
HAL Id: tel-03089552
https://hal.science/tel-03089552v2

Submitted on 16 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Management of Scientific Workflows for
High-Throughput Plant Phenotyping

Gaëtan Heidsieck

To cite this version:
Gaëtan Heidsieck. Distributed Management of Scientific Workflows for High-Throughput Plant Phe-
notyping. Bioinformatics [q-bio.QM]. Université Montpellier, 2020. English. �NNT : 2020MONTS066�.
�tel-03089552v2�

https://hal.science/tel-03089552v2
https://hal.archives-ouvertes.fr

THÈSE POUR OBTENIR LE GRADE DE DOCTEURTHÈSE POUR OBTENIR LE GRADE DE DOCTEUR

DE L’UNIVERSITE DE MONTPELLIERDE L’UNIVERSITE DE MONTPELLIER

En Informatique

École doctorale : Information, Structures, Systèmes

Unité de recherche LIRMM

Gestion distribuée de workflows scientifiques pour le
phénotypage des plantes à haut débit

Gestion distribuée de workflows scientifiques pour le
phénotypage des plantes à haut débit

Présentée par Gaëtan Heidsieck
Le 9/12/2020

Sous la direction de Pacitti Esther
et Tardieu François

Devant le jury composé de

Antoniu Gabriel, Directeur de recherche, Irisa Université de Rennes Rapporteur

Ruiz Manuel, Directeur de recherche, Cirad Rapporteur

Huchard Marianne, Professeur, LIRMM Examinatrice

Pradal Christophe, Chargé de recherche, Cirad Co-encadrant

Tardieu François, Directeur de recherche, Inrae Co-encadrant

Esther Pacitti, Professeur, Université de Montpellier Directrice

iii

Résumé

Dans de nombreux domaines scientifiques, les expériences numériques né-
cessitent généralement de nombreuses étapes de traitement ou d’analyse sur
d’énormes ensembles de données. Elles peuvent être représentées comme des
workflows scientifiques. Ces workflows facilitent la modélisation, la gestion
et l’exécution d’activités de calcul liées par des dépendances de données.
Comme la taille des données traitées et la complexité des calculs ne cessent
d’augmenter, ces workflows deviennent orientés-données. Afin d’exécuter
ces workflows dans un délai raisonnable, ils doivent être déployés dans un
environnement informatique distribué à haute performance, tel que le cloud.

Le phénotypage des plantes vise à capturer les caractéristiques des plantes,
telles que les caractéristiques morphologiques, topologiques et phénologiques.
Des plateformes de phénotypage à haut débit ont vu le jour pour accélérer
l’acquisition de données de phénotypage dans des conditions contrôlées
(par exemple en serre) ou en plein champ. Ces plates-formes génèrent des
téraoctets de données utilisées en sélection et en biologie végétale. Ces en-
sembles de données sont stockés dans différents sites géo-distribués. Les
scientifiques peuvent utiliser un système de gestion de workflow scientifique
(SWMS) pour gérer l’exécution du workflow sur un cloud multisite.

Dans le domaine des sciences biologiques, il est courant que les utilisateurs
des workflows réutilisent d’autres analyses ou des données générées par
d’autres utilisateurs. L’adaptation et la réutilisation des workflows permet
à l’utilisateur de développer de nouvelles analyses plus rapidement. En
outre, un utilisateur peut avoir besoin d’exécuter un workflow plusieurs
fois avec différents ensembles de paramètres et de données d’entrée pour
analyser l’impact d’une étape expérimentale quelconque, représentée comme
un fragment du workflow. Dans les deux cas, certains fragments du workflow
peuvent être exécutés plusieurs fois, ce qui peut être très consommateur de
ressources et inutilement long. La ré-exécution du workflow peut être évitée
en stockant les résultats intermédiaires de ces fragments et en les réutilisant
dans des exécutions ultérieures.

Dans cette thèse, nous proposons une solution de mise en cache adapta-
tive pour l’exécution efficace de workflows orientés-données dans des clouds
monosites et multisites. En s’adaptant aux variations des temps d’exécution
des tâches, notre solution peut maximiser la réutilisation des données intermé-
diaires produites par les workflows de plusieurs utilisateurs. Notre solution
est basée sur une nouvelle architecture de SWMS qui gère automatiquement
le stockage et la réutilisation des données intermédiaires. La gestion du cache
intervient au cours de deux étapes principales : le prétraitement des work-
flows, pour supprimer tous les fragments du workflow qui n’ont pas besoin
d’être exécutés ; et le provisionnement du cache, pour décider au moment de
l’exécution quelles données intermédiaires doivent être mises en cache. Nous
proposons un algorithme adaptatif de mise en cache qui tient compte des

iv

variations des temps d’exécution des tâches et de la taille des données. Nous
avons évalué notre solution en l’implémentant dans OpenAlea et en réalisant
des expériences approfondies sur des données réelles avec une application
complexe orientés-données de phénotypage de plantes.

Nos principales contributions sont i) une architecture SWMS pour gérer les
algorithmes d’ordonnancement utilisant le cache lors de l’exécution de work-
flows dans des clouds monosites et multisites, ii) un modèle de coût qui inclut
les coûts financiers et temporels, iii) deux algorithmes d’ordonnancement
adapté au cache, en monosite et multisite clouds, et iv) une validation expéri-
mentale sur une application de phénotypage de plantes orienté-données.

v

Abstract

In many scientific domains, such as bio-science, complex numerical experi-
ments typically require many processing or analysis steps over huge datasets.
They can be represented as scientific workflows. These workflows ease the
modeling, management, and execution of computational activities linked by
data dependencies. As the size of the data processed and the complexity of
the computation keep increasing, these workflows become data-intensive. In
order to execute such workflows within a reasonable timeframe, they need to
be deployed in a high-performance distributed computing environment, such
as the cloud.

Plant phenotyping aims at capturing plant characteristics, such as mor-
phological, topological, phenological features. High-throughput phenotyping
(HTP) platforms have emerged to speed up the phenotyping data acquisition
in controlled conditions (e.g. greenhouse) or in the field. Such platforms
generate terabytes of data used in plant breeding and plant biology to test
novel mechanisms. These datasets are stored in different geodistributed sites
(data centers). Scientists can use a Scientific Workflow Management System
(SWMS) to manage the workflow execution over a multisite cloud.

In bio-science, it is common for workflow users to reuse other workflows
or data generated by other users. Reusing and re-purposing workflows allow
the user to develop new analyses faster. Furthermore, a user may need
to execute a workflow many times with different sets of parameters and
input data to analyze the impact of some experimental step, represented as a
workflow fragment, i.e., a subset of the workflow activities and dependencies.
In both cases, some fragments of the workflow may be executed many times,
which can be highly resource-consuming and unnecessary long. Workflow re-
execution can be avoided by storing the intermediate results of these workflow
fragments and reusing them in later executions.

In this thesis, we propose an adaptive caching solution for efficient ex-
ecution of data-intensive workflows in monosite and multisite clouds. By
adapting to the variations in tasks’ execution times, our solution can maxi-
mize the reuse of intermediate data produced by workflows from multiple
users. Our solution is based on a new SWMS architecture that automatically
manages the storage and reuse of intermediate data. Cache management is
involved during two main steps: workflows preprocessing, to remove all
fragments of the workflow that do not need to be executed; and cache provi-
sioning, to decide at runtime which intermediate data should be cached. We
propose an adaptive cache provisioning algorithm that deals with the varia-
tions in task execution times and the size of data. We evaluated our solution
by implementing it in OpenAlea and performing extensive experiments on
real data with a complex data-intensive application in plant phenotyping.

Our main contributions are i) a SWMS architecture to handle caching
and cache-aware scheduling algorithms when executing workflows in both

vi

monosite and multisite clouds, ii) a cost model that includes both financial
and time costs for both the workflow execution, and the cache management,
iii) two cache-aware scheduling algorithms one adapted for monosite and one
for multisite cloud, and iv) and an experimental validation on a data-intensive
plant phenotyping application.

vii

Résumé Étendu

Introduction

Dans de nombreux domaines scientifiques, tels que la bioscience [130], la
physique [8], l’astronomie [154], les expériences numériques complexes né-
cessitent généralement de nombreuses étapes de traitement ou d’analyse sur
d’énormes ensembles de données. Elles peuvent être représentées comme des
workflow scientifiques. Ces workflows facilitent la modélisation, la gestion et
l’exécution d’activités de calcul liées par des dépendances de données. Les
workflows sont généralement représentés sous la forme d’un graphe dirigé.
Pendant l’exécution d’un workflow, les activités sont instanciées avec des
données à traiter et des paramètres fixes, ce qui produit plusieurs tâches.
Comme la taille des données traitées et la complexité du calcul ne cessent
d’augmenter, ces workflows deviennent orientés données. Afin d’exécuter
ces workflows dans un délai raisonnable, ils doivent être déployés dans un
environnement informatique distribué à haute performance, tel que le cloud.

Le cloud computing offre un accès fiable et facile à la demande à des
ressources informatiques, de stockage et de réseau virtuellement infinies. Les
utilisateurs utilisent des services web pour accéder, gérer et déployer des
tâches, telles que le stockage de données, le déploiement d’applications ou le
calcul, sur de très grands centres de données. Un cloud est généralement com-
posé de plusieurs sites géographiquement répartis (ou centres de données),
chacun ayant ses propres ressources et données, et appelé cloud multisite.
Cela permet d’exécuter des workflows orientés données sur plusieurs sites
dans le cloud pour des raisons d’évolutivité ou de confidentialité.

Les scientifiques peuvent utiliser un système de gestion workflow scien-
tifique (SWMS) pour gérer les exécutions de workflow sur un cloud monosite
et multisite. De nombreux algorithmes d’ordonnacement ont été adaptés
aux workflows orientés données executés sur un cloud monosite, notamment
des heuristiques basées sur une matrice [170], des optimisations d’essaim de
particules [121], et des optimisations basées sur des approches évolutives [87].
De nombreux algorithmes [114, 95] ont été proposés pour ordonnancer effi-
cacement un workflow avec différentes granularités (tâche, activité, fragment).
En général, ces solutions tiennent compte de l’emplacement des données, de
la taille et de la disponibilité du stockage des sites, et des capacités de calcul
pour ordonnancer le workflow en minimisant le coût global.

Il est courant que les utilisateurs de workflows réutilisent des fragments ou
des données provenant d’autres workflows. L’adaptation et la réutilisation des
workflows permet à l’utilisateur de développer plus rapidement de nouvelles
analyses. En outre, un utilisateur peut avoir besoin d’exécuter un workflow
plusieurs fois avec différents ensembles de paramètres et de données d’entrée
pour analyser l’impact d’une étape expérimentale, représentée comme un

viii

fragment de workflow, i.e., un sous-ensemble des activités et des dépendances
du workflow. Dans les deux cas, certains fragments du workflow peuvent être
exécutés plusieurs fois, ce qui peut être très consommateur de ressources et
inutilement long. La ré-exécution du workflow peut être évitée en mettant en
cache les résultats intermédiaires generés par ces fragments et en les réutilisant
dans des exécutions ultérieures.

Dans les systèmes informatiques, la mise en cache signifie le stockage
de données dans un support de stockage dont l’accès est sensiblement plus
rapide (e.g., mémoire principale) que de recalculer les données ou de lire
à partir d’un support de stockage plus lent (e.g., disque). Habituellement,
pour les exécutions de workflow, le cache doit être persistant et accessible par
plusieurs utilisateurs. Dans le cloud, le stockage et le calcul ont tous deux un
coût, et le défi de la mise en cache consiste à déterminer le meilleur compromis
entre le coût du cache et le coût de la ré-exécution. Dans le cas d’un cloud
multisite, le défi devient plus complexe car le cache peut être réparti entre les
sites.

En raison de la forte latence du transfert de données entre sites, les données
sont généralement traitées dans le site où elles se trouvent. Pourtant, il
est fréquent que les scientifiques travaillant sur d’énormes ensembles de
données effectuent des expériences en utilisant des données provenant de
plusieurs centres de données. Par exemple, les données climatiques de la
grille du système terrestre [161], les grandes quantités de données brutes de
la chromodynamique quantique (QCD) [124] et les données du projet ALICE
1 sont toutes réparties géographiquement. Dans le cadre de la recherche
sur le phénotypage, les données sont également stockées dans des centres de
données du monde entier (comme le projet Phemome 2). En outre, les données
intermédiaires générées par des workflows orientés données peuvent être
énormes et sont généralement stockées sur le site où elles ont été générées. En
conséquence, les données (tant en entrée qu’en cache) nécessaires à l’exécution
d’un workflow peuvent être géo-distribuées. Pour bénéficier efficacement de
la mise en cache et de la réutilisation des données intermédiaires, un SWMS
doit être adapté pour exploiter un cache distribué sur un cloud multisite.

Cette thèse a été réalisée dans le cadre d’un projet national, l’Institut de
Convergences #DigitAg 3 sur l’agriculture numérique, et deux équipes asso-
ciées de l’Inria avec le Brésil (LNCC, UFRJ, UFF et CEFET à Rio de Janeiro) :
SciDISC 4 sur l’analyse des données scientifiques à l’aide de l’informatique
évolutive à forte intensité de données et HPDaSc 5 sur la science des données
de haute performance. Dans le projet #DigitAg, nous relevons le défi de
l’exploitation des technologies de données géo-distribuées et à grande échelle
pour le phénotypage des plantes. Le phénotypage des plantes vise à capturer
les caractéristiques des plantes, telles que les caractéristiques morphologiques,
topologiques, phénologiques [158]. La capture manuelle du phénotype d’une

1http://aliceinfo.cern.ch/Public/Welcome.html
2https://www.phenome-fppn.fr/
3https://www.hdigitag.fr/
4https://team.inria.fr/zenith/scidisc/
5https://team.inria.fr/zenith/hpdasc/

http://aliceinfo.cern.ch/Public/Welcome.html
https://www.phenome-fppn.fr/
https://www.hdigitag.fr/
https://team.inria.fr/zenith/scidisc/
https://team.inria.fr/zenith/hpdasc/

ix

plante prend beaucoup de temps et produit une quantité limitée de données.
Des plateformes de phénotypage à haut débit (HTP) ont vu le jour pour
accélérer l’acquisition des données de phénotypage dans des conditions con-
trôlées (par exemple en serre) ou en champ [147]. Ces plateformes génèrent des
téraoctets de données utilisées en sélection végétale et en biologie végétale
pour tester de nouveaux mécanismes.

Chaque dataset est coûteux, long à générer et unique. En effet, il dépend
de la croissance des plantes, des capacités de la plate-forme et de nombreux
paramètres externes. Ainsi, les datasets sont très précieux et de nombreuses
équipes de recherche différentes travaillent sur les mêmes ensembles de don-
nées, qui servent de référence. Ces équipes peuvent être situées sur le même
site local ou sur des sites géographiques différents.

Les nouvelles expériences peuvent partager des données communes avec
les précédentes et peuvent bénéficier de la réutilisation des données intermé-
diaires lorsqu’elles sont mises en cache. Cependant, comme les utilisateurs
peuvent être situés sur des sites différents, les données en cache qu’ils pro-
duisent peuvent être géographiquement distribuées. Comme les expériences
sont orientés données et qu’elles peuvent être exécutées sur un cloud monosite
ou multisite, la gestion du cache et de l’odonnancement du workflow devient
lié, ce qui devient un problème difficile.

Les objectifs de cette thèse sont les suivants :

1. proposer des stratégies efficaces de mise en cache et d’ordonnancement
pour permettre le partage de données intermédiaires de grande taille en-
tre les utilisateurs dans des architectures de cloud monosite et multisite,
afin de réduire les temps d’exécution des workflows.

2. montrer les coûts et les avantages du partage de données intermédi-
aires volumineuses plutôt que la ré-exécution des activités qui les ont
produites, entre plusieurs utilisateurs.

Cette thèse est composée de quatre chapitres principaux: état de l’art, cas
d’utilisation en phenotypage à haut débit, gestion adaptative du cache en
cloud monosite, et ordonnancement de workflow compatible avec le cache
en cloud multisite. Un dernier chapitre conclut le manuscrit, résume les
contributions et propose des directions de recherche futures.

État de l’art

Nous avons discuté de l’état actuel des connaissances en matière de gestion
workflow scientifique sur le cloud, en mettant l’accent sur la mise en cache
et l’ordonnancement. Nous avons tout d’abord présenté les concepts de
base de la gestion des workflows, ainsi qu’une architecture fonctionnelle des
SWMS. Ensuite, nous avons discuté du déploiement, de l’ordonnancement
et de l’exécution des workflows sur un cloud monosite et multisite. Nous
avons montré comment l’exécution des workflows peut bénéficier du cloud
computing avec son coût réduit, sa facilité d’accès et d’utilisation, sa qual-
ité de service et son élasticité. Dans un cloud multisite, le SWMS peut être

x

déployé à deux niveaux (intra-site et inter-site) pour utiliser efficacement les
ressources des sites. Nous avons présenté les techniques de stockage des
données utilisées sur le cloud, qui comprend des systèmes de fichiers à disque
partagé et des systèmes de fichiers distribués pour le stockage des données
d’exécution ainsi que des bases de données pour le stockage des métadon-
nées. Les techniques de base pour exécuter un workflow sur des ressources
distribuées dans un cloud inclue la parallélisation et l’ordonnancement. Les
différents types de techniques de parallélisation peuvent être exploités par le
SWMS pour paralléliser les workflows. Les algorithmes d’ordonnancement
peuvent être statiques, dynamiques ou hybrides.

Par la suite, nous avons discuté de la mise en cache des données et de
l’ordonnancement des workflows avec des données mises en cache sur le
cloud. Nous avons présenté une architecture SWMS de base qui comprend
un gestionnaire de cache et une mémoire cache, qui sont nécessaires pour que
le SWMS puisse utiliser un cache. Nous avons examiné les quatre principales
approches de l’exploitation d’un cache par un SWMS. La première consiste à
réutiliser les données générées au cours de l’exécution d’un seul workflow
(workflows d’exploration de paramètres). La seconde consiste à stocker des
données intermédiaires générées par un workflow pour sa ré-exécution fu-
ture (smart rerun). La troisième consiste à stocker et à partager les données
intermédiaires générées par des fragments de workflows pour de nouveaux
workflows (workflows évolutifs). Le quatrième consiste à partager les don-
nées intermédiaires d’un workflows qui est exécuté par plusieurs utilisateurs
en même temps. Enfin, nous avons analysé les techniques existantes pour
l’ordonnancement et la gestion du cache SWMS sur un cloud monosite et
multisite.

Cas d’utilisation: phenotypage à haut débit

Nous avons discuté des opportunités et des défis qui apportent le partage et la
réutilisation des données intermédiaires pour la recherche sur le phénotypage
à haut débit (HTP). Nous avons tout d’abord présenté le HTP et donné un
aperçu des applications HTP avec des analyses orientés données et calcul.
Nous avons présenté certaines des plateformes HTP, dont PhenoArch et les
images de plantes qu’il génère. Nous avons présenté une infrastructure de
calcul typique où les ensembles de données brutes sont stockés, analysés et
utilisés dans des applications de phénotypage.

Ensuite, nous avons présenté le workflow Phenomenal, un workflow
de phénotypage qui permet la reconstruction automatique de l’architecture
végétale en 3D pour une série d’espèces et des mesures quantitatives sur les
plantes reconstruites. Nous avons présenté OpenAlea, un SWMS largement
utilisé pour la modélisation et l’analyse des plantes. Nous avons donné
plus de détails sur la bibliothèque Phenomenal qui a été développée dans
OpenAlea pour analyser et reconstruire la géométrie et la topologie de milliers
de plantes à travers le temps dans diverses conditions. Cette bibliothèque
est utilisée pour construire le workflow Phenomenal, qui sert de référence
pour nos validations expérimentales. Enfin, nous avons montré comment

xi

des ensembles de données intermédiaires peuvent être utiles dans d’autres
applications, principalement la binarisation et la reconstruction 3D.

Gestion adaptative d’un cache pour SWMS en cloud
monosite

Nous nous sommes attaqués au problème de la détermination des données in-
termédiaires à mettre en cache pendant l’exécution du workflow sur un cloud
monosite. Dans ce travail, nous avons proposé une solution de mise en cache
adaptative pour l’exécution efficace des workflows à orientés données sur un
cloud monosite. Tout d’abord, nous avons proposé une nouvelle architecture
SWMS qui gère automatiquement le stockage et la réutilisation des données
intermédiaires sur un cloud monosite. Cette architecture est une extension
d’une architecture de pointe, avec de nouveaux composants pour le stockage
et la réutilisation des données mises en cache pendant l’exécution des work-
flows. L’architecture peut être décomposée de deux façons : i) en termes de
couches fonctionnelles qui montrent les différentes fonctions et composants; et
ii) en termes de nœuds et de composants qui interviennent dans le traitement
des workflows. Les deux composants ajoutés aux couches fonctionnelles sont
un gestionnaire de cache et un index de cache. Ces deux composants sont utilisés
par le SWMS au cours de deux étapes de l’exécution des workflows : 1) le
prétraitement du workflow, pour supprimer tous les fragments du workflow
qui ne doivent pas être exécutés ; et 2) le provisionnement du cache, pour
décider au moment de l’exécution quelles données intermédiaires doivent
être mises en cache. Ensuite, pour déterminer quelles données intermédiaires
seront mises en cache, nous avons conçu un modèle de coût à objectifs multi-
ples qui inclut les coûts financiers et de temps. Le modèle de coût calcule un
compromis entre le coût de stockage et le coût de régénération des données.
Il inclut les temps d’écriture des données, les temps d’exécution, la topologie
du workflow, la taille des données et le coût financier. Ensuite, sur la base du
modèle de coût, nous avons proposé un algorithme qui gère dynamiquement
le stockage et la réutilisation des données intermédiaires pendant l’exécution
du workflow. L’algorithme est adaptatif en termes de variations des temps
d’exécution des tâches et de la taille des données de sortie.

Nous avons mis en œuvre notre solution dans le SWMS OpenAlea et avons
effectué des expériences approfondies sur les données de la plate-forme Phe-
noArch avec le workflow Phenomenal. Nous avons comparé trois méthodes
d’approvisionnement du cache : sans cache, gourmande et adaptative. Notre
évaluation expérimentale montre que la méthode adaptative permet de mettre
en cache uniquement les données de sortie pertinentes pour les réexécutions
ultérieures par d’autres utilisateurs, sans entraîner de coûts de stockage élevés
pour le cache. Les résultats montrent que la mise en cache adaptative peut
apporter des gains de performance importants, jusqu’à un facteur de 3,5 avec
6 réexécutions du workflow.

xii

Ordonnancement de workflow compatible avec le
cache en cloud multisite

Nous avons abordé le problème de l’ordonnacement et de la gestion du cache
pour l’exécution de workflow sur cloud multisites. L’objectif principal était
d’exécuter efficacement des workflow orientés données sur un cloud multi-
site, en utilisant la mise en cache des données intermédiaires produites par
les workflows précédents. Tout d’abord, nous avons adapté l’architecture
SWMS pour un cloud multisite. L’architecture est légèrement différente de
celle proposée pour un cloud monosite. L’architecture pour les cloud mul-
tisites permet de prendre des décisions à la fois dans un même site et entre
plusieurs sites. Au niveau inter-site, l’ordonnanceur global et le gestionnaire
de cache utilisent la localité des données, les différentes ressources des sites
et la bande passante pour leurs décisions. Au niveau intra-site, le SWMS
gère l’ordonnancement et l’exécution des fragments de workflow. Ensuite,
nous avons détaillé notre modèle de coût pour représenter les différents coûts
en temps lors de l’exécution d’un workflow avec réutilisation de données et
mise en cache sur un cloud multisite. Le modèle de coût comprend le coût en
temps nécessaire pour écrire, lire, mettre en cache les données d’entrée et les
données intermédiaires, et le temps nécessaire pour calculer les fragments du
workflow sur chaque site. Sur la base du modèle de coût, nous avons conçu
une décision globale qui minimise le coût total de l’exécution d’un fragment
du workflow, en sélectionnant les données qui seront mises en cache, le site
où elles le seront et le site où le fragment sera exécuté. Troisièmement, nous
avons présenté un algorithme d’ordonnancement dynamique qui utilise la
décision globale pour ordonnancer les fragments du workflow sur différents
sites.

Nous avons évalué notre solution en exécutant le workflow Phenomenal
sur un cloud multisite composé de trois sites en France : Montpelier, Lyon
et Lille. Nous avons mis en œuvre notre solution dans le SWMS OpenAlea.
Nous avons comparé notre solution avec deux algorithmes de base que nous
avons étendus pour exploiter notre architecture de mise en cache. Les résul-
tats expérimentaux montrent que notre solution peut apporter des gains de
performance importants, réduisant le temps total jusqu’à 42 % avec 60 % de
données d’entrée identiques pour chaque nouvelle exécution.

Conclusion

Dans cette thèse, nous avons abordé le problème de la gestion distribuée des
workflows scientifiques pour le phénotypage à haut débit (HTP) des plantes,
avec pour objectif de réduire le temps d’exécution. À cette fin, nous avons
proposé de nouvelles architectures SWMS avec des stratégies efficaces de mise
en cache et d’ordonnancement pour permettre le partage de données intermé-
diaires importantes entre les utilisateurs dans des environnements de cloud
monosite et multisite. Les architectures et les algorithmes que nous avons
proposés sont différents sur un cloud monosite et multisite. Dans un cloud

xiii

monosite, le SWMS comprend un composant de gestion du cache qui gère la
mise en cache et la réutilisation des données intermédiaires. Avant l’exécution
du workflow, le gestionnaire de cache simplifie le workflow en fonction de
sa topologie et des données de cache existantes. Pendant l’exécution, le ges-
tionnaire de cache gère les décisions concernant les données intermédiaires
qui seront mises en cache à l’aide d’un algorithme adaptatif. L’algorithme
utilise un modèle de coût pour déterminer le meilleur compromis entre le
coût de stockage des données en cache et le coût de ré-exécution. Dans un
cloud multisite, le SWMS comprend à la fois un gestionnaire de cache et un
algorithme d’ordonnancement qui équilibre la charge de travail et les don-
nées du cache entre les sites. L’ordonnancement et la gestion du cache sont
basées sur un algorithme dynamique qui minimise le coût total en temps de
l’exécution du workflow et des transferts de données du cache. Pour évaluer
notre solution de gestion du cache et de l’ordonnancement du workflow, nous
avons implémenté nos algorithmes dans OpenAlea. Pour les expériences,
nous avons utilisé le workflow Phenomenal, un workflow de phénotypage
complexe orienté données.

Nous avons comparé nos algorithmes avec des algorithmes de référence
sur un cloud monosite et multisite. Nos résultats montrent que nos approches
réduisent le temps total (temps d’exécution et temps de transfert des données)
par rapport aux algorithmes de référence. De plus, l’architecture que nous
proposons est capable de mettre en cache et de partager automatiquement les
données intermédiaires entre les utilisateurs.

Nous présentons plusieurs direction de recherche futures qui permettraient
d’améliorer les travaux sur la mise en cache de données avec des exécutions
de workflows scientifiques:

• Apprentissage automatique pour la gestion du cache. L’apprentissage
automatique (ML) fournit des techniques qui permettent d’”apprendre”
des calculs et des décisions du cache précédents afin de générer de
nouvelles décisions plus précises et plus raffinées. Les techniques de
ML proposent des solutions qui prennent plus d’informations que notre
compromis pour la décision de mise en cache, telles que la topologie du
workflow, et les métadonnées du workflow, y compris la provenance.
Ces techniques présentent également de bons résultats dans la gestion
du cache [133, 152, 139]. Ainsi, le ML pourrait améliorer les décisions
relatives au cache lors de l’exécution du workflow.

• Cache chaud et froid. Le gestionnaire de cache proposé dans cette
thèse ne prend en compte qu’un cache sur disque. Une partie des
données du cache n’est presque jamais réutilisée mais vaut quand même
le coût de rester dans le cache. D’autre part, certaines des données mises
en cache sont très souvent réutilisées par plusieurs utilisateurs. Ces
données "chaudes" gagneraient à être plus accessibles, dans un cache
"plus rapide", tel qu’un cache en mémoire. Plusieurs travaux dans la
communauté des bases de données ont étudié les avantages de la mise
en cache à chaud et à froid, qui pourrait être utilisée avec la mise en
cache de données de workflow [29, 23, 90]. Par exemple, nous pourrions

xiv

stocker le cache "chaud" dans la mémoire principale, et le cache "froid"
dans le stockage sur disque.

• Workflows cycliques et opérateurs algébriques. Le travail présenté
dans cette thèse est adapté aux workflows acycliques, qui sont les plus
courants. Cependant, dans plusieurs expériences où les analyses de
plantes sont mélangées à des simulations, les workflows sont cycliques
ou utilisent des opérateurs algébriques [128], ce qui apporte de nou-
veaux défis en matière de mise en cache des données. En effet, dans les
workflows algébriques, la même activité produira des données de sortie
différentes selon l’état du cycle, ce qui rend difficile la mise en cache et
la réutilisation des données.

• Coûts environnementaux. Notre modèle de coût tient compte de deux
objectifs : la minimisation du coût de fabrication et le coût financier.
Minimiser le coût environnemental devient une question essentielle et
pourrait être intégré à la décision de mise en cache. Dans un cloud
hétérogène et multisite, chaque site a des coûts environnementaux
différents tant pour le stockage que pour le calcul. Le coût environ-
nemental de l’écriture et de la lecture d’un disque est généralement
beaucoup moins élevé que les coûts de calcul et d’allocation de la mé-
moire. Pourtant, le cache en mémoire peut être extrêmement coûteux et
le gain d’accélération lié à la réutilisation des données rend complexe
l’estimation du compromis entre le coût de régénération des données
et le coût de stockage. Ainsi, le coût environnemental pourrait fournir
une solution différente pour l’ordonnancement des workflows et la dis-
tribution des données du cache, qui devrait être envisagée pour des
expériences plus écologiques.

xv

Remerciements
Je tiens tout d’abord à exprimer mes sincères remerciements à mes en-

cadrants de thèse: Esther Pacitti, Christophe Pradal et François Tardieu pour
le soutien, l’aide, et la participation dans l’accomplissement de ce travail de
thèse.

Je souhaite adresser également mes vifs remerciements aux membres du
jury qui ont accepté d’examiner mon travail, en particulier à Gabriel Antoniu,
et Manuel Ruiz de m’avoir fait l’honneur d’accepter d’être rapporteurs de ma
thèse, enfin, à Marianne Huchard pour avoir accepté de participer à ce jury.

Je remercie Ji Liu pour ses nombreux conseils et la patience qu’il a su
montrer pour répondre à mes nombreuses questions ; Daniel de Oliveria pour
nos discussions très enrichissantes ; et Patrick Valduriez pour son aide et son
investissement.

Je remercie aussi vivement les équipes Zenith, LEPSE et M2P2 (qui a rejoint
PAM) pour leurs accueils chaleureux.

En dernier, mes remerciements aux personnes qui m’ont aidé de près ou
de loin à réaliser ce travail.

xvii

Contents

Résumé iii

Abstract v

Résumé Étendu vii

Remerciements xv

1 Introduction 1
1.1 Motivations . 1
1.2 Thesis Context . 2
1.3 Contributions . 4
1.4 Organization of the Thesis . 7

2 State of the Art 9
2.1 Overview and Motivations . 9
2.2 Workflow Management . 11

2.2.1 Basic Concepts . 11
2.2.2 Architecture of SWMSs 12

2.3 Scientific Workflow Management in the Cloud 17
2.3.1 Cloud Computing . 18
2.3.2 Multisite Cloud . 20
2.3.3 Data Storage . 21
2.3.4 Workflow Scheduling in the Cloud 25

2.4 Data Caching for Workflows . 29
2.4.1 Data Caching in Computer Systems 30
2.4.2 Data Caching in SWMSs 32
2.4.3 Scheduling and Caching in SWMSs 39

2.5 Conclusion . 42

3 Use Case in Plant Phenotyping 45
3.1 High-throughput Plant Phenotyping 45

3.1.1 Context . 45
3.1.2 High-Throughput Phenotyping Platforms 47
3.1.3 Infrastructures . 48

3.2 Automatic Phenotyping in OpenAlea 50
3.2.1 OpenAlea . 51
3.2.2 Phenomenal Library . 51
3.2.3 Applications with Common Data 55

3.3 Conclusion . 55

xviii

4 Adaptive Caching for Workflows in Monosite Cloud 59
4.1 Introduction . 59
4.2 Related works . 61
4.3 Monosite Cloud SWMS Architecture 62
4.4 Cost Model . 65
4.5 Cache Management . 67
4.6 Experimental Validation . 69

4.6.1 Experimental Setup . 69
4.6.2 Experiments . 70
4.6.3 Discussion . 79

4.7 Conclusion . 80

5 Cache-Aware Scheduling for Workflows in Multisite Cloud 83
5.1 Introduction . 84
5.2 Use Case: Intermediate Data Reuse in Geo-dis- tributed Clouds 85
5.3 Related Works . 86
5.4 Multisite SWMS Architecture 89
5.5 Cache-aware Workflow Execution 91

5.5.1 Distributed Workflow Execution Overview 92
5.5.2 Cache Data Selection . 93
5.5.3 Cache Site Selection . 93
5.5.4 Execution Site Selection 94
5.5.5 Global Decision . 94
5.5.6 Cache-Aware Scheduling 95

5.6 Experimental Validation . 97
5.6.1 Experimental Setup . 97
5.6.2 Experiments . 98
5.6.3 Discussion . 108

5.7 Conclusion . 109

6 Conclusion 111
6.1 Contributions . 111
6.2 Directions for Future Work . 114

Bibliography 117

xix

List of Figures

2.1 Generic architecture of a SWMS [93]. 13
2.2 Multisite workflow execution architecture. Dotted lines repre-

sent inter-site interactions [94]. 20
2.3 Strategies for geographically distributed metadata manage-

ment [126]. 25
2.4 Different types of parallelism. 27
2.5 Generic architecture of a SWMS with cache management. . . . 33
2.6 Parameter Sweep Workflow. 34
2.7 Smart rerun: a workflow executed twice, the second execution

benefits from cached data generated by the first execution. . . 35
2.8 Evolving workflow: execution of two workflows Wf1 and Wf2,

with Wf2 being designed on top of Wf1. 37
2.9 Multi-user SWMS architecture with a Data management module

that enable intermediate data reuse between users [32]. 38
2.10 Kepler architecture in monosite cloud with cache feature [32]. 40
2.11 Three level cache architecture in multisite cloud [132]. 42

3.1 Map of Emphasis project platforms across Europe. 48
3.2 Time series of images for one plant, generated during one HTP

experiment. 49
3.3 PhenoArch platform. 50
3.4 Phenomenal workflow and its generated intermediate data. . 52
3.5 Intermediate data generated by each fragment of the Phenome-

nal workflow on one genotype through time. 53
3.6 3D reconstruction of (A) Cotton (Gossypium); (B) Apple tree

(Malus pumila); (C) Sorghum (Sorghum bicolor). 53
3.7 Order of magnitude of intermediate data size and execution

time of each activity of the Phenomenal workflow executed on
one HTP experiment dataset. 54

3.8 Four different workflows that use components of the Phenom-
enal library. 1) the Phenomenal workflow [12]; 2) a light com-
petition workflow [26]; 3) a light interception and radiation
workflow [31]; and 4) a maize ear detection workflow [20] . . 56

4.1 SWMS Functional Architecture 63
4.2 SWMS Technical Architecture 64
4.3 DAG of tasks before preprocessing (left) and the selected frag-

ments that need to be executed (right). 67
4.4 Speedup versus number of vCPUs: without cache (orange),

greedy caching (blue), and adaptive caching (green). 71

xx

4.5 Execution time of each activity’s task. 73
4.6 pmin of each activity’s task. 74
4.7 Monetary cost depending on the number of users that execute

the workflow with three different cache strategies with the
execution cost (blue) and the storage cost (red). 74

4.8 Monetary cost of scenario S1: Each user executes the last activ-
ity of the workflow, for three values of ptresh. 75

4.9 Monetary cost of scenario S2: Each user executes all the activi-
ties of the workflow, for three values of ptresh. 77

4.10 Monetary cost of scenario S3: Each user executes the activities
based on the use case (A1, A3, A7, A9), for three values of ptresh. 77

5.1 Two workflows in plant analysis 86
5.2 Phenomenal plant analysis workflow 87
5.3 Workflow System Functional Architecture 90
5.4 Multisite Workflow System Architecture 91
5.5 Total time of Phenomenal workflow execution in four cases . . 99
5.6 Centralized versus distributed cache in terms of execution time

for three scheduling algorithms (D-Sgreedy-CH, D-Fgreedy-CH
and D-CacheA) . 102

5.7 Total times for multiple users (60% of same raw data per user)
for three scheduling algorithms (D-Sgreedy-CH, D-Fgreedy-CH
and D-CacheA) . 103

5.8 Execution for one user (60% of same raw data used) on hetero-
geneous sites with three scheduling algorithms (D-Sgreedy-CH,
D-Fgreedy-CH and D-CacheA) 105

5.9 Four subworkflows derived from the Phenomenal workflow . 106
5.10 Total times for executing the four subworkflows by two users

(with 60% of same raw data for second user) 107

xxi

List of Tables

4.1 Percentage of caching decision per task 76

5.1 Scheduling algorithms and their main dimensions 98

1

Chapter 1

Introduction

1.1 Motivations

In many scientific domains, such as bio-science [130], physics [8], astronomy
[154], complex numerical experiments typically require many processing or
analysis steps over huge datasets. They can be represented as scientific work-
flows. These workflows ease the modeling, management, and execution of
computational activities linked by data dependencies. Workflows are typically
represented as a directed graph. During a workflow execution, the activities
are instantiated with some data to process and some fixed parameters, pro-
ducing several tasks. As the size of the data processed and the complexity
of the computation keep increasing, these workflows become data-intensive.
To execute such workflows within a reasonable timeframe, they need to be
deployed in a high-performance distributed computing environment, such as
the cloud.

