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Abstract

Images are nowadays a standard and mature medium of communication. They appear in

our day to day life and therefore they are subject to concerns about security. In this work,

we study different methods to assess the integrity of images. Because of a context of high

volume and versatility of tampering techniques and image sources, our work is driven by the

necessity to develop flexible methods to adapt the diversity of images.

We first focus on manipulations detection through statistical modeling of the images. Ma-

nipulations are elementary operations such as blurring, noise addition, or compression. In

this context, we are more precisely interested in the effects of pre-processing. Because of

storage limitation or other reasons, images can be resized or compressed just after their cap-

ture. Addition of a manipulation would then be applied on an already pre-processed image.

We show that a pre-resizing of test data induces a drop of performance for detectors trained

on full-sized images. Based on these observations, we introduce two methods to counterbal-

ance this performance loss for a pipeline of classification based on Gaussian Mixture Models.

This pipeline models the local statistics, on patches, of natural images. It allows us to pro-

pose adaptation of the models driven by the changes in local statistics. Our first method of

adaptation is fully unsupervised while the second one, only requiring a few labels, is weakly

supervised. Thus, our methods are flexible to adapt versatility of source of images.

Then we move to falsification detection and more precisely to copy-move identification.

Copy-move is one of the most common image tampering technique. A source area is copied

into a target area within the same image. The vast majority of existing detectors identify

indifferently the two zones (source and target). In an operational scenario, only the target

area represents a tampering area and is thus an area of interest. Accordingly, we propose

a method to disentangle the two zones. Our method takes advantage of local modeling of

statistics in natural images with Gaussian Mixture Model. The procedure is specific for each

image to avoid the necessity of using a large training dataset and to increase flexibility.

Results for all the techniques described above are illustrated on public benchmarks and

compared to state of the art methods. We show that the classical pipeline for manipula-

tions detection with Gaussian Mixture Model and adaptation procedure can surpass results

of fine-tuned and recent deep-learning methods. Our method for source/target disentangling

in copy-move also matches or even surpasses performances of the latest deep-learning meth-

ods. We explain the good results of these classical methods against deep-learning by their

additional flexibility and adaptation abilities.



Finally, this thesis has occurred in the special context of a contest jointly organized by the

French National Research Agency and the General Directorate of Armament. We describe in

the Appendix the different stages of the contest and the methods we have developed, as well

as the lessons we have learned from this experience to move the image forensics domain into

the wild.



Résumé

Les images numériques sont devenues un moyen de communication standard et universel.

Elles prennent place dans notre vie de tous les jours, ce qui entraîne directement des inquié-

tudes quant à leur intégrité. Nos travaux de recherche étudient différentes méthodes pour

examiner l’authenticité d’une image numérique. Nous nous plaçons dans un contexte réaliste

où les images sont en grandes quantités et avec une large diversité de manipulations et fal-

sifications ainsi que de sources. Cela nous a poussé à développer des méthodes flexibles et

adaptative face à cette diversité.

Nous nous sommes en premier lieu intéressés à la détection de manipulations à l’aide de

la modélisation statistiques des images. Les manipulations sont des opérations élémentaires

telles qu’un flou, l’ajout de bruit ou une compression. Dans ce cadre, nous nous sommes

plus particulièrement focalisés sur les effets d’un pré-traitement. A cause de limitations de

stockage et autres, une image peut être re-dimensionnée ou re-compressée juste après sa cap-

ture. L’ajout d’une manipulation se fait donc ensuite sur une image déjà pré-traitée. Nous

montrons qu’un pré-redimensionnement pour les images de test induit une chute de perfor-

mance pour des détecteurs entraînés avec des images en pleine taille. Partant de ce constat,

nous introduisons deux nouvelles méthodes pour mitiger cette chute de performance pour

des détecteurs basés sur l’utilisation de mixtures de gaussiennes. Ces détecteurs modélisent

les statistiques locales, sur des tuiles (patches), d’images naturelles. Cela nous permet de pro-

poser une adaptation de modèle guidée par les changements dans les statistiques locales de

l’image. Notre première méthode est une adaptation entièrement non-supervisée, alors que la

seconde requière l’accès à quelques labels, faiblement supervisé, pour les images pré-resizées.

Ensuite, nous nous sommes tournés vers la détection de falsifications et plus spécifique-

ment l’identification de copier-coller. Le copier-coller est l’une des falsification les plus popu-

laires. Une zone source est copiée vers une zone cible de la même image. La grande majorité

des détecteurs existants identifient indifféremment les deux zones (source et cible). Dans un

scénario opérationnel, seulement la zone cible est intéressante car uniquement elle représente

une zone de falsification. Ainsi, nous proposons une méthode pour discerner les deux zones.

Notre méthode utilise également la modélisation locale des statistiques de l’image à l’aide de

mixtures de gaussiennes. La procédure est spécifique à chaque image et ainsi évite la nécessité

d’avoir recours à de larges bases d’entraînement et permet une plus grande flexibilité.

Des résultats expérimentaux pour toutes les méthodes précédemment décrites sont présen-

tés sur des benchmarks classiques de la littérature et comparés aux méthodes de l’état de

l’art. Nous montrons que le détecteur classique de détection de manipulations basé sur les



mixtures de gaussiennes, associé à nos nouvelles méthodes d’adaptation de modèle peut sur-

passer les résultats de récentes méthodes deep-learning. Notre méthode de discernement

entre source/cible pour copier-coller égale ou même surpasse les performances des dernières

méthodes d’apprentissage profond. Nous expliquons ces bons résultats des méthodes clas-

siques face aux méthodes d’apprentissage profond par la flexibilité et l’adaptabilité supplé-

mentaire dont elles font preuve.

Pour finir, cette thèse s’est déroulée dans le contexte très spécial d’un concours organisé

conjointement par l’Agence National de la Recherche et la Direction Général de l’Armement.

Nous décrivons dans un appendice, les différents tours de ce concours et les méthodes que

nous avons développé. Nous dressons également un bilan des enseignements de cette ex-

périence qui avait pour but de passer de benchmarks publics à une détection de falsifications

d’images très réalistes.
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1 | Introduction

Images have always been a privileged medium for communication. Children are able to

unscramble images long before they are able to read a text. Before invention of writing,

usually dated 5000 years ago, transmission was mainly oral and also through pictures. Pre-

history paintings in caves are known worldwide. However, one popular motto states that “a

picture is worth a thousand words". It could be understood from this motto that sometimes

oral is not efficient enough to transmit information and images are required. For instance,

on the 5th of February 2003, U.S. Secretary of State Colin Powell during his hearing in front

of the UN Security Council has disclosed some satellite images that were supposed to be evi-

dence regarding the development of chemical weapons in Iraq, which would justify a military

intervention. M. Powell had also exhibited phone taping and other materials, though the im-

ages have presumably played an important role. This shows the important role of images in

decision-making processes. Generally speaking, images generate affects that steer decisions

keenly.

Following the question of the power of images and the affects they can generate, appears

immediately the question of the trust we can put in them. Before introducing image tamper-

ing, one should note that an image hardly comes out of the blue for the sake of itself. It is

usually presented by someone in a context. The context itself can be misleading. One exam-

ple can be found on Figure 1.1. The Republicans, M. Trump political party, and his supporters

had shared mostly the image on the left (a), acknowledging that a big crowd was attend-

ing the 2017 presidential inauguration. Yet, his political opponents preferred to disseminate

the picture on the right (b), so the unflattering comparison with M. Obama’s inauguration in

2012 would become obvious, asserting that the crowd was much bigger back then. None of

the pictures in Figure 1.1 have been altered and they both portray the same genuine scene

from 2017. However, the affects induced are very different. It should be the role of the jour-

nalists to present the context precisely and provide accurate pictures to allow more rational

decision, with less affects.

1



2 Introduction

(a) (b)

Figure 1.1 – Picture of crowds in front of the Capitol during public inauguration of M. Donald

Trump to US president in 2017.

We have reminded at the beginning of this chapter that the war in Iraq in 2003 had been to

a certain extent justified by some satellite images of alleged Iraqi plants of chemical weapons.

It was discovered later that these images were fake. Some of the evidence that had justified

a military intervention in Iraq were made up by US administration. This raises particularly

the question of trust in images. Context and angle selection for an image could mislead the

interpretation like we discussed just before, yet it is even far worse when the image gets

tampered.

In our societies, it is necessary to build reliable tools to assess the integrity of images.

Concerns about image alterations are not exactly new, one of the most known tampered

image being the one with Stalin and the removed colonel Yezhov (see Figure 1.2). Yet, these

concerns have only been made even more worrisome with the recent advent of digital images.

The wide availability of smartphones and digital cameras, combined with social platforms,

has made sharing images easier than ever. Moreover, image editing software has become

easy to use, even for the layman, and it is now available on smartphones. One can therefore

capture, modify and share an image quickly with the same handheld device. This situation

both accounts for a tremendous revolution in communication and makes it harder than ever

to trust images, as their integrity may be altered easily, almost on the fly. Hence, forensics

tools are being developed to help assess the source and integrity of digital images.

These forensics tools can be either automatic or require the help of a specialist. The need

for specialists has become quite common. Most major newspapers have a "fact-checking" team

that is able to investigate the truth of a piece of information. For instance, they are called
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(a) (b)

Figure 1.2 – Official picture from USSR regime of Stalin and close advisers (1940). Colonel

Yezhov was removed on picture (b) after Stalin held him in disgrace.

Les Décodeurs for the French journal Le Monde. Their work is closely related to the work of

journalists discussed earlier, as their investigations are usually led by the context. Indeed,

they are part of the newspaper. However, such an approach can present some problems or

limitations. Namely, we should put trust in these teams and their skills. Yet, they are also

humans with bias and that could be affected, even though they surely try their best to be

as neutral as possible. As their methods are mostly non automatic, they can process only a

limited number of pictures. Therefore, the choice of which picture to investigate is already a

bias. To reduce this bias, one should be able to process the more images as possible. This calls

for automatic tools that should be able to process a large number of images, without further

introducing any human bias in it.

1.1 Overview

This thesis presents contributions in the field of image forensics. It concerns the security

of digital images and acts as a passive image authentication approach. It contrasts with the

close field of watermarking which implements an active image authentication 1. A hidden,

fragile watermark would be added into any picture directly by the device and testing for

the watermark integrity would in turn help conclude whether the image had undergone a

manipulation or a falsification. The inspection of images is then straightforward, although

standardized implementation of fragile watermarking in each and every camera has never

1. Meaning that a watermark has to be actively embedded in the original image prior to dissemination.
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been contemplated by the industry.

Images are composed of pixels and metadata. Pixels are arranged in a grid of integers

and the metadata will usually describe which camera took the picture and under which op-

tical conditions. The study of metadata may partially inform about the integrity of images.

Although fingerprints of modifications in metadata would differ considerably regarding the

considered dataset. These metadata are also easily editable and therefore should be con-

sidered unreliable. For these two reasons, metadata have been less investigated and most

existing methods focus on pixels.

Common image forensics problems include camera identification, image manipulation de-

tection, identification of computer graphics images, splicing detection, copy-move detection,

identification of fake faces, etc. Camera identification is quite specific and the remaining

problems basically fall in two categories: manipulation and falsification detection. Manipula-

tions are usually elementary operations, while falsifications target more elaborated tamper-

ing. Therefore, it is usually easier to detect manipulations. It has been the prime interest of

the field at its beginning approximately 10 years ago. Then the problems can be:

— Binary classification of the whole image (manipulated or not, falsified or not),

— Identification of the specific manipulation or falsification (e.g., identifying Gaussian

blurring or copy-move),

— Localization of the forgeries.

These three problems are clearly related and present different levels of complexity. The field

now concentrates mainly on localization. Localization is also necessary to be able to evaluate

the impact of the falsification on the semantics of the image.

1.2 DEFALS contest

This thesis has been supported by an ANR-DGA grant, in the context of the DEFALS contest

(DEtection de FaLSifications dans des images). The aims of this contest are:

— To initiate and stimulate research in image forensics (passive detection of falsification

in realistic forged images);

— To foster collaboration between academic research in computer vision, users and in-

dustrial partners.

Four French teams were selected to take part in the contest. We are part of the RE-

VEAL team, led by Patrick BAS from CRIStAL (Lille). Other team members are Ivan Castillo-

Camacho, a PhD student in GIPSA-lab, Kai Wang, a researcher in GIPSA-lab, François Cayre,

an associate professor in GIPSA-lab, and Gaëtan Le Guelvouit from B<>Com (Rennes). B-
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Com is the industrial partner of the project, responsible for the integration of the techniques

developed by other members. Other teams are SIGNATURE from ENS-Cachan (Cachan); OEIL

from LIRMM (Montpellier); and DEFACTO from UTT (Troyes).

It is a contest between the four teams in several rounds. The first round took place in

February 2018, as a warm-up, preliminary round. The aim was the binary classification

between falsified and original images. The first official round in March 2019 was also about

binary classification of falsified images, on another set of images. Finally, the last round

took place in March and April 2020 and the aim was localization of image falsifications.

What makes this contest outstanding is that images are particularly realistic. Indeed, image

manipulations have been carefully performed by professionals on high resolution (3000×4000

pixels) images. Falsifications come in several types (copy-move, splicing, inpainting, text

replacement). Most of the other, public databases (see Section 2.2) are in lower resolution

(usually less than 750 × 1000 pixels) and falsifications are performed in an automatic way

which makes it easier to detect and less realistic. Most of the existing methods from the

literature failed on the DEFALS datasets.

This contest has highly influenced the conduct of the thesis. Firstly, it has helped to point

out the importance of flexible methods as for each new round or dataset, detectors should be

adapted to perform well. Another important note is that the contest has greatly constrained

the planning of the thesis. The two official rounds have required about two months of prepa-

ration with the training data, and one month for the contest phase. The preliminary round

was a warm-up and took us about a month and a half. In total it has occupied our time and

our computing resources about 20% of the thesis. It was a bit disappointing as the results can

not directly be harnessed to develop new methods. To perform well in a contest, methods are

very specific to the dataset. For instance, we worked a lot on metadata which is not general-

izable. A lot of time was also devoted to engineering and re-implementation of existing tools.

A famous example is the Netflix Price, a recommendation competition hosted by Netflix with

1 million dollars prize. As Netflix had explained in their technical blog [Net], they never used

the winning algorithm to the contest because “additional accuracy gains that we measured did

not seem to justify the engineering effort". However, it was a pretty unique opportunity in this

thesis to work on such high-quality, real-world datasets.

We won the preliminary and the first rounds. For the second and last round, we were still

the best in binary classification, but the third in localization.
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1.3 Objectives of the thesis

Ever since the last ten years, very efficient methods have been developed on public bench-

marks. Some commercial software tools have been released, which nonetheless require in-

tervention of a highly-skilled user. Yet, no commercial software exists today that performs

automatically for images in the wild. The diversity of image parameters (source, size, quality,

compression, pre-processing, etc.) is considerable and each of them influences the perfor-

mances of most existing detectors. On top of that, it also exists a tremendous variety of

manipulations and falsifications which are performed using heterogeneous software. That

could explain the difficulty to extend efficient methods on public benchmarks to the diversity

of images in the wild. Rather than looking for a method that could generalize perfectly over

all this variety, our strategy is to develop adaptation strategies that allow the use of already

developed and powerful models with different testing data or new objective. We feel that

flexibility of models is a crucial point to be able to move image forensics from the laboratory

to the wild.

In short, the main objective of this thesis is to develop adaptation methods on top of

already existing detectors. Adaptation should be data-driven and specific for a testing dataset.

This objective has been partially motivated by the poor performance we witnessed when using

state of the art methods on the highly realistic DEFALS datasets. To the best of our knowledge,

this approach is new and no other existing adaptation approaches have been considered yet

in image forensics.

1.4 Organization of the manuscript

In Chapter 2, we propose an overview of the field of Image Forensics and the state of the

art approaches for the two different problems of manipulation and falsification detection. We

also present briefly some basics of Machine Learning as we use methods and concepts from

this framework in our methods.

Then in Chapter 4, we introduce two adaptation strategies for image manipulation detec-

tion. They are applied on a detector based on Gaussian Mixture Model (GMM) developed

by Wei Fan et al [FWC15]. This detector aims to detect local statistical deviations in the im-

age, on small patches, that would indicate a manipulation. Basically, the GMM is composed

of two sets of parameters: weights and covariance matrices. The first method focuses on

weights adaptation with the help of a few labels on the target dataset (weakly supervised

approach). We have communicated about this work during the 18th International Workshop
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on Digital Forensics and Watermarking (Chengdu, China) [DWC19b]. The second method

is named GRAFT and deals with the covariance matrices of the GMMs, without the help of

labels on the target dataset (unsupervised approach). This method has been published in the

IEEE Access [DWC20] journal and also as a communication at the GRETSI [DWC19a] French

national conference.

We have begun with a focus on image manipulation, as we consider that more sophisticated

falsifications are composed of elementary manipulations. For instance, a copy-move is often

associated with a smoothing of the tampered area border through Gaussian blurring. There-

fore, being able to detect elementary manipulations should allow us to detect more elaborated

falsifications. On another note, manipulations are often easier to detect than falsifications and

as we considered a new approach (adaptation), we chose to focus on manipulation detection

rather than falsification. We also consider that falsifications and manipulations are related, as

both introduce perturbations in local statistics of the image. Hence, this work on adaptation

for manipulation detector is expected to be useful also for falsification detectors.

In Chapter 5, we switch our focus to falsification and more specifically on copy-move

detection. In a copy-move, a part of an image, the source, is copied somewhere else within the

same image, as the so-called target area. It is probably one of the most popular falsifications

along with splicing, where the copied part comes from another image. There already exist

powerful copy-move detectors. However, most of these methods do not identify which area

is the source and which is the target in the copy-move. Thus, we have developed a method

on top of these detectors to adapt them to distinguish between the two areas. This second

stage of detection could also help detect false positives of the first-stage detector. Our method

is intended to work with any first-stage copy-move detector. There is a direct link with our

previous work on manipulations detection, as it also relies on deviations of the local statistics

for detection (this time on the boundaries and interiors of the source and target areas). The

method is flexible by design as it is specific for each image. Thus a large database of copy-

move images with ground-truth masks is not required. This is to a certain extent similar to the

adaptation of manipulation detector presented in Chapter 4. The underlying idea is to make

the forensics detector adaptive to the testing data, without performing heavy training on a

large amount of diverse data. We have submitted a paper describing our proposal to a special

issue of the Elsevier journal Applied Soft Computing called “Applying Machine Learning for

Combating Fake News and Internet/Media Content Manipulation”.

Finally, we draw conclusions in Chapter 6 regarding the undertaken investigations of this

thesis. We also discuss future possible lines of research for Image Forensics and especially

regarding adaptation of models and features.

In Appendix A, we present the DEFALS challenge and the different rounds of the contest.
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This chapter is mainly about practical detection in a highly realistic scenario. More precisely,

we discuss the importance of meta-data in this kind of scenario and the fusion of decisions

from multiple detectors. This work has highlighted the value of ranking the certainty of the

predictions. In a very realistic scenario, performances are downgraded by many false positives

and negatives. With a ranking, it is possible to extract subsets with high performances.
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2.1 Introduction to Image Forensics

As introduced in the previous Chapter 1, image forensics relates to passive digital image

authentication. The overall aim is to assess integrity of an image originating from an unknown

source. Several approaches have been used to this end:

1. Searching for clues in meta-data [MRF19]; [Fac12]; [KJF11]; [GKR13];

2. Investigating inconsistencies in lightening or reflection [Fan+12]; [OF12]; [KOF14];

[KOF13];

3. Searching for tampered fingerprints in pixel values.

Approach 1. is probably the least reliable as meta-data can be changed or erased very

easily and without leaving any traces. Moreover, since meta-data clues are dataset-dependent,

it is hard to devise a general method from them. Approach number 2. considers images

through geometrical and physical points of view. It typically implies to (i) first build a physical

model for lightening, reflection, or shading, and (ii) then detect lighting or reflection sources

in the image to further apply the inferred model on it. Image tampering would likely expose

inconsistencies with the model. Physical models can be complex in case of multiple lightnings

or reflection sources through sub-optimal surfaces such as turbulent sea. Some images do not

even have any reflections or shades. Because of these difficulties, it has been slightly less

investigated than methods from the third approach. The last, third approach is the most

studied. This work, in line with the following state of the art, focuses on these methods.

2.1.1 Digital image development process

Before presenting an overview of methods for manipulation or falsification detection, it

seems necessary to remind how an image is generally captured, from the scene to the file

stored on the camera memory card.

First, the light emanating from the physical scene passes through multiple lenses. These

lenses focus light on the sensors of the camera. In addition to the lenses some filters are some-

times added to remove polarized light (for pictures with snow or water for instance) or other

types of light for artistic purposes. Then, the light passes through a color filter array (CFA). It

is a physical filter composed of a mosaic of color filters to spatially separate colors. Indeed,

classical sensors are not able to separate color information as they are not specific to any

particular wavelength. With the CFA, each pixel of the sensor capture intensity information

regarding only a specific color. Pixels are elementary components of digital photo-sensors.

They are arranged through a grid to compose a photo-sensor. It is the CFA which allows the
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Figure 2.1 – The color mosaic for the Bayer filter (Source: Wikipedia — https://en.

wikipedia.org/wiki/Bayer_filter). The incoming light is filtered by mosaic color filter

before hitting the pixel array of the image sensor, so each pixel only captures one color.

camera to capture color images: without it, only grayscale images would be obtained. There

exist several patterns for the CFA, depending on the camera manufacturer. The most common

one is the Bayer filter, depicted on Figure 2.1.

An interpolation is then performed to recover the missing color information for every

pixel. The interpolation algorithm is also specific to the manufacturer. After this interpolation

step and depending on the camera, software routines perform basic operations to enhance

image, such as white balance, contrast saturation, etc. For reflex camera it is however often

possible to retrieve picture in RAW formats. An image in the RAW format has neither been

interpolated nor enhanced. It is the direct, raw output from the sensor. With smartphones

or cheaper cameras, the image is usually compressed to be stored. The most commonly used

algorithm for natural image compression is the JPEG algorithm. JPEG algorithm has several

hyper-parameters, including a quantization table that could be either standard or, again,

specific to the manufacturer. All these steps between the scene and the image outputted by

the camera are summarized on Figure 2.2.

IIn brief, capturing an image through a digital camera not only implies physical devices

such as lenses and light sensors, but also software operations for color interpolation, basic

processing and compression. The physical devices produce a noise pattern that is specific

to a manufacturer and a camera model but also to the very camera at hand, as each sensor

and set of lenses are unique because of means of production. The software also introduces

specific fingerprints that would vary between cameras of different brands or types (camera of

smartphones, compact cameras, reflex cameras, etc).

This variability is both an opportunity and a weakness. It could allow forensics investigators

to identify pictures from a specific brand or even a specific camera thanks to the particular

https://en.wikipedia.org/wiki/Bayer_filter
https://en.wikipedia.org/wiki/Bayer_filter
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Figure 2.2 – An example of a typical development process of a digital image, with a tamper-

ing.Starting from the physical scene, image development occurs within the camera to finally

produce a representation of the image in digital format. Tampering occurs afterwards. In

this example, the tampering is the removal of the pyramid on the top of the cabin by using a

Photoshop inpainting tool called Clone Stamp Tool. The figure is largely inspired by [Piv13].

fingerprints from physical elements (particularly the sensor) and the software. On the other

hand, these fingerprints and noises could interfere with or even partially mask fingerprints of

manipulation or falsification. They should be disentangled. It also creates a lot of diversity in

images that brings complexity for modeling.

2.1.2 Manipulation detection

We would like to emphasize the distinction between image manipulation and falsifica-

tion. We define manipulation as the application of an elementary operation, performed on

the image globally. Typical examples are JPEG compression, noise addition, contrast enhance-

ment, blurring, etc. Ordinarily, such operations do not change the semantics of the image.

We define falsification as more elaborated tampering which is local. Typical examples are

copy-move, inpainting and addition of external elements. Falsifications usually change the

semantics of the image. Manipulations can be combined with falsification to cover tampering

fingerprints.
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Two main types of methods have been developed for detection of image manipulation

(elementary operations):

1. Methods aimed at detecting a targeted and specific manipulation [Yua11]; [Kan+13];

[Fd03]; [LHQ10]; [Cao+14]; [Cao+11]; [Che+15];

2. More recently, universal detectors of image modifications (i.e. same model/features

for every modifications) have been designed.

In order to tackle the second and more difficult problem of universal detection, three ap-

proaches have been followed:

1. Explicit modeling of images and spotting inconsistencies with respect to the model [FWC15];

2. Computing hand-crafted features (mainly borrowed from steganalysis such as SPAM [PBF10]

and SRM [FK12]) as statistics of an implicit model and using a classifier on the feature

space [Qiu+14]; [Li+18];

3. Using deep learning classifiers with constraints or specific processing for the first layer

in order to extract residuals [BS16]; [Che+15].

