakefulness in Parkinson’s disease from 2005
to 2015. Sleep Medicine Reviews, 35:33–50, 2017. ISSN 1532-2955. doi: 10.1016/j.
smrv.2016.08.001.

Samuel R. Chamberlain and Jon E. Grant. Minnesota Impulse Disorders Interview
(MIDI): Validation of a structured diagnostic clinical interview for impulse control
disorders in an enriched community sample. Psychiatry Research, 265:279–283, July
2018. ISSN 0165-1781. doi: 10.1016/j.psychres.2018.05.006. URL https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC5985960/.

Christopher C. Chang, Carson C. Chow, Laurent CAM Tellier, Shashaank Vat-
tikuti, Shaun M. Purcell, and James J. Lee. Second-generation PLINK: rising to
the challenge of larger and richer datasets. GigaScience, 4(1), December 2015.
doi: 10.1186/s13742-015-0047-8. URL https://academic.oup.com/gigascience/
article/4/1/s13742-015-0047-8/2707533. Publisher: Oxford Academic.

Fanny Charbonnier-Beaupel, Marion Malerbi, Cristina Alcacer, Khadija Tahiri, Was-
sila Carpentier, Chuansong Wang, Matthew During, Desheng Xu, Paul F. Worley,
Jean-Antoine Girault, Denis Hervé, and Jean-Christophe Corvol. Gene Expression
Analyses Identify Narp Contribution in the Development of l-DOPA-Induced Dyski-
nesia. Journal of Neuroscience, 35(1):96–111, January 2015. ISSN 0270-6474, 1529-
2401. doi: 10.1523/JNEUROSCI.5231-13.2015. URL https://www.jneurosci.org/
content/35/1/96. Publisher: Society for Neuroscience Section: Articles.

K. Ray Chaudhuri, Daniel G. Healy, Anthony H. V. Schapira, and National Institute
for Clinical Excellence. Non-motor symptoms of Parkinson’s disease: diagnosis and
management. The Lancet. Neurology, 5(3):235–245, March 2006. ISSN 1474-4422.
doi: 10.1016/S1474-4422(06)70373-8.

Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 785–794, San Francisco California USA, Au-
gust 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939785. URL
https://dl.acm.org/doi/10.1145/2939672.2939785.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations us-
ing RNN EncoderDecoder for Statistical Machine Translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1724–1734, Doha, Qatar, October 2014. Association for Computational Lin-
guistics. doi: 10.3115/v1/D14-1179. URL https://www.aclweb.org/anthology/
D14-1179.

110

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985960/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985960/
https://academic.oup.com/gigascience/article/4/1/s13742-015-0047-8/2707533
https://academic.oup.com/gigascience/article/4/1/s13742-015-0047-8/2707533
https://www.jneurosci.org/content/35/1/96
https://www.jneurosci.org/content/35/1/96
https://dl.acm.org/doi/10.1145/2939672.2939785
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179


Bibliography 111

Ji Hyun Choi, Jee Young Lee, Jin Whan Cho, Seong Beom Ko, Tae Beom Ahn, Sang Jin
Kim, Sang Myung Cheon, Joong Seok Kim, Yoon Joong Kim, Hyeo Il Ma, Jong Sam
Baik, Phil Hyu Lee, Sun Ju Chung, Jong Min Kim, In Uk Song, Han Joon Kim,
Young Hee Sung, Do Young Kwon, Jae Hyeok Lee, Ji Young Kim, Ji Sun Kim,
Ji Young Yun, Hee Jin Kim, Jin Yong Hong, Mi Jung Kim, Jinyoung Youn, Ji Seon
Kim, Eung Seok Oh, Hui Jun Yang, Won Tae Yoon, Sooyeoun You, Kyum Yil Kwon,
Hyung Eun Park, Su Yun Lee, Younsoo Kim, Hee Tae Kim, and Mee Young Park.
Validation of the Korean Version of the Questionnaire for Impulsive-Compulsive Dis-
orders in Parkinson’s Disease Rating Scale. Journal of Clinical Neurology (Seoul,
Korea), 16(2):245–253, April 2020. ISSN 1738-6586. doi: 10.3988/jcn.2020.16.2.245.

G. A. Christenson, R. J. Faber, M. de Zwaan, N. C. Raymond, S. M. Specker, M. D.
Ekern, T. B. Mackenzie, R. D. Crosby, S. J. Crow, and E. D. Eckert. Compulsive buy-
ing: descriptive characteristics and psychiatric comorbidity. The Journal of Clinical
Psychiatry, 55(1):5–11, January 1994. ISSN 0160-6689.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on se-
quence modeling. NIPS 2014 Workshop on Deep Learning, Decem-
ber 2014, 2014. URL https://nyuscholars.nyu.edu/en/publications/
empirical-evaluation-of-gated-recurrent-neural-networks-on-sequen.

Roberto Cilia, Chiara Siri, Margherita Canesi, Anna Lena Zecchinelli, Danilo De Gas-
pari, Francesca Natuzzi, Silvana Tesei, Nicoletta Meucci, Claudio Bruno Mariani,
Giorgio Sacilotto, Michela Zini, Claudio Ruffmann, and Gianni Pezzoli. Dopamine
dysregulation syndrome in Parkinson’s disease: from clinical and neuropsychologi-
cal characterisation to management and long-term outcome. Journal of Neurology,
Neurosurgery, and Psychiatry, 85(3):311–318, March 2014. ISSN 1468-330X. doi:
10.1136/jnnp-2012-303988.

Barbara S. Connolly and Anthony E. Lang. Pharmacological treatment of Parkinson
disease: a review. JAMA, 311(16):1670–1683, April 2014. ISSN 1538-3598. doi:
10.1001/jama.2014.3654.

Gregory Cooper, Gerald Eichhorn, and Robert L. Rodnitzky. Parkinson’s Disease. In
Neuroscience in Medicine, pages 508–512. Humana Press, 3 edition, 2008. ISBN
978-1-60327-455-5.

Florence Cormier-Dequaire, Samir Bekadar, Mathieu Anheim, Said Lebbah, Antoine
Pelissolo, Paul Krack, Lucette Lacomblez, Eugénie Lhommée, Anna Castrioto, Jean-
Philippe Azulay, Luc Defebvre, Alexandre Kreisler, Franck Durif, Ana Marques-
Raquel, Christine Brefel-Courbon, David Grabli, Emmanuel Roze, Pierre-Michel
Llorca, Fabienne Ory-Magne, Isabelle Benatru, Solene Ansquer, David Maltête,

111

https://nyuscholars.nyu.edu/en/publications/empirical-evaluation-of-gated-recurrent-neural-networks-on-sequen
https://nyuscholars.nyu.edu/en/publications/empirical-evaluation-of-gated-recurrent-neural-networks-on-sequen


112 Bibliography

Melissa Tir, Pierre Krystkowiak, Christine Tranchant, Ouhaid Lagha-Boukbiza,
Bénédicte Lebrun-Vignes, Graziella Mangone, Marie Vidailhet, Fanny Charbonnier-
Beaupel, Olivier Rascol, Suzanne Lesage, Alexis Brice, Sophie Tezenas du Montcel,
Jean-Christophe Corvol, and BADGE-PD study group. Suggestive association be-
tween OPRM1 and impulse control disorders in Parkinson’s disease. Movement Dis-
orders: Official Journal of the Movement Disorder Society, 33(12):1878–1886, 2018.
ISSN 1531-8257. doi: 10.1002/mds.27519.

Jason R. Cornelius, Maja Tippmann-Peikert, Nancy L. Slocumb, Courtney F. Frerichs,
and Michael H. Silber. Impulse control disorders with the use of dopaminergic agents
in restless legs syndrome: a case-control study. Sleep, 33(1):81–87, January 2010.
ISSN 0161-8105.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, September 1995. ISSN 1573-0565. doi: 10.1007/BF00994018. URL
https://doi.org/10.1007/BF00994018.

Jean-Christophe Corvol, Jean-Baptiste Anzouan-Kacou, Elodie Fauveau, Anne-Marie
Bonnet, Bénédicte Lebrun-Vignes, Camille Girault, Yves Agid, Philippe Lechat,
Richard Isnard, and Lucette Lacomblez. Heart valve regurgitation, pergolide use,
and parkinson disease: an observational study and meta-analysis. Archives of Neu-
rology, 64(12):1721–1726, December 2007. ISSN 0003-9942. doi: 10.1001/archneur.
64.12.1721.

Jean-Christophe Corvol, Fanny Artaud, Florence Cormier-Dequaire, Olivier Rascol,
Franck Durif, Pascal Derkinderen, Ana-Raquel Marques, Frédéric Bourdain, Jean-
Philippe Brandel, Fernando Pico, Lucette Lacomblez, Cecilia Bonnet, Christine
Brefel-Courbon, Fabienne Ory-Magne, David Grabli, Stephan Klebe, Graziella Man-
gone, Hana You, Valérie Mesnage, Pei-Chen Lee, Alexis Brice, Marie Vidailhet, Alexis
Elbaz, and DIGPD Study Group. Longitudinal analysis of impulse control disorders
in Parkinson disease. Neurology, 91(3):e189–e201, July 2018. ISSN 1526-632X. doi:
10.1212/WNL.0000000000005816.

G. C. Cotzias, M. H. Van Woert, and L. M. Schiffer. Aromatic amino acids and mod-
ification of parkinsonism. The New England Journal of Medicine, 276(7):374–379,
February 1967. ISSN 0028-4793. doi: 10.1056/NEJM196702162760703.

Sayantan Das, Lukas Forer, Sebastian Schönherr, Carlo Sidore, Adam E. Locke, Alan
Kwong, Scott I. Vrieze, Emily Y. Chew, Shawn Levy, Matt McGue, David Sch-
lessinger, Dwight Stambolian, Po-Ru Loh, William G. Iacono, Anand Swaroop,
Laura J. Scott, Francesco Cucca, Florian Kronenberg, Michael Boehnke, Gonçalo R.
Abecasis, and Christian Fuchsberger. Next-generation genotype imputation service

112

https://doi.org/10.1007/BF00994018


Bibliography 113

and methods. Nature Genetics, 48(10):1284–1287, 2016. ISSN 1546-1718. doi:
10.1038/ng.3656.

C. A. Davie. A review of Parkinson’s disease. British Medical Bulletin, 86:109–127,
2008. ISSN 1471-8391. doi: 10.1093/bmb/ldn013.

Jesse Davis and Mark Goadrich. The relationship between Precision-Recall and ROC
curves. In Proceedings of the 23rd international conference on Machine learning,
ICML ’06, pages 233–240, Pittsburgh, Pennsylvania, USA, June 2006. Association
for Computing Machinery. ISBN 978-1-59593-383-6. doi: 10.1145/1143844.1143874.
URL https://doi.org/10.1145/1143844.1143874.

Patricia de la Riva, Kara Smith, Sharon X. Xie, and Daniel Weintraub. Course of psy-
chiatric symptoms and global cognition in early Parkinson disease. Neurology, 83(12):
1096–1103, September 2014. ISSN 1526-632X. doi: 10.1212/WNL.0000000000000801.

Bernardo Dell’Osso, A. Carlo Altamura, Andrea Allen, Donatella Marazziti, and Eric
Hollander. Epidemiologic and clinical updates on impulse control disorders: a critical
review. European Archives of Psychiatry and Clinical Neuroscience, 256(8):464–475,
December 2006. ISSN 0940-1334. doi: 10.1007/s00406-006-0668-0.

E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson. Comparing the areas un-
der two or more correlated receiver operating characteristic curves: a nonparametric
approach. Biometrics, 44(3):837–845, September 1988. ISSN 0006-341X.

Ditte Demontis, Raymond K. Walters, Joanna Martin, Manuel Mattheisen, Thomas D.
Als, Esben Agerbo, Gísli Baldursson, Rich Belliveau, Jonas Bybjerg-Grauholm, Marie
Bækvad-Hansen, Felecia Cerrato, Kimberly Chambert, Claire Churchhouse, Ashley
Dumont, Nicholas Eriksson, Michael Gandal, Jacqueline I. Goldstein, Katrina L.
Grasby, Jakob Grove, Olafur O. Gudmundsson, Christine S. Hansen, Mads En-
gel Hauberg, Mads V. Hollegaard, Daniel P. Howrigan, Hailiang Huang, Julian B.
Maller, Alicia R. Martin, Nicholas G. Martin, Jennifer Moran, Jonatan Pallesen,
Duncan S. Palmer, Carsten Bøcker Pedersen, Marianne Giørtz Pedersen, Timothy
Poterba, Jesper Buchhave Poulsen, Stephan Ripke, Elise B. Robinson, F. Kyle Sat-
terstrom, Hreinn Stefansson, Christine Stevens, Patrick Turley, G. Bragi Walters,
Hyejung Won, Margaret J. Wright, ADHD Working Group of the Psychiatric Ge-
nomics Consortium (PGC), Early Lifecourse & Genetic Epidemiology (EAGLE) Con-
sortium, 23andMe Research Team, Ole A. Andreassen, Philip Asherson, Christie L.
Burton, Dorret I. Boomsma, Bru Cormand, Søren Dalsgaard, Barbara Franke, Joel
Gelernter, Daniel Geschwind, Hakon Hakonarson, Jan Haavik, Henry R. Kranzler,
Jonna Kuntsi, Kate Langley, Klaus-Peter Lesch, Christel Middeldorp, Andreas Reif,
Luis Augusto Rohde, Panos Roussos, Russell Schachar, Pamela Sklar, Edmund J. S.

113

https://doi.org/10.1145/1143844.1143874


114 Bibliography

Sonuga-Barke, Patrick F. Sullivan, Anita Thapar, Joyce Y. Tung, Irwin D. Wald-
man, Sarah E. Medland, Kari Stefansson, Merete Nordentoft, David M. Hougaard,
Thomas Werge, Ole Mors, Preben Bo Mortensen, Mark J. Daly, Stephen V. Faraone,
Anders D. Børglum, and Benjamin M. Neale. Discovery of the first genome-wide
significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics, 51
(1):63–75, 2019. ISSN 1546-1718. doi: 10.1038/s41588-018-0269-7.

Dennis W. Dickson. Neuropathology of Parkinson disease. Parkinsonism & Related
Disorders, 46 Suppl 1:S30–S33, January 2018. ISSN 1873-5126. doi: 10.1016/j.
parkreldis.2017.07.033.

E. Driver-Dunckley, J. Samanta, and M. Stacy. Pathological gambling associated with
dopamine agonist therapy in Parkinson’s disease. Neurology, 61(3):422–423, August
2003. ISSN 1526-632X. doi: 10.1212/01.wnl.0000076478.45005.ec.