Cloud computing provides reliable and on-demand easy access to virtu-
ally infinite computing, storage, and networking resources. Users use web
services to access, manage, and deploy tasks, such as data storage, application
deployment, or computation, over very large data centers. A cloud is typi-
cally composed of several geo-distributed sites (or data centers), each with its
own resources and data, and called multisite cloud. This makes it possible
to execute data-intensive workflows on several cloud sites for scalability or
privacy reasons.

Scientists can use a Scientific Workflow Management System (SWMS) to
manage workflow executions over a monosite and multisite cloud. Many
scheduling algorithms have been adapted for data-intensive workflows in
monosite cloud, including matrix-based heuristics [170], particle swarm op-
timizations [121], and optimizations based on evolutionary approaches [87].
Many algorithms [114, 95] have been proposed to efficiently schedule a work-
flow with different granularities (task, actity, fragment). In general, these
solutions consider the data location, the sites’ storage size and availability,
and computing capacities to schedule the workflow minimizing the overall
cost.

It is common for workflow users to reuse other workflows or data gen-
erated by other workflows. Reusing and re-purposing workflows allow the
user to develop new analyses faster. Furthermore, a user may need to execute
a workflow many times with different sets of parameters and input data to

2 Chapter 1. Introduction

analyze the impact of some experimental step, represented as a workflow frag-
ment, i.e., a subset of the workflow activities and dependencies. In both cases,
some fragments of the workflow may be executed many times, which can be
highly resource-consuming and unnecessary long. Workflow re-execution can
be avoided by caching the intermediate results of these workflow fragments
and reusing them in later executions.

In computer systems, caching means storing data in a storage media whose
access is significantly faster (e.g., main memory) than recomputing the data
or reading from a slower storage media (e.g., disk). Usually, for workflow
executions, the cache has to be persistent and accessible by multiple users. In
a cloud environment, both the storage and computation have a cost, and a
caching challenge is to determine the best trade-off between cache cost and
re-execution cost. In the case of a multisite cloud, the challenge becomes more
complex as the cache can be distributed among the sites.

Due to high latency in inter-site data transfer, usually, the data is processed
on the site where it is located. Yet, it is common for scientists working on huge
datasets to perform experiments using data from several data centers. For
instance, the climate data in the Earth System Grid [161], large amounts of raw
data from Quantum Chromodynamics (QCD) [124] and the data of the ALICE
project 1 are all geographically distributed. In phenotyping research, the data
is also stored in data centers all across the world (such as the Phemome project
2). Moreover, the intermediate data generated by data-intensive workflows
can be huge and usually stored on the site where it was generated. As a
consequence, the data (both input and cached) required for a workflow execu-
tion can be geo-distributed. To efficiently benefit from caching and reusing
intermediate data, a SWMS should be adapted to exploit a distributed cache
over a multisite cloud.

1.2 Thesis Context

This thesis has been done in the context of one national project, the Institut
de Convergences #DigitAg 3 on digital agriculture, and two Inria associated
teams with Brazil (LNCC, UFRJ, UFF and CEFET in Rio de Janeiro): SciDISC
4 on scientific data analysis using data-intensive scalable computing and
HPDaSc 5 on high performance data science.

In the #DigitAg project, we address the challenge of exploiting geo-distributed
and big data technologies for plant phenotyping. Plant phenotyping aims
at capturing plant characteristics, such as morphological, topological, phe-
nological features [158]. Manually capturing the phenotype of a plant is
time-consuming and produces a limited amount of data. High-throughput
phenotyping (HTP) platforms have emerged to speed up the phenotyping
data acquisition in controlled conditions (e.g. greenhouse) or in the field [147].

1http://aliceinfo.cern.ch/Public/Welcome.html
2https://www.phenome-fppn.fr/
3https://www.hdigitag.fr/
4https://team.inria.fr/zenith/scidisc/
5https://team.inria.fr/zenith/hpdasc/

http://aliceinfo.cern.ch/Public/Welcome.html
https://www.phenome-fppn.fr/
https://www.hdigitag.fr/
https://team.inria.fr/zenith/scidisc/
https://team.inria.fr/zenith/hpdasc/

1.2. Thesis Context 3

Such platforms generate terabytes of data used in plant breeding and plant
biology to test novel mechanisms.

Each dataset is expensive and time consuming to generate and it is unique.
Indeed, it depends on the plant growth, platform capacities, and many ex-
ternal parameters. Thus, the datasets are very valuable and many different
research teams (users) work on the same datasets, which serve as baselines.
These teams can be located at the same local site or at different geographically
sites.

New experiments may share common data with previous executions, and
can benefit from reusing intermediate data whenever it is cached. However,
since the users may be located at different sites, the cache data they produce
may be geo-distributed. As the experiments are data-intensive and can be
executed in either monosite or multisite cloud, the management of the cached
data involves scheduling workflow fragments or activities, which becomes a
challenging problem.

The objectives of this thesis are to:

1. propose efficient caching and scheduling strategies to enable sharing of
intermediate big data among users in both monosite and multisite cloud
architectures, to reduce workflow execution times.

2. show the costs and benefits of sharing intermediate big data rather than
re-executing the activities that produced it, between multiple users.

In particular, we consider the following questions for executing workflows in
monosite and multisite cloud using a cache:

• How to determine which data should be stored? Caching intermediate
data requires both CPU time, to serialize the data on disk, and storage,
to maintain the data on disk. As the latency to access data increases
with the cache size, the cache can become inefficient, with slow access
to cache data. Thus, saving all the intermediate data that is generated
would be both expensive in terms of storage and inefficient in terms of
access time. Furthermore, due to their dependencies with in a workflow,
all intermediate data do not have the same importance in a workflow
re-execution. The data generated by the input activities can be reused
in more cases than the one generated by the output activities. Thus, to
determine which data generated should be stored, the SWMS should
take into account many parameters including the data size, its generation
time, and its efficiency for latter execution in order to find the best trade-
off between the costs to store data and the benefits of reusing it.

• How to determine where to store the cached data? A multisite cloud
is said homogeneous if the sites (data centers) have same computing
and storage capabilities. In an heterogeneous multisite cloud, with
much variation in the sites’s capabilities, determining where to store
the cached data is difficult. A site with a lot of computing resources
is likely to be used a lot in the workflow execution, leading to a lot of
the intermediate data being generated at this site. In that case, as the

4 Chapter 1. Introduction

intermediate data is huge, the time to transfer the newly generated data
to another site should be taken into consideration when determining
the best site to cache the data. Furthermore, as data transfers within a
site (across cluster nodes) are significantly faster than across the sites,
the future workflow executions will be privileged to be executed on the
sites that store the cached data. Thus, simply storing all the cached data
at the cheapest site would result in a bottleneck in both computation
and bandwidth to access the cached data at that site.

• How to efficiently schedule a workflow to benefit from the cached
data? Reusing previously generated data instead of regenerating it can
save time and resources. But due to the complexity and size of the data
processed, this is not always true. Indeed, transferring huge cached
data to another site for computation might be more time consuming
that regenerating the data at that other site. However, due to the time
of transferring cached data, it can be more time-efficient to schedule an
activity execution at a site with less computing power than at a site that
could not be able to store the cached data. Thus, in order to schedule the
workflow in a way that minimizes the overall cost, the SWMS should use
the cached data location, the decision on which data should be stored,
and the sites’ storage and computing capacities.

• Which SWMS architecture should be used for both cache manage-
ment and workflow scheduling in clouds? The SWMS is managing
the workflow scheduling and execution in the cloud. The manage-
ment of the cached data impacts the workflow execution both when
the cached data is written and read. Thus, the SWMS should integrate
cache management with the workflow scheduling and execution. A new
SWMS architecture is required for workflow execution with a cache in
a cloud environment. Moreover, in a multisite cloud, both the cloud
sites’ resources and the cached data are distributed, making the work-
flow scheduling problem more complex. Thus, in a multisite cloud, the
SWMS should additionally consider the distribution of the resources
and the cached data location.

1.3 Contributions

The main objective of this thesis is to efficiently execute several workflows,
that share common fragments, by using a cache system in either monosite or
multisite cloud.

The main contributions are:

• A SWMS architecture to handle caching and cache-aware scheduling
algorithms when executing workflows in either monosite or multisite
cloud. The SWMS architecture is an extension of a state-of-the-art
architecture, with new components for storing and reusing cached data
during workflow execution. The architecture includes a cache manager

1.3. Contributions 5

and a cache index. The cache manager determines which intermediate
data will be stored. In multisite cloud, it also determines at which
site the data should be stored. The cache manager also selects which
intermediate data will be reused instead of be re-generated. The cache
index is a metadata store on the cached data.

• A cost model that includes both financial and time costs for both
workflow execution and cache management. In an heterogeneous mul-
tisite cloud, the cost of task execution and cache storage may greatly
vary between the sites. The cost model includes data transfer times,
execution times, workflow topology, data sizes, sites’ resources and
availability, and financial cost. The cost model is used to compute a
trade-off between storage cost and data re-generation cost, which is used
in turn for the decisions on caching and scheduling at the monosite and
multisite levels. Yet, the cost model is different in the case of monosite
versus multisite cloud. In monosite cloud, it combines financial and
execution time cost. In multisite cloud, the time to read, write, and
transfer the cached data is added to the execution time.

• Cache-aware scheduling algorithms for monosite and multisite clouds.
To optimize workflow execution with cached data, we propose two
scheduling algorithms. The first one is designed for monosite cloud
and optimizes the scheduling depending on the cache decisions made
by the cache manager. This algorithm dynamically adapts to the tasks’
variation in execution time and data sizes. The second algorithm is for
multisite cloud. It makes scheduling decisions based on three aspects:
which data should be cached, where the cached data should be stored,
and where the workflow’s tasks should be executed. It optimizes the
overall cost of the workflow execution with cached data.

• OpenAlea in the cloud. OpenAlea was not adapted for cloud execution.
We developed an extension to OpenAlea which enables the execution of
workflows in monosite and multisite cloud. It now considers persistent
caching and reusing data when executing workflows. In monosite cloud,
the extension manages the workflow scheduling over the cluster nodes
at a site. The cached data is reused whenever possible and stored in
the site nodes. In multisite cloud, both the input and cached data can
be distributed in the cloud sites. The extension manages the workflow
execution at two levels: inter-site level (between the sites), and intra-
site level (inside a site). At the inter-site level, OpenAlea manages the
partitioning, cache decisions, and scheduling of workflow fragments.
At the intra-site level, OpenAlea manages the execution of workflow
fragments and storage of new cached data in the site nodes.

• An experimental validation on a data-intensive plant phenotyping
application. To evaluate our solution for cache management and work-
flow scheduling, we implemented our algorithms in OpenAlea. For

6 Chapter 1. Introduction

the experiments, we use the Phenomenal workflow, a complex data-
intensive phenotyping workflow, on real data. We measure the exe-
cution time, data transfer time, latency, the time to feed and use the
cache. We compare our algorithms with baseline scheduling algorithms
in monosite and multisite cloud. Our results show that our approaches
reduce the total time (execution time and data transfer time) compared
with baseline algorithms. Moreover, our proposed architecture is able
to successfully cache and share the intermediate data automatically
between users.

All these contributions have been published in the following publications:

• G. Heidsieck, D. de Oliveira, E. Pacitti, C. Pradal, F. Tardieu, & P. Val-
duriez. Cache-aware Scheduling of Scientific Workflows in Multisite
Cloud. Future Generation Computer Systems, under revision, 2020.

• G. Heidsieck, D. de Oliveira, E. Pacitti, C. Pradal, F. Tardieu, & P. Val-
duriez. Efficient Execution of Scientific Workflows in the Cloud Through
Adaptive Caching. Transactions on Large-Scale Data-and Knowledge-
Centered Systems (pp. 41-66), 2020.

• G. Heidsieck, D. de Oliveira, E. Pacitti, C. Pradal, F. Tardieu, & P. Val-
duriez. Distributed Caching of Scientific Workflows in Multisite Cloud.
DEXA 2020 : International Conference on Database and Expert Systems
Applications (pp. 51-65). Best Paper Award.

• G. Heidsieck, D. de Oliveira, E. Pacitti, C. Pradal, F. Tardieu, & P. Val-
duriez. Cache-aware scheduling of scientific workflows in multisite
cloud. BDA 2020 : Gestion de Données – Principes, Technologies et
Applications.

• G. Heidsieck, D. de Oliveira, E. Pacitti, C. Pradal, F. Tardieu, & P. Val-
duriez. Efficient Execution of Scientific Workflows in the Cloud Through
Adaptive Caching. BDA 2019 : Gestion de Données – Principes, Tech-
nologies et Applications (pp. 41-66).

• G. Heidsieck, D. de Oliveira, E. Pacitti, C. Pradal, F. Tardieu, & P. Val-
duriez. Adaptive Caching for Data-Intensive Scientific Workflows in the
Cloud. DEXA 2019 : International Conference on Database and Expert
Systems Applications (pp. 452-466).

• C. Pradal, S. Cohen-Boulakia, G. Heidsieck, E. Pacitti, C. Pradal, F.
Tardieu, & P. Valduriez. Distributed Management of Scientific Work-
flows for High-Throughput Plant Phenotyping. ERCIM News 2018,
Smart Farming (pp.36-37)

And the following posters:

• item G. Heidsieck. Smart Reuse of High-Throughput Phenotyping Data
using Scientific Workflows on the Cloud. ICROPM 2020: International
Crop Modelling Symposium, France, Montpellier, 03 Feb. 2020.

1.4. Organization of the Thesis 7

• G. Heidsieck. Efficient Execution of Scientific Workflows in the Cloud
through Adaptive Caching. ICROPM 2019: International Crop Mod-
elling Symposium, France, Montpellier, 04 July 2019.

• G. Heidsieck. Smart rerun of data intensive scientific workflow in dis-
tributed environment - Rencontre Annuelle MaDICS, France, Strasbourg,
20 Nov. 2018.

• G. Heidsieck, D. de Oliveira, E. Pacitti, C. Pradal, & F. Tardieu. Ef-
ficient Re-execution of Data Intensive Scientific Workflows for High-
throughput Phenotyping. BDA 2018 : Gestion de Données – Principes,
Technologies et Applications, Romania, Bucharest

1.4 Organization of the Thesis

The rest of the thesis is organized as follows:

Chapter 2: Survey of scientific workflow management in the cloud. This
chapter surveys scientific workflow management in the cloud, with a fo-
cus on data caching and workflow scheduling. We start by introducing the
basic concepts of workflow management, within a functional architecture
of SWMSs. Then, we present the general techniques for workflow paral-
lelisation, i.e. coarse-grained parallelism and fine-grained parallelism, and
workflow scheduling, i.e. static, dynamic, or hybrid. Then, we focus on scien-
tific workflow management in both monosite and multisite cloud, including
data storage and workflow execution. Based on an extension of the general
architecture for SWMSs to deal with data caching, we introduce techniques
for scheduling workflows with cached data in monosite and multisite cloud.
Finally, we analyze the limitations of the existing approaches.

Chapter 3: Use case in plant phenotyping. In this chapter, we present a real
use case in plant phenotyping based on the Phenomenal workflow from the
OpenAlea SWMS. This use case is the basis for our motivations in this thesis
and will be used in our experimental validation. We start with an overview
of HTP and present some challenges. Then, we introduce the phenotyping
modules of OpenAlea, in particular, the Phenomenal library, a set of compo-
nents for automatic plant phenotyping from images. Then, we describe the
Phenomenal workflow, a workflow created from the Phenomenal library com-
ponents. Finally, we present different published analyses that use Phenomenal
components, and discuss the potential benefits of caching intermediate data.

Chapter 4: Adaptive caching in monosite cloud.
In this chapter, we propose an adaptive caching solution for data-intensive

workflows in monosite cloud. Our solution is based on a new SWMS architec-
ture that automatically manages the storage and reuse of intermediate data
and adapts to the variations in task execution times and output data size. We

8 Chapter 1. Introduction

evaluated our solution by implementing it in OpenAlea and performing ex-
tensive experiments on real data from the Phenomenal workflow. The results
show that adaptive caching can yield major performance gains, e.g., up to a
factor of 4.5 with 6 workflow re-executions.

Chapter 5: Cache-aware scheduling in multisite cloud. In this chapter, we
propose a solution for cache-aware scheduling of scientific workflows in mul-
tisite cloud. Our solution is based on a distributed and parallel architecture
and includes new algorithms for adaptive caching, cache site selection, and
dynamic workflow scheduling. We implemented our solution in OpenAlea
, together with cache-aware distributed scheduling algorithms. Our experi-
mental evaluation in a three-site cloud with real data from the Phenomenal
workflow shows that our solution can yield majors performance gains, re-
ducing total time up to 42% with 60% of the same input data for each new
execution.

Chapter 6: Conclusion. This chapter concludes the thesis, summarizing and
discussing our contributions. We also give some future directions of research,
based on the results of this thesis.

9

Chapter 2

State of the Art

In many scientific domains, complex experiments typically require many
processing or analysis steps over huge quantities of data. They can be rep-
resented as scientific workflows, or workflows for short, which ease the
modeling, management, and execution of computational activities linked by
data dependencies. As the size of the data processed and the complexity
of the computation keep increasing, these workflows become data-intensive
[81], thus requiring execution in a high-performance distributed and parallel
environment, e.g., a large-scale virtual cluster in a cloud [80]. These experi-
ments often require executing again the same workflows for various reasons,
including changing workflow parameters, sharing intermediate results, and
upgrading an existing analysis. The intermediate data generated by workflow
executions can be shared and/or reused by users using data caching in order
to reduce the amount of recomputation during new workflow executions.
For data-intensive workflows, caching intermediate data can require much
time to save and load. And reusing some existing cached data is not always
cost-effective. Thus, there is a difficult trade-off between reusing cached data
and recomputing intermediate data. Furthermore, in a distributed environ-
ment where cached data need be transferred across sites, it becomes crucial to
schedule the workflow based on cache location. The workflow execution and
design are usually managed by a Scientific Workflow Management System
(SWMS), which becomes then in charge of the caching.

This chapter gives the state of the art in scientific workflow management
in the cloud, with a focus on caching and scheduling.

Section 2.1 presents the motivations of the chapter. Section 2.2 gives an
overview of scientific workflow management, including basic concepts and
architectures. Section 2.3 focuses on workflow management in both monosite
and multisite clouds. Section 2.4 discusses data caching in SWMSs. Section
2.4.3 discusses data caching and workflow scheduling in SWMSs. Section 2.5
concludes this chapter.

2.1 Overview and Motivations

In many scientific domains, e.g, bio-science [81], complex numerical experi-
ments typically require many processing or analysis steps over huge datasets.
They can be represented as workflows. These workflows ease the modeling,

10 Chapter 2. State of the Art

management, and execution of computational activities linked by data depen-
dencies. Workflows are typically represented as a directed graph. As the size
of the data processed and the complexity of the computation keep increasing,
these workflows become data-intensive. In order to execute such workflows
within a reasonable time, they need to be deployed in a high-performance
distributed computing environment, such as the cloud.

A SWMS is a tool to manage workflows, its execution, the datasets con-
sumed and produced. SWMSs have been developed in various computing
environments, both centralized and distributed. SWMSs such as Pegasus [47],
Swift [178], Kepler [8], Taverna [112], Galaxy [61], Chiron [111] or OpenAlea
[129] are used intensively by various research communities, e.g. astronomy,
biology, computational engineering.

SWMSs can be represented with a five layer architecture [93], where a
scientific workflow is first transformed into a workflow execution plan (WEP)
to be scheduled and executed. These layers are: user interface layer, user
services layer, WEP generation layer, WEP execution layer, and infrastructure
layer. These layers represent the common features between most SWMSs
throughout the workflow life cycle. The related works presented in this thesis
are based on this architecture.

In a distributed environment, it is critical to exploit parallelism in order to
execute data- and compute-intensive workflows in a reasonable time. Thus,
the SWMS needs to manage workflow parallelization and scheduling using
various types of parallelism and scheduling strategies.

Cloud computing provides reliable and on-demand easy access to virtu-
ally infinite computing, storage, and networking resources. Users use web
services to access, manage, and deploy tasks, such as data storage, application
deployment, or computation, over very large data centers. A cloud is typi-
cally composed of several geo-distributed sites (or data centers), each with
its own resources and data. This makes it possible to execute data-intensive
workflows on several cloud sites, for scalability or privacy reasons.

There are several surveys on workflow management. Bux et al. [24] focus
on the parallelization techniques and their implementations in distributed
environments: cluster, grid and cloud. Bux et al. also provide an overview of
how SWMSs manage parallelism, and propose to group SWMSs into three
classes. The first one is textual workflow languages, which can distribute
workflow tasks over external resources, but lack support for data parallelism
and they are not user friendly for the domain scientists. The second one is
graphical standalone systems. They are easy for scientists to use but lack
efficiency when dealing with parallelism. The third is life science enactment
portals, that ease the design and sharing of workflows over a web browser.
Yet, they are not optimized for workflow parallelism.

Rodriguez et al. [136] propose a taxonomy to focus on the features of
workflows related to clouds and provide an overview of the scheduling algo-
rithms for workflows in a cloud. The taxonomy is based on three categories:
application model, scheduling model, and resource model. The application
model defines the ability to schedule either a single or multiple workflows.
The scheduling model defines the features of mapping workflow tasks to

2.2. Workflow Management 11

virtual machines, the resources provisioning, the scheduling objective, and
the optimization strategy. Finally, the resource model defines the cloud en-
vironment resources, the cloud provider features, the storage and networks,
and the virtual machines. This taxonomy aims at describing all useful features
for SWMSs execution in a cloud.

Mattoso et al. [103] propose a taxonomy to identify the main concepts
related to address dynamic workflow steering, i.e. dynamically monitoring
the execution of the workflow. The three essential categories for workflow
steering are: monitoring the workflow execution, data analysis at runtime,
and dynamic workflow adaptation. The taxonomy proposed considers three
more categories. Thus, it is composed of six categories: monitoring, analysis,
adaptation, notification, interface for interaction, and computing model. These
categories consider all the parameters to include the user in the workflow
execution. Mattoso et al. also present an overview of how the main SWMSs
deal with each category of the taxonomy.

Liu et al. [93] provide an overview of data-intensive workflow manage-
ment in SWMSs and their parallelization techniques. The overview includes
a functional architecture that represents the common features between most
SWMSs, and a comparative analysis of the existing solutions based on the
proposed architecture. The architecture will be described in Section 2.2.2 as it
serves as a baseline for our SWMS architecture.

These surveys provide a good basis to understand workflow management
and execution in general. In this chapter, we introduce workflow management
in distributed environments, with a focus on caching and scheduling of data-
intensive workflows.

2.2 Workflow Management

This section introduces the basic concepts of workflows and SWMSs used
throughout this thesis. First, we define scientific workflows and SWMSs.
Then, we present a functional architecture for SWMSs.

2.2.1 Basic Concepts

This section introduces the concepts of scientific workflows and SWMSs.

Scientific Workflows

A workflow consists of a set of processes, called activities, that are linked by
data or logical dependencies according to a set of semantic rules. Workflows
are either business workflows or scientific workflows.

Scientific workflows are used to manage, model, and execute scientific
experiments. A scientific workflow is the assembly of complex sets of sci-
entific data processing activities with data dependencies between them [49].
Workflows can be combined, thus a scientific workflow can be composed of
sub-workflows. Sub-workflows are composed of a subset of activities and
dependencies of the scientific workflow. Sub-workflows typically represent

12 Chapter 2. State of the Art

specific steps in data processing. Workflows can be represented in various
ways. A common one is a directed graph, in which nodes represent the
processing activities, and the edges represent the dependencies. In many
applications, the graph is acyclic (DAG), or even a pipeline (sequence of
activities). Directed Cyclic Graphs (DCG) present a challenge in scientific
workflow executions since it brings logical dependencies or activities, e.g.
with a whiledo construct [166].

An activity is a description of a piece of work and can be a computational
script (computational activity), some data (data activity), or some set-oriented
algebraic operator like map or filter [110]. During the execution of a scientific
workflow, an activity is instantiated with some data to process and some fixed
parameters, producing several tasks. A task is the one-time execution of an
activity, processing some data. Sometimes, “jobs” are used to represent the
meaning of tasks [24] or activities [33, 46].

Business workflows focus on procedural rules that generally represent
the control flows while scientific workflows highlight data flows that are
depicted by data dependencies [14]. Business workflows present differences
from scientific workflows: 1) scientific workflows exploit tools with a higher
level of abstraction; 2) business workflows rely more on the users’ interactions;
3) business workflows are based on control flow, whereas scientific workflows
use data flow. In the rest of the manuscript, we focus on scientific workflows,
or workflows for short when there is no ambiguity.

Scientific Workflow Management System

A Scientific Workflow Management System (SWMS) is a tool to design, man-
ages, share, and executes a scientific workflow. It enables the generation of
a Workflow Execution Plan (WEP), which captures optimization decisions
and execution directives, typically the result of compiling and optimizing
workflows, before execution [93].

SWMSs can also support functionalities to capture and share workflow
information, such as workflow provenance. Workflow provenance is the
metadata that captures the generation history of a dataset, of a workflow and
of an execution. Provenance data is used for workflow analyses and workflow
reproducibility. [41, 114, 9, 77]

2.2.2 Architecture of SWMSs

Liu et al. [93] propose a generic architecture for SWMSs composed of five
layers: user interface, user services, WEP generation, WEP execution, and
infrastructure. These layers represent the common features of SWMSs [47, 178,
8, 111]. Figure 2.1 shows the generic architecture of a SWMS. The upper layers
perform more abstract functionalities and rely on the lower layers. Users
interact with a SWMS through the user interface to access the user services.
When executed, workflows are processed by the WEP generation to produce
a WEP, which is executed at the WEP execution layer. The SWMS accesses the
physical resources through the infrastructure layer for workflow executions.

2.2. Workflow Management 13

FIGURE 2.1: Generic architecture of a SWMS [93].

The combination of the WEP generation layer, the WEP execution layer, and
the infrastructure layer corresponds to a workflow execution engine.

This architecture will be the basis for the architecture in our work. We focus
on the user service layer for workflow information sharing and on the WEP
generation and WEP execution layers for workflow scheduling and cache data
management. For more details see Section 2.2.2 Functional Architecture of
SWfMSs [92].

User Interface

The user interface layer is the interface for the interactions between the user
and the SWMS. It is through this interface that the user design and manage
workflows. The user interface can be either textual or graphical. This interface
also shows results of the user services, such as execution status, workflow
steering representation, and information sharing commands.

Some SWMSs have a textual interface [160, 60, 111]. Wilde et al.[160]
propose Swift, a distributed scripting language. It is a C-like syntax that de-
scribes data, data flows, and applications by focusing on concurrent execution,
composition, and coordination of independent computational activities.

Pegasus relies on Wings to create workflows [60]. Wings is used for the
workflow design and the mapping of the data to the workflow, while Pegasus
manages the workflow execution through a textual interface. Chiron repre-
sents workflows as a DAG in textual XML format [111]. It enables Chiron to
use algebraic operators to optimize workflow execution.

Other SWMSs propose a graphical interface [61, 8, 129]. The graphical
interface simplifies the designing and management processes of the workflow

14 Chapter 2. State of the Art

by the user, offering drag and drop functionality. Galaxy [61], is a web-portal-
based SWMS. The workflow is designed through a browser on the client
side, then it can be executed on a remote cloud. Taverna and OpenAlea [112,
129] enable workflow design and sharing through packages accessible on
the graphical interface. The workflow design can be performed through a
drag and drop feature, where the user interacts directly with the DAG. These
SWMSs use textual languages for the inner representation of the workflow,
such as JSON in Galaxy [61].

User Service

The user services layer is responsible for supporting user functionality, i.e.,
workflow monitoring and steering, workflow information sharing, and pro-
viding workflow provenance data.

Workflow steering is the interaction between a SWMS and a user to control
the workflow execution progress or configuration parameters [103]. Through
workflow steering, a user may change parameters, stop unnecessary execution,
or re-execute workflows if errors occur. The user may even benefit from the
workflow execution before its completion to prove her hypothesis [41, 9].
The user can also monitor the workflow executions. Workflow monitoring
consists of tracking the workflow execution status and displaying it for the
user. Dynamic monitoring and steering are important to control workflow
executions, especially when the execution time is long [49].

Information sharing consists of sharing data including input data, output
data, metadata, or even workflow design between users for reusing work-
flows. It can be done through the same SWMS of different SWMS environ-
ments. SWMSs may enable workflow repositories, where users can upload
and download activities and workflows, thus reducing repetitive work be-
tween scientist groups. A workflow repository can be shared in the same
SWMS environment, i.e., Taverna enables data and workflow sharing through
the “ myExperiment” social network [162]; Galaxy has a web-based shared
repository [61]; OpenAlea propose an integrated repository to share work-
flows [129]. Terstyanszky et al. [148] propose the SHIWA repository, an inter
SWMS sharing solution.

Provenance data in workflows is important to support reproducibility,
result interpretation, and problem diagnosis. Data provenance captures the
metadata on the generation and dependencies of a given dataset. Execu-
tion provenance captures the metadata on the tasks execution and execution
environment. Provenance data management concerns the efficiency and effec-
tiveness of collecting, storing, representing, and querying provenance data
[93]. Although some workflow provenance recommendations exist, PROV
[106], their implementation varies in SWMSs. Gadelha et al. [55] propose
MTCProv, implemented in the SWift SWMS, that enable to store the prove-
nance data in a relational database. The provenance data can be queried for a
graph representation trough a data model or to query information. Kim et al.
[82] propose a semantic-based approach to generate provenance information
in Pegasus SWMS. The approach saves the semantic workflow definition

2.2. Workflow Management 15

given by Wings, with the execution provenance generated by Pegasus during
a workflow execution. Altintas et al. [7, 43] propose a framework to collect
provenance data for Kepler SWMS. The framework collects both data prove-
nance and execution provenance, and store them in a MySQL database. The
provenance data can be retrieved and visualized through the Kepler API.
Callahan et al. [28] propose to store provenance data with intermediate data
generated with workflow executions implemented in VisTrails. It strengthens
reproducibility creating "strong links" between the provenance and execution
[85]. VisTrails also enables visualization of provenance data evolution with
workflow evolution.

WEP Generation

The WEP generation layer is responsible for generating a WEP from the
workflow design and optimization, i.e., workflow refactoring, workflow par-
allelization, and optimization.

Workflow refactoring consists of simplifying the workflow, i.e., by remov-
ing redundant activities, or by partitioning it in workflow fragments (a subset
of activities and data dependencies of the workflow [110]), to ease the execu-
tion. Cohen et al. [40] present a method that automatically detects workflow
structures and replaces them by equivalent structures of lower complexity
when possible. The study provides a set of anti-patterns, i.e., idiomatic forms
that lead to over-complicated design. Then, the algorithm automatically de-
tects derivations of such anti-patterns in the workflow and replace them. It
conserves the workflow semantic while reducing the redundancy and finding
patterns that simplify the workflow. Deelman et al. [47] present a caching ap-
proach, where redundant activities are removed when refactoring. Before the
workflow execution, the SWMS check each activity with the cache metadata.
The intermediate data generated by previous executions are reused when
available. Thus, the executable workflow generated is modified to take the
cached data into account. Section 2.4.2 provides more details on data caching
and reuse in SWMS.

Workflow partitioning consists of splitting a workflow into workflow
fragments. Ogasawara et al. [110] present a partitioning method based on
a workflow algebra, where the workflow is fragmented into equivalent ex-
pressions. The fragments are then transformed into multiple WEPs to be
executed. The workflow can be partitioned to reduce the storage required for
the execution of each fragment or to reduce the scheduling complexity [33].

Workflow parallelization consists in converting the workflow into sets
of executable tasks for the WEP. It is based on different types of parallelism,
e.g., data parallelism, workflow parallelism. The parallelization can be per-
formed at different levels, i.e., workflow fragment, activity, or task level. Some
SWMSs can manage the parallelization at the activity level, i.e., Swift [178],
Pegasus [47], or OpenAlea [130], perform the parallelization within their exe-
cution engine. The parallelization can be outsourced using web services or
Hadoop MapReduce systems [157]. Outsourcing the parallelization prevents

16 Chapter 2. State of the Art

the SWMS to manage some optimizations on the workflow execution, to man-
age the data placement on a distributed environment and make it harder to
capture the provenance data [93].

Workflow optimization generates the WEP based on the workflow refac-
toring and parallelization with additional instructions. The additional in-
structions describe scheduling objectives for workflow executions, i.e., mini-
mizing execution costs, meeting deadline constraints, or following security
constraints.

WEP Execution

The WEP execution layer manages the workflow scheduling, task execution,
and fault-tolerance.

Workflow scheduling is the process of mapping and managing execution
of inter-dependent tasks on distributed resources [167]. The scheduling can be
performed at the workflow fragment level, activity, or task level. Some SWMSs
outsource workflow scheduling as well as its execution, it is performed at the
same time as the workflow parallelization [157]. Wu et al. [164] propose a
taxonomy to describe workflow scheduling in a cloud and compare the main
scheduling algorithms. The taxonomy is composed of three categories: static
scheduling, dynamic scheduling and hybrid scheduling. This taxonomy aims
at comparing scheduling algorithms and workflow execution objectives (such
as robustness, reducing costs, constrains). We present more in detail workflow
scheduling in cloud in Section 2.3.4.

The task execution consists of processing some input data at computing
nodes to produce the output data. Some SWMSs, e.g., Galaxy, Pegasus, Ope-
nAlea, manage the data transfers and task execution within their execution
engine. It enables them to take into account the distribution of the resources,
the data location, the dynamic variation of resources, to optimize the execution.
The provenance data of the execution is generated at this point.

The goal of fault tolerance management is to handle failures during task
execution and resource provisioning. Ganga et al. [56] classify the fault tol-
erance technique into two groups: proactive and reactive. Proactive fault
tolerance aims at predicting the failures and handle the failure before it hap-
pens. Reactive fault tolerance act after a failure occurs and aims at reducing
its impact while continuing the execution.

Infrastructure

The limitations of computing and storage resources of one computer force
SWMS users to use multiple computers in a cluster or cloud infrastructure for
workflow execution. This layer provides the interface between the SWMS and
the infrastructure.

Cluster computing is a paradigm of parallel computing for high perfor-
mance and availability. A computer cluster, or cluster for short, consists of a
set of interconnected computing nodes [38]. A cluster is typically composed
of homogeneous physical computers interconnected by a high speed network,
e.g. Fast Ethernet or Infiniband. A cluster can consist of computer nodes

2.3. Scientific Workflow Management in the Cloud 17

or virtual machines (VMs) in the cloud. In the cloud, a VM is a virtualized
machine (computer). Cluster users can rely on message passing protocols,
such as MPI for parallel execution.

Cloud computing provides computing, storage and network resources
through infrastructure, platform and software services, with the illusion that
resources are unlimited. The cloud uses virtualization techniques to provide
scalable services that are independent of the physical infrastructure. In the
cloud, we can configure and use a cluster composed of VMs. Moreover,
database management systems can be offered as platform in the cloud. There is
also the possibility of dynamic provisioning. In cloud environments, we have
a list of resource types from which we can provision a potentially unlimited
number of resource instances. Such dynamic provisioning can provide many
benefits, in particular better performance, and reduced financial cost.

The infrastructure layer is also in charge of provisioning, which can be
static or dynamic. Static provisioning can provide unchangeable resources
for SWMSs during workflow execution while dynamic provisioning can add
or remove resources for SWMSs at runtime. Based on the types of resources,
provisioning can be classified into computing provisioning and storage pro-
visioning. Computing provisioning provides computing nodes to SWMSs
while storage provisioning provides storage resources for data caching or data
persistence. However, most SWMSs are just adapted to static computing and
storage provisioning.

The data storage module generally exploit database systems and file sys-
tems to manage the data during workflow execution. Generally, the file
systems and the database systems take advantage of computing nodes and
storage resources provided by the provisioning module. In a multisite en-
vironment, SWMSs can cluster the data and place each dataset at a single
site, distribute the newly generated data to multiple sites at runtime and
adjust data among multiple sites [169]. SWMSs can also put some data in the
disk cache of one computing node to accelerate data access during workflow
execution [143]. However, existing SWfMSs just use few types of storage
resources, some other types of storage resources, e.g. cache for a single site,
cache in one computing node etc., can be also exploited.

2.3 Scientific Workflow Management in the Cloud

The cloud provides a scalable, cost-effective solution to deploy and execute
data-intensive workflows. A cloud is usually composed of multiple data cen-
ters located at different sites, which allows to scale up compute and storage
resources. Yet, most of the applications can be run on a single site, which is
often enough. However, a workflow may require multiple sites to be executed
in order to use more resources than what is available at one site. An execu-
tion needs more than one site when the datasets are stored at specific sites,
and cannot be transferred due to access rights or privacy issues. Therefore,
workflow management on a multisite cloud is an important problem.

