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Abstract

MACHINE LEARNING TO PREDICT IMPULSE CONTROL

DISORDERS IN PARKINSON’S DISEASE

by Johann Faouzi

Impulse control disorders are a class of psychiatric disorders characterized by impul-
sivity. These disorders are common during the course of Parkinson’s disease, decrease
the quality of life of subjects, and increase caregiver burden. Being able to predict
which individuals are at higher risk of developing these disorders and when is of high
importance.

The objective of this thesis is to study impulse control disorders in Parkinson’s
disease from the statistical and machine learning points of view, and can be divided
into two parts. The first part consists in investigating the predictive performance of
the altogether factors associated with these disorders in the literature. The second part
consists in studying the association and the usefulness of other factors, in particular
genetic data, to improve the predictive performance.

In the first chapter, we present Parkinson’s disease and impulse control disorders,
review the literature on impulse control disorders in Parkinson’s disease, introduce the
main concepts of machine learning, and describe the databases from which we obtained
data and the software used to analyze these data. In the second chapter, we investigate
the predictive performance of several machine learning algorithms using features that
have been associated with impulse control disorders in Parkinson’s disease. In the third
chapter, we investigate the association between impulse control disorders in Parkinson’s
disease and genetic risk scores for a broad range of phenotypes. In the last chapter,
we investigate different approaches to integrate static data in recurrent neural networks
and evaluate their predictive performance in the use case of predicting impulse control
disorders in Parkinson’s disease, with genetic data used as static data.

Across these works, we highlight the importance of using machine learning algo-
rithms, cross-validation and replication cohorts to unbiasedly estimate the predictive
power of known and putative risk factors of impulse control disorders in Parkinson’s
disease.

iii





Résumé

APPRENTISSAGE AUTOMATIQUE POUR LA PRÉDICTION

DES TROUBLES DU CONTRÔLE DE L’IMPULSIVITÉ DANS LA

MALADIE DE PARKINSON

par Johann Faouzi

Les troubles du contrôle de l’impulsivité sont une classe de troubles psychiatriques car-
actérisés par des difficultés dans la maîtrise de ses émotions, pensées et comportements.
Ces troubles sont courants dans la maladie de Parkinson et associés à une baisse de la
qualité de vie des patients ainsi qu’à une augmentation de la charge des aidants. Pou-
voir prédire quels sont les sujets les plus à risque de développer ces troubles et quand
ces troubles apparaissent est de grande importance.

L’objectif de cette thèse est d’étudier les troubles du contrôle de l’impulsivité dans
la maladie de Parkinson à partir des approches statistique et de l’apprentissage automa-
tique, et se divise en deux parties. La première partie consiste à analyser la performance
prédictive de l’ensemble des facteurs associés à ces troubles dans la littérature. La sec-
onde partie consiste à étudier l’association et l’utilité d’autres facteurs, en particulier
des données génétiques, pour améliorer la performance prédictive.

Dans un premier chapitre, nous présentons la maladie de Parkinson et les trou-
bles du contrôle de l’impulsivité, effectuons une revue de la littérature sur les trou-
bles du contrôle de l’impulsivité dans la maladie de Parkinson, introduisons les prin-
cipaux concepts de l’apprentissage automatique et présentons les bases de données sur
lesquelles nous avons travaillé et les logiciels utilisés pour analyser ces données. Dans
un deuxième chapitre, nous étudions la performance prédictive de plusieurs algorithmes
d’apprentissage automatique en utilisant comme variables d’entrée les facteurs asso-
ciés aux troubles du contrôle de l’impulsivité dans la maladie de Parkinson. Dans
un troisième chapitre, nous étudions l’association entre les troubles du contrôle de
l’impulsivité dans la maladie de Parkinson et des scores de risque génétique pour un
large panel de phénotypes. Dans un dernier chapitre, nous étudions différentes ap-
proches d’intégrer des données statiques dans des réseaux de neurones récurrents et
évaluons leur performance dans le cas de la prédiction des troubles du contrôle de
l’impulsivité dans la maladie de Parkinson, en utilisant des données génétiques pour les
données statiques.

À travers ces travaux, nous mettons en avant l’importance d’utiliser des algorithmes
d’apprentissage automatique, des méthodes de validation croisée et des cohortes de
réplication pour évaluer la puissance prédictive de facteurs de risque connus ou supposés
des troubles du contrôle de l’impulsivité dans la maladie de Parkinson.
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Introduction

Context

Parkinson’s disease (PD) is a neurodegenerative disease with no cure to date. Besides

its characteristic motor symptoms, numerous non-motor symptoms have been reported

to occur in the course of the disease (Chaudhuri et al., 2006). A specific symptom has

recently been increasingly acknowledged: impulse control disorders.

Impulse control disorders (ICDs) are a class of psychiatric disorders involving prob-

lems in the self-control of emotions and behaviors (American Psychiatric Association,

2013). They include pyromania, kleptomania, Internet addiction disorder and inter-

mittent explosive disorder for instance. In Parkinson’s disease, the four most common

impulse control disorders are pathological gambling, binge eating disorder, compulsive

sexual behavior and compulsive buying disorder (Weintraub and Claassen, 2017).

Many factors have been associated with impulse control disorders in Parkinson’s

disease (Grall-Bronnec et al., 2018). Socio-demographic factors (age of PD onset, sex),

psychiatric comorbidities (anxiety, depression), sleep disorders, and PD medication have

been associated with ICDs in PD among others. Dopamine agonists (DAs), a class of

PD medication, have been the most strongly correlated with ICDs. Dopamine agonists

still have their advantages as they delay the initiation of levodopa, another class of PD

medication with its own adverse effects.

Impulse control disorders are associated with a decrease in quality of life, strained

interpersonal relationships, financial distress, medical complications, and higher care-

giver burden (Weintraub and Claassen, 2017). Prompt identification and treatment

of the symptoms are usually imperative to improve the quality of life of the subjects.

However, managing impulse control disorders implies that they are already present. Ac-

curately predicting which subjects are at higher risk of developing these disorders and

when they occur could allow for early management, decrease their negative impact, and

potentially prevent their apparition.

1



2 Introduction

Objective

The general objective of this thesis is to study impulse control disorders in Parkinson’s

disease from the machine learning point of view, with a focus on their predictability.

Despite the rise of machine learning, this approach has been little to not used in the

context of ICDs in PD.

Our first objective is to study the how well ICDs in PD can be predicted by combining

the factors reported in the literature. The known risk factors come from univariate

association studies that do not take into account the other risk factors. Machine learning

allows for learning from a set of features at once and thus leveraging information from all

the factors. Using machine learning comes with specific methodological requirements

to assess their predictive performance in an unbiased manner. These methods, such

as cross-validation, are not always well-known in the medical field but are necessary

not to report overly optimistic results. We describe and apply such methods in this

application.

Our second objective is to investigate the genetic factors of ICDs in PD, as little

is known about these risks. A few associations from candidate genes analyses have

been reported, but these studies have not been replicated. On the other hand, genome-

wide association studies (GWAS) investigate the combined risk of the whole genome

by computing a genetic risk score (GRS), but none has been published on ICDs in

PD. Instead of performing a GWAS, which requires a large sample size, we study the

association between ICDs in PD and genetic risk scores of other phenotypes, for which

large GWAS exist.

Contributions

Our contributions in the field of impulse control disorders in Parkinson’s disease are

three-fold. First, we study the added value of combining the reported factors associated

with ICDs in PD to predict them, by training machine learning algorithms using these

factors as input. Second, we investigate the association between ICDs in PD and genetic

factors for a broad range of phenotypes, including other psychiatric disorders. Third,

we study how to integrate time-dependent features, such as clinical measurements, and

time-independent information, such as socio-demographic and genetic factors, in pre-

dictive models, with an application in the prediction of ICDs in PD using recurrent

neural networks.

Only two studies have reported a classification task of impulse control disorders in

Parkinson’s disease (Erga et al., 2018; Kraemmer et al., 2016). However, both studies

lack a replication cohort and have major methodological issues (lack of cross-validation,

biased feature selection) that alter the trust in the reported predictive performance. We

propose the first study evaluating in an unbiased manner the predictive performance

2



Introduction 3

of several machine learning algorithms using known risk factors as input data. We

investigate the use of five standard machine learning classification algorithms (logistic

regression, support vector machines with linear and RBF kernels, random forest and

gradient tree boosting) and recurrent neural networks to predict the presence or absence

of ICDs for a given patient at their next visit. In order to make the variable-length

sequences of visits suitable as input data for the standard machine learning algorithms,

we reduce each variable-length sequence of visits into one “summary” visit using a

convex combination. We investigate several reduction approaches, each giving different

weights to each visit. We evaluate the predictive performance on two research cohorts

with different characteristics to assess the generalization capability of the models.

Secondly, we investigate the association between genetic risk scores and impulse

control disorders in Parkinson’s disease. Many phenotypes are known to be heritable,

yet less is known about which parts of the genomes and how they contribute to this

heritability. A genetic risk score is a single score indicating, given one’s genome, their

risk of developing a given phenotype (Wray et al., 2007). For instance, genetic risk scores

for schizophrenia and bipolar disorder have been associated with creativity (Power et al.,

2015). Recently, the genetic risk score of Parkinson’s disease has been reported not to be

associated with ICDs in PD (Ihle et al., 2020). We investigate the association between

40 generic risk scores representing a broad range of phenotypes, and ICDs in PD, in

two research cohorts.

Finally, we investigate the integration of static data in recurrent neural networks.

We review the literature on this topic and identify four approaches. Besides the dummy

approach consisting in removing static data, the most common approach is to have static

and dynamic data in their own branches in the network. This approach is not specific to

combining static and dynamic data, and is commonly used to integrate multimodal data

in artificial neural networks (Hao et al., 2019; Mobadersany et al., 2018). The two other

identified approaches consist in treating static data as dynamic data (Leontjeva and

Kuzovkin, 2016; Rahman et al., 2020) and initializing the parameters of the recurrent

neural unit using the static features (Kristensen and Burelli, 2019). We propose a new

approach consisting in modifying the dynamic features using the static features. We

investigate the predictive performance of the five approaches in the use case of predicting

ICDs in PD, where the static features are socio-demographic and genetic features.
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Chapter 1

Background

Parkinson’s disease is the second most frequent neurodegenerative disorder after

Alzheimer’s disease (Nussbaum and Ellis, 2003). In France, 150,000 people were af-

fected by PD in 2010 and over 250,000 are expected to be affected in 2030 (Wanneveich

et al., 2018). To date, no cure for this disease exists and the quality of life of the pa-

tients slowly but steadily decreases until death. Its economic impact is substantial as

the cost in the United Kingdom was estimated to be between £449 million and £3.3

billion annually in 2007 (Findley, 2007). The social impact of PD is also important as

the quality of life of PD cases is heavily reduced due to the large range of impairing

symptoms, increasing caregiver burden.

Besides the three cardinal motor symptoms of PD that are tremor, bradykinesia, and

rigidity (Jankovic, 2008), many non-motor symptoms often occur during the course of

the disease including cognitive, sleep, dysautonomic, and behavioral disorders (Chaud-

huri et al., 2006). There is no cure for PD. The dopamine replacement therapy alleviate

motor symptoms, but is hampered by motor complications (fluctuations, dyskinesia)

and adverse effects. Impulse control disorders, a class of behavioral psychiatric disor-

ders characterized by impulsivity, is a frequent adverse effect of replacement dopamine

therapy (Corvol et al., 2018). Predicting which subjects will develop these disorders and

when is challenging, but of great importance because of their familial, social, economic

or legal impact.

In this section, we introduce Parkinson’s disease, from pathophysiology to symptoms

to medications. Then we define impulse control disorders and detail in which popula-

tions they have been studied, and review the literature on impulse control disorders in

Parkinson’s disease. Next we introduce the main concepts of machine learning. Finally

we discuss how machine learning can be helpful to tackle impulse control disorders in

Parkinson’s disease.
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6 Chapter 1. Background

1.1 Parkinson’s disease

1.1.1 History

The first clear clinical description of Parkinson’s disease was provided in 1817 by James

Parkinson in his Essay on the Shaking Palsy (Parkinson, 2002), in which he defined

shaking palsy as:

Involuntary tremulous motion, with lessened muscular power, in parts not

in action and even when supported; with a propensity to bend the trunk

forwards, and to pass from a walking to a running pace: the senses and

intellects being uninjured

and used the term paralysis agitans to describe individuals with this disorder. In his

essay, he reported six cases that he had seen as patients or that he had observed during

his wanderings through the streets near his home in Hoxton Square (Lees, 2007).

Jean-Martin Charcot, the father of modern neurology (Gomes and Engelhardt,

2013), deepened the knowledge on this disorder with his studies between 1868 and

1881, notably distinguishing between rigidity, weakness and bradykinesia (Lees, 2007).

He also advocated the renaming of the disorder in honor of James Parkinson (Lees,

2007).

Landmarks on the understanding of the disease include the description of micro-

scopic particles, later called Lewy bodies, in the brains of PD cases by Friedrich Lewy

in 1912 (Holdorff, 2006), the report that the substantia nigra was the main structure

affected in the brain by Konstantin Tretiakoff in 1919 (Goedert et al., 2013), the un-

derlying biochemical changes in the brain by Arvid Carlsson and Oleh Hornykiewicz in

the 1950s (Lees, 2007), and the discovery of alpha-synuclein being the main component

of Lewy bodies by Spillantini and others in 1997 (Spillantini et al., 1997).

Antiparkinsonian effects of anticholinergics were first described in 1868 by Leopold

Ordenstein, a student of Jean-Martin Charcot (Kim et al., 2017). In his thesis, he states

that “Monsieur Charcot has begun to prescribe 2 or 3 granules of hyoscyamine daily,

approximately 1 mg each. This medication was able to provide several hours of rest

for some patients. Apparently, further observations are necessary to make a decision

about this medication”. In 1957, Arvid Carlsson showed that levodopa reversed the

akinetic effect of reserpine, a drug that lowers blood pressure and slows heart rate, in

rabbits (Carlsson et al., 1957). In 1960, Oleh Hornykiewicz published a landmark paper

showing for the first time a significant depletion of dopamine in the caudate and putamen

of patients only with PD or postencephalitic parkinsonism (Ehringer and Hornykiewicz,

1960). The successful introduction of high dosage levodopa therapy occurred in 1967

(Cotzias et al., 1967). Before, anticholinergics remained the only available medical

therapy for Parkinson’s disease. The 1960s were also marked by the first observation of

the antiparkinsonian effects of amantadine. In the 1980s, dopamine agonists were tested
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1.1. Parkinson’s disease 7

as monotherapy in early PD and two catechol-O-methyltransferase (COMT) inhibitors

were found to be orally active, following the discovery of monoamine oxidase (MAO) as

the mechanism for inactivating the monoamines levodopa decarboxylase enzyme in the

1930s (Kim et al., 2017).

1.1.2 Classification

In the tenth revision of the International Statistical Classification of Diseases and Re-

lated Health Problems, the code for Parkinson’s disease is G20, belonging to the group of

extrapyramidal and movement disorders (G20–G26) among the diseases of the nervous

system (G00–G99).

The main motor symptoms of PD, called parkinsonism, consist of bradykinesia and

one of two other physical signs: muscular rigidity and tremor at rest (Jankovic, 2008).

Parkinson’s disease is the most prevalent form of parkinsonism and is often called id-

iopathic parkinsonism, that is parkinsonism with no identifiable cause (Samii et al.,

2004). Drugs, toxins, infections, and brain lesions such as stroke can lead to parkin-

sonism. Parkinsonism is not exclusive to PD and can be found in a group of other

diseases often called atypical parkinsonism, consisting of other features differentiating

them from PD. This group includes multiple system atrophy, progressive supranuclear

palsy, Lewy body dementia and corticobasal degeneration (Samii et al., 2004).

1.1.3 Pathophysiology

The pathological hallmark of PD is cell death in the basal ganglia, particularly in the

ventral component of the substantia nigra pars compacta (Davie, 2008). By the time

of death, the substantia nigra pars compacta has lost up to 70% of its neurons in

comparison to unaffected individuals. Death of astrocytes and a significant increase in

the number of microglia in the substantia nigra also occur (Dickson, 2018).

Figure 1.1 illustrates the primary motor circuits in the basal ganglia. The basal

ganglia are functionally connected to other brain regions via the motor, oculo-motor,

associative, limbic, and orbitofrontal pathways (Obeso et al., 2008). The motor pathway

connects the basal ganglia to the motor cortex, which is involved in the planning,

control, and execution of voluntary movements. The oculo-motor pathway links the

basal ganglia to the frontal eye fields, which is responsible for saccadic and voluntary

eye movements. The cerebral cortex is connected to the basal ganglia via the associative

pathway, and enable to support abstract thinking and language, produce a meaningful

perceptual experience of the world, and enable us to interact effectively. The limbic

pathway connects the basal ganglia to the limbic system, which supports a variety

of functions including emotion, behavior, motivation, long-term memory, and olfaction.

The orbitofrontal cortex is connected to the basal ganglia via the orbitofrontal pathway,

which is involved in the cognitive process of decision-making.

7



8 Chapter 1. Background

Figure 1.1: Schematic overview of the primary motor circuits in the basal ganglia, the
indirect (left) and direct (right) pathways (reproduced from (Harris et al., 2020b)).
D1: D1 receptors; D2: D2 receptors; DA: dopamine; ENK: enkephalin; GLU: glutamate;
NUC: nucleus; PPN: pedunculopontine nucleus; SP: substance P; SUB: substantia.

Dopamine neurons of the substantia nigra pars compacta mainly innervate the motor

pathway, hence the predominance of the motor symptoms. However, the mesolimbic

and mesocortical pathways have their somas in the ventral tegmental area, which is

relatively sparsely impacted in PD. The motor symptoms are actually assumed to be

caused by the impairment of these pathways rather than the motor pathway (Obeso

et al., 2008).

1.1.4 Diagnosis

A definite diagnosis of Parkinson’s disease requires autopsy, the final proof being the

presence of Lewy bodies in the midbrain (Samii et al., 2004). Nonetheless, clinical diag-

nosis of this disorder has become more rigorous and several criteria have been proposed

(Calne et al., 1992; Hughes et al., 1992; Postuma et al., 2015; Ward and Gibb, 1990).

They include confidence levels such as clinically possible, clinically probable and clini-

cally definite, and rely on the presence of parkinsonism, response to antiparkinson drugs

and exclusion criteria that would favor another cause for the presence of parkinsonism

(Samii et al., 2004).
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1.1.5 Symptoms

The symptoms of Parkinson’s disease are numerous and have a substantial negative

impact on the quality of life of the individuals (Jankovic, 2008). Apart from the recog-

nizable motor symptoms, many other symptoms occur frequently during the course of

the disease. Particularly, a wide range of neuropsychiatric disorders have been reported

in individuals with PD (Balestrino and Martinez-Martin, 2017).

Motor symptoms

The three cardinal motor symptoms of Parkinson’s disease are bradykinesia, rigidity,

and rest tremor (Jankovic, 2008). Other typical symptoms of parkinsonism include

postural instability, flexed posture and freezing usually occurring later in the course of

the disease and leading to falls (Jankovic, 2008; Kalia and Lang, 2015).

Akinesia, bradykinesia and hypokinesia are the hallmarks of basal ganglia disor-

ders, and includes difficulties with planning, initiating and executing movement, and

with performing sequential and simultaneous tasks. Bradykinesia refers to slowness of

movement and is the most characteristic clinical feature of PD. Bradykinesia may be

associated with hypokinesia (reduction in movement amplitude) or akinesia (poverty of

action and difficulty initiating movements) (Moustafa et al., 2016).

The initial manifestation is usually slowness in performing activities of daily living,

slow movement and reaction times (slowness of walking), including difficulties with tasks

requiring fine motor control such as handwriting (micrographia), using utensils and

buttoning. Assessment of bradykinesia usually includes having patients perform rapid,

repetitive, alternating movements of the hand and heel taps and observing slowness and

decreasing amplitude (Jankovic, 2008).

Rigidity is characterised by increased resistance and is usually accompanied by the

“cogwheel” phenomenon, that is a circular jerking rigidity in flexion and extension in a

background of tremor. Rigidity can occur at many locations, including neck, shoulders,

hips, wrists and ankles. Reinforcing manoeuvres tend to increase rigidity and can be

used to detect mild cases of rigidity (Jankovic, 2008).

Tremor at rest is the most recognizable symptom of PD. Tremors are typically

unilateral at disease onset, occur in the rest position at a frequency between 4 and 6

Hz, disappear during action, and are usually prominent in the distal part of extremities

(Jankovic, 2008). In particular, hand tremors consist of the tendency of the thumb and

the index finger to approximate one another while trembling as if an object was being

rolled between the two fingers. The term “pill-rolling” is often used to describe these

tremors because of the similarity to the technique used by pharmacists to fashion a pill

by rolling a substance between the two fingers (Cooper et al., 2008). Rest tremor in

patients with PD can also involve the lips, chin, jaw and legs (Jankovic, 2008).

Postural instability due to loss of postural reflexes is usually a symptom of the late

9
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stages of PD and generally occurs after the onset of other clinical features. The pull test

is often used to assess postural instability: the patient is quickly pulled backward by the

shoulders to assess the degree of retropulsion. Taking more than two steps backwards or

the absence of any postural response indicates an abnormal postural response. Postural

instability and freezing of gait are the most common causes of falls and contribute

substantially to the risk of hip fractures (Jankovic, 2008).

Rigidity and postural deformities can result in flexed posture (camptocormia), such

as flexed neck, and usually occur in a late stage of the disease (Jankovic, 2008).

Although the dopamine denervation is always bilateral in PD, it is commonly asym-

metric, and the symptoms typically occur unilaterally at the onset of the disease, af-

fecting the other part of the body during disease progression. Akinesia, tremor, and

rigidity are responsive to the dopamine replacement therapy which typically improve

the symptoms by more than 70% in most patients. By contrast, postural instability

and gait disturbance are not poorly responsive to treatment.

Non-motor symptoms

Many non-motor symptoms have also been reported in Parkinson’s disease and can

impact the quality of life of the subjects and caregiver burden more than the motor

symptoms (Hiseman and Fackrell, 2017). Indeed, these symptoms are not responsive to

the treatment and may even worsen with dopamine replacement therapy, and largely

contribute to the burden of the disease for the patients and the caregivers. Neuropsy-

chiatric symptoms are particularly common during the course of the disease (Balestrino

and Martinez-Martin, 2017).

Major depressive disorder is frequent in PD, with an approximated 17% prevalence.

Comorbid depression worsens cognition, function, and quality of life, and increases care-

giver burden and mortality. Symptomatic overlap between major depression disorder

and PD can make appropriate detection and treatment difficult (Goodarzi et al., 2016).

Up to 55% of PD patients experience substantial anxiety symptoms, and up to

40% have an anxiety disorder as defined by the criteria of the Diagnostic and Statistical

Manual of Mental Disorders. The most common anxiety disorders in PD are generalized

anxiety disorder, and social and other phobias (Broen et al., 2016).

Most PD patients suffer from cognitive decline or dementia during the course of the

disease. The prevalence of mild cognitive impairment is around 25% in individuals with

PD but without dementia (Litvan et al., 2011). The point prevalence of PD dementia

is approximately 30% and its cumulative prevalence is at least 75% for PD patients

surviving more than 10 years (Litvan et al., 2011). Cognitive impairment mostly affect

executive and visuo-spatial functions, rather than memory disturbances, and heavily

impacts functioning, caregiver burden and mortality (Goldman et al., 2018).

Sleep disturbances are common in PD and consist mainly of nighttime sleep dif-

ficulties such as insomnia, restless legs syndrome, rapid eye movement sleep behavior

10
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disorder, and sleep-disordered breathing, but also of excessive daytime sleepiness. The

prevalence of insomnia, based on physician interview, is estimated to be around 30–59%

(Chahine et al., 2017). Daytime sleepiness can make individuals with PD quit driving,

increasing caregiver burden. Sleepiness can be related to the disease itself, but is also

an adverse effect of dopamine replacement therapy.

The majority of PD subjects also suffer from gastrointestinal symptoms, constipa-

tion being considered the most prominent (Mertsalmi et al., 2017). Other gastrointesti-

nal symptoms include drooling, taste impairment, swallowing disorders (Fasano et al.,

2015), and irritable bowel syndrome (Mertsalmi et al., 2017).

Apart from constipation, other autonomic dysfunction occurs frequently, the most

common symptoms being orthostatic hypotension, urinary and sexual dysfunction, ab-

normal sweating and seborrhoea (Jankovic, 2008).

A number of neuro-ophthalmological abnormalities may be seen in patients with PD,

including visual hallucinations, ocular surface irritation, decreased blink rate, altered

tear film, blepharospasm and decreased convergence (Biousse et al., 2004).

Impulse control and related behaviors are common comorbidities and are strongly

associated with dopamine replacement therapy. Almost half of PD patients are expected

to develop impulse control disorders five years after PD onset (Corvol et al., 2018). The

four major ICDs that have been reported in PD are pathological gambling, compulsive

shopping, binge eating and hypersexuality (Weintraub and Claassen, 2017). Other

related impulsive-compulsive behaviors include dopamine dysregulation syndrome (Cilia

et al., 2014), punding (Evans et al., 2004) and hobbyism (Callesen and Damholdt, 2017).