Frank Dudbridge. Power and Predictive Accuracy of Polygenic Risk Scores. PLOS
Genetics, 9(3):e1003348, March 2013. ISSN 1553-7404. doi: 10.1371/journal.pgen.
1003348. URL https://journals.plos.org/plosgenetics/article?id=10.1371/
journal.pgen.1003348. Publisher: Public Library of Science.

H. Ehringer and O. Hornykiewicz. Verteilung Von Noradrenalin Und Dopamin (3-
Hydroxytyramin) Im Gehirn Des Menschen Und Ihr Verhalten Bei Erkrankungen Des
Extrapyramidalen Systems. Klinische Wochenschrift, 38(24):1236–1239, December
1960. ISSN 1432-1440. doi: 10.1007/BF01485901. URL https://doi.org/10.1007/
BF01485901.

H. El Otmani, L. Raji, B. El Moutaouakil, M. A. Rafai, and I. Slassi. Punding sévère
au cours dune maladie de Parkinson. L’Encéphale, 41(2):190–193, April 2015. ISSN
0013-7006. doi: 10.1016/j.encep.2013.03.013. URL http://www.sciencedirect.
com/science/article/pii/S0013700613001656.

Aleksander H. Erga, Ingvild Dalen, Anastasia Ushakova, Janete Chung, Charalampos
Tzoulis, Ole Bjørn Tysnes, Guido Alves, Kenn Freddy Pedersen, and Jodi Maple-
Grødem. Dopaminergic and Opioid Pathways Associated with Impulse Control Dis-
orders in Parkinsons Disease. Frontiers in Neurology, 9, 2018. ISSN 1664-2295.
doi: 10.3389/fneur.2018.00109. URL https://www.frontiersin.org/articles/
10.3389/fneur.2018.00109/full. Publisher: Frontiers.

Andrew H. Evans, Regina Katzenschlager, Dominic Paviour, John D. O’Sullivan,
Silke Appel, Andrew D. Lawrence, and Andrew J. Lees. Punding in Parkin-
son’s disease: Its relation to the dopamine dysregulation syndrome. Move-
ment Disorders, 19(4):397–405, 2004. ISSN 1531-8257. doi: 10.1002/mds.20045.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.20045. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/mds.20045.

114

https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1003348
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1003348
https://doi.org/10.1007/BF01485901
https://doi.org/10.1007/BF01485901
http://www.sciencedirect.com/science/article/pii/S0013700613001656
http://www.sciencedirect.com/science/article/pii/S0013700613001656
https://www.frontiersin.org/articles/10.3389/fneur.2018.00109/full
https://www.frontiersin.org/articles/10.3389/fneur.2018.00109/full
https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.20045


Bibliography 115

Andrew H. Evans, David Okai, Daniel Weintraub, Shen-Yang Lim, Sean S. O’Sullivan,
Valerie Voon, Paul Krack, Cristina Sampaio, Bart Post, Albert F. G. Leentjens,
Pablo Martinez-Martin, Glenn T. Stebbins, Christopher G. Goetz, Anette Schrag, and
Members of the International Parkinson and Movement Disorder Society (IPMDS)
Rating Scales Review Committee. Scales to assess impulsive and compulsive behaviors
in Parkinson’s disease: Critique and recommendations. Movement Disorders: Official
Journal of the Movement Disorder Society, 34(6):791–798, 2019. ISSN 1531-8257. doi:
10.1002/mds.27689.

Stanley Fahn. The history of dopamine and levodopa in the treatment of Parkin-
son’s disease. Movement Disorders, 23(S3):S497–S508, 2008. ISSN 1531-8257. doi:
10.1002/mds.22028. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
mds.22028. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/mds.22028.

M. L. Fantini, L. Macedo, M. Zibetti, M. Sarchioto, T. Vidal, B. Pereira, A. Marques,
B. Debilly, P. Derost, M. Ulla, N. Vitello, A. Cicolin, L. Lopiano, and F. Durif.
Increased risk of impulse control symptoms in Parkinson’s disease with REM sleep
behaviour disorder. Journal of Neurology, Neurosurgery, and Psychiatry, 86(2):174–
179, February 2015. ISSN 1468-330X. doi: 10.1136/jnnp-2014-307904.

Maria Livia Fantini, Michela Figorilli, Isabelle Arnulf, Maurizio Zibetti, Bruno Pereira,
Patricia Beudin, Monica Puligheddu, Florence Cormier-Dequaire, Lucette Lacomblez,
Eve Benchetrit, Jean Christophe Corvol, Alessandro Cicolin, Leonardo Lopiano, Ana
Marques, and Franck Durif. Sleep and REM sleep behaviour disorder in Parkin-
son’s disease with impulse control disorder. Journal of Neurology, Neurosurgery, and
Psychiatry, 89(3):305–310, 2018. ISSN 1468-330X. doi: 10.1136/jnnp-2017-316576.

Maria Livia Fantini, Franck Durif, and Ana Marques. Impulse Control Disorders in
REM Sleep Behavior Disorder. Current Treatment Options in Neurology, 21(5):23,
April 2019. ISSN 1092-8480. doi: 10.1007/s11940-019-0564-3.

Maria Livia Fantini, Janel Fedler, Bruno Pereira, Daniel Weintraub, Ana-Raquel Mar-
ques, and Franck Durif. Is Rapid Eye Movement Sleep Behavior Disorder a Risk
Factor for Impulse Control Disorder in Parkinson Disease? Annals of Neurology, 88
(4):759–770, October 2020. ISSN 1531-8249. doi: 10.1002/ana.25798.

Alfonso Fasano, Naomi P. Visanji, Louis W. C. Liu, Antony E. Lang, and Ronald F.
Pfeiffer. Gastrointestinal dysfunction in Parkinson’s disease. The Lancet. Neurology,
14(6):625–639, June 2015. ISSN 1474-4465. doi: 10.1016/S1474-4422(15)00007-1.

Leslie J. Findley. The economic impact of Parkinson’s disease. Parkinsonism & Re-
lated Disorders, 13 Suppl:S8–S12, September 2007. ISSN 1353-8020. doi: 10.1016/j.
parkreldis.2007.06.003.

115

https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.22028
https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.22028


116 Bibliography

Naomi A. Fineberg, Marc N. Potenza, Samuel R. Chamberlain, Heather A. Berlin, Lara
Menzies, Antoine Bechara, Barbara J. Sahakian, Trevor W. Robbins, Edward T.
Bullmore, and Eric Hollander. Probing compulsive and impulsive behaviors, from
animal models to endophenotypes: a narrative review. Neuropsychopharmacology:
Official Publication of the American College of Neuropsychopharmacology, 35(3):591–
604, February 2010. ISSN 1740-634X. doi: 10.1038/npp.2009.185.

Peter Flach and Meelis Kull. Precision-Recall-Gain Curves: PR Analysis Done
Right. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 28, pages
838–846. Curran Associates, Inc., 2015. URL http://papers.nips.cc/paper/
5867-precision-recall-gain-curves-pr-analysis-done-right.pdf.

Leonardo F. Fontenelle, Mauro V. Mendlowicz, and Marcio Versiani. Impulse control
disorders in patients with obsessive-compulsive disorder. Psychiatry and Clinical Neu-
rosciences, 59(1):30–37, February 2005. ISSN 1323-1316. doi: 10.1111/j.1440-1819.
2005.01328.x.

Leonardo F. Fontenelle, Sanne Oostermeijer, Ben J. Harrison, Christos Pantelis, and
Murat Yücel. Obsessive-compulsive disorder, impulse control disorders and drug
addiction: common features and potential treatments. Drugs, 71(7):827–840, May
2011. ISSN 1179-1950. doi: 10.2165/11591790-000000000-00000.

Susan H. Fox, Regina Katzenschlager, Shen-Yang Lim, Brandon Barton, Rob M. A.
de Bie, Klaus Seppi, Miguel Coelho, Cristina Sampaio, and Movement Disorder
Society Evidence-Based Medicine Committee. International Parkinson and move-
ment disorder society evidence-based medicine review: Update on treatments for
the motor symptoms of Parkinson’s disease. Movement Disorders: Official Journal
of the Movement Disorder Society, 33(8):1248–1266, 2018. ISSN 1531-8257. doi:
10.1002/mds.27372.

Jerome H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine.
The Annals of Statistics, 29(5):1189–1232, 2001. ISSN 0090-5364. URL https:
//www.jstor.org/stable/2699986. Publisher: Institute of Mathematical Statistics.

Pedro J. Garcia-Ruiz, Juan Carlos Martinez Castrillo, Araceli Alonso-Canovas, An-
tonio Herranz Barcenas, Lydia Vela, Pilar Sanchez Alonso, Marina Mata, Nuria
Olmedilla Gonzalez, and Ignacio Mahillo Fernandez. Impulse control disorder in
patients with Parkinson’s disease under dopamine agonist therapy: a multicentre
study. Journal of Neurology, Neurosurgery, and Psychiatry, 85(8):840–844, August
2014. ISSN 1468-330X. doi: 10.1136/jnnp-2013-306787.

Chenjie Ge, Irene Yu-Hua Gu, Asgeir Store Jakola, and Jie Yang. Deep Learning and
Multi-Sensor Fusion for Glioma Classification Using Multistream 2D Convolutional

116

http://papers.nips.cc/paper/5867-precision-recall-gain-curves-pr-analysis-done-right.pdf
http://papers.nips.cc/paper/5867-precision-recall-gain-curves-pr-analysis-done-right.pdf
https://www.jstor.org/stable/2699986
https://www.jstor.org/stable/2699986


Bibliography 117

Networks. In 2018 40th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pages 5894–5897, Honolulu, HI, July 2018.
IEEE. ISBN 978-1-5386-3646-6. doi: 10.1109/EMBC.2018.8513556. URL https:
//ieeexplore.ieee.org/document/8513556/.

T. Gescheidt, V. Majerová, K. Meníková, L. Duek, K. Czekóová, P. Kotková, P. Kaovský,
J. Roth, and M. Bare. ID 16 Impulse control disorders in young-onset patients with
Parkinsons disease: Cross-sectional study seeking associated factors with regard of
personal characteristics. Clinical Neurophysiology, 127(3):e70, March 2016. ISSN
1388-2457. doi: 10.1016/j.clinph.2015.11.233. URL http://www.sciencedirect.
com/science/article/pii/S1388245715013383.

Michel Goedert, Maria Grazia Spillantini, Kelly Del Tredici, and Heiko Braak. 100 years
of Lewy pathology. Nature Reviews. Neurology, 9(1):13–24, 2013. ISSN 1759-4766.
doi: 10.1038/nrneurol.2012.242.

Christopher G. Goetz, Barbara C. Tilley, Stephanie R. Shaftman, Glenn T. Stebbins,
Stanley Fahn, Pablo Martinez-Martin, Werner Poewe, Cristina Sampaio, Matthew B.
Stern, Richard Dodel, Bruno Dubois, Robert Holloway, Joseph Jankovic, Jaime Kuli-
sevsky, Anthony E. Lang, Andrew Lees, Sue Leurgans, Peter A. LeWitt, David Nyen-
huis, C. Warren Olanow, Olivier Rascol, Anette Schrag, Jeanne A. Teresi, Jacobus J.
van Hilten, Nancy LaPelle, and Movement Disorder Society UPDRS Revision Task
Force. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Dis-
ease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results.
Movement Disorders: Official Journal of the Movement Disorder Society, 23(15):
2129–2170, November 2008. ISSN 1531-8257. doi: 10.1002/mds.22340.

Jennifer G. Goldman, Samantha K. Holden, Irene Litvan, Ian McKeith, Glenn T. Steb-
bins, and John-Paul Taylor. Evolution of diagnostic criteria and assessments for
Parkinson’s disease mild cognitive impairment. Movement Disorders: Official Jour-
nal of the Movement Disorder Society, 33(4):503–510, 2018. ISSN 1531-8257. doi:
10.1002/mds.27323.

Marleide da Mota Gomes and Eliasz Engelhardt. Jean-Martin Charcot, father of modern
neurology: an homage 120 years afterăhis death. Arquivos De Neuro-Psiquiatria, 71
(10):815–817, October 2013. ISSN 1678-4227. doi: 10.1590/0004-282X20130128.

Zahra Goodarzi, Kelly J. Mrklas, Derek J. Roberts, Nathalie Jette, Tamara Pringsheim,
and Jayna Holroyd-Leduc. Detecting depression in Parkinson disease: A systematic
review and meta-analysis. Neurology, 87(4):426–437, July 2016. ISSN 1526-632X.
doi: 10.1212/WNL.0000000000002898.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
URL http://www.deeplearningbook.org.

117

https://ieeexplore.ieee.org/document/8513556/
https://ieeexplore.ieee.org/document/8513556/
http://www.sciencedirect.com/science/article/pii/S1388245715013383
http://www.sciencedirect.com/science/article/pii/S1388245715013383
http://www.deeplearningbook.org


118 Bibliography

Marie Grall-Bronnec, Caroline Victorri-Vigneau, Yann Donnio, Juliette Leboucher,
Morgane Rousselet, Elsa Thiabaud, Nicolas Zreika, Pascal Derkinderen, and Gaëlle
Challet-Bouju. Dopamine Agonists and Impulse Control Disorders: A Complex
Association. Drug Safety, 41(1):19–75, January 2018. ISSN 1179-1942. doi:
10.1007/s40264-017-0590-6.

Jon E. Grant. Impulse Control Disorders: A Clinician’s Guide to Understanding and
Treating Behavioral Addictions. WW Norton and Company, New York, 2008.

Jon E. Grant, Maria C. Mancebo, Anthony Pinto, Jane L. Eisen, and Steven A. Ras-
mussen. Impulse control disorders in adults with obsessive compulsive disorder. Jour-
nal of Psychiatric Research, 40(6):494–501, September 2006. ISSN 0022-3956. doi:
10.1016/j.jpsychires.2005.11.005.

Jon E. Grant, Maria C. Mancebo, Jane L. Eisen, and Steven A. Rasmussen. Impulse-
control disorders in children and adolescents with obsessive-compulsive disorder. Psy-
chiatry Research, 175(1-2):109–113, January 2010. ISSN 0165-1781. doi: 10.1016/j.
psychres.2009.04.006.

Ute Gschwandtner, Jacqueline Aston, Susanne Renaud, and Peter Fuhr. Pathologic
Gambling in Patients with Parkinson’s Disease:. Clinical Neuropharmacology, 24(3):
170–172, May 2001. ISSN 0362-5664. doi: 10.1097/00002826-200105000-00009. URL
http://journals.lww.com/00002826-200105000-00009.