In this section, we focus on workflow deployment and execution in the
cloud, including parallelization and scheduling.

18 Chapter 2. State of the Art

2.3.1 Cloud Computing

Cloud computing is a natural evolution, and combination, of different com-
puting models proposed for supporting applications over the web: service
oriented architectures for high-level communication of applications through
web services, utility computing for packaging computing and storage re-
sources as services, cluster and virtualization technologies to manage lots
of computing and storage resources, autonomous computing to enable self-
management of complex infrastructure, and grid computing to deal with
distributed resources over the network. However, what makes cloud com-
puting unique is its ability to provide various levels of functionality such as
infrastructure, platform, and application as services that can be combined to
best fit the users’ requirements. From a technical point of view, the grand
challenge is to support in a cost-effective way, the very large scale of the
infrastructure that has to manage lots of users and resources with high quality
of service.

Agreeing on a precise definition of cloud computing is difficult as there
are many different perspectives (business, market, technical, research, etc.).
However, a good working definition is that a "cloud provides on demand
resources and services over the Internet, usually at the scale and with the reli-
ability of a data center" [65]. This definition captures well the main objective
(providing on-demand resources and services over the Internet) and the main
requirements for supporting them (at the scale and with the reliability of a
data center). Since the resources are accessed through services, everything
gets delivered as a service. Thus, as in the services industry, this enables cloud
providers to propose a pay-as-you-go pricing model, whereby users only pay
for the resources they consume. However, implementing a pricing model is
complex as users should be charged based on the level of service actually
delivered, e.g., in terms of service availability or performance. To govern the
use of services by customers and support pricing, cloud providers use the
concept of Service Level Agreement (SLA), which is critical in the services
industry (e.g., in telecoms), but in a rather simple way. The SLA (between
the cloud provider and any customer) typically specifies the responsabilities,
guarantees and service commitment. For instance, the service commitment
might state that the service uptime during a billing cycle (e.g., a month) should
be at least 99a service credit.

According to Buyya et al. [25], a cloud is a type of parallel and distributed
system consisting of a collection of interconnected and virtualized computers
that are dynamically provisioned and presented as one or more unified com-
puting resources based on service-level agreement. Cloud computing enables
on-demand access to a shared pool of configurable computing resources, e.g.,
storage, services, servers, that can be easily provisioned and deployed. Cloud
services can be divided in three broad categories: Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS).

IaaS is the delivery of a computing infrastructure (i.e., computing, net-
working and storage resources) as a service. It enables customers to scale up
(add more resources) or scale down (release resources) as needed (and only
pay for the resources consumed). This important capability is called elasticity

2.3. Scientific Workflow Management in the Cloud 19

and is typically achieved through server virtualization, a technology that
enables multiple applications to run on the same physical server as virtual ma-
chines, i.e., as if they would run on distinct physical servers. Customers can
then requisition computing instances as virtual machines and add and attach
storage as needed. An example of popular IaaS is Amazon web Services.

SaaS is the delivery of application software as a service. It generalizes the
earlier Application Service Provider (ASP) model whereby the hosted applica-
tion is fully owned, operated and maintained by the ASP. With SaaS, the cloud
provider allows the customer to use hosted applications (as with ASP) but also
provides tools to integrate other applications, from different vendors or even
developed by the customer (using the cloud platform). Hosted applications
can range from simple ones such as email and calendar to complex applica-
tions such as customer relationship management (CRM), data analysis or even
social networks. An example of popular SaaS is Safesforce CRM system.

PaaS is the delivery of a computing platform with development tools
and APIs as a service. It enables developers to create and deploy custom
applications directly on the cloud infrastructure, in virtual machines, and
integrate them with applications provided as SaaS. An example of popular
PaaS is Google Apps.

By using a combination of IaaS, SaaS and PaaS, customers could move all
or part of their information technology (IT) services to the cloud, with the
following main benefits:

• Cost. The cost for the customer can be greatly reduced since the IT
infrastructure does not need to be owned and managed; billing is only
based only on resource consumption. For the cloud provider, using a
consolidated infrastructure and sharing costs for multiple customers
reduces the cost of ownership and operation.

• Ease of access and use. The cloud hides the complexity of the IT in-
frastructure and makes location and distribution transparent. Thus,
customers can have access to IT services anytime, and from anywhere
with an Internet connection.

• Quality of Service (QoS). The operation of the IT infrastructure by a
specialized provider that has extensive experience in running very large
infrastructures (including its own infrastructure) increases QoS.

• Elasticity. The ability to scale resources out, up and down dynamically
to accommodate changing conditions is a major advantage. In particular,
it makes it easy for customers to deal with sudden increases in loads by
simply creating more virtual machines.

SWMSs can use SaaS and IaaS to deploy Workflow as a Service (WfaaS)
software [86, 39]. This enables the user to deploy and run workflows in
a cloud from the SWMS interface. In the rest of the manuscript, we focus
on IaaS, which enables the SWMS to optimize workflow execution on the
infrastructure.

20 Chapter 2. State of the Art

FIGURE 2.2: Multisite workflow execution architecture. Dotted
lines represent inter-site interactions [94].

2.3.2 Multisite Cloud

For scalability, data access or data privacy reasons, an application may require
to be executed at more than one site. Most public cloud providers, such as
Amazon or Microsoft, have many geographically distributed sites. Amazon
for example has dozens of sites distributed on each continent.

Liu et al. [97] define multisite cloud as a cloud composed of several sites (or
data centers), each from the same or different providers and explicitly accessi-
ble to cloud users. Thus, the user can access and deploy data and applications
at each site, taking advantage of the data location when using computing and
storage resources. If each site has the same resource capabilities as the others,
the multisite cloud is said to be homogeneous. Otherwise, it is heterogeneous.

Petri et al. [125] present a framework to manage workflow executions in
a multisite cloud. The user submits a workflow to be executed in a shared
multisite management space. Then, the framework automatically distributes
the tasks on the sites. The framework is based on Building Information
Modelling to manage "shared" execution spaces. The shared execution spaces
are created on-demand at a cloud site, composed of one master node and
several worker nodes. One site can host several shared execution spaces.
Executions are managed by the master node at each share execution space.
The framework enables users to share their data in the multisite cloud while
maintaining their data on their infrastructure (local server, private cloud). It
also allows executing a workflow using the data shared by other users.

Liu et al. [94] propose a multisite workflow execution architecture (see
Figure 2.2). The architecture is based on the two-level management of work-
flows: inter-site and intra-site. At the inter-site level, the communication
and synchronization are handled by the master nodes (M), one per site. At
the intra-site level, the workflow execution is managed with a master/ slave
model, where the slave nodes (S) execute the tasks. At each site, the processed
data (input, output, and intermediate data) is shared through a shared file

2.3. Scientific Workflow Management in the Cloud 21

system and metadata is stored at the master node. This two-level management
enables multisite load balancing and data location awareness while having a
low latency at the inter-site execution between the master nodes and the slave
nodes.

Other common frameworks such as Hadoop and MapReduce have been
extended to work in multisite clouds. Tudoran et al. [151] propose a method
to distribute MapReduce applications on the sites depending on the input
data, assuming that the input data is distributed among the sites. The Map
tasks are scheduled at the sites where the input data is stored. Each site has a
Reducer, to execute Reduce operations. At the multisite level, the output data
is aggregated by a MetaReducer. The solution efficiently reduces the latency
of the Reduce tasks and reduces data transfer by exploiting input data locality.

Luo et al. [98] improve the previous MapReduce multisite solution by
proposing two static scheduling algorithms for MapReduce multisite execu-
tion. The first algorithm schedules the tasks according to computing nodes,
enabling task balancing among the sites. However, it does not consider data
transfers between sites, so it does not perform well in scenarios where the
input data distribution over multiple sites in unbalanced. The second al-
gorithm schedules the tasks according to the location of their input data,
reducing data transfers between the sites. However, the algorithm does not
consider the workload when scheduling tasks, thus, hurting load balancing
of compute-intensive workflows. Both algorithms first schedule the tasks at
the sites, then, the output data at each site is aggregated by a global reducer,
such as the MetaReducer. These two algorithms enable MapReduce work-
flow execution in multisite cloud, taking into account either data-intensive or
compute-intensive workflows but not both.

2.3.3 Data Storage

Data storage in the cloud is critical for the performance of data-intensive
workflows. The data processed by a workflow during execution, including
input data, intermediate data and output data, is usually stored in a file system
while the metadata (provenance data, or metadata on the processed data)
needed for workflow execution is usually stored in a database, including SQL
and NoSQL. In this section, we discuss the techniques for file management
and metadata management that can be used in the cloud.

File Management

A file system is in charge of controlling how information is stored and re-
trieved in a computer or a computer cluster [11]. In the cloud, IaaS users need
a file system that can be concurrently accessible for all the VMs. This can be
achieved through a shared-disk file system or a distributed file system (See
Section 2.4.3 Data Storage in the Cloud [92]).

Shared-disk file systems
In a shared-disk file system, all the computing nodes of the cluster share some

22 Chapter 2. State of the Art

data storage that are generally remotely located. Examples of shared-disk file
systems include General Parallel File System (GPFS) [141], Global File System
(GFS) [131] and Network File System (NFS) [140].

A shared-disk file system is composed of data storage servers, a Storage
Area Network (SAN) with fast interconnection (e.g. Infiniband or Fiber (GPFS),
Channel) and is accessible to each computing node. The data storage servers
offer block data level storage that is connected to each computing node by
network. The data in data storage servers can be read or written as in the
local file system. The shared-disk file system handles the issues of concurrent
access to file data, fault-tolerance at the file level and big data throughput.

Let us illustrate with General Parallel File System (GPFS), IBM’s shared-
disk file system. GPFS provides the behavior of a general-purpose POSIX file
system running on a single computing node. GPFS’s architecture consists
of file system clients, a fast interconnection network and file system servers,
which just serve as an access interface to the shared disks. The file system
clients are the computer nodes in a cluster that need to read or write data from
the shared disk for their installed programs. The interconnection network
connects the file system clients to the shared disks through a conventional
block I/O interface.

GPFS provides fault-tolerance in large-scale clusters in three situations.
Upon a node failure, GPFS will restore metadata updated by the failed node to
a consistent state and release lock tokens in the failed node and appoint others
nodes for special roles played by the failed node. Upon a communication
failure, the mechanism for one node lost is handled as the node failures while a
network equipment failure causes a network partition. In the case of partition,
the nodes in the partition that has the highest number of nodes have access
to the shared disks. GPFS uses data replication across multiple disks to deal
with disk failures.

Cloud users can deploy a shared-disk file system by installing the cor-
responding frameworks (e.g. GPFS framework) in the VMs with the cloud
storage resources such as Microsoft Blob Storage and Amazon Elastic Block
Store (EBS). Alternatively, cloud users can mount Amazon Simple Storage
Service (S3) into all the Linux-based VMs to realize the functionality that all
the VMs can have access to the same storage resource, as with a shared-disk
file system.

Distributed file systems
A distributed file system stores data directly in the file system that is con-
structed by gathering storage space in each computing node in a shared-
nothing architecture. The distributed file system integrates solutions for load
balancing among computing nodes, fault-tolerance and concurrent access.
Files must be partitioned into chunks, e.g. through a hash function on records’
keys, and the chunks are distributed among computing nodes. Different from
the shared-disk file system, computing nodes have to load the data chunks
from the distributed file system to the local system before local processing.

Let us illustrate with Google File System (GFS) [59], which had a major
impact on cloud data management. For instance, Hadoop Distributed File

2.3. Scientific Workflow Management in the Cloud 23

System (HDFS) is an open source framework based on GFS. GFS is designed
for a shared-nothing cluster made of commodity computers, and applica-
tions with frequent read operations while write operations mainly consist
of appending new data. GFS is composed of a single GFS master node and
multiple GFS chunk servers. The GFS master maintains all the file system
metadata while GFS chunk servers store all the real data. The master can
send instruction information to the chunk servers while the chunk server can
send chunk server status information to the master. A GFS client can get the
data location information from the file namespace of the GFS master. Then it
can write data to the GFS chunk servers at this data location or get the data
chunks from a corresponding GFS chunk server according to the data location
information and required data size. GFS also provides snapshot support,
garbage collection, fault-tolerance and diagnosis. For high availability, GFS
supports master replication and data chunk replication.

BlobSeer [109] is another distributed file system optimized for Binary
Large OBjects (BLOBs). Data providers physically store the data in the storage
resources (data providers) while physical storage resources can be inserted or
removed dynamically in the data providers. The provider manager tracks the
information about the storage resources and schedules the placement of newly
generated data. All the stored data has a version. Metadata providers store
the metadata for identifying data chunks that make up a snapshot version.
The version manager assigns new snapshot version numbers to writers and
appenders and reveals new snapshots to readers. The write operation is
performed in parallel on data chunks and creates a new version of the data.
Because of data versioning, read and write operations can be asynchronous
and thus improve the read and write throughput. The client can get the
data location of the required files corresponding to the file name and the
required version when the required version is equal or inferior to the latest
snapshot version. Then it can write data to the data providers or get the
corresponding data chunks from the data providers by the data location
and desired data size. BlobSeer also provides fault-tolerance through data
replication, consistency semantics and scalability based on several versioning
mechanisms. A first performance comparison of BlobSeer with HDFS shows
important improvements in read and write thoughput, because of versioning.

Cloud users can deploy a distributed file system by installing correspond-
ing frameworks (e.g. HDFS) of the aforementioned systems in available VMs
to gather storage resources in each VM for executing applications in the Cloud.

Metadata Management

SWMSs rely on databases to manage provenance and file metadata. The
metadata is usually structured and can be stored in a relational database
with good performance in a centralized environment [91]. However, in a dis-
tributed environment such as the cloud, NoSQL databases are more efficient
for storing and querying metadata [19]. NoSQL databases enable exponential
growth with no clear schema definitions, that suits graph provenance data
model. Moreover, NoSQL databases enable horizontal scaling, i.e., it considers

24 Chapter 2. State of the Art

documents as independent objects, the documents can be stored on different
servers without worrying about joining rows from multiple servers, as it is
the case with the relational model. Thus, the NoSQL databases scale better
than relational databases in distributed environments.

Notice that, common metadata management systems rely on an assump-
tion that the average file size is very large, while the number of unique files
and directories is comparatively small. Yet, in many workflow applications,
the workflow execution generates a huge number of tasks that consume and
generate small files. Thus, the replication, synchronization, and latency ac-
cesses of the metadata lead to a metadata management bottleneck [149]. In
that case, efficient metadata handling plays a key role in workflow execution
performance [94].

Wercelens et al. [159] propose a comparison of different NoSQL systems to
manage metadata for bio-informatics workflows. Their workflow provenance
model is PROV-DM, a standard provenance model for workflows. The bio-
informatics workflows considered are not data-intensive but generates a huge
number of tasks, thus leading to a huge number of accesses to the provenance
database. The workflows are executed in a cloud, with several provenance
nodes, and one computing node. NoSQL databases, such as Cassandra or
MongoDB, appear to efficiently handle provenance data, as they scale up well
in distributed environments and match the provenance model well. Especially,
graph NoSQL databases, such as OrientDB, are well adapted for provenance
as they conform to the PROV-DM model.

Pineda Morales et al. [127] propose a hybrid centralized/decentralized
model to handle metadata in a multisite cloud. Figure 2.3 shows the four
metadata management strategies they propose. The strategies are based on the
assumption that local metadata operations are significantly faster than remote
operations. However, to maximize the local operations, the metadata have
to be fully replicated at all sites. The different strategies explore the trade-off
between latency for metadata access and the replication cost of the metadata.
Each strategy is shown to be suited for a different scenario. In particular,
the analysis shows that the centralized approach with replicated metadata
registries is best suited for data-intensive workflows. while decentralized
approaches are more adapted for workflows with a large number of tasks that
process small files.

Chebotko et al. [30] propose an RDF data store based on SPARQL to
manage and store the provenance data in centralized storage (in a local server).
The solution includes two storage models: a database schema with a slower
data mapping strategy but with faster query response time, and a faster data
mapping strategy can be chosen to speed up data writing. The first model
is adapted for long duration tasks, where provenance access performance is
less important. The second model is adapted for short duration tasks, where
provenance access performance becomes critical. The solution enables an
efficient trade-off between data mapping performance and query performance
but only in a centralized environment.

2.3. Scientific Workflow Management in the Cloud 25

FIGURE 2.3: Strategies for geographically distributed metadata
management [126].

2.3.4 Workflow Scheduling in the Cloud

To be executed in distributed environments, workflows require to be par-
allelized and scheduled. Parallelization consists of generating parallel ex-
ecutable tasks from the workflow definition. Workflow scheduling is the
process of mapping and managing executable tasks to computing resources
(i.e., computing nodes) during workflow execution. The goal is to get an
efficient Scheduling Plan (SP) that minimizes a function based on resource
utilization, execution cost and makespan. The section focus on SWMSs that
perform both parallelization and scheduling.

The cloud, with its elasticity, is cost-effective to execute workflows. The
cloud also enables a multisite approach, where the workflow execution may
benefit from data location to avoid data transfers.

In this section, we introduce workflow parallelization and workflow
scheduling in general. Then, we discuss workflow management in monosite
and multisite clouds.

Parallelization

Workflow parallelization analyzes the workflow to identify the tasks that can
be executed in parallel. Parallelism can be coarse-grained and fine-grained.
Coarse-grained parallelism is performed at the workflow level, where frag-
ments and sub-workflows are parallelized [148]. Fine-grained parallelism is

26 Chapter 2. State of the Art

performed at the activity level, determining which tasks from each activity
can be performed in parallel [24].

Fine-grained parallelism is of three types: data parallelism, independent
parallelism and pipeline parallelism [93] (See Figure 2.4). Data parallelism is
the generation of multiple tasks from one activity to be executed on different
data chunks (See Figure 2.4b). Independent parallelism is the parallelization
of "independent" activities, i.e., activities that have data dependencies between
them (See Figure 2.4c). Pipeline parallelism consists of sending the output
data of an activity to be consumed directly by the next dependent activity. The
producer activity does not need to be entirely completed, thus saving memory
and disk access (See Figure 2.4d). Hybrid parallelism is the combination of
the three other types (See Figure 2.4e).

Scheduling

Workflow scheduling consists of mapping the workflow tasks, generated by
workflow parallelization, to the physical resources. Scheduling algorithms
can focus on one or more objectives (such as makespan, financial cost, energy
consumption). Finding a schedule for any DAG of tasks is an NP-hard prob-
lem [57]. Thus, the scheduling algorithms presented in the manuscript are
heuristics-based algorithms.

The tasks can be clustered in bags to be scheduled, which reduces the
scheduling overhead. A bag of tasks is executed on the same computing
node. Chen et al. [34] propose three balanced task clustering algorithms.
They are fine-grained approaches that reduce the imbalance of runtime and
data dependencies among the bags of tasks. The three algorithms cluster the
tasks, focusing on one of the following objectives: balancing the tasks runtime
variation, balancing the data dependencies, or balancing the impact factor
(which is a metric that represents the similarity between tasks).

Workflow scheduling can be static, dynamic, or hybrid. Static scheduling
generates an SP that allocates all the executable tasks to computing nodes
before execution and the SP is strictly applied during execution [24]. Static
scheduling adds very little overhead at runtime because it is computed before.
It is efficient when the SWMS can accurately predict the workload and the
size of data generated by each task. Topcuoglu et al. [150] propose a static
scheduling algorithm, Heterogeneous Earliest-Finish-Time (HEFT), which
rank tasks by their expected completion time. Then, it schedules each task
to minimize the expected completion time. HEFT is widely used in SWMSs
as it efficiently schedules workflows in environments with little variation
(such as a grid). Rodriguez et al. [137] propose a static cost minimization
algorithm based on the meta-heuristic optimization technique particle swarm
optimization (PSO). PSO finds a solution within a deadline constraint. It
considers elastic provisioning and VM performance variation, which make it
efficient for execution in a cloud.

Dynamic scheduling generates SPs during workflow execution, dynami-
cally assigning executable tasks to computing nodes. Dynamic scheduling is
efficient in environments where the infrastructure capabilities (e.g., bandwidth,

2.3. Scientific Workflow Management in the Cloud 27

(A) Sequential execution in one computing node. Activity B starts
execution after the execution of activity A and activity C starts execu-
tion after the execution of activity B. All the execution is realized in

one computing node.

(B) Data parallelism. The execution of activities A, B, C is performed in
two computing nodes simultaneously. Each computing node processes

a data chunk.

(C) Independent parallelism. The execution of activities A and B is
performed in two computing nodes simultaneously. Activity C begins

execution after the execution of activities A and B.

(D) Pipeline parallelism. Activity C starts execution once a data chunk
is ready. When activities A and B are processing the second part of
data (i2, i4), activity C can process the output data of the first part (a1, b1)

at the same time.

(E) Hybrid parallelism. Activity A is executed through data paral-
lelism at nodes 1 and 2. Activity B is executed through data parallelism
at nodes 4 and 5. Activities A and B are also executed through indepen-
dent parallelism. Activities A and C, respectively B and C, are executed
through pipeline parallelism between nodes (1, 2) and 3, respectively

nodes (4, 5) and 3.

FIGURE 2.4: Different types of parallelism. Circles represent
activities. There are three activities: A, B and C. C processes the
output data produced by A and B. Rectangles represent data
chunks. “i1” stands for the first part of input data. “a1” stands
for the output data corresponding to the first part of input data

after being processed by activity A. [93]

28 Chapter 2. State of the Art

computing power) vary a lot during execution or when the workflow tasks’
behavior is unpredictable. Some dynamic scheduling algorithms are based
on static algorithms. Yu et al. [168] propose a dynamic scheduling algorithm
based on HEFT which takes into account the tasks that are already executed
to adjust the ranking among the remaining tasks. The algorithm performs
better when the workflow has many similar tasks. Thus, it is efficient for
data-intensive workflows with a high degree of parallelism.

Hensgen et al. [76] propose min-min, a dynamic scheduling algorithm
that maps the task T to the computing node M such that T is the task that
has minimum expected execution time in the non-mapped tasks and M is the
computing node that is executing a task having minimum expected execution
time in the mapped tasks.

Hybrid scheduling takes advantage of both static and dynamic scheduling
approaches. The SWMS first generates a SP before the execution for tasks with
enough information. Then, it can adapt the SP during execution. De Oliveira
et al. [114] propose four hybrid scheduling algorithms: greedy scheduling,
task grouping, task performing, and load balancing. The greedy scheduling
algorithm produces static SPs to choose the most suitable task to execute
for a given idle VM based on a cost model. The task grouping algorithm
produces new tasks by encapsulating two or more tasks into a new one. The
task performing algorithm sets up the granularity factor for each VM in the
system and modifies the granularity according to the average execution time.
The load balancing algorithm is a dynamic scheduling algorithm that adjusts
the number of VMs and static SP in order to meet the deadline of execution
time and the budget limit.

Monosite Cloud

In a monosite cloud, SWMSs rely on the VMs to execute workflows and
exploit cloud services [45]. Some SWMSs use a middleware to manage the
VMs in order to execute the workflow in a cloud. This midleware handles the
creation and removal of VMs as well as the resources provisioning and the
communications between VMs. Some SWMS examples that use a middleware
are Swift with Coasters [70], Kepler with its Amazon EC2 actors [156], Galaxy
with CloudMan [5]. Using a middleware to manage VMs prevents taking
advantage of the dynamic provisioning aspect of the cloud.

Some SWMSs can exploit dynamic provisioning of VMs and storage in a
cloud for workflow executions. The SWMS can scale up or down the resources
allocated to adapt the environment to the workflow execution. Nagavaram
et al. [100, 107] propose Wrangler, a dynamic provisioning system in a cloud
for Pegasus. It can create VMs dynamically to reduce execution time under
monetary cost constraints. If the monetary cost exceeds the constraint, the
system removes VMs. Other examples that perform dynamic provisioning
are Askalon [53], or Chiron with Scicumulus [114]. Dynamic provisioning
enables to manage changes in resource demand during workflow execution
at the expense of a runtime overhead.

2.4. Data Caching for Workflows 29

Multisite Cloud

Workflows can require execution in a geo-distributed multisite cloud for
different reasons, e.g., 1) when the input data is distributed on the sites (for
example when several research teams generated them), it might be too costly
to transfer the data among the sites; 2) some datasets cannot be transferred due
to privacy requirement or access rights, a part of the computations needs to be
performed at the site where the data is located; 3) to scale up the computing
environment, workflow executions may require more resources than the one
available at one site. A multisite cloud is composed of several data centers
that are located at different geographically sites. A SWMS can run a workflow
on a multisite cloud by either 1) deploying the SWMS on top of a multisite
cloud platform; 2) directly executing the SWMS on the multisite cloud [44].

When the SWMS is deployed in a multisite cloud, the cloud platform
manages the multisite execution (see Section 2.3.2 for examples of cloud
platforms). As resources management is performed by the cloud platform,
the SWMS cannot optimize workflow execution using infrastructure and data
location information.

SWMSs are directly executed in the multisite cloud when the SWMS has ac-
cess to the resources of each site. The SWMS becomes multisite aware and can
adapt the workflow execution to the distributed environment. Most SWMSs
that manage multisite workflow scheduling, adopt a two-level scheduling:
inter-site and intra-site. At the inter-site level, the SWMS may partition the
workflow and schedule the fragments at each site, balancing the workflow
execution. At the intra-site level, the workflow fragments are scheduled on
the computing nodes by monosite scheduling methods.

Chen et al. [33, 34] propose two workflow partitioning methods for mul-
tisite execution in Pegasus. The first method partitions the workflow under
storage constraints at each site. It aims at minimizing the overall execution
cost by computing a trade-off between the increased data transfer and the
increased parallelism. The second method partitions the workflow by gener-
ating fragments with similar workloads, balancing the execution time at each
site. These two methods are efficient in homogeneous multisite clouds only.

Liu et al. [95] propose three multisite scheduling algorithms based on a
multi-objective cost function. The algorithms take into account the resources of
each site, and inter-site latency to minimize the monetary cost and makespan
of the workflow execution. The algorithms partition the workflow at the inter-
site level and schedule each fragment at the site that minimizes the global cost.
They are adapted for data-intensive workflows in heterogeneous multisite
cloud. These algorithms will be presented in more detail in Section 2.4.3.

2.4 Data Caching for Workflows

To save execution time and resource utilization, a SWMS can cache and reuse
some data. The data can be cached in memory to be reused during the same
workflow execution or made persistent for future workflow executions. In

30 Chapter 2. State of the Art

this section, we first introduce data caching in computer systems. Then, we
present data caching in SWMSs with an overview of the existing solutions.

2.4.1 Data Caching in Computer Systems

In computer systems, caching means storing data in a storage media whose
access is significantly faster (e.g., main memory) than recomputing the data or
reading from a slower storage media (e.g., disk). To be efficient, a cache must
exploit temporal locality and spatial locality. The temporal locality represents
the likelihood of cached data to be frequently accessed in the near future. The
spatial locality represents the likelihood of cached data to be physically close
to the location where it is accessed.

In computer systems, caching is used in both hardware and software.
At the hardware layer, cache memories (small and fast storage) hold some
instruction items and referenced blocks of data, enabling high-speed access to
main memory. At the operating system, the most recently used blocks can be
stored in main memory. At the layer of application programs, a cache speeds
up requests from users when they access the same data several times.

Cache implementation and contents vary between applications. As an
example, Web browsers cache the data of the most recently visited sites in
a local disk [176]. At the network level, the Web servers store the recently
requested web data in a front-end disk cache. In a relational database, the
query plans and the pages can be cached to speed up queries over big tables.

In distributed databases, an important caching technique is materialized
views (See Section 3.1.1 Maintenance of Materialized Views in [119]) A ma-
terialized view stores the tuples of a view in a database relation, like the
other database tuples, possibly with indices. Thus, access to a materialized
view is much faster than deriving the view, in particular, in a distributed
DBMS where base relations can be remote. Introduced in the early 1980s [4],
materialized views have since gained much interest in the context of data
warehousing to speed up On Line Analytical Processing (OLAP) applications
[67]. Materialized views in data warehouses typically involve aggregate (such
as SUM and COUNT) and grouping (GROUP BY) operators because they
provide compact database summaries. An important aspect is query rewriting
using materialized views, which requires translating a query on base tables
into an equivalent query on materialized views.

A materialized view is a copy of some base data and thus must be kept
consistent with that base data which may be updated. View maintenance
is the process of updating (or refreshing) a materialized view to reflect the
changes made to the base data. The issues related to view materialization are
somewhat similar to those of database replication. However, a major differ-
ence is that materialized view expressions, in particular, for data warehousing,
are typically more complex than replica definitions and may include join,
group by and aggregate operators. Another major difference is that database
replication is concerned with more general replication configurations, e.g.,
with multiple copies of the same base data at multiple sites.

2.4. Data Caching for Workflows 31

A view maintenance policy allows a database administrator to specify
when and how a view should be refreshed. The first question (when to
refresh) is related to consistency (between the view and the base data) and
efficiency. A view can be refreshed in two modes: immediate or deferred.
With the immediate mode, a view is refreshed immediately as part as the
transaction that updates base data used by the view. If the view and the base
data are managed by different DBMSs, possibly at different sites, this requires
the use of a distributed transaction, for instance, using the two-phase commit
protocol [119]. The main advantages of immediate refreshment are that the
view is always consistent with the base data and that read-only queries can be
fast. However, this is at the expense of increased transaction time to update
both the base data and the views within the same transactions. Furthermore,
using distributed transactions may be difficult.

In practice, the deferred mode is preferred because the view is refreshed
in separate (refresh) transactions, thus without performance penalty on the
transactions that update the base data. The refresh transactions can be trig-
gered at different times: lazily, just before a query is evaluated on the view;
periodically, at predefined times, e.g., every day; or forcedly, after a predefined
number of updates to the base data. Lazy refreshment enables queries to see
the latest consistent state of the base data but at the expense of increased query
time to include the refreshment of the view. Periodic and forced refreshment
allow queries to see views whose state is not consistent with the latest state
of the base data. The views managed with these strategies are also called
snapshots [3, 18].

The second question (how to refresh a view) is an important efficiency
issue. The simplest way to refresh a view is to recompute it from scratch using
the base data. In some cases, this may be the most efficient strategy, e.g., if
a large subset of the base data has been changed. However, there are many
cases where only a small subset of view needs to be changed. In these cases, a
better strategy is to compute the view incrementally, by computing only the
changes to the view.

Efficient techniques have been devised to perform incremental view main-
tenance using both the materialized views and the base relations. The tech-
niques essentially differ in their views’ expressiveness, their use of integrity
constraints, and the way they handle insertion and deletion. Gupta and Mu-
mick [69] classify these techniques along the view expressiveness dimension
as non-recursive views, views involving outerjoins, and recursive views. For
non-recursive views, i.e., select-project-join (SPJ) views that may have dupli-
cate elimination, union and aggregation, an elegant solution is the counting
algorithm [68]. One problem stems from the fact that individual tuples in the
view may be derived from several tuples in the base relations, thus making
deletion in the view difficult. The basic idea of the counting algorithm is
to maintain a count of the number of derivations for each tuple in the view,
and to increment (resp. decrement) tuple counts based on insertions (resp.
deletions); a tuple in the view of which count is zero can then be deleted.

Self-maintainability depends on the views’ expressiveness and can be
defined with respect to the kind of updates (insertion, deletion or modification)

32 Chapter 2. State of the Art

[66]. Most SPJ views are not self-maintainable with respect to insertion but
are often self-maintainable with respect to deletion and modification. For
instance, an SPJ view is self-maintainable with respect to deletion of relation
R if the key attributes of R are included in the view.

Although the concept of materialized view is very powerful, it is simply
not applicable in the context of workflows for the following reasons. First,
a SWMS does not have a data model, unlike the relational model behind
materialized views, and the workflow data is stored in various data sources,
such as files or NoSQL databases. Thus, one cannot define what a workflow
materialized view would mean. Second, materialized views are useful to
speed up queries, by rewriting queries that bear on base tables on equivalent
queries on materialized views. This is made possible because there is a high-
level query language like SQL. In SWMSs, there is no such query language
and workflow queries are made by workflow activities in different ways
depending on the data stores that are accessed (e.g., databases or files). Third,
there is no equivalent of updating base data through views in SWMSs, as base
data are directly accessed by activities.

In distributed environments, systems such as "Memcached" 1 can be used
to extend data-intensive applications. "Memcached" is a key-value distributed
memory object caching system. It is used widely in the data-center environ-
ment for caching results of database calls, API calls or any other data. It is
used by several big data applications such as Facebook, Netflix, and Twit-
ter. Some SWMSs [51, 22] use Memcached in multisite execution for both
managing the intermediate data distributed on the nodes, and for caching
intermediate data during execution. However, Memcached is adapted for
small data caching in memory, thus, it does not manage intermediate data
generated by data-intensive workflows.

Data caching is a common, efficient feature in computer systems. Some
existing caching methods such as Memcached can be applied to SWMSs. Yet,
to fully benefit from caching, a SWMS has to deal with both data caching and
cache-aware scheduling. Moreover, in SWMSs, the requirements for caching
depends on the workflow under consideration. As an example, depending on
the time range of re-executions, a workflow re-executed over a long period
would benefit more from a persistent cache.

2.4.2 Data Caching in SWMSs

In SWMSs, caching requires to be managed at different layers of the architec-
ture we introduced in Section 2.2.2. Figure 2.5 shows how this architecture
should be adapted for cache management. The two required components are
cache manager and cache storage. The cache manager manages the cached
data during the workflow execution. The cache manager mostly focuses on
two decisions: 1) which intermediate data generated by the cache should
be stored, and 2) which existing cached data should be reused. The cache
manager is accessed at the user service layer for the cached data to be shared

1https://memcached.org/

https://memcached.org/

2.4. Data Caching for Workflows 33

Presentation Layer

User service

WEP
generation

WEP execution

Infrastructure

Cache manager

Cache
indexCatalog

Cache
storage

FIGURE 2.5: Generic architecture of a SWMS with cache man-
agement.

between users. Data sharing can be either manual, i.e., the user needs to re-
trieve cached data information through a repository such as "MyExperiment",
or it can be automated, in which case the SWMS automatically adds and
retrieves cache data information. Cached data information is stored in the
cache index, and the information about users (access rights, etc.) is stored in
the catalog.

The cache manager is also accessed by the WEP generation layer when a
workflow is executed. Workflow refactoring and optimization use the cache
information to modify the workflow and generate a WEP accordingly. The
decisions on which intermediate data will be added to the cache is performed
at the WEP generation layer. Finally, at the infrastructure layer, the cache
storage manages the cache replacement policies (i.e. when some cached data
should be remove from the cache), and its provisioning.

In this section, we present four main approaches to exploit caching in
SWMSs: parameter sweep, smart rerun, evolving workflows, and multiuser
workflow sharing.

Parameter Sweep

A parameter sweep workflow (PS workflow) is a workflow with multiple
input parameter sets, which needs to be executed for each input parameter
set [36, 63]. Figure 2.6 shows a PS workflow. The workflow is executed with
each set of input data (p1 to pn), which generates a set of output data (r1 to rn).
A set of parameters pi is composed of the input parameters for each activity
(there can be several parameters for one activity). A set of parameters pi can
have common input parameters with another set pj. When the workflow is
executed with pi and pj, some tasks may consume the same intermediate
data. Structure patterns in the workflow show which fragments are executed
several times. When executing PS workflows, finding structure patterns in
the workflow enables to optimize the number of tasks that will be executed.
Workflow structure patterns can be patterns for parallelization, e.g. represent-
ing workflows as algebraic expressions [111], or component structure patterns,
e.g. single activities with one or more input/output dependencies, sequen-
tial control and sequential/concurrent data, synchronization of sequential

34 Chapter 2. State of the Art

i1 i2

i3

i4

1 2

3

4

P1

Sets of input data
Pi i1 i2 ..

P2

Pn

….

R1

Sets of output data

R2

Rn

….

Workflow executed with Pi

FIGURE 2.6: Parameter Sweep Workflow.

data, data duplication [165]. Similar structure patterns of workflows can be
found based on a similarity model of nodes and edges in the workflow DAG
[16]. Identifying workflows patterns or common activities enables workflow
information sharing and reuse (see Section 2.2.2) among users [165].

PS workflows are used in many domains such as modelling [99], bio-
science [144] or chemistry [146]. The techniques to optimize PS workflows
executions are mostly based on parallelization techniques. However, some
tasks generate data that can be used by each set of input data. These activities
can be determined by the workflow structure patterns. The PS workflow
execution can be optimized by minimizing the number of times the output
data of these specific activities is generated, by replicating this data or sharing
it.

De Oliveira et al. [115] propose an adaptive approach to execute PS work-
flows, implemented in SciCumulus. The approach is based on identifying the
data that will be consumed by several tasks and storing them in a centralized
shared file system. During workflow execution, the tasks reuse the output
data whenever possible, which reduces task re-computations. The scheduling
algorithm proposed in [115] is based on a 3-objective weighted cost model
that considers total execution time, financial cost, and reliability. Scheduling
is done by an adaptive greedy algorithm that explores the space of alterna-
tive schedules, considering the cost model and possible changes in the cloud
environment.

