Alexandre Adomnicai

Thierry P Berger

Christophe Clavier

Julien Francq

Virginie Lallemand

Kévin Le Gouguec

Marine Minier

Léo Reynaud

Gaël Thomas

Paul Huynh

ated Data (aead

Keywords:

Ainsi, dans la pratique, des systèmes hybrides sont utilisés : un système à clef publique va permettre à deux interlocuteurs Alice et Bob de s'échanger une clef de session, qui servira à son tour à paramétrer un algorithme de chiffrement symétrique. C'est sur cette seconde famille d'algorithmes de chiffrement que se concentre cette thèse.

xii

Plan détaillé de la thèse

Ce manuscrit rassemble les différents travaux effectués durant ma thèse à l'Université de Lorraine, sous la direction de Marine Minier, au sein de l'équipe Caramba.

Ces travaux de recherche portent principalement sur un sous-domaine particulier de la cryptologie symétrique : la cryptographie dite à bas coût ou encore légère (lightweight cryptography en anglais), qui a pour but de concevoir des algorithmes de chiffrement dédiés aux objets connectés. Ces nouveaux appareils, apparus au cours des vingt dernières années et regroupés sous le concept d'Internet des Objets (iot), sont en effet généralement limités en ressources, créant un besoin de nouvelles primitives cryptographiques demandant peu de place en mémoire, ayant une faible consommation d'énergie, tout en conservant une vitesse d'exécution rapide.

Dans les différents chapitres de ce manuscrit, seront donc étudiées les méthodes de conceptions et d'analyse de tels chiffrements légers. Le contenu est divisé en trois partie, détaillées ci-dessous.

Partie I. Contexte général

Cette première partie a pour but de situer le contexte des contributions qui seront ensuite présentées dans les Parties II et III. Ainsi, après une présentation des concepts fondamentaux de la cryptographie moderne, nous nous intéresserons à un des défis ouverts de ce domaine de recherche, la cryptographie légère. Plusieurs techniques de conception d'algorithmes efficaces et légers seront étudiées et nous détaillerons également certaines méthodes utilisées en cryptanalyse symétrique qui seront appliquées dans la suite du manuscrit.

Chapitre 1. Cryptographie symétrique et chiffrements par blocs

Ce chapitre présente les objectifs principaux de la cryptographie et s'intéresse aux solutions mises en oeuvre dans le domaine de la cryptographie symétrique. En particulier, il décrit les méthodes de conception des algorithmes de chiffrement symétrique qui utilisent des chiffrements par blocs. Nous verrons en effet que construire des primitives cryptographiques peut se décomposer en deux sous-problèmes :

1. concevoir une famille de 2 𝑘 permutations de F 𝑛 2 se comportant comme une permutation aléatoire, où 𝑘 désigne la taille de clef secrète (typiquement 128 bits), et 𝑛 est la taille de bloc (128 bits également), 2. décrire un mode opératoire permettant de manipuler des messages de tailles quelconque.

.

Cette structure présente deux avantages. Elle permet tout d'abord d'obtenir des chiffrements complexes en ne construisant qu'une fonction de tour, ce qui réduit considérablement le coût d'implémentation. De plus, elle facilite l'analyse du chiffrement puisqu'il est plus simple de fournir des arguments de sécurité pour une petite fonction simple itérée plusieurs fois que sur une grande transformation.

Les analyses présentées dans les Chapitres 5, 6 et 7 se basent sur ce principe. L'attaque différentielle fait partie d'une grande sous-classe d'attaques : les attaques statistiques. D'autres attaques de ce type sont décrites dans ce chapitre, comme l'attaque linéaire, l'attaque boomerang ou par interpolation. Une seconde partie sera également consacrée à des attaques dites structurelles. La question de l'automatisation de certaines attaques via des outils génériques comme le ilp (Integer Linear Programming), sat (Boolean Satisfiability problem) ou cp (Constraint Programming) sera évoquée, avant d'être étudiée dans le Chapitre 6.

Partie II : Contributions au processus de standardisation pour la cryptographie légère du nist En août 2018, le nist lança un appel à contribution [NISb] afin de constituer un portfolio d'algorithmes de chiffrement authentifié légers, à l'instar des précédentes compétitions Aes en 1998 et Sha-3 en 2007. Parmi les 57 propositions soumises, 56 furent retenues pour le premier tour, en avril 2019. Actuellement, 32 candidats sont encore en lice dans le deuxième tour. C'est dans ce contexte que s'inscrivent les contributions présentées dans cette partie. Chapitre 4. L'algorithme de chiffrement authentifié léger Lilliput-AE Ce chapitre présente l'algorithme de chiffrement authentifié léger Lilliput-AE [ABC + 18], conçu en collaboration avec Alexandre Adomnicai, Thierry Berger, Christophe Clavier, Julien Francq, Virginie Lallemand, Kévin Le Gouguec, Marine Minier, Léo Reynaud et Gaël Thomas et qui fit partie des candidats du premier tour du processus de standardisation pour la cryptographie légère initié par le nist. Ce schéma utilise la primitive Lilliput-TBC, basée sur le chiffrement par blocs léger Lilliput [Tho15, BFMT16]. Il reprend ainsi la fonction de tour, représentée sur la Figure 5. Elle repose sur une structure de Schéma de Feistel Généralisé Étendu (Extended Generalized Feistel Network en anglais), ce qui permet d'optimiser son délai de diffusion 3 . L'algorithme de cadencement de clef a en revanche été modifié. Deux modes de chiffrement authentifiés sont définis : Lilliput-I et Lilliput-II, respectivement basés sur les modes Θcb3 [KR11b] et sct-2, tous les deux utilisés dans Deoxys [JNPS16]. Le premier mode garantit une sécurité tant que le nonce est renouvelé entre chaque usage, tandis que le second permet une réutilisation du même nonce. Pour chaque mode, le schéma est défini avec un état interne de 128 bits, ainsi qu'une clef de taille 128, 192 ou 256 bits, conformément aux critères d'évaluation énoncés par le nist [NISb]. Après avoir donné une spécification complète du schéma, nous proposons une analyse de sécurité justifiant les choix de conceptions. Enfin, le chapitre se conclut par une évaluation des performances logicielles et matérielles. Celles-ci sont comparables à celles d'autre algorithmes légers comme Acorn et Ascon, qui figurent dans le portfolio final de la compétition caesar portant sur le chiffrement authentifié. Chapitre 5. Cryptanalyse de Spook Spook [BBB + 19] est l'un des 32 candidats à avoir été retenu pour le deuxième tour du processus de standardisation pour la cryptographie légère du nist. Sa permutation interne, Shadow, se décline en deux versions : Shadow-384 et Shadow-512, s'appliquant à un état de 384 (respectivement Probability 0 0 0 2 -12 2 -8 0 Par un raisonnement similaire, il est assez simple de déduire les probabilités que les constantes de tour s'annulent dans le cas d'états 3-et 2-identiques, conservant ainsi ces états après une étape. Ces propriétés permettent d'obtenir un distingueur sur l'intégralité des 6 étapes de Shadow-512, ainsi que sur une version réduite à 5 étapes au lieu de 6 pour Shadow-384. En utilisant un principe similaire, il est également possible de générer des collisions sur les tags d'authentifications en très peu de requêtes, dans une configuration de rejeu du nonce. Tous ces résultats ont une complexité très faible et ont été vérifiés expérimentalement. Ils sont disponibles à l'adresse suivante : https://who.paris.inria.fr/Leo.Perrin/code/spook/index.html Cette analyse montre l'importance du choix des constantes de tour pour les LS-designs : il faut donc non seulement s'assurer que les attaques par sous-espaces invariants [BCLR17] ne sont pas applicables, mais également éviter d'autres effets indésirables, comme dans ce cas, une annulation dans l'état interne. Nos résultats ont amené les concepteurs de l'algorithme à changer la matrice utilisée dans la couche de diffusion pour la version Spook v2, présentée dans l'édition spécial du journal Transactions of Symmetric Cryptography 2020 consacré à la compétition nist [BBB + 20]. Chapitre 6. Cryptanalyse différentielle automatisée de Skinny Dans ce chapitre, le chiffrement étudié est Skinny [BJK + 16], une primitive sur laquelle sont basées plusieurs propositions d'algorithmes légers soumis au nist : ForkAE [LPR + 19], Remus

Contents

Introduction Générale xi Introduction xxvii

List of Publications xxix

Part I Background and Preliminaries 1

Introduction Générale

Ça va être dur de faire plus dur que si dur.

Un homme de lettres

La cryptologie, ou étymologiquement "la science des codes secrets", comprend la cryptographie, qui se concentre sur l'ensemble des techniques de communication visant à protéger la confidentialité des données, et la cryptanalyse, qui s'attèle à trouver des faiblesses dans les méthodes de chiffrement proposées. Ces deux aspects de la cryptologie sont évidemment complémentaires, une avancée dans un domaine poussant l'autre à proposer des solutions plus efficaces.

De la substitution simple, qui permit à Jules César de communiquer avec ses armées par messages chiffrés, à la machine Enigma utilisée par les forces de l'Axe lors de la seconde guerre mondiale, la cryptologie est restée pendant très longtemps réservée à un usage principalement militaire. Ce n'est qu'avec le développement de l'informatique et l'arrivée des ordinateurs personnels qu'elle est devenue un domaine de recherche actif, s'imposant progressivement dans notre quotidien. On compte aujourd'hui un certains nombre de primitives cryptographiques, tels le chiffrement Rsa [START_REF] Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF] ou encore l'Aes [START_REF]Advanced Encryption Standard (AES)[END_REF][START_REF] Daemen | The Design of Rijndael: AES -The Advanced Encryption Standard[END_REF], standard de chiffrement depuis 2001.

La cryptographie moderne

Avant toute chose, rappelons les objectifs de la cryptographie moderne. Deux protagonistes, Alice et Bob, veulent communiquer en présence d'un adversaire, Eve. Pour que des utilisateurs non-légitimes comme Eve ne puissent pas accéder au contenu du message qu'Alice envoie à Bob, ce message est chiffré au moyen d'une transformation, un cryptosystème, qui apporte les garanties suivantes :

• Confidentialité. Bob doit être le seul à pouvoir déchiffrer le message d'Alice. Si Eve venait à intercepter le message chiffré d'Alice, il serait impossible pour elle d'en extraire une quelconque information.

• Intégrité. Si Eve change le contenu du message d'Alice, Bob doit être en mesure de le détecter.

• Authenticité. Bob doit être en mesure de vérifier que le message provient bien d'Alice. Eve ne peut donc pas communiquer avec Bob en prétendant être Alice.

La Figure 1 montre ce procédé. Les algorithmes de chiffrement se répartissent en deux grandes familles : les algorithmes symétriques, aussi appelés algorithmes à clef secrète, et les algorithmes asymétriques, ou encore à clef publique : • La première famille utilise une seule et même clef pour le chiffrement et le déchiffrement, ce qui nécessite le partage d'un secret entre les deux entités souhaitant communiquer.

• Pour les algorithmes à clef publique, comme Rsa, chaque entité dispose d'une paire de clef : une clef de chiffrement, publique, et une clef de déchiffrement, secrète.

La seconde approche permet ainsi d'éviter le problème du partage de secret commun qui est propre aux algorithmes symétriques. Le sécurité des cryptosystèmes asymétriques repose sur des problèmes issus de la théorie des nombres considérés comme difficiles, tels la décomposition en facteurs premiers ou la résolution du logarithme discret dans un corps fini : on démontre en général que casser un tel système est équivalent à résoudre un certain problème mathématique jugé difficile. Les arguments de sécurité s'appuient ainsi sur des résultats de complexité asymptotique. Par ailleurs, certains travaux ont mené à des algorithmes quasi-polynomiaux permettant de résoudre ces problèmes dans certains cas [Jou14, BGJT14, KW19, BGG + 20], montrant qu'il est possible que des algorithme rapides pour résoudre ces problèmes sous-jacents finissent par voir le jour. Enfin, il convient aussi d'évoquer la menace d'un éventuel ordinateur quantique, auquel certains de ces problèmes mathématiques ne résisteraient pas.

Un second type de difficulté concerne la mise en pratique de tels systèmes : les problèmes difficiles mentionnés précédemment manipulent de grands nombres d'éléments, dans des corps de grande dimension, ce qui implique des coûts d'implémentation trop élevés ou des débits trop lents pour certaines applications, comme par exemple, le chiffrement de disque dur. Seuls les algorithmes symétriques sont capables d'atteindre ces exigences d'implémentation. Ainsi, la conception d'un chiffrement par blocs est réduit à deux problèmes : la spécification d'un algorithme de cadencement de clef pour dériver des sous-clef de tour et une fonction de tour 𝐹 .

𝑀

Pour la fonction de tour, l'approche usuelle consiste à utiliser deux couches, chacune permettant d'obtenir une des propriétés de confusion et de diffusion énoncées par Claude Shannon dans son article fondateur de 1949 [START_REF] Shannon | Communication theory of secrecy systems[END_REF] :

• une couche linéaire, qui va créer de la dépendance entre tous les bits de clef, les bits de clairs et les bits de chiffrés,

• une couche non-linéaire, pour casser les structures algébriques, souvent à base de substitution.

Ces techniques de chiffrement ont été grandement utilisées et étudiées et l'apogée de ce genre de construction est le choix du standard actuel de chiffrement symétrique, l'Aes [START_REF]Advanced Encryption Standard (AES)[END_REF], qui utilise une concaténation d'une même table de substitution-la boîte-S-sur 8 bits dans sa couche non-linéaire, et une multiplication par une matrice dite mds1 , permettant d'optimiser la diffusion de sa couche linéaire. La fonction de tour de l'Aes est illustrée à la Figure 3. Alors même que l'Aes venait d'être choisi comme nouveau standard par le nist2 , le début des années 2000 vit apparaître un certain nombre d'applications utilisant des plateformes limitées en ressources, telles les cartes de transports ou les systèmes de verrouillage à distance de voitures. Aujourd'hui, la prolifération de ces petits objets connectés et le flux de données transitantes qui en résulte ont créé de nouveaux besoins auxquels les standards actuels comme l'Aes ne sont pas adaptés. Depuis quelques années, la communauté cryptographique s'efforce donc de proposer de nouveaux algorithmes consommant très peu d'énergie, utilisant très peu de portes logiques sur un circuit : les algorithmes légers.

Ces primitives doivent répondre à des contraintes différentes selon le support d'intégration visé, qui peut être de nature matérielle ou logicielle. Un ensemble de métriques permet de mesurer l'efficacité d'une implémentation.

• Pour une implémentation logicielle, les paramètres à optimiser sont l'empreinte mémoire, la vitesse d'exécution et la latence.

• Pour une implémentation matérielle, un des critères les plus importants est la taille occupée par l'algorithme sur un circuit, qui est mesurée en nombre de portes logiques (ou ge pour Gate Equivalent). Un concepteur cherchera également à optimiser le temps d'exécution, la latence ainsi que la puissance requise.

Il est très difficile d'optimiser toutes ces quantités en même temps et en général, l'application visée déterminera les choix d'optimisation.

Une autre problème soulevé est la protection contre les attaques par canaux auxiliaires, qui tirent parti du fonctionnement de l'appareil sur lequel est implémenté l'algorithme de chiffrement visé. Dans un contexte tel que celui de l'Internet des Objets, beaucoup de systèmes (puces rfid, capteurs sans fil etc.) opèrent dans des environnements non-protégés et sont particulièrement exposés à de telles attaques. Ainsi, il est important de pouvoir implémenter des contre-mesures efficaces, tout en conservant de bonnes performances.

Le chapitre détaillera donc les méthodes de conceptions adoptées pour répondre à ces nouvelles exigences, illustrées par plusieurs exemples d'algorithmes légers :

• Present [BKL + 07], aujourd'hui standardisé (iso/iec 29192-2 [START_REF]Information technology -Security techniques -Lightweight cryptography -Part 2: Block ciphers[END_REF]), fut le premier chiffrement léger. Ses concepteurs ont opté pour un ordonnancement de clef simplifié, un état interne réduit, des boîtes-S agissant sur 4 bits et une permutation simple de bits pour favoriser une implémentation matérielle.

• L'implémentation de l'Aes sur des petites cartes restant trop coûteuse du fait des structures mathématiques utilisées (boîte-S sur 8 bits, matrice mds), une question naturelle qui s'est notamment posé a été de savoir comment alléger ces composants, en ayant des propriétés d'implémentation qui soient très bonnes et en gardant une sécurité correcte. Cette approche a été adoptée par les concepteurs de Skinny [BJK + 16]. D'autres travaux ont également été menés sur la recherche de boites-S [Can05, BP09, CDL16, CR19] ou de matrices mds [JPS17, DL18] compactes.

• Des constructions basées sur des schémas de Feistel,comme LBlock [WZ11a] ou Lilliput [START_REF] Thierry | Extended generalized feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput[END_REF] permettent de diminuer le surcoût du déchiffrement.

Des implémentation logicielles efficaces peuvent être obtenue par bit-slicing, qui consiste à réécrire un algorithme cryptographique au plus bas niveau, en utilisant uniquement des opérations logiques bit à bit. Les LS-Designs [START_REF] Grosso | LS-designs: Bitslice encryption for efficient masked software implementations[END_REF] ont été conçus pour faciliter ce genre d'implémentation. Les structures Arx [Miy91, WN95, BSS + 13, DPU + 16], n'utilisent que des opérations simples-addition, rotation et xor et sont également très efficaces pour les applications logicielles.

La question de l'authentification est également importante en cryptographie légère. Plus particulièrement, alors que la méthode traditionnelle consiste à chiffrer les données, puis faire appel à une autre primitive pour générer un tag d'authentification permettant de vérifier l'identité de l'émetteur, la communauté cryptographique a cherché à proposer des modes opératoires permettant de fournir l'authentification en même temps que le chiffrement : on parle alors de chiffrement authentifié en une passe.

Chapitre 3. Cryptanalyse

La cryptanalyse permet d'évaluer la sécurité des primitives cryptographiques. C'est une composante essentielle de la cryptologie; la seule façon de se convaincre de la sécurité d'un algorithme étant de regarder les grandes familles d'attaques connues et de montrer que celles-ci ne s'appliquent pas sur ce système.

Une notion importante en cryptanalyse symétrique est celle du distingueur, qui peut être définie comme une propriété permettant à un attaquant de différencier un chiffrement d'une permutation aléatoire.

Prenons comme exemple le cas de la cryptanalyse différentielle, introduite par Biham et Shamir [START_REF] Biham | Differential cryptanalysis of DES-like cryptosystems[END_REF], qui étudie le biais statistique induit par une fonction de chiffrement dans la distribution de différences observées en sortie du chiffrement lorsque la différence d'entrée entre deux messages clairs est fixée. L'attaquant considère deux messages d'entrée 𝑀, 𝑀 ′ , dont la différence est fixée à une valeur 𝛿 0 , et observe la différence entre les images 𝐶, 𝐶 ′ de ces deux entrées, notée 𝛿 𝑡 , comme illustré sur la Figure 4. Pour une permutation aléatoire, la différence en sortie prendra toutes les valeurs possibles (non-nulles) avec une distribution uniforme. Plus précisément, pour toute paire d'éléments de 𝑛 bits (𝛿 𝑒 , 𝛿 𝑠) la probabilité :

Pr[𝑓 (𝑥 ⊕ 𝛿 𝑒) ⊕ 𝑓 (𝑥) = 𝛿 𝑠].

vaudra 1 2 𝑛 si 𝑓 est une permutation aléatoire. Cependant, si 𝑓 correspond à un chiffrement par blocs 𝐸, il est possible que pour certains couples de différences d'entrée et de sortie (𝛿 𝑒 , 𝛿 𝑠), cette probabilité soit plus élevée, ce qui donnera un distingueur différentiel. On dit alors que la paire (𝛿 𝑒 𝛿 𝑠) est une différentielle. Le but pour un attaquant sera donc de trouver des différentielles de forte probabilité, afin de distinguer le chiffrement d'une permutation aléatoire. 512) bits vu comme un ensemble de 3 (respectivement 4) tableaux de taille 32 x 4 bits (aussi appelés bundles).

Chaque permutation applique 6 étapes (steps). Comme le montre la Figure 6, une étape est constituée de deux tours, un tour A et un tour B, séparés par une addition de constante de tour. L'unique différence entre une étape de Shadow-512 et une étape de Shadow-384 réside dans la définition de la couche de diffusion 𝐷.

• • • • • • • • • • • • S S S S S • • • • • • • • • • • • S S S S S • • • • • • • • • • • • S S S S S • • • • • • • • • • • • S S S S S S-box L L L L L L L L L L L L L-box Round A • • • • • • • • • • • • S S S S S • • • • • • • • • • • • S S S S S • • • • • • • • • • • • S S S S S • • • • • • • • • • • • S S S S S

S-box D-box

Round B c

Step Nos distingueurs reposent sur une propriété structurelle des permutations permettant la préservation après une étape d'états 𝑖-identiques, définis comme suit : xviii Definition 0.1 (État 𝑖-identique). Un état de Shadow est dit 𝑖-identique si 𝑖 bundles sont égaux.

• D AC(2i) AC(2i + 1) c'
Les équations à satisfaire pour maintenir un état 4-identique après une étape de Shadow-512 sont détaillées ci-dessous, où 𝑆 désigne la boîte-S appliquée sur chaque colonne (𝑦 0 , 𝑦 1 , 𝑦 2 , 𝑦 3) 𝑡 en début de tour, et 𝑐, 𝑐 ′ sont les constantes des tours A et B respectivement :

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑆(𝑦 3 ⊕ 𝑐) = 𝑆(𝑦 3) ⊕ 𝑐 ′ 𝑆(𝑦 2 ⊕ 𝑐) = 𝑆(𝑦 2) ⊕ 𝑐 ′ 𝑆(𝑦 1 ⊕ 𝑐) = 𝑆(𝑦 1) ⊕ 𝑐 ′ 𝑆(𝑦 0 ⊕ 𝑐) = 𝑆(𝑦 0) ⊕ 𝑐 ′ ,
ce qui donne les probabilités suivantes :

Table 1: Probabilité que la sortie de l'étape 𝑠 de Shadow-512 soit 4-identique sachant que l'entrée l'est.

𝑠 0 1 2 3 4 5 limiter cette explosion combinatoire consiste à utiliser des différentielles tronquées [START_REF] Knudsen | Truncated and higher order differentials[END_REF], qui indiquent si la différence sur un mot de l'état interne est nulle ou non, sans plus d'information sur la valeur de cette différence. Typiquement, chaque mot de l'état interne est vu comme une variable binaire, et le but recherché n'est plus de déterminer la valeur exacte des différences en entrée et en sortie de chaque tour mais uniquement les positions de ces différences, c'est à dire, déterminer quel mot contient une différence non-nulle. Lorsqu'une différence est présente en entrée d'une boîte-S, on dira alors que cette boîte-S est active. L'inconvénient de la représentation tronquée est l'existence de faux-positifs (i.e. de chemins non-instanciables). L'approche usuelle [BN10, AST + 17, GLMS20] consiste ainsi à diviser le processus de recherche en deux étapes:

1. une première étape (Step1) qui adopte une représentation abstraite des différences en considérant uniquement des variables binaires et qui cherche donc à trouver des chemins différentiels tronqués minimisant le nombre de boites-S actives;

2. une seconde (Step2) qui essaye d'instancier chaque solution trouvée par l'étape précédente, tout en maximisant la probabilité du chemin.

Plusieurs modèles d'attaques différentielles sont ici considérés : le modèle SK se place dans le cadre d'une attaque à clef simple, tandis que le modèle TK1 (respectivement TK2 et TK3) désigne une attaque à clef liée dans laquelle le tweakey contient une seule (respectivement, deux et trois) composante(s). Le modèle d'attaque à clef liée suppose qu'un adversaire a non seulement le contrôle sur les différences entre les messages clairs 𝑀 et 𝑀 ′ dont il peut demander les chiffrés, mais également sur les différences entre les clés de chiffrement 𝐾 et 𝐾 ′ .

Plusieurs outils automatisés ont été choisis pour modéliser l'étape Step1 : Integer Linear Programming (ilp), Constraint Programming (cp), Boolean Satisfiability Problem (sat) ainsi qu'un outil Ad-Hoc. Pour l'étape Step2, la programmation par contraintes a été choisie pour son efficacité dans la résolution de ce type de problème.

Ces modèles nous ont permis de retrouver les résultats de [AST + 17] en seulement quelques minutes, alors qu'il a fallu environ 16 jours 4 aux auteurs du papier d'origine. De plus, nous avons également pu dériver des bornes optimales jusqu'à 14 tours pour le modèle TK1 et 12 tours pour le modèle TK2 de SKINNY-128, un nombre de tours encore jamais atteint par les travaux précédents, comme ceux de Liu et al. [START_REF] Liu | Security analysis of SKINNY under related-tweakey settings (long paper)[END_REF]. Enfin, nous montrons l'absence de caractéristique de probabilité supérieure à 2 -128 pour 15 tours, dans le modèle TK1. L'ensemble de nos résultats est résumé dans le Tableau 2.

Ces travaux nous ont également permis de donner une comparaison rapide de différents outils automatisés utilisés. Pour l'étape Step1, l'outil Ad-Hoc donne les meilleurs temps dans la plupart de cas et semble donc être la plus efficaces des 4 méthodes étudiées. Cette méthode demande en revanche une grande quantité de mémoire. Aussi, l'approche ilp paraît être une bonne alternative de par sa facilité d'utilisation. Pour l'étape Step2, l'outil cp s'est avéré être le plus rapide, principalement grâce à l'utilisation de contraintes Table qui ont permis une modélisation efficace des boîtes-S et de leur ddt 5 .

Enfin, nous avons pu constater qu'une meilleure solution de filtrage pour l'étape Step1 serait très bénéfique à l'approche adoptée dans cette analyse. En effet, cette étape renvoie généralement un nombre minimal de boîtes-S actives 𝑣 * relativement bas, cependant, les solutions optimales 4 Il faut néanmoins préciser que nos configurations étaient différentes. Nous aurions souhaité pouvoir faire une comparison, cependant le code du papier [AST + 17] n'est pas publique.

5 Difference Distribution renvoyées par l'étape Step2 en termes de probabilités correspondent parfois à un nombre de boîtes-S actives 𝑣 beaucoup plus élevé que la valeur 𝑣 * trouvée lors de la première étape.

de quatre messages clairs au lieu de deux. Dans un distingueur basique, illustré sur la partie gauche de la Figure 7, le cryptosystème 𝐸 est réécrit comme la composition de deux sous-chiffrements (𝐸 = 𝐸 1 ∘ 𝐸 0), pour lesquels il existe un chemin différentiel allant d'une différence 𝛼 vers une différence 𝛽 de forte probabilité Pr[𝛼 𝐸 0 𝛽] = 𝑝 et un deuxième chemin différentiel allant d'une différence 𝛾 vers une différence 𝛿 de forte probabilité Pr[𝛾 𝐸 1 𝛿] = 𝑞. Un attaquant cherchera ainsi à maximiser la probabilité d'obtenir l'évènement suivant :

𝐸 -1 (𝐸(𝑀 1) ⊕ 𝛿) ⊕ 𝐸 -1 (𝐸(𝑀 1 ⊕ 𝛼) ⊕ 𝛿) = 𝛼.
Cette probabilité a dans un premier temps été évaluée à 𝑝 2 𝑞 2 mais plusieurs résultats ont fini par montrer que cette formule était erronée. En 2010, Dunkelman et al. [START_REF] Orr Dunkelman | A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony[END_REF], proposent l'attaque sandwich, représentée sur la partie droite de la figure 7, dans laquelle le chiffrement 𝐸 est cette fois divisé en trois parties : un tour de jonction au milieu (boomerang switch) est intercalé entre 𝐸 0 and 𝐸 1 . En notant 𝑟 la probabilité que les propagations différentielles requises soient satisfaites pour 𝐸 𝑚 , la probabilité du distingueur est alors égale à 𝑝 2 𝑞 2 𝑟.

Le calcul de la probabilité 𝑟 pour les chiffrements spn a été grandement aidé par l'introduction en 2018 par

𝐵𝐶𝑇 (Δ 𝑖 , ∇ 𝑜) = #{𝑥 ∈ F 𝑛 2 |𝑆 -1 (𝑆(𝑥) ⊕ ∇ 𝑜) ⊕ 𝑆 -1 (𝑆(𝑥 ⊕ Δ 𝑖) ⊕ ∇ 𝑜) = Δ 𝑖 }.
Cette nouvelle table a permis de calculer de façon systématique la probabilité 𝑟 du tour du milieu d'un distingueur pour une attaque boomerang en ramenant le problème à un calcul de probabilité sur les boîtes-S du chiffrement. Cependant, cette étude ne s'est intéressée qu'aux constructions spn, délaissant les schémas de type Feistel. Le travail présenté dans ce chapitre xxii permet de combler ce manque, en introduisant la FBCT d'une boite-S 𝑆, l'équivalent de la BCT pour les constructions de type Feistel. Il a été effectué avec Hamid Boukerrou, Virginie Lallemand, Bimal Mandal et Marine Minier, et nos résultats ont été présentés à FSE 2020 [BHL + 20].

La FBCT peut être définie comme suit :

Definition 0.3 (FBCT). Soit 𝑆 une fonction de F 𝑛 2 dans F 𝑚 2 , et Δ 𝑖 , ∇ 𝑜 ∈ F 𝑛 2 . La FBCT de 𝑆 est une table de taille 2 𝑛 × 2 𝑛 dans laquelle l'entrée à la position (Δ 𝑖 , ∇ 𝑜) est donnée par :

FBCT 𝑆 (Δ 𝑖 , ∇ 𝑜) = #{𝑥 ∈ F 𝑛 2 |𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) ⊕ 𝑆(𝑥 ⊕ ∇ 𝑜) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖 ⊕ ∇ 𝑜) = 0}.
Il est intéressant de remarquer que la valeur de la table à la position (Δ 𝑖 , ∇ 𝑜) correspond au nombre d'annulations possibles de la dérivée seconde de 𝑆 en les points Δ 𝑖 , ∇ 𝑜 . Nous pouvons également noter que contrairement à la définition de la BCT, 𝑆 n'a pas besoin d'être une permutation. Ceci s'explique par le fait que, dans un structure de type Feistel, le déchiffrement correspond au chiffrement, à une inversion des sous clefs près. Ainsi, l'inverse de la fonction de tour n'intervient à aucun moment.

Nous avons également regardé quelles étaient les propriétés de la FBCT. Le tableau 3 compare certaines propriétés étudiées par Boura and Canteaut [START_REF] Boura | On the boomerang uniformity of cryptographic sboxes[END_REF] sur la BCT avec le cas de la FBCT. Dans le cadre des attaques boomerang, le comportement d'une boîte-S peut donc différer en fonction du type de construction dans laquelle elle est utilisée.

Table 3: Comparaison des propriétés de la BCT et de la FBCT (fonctions sur 𝑛 bits).

Propriété

BCT FBCT Uniformité boomerang préservée par équivalence affine oui oui Uniformité boomerang préservée par équivalence affine-étendue non oui Uniformité boomerang préservée par équivalence CCZ non non Uniformité boomerang préservée par inversion oui non Valeur de l'uniformité boomerang d'une fonction APN 2 0 Valeur de l'uniformité boomerang pour la fonction inverse (𝑛 pair) 4 ou 6 4 Enfin, nous proposons dans la dernière section du chapitre une formule générique permettant de calculer la probabilité pour une section 𝐸 𝑚 couvrant un nombre arbitraire de tours, dans le cas où la caractéristique d'arrivée est la même que la caractéristique de départ. Definition 0.4. Une matrice ℳ à coefficients dans {0, 1, 𝐹, 𝐼} ⊂ Z[𝐹, 𝐼] est la matrice d'un schéma de Feistel généralisé étendu quasi-involutif s'il existe une matrice de permutation 𝒫 et une matrice 𝒩 avec ℳ = 𝒫𝒩 tel que :

1. la diagonale est remplie de un, 2. les coefficients non-nuls en dehors de la diagonale sont soit 𝐹 , soit 𝐼, 3. pour tout 0 ≤ 𝑖 ≤ 𝑘 -1, la ligne 𝑖 et la colonne 𝑖 ne peuvent pas toutes deux contenir un coefficient non-nul en dehors de la diagonale, 4. pour tout 0 ≤ 𝑖 ≤ 𝑘 -1, si la ligne 𝑖 contient un 𝐼 alors elle contient aussi un 𝐹 .

Un exemple de egfn avec 𝑘 = 4 branches et ses matrices associées sont représentées sur la Figure 8.

𝑥 0 𝑦 0 𝑥 1 𝑦 1 𝑥 2 𝑦 2 𝑥 3 𝑦 3 nonlinear layer ℱ linear layer ℒ permutation layer 𝒫 𝒩 ℳ = (︂ 𝐼 𝐹 1 𝐹 𝐼 1 1 1)︂ 𝒫 = (︂ 1 1 1 1)︂ ℒ = (︂ 1 1 𝐼 1 𝐼 1)︂ ℱ = (︂ 1 1 𝐹 1 𝐹 1
)︂ Nous sommes partis du constat que le Théorème 0.5, énoncé ci-dessous-et vérifié par la fonction de tour du chiffrement Lilliput-reste vrai tant que la dernière ligne et la dernière colonne contiennent uniquement des coefficients qui sont non-nuls. Cette observation a laissé entrevoir la possibilité d'obtenir des variantes plus légères de Lilliput (avec, au maximum, une réduction de 6 coefficients), tout en garantissant un délai de diffusion optimal. Ainsi, nous avons cherché à identifier toutes les structures satisfaisant les conditions du Théorème 0.5 présentant de bonnes propriétés vis à vis des attaques différentielles et intégrales. Theorem 0.5. Pour un entier 𝑘 pair, 𝑘 ≥ 4, soit un egfn tel que défini dans la Définition 0.4 à 𝑘 branches, ℳ, 𝒩 et 𝒫 ses matrices associées, où 𝒩 est la représentation matricielle des couches linéaire et non-linéaire de l' egfn et 𝒫 la matrice de la couche de permutation, correspondant à une permutation 𝜋, . . .

𝐹 𝐼 𝐼 ••• 𝐼 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

Introduction

Karma police Arrest this man He talks in maths

Radiohead

This thesis covers the research work in the field of symmetric cryptography that I carried out between 2017 and 2020 at Loria, Nancy, where I was a Ph.D. student in the Caramba team, under the supervision of Marine Minier. The main focus of my research was lightweight cryptography-that is, cryptography intended to be used on resource-constrained devices, such as wireless sensors-from a design and a cryptanalysis standpoint. The content of this thesis is split into three parts: after a first introductory part, Part II and Part III describe my contributions.

Part I: Background and Preliminaries

This first part aims at giving the reader a grasp of the fundamental concepts of modern cryptology.

Chapter 1. This chapter recalls the main goals of this research field and reports how these objectives are being pursued in symmetric cryptography. More specifically, it delves into the design of block ciphers, one of the two major classes of cryptosystems that can be found in this field.

Chapter 2. This chapter discusses a new research direction in symmetric cryptography that has emerged in the recent years: lightweight cryptography. It investigates the challenges faced in the context of the Internet of Things (iot) and presents some of the design trends introduced to address these constraints and the algorithms that have resulted from these efforts, the several competitions and standardizations attempts, such as the one initiated by the National Institute of Standards and Technology (nist).

Chapter 3. Cryptanalysis is a field of cryptology dedicated to the security evaluation of cryptographic primitives. Even though designers are expected to make sound security analyses, external cryptanalysis is instrumental for the adoption of any new proposal. A primitive that has been subject to many third-party analysis and for which no security breach has been found is likely to gain trust from the cryptographic community. This chapter offers an overview of some of the most prominent cryptanalysis techniques used to study encryption schemes and introduces the basic notions that will later be used in Chapter 5, Chapter 6 and Chapter 7. 8 Boomerang switch over one round of the source-heavy construction. 7.9 View of the parameters of the FBDT: Δ 𝑖 is the input difference and 𝛿 is the output difference of 𝑆 when looking at the difference between state 1 ○ and 2 ○. ∇ 𝑜 is the input difference of the same S-box 𝑆 when looking at the difference between state 1 ○ and 3 ○ (which is the same as the one between state 2 ○ and 4 ○). Red coefficients are either 𝐼 or 𝐹 , blue coefficients equal 𝐹 if the red coefficient on the same column equals 𝐼 and 0 otherwise. 8.14 A matrix from set 1 with no integral property for 8 rounds (3rd case) and the associated egfn with 16 blocks. 8. 15 Possible placements for 𝐹 coefficients for a matrix from set 2 in the simple case.

Each row can only contain one 𝐹 coefficient. Red coefficients are either 𝐼 or 𝐹 , blue coefficients equal 𝐹 if the red coefficient on the same row equals 𝐼, 0 otherwise. 8. 16 One example of a matrix for the 𝑛 𝐹 = 1 case of set 2 and its associated egfn.

The permutations are given as a product of cycles. 8.17 Layout of a matrix from set 2, full case. Each row can only contain one 𝐹 coefficient.

Blue coefficients are either 0 or 𝐹 . Red coefficients are either 𝐼 or 𝐹 8. 18 Layout of a matrix from set 3. Red coefficients are either equal to 𝐼 or 𝐹 8. 19

Part I

Background and Preliminaries

Design of Symmetric Encryption Algorithms

What immortal hand or eye, Dare frame thy fearful symmetry?

William Blake

Cryptology is the science that studies secret communication. It encompasses both cryptography and cryptanalysis. Cryptography studies the design of algorithms to ensure secure communication in the presence of malevolent third parties. Cryptanalysis is the offensive side, trying to find flaws in the aforementioned designs. The evolution of cryptology has always been driven forward through a sort of cat-and-mouse game: each time an algorithm is compromised-or broken-by cryptanalysts, a new one which is computationally more challenging to break is put forward by cryptographers.

From Ancient to Modern Cryptography

Ciphers have been used since ancient times, allowing people to transmit and protect sensitive information. A cipher (or cryptosystem) defines the set of rules used for encryption-the process of converting an original message (plaintext) into an unreadable form (ciphertext)-and for decryption-the process of recovering the plaintext from the ciphertext.

Ancient cryptography. Some of the earliest forms of secret writing date back to antiquity [START_REF] Kahn | The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet[END_REF]. Although occurrences of symbol replacement can be traced back to 1900 BC, in ancient Egypt, the first known example of cryptography being used to protect sensitive information occurred around 3500 years ago, when a Mesopotamian scribe concealed a formula for pottery glaze by omitting letters and changing the spellings of some common words. By later periods of antiquity, cryptography was widely used to protect important military information. In ancient Greece, during times of battle, the Spartans used scytales to perform an early form of a transposition cipher. Messages were written on a strip of leather wound around a cylinder of a particular size, making them undecipherable until they were wrapped around a similar-sized cylinder by the recipients. Substitution ciphers. A more advanced cryptography method was invented by the Romans around 60 BC, known as the Caesar cipher, where letters of the encrypted message were shifted by 3 places down the Latin alphabet, turning 𝐴 into 𝐷, 𝐵 into 𝐸, etc. The Caesar cipher is the most famous example of a larger class of techniques called substitution ciphers, which replace every letter in a message with something else according to a translation. More specifically, a Caesar cipher is a monoalphabetic substitution cipher, a class of ciphers for which each letter of the alphabet stands for another letter consistently throughout the whole message. A variant of the Caesar cipher is still nowadays widely found on Internet forums to obscure jokes or story spoilers: the Rot13 algorithm. It replaces each of the 26 letters of the basic Latin alphabet, with the letter positioned 13 places down and it is therefore its own inverse.

After the Caesar cipher, there were no major breakthroughs in encryption for over a thousand years but major contributions in cryptanalysis were made in the meantime. Around 800 AD, mathematician Al-Kindi wrote the first text on cryptanalysis and introduced the frequency analysis technique, determining which letters occurred most frequently in Arabic, as well as which letters could not occur together. In monoalphabetic substitution ciphers, such properties of the natural language are preserved in the ciphertext, allowing an attacker to determine the appropriate shift and recover the original message.

This technique was rendered ineffective after the invention of polyalphabetic substitution ciphers. One of the earliest polyalphabetic ciphers was the Vigenère cipher, developed in the 16th century. This cipher used a shifting substitution determined by a keyword repeated multiple times, spanning the entire message.

Kerckhoffs' principle. The advent of the telegraph in the 19th century motivated the use of more secure ciphers. In 1883, Dutch cryptographer Auguste Kerckhoffs laid out a series of six design principles for military ciphers in his essay titled La Cryptographie Militaire ("Military Cryptography") [START_REF] Kerckhoffs | La cryptographie militaire. (French) [Military cryptography[END_REF]. The second one is known as Kerckhoffs' principle and states the following about a cryptosystem: "2. Il faut qu'il n'exige pas le secret, et qu'il puisse sans inconvénient tomber entre les mains de l'ennemi ;" which can be translated to "2. It must not require secrecy and should not cause any inconvenience if it were to fall into the hands of the enemy;" Central to Kerckhoffs' principle is the idea that secrecy in itself is no effective guarantee of security. This fundamental design guideline gave rise to modern cryptography algorithms.

World War II. By the 1900s, cryptography was mechanized in the form of encryption machines. In 1918, Arthur Scherbius invented one of the most famous cryptographic machines in the world: Enigma, an encryption device heavily used by the Axis powers during World War II with about 2 67 possible keys defined by the settings of its internal rotors.

Polish mathematicians led by Marian Rejewski reverse-engineered the details of Enigma and found the first attacks against it using an electromechanical device called the bomba kryptologiczna ("cryptologic bomb"). This early computer technology was later transferred to British mathematician Alan Turing along with the rest of his team at Bletchley Park who succeeded in breaking more recent versions of Enigma.

The modern era. In 1949, Claude Shannon authored a landmark paper [START_REF] Shannon | Communication theory of secrecy systems[END_REF] that established the mathematical basis of information theory and formalized the main goals of modern cryptography.

Notably, this paper introduced the concept of perfect secrecy (also referred to as unconditional security). A ciphertext maintains perfect secrecy if the attacker's knowledge of the contents of the message is the same both before and after the adversary inspects the ciphertext, attacking it with unlimited resources. That is, the message gives the adversary precisely no information about the message contents. To achieve unconditional security, the key must be at least the size of the message. This is the idea behind the One-Time Pad -also known as the Vernam cipher -an encryption algorithm invented in the 20th century that simply consists in xoring1 every plaintext with a single-use key of the same length. The One-Time Pad provides perfect secrecy if the keys used are fully random, as proven by Shannon, however, this cipher is impractical due to the key management problem.

In addition to his work on perfect secrecy, Shannon also identified the principles of confusion and diffusion as two major properties of a secure cipher. Confusion means that the key does not relate in a simple way to the ciphertext and can be enforced using substitutions.Diffusion is enforced using permutations or transpositions and spreads the plaintext statistics through the ciphertext. Simply put, if one character of the plaintext is changed, then the ciphertext should change drastically.

Towards civilian applications. Up to World War II, encryption was mostly exploited for military purposes. However, with the advent of the personal computer, cryptography started to gain commercial attention. Businesses trying to secure their data from competitors as well as the development of the Internet and the massive amount of shared information all called for a widespread use of cryptography. This gave rise to modern cryptographic algorithms like Des [START_REF]Data encryption standard[END_REF] in 1975, Rsa [START_REF] Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF] in 1977, Aes [START_REF]Advanced Encryption Standard (AES)[END_REF][START_REF] Daemen | The Design of Rijndael: AES -The Advanced Encryption Standard[END_REF] in 2001.

General Concepts of Cryptography

Purpose

The narrative in cryptography is simple: two entities, Alice and Bob, are trying to communicate securely over an insecure channel. Eve is an attacker trying to interact malevolently with the communication. Modern cryptography is meant to provide the following security services:

• Secrecy. Only authorized parties-Alice and Bob here-can access the content of the information. It must be impossible for Eve to obtain any meaningful information from intercepted communication.

• Integrity. Data integrity provides a means to detect whether data has been tampered with by an unauthorized party. If Alice is sending a message to Bob, it must be impossible for Eve to change its content.

• Authenticity. The aim here is twofolds. If Bob receives a message from Alice, he must be able to tell if Alice was indeed the original sender. Moreover, it must be impossible for Eve to communicate with Bob while pretending to be Alice. Modern cryptography can be divided into two main branches: private-key (or symmetric) cryptography and public-key (or asymmetric) cryptography.

Rosebud K A ~s@a]f8 8&\$-0(Rosebud ~s@a]f8 8&\$-0(K B
In symmetric cryptography, a unique key is used for both encryption and decryption. Symmetric cryptography also studies algorithms that do not require any key at all, such as hash functions.

Asymmetric cryptography requires a pair of keys: one key set up in advance is used to encrypt and another one to decrypt. The key for encrypting plaintexts, called the public key, can be freely distributed while only the decryption key, called the private key, is kept secret. In other words, the sender and the receiver do not need to share a common secret in order to communicate securely. This solves the complex key sharing problem of symmetric algorithms, which are in contrast faster and more power-efficient than public-key algorithms.

As a result, a combination of both is most commonly used in practice: a secret key is first exchanged using public-key cryptography, then communication is encrypted with a symmetric algorithm. This thesis focuses on the design and the analysis of symmetric encryption primitives.

Symmetric Cryptography

In symmetric cryptography, the studied algorithms can be divided into four categories: block ciphers, stream ciphers, hash functions and message authentication codes. Block ciphers and 1.2. General Concepts of Cryptography stream ciphers provide secrecy while hash functions and message authentication codes-which will not be discussed in this thesis-are used for integrity and authentication.

Stream ciphers. A stream cipher uses the same encryption principle as the One-Time Padmessages are xored with a sequence of bits of the same length-while offering more practical requirements on key management: the stream of bits, called the keystream, is generated in a pseudorandom2 manner from a shorter secret key that needs to be transmitted only once. However, since the keystream is not truly random, the proof of security associated with the one-time pad no longer holds.

A stream cipher can be seen as a finite state automaton whose initial internal state is derived from the short secret key. At each clock cycle, the keystream bits are obtained by applying a filtering function to the internal state before it is updated using a transition function. Both filtering function and transition function must be chosen carefully.

Linear-Feedback Shift Registers (lfsr) are very popular building-blocks for transition functions since they can generate sequences with good statistical properties at high speed and have low hardware implementation cost. However, schemes based on a simple combination of lfsrs such as A5/1-a stream cipher used to encrypt over-the-air transmissions in the gsm standardare insecure. Most notably, an lfsr should never be used by itself as a keystream generator since the Berlekamp-Massey algorithm [START_REF] James | Shift-register synthesis and BCH decoding[END_REF] can recover the entire keystream given enough consecutive bits of it. Moreover, lfsr-based keystream generators can be vulnerable to algebraic attacks [START_REF] Courtois | Algebraic attacks on stream ciphers with linear feedback[END_REF] due to the linearity of the transition function. This weakness can be avoided by combining lfsrs with nonlinear mappings such as Nonlinear-Feedback Shift Registers (nlfsrs) or more sophisticated filtering functions.

Stream ciphers are well-suited for software applications requiring a very high throughput or with limited buffering, since each bit of a stream of data is encrypted individually. They also have lower hardware complexity than block ciphers, which makes them interesting for hardware applications that need a low-cost implementation, as illustrated by Trivium [De 06] and Grain [START_REF] Hell | The grain family of stream ciphers[END_REF] for instance.

Block ciphers. While a stream cipher encrypts one bit at a time, a block cipher is a family of permutations operating on blocks of 𝑛 bits (usually 64/128/256 bits) that is parameterized by a key. Block ciphers must be combined with modes of operation which describe how to repeatedly apply a single-block operation to encrypt plaintexts of arbitrary size. Further details will be provided in Section 1.3. Hash functions. A cryptographic hash function takes input strings of arbitrary length and maps these to short fixed length output strings called hash values or digests. This construction requires no secret key and must satisfy the following properties.

• Collision resistance: it should be computationally infeasible to build two messages with the same hash value.

• Preimage resistance: it should be computationally infeasible to reverse a hash function (i.e. given a hash value, it should be difficult to find an input message resulting in that value).

• Second-preimage resistance: given an input and its digest it should be difficult to find a second input with the same digest.

The most common cryptographic uses of hash functions are in digital signatures and data integrity verification. To sign a message, a hash function is applied and only the digest is signed, which brings both performance and security benefits. The recipient then hashes the received message, and verifies that the received signature is valid for this newly-computed hash-value. For data integrity verification, a document is hashed at two different points in time-before and after being sent for instance-and the corresponding digests are compared to detect any alteration that may have occurred within this timeframe.

Message authentication codes.

A message authentication code (mac) algorithm is a family of functions parameterized by a secret key that generates a tag of fixed length from an arbitrarily long message, which is used to verify the authenticity and the integrity of the message. Macs can be seen as keyed hash functions. The main security requirement for a mac algorithm is the computation-resistance property; that is, it should be computationally infeasible for an attacker to forge a message and tag pair without knowing the secret key.

Security and adversarial models

Following Kerckhoffs' principle, most cryptographic algorithms are published in the open literature, exclusively relying on the secrecy of the key to provide security. As a result, any attacker can access the full specification of an algorithm and study it to provide a security assessment. The more an algorithm has resisted cryptanalysis attempts, the more it is trusted by the community. A description of the main cryptanalytic attacks is given in Chapter 3.

Security level. The security level of cryptosystem is defined as the minimum number of operations that would be necessary to break the cipher. It is usually expressed in bits: a cryptosystem offers 𝑖-bit security and is said to have security level 𝑖 if the best attack requires 2 𝑖 operations. Cryptographic primitives are designed to achieve a target security level. When attacks are found that have lower cost than these security claims, the primitive is considered broken.

The security level of an algorithm is highly correlated to the key size. More precisely, since the security of any algorithm can be violated by brute-force attack (also called exhaustive key search), the key length gives an upper bound: for a 𝑘-bit key, enumerating all possible key values until the correct one is found requires up to 2 𝑘 operations. At the time of writing, it is regarded that 2 80 operations is an affordable figure for a handful of actors with major computing resources and a large budget, such as government agencies. Consequently, the current recommendations suggest a minimum of 128 bits for the key size of symmetric ciphers [ANS14, [START_REF]Algorithms, key size and protocols report[END_REF][START_REF] Barker | Recommendation for key management: Part 1-general (revised)[END_REF], as this provides computational security: no current technology could break the system3 .

In asymmetric cryptography on the other hand, the designs rely on mathematical problems that are known to be easy to compute in one direction but hard to reverse, such as integer factorization or the discrete logarithm problem; solving these underlying arithmetic problems is time-consuming but usually faster than exhaustive search of the keyspace. Thus, asymmetric keys must be longer than symmetric algorithm keys, for an equivalent security level. As an example, a 2048-bit minimum is recommended for the key size of the Rsa cryptosystem [START_REF] Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF], which is based on the multiplication of two prime numbers. Breaking this primitive can be reduced to factoring a 2048-bit integer, which is simpler than testing all 2 2048 possibilites, although still computationally unreachable in reasonable time to this day. The complexity of solving such problems is subject to many refinements and has generated much interest [Jou14, BGJT14, KW19, BGG + 20].

Attack models. In general terms, an attack is a method that provides some information about the decryption key (key recovery attack) and/or the plaintext (decryption attack). There are four main types of attacks, depending on the information made available to the cryptanalyst.

• Ciphertext-only attack. The attacker only has access to a set of ciphertexts produced using the same encryption key. This is the weakest assumption and thus, the hardest setting for the attacker.

• Known-plaintext attack. The attacker has access to several pairs plaintexts together with their corresponding ciphertexts produced using the same encryption key.

• Chosen-plaintext attack. The attacker can choose the plaintexts to be encrypted and obtain the corresponding ciphertexts.

• Chosen-ciphertext attack. The attacker can choose ciphertexts and obtain their decryption.

Usually the attacker has no information on the encryption key and cannot interact with it. However, in the related-key setting, the attacker can choose the plaintexts (or the ciphertext) to be encrypted (or to be decrypted) under multiple keys that are kept secret, yet linked to the target key in some mathematically defined way that is known. For instance, for two keys 𝑘 and 𝑘 ′ , the attacker might know the value 𝑐 = 𝑘 ⊕ 𝑘 ′ . Although less realistic at first glance, this setting is still plausible in the context of block-cipher-based hash functions.

All these cryptanalytic attacks use a black-box model: the attacker cannot access the internal state of the cipher; only its input, output or key can be controlled. On the other hand, sidechannel attacks can gain partial information about the internal state of a primitive by exploiting the physical effects caused by the operation of a cryptosystem, such as variations in the power consumption.

On the Design of Block Ciphers

Block ciphers are some of the most prominent components in symmetric cryptography. A block cipher 𝐸 is an algorithm parameterized by a key 𝐾 of 𝑘 bits acting on plaintext blocks of 𝑛 bits and producing ciphertext blocks of the same size. The block size 𝑛 usually equals 64, 128 or 256 bits. Formally, a block cipher can be defined as follows.

Definition 1.1 (Block cipher). A block cipher 𝐸 taking as inputs an 𝑛-bit block and a 𝑘-bit key is a family of permutations of F 𝑛 2 of size 2 𝑘 denoted by

(𝐸 𝐾) 𝐾∈F 𝑘 2 .
In other words, given a block cipher 𝐸, any secret key 𝐾 ∈ F 𝑘 2 defines a unique permutation on 𝑛 bits denoted by 𝐸 𝐾 .

Ideal block cipher. One of the desired properties of a block cipher is that it needs to be a reversible mapping for decryption to be possible, meaning that each input block is mapped to a unique output block, for all possible input states. Ideally, a block cipher would allow every possible permutation of the plaintext values, with each permutation being selected by an encryption key 𝐾. For an 𝑛-bit block, there are 2 𝑛 ! such transformations in total. Since the key specifies which mapping to use, the key space should be as big as the number of possibilities, resulting in a key that would be 𝑙𝑜𝑔 2 (2 𝑛 !) bits long. This size is absolutely not practical as it would be impossible to store and to distribute in an efficient manner. As an example, for 𝑛 = 32, it would require approximately 16 GB to store the key. In practice, the key size 𝑘 is close to the block size 𝑛 and never exceeds a couple of hundreds of bits.

Modes of operation

A block cipher only acts on blocks of fixed length 𝑛, but messages come in a variety of lengths. To operate on an input which is larger, the data is first split into separate 𝑛-bit blocks. Whenever required, the message is padded : a specific sequence of bits is added to it in order to bring its length up to a multiple of the block size 𝑛. Padding thus ensures that messages of arbitrary length can be partitioned into blocks of the right size. These blocks are then processed by the block cipher and combined together to form the final output in a specific manner that is described by a mode of operation.

Ecb (Electronic Code Book). This mode is very simple: an ℓ × 𝑛-bit plaintext 𝑀 is broken into ℓ 𝑛-bit blocks 𝑀 0 , • • • , 𝑀 ℓ-1 and each block is encrypted independently at a time. The ciphertext blocks are then concatenated together to obtain the resulting ciphertext

𝐶 = 𝐶 0 ||𝐶 1 || • • • ||𝐶 ℓ-1 ,
as depicted in Section 1.3.1. While ecb is parallelizable in both encryption and decryption, this mode does not hide patterns in the plaintext: for instance, two identical blocks will result in the same ciphertext block, thus revealing information on the inner structure of the original message. Figure 1.3 shows that even after encryption, the outlines of the content of a picture remain visible.

𝐸 𝐾 𝑀 0 𝐶 0 𝐸 𝐾 𝑀 1 𝐶 1 • • • 𝐸 𝐾 𝑀 ℓ-1 𝐶 ℓ-1

On the Design of Block Ciphers

Cbc (Cipher Chaining Block). In this mode of operation, each plaintext block is xored with the preceding ciphertext block before applying the block cipher. As a result, each cipher block depends on all plaintext blocks previously processed. To ensure that ciphertexts remain distinct even when the same plaintext message is encrypted multiple times under the same key, the first plaintext block is xored with a randomly chosen block of bits called an initialization vector (𝐼𝑉), as shown in Figure 1. [START_REF]Performance of Lilliput-AE on avr atmega128. CFLAGS Code size (B) ram (B) Execution time (cycles) Lilliput-I-128 -O3 5760[END_REF]. Despite being a sequential encryption mode-decryption, however, allows for parallelism-cbc is a very popular way of using block ciphers.

𝐸 𝐾 𝑀 0 𝐶 0 𝐸 𝐾 𝑀 1 𝐶 1 𝐼𝑉 • • • 𝐸 𝐾 𝑀 ℓ-1 𝐶 ℓ-1
For some applications, the ciphertext should have exactly the same length as the original plaintext; thus preventing the use of padding. Other modes of operations address this problem: cfb (Cipher Feedback), ofb (Output Feedback) and ctr (Counter), depicted in Section 1.3.1, Figure 1.6 and Figure 1.7 respectively. These modes transform a block cipher into a stream cipher-they work by xoring the plaintext with the output of the block cipher. In order to treat an incomplete last block, one simply selects the required number of bits from the output of the block cipher. All three modes only use the encryption operation of the block cipher.

Cfb. This mode is very similar to cbc as it also uses chaining (or feedback) to induce diffusion between the blocks and destroy patterns in the plaintext data. In cfb, an initialization vector is used as initial state. The state is encrypted and the encryption result is used as keystream. The resulting ciphertext is then fed back to the state. Ofb. This mode differs from cfb in the way feedback is accomplished: instead of feeding the previous ciphertext back to the state, ofb directly uses the keystream. Ctr. The ctr mode uses a counter to produce the keystream-this counter can be as simple as an ascending number. Consequently, this mode allows for parallelism in both encryption and decryption.

𝐸 𝐾 𝐶 0 𝑀 0 𝐸 𝐾 𝐶 1 𝑀 1 𝐼𝑉 • • • 𝐸 𝐾 𝐶 ℓ-1 𝑀 ℓ-1
𝐸 𝐾 𝐶 0 𝑀 0 𝐸 𝐾 𝐶 1 𝑀 1 𝐼𝑉 • • • 𝐸 𝐾 𝐶 ℓ-1 𝑀 ℓ-1
𝐸 𝐾 𝐼𝑉 ||0 𝐶 0 𝑀 0 𝐸 𝐾 𝐼𝑉 ||1 𝐶 1 𝑀 1 • • • 𝐸 𝐾 𝐼𝑉 ||ℓ -1 𝐶 ℓ-1 𝑀 ℓ-1
Figure 1.7: Encryption in the ctr mode of operation.

While block ciphers only provide secrecy on their own, some modes of operation combine confidentiality and authenticity such as ocb (Offset Codebook, eax (Encrypt-then-authenticatethen-translate), ccm (Counter with cbc-mac), and gcm (Galois Counter Mode). These modes are suited for authenticated encryption with associated data (aead) schemes, which will be discussed in Chapter 2.

Iterated block ciphers

Generally, each permutation 𝐸 𝐾 , for 𝐾 ∈ F 𝑘 2 , should be complex enough for it to be hard to distinguish from a random permutation-this is called prp 4 security. Specifying the entire codebook 5 for an entire family of 2 𝑘 permutations on the set {0, 1} 𝑛 with such property is quite challenging, especially since the size of a block usually ranges between 64 and 256 bits (for security and implementation reasons). 4 Pseudo-Random Permutation. 5 A codebook is a lookup table for coding and decoding. It shows the relationship between the input blocks and the output blocks.

For this reason, all block ciphers are designed using a simple key-dependent transformation called the round function that is applied 𝑟 times in an iterative fashion to compute the outputiterations may vary by the addition of round constants. Definition 1.2 (Iterated block cipher). An iterated block cipher is a block cipher obtained by iterating 𝑟 times an invertible transformation 𝐹 called the round function, each time with a round key 𝑘 𝑖 derived from the master key 𝐾 by means of a key scheduling algorithm. Denoting the 𝑛-bit plaintext with 𝑀 , the encryption operation can be written as:

𝐸 𝐾 (𝑀) = 𝐹 𝑘 𝑟-1 ∘ 𝐹 𝑘 𝑟-2 ∘ • • • ∘ 𝐹 𝑘 0 (𝑀).
Figure 1.8 shows the general structure of an iterated block cipher. While the individual round function might be cryptographically weak, its repeated application allows for the construction of a complex encryption function. The choice of the proper number of iterations (or rounds) is performed via cryptanalysis of the cipher. The round function itself is made easy to study by composing several basic operations-such as transpositions, xors, simple substitutions etc. In addition to the facilitated analysis, another advantage of this iterative structure is the compact hardware, software implementation.

𝑀

Key Schedule

𝐹 𝑘

0 𝐹 𝑘 1 • • • 𝐾 • • • 𝐹 𝑘 𝑟-2 𝐹 𝑘 𝑟-1 𝐶 Figure 1
.8: An iterated block cipher: the round function 𝐹 is repeatedly applied, each time using a different round-key 𝑘 𝑖 derived from the master key 𝐾.

Iterated block ciphers may be divided into two large classes: Feistel networks and Substitution-Permutation networks (spn) , both described in the following.

Feistel Networks

Named after cryptographer Horst Feistel, who introduced them in 1974 during the design of IBM's Lucifer block cipher [START_REF] Feistel | Block cipher cryptographic system[END_REF], Feistel networks are widely used structures in iterated block ciphers. The most prominent example of a Feistel network is the Des6 [DES77], which was adopted by the U.S. government as an official standard from 1977 to 2000.

The round function of a Feistel network uses a keyed function 𝐹 𝑘 called the Feistel function and maps an 𝑛-bit input split into two halves (𝑥 1 , 𝑥 0), with 𝑥 1 and 𝑥 0 in F 𝑛/2 2 , to an output (𝑦 1 , 𝑦 0) such that:

{︃ 𝑦 1 = 𝑥 0 𝑦 0 = 𝑥 1 ⊕ 𝐹 𝑘 (𝑥 0),
Chapter 1. Design of Symmetric Encryption Algorithms as depicted in Figure 1.9. By construction, a Feistel round is a permutation over F 𝑛 2 regardless of whether 𝐹 𝑘 is bijective or not, and inverting such a round is simple; the function is the same, up to the permutation of the two halves:

{︃ 𝑥 0 = 𝑦 1 𝑥 1 = 𝑦 0 ⊕ 𝐹 𝑘 (𝑦 1).
As a result, implementing decryption on top of encryption is very cost-efficient in the case of Feistel networks. Furthermore, the left and right branches are usually not exchanged in the last round. That way, the scheme becomes an involution 7 and the same algorithm can be used to both encrypt and decrypt up to a reversal of the round-key order.

𝑥 1 𝑦 1 𝑥 0 𝑦 0 𝐹 𝑘 Figure 1.9: A Feistel round.
Examples of block ciphers relying on a Feistel structure in the literature include LBlock [WZ11a], Lilliput [START_REF] Thierry | Extended generalized feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput[END_REF] or the nsa8 's Simon [BSS + 13]. Variants of this construction exist, such as unbalanced Feistel networks [START_REF] Schneier | Unbalanced Feistel networks and block cipher design[END_REF], where the two branches are of different sizes. In the case of Misty-like structures-named after the Misty block cipher [START_REF] Matsui | New block encryption algorithm MISTY[END_REF]-the Feistel function has to be a permutation and is directly applied to a branch rather than a copy of it. Finally, Generalized Feistel Networks, which are the main focus of Chapter 8, extend the Feistel network to a larger number of branches. In an spn round, the internal state is first xored with the round key 𝑘 𝑖 . As shown in Figure 1.10, it then goes through two layers to satisfy Shannon's confusion and diffusion properties:

Substitution-Permutation Networks (spn)

𝑆 𝑆 𝑆 𝑆 • • • 𝐿 𝑘 𝑖
1. A substitution layer consisting of parallel applications of small nonlinear functions-usually operating on 4 or 8 bits-called S-boxes9 . This layer adds to local confusion.

2. A permutation layer acting on the entire block state, that mixes the entire internal state. Modern ciphers tend to use linear mappings instead of simple permutations to reach better diffusion in fewer rounds.

As opposed to Feistel ciphers, the spn structure requires that all inner components be invertible. The most prominent spn is the current nist10 standard, the Advanced Encryption Standard [START_REF]Advanced Encryption Standard (AES)[END_REF] (Aes), but many other algorithms exist in the open literature, such as

Klein [GNL11], Midori [BBI + 15], Noekeon [DPAR00], Present [BKL + 07], Robin [GLSV15],
Skinny [BJK + 16] and Zorro [START_REF] Gérard | Block ciphers that are easier to mask: How far can we go? In Bertoni and Coron[END_REF].

A focus on the Aes. In the two decades following the design of the Des, computers had dramatically increased in power, making the 56-bit key of the algorithm-the encryption standard at the time-vulnerable to exhaustive search. In 1997, nist initiated an open process to find the successor to the Des. All submissions had to be block ciphers supporting a block size of 128 bits and key sizes of 128, 192, and 256 bits. As a result of this effort, after three years of analysis, Rijndael [START_REF] Daemen | The Design of Rijndael: AES -The Advanced Encryption Standard[END_REF], designed by Belgian cryptographers Joan Daemen and Vincent Rijmen, was selected among 15 candidates as the Aes [AES01] (Advanced Encryption Standard) to replace the Des.

The algorithm operates on a 128-bit internal state 𝑠 which can be represented as a 4 × 4 array of bytes, as depicted in Figure 1.11. The size of the internal state and the size of the round keys 𝑘 𝑖 are both fixed to 128 bits, however, the number of rounds 𝑟 (10, 12 and 14) and the key scheduling algorithm can change according to the key size (128, 192 and 256 bits respectively).

Round function The round function combines four operations:

1. AddRoundKey (ARK). At the beginning of each round, the state 𝑠 is xored with the round key 𝑘 𝑖 : AddRoundKey(𝑠) = 𝑠 ⊕ 𝑘 𝑖 .

2. SubBytes (SB). The same S-box 𝑆 is applied to each of the 16 bytes. This S-box is derived from the multiplicative inverse over the finite field F 2 8 , which is known to have good cryptographic properties.

ShiftRows (SR).

Row 𝑖 is cyclically shifted by 𝑖 positions to the left, for 𝑖 = {0, • • • , 3}. This step is instrumental in preventing the columns from being encrypted independently.

MixColumns (MC)

. This step combines the four bytes of each column of 𝑠 using an invertible linear transformation. It can be seen as a multiplication by the circulant matrix ℳ, defined as follows: where each byte is viewed as an element of the finite field

ℳ = ⎛ ⎜ ⎜ ⎝ 02
F 2 8 = F 2 [𝑋]/(𝑋 8 + 𝑋 4 + 𝑋 3 + 𝑋 + 1).
The matrix ℳ is defined by a so-called mds11 code and has a very interesting diffusion property; it ensures that each byte in the input column influences all four output bytes.

The MixColumns operation is omitted in the last round, an additional round key is added instead.

Key schedule

The 128-bit keys version of the key schedule will be described in what follows. For more details regarding the other versions, the reader is referred to the complete specification [START_REF]Advanced Encryption Standard (AES)[END_REF]. The first round key 𝑘 0 simply equals 𝐾, then for 𝑖 ∈ {1, • • • , 10}, the key state is updated as follows.

𝑘 𝑗 𝑖 = 𝑘 𝑗 𝑖-1 ⊕ 𝑆(𝑘

12+(𝑗+1) mod 4 𝑖-1) ⊕ 𝑟𝑐 𝑗 𝑖 𝑗 ∈ {0, 1, 2, 3} 𝑘 𝑗 𝑖 = 𝑘 𝑗 𝑖-1 ⊕ 𝑘 𝑗-4 𝑖 𝑗 / ∈ {0, 1, 2, 3} (1.1) (1.2)
Equation (1.1) describes how to compute the first column of 𝑘 𝑖 : the last column of 𝑘 𝑖-1 is rotated by one position-top byte is moved to the bottom etc.-then, each byte is ran through the Aes S-box 𝑆. Next, the column is xored with a 4-byte round constant 𝑟𝑐 𝑖 = [𝑟𝑐 3 𝑖 𝑟𝑐 2 𝑖 𝑟𝑐 1 𝑖 𝑟𝑐 0 𝑖] and finally with the first column of the previous round key 𝑘 𝑖-1 . Equation (1.2) states that the other columns of 𝑘 𝑖 are obtained by xoring the previous column with the same column of the previous round key 𝑘 𝑖-1 .

2

Lightweight Cryptography

Light as a feather and hard as dragon scales.

Bilbo Baggins

Modern cryptographic algorithms are fairly useless on their own: for real-life applications, they have to be implemented in actual devices that process information encoded in a binary representation. Implementation can either be done in software-the cipher is written as a code that is then turned into a program that can be executed on a general-purpose processor-or the algorithm can be built directly in real hardware, for instance on an fpga 1 or an asic 2 , depending on the specific requirements of the use cases.

While most modern symmetric ciphers such as the Aes were designed for high-end machines such as personal computers or web servers, the last two decades saw the proliferation of a variety of interconnected devices in our environment-all encompassed within the very broad concept of the Internet of Things (iot)-sometimes with very limited resources, thus only devoting a small fraction of their computing power to security. Yet, the expansion of the iot in our daily lives clearly raises new security concerns with regard to privacy and availability of service. Indeed, sophisticated sensors and chips embedded in the physical devices that surround us continuously gather and transmit large amounts of data to offer a diversity of services, from connected watches tracking our daily physical efforts to sensors networks monitoring the production chain of a factory and many more examples extending to healthcare and agriculture among others. The iot is a highly heterogeneous environment: although some of the devices use powerful processors and can be expected to use the same cryptographic algorithms as standard desktop PCs, many of them use extremely low power microcontrollers, such as rfid 3 tags or wireless sensors networks. Classical encryption schemes are not adapted to these platforms, which calls for new dedicated algorithms.

1 Field Programmable Gate Arrays. fpgas are integrated circuits typically found in small embedded devices. They are designed to be configured after manufacturing using a hardware description language (hdl).

2 Application-Specific Integrated Circuits. An asic is an integrated circuit manufactured for a specific use or application. For this reason, they can provide high speed and optimized implementations, but they are more expensive to design.

3 Radio-Frequency IDentification.

Lightweight Encryption Primitives

The Aes marked the culmination of a four-year effort involving the cooperation between the U.S. Government, private industry and academia from around the world to develop a standard encryption primitive. Twenty years later, its security is well-established in the cryptographic community and it remains the most popular algorithm used in symmetric-key cryptography. Furthermore, hardware [BJM + 14, BBR16, UMHA16] and software optimization [START_REF] Dag | Fast software AES encryption[END_REF][START_REF] Schwabe | All the AES you need on Cortex-M3 and M4[END_REF] allow for decent-although not optimal-performances on a wide variety of platforms, making the Aes an honorable candidate for most use cases. However, due to its large S-box and large block size, it remains a suboptimal choice for more stringent constraints.

Lightweight cryptography aims at providing security for these highly constrained systems, where cost, power consumption, energy, and available resources are limited. Many primitives have been proposed in the recent years 4

, including Clefia [SSA + 07], Klein [GNL12], LBlock [WZ11a], Led [GPPR11], Lilliput [BFMT16], Present [BKL + 07], Skinny [BJK + 16],
Simon and Speck [BSS + 13] and Twine [START_REF] Suzaki | TWINE : A lightweight block cipher for multiple platforms[END_REF]. When compared to traditional ciphers, these new algorithms-in their lightest variants-sometimes operate with a smaller block size (64 bits) and key length (80 bits). Likewise, their components are simplified: smaller S-box (4 bits) when they use any, linear diffusion layer over a smaller alphabet (F 2 for instance) and a simplified key-schedule.

Design criteria

It should be stressed that lightweight algorithms differ from their conventional counterparts in that they are tailored to satisfy specific constraints related to their use cases. Usually, aiming for both software and hardware efficiency is hard and trade-offs between security margins, performance and costs are common.

The efficiency of an algorithm can be assessed using appropriate cost and performance metrics, which are the memory usage, the implementation size and the speed of the algorithm. More details are given below, for hardware implementations and software implementations.

Software implementations

Algorithms can be implemented in software, typically for use on microcontrollers. In this case, designers tend to optimize the memory consumption of the algorithm during computation (in ram5) and the code size of the algorithm itself (stored on a rom6 for instance). In regard to time complexity, the throughput of the algorithm, expressed in bytes per cpu7 cycle, is an important metric. Latency, which is the time required for a single operation, should also be taken into account.

Microcontrollers do not operate at bit level as opposed to the hardware case; instead, they process bits in small batches, called words. These words usually contain 8, 16 or 32 bits. Consequently, one operation acting at bit level like seen sometimes in hardware, will mostly display very bad performance in software if it breaks this word structure. For this reason, software-friendly primitives rely exclusively on word-wide logical operations and rotations.

Hardware implementations

In hardware platforms, such as rfid tags, the gate area measures both the memory consumption and the size of the circuit implementing the algorithm. It can be expressed in 𝜇𝑚 2 , although this value is specific to the manufacturing technology of the circuit. For this reason, another unit is often used: the Gate Equivalent (ge), which is the silicon area of a nand gate, in the considered technology. In addition, performance metrics such as the execution speed and the latency also have to be optimized; some applications indeed require a quick response time. Finally, the power consumption, measured in Watts should not be neglected, especially when considering devices running on batteries that cannot be replaced or recharged frequently.

Side-channel resistance

Side-channel attacks (scas) are physical attacks exploiting the implementation of a cipher to leak information about its internal state and break its security. In the context of the iot, embedded devices are particularly exposed to such threats as they might operate in unprotected environments, allowing any attacker to easily gain access to them. For this reason, implementation of counter-measures such as reduction of information leakage, data shuffling or masking is not to be neglected when designing lightweight algorithms. Masked implementations have a substantial cost that is correlated to the number of nonlinear logic gates (and gates, or gates, etc.) in the circuit representation of the functions that need masking. As a result, reducing the complexity of nonlinear components such as S-boxes is crucial to the resistance to side-channel analysis.

An optimal trade-off ?

All the criteria previously mentioned compete with one another and achieving full versatility is extremely hard. Consequently, the optimization sometimes focus on particular metrics at the expense of others, depending on the context. For instance, Prince [BCG + 12] and Mantis [BJK + 16] target hardware implementation for applications such as data encryption on ssds, and have thus been optimized for latency. The designers of Midori [BBI + 15] focused on energy and power efficiency and mention applications such as battery-operated medical implants.

Overview of various design strategies

Low implementation cost is at the core of lightweight cryptography. In the case of block ciphers, this is achieved by minimizing the implementation costs of the two main components: the nonlinear layer and the linear layer.

Nonlinear operations

Nonlinearity brings confusion into a cipher. In practice, it is provided by S-boxes or through the use of nonlinear arithmetic operations.

Compact S-boxes. S-boxes are usually the most expensive components of a cipher. Many software implementations use S-boxes in the form of precalculated look-up tables (luts) to optimize throughput (retrieving a value from memory is faster than computing the S-box). However, this requires storing all possible outputs which, for an 8-bit S-box such as the one used by the Aes, has a significant cost. In hardware, look-up tables would not fit any device and instead, the S-box is represented as a binary circuit using elementary logic gates. For an efficient hardware implementation, this circuit needs to be as compact as possible in terms of ge. While 4-bit S-boxes are rather well understood, finding a low-cost implementation of a given 8-bit S-box that is known to have good cryptographic properties is a hard problem, even though some convincing works have been made in this direction for the Aes [START_REF] Canright | A very compact S-box for AES[END_REF][START_REF] Boyar | New logic minimization techniques with applications to cryptology[END_REF]. Another approach is to build small circuits that instantiate S-boxes with sufficient cryptographic properties [START_REF] Canteaut | Construction of lightweight S-boxes using Feistel and MISTY structures[END_REF][START_REF] Clavier | Systematic and random searches for compact 4-bit and 8-bit cryptographic S-boxes[END_REF].

An alternative to lut-based implementation for software platforms is called bitslicing [Bih97a] in which bitwise operations (such as xors or ands) are performed on words of 𝑤 bit, resulting in 𝑤 parallel applications of the S-box. For a bitslice implementation to be efficient, the S-boxes need to be designed with this implementation strategy in mind from the start. They usually require only a limited number of logical operations to be evaluated, which makes their software implementation particularly easy to mask. The so-called LS-Designs [START_REF] Grosso | LS-designs: Bitslice encryption for efficient masked software implementations[END_REF] are examples of bitslice-based algorithms.

Arx structures. Arx-based ciphers were first introduced in [START_REF] Miyaguchi | The FEAL cipher family (impromptu talk)[END_REF]. These algorithms are designed using only three operations: modular addition, which provides nonlinearity, with rotation and xor for diffusion. Examples include Sparx [DPU + 16], Speck [BSS + 13] and Tea [START_REF] Wheeler | TEA, a tiny encryption algorithm[END_REF].

Arx-based algorithms are particularly well-suited to software implementation because of the very simple operations they rely on. Moreover, they run in constant time, and therefore, are inherently immune to timing attacks. In contrast, modular addition is fairly expensive to implement in hardware.

Linear operations

Bit permutations. For diffusion, something as simple as bit permutation can be used. Bit-wise permutations come virtually for free in hardware since they are realized by simple wiring and require no transistors; they are thus a popular choice. For instance, Present [BKL + 07] is a hardware-oriented cipher that use a simple bit-wise permutation in its diffusion layer (see Section 2.4.1). The implementation cost of bit-wise permutations in software is, however, quite high, unless they describe rotations inside a word.

Compact mds matrices. For more complex diffusion layers, mds matrices can be used. Several works [START_REF] Jean | Optimizing implementations of lightweight building blocks[END_REF][START_REF] Duval | MDS matrices with lightweight circuits[END_REF] focus on global optimization of an mds matrix. In [START_REF] Duval | MDS matrices with lightweight circuits[END_REF], a search through a space of circuits is ran to find optimal circuits yielding mds matrices. In particular mds matrices with only 67 bitwise xors were found, while a direct implementation of the MixColumns matrix of the Aes requires 152 bitwise xors.

Key schedule

A trend in lightweight cryptography consists in applying a very simple key schedule, which merely selects different bits of the master key adds them to some round constants to produce the round keys [GPPR11, BCG + 12, BBI + 15, BJK + 16]. Some attacks has shown to be quite effective against such schemes, namely, invariant subspace attack [LAAZ11, LMR15] and nonlinear invariant attack [START_REF] Todo | Nonlinear invariant attack -practical attack on full SCREAM, iSCREAM, and Midori64[END_REF]. However, these structural attacks heavily rely on the choice of round constants and can be thwarted if the round constants are carefully chosen. In [START_REF] Beierle | Proving resistance against invariant attacks: How to choose the round constants[END_REF], Beierle 𝑒𝑡 𝑎𝑙. studied the mathematical nature of these so-called invariants and provided certain conditions under which an iterated block cipher could be resistant against invariant attacks. Wei 𝑒𝑡 𝑎𝑙. later showed in [START_REF] Wei | Generalized nonlinear invariant attack and a new design criterion for round constants[END_REF] that these criteria appeared to be necessary but not sufficient and presented additional design guidelines.

On Authentication

Enforcing security of iot systems is a challenging task and this quest for "lightweightness" can not be reduced to encryption primitives: authentication and integrity solutions must also be provided, in spite of the resource constraints.

Authenticated encryption

Authenticated encryption (ae) aims at providing confidentiality, integrity and authentication at once. Authentication allows communicating entities to ensure that their communication has not been modified or tampered with. This verification is based on the computation of a so-called tag associated to the transmitted data which cannot be generated in reasonable time unless a secret is known.

Authenticated encryption with associated data (aead), introduced by Rogaway [START_REF] Rogaway | Authenticated-encryption with associated-data[END_REF], is an extension of ae that can ensure authenticity and integrity of additional associated data (ad) that does not require privacy protection. A common use case for such schemes is the transmission of network packets: the header, which may contain an ip address, has to remain unencrypted for the packet to reach its correct destination and the payload needs confidentiality, but both need authentication and integrity.

More formally, an aead scheme can be seen as a tuple Π = (𝒦, ℰ, 𝒟), where 𝒦 is a key scheduling algorithm, ℰ is an encryption function and 𝒟 a decryption/verification function. The function 𝒦 takes as input an integer 𝑘 and picks a secret key 𝐾 uniformly at random from F 𝑘 2 . The encryption function is specified as

ℰ : F 𝑘 2 × F 𝑛 2 × F * 2 × F * 2 ↦ → F * 2 × F 𝑡 2 (𝐾, 𝑁, 𝐴, 𝑀) ↦ → (𝐶, 𝑇)
where 𝐾 is a secret key, 𝑁 a nonce8 , 𝐴 associated data, 𝑀 a plaintext message, 𝐶 a ciphertext and 𝑇 an authentication tag. Decryption, on the other hand is defined by

𝒟 : F 𝑘 2 × F 𝑛 2 × F * 2 × F * 2 × F 𝑡 2 ↦ → F * 2 ∪ {⊥} (𝐾, 𝑁, 𝐴, 𝐶, 𝑇) ↦ → {︃ 𝑀 if 𝑇 = 𝑇 ′ ⊥ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
where 𝑇 ′ denotes the authentication tag that was computed and 𝑇 is the one that was received. Figure 2.1 depicts encryption and decryption/verification processes for aead. Ae can be viewed as a special case where 𝐴 is left empty. A communication between Alice and Bob is conducted as follows, assuming they have already agreed on a secret key 𝐾 using a key exchange protocol:

1. Alice computes ℰ 𝐾 (𝑁, 𝐴, 𝑀) = (𝐶, 𝑇) and sends (𝑁, 𝐴, 𝐶, 𝑇) over the communication channel to Bob.

Generic composition

Ae can be achieved by combining two separate primitives under independent keys: a conventional encryption algorithm ℰ 𝐾𝑒 is used for encryption and a mac 𝒯 𝐾𝑚 generates the authentication tag. Such constructions obtained through so-called generic composition were formalized by Bellare and Namprempere [START_REF] Bellare | Authenticated encryption: Relations among notions and analysis of the generic composition paradigm[END_REF], and Katz and Yung [START_REF] Katz | Unforgeable encryption and chosen ciphertext secure modes of operation[END_REF]. They are widely used in practice and can be found in many standards such as the Secure Shell (ssh) protocol, Secure Sockets Layer/Transport Layer Security (ssl/tls) or ipsec. These three protocols all use different types of composition that we detail below:

Encrypt-and-mac. The plaintext 𝑀 is first encrypted using the encryption algorithm ℰ and the mac is applied on the plaintext to obtain the tag 𝑇 . Finally, 𝐶||𝑇 is sent, where

𝑇 = 𝒯 𝐾𝑚 (𝑀), 𝐶 = ℰ 𝐾𝑒 (𝑀).
Mac-then-encrypt. The authentication tag 𝑇 is produced based on the plaintext 𝑀 , then it is appended to the plaintext before encryption. The resulting ciphertext 𝐶 is sent.

𝑇 = 𝒯 𝐾𝑚 (𝑀), 𝐶 = ℰ 𝐾𝑒 (𝑀 ||𝑇)
Encrypt-then-mac. The plaintext 𝑀 is first encrypted using the encryption algorithm ℰ and the tag 𝑇 is produced based on the resulting ciphertext 𝐶. Finally, 𝐶||𝑇 is sent, where

𝐶 = ℰ 𝐾𝑒 (𝑀), 𝑇 = 𝒯 𝐾𝑚 (𝐶).
All three approaches can be extended to include associated data 𝐴 in a rather straightforward manner by prepending 𝐴 to the input of the mac before sending the associated data, the ciphertext and the tag together.

These constructions were examined by Krawczyk [Kra01] and Bellare and Namprempre [START_REF] Bellare | Authenticated encryption: Relations among notions and analysis of the generic composition paradigm[END_REF]. Both analyses recommended Encrypt-then-mac for achieving ae, as this construction would always be secure as long as the underlying primitives were provably secure while the security of the Encrypt-and-mac and Mac-then-encrypt approaches could not be ensured generically. However, a more recent study by Namprempre, Rogaway, and Shrimpton [START_REF] Namprempre | Reconsidering generic composition[END_REF] gives a more extensive analysis of generic composition and shows that Encrypt-then-mac constructions can fail, when ae is formalized differently, underlining that one must proceed with extreme caution when attempting to instantiate concrete schemes using generic composition.

Besides the danger of insecure instantiations of generic compositions [BKN02, Vau02, DR11, AP13, BBB + 19], these approaches are also computationally suboptimal, as they require the use of two independent keys and two passes over the data; one providing confidentiality and the other, integrity assurance-they are said to be two-pass constructions.

The next section gives a a short overview of dedicated aead block cipher modes, which include several one-pass schemes.

Dedicated ae(ad) solutions

Dedicated solutions were conceived to achieve ae more efficiently, without using two different algorithms, two different keys, or making two separate passes over the message, potentially leading to schemes with a lower overhead for implementation and higher performance. Some of these developments include block cipher modes. The main authenticated encryption modes based on block ciphers are briefly detailed in the following.

Single-pass modes

The efficiency of ae(ad) schemes may be significantly improved if the constructions can, in a single pass over the data, provide both confidentiality and integrity simultaneously. In 2001, several single-pass provably secure ae designs were proposed: iacbc, iapm by Jutla [START_REF] Charanjit | Encryption modes with almost free message integrity[END_REF]; xcbc, xecb by Gligor-Donescu [START_REF] Gligor | Fast encryption and authentication: XCBC encryption and XECB authentication modes[END_REF]; and ocb, by Rogaway 𝑒𝑡 𝑎𝑙. [START_REF] Rogaway | OCB: A block-cipher mode of operation for efficient authenticated encryption[END_REF][START_REF] Rogaway | Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC[END_REF][START_REF] Krovetz | The software performance of authenticatedencryption modes[END_REF][START_REF] Krovetz | The OCB Authenticated-Encryption Algorithm[END_REF]. All these proposals are patented.