1.1.6 Medications and their limitations

Contrary to Alzheimer’s disease, for which there exists no treatment that substantially

decreases the magnitude of the main symptoms, several therapies are effective at limit-

ing the decrease in quality of life of individuals with PD (Fahn, 2008). The most simple

yet efficient therapy is dopamine replacement therapy, which consists in replacing the

loss of dopamine due to the cell death in the basal ganglia. Its main classes of medi-

cations consist of levodopa, dopamine agonists, and inhibitors. Other therapies include

deep brain stimulation (Herrington et al., 2016) and exercise programs (Ahlskog, 2011).

Figure 1.2 and Figure 1.3 summarize the treatment options for PD.

Levodopa Levodopa is an abbreviation of L-3,4-dihydroxyphenylalanine and is the

precursor to dopamine (Fahn, 2008). Contrary to levodopa, dopamine itself is unable

to cross the blood-brain barrier and cannot be used to treat PD (Zahoor et al., 2018).

After absorption and transit across the blood-brain barrier, levodopa is converted into

the neurotransmitter dopamine by DOPA decarboxylase. Patients are usually adminis-

tered low dose of levodopa, with the dose being adjusted based on the patient’s response

to treatment and balanced against the adverse effects experienced. Although levodopa

11
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Early PD to prevent/delay disease progression

• Clinically useful: None to date

• Not useful: Pramipexole; Co Q10, Creatine

• Investigational: Selegiline, rasagiline, ropinirole, vitamin D, exercise

Early PD requiring symptomatic therapy

• Clinically useful: Non-ergot DA (piribedil, pramipexole IR and ER, ropini-
role IR, rotigotine), Ergot DA (cabergoline, pergolide); Levodopa prepara-
tions (IR, CR, ER), MAO-B inhibitors (selegiline and rasagiline); anticholin-
ergics

• Possibly useful: Non-ergot DA (ropinirole PR), Ergot DA (bromocriptine),
amantadine

Early or stable PD requiring adjunct therapy to levodopa

• Clinically useful: Non-ergot DA (piribedil, pramipexole IR and ER, ropini-
role IR, rotigotine), rasagiline, zonisamide; anticholinergics

• Possibly useful: Ergot DA (bromocriptine), amantadine

• Investigational: selegiline, early (up to 4 years) bilateral STN DBS

• Unlikely useful: Tolcapone

• Not useful: Entacapone, safinamide

Figure 1.2: Evidence-based medicine review of treatment options for motor symptoms
of early PD (reproduced from (Fox et al., 2018)).
CR: controlled release; DA: dopamine agonist; DBS: deep brain stimulation; ER: ex-
tended release; IR: immediate release; PR: prolonged release; STN: subthalamic nucleus.

12



1.1. Parkinson’s disease 13

Treating motor fluctuations

• Clinically useful: Non-ergot DA (pramipexole, ropinirole, rotigotine,
apomirphine intermittent injections, pergolide); levodopa ER; COMT in-
hibitors (entacapone; opicapone); MAO-B inhibitors (rasagiline, safinamide,
zonisamide); LCIG; bilateral DBS (STN or GPi)

• Possibly useful: Ergot DA (bromocriptine, cabergoline); istradefylline; tol-
capone; Non-ergot DA (apomorphine infusion)

• Investigational: Selegiline, rasagiline, ropinirole, vitamin D, exercise

Treating dyskinesia

• Clinically useful: Amantadine; clozapine; LCIG, bilateral DBS surgery
(STN or GPi); unilateral pallidotomy

Treating specific/general motor symptoms

• Clinically useful: Physiotherapy

• Possibly useful: Rivastigimine (gait and balance); Exercise-based move-
ment strategy training (gait and balance); formalized patterned exercises (gait
and balance); speech therapy (speech and swallowing); occupational therapy;
thalamic surgery (DBS or thalamotomy) (tremor)

• Investigational: Donepezil (gait and balance); methylphenidate (gait and
balance); memantine (gait and balance); cannibidiol; technology-based move-
ment strategies; acupuncture; rTMS; tDCS

Figure 1.3: Evidence-based medicine review of treatment options for motor symptoms
of treated PD optimized on levodopa (reproduced from (Fox et al., 2018)).
COMT: catechol-O-methyltransferase; CR: controlled release; DA: dopamine agonist;
DBS: deep brain stimulation; ER: extended release; GPi: globus pallidus interna; IR:
immediate release; LCIG: levodopa-carbidopa intestinal gel; MAO-B: monoamine oxi-
dase B PR: prolonged release; rTMS: repetitive transcranial magnetic stimulation; STN:
subthalamic nucleus; tDCS: tDirect Current Stimulation.
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is effective against the main motor symptoms, it comes up with side effects such as

dyskinesia (involuntary movements) and fluctuations in effectiveness (National Clinical

Guideline for Diagnosis and Management in Primary and Secondary Care, 2006). Lev-

odopa is also ineffective against several motor (gait, speech) and non-motor (cognitive,

sensory, vegetative) PD symptoms (You et al., 2018).

Dopamine agonists An agonist is a chemical that binds to a receptor and activates

the receptor to produce a biological response. Dopamine agonists stimulate the activity

of the dopamine system by binding to the dopaminergic receptors and, unlike levodopa,

do not need to be converted into dopamine (Zahoor et al., 2018). Initial treatment

with dopamine agonists allows for a delay in the use of levodopa, which may curtail the

impact of the problematic motor complications (Rascol et al., 2000). However dopamine

agonists are less potent than levodopa, and are less tolerated than levodopa with higher

rate of nausea and vomiting, insomnia, sleepiness, and hallucinations, particularly in the

elderly. Ergot DAs have also been progressively abandoned because of their association

with heart valve fibrosis (Corvol et al., 2007; Van Camp et al., 2004). One of the most

troublesome characteristic side effects of dopamine agonists is probably impulse control

disorders and related behaviors, including pathological gambling, hypersexuality, binge

eating, compulsive shopping, punding, and hobbyism.

Inhibitors of levodopa metabolism An inhibitor is a substance that decreases

the rate of, or prevents, a chemical reaction. Inhibiting enzymes that are involved

in dopamine degradation is the main feature of this class of medications. Monoamine

Oxidase B (MAO-B) is one of the main enzymes involved in the breakdown of dopamine,

thus reducing the activity of this enzyme results in increased dopaminergic activity

within the striatum (Zahoor et al., 2018). The intake of MAO-B inhibitors relieves

motor symptoms in PD patients, and as with dopamine agonists they may be used as

an initial treatment option. The main side effects of MAO-B inhibitors are increased

dyskinesia and headaches (Connolly and Lang, 2014). Catechol-O-methyl transferase

is another enzyme involved in dopamine as well as in levodopa degradation. COMT

inhibitors are used as adjunctive therapy to levodopa by prolonging its duration of

action (Zahoor et al., 2018). The most common adverse effects of both entacapone and

tolcapone, the most-used COMT inhibitors, are increased dyskinesia and diarrhoea in

up to 20% of the treated patients (You et al., 2018).

Others Levodopa, dopamine agonists and inhibitors are all designed to increase

dopaminergic activity in the striatum. A few drugs that act through non-dopaminergic

mechanisms are also used in the treatment of PD (Zahoor et al., 2018). Anticholinergics,

by acting as antagonists at cholinergic receptors, limit the activity of the neurotrans-

mitter acetylcholine. Their most common adverse effects include hallucinations, blurred
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vision, dry mouth, constipation, drowsiness, memory problems, and increased dyskine-

sia (Zahoor et al., 2018). Amantadine, which was initially developed as an antiviral

drug for treating flu, has subsequently been used for the treatment of PD. It may be

used to treat rigidity, rest tremor, and is also used to treat levodopa-induced dyskinesia

(Ory-Magne et al., 2014; Zahoor et al., 2018). While generally well tolerated, possible

adverse effects associated with the use of amantadine include hallucinations, confusion,

blurred vision, impaired concentration, nausea and vomiting (Zahoor et al., 2018).

1.1.7 Motor complications

Despite its spectacular effects on the core motor symptoms of Parkinson’s disease, lev-

odopa is not a perfect drug as it does not fulfil all the needs of PD patients. The long-

term outlook for PD patients is hampered by the occurrence of motor complications:

motor fluctuations and dyskinesia. Levodopa and inhibitors of levodopa metabolism are

notably associated with increased dyskinesia (You et al., 2018). Dyskinesia and motor

fluctuations affect virtually all patients but the delay in their occurrence is highly vari-

able. More than 90% of PD patients are expected to experience motor complications

after 10 years (Hely et al., 1999; Mazzella et al., 2005).

Motor fluctuations Motor fluctuations are characterised by wearing-off, that is wors-

ening or reappearance of motor symptoms before the next levodopa dose resulting in an

“off” state that improves when the next dose is taken (“on” state) (You et al., 2018).

There are two kinds of response to levodopa: the short duration response (SDR) and

the long-duration response (LDR). The former corresponds to the motor improvement

following a single dose of levodopa and lasts from minutes to hours (Muenter and Tyce,

1971). Its effect is immediately lost if levodopa is stopped. The latter has a slower

development and builds up during repeated levodopa dosing, taking days to weeks to

come into effect, but also decays gradually over a similar span of time after levodopa

has been withdrawn (Anderson and Nutt, 2011). Both mechanisms are present from

the beginning of PD treatment. The SDR accounts for a half to two thirds of the mo-

tor response, while the LDR accounts for the remaining part (Ogasahara et al., 1984).

However, their effects are not strictly additive but overlapping and even show a different

time course as the disease progresses. In the early stages of PD, the LDR predominates

and masks most of the SDR, thus patients have a stable response to levodopa (Nutt

and Holford, 1996). With disease progression and long-term levodopa treatment, the

LDR decreases and the SDR shortens, with a more immediate onset and decline and

a greater difference between baseline and peak response. Therefore, the masking of

the SDR by the LDR dwindles and patients experience motor fluctuations (Nutt and

Holford, 1996).
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Levodopa-induced dyskinesia Dyskinesias are abnormal movements of the limbs,

the trunk and the face induced by the dose of levodopa. Many patients do not recognize

levodopa-induced dyskinesias and do not experience any disability from the movements.

As is, treating every dyskinesia is not necessarily essential, and clinicians focus on

preventing worsening or reducing only disabling, bothersome dyskinesia with medical

or surgical strategies (Aquino and Fox, 2015). Dyskinesia is most common at the peak-

level of levodopa action, and consists of chorea, dystonia, and ballism, and to a lesser

extent myoclonus (Nutt, 1990). Choreic movements in the limbs are the most common

form of peak-dose dyskinesia, but dystonic posturing in the limbs can also occur. These

involuntary movements may be initially mild and mainly involve the neck, and less

commonly affect lips and jaw. They later spread to involve the trunk and can become

more bothersome movements (Aquino and Fox, 2015). Myoclonus is a brief, involuntary,

irregular twitching of a muscle or a group of muscles. Levodopa-induced myoclonus has

been described as either spontaneous, action induced, or stimulus sensitive, and occurs

within 10 to 20 minutes of levodopa administration (Aquino and Fox, 2015). Dyskinesia

also occurs at low dose of levodopa action. Dyskinesia occurring during off-period is

predominantly dystonic and mostly affects the legs and feet (Luquin et al., 1992). Off-

period dystonia may completely disappear after withdrawal of levodopa for a few days

or weeks (Aquino and Fox, 2015). When the levels of levodopa are rising and falling,

at the beginning or end-of-dose respectively, dyskinesia can also occur and is known

as “diphasic dyskinesia”. Diphasic dyskinesias are less common, tend to mainly affect

the legs, and can involve slow stereotypical alternating leg movements (Luquin et al.,

1992).

1.2 Impulse control disorders

Impulse control disorders include conditions involving problems in the self-control of

emotions and behaviors such as pyromania or kleptomania (American Psychiatric As-

sociation, 2013). The fifth edition of the Diagnostic and Statistical Manual of Mental

Disorders (American Psychiatric Association, 2013) has a specific chapter on disruptive,

impulse-control and and conduct disorders. Impulse control disorders have been studied

among college students (Leppink et al., 2016b; Odlaug and Grant, 2010) and elderly

patients (Tamam et al., 2014), as well as in several other disorders.

1.2.1 Definition of specific impulse control disorders

Intermittent explosive disorder The main feature of intermittent explosive dis-

order is recurrent behavioral outbursts representing a failure to control aggressive im-

pulses. They are manifested by either verbal or physical aggression, or destruction

or belongings. The magnitude of aggressiveness during these outbursts highly exceeds

the provocation or any anticipated psychosocial stressors. The recurrent outbursts
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1.2. Impulse control disorders 17

are not purposeless, unpremeditated, and cause either impairment in occupational or

interpersonal functioning, or marked distress in the individual (American Psychiatric

Association, 2013).

Kleptomania Kleptomania is characterized by recurrent failures to resist impulse to

steal objects that are not needed for their monetary value or for personal use. Individuals

with kleptomania feel an increasing sense of tension shortly before committing the

theft, then pleasure, relief or gratification at the time of commitment. Stealing is not

committed in response to a hallucination or a delusion, or to express vengeance or anger.

(American Psychiatric Association, 2013)

Pyromania Pyromania is characterized by the multiple episodes of deliberate and

purposeful fire setting. Persons with pyromania experience affective or tension arousal

before setting a fire. They are interested in fire in situational contexts and are often

regular watchers at fires. The fire setting is not done for profit and does not result from

impaired judgement (American Psychiatric Association, 2013).

Pathological gambling The main feature of pathological gambling is recurrent and

persistent dysfunctional patterns of gambling behavior leading to clinically significant

distress or impairment. Pathological gamblers may need to gamble increasing amounts

of money in a bid to achieve the desired excitement, may be irritable or restless when

trying to cut down or stop gambling, often gamble when feeling distressed or lie to

conceal the amount of involvement with gambling. The gambling behavior is not better

explained by a manic episode. (American Psychiatric Association, 2013).

Compulsive sexual behavior Compulsive sexual behavior, also called hypersexual-

ity, is characterized by persistently or recurrently present sexual or erotic thoughts or

fantasies and desire for sexual activity (American Psychiatric Association, 2013). Indi-

viduals with this disorder feel driven or compelled to perform the behavior, which may

cause distress (Dell’Osso et al., 2006). Impulsive-compulsive sexual disorder include

unconventional sexual behaviors with a disturbance in the object of sexual gratification

or in the expression of sexual gratification, and conventional sexual behaviors that have

become excessive or uncontrolled (Dell’Osso et al., 2006).

Internet addiction disorder Internet addiction disorder is defined as a persistent

and recurrent use of the Internet (American Psychiatric Association, 2013). Major

symptoms of this disorder include preoccupation with the Internet, unsuccessful re-

peated efforts to decrease Internet use, staying online longer than intended, jeopardizing

significant relationship, job, educational or career opportunity because of the Internet,
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lying to relatives or physicians about the involvement with the Internet, and using the

Internet a way of escaping from problems or of regulating mood (Young, 1998).

Compulsive buying disorder Compulsive buying disorder is characterized by ex-

cessive shopping cognitions and buying behavior that leads to distress or impairment

(Black, 2007). Individuals with compulsive buying disorder are preoccupied with shop-

ping and spending, and devote significant time to these behaviors. Shopping and spend-

ing are highly associated as window shopping is an uncommon pattern. Compulsive

buying behaviors can be split into four phases: anticipation, preparation, shopping,

and spending (Black, 2007). In the first phase, individuals develop preoccupations and

thoughts with either shopping or having a specific item. The second phase consists in

preparing for shopping and spending, such as deciding where to go. The third phase

involving shopping and spending itself, which often procures high excitement and even

sexual feelings (Schlosser et al., 1994). The fourth phase consists of the moment after

the purchase, which is often experienced as a disappointment or a letdown. Common

purchased items during these behaviors include clothing, shoes, and household items

(Christenson et al., 1994; Miltenberger et al., 2003; Schlosser et al., 1994).

Binge eating disorder The main feature of binge eating disorder is recurrent episodes

of binge eating. An episode of binge eating is characterized by eating, in a discrete span

of time, a much larger amount of food than most people would eat under similar cir-

cumstances and in a similar period of time, and a sense of lack of control over eating

during this span of time. These episodes are often associated with eating much more

quickly than normal, eating until feeling uncomfortably full, eating large food quantities

when not feeling physically hungry, eating alone because of embarrassment, and feel-

ing disgusted with oneself, depressed, or very guilty afterward. (American Psychiatric

Association, 2013)

Excoriation disorder Excoriation disorder, also called skin picking disorder, is char-

acterized by recurrent skin picking resulting in skin lesions (American Psychiatric Asso-

ciation, 2013). Individuals with excoriation disorder experienced repeated attempts to

curtail or stop skin picking. The skin picking causes significant distress or impairment

in important areas of functioning and cannot be attributed to the physiological effects

of any medical condition. Although it is now classified as an obsessive-compulsive disor-

der (American Psychiatric Association, 2013), excoriation disorder used to be classified

in the impulse disorder category in the tenth revision of the International Statistical

Classification of Diseases and Related Health Problems (Black and Grant, 2014).
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1.2.2 Studies on impulse control disorders in subpopulations

Impulse control disorders have been studied in subpopulations, defined by an age range

or another disorder.

Besides Parkinson’s disease, which we will detail in the next section, the most studied

disorders are obsessive-compulsive disorders (Fontenelle et al., 2005; Grant et al., 2006).

ICDs and obsessive-compulsive disorders overlap in their phenomenology, co-morbidity,

pathophysiology and family history (Fontenelle et al., 2011). Compulsive and impulsive

disorders have been viewed at the opposite ends of a single dimension: the former

motivated by a desire to avoid harm and the latter by reward-seeking behavior (Fineberg

et al., 2010). The prevalence of ICDs in patients with obsessive-compulsive disorders

is estimated to be around 11–35%, skin picking being the most common comorbid ICD

(Fontenelle et al., 2005; Grant et al., 2006, 2010).

A review on ICDs and bipolar disorder highlighted the high number of common

features for both disorders: phenomenological similarities, including pleasurable, dan-

gerous, or harmful behaviors, impulsivity, and similar affective symptoms and dysregu-

lation; onset in late childhood or early adulthood with episodic and/or chronic course;

high comorbidity with one another and comparable comorbidity with other psychiatric

disorders; high familial rates of mood disorder; and response to mood stabilizers and

antidepressants (McElroy et al., 1996).

Impulse control disorders have been reported in Tourette syndrome (Jankovic and

Kurlan, 2011), restless leg syndrome (Cornelius et al., 2010) and Perry syndrome (Mishima

et al., 2015).

Impulse control disorders have also been studied in university students. In this

subpopulation, the prevalence is estimated to be around 10% (Odlaug and Grant, 2010)

and are associated with stress (Leppink et al., 2016b) and depression (Leppink et al.,

2016a). Among elderly people, the prevalence is estimated to be around 17% and ICDs

are associated with childhood conduct disorder and alcohol/substance abuse (Odlaug

and Grant, 2010).

1.3 Impulse control disorders in Parkinson’s disease

Since the first reports of impulse control disorders in Parkinson’s disease in the early

2000s, impulse control disorders have been increasingly recognized. Given their potential

impact on life functioning, including activities of daily living, interpersonal relationships,

and social-occupational functioning, clinicians growingly pay specific attention to these

impulsive behaviors (Weintraub and Claassen, 2017). ICDs are actually not symptoms

of Parkinson’s disease itself, but adverse effects of dopamine replacement therapy (de la

Riva et al., 2014). ICDs have been broadly studied in PD, from prevalence to assessment

to comorbidities.
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1.3.1 Epidemiology

One of the earliest case reports dates back to 2003, which identified nine patients (0.5%

of the sample) with pathological gambling (Driver-Dunckley et al., 2003). In 2010, the

DOMINION study aimed at evaluating the point prevalence estimates of the four main

ICDs among 3090 medicated PD patients in the United States and Canada (Weintraub

et al., 2010a). One or more ICDs were identified in 13.6% of patients (compulsive

buying in 5.7%, gambling in 5.0%, binge-eating disorder in 4.3%, and compulsive sex-

ual behavior in 3.5%), with 3.9% of participants having two or more ICDs. A more

recent longitudinal analysis of ICDs in a French research cohort estimated the 5-year

cumulative incidence to be about 46% (Corvol et al., 2018).

As for any psychiatric disorder, environmental factors may influence the presence

of ICDs in PD. In particular, cultural factors seem to impact the prevalence of specific

ICDs. Studies in Turkey and India reported very low prevalences for pathological gam-

bling (Kenangil et al., 2010; Sarathchandran et al., 2013), while this ICD has one of the

highest prevalence in most Western studies (Baig et al., 2019; Garcia-Ruiz et al., 2014;

Hurt et al., 2014; Weintraub et al., 2010a). Gambling is illegal in Turkey and heavily

restricted in India, whereas it is legal in Western countries, and an important part of

the American culture. Various studies lack uniformity to assess ICDs, and the definition

itself of ICDs is subject to cultural differences (Weintraub and Claassen, 2017).

1.3.2 Assessment and diagnosis

As impulse control disorders have been increasingly recognized in Parkinson’s disease,

several screening tools and rating scales have been developed and used to assess and

diagnose them.

The Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Dis-

ease Rating Scale (MDS-UPDRS) has an item entitled Features of dopamine dysregu-

lation syndrome in the part assessing non-motor aspects of experiences of daily living

(Goetz et al., 2008). This single item encompasses impulse control disorders, dopamine

dysregulation syndrome, punding, and hobbyism.

The Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease (QUIP)

was developed as a screening instrument for ICDs and related behaviors and is struc-

tured to be consistent with diagnostic criteria or defining clinical characteristics as de-

scribed in the Diagnostic and Statistical Manual of Mental Disorders (Weintraub et al.,

2009). Its three sections focus on (i) the four most common ICDs, (ii) punding and

hobbyism, and (iii) compulsive medication use.

The Rating Scale version of the QUIP (QUIP-RS) was derived from the QUIP to

measure the severity of ICDs (Weintraub et al., 2012). Each item is rated on a 5-point

Likert scale and assesses the frequency of the symptoms with a range of scores from 0

(never) to 4 (very often). The sections are similar than the ones in the QUIP, although a
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slight difference is that punding and hobbyism have been grouped together (Evans et al.,

2019). This scale has been validated in several countries (Choi et al., 2020; Marques

et al., 2019; Probst et al., 2014).

The Ardouin Scale of Behavior in Parkinson’s Disease consists of eighteen items

addressing non-motor symptoms, grouped in four parts: general psychological evalua-

tion, apathy, non-motor fluctuations and hyperdopaminergic behaviors (Ardouin et al.,

2009).

The Scale for Outcomes in Parkinson’s Disease – Psychiatric Complications is a

screening and severity scale that consists of a 7-item questionnaire (Visser et al., 2007).

Two items are related to impulsive control disorders: one item for compulsive shopping

and pathological gambling, and another one for hypersexuality. Each item score range

from 0 (no symptoms) to 3 (severe symptoms) (Evans et al., 2019).

The Minnesota Impulsive Disorders Interview was originally developed in 2008 for

the diagnosis of compulsive buying, trichotillomania, kleptomania, pyromania, intermit-

tent explosive disorder, pathological gambling, and compulsive sexual behavior (Cham-

berlain and Grant, 2018; Grant, 2008). The original version was revised to match the

changes made in the fifth edition of the Diagnostic and Statistical Manual of Mental

Disorders (Chamberlain and Grant, 2018).

1.3.3 Associations

A wide range of factors have been associated with impulse control disorders in Parkin-

son’s disease, from personality traits to psychiatric comorbidities to medications.

Demographics Significant differences between sexes have been observed, with men

developing more pathological gambling and hypersexuality disorders and women devel-

oping more compulsive buying and eating disorders (Weintraub and Claassen, 2017).

A younger age has been associated with ICDs in PD in numerous studies (Callesen

et al., 2014; Poletti et al., 2013; Pontieri et al., 2015; Weintraub et al., 2010a). The DO-

MINION study, with 3090 PD patients from the United States and Canada, reported

that PD patients with ICDs were most likely unmarried and living in the United States

(Weintraub et al., 2010a).

Personality traits Unsurprisingly, the most assessed personality trait was impul-

sivity, with studies reporting higher impulsivity scores (Sáez-Francàs et al., 2016; Voon

et al., 2011) and greater choice impulsivity (Sáez-Francàs et al., 2016). PD patients with

ICDs were described as individuals with a higher level of neuroticism and lower levels of

agreeableness and conscientiousness (Callesen et al., 2014), particularly among PD pa-

tients with pathological gambling (Gescheidt et al., 2016) or hypersexuality (Sachdeva

et al., 2014). These patients were also reported to have ineffective coping skills (Olley

et al., 2015).
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Addictive disorders A family history of pathological gambling was significantly

more prevalent among PD patients with ICDs than those without (Weintraub et al.,

2010a). Past and current cigarette smoking has been associated with ICDs (Valença

et al., 2013; Weintraub et al., 2010a), so was substance use of caffeine (Bastiaens et al.,

2013; Gescheidt et al., 2016), tea, and alcohol (Ramírez Gómez et al., 2017).