Jie Hao, Sai Chandra Kosaraju, Nelson Zange Tsaku, Dae Hyun Song, and Mingon
Kang. PAGE-Net: Interpretable and Integrative Deep Learning for Survival Anal-
ysis Using Histopathological Images and Genomic Data. In Biocomputing 2020,
pages 355–366. WORLD SCIENTIFIC, November 2019. ISBN 9789811215629.
doi: 10.1142/9789811215636_0032. URL https://www.worldscientific.com/doi/
abs/10.1142/9789811215636_0032. ZSCC: 0000001.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362, September 2020a. ISSN 1476-
4687. doi: 10.1038/s41586-020-2649-2. URL https://www.nature.com/articles/
s41586-020-2649-2. Number: 7825 Publisher: Nature Publishing Group.

James P. Harris, Justin C. Burrell, Laura A. Struzyna, H. Isaac Chen, Mijail D. Serruya,
John A. Wolf, John E. Duda, and D. Kacy Cullen. Emerging regenerative medicine

118

http://journals.lww.com/00002826-200105000-00009
https://www.worldscientific.com/doi/abs/10.1142/9789811215636_0032
https://www.worldscientific.com/doi/abs/10.1142/9789811215636_0032
https://www.nature.com/articles/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2


Bibliography 119

and tissue engineering strategies for Parkinsons disease. npj Parkinson’s Disease, 6
(1):1–14, January 2020b. ISSN 2373-8057. doi: 10.1038/s41531-019-0105-5. URL
https://www.nature.com/articles/s41531-019-0105-5. Number: 1 Publisher:
Nature Publishing Group.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition. Springer Series
in Statistics. Springer-Verlag, New York, 2 edition, 2009. ISBN 978-0-387-84857-
0. doi: 10.1007/978-0-387-84858-7. URL https://www.springer.com/gp/book/
9780387848570.

M. A. Hely, J. G. Morris, R. Traficante, W. G. Reid, D. J. O’Sullivan, and P. M.
Williamson. The sydney multicentre study of Parkinson’s disease: progression and
mortality at 10 years. Journal of Neurology, Neurosurgery, and Psychiatry, 67(3):
300–307, September 1999. ISSN 0022-3050. doi: 10.1136/jnnp.67.3.300.

Miguel A. Hernán, Bahi Takkouche, Francisco CaamañoIsorna, and Juan J.
GestalOtero. A meta-analysis of coffee drinking, cigarette smoking, and the risk of
Parkinson’s disease. Annals of Neurology, 52(3):276–284, 2002. ISSN 1531-8249. doi:
10.1002/ana.10277. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
ana.10277. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ana.10277.

Todd M. Herrington, Jennifer J. Cheng, and Emad N. Eskandar. Mechanisms of deep
brain stimulation. Journal of Neurophysiology, 115(1):19–38, January 2016. ISSN
1522-1598. doi: 10.1152/jn.00281.2015.

Jon P. Hiseman and Robin Fackrell. Caregiver Burden and the Nonmotor Symptoms of
Parkinson’s Disease. International Review of Neurobiology, 133:479–497, 2017. ISSN
2162-5514. doi: 10.1016/bs.irn.2017.05.035.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

Janet Hoenicka, Pedro J. García-Ruiz, Guillermo Ponce, Antonio Herranz, Dolores
Martínez-Rubio, Estela Pérez-Santamarina, and Francesc Palau. The addiction-
related gene ANKK1 in Parkinsonian patients with impulse control disorder. Neu-
rotoxicity Research, 27(3):205–208, April 2015. ISSN 1476-3524. doi: 10.1007/
s12640-014-9504-x.

Bernd Holdorff. Fritz Heinrich Lewy (18851950). Journal of Neurology, 253(5):677–
678, May 2006. ISSN 1432-1459. doi: 10.1007/s00415-006-0130-2. URL https:
//doi.org/10.1007/s00415-006-0130-2.

David M. Howard, Mark J. Adams, Toni-Kim Clarke, Jonathan D. Hafferty, Jude Gib-
son, Masoud Shirali, Jonathan R. I. Coleman, Saskia P. Hagenaars, Joey Ward,

119

https://www.nature.com/articles/s41531-019-0105-5
https://www.springer.com/gp/book/9780387848570
https://www.springer.com/gp/book/9780387848570
https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.10277
https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.10277
https://doi.org/10.1007/s00415-006-0130-2
https://doi.org/10.1007/s00415-006-0130-2


120 Bibliography

Eleanor M. Wigmore, Clara Alloza, Xueyi Shen, Miruna C. Barbu, Eileen Y. Xu,
Heather C. Whalley, Riccardo E. Marioni, David J. Porteous, Gail Davies, Ian J.
Deary, Gibran Hemani, Klaus Berger, Henning Teismann, Rajesh Rawal, Volker
Arolt, Bernhard T. Baune, Udo Dannlowski, Katharina Domschke, Chao Tian,
David A. Hinds, 23andMe Research Team, Major Depressive Disorder Working
Group of the Psychiatric Genomics Consortium, Maciej Trzaskowski, Enda M. Byrne,
Stephan Ripke, Daniel J. Smith, Patrick F. Sullivan, Naomi R. Wray, Gerome Breen,
Cathryn M. Lewis, and Andrew M. McIntosh. Genome-wide meta-analysis of de-
pression identifies 102 independent variants and highlights the importance of the
prefrontal brain regions. Nature Neuroscience, 22(3):343–352, 2019. ISSN 1546-1726.
doi: 10.1038/s41593-018-0326-7.

A. J. Hughes, S. E. Daniel, L. Kilford, and A. J. Lees. Accuracy of clinical diagnosis
of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. Journal
of Neurology, Neurosurgery, and Psychiatry, 55(3):181–184, March 1992. ISSN 0022-
3050. doi: 10.1136/jnnp.55.3.181.

John D. Hunter. Matplotlib: A 2D Graphics Environment. Computing in Science
Engineering, 9(3):90–95, May 2007. ISSN 1558-366X. doi: 10.1109/MCSE.2007.55.
Conference Name: Computing in Science Engineering.

Catherine S. Hurt, Fadi Alkufri, Richard G. Brown, David J. Burn, John V. Hindle,
Sabine Landau, Kenneth C. Wilson, Michael Samuel, and PROMS-PD study group.
Motor phenotypes, medication and mood: further associations with impulsive be-
haviours in Parkinson’s disease. Journal of Parkinson’s Disease, 4(2):245–254, 2014.
ISSN 1877-718X. doi: 10.3233/JPD-130314.

J. Ihle, F. Artaud, S. Bekadar, G. Mangone, S. Sambin, L. L. Mariani, H. Bertrand,
O. Rascol, F. Durif, P. Derkinderen, C. Scherzer, A. Elbaz, J. C. Corvol, DIGPD
study groupSteering committee, Jean-Christophe Corvol, Alexis Elbaz, Marie Vidail-
het, Alexis Brice, Statistical analyses, Alexis Elbaz, Fanny Artaud, Principal inves-
tigators for sites, Frédéric Bourdain, Jean-Philippe Brandel, Jean-Christophe Cor-
vol, Pascal Derkinderen, Franck Durif, Richard Levy, Fernando Pico, Olivier Rascol,
Co-investigators (alphabetical order), Anne-Marie Bonnet, Cecilia Bonnet, Chris-
tine Brefel-Courbon, Florence Cormier-Dequaire, Bertrand Degos, Bérangère De-
billy, Alexis Elbaz, Monique Galitsky, David Grabli, Andreas Hartmann, Stephan
Klebe, Julia Kraemmer, Lucette Lacomblez, Sara Leder, Graziella Mangone, Louise-
Laure Mariani, Ana-Raquel Marques, Valérie Mesnage, Julia Muellner, Fabienne Ory-
Magne, Violaine Planté-Bordeneuve, Emmanuel Roze, Melissa Tir, Marie Vidailhet,
Hana You, Neuropsychologists, Eve Benchetrit, Julie Socha, Fanny Pineau, Tiphaine
Vidal, Elsa Pomies, Virginie Bayet, Genetic core, Alexis Brice, Suzanne Lesage,
Khadija Tahiri, Hélène Bertrand, Graziella Mangone, Sponsor activities and clini-

120



Bibliography 121

cal research assistants, Alain Mallet, Coralie Villeret, Merry Mazmanian, Hakima
Manseur, Mostafa Hajji, Benjamin Le Toullec, Vanessa Brochard, Monica Roy, Is-
abelle Rieu, Stéphane Bernard, and Antoine Faurie-Grepon. Parkinson’s disease
polygenic risk score is not associated with impulse control disorders: A longitudi-
nal study. Parkinsonism & Related Disorders, 75:30–33, May 2020. ISSN 1873-5126.
doi: 10.1016/j.parkreldis.2020.03.017.

International League Against Epilepsy Consortium on Complex Epilepsies. Genome-
wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in
the common epilepsies. Nature Communications, 9(1):5269, 2018. ISSN 2041-1723.
doi: 10.1038/s41467-018-07524-z.

International Obsessive Compulsive Disorder Foundation Genetics Collaborative
(IOCDF-GC) and OCD Collaborative Genetics Association Studies (OCGAS). Re-
vealing the complex genetic architecture of obsessive-compulsive disorder using meta-
analysis. Molecular Psychiatry, 23(5):1181–1188, 2018. ISSN 1476-5578. doi:
10.1038/mp.2017.154.

A. G. Ivakhnenko and Valentin Grigorevich Lapa. Cybernetics and Forecasting Tech-
niques. American Elsevier Publishing Company, 1967. Google-Books-ID: rGF-
gAAAAMAAJ.

J. Jankovic. Parkinson’s disease: clinical features and diagnosis. Journal of Neurology,
Neurosurgery, and Psychiatry, 79(4):368–376, April 2008. ISSN 1468-330X. doi:
10.1136/jnnp.2007.131045.

Joseph Jankovic and Roger Kurlan. Tourette syndrome: evolving concepts. Movement
Disorders: Official Journal of the Movement Disorder Society, 26(6):1149–1156, May
2011. ISSN 1531-8257. doi: 10.1002/mds.23618.

S. Jesús, M. T. Periñán, C. Cortés, D. Buiza-Rueda, D. Macías-García, A. Adarmes,
L. Muñoz-Delgado, M. Á Labrador-Espinosa, C. Tejera-Parrado, M. P. Gómez-Garre,
and P. Mir. Integrating genetic and clinical data to predict impulse control disorders
in Parkinson’s disease. European Journal of Neurology, October 2020. ISSN 1468-
1331. doi: 10.1111/ene.14590.

Emma C. Johnson, Richard Border, Whitney E. Melroy-Greif, Christiaan de Leeuw,
Marissa A. Ehringer, and Matthew C. Keller. No evidence that schizophre-
nia candidate genes are more associated with schizophrenia than non-candidate
genes. Biological psychiatry, 82(10):702–708, November 2017. ISSN 0006-3223.
doi: 10.1016/j.biopsych.2017.06.033. URL https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC5643230/.

121

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643230/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643230/


122 Bibliography

Juho Joutsa, Kirsti Martikainen, Tero Vahlberg, Valerie Voon, and Valtteri Kaasinen.
Impulse control disorders and depression in Finnish patients with Parkinson’s disease.
Parkinsonism & Related Disorders, 18(2):155–160, February 2012. ISSN 1873-5126.
doi: 10.1016/j.parkreldis.2011.09.007.

Lorraine V. Kalia and Anthony E. Lang. Parkinson’s disease. Lancet (London, England),
386(9996):896–912, August 2015. ISSN 1474-547X. doi: 10.1016/S0140-6736(14)
61393-3.

Richard Karlsson Linnér, Pietro Biroli, Edward Kong, S. Fleur W. Meddens, Robbee
Wedow, Mark Alan Fontana, Maël Lebreton, Stephen P. Tino, Abdel Abdellaoui,
Anke R. Hammerschlag, Michel G. Nivard, Aysu Okbay, Cornelius A. Rietveld, Pas-
cal N. Timshel, Maciej Trzaskowski, Ronald de Vlaming, Christian L. Zünd, Yanchun
Bao, Laura Buzdugan, Ann H. Caplin, Chia-Yen Chen, Peter Eibich, Pierre Fontanil-
las, Juan R. Gonzalez, Peter K. Joshi, Ville Karhunen, Aaron Kleinman, Remy Z.
Levin, Christina M. Lill, Gerardus A. Meddens, Gerard Muntané, Sandra Sanchez-
Roige, Frank J. van Rooij, Erdogan Taskesen, Yang Wu, Futao Zhang, 23and Me Re-
search Team, eQTLgen Consortium, International Cannabis Consortium, Social Sci-
ence Genetic Association Consortium, Adam Auton, Jason D. Boardman, David W.
Clark, Andrew Conlin, Conor C. Dolan, Urs Fischbacher, Patrick J. F. Groenen,
Kathleen Mullan Harris, Gregor Hasler, Albert Hofman, Mohammad A. Ikram, So-
nia Jain, Robert Karlsson, Ronald C. Kessler, Maarten Kooyman, James MacKillop,
Minna Männikkö, Carlos Morcillo-Suarez, Matthew B. McQueen, Klaus M. Schmidt,
Melissa C. Smart, Matthias Sutter, A. Roy Thurik, André G. Uitterlinden, Jon White,
Harriet de Wit, Jian Yang, Lars Bertram, Dorret I. Boomsma, Tõnu Esko, Ernst Fehr,
David A. Hinds, Magnus Johannesson, Meena Kumari, David Laibson, Patrik K. E.
Magnusson, Michelle N. Meyer, Arcadi Navarro, Abraham A. Palmer, Tune H. Pers,
Danielle Posthuma, Daniel Schunk, Murray B. Stein, Rauli Svento, Henning Tiemeier,
Paul R. H. J. Timmers, Patrick Turley, Robert J. Ursano, Gert G. Wagner, James F.
Wilson, Jacob Gratten, James J. Lee, David Cesarini, Daniel J. Benjamin, Philipp D.
Koellinger, and Jonathan P. Beauchamp. Genome-wide association analyses of risk
tolerance and risky behaviors in over 1 million individuals identify hundreds of loci
and shared genetic influences. Nature Genetics, 51(2):245–257, 2019. ISSN 1546-1718.
doi: 10.1038/s41588-018-0309-3.

Gülay Kenangil, Sibel Ozekmekçi, Melis Sohtaoglu, and Ethem Erginöz. Compulsive
behaviors in patients with Parkinson’s disease. The Neurologist, 16(3):192–195, May
2010. ISSN 2331-2637. doi: 10.1097/NRL.0b013e31819f952b.

Hee J. Kim, Beom S. Jeon, and Peter Jenner. Hallmarks of Treatment Aspects: Parkin-
son’s Disease Throughout Centuries Including l-Dopa. International Review of Neu-
robiology, 132:295–343, 2017. ISSN 2162-5514. doi: 10.1016/bs.irn.2017.01.006.