Iapm (Integrity-Aware Parallelizable Mode). In 2001, Jutla proposed two seminal singlepass ae modes: iacbc (Integrity-Aware Cipher Block Chaining) and iapm (Integrity-Aware Parallelizable Mode) [START_REF] Charanjit | Encryption modes with almost free message integrity[END_REF], built on the traditional cbc and ecb modes respectively, with the addition of a simple checksum9 and masking of the outputs and inputs. As opposed to iacbc, iapm is fully parallelizable and therefore, generated more interest. Compared to generic composition, which requires about 2 × ℓ block-cipher calls per ℓ-block long plaintext to achieve authenticated encryption, this scheme only needs around ℓ + log 2 (ℓ) invocations. Further refinements to iapm exist [START_REF] Charanjit | Encryption modes with almost free message integrity[END_REF] and reduce the number of block cipher calls down to ℓ + 1. One of the variants of iapm described in [START_REF] Charanjit | Encryption modes with almost free message integrity[END_REF] is depicted in Figure 2.2. Iacbc operates in an analogous manner, except that cbc encryption is applied to the plaintext instead of ecb. Ocb (Offset Codebook). Ocb [KR14] is a one-pass nonce-based aead block cipher mode originally proposed by Rogaway 𝑒𝑡 𝑎𝑙. in [START_REF] Rogaway | OCB: A block-cipher mode of operation for efficient authenticated encryption[END_REF] as a follow up to iapm. It allows parallelization of data processing and provides several improvements over iamp such as encryption of arbitrarylength plaintexts with minimal ciphertext expansion-the resulting ciphertext has the same length as the plaintext plus the length of the authentication tag-and the use of a single block cipher key for both data encryption and masks (or offsets) generation. A second version, ocb2 [START_REF] Rogaway | Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC[END_REF], was developed by Rogaway to support associated data. Finally, a third version introduced some minor changes regarding offset computation and brought some performance improvements [START_REF] Krovetz | The software performance of authenticatedencryption modes[END_REF]. This version is illustrated by Figure 2.3 and Figure 2.4. Ocb is an efficient mode of operation, that uses ℓ + 2 calls to the block cipher in the worst case to encrypt and authenticate ℓ-block long messages. Whenever associated data 𝐴 is included, ℓ 𝑎 additional block cipher calls are necessary, where ℓ 𝑎 is the block length of 𝐴. Ocb achieves security up to the birthday bound -the mode is proven secure up to 2 𝑛/2 queries if the underlying block cipher uses blocks of 𝑛 bits-and Ferguson described a collision attack matching this bound [START_REF] Ferguson | Collision attacks on OCB[END_REF]. Despite its attractive features, ocb never found widespread adoption due to patent restriction. The scheme is also not completely without flaws: in October 2018 a practical existential forgery attack on ocb2 was presented by Inoue and Minematsu [START_REF] Inoue | Cryptanalysis of OCB2[END_REF], followed by several improvements [START_REF] Poettering | Breaking the confidentiality of OCB2[END_REF][START_REF] Iwata | Plaintext recovery attack of OCB2[END_REF] leading up to a plaintext recovery attack [START_REF] Inoue | Cryptanalysis of OCB2: Attacks on authenticity and confidentiality[END_REF]. Authors have stated that these attacks do not extend to ocb1 and ocb3.

E Ka ∆ 1 ∆ 1 M 0 C 1 E Ka ∆ ℓ ∆ ℓ M ℓ-1 C ℓ E Ka ∆ ℓ+1 ∆ 0 M i T • • • • • • IV C 0 E K b IV ∆ 0 , ∆ 1 , • • • , ∆ ℓ+1 Generate masks
E K ∆ 0 ∆ 0 M 0 C 0 E K ∆ ℓ-1 ∆ ℓ-1 M ℓ-1 C ℓ-1 E K ∆ ℓ+1 auth M i T • • • • • • E K ∆ ℓ pad M * C * 0 * final Figure 2
.3: Message processing with padding in Ocb3, the final version of ocb described in [START_REF] Krovetz | The software performance of authenticatedencryption modes[END_REF]. The offsets Δ 𝑖 are computed from a nonce 𝑁 and a simple increment function. This step requires a single call to the block cipher 𝐸 under the same key 𝐾 as the one used for encryption. Figure 2.4 shows how to compute the auth value.

E K ∆ a,0 A 0 E K ∆ a,ℓa-1 A ℓa-1 auth • • • • • • E K A * 10 * ∆ a,ℓa
Figure 2.4: Associated data processing with padding in Ocb3, the final version of ocb described in [START_REF] Krovetz | The software performance of authenticatedencryption modes[END_REF]. The auth value is determined by the associated data 𝐴 and the same key 𝐾 as the one used for message processing. The offsets Δ 𝑎,𝑖 are computed using the same increment function as before, starting from an initial value Δ = 0 (128) .

Xcbc (Extended Ciphertext Block Chaining). Xcbc and xecb are two classes of schemes presented by Gligor and Donescu in [START_REF] Gligor | Fast encryption and authentication: XCBC encryption and XECB authentication modes[END_REF], respectively similar to cbc and xecb modes of operation. Both schemes provide ae at a cost very close to that of encryption alone. Akin to iacbc and iapm, they apply a mask to each message block before and after a block cipher invocation. However, the masks are generated using arithmetic modulo 2 𝑛 -𝑛 being the block size in bits-which is very fast on most processors.

Two-pass modes

The usage of fast one-pass schemes was hindered by intellectual property claims, which spurred researchers to develop further efficient aead patent-free algorithms. Theses schemes include ccm [START_REF] Whiting | Counter with CBC-MAC (CCM). RFC 3610 (Informational)[END_REF], eax [START_REF] Bellare | The EAX mode of operation[END_REF], cwc [START_REF] Kohno | CWC: A high-performance conventional authenticated encryption mode[END_REF] and gcm [MV04]-ccm and gcm are both recommended in nist's special publications SP 800-38C [START_REF] Dworkin | C. Recommendation for block cipher modes of operation: The ccm mode for authentication and confidentiality[END_REF] and SP 800-38D [START_REF] Dworkin | D. Recommendation for block cipher modes of operation: Galois/counter mode (gcm) and gmac[END_REF]. Although not as fast as the single-pass modes, they still offer significant performance improvements over generic composition schemes. Most importantly, for all the schemes listed below, a single block cipher key suffices for the entire scheme.

Ccm (Counter with cbc-mac). The first patent-free proposed was ccm by Ferguson, Housley, and Whiting [START_REF] Whiting | Counter with CBC-MAC (CCM). RFC 3610 (Informational)[END_REF]. This aead mode only supports block ciphers with a 128-bit block size. It combines cbc-mac-a mac construction technique based on cbc mode-for authentication with ctr mode of encryption, using a mac-then-encrypt composition: cbc-mac is first computed on the message to obtain a tag which is then encrypted together with the message using counter mode. Ctr makes the scheme effectively a stream cipher that requires unique nonces for initialization as long as the key is fixed. This is necessary, as confidentiality can not be guaranteed for ctr if nonces are repeated. Ccm uses a mac scheme and an encryption scheme, namely, cbc-mac and ctr, which are both well known and provably secure modes. Ccm does offer advantages over the generic composition of these two primitives; in particular, it uses the same key 𝐾 for both the mac and the encryption steps as previously stated. Ctr mode requires no decryption function per se, since encryption and decryption are done simply by xoring the plaintext and ciphertext with a keystream, so hardware implementations do not need to implement the decryption functionality of the block cipher.

A notable inefficiency of ccm is that the length of the processed data must be known in advance, consequently it is not an online scheme and cannot be used for data streams.

Eax (Encrypt-then-Authenticate-then-Translate). Eax is a nonce-based aead block cipher mode designed in part by two researchers from the ocb team to provide another patent-free mode that addressed the several drawbacks to ccm [START_REF] Rogaway | A critique of CCM[END_REF]. It combines a variant of cbc-mac called omac [START_REF] Iwata | OMAC: One-key CBC MAC[END_REF], which does not have the security deficiencies of raw cbc-mac, and ctr encryption.

Eax is a very flexible mode; it has no restrictions on the underlying block cipher or on the block size 𝑛 and supports arbitrary-length messages as well as authentication tag sizes 𝜏 ∈ {0, • • • , 𝑛}. Many other desirable features come with eax: ciphertext expansion is minimal, it can pre-process static associated data, which results in performance savings and it is online for both the plaintext and the associated data, 𝑖.𝑒. the total data length does not need to be known up front. Similar to ccm, only the forward cipher function of the block cipher algorithm is used.

Gcm (Galois Counter Mode). Akin to ccm, gcm is an aead mode defined for block ciphers with a block size of 128 bits. It combines ctr mode of encryption and a mac for authentication into a scheme which uses a single secret key. First the plaintext is encrypted using ctr mode, the mac then processes the resulting ciphertext together with the associated data, in a Encrypt-thenmac manner. The authentication process is based on multiplication in the Galois field F 2 128 and does not require any block cipher invocation. Gcm mode can reach high throughput rates and benefits from a structure that allows parallel processing and efficient use of pipelining, making it suitable to high-speed hardware-based applications.

Cwc (Carter-Wegman + Counter). Cwc is a mode of operation that combines the Carter-Wegman mac algorithm with the ctr mode of operation under a common key. Contrary to eax and ccm, which use sequential cbc-mac type algorithms, cwc is parallelizable. Nist considered this mode for standardization, but eventually gcm was chosen instead in 2007.

In the design authenticated encryption schemes, tweakable block ciphers (tbcs), are valuable building blocks. A tweakable block cipher is a generalized block cipher with an additional public input, the tweak, that is meant to provide variability-not security. If the tweak can be changed with little cost, then some interesting new operation modes become possible, such as aead modes that can provide authenticity and confidentiality with just one pass over the data; leading to schemes with a lower overhead for implementation and higher performance.

Tweakable block ciphers. The notion of tweakable block ciphers and their application to modes of operations was introduced by Liskov, Rivest and Wagner [START_REF] Liskov | Tweakable block ciphers[END_REF]. This theme was developed by Rogaway in [START_REF] Rogaway | Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC[END_REF], which described the first efficient constructions of tbc, namely xe and xex, as well as several modes of operations. Formally, a tweakable block cipher is a function ℰ : 𝒦 × 𝒜 × 𝒳 ↦ → 𝒳 , where ℰ 𝐾 (𝐴, •) = ℰ 𝐴 𝐾 (•) is a permutation with inverse 𝒟 𝐾 (𝐴, •) = 𝒟 𝐴 𝐾 (•) for all 𝐾 ∈ 𝒦 and 𝐴 ∈ 𝒜. Here 𝒳 is finite, and 𝒜 is the set of tweaks, which might consist of variable-length strings. Whereas block ciphers only give access to a single permutation per key, tweakable block ciphers give access to an entire family, with the requirement that each member of the family looks uniform and independent of all other members.

The tbc-based ae(ad) modes include tae [LRW02], Θcb3 [START_REF] Krovetz | The software performance of authenticatedencryption modes[END_REF], otr [START_REF] Minematsu | Parallelizable rate-1 authenticated encryption from pseudorandom functions[END_REF], sct [START_REF] Peyrin | Counter-in-tweak: Authenticated encryption modes for tweakable block ciphers[END_REF], zae [START_REF] Iwata | ZMAC: A fast tweakable block cipher mode for highly secure message authentication[END_REF], paef, saef and rpaef [ALP + 19] and fbae [START_REF] Naito | Lightweight authenticated encryption mode of operation for tweakable block ciphers[END_REF]. Some of these modes are detailed below.

Tae. Tae was introduced by Liskov, Rivest and Wagner in the same paper which formalized tweakable block ciphers [START_REF] Liskov | Tweakable block ciphers[END_REF]. This mode essentially recasts ocb1 [RBBK01] using a tweakable blockcipher instead of a masked block cipher and thus does not define the handling of associated data.

Θcb3. Θcb3 is the tbc-based generalization of ocb3, introduced by Krovetz and Rogaway [START_REF] Krovetz | The software performance of authenticatedencryption modes[END_REF]. As the same key material is used for different purposes, domain separation is required. Here, a 4-bit string prepended in the tweak ensures independence of the tweakable block cipher calls for different kinds of computations. Figure 2.5 describes the handling of associated data, with and without padding. The processing the plaintext is depicted in Figure 2

Towards New Standards

Lightweight cryptography and its direct applications in the real world has drawn a lot of attention in the last two decades. Proprietary algorithms have been proposed by the industry, however, many were weak, mostly relying on their secrecy and these 𝑎𝑑 -ℎ𝑜𝑐 solutions sustained various attacks once their specification was leaked or reverse-engineered. For instance, the specification of

Open competitions

Open competitions are held when a need for new primitives is well acknowledged by the cryptographic community. Multiple proposals are submitted and analyzed by academic and private organizations, with the main objective of identifying a portfolio of algorithms that are suitable for widespread use, and sometimes defining new standards, as first done for the Aes10 [AES01], then for the Sha-3 hash function [START_REF]SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions: Federal Information Processing Standards Publications[END_REF]. Below are listed the international competitions in which lightweight applications have been considered.

The estream project (2004 -2008). In 2004, the European Network of Excellence in Cryptology (ecrypt) announced the estream project 11 , with the objective of selecting new dedicated stream ciphers instead of using the Aes with a mode of operation such as ctr. The nist lwc standardization process (2018 -). As part of their Lightweight Cryptography (lwc) project [NISa], launched in 2013, nist has recently initiated a standardization effort in order to select symmetric encryption primitives that are lighter than the established nist standards. In a report published in 2017 [START_REF] Mckay | Report on lightweight cryptography[END_REF] nist had indeed concluded that these were not well-suited for a range of resource-constrained devices. The requirements for their portfolio of lightweight algorithms were announced in August 2018 [NISb] and as a result, 57 proposals were submitted, of which 56 were accepted as first round candidates in April 2019. At the time of writing, round 2 is ongoing, with 32 candidates left.

Some Existing Lightweight Algorithms

The lightweight cryptography ecosystem has a plethora of designs, as evidenced by the variety of schemes recently submitted to the nist standardization process. Most of the proposals can be divided into two main design families, namely substitution-permutation networks (spns) and Feistel networks. In the following section, four ciphers are presented, each with a distinct structural property:

1. Present, an spn with a bit-based permutation layer;

2. Skinny, a family of spn with an Aes-like design;

3. LBlock, a two-branched Feistel scheme;

4. Lilliput, an extended generalized Feistel network.

Other structures exist among these families: arx-based designs are fairly popular [DPU + 16, BSS + 13], some spns use a bitsliced S-box [START_REF] Grosso | LS-designs: Bitslice encryption for efficient masked software implementations[END_REF] and some are designed to minimize the overhead of decryption (reflection ciphers) [START_REF] Boura | Reflection ciphers[END_REF], to name a few. For a more complete and in-depth listing, the interested reader can refer to [START_REF] Biryukov | State of the art in lightweight symmetric cryptography[END_REF] or [START_REF] Biryukov | Lightweight cryptography lounge[END_REF] by Biryukov and Perrin. The same authors also contributed to the development of the Felics benchmarking framework [DBG + 15, DCK + 19], which was designed to provide a unified evaluation of the software performances of lightweight cryptographic primitives.

Present

Present was introduced at CHES 2007 [BKL + 07] and is one of the earliest lightweight encryption algorithm ever published. It has been standardized for applications requiring lightweight cryptographic implementations and is specified in iso/iec 29192-2 [START_REF]Information technology -Security techniques -Lightweight cryptography -Part 2: Block ciphers[END_REF]. Present adopts a simple spn structure with a block size of 64 bits and a key size of 80 or 128 bits.

Round function. As shown in Figure 2.13, each of the 31 rounds of Present is made of one subkey addition, a parallel application of a 4-bit S-box and a bit-oriented permutation. Key-Schedule. Present supports keys of either 80 or 128 bits. In the 80-bit keys version, the master key 𝐾 is stored in a register denoted by 𝐾 79 𝐾 78 • • • 𝐾 0 . At round 𝑖, the 64-bit round key 𝑘 𝑖 consists of the 64 leftmost bits of the current key state:

𝑘 𝑖 = 𝐾 79 𝐾 78 • • • 𝐾 16 .
Then the key state is updated as follows. Because of its diffusion layer, this cipher clearly favors hardware implementations. Indeed, bit-oriented permutations can be implemented in hardware using simple wiring but they are not software-friendly operations. Its S-box is also very compact (only 28 ge) and has good cryptographic properties as well. Being one of the first lightweight proposals, Present has been extensively studied [Wan08, ÖVTK09, NSZW09, YWQ09, Lea11, CS09, KCS11, BKLT11, KSK13, WSTP12, SHW + 14, BPW15, BTV18]. Various cryptanalysis techniques (see Chapter 3) have been used and some of the notable results include a statistical saturation attack which targets up to 24 rounds [START_REF] Collard | A statistical saturation attack against the block cipher PRESENT[END_REF], a truncated differential attack on 26 rounds [START_REF] Blondeau | Links between truncated differential and multidimensional linear properties of block ciphers and underlying attack complexities[END_REF] and a 28round multi-dimensional linear attack with time complexity 2 122 for Present-128, and 2 77. 4 for Present-80 [START_REF] Flórez | Improving key-recovery in linear attacks: Application to 28-round PRESENT[END_REF].

Skinny

Skinny [BJK + 16] is a family of Aes-like tweakable block ciphers designed to reach performances similar to those of nsa's Simon [BSS + 13] with additional strong security guarantees.

Skinny follows the TWEAKEY framework [START_REF] Jean | Tweaks and keys for block ciphers: The TWEAKEY framework[END_REF], which offers a simple way of designing tweakable block ciphers by treating the tweak and the key materials as a single input called the tweakey. Various tweakey and block sizes are supported and the resulting variants are denoted Skinny-𝑛-𝑡, where 𝑛 represents the block size (64 or 128 bits) and 𝑡 is the tweakey size (𝑛, 2𝑛 or 3𝑛).

Round function. All members of the family use an Aes-like round function depicted in Figure 2.11. This function operates on a 4 × 4 matrix of cells of 𝑠 bits, where 𝑠 = 4 in the 64-bit variant and 𝑠 = 8 in the 128-bit variant. The operations are listed below.

1. SubBytes (SB). The same S-box-acting on 4 bits in the 64-bit version and on 8 bits in the one with a 128-bit state-is applied to each of the 16 cells.

2. AddConstants (AC). Round constants derived using a 6-bit lfsr are added into to state.

3. AddRoundTweakey (ART). Round keys are dependent on both the master key and the tweak are xored to the first two rows of the internal state at each round.

4. ShiftRows (SR). Row 𝑖 is cyclically shifted by 𝑖 positions to the right, for 𝑖 = {0, • • • , 3}. This operation is similar to the one performed in the Aes, however, the direction of the rotation is inverted.

MixColumns (MC)

. Each column is multiplied by a binary matrix 𝑀 defined as follows:

𝑀 = ⎛ ⎜ ⎜ ⎝ 1 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 ⎞ ⎟ ⎟ ⎠
All these operations are summarized in Figure 2.11.

𝑇 𝐾 𝑠 lfsr

𝑇 𝐾 2 4 (𝑥 3 ||𝑥 2 ||𝑥 1 ||𝑥 0) ↦ → (𝑥 2 ||𝑥 1 ||𝑥 0 ||𝑥 3 ⊕ 𝑥 2) 8 (𝑥 7 ||𝑥 6 ||𝑥 5 ||𝑥 4 ||𝑥 3 ||𝑥 2 ||𝑥 1 ||𝑥 0) ↦ → (𝑥 6 ||𝑥 5 ||𝑥 4 ||𝑥 3 ||𝑥 2 ||𝑥 1 ||𝑥 0 ||𝑥 7 ⊕ 𝑥 5) 𝑇 𝐾 3 4 (𝑥 3 ||𝑥 2 ||𝑥 1 ||𝑥 0) ↦ → (𝑥 0 ⊕ 𝑥 3 ||𝑥 3 ||𝑥 2 ||𝑥 1) 8 (𝑥 7 ||𝑥 6 ||𝑥 5 ||𝑥 4 ||𝑥 3 ||𝑥 2 ||𝑥 1 ||𝑥 0) ↦ → (𝑥 0 ⊕ 𝑥 6 ||𝑥 7 ||𝑥 6 ||𝑥 5 ||𝑥 4 ||𝑥 3 ||𝑥 2 ||𝑥 1)
Table 2.1: The lfsrs used in the variants of Skinny with 2 or 3 tweakey words. Each word is made of 16 𝑠-bit cells (𝑥 0 is the least significant bit of the cell).

with time complexity 2 373.48 for Skinny-128-384 [START_REF] Tolba | Impossible differential cryptanalysis of reduced-round SKINNY[END_REF]. In [SSD + 18], authors mounted a Demiric-Selçuk meet-in-the-middle attack on 22 rounds of Skinny-128-384 in the single-key model with time complexity 2 382.46 using a 10.5-round distinguisher. In the related-tweakey settings, some of the best results were obtained using rectangle attacks [LGS17, ZDM + 19]: 27 rounds of Skinny-64-192 were attacked with time complexity 2 165.5 and a 28-round attack with a complexity of 2 315 in time was found for Skinny-128-384. Authors of [LGS17] also investigated impossible differential attacks. In particular, they obtained a 23-round related-tweakey impossible differential attack with time complexity 2 251.47 for Skinny-128-256, using a truncated relatedtweakey impossible differential over 12 rounds. This result was later improved in [START_REF] Sadeghi | Cryptanalysis of reduced round SKINNY block cipher[END_REF]. The authors were able to find a 15-round related-tweakey impossible differential which allowed them to decrease the time complexity of the attack to 2 243.41 . All in all, no practical attacks have been found so far and skinny still offers a security margin above 30% for a 64-bit block size and 50% for the 128-bit version.

Several Then the key state is updated as follows.

1. The key register is rotated by 29 bit positions to the left:

[𝐾 79 𝐾 78 • • • 𝐾 1 𝐾 0] = [𝐾 50 𝐾 49 • • • 𝐾 0 𝐾 79 • • • 𝐾 52 𝐾 51].
2. The leftmost eight bits are modified using two S-boxes 𝑆 8 and 𝑆 9 : Interestingly, LBlock's diffusion layer is equivalent to that of the decryption of Twine [SMMK13], although the two proposals are independent. A simplified version of LBlock called LBlock-s is used as underlying primitive in the authenticated encryption cipher Lac [ZWW + 14], which was part of the first-round candidates of the Caesar competition until it was attacked by Leurent [Leu16]-not to be confused with the eponym public key encryption scheme [LLJ + 19], a former candidate to nist's post-quantum cryptography standardization process. To reduce the cost in software and hardware implementation, a single 4-bit S-box is used instead of the 10 different ones. Additionally, the new key schedule discards the 29-bit rotation and replaces it with a nibble-friendly 24-bit rotation, which yields better performances on 8-bit platforms. It also features added xors to improve diffusion. Some studies of LBlock and its variant LBlock-s can be found in [SN12, SW13, LGW12, ZNS12, EMPS13, BMNS14, WW14, SHW + 14, BNS14, XJHL15, WWJ16, LWZ16, Lu16]. Some attacks worth mentioning include an impossible differential attack by Boura 𝑒𝑡 𝑎𝑙. [START_REF] Boura | Improved impossible differential attacks against round-reduced LBlock[END_REF], which breaks 23 rounds of LBlock with time complexity 2 75.36 and data complexity 2 59 in the single-key model, a 22-round zero-correlation linear cryptanalysis [START_REF] Soleimany | Zero-correlation linear cryptanalysis of reducedround LBlock[END_REF] and an integral analysis [START_REF] Sasaki | Comprehensive study of integral analysis on 22-round LBlock[END_REF] that targets 22 rounds of LBlock as well. Chapter 7 presents additionnal cryptanalysis results on LBlock-s.

[

Lilliput

Lilliput [START_REF] Thierry | Extended generalized feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput[END_REF] master key 𝐾). The lfsm state 𝑌 is then updated using RoundFnlfsm and the next round key is extracted using ExtractRoundKey until all 30 round keys are generated.

The state 𝑌 is made of 20 nibbles 𝑌 19 , • • • , 𝑌 0 split among four lfsrs, ℒ 0 to ℒ 3 , acting on 5 nibbles each: ℒ 0 acts on 𝑌 0 to 𝑌 4 , ℒ 1 on 𝑌 5 to 𝑌 9 and so on. These four lfsrs used in the Lilliput key schedule are Feistel-like word-oriented lfsrs acting on 5 nibbles, inspired by the results of [START_REF] Thierry | Software oriented stream ciphers based upon FCSRs in diversified mode[END_REF] and [START_REF] Arnault | Revisiting LFSRs for Cryptographic Applications[END_REF].

The RoundFnlfsm function seen as 4 Feistel-like word-oriented lfsrs can be divided into two transformations: Mixinglfsm which holds the feedbacks, followed by Permutationlfsm which is the word-wise cyclic shift, as depicted in Figure 2.15.

• Mixinglfsm: For each of the 4 parallel lfsrs ℒ 0 to ℒ 3 , it consists in xoring some nibbles to some others nibbles in a Feistel-like manner:

-for ℒ 0 : 𝑌 0 ← 𝑌 0 ⊕ (𝑌 4 ≫ 1) and 𝑌 1 ← 𝑌 1 ⊕ (𝑌 2 ≫ 3), -for ℒ 1 : 𝑌 6 ← 𝑌 6 ⊕ (𝑌 7 ≪ 3) and 𝑌 9 ← 𝑌 9 ⊕ (𝑌 8 ≪ 1),
for ℒ 2 : 𝑌 11 ← 𝑌 11 ⊕ (𝑌 12 ≫ 1) and 𝑌 13 ← 𝑌 13 ⊕ (𝑌 12 ≫ 3),

for ℒ 3 : 𝑌 16 ← 𝑌 16 ⊕ (𝑌 15 ≪ 3) ⊕ (𝑌 17 ≪ 1).

• Permutationlfsm: For each of the 4 parallel lfsrs ℒ 0 to ℒ 3 , it consists in a left cyclic shift of its 5 nibbles, i.e. 𝑌 𝑖 ← 𝑌 𝑖-1 mod 5 .

• ExtractRoundKey: For each round of encryption, the subkey 𝑘 𝑖 is extracted from the lfsm inner state using a non linear extracting function in a bitsliced way. First, some nibbles of the state are extracted: [START_REF] Sasaki | New differential bounds and division property of Lilliput: Block cipher with extended generalized Feistel network[END_REF][START_REF] Sasaki | Tight bounds of differentially and linearly active s-boxes and division property of lilliput[END_REF], uses the division property [START_REF] Todo | Structural evaluation by generalized integral property[END_REF], a generalization of integral and higher-order differential distinguishers to find an integral distinguisher on 13 rounds (out of 30) that can be extended to a 17-round key recovery attack with time complexity 2 77 .

𝑍 (
With regard to Lilliput-AE, Dunkelman 𝑒𝑡 𝑎𝑙. discovered a practical forgery attack [DKLS19] which exploited a weakness in the tweakey schedule, and thus does affect Lilliput. This resulted in an updated design of Lilliput-AE (see Section 4.5.2).

3

Cryptanalysis

Please! God damn it! I hate this hacker crap!

Ray Arnold

Cryptanalysis is the science that aims at finding attacks compromising the security of a cryptographic algorithm, without the knowledge of the secret key. Nowadays, the adoption of a scheme is for a large part based on the cryptanalytic efforts of the community. The security assessment of a cryptographic primitive consists in a careful study of its properties, in an attempt to retrieve the secret key or break the security claims. A successful attempt can discard an algorithm, while unsuccessful attempts tend to increase the confidence in the security of said algorithm. The most naive key recovery approach is brute-force and consists in testing all possible values. This attack is impossible to carry out on modern cryptosystems; the keyspace is indeed too large to be fully explored in practice, as illustrated by Table 3.1 and the following excerpt from [START_REF] Arjen | Universal security; from bits and mips to pools, lakes -and beyond[END_REF]:

"Boiling all water on the planet (including all starfish) amounts to about 2 24 lakes of Geneva and leads to global security: 114-bit symmetric cryptosystems, 228-bit cryptographic hashes, and 2380-bit Rsa. This needs to be done 16 thousand times to break Aes-128, Sha-256, or 3064-bit Rsa." In fact, many cryptanalytic attacks are wildly impractical because of their tremendous complexity in terms of time 1 , memory 2 needed or amount of data 3 required. For instance, the best published attack against the Aes-128 at the time of writing requires 2 126 operations [START_REF] Tao | Improving the biclique cryptanalysis of AES[END_REF], which is a slight improvement over brute-force but still remains infeasible in practice. For this reason, the term attack might seem confusing to some of the readers who are unfamiliar with cryptography. An actual attacker will not be able to exploit them to recover the secret key; instead, they should be thought of as security analyses illustrating unusual behaviors overlooked by the designers.

Number
In some cases, the weaknesses found by cryptanalysts do not even cover the full version of a cryptographic primitive but rather a weaker version of it, such as a round-reduced variant in the case of an iterated block cipher. The smaller the difference between the attacked version and the full cipher, the less the cipher is considered secure. The number of rounds that remain "unbroken" for the worst-case attack defines the security margin of the cipher. There are two main types of attacks against symmetric ciphers.

-The first encompasses the more classical attacks that consider the ciphers as mathematical objects. In these attacks, the cryptanalyst exploits a weakness in the algorithm to recover the key in a more efficient way than exhaustive search. The main classes of attacks are described in Section 3.1.3.

-Physical attacks, which will not be covered in this thesis, are the second type of attacks. These attacks make use of the physical properties of the implementation of a cryptographic algorithm. For instance, some key-dependent computations might induce observable physical phenomena such as difference in timings, power consumption, temperature variations or electromagnetic radiations. A careful study of these correlations can leak information on the internal state of the cipher. Physical attacks can either be passive-side-channel analysis (sca)-or active in the case of fault injection attacks (fia). Side-channel analysis is based on the observation of the circuit while it operates the computations of an encryption process; fault injection analysis studies the propagation of a fault throughout the system.

General Principles of Classical Cryptanalysis

Before presenting the main classes of generic attacks that can be found in the literature, a major component of cryptanalysis is discussed in this section: distinguishers and how they can be used to gain some information about the secret key.

Distinguishers

Ideally, a block cipher should be indistinguishable from a random permutation. That is, given a permutation picked uniformly at random from the set of all permutations and a block cipher operating with an unknown key, an adversary should not be capable of successfully telling them apart with a probability higher than 1 2 . Any property allowing them to successfully differentiate the two transformations can be exploited to build a distinguisher. Definition 3.1 (Distinguisher). A distinguisher is an algorithm 𝒜 that can decide with a probability higher than 1 2 whether a set of plaintext/ciphertext pairs was generated by a random permutation or by a cryptosystem.

More precisely, a distinguisher has access to an auxiliary function, called an oracle, to which it can make queries. For any message 𝑚 received, the oracle answers randomly but consistently by returning a ciphertext 𝑐 produced either by the targeted cipher 𝐶 or by a random permutation 𝑃 𝑛 . The distinguisher 𝒜 must be able to determine wether the oracle function is 𝐶 or 𝑃 𝑛 using 𝑞 requests. Conventionally, the distinguisher returns 1 if it thinks that the messages received were encrypted using 𝐶 and 0 otherwise. The probability that the distinguisher returns 1, while the oracle actually uses 𝐶 is denoted by 𝑝 = Pr[𝒜 𝐶 = 1]. Similarly, the probability that the distinguisher returns 1, while the oracle actually uses 𝑃 𝑛 is denoted by 𝑝 * = Pr[𝒜 𝑃𝑛 = 1]. The efficiency of the distinguisher is measured by the advantage of 𝒜:

𝐴𝑑𝑣 𝒜 (𝐶, 𝐶 *) = |𝑝 -𝑝 * |.
The higher the advantage, the better the distinguisher. In other words, to obtain a good distinguisher, the cryptanalyst has to look for a property of the cipher between the plaintexts and the ciphertexts that has a probability that is significantly higher than what would be observed for a random permutation. Several methods for building such objects are described in Section 3.2 and Section 3.3.

Key recovery and last round attack

While a distinguisher in itself is not an attack, such an object can be used to retrieve some bits of the secret key in a key recovery attack. Indeed, an iterated block cipher with 𝑟 rounds can be attacked using a distinguisher on 𝑟 -1 rounds. To do so, the general idea is to brute-force the last-round subkey and, for each guess, decrypt the ciphertext to know the internal state of the cipher at round 𝑟 -1. If a subkey is such that the internal state at round 𝑟 -1 is coherent with the distinguisher, then it is likely the correct guess. If not, it can be discarded.

This type of attack relies on the wrong-key randomization hypothesis [START_REF] Harpes | A generalization of linear cryptanalysis and the applicability of Matsui's piling-up lemma[END_REF], which states that a wrong guess of the key does not yield any bias and will result in values that are random and uniformly distributed. Definition 3.2 (Wrong-key randomization hypothesis). Let 𝐸 𝐾 : F 𝑛 2 → F 𝑛 2 a block cipher parameterized by a key 𝐾 with a round function 𝐹 . Denoting 𝑘 𝑟-1 the subkey used in the last round, the wrong-key randomization hypothesis assumes the following:

Pr[𝐹 -1 k𝑟-1 (𝐸 𝐾 (𝑋)) ⊕ 𝐹 -1 k𝑟-1 (𝐸 𝐾 (𝑋 ⊕ 𝛿)) = Δ] = {︃ 𝑝 if k𝑟-1 = 𝑘 𝑟-1 1 2 𝑛 -1 otherwise.
If an adversary succeeds in determining the value of the last-round subkey, they can reapply a similar attack to find the second-last round subkey etc. Then, inverting the key scheduling algorithm reveals some bits of the master key, although in practice, this can require a sophisticated analysis. An example is provided for differential cryptanalysis in Section 3.2.1.

Overview of cryptanalytic techniques

Most of the cryptanalytic methods can be divided into two classes: statistical attacks and structural or deterministic attacks.

Statistical attacks

In the early 1990s, cryptanalysis of symmetric primitives made a leap forward as two powerful cryptanalytic techniques were published, namely differential cryptanalysis by Biham and Shamir [START_REF] Biham | Differential cryptanalysis of DES-like cryptosystems[END_REF] and linear cryptanalysis [TG92, Mat94] by Matsui, followed by many variants. These techniques have greatly influenced the design of block ciphers and the approaches developed to protect ciphers against them are still used to this day [DR01, DPU + 16] Differential and linear cryptanalysis are both statistical attacks, meaning that they study statistical relations between the plaintexts and ciphertexts, where the probability is determined by components of the cipher as well as the secret key.

-Differential cryptanalysis studies the propagation of differences in a cipher, exploiting the statistical bias in the output difference distribution of the cipher when the difference between two plaintexts is fixed. The cryptanalysis results on Skinny and on Spook presented in Chapter 6 and Chapter 5, respectively, rely on this technique.

-In linear cryptanalysis, the bias is induced by linear approximations of the nonlinear round function involving bits of the plaintext, the ciphertext and the key that are verified with a probability that is significantly higher than for a random permutation.

The variants of differential and linear cryptanalysis include:

-Truncated differential cryptanalysis [Knu95] -Impossible differential cryptanalysis [Knu98, BBS99] -Multiple differential cryptanalysis [BG11]
-Higher-order differential cryptanalysis [START_REF] Knudsen | Truncated and higher order differentials[END_REF][START_REF] Lai | Higher Order Derivatives and Differential Cryptanalysis[END_REF] -Boomerang cryptanalysis [START_REF] Wagner | The boomerang attack[END_REF] -Differential-linear cryptanalysis [START_REF] Langford | Differential-linear cryptanalysis[END_REF] -Multiple linear cryptanalysis [START_REF] Biryukov | On multiple linear approximations[END_REF] -Multidimensional linear cryptanalysis [START_REF] Joo Yeon Cho | A new technique for multidimensional linear cryptanalysis with applications on reduced round Serpent[END_REF] -Zero-correlation linear cryptanalysis [START_REF] Bogdanov | Linear hulls with correlation zero and linear cryptanalysis of block ciphers[END_REF].

An example of boomerang attack against Feistel networks is studied in Chapter 7.

Structural attacks

Structural attacks are mostly based on algebraic properties of a cipher. For instance, algebraic attacks [START_REF] Courtois | Cryptanalysis of block ciphers with overdefined systems of equations[END_REF] exploit the relations between bits of the plaintext, the ciphertext and the key.

To retrieve the key in a way that is faster than exhaustive search, the goal here is to collect a sufficient number of relations that are simple enough to create a system of equations that can be solved efficiently-such systems either have low degree, small size or a specific structure. This type of attack is very useful against stream ciphers but can be valuable in the case of block ciphers as well, especially when combined with other types of attacks-see Albrecht and Cid's algebraic differential attack [START_REF] Albrecht | Algebraic techniques in differential cryptanalysis[END_REF]. One could also mention meet-in-the-middle (mitm) attacks [START_REF] Diffie | Special feature exhaustive cryptanalysis of the nbs data encryption standard[END_REF]. This type of attack requires the knowledge of some plaintext and their corresponding ciphertexts. The major cryptanalytic techniques are summarized in Table 3.2. In the following, some of the main attacks are detailed. Section 3.2 focuses on statistical attacks and their variants while Section 3.3 presents some structural attacks. A panorama of existing cryptanalytic techniques against block cipher is provided in [START_REF] Standaert | Cryptanalysis of block ciphers: A survey[END_REF] or in [START_REF] Knudsen | The Block Cipher Companion[END_REF].

Statistical Attacks

Differential attacks

Differential cryptanalysis was first introduced by Biham and Shamir [START_REF] Biham | Differential cryptanalysis of DES-like cryptosystems[END_REF] and was used in 1991 for the first attack against the Des which was faster than exhaustive search [START_REF] Biham | Differential cryptanalysis of the full 16-round DES[END_REF]. For the remaining, let 𝐸 be a block cipher operating on blocks of 𝑛 bits using a key 𝐾 of 𝑘 bits and 𝑟 rounds of a function 𝐹 . 𝑀 and 𝑀 ′ are two plaintext blocks, and their intermediate state throughout the encryption process under 𝐾 is denoted by 𝑀 = 𝑋 0 , 𝑋 1 , . . . , 𝑋 𝑟-1 , 𝑋 𝑟 = 𝐸 𝐾 (𝑀) = 𝐶 and 𝑀 ′ = 𝑋 ′ 0 , 𝑋 ′ 1 , . . . , 𝑋 ′ 𝑟-1 , 𝑋 ′ 𝑟 = 𝐸 𝐾 (𝑀 ′) = 𝐶 ′ . Simply put, differential cryptanalysis is a chosen plaintext attack that studies how an input difference evolves through the various rounds of the cipher. More precisely, this technique analyses the probability of observing an output difference 𝛿 𝑜𝑢𝑡 given an input difference 𝛿 𝑖𝑛 of a function 𝑓 :

Pr[𝑓 (𝑥 ⊕ 𝛿 𝑖𝑛) ⊕ 𝑓 (𝑥) = 𝛿 𝑜𝑢𝑡].
When 𝑓 is a permutation picked uniformly at random, any difference might occur and the probability has an expected value of 2 -𝑛 for any pair of nonzero 𝑛-bit elements (𝛿 𝑖𝑛 , 𝛿 𝑜𝑢𝑡), and any 𝑛-bit input 𝑥. However, for a block cipher with a key picked uniformly at random, some output differences may have higher probabilities than others, which leads to a distinguisher. The input/output difference pair (𝛿 𝑖𝑛 𝛿 𝑜𝑢𝑡) is called a differential.

Definition 3.3 (Differential). A differential on 𝑡 rounds of an iterated cipher 𝐸, with 𝑡 ≤ 𝑟, is a pair

(𝛿 𝑖𝑛 , 𝛿 𝑜𝑢𝑡) ∈ F 𝑛 2 × F 𝑛 2 such that 𝑋 0 ⊕ 𝑋 ′ 0 = 𝛿 𝑖𝑛 and 𝑋 𝑡 ⊕ 𝑋 ′ 𝑡 = 𝛿 𝑜𝑢𝑡 .
The cipher 𝐸 reduced to 𝑡 rounds will be denoted by 𝐸 𝑡 in what follows, as shown in Figure 3.1. In its simplest form, differential cryptanalysis aims at finding high-probability differentials. The probability of a differential can be defined as follows. 𝛿 𝑡], is defined by:

𝑀 ′ 𝑀 𝐶 ′ 𝐶 𝐸 𝑡 𝐸 𝑡 𝐾 𝐾 𝛿 0 = 𝑀 ⊕ 𝑀 ′ 𝛿 𝑡 = 𝐶 ⊕ 𝐶 ′
Pr[𝛿 0 𝛿 𝑡] = Pr 𝑋,𝐾 [𝐸 𝑡 𝐾 (𝑋) ⊕ 𝐸 𝑡 𝐾 (𝑋 ⊕ 𝛿 0) = 𝛿 𝑡],
where Pr 𝑋,𝐾 is the probability computed on all possible input plaintexts 𝑋 ∈ F 𝑛 2 and all possible keys 𝐾 ∈ F 𝑘 2 .

In practice, computing the probability of a differential on 𝑡 rounds becomes very difficult as 𝑡 increases. A simpler approach consists in studying differential characteristics (or differential trails), which specify the evolution of the differences after each round. Definition 3.5 (Differential characteristic). A differential characteristic on 𝑡 rounds of a cipher 𝐸 is a sequence (𝛿 0 , 𝛿 1 , . . . , 𝛿 𝑡) ∈ (F 𝑛 2) 𝑡+1 that specifies the input/output difference for each round:

𝛿 0 = 𝑋 0 ⊕ 𝑋 ′ 0 𝛿 1 = 𝑋 1 ⊕ 𝑋 ′ 1 . . . 𝛿 𝑡 = 𝑋 𝑡 ⊕ 𝑋 ′

𝑡

In the single key setting (see Chapter 1, Section 1.2.3), a right pair refers to two input messages whose generated differences match the ones predicted by the characteristic, otherwise it is called a wrong pair. The probability of a differential trail is defined as follows.

Definition 3.6 (Probability of a differential characteristic). The probability of a differential characteristic (𝛿 0 , 𝛿 1 , . . . , 𝛿 𝑡) ∈ (F 𝑛 2) 𝑡+1 is given by:

Pr[𝛿 0 , 𝛿 1 , . . . , 𝛿 𝑡] = Pr 𝑋,𝐾 [𝐸 𝑖 𝐾 (𝑋) ⊕ 𝐸 𝑖 𝐾 (𝑋 ⊕ 𝛿 𝑖) = 𝛿 𝑡 , ∀𝑖 ∈ {1, . . . , 𝑡}].
This theoretical probability is computed under the assumption that the round transitions are independent-this is called the Markov assumption [START_REF] Lai | Markov ciphers and differential cryptanalysis[END_REF]. As a result, the average differential probability over all possible keys of an 𝑡-round characteristic can be expressed as the product of the probabilities of its corresponding 1-round characteristics. The Markov assumption is usually justified by showing that the analyzed primitive is a Markov cipher and by assuming that the probability of any characteristic is roughly the same for the large majority of keys4 . Definition 3.7 (Markov cipher). An iterated cipher with round function 𝑌 = 𝐹 𝑘 (𝑋) is a Markov cipher if there is a group operation ⊗ for defining differences such that, for all choices of 𝛼 (𝛼 ̸ = 0) and 𝛽 (𝛽 ̸ = 0),

Pr[𝑌 ⊗ 𝑌 ′ = 𝛽 | 𝑋 ⊗ 𝑋 ′ = 𝛼, 𝑋 = 𝛾]
is independent of 𝛾 when the subkey 𝑘 is uniformly random.

In simple terms, a Markov cipher is an iterative cipher for which the average differential probability over one round is independent of the input of the round. Assuming that round keys are independent and uniformly distributed in the key space , the probability of a characteristic can therefore be expressed as:

Pr[𝛿 0 , 𝛿 1 , . . . , 𝛿 𝑡] = 𝑡-1 ∏︁ 𝑖=0 𝑝 𝑖 ,
where 𝑝 𝑖 = Pr[𝛿 𝑖 𝛿 𝑖+1] for 𝑖 ∈ {0, . . . , 𝑡 -1}. As a way of building a differential distinguisher, an attacker has to study the round function of a cipher 𝐸 to find high-probability characteristics on one round, which they can later combine into a full differential characteristic. The resulting probability 𝑝 is the product of the probability of the characteristics on one round. Several characteristics can compose a differential, and the average probability can be computed-in principle-as the sum of the probabilities of all characteristics sharing the same input and output differences with the differential. However, most of time, the attacker will simply focus on high-probability characteristics, with no consideration for this clustering effect, as it is customarily assumed that the best characteristic gives a good approximation of the actual probability of the corresponding differential.

Search of characteristics

In order to compute the probability of a differential on one round of a cipher 𝐸, an attacker has to study its evolution through the several operations of the round function 𝐹 . For the linear layer 𝐿 of the cipher, this computation is trivial since any difference 𝛿 is transformed into a difference 𝐿(𝛿). However, for a nonlinear operation such as an S-box application, predicting the evolution of a nonzero difference with certainty is not possible if only the input and output differences-and not the real values-are known.

The difference distribution table (ddt) of an S-box is a table that lists the number of pairs that fulfill each possible input and output differences.

Definition 3.8 (Difference Distribution Table). The difference distribution table of an 𝑛×𝑛-bit S-box is a matrix of size 2 𝑛 × 2 𝑛 such that 𝐷𝐷𝑇 [𝑎, 𝑏] = #{𝑋 ∈ F 𝑛 2 | 𝑆(𝑋 ⊕ 𝑎) ⊕ 𝑆(𝑋) = 𝑏}.
The coefficient at row 𝑎, column 𝑏 of this table is the number of inputs 𝑋 ∈ F 𝑛 2 for which the difference 𝑎 transitions to the difference 𝑏 through the S-box. The corresponding probability is obtained by dividing this value by the total number of possible inputs 𝑋:

Pr[𝑎 𝑆 𝑏] = 𝐷𝐷𝑇 [𝑎, 𝑏] 2 𝑛 .
When there is there is no difference between the two inputs of an S-box, this S-box is said to be passive and the differential transition occurs with probability 1. Therefore, in order to obtain a high-probability characteristic, an attacker has to minimize the number of active S-boxes-S-boxes with nonzero input differences and ensure that their probabilities of transition are as high as possible. This maximum probability of transition is derived from the differential uniformity of an S-box. Definition 3.9 (Differential uniformity). The differential uniformity of an S-box is the highest coefficient of its ddt, with the first row and the first column excluded.

Once a differential (𝛿 𝑖𝑛

𝛿 𝑜𝑢𝑡) that has a probability 𝑝 that is significantly higher than 2 -𝑛 has been exhibited, the attacker can build a distinguisher. For instance, they can ask for the encryption of 𝑚 × 𝑝 -1 pairs of messages whose difference equals 𝛿 𝑖𝑛 , with 𝑚 an integer; they should observe about 𝑚 occurrences of 𝛿 𝑜𝑢𝑡 in the resulting output differences.

Attacks on the last round

As introduced in Section 3.1.2, attacks on the last round make use of a statistical distinguisher to recover the encryption key. The remaining section focuses on their application to differential cryptanalysis.

In a differential attack on the last round, illustrated in Figure 3.2, the attacker has a differential denoted (𝛿 Δ) of high probability 𝑝, that covers the first 𝑟 -1 rounds of the attacked cipher 𝐸, parameterized by an encryption key 𝐾:

𝐸 𝐾 = 𝐹 𝑘 𝑟-1 ∘ 𝐹 𝑘 𝑟-2 ∘ • • • ∘ 𝐹 𝑘 0 ,
where each round function 𝐹 𝑘 𝑖 depends on a subkey 𝑘 𝑖 derived from the master key 𝐾.

This distinguisher can be turned into an attack covering the full cipher as follows:

1. data collection phase: ask for the corresponding ciphertexts (𝐶 0,𝑖 , 𝐶 1,𝑖) of 𝑞 pairs of messages (𝑀 0,𝑖 , 𝑀 1,𝑖) whose difference equals 𝛿, for 𝑖 ∈ {0, . . . , 𝑞 -1};

2. data analysis phase:

(a) guess the bits of the last round key k𝑟-1 ;

(b) using the guessed subkey, decipher the last round and observe the resulting differences

𝐹 -1 k𝑟-1 (𝐶 0,𝑖) ⊕ 𝐹 -1 k𝑟-1 (𝐶 1,𝑖);
(c) if the number of occurrences of Δ matches the theoretical bias (about 𝑞 × 𝑝), then the guess on k𝑟-1 is likely to be correct 𝑖.𝑒. k𝑟-1 = 𝑘 𝑟-1 , else go back to step 2a.

𝑀 𝐹 𝑘 0 𝐹 𝑘 1 • • • • • • 𝐹 𝑘 𝑟-2 𝐹 𝑘 𝑟-1 𝐶 𝛿 Δ 𝐹 -1 k𝑟-1 (𝐶 0) 𝐹 -1 k𝑟-1 (𝐶 1) 𝑀 ′ 𝐹 𝑘 0 𝐹 𝑘 1 • • • • • • 𝐹 𝑘 𝑟-2 𝐹 𝑘 𝑟-1 𝐶 ′

Extensions and variations

Truncated differential cryptanalysis. Truncated differentials are an extended form of differentials introduced by Knudsen [Knu95], in which not all the bits of the difference are fixed. For example, it might be possible to exhibit some differential patterns for which some bits are equal to zero, while the other bits can take different values and are left undetermined. One particular type of truncated differences that is widely used is word5 -wise truncated differences. In such cases, the analysis usually focuses on predicting whether the difference of a word is zero or not. As a result, for the nonlinear layer, the precise value of the transitions of the S-boxes are not considered anymore; the sole information that can be obtained is wether an S-box is active-the input difference is nonzero-or passive-no difference on the inputs. The distinguishers on Spook presented in Chapter 5 rely on this technique.

Related-key differential cryptanalysis. In 1993, Biham proposed to consider related-key differential attacks [START_REF] Biham | New types of cryptanalytic attacks using related keys (extended abstract)[END_REF], in which the attacker can not only learn the encryption of two plaintexts 𝑀 and 𝑀 ′ under the original key 𝐾 but also under some derived keys 𝐾 ′ whose relations to the original key 𝐾 are known-typically 𝐾 ′ = 𝐾 ⊕ 𝑐, for some constant 𝑐 that is known to the attacker. Although Figure 3.3 depicts the related-key setting for differential attack, this model can be applied to numerous cryptanalysis techniques. Both the single-key and the related-key models are considered in the differential analysis of Skinny presented in Chapter 3

𝑀 ′ 𝑀 𝐶 ′ 𝐶 𝐸 𝑡 𝐸 𝑡 𝐾 𝐾 ′ 𝛿 0 = 𝑀 ⊕ 𝑀 ′ 𝛿 𝑡 = 𝐶 ⊕ 𝐶 ′ Figure 3.3: A related-key differential (𝛿 0 , 𝛿 𝑡) on 𝑡 rounds of a cipher 𝐸.
Impossible differential cryptanalysis. A differential (𝛿 𝑖𝑛 𝛿 𝑜𝑢𝑡) which has probability zero can be used in impossible differential attacks [START_REF] Knudsen | Deal -a 128-bit block cipher[END_REF][START_REF] Biham | Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials[END_REF]. The most common approach is to combine two differentials of probability 1 for the cipher top and bottom that conflict in the middle when concatenated together; this technique is called miss-in-the-middle (see Section 3.3.2).

Higher-order differential cryptanalysis. Differential cryptanalysis can be extended to higher degrees [START_REF] Lai | Higher Order Derivatives and Differential Cryptanalysis[END_REF][START_REF] Knudsen | Truncated and higher order differentials[END_REF]. Some ciphers are indeed secure against differential cryptanalysis but vulnerable to higher order attacks, such as the KN-cipher [START_REF] Nyberg | Provable security against a differential attack[END_REF]. Instead of considering a difference between two values as done in the conventional differential setting, higher-order differential cryptanalysis studies the propagation of a set of differences between a collection of values. More precisely, a 𝑑 𝑡ℎ -order differential is the difference between two (𝑑 -1) 𝑠𝑡 -order differentials and is a collection of 2 𝑑 texts. In general, high-order differential analysis is mainly successful against primitives with nonlinear components which have low algebraic degree and a small number of rounds, such as the Keccak-𝑓 permutation [START_REF] Boura | Higher-order differential properties of Keccak and Luffa[END_REF], used in the Sha-3 hash function.The boomerang attack can be seen as an application of second-order differentials (see Section 3.2.3).

Linear attacks

First introduced by Gilbert, Chassé and Tardy-Cordfir [GC91, TG92] then applied to the Des by Matsui [START_REF] Matsui | Linear cryptanalysis method for DES cipher[END_REF], linear cryptanalysis is a known plaintext attack that studies the linear relations between the plaintext, the ciphertext and the secret key in an attempt to find an effective approximation of the cipher. More precisely, this attack studies the probability of the event

⟨𝛼 • 𝑥⟩ ⊕ ⟨𝛽 • 𝐸 𝐾 (𝑥)⟩ = 0,
where ⟨•⟩ denotes the scalar product on F 𝑛 2 𝑖.𝑒 ⟨𝑎 • 𝑏⟩ = ⨁︀ 𝑛-1 𝑖=0 𝑎 𝑖 𝑏 𝑖 , and 𝛼 and 𝛽 are two 𝑛-tuples, also called masks. The pair (𝛼 𝛽) is the linear approximation of the cipher.

Definition 3.10 (Correlation of a linear approximation). Let 𝑓 : F 2 𝑛 → F 2 𝑛 be a vectorial boolean function. Assume that the masks for input 𝑥 and output 𝑓 (𝑥) are 𝛼 and 𝛽, respectively. The correlation of the linear approximation is defined as

𝐶(𝛼, 𝛽) = 2 × Pr[⟨𝛼 • 𝑥⟩ + ⟨𝛽 • 𝑓 (𝑥)⟩ = 0] -1
If 𝑓 is a random permutation, the probability that ⟨𝛼 • 𝑥⟩ ⊕ ⟨𝛽 • 𝑓 (𝑥)⟩ = 0 is close to 1 2 for any pair of nonzero elements (𝛼, 𝛽). For a keyed permutation, however, the bias of the linear approximation, defined by 𝜖(𝛼, 𝛽) = 𝐶(𝛼, 𝛽)/2 can be quite high. In such case, this results in a distinguisher. In other words, both masks should be chosen such that Pr[⟨𝛼 • 𝑥⟩ ⊕ ⟨𝛽 • 𝐹 (𝑥)⟩ = 1] is as far as possible from 1 2 . Linear round-approximations (or linear trails) with a high bias can be constructed by combining several one-round approximations under the assumption that the individual rounds are mutually independent, in an analogous fashion to differential trails.

Let

𝑓 = 𝑓 𝑟-1 ∘ • • • ∘ 𝑓 1 ∘ 𝑓 0 be an iterated function. Linear approximations (𝛾 𝑖 𝛾 𝑖+1) of a single round 𝑓 𝑖 can be concatenated into a linear trail (𝛾 0 𝛾 1 • • • 𝛾 𝑟) whose correlation is estimated using the piling-up lemma. Lemma 3.11 (Piling-up lemma). Let (𝛾 0 𝛾 1 • • • 𝛾 𝑟
) be a linear trail of an iterated permutation. Then, the correlation of the linear trail can be computed as

𝐶(𝛾 0 , 𝛾 𝑟) = 𝑟-1 ∏︁ 𝑖=0 𝐶(𝛾 𝑖 , 𝛾 𝑖+1).
Akin to the differential case, it is possible to combine several linear trails with masks 𝛼 and 𝛽 into a linear hull [START_REF] Nyberg | Linear approximation of block ciphers (rump session)[END_REF] (𝛼 𝛽). Extensions of linear cryptanalysis include the zero-correlation attack [START_REF] Bogdanov | Linear hulls with correlation zero and linear cryptanalysis of block ciphers[END_REF], which is based on linear approximations with a bias equal to zero.

Boomerang attacks

Subsequent to the discovery of differential and linear cryptanalysis, Vaudenay developed the decorrelation theory [START_REF] Vaudenay | Provable security for block ciphers by decorrelation[END_REF], an approach for designing block ciphers that are provably secure against basic variants of these cryptanalytic attacks, among others. In the same paper, he proposed a concrete instantiation of this construction technique, Coconut98, which was broken a year later by Wagner using a new type of attack that he called the boomerang attack [START_REF] Wagner | The boomerang attack[END_REF].

The boomerang attack is a chosen plaintext and ciphertext attack that combines sets of four messages that maximize the probability that

𝐸 -1 (𝐸(𝑀 0) ⊕ 𝛿) ⊕ 𝐸 -1 (𝐸(𝑀 0 ⊕ 𝛼) ⊕ 𝛿) = 𝛼,
with 𝑀 0 a random message, 𝛼 and 𝛽 some input and output differences. The distinguisher works as follows:

1. the attacker first picks a pair of messages (𝑀 0 , 𝑀 1) with a difference 𝛼, and asks for the corresponding ciphertexts (𝐶 0 , 𝐶 1); 2. then, they apply a difference 𝛿 to obtain two additional ciphertexts 𝐶 2 = 𝐶 0 ⊕ 𝛿 and 𝐶 3 = 𝐶 1 ⊕ 𝛿;

3. (𝐶 2 , 𝐶 3) are decrypted to the plaintext pair (𝑀 2 , 𝑀 3);

4. if 𝑀 3 ⊕ 𝑀 4 = 𝛼, the set (𝑀 0 , 𝑀 1 , 𝑀 2 , 𝑀 3) is a right quartet for the distinguisher.
This is summarized in Figure 3.4.

M 0 E M 2 E -1 C 0 C 2 δ M 1 E M 3 E -1 C 1 C 3 δ α α? Figure 3.4: Basic boomerang distinguisher.
Probability of a right quartet. The boomerang technique is particularly effective against constructions for which finding good short differentials is easier than finding one full differential of a comparable probability. More precisely, the targeted cipher 𝐸 is rewritten as the composition of two subciphers 𝐸 0 and 𝐸 1 , such that there exist good differentials on each subcipher:

Pr[𝛼 𝐸 0 𝛽] = 𝑝 and Pr[𝛾 𝐸 1 𝛿] = 𝑞, where 𝐸 = 𝐸 1 ∘ 𝐸 0 .
The initial pair of plaintexts 𝑀 0 and 𝑀 1 with a difference 𝛼 goes to difference 𝛽 through the upper half of the cipher with probability 𝑝. The attacker obtains the corresponding ciphertexts 𝐶 0 and 𝐶 1 , applies a difference 𝛿 to obtain ciphertexts 𝐶 2 = 𝐶 0 + 𝛿 and 𝐶 3 = 𝐶 1 + 𝛿, and decrypts them to plaintexts 𝑀 2 and 𝑀 3 . The choice of 𝛿 is such that the difference propagates to the difference 𝛾 in the decryption direction through the lower half of the cipher with probability 𝑞. For the right quartet of texts, difference 𝛾 is created in the middle of the cipher between partial decryptions of 𝐶 2 and 𝐶 3 which propagates to the difference 𝛼 in the plaintexts 𝑀 2 and 𝑀 3 . The probability of the total structure is 𝑝 2 𝑞 2 .

M 0 E 0 E 1 C 0 M 1 E 0 E 1 C 1 α β M 2 E -1 0 E -1 1 C 2 M 3 E -1 0 E -1 1 C 3 α β γ γ δ δ Figure 3.5: Basic boomerang distinguisher.
It was, however, observed that some dependencies can occur at the junction of the two subciphers, sometimes leading to some free rounds in the middle-these special cases are called ladder switch and S-box switch [BK09]-or incompatibilities leading to probability 0 [START_REF] Murphy | The return of the cryptographic boomerang[END_REF]. A more accurate estimation of the probability of the distinguisher was given by Dunkelman 𝑒𝑡 𝑎𝑙. in the so-called Sandwich attack [START_REF] Orr Dunkelman | A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony[END_REF], which separates the cipher into three parts-an upper part 𝐸 0 , a lower part 𝐸 1 and a middle part 𝐸 𝑚 , made of one S-box layer:

𝐸 = 𝐸 1 ∘ 𝐸 𝑚 ∘ 𝐸 0 .
If 𝐸 𝑚 satisfies the requested differential propagation among four texts with probability 𝑟, then the probability of the boomerang distinguisher is 𝑝 2 𝑞 2 𝑟, using the same notation as previously introduced.

At Eurocrypt 2018, Cid 𝑒𝑡 𝑎𝑙. introduced the Boomerang Connectivity Table (bct), a tool that applies to one S-Box to better estimate the probability of the middle round 𝐸 𝑚 of a boomerang distinguisher in a systematic way for spns [CHP + 18]. Their new table and the following works led to a refined understanding of boomerangs, and resulted in a series of improved attacks [BC18, LQSL19, ZDJ19, WP19, SQH19, LS19]. Chapter 7 presents a study that is complementary to Cid 𝑒𝑡 𝑎𝑙.'s work by introducing the fbct, the Feistel counterpart of the bct.

Variants of the boomerang attack have been proposed in several papers, including the amplified boomerang attack [START_REF] Kelsey | Amplified boomerang attacks against reduced-round MARS and Serpent[END_REF] and the rectangle attack [START_REF] Biham | The rectangle attack -rectangling the Serpent[END_REF]. Boomerang attacks can also be translated into the related-key setting [START_REF] Biham | Related-key boomerang and rectangle attacks[END_REF].

Interpolation attacks

The interpolation attack was introduced by Jakobsen and Knudsen [START_REF] Jakobsen | The interpolation attack on block ciphers[END_REF] in 1997 and applied to variants of Shark, a predecessor of Rijndael which was optimized against linear and differential attacks. It is effective in the analysis of ciphers for which the round function can be written as a simple algebraic function.

Assuming that the ciphertexts 𝑐 𝑖 can be expressed as a (possibly multivariate) polynomial 𝑝(𝑚 𝑖) of the messages 𝑚 𝑖 (or subwords of the messages) with a sufficiently small number of key-dependent coefficients, then such a polynomial can be efficiently reconstructed from a collection of plaintexts-ciphertexts pairs, using the Lagrange interpolation formula. Definition 3.12 (Lagrange interpolation formula). Let 𝒦 be a field. Given 2𝑑 elements 𝑥 0 , . . . , 𝑥 𝑑-1 , 𝑦 0 , . . . , 𝑦 𝑑-1 ∈ 𝒦, where the 𝑥 𝑖 's are distinct, define:

𝑓 (𝑥) = 𝑑-1 ∑︁ 𝑖=0 𝑦 𝑖 ∏︁ 1≤𝑗≤𝑓, 𝑗̸ =𝑖 𝑥 -𝑥 𝑗 𝑥 𝑖 -𝑥 𝑗 , then 𝑓 (𝑥) is the only polynomial over 𝒦 of degree at most 𝑑 -1 such that 𝑓 (𝑥 𝑖) = 𝑦 𝑖 for 𝑖 = 0 . . . 𝑑 -1.
As a result, in the simplest form of the attack, a representation equivalent to the cipher with the secret key is constructed, which allows an attacker to encrypt any plaintext message even though the exact value of the key has not been determined.

A variant of the attack that can be more efficient consists of combining it with a meet-in-themiddle approach to reduce the number of plaintexts needed. The attack can also be extended to a key recovery attack: the correctness of the guess on a round key is simply checked by applying the interpolation step on the remaining rounds. Finally, while the classical interpolation attack assumes that the polynomials exist with probability 1, Jakobsen presented a probabilistic variant in [START_REF] Jakobsen | Cryptanalysis of block ciphers with probabilistic non-linear relations of low degree[END_REF].

Structural Attacks

As opposed to statistical attacks, which exploit the limitations of the nonlinear components of cryptosystem, structural attacks tend to focus more on its diffusion properties.

Integral attacks

Integral cryptanalysis, also known as the Square attack or the saturation attack [START_REF] Lucks | The saturation attack -a bait for Twofish[END_REF], was originally designed by Lars Knudsen and first presented together with the Square cipher [START_REF] Daemen | The block cipher Square[END_REF], which served as basis for Rijndael.

Integral cryptanalysis uses sets of chosen plaintexts with a fixed part and another that varies through all possibilities. Typically, for an 𝑛-bit block cipher, these sets contain 2 𝑛 messages that only differ in one block. The xor of these 2 𝑛 values necessarily sums up to zero and the sum of the corresponding ciphertexts can leak information about the cipher's operation.

Inside a set, the blocks of the same index can reach four states, listed below.

-𝒫 (permutation): the block can take all possible values; -𝒞 (constant): the block has a fixed value;

-𝒮 (sum): the sum of all blocks equals zero; if a block reaches a state 𝒫 or 𝒞, the sum also equals zero, thus 𝒮 is only used in cases where 𝒫 or 𝒞 are unknown;

-' ?': nothing can be said about the block.

A bijective function preserves the 𝒫 and 𝒞 states, however, 𝒮 becomes ' ?'. 𝒫 ⊕ 𝒞 remains 𝒫 since all elements of the block in state 𝒫 are simply xored with the same constants. On the other

Structural Attacks

hand, 𝒫 ⊕ 𝒫 does not automatically yield 𝒫, however, 𝒮 is preserved because of the linearity of the sum. Integral attacks can be extended to higher order integrals. An integral of order ℓ requires 2 𝑛ℓ plaintexts that take all possible 2 𝑛 values on ℓ blocks. Zhang 𝑒𝑡 𝑎𝑙. [ZSW + 12] introduced a generic method to construct integral distinguishers for block ciphers.

Division property. Todo further investigated integral cryptanalysis and proposed the so-called division property [START_REF] Todo | Structural evaluation by generalized integral property[END_REF] at Eurocrypt 2015, a more fine-grained technique to find integral characteristics than can be seen as a generalization of both integral and higher-order differential properties. The same author later applied this tool to mount the first theoretical attack on the full version of Misty1 [START_REF] Todo | Integral cryptanalysis on full MISTY1[END_REF]. The division property exploits the fact that some components of a block cipher may be of a lower degree, depending on the inputs. More precisely, it can be used to predict wether the monomials of the Algebraic Normal Form (anf) of a block cipher sum up to zero when restricted to a specific set of plaintexts. Let 𝑢 = (𝑢 1 , . . . , 𝑢 𝑛) be a vector of F 𝑛 2 and let 𝑥 𝑢 denote the coordinate product

𝑥 = (𝑥 1 , . . . , 𝑥 𝑛) ↦ → 𝑛 ∏︁ 𝑖=0 𝑥 𝑢 𝑖 𝑖 ,
then a set 𝑋 ⊆ F 𝑛 2 has the division property 𝒟 𝑛 𝑘 , for some 1 ≤ 𝑘 ≤ 𝑛, if the sum over all vectors 𝑥 in 𝑋 of the product 𝑥 𝑢 equals 0, for all vectors 𝑢 with Hamming weight strictly smaller than 𝑘, 𝑖.𝑒. ⨁︁ 𝑥∈𝑋 𝑥 𝑢 = 0 for all 𝑢 ∈ F 𝑛 2 such that 𝑤𝑡(𝑢) < 𝑘.

In short, when encrypting a set of plaintexts with a defined structure-𝑒.𝑔., some bits can be fixed to a constant value-some bits of the resulting ciphertexts might be balanced, 𝑖.𝑒. they sum up to zero with probability 1 when going through the entire set of ciphertexts. The division property is thus a means to track which bits of the plaintext should be fixed in order to obtain such an output. This technique has sparked much interest from the community, leading to many follow-up results [ZW15, TM16, BC16, XZBL16, SWW17, EKKT19, DFL19].

Impossible differential attacks

Impossible differential attacks were first described by Knudsen in the aes competition proposal Deal [Knu98] but they were formalized by Biham, Biryukov and Shamir in [START_REF] Biham | Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials[END_REF] at Crypto 1999. This type of attack is based on the fact that some differentials cannot be generated by a permutation and thus, have a zero probability: if for one guessed value of a key, the attacker is able to exhibit a pair of messages that satisfies this impossible differential, then the key can be discarded, therefore reducing the keyspace.

In order to find an impossible differential characteristic, the authors of [BBS99] introduced the miss-in-the-middle method, which consists of finding a differential with probability 1 on each half of the cipher but that cannot occur together 𝑖.𝑒 the output difference of the first one cannot transition to the input difference of the second one. This method was refined in subsequent papers [KHS + 03, LWLG09].

Automatic tools

Studying the security of a cryptographic primitive can be a tedious task and several methods have been investigated in attempts to automate the process [BN10, BDF11, MWGP11, SHW + 14, BV14, LWZ16, DF16, GLMS18, SGL + 17, HW19]. These include Mixed-Integer Linear Programming (milp), Boolean Satisfiability (sat) and Constraint Programming (cp). Such generic solvers are an appealing alternative to dedicated approaches as a cryptanalytic problem simply needs be stated as a model-by means of linear inequalities for milp, Boolean clauses for sat, and constraints for cp-which is then automatically solved. The three aforementioned methods have been used to derive differential bounds and find new characteristics for Skinny; the results are discussed in Chapter 6.

Mixed-Integer Linear Programming (milp)

Mixed-Integer Linear Programming was first adopted by Borghoff et al. to study Bivium, a simplified version of Trivium [BKS09], and has since been used to tackle many symmetric cryptanalysis problems [MWGP11, SHW + 14, XZBL16, FWG + 16, SWLW16, ZR17, ST17]. For instance, Sun et al.applied milp to find optimal differential characteristics against bit-oriented block ciphers such as Simon, Present or LBlock [SHW + 14]. In [START_REF] Sasaki | New impossible differential search tool from design and cryptanalysis aspects -revealing structural properties of several ciphers[END_REF], this approach was used to search for impossible differentials, and the designers Skinny [BJK + 16] relied on this tool as well to provide security bounds.

Milp models can only contain linear inequalities and describing Boolean operations can be complicated. The problems are first seen as general linear programming problems over the real numbers, then by Branch and Cut, illegal branches are ruled then the solutions are limited to 0-1 integers. Consequently, nonlinear operators need to be transformed into sets of linear inequalities. However, the resulting milp model may always not scale well, as the performance depends heavily on the background and structure of the underlying problem. For instance, in [AST + 17], authors introduce a milp model of the nonlinear part of a block cipher to find differential trails. Some of their results on Skinny-128 required about 15 days to find the characteristics.

Boolean Satisfiability problem (sat)

The Boolean Satisfiability problem (sat) considers whether there exists a valid assignment to Boolean variables satisfying a given set of Boolean clauses. Sat and Satisfiability Modulo Theories (smt) can be effective in solving cryptanalysis problems. For example, Mouha and Preneel used a sat solver to search for optimal differential characteristics for arx ciphers [START_REF] Mouha | A proof that the ARX cipher salsa20 is secure against differential cryptanalysis[END_REF]. In [START_REF] Sun | Automatic search of bit-based division property for ARX ciphers and word-based division property[END_REF], Sun et al. proposed a sat/smt model to search for division properties on arx and word-based block ciphers, and in particular, they showed that this approached scaled better than milp when applied to Shacal-2. In [START_REF] Kölbl | Observations on the SIMON block cipher family[END_REF] the authors derived sat/smt models to study the differential and linear behaviors of Simon-like round functions. Moreover, they computed optimal differential and linear characteristics for Simon using the CryptoMiniSat [SNC09] solver-a solver that is well-suited for cryptanalysis problems since xor operations can be easily modeled. Similarly to milp, nonlinear operations cannot be described in a straightforward manner by means of clauses. In [START_REF] Lafitte | Cryptosat: a tool for sat-based cryptanalysis[END_REF], Lafitte proposed a method to encode a relation associated with a nonlinear operation into a set of clauses; Sun et al. [START_REF] Sun | More accurate differential properties of LED64 and Midori64[END_REF] were then able to reduce the number of clauses for this kind of encoding by using a similar approach as in [AST + 17].

Constraint Programming (cp)

Cp models have been used in [LCM + 17] to model algebraic side-channel attacks on the Aes and in [RSM + 11] to design the nonlinear part of a block cipher with good properties. Regarding differential cryptanalysis, Gérault et al. proposed cp models to find related-key differential characteristics for the Aes [GMS16, GLMS18], Midori [START_REF] Gérault | Related-key cryptanalysis of midori[END_REF], and Skinny [SGL + 17], showing that cp solvers can perform better than dedicated approaches on such problems. The models for the Aes were refined in [START_REF] Gérault | Computing AES related-key differential characteristics with constraint programming[END_REF]: the authors added new constraints to detect inconsistencies sooner and developed a new two-step solving process that differs from the one previously used in [START_REF] Fouque | Structural evaluation of AES and chosen-key distinguisher of 9-round AES-128[END_REF][START_REF] Biryukov | Automatic search for related-key differential characteristics in byte-oriented block ciphers: Application to AES, Camellia, Khazad and others[END_REF][START_REF] Gérault | Constraint programming models for chosen key differential cryptanalysis[END_REF]. Thanks to these improvements, optimal related-key differential characteristics were computed for all instance of the Aes in a few hours, while it took more than two months of cpu time to solve the hardest instance with the models from [START_REF] Gérault | Revisiting AES related-key differential attacks with constraint programming[END_REF].

4

Lilliput-AE: a nist Proposal All hail Lilliput! All hail Lilliput!

General Edward Edwardian

This chapter presents Lilliput-AE [ABC + 18], a new Authenticated Encryption with Associated Data (aead) scheme that uses as primitive the Lilliput-TBC tweakable block cipher-which is itself based on the classical Lilliput block cipher presented in [START_REF] Thierry | Extended generalized feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput[END_REF] (see Section 2.4.4), with a modified tweakey schedule. Lilliput-AE is the result of a collaborative effort with Alexandre Adomnicai, Thierry Berger, Christophe Clavier, Julien Francq, Virginie Lallemand, Kévin Le Gouguec, Marine Minier, Léo Reynaud and Gaël Thomas as part of the fui 23 Paclido1 project, following nist's call for algorithms to be considered for lightweight cryptographic standards2 . It was submitted to the standardization process in February 2019 and selected as Round 1 candidate in April 2019. My contributions to this proposal concerned some design aspects. To be more precise, I participated the design of the tweakey schedule and the choice of the modes. Even though our proposal is now based on the Lilliput block cipher, earlier in the design process, our intention was to design our own primitive, while taking inspiration from Lilliput. As such, I was tasked with studying other lightweight constructions of Extended Generalized Feistel Networks (egfns)-some of this work is presented in Chapter 8 of this thesis. For the sake of completeness, implementation results are still presented in this chapter.

Introduction

Lilliput-AE defines two authenticated encryption modes: Lilliput-I and Lilliput-II based respectively on Θcb3 [KR11b] and sct-2, two modes that are used in Deoxys [START_REF] Jean | [END_REF]. The Θcb3 mode is a nonce-respecting mode whereas sct-2 is a nonce-misuse resistant mode. From those two authenticated encryption modes-Lilliput-I and Lilliput-II-several sets of parameters are derived. These parameters conform with the Nist Submission Requirements and Evaluation Criteria for the Lightweight Cryptography Standardization Process. The primary member is Lilliput-II-128.

As shown in the next sections, Lilliput-AE is an authenticated encryption scheme that provides full 128-bit, 192-bit or 256-bit security level. It performs well in software and also in hardware. Moreover, the underlying block cipher Lilliput has been extensively studied by the cryptographic community [ST18, MNV18, ST16] and so far, no weakness has been exhibited for the full version of Lilliput.

We initially attempted to find lighter egfn constructions [START_REF] Thierry | Extended generalized Feistel networks using matrix representation[END_REF] inspired by Lilliput. Some of the results are presented in Chapter 8. While some schemes with a smaller xor count could be instantiated, it turns out that the original structure of Lilliput still provided the best security bounds. Moreover, Lilliput is a well-studied block cipher and thus, extending it to an 8-bit oriented version and combining it with a mode with good performances and with reinforced security seemed like a good answer regarding both efficiency and security to the expectations of the nist standardization process.

Main features of Lilliput-AE. From our point of view, Lilliput-AE brings many advantages:

• It is based on building schemes (authenticated encryption modes, encryption process) that have been significantly studied by the cryptographic community. Moreover, the security of these blocks has been strengthened by modifiying some parameters (e.g., more secure S-box and tweakey schedule).

• Its primary member is a nonce-misuse resistant mode, which allows an easier management of cryptographic components deployed on the field.

• Its software implementations on 8-bit (e.g., Atmel avr atmega128 microcontrollers) and 16bit (e.g., Texas Instruments msp430f1611 microcontrollers) platforms are very competitive.

In terms of execution time (which relates to power consumption), and for 128-bit keys, Lilliput-AE is comparable to lightweight winners of the Caesar competition [CAE], Acorn and Ascon, on 8-bit platforms, and is significantly faster on 16-bit platforms.

• Its hardware implementations on fpga platforms (e.g., Xilinx Spartan-6) are more compact than Acorn and Ascon. Moreover, straightforward asic implementations of Lilliput-AE lead to at most around 5000 Gate Equivalents (ges) for its maximum parameter sizes. Serial implementations will decrease this figure down to 4000 ges or 3000 ges depending on the parameter sizes, which is equivalent to serial implementations of plain Aes without authentication mode.

• Some degrees of freedom are given to the implementers of Lilliput-AE: for some operations (e.g., in the tweakey schedule), they can trade code size for ram usage and execution time. Some operations can also be tabulated to accelerate their computation.

• The design facilitates side-channel protection: in particular, the S-box of Lilliput-AE has been chosen to optimize its cost in threshold implementations.

• A first fault injection analysis of Lilliput-AE shows that faulting 7 rounds or more from the end of the algorithm requires injecting too many faults (say millions) to be practical. A cautious recommendation is then to protect the last 7 rounds of Lilliput-AE against fault injection, which leads to a 22% execution time overhead if a straightforward duplication countermeasure is implemented.

Organization of the chapter. In Section 4.2, we provide the complete specifications of Lilliput-AE including the two considered modes of authenticated encryption with associated data Lilliput-I and Lilliput-II (Section 4.2.2) and the tweakable block cipher Lilliput-TBC with its particular tweakey schedule (Section 4.2.3). In Section 4.3, we detail our design choices: first for the modes (Section 4.3.1) and second for the tweakable block cipher (Section 4.3.2). We also perform an extensive security analysis of these two parts in Section 4.3.3 and in Section 4.3.4. In Section 4.4, we give the implementation results we obtain for both software platforms and hardware platforms. Finally, in Section 4.6, we address the changes made between the version that was originally submitted to nist and the one that is presented in this thesis, Lilliput-AE v1.1.

Specifications

This section presents the full specifications of our new Authenticated Encryption with Associated Data (aead) scheme Lilliput-AE.

After introducing notations and the sets of parameters, we introduce in Section 4.2.2 the two particular authenticated encryption modes: Lilliput-I based on the nonce-respecting mode Θcb3 and Lilliput-II based on the nonce-misuse resistant mode sct-2.

Then, in Section 4.2.3, we introduce our tweakable block cipher Lilliput-TBC used in both Lilliput-I and Lilliput-II.

Notations. Let us introduce the following notations: 𝐾 will represent the key of length 𝑘 bits, 𝑃 the plaintext of length 𝑛 bits, 𝑇 the tweak of length 𝑡 bits and we denote by 𝐸 𝐾 (𝑇, 𝑃) the ciphering process using the tweakable block cipher 𝐸 𝑇 𝐾 . The concatenation operation at binary level is represented by || and 𝑝𝑎𝑑10 * is the function that applies the 10 * padding on 𝑛 bits, i.e. 𝑝𝑎𝑑10 * (𝑋) = 𝑋||1||0 𝑛-|𝑋|-1 when |𝑋| < 𝑛. For an empty string 𝜖, the 10 * padding will not add any bit: 𝑝𝑎𝑑10 * (𝜖) = 𝜖. The truncation of the word 𝑋 to the first 𝑖 bits is given by ⌈𝑋⌉ 𝑖 , and the truncation to the last 𝑖 bits by ⌊𝑋⌋ 𝑖 . To emphasize a string 𝑋 is of length 𝑛, we may write it 𝑋 (𝑛) . We denote by ≫ 𝑖 and ≪ 𝑖 respectively the right and left shifts of 𝑖 bits, and by ≫ 𝑖 and ≪ 𝑖 the right and left rotations of 𝑖 bits.

We will also denote by 𝑆 ≫𝑖 and 𝑆 ≪𝑖 the binary matrices of size 8 × 8 corresponding to a right shift by 𝑖 bits positions or a left shift by 𝑖 bits positions respectively. More precisely, and for example,

𝑆 ≫1 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ and 𝑆 ≪1 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
The encryption part ℰ takes as input a variable-length plaintext 𝑀 (with 𝑚 = |𝑀 | bits), a variable-length associated data 𝐴 (with 𝑎 = |𝐴| bits), a fixed-length public nonce 𝑁 and a 𝑘-bit key 𝐾 (we deliberately used the same letter 𝐾 to represent the key in the authenticated encryption scheme and the one in the tweakable block cipher, since they always refer to the same object). It outputs an 𝑚-bit ciphertext 𝐶 and a 𝜏 -bit tag, denoted tag (with

𝜏 ∈ [0, • • • , 𝑛]) i.e. (𝐶, tag) = ℰ 𝐾 (𝑁, 𝐴, 𝑀).
The verification/decryption part 𝒟 takes as input a variable-length ciphertext 𝐶 (with

𝑚 = |𝐶|), a 𝜏 -bit tag, denoted tag (with 𝜏 ∈ [0, • • • , 𝑛]
), a variable-length associated data 𝐴 (with 𝑎 = |𝐴|), a fixed-length public nonce 𝑁 and a 𝑘-bit key 𝐾. It outputs either an error string ⊥ to signify that the verification has failed, or an 𝑚-bit string 𝑀 = 𝒟 𝐾 (𝑁, 𝐴, 𝐶, tag) when the tag is valid.

The maximum message length (in 𝑛-bit blocks) is denoted 𝑚𝑎𝑥 𝑙 and the maximum number of messages that can be handled with the same key is denoted 𝑚𝑎𝑥 𝑚 (the same limitation applies to the associated data material).

Recommended Parameters

We derive our scheme Lilliput-AE into two authenticated encryption modes: Lilliput-I and Lilliput-II. Lilliput-I is a nonce-respecting mode corresponding with Θcb3 and Lilliput-II is a nonce-misuse resistant mode corresponding with sct-2.

The recommended parameter sets for all variants of these modes is given in Table 4.1. These parameters have been chosen according to the internal tweakable block cipher Lilliput-TBC. For both variants, 𝑚𝑎𝑥 𝑚 = 2 |𝑁 | = 2 120 bits. However, 𝑚𝑎𝑥 𝑙 is dependent on the tweak input and thus differs from one variant to the other:

Name

• in the encryption part of Lilliput-I, the tweak is a concatenation of a 4-bit prefix, the nonce 𝑁 and the index of the message block, thus 𝑚𝑎𝑥 𝑙 = 2 𝑡-4-|𝑁 | blocks.

• in the encryption part of Lilliput-II, the tweak is a concatenation of a 4-bit prefix and the index of the message block, thus 𝑚𝑎𝑥 𝑙 = 2 𝑡-4 blocks.

As a result, the maximum message length in bytes is 2 72 bytes for Lilliput-I and 2 128 bytes for Lilliput-II.

The Lilliput-AE Authenticated Encryption scheme

In this section, we describe the authenticated encryption modes that are used in our proposal Lilliput-AE. These mode variants are similar to the two modes described in Deoxys [JNPS16]:

• Lilliput-I (Section 4.2.2): in this nonce-respecting variant, the same nonce 𝑁 is expected to never be used twice with the same key for encryption. ℰ 𝐼 denotes the encryption part and 𝒟 𝐼 the verification/decryption part.

• Lilliput-II (Section 4.2.2): in this variant, a nonce 𝑁 may be reused with the same key for encryption. ℰ 𝐼𝐼 denotes the encryption part and 𝒟 𝐼𝐼 the verification/decryption part.

As stated previously, 4-bit prefixes are used for the tweak input to separate the various types of encryption/authentication blocks, akin to what has been done in Deoxys [START_REF] Jean | [END_REF].

Nonce-Respecting Mode: Θcb3

This scheme follows the Θcb3 framework [START_REF] Krovetz | The software performance of authenticatedencryption modes[END_REF] and therefore directly benefits from this framework's proof of security regarding authentication and privacy. In this mode, the tweak length is 192 bits. The encryption algorithm ℰ 𝐼 is given in Algorithm 1 while the verification/decryption algorithm 𝒟 𝐼 is given in Algorithm 2.

If the length of the associated data is not a multiple of the block size, the final block is padded with the 10 * padding, as depicted in

* | < 𝑛 Auth ← 0 (𝑛) for 𝑖 = 0 to 𝑙 𝑎 -1 do Auth ← Auth ⊕𝐸 𝐾 (0010||𝑖, 𝐴 𝑖) end if 𝐴 * ̸ = 𝜖 then Auth ← Auth ⊕𝐸 𝐾 (0110||𝑙 𝑎 , 𝑝𝑎𝑑10 * (𝐴 *)) end /* Message */ 𝑀 0 || • • • ||𝑀 𝑙-1 ||𝑀 * ← 𝑀 where each |𝑀 𝑗 | = 𝑛 and |𝑀 * | < 𝑛 Checksum ← 0 (𝑛) for 𝑗 = 0 to 𝑙 -1 do Checksum ← Checksum ⊕𝑀 𝑗 𝐶 𝑗 ← 𝐸 𝐾 (0000||𝑁 ||𝑗, 𝑀 𝑗) end if 𝑀 * = 𝜖 then Final ← 𝐸 𝐾 (0001||𝑁 ||𝑙, Checksum) 𝐶 * ← 𝜖 else Checksum ← Checksum ⊕𝑝𝑎𝑑10 * (𝑀 *) Pad ← 𝐸 𝐾 (0100||𝑁 ||𝑙, 0 (𝑛)) 𝐶 * ← 𝑀 * ⊕ ⌈Pad⌉ |𝑀*| Final ← 𝐸 𝐾 (0101||𝑁 ||𝑙 + 1, Checksum) end /* Tag generation */ tag ← Final ⊕ Auth return (𝐶 0 || • • • ||𝐶 𝑙-1 ||𝐶 * , tag)

Nonce-Misuse Resistant Mode

This scheme is the variant of sct introduced in Deoxys [JNPS16]: sct-2. In this mode, the tweak length is 128 bits while the size of the nonce 𝑁 remains unchanged and is 120 bits. The

Specifications

Algorithm 2 The verification/decryption algorithm 𝒟 I 𝐾 (𝑁, 𝐴, 𝐶, tag). In the tweak inputs, the value 𝑁 is encoded on 120 bits, the integer values 𝑗 and 𝑙 are encoded on 68 bits, while the integer values 𝑖 and 𝑙 𝑎 are encoded on 188 bits.