Psychiatric comorbidities Mental illness was reported to be associated with the

presence of ICDs, in particular anxiety and depression (Grall-Bronnec et al., 2018;

Olley et al., 2015). Higher score of depression (Callesen et al., 2014; Joutsa et al., 2012;

Vela et al., 2016; Voon et al., 2011), symptoms of depression (Gescheidt et al., 2016;

Pontone et al., 2006), and a history of depression (Auyeung et al., 2011) have been

found to be correlated with ICDs. Higher score of anxiety (Leroi et al., 2012; Pontieri

et al., 2015; Sachdeva et al., 2014; Voon et al., 2011), trait anxiety (Sáez-Francàs et al.,

2016), and a history of anxiety (Auyeung et al., 2011) were also found to be associated

with ICDs. Only one study reported a higher obsessive-compulsive score (Voon et al.,

2011), although both disorders share several features.

Sleep disturbances PD patients with ICDs have been reported to have an increased

prevalence of sleep disturbances, including daytime sleepiness, worse sleep efficiency,

and restless leg syndrome symptoms (Marques et al., 2018; O’Sullivan et al., 2011;

Pontieri et al., 2015; Scullin et al., 2013). A strong association was shown between ICD

symptoms, specially pathological gambling, and rapid eye movement sleep behavior

disorder (Fantini et al., 2015, 2018, 2019, 2020; Ramírez Gómez et al., 2017).

Disease-related factors Several disease-related factors have been associated with

ICDs. Younger age of PD onset (Callesen et al., 2014; Lee et al., 2010; Pontieri et al.,

2015; Ye et al., 2011) and longer disease duration (Callesen et al., 2014; Lee et al., 2010;

Pontieri et al., 2015) have been found correlated with ICDs. Association between ICDs

and higher motor impairment has also been reported (Bastiaens et al., 2013; Callesen

et al., 2014; Leroi et al., 2012). A negative association between motor fluctuations or

dyskinesias and ICDs has been reported in one study (Ramírez Gómez et al., 2017).

In particular, a higher score on the MDS-UPDRS Part I was found in two studies

(Rodríguez-Violante et al., 2014; Sáez-Francàs et al., 2016), but it must be noted that

one of the item of the MDS-UPDRS Part I is about dopamine dysregulation syndrome.

Medications Dopamine replacement therapy, specially dopamine agonists, has been

strongly associated with ICDs. Ever use, longer cumulative duration, and higher cu-

mulative dose of DAs have been correlated with ICDs (Corvol et al., 2018). The six

dopamine agonists that have been approved by the US Food and Drug Administration

(pramipexole, ropinirole, cabergoline, bromocriptine, rotigotine, and apomorphine) have
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all been associated with ICDs (Grall-Bronnec et al., 2018). Dopamine agonists with a

preferential affinity for D2-like receptors (D2 and D3 receptors), that is pramipexole and

ropinirole, have been reported to have the strongest associations (Moore et al., 2014).

To a lesser extent, associations with levodopa (Pontieri et al., 2015; Weintraub et al.,

2010a) and amantadine (Weintraub et al., 2010b) have also been reported.

Genetic factors Association between ICDs and several single-nucleotide polymor-

phisms (SNPs) have been suggested in the following genes: DRD3 (Castro-Martínez

et al., 2018; Krishnamoorthy et al., 2016; Lee et al., 2009), GRIN2B (Lee et al., 2009;

Zainal Abidin et al., 2015), HTR2A (Kraemmer et al., 2016; Lee et al., 2012), ANKK1

(Hoenicka et al., 2015), DRD1 (Erga et al., 2018; Zainal Abidin et al., 2015), DRD2

(Kraemmer et al., 2016; Zainal Abidin et al., 2015), OPRM1 (Cormier-Dequaire et al.,

2018), DAT1 (Cormier-Dequaire et al., 2018), LRRK2 (Simuni et al., 2020), GBA

(Simuni et al., 2020), OPRK1 (Cormier-Dequaire et al., 2018; Kraemmer et al., 2016),

and SLC22A1 (Redenek et al., 2019). However a few studies did not report associations

between ICDs and several SNPs from the following genes: DRD2 (Cormier-Dequaire

et al., 2018; Vallelunga et al., 2012), COMT (Vallelunga et al., 2012), DAT1 (Vallelunga

et al., 2012), GRIN2B (Cormier-Dequaire et al., 2018), and HTR2A (Cormier-Dequaire

et al., 2018). The Parkinson’s disease polygenic risk score has been reported not to be

associated with ICDs (Ihle et al., 2020).

1.3.4 Prediction

While the literature on correlates with ICDs is large, studies focusing on the prediction

of ICDs are very scarce: only three studies with a prediction task have been identified

(Erga et al., 2018; Jesús et al., 2020; Kraemmer et al., 2016).

Kraemmer and others (Kraemmer et al., 2016) developed a clinical-genetic model to

predict incident impulse control disorders in PD. The clinical features consisted of age,

sex, PD treatment and duration of follow-up. The genetic variables consisted of thirteen

candidate variants selected from the following genes: DRD2-3, DAT1, COMT, DDC,

GRIN2B, ADRA2C, SERT, TPH2, HTR2A, OPRK1, and OPRM1. They worked on

the Parkinson’s Progression Markers Initiative (PPMI) database, which is an ongoing

longitudinal multi-centre international study designed to identify biomarkers of PD

progression in de novo and drug-naïve (at baseline) patients with PD. The algorithm

trained with the aforementioned variables was a logistic regression.

Erga and others (Erga et al., 2018) also developed a clinical-genetic model, with

slight differences compared to the previous study. The clinical features consisted only

of age and PD treatment. The genetic variables consisted of fifty-six candidate variants

selected from the following genes: ADRA2C, DRD1-5, SLC6A3, DDC, COMT, SLC6A4,

TPH2, HTR2A, OPRM1, OPRK1, GRIN2B, and BDNF. The research cohort used

was the Norwegian ParkWest study, which is a population-based longitudinal study of
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incident PD. The trained algorithm was a logistic regression with an elastic-net penalty

(Zou and Hastie, 2005).

Jesús and others (Jesús et al., 2020) also developed a clinical-genetic model. The

clinical features consisted of sex, age, age at PD onset, years of disease evolution, DA

equivalent daily dose, and levodopa equivalent daily dose. The genetic variables con-

sisted of twenty genetic variants selected from the following genes: DDC, DRD1, DRD2,

DRD3, COMT, HTR2A, GRIN2B, TPH2, OPRM1, OPRK1, ADRA2C, and BDNF.

They worked on a research cohort from the Movement Disorder Clinic of the University

Hospital Virgen del Rocío in Seville, Spain. They also trained logistic regression models

with the aforementioned variables.

1.3.5 Other behavioral addictions

Although they are not impulse control disorders, several other related behaviors have

been reported in Parkinson’s disease and can have a substantial negative impact on the

quality of life of the patients. They are often referred to as other behavioral addictions

or related behaviors in the literature and consist of dopamine dysregulation syndrome,

punding and hobbyism (Weintraub and Claassen, 2017).

Dopamine dysregulation syndrome is characterized by the intake of large doses of

dopaminergic drugs in excess of that required to control motor symptoms, endless re-

quests to physicians for larger doses of dopamine replacement therapy or self-escalation

of these medications without medical approval despite severe social destructive behav-

iors (Cilia et al., 2014). The prevalence is estimated to be around 34% in an advanced

stage of PD (Cilia et al., 2014). A few cases have been reported in restless leg syndrome

(Leu-Semenescu et al., 2009; Salas et al., 2009). A recent systematic review identified

only nine case reports of dopamine dysregulation syndrome in non-Parkinson’s disease

(Cartoon and Ramalingam, 2019).

Punding was first used to describe the behavior of people addicted to amphetamine

(Rylander, 1972; Schiørring, 1981). Punding is a complex stereotyped behavior charac-

terized by an intense fascination with repetitive manipulations of technical equipment,

hoarding, grooming, continual handling, examining, and sorting common objects, point-

less driving or walkabouts, and the engagement in extended monologues devoid of con-

tent (Evans et al., 2004). Punding behaviors often arise from particular habits or pas-

times: people who regularly tinkered with technical objects are more likely to develop

this kind of punding. Punding is also influenced by subject’s previous occupation: office

workers and clerks may shuffle papers or fiddle purposelessly with computers while a

seamstress may collect and arrange buttons (Spencer et al., 2011). A study reported

the case of a 23-year-old Parkinsonian woman who developed unusual behaviors such

as ceaseless sewing, disassembly and reassembly of phones, and coloring of drawings

(El Otmani et al., 2015).
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Hobbysim is defined as an excessive interest in one or several hobbies such as physical

activity, artistic endeavor, do-it-yourself or gardening. For instance, a study reported a

77-year-old Parkinsonian man who started to show excessive hobbyism of painting four

years after disease onset (Matsuda et al., 2018).

1.4 Machine learning

Machine learning is the process of automatically learning from data. Examples of tasks

that machine learning can address include (Hastie et al., 2009):

• Predict the 10-year risk of future coronary heart disease.

• Estimate the amount of glucose in the blood of a diabetic person given the infrared

absorption spectrum of that person’s blood.

• Recognize the numbers in a handwritten ZIP code from a digitized image.

• Identify the risk factors for prostate cancer based on clinical and demographic

variables.

In most scenarios, one has a target (outcome) measurement that one wants to predict

from a set of features. The outcome can be quantitative (amount of glucose) or qual-

itative (presence or absence of a specific disease). Quantitative outcomes correspond

to regression tasks, while qualitative outcomes correspond to classification tasks. One

has a training set to train an algorithm and a test set (replication set) to evaluate its

performance. These scenarios are supervised learning problems, because the learning

process is supervised by the target.

The next sections introduce the notations used for the data and some of the most

common machine learning algorithms.

1.4.1 Notations

Let n be the number of samples and m be the number of features. We consider data sets

consisting of a n×m matrix X representing the input data and a n vector representing

the target data:
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When longitudinal data is available, that is data at several time points, a time index is

added:
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...

x
(t)
n






=







x
(t)
11 . . . x

(t)
1m

...
. . .

...

x
(t)
n1 . . . x

(t)
nm







, y(t) =







y
(t)
1
...

y
(t)
n







and the input matrices and target vectors are available at several time points:

(

X(1), . . . ,X(t), . . . ,X(T )
)

,
(

y(1), . . . ,y(t), . . . ,y(T )
)

When only one sample is considered, the sample index is omitted. Likewise, when

only one time point, the time index is omitted. The input data is thus the vector x and

the target data is y.

In the case of regression, y is a real number. In the case of classification, y is a single

label. In particular, for binary classification, we consider that both classes are denoted

+1 and −1, that is y ∈ {−1,+1}.

The objective is to predict y given x. The prediction is denoted ŷ. The most general

formulation is:

ŷ = g(f(x))

where f is the decision function and g is the final prediction. For regression tasks, g is

the identity function, and the decision function is the final prediction.

1.4.2 Algorithms

Linear models

A linear model is a model that linearly combines the features:

f(x) = x⊤β = β0 +
m∑

j=1

βjxj

The vector β consists of:

• the intercept (constant) β0, and

• the coefficients (β1, . . . , βm), where each coefficient βj is associated to the feature

xj .

The vector β defines an hyperplane and f(x) corresponds to the distance of x to this

hyperplane. A hyperplane is a subspace whose dimension is one less than that of the

original space. For instance, in the two-dimensional case, a hyperplane is a line. In the

the three-dimensional case, a hyperplane is a plane.
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is that each tree starts the training process all over again. Boosting is a technique

that sequentially trains weak algorithms and sums them to obtain a strong algorithm

(Breiman, 1996). Gradient boosting is a generalization of boosting by allowing opti-

mization of an arbitrary loss function (Breiman, 1997). Gradient boosting algorithms

can be seen as iterative functional gradient descent algorithms (Friedman, 2001; Ma-

son et al., 2000). Gradient boosting is often used with decision trees, hence the name

gradient tree boosting.

More specifically, a gradient boosting algorithm is the sum of weak algorithms:

f(x) = f0(x) + f1(x) + . . .+ fH(x) =
H∑

h=0

fh(x)

and each weak algorithm is trained using functional gradient descent on the precedent

weak algorithm:

fh(x) = fh−1(x)− γh

n∑

i=1

L (yi, fh−1(xi))

γh = argmin
γ

n∑

i=1

L
(
yi, fh−1(xi)− γ∇fh−1

L (yi, fh−1(xi))
)

where L is the loss function that measures how good the predictions are. The lower,

the better the predictions are, thus γh is the argument of the minimum.

Artificial Neural Network

Artificial neural networks are algorithms that can represented by a network diagram as

in Figure 1.9. They consist of a sequence of layers, allowing for extraction of high-level

features from structured or unstructured data. A layer is often called an artificial neuron

due to its similarity with a biological neuron. The artificial neuron receives one or more

inputs and combines them to produce an output. The output is analogous to the axon

of a biological neuron, and its value propagates to the input of the next layer, similarly

to a synapse. Like electrical circuits, layers can be connected in series or in parallel,

the former being much more common than the latter. The first layer is the input layer,

consisting of the input data, and the final layer is the output layer, consisting of the

prediction.

Several types of layers have been developed to deal with different types of data.

Fully connected layers apply a linear transformation of the input followed by a non-

linear activation function. Convolutions are commonly used for images and time series

because each element of the input is strongly correlated to its neighbors. Recurrent

units are dedicated to sequential data as they can take as input a variable number of

elements. A typical application is natural language processing, because the number of
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x1

x2

...

xm

h1

h2

h3

...

hH

ŷ

Hidden
layer

Input
layer

Output
layer

Figure 1.9: Example of an artificial neural network. This neural network has three
layers: the input layer with the input features (x1, . . . , xm), the hidden layer with the
hidden features (h1, . . . , hH) extracted from the input features, and the output layer
with the prediction ŷ made from the hidden features. This type of architecture is
known as a multilayer perceptron.

words in a sentence is not constant. They can also be applied to longitudinal data.

Artificial neural networks typically have many parameters to be learned, with or-

ders of magnitude ranging from thousands to billions of parameters. Training such

algorithms is difficult as it requires a lot of data and computing power to estimate these

parameters. Although research on artificial neural networks dates back to the late 1960s

(Ivakhnenko and Lapa, 1967), their rise only occurred in the early 2010s. In 2012, the

winning team of the ImageNet LSVRC-2010 contest used deep convolutional neural net-

works (Krizhevsky et al., 2012). The large increase of data and the constant progress in

hardware broadened the applications of artificial neural networks and deep learning to

many fields, including machine translation, object detection, image classification, chat

bots, and so on.

As longitudinal cohorts naturally provide longitudinal data, the next section de-

scribes more precisely how recurrent neural networks work.

Recurrent neural networks

One of the key concepts of recurrent neural networks (RNNs) (Rumelhart et al., 1986)

is sharing parameters across different parts of a model. Parameter sharing makes it

possible to extend and apply the model to examples of different lengths, and generalize

across them (Goodfellow et al., 2016).

A recurrent neural network is defined by the following recurrent equation

h(t) = f(h(t−1),x(t);θ)

and is illustrated in Figure 1.10. The hidden state at time t, h(t), is driven by:
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h
(τ)

x
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Figure 1.10: Main concept of a recurrent neural network. The hidden state at time t,
h(t), is derived from the hidden state at time t − 1, h(t−1), and the external signal at
time t, x(t).

• the hidden state at time t− 1, h(t−1),

• an external signal at time t, x(t), and

• the parameters of the RNN, θ.

There is no time index for θ since θ is shared across the different time points. Intuitively,

h(t) represents the information extracted by the RNN at time t from (x(1), . . . ,x(t)) and

is computed from:

• the information extracted by the RNN at time t− 1, h(t−1), and

• the external signal at time t, x(t),

which simply means that the extracted information is updated based on the new obser-

vation of the external signal.

The function f defines the relationship between h(t), h(t−1) and x(t). Several func-

tions have been developed and evaluated in the literature. We will briefly present the

most used functions, often called units.

Vanilla Recurrent Neural Network The vanilla RNN unit was introduced by

Rumelhart et al. (1986) and is illustrated in Figure 1.11. The hidden state at time t, h(t),

is a linear combination of the hidden state at time t− 1, h(t), and of the external signal

at time t, x(t), followed by an activation function, generally the hyperbolic tangent:

h(t) = tanh
(

Wihx
(t) + bih +Whhh

(t−1) + bhh

)

One of the appeals of RNNs is their theoretical capability of connecting previous

information to the present task. Unfortunately, the vanilla RNN unit is too simple to

handle long dependencies in practice and suffers from the vanishing gradient problem.

Long Short-Term Memory The Long Short-Term Memory (LSTM) unit, intro-

duced by Hochreiter and Schmidhuber (1997), was explicitly designed to avoid the

long-term dependency problem and is illustrated in Figure 1.12. The LSTM unit has a
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x
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Figure 1.11: Vanilla recurrent neural network unit. The hidden state at time t, h(t), is
a linear combination of the hidden state at time t − 1, h(t), and of the external signal
at time t, x(t), followed by an activation function.

cell state (C) and four gates (f , C̃, i and o) that are updated at each time using the

following equations:

f (t) = σ
(

Wifx
(t) + bif +Whfh

(t−1) + bhf

)

i(t) = σ
(

Wiix
(t) + bii +Whih

(t−1) + bhi

)

o(t) = σ
(

Wiox
(t) + bio +Whoh

(t−1) + bho

)

C̃(t) = tanh
(

Wigx
(t) + big +Whgh

(t−1) + bhg

)

C(t) = f (t) ×C(t−1) + i(t) × C̃(t)

h(t) = o(t) × tanh
(

C(t)
)

The cell state is the key component of the LSTM unit. The LSTM unit has the ability

to add or remove information to the cell state, carefully regulated by the gates. The

forget gate f controls what the cell state must forget, while the input gate i and the

candidate gate C̃ regulates the new information added to the cell state. Finally, the

output gate o controls which information of the cell state goes in the hidden state.

Gated Recurrent Unit The Gated Recurrent Unit was introduced by Cho et al.

(2014) and is a variant of the LSTM unit with no output gate. The GRU has fewer

parameters than the LSTM unit and has been reported to exhibit better performance

on some smaller datasets (Chung et al., 2014). The GRU consists of three gates (r, z
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Figure 1.12: Long Short-Term Memory unit. The hidden state is updated via the the
new observation, the cell state, and the four gates.

and h̃) that are updated using the following equations:

z(t) = σ
(

Wizx
(t) + biz +Whzh

(t−1) + bhz

)

r(t) = σ
(

Wirx
(t) + bir +Whrh

(t−1) + bhr

)

h̃(t) = tanh
(

Winx
(t) + bin + r(t) ×

(

Whnh
(t−1) + bhn

))

h(t) =
(

1− z(t)
)

× h(t−1) + z(t) × h̃(t)

The reset gate r allows for resetting the hidden state with the observation x, creating

the candidate gate h̃. The update gate z allows for updating the hidden state with the

candidate gate h̃.

1.4.3 Regularization

Most machine learning algorithms are trained by minimizing a cost function:

min
θ

c(θ)

The cost function c measures the difference between the predictions of the algorithm

and the true values of the target. The lower the loss function, the better the predictions.

Fitting the training data consists in iteratively updating the parameters of the algorithm

θ to minimize the loss function. However, if the model is too complex, its error on the

training set is much lower than on the test, that is generalization (replication) on new
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Figure 1.13: Gated Recurrent Unit. The Gated Recurrent Unit is a variant of the Long
Short-Term Memory unit with no output gate (and therefore no cell state). The hidden
state is updated via the new observation and the three gates.

observations is suboptimal. This phenomenon is known as overfitting (see Figure 1.14).

A common approach to avoid overfitting is to add a regularization term in the cost

function that limits the complexity of the model:

min
θ

c(θ) + λ× Reg(θ)

The value of λ corresponds to the weight of the regularization in the loss function: the

higher, the lower the complexity of the model. To illustrate the effect of regularization,

we generate a toy data set from the following distributions (see Figure 1.15 for an

example of a generated data set with 100 points):

x
iid∼ U[0,10]

y ∼ N (sin(x), 0.5)

A kernel ridge regression algorithm (Murphy, 2012) is trained on this data set for

different values of λ (see Figure 1.16). When the value of λ is too high, the model

does not fit the data enough (underfitting). When the value of λ is too low, the model

fits the data too much (overfitting). An appropriate trade-off between fitting the data

and limiting the complexity of the model gives the best results. This is known as the
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bias-variance trade-off. If the loss function is the squared difference between the true

value y (fixed) and the predicted value ŷ (random variable), then its expected value is

the sum of the squared bias of ŷ and its variance:

E
[
(y − ŷ)2

]
= E

[
y2 − 2yŷ + ŷ2

]

= y2 − 2yE [ŷ] + E
[
ŷ2
]

= y2 − 2yE [ŷ] + E
[
ŷ2
]
+ E [ŷ]2 − E [ŷ]2

= (E [ŷ]− y)2 + E
[
ŷ2
]
− E [ŷ]2

= (E [ŷ]− y)2 + E

[

ŷ2 − E [ŷ]2
]

= (E [ŷ]− y)2 + E

[

ŷ2 − 2E [ŷ]2 + E [ŷ]2
]

= (E [ŷ]− y)2 + E

[

ŷ2 − 2ŷE [ŷ] + E [ŷ]2
]

= (E [ŷ]− y)2 + E

[

(ŷ − E [ŷ])2
]

E
[
(y − ŷ)2

]
= (E [ŷ]− y)2
︸ ︷︷ ︸

bias2

+ V [ŷ]
︸ ︷︷ ︸

variance

When the model does not capture the regularities of the data, its bias is high but its

variance is low (underfitting). When the model captures the noise of the data, its bias

is low but its variance is high (overfitting).

The most common regularization terms for structured (tabular) data are the ℓ2-

penalty, ℓ1-penalty, and the elastic net.

ℓ2-penalty

The ℓ2-penalty of θ is the squared ℓ2-norm of θ, that is the sum of the squared elements

in θ:

ℓ2(θ) = ∥θ∥22 =
∑

i

θ2i

Adding this term to the loss function has several advantages: (i) it makes the optimiza-

tion problem strictly convex; (ii) it forces each value θi not to be too large; (iii) for

linear models, the coefficients become more robust to collinearity. Linear regression

with ℓ2-penalty is commonly known as ridge regression (Tikhonov et al., 1977):

min
β

∥y −Xβ∥22 + λ∥β∥22

ℓ1-penalty

The ℓ2-penalty forces the values of the parameters not to be too large, but does not

incentive to make small values tend to 0. Indeed, the square of a small value is even

smaller. When the number of features is large, or when interpretability is important,
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ℓ1-penalties to get the best of both penalties (Zou and Hastie, 2005):

EN(θ) = λ∥θ∥22 + ν∥θ∥1

1.4.4 Metrics

Metrics are a key component of machine learning as they evaluate how well models

perform. There exist many ways of evaluating models, and choosing metrics must be

based on the most important evaluation criteria, which depend on the task. In this

section we will present the two metrics that we chose to evaluate the algorithms: the

area under the receiver operating characteristic curve and the average precision. But

first, we provide some reminder on binary classification and introduce the confusion

matrix.

Confusion matrix

For classification tasks, a confusion matrix is matrix that reports all the possible com-

binations between the predicted output and the true output. Each row consists of the

true classes, while each column consists of the predicted classes. For binary classification

tasks, the four entries are known as:

• True positives (TP ): the true class and the predicted class are both positive;

• False positives (FP ): the true class is negative, and the predicted class is positive;

• True negatives (TN): the true class and the predicted class are both negative;

• False negatives (FN): the true class is positive, and the predicted class is negative.

Table 1.1 illustrates the concept of the confusion matrix for binary classification tasks,

and the most common statistics derived therefrom. Since most of these statistics have

several names, we recall them to avoid any confusion:

True positive rate = Sensitivity = Recall =
TP

TP + FN

True negative rate = Specificity =
TN

TN + FP

Positive predictive value = Precision =
TP

TP + FP

Negative predictive value =
TN

TN + FN

The true positive rate (TPR), also known as sensitivity or recall, is the proportion of

true positives among all the positives. The true negative rate (TNR), also known as

specificity, is the proportion of true negatives among all the negatives. The positive

predictive value (PPV), also known as precision, is the proportion of true positives
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Predicted classes

Positive Negative

True classes

Positive TP FN TPR =
TP

TP + FN

Negative FP TN TNR =
TN

TN + FP

PPV =
TP

TP + FP
NPV =

TN

TN + FN

Table 1.1: Confusion matrix for binary classification. Each row represents the true pos-
itive and negative classes. Each column represents the predicted positive and negative
classes. The entries of the confusion matrix correspond to all the possible outcomes.
TP : True positives; FN : False negatives; FP : False positives; TN : True negatives;
TPR: True positive rate; TNR: True negative rate; PPV: Positive predictive value;
NPV: Negative predictive value.

among all the predicted positives. The negative predictive value (NPV) is the proportion

of true negatives among all the predicted negatives.