This work focuses on developing universal detectors of image modifications through ex-

plicit modeling (Approach 1.). Other approaches (2. and 3.) are also considered for com-

parison purposes. It appears quite reasonable to us that a detector should rather be universal

than targeted as the diversity of manipulations would eventually keep growing. Beside that,

considering the huge progress made in the deep learning field in the recent years, we reckon

that methods relying on hand-crafted features are less competitive. Deep-learning methods

jointly and automatically optimize the features construction and the classifier training. Meth-

ods based on hand-crafted features are still the best ones for explainability but not in terms

of pure performance. A similar claim about explainability and pure performance can be made

for deep learning and explicit modeling of images. Quite logically, the trend now in the field

of image manipulation detection is towards deep learning methods.

While pure performance of deep-learning is no longer necessary to prove, it usually relies

on very large labeled databases. We also reckon that these methods are not really flexible.

As explained earlier, our interest was more in terms of flexibility to adapt to the diversity of

images in the wild than pure performance on a specific dataset. This has motivated us to

focus on explicit modeling rather than deep-learning. We have considered explicit modeling

over hand-crafted features because we think it would be easier to adapt explicit model than

feature-based detectors as the link with statistics of data is really direct. It is usually chal-

lenging to find transformations of features to adapt to new statistics of data. In contrast, the

classical approach relies on re-starting a manual labelling of the new data an then re-training

the detector on features extracted from the data with the new statistics. Recent efforts have
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been made to partially avoid or alleviate this costly re-labelling and re-training [PY10], also

known as Transfer Learning.

2.1.3 Falsification detection

Generally speaking, falsifications have usually a more notable effect on semantics of the

image compared to manipulations. The spectrum of falsifications is very wide. Nowadays, the

most publicized and feared by mainstream medias are falsifications with Generative Adver-

sarial Networks (GANs), the so-called deep fakes. GAN is a recently developed type of neural

network capable of generating data. However, this kind of data generation remains until now

surprisingly easy to spot as long as they are generated by a CNN. In [Wan+19] authors are

able with careful pre- and post-processing (of the datasets not during the generation of im-

ages) and data augmentation to create a “universal” detector. This detector is trained on only

one specific generator of fake images (Pro-GAN) and provides good results and generalization

for 10 others generators. Other generators have different architectures, training procedures

and data. Some specific research works have also been conducted in Image Forensics field, on

the detection of fake facial images produced with GAN [Rö+19], which achieves very good

results. [Rö+19] proposes in addition a few-shots learning framework to mitigate drop of

performance on unseen datasets during training. Therefore, it appears reasonable that for

now we do not consider the detection of deep fakes as a priority of this thesis work.

Beside that, the prevalent falsified images in the wild are created with the help of software

such as Photoshop or GIMP. There are several categories of falsifications, the three most

common ones are depicted in Figure 2.3.

When a part of an image is copied and then pasted in a different image, the falsification

is called splicing. With copy-move, a part of an image is copied and pasted within the same

image, so both parts may share similar statistics and development process, especially when

the copied area has not been subject to manipulations, e.g. scaling. Inpainting defines an

operation where a part of the image is erased and often replaced by a textured pattern.

Inpainting can be of two types: diffusion-based or copy-move based. With the diffusion

approach, a local diffusion model of the image is exploited to extrapolate pixel values on the

zone to be forged. In the copy-move based approach, small patches in the falsified region are

replaced by other patches with similar neighbors. It is different from copy-move as the size

of considered areas is much smaller, so distance between clones is usually also smaller and

number of clones is much higher.

To tackle these kinds of forgery, there exist mostly specific detectors but also general ones.
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(a) (b) (c)

Figure 2.3 – Examples of the most common categories of falsifications. (a) Splicing (another

character has been added in the background); (b) Copy-move (same faience has been copied

on another place); (c) Inpainting (a door in the background has been removed).

To detect copy-move specifically, the classical approaches try to match features of parts of the

image. Areas considered are either exhaustive (often combined with an efficient searching

algorithm [CPV15a]) or only points of interest [Yan+19]. Recently, a deep-learning based

approach [WAAN18] has been proposed, which also aims to match similar features. More

details about these methods are provided in Chapter 5.

Strategies to detect splicing and inpainting share a common intuition: forged part should

deviate from pristine part of the image in terms of statistics or development process. One

interesting and well-known method is SpliceBuster [CPV15b]. A local Gaussian model, based

on patches, is learned for the background. Another model with uniform probability density

function is learned for the suspicious zone. Based on distance to each model, the patches of

the suspicious part are predicted as pristine or forged. This process produces a heatmap for

the localization. Some recent methods have kept the same idea: detecting deviation from a

reference model. For instance in [Huh+18], a model is learned to predict EXIF tags, meta-

data, of images. During a test phase, the model should predict consistent EXIF tags for every

crops of the image. If the image has undergone a splicing, some crops would exhibit other

EXIF tags. A score of self-consistency of the predicted EXIF tag is computed to generate a

heatmap of suspicious region.

Recently and quite similarly, authors of [CV20] and [MS20] have proposed to use a spe-

cific type of neural network called Siamese network, for image forensics tasks. Traditionally, a
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Siamese network is used to learn a similarity/dissimilarity metric between pairs of samples.

It is composed of two parts:

— The first part with two branches and shared weights is used to extract features;

— A second part, which takes the two sets of extracted features as input, and then com-

putes a similarity/dissimilarity score: e.g., 0 if input samples are very similar, and 1

otherwise.

The learning by pair allows the use of smaller databases compared to classical learning, as

a larger number of paired images can be produced even from a relatively small dataset.

In image forensics, the learned similarity, or dissimilarity metric, represents the forensic

traces [MS20]. For [CV20], the forensic trace is related to the camera model. Two images

from a same camera model should have a score of 0, otherwise a score of 1. Therefore, the

forensic trace can be used to build a camera model detector. In [MS20], the authors also

consider manipulation operations and their parameters, in addition to the camera model, in

order to create training pairs of images with similar or different forensic traces.

A common issue with machine learning and computer vision is the generalization to new

datasets. Usually performance decreases on a testing dataset that is too different from the

one used for training. It is also usually difficult to detect unseen classes during training, even

generated from the same dataset. For instance, it would usually require a re-training for a me-

dian filtering detector to be able to well detect Gaussian blurring, even on the same dataset.

In 2018, the authors of the pre-print [Coz+18] proposed a new neural network to overcome

these limitations. It is an auto-encoder with a special loss on the latent space. An auto-encoder

is a neural network composed of two parts. The first one, called the encoder, encodes the in-

put into a latent space. Usually this latent space is of smaller dimension compared to input

dimension. Then the second part, the decoder, uses the encoded representation of the input

to reconstruct it. It is typically trained to minimize the reconstruction error. Auto-encoders

are commonly used as dimensionality reduction methods. In [Coz+18], the representations

in the latent space are used for classification of input samples between fake and real images.

During the training, a loss in the latent space is computed in addition to the reconstruction

error. Latent space is in R2N . An activation in the firstN dimensions would indicate one class,

for example fake, and activation in the last N dimensions would indicate the other class, for

example original. During training a new loss is computed to enforce such behavior in the

latent space. Combination of the two losses results in a better generalization capability and

more efficient few shots learning. Few shots learning is the ability for a classifier to be able to

classify a new class with only few labelled new examples and lightweight fine-tuning.

We have investigated similar ideas independently almost at the same time. We use Varia-

tional Auto-Encoder (VAE) [KW14] instead of a vanilla auto-encoder. In VAE, the latent space
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is constrained to have Gaussian distribution. Thus, representations are normally more con-

centrated in the latent space than with the regular auto-encoders. In our work VAE is fed with

local patches, instead of full-sized images as in [Coz+18]. Following roughly the idea of Pix-

elCNN++ [Sal+17], instead of reconstruction of the input sample the network is intended to

reconstruct a neighboring patch. Intuition is that it would be easy to reconstruct neighboring

patch in an original image as natural images are quite regular. An anomaly, falsification or

manipulation, would introduce difficulties in reconstructing neighboring patch. Idea is then

to use either reconstruction error or latent variables for classification. Use of VAE and its

constraint on latent space would allow a good generalization capability. At the same time

this is an unsupervised training as no label is required, only a database containing original

images is used for training. Results were promising. Unfortunately it would have required

more investigations on the architecture to obtain a network that converges easily, and we had

other tasks and constraints at that time which forced us to put aside this piece of work. It will

be interesting in the future to conduct further studies in this promising research line.

The authors of [Bap+19] proposed an interesting strategy still in this trend, with auto-

encoders and the detection of abnormal transitions in the image. Their neural network is

composed of two branches: one branch is a regular CNN-encoder and the other one is a Long

Short Term Memory (LSTM) branch. LSTM is a neural network cell that handles sequential

data. In their work Radon features are extracted from patches and fed sequentially, following

a path in the image. Radon features are discriminative features for resampling detection. In

the CNN-encoder branch, pixels are fed directly. Feature maps from these two branches are

then concatenated to be fed in a CNN-decoder. It produces directly a heatmap of image size

that is compared to ground-truth mask of falsification during training. In total, it makes a

very large network and LSTM cells are especially heavy with a lot of parameters to train and

hard to converge. Therefore they use synthetic data for training. Authors report impressive

performance on NIST 16 [DAR17] and IEEE Forensics [CGV15] datasets. They also provide

code for the method 1 and we have tested it on DEFALS database. The pre-trained version

performed very poorly, probably due to the large difference between the synthetic data and

the testing dataset. We tried to fine-tune it and re-train it on DEFALS data, but probably

due to the complication caused by the size of the network, we did not succeed in obtaining

satisfactory results. It is for us another observation relevant to our thesis objective, that is,

from an operational point of view, methods are expected to be easily adaptable and flexible

to new data, even though large neural networks are able to achieve impressive results on

specific datasets.

1. https://github.com/jawadbappy/forgery_localization_HLED

https://github.com/jawadbappy/forgery_localization_HLED
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2.1.4 Localization

The literature of image falsification detection is interested in forgery localization, jointly

with a binary global decision. Most of the methods introduced in the previous Section 2.1.3

also produce a heatmap of the suspicious part(s) of an image. The method based on patches

could allow localization at patch or pixel level, though it is usually with a lot of false positives.

Even a very low percentage of false positive and negative of 2% would become very noticeable

in a 2000×3000 image divided in 8×8 patches with an overlap of 3 pixels, because the number

of patches would be more than 600000 and would thus approximately contain 12000 errors.

A post-processing is therefore necessary.

The difficulty to produce a global decision (at the image level) along with a local decision

(a heatmap) mainly resides in the following observation: if falsification or manipulation is

small compared to the size of the image, it could be indiscernible from the false positive.

Authors of [Mar+20] combine the two as it first predicts a heatmap and then a global decision

based on the heatmap. It only requires the global labels for the training. Some examples of

localization and heatmaps can be found in Figure 2.4.

To summarize, localization is closely related to the detection of manipulation and falsifi-

cation but this is not that straightforward. The most promising methods seem to be those pro-

ducing a heatmap the size of the image, in an end-to-end manner, such as [WAAN18], [Mar+20],

and [Bap+19]. Patch-based approaches should have in theory a good spatial accuracy, al-

though the required post-processing in practice tends to reduce the final accuracy.

2.2 Available databases

To assess performance and compare methods, the information forensics community relies

on public databases that we present here. These databases evolve following the progress of

opponents and their software, and image editing software, though these databases are not

meant to be perfectly realistic. Manipulations and falsifications in these datasets are often

easier to detect than for images in the wild. It is mainly because images in the wild generally

undergo a lot of post-processing that cover tampering fingerprints while public databases

are only lightly post-processed. Though, it is assumed that being able to tackle efficiently

easier problems of public database would then help to detect falsifications and manipulations

in the wild. It is a standard methodology to first deal with smaller and easier problems

before approaching more complex ones. Beside that, there exists so big a variety of image

manipulations and falsifications regarding the source of images, the type of tampering, the
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(a) (b) (c)

Figure 2.4 – Examples of localization and heatmaps: (a) From [WAAN18], where blue color

indicates pristine, red color indicates target area of copy-move and green color is the source

area; (b) From [Bap+19], where blue color indicates suspicious area(s) and red color in-

dicates pristine areas; (c) From [CPV15b], where red color indicates suspicious area(s) and

blue color indicates pristine areas.

image editing software and their versions, etc., that choices must be made. For the time being,

it is impossible to have a dataset that would cover all these diversities.

2.2.1 RAW images

For manipulation detection, datasets of RAW images are used. It is essential to control

the development process as it will largely influence performance of manipulation detection.

From the raw images, a development of choice is performed before adding a manipulation

and then eventually a possible post-processing. The Dresden [GB10] database is probably

the most popular database among the community. It contains 1491 images coming from 4

different cameras. The Dresden pictures are taken in various indoor and outdoor scenes with

different lighting and exposure. This dataset can be enlarged with 16961 JPEG images coming
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(a) (b) (c) (d)

Figure 2.5 – Examples of images from the Dresden database [GB10].

from 27 different cameras, still from the same scenes. These images are in high resolution,

around 2000 × 3000 pixels. Some examples are shown in Figure 2.5. In the close field of

steganalysis, there also exist two large databases of RAW images, respectively from the BOWS

challenge [FB08] and from the ALASKA steganalysis challenge [CGB19]. There are 10000

original images in the BOWS challenge. Yet, the BOWS images are grayscale and resized to

256 × 256, which does not allow a total control on the development process. In the Alaska

challenge, the dataset is composed of 50000 images from 21 cameras. The Alaska images are

really diverse, with various sizes and resolutions.

2.2.2 Synthetic dataset for falsification detection

Recently, the COCO dataset [Lin+14] has gained interest for the development of syn-

thetic datasets of falsified images. The COCO dataset has been primary developed for image

segmentation problems. It contains 200000 images with semantic segmentation informa-

tion, which makes it possible to automatically create semantically meaningful falsified im-

ages with copy-move or splicing forgeries. With the large number of images it contains, it is

possible to create a lot of samples to pre-train a neural network. The authors of [WAAN18]

and [Bap+19] have successfully used such a strategy with their networks. Some examples of

automatically created copy-move forgeries from [WAAN18] can be found in Figure 2.6.

2.2.3 Manipulation and falsification databases

2.2.3.1 Public databases

To the best of our knowledge, the first public database for falsification detection is the one

from Columbia University [NC04]. This dataset is quite small with 1845 grayscale images of



2.2. Available databases 21

(a) (b) (c)

Figure 2.6 – Examples of automatically created copy-moved images by authors of [WAAN18].

size 128× 128 pixels and 363 uncompressed images of bigger size (from 757× 568 to 1152×
768). Half of these images have been spliced without post-processing. Splicing falsifications

are naive and performed on blocks.

Then, researchers from the Chinese Academy of Sciences have collected a database named

CASIA Image Tampering Detection Evaluation (CASIA ITDE) [DWT13] in 2013. The tampered

images were created with the help of Photoshop software. A first version, CASIA ITDE v1.0 is

composed of basic splicing falsification only, on JPEG color images of fixed size of 384 × 256

without post-processing. In total there are 1721 images: 800 images are authentic and 921

are tampered. The version 2.0 of CASIA is larger, with 12323 color images of various sizes

of at most 800 × 600 pixels (7200 authentic images and 5123 tampered). Some images are

JPEG-compressed with various quality factors and some others are uncompressed (BMP or

TIFF formats). The falsifications are visually more realistic in version 2.0. There are also

copy-move images in addition to spliced images in CASIA ITDE v2.0. Some images are post-

processed with a blurring operation to cover falsification fingerprints.

In 2013, the IEEE IFS-TC Image Forensics Challenge [CGV15] has provided another database.

The challenge had two phases: a first phase of falsification detection at the image level and a

second one of falsification localization. Notably, a leak in meta-data [GKR13] had allowed a

100% of correct identification at the image level. In the training set, there are 450 tampered

images with the corresponding masks of falsifications and 1050 pristine images. There are

also 5076 test images. The images are of various sizes, mostly of high resolution (around
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(a) (b) (c)

Figure 2.7 – Example of tampered images from public databases. (a) Image from CASIA ITDE

v1.0 [DWT13], the penguin has been spliced. (b) Image from CASIA ITDE v2.0 [DWT13], the

salamander has been spliced. (c) Image from GRIP CMFD database [CPV15a], big building

in the background scene has been copy-moved.

2000× 3000 pixels) and from 25 cameras.

In 2017, the U.S. government DARPA released a quite large corpus at the occasion of the

2017 Nimble Challenge [DAR17]. The challenge was about:

— Manipulation detection and localization;

— Splicing detection and localization;

— Provenance filtering (identification of the source);

— End-to-end provenance graph.

The dataset for Manipulation detection and localization is composed of a total of 10000 train-

ing images and 1083 videos.

At last, GRIP CMFD [CPV15a] and CoMoFoD [Tra+13] are two small databases specifi-

cally designed for copy-move detection. GRIP CMFD is composed of 80 PNG images of size

1024 × 768. CoMoFoD database contains 260 images, 200 small ones of 512 × 512 pixels and

60 bigger ones of 3000× 2000 pixels. On these 260 images several post-processing operations

have been applied (JPEG compression, addition of noise, blurring, brightness change, color

reduction and color adjustments). It makes a dataset of 10000 images (with only 260 distinct

images) to test robustness of copy-move detectors against post-processing.

Some examples of falsified images are illustrated in Figure 2.7.
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2.2.3.2 DEFALS database

For the DEFALS challenge, three databases have been provided to participants, one for

each stage. These databases are private and cannot be shared. Tampered images have under-

gone falsifications that are divided in five categories:

1. Substitution of a small object by a patter in image;

2. Insertion of an object or large area in image;

3. Deletion of an object or large area in image;

4. Tampering of characters or number (license plate, street name, . . . );

5. Camouflage (hiding of a part of an object in the scene).

Basically, operations 1., 3. and 5. are inpainting. operations 2. can be either a splicing or

a copy-move and operation 4. is mainly small copy-move of figures or letters. Some images

have undergone several falsifications, all of very good quality and performed by trained pro-

fessionals using recent software. In some images, it is hard to detect the tampering by the

naked eyes. In addition to these falsifications, some images also have undergone manipula-

tions: blurring, cropping, resizing, color enhancement, etc. Images with only manipulations

are considered as authentic in the context of the contest. Images are coming from various

sources (cameras, smartphones, satellite images, etc.) and mainly in large size. The scenes

are very diverse (outdoor, indoor and also photographic studios). The three databases are of

very good quality both for the realism of falsifications and the diversity in sources and scenes.

The first stage of the contest happened in May 2018 and was actually a preliminary stage,

to test the contest infrastructure and processes. The training dataset had 650 images with XML

files describing the manipulations and falsifications. The objective was binary classification

between falsified or not on a testing set. The test images were copies of previously released

training images. We used the image hash and image size on disk to match the test images

with the training ones, and we used the training labels to carry out classification. There was

also a meta-data leak as the EXIF data had not been erased. It was possible to read in the

EXIF data whether the image had been falsified or not. Although we did not use it as we

already had achieved a perfect classification using matching with the training images.

The second stage took place in February 2019. It was the first official stage. The goal was

also binary classification. This time, meta-data had been erased but because of the pipeline

of falsifications, all falsified images had a chroma subsampling pattern of 4:4:4, while original

images had different patterns, including 4:4:4 but also 4:4:2 and 4:2:0. It allowed us to

extract a sub-list of suspicious images with a 4:4:4 pattern to classify. In addition, because of

the falsification pipeline, the color dynamics were different between authentic and falsified
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images, which can even be spotted by the naked eyes. Thus, this made the classification easier

and we were able to achieve F1-score higher than 90% on the testing set.

For the last stage, the organizing team provided 2654 images with their corresponding

masks of falsification as the training set. The objective of this stage was both binary classi-

fication and falsification localization. The two F1-scores (image-level and pixel-level) were

computed. This time, color dynamics and chroma subsampling patterns were mostly coherent

between the authentic and the falsified images. However, a leak was present on the image

sizes. We have noticed some specific and dominant image sizes among the copy-move images

identified by a reference detector. We then made an assumption that all the images with

these specific sizes in the training set were falsified. We have verified this assumption during

the training phase with a submission that indeed reached an F1-score very close to 1 at the

image level. It allowed us to extract an almost complete list of falsified images to focus on,

so our image-level F1-score was close to 100% during the testing phase. Localization was

much harder because of the mix of falsifications: copy-move, splicing and inpainting. Only

copy-move detectors gave us satisfactory results.
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To tackle Image Forensics problems defined previously, most of the existing detectors use

tools that fall in the broad category of Machine Learning tools. Machine learning is a sub-field

of artificial intelligence. It studies algorithms that make use of training data, i.e. a set of

examples with/without labels, to produce decision or prediction for some other samples, i.e.

the test samples. Usually the prediction is done on labels of test samples but it could also

be to clusterize data without training labels. Contrary to conventional algorithms, machine

learning algorithms are not explicitly programmed to do so. A simple example is the linear

regression in 2D: a straight line is fitted on some samples which allows us to predict and

extrapolate behaviour pattern of the data outside of these samples. The fitting is performed

automatically through optimization of a chosen criterion, coefficients of the linear regression

are not explicitly chosen by the programmer. Another simple machine model is the nearest

neighbor method: characteristics of data are extrapolated based on similarity with known

samples. With nearest neighbor method, the algorithm does not hard code the output but

makes it dependent on the data. However, algorithms based on conditional statements, i.e.

if-else-then are not considered as machine learning as output is explicitly programmed.

3.1 Definitions

Usually in machine learning, X is defined as the data or the input. In our case, it is the

images or the patches extracted from images, therefore X ∈ Rn×p with n the number of

samples and p the dimensionality of the images or patches. It could also be of other nature

in other context: measurements of some physical signal, or descriptors of an object such as

length and width of leaves, or even categorical (qualitative) such as blood type A, B, AB or

O. Meanwhile y represents the label or the output. It could be either a class, e.g. cat or dog,

or a quantitative value, e.g. stock market value on the following day. In our case it is the

class: pristine or tampered/falsified/manipulated. The inputs affect the outputs: a joint law

of probability for (X, y) is supposed.

3.1.1 Supervised, semi-supervised and unsupervised learning

The samples in X are then divided in two sets:

1. the training set, which will be used to train algorithms, and

2. the testing set, which is the set for which we should predict class or value.

In our case, we have some unknown images that we would like to test and find out if they

are pristine and not: they correspond to the testing set. The known images correspond to the
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training set.

In the case of supervised learning, the labels (e.g. class or values) are known on the training

set and of course unknown on testing set. In the unsupervised learning setting, no labels are

known on both the training and the testing sets. The semi-supervised scenario corresponds to

the availability of some labels on the training set in addition to samples with unknown labels.

One also defines the weakly-supervised setting as a subset of semi-supervised learning where

very few labeled samples are available.

In supervised and semi-supervised learning, a third set is usually defined: the validation

set. It is composed of samples extracted from the training set. A crucial point is that no

leak is permitted between the three sets: training, validation and testing. The validation set

is used to give an estimation of the performance of the algorithm on unknown testing set.

Of course, this performance estimator exhibits a high variance, thus a cross-validation step

is usually performed. During the cross-validation, the training set is divided into K folds.

K − 1 folds are used as training set while the remaining one is used as validation set to

estimate performance. This operation is repeated K times with rotation of the validation set.

It produces K estimations of the performance.

There also exists online learning where samples are supplied sequentially to the learning

algorithm. An example is data coming from sensors. The ordering of the measurements is

important as it reflects an evolution over time. Due to the high volume of data in time it may

not be possible to store measurements. Therefore samples are supplied sequentially to the

model to update it. Finally, in reinforcement learning an agent interacts with an environment.

The aim is to learn optimal behavior for the agent regarding a reward function. It is usually

not possible to describe exhaustively all the rewards associated to every possible chain of

agent actions in the environment. Therefore the framework does not use a couple of X data

and y labels as in supervised and semi-supervised learning. Instead, the environment and

rewards are explored by the agent which uses at the same time this partial knowledge to

extrapolate optimal chain of actions. It usually relies on a physical simulation system. These

two types of learning, i.e., online learning and reinforcement learning, will not be discussed

further as at present they do not apply directly to Image Forensics problems.

3.1.2 Classification and regression

Classification aims at predicting qualitative values, such as digit recognition or content-

based image classification. Regression algorithms output quantitative values such as salary or

house prices. The support of regression output is usually continuous and real valued. Both
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approaches, in the case of supervised or semi-supervised learning, aim at finding a mapping

function f such as y = f(X). In the case of unsupervised learning it is a little different as

usually the objective is to find an underlying structure of the data that would allow us to

describe or cluster it. There are no explicit labels (i.e. y values).