/* Associated data */ 𝐴 0 || • • • ||𝐴 𝑙𝑎-1 ||𝐴 * ← 𝐴 where each |𝐴 𝑖 | = 𝑛 and |𝐴 * | < 𝑛 Auth ← 0 (𝑛) for 𝑖 = 0 to 𝑙 𝑎 -1 do Auth ← Auth ⊕𝐸 𝐾 (0010||𝑖, 𝐴 𝑖) end if 𝐴 * ̸ = 𝜖 then Auth ← Auth ⊕𝐸 𝐾 (0110||𝑙 𝑎 , 𝑝𝑎𝑑10 * (𝐴 *)) end /* Ciphertext */ 𝐶 0 || • • • ||𝐶 𝑙-1 ||𝐶 * ← 𝐶 where each |𝐶 𝑗 | = 𝑛 and |𝐶 * | < 𝑛 Checksum ← 0 (𝑛) for 𝑗 = 0 to 𝑙 -1 do 𝑀 𝑗 ← 𝐷 𝐾 (0000||𝑁 ||𝑗, 𝐶 𝑗) Checksum ← Checksum ⊕𝑀 𝑗 end if 𝐶 * = 𝜖 then Final ← 𝐸 𝐾 (0001||𝑁 ||𝑙, Checksum) 𝑀 * ← 𝜖 else Pad ← 𝐸 𝐾 (0100||𝑁 ||𝑙, 0 (𝑛)) 𝑀 * ← 𝐶 * ⊕ ⌈Pad⌉ |𝐶*| Checksum ← Checksum ⊕𝑝𝑎𝑑10 * (𝑀 *) Final ← 𝐸 𝐾 (0101||𝑁 ||𝑙 + 1, Checksum) end /* Tag generation */ tag ′ ← Final ⊕ Auth if tag ′ = tag then return (𝑀 0 || • • • ||𝑀 𝑙-1 ||𝑀 *) else
return ⊥ end encryption algorithm ℰ 𝐼𝐼 is given in Algorithm 3 while the verification/decryption algorithm 𝒟 𝐼𝐼 is given in Algorithm 4.

The associated data is processed as in the previous variant, as depicted in

The Lilliput-TBC Tweakable Block Cipher

In this section we present our dedicated lightweight Tweakable Block Cipher Lilliput-TBC that is based on the egfn [BMT14] described in Figure 4.8. Lilliput-TBC is composed of 6 variants depending on the key lengths (possible key lengths are equal to 128, 192 and 256 bits) and on the tweak lengths (possible tweak lengths are equal to 128 or 192 bits). The different parameters for those variants are specified in Table 4.2. Lilliput-TBC-I for the three possible key lengths and a tweak length equal to 192 bits will be used in the mode Lilliput-I and Lilliput-TBC-II for the three possible key lengths and a tweak length equal to 128 bits will be used in the mode Lilliput-II.

𝑀 0 𝐸 0||0 𝐾 Auth 𝑀 𝑙-1 𝐸 0||𝑙-1 𝐾 𝐸 1||0 (4) ||𝑁 𝐾 tag (a) Without padding. 𝑀 0 𝐸 0||0 𝐾 Auth 𝑀 𝑙-1 𝐸 0||𝑙-1 𝐾 𝑀 * 10 * 𝐸 4||𝑙 𝐾 𝐸 1||0 (
0 (8) ||𝑁 𝐸 1||tag 𝐾 𝐶 0 𝑀 0 0 (8) ||𝑁 𝐸 1||tag⊕(𝑙-1) 𝐾 𝐶 𝑙-1 𝑀 𝑙-1 (a) Without padding. 0 (8) ||𝑁 𝐸 1||tag 𝐾 𝐶 0 𝑀 0 0 (8) ||𝑁 𝐸 1||tag⊕(𝑙-1) 𝐾 𝐶 𝑙-1 𝑀 𝑙-1 0 (8) ||𝑁 𝐸 1||tag⊕𝑙 𝐾 𝐶 * 𝑀 * (b) With padding.

Name

= 𝜏). /* Associated data */ 𝐴 0 || • • • ||𝐴 𝑙𝑎-1 ||𝐴 * ← 𝐴 where each |𝐴 𝑖 | = 𝑛 and |𝐴 * | < 𝑛 Auth ← 0 (𝑛) for 𝑖 = 0 to 𝑙 𝑎 -1 do Auth ← Auth ⊕𝐸 𝐾 (0010||𝑖, 𝐴 𝑖) end if 𝐴 * ̸ = 𝜖 then Auth ← Auth ⊕𝐸 𝐾 (0110||𝑙 𝑎 , 𝑝𝑎𝑑10 * (𝐴 *)) end /* Message authentication and tag generation */ 𝑀 0 || • • • ||𝑀 𝑙-1 ||𝑀 * ← 𝑀 where each |𝑀 𝑗 | = 𝑛 and |𝑀 * | < 𝑛 tag ← Auth for 𝑗 = 0 to 𝑙 -1 do tag ← tag ⊕ 𝐸 𝐾 (0000||𝑗, 𝑀 𝑗) end if 𝑀 * ̸ = 𝜖 then tag ← tag ⊕ 𝐸 𝐾 (0100||𝑙, 𝑝𝑎𝑑10 * (𝑀 *)) end tag ← 𝐸 𝐾 (0001||0 4 ||𝑁, tag) /* Message encryption */ for 𝑗 = 0 to 𝑙 -1 do 𝐶 𝑗 ← 𝑀 𝑗 ⊕ 𝐸 𝐾 (1||tag ⊕ 𝑗, 0 8 ||𝑁) end if 𝑀 * ̸ = 𝜖 then 𝐶 * ← 𝑀 * ⊕ ⌈𝐸 𝐾 (1||tag ⊕ 𝑙, 0 8 ||𝑁)⌉ |𝑀*| else 𝐶 * ← 𝜖 end return (𝐶 0 || • • • ||𝐶 𝑙-1 ||𝐶 * , tag)

Encryption Process

Lilliput-TBC is a 128-bit tweakable block cipher with key sizes of 128, 192 or 256 bits and tweak sizes of 128 or 192 bits. The whole encryption process is depicted in Figure 4.9. As previously explained, Lilliput-TBC uses an Extended Generalized Feistel Network (egfn) with a 128-bit state and a round function acting at byte level. The state 𝑋 is seen as 16 bytes, denoted 𝑋 15 , • • • , 𝑋 0 . In its 128-bit key version, the cipher is composed of 𝑟 = 32 rounds, i.e. 32 repetitions of a single egfn called OneRoundEGFN, depicted in Figure 4.8. Each 𝐹 𝑗 for 𝑗 from 0 to 7 is defined as

𝐹 𝑗 = 𝑆(𝑋 𝑗 ⊕ 𝑅𝑇 𝐾 𝑖 𝑗)
where 𝑆 is an S-box that acts at byte level and 𝑅𝑇 𝐾 𝑖 𝑗 is the byte of position 𝑗 of the 64-bit subtweakey 𝑅𝑇 𝐾 𝑖 of round 𝑖. The 32 64-bit subtweakeys 𝑅𝑇 𝐾 𝑖 are generated from the master key and the tweak using the tweakey schedule.

In more details, the round function denoted OneRoundEGFN in Figure 4.9 is composed of a layer of non linear components called NonLinearLayer for confusion; a new layer called LinearLayer in [START_REF] Thierry | Extended generalized Feistel networks using matrix representation[END_REF] that represent a linear layer made of linear components applied in a Feistel way; and a block-wise permutation called PermutationLayer for diffusion. All three layers act at byte level on the egfn state 𝑋 and together constitute one iteration of the egfn, as shown in Figure 4.8.

Note that with this new layer LinearLayer, it is possible to shuffle blocks better than what was possible using the block-wise permutation only of a classical Feistel scheme, while preserving the self-invertibility of the scheme.

Algorithm 4

The verification/decryption algorithm 𝒟 II 𝐾 (𝑁, 𝐴, 𝐶, tag). In the tweak inputs, the integer values 𝑖, 𝑗, 𝑙 and 𝑙 𝑎 are encoded on 124 bits. Moreover, tag ⊕ 𝑗 values are encoded on 127 bits (the most significant bit is truncated since |tag|

= 𝜏). /* Message decryption */ 𝐶 0 || • • • ||𝐶 𝑙-1 ||𝐶 * ← 𝐶 where each |𝐶 𝑗 | = 𝑛 and |𝐶 * | < 𝑛 for 𝑗 = 0 to 𝑙 -1 do 𝑀 𝑗 ← 𝐶 𝑗 ⊕ 𝐸 𝐾 (1||tag ⊕ 𝑗, 0 8 ||𝑁) end if 𝐶 * ̸ = 𝜖 then 𝑀 * ← 𝐶 * ⊕ ⌈𝐸 𝐾 (1||tag ⊕ 𝑙, 0 8 ||𝑁)⌉ |𝐶*| else 𝑀 * ← 𝜖 end /* Associated data */ 𝐴 0 || • • • ||𝐴 𝑙𝑎-1 ||𝐴 * ← 𝐴 where each |𝐴 𝑖 | = 𝑛 and |𝐴 * | < 𝑛 Auth ← 0 (𝑛) for 𝑖 = 0 to 𝑙 𝑎 -1 do Auth ← Auth ⊕𝐸 𝐾 (0010||𝑖, 𝐴 𝑖) end if 𝐴 * ̸ = 𝜖 then Auth ← Auth ⊕𝐸 𝐾 (0110||𝑙 𝑎 , 𝑝𝑎𝑑10 * (𝐴 *)) end /* Message authentication and tag generation */ 𝑀 0 || • • • ||𝑀 𝑙-1 ||𝑀 * ← 𝑀 where each |𝑀 𝑗 | = 𝑛 and |𝑀 * | < 𝑛 tag ′ ← Auth for 𝑗 = 0 to 𝑙 -1 do tag ′ ← tag ′ ⊕ 𝐸 𝐾 (0000||𝑗, 𝑀 𝑗) end if 𝑀 * ̸ = 𝜖 then tag ′ ← tag ′ ⊕ 𝐸 𝐾 (0100||𝑙, 𝑝𝑎𝑑10 * (𝑀 *)) end tag ′ ← 𝐸 𝐾 (0001||0 4 ||𝑁, tag ′) /* Tag verification */ if tag ′ = tag then return (𝑀 0 || • • • ||𝑀 𝑙-1 ||𝑀 *) else return ⊥ end
Note that the last round skips the PermutationLayer for involution reasons. For the 192-bit and 256-bit key versions, the number of rounds 𝑟 is 36 and 42 respectively.

Overview of the egfn round function

The particular egfn we use in Lilliput-TBC with 𝑘 = 16 blocks is depicted in Figure 4.8.

In more details, OneRoundEGFN is composed of:

• NonLinearLayer: It is the non-linear part of the egfn and is made of 8 parallel updates of the egfn state. Each 𝐹 𝑗 for 𝑗 from 0 to 7 is defined as

𝐹 𝑗 = 𝑆(𝑋 𝑗 ⊕ 𝑅𝑇 𝐾 𝑖 𝑗)
where 𝑆 is an S-box that acts at byte level given in Table 4.4 and 𝑅𝑇 𝐾 𝑖 𝑗 is the byte of position 𝑗 of the 64-bit subtweakey 𝑅𝑇 𝐾 𝑖 of round 𝑖.

• LinearLayer: It aims at providing quick diffusion between bytes and consists in xoring some bytes to some other bytes. More precisely, as depicted in Figure

𝐹 7 𝐹 6 𝐹 5 𝐹 4 𝐹 3 𝐹 2 𝐹 1 𝐹 0 Figure 4.8:
The egfn used in Lilliput-TBC that reaches full diffusion in 𝑑 = 4 rounds. The permutation 𝜋 is given as a product of cycles and can also be found in Table 4.3.

• PermutationLayer: It consists in applying the permutation 𝜋 given in Table 4.3 to the bytes.

The permutation 𝜋 used in PermutationLayer The permutation 𝜋 is given in

∀𝑖 ∈ {1, • • • , 𝑟 -2}, ∀𝑗{0, • • • , 15} ∈ 𝑋 𝑖 𝜋(𝑗) = 𝑌 𝑖-1 𝑗 .

Decryption Process

As Lilliput-TBC is a Feistel network, decryption is quite analogous to encryption but uses the inverse block permutation 𝜋 -1 given in Table 4.3 and the subkeys in the reverse order. Note that the tweakey process could be inverted at low cost.

Tweakey Schedule

An adapted version of the TWEAKEY framework [START_REF] Jean | Tweaks and keys for block ciphers: The TWEAKEY framework[END_REF] was used as a building block for the scheduling of the key and the tweak. More specifically, we used a variant of the STK construction, where the key and the tweak inputs are handled almost the same way. The proposed version is depicted in Figure 4.14. The tweakey schedule produces the 𝑟 = 32 (36 or 42 respectively) 64-bit subtweakeys 𝑅𝑇 𝐾 0 to 𝑅𝑇 𝐾 𝑟-1 from the 128-bit (192 or 256 respectively) master key 𝐾 and the tweak 𝑇 that is 128 bits long when Lilliput-TBC-II is used and 192 bits long tweak when Lilliput-TBC-I is used.

𝛼 0 𝛼 1 . . . 𝛼 𝑝-1 𝑇 𝐾 0 XOR 𝐶 0 𝑓 𝑅𝑇 𝐾 0 𝛼 0 𝛼 1 . . . 𝛼 𝑝-1 XOR 𝐶 1 𝑓 𝑀 = 𝑠 0 𝑅𝑇 𝐾 1 𝛼 0 𝛼 1 . . . 𝛼 𝑝-1 XOR 𝐶 2 𝑓 𝑅𝑇 𝐾 2 XOR 𝐶 𝑟-2 𝑓 𝑅𝑇 𝐾 𝑟-2 𝛼 0 𝛼 1 . . . 𝛼 𝑝-1 XOR 𝐶 𝑟-1 𝑓 𝑠 𝑟 = 𝐶 𝑅𝑇 𝐾 𝑟-1
As done in the STK construction, at each round 𝑖 ∈ {0, 𝑇 𝐾 0 is initialized with the concatenation of the tweak 𝑇 and the master key 𝐾. The first 2 (or 3) lanes are thus dedicated to the 128-bit (or 192-bit) tweak. The key is then stored in the following 2, 3 or 4 lanes, depending on its size.

For each round 𝑖, the 8-byte subtweakey word that is produced is denoted 𝑅𝑇 𝐾 𝑖 :

∀𝑖 ∈ {0, • • • , 𝑟 -1}, 𝑅𝑇 𝐾 𝑖 = 𝑅𝑇 𝐾 𝑖 7 ||𝑅𝑇 𝐾 𝑖 6 ||𝑅𝑇 𝐾 𝑖 5 ||𝑅𝑇 𝐾 𝑖 4 ||𝑅𝑇 𝐾 𝑖 3 ||𝑅𝑇 𝐾 𝑖 2 ||𝑅𝑇 𝐾 𝑖 1 ||𝑅𝑇 𝐾 𝑖 0 ,
where 𝑅𝑇 𝐾 𝑖 𝑗 is the byte that is xored to block 𝑋 𝑗 then used as an input of the nonlinear function 𝐹 𝑗 in the Lilliput-TBC round function of the encryption process.

The subtweakey word is obtained by xoring all 𝑝 𝑇 𝐾 𝑖 𝑗 lanes and a round-dependent constant denoted 𝐶 𝑖 together. In our proposal, the round constant 𝐶 𝑖 is simply the round number 𝑖:

∀𝑖 ∈ {0, • • • , 𝑟 -1}, 𝑅𝑇 𝐾 𝑖 = 𝑝-1 ⨁︁ 𝑗=0 𝑇 𝐾 𝑖 𝑗 ⊕ 𝑖.
To update the tweakey, at each round 𝑖 ∈ {1, • • • , 𝑟 -1}, each 64-bit lane 𝑇 𝐾 𝑖 𝑗 is multiplied by a nonzero coefficient denoted 𝛼 𝑗 , with 𝑗 ∈ {0, • • • , 𝑝 -1}. These coefficients were carefully chosen such that in 𝑟 consecutive rounds, at most (𝑝 -1) cancellations occur as will be shown in Section 4.3.2. Next, we describe how to generate the sequences induced by coefficients

𝛼 𝑗 (𝑗 = 0, • • • , 6).
Sequences The 𝛼-multiplications are computed using word-ring-lfsrs [START_REF] Thierry | Software oriented stream ciphers based upon FCSRs in diversified mode[END_REF]. The sequences constructed as 𝛼-multiplications for the tweakey on 𝐺𝐹 (2 64) using word-ring-lfsrs are the following ones: consider first a 64-bit lane in byte notation as 𝑥 = (𝑥 7 , • • • , 𝑥 0) where 𝑥 7 is the most significant byte and 𝑥 0 is the least significant one. In binary notations, we obtain the following vector of 64 bits:

𝑥 = (𝑥 𝑏 63 , • • • , 𝑥 𝑏 0). Thus, we have 𝛼 0 = 𝑀 , 𝛼 1 = 𝑀 2 , 𝛼 2 = 𝑀 3 , 𝛼 3 = 𝑀 4 , 𝛼 4 = 𝑀 𝑅 , 𝛼 5 = 𝑀 2
𝑅 and 𝛼 6 = 𝑀 3 𝑅 . Then the sequence generated by 𝛼 0 is produced using the ring-lfsr represented at byte level word by the following matrix:

𝑀 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 𝐼𝑑 0 0 0 0 0 0 0 0 𝐼𝑑 0 0 0 0 0 0 0 𝑆 ≪3 𝐼𝑑 0 0 0 0 0 0 0 𝑆 ≫3 𝐼𝑑 0 0 0 0 0 0 0 0 𝐼𝑑 0 0 0 𝑆 ≪2 0 0 0 0 𝐼𝑑 0 0 0 0 0 0 0 0 𝐼𝑑 𝐼𝑑 0 0 0 0 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
where 𝐼𝑑 is the 8 × 8 identity matrix.

(𝑦 7 , • • • , 𝑦 0) 𝑡 = 𝑀 • (𝑥 7 , • • • , 𝑥 0) 𝑡 . Thus, we have: (𝑦 7 , • • • , 𝑦 0) 𝑡 = (𝑥 6 , 𝑥 5 , 𝑥 4 ⊕ 𝑥 5 ≪ 3, 𝑥 3 ⊕ 𝑥 4 ≫ 3, 𝑥 2 , 𝑥 1 ⊕ 𝑥 6 ≪ 2, 𝑥 0 , 𝑥 7) 𝑡 . 𝑀 2 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 0 𝐼𝑑 0 0 0 0 0 0 0 𝑆 ≪3 𝐼𝑑 0 0 0 0 0 0 𝑆 ≪6 𝑀 1 𝐼𝑑 0 0 0 0 0 0 𝑆 ≫6 𝑆 ≫3 𝐼𝑑 0 0 0 𝑆 ≪2 0 0 0 0 𝐼𝑑 0 0 0 𝑆 ≪2 0 0 0 0 𝐼𝑑 𝐼𝑑 0 0 0 0 0 0 0 0 𝐼𝑑 0 0 0 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
with 𝑀 1 equal to the binary 8 × 8 following matrix:

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ then 𝑀 3 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 0 𝑆 ≪3 𝐼𝑑 0 0 0 0 0 0 𝑆 ≪6 𝑀 1 𝐼𝑑 0 0 0 0 0 0 𝑀 2 𝑀 1 𝐼𝑑 0 0 0 𝑆 ≪2 0 0 𝑆 ≫6 𝑆 ≫3 𝐼𝑑 0 0 0 𝑆 ≪2 0 0 0 0 𝐼𝑑 𝐼𝑑 0 𝑆 ≪5 𝑆 ≪2 0 0 0 0 0 𝐼𝑑 0 0 0 0 0 0 0 0 𝐼𝑑 0 0 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ with 𝑀 2 a binary matrix of size 8 × 8 equal to ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
and finally

𝑀 4 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 0 𝑆 ≪6 𝑀 1 𝐼𝑑 0 0 0 0 0 0 𝑀 2 𝑀 1 𝐼𝑑 0 0 0 𝑆 ≪2 0 𝑀 3 𝑀 2 𝑀 1 𝐼𝑑 0 0 𝑀 4 𝑆 ≪2 0 0 𝑆 ≫6 𝑆 ≫3 𝐼𝑑 𝐼𝑑 0 𝑆 ≪5 𝑆 ≪2 0 0 0 0 0 𝐼𝑑 0 𝑀 5 𝑆 ≪2 0 0 0 0 0 𝐼𝑑 0 0 0 0 0 0 0 𝑆 ≪3 𝐼𝑑 0 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ with 𝑀 3 a binary matrix of size 8 × 8 equal to ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 𝑀 4 a binary matrix of size 8 × 8 equal to ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
and 𝑀 5 a binary matrix of size 8 × 8 equal to

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
To generate the three following sequences, we use the following matrices using the reciprocal primitive polynomial of 𝑥 64 The outputs are then computed in the reverse order using the relation

(𝑦 0 , • • • , 𝑦 7) 𝑡 = 𝑀 𝑅 • (𝑥 0 , • • • , 𝑥 7) 𝑡 .
Note that the associated binary words are also written in the opposite way compared with the computations performed for 𝑀 , 𝑀 2 , 𝑀 3 and 𝑀 4 . It means that, in this case, at binary level, we have

𝑥 = (𝑥 𝑏 0 , • • • , 𝑥 𝑏 63) and 𝑥 𝑖 = (𝑥 𝑏 8•𝑖+0 , • • • , 𝑥 𝑏 8•𝑖+7
). Thus, we have:

(𝑦 0 , • • • , 𝑦 7) 𝑡 = (𝑥 1 , 𝑥 2 , 𝑥 3 ⊕ 𝑥 4 ≪ 3, 𝑥 4 , 𝑥 5 ⊕ 𝑥 6 ≫ 3, 𝑥 6 ⊕ 𝑥 3 ≫ 2, 𝑥 7 , 𝑥 0) 𝑡 . 𝑀 𝑅 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 𝐼𝑑 0 0 0 0 0 0 0 0 𝐼𝑑 0 0 0 0 0 0 0 0 𝐼𝑑 𝑆 ≪3 0 0 0 0 0 0 0 𝐼𝑑 0 0 0 0 0 0 0 0 𝐼𝑑 𝑆 ≫3 0 0 0 0 𝑆 ≫2 0 0 𝐼𝑑 0 0 0 0 0 0 0 0 𝐼𝑑 𝐼𝑑 0 0 0 0 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 𝑀 2 𝑅 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 0 𝐼𝑑 0 0 0 0 0 0 0 0 𝐼𝑑 𝑆 ≪3 0 0 0 0 0 0 0 𝐼𝑑 𝑆 ≪3 𝑀 6 0 0 0 0 0 0 𝐼𝑑 𝑆 ≫3 0 0 0 0 𝑆 ≫2 0 0 𝐼𝑑 𝑆 ≫3 0 0 0 0 𝑆 ≫2 0 0 𝐼𝑑 𝐼𝑑 0 0 0 0 0 0 0 0 𝐼𝑑 0 0 0 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
with 𝑀 6 a binary matrix of size 8 × 8 equal to

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
and

𝑀 3 𝑅 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 0 0 𝐼𝑑 𝑆 ≪3 0 0 0 0 0 0 0 𝐼𝑑 𝑆 ≪3 𝑀 6 0 0 0 0 𝑀 7 0 𝐼𝑑 𝑀 1 𝑀 6 0 0 0 𝑆 ≫2 0 0 𝐼𝑑 𝑆 ≫3 𝑆 ≫3 0 0 0 𝑆 ≫2 0 0 𝐼𝑑 𝐼𝑑 0 0 0 0 𝑆 ≫2 𝑆 ≫5 0 0 𝐼𝑑 0 0 0 0 0 0 0 0 𝐼𝑑 0 0 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ with 𝑀 7 is a binary matrix of size 8 × 8 equal to ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
The periods of each sequence given by the word-ring-lfsrs produced by the previous matrices are respectively: 2 64 -1 for the sequences produced using 𝑀 , 𝑀 2 ,𝑀 4 , 𝑀 𝑅 , 𝑀 2 𝑅 and 2 64 -1 3 for the sequences produced using 𝑀 3 and 𝑀 3 𝑅 .

Design Rationale and Security Analysis

In this section, we will detail the design choices we made for Lilliput-TBC and we provide a complete security analysis regarding a wide variety of attacks. Under the assumption that the underlying (tweakable) block cipher is secure as a strong-PRP (PseudoRandom Permutation), ocb is provably secure and achieves confidentiality and authenticity. Confidentiality means that an adversary cannot make the distinction between ocb outputs and random bits, while authenticity (of ciphertexts) means that she cannot produce a valid nonce-ciphertext pair (different from the ones she previously obtained). Note that the various variants of ocb are not designed to resist to nonce reuse nor to enjoy beyond-birthday-bound security.

Design Rationale of the Modes of Operation

Sct-2

The Synthetic Counter in Tweak mode (sct) was first devised at Crypto 2016 by Thomas Peyrin and Yannick Seurin [START_REF] Peyrin | Counter-in-tweak: Authenticated encryption modes for tweakable block ciphers[END_REF]. Few months later, the mode was slightly modified by the same authors associated with Jérémy Jean and Ivica Nikolic to be used as a mode for one of the member of the family of authenticated ciphers Deoxys v1. 43 [START_REF] Jean | [END_REF], their submission to Caesar (Competition for Authenticated Encryption: Security, Applicability, and Robustness). The rearranged mode was named sct-2, and the corresponding authenticated cipher was coined Deoxys-II.

The difference between sct and sct-2 only lies in the way the tag is produced (the encryption part is similar), a change that was done "in order to provide graceful degradation of security for authentication with the maximal number of repetitions of nonce" [JNPS16].

Design Rationale of Lilliput-TBC

When designing Lilliput-TBC from the block cipher Lilliput, our overall goal was to maximize diffusion between nibbles or bytes while keeping reasonable implementation performances. This diffusion could be measured using the notion of full diffusion delay of [START_REF] Thierry | Extended generalized Feistel networks using matrix representation[END_REF]. It will be denoted by 𝑑 and corresponds to the minimum number of rounds needed for all output bytes or nibbles to depend on all input bytes or nibbles. It is closely related to some structural attacks such as impossible differentials or integral attacks, as shown in [START_REF] Suzaki | Improving the generalized Feistel[END_REF][START_REF] Thierry | Extended generalized Feistel networks using matrix representation[END_REF].

We decided to use the egfn inferred in Lilliput [START_REF] Thierry | Extended generalized feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput[END_REF] to reach this purpose because the full diffusion delay of the egfn of Lilliput is equal to 𝑑 = 4 which is the best diffusion delay obtained for a Feistel-like scheme.

We chose a 128-bit state as it is consistent with the NIST requirements. We split that state into 16 bytes so that the block size matches the S-box size, i.e. the non-linear layer is made only of 8 parallel calls to an 8-bit S-box and 8 subkey additions. As said before, the 𝜋 permutation has been chosen to maximize the number of active S-boxes on 18, 19 and 20 rounds (see Section 4.3.4 and Table 4.7 for more details).

From those results and the security analysis performed in Section 4.3.4 and summed up in Table 4.10, we also deduced the number of rounds of each instance of Lilliput-I and of

Design Rationale and Security Analysis

Lilliput-II equal to 32, 36 or 42 rounds.

The EGFN Structure

As done in [START_REF] Suzaki | Improving the generalized Feistel[END_REF][START_REF] Thierry | Extended generalized Feistel networks using matrix representation[END_REF], we analyze here the security of our underlying EGFN scheme regarding the pseudorandomness of the scheme. Note that the pseudorandomness bounds obtained are generic and essentially depend on the 𝑑 value. We thus introduce the pseudo-randompermutation advantage (prp-advantage) and the strong-pseudo-random-permutation advantage (sprp-advantage) of an adversary. For this purpose, we introduce the two advantage notations as:

Adv prp C (𝑞) = max A:𝑞-CPA ⃒ ⃒ ⃒Pr[A C = 1] -Pr[A P𝑛 = 1] ⃒ ⃒ ⃒ (4.1) Adv sprp C (𝑞) = max A:𝑞-CCA |Pr[A C,C -1 = 1] -Pr[A P𝑛,P -1 𝑛 = 1]| (4.2)
where C is the encryption function of an 𝑛-bit block cipher composed of Uniform Random Functions (urfs) as internal modules whereas C -1 is its inverse; P 𝑛 is an 𝑛-bit Uniform Random Permutation (urp) uniformly distributed among all the 𝑛-bit permutations; P -1 𝑛 is its inverse. The adversary, A, tries to distinguish C from P 𝑛 using 𝑞 queries in a CPA (Chosen Plaintext Attack) and tries to distinguish, always using 𝑞 queries, (C, C -1) from (P 𝑛 , P -1 𝑛) in a CCA (Chosen Ciphertext Attack). The notation means that the final guess of the adversary A is either 0 if A thinks that the computations are done using P 𝑛 , or 1 if A thinks that the computations are done using C. The maximums of Equations (4.1, 4.2) are taken over all possible adversaries A with 𝑞 queries and an unbounded computational power.

To prove the bounds of our scheme in those models, we recall the result proved in [START_REF] Thierry | Extended generalized feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput[END_REF]: let Φ 𝑘𝑐,𝑟 denote our 𝑘-block scheme acting on 𝑐-bit blocks with 𝑛 = 𝑘𝑐, using 𝑟 rounds and with diffusion delay 𝑑. We then have (the proof can be found in [START_REF] Thierry | Extended generalized feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput[END_REF]): Theorem 4.1. Given the 𝑟-round egfn Φ 𝑘𝑐,𝑟 with 𝑘 branches acting on 𝑐-bit blocks with a diffusion delay 𝑑 where all 𝑐-bit round functions are independent URFs. Then we have:

Adv prp Φ 𝑘𝑐,𝑑+2 (𝑞) ≤ 𝑘𝑑 2 𝑐 𝑞 2 (4.3) Adv sprp Φ 𝑘𝑐,2𝑑+2 (𝑞) ≤ 𝑘𝑑 2 𝑐-1 𝑞 2 (4.4)
Thus, we have a classical security proof for the choice of the underlying EGFN used in Lilliput-TBC. Note that, in our case, 𝑐 is equal to 8.

The 𝜋 Permutation

Full diffusion delay is closely related to some structural attacks such as impossible differentials or integral attacks, as shown in [START_REF] Suzaki | Improving the generalized Feistel[END_REF][START_REF] Thierry | Extended generalized Feistel networks using matrix representation[END_REF]. As there are many egfns that achieve 𝑑 = 4, we chose one by taking other considerations into account. Specifically, we chose the block-wise permutation to maximize resistance against differential and linear cryptanalysis.

We identified the criterion for a permutation 𝜋 to achieve 𝑑 = 4 to be as follows: first, 𝜋 must swap the 8 right-most blocks with the 8 left-most, and second, 𝜋 must specifically swap blocks 𝑌 7 and 𝑌 15 (a complete proof could be found in [START_REF] Thierry | Extended generalized Feistel networks using matrix representation[END_REF][START_REF] Thierry | Extended generalized feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput[END_REF]).

Up to block reindexing equivalence, there are exactly 37108 such permutations. For each of them, we computed the minimal number of differentially and linearly active S-boxes up to 20 rounds (see Section 4.3.4 and Table 4.7 for more details) and picked the one that maximizes the number of active S-boxes on 18, 19 and 20 rounds.

The S-box

Overall structure We chose to build the 8-bit S-box from smaller ones so that it could be implemented with a fewer number of gates, which is a valuable property for hardware and bit-sliced software implementations. S-boxes built in this fashion usually rely on one of the four constructions depicted in Figure 4.11. We defined the following selection criteria for the candidate

𝑆 4 (a) Feistel 𝑆 4 (b) MISTY 𝑆 4 (c) Lai-Massey 𝑆 4 𝑆 ′ 4 𝒜 (d) SPN

S-box:

-Differential uniformity 𝛿 ≤ 10 -Linearity ℒ ≤ 64 -Algebraic degree deg ≥ 6 .

All constructions discussed above need to be iterated several times in order to achieve the desired cryptographic properties. Regarding Feistel and MISTY networks, [START_REF] Canteaut | Construction of lightweight S-boxes using Feistel and MISTY structures[END_REF] gives lower bounds on the differential uniformity and linearity for 3-round balanced constructions. In this case, Feistel networks provide better cryptographic properties as it is possible to reach 𝛿 = 8 and ℒ = 64 versus 𝛿 = 16 and ℒ = 64 for MISTY networks. It comes from the fact that Feistel networks do not require inner 4-bit S-boxes to be permutations, allowing the use of Almost Perfect Nonlinear (APN) functions as inner components. Still, it has been shown that 3-round unbalanced MISTY networks (e.g., dividing the 8-bit input into two inequal parts of 3 and 5 bits) can be used to build 8-bit S-boxes with 𝛿 = 8 [START_REF] Canteaut | Construction of lightweight S-boxes using Feistel and MISTY structures[END_REF]. However, because the unbalanced words induce components with strong unbalanced degrees for the ANF, we decided to rule out this option.

Regarding the Lai-Massey scheme, the family of block ciphers FOX [JV04] uses a 3-round iterated structure in order to build an 8-bit S-box with 𝛿 = 16 and ℒ = 64. On the other side, some cryptographic primitives simply add a nonlinear layer (i.e. two 4-bit S-boxes in parallel) at the beginning and/or at the end of the original scheme depicted in Figure 4.11c instead of using an iterated structure and therefore save some XOR gates. For instance, the block cipher FLY [KG16] adds a nonlinear layer at the end of the scheme while the hash function Whirlpool [BRAN00] also adds one at the beginning resulting in a total of three and five inner 4-bit S-boxes, respectively. As for the MISTY ladder, the Lai-Massey structure requires inner 4-bit S-boxes to be permutations and therefore constructions that use three 4-bit S-boxes cannot reach a differential uniformity as good as Feistel networks. Although the cryptographic properties achieved by the variant using five 4-bit S-boxes are compliant with our selection criteria (i.e. 𝛿 = 8, ℒ = 56 and deg = 7 for the Whirlpool S-box), it is not worth the implementation cost.

The same reasoning can be applied to SPNs. For instance, the block cipher CLEFIA [SSA + 07] uses two different 8-bit S-boxes and one of them relies on an SPN structure as defined in Figure 4.11d with an additional nonlinear layer after 𝒜 which refers to a matrix multiplication over F 16 . It results in an S-box with 𝛿 = 10, ℒ = 56 and deg = 6 which is compliant with our selection criteria. However, because it uses four 4-bit S-boxes, it is more heavy than a 3-round Feistel network to implement.

For all these reasons, we opted for an 8-bit S-box based on a 3-round balanced Feistel network. In the rest of this section, 𝑆 𝑖 4 refers to the inner 4-bit S-box at the 𝑖-th round.

Inner 4-bit S-boxes According to [START_REF] Canteaut | Construction of lightweight S-boxes using Feistel and MISTY structures[END_REF], in order to reach 𝛿 = 8, 𝑆 1 4 and 𝑆 3 4 have to be APN functions while 𝑆 2 4 has to be a permutation with differential uniformity 4. The authenticated block cipher SCREAM [GLS + 15] uses an 8-bit S-box built in this manner where the underlying APN functions are 𝑆 1 4 = 020b300a1e06a452 and 𝑆 3 4 = 20b003a0e1604a25 and the permutation is 𝑆 2 4 = 02c75fd64e8931ba. 𝑆 1 4 can be implemented using 11 instructions in total (either AND or OR or XOR or NOT or MOV), including 4 non-linear ones, while 𝑆 3 4 is directly derived from it by adding a NOT instruction in order to avoid fixed points. Although it is possible to find APN functions over F 16 that are built using 10 instructions from the same instruction set, they all require at least 6 non-linear ones [START_REF] Canteaut | Construction of lightweight S-boxes using Feistel and MISTY structures[END_REF] which is not optimal regarding masked implementations. 𝑆 2 4 is built using 9 instructions from the same instruction set, including 4 non-linear ones, which is the smallest implementation cost for a 4-bit S-box with differential uniformity 4 [UDI + 11]. Therefore, the SCREAM S-box allows very efficient implementations with and without masking as it only requires 44 instructions in total including 12 non-linear ones.

However, the number of non-linear operations is not the only criteria regarding Threshold Implementations (TI) where an S-box with algebraic degree 𝑑 requires at least 𝑛 = 𝑑 + 1 shares. In order to limit the number of shares for a 4-bit S-box with 𝑑 > 2, it has been proposed to use its decomposition into quadratic bijections [START_REF] Nikova | Secure hardware implementation of nonlinear functions in the presence of glitches[END_REF] (i.e. 𝑆 𝑖 4 = 𝐹 ∘ 𝐺) so that it is possible to achieve a TI with 𝑛 = 3. In order to fulfill the uniformity criteria, it has been proposed to find affine functions 𝐴 1 and 𝐴 2 such that 𝐹 = 𝐴 1 ∘ 𝒬 ∘ 𝐴 2 , so that when it is possible to achieve a uniform sharing of the quadratic function 𝑄, applying 𝐴 1 and 𝐴 2 on all input and output shares respectively gives a uniform sharing of 𝐹 [BNN + 12].

In [BGG + 16] the authors study first-order TIs for several 8-bit S-boxes, including the one used in SCREAM. It results that the two APN functions 𝑆 1 4 and 𝑆 3 4 can be directly decomposed into two quadratic functions while the permutation 𝑆 2 4 requires affine functions as described above. In order to achieve more efficient TIs by saving the implemention cost of the affine functions, we looked for (and found) alternatives to 𝑆 2 4 that could be directly decomposed into two quadratic functions.

We chose to investigate all possible circuits with a Breadth-First Search (BFS) approach, including only AND, XOR and NOT gates as they can be straightforwardly thresholded. This approach is very similar to [UDI + 11]. We optimized the number of gates used without considering MOV instructions as we consider that wiring is free compared to the cost of the gates. We allowed 5 registers during the exploration. Keeping the affine equivalence notion of the previous paper, stopping the exploration to 8 gates allowed us to reach 62 affine equivalence classes, including 3 optimal classes according to [START_REF] Markku-Juhani | Cryptographic analysis of all 4 x 4 -bit s-boxes[END_REF]. Following the same notation as [BNN + 12] to refer to the equivalence classes, the three optimal classes we reached are 𝒞 223 , 𝒞 296 and 𝒞 297 .

We focused on permutations of the optimal classes as they are the only ones with differential uniformity equal to 4. First, we eliminated candidates that did not allow to reach the selection criteria for the 8-bit S-box when used as 𝑆 2 4 in a 3-round Feistel network. After this step, there were still candidates in each optimal class. In order to go further into the optimization of TIs, we investigated the decomposition of the remaining candidates. Following [BNN + 12], we decomposed those cubic permutations into two quadratic functions. There are six quadratic classes denoted by 𝒬 4 , 𝒬 12 , 𝒬 293 , 𝒬 294 , 𝒬 299 and 𝒬 300 . It results from our BFS exploration that these classes can be implemented with a minimum of 2, 4, 6, 4, 6 and 6 gates, respectively. Among these classes, only 𝒬 4 , 𝒬 294 and 𝒬 299 contain permutations that are uniform using direct sharing. However, neither 𝒞 223 nor 𝒞 296 nor 𝒞 297 can be decomposed using 𝒬 4 . On the other hand, because only 𝒞 223 can be decomposed into two quadratic functions of the class 𝒬 294 that are uniform using direct sharing, this makes 𝒞 223 the most interesting optimal class we reached regarding TIs.

As stated before, contrary to 𝑆 2 4 , our aim was to avoid linear permutations between the quadratic functions. As we consider that wire permutations 𝜔 𝑖 are free, for all the remaining candidates 𝐶 in 𝒞 223 , we looked for 4-gate circuits 𝑄 𝑖 and 𝑄 𝑗 of 𝒬 294 that are uniform using direct sharing, such that 𝐶 = 𝜔 1 ∘ 𝑄 𝑖 ∘ 𝜔 2 ∘ 𝑄 𝑗 ∘ 𝜔 3 . As a final step to determine which composition to use, we calculated the cost (considered in Gate Equivalents -ges) of a 3-share TI of all of them using this formula:

ge = 3ge 𝑋 • 𝑋 + (3ge 𝑋 + 3ge 𝐴) • 𝐴 + ge 𝑁 • 𝑁 (4.5)
with ge 𝑋 the area and 𝑋 the number of XOR gates, ge 𝐴 the area and 𝐴 the number of AND gates and ge 𝑁 the area and 𝑁 the number of NOT gates. It comes from the fact that, when considering 3-share TIs, thresholding an XOR gate requires 3 XOR gates while thresholding an AND gate requires 6 XOR and 9 AND gates. Taking ge 𝑋 = 8 3 , ge 𝐴 = 4 3 and ge 𝑁 = 2 3 , we found the minimum at 72 • 2 = 143ges. Note that it does not include the cost of registers between the two permutations that are needed to ensure security against glitches.

Among the several compositions that can be implemented using 143ges, we chose the permutation illustrated in Figure 4.13b as it constitutes the only candidate that results from the composition of the same quadratic permutation 𝑄 = 042e8ca6173d9fb5, allowing to optimize the area cost in particular cases. To put it in a nutshell, our 8-bit S-box is obtained by combining the two APN functions from the SCREAM S-box with the 4-bit permutation S2 4 = 081f4c792b36e5da in a 3-round Feistel network and achieves 𝛿 = 8, ℒ = 64 and deg = 6 without fixed points. Thanks to the BFS exploration, we ensure that our S-box requires a small number of gates and that its TI is efficient as it uses the smallest circuits of its possible decompositions and futhermore, it does not require the use of affine permutations when decomposed into two quadratic functions. The 4-bit S-boxes are depicted in Figure 4.13 while the underlying quadratic functions are depicted in Figure 4.12, where 𝑎 and 𝑑 refer to the most and the least significant bits, respectively.

The Tweakey Schedule

As done for some other Tweakable Block Ciphers, we first looked at the TWEAKEY construction of [START_REF] Jean | Tweaks and keys for block ciphers: The TWEAKEY framework[END_REF] that fills 𝑝 lanes of 𝑛 bits divided into 𝑚 words of 𝑐 bits with the concatenation of the tweak 𝑇 and of the key 𝐾. Then, to produce the subtweakey of each round, the TWEAKEY framework applies, on each lane, a permutation ℎ acting on the 𝑚 words and then multiply each of the 𝑚 elements of 𝑐 bits by a primitive root 𝛼 𝑖 , ∀𝑖 ∈ {0, • • • , 𝑝 -1} over 𝐺𝐹 (2 𝑐) different for each lane. Then, the subtweakey is the xor of the 𝑝 lanes and of a constant. From this construction that could be seen as the tensorial product of 𝑚 Vandermonde matrices, the authors could deduce that the number of cancellations on 𝑟 + 1 subtweakeys is at most equal to (𝑝 -1). Indeed, the updating function (excluding the ℎ permutation) for the 𝑐 bits words could be written as the following Vandermonde matrix

𝑉 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝛼 0 0 𝛼 1 0 𝛼 2 0 • • • 𝛼 𝑟 0 𝛼 0 1 𝛼 1 1 𝛼 2 1 • • • 𝛼 𝑟 1 𝛼 0 2 𝛼 1 2 𝛼 2 2 • • • 𝛼 𝑟 2 𝛼 0 𝑝-1 𝛼 1 𝑝-1 𝛼 2 𝑝-1 • • • 𝛼 𝑟 𝑝-1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
when all 𝛼 𝑖 with 0 ≤ 𝑖 ≤ 𝑟 are distinct considering that 𝑟 < 𝑜𝑟𝑑(𝛼). In this case, the code defined by 𝑉 is a Reed-Solomon code of length 𝑟 + 1 and dimension 𝑝 over 𝐺𝐹 (2 𝑐) and it is known to be mds (Maximum Distance Separable). It means that its minimum distance is equal to 𝑟 + 1 -(𝑝 + 1).

For designing our own tweakey schedule, we adopted the same idea to keep the Vandermonde strategy in order to guarantee the maximal possible number of cancellations. However, as we wanted to reduce the latency of the tweakey schedule and thus the number of computations, we adopted the following strategy instead of considering a lane as a vector of 𝑚 elements of 𝐺𝐹 (2 𝑐): we directly consider the field 𝐺𝐹 (2 𝑐𝑚) that will be equal in our case to 𝐺𝐹 (2 64). Indeed, in our case, the size of each lane is equal to 𝑛 2 = 64 bits due to the use of a Feistel-like scheme requiring only 𝑛 2 = 64 bits of tweakey injected in the round function at each iteration. Thus, we consider the 𝑝 64-bit long lanes as 𝑝 elements of 𝐺𝐹 (2 64) and we multiply each lane by 𝑝 different 𝛼 𝑖 given in Section 4.2.3 in a byte oriented matrix representation. Thus, with our construction, we obtain the following Vandermonde matrix constructed on 𝐺𝐹 (2 64):

𝑉 ′ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝛼 0 0 𝛼 1 0 𝛼 2 0 • • • 𝛼 𝑟-1 0 𝛼 0 1 𝛼 1 1 𝛼 2 1 • • • 𝛼 𝑟-1 1 𝛼 0 2 𝛼 1 2 𝛼 2 2 • • • 𝛼 𝑟-1 2 𝛼 0 𝑝-1 𝛼 1 𝑝-1 𝛼 2 𝑝-1 • • • 𝛼 𝑟-1 𝑝-1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
Thus, as ∀0 ≤ 𝑖 < 𝑟, we have chosen the 𝛼 𝑖 such that 𝑟 < 𝑜𝑟𝑑(𝛼 𝑖), we preserve the mds property induced by the underlying Reed-Solomon code and guarantee that the minimum distance is equal to 𝑟 -(𝑝 + 1) leading to at most (𝑝 -1) cancellations on 𝑟 subtweakeys, seen always, as the xor of the 𝑝 lanes. This last choice is a logical one as done in many lightweight block ciphers, such as Present [BKL + 07], Twine [START_REF] Suzaki | TWINE : A lightweight block cipher for multiple platforms[END_REF], LBlock [START_REF] Wu | LBlock: A lightweight block cipher[END_REF] or Simon [BSS + 13] where the tweakey/key material is loaded in an initial register that is sequentially updated and where the subtweakeys/subkeys are extracted from that register. We also chose to split the tweakey into 𝑝 lanes of 64-bit instead of having a big state of 𝑝 × 64 bits and to update in parallel those 𝑝 registers because small updating functions mix their content faster and increase performance. The downside is that each updating function could be attacked independently if their contents were not combined back during the subtweakey extraction which is not the case here.

Let us now explain how we have chosen the different 𝛼 𝑖 and the word-ring-lfsrs matrix multiplications at binary level that perform those operations.

We used lfsrs inspired by the results of [START_REF] Thierry | Software oriented stream ciphers based upon FCSRs in diversified mode[END_REF] and [START_REF] Arnault | Revisiting LFSRs for Cryptographic Applications[END_REF] on lfsrs. lfsrs are typically used either in Fibonacci or Galois mode. In the first case, many feedbacks are used to influence a single cell while in the second case a single feedback influences many cells. In [START_REF] Thierry | Software oriented stream ciphers based upon FCSRs in diversified mode[END_REF], the authors generalize lfsr beyond Fibonacci/Galois representation by allowing any cell to be used as feedback in any other cell. They call these new lfsrs "ring-lfsrs" because of the rotation occuring at each update. As the lfsrs in [START_REF] Arnault | Revisiting LFSRs for Cryptographic Applications[END_REF], the lfsrs chosen here have also a word-oriented structure: instead of performing bit-wise shift at each iteration and having binary feedbacks, they are shifted by one word at each update. As for the feedbacks, they are also word-oriented: one whole word is xored to another after possibly being transformed by a software-friendly operation such as shift or rotation. Those lfsrs are called word-lfsrs by their authors [START_REF] Arnault | Revisiting LFSRs for Cryptographic Applications[END_REF]. When a lfsr is both a word and ring lfsr, we call it a word-ring-lfsr. At the same time, they act at word level and they have feedbacks going from some word to some other. Word-ring-lfsrs have thus a smaller diffusion delay than classical Fibonacci or Galois lfsrs.

We have chosen our word-ring-lfsr defined by the matrix 𝑀 for the 𝛼 0 -multiplication with the minimal possible number of shift operations (3 at 8 bits words level) to minimize the number ofxor gates, with a primitive polynomial of degree 64. We chose words of size 8 bits to fit well on software platforms. Then, 𝛼 1 , 𝛼 2 and 𝛼 3 multiplications are deduced directly using 𝑀 2 , 𝑀3 and 𝑀 4 .

Moreover, to construct the matrix 𝑀 𝑅 for the 𝛼 4 multiplication, we searched for a matrix with 3 shift operations implementing the reciprocal (primitive) polynomial that defines 𝑀 to ensure that the matrix 𝑉 ′ stays a Vandermonde matrix and that the sequences produced when multiplying by 𝛼 0 (𝛼 1 , 𝛼 2 and 𝛼 3 respectively) and 𝛼 4 (𝛼 5 and 𝛼 6 respectively) have only a single common value.

We have also chosen the different 𝛼 𝑖 with a primitive retroaction polynomial to ensure that the induced periods are maximal: the period for 𝛼 0 , 𝛼 1 , 𝛼 3 , 𝛼 4 and 𝛼 5 is maximal and equal to 2 64 -1 whereas the period for 𝛼 2 and 𝛼 6 is equal to 2 64 -1 3 . Moreover, with this design strategy in mind, we are sure that the entire possible space is reached discarding the risk of an invariant attack as detailed in Section 4.3.4.

Security Analysis of the Modes of Operation

Θcb3

The past year has seen several breakthroughs in the analysis of ocb, starting in October 2018 with the description by Inoue and Minematsu of a practical existential forgery attack [START_REF] Inoue | Cryptanalysis of OCB2[END_REF]. Few weeks after, Poettering [START_REF] Poettering | Breaking the confidentiality of OCB2[END_REF] extended this result and broke the confidentiality of ocb2, result that was extended further by Iwata [START_REF] Iwata | Plaintext recovery attack of OCB2[END_REF] who devised a plaintext recovery attack 3 . These attacks were clearly announced by their authors as not applicable to ocb1 and ocb3, so Θcb3 is also safe. To the best of our knowledge, no attacks were devised on Θcb3.

Sct-2

To the best of our knowledge, no flaws were found so far in sct-2 and the results published on Deoxys [ZDW19, MMS18, CHP + 17] only target the underlying cipher (that is, Deoxys-BC). In [CHP + 17], the authors briefly discuss if their attacks on Deoxys-BC could apply once the cipher is used in the corresponding mode, and "argue that [their] attacks are difficult to extend to Deoxys-II". This seems to indicate that the sct-2 mode does not induce additional flaws to a cipher but on the contrary results in an extra protection coming from the fact that the attacker cannot access the decryption primitive.

To further support that the mode sct-2 is trusted by the community, we recall here that Deoxys-II was selected after a 5-year process as the first choice for use case 3 ("Defense in depth") in the final Caesar portfolio [CAE].

Security Claims for the Modes

Our security claims for the different variants of Lilliput-AE are provided in Table 4. 6.

The bounds are given in the case of a tag size 𝜏 ≥ 𝑛. Should a smaller tag size be used, the security claims will drop according to 𝜏 . We derived the security bounds from the security proofs of Θcb3 [START_REF] Krovetz | The software performance of authenticatedencryption modes[END_REF] and sct [START_REF] Peyrin | Counter-in-tweak: Authenticated encryption modes for tweakable block ciphers[END_REF] and we refer to them for more details.

Security (bits) Goal (nonce-respecting case)

Lilliput

Security Analysis of Lilliput-TBC

We analyze the security of Lilliput-TBC regarding classical attacks in the unknown key model and also in the related-key model always considering the related tweak model. We will place ourselves for all the attacks in the so-called "paranoid" ' case, where the worst case is always envisaged even if it could not be reached. Thus, we divide this section in the following way: we first consider differential/linear cryptanalysis, thus, extending those first results to the case of related-key boomerang attacks and then, we give overall bounds for the so-called structural attacks that include impossible differential attacks, zero-correlation attacks, integral attacks and meet-in-the-middle attacks. Then, we take a particular attention on the following special attacks: division property, subspace cryptanalysis, algebraic attack.

Thus, we will first introduce the following bounds that will be used in the rest of this section:

• As the full diffusion is reached after 𝑑 = 4 rounds for Lilliput-TBC, it means that no structural distinguisher can be constructed for more than 2𝑑 + 2 rounds (see [START_REF] Thierry | Extended generalized Feistel networks using matrix representation[END_REF] for a detailed analysis and the security proofs).

• We will also always consider that the number of rounds that can be added to the best distinguisher for the key recovery part at the beginning is equal to 𝑑 and at the end is also equal to 𝑑. Indeed, if a property is found on a single byte at the beginning or at the end of the distinguisher then after 𝑑 rounds, all the input/output bytes will be influenced, so a key recovery could not exceed those bounds.

• As the tweakey schedule is fully linear and based on the xor of elements of a Vandermonde matrix, it means that by reversing the linear system, one is able to find in the relatedtweak/related-key models (𝑝 -1) cancellations (when 𝑝 lanes are considered) placed at the best for the attacker.

First, let us precise that to prevent slide attacks [BW99] and as usually done in other tweakable block cipher proposals, different round constants are added to each subtweakey during the tweakey schedule process. So, we consider Lilliput-TBC immune to slide attacks.

Differential / Linear Cryptanalysis

To prove the resistance of Lilliput-TBC against differential and linear cryptanalysis, we give in Table 4.7 the lower bounds on the minimal number of active S-boxes in the single tweakey model considering no difference in the tweak. Those bounds partly fit with the ones given in [START_REF] Sasaki | New differential bounds and division property of Lilliput: Block cipher with extended generalized Feistel network[END_REF] for the block cipher Lilliput. We have obtained those results using Constraint Programming up to 20 rounds in the single tweakey model. Due to the complexity of the tweakey schedule, we could not derive bounds for the related tweakey models (note that the related tweakey models are not considered for linear cryptanalysis). However, we could place ourselves in the worst case saying that authorizing a particular difference in a single lane 𝑖 means that the results given in Table 4.7 on 𝑟 rounds apply for 𝑟 + 2 rounds, in two lanes 𝑖 and 𝑗 means that the results given in Table 4.7 on 𝑟 rounds apply for 𝑟 + 3 rounds, and so on up to 𝑝 lanes are activated. Moreover, we use here the fact that, as mentioned in Section 4.3.2, we have 𝛿 = 2 -5 and ℒ = 64 for the chosen S-box.

Thus, with this reasoning, we could derive the following bounds for the different key lengths on the best differential/linear attacks:

• Lilliput-TBC-I-128 (𝑡 = 192, 𝑘 = 128):
-Best differential distinguisher on 13 rounds when no difference are introduced at all in the tweakey. Best possible differential attack on 13 + 𝑑 + 𝑑 = 13 + 8 = 21 rounds in the same context. If a difference is introduced in 𝑏 lanes, then the best attack is on 21 + 𝑏 + 1 rounds, leading to the best possible differential attack when the 𝑝 lanes have differences equal to 21 + 5 + 1 = 27 rounds.

-With the same reasoning, the best linear distinguisher is on 16 rounds. Then, the best possible linear attack is on 16 + 𝑑 + 𝑑 = 16 + 8 = 24 rounds.

• Lilliput-TBC-I-192 (𝑡 = 192, 𝑘 = 192):

-Best differential distinguisher on 17 rounds when no difference are introduced at all in the tweakey. Best possible differential attack on 13 + 𝑑 + 𝑑 = 17 + 8 = 25 rounds in the same context. If a difference is introduced in 𝑏 lanes, then the best attack is on 25 + 𝑏 + 1 rounds, leading to the best possible differential attack when the 𝑝 lanes have differences equal to 25 + 6 + 1 = 32 rounds.

-With the same reasoning, the best linear distinguisher is on 23 rounds (extrapolating the results of Table 4.7 up to 48 active S-boxes). Then, the best possible linear attack is on 23 + 𝑑 + 𝑑 = 23 + 8 = 31 rounds.

• Lilliput-TBC-I-256 (𝑡 = 192, 𝑘 = 256):

-Best differential distinguisher on 24 rounds when no difference are introduced at all in the tweakey (always extrapolating the results of Table 4.7 up to 51 active S-boxes).

Best possible differential attack on 24 + 𝑑 + 𝑑 = 24 + 8 = 32 rounds in the same context. If, a difference is introduced in 𝑏 lanes, then the best attack is on 32 + 𝑏 + 1 rounds, leading to the best possible differential attack when the 𝑝 lanes have differences equal to 32 + 7 + 1 = 40 rounds.

-With the same reasoning, the best linear distinguisher is on 30 rounds (extrapolating the results of Table 4.7 up to 64 active S-boxes). Then, the best possible linear attack is on 30 + 𝑑 + 𝑑 = 30 + 8 = 38 rounds.

• Lilliput-TBC-II-128 (𝑡 = 128, 𝑘 = 128): The bound for the differential distinguisher is the same than the one given for Lilliput-TBC-I-192: the best differential attack works on 21 rounds for the single tweakey model and on 26 rounds when the 𝑝 lanes have differences. The bound for the linear cryptanalysis is the same than the one given for Lilliput-TBC-I-192: 24 rounds.

• Lilliput-TBC-II-192 (𝑡 = 128, 𝑘 = 192): The bound for the differential distinguisher is the same than the one given for Lilliput-TBC-I-192: the best differential attack works on 25 rounds for the single tweakey model and on 31 rounds when the 𝑝 lanes have differences. The bound for the linear cryptanalysis is the same than the one given for Lilliput-TBC-I-192: 31 rounds.

• Lilliput-TBC-II-256 (𝑡 = 128, 𝑘 = 256): The bound for the differential distinguisher is the same than the one given for Lilliput-TBC-I-256: the best differential attack works on 32 rounds for the single tweakey model and on 39 rounds when the 𝑝 lanes have differences. The bound for the linear cryptanalysis is the same than the one given for Lilliput-TBC-I-256: 38 rounds.

Related Tweakey Boomerang Attacks

As the attacker could introduce differences both in the tweak and in the key and as our tweakey schedule is linear and could be completely computed according the introduced differences, we could imagine that in a related tweakey boomerang attack, the attacker could find a forward differential trail with (𝑝 -1) rounds containing no difference and could also find a backward differential trail with (𝑝 -1) rounds without difference. Thus, always considering that the key recovery part at the top of the related tweakey boomerang distinguisher has 𝑑 = 4 rounds and also 𝑑 = 4 rounds at the bottom, we could construct a related tweakey boomerang attack containing 2 • (𝑝 -1) + 8 rounds at the beginning and at the end, and 𝑏 rounds in its middle part. Let us determine how many rounds is 𝑏 for the different key lengths and considering that between the first differential trail on 𝐸 0 and the second differential trail on 𝐸 1 with 𝑒 = 𝐸 1 ∘ 𝐸 0 , we have 2 rounds for free, one because the best coefficient of the BCT is equal to 1 and one because Lilliput-TBC is a Feistel-like scheme. Thus, as in a related tweakey boomerang attack, we associated the probability 𝑝 of the differential trail for 𝐸 0 and 𝑞 for the differential trail for 𝐸 1 . Thus, we expect that the overall probability for 𝑏 -2 rounds is 𝑝 2 𝑞 2 . Thus, for a 256-bit key, we want 𝑝 2 𝑞 2 ≤ 2 -256 considering that using several keys and several tweaks we could go beyond the full codebook limit. This leads to 𝑝 ≤ 2 -64 considering that 𝑝 = 𝑞. Thus, referring to Table 4.7 with 𝛿 𝑆 = 2 -5 , the differential trail for 𝐸 0 has at most 64/5 = 12.8 active S-boxes leading to a differential propagating on at most 7 rounds. We apply the same reasoning for 𝐸 1 . Thus, the maximal number of rounds a related tweakey boomerang attack could reach is equal to 7 + 7 + 8 + 2 • (𝑝 -1) + 2 = 36 for Lilliput-TBC-I-256 and to 7 + 7 + 8 + 2 • (𝑝 -1) + 2 = 34 for Lilliput-TBC-II-256.

Thus, for a 192-bit key, we want 𝑝 2 𝑞 2 ≤ 2 -192 . This leads to 𝑝 ≤ 2 -48 considering that 𝑝 = 𝑞 and to 48/5 = 9.6 active S-boxes for both 𝐸 0 and 𝐸 1 leading to a differential propagating on at most 6 rounds. Thus, the maximal number of rounds a related tweakey boomerang attack could reach is equal to 6 + 6 + 8 + 2 • (𝑝 -1) + 2 = 32 for Lilliput-TBC-I-192 and to 6 + 6 + 8 + 2 • (𝑝 -1) + 2 = 30 for Lilliput-TBC-II-192.

Thus, for a 128-bit key, we want 𝑝 2 𝑞 2 ≤ 2 -128 . This leads to 𝑝 ≤ 2 -32 considering that 𝑝 = 𝑞 and to 32/5 = 6.4 active S-boxes for both 𝐸 0 and 𝐸 1 leading to a differential propagating on at most 5 rounds. Thus, the maximal number of rounds a related tweakey boomerang attack could reach is equal to 5 + 5 + 8 + 2 • (𝑝 -1) + 2 = 28 for Lilliput-TBC-I-128 and to 5 + 5 + 8 + 2 • (𝑝 -1) + 2 = 26 for Lilliput-TBC-II-128.

Structural Attacks

In this Subsection, we consider all the so-called structural attacks which include impossible differential attacks [START_REF] Biham | Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials[END_REF], zero-correlation attacks [BGW + 14], integral attacks [START_REF] Daemen | The block cipher Square[END_REF] and meet-in-the-middle attacks [START_REF] Demirci | A meet-in-the-middle attack on 8-round AES[END_REF]. The security analysis of those attacks mainly depend on the diffusion delay 𝑑 of the scheme as shown in [START_REF] Thierry | Extended generalized Feistel networks using matrix representation[END_REF][START_REF] Suzaki | Improving the generalized Feistel[END_REF]. Indeed, no distinguisher could be found for structural attacks beyond 2𝑑 + 2 rounds as full diffusion is reached. Those notions are also mainly linked with the computation of the super-pseudo random permutation advantage of the underlying scheme as shown in [START_REF] Viet | On generalized Feistel networks[END_REF][START_REF] Thierry | Extended generalized Feistel networks using matrix representation[END_REF].

Thus, in the single tweakey model where no difference at all is injected through the tweakey schedule, the best distinguisher could be constructed on 2𝑑 + 2 rounds. To complete the attack, we could add for the key recovery part 𝑑 rounds at the top of the distinguisher and 𝑑 rounds at the bottom leading to a structural attack with a maximum of 4𝑑 + 2 rounds. For all instances of Lilliput-TBC, this leads to the possibility of covering at most 18 rounds for all the structural attacks considered here. Note that this bound is overestimated compared to the one provided in [START_REF] Sasaki | New impossible differential search tool from design and cryptanalysis aspects -revealing structural properties of several ciphers[END_REF] concerning the particular case of an impossible differential attack on the block cipher Lilliput.

Moreover, in the related tweakey model where we consider that an adversary can control at most the content of 𝑝 lanes, the adversary could directly in this context attack 4𝑑 + 2 + 𝑝 rounds at most. This leads to the following upper bounds on the possible number of attacked rounds for the 6 instances of Lilliput-TBC: 22 rounds for Lilliput-TBC-II-128, 23 rounds for Lilliput-TBC-II-192 and Lilliput-TBC-I-128, 24 rounds for Lilliput-TBC-II-256 and Lilliput-TBC-I-192, 25 rounds for Lilliput-TBC-I-256.

Division Property

The division property was proposed by Todo [START_REF] Todo | Structural evaluation by generalized integral property[END_REF] as a generalization of the integral property to correctly evaluate higher-order integral property. The best division distinguisher described in [START_REF] Sasaki | Tight bounds of differentially and linearly active s-boxes and division property of lilliput[END_REF] on the block cipher Lilliput is on 13 rounds leading to a key recovery attack on 17 rounds in the single tweakey model. Note that the Linear procedure presented in Algorithm 1 of [START_REF] Sasaki | Tight bounds of differentially and linearly active s-boxes and division property of lilliput[END_REF] is the same for Lilliput-TBC, only the NonLinear part diverges in the way to compute the sets. The distinguisher presented in [START_REF] Sasaki | Tight bounds of differentially and linearly active s-boxes and division property of lilliput[END_REF] studies an integral property on 63 input bits and on 1 output bit that completely maximize the possible number of implied bits. Thus, we conjecture that there is no distinguisher that exploits division properties on more than 26 rounds of Lilliput-TBC as in this last case, the number of possible input bits implied in a division property is doubled, i.e. equal to 127 with the same procedure describing the linear part. Thus, we are still confident that our proposals offer a strong security margin regarding this class of attacks.

Subspace Cryptanalysis

Invariant subspace cryptanalysis uses affine subspaces that are invariant throughout the cipher. Those attacks work particularly well in the context of simple tweakey/key schedules where the invariant properties stay valid through the key addition. Thus, to avoid this kind of attacks, invariant subspaces must be destroyed by the key/tweakey schedule. As the tweakey schedule of Lilliput-TBC is composed of ring-lfsrs ranging all the possible spaces, we conjecture that our non-trivial tweakey schedule provide a good protection against those attacks.

However, we give here the 9 linear structures of our S-box, i.e. the list (𝑏, 𝑎, 𝑐) such that 𝑏 • (𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ 𝑎)) = 𝑐 with 𝑐 a constant: (1, 32, 1), (1, 64, 0), (1, 96, 1), (4, 64, 1), (4, 128, 0), (4, 192, 1), (5, 64, 1), (5, 160, 1), (5, 224, 0). Note that none of those structures is preserved through two applications of the S-box.

Thus, with our non-trivial tweakey schedule and the fact that the invariant subspaces deduced from the linear structures can not be chained for many rounds, we conjecture that Lilliput-TBC is immune against this kind of attacks.

Algebraic Attacks

Before deducing bounds for algebraic attacks, let us describe the algebraic properties of the S-box. The S-box has a maximal degree of 6 and a minimal degree of 4. Our S-box could also be described using 𝑒 = 14 quadratic equations in the 16 input/output variables over 𝐺𝐹 (2). Thus, from Table 4.7, we could see that for 13 rounds, we have 26 active S-boxes, it means that, from this bound the number of induced variables by the algebraic expression of the cipher Lilliput-TBC is greater than the block size.

Moreover, as our S-box 𝑆 could be described with 14 quadratic equations in 16 variables, it means that the number of quadratic equations induced by a round is 14 × 8 = 112 quadratic equations in 16 × 8 = 128 variables and for 32 rounds of Lilliput-TBC, we thus obtain 3584 quadratic equations in 4096 variables. Thus, we obtain an under-determined system with more variables than for the Aes.

Using those arguments, we conjecture that Lilliput-TBC is immune against algebraic attacks.

Differential Fault Analysis in Middle Rounds

We want to protect Lilliput-TBC against differential fault analysis. Such attacks consist in injecting faults in one of the last rounds of the encryption, and exploit pairs of faulty and correct ciphertexts. A common countermeasure consists in doubling the execution of a few last rounds in order to detect a fault. In the case of a fault injection -unless the attacker is able to inject twice the same fault in a very short period of time -the doubling results in two ciphertexts, one faulty and the other not. Such a result is detected and no output is given. In order to be detected, the fault must be injected during the rounds that are doubled. If a fault occurs before, the faulty state is copied and processed twice, resulting in two identical faulty ciphertexts which will be outputted, making the countermeasure ineffective. For this reason, it is important to protect enough rounds to prevent such attacks. It is also important to evaluate closely the number of rounds to protect as doubling increases time computation or surface area.

We analyze how much rounds must be protected in order to prevent the attack from Rivain [START_REF] Rivain | Differential fault analysis on DES middle rounds[END_REF] adapted to Lilliput-TBC. This attack takes advantage of the Feistel scheme in order to inject fault in middle rounds and observe differential distributions in the last one.

As Lilliput-TBC is based on a Feistel scheme, we will denote the state at output of round 𝑖 as (𝐿 𝑖 , 𝑅 𝑖), 𝐿 𝑖 and 𝑅 𝑖 being its 64-bit left and right parts respectively 4 . Hence, the plaintext is (𝐿 0 , 𝑅 0), and the ciphertext (𝐿 𝑟 , 𝑅 𝑟). The fact that the number of rounds 𝑟 changes with the mode used does not change anything about the following results, as 𝑟 is always greater than the number of rounds to protect. Notice that the subtweakey byte used in each non linear function 𝐹 𝑗 of Lilliput-TBC (0 ≤ 𝑗 ≤ 7) is the xor of a known constant and 𝑝 byte values (4 ≤ 𝑝 ≤ 7) that come from some known tweak-dependent lanes and other unknown key-dependent ones. The following analysis focuses on retrieving this subtweakey byte value only, leaving uncertainty about key-lane bytes. A "successful" attack thus leaves the attacker with 2 8 pairs of key-dependent bytes (or 2 16 triplets or 2 32 quadruplets, depending on the key length).

As in [START_REF] Rivain | Differential fault analysis on DES middle rounds[END_REF] we only consider faults in the left part of the state as it is the most efficient way to retrieve the subkey in a Feistel scheme. Injecting a fault 𝜖 in 𝐿 𝑖 induces changes in the next rounds and results in a faulty ciphertext ̃︀ 𝐶. The correct ciphering of the same plaintext is denoted 𝐶. The main goal is to observe the distribution of Δ = 𝐿 𝑟-1 ⊕ ̃︀ 𝐿 𝑟-1 , which is the xor of both left parts of the correct and faulty states before the last round. It is possible to compute each byte of Δ = (𝛿 7 , . . . , 𝛿 0) as a function of the correct/faulty ciphertexts and a guess 𝑔 on the corresponding subtweakey byte in the last round. Denoting 𝐿 𝑖 = (ℓ 𝑖 7 , . . . , ℓ 𝑖 0) and ̃︀ 𝐿 𝑖 = (̃︀ ℓ 𝑖 7 , . . . , ̃︀ ℓ 𝑖 0) -and similarly with 𝑟 𝑖 𝑗 and ̃︀ 𝑟 𝑖 𝑗 for the right parts -we infer:

𝛿 0 = ℓ 𝑟 0 ⊕ ̃︀ ℓ 𝑟 0 ⊕ 𝑆(𝑟 𝑟 7 ⊕ 𝑔) ⊕ 𝑆(̃︀ 𝑟 𝑟 7 ⊕ 𝑔) 𝛿 𝑗 = ℓ 𝑟 𝑗 ⊕ ̃︀ ℓ 𝑟 𝑗 ⊕ 𝑆(𝑟 𝑟 7-𝑗 ⊕ 𝑔) ⊕ 𝑆(̃︀ 𝑟 𝑟 7-𝑗 ⊕ 𝑔) ⊕ 𝑟 𝑟 7 ⊕ ̃︀ 𝑟 𝑟 7 for 1 ≤ 𝑗 ≤ 6 𝛿 7 = ℓ 𝑟 7 ⊕ ̃︀ ℓ 𝑟 7 ⊕ 𝑆(𝑟 𝑟 0 ⊕ 𝑔) ⊕ 𝑆(̃︀ 𝑟 𝑟 0 ⊕ 𝑔) ⊕ 𝑟 𝑟 7 ⊕ ̃︀ 𝑟 𝑟 7 ⊕ 𝑟 𝑟 6 ⊕ ̃︀ 𝑟 𝑟 6 ⊕ 𝑟 𝑟 5 ⊕ ̃︀ 𝑟 𝑟 5 ⊕ 𝑟 𝑟 4 ⊕ ̃︀ 𝑟 𝑟 4 ⊕ 𝑟 𝑟 3 ⊕ ̃︀ 𝑟 𝑟 3 ⊕ 𝑟 𝑟 2 ⊕ ̃︀ 𝑟 𝑟 2 ⊕ 𝑟 𝑟 1 ⊕ ̃︀ 𝑟 𝑟 1 (4.6) (4.7) (4.8)
Depending on the round where the fault is injected, the attacker might be able to know the distribution of Δ. For example, if a fault 𝜖 is injected in 𝐿 𝑟-3 , then Δ = 𝜖. If the attacker knows 𝜖, he can check whether the 𝑔-dependent Δ value calculated from the previous equations equals 𝜖 or not, discarding subtweakey candidates that do not. Note that due to the byte oriented scheme of Lilliput-TBC, the attack can be done on each subtweakey byte independently, allowing to guess one byte and calculate one 𝛿 byte at a time. For this reason, the rest of the analysis focuses on a byte 𝛿 rather than on the whole Δ.

If the attacker is able to systematically fault with the same known 𝜖 in earliest rounds, he can build (in an offline phase) approximations of the theoretic distribution of any 𝛿 𝑗 . Given 𝑁 pairs of correct/faulty ciphertexts (𝐶, ̃︀ 𝐶) 𝑁 , the attack then consists in calculating, for each candidate 𝑔, the corresponding empirical distribution of 𝛿 𝑗 and select the one that is the most similar to the theoretic one. This can be done in a maximum-likelihood manner for instance.

In the case where the attacker is not able to predict the distribution of 𝛿 𝑗 , he can still expect it to be biased for the correct key guess, and to be uniform for others (wrong-key assumption). Similarly he can compute the empirical distributions of 𝛿 𝑗 and select the one that is the farthest from the uniform distribution. This can be done with the Squared Euclidean Imbalance distinguisher for example.

In order to infer the number of rounds to protect, we have considered a strong attacker who is able to inject bit flips at the bit position of its choice. We then conducted attacks, injecting faults sooner and sooner until the attack becomes unfeasible.

Simulation Results and Recommendation

We have simulated the differential fault analysis where a bit flip fault is injected at a precise round 𝑟 -𝑠 and at a chosen bit position 𝑏 on Lilliput-TBC-I-1285 . We have studied both the non profiled case where the distinguisher is the Squared Euclidean Imbalance of the observed distribution of 𝛿 𝑗 , and the profiled case based on the maximum-likelihood of this distribution with respect to (an approximation of) the theoretic one. For sake of clarity, with our notations, when the attacker observes the distribution of byte 𝛿 𝑗 , it helps him to recover the subtweakey byte 𝑅𝑇 𝐾 7-𝑗 . Our objective is to determine the largest value of 𝑠 for which we suspect that a fault attack can be realized. The fault bit position 𝑏 is numbered from 0 to 63 which respectively denote the least significant bit of 𝑋 8 = ℓ 0 and the most significant bit of 𝑋 15 = ℓ 7 . For any set of parameters (round gap 𝑠, fault bit position 𝑏, attacked subtweakey byte position (7 -𝑗), number of faults 𝑁 , profiled/non profiled setting), our results are expressed as the average success rate on 1000 runs.

We first observed that for 𝑠 ≤ 6, the fault attack is somewhat easy. For 𝑠 = 6, and for 𝑁 = 1000 faults, there always exists a fault bit position for which the success rate is 1.0 for all positions 𝑗 except for 𝑗 = 7. Note that we have systematically observed that the subtweakkey byte number 0 (𝑗 = 7) is the most difficult to retrieve. For 𝑗 = 7, the success rate may still be as large as 0.873 (depending on 𝑏) in the profiled case. An interesting observation is that the success of the attack greatly depends on the fault bit position. As we consider that the attacker can choose 𝑏, we think that the relevant criteria is the maximum success rate taken on all 𝑏 = 0 . . . 63 values.

Table 4.8 and Table 4.9 present results for the non-profiled and the profiled settings respectively. We have considered a number of faults 𝑁 belonging to the set {10 3 , 3.10 3 , 10 4 , 3.10 4 , 10 5 , 3.10 5 , 10 6 , 3.10 6 , 10 7 } for 𝑠 = 7, and to the set {10 5 , 3.10 5 , 10 6 , 3.10 6 , 10 7 } for 𝑠 = 8. Without surprise, one can observe that the profiled attack is more efficient than the non-profiled one. For 𝑠 = 7 all subtweakey bytes except for 𝑗 = 7 can be retrieved with about 10 5 faults. Even with only about 3000 faults two subtweakey bytes (for 𝑗 = 1 and 𝑗 = 6) can be recovered. We also observe that for 𝑠 = 8 the attack does not work, even in the profiled case and even with ten millions faults, whatever the bit fault position and whatever the attacked byte.

Based on our simulation results, we recommend to protect Lilliput-TBC against differential fault analysis by doubling the execution of a minimum of seven last rounds.

Security Evaluation Summary

Table 4.10 gives a security evaluation summary for all the instances of Lilliput-TBC. From this table, we are able to say that each instance has a sufficient security margin (given in the last column).

Surprisingly, classical attacks such as differential and linear attacks reach more rounds than structural attacks for Lilliput-TBC. This is mainly linked with the choice of a Feistel-like scheme with a good diffusion.

Implementations

Lilliput-AE is suited to be implemented efficiently on a wide range of processors (especially those embedded in iot platforms) and in hardware. This section will provide insights on efficient implementation methods, especially on 8-bit processors where Lilliput-AE is by design well adapted due to its byte-oriented nature. Many good properties on 8-bit platforms are also valid on 16-bit and 32-bit platforms.

Software Implementations

In this section, we give some possible variants for implementing Lilliput-AE. We take as reference iot platforms those from the Felics (Fair Evaluation of LIghtweight Cryptographic Systems) framework [DCK + 15]: 8-bit Atmel avr atmega128, 16-bit Texas Instruments msp430f1611 and 32-bit Arduino Due arm Cortex-M3. When useful, binary code size, extscram, and execution time optimizations will be discussed.

On an 8-bit processor, Lilliput-AE can be programmed by simply implementing the different component transformations.

Round Function OneRoundEGFN

If we look at the OneRoundEGFN the round function, NonLinearLayer function is only made of S-boxes computation, with previous subtweakey addition. LinearLayer function is just successive byte additions on 𝑥 15 followed by byte additions on most significant bytes of OneRoundEGFN internal state. Finally, a byte-oriented permutation, PermutationLayer, is computed.

A straightforward implementation is then easy to implement on 8-bit processors. The implementation of all the 𝐹 𝑖 functions requires a table of 256 bytes. Since this table is fixed, it can be easily stored in eeprom data. As mentioned in Section 4.3.2, 𝑆 has been chosen to be easily masked in hardware and software.

Concerning code size, OneRoundEGFN can be easily computed with loops in order to save rom program space. For example, Algorithm 5 shows that NonLinearLayer only needs one additional intermediate register in total to store the successive results of 𝑆𝐾 7-𝑖 ⊕ 𝑥 7-𝑖 and the 𝑆 computation on it: ram stack usage is then minimal.

Similarly, Algorithm 6 shows that LinearLayer can be also implemented by XOR additions and accumulations. Finally, PermutationLayer can be simply implemented as a series of MOV operations. For example, in encryption mode:

𝑥 13 ← 𝑥 0 , 𝑥 9 ← 𝑥 1 , • • • , 𝑥 7 ← 𝑥 15 .
Overall, a straightforward computation of OneRoundEGFN (which is the same for every 𝑇 𝐾 size) needs 29 XORs (21 in the datapath plus 8 before each S-box computation), 8 accesses in eeprom memory for S-box computations, and 16 MOV operations for PermutationLayer, i.e. only 53 operations in total (29 arithmetic operations and 24 memory operations). The footprint on ram stack, rom program (as discussed earlier in this subsection) and on eeprom data (256 bytes) of OneRoundEGFN is very lightweight for 8-bit platforms.

Tweakey Schedule

The tweakey schedule can be decomposed into two distinct functions:

• the extraction function, which is called 𝑟 times to produce subtweakey 𝑅𝑇 𝐾 𝑖 from the tweakey state 𝑇 𝐾 𝑖 , ∀𝑖 ∈ {0, • • • , 𝑟 -1},

• the update function, which is called 𝑟 -1 times to compute 𝑇 𝐾 𝑖+1 from 𝑇 𝐾 𝑖 , ∀𝑖 ∈ {0, • • • , 𝑟 -2}.

The update function consists in one multiplication 𝛼 𝑖 per lane. Each of these multiplications takes a different amount of operations to complete. This function thus requires 8 × (𝑝 -1) + 1 XOR operations.

4-lane case

The following multiplications are needed to process four lanes: 𝛼 0 = 𝑀 , 𝛼 1 = 𝑀 2 , 𝛼 2 = 𝑀 3 , and 𝛼 3 = 𝑀 4 . As we will do for further number of lanes, we will develop the matrix relations to evaluate precisely the number of required operations. Multiplication 𝛼 0 of vector 𝑥 = (𝑥 7 , 𝑥 6 , • • • , 𝑥 0) 𝑡 by matrix 𝑀 can be expressed as:

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑦 7 𝑦 6 𝑦 5 𝑦 4 𝑦 3 𝑦 2 𝑦 1 𝑦 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑥 6 𝑥 5 𝑥 5 ≪ 3 ⊕ 𝑥 4 𝑥 4 ≫ 3 ⊕ 𝑥 3 𝑥 2 𝑥 6 ≪ 2 ⊕ 𝑥 1 𝑥 0 𝑥 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
Multiplication 𝛼 0 will thus require 14 operations in total:

• shift operations,

• XORs,

• assignments.

Multiplication 𝛼 1 is represented by matrix 𝑀 2 , which corresponds to two successive applications of matrix 𝑀 . Let us denote 𝑀

• 𝑥 as 𝑎 = (𝑎 7 , • • • , 𝑎 0) 𝑡 : ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑎 7 𝑎 6 𝑎 5 𝑎 4 𝑎 3 𝑎 2 𝑎 1 𝑎 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑥 6 𝑥 5 𝑥 5 ≪ 3 ⊕ 𝑥 4 𝑥 4 ≫ 3 ⊕ 𝑥 3 𝑥 2 𝑥 6 ≪ 2 ⊕ 𝑥 1 𝑥 0 𝑥 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 𝑦 = 𝑀 2 • 𝑥 = 𝑀 • 𝑎 can then be expressed as: ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑦 7 𝑦 6 𝑦 5 𝑦 4 𝑦 3 𝑦 2 𝑦 1 𝑦 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑎 6 𝑎 5 𝑎 5 ≪ 3 ⊕ 𝑎 4 𝑎 4 ≫ 3 ⊕ 𝑎 3 𝑎 2 𝑎 6 ≪ 2 ⊕ 𝑎 1 𝑎 0 𝑎 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
Some components of 𝑎 are simply permuted components of 𝑥; others (namely, 𝑎 5 , 𝑎 4 and 𝑎 2) result from a linear combination of components of 𝑥. Some of these combinations contribute to more than one components of 𝑦: specifically, 𝑎 5 = 𝑥 5 ≪ 3 ⊕ 𝑥 4 and 𝑎 4 = 𝑥 4 ≫ 3 ⊕ 𝑥 3 .

To minimize the number of operations, we can thus spend some registers to store 𝑎 5 and 𝑎 4 . The final expression for 𝑦 = 𝑀 2 • 𝑥 then becomes:

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑦 7 𝑦 6 𝑦 5 𝑦 4 𝑦 3 𝑦 2 𝑦 1 𝑦 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑎 6 𝑎 5 𝑎 5 ≪ 3 ⊕ 𝑎 4 𝑎 4 ≫ 3 ⊕ 𝑎 3 𝑎 2 𝑎 6 ≪ 2 ⊕ 𝑎 1 𝑎 0 𝑎 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑥 5 𝑎 5 𝑎 5 ≪ 3 ⊕ 𝑎 4 𝑎 4 ≫ 3 ⊕ 𝑥 2 𝑥 6 ≪ 2 ⊕ 𝑥 1 𝑥 5 ≪ 2 ⊕ 𝑥 0 𝑥 7 𝑥 6 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
Multiplication 𝛼 1 will thus require 22 operations in total:

• 2 XORs, 2 shifts and 2 assignments for 𝑎 5 and 𝑎 4 ,

• 4 XORs, 4 shifts and 8 byte assignments.

Multiplication 𝛼 2 is represented by matrix 𝑀 3 , which corresponds to three successive applications of matrix 𝑀 . Let us denote

𝑀 2 • 𝑥 as 𝑏 = (𝑏 7 , • • • , 𝑏 0) 𝑡 : ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑏 7 𝑏 6 𝑏 5 𝑏 4 𝑏 3 𝑏 2 𝑏 1 𝑏 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑎 6 𝑎 5 𝑎 5 ≪ 3 ⊕ 𝑎 4 𝑎 4 ≫ 3 ⊕ 𝑎 3 𝑎 2 𝑎 6 ≪ 2 ⊕ 𝑎 1 𝑎 0 𝑎 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 𝑦 = 𝑀 3 • 𝑥 = 𝑀 • 𝑏 can then be expressed as: ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑦 7 𝑦 6 𝑦 5 𝑦 4 𝑦 3 𝑦 2 𝑦 1 𝑦 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑏 6 𝑏 5 𝑏 5 ≪ 3 ⊕ 𝑏 4 𝑏 4 ≫ 3 ⊕ 𝑏 3 𝑏 2 𝑏 6 ≪ 2 ⊕ 𝑏 1 𝑏 0 𝑏 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
As with 𝛼 1 , we can isolate components of 𝑏 which satisfy the following constraints:

1. they result from a linear combination of more than one components of 𝑎, 2. they contribute to more than one components of 𝑦.

𝑏 5 , 𝑏 4 and 𝑏 2 satisfy constraint 1; among those, only 𝑏 5 = 𝑎 5 ≪ 3 ⊕ 𝑎 4 and 𝑏 4 = 𝑎 4 ≫ 3 ⊕ 𝑎 3 = 𝑎 4 ≫ 3 ⊕ 𝑥 2 satisfy constraint 2. To implement 𝛼 2 using as few operations as necessary, we thus need to:

1. pre-compute 𝑎 5 and 𝑎 4 , 2. pre-compute 𝑏 5 and 𝑏 4 , 3. compute 𝑦 as follows:

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑦 7 𝑦 6 𝑦 5 𝑦 4 𝑦 3 𝑦 2 𝑦 1 𝑦 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑏 6 𝑏 5 𝑏 5 ≪ 3 ⊕ 𝑏 4 𝑏 4 ≫ 3 ⊕ 𝑏 3 𝑏 2 𝑏 6 ≪ 2 ⊕ 𝑏 1 𝑏 0 𝑏 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑎 5 𝑏 5 𝑏 5 ≪ 3 ⊕ 𝑏 4 𝑏 4 ≫ 3 ⊕ 𝑎 2 𝑎 6 ≪ 2 ⊕ 𝑎 1 𝑎 5 ≪ 2 ⊕ 𝑎 0 𝑎 7 𝑎 6 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑎 𝑏 𝑏 5 ≪ ⊕ 𝑏 4 𝑏 4 ≫ 3 ⊕ 𝑥 ≪ 2 ⊕ 𝑥 1 𝑥 5 ≪ ⊕ 𝑥 0 𝑎 5 ≪ ⊕ 𝑥 7 𝑥 𝑥 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
Multiplication 𝛼 2 will thus require 30 operations in total:

• 2 XORs, 2 shifts and 2 assignments for 𝑎 5 and 𝑎 4 ,

• 2 XORs, 2 shifts and 2 assignments for 𝑏 5 and 𝑏 4 ,

• 5 XORs, 5 shifts and 8 byte assignments.