A perfect classifier is classifier with no error, that is such that FN = FP = 0. For

instance, a classifier is perfect if and only if:

• TPR = TNR = 1 since TPR = 1 ⇐⇒ FN = 0 and TNR = 1 ⇐⇒ FP = 0

• TPR = PPV = 1 since TPR = 1 ⇐⇒ FN = 0 and PPV = 1 ⇐⇒ FP = 0

Except if the binary classification task is relatively easy, having a perfect classifier

is extremely rare. Sometimes, the scores of a classifier, such as probabilities, are as

important as the predicted classes. For instance, clinicians are often more interested

in the risks (i.e. probabilities) of a given disorder, rather than just a prediction. As a

reminder, most binary classification algorithms consist of two steps:

1. Computing a score f(x) for sample x

2. Deriving the predicted class from the score f(x) using a threshold ϵ:

ŷ =







+1 if f(x) > ϵ

−1 if f(x) < ϵ

For linear classifiers, f(x) = β0 +
∑m

j=1 βjxj represents the signed distance to the

hyperplane. Instead of comparing the true classes and the predicted classes

y = (y1, . . . , yn) , ŷ = (ŷ1, . . . , ŷn)
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one can compare the true classes and the scores

y = (y1, . . . , yn) , f(X) = (f(x1), . . . , f(xn))

Two popular metrics to compare the true classes and the scores are the area under the

receiver operating characteristic curve (ROC AUC), derived from the receiver operating

characteristic (ROC) curve, and the average precision (AP) score, derived from the

precision-recall (PR) curve.

Receiver operating characteristic curve

The receiver operating characteristic curve is the plot representing the true positive rate

against the false positive rate at various threshold settings. The false positive rate is

the proportion of false positives among all the negatives and can be calculated as (1−
specificity). The ROC curve starts at (0, 0), when all the samples are predicted negatives

(TPR = 1−TNR = 0), and ends at (1, 1), when all the samples are predicted positives

(TPR = 1− TNR = 1). The ROC curve is non-decreasing because no sample which is

classified as a negative will ever be classified as a positive for any higher threshold.

The area under the ROC curve summarizes the ROC curve with a single score. ROC

AUC can be computed as

ROC AUC =
1

n+1 × n−1

n∑

i=1
yi=+1

n∑

j=1
yj=−1

1 (f(xi) > f(xj))

where n+1 and n−1 are the number of positives and negatives respectively. ROC AUC

has a simple interpretation: it is the probability that the classifier ranks a randomly

chosen positive sample higher than a randomly chosen negative one. ROC AUC has the

following properties:

• It is always between 0 and 1;

• The higher, the better;

• ROC AUC = 0 if and only if all the negative samples have higher scores than all

the positive samples;

• ROC AUC = 1 if and only if all the positive samples have higher scores than all

the negative samples (i.e. there exists a threshold yielding a perfect classifier);

• The expected ROC AUC of random guess is 0.5, independently of the distribution

of the classes.
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Precision-recall curve

The precision-recall curve is the the plot representing the precision against the recall at

various threshold settings. Since the recall is the true positive rate, the only difference

with the ROC curve is the replacement of the false positive rate with the precision. The

PR curve starts at (0, 1), when all the samples are predicted negatives (TPR = 0,PPV =

1), and ends at (1, p), when all the samples are predicted positives (TPR = 1,PPV = p),

p being the prevalence of the positive class. Precision is actually ill-defined when all

the samples are predicted negatives (both the numerator and denominator are equal to

0), but the precision is expected to tend to 1 when the number of predicted positive

samples tend to 0.

Contrary to the ROC curve, which takes into account the four possible outcomes

(TP , FN , TN , FP ), the precision-recall curve does not take into account the true

negatives. Intuitively, precision is the ability of the classifier not to label as positive a

sample that is negative, and recall is the ability of the classifier to find all the positive

samples. The PR curve measures how well the classifier finds all the positive samples

without labeling negative samples as positives.

The precision-recall curve is particularly useful for rare event detection, where false

negatives are much more serious than false positives. For instance, let’s consider a low-

cost, fast, non-invasive diagnostic test for a serious disease. If this test is positive, the

subject have a more advanced, costly, invasive exam to confirm the diagnosis. If this

test is negative, the subject will have another test in a few years. We would like this

test to find all the subjects with this disease while labeling the least healthy subjects as

ill. Finding the healthy subjects is of much smaller interest than finding the ill ones.

The average precision score summarizes a precision-recall curve as the weighted mean

of precisions achieved at each threshold, with the increase in recall from the previous

threshold used as the weight:

AP =
∑

k

(Rk −Rk−1)Pk

where Pk and Rk are respectively the precision and recall at the k-th threshold. Average

precision is also the area under the precision-recall curve, but computed with a different

technique than the one used to compute ROC AUC. AP is the area under the PR curve

computed using the Riemann integral, while ROC AUC is the area under the ROC

curve computed using the trapezoidal rule. A linear interpolation (with the trapezoidal

rule) of points on the precision-recall curve provides an overly-optimistic measure of

classifier performance (Davis and Goadrich, 2006; Flach and Kull, 2015). AP has the

following properties:

• It is always between 0 and 1;

• The higher, the better;
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• Since these associations are cross-sectional, they may not hold true to predict

ICDs in advance;

• Associations may be correlated, so that finding a new association may not be

helpful to predict ICDs;

• Even new uncorrelated associations may not be helpful to predict ICDs.

Knowing associated factors may not be enough to prevent the irreversible consequences

of ICDs. One of the earliest studies on pathological gambling in PD reported losses

of hundreds of thousands of dollars for several patients (Gschwandtner et al., 2001).

Being able to predict ICDs in advance could help preventing these life-changing events.

A couple of studies focused on predicting ICDs, but the lack of cross-validation, that is

evaluating a model on different data than the data used to train the algorithm, affects

the confidence in their results.

Being able to accurately predict ICDs in advance would be of great interest clinically.

Managing ICDs is not an easy task, as patients may not be aware of their behaviors,

or can lie to their relatives and clinicians. Raising awareness in PD patients and their

relatives would be more impactful if they could be told precisely when ICDs will be

developed. ICDs may even be prevented, as case reports suggest that ICDs often resolve

after reducing the dose of the existing dopamine agonists, in particular with complete

discontinuation of DA treatment (Weintraub and Claassen, 2017).

Moreover, the genetic factors of ICDs in PD are mostly unknown. A few associations

from candidate gene analyses have been reported, but these studies have not been

replicated. Using machine learning algorithms to learn genetic factors from the whole

genome, instead of picking a few genes based on prior information, may shed some new

light on these genetic factors.

The interaction between putative genetic factors and clinical risk factors is also un-

known, and may play an important role for the onset of ICDs in PD. Investigating

different approaches modelling different types of interaction may help better under-

standing these disorders.

The association between known factors and impulse control disorders is complex

(Grall-Bronnec et al., 2018). Impulse control disorders have been mainly studied from

the statistical point of view, and machine learning has been underused. Machine learn-

ing, by automatically extracting information from data, could improve the predictability

of ICDs and leverage the knowledge on this topic, but also improve the quality of life

of patients and decrease caregiver burden.

1.6 Materials

Data analysis requires two essential components: data sets, to provide data, and soft-

ware, to analyze data. Data sets can be private or publicly available, the former being
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much more common than the latter in medicine. Software, by providing implementa-

tions of algorithms and utility tools, are at the core of data analysis.

In this section, we present the data sets from which we obtained data, and the

software that we used to perform the analysis of these data.

1.6.1 Data sets

Medical data sets are not easy to collect and share for ethical, legal and privacy reasons.

Nonetheless, data sets are needed to better understand disorders and to further advance

scientific knowledge. In particular, publicly available data sets are very relevant because

they give anyone access to data, regardless of their institution or employer. They also

allow for tackling the reproducibility crisis that science is currently facing. Their main

drawback is their possible overuse, leading to biases in the results.

In our work, we used two data sets: the Parkinson’s Progressive Markers Initiative

(PPMI) database and the Drug Interaction With Genes in Parkinson’s Disease (DIGPD)

database.

Parkinson’s Progressive Markers Initiative

In the field of Parkinson’s disease therapeutics, the ultimate goal is to develop disease-

modifying treatments that slow, prevent or even reverse the underlying disease process.

Validated biomarkers of disease progression would dramatically accelerate PD thera-

peutics research. However, current progression biomarkers are not optimal and are not

fully validated.

The Parkinson’s Progression Markers Initiative (www.ppmi-info.org) is a landmark

observational clinical study to comprehensively evaluate cohorts of significant interest

using advanced imaging, biologic sampling and clinical and behavioral assessments to

identify biomarkers of Parkinson’s disease progression. PPMI is taking place at clinical

sites in the United States, Europe, Israel, and Australia (see Table 1.2 for the full list

of clinical sites).

Data and samples acquired from study participants enable the development of a

comprehensive Parkinson’s database and biorepository, which is currently available to

the scientific community to conduct field-changing research. PPMI follows standardized

data acquisition protocols to ensure that tests and assessments conducted at multiple

sites and across multiple cohorts can be pooled in centralized databases and repositories.

The clinical, imaging and biologic data is easily accessible to researchers in real time

through their website.

Drug Interaction With Genes in Parkinson’s Disease

The Drug Interaction With Genes in Parkinson’s Disease study is a longitudinal cohort

study of patients with PD consecutively recruited from May 2009 to July 2013 in 4
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Location Organization

Athens, GREECE National and Kapodistrian University of Athens
Atlanta, GA Emory University

Baltimore, MD Johns Hopkins University
Barcelona, SPAIN Hospital Clinical de Barcelona
Birmingham, AL University of Alabama at Birmingham
Boca Raton, FL PD and Movement Disorders Center of Boca Raton

Boston, MA Boston University
Chicago, IL Northwestern University

Cincinnati, OH University of Cincinnati
Cleveland, OH Cleveland Clinic Foundation
Houston, TX Baylor College of Medicine

Innsbruck, AUSTRIA Innsbruck University
Kassel, GERMANY Paracelsus-Elena Clinical Kassel / University of Marburg

London, UK Imperial College London
New Haven, CT Institute for Neurodegenerative Disorders
New York, NY Columbia University Medical Center
New York, NY Beth Israel Medical Center
Paris, France Pitié-Salpêtrière Center

Philadelphia, PA University of Pennsylvania
Portland, OR Oregon Health & Science University
Rochester, NY University of Rochester
Salerno, ITALY University of Salerno
San Diego, CA University of California, San Diego

San Francisco, CA University of California, San Francisco
San Sebastian, SPAIN Hospital Universitario Donostia

Seattle, WA University of Washington
Sun City, AZ Arizona Parkinson’s Disease Consortium

Sunnyvale, CA The Parkinson’s Institute & Clinical Center
Sydney, AUSTRALIA Macquarie University

Tampa, FL University of South Florida
Tel Aviv, ISRAEL Tel Aviv Sourasky Medical Center

Trondheim, NORWAY Norwegian University of Science and Technology
Tübingen, GERMANY Universität Tübingen

Table 1.2: PPMI clinical sites.
GA: Georgia; MD: Maryland; AL: Alabama; FL: Florida; IL: Illinois; OH: Ohio; TX:
Texas; UK: United Kingdom; CT: Connecticut; NY: New York; PA: Pennsylvania; OR:
Oregon; CA: California; WA: Washington; AZ: Arizona.

49



50 Chapter 1. Background

French university hospitals and 4 general hospitals (Corvol et al., 2018). Eligible pa-

tients were patients with PD (UK Parkinson’s Disease Society Brain Bank criteria) with

disease duration shorter than 5 years at recruitment. After the baseline visit, annual

clinical evaluations were performed over 5 years by movement disorders specialists who

checked whether patients still fulfilled UK Parkinson’s Disease Society Brain Bank cri-

teria at each visit and filled out standardized questionnaires. All patients had a blood

sampling for DNA extraction and genome-wide genotyping. The study was conducted

according to Good Clinical Practice Guidelines, and sponsored by Assistance Publique

Hôpitaux de Paris. All patients provided informed consent, and the study was approved

by local ethical committee and regulation authorities.

Assessed phenotypes

Parkinson’s disease is characterized by a wide range of symptoms. In order to diagnose

them and assess their severity, screening tools and rating scales are used. General screen-

ing tools are often administered, but questionnaires and scales specific to Parkinson’s

disease have also been developed.

For most phenotypes, several screening tools are available. Apart from the Move-

ment Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating

Scale, which quantifies the severity of Parkinson’s disease, there is no real consensus on

the scales to use, and different databases may use different scales to assess some phe-

notypes. These differences can cause some issues for machine learning algorithms that

expect the same features in the sets used to train and evaluate the models. Table 1.3

lists the questionnaires and scales used in PPMI and DIGPD for the main symptoms

of Parkinson’s disease. Several symptoms that have been associated with impulse con-

trol disorders, such as anxiety and depression, are assessed with different scales in both

databases.

1.6.2 Software

We describe in this section the software that we used, grouped by programming lan-

guages: Python for machine learning, C/C++ for genetic analyses, and R for meta-

analysis.

Python

Python (Van Rossum and Drake, 2009) is a programming language that is easy to

pick up regardless of past programming experience. Python is developed under an

open source license, making it freely usable and distributable, even for commercial use.

Python has a large community of users and developers, with over two hundred and fifty

thousand projects referenced on the Python Package Index (https://pypi.org).
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Phenotype PPMI DIGPD

Depression GDS HADS
Anxiety STAI HADS

Parkinson’s Disease MDS-UPDRS MDS-UPDRS
REM Sleep Behavior Disorder RBDSQ Binary variable

Cognition MoCA MMSE
Activities of Daily Living Schwab and England ADL Schwab and England ADL
Autonomic dysfunction SCOPA-AUT SCOPA-AUT

Impulsive behaviors QUIP Investigator diagnosis
Sleepiness ESS ESS

Non-motor symptoms NMSS NMSS

Table 1.3: Questionnaires and scales used in PPMI and DIGPD.
ADL: Activities of Daily Living; DIGPD: Drug Interaction With Genes in Parkinson’s
Disease; ESS: Epworth Sleepiness Scale; GDS: Geriatric Depression Scale; HADS: Hospi-
tal Anxiety and Depression Scale; MDS-UPDRS: Movement Disorder Society-sponsored
revision of the Unified Parkinson’s Disease Rating Scale; MoCA: Montreal Cognitive As-
sessment; MMSE: Mini-Mental State Examination; NNMS: Non-Motor Symptoms Scale
for Parkinson’s Disease PPMI: Parkinson’s Progressive Markers Initiative; SCOPA-
AUT: Scales for Outcomes in Parkinson’s Disease – Autonomic Questionnaire; STAI:
State-Trait Anxiety Inventory; UPSIT: University of Pennsylvania Smell Identification
Test.

A large part of the growing popularity of Python is due to the increasing interest in

data science and the availability of maintained, well-documented, high-quality Python

packages for science. From data manipulation to machine learning to data visualization,

Python is the de facto programming language for data science. We will briefly introduce

the packages that we used to perform analyses.

NumPy numpy (Harris et al., 2020a) is the fundamental package for scientific comput-

ing with Python. Fast and versatile, the NumPy vectorization, indexing, and broadcast-

ing concepts are the standards of array computing today. numpy offers many numerical

computing tools: comprehensive mathematical functions, random number generators,

linear algebra routines, Fourier transforms, and more.

SciPy scipy (Virtanen et al., 2020) is a package dedicated to scientific computing.

It provides many user-friendly and efficient numerical routines, such as routines for

numerical integration, interpolation, optimization, linear algebra, and statistics, as well

as sparse matrices.

pandas pandas (McKinney, 2010) is a fast, powerful, flexible and easy to use open

source data analysis and manipulation tool. It provides tools for reading and writing

data, fast and efficient data manipulation, and high performance merging and joining

of data sets.
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Statsmodels statsmodels (Seabold and Perktold, 2010) is a Python module that

provides classes and functions for the estimation of many different statistical models.

It also provides utilities to conduct statistical tests and statistical data exploration.

UMAP UMAP (McInnes et al., 2018) is a Python package providing an implementation

of the Uniform Manifold Approximation Projection (UMAP) algorithm, which is a

popular dimension reduction techniques that can be used for visualization but also for

general non-linear dimension reduction (McInnes et al., 2018).

Scikit-learn scikit-learn (Pedregosa et al., 2011) is a popular package for machine

learning in Python. It is a versatile toolbox for data mining and data analysis, making

available numerous machine learning algorithms and utility tools under a unified ap-

plication programming interface. scikit-learn is easily accessible to everybody and

usable in various contexts.

XGBoost xgboost (Chen and Guestrin, 2016) is an optimized distributed gradient

boosting library designed to be highly efficient, flexible and portable. xgboost imple-

ments machine learning algorithms under the gradient boosting framework that solve

many data science problems in a fast and accurate way.

PyTorch pytorch (Paszke et al., 2019) is an open source machine learning framework

dedicated to deep learning. A rich ecosystem of tools and libraries extends pytorch and

supports development in computer vision, natural language processing and more.

Matplotlib matplotlib (Hunter, 2007) is a comprehensive library for creating static,

animated, and interactive visualizations in Python. Several toolkits are available which

extend matplotlib functionality.

C/C++

C is a general-purpose programming language that is widely used for systems program-

ming in implementing operating systems and embedded system applications. C++, an

extension of C, was designed with performance, efficiency, and flexibility as its core.

Thanks to low overhead, C and C++ enable programmers to create efficient im-

plementations of algorithms and data structures, useful for computationally intense

programs. Most of the Python packages with intensive computations are partially writ-

ten in C or one of its variants under the hood. Nonetheless, some scientific libraries are

completely written in C/C++, in particular for genetic analyses.
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PLINK PLINK (Chang et al., 2015) is a widely used C/C++ tool set for research

in population genetics and genome-wide association studies. PLINK provide utilities

for data management, basic statistics, linkage disequilibrium calculation, population

stratification, association analysis, and tests for epistasis.

GCTA GCTA (Yang et al., 2011) is a C/C++ tool for genome-wide complex trait

analysis. GCTA was initially designed to estimate the proportion of phenotypic variance

explained by all genome-wide single SNPs for complex traits. It has been subsequently

extended for many other analyses to better understand the genetic architecture of com-

plex traits, such as estimation of SNP-based heritability and genomic risk prediction.

R

R is a popular programming language for statistical computing and many packages

have been developed to perform statistical analyses. R provides a wide variety of sta-

tistical (linear and nonlinear modelling, classical statistical tests, time-series analysis,

classification, clustering, etc.) and graphical techniques, and is highly extensible.

meta meta (Balduzzi et al., 2019) is a user-friendly general package providing standard

methods for meta-analysis. meta provides fixed effects and random effects models and

several plots for meta-analysis among other tools.
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Chapter 2

Prediction of impulse control

disorders in Parkinson’s disease

This chapter has been submitted to the Annals of Neurology journal as:

Johann Faouzi, Samir Bekadar, Baptiste Couvy-Duchesne, Fanny Artaud,

Alexis Elbaz, Graziella Mangone, Olivier Colliot and Jean-Christophe Cor-

vol. “Prediction of impulse control disorders in Parkinson’s disease”.

Abstract

Objective To predict the (future) occurrence of impulse control disorders (ICDs) in

Parkinson’s disease (PD) using longitudinal data, the first study using cross-validation

and replication in an independent cohort.

Methods We included data from two longitudinal PD cohorts (training set: PPMI,

Parkinson’s Progression Markers Initiative; replication: DIGPD, Drug Interaction With

Genes in Parkinson’s Disease). Patients with at least two visits and with genetic data

available were included into the analysis. We trained three logistic regressions and a

recurrent neural network to predict ICD at the next visit using clinical risk factors

and genetic variants previously associated with ICDs. We quantified performance using

the area under the receiver operating characteristic curve (ROC AUC) and average

precision.

Results We included 380 PD subjects (2,728 visits) from PPMI and 388 PD subjects

(2,101 visits) from DIGPD in our analyses. The number of patients presenting ICDs

during follow-up were 143 (38%) in PPMI and 192 (49%) in DIGPD. All the models

performed relatively well at predicting the ICDs at the next visit (PPMI: ROC AUC

= 0.81 [0.75 - 0.85], DIGPD: ROC AUC = 0.77 [0.67 - 0.80]). Taking previous data

from all visits into account improved the predictive performance (PPMI: ROC AUC =

0.83 [0.80 - 0.85], DIGPD: ROC AUC = 0.80 [0.80 - 0.80]), as compared to only using
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the baseline visit (PPMI: ROC AUC = 0.75, DIGPD: ROC AUC = 0.67). Recurrent

neural networks did not improve the predictive performance.

Interpretation ICDs in PD can be predicted with acceptable accuracy, which may

be used to improve the management of PD patients and diminish the potentially dev-

astating impacts of ICDs.

2.1 Introduction

Although Parkinson’s disease (PD) is mostly known for its motor symptoms, numer-

ous non-motor symptoms have been reported to occur during the course of the disease

(Hiseman and Fackrell, 2017). Impulse control disorders (ICDs), a class of psychiatric

disorders characterized by impulsivity, are common in PD, with half of PD cases ex-

pected to experience some of them by 5 years after disease onset (Corvol et al., 2018).

The four most common ICDs in PD are pathological gambling, compulsive eating, hyper-

sexuality, and compulsive eating disorder. ICDs are associated with reduced quality of

life, strained interpersonal relationships, increased caregiver burden, and require prompt

addressing (Weintraub and Claassen, 2017). Several case reports suggest that partial

and total discontinuations of dopamine agonist (DA) treatment leads to a resolution of

ICDs (Mamikonyan et al., 2008; Nirenberg and Waters, 2006).

Many factors have been associated with ICDs in PD, including socio-demographic,

clinical and genetic biomarkers (Grall-Bronnec et al., 2018). In particular, men tend

to develop more pathological gambling and hypersexuality disorders while women de-

velop more compulsive buying and eating disorders (Weintraub and Claassen, 2017). A

younger age has been associated with ICDs in PD in numerous studies (Callesen et al.,

2014; Poletti et al., 2013; Pontieri et al., 2015; Weintraub et al., 2010a). Anxiety (Leroi

et al., 2012; Pontieri et al., 2015; Voon et al., 2011), depression (Callesen et al., 2014;

Voon et al., 2011), and rapid eye movement (REM) sleep behavior disorders (Fantini

et al., 2015; Ramírez Gómez et al., 2017) have also been correlated to ICDs. Dopamine

replacement therapy, in particular dopamine agonists, has been strongly associated with

ICDs. Finally, associations between ICDs and several single-nucleotide polymorphisms

(SNPs) in dopamine signaling pathway genes have been suggested (Castro-Martínez

et al., 2018; Cormier-Dequaire et al., 2018; Erga et al., 2018; Krishnamoorthy et al.,

2016; Lee et al., 2009; Zainal Abidin et al., 2015).

The predictive performance of these factors altogether has been underexplored. Only

two studies report predictions at the patient level (Erga et al., 2018; Kraemmer et al.,

2016). In both studies, authors trained a logistic regression using clinical and genetic

data, and measured its predictive performance using the area under receiver operating

characteristic (ROC) curve (ROC AUC). None of these studies had cross-validation or

a replication cohort, altering the confidence in the reported performance (Koul et al.,

2018).
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Our main objective was to predict ICDs from clinical and genetic using machine

learning approaches. We utilized two longitudinal cohorts to train and cross-validate

the models on one cohort, but also assess the generalization capability of these models

on the second cohort. The objective was to predict the risk of ICDs at the next visit,

knowing the clinical history of the patient and their genotyping data.

2.2 Materials and methods

2.2.1 Populations

We used data from two research cohorts: the Parkinson’s Progression Markers Initiative

(PPMI) database and the Drug Interaction With Genes in Parkinson’s Disease (DIGPD)

study.

PPMI (https://www.ppmi-info.org) is a multicenter observational clinical study

using advanced imaging, biologic sampling, and clinical and behavioral assessments

to identify biomarkers of PD progression (Marek et al., 2011). Data was gathered

during face-to-face visits every 6-12 months. PD subjects were de novo and drug-naïve

at baseline. We downloaded the clinical and genetic data from the PPMI database

(https://www.ppmi-info.org/data) on the 17th of October, 2019.

DIGPD is a French multicenter longitudinal cohort with annual follow-up of PD

patients (Corvol et al., 2018). Eligible criteria consist in recent PD diagnosis (UK

Parkinson’s Disease Society Brain Bank criteria) with disease duration less than 5 years

at recruitment. Data was gathered during face-to-face visits every 12 months following

standard procedures.

Both studies were conducted according to good clinical practice, obtained approval

from local ethic committees and regulatory authorities, and all patients provided in-

formed consent prior to inclusion.

2.2.2 Participants and clinical measurements

Inclusion criteria consisted of having: (i) a PD diagnosis, (ii) a baseline visit and at

least another visit, (iii) clinical and genetic data available, and (iv) PD medication

taken available.

We included socio-demographics and clinical variables that have been associated

with ICDs in the literature: age of PD onset, length of follow-up, sex, past ICDs,

continuous scales of anxiety, depression and REM sleep, and the motor exam (part III)

of the Movement Disorders Society-sponsored revision of the Unified Parkinson’s Disease

Rating Scale (MDS-UPDRS). ICDs were assessed at each visit using the Questionnaire

for Impulsive-Compulsive Disorders in Parkinson’s Disease - Rating Scale (Weintraub

et al., 2012) in PPMI, and through semi-structured interviews by a movement disorder

specialist in DIGPD. We standardized each feature since some of them were assessed
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with different scales and because it is a common requirement for most machine learning

estimators.

We took into account PD medication with three binary variables corresponding to

the main classes of treatment (levodopa, dopamine agonists, others) and we derived

more specific variables for dopamine agonists: mean daily, maximum daily and total

doses (expressed in levodopa equivalent) and cumulative duration.