122



Bibliography 123

Atesh Koul, Cristina Becchio, and Andrea Cavallo. Cross-Validation Approaches for
Replicability in Psychology. Frontiers in Psychology, 9, 2018. ISSN 1664-1078.
doi: 10.3389/fpsyg.2018.01117. URL https://www.frontiersin.org/articles/
10.3389/fpsyg.2018.01117/full. Publisher: Frontiers.

Julia Kraemmer, Kara Smith, Daniel Weintraub, Vincent Guillemot, Mike A. Nalls,
Florence Cormier-Dequaire, Ivan Moszer, Alexis Brice, Andrew B. Singleton, and
Jean-Christophe Corvol. Clinical-genetic model predicts incident impulse control dis-
orders in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry,
87(10):1106–1111, October 2016. ISSN 1468-330X. doi: 10.1136/jnnp-2015-312848.

Soumya Krishnamoorthy, Roopa Rajan, Moinak Banerjee, Hardeep Kumar, Gangad-
hara Sarma, Syam Krishnan, Sankara Sarma, and Asha Kishore. Dopamine D3
receptor Ser9Gly variant is associated with impulse control disorders in Parkinson’s
disease patients. Parkinsonism & Related Disorders, 30:13–17, 2016. ISSN 1873-5126.
doi: 10.1016/j.parkreldis.2016.06.005.

Jeppe Theiss Kristensen and Paolo Burelli. Combining Sequential and Aggregated
Data for Churn Prediction in Casual Freemium Games. In 2019 IEEE Conference on
Games (CoG), pages 1–8, London, United Kingdom, August 2019. IEEE. ISBN 978-
1-72811-884-0. doi: 10.1109/CIG.2019.8848106. URL https://ieeexplore.ieee.
org/document/8848106/.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 25, pages 1097–1105.
Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

Jee-Young Lee, Eun Kyung Lee, Sung Sup Park, Ji-Yeon Lim, Hee Jin Kim, Ji Sun
Kim, and Beom S. Jeon. Association of DRD3 and GRIN2B with impulse control
and related behaviors in Parkinson’s disease. Movement Disorders: Official Journal of
the Movement Disorder Society, 24(12):1803–1810, September 2009. ISSN 1531-8257.
doi: 10.1002/mds.22678.

Jee-Young Lee, Jong-Min Kim, Jae Woo Kim, Jinwhan Cho, Won Yong Lee, Han-Joon
Kim, and Beom S. Jeon. Association between the dose of dopaminergic medication
and the behavioral disturbances in Parkinson disease. Parkinsonism & Related Dis-
orders, 16(3):202–207, March 2010. ISSN 1873-5126. doi: 10.1016/j.parkreldis.2009.
12.002.

123

https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01117/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01117/full
https://ieeexplore.ieee.org/document/8848106/
https://ieeexplore.ieee.org/document/8848106/
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


124 Bibliography

Jee-Young Lee, Beom S. Jeon, Han-Joon Kim, and Sung-Sup Park. Genetic variant of
HTR2A associates with risk of impulse control and repetitive behaviors in Parkinson’s
disease. Parkinsonism & Related Disorders, 18(1):76–78, January 2012. ISSN 1873-
5126. doi: 10.1016/j.parkreldis.2011.08.009.

Andrew J. Lees. Unresolved issues relating to the shaking palsy on the celebration
of James Parkinson’s 250th birthday. Movement Disorders: Official Journal of the
Movement Disorder Society, 22 Suppl 17:S327–334, September 2007. ISSN 0885-3185.
doi: 10.1002/mds.21684.

Anna Leontjeva and Ilya Kuzovkin. Combining Static and Dynamic Features for Multi-
variate Sequence Classification. 2016 IEEE International Conference on Data Science
and Advanced Analytics (DSAA), pages 21–30, October 2016. doi: 10.1109/DSAA.
2016.10. URL http://arxiv.org/abs/1712.08160. arXiv: 1712.08160.

Eric W. Leppink, Katherine Lust, and Jon E. Grant. Depression in university students:
associations with impulse control disorders. International Journal of Psychiatry in
Clinical Practice, 20(3):146–150, September 2016a. ISSN 1471-1788. doi: 10.1080/
13651501.2016.1197272.

Eric W. Leppink, Brian L. Odlaug, Katherine Lust, Gary Christenson, and Jon E.
Grant. The Young and the Stressed: Stress, Impulse Control, and Health in College
Students. The Journal of Nervous and Mental Disease, 204(12):931–938, December
2016b. ISSN 1539-736X. doi: 10.1097/NMD.0000000000000586.

Iracema Leroi, Michelle Andrews, Kathryn McDonald, Vijay Harbishettar, Rebecca
Elliott, E. Jane Byrne, and Alistair Burns. Apathy and impulse control disorders in
Parkinson’s disease: a direct comparison. Parkinsonism & Related Disorders, 18(2):
198–203, February 2012. ISSN 1873-5126. doi: 10.1016/j.parkreldis.2011.10.005.

Smaranda Leu-Semenescu, Elias Karroum, Agnès Brion, Eric Konofal, and Isabelle
Arnulf. Dopamine dysregulation syndrome in a patient with restless legs syndrome.
Sleep Medicine, 10(4):494–496, April 2009. ISSN 1389-9457. doi: 10.1016/j.sleep.
2008.12.010.

Irene Litvan, Dag Aarsland, Charles H. Adler, Jennifer G. Goldman, Jaime Kulisevsky,
Brit Mollenhauer, Maria C. Rodriguez-Oroz, Alexander I. Tröster, and Daniel Wein-
traub. MDS Task Force on mild cognitive impairment in Parkinson’s disease: critical
review of PD-MCI. Movement Disorders: Official Journal of the Movement Disorder
Society, 26(10):1814–1824, August 2011. ISSN 1531-8257. doi: 10.1002/mds.23823.

Ganqiang Liu, Joseph J. Locascio, Jean-Christophe Corvol, Brendon Boot, Zhixiang
Liao, Kara Page, Daly Franco, Kyle Burke, Iris E. Jansen, Ana Trisini-Lipsanopoulos,
Sophie Winder-Rhodes, Caroline M. Tanner, Anthony E. Lang, Shirley Eberly,

124

http://arxiv.org/abs/1712.08160


Bibliography 125

Alexis Elbaz, Alexis Brice, Graziella Mangone, Bernard Ravina, Ira Shoulson, Flo-
rence Cormier-Dequaire, Peter Heutink, Jacobus J. van Hilten, Roger A. Barker,
Caroline H. Williams-Gray, Johan Marinus, Clemens R. Scherzer, HBS, Cam-
PaIGN, PICNICS, PROPARK, PSG, DIGPD, and PDBP. Prediction of cogni-
tion in Parkinson’s disease with a clinical-genetic score: a longitudinal analysis of
nine cohorts. The Lancet. Neurology, 16(8):620–629, 2017. ISSN 1474-4465. doi:
10.1016/S1474-4422(17)30122-9.

Mengzhen Liu, Yu Jiang, Robbee Wedow, Yue Li, David M. Brazel, Fang Chen, Gargi
Datta, Jose Davila-Velderrain, Daniel McGuire, Chao Tian, Xiaowei Zhan, 23andMe
Research Team, HUNT All-In Psychiatry, Hélène Choquet, Anna R. Docherty, Jes-
sica D. Faul, Johanna R. Foerster, Lars G. Fritsche, Maiken Elvestad Gabrielsen,
Scott D. Gordon, Jeffrey Haessler, Jouke-Jan Hottenga, Hongyan Huang, Seon-
Kyeong Jang, Philip R. Jansen, Yueh Ling, Reedik Mägi, Nana Matoba, George
McMahon, Antonella Mulas, Valeria Orrù, Teemu Palviainen, Anita Pandit, Gun-
nar W. Reginsson, Anne Heidi Skogholt, Jennifer A. Smith, Amy E. Taylor, Constance
Turman, Gonneke Willemsen, Hannah Young, Kendra A. Young, Gregory J. M. Za-
jac, Wei Zhao, Wei Zhou, Gyda Bjornsdottir, Jason D. Boardman, Michael Boehnke,
Dorret I. Boomsma, Chu Chen, Francesco Cucca, Gareth E. Davies, Charles B. Eaton,
Marissa A. Ehringer, Tõnu Esko, Edoardo Fiorillo, Nathan A. Gillespie, Daniel F.
Gudbjartsson, Toomas Haller, Kathleen Mullan Harris, Andrew C. Heath, John K.
Hewitt, Ian B. Hickie, John E. Hokanson, Christian J. Hopfer, David J. Hunter,
William G. Iacono, Eric O. Johnson, Yoichiro Kamatani, Sharon L. R. Kardia,
Matthew C. Keller, Manolis Kellis, Charles Kooperberg, Peter Kraft, Kenneth S.
Krauter, Markku Laakso, Penelope A. Lind, Anu Loukola, Sharon M. Lutz, Pamela
A. F. Madden, Nicholas G. Martin, Matt McGue, Matthew B. McQueen, Sarah E.
Medland, Andres Metspalu, Karen L. Mohlke, Jonas B. Nielsen, Yukinori Okada, Ul-
rike Peters, Tinca J. C. Polderman, Danielle Posthuma, Alexander P. Reiner, John P.
Rice, Eric Rimm, Richard J. Rose, Valgerdur Runarsdottir, Michael C. Stallings,
Alena Stanáková, Hreinn Stefansson, Khanh K. Thai, Hilary A. Tindle, Thorarinn
Tyrfingsson, Tamara L. Wall, David R. Weir, Constance Weisner, John B. Whitfield,
Bendik Slagsvold Winsvold, Jie Yin, Luisa Zuccolo, Laura J. Bierut, Kristian Hveem,
James J. Lee, Marcus R. Munafò, Nancy L. Saccone, Cristen J. Willer, Marilyn C.
Cornelis, Sean P. David, David A. Hinds, Eric Jorgenson, Jaakko Kaprio, Jerry A.
Stitzel, Kari Stefansson, Thorgeir E. Thorgeirsson, Gonçalo Abecasis, Dajiang J. Liu,
and Scott Vrieze. Association studies of up to 1.2 million individuals yield new in-
sights into the genetic etiology of tobacco and alcohol use. Nature Genetics, 51(2):
237–244, 2019. ISSN 1546-1718. doi: 10.1038/s41588-018-0307-5.

Min-Tzu Lo, David A. Hinds, Joyce Y. Tung, Carol Franz, Chun-Chieh Fan, Yun-
peng Wang, Olav B. Smeland, Andrew Schork, Dominic Holland, Karolina Kauppi,

125



126 Bibliography

Nilotpal Sanyal, Valentina Escott-Price, Daniel J. Smith, Michael O’Donovan, Hreinn
Stefansson, Gyda Bjornsdottir, Thorgeir E. Thorgeirsson, Kari Stefansson, Linda K.
McEvoy, Anders M. Dale, Ole A. Andreassen, and Chi-Hua Chen. Genome-wide
analyses for personality traits identify six genomic loci and show correlations with
psychiatric disorders. Nature Genetics, 49(1):152–156, 2017. ISSN 1546-1718. doi:
10.1038/ng.3736.

Michelle Luciano, Saskia P. Hagenaars, Gail Davies, W. David Hill, Toni-Kim Clarke,
Masoud Shirali, Sarah E. Harris, Riccardo E. Marioni, David C. Liewald, Chloe
Fawns-Ritchie, Mark J. Adams, David M. Howard, Cathryn M. Lewis, Catharine R.
Gale, Andrew M. McIntosh, and Ian J. Deary. Association analysis in over 329,000
individuals identifies 116 independent variants influencing neuroticism. Nature Ge-
netics, 50(1):6–11, 2018. ISSN 1546-1718. doi: 10.1038/s41588-017-0013-8.

M. R. Luquin, O. Scipioni, J. Vaamonde, O. Gershanik, and J. A. Obeso. Levodopa-
induced dyskinesias in Parkinson’s disease: clinical and pharmacological classification.
Movement Disorders: Official Journal of the Movement Disorder Society, 7(2):117–
124, 1992. ISSN 0885-3185. doi: 10.1002/mds.870070204.

Eugenia Mamikonyan, Andrew D. Siderowf, John E. Duda, Marc N. Potenza,
Stacy Horn, Matthew B. Stern, and Daniel Weintraub. Long-term follow-
up of impulse control disorders in Parkinson’s disease. Movement Dis-
orders, 23(1):75–80, 2008. ISSN 1531-8257. doi: 10.1002/mds.21770.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.21770. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/mds.21770.

Kenneth Marek, Danna Jennings, Shirley Lasch, Andrew Siderowf, Caroline Tanner,
Tanya Simuni, Chris Coffey, Karl Kieburtz, Emily Flagg, Sohini Chowdhury, Werner
Poewe, Brit Mollenhauer, Paracelsus-Elena Klinik, Todd Sherer, Mark Frasier, Claire
Meunier, Alice Rudolph, Cindy Casaceli, John Seibyl, Susan Mendick, Norbert Schuff,
Ying Zhang, Arthur Toga, Karen Crawford, Alison Ansbach, Pasquale De Blasio,
Michele Piovella, John Trojanowski, Les Shaw, Andrew Singleton, Keith Hawkins,
Jamie Eberling, Deborah Brooks, David Russell, Laura Leary, Stewart Factor, Bar-
bara Sommerfeld, Penelope Hogarth, Emily Pighetti, Karen Williams, David Stan-
daert, Stephanie Guthrie, Robert Hauser, Holly Delgado, Joseph Jankovic, Chris-
tine Hunter, Matthew Stern, Baochan Tran, Jim Leverenz, Marne Baca, Sam Frank,
Cathi-Ann Thomas, Irene Richard, Cheryl Deeley, Linda Rees, Fabienne Sprenger,
Elisabeth Lang, Holly Shill, Sanja Obradov, Hubert Fernandez, Adrienna Win-
ters, Daniela Berg, Katharina Gauss, Douglas Galasko, Deborah Fontaine, Zoltan
Mari, Melissa Gerstenhaber, David Brooks, Sophie Malloy, Paolo Barone, Katia
Longo, Tom Comery, Bernard Ravina, Igor Grachev, Kim Gallagher, Michelle Collins,
Katherine L. Widnell, Suzanne Ostrowizki, Paulo Fontoura, Tony Ho, Johan Luth-

126

https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.21770


Bibliography 127

man, Marcel van der Brug, Alastair D. Reith, and Peggy Taylor. The Parkin-
son Progression Marker Initiative (PPMI). Progress in Neurobiology, 95(4):629–
635, December 2011. ISSN 0301-0082. doi: 10.1016/j.pneurobio.2011.09.005. URL
http://www.sciencedirect.com/science/article/pii/S0301008211001651.

Ana Marques, Michela Figorilli, Bruno Pereira, Philippe Derost, Berengere Debilly,
Patricia Beudin, Tiphaine Vidal, Franck Durif, and Maria Livia Fantini. Impulse
control disorders in Parkinson’s disease patients with RLS: a cross sectional-study.
Sleep Medicine, 48:148–154, 2018. ISSN 1878-5506. doi: 10.1016/j.sleep.2018.02.004.