3.2 Statistical learning

Until 2012 and the renewed interest for neural networks methods, algorithms based on

statistical learning were the state of the art. Statistical learning is derived using tools from

the statistical field. It makes the assumption that there is an unknown probability distribution

over the couple (X, y). It aims at finding a function f such that f(X) ∼ y (i.e. f(X) has the

same distribution as y). A probability distribution is a function that describes the likelihood

of each event of a random phenomenon. In our case, it means finding probability of each

specific couple (Xi, yj). Usually, (X, y) is continuous so f is a continuous function as well.

A good overview for these methods can be found in [HTF01] and a more specific overview

oriented towards computer vision applications can be found in [Bis06]. Here, we will only

briefly present some existing methods.

The different methods of statistical learning suppose different type of function f to look

for. For instance, linear models search for a linear function f to fit training data. There also

exists methods based on decision trees, so the space of f is the space of decision tree. To

find the best candidate in the function space, we need a loss function L that would penalize

functions providing false predictions and in the meanwhile promote functions offering good

predictions. The objective is then to find f∗ such as:

f∗ = argmin
f

E
(x,y)

L (y, f(X)) . (3.1)

The historical and most powerful methods are linear regression, logistic regression, kernel

methods (SVMs, for support vector machines), the ones based on trees such as Random Forest

or Gradient Boosting, nearest-neighbors (k-means and k-nearest neighbors). We will not give

further explanations on these methods as they are not used in this manuscript.

3.2.1 Gaussian Mixture Model

The Gaussian Mixture Model (GMM) is a statistical and generative model. A generative

means that, based on some assumptions, it is the ideal data-generation process of some ran-

dom variable that it is looked for. We use GMM in the subsequent chapters to model how
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small patches are generated. Then, the random variable to model is a random vector of the

pixels, the constituents of a patch.

GMM is based on the most important law of probability in statistics: the Gaussian distri-

bution. Let X = (X1, . . . , Xp) ∈ Rp be a continuous random vector, the probability density

function f of a Gaussian distribution is:

fX(x) =
1

(2π)p
√

det(Σ)
exp

(
−1

2
(x− µ)tΣ−1(x− µ)

)
, x ∈ Rp, (3.2)

with Σ the covariance matrix of size p × p which is symmetric and positive definite, and µ

the mean vector of size p. X ∼ N (µ,Σ) means that random vector X follows a Gaussian

distribution of parameters µ and Σ. This distribution is very simple and uni-modal (with a

unique peak).

To approach more complex distributions, for instance distributions with multiple modes,

mixture models are used. Mixture models do not require individual identification of the

nodes. It is a weighted sum of simple probability densities. The weights sum to 1, so that

the combination is convex and the mixture has a valid probability density function. The

probability density function of a Gaussian Mixture Model with K components is thus defined

as:

fX(x) =
K∑
k=1

πkN (x;µk,Σk) , x ∈ Rp, (3.3)

with πk the weights (non-negative values summing up to 1), and µk and Σk parameters of the

K Gaussian components. These models are universal approximator, which means that they

can approximate exactly any density when N →∞.

Parameters of the GMM are usually learned with the Expectation-Maximization (EM) pro-

cedure. Let Θ = (θ1, . . . , θN ) be a collection of N observations that we want to approximate

with a GMM. The aim is to maximize the log-likelihood of the model for the dataset Θ:

ln(p(Θ|µ,Σ)) =
N∑
l=1

ln

(
K∑
k=1

πkN (θl;µk,Σk)

)
, (3.4)

with µ = {µ1, . . . , µN} and Σ = {Σ1, . . . ,ΣN}.
First we compute the derivative of this log-likelihood with respect to the mean µk:

∂ ln(p(Θ|µ,Σ))

∂µk
= −

(
N∑
l=1

πkN (θl;µk,Σk)∑N
s=1 πsN (θl;µs,Σs)

)
Σ−1
k (θl − µk). (3.5)

The term after the sum sign inside the parenthesis is named responsibility. Responsibilities

are latent variables rjk such that rjk = 1 if the component k has generated the sample θj (and
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0 otherwise). It can be shown using Bayes theorem that:

P (k|θl) =
P (k)P (θl|k)

P (θl)
=

πkN (θl;µk,Σk)∑N
s=1 πsN (θl;µs,Σs)

= rlk. (3.6)

These very same responsibilities also appear in the partial derivative of the log-likelihood with

respect to the weights πk or the covariance matrices Σk. Therefore, to be able to maximize

log-likelihood and find optimal values for πk, µk and Σk, a first step of calculating responsibil-

ities has to be performed. This step is called Expectation step (E step). During this E step πk,

µk and Σk are assumed to be known. During the M step (Maximization step), responsibilities

are assumed to be known. Hence, these two steps are performed alternatively until reaching

a convergence criterion. This criterion is usually based on a minimum threshold for improve-

ment of the log-likelihood. Main limitation of this EM algorithm is that it is very sensitive to

the initialization of πk, µk and Σk. Initialization can be performed either randomly or with

the help of an auxiliary algorithm such as k-means. In both cases, multiple initializations are

performed to find and keep only the one with the highest log-likelihood.

Another limitation of GMM is that it contains a large number of parameters. We have for

each covariance matrix, p × (p + 1)/2 independent parameters, p parameters for each mean

vector and K weights, so a total of K ×
(

1
2p

2 + 3
2p+ 1

)
independent parameters. Thus, to

reduce this number, a common trick is to enforce a particular structure to covariance matrices

(diagonal, spherical, . . . ) with as trade-off on the loss in the descriptive power of the model.

It also helps to speed-up the computation of the Maximization step, as this step requires the

inversion of the covariance matrices.

3.3 Neural networks

Neural networks (NN) are biological inspired models. They are composed of layers. The

first layer receives the input of the model, while the last layer outputs a classification or

regression depending on the problem. Between the two there are hidden layers in cascade.

These layers are composed of neurons. A neuron loosely models the neuron of the biological

brain by reacting to a received signal and outputting a modified version for the following

neuron. There are connections between neurons and between layers. A network is called

fully-connected if each neuron is connected to all neurons of the following layer. A graphical

illustration of these principles can be found in Figure 3.1.

A neuron is typically composed of weights, bias — just as a linear regression model —

and an activation function:

xi,j = fi,j(xj−1) = σ(wT
i,jxj−1 + bi,j), (3.7)
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Figure 3.1 – A fully-connected neural network for binary classification, with one hidden layer

of size 4 and inputs ∈ R3. Orange dots are neurons and arrows symbolize connections. Figure

from Wikipedia (https://commons.wikimedia.org/w/index.php?curid=1496812).

where xj−1 are the inputs (a vector) from a previous and connected layer j − 1, xi,j is the

output of the neuron i in layer j, σ is the activation function, wi,j are the weights of neuron

i in layer j (a vector) and bi,j is the bias of neuron i in layer j (a vector). The xi,j from

all neurons i in layer j then form xj the input vector for the layer j + 1 neurons. A typical

activation function is the Rectified Linear Unit (ReLU):

ReLU(x) =

0, if x < 0

x, otherwise.
(3.8)

George Cybenko showed in 1989 [Cyb89] that a NN with a single hidden layer of arbitrary

size and with sigmoid activation can approximate any continuous and real-valued functions

on a compact subset of Rn. However, this work does not provide procedure to determine the

number of weights and neither there values.

The most used procedure to find optimal parameters for the neurons is called back-

propagation. Training examples are fed to the network, and an error loss is computed between

prediction and ground-truth. For example, with a classification and cross-entropy loss:

R(Θ) = − 1

N

N∑
l=1

K∑
k=1

yl,k log(fk,M (fM−1(. . . f1(xl
0)))), (3.9)

where Θ are the parameters for all layers, N is the number of samples, K is the number of

neurons in last layer which also corresponds to the number of classes, M is the number of

layers, yl,k is the one-hot encoded ground-truth, xl
0 is the l-th input sample, fk,M the function

with activation for the neuron k in the last layer M , and (with a slight abuse of notation)

fM−1, . . . , f1 represent functions at other layers which output a vector xl
M−1, . . . ,x

l
1.

https://commons.wikimedia.org/w/index.php?curid=1496812
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The error is first computed for the last output layer M , and partial derivatives are com-

puted with respect to the parameters of neurons in this layer: wk,M and bk,M , to find optimal

parameters. Gradient descent is used as optimization method. Then, the same computation

is performed for the second-last layer. This time fk,M is expressed with fi,M−1 the function

of the second-last layer with i = [1, . . . ,K ′] (K ′ being the number of neurons in second-last

layer), to allow the computation of partial derivatives with regard to wi,M−1 and bi,M−1.

The computation continues for other layers and accordingly the error is back-propagated in

all the network until it reaches the input layer.

Usually, neural networks stack several hidden layers (more than 3 can be considered deep-

learning) with a large number of neurons. Hence, the number of parameters to optimize is

quite large. Therefore, a large number of examples is required to train the network. It be-

comes then impossible in terms of computing power and training time to compute errors for

all examples at the same time. So, instead of the computation of gradients following every

direction, i.e. using every sample, only a random, stochastic, subset of examples are selected

each time. They are called a batch. Gradient descent is performed sequentially on all batches.

The batch size and learning rate of the gradient descent of this Stochastic Gradient Descent

(SGD) are hyper-parameters to be defined. Another advantage of introducing randomness

with the SGD is that it will help the network converge. The optimization problem is gen-

erally not convex, with probably several local minima and the dimensionality of the space

is very large. Classical optimization methods without randomness fail in this setting, and

proximal operators are not applicable in this setting because of their computation cost. When

all batches are passed through the network, it is called an epoch — and then new random

batches are drawn. Networks are trained on several epochs. The number of epochs is also a

hyper-parameter.

Some more advanced SGD methods have then been developed to speedup convergence

such as Adam [KB15]. Generally, raw values (without features extraction) are fed to the

network. Features are supposed to be constructed in the hidden layers of the model and

classified by the output layer. A good overview of neural network and deep learning methods

can be found in [GBC16].

3.3.1 Convolutional Neural Network (CNN) classifiers

We have presented in Section 3.3 regular neural networks which deal with vectors as

input. Images are however more conveniently represented as matrices. The matrices could

be vectorized but this would lead to some loss of spatial information. Moreover, it would

require too many parameters with the fully-connected neurons. Therefore, in order to deal
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Figure 3.2 – An example of a convolutional layer. The convolutional kernels are in blue and

of size k, k, l. Blue dots are individual weights of the convolutional kernels that have the same

receptive field (the small red square), i.e. connections with values in input (big red square).

Figure from Wikipedia (https://commons.wikimedia.org/w/index.php?curid=45659236).

with matrices, the weights wi,j and biases bi,j from Equation 3.7 are now matrices. The

weights are not multiplied anymore but convolved and are called convolutional kernels:

xi,j = σ(wi,j ∗ xj−1 + bi,j). (3.10)

An illustration of a convolutional layer can be found in Figure 3.2. Instead of neurons, a layer

contains several convolution kernels. The spatial sizes of the kernels are hyper-parameters,

usually between 3 and 9. After each layer, feature maps are produced to be fed to kernels

of the next layer. So kernels of layer j are of size: k, k, l, with k being the spatial size and

l being the number of kernels (which is usually higher than the number of feature maps

in the previous layer to increase size). The horizontal and vertical sizes of the outputted

feature maps depend on other hyper-parameters related to the convolution kernel which are

the stride, i.e. how many pixels are shifted between two local operations of convolution, and

the padding, i.e. how the borders are handled. Using the same kernel on the whole image

reduces the number of parameters compared to a fully-connected network, which also reflects

the assumption of translation invariance of natural images.

The recent hype for the deep learning methods is closely related to these CNNs as they

perform extremely well on images, and often better than traditional methods. It is illustrated

by the very large progress made in an image recognition challenge called ImageNet since

2012, when first CNN methods were applied. ImageNet is a very large dataset of 256 × 256

images with 1000 categories describing content of the image: cat, dog, car, etc. The top-

5 accuracy, meaning that the actual category of the image is among the 5 most probable

categories predicted by a classifier, has jumped from around 70% with traditional methods to

around 90% with the latest deep learning methods.

https://commons.wikimedia.org/w/index.php?curid=45659236
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Neural networks are an old idea and CNNs have been first proposed by Kunihiko Fukushima

in 1980 [Fuk80]. However, training procedures were complicated and often included hand-

crafted parts. In 1989, Yann Le Cun proposed a practical training method called back-

propagation [LeC+89] that has been used ever since. These CNNs methods became successful

only in 2012, as the required computation power was unavailable until then to apply CNNs on

large-scale problems. Progress in Graphics Processing Units (GPUs) programming, on which

convolutional operations are performed very quickly, are a major explanation for the late

success of the CNNs.

The main drawback of CNN and NN in general is that the decision produced is hardly ex-

plainable. All these neurons and connections act somehow as a black box. With hand-crafted

features and logistic regression, it is possible to extract the most important factors that lead

to the decision. It is especially important in the health domain. Beside that, from a theoreti-

cal point view, there is, at the time, no guarantee of convergence for the training procedure

whatsoever. The only guarantee that we have is that it produces very good empirical results.

In addition, the training of CNNs is long and costly, as it requires large GPUs. There are no

real guidelines on how to choose the architecture or the hyper-parameters. It is mostly done

by trial and error. We can draw here a parallel 1 between drug discovery and neural network

development. The chemistry and biology behind drugs that we use are so complex that we

only have a limited understanding of it. To develop a new treatment, we have a few intuitions

thanks to this limited knowledge, but development is mostly performed through trials, first

on cells and then on animals and finally on humans. A drug is considered satisfactory when

clinical trials expose large benefits (true positive rate) and very limited side-effects (false pos-

itive rate). Then the drug is sold and used by the layman. It is not so different for neural

networks.

1. See https://www.youtube.com/watch?v=gG5NCkMerHU (last accessed: Sept. 2020).

https://www.youtube.com/watch?v=gG5NCkMerHU
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4.1 Motivation

4.1.1 Image manipulation detection

The starting point of this chapter is depicted in Figure 4.1 and Figure 4.2. Two classifiers,

one based on GMMs and another CNN-based, are trained on patches of full-sized images to

classify between manipulated and original patches (details of the classification pipelines are

given in [FWC15]; [BS16] and later in Section 4.3.2 and Section 4.3.1). The manipulations

considered are summarized in Table 4.1. The classifier is then used on a testing set that

has undergone resizing (with bi-cubic interpolation) as a pre-processing operation, prior to

adding a manipulation. It is here different from the more traditional studies about robustness

against post-processing, as pre-processing does not alter manipulation fingerprints. Drops in

accuracy are observed for several resizing factors. Intuitively, pixel statistics and dependencies

between neighboring pixels are altered as images get smaller with downscaling (or bigger

with upscaling). For example, downscaling usually induces sharper transitions as fewer pixels

contribute to each transition. One can notice that the decrease in performance of GMMs is

almost linear with the factor of resizing.

We denote source the training data of original size. Half of these data have undergone a

manipulation.Target denotes the testing data that have undergone resizing as a pre-processing

operation. Then, just like for the training set, half of these testing data are manipulated. Our

objective is to distinguish between original vs. manipulated data. Ideally, accuracy should

not drop because of pre-resizing. We shall first study how well a classifier trained on source

data performs on target data, and secondly we seek a method to enhance performances on

target data without re-training the detector from scratch. From an operational point of view,

and in contrast to the usual approaches, we intend to provide a procedure that is flexible,

adaptable regarding target sets, requires no labels (unsupervised setting) or very few labels

Table 4.1 – List of basic image manipulation operations to be detected.

ORI No image modification

GF Gaussian filtering with 3× 3 kernel and σ = 0.5

MF Median filtering with 3× 3 kernel

USM
Unsharp masking with window size 3× 3, and

parameter 0.5 for the Laplacian filter to generate

the sharpening filter kernel

WGN White Gaussian noise addition with σ = 2

JPEG JPEG compression with Q = 90
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Figure 4.1 – Accuracy of GMM-based method under different resizing factors (bi-cubic inter-

polation) for several manipulations.

(weakly-supervised setting) on the target and is resource-friendly. Hence, our goal may be

stated as being able to use already existing methods in new scenarios (such as pre-processing)

or on new datasets, with only a slight adaptation yielding the same performance level. While

with most detectors great care is taken regarding robustness to post-processing, it is usually

not the case with pre-processing, which motivates our work.

The same kind of performance drop is also observed using the CNN classifier of Bayar and

Stamm [BS16], as shown in Figure 4.2. Details of the method are described in Section 4.3.1).

To cope with these performance losses, it is possible to operate either on the model or on

the features. For example, re-training the model/classifier from scratch on the target data is a

form of model adaptation, though not practical because it is resource-hungry. Implicit models

often have parameters that are not directly related to the data (e.g. quantization levels or

filters’ shape for SPAM [PBF10] and SRM [FK12]). Therefore, it is not straightforward to find

a model adaptation procedure, especially in an unsupervised framework. In this case, the

classical strategy instead is to adapt the features produced by implicit models. On the other

hand, with explicit models such as GMM, it is quite direct to adapt parameters of the models

using target data (like the covariance matrix of the data).

In this chapter, we focus on done on bi-cubic interpolation over 4×4-pixel neighborhoods

for resizing, as we found it is the hardest case, compared to nearest-neighbor interpolation,

linear interpolation or Lanczos interpolation over 8 × 8-pixel neighborhoods. Bi-cubic inter-

polation is also the most commonly used method, as it produces less visual artifacts than
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Figure 4.2 – Testing accuracy (in %) without any adaptation for CNN-based method [BS16].

nearest-neighbor interpolation.

4.1.2 Related problem in image recognition

In 2019, the authors of [AW19] have raised some quite related concerns about perfor-

mance losses of CNN when exposed to pre-processing for image recognition. They claim that

“ small translations or rescalings of the input image can drastically change the network’s predic-

tion." For one experiment, they randomly draw 1000 images from ImageNet. For each image

a square (random size and location) is cropped. Crops are then resized to be 224 × 224. A

paired image is then created in the same way, except that the random square crop is shifted

one pixel diagonally. So they have 1000 pairs of images. Each pair of images are highly similar

as the difference is only a shift of 1 pixel. Difference is almost imperceptible for human eyes

and they should be classified in the same way by a CNN.

They tested 3 state-of-the-art CNNs: VGG16, InceptionResNetV2 and ResNet50. The Top-1

prediction was different for 5% of the 1000 pairs for InceptionResNetV2 and VGG16 and even

15% for ResNet50. So this one pixel shift would introduce performance losses up to 15%.

They suggest two possible improvements, both as partial solutions:

— antialiasing of intermediate representations in CNN;

— increasing data augmentation.

To summarize, the authors of [AW19] express some concerns about the generalization

power of CNNs against pre-processing for image recognition. For one particular pre-processing
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Table 4.2 – Testing accuracy (in %) for GMM- and CNN-based methods. Full/full means that

both training and testing sets are patches from full-sized images. Mix/mix means that both

training and testing sets have been pre-resized. Resizing factors are selected randomly from

[0.48, 1.27].

GF MF USM WGN JPEG AVG

GMM full/full 91 86 97 98 89 92

GMM on mix/mix 65 85 89 86 80 81

CNN full/full 79 85 91 86 79 84

CNN on mix/mix 65 74 84 89 74 77

(not the one mentioned earlier in this subsection, a more complex one), they show that it

could cause up to 30% chance that top prediction from CNN is changed (i.e. up to 30% loss

of accuracy for the Top-1 prediction). They claim that data augmentation (i.e. training with

more data and more diverse pre-processing pipeline) is only a partial solution and does not

provide a full generalization power.

We draw some similar conclusions regarding data augmentation. We have trained detec-

tors, one based on GMM and another based on CNN (see Section 4.3.2 and Section 4.3.1 for

details on detectors) either on a dataset of full-sized images or a dataset composed of sam-

ples with pre-resizing of various factors. The testing set is consistent with the training set.

Training with a mix of pre-resizing factors is data-augmentation and it should induce a good

generalization power against pre-resized test samples. In Table 4.2, the results are lower for

the scenario with pre-resizing of train and test, indicating that the problem is harder and data

augmentation can only partially mitigate it.

4.2 Statistical tests

Decreases in performances seem to indicate a difference between the source and target

distributions. It is also intuitively quite clear that pre-resizing produces changes in local statis-

tics of the image. Therefore, the objective of this section is to exhibit theoretical justifications

for these intuitions.

The GMM trained on source data exhibits lower log-likelihood on target data. However,

GMM is a parametric model and this could only indicate that the problem is the parametriza-

tion and not the data. Non-parametric test is suited to investigate differences between source

and target. The work from Gretton et al. [Gre+07] on the two-sample problem with Maxi-
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mum Mean Discrepancy (MMD) is a good tool for this purpose, as this method is robust to

high dimensions thanks to the use of a kernel.

4.2.1 MMD distance

“MMD” distance is defined as:

MMD[F , p, q] = sup
f∈ F

(Ex∼p[f(x)]− Ey∼q[f(y)]), (4.1)

where p and q are the distributions of respectively the source and the target, x and y are

source and target samples, F is a unit ball in a universal Reproducing Kernel Hilbert Space

(RKHS) (in our case we choose Gaussian kernel with σ = 2) and E is the expectation operator.

If p = q then MMD = 0. This approach aims at finding the biggest difference between any

moments of the two distributions: if it is zero then the distributions are equal.

In a finite sample setting, it is only possible to compute an estimation of the real MMD.

It means that even if p = q, MMD would never be exactly 0 due to the variance of the MMD

estimation (though the estimator is unbiased). It would only asymptotically converge to 0

as the number of samples grows. A permutation (randomization) test is a way to cope with

this finite setting limitation. The idea is to compute the MMD on pairs (15000 in our case) of

random samples composed of a mix of source and target data multiple times (200 in our case).

This estimates an empirical distribution of the MMD as if p = q, as samples are mixed between

train and target. In practice, 1.5× 106 samples are used and not 200× (15000× 2) = 6× 106,

because only pairs of samples matter. For instance, with 5 samples it is possible to construct(
2
5

)
= 10 distinct pairs of samples. So, 15000 random pairs are drawn without replacement

200 times among the 1.5 × 106 samples. For the second part of the test, the same procedure

is reproduced with pairs of samples coming from source and target separately (not mixed

like previously). In Equation 4.1, it means that x is drawn from the source and y from the

target. The computation is also performed 200 times, on pairs of 15000 samples. Usually with

a permutation test, only one estimation is computed in the second part of the test with all

samples. This value is then compared with the histogram obtained in the first part of the test.

Here, 200 computations are performed on random samples to be able to compare two his-

tograms of MMD instead of setting an arbitrary (like the usual 95%) threshold and conclude

only on one particular realization of the MMD[F , p, q] as we consider it is a weak argument.

Therefore, we propose to compare two histograms: MMD with (as if p = q) and without

(empirical distance between p and q) permutation.
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(a) (b)

Figure 4.3 – Histograms of MMD distances between training and testing data (both sets con-

tain half of sharpened patches): (a) on original-sized testing images, and (b) on testing

images subject to resizing pre-processing (bi-cubic interpolation with a factor of 0.53).

4.2.2 Distance between source and target

We have implemented a permutation test with MMD distance to test the H0 hypothe-

sis (train and test share the same distribution), when test is pre-resized and train is not

pre-resized. Results are presented in Figure 4.3. On original-sized images (Figure 4.3.(a)),

the permutation and test statistics about MMD follow roughly the same empirical histogram

(same shape). So H0 cannot be rejected. On pre-resized images, these statistics are different

between permutation and test statistics (Figure 4.2.(b)). It means that MDD distances are

quite different between permuted samples and samples coming from train and test one by

one. Therefore, here H0 can be rejected. This test indicates that pre-processing does change

the original distribution of the images. This is quite intuitive, nevertheless here we provide

theoretical evidence for it. In the following, we also present an argument in favor of statistical

dependence between source and target which motivates our work.

4.2.3 Dependence between source and target

We have considered Hilbert-Schmidt independence criterion (HSIC) test. This test is de-

scribed in details in [Gre+08]. HSIC test is basically an MMD two-sample test between the

joint law of source and target (PX,Y ), and the product of the marginals (PX ∗ PY ). The H0
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Figure 4.4 – HSIC test for the case with sharpening as manipulation and pre-resizing factor

of 0.53.

hypothesis is: PX,Y = PX ∗ PY , which would indicate that X and Y are independent. The

results are shown in Figure 4.4. The test statistic values are clearly outside the permuted

statistics values, so we can reject here the null hypothesis. Discarding H0 is a hint in favor of

dependence between source and target. It was an indicator for us that it is indeed possible to

adapt knowledge of the source on the target. Again, this dependence is quite intuitive and it

is now more formally characterized.