Owsiak et al. [118] improve Nimrod, the PS workflow framework of
the Kepler SWMS, by enabling caching and reusing of data. To handle PS
workflows, Kepler generates multiple instances of the SWMS, each executing
the workflow with one set of parameters. One instance of Kepler is the
coordinator of the other instances. The solution proposed by Owsiak et al.
includes a cache storage accessible by each Kepler instance. The coordinator
instance manages what cached data can be reused by the other instances.
The cache data is stored in a relational database, which is hosted on the user
device. However, the solution is not adapted for data-intensive workflows
and distributed environments.

2.4. Data Caching for Workflows 35

C

3

1’

1’

3

i1’

Workflow executed with i1
N Workflow Task

Intermediate data
generated by NN

iN
Input parameters
of task N

C Cache storage

Workflow executed with i1’

1 2

1 2

3

3

i1

C

FIGURE 2.7: Smart rerun: a workflow executed twice, the sec-
ond execution benefits from cached data generated by the first

execution.

Smart Rerun

Smart rerun is the re-execution of a workflow that has already been executed
with the same or similar input data and input parameters by a single user in
most cases. A user needs to rerun a workflow for routine jobs or analyses over
multiple workflows.

Figure 2.7 shows a workflow executed twice. The first execution of the
workflow (left hand-side) is with input parameter i1 for task 1. After execution,
the intermediate data generated by task 2 is stored in the cache. The workflow
is re-executed (right hand-side) with a different parameter for task 1. Task 1
with parameter i1’ generates the intermediate data 1’ which is different from
the data generated from the first execution. Task 2 however is the same and
the intermediate data 2 can be reused instead of recomputing task 2.

Several SWMSs, such as Kepler, VisTrails, OpenAlea, exploit intermediate
data for workflow re-execution. Each of these systems has its unique way
of addressing data reuse. OpenAlea [130] uses a cache that captures the
intermediate results in memory and dynamic scheduling algorithms that
exploit the cache. The scheduling algorithm traverses the workflow from
the bottom activities to the input activities. For each activity, the algorithm
checks the activity input data and if it is unchanged, accesses the cached
data. The remaining activities (those that still require to be executed) are
greedily scheduled on a single VM. Whenever a task is executed, it is stored
in the memory of the VM. The scheduling and cache are centralized, thus not
adapted for data-intensive workflows.

VisTrails provides a cache when executing a workflow [15]. The interme-
diate data generated is stored and can be reused in future executions of the
workflow. The intermediate data is cached in a provenance database and
is only accessible for the user that produced it. As the intermediate data
is linked to the provenance data, whenever the workflow is re-executed, it
only requires one query per activity for both the provenance and the cached
databases. This approach allows the user to change parameters or activities
in the workflow and efficiently re-execute each workflow. The database is
hosted on the user computer, thus not adapted for data- or compute-intensive
workflows.

36 Chapter 2. State of the Art

Chen et al. [32] propose an algorithm for Kepler to select the best datasets
to store in order to enable "smart rerun" of workflows. It aims at minimizing
the monetary cost for workflow execution, taking into account the trade-off
between storage and computation costs. The trade-off is computed from the
provenance data by an heuristic based on ant colony system optimization,
which finds a near optimum solution. Then, the SWMS can statically schedule
workflows using this cache. The cache is hosted on a centralized server, and
can be accessed for cloud computation. The intermediate data is persistent,
which enables the user to benefit from cached data generated a long time
ago. However, the solution does not consider evolving workflows, i.e. the
workflow that is re-executed has to be the same. It also does not take data
transfer into account, and the cached data is transferred to the cloud before
execution.

Evolving Workflows

It is common for workflow users to reuse code or data from other workflows
and from previous executions of the same workflow [58]. For instance, the
workflow has already been executed but some activities have changed, e.g.,
by new versions of the code they represent. Or the workflow is reused in
another scientific application, and some of the activities have already been
executed. The SWMS can cache some intermediate data to save time and
money when the activities are re-executed. The evolving workflows require
that the SWMS keeps track of workflow evolution and can involve several
users among different teams. Figure 2.8 shows the execution of two workflows
Wf1 and Wf2. When Wf1 is executed, its provenance and intermediate data
generated are cached. Wf2 is an new workflow based on Wf1 with two new
activities. When Wf2 is executed, the provenance evolution shows that the
intermediate data previously generated can be reused.

Joeris et al. [78] present a versioning model for workflows that captures
workflow evolution and workflow configurations. The model is based on
schema versions and considers five operations to merge, propagate and share
schemas. A schema is associated with each workflow and captures the modifi-
cations on the workflow activities, even when only fragments of the workflow
are reused by another workflow. When a workflow is executed, its schema
is analyzed to find the activities that are not changed (in "lazy" state) from
previous executions. The "lazy" activities are not re-executed.

Freire et al. [54] present the evolving workflow provenance in Vistrails. Vis-
Trails provides visual analyses of workflow results and captures the evolution
of workflow provenance, i.e., the steps of the workflow at each execution, as
well as the intermediate data from each execution [28]. The intermediate data
can be stored in either a relational database or in a file system. Either way, the
storage is centralized and can be shared between users. This approach allows
the user to efficiently re-execute a workflow when she changes or updates
some activities. Yet, the reuse of cached data is only available in centralized
computing environments. Thus, it is not suited for data-intensive workflows
as it does not scale in distributed environments.

2.4. Data Caching for Workflows 37

4

2

3

N Workflow
Activity

C Cache
storage

1

C

Workflow Wf1 executed Workflow Wf2 executed

C

Workflow
WF1

3

4

5

6

21

6

5

FIGURE 2.8: Evolving workflow: execution of two workflows
Wf1 and Wf2, with Wf2 being designed on top of Wf1.

The VisTrails solution for caching intermediate data has been extended to
generate "strong links" between provenance and execution [85] [50]. The inter-
mediate data cache is associated with provenance to enhance reproducibility,
and the intermediate data that has been cached is always reused. Cala et al.
[27] propose a reusable provenance-based approach to optimize workflow
re-executions in the case of evolving versions of the software used. The model
computes a "restart tree" that captures the evolution of the workflow when ex-
ecuted. Then, it uses ReComp [105] a meta-process that enables re-computation
of processes such as workflows. The intermediate data can be stored in a
distributed data store over a single cloud site and the solution is adapted for
data-intensive workflows.

Multiuser Workflow Sharing

During scientific experiments, multiple users may work on the same workflow,
on the same dataset, or both. Some of the workflow fragments or activities
may be common between users. When the workflow is executed, each user
re-execute the activities common with the other. Multiple users can also work
on sub-workflows that have some common activities, or fragments. Moreover,
apart from intermediate data, users can also share workflow information
through the User Service Layer (see Section 2.2.2), including workflow design,
input data, provenance data.

Figure 2.9 shows the architecture of Kepler that enables intermediate data
sharing among users. Users communicate to the SWMS through a Web Portal
(the user interface), then all the workflow information, input, intermediate
and output data is handled by the data management module. All the data is
stored in a centralized database. The intermediate data is made persistent and
accessible by other users, given access rights.

Zhang et al. [172] propose Confucius, a tool for collaborative workflow
management. The framework is based on a service-oriented collaboration
model to enhance single user SWMS environments into collaborative environ-
ments. User information is stored in a centralized database on a server. Then,
users can join in to a peer-to-peer collaboration when executing and managing
workflows. Whenever a user wants to change the workflow, she requests a
token that prevents concurrent changes from multiple users. The user also

38 Chapter 2. State of the Art

User Interface

Data Manager

Task
Management

Workflow
Management

Infrastructure

Cache

Catalog

Prov

User User User
...

Submit execution/
Get result data

FIGURE 2.9: Multi-user SWMS architecture with a Data manage-
ment module that enable intermediate data reuse between users

[32].

takes a token when she executes the workflow. After the workflow changes
or the workflow execution, the user releases the token. Once she releases the
token, each user can access the workflow and the data stored in the shared
database. The solution only provides sharing of small intermediate data,
workflow design, and provenance data, thus is not adapted for data-intensive
workflows re-execution.

Mates et al. [102] propose CrowdLabs, a system that can be added to an
existing SWMS to enable workflow information sharing (workflow design,
provenance data, architecture, input data). It is presented as a "Social Web
Site" where users can share provenance data, workflow architecture, and
intermediate data. It has been implemented and tested on VisTrails. Users
access the system through a web client API hosted on a CrowdLabs server.
Whenever a user submits a workflow execution, the CrowdLabs server checks
for data that can be reused, then, it transfers to a Vistrails server the WEP
that the SWMS executes. The workflow execution generates data, stored in a
remote cache server. The CrowdLabs server also hosts a social data database
which is a catalog of user information and access rights on the cached data.
The cache is stored in a centralized MySQL database hosted in a server, thus
is not adapted for data-intensive workflows.

Galaxy [61] provides an interface for the user to share intermediate data
generated by workflow executions. After a workflow execution, a user can
decide to upload the intermediate data that has been generated. Then, from
the Galaxy interface, users can access a library of datasets, workflows, and
intermediate data. Users have to manually find and select the cached data
they want to reuse. Once a user finds cached data she wants to reuse, she adds
to her workflow a reference to the cached data. Then, when the workflow is
executed, it will fetch the cached data automatically.

2.4. Data Caching for Workflows 39

2.4.3 Scheduling and Caching in SWMSs

To efficiently execute a data-intensive workflow in the cloud, the SWMS
should strive to exploit data locality, provenance data, and resource capacities.
Since the intermediate data generated by a data-intensive workflow is also
data-intensive, cache management is critical to take advantage of caching.
Thus, when using cached data, the SWMS needs to add one more dimension
to the scheduling problem. In this section, we discuss existing solutions to
perform workflow scheduling and workflow data caching in both monosite
and multisite clouds.

Monosite Cloud

In a monosite cloud environment, during a workflow execution the input data
and intermediate data do not require to be transferred among data centers.
Yet, data-intensive workflow executions benefit from data location aware
scheduling [37]. Many scheduling algorithms have been adapted for data-
intensive workflows in monosite cloud execution, including matrix-based
heuristics [170], particle swarm optimizations [121], and optimizations based
on evolutionary approaches [87]. Yet, these approaches do not consider
reusing cached data during workflow execution.

In monosite cloud, the cost of adding a cache for workflow data includes
the storage cost, the writing and reading cost and the latency. Having a cache
storage and caching data adds a cost (both in terms of time and money) to the
workflow execution. Yet, it reduces the execution cost as the intermediate data
reused is not re-executed. But the benefit of caching intermediate data depends
on the number of times the cached data will be reused, which is usually not
easy to predict. Thus, the trade-off between the costs of re-executing tasks
and the costs of caching intermediate data is not easy to estimate [2, 48].

Yuan et al. [169] propose an algorithm based on the ratio between re-
computation cost and storage cost at the task level. The algorithm is based
on a graph of dependencies between the intermediate datasets, generated
from the provenance data. Then, the cost of caching each intermediate dataset
is weighted by the number of dependencies in the graph. The algorithm
computes the optimized set of intermediate datasets that need to have mini-
mum cost. The algorithm is improved in [171] to take into account workflow
fragments. Both algorithms are used before the workflow execution, using
the provenance data of the intermediate datasets. They provide near optimal
caching intermediate datasets selection. Yet, both algorithms do not take data
transfer into account and focus on centralized storage.

Kepler [7] provides intermediate data caching for single-site cloud work-
flow executions. It uses a remote centralized relational database where inter-
mediate data is stored after workflow execution. Two steps are added when
executing a workflow. First, the cache database is checked and all intermediate
cached data is sent to a specific cloud site before execution. To reduce storage
cost, the intermediate data that need to be cached is determined based on how
many times the workflow will be re-executed in a given period of time [32].

40 Chapter 2. State of the Art

Computation nodes

Cache
User

Submit
execution

Front end

Kepler Instance

Prov

Monosite cloudSP

Provision
cache

Storage nodes

FIGURE 2.10: Kepler architecture in monosite cloud with cache
feature [32].

Figure 2.10 shows the architecture of Kepler in the cloud using a cache. A
user submits a workflow execution to the Kepler front-end. Kepler’s Caching/
Reuse Decision manager checks the provenance and generate a scheduling
plan accordingly. Then, before the execution starts, the cached data is trans-
ferred to the cloud site storage. The cache management is static, then, the
scheduling can be dynamic.

Other approaches propose solutions for caching data in MapReduce work-
flows. Zhang et al. [177] use the Memcached distributed memory caching
system to cache the intermediate data between Map and Reduce operations.
This approach focuses on a single MapReduce task, and the cached data is
not persistent and reused across executions. This solution is improved by
Elghandour et al. in [52]. They propose ReStore, a system to manage and
cache intermediate data of MapReduce tasks for future reuse. Whenever a
workflow is executed, the intermediate data of MapReduce tasks are stored
in a distributed file system (in this case the cloud where the MapReduce is
executed). The intermediate data generated is associated with a unique name,
which enables ReStore to identify the input data and Map task that produced
the data. Then, before executing a new workflow, ReStore checks the existing
cached data and adapts the MapReduce workflow to the cached data. As the
cached data is stored at the task level, when executing a MapReduce workflow
on a different set of input data, if some subset of input data has already been
computed, the workflow can reuse it. However, task level caching requires
that for each task, the cache is queried, which can lead to cache latency.

Olston et al. [117] propose a caching strategy on top of the Pig language to
execute workflows in a monosite cloud. The strategy consists of replicating
and storing on a compute node any new input data that is transferred for a
task execution, as well as the intermediate data generated by the execution.
After several executions, some tasks have been executed on different nodes,
thus, generating the same cached data replicas on each of these nodes. Then,
based on an eviction policy, the less useful replicas are removed from the
cache. This approach aims at dynamically balancing the amount of data
cached. Whenever some popular tasks are executed, more compute nodes
will save a replica of the intermediate data. Then, once these tasks are no
longer re-executed, most of the replicas are deleted. The solution however

2.4. Data Caching for Workflows 41

does not consider the workflow scheduling as a part of cache management.
Thus, executing the same data-intensive workflow several times will lead to
either a bottleneck of the execution on the compute node with the cached data,
or huge data transfer times between the nodes.

Multisite Cloud

In a multisite cloud, the latency between the sites is significantly higher than
the latency of transfer inside a cloud site. Thus, to efficiently share workflow
information and intermediate data in a multisite cloud, data location, data
accessibility, and latency become critical.

Zhang et al. [175] propose a static data-oriented scheduling method for
data-intensive workflows in multisite cloud. The input data is distributed
among the sites. It first determines the best location for the intermediate data
that minimizes the data transfers from the initial data location and the data
dependencies. Then, it schedules the tasks on the sites and finds the tasks that
need to be replicated to minimize the volume of intermediate data transferred.
The algorithm does not consider the dependencies between the tasks when
scheduling them, which may result in more data transfer. The algorithm is
adapted for homogeneous multisite clouds.

Ji et al. [95] propose three dynamic multisite greedy scheduling algorithms
for data-intensive workflows. The algorithms are based on a multi-objective
cost function, that consider time costs and financial costs. The three algorithms
are: a data location based scheduling (LocBased), a site greedy scheduling
(SGreedy) and an activity greedy scheduling (AGreedy). LocBased schedules the
activities on the site that minimize the data transfers. It is an efficient algorithm
for workflow that are not compute intensive as the data transfers represents
most of the total cost. SGreedy dynamically schedules the activities on the first
site with available computation resources. This algorithm is most adapted
for compute-intensive workflows, as it minimize the idleness of computing
nodes. Yet, it leads to many inter-site data transfers. AGreedy dynamically
schedules the activities on the site that minimize the cost function. AGreedy
efficiently schedules data- and compute-intensive workflows, as it find a near
optimal scheduling plan. The solution is also very scalable in the number of
activities in the workflow.

In the two multisite scheduling solutions [175][95], the SWMS uses data
locality to efficiently schedule the workflow by scheduling the activities where
the data is. Intermediate data can be reused by several tasks during workflow
execution. Yet, the intermediate data is not cached and the workflow execution
does not benefit from cached data.

Vulimiri et al. [155] propose WANalytics, an Hadoop based system that
manages data-intensive workflows in a multisite cloud. The system is avail-
able to be installed on top of any SWMS. It analyzes workflows before their
execution and minimizes data transfers during execution by taking into ac-
count the workflow workload and the dataset sizes. The solution enables
to automatically cache all intermediate data produced at the site where it is
generated. It also sends a message to all other sites where this data is stored,

42 Chapter 2. State of the Art

Public
Cache

Local
cache

VM

VM

VM

Local
cache

VM

VM

VM

On-host
cache

FIGURE 2.11: Three level cache architecture in multisite cloud
[132].

so each site that already has the data can update its cache metadata. To reduce
inter-site transfers, once some intermediate data is regenerated, the site only
computes a diff between the old and new intermediate data. Then, only the
diffs are transferred between the sites. The solution store cached data repli-
cated among the site for efficient workflow rerun, but it does not consider the
storage costs, that can be huge when dealing with data-intensive workflows.

Qasha et al. [132] propose a framework to execute and share workflows in
a multisite cloud. The framework enables users to automatically deploy and
provision workflows in the cloud. It proposes a three-level cache for tasks.
Figure 2.11 shows the architecture proposed. The first level cache is on-host
within Docker containers. The second level cache is the local cache, shared
within an organization. The third level cache is the public cache, accessible
by everybody. The cache store workflow and task information, but no input,
output, or intermediate data.

2.5 Conclusion

In this chapter, we discussed the current state of the art in scientific workflow
management in the cloud, with a focus on caching and scheduling. First, we
introduced the basic concepts of workflow management, including a func-
tional architecture of SWMSs. Then, we discussed deployment, scheduling,
and execution of workflows in both monosite and multisite cloud. Finally, we
discussed data caching and scheduling of workflows with cached data in the
cloud.

2.5. Conclusion 43

Most SWMSs (such as SciCumulus, Chiron, Pegasus) that manage data-
intensive workflow executions in multisite cloud, focus on workflow schedul-
ing. The solutions include data location aware, multi-objective, dynamic
scheduling approaches. Yet, they do not consider caching and reusing inter-
mediate data during execution.

One SWMS (WANalytics) considers caching and sharing data for a single
user in a distributed environment. The solution schedules workflow tasks in
a way that minimizes inter-site data transfers. However, the data is always
stored where it is generated. Thus, this caching solution does not scale up
with multiple users. The cached data is also associated to a single workflow.

Some SWMSs (OpenAlea, Vistrails, Kepler) manage a cache for inter-
mediate data using a centralized storage. They can execute workflows in
distributed environments, but typically ignore data transfers.

The approaches that focus on multiuser platforms, such as MyExperiment),
enables sharing workflow’s intermediate data and execution between users.
Yet, these solutions are based on users’ interactions when handling cached
intermediate data. The solutions are not adapted for data-intensive workflow
scheduling.

Finally, there are studies on the trade-off between storage and computation
costs for workflows but they do not consider data transfers and data location.
Thus, they are not adapted for multisite cloud.

To the best of our knowledge, none of the works presented in this chapter
address cache and scheduling management for data-intensive workflows in
monosite clouds and multisite clouds in a distributed approach.

45

Chapter 3

Use Case in Plant Phenotyping

Plant phenotyping aims at capturing plant characteristics, such as morpho-
logical, topological and phenological features. Manually capturing the phe-
notype of a plant is time consuming and yields low throughput [158]. High-
throughput phenotyping (HTP) platforms have emerged to speed up pheno-
typing data acquisition in controlled conditions (e.g. in a greenhouse) or in the
field [147]. Such platforms generate terabytes of data that are used in plant
breeding and plant biology to test novel mechanisms [147]. These datasets
need to be curated, analyzed, and visualised to extract knowledge using
data-intensive and computational intensive analyses and simulations. To be
processed in a relatively short time, such computational analyses require very
large distributed computational infrastructures. However, they produce huge
quantities of data that are hard to manage [84]. For this purpose, scientific
workflows provide a convenient solution to execute, share, reproduce such
analyses and simulations.

In this chapter, we present a real use case in plant phenotyping based on
the Phenomenal workflow [13] from OpenAlea 1, a widely used scientific
workflow management system (SWMS) for plant science. This use case is the
basis for our motivations in this thesis and will be used in our experimental
validation. The use case includes data generated by the HTP platform Phe-
noArch in Montpellier, in the context of the French Phenome project 2 with
data- and compute- intensive analyses.

Section 3.1 gives an overview of HTP and presents some challenges. Sec-
tion 3.2 presents the phenotyping modules of OpenAlea, in particular, the
Phenomenal library, a set of components for automatic plant phenotyping
from images. Then, we present the Phenomenal workflow, a workflow created
from the Phenomenal library components. Finally, section 3.3 concludes.

3.1 High-throughput Plant Phenotyping

3.1.1 Context

Plant breeding is one of the oldest agricultural techniques used to increase
crop performance [6]. The phenotype of a plant concerns the macroscopic
features determined by both genetic makeup and external environment. The

1http://openalea.gforge.inria.fr/dokuwiki/doku.php
2https://www.phenome-emphasis.fr/phenome_eng/

http://openalea.gforge.inria.fr/dokuwiki/doku.php
https://www.phenome-emphasis.fr/phenome_eng/

46 Chapter 3. Use Case in Plant Phenotyping

genotype of a plant is the sum of all its genes. The plant breeding process
consists in selecting seed according to their phenotype in order to choose the
most suited plant in a particular environment [6]. At organ and plant scale,
there are many indicators linked to the phenotype, such as the topological
and geometrical description of the plant such as the number of leaves and
tillers, leaf geometry (i.e. shape, dimension and orientation), the number
of organs (leaves, branch), plant height and phenology. Originally, these
indicators were measured manually, which was a very long process [145].
The number of individual plants measured in various conditions was limited.
Plant breeders use phenotype observations at the field scale to select varieties
that are productive or resistant in a given environment. However, the plant
breeding techniques are starting to show some limits: progress in yields of
some species stagnates (e.g. wheat [21], corn [135], or rice [89]).

New approaches, such as genomic selection, try to link the genotype of
a plant to the crop performance. One of the difficulties is to link the sets of
genomic markers to phenotypic responses [71]. The current method consists in
monitoring the phenotype of a plant knowing its genotype. As the phenotype
also depends on the environmental influence, the experiment must include
many plants and have to be performed under the total control of the climatic
conditions.

During the last decade, genotyping data has been collected and analyzed
at faster and faster rates with the improvement of computing platforms. The
research on selective breeding, based on phenotype and genotype analy-
ses, becomes limited by the bottleneck of phenotyping data generation [10].
High-throughput phenotyping (HTP) platforms have emerged to speed up
phenotyping data acquisition. They have allowed the acquisition of quantita-
tive data on thousands of plants in well-controlled environmental conditions.
These platforms produce huge datasets (hundreds of Terabytes a year) of
heterogeneous data (images, environmental conditions, and sensor outputs)
and generate complex elaborated variables with in-silico data analyses. Data
from fields can be added to the one produced by these platforms.

The data generated by HTP platforms is used in various analyses, such
as plant modeling, plant growth prediction, or plant-plant interactions study.
The lifecycle of such analyses is a loop of reuse and redo as they are used for
further analyses on different input data, and parameters [79]. Through time,
as new research questions arise, these analyses are updated with new models,
new implementations, and new data. Some unchanged resulting data of the
oldest analyses can be reused in new ones to reduce execution time, financial
cost or energy consumed.

Phenotyping analyses are both data- and compute-intensive and thus re-
quire to be executed in high-performance computing environments. The user
needs to be able to transparently manage the execution of the analysis on such
infrastructures. A common solution is to use a SWMS to manage and perform
analyses [128]. These analyses are scientific computational experiments used
to decipher genetic and environmental impact on plant growth and function-
ing. Provenance data describes the chain of reasoning used to derive the
results, which provides additional insights when the findings are reproduced

3.1. High-throughput Plant Phenotyping 47

or extended for other experiments [35]. Thus, as a scientific artifact, the re-
producibility of the analysis results is critical. The provenance data eases the
reproducibility of the analyses. Yet, it is often not sufficient to reproduce the
results. Indeed, other elements, such as database updates, distributed envi-
ronments, or different code versioning, make the reproducibility challenging.
As sharing intermediate results is increasing the link between provenance and
execution data, it increases the reproducibility of the experiment [85]. Thus,
tracking, saving, and sharing intermediate data improve existing analyses
and ease the development of new ones.

3.1.2 High-Throughput Phenotyping Platforms

A High-throughput Plant Phenotyping (HTP) platform is a general denomi-
nation for an automated tool that enables the capture of phenotyping data of
a large number of plants. There are platforms to study plants in controlled
conditions (e.g. greenhouse platforms) or in the field, where environmental
conditions are difficult to control (field platforms). Field platforms are usually
mobile vehicles that go across the field and capture data (such as the field plat-
form at ETH, Zurich [83]), but they can also be hard structures that monitor a
part of the field (such as Field Scanalyzer [153] or Heliaphen [62]). The field
based platforms capture data on plants in a more realistic environment than
in greenhouses. However, the environment in greenhouse platforms is more
controlled and monitored.

Greenhouse platforms enable the production of reproducible and precise
phenotypes of early traits data [104]. The greenhouse controlled environment
(soil and air) enables experiments on specific scenarios (such as water deficit,
or nutriments deficit) while capturing precise plant responses. Such experi-
ments enable scientists to study the phenotype responses of selected genotype
plants [123].

HTP projects are federated into national or regional networks all over
the world, including the European Network of Pilot Production Facilities
(EPPN) in Europe, the North American Plant Phenotyping Network (NaPPN)
in North America, the Latin American Plant Phenomics Network (LatPPN)
in South America, and the Australian Plant Phenomics Facility (APPF) in
Australia. These international projects include many different HTP platforms.
As an example, Emphasis 3, a European project of EPPN, federates platforms
and data repositories from dozens of European countries. Figure 3.1 shows
the different platforms across Europe. The platforms are grouped as: field
platforms in green, greenhouses in yellow, and intensive fields in gray (which
are field with hard structure platforms).

All these platforms use different sensors, including lidar, sonar, camera,
and chemical sensor. They generate huge datasets of a range of very different
data types. The data generated also covers different scales: temporal and
spatial. The data cover many temporal scales with hourly interactions, such as
water interaction on a plant, to seasonal interactions, such as field evolution.
The data also cover different temporal scales, from milliseconds with cell

3https://emphasis.plant-phenotyping.eu/

https://emphasis.plant-phenotyping.eu/

48 Chapter 3. Use Case in Plant Phenotyping

FIGURE 3.1: Map of Emphasis project platforms across Europe.

interactions to hours or months with global field interactions. The diversity of
the data produced adds information on the phenotyping but also difficulties
in the analyses.

The generation of data by the HTP platforms is expensive and time-
consuming. Indeed, it is limited by the plant growth, platform capacities,
and is dependent on many external parameters. Thus, the datasets are very
valuable and many teams (users) work on the same datasets, that serve as
baselines.

3.1.3 Infrastructures

Phenotyping projects include data centers and computational infrastructures.
The data generated by a platform is stored in a geographically close data
center to minimize data transfer time, which can be huge in HTP. For instance,
the seven facilities of the French Phenome project 4 produce each year 200
Terabytes of data. The raw data includes various data types (images, envi-
ronmental conditions, and sensor outputs). The raw data is multiscale (at
the plant level, molecular level, or field level) and comes from different data
centers.

Figure 3.3 shows the PhenoArch platform in Montpellier 5. The plants
are grown in pots and the platform capacity is 1600 plants at same the time.

4https://www.phenome-emphasis.fr/phenome_eng/
5https://www6.montpellier.inrae.fr/lepse/M3P/Plateformes/PHENOARCH

https://www.phenome-emphasis.fr/phenome_eng/
https://www6.montpellier.inrae.fr/lepse/M3P/Plateformes/PHENOARCH

3.1. High-throughput Plant Phenotyping 49

~ 40 timestamps per plant

Day 1 Day 40

13 images per day

FIGURE 3.2: Time series of images for one plant, generated
during one HTP experiment.

The pots are conveyed in a small room, where they are pictured. Each pot
is photographed 13 times per day. Moreover, the pot is weighted and the
amount of water given is captured. Figure 3.2 shows the raw data for one
plant generated by the platform during one HTP experiment. The platform
generates data during experiments that last for two to three months, where
plants are grown from the seed to a given state of growth. There can be one
or two experiments per year. During one experiment, each plant is pictured
every day from 13 angles. For one plant, the data is a time series of sets of 13
images for each day of the experiment. The total size of the raw image dataset
for one experiment is 11 Terabytes, which represents about 80000 time series
of plants and about 1040000 images.

The data generated is stored in data centers and usually follow ontol-
ogy standards (such as the Breeding Application Programming Interface
(BrAPI) [142] for genomics/ phenotypes, or the Minimum Information About
a Plant Phenotyping Experiment (MIAPPE) for phenotyping experiments
[122]). Some ontologies are both multiscale and multisource, such as in the
Phenotyping Hybrid Information System (PHIS) [108] that enriches datasets
with knowledge and metadata from integrating and managing data from mul-
tiple experiments and platforms. Thus, integrating phenotyping data from
different sources (platforms, and teams) is difficult because the data is geodis-
tributed over several data centers. Analyzing such massive, geodistributed
datasets is an open, yet important, problem for biologists [147].

A classical execution environment is data centers with raw HTP data and a
private computing platform (such as a department cluster or a private cloud).
Usually, the data generated by the PhenoArch platform is computed in a
cluster hosted by the research team that manages the platform. Scientists rely
on frameworks to schedule and execute their experiments, when they use
workflows the SWMS handles it. In the case of the PhenoArch data, OpenAlea

50 Chapter 3. Use Case in Plant Phenotyping

FIGURE 3.3: PhenoArch platform.

is the most common SWMS with InfraPhenogrid, its distributed execution
engine [128]. However, the local cluster has limited computing resources
and some experiments require to be computed on other environments. The
phenomenal projects usually enable access to computational infrastructures
from associated projects, such as Grid’5000 6 or IFB-cloud 7.

Data captured by the HTP platforms evolves, as the sensors and platforms
do. The data gain in precision, quantity, and metadata. The analyses also
evolve with models and implementations. Yet, both of these evolutions can
be independent [138]. Usually, the improvement of a model is tested on a
sub-dataset, and datasets are updated as the plant experiments are performed.
To be kept up to date, the model evolutions must be executed on new datasets.
But the acquisition of new datasets does not imply that all data has changed
and most of the previous data can remain up to date. However, determining
what new model should be executed on which new data is not obvious.
Provenance on the executions can link the model improvements and data
improvements. Data ontology and annotations can be a solution to improve
provenance data as they add information to the metadata.

3.2 Automatic Phenotyping in OpenAlea

Retrieving phenotyping data of a plant from raw HTP data is not a trivial
problem. In the case of images, some computation is required to determine
useful phenotype features. The Phenomenal library [12] 8 proposes an au-
tomatic phenotyping workflow that reconstructs 3D plant architecture from

6https://www.grid5000.fr/w/Grid5000:Home
7https://www.france-bioinformatique.fr/cloud-ifb/
8https://github.com/openalea/phenomenal

https://www.grid5000.fr/w/Grid5000:Home
https://www.france-bioinformatique.fr/cloud-ifb/
https://github.com/openalea/phenomenal

3.2. Automatic Phenotyping in OpenAlea 51

multi-view images. The library is developed for OpenAlea. Several pheno-
type features can be extracted using this workflow from raw images such as
plant height, number of leaves, and their shapes.

In this section, we present the OpenAlea SWMS. Then, we present in detail
the Phenomenal library, the analyses it enables, and the intermediate data
it generates. Finally, we present some workflows that use some activities or
fragments proposed by the Phenomenal library, highlighting the opportunities
for data sharing.

3.2.1 OpenAlea

OpenAlea has been in constant use since 2004 by users of the plant science
community both in France and in other countries. The system has been
downloaded 820 000 times and the web site has about 10 000 unique visitors a
month according to the OpenAlea web repository 9.

The OpenAlea tools (e.g., models, workflows, components) are published
and shared on the web both through the OpenAlea web repository and
through the web sites of groups that use and contribute to OpenAlea with-
out being formal partners of the OpenAlea project. As a result, more than
60 researchers have contributed to OpenAlea packages, in France and inter-
nationally, published through large meta-packages (e.g., Alinea to simulate
ecophysiological and agronomical processes and VPlants to analyze, model
and simulate plant architecture and its development) to ease the installation
for end-users. End-users can also create new tools or packages by implement-
ing them in Python, and then share them with the OpenAlea community. It is
also possible to wrap existing functions into an OpenAlea activity.

End-user access the OpenAlea libraries and workbench through visual
programming. They manage the workflow activities and dependencies by
drag and drop. They can specify execution parameters for each activity
through this interface, before starting execution. The user also selects an
OpenAlea Evaluator (a model of computation), which is used by the execution
engine to interpret the workflow [130].

Once the workflow is ready to be executed, the user selects the activity
whose output data she requests. Depending on the Evaluator, the workflow is
traversed and a specific scheduling plan is generated. Once the scheduling
plan is executed, i.e. the requested data is generated, the user is notified.
OpenAlea also enables the user to label activity as blocked or lazy to optimize
workflow executions. If an activity is blocked, the execution is not propagated
to the upstream sub-workflow. If the activity is lazy, the execution is per-
formed only if the activity’s inputs have not changed compared to its previous
execution.

3.2.2 Phenomenal Library

The Phenomenal library [12] has been developed in OpenAlea to analyze and
reconstruct the geometry and topology of thousands of plants through time

9https://gforge.inria.fr

https://gforge.inria.fr

52 Chapter 3. Use Case in Plant Phenotyping

4

5

1

2

6 7

3

8

9

1. Original workflow
in fragments

2. Workflow activities 3. Intermediate datasets
processed by activities

2

3

4

5

6 7

8

1 F1

F2

F4

F3

D1

D2D3

D4 D5

D6

D0

9

FIGURE 3.4: Phenomenal workflow and its generated interme-
diate data.

in various conditions. The Phenomenal library provides 1) a completely auto-
matic analysis including data import, reconstruction of 3D plant architecture
for a range of species and quantitative measurements on the reconstructed
plants; 2) an open source library for the development and comparison of
new algorithms to perform 3D shoot reconstruction; and 3) an integration
framework to couple workflow outputs with existing models towards model-
assisted phenotyping. The library is continuously evolving with the addition
of new state-of-the-art methods, thus yielding new biological insights.

The Phenomenal workflow is constructed from the components of the
Phenomenal library [12], shown in Figure 3.4. It automatically reconstructs
3D model and organ segmentation from plant images. The workflow (Fig-
ure 3.4.1) is composed of four different fragments that implement various
algorithms: binarization (circled in green), 3D volume reconstruction (blue),
image calibration (red), and organ segmentation (purple). Figure 3.4.2 gives
an abstract representation of the workflow, in terms of activities where the
activities from the same fragment have the same color. The intermediate
datasets, processed by the workflow activities during execution, are shown
in Figure 3.4.3. Dataset D0 is the dataset of raw data that serves as input
for the first fragment. Dataset D1 is generated by activity 2 and is the input
of fragment 2 as it is processed by activity 4. The datasets are grouped by
fragments.

During its execution, the workflow generates heterogeneous intermediate
data such as raw RGB (Red, Green, Blue) images, 3D plant volumes, tree
skeleton, and segmented 3D mesh. Figure 3.5 shows the intermediate data
generated by various activities applied on the raw images from a maize:

• The Binarize activity separates plant pixels from the background in each
image. It produces a binary image from an RGB image. The binary
images are compressed by several hundreds fold compared with raw
images, thus analyses usually start from the binaries as they are easier to
manage. This activity is often reused as most plant analyses start from
it. The binarize activity generates the data D1 in Figure 3.4.

3.2. Automatic Phenotyping in OpenAlea 53

Binarization
3D
reconstruction Skeleton

Stem
detection

Organ
segmentation

FIGURE 3.5: Intermediate data generated by each fragment of
the Phenomenal workflow on one genotype through time.

FIGURE 3.6: 3D reconstruction of (A) Cotton (Gossypium); (B)
Apple tree (Malus pumila); (C) Sorghum (Sorghum bicolor).

• The 3D reconstruction activity produces a 3D volume based on 12 side
and 1 top binary images. It generates D2.

• The Skeletonization activity computes a skeleton inside the reconstructed
3D volume. It generates D4.

• The Stem detection activity computes a main path in the skeleton to
identify the main stem of cereal plants (e.g., maize, wheat, sorghum). It
generates D5.

• The Organ segmentation segments the different organs on the skeleton
after removal of the main stem. It generates D6.

The workflow has been designed to phenotype maize but also other plants
grown in different conditions. Figure 3.6 shows the intermediate data pro-
duced by the workflow on (A) Cotton (Gossypium); (B) Apple tree (Malus
domestica); (C) Sorghum (Sorghum bicolor). The workflow is used either on
different genotypes of the same plant and on different plants. Thus, it in-
creases the number of users that executes the workflow on different datasets,
generating intermediate data that could be useful for other users.

Figure 3.7 shows the execution time and intermediate data size of the
activities of the Phenomenal workflow when executed on one HTP experiment
dataset. The intermediate data generated by the execution of the workflow on
one raw dataset represents almost 10 terabytes of data. The total execution
time (on one CPU) is around 1500 hours.

54 Chapter 3. Use Case in Plant Phenotyping

Binarize

3D
reconstruction

Skeletonize

28 GB

31 GB

500 GB

20 h

450 h

280 h

Get side
image

Segment
reduction

Maize
segmentation

3 TB

2 h

350 GB

160 h

28 GB

Activity

Execution time

Data size

Legend

130 h

11 TB

Get raw
image

Get image
views

Graph from
voxel

Maize
analysis

3 TB

3 h

400 h

80 h

400 GB

2 TB

400 GB

FIGURE 3.7: Order of magnitude of intermediate data size and
execution time of each activity of the Phenomenal workflow

executed on one HTP experiment dataset.