Ana Marques, Tiphaine Vidal, Bruno Pereira, Eve Benchetrit, Julie Socha, Fanny
Pineau, Alexis Elbaz, Fanny Artaud, Graziella Mangone, Hana You, Florence
Cormier, Monique Galitstky, Elsa Pomies, Olivier Rascol, Pascal Derkinderen, Daniel
Weintraub, Jean Christophe Corvol, Franck Durif, and DIGPD study group. French
validation of the questionnaire for Impulsive-Compulsive Disorders in Parkinson’s
Disease-Rating Scale (QUIP-RS). Parkinsonism & Related Disorders, 63:117–123,
2019. ISSN 1873-5126. doi: 10.1016/j.parkreldis.2019.02.026.

Alicia R. Martin, Christopher R. Gignoux, Raymond K. Walters, Genevieve L. Wo-
jcik, Benjamin M. Neale, Simon Gravel, Mark J. Daly, Carlos D. Bustamante,
and Eimear E. Kenny. Human Demographic History Impacts Genetic Risk Pre-
diction across Diverse Populations. The American Journal of Human Genetics, 100
(4):635–649, April 2017. ISSN 0002-9297. doi: 10.1016/j.ajhg.2017.03.004. URL
http://www.sciencedirect.com/science/article/pii/S0002929717301076.

Llew Mason, Jonathan Baxter, Peter L. Bartlett, and Marcus R. Frean.
Boosting Algorithms as Gradient Descent. In S. A. Solla, T. K. Leen,
and K. Müller, editors, Advances in Neural Information Processing Systems
12, pages 512–518. MIT Press, 2000. URL http://papers.nips.cc/paper/
1766-boosting-algorithms-as-gradient-descent.pdf.

Nozomu Matsuda, Shunsuke Kobayashi, and Yoshikazu Ugawa. [Devotion to painting
in a Parkinson’s disease patient]. Rinsho Shinkeigaku = Clinical Neurology, 58(12):
756–760, December 2018. ISSN 1882-0654. doi: 10.5692/clinicalneurol.cn-001182.

L. Mazzella, M. D. Yahr, L. Marinelli, N. Huang, E. Moshier, and A. Di Rocco. Dyskine-
sias predict the onset of motor response fluctuations in patients with Parkinson’s dis-
ease on l-dopa monotherapy. Parkinsonism & Related Disorders, 11(3):151–155, May
2005. ISSN 1353-8020, 1873-5126. doi: 10.1016/j.parkreldis.2004.10.002. URL https:
//www.prd-journal.com/article/S1353-8020(04)00158-0/abstract. Publisher:
Elsevier.

Shane McCarthy, Sayantan Das, Warren Kretzschmar, Olivier Delaneau, Andrew R.
Wood, Alexander Teumer, Hyun Min Kang, Christian Fuchsberger, Petr Danecek,

127

http://www.sciencedirect.com/science/article/pii/S0301008211001651
http://www.sciencedirect.com/science/article/pii/S0002929717301076
http://papers.nips.cc/paper/1766-boosting-algorithms-as-gradient-descent.pdf
http://papers.nips.cc/paper/1766-boosting-algorithms-as-gradient-descent.pdf
https://www.prd-journal.com/article/S1353-8020(04)00158-0/abstract
https://www.prd-journal.com/article/S1353-8020(04)00158-0/abstract


128 Bibliography

Kevin Sharp, Yang Luo, Carlo Sidore, Alan Kwong, Nicholas Timpson, Seppo Kosk-
inen, Scott Vrieze, Laura J. Scott, He Zhang, Anubha Mahajan, Jan Veldink, Ul-
rike Peters, Carlos Pato, Cornelia M. van Duijn, Christopher E. Gillies, Ilaria
Gandin, Massimo Mezzavilla, Arthur Gilly, Massimiliano Cocca, Michela Traglia, An-
drea Angius, Jeffrey C. Barrett, Dorrett Boomsma, Kari Branham, Gerome Breen,
Chad M. Brummett, Fabio Busonero, Harry Campbell, Andrew Chan, Sai Chen,
Emily Chew, Francis S. Collins, Laura J. Corbin, George Davey Smith, George De-
doussis, Marcus Dorr, Aliki-Eleni Farmaki, Luigi Ferrucci, Lukas Forer, Ross M.
Fraser, Stacey Gabriel, Shawn Levy, Leif Groop, Tabitha Harrison, Andrew Hatter-
sley, Oddgeir L. Holmen, Kristian Hveem, Matthias Kretzler, James C. Lee, Matt
McGue, Thomas Meitinger, David Melzer, Josine L. Min, Karen L. Mohlke, John B.
Vincent, Matthias Nauck, Deborah Nickerson, Aarno Palotie, Michele Pato, Nicola
Pirastu, Melvin McInnis, J. Brent Richards, Cinzia Sala, Veikko Salomaa, David Sch-
lessinger, Sebastian Schoenherr, P. Eline Slagboom, Kerrin Small, Timothy Spector,
Dwight Stambolian, Marcus Tuke, Jaakko Tuomilehto, Leonard H. Van den Berg,
Wouter Van Rheenen, Uwe Volker, Cisca Wijmenga, Daniela Toniolo, Eleftheria Zeg-
gini, Paolo Gasparini, Matthew G. Sampson, James F. Wilson, Timothy Frayling,
Paul I. W. de Bakker, Morris A. Swertz, Steven McCarroll, Charles Kooperberg,
Annelot Dekker, David Altshuler, Cristen Willer, William Iacono, Samuli Ripatti,
Nicole Soranzo, Klaudia Walter, Anand Swaroop, Francesco Cucca, Carl A. Ander-
son, Richard M. Myers, Michael Boehnke, Mark I. McCarthy, Richard Durbin, and
Haplotype Reference Consortium. A reference panel of 64,976 haplotypes for geno-
type imputation. Nature Genetics, 48(10):1279–1283, 2016. ISSN 1546-1718. doi:
10.1038/ng.3643.

S. L. McElroy, H. G. Pope, P. E. Keck, J. I. Hudson, K. A. Phillips, and S. M. Strakowski.
Are impulse-control disorders related to bipolar disorder? Comprehensive Psychiatry,
37(4):229–240, August 1996. ISSN 0010-440X. doi: 10.1016/s0010-440x(96)90001-2.

Leland McInnes, John Healy, and James Melville. UMAP: Uniform Manifold Approx-
imation and Projection for Dimension Reduction. arXiv:1802.03426 [cs, stat], De-
cember 2018. URL http://arxiv.org/abs/1802.03426. arXiv: 1802.03426.

Wes McKinney. Data Structures for Statistical Computing in Python. Proceed-
ings of the 9th Python in Science Conference, pages 56–61, 2010. doi: 10.
25080/Majora-92bf1922-00a. URL http://conference.scipy.org/proceedings/
scipy2010/mckinney.html. Conference Name: Proceedings of the 9th Python in
Science Conference.

T. H. Mertsalmi, V. T. E. Aho, P. a. B. Pereira, L. Paulin, E. Pekkonen, P. Auvinen,
and F. Scheperjans. More than constipation - bowel symptoms in Parkinson’s disease

128

http://arxiv.org/abs/1802.03426
http://conference.scipy.org/proceedings/scipy2010/mckinney.html
http://conference.scipy.org/proceedings/scipy2010/mckinney.html


Bibliography 129

and their connection to gut microbiota. European Journal of Neurology, 24(11):1375–
1383, 2017. ISSN 1468-1331. doi: 10.1111/ene.13398.

Raymond G. Miltenberger, Jennifer Redlin, Ross Crosby, Marcella Stickney, Jim
Mitchell, Stephen Wonderlich, Ronald Faber, and Joshua Smyth. Direct and retro-
spective assessment of factors contributing to compulsive buying. Journal of Behavior
Therapy and Experimental Psychiatry, 34(1):1–9, March 2003. ISSN 0005-7916. doi:
10.1016/s0005-7916(03)00002-8.

Takayasu Mishima, Shinsuke Fujioka, Ryoichi Kurisaki, Shozaburo Yanamoto, Masa-aki
Higuchi, Jun Tsugawa, Jiro Fukae, Ryuji Neshige, and Yoshio Tsuboi. Impulse control
disorders and punding in Perry syndrome. Parkinsonism & Related Disorders, 21(11):
1381–1382, November 2015. ISSN 1873-5126. doi: 10.1016/j.parkreldis.2015.09.037.

Pooya Mobadersany, Safoora Yousefi, Mohamed Amgad, David A. Gutman, Jill S.
Barnholtz-Sloan, José E. Velázquez Vega, Daniel J. Brat, and Lee A. D. Cooper.
Predicting cancer outcomes from histology and genomics using convolutional net-
works. Proceedings of the National Academy of Sciences, 115(13):E2970–E2979,
March 2018. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1717139115. URL
https://www.pnas.org/content/115/13/E2970. ZSCC: 0000143 Publisher: Na-
tional Academy of Sciences Section: PNAS Plus.

Thomas J. Moore, Joseph Glenmullen, and Donald R. Mattison. Reports of patho-
logical gambling, hypersexuality, and compulsive shopping associated with dopamine
receptor agonist drugs. JAMA internal medicine, 174(12):1930–1933, December 2014.
ISSN 2168-6114. doi: 10.1001/jamainternmed.2014.5262.

Ahmed A. Moustafa, Srinivasa Chakravarthy, Joseph R. Phillips, Ankur Gupta, Sz-
abolcs Keri, Bertalan Polner, Michael J. Frank, and Marjan Jahanshahi. Motor
symptoms in Parkinson’s disease: A unified framework. Neuroscience and Biobe-
havioral Reviews, 68:727–740, September 2016. ISSN 1873-7528. doi: 10.1016/j.
neubiorev.2016.07.010.

M. D. Muenter and G. M. Tyce. L-dopa therapy of Parkinson’s disease: plasma L-dopa
concentration, therapeutic response, and side effects. Mayo Clinic Proceedings, 46(4):
231–239, April 1971. ISSN 0025-6196.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,
2012. ISBN 978-0-262-01802-9.

Mike A. Nalls, Jose Bras, Dena G. Hernandez, Margaux F. Keller, Elisa Majounie,
Alan E. Renton, Mohamad Saad, Iris Jansen, Rita Guerreiro, Steven Lubbe, Vincent
Plagnol, J. Raphael Gibbs, Claudia Schulte, Nathan Pankratz, Margaret Suther-
land, Lars Bertram, Christina M. Lill, Anita L. DeStefano, Tatiana Faroud, Nicholas

129

https://www.pnas.org/content/115/13/E2970


130 Bibliography

Eriksson, Joyce Y. Tung, Connor Edsall, Noah Nichols, Janet Brooks, Sampath
Arepalli, Hannah Pliner, Chris Letson, Peter Heutink, Maria Martinez, Thomas
Gasser, Bryan J. Traynor, Nick Wood, John Hardy, and Andrew B. Singleton. Neu-
roX, a fast and efficient genotyping platform for investigation of neurodegenerative
diseases. Neurobiology of aging, 36(3):1605.e7–1605.12, March 2015. ISSN 0197-4580.
doi: 10.1016/j.neurobiolaging.2014.07.028. URL https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4317375/.

Mike A. Nalls, Cornelis Blauwendraat, Costanza L. Vallerga, Karl Heilbron, Sara
Bandres-Ciga, Diana Chang, Manuela Tan, Demis A. Kia, Alastair J. Noyce, An-
gli Xue, Jose Bras, Emily Young, Rainer von Coelln, Javier Simón-Sánchez, Claudia
Schulte, Manu Sharma, Lynne Krohn, Lasse Pihlstrøm, Ari Siitonen, Hirotaka Iwaki,
Hampton Leonard, Faraz Faghri, J. Raphael Gibbs, Dena G. Hernandez, Sonja W.
Scholz, Juan A. Botia, Maria Martinez, Jean-Christophe Corvol, Suzanne Lesage,
Joseph Jankovic, Lisa M. Shulman, Margaret Sutherland, Pentti Tienari, Kari Maja-
maa, Mathias Toft, Ole A. Andreassen, Tushar Bangale, Alexis Brice, Jian Yang, Ziv
Gan-Or, Thomas Gasser, Peter Heutink, Joshua M. Shulman, Nicholas W. Wood,
David A. Hinds, John A. Hardy, Huw R. Morris, Jacob Gratten, Peter M. Viss-
cher, Robert R. Graham, Andrew B. Singleton, 23andMe Research Team, System
Genomics of Parkinson’s Disease Consortium, and International Parkinson’s Dis-
ease Genomics Consortium. Identification of novel risk loci, causal insights, and
heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association
studies. The Lancet. Neurology, 18(12):1091–1102, 2019. ISSN 1474-4465. doi:
10.1016/S1474-4422(19)30320-5.

National Clinical Guideline for Diagnosis and Management in Primary and Secondary
Care. Symptomatic pharmacological therapy in Parkinsons disease. In Parkinson’s
Disease. Royal College of Physicians (UK), 2006.

Neale lab. UK Biobank, 2018. URL http://www.nealelab.is/uk-biobank.

Melissa J. Nirenberg and Cheryl Waters. Compulsive eating and weight
gain related to dopamine agonist use. Movement Disorders, 21(4):
524–529, 2006. ISSN 1531-8257. doi: 10.1002/mds.20757. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.20757. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/mds.20757.

Robert L. Nussbaum and Christopher E. Ellis. Alzheimer’s disease and Parkinson’s
disease. The New England Journal of Medicine, 348(14):1356–1364, April 2003. ISSN
1533-4406. doi: 10.1056/NEJM2003ra020003.

J. G. Nutt. Levodopa-induced dyskinesia: review, observations, and speculations. Neu-
rology, 40(2):340–345, February 1990. ISSN 0028-3878. doi: 10.1212/wnl.40.2.340.

130

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4317375/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4317375/
http://www.nealelab.is/uk-biobank
https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.20757


Bibliography 131

J. G. Nutt and N. H. Holford. The response to levodopa in Parkinson’s disease: imposing
pharmacological law and order. Annals of Neurology, 39(5):561–573, May 1996. ISSN
0364-5134. doi: 10.1002/ana.410390504.

Jose A. Obeso, Maria Cruz Rodríguez-Oroz, Beatriz Benitez-Temino, Franscisco J.
Blesa, Jorge Guridi, Concepció Marin, and Manuel Rodriguez. Functional organiza-
tion of the basal ganglia: therapeutic implications for Parkinson’s disease. Movement
Disorders: Official Journal of the Movement Disorder Society, 23 Suppl 3:S548–559,
2008. ISSN 1531-8257. doi: 10.1002/mds.22062.