To summarize, the first test has given us some non-parametric arguments in favor of

differences in statistical distributions of original-sized images (source) and pre-resized images

(target) that could explain the reported performance drops. The dependency between the two

(as reflected by the second test) motivates our domain adaptation approaches.

4.3 Classification pipelines

We describe here in details the two classification pipelines that are investigated for adap-

tation in the latter paragraphs.

4.3.1 Bayar and Stamm’s CNN

To the best of our knowledge, no existing CNN-based method considers or reports results

on small patches of 8 × 8 pixels. Nevertheless, for comparisons purposes, we improve and
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adapt the state-of-the-art deep-learning-based method from Bayar and Stamm [BS16], so that

the CNN can work with very small patches. Indeed, with the four pooling layers in the original

CNN of [BS16] and 8×8 patches as input, the output size of these pooling layers drops to 1×1

and the following 2D convolution cannot be computed anymore. It is technically possible to

keep one or two of the four pooling layers to work with 8 × 8 patches, but experimentally

we have obtained better results without any pooling layer retained. We think that pooling

as spatial reduction may have a good effect for big patches (for example 256 × 256 pixels),

but not anymore on 8 × 8 patches where we should probably avoid information loss caused

by pooling. The learning rate has also been tuned for better accuracy from 10−3 (the value

suggested in the original paper [BS16]) to 10−4. We use the Caffe implementation from the

authors (https://gitlab.com/MISLgit/constrained-conv-TIFS2018) on exactly the same

training and testing patches as GMM (with the same number of them as well).

4.3.2 Gaussian Mixture Model

The classifier presented here is largely inspired by the method of Fan et al. [FWC15]

as it is one of the state-of-the-art methods for detecting manipulations on small patches.

Firstly, Gaussian Mixture Models (GMMs) are trained, one for each set of patches (original,

Gaussian filtered, median filtered, etc.), leading to six models in total (see Table 4.1). Models

are trained to maximize the likelihood on patches with the Expectation-Maximization (EM)

algorithm. The log-likelihood for sample xl under a mixture of N Gaussian components,

parameterized by θ = {πk,µk,Σk},k=1,2,...,N , is:

L(xl|θ) = log

(
N∑
k=1

πkN (xl|µk,Σk)

)
, (4.2)

where πk, µk and Σk are respectively the weight, mean and multivariate (full) covariance

matrix for the kth component in the mixture. Here, the DC component of each patch is

removed so the patch mean is 0 thus µk are all zeros. After the GMMs are trained, a very

quick and efficient technique to produce a decision for a testing sample is to compute the

log-likelihood for each GMM and compare these values. In the case of binary classification,

it means calculating the log-likelihood ratio between the GMMs of manipulated patches and

that of the original patches [FWC15], as:

r(xl) =
LGMMmanip(xl)

LGMMori(xl)
. (4.3)

If the ratio r(xl) > 1, then the decision should be that the sample patch xl is a manipu-

lated one, otherwise it is original. This configuration is used as a classifier to adapt for the

https://gitlab.com/MISLgit/constrained-conv-TIFS2018
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fully unsupervised scenario described in Section 4.4.4. For the weakly-supervised scenario

(Section 4.4.3, we add another stage in the pipeline as explained in the following.

In the first step of the EM algorithm (E step), we need to compute component scores

which are likelihood values with respect to each Gaussian component in the GMM:

r
(l)
k = πkN (xl|µk,Σk). (4.4)

We notice that these component scores form a more detailed descriptor than the log-likelihood

value for patch xl. Therefore, we propose to use them as features to feed a classifier. For

binary classification, the feature vector (r
(l)
1,ori, r

(l)
2,ori, . . . , r

(l)
N,ori, r

(l)
1,manip, r

(l)
2,manip, . . . , r

(l)
N,manip)

of dimension 2N for the patch sample xl is a concatenation of component scores of the

two trained GMMs under comparison, each having N components. We use a small Dense

Neural Network (DNN) as a classifier. It is a very simple network with two hidden layers

of respectively 256 and 128 neurons, ReLU activation, dropout of 0.5 and Adam optimizer

with default parameters for minimizing the cross-entropy loss. This architecture has not been

optimized as it is not a crucial part given that the classification is quite easy.

As expected, experiments show that performances of the baseline scenario (i.e., when

testing samples are not pre-resized) are almost identical to the detector based on the log-

likelihood ratio. In Section 4.4.3, we propose a weakly-supervised adaptation method for this

classification pipeline composed of GMMs and DNN.

1) Practical implementation

The code is available online 1 to reproduce experiments. We use 8 × 8 patches. They are

flattened (vectorized) and centered (the mean of each patch is removed), as in [FWC15]. We

use the Scikit-learn [Ped+11] implementation of Gaussian Mixture Model. Each GMM has

75 components. This number is a good trade-off between model complexity for the training

phase and performance on the testing phase. In order to counterbalance the weaknesses of

the EM algorithm, we perform initialization five times for mixture weights πk and covariance

matrices Σk. The initialization is done using K-means. The GMM means µk are initialized to

zeros and forced again to be zero after training [ZW11]; [FWC15]. More details about the

practical implementation can be found in [DWC20]; [DWC19b].

2) Base score of the GMM pipeline

We provide in Table 4.3 the baseline scores for the GMM pipeline. It summarizes the per-

formance loss for individual manipulation as well as the average for all manipulations. The

average drop of performance is −17.5%. The side-effect of a resizing ratio of 0.5 would be

that pixels are downsampled and not interpolated. Therefore we avoid using such ratios.

1. https://forge.uvolante.org/darmet/GRAFT

https://forge.uvolante.org/darmet/GRAFT
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Table 4.3 – Testing accuracy (in %) without any adaptation for GMM-based method using

log-likelihood ratio (details in Section 4.3.2). The first column gives the pre-resizing factors.

The performance drops compared to the case without pre-resizing (i.e., the row of ×1) is

given in parentheses. We do not use ratios like 0.5 to avoid the potential special side-effect

of such ratios. The last column of “AVG” gives the average accuracy and performance drop of

the 5 classification problems.

GF MF USM WGN JPEG AVG

×1 91 86 97 98 89 92

×0.51 64 (-27) 75 (-11) 73 (-24) 69 (-29) 79 (-10) 72 (-20)

×0.76 78 (-13) 81 (-5) 81 (-16) 73 (-25) 84 (-5) 79 (-13)

×1.15 55 (-36) 80 (-6) 87 (-10) 85 (-13) 79 (-10) 77 (-15)

×1.25 51 (-40) 75 (-11) 74 (-23) 81 (-17) 67 (-22) 70 (-22)

Table 4.4 – Testing accuracy (in %) for the GMM-based method by using less training patches.

GF MF USM WGN JPEG AVG

Base score with 150000 patches 81 83 95 90 84 87

Base score with 400000 patches 82 84 96 91 87 88

Table 4.5 – Testing accuracy (in %) for the GMM-based method. Both training and testing

have been conducted on patches of pre-resized images with a specific factor. The GMMs

training uses 800000 patches, the same as for the training of GMMs on original-sized images.

GF MF USM WGN JPEG AVG

Resizing ×0.51 81 87 92 95 83 88

Resizing ×1.25 75 84 98 94 85 87

3) Additional results of GMM training

We have investigated potential limitations of the GMM pipeline, i.e. when less samples are

available for training. We first report in Table 4.4 some results of performances of GMMs when

trained on original-sized images with less samples, respectively 150000 and 400000 patches

(800000 samples are used for experiments in the manuscript). In general, the classification

accuracy increases when more patches are used for GMM training. In order to have a satisfy-

ing average base score (i.e., an average accuracy higher than 90%), we have decided to use

800000 patches to train GMMs as in the thesis manuscript.

Then we provide results for GMMs trained on 800000 patches extracted from pre-resized

images of a specific scaling factor (see Table 4.5). Intuitively, these results can be considered

as the “best” results that we can achieve on patches of pre-resized images. We will see that



46 Chapter 4. Model Adaptation

the average accuracy of our proposed unsupervised adaptation method named GRAFT (in

Table 4.9, Table 4.10 and Table 4.11) is quite close to the result of training from scratch

on 800000 patches from pre-resized images, which demonstrates the effectiveness of GRAFT.

Detailed analysis will be presented in Section 4.4.4.2.

4.4 Adaptation

As depicted in introduction of Section 4.1, to deal with these performance losses induced

by statistical discrepancies between train and test, it is possible to adapt either the features

or the model. Our work is focused on model adaptation, and especially GMMs, though we

present in Section 4.4.1 briefly two feature-based approaches (i.e. optimal transport and

kernel methods) and references. Then we introduce briefly in Section 4.4.2 fine-tuning of

CNN which can be considered as a kind of model adaptation, and more precisely adaptation

of the CNN designed by Bayar ans Stamm [BS16] with some experimental results. Finally,

we present two adaptation methods for GMM in details. First, one relies on few labels on the

target, i.e. weakly-supervised (Section 4.4.3). The other technique is fully unsupervised and

we name it GRAFT for GMM Resizing Adaptation by Fine-Tuning (Section 4.4.4). Some results

of the two methods are presented. Details of the classification pipeline of the original GMM

method, without adaptation, can be found in Section 4.3.2. A last section (Section 4.4.5)

compares the three model adaptation techniques.

4.4.1 Feature adaptation

The idea of feature adaptation is to find a transformation for source features that would

allow a classifier learned on transformed source features to perform better on target features

than a classifier learned on the original source features. In the case of Optimal Transport (OT),

the source is usually moved towards the target. For kernel methods, both source and target

are transformed to be closer. In both cases a classifier should be re-trained on transformed

source features. For model adaptation techniques, the classifier is learned directly on the

original source data and it is later adapted to the target without retraining.

OT-based adaptation [Cou+17] tries to preserve conditional distributions: Ptrain(y|xtrain) =

Ptest(y|T (xtest)) with y representing the labels and T a transport map for test samples. It

aims at finding a probabilistic coupling γ between domains Ωtrain and Ωtest supplied with

two probability measures µtrain and µtest and a cost function c that allows computing the

cost of moving a point from Ωtrain to Ωtest. This probabilistic coupling γ provides a bijective
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transport map T . The cost function is in our case the Euclidean distance between samples in

the feature space. The rigorous formulation, initially from Kantorovich (1942), is [Cut13]:

γ0 = argmin
γ

∫
Ωtrain×Ωtest

c(x, y)γ(x, y)dxdy,

s.t.
∫

Ωtrain

γ(x, y)dx = µtrain,

∫
Ωtest

γ(x, y)dy = µtest,

(4.5)

which leads to an optimization problem that can be solved through linear programming.

The optimal value obtained with γ0 is called Wasserstein distance, which defines a distance

between two probability measures. After finding the optimal coupling γ0, the training samples

are transported on the testing ones and a classifier is trained with these transported samples

and their labels.

Another approach is based on kernel methods [Pan+11]. Basically the idea is to minimize:

Dist(X ′train, X
′
test) =

∥∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

Φ(xi,train)− 1

ntest

ntest∑
j=1

Φ(xj,test)

∥∥∥∥∥∥
2

H

, (4.6)

where X ′train = {Φ(xi,train)} , X ′test = {Φ(xj,test)}, and Φ is a parametric kernel. As explained

in [Pan+11], solving this problem is equivalent to computing the eigenvectors of matrices

based on kernel distance between samples in feature space which is quite straightforward

and easy to implement.

SPAM [PBF10] and SRM[FK12] features are state-of-the-art features for image forensics

and performance losses are also observed. Therefore, we have tried both approaches to

counterbalance effect of pre-resizing but results are not satisfactory.

The performances are downgraded by adaptation when transporting the source towards

the target and re-training a classifier on transported source samples (standard framework for

domain adaptation through optimal transport). The performances remain almost the same

when transporting the target towards the source without retraining. Our intuition is that

the feature spaces are too high-dimensional and complex (the dimension is 1250 for SPAM

features with its parameter T = 3). The OT approach requires the computation of distances

between samples (cost function c). In such a high-dimensional space, it is very likely that

the curse of dimensionality occurs and thus the cost function c is not reliable. In the original

paper [Cou+17], the authors adapt a classifier from one manuscript digit dataset to another.

They use SIFT to transform each image into a 800-bin histogram and then the histograms are

normalized and the feature is only a 1-dimensional standard score. Kernel-based methods also

rely on pairwise distances. These distances are computed thanks to a kernel, so the effects

of dimensionality should be mitigated. We do not observe this in practice however. Beside
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these considerations on dimensionality, and based on the fact that results are better for the

OT-based approach when the classifier is not re-trained, we suspect transformed features have

lower discriminative capabilities. That could also explain the bad results of the kernel-based

method.

This problem is discussed theoretically by Ben-David et al. [BD+06]. They provide a gen-

eralization bound error for domain adaptation that depends on both the distance between

the distributions of source and target (brought closer by OT or kernel method here), and the

performances on the source (i.e. how good are the features for the problem). The difficulty

is that these two terms are not independent. By reducing the distance between source and

target, performances on the source could be damaged and vice versa. The theoretical results

of [BD+06] give a plausible explanation for the difficulty of feature adaptation in our sce-

nario. More formally, OT-based and kernel-based approaches reduce the gap between the two

distributions (source and target) which at the same time decreases the performance on the

source. Nevertheless, we believe that a feature-based method has a great potential and we

consider it as a promising future research line.

4.4.2 Neural network fine-tuning

The best known technique for model adaptation is the fine tuning of a convolutional

neural network pre-trained on ImageNet [Yos+14]. Classical CNNs need millions of images

to train on, as in ImageNet, and a considerable amount of computing time and resources.

For other problems, these conditions may not be satisfied. One possible shortcut is to use

pre-trained weights on ImageNet as an initialization and then only fine-tune the last few

layers. While this technique is effective, it needs access to labels in the target domain to be

applied. The fine-tuning of a dense neural network is used for image manipulation detection

in Section 4.4.3 to adapt to pre-resizing in a weakly-supervised setting.

The state-of-the-art results for image manipulation detection with a CNN were obtained

by the CNN of Bayar and Stam [BS16]. Therefore, we use this CNN classifier to illustrate

the effectiveness of CNN fine-tuning. However, these authors have designed their network to

work with patches of size at least 64 × 64 pixels. In order to make the CNN work with 8 × 8

patches, one or some of the four pooling layers of the original network have to be removed.

Otherwise the output size of these layers drop to 1×1 and the following 2D convolution is not

possible anymore. We have tried different configurations and numbers of retained pooling

layers (0, 1 or 2 retained layers are technically possible) and found that we obtain better

performance without any pooling. This is understandable as pooling layers would cause loss

of information. Performances are also better with a learning rate of 10−4 instead of 10−3



4.4. Adaptation 49

Table 4.6 – Testing accuracy (in %) of an improved version of Bayar and Stamm’s CNN-based

method [BS16], with and without fine-tuning. The improved accuracy of weakly-supervised

fine-tuning, compared to the setting without fine-tuning, is given in parentheses. The baseline

testing accuracy without any resizing pre-processing is given in the second row.

GF MF USM WGN JPEG AVG

Without resizing 79 85 91 86 79 84

Resizing ×0.51

(without fine-tuning)
68 82 80 66 76 74

Resizing ×0.51

(fine-tuning)
73 (+5) 82 (+0) 85 (+5) 69 (+3) 77 (+1) 77 (+3)

Resizing ×0.76

(without fine-tuning)
73 83 89 80 79 81

Resizing ×0.76

(fine-tuning)
74 (+1) 83 (+0) 89 (+0) 80 (+0) 79 (+0) 81 (+0)

Resizing ×1.15

(without fine-tuning)
59 76 79 86 61 72

Resizing ×1.15

(fine-tuning)
67 (+8) 80 (+4) 90 (+11) 86 (+0) 66 (+5) 78 (+6)

Resizing ×1.25

(without fine-tuning)
55 72 74 82 55 68

Resizing ×1.25

(fine-tuning)
65 (+10) 77 (+5) 91 (+15) 86 (+4) 60 (+5) 76 (+8)

(the value suggested in the original paper [BS16]). Results reported in Table 4.6 have been

obtained with these improved settings, the best that we could get after many experiments. We

used the Caffe implementation from the authors available at https://gitlab.com/MISLgit/

constrained-conv-TIFS2018.

The results for Bayar and Stamm’s CNN [BS16] on pre-resized and un-resized (i.e. resizing

factor of 1) testing sets are presented in Table 4.6. Without fine-tuning, drops in performance

are severe, for instance with an upscaling factor of ×1.25, the classifier is 24% less powerful

to detect Gaussian Filtering and −16% on average. The average performance drop without

fine-tuning for the presented resizing factors in Table 4.6 is about−13%. Drops are less severe

when the resizing factor is close to 1.

We have tried different fine-tuning strategies to find the best one, i.e., fine-tuning the

first few, the last few, or all layers of the network. We found that only fine-tuning the dense

layers at the end of CNN gives slightly better performance than the other strategies. The

https://gitlab.com/MISLgit/constrained-conv-TIFS2018
https://gitlab.com/MISLgit/constrained-conv-TIFS2018
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learning rate has been reduced to 10−5. This particular setting (adapted learning rate and

fine-tuning) gave us the best adaptation performance in our experiments. Fine-tuning of the

CNN is performed on the same 2000 pre-resized patches per class as in the following work

Section 4.4.3 in order to be able to compare both approaches. Adaptation of CNN helps to

improve the accuracy under resizing pre-processing, especially for upsampling, as shown in

Table 4.6.

4.4.3 Weight adaptation and fine-tuning for Gaussian Mixture Models

As described in Section 4.3.2, we use here a classification pipeline based on GMMs for

feature extraction and a small DNN for classification. Two GMMs are trained, one on original

patches and another one on manipulated patches. The sample’s vectors of responsibilities

from the two GMMs are then concatenated and used as features. The DNN performs a clas-

sification with these features as inputs. The proposed weakly-supervised adaptation method

comprises two sub-steps. First, GMMs are adapted so that they better fit to the testing sam-

ples which have undergone the resizing pre-processing. Then the DNN classifier is adapted

by fine-tuning the network. Both steps are accomplished in a weakly-supervised manner, i.e.

by using a very limited number of labeled testing samples of 8 × 8 patches from pre-resized

images.

4.4.3.1 Method

In the following, we first show that if DC components of patches are removed (i.e., Gaus-

sian component’s means µk = 0, ∀k = 1, 2, . . . , N), the weighted sum of covariance matrices

of a GMM is equal to the covariance matrix of the data. We have X = (X1, X2, . . . , Xp) a

multi-dimensional random variable and p = 64 because patches are 8× 8. Let f be the Proba-

bility Density Function (PDF) of the random variable X with the DC component removed and

let fk be the PDFs of each component of the related Gaussian mixture, then we have:

f(xl) =

N∑
k=1

πk fk(xl) =

N∑
i=1

πk N (xl|0,Σk), (4.7)

where xl is a p-dimensional sample of the random variable X, Σk and πk are respectively

the covariance and the weight for the kth component in the mixture. Now let us compute the

elements of the covariance matrix of X:

cov(Xi, Xj) = Ef [XiXj ]− Ef [Xi]Ef [Xj ] = Ef [XiXj ]

=

N∑
k=1

πk Efk [XiXj ] =

N∑
k=1

πk(Σ
(i,j)
k + µ

(i)
k µ

(j)
k ) =

N∑
k=1

πkΣ
(i,j)
k ,

(4.8)
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where superscripts (i), (j) and (i, j) are element indices within the corresponding vector and

matrix. Considering that variance is a special case of covariance, from Equation 4.8 we can

see that the covariance matrix of the data is equal to the weighted sum of the covariance

matrices of the Gaussian mixture.

We assume that we have only a few labeled samples on the target domain, not enough

to train a model from scratch (this would need around 200000 samples of each class) but

enough to compute an empirical covariance matrix per each class on the target (around 1000

samples for each class). The GMMs’ parameters should be slightly adjusted so as to enhance

the descriptive capability of the model on the target data. GMMs can be adjusted in two ways:

adjusting the weights or the covariance matrices (the means are zeros). Beside that, our aim

is to have a quick adaptation solution. Therefore, we choose to adapt the GMM weights.

The weights contain less parameters (only a vector and not matrices). Adaptation of GMMs’

weights can be formulated as an optimization problem:

minimize
wk

∥∥∥∥∥
(

N∑
k=1

wk ×Σk

)
−Σdata

∥∥∥∥∥
F

subject to
N∑
k=1

wk = 1, and 0 < wk < 1, ∀k = 1, 2, . . . , N.

(4.9)

In Equation 4.9, the wk ’s are adapted GMM weights to be deduced, Σdata is the empir-

ical covariance matrix on the target domain, and F stands for the Frobenius norm. We do

acknowledge that semi-definite positive matrices lie on a Riemannian manifold, thus with a

curvature. So a geodesic distance would be more adapted. However, we did not notice any

differences in classification performances or in the results of optimization using the Euclidean

distance instead of the geodesic distance. Although the geodesic distance is more expensive

and slower to compute. Therefore, in practice we use the Frobenius norm.

These adjustments of weights for each GMM can be seen as a fine-tuning for feature ex-

traction. It is a means of reducing discrepancy between features of source and target domains.

In the second step of our method, classifier adaptation by fine-tuning the DNN is carried out

to cope with drifts in features and therefore enhance the discriminative capability of the clas-

sifier.

4.4.3.2 Results

1) With DNN fine-tuning only

DNN fine-tuning helps to improve the detection accuracy, but sometimes the improvement
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Table 4.7 – Testing accuracy (in %) of DNN fine-tuning, combined without or with weights

adaptation of GMMs. The improved accuracy of weakly-supervised adaptations, compared to

the setting without adaptation, is given in parentheses. Testing accuracy without resizing is

also given in the second row for reference. The last column of “AVG” presents the average

accuracy (and average accuracy improvement in parentheses, if any) of the 5 classification

problems.

GF MF USM WGN JPEG AVG

Without resizing 91 86 97 98 89 92

Resizing ×0.51

(without adaptation)
64 75 73 69 79 72

Resizing ×0.51

(DNN fine-tuning only)
72 (+8) 75 (+0) 91 (+18) 71 (+2) 82 (+3) 78 (+6)

Resizing ×0.51

(GMM adaptation +

DNN fine-tuning)

78 (+14) 76 (+1) 92 (+19) 70 (+1) 86 (+7) 80 (+8)

Resizing ×0.76

(without adaptation)
78 81 81 73 84 79

Resizing ×0.76

(DNN fine-tuning only)
78 (+0) 77 (-4) 92 (+11) 81 (+8) 84 (+0) 82 (+3)

Resizing ×0.76

(GMM adaptation +

DNN fine-tuning)

83 (+5) 82 (+1) 94 (+13) 85 (+12) 84 (+0) 86 (+7)

Resizing ×1.15

(without adaptation)
55 80 87 85 79 77

Resizing ×1.15

(DNN fine-tuning only)
66 (+11) 82 (+2) 95 (+8) 96 (+11) 79 (+0) 84 (+7)

Resizing ×1.15

(GMM adaptation +

DNN fine-tuning)

70 (+15) 85 (+5) 95 (+8) 96 (+11) 82 (+3) 86 (+9)

Resizing ×1.25

(without adaptation)
51 75 74 81 67 70

Resizing ×1.25

(DNN fine-tuning only)
63 (+12) 78 (+3) 95 (+21) 90 (+9) 70 (+3) 79 (+9)

Resizing ×1.25

(GMM adaptation +

DNN fine-tuning)

66 (+15) 80 (+5) 95 (+21) 95 (+14) 78 (+11) 83 (+13)

is rather limited (see Table 4.7, rows of “DNN fine-tuning only”). By fine-tuning, the classi-

fier’s decision boundary is slightly adjusted, somehow similar to the case of selecting a new



4.4. Adaptation 53

threshold for the comparison of likelihood (instead of 1 initially). In order to further enhance

the discriminative power of the whole forensic pipeline, it is necessary to also adapt GMMs,

the underlying feature extractor, which are until now trained solely on the source data while

being “blind” to the target domain. Therefore, GMMs should be tweaked, more precisely their

weights, in order to better fit the target data.