3.3. Conclusion 55

3.2.3 Applications with Common Data

It is common for biological analyses to use the same raw datasets, as they are
costly and slow to produce. Moreover, some plant genotypes and species (such
as maize, sorghum) serve as a baseline for analyses, which leads to a wide
usage of datasets on such plants. At least, scientists want to compare their
results on previous datasets and extend the existing workflows with their own
developed activities or fragments. In the case of the Phenomenal workflow,
several datasets of intermediate data can be useful in other applications,
mostly the binarization and the 3D reconstruction. Several published analyses
share common intermediate datasets with the Phenomenal workflow [26, 20,
128, 88, 31].

Figure 3.8 shows the Phenomenal workflow with three variants used for
different analyses that have been published in [26, 31, 20], with the intermedi-
ate data generated by the workflow fragments. The workflows share common
fragments and use the same intermediate data, namely binarization and 3D
reconstruction. Then, each of them uses the intermediate data for a different
purpose, and the workflows generate data of different scales. Indeed, W f 1
and W f 4 can be applied at a single plant level, while W f 3 and WF4 model
thousands of plants at the field level. The three applications are: W f 2, a light
competition workflow [26]; W f 3, a light interception and radiation workflow
[31]; and W f 4, a maize ear detection workflow [20].

These workflows are executed with the same datasets, which are raw HTP
images generated by the PhenoArch platform. They share some intermediate
data, which has been re-generated for each of these analyses. Based on the
execution times presented in 3.7, executing the fragments F1 three times and
F2 once, 512 hours of computations could have been saved by reusing cached
data.

3.3 Conclusion

In this chapter, we presented a real use case in HTP based on the Phenome-
nal workflow from the OpenAlea scientific workflow management system
(SWMS) We first introduced HTP and gave an overview of HTP applications
with data-intensive and computational intensive analyses. Then, we pre-
sented the Phenomenal workflow, a phenotyping workflow that enables the
automatic reconstruction of 3D plant architecture for a range of species and
quantitative measurements on the reconstructed plants. Finally, we presented
the intermediate data generated by the Phenomenal workflow and how they
can be reused in other published analyses.

In this thesis, we use the OpenAlea SWMS, is widely used in the plant
analysis community, to implement and validate all approaches to intermediate
data caching and workflow scheduling. The Phenomenal workflow, which
is both data- and compute- intensive, is representative of many workflows
used for plant analyses as it is composed of various activities that: compress
the data, expand the data and require lots of memory and CPU. Thus, we
use it as a basis for our experimental validations. The experiments are run

56 Chapter 3. Use Case in Plant Phenotyping

1. Phenomenal workflow (Wf1) 2. Light competition workflow (Wf2)

a. Workflow represen-
tation colored by
fragments

b. Datasets generated
by the fragments

a. Workflow represen-
tation colored by
fragments

b. Datasets generated
by the fragments

F1

F2

F4

F1

F2

F7

F3

D1

D2
D3

D6

D1

D2

D7

3. Light interception and
radiation workflow (Wf3) 4. Maize ear detection (Wf4)

a. Workflow represen-
tation colored by
fragments

b. Datasets generated
by the fragments

a. Workflow represen-
tation colored by
fragments

b. Datasets generated
by the fragments

F1 F1

F9

D1

D2

D8

D1

D9
F2

F8

FIGURE 3.8: Four different workflows that use components of
the Phenomenal library. 1) the Phenomenal workflow [12]; 2)
a light competition workflow [26]; 3) a light interception and
radiation workflow [31]; and 4) a maize ear detection workflow

[20]

3.3. Conclusion 57

with one input dataset from the PhenoArch platform. For the experiments, we
use an environment configuration similar to the one used by the PhenoArch
scientists, i.e. a cloud with one site with huge data storage, where the raw
data is stored, and one (in Chapter 4) or several (in Chapter 5) other sites for
workflow execution.

There are many opportunities for data reuse in the HTP domain for several
reasons:

1. The number of raw datasets is limited and unique (it depends on plant
growth).

2. To compare their analyses, scientists work on the same species and
genotypes for baseline comparison.

3. Once some efficient algorithms are implemented, many scientists use
them for their analyses.

Yet, they bring several challenges:

1. There is no standard to index and classify intermediate data, which
makes the intermediate data difficult to retrieve within the huge amount
of data produced and shared.

2. There is no infrastructure to automatically share the intermediate data
produced, which requires the user to manually find and select the data
she wants to reuse.

3. There are no scheduling techniques adapted to deal with cached data in
a multisite environment.

59

Chapter 4

Adaptive Caching for Scientific
workflows in Monosite Cloud

A Cloud provides diverse storing and computing resources and is well
adapted for workflow execution. However, workflow executions are both
time and resource consuming. These costs adds up when multiple users
execute the workflow on the cloud. In this chapter we propose an cache archi-
tecture and an adaptive scheduling algorithm to enable the workflow to reuse
intermediate data during its execution. This solution automatically share
the most suited intermediate data between users’ executions. The algorithm
is based on a cost model to find a good trade-off between storage cost and
computation cost. This chapter is based on [74]

In this chapter, we propose an adaptive algorithm to select the intermediate
data generated that should be stored. Section 4.1 presents an overview and
the motivations. Section 4.2 presents related works. Section 4.3 describes our
proposed system architecture for executing workflows with cache on monosite
cloud. Section 4.4 describes our cost model used to minimize monetary costs.
Section 4.5 describes the adaptive cache management. Section 4.6 presents our
experimental evaluation based on the execution of the Phenomenal workflow
on the IFB-cloud. The results reveal that our algorithm significantly reduce
monetary costs with regards to two baselines. Section 4.7 concludes.

4.1 Introduction

In many scientific domains, e.g., health [75] or, bio-science [81], complex
experiments typically require many processing or analysis steps over huge
quantities of data. They can be represented as scientific workflows, which
facilitate the modeling, management and execution of computational activities
linked by data dependencies. As the size of the data processed and the
complexity of the computation keep increasing, these workflows become data-
intensive [81], thus requiring execution in a high-performance distributed and
parallel environment, e.g., a large-scale virtual cluster in the cloud [80].

Most Scientific Workflow Management Systems (SWMSs) can now execute
workflows in the cloud [113]. Some examples are Swift/T, Pegasus, SciCumu-
lus, Kepler and OpenAlea [93]. Our work is based on OpenAlea [130], which
is being widely used in plant science for simulation and analysis [129].

60 Chapter 4. Adaptive Caching for Workflows in Monosite Cloud

It is common for workflow users to reuse other workflows or data gen-
erated by other workflows. Reusing and re-purposing workflows allows
for the user to develop new analyses faster [58]. Furthermore, a user may
need to execute a workflow many times with different sets of parameters
and input data to analyze the impact of some experimental step, represented
as a workflow fragment, i.e., a subset of the workflow activities and depen-
dencies. In both cases, some fragments of the workflow may be executed
many times, which can be highly resource consuming and unnecessarily long.
Workflow re-execution can be avoided by storing the intermediate results of
these workflow fragments and reusing them in later executions.

In OpenAlea, this is provided by a cache in memory, i.e. the intermediate
data is simply kept in memory after the execution of a workflow. This allows
for the user to visualize and analyze all the activities of a workflow without
any re-computation, even with some parameter changes. Although cache in
memory represents a step forward, it has some limitations, e.g., it does not
scale in distributed environments and requires much memory if the workflow
is data-intensive.

From a single user perspective, the reuse of the previous results can be
done by storing the relevant outputs of intermediate activities (intermediate
data) within the workflow. This requires the user to manually manage the
caching of the results that she wants to reuse. This can be difficult as the
user needs to be aware of the data size, execution time of each task, i.e., the
instantiation of an activity during the execution of a workflow, or other factors
that could allow deciding which data is best to be cached.

A complementary, promising approach is to reuse intermediate data pro-
duced by multiple executions of the same or different workflows. Some
SWMSs support the reuse of intermediate data, yet with some limitations.
VisTrails [28] automatically makes the intermediate data persistent with the
workflow definition. Using a plugin [173], VisTrails allows workflow execu-
tion in HPC environments, but does not benefit from reusing intermediate
data. Kepler [7] manages a persistent cache of intermediate data in the cloud,
but does not take data transfers from remote servers into account. There is
also a trade-off between the cost of re-executing tasks versus storing interme-
diate data that is not trivial [2, 48]. Yuan et al. [169] propose an algorithm
to determine what data generated by the workflow should be cached, based
on the ratio between re-computation cost and storage cost at the task level.
The algorithm is improved in [171] to take into account workflow fragments.
Both algorithms are used before the execution of the workflow, using the
provenance data of the intermediate datasets, i.e., the metadata that traces
their origin. However, these two algorithms are static and cannot deal with
variations in tasks’ execution times. In both cases, such variations can be very
important depending on the input data, e.g., data compression tasks can be
short or long depending on the data itself, regardless of size. For instance, an
image of a given resolution can contain more or less information.

In this chapter, we propose an adaptive caching solution for efficient exe-
cution of data-intensive workflows in the cloud. By adapting to the variations
in tasks’ execution times, our solution can maximize the reuse of intermediate

4.2. Related works 61

data produced by workflows from multiple users. Our solution is based on
a new SWMS architecture that automatically manages the storage and reuse
of intermediate data. Cache management is involved during two main steps:
workflow preprocessing, to remove all fragments of the workflow that do
not need to be executed; and cache provisioning, to decide at runtime which
intermediate data should be cached. We propose an adaptive cache provi-
sioning algorithm that deals with the variations in task execution times and
output data. We evaluated our solution by implementing it in OpenAlea and
performing extensive experiments on real data with a complex data-intensive
application in plant phenotyping.

4.2 Related works

Storing and reusing intermediate data in workflow executions can be found
in several SWMSs [28, 130]. However, there is no definitive solution for
two important problems: 1) how to automatically reuse workflow fragments
in multiple workflow’s executions. 2) what intermediate data to cache if
there is not provenance data available. The related works either focus on an
optimized solution for selecting a specific portion of data to cache when all
provenance and reuse information are known, or automatic caching for the
same workflow.

Different SWMSs, such as Kepler, VisTrails, OpenAlea, exploit interme-
diate data for workflow re-execution. Each of these systems has its unique
way of addressing data reuse. OpenAlea [130] uses a cache that captures
the intermediate results in main memory. When a workflow is executed, it
first accesses the cached data. However, the OpenAlea cache is local and
main memory-based, while the approach proposed in this work is distributed
and persistent. VisTrails provides visual analysis of workflow results and
captures the evolution of workflow provenance, i.e., the steps of the workflow
at each execution, as well as the intermediate data from each execution [28].
The intermediate data are then reused when previous tasks are re-executed.
This approach allows the user to change parameters or activities in the work-
flow and efficiently re-execute each workflow activity to analyze the different
results. This solution for caching intermediate data has been extended to
generate "strong links" between provenance and execution [85] [50]. The inter-
mediate data cache is associated with provenance to enhance reproducibility,
and the intermediate data that has been cached is always reused. However,
VisTrails does not take distribution into account when storing and using the
cache, and the selection of the data to be stored becomes manual as the size
of the intermediate data increases. Our approach is different as it works in a
distributed environment where data transfer costs may be significant.

Storing intermediate data in the cloud may be also beneficial. However,
the trade-off between the cost of re-executing tasks and the costs of storing
intermediate data is not easy to estimate [2, 48]. Yuan et al. [169] propose an
algorithm based on the ratio between re-computation cost and storage cost at
the task level. The algorithm is based on a graph of dependencies between the
intermediate data sets, generated from the provenance data. Then, the cost of

62 Chapter 4. Adaptive Caching for Workflows in Monosite Cloud

storing each intermediate data set is weighted by the number of dependencies
in the graph. The algorithm computes the optimized set of intermediate data
sets that need to have minimum cost. The algorithm is improved in [171] to
take into account workflow fragments. Both algorithms are used before the
workflow execution, using the provenance data of the intermediate datasets.
They provide near optimal caching intermediate datasets selection. However,
this approach requires global knowledge of executions, such as the execution
time of each task, the size of each data set and the number of incoming re-
executions. This optimization is also based on a single workflow and is not
adapted to changing workflows. Our approach is different as it provides
efficient caching of intermediate data in evolving workflows.

Kepler [7] provides intermediate data caching for single-site cloud work-
flow execution. It uses a remote relational database where intermediate data
is stored after workflow execution. Two steps are added when executing a
workflow. First, the cache database is checked and all intermediate cached
data is sent to a specific cloud site before execution. To reduce storage cost,
the intermediate data that need to be cached are determined based on how
many times the workflow will be re-executed in a given period of time [32].
Finally, reuse is done at the entire workflow level, whereas our solution is
finer grain, working at the activity level.

Other approaches propose solutions for caching data in MapReduce work-
flows. Zhang et al. [177] use the Memcached distributed memory caching
system to cache the intermediate data between Map and Reduce operations.
This approach focuses on a single MapReduce job, and the cached data is not
persistent and reused across executions. Elghandour et al. [52] propose a
system to manage and cache intermediate data of MapReduce jobs for future
reuse. Olston et al. [117] propose two caching strategies on top of the Pig
language and propose different methods to manage persistent intermediate
data. The problem of this approach is that it is static, i.e., they do not con-
sider automatic caching. Gottin et al. [64] propose an algorithm that finds
an optimized cache decision plan for a dataflow execution in Apache Spark.
The approach is based on a cost model that uses provenance data, and tries
the possible combinations of caching selection in order to select the best one.
This approach does not scale with the size of the workflow, and the caching
decision still falls in the hands of the user.

4.3 Monosite Cloud SWMS Architecture

In this section, we present the proposed SWMS architecture that integrates
caching and reuse of intermediate data in the cloud. We motivate our design
decisions and describe our architecture in two ways: i) in terms of functional
layers (see Figure 4.1), which shows the different functions and components;
and ii) in terms of nodes and components (see Figure 4.2), which are involved
in the processing of workflows.

Our architecture capitalizes on the latest advances in distributed and
parallel computing to offer performance and scalability [120]. We consider a
distributed architecture with on premise servers, where raw data is produced

4.3. Monosite Cloud SWMS Architecture 63

SWf manager (activity execution)SWf manager (activity execution)

Catalog
ProvDB

Cache index

Catalog
ProvDB

Cache index

SWf data manager (files, data transfer, …)SWf data manager (files, data transfer, …)

Scheduler

Cache Manager

Task Manager

Scheduler

Cache Manager

Task Manager

FIGURE 4.1: SWMS Functional Architecture

(e.g., by a phenotyping experimental platform in our use case), and a cloud
site, where the workflow is executed. The cloud site (data center) is a shared-
nothing cluster, i.e., a cluster of server machines, each with processor, memory
and disk. We adopt shared-nothing as it is the most scalable and cost-effective
architecture for big data analysis.

In the cloud, metadata management has a critical impact on the efficiency
of workflow scheduling as it provides a global view of data location, e.g.,
at which nodes some raw data is stored, and enables task tracking during
execution [94]. We organize the metadata in three repositories: catalog, prove-
nance database and cache index. The catalog contains all information about
users (access rights, etc.), raw data location and workflows (code libraries,
application code). The provenance database captures all information about
workflow execution. The cache index contains information about tasks and
cache data produced, as well as the location of files that store the cache data.
Thus, the cache index itself is small (only file references) and the cached data
can be managed using the underlying file system. A good solution for imple-
menting these metadata repositories is a key-value store, such as Cassandra
(https://cassandra.apache.org), which provides efficient key-based access,
scalability and fault-tolerance through replication in a shared-nothing cluster
[1].

The raw data (files) are initially produced at some servers, e.g., in our use
case, at the phenotyping platform and get transferred to the cloud site. The
server associated with the phenotyping platform is using iRODS [134] to grant
access to the data generated. The intermediate data is placed on the node that
execute the task, and is produced and processed through memory. It is only
written on disk if it is added to the cache. The cache data (files) are produced
at the cloud site after workflow execution. A good solution to store these files
in a cluster is a distributed file system like Lustre (http://lustre.org) which
is used a lot in HPC as it scales to high numbers of files.

https://cassandra.apache.org
http://lustre.org

64 Chapter 4. Adaptive Caching for Workflows in Monosite Cloud

Figure 3. SWfMS Technical Architecture

Cloud site

CatCat Prov
DB

Prov
DB

Cache
index

Cache
index

Master Node
(SWf mgr, schedulers)

Standby
Master Node

ServerServer

Data Node
(SWf data mgr)

Compute Node
(SWf task mgr)

DataData
Data Node

(SWf data mgr)

Compute Node
(SWf task mgr)

DataData

Raw
data

Raw
data

ServerServer Raw
data

Raw
data

FIGURE 4.2: SWMS Technical Architecture

Figure 4.1 extends the SWMS architecture proposed in [93], which distin-
guishes various layers, to support intermediate data caching. The workflow
manager is the component that the user clients interact with to develop, share
and execute workflows, using the metadata (catalog, provenance database
and cache index). It determines the workflow activities that need to be exe-
cuted, and generates the associated tasks for the scheduler. It also uses the
cache index for workflow preprocessing to identify the intermediate data to
reuse and the tasks that need not be re-executed.

The scheduler exploits the catalog and provenance database to decide
which tasks should be scheduled to cloud sites. The task manager controls
task execution and uses the cache manager to decide whether the task’s
output data should be placed in the cache. The cache manager implements the
adaptive cache provisioning algorithm described in Section 4.5. The workflow
data manager deals with data storage, using a distributed file system.

Figure 4.2 shows how these components are involved in workflow pro-
cessing, using the traditional master-worker model. There are three kinds
of nodes, master, compute and data nodes, which are all mapped to clus-
ter nodes at configuration time, e.g., using a cluster manager like Yarn (
http://hadoop.apache.org). The master node includes the workflow man-
ager, scheduler and cache manager, and deals with the metadata. The worker
nodes are either compute or data nodes. The master node is lightly loaded as
most of the work of serving clients is done by the compute and data nodes
(or worker nodes), that perform task management and execution, and data
management, respectively. Therefore, the master node is not a bottleneck.
However, to avoid any single point of failure, there is a standby master node
that can perform failover upon the master node’s failure and provide high
availability.

Let us now illustrate briefly how workflow processing works. User clients
connect to the cloud site’s master node. Workflow execution is controlled
by the master node, which identifies, using the workflow manager, which
activities in the fragment can take advantage of cached data, thus avoiding
task reexecution. The scheduler schedules the corresponding tasks that need

http://hadoop.apache.org

4.4. Cost Model 65

to be processed on compute nodes which in turn rely on data nodes for data
access. It also adds the transfers of raw data from remote servers that are
needed for executing the workflow. For each task, the task manager decides
whether the task’s output data should be placed in the cache taking into
account storage costs, data size, network costs. When a task terminates, the
compute node sends to its master the task’s execution information to be added
in the provenance database. Then, the master node updates the provenance
database and may trigger subsequent tasks.

4.4 Cost Model

In this section, we present our cost model. We start by introducing some terms
and concepts. A workflow W(A, D) is the abstract representation of a directed
acyclic graph (DAG) of computational activities A and their data dependen-
cies D. There is a dependency between two activities if one consumes the data
produced by the other. An activity is a description of a piece of work and can
be a computational script (computational activity), some data (data activity)
or some set-oriented algebraic operator like map or filter [110]. The parents
of an activity are all activities directly connected to its inputs. A task t is the
instantiation of an activity during execution with specific associated input
data. The input In(t) of t is the data needed for the task to be computed, and
the output Out(t) is the data produced by the execution of t. Whenever nec-
essary, for clarity, we alternatively use the term intermediate data instead of
output data. Execution data corresponds to the input and output data related
to a task t. For the same activity, if two tasks ti and tj have equal inputs, then
they produce the same output data, i.e., In(ti) = In(tj)⇒ Out(ti) = Out(tj). A
workflow’s input data is the raw data generated by an experimental platform,
e.g., a phenotyping platform.

Our approach focuses on the trade-off between execution time and cache
size. In order to compare the execution time and cache size, we use a monetary
cost approach, which we will also use in the experimental evaluation in Section
4.6. All the costs are compared at the task level and are expressed in USD. For
a task t, the total cost of n executions according to the caching decision can be
defined by:

Cost(t, n) = ωt ∗ TimeCost(t, n) + ωc ∗ CacheCost(t, n) (4.1)

where TimeCost(t, n) is the cost associated with the execution time and CacheCost
(t,n) is the cost associated with caching. They represent the amount of USD
spent in order to obtain the output of a task, n times. ωt and ωc represent the
weights of the two cost components, which are positive.

The execution time cost of a task depends on whether or not the output
data of the task is added to the cache. If the output of t is not added to the
cache, the execution time cost Costnocache(t, n) is the sum of the costs associated
with getting In(t) and executing t, n times. Otherwise, i.e., Out(t) is added to
the cache, the execution time cost Costcache(t, n) is composed of the cost of the
first execution of t, the cost to provision the cache with Out(t) and the cost of

66 Chapter 4. Adaptive Caching for Workflows in Monosite Cloud

retrieving Out(t), n-1 times. TimeCost(t, n) can be defined by:

TimeCost(t, n) =

{
Costnocache(t, n), if Out(t) not in cache.
Costcache(t, n), otherwise.

(4.2)

During workflow execution, the execution time of each task t, denoted
by Timeexec(t), is stored in the provenance database. If t has already been
executed, Timeexec(t) is already known and can be retrieved from the prove-
nance database. When t is re-executed, its execution time is recomputed and
Timeexec(t) is updated as the average of all execution times. The access times to
read and write in the cache are Timeread and Timewrite. Here it will be applied
to input In(t) and output Out(t) data. This time mostly dependent on the data
size. Costnocache(t, n) and Costcache(t, n) are then given by:

Costnocache(t, n) = Costcpu ∗ n ∗ [Timeread(In(t)) + Timeexec(t)] (4.3)

Costcache(t, n) = Costnocache(t, 1)
+Costcpu ∗ (n− 1) ∗ Timeread(Out(t))

(4.4)

where Costcpu represents the average monetary cost to use virtual CPUs in
one determined time interval.

The cost associated with the size of the cache can be defined by:

CacheCost(t, n) = Costdisk ∗ size(Out(t)) (4.5)

where Costdisk represents the monetary cost of storing data in one specific
time interval, determined by the user, and size(Out(t)) is the real size of the
output data generated by t execution.

The caching decision depends on the trade-off between the execution time
cost and the storage cost. For some tasks, the output data is either much
bigger in size or much complex than their input data, in this case, it is more
time consuming to retrieve data from the cache than re-executing the task (see
Equation 4.6). This is the case for most of the tasks on plant graph generation
in our workflow’s use case. In this case, no matter what is the storage cost,
it is less costly to simply re-execute t. The output data generated is then not
added to the cache.

Timeread(In(t)) + Timeexec(t) ≤ Timeread(Out(t)) (4.6)

In other cases, i.e., when it is time saving to retrieve the output data of a
task t instead of re-executing t, the execution time cost and caching cost are
compared. The output data of the task t is worth putting in the cache if for n
executions of t, the cost of adding the data into the cache is smaller than the
cost of an execution without cache, i.e.:

Costcache(t, n) + CacheCost(t, n) ≤ Costnocache(t, n) (4.7)

4.5. Cache Management 67

t4
t1

t2

t7t5

Fragment 1
Fragment 2 Fragment 3

t3

t4
t1

t2

t7

t6

t5

Input data

3D reconstruction

Plant skeleton

FIGURE 4.3: DAG of tasks before preprocessing (left) and the
selected fragments that need to be executed (right).

From Equations ((4.3)), (4.4), (4.5) and (4.7), we can now get the minimal
number of times denoted by nmin(t), which the task t needs to be executed
that it is cost effective to add its output into the cache. nmin(t) is given by:

nmin(t) = 1 +
Timewrite(Out(t)) +

Costdisk ∗ size(Out(t))
Costcpu

Timeread(In(t)) + Timeexec(t)− Timeread(Out(t))
(4.8)

We introduce p(t), the probability that t be re-executed. There is then a
limit value pmin(t) that represents the minimum value of p(t) from which the
output of t is worth to add in the cache. Based on Equation (4.8), pmin(t) can
be defined as:

pmin(t) = nmin(t)− 1 (4.9)

The value pmin(t) is a ratio between the cost of adding the output data of
the task t into a cache and the possible cost saved if this cached data is used
instead of re-executing the task and its parents.

In the case of multiple users, the exact probability p(t) or the number
of times the task t will be re-executed is not known when the workflow is
executed. We then introduce a threshold ptresh arbitrarily picked by the user.
This threshold will be the limit value to decide whether a task output will be
added to the cache.

During the execution of each task, the real values of the execution time
and data size related to t are known. Thus, the caching decision is made from
the Equations (4.6) and (4.9).

4.5 Cache Management

This section presents in detail our techniques for cache management. In our
solution, cache management is involved during two main steps: workflow
preprocessing and cache provisioning. The preprocessing step transforms the
workflow based on the cache by replacing workflow fragments by already
computed output data stored in the cache. The preprocessing step occurs just
before execution and is done by the workflow manager using the cache index.
The workflow manager transform the workflow W(A, D) into an executable
workflow Wex(A, D, T, Input), where T is a DAG of tasks corresponding to the

68 Chapter 4. Adaptive Caching for Workflows in Monosite Cloud

activities in A and Input is the input data. The goal of workflow preprocessing
is to transform an executable workflow Wex(A, D, T, Input) into an equivalent,
simpler subworkflow W ′ex(A′, D′, T′, Input′), where A′ is a subgraph of A
with dependencies D′, T′ is a subgraph of T corresponding to A′ and Input′

is a subset of Input. The preprocessing step uses a recursive algorithm that
traverses the DAG T starting from the sink tasks to the source ones. The
algorithm marks each task whose output is already in the cache. Then, the
subgraphs of T that have each of their sink tasks marked are removed, and
replaced by the associated data from the cache. The remaining graph is T′.
Finally, the algorithm determines the fragments of T′: subgraphs that still
need to be executed.

Figure 4.3 illustrates the preprocessing step on the Phenomenal workflow.
The yellow tasks have their output data stored in the cache. They are replaced
by the corresponding data as input for the subgraphs of tasks that need to be
executed.

The second step, cache provisioning, is performed during workflow ex-
ecution. Traditional (in memory) caching involves deciding, as data is read
from disk into memory, which data to replace to make room, using a cache
replacement algorithm, e.g., Least Recently Used (LRU). In our context, using
a disk-based cache, the question is different. Unlike memory cache, disk-
based cache makes it possible to cache the Terabytes of data generated by the
workflow’s execution. Caching huge datasets has a cost and the question is to
decide which task output data to place in the cache using a cache provisioning
algorithm, in order to limit execution costs. This algorithm is implemented by
the cache manager and used by the task manager when executing a task.

A simple cache provisioning algorithm, which we will use as baseline in
the experimental evaluation, is to use a greedy method that simply stores all
tasks’ output data in the cache. However, since workflow executions produce
huge quantities of output data, this approach would incur high storage costs.
Worse, for some short duration tasks, accessing cache data from disk may take
much more time than re-executing the corresponding task subgraph from the
input data in memory.

Thus, we propose a cache provisioning algorithm with an adaptive method
that deals with the variations in task execution times and output data com-
plexity and sizes. The principle is to compute, for each task t, the value pmin(t)
defined in Section 4.4, called cache score of t, which is based on the sizes of
the input and output data it consumes and produces, and the execution time
of t. Depending on this value, after each task execution, the cache manager
decides on whether the output data is added to the cache or not.

The cache score reveals the relevancy of caching the output data of t
and takes into account the compression ratio and execution time as well as
the caching costs. According to the weights provided by the user, she may
prefer to give more importance to the compression ratio or executions time,
depending on the storage capacity and available computational resources.

Then, during the execution of each task t, the task manager calls the
cache manager to compute pmin(t). If the computed value is smaller than the
threshold ptresh provided by the user, then t’s output data will be cached. This

4.6. Experimental Validation 69

threshold is arbitrarily chosen based on the probability of the workflow being
re-executed.

4.6 Experimental Validation

In this section, we first present our experimental setup. Then, we present our
experiments and experimental comparisons of different caching methods in
terms of speedup and monetary cost in single user and multiuser scenarios.
Finally, we give concluding remarks.

4.6.1 Experimental Setup

Our experimental setup includes the cloud infrastructure, a workflow imple-
mentation and an experimental dataset.

The cloud infrastructure is composed of one site with one data node (N1)
and two identical compute nodes (N2, N3). The raw data is originally stored
in an external server. During computation, raw data is transferred to N1,
which contains Terabytes of persistent storage capacities. Each compute node
has much computing power, with 80 vCPUs (virtual CPUs, equivalent to one
core each of a 2.2GHz Intel Xeon E7-8860v3) and 3 Terabytes of RAM, but less
persistent storage (20 Gigabytes).

We implemented the Phenomenal workflow (see Section 3.2.2) using Ope-
nAlea and deployed it on the different nodes using the Conda multi-OS
package manager. The master node is hosted on one of the compute nodes
(N2). The metadata repositories are stored on the same node (N2) using the
Cassandra key-value store. Files for raw and cached data are shared between
the different nodes using the Lustre file system. File transfer between nodes is
implemented with ssh.

The Phenoarch platform has a capacity of 1,680 plants with 13 images
per plant per day. The size of an image is 10 Megabytes and the duration
of an experiment is around 50 days. The total size of the raw image dataset
represents 11 Terabytes for one experiment. The dataset is structured as 1,680
time series, composed of 50 time points (one per plant and per day).

We use a version of the Phenomenal workflow composed of 9 main activi-
ties. We execute it on a subset of the use case dataset, which is 1

25 of the size of
the full dataset, or 440 Gigabytes of raw data, which represents the execution
of 30,240 tasks.

The time interval considered for the caching time (see Section 4.4) is 30
days, i.e., the workflow re-executions are done within one month. The user
can select longer or shorter time intervals depending on the application.

For the comparison of different cost-based caching methods, we use cost
models defined in Section 4.4. To set the price parameters, we use prices from
Amazon AWS, i.e., Costdisk is $0.1 per Gigabyte per month for storage and two
instances at $5.424 per hour for computation, i.e., Costcpu is $10.848 per hour.
We set the user’s parameters ωt and ωc at 0.5.

The caching methods we compare, defined in Section 4.5 are noted as:

70 Chapter 4. Adaptive Caching for Workflows in Monosite Cloud

• M1 for the execution without cache.

• M2 for the greedy method where all the created intermediate data pro-
duced is cached.

• M3X for the adaptive method, with X as the ptresh value. In our experi-
ments, X vary between 10, 40 and 160.

4.6.2 Experiments

We consider three experiments, based on the use case in order to analyze our
caching method under different conditions:

1. This experiment aims at evaluating the scalability and speedup of the
caching methods. In this experiment, we assume that the same workflow
is computed three times in a month, at different times (one user at a time).
This experiment is based on the workflow Phenomenal, i.e., the maize
analysis (see Section 3.2.2). The scalability of the workflow execution is
studied using different numbers of vCPUs from 10 to 160.

2. This experiment aims at analysing the impact from the variability in
execution time and data size of the tasks from each activity, on the
components of the proposed cost function.

3. In this experiment, the same workflow is executed with an adaptive
cache strategy with different monetary costs. We assume that the same
workflow is executed up to six times in a month, starting from an empty
cache. This experiment shows the trade-off between better re-execution
time and smaller cache size.

4. In this experiment, different users execute different workflows that reuse
sub-parts of the complete Phenomenal workflow. Depending on the
caching strategy and cache size, the result of some tasks may already be
present in the cache. We show the impact of the value ptresh (see Section
4.4) on execution time, cache size and overall monetary cost depending
on the user executions.

Except for Experiment 1 where the number of vCPUs varies, it is set at
160 for the three other experiments. The execution time corresponds to the
time to transfer the raw data files from the remote servers, the time to run the
workflow and the time to provision the cache.

Workflow executions of the different users are serial, thus we do not
consider concurrency when accessing cached data. Moreover, we assume that
there are no execution or data transfer failures.

The raw data is retrieved on the data node as follows: a first file is retrieved
from the remote data servers and stored in one cluster’s data node. Then,
execution starts using this first file while the next files are retrieved in parallel.
As executing the workflow on the first file takes longer than transferring one
more raw data file, we only count the time of transferring the first chunk in
the execution time.

4.6. Experimental Validation 71

20 40 60 80 100 120 140 160
vCPUs

2

4

6

8

sp
ee

du
p

No cache
Greedy
Adaptive

(A) For one execution

20 40 60 80 100 120 140 160
vCPUs

0

5

10

15

20

25

sp
ee

du
p

No cache
Greedy
Adaptive

(B) For three executions

FIGURE 4.4: Speedup versus number of vCPUs: without cache
(orange), greedy caching (blue), and adaptive caching (green).

72 Chapter 4. Adaptive Caching for Workflows in Monosite Cloud

Speedup.

In Experiment 1, we compare the speedup of the three caching methods with
a threshold ptresh = 40, which is optimal in this case. We define the speedup
as speedup(n) = Tn

T10
, where Tn is the execution time on n vCPUs and T10 is the

execution time of method M1 on 10 vCPUs.
The workflow execution is distributed on nodes N2 and N3, for different

numbers of vCPUs. For one execution, Figure 4.4.a shows that the fastest
method is M1 (orange curve). This is expected as there is no extra time spent
to make data persistent and provision the cache. However, the overhead of
cache provisioning with method M340 is very small, less than 6% (green curve
in Figure 4.4.a) compared with method M2, up to 40% (blue curve in Figure
4.4.a) where all the output data are saved in the cache.

For the first execution, method M340’s overhead is only 5,6% compared
to method M1, while method M2’s overhead goes up to 40.1%. For instance,
with 80 vCPUs, the execution time of method M340 (i.e., 3,714 seconds) is
only 5.8% higher than execution time of method M1 (i.e., 3,510 seconds).
This is much faster than method M2, which adds 2,152 seconds (1.58 times
longer) of computation time in comparison with method M340. In both cases,
any re-execution is much faster than the first execution. Method M2 re-
execution time is the fastest, with a speedup gain of factor that is 102 times
(i.e., 34 seconds) better compared with method M1, because all the output
data is already cached. Furthermore, while only the master node is working
when no computation is done, the re-execution time is independent of the
number of vCPUs and can be computed from a personal computer with
limited vCPUs. Method M340 re-execution time is 12.6 times (i.e., 258 seconds)
better compared to method M1’s re-execution time. With method M340, some
computation still needs to be done when the workflow is re-executed, but
such re-execution on the whole dataset can be done in a bit more than a day
(i.e., 28.7 hours) on a 10 vCPUs machine, compared with 7.2 days with method
M1.

For three executions starting without cache, Figure 4.4.b shows that method
M340 is much faster than the other methods (about 2.5 and 1.5 times faster of
3 executions compared to methods M1 and M2 on 80 vCPUs). Method M2
is faster than method M1 in this case, because the additional time for cache
provisioning is compensated by the very short re-execution times of method
M2. With 80 vCPUs, the speedup of method M340 (i.e., 18.1) is 54.70% better
than that the speedup of method M2 (i.e., 11.7) and 162.31% better than that
of method M1 (i.e., 6.9). Method M340 is faster than the other methods on
three executions, despite having a re-execution time higher than method M2,
because the overhead of the cache provisioning is 57% smaller.

Analysis of tasks variability.

The Phenomenal workflow is composed of nine activities (see Section 3.2.2),
which we denote by A1, A2, ..., A9. During its execution, thousands of tasks
are executed that belong to the same activities. In order to assess the behavior
of a task with respect to its activity, we analyze the execution time of each task

4.6. Experimental Validation 73

A1 A2 A3 A4 A5 A6 A7 A8 A9
Activity

0

100

200

300

400

500

600
tim

e
(s

ec
)

FIGURE 4.5: Execution time of each activity’s task.

per activity (see Figure 4.5) and the cost model through their pmin value (see
Figure 4.6).

In Figure 4.5, execution times of tasks that belong to activities A1, A2 and
A6 have few variations. The tasks of such activities have predictable execution
times and this information can be used to make decisions about static caching.
However, the execution times of A3, A4 and A5 have high variability, which
makes them unpredictable.

Figure 4.6 shows that the variability of the pmin value is reduced, compared
to the variability of the execution times for activities A3 and A7. For activity
A9, this is the opposite: the pmin values for the tasks of A9 have high variability.
Note that the values of pmin shown on the figure are limited at 500 for visibility
and A9 values are not entirely visible. For activities A2 and A4, the pmin value
is not computed as it is always more time consuming to get their output data
from the cache than recomputing them. This case is explained in Section 4.4
with Equation 4.6.

If the variance in the behavior of an activity’s tasks is small, then the behav-
ior of the whole workflow execution is predictable, i.e., the tasks’ execution
times and intermediate data sizes are predictable. In this case, the caching
decision can be static, and done prior to execution. However, in our case,
there are significant variations in the task behaviors, so we adopt an adaptive
approach.

Monetary cost evaluation.

The first experiment shows that method M340 scales and reduces re-execution
time. However, method M2 enables faster re-executions despite a longer first
execution time, but it also generates more cached data. In this experiment,

74 Chapter 4. Adaptive Caching for Workflows in Monosite Cloud

A1 A2 A3 A4 A5 A6 A7 A8 A9
Activity

0

100

200

300

400

500
p

m
in

FIGURE 4.6: pmin of each activity’s task.