Brian L. Odlaug and Jon E. Grant. Impulse-control disorders in a college sample: results
from the self-administered Minnesota Impulse Disorders Interview (MIDI). Primary
Care Companion to the Journal of Clinical Psychiatry, 12(2), 2010. ISSN 1555-211X.
doi: 10.4088/PCC.09m00842whi.

S. Ogasahara, Y. Nishikawa, M. Takahashi, K. Wada, Y. Nakamura, S. Yorifuji,
and S. Tarui. Dopamine metabolism in the central nervous system after discon-
tinuation of L-dopa therapy in patients with Parkinson disease. Journal of the
Neurological Sciences, 66(2-3):151–163, December 1984. ISSN 0022-510X. doi:
10.1016/0022-510x(84)90003-0.

Jacqueline Olley, Alex Blaszczynski, and Simon Lewis. Dopaminergic Medication in
Parkinson’s Disease and Problem Gambling. Journal of Gambling Studies, 31(3):
1085–1106, September 2015. ISSN 1573-3602. doi: 10.1007/s10899-014-9503-0.

Fabienne Ory-Magne, Jean-Christophe Corvol, Jean-Philippe Azulay, Anne-Marie Bon-
net, Christine Brefel-Courbon, Philippe Damier, Estelle Dellapina, Alain Destée,
Franck Durif, Monique Galitzky, Thibaud Lebouvier, Wassilios Meissner, Claire Tha-
lamas, François Tison, Alexandrine Salis, Agnès Sommet, François Viallet, Marie
Vidailhet, Olivier Rascol, and NS-Park CIC Network. Withdrawing amantadine in
dyskinetic patients with Parkinson disease: the AMANDYSK trial. Neurology, 82(4):
300–307, January 2014. ISSN 1526-632X. doi: 10.1212/WNL.0000000000000050.

Sean S. O’Sullivan, Clare M. Loane, Andrew D. Lawrence, Andrew H. Evans, Paola
Piccini, and Andrew J. Lees. Sleep disturbance and impulsive-compulsive behaviours
in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 82(6):
620–622, June 2011. ISSN 1468-330X. doi: 10.1136/jnnp.2009.186874.

T. Otowa, K. Hek, M. Lee, E. M. Byrne, S. S. Mirza, M. G. Nivard, T. Bigdeli, S. H.
Aggen, D. Adkins, A. Wolen, A. Fanous, M. C. Keller, E. Castelao, Z. Kutalik,
S. Van der Auwera, G. Homuth, M. Nauck, A. Teumer, Y. Milaneschi, J.-J. Hottenga,
N. Direk, A. Hofman, A. Uitterlinden, C. L. Mulder, A. K. Henders, S. E. Medland,
S. Gordon, A. C. Heath, P. a. F. Madden, M. L. Pergadia, P. J. van der Most, I. M.

131



132 Bibliography

Nolte, F. V. A. van Oort, C. A. Hartman, A. J. Oldehinkel, M. Preisig, H. J. Grabe,
C. M. Middeldorp, B. W. J. H. Penninx, D. Boomsma, N. G. Martin, G. Montgomery,
B. S. Maher, E. J. van den Oord, N. R. Wray, H. Tiemeier, and J. M. Hettema.
Meta-analysis of genome-wide association studies of anxiety disorders. Molecular
Psychiatry, 21(10):1391–1399, 2016. ISSN 1476-5578. doi: 10.1038/mp.2015.197.

James Parkinson. An Essay on the Shaking Palsy. J Neuropsychiatry Clin Neurosci,
page 14, 2002.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 8026–
8037. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12(85):2825–2830, 2011. ISSN 1533-7928.
URL http://jmlr.org/papers/v12/pedregosa11a.html.

Michele Poletti, Chiara Logi, Claudio Lucetti, Paolo Del Dotto, Filippo Baldacci, An-
drea Vergallo, Martina Ulivi, Simone Del Sarto, Giuseppe Rossi, Roberto Ceravolo,
and Ubaldo Bonuccelli. A single-center, cross-sectional prevalence study of impulse
control disorders in Parkinson disease: association with dopaminergic drugs. Journal
of Clinical Psychopharmacology, 33(5):691–694, October 2013. ISSN 1533-712X. doi:
10.1097/JCP.0b013e3182979830.

Francesco E. Pontieri, Francesca Assogna, Clelia Pellicano, Claudia Cacciari, Sara
Pannunzi, Annalucia Morrone, Emanuela Danese, Carlo Caltagirone, and Gian-
franco Spalletta. Sociodemographic, neuropsychiatric and cognitive characteristics
of pathological gambling and impulse control disorders NOS in Parkinson’s dis-
ease. European Neuropsychopharmacology: The Journal of the European College
of Neuropsychopharmacology, 25(1):69–76, January 2015. ISSN 1873-7862. doi:
10.1016/j.euroneuro.2014.11.006.

132

http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://jmlr.org/papers/v12/pedregosa11a.html


Bibliography 133

Gregory Pontone, James R. Williams, Susan Spear Bassett, and Laur Marsh. Clinical
features associated with impulse control disorders in Parkinson disease. Neurology,
67(7):1258–1261, October 2006. ISSN 1526-632X. doi: 10.1212/01.wnl.0000238401.
76928.45.

Ronald B. Postuma, Daniela Berg, Matthew Stern, Werner Poewe, C. Warren Olanow,
Wolfgang Oertel, José Obeso, Kenneth Marek, Irene Litvan, Anthony E. Lang, Glenda
Halliday, Christopher G. Goetz, Thomas Gasser, Bruno Dubois, Piu Chan, Bas-
tiaan R. Bloem, Charles H. Adler, and Günther Deuschl. MDS clinical diagnos-
tic criteria for Parkinson’s disease. Movement Disorders: Official Journal of the
Movement Disorder Society, 30(12):1591–1601, October 2015. ISSN 1531-8257. doi:
10.1002/mds.26424.

Robert A. Power, Stacy Steinberg, Gyda Bjornsdottir, Cornelius A. Rietveld, Abdel
Abdellaoui, Michel M. Nivard, Magnus Johannesson, Tessel E. Galesloot, Jouke J.
Hottenga, Gonneke Willemsen, David Cesarini, Daniel J. Benjamin, Patrik K. E.
Magnusson, Fredrik Ullén, Henning Tiemeier, Albert Hofman, Frank J. A. van Rooij,
G. Bragi Walters, Engilbert Sigurdsson, Thorgeir E. Thorgeirsson, Andres Ingason,
Agnar Helgason, Augustine Kong, Lambertus A. Kiemeney, Philipp Koellinger, Dor-
ret I. Boomsma, Daniel Gudbjartsson, Hreinn Stefansson, and Kari Stefansson. Poly-
genic risk scores for schizophrenia and bipolar disorder predict creativity. Nature
Neuroscience, 18(7):953–955, July 2015. ISSN 1546-1726. doi: 10.1038/nn.4040.
URL https://www.nature.com/articles/nn.4040/. Number: 7 Publisher: Nature
Publishing Group.

Catharina Claudia Probst, Lina Marie Winter, Bettina Möller, Heinz Weber, Daniel
Weintraub, Karsten Witt, Günther Deuschl, Regina Katzenschlager, and Thilo
van Eimeren. Validation of the questionnaire for impulsive-compulsive disorders
in Parkinson’s disease (QUIP) and the QUIP-rating scale in a German speaking
sample. Journal of Neurology, 261(5):936–942, May 2014. ISSN 1432-1459. doi:
10.1007/s00415-014-7299-6.

Sara L. Pulit, Charli Stoneman, Andrew P. Morris, Andrew R. Wood, Craig A. Glas-
tonbury, Jessica Tyrrell, Loïc Yengo, Teresa Ferreira, Eirini Marouli, Yingjie Ji, Jian
Yang, Samuel Jones, Robin Beaumont, Damien C. Croteau-Chonka, Thomas W. Win-
kler, GIANT Consortium, Andrew T. Hattersley, Ruth J. F. Loos, Joel N. Hirschhorn,
Peter M. Visscher, Timothy M. Frayling, Hanieh Yaghootkar, and Cecilia M. Lind-
gren. Meta-analysis of genome-wide association studies for body fat distribution in
694ă649 individuals of European ancestry. Human Molecular Genetics, 28(1):166–174,
2019. ISSN 1460-2083. doi: 10.1093/hmg/ddy327.

A. Punjabi, A. Martersteck, Y. Wang, T.B. Parrish, and A.K. Katsaggelos. Neuroimag-

133

https://www.nature.com/articles/nn.4040/


134 Bibliography

ing modality fusion in Alzheimer’s classification using convolutional neural networks.
PLoS ONE, 14(12), 2019. doi: 10.1371/journal.pone.0225759. ZSCC: 0000002.

Molla Hafizur Rahman, Shuhan Yuan, Charles Xie, and Zhenghui Sha. Predicting
human design decisions with deep recurrent neural network combining static and
dynamic data. Design Science, 6, 2020. ISSN 2053-4701. doi: 10.1017/dsj.2020.12.
URL https://www.cambridge.org/core/journals/design-science/article/
predicting-human-design-decisions-with-deep-recurrent-neural-network-combining-static-and-dynamic-data/
097456E3CE09F11435F535B507AE9B8B. Publisher: Cambridge University Press.

Carolina Candelaria Ramírez Gómez, Marcos Serrano Dueñas, Oscar Bernal, Na-
talia Araoz, Michel Sáenz Farret, Victoria Aldinio, Verónica Montilla, and Federico
Micheli. A Multicenter Comparative Study of Impulse Control Disorder in Latin
American Patients With Parkinson Disease. Clinical Neuropharmacology, 40(2):51–
55, April 2017. ISSN 1537-162X. doi: 10.1097/WNF.0000000000000202.

O. Rascol, D. J. Brooks, A. D. Korczyn, P. P. De Deyn, C. E. Clarke, and A. E.
Lang. A five-year study of the incidence of dyskinesia in patients with early
Parkinson’s disease who were treated with ropinirole or levodopa. The New Eng-
land Journal of Medicine, 342(20):1484–1491, May 2000. ISSN 0028-4793. doi:
10.1056/NEJM200005183422004.

Sara Redenek, Duan Flisar, Maja Kojovi, Milica Gregori Kramberger, Dejan Georgiev,
Zvezdan Pirtoek, Maja Trot, and Vita Dolan. Dopaminergic Pathway Genes Influence
Adverse Events Related to Dopaminergic Treatment in Parkinson’s Disease. Frontiers
in Pharmacology, 10:8, 2019. ISSN 1663-9812. doi: 10.3389/fphar.2019.00008.

Matthew R. Robinson, Aaron Kleinman, Mariaelisa Graff, Anna A. E. Vinkhuyzen,
David Couper, Michael B. Miller, Wouter J. Peyrot, Abdel Abdellaoui, Brendan P.
Zietsch, Ilja M. Nolte, Jana V. van Vliet-Ostaptchouk, Harold Snieder, Sarah E.
Medland, Nicholas G. Martin, Patrik K. E. Magnusson, William G. Iacono, Matt
McGue, Kari E. North, Jian Yang, and Peter M. Visscher. Genetic evidence of
assortative mating in humans. Nature Human Behaviour, 1(1):1–13, January 2017.
ISSN 2397-3374. doi: 10.1038/s41562-016-0016. URL https://www.nature.com/
articles/s41562-016-0016. Number: 1 Publisher: Nature Publishing Group.

Mayela Rodríguez-Violante, Paulina González-Latapi, Amin Cervantes-Arriaga,
Azyadeh Camacho-Ordoñez, and Daniel Weintraub. Impulse control and related dis-
orders in Mexican Parkinson’s disease patients. Parkinsonism & Related Disorders,
20(8):907–910, August 2014. ISSN 1873-5126. doi: 10.1016/j.parkreldis.2014.05.014.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning repre-
sentations by back-propagating errors. Nature, 323(6088):533–536, October 1986.

134

https://www.cambridge.org/core/journals/design-science/article/predicting-human-design-decisions-with-deep-recurrent-neural-network-combining-static-and-dynamic-data/097456E3CE09F11435F535B507AE9B8B
https://www.cambridge.org/core/journals/design-science/article/predicting-human-design-decisions-with-deep-recurrent-neural-network-combining-static-and-dynamic-data/097456E3CE09F11435F535B507AE9B8B
https://www.cambridge.org/core/journals/design-science/article/predicting-human-design-decisions-with-deep-recurrent-neural-network-combining-static-and-dynamic-data/097456E3CE09F11435F535B507AE9B8B
https://www.nature.com/articles/s41562-016-0016
https://www.nature.com/articles/s41562-016-0016


Bibliography 135

ISSN 1476-4687. doi: 10.1038/323533a0. URL https://www.nature.com/articles/
323533a0. Number: 6088 Publisher: Nature Publishing Group.

G. Rylander. Psychoses and the punding and choreiform syndromes in addiction to
central stimulant drugs. Psychiatria, Neurologia, Neurochirurgia, 75(3):203–212, June
1972. ISSN 0033-2666.

Jasjeet Sachdeva, Vijay Harbishettar, Michelle Barraclough, Kathryn McDonald, and
Iracema Leroi. Clinical profile of compulsive sexual behaviour and paraphilia in
Parkinson’s disease. Journal of Parkinson’s Disease, 4(4):665–670, 2014. ISSN 1877-
718X. doi: 10.3233/JPD-140366.

Rachel E. Salas, Richard P. Allen, Christopher J. Earley, and Charlene E. Gamaldo.
Drug hoarding: a case of atypical dopamine dysregulation syndrome in a RLS patient.
Movement Disorders: Official Journal of the Movement Disorder Society, 24(4):627–
628, March 2009. ISSN 1531-8257. doi: 10.1002/mds.22443.

Ali Samii, John G. Nutt, and Bruce R. Ransom. Parkinson’s disease. The Lancet,
363(9423):1783–1793, May 2004. ISSN 0140-6736, 1474-547X. doi: 10.1016/
S0140-6736(04)16305-8. URL https://www.thelancet.com/journals/lancet/
article/PIIS0140-6736(04)16305-8/abstract. Publisher: Elsevier.

Sandra Sanchez-Roige, Pierre Fontanillas, Sarah L. Elson, Joshua C. Gray, Har-
riet de Wit, James MacKillop, and Abraham A. Palmer. Genome-Wide Associa-
tion Studies of Impulsive Personality Traits (BIS-11 and UPPS-P) and Drug Ex-
perimentation in up to 22,861 Adult Research Participants Identify Loci in the
CACNA1I and CADM2 genes. The Journal of Neuroscience: The Official Jour-
nal of the Society for Neuroscience, 39(13):2562–2572, 2019. ISSN 1529-2401. doi:
10.1523/JNEUROSCI.2662-18.2019.