2.2.3 Genetic variants

In absence of genome-wide association study on ICDs in PD, we considered 50 ge-

netic variants selected as previously described: 20 variants from 16 genes involved in

dopamine, serotonin, glutamate, norepinephrine and opioid systems and previously as-

sociated with ICD in PD or in the general population (Cormier-Dequaire et al., 2018);

30 additional variants from 10 genes differentially expressed after an acute challenge

of levodopa in the striatum in a mouse model of dopamine denervation (Charbonnier-

Beaupel et al., 2015).

Genotyping data were collected using NeuroX (Nalls et al., 2015) arrays in PPMI

(267,607 variants measured), and Illumina Multi-Ethnic Genotyping Arrays in DIGPD

(1,779,819 variants). We excluded variants with missing rates greater than 2% and

variants deviating from Hardy-Weinberg equilibrium (p < 10−8). We excluded related

individuals (third-degree family relationships), individuals with mismatch between re-

ported sex and genetically determined sex, and individuals with outlying heterozygosity

(± 3 standard deviation). We imputed missing SNPs using the Michigan Imputation

Server (Das et al., 2016) for PPMI and the Sanger Imputation Server (McCarthy et al.,

2016) for DIGPD, using the reference panel of the Haplotype Reference Consortium

(release 1.1) (McCarthy et al., 2016). We filtered variants based on their imputation

quality (R2 > 0.6 for PPMI, INFO score > 0.9 for DIGPD).

2.2.4 Data processing

Processing genetic data and extracting variants of interest matching inclusion criteria

was performed using the PLINK (Chang et al., 2015) software. Processing of the different

text-like files was performed using the pandas (McKinney, 2010) and NumPy (Harris

et al., 2020a) Python packages. Missing values were imputed in a forward-fill fashion:

for a given subject and a given feature, missing values were imputed using the most

recent non-missing value for this subject and this feature. Baseline missing values were

imputed using the mean baseline values on the training set.

2.2.5 Machine learning algorithms

We investigated five standard machine learning algorithms implemented in the scikit-

learn (Pedregosa et al., 2011) and XGBoost (Chen and Guestrin, 2016) Python packages:
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ŷ(t+1)

x
(1)

x
(2)

x
(t). . .

Figure 2.1: Architecture of the recurrent neural network. The clinical features assessed
at several visits are used as input of the Gated Recurrent Unit (GRU). The GRU extracts
information from these clinical features into a vector h(t). This vector and the time-
independent variables, namely the socio-demographic and genetic data denoted as s),
are used as input of a Fully Connected (FC) function followed by a sigmoid activation,
returning the probability of having an impulse control disorder at the next visit.

logistic regression, support vector machines with a linear kernel and a RBF kernel (Boser

et al., 1992; Cortes and Vapnik, 1995), random forest (Breiman, 2001) and gradient tree

boosting (Friedman, 2001; Mason et al., 2000). These algorithms expect a fixed number

of features as input. In order to deal with varying numbers of visits, we reduced all

the previous visits into one “summary” visit using a convex combination. A convex

combination is a linear combination such that the weights are all non-negative and sum

to one. The weights indicate how much each visit contributes to this “summary” visit.

A weight of 1 for the first visit means that the “summary” visit is simply the baseline

visit, while a weight of 1 for the latest visit means that the summary visit is simply

the most recent visit. One can also give uniform weights, so that each visit contributes

equally to this summary visit, or higher weights to most recent visits if they are assumed

to be more important than older visits.

As the prediction task is longitudinal, we also investigated the use of recurrent neural

networks. Recurrent neural networks are a class of artificial neural networks dedicated to

sequential data. We employed a simple architecture (Figure 2.1) with a Gated Recurrent

Unit (Cho et al., 2014) to extract information from the clinical measurements, followed

by a concatenation of this vector with the socio-demographic and genetic data, followed

by a Fully Connected function with a sigmoid activation. We use the PyTorch (Paszke

et al., 2019) Python package to build and train the recurrent neural network.
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Figure 2.2: Cross-validation procedure. We employed a nested cross-validation proce-
dure on the PPMI cohort. In the outer loop, we split the PPMI subjects into training
and test sets, while the inner loop was a 5-fold subject-level cross-validation to opti-
mize the hyper-parameters of the model. The model with the optimal values for the
hyper-parameters was evaluated on the test set of PPMI and on the whole DIGPD
cohort.

2.2.6 Cross-validation

We used PPMI as the training (discovery) cohort, and DIGPD as the testing (repli-

cation) cohort. To unbiasedly estimate the predictive performance of the models, we

employed a nested cross-validation procedure that is illustrated in Figure 2.2. In the

outer loop, we randomly split 80% of the PPMI subjects into the training set and the

remaining 20% into the test set. In the inner loop, we performed a 5-fold subject-

level cross-validation procedure to optimize the hyper-parameters of the models on the

training set. These hyper-parameters control how the algorithms fit the training data.

For instance, these hyper-parameters included the type (l1 or l2 penalty) and amount

(lambda parameter) of regularization for the linear models. In particular, logistic regres-

sion models were regularized. After finding the optimal values for the hyper-parameters,

each model was evaluated on the test set. Finally, we evaluated the performance of each

model on the whole DIGPD cohort.

2.2.7 Statistical analysis

Baseline characteristics in both cohorts were compared with chi-squared tests for cate-

gorical variables and t-tests for continuous variables using the SciPy (Virtanen et al.,

2020) Python package. Predictive performance was mainly evaluated using the area

under the receiver operating characteristic curve and average precision (AP). AP sum-

marizes a precision-recall curve as the weighted mean of precisions achieved at each
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threshold, with the increase in recall from the previous threshold used as the weight.

The precision-recall curve is similar to the ROC curve, but plots the precision (positive

predictive value) against the recall (sensitivity). The precision-recall curve does not take

into account the true negatives, and is particularly useful when the positives are more

important than the negatives (false negatives are more serious than false positives).

Other metrics included accuracy, balanced accuracy, sensitivity and specificity. ROC

and precision-recall curves were plotted using the matplotlib (Hunter, 2007) Python

package, and all the metrics were computed using the scikit-learn (Pedregosa et al.,

2011) package. Comparison between ROC AUC was measured using DeLong test (De-

Long et al., 1988). P-values were adjusted for multiple comparisons using Bonferroni

correction. We did not statistically compare AP scores as we were not aware of a relevant

statistical test to do so, and reported 95% confidence intervals using bootstrapping.

2.3 Results

2.3.1 Population characteristics

Out of the 423 PD subjects in PPMI, we excluded 1 subject for not having a baseline

visit, 2 for not having medication records and 40 for not having genetic data. Out of

the 415 PD subjects in DIGPD, we excluded 27 for having only a baseline visit. No

subjects were excluded based on their genetic data. Thus, we included 380 PD subjects

from PPMI and 388 PD subjects from DIGPD in our analyses. The 380 PPMI subjects

had a total of 2,728 visits, while the 388 DIGPD subjects had a total of 2,101 visits.

Since our objective was to predict the occurrence of ICDs at the next visit, the number

of observations for a given subject is equal to their number of visits minus 1. Thus, the

total number of observations was equal to 2,348 in PPMI and 1,713 in DIGPD.

Clinical characteristics are presented in Table 2.1. Age and sex in both cohorts

were not significantly different. PPMI subjects had significantly more visits and smaller

intervals between back-to-back visits, as well as longer follow-ups. DIGPD subjects

had significantly lower scores in the motor exam of the MDS-UPDRS. The prevalence

of ICDs at baseline was significantly higher in DIGPD than in PPMI, as well as their

lifetime prevalence. Both differences might be explained by the fact that PD subjects

are de novo and drug-naïve at baseline in PPMI whereas they are not in DIGPD.

Other phenotypes (anxiety, depression, and REM sleep disorders) were not statistically

compared due to the different scales used.

Concerning genetic data, we excluded 1 genetic variant for being a variable number

of tandem repeat polymorphism. Furthermore, we excluded 18 SNPs for having too low

imputation quality scores. Finally, 31 SNPs were included in our analyses (Table A.1).
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Characteristic PPMI DIGPD p-value

Age (in years) 60.67± 9.71 58.99± 9.75 1.71× 10−2

Sex (F/M) 127/253 (33%) 155/233 (40%) 7.16× 10−2

Length of follow-up (in years) 5.86± 1.95 4.82± 1.83 7.07× 10−14

Number of visits per subject 7.18± 2.96 5.41± 1.66 4.21× 10−35

Interval between visits (in years) 0.95± 0.35 1.090.33 3.24× 10−39

Anxiety STAI: 93.55± 7.96 HAD: 6.82± 3.77

Depression GDS: 5.25± 1.47 HAD: 4.59± 3.16

REM sleep RBDSQ: 4.17± 2.71 1/0: 86/302(22%)

MDS-UPDRS III 20.87± 8.86 9.91± 5.33 3.77× 10−72

Baseline ICD (1/0) 42/338 (13%) 76/312 (20%) 5.34× 10−3

Lifetime ICD (1/0) 143/237 (38%) 192/196 (49%) 1.12× 10−3

Table 2.1: Baseline characteristics. For continuous variables, mean ± standard deviation
is reported. For binary variables, the count for both categories is reported as well as the
proportion of the first category. Statistical differences were assessed using independent
t tests for continuous variables and chi-squared tests for categorical variables.
HAD: Hospital Anxiety and Depression Scale; ICD: Impulse control disorders; MDS-
UPDRS: Movement Disorders Society-sponsored revision of the Unified Parkinson’s Dis-
ease Rating Scale; QUIP: Questionnaire for Impulse-Compulsive Disorders in Parkin-
son’s Disease; REM: Rapid eye movement; RBDSQ: Rapid eye movement Sleep Behav-
ior Disorder Screening Questionnaire; STAI: State-Trait Anxiety Inventory.

2.3.2 Predictive performance

Table 2.2 presents the predictive performance for the four main models: logistic regres-

sion using the baseline visit, the most recent visit, and the mean over all the past visits,

and the recurrent neural network. The logistic regression using the baseline visit had

the lowest scores on both cohorts (ROC AUC = 0.75 and AP = 0.44 in PPMI, ROC

AUC = 0.67 and AP = 0.43 in DIGPD). By contrast, the recurrent neural network

yielded the highest scores in PPMI (ROC AUC = 0.85, AP = 0.61), while the logistic

regression using the most recent visit yielded the highest scores in DIGPD (ROC AUC

= 0.802, AP = 0.64). Figure 2.3 and Figure 2.4 show the ROC and precision-recall

curves for the four main models in PPMI and in DIGPD respectively. The recurrent

neural network models had sensitivities of 61% and 70% and specificities of 90% and

82% in PPMI and DIGPD respectively, at the default threshold (probability > 0.5).
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Logistic regression
using only the
baseline visit

Logistic regression
using only the
previous visit

Logistic regression
using the mean
over past visits

Recurrent
neural

network

ROC AUC
PPMI 0.75 ([0.69, 0.81]) 0.80 ([0.73, 0.86]) 0.84 ([0.77, 0.89]) 0.85 ([0.79, 0.90])

DIGPD 0.67 ([0.64, 0.70]) 0.80 ([0.78, 0.83]) 0.80 ([0.77, 0.82]) 0.80 ([0.78, 0.83])

Average precision
PPMI 0.44 ([0.33, 0.56]) 0.45 ([0.36, 0.58]) 0.60 ([0.49, 0.72]) 0.61 ([0.49, 0.73])

DIGPD 0.43 ([0.39, 0.48]) 0.64 ([0.60, 0.69]) 0.62 ([0.57, 0.67]) 0.62 ([0.58, 0.68])

Accuracy
PPMI 0.77 ([0.74, 0.81]) 0.82 ([0.78, 0.85]) 0.84 ([0.80, 0.87]) 0.86 ([0.83, 0.89])

DIGPD 0.57 ([0.54, 0.59]) 0.59 ([0.57, 0.61]) 0.64 ([0.62, 0.67]) 0.78 ([0.76, 0.80])

Balanced accuracy
PPMI 0.69 ([0.63, 0.75]) 0.76 ([0.71, 0.82]) 0.77 ([0.70, 0.82]) 0.76 ([0.70, 0.82])

DIGPD 0.60 ([0.58, 0.63]) 0.67 ([0.65, 0.69]) 0.69 ([0.67, 0.72]) 0.76 ([0.73, 0.78])

Sensitivity
PPMI 0.57 ([0.46, 0.68]) 0.69 ([0.58, 0.79]) 0.66 ([0.54, 0.77]) 0.61 ([0.50, 0.73])

DIGPD 0.68 ([0.64, 0.73]) 0.84 ([0.80, 0.87]) 0.81 ([0.77, 0.84]) 0.70 ([0.66, 0.74])

Specificity
PPMI 0.81 ([0.77, 0.85]) 0.84 ([0.81, 0.88]) 0.87 ([0.84, 0.91]) 0.90 ([0.87, 0.93])

DIGPD 0.52 ([0.49, 0.55]) 0.50 ([0.47, 0.53]) 0.58 ([0.56, 0.61]) 0.82 ([0.80, 0.84])

Table 2.2: Results of the four main models. Predictive performance for the four main models on both cohorts are reported. 95% confidence
intervals were estimated using 2000 bootstrap samples.
DIGPD: Drug Interaction With Genes in Parkinson’s Disease; PPMI: Parkinson’s Progression Markers Initiative; ROC AUC: area under
the receiver operating characteristic curve.
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All four models were statistically better than random guess (p < 0.001). Logistic

regression using only the baseline visit was statistically worse than at least two other

models in both cohorts (Figure 2.5). The three other models were not statistically

different from each other in both cohorts.

Although AP scores for the three best models were higher in DIGPD than in PPMI,

the prevalence of ICDs, computed over all the (patient, visit) pairs, was twice higher in

DIGPD than in PPMI (27% in DIGPD, 14% in PPMI). As AP scores of random guess

are equal to the prevalence of the positive class, the differences between AP scores in

both cohorts should be interpreted with much caution.

The other machine learning algorithms (support vector machines with linear and

RBF kernels, random forest, and gradient tree boosting) and other reduction approaches

(giving positive weights to all the past visits, but higher weights to more recent visits)

yielded comparable results (Table A.3 and Table A.4).

To evaluate the impact of the splitting of PPMI into training and test sets on the

predictive performance, we repeated the cross-validation procedure 10 times and also

evaluated the 10 models on DIGPD. All iterations yielded comparable results (Table A.5

and Table A.6).

2.3.3 Contribution of the different features

Since the genetic factors of ICDs in PD are mostly unknown and genotyping data is not

usually collected in clinical routine, we investigated the predictive performance of the

same algorithms without the genetic variants as input, in order to assess their added

value in the models. Table 2.3 presents the ROC AUC of the models with and without

genetic variants and their statistical comparison. Only one comparison was statistically

different: the logistic regression model using the most recent visit had a higher ROC

AUC with genetic variants than without genetic variants (ROC AUC = 0.80 with genetic

variants, ROC AUC = 0.79 without genetic variants, p < 0.001). The genetic variants

did not seem to be major contributors to the decision function of the logistic regression

models.

Table 2.4 presents the coefficients of the three logistic regression models without

genetic variants as input (see Table A.2 for the coefficients of the three logistic regression

models with genetic variants as input). As the logistic regression model using the

baseline visit performed significantly worse, and the variables for PD medication were

all null (PD patients in PPMI are de novo drug-naive at baseline, and the medical

history of PD patients in DIGPD was not available before their baseline visit), we

only interpreted the other two models. The following features had positive coefficients:

sex, past ICDs, depression, REM sleep, motor exam, being on other PD medication

than levodopa and dopamine agonists, and maximum dose and cumulative duration of

dopamine agonists. On the other hand, the following features had negative coefficients:
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Logistic regression
using only the
baseline visit

Logistic regression
using only the
previous visit

Logistic regression
using the mean
over past visits

Recurrent
neural

network

PPMI
With genetic variants 0.753 ([0.687, 0.814]) 0.795 ([0.727, 0.860]) 0.838 ([0.773, 0.893]) 0.850 ([0.794, 0.899])

Without genetic variants 0.751 ([0.683, 0.816]) 0.807 ([0.745, 0.865]) 0.843 ([0.782, 0.894]) 0.845 ([0.789, 0.895])

p-value 0.885 0.0971 0.637 0.451

DIGPD
With genetic variants 0.666 ([0.637, 0.695]) 0.802 ([0.776, 0.827]) 0.797 ([0.772, 0.823]) 0.802 ([0.777, 0.828])

Without genetic variants 0.682 ([0.653, 0.710]) 0.786 ([0.758, 0.812]) 0.788 ([0.763, 0.813]) 0.803 ([0.778, 0.828])

p-value 0.0143 0.000252 0.109 0.757

Table 2.3: Statistical comparison of ROC AUC for the four main models with and without genetic variants. Differences in ROC AUC
between the models with and without genetic variants were assessed with the DeLong test. Significant differences after Bonferroni
correction are highlighted in bold font.
DIGPD: Drug Interaction With Genes in Parkinson’s Disease; PPMI: Parkinson’s Progression Markers Initiative; ROC AUC: area under
the receiver operating characteristic curve.



Baseline
visit

Most recent
visit

Mean over
past visits

Socio-demographic
Sex 0.174 0.182 0.344

Age -0.318 -0.312 -0.184

Clinical

Past ICDs 1.582 1.921 3.958

Depression 0.000 0.131 0.887

State anxiety 0.000 -0.358 0.000

Trait anxiety 0.000 -0.332 -0.562

REM sleep 0.723 0.533 0.639

Motor exam 0.000 0.128 0.343

PD medication

On levodopa 0.000 -0.029 -0.300

On dopamine agonists 0.000 0.063 0.000

On other PD medication 0.000 0.171 0.063

Mean daily dose of dopamine agonists 0.000 -0.130 -0.049

Maximum daily dose of dopamine agonists 0.000 0.253 0.563

Total dose of dopamine agonists 0.000 -0.393 -3.392

Cumulative duration on dopamine agonists 0.000 0.355 2.109

Time to prediction Time to prediction 0.106 0.032 0.039

Table 2.4: Coefficients of the three logistic regression models without genetic variants as input.
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age, anxiety, being on levodopa, and mean daily and total dose of dopamine agonists.

The features corresponding to being on dopamine agonists and time to prediction had

coefficients close to zero. The variables with the largest absolute values were past ICDs,

and total dose and cumulative duration of dopamine agonists.

2.4 Discussion

To the best of our knowledge, this study is the first one evaluating the predictability

of ICDs in PD in an unbiased manner using two longitudinal cohorts, including one

independent replication cohort.

Two previous studies reported ROC AUC for a prediction task of ICDs in PD (Erga

et al., 2018; Kraemmer et al., 2016). Kraemmer and colleagues reported ROC AUC

of 0.65 (95% CI 0.58-0.73) with clinical variables only and of 0.76 (95% CI 0.70-0.83)

with clinical and genetic variables, while Erga and colleagues reported ROC AUC of

0.68 (95% CI 0.59-0.78) with clinical features only and of 0.70 (95% CI 0.61-0.79) with

clinical and genetic features. However, the methods and prediction tasks were different.

Erga and colleagues performed a cross-sectional analysis of 119 PD patients from the

Norwegian ParkWest study, while Kraemmer and colleagues performed a longitudinal

analysis of 276 PD patients from PPMI. In their studies, each patient corresponds to

a unique observation, leading to much lower sample sizes. Moreover, both studies did

not use cross-validation and did not have a replication cohort, which might lead to

overly optimistic reported results (Koul et al., 2018). By contrast, our study uses cross-

validation on the training cohort (PPMI) and has a replication cohort (DIGPD), with

comparable results in both cohorts. Moreover, both cohorts have different character-

istics (de novo drug-naive patients in PPMI, already-treated patients in DIGPD) and

some variables (anxiety, depression, REM sleep) were not measured with the same in-

struments, suggesting good generalizability of the models in different settings. We also

detail our methodology and provide the coefficients of the logistic regression models, so

that others can investigate the predictive performance of our models in their cohorts.

The logistic regression coefficients were overall consistent with the literature. For

the socio-demographic variables, sex and age have respectively a positive and negative

coefficients, in accordance with a younger age and a male sex previously associated with

ICDs in PD (Weintraub and Claassen, 2017). Depression, REM sleep and motor exam

scores also had positive coefficients, consistent with their positive association (Grall-

Bronnec et al., 2018). Anxiety scores had negative coefficients although previously

reported to be positively associated with ICD. The maximum dose and cumulative

duration of dopamine agonists had positive coefficients, confirming the important role

of the dose and the duration of dopamine agonist therapy in the risk to develop ICDs in

PD (Corvol et al., 2018). Interestingly, the types of PD medication sparsely contributed

to the decision function of the models, with very small coefficients. The mean daily and
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total doses of dopamine agonists had negative coefficients, although these coefficients

were almost null for the mean daily dose. These derived features have rarely been

investigated altogether, making the comparison with the literature difficult. It should

be noted that the coefficients are estimated altogether and that the logistic regression

models were regularized, so interpretation should be performed with caution.

Although the predictive performance of the models can be considered acceptable,

the use of such models in clinical practice would deserve improving their accuracy. We

used features that have been associated with ICDs in PD as input of our models, but

there are probably more unknown risk factors to be discovered. In addition, as a class

of psychiatric disorders, ICDs are particularly complex, with qualitative environmental

factors that might play important roles, are difficult to measure, and are not captured

by clinical scales used in PD. Assessment of ICDs may also be noisy (e.g. patients

hiding or not aware of their behavior), and thus ICDs are probably less predictable in

practice than other comorbidities in PD, such as dementia (Liu et al., 2017). Finally,

little is known about the genetic factors of ICDs in PD. In absence of genome-wide

association study and genetic risk scores for ICDs in PD, we used associated genetic

variants from candidate gene analyses (Cormier-Dequaire et al., 2018; Erga et al., 2018;

Kraemmer et al., 2016). As variation in complex traits is caused by numerous genetic

variants, such analyses have important limitations and many association studies could

not be replicated, particularly in psychiatric conditions like schizophrenia (Johnson

et al., 2017). More studies, in particular genome-wide association studies, are needed

to better understand the genetic landscape of ICDs in PD.

We used ROC AUC as the main metric to evaluate the models, and recurrent neural

network models did not have much added value over logistic regression models for this

metric. ROC AUC is the area under the ROC curve, plotting the sensitivity against

the specificity, and summarizes how much sensitivity and specificity change for different

thresholds. However, in practice, a single threshold is generally used. Using the default

threshold (probability > 0.5) yielded higher balanced accuracy (mean of sensitivity and

specificity) scores in the replication cohort for the recurrent neural network model than

the logistic regression models, whereas this was not observed in the training cohort.

This might suggest better generalizability of the recurrent neural network model than

the logistic regression models when using a single threshold.

Being able to predict ICDs is of critical importance due to their potential medical,

financial, and/or legal medical complications. Identifying patients at high risk to de-

velop ICDs at the next visit may lead to changes in the dopaminergic treatment strategy

(e.g. decrease the dose of dopamine agonists and increase levodopa) and/or recommend

a closer monitoring of behavioral changes by the caregiver. The efficacy of such pre-

ventive strategies based on a predictive model remains however to be evaluated. In this

perspective, the model may be adapted depending on the relative importance for iden-

tifying positives (patients who will develop ICDs) or negatives (patients who will not
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develop ICDs). The balanced accuracy scores were equal to 76% for the recurrent neu-

ral network models in both cohorts, but the sensitivities (61% vs 70%) and specificities

(90% vs 82%) differed, which might be explained by the different prevalences in both

cohorts. Using the default threshold (probability > 0.5) made the models more specific

than sensitive, which might be a limitation if finding the positives is more important

than the negatives. On the other hand, models being more specific than sensitive might

be more relevant if the main objective is to propose treatment changes only to patients

who are really at risk, and avoid unnecessary modifications in more patients. The

threshold can still be adjusted depending on the main objective. Prospective studies

are required to validate the models and allow their relevance in clinical routine.

Our study has several limitations. First, the sample sizes are relatively small, in

particular on the test set of PPMI due to the use of cross-validation, leading to large

confidence intervals. Second, each observation is a (subject, visit) pair and thus the ob-

servations are not independent (the intra-subject observations are not independent, but

the inter-subject observations are independent), which could lead to underestimating

p-values when assessing the statistical difference between ROC AUC. Third, in absence

of genome-wide association study and genetic risk scores for ICDs in PD, we used as-

sociated genetic variants from candidate gene analyses. Genetic risk scores are more

robust estimators of the genetic liability of a phenotype and should be preferred when

available (Wray et al., 2007).

In conclusion, our study shows that ICDs in PD can be predicted with a relatively

good accuracy. The developed models were unbiasedly evaluated in two research co-

horts, with comparable results. Our study highlights the utility of machine learning to

automatically extract information from data and its potential to improve patient care.
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Chapter 3

Exploratory analysis of the genet-

ics of impulse control disorders in

Parkinson’s disease using genetic

risk scores

This chapter has been submitted to the Parkinsonism and Related Disorders journal

as:

Johann Faouzi, Baptiste Couvy-Duchesne, Samir Bekadar, Olivier Col-

liot and Jean-Christophe Corvol. “Exploratory analysis of the genetics of

impulse control disorders in Parkinson’s disease using genetic risk scores”.

Abstract

Objective To study the association between impulse control disorders (ICDs) in

Parkinson’s disease (PD) and genetic risk scores (GRS) for 40 known or putative risk

factors (e.g. depression, personality traits).