Multiplication 𝛼 3 is represented by matrix 𝑀 4 , which corresponds to four successive applications of matrix 𝑀 . Let us denote

𝑀 3 • 𝑥 as 𝑐 = (𝑐 7 , • • • , 𝑐 0) 𝑡 : ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑐 7 𝑐 6 𝑐 5 𝑐 4 𝑐 3 𝑐 2 𝑐 1 𝑐 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑏 6 𝑏 5 𝑏 5 ≪ 3 ⊕ 𝑏 4 𝑏 4 ≫ 3 ⊕ 𝑏 3 𝑏 2 𝑏 6 ≪ 2 ⊕ 𝑏 1 𝑏 0 𝑏 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 𝑦 = 𝑀 4 • 𝑥 = 𝑀 • 𝑐 can then be expressed as: ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑦 7 𝑦 6 𝑦 5 𝑦 4 𝑦 3 𝑦 2 𝑦 1 𝑦 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑐 6 𝑐 5 𝑐 5 ≪ 3 ⊕ 𝑐 4 𝑐 4 ≫ 3 ⊕ 𝑐 3 𝑐 2 𝑐 6 ≪ 2 ⊕ 𝑐 1 𝑐 0 𝑐 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
𝑐 4 and 𝑐 5 are the only components of 𝑐 which result from a linear combination of more than one components of 𝑏, while contributing to more than one components of 𝑦. Therefore, to implement 𝛼 3 using as few operations as necessary, we need to:

1. pre-compute 𝑎 5 and 𝑎 4 , 2. pre-compute 𝑏 5 and 𝑏 4 , 3. pre-compute 𝑐 5 and 𝑐 4 , 4. compute 𝑦 as follows:

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑦 7 𝑦 6 𝑦 5 𝑦 4 𝑦 3 𝑦 2 𝑦 1 𝑦 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑐 6 𝑐 5 𝑐 5 ≪ 3 ⊕ 𝑐 4 𝑐 4 ≫ 3 ⊕ 𝑐 3 𝑐 2 𝑐 6 ≪ 2 ⊕ 𝑐 1 𝑐 0 𝑐 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑏 5 𝑐 5 𝑐 5 ≪ 3 ⊕ 𝑐 4 𝑐 4 ≫ 3 ⊕ 𝑏 2 𝑏 6 ≪ 2 ⊕ 𝑏 1 𝑏 5 ≪ 2 ⊕ 𝑏 0 𝑏 7 𝑏 6 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑏 5 𝑐 5 𝑐 5 ≪ 3 ⊕ 𝑐 4 𝑐 4 ≫ 3 ⊕ 𝑥 5 ≪ 2 ⊕ 𝑥 0 𝑎 5 ≪ 2 ⊕ 𝑥 7 𝑏 5 ≪ 2 ⊕ 𝑥 6 𝑥 5 𝑎 5 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
Multiplication 𝛼 3 will thus require 39 operations in total:

• 2 XORs, 2 shifts and 2 assignments for 𝑎 5 and 𝑎 4 ,

• 2 XORs, 2 shifts and 2 assignments for 𝑏 5 and 𝑏 4 ,

• 2 XORs, 3 shifts and 1 assignment for 𝑐 4 ,

• 1 XOR, 1 shift and 1 assignment for 𝑐 5 ,

• 5 XORs, 5 shifts and 8 byte assignments.

To sum up, for the 4-lane case, the multiplications by 𝛼 0 , 𝛼 1 , 𝛼 2 and 𝛼 3 require 14 + 22 + 30 + 39 = 105 operations in total.

Taking into account the 8 × (𝑝 -1) + 1 = 8 × 3 + 1 = 25 operations needed for the extraction function, this leads to 105 + 25 = 130 operations for the whole subtweakey computation.

5-lane case

To process five lanes, multiplications 𝛼 0 = 𝑀 , 𝛼 1 = 𝑀 2 , 𝛼 2 = 𝑀 3 , 𝛼 3 = 𝑀 4 (already described) and 𝛼 4 = 𝑀 𝑅 are needed.

Multiplication 𝛼 4 of vector 𝑥 = (𝑥 0 , 𝑥 1 , • • • , 𝑥 7) 𝑡 by matrix 𝑀 𝑅 (as explained in Section 4.2.3, we invert the direction of binary notations when dealing with 𝑀 𝑅) can be expressed as:

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑦 0 𝑦 1 𝑦 2 𝑦 3 𝑦 4 𝑦 5 𝑦 6 𝑦 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑥 1 𝑥 2 𝑥 3 ⊕ 𝑥 4 ≪ 3 𝑥 4 𝑥 5 ⊕ 𝑥 6 ≫ 3 𝑥 3 ≫ 2 ⊕ 𝑥 6 𝑥 7 𝑥 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
Multiplication 𝛼 4 will thus require 14 operations in total:

• 3 XORs and 3 shifts,

• 8 byte assignments.

To sum up, for the 5-lane case, the update function will require 105 operations (cf. 4-lane case) plus 14 operations for 𝛼 4 , i.e. 119 operations. After adding 8 × (5 -1) + 1 = 33 XORs for the extraction function, we reach 138 operations for the whole subtweakey computation.

6-lane case

To process six lanes, multiplications 𝛼 0 = 𝑀 , 𝛼 1 = 𝑀 2 , 𝛼 2 = 𝑀 3 , 𝛼 3 = 𝑀 4 , 𝛼 4 = 𝑀 𝑅 (already described) and 𝛼 5 = 𝑀 2 𝑅 are needed. Multiplication 𝛼 5 of vector 𝑥 = (𝑥 0 , 𝑥 1 , • • • , 𝑥 7) 𝑡 by matrix 𝑀 2 𝑅 corresponds to two successive applications of matrix 𝑀 𝑅 . Let us denote

𝑀 𝑅 • 𝑥 as 𝑎 = (𝑎 0 , • • • , 𝑎 7) 𝑡 : ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑎 0 𝑎 1 𝑎 2 𝑎 3 𝑎 4 𝑎 5 𝑎 6 𝑎 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑥 1 𝑥 2 𝑥 3 ⊕ 𝑥 4 ≪ 3 𝑥 4 𝑥 5 ⊕ 𝑥 6 ≫ 3 𝑥 3 ≫ 2 ⊕ 𝑥 6 𝑥 7 𝑥 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 𝑦 = 𝑀 2 𝑅 • 𝑥 = 𝑀 𝑅 • 𝑎 can then be expressed as: ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑦 0 𝑦 1 𝑦 2 𝑦 3 𝑦 4 𝑦 5 𝑦 6 𝑦 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑎 1 𝑎 2 𝑎 3 ⊕ 𝑎 4 ≪ 3 𝑎 4 𝑎 5 ⊕ 𝑎 6 ≫ 3 𝑎 3 ≫ 2 ⊕ 𝑎 6 𝑎 7 𝑎 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
As with 𝛼 1 , 𝛼 2 and 𝛼 3 , we will pre-compute components of 𝑎 which depend on more than one components of 𝑥 and contribute to more than one components of 𝑦. For 𝛼 5 , this singles out 𝑎 4 = 𝑥 5 ⊕ 𝑥 6 ≫ 3. We end up with the following expression for 𝑦:

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑦 0 𝑦 1 𝑦 2 𝑦 3 𝑦 4 𝑦 5 𝑦 6 𝑦 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑎 1 𝑎 2 𝑎 3 ⊕ 𝑎 4 ≪ 3 𝑎 4 𝑎 5 ⊕ 𝑎 6 ≫ 3 𝑎 3 ≫ 2 ⊕ 𝑎 6 𝑎 7 𝑎 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑥 2 𝑥 3 ⊕ 𝑥 4 ≪ 3 𝑥 4 ⊕ 𝑎 4 ≪ 3 𝑎 4 𝑥 3 ≫ 2 ⊕ 𝑥 6 ⊕ 𝑥 7 ≫ 3 𝑥 4 ≫ 2 ⊕ 𝑥 7 𝑥 0 𝑥 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
Multiplication 𝛼 5 will thus require 21 operations in total:

• 1 XOR, 1 shift and 1 assignment for 𝑎 4 ,

• 5 XORs, 5 shifts and 8 byte assignments.

To sum up, for the 6-lane case, the update function will require 119 operations (cf. 5-lane case) plus 21 operations for 𝛼 5 , i.e. 140 operations. After adding 8 × (6 -1) + 1 = 41 XORs for the extraction function, we reach 181 operations for the whole subtweakey computation.

7-lane case Finally, to process seven lanes, multiplications 𝛼

0 = 𝑀 , 𝛼 1 = 𝑀 2 , 𝛼 2 = 𝑀 3 , 𝛼 3 = 𝑀 4 , 𝛼 4 = 𝑀 𝑅 , 𝛼 5 = 𝑀 2
𝑅 (already described) and 𝛼 6 = 𝑀 3 𝑅 are needed. Multiplication 𝛼 6 of vector 𝑥 = (𝑥 0 , 𝑥 1 , • • • , 𝑥 7) 𝑡 by matrix 𝑀 3 𝑅 corresponds to three successive applications of 𝑀 𝑅 . Let us denote

𝑀 2 𝑅 • 𝑥 as 𝑏 = (𝑏 0 , • • • , 𝑏 7): ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑏 0 𝑏 1 𝑏 2 𝑏 3 𝑏 4 𝑏 5 𝑏 6 𝑏 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑎 1 𝑎 2 𝑎 3 ⊕ 𝑎 4 ≪ 3 𝑎 4 𝑎 5 ⊕ 𝑎 6 ≫ 3 𝑎 3 ≫ 2 ⊕ 𝑎 6 𝑎 7 𝑎 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 𝑦 = 𝑀 3 𝑅 • 𝑥 = 𝑀 𝑅 • 𝑏 can then be expressed as: ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑦 0 𝑦 1 𝑦 2 𝑦 3 𝑦 4 𝑦 5 𝑦 6 𝑦 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑏 1 𝑏 2 𝑏 3 ⊕ 𝑏 4 ≪ 3 𝑏 4 𝑏 5 ⊕ 𝑏 6 ≫ 3 𝑏 3 ≫ 2 ⊕ 𝑏 6 𝑏 7 𝑏 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
Only 𝑏 4 = 𝑎 5 ⊕ 𝑎 6 ≫ 3 = 𝑥 3 ≫ 2 ⊕ 𝑥 6 ⊕ 𝑥 7 ≫ 3 depends on more than one components of 𝑎 while contributing to more than one components of 𝑦. To implement 𝛼 6 using as few operations as necessary, we thus need to:

1. pre-compute 𝑎 4 2. pre-compute 𝑏 4 , 3. compute 𝑦 as follows:

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑦 0 𝑦 1 𝑦 2 𝑦 3 𝑦 4 𝑦 5 𝑦 6 𝑦 7 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑏 1 𝑏 2 𝑏 3 ⊕ 𝑏 4 ≪ 3 𝑏 4 𝑏 5 ⊕ 𝑏 6 ≫ 3 𝑏 3 ≫ 2 ⊕ 𝑏 6 𝑏 7 𝑏 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑎 2 𝑎 3 ⊕ 𝑎 4 ≪ 3 𝑎 4 ⊕ 𝑏 4 ≪ 3 𝑏 4 𝑎 5 ⊕ 𝑎 6 ≫ 3 ⊕ 𝑎 7 ≫ 3 𝑎 4 ≫ 2 ⊕ 𝑎 7 𝑎 0 𝑎 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑥 3 ⊕ 𝑥 4 ≪ 3 𝑥 4 ⊕ 𝑎 4 ≪ 3 𝑎 4 ⊕ 𝑏 4 ≪ 3 𝑏 4 𝑥 3 ≫ 2 ⊕ 𝑥 6 ⊕ 𝑥 7 ≫ 3 𝑎 4 ≫ 2 ⊕ 𝑥 0 𝑥 1 𝑥 2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
Overall, multiplication 𝛼 6 will require 28 operations:

• 1 XOR, 1 shift and 1 assignment for 𝑎 4 ,

• 2 XORs, 2 shifts and 1 assignment for 𝑏 4 ,

• 6 XORs, 6 shifts and 8 byte assignments.

To sum up, for the 7-lane case, the update function will require 140 operations (cf. 6-lane case) plus 28 operations for 𝛼 6 , i.e. 168 operations. After adding 8 × (7 -1) + 1 = 49 XORs for the extraction function, we reach 217 operations for the whole subtweakey computation.

Possible Trade-Offs

Another implementation of the tweakey schedule's update function can save some program space at the expense of extra ram usage and latency. To multiply a lane 𝑥 by matrix 𝑀 (resp. 𝑀 𝑅) raised to the power of 𝑛 > 1, one can multiply 𝑥 by 𝑀 (resp. 𝑀 𝑅) 𝑛 times, instead of using the ad-hoc expressions given in Section 4.4.1. This allows the implementer to re-use the code for 𝛼 0 (resp. 𝛼 4) in order to compute 𝛼 1 , 𝛼 2 and 𝛼 3 (resp. 𝛼 5 and 𝛼 6), although computing and storing each byte of every 𝑀 𝑖 • 𝑥, ∀𝑖 ∈ [1, 𝑛) requires more cycles and more working memory.

During Lilliput-TBC's encryption process, either the full tweakey schedule can be run to pre-compute all 𝑟 subtweakeys before processing the plaintext, or each subtweakey can be computed on the fly to save extscram. Since the decryption process uses subtweakeys in the reverse order, the full tweakey schedule must be run before processing the plaintext, in order to compute the last subtweakey. The implementer can then either

• discard all intermediate subtweakeys, and re-compute 𝑅𝑇 𝐾 𝑖-1 from 𝑅𝑇 𝐾 𝑖 on the fly; this requires additional code to implemented the inverted tweakey multiplications, and adds some latency to the decryption process,

• keep all intermediate subtweakeys, which requires more extscram.

Note that there is no such issue with Lilliput-II, since Algorithm 4 does not need Lilliput-TBC's decryption process.

16-bit and 32-bit Platforms

Typical implementations of the Lilliput-TBC tweakey schedule and OneRoundEGFN function map each lane and (left and right) parts of Feistel network to a CPU word, resulting in the state of Lilliput-AE represented in 6 to 9 words of 64 bits each depending on the number of lanes.

Specifically, the implementation of Lilliput-AE on a 64-bit CPU can exploit 64-bit wide boolean operations and 64-bit rotations. Thus, the choice of Lilliput-AE favors 64-bit CPUs and yet remains efficient on 32-bit (and smaller) processors.

For implementing the tweakey schedule on a 32-bit CPU, the 64 bits of a lane should be distributed to two 32-bit words.

Implementing OneRoundEGFN computation leaves room for optimization on 16-bit and 32-bit processors. For 16-bit processors case, bytes should be considered and concatenated two-by-two (𝑥 1 ||𝑥 0 , 𝑥 3 ||𝑥 2 , and so on) and then XOR operations can be extended to 16 bits. For 32-bit processors case, bytes should be considered and concatenated four-by-four (𝑥 3 ||𝑥 2 ||𝑥 1 ||𝑥 0 , 𝑥 7 ||𝑥 6 ||𝑥 5 ||𝑥 4 , and so on) to get the same kind of benefits for 32-bit XOR operations. To ease the schedule of operations, the end of LinearLayer (Algorithm 7) should be computed before the beginning (Algorithm 8) to compute repetitive 16-bit or 32-bit XOR operations. This subsection also showcases comparisons with other lightweight aead algorithms. We chose to compare Lilliput-AE with submissions to the Caesar [CAE] competition; in particular, we focused on the final portfolio for use-case 1, which includes Ascon [START_REF] Dobraunig | Ascon v1.2. Submission to the CAESAR competition[END_REF] and Acorn [START_REF] Wu | Acorn: a lightweight authenticated cipher (v3). Candidate for the CAESAR Competition[END_REF]. The features of this specific portfolio [START_REF] Daniel | CAESAR use cases[END_REF] align with Lilliput-AE's own characteristics:

Use Case 1: Lightweight applications (resource constrained environments) * critical: fits into small hardware area and/or small code for 8-bit CPUs * desirable: natural ability to protect against side-channel attacks * desirable: hardware performance, especially energy/bit * desirable: speed on 8-bit CPUs * message sizes: usually short (can be under 16 bytes), sometimes longer A customized version of the Felics framework [FEL] has been developed to evaluate the code size, ram consumption and execution time of these block ciphers on three microcontrollers:

• an 8-bit avr atmega128, • a 32-bit Arduino Due with arm Cortex M3.

Our aim is to compare the performance of these block ciphers in a typical iot situation: the test scenario thus consists in encrypting a single 16-byte message along with 16-byte associated data. The following compiler options were tested:

• -03, to minimize computation time in order to decrease power consumption,

• -Os, to reduce code size and thus optimize for low memory footprint.

The Felics framework was run on an Ubuntu 16.04 64-bit desktop with 4 3.5 GHz CPUs and 8 GB extscram. The software versions for platform-specific compilers, debuggers and other such utilities correspond to those distributed by Ubuntu, with the exception of software listed in The source code for the Caesar algorithms was adapted from the Supercop [SUP] toolkit in order to comply with Felics's requirements. This implied, among other things:

• replacing platform-specific integer types with the exact-width types defined in stdint.h,

• isolating encryption code, decryption code, as well as constants held in read-only memory, into distinct files,

• specifying where buffers should be stored (program memory or extscram) and how they should be aligned, using Felics-specific macro annotations.

In order to provide a fair assessment of each algorithm's performance, we looked for implementations of Ascon and Acorn distributed with Supercop that performed well (i.e. better than the reference version) for each Felics platform. Table 4.14 sums up which implementations were considered for each platform.

As for Lilliput-AE, we used the same implementation on all platforms. This implementation, called felicsref, differs from the reference implementation in the following ways:

• in the tweakey schedule, a loop over an array of function pointers has been unrolled manually;

this was found to improve performance along every metric,

• instead of pre-computing all 𝑟 round-tweakeys up-front, each round-tweakey is computed on-the-fly before applying OneRoundEGFN; this saves on ram since instead of storing all 𝑟 round-tweakeys in memory for the whole encryption process, only a single round-tweakey is stored.

Algorithm Platform Implementations

Ascon

Hardware Implementations

Theoretical Results on asic

In this section, we provide theoretical hardware implementation results on asic (Application-Specific Integrated Circuit) in terms of ges. One ge is the area of a 2-input NAND gate in the considered cmos technology. It allows to get normalized area and then ease comparisons between different implementations that use the same cmos technology.

We provide here the global logic gates count for each lanes case, and translate it to the total number of ges in a given cmos technology. That respectively allows the reader to easily get estimations for other cmos technologies and get real implementation numbers. The cmos technology used here is UMCL18G212T3 (cmos 180 nm technology). In this technology, area Table 4.20: Performance of Lilliput-AE on msp430f1611.

of respectively XOR, NOT, AND gates, and flip-flops are 2.67, 0.67, 1.33 and 5.33 ges. We use non-scan flip-flops for registers in this estimation. Moreover, control logic (e.g., multiplexers, finite state machine) is not taken into account, which can underestimate in the end the real practical results after Place-and-Route process. We also give a relative performance metric, which gives an estimation of the percentage of circuit area increase (considering the total number of ges) for each lanes case, with the 4-lane case considered as a reference. We can estimate that one Lilliput-TBC S-box is equivalent to the total size of 12 AND, 26 XOR and 1 NOT gates, and so: We can compare these results with other hardware implementations of cryptographic standards. One of the most compact implementations of Aes is the "Atomic v2" version [START_REF] Banik | Atomic-AES v2.0[END_REF]: it is very lightweight and smaller than our Lilliput-TBC hardware implementations (only 2060 ges) but processes data with a big latency (246 cycles) and then a low throughput (88.4 Mbps). One of the most compact implementation of Sha-3 (with 1088-bit block size) occupies 5522 ges (which is bigger than the 128-bit key versions of Lilliput-TBC), and provides a very poor throughput (44.3 kbits) [START_REF] Kavun | A Lightweight Implementation of Keccak Hash Function for Radio-Frequency Identification Applications[END_REF].

An argument against tunable parameters in a standard is that it makes implementations more expensive, as they usually have to support all parameter values to fully implement the standard. However, for Lilliput-AE, this can be mitigated by only implementing the hardware needed for computing the 𝑀 and 𝑀 𝑅 functions, and iterate on them to compute the needed remaining multiplications. This version will allow to save some logic gates, but at the expense of a decreased throughput.

For the fpga implementation particular case, the S-box 𝑆 can be put in dedicated block extscrams of the used fpga.

The high parallelization level of the nonce-respecting and the nonce-misuse resistant modes allows implementing in hardware many instances of 𝐸 𝐾 running in parallel and then getting high throughput, especially on dedicated asics.

VHDL Results

This subsection showcases performance results for iterated versions of all variants of the Lilliput-TBC tweakable block cipher. These results were produced using version 14.4 of the ISE Design Suite on a Virtex-6 XC6VLX75T device, with two optimization settings: "area reduction" and "timing performance". Table 4.23 and Table 4.24 provide results of LilliputTBC with implementations optimized for circuit area and execution time, respectively.

Finally, Table 4.25 and Table 4.26 compare Lilliput-TBC to Ascon-128a, Ascon-128 and Aes when optimized for circuit area and execution time, respectively. We used the iterated implementation of Ascon-128a and Ascon-128 described in [START_REF] Fivez | Energy Efficient Hardware Implementations of CAESAR Submissions[END_REF].

Threshold Implementations

This section aims at giving the reader some insight into first order TIs of Lilliput-AE.

The S-box

The quadratic functions As stated in Section 4.3.2, the 8-bit S-box has been chosen with TIs in mind as it is built from three inner 4-bit S-boxes, each directly decomposable into quadratic permutations. Therefore, a first order TI can be achieved using only three shares. The following algorithms describe, for each quadratic permutation 𝐹, 𝐺 and 𝑄, a function 𝑓 that computes an output share ⟨𝑥, 𝑦, 𝑧, 𝑡⟩ for two input shares ⟨𝑎 0 , 𝑏 0 , 𝑐 0 , 𝑑 0 ⟩ and ⟨𝑎 1 , 𝑏 1 , 𝑐 1 , 𝑑 1 ⟩.

Algorithm 9 𝑓 𝐹 (⟨𝑎 0 , 𝑏 0 , 𝑐 0 , 𝑑 0 ⟩, ⟨𝑎 1 , 𝑏 1 , 𝑐 1 , 𝑑 1 ⟩) = ⟨𝑥, 𝑦, 𝑧, 𝑡⟩ 𝑥 ← (𝑎 0 ⊕ 𝑐 0)(𝑏 0 ⊕ 𝑑 0) ⊕ (𝑎 0 ⊕ 𝑐 0)(𝑏 1 ⊕ 𝑑 1) ⊕ (𝑎 1 ⊕ 𝑐 1)(𝑏 0 ⊕ 𝑑 0) 𝑦 ← 𝑎 0 𝑑 0 ⊕ 𝑎 0 𝑑 1 ⊕ 𝑎 1 𝑑 0 𝑧 ← 𝑏 1 ⊕ 𝑑 1 𝑡 ← (𝑎 0 ⊕ 𝑏 0 ⊕ 𝑑 0)(𝑎 0 ⊕ 𝑏 0 ⊕ 𝑐 0) ⊕ (𝑎 0 ⊕ 𝑏 0 ⊕ 𝑑 0)(𝑎 1 ⊕ 𝑏 1 ⊕ 𝑐 1) ⊕ (𝑎 1 ⊕ 𝑏 1 ⊕ 𝑑 1)(𝑎 0 ⊕ 𝑏 0 ⊕ 𝑐 0) Algorithm 10 𝑓 𝐺 (⟨𝑎 0 , 𝑏 0 , 𝑐 0 , 𝑑 0 ⟩, ⟨𝑎 1 , 𝑏 1 , 𝑐 1 , 𝑑 1 ⟩) = ⟨𝑥, 𝑦, 𝑧, 𝑡⟩ 𝑥 ← 𝑎 1 𝑦 ← 𝑏 1 𝑧 ← 𝑐 1 𝑡 ← 𝑏 0 𝑐 0 ⊕ 𝑏 0 𝑐 1 ⊕ 𝑏 1 𝑐 0 ⊕ 𝑑 1 Algorithm 11 𝑓 𝑄 (⟨𝑎 0 , 𝑏 0 , 𝑐 0 , 𝑑 0 ⟩, ⟨𝑎 1 , 𝑏 1 , 𝑐 1 , 𝑑 1 ⟩) = ⟨𝑥, 𝑦, 𝑧, 𝑡⟩ 𝑥 ← 𝑐 0 𝑑 0 ⊕ 𝑐 0 𝑑 1 ⊕ 𝑐 1 𝑑 0 ⊕ 𝑏 1 𝑦 ← 𝑑 1 𝑧 ← 𝑎 0 𝑑 0 ⊕ 𝑎 0 𝑑 1 ⊕ 𝑎 1 𝑑 0 ⊕ 𝑐 1 𝑡 ← 𝑎 1
Therefore, for each quadratic function 𝐴 ∈ 𝐹, 𝐺, 𝑄, TI with three shares is achived by computing

𝐴(⟨𝑎 0 , 𝑏 0 , 𝑐 0 , 𝑑 0 ⟩, ⟨𝑎 1 , 𝑏 1 , 𝑐 1 , 𝑑 1 ⟩, ⟨𝑎 2 , 𝑏 2 , 𝑐 2 , 𝑑 2 ⟩) =𝑓 𝐴 (⟨𝑎 1 , 𝑏 1 , 𝑐 1 , 𝑑 1 ⟩, ⟨𝑎 2 , 𝑏 2 , 𝑐 2 , 𝑑 2 ⟩), 𝑓 𝐴 (⟨𝑎 2 , 𝑏 2 , 𝑐 2 , 𝑑 2 ⟩, ⟨𝑎 0 , 𝑏 0 , 𝑐 0 , 𝑑 0 ⟩),
𝑓 𝐴 (⟨𝑎 0 , 𝑏 0 , 𝑐 0 , 𝑑 0 ⟩, ⟨𝑎 1 , 𝑏 1 , 𝑐 1 , 𝑑 1 ⟩) .

(4.9)

Contrary to 𝑄 and 𝐺, the output sharing of 𝐹 is not uniform but it does not matter as these functions are used in a Feistel network. Therefore, there is no need for re-masking and a threshold implementation of the 8-bit S-box can be built upon the algorithms described above. Note that the inner 4-bit S-box 𝑆 3 4 requires an additionnal NOT instruction: it only has to be applied to one of the three shares (i.e., ¬𝑥 = ¬𝑥 0 ⊕ 𝑥 1 ⊕ 𝑥 2).

Software implementation using Look-Up Tables In order to improve the performance of software implementations, it is possible to use look-up tables for the quadratic functions as done in [START_REF] Sasdrich | Threshold implementation in software -case study of PRESENT[END_REF]. To do so, one can compute three 8-bit to 4-bit look-up tables from 𝑓 𝐹 , 𝑓 𝐺 and 𝑓 𝑄 noted 𝑇 𝐹 , 𝑇 𝐺 and 𝑇 𝑄 , respectively. Because S2

4 requires a bitwise permutation 𝑃 = 028a46ce139b57df between the two quadratics, an additional 4-bit to 4-bit look-up table can be used.

However, as 𝑎 0 and 𝑑 0 do not interfere in the computation of 𝑓 𝐺 (⟨𝑎 0 , 𝑏 0 , 𝑐 0 , 𝑑 0 ⟩, ⟨𝑎 1 , 𝑏 1 , 𝑐 1 , 𝑑 1 ⟩), it is possible to divide the size of 𝑇 𝐺 by four (i.e., from 256 to 64 bytes) at the cost of two bitwise operations at each table look-up. In the same way, 𝑏 0 does not interfere in the computation of 𝑓 𝑄 (⟨𝑎 0 , 𝑏 0 , 𝑐 0 , 𝑑 0 ⟩, ⟨𝑎 1 , 𝑏 1 , 𝑐 1 , 𝑑 1 ⟩) and the size of 𝑇 𝑄 can be reduced by half. In the rest of this section, we use these tricks in order to minimize the memory space required to store the look-up tables. The three resulting look-up tables are given below. The tweakey schedule Because the key is manipulated along with the tweak during the tweakey schedule, this step must be protected to prevent a side-channel attack. To do so, one can share the tweak and the key into two shares. There is no difficulty to apply TI to the tweakey schedule as it operates in a linear fashion. As a result, the tweakey schedule produces subtweakeys splitted in two shares 𝑅𝑇 𝐾 𝑖 0 and 𝑅𝑇 𝐾 𝑖 1 . In order to limit the amount of randomness to generate, it is possible to share the key only. However, note that non-sharing the tweak implies that a profiling attack against the tweakey schedule would allow to deduce some information on the power consumption model of the device.

The egfn round function A way of applying TI to the round function is to share the input block into three shares which are processed during the entire round function. More precisely, if 𝑋 𝑖,𝑗 refers to the 𝑖 th byte of the 𝑗 th share of 𝑋, then a TI of 𝐹 𝑖 at round 𝑟 consists in

𝐹 ′ 𝑖 = 𝑆 ′ (𝑋 𝑖,0 ⊕ 𝑅𝑇 𝐾 𝑟 𝑖,0 , 𝑋 𝑖,1 ⊕ 𝑅𝑇 𝐾 𝑟 𝑖,1 , 𝑋 𝑖,2
) where 𝑆 ′ refers to the Section 4.4.3. Because the remaining steps of the round function are linear, it is sufficient to apply it on each share independently.

Performance Impact

We implemented the thresholding scheme described in this section, using lookup tables for the S-box, and compared its performance with our felicsref implementation, in the conditions described in Section 4.4.1 with the compiler option -O3. Table 4.30 shows the impact for each metric on each platform.

Note that the threshold implementation used in this benchmark does not include a random number generator; these results therefore do not account for the overhead induced by share initialization.

Algorithm 12 𝑆 ′ (𝑠 0 , 𝑠 1 , 𝑠 2) = 𝑠 ′ 0 , 𝑠 ′ 1 ,
, 7) ≫ 1][𝑠 2] 𝑡 1 ← 𝑇 𝐺 [AND(𝑠 2 , 7) ≫ 1][𝑠 0] 𝑡 2 ← 𝑇 𝐺 [AND(𝑠 0 , 7) ≫ 1][𝑠 1] s0 ← s0 ⊕ 𝑇 𝐹 [𝑡 1][𝑡 2] s1 ← s1 ⊕ 𝑇 𝐹 [𝑡 2][𝑡 0] s2 ← s2 ⊕ 𝑇 𝐹 [𝑡 0][𝑡 1] /* Second 4-bit S-box */ 𝑡 0 ← 𝑃 [𝑇 𝑄 [AND(s 1 , 3) ⊕ (AND(s 1 , 8) ≫ 1)][s 2]] 𝑡 1 ← 𝑃 [𝑇 𝑄 [AND(s 2 , 3) ⊕ (AND(s 2 , 8) ≫ 1)][s 0]] 𝑡 2 ← 𝑃 [𝑇 𝑄 [AND(s 0 , 3) ⊕ (AND(s 9 , 8) ≫ 1)][s 1]] 𝑠 0 ← 𝑠 0 ⊕ 𝑇 𝑄 [AND(𝑡 1 , 3) ⊕ (AND(𝑡 1 , 8) ≫ 1)][𝑡 2] 𝑠 1 ← 𝑠 1 ⊕ 𝑇 𝑄 [AND(𝑡 2 , 3) ⊕ (AND(𝑡 2 , 8) ≫ 1)][𝑡 0] 𝑠 2 ← 𝑠 2 ⊕ 𝑇 𝑄 [AND(𝑡 0 , 3) ⊕ (AND(𝑡 0 , 8) ≫ 1)][𝑡 1] /* Third 4-bit S-box */ 𝑡 0 ← 𝑇 𝐺 [AND(𝑠 1 , 7) ≫ 1][𝑠 2] ⊕ 1 𝑡 1 ← 𝑇 𝐺 [AND(𝑠 2 , 7) ≫ 1][𝑠 0] 𝑡 2 ← 𝑇 𝐺 [AND(𝑠 0 , 7) ≫ 1][𝑠 1] s0 ← s0 ⊕ 𝑇 𝐹 [𝑡 1][𝑡 2] s1 ← s1 ⊕ 𝑇 𝐹 [𝑡 2][𝑡 0] s2 ← s2 ⊕ 𝑇 𝐹 [𝑡 0][𝑡 1]
/* Build 8-bit output shares from 4-bit shares */ for 𝑖 = 0 to 2 do 𝑠 ′ 𝑖 ← (s 𝑖 ≪ 4) ⊕ 𝑠 𝑖 end 4.5 External Cryptanalysis of Lilliput-AE In the first version of Lilliput-AE that was submitted to nist [ABC + 18], the tweakey schedule was slightly different. More precisely, while the overall structure and type of operations were identical, other 𝛼 coefficients were originally used. In particular, we chose 𝛼 0 = 𝐼, 𝛼 1 = 𝑀 , 𝛼 2 = 𝑀 2 , 𝛼 3 = 𝑀 3 , 𝛼 4 = 𝑀 𝑅 , 𝛼 5 = 𝑀 2 𝑅 and 𝛼 6 = 𝑀 3 𝑅 , where 𝐼 is the 64 × 64 identity matrix, 𝑀 and 𝑀 𝑅 are the same matrices as described in Section 4.2.3. These choices ensured that in 𝑟 consecutive rounds, at most (𝑝 -1) cancellations occurred in the tweakey schedule while allowing for a very efficient processing of the tweak at the same time 6 .

4.5.1 Lilliput-AE v1 𝛼 0 𝛼 1 . . . 𝛼 𝑝-1 𝑇 𝐾 0 XOR 𝐶 0 𝑓 𝑅𝑇 𝐾 0 𝛼 0 𝛼 1 . . . 𝛼 𝑝-1 XOR 𝐶 1 𝑓 𝑀 = 𝑠 0 𝑅𝑇 𝐾 1 𝛼 0 𝛼 1 . . . 𝛼 𝑝-1 XOR 𝐶 2 𝑓 𝑅𝑇 𝐾 2 XOR 𝐶 𝑟-2 𝑓 𝑅𝑇 𝐾 𝑟-2 𝛼 0 𝛼 1 . . . 𝛼 𝑝-1 XOR 𝐶 𝑟-1 𝑓 𝑠 𝑟 = 𝐶 𝑅𝑇 𝐾 𝑟-1
Unfortunately, this simple design introduced a fundamental flaw that was overlooked by our team: the same part of the tweakey material was reused at each round. In 2019, Dunkelman, Keller, Lambooij and Sasaki exploited this weakness and found a related tweakey differential characteristic with probability 1 that was then used to mount practical forgery attacks on Lilliput-AE [START_REF] Orr Dunkelman | A practical forgery attack on lilliput-AE[END_REF]. In the following, we briefly describe their attack and discuss its impact on our design.

External analysis of Lilliput-AE

Related-tweak differential characteristic for Lilliput-TBC Dunkelman et al. made the observation that the first lane of the tweakey schedule-the least significant 64-bit word of the tweak-was never updated between each round. Consequently, when considering two tweaks that differed by Δ 𝑇 = (Δ7 , . . . , Δ 0) in the least significant word, all corresponding round subkeys had the same difference Δ. By setting the difference in the right-hand side of the state to Δ 𝑇 , they were able to cancel out the input difference to all S-boxes, and thus, to pass the non-linear layer with probability 1. Then, by ensuring that Δ 7 𝑇 = 0 and Δ 1 𝑇 ⊕ • • • ⊕ Δ 6 𝑇 = 0 and by exploiting the cycle decomposition of the permutation 𝜋, the authors were able to identify several configurations allowing for a 1-round iterative related-tweak differential characteristic with probability 1.

Forgery attacks on the Lilliput-AE scheme The authors then found that the characteristic Δ 𝑃 = (0, 0, 0, 0, 0, 01 (8) , 0, 01 (8) ||0, 0, 0, 01 (8) , 01 (8) , 0, 0, 0), Δ 𝑇 = (0, 0, 0, 01 (8) , 01 (8) , 0, 0, 0), where Δ 𝑃 and Δ 𝑇 denote the difference between the plaintexts and the tweaks, respectively, could be used to produce a pair of messages with the same tag, as shown in Section 4.5.2. Indeed, let ℓ be equal to Δ 𝑇 + 2, where Δ 𝑇 is seen as an integer 7 , then choosing a message 𝑀 of length at least ℓ blocks such that 𝑀 ℓ-2 = 𝑀 0 ⊕ Δ 𝑃 and 𝑀 ℓ-1 = 𝑀 1 ⊕ Δ 𝑃 yields:

𝐸 0||0 𝐾 (𝑀 0) ⊕ 𝐸 0||Δ 𝑇 𝐾 (𝑀 Δ 𝑇) = 𝐸 0||0 𝐾 (𝑀 1) ⊕ 𝐸 0||Δ 𝑇 𝐾 (𝑀 Δ 𝑇 +1) = Δ 𝑃 .
As a consequence, the difference before the 𝐸 1||0 4 ||𝑁 𝐾 operation equals zero, which leads to a collision on the tag if the same nonce is reused. In their paper, the authors also present a known message variant, requiring a message of length at least 2 32 + 2 24 + 1 blocks of message and that can also be applied in the nonce respecting mode.

Impact

As stated by the authors of [START_REF] Orr Dunkelman | A practical forgery attack on lilliput-AE[END_REF], the weakness exploited in the analysis comes from the fact that part of the tweak does not get updated 8 . This resulted in an unfortunate interaction between the mode and a probability-1 differentials, which highlights the potential security risk in using a tweakey schedule design that reuses the same part in every round. Authors suggested replacing the identity transformation 𝛼 0 used in the tweakey schedule with some mixing linear transformation to avoid having the same difference in all round keys, therefore thwarting their attack. This led to an updated design of our proposal-called Lilliput v1.1-to ensure that no lane goes through the tweakey schedule unmodified:

• 𝛼 0 was changed from 𝐼 to 𝑀 ,

• 𝛼 1 , from 𝑀 to 𝑀 2 , • 𝛼 2 , from 𝑀 2 to 𝑀 3 , • 𝛼 3 , from 𝑀 3 to 𝑀 4 .

Conclusion

Lilliput-AE is a lightweight aead scheme that is based on a egfn construction to achieve high diffusion. Its nonlinear components have been chosen to optimize their cost in threshold implementations, thus facilitating side-channel protection while ensuring attractive cryptographic properties. Lilliput-AE is suited to be implemented efficiently on a wide range of processors and in hardware. Its performances are comparable to those of other lightweight algorithms, such as Acorn and Ascon, which are part of the final portfolio of the Caesar competition [CAE]. Future works could include optimized software implementations of Lilliput-AE on iot platforms, side-channel protected implementations with performance benchmark, or optimized hardware implementations (e.g., serial implementations).

From the cryptanalysis aspect, Lilliput-AE will most likely receive less attention from the community, since it was not selected for Round 2 of the nist standardization process. Still, it would be interesting to see what cryptanalysts come up with to attack the tweaked version that has been presented in this chapter.

5

Cryptanalysis Results on Spook

But it was my integrity that was important. Is that so selfish? It sells for so little, but it's all we have left in this place.

Valerie Page

Spook [BBB + 19] is one of the 32 candidates that has made it to the second round of the nist Lightweight Cryptography Standardization process, and is particularly interesting since it proposes differential side channel resistance. This chapter introduces a joint work with Patrick Derbez, Virginie Lallemand, María Naya-Plasencia, Léo Perrin and André Schrottenloher [DHL + 20] in which practical distinguishers of the full 6-step version of the underlying permutations of Spook, namely Shadow-512 and Shadow-384, are exhibited, thus solving challenges proposed by the designers on the permutation. We also discuss practical forgeries for the S1P mode of operation in the nonce misuse scenario-which is allowed by the CIML2 security game considered by the authors-using a 4-step Shadow. All the results presented in the following have been implemented.

Introduction

The number of applications running on interconnected resource-constrained devices has increased exponentially in the last decade, bringing new challenges to both the community and the industry. Sensor networks, Internet-of-Things, smart cards and healthcare are a few examples which handle sensitive data that should be protected (see Chapter 2).

These new platforms have their own specific sets of requirements, in particular in terms of implementation efficiency. As common cryptographic primitives were not designed to satisfy these specific use cases, they can be ill-suited in these contexts. A staggering number of algorithms has been proposed to fulfill such requirements, such as Present [BKL + 07] (low gate count in hardware), Prince [BCG + 12] (low latency in hardware), Midori [BBI + 15] (low power consumption), or Lea [HLK + 14] (low rom and cycle count on micro-controllers). Such primitives have been nicknamed lightweight. Because the corresponding devices can often be expected to be physically interacted with by an attacker, an algorithm easing side channel resistance has a significant advantage. Hence many recent proposals were designed to be naturally resistant against side-channel attacks or, at least, protectable at low cost. For instance, the authenticated encryption (AE) scheme Pyjamask [GJK + 19] was designed with a minimal number of non-linear gates to allow efficient masked implementations while the AE scheme ISAP [DEM + 17] is resistant to differential power analysis, a powerful type of attack where the adversary try to deduce information about the secret key from power consumption.

This need for lightweight cryptographic primitives led the American National Institute of Standards and Technology (nist) to initiate the Lightweight Cryptography Project, aiming at the standardization of hash functions and authenticated encryption algorithms suitable for constrained devices. It received 57 algorithm proposals in February 2019 and accepted 56 of them. In August 2019, 32 primitives were announced as the 2nd round candidates.

In this chapter we study Spook, an Authenticated Encryption scheme with Associated Data (aead) which is among those 2nd round candidates. It was designed to achieve both resistance against side-channel analysis and low-energy implementations and is particularly interesting as it aims at providing strong integrity guarantees even in the presence of nonce misuse and leakage. Aead is provided using three sub-components: the Sponge One-Pass mode of operation (S1P), the tweakable block cipher Clyde-128 and the permutation Shadow. Both Clyde and Shadow are based on simple extensions of the LS-design framework first introduced by the designers of the lightweight block ciphers Robin and Fantomas [START_REF] Grosso | LS-designs: Bitslice encryption for efficient masked software implementations[END_REF]. This strategy leads to efficient bitslicing and side-channel resistant implementations on a wide range of platforms. To further simplify the implementation, the permutation uses the round function of the tweakable block cipher as a sub-routine, effectively combining 3 or 4 parallel instances of a round-reduced cipher using a simple linear layer to construct a 384-or 512-bit permutation.

Motivation and contributions. In Section 4.3 of the specification document of Spook [BBB + 19], the designers explicitly point out that an important requirement for the permutation in the S1P mode of operation is that it provides collision resistance with respect to the 255 bits that generate the tag and they say:

"Hence, a more specific requirement is to prevent truncated differentials with probability larger than 2 -128 for those 255 bits. A conservative heuristic for this purpose is to require that no differential characteristic has probability better than 2 -385 , which happens after twelve rounds (six steps)."

In this chapter we show that this heuristic is not conservative, providing practical truncated distinguishers on Shadow, the inner permutation of Spook. We exhibit non-random behavior for up to the full version of Shadow-512. Moreover, the same technique would also distinguish Shadow-512 extended by 2 more rounds at the end. More precisely, we exhibit two particular subspaces 𝐸 and 𝐹 of co-dimension 128 and an efficient algorithm which returns pairs of messages (𝑚, 𝑚 ′) such that 𝑚 ⊕ 𝑚 ′ ∈ 𝐸 and Shadow-512(𝑚) ⊕ Shadow-512(𝑚 ′) ∈ 𝐹 . This implies in particular a practical collision on 128 bits of the output. This problem is a particular instance of the so-called limited birthday problem, which was first introduced by Gilbert and Peyrin when looking for known key distingushers against the Aes [GP10]. As a permutation can be seen as a block cipher with a known key, it is natural to borrow distinguishers from this field. While the complexity of a generic algorithm performing this task is around 2 64 because of the birthday bound (see [START_REF] Iwamoto | Limited-birthday distinguishers for hash functions -collisions beyond the birthday bound can be meaningful[END_REF] for more details), our un-optimized implementations of our distinguishers run in at most a few minutes on a regular desktop computer.

We also provide similar distinguishers targeting up to 10 (out of 12) rounds of Shadow-384, the small version of Shadow. Note that, as for Shadow-512, adding 2 more rounds at the end of the permutation would not increase its security as there would exist a similar distinguisher on the last 12 rounds (a 2-round shifted version of the proposed permutation).

As other several sponge-based lightweight algorithms1 , the authors purposefully relied on a permutation for which distinguishers could exist as this allows to use fewer permutation rounds (Spook designers pointed out for instance that 12 rounds were not enough to have 512 bits of security with respect to linear distinguishers) and thus an increase in the speed of data processing. Nevertheless, our distinguishers seem to prove that the behavior of Shadow is not compatible with the requirements given by the authors on the permutation for the S1P mode of operation.

The next important question is whether these distinguishers are a threat to Spook itself, as the impact is a priori not clear. For Spook, we are able to leverage the results we obtained to produce practical existential forgeries for the S1P mode of operation when Shadow-512 is reduced to 8 rounds out of 12 in the nonce misuse scenario, which is allowed by the CIML2 security game considered by the authors [START_REF] Berti | On leakage-resilient authenticated encryption with decryption leakages[END_REF].

Distinguishers on both Shadow-512 and Shadow-384 along with the forgeries on 4-step Spook have been implemented and verified against the reference implementation provided by the designers.

Chapter Organization. In Section 5.2 we describe Shadow and introduce some cryptanalysis techniques. Then in Section 5.3 we make some observations on the structure of the permutation that will play a crucial role in our cryptanalysis. Finally, in Sections 5.4 and 5.5 we present the results of our analysis of both versions of Shadow, including a distinguisher on the full Shadow-512, as well as forgeries against Spook when Shadow-512 is reduced to 8 rounds.

Preliminaries

The specific mode of operation we target will be described in the relevant section. Here, we present the Shadow family of permutations and recall the definition of differential distinguishers.

Specification of Shadow-384 and Shadow-512

The Spook algorithm is based on a permutation named Shadow that exists in two flavors: Shadow-384 and Shadow-512, where Shadow-512 is the one used in the primary candidate to the nist Lightweight competition. In both cases, the internal state is seen as a collection of 𝑚 two-dimensional arrays (or bundles) each of dimensions 32 × 4: as depicted in Figure 5.1, 𝑚 = 4 for Shadow-512 and 𝑚 = 3 for Shadow-384. The permutations have a Substitution Permutation Network (spn) structure based on a 4-bit S-box layer and two distinct linear layers, each being used every second round. The full versions of the permutations iterate 6 steps. As represented in Figure 5.2, one step is made of two rounds, denoted round A and round B, interleaved with round constant additions. Shadow-384 and Shadow-512 only differ in the definition of the 𝐷 layer. Round A first applies a non-linear layer made by the application on each bundle column of the 4-bit S-box recalled in Table 5.1. It then applies the so-called L-box which calls the 𝐿 ′ transformation to the first two and last two rows of each bundle. If we denote by (𝑥, 𝑦) the input and by (𝑎, 𝑏) the output the definition of 𝐿 ′ is given by:

• bundle 3 bundle 2 bundle 1 bundle 0 • • • • • • • • • • • • ℓ = 32 m = 4 s = 4 bundle row bundle column • bundle 2 bundle 1 bundle 0 • • • • • • • • • • • • ℓ = 32 m = 3 s = 4 bundle row bundle column
• • • • • • • • • • • • S S S S S • • • • • • • • • • • • S S S S S • • • • • • • • • • • • S S S S S • • • • • • • • • • • • S S S S S S-box L L L L L L L L L L L L L-box Round A • • • • • • • • • • • • S S S S S • • • • • • • • • • • • S S S S S • • • • • • • • • • • • S S S S S • • • • • • • • • • • • S S S S S S-box D-box Round B c 1 Step • D AC(2i) AC(2i + 1) c'
(𝑎, 𝑏) = 𝐿 ′ (𝑥, 𝑦) = (︂ circ(0xec045008) • 𝑥 𝑇 ⊕ circ(0x36000f60) • 𝑦 𝑇 circ(0x1b0007b0) • 𝑥 𝑇 ⊕ circ(0xec045008) • 𝑦 𝑇)︂
where circ(𝐴) stands for a circulant matrix whose first line is a row vector given by the binary decomposition of 𝐴. Round B starts with the same S-layer as round A but uses a different linear layer, denoted 𝐷. The purpose of 𝐷 is to provide diffusion between the 𝑚 bundles of the state: as depicted in Figure 5.2, it takes as input one bit of each bundle. It modifies them with the application of a near-mds matrix (which previously appeared in the design of the ciphers Midori [BBI + 15] and Mantis [BJK + 16] for instance), respectively:

𝐷(𝑎, 𝑏, 𝑐, 𝑑) = ⎛ ⎜ ⎜ ⎝ 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 ⎞ ⎟ ⎟ ⎠ × ⎛ ⎜ ⎜ ⎝ 𝑎 𝑏 𝑐 𝑑 ⎞ ⎟ ⎟ ⎠
for Shadow-512 while for Shadow-384 we use:

𝐷(𝑎, 𝑏, 𝑐) = ⎛ ⎝ 1 1 1 1 0 1 1 1 0 ⎞ ⎠ × ⎛ ⎝ 𝑎 𝑏 𝑐 ⎞ ⎠ .
The round constants used in the permutation correspond to the internal state of a 4-bit lfsr. They are recalled in Table 5.2. At the end of every round (for rounds from 0 to 11), the 4-bit constant is xored at 4 different positions, one time in each bundle: in bundle 𝑏 (for 𝑏 = 0, 1, 2, 3), the constant is xored to the column number 𝑏. Without loss of generality, we hereafter position bit number 0 on the right of the state in our figures. (1,0,0,0) 1 (0,1,0,0) 2 (0,0,1,0) 3 (0,0,0,1)

4

(1,1,0,0) 5 (0,1,1,0) 6 (0,0,1,1) 7

(1,1,0,1)

8

(1,0,1,0) 9 (0,1,0,1) 10 (1,1,1,0) 11 (0,1,1,1)

Differential Distinguishers

As indicated in the Spook specification, the black box security analysis of the mode of operation that is used in Spook (S1P) relies on the assumption that the permutations are random. In this chapter we challenge this assumption by exhibiting distinguishers for the permutations -that is, algorithms that unveil a non-random behavior.

Our distinguishers use the notion of differential, a technique that was introduced by Biham and Shamir in [START_REF] Biham | Differential cryptanalysis of DES-like cryptosystems[END_REF]. The idea is to find a couple of xor differences (𝛿, Δ) such that if two messages differ from 𝛿 then with high probability their output difference after encryption is equal to Δ.

This idea was later extended by Knudsen in 1994 to define truncated differentials [START_REF] Knudsen | Truncated and higher order differentials[END_REF], a variant in which only a portion of the difference is fixed (while the remaining part is undetermined). This technique is illustrated in Figure 5.5 for instance, where we introduce a distinguisher that ends with a difference of the form (*, *, *, 0) before the last 𝐷 operation: the '*' symbol indicates that the difference between the messages is not determined over the first three bundles, while the '0' symbol indicates that the two messages are identical on the last bundle (128 bits).

Structural Observations

In this section we present the general properties we found that we will later exploit in our analysis. While our distinguisher is a truncated differential one, our method for finding right pairs does not rely on a high probability differential trail (whose very existence is disproved by the authors' wide trail argument). Instead, we exploit the similarity between the functions applied in parallel on each bundle. To better describe them, we introduce the notion of Super S-box (as it applies to Shadow) and we study the propagation of the following type of properties through the step function. Note that we next provide the details for Shadow-512 but that similar results apply to Shadow-384.

Definition 5.1 (𝑖-identical state). We call 𝑖-identical an internal state of Shadow in which 𝑖 bundles are equal.

Super S-box

Given the fact that in every step only the 𝐷 layer is mixing the bundles together, it is possible to rewrite Shadow as an SPN using four 128-bit Super S-boxes (each operating on one bundle) interleaved with a linear permutation 𝐷 operating on the full state. If 𝑎, 𝑏, 𝑐 and 𝑑 are the 128-bit bundles, this linear permutation is represented as follows:

𝐷(𝑎, 𝑏, 𝑐, 𝑑) = ⎛ ⎜ ⎜ ⎝ 0 𝐼 𝐼 𝐼 𝐼 0 𝐼 𝐼 𝐼 𝐼 0 𝐼 𝐼 𝐼 𝐼 0 ⎞ ⎟ ⎟ ⎠ × ⎛ ⎜ ⎜ ⎝ 𝑎 𝑏 𝑐 𝑑 ⎞ ⎟ ⎟ ⎠ .
𝐷 is an involution with branching number 4 (over 128-bit words) and it verifies that ∀𝑎 ∈ F 128 2 , 𝐷(𝑎, 𝑎, 𝑎, 0) = (0, 0, 0, 𝑎). We denote by 𝜎 𝑗 for 𝑗 ∈ {0, 1, 2, 3} the four parallel Super S-boxes of the cipher. They correspond to the first four operations of the step, namely: the S-layer and the linear operation 𝐿 of round A, the constant addition (that is done on a different position for each Super S-box), and the S-layer of round B.

In the following, we show that even though the four bundles of a state go through different Super S-boxes it might be possible to have a Shadow state with four equal bundles that is transformed into a Shadow state of the same form at the output of a full step.

4-Identical States

In the discussion below we follow the evolution of the 4-identical property through a step and show the required conditions for it to remain in the end. This evolution is also summarized

Probability of Maintaining the 4-Identical Property through a

Step. We start from a 4-identical state 𝑋 that we write 𝑋 = (𝑥, 𝑥, 𝑥, 𝑥). Each bundle 𝑥 is made of 32 columns: 𝑥 = (𝑥 31 , 𝑥 30 , • • • , 𝑥 1 , 𝑥 0).

• Application of the Super S-boxes. The step starts with one non-linear layer followed by the 𝐿 layer, applied in parallel (that is, independently) on each of the 4 bundles. Since these transformations are identical for each bundle the 4-identical property is followed with probability one up to this point and so we have 𝐿 ∘ 𝑆(𝑋) = (𝑦, 𝑦, 𝑦, 𝑦) with 𝑦 = 𝐿 ∘ 𝑆(𝑥). We next have the addition of the first round constant on column 𝑗 of bundle 𝑗 for 𝑗 ∈ {0, 1, 2, 3}, that we will call 𝐴𝐶, and finally we apply another S-box layer. By denoting the round constant by2 𝑐, we obtain the following values for 𝑆 ∘ 𝐴𝐶(2𝑖) ∘ 𝐿 ∘ 𝑆(𝑋):

where 𝐵 𝑖 is bundle 𝑖. At this stage, the 4 bundles stop being 4-identical but differ on the value of their 4 first columns.

• D-box and second round constant addition. The 𝐷 layer mixes together the 4 bundles by xoring 3 of them together to form one output bundle, as described in Section 5.2.1. In the above representation of the state, it operates columnwise by replacing each column element with the xor of the 3 others. The last operation is the addition of the second round constant, that we denote 𝑐 ′ , at the same positions as before (column 𝑗 of bundle 𝑗 for 𝑗 ∈ {0, 1, 2, 3}).

Formally, the expression of the bundles of 𝐴𝐶(2𝑖 + 1) ∘ 𝐷 ∘ 𝑆 ∘ 𝐴𝐶(2𝑖) ∘ 𝐿 ∘ 𝑆(𝑋) is the following:

𝐵 0 : 𝑆(𝑦 31) • • • 𝑆(𝑦 4) 𝑆(𝑦 3 ⊕ 𝑐) 𝑆(𝑦 2 ⊕ 𝑐) 𝑆(𝑦 1 ⊕ 𝑐) 𝑆(𝑦 0) ⊕ 𝑐 ′ 𝐵 1 : 𝑆(𝑦 31) • • • 𝑆(𝑦 4) 𝑆(𝑦 3 ⊕ 𝑐) 𝑆(𝑦 2 ⊕ 𝑐) 𝑆(𝑦 1) ⊕ 𝑐 ′ 𝑆(𝑦 0 ⊕ 𝑐) 𝐵 2 : 𝑆(𝑦 31) • • • 𝑆(𝑦 4) 𝑆(𝑦 3 ⊕ 𝑐) 𝑆(𝑦 2) ⊕ 𝑐 ′ 𝑆(𝑦 1 ⊕ 𝑐) 𝑆(𝑦 0 ⊕ 𝑐) 𝐵 3 : 𝑆(𝑦 31) • • • 𝑆(𝑦 4) 𝑆(𝑦 3) ⊕ 𝑐 ′ 𝑆(𝑦 2 ⊕ 𝑐) 𝑆(𝑦 1 ⊕ 𝑐) 𝑆(𝑦 0 ⊕ 𝑐)
To ensure a 4-identical state at this point, the following 4 equations need to be satisfied:

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 𝑆(𝑦 3 ⊕ 𝑐) = 𝑆(𝑦 3) ⊕ 𝑐 ′ 𝑆(𝑦 2 ⊕ 𝑐) = 𝑆(𝑦 2) ⊕ 𝑐 ′ 𝑆(𝑦 1 ⊕ 𝑐) = 𝑆(𝑦 1) ⊕ 𝑐 ′ 𝑆(𝑦 0 ⊕ 𝑐) = 𝑆(𝑦 0) ⊕ 𝑐 ′ .
Depending on the values of 𝑐 and 𝑐 ′ -that vary with the index of the step -these 4 equations are either never verified or can be verified with a rather high probability. In fact, their number of solutions corresponds to the probability of the transition from a difference of 𝑐 to a difference of 𝑐 ′ through the S-box 𝑆. We computed the corresponding probabilities for all the steps and report the results in Table 5.3. Note that we experimentally verified these values.

Table 5.3: Probability that an output of step 𝑠 of Shadow is 4-identical knowing that the input is.

𝑠 0 1 2 3 4 5
Probability 0 0 0 2 -12 2 -8 0

3-Identical States

A similar reasoning applies to states for which only 3 (out of 4) bundles are equal. Without loss of generality, let us consider a 3-identical state 𝑋 = (𝑥, 𝑥, 𝑥, 𝑧) for which the first 3 bundles are identical. The step starts with the application of the same operations to each bundle, namely 𝑆 and 𝐿, we denote the modified state by 𝐿 ∘ 𝑆(𝑋) = (𝑦, 𝑦, 𝑦, 𝑤). Once the other operations are applied the output becomes:

𝑆(𝑤 31), • • • , 𝑆(𝑤 3 ⊕ 𝑐), 𝑆(𝑦 2) ⊕ 𝑆(𝑦 2 ⊕ 𝑐) ⊕ 𝑆(𝑤 2), 𝑆(𝑦 1) ⊕ 𝑆(𝑦 1 ⊕ 𝑐) ⊕ 𝑆(𝑤 1), 𝑆(𝑤 0) ⊕ 𝑐 ′ , 𝑆(𝑤 31), • • • , 𝑆(𝑤 3 ⊕ 𝑐), 𝑆(𝑦 2) ⊕ 𝑆(𝑦 2 ⊕ 𝑐) ⊕ 𝑆(𝑤 2), 𝑆(𝑤 1) ⊕ 𝑐 ′ , 𝑆(𝑦 0) ⊕ 𝑆(𝑦 0 ⊕ 𝑐) ⊕ 𝑆(𝑤 0), 𝑆(𝑤 31), • • • , 𝑆(𝑤 3 ⊕ 𝑐), 𝑆(𝑤 2) ⊕ 𝑐 ′ , 𝑆(𝑦 1) ⊕ 𝑆(𝑦 1 ⊕ 𝑐) ⊕ 𝑆(𝑤 1), 𝑆(𝑦 0) ⊕ 𝑆(𝑦 0 ⊕ 𝑐) ⊕ 𝑆(𝑤 0), 𝑆(𝑦 31), • • • , 𝑆(𝑦 3) ⊕ 𝑐 ′ , 𝑆(𝑦 2 ⊕ 𝑐), 𝑆(𝑦 1 ⊕ 𝑐), 𝑆(𝑦 0 ⊕ 𝑐)
To ensure a 3-identical state the following equations thus have to be satisfied:

𝑆(𝑦 2 ⊕ 𝑐) = 𝑆(𝑦 2) ⊕ 𝑐 ′ 𝑆(𝑦 1 ⊕ 𝑐) = 𝑆(𝑦 1) ⊕ 𝑐 ′ 𝑆(𝑦 0 ⊕ 𝑐) = 𝑆(𝑦 0) ⊕ 𝑐 ′ .
In this case, since we have one fewer S-box transition to constrain, the probabilities of Table 5.3 increase to the ones provided in Table 5.4.

Table 5.4: Probability that an output of step 𝑠 of Shadow is 3-identical knowing that the input is.

𝑠 0 1 2 3 4 5
Probability 0 0 0 2 -9 2 -6 0

These probabilities do not depend on the choice of the positions of the 3 input bundles that are identical. Instead, they are valid as soon as the 3 positions are the same in the input and in the output.

2-Identical States

We can follow a similar reasoning to obtain the probability of keeping a 2-identical state. We obtain two equations to solve, and the probabilities become the ones given in Table 5.3. Again, the position of the 2 identical bundles does not impact these probabilities but it has to be the same in the input and in the output. Table 5.5: Probability that an output of step 𝑠 of Shadow is 2-identical knowing that the input is. for a "round-extended" version of Shadow-512 using 7 steps rather than 6. In other words, we efficiently solve a limited-birthday problem.

As proved by Iwamoto et al. [START_REF] Iwamoto | Limited-birthday distinguishers for hash functions -collisions beyond the birthday bound can be meaningful[END_REF], generating such pairs for a random permutation would require roughly 2 64 queries. However, we can produce pairs satisfying Property (5.1) for full Shadow-512 using about 2 15 calls to said permutation. The exact same technique finds pairs satisfying Property (5.2) for 7-step Shadow-512. The corresponding procedures are described in Section 5.4.2.

These distinguishers hinge on two properties: the propagation of 3-identical states which we described in Section 5.3.3, and a probability 1 truncated differential explained in Section 5.4.1. The latter can be used directly as a distinguisher for 10-round Shadow-512.

A 5-Step Truncated Differential Property

We start by devising a distinguisher of Shadow-512 reduced to 5 steps out of 6. The truncated trail we use is summarized in Figure 5.4. Starting from the middle, we can easily construct pairs of states such that their difference propagates with probability 1 over 2 forward and 2 backward steps. All propagations are of probability 1, the only place where we would a priori have to pay for the cost of a transition is for the three Super S-box level transitions 𝛼 𝛽 in step 2. However, the high similarity between the Super S-boxes provides us with a simple way to obtain three such pairs of 128-bit blocks.

𝜎 0 𝜎 1 𝜎 2 𝜎 3 𝐷 𝜎 0 𝜎 1 𝜎 2 𝜎 3 𝐷 𝜎 0 𝜎 1 𝜎 2 𝜎 3 𝐷 𝜎 0 𝜎 1 𝜎 2 𝜎 3 𝐷 𝜎 0 𝜎 1 𝜎 2 𝜎 3 𝐷 * * *
Building pairs of bundles that follow the same differential for different Super S-boxes. Recall that the only difference between two Super S-boxes lies in the constant addition operation that is done right after the 𝐿 linear layer. The 4-bit constant 𝑐 is added to the input of only one S-box of the second non-linear layer, and the index of this S-box depends on the Super S-box index.

Thanks to this limited difference between the Super S-boxes, we can easily build an input difference 𝛼 so that the output difference of the S-box does not depend on its index. More precisely, this difference 𝛼 should be chosen so that it does not diffuse to the last 4 columns of the bundle. This simple fact is formalized in the following lemma: Proof. We denote by 𝑦 and 𝑦 ⊕ 𝛽 the respective values of (𝐿 ∘ 𝑆)(𝑥) and (𝐿 ∘ 𝑆)(𝑥 ⊕ 𝛼). By expanding these into the column notation we get:

𝑦 = 𝑦 31 • • • 𝑦 4 𝑦 3 𝑦 2 𝑦 1 𝑦 0 𝑦 ⊕ 𝛽 = 𝑦 31 ⊕ 𝛽 31 • • • 𝑦 4 ⊕ 𝛽 4 𝑦 3 𝑦 2 𝑦 1 𝑦 0
Let us first look at 𝜎 0 . We have that

𝜎 0 (𝑥) = 𝑆(𝑦 31) • • • 𝑆(𝑦 4) 𝑆(𝑦 3) 𝑆(𝑦 2) 𝑆(𝑦 1) 𝑆(𝑦 0 ⊕ 𝑐) 𝜎 0 (𝑥 ⊕ 𝛼) = 𝑆(𝑦 31 ⊕ 𝛽 31) • • • 𝑆(𝑦 4 ⊕ 𝛽 4) 𝑆(𝑦 3) 𝑆(𝑦 2) 𝑆(𝑦 1) 𝑆(𝑦 0 ⊕ 𝑐)
so summing these equations yields 𝜎 0 (𝑥) ⊕ 𝜎 0 (𝑥 ⊕ 𝛼) = 𝛾 31 • • • 𝛾 4 0 0 0 0 Without loss of generality, let us now consider 𝜎 1 . We have

𝜎 1 (𝑥) = 𝑆(𝑦 31) • • • 𝑆(𝑦 4) 𝑆(𝑦 3) 𝑆(𝑦 2) 𝑆(𝑦 1 ⊕ 𝑐) 𝑆(𝑦 0) 𝜎 1 (𝑥 ⊕ 𝛼) = 𝑆(𝑦 31 ⊕ 𝛽 31) • • • 𝑆(𝑦 4 ⊕ 𝛽 4) 𝑆(𝑦 3) 𝑆(𝑦 2) 𝑆(𝑦 1 ⊕ 𝑐) 𝑆(𝑦 0)
As we can see we have the exact same pairs of values, and thus the same output differences, unless we look at one of the first 4-bit nibbles. However, in this case, the values in 𝜎 1 (𝑥) and 𝜎 1 (𝑥 ⊕ 𝛼) are identical to one another, meaning that their difference is equal to 0 as well. This concludes the proof since the two differences are equal.

To put it differently, this lemma allows us to build pairs of messages that follow the same differential trail over one step whatever the index of the Super S-box.

Our distinguisher for 5 steps of Shadow-512 thus works by following the process described in Algorithm 13. As depicted in Figure 5.4, the choice of the difference 𝛽 ensures that the same transition is followed for the 3 first Super S-boxes of step 2. The differential pattern then propagates as expected with probability 1 through steps 1 then 0 (backward), and 3 then 4 (forward).

We have verified experimentally that this distinguisher works as predicted.

The differences in the output of the Super S-box layer of step 5 (denoted by * in Figure 5.4) are a priori different from one another, meaning that this approach cannot cover more rounds. Fortunately, we can use the property studied in Section 5.3.3 to our advantage, as explained below.

Algorithm 13 A distinguisher for 5-step Shadow. 5. Invert step 1 and step 0 on 𝑋 2 and 𝑋 ′ 2 to obtain a pair of states (𝑋 0 , 𝑋 ′ 0) such that 𝜋(𝑋 0) ⊕ 𝜋(𝑋 ′ 0) = 𝐷(*, *, *, 0).

A Distinguisher for 6-and 7-Step

Shadow 𝜎 0 𝜎 1 𝜎 2 𝜎 3 𝐷 Step 0 𝜎 0 𝜎 1 𝜎 2 𝜎 3 𝐷 Step 1 𝜎 0 𝜎 1 𝜎 2 𝜎 3

𝐷

Step 2

𝜎 0 𝜎 1 𝜎 2 𝜎 3 𝐷 Step 3 𝜎 0 𝜎 1 𝜎 2 𝜎 3 𝐷 Step 4 𝜎 0 𝜎 1 𝜎 2 𝜎 3 𝐷 Step 5 𝜎 0 𝜎 1 𝜎 2 𝜎 3

𝐷

Step Using the truncated trail discussed in Section 5.4.1 with the observation in Section 5.3.3, we can build a distinguisher on 6 steps of Shadow, i.e. on the full permutation. It would naturally extend to a distinguisher on 7 steps if we defined such a "round-extended" variant of Shadow. This distinguisher is summarized in Figure 5.5.

Structure of the distinguisher. Our distinguisher works as follows.

• We first focus on the input of step 2 and build a pair of messages that differ by (𝛼, 𝛼, 𝛼, 0). This difference automatically sets the input difference of step 0 to be equal to 0 on the third bundle. Our choice of the two messages must also ensure that their difference at the end of step 2 is equal to (0, 0, 0, 𝛽) and that the two output messages are 3-identical (the 3-identical property is depicted by the thick rectangle in Figure 5.5.).

• In step 3, we want to keep the 3-identical property in order to ease the following step. As we established before (see Table 5.4), this event has a probability equal to 2 -9 . The input difference at the end of step 3 is then equal to (𝛾, 𝛾, 𝛾, 0).

• We next aim for a difference equal to (𝛿, 𝛿, 𝛿, 0) at the output of the Super S-boxes of step 4, an event whose probability we later prove to be 2 -7.245 . When this condition is fulfilled we obtain a difference equal to (0, 0, 0, 𝛿) at the output of step 4, which automatically leads to the required difference of the form (*, *, *, 0) at the end of step 5.

Let us now show how we can efficiently find two states that verify the conditions at the input and the output of Step 3.

Suppose that there is an 𝑥 ∈ F 128 2 such that the following holds during step 2 for some 128-bit values 𝛼, 𝛽, 𝜖 and 𝜖 ′ :

⎧ ⎪ ⎨ ⎪ ⎩ 𝜎 0 (𝑥) + 𝜎 0 (𝑥 + 𝛼) = 𝛽 𝜎 1 (𝑥 + 𝜖) + 𝜎 1 (𝑥 + 𝜖 + 𝛼) = 𝛽 𝜎 2 (𝑥 + 𝜖 ′) + 𝜎 2 (𝑥 + 𝜖 ′ + 𝛼) = 𝛽 ,
(5.3) these constraints corresponding to the differential trail at step 2 that is used in Figure 5.5. Such an 𝑥 would allow us to run the 5-round distinguisher described in Section 5.4.1. However, as we explained, the property would not extend beyond the fifth step. To achieve this, we add another set of constraints:

{︃ (𝐴𝐶 ∘ 𝐷) (︀ 𝜎 0 (𝑥), 𝜎 1 (𝑥 + 𝜖), 𝜎 2 (𝑥 + 𝜖 ′), 𝑧)︀ = (𝑦, 𝑦, 𝑦, 𝑧 ′) (𝐴𝐶 ∘ 𝐷) (︀ 𝜎 0 (𝑥 + 𝛼), 𝜎 1 (𝑥 + 𝛼 + 𝜖), 𝜎 2 (𝑥 + 𝛼 + 𝜖 ′), 𝑧)︀ = (𝑦, 𝑦, 𝑦, 𝑧 ′ + 𝛽) .
(5.4)

In other words, we impose that each state we consider is 3-identical. In this case, the difference between the states has to be equal to (0, 0, 0, 𝛽) at the input of step 3. Furthermore, each state is 3-identical. This property is carried over to the next step with some probability. Should this happen, we would have at the input of step 4 that the difference between the states is equal to (0, 0, 0, 𝛾) for some 𝛾 ∈ F 128 2 , and that each state is 3-identical.

Finding Solutions for Properties (5.3) and (5.4). It turns out that a specific probability 1 truncated differential pattern allows us to trivially find solutions satisfying both Property (5.3) and Property (5.4). Indeed, we remark that:

1. the impact of the constant additions both within the Super S-box layers and outside it (after the 𝐷 layer) is limited to the S-boxes with indices in {0, 1, 2, 3} (i.e. the 4 of lowest weight) within each Super S-box, and 2. the bits with indices 22 and 23 in each of the 4 input words of a Super S-box do not influence the output bits with indices in {0, 1, 2, 3}.

Using the reference implementation, we can indeed see that 𝐿(0, 𝑒 22) = (1b880510, 6c06f000) 𝐿(𝑒 22 , 0) = (36037800, 1b880510) 𝐿(0, 𝑒 23) = (37100a20, d80de000) 𝐿(𝑒 23 , 0) = (6c06f000, 37100a20) ,

where the 4 bits of lowest weight in each output are always equal to 0. We then define the vector space ∇ ⊂ (F 4 2) 32 as

∇ = {𝑎 × 𝑒 22 + 𝑏 × 𝑒 23 , 𝑎 ∈ F 4 2 , 𝑏 ∈ F 4 2 }
, where the multiplications are done in the finite field F 4 2 . As a consequence of our observations, we have the following lemma.

Lemma 5.3. Let 𝑥 ∈ (F 4
2) 32 be a 128-bit vector and let 𝛼 ∈ ∇ be a difference. Then for all steps and all bundle index 𝑖, we have that 𝜎 𝑖 (𝑥) + 𝜎 𝑖 (𝑥 + 𝛼) = (*, *, ..., *, 0, 0, 0, 0) .

As evidenced by our experimental results (see below), this approach is efficient, and with the cost of computing 1 Super S-box we can obtain about 2 16 internal states that verify the condition of step 2.

Description of the Full Distinguisher. Algorithm 14 details our distinguisher. Using the techniques described so far, we are able to find input differences that satisfy the truncated trail and are 3-identical where needed (see Figure 5.5) from the beginning of step 0 to the end of step 2. Let us now see what happens in the remaining steps.

Algorithm 14 Our 7-step distinguisher against Shadow. Output: A pair (𝑥, 𝑦, 𝑧, 𝑡), (𝑥 ′ , 𝑦 ′ , 𝑧 ′ , 𝑡) such that 𝜋(𝑥, 𝑦, 𝑧, 𝑡) ⊕ 𝜋(𝑥 ′ , 𝑦 ′ , 𝑧 ′ , 𝑡) = (*, *, *, 0) with probability at least 2 -16.245 after 7-step Shadow-512.

1. Select a difference 𝜖 ∈ ∇.

2. Select a state (𝑦 2 , 𝑦 2 , 𝑦 2 , 𝑧 2) that will be a state after step 2.

3. Invert step 2 on (𝑦 2 , 𝑦 2 , 𝑦 2 , 𝑧 2), obtaining (𝑥 1 , 𝑦 1 , 𝑧 1 , 𝑡 1).

4. Invert step 1 on (𝑥 1 , 𝑦 1 , 𝑧 1 , 𝑡 1) and (𝑥 1 ⊕ 𝜖, 𝑦 1 ⊕ 𝜖, 𝑧 1 ⊕ 𝜖, 𝑡 1), obtaining (𝑥 0 , 𝑦 0 , 𝑧 0 , 𝑡 0) and (𝑥 0 , 𝑦 0 , 𝑧 0 , 𝑡 ′ 0).

5. Invert step 0, obtaining a pair of Shadow-512 states with a zero-difference in the last bundle.

6. Return this pair of state. With high probability (≥ 2 -16.24), it satisfies the truncated trail in Figure 5.5.

Step 3. We start from two messages that are built such that at the end of step 2 they are 3-identical, and we want that the two messages are again 3-identical at the end of step 3. With a reasoning similar to the one given in Section 5.3.3, we obtain 6 equations to solve, while in fact only 3 are independent (the 3 equations obtained for the second message are the same as the 3 obtained for the first message since they only differ on the last bundle), and as detailed in Table 5.4 the probability is equal to 2 -9 since this is step number 3.

Step 4. Our objective is to obtain a difference of the form (0, 0, 0, 𝛿) for any non-zero 𝛿 in F 128 2 at the beginning of step 5 (see Figure 5.5). In order for this to happen, we need to have a difference equal to (𝛿, 𝛿, 𝛿, 0) at the end of step 4. To estimate the probability of this event, let us write the corresponding equations. We denote the two messages after the application of 𝑆 and 𝐿 of step 4 by (𝑦, 𝑦, 𝑦, 𝑤) and (𝑦 ′ , 𝑦 ′ , 𝑦 ′ , 𝑤) respectively. Since the input of step 4 is 3-identical, 𝑦 𝑖 = 𝑦 ′𝑖 for all 𝑖 > 3. The expression of the last 4 column values at the end of step 4 (i.e. after applying 𝐷 and 𝐴𝐶) is then as follows for (𝑦, 𝑦, 𝑦, 𝑤)

𝑆(𝑤 3 ⊕ 𝑐) 𝑆(𝑦 2) ⊕ 𝑆(𝑦 2 ⊕ 𝑐) ⊕ 𝑆(𝑤 2) 𝑆(𝑦 1) ⊕ 𝑆(𝑦 1 ⊕ 𝑐) ⊕ 𝑆(𝑤 1) 𝑆(𝑤 0) ⊕ 𝑐 ′ 𝑆(𝑤 3 ⊕ 𝑐) 𝑆(𝑦 2) ⊕ 𝑆(𝑦 2 ⊕ 𝑐) ⊕ 𝑆(𝑤 2) 𝑆(𝑤 1) ⊕ 𝑐 ′ 𝑆(𝑦 0) ⊕ 𝑆(𝑦 0 ⊕ 𝑐) ⊕ 𝑆(𝑤 0) 𝑆(𝑤 3 ⊕ 𝑐) 𝑆(𝑤 2) ⊕ 𝑐 ′ 𝑆(𝑦 1) ⊕ 𝑆(𝑦 1 ⊕ 𝑐) ⊕ 𝑆(𝑤 1) 𝑆(𝑦 0) ⊕ 𝑆(𝑦 0 ⊕ 𝑐) ⊕ 𝑆(𝑤 0) 𝑆(𝑦 3) ⊕ 𝑐 ′ 𝑆(𝑦 2 ⊕ 𝑐) 𝑆(𝑦 1 ⊕ 𝑐) 𝑆(𝑦 0 ⊕ 𝑐)
and as follows for (𝑦 ′ , 𝑦 ′ , 𝑦 ′ , 𝑤):

𝑆(𝑤 3 ⊕ 𝑐) 𝑆(𝑦 ′2) ⊕ 𝑆(𝑦 ′2 ⊕ 𝑐) ⊕ 𝑆(𝑤 2) 𝑆(𝑦 ′1) ⊕ 𝑆(𝑦 ′1 ⊕ 𝑐) ⊕ 𝑆(𝑤 1) 𝑆(𝑤 0) ⊕ 𝑐 ′ 𝑆(𝑤 3 ⊕ 𝑐) 𝑆(𝑦 ′2) ⊕ 𝑆(𝑦 ′2 ⊕ 𝑐) ⊕ 𝑆(𝑤 2) 𝑆(𝑤 1) ⊕ 𝑐 ′ 𝑆(𝑦 ′0) ⊕ 𝑆(𝑦 ′0 ⊕ 𝑐) ⊕ 𝑆(𝑤 0) 𝑆(𝑤 3 ⊕ 𝑐) 𝑆(𝑤 2) ⊕ 𝑐 ′ 𝑆(𝑦 ′1) ⊕ 𝑆(𝑦 ′1 ⊕ 𝑐) ⊕ 𝑆(𝑤 1) 𝑆(𝑦 ′0) ⊕ 𝑆(𝑦 ′0 ⊕ 𝑐) ⊕ 𝑆(𝑤 0) 𝑆(𝑦 ′3) ⊕ 𝑐 ′ 𝑆(𝑦 ′2 ⊕ 𝑐) 𝑆(𝑦 ′1 ⊕ 𝑐) 𝑆(𝑦 ′0 ⊕ 𝑐)
In order for the sum of these two states to be equal to (0, 0, 0, 𝛿) (for any non-zero 𝛿), the following relations have to be satisfied:

𝑆(𝑦 ′2) ⊕ 𝑆(𝑦 ′2 ⊕ 𝑐) = 𝑆(𝑦 2) ⊕ 𝑆(𝑦 2 ⊕ 𝑐) 𝑆(𝑦 ′1) ⊕ 𝑆(𝑦 ′1 ⊕ 𝑐) = 𝑆(𝑦 1) ⊕ 𝑆(𝑦 1 ⊕ 𝑐) 𝑆(𝑦 ′0) ⊕ 𝑆(𝑦 ′0 ⊕ 𝑐) = 𝑆(𝑦 0) ⊕ 𝑆(𝑦 0 ⊕ 𝑐) .
Since we are looking at step 4, the constant 𝑐 is equal to 0𝑥5 and then each equality has a probability equal to 2 -2.415 to be verified (assuming that the value of 𝑦 and 𝑦 ′ are independent).

Step 5. This last step is passed with probability one, so in the end we observe an output difference equal to (*, *, *, 0) with a probability at least equal to (2 -2.415) 3 × 2 -9 = 2 -16.245 .

Step 6. One additional round can be added with probability one, since by inverting 𝐷 we would find a difference equal to 0 in the last bundle with the same probability of 2 -16.245 .

Experimental Results. Experiments showed that the probability of the distinguisher is slightly higher than what we expected, since in fact the previously detailed trail is not the only one that leads to the required output difference (see the next subsection for a description of another valid trail). By running Algorithm 14 for 2 22 times, we obtained 124 successful pairs, a probability close to 2 -15 . Our unoptimized C++ implementation found all these pairs in less than 30 seconds on a desktop computer. Below is an example for 7 steps.

𝑥 1 𝑥 2 9c7fbdf0 4a9a3523 90bd4f15 33e12e8f 5554509d 5ea7c50d db9fd14e 8cd31faf 5f0785c3 14ce1b1f b9a7f521 336e44ba fcf630fb 82cafa8e abf5b881 e5534b79 b4764864 aaabc55e 2b65df83 33e12e8f 30d8625c 6d513db3 9024c477 8cd31faf 89fb6758 5d19b594 e69ccd64 336e44ba 4f3d62a5 3e530b8b f7ccf2b7 e5534b79

𝑥 1 ⊕ 𝑥 2 𝜋(𝑥 1) ⊕ 𝜋(𝑥 2)
2809f594 e031f07d bbd89096 00000000 658c32c1 33f6f8be 4bbb1539 00000000 d6fce29b 49d7ae8b 5f3b3845 00000000 b3cb525e bc99f105 5c394a36 00000000 39e368a5 03e51caf f2d7ae55 00000000 2668956a b1720999 00c93f81 00000000 4aed9270 2b317fb5 6f1a183b 00000000 d902b8fd 5c7db7c2 2ef09921 00000000

Another High Probability Characteristic over 7 Steps

As previously stated, the trail that is represented in Figure 5.5 is not the only one contributing to the probability of our 7-step distinguisher. Indeed, while we expected a probability of 2 -16.245 , our experiments returned a probability close to 2 -15 . In this section we detail a second trail of high probability that benefits from the definition of 𝐿, namely from the fact that the bits in column 2 do not diffuse to column 0, 1 and 2.

Structure of the trail. The trail is represented in Figure 5.6 and works as follows:

• As before, our construction at step 2 gives a pair of messages that leads to the desired difference (*, *, *, 0) at the input of the permutation with probability 1, while the states at the output of step 2 are 3-identical and differ by (0, 0, 0, 𝛽).

• With probability 2 -9 , the two states keep their 3-identical property at the end of step 3, and their difference is (𝛾, 𝛾, 𝛾, 0).

• We then require that at the end of step 4 the two states are 2-identical while they share the same third bundle value. As we detail next, this event is of probability 2 -8.3 .

•

Step 5 ends with a null difference in the last bundle with probability 1 thanks to the definition of 𝐿. The distinguisher can be extended to a 7-step one for free.

The total probability of this trail is thus equal to 2 -17.3 . Adding it to the probability of the other trail previously discussed in this section, we obtain something closer to what is observed experimentally: 2 -17.3 + 2 -16.245 = 2 -15.678 . Note that other trails add up to this probability, for instance the ones with a difference of the form (0, 𝜏, 𝜏, 𝜅) or (𝜏, 0, 𝜏, 𝜅) at the end of step 4.

Detail of the probabilities.

Step 3. As for the first trail described in this section, the probability that the states remain 3-identical is equal to 2 -9 .