Pournamy Sarathchandran, Sheena Soman, Gangadhara Sarma, Syam Kr-
ishnan, and Asha Kishore. Impulse control disorders and related be-
haviors in Indian patients with Parkinson’s disease. Movement Disor-
ders, 28(13):1901–1902, 2013. ISSN 1531-8257. doi: 10.1002/mds.25557.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.25557. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/mds.25557.

Jeanne E. Savage, Philip R. Jansen, Sven Stringer, Kyoko Watanabe, Julien Bryois,
Christiaan A. de Leeuw, Mats Nagel, Swapnil Awasthi, Peter B. Barr, Jonathan
R. I. Coleman, Katrina L. Grasby, Anke R. Hammerschlag, Jakob A. Kaminski,
Robert Karlsson, Eva Krapohl, Max Lam, Marianne Nygaard, Chandra A. Reynolds,
Joey W. Trampush, Hannah Young, Delilah Zabaneh, Sara Hägg, Narelle K. Hansell,
Ida K. Karlsson, Sten Linnarsson, Grant W. Montgomery, Ana B. Muñoz-Manchado,

135

https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(04)16305-8/abstract
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(04)16305-8/abstract
https://onlinelibrary.wiley.com/doi/abs/10.1002/mds.25557


136 Bibliography

Erin B. Quinlan, Gunter Schumann, Nathan G. Skene, Bradley T. Webb, Tonya
White, Dan E. Arking, Dimitrios Avramopoulos, Robert M. Bilder, Panos Bitsios,
Katherine E. Burdick, Tyrone D. Cannon, Ornit Chiba-Falek, Andrea Christoforou,
Elizabeth T. Cirulli, Eliza Congdon, Aiden Corvin, Gail Davies, Ian J. Deary, Pamela
DeRosse, Dwight Dickinson, Srdjan Djurovic, Gary Donohoe, Emily Drabant Con-
ley, Johan G. Eriksson, Thomas Espeseth, Nelson A. Freimer, Stella Giakoumaki,
Ina Giegling, Michael Gill, David C. Glahn, Ahmad R. Hariri, Alex Hatzimano-
lis, Matthew C. Keller, Emma Knowles, Deborah Koltai, Bettina Konte, Jari Lahti,
Stephanie Le Hellard, Todd Lencz, David C. Liewald, Edythe London, Astri J. Lun-
dervold, Anil K. Malhotra, Ingrid Melle, Derek Morris, Anna C. Need, William Ollier,
Aarno Palotie, Antony Payton, Neil Pendleton, Russell A. Poldrack, Katri Räikkö-
nen, Ivar Reinvang, Panos Roussos, Dan Rujescu, Fred W. Sabb, Matthew A. Scult,
Olav B. Smeland, Nikolaos Smyrnis, John M. Starr, Vidar M. Steen, Nikos C. Stefanis,
Richard E. Straub, Kjetil Sundet, Henning Tiemeier, Aristotle N. Voineskos, Daniel R.
Weinberger, Elisabeth Widen, Jin Yu, Goncalo Abecasis, Ole A. Andreassen, Gerome
Breen, Lene Christiansen, Birgit Debrabant, Danielle M. Dick, Andreas Heinz, Jens
Hjerling-Leffler, M. Arfan Ikram, Kenneth S. Kendler, Nicholas G. Martin, Sarah E.
Medland, Nancy L. Pedersen, Robert Plomin, Tinca J. C. Polderman, Stephan Ripke,
Sophie van der Sluis, Patrick F. Sullivan, Scott I. Vrieze, Margaret J. Wright, and
Danielle Posthuma. Genome-wide association meta-analysis in 269,867 individuals
identifies new genetic and functional links to intelligence. Nature Genetics, 50(7):
912–919, 2018. ISSN 1546-1718. doi: 10.1038/s41588-018-0152-6.

E. Schiørring. Psychopathology induced by "speed drugs". Pharmacology, Biochemistry,
and Behavior, 14 Suppl 1:109–122, 1981. ISSN 0091-3057.

S. Schlosser, D. W. Black, S. Repertinger, and D. Freet. Compulsive buying. Demog-
raphy, phenomenology, and comorbidity in 46 subjects. General Hospital Psychiatry,
16(3):205–212, May 1994. ISSN 0163-8343. doi: 10.1016/0163-8343(94)90103-1.

Michael K. Scullin, Ann B. Sollinger, Julia Land, Cathy Wood-Siverio, Lavezza Zan-
ders, Raven Lee, Alan Freeman, Felicia C. Goldstein, Donald L. Bliwise, and
Stewart A. Factor. Sleep and impulsivity in Parkinson’s disease. Parkinson-
ism & Related Disorders, 19(11):991–994, November 2013. ISSN 1873-5126. doi:
10.1016/j.parkreldis.2013.06.018.

Skipper Seabold and Josef Perktold. Statsmodels: Econometric and Statistical Modeling
with Python. Proceedings of the 9th Python in Science Conference, 2010, January
2010.

Tanya Simuni, Michael C. Brumm, Liz Uribe, Chelsea Caspell-Garcia, Christopher S.
Coffey, Andrew Siderowf, Roy N. Alcalay, John Q. Trojanowski, Leslie M. Shaw, John

136



Bibliography 137

Seibyl, Andrew Singleton, Arthur W. Toga, Doug Galasko, Tatiana Foroud, Kelly
Nudelman, Duygu Tosun-Turgut, Kathleen Poston, Daniel Weintraub, Brit Mollen-
hauer, Caroline M. Tanner, Karl Kieburtz, Lana M. Chahine, Alyssa Reimer, Saman-
tha Hutten, Susan Bressman, Kenneth Marek, and Parkinson’s Progression Markers
Initiative Investigators. Clinical and Dopamine Transporter Imaging Characteris-
tics of Leucine Rich Repeat Kinase 2 (LRRK2) and Glucosylceramidase Beta (GBA)
Parkinson’s Disease Participants in the Parkinson’s Progression Markers Initiative:
A Cross-Sectional Study. Movement Disorders: Official Journal of the Movement
Disorder Society, 35(5):833–844, 2020. ISSN 1531-8257. doi: 10.1002/mds.27989.

Ashley H. Spencer, Hugh Rickards, Alfonso Fasano, and Andrea E. Cavanna. The
prevalence and clinical characteristics of punding in Parkinson’s disease. Movement
Disorders: Official Journal of the Movement Disorder Society, 26(4):578–586, March
2011. ISSN 1531-8257. doi: 10.1002/mds.23508.

Maria Grazia Spillantini, Marie Luise Schmidt, Virginia M.-Y. Lee, John Q. Tro-
janowski, Ross Jakes, and Michel Goedert. -Synuclein in Lewy bodies. Nature,
388(6645):839–840, August 1997. ISSN 1476-4687. doi: 10.1038/42166. URL
https://www.nature.com/articles/42166. Number: 6645 Publisher: Nature Pub-
lishing Group.

N. Sáez-Francàs, G. Martí Andrés, N. Ramírez, O. de Fàbregues, J. Álvarez Sabín,
M. Casas, and J. Hernández-Vara. [Clinical and psychopathological factors associated
with impulse control disorders in Parkinson’s disease]. Neurologia (Barcelona, Spain),
31(4):231–238, May 2016. ISSN 1578-1968. doi: 10.1016/j.nrl.2015.05.002.

Lut Tamam, Mehtap Bican, and Necla Keskin. Impulse control disorders in elderly
patients. Comprehensive Psychiatry, 55(4):1022–1028, May 2014. ISSN 1532-8384.
doi: 10.1016/j.comppsych.2013.12.003.

Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the
Royal Statistical Society. Series B (Methodological), 58(1):267–288, 1996. ISSN 0035-
9246. URL https://www.jstor.org/stable/2346178. Publisher: [Royal Statistical
Society, Wiley].

Andrey N. Tikhonov, Vasiliy Y. Arsenin, and Fritz John. Solutions of Ill Posed Prob-
lems. John Wiley & Sons Inc, Washington : New York, August 1977. ISBN 978-0-
470-99124-4.

Guilherme T. Valença, Philip G. Glass, Nadja N. Negreiros, Meirelayne B. Duarte, Lais
M. G. B. Ventura, Mila Mueller, and Jamary Oliveira-Filho. Past smoking and cur-
rent dopamine agonist use show an independent and dose-dependent association with
impulse control disorders in Parkinson’s disease. Parkinsonism & Related Disorders,
19(7):698–700, July 2013. ISSN 1873-5126. doi: 10.1016/j.parkreldis.2013.03.004.

137

https://www.nature.com/articles/42166
https://www.jstor.org/stable/2346178


138 Bibliography

Annamaria Vallelunga, Raffaella Flaibani, Patrizia Formento-Dojot, Roberta Biundo,
Silvia Facchini, and Angelo Antonini. Role of genetic polymorphisms of the dopamin-
ergic system in Parkinson’s disease patients with impulse control disorders. Parkin-
sonism & Related Disorders, 18(4):397–399, May 2012. ISSN 1873-5126. doi:
10.1016/j.parkreldis.2011.10.019.

Guy Van Camp, Anja Flamez, Bernard Cosyns, Caroline Weytjens, Luc Muyldermans,
Michel Van Zandijcke, Johan De Sutter, Patrick Santens, Pierre Decoodt, Christian
Moerman, and Danny Schoors. Treatment of Parkinson’s disease with pergolide and
relation to restrictive valvular heart disease. Lancet (London, England), 363(9416):
1179–1183, April 2004. ISSN 1474-547X. doi: 10.1016/S0140-6736(04)15945-X.

Stéphanie M. van den Berg, Marleen H. M. de Moor, Karin J. H. Verweij, Robert F.
Krueger, Michelle Luciano, Alejandro Arias Vasquez, Lindsay K. Matteson, Jaime
Derringer, Tõnu Esko, Najaf Amin, Scott D. Gordon, Narelle K. Hansell, Amy B.
Hart, Ilkka Seppälä, Jennifer E. Huffman, Bettina Konte, Jari Lahti, Minyoung Lee,
Mike Miller, Teresa Nutile, Toshiko Tanaka, Alexander Teumer, Alexander Viktorin,
Juho Wedenoja, Abdel Abdellaoui, Goncalo R. Abecasis, Daniel E. Adkins, Arpana
Agrawal, Jüri Allik, Katja Appel, Timothy B. Bigdeli, Fabio Busonero, Harry Camp-
bell, Paul T. Costa, George Davey Smith, Gail Davies, Harriet de Wit, Jun Ding,
Barbara E. Engelhardt, Johan G. Eriksson, Iryna O. Fedko, Luigi Ferrucci, Barbara
Franke, Ina Giegling, Richard Grucza, Annette M. Hartmann, Andrew C. Heath,
Kati Heinonen, Anjali K. Henders, Georg Homuth, Jouke-Jan Hottenga, William G.
Iacono, Joost Janzing, Markus Jokela, Robert Karlsson, John P. Kemp, Matthew G.
Kirkpatrick, Antti Latvala, Terho Lehtimäki, David C. Liewald, Pamela A. F. Mad-
den, Chiara Magri, Patrik K. E. Magnusson, Jonathan Marten, Andrea Maschio,
Hamdi Mbarek, Sarah E. Medland, Evelin Mihailov, Yuri Milaneschi, Grant W. Mont-
gomery, Matthias Nauck, Michel G. Nivard, Klaasjan G. Ouwens, Aarno Palotie, Erik
Pettersson, Ozren Polasek, Yong Qian, Laura Pulkki-Råback, Olli T. Raitakari, Anu
Realo, Richard J. Rose, Daniela Ruggiero, Carsten O. Schmidt, Wendy S. Slutske,
Rossella Sorice, John M. Starr, Beate St Pourcain, Angelina R. Sutin, Nicholas J.
Timpson, Holly Trochet, Sita Vermeulen, Eero Vuoksimaa, Elisabeth Widen, Jasper
Wouda, Margaret J. Wright, Lina Zgaga, Generation Scotland, David Porteous,
Alessandra Minelli, Abraham A. Palmer, Dan Rujescu, Marina Ciullo, Caroline Hay-
ward, Igor Rudan, Andres Metspalu, Jaakko Kaprio, Ian J. Deary, Katri Räikkö-
nen, James F. Wilson, Liisa Keltikangas-Järvinen, Laura J. Bierut, John M. Het-
tema, Hans J. Grabe, Brenda W. J. H. Penninx, Cornelia M. van Duijn, David M.
Evans, David Schlessinger, Nancy L. Pedersen, Antonio Terracciano, Matt McGue,
Nicholas G. Martin, and Dorret I. Boomsma. Meta-analysis of Genome-Wide Asso-
ciation Studies for Extraversion: Findings from the Genetics of Personality Con-

138



Bibliography 139

sortium. Behavior Genetics, 46(2):170–182, March 2016. ISSN 1573-3297. doi:
10.1007/s10519-015-9735-5.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009. ISBN 978-1-4414-1269-0.

Vladimir N. Vapnik and Alexander Lerner. Pattern recognition using generalized por-
trait method. Automation and Remote Control, 24:774–780, 1963.

L. Vela, J. C. Martínez Castrillo, P. García Ruiz, C. Gasca-Salas, Y. Macías Macías,
E. Pérez Fernández, I. Ybot, E. Lopez Valdés, M. M. Kurtis, I. J. Posada Rodriguez,
M. Mata, C. Ruiz Huete, M. Eimil, C. Borrue, J. Del Val, L. López-Manzanares,
A. Rojo Sebastian, and R. Marasescu. The high prevalence of impulse control behav-
iors in patients with early-onset Parkinson’s disease: A cross-sectional multicenter
study. Journal of the Neurological Sciences, 368:150–154, September 2016. ISSN
1878-5883. doi: 10.1016/j.jns.2016.07.003.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Mill-
man, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
C. J. Carey, lhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, and Paul van Mulbregt.
SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Meth-
ods, 17(3):261–272, March 2020. ISSN 1548-7105. doi: 10.1038/s41592-019-0686-2.
URL https://www.nature.com/articles/s41592-019-0686-2. Number: 3 Pub-
lisher: Nature Publishing Group.

Martine Visser, Dagmar Verbaan, Stephanie M. van Rooden, Anne M. Stiggelbout,
Johan Marinus, and Jacobus J. van Hilten. Assessment of psychiatric complications
in Parkinson’s disease: The SCOPA-PC. Movement Disorders: Official Journal of
the Movement Disorder Society, 22(15):2221–2228, November 2007. ISSN 0885-3185.
doi: 10.1002/mds.21696.

Valerie Voon, Mandy Sohr, Anthony E. Lang, Marc N. Potenza, Andrew D. Siderowf,
Jacqueline Whetteckey, Daniel Weintraub, Glen R. Wunderlich, and Mark Stacy.
Impulse control disorders in Parkinson disease: a multicenter case–control study.
Annals of Neurology, 69(6):986–996, June 2011. ISSN 1531-8249. doi: 10.1002/ana.
22356.