Background In absence of published genome-wide association studies (GWAS), little

is known about the genetics of ICDs in PD. GRS of related phenotypes, for which large

GWAS are available, may help shed light on the genetic contributors of ICDs in PD.

Methods We searched for GWAS on European ancestry populations with summary

statistics publicly available for a broad range of phenotypes, including other psychiatric

disorders, personality traits, and simple phenotypes. We separately tested their pre-

dictive ability in two of the largest PD cohorts with clinical and genetic available: the

Parkinson’s Progression Markers Initiative database (N = 368, 33% female, age range =

[33 - 84]) and the Drug Interaction With Genes in Parkinson’s Disease study (N=373,

40% female, age range = [29 - 85]).
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Results We considered 40 known or putative risk factors for ICDs in PD for which

large GWAS had been published. After Bonferroni correction for multiple comparisons,

no GRS or the combination of the 40 GRS were significantly associated with ICDs from

the analyses in each cohort separately and from the meta-analysis.

Conclusion Albeit unsuccessful, our approach will gain power in the coming years

with increasing availability of genotypes in clinical cohorts of PD, but also from future

increase in GWAS sample sizes of the phenotypes we considered. Our approach may be

applied to other complex disorders, for which GWAS are not available or limited.

3.1 Introduction

Although the cardinal symptoms of Parkinson’s disease (PD) are motor, many non-

motor symptoms frequently occur during the course of the disease, including psychi-

atric comorbidities. Impulse control disorders (ICDs), a class of psychiatric disorders

characterized by impulsivity, are common in PD, with half of PD cases expected to

experience them within 5 years of the disease onset (Corvol et al., 2018). The four most

common ICDs in PD are pathological gambling, compulsive eating, hypersexuality, and

compulsive eating disorder. ICDs are associated with reduced quality of life, strained in-

terpersonal relationships, increased caregiver burden, and require prompt management

(Weintraub and Claassen, 2017).

Numerous factors have been associated with ICDs in PD, including socio-demographic,

clinical and genetic variables (Grall-Bronnec et al., 2018). Associations from candidate

gene analyses between ICDs and several genetic variants have been reported in the fol-

lowing genes: ANKK1 (Hoenicka et al., 2015), DAT1 (Cormier-Dequaire et al., 2018),

DRD1 (Erga et al., 2018; Zainal Abidin et al., 2015), DRD2 (Kraemmer et al., 2016;

Zainal Abidin et al., 2015), DRD3 (Castro-Martínez et al., 2018; Krishnamoorthy et al.,

2016; Lee et al., 2009), GRIN2B (Lee et al., 2009; Zainal Abidin et al., 2015), HTR2A

(Kraemmer et al., 2016; Lee et al., 2012), OPRK1 (Cormier-Dequaire et al., 2018;

Kraemmer et al., 2016), OPRM1 (Cormier-Dequaire et al., 2018), and SLC22A1 (Re-

denek et al., 2019). Several studies also reported no consistent associations with variants

from some of the same genes (Cormier-Dequaire et al., 2018; Vallelunga et al., 2012),

highlighting the variability and the lack of replication of the reported associations.

Variation in complex traits is caused by numerous genetic variants. Each genetic

variant usually provides limited information because the relative causal risk of each

variant is small (Wray et al., 2007). On the other hand, the combined risk of numerous

low-risk variants can explain a significant proportion of the genetic variance. Genetic

risk scores (GRS), obtained from genome-wide association studies (GWAS), linearly

summarize the contribution of these numerous variants into a single score. Using such

GRS allows for studying traits not collected in the PD cohorts or diseases that would

be too rare to allow direct evaluation of the comorbidities.
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ICDs in PD have been rarely studied using GRS. Only one study looked for associa-

tions between GRS and ICDs in PD (Ihle et al., 2020). In this study, authors computed

a GRS of PD using 90 SNPs reaching genome-wide significance in a meta-analysis of 17

GWAS (Nalls et al., 2019) and did not find an association between this GRS and ICDs

in PD. Their power was limited due to the small sample size. Furthermore, the GRS

may only capture part of the genetic risk factors and would benefit from larger GWAS

(Dudbridge, 2013). ICDs are not associated with PD itself (de la Riva et al., 2014),

and may be associated with personality traits or psychiatric endophenotypes, which has

been little studied.

Our main objective was to evaluate the predictive accuracy of a broad range of GRS

in order to shed light on the genetic determinants of ICDs in PD. We were particularly

interested in GRS for other psychiatric disorders, but also personality traits, including

impulsivity, some of which have been associated with ICDs in PD (Callesen et al., 2014;

Sáez-Francàs et al., 2016; Voon et al., 2011).

3.2 Materials and methods

3.2.1 Populations

We used data from two research cohorts: the Parkinson’s Progression Markers Initiative

(PPMI) database and the Drug Interaction With Genes in Parkinson’s Disease (DIGPD)

study.

PPMI (https://www.ppmi-info.org) is a multicenter observational clinical study

using advanced imaging, biologic sampling and clinical and behavioral assessments to

identify biomarkers of PD progression. Data was gathered during face-to-face visits ev-

ery 6–12 months. PD subjects were de-novo and drug-naïve at baseline. We downloaded

the clinical and genetic data from the PPMI database (https://www.ppmi-info.org/

data) on the 17th of October, 2019.

DIGPD is a French multicenter longitudinal cohort with annual follow-up of PD

patients (Corvol et al., 2018). Eligible criteria consist in recent PD diagnosis (UK

Parkinson’s Disease Society Brain Bank criteria) with disease duration less than 5 years

at recruitment. Data was gathered during face-to-face visits every 12 months following

standard procedures.

Both studies were conducted according to good clinical practice, obtained approval

from local ethic committees and regulatory authorities, and all patients provided in-

formed consent prior to inclusion.

3.2.2 Participants

Inclusion criteria in our analyses included having: (i) a PD diagnosis, (ii) at least two

visits measuring ICDs, (iii) clinical and genetic data available, and (iv) a European
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genetic ancestry. We identified 378 subjects in PPMI and 382 subjects in DIGPD

matching the first three criteria.

ICDs were assessed at each visit using the Questionnaire for Impulsive-Compulsive

Disorders in Parkinson’s Disease - Rating Scale (Weintraub et al., 2012) in PPMI, and

through semi-structured interviews by a movement disorders specialist in DIGPD. The

ICD phenotype was defined as the lifetime presence of ICDs.

3.2.3 Genetic ancestry

To date, most GWAS have been conducted in populations of European ancestry, which

limits the use of GWAS-derived GRS in non-European ancestry populations (Wang

et al., 2020), and their transferability to other populations depends on many factors

such as linkage disequilibrium, allele frequencies, and genetic architecture. Directly

computing GRS in another ancestry group that the one from the corresponding GWAS

can lead to biased GRS (Martin et al., 2017).

To estimate the genetic ancestry of the PD subjects in PPMI and DIGPD, we used

data from the 1000 genomes (1000G) project to learn a low-dimensional representation

of the genetic data, which captures the main dimension of ancestry. Using the 50,842

common raw SNPs between 1000G, PPMI and DIGPD, we applied the Uniform Mani-

fold Approximation Projection (McInnes et al., 2018) (UMAP) algorithm on the 1000G

data to learn a low-dimensional space of the raw SNPs. Finally, we projected the PPMI

and DIGPD subjects onto the main principal components to identify in which clusters

they were the closest to. Subjects projected on another cluster than the European

cluster were excluded.

3.2.4 Genotyping and quality control

Genotype data was acquired using NeuroX (Nalls et al., 2015) arrays in PPMI (267,607

variants measured), and Illumina Multi-Ethnic Genotyping Arrays in DIGPD (1,779,819

variants). We excluded variants with missing rates greater than 2% and variants devi-

ating from Hardy-Weinberg equilibrium (p < 10−8). We excluded related individuals

(third-degree family relationships), individuals with mismatching between reported sex

and genetically determined sex, and individuals with outlying heterozygosity (± 3 stan-

dard deviation). We then imputed missing SNPs using the Michigan Imputation Server

(Das et al., 2016) for PPMI and the Sanger Imputation Server (McCarthy et al., 2016)

for DIGPD, using the reference panel of the Haplotype Reference Consortium (release

1.1) (McCarthy et al., 2016).

For GRS calculation, we selected SNPs that were (i) biallelic, (ii) frequent enough

(minor allele frequency > 1%), and (iii) imputed with sufficient accuracy (R2 > 0.8 for

PPMI, INFO Score > 0.9 for DIGPD).
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3.2.5 Phenotypes and genome-wide association studies

Phenotypes of interest included known or putative factors associated with ICDs in PD,

such as anxiety, depression, personality traits including impulsivity, eating and sleep

disorders. We were also interested in more general phenotypes such as body height,

body mass index (BMI), intelligence, and number of years of education, more because

of the sample size of the corresponding GWAS rather than their prior association with

ICDs in PD. In particular, body height and body mass index are phenotypes that are

easy to collect with precision, and for which very large GWAS are available and the

corresponding GRS explain a large part of the variance. These phenotypes are also

usually collected in research cohorts, allowing for comparing the GRS with the true

phenotypes, and thus validating our computation of the GRS.

We used the NHGRI-EBI GWAS Catalog (Buniello et al., 2019) to select the largest

GWAS to date on samples of European ancestry. When summary statistics from several

GWAS were available for a given phenotype, we only included the largest study.

3.2.6 Computation of genetic risk scores

When summary statistics were fully available, we estimated the coefficients of the GRS

using the SBLUP (Robinson et al., 2017) algorithm implemented in the GCTA (Yang

et al., 2011) software. SBLUP directly estimates GRS coefficients from summary statis-

tics, using a reference sample to estimate the linkage disequilibrium between SNPs.

When summary statistics were not available in full, we computed small GRS by per-

forming clumping to select the most significant, low correlated variants, and directly

using the coefficients provided in the summary statistics. Clumping and GRS compu-

tation were performed using the PLINK (Chang et al., 2015) software.

3.2.7 Statistical analyses

We estimated the association between the binary ICD phenotype and GRS using logistic

regression, while correcting for age, sex, genetic ancestry (first four components), and

the number of visits. We added the correction for the number of visits to reflect the

fact that lifetime phenotype may be more likely as the number of visits increases. We

performed the analyses in each cohort independently as the contributions of all the SNPs

were estimated altogether, and the number of SNPs was much lower in PPMI than in

DIGPD. We applied per-sample Bonferroni correction for multiple comparisons. We also

investigated the association of the combination of the 40 GRS with the likelihood-ratio

test.

As the sample sizes were relatively small in both cohorts, we also performed a

meta-analysis to estimate the combined effects of each GRS separately and combined

altogether using fixed effects models with the inverse-variance weighting method.
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Logistic regressions were performed using the statsmodels (Seabold and Perktold,

2010) Python package. Meta-analyses were performed using the meta (Balduzzi et al.,

2019) R package. Processing of the different text-like files was performed using the

pandas (McKinney, 2010) and NumPy (Harris et al., 2020a) packages.

3.3 Results

3.3.1 Participants and genetic variants

Out of the 378 PPMI subjects and 382 DIGPD subjects who matched the first three

inclusion criteria, we excluded 10 subjects from PPMI and 9 subjects from DIGPD for

being projected too far from the European cluster (Figure 3.1). Thus, we included 368

subjects from PPMI and 373 subjects from DIGPD.

Out of the 39,235,157 genetic variants of the Haplotype Reference Consortium ref-

erence panel, 601,370 SNPs in PPMI and 6,294,320 SNPs in DIGPD matched the in-

clusion criteria. The high discrepancy in the numbers is due to the genotyping arrays:

the NeuroX array is known to have a low coverage of the genome (Nalls et al., 2015).

3.3.2 Genome-wide association studies

We identified 40 GWAS that matched the inclusion criteria. Table 3.1 presents the char-

acteristics of these studies, including the phenotype of interest, the number of SNPs, the

heritability estimated from these SNPs, and the number of common SNPs between the

GWAS and PPMI and DIGPD. The included phenotypes consisted of other psychiatric

disorders (anxiety, depression, obsessive compulsive, and attention-deficit hyperactiv-

ity disorders (ADHD), anorexia nervosa), personality traits (impulsivity, agreeableness,

conscientiousness, extraversion, openness), risk taking behaviors (automobile speeding,

alcohol consumption, smoking status, sexual activity), and simple traits (body height,

body mass index, intelligence, education).

Two groups of GWAS included genetic data from 23andMe1, and only the top 10,000

SNPs were made publicly available. We requested access to the whole summary statistics

from 23andMe with no success.

3.3.3 Association analyses

Table 3.2 presents the unadjusted p-values for the 40 GRS from the analyses on each

cohort separately and from the meta-analysis. For the analysis in each cohort separately,

among the 2 sets of 40 unadjusted p-values (correction is per-sample), only one was

smaller than 0.05 (nominal significance), corresponding to the GRS of body mass index

in PPMI (p = 0.0079). The association did not survive after Bonferroni correction.

1www.23andme.com
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Study Phenotype h2

SNP (SE) # subjects # SNPs # SNPs ∩ DIGPD # SNPs ∩ PPMI

(Howard et al., 2019) Major depression disorder 0.089 (0.003) 807,553 7,743,682 5,975,580 502,668

(Nalls et al., 2019) Parkinson’s disease 0.22 (0.024) 900,238 8,164,949 6,123,638 521,258

(IOCDF, 2018) Obsessive compulsive disorder 0.28 (0.04) 9,725 6,813,688 5,717,746 493,510

(Otowa et al., 2016) Anxiety disorder 0.138 (0.028) 17,31 6,330,995 5,035,054 414,627

(Watson et al., 2019) Anorexia nervosa 0.14 (0.01) 72,517 3,448,674 2,814,932 263,385

(Karlsson Linnér et al., 2019)

Automobile speeding propensity 0.079 (0.003) 404,291 7,779,359 6,173,839 519,927

Number of sexual partners 0.128 (0.003) 370,711 7,779,445 6,173,866 519,928

Risk-taking tendency 0.156 (0.004) 315,894 7,779,520 6,173,864 519,925

General risk tolerance 0.045 (0.001) 975,353 7,779,339 6,173,819 519,927

(Sanchez-Roige et al., 2019)

Drug experimentation measurement 0.1116 (0.0242) 22,572 6.442 4,850 475

Impulsivity (attentional) 0.0541 (0.0225) 21,876 5.715 4,183 293

Impulsivity (motor) 0.0443 (0.0193) 21,806 5.77 4,312 424

Impulsivity (non-planning) 0.0657 (0.0254) 21,786 6.412 4,785 447

Impulsivity 0.066 (0.0224) 21,495 5.697 4,178 268

Lack of perseverance 0.0791 (0.019) 22,861 6.254 4,720 367

Lack of premeditation 0.0452 (0.0199) 22,774 6.161 4,674 267

Negative urgency 0.0796 (0.0236) 22,795 6.387 4,805 339

Positive urgency 0.0682 (0.0233) 22,738 6.299 4,787 367

Sensation seeking 0.0811 (0.0211) 22,745 6.769 5,342 289

(Luciano et al., 2018) Neuroticism 0.108 (0.005) 452,688 7,625,696 6,033,335 511,477

(Savage et al., 2018) Intelligence 0.197 (0.009) 269,867 7,445,515 6,021,486 511,723

(Demontis et al., 2019) Attention-deficit hyperactivity disorder 0.216 (0.014) 53,293 6,921,780 5,597,529 493,284

(van den Berg et al., 2016) Extraversion 0.050 (0.072) 72,813 6,576,855 5,411,885 452,537

(Lo et al., 2017)

Agreeableness 0.085 (0.009) 76,551 7.208 5,932 803

Conscientiousness 0.096 (0.009) 123,132 7.267 5,777 518

Extraversion 0.181 (0.010) 169,507 8.582 5,551 1,209

Openness 0.107 (0.009) 76,581 7.515 5,984 447

(Pulit et al., 2019) Body mass index 0.279 (0.002) 806,834 7,837,070 6,147,810 517,713

(Yengo et al., 2018) Height 0.483 (0.037) 456,426 2,333,797 2,143,637 169,576

(ILAE, 2018) Epilepsy 0.321 (0.0145) 38,752 4,988,035 4,731,775 450,99

(Liu et al., 2019)

Age of smoking initiation 0.0468 (0.0027) 341,427 7,788,606 6,139,297 520,186

Smoking behaviour 0.0804 (0.0076) 377,334 7,788,737 6,139,286 520,188

Smoking cessation 0.0464 (0.0018) 547,219 7,837,671 6,176,531 520,050

Smoking initiation 0.0777 (0.0021) 1,232,091 7,683,723 6,061,508 516,602

Alcohol consumption 0.0419 (0.0018) 941,280 7,784,169 6,136,554 519,930

(Neale lab, 2018)

Ever addicted to any substance or behaviour 0.0526 (0.0278) 26,402 8,242,335 6,017,163 511,372

Sleeplessness / insomnia 0.0624 (0.00349) 360,738 8,247,437 6,017,509 511,412

Trouble falling or staying asleep 0.0581 (0.00728) 117,822 8,247,396 6,017,506 511,412

Age first had sexual intercourse 0.1614 (0.00586) 317,694 8,247,440 6,017,509 511,412

Recent poor appetite or overeating 0.0493 (0.0074) 117,907 8,247,393 6,017,506 511,412

Age completed full time education 0.1047 (0.00473) 240,547 8,247,414 6,017,509 511,413

Table 3.1: Characteristics of the genome-wide association studies. DIGPD: Drug Interaction With Genes in Parkinson’s Disease; PPMI:
Parkinson’s Progression Markers Initiative; SE: standard error; SNP: Single nucleotide polymorphism.
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Phenotype OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value

(Howard et al., 2019) Major depression disorder 2.46 (0.54-11.28) 0.2449 0.64 (0.15-2.78) 0.5480 1.23 (0.43-3.53) 0.7059

(Nalls et al., 2019) Parkinson’s disease 1.47 (0.24-9.04) 0.6758 2.65 (0.77-9.12) 0.1224 2.20 (0.79-6.11) 0.1306

(IOCDF, 2018) Obsessive compulsive disorder 4.46 (0.91-21.94) 0.0657 0.91 (0.21-3.90) 0.9039 1.88 (0.64-5.48) 0.2501

(Otowa et al., 2016) Anxiety disorder 0.41 (0.11-1.52) 0.1829 0.74 (0.24-2.27) 0.5958 0.58 (0.25-1.35) 0.2044

(Watson et al., 2019) Anorexia nervosa 1.20 (0.32-4.47) 0.7882 1.08 (0.32-3.60) 0.9037 1.13 (0.46-2.75) 0.7867

(Karlsson Linnér et al., 2019)

Automobile speeding propensity 2.46 (0.69-8.80) 0.1660 1.42 (0.40-5.12) 0.5885 1.87 (0.76-4.62) 0.1728

Number of sexual partners 0.55 (0.14-2.17) 0.3914 0.54 (0.15-1.91) 0.3403 0.54 (0.21-1.38) 0.1998

Risk-taking tendency 0.95 (0.20-4.49) 0.9482 0.99 (0.27-3.55) 0.9828 0.97 (0.36-2.61) 0.9538

General risk tolerance 0.45 (0.10-2.07) 0.3067 1.16 (0.33-4.04) 0.8178 0.79 (0.30-2.08) 0.6368

(Sanchez-Roige et al., 2019)

Drug experimentation measurement 0.74 (0.19-2.89) 0.6691 1.32 (0.42-4.15) 0.6383 1.04 (0.43-2.49) 0.9339

Impulsivity (attentional) 0.72 (0.16-3.16) 0.6629 2.04 (0.46-9.10) 0.3512 1.20 (0.42-3.45) 0.7297

Impulsivity (motor) 1.04 (0.27-3.99) 0.9525 0.48 (0.14-1.58) 0.2266 0.67 (0.28-1.65) 0.3883

Impulsivity (non-planning) 3.69 (0.83-16.43) 0.0865 1.82 (0.45-7.36) 0.4002 2.53 (0.91-7.02) 0.0742

Impulsivity 2.47 (0.77-7.95) 0.1294 1.58 (0.37-6.71) 0.5365 2.07 (0.83-5.14) 0.1168

Lack of perseverance 5.17 (0.96-27.86) 0.0557 0.86 (0.24-3.09) 0.8197 1.66 (0.60-4.59) 0.3295

Lack of premeditation 0.33 (0.10-1.10) 0.0721 0.29 (0.08-1.10) 0.0689 0.31 (0.13-0.76) 0.0107

Negative urgency 1.61 (0.44-5.89) 0.4730 1.48 (0.47-4.69) 0.5024 1.54 (0.65-3.64) 0.3281

Positive urgency 1.33 (0.34-5.23) 0.6798 1.89 (0.59-6.06) 0.2852 1.63 (0.67-3.96) 0.2797

Sensation seeking 0.46 (0.13-1.59) 0.2180 0.76 (0.19-3.12) 0.7062 0.57 (0.23-1.45) 0.2409

(Luciano et al., 2018) Neuroticism 1.37 (0.42-4.47) 0.6024 1.54 (0.40-5.88) 0.5276 1.44 (0.59-3.50) 0.4188

(Savage et al., 2018) Intelligence 0.52 (0.15-1.82) 0.3061 2.68 (0.55-13.16) 0.2248 0.97 (0.36-2.61) 0.9596

(Demontis et al., 2019) Attention-deficit hyperactivity disorder 1.41 (0.31-6.47) 0.6578 0.32 (0.08-1.25) 0.1018 0.62 (0.22-1.71) 0.3568

(van den Berg et al., 2016) Extraversion 0.67 (0.18-2.42) 0.5386 0.46 (0.12-1.86) 0.2796 0.57 (0.22-1.45) 0.2358

(Lo et al., 2017)

Agreeableness 2.88 (0.73-11.32) 0.1302 1.37 (0.44-4.25) 0.5857 1.85 (0.77-4.43) 0.1662

Conscientiousness 3.12 (0.66-14.71) 0.1514 0.85 (0.23-3.20) 0.8139 1.47 (0.54-4.02) 0.4532

Extraversion 1.06 (0.26-4.26) 0.9358 0.52 (0.16-1.71) 0.2837 0.70 (0.28-1.74) 0.4456

Openness 1.14 (0.30-4.31) 0.8422 1.98 (0.55-7.14) 0.2981 1.52 (0.60-3.82) 0.3755

(Pulit et al., 2019) Body mass index 23.92 (2.30-249.19) 0.0079 1.18 (0.17-8.29) 0.8696 4.04 (0.90-18.10) 0.0680

(Yengo et al., 2018) Height 0.57 (0.06-5.09) 0.6139 1.72 (0.26-11.32) 0.5730 1.07 (0.26-4.49) 0.9215

(ILAE, 2018) Epilepsy 0.83 (0.11-6.36) 0.8580 1.57 (0.35-6.98) 0.5566 1.25 (0.38-4.18) 0.7128

(Liu et al., 2019)

Age of smoking initiation 1.57 (0.34-7.21) 0.5590 2.03 (0.50-8.28) 0.3253 1.80 (0.64-5.07) 0.2632

Smoking behaviour 0.48 (0.10-2.25) 0.3519 2.21 (0.43-11.20) 0.3396 0.99 (0.32-3.04) 0.9875

Smoking cessation 1.80 (0.29-11.30) 0.5290 0.89 (0.23-3.37) 0.8626 1.13 (0.39-3.34) 0.8181

Smoking initiation 1.31 (0.12-14.97) 0.8256 1.42 (0.35-5.84) 0.6235 1.40 (0.41-4.73) 0.5925

Alcohol consumption 1.48 (0.29-7.43) 0.6362 0.37 (0.10-1.35) 0.1309 0.63 (0.23-1.74) 0.3770

(Neale lab, 2018)

Ever addicted to any substance or behaviour 0.88 (0.28-2.79) 0.8242 1.50 (0.35-6.33) 0.5837 1.08 (0.44-2.66) 0.8657

Sleeplessness / insomnia 1.46 (0.35-6.13) 0.6055 1.25 (0.37-4.17) 0.7207 1.33 (0.53-3.35) 0.5444

Trouble falling or staying asleep 1.00 (0.23-4.37) 0.9993 0.84 (0.18-3.94) 0.8255 0.92 (0.32-2.68) 0.8796

Age first had sexual intercourse 1.11 (0.17-7.15) 0.9120 2.88 (0.83-9.99) 0.0951 2.15 (0.76-6.04) 0.1472

Recent poor appetite or overeating 0.37 (0.10-1.39) 0.1418 2.68 (0.74-9.69) 0.1330 1.03 (0.41-2.58) 0.9572

Age completed full time education 1.58 (0.45-5.58) 0.4783 1.00 (0.27-3.63) 0.9960 1.26 (0.51-3.11) 0.6144

Table 3.2: Results of the association analyses. Unadjusted p-values are reported for both cohorts separately and for the meta-analysis.
DIGPD: Drug Interaction With Genes in Parkinson’s Disease; OR: Odds ratio; PPMI: Parkinson’s Progression Markers Initiative.
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In the meta-analysis, among the 40 unadjusted p-values, only one was smaller than

0.05, corresponding to the GRS lack of premeditation (p = 0.0107). The association

did not survive after Bonferroni correction.

The combination of the 40 GRS altogether was not associated with ICDs, both from

the analyses in each cohort independently (p = 0.0969 in PPMI, p = 0.5166 in DIGPD)

and from the meta-analysis (p = 0.0764).