FIGURE 4.7: Monetary cost depending on the number of users
that execute the workflow with three different cache strategies

with the execution cost (blue) and the storage cost (red).

4.6. Experimental Validation 75

FIGURE 4.8: Monetary cost of scenario S1: Each user executes
the last activity of the workflow, for three values of ptresh.

we evaluate the monetary costs of the various methods for the executions of
workflow (see Figure 4.7).

The cost of method M1 comes only from the computation, as no data is
stored. The whole workflow is completely re-executed so the cost increases
linearly with the number of executions and ends at a total of USD 1419 for six
executions. Method M2 has computation and data storage costs higher than
the other two methods for the first execution. The amount of intermediate
data added to the cache is huge and the total cost for the first execution is
5.96 times higher than method M1 (i.e., 1405$). However, the very small
computation cost from re-execution (7.73$) compensates for the data storage
cost in comparison with the method M1 after the sixth executions.

For the first execution, method M340 adds 6% overhead in regards to
method M1’s execution cost because it populates the cache with a total of 934
Gigabytes. For any future re-executions, the decrease in computation time for
method M340 makes it less expensive than method M1. For six executions,
the cost gain is a factor of 3.5 (the total cost of method M340 is 409$). Method
M340 also has a cost gain of a factor of 3.5 compared to M2 for six executions.
The amount of intermediate data added to the cache is almost 10 times smaller
for method M340 than for method M2. Thus, the data storage cost of method
M2 is not worth the decrease in the computation cost compared with method
M340.

This shows that method M340 efficiently selects the intermediate data to
be added to the cache in order to reduce the cache size significantly while also
reducing the re-execution time.

Adding activities.

In this experiment, we evaluate how the parameters of our approach impact
the re-execution time, cache size and monetary cost in three different scenarios
from the use case, where different workflows are executed independently but

76 Chapter 4. Adaptive Caching for Workflows in Monosite Cloud

C
aching

m
ethod

Percentage
oftasks

cached
C

ache
size

(G
B)

R
e-execution

tim
e

(hours)

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

S1
S2

S3
N

o
cache

0
0

0
0

0
0

0
0

0
0

21.8
103.4

69.4
G

reedy
100

100
100

100
100

100
100

100
100

9894.9
0.04

0.43
0.13

p
tresh

10
0

0
98

0
0

0
41

0
0

49.1
1.6

22.4
9.6

p
tresh

40
100

0
100

0
39

0
96

55
0

934.3
0.71

5.5
3.6

p
tresh

160
100

0
100

0
100

100
100

99
0

4318.4
0.31

2.4
1.2

T
A

B
L

E
4.1:C

aching
decision

per
task

and
totalcache

size
and

re-execution
tim

e
for

differentcaching
m

ethods.

4.6. Experimental Validation 77

FIGURE 4.9: Monetary cost of scenario S2: Each user executes
all the activities of the workflow, for three values of ptresh.

FIGURE 4.10: Monetary cost of scenario S3: Each user executes
the activities based on the use case (A1, A3, A7, A9), for three

values of ptresh.

78 Chapter 4. Adaptive Caching for Workflows in Monosite Cloud

share activities. We say that a user executes an activity from a workflow if
she executes the sub-part of the workflow that leads to this activity only. The
three scenarios are as follows:

1. Scenario S1 is the one presented in the monetary cost evaluation: a single
user executes the last activity, i.e., A9: maize analysis, up to six times.

2. Scenario S2 involves nine users, that will each executing a different
activity of the workflow up to six times.

3. Scenario S3 involves four users: one executes activity A1, i.e., binariza-
tion, the second executes activity A3, i.e., 3D reconstruction, the third
executes activity A7, i.e., maize segmentation, and the last one executes
activity A9, i.e., maize analysis.

In these scenarios, each user executes a part of the workflow different from
the others. Figures 4.8 - 4.10 illustrate the monetary costs for three values of
ptresh: 10, 40 and 160. The ptresh values are the threshold set by the user to
manage the weight between cache size and re-execution time. With a small
ptresh, only a small portion of the output of the tasks is to be added to the
cache. A larger ptresh results in more intermediate data added to the cache.

In scenario S1, only one activity, the last one, is re-executed. As this activity
is the last, without cache implies the whole workflow to be re-executed. How-
ever, as we can see in Figure 4.8, re-executions require little computation time
even for the smallest pmin = 0.1. The re-execution times are respectively 1.6,
0.71 and 0.31 hours for methods M310, M340 and M3160 (see Table 4.1) instead
of 21.8 hours without cache. In this scenario, the overall monetary cost of
method M3160 is the highest, 49.1% higher than method M340, which we used
as baseline in the previous section. Yet, the monetary cost of method M3160
remains 57.1% smaller than that of method M2. This shows that adaptive
method successfully selects the intermediate data that is the less costly to store
and most worth for re-execution even in the case where a lot of intermediate
data is cached.

The computation cost for the re-execution of method M310 is 3.6 and 6.2
times higher than for methods M340 and M3160. However, it is the most
cost-effective: 324.9$, i.e., 19.7% less than method M340’s cost. In scenario S1
where a single activity is re-executed, a small cache size is the best option.

In scenario S2, each activity is re-executed, which represents the extreme
opposite of scenario S1. In this scenario, the re-execution time for method
M310 is much higher: 8.7 hours compared to 3.4 and 1.2 hours. The difference
in the cache storage cost is not enough to compensate for the re-computation
cost and method M310 ends up being 22.8% more costly than the method M340.
The re-computation cost of method M340 is also higher than in S1, and the
overall cost for six executions is only 32.4% smaller than that of method M3160.
In this scenario where a lot of different activities are re-executed, our method
still successfully selects the right intermediate data for efficient re-execution,
yet with a limited cache size.

4.6. Experimental Validation 79

Scenario S3 is the most representative of our use case, with different users
working on specific activities, i.e., A1, A3, A7 and A9. In this scenario, the re-
execution time of method M310 is 4.4 times higher than that of method M340,
so the computation cost of method M310 increases 4.4 times faster. Method
M340 is still the cheapest one, being 8.8% and 46.4% cheaper than methods
M310 and M3160. However, the computation cost is almost the same as method
M3160, the cost difference coming mostly from storage. This demonstrates that
our method efficiently selects the intermediate data to cache when sub-parts
of the workflow are executed separately.

4.6.3 Discussion

The proposed adaptive method has better speedup compared to the no cache
and greedy methods, with performance gains up to 162.31% and 54.70% re-
spectively for three executions. The execution time gain for each re-execution
goes up to a factor of 60 for the adaptive method in comparison to the no
cache method (i.e., 0.31 hours instead of 21.8). One requirement from the use
case was to make workflow execution time shorter than half a day (12 hours).
The adaptive method allows for the user to re-execute the workflow on the
total dataset (i.e., 11 Terabytes) in less than one hour in the cloud and still
within a day on a 10 CPUs server. In terms of monetary cost, the adaptive
method yields very good gains, up to 257.8% with 6 workflow re-executions
in comparison to the no cache method and 229.2% in comparison to the greedy
method, which represents up to 1000$.

The experiments on several fragments of the workflow as described in
the use case, show that the adaptive method succeeds in picking the most
worthy intermediate data to cache. The method does work, even though the
structure of the workflow is changed across re-executions. Similar to what
happens with re-execution of a single workflow, the monetary cost of the
greedy method is higher than the no cache method for up to 6 executions
with different fragments or different parameters. And the execution time of
greedy is always better than no cache. The adaptive method is both faster and
cheaper than both no cache and greedy.

The different values of the parameter ptresh allow the user to adjust between
a smaller cache size or smaller re-execution time. Table 4.1 shows the trade-off
for three ptresh values. Increasing the amount of intermediate data cached
obviously decreases the re-execution time of the workflow in any scenario
proposed. But the increase in cache size is not proportional to the decrease of
re-execution time. The method first selects the most worthy intermediate data
to add in the cache. Then, some intermediate data which is considered not
beneficial, will never be added to the cache.

The method proposed in this chapter focuses on finding the most cost
effective intermediate data to cache during workflow execution, depending
on ptresh and on the user’s preferences (ωt and ωc), assuming the cache size
is unlimited. However, in some applications and organizations, data storage
may have some limitation. In this case, it could be interesting to get the
optimal value of ptresh for each task in order to minimize the re-execution time.

80 Chapter 4. Adaptive Caching for Workflows in Monosite Cloud

As the method is adaptive, the size of the total cached data is unknown until
the end of the execution. However, the adaptive method could be coupled
with other approaches that would approximate the final cache size. Indeed,
even if tasks from the same activity have variations in their caching values
and their output data sizes, an approximation could be done by taking the
average value or the maximum value of some tasks for each activity, then
making a static caching decision on all the rest of the tasks.

The Phenomenal workflow is data-intensive because some activities pro-
cess/ generate huge datasets. Indeed, some activities are compressing the
data by a significant factor, i.e., the binarization is compressing the raw data
by a factor 500. Other are expending the data, i.e., the skeletonization is ex-
panding the data by a factor 100 (it generates 2TB of data while consuming
only 30GB). The Phenomenal workflow is also compute-intensive, as some
activities require long computing time, i.e., the 3D reconstruction require 1200
hours of total computing time. The Phenomenal workflow is representative
of many other data science workflows, that perform long analyses on huge
datasets. Thus, the method presented would work on data-intensive work-
flows where the execution time is significant with regards to the data transfers
times However, the method is not suitable for any kind of application. It adds
an overhead when the workflow is executed, thus it would be inefficient on
workflows that are not data- or compute-intensive.

4.7 Conclusion

In this chapter, we proposed an adaptive caching solution for efficient exe-
cution of data-intensive workflows in the cloud. Our solution automatically
manages the storage and reuse of intermediate data, and is adaptive in terms
of variations in task execution times and output data size. The adaptive aspect
of our solution is to take into account task compression behavior.

We implemented our solution in the OpenAlea SWMS and performed
extensive experiments on real data with the Phenomenal workflow, a real
big workflow that consumes and produces around 11 TB of raw data. We
compared three methods : no cache, greedy, and adaptive. Our experimen-
tal evaluation shows that the adaptive method allows for caching only the
relevant output data for subsequent re-executions by other users, without
incurring a high storage cost for the cache. The results show that adaptive
caching can yield major performance gains, e.g., up to a factor of 3.5 with 6
workflow re-executions.

In this chapter, we focused on reducing the monetary cost of running
multiple workflows by caching and reusing intermediate data. While our
technique show an improvement with respect to greedy approaches, we notice
that the scaling up is limited (see Figure 4.4). In the case of multiple users,
the cloud computing and storage capacities might be a bottleneck to scale up
workflow executions. In the use case, multiple cloud sites are available. A
next step would be to extend our method to multisite clouds.

The architecture proposed is based on disk storage for data reuse. Writing
and reading the cached data on disk adds an significant overhead. A next step

4.7. Conclusion 81

to improve our cache architecture would be to add an in memory cache for
some of the most used cached data.

The contributions of this chapter represent an important step forward in
experimental science like biology, where scientists extend existing workflows
with new methods or new parameters to test their hypotheses on datasets that
have been previously analyzed.

83

Chapter 5

Cache-Aware Scheduling for
Scientific Workflows in Multisite
Cloud

The cloud is a convenient infrastructure for handling workflows, as it allows
leasing resources at a very large scale and relatively low cost. Clouds are typi-
cally composed of multiple geo-distributed data-centers (henceforth named
sites). Thus, it becomes important to be able to execute workflow taking into
account the geographical distribution of the data and resources among the
cloud sites. Therefore, managing workflow executions on multisite cloud that
can benefit from caching data is a major problem. This chapter is based on
[73]

In this chapter, we propose both a technical and functional workflow
architecture, as well as three scheduling algorithms. The algorithms enable
workflow execution on multisite cloud with caching and reusing intermediate
data. Section 5.1 presents an overview and the motivations. Section 5.2
presents some elements of context from our use case. It presents how users
may benefit from sharing intermediate data distributed on a geo-distributed
cloud. Section 5.3 presents related works. Section 5.4 describes our proposed
system architecture for executing workflow with cached data on a multisite
cloud. Section 5.5 describes both our cost model and our algorithms. The cost
model is used to minimize the execution time, the intermediate data transfer
time and the cache data transfer time. The scheduling algorithms efficiently
select the execution site for each workflow fragment taken into account the
cache management. Then, section 5.6 presents the experimental evaluation
based on the execution of the Phenomenal workflow on the IFB-cloud 1 using
a large amount of time series of raw images generated by the PhenoArch
platform. The results reveal that our algorithm significantly outperforms
two baseline algorithms (execution on multisite cloud without cache, and
execution on monosite cloud with a centralized cache). Finally, section 5.7
resumes and concludes this chapter.

1https://www.france-bioinformatique.fr/cloud-ifb/

https://www.france-bioinformatique.fr/cloud-ifb/

84 Chapter 5. Cache-Aware Scheduling for Workflows in Multisite Cloud

5.1 Introduction

In many scientific domains, e.g, bio-science [81], complex numerical experi-
ments typically require many processing or analysis steps over huge datasets.
They can be represented as workflow These workflows facilitate the model-
ing, management, and execution of computational activities linked by data
dependencies. As the size of the data processed and the complexity of the
computation keep increasing, these workflows become data-intensive [81],
thus requiring high-performance computing resources.

Today, all popular public clouds, e.g, Microsoft Azure, Amazon EC2, and
Google Cloud, provide a multisite option with the capability of using mul-
tiple sites with a single cloud account, The main reason for using multiple
cloud sites to execute data-intensive workflows is that they often exceed the
capabilities of a single site, either because the site imposes usage limits for
fairness and security, or simply because the datasets are too large.

In scientific applications, there can be much heterogeneity in the storage
and computing capabilities of the different sites, e.g, on premise servers,
HPC platforms from research organizations or federated cloud sites at the
national level [42]. As an example in plant phenotyping, greenhouse platforms
generate terabytes of raw data from plants. Such data is typically stored at
data centers geographically close to the greenhouse to minimize the impact of
data transfers. However, the computation power of those data centers may be
limited and fail to scale when the analyses become complex, such as in plant
modeling or 3D reconstruction. In this case, other computation sites are then
required.

Most workflow management systems, can execute workflows in the cloud
[113]. Some examples are Swift/T [163], Pegasus [47], SciCumulus [116],
Kepler [8] and OpenAlea [130]. Our work is based on OpenAlea [130], which
is widely used in plant science for simulation and analysis [129]. Most existing
systems use naive or manual approaches to distribute the tasks across sites.
The problem of scheduling a workflow execution over a multisite cloud has
started to be addressed in [101], using performance models to predict the
execution time on different resources. In [95], it is proposed a solution based
on multi-objective scheduling and a single site virtual machine provisioning
approach, assuming homogeneous sites, as in public cloud.

Since it is common for workflow users to reuse code or data from other
workflows and from previous executions of the same workflow [58], a promis-
ing approach for efficient workflow execution is to cache intermediate data
in order to avoid re-executing entire workflows. Furthermore, a user may
need to re-execute a workflow many times with different sets of parameters
and input data depending on the previous results. Workflow fragments, i.e.,
subsets of workflow activities and dependencies, can often be reused. Another
important benefit of caching intermediate data is to make it easy to share with
other research teams, thus fostering new analyses at low cost.

Caching has been supported by some SWMS, e.g, Kepler [7], VisTrails [28]
and OpenAlea [128]. In [72], we proposed an adaptive caching method for
OpenAlea that automatically determines the most suited intermediate data to

5.2. Use Case: Intermediate Data Reuse in Geo-dis- tributed Clouds 85

cache, taking into account workflow fragments, but only in the case of a single
cloud site. Another interesting single site method, also exploiting workflow
fragments, is to compute the ratio between re-computation cost and storage
cost to determine what intermediate data should be stored [171]. All these
methods are designed for a single site. The only distributed caching method
for workflow execution in a multisite cloud we are aware of is restricted to hot
metadata (frequently accessed metadata) and ignores intermediate data [94].

Caching data in a multisite cloud with heterogeneous sites is much more
complex. In addition to the trade-off between re-computation and storage cost
at single sites, there is the problem of site selection for placing cached data.
The problem is more difficult than data allocation in distributed databases
[120], which deals only with well-defined base data, not intermediate data
produced. Furthermore, the scheduling of workflow executions must be cache-
aware, i.e., exploit the knowledge of cached data to decide between reusing
and transferring cached data versus re-executing the workflow fragments.

In this chapter, we propose a solution for cache-aware scheduling of work-
flow in multisite cloud. Our solution is based on a distributed and parallel
architecture and includes new algorithms for adaptive caching, cache site
selection and dynamic workflow scheduling. We implemented our caching
solution in OpenAlea. Based on a real data-intensive application in plant
phenotyping, we provide an extensive experimental evaluation using a cloud
with three heterogeneous sites.

5.2 Use Case: Intermediate Data Reuse in Geo-dis-
tributed Clouds

Different users can conduct different analyses by executing some workflow
fragments on the same dataset to test different hypotheses [72]. To save both
time and resources, it may be useful to reuse the corresponding intermediate
data that has already been computed rather than recompute the fragments
again. In our use case, we suppose that workflow executions are done in serial
order and that workflows are submitted from the site where the raw data is
produced.

Figure 5.1 shows two workflows used in plant analysis: the Phenomenal
workflow (Wf1) and a workflow to simulate light competition for plants in
greenhouse (Wf2). Both workflows use fragments F1 (binarization) and F2
(3D reconstruction), so the subsequent execution of Wf2 may benefit from
reusing the data generated previously from the corresponding fragments in
Wf1. Suppose for instance that Wf1 execution has generated some data that
has been cached, as shown in Figure 5.2.4. Then, a user can reuse datasets
D1 and D2 to speed up the execution of Wf2. Thus, the only fragment that
requires to be executed is F7.

The raw data is produced by the Phenoarch platform, which has a capacity
of managing 1,680 plants within a controlled environment (e.g, temperature,
humidity, irrigation) and automatic imaging through time. The total size of
the raw image dataset for one experiment is 11 Terabytes. The raw data is

86 Chapter 5. Cache-Aware Scheduling for Workflows in Multisite Cloud

1. Phenomenal workflow (Wf1) 2. Light competition workflow (Wf2)

a. Workflow represen-
tation colored by
fragments

b. Datasets generated
by the fragments

a. Workflow represen-
tation colored by
fragments

b. Datasets generated
by the fragments

F1

F2

F4

F1

F2

F7

F3

D1

D2
D3

D6

D1

D2

D7

FIGURE 5.1: Two workflows in plant analysis and their interme-
diate data (the shared activities have same color)

stored on a server at the same location as the experimental platform. This
server is considered as a cloud site and has both data storage and computing
resources. However, these computing resources are not enough to process a
full workflow analysis in a relatively short time. Thus, scientists who need to
analyse the full workflow need more computational resources, requiring to
share resources with existing distributed cloud sites. Therefore the execution
of the workflow is distributed onto several cloud sites.

The multisite cloud architecture (see Figure 5.2.4) is composed of heteroge-
neous sites, in terms of computing and storage capacities. The site with the
raw data is used to execute some Phenomenal fragments that do not require
powerful resources. Whenever more computational resources are needed, it is
necessary to choose between transferring the raw data or some intermediate
data to a more powerful site, or re-executing some fragments locally before
transferring intermediate data.

Figure 5.2.4 shows a case where a user submits the Phenomenal workflow
on the multisite cloud. The workflow fragments are distributed and executed
on different cloud sites depending on the site resources. At each site, some
intermediate data generated by the fragment execution is stored in a cache to
be reused in other fragment executions.

5.3 Related Works

Several workflow systems provide caching and reuse of intermediate data
during workflow execution [28, 130]. However, no solution we are aware of
takes into account the geo-distributed aspect of workflow execution when
using cached data. There is no definitive solution for two important problems:
1) how to determine what intermediate data should be cached, taking into
account data transfers; 2) how the workflow should be scheduled when
the intermediate data and the cached data processed are distributed over a

5.3. Related Works 87

1. Original workflow
in fragments

2. Workflow activities 3. Intermediate datasets
processed by activities

4. Execution in multisite cloud

User

Raw data production

F4 F2

F1 F3

workflow
submission

cloud site 1

cloud site 3cloud site 2

D1

D6 D2

4

5

1

2

6 7

3

8

9

2

3

4

5

6 7

8

1 F1

F2

F4

F3

9

D1

D2D3

D4 D5

D6

D0

FIGURE 5.2: Phenomenal plant analysis workflow

88 Chapter 5. Cache-Aware Scheduling for Workflows in Multisite Cloud

multisite cloud. The related work provides two kinds of methods, either to
reuse intermediate data in a monosite cloud or to optimize workflow execution
in multisite cloud, but without any reuse of intermediate data.

Several workflow systems, such as Kepler, VisTrails, OpenAlea, exploit
intermediate data for more efficient workflow execution. Each system has its
unique way of addressing data reuse. VisTrails provides visual analysis of
workflow results and provenance, i.e., captures the graph of execution and
the intermediate data generated [28]. The intermediate data stored is reused
when tasks are re-executed on a local computer. The user can then change
some activities and parameters in the workflow and efficiently re-execute each
workflow activity to analyze the different results. The intermediate data cache
is used to enhance reproducibitily when associated with provenance metadata
[85]. Caching and reuse of intermediate data is done whenever it is possible,
but does not scale up as the data size increases, i.e., the data cannot be stored
locally. Finally, VisTrails does not take distribution into account when storing
and using the cache. Our approach is different as it works in a distributed
environment where data transfer costs may be significant.

When storing intermediate data in the cloud, the trade-off between the
cost of re-executing tasks and the costs of storing intermediate data is not easy
to estimate [2, 48]. Yuan et al. [169] propose an algorithm based on the ratio
between re-computation cost and storage cost at the task level. The algorithm
uses the provenance data to generate a graph of the intermediate datasets
dependencies. Then, the cost of storing each intermediate data set is weighted
by the number of dependencies in the graph. The algorithm determines
the optimized set of intermediate datasets to store. It is improved in [171]
to take into account workflow fragments, yielding near optimal caching of
intermediate datasets. However, this approach requires global knowledge of
executions, such as the execution time of each task, the size of each dataset and
the number of incoming re-executions, which is hard to monitor in practice.
Furthermore, it does not take data transfer into account.

Kepler [7] provides intermediate data caching that can be used by work-
flows executed on a monosite cloud. The cache data is stored on a remote
server. When a workflow is re-executed, the workflow is modified to access
the cached data. Then, all the cached data that will be reused by the work-
flow is sent to the cloud where the workflow will be executed. This solution
is improved in [32] to store the cache data on the same cloud site than the
execution. This method select which intermediate data that will be cached by
using an algorithm based on Ant Colony System optimization to find a near
optimum data caching policy. This solution does not take data transfer into
account and only works on monosite cloud. Our approach is different as it
manages cache and workflow execution on multisite cloud.

OpenAlea [130] uses caching both in memory and on disk. In memory
caching is used on a local computer for smaller workflow execution. Disk-
based caching is based on an adaptive cache decision that automatically
determines which intermediate data is to be stored [72]. This solution only
works on monosite cloud and the cached data is always reused.

5.4. Multisite SWMS Architecture 89

Multisite cloud scheduling algorithms have been proposed to allow dis-
tributed workflow execution on multiple sites. Liu et al. [96] propose a
scheduling algorithm based on data location, that minimizes data transfer
during workflow executions. The algorithm is further improved in [95] with a
multi-objective cost function, which includes the time and monetary cost of
workflow execution in a dynamic environment. Duan et al. [17] propose an-
other interesting approach based on a multisite multi-objective cost function,
considering a multisite environment with different bandwidths and process-
ing power. These distributed scheduling approaches focus on optimizing
workflow execution, but do not consider caching and reusing intermediate
data.

5.4 Multisite SWMS Architecture

In this section, we present our workflow system architecture that integrates
caching and reuse of intermediate data in a multisite cloud. We motivate
our design decisions and describe our architecture in two ways: in terms of
functional layers (see Figure 5.3), which shows the different functions and
components; and in terms of nodes and components (see Figure 5.4), which
are involved in the processing of workflows.

Our architecture capitalizes on the latest advances in distributed and
parallel data management to offer performance and scalability [120]. We
consider a distributed cloud architecture with on premise servers, where raw
data is produced, e.g, by a phenotyping experimental platform in our use case,
and remote sites, where the workflow is executed. The remote sites are data
centers using shared-nothing clusters, i.e., clusters of server machines, each
with independent processors, disk and memory. We adopt shared-nothing as
it is the most scalable and cost-effective architecture for big data analysis.

In the cloud, metadata management has a critical impact on the efficiency
of workflow scheduling as it provides a global view of data location, e.g, at
which nodes some raw data is stored, and enables task tracking during execu-
tion [94]. We organize the metadata in three repositories: catalog, provenance
database and cache index. The catalog contains all information about users
(access rights, etc.), raw data location and workflows (code libraries, applica-
tion code). The provenance database captures all information about workflow
execution and the workflow specification. The cache index contains informa-
tion about tasks and cache data produced, as well as the location of files that
store the cache data. Thus, the cache index itself is small (only file references)
and the cached data can be managed using the underlying distributed file
system. A good solution for implementing these metadata repositories is
a key-value store, such as Cassandra2, which provides efficient key-based
access, scalability and fault-tolerance through replication in a shared-nothing
cluster.

The raw data (files) are initially produced and stored at some cloud sites,
e.g, in our use case, at the phenotyping platform. During workflow execution,

2https://cassandra.apache.org

https://cassandra.apache.org

90 Chapter 5. Cache-Aware Scheduling for Workflows in Multisite Cloud

Figure 2. Multisite SWfMS Functional Architecture

Workflow mgr (fragment execution)Workflow mgr (fragment execution)

Global schedulingGlobal scheduling Metadata
(catalog, cache index,

provenance)

Metadata
(catalog, cache index,

provenance)Local schedulingLocal scheduling

Task mgr (task execution)Task mgr (task execution)

Data mgr (file mgt, data transfer, intersite replication…)Data mgr (file mgt, data transfer, intersite replication…)

SchedulerScheduler

FIGURE 5.3: Workflow System Functional Architecture

the intermediate data is generated and consumed at one site’s node in memory.
It gets written to disk when it must be transferred to another node (potentially
at the same site) or explicitly added to the cache. Later on, the cached data
(files) can be replicated at other sites to minimize data transfers.

Figure 5.3 extends the workflow system architecture proposed in [93]
for single site. It is composed of six modules: workflow manager, global
scheduler, local scheduler, task manager, data manager and metadata manager,
to support both execution and intermediate data caching in a multisite cloud.
The workflow manager provides a user interface for workflow definition
and processing. Before workflow execution, the user selects a number of
virtual machines (VMs), given a set of possible instance formats, i.e., the
technical characteristics of the VMs, deployed on each site’s nodes. When a
workflow execution is started, the workflow manager simplifies the workflow
by removing some workflow fragments and partitions depending on the raw
input data and the cached data (see Section 5.5). The global scheduler uses
the metadata (catalog, provenance database, and cache index) to schedule the
workflow fragments of the simplified workflow. The VMs on each site are
then initialized, i.e., the programs required for the execution of the tasks are
installed and all parameters are configured. The local scheduler schedules the
workflow fragments received on its VMs.

The data manager module handles data transfers between sites during
execution (for both newly generated intermediate data and cached data)
and manages cache storage and replication. At a single site, data storage is
distributed between cluster nodes. Finally, the task manager manages the
execution of fragments on the VMs at each site. It exploits the provenance
data to decide whether or not the task’s output data should be placed in the
cache, based on the cache provisioning algorithm described in Section 5.5.
Local scheduling and execution can be performed as in [72].

Figure 5.4 shows how these components are organized, using the tradi-
tional master-worker model, in a multisite cloud. Each site provides the same
functionality, i.e., all the components in Figure 5.3. Thus, users can trigger a

5.5. Cache-aware Workflow Execution 91

Site 1

Catalog
ProvDB

Cache index

Catalog
ProvDB

Cache index

Master Node
(Workflow mgr,

Scheduler)

Standby
Master Node Site 2 Site 2

Data Node
(Data mgr)

Compute Node
(Task mgr)

DataData

 Site 3 Site 3

Data Node
(Data mgr)

Compute Node
(Task mgr)

DataData

FIGURE 5.4: Multisite Workflow System Architecture

workflow execution at any site. However, for a given workflow execution,
there is one coordinator site, where the execution is started. The coordinator
site performs workflow management and global scheduling, and manages the
execution with other participant sites. The workflow manager and the global
scheduler modules are involved only on the coordinator site while all other
modules are involved on all sites.

At each site, there are three kinds of nodes: master, compute and data
nodes, which are mapped to cluster nodes at configuration time, e.g, using
a cluster manager like Yarn (http://hadoop.apache.org). Each site has one
active master node and a standby node to deal with master node failure. The
master nodes are the only ones to communicate across sites. Each master node
supports the top layers of the functional architecture: workflow manager,
global scheduler, local scheduler and metadata management.

The master nodes are responsible for transferring data between sites during
execution. They are lightly loaded as most of the work of serving clients is
done by the compute and data nodes (or worker nodes), which perform local
execution and data management, respectively.

5.5 Cache-aware Workflow Execution

In this section, we present in more details the cache-aware workflow execution
in multisite cloud. In particular, the global scheduler must decide which data
to cache (cache data selection) and where (cache site selection), and where to
execute workflow fragments (execution site selection). Since these decisions
are not independent, we propose a cost function to make a global decision,
based on the cost components for individual decisions. We start by giving an
overview of distributed workflow execution. Then, we present the methods
and cost functions for cache data selection, cache site selection, execution
site selection and global decision. Finally, we introduce our algorithms for
cache-aware scheduling.

http://hadoop.apache.org

92 Chapter 5. Cache-Aware Scheduling for Workflows in Multisite Cloud

5.5.1 Distributed Workflow Execution Overview

We consider a multisite cloud with a set of sites S={s1, ..., sn}. A workflow
W(A, D) is a a directed acyclic graph (DAG) of computational activities A and
their data dependencies D. A task t is the instantiation of an activity during
execution with specific associated input data. A fragment f of an instantiated
workflow is a subset of tasks and their dependencies.

The execution of a workflow W(A, D) in S starts at a coordinator site sc
and proceeds in three main steps:

1. The global scheduler at sc simplifies and partitions the workflow into
fragments. Simplification uses metadata to decide whether a task can be
replaced by corresponding cached data references. Partitioning uses the
dependencies in D to produce fragments.

2. For each fragment, the global scheduler at sc computes a cost function
to make a global decision on which data to cache, where, and on which
site to execute. Then, it triggers fragment execution and data placement
in cache at the selected sites.

3. At each selected site, the local scheduler performs the execution of its
received fragments using its task manager (to execute tasks) and data
manager (to transfer the required input data). It also applies the decision
of the global scheduler on storing new intermediate data into the cache.

We introduce basic cost functions to reflect data transfer and distributed
execution. The time to transfer some data d from site si to site sj, noted
Ttr(d, si, sj), is defined by

Ttr(d, si, sj) =
Size(d)

TrRate(si, sj)
(5.1)

where TrRate(si, sj) is the transfer rate between si and sj.
The time to transfer input and cached data, In(f) and Cached(f) respec-

tively, to execute a fragment f at site si is Tinput(f , si):

Tinput(f , si) =
S

∑
sj

(Ttr(In(f), sj, si) + Ttr(Cached(f), sj, si)) (5.2)

The time to compute a fragment f at site s, noted Tcompute(f , s), can be
estimated using Amdahl’s law [174]:

Tcompute(f , s) =
(α

n + (1− α)) ∗W(f)
CPUper f (s)

(5.3)

where W(f) is the workload for the execution of f , CPUper f (s) is the average
computing performance of the CPUs at site s and n is the number of CPUs
at site s. We suppose that the local scheduler may parallelize task executions.
Therefore, α represents the percentage of the workload that can be executed
in parallel.

5.5. Cache-aware Workflow Execution 93

The expected waiting time to be able to execute a fragment at site s is noted
Twait(s), which is the minimum expected time for s to finish executing the
fragments in its queue.

The time to transfer the intermediate data generated by fragment f at site
si to site sj, noted Twrite(Output(f), si, sj), is defined by:

Twrite(Output(f), si, sj) = Ttr(Output(f), si, sj) (5.4)

where Output(f) is the data generated by the execution of f .

5.5.2 Cache Data Selection

To determine what new intermediate data to cache, we consider two different
methods: greedy and adaptive. Greedy data selection simply adds all new
data to the cache. Adaptive data selection extends our method proposed in
[72] to multisite cloud. It achieves a good trade-off between the cost saved by
reusing cached data and the cost incurred to feed the cache.

To determine if it is worth adding some intermediate data Output(f) at
site sj, we consider the trade-off between the cost of adding this data to the
cache and the potential benefit if this data was reused. The cost of adding
the data to site sj is the time to transfer the data from the site where it was
generated. The potential benefit is the time saved from loading the data from
sj to the site of computation instead of re-executing the fragment. We model
this trade-off with the ratio between the cost and benefit of the cache, noted
p(f , si, sj), which can be computed from Equations 5.2, 5.3 and 5.4,

p(f , si, sj) =
Twrite(Output(f), si, sj)

Tinput(f , si) + Tcompute(f , si)− Ttr(Output(f), sj, si)
(5.5)

In the case of multiple users, the probability that Output(f) will be reused
or the number of times fragment f will be re-executed is not known when the
workflow is executed. Thus, we introduce a threshold Threshold (computed
by the user) as the limit value to decide whether a fragment output will be
added to the cache. The decision on whether Output(f) generated at site si is
stored at site sj can be expressed by

d f ,i,j =

{
1 if p(f , si, sj) < Threshold.
0 otherwise.

(5.6)

5.5.3 Cache Site Selection

Cache site selection must take into account the data transfer cost and the het-
erogeneity of computing and storage resources. We propose two methods to
balance either storage load (bStorage) or computation load (bCompute) between
sites. The bStorage method allows for preventing bottlenecks when loading
cached data. To assess this method at any site s, we use a load indicator, noted
LbStorage(s), which represents the relative storage load as the ratio between

94 Chapter 5. Cache-Aware Scheduling for Workflows in Multisite Cloud

the storage used for the cached data (Storageused(s)) and the total storage
(Storagetotal(s)).

LbStorage(s) =
Storageused(s)
Storagetotal(s)

(5.7)

The bCompute method balances the cached data between the most powerful
sites, i.e., with more CPUs, to prevent computing bottlenecks during execution.
Using the knowledge on the sites’ computing resources and usage, we use
a load indicator for each site s, noted LbCompute(s), based on CPUs idleness
(CPUidle(s)) versus total CPU capacity (CPUtotal(s)).

LbCompute(s) =
1− CPUidle(s)

CPUtotal(s)
(5.8)

The load of a site s, depending on the method used, is represented by L(s),
ranging between 0 (empty load) and 1 (full). Given a fragment f executed at
site si, and a set of sites sj with enough storage for Output(f), the best site s∗

to add Output(f) to its cache can be obtained using Equation 5.1 (to include
transfer time) and Equation 5.6 (to consider multiple users).

s∗(f)si = argmax
sj

(d f ,i,j ∗
(1− L(sj))

Twrite(Output(f), si, sj)
) (5.9)

5.5.4 Execution Site Selection

To select an execution site s for a fragment f , we need to estimate the execution
time for f as well as the time to feed the cache with the result of f . The
execution time f at site s (Texecute(f , s)) is the sum of the time to transfer input
and cached data to s, the time to get computing resources and the time to
compute the fragment. It is obtained using Equations 5.2 and 5.3.

Texecute(f , s) = Tinput(f , s) + Tcompute(f , s) + Twait(s) (5.10)

Given a fragment f executed at site si and its intermediate data Output(f),
the time to write Output(f) to the cache (Tf eed_cache (f , si, sj)) can be defined
as:

Tf eed_cache(f , si, sj, d f ,i,j) = d f ,i,j ∗ Twrite(Output(f), si, sj) (5.11)

where sj is given by Equation 5.9.

5.5.5 Global Decision

At Step 2 of workflow execution, for each fragment f , the global scheduler
must decide on the best combination of individual decisions regarding cache
data, cache site, and execution site. These individual decisions depend on
each other. The decision on cache data depends on the site where the data
is generated and the site where it will be stored. The decision on cache site
depends on the site where the data is generated and the decision of whether
or not the data will be cached. Finally, the decision on execution site depends

5.5. Cache-aware Workflow Execution 95

on what data will be added to the cache and at which site. Using Equations
5.10 and 5.11, we can estimate the total time (Ttotal) for executing a fragment f
at site si and adding its intermediate data to the cache at another site sj:

Ttotal(f , si, sj, d f ,i,j) = Texecute(f , si) + Tf eed_cache(f , si, sj, d f ,i,j) (5.12)

Then, the global decision for cache data (d f ,i,j), cache site (s∗cache) and
execution site (s∗exec) is based on minimizing the following equation for the n2

pairs of sites si and sj

(s∗exec, s∗cache, d f ,i,j) = argmin
si ,sj

(Ttotal(f , si, sj, d f ,i,j)) (5.13)

This decision is performed by the coordinator site before each fragment
execution and only takes into account the cloud site’s status at that time. It
is worth mentioning that s∗exec and s∗cache can be the same site, including the
coordinator site.