2) With GMM weights adaptation

We observe in Table 4.7 some clear improvements (e.g., for WGN and JPEG under upsampling

of ×1.25) when fine-tuning of DNN is conducted jointly with GMM weights adaptation. In

addition, there is consistent average accuracy improvement under all the considered resizing

factors (see last column of Table 4.7) for adaptation of both GMMs and DNN, when compared

to DNN fine-tuning only. The standard deviation of the results is under 10−1. The acccuracy

increase offered by adaptation of GMMs and DNN depends on manipulations. For example,

our method is able to recover up to +19% for sharpening (USM) and resizing of ×0.51, but

there are not such improvements for median filtering (MF). Median filtering is the manipu-

lation with the smallest score (86% in Table 4.3, row of ×1) on baseline (without resizing

of the testing set) and is also across resizing factors one of the hardest to deal with. Beside

that, our method works better with upsampling (for example +13% for the average accuracy

improvement with a factor of ×1.25 and less for factors ×0.51 and ×0.76). Our conjecture is

that with downsampling, some striking local dependencies in patches are partially removed

so it needs more complex transformation than a simple weights adjustment to allow a GMM

to describe them well. With upsampling, the dependencies are somehow mildly smoothed so

it is easier to adapt.

3) Mixed resizing factors

Our method also performs well with a mix of resizing factors. As shown in Table 4.8, our

method still obtains good results when factors are randomly drawn within an interval (fol-

lowing the uniform distribution). This is not a surprise since our method only intends to adapt

the GMM-based feature extractor to the new covariance of the data and the DNN classifier to

these new features, without taking into account the specific factor value and algorithm of the

resizing pre-processing.

4.4.4 GRAFT: GMM Resizing Adaptation by Fine-Tuning

Quite similarly with previous Section 4.4.3, our objective here is to come up with a simple

method to quickly adapt a GMM to the target dataset (i.e. pre-resized), starting from a

model learned on the source dataset (i.e. without pre-resizing). However, we aim here

for an unsupervised method, while the method of previous Section 4.4.3 follows a weakly-
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Table 4.8 – Testing accuracy (in %) of DNN fine-tuning, combined without or with weights

adaptation of GMMs, for the case of mixed resizing factors. The resizing factor is drawn

following the uniform law within the specified interval.

GF MF USM WGN JPEG AVG

Resizing ×[0.48, 0.72]

(without adaptation)
71 81 76 72 87 77

Resizing ×[0.48, 0.72]

(DNN fine-tuning only)
78 (+7) 81 (+0) 91 (+15) 76 (+4) 87 (+0) 83 (+6)

Resizing ×[0.48, 0.72]

(GMM adaptation +

DNN fine-tuning)

83 (+12) 80 (-1) 92 (+16) 80 (+8) 88 (+1) 85 (+8)

Resizing ×[1.12, 1.27]

(without adaptation)
53 78 81 83 74 74

Resizing ×[1.12, 1.27]

(DNN fine-tuning only)
63 (+10) 78 (+0) 95 (+14) 91 (+8) 75 (+1) 80 (+6)

Resizing ×[1.12, 1.27]

(GMM adaptation +

DNN fine-tuning)

64 (+11) 83 (+5) 98 (+17) 95 (+12) 78 (+4) 84 (+10)

supervised framework. We remind that as patches are centered, free parameters of the GMMs

are the weights and the covariance matrices. In previous Section 4.4.3, the weights of the

GMM are adapted. Here, covariance matrices are modified and weights are left untouched.

This is motivated by the analysis of Fan et al. in [FWC15] on the leading eigenvectors of GMM

covariance matrices. The authors showed that the leading eigenvectors of GMM covariance

matrices are indeed very different for the model trained on original patches and the one

trained on manipulated patches. This seems to indicate that the discriminative power of the

method [FWC15] is closely related to the learned GMM covariance matrices. This motivates

us to find an adaptation procedure for GMM covariance matrices.

We focus on the adaptation of covariance matrices in GMMs. Therefore, we briefly present

here previous works on transformation of covariance matrices. In [Zan+18]; [RJC19], the

authors use covariance matrices between signals of several electrodes placed on the head

of the subject as features. These features are used to distinguish movements made by the

subject. Their objective is to adapt features between experiments to avoid re-calibration,

in a semi-supervised setting. Domain adaptation is performed through covariance matrix

transformations. More precisely, in [Zan+18]; [RJC19] they compute centers of mass with

geodesic distance (i.e. the geometric mean in the language of Riemannian geometry) for the

training and the testing ensembles of covariance matrices and minimize the geodesic distance
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between the two. It is worth pointing out that for us, the covariance matrices are part of the

classification model and not the features, and that we consider the challenging unsupervised

setting and propose a new adaptation method as presented below.

4.4.4.1 Method

1) Outline

The inputs of the method are:

— C1: a set of N = 2 × K covariance matrices from two GMMs trained on the source

dataset (the two GMMs, each having K components, are trained respectively on orig-

inal patches and manipulated patches);

— C2: empirical estimations of the covariance matrices for original and manipulated

patches on target pre-resized dataset 2.

We seek to obtain Cadp1 , a set of N covariance matrices adapted to the pre-resized target

domain. Cadp1 , along with the weights of original GMMs in the source domain, constitutes

two adapted GMMs which have improved forensic performance on the target domain. Cadp1

will be obtained by transforming C1 using information from C2. Of course, as an unsupervised

adaptation approach, our method does not use any ground-truth label on the target domain,

neither for the estimation of C2 nor for the transformation of C1.

Formally we have:

C1 = {C(1),ori
1 , ..., C

(1),ori
K , C

(1),mnp
1 , ..., C

(1),mnp
K },

C2 = {C(2),ori
1 , ..., C

(2),ori
M
2

, C
(2),mnp
1 , ..., C

(2),mnp
M
2

}.
(4.10)

The idea is to find some transformation of C1 to bring it “closer” to C2, under the constraint

of increasing the likelihood of adapted GMMs on the target pre-resized dataset. Here, we

have been inspired by the work of Rodrigues et al. [RJC19] in the brain-computer interface

field, where the authors propose to use the Riemannian Procrustes Analysis (RPA) method,

an adaptation between sets of covariance matrices. In their work, and unlike in ours, co-

variance matrices are features and not parameters of a probabilistic model. They perform

feature adaptation in a semi-supervised manner while we would like to adapt our GMMs in

an unsupervised scenario. The objectives are not comparable and it is not possible to directly

use their method for our problem. However, our GRAFT method retains the RPA spirit by

using a set of basic geometrical transformations of covariance matrices. So we briefly present

here the RPA procedure which comprises three main steps (mathematical details can be found

in [RJC19]):

2. In our algorithm, M estimations are computed in order to improve the robustness against the variance of

empirical estimation. Details on how to obtain C2 are presented later in this section.
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1. Translate source and target sets to obtain the identity as geometric mean (re-centering):

Cctr1 = T1(C1) where C1 is the first set of covariance matrices. Let V be the geometric

mean of C1 = {C1
1 , . . . , C

1
K}. Then T1 is defined as C1,(ctr)

i = V −
1
2C1

i V
− 1

2 . Similarly,

we have T2 for the second set C2;

2. Perform rescaling on each axis to get unit variance: Cstr1 = S1(Cctr1 ) and Cstr2 = S2(Cctr2 ).

S1 is defined such that C1,(str)
i =

(
C

1,(ctr)
i

)p
where p is a proper scaling factor for the

variance normalization;

3. Minimize the geodesic distance between Cstr1 and Cstr2 by finding an optimal rotation

U around the origin (the rotation is applied to Cstr1 only, not on Cstr2 ). The C1,(str)
i are

modified so that C1,(rot)
i = UC

1,(str)
i UT with UUT = I (i.e., the product is the identity

matrix).

With the RPA procedure, both sets of features become comparable: a classifier learned with

C1 features is also meaningful with C2 features. RPA uses geodesic distance between matri-

ces to derive the transformation, while GMMs use likelihood to carry out classification (see

Section 4.3.2 for the GMM-based classification pipeline). Hence, in GRAFT we shall use the

group of elementary geometrical transformations of covariance matrices, but combine and

optimize them in a different and appropriate manner.

2) Transformation and interpolation

In the first place, we transform our C1 and C2 in Equation 4.10 by using the three geometrical

transformations of the RPA procedure (see above). More precisely, we first translate C1 and

C2 so that they both have the identity as their barycenter. Then, stretching and rotation are

performed so that C1 and C2 get closer in the transformed space in terms of geodesic distance.

The set of transformed covariance matrices corresponding to C1 are denoted by CRPA1 . We

know from the analysis at the end of last subsection that this transformation is not optimum

for a GMM-based classification pipeline, mainly because RPA does not use likelihood as a

criterion during the transformation. Therefore, additional steps are needed.

We then consider another transformation which translates C1 towards C2, so that the trans-

lated version, denoted by Ctrg1 , has the same center of mass as C2. With a little abuse of

notation, for original patches this means satisfying the following equation (similarly for ma-

nipulated patches):
K∑
i=1

πi × Ctrg,orii =
2

M

M/2∑
j=1

C
(2),ori
j , (4.11)

where Ctrg,orii is the i-th covariance matrix for original patches in Ctrg1 , πi are the GMM weights

of original patches in the source domain, and C
(2),ori
j is the j-th estimated covariance of

original patches in the target domain. This transformation considers the fit of second-order
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statistics (i.e., the covariance matrix) to the target dataset. In fact, it can be shown, with the

assumption of a perfect fit of GMM and centered patches, that the weighted sum of Gaussian

components’ covariance matrices of a GMM (the left-hand side of Equation 4.11) is equal to

the covariance matrix of the data (the right-hand side of Equation 4.11 is an estimation of

the data covariance). 3 Indeed, as in [ZW11], [FWC15] patch samples are centered to have

zero mean (i.e., the DC component is removed for each patch), and accordingly Gaussian

components in GMM also each have zero mean. As proven in Section 4.4.3, the cross terms in

the covariance computation disappear with zero-mean Gaussian components. Then we have:

cov(Xi, Xj) =
K∑
k=1

πk × Σ
(i,j)
k , (4.12)

where X is the 64-dimensional random variable of pixel values from the vectorized patches,

cov(., .) is the covariance function, Σk and πk are respectively the covariance and the weight

for the k-th component in GMM, and i, j and (i, j) are element indices within the correspond-

ing vector and matrix.

Technically, similar to the translation step in RPA [RJC19] (see step 1) of RPA in the last

subsection), the translation to Ctrg1 is realized by simple matrix multiplications on C1.

Practically and theoretically, neither CRPA1 nor Ctrg1 are optimal in terms of GMM likelihood

(see Figure 4.6 of the next Section 4.4.4.2 for a concrete example). The former has the

identity as its geometric mean, while the latter only considers fit of covariance matrices on

average but not the GMM likelihood. However, both CRPA1 and Ctrg1 get closer to the target

domain to some extent, and a natural and simple idea is to interpolate between the two to

get a better solution. This is a heuristic-based approach but it has good intuition and is

experimentally effective. Another advantage is that a simple interpolation between two valid

covariance matrices still leads to a valid solution as a symmetric positive semi-definite matrix.

The interpolation is naturally driven and governed by the maximization of likelihood of

GMMs. The rationale behind is the fact that GMMs rely heavily on the descriptive capabil-

ity (high likelihood) to carry out correct classification. Two distinct (regarding respectively

original and manipulated classes of patches) interpolation coefficients are computed between

CRPA1 and Ctrg1 :

— α1 is used to interpolate between CRPA,ori1 and Ctrg,ori1 (original patches);

— α2 is used to interpolate between CRPA,mnp1 and Ctrg,mnp1 (manipulated patches).

Optimal values for α1 and α2 are computed by maximizing the log-likelihood respectively

on the two GMMs. This will be shown to enhance both the descriptive power by maximiz-

ing the log-likelihood and the discriminative capability by choosing separate coefficients for

3. Detailed proof can be found in previous Section 4.4.3.
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original/manipulated classes. This trade-off between adapting to the new domain while si-

multaneously preserving the discriminative power is also motivated by the theoretical study

of [BD+06].

To estimate the covariance matrix on 8×8 patches of pre-resized testing images, the usual

empirical estimator is used:

σij =
1

NP − 1

NP∑
l=1

(xil − µi)(xjl − µj), (4.13)

where i is the row index, j is the column index, NP is the number of patches, and µi, µj are

respectively the empirical mean of row i and column j over the NP samples. This estimator is

unbiased, yet it suffers from a high variance. As explained earlier, in order to counterbalance

the variance of the estimation, we perform M estimations of empirical covariance matrices

on separate subsets of the target dataset of patches from pre-resized images. It is worth

mentioning that we estimate matrices separately for the two original/manipulated classes,

by using the so-called pseudo-labels in the target domain. Pseudo-labels are an important

feature of GRAFT and are described in the next subsection.

3) Pseudo-labels

In the unsupervised framework of GRAFT, we do not have access to ground-truth labels on the

target domain. However, it turns out that the accuracy of the GMM-based classifier does not

drop to 50%, i.e. random guessing. It means that the classifier is still able to label accurately

some pre-resized test samples. From these samples, we derive pseudo-labels. We explain in

the following how these pseudo-labeled samples are selected.

At the beginning of the optimization of α1 and α2, their initial values are drawn randomly

to compute the first two sub-optimal, interpolated GMMs. We assume that even with this

sub-optimal interpolation, the GMMs can still label correctly some testing samples. Hence,

we need to select almost surely original and almost surely manipulated patches. Almost surely

original (resp. manipulated) patches are selected from the 5–15 (resp. 85–95) percentile of

the likelihood ratio, leading to 20% patches with reliable pseudo-labels because their likeli-

hood ratio is farthest from 1. The GMMs are originally trained on the source domain, so most

surely classified target samples are very likely to be closer to the source domain than to the

target domain. It means that they are not enough representative of the effect of pre-resizing.

Therefore, extreme likelihood ratio values (percentile 0–5 and 95–100) are discarded.

To validate this approach, we have computed the accuracy of pseudo-labeled samples and

it is typically above 95%. Of course, ground-truth labels on the target domain are not used in

the GRAFT method and have been only used here to validate our hypothesis on pseudo-labels.

In the end, 20% (10% almost surely original + 10% almost surely manipulated) of the test
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In

CRPA
1

RPA

Interpolation

C1

Ctrg1

Figure 4.5 – Transformation and interpolation in GRAFT. In is the identity matrix of dimen-

sion n× n, in our case 64× 64, the size of the covariance matrix of vectorized 8× 8 patches.

The interpolation is essential in GRAFT which maximizes the log-likelihood of GMMs with

regard to the target domain.

data are pseudo-labeled. The method is robust regarding the chosen percentages. Selecting

percentiles 5–20 and 80–95 (or 10–15 and 85–90) would not significantly impact the final

accuracy. However, the classification accuracy starts to drop when more than 30% of the test

data are pseudo-labeled because their accuracy drops.

One detail is that we use directly C1 to get the pseudo-labels used for the estimation of

empirical covariance matrices C2 on test samples (see steps 2 and 3 of Algorithm 1). This is

different from the derivation of pseudo-labels via sub-optimal interpolation mentioned above,

but remains reasonable because at the stage of estimating C2 it is impossible to use interpola-

tion to get pseudo-labels. In fact, the estimation of C2 serves to obtain Ctrg1 , one end point of

the interpolation.

4) Summary

The main steps of the unsupervised adaptation method of GRAFT are illustrated in Figure 4.5

and its pseudo-code is presented in Algorithm 1. The red line in Figure 4.5 represents trans-

lation toward identity, stretching and rotation. Sets of covariance matrices within the orange

dashed contour have the identity matrix (In) as their geometric mean. In Algorithm 1, α1 and

α2 are the coefficients of an interpolation represented by the green dotted line in Figure 4.5.

Formally, the adapted sets of covariance matrices are obtained as:

Coriadp = Ctrg,ori1 ∗ (1− α1) + CRPA,ori1 ∗ α1,

Cmnpadp = Ctrg,mnp1 ∗ (1− α2) + CRPA,mnp1 ∗ α2.
(4.14)

α1 and α2 are computed such that they maximize the sum of log-likelihood of the two GMMs:

argmax
α1,α2

LLoriadp (α1) + LLmnpadp (α2) . (4.15)
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Algorithm 1 GRAFT algorithm
Input: Source and target data, two GMMs trained respectively on original and manipulated patches

of source data

Output: Adapted GMMs

1: Concatenate the two sets of covariance matrices from the two trained GMMs on source data to

form C1
2: Compute pseudo-labels based on ratio of likelihood with C1 as covariance matrices

3: Use these pseudo-labels to compute estimations of covariance matrices of original and manipulated

patches on target data to get C2
4: Recentering: Cctr1 = T1(C1) and Cctr2 = T2(C2)

5: Rescaling: Cstr1 = S1(Cctr1 ) and Cstr2 = S2(Cctr2 )

6: Rotation: CRPA
1 and CRPA

2

7: Translation of C1 to have the same center of mass as C2 (separately for original and manipulated

patches): Ctrg1

8: Initialization of α1 ∼ U [0.1, 0.9] and α2 ∼ U [0.1, 0.9]

9: Perform a first sub-optimal interpolation between CRPA
1 and Ctrg1 with these random values of α1

and α2

10: Only keep most confident samples (see main text) and construct two pseudo-labeled sets: almost

surely original and almost surely manipulated testing patches

11: Find optimal interpolation coefficients α1 and α2 in Equation 4.14 based on the maximization of

the sum of log-likelihood on the two sets of pseudo-labeled patches: Coriadp and Cmnp
adp

12: Repeat steps 8 to 11 for five times and keep the adapted GMMs with highest sum of log-likelihood.

13: return

Log-likelihood LLoriadp is computed on almost surely original patches of the testing set, with

adapted covariances and corresponding original weights. Similarly, LLmnpadp is computed on

manipulated pseudo-labeled patches of the testing set with the adapted GMM covariances.

Optimal values for α1 and α2 depend on the manipulation and resizing factor, so the full

interval [0, 1] is searched. Like for the EM algorithm, the performances depend on the initial

random values of α1 and α2 for the first sub-optimal interpolation. Therefore, initialization is

performed multiple times (five times is experimentally a good trade-off between computation

time and performances), and the one with highest log-likelihood on pseudo-labeled test sam-

ples is selected as the final adapted GMMs. To summarize, in GRAFT, in order to adapt GMMs

to the new target domain, simple operations (translation, scaling, rotation and interpolation)

are performed to adjust covariance matrices in an unsupervised manner, and the procedure

is driven by GMMs likelihood maximization on pseudo-labeled target samples.
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Table 4.9 – Testing accuracy (in %) with adaptation of GMMs (resizing ×0.51). The improved

accuracy, compared to the setting without adaptation, is given in parentheses.

GF MF USM WGN JPEG AVG

Resizing ×0.51

(without adaptation)
64 75 73 79 79 74

Resizing ×0.51

(retraining with 10%)
77 (+13) 79 (+4) 82 (+9) 84 (+5) 81 (+2) 81 (+7)

Resizing ×0.51

(unsupervised, GRAFT)
79 (+15) 79 (+4) 88 (+15) 89 (+10) 83 (+4) 84 (+10)

Table 4.10 – Testing accuracy (in %) with adaptation of GMMs (resizing ×0.71), with im-

proved accuracy in parentheses.

GF MF USM WGN JPEG AVG

Resizing ×0.71

(without adaptation)
78 81 81 91 84 83

Resizing ×0.71

(retraining with 10%)
82 (+4) 81 (+0) 93 (+12) 93 (+2) 89 (+5) 88 (+5)

Resizing ×0.71

(unsupervised, GRAFT)
79 (+1) 81 (+0) 91 (+10) 92 (+1) 84 (+0) 85 (+2)

Table 4.11 – Testing accuracy (in %) with adaptation of GMMs (resizing ×1.25), with im-

proved accuracy in parentheses.

GF MF USM WGN JPEG AVG

Resizing ×1.25

(without adaptation)
51 75 74 81 67 70

Resizing ×1.25

(retraining with 10%)
70 (+19) 80 (+5) 95 (+21) 89 (+8) 80 (+13) 83 (+13)

Resizing ×1.25

(unsupervised, GRAFT)
83 (+32) 84 (+9) 83 (+9) 96 (+15) 88 (+21) 87 (+17)

4.4.4.2 Results

Table 4.3 presents the testing accuracy, without any adaptation, under different resizing

factors for the GMM-based method (the same results as those shown in Fig. 4.1 in Sec-

tion 4.1), where ×1 stands for the case of original-sized testing images without any resizing

pre-processing. We can see that there are obvious accuracy drops for both downscaling and

upscaling. Our objective is to improve the accuracy on pre-resized testing data, in an unsu-

pervised manner, by using the proposed GRAFT algorithm.
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1) With fixed pre-resizing factor

The results of our approach GRAFT are presented in the last row of Table 4.9 (pre-resizing

factor of 0.51), Table 4.10 (pre-resizing factor of 0.71) and Table 4.11 (pre-resizing factor

of 1.25, upscaling). We also show results of another method: retraining new GMMs from

scratch by using 10% testing samples with ground-truth labels. It corresponds to a scenario

where few target pre-resized data are available with labels. This scenario is also a good

indicator of the difficulty of the task. Indeed, if a detector trained with few labeled target

data performs bad on target domain, the problem should be difficult. From the tables, we

can see that GRAFT method gives performance improvement in all cases, except for two

situations, i.e. MF and JPEG under resizing of 0.71. However, in the first case of MF, even the

retraining method gives no improvement, which implies that the forensics problem becomes

more difficult for the GMM-based method. In addition, under many testing scenarios there is

no big performance gap between unsupervised GRAFT and the retraining method which does

use ground-truth labels from the target domain. In certain cases, retraining GMMs can lead to

big accuracy increase when compared with GRAFT (e.g., JPEG with resizing of 0.71), though

at the expense of higher computational cost and with the assumption of gaining access to true

labels.

The improved average accuracy of GRAFT (the last figure at the bottom right in Ta-

bles 4.9, 4.10 and 4.11) is quite satisfying, around 85%. For resizing factor of 0.51 (Table 4.9),

we are able to gain in average +10% of testing accuracy with the GRAFT method. The per-

formance improvement of GRAFT depends on the manipulation operation, ranging from the

smallest increase of +4% for MF and JPEG to the biggest increase of +15% for GF and USM.

The improvement is to some extent correlated with the drop in performances induced by pre-

resizing. For the resizing factor of 0.71 (Table 4.10), we can see that even with the retraining

method only limited improvements can be achieved. This case is more difficult than resizing

×0.51 or ×1.25, which explains the moderate gains in performance with our GRAFT method,

though the average accuracy after adaptation remains satisfying. Our method is not limited

to downscaling and also provides good results with upscaling, as shown in Table 4.11 with

the case of the resizing factor of 1.25. A considerable average accuracy improvement of +17%

is achieved by our GRAFT method. At last, it can be observed from Table 4.9 and Table 4.11

that sometimes GRAFT can achieve higher accuracy than the retraining method. One possible

explanation is that the knowledge gained from original-sized source domain is beneficial to

improve the performance of the same task in the new pre-resized domain.

It is also interesting to see some cases where GRAFT obtains even slightly higher accuracy

than the results given in Table 4.5 of Section 4.3.2 where GMMs are retrained on a large num-

ber of 800000 pre-resized patches. More precisely, for detecting GF and JPEG under resizing
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Table 4.12 – Testing accuracy (in %) with adaptation of the GMM-based method by GRAFT

for the case of mixed pre-resizing factors. The pre-resizing factors are drawn following the

uniform law within the specified interval.

GF MF USM WGN JPEG AVG

Resizing ×[0.48, 0.72]

(without adaptation)
71 81 76 72 87 77

Resizing ×[0.48, 0.72]

(unsupervised, GRAFT)
80 (+9) 82 (+1) 89 (+13) 77 (+5) 89 (+2) 83 (+6)

Resizing ×[1.12, 1.27]

(without adaptation)
53 78 81 83 74 74

Resizing ×[1.12, 1.27]

(unsupervised, GRAFT)
63 (+10) 79 (+1) 89 (+8) 95 (+12) 76 (+2) 80 (+6)

of ×1.25, GRAFT achieves 83% and 88% while training GMMs with 800000 patches of pre-

resized images gives 75% and 85%, respectively. One possible explanation is that the knowl-

edge gained on original-sized images is helpful to boost the performance of the same task in

another domain of pre-resized images. We can also notice that the performance in Table 4.5

is slightly different from the result of original-sized images in the row of ×1 in Table 4.3. This

means that the difficulty of detecting the considered manipulations slightly changes when we

change the statistics of images that are considered as original.

2) With a mix of factors

In Table 4.12, the target data are not pre-resized with a specific factor but a random factor is

drawn in some interval. As depicted in the table, the GRAFT approach is able to cope with

a testing set composed of a mix of pre-resizing factors. It is a more difficult problem as the

target domain is more diverse. Hence, performance gain in average is +6%. An explanation

is that our method relies on likelihood maximization and with a mix of factors, likelihood

is optimized on average. Therefore when testing with a patch at a specific factor it is not

as optimal as previously. Yet our method remains useful in particular for unsharp masking

(USM) detection, and the average accuracy after the improvement of GRAFT is higher than

or equal to 80% for both cases.