In order to validate our GRS calculation, we assessed the quality of the GRS of body

mass index by using a linear regression model with correction for age, sex and genetic

ancestry. BMI was available in both cohorts, and is well studied in genetics, leading

to robust GRS-based prediction (Dudbridge, 2013). In particular, the corresponding

GWAS has a very large sample size (N = 806,834), making the estimation of each SNP

contribution more robust. In both cohorts, BMI GRS were strongly associated with

the measured BMI (p = 0.000058 in PPMI, p = 0.000038 in DIGPD) and the Pearson

correlation coefficients were positive and high (r = 0.21 in PPMI, r = 0.19 in DIGPD).

These results gave us confidence in our methodology and in the quality of the computed

GRS.

3.4 Discussion

To our knowledge, this is the first study investigating the association between ICDs in

PD and genetic risk scores for a broad range of phenotypes, including phenotypes that

have been associated with ICDs in PD (Grall-Bronnec et al., 2018). Compared to a

previous study that only investigated the PD GRS computed from a small number of

SNPs (Ihle et al., 2020), we explored 40 phenotypes for which we computed GRS using

a large number of SNPs. However, the results were mainly negative, as we did not find

a single association after correction for multiple comparisons.

The main limitation of our study is the small sample size of our clinical samples,

which limits discovery of small associations. The size of the GWAS is also a limitation,

as GRS are imperfect predictors of the genetic liability of traits. It is known that

discouraging results in many studies were due to low number of participants, and that

an increase in the sample size would allow more successful results (Dudbridge, 2013).

The genetic correlations between the traits for which GRS were calculated and ICDs are

also unknown. Another limitation is the incomplete summary statistics made available

for two groups of studies focusing on impulsivity and personality traits (collaborations

with 23andMe, we contacted 23andMe but did not receive a response). For these traits,

we had to compute GRS from a small number of SNPs. Computing the GRS using the

whole summary statistics would likely increase the quality of these GRS.

Little is known about the genetic factors of ICDs in PD. Several studies reported

associations for a few genetic variants, but they all suffer from the lack of replication,

and there exists no GRS for ICDs yet. Our study could not conclude about the asso-
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ciation between ICDs in PD and GRS for a broad range of phenotypes, but highlights

the methodology to compute GRS and study their association with ICDs in PD for

future studies, and shows how to investigate the genetic factors of a phenotype with-

out performing a GWAS. Such study would deserve from being repeated when larger

GWAS or clinical samples get available, which may boost power to detect significant

associations.
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Chapter 4

Combining static and dynamic data

in recurrent neural networks

4.1 Introduction

Most entities that produce data at several time points have characteristics that do not

depend on time. For instance, sensors provide measurements at many timestamps,

but they have characteristics, such as their components, that are time-independent.

Humans, as living beings, also have both types of characteristics. Their genetic data

will stay identical for their whole lives, but most of their characteristics evolve over

time, such as their blood pressure or blood sugar levels.

Numerous genetic and environmental factors can impact the evolution of a time-

dependent characteristic. Twin studies, where subjects share identical genetic and en-

vironmental factors, have shown that many phenotypes are substantially heritable. En-

vironmental factors, in particular qualitative ones, can be harder to measure, but their

impact on many disorders have been reported. For example, smokers and coffee drinkers

have a lower risk of Parkinson’s disease (Hernán et al., 2002).

Disease progression is a particular example of the evolution of a time-dependent

characteristic. Many disorders are complex, with numerous comorbidities, and disease

progression may greatly vary between patients. Being able to predict the future state

of a patient may improve understanding of the disease and patient care.

Mathematically, the objective is to predict the future value of a dynamic target vari-

able y at time t+ τ , y(t+τ), given input features from the present and the past. These

features consist of static features s, that do not depend on time, and dynamic features

x, at time (1, . . . , t), (x(1), . . . ,x(t)). Typically, the static features correspond to genetic

and socio-demographic data, while the dynamic features correspond to clinical mea-

surements. Environmental factors can be either static or dynamic feature, depending

on their nature. Without loss of generality, the target variable can be included in the

dynamic input features if its past and present values are relevant to predict its future

85



86 Chapter 4. Combining static and dynamic data in recurrent neural networks

value. This machine learning task has the following mathematical formulation

ŷ(t+τ) = f
(

s,x(1), . . . ,x(t);θ
)

where f is the function predicting ŷ(t+τ) given the static features s and input dynamic

features (x(1), . . . ,x(t)), and θ are the parameters of function f . The function f de-

termines which information is extracted from the static and input dynamic features,

independently but also dependently on each other. Different functions f allow for dif-

ferent modelling of the interaction between the static and input dynamic features. We

restrict the choice of f to the class of recurrent neural networks (RNNs).

Recurrent neural networks are a class of neural networks dedicated to sequential

data. The main part of a recurrent neural network is a RNN unit that takes as input

a sequence of dynamic features and outputs a vector, corresponding to the information

extracted from the dynamic features by this unit. However, a target dynamic feature is

usually impacted not only by other dynamic features, but also by static features. Adding

static features in recurrent neural networks raises the question of their integration with

dynamic features.

4.2 Related work

The starting point is a recurrent neural network with no static data as illustrated in

Figure 4.1. We consider a simple architecture with three layers:

• the input layer, consisting of the dynamic features;

• the hidden layer, consisting of the features extracted by the Gated Recurrent Unit

from the dynamic features; and

• the output layer, consisting of the output obtained by linearly combining the

hidden layer with a Fully Connected function.

A dummy way of integrating static features is to simply remove them, and we refer to

this approach as static=none.

Static and dynamic data can be considered as a particular combination of multi-

modal data. Several studies in the medical field integrated several sources of data to

improve the prediction of a phenotype. The modalities used are often imaging data, such

as T1-weighted magnetic resonance imaging (T1-MRI), T2-MRI and Fluid-attenuated

inversion recovery (FLAIR), and genetic data. Ge et al. (2018) integrated images from

T1-MRI, T2-MRI and FLAIR modalities for glioma classification, while Punjabi et al.

(2019) used T1-MRI and positron emission topography images for Alzheimer’s disease

classification. Mobadersany et al. (2018) and Hao et al. (2019) integrated histopatho-

logic images and genetic data to predict cancer outcome.
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ŷ(t+τ)

x
(1)

x
(2)

x
(t). . .

Figure 4.1: Recurrent neural network with no static data.

Integrating multimodal data is usually tackled with separate branches in the artificial

neural networks, with the independently extracted features being concatenated near the

end of the network. The corresponding architecture is illustrated in Figure 4.2, in the

particular case where the raw genetic data are used. We refer to this approach as

static=after. One limitation of this approach is the late interaction between the

static and dynamic features, as each branch extracts information from the input data

independently. If the static and dynamic features are correlated, we may want to provide

both kinds of features to the GRU.

Most studies focusing on the integration of static and dynamic data have been

identified in the literature of churn prediction. In these studies, the objective was to

predict which customers will unsubscribe to a service or which users will not log at

least once into a platform in the near future. The dynamic features consisted of the

activity of the users, while the static features included socio-demographic information

about the users. Besides the two aforementioned methods, two other approaches have

been proposed. The first one consists in treating static data as dynamic data (Leontjeva

and Kuzovkin, 2016; Rahman et al., 2020). The static features are repeated at each

time point by being concatenated to the vector of dynamic features. This approach is

illustrated in Figure 4.3 and is referred to as static=dynamic. One obvious limitation

of this method is that static data is treated as dynamic data, which may be suboptimal

because of the different nature of these features.

The other approach consists in initializing the parameters of the GRU with the

static features (Kristensen and Burelli, 2019). A Fully Connected function is used to
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GRU
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Figure 4.2: Recurrent neural network with static data on its own branch. Information is
independently extracted from the dynamical and static features, in their own branches.
The extracted information is then concatenated before the fully connected layer. In this
example, the raw static features are directly used.

GRU

h(t)

FC

ŷ(t+τ)

[x(1), s] [x(2), s] [x(t), s]. . .

Figure 4.3: Recurrent neural network with static data treated as dynamic data. The
static features are repeated at each time point and concatenated to the dynamic features.
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GRU
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Figure 4.4: Recurrent neural network with static data initializing the GRU layer. Linear
combinations of the static feature are used to initialize the parameters of the GRU layer.

linearly combine the static features into a vector with appropriate size. This approach

is illustrated in Figure 4.4 and is referred to as static=init. One limitation of this

approach is that the information from the static features is added in the initialisation of

the GRU and may vanish after a few time points. Otherwise, having to keep the infor-

mation from the static features may prevent it from extracting other useful information

from the dynamic features.

To summarize the four identified approaches, static features can be:

• removed (static=none),

• put after the GRU (static=after),

• treated as dynamic features (static=dynamic), or

• put at the same level as the GRU (static=init).

These approaches allow for modelling different interactions between the static and dy-

namic features.

4.3 Proposed approach

We propose another approach to integrate static data in recurrent neural networks.

Similarly to the static=dynamic method, this approach introduces the static features
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GRU

h(t)
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FC

FC
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x̃(1) x̃(2) x̃(t). . .

Figure 4.5: Recurrent neural network with static data modifying the dynamic features.
Each dynamic feature is multiplied by a linear combination of the static features.

before the GRU. However, instead of putting the static features at the same level as the

dynamic ones, they are put before and used to modify them.

More specifically, the new dynamic feature x̃i is the product between the original

dynamic feature xi and a linear combination of the static features:

x̃i = xi ×
(

b+

p
∑

k=1

sk

)

and the sequence of new dynamic features
(
x̃(1), . . . , x̃(t)

)
is used as input of the GRU.

This approach is illustrated in Figure 4.5 and is referred to as static=before. An

element-wise multiplication with a linear combination of the input boils down to adding

a Fully Connected function followed by an element-wise product between the static and

dynamic features.

This method models a high level of interaction between the static and dynamic

features. Similarly to the static=dynamic and static=init approaches, the GRU is
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provided the static features and can thus extract information from both the dynamic

and static features. Instead of treating static features as dynamic ones, which does not

take into account the difference in modalities, or initializing the GRU with the static

features, which may dilute the information of the static features over time, this approach

models a time-independent interaction between the static and dynamic features.

4.4 Experiments

We investigated the five approaches to integrate static data in recurrent neural networks

to predict impulse control disorders in Parkinson’s disease. The objective was identical

to the one presented in chapter 2, that is predicting the presence or absence of ICDs

(binary variable) at the next visit for a given subject given all the current information

on this subject:

ŷ(t+1) = f
(

s,x(1), . . . ,x(t);θ
)

In addition to the clinical, socio-demographic and SNP data used, we integrated ge-

netic ancestry and genetic risk scores as input of the models. These new features were

naturally considered as static data.

We use genetic data from the 1000 Genomes project1 to learn a low-dimensional

representation of high-dimensional raw genetic data. We then projected the subjects

from the PPMI and DIGPD cohorts onto this low-dimensional space and removed the

subjects not being projected on the European cluster. Genetic ancestry was derived as

the first ten components of this low-dimensional space and added as static features.

Genetic risk score were computed using only the common SNPs between PPMI

and DIGPD. Out of the 40 GRS presented in chapter 3, 13 were removed because the

provided summary statistics were too small. The corresponding genome-wide associa-

tion studies were performed using data from 23andMe2, and only the top 10k variants

were made available. Table 4.1 presents the characteristics of the 27 GWAS and the

corresponding GRS were added as input to the models.

The cross-validation was similar to the one presented in chapter 2 and is illustrated

in Figure 4.6. We employed a nested cross-validation on PPMI that was used as the

discovery cohort, and also evaluated the models on DIGPD that was used as the repli-

cation cohort, with 10 repetitions of the whole process. The 10 models were used to

compute the mean and standard deviation for the area under the ROC curve and the

average precision.

Results are presented in Table 4.2. The five approaches yielded comparable results,

with ROC AUC around 0.83 and 0.79 on PPMI and DIGPD respectively, and average

precision around 0.53 and 0.61 on PPMI and DIGPD respectively. The static=dynamic

method had the lowest scores on both cohorts, suggesting that this approach may be
1https://www.internationalgenome.org
2https://www.23andme.com
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Study Phenotype # subjects h2

SNP # SNPs

(IOCDF, 2018) Obsessive compulsive disorder 9,725 0.2800 495,612

(Demontis et al., 2019) Attention-deficit hyperactivity disorder 53,293 0.2160 493,519

(Howard et al., 2019) Major depression disorder 807,553 0.0890 499,639

(ILAE, 2018) Epilepsy 38,752 0.3210 449,734

(Karlsson Linnér et al., 2019)

Risk-taking tendency 315,894 0.1560 516,198

Number of sexual partners 370,711 0.1280 516,203

Smoking status 518,633 0.1090 516,204

General risk tolerance 975,353 0.0450 516,205

Automobile speeding propensity 404,291 0.0790 516,206

Alcohol consumption 414,343 0.0850 516,200

(Liu et al., 2019)

Smoking behaviour 377,334 0.0800 516,112

Alcohol consumption 941,280 0.0420 515,914

Smoking initiation 1,232,091 0.0780 512,648

Age of smoking initiation 341,427 0.0470 516,112

Smoking cessation 547,219 0.0460 515,985

(Luciano et al., 2018) Neuroticism 452,688 0.1080 518,481

(Nalls et al., 2019) Parkinson’s disease 900,238 0.2600 518,569

(Neale lab, 2018)

Trouble falling or staying asleep 117,822 0.0581 517,205

Sleeplessness / insomnia 360,738 0.0624 517,204

Age first had sexual intercourse 317,694 0.1614 517,205

Ever addicted to any substance or behaviour 26,402 0.0526 516,916

Age completed full time education 240,547 0.1047 517,205

Recent poor appetite or overeating 117,907 0.0493 517,205

(Otowa et al., 2016) Anxiety disorder 17,31 0.1380 413,915

(Pulit et al., 2019) Body mass index 806,834 0.2790 513,153

(Savage et al., 2018) Intelligence 269,867 0.2050 507,254

(Watson et al., 2019) Anorexia nervosa 72,517 0.1400 263,451

(Yengo et al., 2018) Height 456,426 0.4830 169,402

(van den Berg et al., 2016) Extraversion 72,813 0.0500 452,260

Table 4.1: Genome-wide association studies from which genetic risk scores were derived.
Columns are: study, phenotype, number of subjects in the study, variance explained by
the SNPs, and the number of common SNPs between the study, ADNI, PPMI and
DIGPD.
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Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Training set Test set

Outer
cross-validation

Inner
cross-validation

PPMI

10 times
=⇒

Replication
DIGPD

Figure 4.6: Cross-validation procedure. PPMI was used as the discovery cohort, on
which we performed a nested cross-validation to estimate the performance. This process
was repeated 10 times, and the corresponding 10 models were applied on DIGPD, used
as the replication cohort.

Method
ROC AUC Average Precision

PPMI DIGPD PPMI DIGPD

static=none 0.837 (±0.027) 0.788 (±0.007) 0.543 (±0.041) 0.614 (±0.013)

static=after 0.832 (±0.031) 0.789 (±0.007) 0.520 (±0.047) 0.612 (±0.014)

static=dynamic 0.816 (±0.038) 0.782 (±0.008) 0.494 (±0.063) 0.606 (±0.015)

static=init 0.837 (±0.033) 0.793 (±0.007) 0.537 (±0.047) 0.619 (±0.011)

static=before 0.839 (±0.030) 0.800 (±0.007) 0.536 (±0.054) 0.635 (±0.016)

Table 4.2: Predictive performance of the five approaches. Mean (standard deviation)
over the 10 repetitions are reported.

suboptimal. Overall, the different approaches to integrate static data in recurrent neural

networks had little to no impact on the predictive performance with these data.

4.5 Conclusion

Combining static and dynamic data is an underexplored topic. We reviewed the lit-

erature on integrating static data in recurrent neural networks and identified four ap-

proaches. We proposed a new method modelling a high-level interaction between the

static and dynamic features, consisting in multiplying each dynamic feature by a linear

combination of the static features. We experimented the five approaches in the predic-

tion of future impulse control disorders in Parkinson’s disease. The dynamic features

consisted in clinical measurements, while the static features corresponded to genetic

93



94 Chapter 4. Combining static and dynamic data in recurrent neural networks

and socio-demographics data. The results showed that the five approaches yielded com-

parable results. This use case has been underexplored from a machine learning point of

view and little is known on the association between genetics and impulse control disor-

ders in Parkinson’s disease, which could explain why changing the approach had little

to no impact on the predictive performance. Future work includes applying the five

approaches to another use case, where the interaction between the static and dynamic

features is known to be high, and simulating data to gather more knowledge on which

approach works best based on the interaction.
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Conclusion

We proposed several approaches to investigate the predictability of impulse control

disorders in Parkinson’s disease. First, we investigated the predictability of ICDs in PD

using as input a broad range of features that have been associated with ICDs. Second,

we studied the association between ICDs in PD and genetic risk scores for numerous

phenotypes, including other psychiatric disorders and personality traits. Third, we

investigated the integration of static (time-independent) features in recurrent neural

networks with an application in the prediction of ICDs in PD. We summarize here our

conclusions regarding each of these studies.

In a first study, we investigated the predictability of ICDs in PD using as input

a broad range of features that have been associated with ICDs (with varying degrees

of confidence and replication). Our objective was to predict the presence or absence

of ICDs at the next visit for a given patient. We trained several machine learning al-

gorithms, representing a broad range of complexity and relationships, on a discovery

cohort. We highlighted that this longitudinal binary classification task could be ad-

dressed with relatively good accuracy, and that only a subset of the associated factors

was involved in the decisions of the simplest models. We also evaluated the models in

an independent cohort and obtained comparable results.

In a second study, we investigated whether the genetic factors of many traits were

associated with ICDs in PD. The genetic factors of ICDs in PD are poorly known and

most studies focus on candidate genetic variants. However, complex traits are likely to

be affected by numerous variants and genes. In this case, single genetic variants usually

provide limited information because the relative risk of each variant is small. On the

other hand, the combined risk of numerous low-risk variants can explain a significant

proportion of the genetic variance. The risk of each variant is linearly combined to derive

a genetic risk score. We computed genetic risk scores for a broad range of phenotypes,

including other psychiatric disorders, personality traits, and simple phenotypes. We

assessed the associations between these genetic risk scores and ICDs in PD and found
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no association.

In a third study, we investigated the integration of static features in recurrent neural

networks. We reviewed the existing literature and identified several approaches. We

proposed a new approach consisting in modifying the dynamic features using a linear

combination (or more generally a function) of the static features, modelling a high level

of interaction between the static and dynamic features. We evaluated all the approaches

in the use case of predicting the presence or absence of ICDs at the next visit for a

given patient. The static features consisted of socio-demographic and genetic features.

All the approaches (including removing the static features) led to very similar results,

suggesting that the static features do not provide more information than the dynamic

features in this use case.

Perspectives

A natural perspective when developing machine learning models for a medical applica-

tion is the increase of sample size.

First, a larger sample size on the training cohort can improve the generalization

capability of the fitted models. Learning curves in machine learning usually show that,

when the sample size is relatively small, an increase in sample size leads to a signifi-

cant improvement in predictive performance, but when the sample size is already large

enough, a similar increase in sample size has little to no impact on the predictive per-

formance. Learning curves, and thus the definition of low and large sample sizes, highly

depend on the algorithm and the difficulty of the task.

Second, a larger sample size increases the statistical power and can allow for the dis-

covery of associations with small effects. Both research cohorts from which we obtained

data had only a few hundreds subjects, making the discovery of associations with small

effects very unlikely. A larger sample size could shed a new light on the common genetic

factors between ICDs in PD and other phenotypes, notably other psychiatric disorders

and personality traits.

Third, we could evaluate our models in other research cohorts. We showed that

the replication on an independent cohort with different characteristics was possible.

Evaluating our models in other research cohorts would be a big step towards estimating

their generalization capability.

Fourth, we did not evaluate our models in real-life clinical cohorts, which is an essen-

tial step to assess the generalization capability of the models and to deploy the models
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in clinical routine. Clinical cohorts usually have different characteristics from research

cohorts: more missing data, less clean data, more varying time gaps between consec-

utive visits, less standardized protocols. All these differences can negatively impact

the predictive performance of models that have not been trained on data with these

characteristics.

Fifth, we showed that predicting impulse control disorders at the next clinical visit

can be achieved with correct accuracy, but the predictive performance of these models

may still be too low to be used in clinical routine. Investigating which threshold to

binarize the predicted probabilities into decisions is the most adapted in practice would

be of great interest. Combining the predictions of the models and the expertise of

clinicians may also improve the predictive performance.

Finally, impulse control disorders have been reported in a few other diseases treated

with dopamine replacement therapy, notably restless leg syndrome. Evaluating our

models in cohorts with another disease could be interesting in order to see if ICDs in

PD have different characteristics than ICDs in other diseases.
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Appendix A

Supplementary materials for the

prediction of impulse control dis-

orders from clinical and genetic data

with replication in an independent

cohort

A.1 Reduction approaches

Algorithms like logistic regression expect a fixed number of features as input. In order

to deal with varying numbers of visits, we reduced all the previous visits into one “sum-

mary” visit using a convex combination. A convex combination is a linear combination

such that the weights are all non-negative and sum to one. The weights indicate how

much each visit contributes to this summary visit. A weight of 1 for the first visit means

that the summary visit is simply the baseline visit, while a weight of 1 for the latest

visit means that the “summary” visit is simply the most recent visit. One can also

give uniform weights, so that each visit contributes equally to this “summary” visit,

or higher weights to most recent visits if they are assumed to be more important than

older visits.

Mathematically, if we have observations x at T time points:

(x(1), . . . ,x(t), . . . ,x(T ))

a convex combination is simply:

T∑

t=1

wtx
(t) such that ∀t, wt ≥ 0 and

T∑

t=1

wt = 1
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Each wt is the weight of time point t in this “summary” visit. The following table

summarizes the different convex combinations that we investigated:

Name Weight wt

Reduction 1 ∀t ∈ {1, . . . , T}, wt =

{

1 if t = 1

0 otherwise

Reduction 2 ∀t ∈ {1, . . . , T}, wt =

{

1 if t = T

0 otherwise

Reduction 3 ∀t ∈ {1, . . . , T}, wt =
1

T

Reduction 4 ∀t ∈ {1, . . . , T}, wt =
exp(

√
t)

∑T
l=1 exp(

√

l)

Reduction 5 ∀t ∈ {1, . . . , T}, wt =

√
t

∑T
l=1

√
l

Reduction 6 ∀t ∈ {1, . . . , T}, wt =
exp(t)

∑T
l=1 exp(l)

Reduction 7 ∀t ∈ {1, . . . , T}, wt =
t

∑T
l=1 l

Reduction 8 ∀t ∈ {1, . . . , T}, wt =
exp(t2)

∑T
l=1 exp(l

2)

Reduction 9 ∀t ∈ {1, . . . , T}, wt =
t2

∑T
l=1 l

2

Reduction 1 corresponds to the baseline visit, while reduction 2 corresponds to the

previous visit, and reduction 3 corresponds to the mean over the past visits.