Ying Wang, Jing Guo, Guiyan Ni, Jian Yang, Peter M. Visscher, and Loic Yengo. The-
oretical and empirical quantification of the accuracy of polygenic scores in ancestry

139

https://www.nature.com/articles/s41592-019-0686-2


140 Bibliography

divergent populations. Nature Communications, 11(1):3865, July 2020. ISSN 2041-
1723. doi: 10.1038/s41467-020-17719-y. URL https://www.nature.com/articles/
s41467-020-17719-y. Number: 1 Publisher: Nature Publishing Group.

Mathilde Wanneveich, Frédéric Moisan, Hélène Jacqmin-Gadda, Alexis Elbaz, and
Pierre Joly. Projections of prevalence, lifetime risk, and life expectancy of Parkinson’s
disease (2010-2030) in France. Movement Disorders: Official Journal of the Movement
Disorder Society, 33(9):1449–1455, 2018. ISSN 1531-8257. doi: 10.1002/mds.27447.

C. D. Ward and W. R. Gibb. Research diagnostic criteria for Parkinson’s disease.
Advances in Neurology, 53:245–249, 1990. ISSN 0091-3952.

Hunna J. Watson, Zeynep Yilmaz, Laura M. Thornton, Christopher Hübel, Jonathan
R. I. Coleman, Héléna A. Gaspar, Julien Bryois, Anke Hinney, Virpi M. Leppä,
Manuel Mattheisen, Sarah E. Medland, Stephan Ripke, Shuyang Yao, Paola Giusti-
Rodríguez, Anorexia Nervosa Genetics Initiative, Ken B. Hanscombe, Kirstin L.
Purves, Eating Disorders Working Group of the Psychiatric Genomics Consortium,
Roger A. H. Adan, Lars Alfredsson, Tetsuya Ando, Ole A. Andreassen, Jessica H.
Baker, Wade H. Berrettini, Ilka Boehm, Claudette Boni, Vesna Boraska Perica,
Katharina Buehren, Roland Burghardt, Matteo Cassina, Sven Cichon, Maurizio
Clementi, Roger D. Cone, Philippe Courtet, Scott Crow, James J. Crowley, Unna N.
Danner, Oliver S. P. Davis, Martina de Zwaan, George Dedoussis, Daniela De-
gortes, Janiece E. DeSocio, Danielle M. Dick, Dimitris Dikeos, Christian Dina,
Monika Dmitrzak-Weglarz, Elisa Docampo, Laramie E. Duncan, Karin Egberts, Ste-
fan Ehrlich, Geòrgia Escaramís, Tõnu Esko, Xavier Estivill, Anne Farmer, Angela
Favaro, Fernando Fernández-Aranda, Manfred M. Fichter, Krista Fischer, Manuel
Föcker, Lenka Foretova, Andreas J. Forstner, Monica Forzan, Christopher S. Franklin,
Steven Gallinger, Ina Giegling, Johanna Giuranna, Fragiskos Gonidakis, Philip Gor-
wood, Monica Gratacos Mayora, Sébastien Guillaume, Yiran Guo, Hakon Hakonar-
son, Konstantinos Hatzikotoulas, Joanna Hauser, Johannes Hebebrand, Sietske G.
Helder, Stefan Herms, Beate Herpertz-Dahlmann, Wolfgang Herzog, Laura M. Huck-
ins, James I. Hudson, Hartmut Imgart, Hidetoshi Inoko, Vladimir Janout, Susana
Jiménez-Murcia, Antonio Julià, Gursharan Kalsi, Deborah Kaminská, Jaakko Kaprio,
Leila Karhunen, Andreas Karwautz, Martien J. H. Kas, James L. Kennedy, Anna
Keski-Rahkonen, Kirsty Kiezebrink, Youl-Ri Kim, Lars Klareskog, Kelly L. Klump,
Gun Peggy S. Knudsen, Maria C. La Via, Stephanie Le Hellard, Robert D. Levi-
tan, Dong Li, Lisa Lilenfeld, Bochao Danae Lin, Jolanta Lissowska, Jurjen Luykx,
Pierre J. Magistretti, Mario Maj, Katrin Mannik, Sara Marsal, Christian R. Mar-
shall, Morten Mattingsdal, Sara McDevitt, Peter McGuffin, Andres Metspalu, In-
grid Meulenbelt, Nadia Micali, Karen Mitchell, Alessio Maria Monteleone, Palmiero
Monteleone, Melissa A. Munn-Chernoff, Benedetta Nacmias, Marie Navratilova,

140

https://www.nature.com/articles/s41467-020-17719-y
https://www.nature.com/articles/s41467-020-17719-y


Bibliography 141

Ioanna Ntalla, Julie K. O’Toole, Roel A. Ophoff, Leonid Padyukov, Aarno Palotie,
Jacques Pantel, Hana Papezova, Dalila Pinto, Raquel Rabionet, Anu Raevuori,
Nicolas Ramoz, Ted Reichborn-Kjennerud, Valdo Ricca, Samuli Ripatti, Franziska
Ritschel, Marion Roberts, Alessandro Rotondo, Dan Rujescu, Filip Rybakowski,
Paolo Santonastaso, André Scherag, Stephen W. Scherer, Ulrike Schmidt, Nicholas J.
Schork, Alexandra Schosser, Jochen Seitz, Lenka Slachtova, P. Eline Slagboom, Mar-
garita C. T. Slof-Op ’t Landt, Agnieszka Slopien, Sandro Sorbi, Beata witkowska,
Jin P. Szatkiewicz, Ioanna Tachmazidou, Elena Tenconi, Alfonso Tortorella, Feder-
ica Tozzi, Janet Treasure, Artemis Tsitsika, Marta Tyszkiewicz-Nwafor, Konstanti-
nos Tziouvas, Annemarie A. van Elburg, Eric F. van Furth, Gudrun Wagner, Es-
ther Walton, Elisabeth Widen, Eleftheria Zeggini, Stephanie Zerwas, Stephan Zipfel,
Andrew W. Bergen, Joseph M. Boden, Harry Brandt, Steven Crawford, Kather-
ine A. Halmi, L. John Horwood, Craig Johnson, Allan S. Kaplan, Walter H. Kaye,
James E. Mitchell, Catherine M. Olsen, John F. Pearson, Nancy L. Pedersen, Michael
Strober, Thomas Werge, David C. Whiteman, D. Blake Woodside, Garret D. Stu-
ber, Scott Gordon, Jakob Grove, Anjali K. Henders, Anders Juréus, Katherine M.
Kirk, Janne T. Larsen, Richard Parker, Liselotte Petersen, Jennifer Jordan, Martin
Kennedy, Grant W. Montgomery, Tracey D. Wade, Andreas Birgegård, Paul Licht-
enstein, Claes Norring, Mikael Landén, Nicholas G. Martin, Preben Bo Mortensen,
Patrick F. Sullivan, Gerome Breen, and Cynthia M. Bulik. Genome-wide associ-
ation study identifies eight risk loci and implicates metabo-psychiatric origins for
anorexia nervosa. Nature Genetics, 51(8):1207–1214, 2019. ISSN 1546-1718. doi:
10.1038/s41588-019-0439-2.

Daniel Weintraub and Daniel O. Claassen. Impulse Control and Related Disorders in
Parkinson’s Disease. International Review of Neurobiology, 133:679–717, 2017. ISSN
2162-5514. doi: 10.1016/bs.irn.2017.04.006.

Daniel Weintraub, Staci Hoops, Judy A. Shea, Kelly E. Lyons, Rajesh Pahwa, Erika D.
Driver-Dunckley, Charles H. Adler, Marc N. Potenza, Janis Miyasaki, Andrew D.
Siderowf, John E. Duda, Howard I. Hurtig, Amy Colcher, Stacy S. Horn, Matthew B.
Stern, and Valerie Voon. Validation of the questionnaire for impulsive-compulsive
disorders in Parkinson’s disease. Movement Disorders: Official Journal of the
Movement Disorder Society, 24(10):1461–1467, July 2009. ISSN 1531-8257. doi:
10.1002/mds.22571.

Daniel Weintraub, Juergen Koester, Marc N. Potenza, Andrew D. Siderowf, Mark Stacy,
Valerie Voon, Jacqueline Whetteckey, Glen R. Wunderlich, and Anthony E. Lang.
Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 pa-
tients. Archives of Neurology, 67(5):589–595, May 2010a. ISSN 1538-3687. doi:
10.1001/archneurol.2010.65.

141



142 Bibliography

Daniel Weintraub, Mandy Sohr, Marc N. Potenza, Andrew D. Siderowf, Mark Stacy,
Valerie Voon, Jacqueline Whetteckey, Glen R. Wunderlich, and Anthony E. Lang.
Amantadine use associated with impulse control disorders in Parkinson disease in
cross-sectional study. Annals of Neurology, 68(6):963–968, December 2010b. ISSN
1531-8249. doi: 10.1002/ana.22164.

Daniel Weintraub, Eugenia Mamikonyan, Kimberly Papay, Judith A. Shea, Sharon X.
Xie, and Andrew Siderowf. Questionnaire for Impulsive-Compulsive Disorders in
Parkinson’s Disease-Rating Scale. Movement Disorders: Official Journal of the
Movement Disorder Society, 27(2):242–247, February 2012. ISSN 1531-8257. doi:
10.1002/mds.24023.

Naomi R. Wray, Michael E. Goddard, and Peter M. Visscher. Prediction of individual
genetic risk to disease from genome-wide association studies. Genome Research, 17
(10):1520–1528, October 2007. ISSN 1088-9051. doi: 10.1101/gr.6665407.

Jian Yang, S. Hong Lee, Michael E. Goddard, and Peter M. Visscher. GCTA: a tool
for genome-wide complex trait analysis. American Journal of Human Genetics, 88
(1):76–82, January 2011. ISSN 1537-6605. doi: 10.1016/j.ajhg.2010.11.011.

Zheng Ye, Anke Hammer, Estela Camara, and Thomas F. Münte. Pramipexole mod-
ulates the neural network of reward anticipation. Human Brain Mapping, 32(5):
800–811, May 2011. ISSN 1097-0193. doi: 10.1002/hbm.21067.

Loic Yengo, Julia Sidorenko, Kathryn E. Kemper, Zhili Zheng, Andrew R. Wood,
Michael N. Weedon, Timothy M. Frayling, Joel Hirschhorn, Jian Yang, Peter M.
Visscher, and GIANT Consortium. Meta-analysis of genome-wide association stud-
ies for height and body mass index in 700000 individuals of European ances-
try. Human Molecular Genetics, 27(20):3641–3649, 2018. ISSN 1460-2083. doi:
10.1093/hmg/ddy271.

Hana You, Louise-Laure Mariani, Graziella Mangone, Delphine Le Febvre de Nailly,
Fanny Charbonnier-Beaupel, and Jean-Christophe Corvol. Molecular basis of
dopamine replacement therapy and its side effects in Parkinson’s disease. Cell
and Tissue Research, 373(1):111–135, 2018. ISSN 1432-0878. doi: 10.1007/
s00441-018-2813-2.

Kimberly S. Young. Internet Addiction: The Emergence of a New Clinical Disor-
der. CyberPsychology & Behavior, 1(3):237–244, January 1998. ISSN 1094-9313.
doi: 10.1089/cpb.1998.1.237. URL https://www.liebertpub.com/doi/10.1089/
cpb.1998.1.237. Publisher: Mary Ann Liebert, Inc., publishers.

Insha Zahoor, Amrina Shafi, and Ehtishamul Haq. Pharmacological Treatment of
Parkinsons Disease. In Thomas B. Stoker and Julia C. Greenland, editors, Parkin-

142

https://www.liebertpub.com/doi/10.1089/cpb.1998.1.237
https://www.liebertpub.com/doi/10.1089/cpb.1998.1.237


Bibliography 143

sons Disease: Pathogenesis and Clinical Aspects. Codon Publications, Brisbane
(AU), 2018. ISBN 978-0-9944381-6-4. URL http://www.ncbi.nlm.nih.gov/books/
NBK536726/.

Shahidee Zainal Abidin, Eng Liang Tan, Soon-Choy Chan, Ameerah Jaafar, Alex Xuen
Lee, Mohd Hamdi Noor Abd Hamid, Nor Azian Abdul Murad, Nur Fadlina
Pakarul Razy, Shahrul Azmin, Azlina Ahmad Annuar, Shen Yang Lim, Pike-See
Cheah, King-Hwa Ling, and Norlinah Mohamed Ibrahim. DRD and GRIN2B poly-
morphisms and their association with the development of impulse control behaviour
among Malaysian Parkinson’s disease patients. BMC neurology, 15:59, April 2015.
ISSN 1471-2377. doi: 10.1186/s12883-015-0316-2.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(2):301–320, 2005. ISSN 1467-9868. doi: 10.1111/j.1467-9868.2005.00503.x.
URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.
2005.00503.x. _eprint: https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
9868.2005.00503.x.

143

http://www.ncbi.nlm.nih.gov/books/NBK536726/
http://www.ncbi.nlm.nih.gov/books/NBK536726/
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2005.00503.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2005.00503.x

	Abstract
	Résumé
	Remerciements
	Scientific production
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Parkinson's disease
	History
	Classification
	Pathophysiology
	Diagnosis
	Symptoms
	Medications and their limitations
	Motor complications

	Impulse control disorders
	Definition of specific impulse control disorders
	Studies on impulse control disorders in subpopulations

	Impulse control disorders in Parkinson's disease
	Epidemiology
	Assessment and diagnosis
	Associations
	Prediction
	Other behavioral addictions

	Machine learning
	Notations
	Algorithms
	Regularization
	Metrics

	Putting it all together
	Materials
	Data sets
	Software


	Prediction of impulse control disorders in Parkinson's disease
	Introduction
	Materials and methods
	Populations
	Participants and clinical measurements
	Genetic variants
	Data processing
	Machine learning algorithms
	Cross-validation
	Statistical analysis

	Results
	Population characteristics
	Predictive performance
	Contribution of the different features

	Discussion

	Exploratory analysis of the genetics of impulse control disorders in Parkinson's disease using genetic risk scores
	Introduction
	Materials and methods
	Populations
	Participants
	Genetic ancestry
	Genotyping and quality control
	Phenotypes and genome-wide association studies
	Computation of genetic risk scores
	Statistical analyses

	Results
	Participants and genetic variants
	Genome-wide association studies
	Association analyses

	Discussion

	Combining static and dynamic data in recurrent neural networks
	Introduction
	Related work
	Proposed approach
	Experiments
	Conclusion

	Conclusion
	Supplementary materials for the prediction of impulse control disorders from clinical and genetic data with replication in an independent cohort
	Reduction approaches
	Supplementary Tables