3) Illustration of the effectiveness of interpolation

In order to show the effectiveness of interpolation of covariance matrices in GRAFT, Figure 4.6

illustrates the evolution of the testing accuracy as a function of the interpolation coefficients

α1 and α2. For this case of adapting a detector of GF to a resizing of ×0.51 as pre-processing,

the derived optimal values are around 0.2 for both α1 and α2. The upper right corner (1, 1)

corresponds to CRPA and the lower left corner (0, 0) to Ctrg. None of these two points are
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Figure 4.6 – Testing accuracy as a function of the interpolation coefficients α1 and α2. The

manipulation is Gaussian blurring and the pre-resizing factor is 0.51.

optimal in terms of accuracy or likelihood, and the interpolation between the two can improve

the detection performance.

4) Computation power

At last, we would like to mention that our method is much less time consuming than the 150

iterations of the EM algorithm for the GMM training. We were actually looking for shortcuts to

perform lightweight and flexible adaptation as in the proposed GRAFT algorithm. Regarding

computation time, on our machine with Intel Xeon E5-2630 CPU, it takes approximately

15min to compute the GRAFT procedure, while it needs about 5h to train one GMM with

400000 samples. The weakly-supervised GMM adaptation (Section 4.4.3) takes about 3min

(1min for the optimization problem and 2min for DNN fine-tuning). Training of the CNN-

based method of Bayar and Stamm [BS16] (Section 4.3.1) takes around 2h for each binary

problem on an Nvidia 1080 Ti GPU (it would be much longer on a CPU). Finally, the extraction

of SPAM features [PBF10] (Section 4.4.1) is quite fast (about 1h) as it can be done in parallel

on the 40 cores of our CPU. However, classifier training is about 10h as the feature dimension

is very large.
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Table 4.13 – Testing accuracy (in %) with adaptation of GMMs in the case of nearest-neighbor

interpolation used for carrying out resizing pre-processing. The improved accuracy, compared

to the setting without adaptation, is given in parentheses.

GF MF USM WGN JPEG AVG

Without resizing 91 86 97 98 89 92

Resizing ×0.51

(without adaptation)
66 79 82 80 79 77

Resizing ×0.51

(unsupervised, GRAFT)
78 (+12) 84 (+5) 90 (+8) 84 (+4) 79 (+0) 83 (+6)

Resizing ×0.71

(without adaptation)
76 79 82 80 80 79

Resizing ×0.71

(unsupervised, GRAFT)
82 (+6) 82 (+3) 93 (+11) 84 (+4) 83 (+3) 85 (+6)

Resizing ×1.25

(without adaptation)
80 80 90 91 79 84

Resizing ×1.25

(unsupervised, GRAFT)
79 (-1) 82 (+2) 95 (+5) 93 (+2) 80 (+1) 86 (+2)

4.4.4.3 Additional results

We provide here some more results for the GRAFT procedure on two different pre-processing

and development pipelines: pre-resizing with nearest-neighbor interpolation and JPEG com-

pression. The study is not as exhaustive as the study on pre-resizing with bi-cubic interpola-

tion. The objective is to illustrate other experimental scenarios.

1) Nearest-neighbor interpolation

The results reported in Table 4.13 are somewhat similar to those obtained with bi-cubic in-

terpolation shown previously in the manuscript. The same trends are observed. It can be

seen that in general nearest-neighbor interpolation induces less performance decrease than

the more challenging bi-cubic interpolation, which is understandable. In particular, under up-

scaling the performance drop induced by nearest-neighbor interpolation is noticeably smaller,

and in accordance the improvements of GRAFT are smaller too. The final average improved

accuracy after adaptation for different factors in Table 4.13 is very similar to the value ob-

tained with bi-cubic interpolation (see Table 4.3), both are around 85%.

2) Pre-processing with JPEG

In this set of experiments, we consider another image development pipeline. JPEG images

are now considered as original images and we try to detect various manipulations applied on
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Table 4.14 – Testing accuracy (in %) with adaptation of GMMs to pre-resizing of ×0.51 and

×1.25. Here we consider JPEG images as original ones and try to detect manipulations applied

on them. The improved accuracy, compared to the setting without adaptation, is given in

parentheses.

GF MF USM WGN JPEG AVG

Without resizing 72 84 92 90 79 83

Resizing ×0.51

(without adaptation)
71 80 81 70 71 75

Resizing ×0.51

(unsupervised, GRAFT)
74 (+3) 80 (+0) 90 (+9) 87 (+17) 67 (-4) 80 (+5)

Resizing ×1.25

(without adaptation)
58 80 81 90 62 74

Resizing ×1.25

(unsupervised, GRAFT)
65 (+7) 80 (+0) 95 (+14) 96 (+6) 63 (+1) 80 (+6)

Table 4.15 – Testing accuracy (in %) of CNN-based method with and without pre-resizing.

We consider JPEG images as original ones and try to detect manipulations applied on them.

GF MF USM WGN JPEG AVG

Without resizing 75 87 90 86 65 81

Resizing ×0.51 50 53 52 82 60 59

Resizing ×0.71 51 64 60 84 61 64

Resizing ×0.91 55 75 75 86 65 71

Resizing ×1.25 67 82 88 80 66 77

them. Images of the Dresden database are JPEG-compressed with a quality factor randomly

selected in [91, 92, 93, 94, 95, 96, 97, 98, 99]. JPEG images are then pre-resized (or not) and fi-

nally manipulated (or not) to generate different training and testing datasets. This setting has

been tested for GMM and CNN. As can be observed in Table 4.14 and Table 4.15, base scores

without pre-resizing are lower, which means that the forensics problem of detecting manip-

ulations becomes more difficult on JPEG images considered as original ones. Of course, JPEG

Q = 90 detection is way more difficult as some images are labeled as original and compressed

with Q = 91. The performance drops under pre-resizing can be observed for both GMM- and

CNN-based methods and adaptation seems more difficult in this case. Nevertheless, GRAFT

is still able to restore some performances, and the improved average accuracy (80% for both

scaling factors in Table 4.14) is rather satisfactory and is not far away from the average base

score on patches of original-sized images (83% as presented in Table 4.14).
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Table 4.16 – Testing accuracy (in %) of the weakly-supervised method from [DWC19b] (pre-

sented in Section 4.4.3 of this manuscript) and its unsupervised variant, with comparisons

with GRAFT. “sup.” and “unsup.” stand respectively for “supervised” and “unsupervised”.

GF MF USM WGN JPEG AVG

Resizing ×0.51

(weakly sup. of [DWC19b])
78 76 92 70 86 80

Resizing ×0.51

(unsup. version of [DWC19b])
71 75 82 65 84 75

Resizing ×0.51

(unsupervised, GRAFT)
79 79 88 89 83 84

Resizing ×1.25

(weakly sup. of [DWC19b])
66 80 95 95 78 83

Resizing ×1.25

(unsup. version of [DWC19b])
64 75 91 92 68 78

Resizing ×1.25

(unsupervised, GRAFT)
83 84 83 96 88 87

4.4.5 Comparisons of different approaches

We compare in this section the fine-tuning of Bayar and Stamm’s CNN [BS16], the weakly-

supervised adaptation of GMMs (Section 4.4.3) and the fully-unsupervised adaptation of

GMMs named GRAFT (Section 4.4.4).

4.4.5.1 Comparisons of likelihood-based approaches

The method described in Section 4.4.3 requires some labels on the target domain, while

the GRAFT method (Section 4.4.4) performs unsupervised adaptation. The results of weakly-

supervised method and unsupervised methods are presented side-by-side in Table 4.16. The

row of “weakly sup. of [DWC19b]” corresponds to the original method described in Sec-

tion 4.4.3. It can be observed that the GRAFT method achieves comparable or even slightly

better performances though considering a more challenging setting of unsupervised adap-

tation. For instance, the average accuracy after applying weakly-supervised method with a

pre-resizing factor of ×0.51 is 80% while for the GRAFT method it is 84%. The average ac-

curacy for upscaling of ×1.25 is also in favor of GRAFT with 87% compared to 83% for the

weakly-supervised adaptation.

For further comparisons, instead of using few labels as in the original weakly-supervised
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method for adaptation, we have implemented an unsupervised version that uses pseudo-

labels instead. Pseudo-labeled samples are determined similarly as in the GRAFT method

(Section 4.4.4, 3) Pseudo-labels). The results of this unsupervised variant are presented in

Table 4.16, on the row of “unsup. version of [DWC19b]”. The unsupervised version has

lower accuracy than the original weakly-supervised version, which is understandable because

less information on the target domain is available. The GRAFT method outperforms the

unsupervised variant of [DWC19b].

The better performance of GRAFT may be due to the formulation of the adaptation as

a maximization of GMM likelihood, instead of only considering the fit of covariance statis-

tics. Both methods use, directly or indirectly (through responsibilities), a comparison of

log-likelihood of patches under the two GMMs. Therefore, the GRAFT method which directly

maximizes log-likelihood on the target data provides better results than the weakly-supervised

method which aims to indirectly increase the log-likelihood on the target data by a better co-

variance fitting.

In Figure 4.7 we present a toy example of an image falsification in which a manipulation

operation is involved. We have spliced a JPEG-compressed (Q = 90) part into an uncom-

pressed image. The JPEG compression is detected by the conventional GMM detector in Fig-

ure 4.8 which allows us to localize the falsification. Figure 4.9 is the output of the same GMM

detector when the source image and spliced part have been resized before manipulation and

splicing. The falsification is not accurately localized anymore because of the performance

drop for manipulation detection. Finally in Figure 4.10, results after the weakly-supervised

and the GRAFT adaptation procedures are depicted. Thanks to the enhancement of perfor-

mance for manipulation detection provided by these two procedures, the spliced part is again

accurately localized. Adaptation is performed specifically for this single image, only with

patches from this image. As the the weakly-supervised approach uses label information for

the very image under test, it achieves a better localization compared to the GRAFT procedure,

in contrast to the results in Table 4.16.

4.4.5.2 Comparisons with CNN-based method

As described in Section 4.4.2, we have modified Bayar and Stamm’s CNN [BS16] so that

the network is now able to detect manipulations on 8×8 patches. We would like to emphasize

here that the manipulations considered here are more challenging than in their paper [BS16]

(smaller magnitude, smaller kernel for median filtering, etc.) and that patches are much

smaller. Therefore performances of the network are reduced compared to the performances

reported in Bayar and Stamm’s paper [BS16].
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Figure 4.7 – Splicing of a JPEG Q = 90 part (within the red circle) into an uncompressed host

image.

Figure 4.8 – Result on original-sized image.
Figure 4.9 – Result without adaptation on pre-

rezised image with scaling factor ×0.51.

(a) (b)

Figure 4.10 – Results obtained after applying our adaptation algorithms. (a) After GRAFT

adaptation; (b) After weakly-supervised adaptation.
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The accuracy of the CNN-based method is presented in Table 4.6. The CNN’s base per-

formance without resizing is lower than that of the original GMM [FWC15], −8% in aver-

age (84% for CNN vs. 92% for GMM). The CNN also suffers from an accuracy drop under

pre-resizing. In general, although CNN has a smaller accuracy drop (this point deserves

further studies), but the final decreased accuracy without adaptation is comparable for CNN-

based and GMM-based methods (cf. the corresponding rows in Tables 4.6 and 4.7), with

a same trend of more accuracy drop under upsampling for both methods. In addition,

GMM adapted with GRAFT procedure (the best of the two likelihood procedures, see Sec-

tion 4.4.5.1) achieves after adaptation to pre-resizing average accuracy values (around 85%)

comparable to the base average score of the CNN when there is no pre-resizing. CNN-based

methods have deeply transformed the image forensics field (and computer vision field in gen-

eral) and provide usually significantly better results on classical benchmarks. However, it

seems that in this particular framework that deals with small patches, the classical approach

remains competitive and offers even better performances. This result reminds us that even

though the CNN-based methods are very promising and therefore should be investigated first

and foremost, it is still valuable to explore classical methods for scenarios where CNN-based

methods are limited.

We have made efforts to carry out unsupervised adaptation to pre-resizing for CNN-based

detectors (to our knowledge no such methods exist in the image forensics literature). We

tried to use pseudo-labels but without success. By design, CNN-based classifiers are learned

through back-propagation. It computes the error between the true and the predicted labels.

With pseudo-labeled samples, as a CNN is deterministic, there are no differences between the

labels and the prediction; therefore, there is nothing to learn for the CNN in this case. Some

methods make use of pseudo-labeled samples [Lee13]; [Zha+18] but always combined with

true labels. By contrary, the GMM’s descriptive capability for pseudo-labeled samples can be

effectively improved, which leads to actual performance improvement.

Beside that, we have fine-tuned the CNN-based method of [BS16] with a limited number

of samples (2000) as described in Section 4.4.2, which corresponds to the weakly-supervised

scenario of Section 4.4.3. Therefore, the results of this fine-tuning are compared with results

of the weakly-supervised adaptation of GMMs, in Table 4.17. Our method provides better re-

sults on average than fine-tuning Bayar and Stamm’s CNN with a limited number of samples.

It reflects here that CNNs need more sample for training and fine-tuning than our method. It

was our aim to be able to provide such additional flexibility. Only for median filtering, CNN

results exceed results of our method. It seems quite logical, as the median filtering is the

weakness of our method. In fact and as depicted in Table 4.7, our method is not able to re-

cover more than 5 percent of performance for median filtering, while for other manipulations
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Table 4.17 – Testing accuracy (in %) for our adapted GMM-based method (weakly-supervised

scenario) and fine-tuned CNN-based method. The training set contains original-sized images

while the testing set contains pre-resized images of a particular resizing factor. The improved

accuracy of the best method compared to the other one is given in parentheses.

GF MF USM WGN JPEG AVG

Resizing ×0.51

(our method)
78 (+5) 76 92 (+7) 70 (+1) 86 (+9) 80 (+3)

Resizing ×0.51

(CNN fine-tuning)
73 82 (+6) 85 69 77 77

Resizing ×0.76

(our method)
83 (+9) 82 94 (+5) 85 (+5) 84 (+5) 86 (+5)

Resizing ×0.76

(CNN fine-tuning)
74 83 (+1) 89 80 79 81

Resizing ×1.15

(our method)
70 (+3) 85 (+5) 95 (+4) 96 (+10) 82 (+16) 86 (+8)

Resizing ×1.15

(CNN fine-tuning)
67 80 90 86 66 78

Resizing ×1.25

(our method)
66 (+1) 80 (+3) 95 (+4) 95 (+9) 78 (+18) 83 (+7)

Resizing ×1.25

(CNN fine-tuning)
65 77 91 86 60 76

the improvement range is up to more than 10 percent.

4.5 Summary

In this chapter, we have tackled the problem of image manipulation detection. The perfor-

mances of several state-of-the-art methods have been studied when the testing set is exposed

to resizing as pre-processing, before the addition of a manipulation. The aim was to inves-

tigate the generalization power of existing detectors in a realistic scenario. In this scenario,

images would have been pre-processed, resized, because of storage limitations or for layout

purposes before being retrieved to be tested. Detectors would have been trained on a regular

database of full-sized images. We show that in such a scenario, drops of performances are

observed for detectors of three different types: a CNN-based [BS16], another one based on

SPAM-features [PBF10] and a last one based on statistical modeling of patches with Gaussian

Mixture Model (GMM) [FWC15]. We have formally studied the statistical differences of the

pre-resized and full-sized manipulated data with a statistical test based on the MMD distance.
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We have then introduced three methods to adapt and recover some performance: (i) the

classical neural network fine-tuning, (ii) a weakly supervised approach for the GMM-based

pipeline and (iii) an unsupervised adaptation approach named GRAFT still for the GMM-

based pipeline. For (ii) and (iii), flexibility is a particular focus. We then present experimental

results on a public database (Dresden with automatic manipulations) for all the three methods

and study the re-gain of performances after adaoptation. Methods (ii) and (iii) provide better

results than (i). We explain it by the additional agility.

We also have briefly introduced methods for feature adaptation. They seem very promis-

ing for future work as they are not specific to a model as in our methods. Beside that, neural

networks and especially CNNs have shown really powerful results for most of the image foren-

sics problem. But most existing methods seem to lack the flexibility and agility to adapt to

new datasets. It seems to us that a truly promising line of work is to develop new neural

network methods that are versatile by design. In classical computer vision, this line of work

fall mostly under the categories of few-shots and zero-shot learning.
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Influenced by our experience in the DEFALS challenge, we intend to continue our work on

falsification detection after the studies on manipulation detection. Our aim is to propose an

approach that favours flexibility and adaptability to individual images. The idea is also to take

advantage of our experience and knowledge on explicit modeling with statistical models, and

especially GMM. Therefore, we choose to focus on copy-move, a popular image falsification

where a part of the image, the source area, is copied on the target area, in the same image.

Most existing copy-move detectors search for matching areas. Thus, they identify the

two zones indifferently, while only the target really represents a tampered area. We present

a method that automatically distinguishes between the two, to locate the source and the

target. This source and target identification is helpful to better understand the semantics of

the tampered and original images and can facilitate the work of human forensic investigators.

For instance in Figure 5.1, one of the rider has been copied probably to make a bigger group.

One could be interested to know what the group really looked like and thus identify the source

and target areas. This kind of inferred information about the real position of a person in the

original image may be very important, especially for images used in court. For the image

shown in Figure 5.1, it is difficult to visually identify the original rider and the tampered

one. In addition, the task of visual inspection will be very tedious and time-consuming when

there are a lot of suspicious images to be examined. Therefore, it is interesting and necessary

to design automatic forensic methods to disentangle the two kinds of areas. To the best

of our knowledge, there is only one published method called BusterNet [WAAN18] that is

capable of such source and target localization, along with another from a very recent pre-

print [BPT19], while there are plenty of published and very efficient methods for copy-move

detection in which source and target are identified indifferently. Thus, we choose to focus

on the disentangling of copy-moved source and target area, rather than copy-move detection.

Existing copy-move detectors would be considered as available black boxes in a first stage. We

have developed a method that acts as a second-stage detector to identify only the tampered

areas in copy-move.

In this Chapter, we first briefly present existing methods for copy-move detection, clas-

sifying them as classical feature-based methods and deep-learning-based methods. We then

present in detail our proposed method with Gaussian Mixture Models (GMMs). We show

some results and comparisons with BusterNet [WAAN18] on copy-move images from CA-

SIA2 [DWT13] and CoMoFoD [Tra+13] datasets. Then we introduce succinctly a variation of

our method with another deep-learning-based modeling tool called PixelCNN++. Some ex-

perimental results on the same datasets are also provided. Finally comparisons of the existing

methods and our two variations are presented.
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(a) (b)

Figure 5.1 – Example of copy-move image from CASIA2 [DWT13] database. (a) The rider on

the left has been copied. (b) Mask of the tampering, where green indicates the source area

and red the target area of the copy-move.

5.1 Copy-move detectors

Many approaches have been developed for copy-move detection. The most recent ones

are naturally based on deep-learning. As we will show in this chapter, classical feature-based

methods are still competitive. As introduced earlier, such methods can be used as detectors

of the copy-moved zones to then be disentangled with our proposed method. More than two

zones can be detected by these detectors, e.g., in the case of multiple copy-moves within the

image, false alarms of the detectors, or detection of fragmented copy-moved areas.

5.1.1 Feature-based approaches

There are in general two types of feature-based approaches, extracting features respec-

tively from image blocks and key-points [Chr+12]. For the block-based methods, images

are divided into blocks, i.e., overlapping patches. Features are then extracted from these

patches and matched across the image. Finally, a step of post-processing is often performed

to reduce false alarms. Early features used for copy-move detection were based on Discrete

Cosine Transform (DCT) on image patches [FSL03]. Other features were then considered

such as Zernike Moments [RLL10]; [CPV15a] and the Tetrolet transform [MT20a]. They are

to some extend invariant to scaling and rotation of the copied area, and thus they can provide

more robustness to affine transformations than features based on the DCT. Following this fea-

ture extraction stage, a matching of blocks is performed. With a naive, exhaustive search,

the cost of matching would be cubic in the number of patches. It would quickly become
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unpractical with regular sized images or with too much overlap of the patches. Therefore,

strategies of approximate nearest-neighbor search have been used in copy-move detectors,

such as the PatchMatch [Bar+09] algorithm used by the method of [CPV15a] or the kd-tree

used by [LG06]. The last stage of post-processing usually consists of filtering small areas and

areas that are too close to each other. Morphological operations may also be performed.

To reduce the cost of nearest-neighbor searching in block-based methods, it is possible to

consider only key-points and not the full image. Features are extracted but only on key-points.

The following steps of matching and post-processing are then quite similar but with less

samples. Typical key-points used for copy-move detection are based on Scale-Invariant Feature

Transform (SIFT) [PL11]; [MT20b] or Speeded Up Robust Features (SURF) [SB11]. They are,

by construction, scale-invariant and therefore provide some robustness against resizing. The

main drawback of these methods is that most key-points are usually to be found around

high entropy region of image. Thus, a copy-move performed in a uniform area, i.e., an area

without key-points, would be hardly detected.

5.1.2 Deep-learning-based approaches

Beside approaches based on matching features extracted from either blocks or key-points,

a method named BusterNet [WAAN18] has been proposed which employs a Convolutional

Neural Network (CNN) for copy-move detection. The network is composed of two branches:

Mani-Det and Simi-Det. The former is trained to detect manipulations on the target area,

while the latter aims to detect similar copy-moved areas in an image by using a well-designed

self-correlation module. Both branches output a heatmap of the same size as the input image.

A fusion of the two branches is finally performed. The source and target discrimination in

BusterNet is based on the assumption that the target area has been manipulated, e.g., scaled

or rotated. Regarding the implementation, branches are first trained separately. This sepa-

rated training is performed on a synthetic dataset of manipulated copy-move images com-

posed of 100000 samples. The network is quite large so there is no existing realistic dataset

that is big enough to train on. In addition, the training requires the use of ground-truth

information of source and target in the copy-move which is not always available. The Mani-

Det branch is trained also with realistic image falsification datasets which are of relatively

small scale and typically include a few hundreds or thousands tampered images (IEEE IFS-TC

dataset and Wild Web dataset [ZPK15]). Then the fusion module is trained alone, with both

branches frozen, and finally the full network is fine-tuned in an end-to-end manner.

The authors of [ZP19] have proposed to use DenseNet instead of a CNN to detect copy-

move tampering. Their method also relies on a module of self-correlation computation. How-
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ever, unlike BusterNet, this network is not able to identify the source and target areas. Al-

ternatively, the authors of BusterNet proposed to use a CNN initially designed for splicing

detection and localization [WAAN17] to expose copy-move forgeries. With some adaptations

of the network for training and testing, the adapted CNN can detect well duplicated areas but

is not able to distinguish between the source and the target. Recently, the authors of an arXiv

pre-print [BPT19] proposed a multi-branch CNN for source and target disambiguation. It is

composed of a first branch that compares inside areas of two duplicated zones and a second

one comparing boundaries of the two zones.

5.2 Disentangling copy-moved source and target areas with GMM

As explained earlier, most existing methods are powerful in identifying the duplicated

areas but they are not able to perform source/target discrimination. Therefore, we intend to

develop a new detector which first makes use of such an efficient method to produce a mask

of duplicated areas, and then we disentangles the source and the target. In this section, we

present our GMM-based method. In the next section, we introduce a variant of our method

which makes use of a deep-learning architecture called PixelCNN++.

5.2.1 Overview of the method

A graphical overview of the main steps of our method is shown in Figure 5.2. The inputs

of our method are the image to be analyzed and the binary mask produced by a first-stage

detector in which duplicated areas are identified indifferently. To distinguish between source

and target areas, we first extract patches from the identified pristine region (the black region

in the binary mask) and train a GMM to represent the statistics of pristine patches. The next

step is to construct the empirical histogram of the patches log-likelihood of all the connected

components (CCs) in the binary mask, including the pristine region as well as the candidate

source/target areas (the white CCs in the binary mask). We then compute the intersection

between the histogram of pristine region and that of each candidate source/target area. At

last, we consider the candidate area with the largest intersection as the source area and the

other(s) as the target area(s).

One important intuition motivating the design of our method is that the boundaries of the

target area would expose locally some slight statistical deviations from the rest of image. The

authors of BusterNet [WAAN18] make the assumption that the target area has been manip-

ulated and they rely on manipulation detection to discriminate the two zones. We make a
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Figure 5.2 – Graphical summary of the main steps of our method to disentangle copy-moved

source and target areas. The red histogram of the target area, which is correctly identified

in the final mask, has less intersection with the blue histogram of the pristine part than with

the source area (green histogram). This is also somehow partially reflected by the small blue

band close to the boundary of target area in the log-likelihood map, as highlighted by the red

rectangle (zoom-in of the digital version if this manuscript is recommended).

weaker and more general assumption which measures the statistical deviation of local image

patches. We believe that by comparing the likelihoods of duplicated areas, we are able to dis-

tinguish the source and target areas. First, assuming no manipulation on the target area, the

log-likelihood values for interior patches of copy-moved areas would intersect largely with the

values of the pristine region, whereas log-likelihood values on boundaries for the target area

would deviate. Further, when the target area is manipulated, the statistical deviation would

be even bigger for patches from the whole target area, including both interiors and bound-

aries. So, the area with the log-likelihood values closest to the pristine area is considered as

the original (source) one and the one that deviates most would be the target.