Step 4. At the end of step 4, we aim for a pair of messages that are 2-identical in their first 2 bundles and that have no difference in their third bundle. Formally, let us denote by (𝑦, 𝑦, 𝑦, 𝑤) and (𝑦 ′ , 𝑦 ′ , 𝑦 ′ , 𝑤) the two states after 𝑆 and 𝐿. After applying the first constant addition, the second S-layer, the 𝐷 operation and the second constant addition, we obtain:

𝑆(𝑤 31), • • • , 𝑆(𝑤 3 ⊕ 𝑐), 𝑆(𝑦 2) ⊕ 𝑆(𝑦 2 ⊕ 𝑐) ⊕ 𝑆(𝑤 2), 𝑆(𝑦 1) ⊕ 𝑆(𝑦 1 ⊕ 𝑐) ⊕ 𝑆(𝑤 1), 𝑆(𝑤 0) ⊕ 𝑐 ′ , 𝑆(𝑤 31), • • • , 𝑆(𝑤 3 ⊕ 𝑐), 𝑆(𝑦 2) ⊕ 𝑆(𝑦 2 ⊕ 𝑐) ⊕ 𝑆(𝑤 2), 𝑆(𝑤 1) ⊕ 𝑐 ′ , 𝑆(𝑦 0) ⊕ 𝑆(𝑦 0 ⊕ 𝑐) ⊕ 𝑆(𝑤 0), 𝑆(𝑤 31), • • • , 𝑆(𝑤 3 ⊕ 𝑐), 𝑆(𝑤 2) ⊕ 𝑐 ′ , 𝑆(𝑦 1) ⊕ 𝑆(𝑦 1 ⊕ 𝑐) ⊕ 𝑆(𝑤 1), 𝑆(𝑦 0) ⊕ 𝑆(𝑦 0 ⊕ 𝑐) ⊕ 𝑆(𝑤 0), 𝑆(𝑦 31), • • • , 𝑆(𝑦 3) ⊕ 𝑐 ′ , 𝑆(𝑦 2 ⊕ 𝑐), 𝑆(𝑦 1 ⊕ 𝑐), 𝑆(𝑦 0 ⊕ 𝑐)
and

𝑆(𝑤 31), • • • , 𝑆(𝑤 3 ⊕ 𝑐), 𝑆(𝑦 ′2) ⊕ 𝑆(𝑦 ′2 ⊕ 𝑐) ⊕ 𝑆(𝑤 2), 𝑆(𝑦 ′1) ⊕ 𝑆(𝑦 ′1 ⊕ 𝑐) ⊕ 𝑆(𝑤 1), 𝑆(𝑤 0) ⊕ 𝑐 ′ , 𝑆(𝑤 31), • • • , 𝑆(𝑤 3 ⊕ 𝑐), 𝑆(𝑦 ′2) ⊕ 𝑆(𝑦 ′2 ⊕ 𝑐) ⊕ 𝑆(𝑤 2), 𝑆(𝑤 1) ⊕ 𝑐 ′ , 𝑆(𝑦 ′0) ⊕ 𝑆(𝑦 ′0 ⊕ 𝑐) ⊕ 𝑆(𝑤 0), 𝑆(𝑤 31), • • • , 𝑆(𝑤 3 ⊕ 𝑐), 𝑆(𝑤 2) ⊕ 𝑐 ′ , 𝑆(𝑦 ′1) ⊕ 𝑆(𝑦 ′1 ⊕ 𝑐) ⊕ 𝑆(𝑤 1), 𝑆(𝑦 ′0) ⊕ 𝑆(𝑦 ′0 ⊕ 𝑐) ⊕ 𝑆(𝑤 0), 𝑆(𝑦 ′31), • • • , 𝑆(𝑦 ′3) ⊕ 𝑐 ′ , 𝑆(𝑦 ′2 ⊕ 𝑐), 𝑆(𝑦 ′1 ⊕ 𝑐), 𝑆(𝑦 ′0 ⊕ 𝑐) 𝜎 0 𝜎 1 𝜎 2 𝜎 3 𝐷 Step 0 𝜎 0 𝜎 1 𝜎 2 𝜎 3

𝐷

Step 1

𝜎 0 𝜎 1 𝜎 2 𝜎 3 𝐷 Step 2 𝜎 0 𝜎 1 𝜎 2 𝜎 3

𝐷

Step 3

𝜎 0 𝜎 1 𝜎 2 𝜎 3 𝐷 Step 4 𝜎 0 𝜎 1 𝜎 2 𝜎 3

𝐷

Step 5

𝜎 0 𝜎 1 𝜎 2 𝜎 3

𝐷

Step In order to obtain a 2-identical state the following relations have to be satisfied:

𝑆(𝑦 1) ⊕ 𝑆(𝑦 1 ⊕ 𝑐) = 𝑐 ′ , 𝑆(𝑦 0) ⊕ 𝑆(𝑦 0 ⊕ 𝑐) = 𝑐 ′ , 𝑆(𝑦 ′1) ⊕ 𝑆(𝑦 ′1 ⊕ 𝑐) = 𝑐 ′ , 𝑆(𝑦 ′0) ⊕ 𝑆(𝑦 ′0 ⊕ 𝑐) = 𝑐 ′ .
Given that we are looking at step number 4 we have 𝑐 = 0𝑥5 and 𝑐 ′ = 0𝑥𝑎, so each equation is verified with probability 2 -2 . Also, since we aim for a difference at the end of step 4 of the form (𝜏, 𝜏, 0, 𝜅) with 𝜏 ̸ = 0, we have to add the condition:

𝑆(𝑦 2) ⊕ 𝑆(𝑦 2 ⊕ 𝑐) ⊕ 𝑆(𝑦 ′2) ⊕ 𝑆(𝑦 ′2 ⊕ 𝑐) ̸ = 0.
That is verified with probability 2 -0.3 . Consequently, the probability of step 4 is equal to 2 -8.3 . Once these conditions are fulfilled, we automatically have an output difference of step 4 equal to (𝜏, 𝜏, 0, 𝜅) and the actual value of 𝜏 is very sparse, only the second column is active:

𝜏 = (0, • • • , 0, 𝑆(𝑦 ′2) ⊕ 𝑆(𝑦 ′2 ⊕ 𝑐) ⊕ 𝑆(𝑦 2) ⊕ 𝑆(𝑦 2 ⊕ 𝑐), 0, 0)
This particular shape implies that step 5 is passed with probability 1.

Step 5. We denote the two input states by (𝑢, 𝑢, 𝑣, 𝑥) and (𝑢 ⊕ 𝜏, 𝑢 ⊕ 𝜏, 𝑣, 𝑥 ′). Our goal is to obtain a difference equal to zero in the last bundle at the end of the step. We first remark that after applying the first S-layer to the two states, we obtain two states (𝑈, 𝑈, 𝑉, 𝑋) and (𝑈 ′ , 𝑈 ′ , 𝑉, 𝑋 ′) so that again the difference between 𝑈 and 𝑈 ′ is only positioned in the second column of the bundle (simply because the S-layer modifies each column independently). We denote the new difference by 𝑇 = 𝑈 ⊕ 𝑈 ′ .

Due to the linearity of the next step we can further trace the evolution of 𝜏 through the 𝐿 layer: we have that 𝐿(𝑈) ⊕ 𝐿(𝑈 ′) = 𝐿(𝑇). Moreover, using the specification of 𝐿 we observe that:

𝐿(𝑒 2 , 0) = (805101b8, 6f0006c0) 𝐿(0, 𝑒 2) = (37800360, 805101b8).
These computations indicate that any difference positioned in column 2 does not propagate to any of the first 3 columns, and in particular that whatever the exact value of 𝑇 the two first bundles of each state have the same value over their 3 first columns. To see how this leads to the required equality at the end of step 5, we can look at the formal expression of the two states. After applying L, the first round constant addition and the second non-linear layer we obtain:

𝑆(𝐿(𝑈) 31), • • • , 𝑆(𝐿(𝑈) 3), 𝑆(𝐿(𝑈) 2), 𝑆(𝐿(𝑈) 1), 𝑆(𝐿(𝑈) 0 ⊕ 𝑐), 𝑆(𝐿(𝑈) 31), • • • , 𝑆(𝐿(𝑈) 3), 𝑆(𝐿(𝑈) 2), 𝑆(𝐿(𝑈) 1 ⊕ 𝑐), 𝑆(𝐿(𝑈) 0), 𝑆(𝐿(𝑉) 31), • • • , 𝑆(𝐿(𝑉) 3), 𝑆(𝐿(𝑉) 2 ⊕ 𝑐), 𝑆(𝐿(𝑉) 1), 𝑆(𝐿(𝑉) 0), 𝑆(𝐿(𝑋) 31), • • • , 𝑆(𝐿(𝑋) 3 ⊕ 𝑐), 𝑆(𝐿(𝑋) 2), 𝑆(𝐿(𝑋) 1), 𝑆(𝐿(𝑋) 0)
for the first state, and the following for the second state:

𝑆(𝐿(𝑈 ′) 31), • • • , 𝑆(𝐿(𝑈 ′) 3), 𝑆(𝐿(𝑈 ′) 2), 𝑆(𝐿(𝑈 ′) 1), 𝑆(𝐿(𝑈 ′) 0 ⊕ 𝑐), 𝑆(𝐿(𝑈 ′) 31), • • • , 𝑆(𝐿(𝑈 ′) 3), 𝑆(𝐿(𝑈 ′) 2), 𝑆(𝐿(𝑈 ′) 1 ⊕ 𝑐), 𝑆(𝐿(𝑈 ′) 0), 𝑆(𝐿(𝑉) 31), • • • , 𝑆(𝐿(𝑉) 3), 𝑆(𝐿(𝑉) 2 ⊕ 𝑐), 𝑆(𝐿(𝑉) 1), 𝑆(𝐿(𝑉) 0), 𝑆(𝐿(𝑋 ′) 31), • • • , 𝑆(𝐿(𝑋 ′) 3 ⊕ 𝑐), 𝑆(𝐿(𝑋 ′) 2), 𝑆(𝐿(𝑋 ′) 1), 𝑆(𝐿(𝑋 ′) 0)
The difference in the last bundle at the end of step 5 is thus given by the sum of the first 3 bundles of both states (since we are passing through 𝐷). It gives:

0, • • • , 0, 𝑆(𝐿(𝑈) 1) ⊕ 𝑆(𝐿(𝑈) 1 ⊕ 𝑐) ⊕ 𝑆(𝐿(𝑈 ′) 1) ⊕ 𝑆(𝐿(𝑈 ′) 1 ⊕ 𝑐), 𝑆(𝐿(𝑈) 0) ⊕ 𝑆(𝐿(𝑈) 0 ⊕ 𝑐) ⊕ 𝑆(𝐿(𝑈 ′) 0) ⊕ 𝑆(𝐿(𝑈 ′) 0 ⊕ 𝑐).
We then use the previous observation which implies that 𝐿(𝑈 ′) 1 = 𝐿(𝑈) 1 together with 𝐿(𝑈 ′) 0 = 𝐿(𝑈) 0 to conclude that the bundle difference is null with probability 1.

A Distinguisher for 6-step Shadow-384

In this section we show how to build a similar distinguisher on 6 steps of the 384-bit variant of Shadow shifted by one round (i.e. which works for steps from 1 to 6 but for no steps from 0 to 5 because of the round constants). As explained in the preliminaries, Shadow-384 is defined as a 3LS-design, and the 𝐷 layer acts on three 128-bit bundles 𝑎, 𝑏, 𝑐 as follows:

𝐷(𝑎, 𝑏, 𝑐) = ⎛ ⎝ 𝐼 𝐼 𝐼 𝐼 0 𝐼 𝐼 𝐼 0 ⎞ ⎠ × ⎛ ⎝ 𝑎 𝑏 𝑐 ⎞ ⎠ 𝜎 0 Step 0 𝜎 1
Step 0 𝜎 2

Step 0

𝐷 𝜎 0 𝜎 1 𝜎 2

𝐷

Step 1

𝜎 0 𝜎 1 𝜎 2

𝐷

Step 2

𝜎 0 𝜎 1 𝜎 2

𝐷

Step 3

𝜎 0 𝜎 1 𝜎 2 𝐷 Step 4 𝜎 0 𝜎 1 𝜎 2

𝐷

Step 5

𝜎 0 𝜎 1 𝜎 2

𝐷

Step Interestingly, propagating identical states remains possible with this layer, more specifically for states in which the last 2 bundles are equal. Using this property, one can exhibit pairs (𝑥, 𝑥 ′) such that 𝑥 ⊕ 𝑥 ′ = (0, *, *) at step 1 and 𝜋(𝑥) ⊕ 𝜋(𝑥 ′) = 𝐷(0, *, *) at the end of step 6. Note that in this case, we cannot cover step 0. Hence this is not a distinguisher on the full version of Shadow-384 for which we can cover only 5 steps. However, it shows that adding 1 more step at the end does not increase the security of Shadow-384. The distinguisher is summarized in Figure 5.7.

As previously described in Section 5.4.2, by picking an 𝛼 in the vector space ∇ = {𝑎 × 𝑒 22 + 𝑏 × 𝑒 23 , 𝑎 ∈ F 4 2 , 𝑏 ∈ F 4 2 } we can easily find two states (𝑥 1 , 𝑦 1 , 𝑦 1 + 𝜖) and (𝑥 1 , 𝑦 1 + 𝛼, 𝑦 1 + 𝜖 + 𝛼) as inputs to step 2 that satisfy the following properties at input of step 3:

{︃ 𝜎 1 (𝑦 1) + 𝜎 1 (𝑦 1 + 𝛼) = 𝛽 𝜎 2 (𝑦 1 + 𝜖) + 𝜎 2 (𝑦 1 + 𝜖 + 𝛼) = 𝛽 , (5.5) and {︃ (𝐴𝐶 ∘ 𝐷) (︀ 𝑥 1 , 𝜎 1 (𝑦 1), 𝜎 2 (𝑦 1 + 𝜖))︀ = (𝑥 2 , 𝑦 2 , 𝑦 2) (𝐴𝐶 ∘ 𝐷) (︀ 𝑥 1 , 𝜎 1 (𝑦 1 + 𝛼), 𝜎 2 (𝑦 1 + 𝛼 + 𝜖))︀ = (𝑥 2 , 𝑦 2 + 𝛽, 𝑦 2 + 𝛽) .
(5.6)

By inverting step 1, we obtain a difference (0, *, *) with probability 1. Now at step 3, the input difference equals (0, 𝛽, 𝛽) and the last two bundles of each state are identical. With probability 2 -12 and 2 -8 respectively, the 2-identical states are preserved through step 3 and 4. Using the same notations as in Section 5.3.2, these probabilities are explained below.

Starting from a 2-identical state 𝑋 = (𝑥, 𝑦, 𝑦), let (𝑤, 𝑧, 𝑧) = 𝐿 ∘ 𝑆(𝑋) with 𝑤 = 𝐿 ∘ 𝑆(𝑥) and 𝑧 = 𝐿 ∘ 𝑆(𝑦). The first round constant 𝑐 is then added on column 𝑗 of bundle 𝑗 for 𝑗 ∈ {0, 1, 2}, and another S-box layer is applied, and we obtain the following:

𝑆 ∘ 𝐴𝐶(2𝑖) ∘ 𝐿 ∘ 𝑆(𝑋) = [︂ • • • 𝑆(𝑤 𝑖) • • • 𝑆(𝑤 2) 𝑆(𝑤 1) 𝑆(𝑤 0 ⊕ 𝑐) • • • 𝑆(𝑧 𝑖) • • • 𝑆(𝑧 2) 𝑆(𝑧 1 ⊕ 𝑐) 𝑆(𝑧 0) • • • 𝑆(𝑧 𝑖) • • • 𝑆(𝑧 2 ⊕ 𝑐) 𝑆(𝑧 1) 𝑆(𝑧 0)
]︂ .

At this stage, the last 2 bundles of each state differ only on the value of their second and third columns. After the 𝐷 layer and the addition of the second round constant 𝑐 ′ at column 𝑗 of bundle 𝑗 for 𝑗 ∈ {0, 1, 2}) as before, the expression of the bundles of 𝐴𝐶(2𝑖 + 1) ∘ 𝐷 ∘ 𝑆 ∘ 𝐴𝐶(2𝑖) ∘ 𝐿 ∘ 𝑆(𝑋) becomes:

• • • 𝑆(𝑤 𝑖) • • • 𝑆(𝑤 2) ⊕ 𝑆(𝑧 2) ⊕ 𝑆(𝑧 2 ⊕ 𝑐) 𝑆(𝑤 1) ⊕ 𝑆(𝑧 1 ⊕ 𝑐) ⊕ 𝑆(𝑧 1) 𝑆(𝑤 0 ⊕ 𝑐) ⊕ 𝑐 ′ • • • 𝑆(𝑤 𝑖) ⊕ 𝑆(𝑧 𝑖) • • • 𝑆(𝑤 2) ⊕ 𝑆(𝑧 2 ⊕ 𝑐) 𝑆(𝑤 1) ⊕ 𝑆(𝑧 1) ⊕ 𝑐 ′ 𝑆(𝑤 0 ⊕ 𝑐) ⊕ 𝑆(𝑧 0) • • • 𝑆(𝑤 𝑖) ⊕ 𝑆(𝑧 𝑖) • • • 𝑆(𝑤 2) ⊕ 𝑆(𝑧 2) ⊕ 𝑐 ′ 𝑆(𝑤 1) ⊕ 𝑆(𝑧 1 ⊕ 𝑐) 𝑆(𝑤 0 ⊕ 𝑐) ⊕ 𝑆(𝑧 0).
Thus, to ensure a 2-identical state, the following 2 equations need to be satisfied:

𝑆(𝑧 2 ⊕ 𝑐) = 𝑆(𝑧 2) ⊕ 𝑐 ′ , 𝑆(𝑧 1 ⊕ 𝑐) = 𝑆(𝑧 1) ⊕ 𝑐 ′ .
We can then compute the probability of following each step of the truncated pattern in Figure 5.7 starting from the end of step 2:

Step 3: each equation is satisfied with probability 2 -3 for one state, thus 2 -12 in total for the two states.

Step 4: the probability for one state becomes 2 -2 , meaning 2 -8 in total.

Step 5: the 2-identical property cannot be carried through because of the round constants. However, one can obtain a difference in the form (0, *, *) between the two states with probability 2 -4.83 , as explained below.

By inverting the 𝐷 layer of step 6, we should then observe a difference equal to 0 in the first bundle with a probability equal to (2 -2.415) 2 × 2 -8 × 2 -12 = 2 -24.83 . Let us now compute the probability of going through step 5. If we denote (𝑤, 𝑧, 𝑧) and (𝑤, 𝑧 ′ , 𝑧 ′) the two states after the application of 𝑆 and 𝐿 in step 5, then the expression of the column values at the end of that step for (𝑤, 𝑧, 𝑧) becomes

• • • 𝑆(𝑤 𝑖) • • • 𝑆(𝑤 2) ⊕ 𝑆(𝑧 2) ⊕ 𝑆(𝑧 2 ⊕ 𝑐) 𝑆(𝑤 1) ⊕ 𝑆(𝑧 1 ⊕ 𝑐) ⊕ 𝑆(𝑧 1) 𝑆(𝑤 0 ⊕ 𝑐) ⊕ 𝑐 ′ • • • 𝑆(𝑤 𝑖) ⊕ 𝑆(𝑧 𝑖) • • • 𝑆(𝑤 2) ⊕ 𝑆(𝑧 2 ⊕ 𝑐) 𝑆(𝑤 1) ⊕ 𝑆(𝑧 1) ⊕ 𝑐 ′ 𝑆(𝑤 0 ⊕ 𝑐) ⊕ 𝑆(𝑧 0) • • • 𝑆(𝑤 𝑖) ⊕ 𝑆(𝑧 𝑖) • • • 𝑆(𝑤 2) ⊕ 𝑆(𝑧 2) ⊕ 𝑐 ′ 𝑆(𝑤 1) ⊕ 𝑆(𝑧 1 ⊕ 𝑐) 𝑆(𝑤 0 ⊕ 𝑐) ⊕ 𝑆(𝑧 0)
and it takes the following value for (𝑤, 𝑧 ′ , 𝑧 ′)

• • • 𝑆(𝑤 𝑖) • • • 𝑆(𝑤 2) ⊕ 𝑆(𝑧 ′2) ⊕ 𝑆(𝑧 ′2 ⊕ 𝑐) 𝑆(𝑤 1) ⊕ 𝑆(𝑧 ′1 ⊕ 𝑐) ⊕ 𝑆(𝑧 ′1) 𝑆(𝑤 0 ⊕ 𝑐) ⊕ 𝑐 ′ • • • 𝑆(𝑤 𝑖) ⊕ 𝑆(𝑧 ′𝑖) • • • 𝑆(𝑤 2) ⊕ 𝑆(𝑧 ′2 ⊕ 𝑐) 𝑆(𝑤 1) ⊕ 𝑆(𝑧 ′1) ⊕ 𝑐 ′ 𝑆(𝑤 0 ⊕ 𝑐) ⊕ 𝑆(𝑧 ′0) • • • 𝑆(𝑤 𝑖) ⊕ 𝑆(𝑧 ′𝑖) • • • 𝑆(𝑤 2) ⊕ 𝑆(𝑧 ′2) ⊕ 𝑐 ′ 𝑆(𝑤 1) ⊕ 𝑆(𝑧 ′1 ⊕ 𝑐) 𝑆(𝑤 0 ⊕ 𝑐) ⊕ 𝑆(𝑧 ′0)
For the first bundles to be equal for both states the following relations have to be satisfied:

𝑆(𝑧 ′2) ⊕ 𝑆(𝑧 ′2 ⊕ 𝑐) = 𝑆(𝑧 2) ⊕ 𝑆(𝑧 2 ⊕ 𝑐) 𝑆(𝑧 ′1) ⊕ 𝑆(𝑧 ′1 ⊕ 𝑐) = 𝑆(𝑧 1) ⊕ 𝑆(𝑧 1 ⊕ 𝑐) ,
which occurs with probability 2 -2.415 for each relation.

Experimental Results. Experiments showed that the probability of the distinguisher is very close to what we expected. By testing 2 30 pairs, we obtained 31 successes, a probability close to 2 -25 . Our unoptimized C++ implementation took less than 70 minutes on a desktop computer to find these pairs, i.e. about 2 minutes per pair on average. Below is an example.

𝑥 1 𝑥 2 62544d56 60b9af6e bd3ddabf 019d0421 569ad0d3 e543b03f 5f8ba283 087f4892 f7b632d8 116bb908 eef0b58d 97dc955a 62544d56 48d12ffc bb391a7d 019d0421 5efa911b cb4ff1e5 5f8ba283 265b098a ffd272c0 116bb908 e0d8f55f 9790d5da 𝑥 1 ⊕ 𝑥 2 𝜋(𝑥 1) ⊕ 𝜋(𝑥 2)
00000000 28688092 0604c0c2 00000000 086041c8 2e0c41da 00000000 2e244118 08644018 00000000 0e2840d2 004c4080 00000000 d7ddf0cd 87ed7095 00000000 c4e25bec df225a5c 00000000 d3d67ba2 9416fab2 00000000 1cff6fdd 9cf7ed09

Difference with 7 Rounds. The main difference with our 7-round distinguisher on Shadow-512 is our inability to cover step 0, and it stems from 𝐷. The middle rounds of the attack cannot be moved, as they depend on our ability to cancel out the constants and maintain 2-identical states. In the 7-round attack, rounds alternate between 3 and 1 active Super S-box (bundle). The inverse step 1 takes in input a difference 𝛼, 𝛼, 𝛼, 0 and the inverse application of 𝐷 gives a difference 0, 0, 0, 𝛼. But since this difference is active in only one bundle, we can traverse one more round and have a difference active in only three bundles. Here, we used a different path, with two active bundles at each round. The inverse step 1 takes as input a difference 0, 𝛼, 𝛼, the inverse of 𝐷 maps to a difference 0, 𝛼, 𝛼, but after the inverse Super S-box, we obtain two unknown differences, and we cannot traverse round 0.

Forgeries with 4-step Shadow in the Nonce Misuse Setting

In this section, we show how to use the properties exploited in the distinguishers to create existential forgeries for the S1P mode of operation [BBB + 19], in the single user setting, when used with 4-step Shadow (out of 6) shifted of two steps (starting at step 2 instead of 0). Hence, our attack targets the "aggressive parameters" specified in [BBB + 19, Section 5]. One interesting feature of Spook is that it provides strong integrity guarantees in the presence of nonce misuse and leakage, which are formalized as CIML2 in the unbounded leakage model [START_REF] Berti | On leakage-resilient authenticated encryption with decryption leakages[END_REF]. In our attack, we do not require leakage and instead exploit the nonce control. More specifically, we require the same nonce to be used three times. Our attack then creates two different messages with the same authentication tag. In particular, we are able to build collisions on the underlying hash function, which allows us to build the forgeries.

Attack Outline. S1P is a sponge-based mode of authenticated encryption with associated data represented in Figure 5.8, that uses Shadow as its underlying permutation. It has a rate of size 256 bits and a capacity of size 256 bits. If we number the bundles of Shadow as in the reference implementation, bundles 0 and 1 are the rate part and bundles 2 and 3 are the capacity part.

For the sake of simplicity, we consider a version of the S1P mode of operation without associated data, and we only consider two-block messages 𝑀 0 , 𝑀 1 . This situation is depicted on Figure 5.8, where 𝜋 is the Shadow permutation, Initialize is a procedure combining 𝜋 and the Clyde block cipher, that produces a 512-bit state from a nonce 𝑁 and the secret key 𝐾, and Finalize is a procedure that, on input a 512-bit state, produces a 128-bit authentication tag. Our goal is to output two plaintexts (𝑀 0 , 𝑀 1), (𝑀 ′ 0 , 𝑀 ′ 1) and a nonce 𝑁 that yield the same authentication tag. In order to do that, we obtain a collision on the internal state before Finalize. This means that any pair (𝑀 0 , 𝑀 1 , 𝑥 2 , ..., 𝑥 ℓ), (𝑀 ′ 0 , 𝑀 ′ 1 , 𝑥 2 , ..., 𝑥 ℓ) of messages built by appending the same blocks to our colliding pair would also yield the same tag provided that the nonce is reused. We can find (𝑀 0 , 𝑀 1) and (𝑀 ′ 0 , 𝑀 ′ 1) thanks to the following algorithm, that we will prove later.

Let 𝜋 be the Shadow permutation restricted to rounds 2 to 5. Informally, the first queries allow us to find the difference between the states before 𝜋, the second ones to figure out the difference after 𝜋, and the third to cancel it out. The whole attack is presented in details in Algorithm 16. Before describing it, we present its main subroutine whose success probability is given by the following lemma.

Algorithm 15 Algorithm to generate candidate pairs for our 4-step property.

Output: two pairs of (𝑥 1 , 𝑦 1), (𝑥 ′ 1 , 𝑦 ′ 1) such that 𝜋(𝑥 1 , 𝑦 1 , 𝑎, 𝑏) ⊕ 𝜋(𝑥 ′ 1 , 𝑦 ′ 1 , 𝑎, 𝑏) = (*, *, 0, 0) with probability 𝑝.
1. Select a random 128-bit bundle 𝑤 2 .

2. Invert step 2 on (𝑤 2 , 𝑤 2 , 0, 0), obtaining (𝑥 1 , 𝑦 1 , *, *) 3. Return (𝑥 1 , 𝑦 1), (𝑥 1 ⊕ 𝜖, 𝑦 1 ⊕ 𝜖) where 𝜖 ∈ ∇ (a difference that intervenes only in columns 22 and 23 of a bundle).

Lemma 5.4. Let (*, *, 𝑎, 𝑏) be a Shadow state. Then Algorithm 15 produces 4 bundles

(𝑥 1 , 𝑦 1), (𝑥 ′ 1 , 𝑦 ′ 1) such that 𝜋(𝑥 1 , 𝑦 1 , 𝑎, 𝑏) ⊕ 𝜋(𝑥 ′ 1 , 𝑦 ′ 1 , 𝑎, 𝑏) = (*, *, 0, 0) with a probability 𝑝 ≃ 2 -24.83 .
In a nutshell, this property allows us to find a collision on the capacity part of the state after having applied 𝜋. Since we can control the differences in the rate before and after 𝜋, we then obtain a collision on the full 512-bit state. This is summarized in Algorithm 16. Notice that each plaintext and ciphertext "block" is comprised of two rate bundles. 4-step Path. We will now prove Lemma 5.4. We are interested in pairs of 2-identical states for Shadow, where the first two bundles are equal. The following lemma stems immediately from the results in Table 5.5 (as both states in the pair must remain 2-identical, we take the squared probabilities).

𝑥 1 𝑦 1 𝑎 1 𝑏 1 𝑥 1 ⊕ 𝜖 𝑦 1 ⊕ 𝜖 𝑎 1 𝑏 1 Step 2: prob. 1 𝑥 2 𝑥 2 𝑎 2 𝑏 2 𝑦 2 𝑦 2 𝑎 2 𝑏 2 Step 3: prob. 2 -12 𝑥 3 𝑥 3 𝑎 3 𝑏 3 𝑦 3 𝑦 3 𝑎 3 𝑏 3
Step 4: prob. Experimental Results. Lemmas 5.4 and 5.5 have been verified independently. Furthermore, we have fully implemented the attack against S1P itself. Using the reference implementation of S1P (but taking out the two first steps) we obtained the following example for a zero-key and a zero-nonce.

𝑚1 = aaf2fbf5334fdfc6c1ee182f593cc6e1 a5ebc70be994a1bc8b980410a3dae96a e93257859683265f20552e381b15c621 eb3257859783265f23552e381b15c621 𝑚2 = aaf2bbf5334fdfc6c1ee182f593cc6e1 a5eb870be994a1bc8b980410a3dae96a 2f160415c118c8c174200434e93c2e83 2d160415c018c8c177200434e93c2e83 𝑐1 = 75235998b09dcbe55a97db04e29622e4 4e73577cdacccc3520d6d6b03b5f2f51 00000000000000000000000000000000 00000000000000000000000000000000 c6461d8861f434500882ac5dc3490ce1 𝑐2 = 75231998b09dcbe55a97db04e29622e4 4e73177cdacccc3520d6d6b03b5f2f51 00000000000000000000000000000000 00000000000000000000000000000000 c6461d8861f434500882ac5dc3490ce1

After 2 30 trials, we obtained 41 successful collisions, with an experimental probability of success of 2 -24.64 which backs the theoretical 2 -24.83 . In practice, our un-optimized C++ implementation needs about 15 minutes to find one collision.

Possible Extensions. Although using similar properties as the previous distinguishers (keeping 2-identical states with a cancellation of constants, using a difference in ∇), our attack suffers from the fact that we cannot control the input in the capacity part. This is the main reason why we cannot consider the steps before step 2, contrary to our distinguisher on full Shadow-512.

As a trivial extension, we remark that we can extend our reduced-step Shadow by one round (i.e. half a step) at the end of our 4-step path, since this round does not traverse 𝐷; but it falls outside the scope of the actual primitive. We could attack rounds 4 to 13 of Shadow-512 instead of rounds 0 to 12.

Furthermore, the differences that we obtain at the input of step 2 are very sparse, since they belong to the space ∇. As the complexity of our attack is of the order of 2 25 , and the generic complexity is of 2 128 for a collision on the capacity, it might be possible to extend the attack 1 round at the beginning Shadow, but this seems far from trivial and would require advanced message modification techniques.

Conclusion

In this chapter we have shown some new cryptanalysis results on the second round candidate of the lightweight nist competition Spook based on the limited birthday problem. We can distinguish 5-step Shadow-512 from a random permutation using only 2 queries. If we exploit the round constants, we are able to distinguish the full (6-step) Shadow-512, and we could even distinguish 7 steps if the number of rounds was increased (and regardless of the round constant values chosen for this step). Regarding Shadow-384, we are able to efficiently distinguish the 6-step permutation if its round constants are shifted, and a round-reduced 5-step version otherwise.

Using similar ideas we could build collisions on the underlying hash function for a 4-step version of the permutation, which means we can build forgeries for the S1P mode with nonce misuse, which is allowed by the CIML2 security game considered by the authors [START_REF] Berti | On leakage-resilient authenticated encryption with decryption leakages[END_REF].

All the analyses presented are practical and have been implemented and verified. The corresponding source code is publicly available.

An interesting extension of this work would be to reach 5-step forgeries: as we presented, extending it one round is easy, but one more round for reaching 5-steps might be possible using some advanced message modification techniques. In any case, 6-steps do seem out of reach with our current techniques.

New criterion. Our analysis provides a new simple criterion for choosing the round constants in LS-designs: besides trying to avoid invariant subspaces attacks, they should be introduced in such a way that their effect in the internal symmetries cannot be canceled out.

Tweaks for Shadow. Though our findings do not represent a threat on the full-round authenticated encryption primitive, the Shadow permutation can be tweaked to counter the low complexity distinguisher and improve the security margin of Spook.

The first tweak we suggested the designers was to use denser constants. This change would not affect the 5-step distinguishers, but would counter the 6-step ones and the 4-step forgeries. A perhaps more interesting alternative due to implementation reasons was to use one round constant per step instead of two, in order to prevent us from building identical bundle states by canceling out the constants inside a step.

A second tweak option was to change the 𝐷 matrix in order to break the symmetry properties between the bundles. The designers chose the latter in order to improve the security bounds of Spook. They replaced the binary 𝐷 operation of Shadow with an efficient mds matrix proposed in [START_REF] Duval | MDS matrices with lightweight circuits[END_REF] that no longer preserves the equality of two bundles and additionally improves diffusion. This limits the symmetry properties between the Shadow bundles and increases the bound on the number of active S-Boxes for differential and linear characteristics. To compensate for the performance overhead generated by this mds D-box, the constant addition was changed. This resulted in a more efficient processing as well as denser constants. These two changes were combined into Spook v2, presented in [BBB + 20].

6

Differential Analysis of Skinny with Different Tools

Come on, skinny love, just last the year. Pour a little salt, we were never here.

Bon Iver

Evaluating resistance of ciphers against differential cryptanalysis is essential to define the number of rounds of new designs and to mount attacks derived from differential cryptanalysis. This part of the thesis covers some results obtained in this area together with Stéphanie Delaune, Patrick Derbez, Marine Minier, Victor Mollimard and Charles Prud'homme. More precisely, this chapter presents a comparison between existing automatic tools-previously introduced in Chapter 3, Section 3.4-to find the best differential characteristics on the SKINNY block cipher. As usually done in the literature, we split this search in two stages denoted by Step 1 and Step 2. In Step 1, each difference variable is abstracted with a Boolean variable and we search for the value that minimizes the trail weight, whereas Step 2 tries to instantiate each difference value while maximizing the overall differential characteristic probability. We model Step 1 using a milp tool, a sat tool, an ad-hoc method and a cp tool based on the Choco-solver library and provide performance results. Step 2 is modeled using the Choco-solver as it seems to outperform all previous methods on this stage.

Notably, for SKINNY-128 in the SK model and for 13 rounds, we retrieve the results of Abdelkhalek et al. [AST + 17] within a few seconds-while it took 16 days in [AST + 17]-and we provide, for the first time, the best differential related-tweakey characteristics up to respectively 14 and 12 rounds for the TK1 and TK2 models. These results have been submitted and are currently under review.

Introduction

Differential cryptanalysis [START_REF] Biham | Differential cryptanalysis of Feal and N-hash[END_REF] evaluates the propagation of an input difference 𝛿𝑋 = 𝑋 ⊕ 𝑋 ′ between two plaintexts 𝑋 and 𝑋 ′ through the ciphering process. Indeed, differential attacks exploit the fact that the probability of observing a specific output difference given a specific input difference is not uniformly distributed. Today, differential cryptanalysis is public knowledge, and block ciphers such as the Aes have proven bounds against differential attacks. A classical extension of differential cryptanalysis is the so called related-key differential cryptanalysis [START_REF] Biham | New types of cryptanalytic attacks using related keys (extended abstract)[END_REF] that allows an attacker to inject differences not only between the plaintexts 𝑋 and 𝑋 ′ but also between the keys 𝐾 and 𝐾 ′ (even if the secret key 𝐾 stays unknown from the attacker). This attack has recently been extended to tweakable block ciphers [BJK + 16]. As already mentioned in Chapter 2, those particular ciphers allow in addition to the key, a public value called a tweak. Thus, related-tweakey differential attacks allow related-key differences but also related-tweak differences (i.e. differences in a pair of tweaks (𝑇, 𝑇 ′)). In differential attacks, two notions are considered: first, differentials, where only the input and the output differences are known; and differential characteristics, where each difference after each round is completely specified. A classical approach to evaluate the resistance against differential attacks is to compute the probability of the best differential characteristic of the cipher.

Finding optimal (related-tweakey) differential characteristics is a highly combinatorial problem that hardly scales. To limit this explosion, a common solution consists in using a truncated representation [START_REF] Knudsen | Truncated and higher order differentials[END_REF] for which cells are abstracted by single bits that indicate whether sequences contain differences or not. Typically, each cell (i.e. byte or nibble) is abstracted by a single bit (or, equivalently, a Boolean value). In this case, the goal is no longer to find the exact input and output differences, but rather to find the positions of these differences, i.e., the presence or absence of a difference for every cell. When a difference is present at the input of an S-box, we talk about an active S-box or an active byte/nibble. However, some truncated representations may not be valid (i.e., there do not exist actual byte values corresponding to these difference positions) because some constraints at the byte level are relaxed when reasoning on difference positions.

Hence, the optimal (related-tweakey) differential characteristic problem is usually solved in two steps [BN10, AST + 17]. In the first one, every differential byte is abstracted by a Boolean variable that indicates whether there is a difference or not at this position, and we search for all truncated representations of low weight as the less differences passing through S-boxes there are, the more the probability is increased. Then, for each of these low weight truncated representations, the second step aims at deciding whether it is valid (i.e., whether it is possible to find actual cell values for every Boolean variable) and, if it is valid, at finding the actual cell values that maximize the probability of obtaining the output difference given the input difference.

Cipher Under Study: SKINNY-𝑛

Many techniques have been proposed to search for the Step 1 solutions using automatic tools such as Mixed Integer Linear Programming (milp) [SHW + 14, ST17, BJK + 16], Boolean satisfiability (sat) [SNC09, MP13, SWW17] and Satisfiability Modulo Theories (smt) [START_REF] Kölbl | Observations on the SIMON block cipher family[END_REF]. Dedicated solutions have also been proposed [START_REF] Matsui | On correlation between the order of S-boxes and the strength of DES[END_REF]. However, only few tools have been proposed to find the best instantiation of a truncated characteristic [AST + 17, Laf18, SWW18, FJP13, BN10, GLMS18, ENP19]. Notably, in [AST + 17], authors introduce a milp model of the non-linear part of a block cipher and present some results on SKINNY-𝑛 where the time required to find differential paths is about 16 days.

Our contribution. In this chapter, we compare several methods that implement Step 1 resolution on the SKINNY-𝑛 tweakable block cipher. Four attack models can be considered on SKINNY-𝑛 according the size of the tweakey: the SK model focuses on single-key attack, the TK1 model considers related-tweakey attack when the tweakey has only one component, the TK2 model in the related-tweakey settings considers 2 components and the TK3 model, 3 components.

We first implement Step 1 using 4 different tools: a milp model, a sat model, an Ad-Hoc method and a cp model for the 4 attack settings. We also propose a cp model for Step 2 taking as inputs the solutions output by Step 1. We analyze and compare all the proposed methods through intensive computations dedicated to the SKINNY case. As a result we show that milp is not always the best choice for both problems. First, for Step 1, the Ad-Hoc method is able to surpass the milp model. Second, the cp model proposed for Step 2 is incomparably much faster than the milp model proposed in [AST + 17], reducing the execution time from several days to few minutes. Thus, we provide, for the first time, the best differential related-tweakey characteristics up to 14 rounds for the TK1 model and up to 12 rounds for the TK1 model of SKINNY-128. This is an important improvement compared to previous results. For instance, in [LGS17] Liu et al. could only find the best differential characteristics up to 7 and 9 rounds respectively. Finally we also show there is no differential characteristic with probability higher than 2 -128 for 15 rounds in the TK1 model and provide the best TK2 related-tweakey differential characteristic we found for 16 rounds. All those results clearly show that SKINNY is much more resistant to differential cryptanalysis than one would expect when simply counting the number of active S-boxes.

All the codes for those models will be made public once the reviewing process of our paper is finished. These codes are meant to be easy to use and to adapt to other ciphers.

Cipher Under Study: SKINNY-𝑛

In this section, we briefly review the tweakable block cipher SKINNY-𝑛 where 𝑛 denotes the block size and can be equal to 64 or 128 bits. All the details that have been overlooked can be found in [BJK + 16].

As its name indicates, it enciphers blocks of length 64 or 128 bits seen as a 4 × 4 matrix of cells (nibbles for 𝑛 = 64 or bytes for 𝑛 = 128). We denote 𝑥 𝑖,𝑗,𝑘 the cell at row 𝑖 and column 𝑗 of the internal state at the beginning of round 𝑘 (i.e. 0 ≤ 𝑖, 𝑗 ≤ 3 and 0 ≤ 𝑘 ≤ 𝑟 + 1, where 𝑟 is the number of rounds depending on the tweak length and on the key length). SKINNY-𝑛 follows the TWEAKEY framework from [START_REF] Jean | Tweaks and keys for block ciphers: The TWEAKEY framework[END_REF]. SKINNY-𝑛 has three main tweakey size versions: the tweakey size can be equal to 𝑡 = 64 or 128 bits, 𝑡 = 128 or 256 bits and 𝑡 = 192 or 384 bits and we denote 𝑧 = 𝑡/𝑛 the tweakey size to block size ratio. Then, the number of rounds is directly derived from the 𝑧 value: from 32 rounds for the 64/64 version up to 56 for the 128/384 version.

The tweakey state is also viewed as a collection of 𝑧 4 × 4 square arrays of cells (nibbles for 𝑛 = 64 or bytes for 𝑛 = 128). We denote these arrays 𝑇 𝐾1 when 𝑧 = 1, 𝑇 𝐾1 and 𝑇 𝐾2 when 𝑧 = 2, and finally 𝑇 𝐾1, 𝑇 𝐾2 and 𝑇 𝐾3 when 𝑧 = 3. We also denote by 𝑇 𝐾𝑘 𝑖,𝑗 the nibble or the byte at position [𝑖, 𝑗] in 𝑇 𝐾𝑘. Moreover, we define the associated adversarial model SK (resp. TK1, TK2 or TK3) where the attacker cannot (resp. can) introduce differences in the tweakey state.

One encryption round of SKINNY is composed of five operations applied in the following order: SubCells (SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns (MC) (see Fig. AddRoundTweakey. The first and second rows of all tweakey arrays are extracted and bitwise exclusive-ored to the cipher internal state, respecting the array positioning. More formally, we have:

• 𝑥 𝑖,𝑗 = 𝑥 𝑖,𝑗 ⊕ 𝑇 𝐾1 𝑖,𝑗 when 𝑧 = 1,

• 𝑥 𝑖,𝑗 = 𝑥 𝑖,𝑗 ⊕ 𝑇 𝐾1 𝑖,𝑗 ⊕ 𝑇 𝐾2 𝑖,𝑗 when 𝑧 = 2,

• 𝑥 𝑖,𝑗 = 𝑥 𝑖,𝑗 ⊕ 𝑇 𝐾1 𝑖,𝑗 ⊕ 𝑇 𝐾2 𝑖,𝑗 ⊕ 𝑇 𝐾3 𝑖,𝑗 when 𝑧 = 3.

Then, the tweakey arrays are updated. First, a permutation 𝑃 𝑇 is applied on the cells positions of all tweakey arrays: if ℓ = 4*𝑖+𝑗 where 𝑖 is the row index and 𝑗 is the column index, then the cell ℓ is moved to position 𝑃 𝑇 (ℓ) where 𝑃 𝑇 = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7].

Second, every cell of the first and second rows of 𝑇 𝐾2 and 𝑇 𝐾3 are individually updated with an lfsr on 4 bits (when 𝑛 = 64) or on 8 bits (when 𝑛 = 128) with a period equal to 15.

ShiftRows. The rows of the cipher state cell array are rotated to the right. More precisely, the second (resp. third and fourth) cell row is rotated by 1 position (resp. 2 and 3 positions).

MixColumns. Each column of the cipher internal state array is multiplied by the 4 × 4 binary matrix 𝑀 :

⎛ ⎜ ⎜ ⎝ 1 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 ⎞ ⎟ ⎟ ⎠

Overview of Solving Techniques

In this section, we briefly recall the different techniques previously introduced in Section 3.4 and that we used for performing the search of the best differential characteristic. Note that the Ad-Hoc method inspired from [START_REF] Fouque | Structural evaluation of AES and chosen-key distinguisher of 9-round AES-128[END_REF] is standalone and will be only described in the next Section.

Mixed Integer Linear Programming

Many symmetric cryptanalysis problems on different ciphers have been tackled with milp [SHW + 14, BJK + 16, ST17, MWGP11]. Note that milp traditionally considers variables from discrete domains and from continuous domains. Here and as usually done in all the cryptanalytic contexts, we only consider integer variables, and instead, we should rather talk about ilp-for Integer Linear Programming-as the term Mixed designates continuous variables. However, since milp is the term classically used in the cryptographic community, we decided to stick to this terminology. The important point is that milp models can only contain linear inequalities. Therefore, it is necessary to transform non-linear operators into sets of linear inequalities. Moreover, as done in [BJK + 16], we decided to use the Gurobi Mathematical Optimization solver [START_REF]Gurobi optimizer reference manual[END_REF]. To be compatible with our code in Python 3 and to benefit from the the search options on the pool of solutions, a version greater than 9 is required.

Constraint Programming

Although less usual than milp to tackle cryptanalytic problems, cp has already been used in e.g. [START_REF] Gérault | Constraint programming models for chosen key differential cryptanalysis[END_REF][START_REF] Eichlseder | Analyzing the linear keystream biases in AEGIS[END_REF]. We recall some basic principles of cp and we refer the reader to [START_REF] Rossi | Handbook of Constraint Programming[END_REF] for more details.

Cp is used to solve Constraint Satisfaction Problems (csps). A csp is defined by a triple (𝑋, 𝐷, 𝐶) such that 𝑋 = {𝑥 1 , 𝑥 2 , . . . , 𝑥 𝑛 } is a finite set of variables, 𝐷 is a function that maps every variable 𝑥 𝑖 ∈ 𝑋 to its domain 𝐷(𝑥 𝑖) and 𝐶 = {𝑐 1 , 𝑐 2 , . . . , 𝑐 𝑚 } is a set of constraints. 𝐷(𝑥 𝑖) is a finite ordered set of integer values to which the variable 𝑥 𝑖 can be assigned to, whereas 𝑐 𝑗 defines a relation between some variables 𝑣𝑎𝑟𝑠(𝑐 𝑗) ⊆ 𝑋. This relation restricts the set of values that may be assigned simultaneously to 𝑣𝑎𝑟𝑠(𝑐 𝑗). Each constraint is equipped with a filtering algorithm which removes from the domains of 𝑣𝑎𝑟𝑠(𝑐 𝑗), the values that cannot satisfy 𝑐 𝑗 .

In cp, constraints are classified in two categories. Extensional constraints, also called table constraints, explicitly define the allowed (or forbidden) tuples of the relation. Intentional constraints define the relation using mathematical operators. For instance, in a csp with 𝑋 = {𝑥 1 , 𝑥 2 , 𝑥 3 } such that 𝐷(𝑥 1) = 𝐷(𝑥 2) = 𝐷(𝑥 3) = {0, 1}, a constraint ensuring that the sum of the variables in 𝑋 is different from 1 can be either expressed in extension (1) or in intention (2): (0,1,1),(1,0,1),(1,1,0),(1,1, 1)⟩)

1. Table(⟨𝑥 1 , 𝑥 2 , 𝑥 3 ⟩ , ⟨(0, 0, 0),
2. 𝑥 1 + 𝑥 2 + 𝑥 3 ̸ = 1
Actually, any intentional constraint can be encoded with an extensional one provided enough memory space, and conversely [DHL + 16]. However, they may offer different performances.

The purpose of a csp is to find a solution, i.e. an assignment of all variables to a value from their respective domains such that all the constraints are simultaneously satisfied. When looking for a solution, a two-phase mechanism is operated: the search space exploration and the constraint propagation. The exploration of the search space is processed using a depth-first search. At each step, a decision is taken, i.e. a non-assigned variable is selected and its domain is reduced to a singleton. This modification requires checking the satisfiability of all the constraints. This is achieved thanks to constraint propagation which applies each constraint filtering algorithm. Any application may trigger modifications in turn; the propagation ends when either no modification occurs and all constraints are satisfied or a failure is thrown, i.e., at least one constraint cannot be satisfied. In the former case, if all variables are assigned, a solution has been found. Otherwise a new decision is taken and the search is pursued. In the latter case, a backtrack to the first refutable decision is made and the search is resumed.

Turning a csp into a Constrained Optimisation Problem (cop) is done by adding an objective function. Such a function is defined over variables of 𝑋, the purpose is then to find the solution that optimizes the objective function. Finding the optimal solution is done by repeatedly applying the two-phase mechanism above, and by adding a cut on the objective function that prevents from finding a same cost solution in the future.

Sat

Transforming cryptanalytic problems into a propositional Boolean logic formula is also a common technique [MP13, SWW17, KLT15, SNC09, SWW18]. To ease the modeling step, a high-level modeling language called MiniZinc [NSB + 07] has been used: MiniZinc models are translated into a simple subset of MiniZinc called FlatZinc, using a compiler provided by MiniZinc, and supported by most existing cp solvers that have developed FlatZinc interfaces (currently, there are fifteen cp solvers which have FlatZinc interfaces). Evaluations select Picat-sat as the best candidate sat solver for Step 1. Picat-sat translates csps into Boolean satisfiability formulae, and then uses the sat solver Lingeling [START_REF] Biere | Yet another local search solver and lingeling and friends entering the sat competition[END_REF] to solve it. Since Picat-sat clearly outperforms all the other sat solvers provided through the MiniZinc interface, we decided to discard the other ones when comparing with other techniques in Section 6.6.

Models for Step 1

As explained in the Introduction, in a first step called Step 1, we abstract each possible difference at byte level by a binary variable which symbolizes the presence/absence of a difference value at a given position of the cipher. The main concern regarding this step is the combinatorial explosion induced by the abstract xor operation for which the sum of two non zero values can lead to the presence or the absence of a difference.

Note also that all the models described below are tuned to enumerate the solutions for a given number of active S-boxes and for a given number of rounds in the four possible attack models. We call this step Step1-enum. This phase comes after an initial step called Step1-opt, in which the minimal number of active S-boxes for a given number of rounds has been already found. Note also that all the models for SK discard symmetries up to column shift.

Milp Models

A milp model has already been proposed in [BJK + 16], but for comparison purposes on time benchmarks, and to better fit our needs, we re-implement it. Below, we only describe our modifications and refer to Appendix D in [BJK + 16] for the original model.

First, we add constraints in the SK model to obtain all solutions up to column shifts in order to remove symmetries. Moreover, as the original model only describes the way to find the minimal number of active S-boxes, we add a constraint in each model to set a lower bound

{𝑖 1 ≤ 𝑑} ∪ {𝑖 2 ≤ 𝑑} ∪ {𝑜 ≤ 𝑑} ∪ {𝑖 1 + 𝑖 2 + 𝑜 ≤ 2𝑑}.
Finally, regarding the resolutions of the milp models, the parallelization is left to the Gurobi solver1 .

MiniZinc (sat) Models

Due to the high-level modeling allowed by MiniZinc, the model is exactly the same as in the milp model described in Subsection 6.4.1 except the way we model the xor operation. Indeed, we simply use the method described in [START_REF] Gérault | Related-key cryptanalysis of midori[END_REF] where if 𝑎, 𝑏 and 𝑐 are Boolean variables, then the xor operation verifies (considering addition over integers): 𝑖 1 + 𝑖 2 + 𝑜 ̸ = 1. Thus, this model does not require the dummy variables 𝑑.

Cp Models

A cp model for SK is depicted in Model 1. In comparison to other models (Subsection 6.4.1 and Subsection 6.4.2), the objective function (6.1) remains identical. Then, the model relies on Table constraints (6.2) with ⟨MxC⟩ as input parameter, the list of feasible combinations. In an early stage, ⟨MxC⟩ is computed based on a composition of MixColumns relation and ShifRows relation over two blocks and eight variables. Only the 34 combinations satisfying both MixColumns and ShifRows are retained among the 256 possible ones. Just like milp and sat, symmetry breaking constraints are added to models in order to prevent the calculation of solutions equivalent up to column shift.

TK1, TK2 and TK3 are modeled based on Model 1, i.e., without the symmetry breaking constraints. We follow the same lines as the milp model proposed in Appendix D in [BJK + 16] to model cancellation in TK2 and TK3.

In terms of solving configuration, a parallel portfolio is used to run resolutions simultaneously. We separate the different models according to the 2 16 possible values (0 or 1 for each possible cell) taken in a given middle round, which turns the original cop into many csps. In practice, each independent sub-problem is assigned to a new thread. Threads send each other messages containing the value of 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 , the best number of S-boxes found so far. Such an approach limits the number of messages passed but offers valuable data to running threads, and future ones. Indeed, bound sharing prevents from exploring sub-regions of the search where there is no chance to find better solutions.

In addition, each model defines a search strategy based on a lexicographic ordering. Once the middle round being instantiated, then, it goes one round by one round to the forward and to the backward direction.

Ad-Hoc Models

To the best of our knowledge, the most efficient algorithm to search for truncated representations is the one described in [START_REF] Fouque | Structural evaluation of AES and chosen-key distinguisher of 9-round AES-128[END_REF] by Fouque et al.. The main idea is that round 𝑖 is independent of the paths of rounds 0, 1, . . . , 𝑖 -1 and at each step we only have to save, for each truncated state, the minimal number of active S-boxes to reach it. Hence, the complexity of this algorithm is exponential in the state size but linear in the number of rounds. The algorithm is specified in Algorithm 17. At the end of the algorithm we obtain an array 𝐶 such that 𝐶[𝑟][𝑠] contains the minimal number of active sboxes required to reach state 𝑠 after 𝑟 rounds. Retrieving the truncated representations is then done quite easily using 𝐶, starting from the last state to the first.

Algorithm 17 Search for the best truncated representation (SK).

foreach state 𝑠 do 𝑀 [𝑠] ←-list of states 𝑠 ′ reachable from 𝑠 through one round end foreach state 𝑠 do 𝐶 [0] [𝑠] ←-number of active cells of 𝑠 end for 1 ≤ 𝑟 < 𝑅 do foreach 𝑠𝑡𝑎𝑡𝑒 𝑠 do 𝐶 [𝑟] [𝑠] ←-∞ foreach state 𝑠 do foreach state 𝑠 ′ in 𝑀 [𝑠] do 𝑐 ←-𝐶 [𝑟 -1] [𝑠] + number of active cells of 𝑠 ′ if 𝑐 < 𝐶 [𝑟] [𝑠 ′] then 𝐶 [𝑟] [𝑠 ′] ←-𝑐 end end end return C
The complexity of the algorithm in the single key model is very low, and we experimentally counted around (𝑅 -1) × 2 20 simple operations for 𝑅 rounds. A naive solution to search for truncated representations in the TK1, TK2 and TK3 models would be to apply the previous algorithm for each possible configuration of the key. While for TK1 this would only increase the overall complexity by a factor 2 16 , the search would not be practical for both the TK2 and TK3 models. Indeed, because of the possible cancellations occurring in the round keys, the number of configurations is very high:

⎛ ⎝ 8 ∑︁ 𝑘=0 (︂ 8 𝑘)︂ (︃ 𝑡𝑘-1 ∑︁ 𝑖=0 (︂ ⌊(𝑅 -1)/2⌋ 𝑖)︂)︃ 𝑘 ⎞ ⎠ ⎛ ⎝ 8 ∑︁ 𝑘=0 (︂ 8 𝑘)︂ (︃ 𝑡𝑘-1 ∑︁ 𝑖=0 (︂ ⌈(𝑅 -1)/2⌉ 𝑖)︂)︃ 𝑘 ⎞ ⎠ .
For instance, for 𝑅 = 30, there are more than 2 64 configurations in the TK2 model.

Modeling Step 2 with cp

In the following we present the first practical algorithm which tackles down the problem without relying on a black box solver as milp, sat or cp solvers. The idea is quite similar to the one used in the single key model. Actually, to compute the minimal number of active S-boxes at round 𝑟 + 1 we only need to know the minimal number of active S-boxes for each possible state at round 𝑟 together with the number of cancellations for each key cell. Indeed, we do not need to know at which rounds the cancellations occurred but only how many times they did. A simplified version of this algorithm is described in Algorithm 18. In practice, we found it was better to proceed step by step. First we pick a key cell and guess whether it is active or not. Then we apply the algorithm partially and guess another key cell if and only if it seems possible to find a better representation.

Remarks. Note that while our ad-hoc tool gave the best running times, it may require a lot of memory to store the array 𝐶. For instance, for 30 rounds in TK3 mode, our tool required up to 500 gb of ram to finish the search. It is also important to note that it did not fully take advantage of the 128 cores of our server, and most often used less than 40 cores.

Algorithm 18 Search for the best truncated representation (TK).

foreach state 𝑠, round key 𝑘 do 𝑀 [𝑘] [𝑠] ←-list of states 𝑠 ′ reachable from 𝑠 and 𝑘 through one round end foreach state 𝑠 do 𝐶 [0] [𝑠] ←-{(number of active cells of 𝑠, 0)} end for 1 ≤ 𝑟 < 𝑅 do foreach 𝑠𝑡𝑎𝑡𝑒 𝑠 do 𝐶 [𝑟] [𝑠] ←-∅ foreach state 𝑠, round key 𝑘 do foreach state 𝑠 ′ in 𝑀 [𝑘] [𝑠] do foreach (cost, cancelled) ∈ 𝐶 [𝑟 -1] [𝑠] do if cancelled compatible with k then 𝑐 ←-cost + number of active cells of 𝑠 ′ 𝐶 [𝑟] [𝑠 ′] ←-𝐶 [𝑟] [𝑠 ′] ∪ {(𝑐, update(𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑒𝑑, 𝑘))} end end end end foreach 𝑠𝑡𝑎𝑡𝑒 𝑠 do keepOptimals(𝐶 [𝑟] [𝑠]) end return C

Modeling Step 2 with cp

The aim of Step 2 is to try to instantiate the abstracted solutions provided by Step 1 while maximizing the probability of the differential characteristic. Thus, Step 2 takes as input a solution of Step 1 with the objective function of maximizing the probability of the differential characteristic. However, some solutions of Step 1 could not be instantiated in Step 2 as refining the abstraction level of Step 2 will induce non-consistent solutions. In the literature, this Step has been modeled using Ad-Hoc methods [START_REF] Biryukov | Automatic search for related-key differential characteristics in byte-oriented block ciphers: Application to AES, Camellia, Khazad and others[END_REF], milp [AST + 17], sat [START_REF] Sun | More accurate differential properties of LED64 and Midori64[END_REF] or cp [START_REF] Gérault | Computing AES related-key differential characteristics with constraint programming[END_REF]. As milp [AST + 17] and sat [START_REF] Sun | More accurate differential properties of LED64 and Midori64[END_REF] seem to hardly scale due to prohibitive computational times (linked with the size of the 8-bit S-boxes that must be represented in the form of linear inequalities or of clauses), we focus here on a dedicated cp method implemented using the Choco solver [START_REF] Prud'homme | Choco Documentation[END_REF].

Given a Boolean solution for Step 1, Step 2 aims at searching for the byte-consistent solution with the highest (related-tweakey) differential characteristic probability (or proving that there is no byte-consistent solution). In this section, Model 2 describes the cp model we used for SKINNY-128 (SK). Actually, the ones used to model the other variants, as well as SKINNY-64, are rather similar.

Minimize

𝑂𝑏𝑗 𝑆𝑡𝑒𝑝2 = 𝑛 ∑︁ 𝑟=1 4 ∑︁ 𝑖=1 4 ∑︁ 𝑗=1 𝑃 𝑟,𝑖,𝑗 (6.3)
subject to

20 × 𝑛 ≤ 𝑛 ∑︁ 𝑟=1 4 ∑︁ 𝑖=1 4 ∑︁ 𝑗=1 𝑃 𝑟,𝑖,𝑗 ≤ min(70 × 𝑛, 𝑂 *) (6.4) ∀𝑟 ∈ 1..𝑛, ∀𝑖 ∈ 1..4, ∀𝑗 ∈ 1..4 {︃ 𝛿𝑋 𝑟,𝑖,𝑗 = 0 ∧ 𝛿𝑆𝐵 𝑟,𝑖,𝑗 = 0 ∧ 𝑃 𝑟,𝑖,𝑗 = 0 if Δ𝑋 𝑟,𝑖,𝑗 = 0 𝛿𝑋 𝑟,𝑖,𝑗 ≥ 1 ∧ 𝛿𝑆𝐵 𝑟,𝑖,𝑗 ≥ 1 ∧ 𝑃 𝑟,𝑖,𝑗 ≥ 20 otherwise (6.5) ∀𝑟 ∈ 1..𝑛, ∀𝑖 ∈ 1..4, ∀𝑗 ∈ 1..4 Table(⟨𝛿𝑋 𝑟,𝑖,𝑗 , 𝛿𝑆𝐵 𝑟,𝑖,𝑗 , 𝑃 𝑟,𝑖,𝑗 ⟩ , ⟨SBox⟩) if Δ𝑋 𝑟,𝑖,𝑗 ̸ = 0 (6.6) ∀𝑟 ∈ 1..𝑛 -1, ∀𝑗 ∈ 1..4 𝛿𝑆𝐵 𝑟,0,𝑗 = 𝛿𝑋 𝑟+1,1,𝑗 (6.7)
∀𝑟 ∈ 1..𝑛 -1, ∀𝑗 ∈ 1..4 Model 2: Formulation of SK Step2.

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 𝛿𝑆𝐵 𝑟,2,(2+𝑗)%4 = 𝛿𝑋 𝑟+1,2,𝑗 if Δ𝑆𝐵 𝑟,1,(3+𝑗)%4 = 0 𝛿𝑆𝐵 𝑟,1,(3+𝑗)%4 = 𝛿𝑋 𝑟+1,2,𝑗 if Δ𝑆𝐵 𝑟,2,(2+𝑗)%4 = 0 𝛿𝑆𝐵 𝑟,1,(3+𝑗)%4 = 𝛿𝑆𝐵 𝑟,2,(2+𝑗)%4 if Δ𝑋 𝑟+1,2,𝑗 = 0 Table(⟨︀ 𝛿𝑆𝐵 𝑟,1,(3+𝑗)%4 , 𝛿𝑆𝐵 𝑟,2,(2+𝑗)%4 , 𝛿𝑋 𝑟+1,2,𝑗 ⟩︀ , ⟨XOR⟩) otherwise (6.8) ∀𝑟 ∈ 1..𝑛 -1, ∀𝑗 ∈ 1..4 ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 𝛿𝑆𝐵 𝑟,2,(2+𝑗)%4 = 𝛿𝑋 𝑟+1,3,𝑗 if Δ𝑆𝐵 𝑟,0,𝑗 = 0 𝛿𝑆𝐵 𝑟,0,𝑗 = 𝛿𝑋 𝑟+1,3,𝑗 if Δ𝑆𝐵 𝑟,2,(2+𝑗)%4 = 0 𝛿𝑆𝐵 𝑟,0,𝑗 = 𝛿𝑆𝐵 𝑟,2,(2+𝑗)%4 if Δ𝑋 𝑟+1,3,𝑗 = 0 Table(⟨︀ 𝛿𝑆𝐵 𝑟,0,𝑗 , 𝛿𝑆𝐵 𝑟,2,(2+𝑗)%4 , 𝛿𝑋 𝑟+1,3,𝑗 ⟩︀ , ⟨XOR⟩) otherwise (6.9) ∀𝑟 ∈ 1..𝑛 -1, ∀𝑗 ∈ 1..4 ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 𝛿𝑋 𝑟+1,0,𝑗 = 𝛿𝑋 𝑟+1,3,𝑗 if Δ𝑆𝐵 𝑟,3,(1+𝑗)%4 = 0 𝛿𝑆𝐵 𝑟,3,(1+𝑗)%4 = 𝛿𝑋 𝑟+1,3,𝑗 if Δ𝑋 𝑟+1,0,𝑗 = 0 𝛿𝑆𝐵 𝑟,3,(1+𝑗)%4 = 𝛿𝑋 𝑟+1,0,𝑗 if Δ𝑋 𝑟+1,3,𝑗 = 0
For each Boolean variable Δ𝑋 𝑟,𝑖,𝑗 of Step 1, we define an integer variable 𝛿𝑋 𝑟,𝑖,𝑗 . The domain of this integer variable depends on the value of the Boolean variable in the Step 1 solution: if

Results

Δ𝑋 𝑟,𝑖,𝑗 = 0, then the domain is 𝐷(𝛿𝑋 𝑟,𝑖,𝑗) = {0} (i.e., 𝛿𝑋 𝑟,𝑖,𝑗 is also assigned to 0); otherwise, the domain is 𝐷(𝛿𝑋 𝑟,𝑖,𝑗) = [1, 255] (6.5).

For each byte that passes through an S-box, we define an integer variable 𝛿𝑆𝐵 𝑟,𝑖,𝑗 which corresponds to the difference after the S-box. Its domain is 𝐷(𝛿𝑆𝐵 𝑟,𝑖,𝑗) = {0} if Δ𝑋 𝑟,𝑖,𝑗 is assigned to 0 in the Step 1 solution; Otherwise, it is 𝐷(𝛿𝑆𝐵 𝑟,𝑖,𝑗) = [1, 255] (6.5).

Finally, as we look for a byte-consistent solution with maximal probability, we also add an integer variable 𝑃 𝑟,𝑖,𝑗 for each byte in an S-Box: this variable corresponds to the absolute value of the base 2 logarithm of the probability of the transition through the S-Box. Actually, a factor 10 has been applied to avoid considering floats. Thus we define a Table constraint (6.6) composed of valid triplets of the form (𝛿𝑋 𝑟,𝑖,𝑗 , 𝛿𝑆𝐵 𝑟,𝑖,𝑗 , 𝑃 𝑟,𝑖,𝑗). Note that these triplets only contain non-zero values and that 𝑃 𝑟,𝑖,𝑗 only takes 2 different values for the 4-bit S-box (SKINNY-64) and 7 different values for the 8-bit S-box (SKINNY-128). There are roughly 2 14 triplet elements in the Table constraint for the SKINNY-128 case. As the S-box layer is the only non-linear layer, the other operations could be directly implemented in a deterministic way at the cell level. The associated constraints thus follow the SKINNY-128 linear operations. When possible, we replace xor constraints (encoded using Table constraints) by a simple equality constraint. This corresponds to Table constraints (6.7), (6.8), (6.9) and (6.10) in Model 2.

The overall goal is finally to find a byte-consistent solution which maximizes differential characteristic probability. Thus, we define an integer variable 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝2 to minimize the sum of all 𝑃 𝑟,𝑖,𝑗 variables (6.3). This value mainly depends on the number of S-boxes output by Step1 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 and can be bounded to [[20 • 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 , 70 • 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1]] (6.4).

The differences for the models TK1, TK2 and TK3 are the modeling of the xors induced by the lanes of the tweakey through xor table constraints. Each xor constraint depicted in Model 2 provides high quality filtering but requires 65536 tuples to be stored which results in prohibitive memory usage. This may limit the number of threads that can be used for the resolution, which was the case for TK2. To get around this issue, we encoded the xor constraint in intention (by defining filtering rules), providing a more memory efficient algorithm, at the expense of filtering strength. This last choice was applied only for TK2 (SKINNY-128 only). We also rely on Table constraints to model the lfsr applied on TK2 and TK3.

Concerning the search space strategy, for the TK2 and the TK3 attack settings, Step 1 only outputs the truncated value of the sum of the 𝑇 𝐾𝑖. Thus, the search space strategy first looks at the cancellation places of the sum of the 𝑇 𝐾𝑖 and then instantiates the 𝑇 𝐾𝑖 values according to those positions. For the TK1 setting, we just apply the default Choco-solver strategy.

Regarding parallelization, we affect one solution output by Step 1 per thread and we share the value of 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝2 between the threads.

Results

Regarding Step 1, we run our different tools on the four attack scenarios (SK, TK1, TK2, and TK3). Then, Step 2 is performed on the two versions of SKINNY (SKINNY-64 and SKINNY-128) using our cp models written in Choco-solver.

We conduct all our experiments on our server composed of 2×Amd Epyc 7742 64-Core and 1tb of ram. All the reported times are real system times and then take advantage of tools that are properly designed for parallelism. We first detail here the time results obtained for the different tools modeling Step 1 and then move to the Step 2 time results.

Step 1 strategies comparison

In this Subsection, we compare the time results obtained by all the Step 1 tools using the function Step1-enum. Step1-enum comes after a first process called Step1-opt that searches for a solution that optimizes the value of the variable 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 whereas Step1-enum enumerates all solutions when the variable 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 is assigned to a given value, here the optimal one 𝑣 * where 𝑣 * corresponds to the minimal number of active S-boxes. This optimal value is of course the same for the different models as the abstractions made in the different models are the same.

Results for Step1-opt.

Finding the minimal number of active S-boxes on a given number of rounds is most often the only result which is interesting for designers as it allows to derive a lower bound on the probability of the best differential trail. However, showing that the minimal number of active S-boxes is 𝑛 is actually similar to enumerating all characteristics with at most 𝑛 -1 active S-boxes and finding no solution. Thus, the running times required by each tool to find the minimal number of active S-boxes are very close to the running times reported on Table 6.2. In SK, TK1 and TK2 our ad-hoc tool gives the best running times by far, while in TK3, our milp model is also competitive. In particular, we are able to complete the security analysis made in [BJK + 16, ABI + 18] and claim that the minimal number of active S-boxes in TK1 for 28, 29 and 30 rounds are 105, 109 and 113 respectively (as shown in Table 6 Results for Step1-enum.

Table 6.2 reports the different real times we obtained to enumerate all the solutions for the optimal value 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 = 𝑣 * (i.e. with 𝑣 * active S-boxes). Those computations are done on our server for the 4 different Step 1 tools (milp, MiniZinc/sat, Ad-Hoc, Choco-solver), for the different attack scenarios (SK, TK1, TK2 and TK3) on SKINNY when varying the number of rounds between 3 and 20. The first column specifies the number of solutions we found for the 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 value. Those solutions correspond to solutions given without the symmetries, thus are computed up to the columns shifts (for SK). As one can see, these numbers are really low and hide a different reality when 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 increases. Indeed, the optimal solution of Step 2 in terms of differential characteristic probability, could be obtained for a value 𝑣 of 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 which is not optimal (𝑣 > 𝑣 *). For example, imagine that when processing Step 2, one obtains a differential characteristic with the best probability equal to 2 -3•6 = 2 -18 with 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 = 6 and whereas the optimal differential probability of the S-box is 2 -2 . It means that one has to test all solutions output by Step 1 until 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 = 18/2 = 9 to be sure that none has a better differential characteristic probability. This is exactly what happened for the case of SKINNY-128 in the TK1 model for 15 rounds as we will detail in the next Section. We only want to stress here that computing the optimal bounds is often not enough and we need to go further. However, increasing the value of 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 induces an increase of the possible number of Step 1 solutions as illustrated in the third column of Table 6.8. As one can see, this number of solutions tends 6.6. Results

to grow exponentially as 𝑣 increases. For example, for SKINNY-128 with 14 rounds in the TK1 model, for the optimal value 𝑣 * = 45, Step 1 outputs only 3 solutions; whereas we have 897 solutions for 𝑣 = 𝑣 * + 5 = 50; 137 019 solutions for 𝑣 = 𝑣 * + 10 = 55 and finally 7 241 601 solutions for 𝑣 = 59. So, the time required for the Step 2 computations on 1 solution output by

Step 1 becomes the bottleneck of the overall process.

Analyzing the results and understanding the tools.

Table 6.2 reports the time required to enumerate all the solutions with 𝑣 * active S-boxes where 𝑣 * is the optimal value of 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 found by Step1-opt. This value and the corresponding number of solutions is reported in the second column of Table 6.2. Sat is clearly disadvantaged by the choice we made i.e. using a high level modeling language: MiniZinc. Indeed, sat could not perform clause learning as the constraint SolveAll is not implemented from MiniZinc to sat. Thus, once a solution for Step 1 has been found, the program has to be rerun by adding a constraint that discards this valid Step 1 solution. This is why MiniZinc performs less efficiently than one could expect. The previous fact could be directly seen on Table 6.2 as the time required to solve instances with many solutions is much bigger than the one required to solve instances with only few Step 1 solutions.

Choco-solver does not seem to be a good candidate either as for all instances greater than 16 rounds it requires more than 24 hours to solve the problem. This is mainly linked with the nature of the variables themselves. Choco-solver (and more generally cp) is efficient when domains are subset of integers. Here, Choco-solver can not efficiently propagate lower bounds and upper bounds on Boolean variables as milp or sat could do.

Actually, the Step 1 model could be completely linearized and of course, the branch-and-cut method used by milp eliminates uninteresting branches quite quickly. Sat behaves better than cp because the problem is purely Boolean and cp/Choco-solver does not benefit from the conflictdriven clause learning (the cdcl). Thus, cp, that performs very well on integer domains, is less well suited when regarding Boolean or linear problems.

Moreover, regarding the way cp cuts the problem, this division produces mainly trivial problems, the few remaining ones have a very large search space (therefore, those are the ones that should be cut). But once more, milp and sat perform better.

Contrary to the two previous tools, milp and the Ad-Hoc method seem to perform well and, as shown in Table 6.2, could solve all the problems on all the instances in reasonable times. As shown in the previous paragraph, the Ad-Hoc method is able to outperform milp. For milp, and as previously said, this is clearly linked with the nature of the problem to solve: Step 1 only models Boolean variables for which values propagate very well in the milp model. The Ad-Hoc method is finally a dedicated one and manages to surpass even milp.

Thus, in conclusion, we think that if one does not have the time to think of a solution, milp is a good candidate to quickly have direct Step 1 bounds. If one has time, the Ad-Hoc method clearly outperform previous results. We also think that sat could perform well even if it is not proven here. The idea behind is to directly use a sat solver without any other interfaces to be closer to the clauses. 𝑆𝑡𝑒𝑝1 bound given in the first column in each scenario: SK, TK1, TK2 and TK3. We report the real time on our server.

6.6. Results

Step 2 performance results

Up to our knowledge, we only found [AST + 17] that gives time results concerning finding the best SK differential characteristic probability on SKINNY-128 using a milp tool based on Gurobi. More precisely, the authors say:

"In our experiments, we used Gurobi Optimizer with Xeon Processor E5-2699 (18 cores) in 128 gb ram."

and, for 13 rounds in the SK model:

"In our environment, the test of 6 classes [Step 1 solutions with 58 active S-boxes without symmetries] finished in 16 days [. . .] Finally, it is proven that the tight bound on the probability of differential characteristic for 13 rounds is 2 -123 ."

Concerning the use of sat, [SWW18] implements a sat model for differential cryptanalysis based on Cryptominisat5 [SNC09] for Midori64 and LED64. This model implies a sufficiently small number of clauses to model the non-zero values of the ddt and to be applicable. However, no result concerning 8-bit S-boxes are given. As sat uses Boolean formulas, it seems that the same problem than for milp appears for modeling S-box: a huge number of Boolean formulas will be necessary to correctly model this step even if dedicated tools as Logic Friday or the Expresso algorithm [AST + 17] are used. Thus, we discard the use of a sat model.

Results for SKINNY-64.

We sum up in Table 6.3 all the results we obtain for SKINNY-64 in the four different attack models (SK,TK1,TK2 and TK3). The overall time, in this case, is not a bottleneck. We only give results concerning number of rounds that are at the limit (just under and just upper) when considering the number of active S-boxes, which is equal to 32 in the case of SKINNY-64, as the state size is 64 bits and the best differential probability of the S-box is equal to 2 -2 . Thus, the best overall differential characteristic probability must be under 2 -64 .

Note that sometimes, we need to browse several 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 bounds to find the optimal differential characteristic probability when the number of rounds is fixed. Indeed, we need to proactively adapt the probability bound we found. For example, in the case of TK2 SKINNY-64 with 13 rounds, the optimal 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 is equal to 25 and when providing the Step 2 process with this 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 bound, we find a best differential characteristic probability equal to 2 -55 . Thus, we need to run again Step1-enum with 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 = 26 and 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 = 27 to be sure that the previous probability is really the best one. Then, before running again Step 2 on those new results we adapt the best probability to the new bound equal to 2 -55 instead of the old bound equal to 2 -64 . 0000 8200 0080 0000 0000 4100 0040 0000 0000 0008 0502 0000 0000 000C 060C 0000 2 -2•3 2 4000 0000 0410 4000 2000 0000 02A0 2000 5000 0002 0000 0008 D000 0008 0000 000C 2 -2•4 3 0000 A000 0002 0002 0000 6000 0006 0003 0800 0000 5000 0002 0800 0000 D000 0008 2 -2•3 4 0630 0000 0000 0600 03F0 0000 0000 0100 0250 0000 0800 0000 01A0 0000 0800 0000 2 -3•3 5 1000 0000 0000 0000 9000 0000 0000 0000 8000 0000 0250 0000 1000 0000 01A0 0000 2 -2 6 0000 0000 0000 0000 0000 0000 0000 0000 2000 5000 8000 0000 2000 5000 1000 0000 -7 0000 0000 0000 0000 0000 0000 0000 0000 0080 0000 2000 5000 0020 0000 2000 5000 -8 00A0 00A0 0000 00A0 0060 0050 0000 0050 0020 0050 0080 0000 0040 00B0 0020 0000 2 -2•3 9 0500 0000 000B 0000 0C00 0000 000C 0000 0000 8000 0020 0050 0000 4000 0040 00B0 2 -3•2 10 0000 0C00 0000 0000 0000 0200 0000 0000 0000 2500 0000 8000 0000 9700 0000 4000 2 -2 11 0000 0000 0B00 0000 0000 0000 0100 0000 0000 0080 0000 2500 0000 0090 0000 9700 2 -2 12 0001 0000 0000 0001 000A 0000 0000 0008 0005 0020 0000 0080 000F 0030 0000 0090 2 -2•2 13 0080 0000 0001 0000 0040 0000 0008 0000 0000 0800 0005 0020 0000 0300 000F 0030

Nb Rounds

2 -2•2
Table 6.6: The best TK2 differential characteristic on 13 rounds of SKINNY-64 with probability equal to 2 -55 . The four words represent the four rows of the state and are given in hexadecimal notation.

Round 𝛿𝑋 𝑖 = 𝑋 𝑖 ⊕ 𝑋 ′ 𝑖 (before SB) 𝛿𝑆𝐵𝑋 𝑖 (after SB) 𝛿𝑇 𝐾1 𝑖 𝛿𝑇 𝐾2 𝑖 𝛿𝑇 𝐾3 𝑖 Pr(States) 𝑖 = 1 0000 0001 4000 0004 0000 0008 2000 0002 0000 080D 0000 0800 0000 0408 0000 0500 0000 0E0D 0000 0C00 2 -2•3 2 0000 0000 0000 0020 0000 0000 0000 0010 0008 0000 0000 080D 000B 0000 0000 0408 000E 0000 0000 0E0D 2 -2 3 010D 000D 0000 000D 0A0E 0002 0000 0002 0D08 0000 0008 0000 0109 0000 000B 0000 060F 0000 000E 0000 2 -2•3 2 -3 4 0020 0000 2000 0000 0030 0000 3000 0000 0000 0008 0D08 0000 0000 0007 0109 0000 0000 000F 060F 0000 2 -2•2 5 0000 0030 0030 0000 0000 00C0 00C0 0000 D000 0008 0000 0008 2000 0003 0000 0007 3000 0007 0000 000F 2 -3•2 6 0000 C000 000C 0000 0000 2000 0002 0000 0800 0000 D000 0008 0F00 0000 2000 0003 0700 0000 3000 0007 2 -2•2 7 0200 0000 0000 0200 0500 0000 0000 0300 08D0 0000 0800 0000 0640 0000 0F00 0000 0B90 0000 0700 0000 2 -2•2 8 3000 0000 0000 0000 D000 0000 0000 0000 8000 0000 08D0 0000 E000 0000 0640 0000 B000 0000 0B90 0000 2 -3 9 0000 0000 0000 0000 0000 0000 0000 0000 8000 D000 8000 0000 D000 9000 E000 0000 5000 4000 B000 0000 -10 0000 0000 0000 0000 0000 0000 0000 0000 0080 0000 8000 D000 00C0 0000 D000 9000 0050 0000 5000 4000 -11 0010 0010 0000 0010 0080 0090 0000 00A0 0080 00D0 0080 0000 00A0 0030 00C0 0000 00A0 0020 0050 0000 2 -2•3 12 0A00 0000 0005 0000 0A00 0000 000A 0000 0000 8000 0080 00D0 0000 8000 00A0 0030 0000 A000 00A0 0020 2 -2 2 -3 13 0000 0A00 0000 0000 0000 0A00 0000 0000 0000 8D00 0000 8000 0000 5600 0000 8000 0000 D100 0000 A000 2 -3 14 0000 0000 0000 0000 0000 0000 0000 0000 0000 0080 0000 8D00 0000 0010 0000 5600 0000 00D0 0000 D100 -15 0000 0000 0004 0000 0000 0000 0002 0000 000D 0080 0000 0080 000D 00B0 0000 0010 0008 0060 0000 00D0 2 -2 Table 6.7: The best TK3 differential characteristic on 15 rounds of SKINNY-64 with probability equal to 2 -54 . The four words represent the four rows of the state and are given in hexadecimal notation.

Results

Results for SKINNY-128.

In the same way, we provide in Table 6.8 the best differential characteristic probability with the total time required for this search for the 4 different attack models. As one can see, we also verify all the possible values for 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 for a given number of rounds, depending on the probability value previously found. Thus, this time, the number of solutions output by Step 1 could be huge when we move away from the optimal Step 1 value 𝑣 * . However, as the time spent to solve one solution is reasonable, our model scales reasonably well: the worst case requires 25 days of real time on our server on 8 threads and 31 gb of ram2 . Our TK2 model is based on xor constraints encoded in intention (and not using tables) and these experiences have been launched using the 128 threads of our server. Concerning TK2, for 18 rounds, we have not performed the computations due to the huge number of Step 1 solutions. For the same reasons, the full computations for 15, 16 and 17 rounds have not been performed. Nonetheless, in the following, we provide the best TK2 differential characteristic we found for 16 rounds. Note that we do not know if this differential characteristic is optimal in terms of probability as we do not test all the solutions from Step 1.

Results

Best (related-tweakey) differential characteristics for SKINNY-128. Regarding the best SK differential characteristics on 13 rounds of SKINNY-128, we obtain the same trail with probability equal to 2 -123 given in Table 11 of Appendix D of [AST + 17]. The best TK1 differential characteristic on 14 rounds of SKINNY-128 with probability equal to 2 -120 is given in Table 6.9. The best TK2 differential characteristic on 16 rounds of SKINNY-128 that we found is given in Table 6.10. The probability of this characteristic equals 2 -127.6 , but we do not know if this value is optimal since we did not test all Step 1 solutions.

Round

𝛿𝑋 𝑖 = 𝑋 𝑖 ⊕ 𝑋 ′ 𝑖 (before SB) 𝛿𝑆𝐵𝑋 𝑖 (after SB)

𝛿𝑇 𝐾1

𝑖 Pr(States) 𝑖 = 1 02000002 00000200 00020000 00020040 08000008 00000800 00080000 00080004 00000000 00000000 01000000 00000000

2 -2•6
2 00000400 08000008 00000000 08000000 00000100 10000010 00000000 10000000 00000100 00000000 00000000 00000000

2 -2•4
3 00000010 00000000 10100000 00000000 00000040 00000000 40400000 00000000 00000000 00000000 00000100 00000000

2 -2•3
4 00004000 00000040 00004040 00004000 00000400 00000004 00000404 00000400 00000000 01000000 00000000 00000000

2 -2•5
5 04000400 00000400 00050000 04040400 05000500 00000100 00050000 05050500 00000000 00000000 00000000 01000000

2 -3•6 2 -2
6 00050500 05000500 00000004 05000505 00050500 01000100 00000005 05000505 00000000 00000100 00000000 00000000

2 -3•6 2 -2•2
7 00050005 00050500 00040000 00000500 00050005 00050500 00050000 00000500 00000000 00000000 00000000 00000100

2 -3•6
8 00000000 00050005 00000500 00050000 00000000 00010005 00000500 00050000 00000000 00010000 00000000 00000000

2 -3•3 2 -2
9 00000000 00000000 00000000 05000000 00000000 00000000 00000000 05000000 00000000 00000000 00000000 00010000 2 -3 10 00000005 00000000 00000000 00000000 00000001 00000000 00000000 00000000 00000001 00000000 00000000 00000000

2 -2
11 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 00000000 -12 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 00000000 00000000 -13 00000000 00000000 01000000 00000000 00000000 00000000 20000000 00000000 00000000 00000000 00000000 00000001

2 -2
14 00002000 00000000 00002000 00002000 00008000 00000000 00008000 00008000 00010000 00000000 00000000 00000000

2 -2•3
Table 6.9: The best TK1 differential characteristic on 14 rounds of SKINNY-128 with probability equal to

2 -120
. The four words represent the four rows of the state and are given in hexadecimal notation.

Lessons learnt.

The overall gap is not to find the optimal value of 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 = 𝑣 * for a given number of rounds and to enumerate the corresponding overall solutions if the Step 1 model is sufficiently tight. The real gap is if the value obtained for 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝2 (here equal to 2 × 𝑣 * as the best differential probability for the S-box is equal to 2 -2) is far from the optimal bound then we have to increase 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 up to the bound ⌊𝑂𝑏𝑗 𝑆𝑡𝑒𝑝2 /2⌋. The further we are from 𝑣 * in the Step 1 resolution, the more Step 1 solutions there are (in fact this number grows exponentially as can be seen in Table 6.8). Thus, the time for the Step 2 resolution becomes the bottleneck.

We have seen that cp is outperformed by milp, sat and Ad-Hoc methods when trying to model and solve the Step 1 problem. This is mainly linked with the nature of the problem where only Boolean variables are considered and where dedicated tools such as milp or sat perform very well in this case. Thus, no-one could think that it could be helpful for modeling Step 2. However, one of the main advantage of cp is the existing implementation of Table constraints that are well suited to the problem of modeling S-boxes and their ddt. Note that, in this case, especially when modeling 8-bit S-boxes, milp and sat imply a big number of equations that do not scale very well. Thus, cp could be a useful tool in this case.

One of the strenghts of cp-having Table constraints-can also become a weakness as their number and size increase. Our solution to code the xor in intention is only possible when weaker filtering is compensated by a more constrained model containing the search space (like in TK2).

Conclusion

In this chapter, we have compared several tools searching for (related-tweakey) differential characteristics on the block cipher SKINNY. As usually done, we have divided the search procedure into two steps: Step 1 which abstracts the difference values into Boolean variables and finds the truncated characteristics with the smallest number of active S-boxes; and Step 2 which inputs the results of Step 1 to output the best possible probability instantiating the abstract solutions output by Step 1. Of course, each solution of Step 1 could not always be instantiated in Step 2.

This study shows that for Step 1, our ad-hoc tool which heavily uses the structure of the problem, consistently has the best running times. However, sat is also quite good in SK and milp runs well in both TK2 and TK3 settings. Furthermore, both the sat and milp models required much less work than our ad-hoc tool. Regarding Step 2, our Choco-solver model is much faster than any other approaches we tried. It allowed us to find, for the first time, the best (related-tweakey) differential characteristics in the TK1 model up to 14 rounds for SKINNY-128 and to show that there is no differential trail on 15 rounds with a probability better than 2 -128 . Regarding the TK2 model, we were able to find the best differential trails up to 12 rounds. Note that in [LGS17] Liu et al. were only able to reach 7 and 9 rounds in the TK1 and TK2 model respectively. Our approach is thus an important improvement.

Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

Le vrai boomerang, le boomerang authentique, pas celui que l'on trouve dans les bazars pour touristes de Sydney et de Camberra ! Le boomerang primitif, celui qui armait les fiers guerriers australiens depuis la nuit des temps, ce boomerang là a une dynamique, un mouvement dans l'espace quand il est bien lancé, que je qualifierais de miraculeux.

Tanner

At Eurocrypt 2018, Cid et al. introduced the Boomerang Connectivity Table (BCT), a tool to compute the probability of the middle round of a boomerang distinguisher from the description of the cipher's S-box(es). Their new table and the following works led to a refined understanding of boomerangs, and resulted in a series of improved attacks. Still, these works only addressed the case of Substitution Permutation Networks, and completely left out the case of ciphers following a Feistel construction. Together with Hamid Boukerrou, Virginie Lallemand, Bimal Mandal and Marine Minier, we addressed this lack by introducing the FBCT, the Feistel counterpart of the BCT. This chapter summarizes our results, which have been presented at FSE 2020 [BHL + 20]. We show that the coefficient at row Δ 𝑖 , column ∇ 𝑜 corresponds to the number of times the second order derivative at points (Δ 𝑖 , ∇ 𝑜) cancels out. We explore the properties of the FBCT and compare it to what is known on the BCT. Taking matters further, we show how to compute the probability of a boomerang switch over multiple rounds with a generic formula.

Introduction

Boomerang attacks date back to 1999, when David Wagner introduced them at FSE to break Coconut98 [START_REF] Wagner | The boomerang attack[END_REF]. When presented, this variant of differential attacks [START_REF] Biham | Differential cryptanalysis of DES-like cryptosystems[END_REF] shook up the conventional thinking that consisted in believing that a cipher with only small probability differentials is secure. Indeed, boomerang attacks make use of two small differentials covering half of the attacked rounds each, and can beat differential cryptanalysis when no high probability differential exists for the whole cipher.

In the basic form of the distinguisher, (represented on the left in Figure 7.1), the attacker has access to the encryption (𝐸) and decryption (𝐸 -1) oracles, and studies particular quartets of messages. First, she chooses 𝑀 1 and constructs 𝑀 2 = 𝑀 1 ⊕ 𝛼; using 𝐸, she obtains the corresponding ciphertexts 𝐶 1 and 𝐶 2 from which she deduces two additional ciphertexts by computing: 𝐶 3 = 𝐶 1 ⊕ 𝛿 and 𝐶 4 = 𝐶 2 ⊕ 𝛿. By calling the decryption oracle she retrieves the corresponding plaintexts 𝑀 3 and 𝑀 4 and then checks if 𝑀 3 ⊕ 𝑀 4 = 𝛼. A boomerang distinguisher is obtained if the probability that 𝑀 3 ⊕ 𝑀 4 = 𝛼 is higher for the cipher than for a random permutation.

In summary, a boomerang distinguisher is based on a couple of plaintext and ciphertext differences (𝛼, 𝛿) for which the following property among quartets of messages has a high probability:

𝐸 -1 (𝐸(𝑀 1) ⊕ 𝛿) ⊕ 𝐸 -1 (𝐸(𝑀 1 ⊕ 𝛼) ⊕ 𝛿) = 𝛼.
In the original approach, the attacked cipher 𝐸 is written as the composition of two sub-ciphers 𝐸 0 and 𝐸 1 : 𝐸 = 𝐸 1 ∘ 𝐸 0 . If for the sub-cipher 𝐸 0 the input difference 𝛼 leads to the output difference 𝛽 with probability 𝑝 (and similarly 𝛾 leads to 𝛿 with probability 𝑞 over 𝐸 1) the previous event was thought to have a probability of 𝑝 2 𝑞 2 . Following this breakthrough some variants were proposed including a related-key version [KKH + 04, BDK05] and an impossible-differential one (see [START_REF] Choy | Impossible boomerang attack for block cipher structures[END_REF]). Improvements were also proposed on top of this, like a version that does not require access to the decryption oracle (named amplified boomerang attack [START_REF] Kelsey | Amplified boomerang attacks against reduced-round MARS and Serpent[END_REF]) that was further developed into the so-called rectangle attack [START_REF] Biham | The rectangle attack -rectangling the Serpent[END_REF].

The validity of boomerang attacks and in particular of the 𝑝 2 𝑞 2 formula were later questioned by Murphy [START_REF] Murphy | The return of the cryptographic boomerang[END_REF] with an example of distinguisher that seemed valid but was in fact of probability zero. The opposite phenomenon, that is distinguishers that happen with probability higher than what is expected, was also presented by Biryukov and Khovratovich in [START_REF] Biryukov | Related-key cryptanalysis of the full AES-192 and[END_REF], and some particular cases (termed Ladder Switch, S-box Switch and Feistel Switch) were explained.

All these observations were later formalized in a framework called sandwich attack [START_REF] Orr Dunkelman | A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony[END_REF] for which the cipher is divided in 3 parts instead of 2, as represented on the right of Figure 7.1: a middle part 𝐸 𝑚 (termed boomerang switch) is introduced between 𝐸 0 and 𝐸 1 . Dunkelman et al. applied this framework to KASUMI. that allows to easily evaluate the probability of the middle part 𝐸 𝑚 in the case where it covers one round and when the studied ciphers follows an SPN construction. Their technique reduces the problem of computing the probability of the boomerang switch over one round function to the one of computing it over one S-box only.

M 1 E0 E1 C 1 M 2 E0 E1 C 2 α β M 3 E0 E1 C 3 M 4 E0 E1 C 4 α β γ γ δ δ 1 2 3 4 M 1 E0 Em C 1 M 2 E0 E1 C 2 α β M 3 E0 C 3 M 4 E0 C 4 α β γ x 1 x 2 x 3
Equally as an S-box with a Difference Distribution Table with small coefficients provides resistance against differential attacks, an S-box with a Boomerang Connectivity Table (BCT) with small coefficients prevents an attacker from building efficient boomerang-style attacks. A study of some important families of S-boxes has been made in [START_REF] Boura | On the boomerang uniformity of cryptographic sboxes[END_REF], [START_REF] Boura | Boomerang uniformity of popular s-box constructions[END_REF] and [START_REF] Li | New results about the boomerang uniformity of permutation polynomials[END_REF], just to cite a few. Another interesting line of work that followed the paper of Cid et al. is the determination of the probability of a boomerang switch 𝐸 𝑚 that covers more than one round, and that was addressed for SPN ciphers in [START_REF] Wang | Boomerang switch in multiple rounds[END_REF][START_REF] Song | Boomerang connectivity table revisited[END_REF].

Still, to the best of our knowledge a similar analysis has not been provided yet for Feistel constructions [START_REF] Feistel | Block cipher cryptographic system[END_REF], while it cannot be denied that it is an equally important type of block cipher design, instantiated for instance by the widely used 3-DES and by CLEFIA [SSA + 07] (ISO/IEC 29192-2).

Our Contributions. In this work, we address this lack and investigate what can be said on a boomerang switch when the studied cipher follows a Feistel construction. In case the Feistel round function contains some affine layers and a single S-box layer we introduce the FBCT, the Feistel counterpart of the Boomerang Connectivity Table and show that it is related to the second order derivative of the S-box at play. Our model elucidates the last switch that is not explained by the BCT by showing that the Feistel Switch corresponds to the diagonal of our table.

We study the properties of the FBCT for some categories of cryptographic S-boxes (in particular APN S-boxes and S-boxes based on the inverse mapping) and investigate if the maximum in the FBCT is invariant for S-boxes that are in the same equivalence classes for an equivalence that is affine, extended-affine and CCZ.

In a bottom-up approach, we start from this notion of FBCT (that covers switches of one round) and then introduce the FBDT to deal with a 2-round switch and finally propose the FBET that treats the case of an arbitrary number of rounds. We explain the relation between all these new notions and give examples of their application.

Finally, we illustrate our approach by applying it to the cipher LBlock-s (used in the CAESAR candidate LAC), and provide a 16-round distinguisher which probability is evaluated to be higher than 2 -56.14 .

Motivation: Disproving the Validity of a Previous Boomerang Distinguisher on LBlock

As a warm up, we study the related-key boomerang distinguisher devised by Liu et al. on LBlock [START_REF] Liu | Improved related-key differential attacks on reduced-round LBlock[END_REF] and prove that the middle part contains a contradiction that invalidates the proposed boomerang distinguisher.

Specification of LBlock

LBlock was proposed at ACNS 2011 [START_REF] Wu | LBlock: A lightweight block cipher[END_REF] by Wenling Wu and Lei Zhang. The cipher is lightweight and works on blocks of 64 bits and requires a key of 80 bits. It follows a Feistel structure and has the particularity to rely on 10 different 4-bit S-boxes. We give a short description of its design below and refer to [START_REF] Wu | LBlock: A lightweight block cipher[END_REF] for more details and in particular for the description of the key schedule. One LBlock encryption requires to iterate 32 times a round function that follows a 2-branch balanced Feistel structure with a twist, that is the right branch is modified by a rotation of 8 bit positions (see Figure 7.2). The other half of the internal state is modified by the 𝐹 function that takes as parameter the 32-bit round key 𝐾 𝑖 . If the plaintext is denoted 𝑀 = 𝑋 1 ||𝑋 0 (where || denotes the concatenation), we have for all 33 ≥ 𝑖 ≥ 2:

𝑋 𝑖 = 𝐹 (𝑋 𝑖-1 , 𝐾 𝑖-1) ⊕ (𝑋 𝑖-2 ≪ 8).
More into details, the function 𝐹 is defined as:

𝐹 : {0, 1} 32 × {0, 1} 32 → {0, 1} 32 (𝑋, 𝐾 𝑖) → 𝑈 = 𝑃 (𝑆(𝑋 ⊕ 𝐾 𝑖)).
𝑆 is an S-box layer that transforms each nibble 𝑌 𝑖 into the nibble 𝑍 𝑖 = 𝑆 𝑖 (𝑌 𝑖):

𝑆 : {0, 1} 32 → {0, 1} 32 𝑌 7 ||𝑌 6 ||𝑌 5 ||𝑌 4 ||𝑌 3 ||𝑌 2 ||𝑌 1 ||𝑌 0 → 𝑍 7 ||𝑍 6 ||𝑍 5 ||𝑍 4 ||𝑍 3 ||𝑍 2 ||𝑍 1 ||𝑍 0 , 𝑍 𝑖 = 𝑆 𝑖 (𝑌 𝑖).
Table 7.1: The 10 S-boxes used in LBlock.

F <<< 8 Xi-1 Xi-2 Xi Xi-1 Ki-1 K i S 7 S 6 S 5 S 4 S 3 S 2 S 1 S 0 X

Attack of Liu et al.

In 2012, Liu et al. [START_REF] Liu | Improved related-key differential attacks on reduced-round LBlock[END_REF] proposed a 16-round related-key boomerang distinguishing attack on LBlock based on two 8-round related-key characteristics of low weight (that is, with very few active S-boxes). This attack is supposed to work in some (very large) weak-key class as it includes a key condition. With their parameters (that we recall in the next s), the probability of 𝐸 0 is 𝑝 = 2 -14 , while the probability of 𝐸 1 is 𝑞 = 2 -16 . They next computed the probability of the obtained distinguisher with the approximation 𝑝 2 𝑞 2 , that gives 2 -60 . Unfortunately, Section 7.2.3 details why the two characteristics 𝐸 0 and 𝐸 1 are in fact incompatible, meaning that the actual probability that the boomerang returns along these differential characteristics is 0.

Parameters of Liu et al.'s Related-Key Boomerang Distinguisher on LBlock

For 𝐸 0 , there are seven active S-box transitions all of probability 2 -2 , and no active S-boxes in the key schedule, resulting in 𝑝 = 2 -14 . 𝐸 1 is defined by the same 8-round characteristic positioned from round 9 to 16 with the change that for the master key difference to reach the required difference at the output of 𝐸 1 (in round 9), one S-box is activated in the key schedule (transition probability of 2 -2), meaning that 𝑞 = 2 -16 . More into details and as depicted in Figure 7.3, the parameters of 𝐸 0 and 𝐸 1 are:

Δ 𝐿 𝑖 = 0𝑥00000000, Δ 𝑅 𝑖 = 0𝑥00000020, Δ 𝐿 𝑜 = 0𝑥80001508, Δ 𝑅 𝑜 = 0𝑥00000490.
Regarding the differences in the keys, we have:

Δ 0 𝐾 = 0𝑥00000200000000000000, Δ 1 𝐾 = 0𝑥0000𝑐000000000000000.
The key derivation gives the following subkeys from Δ 0 𝐾 = 0𝑥00000200000000000000:

Δ𝐾 1 = 00000200 Δ𝐾 5 = 00000000 Δ𝐾 2 = 00000000 Δ𝐾 6 = 00000000 Δ𝐾 3 = 00000000 Δ𝐾 7 = 00800000 Δ𝐾 4 = 00010000 Δ𝐾 8 = 00000000

While from Δ 1 𝐾 = 0𝑥0000𝑐000000000000000 we get:

Δ𝐾 1 : 0000𝑐000 Δ𝐾 5 : 00000000 Δ𝐾 9 : 00000200 Δ𝐾 13 : 00000000 Δ𝐾 2 : 00000000 Δ𝐾 6 : 00000001 Δ𝐾 10 : 00000000 Δ𝐾 14 : 00000000 Δ𝐾 3 : 00000000 Δ𝐾 7 : 80000000 Δ𝐾 11 : 00000000 Δ𝐾 15 : 00800000 Δ𝐾 4 : 00600000 Δ𝐾 8 : 00000000 Δ𝐾 12 : 00010000 Δ𝐾 16 : 00000000

The active S-box in the key schedule of 𝐸 1 appears in the round key 7 and uses the transition 𝑆 9 (0𝑥3) = 0𝑥8 with probability 2 -2 .

Incompatibility in the Distinguisher Proposed by Liu et al.

To help visualize the following discussion, we provide in Figure 7.4 a representation of the end of 𝐸 0 and of the beginning of 𝐸 1 . In the following, we assume that the required transition happened in the key schedule (that is 0x3 → 𝑆 9 0x8 in round 7).

Suppose that the quartet (𝑀 1 , 𝑀 2 , 𝑀 3 , 𝑀 4) follows the characteristics defining the boomerang specified by Liu et al. When looking at the beginning of the characteristic over 𝐸 1 we see that we expect a transition through the second S-box from a difference of 0x2 to 0x2, while by extending with probability 1 the differential characteristic over 𝐸 0 we see that the entering difference for this same S-box is 0x5 (see Figure 7.4). If we denote by 𝑡 𝑖 the nibble that enters the S-box number 2 of round 9 for 𝑀 𝑖 , this means that

𝑡 1 ⊕ 𝑡 3 = 𝑡 2 ⊕ 𝑡 4 =0x2 and that 𝑆 2 (𝑡 1) ⊕ 𝑆 2 (𝑡 3) = 𝑆 2 (𝑡 2) ⊕ 𝑆 2 (𝑡 4) =0x2. Also, we have 𝑡 1 ⊕ 𝑡 2 = 𝑡 3 ⊕ 𝑡 4 =0x5.
By referring to 𝑆 2 , we can list the possible input nibbles that make the transition from an input difference of 0x2 to an output difference of 0x2, and we obtain that (𝑡 1 , 𝑡 3) ∈ {(0x1,0x3), (0x3,0x1), (0x8,0xa), (0xa,0x8)}. Since 𝑡 2 and 𝑡 4 are separated from 𝑡 1 and 𝑡 3 by a difference of 0x5 we can deduce that their values are in the following set: (𝑡 2 , 𝑡 4) ∈ {(0x4,0x6), (0x6,0x4), (0xd,0xf), (0xf,0xd)}.

The contradiction comes from the fact that none of these pairs allows the required transition from 0x2 to 0x2, an observation that can be rewritten as: {(0x1, 0x3), (0x3, 0x1), (0x8, 0xa), (0xa, 0x8)} ∩ 0x5 ⊕ {(0x1, 0x3), (0x3, 0x1), (0x8, 0xa), (0xa, 0x8)} = ∅ since we want that the shifted values (𝑡 1 , 𝑡 3) also allows the desired S-box transition. difference between1 and2 and between 3 and 4 K9 K9 This incompatibility implies that the boomerang over the middle round never returns, 1 and consequently the related-key distinguisher proposed by Liu et al. is invalid as no quartet can follow the required characteristic.

FBCT: the Feistel Counterpart of the BCT

The inconsistency found in the previous section (that is reminiscent of the examples given by Murphy in [START_REF] Murphy | The return of the cryptographic boomerang[END_REF]) calls for a tool to automatically study the behavior of the junction between 𝐸 0 and 𝐸 1 .

In fact, this problem has recently been addressed in the case of Substitution-Permutation Networks with the introduction of the Boomerang Connectivity Table (BCT) by Cid et al [CHP + 18]. However, no similar tool has been devised so far to deal with boomerang attacks on Feistel Networks. We address this shortfall in this section by introducing the 2 FBCT.

Definition of the FBCT

The (SPN) Boomerang Connectivity Table . The essence of the Boomerang Connectivity Table introduced by Cid et al. is similar to the one of the well-known Difference Distribution Table : instead of looking at the property of a round as a whole (thus at a function of usually 64 or 128 bits), the problem is reduced to one we can easily study given its small size: examining each S-box of the S-layer independently. While the DDT describes the differential properties of each S-box from which are deduced the ones of the round, the BCT gives the probability of a boomerang switch over each S-box from which is deduced the one of the round.

The formal definition of the BCT is recalled below: it is a table that gives at line Δ 𝑖 , column ∇ 𝑜 the number of values for which a boomerang of input Δ 𝑖 and output difference ∇ 𝑜 comes back. It corresponds to the following formula, depicted in Figure 7.5:

𝐵𝐶𝑇 (Δ 𝑖 , ∇ 𝑜) = #{𝑥 ∈ F 𝑛 2 |𝑆 -1 (𝑆(𝑥) ⊕ ∇ 𝑜) ⊕ 𝑆 -1 (𝑆(𝑥 ⊕ Δ 𝑖) ⊕ ∇ 𝑜) = Δ 𝑖 }.
x S S(x) The Feistel Boomerang Connectivity Table . The previous definition is only valid for an S-box that is part of an S-layer in an SPN cipher: the objective of this work is to address the need of the counterpart for a Feistel cipher. As a hint of what we introduce below, remember that Feistel ciphers have the practical advantage that decryption is performed by executing the same function as for encryption, simply changing the order of the round keys. This change is at the heart of the Feistel counterpart of the BCT that we introduce now: here, the inverse of the S-box is never at play.

∆ i ∇ o S S(x ⊕ ∆ i) S S ∇ o ∆ i ? S(x ⊕ ∆ i) ⊕ ∇ o S(x) ⊕ ∇ o
We start by illustrating our theory on the generic Feistel cipher represented in Figure 7.6: it is a balanced Feistel with two branches, that we denote 𝐿 and 𝑅. The output of one round is given by 𝐹 (𝐿) ⊕ 𝑅||𝐿, where the 𝐹 function is defined by a round key addition, an S-layer and a linear layer 𝐿. Note that the details of the linear layers of 𝐹 play no role in our discussion, and that the only important point is that 𝐹 contains one S-layer made by the concatenation of 𝑡 𝑛-bit S-boxes.

We are interested in the probability of the following 1-round boomerang switch: we have an input difference equal to 𝛽 𝐿 ||𝛽 𝑅 between state 1 ○ and 2 ○, an output difference equal to 𝛾 𝐿 ||𝛾 𝑅 between state 1 ○ and 3 ○, and 2 ○ and 4 ○, and we want that the input difference between state 3 ○ and 4 ○ is equal to 𝛽 𝐿 ||𝛽 𝑅 .

Left part of the difference. We start by studying the cost of obtaining that the left difference between state 3 ○ and 4 ○ has the desired value of 𝛽 𝐿 . Given the fact that the left branch is the one that is not modified through one round of Feistel we can easily conclude that the desired difference comes for free:

β L ||β R γ L ||γ R = β L ||β R ? γ L ||γ R L 1 R 1 L 2 R 2 L 3 R 3 R 4 L 4 G 3
𝐿 3 ⊕ 𝐿 4 = (𝐿 3 ⊕ 𝐿 1) ⊕ (𝐿 1 ⊕ 𝐿 2) ⊕ (𝐿 2 ⊕ 𝐿 4) = 𝛾 𝑅 ⊕ 𝛽 𝐿 ⊕ 𝛾 𝑅 = 𝛽 𝐿 .
Right part of the difference. We now focus on obtaining a difference of 𝛽 𝑅 between the right part of state number 3 ○ and 4 ○. By naming 𝐺 3 and 𝐺 4 the left output after one round in state 3 ○ and 4 ○ (see Figure 7.6), we obtain the following simplification:

𝑅 3 ⊕ 𝑅 4 = 𝐹 (𝐿 1 ⊕ 𝛾 𝑅) ⊕ 𝐺 3 ⊕ 𝐹 (𝐿 1 ⊕ 𝛾 𝑅 ⊕ 𝛽 𝐿) ⊕ 𝐺 4 = 𝐹 (𝐿 1 ⊕ 𝛾 𝑅) ⊕ 𝐹 (𝐿 1) ⊕ 𝑅 1 ⊕ 𝛾 𝐿 ⊕ 𝐹 (𝐿 1 ⊕ 𝛾 𝑅 ⊕ 𝛽 𝐿) ⊕𝐹 (𝐿 1 ⊕ 𝛽 𝐿) ⊕ 𝑅 1 ⊕ 𝛽 𝑅 ⊕ 𝛾 𝐿 = 𝐹 (𝐿 1 ⊕ 𝛾 𝑅) ⊕ 𝐹 (𝐿 1) ⊕ 𝐹 (𝐿 1 ⊕ 𝛾 𝑅 ⊕ 𝛽 𝐿) ⊕𝐹 (𝐿 1 ⊕ 𝛽 𝐿) ⊕ 𝛽 𝑅 .
For this difference to be equal to 𝛽 𝑅 we need that

𝐹 (𝐿 1) ⊕ 𝐹 (𝐿 1 ⊕ 𝛾 𝑅) ⊕ 𝐹 (𝐿 1 ⊕ 𝛽 𝐿) ⊕ 𝐹 (𝐿 1 ⊕ 𝛾 𝑅 ⊕ 𝛽 𝐿) = 0.
We use the fact that the only non-linear function of 𝐹 is an S-layer made by a concatenation of small S-boxes to rewrite this condition as a set of independent conditions on smaller parts of the states, and obtain 𝑡 independent equations of the form:

𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) ⊕ 𝑆(𝑥 ⊕ ∇ 𝑜) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖 ⊕ ∇ 𝑜) = 0.
Where Δ 𝑖 is the difference at the input of the considered S-box between state 1 ○ and 2 ○, deduced from 𝛽 𝐿 , and ∇ 𝑜 is the difference at the input of the considered S-box between state 1 ○ and 3 ○ and 2 ○ and 4 ○, deduced from 𝛾 𝑅 . The resulting probability of the boomerang switch over one round is then the product of the probabilities for each S-box, that are of the form

2 -𝑛 × #{𝑥 ∈ F 𝑛 2 |𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) ⊕ 𝑆(𝑥 ⊕ ∇ 𝑜) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖 ⊕ ∇ 𝑜) = 0}.
This discussion leads us to the introduction of the following definition: Definition 7.2 (FBCT). Let 𝑆 be a function from F 𝑛 2 to F 𝑚 2 , and Δ 𝑖 , ∇ 𝑜 ∈ F 𝑛 2 . The FBCT of 𝑆 is given by a 2 𝑛 × 2 𝑛 table 𝑇 , in which the entry for the (Δ 𝑖 , ∇ 𝑜) position is given by:

FBCT 𝑆 (Δ 𝑖 , ∇ 𝑜) = #{𝑥 ∈ F 𝑛 2 |𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) ⊕ 𝑆(𝑥 ⊕ ∇ 𝑜) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖 ⊕ ∇ 𝑜) = 0}.
Since we do not have to consider a bijective S-box, we define FBCT 𝑆 for any S-box 𝑆 from F 𝑛 2 to F 𝑚 2 with possibly 𝑛 ̸ = 𝑚. In the following we leave out the 𝑆 index and simply write FBCT when the S-box we are referring to is clear from the context.

Once the table is built, the probability that a boomerang comes back over 1 round of a Feistel scheme is simply the product of the corresponding coefficients of the FBCT divided by 2 𝑛 . An example of FBCT is provided in Table 7.2 in the case of the S-box3 𝑆 2 of LBlock. It is easy to see that the formula of the FBCT corresponds to the number of times the order 2 derivative with respect to Δ 𝑖 and ∇ 𝑜 of the vectorial Boolean function 𝑆 cancels out. We formalize this and study its properties in Section 7.4. First, we show that the same reasoning applies to variants of this construction.

Some Variants of Feistel Constructions for which the FBCT Applies

We show here that the FBCT tool covers more constructions than the classical Feistel cipher, by providing three examples: the type I and II variants introduced by Zheng, Matsumoto and Imai in [START_REF] Zheng | On the construction of block ciphers provably secure and not relying on any unproved hypotheses[END_REF] and the source-heavy (also called contracting) construction as implemented in SMS4 [START_REF] Diffie | SMS4 encryption algorithm for wireless networks[END_REF]. A representation of the round structure of these types is given in Figure 7.7 in the case of 4-branch networks.

The only assumption we make is that the 𝐹 and 𝐹 ′ functions used in theses constructions are composed of some linear or affine operations (like for instance matrix multiplication, permutations, Xor of constants or of round keys) and of one S-layer. We show below that the relations that need to be fulfilled in these cases can also be expressed as a product of FBCT coefficients. Type I: Referring to Figure 7.7, one round of type I can be seen as one round of classic Feistel with some (2 in the picture) additional branches that are independent and not affected by a 𝐹 function. Thus, the reasoning made in Section 7.3.1 can be extended to the case of type I construction and the probability that the boomerang switch over one round happens as required is the product of the FBCT coefficients corresponding to the S-boxes contained in 𝐹 .

Type II: In a similar way, one round of type II can be seen as the concatenation of several (2 in the picture) classical Feistels that are independent one from the others. The reasoning made in Section 7.3.1 applies to this case and the probability of the boomerang switch is made by the product of the FBCT coefficients of the S-boxes of the 𝐹 functions at play.

Source-Heavy: This case can also easily be treated with the FBCT. It can be shown that the one-round boomerang switch represented in Figure 7.8 comes back if the following condition is fulfilled:

𝐹 (𝑥 1 1 ⊕ 𝑥 1 2 ⊕ 𝑥 1 3) ⊕ 𝐹 (𝑥 1 1 ⊕ 𝑥 1 2 ⊕ 𝑥 1 3 ⊕ (𝐴 ⊕ 𝐵 ⊕ 𝐶)) ⊕ 𝐹 (𝑥 1 1 ⊕ 𝑥 1 2 ⊕ 𝑥 1 3 ⊕ (𝑎 ⊕ 𝑏 ⊕ 𝑑)) ⊕ 𝐹 (𝑥 1 1 ⊕ 𝑥 1 2 ⊕ 𝑥 1 3 ⊕ (𝐴 ⊕ 𝐵 ⊕ 𝐶) ⊕ (𝑎 ⊕ 𝑏 ⊕ 𝑑)) = 0
Which can be rewritten as a product of the FBCT coefficients of the S-box of 𝐹 , with the two parameters depending on 𝐴, 𝐵, and 𝐶 for one, and 𝑎, 𝑏 and 𝑑 for the other.

Note that the discussion above has to be nuanced as the application of the FBCT to other cases (as for instance type III construction) might not be straightforward.

Evaluation of the 1-round Boomerang Switch of Liu et al.'s Attack with the FBCT

We focus on the S-box 𝑆 2 of round 9 of the cipher. From 𝐸 0 , the input difference of S-box 2 is 0x5, so following previous notation we have Δ 𝑖 = 0x5. When referring to 𝐸 1 and taking into account the difference coming from the round key we have ∇ 𝑜 = 0x2. The FBCT coefficient we are interested in is then FBCT 𝑆 2 (0x5, 0x2). Referring to Table 7.2, we see that the corresponding cell has a value equal to 0, meaning that the 1-round boomerang switch is impossible. Note that this incompatibility is even more general than the one we discussed in Section 7.2.3, as in Section 7.2.3 we fixed an additional parameter namely one S-box output. This vision corresponds to what we introduce in Section 7.5.1 under the name of Feistel Boomerang Difference Table (FBDT). Surprisingly, a Feistel round with an arbitrary function (e.g., an S-box) can be passed for free in the boomerang attack (this was first observed in the attack on cipher Khufu in [START_REF] Wagner | The boomerang attack[END_REF]). Suppose the internal state (𝑋, 𝑌) is transformed to (𝑍 = 𝑋 ⊕ 𝑓 (𝑌), 𝑌) at the end of 𝐸 0 . Suppose also that the 𝐸 0 difference before this transformation is (Δ𝑋, Δ𝑌), and that the 𝐸 1 difference after this transformation is (Δ𝑍, Δ𝑌). [. . .] Therefore, the decryption phase of the boomerang creates the difference Δ𝑋 in 𝑋 at the end of 𝐸 0 "for free".

By analyzing this setting in the way we did in Section 7.3.1 we can show that an internal state (𝑋, 𝑌) allows the boomerang to come back if 𝑌 verifies:

𝑓 (𝑌) ⊕ 𝑓 (𝑌 ⊕ Δ𝑌) ⊕ 𝑓 (𝑌 ⊕ Δ𝑌) ⊕ 𝑓 (𝑌 ⊕ Δ𝑌 ⊕ Δ𝑌) = 0,
(we have 𝛾 𝑅 = 𝛽 𝐿 = Δ𝑌 with our previous notation) which is always true. Moreover if the Feistel round function is made of some linear operations and an S-layer, the previous setting means that for every S-box we are looking at coefficients that are on the diagonal of the FBCT.

Properties of the FBCT

This section gives a review of the most important properties of the Feistel boomerang connectivity table. We start by listing the constants of the table and then investigate the properties of the FBCT of two crucial classes of vectorial function, namely APN functions and functions based on the inverse mapping. We also study if the so-called Feistel boomerang uniformity is constant for S-boxes belonging to the same equivalence classes, for various definitions of equivalence. We conclude this section by giving a comparison of the BCT and FBCT properties.

Basics on vectorial Boolean Functions

Let 𝑆 : F 𝑛 2 -→ F 𝑚 2 be a vectorial Boolean function. The set of all vectorial Boolean functions from F 𝑛 2 to F 𝑚 2 is denoted ℬ(𝑛, 𝑚). The derivative of 𝑆 ∈ ℬ(𝑛, 𝑚) at Δ 𝑖 ∈ F 𝑛 2 is defined as

𝐷 Δ 𝑖 𝑆(𝑥) = 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖)
for all 𝑥 ∈ F 𝑛 2 . The first derivative is at the basis of the Difference Distribution Table (DDT) of a given vectorial function 𝑆, defined as:

DDT 𝑆 (Δ 𝑖 , 𝛿) = #{𝑥 ∈ F 𝑛 2 : 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) = 𝛿}. The value of max Δ 𝑖 ̸ =0,𝛿 {DDT 𝑆 (Δ 𝑖 , 𝛿)} is called the (differential) uniformity of 𝑆.
This definition is extended to higher-order derivatives as follows: let Δ 1 𝑖 , Δ 2 𝑖 , . . . , Δ 𝑘 𝑖 be a basis of a 𝑘-dimensional subspace 𝑉 of F 𝑛 2 . The 𝑘-th derivative of 𝑆 with respect to 𝑉 , denoted by 𝐷 𝑉 𝑆, is defined as

𝐷 𝑉 𝑆(𝑥) = 𝐷 Δ 1 𝑖 𝐷 Δ 2 𝑖 • • • 𝐷 Δ 𝑘 𝑖 𝑆(𝑥), for all 𝑥 ∈ F 𝑛 2 .
Given this definition, it is direct to see that for an 𝑛 × 𝑚 S-box seen as an element of ℬ(𝑛, 𝑚), the value of FBCT(Δ 𝑖 , ∇ 𝑜) corresponds to the number of zeroes of the function 𝐷 Δ 𝑖 𝐷 ∇𝑜 𝑆 extended to the cases where Δ 𝑖 and ∇ 𝑜 are not linearly independent.

Some Direct Properties of any FBCT

We start with a series of simple properties that are easily observable from the definition: Property 7.3. The coefficients of the FBCT of 𝑆 ∈ ℬ(𝑛, 𝑚) verify the following:

1. Symmetry: for all 0 ≤ Δ 𝑖 , ∇ 𝑜 ≤ 2 𝑛 -1, FBCT(Δ 𝑖 , ∇ 𝑜) = FBCT(∇ 𝑜 , Δ 𝑖).

Fixed values:

(a) First line: for all 0 ≤ ∇ 𝑜 ≤ 2 𝑛 -1, FBCT(0, ∇ 𝑜) = 2 𝑛 (ladder switch), (b) First column: for all 0 ≤ Δ 𝑖 ≤ 2 𝑛 -1, FBCT(Δ 𝑖 , 0) = 2 𝑛 (ladder switch), (c) Diagonal: for all 0 ≤ Δ 𝑖 ≤ 2 𝑛 -1, FBCT(Δ 𝑖 , Δ 𝑖) = 2 𝑛 (Feistel switch).

Multiplicity: for all

0 ≤ Δ 𝑖 , ∇ 𝑜 ≤ 2 𝑛 -1, FBCT(Δ 𝑖 , ∇ 𝑜) ≡ 0 mod 4.

Equalities: for all

0 ≤ Δ 𝑖 , ∇ 𝑜 ≤ 2 𝑛 -1, FBCT(Δ 𝑖 , ∇ 𝑜) = FBCT(Δ 𝑖 , Δ 𝑖 ⊕ ∇ 𝑜).
Proof. All the properties are easily deduced from Definition 7.2:

(1) and (4) are proven by writing the expressions of the coefficients at play. Note that from symmetry we also have FBCT(Δ 𝑖 , Δ 𝑖 ⊕ ∇ 𝑜) = FBCT(∇ 𝑜 , Δ 𝑖 ⊕ ∇ 𝑜).

(2)a. and (2)b. correspond to the ladder switch proposed in [START_REF] Biryukov | Related-key cryptanalysis of the full AES-192 and[END_REF] that works the same way for Feistel and SPN ciphers: if either Δ 𝑖 or ∇ 𝑜 is zero, it means that two pairs of messages inside the quartet share the same S-box input, and the boomerang comes back with probability 1. This is formally shown as follows:

FBCT(0, ∇ 𝑜) = #{𝑥 ∈ F 𝑛 2 |𝑆(𝑥) ⊕ 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ ∇ 𝑜) ⊕ 𝑆(𝑥 ⊕ ∇ 𝑜) = 0} = 2 𝑛 ,
and similarly FBCT(Δ 𝑖 , 0) = 2 𝑛 . The Feistel switch recalled in Section 7.3.4 is also easily proven: if Δ 𝑖 = ∇ 𝑜 the FBCT coefficients correspond to the number of 𝑥 ∈ F 𝑛 2 that are solutions to 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) ⊕ 𝑆(𝑥) = 0. Since every value of 𝑥 fulfills this, FBCT(Δ 𝑖 , Δ 𝑖) = 2 𝑛 .

(3) The property is verified for the case Δ 𝑖 = ∇ 𝑜 (since we can reasonably assume 𝑛 > 1), so we focus on the case where Δ 𝑖 ̸ = ∇ 𝑜 . If no 𝑥 is solution the property is verified, while if there is at least one 𝑥 ∈ F 𝑛 2 that is a solution then three more distinct values 𝑥 ⊕ Δ 𝑖 , 𝑥 ⊕ ∇ 𝑜 and 𝑥 ⊕ Δ 𝑖 ⊕ ∇ 𝑜 also are, which proves the multiplicity.

Given that the coefficients in the first line, first column and diagonal of the FBCT are always equal to the maximum that is 2 𝑛 , we define the boomerang uniformity a bit differently from what has been done for the BCT4 : Definition 7.4 (F-Boomerang Uniformity). The F-Boomerang uniformity corresponds to the highest value in the FBCT without considering the first row, the first column and the diagonal:

𝛽 𝐹 = max Δ 𝑖 ̸ =0,∇𝑜̸ =0,Δ 𝑖 ̸ =∇𝑜.
FBCT(Δ 𝑖 , ∇ 𝑜).

From the designer point of view, it is preferable to use an S-box with a small F-boomerang uniformity. This goal can be reached by opting for an APN function, as we show below.

On the FBCT of APN Functions

A function 𝑆 ∈ ℬ(𝑛, 𝑛) is called almost perfect nonlinear (APN) if for any Δ 𝑖 , 𝛿 ∈ F 𝑛 2 with Δ 𝑖 ̸ = 0 the equation 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) = 𝛿 has either 0 or 2 solutions. Alternatively, we know (refer for instance to [START_REF] Carlet | Vectorial boolean functions for cryptography. Boolean models and methods in mathematics[END_REF], page 417) that 𝑆 is APN if and only if for any non-zero Δ 𝑖 , ∇ 𝑜 ∈ F 𝑛 2 with Δ 𝑖 ̸ = ∇ 𝑜 , 𝐷 Δ 𝑖 𝐷 ∇𝑜 𝑆(𝑥) ̸ = 0 for all 𝑥 ∈ F 𝑛 2 . This directly implies the following theorem:

Theorem 7.5. Let 𝑆 ∈ ℬ(𝑛, 𝑛). 𝑆 is an APN function if and only if its FBCT verifies FBCT(Δ 𝑖 , ∇ 𝑜) = 0 for all 1 ≤ Δ 𝑖 ̸ = ∇ 𝑜 ≤ 2 𝑛 -1.

A direct implication of this theorem is that any non-APN function has a non-zero coefficient at a position that is not in the first row, first column or diagonal of its FBCT, so in particular a Feistel boomerang uniformity higher or equal to 4.

On the FBCT of S-boxes based on the Inverse Mapping

Another important and widely used set of S-boxes are the ones based on the inverse mapping, which include (among others) the 8-bit S-boxes of CAMELLIA [AIK + 01], Clefia [SSA + 07] and SMS4 [START_REF] Diffie | SMS4 encryption algorithm for wireless networks[END_REF] and the 4-bit S-box of Twine [START_REF] Suzaki | TWINE : A lightweight block cipher for multiple platforms[END_REF].

We know that F 𝑛 2 and F 2 𝑛 are vector isomorphic over F 2 , i.e., with respect to a fixed basis 𝛼 𝑖 , 1 ≤ 𝑖 ≤ 𝑛, of F 2 𝑛 , any element of 𝑥 ∈ F 2 𝑛 can be uniquely written as 𝑥 = ⊕ 𝑛 𝑖=1 𝑥 𝑖 𝛼 𝑖 , where (𝑥 1 , 𝑥 2 , . . . , 𝑥 𝑛) ∈ F 𝑛 2 . A mapping 𝑆 : F 2 𝑛 → F 2 𝑛 of the form 𝑆(𝑥) = 𝑥 2 𝑛 -2 is called an inverse mapping.

The importance of this family of functions comes from its very good cryptographic properties (that led to it being selected to build the AES [AES01] S-box for instance). Indeed, Nyberg [START_REF] Nyberg | Differentially uniform mappings for cryptography[END_REF] showed that if 𝑛 is odd, then the inverse function over F 2 𝑛 is APN, and if 𝑛 is even, then each CCZ Equivalence. The last equivalent relation we discuss here is the CCZ equivalence [START_REF] Carlet | Codes, bent functions and permutations suitable for des-like cryptosystems[END_REF]. Concluding on this case is rather easy: it is known that every permutation is CCZ-equivalent to its inverse, and we show in next subsection that Feistel boomerang uniformity is not necessarily the same for an S-box and its inverse. Consequently, S-boxes that are CCZ equivalent might not share the same boomerang uniformity.

FBCT and Inversion

In the case of the BCT, it has been shown that the boomerang uniformity of 𝑆 and its inverse are the same [START_REF] Boura | On the boomerang uniformity of cryptographic sboxes[END_REF]. Before studying the case of the FBCT, let us recall that since we are looking at Feistel constructions the S-boxes at play do not have to be invertible (the most famous example in this category being the DES [START_REF]Data encryption standard[END_REF]).

For an invertible S-box, we can find some special cases for which the property is preserved, for instance for APN functions (since the inverse is also APN). Still, in the general case this property does not hold, and one example of this is for instance the 4-bit S-box SS 0 used in CLEFIA [SSA + 07]: SS 0 = [0xe, 0x6, 0xc, 0xa, 0x8, 0x7, 0x2, 0xf, 0xb, 0x1, 0x4, 0x0, 0x5, 0x9, 0xd, 0x3].

The F-boomerang uniformity of SS 0 is equal to 8, while the one of its inverse is 4.

Set-based Formulation of the FBCT

In this section, we identify the set 5

𝜒 FBCT (Δ 𝑖 , ∇ 𝑜) = {𝑥 ∈ F 𝑛 2 |𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) ⊕ 𝑆(𝑥 ⊕ ∇ 𝑜) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖 ⊕ ∇ 𝑜) = 0}
with the union for all 𝛿 ∈ F 𝑛 2 of the intersection of 𝜒 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿) and its coset 𝜒 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿) ⊕ ∇ 𝑜 . First, we recall the definition of 𝜒 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿), a notion that has been introduced in [CLN + 17] and used in the context of boomerang attacks in [START_REF] Song | Boomerang connectivity table revisited[END_REF] and that corresponds to the set of all 𝑥 ∈ F 𝑛 2 that make a given S-box transition possible:

𝜒 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿) = {𝑥 ∈ F 𝑛 2 |𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) = 𝛿}.
The alternative formulation is given in the following theorem:

Theorem 7.9. For any Δ 𝑖 , ∇ 𝑜 ∈ F 𝑛 2 and 𝑆 ∈ ℬ(𝑛, 𝑛),

𝜒 FBCT (Δ 𝑖 , ∇ 𝑜) = ⋃︁ 𝛿∈F 𝑛 2 (𝜒 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿) ∩ (𝜒 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿) ⊕ ∇ 𝑜))
5 We have #𝜒FBCT(Δ𝑖, ∇𝑜) = FBCT(Δ𝑖, ∇𝑜).

Proof. For any

Δ 𝑖 , ∇ 𝑜 ∈ F 𝑛 2 , 𝜒 FBCT (Δ 𝑖 , ∇ 𝑜) ={𝑥 ∈ F 𝑛 2 : 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) ⊕ 𝑆(𝑥 ⊕ ∇ 𝑜) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖 ⊕ ∇ 𝑜) = 0} ={𝑥 ∈ F 𝑛 2 : 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) = 𝑆(𝑥 ⊕ ∇ 𝑜) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖 ⊕ ∇ 𝑜)} = ⋃︁ 𝛿∈F 𝑛 2 {𝑥 ∈ F 𝑛 2 : 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) = 𝑆(𝑥 ⊕ ∇ 𝑜) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖 ⊕ ∇ 𝑜) = 𝛿} = ⋃︁ 𝛿∈F 𝑛 2 {𝑥 ∈ F 𝑛 2 : 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) = 𝛿} ∩ {𝑥 ∈ F 𝑛 2 : 𝑆(𝑥 ⊕ ∇ 𝑜) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖 ⊕ ∇ 𝑜) = 𝛿} = ⋃︁ 𝛿∈F 𝑛 2 𝜒 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿) ∩ {∇ 𝑜 ⊕ 𝑥 ∈ F 𝑛 2 : 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) = 𝛿} = ⋃︁ 𝛿∈F 𝑛 2 𝜒 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿) ∩ (𝜒 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿) ⊕ ∇ 𝑜).
Note here that for any fixed Δ 𝑖 the equality {𝑥, 𝑥 ⊕ Δ 𝑖 } = ∇ 𝑜 ⊕ {𝑥, 𝑥 ⊕ Δ 𝑖 } is satisfied for any 𝑥 if and only if ∇ 𝑜 = 0 or Δ 𝑖 = ∇ 𝑜 .

This reformulation leads to the following rewriting of the FBCT coefficient:

Corollary 7.10.

FBCT(Δ 𝑖 , ∇ 𝑜) = ∑︁ 𝛿∈F 𝑛 2 #(𝜒 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿)) ∩ (𝜒 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿) ⊕ ∇ 𝑜)
Proof. This comes directly from the previous theorem by remarking that once Δ 𝑖 is fixed we have 𝜒 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿) ∩ 𝜒 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿 ′) = ∅ for all 𝛿 ̸ = 𝛿 ′ , which justifies that the unions in Theorem 7.9 are disjoint and hence that we have a sum.

Let us again stress the parallel with a similar reformulation of the BCT:]). Let 𝑆 ∈ ℬ(𝑛, 𝑛). We define 𝒴 𝐷𝐷𝑇 as the set of all S-box outputs that make a given transition possible, that is:

Corollary 7.11 ([BC18
𝒴 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿) = {𝑆(𝑥) ∈ F 𝑛 2 |𝑆(𝑥)⊕𝑆(𝑥⊕Δ 𝑖) = 𝛿}.
The expression of the BCT coefficient becomes:

𝐵𝐶𝑇 (Δ 𝑖 , ∇ 𝑜) = ∑︁ 𝛿∈F 𝑛 2 #(𝒴 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿)) ∩ (𝒴 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿) ⊕ ∇ 𝑜)

Comparison of the properties of the BCT and of the FBCT

We conclude this section by comparing in Table 7.3 the main properties explored by Boura and Canteaut [START_REF] Boura | On the boomerang uniformity of cryptographic sboxes[END_REF] regarding the BCT with what we proved in the case of the FBCT. Note that another family of S-boxes was studied by Boura and Canteaut, namely the set of quadratic permutations. In the case of the FBCT this instance is rather easy to solve: for any non-zero Δ 𝑖 , ∇ 𝑜 ∈ F 𝑛 2 with Δ 𝑖 ̸ = ∇ 𝑜 , 𝐷 Δ 𝑖 𝐷 ∇𝑜 𝑆 is constant. If this constant is not equal to zero we have that FBCT(Δ 𝑖 , ∇ 𝑜) = 0, otherwise FBCT(Δ 𝑖 , ∇ 𝑜) = 2 𝑛 . We can conclude that either the quadratic permutation is APN and then its Feistel boomerang uniformity is equal to 0, or the quadratic permutation is not APN (this is the case of all the quadratic permutations on an even number of variables) and then its Feistel boomerang uniformity is equal to 2 𝑛 .

Next, we provide a (rather intricate) formula linking the FBCT and the recently introduced Differential-Linear Connectivity Table (DLCT) [START_REF] Bar-On | DLCT: A new tool for differential-linear cryptanalysis[END_REF]. We expect that other relations can be obtained.

A Relation Between the DLCT and the FBCT

As before, we consider 𝑛, 𝑚 two positive integers and 𝑆 ∈ ℬ(𝑛, 𝑚). The set of all non-zero elements of F 𝑛 2 is denoted by F 𝑛* 2 . For 𝑥 and 𝜆 ∈ F 𝑛 2 we denote by 𝜆 • 𝑥 the canonical inner product.

The Differential-Linear Connectivity Table (DLCT) was introduced by Achiya Bar-On et al. in [START_REF] Bar-On | DLCT: A new tool for differential-linear cryptanalysis[END_REF] and is defined as follows: Definition 7.12 ([BDKW19]). For a vectorial Boolean function 𝑆 : F 𝑛 2 → F 𝑚 2 , the differentiallinear connectivity table (DLCT) of 𝑆 is an 2 𝑛 × 2 𝑚 table whose rows correspond to input differences to 𝑆 and whose columns correspond to bit masks of outputs of 𝑆. The DLCT entry (Δ, 𝜆), where Δ ∈ F 𝑛 2 is a difference and 𝜆 ∈ F 𝑚 2 is a mask, is

𝐷𝐿𝐶𝑇 𝑆 (Δ, 𝜆) = #{𝑥 ∈ F 𝑛 2 : 𝜆 • 𝑆(𝑥) = 𝜆 • 𝑆(𝑥 ⊕ Δ)} -2 𝑛-1 .
Recall that the autocorrelation of an n-variable Boolean function 𝑓 at point Δ ∈ F 𝑛 2 , denoted 𝐶 𝑓 (Δ), is defined as:

𝐶 𝑓 (Δ) = ∑︁ 𝑥∈F 𝑛 2 (-1) 𝑓 (𝑥)⊕𝑓 (𝑥⊕Δ) .
It can be easily proven that 𝐷𝐿𝐶𝑇 𝑆 (Δ, 𝜆) = 1 2 C 𝜆•𝑆 (Δ). In the following, we consider a vectorial Boolean function 𝑆 and derive a relation between its FBCT and the autocorrelation of its component functions. Using this relation, we provide a relation between the FBCT and the DLCT of 𝑆. Theorem 7.13. Let 𝑆 ∈ ℬ(𝑛, 𝑚). Then for any non-zero

Δ ∈ F 𝑛* 2 ∑︁ 𝜆∈F 𝑚* 2 𝐶 2 𝜆•𝑆 (Δ) = 2 𝑚 ∑︁ ∇∈F 𝑛* 2 : ∇̸ =Δ FBCT 𝑆 (Δ, ∇) + 2 𝑛 (2 𝑚+1 -2 𝑛).
Proof. For any non-zero Δ ∈ F 𝑛* 2 , we have ∑︁

𝜆∈F 𝑚* 2 𝐶 2 𝜆•𝑆 (Δ) = ∑︁ 𝜆∈F 𝑚* 2 (∑︁ 𝑥∈F 𝑛 2 (-1) 𝜆•𝑆(𝑥)⊕𝜆•𝑆(𝑥⊕Δ))(∑︁ 𝑦∈F 𝑛 2 (-1) 𝜆•𝑆(𝑦)⊕𝜆•𝑆(𝑦⊕Δ)) = ∑︁ 𝑥∈F 𝑛 2 ∑︁ 𝑦∈F 𝑛 2 ∑︁ 𝜆∈F 𝑚* 2 (-1) 𝜆•(𝑆(𝑥)⊕𝑆(𝑥⊕Δ)⊕𝑆(𝑦)⊕𝑆(𝑦⊕Δ)) = ∑︁ 𝑥∈F 𝑛 2 ∑︁ ∇∈F 𝑛 2 (∑︁ 𝜆∈F 𝑚 2 (-1) 𝜆•(𝑆(𝑥)⊕𝑆(𝑥⊕Δ)⊕𝑆(𝑥⊕∇)⊕𝑆(𝑥⊕Δ⊕∇)) -1) = 2 𝑚 ∑︁ ∇∈F 𝑛 2 #{𝑥 ∈ F 𝑛 2 : 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ) ⊕ 𝑆(𝑥 ⊕ ∇) ⊕ 𝑆(𝑥 ⊕ Δ ⊕ ∇) = 0} -2 2𝑛 = 2 𝑚 ∑︁ ∇∈F 𝑛* 2 : ∇̸ =Δ FBCT 𝑆 (Δ, ∇) + 2 𝑛 (2 𝑚+1 -2 𝑛).
From this theorem and the relation between the DLCT and the autocorrelation of the component functions of 𝑆, we directly deduce the following corollary: FBCT 𝑆 (Δ, ∇) + 2 𝑛 (2 𝑚-1 -2 𝑛-2).

Extending our Analysis to Two Rounds

Similarly to what has been done in [START_REF] Wang | Boomerang switch in multiple rounds[END_REF][START_REF] Song | Boomerang connectivity table revisited[END_REF] for SPN constructions, this section discusses the probability of a boomerang switch 𝐸 𝑚 that covers two rounds.

The Feistel counterpart of the BDT

When studying how to extend the BCT theory to boomerang switches on more rounds, Wang and Peyrin [START_REF] Wang | Boomerang switch in multiple rounds[END_REF] introduced the BDT (standing for Boomerang Difference Table), a variant of the BCT with one supplementary variable fixed, namely the S-box output difference: Definition 7.15 (Boomerang Difference Table [START_REF] Wang | Boomerang switch in multiple rounds[END_REF]). Let 𝑆 be an invertible function in F 𝑛 2 , and (Δ 𝑖 , 𝛿, ∇ 𝑜) be elements of (F 𝑛 2) 3 . The boomerang difference table (BDT) of 𝑆 is a three-dimensional table, in which the entry for (Δ 𝑖 , 𝛿, ∇ 𝑜) is computed by:

𝐵𝐷𝑇 (Δ 𝑖 , 𝛿, ∇ 𝑜) = #{𝑥 ∈ F 𝑛 2 |𝑆 -1 (𝑆(𝑥) ⊕ ∇ 𝑜) ⊕ 𝑆 -1 (𝑆(𝑥 ⊕ Δ 𝑖) ⊕ ∇ 𝑜) = Δ 𝑖 , 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) = 𝛿}.
As we show next, the counterpart of this table for the Feistel case turns out to be useful to study a switch over two rounds. Following the idea of [START_REF] Wang | Boomerang switch in multiple rounds[END_REF], we define it as follows (it can be visualized in Figure 7.9): Definition 7.16 (FBDT). Let 𝑆 be a function from F 𝑛 2 to itself, and (Δ 𝑖 , 𝛿, ∇ 𝑜) be elements of (F 𝑛 2) 3 . The Feistel boomerang difference table (FBDT) of 𝑆 is a three-dimensional table, in which the entry for (Δ 𝑖 , 𝛿, ∇ 𝑜) is computed by:

FBDT(Δ 𝑖 , 𝛿, ∇ 𝑜) = #{𝑥 ∈ F 𝑛 2 |𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) ⊕ 𝑆(𝑥 ⊕ ∇ 𝑜) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖 ⊕ ∇ 𝑜) = 0, 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) = 𝛿}. ∆ i ∇ o L 1 R 1 L 2 R 2 L 3 R 3
• • • • • • • • • • • • 1 2 3 4 δ x ∇ o Figure 7
.9: View of the parameters of the FBDT: Δ 𝑖 is the input difference and 𝛿 is the output difference of 𝑆 when looking at the difference between state 1 ○ and 2 ○. ∇ 𝑜 is the input difference of the same S-box 𝑆 when looking at the difference between state 1 ○ and 3 ○ (which is the same as the one between state 2 ○ and 4 ○).

Given the discussion made in Section 7.4.7, we can rewrite the FBDT as:

FBDT(Δ 𝑖 , 𝛿, ∇ 𝑜) = #{(𝜒 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿)) ∩ (𝜒 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿) ⊕ ∇ 𝑜)}.
This is rather straightforward to see that the FBDT follows similar relations as the BDT does, namely: Property 7.17 (Relations between the DDT, FBCT and FBDT).

1. 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿) = FBDT(Δ 𝑖 , 𝛿, 0) = FBDT(Δ 𝑖 , 𝛿, Δ 𝑖) and in the general case 𝐷𝐷𝑇 (Δ 𝑖 , 𝛿) ≥ FBDT(Δ 𝑖 , 𝛿, ∇ 𝑜).

FBCT(Δ

𝑖 , ∇ 𝑜) = ∑︀ 2 𝑛 -1 𝛿=0 FBDT(Δ 𝑖 , 𝛿, ∇ 𝑜).
3. FBDT(0, 0, ∇ 𝑜) = 2 𝑛 .

Probability of a 2-round Boomerang Switch

The theorem we discuss next gives the probability that a boomerang comes back over 2 rounds of a classic Feistel cipher, that is a balanced one with 2 branches. We consider that the input difference between state 1 ○ and 2 ○ is (Δ 𝐿 𝑖 , Δ 𝑅 𝑖), that the output difference between state 2 ○ and

4

○ and 1 ○ and 3 ○ is equal to (∇ 𝐿 𝑜 , ∇ 𝑅 𝑜), and we want that the input difference between state 3 ○ and 4 ○ is again (Δ 𝐿 𝑖 , Δ 𝑅 𝑖).

Again, we consider a very generic case where the round function is composed of one S-box layer made of 𝑡 parallel 𝑛-bit S-boxes and of some linear or affine operations, which implies in particular that if the input difference of one round is known together with the output difference of the S-box layer, then the difference at the input of the next round S-box layer can be computed. To keep our explanation as generic as possible we introduce the following notations, that can be visualized in Figure 7.10:

• Δ 𝑖 represents the difference at the input of the first round S-box layer, between state 1 ○ and 2

○. It is fixed to a certain value since it can be deduced from the first round input difference Δ 𝐿 𝑖 .

• 𝛿 denotes the corresponding output difference of this S-box layer, but is not specified.

• Δ ′ 𝑖 corresponds to the difference at the input of the second S-box layer (again with respect to state 1 ○ and 2 ○). Its value is deduced from 𝛿 and from Δ 𝑅 𝑖 .

• In a similar way, the difference at the input of the second round S-box layer, between state 2 ○ and 4 ○ is set to a certain value denoted ∇ 𝑜 , deduced from ∇ 𝑅 𝑜 .

• The corresponding output difference is denoted 𝛼, but again is not fixed.

• ∇ ′ 𝑜 represents the input difference of the first round S-box layer for these states, and is computed from ∇ 𝐿 𝑜 and 𝛼. Given this notation we can find a formula for the probability of a 2-round boomerang switch over a Feistel, see Theorem 7.18. Note that to simplify its writing we extended the definition of the FBDT to the case of the S-box layer (instead of one S-box only). Naturally, this simply corresponds to the product of the FBDT of each S-box that composes the S-box layer.

(∆ L i , ∆ R i) (∇ L o , ∇ R o) α 1 2 3 4 L1 Sbox layer L2 ∆i δ ∆ ′ i (∇ L o , ∇ R o) ∇o ∇ ′ o L1 Sbox
Theorem 7.18 (Probability of a 2-round Switch). With the previous notation, the probability that a boomerang comes back over 2 rounds is equal to: ○ is equal to:

2 -2𝑡𝑛 × ∑︁ 0≤𝛿,𝛼<2 𝑛 FBDT(Δ 𝑖 , 𝛿, ∇ ′ 𝑜) × FBDT(∇ 𝑜 , 𝛼, Δ ′ 𝑖). (7
Δ 𝐿 𝑖 ⊕ ∇ 𝐿 𝑜 ⊕ 𝐿 2 (𝛼 ′) ⊕ ∇ 𝐿 𝑜 ⊕ 𝐿 2 (𝛼) = Δ 𝐿 𝑖 ⊕ 𝐿 2 (𝛼 ′) ⊕ 𝐿 2 (𝛼).
For the boomerang to return this has to be equal to Δ 𝐿 𝑖 , which proves that we must have 𝛼 ′ = 𝛼. We now demonstrate the formula by first looking at the case where the values of 𝛼 and 𝛿 are fixed. The theorem is deduced by summing over all their possible values.

We focus on the second round of the switch, and more precisely on the difference between state 2

○ and 4 ○. To obtain the required output difference, the S-box layer must transition from ∇ 𝑜 = 𝐿 1 (∇ 𝑅 𝑜) to 𝛼, an event that is of probability a :

2 -𝑛𝑡 × DDT(∇ 𝑜 , 𝛼).

If we denote by 𝑋 the input value of the second round S-box layer of state 2 ○, We know that the corresponding value of state 1 ○ has to be equal to 𝑋 ⊕ Δ ′ 𝑖 , value that should also allow the transition from ∇ 𝑜 to 𝛼 according to the previous discussion. The probability that it is the case is:

#𝜒 𝐷𝐷𝑇 (∇ 𝑜 , 𝛼) ∩ (𝜒 𝐷𝐷𝑇 (∇ 𝑜 , 𝛼) ⊕ Δ ′ 𝑖) #𝜒 𝐷𝐷𝑇 (∇ 𝑜 , 𝛼) .
Assuming that the previous conditions are fulfilled, the boomerang returns in the first round if the S-box layer transitions from Δ 𝑖 to 𝛿 given that the input difference of this S-box layer between state 2 ○ and 4 ○ and 1 ○ and 3 ○ is equal to ∇ ′ 𝑜 . The probability of this event is FBDT(Δ 𝑖 , 𝛿, ∇ ′ 𝑜) × 2 -𝑛𝑡 . Putting things together, we obtain

2 -2𝑡𝑛 × ∑︁ 0≤𝛿,𝛼<2 𝑛 FBDT(Δ 𝑖 , 𝛿, ∇ ′ 𝑜) × DDT(∇ 𝑜 , 𝛼) × #𝜒 𝐷𝐷𝑇 (∇ 𝑜 , 𝛼) ∩ (𝜒 𝐷𝐷𝑇 (∇ 𝑜 , 𝛼) ⊕ Δ ′ 𝑖) #𝜒 𝐷𝐷𝑇 (∇ 𝑜 , 𝛼)
Given that DDT(∇ 𝑜 , 𝛼) = #𝜒 𝐷𝐷𝑇 (∇ 𝑜 , 𝛼) and that #(𝜒 𝐷𝐷𝑇 (∇ 𝑜 , 𝛼) ∩ (𝜒 𝐷𝐷𝑇 (∇ 𝑜 , 𝛼) ⊕ Δ ′ 𝑖)) = FBDT(∇ 𝑜 , 𝛼, Δ ′ 𝑖), we obtain the required expression.

a We again make the shortcut of considering the S-box layer instead of each individual S-box.

Note that our formula is very reminiscent of what is used in the SPN case, as Wang and

Peyrin [START_REF] Wang | Boomerang switch in multiple rounds[END_REF] proposed to use the product of the BDT and BDT' coefficients to cover the case of a 2-round switch where the same S-box is active with respect to 𝐸 0 and 𝐸 1 . As a side note, we also remark here that the somewhat more intricate formulation proposed by Song et al. can be rewritten as the product of the BDT and BDT' in the case of 2 rounds, as in particular the 𝒟 𝐵𝐶𝑇 coefficient of [START_REF] Song | Boomerang connectivity table revisited[END_REF] is in fact equal to the BDT' coefficient.

Example of a 2-round Switch on LBlock

This section shows a concrete example of how the 2-round formula given by Equation (7.3) can applied to a cipher, namely LBlock. We consider a 2-round boomerang switch that is deduced from the proposed boomerang distinguisher of the paper by Chen and Miyaji [START_REF] Chen | Differential Cryptanalysis and Boomerang Cryptanalysis of LBlock[END_REF].

1 a 0 0 0 0 0 9 1 0 0 0 0 0 0 6 0 0 0 0 0 1 6 0 0 0 0 0 0 0 0 0 round 1 of Em The switch and the notation used below are represented in Figure 7.11. By careful identification of the differences at play, Equation (7.3) gives:

S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7
𝑃 = 2 -2×8×4 × ∑︁ 0≤𝛿,𝛼<2 𝑛 FBDT 𝑆 7 (0x1, 𝛿 1 , 𝛼 𝑣) × FBDT 𝑆 7 (0, 0, 𝛿 2) × FBDT 𝑆 6 (0x9, 𝛿 2 , 0) × FBDT 𝑆 6 (0, 0, 0) × FBDT 𝑆 5 (0x𝑎, 𝛿 3 , 0x1) × FBDT 𝑆 5 (0, 0, 𝛿 1) × FBDT 𝑆 4 (0, 0, 𝛼 𝑢) × FBDT 𝑆 4 (0x2, 𝛼 𝑢 , 𝛿 3) × FBDT 𝑆 3 (0, 0, 0x2) × FBDT 𝑆 3 (0x2, 𝛼 𝑣 , 0) × FBDT 𝑆 2 (0, 0, 0) × FBDT 𝑆 2 (0x1, 𝛼 𝑤 , 0) × FBDT 𝑆 1 (0, 0, 𝛼 𝑤) × FBDT 𝑆 1 (0, 0, 0x1) ×
FBDT 𝑆 0 (0, 0, 0) × FBDT 𝑆 0 (0, 0, 0x6)

Using the properties of the FBDT, this can be simplified into:

𝑃 = 2 -6×4 × ∑︁ 0≤𝛿,𝛼<2 𝑛 FBDT 𝑆 7 (0x1, 𝛿 1 , 𝛼 𝑣) × 𝐷𝐷𝑇 𝑆 6 (0x9, 𝛿 2) × FBDT 𝑆 5 (0x𝑎, 𝛿 3 , 0x1) ×FBDT 𝑆 4 (0x2, 𝛼 𝑢 , 𝛿 3) × 𝐷𝐷𝑇 𝑆 3 (0x2, 𝛼 𝑣) × 𝐷𝐷𝑇 𝑆 2 (0x1, 𝛼 𝑤)
Referring to the DDT and FBDT we found that it is equal to 2 -24 × 2 19 = 2 -5 , which closely matches what we found experimentally (we obtained a probability of 2 -4.998 when doing 2 20 tests corresponding to 2 10 keys with 2 10 messages each).

Generic Formula for a Feistel Boomerang Switch over Multiple Rounds

To obtain an accurate estimation of the probability of a boomerang distinguisher, an attacker has to correctly evaluate the size of 𝐸 𝑚 , that is the number of middle rounds for which there exists a dependency between the characteristic on 𝐸 0 and the one on 𝐸 1 . Once this is done, the formula introduced with the sandwich attack theory [START_REF] Orr Dunkelman | A practical-time related-key attack on the KASUMI cryptosystem used in GSM and 3G telephony[END_REF] can be applied and the value of 𝑝 2 𝑞 2 𝑟 (where 𝑟 is the probability of 𝐸 𝑚 , 𝑝 the one of 𝐸 0 and 𝑞 the one of 𝐸 1) gives a good estimate (under the usual assumptions). The problem of evaluating the size of 𝐸 𝑚 has already been discussed in two papers in the case of SPN ciphers: by Song et al. in [START_REF] Song | Boomerang connectivity table revisited[END_REF] and by Wang and Peyrin in [START_REF] Wang | Boomerang switch in multiple rounds[END_REF]. The algorithm proposed in [START_REF] Song | Boomerang connectivity table revisited[END_REF] (that we recall in Algorithm 19) is rather natural: additional rounds are added to 𝐸 𝑚 as long as the probability of the newly added round is higher than the probability that would have been obtained if they were no dependencies. Since this technique directly applies to boomerang distinguishers on Feistel constructions we do not elaborate more on this. The remaining problem in the case of Feistel ciphers is to compute the probability of a boomerang switch over more than 2 rounds. We address this now, with a setting and notation given in Figure 7.12 and that is a direct generalization of the one in Figure 7.10. As depicted in the figure, we introduce new variables to represent all the intermediate differences. As we did when discussing the 2-round switch, the idea will be to iterate over all the possible values for these, to compute the probability of the obtained settings and finally to sum together the probabilities.

(∆ L i , ∆ R i) (∇ L o , ∇ R o) α ′ 1 2 3 4 L1 Sbox layer L2 ∆i δ ∆ ′ i (∇ L o , ∇ R o) ∇ ′
We introduce a coefficient that corresponds to the situation where an active S-box in 𝐸 0 is in front of an active S-box in 𝐸 1 , and for which both S-box outputs (when looking at state

FBET(Δ 𝑖 , 𝛿, ∇ 𝑜 , 𝛼) = #{𝑥 ∈ F 𝑛 2 |𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) ⊕ 𝑆(𝑥 ⊕ ∇ 𝑜) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖 ⊕ ∇ 𝑜) = 0, 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) = 𝛿, 𝑆(𝑥 ⊕ Δ 𝑖) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖 ⊕ ∇ 𝑜) = 𝛼}.
The probability of a switch is then estimated to be 6 the sum over all the possible intermediate differences of the product of the FBET coefficient (divided by 2 𝑛) of each S-box. For instance, the probability of the 3-round boomerang switch depicted in Figure 7.10 can be approximated by:

2 -3𝑡𝑛 ∑︁ 0≤𝛿,𝛼,𝛿 ′ ,𝛼 ′ ,𝛿 ′′ ,𝛼 ′′ <2 𝑛 FBET(Δ 𝑖 , 𝛿, ∇ 𝑜 , 𝛼) × FBET(Δ ′ 𝑖 , 𝛿 ′ , ∇ ′ 𝑜 , 𝛼 ′) × FBET(Δ ′′ 𝑖 , 𝛿 ′′ , ∇ ′′ 𝑜 , 𝛼 ′′)
6 Note that this approximation considers that the same characteristic is followed between state 1 ○ and 2 ○ and between state 3 ○ and 4 ○. For 3 rounds and more it is not apparent that this is always the only possible case.

where again by abuse of notation the FBET coefficient is the one of the full S-layer, but should be replaced by the ones of the individual S-boxes. Note that Δ 𝑖 and ∇ ′′ 𝑜 are determined by (Δ 𝐿 𝑖 , Δ 𝑅 𝑖) and (∇ 𝐿 𝑜 , ∇ 𝑅 𝑜), the input and output differences of the switch. Also, the values of Δ ′ 𝑖 , Δ ′′ 𝑖 , ∇ 𝑜 and ∇ ′ 𝑜 are deduced from the other parameters on which we iterate (for instance

Δ ′ 𝑖 = 𝐿 1 (𝐿 2 (𝛿) ⊕ Δ 𝑅 𝑖)
). As we show in the following property, the obtained formula can be simplified when we sum coefficients over all the possible values of some variables. Further simplifications are obtained with Property 7.17. Property 7.20 (Relations between the FBET and the previous tables). ∑︁

0≤𝛿<2 𝑛 FBET(Δ 𝑖 , 𝛿, ∇ 𝑜 , 𝛼) = FBDT(∇ 𝑜 , 𝛼, Δ 𝑖). ∑︁ 0≤𝛼<2 𝑛 FBET(Δ 𝑖 , 𝛿, ∇ 𝑜 , 𝛼) = FBDT(Δ 𝑖 , 𝛿, ∇ 𝑜).
FBET(0, 0, ∇ 𝑜 , 𝛼) = FBET(∇ 𝑜 , 𝛼, 0, 0) = DDT(∇ 𝑜 , 𝛼).

It is rather easy to show that the FBET view covers the previous formula for the 2-round switch (given in Theorem 7.18): we use the notation of Figure 7.10 and additionally denote by 𝛿 ′ the output difference between state 1 ○ and 2 ○ of the second-round S-layer, and by 𝛼 ′ the output difference between state 2 ○ and 4 ○ of the first-round S-layer. The sum we have to compute is:

2 -2𝑡𝑛 ∑︁ 0≤𝛿,𝛼 ′ ,𝛿 ′ ,𝛼<2 𝑛 FBET(Δ 𝑖 , 𝛿, ∇ ′ 𝑜 , 𝛼 ′) × FBET(Δ ′ 𝑖 , 𝛿 ′ , ∇ 𝑜 , 𝛼).
Since 𝛼 ′ and 𝛿 ′ have no impact on the other values we can rewrite the previous sum as:

2 -2𝑡𝑛 ∑︁ 0≤𝛿,𝛼 ′ ,𝛼<2 𝑛 (FBET(Δ 𝑖 , 𝛿, ∇ ′ 𝑜 , 𝛼 ′) × ∑︁ 0≤𝛿 ′ <2 𝑛 FBET(Δ ′ 𝑖 , 𝛿 ′ , ∇ 𝑜 , 𝛼)) = 2 -2𝑡𝑛 ∑︁ 0≤𝛿,𝛼 ′ ,𝛼<2 𝑛 (FBET(Δ 𝑖 , 𝛿, ∇ ′ 𝑜 , 𝛼 ′) × FBDT(∇ 𝑜 , 𝛼, Δ ′ 𝑖)) = 2 -2𝑡𝑛 ∑︁ 0≤𝛿,𝛼<2 𝑛 (FBDT(∇ 𝑜 , 𝛼, Δ ′ 𝑖) × ∑︁ 0≤𝛼 ′ <2 𝑛 FBET(Δ 𝑖 , 𝛿, ∇ ′ 𝑜 , 𝛼 ′)) = 2 -2𝑡𝑛 ∑︁ 0≤𝛿,𝛼<2 𝑛 (FBDT(∇ 𝑜 , 𝛼, Δ ′ 𝑖) × FBDT(Δ 𝑖 , 𝛿, ∇ ′ 𝑜)).
In a similar way, if we focus on one round only, we have to compute

2 -𝑡𝑛 ∑︁ 0≤𝛿,𝛼<2 𝑛 FBET(Δ 𝑖 , 𝛿, ∇ 𝑜 , 𝛼).
Since both 𝛿 and 𝛼 have no impact on the other variables it can be rewritten as:

2 -𝑡𝑛 ∑︁ 0≤𝛿<2 𝑛 FBDT(Δ 𝑖 , 𝛿, ∇ 𝑜) = 2 -𝑡𝑛 FBCT(Δ 𝑖 , ∇ 𝑜).
So the FBET coefficient allows to recover our previous formulas. Note that when looking at a switch covering many rounds the application of this formula may require too much time if many S-boxes are involved, so it might be preferable to evaluate the probability of 𝐸 𝑚 experimentally.

Short Discussion on the SPN Case. While we focused on the Feistel case, it seems that a similar technique can be used to get the probability of a multiple-round boomerang switch on an SPN cipher. In particular, the counterpart of the FBET would be:

𝐵𝐸𝑇 (Δ 𝑖 , 𝛿, ∇ 𝑜 , 𝛼) = #{𝑥 ∈ F 𝑛 2 |𝑆 -1 (𝑆(𝑥) ⊕ ∇ 𝑜) ⊕ 𝑆 -1 (𝑆(𝑥 ⊕ Δ 𝑖) ⊕ ∇ 𝑜) = Δ 𝑖 , 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) = 𝛿, 𝑥 ⊕ 𝑆 -1 (𝑆(𝑥) ⊕ ∇ 𝑜) = 𝛼}.
and we have the following direct properties:

Property 7.21 (Relation between the BET and the previous tables). ∑︁

0≤𝛼<2 𝑛 𝐵𝐸𝑇 (Δ 𝑖 , 𝛿, ∇ 𝑜 , 𝛼) = 𝐵𝐷𝑇 (Δ 𝑖 , 𝛿, ∇ 𝑜), ∑︁ 0≤𝛿<2 𝑛 𝐵𝐸𝑇 (Δ 𝑖 , 𝛿, ∇ 𝑜 , 𝛼) = 𝐵𝐷𝑇 ′ (∇ 𝑜 , 𝛼, Δ 𝑖) = 𝒟 𝐵𝐶𝑇 (Δ 𝑖 , ∇ 𝑜 , 𝛼) ∑︁ 0≤𝛼,𝛿<2 𝑛 𝐵𝐸𝑇 (Δ 𝑖 , 𝛿, ∇ 𝑜 , 𝛼) = 𝐵𝐶𝑇 (Δ 𝑖 , ∇ 𝑜)
Our bet is that it provides a generic formula covering the previous particular cases discussed in [START_REF] Song | Boomerang connectivity table revisited[END_REF] and [START_REF] Wang | Boomerang switch in multiple rounds[END_REF].

Application to LBlock-s

We propose here to study the case of LBlock-s, the Feistel cipher used in LAC, in order to illustrate the way our formula can be used to estimate the probability of a boomerang distinguisher.

LAC was a first-round candidate to the CAESAR competition submitted by Lei Zhang et al. [ZWW + 14]. It is a lightweight authenticated encryption scheme that relies on a modified version of LBlock called LBlock-s. In this version, the 10 different 4-bit S-boxes are replaced with one unique S-box, which corresponds to the one called 𝑆 0 in LBlock. The block cipher also includes a modified key schedule algorithm that we do not detail here since it plays no role in the following discussion. The LAC algorithm uses both full 32-round LBlock-s as well as a round-reduced LBlock-s iterating 16 rounds.

In this section, we evaluate with the 𝑝 2 𝑞 2 𝑟 formula the probability of a 16-round boomerang distinguisher on LBlock-s when the size of 𝐸 𝑚 varies from 2 to 8 rounds. We found out that when 𝐸 𝑚 covers 8 rounds the expected probability of the resulting distinguisher is 2 -56.14 . This value is higher than the probability of the distinguisher that was proposed by Leurent in [START_REF] Leurent | Differential forgery attack against LAC[END_REF]. In this paper, the author showed the existence of collections of differential characteristics with probability as high as 2 -61.52 . Still, our distinguisher cannot be used for forgery contrary to what is done in [START_REF] Leurent | Differential forgery attack against LAC[END_REF]. As a starting point, we look at the setting where 𝐸 𝑚 covers 2 rounds and search the best characteristics over 7 rounds for 𝐸 0 and 𝐸 1 . To find these, we use the two-step strategy described in [START_REF] Gérault | Revisiting AES related-key differential attacks with constraint programming[END_REF]:

• In the first step, we abstract all the nibble differences by Boolean variables (if a nibble is active then its associated Boolean value is 1, else it is 0) and we look for the truncated differentials with the minimum number of active S-boxes. We implement this step using a high-level modeling language called MiniZinc [NSB + 07]. MiniZinc models are translated into a simple subset of MiniZinc called FlatZinc, using a compiler provided by MiniZinc. Most existing constraint programming solvers (including SAT solvers and MILP solvers) have developed FlatZinc interfaces (there are currently fifteen solvers with FlatZinc interfaces). Using the PICAT SAT solver we found 8 possible optimal truncated differential characteristics that are valid for both 𝐸 0 and 𝐸 1 .

• In the second step, we look for the best differential characteristics (in terms of probability) that follow the previous truncated differential paths. To do so, we use the constraint programming language Choco [START_REF] Prud'homme | Choco Documentation[END_REF]. For each possible truncated differential characteristics on 7 rounds we obtain 2766 solutions with an optimal probability equal to 2 -16 . We tried several combinations and picked the one that gave the best probability for the 2-round 𝐸 𝑚 . We present it in

Choosing a Switch 𝐸 𝑚

To obtain an accurate evaluation of the boomerang distinguisher, we evaluate the size and probability of 𝐸 𝑚 with the algorithm recalled in Algorithm 19. When 𝐸 𝑚 covers few rounds we were able to apply our formulas to compute its probability but we then switched to experiments to avoid intricate expressions with many parameters. As detailed in Table 7.5, we were able to apply the algorithm for an 𝐸 𝑚 covering up to 8 rounds, thus obtaining an estimation of the probability of the distinguisher of 2 -56.14 . Our observation is that 𝐸 𝑚 covers more than 8 rounds, but we were limited by computational power to get its exact size.

Example of Instantiation of the Generic Formula

As an example of the application of the switch formulas proposed in this work, we detail here how to compute the probability of the 3-round switch on LBlock-s with the parameters provided in Table 7.5 and depicted in Figure 7.13:

𝐸 𝑚 𝛼 𝛿 theoretical 𝑟 practical 𝑟 𝑝 2 𝑞 2 𝑟 0 rounds - - - - 2 -88 2 rounds (0𝑥00004440, 0𝑥00004400) (0𝑥00004020, 0𝑥41000006)
2 -3.09 2 -3.09 2 -67.09 3 rounds (0𝑥00004440, 0𝑥00004400) (0𝑥00000600, 0𝑥00004020) 2 -6.80 2 -6.80 2 -62.8 4 rounds (0𝑥00004400, 0𝑥00000004) (0𝑥00000600, 0𝑥00004020) n/a 2 -14.10 2 -62.1 6 rounds (0𝑥00000004, 0𝑥00000040) (0𝑥00400000, 0𝑥00000600) n/a 2 -19.04 2 -59.04 8 rounds (0𝑥00000040, 0𝑥00000000) (0𝑥00000000, 0𝑥00400000) n/a 2 -24.14 2 -56.14

′ 1 δ ′ 3 δ ′ 2 δ ′ 4 δ ′ 5 δ3 δ2 δ1 4 2 2 4 6 2 4 α ′ 1 α ′ 2 α ′ 3 α ′ 1 α ′ 2 α ′ 3 α ′ 1 α ′ 2 α ′ 3 2 4 α ′ 1 α ′ 2 α ′ 3 α1 α2 α3 α4 α5 δ1 δ3 δ2 4 4 4 4 δ ′ 1 δ ′ 2 δ ′ 4 δ ′ 5 4 4 δ2 δ3 S S S S S S S S δ ′′ 1 δ ′′ 2 δ ′′ 3 δ ′′ 4 δ ′′ 5 δ ′′ 6 δ ′′ 7 δ ′ 3 +4 δ1 δ ′ 1 δ ′ 2 δ ′ 3 δ ′ 5 +4 4 4 δ ′ 4 α ′′ 1 α ′′ 2 6 α ′′ 1 α ′′ 2 S S S S S S S S α ′′ 1 α ′′ 2 6 α ′′ 1 α ′′ 2 6 4 2 α ′′ 1 α ′′ 2 4 2 6
Beginning of the characteristic over E1

End of the characteristic over E0

Extension with probability 1

Extension with probability 1

Figure 7.13: Setting for the switch over three rounds of LBlock-s.

According to our theory, an approximation of the 3-round switch is given by the sum over all the possible intermediate differences (the 𝛿 and 𝛼 in the figure) of the product of the FBET coefficients of each S-box, each divided by 2 𝑛 . Since FBET(0, 0, 0, 0) = 2 𝑛 and FBET(0, 0, ∇ 𝑜 , 𝛼) = FBET(∇ 𝑜 , 𝛼, 0, 0) = DDT(∇ 𝑜 , 𝛼), we expect only 5 FBET coefficients corresponding to the S-boxes that are active on both sides, and 15 DDT coefficients corresponding to S-boxes that are only active in one side.

An additional simplification comes from the following fact: the active S-boxes in the first round of the right part of the figure and the ones in the last round of the left part of the figure have an output that is free of constraints, so they don't have an impact on the probability we are computing (this comes from the fact that 1 2 𝑛

∑︀

𝛼 DDT(𝛾, 𝛼) = 1). Putting things together, we obtain the following expression, where the sum is over all the involved variables:

𝑟 = 2 -4×12 ∑︁ FBET(4, 𝛿 2 , 𝛼 ′ 2 , 𝛼 4) • DDT(4, 𝛿 1) • FBET(4, 𝛿 3 , 4, 𝛼 5) •DDT(4, 𝛿 ′ 2) • DDT(4, 𝛿 ′ 1) • DDT(𝛿 1 , 𝛿 ′ 4) • DDT(𝛿 2 , 𝛿 ′ 5) • FBET(𝛿 3 , 𝛿 ′ 3 , 6, 𝛼 ′ 3) •DDT(𝛼 ′′ 1 , 𝛼 ′ 2) • DDT(𝛼 ′′ 2 , 𝛼 ′ 1) •FBET(4, 𝛿 ′′ 6 , 4, 𝛼 ′′ 1) • FBET(𝛿 ′ 4 , 𝛿 ′′ 7 , 2, 𝛼 ′′ 2).
We can further simplify this expression by using the relations between the tables discussed in this work. It gives:

𝑟 = 2 -4×8 ∑︁ FBCT(4, 𝛼 ′ 2) • DDT(4, 𝛿 1) • DDT(4, 𝛿 3) •DDT(𝛿 1 , 𝛿 ′ 4) • FBCT(𝛿 3 , 6) • DDT(𝛼 ′′ 1 , 𝛼 ′ 2) •DDT(4, 𝛼 ′′ 1) • FBCT(2, 𝛿 ′ 4)
We computed this sum and we obtained 𝑟 = 38338560

(2 4) 8

= 2 -6.807 , which confirms the experiment reported in Table 7.5.

Deriving a Boomerang Distinguisher

The previous discussion indicates that the 16-round boomerang distinguisher we are looking at has a probability higher than 2 -56.14 . It can be used as follows:

The attacker randomly chooses 𝑀 1 𝑖 (0 ≤ 𝑖 < 𝑚) and compute 𝑀 2 𝑖 = 𝑀 1 𝑖 ⊕ 𝛼 with 𝛼 = (20400000, 00001460). She encrypts these plaintexts over 16 rounds of LBlock-s to obtain the ciphertexts 𝐶 1 𝑖 and 𝐶 2 𝑖 from which she deduces 𝐶 3 𝑖 = 𝐶 1 𝑖 ⊕ 𝛿 and 𝐶 4 𝑖 = 𝐶 2 𝑖 ⊕ 𝛿 with 𝛿 = (0𝑥42000004, 0𝑥00060040) and asks for their corresponding plaintexts 𝑀 3 𝑖 and 𝑀 4 𝑖 . Finally she checks if the boomerang comes back by testing if 𝑀 3 𝑖 ⊕ 𝑀 4 𝑖 = 𝛼. Given our estimate, 𝑚 = 2 56.14 quartets are sufficient to expect one boomerang to return (using 2 58.14 ciphering/deciphering operations).

Conclusion

Starting from an observation similar to the one made by Murphy in 2011, we develop a new theory that explains the behavior of boomerang switches for Feistel ciphers. We introduce the adequate notion of FBCT and give its main properties and relations with other well-known cryptographic tables. Taking things further, we provide a rather simple expression of the probability of a boomerang switch over two rounds, and a (more intricate) general expression of the one over multiple rounds.

8

Looking for new Extended Generalized Feistel Networks structures You can't see the whole complete act yet. But when this is done... when it's finished...it's gonna be... People will barely be able to comprehend.

John Doe

This final chapter presents a study on a particular family of Extended Generalized Feistel Networks (egfns), first introduced in [BMT14]. This work was initiated during the design of Lilliput-AE [ABC + 18], a Round 1 candidate the nist lwc standardization process: starting from round function of the Lilliput lightweight block cipher, its aim was to determine whether it was possible to derive lighter structures providing good resistance to differential and integral cryptanalysis and optimal diffusion delay.