A.2 Supplementary Tables

100



A.2. Supplementary Tables 101

Gene rs

ANKK1 rs1800497
ARC rs10097505

BDNF rs6265
C8B rs617283
C8B rs725330
C8B rs591730

CA12 rs1075456
CA12 rs7166946
CA12 rs1043239
CA12 rs4984241
CA12 rs1043256
CA12 rs9989288
CA12 rs2046484
CA12 rs16946963

CCRN4L rs938836
COMT rs4680
DBH rs1108580
DBH rs1611115
DRD2 rs6277
DRD3 rs6280
FOSB rs1049739
FOSB rs2282695
FOSB rs2276469

GRIN2B rs1806201
HTR1B rs6296
MOSC1 rs1109103
MOSC1 rs2984657
OPRM1 rs1799971
TPH1 rs1800532
TPH2 rs1352250
DBH rs1108580

Table A.1: Genetic variants included in the analyses.
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Baseline
visit

Most recent
visit

Mean over
past visits

Socio-demographic
Sex 0.205 0.073 0.168

Age -0.309 -0.299 -0.221

Clinical

Past ICDs 1.735 2.125 3.617

Depression 0.000 0.000 0.182

State anxiety 0.000 0.000 0.000

Trait anxiety 0.000 0.000 0.000

REM sleep 0.721 0.461 0.546

Motor exam 0.000 0.000 0.000

PD medication

On levodopa 0.000 0.000 0.000

On dopamine agonists 0.000 0.000 0.200

On other PD medication 0.000 0.069 0.000

Mean daily dose of dopamine agonists 0.000 0.000 0.000

Maximum daily dose of dopamine agonists 0.000 0.074 0.094

Total dose of dopamine agonists 0.000 0.000 0.000

Cumulative duration on dopamine agonists 0.000 0.116 0.000

Time to prediction Time to prediction 0.117 0.036 0.052

Genetic

rs10097505 -0.240 0.000 -0.267

rs1043239 0.000 0.000 0.000

rs1043256 0.000 0.030 0.000

rs1049739 0.000 0.000 0.000

rs1075456 0.000 0.000 0.000

rs1108580 0.000 0.000 0.000

rs1109103 0.000 0.000 0.000

rs1352250 0.000 0.000 0.000

rs1611115 0.000 0.000 0.000

rs16946963 0.000 0.000 -0.047

rs1799971 -0.106 -0.051 0.000

rs1800497 0.000 0.000 0.001

rs1800532 -0.086 0.000 -0.075

rs1806201 0.050 0.000 0.037

rs2046484 0.000 0.000 0.000

rs2276469 -0.232 -0.096 0.000

rs2282695 0.427 0.000 0.000

rs2984657 0.000 0.000 0.000

rs4680 0.000 0.000 0.000

rs4984241 0.000 0.000 0.000

rs591730 0.000 0.000 0.000

rs617283 0.000 0.000 -0.082

rs6265 0.030 0.000 0.000

rs6277 -0.109 0.000 -0.100

rs6280 0.000 0.000 -0.033

rs6296 -0.044 -0.018 0.000

rs6582078 -0.120 -0.009 -0.024

rs7166946 0.000 -0.044 -0.093

rs725330 -0.210 -0.090 -0.023

rs938836 0.365 0.164 0.234

rs9989288 0.000 0.000 0.000

Table A.2: Coefficients of the three logistic regression models with genetic variants as
input.
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Reduction
Metric Algorithm 1 2 3 4 5 6 7 8 9

ROC AUC

LogisticRegression 0.753 0.795 0.838 0.839 0.793 0.832 0.794 0.809 0.794
LinearSVC 0.754 0.786 0.827 0.828 0.815 0.823 0.816 0.795 0.815
SVC 0.757 0.809 0.840 0.841 0.835 0.838 0.836 0.826 0.836
RandomForestClassifier 0.652 0.765 0.797 0.809 0.803 0.789 0.808 0.811 0.797
XGBClassifier 0.696 0.825 0.822 0.842 0.829 0.841 0.836 0.834 0.839

Average precision

LogisticRegression 0.441 0.453 0.603 0.589 0.491 0.558 0.495 0.461 0.495
LinearSVC 0.425 0.457 0.588 0.582 0.531 0.553 0.535 0.468 0.530
SVC 0.509 0.504 0.628 0.603 0.570 0.589 0.573 0.521 0.574
RandomForestClassifier 0.367 0.397 0.501 0.488 0.503 0.459 0.509 0.484 0.471
XGBClassifier 0.399 0.448 0.476 0.502 0.506 0.459 0.547 0.476 0.539

Accuracy

LogisticRegression 0.774 0.819 0.841 0.847 0.819 0.843 0.824 0.837 0.819
LinearSVC 0.761 0.841 0.854 0.860 0.862 0.849 0.856 0.841 0.845
SVC 0.813 0.877 0.875 0.869 0.873 0.877 0.873 0.877 0.877
RandomForestClassifier 0.873 0.776 0.849 0.856 0.854 0.849 0.869 0.847 0.862
XGBClassifier 0.609 0.697 0.798 0.815 0.809 0.798 0.787 0.794 0.789

Balanced accuracy

LogisticRegression 0.691 0.764 0.765 0.775 0.770 0.761 0.773 0.763 0.758
LinearSVC 0.683 0.771 0.767 0.777 0.784 0.753 0.780 0.748 0.756
SVC 0.696 0.752 0.791 0.782 0.778 0.757 0.773 0.752 0.775
RandomForestClassifier 0.584 0.639 0.659 0.668 0.667 0.665 0.676 0.663 0.678
XGBClassifier 0.629 0.751 0.775 0.779 0.752 0.763 0.745 0.767 0.758

Sensitivity

LogisticRegression 0.571 0.686 0.657 0.671 0.700 0.643 0.700 0.657 0.671
LinearSVC 0.571 0.671 0.643 0.657 0.671 0.614 0.671 0.614 0.629
SVC 0.529 0.571 0.671 0.657 0.643 0.586 0.629 0.571 0.629
RandomForestClassifier 0.171 0.443 0.386 0.400 0.400 0.400 0.400 0.400 0.414
XGBClassifier 0.657 0.829 0.743 0.729 0.671 0.714 0.686 0.729 0.714

Specificity

LogisticRegression 0.810 0.843 0.873 0.878 0.841 0.878 0.846 0.868 0.846
LinearSVC 0.795 0.871 0.891 0.896 0.896 0.891 0.889 0.881 0.884
SVC 0.863 0.932 0.911 0.906 0.914 0.929 0.916 0.932 0.922
RandomForestClassifier 0.997 0.835 0.932 0.937 0.934 0.929 0.952 0.927 0.942
XGBClassifier 0.600 0.673 0.808 0.830 0.833 0.813 0.805 0.805 0.803

Table A.3: Predictive performance on DIGPD of the five machine learning algorithms with the nine reduction approaches.



Reduction
Metric Algorithm 1 2 3 4 5 6 7 8 9

ROC AUC

LogisticRegression 0.666 0.802 0.797 0.811 0.817 0.813 0.819 0.804 0.821
LinearSVC 0.679 0.802 0.796 0.812 0.809 0.815 0.811 0.805 0.812
SVC 0.623 0.784 0.758 0.786 0.780 0.800 0.787 0.791 0.790
RandomForestClassifier 0.593 0.764 0.751 0.737 0.717 0.734 0.715 0.728 0.715
XGBClassifier 0.639 0.791 0.774 0.796 0.789 0.799 0.798 0.796 0.802

Average precision

LogisticRegression 0.429 0.644 0.615 0.643 0.635 0.650 0.636 0.644 0.640
LinearSVC 0.420 0.641 0.611 0.636 0.639 0.642 0.644 0.640 0.645
SVC 0.389 0.614 0.579 0.624 0.618 0.634 0.633 0.623 0.626
RandomForestClassifier 0.339 0.605 0.512 0.537 0.509 0.523 0.528 0.527 0.541
XGBClassifier 0.394 0.652 0.540 0.618 0.609 0.629 0.639 0.639 0.649

Accuracy

LogisticRegression 0.566 0.592 0.645 0.666 0.500 0.643 0.511 0.609 0.515
LinearSVC 0.590 0.582 0.658 0.688 0.652 0.674 0.651 0.624 0.647
SVC 0.566 0.838 0.696 0.759 0.719 0.797 0.760 0.838 0.748
RandomForestClassifier 0.719 0.711 0.757 0.764 0.753 0.746 0.751 0.763 0.762
XGBClassifier 0.546 0.630 0.738 0.769 0.748 0.764 0.761 0.760 0.756

Balanced accuracy

LogisticRegression 0.603 0.668 0.695 0.708 0.634 0.696 0.640 0.676 0.641
LinearSVC 0.621 0.661 0.705 0.728 0.703 0.717 0.702 0.689 0.700
SVC 0.588 0.783 0.703 0.752 0.727 0.768 0.754 0.783 0.746
RandomForestClassifier 0.501 0.704 0.632 0.608 0.614 0.562 0.584 0.610 0.604
XGBClassifier 0.588 0.683 0.746 0.764 0.746 0.759 0.751 0.759 0.750

Sensitivity

LogisticRegression 0.684 0.838 0.805 0.801 0.929 0.814 0.924 0.823 0.920
LinearSVC 0.690 0.838 0.810 0.816 0.814 0.812 0.814 0.831 0.818
SVC 0.636 0.662 0.719 0.736 0.745 0.703 0.740 0.662 0.742
RandomForestClassifier 0.022 0.688 0.357 0.262 0.307 0.154 0.216 0.273 0.253
XGBClassifier 0.682 0.801 0.764 0.753 0.742 0.749 0.729 0.758 0.738

Specificity

LogisticRegression 0.522 0.499 0.584 0.616 0.338 0.578 0.356 0.529 0.362
LinearSVC 0.552 0.485 0.601 0.639 0.591 0.622 0.590 0.546 0.582
SVC 0.540 0.905 0.688 0.768 0.710 0.833 0.768 0.905 0.750
RandomForestClassifier 0.981 0.719 0.907 0.954 0.921 0.970 0.952 0.948 0.954
XGBClassifier 0.495 0.565 0.728 0.775 0.750 0.769 0.773 0.761 0.763

Table A.4: Predictive performance on DIGPD of the five machine learning algorithms with the nine reduction approaches.



Reduction

Metric Algorithm 1 2 3 4 5 6 7 8 9

ROC AUC

LogisticRegression 0.757 (± 0.038) 0.773 (± 0.035) 0.821 (± 0.020) 0.825 (± 0.019) 0.807 (± 0.025) 0.816 (± 0.025) 0.812 (± 0.024) 0.783 (± 0.032) 0.807 (± 0.025)

LinearSVC 0.758 (± 0.040) 0.779 (± 0.035) 0.821 (± 0.016) 0.824 (± 0.019) 0.811 (± 0.022) 0.825 (± 0.019) 0.813 (± 0.024) 0.792 (± 0.033) 0.815 (± 0.022)

SVC 0.696 (± 0.051) 0.767 (± 0.030) 0.826 (± 0.022) 0.828 (± 0.022) 0.816 (± 0.022) 0.816 (± 0.022) 0.811 (± 0.030) 0.788 (± 0.030) 0.805 (± 0.030)

RandomForestClassifier 0.664 (± 0.033) 0.740 (± 0.036) 0.800 (± 0.028) 0.802 (± 0.026) 0.795 (± 0.032) 0.803 (± 0.032) 0.795 (± 0.030) 0.798 (± 0.032) 0.791 (± 0.030)

XGBClassifier 0.691 (± 0.044) 0.782 (± 0.031) 0.815 (± 0.017) 0.832 (± 0.020) 0.820 (± 0.029) 0.829 (± 0.022) 0.821 (± 0.027) 0.824 (± 0.017) 0.823 (± 0.023)

Average precision

LogisticRegression 0.382 (± 0.083) 0.458 (± 0.064) 0.503 (± 0.077) 0.515 (± 0.064) 0.490 (± 0.059) 0.514 (± 0.062) 0.499 (± 0.057) 0.471 (± 0.067) 0.499 (± 0.054)

LinearSVC 0.386 (± 0.084) 0.468 (± 0.051) 0.506 (± 0.075) 0.519 (± 0.063) 0.502 (± 0.062) 0.520 (± 0.065) 0.504 (± 0.060) 0.479 (± 0.051) 0.506 (± 0.057)

SVC 0.336 (± 0.094) 0.458 (± 0.061) 0.511 (± 0.072) 0.528 (± 0.065) 0.514 (± 0.064) 0.532 (± 0.061) 0.514 (± 0.065) 0.486 (± 0.063) 0.515 (± 0.060)

RandomForestClassifier 0.294 (± 0.059) 0.403 (± 0.092) 0.473 (± 0.067) 0.495 (± 0.065) 0.494 (± 0.066) 0.466 (± 0.055) 0.492 (± 0.070) 0.454 (± 0.071) 0.465 (± 0.056)

XGBClassifier 0.338 (± 0.086) 0.455 (± 0.057) 0.477 (± 0.056) 0.529 (± 0.045) 0.513 (± 0.056) 0.507 (± 0.051) 0.527 (± 0.050) 0.479 (± 0.059) 0.510 (± 0.046)

Accuracy

LogisticRegression 0.758 (± 0.026) 0.836 (± 0.036) 0.832 (± 0.030) 0.846 (± 0.032) 0.840 (± 0.028) 0.849 (± 0.025) 0.844 (± 0.030) 0.845 (± 0.029) 0.845 (± 0.030)

LinearSVC 0.765 (± 0.031) 0.849 (± 0.033) 0.847 (± 0.025) 0.856 (± 0.025) 0.856 (± 0.028) 0.857 (± 0.027) 0.855 (± 0.028) 0.855 (± 0.031) 0.854 (± 0.030)

SVC 0.762 (± 0.042) 0.872 (± 0.022) 0.850 (± 0.027) 0.858 (± 0.026) 0.858 (± 0.031) 0.871 (± 0.021) 0.863 (± 0.029) 0.873 (± 0.021) 0.863 (± 0.027)

RandomForestClassifier 0.827 (± 0.043) 0.811 (± 0.034) 0.849 (± 0.041) 0.856 (± 0.026) 0.857 (± 0.037) 0.850 (± 0.029) 0.852 (± 0.040) 0.846 (± 0.027) 0.846 (± 0.038)

XGBClassifier 0.610 (± 0.067) 0.691 (± 0.070) 0.788 (± 0.023) 0.797 (± 0.013) 0.784 (± 0.028) 0.789 (± 0.019) 0.776 (± 0.026) 0.789 (± 0.019) 0.778 (± 0.015)

Balanced accuracy

LogisticRegression 0.690 (± 0.043) 0.734 (± 0.040) 0.773 (± 0.017) 0.782 (± 0.030) 0.774 (± 0.026) 0.770 (± 0.033) 0.777 (± 0.030) 0.748 (± 0.030) 0.761 (± 0.030)

LinearSVC 0.691 (± 0.045) 0.735 (± 0.036) 0.774 (± 0.016) 0.780 (± 0.024) 0.775 (± 0.028) 0.762 (± 0.025) 0.774 (± 0.028) 0.744 (± 0.033) 0.760 (± 0.026)

SVC 0.633 (± 0.046) 0.738 (± 0.026) 0.768 (± 0.022) 0.771 (± 0.024) 0.761 (± 0.018) 0.751 (± 0.022) 0.758 (± 0.024) 0.739 (± 0.027) 0.745 (± 0.026)

RandomForestClassifier 0.581 (± 0.035) 0.649 (± 0.048) 0.684 (± 0.038) 0.690 (± 0.027) 0.687 (± 0.032) 0.692 (± 0.033) 0.674 (± 0.037) 0.687 (± 0.037) 0.675 (± 0.039)

XGBClassifier 0.627 (± 0.045) 0.706 (± 0.036) 0.774 (± 0.016) 0.773 (± 0.017) 0.753 (± 0.032) 0.767 (± 0.016) 0.754 (± 0.033) 0.774 (± 0.015) 0.757 (± 0.021)

Sensitivity

LogisticRegression 0.593 (± 0.101) 0.591 (± 0.065) 0.689 (± 0.031) 0.693 (± 0.053) 0.683 (± 0.050) 0.659 (± 0.073) 0.684 (± 0.057) 0.613 (± 0.057) 0.644 (± 0.064)

LinearSVC 0.587 (± 0.106) 0.574 (± 0.057) 0.673 (± 0.039) 0.673 (± 0.047) 0.662 (± 0.050) 0.630 (± 0.050) 0.661 (± 0.051) 0.588 (± 0.055) 0.630 (± 0.052)

SVC 0.451 (± 0.106) 0.549 (± 0.051) 0.654 (± 0.046) 0.648 (± 0.047) 0.624 (± 0.035) 0.584 (± 0.047) 0.609 (± 0.048) 0.551 (± 0.053) 0.580 (± 0.053)

RandomForestClassifier 0.231 (± 0.095) 0.419 (± 0.113) 0.449 (± 0.089) 0.453 (± 0.073) 0.447 (± 0.080) 0.465 (± 0.073) 0.422 (± 0.097) 0.460 (± 0.087) 0.432 (± 0.098)

XGBClassifier 0.656 (± 0.124) 0.727 (± 0.072) 0.753 (± 0.028) 0.739 (± 0.034) 0.711 (± 0.051) 0.737 (± 0.034) 0.722 (± 0.048) 0.754 (± 0.031) 0.728 (± 0.033)

Specificity

LogisticRegression 0.786 (± 0.035) 0.877 (± 0.036) 0.856 (± 0.033) 0.871 (± 0.033) 0.866 (± 0.029) 0.880 (± 0.029) 0.870 (± 0.030) 0.883 (± 0.030) 0.878 (± 0.033)

LinearSVC 0.796 (± 0.039) 0.896 (± 0.033) 0.876 (± 0.027) 0.886 (± 0.025) 0.888 (± 0.026) 0.895 (± 0.026) 0.887 (± 0.026) 0.900 (± 0.030) 0.891 (± 0.029)

SVC 0.816 (± 0.050) 0.926 (± 0.016) 0.883 (± 0.029) 0.894 (± 0.023) 0.898 (± 0.028) 0.919 (± 0.018) 0.906 (± 0.024) 0.927 (± 0.016) 0.911 (± 0.022)

RandomForestClassifier 0.930 (± 0.046) 0.879 (± 0.039) 0.919 (± 0.041) 0.928 (± 0.030) 0.928 (± 0.036) 0.919 (± 0.028) 0.927 (± 0.048) 0.914 (± 0.027) 0.918 (± 0.045)

XGBClassifier 0.597 (± 0.087) 0.685 (± 0.086) 0.794 (± 0.026) 0.806 (± 0.017) 0.796 (± 0.028) 0.798 (± 0.023) 0.785 (± 0.026) 0.795 (± 0.023) 0.786 (± 0.015)

Table A.5: Predictive performance on DIGPD of the five machine learning algorithms with the nine reduction approaches with 10
repetitions of the nest cross-validation. Mean (standard deviation) over the 10 models are reported.



Reduction

Metric Algorithm 1 2 3 4 5 6 7 8 9

ROC AUC

LogisticRegression 0.653 (± 0.033) 0.796 (± 0.026) 0.780 (± 0.031) 0.804 (± 0.021) 0.796 (± 0.032) 0.811 (± 0.019) 0.804 (± 0.024) 0.801 (± 0.023) 0.806 (± 0.022)

LinearSVC 0.666 (± 0.040) 0.792 (± 0.023) 0.784 (± 0.022) 0.798 (± 0.019) 0.792 (± 0.022) 0.803 (± 0.023) 0.797 (± 0.021) 0.794 (± 0.026) 0.798 (± 0.025)

SVC 0.599 (± 0.025) 0.786 (± 0.006) 0.753 (± 0.015) 0.781 (± 0.009) 0.776 (± 0.012) 0.795 (± 0.009) 0.782 (± 0.012) 0.793 (± 0.006) 0.785 (± 0.012)

RandomForestClassifier 0.576 (± 0.036) 0.762 (± 0.026) 0.733 (± 0.026) 0.737 (± 0.030) 0.737 (± 0.035) 0.738 (± 0.036) 0.737 (± 0.042) 0.733 (± 0.030) 0.736 (± 0.033)

XGBClassifier 0.624 (± 0.018) 0.791 (± 0.007) 0.780 (± 0.010) 0.800 (± 0.004) 0.793 (± 0.007) 0.798 (± 0.007) 0.800 (± 0.005) 0.797 (± 0.010) 0.799 (± 0.012)

Average precision

LogisticRegression 0.427 (± 0.032) 0.626 (± 0.038) 0.597 (± 0.049) 0.634 (± 0.031) 0.621 (± 0.051) 0.638 (± 0.023) 0.635 (± 0.035) 0.631 (± 0.031) 0.633 (± 0.030)

LinearSVC 0.425 (± 0.032) 0.624 (± 0.037) 0.596 (± 0.028) 0.624 (± 0.027) 0.622 (± 0.032) 0.628 (± 0.031) 0.627 (± 0.031) 0.624 (± 0.037) 0.626 (± 0.038)

SVC 0.376 (± 0.029) 0.623 (± 0.013) 0.566 (± 0.024) 0.608 (± 0.019) 0.601 (± 0.024) 0.631 (± 0.017) 0.610 (± 0.023) 0.628 (± 0.012) 0.614 (± 0.022)

RandomForestClassifier 0.343 (± 0.030) 0.584 (± 0.036) 0.502 (± 0.028) 0.526 (± 0.045) 0.534 (± 0.046) 0.524 (± 0.050) 0.545 (± 0.057) 0.518 (± 0.044) 0.536 (± 0.050)

XGBClassifier 0.400 (± 0.021) 0.645 (± 0.021) 0.567 (± 0.028) 0.625 (± 0.010) 0.620 (± 0.010) 0.640 (± 0.014) 0.641 (± 0.007) 0.635 (± 0.040) 0.646 (± 0.017)

Accuracy

LogisticRegression 0.553 (± 0.032) 0.612 (± 0.058) 0.673 (± 0.052) 0.683 (± 0.081) 0.637 (± 0.100) 0.639 (± 0.063) 0.653 (± 0.094) 0.631 (± 0.058) 0.637 (± 0.087)

LinearSVC 0.569 (± 0.036) 0.665 (± 0.050) 0.687 (± 0.030) 0.719 (± 0.037) 0.699 (± 0.040) 0.725 (± 0.049) 0.706 (± 0.043) 0.686 (± 0.054) 0.708 (± 0.052)

SVC 0.556 (± 0.071) 0.832 (± 0.018) 0.699 (± 0.023) 0.732 (± 0.031) 0.714 (± 0.038) 0.787 (± 0.029) 0.737 (± 0.038) 0.838 (± 0.000) 0.761 (± 0.047)

RandomForestClassifier 0.723 (± 0.007) 0.766 (± 0.029) 0.742 (± 0.011) 0.745 (± 0.015) 0.751 (± 0.019) 0.745 (± 0.017) 0.753 (± 0.017) 0.752 (± 0.017) 0.755 (± 0.018)

XGBClassifier 0.564 (± 0.065) 0.698 (± 0.064) 0.743 (± 0.014) 0.769 (± 0.012) 0.758 (± 0.021) 0.763 (± 0.010) 0.759 (± 0.016) 0.756 (± 0.011) 0.757 (± 0.017)

Balanced accuracy

LogisticRegression 0.594 (± 0.021) 0.676 (± 0.026) 0.705 (± 0.034) 0.719 (± 0.041) 0.692 (± 0.049) 0.698 (± 0.030) 0.702 (± 0.044) 0.687 (± 0.028) 0.694 (± 0.039)

LinearSVC 0.608 (± 0.029) 0.698 (± 0.028) 0.716 (± 0.020) 0.736 (± 0.023) 0.721 (± 0.023) 0.738 (± 0.032) 0.725 (± 0.025) 0.711 (± 0.031) 0.727 (± 0.032)

SVC 0.556 (± 0.031) 0.780 (± 0.010) 0.700 (± 0.012) 0.729 (± 0.018) 0.720 (± 0.022) 0.761 (± 0.016) 0.734 (± 0.023) 0.783 (± 0.000) 0.745 (± 0.026)

RandomForestClassifier 0.523 (± 0.028) 0.670 (± 0.065) 0.585 (± 0.072) 0.564 (± 0.065) 0.590 (± 0.075) 0.560 (± 0.058) 0.591 (± 0.073) 0.587 (± 0.049) 0.591 (± 0.066)

XGBClassifier 0.581 (± 0.022) 0.715 (± 0.031) 0.749 (± 0.008) 0.763 (± 0.006) 0.751 (± 0.013) 0.758 (± 0.006) 0.756 (± 0.008) 0.756 (± 0.007) 0.752 (± 0.010)

Sensitivity

LogisticRegression 0.685 (± 0.053) 0.818 (± 0.052) 0.777 (± 0.029) 0.799 (± 0.050) 0.814 (± 0.072) 0.830 (± 0.047) 0.812 (± 0.071) 0.810 (± 0.045) 0.820 (± 0.069)

LinearSVC 0.697 (± 0.056) 0.772 (± 0.029) 0.780 (± 0.030) 0.774 (± 0.025) 0.768 (± 0.029) 0.766 (± 0.022) 0.768 (± 0.027) 0.767 (± 0.030) 0.768 (± 0.026)

SVC 0.555 (± 0.190) 0.665 (± 0.007) 0.702 (± 0.024) 0.723 (± 0.016) 0.733 (± 0.020) 0.703 (± 0.018) 0.727 (± 0.016) 0.663 (± 0.001) 0.710 (± 0.022)

RandomForestClassifier 0.079 (± 0.081) 0.459 (± 0.176) 0.237 (± 0.201) 0.165 (± 0.171) 0.234 (± 0.191) 0.152 (± 0.142) 0.233 (± 0.191) 0.223 (± 0.115) 0.230 (± 0.168)

XGBClassifier 0.619 (± 0.085) 0.753 (± 0.041) 0.763 (± 0.009) 0.751 (± 0.007) 0.736 (± 0.013) 0.747 (± 0.006) 0.748 (± 0.015) 0.757 (± 0.006) 0.741 (± 0.017)

Specificity

LogisticRegression 0.503 (± 0.054) 0.534 (± 0.094) 0.633 (± 0.073) 0.640 (± 0.123) 0.570 (± 0.156) 0.567 (± 0.099) 0.593 (± 0.149) 0.563 (± 0.091) 0.568 (± 0.138)

LinearSVC 0.520 (± 0.054) 0.625 (± 0.074) 0.651 (± 0.043) 0.698 (± 0.053) 0.673 (± 0.059) 0.710 (± 0.069) 0.682 (± 0.063) 0.655 (± 0.078) 0.685 (± 0.074)

SVC 0.557 (± 0.159) 0.896 (± 0.027) 0.697 (± 0.036) 0.736 (± 0.044) 0.707 (± 0.055) 0.819 (± 0.044) 0.741 (± 0.054) 0.904 (± 0.001) 0.780 (± 0.068)

RandomForestClassifier 0.966 (± 0.030) 0.882 (± 0.070) 0.932 (± 0.065) 0.964 (± 0.049) 0.945 (± 0.051) 0.969 (± 0.032) 0.949 (± 0.053) 0.952 (± 0.025) 0.953 (± 0.044)

XGBClassifier 0.543 (± 0.115) 0.678 (± 0.099) 0.736 (± 0.021) 0.775 (± 0.018) 0.767 (± 0.029) 0.769 (± 0.014) 0.764 (± 0.025) 0.756 (± 0.015) 0.763 (± 0.026)

Table A.6: Predictive performance on DIGPD of the five machine learning algorithms with the nine reduction approaches with 10
repetitions of the nest cross-validation. Mean (standard deviation) over the 10 models are reported.
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