Our approach relies on a Gaussian Mixture Model because it is a very good candidate

for modelling natural image statistics [ZW11]. It is inspired by the one used for image ma-

nipulation detection in our previous work [FWC15]. In this chapter, a single GMM, instead

of two GMMs in [FWC15], is trained on 8 × 8 centered patches (the DC component is re-

moved, resulting in floating-point numbers) coming from a specific image. The patches are

extracted from the identified pristine region outside of the duplicated areas as predicated by
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the first-stage copy-move detector. The GMM is trained by using the EM algorithm which

maximizes the model’s log-likelihood of Equation 3.4 on the pristine patches. Therefore, this

GMM should capture the regular local statistics of the image. In our work, the GMM is simpler

and has less parameters (25 components) compared to the 200 components used for manipu-

lation detection in [FWC15]. Experimentally, it is not necessary to have a very high capacity

of description because now a single image is considered and not a big image database as

in [FWC15]; [ZW11]. Each GMM component has a full covariance matrix as we intend to

capture the subtle dependence in patches, but not only a simplified dependence as diagonal

covariance matrices would do.

The idea is then to measure the statistical deviation of each duplicated area from the reg-

ular statistics of the image as described by the GMM trained on pristine patches. In practice,

we compute and compare the distance between empirical distribution of the log-likelihood

on patches in each candidate source/target area and the distribution in the identified pristine

part. We propose to use a simple but effective measure of distance based on the number of

elements in the intersection of two normalized histograms. To the best of our knowledge, this

intersection-based metric was first proposed in [IB89] with the name of overlapping coefficient

because it attempts to measure the overlapping between two distributions. The metric is later

used in various applications, for instance the well-known color-based image indexing method

of [SB91]. Concretely, this histogram intersection metric is defined as:

intersect(hc, hp) =
n∑
i=1

min(hci , h
p
i ), (5.1)

where hc is the normalized histogram of patch log-likelihood for one candidate source/target

area, hp is the normalized histogram for the pristine part, and n is the number of bins. As

histograms are normalized, it is not necessary to (re)normalize this intersection score which

is naturally between 0 and 1. The area with the largest intersection with the predicted pristine

part is considered as the source and the other one(s) as emanating from the target area(s).

The width of the histogram bins is set automatically to have 75 bins within the range of log-

likelihood values of patches of the whole image, from both pristine and copy-moved areas.

The number of 75 bins has been set empirically, based on the observation of histograms like in

the last row of Figure 5.3. The method is not very sensitive to this number, a larger number

of bins does not significantly improve the results, while using a rough histogram with less

than 50 bins starts decreasing the performance. It is worth mentioning that there are a lot of

metrics for measuring the distance between histograms, or between distributions in a large

sense: Bhattacharyya distance, Kolmogorov-Smirnov statistic, Kullback-Leibler divergence,

Hellinger distance, and Chi-Squared distance, just to name a few. The intersection-based dis-

tance of Equation 5.1, which is used in our method, is probably one of the simplest metrics.
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Figure 5.3 – Example results of our method. The red color in ground-truth masks indicates

the target area, the green color indicates the source area, and the blue color indicates the

pristine part. The example in the last column is a miss-classification.

We have explored empirically two other measures, namely (i) Kolmogorov-Smirnov statistic

and (ii) Chi-Squared distance. They do not provide clearly better empirical results but are

more complex and more costly to compute. We have also tried to compare empirical normal-

ized histograms through comparisons of straightforward statistics such as the mean or the

median. However, these statistics are in some cases not strong enough to capture the differ-

ences. Therefore, this metric of histogram intersection appears to be a good technical choice

in terms of both simplicity and effectiveness.

Some examples of histograms and output masks of target area on the CASIA2 dataset can
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be found in Figure 5.3, with the dense-field copy-move forgery detector (DF-CMFD) [CPV15a]

as the first-stage detector. In the last column of Figure 5.3, histograms for the two areas are

very close which led to an error of classification. When the target area has been manipu-

lated, for example in the third column a small deformation has been applied according to

the specification of the CASIA2 dataset, the difference in histogram intersections can be more

visible.

5.2.2 Experiments

5.2.2.1 Metrics and datasets

We designate as “Discernible” all the samples with at least two white CCs in the binary

mask as produced by first-stage detector, and these CCs should intersect with the source and

target areas in the ground-truth masks. The remaining samples are in the “Indiscernible”

subset, as it is not possible for a second-stage detector to disentangle source and target. This

subset mainly comprises samples for which the binary mask has no white CC or the CCs

do not intersect with the source and target areas in the ground-truth mask. Samples with

only one white CC cannot be disentangled neither, so they are also considered as “Indis-

cernible”. To measure the discerning capability of source and target, we compute the overall

accuracy and the accuracy on the “Discernible” subset, as the ratio of number of images with

correct source/target classification to the number of images in the whole dataset or in the

“Discernible” subset.

The authors of BusterNet [WAAN18] consider a subset of images which they call “Opt-

Out”. It includes samples with final predicted masks in which all duplicated CCs receive

a same label (source or target) as given by BusterNet. We consider that labeling all CCs

with same label as a miss-classification for discerning source and target. In our setting, such

samples are naturally in the “Discernible” subset, and the performance is evaluated on them

as well as on other images in the subset. In [WAAN18] the authors also define a “Miss” subset

composed of predicted masks that do not intersect with duplicated CCs in the ground-truth

mask. This “Miss” subset is included in our “Indiscernible” subset. Finally, in [WAAN18],

“Opt-In” is the subset comprising all remaining images except those in the “Miss” and the

“Opt-Out” sets. The authors report performance on these “Opt-In” samples. We think that the

“Opt-In” samples in [WAAN18] represent a subset where the BusterNet classifier performs

the best. Therefore, for a fair comparison, we consider this subset of images as a “Favorable

Subset”. For our method, we compute a ranking to extract images where the classification is

the most certain to also obtain a “Favorable Subset”. This ranking is based on the descending
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order of a score (a kind of Michelson contrast) computed on images with binary masks of the

two duplicated zones, as:

score =
|intersect(hc1, hp)− intersect(hc2, hp)|
intersect(hc1, hp) + intersect(hc2, hp)

, (5.2)

where intersect(., .) is defined in Equation 5.1, and hc1, hc2 and hp are the normalized empiri-

cal histogram for respectively the first zone, the second one and the pristine part. A high score

would indicate that one duplicated area exposes a big deviation from the pristine background

when compared to the other one. It could be that the target area has been manipulated to

cover visual clues of copy-move. We set a threshold on the score in order to have the same

number as the “Opt-In” images defined by BusterNet, e.g., 190 for the CASIA2 dataset. A

ranking is particularly interesting from an operational point of view since it makes possible

to determine the most suspicious images among a large dataset. Finally, as expected, images

with a high ranking score decorrelate well from the “Indiscernible” images. For instance, on

the CASIA2 dataset with the GMM-based method on DF-CMFD masks, in the subset of the

200 images with the highest score, only 5 are in the “Indiscernible” subset. Still from an op-

erational point of view, it could help us to detect miss-detection of the first-stage copy-move

detector.

We test our proposed method on copy-move images from the CASIA2 [DWT13] and Co-

MoFoD [Tra+13] datasets. We use ground-truth masks from the authors of BusterNet 1 for

the two datasets. These ground-truth masks provide information on source and target ar-

eas of copy-move: the red channel of the masks contains information about the target area,

the green channel on the source area and the blue one on the pristine part of images (cf.,

Figure 5.3).

5.2.2.2 DF-CMFD[CPV15a] as first-stage detector

With the aim to produce a better pipeline for copy-move detection with source and target

disentangling, we look for the best possible first-stage copy-move detector available. Scores

for some state-of-the-art detectors on the CASIA2 dataset are reported in Table 5.1. The

results for [RLL10], [Chr+12] (SIFT-based method) and [WAAN17] are extracted from the

BusterNet paper [WAAN18]. The details of the transformation of [WAAN17] from a splicing

to a copy-move detector can be found in [WAAN18]. We also report partial results of a recent

DenseNet-based method [ZP19] as presented in the method’s original paper. We were unable

to reproduce the lower scores reported in [WAAN18] for DF-CMFD [CPV15a], but our results

(the column of “DF-CMFD – With default HP” in Table 5.1) are coherent with the reported

1. https://github.com/isi-vista/BusterNet

https://github.com/isi-vista/BusterNet
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Table 5.1 – Analysis of copy-move detection and localization performance on the CASIA2

dataset (source and target are identified indifferently). “HP” means hyper-parameters. Please

refer to [WAAN18] for details of the three evaluation protocols.

Methods DF-CMFD [CPV15a]
[WAAN18] [RLL10] [Chr+12] [WAAN17] [ZP19] With default HP With tuned HP

Image Level Evaluation Protocol

Precision 78.22% 97.01% 68.49% 66.37% - 97.64% 71.44%
Recall 73.89% 24.47% 67.82% 73.59% - 56.81% 88.80%

F1-score 75.95% 39.08% 68.15% 69.80% - 71.83% 79.18%

Pixel Level Evaluation Protocol - A

Precision 77.38% 94.46% 64.84% 17.06% - 86.20% 92.47%
Recall 59.15% 25.05% 0.17% 10.60% - 64.43% 65.85%

F1-score 67.05% 39.59% 0.34% 13.08% - 71.62% 76.92%

Pixel Level Evaluation Protocol - B

Precision 55.71% 22.71% 37.09% 23.97% 70.85% 48.18% 67.32%
Recall 43.83% 13.36% 0.14% 13.79% 58.85% 49.40% 73.93%

F1-score 45.56% 16.40% 0.23% 14.64% 64.29% 47.88% 67.97%

performance of DF-CMFD in [ZP19] (Table III, column of “PM”). We have used the original

implementation of DF-CMFD by the authors which is available online 2.

To perform source/target discrimination, it is obviously better to have a detector that cor-

rectly identifies a large number of copy-move images. This is mainly reflected in Table 5.1 by

the F1-scores at “Image Level” and under the “Pixel Level Evaluation Protocol A”. Following

this criterion, DF-CMFD [CPV15a] appears to be a good candidate for a first-stage detector.

However, one drawback is that the default parameters of DF-CMFD are better suited for big

images as considered in the original paper [CPV15a]. For instance, the minimum size con-

sidered for clones is 1200 pixels. This represents quite a big area for images of sizes from

240 × 160 to 900 × 600 pixels of the CASIA2 dataset. The features are extracted in circular

regions of diameter 16 pixels, which is also large for small images. Therefore, this setting

is unfavorable for our second-stage detector because predicted copy-move images and masks

are not very accurate. As reported in Table 5.1, the F1-score for “Pixel Level Evaluation Proto-

col B” (localization performance on images with copy-move forgery) for the CASIA2 dataset is

only of 47.88%. Therefore, to obtain a higher score, it is better to tune the hyper-parameters

of DF-CMFD.

We tune empirically the hyper-parameters with regard to the size of images. We reduce

the feature size, the minimum size of clones and distance between clones. For instance for

CASIA2, we have empirically selected a feature size of 12, a minimum size of 225 pixels and

2. http://www.grip.unina.it/research/83-multimedia_forensics/90-copy-move-forgery.html (last

accessed: Sept. 2020).

http://www.grip.unina.it/research/83-multimedia_forensics/90-copy-move-forgery.html
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Table 5.2 – Source/target discernibility performances of our GMM-based method, Buster-

Net [WAAN18] and multi-branch CNN [BPT19]. “Indisc.” means the “Indiscernible” subset,

“Disc.” the “Discernible” subset, “Corr.” are images with correct classification of source and

target, and “Fav. Sub.” is the “Favorable Subset”. Please refer to Section 5.2.2.1 for details on

the evaluation metrics used in the table.

Number of images Accuracy
Dataset Total Indisc. Disc. Corr. Corr. in Fav. Sub. Overall Disc. Fav. Sub.

Our method
with tuned DF-CMFD

CASIA2 1313 489 824 549 149 41.81% 66.63% 78.42%
CoMoFoD 200 87 113 69 33 34.50% 61.06% 80.49%

BusterNet [WAAN18]
CASIA2 1313 557 756 146 146 11.12% 19.31% 76.84%

CoMoFoD 200 78 122 33 33 16.50% 27.05% 80.49%

Multi-branch
CNN [BPT19]

CASIA2 1313 489 824 536 - 40.82% 65.05% -
CoMoFoD 200 87 113 62 - 31.00% 54.87% -

a minimum distance of 160 pixels. The results of this tuned DF-CMFD can be found in the

last column of Table 5.1, which has the best F1-score for all the three evaluation protocols. In

particular, the scores for “Pixel Level Evaluation Protocol B” are largely improved, reflecting a

more accurate localization. More accurate masks imply that the ground-truth boundaries are

more surely included, which is beneficial for our method. It is possible to obtain even better

score by cross-validation on the hyper-parameters. However, to follow a realistic operational

scenario, we use the empirical tuning and set the tuned DF-CMFD as our first-stage copy-move

detector in the following experiments.

5.2.2.3 Results of source and target disentangling

The results of the BusterNet method for discerning source and target on both CASIA2

and CoMoFoD datasets are presented in the second block of Table 5.2. The “Opt-In” subset

from [WAAN18] corresponds here to a subset we call “Favorable Subset” (Fav. Sub.). It

has 190 images for CASIA2 and 41 for CoMoFoD. On the CASIA2 dataset, BusterNet has an

accuracy of 19.31% on the “Discernible” subset and an overall accuracy of 11.12% which are

rather low. However, BusterNet has a high accuracy of 76.84% on the 190 favorable samples

which is satisfactory.

The results of our GMM-based method with binary masks from the tuned DF-CMFD are

presented in the first block of Table 5.2. We have competitive results on the “Favorable Subset”

against BusterNet: an accuracy of 78.42% on CASIA2, and 80.49% on CoMoFoD. On the two

datasets, the number of images with correct source/target disentanglement by our method is

more than three times that of BusterNet (618 vs. 179 images). The “Discernible” subset is a

little bigger than the one of BusterNet and the performances are largely improved.
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We also provide results for the deep-learning-based method from the recent arXiv pre-

print [BPT19]. We use the code from the authors 3. For a fair comparison, we feed the CNN

of [BPT19] with the same masks from the tuned DF-CMFD as used by our method. It should

be favorable for the CNN to use a more accurate first-stage detector, both at image and pixel

levels. Indeed, the multi-branch CNN method [BPT19] now correctly identifies source and

target for 536 images on CASIA2, compared to 357 images with the default parameters as

reported in the original arXiv pre-print. This method does not provide a “Favorable Subset”

to compare on. For our method and the method of [BPT19], there is no significant difference

in the number of correct images on the two datasets, i.e., 549 vs. 536 and 69 vs. 62, our

method being slightly better. The performance is lower for both methods on CoMoFoD, mainly

due to the higher difficulty of this dataset. In CoMoFoD, contrary to CASIA2, there is no

manipulation, e.g., scaling, on the target area.

At last, with curiosity, we did some post-experimental analysis of our GMM-based method

and found that we are able to reach 100% of accuracy for source/target disentangling when

the predicted mask from DF-CMFD shares at least 50% of duplicated areas with the ground-

truth. We only mention this result as illustration of the importance of the localization accuracy

of the first-stage detector. It is not a realistic scenario as it requires access to ground-truth

masks. By contrast, although some images are in theory “Discernible”, the source/target

disentangling is very difficult on them because of poorly identified duplicated areas and areas

of false alarms in the mask produced by the first-stage detector. This results in a success rate

lower than 50% on such difficult images for both our method and [BPT19], e.g., mistakenly

attributing reversed labels or two same labels to ground-truth source and target areas. More

efforts shall be devoted to the study of these difficult cases.

5.3 Variation of our method with PixelCNN [OKK16]

As explained earlier, GMMs are very efficient to model natural images and compute like-

lihood. To complete this study, we have explored another family of models. GMMs are para-

metric models and the choice of the parametrization is critical for performance. To get rid of

the parametrization, one would seek to remove an arbitrary prior choice that could actually

be dealt with inside the algorithm, therefore improving flexibility. To compute likelihood, it

is also possible to use auto-regressive models. In the family of auto-regressive models, we

focus on PixelCNN [OKK16]; [Sal+17] models. They are CNNs based on deep-learning. In

this section, we will first present these models and then the variation of our method based on

3. https://github.com/andreacos/MultiBranch_CNNCopyMove_Disambiguation (Last accessed: Sept.

2020).

https://github.com/andreacos/MultiBranch_CNNCopyMove_Disambiguation
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it.

5.3.1 PixelCNN model

The choice of this CNN model has been motivated by [UVL18] which suggests that it

forms in itself a strong prior on the local structure of natural images: “the network does

contain knowledge about the low-level structure of natural images”. It is especially interesting

for our problem as we seek for inconsistencies in low-level features of images. In addition, it

would allow us to explore deep-learning methods and the associated framework and software

particularities for the specific forensic problem of source and target disentangling in copy-

move.

PixelCNN [OKK16] aims to model p(x) where x = (x0, .., xn) is a vector built from a 2D

matrix. In our case, it is a vector of n = 64 pixels corresponding to 8 × 8 patches. Thanks

to the chain rule for joint distribution, we can write p(x) = p(x0)
∏n
i=1 p(xi|xi−1, xi−2, .., x0).

This is an auto-regressive model as the probability of a pixel is expressed conditionally to the

previous neighbor. The pixels are predicted sequentially following the line from left to right in

the image. This is arbitrary and other orderings could be consider as in [Ger+15]. According

to our experiments, orderings are quite equivalent for performance, therefore we keep the

same ordering as the one used in [OKK16].

In practice, to compute the log-likelihood of the vector, the auto-regressive modelling

implies that each pixel’s probability p(xi|xi−1, xi−2, .., x0) should be computed sequentially.

This is achieved thanks to the so-called masked convolution, as illustrated in Figure 5.4. The

weights for blue pixels are equal to 1 while the weights for the masked white pixels are 0.

PixelCNN also uses residual blocks. A residual block is illustrated in Figure 5.5. It con-

tains an identity mapping from the input to the output of the block, in addition to the tradi-

tional convolutional layers. The advantages of residual blocks are:

— Stronger gradients to back-propagate, therefore facilitating the training of deeper ar-

chitectures or leading to faster learning;

— More complex information is propagated forward. In fact, it is almost not possible

for convolutions with non-linearity such ReLU to learn an identity mapping between

the input and the output. With a residual block, it is easily achieved and therefore it

allows more complex information to be learned.

The first version of PixelCNN was pretty heavy and hard to make it converge. Some

tricks and improvements were proposed in [Sal+17] and the improved network was named

PixelCNN++. The main improvements are at the output layers. For each pixel in the image
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Figure 5.4 – To generate pixel xi, all white pixels are masked and only blue pixels are allowed.

This Figure taken from [OKK16].

Figure 5.5 – Residual block of PixelNN. Figure taken from [OKK16].

patch (e.g. an 8 × 8 patch of 8-bit pixels), PixelCNN has 255 neurons on the output layer to

predict the category of the pixel, i.e., the integer pixel value between 0 and 255. It is very

large. With PixelCNN++, a discretized logistic mixture is learned instead as the output. This

mixture has [0, 255] as support, so instead of 255 neurons per pixel they suggest to use 10

components in the mixture. It is also more flexible.

5.3.2 The method

The method is very similar to the one with the GMM. But we use here a PixelCNN++

model to estimate the log-likelihood. PixelCNN++ is first pre-trained on all the pristine

zones of the available images. Then a fine-tuning is performed for each image to make the
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model specific to the image, just as one GMM is trained per image. It was not possible to train

from scratch one PixelCNN++ model per image as with the GMMs, because more samples are

needed for the training of such a large CNN. For instance and on average, only about 80000

training sample are available per image with the CASIA2 database. It makes a pre-training

necessary. Anyway, we have tested to train from scratch one PixelCNN++ per image but we

were not able to make models converge.

5.3.3 Experiments

The metrics and datasets used in this subsection are the same as those in Section 5.2.2.1.

The “Favorable Subset” is obtained with a ranking, just as with the GMM-based method.

We use a Pytorch implementation of PixelCNN++ [Sal+17] than can be found at https:

//github.com/pclucas14/pixel-cnn-pp.

The results and a comparison with the one obtained by the GMM-based method are de-

tailed in Table 5.3. We use the same masks obtained with the tuned version of DF-CMFD as in

the previous Section 5.2.2.2. The overall performance of the method based on PixelCNN++

is slightly lower than the one obtained with the GMM. For the CoMoFoD dataset, the accuracy

for the two methods is closer for the “Discernible” and “Favorable subset” than on CASIA2.

On CoMoFoD, the performances of PixelCNN++ are also slightly better than on CASIA2 for

the “Discernible” subset. It is promising, as we know that copy-move areas are never manip-

ulated in CoMoFoD, contrary to CASIA2, so statistical deviation is smaller. We believe that

better results could be achieved with more efforts on the design of the architecture. We have

conducted these experiments on PixelCNN++ at the very end of this thesis work and we

ran short of time to explore architecture alterations. Beside that, the idea was more like a

proof of concept on the interest of PixelCNN++ for the detection of statistical deviation than

the proper development of a method with the best results achievable. Here, we were more

interested in identifying a future research line than maximizing pure performance.

5.4 Comparisons of the different approaches

In this section we study the differences between the two other existing methods [WAAN18];

[BPT19] and ours. We also provide a comparison of our two approaches, respectively based

on GMM and PixelCNN++. We look for explanations to the different experimental perfor-

mances described earlier in order to identify promising leads.

https://github.com/pclucas14/pixel-cnn-pp
https://github.com/pclucas14/pixel-cnn-pp
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Table 5.3 – Source/target disentangling performances of GMM-based method and its variant

with PixelCNN++. “Indisc.” means the “Indiscernible” subset, “Disc.” the “Discernible”

subset, “Corr.” are images with correct classification of source and target, “Fav. Sub.” is the

“Favorable Subset”. Please refer to Section 5.2.2.1 for details of the metrics used in the table.

Number of images Accuracy
Dataset Total Indisc. Disc. Corr. Corr. in Fav. Sub. Overall Disc. Fav. Sub.

PixelCNN++ and
tuned DF-CMFD

CASIA2 1313 489 824 465 127 35.41% 56.43% 66.84%
CoMoFoD 200 87 113 67 30 33.50% 59.29% 73.17%

GMM and
tuned DF-CMFD

CASIA2 1313 489 824 549 149 41.81% 66.63% 78.42%
CoMoFoD 200 87 113 69 33 34.50% 61.06% 80.49%

5.4.1 Comparisons with [WAAN18] and [BPT19]

We were able to improve largely, when compared to BusterNet, the overall accuracy for

source and target disentangling on both the CASIA2 and CoMoFoD datasets. One possible

explanation is that contrary to BusterNet that relies on manipulation detection to locate and

distinguish between source and target, in our method we assume that the boundary of the

target area would expose statistical deviation. This deviation would be even larger if the

interior of the target area is manipulated. A major limitation of BusterNet is that it tends to

attribute the same label for both source and target areas, i.e., no decision, while our method

produces a decision on more images. In fact, BusterNet produces a decision only for 14.5%

of the CASIA2 images. At last, the BusterNet method [WAAN18] does not enforce pixel

correspondence in the source and target. DF-CMFD imposes such a prior which is beneficial

for the method based on it, ours and [BPT19]. Beside that, BusterNet uses 256× 256 images

as input due to memory limitation, therefore test images are resized prior to being fed to the

network. We can consider that this resizing acts as a post-processing, which would cover some

fingerprints left by the manipulation on the target area or abnormal transitions between target

and pristine areas. In contrast, our method is able to process full-sized images to discriminate

source and target.