5.5.6 Cache-Aware Scheduling

In this section, we present in details our solution to cache-aware scheduling
in our architecture. We propose three algorithms: CacheA, Sgreedy-CH and
Fgreedy-CH. CacheA is a new greedy algorithm that performs cache-aware
scheduling. The two other algorithms extend distributed greedy scheduling
algorithms [95] to become cache-aware. These three algorithms are dynamic,
i.e., they produce scheduling plans that distribute and allocate executable tasks
to computing nodes during workflow execution [93]. This kind of scheduling
is appropriate for our workflows, where the workload is difficult to estimate,
or for environments where the capabilities of the computers varies much
during execution.

CacheA.

The CacheA algorithm (see Algorithm 1) is based on the global decision (see
Equation 5.13) made by the coordinator site. It takes the simplified workflow
graph as input and, starting from the root fragment, computes the global
decision for each fragment. Recall that the global decision combines indi-
vidual decisions regarding cache data, cache site, and execution site, before
scheduling each fragment.

Algorithm 1 proceeds as follows. The workflow is partitioned into frag-
ments (line 1), where F represents the set of all fragments of the workflow.
Whenever a fragment is ready for execution, it is selected (line 3). Then (line
4), we compute the global decision using Equation 5.13 to determine the best
execution site Sexec, cache placement site Scache and cache decision d f ,i,j. At
line 5, the fragment is transferred to the site Sexec to be executed. Recall that
the cache decision d f ,i,j determines if the intermediate data will be cached.
Whenever the intermediate data is to be stored in the cache (lines 6-8), it is
then transferred at site Scache (line 7). At line 8, the Cache Index is updated
locally and the update is propagated at all replicas at other sites. Finally (line
11), the fragment is removed from F.

96 Chapter 5. Cache-Aware Scheduling for Workflows in Multisite Cloud

Algorithm 1: CacheA
Input: WF: a workflow,
Cache index: the index of the placement of the data existing in the cache

1 F ← partition WF into fragment;
2 while F not empty do
3 f ← select a fragment of F that is next to be computed ;
4 Sexec, Scache, d f ,i,j ← compute from Equation 5.13 ;
5 Schedule f execution on site Sexec ;
6 if d f ,i,j is True then

/* The intermediate data is cached */
7 Place the intermediate data on site Scache;
8 Update the Cache Index
9 else

/* The intermediate data will not be cached */
10 end
11 Remove f from F;
12 end

Sgreedy-CH and Fgreedy-CH

.
Sgreedy-CH (site greedy with caching) extends the SiteGreedy algorithm

presented in [95]. The scheduling decision of SiteGreedy works as follows. Let
F be the set of workflow fragments. Whenever a cloud site s is available, it
requests the execution of a ready fragment in F to the coordinator site. The
selection of the fragment is based on a cost function that takes into account
data transfer time and execution time. The idea of this scheduling is to
keep cloud sites as busy as possible, scheduling a fragment whenever a site
is available. The caching decision is done after the workflow fragment is
scheduled for execution by the local scheduler at each site. Unlike CacheA,
Sgreedy-CH does not make a global decision. Instead, the caching decision
is done in two steps. First, the choice of the cloud site where the cached
data should be stored is determined by Equation 5.9. Then, the decision
on whether or not to store the intermediate data is determined by Equation
5.5, considering the execution time and the time to transfer the intermediate
data. Note that Equation 5.5 considers both the execution site and the cache
site, which are already determined when computed during the execution of
Sgreedy-CH.

Fgreedy-CH (fragment greedy with caching) extends the ActGreedy algo-
rithm presented in [95]. Fgreedy-CH schedules each workflow fragment at the
site that minimizes a cost function based on execution time and input data
transfer time. The cost function is the sum of the initialization time, expected
execution time, and data transfer time for each fragment at each site. Then,
after each fragment execution at the selected site, the local scheduler performs
the cache site and cache data decisions based on Equations 5.9 and 5.5.

These two greedy algorithms generate a dynamic scheduling plan. After

5.6. Experimental Validation 97

each fragment execution, the decision concerning caching is made by the local
scheduler. In contrast, CacheA makes a global decision for each fragment.
Notice that Sgreedy-CH and Fgreedy-CH needs less operations to schedule the
fragments.

5.6 Experimental Validation

In this section, we first present our experimental setup, which features a
heterogeneous multisite cloud with multiple users who re-execute part of
the workflow. Then, we compare the performance of our multisite cache
scheduling algorithms against two baseline algorithms. We end the section
with concluding remarks.

5.6.1 Experimental Setup

We use a real multisite cloud, with three sites, in France. Site 1 in Montpellier is
the raw data server of the Phenoarch phenotyping platform, with the smallest
number of CPUs and largest amount of storage among the sites. The raw data
is stored at this site. Site 2 is the coordinator site, located in Lille. Site 3, located
in Lyon, has the largest number of CPUs and the smallest amount of storage.

To model site heterogeneity in terms of storage and CPU resources, we use
heterogeneity factor H in three configurations: H = 0, H = 0.3 and H = 0.7.
For the three sites altogether, the total number of CPUs is 96 and the total
storage 180 GB. With H = 0 (homogeneous configuration), each site has 32
CPUs and 60 GB. With H = 0.3, we have 22 CPUs and 83 GB for Site 1, 30
CPUs and 57 GB for Site 2 and 44 CPUs and 40 GB for Site 3. With H = 0.7
(most heterogeneous configuration), we have 6 CPUs and 135 GB for Site 1, 23
CPUs and 35 GB for Site 2 and 67 CPUs and 10 GB for Site 3.

The input dataset for the Phenomenal workflow is produced by the Phe-
noarch platform (see Section 5.2). Each execution of the workflow is performed
on a subset of the input dataset, i.e., 200 GB of raw data, which represents the
execution of 15,000 tasks. For each user, 60% of the raw data is reused from
previous executions. Thus, each execution requires only 40% of new raw data.
For the first execution, no data is available in the cache.

We implemented our solution in OpenAlea and deployed it at each site
using the Conda multi-OS package manager. The metadata distributed
database is implemented using Cassandra. Communication between the
sites is done using the protocol library ZeroMQ. Data transfer between sites is
done through SSH.

We have also implemented two baseline algorithms: 1) ActGreedy, a mul-
tisite scheduling algorithm described in [95], and, 2) a centralized cache
architecture for workflow execution. The algorithm ActGreedy minimize the
execution time by scheduling the fragments at cloud site given a cost func-
tion based on execution time and input data transfer time. This algorithm
does not reuse and store intermediate data in cache for future performance
improvement.

98 Chapter 5. Cache-Aware Scheduling for Workflows in Multisite Cloud

Table 5.1 summarizes the different variants of the scheduling algorithms
used in our experiments. Prefix "C-" indicates that the cache is centralized at a
single site while prefix "D-" that it is distributed. For all algorithms that use
cache, the cache index is fully replicated at all sites.

Algorithm Cost function parameters Cache decision Cache placement

ActGreedy Execution time of Act. &
input transfer time Local after execution No cache

C-CacheA Execution time,
Frag. Input & Cache transfer time

Global per frag.
before execution Single cache site

C-Sgreedy-CH Execution time &
Frag. Input transfer time Local after execution Single cache site

C-Fgreedy-CH Execution time &
Frag. Input transfer time Local after execution Single cache site

D-CacheA Execution time,
Frag. Input & Cache transfer time

Global per frag.
before execution Distributed

D-Sgreedy-CH Execution time &
Frag. Input transfer time Local after execution Distributed

D-Fgreedy-CH Execution time &
Frag. Input transfer time Local after execution Distributed

TABLE 5.1: Scheduling algorithms and their main dimensions

5.6.2 Experiments

We compare the three algorithms we proposed (CacheA, Sgreedy-CH, Fgreedy-
CH) in terms of execution time and amount of data transferred with two
baselines. The total time is defined as the workflow execution time plus the
transfer time. We consider different workflow executions: with and without
caching (Experiment 1); on monosite or multisite cloud (Experiment 2); and
using a centralized or distributed cache (Experiment 3). Then, we consider
multiple users who execute the workflow in the following cases: on the same
multisite configuration, where 60% of the data is the same (Experiment 4);
on different multisite configurations (Experiment 5); and when adding or
removing workflow fragments (Experiment 6).

Experiment 1: with and without caching.

In this experiment, we compare two workflow executions: with caching, using
the D-CacheA scheduling algorithm and the bStorage load balancing method;
and without caching, using the ActGreedy algorithm. We consider one re-
execution of the workflow on different input datasets, from 0% to 60% of data
reuse. D-CacheA outperforms ActGreedy from 20% of reused data. Below 20%,
the overhead of caching outweighs its benefit. For instance, with no reuse
(0%), the total time with D-CacheA is 16% higher than with ActGreedy. But
with 30%, it is 11% lower, and with 60%, it is 42% lower.

5.6. Experimental Validation 99

0

1000

2000

3000

4000

5000

6000

T
im

e
 (

se
c)

Execution time

Transfer time to cache data

Transfer time to read cached data

Transfer time to read intermediate data

Raw data si
te

Site
 1

Mono-si
te cl

oud

Site
 3

Multi-
sit

e cl
oud

& S-Fg
re

edy-C
H

Multi-
sit

e cl
oud

& D
-C

ach
eA

Infrastructure

FIGURE 5.5: Total time of Phenomenal workflow execution in
four cases

Experiment 2: single site versus multisite execution.

In this experiment, we compare the total time in four cases with monosite and
multisite clouds:

1. raw data site, i.e., a monosite cloud (Site 1) where the raw data is stored
but with only 10 CPUs;

2. monosite cloud (Site 3) with 96 CPUs with the raw and cache data having
to be transferred from the raw data site (that will not do computation);

3. multisite cloud composed of three sites with configuration H = 0.7,
using C-Fgreedy-CH;

4. same multisite cloud but using D-CacheA.

Figure 5.5 shows the total time of the workflow for the different cases.
When executing on the raw data site (first chart on Figure 5.5), all the input
data is already stored on Site 1 and the cached data is stored on this site, thus
there are no data transfer between sites during workflow execution. However,
due to the reduced number of available CPUs, the total time is by far longer
than on any other infrastructure (66% longer that of monosite (Site 3), 238%
longer than on multisite with C-Fgreedy-CH and 334% longer than on multisite
with D-CacheA. An execution of the workflow on the full raw dataset on Site 1

100 Chapter 5. Cache-Aware Scheduling for Workflows in Multisite Cloud

takes more than a week to compute. In practice, the raw dataset is first sent to
a cloud site with more computation resources available before being executed.

The monosite 3 cloud yields the shortest execution time, outperforming the
multisite cloud with C-Fgreedy-CH and D-CacheA in terms of execution time
by 21% and 26% respectively. However, its data transfer time (for transferring
the raw data) makes its total time much longer, so it is outperformed by the
multisite cloud using D-CacheA by 61%.

The intermediate data transfer time on the multisite cloud is much smaller
(83% smaller for the D-CacheA) than the raw data transfer time to execute on
monosite 3. In multisite cloud, fragments can be executed on the site of their
input data. In this case, the raw data is not transferred between sites, but
locally processed on Site 1 by the first workflow fragment. The intermediate
data generated by the first fragment is smaller than the raw data and is more
easily transferred to other sites, where the other fragments are scheduled.

Experiment 3: centralized versus distributed cache.

Figure 5.6 shows the total time of the workflow for the three algorithms
Sgreedy-CH, Fgreedy-CH and CacheA. The algorithms used with a centralized
cache on Site 1 are C-Sgreedy-CH, C-Fgreedy-CH and C-CacheA. They are com-
pared with D-CacheA, which uses a distributed cache in two configurations:
(a) with two users; (b) with different site heterogeneity.

Let us first analyze the results of Figure 5.6.a, where two users execute the
Phenomenal workflow with 60% of common raw data in two configurations:
centralized cache on Site 1 and distributed cache with H = 0.7. For the first
user execution, D-CacheA outperforms C-Sgreedy-CH in terms of total time
by 43%. This is due to D-CacheA outperforming C-Sgreedy-CH in terms of
intermediate and cache data transfer times by 66% and 61% respectively. D-
CacheA outperforms C-Fgreedy-CH in terms of total time by 22%, even though
D-CacheA’s execution time is lower than C-Fgreedy-CH (6%). This is due to
D-CacheA outperforming C-Fgreedy-CH in terms of data transfer time by 45%.
D-CacheA outperforms C-CacheA in terms of total time by 10%. The execution
time and intermediate data transfer time are similar (7% shorter and 12%
longer). Yet D-CacheA outperforms C-CacheA in terms of cache data transfer
by 42%. For the first execution D-CacheA outperforms the three algorithms
with centralized cache, mostly due to shorter data transfer times. This is
because the distributed cache enables the workflow to be executed at a site
with more computing resources and store the cached data on that site. For
re-execution, D-CacheA outperforms the three algorithms with centralized
cache, C-Sgreedy-CH, C-Fgreedy-CH and C-CacheA, in terms of total time by
63%, 46% and 21%, respectively.

Figure 5.6.b shows the total time of the workflow for the second user and
the four different algorithms: C-Sgreedy-CH, C-Fgreedy-CH, C-CacheA and D-
CacheA. The execution is performed on three values of H in two configurations:
centralized cache on Site 1 and distributed cache. In any configuration, D-
CacheA outperforms the three other algorithms with centralized cache, C-
Sgreedy-CH, C-Fgreedy-CH and C-CacheA, in terms of total time by 43%, 31%

5.6. Experimental Validation 101

and 14%, respectively for H = 0, by 52%, 38% and 23%, respectively for
H = 0.3, and by 60%, 42% and 19%, respectively for H = 0.7. The performance
gain is due to less data transfers. For H = 0, D-CacheA outperforms C-Sgreedy-
CH in terms of intermediate data, cached data transfer by 49% and 70%,
respectively.

Experiment 4: multiple users.

Figure 5.7 shows the total time of the workflow for the three scheduling
algorithms, four users, H = 0.7, and our two cache site selection methods: (a)
bStorage, and (b) bCompute.

Let us first analyze the results in Figure 5.7.a (bStorage method). For the first
user execution, D-CacheA outperforms D-Sgreedy-CH in terms of execution
time by 8% and in terms of data and intermediate data transfer time by 51%
and 63%, respectively. The reason D-Sgreedy-CH is slower is that it schedules
some compute-intensive fragments at Site 1, which has the lowest computing
resources. Furthermore, it does not consider data placement and transfer time
when scheduling fragments.

Again for the first user execution, D-CacheA outperforms D-Fgreedy-CH
in terms of total time by 24%, when considering the time to transfer data the
cache. However, its execution time is a bit slower (by 9%). The reason that D-
Fgreedy-CH is slower is that it does not take into account the placement of the
cached data, which leads to larger amounts (by 67%) of cache data to transfer.
For other users’ executions (when cached data exists), D-CacheA outperforms
D-Sgreedy-CH in terms of execution time by 29%, and for the fourth user
execution, by 20%. This is because D-CacheA better selects the cache site in
order to reduce the execution time of the future re-executions. In addition,
D-CacheA balances the cached data and computations. It outperforms D-
Sgreedy-CH and D-Fgreedy-CH in terms of intermediate data transfer time (by
59% and 15%, respectively) and cache data transfer time (by 82% and 74%,
respectively).

Overall, D-CacheA outperforms D-Sgreedy-CH and D-Fgreedy-CH in terms
of total time by 61% and 43%, respectively. The workflow fragments are not
necessarily scheduled to the site with shortest execution time, but to the site
that minimizes overall total time. Considering the multiuser perspective,
D-CacheA outperforms D-Sgreedy-CH and D-Fgreedy-CH, reducing the total
time for each new user (up to 6% faster for the fourth user compared to the
second).

Let us now consider Figure 5.7.b (bCompute method). For the first user
execution, D-CacheA outperforms D-Sgreedy-CH and D-Fgreedy-CH in terms of
total time by 36% and 10% respectively. bCompute stores the cache data on the
site with the most idle CPUs, which is often the site with the most CPUs. This
leads the cached data to be stored close to where it is generated, thus reducing
data transfers when adding data to the cache. For the second user, D-CacheA
outperforms D-Sgreedy-CH and D-Fgreedy-CH in terms of total time by 46%
and 21% respectively. The cached data generated by the first user is stored on
the sites with more available CPUs, which minimizes the intermediate and

102 Chapter 5. Cache-Aware Scheduling for Workflows in Multisite Cloud

1 2
Number of users

0

500

1000

1500

2000

2500

T
im

e
 (

se
c)

Execution time
Transfer time to cache data
Transfer time to read cached data
Transfer time to read intermediate data

C-Sgreedy-CH
C-Fgreedy-CH
C-CacheA
D-CacheA

0.0 0.3 0.7
Heterogeneity factor

0

250

500

750

1000

1250

1500

1750

T
im

e
 (

se
c)

FIGURE 5.6: Centralized versus distributed cache in terms of
execution time for three scheduling algorithms (D-Sgreedy-CH,

D-Fgreedy-CH and D-CacheA)

5.6. Experimental Validation 103

(A) bStorage method

(B) bCompute method

FIGURE 5.7: Total times for multiple users (60% of same raw
data per user) for three scheduling algorithms (D-Sgreedy-CH,

D-Fgreedy-CH and D-CacheA)

104 Chapter 5. Cache-Aware Scheduling for Workflows in Multisite Cloud

reused cached data transfers. From the third user, the storage at some site
gets full, i.e., for the third user’s execution, Site 3 storage is full and from the
fourth user’s execution, Site 2 storage is full. Thus, the performance of the
three scheduling algorithms decreases due to higher cache data transfer time.
Yet, D-CacheA outperforms D-Sgreedy-CH and D-Fgreedy-CH in terms of total
time by 49% and 25% respectively.

Experiment 5: cloud site heterogeneity.

We now compare the three algorithms in the case of heterogeneous sites
by considering the amount of data transferred and execution time. In this
experiment (see Figure 5.8), we consider one user with the cache already
provisioned by previous executions on 60% of the same raw data. We use the
bStorage method for cache site selection.

Figure 5.8 shows the execution times and the amount of data transferred
using the three scheduling algorithms. With homogeneous sites (H = 0), the
three algorithms have almost the same execution time. D-CacheA outperforms
D-Sgreedy-CH in terms of amount of intermediate data transferred and total
time by 44% and 26%, respectively. The execution time of D-CacheA is similar
to D-Fgreedy-CH (3.1% longer). The cached data is balanced as the three sites
have same storage capacities. Thus, total times of D-CacheA and D-Fgreedy-CH
are almost the same.

With heterogeneous sites (H > 0), the sites with more CPUs have less
available storage but can execute more tasks, which leads to a larger amount
of intermediate and cached data being transferred between the sites. For
H = 0.3, D-CacheA outperforms D-Sgreedy-CH and D-Fgreedy-CH in terms of
total time (by 40% and 18%, respectively) and amount of data transferred (by
47% and 21%, respectively).

With H = 0.7, D-CacheA outperforms D-Sgreedy-CH and D-Fgreedy-CH in
terms of total time (by 58% and 42%, respectively) and in terms of amount of
data transferred (by 55% and 31%, respectively). D-CacheA is faster because its
scheduling leads to a smaller amount of cached data transferred when reused
(116% smaller than D-Fgreedy-CH) and added to the cache (47% smaller than
D-Fgreedy-CH).

Experiment 6: adding and removing fragments.

In this experiment, we evaluate how our approach performs in terms of
total time when subworkflows (with common fragments) derived from the
Phenomenal workflow are executed independently. Figure 5.9 shows four
subworkflows, each corresponding to a different analysis required by the
user: WF1 performs image binarization, WF2 generates an analysis of the
binary images, WF3 generates a 3D reconstruction of the plant and WF4
performs maize analysis. WF1 is mostly data-intensive, the image binarization
fragment performing little computation but consuming Terabytes of data.
WF2 requires more computational resources but is still mostly data-intensive.
Fragment F3 in WF3 (composed of activities 3 and 4 in Figure 5.9) is mostly
computation-intensive. Finally, WF4 is both data- and computation-intensive.

5.6. Experimental Validation 105

(A) Total time

(B) Amount of data transfer

FIGURE 5.8: Execution for one user (60% of same raw data
used) on heterogeneous sites with three scheduling algorithms

(D-Sgreedy-CH, D-Fgreedy-CH and D-CacheA)

106 Chapter 5. Cache-Aware Scheduling for Workflows in Multisite Cloud

WF1 WF2 WF3 WF4

1

2

3

2

1

4

5

2

1

4

5

1

2

6 7

3

8

9

FIGURE 5.9: Four subworkflows derived from the Phenomenal
workflow

The subworkflows are executed two times starting without cached data and
60% of the raw input data is common between the users. All executions use
method bStorage.

Figure 5.10 shows the total times for executing WF1, WF2, WF3 and WF4 by
two users, one after the other. The first user executes the subworkflow without
existing cached data, then the second user executes the subworkflow using
60% of the same raw data. In the case of WF1 (see Figure 5.10a), D-Sgreedy-CH
outperforms both D-Fgreedy-CH and D-CacheA in terms of execution times by
92% for the first user and by 83% asecond user. This is becauseD-Sgreedy-CH
uses all CPUs at all sites, whereas D-Fgreedy-CH and D-CacheA almost only
use the CPUs of Site 1 (where the raw input data is). However, D-CacheA
transfers less intermediate data (70% less) during execution, which makes
D-CacheA outperforming D-Sgreedy in terms of total time by 49%. D-CacheA
and D-Fgreedy-CH have similar total times (D-CacheA is outperformed by
only D-Fgreedy-CH by 2%). Since WF1 is mostly data-intensive, both methods
D-CacheA and D-Fgreedy-CH try to execute the workflow at the site where the
input data is.

In the case of WF2 (see Figure 5.10b), D-Sgreedy-CH also outperforms both
D-Fgreedy-CH and D-CacheA in terms of execution times by 91% for the first
user and by 79% for the second user. This is because the added fragment
can be executed right after the execution of WF1 without delay as it does not
required much computational resources. However, D-CacheA outperforms
D-Sgreedy-CH in terms of total time by 39% due to longer data transfer times
with D-Sgreedy-CH. D-CacheA and D-Fgreedy-CH also have similar total times,

5.6. Experimental Validation 107

(A) WF1 (B) WF2

(C) WF3 (D) WF4

FIGURE 5.10: Total times for executing the four subworkflows
by two users (with 60% of same raw data for second user)

108 Chapter 5. Cache-Aware Scheduling for Workflows in Multisite Cloud

D-CacheA outperforms D-Fgreedy-CH by 4% for the second user. WF1 and
WF2 are both data-intensive, not compute-intensive. Since the raw data is
stored on Site 1, the site with the most storage capacities, it is the most likely
to be used as cache site. For these subworkflows, the selection of the execution
site by both algorithms D-Fgreedy-CH and D-CacheA depends mostly on the
intermediate data location. In this case, they make similar decisions, and thus
have similar performance.

In the case of WF3 (see Figure 5.10c), for the first user, D-CacheA outper-
forms both D-Sgreedy-CH and D-Fgreedy-CH in terms of total time by 30% and
8% respectively. Then, for the second user, D-CacheA also outperforms both
D-Sgreedy-CH and D-Fgreedy-CH by 47% and 18% respectively. This is due to
D-CacheA outperforming D-Sgreedy-CH and D-Fgreedy-CH in terms of data
transfers by 69% and 35% respectively. D-Fgreedy-CH selects the best sites
that minimize execution times and intermediate data transfer times. In the
case of WF3, which has a compute-intensive fragment, most of the compu-
tation will be scheduled on the site with the most computational resources.
D-CacheA, however, will schedule some of the computation to the sites where
the intermediate data will be cached and these sites may have less computa-
tional resources. This is why D-Fgreedy-CH has shorter execution time, but is
outperformed by D-CacheA in terms of total time.

In the case of WF4 (see Figure 5.10d), D-CacheA outperforms both D-
Sgreedy-CH and D-Fgreedy-CH by 32% and 24% for the first user and 60% and
40% for the second one respectively. In the case of WF4, the fragments are
both data- and compute-intensive, thus the scheduling decision becomes more
complex. D-Fgreedy-CH is scheduling fragments to minimize the execution
and intermediate data transfer times, which leads D-Fgreedy-CH to outperform
D-CacheA in terms of execution time and intermediate data transfer by 8%.
However, the intermediate data that will be cached is bigger than in WF3, and
the time to transfer the cached data becomes a major element of the total time.
This is why D-CacheA outperforms D-Sgreedy-CH and D-Fgreedy-CH in terms
of total time.

5.6.3 Discussion

The main result of this experimental evaluation is that CacheA always outper-
forms the two greedy algorithms Sgreedy-CH and Fgreedy-CH, both in the case
of multiple users and heterogeneous sites.

The first experiment (with caching) shows that storing and reusing cached
data becomes beneficial when 20% or more of the input data is reused. The
second experiment (multiple users) shows that D-CacheA outperforms D-
Sgreedy-CH and D-Fgreedy-CH in terms of total time by up to 61% and 43%,
respectively. It also shows that, with increasing numbers of users, the per-
formance of the three scheduling algorithms decreases due to higher cache
data transfer times. The third experiment (heterogeneous sites) shows that
D-CacheA adapts well to site heterogeneity, minimizing the amount of cached
data transferred and thus reducing total time. It outperforms D-Sgreedy-CH
and D-Fgreedy-CH in terms of total time by up to 58% and 42% respectively.

5.7. Conclusion 109

Both cache site selection methods bCompute and bStorage have their own
advantages. bCompute outperforms bStorage in terms of data transfer time by
13% for the first user and up to 17% for the second user. However, it does not
scale with the number of users, and the limited storage capacities of Site 2
and 3 lead to a bottleneck. On the other hand, bStorage balances the cached
data among sites and prevents the bottleneck when accessing the cached data,
thus reducing re-execution times In summary, bCompute is best suited for
compute-intensive workflows that generate smaller intermediate datasets
while bStorage is best suited for data-intensive workflows where executions
can be performed at the site where the data is stored.

5.7 Conclusion

In this chapter, we considered the efficient execution of data-intensive scien-
tific workflows in multisite cloud, using caching of intermediate data pro-
duced by previous workflows. However, caching intermediate data and
scheduling workflows to exploit such caching is complex, because of the
heterogeneity of the cloud data centers. In particular, workflow scheduling
must be cache-aware, in order to decide whether reusing cached data or
re-executing workflows.

We proposed a solution for cache-aware scheduling of scientific work-
flows in multisite cloud. Our solution is based on a distributed and parallel
architecture and includes new algorithms for adaptive caching, cache site
selection and dynamic workflow scheduling. We implemented our solution
in the OpenAlea workflow system and performed an extensive experimental
evaluation in a three-site cloud with a real application in plant phenotyping
(Phenomenal). We compared our solution with baseline algorithms which we
extended to exploit our caching architecture. The experimental results show
that our solution can yield major performance gains, reducing total time up
to 42% with 60% of same input data for each new execution.

111

Chapter 6

Conclusion

In this thesis, we addressed the problem of distributed management of sci-
entific workflows for high-throughput phenotyping (HTP) for plants, with
the objective of reducing workflow execution time. To this end, we proposed
new SWMS architectures with efficient caching and scheduling strategies to
enable sharing of intermediate big data among users in both monosite and
multisite cloud environments. The architectures and algorithms we proposed
are different in monosite and multisite cloud. In monosite cloud, the SWMS
includes a cache manager component that handles the caching and reusing of
intermediate data. Before workflow execution, the cache manager simplifies
the workflow according to the workflow topology and the existing cache
data. During execution, the cache manager manages the decisions on which
intermediate data will be cached using an adaptive algorithm. The algorithm
uses a cost model to determine the best trade-off between cache data storage
cost and re-execution cost. In multisite cloud, the SWMS includes both a cache
manager and a scheduling algorithm that balances the workload and cache
data between sites. The scheduling and cache management are based on a
dynamic algorithm that minimizes the total time cost of workflow execution
and cache data transfers. To evaluate our solution for cache management and
workflow scheduling, we implemented our algorithms in OpenAlea. For the
experiments, we used the Phenomenal workflow, a complex data-intensive
phenotyping workflow, from the PhenoArch HTP platform.

We compared our algorithms with baseline algorithms in monosite and
multisite cloud. Our results show that our approaches reduce the total time
(execution time and data transfer time) compared with baseline algorithms.
Moreover, our proposed architecture is able to successfully cache and share
the intermediate data automatically between users.

In this chapter, we summarize and discuss the contributions made in this
thesis. Then, we give some research directions for future work.

6.1 Contributions

A SWMS architecture to handle caching and cache-aware scheduling algo-
rithms when executing workflows in either monosite or multisite cloud.
The architecture is an extension of a state-of-the-art architecture, with new
components for storing and reusing cached data during workflow execution.
The architecture can be decomposed in two ways: i) in terms of functional

112 Chapter 6. Conclusion

layers which shows the different functions and components; and ii) in terms
of nodes and components which are involved in the processing of workflows.
The two components added to the functional layers are a cache manager and a
cache index. These two components are used by the SWMS during two steps of
workflow execution: 1) workflow preprocessing, to remove all fragments of
the workflow that do not need to be executed (producing a simplified work-
flow); and 2) cache provisioning, to decide at runtime which intermediate
data should be cached. In monosite cloud, the cache manager and cache index
focus on the decision to cache or not the intermediate data, based a trade-off
between the storage costs and the data re-generation costs. In multisite cloud,
the architecture is slightly different and enables both intra-site (inside a site)
and inter-site (between the sites) decisions. At the inter-site level, the global
scheduler and the cache manager uses data locality, the sites’ different re-
sources, and bandwidth for their decisions. At the intra-site level, the SWMS
manages the scheduling and the execution of workflow fragments.

A cost model that includes both financial and time costs for both workflow
execution and cache management. We tackled the problem of cache data
selection, to determine which intermediate data should be cached during
workflow execution. In monosite cloud, we designed a multi-objective cost
model that includes financial costs and time costs. The cost model computes
a trade-off between storage cost and the data regeneration cost. It includes
the data writing times, data loading time, execution times, data sizes, and
financial costs of storing and computing. In multisite cloud, in addition to
cache data selection, we considered the problems of determining at which
site the workflow fragments should be executed (execution site selection)
and at which site the cached data should be stored (cache site selection). In
multisite cloud, our cost model focuses on time costs only. Different from the
monosite cloud where our model is designed for task granularity, we make
the scheduling decision at workflow fragment granularity, which enables to
reduce the scheduling decisions latency and the data transfers between sites.
Our cost model is adapted for a heterogeneous multisite cloud, where the cost
of fragment execution and cache storage may greatly vary between the sites.
The cost model also includes data transfer times, workflow topology, site
resources, and availability. We designed a cost function for each of the three
decisions: cache data selection, execution site selection, and cache site selec-
tion. Since these decisions are not independent, we proposed a cost function to
make a global decision, based on the cost components for individual decisions.

Cache-aware scheduling algorithms for monosite and multisite clouds. We
addressed the problem of efficiently scheduling a workflow, taking into ac-
count cache management. To optimize workflow execution with cached data,
we proposed two scheduling algorithms. The first algorithm is designed
for monosite cloud and optimizes scheduling depending on the cache deci-
sions made by the cache manager. It combines both workflow scheduling
and cache decisions based on our cost model, and dynamically adapts to the
tasks’ variation in execution time and data sizes. The second algorithm is

6.1. Contributions 113

for multisite cloud and is based on the global decision from our cost model.
It takes the simplified workflow graph as input and, starting from the root
fragment, computes the global decision for each fragment. Recall that the
global decision combines individual decisions regarding cache data, cache
site, and execution site, before scheduling each fragment. It optimizes the
overall cost of the workflow execution with cached data. This algorithm is
performed at the inter-site level, by the global scheduler. Then, at the intra-site
level, the local scheduler manages the execution of the workflow fragments
using the cache decisions made by the global scheduler.

OpenAlea in the cloud. OpenAlea, which is widely used by plant analysis
scientists, was not adapted for cloud execution. To enable these scientists to
benefit from our caching solutions without changing their SWMS, we devel-
oped an extension to OpenAlea which enables the execution of workflows
in monosite and multisite cloud. The extension is based on the SWMS ar-
chitectures proposed. It now considers persistent caching and reusing data
when executing workflows. In monosite cloud, the extension manages the
workflow scheduling over the cluster nodes at a site. The cached data is
reused whenever possible and stored in the site nodes. In multisite cloud, the
extension manages the workflow execution at two levels: inter-site level, and
intra-site level. At the inter-site level, OpenAlea manages the partitioning,
cache decisions, and scheduling of workflow fragments. At the intra-site level,
OpenAlea manages the execution of workflow fragments and storage of new
cached data in the site nodes.

An experimental validation on a data-intensive plant phenotyping applica-
tion. To evaluate our solution for cache management and workflow schedul-
ing, we implemented our algorithms in OpenAlea and performed experiments
with the Phenomenal workflow, on real data. The Phenomenal workflow,
which is both data- and compute- intensive, is representative of many work-
flows used for plant analyses as it is composed of various activities that:
compress the data, expand the data, and require lots of memory and CPU. The
input dataset used is composed of time series of images from the PhenoArch
platform. For the cloud environment, we used the IFB-cloud with one site
composed of one data node and two identical compute nodes. We compared
three methods for cache provisioning: no cache, greedy, and adaptive (the
one we propose). We evaluated the speedup, and the financial cost in two
scenarios. First, we evaluated the speedup. Caching data adds an overhead
to the execution time. For the first execution, the adaptive method only adds
an overhead of 5,6% compared to the no cache method. While the greedy
method adds 40% of overhead. For three executions starting without cache,
the adaptive method is much faster than the other methods (about 2.5 and
1.5 times faster of 3 executions compared to the no cache method and the
greedy method on 80 vCPUs). Second, we evaluated the financial gain in the
scenario of multiple users that execute the workflow. The results show that
adaptive caching can yield major performance gains, e.g., up to a factor of
3.5 with 6 workflow re-executions. Third, we evaluated how the parameters

114 Chapter 6. Conclusion

of our approach impact the re-execution time, cache size and monetary cost
in the scenario where different workflows are executed independently but
share activities. Our experimental evaluation shows that the adaptive method
allows for caching only the relevant output data for subsequent re-executions
by other users, without incurring a high storage cost for the cache.

In multisite cloud, both the input and cached data can be distributed in the
cloud sites. For the cloud environment, we used the IFB-cloud with three sites
in France: Montpelier, Lyon, and Lille. We compared our solution with four
baselines. The first two baselines are: execution on multisite cloud without
cache, and execution on monosite cloud with a centralized cache, on which we
use a baseline multisite scheduling algorithm. Compared with a re-execution
without caching, our algorithm outperforms the baseline from 20% of reused
data. Below 20%, the overhead of caching outweighs its benefit. Compared
with a centralized cache, our algorithm outperforms the baseline in terms of
total time up to 60% in a heterogeneous multisite. Then, we compared our ap-
proach with two baselines multisite scheduling which we extended to exploit
our caching architecture. The experimental results show that our solution can
yield major performance gains, reducing total time up to 42% with 60% of the
same input data for each new execution. Moreover, our proposed architecture
is able to successfully cache and share the intermediate data automatically
between users.

6.2 Directions for Future Work

HTP applications generate more and more data that tend to be geo-distributed.
Experimental analyses performed on HTP datasets are resource-intensive,
thus sharing and reusing intermediate data becomes essential. Our contri-
butions represent an important step forward in experimental science such
as biology, where scientists extend existing workflows with new methods or
new parameters to test their hypotheses on datasets that have been previously
analyzed. Yet, the problem of caching data for workflows in the cloud still
raises important challenges. In this section, we propose some future research
directions:

• Machine learning for cache management. We used a cost model to
compute a trade-off between cache and re-execution costs to determine
which data should be cached. This method efficiently decides for the
tasks’ data that are either worth caching or not at all. However, for
many tasks whose behavior is unpredictable, the caching decision is
not always precise. Machine learning (ML) provides techniques that
learn from previous computations and cache decisions to generates new
decisions that are more precise and refined. ML techniques propose
solutions that take more information than our trade-off for caching deci-
sion, such as the workflow topology, and workflow metadata including
provenance. These techniques also present good results in cache man-
agement [133, 152, 139]. Vietri et al. [152] propose an ML technique of

6.2. Directions for Future Work 115

regret minimization to enhance cache replacement. Qin et al. [133] propose
an internet-scale cache with prefetching, driven by data analytics and
ML techniques, able to predict future requests and preemptively place
data close to the users that are more likely to request it in the future.
The method presented by Qin et al. could be used to better select the
sites to cache the data, or to move cache data before workflow execution.
Sadeghi et al. [139] propose an efficient caching policy that leverages
deep reinforcement learning and is capable of learning-and-adapting to
dynamic evolutions of file requests, and caching policies of cloud sites.

• Hot and cold cache. The cache manager proposed in this thesis only
considers an on-disk cache. Some of the cache data is almost never
reused but is still worth staying in the cache. On the other hand, some of
the cached data is reused often by multiple users. Such "hot" data would
benefit to be more accessible, in a "faster" cache, such as a memory cache.
Several works in the database community have studied the benefit of
hot and cold caching, that could be used with workflow caching [29, 23,
90]. For example, we could store the "hot" cache in main memory, and
the "cold" cache in on-disk storage.

• Cyclic workflows and algebraic operators. The work presented in this
thesis is adapted for acyclic workflows, which are the most common. Yet,
in several experiments where plant analyses are mixed with simulations,
workflows are cyclic or use algebraic operators [128], which brings new
challenges with data caching. Indeed, in algebraic workflows the same
activity will produce different output data depending on the state of the
cycle, which makes it difficult to cache and reuse data.