First, some properties of Generalized Feistel Networks (gfns) and their extensions are recalled in Section 8.1. This section essentially summarizes the results from [START_REF] Thierry | Extended generalized Feistel networks using matrix representation[END_REF][START_REF] Thomas | Design and Security Analysis for constructions in symmetric cryptography[END_REF], in which the matrix representation of gfns were introduced and used to propose an extension of such schemes, namely, Extended Generalized Feistel Networks (egfns). Then, Section 8.2 provides some comments on the experiments that were conducted to assess the resistance to integral and differential cryptanalysis of some egfns derived from the structures proposed in [START_REF] Thierry | Extended generalized Feistel networks using matrix representation[END_REF]. Some early results seemed to point out that the Lilliput round function was among the best choices. Moreover, this primitive had already been subject to third-party analysis [START_REF] Sasaki | New differential bounds and division property of Lilliput: Block cipher with extended generalized Feistel network[END_REF][START_REF] Sasaki | New impossible differential search tool from design and cryptanalysis aspects -revealing structural properties of several ciphers[END_REF]. For these reasons, my co-authors and I ultimately chose the build our nist proposal around the round function of Lilliput. While this work was carried out in the context of our nist lwc submission, it covers a broader class of egfns and thus, we found it appropriate to place it as a separate chapter. Unfortunately, this work remains incomplete for now as we were not successful in identifying some general criteria for the family of egfns considered. [START_REF] Zheng | On the construction of block ciphers provably secure and not relying on any unproved hypotheses[END_REF] a construction that considered a 𝑘-block state, called the Generalized Feistel Network or gfn. Gfns mostly inherit the interesting features of the classical Feistel network: their structure remains simple and allows for high parallelism, they transform any set of noninvertible functions into a permutation and the inverse is the same up to a permutation of the blocks, which makes them suitable for low cost implementation. One gfn round is made of two layers: the nonlinear layer and the permutation layer. The nonlinear layer contains one or several Feistel functions 𝐹 𝑖 applied in parallel whose outputs are then xored to a single or to several other branches. The permutation layer originally consisted of a cyclic block-wise shift to the left, however works such as the ones of [SM10, YI13, CGT19] or [START_REF] Derbez | Efficient search for optimal diffusion layers of generalized feistel networks[END_REF] among others have since shown that the diffusion delay of gfns could be improved by using different shufflings. A brief description of each of the main types of gfns is given in the rest of this section. For the sake of simplicity, the permutation layer considered will be the cyclic shift to the left.

𝑥 0 𝑦 0 𝑥 1 𝑦 1 𝑥 2 𝑦 2 𝑥 3 𝑦 3 𝑥 4 𝑦 4 𝑥 5 𝑦 5 𝑥 6 𝑦 6 𝑥 7 𝑦 7 𝐹 0 𝐹 1 𝐹 2 𝐹 3
Type-1. Akin to the classical Feistel network, the type-1 Feistel scheme only has one Feistel function that takes one branch as input, and xors its output to another branch, as shown in Figure 8.2.

Type-2. The type-2 Feistel scheme is defined over an even number of branches 𝑘 and operates using 𝑘/2 Feistel functions 𝐹 0 , • • • , 𝐹 𝑘/2-1 . Each function 𝐹 𝑖 takes as input branch 𝑥 2𝑖 and the output is xored to branch 𝑥 2𝑖+1 , as shown in Figure 8.3. This construction is used in Type-3. The nonlinear layer of a type-3 Feistel network with 𝑘 branches contains 𝑘 -1 Feistel functions. Each function 𝐹 𝑖 takes as input branch 𝑥 𝑖 and the output is xored to branch 𝑥 𝑖+1 , for 0 ≤ 𝑖 ≤ 𝑘 -2. Because of its structure, one cannot have a parallel evaluation of the Feistel functions in decryption mode for the type-3 Feistel network. Indeed, function 𝐹 𝑖 requires 𝑥 𝑖 = 𝑦 𝑖-1 ⊕ 𝐹 𝑖-1 (𝑥 𝑖-1), meaning that each Feistel function has to be treated sequentially. One example is given in Figure 8.4. to F 𝑛 2 that takes 𝑘 -1 branches as inputs and the output is xored to the remaining branch. Figure 8.5 depicts an example of a source-heavy gfn with 4 blocks. This type of construction is used in the Rc2 block cipher [START_REF] Rivest | A Description of the RC2(r) Encryption Algorithm[END_REF], the Sha-1 hashing function [START_REF]Secure Hash Standard[END_REF] or Sms4 [START_REF] Diffie | SMS4 encryption algorithm for wireless networks[END_REF], which is now a Chinese standard for Wireless LANs. . This construction was used in Mars [BCD + 99], which was selected as a finalist in the Aes competition. Nyberg. The Nyberg Feistel [Nyb96]-depicted in in Figure 8.7-is similar to the type-2 Feistel in the way that it also operates using 𝑘/2 Feistel functions. However in this case, the first half of the branches are emitting branches-through a Feistel function-and the second half are receiving branches. More precisely, for 0 ≤ 𝑖 ≤ 𝑘/2 -1, the Feistel function 𝐹 𝑖 takes as input branch 𝑥 𝑖 and its output is xored to branch 𝑥 𝑘-𝑖 .

𝑥 0 𝑦 0 𝑥 1 𝑦 1 𝑥 2 𝑦 2 𝑥 3 𝑦 3 𝐹
𝑥 0 𝑦 0 𝑥 1 𝑦 1 𝑥 2 𝑦 2 𝑥 3 𝑦 3 𝐹 0 𝐹 1
𝑥 0 𝑦 0 𝑥 1 𝑦 1 𝑥 2 𝑦 2 𝑥 3 𝑦 3 𝐹 0 𝐹 1 𝐹 2
𝑥 0 𝑦 0 𝑥 1 𝑦 1 𝑥 2 𝑦 2 𝑥 3 𝑦 3 𝐹

Full diffusion delay

Once the number of branches of a gfn is chosen, one important matter that remains is the number of rounds required to ensure a secure scheme. One criterion for that choice is the full diffusion delay [START_REF] Thomas | Design and Security Analysis for constructions in symmetric cryptography[END_REF], originally introduced as the maximum diffusion round in [START_REF] Suzaki | Improving the generalized Feistel[END_REF]. Informally, the full diffusion delay is the smallest number of rounds needed so that each of the final output blocks 𝑗 if there exists a path of length exactly 𝑟 going from vertex 𝑖 to vertex 𝑗 in the associated digraph of the gfn. The full diffusion delay 𝑑+ can thus be defined as the smallest integer 𝑟 such that, for all ordered pair of vertices (𝑖, 𝑗) there exists a path of length exactly 𝑟 connecting 𝑖 to 𝑗.

𝑥 0 𝑦 0 𝑥 1 𝑦 1 𝑥 2 𝑦 2 𝑥 3 𝑦 3 𝐹 1 𝐹 0 Figure 8.
Namely, the full diffusion delay 𝑑+ is the radius of the graph associated to the gfn. From these definitions, it should be noticed that the full diffusion delay of a gfn is a structural property of a gfn: it solely depends on the way the Feistel functions used in the gfn are placed, provided they are not the zero function. Additionally, if a gfn reaches a full diffusion state at round 𝑟 then it will remain in such state for the remaining rounds.

In a similar manner, the full diffusion delay for decryption can be defined using the digraph associated to the gfn in decryption mode. It is denoted 𝑑 -.

Since encryption and decryption are equally important, we consider the full diffusion delay for both ways, 𝑑 = max(𝑑 + , 𝑑 -). Table 8.1 summarizes the full diffusion delay for both ways 𝑑 for classical gfns.

Improvement of the diffusion delay

As stated before, the permutation layer of a gfn initially consisted in a cyclic shift of the branches. At FSE 2010, Suzaki and Minematsu [START_REF] Suzaki | Improving the generalized Feistel[END_REF] presented their analysis results on gfns regarding noncyclic permutations. It was shown that the diffusion could be improved for type-2 gfns by carefully choosing the permutation. It particular, a generic construction based on de Bruijn graphs was proposed for schemes with a number of branches 𝑘 that is a power of 2, leading to a decrease of the diffusion delay from 𝑘 to2 log 2 𝑘. Similar constructions were analyzed in [START_REF] Yanagihara | Improving the Permutation Layer of Type 1, Type 3, Source-Heavy, and Target-Heavy Generalized Feistel Structures[END_REF] for type-1, type-3, source-heavy and target-heavy gfns with noncyclic permutation. Regarding the source-heavy and the target-heavy gfns, it was observed that these scheme can only reach full diffusion if the permutation is a single cycle of length 𝑘, leading to a diffusion in 𝑘 rounds, otherwise 𝑑 = +∞. As a result, using different permutations cannot improve the diffusion delay.

For Type-1 gfns on the other hand, authors were able to give an optimum generic construction for any 𝑘. Finally, a necessary and sufficient condition for to improve the diffusion delay of type-3 gfns with 𝑘 branches, for 2 ≤ 𝑘 ≤ 8.

All the improved results are given in Table 8.2.

Matrix Representation of Feistel Networks

Another way to further study the diffusion properties of a gfn is through a more unified vision using a matrix representation, introduced by Berger et al. in [START_REF] Thierry | Extended generalized Feistel networks using matrix representation[END_REF][START_REF] Thomas | Design and Security Analysis for constructions in symmetric cryptography[END_REF]. In this section, we give the definition of a gfn matrix and how this representation ties in with the graph view introduced earlier.

Matrix of a gfn

We recall that one round of a gfn can be divided into two distinct transformations: first, the nonlinear layer 𝒩 and second, the permutation layer 𝜋. The matrix of the permutation layer is straightforward: it is the 𝑘 × 𝑘 binary permutation matrix 𝒫 such that

𝒫 𝑖,𝑗 = {︂ 1 if 𝑖 = 𝜋(𝑗) 0 otherwise.
As for the nonlinear layer, the definition is given below:

)︂ ℱ = (︂ 1 1 𝐹 1 𝐹 1
)︂ Figure 8.9: An example of an egfn with its three layers and the corresponding matrices.

Extended Generalized Feistel Networks

In this section, we remind the results from [START_REF] Thierry | Extended generalized Feistel networks using matrix representation[END_REF][START_REF] Thomas | Design and Security Analysis for constructions in symmetric cryptography[END_REF] in which Extended Generalized Feistel Networks (egfns) were introduced. Using permutations other than the cyclic shift in the permutation layer of gfns has proven to an effective way to improve diffusion, as shown by Suzaki et al. in [START_REF] Suzaki | Improving the generalized Feistel[END_REF] and more recently in [START_REF] Cauchois | General diffusion analysis: How to find optimal permutations for generalized type-ii feistel schemes[END_REF] and [START_REF] Derbez | Efficient search for optimal diffusion layers of generalized feistel networks[END_REF]. The idea behind egfns is to go even further and to replace the block permutation with a linear mapping, which is equivalent to adding a third layer, called the linear layer between the nonlinear layer and the permutation layer.

Definition 8.13. A matrix ℳ with coefficients in {0, 1, 𝐹, 𝐼} ⊂ Z[𝐹, 𝐼] is an Extended Generalized Feistel Network (egfn) matrix if it can be written in the form ℳ = 𝒫𝒩 such that 𝒫 is a permutation matrix and the matrix 𝒩 satisfies the following properties:

1. the main diagonal is filled with 1, 2. the off-diagonal coefficients are either 0, 𝐹 or 𝐼, 3. for each index 𝑖, row 𝑖 and column 𝑖 cannot both contain a nonzero coefficient other than on the diagonal, 4. for each index 𝑖, if row 𝑖 contains an 𝐼 then it also contains an 𝐹 .

An example of an egfn with 𝑘 = 4 branches and its associated matrices is depicted in Figure 8.9. Definition 8.14. Conside an egfn and its associated matrix ℳ as defined in Definition 8.13, the diffusion delay in encryption mode of the egfn is the smallest integer 𝑑 + such that ℳ 𝑑 + does not have any zero coefficients. The diffusion delay in decryption mode is defined in a similar way and is denoted 𝑑 -. Finally, we define the full diffusion delay of the egfn as 𝑑 = 𝑚𝑎𝑥(𝑑 + , 𝑑 -).

More generally, we have the following definition. Definition 8.15. Consider an egfn and its associated matrix ℳ as defined in Definition 8.13, for an integer ℓ ∈ N, we define the ℓ 𝑡ℎ diffusion delay of the scheme as the smallest integer 𝑑 + ℓ such that: min

0≤𝑖,𝑗≤𝑘-1 deg(ℳ ′𝑑 + ℓ 𝑖,𝑗) ≥ ℓ,
where ℳ ′ is the matrix with coefficients in {0, 1, 𝐹 } ⊂ Z[𝐹] such that:

ℳ ′ 𝑖,𝑗 = {︃ 1 if ℳ 𝑖,𝑗 = 𝐼 ℳ 𝑖,𝑗
otherwise.

Similarly, we define 𝑑 - ℓ using ℳ -1 instead of ℳ. 𝑑 ℓ = 𝑚𝑎𝑥(𝑑 + ℓ , 𝑑 - ℓ) is then called the ℓ 𝑡ℎ diffusion delay in both ways.

Theorem 8.16. Consider an egfn as defined in Definition 8.13 with 𝑘 ≥ 4 blocks, 𝑘 even, and its associated matrices ℳ, 𝒩 and 𝒫 with 𝒩 being the matrix representing the both nonlinear and linear layers of the egfn and with 𝒫 being the matrix of the permutation layer defined by a permutation 𝜋 then,

1. if the matrix 𝒩 is equal to 𝒩 = (︀ ℐ 0 𝒜 ℐ)︀ ∈ Z[𝐹, 𝐼]
where ℐ is the 𝑘 2 × 𝑘 2 identity matrix and where 𝒜, the lower left quarter of 𝒩 , is such that 𝒜

= ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝐹 (0) 𝐹 𝐼 . . . 𝐼 𝐹 (0)
. . . The permutation 𝜋 has been chosen so that the number of active S-boxes on 18, 19 and 20 rounds is maximized among the 37108 possible permutations (up to block reindexing equivalence) that fulfill the conditions of Theorem 8.16. A more complete description of Lilliput can be found in Section 2.4.4 of this thesis.

𝐹 𝐼 𝐼 ••• 𝐼 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 2.

Towards Lighter Egfn Constructions

The goal of this work was to design an even lighter version of Lilliput with similar propertiessame diffusion delay and good resistance to differential and integral cryptanalysis.

For the permutation layer, we wanted to focus on involutions to minimize the overhead of decryption. For the upper layers, our intentions was to reduce the number of xors, while keeping the same amount nonlinear components. From a matrix perspective, this essentially meant removing some of coefficients equal to 𝐼.

A relaxed definition of egfns. Regarding Theorem 8.16, one interesting observation is that the result stays true, as long as the last row and the last column of the 𝒜 matrix-the lower left quarter of the 𝒩 matrix-are both entirely filled with nonzero coefficients. In other words, all the coefficients of the antidiagonal except the two ends can be removed, potentially allowing for lighter constructions of egfns with a diffusion delay 𝑑 equal to 4. However, the four conditions stated in Definition 8.13 were too restrictive and did not allow for much reduction. Conditions 1 and 2 were essential to the definition of egfns and Condition 3 simply implied that branches of the egfn were either emitters 1 or receivers 2 , but not both. Condition 4, on the other hand, seemed too strong to us and thus, we decided to investigate whether finding egfns with good properties that did not satisfy this condition was possible.

As a result, in the following, we consider ℳ matrices with coefficients in {0, 1, 𝐹, 𝐼} ⊂ Z[𝐹, 𝐼] that can be written in the form ℳ = 𝒫𝒩 such that 𝒫 is a involutory permutation matrix and the matrix 𝒩 satisfies the following properties:

1. the main diagonal is filled with 1, 2. the off-diagonal coefficients are either 0, 𝐹 or 𝐼, 3. for each index 𝑖, row 𝑖 and column 𝑖 cannot both contain a nonzero coefficient other than on the diagonal.

In the case of the 8 × 8 𝒜 matrix used in Lilliput, shown in Figure 8.12, the antidiagonal is filled with 𝐹 s and the rest of the last column and of the last row is made of 13 coefficients all equal to 𝐼. However, with this relaxed definition, other configurations with the same number of Feistel functions and the same diffusion delay are possible: instead of being on the antidiagonal, the 𝐹 coefficients can be moved to the last row or to the last column, thus removing some 𝐼 coefficients, which is equivalent to removing some xors from the scheme.

⎛ ⎜ ⎜ ⎝ 𝐹 (0) 𝐹 𝐼 . . . 𝐼 𝐹 (0)
. . .

𝐹 𝐼 𝐼 ••• 𝐼 ⎞ ⎟ ⎟ ⎠ Figure 8
.12: The 𝒜 matrix of Lilliput.

We therefore examined several sets of 8 × 8 matrices made of 8 coefficients equal to 𝐹 following a similar triangular structure as the one described in Theorem 8.16 but with a reduced number of nonzero coefficients on the antidiagonal. For each matrices, we wanted to assess the number of permutations in 𝑃 𝑖𝑛𝑣𝑜𝑙 that resulted in schemes with good resistance to integral and differential cryptanalysis. The idea was then to keep the matrices that could be combined with the highest number of permutations for more in-depth analysis. The results of our experiment are reported in the following parts. We also try to understand how the permutations and the matrices interact together to possibly exhibit some criteria that could help with the choice of the permutation layer.

Resistance to integral attacks

Integral cryptanalysis [START_REF] Daemen | The block cipher Square[END_REF] (see Section 3.3.1) uses sets of chosen plaintexts with a fixed part and another that varies through all possibilities. Typically, for an 𝑛-bit block cipher, these sets contain 2 𝑛 messages that only differ in one block. The xor of these 2 𝑛 values necessarily sums up to zero and the sum of the corresponding ciphertexts can leak information about the cipher's operation.

The examined matrices were split into three sets (with some redundancy), described below.

1. The first set consists of matrices 𝒜 such that each column of 𝒜 has exactly one 𝐹 coefficient. We recall that this coefficient can either be on the antidiagonal, on the last row or on the last column of 𝒜.

2. In the second set, we consider matrices 𝒜 such that each row has exactly one 𝐹 coefficient. As for the first set, this coefficient can either be on the antidiagonal, on the last row or on the last column. This entire set actually verifies Condition 4 of Definition 8.13.

3. Finally, the last set consists of matrices with no coefficients on the antidiagonal at all, and 8 𝐹 coefficients.

For each matrix, we also ensure that the last row and the last column of 𝒜 contain only nonzero coefficients by filling the gaps with 𝐼 coefficients in order to guarantee a diffusion delay equal to 4. This entails that in any case, branch 𝑥 7 influences every receiving branch 𝑥 𝑖 , for 8 ≤ 𝑖 ≤ 15-linearly or via a Feistel function-and 𝑥 15 receives from every emitting branch 𝑥 𝑗 , for 0 ≤ 𝑗 ≤ 7.

For the rest of this section, we only focus on the set of 7! = 5040 involutory permutations 𝜋 𝑖 that satisfy Condition 2 of Theorem 8.16. We denote the set by 𝒫 𝑖𝑛𝑣𝑜𝑙 .

Set 1: every emitting branch is taken as input of a Feistel function

The set considered here contains matrices for which each column has exactly one 𝐹 coefficient. This coefficient can either be on the antidiagonal, on the last row or on the last column of 𝒜. In other words, for 0 ≤ 𝑖 ≤ 7, branch 𝑥 𝑖 emits through exactly one Feistel function. Moreover, if 0 < 𝑖 < 7, there are two possibilities: the output of the Feistel function can either be xored to branch 𝑥 15-𝑖 (if the 𝐹 is on the antidiagonal) or to branch 𝑥 15 (if the 𝐹 is on the last row). For 𝑥 7 , the output of the Feistel function can be xored to any branch 𝑥 𝑗 , with 8 ≤ 𝑗 ≤ 15 and 𝑥 15 will always be influenced at least by 𝑥 0 in a nonlinear manner. Figure 8.13 shows the general layout of the matrix considered; an example and the resulting scheme are depicted in Figure 8.14.

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ × × × (0) × × × × × × × (0) × × × 𝐹 × × × × × × × ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
The set contains 8 × 2 6 = 512 matrices. Indeed, the 𝐹 on the first column of 𝒜 is fixed and for each of the 8 possible positions for the 𝐹 on the last column, the remaining 6 𝐹 coefficients are either on the antidiagonal or on the last row.

All matrices result in the same 𝑑 1 and 𝑑 2 values (as defined by Definition 8.15) as Lilliput, which are 5 and 6 respectively, for all permutations in 𝑃 𝑖𝑛𝑣𝑜𝑙 .

When considering 8 rounds, we found 20 matrices with no integral property, no matter which permutation was used. These are the 14 matrices with at least 7 𝐹 coefficients on the antidiagonal, and the 6 matrices that have 6 𝐹 s on the diagonal with the two remaing 𝐹 𝑠 at (7, 𝑖) and (𝑖, 7) for 𝑖 ∈ 1, 6 .

From the egfn point of view, this means that the three cases described below can occur. In essence, whenever one considers schemes for which every emitting branch goes through a Feistel function, there exist schemes with one less xor operation than the original Lilliput that ensure an absence of integral property after 8 rounds, no matter which permutation is used. For 6 rounds however, only the Lilliput matrix seems to be resistant to integral cryptanalysis for all permutations a .

a Combining the Lilliput matrix with involutory permutations, leads to schemes that are all equivalent, thus, the outcome is the same for all involutory permutations in 𝒫 𝑖𝑛𝑣𝑜𝑙 .

Set 2: every receiving branch is xored to the output of a Feistel function For this set, each row of 𝒜 has exactly one 𝐹 coefficient. We consider two cases:

1. a case where both ends of the antidiagonal have 𝐹 coefficients, which is simpler to study, leaving only 6 other coefficients to position, i.e. for 8 ≤ 𝑖 ≤ 15, every receiving branch 𝑥 𝑖 is influenced via a Feistel function, either by 𝑥 15-𝑖 or by 𝑥 7 .

2. the full case, where the 𝐹 coefficients can either be anywhere on the last row, the last column or the antidiagonal as long as there are exactly one 𝐹 coefficient per row, i.e. for 8 ≤ 𝑖 ≤ 14, every receiving branch 𝑥 𝑖 is influenced via a Feistel function, either by 𝑥 15-𝑖 or by 𝑥 7 . As for 𝑥 15 , the branch is influenced in a nonlinear way by one of the emitters. This means that besides 𝑥 7 , another the emitter might influence two branches at the same time. All 64 matrices result in the same 𝑑 1 and 𝑑 2 values as Lilliput, for all permutations in 𝒫 𝑖𝑛𝑣𝑜𝑙 . No matrix appears to show any integral property after 8 rounds, for all 5040 permutations. After 6 rounds, however, for some matrices, only a portion of the permutations yields no integral property. We will call these valid permutations for the rest of the section.

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝐹 × × (0) × × × × × × × (0) × × × 𝐹 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
Proposition 8.17. The number 𝑝 𝑛 𝐹 of valid permutations depends on the number 𝑛 𝐹 of 𝐹 coefficients on the diagonal, excluding the ones on both ends:

∀𝑛 𝐹 ∈ 0, 5 , 𝑝 𝑛 𝐹 = {︃ (7 -𝑛 𝐹)! • 𝑛 𝐹 ! if 𝑛 𝐹 is even (7 -𝑛 𝐹)! • (𝑛 𝐹 + 1)! otherwise.
To explain this proposition, we denote the 𝑛 𝐹 corresponding emitting branches by 1. When 𝑛 𝐹 is even, then every permutation 𝜋 such that 𝜋(ℰ) = ℛ leads to a scheme that can resist integral attacks in 6 rounds. There are 𝑛 𝐹 ! such possible swaps and (7 -𝑛 𝐹)! possible swaps for the remaining emitting branches (that is, {𝑥 0 , • • • , 𝑥 6 } ∖ ℰ), hence in total:

ℰ = {𝑒 0 , • • • , 𝑒 𝑛 𝐹 -1 } ⊂ {𝑥 1 , • • • , 𝑥 6 } and the 𝑛 𝐹 corresponding receiving branches by ℛ = {𝑟 0 , • • • , 𝑟 𝑛 𝐹 -1 } ⊂ {𝑥 8 , • • • , 𝑥 14 }.
(7 -𝑛 𝐹)! • 𝑛 𝐹 ! 2.
When 𝑛 𝐹 is odd, the valid permutations include permutations 𝜋 such that globally exchange ℰ and ℛ like in the even case, as well as permutations satisfying the three following conditions:

(a) 𝑥 0 is swapped with a branch)︀ choices to pick the emitters, then (𝑛 𝐹 -1)! permutations), (c) the (6 -(𝑛 𝐹 -1)) remaining emitters are swapped with any other receiver that is not in ℛ.

𝑟 𝑥 0 ∈ ℛ ((︀ 𝑛 𝐹 1)︀ choices), (
Put another way, when 𝑛 𝐹 is odd, one of the branches in ℰ can switch its role with 𝑥 0 , hence (7 -𝑛 𝐹)! • 𝑛 𝐹 ! possibilities for each of the 𝑛 𝐹 branches. The reason why this occurs in the odd case remains to be determined. As a result, the total number of permutations is:

(7 -𝑛 𝐹)! • 𝑛 𝐹 ! + 𝑛 𝐹 • (7 -𝑛 𝐹)! • 𝑛 𝐹 ! = (7 -𝑛 𝐹)! • (𝑛 𝐹 + 1)!
The case where 𝑛 𝐹 = 6 is more particular as 𝑝 6 = 5040; that is to say, any permutation of 𝒫 𝑖𝑛𝑣𝑜𝑙 can be used. This case correspond to the Lilliput matrix and is simply explained by the fact that for all permutations in 𝒫 𝑖𝑛𝑣𝑜𝑙 , the resulting schemes are equivalent, as mentioned earlier. Actually, when 𝑛 𝐹 = 0, every receiving branch is influenced in a nonlinear way, either by 𝑥 0 for 𝑥 15 , or by 𝑥 7 for all the other branches. That is, every branch 𝑥 𝑖 is interchangeable, for 𝑖 ∈ 8, 14 and, as for 𝑛 𝐹 = 6, any permutation in 𝒫 𝑖𝑛𝑣𝑜𝑙 produces an equivalent scheme. All the results are summarized in For the simple case of this set, in which every receiving is influenced via a nonlinear function, there exist schemes with a total of 15 xor operations for which there is no integral property after 6 rounds. This is 6 less than for the Lilliput matrix. The corresponding matrix is the following:

𝜋 = {︃ (4, 11)(7, 15) • • • (0, 11)(7, 15) • • • 𝐹 0 𝐹 1 𝐹 2 𝐹 3 𝐹 4 𝐹 5 𝐹 6 𝐹 7 ⎛ ⎜ ⎜ ⎜ ⎝ 𝐹 0 𝐹 (0) 0 𝐹 𝐹 𝐼 0 𝐹 0 (0) 𝐹 0 𝐹 𝐹 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 ⎞ ⎟ ⎟ ⎟ ⎠
𝒜 = ⎛ ⎜ ⎜ ⎜ ⎝ 𝐹 0 𝐹 (0) 0 𝐹 0 𝐹 0 𝐹 0 (0) 𝐹 0 𝐹 𝐹 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 ⎞ ⎟ ⎟ ⎟ ⎠
All permutations are valid.

Full case. In the full case, we have 512 matrices (64 possible combinations for each position on the last row) and all matrices result in 𝑑 1 = 5 and 𝑑 2 = 6, for all permutations. The placement choices for the 𝐹 coefficients are depicted in Figure 8.17.

After 20 rounds, none of the 512 matrices has any integral property, for all permutations in 𝒫 𝑖𝑛𝑣𝑜𝑙 . This holds down to 8 rounds. After 6 rounds however, 132 matrices have undesirable properties, no matter which permutation is used and for the 380 matrices that remain, not all permutations are valid.

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝐹 × × (0) × × × × × × × (0) × × × × × × × × × × × ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ Figure 8
.17: Layout of a matrix from set 2, full case. Each row can only contain one 𝐹 coefficient. Blue coefficients are either 0 or 𝐹 . Red coefficients are either 𝐼 or 𝐹 .

While in the simpler case, the number of 𝐹 coefficients on the antidiagonal (with both ends excluded) seemed enough to determine the number of valid permutations, other parameters come into play here, such as the number of 𝐹 coefficients on a single column that is not the last one. Indeed, in the simpler case, the 𝐹 coefficient on the last row of 𝒜 was fixed at position (0,7). Here, it can be anywhere on the last row, at a position that we denote by (0, 𝑙𝑟). If another 𝐹 coefficient is placed on the diagonal at position (𝑙𝑟, 𝑙𝑟), then branch 𝑥 𝑙𝑟 has a nonlinear influence on two receiving branches. This leads to many subcases, as shown in Table 8.4, and as a result, the formula derived in the simpler case does not apply anymore.

𝑛

ℛ = {𝑥 15-𝑒 0 , • • • , 𝑥 15-𝑒 𝑛 𝐹 -1 } ⊂ {𝑥 8 , • • • , 𝑥 14 }.
• The first row shows that when the only column of 𝒜 with more than one 𝐹 coefficient is the last column (𝑥 𝑙𝑟 / ∈ ℰ), and that the 𝐹 coefficient of the last row is not on the last column either (𝑥 𝑙𝑟 ̸ = 𝑥 7), then the behavior observed in the simple case can be seen again. The only difference here is that 𝑥 𝑙𝑟 might not be 𝑥 0 .

• On the second row, when one emitter-that is not 𝑥 7 -nonlinearly influences two other branches (𝑥 𝑙𝑟 ∈ ℰ, and for simplicity, let us consider that 𝑥 𝑙𝑟 = 𝑥 𝑒 0), a valid permutation 𝜋 has to fulfill one the following conditions:

-if 𝑛 𝐹 is odd, 1. 𝜋(𝑥 𝑒 0) ∈ ℛ ∖ {𝑥 15-𝑒 0 } and there is one subset ℰ 𝑛 𝐹 -2 of ℰ ∖ {𝑥 𝑒 0 } of size 𝑛 𝐹 -2, such that 𝜋(ℰ 𝑛 𝐹 -2) = ℛ ∖ {𝑥 15-𝑒 0 , 𝜋(𝑥 𝑒 0)} and 𝜋(ℰ ∖ {𝑥 𝑒 0 , ℰ 𝑛 𝐹 -2 }) ̸ = 𝑥 15-𝑒 0 . 2. 𝜋(ℰ) = ℛ
Thus, the total number of permutations is:

(𝑛 𝐹 -1) • (︂ 𝑛 𝐹 -1 𝑛 𝐹 -2)︂ • (𝑛 𝐹 -2)! • (︀ 6 -(𝑛 𝐹 -1))︀ • (7 -𝑛 𝐹)! + 𝑛 𝐹 ! • (7 -𝑛 𝐹)! that is, (7 -𝑛 𝐹)! • (︀ (𝑛 𝐹 -1) 2 • (𝑛 𝐹 -2)! • (7 -𝑛 𝐹) + 𝑛 𝐹 !)︀ .
if 𝑛 𝐹 is even, it is still unclear why for 𝑛 𝐹 = 2 or 𝑛 𝐹 = 4, none of the permutations are valid. When 𝑛 𝐹 = 6, the only valid permutations are the ones such that 𝜋(ℰ) = ℛ.

• Regarding the third row, when 𝑛 𝐹 = 2, there are two emitting branches 𝑥 𝑒 0 and 𝑥 𝑒 1 , with 1 ≤ 𝑒 0 , 𝑒 1 ≤ 6 that respectively emit to 𝑥 15-𝑒 0 and 𝑥 Set 3: no coefficients on the antidiagonal If we denote by 𝑎 𝑖,𝑗 the coefficients at row 𝑖 and column 𝑗 of 𝒜, then these remaining matrices are:

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ × × × (0) × × × × × × × × × × × × ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ Figure
• the (︀ 12

5

)︀ possible matrices such that 𝑎 𝑘 2 -1, 𝑘 2 -1 = 𝐹 , • the 7 matrices with exactly one 𝐹 coefficient per row such that 𝑎 7,7 = 𝐼,

• the 7 matrices with exactly one 𝐹 coefficient per column such that 𝑎 7,7 = 𝐼.

That is, if 𝑥 7 does not emit to branch 𝑥 15 , then either every other emitting branch 𝑥 𝑖 influences 𝑥 15 in a nonlinear way, for 0 ≤ 𝑖 ≤ 6, or every other receiving branch 𝑥 𝑗 receives from 𝑥 7 in a nonlinear way, for 8 ≤ 𝑗 ≤ 14. We then studied the integral property of these matrices when combined with the permutations from 𝒫 𝑖𝑛𝑣𝑜𝑙 :

• After 20 rounds, 204 matrices showed no integral property, for all permutations. These are the matrices with 6 𝐹 coefficients or more on the last column.

• After 8 rounds, only 57 matrices showed no integral property. This result does not depend on the chosen permutation. These are the matrices with exactly 7 𝐹 coefficients on the last column (8 possibilities to pick the row without an 𝐹 on the last column × 7 possibilities for the 𝐹 on the last row) and the target-heavy scheme in which 𝑥 7 emits to all 8 receiving branches.

• After 6 rounds, only 8 matrices had no integral property. These are the matrices already exhibited with the previous set, in which the first 7 positions of the last column are filled with 𝐹 coefficients and the remaining 𝐹 is on the last row.

Conclusion of these expriments

Regarding the interactions between the permutations and the matrices, in some cases we were able to identify the conditions required for a valid permutation. However, these observations still need to be interpreted before any meaningful criteria can be exhibited. From these results it appears that the most promising schemes are the 8 possible constructions in which the first 7 positions of the last column are filled with 𝐹 coefficients and the remaining 𝐹 is on the last row, as they display no integral property for 6 rounds, for all permutations in 𝒫 𝑖𝑛𝑣𝑜𝑙 , and they have the minimum number of nonzero coefficients to ensure a diffusion delay equal to 4. The corresponding matrices are depicted in Figure 8.19. It should be noted that these matrices fulfill Condition 4 of Definition 8.13, which we initially deemed too restrictive. .

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝐹 𝐹 𝐹 (0) 𝐹 𝐹 𝐹 𝐹 × × × × × × × × ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ Figure
Computing ℳ 3 = (︁

(𝒫 1 𝒜) 3 +𝒫 1 𝒜𝒫 1 𝒫 2 +𝒫 1 𝒫 2 𝒫 1 𝒜 (𝒫 1 𝒜) 2 𝒫 1 +𝒫 1 𝒫 2 𝒫 1 𝒫 2 (𝒫 1 𝒜) 2 +𝒫 2 𝒫 1 𝒫 1 𝒫 2 𝒫 2 𝒫 1 𝒜𝒫 1
)︁ shows it still has zero coefficients, as 𝒫 2 𝒫 1 𝒜𝒫 1 does. Thus, 𝑑 + ≥ 4.

Compute then

ℳ 4 = (︁ 𝑎 (𝒫 1 𝒜) 3 +𝒫 1 𝒜𝒫 1 𝒫 2 𝒫 1 +𝒫 1 𝒫 2 𝒫 1 𝒜𝒫 1 𝑏 𝒫 2 (𝒫 1 𝒜) 2 𝒫 1 +(𝒫 2 𝒫 1) 2)︁ with 𝑎 = (𝒫 1 𝒜) 4 + (𝒫 1 𝒜) 2 𝒫 1 𝒫 2 + 𝒫 1 𝒜𝒫 1 𝒫 2 𝒫 1 𝒜 + 𝒫 2 2 (𝒫 1 𝒜) 2 + 𝒫 2 2 𝒫 1 𝒫 2 and 𝑏 = 𝒫 2 (𝒫 1 𝒜) 3 + 𝒫 2 𝒫 1 𝒜𝒫 1 𝒫 2 + (𝒫 2 𝒫 1) 2 𝒜.
Thus ℳ 4 has no zero coefficient because by definition 𝒫 1 is of the form:

𝒫 1 = ⎛ ⎜ ⎜ ⎝ 0 𝒫 ′ 1 . . . 0 0 ••• 0 1 ⎞ ⎟ ⎟ ⎠ .
Thus, as the last row and the last column of 𝒜 has no zero, the product (𝒫 1 𝐴) 2 has only nonzero coefficients. Thus, the condition 𝜋(𝑘 -1) = 𝑘/2 -1 implies that 𝑑 + = 4. The reasoning is the same on ℳ -1 to prove that 𝑑 -= 4 and finally that 𝑑 = 4.

Resistance to differential cryptanalysis

While the constructions shown in Section 8.2.1 displayed attractive features with regards to lightweightness and integral property, we found out that they had very undesirable behaviors regarding differential cryptanalysis. More precisely, when combined with an involutory permutation layer, they allowed for the cancelation of differences.

As an example, let us consider a very simple case, using the 𝒜 matrix exhibited in the previous section

𝒜 = (︃ 𝐹 (0) . . . 𝐼 ••• 𝐼 𝐹)︃
and the 𝑘 2 -blocks shift to the left as the permutation layer. In this target-heavy configuration, the only emitting block that goes through a nonlinear function is 𝑥 7 and every other emitting block is simply xored to 𝑥 15 in the linear layer. Consequently, two active differences set on any pair of emitting blocks that does not include 𝑥 7 will be canceled in the linear layer if they are equal. After the permutation layer, these two active differences will then be moved to two receiving blocks, before being switched back to their original location at the end of the second round, since the permutation is only made of transpositions. Figure 8.21 shows this behavior.

To avoid such cases, it is required that one of the active differences eventually goes through a nonlinear function. In the scheme shown above, this is only possible if the difference propagates to 𝑥 7 at a given round 𝑟, which never can never happen because of the permutation that was chosen. This implies some constraints on the nonlinear layer and the permutation layer: Proposition 8. 19 1. there must be at least two emitters in the nonlinear layer, 2. the permutation used can have at most one cycle that does not contain any of the nonlinear emitters in its decomposition, and in that case, that cycle is a transposition.

One of the conditions to reach an optimal diffusion delay, described in [START_REF] Thierry | Extended generalized feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput[END_REF] and recalled in Theorem 8.16, is that the permutation 𝜋 globally exchanges emitters (blocks 𝑥 0 to 𝑥 𝑘 2 -1) with receivers (blocks 𝑥 𝑘 2 to 𝑥 𝑘-1) with 𝜋(𝑘 2 -1) = 𝑘 -1 and 𝜋(𝑘 -1) = 𝑘 2 -1. As a consequence, 𝜋 can be written as a product of cycles of even length, alternating between an emitter and a receiver, with one of the cycles being the transposition (𝑘 2 -1, 𝑘 -1). If 𝜋 has a cycle of length at least 4 that contains none of the nonlinear emitters, then two differences located on the two linear emitters involved in this cycle will never go through a nonlinear function, thus canceling each other if their values are equal. Therefore, involutions cannot be used unless there are at least 𝑘 2 -1 emitters in the nonlinear layer. We used SageMath to study the cancelation of differences for several 𝒜 matrices at a symbolic level. Considering a 𝑘-block egfn represented by a symbolic matrix M=P×N defined over the polynomial ring in F, d over F 2 -where F represents the Feistel functions and d a block differencean input difference Δ can be seen as a vector of 𝑘 components of the form Δ=(0,. . . ,0,d,0,. . . ,0).

The propagation of a difference Δ after 𝑟 rounds of encryption can then be tracked by computing M 𝑟 × Δ. In our approach, we considered every vector Δ with a Hamming weight equal to 2 or 4, and for each scheme, we computed the smallest 𝑟 value such that (P×N) 𝑟 × Δ has an F coefficient, which corresponds to the minimum number of rounds required for a difference to go through a nonlinear function.

The target-heavy construction shown in Section 8.2.1 did not fit the constraints stated in Proposition 8.19, so we tried to investigate alternative structures such as the other matrices depicted in Figure 8. 19, with two emitters in the nonlinear layer, namely, 𝑥 7 and a second branch that influences 𝑥 15 . Unfortunately, for the set of permutations considered, at least 𝑟 = 12 rounds were required before a difference could actually go through a Feistel function. We also studied egfns with more nonlinear emitters. For instance, the one depicted in Figure 8.22 seemed promising, as for some permutations3 , we obtained an r value equal to 4. However, it was quite similar to the original egfn of Lilliput. Since Lilliput had already been studied by other cryptanalysts [ST16, ST17] and only had a slightly higher xor count, we decided to base our nist proposal on this primitive instead and thus did not pursue the search for the best permutations for other 𝒜 matrices.

Conclusion

This chapter has investigated of a family of egfns identified by Berger et al. in [START_REF] Thierry | Extended generalized Feistel networks using matrix representation[END_REF] with interesting diffusion properties. It was initially started to find lightweight constructions that could be used as round functions for a new authenticated encryption scheme that would later become a Round 1 nist lwc candidate, Lilliput-AE [ABC + 18]. We have tried to summarize the results of our experiments in hopes to exhibit some criteria to design egfns with good properties regarding integral and differential cryptanalysis. However, this work is still in its early stages and many observations remain to be explained.

Conclusion

Derek says it's always good to end a paper with a quote.

Danny Vinyard

In this thesis, the recent challenges of lightweight cryptography have been discussed and a new lightweight proposal has been presented along with some new cryptanalysis results. A large portion of these works, described in Part II, have been carried out in the context of the ongoing Nist Lightweight Cryptography Standardization Process. After designing a proposal, Lilliput-AE, introduced in Chapter 4, some components of other candidates have been studied, namely, Spook and Skinny, in Chapter 5 and Chapter 6, respectively.

Chapter 4. This chapter presented Lilliput-AE, a new Authenticated Encryption with Associated Data (aead) scheme that uses the round function of Lilliput [START_REF] Thierry | Extended generalized feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput[END_REF], an algorithm based on an Extended Generalized Feistel Network. Lilliput-AE was part of the 56 Round 1 candidates to the nist lwc standardization process [ABC + 18], however it was not selected for Round 2.

Chapter 5. For Spook, a Round 2 candidate in the nist lwc process, my coauthors and I found distinguishers on the underlying permutations, Shadow-384 and Shadow-512, using some structural observations on the preservation of identical states. More precisely, by exploiting the cancellation of round constants, we exhibited distinguishers for the full (6-step) Shadow-512 and for a round-reduced 5-step version of Shadow-384. We could even efficiently distinguish the 6-step permutation if its round constants were shifted. The properties exhibited were then used to build some forgeries in the nonce-misuse setting with a handful of queries, for a 4-step version of the permutation. Extending this attack to another step using similar techniques might be possible and remains to be investigated.

All results have very low, practical complexity and were experimentally verified. Our analysis shows that even when LS-designs seem to avoid the main problem related to round constants, namely invariant subspaces attacks [START_REF] Beierle | Proving resistance against invariant attacks: How to choose the round constants[END_REF], some unwanted properties may remain, such as the cancellation of their effect in the internal symmetries.

Chapter 6. This chapter focused on the automated search for optimal differential characteristics on the Skinny block cipher, on which several nist lwc proposals are based. To do so, a common approach is to divide the search procedure into two steps: the first step (Step 1) abstracts the difference values into Boolean variables and finds the truncated characteristics with the smallest number of active S-boxes; and the second step (Step 2) tries to instantiate the solutions output by Step 1 to find the best possible probability. Several automatic tools were used to generate the models for Step 1: milp, sat, cp and an Ad-Hoc method. Step 2 was modeled solely using cp as it seemed much more efficient than the other methods. With these models, we were able to retrieve some previous results in much less time and we also went further than the highest number of rounds previously reached in other papers. This also provided useful knowledge on the suitable tools for differential cryptanalysis. Overall, the Ad-Hoc method gave the best running times for Step 1 in most cases and thus, became the most efficient tool among the four. However, this method may require a lot of memory. Milp is a good alternative as it is a tool with easier access. For Step 2, the cp-based method was much faster, mainly due to the existing implementation of Table constraints that allowed for an efficient modeling of the S-boxes and their ddt.

Main conclusion of Part II and further research directions. Our results on Shadow exhibited in Chapter 5, or the attack on Lilliput-AE described in Section 4.5.1 are testimony to the complex task faced by designers, who must find the right trade-off between security, performance and cost, which is all the more important in the context of lightweight cryptography.

• Regarding Spook, the weakness came from a bad interaction between the round constant addition and the diffusion layer mixing the rows of the state bundles. For Shadow-512, the designers opted for the diffusion layer of the low-energy cipher Midori [BBI + 15]. This involutory near-mds matrix4 was chosen for its efficiency in terms of area and signal-delay, which in turn resulted in a slower diffusion speed and a lower branch number-thus, a smaller minimum number of active S-boxes in each round. Our findings have led the Spook team to switch to an mds matrix in order to counter our distinguishers and improve the security margins [BBB + 20].

• Similarly, a weakness was introduced in Lilliput-AE because of some design choices meant to improve the efficiency of the algorithm and decrease its implementation cost. More specifically, the forgeries presented by Dunkelman et al. [START_REF] Orr Dunkelman | A practical forgery attack on lilliput-AE[END_REF] exploited the fact that one of transformations used to update the tweakey schedule was the identity function, resulting in the existence of an iterative differential characteristic of probability 1.

These results are also reminders that even though differential cryptanalysis is one of the earliest and most studied technique, assessing the resistance of a primitive against this type of attack remains difficult when designing a new one. Automatic tools such as the ones investigated in Chapter 6 can be helpful in such problems.

The study has shown that finding the best differential characteristic for a given number of rounds is a more intricate task than expected, even with automatic tools. Indeed, while Step 1 usually returns a minimum number of active S-boxes 𝑣 * that is quite low, the optimal solution for Step 2 in terms of differential characteristic probability can sometimes be obtained for a number of active S-boxes 𝑣 that is higher than 𝑣 * . As such, computing the optimal bounds is often not enough and we need to go further to be sure that the characteristics found have the best probabilities. However, the possible number of Step 1 solutions tends to grow exponentially when 𝑣 * increases. In such cases, the time required to complete Step 2 becomes the bottleneck. Therefore, our approach would greatly benefit from a better filtering for Step 1 in order to decrease the number of solutions as one deviates from the optimal bound. Below are listed other possible extensions of our work.

• For Sat we chose to use a high level modeling language which did not perform as efficiently as expected since its interface did not implement the SolveAll constraint for the chosen sat solver. As a result, for each Step 1 solution found, the program had to be run again with an added constraint to discard the previously found solution. Using a sat solver without any other interfaces to be closer to the clauses, instead of using generic translated models as we did, may lead to better performances.

• The chosen tools may work differently for different ciphers, depending on the underlying structure. Performing similar experiments on other ciphers might be valuable.

In the third part of this dissertation, some more general works related to Feistel schemes have been described. In Chapter 7, we have introduced the Feistel Boomerang Connectivity Table (fbct), which extends the Boomerang Connectivity Table (bct) to the Feistel case. Then, Chapter 8 has presented a study of egfns inspired by the one used in Lilliput in an attempt to find lighter, yet more secure, constructions.

Chapter 7. This chapter investigated the computation of the probability of a boomerang switch for generic Feistel ciphers-a problem that had not been addressed so far in spite of the importance of such constructions. While boomerang switches of Feistel ciphers had been studied before, the role of the S-box in a Feistel boomerang switch had previously never been analyzed in a systematic way, as done in the spn case. As such, my co-authors and I introduced the counterpart of the bct, namely the fbct. Our work laid the foundations for this tool by studying its properties. Interestingly, given an input difference Δ 𝑖 and an output difference ∇ 𝑜 , we showed that the coefficient at row Δ 𝑖 , ∇ 𝑜 of the fbct corresponds to the number of times the second order derivative of the S-box at points (Δ 𝑖 , ∇ 𝑜) cancels out.

We also showed how to extend a boomerang switch to an arbitrary number of rounds and provided a generic formula to compute the corresponding probability. However, applying this formula over many rounds quickly requires too much computational power. As a result, when evaluating the probability of a switch covering many rounds, the experimental approach is more preferable to the theoretical evaluation of the fbct-or the bct for that matter [START_REF] Song | Boomerang connectivity table revisited[END_REF]). Still, the fbct remains a useful tool that can help find S-boxes with the best properties or that are the most likely to lead to incompatibilities for a Feistel cipher.

Chapter 8. The analysis presented in this chapter was initiated during the design of Lilliput-AE. The goal was to find new structures inspired by the egfn used in Lilliput [START_REF] Thierry | Extended generalized feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput[END_REF], with the same diffusion delay and good resistance against structural attacks but a smaller xor count. Several interesting structures were found but ultimately, it seemed that the egfn of Lilliput was the most secure scheme. I attempted to derive some general properties for this class of egfn but could not formalize any.

Main conclusion of Part III and further research directions. Regarding our analysis of the fbct, some possible work directions include:

• Automating the search of the best parameters for a Boomerang attack using the fbct. As shown in Chapter 6, the search for the best differential characteristics is a process that can easily be fully automated. Boomerang attacks would greatly benefit from similar tools but as we have seen in Section 7.6, the computation of the size of the middle part of a switch and the corresponding probability can be tricky due to the large number of parameters, which begs to question whether automating this part is feasible or not.

• Applying our formula to the Des and other Feistel ciphers such as Clefia, Twine to possibly find new attacks. In Section 7.7, the fbct was used to find a 16-round boomerang distinguisher in the single key setting, the related-key case should be investigated as well.

• Extending the fbct to different types of boomerang distinguishers: in some cases, it might be preferable to consider a boomerang distinguisher that starts from a difference but does not come back to the same difference it has been sent with. For instance, when looking at the fbct of an Almost Perfect Nonlinear (apn) function, all coefficients are zero apart from those of the first line, the first column and the diagonal, leaving very few possibilities for an attacker to have a switch that comes back. The definition of the fbct could be extended to cover this scenario.

The study started in Chapter 8 on egfns is incomplete; some structures with optimal diffusion delay providing good resistance to integral cryptanalysis have been exhibited but the results obtained so far are still preliminary and mostly focused on involutory permutations. Having some criteria to choose an optimal permutation according to the layout of the nonlinear layer would be helpful. Regarding differential cryptanalysis, some early cp models were made in an attempt to derive differential bounds for some egfn-based constructions but those were too slow to be exploited. Using an approach similar to the one described in Chapter 6 might lead to better results, although the structures are quite different here.

A

On Non-Triangular Self-Synchronizing Stream Ciphers

This Appendix presents a collaborative work with Loïc Besson, Julien Francq, Phillipe Guillot, Gilles Millérioux and Marine Minier on Self-Synchronizing Stream Ciphers (ssscs) that was initiated before the Ph.D. but then was refined and submitted during those three years. We propose an instantiation of a dedicated Self-Synchronizing Stream Cipher, called Stanislas, involving an automaton with finite input memory using non-triangular state transition functions. This peculiarity makes our proposal different from existing ones, since the construction of previous dedicated ssscs was exclusively based on automata with shifts or triangular functions (𝑇 -functions) as state transition functions. The construction is based on a general and systematic methodology based on the use of automata (called Linear Parameter Varying, lpv) admitting a matrix representation and a special property of dynamical systems called flatness. Hardware implementations and comparisons with some state-of-the-art stream ciphers on Xilinx fpgas are presented. It turns out that Stanislas provides bigger throughput than the considered stream ciphers (synchronous and self-synchronizing) when straightforward implementations are considered. Moreover, its synchronization delay is much smaller than the sssc Moustique (40 clock cycles instead of 105) and the standard approach Cfb1-Aes128 (40 clock cycles instead of 128). In contrast, it has a rather large hardware footprint.

A.1 Introduction

Self-Synchronizing Stream Ciphers (sssc) were patented in 1946. The basic principle of such ciphers is to encrypt every plaintext symbol with a transformation that only involves a fixed number of previous ciphertext symbols. Therefore, every ciphertext symbol is correctly deciphered provided that previous symbols have been properly received. This self-synchronization property has many advantages and is especially relevant to group communications. In this respect, since 1960, specific sssc have been designed and are still used to provide bulk encryption (for Hertzian line, RNIS link, etc.) in military applications or governmental radio mobile networks. The canonical form of the sssc combines a shift register, which acts as a state register with the ciphertext as input, together with a filtering function that provides the running key stream. The cryptographic complexity of the canonical form of the sssc lies in the filtering function. In the early 90s, studies have been performed [START_REF] Maurer | New approaches to the design of self-synchronizing stream ciphers[END_REF][START_REF] Daemen | On the design of high speed selfsynchronizing stream ciphers[END_REF] to propose secure designs of ssscs. These works have been followed by effective constructions ([HPRM04, [START_REF] Sarkar | Hiji-Bij-Bij: A New Stream Cipher with a Self-Synchronizing Mode of Operation[END_REF][START_REF] Daemen | The self-synchronizing stream cipher moustique[END_REF]). What motivates the present proposal for a new sssc is that, till now, all of these sssc schemes have been broken ([JM03, JM05, JM06, KRB + 08, Klí05]). And up to our knowledge, since 10 years, no other proposals of ssscs has been made. Clearly, sssc can be naturally built using a block cipher by applying the Cipher Feedback (CFB) mode. However, the computational cost of CFB is one full block cipher operation per digit. So for single-bit digits, it is 𝑛 times less efficient than synchronous stream encryption modes such as Output Feedback (OFB) or Counter (CTR) Mode, with 𝑛 the block length. For example, AES in single-bit CFB mode (as defined as "CFB1-AES128" in NIST SP 800-38a [START_REF] Dworkin | Nist special publication[END_REF]) is 128 times less efficient than AES in CTR mode. As a consequence, it seems interesting to propose dedicated ssscs and consider them as a category of primitives on their own. The aim of the present document is to propose a new framework, along with an instantiation called Stanislas, to design sssc. The methodology of construction allows to obtain more general automata. Indeed, their state transition functions are not necessarily 𝑇 -functions as was the case over the past years (see [START_REF] Daemen | The Self-Synchronizing Stream Cipher MOSQUITO: eSTREAM Documentation, Version 2. eSTREAM, ECRYPT Stream Cipher Project[END_REF][START_REF] Daemen | The self-synchronizing stream cipher moustique[END_REF] as examples). Due to this peculiarity, the class of admissible automata to act as sssc is thereby enlarged. It is recalled that a finite automaton with finite input memory 𝑀 (see [START_REF] Maurer | New approaches to the design of self-synchronizing stream ciphers[END_REF]), is an automaton which can be represented in a canonical form that consists of an input shift-register of length at least 𝑀 with an attached memoryless function whose input is the shift-register state. This memoryless function allows to introduce nonlinearities with proved properties, what a shift register does not always permit. The benefit of implementing an sssc based on a finite automaton rather than the canonical form is that it is more relevant from a computational point of view. The design approach is based on both the special feature of Finite State Machines admitting a matrix representation, called lpv (Linear Parameter Varying) automata and on a property of dynamical systems named flatness. The matrix representation is a generalization of Rational Linear Finite State Machines or Feedback with Carry Shift Registers proposed in [ABL + 09, ABMP11]. The use of flatness for the sake of cryptography has been first proposed in [START_REF] Dravie | Design of self-synchronizing stream ciphers: A new control-theoretical paradigm[END_REF]. It has been shown that flatness characterizes the self-synchronization property and that it allows to design automata which can be more general than 𝑇 -functions.

In the present document, a complete cipher, called Stanislas (for Secure Transmission Algorithm with Non triangular Iterative Structure Looking After Self-synchronization) and designed from the lpv framework, is described. The Key Schedule, the design rationale and the security analysis are provided. Next, hardware implementation results on Xilinx FPGA platforms of Stanislas are performed and compared with some state-of-the art competitors: some Synchronous Stream Ciphers coming from eSTREAM portfolio (Trivium [START_REF] De | Trivium. In New Stream Cipher Designs -The eSTREAM Finalists[END_REF] and Grain [START_REF] Hell | The grain family of stream ciphers[END_REF]), one sssc (Moustique) and the only known feedback mode (the NIST-standardized CFB1-AES128). Interestingly, Stanislas provides the highest throughput on Xilinx Spartan-6 XC6SLX75T FPGAs compared to its stream ciphers and sssc competitors, implemented in a straightforward manner. Moreover, with the same comparison conditions, its synchronization delay is much smaller than the sssc Moustique (40 clock cycles instead of 105) and the standard approach CFB1-AES128 (40 clock cycles instead of 128), which provides a decisive advantage for applications when low-latency synchronization is required (e.g., Telecom).

The document is organized as follows. Section A.2 recalls the theoretical results linking together flatness and sssc. Section A.3 presents the new sssc Stanislas. The design rationale and the security analysis are detailed in Section A.4. Finally, Section A.5 provides hardware implementation results and comparisons. Section A.6 concludes this document.

where the product (A.20) results from the composition of the state transition functions of the deciphering automaton. Let us note that 𝑇 and 𝑟 are independent.

This lpv framework for the design of sssc is new regarding the literature devoted to the design of sssc. In particular, it really differs from the serial and parallel constructions proposed in the 90s by Maurer [Mau91].

According to Remark 1, implementing the recursive form (A.12) and (A.16) instead of the canonical form (A.5) is more efficient from a computational point of view.

It is recalled that the non-linearity is obtained by defining the values of every varying parameters 𝜌 𝑖 (𝑡) (𝑖 = 1, . . . , 𝐿) involved in the matrices of (A.12-A. 19) as non-linear functions 𝜙 𝑖 of a finite number of past cryptograms (𝜌 𝑖 (𝑡) = 𝜙 𝑖 (𝑐 𝑡 , 𝑐 𝑡-1 , • • • , 𝑐 𝑡-𝑠)). Those functions will be implemented in the form of S-boxes denoted 𝑆. where 𝑆𝐾 𝑖 is the subkey number 𝑖 derived from the secret key denoted with 𝐾.

The point is that the lpv automaton defined by (A.12) must be flat for any secret key 𝐾 and any realization of 𝜌(𝑡). In other words, flatness must be a generic property of (A.12). Designing an lpv automaton (A.12) which is generically flat relies on an admissible realization of a corresponding structured linear system. A structured linear system is a linear system only defined by the sparsity pattern of the state space realization matrices. In other words, for a structured linear system, we distinguish between the entries that are fixed to zero and the other ones that can take any value in F, including the ones which are time-varying. Hence, a structured linear discrete-time system, denoted by Σ Λ , is a system that admits the form:

Σ Λ : 𝑥 𝑡+1 = 𝐼 𝐴 𝑥 𝑡 + 𝐼 𝐵 𝑚 𝑡 (A.22)
The entries of the matrices of (A.22) are '0' or '1'. In particular, the entries 𝐴(𝑖, 𝑗) of 𝐼 𝐴 (resp. 𝐵(𝑖) of 𝐼 𝐵) that are '0' mean that there are no relation (dynamical interaction) between the state 𝑥 𝑖 𝑡+1 at time 𝑡 + 1 and the state 𝑥 𝑗 𝑡 at time 𝑡 (resp. the state 𝑥 𝑖 𝑡+1 at time 𝑡 + 1 and the input 𝑚 𝑡 at time 𝑡). The entries that are '1' mean that there is a relation. As a simple example, let us consider again the lpv system with the setting 𝐴 𝜌(𝑡) = (︂ 𝑎 0 𝜌 1 (𝑡) 𝜌 2 (𝑡)

)︂ and 𝐵 = (︂ 1 0)︂
where 𝑎 is a constant element in F, 𝜌 1 (𝑡) and 𝜌 2 (𝑡) are varying parameters in F. The dynamical matrix and the input matrix 𝐼 𝐴 and 𝐼 𝐵 of the corresponding structured linear system read:

𝐼 𝐴 = (︂ 1 0 1 1)︂ , 𝐼 𝐵 = (︂ 1 0)︂
As a consequence, if the structural linear system (A.22) derived from (A.12) is flat, the flatness will hold for any 𝜌(𝑡) or equivalently any nonlinearity 𝜙 𝑖 (any S-box will be admissible). Hence, the challenge is to define a methodology to construct flat linear structural systems. It is the purpose of the graph-based approach provided in [START_REF] Millerioux | Characterization of flat outputs for LPV discretetime systems: A graph-oriented approach[END_REF] which follows the steps recalled in Appendix A.8. Roughly speaking, given a triplet (𝑛, 𝑟, 𝑛 𝑎) with 𝑛 the dimension of the state, 𝑟 the delay and 𝑛 𝑎 the number of non-zero entries of the matrix 𝐴, a digraph 𝒢(Σ Λ) is constructed according to given rules and the matrices 𝐼 𝐴 and 𝐼 𝐵 are derived. The triplet (𝑛, 𝑟, 𝑛 𝑎), the number of non-linear functions 𝜙 𝑖 and their locations in the matrix 𝐼 𝐴 determine a family of flat lpv-based sssc. Next subsection aims at summarizing the steps needed for the design of such a family. Then, a particular instantiation, leading to the sssc called Stanislas, is given in next section.

the decipher even if it is possible to recover the secret key. The way those elements are randomly picked is out of the scope of this document. Only consider that you have a source of randomness. 𝑥 0 could be considered as a secret nonce.

Then randomly pick 𝑛 -1 = 39 elements 𝑚 -39 , • • • , 𝑚 -1 of F 16 as the synchronization sequence which is placed before the plaintext. It is recalled that at most 𝑛 = 40 iterations are needed for the self-synchronization to be achieved.

Then, because of the parameter value 𝑟 = 3 that induces a delay, randomly pick 𝑟-1 = 3-1 = 2 more elements 𝑚 ℓ , 𝑚 ℓ+1 of F 16 that will be placed at the end of the plaintext sequence 𝑚 to process the two last plaintext symbols. Finally, the sequence that must feed the cipher is 𝑚 ⋆ = 𝑚 -39 , . . . , 𝑚 0 , . . . , 𝑚 ℓ , 𝑚 ℓ+1 .

The resulting ciphertext consists of the sequence 𝑐 -39 , . . . , 𝑐 ℓ+1 of (ℓ + 41) symbols in F 16 , computed with the ciphering Equations (A.26) using Matrix 𝐴 𝑆 given in Appendix A. 7 Note that the Matrix 𝐴 𝑆 given in Appendix A.7.1 could be seen as one round of a block cipher applied on a state with 40 4-bit words where after each round the 4-bit word 𝑥 3 is outputted whereas the 4-bit word 𝑥 0 is completely updated by other 4-bit words. At each clock, each 4-bit word crosses at least one S-box, except the 4-bit word 𝑥 1 that could be considered as a temporary variable (as it receives the 4-bit message 𝑚 𝑡). Note also that the updated rule for most of the variables 𝑥 𝑖 (5 ≤ 𝑖 ≤ 40) could be written as 𝑥

A.3.3 Deciphering Process

The decipher receives the cryptogram consisting of ℓ + 41 symbols 𝑐 -39 , . . . , 𝑐 ℓ+1 in F 16 . The internal state ̂︀ 𝑥 0 is initialized to an arbitrary value, for example the zero value. Then, the deciphering Equations (A.28)-(A.29) are applied to recover a ℓ + 41-length message ︀ 𝑚 = ̂︀ 𝑚 -41 , . . . ̂︀ 𝑚 ℓ-1 . The plaintext sequence is recovered as the last ℓ symbols 𝑚 = ̂︀ 𝑚 0 . . . ̂︀ 𝑚 ℓ-1 .

Remark 2. It could be surprising that a part of the ciphering process directly depends on a secret nonce (i.e. 𝑥 0). Instead, we could imagine that an 80-bit 𝐼𝑉 is used to generate the first value 𝑥 0 adding an 𝐼𝑉 schedule to the Key Schedule process. First, generate the subkeys using the Key Schedule, then initialize the internal state with the concatenation of the 𝐼𝑉 and of the key. Then, apply again the Key Schedule process (but including the generated subkeys 𝑆𝐾 𝑖 in the S-boxes) to initialize the internal state 𝑥 0 . But, note that in this case, the particular property that the internal states (that must be kept secret) of the ciphering part and of the deciphering part are not required to be equal is lost. Indeed, in this case where an 𝐼𝑉 is used, we will suppose that the internal state will be computed in the same way in both sides. Then, the initial internal state 𝑥 0 is updated ten times by using equations (A.26) with 𝑚 𝑡 = 0 for 𝑡 = 0, . . . , 9.

• • • • • • • • • 𝜙 7 • • • • • • 𝑥 2 𝑡 ⊕ 𝑆(𝑥 3 𝑡 ⊕ 𝑆𝐾 7) • • • 𝜙 74 • • • 𝜙 75 • • • • • • • • • • • • 𝜙 76 • • • 𝜙 77 • • • • • • • • • • • • • • • 𝜙 78 • • • 𝜙 79 • • • 𝐴 𝑆 • 𝑥 𝑡 𝑥 3 𝑡+1 𝑥 1 𝑡+1 𝑥 2 𝑡+1 . . . 𝑥 38 𝑡+1 𝑥 39 𝑡+1 𝑥 40 𝑡+1 𝑐 𝑡+1 ciphertext • • • • • • • • • 𝑐 ℓ+2 𝑐 -

A.4 Design Rationale and Security Analysis

In this section, we motivate the choices of the field on which the cryptosystem operates, the dimension 𝑛 of the internal state, the delay 𝑟 and the structure of the matrix 𝐴. Most of the choices rest on security criteria, other ones take into account practical considerations, regarding in particular the hardware implementation issues.

A.4.1 Design Rationale

Field on which the cryptosystem operates: Galois field 𝐺𝐹 (16). Any quantities 𝑚 𝑡 , 𝑐 𝑡 , components of 𝑥 𝑡 and x𝑡 and non-linear functions 𝜙 𝑖 (S-boxes) inputs are 4-bit data. It is motivated by the fact that the cryptosystem is intended to be implemented on a digital equipment. Hence, field extensions and so, power of two are required. On the other hand, 8-bit would be too heavy for an embedded algorithm. In particular, S-boxes would involve too many logic gates.

Dimension 𝑛: 40. As the internal state components are 4-bit words, a dimension 𝑛 = 40 provides an internal state of 160 bits and thus a security level of 80 bits. Indeed, to prevent time-memory trade-off attack [START_REF] Hellman | A cryptanalytic time-memory trade-off[END_REF] (an attack which is a trade-off between exhaustive search and table look-up), the internal state must be two times longer than the key length which defines the security level. This level is compatible with a real-world application.

Delay 𝑟: 3. The more the delay, the more the algebraic degree of the entries of 𝑃 𝜌(𝑡:𝑡+𝑟) , recalling that 𝑃 𝜌(𝑡:𝑡+𝑟) involves the product of 𝑟 matrices (see (A.29)). Thus, for a good resistance against an algebraic attack ([CKPS00]), the algebraic degree should be as large as possible. On the other hand, the more the delay, the more the complexity of implementation and the less the computational performances. The delay 𝑟 = 3 results from a trade-off between security with respect to algebraic attacks (to increase the overall algebraic degree) and ease of implementation (especially the implementation of the 𝑃 deciphering matrix which involves several S-box multiplications (see Equation (A.17) in the general case and (A.29) for Stanislas)).

Structure of the matrices 𝐴 and 𝑃 . We recall that the matrix 𝐴 (and thus 𝑃 from the computation (A.29)) is derived from the construction of a digraph (see Appendix A.8) from which an adjacency matrix 𝐼 𝐴 is extracted. More precisely, the adjacency matrix 𝐼 𝐴 determines the entries of 𝐴 𝜌(𝑡) that are zero and the others that are possibly non-zero. The number 𝑛 𝑎 of edges in the digraph 𝒢(Σ Λ) corresponds to the number of non-zero entries of 𝐼 𝐴 . Hence, the number 𝑛 𝑎 also determines the number of non-zero entries of the state transition matrix 𝑃 . Beyond the number of non-zero entries, their location (row and column) must also be chosen. Finally, it must be decided whether a non-zero entry will be 1 or will correspond to an S-box. All those issues have been addressed by considering several criteria regarding the security, in particular the good resistance to classical attacks and the good diffusion delay, while satisfying a trade-off with respect to the computational complexity for the sake of implementation. Let us introduce symbolic representations of 𝐴 𝜌(𝑡) and 𝑃 𝜌(𝑡) denoted by 𝐴 𝑆 and 𝑃 𝑆 where the coefficients of 𝐴 𝑆 and 𝑃 𝑆 belong to Z[𝑆], 𝑆 representing any non-linear function. The following considerations on 𝐴 𝑆 and 𝑃 𝑆 can be made.

• Diffusion Delay and Depth. The diffusion delay and the depth are properties related to the consideration of the powers 𝐴 𝑝 𝑆 and of 𝑃 𝑝 𝑆 as 𝑝, a natural integer, increases. Indeed, the power of matrices results from the successive iterations of the ciphering and the deciphering process. Let 𝑝 denotes the power of a matrix 𝑍 ∈ 𝑀 𝑛 (𝐺𝐹 (16)). The diffusion delay, introduced in [ABMP11], is the smallest value, denoted by 𝑑 0 , of 𝑝 such that 𝑍 𝑝 does not have any zero coefficient. In other words, it is the smallest value of 𝑝 such as each element of the initial internal state 𝑥 0 has influenced every element of 𝑥 𝑡 for 𝑡 ≥ 𝑑 0 . The depth, introduced in [BM15], is the smallest value, denoted by 𝑑 1 , of 𝑝 such that any entry of 𝑍 𝑝 are polynomials of degree at least 1. We are looking for the smallest values of 𝑑 0 and 𝑑 1 .

• Algebraic Degree. Considering the matrix resulting from successive powers of 𝐴 𝑆 and 𝑃 𝑆 , we are first interested in ensuring that at least one entry has the largest algebraic degree. To this end, we must add a cycle on the 𝑟-th vertex of the digraph 𝒢(Σ Λ), which equivalently means that the entry of 𝐴 𝑆 and 𝑃 𝑆 located at row 𝑟 and column 𝑟 must be an S-box. Furthermore, the evolution of this quantity, after successive iterations, must meet an ideal shape: it must increase by one at each iteration, must remain constant and equal to its maximum value as long as possible and finally must drop down to zero (let us recall that after 40 iterations, due to (A.20), the product reaches exactly zero).

• Full Rank Matrix. The fact that 𝐴 𝑆 is a full-rank matrix is a necessary condition to ensure a full diffusion of the internal state and to maximize the dependency between the involved terms at time 𝑡 and the involved terms at time 𝑡 + 1. Moreover, this condition guarantees that the encryption process does not collapse. By construction (see Appendix A.8) to ensure flatness, every element of the subdiagonal of 𝐼 𝐴 from the 𝑟-th one is 1. Hence, for 𝐴 𝑆 to be full-rank, each column and each row must contain at least one non-zero element. And yet, by construction, only the 𝑟 -1 first elements of the last column can be non-zero. Hence, one of them must be non-zero. From the digraph point of view, it means that at least one of the 𝑟 -1 first vertices must be connected to the last vertex.

The symbolic matrix 𝐴 𝑆 which has been finally selected is given in Appendix A.7.1. It has been obtained after 700000 random runs performed under the aforementioned constraints: best diffusion delay and depth, algebraic degree (especially increase by 1 at each iteration), full rank matrix. Several matrices correspond to the best choices (we add a sum indicator without weighing) and we finally choose the one with the best implementations for 𝐴 𝑆 and for 𝑃 𝑆 . The symbolic matrix 𝑃 𝑆 can be directly obtained by considering Equations (A.29). The matrix 𝐴 𝑆 involves 𝑛 𝑎 = 120 non-zero entries and its number of S-boxes is 𝐿 = 80. The matrix extracted from 𝐴 𝑆 and 𝑃 𝑆 by removing the first 𝑟 rows and columns have a special feature. The lower subdiagonal is full of coefficients 𝑆 (corresponding to S-boxes and denoted SB in the symbolic representation) and the subsubdiagonal just above is full of 1. Thus, each line has at least one S-box to ensure that the internal state 𝑥 𝑡 is updated in a non-linear way: this corresponds to a non-linear shift register.

The corresponding diffusion delay, 𝑑 0 = 7, could be considered as a good diffusion delay with regard to the synchronization delay that equals 40 (the system dimension). Indeed, the worst diffusion delay is equal to 40 and the best diffusion delay of 1 could only be reached with a matrix full of non-zero coefficients. Thus, we consider that a diffusion delay of 7 is a sufficiently good compromise between the best diffusion delay and a reasonable number of non-zero coefficients.

Let us notice that the dimension 𝑛 of the system is the upper bound of the diffusion delay. Indeed, due to (A.20), the product reaches exactly zero in 𝐺𝐹 (16) since the synchronization is achieved after at most 40 iterations. The depth is 𝑑 1 = 7 and is the best that we manage to achieve.

S-box.

Various classifications of 4-bit S-boxes exist in the literature [START_REF] Cannière | Analysis and Design of Symmetric Encryption Algorithms[END_REF][START_REF] Leander | On the Classification of 4 Bit S-Boxes[END_REF][START_REF] Markku-Juhani | Cryptographic Analysis of All 4 x 4 -Bit S-Boxes[END_REF]. For the sake of hardware optimization, the same S-box has been used to define the 𝐿 = 80 nonlinear functions 𝜙 𝑖 . Two kinds of criteria have been considered: theoretical and practical. On one hand, we have selected S-boxes to satisfy the maximum differential probability and the maximum (absolute) linear bias 2 -2 , the algebraic degree 3, and no fixed-point. Four S-boxes that satisfy those criteria and that have simple algebraic expressions (i.e. a minimal number of non-linear transformations) have been selected, each one corresponding respectively to the four classes proposed in [Saa].

From an implementation point of view, it turns out that the S-box depicted in Table A.1 induces the smallest gate count. It is the Piccolo S-box ([SIH + 11]). The area is around 23 Gate Equivalents (GEs)5 . It involves four NOR gates, three XOR gates and one XNOR gate. Let us notice that the masking method can be applied using only three shares, making this S-box suitable for efficient threshold (i.e. side-channel protected) implementations.

A.6 Conclusion

An instantiation, called Stanislas, of a dedicated Self Synchronizing Stream Ciphers (sssc) has been proposed. Its main peculiarity comes from the fact that it involves an automaton with finite input memory using non-triangular state transition functions. The construction is based on a general and systematic methodology that uses automata (called Linear Parameter Varying, lpv) admitting a matrix representation and a special property called flatness. The security analysis allows to conjecture that most of the usual attacks which apply in the stream cipher context have a complexity greater than the key exhaustive search for Stanislas. But, Stanislas could not be considered having a small hardware footprint.

However, when straightforward implementations are considered, Stanislas provides bigger throughput than the considered stream ciphers, and its intrinsic synchronization delay is much smaller than the sssc Moustique (40 clock cycles instead of 105) and the standard approach CFB1-AES128 (40 clock cycles instead of 128).

Moreover, the number of surviving Self Synchronizing Stream Ciphers after a phase of public cryptanalysis time is equal to zero. So, we hope that Stanislas will be the first one and we encourage the symmetric key cryptographic community to cryptanalyze it. A.8 Construction of the Matrices of the sssc A digraph 𝒢(Σ Λ) describing the structured linear system associated to the state equations (A.12), is the combination of a vertex set 𝒱 and an edge set ℰ. The vertices represent the states and the input components of Σ Λ while the edges describe the dynamic relations between these variables. One has 𝒱 = X ∪ {m} where X is the set of state vertices defined as X = {︀ x 1 , . . . , x n }︀ and m is the input vertex. The edge set is ℰ = ℰ 𝐴 ∪ ℰ 𝐵 , with ℰ 𝐴 = {︀ (x i , x j) |𝐴(𝑖, 𝑗) ̸ = 0 }︀ and ℰ 𝐵 = {︀ (m, x i) |𝐵(𝑖) ̸ = 0 }︀ . The entries of 𝐴 𝜌(𝑡) correspond to the weights of the edges in the digraph. For convenience, we will denote by v j , (𝑗 = 0, . . . , 𝑛) a vertex of the digraph 𝒢(Σ Λ) regardless of whether it is the input or a state vertex.

A.7 Appendix

Given a triplet (𝑛, 𝑟, 𝑛 𝑎) with 𝑛 the dimension of the state, 𝑟 the delay and 𝑛 𝑎 the number of non-zero entries of the matrix 𝐴, the construction of the digraph 𝒢(Σ Λ) related to the system Σ Λ involves the following steps.

The system Σ Λ is of dimension 𝑛 and thus, the digraph 𝒢(Σ Λ) involves 𝑛 + 1 vertices. The input is assigned to the vertex denoted by v 0 . The other 𝑛 vertices are denoted by v 1 , . . . , v n . Let v r be the vertex that corresponds to the flat output v r .

Step 1: For, 𝑖 = 0, . . . , 𝑛 -1, add the edges (v i , v i+1). There are 𝑟 edges which connect v 0 to v r . Hence, the delay of the automaton is 𝑟.

After Step 1, this line topology corresponds to quite trivial dynamical systems since it corresponds to state transition functions in the form of simple shifts. Let us recall that we aim at designing an automaton possibly involving state transition functions more general than 𝑇 -functions. A shift is a special and trivial 𝑇 -function. To this end, the following steps provide a way of adding edges (v i , v j) while guaranteeing flatness.

Step 2: Add the edges (v r+i , v r+i+1) for 𝑖 = 1, . . . , 𝑛 -𝑟 -1.

Step 2 allows vertex v j , 𝑗 = 𝑟 + 1, . . . , 𝑛 to have a predecessor. Indeed, if not so, the dynamics of the corresponding vertex v j would reduce to 𝑥 𝑗 𝑘+1 = 0 and would be clearly useless. The resulting path is a so-called main directed path and is depicted in Figure A.3. Step 3: Add the edges (v r , v i), 𝑖 = 1, . . . , 𝑛 that connect the vertex v r to any other vertices of the graph (except the vertex v 0 related to the input).

v 0 v 1 v 2 v r-1 v r v n
Step 4: For every vertex v i , 𝑖 = 1, . . . , 𝑟 -1, add the directed edge (v i , v j) for 𝑗 = 1, . . . , 𝑖.

The graph obtained after

Step 1-4 is depicted in Figure A.4.

Step 5: For every vertex v i , 𝑖 = 𝑟 + 1, . . . , 𝑛, add the directed edge (v i , v j) for 𝑗 = 1, . . . , 𝑟 and 𝑗 = 𝑖 + 2, . . . , 𝑛.

The resulting digraph after completion of Step 1-5 is depicted in Figure A.5. To sum up, the digraph 𝒢(Σ Λ) is parametrized by the triplet (𝑛, 𝑟, 𝑛 𝑎). The number of vertices of the digraph is equal to 𝑛 + 1. Indeed, there are 𝑛 vertices assigned to the state components and one assigned to the input. The delay 𝑟 is the number of edges in the main directed path. The integer 𝑛 𝑎 defines the desired number of edges in the digraph 𝒢(Σ Λ). It must satisfy 𝑛 𝑎 ≤ 𝑛 𝑀 , where 𝑛 𝑀 is the maximal number of edges resulting from the construction Step 1-5. A simple counting leads to: 𝑛 𝑀 = 𝑛(𝑛 + 1) 2 + 𝑟. (A.30)

v 0 v 1 v 2 v r-1 v r v r+1 v i v n
v 0 v 1 v 2 v r-1 v r v r+1 v i v n
During the construction, at each step, we can decide whether we actually add the edges or not. That introduces flexibility in the perspective of providing distinct graphs and thus, distinct sssc as detailed in Subsection A.2.3.

Finally, the matrices 𝐼 𝐴 and 𝐼 𝐵 of the structural system Σ Λ can be extracted from the adjacency matrix, denoted by ℐ, associated to the digraph 𝒢(Σ Λ). Indeed, the adjacency matrix ℐ associated to the digraph 𝒢(Σ Λ) is the (𝑛 + 1) × (𝑛 + 1) matrix

ℐ = ⎛ ⎜ ⎜ ⎜ ⎝ 0 𝐼 𝑡 𝐵 0 𝐼 𝑡 𝐴 . . . 0 ⎞ ⎟ ⎟ ⎟ ⎠ (A.31)
where 𝐼 𝑡 𝐴 and 𝐼 𝑡 𝐵 stands respectively for the transpose of the structured matrices 𝐼 𝐴 and 𝐼 𝐵 . The entries ℐ 𝑖𝑗 are defined as follows for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 ℐ 𝑖𝑗 = {︂ 1 if there exists an edge from v j to v i 0 otherwise. (A.32)

The adjacency matrix associated to 𝒢(Σ Λ), obtained after completion of Step 1-5, is given by

Figure 1 :

 1 Figure 1: Alice veut envoyer un message à Bob, chiffré avec une clef 𝐾 𝐴 . Seul Bob peut retrouver le message à l'aide de sa clef de déchiffrement 𝐾 𝐵 . Pour un chiffrement symétrique, Alice et Bob partagent la même clef secrète, 𝑖.𝑒. 𝐾 𝐴 = 𝐾 𝐵 .

𝐶Figure 2 :

 2 Figure 2: Un chiffrement par blocs itératif: la fonction de tour 𝐹 est appliquée successivement, à chaque fois avec une sous-clef 𝑘 𝑖 différente dérivée de la clef de chiffrement 𝐾.

Figure 3 :

 3 Figure 3: Fonction de tour de l'Aes.

 𝑒 = 𝑀 ⊕ 𝑀 ′ 𝛿 𝑠 = 𝐶 ⊕ 𝐶 ′

Figure 4 :

 4 Figure 4: Une differentielle (𝛿 𝑒 , 𝛿 𝑠) sur un chiffrement 𝐸, paramétré par une clef 𝐾.

Figure 5 :

 5 Figure 5: Fonction de tour utilisée dans Lilliput-AE.

Figure 6 :

 6 Figure 6: Description d'une étape de Shadow-512.

Figure 7 :

 7 Figure 7: Configurations de l'attaque boomerang dans sa forme de base (gauche) et telle que décrite dans l'attaque sandwich (droite).

Figure 8 :

 8 Figure 8: Exemple d'egfn et les matrices associées.

1

 . si la matrice 𝒩 est égal à 𝒩 = (︀ ℐ 0 𝒜 ℐ)︀ ∈ Z[𝐹, 𝐼] où ℐest la matrice identité de taille 𝑘 2 × 𝑘 2 et 𝒜, le quart inférieur gauche de 𝒩 , est égal à 𝒜 =

 Part II: Contributions to the Nist Lightweight Cryptography Standardization Process List of Figures 1.1 Secure communication over an insecure channel. 1.2 Encryption in the ecb mode of operation. 1.3 An example of the ecb encryption mode. 1.4 Encryption in the cbc mode of operation. 1.5 Encryption in the cfb mode of operation. 1.6 Encryption in the ofb mode of operation. 1.7 Encryption in the ctr mode of operation. 1.8 An iterated block cipher. 1.9 A Feistel round. 1.10 One spn round. 1.11 One round of the Aes. 1.12 Key schedule for the Aes in the 128-bit keys version. 2.1 Authenticated Encryption with Associated Data. 2.2 Integrity-Aware Parallelizable Mode (iapm) as shown in [Jut08]. 2.3 Message processing with padding in ocb3. 2.4 Associated data processing with padding in ocb3. 2.5 Handling of the associated data for ΘCB3. 2.6 Message processing for ΘCB3 with padding when the message length is not a multiple of the block size. 2.7 Handling of the associated data for sct-2. 2.8 Message processing in the authentication part for sct-2. 2.9 Message processing with padding in the encryption part for sct-2. 2.10 One round of the Present cipher. 2.11 One round of the Skinny cipher. 2.12 The Skinny tweakey schedule. 2.13 One round of the LBlock cipher. 2.14 The OneRoundEGFN function of Lilliput. 2.15 Lilliput Key Schedule . 3.1 A differential (𝛿 0 , 𝛿 𝑡) on 𝑡 rounds of a cipher 𝐸. 3.2 A differential attack on the last round of an iterated block cipher. 3.3 A related-key differential (𝛿 0 , 𝛿 𝑡) on 𝑡 rounds of a cipher 𝐸. 3.4 Basic boomerang distinguisher. 3.5 Basic boomerang distinguisher. 3.6 An integral characteristic on a Feistel network with a nonlinear component 𝐹 . . . 4.1 Handling of the associated data in the nonce-respecting mode. xxxi 4.2 Message processing for the nonce-respecting mode. 4.3 Ciphertext processing for the nonce-respecting mode. 4.4 Handling of the associated data in the nonce-misuse resistant mode. 4.5 Message processing in the authentication part of the nonce-misuse resistant mode. 4.6 Message processing in the encryption part of the nonce-misuse resistant mode. . . 4.7 Ciphertext processing in the decryption part of the nonce-misuse resistant mode. 4.8 The egfn used in Lilliput-TBC that reaches full diffusion in 𝑑 = 4 rounds. . . 4.9 Lilliput-TBC Encryption process. 4.10 The tweakey schedule. 𝑓 represents the round function OneRoundEGFN. 4.11 Some structures to build 2𝑛-bit S-boxes from 𝑛-bit ones. 4.12 Quadatric functions used to build the cubic 4-bit S-boxes. 4.13 The three inner 4-bit S-boxes. 4.14 The tweakey schedule of Lilliput-AE. 4.15 Tag collision using a 1-round iterative related tweakey differential. 5.1 State Organization of Shadow-512 (left) and of Shadow-384 (right). 5.2 Description of one step of Shadow-512. 5.3 Evolution of two rounds with a starting 4-identical state, where the four bundles are equal in the beginning. 5.4 A 5-step distinguisher against the 512-bit permutation Shadow. 5.5 A 7-step distinguisher against the 512-bit permutation Shadow. 5.6 Another trail contributing to the probability of the 7-step distinguisher of Shadow-512.133 5.7 A (1-step shifted) 6-step distinguisher for Shadow-384. The thick rectangles depict 2-identical states. 5.8 S1P mode in our attack setting . 5.9 4-step path . 6.1 the SKINNY round function with its five transformations [Jea16]. 7.1 Configuration of the basic boomerang attack (left) and of the sandwich attack (right). Circled numbers correspond to a numbering that helps referencing states in the following discussions. 7.2 High-level description of one round of LBlock (left) and description of the 𝐹 function (right). 7.3 The 8-round related-key characteristic used in Liu et al.'s attack, used for both 𝐸 0 and 𝐸 1 with Δ𝐾 1 = Δ𝐾 9 , Δ𝐾 2 = Δ𝐾 10 , • • • , Δ𝐾 8 = Δ𝐾 16 7.4 Middle rounds of the boomerang distinguisher proposed in [LGW12]. 7.5 The value of 𝐵𝐶𝑇 (Δ 𝑖 , ∇ 𝑜) corresponds to the number of S-box inputs 𝑥 that make the boomerang over 1 round come back. 7.6 Boomerang switch over a generic Feistel round. 7.7 One round of the Feistel construction of type I, type II and source-heavy for variants with 4 branches. 7.

xxxii 7 .

 7 10 Boomerang Switch over two rounds of a balanced Feistel with two branches. The differences denoted with straight lines are imposed and fixed. 7.11 Concrete 2-round boomerang switch on LBlock, derived from [CM13]. 7.12 Setting for a boomerang Switch over more than two rounds of a balanced Feistel with two branches. The differences denoted with straight lines are imposed and fixed.195 7.13 Setting for the switch over three rounds of LBlock-s. 8.1 An example of a gfn round with 𝑘 = 8 blocks. 8.2 One round of a type-1 gfn with 𝑘 = 4 blocks. 8.3 One round of a type-2 gfn with 𝑘 = 4 blocks. 8.4 One round of a type-3 gfn with 𝑘 = 4 blocks. 8.5 One round of a source-heavy gfn with 𝑘 = 4 blocks. 8.6 One round of a target-heavy gfn with 𝑘 = 4 blocks. 8.7 One round of a Nyberg gfn with 𝑘 = 4 blocks. 8.8 Decomposition of the transition matrix of the gfn given in Figure 8.1. 8.9 An example of an egfn with its three layers and the corresponding matrices. . . 8.10 One round of an egfn that reaches full diffusion in 4 rounds. 8.11 The round function of Lilliput, that reaches full diffusion in 4 rounds. The permutation 𝜋 is given as a product of cycles. 8.12 The 𝒜 matrix of Lilliput. 8.13 Layout of a matrix from set 1. Each column can only contain one 𝐹 coefficient.