Comparable results on the CASIA2 dataset of our GMM-based method and [BPT19] could

be explained by a similarity of the two methods: GMM-based or CNN-based approach driven

by information from the copy-moved zones and boundaries. It seems, according to the re-

sults on the CoMoFoD dataset, that our method based on GMM is slightly better when no

manipulation has been added to target area, i.e., when statistical deviation is smaller. The

method in [BPT19] needs a large synthetic dataset for training the network, while our GMMs

are specific for each image. This probably allows us to capture more subtle differences. This

single image setting also makes the development lighter as the training process is simpler and

requires less resources. In contrast, CNN-based methods heavily rely on a large amount of
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training data. For instance, the authors of BusterNet [WAAN18] have produced 100000 syn-

thetic samples for the training of their network. Two additional external image manipulation

datasets were also used for training. The network of [BPT19] has been trained on a synthetic

dataset of 900000 samples. We can observe that contrary to the two deep-learning-based

methods, no labels are used in the training of our method with a statistical machine learn-

ing tool of GMM. Loosely speaking, our approach could be considered like an unsupervised

method working on a single image. This provides additional flexibility compared to the two

CNN-based methods. Usually, classical machine learning tools provide lower performance

than recent deep-learning approaches. Here we do not observe this trend and we explain it

mainly by the adaptability of our method to the individual given image. This interesting point

is worth further studying.

5.4.2 Comparison between GMM and PixelCNN++

GMM and PixelCNN++ are two different but related types of models. They are both

learned with likelihood maximization. They both learn dependence between pixels. It is

reflected by the covariance matrices in the GMM and by both the auto-regressive form and the

convolutionnal kernels for PixelCNN++. Patches are vectorized for the GMM but covariance

matrices capture the spatial dependencies of the patch. For PixelCNN++, as it is a CNN

model, the patch is kept as it is when fed to the neural network. Therefore, the CNN takes

directly advantage of the spatial dependencies inside the patch. The ordering for sequential

conditioning of probability is a bias but it is done similarly to vectorization: from the top left

to the bottom right. PixelCNN++ allows the use of color images while it would require three

separate models from GMM to do so. The dependence between color channels should provide

additional hints.

The number of parameters is slightly lower with GMM compared to PixelCNN++, 51225

compared to 74970. Yet, the number of hyper-parameters is smaller with GMM, as there are

only two: the number of components and the type of covariance matrix. With PixelCNN++,

more hyper-parameters are involved: the optimizer and its parameters (at least the learning

rate and decay), the batch size, etc., and last but not least the architecture has to be designed.

It is done through a lot of experiments and consumes a large amount of computing power.
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5.5 Summary

After a study of existing copy-move detectors, we propose a simple method to discrim-

inate source and target areas in copy-move forgeries. Our approach acts as a second-stage

detector and takes as input the binary mask produced by a first-stage copy-move detector.

The basic idea is to measure and compare the statistical deviation of duplicated areas by

using a Gaussian Mixture Model trained on identified pristine patches. We show that our

method outperforms the only other published detector capable of such a disentanglement,

BusterNet [WAAN18], on two different datasets (CASIA2 and CoMoFoD). Another advantage

of our method is the possibility to rank predictions among a dataset to extract images with

the most surely distinguished source and target areas. As discussed in Section 5.4, we con-

sider that bringing additional flexibility and adaptability with the single image framework

compared to the training of deep-learning methods on large synthetic datasets is a key factor

for performance. Usually, deep-learning methods are able to achieve (much) better results

than classical machine learning tools, such as GMMs, but this is not the case here. It is thus a

promising line of research to find solutions to make deep-learning methods more flexible and

adaptive.

We have then proposed a variation of this approach with the PixelCNN++ model instead

of GMM for local statistics modeling. PixelCNN++ performs slight worse but gives rather

similar performance when compared to GMM. It would be possible to fuse results from the

two models to improve the accuracy. Beside that, it has been experimentally shown that Pix-

elCNN++ is also a good candidate for local modelling of natural images. With more time and

experience with CNN, it seems possible to improve the modelling capability of PixelCNN++.

Especially, it would be promising to design an architecture specifically for small patches of

8×8 pixels. Here, the architecture is designed for patches of at least 32×32. It would also be

interesting to carry out some tests with bigger patches but this would require more computing

resources.

As future work, other statistical models and histogram distance measures could be consid-

ered. Another interesting working direction would be an approach without statistical model-

ing like in GMM, but directly with the pixel values. This would then probably require more

advanced distance measures such as Wasserstein or Maximum Mean Discrepancy (MMD).

A metric could also be learned with a neural network. Siamese networks seem especially

promising, such as those used in [BPT19]. We plan to test our method combined with more

first-stage detectors to study their impact. There is also room for improvement in the post-

processing of the first-stage detector by using useful information provided by our method,

e.g., the ranking scores. It could help to discard the false positives of the first-stage detector.
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6 | Conclusion and Perspectives

With the prominent importance and role of images in our society, it is a necessity to

design tools capable of assessing the integrity of images. At the same time, the variety of

scenes, sources and types of tampering makes the diversity of these images enormous. In this

context, it seems unrealistic that a detector would be able to perform effectively and with the

same performance on all images. Flexibility and adaptability to the data seem to us a crucial

point that have guided all the work of this thesis. The development of high performance

models is above all important but in all our methods a special care about flexibility and

adaptability has been taken.

6.1 General conclusion

In Chapter 2, we have first introduced how the digital images are captured and we have

described the image forensics field. Then we have introduced the different problems that

are tackled in this thesis: manipulations detection and falsifications detection and localiza-

tion. A state-of-the-art of existing methods is provided. Gaussian Mixture Models and neural

networks are the two main tools used in the methods developed in the course of this thesis.

These tools relate to a broader category called Machine learning. Therefore, a theoretical

background for these methods has been outlined.

In Chapter 4, we have presented an original problem of image forensics. We consider

image manipulation detection in the case of pre-processing, more precisely when a resizing

of the full-sized image is performed prior to the addition of a manipulation. Images are

commonly down-sized for storage or display purposes. So, it is quite realistic to assume that

someone would retrieve an already down-sized image to then add a manipulation. In such a

scenario, we experimentally show that the performances of state-of-the-art detectors drop. An

illustration of the drops in accuracy can be found in Figure 6.1, for the CNN-based classifier

from [BS16]. We have performed statistical tests to formally expose statistical deviations of

93
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Figure 6.1 – Testing accuracy (in %) of CNN-based method [BS16] for detection of 5 different

types of manipulation with pre-resizing. The X-axis is the resizing factor. A resizing factor of

1 means no resizing and is considered as the baseline performance. The resizing algorithm

considered here is the harder bi-cubic interpolation.

the pre-resized images. Then, we have proposed three different methods for adaption on two

detectors. The objective is to recover some performance through adaptation of the model to

the new data. The first method is quite classical as it is the fine-tuning of a neural network.

The two others, designed for a classification pipeline that uses Gaussian Mixture Models, are

original. These two methods are used in two different settings: if no labels are known on

pre-resized data (unsupervised) or if only a few labels are known (weakly supervised). The

first approach performs geometrical transformations on covariances matrices of the GMMs

to adapt them to the new empirical covariance of the data. For the second method, the

GMMs are used in the pipeline as features extractor. The weights of the GMMs are updated to

better fit empirical covariance of the data and the classifier is fine-tuned with the few labeled

samples available on the target. The GRAFT procedure is able to recover up to +32% for

the detection of Gaussian filtering with a pre-resizing of ×1.25. For the weakly supervised

method, it is up to +18% for JPEG detection and pre-resizing of ×1.25.

Finally, in Chapter 5 we have shifted our focus on falsification detection. In the broad

range of existing falsifications, we have concentrated on copy-move detection. It is, along

with splicing and inpainting, one of the most common and popular tampering method. Sev-

eral very powerful copy-move detectors are already available. Although most of the existing

detectors identify indifferently the source and the target area of the copy move. From an op-

erational point of view, it is more valuable to identify only the tampered area and therefore to
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Figure 6.2 – Example results of our GMM-based method with DF-CMFD [CPV15a] as the

first-stage copy-move detector. The red color in ground-truth masks indicates the target area,

the green color indicates the source one, and the blue color indicates the pristine part. The

example in the last column is a miss-classification.

disentangle the source and target areas. For instance, if an image is used as evidence during

a trial and an individual is copy-moved, it is important to distinguish the two zones to be

able to locate the character in the scene. Only one published method and a pre-print have

proposed solutions to this end. We have introduced a new flexible and adaptive method as

it is specific to each image and does not require a large database for training. Our method

shows comparable or slightly better results with more versatility, when compared to the exist-

ing method. An illustration of the typical output of an existing detector and what our method

proposes and manages to do are depicted in Figure 6.2.

In addition to the above work, we also present briefly in Appendix A, the methods used

by our team during the different rounds of the DEFALS challenge. The DEFALS challenge

has been organized by ANR-DGA who have funded this work. It was a competition of image

falsifications detection on two rounds, between four French teams and on an original dataset

provided by ANR-DGA. To this end, we have engineered methods from the literature. This

contest was a unique opportunity of concrete experimentation that also has greatly influenced
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the theoretical work of this thesis. The emphasis on flexibility and adaptability was largely

inspired by our experience during the contest.

6.2 Perspectives and future work

We list here some perspectives based on the experience of this thesis and the problems

encountered. Some perspectives are short-term, direct evolution and variations of the pro-

posed and existing methods. They are directly related to the problems tackled in this thesis.

Some others are rather long-term perspectives as they concern promising lines of work and

problems not considered in this work.

Short-term perspectives

Regarding our research on image manipulation detection, the original GRAFT procedure

could be improved with the use of a few labels if they are available, like in the weakly-

supervised method. The use of the labels would allow the computation of more accurate

covariance matrices for the target data. In the current version of GRAFT, to find optimal in-

terpolation parameters, the log-likelihood is maximized on the target data. With few labels,

the accuracy score could be directly optimized. However, some studies should be carried

out to evaluate how many samples are required to bring an improvement compared to the

unsupervised adaptation framework. Finally, it could also be interesting to combine results

of unsupervised and weakly-supervised GRAFT algorithms with a factor that depends on the

number of available labels on the target. It would bring even more flexibility to the method re-

garding target data. On another side, we have mentioned feature adaptation in Section 4.4.1.

Yet, we did not succeed to adapt directly the features instead of the model as in the two pro-

posed methods. Recent advanced in the field of Optimal Transport could be investigated to

test new methods. For example, very recently an approach that combines feature and sample

transportation [Red+20] has been proposed.

Beside that, for copy-move detection more experiments with other first-stage copy-move

detectors should be conducted. It would be interesting to quantify the effects of the first-stage

performance on the second stage. Intuitively, we could expect that with less accurate copy-

move masks the performance of the second stage would decrease. Boundaries would not be

identified precisely, which may lead to incorrect log-likelihood comparisons. An intermediate

step of areas matching in copy-move detector output would also probably provide better re-

sults. Some copy-move detectors already provide such information, like [CPV15a], although

we do not use it. A general procedure, independent of the first-stage copy-move detector,
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could be designed and developed as well.

Finally, it would be interesting to apply our work and source/target disentangling for

copy-move to the second-round dataset of DEFALS to measure the improvement on the F1-

score. We also had noticed that double JPEG compression detectors give interesting results

for a limited set of images while for the majority it is random. A fusion strategy that identifies

automatically this limited set would also provide an improvement on the F1-score.

Long-term perspectives

We recall that the main challenge to switch from the public benchmarks to image forensics

in the wild is the difference in versatility of the data. Real-world tampered images are more

diverse in terms of source, tampering type, pre- and post-processing. One promising line

of research is probably to develop from scratch models that generalize well and not only

models that perform well, like in [Coz+18]. Another promising line, which seems even more

interesting to us, is to add flexibility and adaptability to models like we sought in this thesis.

The fact that it allows classical methods to still be competitive with neural networks methods

is for us a good indicator of the potential of the adaptive approach.

Considering this, it seems promising to pursue the work on auto-regressive deep models to

provide them with additional flexibility. A common point of manipulations and most common

falsifications is that they should expose some statistical deviations when compared to pristine

areas, either on the full zone or on the boundaries. The strategy of deviation detection has

already been applied to other problems than manipulation detection and copy-move disentan-

gling, for instance splicing detection with [CPV15b]. Auto-regressive models are by design,

as they are statistical models, tailored to be able to detect such deviations. More broadly, the

development of more advanced adaptation techniques than fine-tuning for neural networks

would be a great step toward the detection of highly realistic forgeries.

Finally, public benchmarks are really important to help the field progress. It appears that

the DEFALS datasets are very realistic. It would be very beneficial to find solutions to make

them publicly available. As for now, copyright legal issues on images are the main limitation.

Beside easy access to high quality data for experiment, it would also be interesting to allow

more collaborations and to share methods between teams that have taken part in the DEFALS

challenge. We probably all have a lot of intuitions and knowledge to share that could lead to

new ideas when combined together.
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In this Appendix, we present succinctly the methods implemented and what we have

learned on image forensics during the DEFALS challenge.

A.1 Preliminary round

For this first round of binary classification between original and falsified images, our best

score has been obtained by matching test images against a set of previously released training

images. The most efficient technique to perform the matching was based on hashing. Except

for the specific identity function used e.g., in Java, hash functions map data of arbitrary

size (usually big) to a fixed-size (usually small) binary digest, which make hash functions

injective. Typically (and as we did), we used the plain image files bytes as the contents to

be hashed. In our case, we used the sha256 hash function that produce 256-bit long digest

with an extremely low probability of collision, thus these hash codes actually make for unique

identifier of the images. We then simply looked for matches of the hash codes. An extra check

was also performed on image size (in bytes) to ensure correspondence (although image sizes

were identical, the EXIF metadata had different sizes).

We also have quickly explored a matching using features extracted with classical pre-

trained CNN, antoher classical approach for this kind of problem. Yet, the feature extraction

process was longer and the features had bigger size, which would induce a longer computing

time for matching. As said above, we had also noticed that EXIF metadata had not been

erased. Thus, the EXIF tags of falsified images contained a string describing the software

used to perform tampering. Although this matching was good enough to obtain a perfect

identification of falsified images, we did not use it and we just notified the organizers of the

challenge about it.

As this round has occurred during the very first months of the thesis, it was also an op-

portunity to test several methods and their implementations of the literature. The findings

were that most of the classical methods performed poorly on such realistic and high quality

dataset without proper adaptation and modifications. The best results, though limited, were

obtained with steganalysis features (SRM and SPAM) and a regular classifier.

A.2 First round

As described in Section 1.2, the objective was to perform binary classification of falsified

images. Beside the method based on metadata and presented in Section 2.2.3.2, we have



A.2. First round 101

developed two methods and a fusion scheme.

The first method is based on classical steganalysis features: SRM color [GFC14]. They are

extracted from 256 × 256 patches randomly cropped in the images. As explained in Sec-

tion 2.2.3.2, the color dynamics and range of falsified and original images are different.

Therefore, a simple linear classifier on SRM features is able to distinguish with good per-

formance falsified images and original images. During the testing phase, several patches are

extracted from each image and a majority voting is carried out. A linear classifier also allows

us to rank the images according to the distance to the hyper-plan of classification. To avoid

too many false positives that would penalize our score, we set a threshold in this ranking to

only keep the first few images which are the more suspicious ones.

We also have developed a slight variation of this method with one-level SRM features on the

Cr channel of YCrCb space. The intuition here is that the difference in color dynamics should

be more visible in the YCrCb color space. In fact, the difference was big enough in the RGB

color space so that performances are comparable. We also have tested other, more elabo-

rate classifiers such as XGBoost [CG16] or RandomForest [Bre01], still without significant

improvement. SRM features are quite long to extract so we took advantage of the computing

cluster of Lille University and GRICAD in Grenoble to parallelize the computation.

The second method was deep-learning based. We use a network developed by two of the

team member [CW19] for image manipulations detection. The change in color dynamics is a

manipulation more than a falsification so it makes sense to use this network. Similarly to the

feature-based method, inputs are 256 × 256 patches randomly cropped from the images and

a majority voting is performed during the test phase. The last layer is a typical softmax layer.

It produces a score that is usually interpreted as the probability of belonging to the class (in

our case, the class of manipulated patches). We use this score to construct a ranking just as

with the other method and set a threshold to obtain a set of the most suspicious images.

To merge the three rankings, the two SRM and the deep learning-based, we have firstly

used a basic method. For each method, we extract the 200 most suspicious images and we

take the 80 images in the intersection. The number 80 was an estimation of the total number

of falsified images in the test set. Both methods achieved very similar results so the most

suspicious images for both methods were also close. An intersection with the chroma sub-

sampled images was also performed, as explained in Section 2.2.3.2. We also have explored

advanced methods for ranking fusion. Most notably, we have implemented a Borda count. In

Borda count for each ranking, samples are given a number of points that corresponds to the

number or samples that are below in the ranking. Thus for the three rankings (the two SRM

and the deep learning-based method), each sample has a number of point corresponding to

its position in the specific ranking. Then, points from each ranking are added to obtain the
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Table A.1 – Left: we have four samples A, B, C, D and 100 rankings (votes from 100 voters). A

is first in 51 rankings and last in all the others. C is first in only 5 rankings and second in all

the others. Right: Score for C is 5× 3 + 95× 2 = 205. A have a score of 51× 3 + 49× 0 = 153.

Thus C is first and A is second, while A have been place first by a majority (51 out of 100

rankings). Example from: https://en.wikipedia.org/wiki/Borda_count (last accessed:

Sept. 2020).

Rank 51 rankings 5 rankings 23 rankings 21 rankings

1st A C B D

2nd C B C C

3rd B D D B

4th D A A A

Sample Borda score

C 205

A 153

B 151

D 91

new ranking. The biggest counterpart with Borda count is that a sample in first place for

a majority of rankings is not necessarily the first one in the fused ranking. An example is

depicted in Table A.1. However, as we only have 3 rankings in our setting for the DEFALS

challenge, it is not expected to happen. We also have tested the Condorcet method, which is

based on the intuition that the best candidate in an election is the one that would win the

most showdowns against the others. For this method, we therefore construct all pairing of

samples. Each sample obtains a number of points corresponding to the number of pairings

where it appears higher in rankings than the other sample in the pairing. Thus, the sample

at the top of the merged ranking is the one that “won” most showdowns against the other

samples according to the three rankings. Both of these methods only provide a marginal

improvement. Rankings are too similar, so the output of a simple intersection is not really

different from the outputs of advanced methods.

A.3 Second round

This round had two objectives, and two scores: (i) identification of falsified images, and

(ii) tampering localization. This time, we witnessed no EXIF leaks and no chroma subsam-

pling or obvious color dynamics differences in the dataset.

A.3.1 Identification

The methods used during the first stage, feature-based and deep-learning based, gave

poor results as there are no significant statistical difference in the distributions of falsified

https://en.wikipedia.org/wiki/Borda_count
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images compared to the original ones: falsifications were only local. So we had to devise

new methods again. The identification was especially hard because of the high quality of

the falsifications. Our original strategy was to first identify falsified images and then perform

a second stage of localization. Because of these difficulties, we directly have aimed for a

detector capable of localization. As mentioned in Section 2.2.3.2, some image sizes were

found to be specific to falsified images, so we were able to identify majority of them in this

way.

A.3.2 Localization

Our best results for localization were achieved using a vanilla (with default parameters)

version of [CPV15a]. This detector is able to identify and localize most of the copy-move

and some exemplar-based inpaintings. For more details on the different types of inpaintings,

see Section 2.1.3. The main limitation is that the detector identifies both areas of the copy-

move while in this contest we were interested only in the tampered target zone. This lead

us to work on disentangling source and target areas in copy-move. This work is presented

in Chapter 5.

Beside the copy-move identification and localization, we also tried other detectors for de-

tecting splicing and inpainting, both diffusion-based and exemplar-based. We have mainly

worked on [Bap+19] and [WAN19]. They are two neural networks capable of general falsifi-

cation detection. We have focused on these two because the reported results on public bench-

marks look very impressive and authors proposed implementations as well as pre-trained

versions of their methods. Both methods are based on CNNs and they are intended to work

with full-sized images. The authors considered images of maximum size 512 × 512 in their

experiments. Because of the very large size of DEFALS images and hardware memory limi-

tations, it was not possible for us to work with the full-sized images. We tried to resize the

images to 512 × 512 but this very strong post-processing made the detection very difficult.

Therefore, we decided to work on crops instead of resized or full-sized images. The idea was

to divide the images into 256× 256 patches and then to merge decisions in order to gain full-

sized localization. In this setting, the data used for training by the authors, mostly synthetic

data, were too different from our high-definition patches. To tackle this issue, we tried to

re-train and also fine-tune these networks.

We first encountered an issue of class imbalance. Most of the crops were from pristine

parts of images, and in the crops containing falsified parts the percentage of falsifications

would vary a lot. This made the training impossible because the pristine class was over-

represented in the training set. Thus, we only kept 20% of fully pristine patches. For the
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falsified patches, we only used patches containing between 20% and 80% of falsified content,

to ensure that significant fingerprints of falsification would be observed. All these proportions

have been set empirically. We spent a lot of time experimenting the construction of a training

dataset that would be representative of our data and that would also permit the networks to

learn something on and to converge. This dataset construction is the crucial part that allowed

us to make networks converge and achieve good results. The usual classification loss function

in neural networks is the cross-entropy loss which requires balanced label distributions. It is

definitely not the case in our training data, so we did some experimentation with weighted

cross-entropy, Dice loss and especially focal loss [Lin+17]. Weighted cross-entropy loss adds

a weight to one of the two classes to reflect the imbalance of classes. In our case, we es-

timate that in the image the falsified part represents between 10% and 20% of the pixels.

The Dice loss is a score based on the Dice coefficient which measures the similarity of two

ensembles, in our case the ensembles of pixels between predicted mask and ground truth.

Along with the Jaccard index, the Dice loss is commonly used for object detection in images

as it counterbalances partially the imbalance of classes. The focal loss adds a term to the

classical cross-entropy loss in order to reduce the relative loss for well-classified examples,

i.e. examples correctly classified and with high certainty (probability from softmax close to

1). The intuition is that there is more to learn from hard examples than easily classified ones.

We have first performed experimentation on these losses separately. Then, to benefit from the

better of all these losses, we have combined them to form a new loss. It allows us to obtain

good results of localization at the patch level. The results are especially good with splicing as

this tampering exposes edges between the two zones. Because of the nature of convolution

(a filter), CNNs are particularly powerful to detect edges. However, the results are very poor

at image level. When merging all the patches prediction, the number of false positives made

the localization very fuzzy. Although we invested a lot of time and resources in this research

line, we were not able to use it for the challenge.

Finally, we also have explored some methods which detect re-sampling traces. We had

the intuition that copy-move, splicing or exemplar-based inpainting would usually imply re-

scaling or rotation of the tampered area to look more natural. Re-scaling or rotation are

basically re-sampling and this would be visible in for example the Fourier domain with the

appearance of some periodic peaks. Probably these fingerprints in the Fourier domain are

covered by the latter JPEG compression performed after the falsification and before the dis-

tribution of images.

To summarize, both the data and the goals of this round made it especially hard. It is

reflected by the lower scores achieved by all the teams compared to the previous rounds. It

also has confirmed to us that it is not straightforward to adapt efficient detectors from the
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literature to new and realistic data. It requires specific work and studies. With more adaptable

and flexible models, it would be definitely much easier.

A.4 Summary

This challenge was a pretty unique opportunity to work on very high-quality datasets. It is

very representative of what it requires to move from synthetic benchmarks to image forensics

in the wild. It also has allowed us to test in practice, through implementations, a wide range

of methods from the literature. Concrete experimentations of the challenge have enabled us

to explore extensively frameworks and hardware considerations around deep-learning. It was

truly complementary with the other parts of the thesis, which is more theoretic and focused

on classical approaches.

The last round has exposed how the localization of high-quality falsifications in images of

big size is a difficult problem. It is certainly a major challenge that still needs to be specifically

addressed in the image forensics field. One crucial issue is the availability of the datasets that

is dependent on legal issues, but it would be very profitable for the community to share the

datasets of the three DEFALS challenge rounds.

One regret that we have with this contest is that the collaboration between the teams has

been minimal. After each round, debriefing meetings were mainly about the technical condi-

tions and the following rounds of the contest. The methods developed by the different teams

have not been shared or explained in details. That is probably because debriefing meetings

were intended for team leaders. It would have been profitable to also have a debriefing for

the team members that have worked in more details on devising the methods. Complemen-

tary with the competition, a collaboration stage between teams, not only with the industrial

partner of each team, would certainly foster the development of new ideas.
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B | The softwares

All the experiments and practical experimentation of this thesis could not have been im-

plemented without the help of open software and libraries. We cite them here as acknowl-

edgements but also as these tools often rely on number of citations for budget.

Firstly, we have used Python [RD09] as programming language. All the libraries from the

ScyPy [Vir+20] ecosystem have been of a great help: scientific computation with NumPy [WCV11]

and the plotting library Matplotlib [Hun07]. All implementations of the classical machine

learning algorithms that we used are from Scikit-Learn [Ped+11]. For deep learning, we

used mainly PyTorch [Pas+19] and Tensorflow [Aba+16]. For the computer vision part, we

used mainly OpenCV [Bra00] and Pillow [Cla15].
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