• Environmental cost model. Our cost model takes into account two ob-
jectives: minimizing the makespan and the financial costs. Some other
objectives, such as meeting deadline constraints, or following security
constraints would change the decisions on scheduling and data caching.
Moreover, the objective of minimizing environmental cost becomes
essential and could be integrated with the cache decision. In an hetero-
geneous multisite cloud, each site has different environmental costs for
both storage and computation. The environmental cost of writing and
reading from a disk is usually much cheaper than the computation and
the memory allocation costs. Yet, the in-memory cache can be extremely
costly and the speed up gain from reusing data makes the trade-off be-
tween data regeneration cost and storage cost complex to estimate. Thus,
the environmental cost could provide a different solution for workflow
scheduling and cache data distribution which should be considered for
greener experiments.

117

Bibliography

[1] Veronika Abramova, Jorge Bernardino, and Pedro Furtado. “Testing
cloud benchmark scalability with cassandra”. In: 2014 IEEE World
Congress on Services. IEEE. 2014, pp. 434–441.

[2] Ian F Adams et al. “Maximizing Efficiency by Trading Storage for
Computation.” In: HotCloud. 2009.

[3] Michel E Adiba. “Derived relations: a unified mechanism for views,
snapshots, and distributed data”. In: Proceedings of the seventh inter-
national conference on Very Large Data Bases-Volume 7. 1981, pp. 293–
305.

[4] Michel E Adiba and Bruce G Lindsay. “Database snapshots”. In: Pro-
ceedings of the sixth international conference on Very Large Data Bases-
Volume 6. 1980, pp. 86–91.

[5] Enis Afgan et al. “Galaxy CloudMan: delivering cloud compute clus-
ters”. In: BMC bioinformatics. Vol. 11. 12. BioMed Central. 2010, pp. 1–
6.

[6] Robert W Allard. Principles of plant breeding. John Wiley & Sons, 1999.

[7] Ilkay Altintas, Oscar Barney, and Efrat Jaeger-Frank. “Provenance
collection support in the kepler scientific workflow system”. In: Inter-
national Provenance and Annotation Workshop. 2006, pp. 118–132.

[8] Ilkay Altintas et al. “Kepler: an extensible system for design and execu-
tion of scientific workflows”. In: Proceedings. 16th International Confer-
ence on Scientific and Statistical Database Management, 2004. IEEE. 2004,
pp. 423–424.

[9] João Carlos de AR Gonçalves et al. “Using domain-specific data to en-
hance scientific workflow steering queries”. In: International Provenance
and Annotation Workshop. Springer. 2012, pp. 152–167.

[10] José Luis Araus and Jill E Cairns. “Field high-throughput phenotyping:
the new crop breeding frontier”. In: Trends in plant science 19.1 (2014),
pp. 52–61.

[11] Konstantine Arkoudas et al. “Verifying a file system implementation”.
In: International Conference on Formal Engineering Methods. Springer.
2004, pp. 373–390.

[12] Simon Artzet et al. OpenAlea.Phenomenal: A Workflow for Plant Phenotyp-
ing. Sept. 2018. DOI: 10.5281/zenodo.1436634.

[13] Simon Artzet et al. “Phenomenal: An automatic open source library
for 3D shoot architecture reconstruction and analysis for image-based
plant phenotyping”. In: (2020).

https://doi.org/10.5281/zenodo.1436634

118 Bibliography

[14] Adam Barker and Jano Van Hemert. “Scientific workflow: a survey and
research directions”. In: International Conference on Parallel Processing
and Applied Mathematics. Springer. 2007, pp. 746–753.

[15] Louis Bavoil et al. “Vistrails: Enabling interactive multiple-view visu-
alizations”. In: VIS 05. IEEE Visualization, 2005. IEEE. 2005, pp. 135–
142.

[16] Ralph Bergmann and Yolanda Gil. “Retrieval of semantic workflows
with knowledge intensive similarity measures”. In: International Con-
ference on Case-Based Reasoning. Springer. 2011, pp. 17–31.

[17] Sergey Blagodurov et al. “Multi-objective job placement in clusters”.
In: SC’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE. 2015, pp. 1–12.

[18] Jose A Blakeley, Per-Ake Larson, and Frank Wm Tompa. “Efficiently
updating materialized views”. In: ACM SIGMOD Record 15.2 (1986),
pp. 61–71.

[19] Alexandre G de Brevern et al. “Trends in IT innovation to build a
next generation bioinformatics solution to manage and analyse bio-
logical big data produced by NGS technologies”. In: BioMed research
international 2015 (2015).

[20] Nicolas Brichet et al. “A robot-assisted imaging pipeline for tracking
the growths of maize ear and silks in a high-throughput phenotyping
platform”. In: Plant Methods 13.1 (2017), pp. 1–12.

[21] Nadine Brisson et al. “Why are wheat yields stagnating in Europe? A
comprehensive data analysis for France”. In: Field Crops Research 119.1
(2010), pp. 201–212.

[22] Piotr Bryk et al. “Storage-aware algorithms for scheduling of workflow
ensembles in clouds”. In: Journal of Grid Computing 14.2 (2016), pp. 359–
378.

[23] Omran Bukhres and Jin Jing. “Performance analysis of adaptive caching
algorithms in mobile environments”. In: Information Sciences 95.1-2
(1996), pp. 1–27.

[24] Marc Bux and Ulf Leser. “Parallelization in scientific workflow man-
agement systems”. In: arXiv preprint arXiv:1303.7195 (2013).

[25] Rajkumar Buyya et al. “Cloud computing and emerging IT platforms:
Vision, hype, and reality for delivering computing as the 5th utility”.
In: Future Generation computer systems 25.6 (2009), pp. 599–616.

[26] Llorenç Cabrera-Bosquet et al. “High-throughput estimation of inci-
dent light, light interception and radiation-use efficiency of thousands
of plants in a phenotyping platform”. In: New Phytologist 212.1 (2016),
pp. 269–281.

[27] Jacek Cała and Paolo Missier. “Provenance Annotation and Analysis
to Support Process Re-computation”. In: International Provenance and
Annotation Workshop. Springer. 2018, pp. 3–15.

Bibliography 119

[28] Steven P Callahan et al. “VisTrails: visualization meets data manage-
ment”. In: ACM SIGMOD Int. Conf. on Management of Data (SIGMOD).
2006, pp. 745–747.

[29] Michael J Carey et al. “Data caching tradeoffs in client-server DBMS
architectures”. In: Proceedings of the 1991 ACM SIGMOD international
conference on Management of data. 1991, pp. 357–366.

[30] Artem Chebotko et al. “RDFProv: A relational RDF store for querying
and managing scientific workflow provenance”. In: Data & Knowledge
Engineering 69.8 (2010), pp. 836–865.

[31] Tsu-Wei Chen et al. “Genetic and environmental dissection of biomass
accumulation in multi-genotype maize canopies”. In: Journal of experi-
mental botany 70.9 (2019), pp. 2523–2534.

[32] Wanghu Chen et al. “Enhancing smart re-run of Kepler scientific work-
flows based on near optimum provenance caching in cloud”. In: IEEE
World Congress on Services (SERVICES). 2014, pp. 378–384.

[33] Weiwei Chen and Ewa Deelman. “Partitioning and scheduling work-
flows across multiple sites with storage constraints”. In: International
Conference on Parallel Processing and Applied Mathematics. Springer. 2011,
pp. 11–20.

[34] Weiwei Chen et al. “Balanced task clustering in scientific workflows”.
In: 2013 IEEE 9th International Conference on e-Science. IEEE. 2013, pp. 188–
195.

[35] Fernando Chirigati and Juliana Freire. Provenance and Reproducibility.
2018.

[36] Fernando Chirigati et al. “Evaluating parameter sweep workflows in
high performance computing”. In: Proceedings of the 1st ACM SIGMOD
Workshop on Scalable Workflow Execution Engines and Technologies. 2012,
pp. 1–10.

[37] Jieun Choi, Theodora Adufu, and Yoonhee Kim. “Data-locality aware
scientific workflow scheduling methods in HPC cloud environments”.
In: International Journal of Parallel Programming 45.5 (2017), pp. 1128–
1141.

[38] Mosharaf Chowdhury et al. “Managing data transfers in computer
clusters with orchestra”. In: ACM SIGCOMM Computer Communication
Review 41.4 (2011), pp. 98–109.

[39] Philip Church, Andrzej Goscinski, and Christophe Lefèvre. “Exposing
HPC and sequential applications as services through the development
and deployment of a SaaS cloud”. In: Future Generation Computer Sys-
tems 43 (2015), pp. 24–37.

[40] Sarah Cohen-Boulakia et al. “Distilling structure in Taverna scientific
workflows: a refactoring approach”. In: BMC bioinformatics 15.S1 (2014),
S12.

120 Bibliography

[41] Flavio Costa et al. “Capturing and querying workflow runtime prove-
nance with PROV: a practical approach”. In: Proceedings of the Joint
EDBT/ICDT 2013 Workshops. 2013, pp. 282–289.

[42] Steve Crago et al. “Heterogeneous cloud computing”. In: 2011 IEEE
International Conference on Cluster Computing. IEEE. 2011, pp. 378–385.

[43] Daniel Crawl, Jianwu Wang, and Ilkay Altintas. “Provenance for mapreduce-
based data-intensive workflows”. In: Proceedings of the 6th workshop on
Workflows in support of large-scale science. 2011, pp. 21–30.

[44] Daniel CM De Oliveira, Ji Liu, and Esther Pacitti. “Data-intensive
workflow management: for clouds and data-intensive and scalable
computing environments”. In: Synthesis Lectures on Data Management
14.4 (2019), pp. 1–179.

[45] Ewa Deelman, Gideon Juve, and G Bruce Berriman. “Using Clouds for
Science, is it just Kicking the Can down the Road?.” In: CLOSER. 2012,
pp. 127–134.

[46] Ewa Deelman et al. “Pegasus, a workflow management system for
science automation”. In: Future Generation Computer Systems 46 (2015),
pp. 17–35.

[47] Ewa Deelman et al. “Pegasus: A framework for mapping complex sci-
entific workflows onto distributed systems”. In: Scientific Programming
13.3 (2005), pp. 219–237.

[48] Ewa Deelman et al. “The cost of doing science on the cloud: the mon-
tage example”. In: International Conference forHigh Performance Comput-
ing, Networking, Storage and Analysis. 2008, pp. 1–12.

[49] Ewa Deelman et al. “Workflows and e-Science: An overview of work-
flow system features and capabilities”. In: Future generation computer
systems 25.5 (2009), pp. 528–540.

[50] Saumen C Dey et al. “UP & DOWN: Improving Provenance Precision
by Combining Workflow-and Trace-Level Information”. In: USENIX
Workshop on the Theory and Practice of Provenance (TAPP). 2014.

[51] Francisco Rodrigo Duro et al. “Exploiting data locality in Swift/T
workflows using Hercules”. In: Proc. NESUS Workshop. 2014.

[52] Iman Elghandour and Ashraf Aboulnaga. “ReStore: reusing results of
MapReduce jobs”. In: Proceedings of the VLDB Endowment 5.6 (2012),
pp. 586–597.

[53] Hamid Mohammadi Fard, Thomas Fahringer, and Radu Prodan. “Budget-
constrained resource provisioning for scientific applications in clouds”.
In: 2013 IEEE 5th International Conference on Cloud Computing Technology
and Science. Vol. 1. IEEE. 2013, pp. 315–322.

[54] Juliana Freire et al. “Managing rapidly-evolving scientific workflows”.
In: International Provenance and Annotation Workshop. Springer. 2006,
pp. 10–18.

Bibliography 121

[55] Luiz MR Gadelha Jr et al. “Provenance traces of the swift parallel
scripting system”. In: Proceedings of the Joint EDBT/ICDT 2013 Work-
shops. 2013, pp. 325–326.

[56] K Ganga and S Karthik. “A fault tolerent approach in scientific work-
flow systems based on cloud computing”. In: 2013 International Con-
ference on Pattern Recognition, Informatics and Mobile Engineering. IEEE.
2013, pp. 387–390.

[57] Michael R Garey and David S Johnson. Computers and intractability.
Vol. 174. freeman San Francisco, 1979.

[58] Daniel Garijo et al. “Common motifs in scientific workflows: An empir-
ical analysis”. In: Future Generation Computer Systems (FGCS) 36 (2014),
pp. 338–351.

[59] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google
file system”. In: Proceedings of the nineteenth ACM symposium on Operat-
ing systems principles. 2003, pp. 29–43.

[60] Yolanda Gil et al. “Wings for Pegasus: A Semantic Approach to Creat-
ing Very Large Scientific Workflows.” In: OWLED. 2006.

[61] Jeremy Goecks et al. “Galaxy: a comprehensive approach for support-
ing accessible, reproducible, and transparent computational research
in the life sciences”. In: Genome biology 11.8 (2010), R86.

[62] Florie Gosseau et al. “Heliaphen, an outdoor high-throughput pheno-
typing platform for genetic studies and crop modeling”. In: Frontiers
in plant science 9 (2019), p. 1908.

[63] Tibor Gottdank. “Introduction to the ws-pgrade/guse science gateway
framework”. In: Science Gateways for Distributed Computing Infrastruc-
tures. Springer, 2014, pp. 19–32.

[64] Vinicius M Gottin et al. “Automatic Caching Decision for Scientific
Dataflow Execution in Apache Spark”. In: Proceedings of the 5th ACM
SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond.
ACM. 2018, p. 2.

[65] Robert L Grossman et al. “Compute and storage clouds using wide area
high performance networks”. In: Future Generation Computer Systems
25.2 (2009), pp. 179–183.

[66] Ashish Gupta, Hosagrahar V Jagadish, and Inderpal Singh Mumick.
“Data integration using self-maintainable views”. In: International Con-
ference on Extending Database Technology. Springer. 1996, pp. 140–144.

[67] Ashish Gupta and Iderpal Singh Mumick. Materialized views: techniques,
implementations, and applications. MIT press, 1999.

[68] Ashish Gupta, Inderpal Singh Mumick, and Venkatramanan Siva Sub-
rahmanian. “Maintaining views incrementally”. In: ACM SIGMOD
Record 22.2 (1993), pp. 157–166.

122 Bibliography

[69] Himanshu Gupta and Inderpal Singh Mumick. “Selection of views
to materialize under a maintenance cost constraint”. In: International
Conference on Database Theory. Springer. 1999, pp. 453–470.

[70] Mihael Hategan, Justin Wozniak, and Ketan Maheshwari. “Coasters:
uniform resource provisioning and access for clouds and grids”. In:
2011 Fourth IEEE International Conference on Utility and Cloud Computing.
IEEE. 2011, pp. 114–121.

[71] Elliot L Heffner, Mark E Sorrells, and Jean-Luc Jannink. “Genomic
selection for crop improvement”. In: Crop Science 49.1 (2009), pp. 1–12.

[72] Gaëtan Heidsieck et al. “Adaptive Caching for Data-Intensive Scientific
Workflows in the Cloud”. In: Int. Conf. on Database and Expert Systems
Applications (DEXA). 2019, pp. 452–466.

[73] Gaëtan Heidsieck et al. “Distributed Caching of Scientific Workflows
in Multisite Cloud”. In: International Conference on Database and Expert
Systems Applications. Springer. 2020, pp. 51–65.

[74] Gaëtan Heidsieck et al. “Efficient Execution of Scientific Workflows in
the Cloud Through Adaptive Caching”. In: Transactions on Large-Scale
Data-and Knowledge-Centered Systems XLIV. Springer, 2020, pp. 41–66.

[75] R Heidsieck et al. “Dual target x-ray tubes for mammographic exam-
inations: Dose reduction with image quality equivalent to that with
standard mammographic tubes”. In: Radiology 181 (1991), p. 311.

[76] D Hensgen et al. “Dynamic matching and scheduling of a class of
independent tasks onto heterogeneous computing systems”. In: Proc.
Heterogeneous Computing Workshop. 1999.

[77] Felipe Horta et al. “Using provenance to visualize data from large-scale
experiments”. In: 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis. IEEE. 2012, pp. 1418–1419.

[78] Gregor Joeris and Otthein Herzog. “Managing evolving workflow
specifications”. In: Proceedings. 3rd IFCIS International Conference on
Cooperative Information Systems (Cat. No. 98EX122). IEEE. 1998, pp. 310–
319.

[79] Astrid Junker et al. “Optimizing experimental procedures for quantita-
tive evaluation of crop plant performance in high throughput pheno-
typing systems”. In: Frontiers in plant science 5 (2015), p. 770.

[80] Gideon Juve and Ewa Deelman. “Scientific workflows in the cloud”.
In: Grids, clouds and virtualization. Springer, 2011, pp. 71–91.

[81] Steve Kelling et al. “Data-intensive science: a new paradigm for biodi-
versity studies”. In: BioScience 59.7 (2009), pp. 613–620.

[82] Jihie Kim et al. “Provenance trails in the wings/pegasus system”.
In: Concurrency and Computation: Practice and Experience 20.5 (2008),
pp. 587–597.

Bibliography 123

[83] Norbert Kirchgessner et al. “The ETH field phenotyping platform FIP:
a cable-suspended multi-sensor system”. In: Functional Plant Biology
44.1 (2017), pp. 154–168.

[84] James E Koltes et al. “A vision for development and utilization of
high-throughput phenotyping and big data analytics in livestock”. In:
Frontiers in Genetics 10 (2019).

[85] David Koop et al. “Bridging workflow and data provenance using
strong links”. In: Int. Conf. on Scientific and Statistical Database Manage-
ment (SSDBM). 2010, pp. 397–415.

[86] Prakashan Korambath et al. “Deploying kepler workflows as services
on a cloud infrastructure for smart manufacturing”. In: Procedia Com-
puter Science 29 (2014), pp. 2254–2259.

[87] Yu-Kwong Kwok and Ishfaq Ahmad. “Efficient scheduling of arbitrary
task graphs to multiprocessors using a parallel genetic algorithm”. In:
Journal of Parallel and Distributed Computing 47.1 (1997), pp. 58–77.

[88] Sebastien Lacube et al. “Distinct controls of leaf widening and elon-
gation by light and evaporative demand in maize”. In: Plant, Cell &
Environment 40.9 (2017), pp. 2017–2028.

[89] JK Ladha et al. “How extensive are yield declines in long-term rice–
wheat experiments in Asia?” In: Field Crops Research 81.2-3 (2003),
pp. 159–180.

[90] Justin J Levandoski, Per-Åke Larson, and Radu Stoica. “Identifying
hot and cold data in main-memory databases”. In: 2013 IEEE 29th
International Conference on Data Engineering (ICDE). IEEE. 2013, pp. 26–
37.

[91] Chunhyeok Lim et al. “Storing, reasoning, and querying OPM-compliant
scientific workflow provenance using relational databases”. In: Future
Generation Computer Systems 27.6 (2011), pp. 781–789.

[92] Ji Liu. “Gestion multisite de workflows scientifiques dans le cloud”.
PhD thesis. Montpellier, 2016.

[93] Ji Liu et al. “A survey of data-intensive scientific workflow manage-
ment”. In: Journal of Grid Computing 13.4 (2015), pp. 457–493.

[94] Ji Liu et al. “Efficient Scheduling of Scientific Workflows using Hot
Metadata in a Multisite Cloud”. In: IEEE Trans. on Knowledge and Data
Engineering (2018), pp. 1–20.

[95] Ji Liu et al. “Multi-objective scheduling of Scientific Workflows in
multisite clouds”. In: Future Generation Computer Systems(FGCS) 63
(2016), pp. 76–95.

[96] Ji Liu et al. “Scientific workflow partitioning in multisite cloud”. In:
European Conf. on Parallel Processing (Euro-Par). 2014, pp. 105–116.

[97] Ji Liu et al. “Scientific Workflow Scheduling with Provenance Data in a
Multisite Cloud”. In: Trans. on Large-Scale Data- and Knowledge-Centered
Systems (TLDKS) 33 (2017), pp. 80–112.

124 Bibliography

[98] Yuan Luo and Beth Plale. “Hierarchical mapreduce programming
model and scheduling algorithms”. In: 2012 12th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012).
IEEE. 2012, pp. 769–774.

[99] Amanda H Lynch et al. “Influence of savanna fire on Australian mon-
soon season precipitation and circulation as simulated using a dis-
tributed computing environment”. In: Geophysical Research Letters 34.20
(2007).

[100] Malawski Maciej. “Cost-and deadline-constrained provisioning for
scientific workflow ensembles in IaaS clouds”. In: Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society Press. 2012.

[101] Ketan Maheshwari et al. “Improving multisite workflow performance
using model-based scheduling”. In: 2014 43rd International Conference
on Parallel Processing. IEEE. 2014, pp. 131–140.

[102] Phillip Mates et al. “Crowdlabs: Social analysis and visualization
for the sciences”. In: International conference on scientific and statistical
database management. Springer. 2011, pp. 555–564.

[103] Marta Mattoso et al. “Dynamic steering of HPC scientific workflows: A
survey”. In: Future Generation Computer Systems 46 (2015), pp. 100–113.

[104] Reyazul Rouf Mir et al. “High-throughput phenotyping for crop im-
provement in the genomics era”. In: Plant Science 282 (2019), pp. 60–
72.

[105] Paolo Missier and Jacek Cala. “Efficient Re-computation of Big Data
Analytics Processes in the Presence of Changes: Computational Frame-
work, Reference Architecture, and Applications”. In: 2019 IEEE Inter-
national Congress on Big Data (BigDataCongress). IEEE. 2019, pp. 24–
34.

[106] L Moreau et al. “The PROV data model and abstract syntax notation”.
In: W3C Working Draft.(Work in progress.) (2011).

[107] Ashish Nagavaram et al. “A cloud-based dynamic workflow for mass
spectrometry data analysis”. In: 2011 IEEE Seventh International Confer-
ence on eScience. IEEE. 2011, pp. 47–54.

[108] Pascal Neveu et al. “Dealing with multi-source and multi-scale infor-
mation in plant phenomics: the ontology-driven Phenotyping Hybrid
Information System”. In: New Phytologist 221.1 (2019), pp. 588–601.

[109] Bogdan Nicolae et al. “BlobSeer: Next-generation data management
for large scale infrastructures”. In: Journal of Parallel and distributed
computing 71.2 (2011), pp. 169–184.

[110] Eduardo Ogasawara et al. “An algebraic approach for data-centric
scientific workflows”. In: Proc. of the VLDB Endowment (PVLDB) 4.12
(2011), pp. 1328–1339.

Bibliography 125

[111] Eduardo Ogasawara et al. “Chiron: a parallel engine for algebraic
scientific workflows”. In: Concurrency and Computation: Practice and
Experience 25.16 (2013), pp. 2327–2341.

[112] Tom Oinn et al. “Taverna: a tool for the composition and enactment
of bioinformatics workflows”. In: Bioinformatics 20.17 (2004), pp. 3045–
3054.

[113] Daniel de Oliveira, Fernanda Araujo Baião, and Marta Mattoso. “To-
wards a taxonomy for cloud computing from an e-science perspective”.
In: Cloud Computing. Computer Communications and Networks. Springer,
2010, pp. 47–62.

[114] Daniel de Oliveira et al. “A provenance-based adaptive scheduling
heuristic for parallel scientific workflows in clouds”. In: Journal of grid
Computing 10.3 (2012), pp. 521–552.

[115] Daniel de Oliveira et al. “An adaptive parallel execution strategy for
cloud-based scientific workflows”. In: Concurrency and Computation:
Practice and Experience 24.13 (2012), pp. 1531–1550.

[116] Daniel de Oliveira et al. “Scicumulus: A lightweight cloud middleware
to explore many task computing paradigm in scientific workflows”. In:
2010 IEEE 3rd International Conference on Cloud Computing. IEEE. 2010,
pp. 378–385.

[117] Christopher Olston et al. “Automatic Optimization of Parallel Dataflow
Programs.” In: USENIX Annual Technical Conference. 2008, pp. 267–273.

[118] Michal Owsiak et al. “Running simultaneous kepler sessions for the
parallelization of parametric scans and optimization studies applied
to complex workflows”. In: Journal of Computational Science 20 (2017),
pp. 103–111.

[119] M Tamer Özsu and Patrick Valduriez. Principles of distributed database
systems. Vol. 2. Springer, 1999.

[120] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database
Systems, Fourth Edition. Springer, 2020.

[121] Suraj Pandey et al. “A particle swarm optimization-based heuristic for
scheduling workflow applications in cloud computing environments”.
In: 2010 24th IEEE international conference on advanced information net-
working and applications. IEEE. 2010, pp. 400–407.

[122] Evangelia A Papoutsoglou et al. “Enabling reusability of plant phe-
nomic datasets with MIAPPE 1.1”. In: New Phytologist 227.1 (2020),
pp. 260–273.

[123] Laura S Peirone et al. “Assessing the efficiency of phenotyping early
traits in a greenhouse automated platform for predicting drought
tolerance of soybean in the field”. In: Frontiers in plant science 9 (2018),
p. 587.

[124] James Perry et al. “QCDGrid: A grid resource for Quantum Chromo-
dynamics”. In: Journal of Grid Computing 3.1-2 (2005), p. 113.

126 Bibliography

[125] Ioan Petri et al. “Coordinating multi-site construction projects using
federated clouds”. In: Automation in Construction 83 (2017), pp. 273–284.

[126] Luis Pineda-Morales, Alexandru Costan, and Gabriel Antoniu. “To-
wards multi-site metadata management for geographically distributed
cloud workflows”. In: IEEE International Conference on Cluster Comput-
ing (CLUSTER). 2015, pp. 294–303.

[127] Luis Pineda-Morales et al. “Managing hot metadata for scientific work-
flows on multisite clouds”. In: 2016 IEEE International Conference on Big
Data (Big Data). IEEE. 2016, pp. 390–397.

[128] Christophe Pradal et al. “InfraPhenoGrid: a scientific workflow in-
frastructure for plant phenomics on the grid”. In: Future Generation
Computer Systems (FGCS) 67 (2017), pp. 341–353.

[129] Christophe Pradal et al. “OpenAlea: a visual programming and component-
based software platform for plant modelling”. In: Functional plant biol-
ogy 35.10 (2008), pp. 751–760.

[130] Christophe Pradal et al. “OpenAlea: scientific workflows combining
data analysis and simulation”. In: Int. Conf. on Scientific and Statistical
Database Management (SSDBM). 2015, 11:1–11:6.

[131] Kenneth W Preslan et al. “A 64-bit, shared disk file system for Linux”.
In: 16th IEEE Symposium on Mass Storage Systems in cooperation with the
7th NASA Goddard Conference on Mass Storage Systems and Technologies
(Cat. No. 99CB37098). IEEE. 1999, pp. 22–41.

[132] Rawaa Qasha et al. “Sharing and performance optimization of repro-
ducible workflows in the cloud”. In: Future Generation Computer Systems
98 (2019), pp. 487–502.

[133] Yubo Qin et al. “Towards a smart, internet-scale cache service for data
intensive scientific applications”. In: Proceedings of the 10th Workshop on
Scientific Cloud Computing. 2019, pp. 11–18.

[134] Arcot Rajasekar et al. “iRODS primer: integrated rule-oriented data
system”. In: Synthesis Lectures on Information Concepts, Retrieval, and
Services 2.1 (2010), pp. 1–143.

[135] Deepak K Ray et al. “Recent patterns of crop yield growth and stagna-
tion”. In: Nature communications 3.1 (2012), pp. 1–7.

[136] Maria Alejandra Rodriguez and Rajkumar Buyya. “A taxonomy and
survey on scheduling algorithms for scientific workflows in IaaS cloud
computing environments”. In: Concurrency and Computation: Practice
and Experience 29.8 (2017), e4041.

[137] Maria Alejandra Rodriguez and Rajkumar Buyya. “Deadline based
resource provisioningand scheduling algorithm for scientific work-
flows on clouds”. In: IEEE transactions on cloud computing 2.2 (2014),
pp. 222–235.

[138] Thomas Roitsch et al. “New sensors and data-driven approaches—A
path to next generation phenomics”. In: Plant Science 282 (2019), pp. 2–
10.

Bibliography 127

[139] Alireza Sadeghi, Gang Wang, and Georgios B Giannakis. “Adaptive
Caching via Deep Reinforcement Learning.” In: (2019).

[140] Russel Sandberg et al. “Innovations in internetworking. chapter Design
and Implementation of the Sun Network Filesystem”. In: Artech House,
Inc., Norwood, MA, USA 2 (1988), pp. 3–3.

[141] Frank B Schmuck and Roger L Haskin. “GPFS: A Shared-Disk File
System for Large Computing Clusters.” In: FAST. Vol. 2. 19. 2002.

[142] Peter Selby et al. “BrAPI—an application programming interface for
plant breeding applications”. In: Bioinformatics 35.20 (2019), pp. 4147–
4155.

[143] Srinath Shankar and David J DeWitt. “Data driven workflow planning
in cluster management systems”. In: Proceedings of the 16th international
symposium on High performance distributed computing. 2007, pp. 127–136.

[144] Anna Sher et al. “Incorporating Local Ca 2+ Dynamics into Single
Cell Ventricular Models”. In: International Conference on Computational
Science. Springer. 2008, pp. 66–75.

[145] Hervé Sinoquet, Pierre Rivet, Christophe Godin, et al. “Assessment of
the three-dimensional architecture of walnut trees using digitising.”
In: (1997).

[146] Wibke Sudholt et al. “Parameter scan of an effective group difference
pseudopotential using grid computing”. In: New Generation Computing
22.2 (2004), pp. 137–146.

[147] François Tardieu et al. “Plant phenomics, from sensors to knowledge”.
In: Current Biology 27.15 (2017), R770–R783.

[148] Gabor Terstyanszky et al. “Enabling scientific workflow sharing through
coarse-grained interoperability”. In: Future Generation Computer Sys-
tems 37 (2014), pp. 46–59.

[149] Alexander Thomson and Daniel J Abadi. “CalvinFS: Consistent {WAN}
Replication and Scalable Metadata Management for Distributed File
Systems”. In: 13th {USENIX} Conference on File and Storage Technologies
({FAST} 15). 2015, pp. 1–14.

[150] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. “Performance-effective
and low-complexity task scheduling for heterogeneous computing”. In:
IEEE transactions on parallel and distributed systems 13.3 (2002), pp. 260–
274.

[151] Radu Tudoran et al. “Tomusblobs: Towards communication-efficient
storage for mapreduce applications in azure”. In: 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid
2012). IEEE. 2012, pp. 427–434.

[152] Giuseppe Vietri et al. “Driving cache replacement with ml-based lecar”.
In: 10th {USENIX}Workshop on Hot Topics in Storage and File Systems
(HotStorage 18). 2018.

128 Bibliography

[153] Nicolas Virlet et al. “Field Scanalyzer: An automated robotic field
phenotyping platform for detailed crop monitoring”. In: Functional
Plant Biology 44.1 (2017), pp. 143–153.

[154] Jens-Sönke Vöckler et al. “Experiences using cloud computing for a
scientific workflow application”. In: Proceedings of the 2nd international
workshop on Scientific cloud computing. 2011, pp. 15–24.

[155] Ashish Vulimiri et al. “WANalytics: Analytics for a Geo-Distributed
Data-Intensive World.” In: CIDR. 2015.

[156] Jianwu Wang and Ilkay Altintas. “Early cloud experiences with the
kepler scientific workflow system”. In: Procedia Computer Science 9
(2012), pp. 1630–1634.

[157] Jianwu Wang, Daniel Crawl, and Ilkay Altintas. “Kepler+ Hadoop: a
general architecture facilitating data-intensive applications in scientific
workflow systems”. In: Proceedings of the 4th Workshop on Workflows in
Support of Large-Scale Science. 2009, pp. 1–8.

[158] Xu Wang et al. “Field-based high-throughput phenotyping of plant
height in sorghum using different sensing technologies”. In: Plant
Methods 14.1 (2018), p. 53.

[159] Polyane Wercelens et al. “Bioinformatics Workflows With NoSQL
Database in Cloud Computing”. In: Evolutionary Bioinformatics 15
(2019), p. 1176934319889974.

[160] Michael Wilde et al. “Swift: A language for distributed parallel script-
ing”. In: Parallel Computing 37.9 (2011), pp. 633–652.

[161] Dean N Williams et al. “The Earth System Grid: Enabling access to
multimodel climate simulation data”. In: Bulletin of the American Meteo-
rological Society 90.2 (2009), pp. 195–206.

[162] Katherine Wolstencroft et al. “The Taverna workflow suite: designing
and executing workflows of Web Services on the desktop, web or in
the cloud”. In: Nucleic acids research 41.W1 (2013), W557–W561.

[163] Justin M Wozniak et al. “Swift/t: Large-scale application composition
via distributed-memory dataflow processing”. In: 2013 13th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing. IEEE.
2013, pp. 95–102.

[164] Fuhui Wu, Qingbo Wu, and Yusong Tan. “Workflow scheduling in
cloud: a survey”. In: The Journal of Supercomputing 71.9 (2015), pp. 3373–
3418.

[165] Ustun Yildiz, Adnene Guabtni, and Anne HH Ngu. “Business ver-
sus scientific workflows: A comparative study”. In: 2009 Congress on
Services-I. IEEE. 2009, pp. 340–343.

[166] Jia Yu and Rajkumar Buyya. “A taxonomy of workflow management
systems for grid computing”. In: Journal of Grid Computing 3.3-4 (2005),
pp. 171–200.

Bibliography 129

[167] Jia Yu, Rajkumar Buyya, and Kotagiri Ramamohanarao. “Workflow
scheduling algorithms for grid computing”. In: Metaheuristics for schedul-
ing in distributed computing environments. Springer, 2008, pp. 173–214.

[168] Zhifeng Yu and Weisong Shi. “An adaptive rescheduling strategy for
grid workflow applications”. In: 2007 IEEE International Parallel and
Distributed Processing Symposium. IEEE. 2007, pp. 1–8.

[169] Dong Yuan et al. “A cost-effective strategy for intermediate data stor-
age in scientific cloud workflow systems”. In: IEEE Int. Symp. on Parallel
& Distributed Processing (IPDPS). 2010, pp. 1–12.

[170] Dong Yuan et al. “A data placement strategy in scientific cloud work-
flows”. In: Future Generation Computer Systems 26.8 (2010), pp. 1200–
1214.

[171] Dong Yuan et al. “A highly practical approach toward achieving mini-
mum data sets storage cost in the cloud”. In: IEEE Trans. on Parallel and
Distributed Systems 24.6 (2013), pp. 1234–1244.

[172] Jia Zhang, Daniel Kuc, and Shiyong Lu. “Confucius: A tool supporting
collaborative scientific workflow composition”. In: IEEE Transactions
on Services Computing 7.1 (2012), pp. 2–17.

[173] Jia Zhang et al. “Bridging vistrails scientific workflow management
system to high performance computing”. In: 2013 IEEE Ninth World
Congress on Services. IEEE. 2013, pp. 29–36.

[174] Jinghui Zhang, Junzhou Luo, and Fang Dong. “Scheduling of scientific
workflow in non-dedicated heterogeneous multicluster platform”. In:
Journal of Systems and Software 86.7 (2013), pp. 1806–1818.

[175] Jinghui Zhang et al. “Towards optimized scheduling for data-intensive
scientific workflow in multiple datacenter environment”. In: Concur-
rency and Computation: Practice and Experience 27.18 (2015), pp. 5606–
5622.

[176] Kaimin Zhang et al. “Smart caching for web browsers”. In: Proceedings
of the 19th international conference on World wide web. 2010, pp. 491–500.

[177] Shubin Zhang et al. “Accelerating MapReduce with distributed mem-
ory cache”. In: 2009 15th International Conference on Parallel and Dis-
tributed Systems. IEEE. 2009, pp. 472–478.

[178] Yong Zhao et al. “Swift: Fast, reliable, loosely coupled parallel compu-
tation”. In: 2007 IEEE Congress on Services (Services 2007). IEEE. 2007,
pp. 199–206.

	Résumé
	Abstract
	Résumé Étendu
	Remerciements
	Introduction
	Motivations
	Thesis Context
	Contributions
	Organization of the Thesis

	State of the Art
	Overview and Motivations
	Workflow Management
	Basic Concepts
	Architecture of SWMSs

	Scientific Workflow Management in the Cloud
	Cloud Computing
	Multisite Cloud
	Data Storage
	Workflow Scheduling in the Cloud

	Data Caching for Workflows
	Data Caching in Computer Systems
	Data Caching in SWMSs
	Scheduling and Caching in SWMSs

	Conclusion

	Use Case in Plant Phenotyping
	High-throughput Plant Phenotyping
	Context
	High-Throughput Phenotyping Platforms
	Infrastructures

	Automatic Phenotyping in OpenAlea
	OpenAlea
	Phenomenal Library
	Applications with Common Data

	Conclusion

	Adaptive Caching for Workflows in Monosite Cloud
	Introduction
	Related works
	Monosite Cloud SWMS Architecture
	Cost Model
	Cache Management
	Experimental Validation
	Experimental Setup
	Experiments
	Discussion

	Conclusion

	Cache-Aware Scheduling for Workflows in Multisite Cloud
	Introduction
	Use Case: Intermediate Data Reuse in Geo-dis- tributed Clouds
	Related Works
	Multisite SWMS Architecture
	Cache-aware Workflow Execution
	Distributed Workflow Execution Overview
	Cache Data Selection
	Cache Site Selection
	Execution Site Selection
	Global Decision
	Cache-Aware Scheduling

	Experimental Validation
	Experimental Setup
	Experiments
	Discussion

	Conclusion

	Conclusion
	Contributions
	Directions for Future Work

	Bibliography