 An interesting family of matrices 𝒜 with 8 𝐹 coefficients. The last coefficient can be placed at any red-marked position. 8.20 A target-heavy construction that reaches full diffusion in 𝑑 = 4 rounds and has no integral property for 6 rounds . 8.21 Cancelation of two differentials in the linear layer, leading to an iterative probability-1 differential characteristic for the whole cipher. 8.22 An egfn structure with a permutation 𝜋 that helps avoid the cancelation of equal differences in the internal state. A.1 The complete ciphering process of Stanislas with 𝜙 𝑖 (𝑥 𝑗 𝑡) = 𝑆(𝑥 𝑗 𝑡 ⊕ 𝑆𝐾 𝑖). A.2 The Matrix 𝐴 𝑆 . A.3 Digraph obtained after completion of Step 1-2. The vertex v r corresponds to the flat output . A.4 Graph obtained after Step 1-4. A.5 Graph obtained after completion of Step 1-5. .

1. 1

 1 From Ancient to Modern Cryptography 3 1.2 General Concepts of Cryptography 5 1.2.1 Purpose . 5 1.2.2 Symmetric Cryptography . 6 1.2.3 Security and adversarial models . 8 1.3 On the Design of Block Ciphers 9 1.3.1 Modes of operation . 10 1.3.2 Iterated block ciphers . 12

Figure 1

 1 Figure 1.1: A classic setting in cryptography: Alice wants to send a message to Bob. In symmetric cryptography, Alice and Bob share the same secret key, 𝑖.𝑒. 𝐾 𝐴 = 𝐾 𝐵 .

Figure 1 . 2 :

 12 Figure 1.2: Encryption in the ecb mode of operation.

 (a) A picture of a cat. (b) The same picture, encrypted using Aes-128 in ecb mode: the cat remains visible.

Figure 1 . 3 :

 13 Figure 1.3: Comparison of a picture before and after encryption using the ecb mode.

Figure 1 . 4 :

 14 Figure 1.4: Encryption in the cbc mode of operation.

Figure 1 . 5 :

 15 Figure 1.5: Encryption in the cfb mode of operation.

Figure 1 . 6 :

 16 Figure 1.6: Encryption in the ofb mode of operation.

Figure 1 .

 1 Figure 1.10: One spn round.

Figure 1 . 11 :

 111 Figure 1.11: One round of the Aes.

Figure 1 . 12 :

 112 Figure 1.12: Key schedule for the Aes in the 128-bit keys version. The 11 round keys 𝑘 𝑖 , 𝑖 ∈ {0, • • • , 10}, are generated from the master key 𝐾. The key state at round 𝑖 is represented as a 4 × 4 matrix whose coefficients are denoted 𝑘 𝑗 𝑖 , as shown in Figure 1.12.

2.

 Bob uses the decryption function 𝒟 𝐾 on (𝑁, 𝐴, 𝐶, 𝑇), which computes an authentication tag 𝑇 ′ and compares it to the tag 𝑇 that has been received. If the tag is valid 𝑖.𝑒. 𝑇 = 𝑇 ′ , then 𝒟 𝐾 returns the message 𝑀 . If tag verification fails, 𝒟 𝐾 outputs an error symbol denoted by ⊥ and securely erases all intermediate results.

Figure 2 . 1 :

 21 Figure 2.1: Authenticated Encryption with Associated Data.

Figure 2

 2 Figure 2.2: Integrity-Aware Parallelizable Mode (iapm) as shown in [Jut08].

Figure 2

 2 Figure 2.14: The OneRoundEGFN function of Lilliput.

Figure 3

 3 Figure 3.1: A differential (𝛿 0 , 𝛿 𝑡) on 𝑡 rounds of a cipher 𝐸.

Figure 3

 3 Figure 3.2: A differential attack on the last round of an iterated block cipher. 𝐹 -1 k𝑟-1 denotes the

FigureFigure 3 . 6 :

 36 Figure 3.6: An integral characteristic on a Feistel network with a nonlinear component 𝐹 .

4. 1

 1 Introduction . 62 4.2 Specifications . 63 4.2.1 Recommended Parameters . 64 4.2.2 The Lilliput-AE Authenticated Encryption scheme 65 4.2.3 The Lilliput-TBC Tweakable Block Cipher 67 4.3 Design Rationale and Security Analysis 77 4.3.1 Design Rationale of the Modes of Operation 77 4.3.2 Design Rationale of Lilliput-TBC 78 4.3.3 Security Analysis of the Modes of Operation 85 4.3.4 Security Analysis of Lilliput-TBC 86 4.4 Implementations . 94 4.4.1 Software Implementations . 94 4.4.2 Hardware Implementations . 106 4.4.3 Threshold Implementations . 109 4.5 External Cryptanalysis of Lilliput-AE 113 4.5.1 Lilliput-AE v1 . 113 4.5.2 External analysis of Lilliput-AE 115 4.5.3 Impact . 115 4.6 Conclusion . 116

Figure 4 .

 4 1. The same applies for the message and the ciphertext as shown in Figure 4.2 and Figure 4.3.

Figure 4 . 1 :

 41 Figure 4.1: Handling of the associated data in the nonce-respecting mode.

Figure 4 . 2 :

 42 Figure 4.2: Message processing for the nonce-respecting mode.

Figure 4 . 3 :Algorithm 1

 431 Figure 4.3: Ciphertext processing for the nonce-respecting mode. Algorithm 1 The encryption algorithm ℰ I 𝐾 (𝑁, 𝐴, 𝑀). In the tweak inputs, the value 𝑁 is encoded on 120 bits, the integer values 𝑗 and 𝑙 are encoded on 68 bits, while the integer values 𝑖 and 𝑙 𝑎 are encoded on 188 bits. /* Associated data */ 𝐴 0 || • • • ||𝐴 𝑙𝑎-1 ||𝐴 * ← 𝐴 where each |𝐴 𝑖 | = 𝑛 and |𝐴* | < 𝑛 Auth ← 0 (𝑛) for 𝑖 = 0 to 𝑙 𝑎 -1 do Auth ← Auth ⊕𝐸 𝐾 (0010||𝑖, 𝐴 𝑖) end if 𝐴 * ̸ = 𝜖 then Auth ← Auth ⊕𝐸 𝐾 (0110||𝑙 𝑎 , 𝑝𝑎𝑑10 * (𝐴 *)) end /* Message */ 𝑀 0 || • • • ||𝑀 𝑙-1 ||𝑀 * ← 𝑀 where each |𝑀 𝑗 | = 𝑛 and |𝑀 * | < 𝑛 Checksum ← 0 (𝑛) for 𝑗 = 0 to 𝑙 -1 do Checksum ← Checksum ⊕𝑀 𝑗 𝐶 𝑗 ← 𝐸 𝐾 (0000||𝑁 ||𝑗, 𝑀 𝑗) end if 𝑀 * = 𝜖 then Final ← 𝐸 𝐾 (0001||𝑁 ||𝑙, Checksum) 𝐶 * ← 𝜖 else Checksum ← Checksum ⊕𝑝𝑎𝑑10 * (𝑀 *) Pad ← 𝐸 𝐾 (0100||𝑁 ||𝑙, 0 (𝑛)) 𝐶 * ← 𝑀 * ⊕ ⌈Pad⌉ |𝑀*| Final ← 𝐸 𝐾 (0101||𝑁 ||𝑙 + 1, Checksum) end /*Tag generation */ tag ← Final ⊕ Auth return (𝐶 0 || • • • ||𝐶 𝑙-1 ||𝐶 * , tag)

Figure 4 . 4 .

 44 The processing of the message is shown in Figure 4.5 and Figure 4.6 and decryption is shown in Figure 4.7.

Figure 4 . 4 :

 44 Figure 4.4: Handling of the associated data in the nonce-misuse resistant mode.

 4) ||𝑁 𝐾 tag (b) With padding.

Figure 4 . 5 :

 45 Figure 4.5: Message processing in the authentication part of the nonce-misuse resistant mode.

Figure 4 . 6 :

 46 Figure 4.6: Message processing in the encryption part of the nonce-misuse resistant mode.

Figure 4 . 7 :

 47 Figure 4.7: Ciphertext processing in the decryption part of the nonce-misuse resistant mode.

Figure 4 . 9 :

 49 Figure 4.9: Lilliput-TBC Encryption process.

Figure 4 .

 4 Figure 4.10: The tweakey schedule. 𝑓 represents the round function OneRoundEGFN.

Figure 4 . 11 :

 411 Figure 4.11: Some structures to build 2𝑛-bit S-boxes from 𝑛-bit ones.

 𝑄 = 042e8ca6173d9fb5

Figure 4 . 12 :

 412 Figure 4.12: Quadatric functions used to build the cubic 4-bit S-boxes.

4 = 4 =

 44 𝑄 ∘ 𝑃 ∘ 𝑄 081f4c792b36e5da 𝐹 ∘ (⊕1) ∘ 𝐺 20b003a0e1604a25

Figure 4 .

 4 Figure 4.13: The three inner 4-bit S-boxes.

 27: 𝑇 𝐹 [𝑥][𝑦] = 𝑓 𝐹 (𝑥, 𝑦) In this way, the memory space required to store all the look-up tables equals |𝑇 𝐹 | + |𝑇 𝐺 | + |𝑇 𝑄 | + |𝑃 | = 256 + 64 + 128 + 16 = 464 bytes. Finally, the output shares of the 8-bit S-box can be computed by running the Feistel network step by step as detailed by Section 4.4.3. 28: 𝑇 𝐺 [𝑥][𝑦] = 𝑓 𝐺 (𝑥 ≪ 1, 𝑦) 29: 𝑇 𝑄 [𝑥][𝑦] = 𝑓 𝑄 (𝑥 + 4, 𝑦) Application to the Entire Algorithm

Figure 4 .

 4 Figure 4.14: The tweakey schedule of Lilliput-AE.

Figure 4 . 15 :

 415 Figure 4.15: Tag collision using a 1-round iterative related tweakey differential.

5. 1

 1 Introduction . 117 5.2 Preliminaries . 120 5.2.1 Specification of Shadow-384 and Shadow-512 120 5.2.2 Differential Distinguishers . 121 5.3 Structural Observations . 122 5.3.1 Super S-box . 122 5.3.2 4-Identical States . 122 5.3.3 3-Identical States . 124 5.3.4 2-Identical States . 125 5.4 A Distinguisher Against Full Shadow-512 (and More) 125 5.4.1 A 5-Step Truncated Differential Property 126 5.4.2 A Distinguisher for 6-and 7-Step Shadow 128 5.4.3 A Distinguisher for 6-step Shadow-384 134 5.5 Forgeries with 4-step Shadow in the Nonce Misuse Setting 137 5.6 Conclusion . 141 All the analyses presented in this chapter are practical and have been implemented and tested. Their source code is available at: https://who.paris.inria.fr/Leo.Perrin/code/spook/index.html Our results have been acknowledged and discussed by the designers of Spook in [BBB + 20].

Figure 5 . 1 :

 51 Figure 5.1: State Organization of Shadow-512 (left) and of Shadow-384 (right).

Figure 5 . 2 :

 52 Figure 5.2: Description of one step of Shadow-512.

=

 Figure 5.3: Evolution of two rounds with a starting 4-identical state, where the four bundles are equal in the beginning.

4 A

 4 Distinguisher Against Full Shadow-512 (and More)In this section, we present a practical distinguisher which allows us to exhibit pairs (𝑥, 𝑥 ′) of 512-bit inputs of the Shadow-512 permutation such that 𝑥 ⊕ 𝑥 ′ = (*, *, *, 0) and 𝜋(𝑥) ⊕ 𝜋(𝑥 ′) = 𝐷(0, 0, 0, *) , (5.1)for the full version and such that 𝑥 ⊕ 𝑥 ′ = (*, *, *, 0) and 𝜋(𝑥) ⊕ 𝜋(𝑥 ′) = 𝐷(*, *, *, 0) , (5.2)

StartFigure 5 . 4 :

 54 Figure 5.4: A 5-step distinguisher against the 512-bit permutation Shadow.

Lemma 5. 2 .

 2 If 𝑥 ∈ F 128 2 and 𝛼 ∈ F 128 2 are such that (𝐿 ∘ 𝑆)(𝑥) ⊕ (𝐿 ∘ 𝑆)(𝑥 ⊕ 𝛼) = 𝛽 and if 𝛽 is set to 0 on the 4 S-boxes that can receive the round constant 𝑐, then the value of 𝜎 𝑏 (𝑥) ⊕ 𝜎 𝑏 (𝑥 ⊕ 𝛼) does not depend on the bundle index 𝑏.

4 .

 4 1. Choose 𝛽 ∈ F 128 2 such that it is set to 0 on the 4 S-boxes of lowest weight 2. Choose a random 𝑦 ∈ F 128 2 and a random 𝑧 ∈ F 128 2 3. Compute 𝑥 = 𝜎 -1 0 (𝑦) and 𝑥 + 𝛼 = 𝜎 -1 0 (𝑦 + 𝛽), Set the two states at step 2 to be 𝑋 2 = (𝑥, 𝑥, 𝑥, 𝑧) and 𝑋 ′ 2 = (𝑥 + 𝛼, 𝑥 + 𝛼, 𝑥 + 𝛼, 𝑧) .

StartFigure 5

 5 Figure 5.5: A 7-step distinguisher against the 512-bit permutation Shadow.

StartFigure 5 . 6 :

 56 Figure 5.6: Another trail contributing to the probability of the 7-step distinguisher of Shadow-512.

StartFigure 5 . 7 :

 57 Figure 5.7: A (1-step shifted) 6-step distinguisher for Shadow-384. The thick rectangles depict 2-identical states.

 Figure 5.8: S1P mode in our attack setting

Figure 6

 6 Figure 6.1: the SKINNY round function with its five transformations [Jea16].

Figure 7 . 1 :

 71 Figure 7.1: Configuration of the basic boomerang attack (left) and of the sandwich attack (right). Circled numbers correspond to a numbering that helps referencing states in the following discussions.

Figure 7 .

 7 Figure 7.2: High-level description of one round of LBlock (left) and description of the 𝐹 function (right).

Figure 7

 7 Figure 7.3: The 8-round related-key characteristic used in Liu et al.'s attack, used for both 𝐸 0 and 𝐸 1 with Δ𝐾 1 = Δ𝐾 9 , Δ𝐾 2 = Δ𝐾 10 , • • • , Δ𝐾 8 = Δ𝐾 16 .

Figure 7 . 4 :

 74 Figure 7.4: Middle rounds of the boomerang distinguisher proposed in [LGW12].

Figure 7 . 5 :

 75 Figure 7.5: The value of 𝐵𝐶𝑇 (Δ 𝑖 , ∇ 𝑜) corresponds to the number of S-box inputs 𝑥 that make the boomerang over 1 round come back.

Figure 7 . 6 :

 76 Figure 7.6: Boomerang switch over a generic Feistel round.

FFigure 7 . 7 :

 77 Figure 7.7: One round of the Feistel construction of type I, type II and source-heavy for variants with 4 branches.

Figure 7 . 8 :

 78 Figure 7.8: Boomerang switch over one round of the source-heavy construction.

Corollary 7 . 2 ∑︁

 72 14. Let 𝑆 ∈ ℬ(𝑛, 𝑚). Then for any non-zero Δ ∈ F 𝑛*

Figure 7 .

 7 Figure 7.10: Boomerang Switch over two rounds of a balanced Feistel with two branches. The differences denoted with straight lines are imposed and fixed.

Figure 7 . 11 :

 711 Figure 7.11: Concrete 2-round boomerang switch on LBlock, derived from [CM13].

Algorithm 19 4 .

 194 Song et al.'s [SQH19] algorithm to compute the size of 𝐸 𝑚 . 1. Extend both 𝐸 0 and 𝐸 1 with probability 1. 2. Initialize 𝐸 𝑚 with the last round of 𝐸 0 and the first round of 𝐸 1 . 3. Prepend one round to 𝐸 𝑚 (a) Check whether the lower crossing differences for the newly added round are distributed uniformly. If they are, peel off the first round of 𝐸 𝑚 and go to step 4. (b) Go to step 3. Append one more round to 𝐸 𝑚 (a) Check whether the upper crossing differences for the newly added round are distributed uniformly. If they are, peel off the last round of 𝐸 𝑚 and go to step 5. (b) Go to step 4. 5. Compute the probability of 𝐸 𝑚 .

Figure 7 . 12 :

 712 Figure 7.12: Setting for a boomerang Switch over more than two rounds of a balanced Feistel with two branches. The differences denoted with straight lines are imposed and fixed.

7. 7 . 1

 71 Finding the Best 7-round Differential Characteristics for 𝐸 0 and 𝐸 1

8. 1

 1 Background on Gfns and their Extensions 202 8.1.1 Generalized Feistel Networks . 202 8.1.2 Full diffusion delay . 204 8.1.3 Improvement of the diffusion delay 205 8.1.

 Figure 8.1: An example of a gfn round with 𝑘 = 8 blocks.

Figure 8 .

 8 Figure 8.1 depicts an example of what is called a type-2 gfn with 𝑘 = 8 branches.The type of a gfn is defined by the way the Feistel functions interact with the 𝑘 input blocks during one round of the gfn. A brief description of each of the main types of gfns is given in the rest of this section. For the sake of simplicity, the permutation layer considered will be the cyclic shift to the left.

Figure 8 . 2 :

 82 Figure 8.2: One round of a type-1 gfn with 𝑘 = 4 blocks.

Figure 8 . 3 :

 83 Figure 8.3: One round of a type-2 gfn with 𝑘 = 4 blocks.

Figure 8 . 4 :

 84 Figure 8.4: One round of a type-3 gfn with 𝑘 = 4 blocks.

𝐹Figure 8 . 5 :

 85 Figure 8.5: One round of a source-heavy gfn with 𝑘 = 4 blocks.

Figure 8 . 6 :

 86 Figure 8.6: One round of a target-heavy gfn with 𝑘 = 4 blocks.

Figure 8 . 11 :

 811 Figure 8.11: The round function of Lilliput, that reaches full diffusion in 4 rounds. The permutation 𝜋 is given as a product of cycles.

Figure 8 .

 8 Figure 8.13: Layout of a matrix from set 1. Each column can only contain one 𝐹 coefficient. Red coefficients are either 𝐼 or 𝐹 , blue coefficients equal 𝐹 if the red coefficient on the same column equals 𝐼 and 0 otherwise.

Figure 8 . 15 :

 815 Figure 8.15: Possible placements for 𝐹 coefficients for a matrix from set 2 in the simple case. Each row can only contain one 𝐹 coefficient. Red coefficients are either 𝐼 or 𝐹 , blue coefficients equal 𝐹 if the red coefficient on the same row equals 𝐼, 0 otherwise.

 Figure 8.16 shows a matrix 𝒜 with 𝑛 𝐹 = 1 𝐹 coefficient and the corresponding egfn scheme. Here, ℰ = {𝑥 4 } and ℛ = {𝑥 15-4 } = {𝑥 11 }.

Figure 8 .

 8 Figure 8.16: One example of a matrix for the 𝑛 𝐹 = 1 case of set 2 and its associated egfn. The permutations are given as a product of cycles.

Figure 8 .

 8 Figure 8.20: A target-heavy construction that reaches full diffusion in 𝑑 = 4 rounds and has no integral property for 6 rounds

Figure 8 .

 8 Figure 8.21: Cancelation of two differentials in the linear layer, leading to an iterative probability-1 differential characteristic for the whole cipher.

6 𝐹 7 Figure 8

 678 Figure8.22: An egfn structure with a permutation 𝜋 that helps avoid the cancelation of equal differences in the internal state.

 𝜙 𝑖 : F 𝑠+1 → F (𝑐 𝑡 , 𝑐 𝑡-1 , • • • , 𝑐 𝑡-𝑠) ↦ → 𝑆(𝑐 𝑡 , 𝑐 𝑡-1 , • • • , 𝑐 𝑡-𝑠 , 𝑆𝐾 𝑖) (A.21)

 𝑖 𝑡+1 = 𝑆(𝑥 𝑖-1 𝑡 ⊕ 𝑆𝐾 𝑘) ⊕ 𝑓 (𝑥 𝑖-2 𝑡) or 𝑆(𝑥 𝑖-1 𝑡 ⊕ 𝑆𝐾 𝑘) ⊕ 𝑓 (𝑥 𝑖-2 𝑡) ⊕ 𝑆(𝑥 𝑗 𝑡 ⊕ 𝑆𝐾 𝑘 ′)for given 𝑗, 𝑘 and 𝑘 ′ and where 𝑓 is the identity or the S-box 𝑆. It could be seen as a generalization of the so-called 𝐿-scheme with a circular permutation used in the block cipher MISTY1 with balanced inputs/outputs.The complete ciphering process of Stanislas is illustrated on Fig. A.1.

 Figure A.1: The complete ciphering process of Stanislas with 𝜙 𝑖 (𝑥 𝑗 𝑡) = 𝑆(𝑥 𝑗 𝑡 ⊕ 𝑆𝐾 𝑖).

A. 7 .

 7 1 The Matrix 𝐴 𝑆 The matrix 𝐴 𝑆 is given in Fig. A.2.

Figure A. 2 :

 2 Figure A.2: The Matrix 𝐴 𝑆 .

Figure A. 3 :

 3 Figure A.3: Digraph obtained after completion of Step 1-2. The vertex v r corresponds to the flat output

Figure A. 4 :

 4 Figure A.4: Graph obtained after Step 1-4.

Figure A. 5 :

 5 Figure A.5: Graph obtained after completion of Step 1-5.

Table . xx

 . Nb Tours 𝑂𝑏𝑗 𝑠𝑡𝑒𝑝1 Nb sol. Step 1 Temps Step 2 Meilleure 𝑃 𝑟

	SK SK SK SK SK SK TK1 TK1 TK1 TK1 TK1 TK1 TK1 TK1 TK2 TK2 TK2 TK2 TK2 TK2 TK2 TK2 TK2 TK2 TK2	9 10 11 12 13 14 8 9 10 11 12 13 14 15 9 10 11 12 13 14 15 16 17 18 19	41 → 43 46 → 48 51 → 52 55 → 56 58 → 61 61 → 63 13 → 16 16 → 20 23 → 27 32 → 36 38 → 46 41 → 53 45 → 59 49 → 63 9 → 10 12 → 17 16 → 25 21 → 35 25 → 44 31 → 54 35 → 56 40 → 63 43 → 63 47 → 63 52 → 63	52 48 15 11 18 6 14 6 6 531 186 482 2 385 482 11 518 612 7 542 053 7 132 4203 1 922 762 -----62 681 709 772 163	16s 11s 4s 6s 2m27s 21s 4s 3s 4s 37s 213m 2 jours 20 jours 25 jours 3s 11s 6m 512m non résolu non résolu non résolu non résolu non résolu non résolu 280m	2 -86 2 -96 2 -104 2 -112 2 -123 < 2 -128 2 -33 2 -41 2 -55 2 -74 2 -93 2 -106.2 2 -120 < 2 -128 2 -20 2 -34.4 2 -51.4 2 -70.4 2 -89.7 2 -108.4 2 -113.2 2 -127.6 --< 2 -128

Table 2 :

 2

Résultats sur SKINNY-128 dans les 4 modèles d'attaque. "Temps Step 2" correspond au temps pris par Step2 pour toutes les solutions de Step1-enum lorsque 𝑂𝑏𝑗 𝑠𝑡𝑒𝑝1 prend la valeur indiquée dans la première colonne. La colonne "Meilleure 𝑃 𝑟" indique la meilleure probabilité trouvée parmi les chemins différentiels.

 Cid et. al de la Boomerang Connectivity Table (BCT) [CHP + 18]. Definition 0.2 (Boomerang Connectivity Table [CHP + 18]). Soit 𝑆 une permutation de F 𝑛 2 , et Δ 𝑖 , ∇ 𝑜 ∈ F 𝑛 2 . La Boomerang Connectivity Table (BCT) de 𝑆 est donnée par une table de taille 2 𝑛 × 2 𝑛 dans laquelle l'entrée à la position (Δ 𝑖 , ∇ 𝑜) est donnée par :

 2.1 Lightweight Encryption Primitives 20 2.1.1 Design criteria . 20 2.1.2 Overview of various design strategies 22 2.2 On Authentication . 23 2.2.1 Authenticated encryption . 23 2.2.2 Generic composition . 24 2.2.3 Dedicated ae(ad) solutions . 25 2.3 Towards New Standards . 30 2.3.1 Iso/iec cryptographic standards 31 2.3.2 Open competitions . 31

2.4 Some

Existing Lightweight Algorithms 32 2.4.1 Present . 32 2.4.2 Skinny . 33 2.4.3 LBlock . 35 2.4.4 Lilliput . 37

 .6.

		𝑀 0					𝑀 𝑙-1		𝑀 * 10 *	Checksum
										0 (𝑛)
	𝐸	0||𝑁 ||0 𝐾	𝐸	0||𝑁 ||𝑙-1 𝐾	𝐸 𝐾 4||𝑁 ||𝑙	𝐸	5||𝑁 ||𝑙+1 𝐾
										pad	final
											Auth
		𝐶 0					𝐶 𝑙-1		𝐶 *	tag
	Figure 2.6: Message processing for ΘCB3 with padding when the message length is not a multiple
	of the block size.									
	𝐴 0			𝐴 𝑙𝑎-1							𝐴 0	𝐴 𝑙𝑎-1	𝐴 * 10 *
	𝐸 𝐾 2||0	. . .	𝐸 𝐾 2||𝑙𝑎-1							𝐸 𝐾 2||0	. . .	𝐸 𝐾 2||𝑙𝑎-1	6||𝑙𝑎 𝐾 𝐸
	0 (𝑛)	. . .				Auth			0 (𝑛)	. . .	Auth
	(a) Without padding.					(b) With padding.
	Figure 2.7: Handling of the associated data for sct-2.
	𝑀 0			𝑀 𝑙-1						𝑀 0	𝑀 𝑙-1	𝑀 * 10 *
	𝐸 𝐾 0||0	. . .		𝐸 𝐾 0||𝑙-1						𝐸 𝐾 0||0	. . .	𝐸 𝐾 0||𝑙-1	4||𝑙 𝐾 𝐸
	Auth	. . .							Auth	. . .
						𝐸 𝐾 1||0 (4) ||𝑁		1||0 (4) ||𝑁 𝐾 𝐸
							tag			tag
	(a) Without padding.					(b) With padding.
	Figure 2.8: Message processing in the authentication part for sct-2.
		𝐴 0		0 (8) ||𝑁	𝐴 𝑙𝑎-1			0 (8) ||𝑁	𝐴 0 0 (8) ||𝑁	𝐴 𝑙𝑎-1	𝐴 * 10 *
		𝐸 𝐾 2||0 𝑀 0	. . . 𝐸 1||tag 𝐸 𝐾 2||𝑙𝑎-1 𝐾		𝐸 𝐾 1||tag⊕(𝑙-1) 𝑀 𝑙-1	𝑀 *	𝐸 𝐾 2||0 1||tag⊕𝑙 𝐾 𝐸	. . .	𝐸 𝐾 2||𝑙𝑎-1	𝐸	6||𝑙𝑎 𝐾
	0 (𝑛)			. . . 𝐶 0				. . .	Auth	𝐶 𝑙-1	0 (𝑛)	𝐶 *	. . .	Auth
	(a) Without padding. Figure 2.9: Message processing with padding in the encryption part for sct-2. (b) With padding.
				Figure 2.5: Handling of the associated data for ΘCB3.
	Sct. Contrary to Θcb3, sct is nonce-misuse resistant [RS06] 𝑖.𝑒. repeating a nonce in encryp-
	tion queries does not harm authenticity nor confidentiality. A slight variant, sct-2, was described
	in the specification of Deoxys [JNPS16]. This mode is also secure in the nonce-misuse scenario
	and is depicted in Figure 2.7, Figure 2.8 and Figure 2.9.

 [𝐾 79 𝐾 78 • • • 𝐾 1 𝐾 0] = [𝐾 18 𝐾 17 • • • 𝐾 0 𝐾 79 • • • 𝐾 20 𝐾 19].2. The leftmost four bits are passed through the present S-box:[𝐾 79 𝐾 78 𝐾 77 𝐾 76] = 𝑆([𝐾 79 𝐾 78 𝐾 77 𝐾 76]). 3. The binary representation of the round counter value 𝑖, denoted by [𝑖] 2 , is xored with bits 𝐾 19 𝐾 18 𝐾 17 𝐾 16 𝐾 15 of 𝐾 with the least significant bit of 𝑖 on the right: [𝐾 19 𝐾 18 𝐾 17 𝐾 16 𝑘 15] = [𝐾 19 𝐾 18 𝐾 17 𝐾 16 𝐾 15] ⊕ [𝑖] 2 .

	𝑘 𝑖															
	𝑆	𝑆	𝑆	𝑆	𝑆	𝑆	𝑆	𝑆	𝑆	𝑆	𝑆	𝑆	𝑆	𝑆	𝑆	𝑆
				Figure 2.10: One round of the Present cipher.				
	1. The key register is rotated by 61 bit positions to the left:					

 As for the internal state, the tweakey state is arranged in 𝑧 = 𝑡/𝑛 4 × 4 matrices, denoted by 𝑇 𝐾 1 , • • • , 𝑇 𝐾 𝑧 . At each round, for 𝑖 ∈ {1, • • • , 𝑧}, the first two lines of the 𝑇 𝐾 𝑖 matrices are extracted and xored together to produce a subtweakey that is used as a round key in the ART operation.Next, each of the 𝑧 matrices are transformed by the permutation defined as Among all the cryptanalysis results, the best key-recovery attack in the singlekey model uses impossible differentials to target 22 rounds out of 40 for Skinny-64-192, 22 rounds out of 48 with time complexity 2 245.72 , for Skinny-128-256 and 20 rounds out of 56

	LFSR
	LFSR
	𝑃𝑇
	SC Tweakey schedule. 𝑃 𝑇 = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7], AC ART ≫ 1 ≫ 2 ≫ 3 ShiftRows Figure 2.11: One round of the Skinny cipher. where indices are taken row-wise. Finally, when 𝑧 = 2 or 𝑧 = 3, the first two rows of 𝑇 𝐾 𝑖 , where 𝑖 ̸ = 1, are further modified by MixColumns means of lfsrs given in Table 2.1, as illustrated by Figure 2.12. Due to its good hardware/software performances, the Skinny family of block ciphers has received much attention from the cryptographic community such as [ZR17, ABC + 17, SGL + 17, ST17, AST + 17, BCLR17, AK19, EKKT19, HAV18, ABI + 18, LTW18, CHP + 18, CSSH19, DLU19, 8𝑠-bit subtweakey Figure 2.12: The Skinny tweakey schedule. Each tweakey word is updated in a similar way, SQH19, ZCGP19]. Extracted except that no lfsr is applied to 𝑇 𝐾 1 .

 candidates of the nist lighweight competition are based on Skinny. Namely, ForkAE [LPR + 19], Remus [IKMP19a], Romulus [IKMP19b], Skinny-aead/Skinny-hash [BJK + 19] use Skinny as a building block. Other submissions leverage some components derived from Skinny: Gift-cofb [BCI + 19], Hyena [CDJN19], Lotus-aead [CDJ + 19], Sundae-Gift [BBP + 19] and Trifle [DGM + 19] apply the same lfsr to generate their round constants and in Spook [BBB + 19], the S-box is a variant of the one used in Skinny. Round function. The round function is a modified classical two-branched Feistel structure, where the receiving branch of the Feistel function is first rotated by 8 bits. The inner round function is made of one round key addition, a parallel application of 8 different 4-bit S-boxes and a nibble 12 -wise permutation. Key schedule. The 80-bit master key K is stored in a key register and denoted as 𝐾 = 𝐾 79 𝐾 78 • • • 𝐾 1 𝐾 0 . At round 𝑖, the 32-bit round key 𝑘 𝑖 consists of the 64 leftmost bits of the current key state: 𝑘 𝑖 = 𝐾 79 𝐾 78 • • • 𝐾 48 .

	𝑘 𝑖	𝑆 0
		𝑆 1	≪ 8
		𝑆 2
	𝐹	𝑆 3
		𝑆 4
		𝑆 5
		𝑆 6
		𝑆 7
	Figure 2.13: One round of the LBlock cipher.
	2.4.3 LBlock	
	At ACNS 2011, Wu and Zhang proposed the LBlock lightweight block cipher [WZ11a]. LBlock
	is a block cipher with a block length of 64 bits and a key length of 80 bits that iterates 32 times
	a Feistel-based round function.	

 𝐾 79 𝐾 78 𝐾 77 𝐾 76] = 𝑆 9 ([𝐾 79 𝐾 78 𝐾 77 𝐾 76]) [𝐾 75 𝐾 74 𝐾 73 𝐾 72] = 𝑆 8 ([𝐾 75 𝐾 74 𝐾 73 𝐾 72]). 3. The binary representation of the round counter value 𝑖, denoted [𝑖] 2 , is xored with bits 𝐾 50 𝐾 49 𝐾 48 𝐾 47 𝐾 46 of 𝐾 with the least significant bit of 𝑖 on the right: [𝐾 50 𝐾 49 𝐾 48 𝐾 47 𝑘 46] = [𝐾 50 𝐾 49 𝐾 48 𝐾 47 𝐾 46] ⊕ [𝑖] 2 .

 was designed by Berger et al. in 2015. It is the first instantiation of the so-called Extended Generalized Feistel Network [BMT14] (egfn) construction, a generalization of Feistel networks with an arbitrary number of branches that uses a linear mapping instead of a simple permutation of the branches so as to achieve fast diffusion. The state of Lilliput is made of 64 bits, seen as 16 nibbles denoted 𝑥 15 , • • • , 𝑥 0 and the key length is 80 bits. NonLinearLayer: this layer only updates the first half of the state. After the round key is added to 𝑥 7 , • • • , 𝑥 0 , a 4-bit S-box 𝑆 is applied in parallel to the 8 nibbles. Namely, each 𝐹 𝑗 seen in Figure 8.11 is defined as 𝐹 𝑗 = 𝑆(𝑥 𝑗 ⊕ 𝑘 𝑖 𝑗) where 𝑘 𝑖 𝑗 is the 𝑗-th nibble of the 32-bit round key 𝑘 𝑖 of round 𝑖, for 𝑗 ∈ {0, • • • , 7}. • LinearLayer: this layer helps to increase the diffusion speed with a small additional cost. It consists in having 𝑥 7 propagate to all nibbles of the second half of the state while having 𝑥 15 influenced from all nibbles of the first half of the state: block 𝑥 7 is xored with blocks 𝑥 9 to 𝑥 15 and blocks 𝑥 1 to 𝑥 6 are xored with block 𝑥 15 . To do so, it uses an 80-bit Linear Finite State Machine (lfsm) whose inner state 𝑌 is initialized with the master key 𝐾. The first round key 𝑘 0 is extracted from the lfsm initial state (i.e. the

	𝑥 15	𝑥 14	𝑥 13	𝑥 12	𝑥 11	𝑥 10	𝑥 9	𝑥 8	𝑥 7	𝑥 6	𝑥 5	𝑥 4	𝑥 3	𝑥 2	𝑥 1	𝑥 0
																NonLinearLayer
																LinearLayer
				𝜋 = (0, 13, 6, 12, 2, 14)(1, 9, 5, 11)(3, 8, 4, 10)(7, 15)			PermutationLayer
		Round function. The round function, called OneRoundEGFN, is iterated 30 times. In more
		details, OneRoundEGFN is composed of three layers:				
			• • PermutationLayer: finally, the permutation 𝜋 is applied to the bytes. The permutation was chosen to achieve the highest number of active S-boxes after 18, 19 and 20 rounds. This
			layer is omitted in the last round for involution reasons.		
		Key schedule. The key schedule expands the 80-bit master key 𝐾 to 32-bit round keys for
		round 𝑖, with 𝑗 ∈ {0, • • • , 29} denoted by 𝑘 𝑗 . The key schedule depicted in Figure 2.15 produces the 30 round keys 𝑘 0 to 𝑘 29 from the 80-bit
		master key 𝐾.											

 32) ← 𝑌 18 ||𝑌 16 ||𝑌 13 ||𝑌 10 ||𝑌 9 ||𝑌 6 ||𝑌 3 ||𝑌 1 and let 𝑍 31 , • • • , 𝑍 0 be the bits of 𝑍 then 𝑘 𝑖 𝑗 = 𝑆(𝑍 𝑗 ||𝑍 8+𝑗 ||𝑍 16+𝑗 ||𝑍 24+𝑗)where 𝑆 is the same S-box as in the datapath. Finally, the current round number 𝑖 ∈ {0, • • • , 29} is xored to the last 5 bits of the subkey: 𝑘 𝑖 ← 𝑘 𝑖 ⊕ 𝑖 (5) ||0 (27) .

				𝐾	
	𝑘 0	/ 32	ExtractRoundKey	RoundFnlfsm / 80	Mixinglfsm
	𝑘 1		ExtractRoundKey		Permutationlfsm
	. . .				
				RoundFnlfsm	
	𝑘 29		ExtractRoundKey		
			Figure 2.15: Lilliput Key Schedule
	Lilliput is the underlying primitive used in the tweakable block cipher Lilliput-AE [ABC + 18]
	that was submitted as a candidate to the nist lightweight cryptography standardization process.
	This cipher is presented in Chapter 4.		
	The properties of Lilliput are studied in [ST16, ST17, MNV18, ST18]. The best attack,
	presented in				

 of sand grains in the Sahara desert 10 23 ≈ 2 77

	Number of atoms on Earth Number of atoms in the Universe	10 51 ≈ 2 170 10 77 ≈ 2 265
	Table 3.1: Some significant orders of magnitude. It would take more time than the age of the
	universe to break 128-bit encryption.	

 The attacker then tries to compute part of the internal state-usually the middle state of the cipher during the encryption process-from both ends, by partial key-guessing: one pattern starts from the plaintext, going forward to the middle state, the second one, going backward from the ciphertext. If the values of the middle state do not match, then the key-guess is wrong and can be discarded. Finally, the division property [Tod15b] (Section 3.3.1) is an example of the more novel structural attacks. This technique extends integral attacks[START_REF] Daemen | The block cipher Square[END_REF] and has shown to be effective against spns and Feistel constructions, as demonstrated by Todo's attack[START_REF] Todo | Integral cryptanalysis on full MISTY1[END_REF] against the full version of Misty1[START_REF] Matsui | New block encryption algorithm MISTY[END_REF].

	Statistical distinguisher	Structural distinguisher
	Differential cryptanalysis	Higher-order differential cryptanalysis
	Linear cryptanalysis	Impossible differential cryptanalysis
	Truncated differential cryptanalysis	Integral cryptanalysis
	Differential-linear cryptanalysis	Zero-correlation linear cryptanalysis
	Boomerang attack	Division property
	Rectangle attack	Interpolation attack
	Multiple linear cryptanalysis	Zero-sum distinguisher
	Multiple differential cryptanalysis	Algebraic attack
	Multidimensional linear cryptanalysis	
	Table 3.2: Some of the main cryptanalytic techniques.

Table 4

 4

	Lilliput-I-128	𝑘 128 192 128 120 128 𝑡 𝑛 𝜏 |𝑁 |
	Lilliput-I-192	192 192 128 120 128
	Lilliput-I-256	256 192 128 120 128
	Lilliput-II-128 128 128 128 120 128
	Lilliput-II-192	192 128 128 120 128
	Lilliput-II-256	256 128 128 120 128

.1: Recommended parameter sets for Lilliput-AE. Our primary member Lilliput-II-128 is in bold notation.

Table 4

 4 The encryption algorithm ℰ II 𝐾 (𝑁, 𝐴, 𝑀). In the tweak inputs, the integer values 𝑖, 𝑗, 𝑙 and 𝑙 𝑎 are encoded on 124 bits. Moreover, tag ⊕ 𝑗 values are encoded on 127 bits (the most significant bit is truncated since |tag|

	𝑘	𝑡	Nb of rounds 𝑟
	Lilliput-TBC-I-128 128 192	32
	Lilliput-TBC-I-192 192 192	36
	Lilliput-TBC-I-256 256 192	42
	Lilliput-TBC-II-128 128 128	32
	Lilliput-TBC-II-192 192 128	36
	Lilliput-TBC-II-256 256 128	42

.2: Recommended parameter sets for Lilliput-TBC.

Algorithm 3

Table 4

 4

.3. It has been chosen to maximize the number of active S-boxes on 18, 19 and 20 rounds as it will be shown in Section 4.3.4. For each round 𝑖 ∈ {0, • • • , 𝑟 -1}, let us denote 𝑌 𝑖 the output at round 𝑖 after the transformations NonLinearLayer and LinearLayer with 𝑌 𝑖 = (𝑌 𝑖 15 , • • • , 𝑌 𝑖 0) its byte representation, i.e. 𝑌 𝑖 = (𝑌 𝑖 15 , • • • , 𝑌 𝑖 0) = LinearLayer(NonLinearLayer(𝑋 𝑖)). Then, the PermutationLayer is applied on 𝑌 𝑖 in the following way:

Table 4 .

 4 3: Block permutation 𝜋 used in encryption mode and its inverse 𝜋 -1 used in decryption mode.The S-box 𝑆 used in NonLinearLayer The S-box 𝑆 used in NonLinearLayer is the 8-bit S-box given in Table4.4. The properties of this S-box will be described in Section 4.3.2.

	𝑖	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
	𝜋(𝑖)	13 9 14 8 10 11 12 15 4 5 3 1 2 6 0 7
	𝜋 -1 (𝑖) 14 11 12 10 8 9 13 15 3 1 4 5 6 0 2 7

Table 4 .

 4

		𝑃		
	NonLinearLayer	/128		
	LinearLayer PermutationLayer	OneRoundEGFN OneRoundEGFN	/ 64	𝑅𝑇 𝐾 0 𝑅𝑇 𝐾 1
	NonLinearLayer		. . .	
	LinearLayer	OneRoundEGFN /128		𝑅𝑇 𝐾 𝑟-1
		𝐶		

4: The S-box in hexadecimal notation. The column indicates the least significant nibble and the row indicates the most significant nibble of the S-box input.

Overall encryption process Figure

4

.9 gives an overview of the complete encryption process of Lilliput-TBC for all its variants.

Table 4 .

 4 𝑡 is the tweak length. The values of 𝑝 are shown in Table4.5, depending on which version of Lilliput-TBC is used.

	Name	𝑘	𝑡	𝑝 𝑟
	Lilliput-TBC-I-128 128 192 5 32
	Lilliput-TBC-I-192 192 192 6 36
	Lilliput-TBC-I-256 256 192 7 42
	Lilliput-TBC-II-128 128 128 4 32
	Lilliput-TBC-II-192 192 128 5 36
	Lilliput-TBC-II-256 256 128 6 42

• • • , 𝑟 -1}, the inner state 𝑇 𝐾 𝑖 is divided into 𝑝 = (𝑡 + 𝑘)/64 lanes that we denote 𝑇 𝐾 𝑖 𝑗 , 𝑗 ∈ {0, • • • , 𝑝 -1}, where 𝑘 is the key length and 5: Recommended parameter sets for Lilliput-TBC and associated number of tweakey lanes.

 The primitive polynomial associated with this matrix is computed as 𝐷𝑒𝑡(𝐼 -𝑀 • 𝑋) at binary level, which gives: 𝑥 64 + 𝑥 58 + 𝑥 42 + 𝑥 40 + 𝑥 35 + 𝑥 34 + 𝑥 29 + 𝑥 26 + 𝑥 24 + 𝑥 23 + 𝑥 19 + 𝑥 10 + 1. The multiplication by 𝛼 0 is then generated as

 + 𝑥 58 + 𝑥 42 + 𝑥 40 + 𝑥 35 + 𝑥 34 + 𝑥 29 + 𝑥 26 + 𝑥 24 + 𝑥 23 + 𝑥 19 + 𝑥 10 + 1 equal to 𝑥 64 + 𝑥 54 + 𝑥 45 + 𝑥 41 + 𝑥 40 + 𝑥 38 + 𝑥 35 + 𝑥 30 + 𝑥 29 + 𝑥 24 + 𝑥 22 + 𝑥 6 + 1.

 (mostly a change in the way offsets are incremented). The ocb mode has many advantages, starting with the fact that it is parallelizable and only requires one block cipher invocation per message block, in contrary to schemes like GCM. In[START_REF] Krovetz | The software performance of authenticatedencryption modes[END_REF], Krovetz and Rogaway also introduced a tweakable block cipher generalization of ocb3 denoted Θcb3, which is at the source of the mode used for our candidate Lilliput-I.Ocb is covered by the United States Patent No. 7,949,129, United States Patent No. 8,321,675, United States Patent No. 7,046,802 and United States Patent No. 7,200,22. Still, it is unclear if Θcb3 is also covered by patents. This lack of clarity is part of the reason why we selected Lilliput-II to be our primary member.

Θcb3

The ocb mode (Offset Codebook Mode) was designed by Phillip Rogaway, who took inspiration from Charanjit Jutla's IAPM (Integrity Aware Parallelizable Mode)

[START_REF] Charanjit | Encryption modes with almost free message integrity[END_REF]

. The original authenticated-encryption scheme has then been refined several times, leading to three named versions: ocb1 [RBBK01], ocb2

[START_REF] Rogaway | Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC[END_REF]

and ocb3

[START_REF] Krovetz | The software performance of authenticatedencryption modes[END_REF]

. The main change introduced with ocb2 is the possibility to handle Associated Data (AD), while the modifications made in ocb3 are rather minor

Table 4 . 6

 46

	-I Lilliput-II

: Security goals of Lilliput-AE in the nonce-respecting case and in the nonce-misuse case.

Table 4 .

 4

	Round 1 2 3 4 5 6 7	8	9 10 11 12 13 14 15 16 17 18 19
	𝐴𝑆 𝐷	0 1 2 3 5 9 12 15 17 19 22 24 25 28 29 31 34 40 41
	𝐴𝑆 𝐿	0 1 2 3 5 8 12 13 15 17 19 22 25 27 30 32 34 38 40

7: Minimal number of active S-boxes for every round. 𝐴𝑆 𝐷 corresponds to the minimal number of S-boxes reached for a differential attack. 𝐴𝑆 𝐿 corresponds to the minimal number of S-boxes reached for a linear attack.

Table 4

 4

			.010 0.008 0.011 0.011 0.008 0.009 0.012 0.009
		3.10 5	0.008 0.011 0.008 0.008 0.009 0.008 0.008 0.009
		10 6	0.009 0.009 0.010 0.013 0.010 0.012 0.008 0.009
		3.10 6	0.008 0.008 0.011 0.011 0.010 0.008 0.010 0.009
		10 7	0.012 0.009 0.009 0.008 0.009 0.008 0.008 0.011
	Table 4.8: Experimental success rate of non profiled (Squared Euclidean Imbalance) differential
	fault analysis								
	round faults	attacked subtweakey byte : 𝑅𝑇 𝐾 7-𝑗 𝑗=0 𝑗=1 𝑗=2 𝑗=3 𝑗=4 𝑗=5 𝑗=6 𝑗=7
	𝑠 = 6	10 3	1.0	1.0	1.0	1.0	1.0	1.0	1.0 0.837
		10 3	0.036 0.448 0.076 0.023 0.012 0.013 0.226 0.009
		3.10 3	0.083 0.730 0.275 0.076 0.019 0.019 0.668 0.010
		10 4	0.336 0.990 0.825 0.291 0.046 0.053 0.961 0.009
		3.10 4	0.875 1.0	1.0 0.555 0.113 0.180 1.0 0.009
	𝑠 = 7	10 5	1.0	1.0	1.0 0.728 0.497 0.669 1.0 0.012
		3.10 5	1.0	1.0	1.0 0.992 0.965 0.992 1.0 0.010
		10 6	1.0	1.0	1.0	1.0	1.0	1.0	1.0 0.011
		3.10 6	1.0	1.0	1.0	1.0	1.0	1.0	1.0 0.009
		10 7	-	-	-	-	-	-	-	-
		10 5	0.010 0.007 0.009 0.007 0.009 0.011 0.010 0.011
		3.10 5	0.009 0.009 0.009 0.009 0.009 0.007 0.007 0.009
	𝑠 = 8	10 6	0.009 0.012 0.008 0.011 0.010 0.010 0.009 0.011
		3.10 6	0.009 0.009 0.008 0.008 0.009 0.010 0.009 0.010
		10 7	0.009 0.008 0.011 0.008 0.010 0.009 0.008 0.012

.9: Experimental success rate of profiled (Maximum Likelihood) differential fault analysis

Table 4 .

 4 10: Security Evaluation summary ("paranoid" case). STKM means "Single Tweakey Model", RTKM means "Related Tweakey Model" and RTKB means "Related Tweakey Boomerang attack".

 Algorithm 5 𝑥 8+𝑖 computation in Non-Linear Layer for 𝑖 = 0 to 7 do 𝑥 8+𝑖 ← 𝑥 8+𝑖 ⊕ 𝑆(𝑆𝐾 7-𝑖 ⊕ 𝑥 7-𝑖) return (𝑥 15 , 𝑥 14 , • • • , 𝑥 8) Algorithm 6 𝑥 8+𝑖 computation in Linear Layer for 𝑖 = 0 to 7 do 𝑥 15 ← 𝑥 15 ⊕ 𝑥 𝑖 for 𝑖 = 0 to 6 do 𝑥 14-𝑖 ← 𝑥 14-𝑖 ⊕ 𝑥 7 return (𝑥 15 , 𝑥 14 , • • • , 𝑥 8)

Table 4 .

 4 11 summarizes which multiplications are needed for each variant of Lilliput-TBC.The extraction function consists in:• xoring all 𝑝 64-bit lanes together bytewise: this requires (𝑝-1) 64-bit XORs, hence 8×(𝑝-1) 8-bit XORs,

	Name	𝑘	𝑡	𝑝 Required 𝛼 𝑖
	Lilliput-TBC-I-128 128 192 5	𝛼 0 to 𝛼 4
	Lilliput-TBC-I-192 192 192 6	𝛼 0 to 𝛼 5
	Lilliput-TBC-I-256 256 192 7	𝛼 0 to 𝛼 6
	Lilliput-TBC-II-128 128 128 4	𝛼 0 to 𝛼 3
	Lilliput-TBC-II-192 192 128 5	𝛼 0 to 𝛼 4
	Lilliput-TBC-II-256 256 128 6	𝛼 0 to 𝛼 5

Table 4 .

 4 11: Multiplications needed for each variant of Lilliput-TBC• xoring the resulting 64-bit word with the round constant 𝐶 𝑖 : this requires a single 8-bit XOR, since 𝐶 𝑖 fits on 8 bits.

Table 4 .

 4 Algorithm 7 Linear layer -second loop for 𝑖 = 0 to 6 do 𝑥 14-𝑖 ← 𝑥 14-𝑖 ⊕ 𝑥 7Algorithm 8 Linear layer -first loop for 𝑖 = 0 to 7 do 𝑥 15 ← 𝑥 15 ⊕ 𝑥 𝑖Performance Benchmarks SummaryIn terms of memory footprint, OneRoundEGFN function of Lilliput-TBC can fit easily in the working memory (internal registers) of any considered processor, without requiring any additional ram register. For example, 8-bit Atmel avr atmega128 processors implement 32×8-bit registers, and then, since only 16 internal registers are needed to process the entire internal state, it leaves room for 16 more available registers for intermediate computations. Concerning the tweakey schedule, since computations on each lane are executed separately, and at most 4 additional registers are needed to compute the most complex operation (𝛼 3), ram stack consumption is very low. 12 compares the relative performance of a single round of each variant of the Lilliput-TBC family.

Table 4 .

 4

	• a 16-bit TI msp430,		
	𝑝 Nb. of operations Cost wrt. 4-lane case
	4	158	1
	5	191	1.21
	6	234	1.48
	7	270	1.71

12:

Relative cost of a single round of Lilliput-TBC ∀𝑝 ∈

[START_REF]Performance of Lilliput-AE on avr atmega128. CFLAGS Code size (B) ram (B) Execution time (cycles) Lilliput-I-128 -O3 5760[END_REF] 7]

. "Nb. of operations" is the sum of the number of operations for OneRoundEGFN (53, cf. Section 4.4.1) and the subtweakey computation (cf. Section 4.4.1).

Table 4 .

 4 13.

	Platform Software	Version	Origin
	avr	simavr Avrora	v1.6 1.7.117-patched Cf. Felics documentation [FEL19] Developer release [Pol19]
	MSP	msp430-GCC MSPDebug	7.3.2.154 v0.25	Texas Instruments [MSP19] Developer release [Bee19]
	arm	J-Link Software V6.42f	SEGGER [J-L19]

Table 4

 4

.13: Software versions for the Felics framework.

Table 4 .

 4 15: Performance results for 128-bit key algorithms on avr atmega128.

			avr	ref	
			MSP	ref	
			arm	ref, opt32	
			PC	ref, opt64	
			avr	8bitfast	
		Acorn	MSP arm	8bitfast opt1	
			PC	opt1	
		Table 4.14: Algorithm implementations for each platform
		Version	CFLAGS Code size (B) ram (B) Execution time (cycles)
	Acorn-128	8bitfast	-O3	3700	263
	Ascon-128	ref	-O3	6140	268
	Ascon-128a	ref	-O3	6832	300
	Lilliput-I-128	felicsref -O3	6100	266
	Lilliput-II-128 felicsref -O3	6062	243
	Acorn-128	8bitfast	-Os	2850	240
	Ascon-128	ref	-Os	4322	323
	Ascon-128a	ref	-Os	4340	339
	Lilliput-I-128	felicsref -Os	2780	261
	Lilliput-II-128 felicsref -Os	2768	229
		Version	CFLAGS Code size (B) ram (B) Execution time (cycles)
	Acorn-128	8bitfast	-O3	3276	274
	Ascon-128	ref	-O3	8358	290
	Ascon-128a	ref	-O3	8620	306
	Lilliput-I-128	felicsref -O3	5760	300
	Lilliput-II-128 felicsref -O3	4932	272
	Acorn-128	8bitfast	-Os	2326	218
	Ascon-128	ref	-Os	3686	372
	Ascon-128a	ref	-Os	3672	382
	Lilliput-I-128	felicsref -Os	2304	260
	Lilliput-II-128 felicsref -Os	2234	232

Table 4 .

 4 16: Performance results for 128-bit key algorithms on msp430f1611.

Table 4 .

 4 15, Table 4.16, Table 4.17 and Table 4.18 give our results for all 128-key algorithms on atmega128, msp430, arm and desktop PC respectively. These results showcase performance for the full encryption process, including key (or tweakey) schedule. Finally, Table 4.19, Table 4.20, Table 4.21 and Table 4.22 show the performance of the felicsref version of each member of the Lilliput-AE family.

		Version	CFLAGS Code size (B) ram (B) Execution time (cycles)
	Acorn-128	opt1	-O3	7608	808
	Ascon-128	opt32	-O3	18912	268
	Ascon-128	ref	-O3	4080	600
	Ascon-128a	opt32	-O3	23764	272
	Ascon-128a	ref	-O3	4424	608
	Lilliput-I-128	felicsref -O3	4656	444
	Lilliput-II-128 felicsref -O3	4684	420
	Acorn-128	opt1	-Os	2364	344
	Ascon-128	opt32	-Os	16072	240
	Ascon-128	ref	-Os	1426	472
	Ascon-128a	opt32	-Os	18996	256
	Ascon-128a	ref	-Os	1408	480
	Lilliput-I-128	felicsref -Os	1746	304
	Lilliput-II-128 felicsref -Os	1768	272

Table 4 .

 4 17: Performance results for 128-bit key algorithms on arm Cortex-M3.

		Version	CFLAGS Code size (B) ram (B) Execution time (cycles)
	Acorn-128	opt1	-O3	6122	448
	Ascon-128	opt64	-O3	9616	192
	Ascon-128	ref	-O3	2236	1984
	Ascon-128a	opt64	-O3	11562	200
	Ascon-128a	ref	-O3	2102	1984
	Lilliput-I-128	felicsref -O3	6880	528
	Lilliput-II-128 felicsref -O3	6783	528
	Acorn-128	opt1	-Os	2564	392
	Ascon-128	opt64	-Os	9074	184
	Ascon-128	ref	-Os	1486	448
	Ascon-128a	opt64	-Os	10430	180
	Ascon-128a	ref	-Os	1466	448
	Lilliput-I-128	felicsref -Os	2906	416
	Lilliput-II-128 felicsref -Os	2867	400

Table 4 .

 4 18: Performance results for 128-bit key algorithms on PC.

Table 4 .

 4 12 × 1.33 + 26 × 2.67 + 1 × 0.67 = 15.96 + 69.42 + 0.67 ≈ 86ges. 21: Performance of Lilliput-AE on arm Cortex-M3.

	Nb. Lanes Registers	Round	Tweakey	Total	Relative
			Function	Schedule		Perf.
	4	384	8 S-boxes + 29×8 XORs 440 XORs	4530 ges	1
	5	448	8 S-boxes + 29×8 XORs 507 XORs	5050 ges	1.15
	6	512	8 S-boxes + 29×8 XORs 577 XORs	5626 ges	1.24
	7	576	8 S-boxes + 29×8 XORs 650 XORs	6115 ges	1.35

Table 4 .

 4

22: Performance of Lilliput-AE on PC.

Table 4 .

 4 23: Results for Lilliput-TBC, optimized for area reduction.

	Lilliput-TBC I-128 I-192 I-256 II-128 II-192 II-256
	LUTs	1345 1605 1827	854	1055	1175
	slices	384	428	534	249	302	344
	registers	1076 1204 1336	943	1075	1203
	flip-flop pairs	1345 1605 1827	886	1097	1223
	unused flip-flops	464	538	634	233	258	264
	unused LUTs	0	0	0	32	42	48
	fully used	881 1067 1193	621	797	911
	Freq (MHz)	282	286	288	338	326	339

Table 4 .

 4 24: Results for Lilliput-TBC, optimized for timing performance.

	Lilliput-TBC I-128 I-192 I-256 II-128 II-192 II-256
	LUTs	1625 1894 2140	1033	1218	1336
	slices	568	564	649	430	433	415
	registers	1109 1237 1369	1097	1108	1236
	flip-flop pairs	1625 1894 2140	1136	1277	1405
	unused flip-flops	700	777	896	315	370	375
	unused LUTs	0	0	0	103	59	69
	fully used	925 1117 1244	718	848	961
	Freq (MHz)	357	352	367	402	388	408

Table 4 .

 4 25: Comparison of Lilliput-TBC, Ascon and Aes implementations, optimized for area reduction.

		Ascon-128 Ascon-128a TBC-I-128 TBC-II-128 Aes
	LUTs	1318	1422	1345	854 1615
	slices	357	387	384	249	437
	registers	933	997	1076	943	661
	Freq (MHz)	372	357	288	338	170
	Throughput(Mbit/sec)	3402	5084	1152	1352 2181

Table 4 .

 4 26: Comparison of Lilliput-TBC, Ascon and Aes implementations, optimized for timing performance.

		Ascon-128 Ascon-128a TBC-I-128 TBC-II-128 Aes
	LUTs	1370	1754	1625	1033 3258
	slices	392	497	568	430	897
	registers	933	997	1109	1097	670
	Freq (MHz)	432	460	357	402	175
	Throughput(Mbit/sec)	3951	6544	1428	1608 2245

 𝑠 ′ 2 with look-up tables 𝑇 𝐹 , 𝑇 𝐺 , 𝑇 𝑄 and 𝑃 /* Decompose 8-bit shares into 4-bit shares */ for 𝑖 = 0 to 2 do s𝑖 ← 𝑠 𝑖 ≫ 4 𝑠 𝑖 ← AND(𝑠 𝑖 , 15) end /* First 4-bit S-box */ 𝑡 0 ← 𝑇 𝐺 [AND(𝑠 1

Table 4 .

 4

	Platform Member	rom 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 rom 𝑓 𝑒𝑙𝑖𝑐𝑠𝑟𝑒𝑓	𝑒𝑥𝑡𝑠𝑐𝑟𝑎𝑚 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑒𝑥𝑡𝑠𝑐𝑟𝑎𝑚 𝑓 𝑒𝑙𝑖𝑐𝑠𝑟𝑒𝑓	𝑐𝑦𝑐𝑙𝑒𝑠 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑐𝑦𝑐𝑙𝑒𝑠 𝑓 𝑒𝑙𝑖𝑐𝑠𝑟𝑒𝑓
		Lilliput-I-128	2.37	1.60	5.17
		Lilliput-I-192	2.39	1.59	4.87
	avr	Lilliput-I-256 Lilliput-II-128	2.43 2.39	1.59 1.63	4.57 6.41
		Lilliput-II-192	2.42	1.61	5.34
		Lilliput-II-256	2.46	1.61	5.02
		Lilliput-I-128	1.85	1.51	4.39
		Lilliput-I-192	1.85	1.51	4.12
	MSP	Lilliput-I-256 Lilliput-II-128	1.87 2.01	1.50 1.54	3.87 4.85
		Lilliput-II-192	2.00	1.53	4.57
		Lilliput-II-256	2.02	1.53	4.29
		Lilliput-I-128	1.99	1.51	4.36
		Lilliput-I-192	1.98	1.51	4.19
	arm	Lilliput-I-256 Lilliput-II-128	1.99 1.99	1.51 1.52	3.95 5.53
		Lilliput-II-192	2.01	1.52	4.55
		Lilliput-II-256	2.02	1.52	4.34
		Lilliput-I-128	1.49	1.29	4.54
		Lilliput-I-192	1.49	1.28	4.38
	PC	Lilliput-I-256 Lilliput-II-128	1.50 1.50	1.30 1.26	4.13 5.17
		Lilliput-II-192	1.50	1.28	4.84
		Lilliput-II-256	1.51	1.27	4.51

30: Performance impact of the thresholding scheme.

Table 5 .

 5 1: 4-bit S-box used in Shadow.

Table 5 .

 5 2: Round constants used in Shadow. Note that the LSB is on the left.

	Round Constant Round Constant Round Constant Round Constant
	0

Table (⟨𝛿𝑋

 (𝑟,0,𝑗 , 𝛿𝑋 𝑟,1,(𝑗+3)%4 , 𝛿𝑋 𝑟,2,(𝑗+2)%4 , 𝛿𝑋 𝑟,3,(𝑗+1)%4 , 𝛿𝑋 𝑟+1,0,𝑗 , 𝛿𝑋 𝑟+1,1,𝑗 , 𝛿𝑋 𝑟+1,2,𝑗 , 𝛿𝑋 𝑟+1,3,𝑗 ⟩ , ⟨MxC⟩), Δ𝑋 𝑟,𝑖,𝑗 ̸ = 0, ∀𝑟 ∈ 1..𝑛 -1, ∀𝑗 ∈ 1..4 𝛿𝑋 𝑟,𝑖,𝑗 ∈ 0..1 and ⟨MxC⟩ encodes both MixColumns and Shiftrows constraints.Model 1: Formulation of SK Step 1, without symmetry breaking constraints. on the number of active S-boxes and thus, be able to enumerate all the Step 1 solutions given a particular lower bound for the number of active S-boxes. In milp, the constraint for xor 𝒞 ⊕ [𝑖 1 , 𝑖 2 , 𝑜, 𝑑] needs a dummy variable 𝑑 to be correctly modeled. 𝒞 ⊕ [𝑖 1 , 𝑖 2 , 𝑜, 𝑑] is the set of the following linear constraints:

	(6.2)
	where ∀𝑟 ∈ 1..𝑛, ∀𝑖 ∈ 1..4, ∀𝑗 ∈ 1..4,

 𝛿𝑋 𝑟,𝑖,𝑗 ∈ 0..255, 𝛿𝑆𝐵 𝑟,𝑖,𝑗 ∈ 0..255, 𝑃 𝑟,𝑖,𝑗 ∈ {0, 20, .., 70}, and ⟨XOR⟩ encodes ⊕ relation and ⟨SBox⟩ the S-box constraint.

					(6.10)
	Table(⟨︀	𝛿𝑆𝐵 𝑟,3,(1+𝑗)%4 , 𝛿𝑋 𝑟+1,0,𝑗 , 𝛿𝑋 𝑟+1,3,𝑗	⟩︀	, ⟨XOR⟩) otherwise
	where ∀𝑟 ∈ 1..𝑛, ∀𝑖 ∈ 1..4, ∀𝑗 ∈ 1..4,			

Table 6 .

 6 .1).

	# Rounds	28	29	30
	TK1	105	109	113

1: Lower bounds on the number of active S-boxes in SKINNY.

Table 6 .

 6 2: Comparison of the times of the different Step 1 tools for solving

	-𝑒𝑛𝑢𝑚 (SKINNY), i.e. to enumerate all solutions for the
	𝑆𝑡𝑒𝑝 1

Table 6 .

 6 𝑂𝑏𝑗 𝑆𝑡𝑒𝑝1 Nb sol. Step 1 Step 2 time Best 𝑃 𝑟 3: Overall results concerning SKINNY-64 in the four attack models. Step 2 time corresponds to the Step 2 time taken over all solutions of Step1-enum when 𝑂𝑏𝑗 𝑠𝑡𝑒𝑝1 takes the values detailed in the second column. Best 𝑃 𝑟 corresponds to the best probability of a differential characteristic found.

	SK	7	26	2	1s	2 -52
	SK	8	36	17	1s	< 2 -64
	TK1	10	23	1	1s	2 -46
	TK1	11	32	2	1s	= 2 -64
	TK2 TK2	13 14	25 → 27 31	10 1	1s 1s	2 -55 < 2 -64
	TK3 TK3 TK3	15 16 17	24 → 26 27 → 31 31	46 87 2	2s 4s 1s	2 -54 = 2 -64 < 2 -64

Table 6

 6 .8 shows the results obtained with the best configurations for SK, TK and TK2.

		Nb Rounds 𝑂𝑏𝑗 𝑠𝑡𝑒𝑝1 Nb sol. Step 1 Step 2 time	Best 𝑃 𝑟
	SK SK SK SK SK SK TK1 TK1 TK1 TK1 TK1 TK1 TK1 TK1 TK2 TK2 TK2 TK2 TK2 TK2 TK2 TK2 TK2 TK2 TK2	9 10 11 12 13 14 8 9 10 11 12 13 14 15 9 10 11 12 13 14 15 16 17 18 19	41 → 43 46 → 48 51 → 52 55 → 56 58 → 61 61 → 63 13 → 16 16 → 20 23 → 27 32 → 36 38 → 46 41 → 53 45 → 59 49 → 63 9 → 10 12 → 17 16 → 25 21 → 35 25 → 44 31 → 54 35 → 56 40 → 63 43 → 63 47 → 63 52 → 63	52 48 15 11 18 6 14 6 6 531 186 482 2 385 482 11 518 612 7 542 053 7 132 4203 1 922 762 -----62 681 709 772 163	16s 11s 4s 6s 2m27s 21s 4s 3s 4s 37s 213m 2 days 20 days 25 days 3s 11s 6m 512m not solved not solved > 2 -108.4 2 -86 2 -96 2 -104 2 -112 2 -123 < 2 -128 2 -33 2 -41 2 -55 2 -74 2 -93 2 -106.2 2 -120 < 2 -128 2 -20 2 -34.4 2 -51.4 2 -70.4 > 2 -89.7 not solved > 2 -113.2 not solved > 2 -127.6 not solved -not solved -280m < 2 -128

Table 6 .

 6 8: Overall results concerning SKINNY-128 in the four attack models. Step 2 time corresponds to the Step 2 time taken over all solutions of Step1-enum when 𝑂𝑏𝑗 𝑠𝑡𝑒𝑝1 takes the values precise in the first column. Best 𝑃 𝑟 corresponds to the best found probability of a differential characteristic.

 Definition 7.1 (Boomerang Connectivity Table [CHP + 18]). Let 𝑆 be a permutation of F 𝑛 2 , and Δ 𝑖 , ∇ 𝑜 ∈ F 𝑛 2 . The Boomerang Connectivity Table (BCT) of 𝑆 is given by a 2 𝑛 × 2 𝑛 table, in which the entry for the (Δ 𝑖 , ∇ 𝑜) position is given by:

Table 7 .

 7 2: FBCT of the S-box 𝑆 2 of LBlock.

	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
	0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
	1 16 16	0	0	0	0	0	0	0	0	8	8	0	0	0	0
	2 16	0	16	0	0	0	0	0	0	8	0	8	0	0	0	0
	3 16	0	0	16	8	8	8	8	0	0	0	0	0	0	0	0
	4 16	0	0	8	16	0	0	8								

 7.3.4 Relation Between the FBCT and the Feistel SwitchWhile the Feistel case is not covered by the Boomerang Connectivity Table, a first step in understanding the case of boomerang distinguishers for Feistel constructions has been made by Wagner himself while analyzing Khufu[START_REF] Wagner | The boomerang attack[END_REF]. His observation was later referred under the name of Feistel Switch, for instance in the related-key cryptanalysis of the AES-192 and AES-256 by Biryukov and Khovratovich[START_REF] Biryukov | Related-key cryptanalysis of the full AES-192 and[END_REF], in which one can read:

Table 7 .

 7 3: Comparison of the properties of the BCT and of the FBCT of 𝑛-bit functions.

	Property

 .3) Proof. In order to cover most constructions, in what follows we consider a Feistel cipher as depicted in Figure7.10, that is with a round function made of one linear (or affine) layer 𝐿 1 , followed by one S-box layer of 𝑡 𝑛-bit S-boxes and again a linear (or affine) layer 𝐿 2 .We start by observing that if the second round S-box layer output difference between state 2○ and 4 ○ is equal to a given value 𝛼 then the same difference is required between state 𝐿 𝑜 ⊕ 𝐿 2 (𝛼 ′) and ∇ 𝐿 𝑜 ⊕ 𝐿 2 (𝛼). The input difference between the left branches of state

	1 ○ and 3 ○ for the boomerang to return. Denote by 𝛼 ′ the second S-box layer output difference between state 1 ○ and 3 ○. Given that the output difference between 1 ○ and 3 ○ and 2 ○ and 4 ○ is equal to (∇ 𝐿 𝑜) we deduce that 𝑜 , ∇ 𝑅 the input difference in the left branch between states 1 ○ and 3 ○ and 2 ○ and 4 ○ are respectively equal to ∇ 1 ○ and 2 ○ is equal to Δ 𝐿 𝑖 so we deduce that the left branch difference between state 3 ○ and 4

 Definition 7.19 (FBET). Let 𝑆 be a function from F 𝑛 2 , and (Δ 𝑖 , 𝛿, ∇ 𝑜 , 𝛼) be elements of (F 𝑛 2) 4 . The Feistel boomerang extended table (FBET) of 𝑆 is a four-dimensional table, in which the entry for (Δ 𝑖 , 𝛿, ∇ 𝑜 , 𝛼) is computed by:

	2 ○ and state 2 ○ and 4 ○) are fixed. We obtain the following formula:	1 ○ and

Table 7 .

 7 4.

		Differential characteristic used in 𝐸 0		Differential characteristic used in 𝐸 1
	Input	20400000 00001460	Output r9	00004020 41000006
	Output r1	00006000 20400000	Output r10	00000600 00004020
	Output r2	40000000 00006000	Output r11	00400000 00000600
	Output r3	00000000 40000000	Output r12	00000000 00400000
	Output r4	00000040 00000000	Output r13	40000000 00000000
	Output r5	00000004 00000040	Output r14	00400000 40000000
	Output r6	00004400 00000004	Output r15	00060040 00400000
	Output r7	00004440 00004400	Output r16	42000004 00060040

Table 7 .

 7 4: The two differential characteristics on 7 rounds of 𝐸 0 and of 𝐸 1 in hexadecimal notations.

Table 7 .

 7 5: Theoretical and practical values of 𝑟 for various sizes of 𝐸 𝑚 and corresponding probability of the 16-round distinguisher when applying the 𝑝 2 𝑞 2 𝑟 formula. We detail the theoretical computation for 3 rounds in Section 7.7.2.

		4	4	4								4 4				
												4 4				
								4	4 4 4						
				S	S	S	S	S	S	S	S		S	S	S	S	S	S	S	S
	4 4	δ1		δ2	δ3							4 4	4			
						4 4	δ1		δ2	δ3	4 4 4				
				S	S	S	S	S	S	S	S		S	S	S	S	S	S	S	S
					δ											

 4 Matrix Representation of Feistel Networks 206 8.1.5 Characterizing Quasi-involutive gfns 207 8.1.6 Extended Generalized Feistel Networks 209 8.1.7 Lilliput . 211 8.2 Towards Lighter Egfn Constructions 211 8.2.1 Resistance to integral attacks . 212 8.2.2 Resistance to differential cryptanalysis 221 8.3 Conclusion . 223 8.1 Background on Gfns and their Extensions 8.1.1 Generalized Feistel Networks While Feistel networks (see Section 1.3.2) act on a state that is split into two branches (also called blocks), Zheng et al. introduced at CRYPTO 1989

 7: One round of a Nyberg gfn with 𝑘 = 4 blocks. 𝑦 0 , • • • 𝑦 𝑘-1 depends on every input blocks 𝑥 0 , • • • , 𝑥 𝑘-1 . This notion gives a quantifiable measure of the diffusion inside a block cipher. A more formal definition can be given, using a graph point of view. Definition 8.1 (Associated digraph of a gfn). The associated digraph of a 𝑘-block gfn is the graph with vertex set {0, • • • , 𝑘 -1} and such that (𝑖, 𝑗) is an edge if the output block 𝑦 𝑗 depends on the input block 𝑥 𝑖 . Edges of the graph either come from the nonlinear layer or the permutation layer. Whenever the dependency spans from a Feistel function, a symbol 𝐹 is used to label the corresponding edge. The same 𝐹 is used for all the different round-functions used throughout the cipher. A block 𝑥 𝑖 is said to affect or influence an output block 𝑦 𝑟 𝑗 at round 𝑟 if the computation of 𝑦 𝑟 𝑗 depends on 𝑥 𝑖 . Block 𝑥 𝑖 is said to have diffused at round 𝑟 if all outputs 𝑦 𝑟 𝑗 at round 𝑟 depend on 𝑥 𝑖 , for 0 ≤ 𝑗 ≤ 𝑘 -1. When all blocks 𝑥 𝑖 have diffused at round 𝑟, for 0 ≤ 𝑖 ≤ 𝑘 -1, the gfn has reached full diffusion. The full diffusion delay, denoted 𝑑+, is the smallest number of round required to reach full diffusion. Definition 8.2 (Diffusion delay 𝑑+ of a gfn). Input block 𝑥 𝑖 influences output block 𝑦 𝑟

Table 8 .

 8 1: Both-way full diffusion delay 𝑑 for the main instances of gfns with 𝑘 blocks.

Table 8 .

 8 2: Improved both-way full diffusion delay 𝑑 for type-1 and type-2 of gfns with 𝑘 blocks.

	Gfn Type [YI13] Type-1 [SM10] Type-2
	𝑑	𝑘(𝑘 + 2)/2 -2	2 log 2 𝑘

 Definition 8.4 (Matrix representation of a gfn). Consider a gfn whose nonlinear layer and permutation layer are represented by a matrix ℱ and a binary permutation matrix 𝒫 respectively, then the matrix of the gfn is ℳ = 𝒫 × ℱ.For a gfn with 𝑘 blocks, ℳ is the 𝑘 × 𝑘 matrix over Z[𝐹] such that for 0 ≤ 𝑖, 𝑗 ≤ 𝑘 -1, 𝑦 𝑖 directly depends on 𝑥 𝑗 𝐹 if 𝑦 𝑖 depends on 𝑥 𝑗 via a Feistel function 0 otherwise.

	𝑦 3 𝑥 3	𝑦 2 𝑥 2	𝑦 1 𝑥 1	⎧ ⎨ permutation layer 𝒫 1 if 𝑥 0 𝑦 0 nonlinear layer ℱ linear layer ℒ	𝒩	ℳ =	(︂ 𝐼 𝐹 1
				ℳ 𝑖,𝑗 =	⎩		

Definition 8.3 (Matrix representation of the nonlinear layer of a gfn). The matrix representation of the nonlinear layer of a 𝑘-block gfn is the 𝑘 × 𝑘-matrix ℱ over Z[𝐹] with an all-one diagonal and with a formal parameter denoted 𝐹 at position (𝑖, 𝑗) if and only if there is a Feistel-function taking block 𝑥 𝑖 as input and whose output is xored to block 𝑥 𝑗 .

It follows that the matrix of the gfn as a whole can be defined as below:

The matrix of the gfn in decryption mode is ℳ -1 . The corresponding matrices for the gfn depicted in Figure

8

.1 are given in Figure

8

.8.

The following theorem ties the graph representation and the matrix representation of a gfn.

 Figure 8.10: One round of an egfn that reaches full diffusion in 4 rounds.Figure 8.10 depicts one example of an egfn round that fulfills all the conditions stated in Theorem 8.16 and reaches full diffusion in 4 rounds as a result.8.1.7 LilliputThe Lilliput round function is a particular case of egfn deduced from Theorem 8.16, introduced in [BFMT16]. This egfn with 𝑘 = 16 blocks is depicted in Figure8.11.

			𝑋 15	𝑋 14	𝑋 13	𝑋 12	𝑋 11	𝑋 10	𝑋 9	𝑋 8		𝑋 7	𝑋 6	𝑋 5	𝑋 4	𝑋 3	𝑋 2	𝑋 1	𝑋 0
											𝐹 0					
											𝐹 1					
											𝐹 2					
											𝐹 3 𝐹 4						nonlinear layer
											𝐹 5					
											𝐹 6					
											𝐹 7					
																	linear layer
					𝜋 = (0, 13, 6, 12, 2, 14)(1, 9, 5, 11)(3, 8, 4, 10)(7, 15)	permutation layer
	𝑥 15	𝑥 14	𝑥 13	𝑥 12	𝑥 11	𝑥 10	𝑥 9	𝑥 8		𝑥 7	𝑥 6	𝑥 5	𝑥 4	𝑥 3	𝑥 2	𝑥 1	𝑥 0
									𝐹 0							
									𝐹 1							
									𝐹 2							
									𝐹 3 𝐹 4								nonlinear layer
									𝐹 5							
									𝐹 6							
									𝐹 7							
																	linear layer
																	permutation layer
	𝑦 15	𝑦 14	𝑦 13	𝑦 12	𝑦 11	𝑦 10	𝑦 9	𝑦 8		𝑦 7	𝑦 6	𝑦 5	𝑦 4	𝑦 3	𝑦 2	𝑦 1	𝑦 0

and if 𝒫 globally exchanges emitters (blocks 𝑥 0 to 𝑥 𝑘/2-1) with receivers (blocks 𝑥 𝑘/2 to 𝑥 𝑘-1) with 𝜋(𝑘/2 -1) = 𝑘 -1 and 𝜋(𝑘 -1) = 𝑘/2 -1, then its diffusion delay 𝑑 is equal to 4.

 Figure 8.14: A matrix from set 1 with no integral property for 8 rounds (3rd case) and the associated egfn with 16 blocks. 1. Branch 𝑥 𝑖 emits via a Feistel function to branch 𝑥 15-𝑖 , for 𝑖 ∈ 0, 7 . That is the Lilliput matrix.

	𝑋 15	𝑋 14	𝑋 13	𝑋 12	𝑋 11	𝑋 10	𝑋 9	𝑋 8	𝑋 7	𝑋 6	𝑋 5	𝑋 4	𝑋 3	𝑋 2	𝑋 1	𝑋 0
								𝐹 0								
								𝐹 1								
								𝐹 2								
								𝐹 3								
								𝐹 4								
								𝐹 5 𝐹 6 𝐹 7								⎛ ⎜ ⎜ ⎜ ⎝	(0) 𝐹	0	𝐹	𝐹 (0)	0 𝐹 𝐼 𝐼 𝐼 𝐹 𝐼	⎞ ⎟ ⎟ ⎟ ⎠
																𝐹	𝐼
																𝐹 𝐼 𝐼 𝐹 𝐼 𝐹 𝐹 𝐼
						Any involutory permutation 𝜋					

2. There is a branch 𝑥 𝑒 , with 1 ≤ 𝑒 ≤ 7, that emits via a Feistel function to 𝑥 15 , and for all 𝑖 ∈ 0, 7 ∖ {𝑒}, branch 𝑥 𝑖 emits via a Feistel function to branch 𝑥 15-𝑖 .

3. There is a branch 𝑥 𝑒 , with 1 ≤ 𝑒 ≤ 6, that emits via a Feistel function to 𝑥 15 , and for all 𝑖 ∈ 0, 6 ∖ {𝑒}, branch 𝑥 𝑖 emits via a Feistel function to branch 𝑥 15-𝑖 . As for 𝑥 7 , the branch goes through a Feistel function and the result is xored to 𝑥 15-𝑒 . One example is provided in Figure

8

.14.

 b) 𝑛 𝐹 -1 emitters among ℰ are swapped with the 𝑛 𝐹 -1 receivers left available from ℛ ∖ {𝑟 𝑥 0 } ((︀ 𝑛 𝐹 𝑛 𝐹 -1

Table 8 .

 8 Table 8.3. 3: Number of permutations 𝑝 𝑛 𝐹 for which no integral property exists for 6 rounds given a matrix 𝒜 with 𝑛 𝐹 𝐹 coefficients on the antidiagonal, both ends excluded.

							𝑛 𝐹	0		1		2	3		4	5	6
							𝑝 𝑛 𝐹 5040 1440 240 576 144 1440 5040
	𝑋 15	𝑋 14	𝑋 13	𝑋 12	𝑋 11	𝑋 10	𝑋 9	𝑋 8	𝑋 7	𝑋 6	𝑋 5	𝑋 4	𝑋 3	𝑋 2	𝑋 1	𝑋 0

Table 8 .

 8 4: Number of permutations 𝑝 𝑛 𝐹 for which no integral property exists for 6 rounds given a matrix 𝒜. 𝑛 𝐹 is the number of 𝐹 coefficients on the antidiagonal, both ends excluded, ℰ is the set of 𝑛 𝐹 corresponding emitters and 𝑥 𝑙𝑟 denotes the branch that emits to 𝑥 15 . The "-" symbol is used for settings that never occur.Let us have a closer look atTable 8.4. Consider a matrix with 𝑛 𝐹 coefficients on the diagonal, excluding both ends. As done in the simple case, let us denote the 𝑛 𝐹 corresponding emitting branches by ℰ = {𝑥 𝑒 0 , • • • , 𝑥 𝑒 𝑛 𝐹 -1 } ⊂ {𝑥 1 , • • • , 𝑥 6 }, and the 𝑛 𝐹 corresponding receiving branches by

		𝐹	0	1	2	3	4	5	6
	𝑝 𝑛 𝐹	𝑥 𝑙𝑟 / ∈ ℰ and 𝑥 𝑙𝑟 ̸ = 𝑥 7 5040 1440 240 576 144 1440 5040 -720 0 528 0 624 720 𝑥 𝑙𝑟 ∈ ℰ 𝑥 𝑙𝑟 = 𝑥 7 5040 5040 1200 0 0 0 0

 15-𝑒 1 and 𝑥 7 also emits to 𝑥 15 . A valid permutation 𝜋 has to fulfill one of the following conditions:1. 𝜋(𝑥 𝑒 0) = 𝑥 15-𝑒 1 and 𝜋(𝑥 𝑒 1) ̸ = 𝑥 15-𝑒 0 2. 𝜋(𝑥 𝑒 1) = 𝑥 15-𝑒 0 and 𝜋(𝑥 𝑒 0) ̸ = 𝑥 15-𝑒 1Since for the other values, 𝑝 𝑛 𝐹 = 5040 or 0, we could not Once again, for the full case of this set, there are 8 schemes with a total of 15 xor operations for which there is no integral property after 6 rounds, no matter which permutation in 𝒫 𝑖𝑛𝑣𝑜𝑙 is used. These are the schemes in which 𝑥 7 goes through a Feistel function and is xored to 𝑥 8 , . . . , 𝑥 14 .

 8.18: Layout of a matrix from set 3. Red coefficients are either equal to 𝐼 or 𝐹 . 𝒩 matrices resulted in the same 𝑑 1 and 𝑑 2 values as Lilliput.

	For this last configuration, we considered
	matrices with no coefficients on the an-
	tidiagonal at all, that is, matrices with
	only 15 nonzero coefficients.	The 8
	𝐹 coefficients are thus either on the
	last row or on the last column of ma-
	Consequently, branch 𝑥 7 is the only branch that can have more trix 𝒜.
	than one receiver (via a Feistel function),
	and branch 𝑥 15 is the only branch than
	can have more than one nonlinear emit-
	ter.		
	Out of the	(︀ 15 8)︀	combinations, 3446

 8.19: An interesting family of matrices 𝒜 with 8 𝐹 coefficients. The last coefficient can be placed at any red-marked position.Theorem 8.18. Consider an egfn as defined in Def. 8.13 with 𝑘 ≥ 4 blocks, 𝑘 even, and its associated matrices ℳ, 𝒩 and 𝒫 with 𝒩 the matrix representing the nonlinear and linear layers of the egfn and with 𝒫 the matrix of the permutation layer defined by a permutation 𝜋,

		⎛ ⎜ ⎝	(0)	𝐹 . . .
	⎛ ⎜ ⎝ 𝒫 2 0 Proof. 𝒜 2 = 𝒫 as 𝒫 = (︁ 0 𝒫 1 𝐹 𝐼 ••• 𝐹 𝐼 𝐹 𝐼 ••• 𝐹 𝐼 𝐹 𝐼 ••• 𝐹 𝐼 𝐹 2 +(𝑘 𝐹 2 . . . 𝐹 2 2 -1)𝐹 𝐼)︁	⎞ ⎟ ⎠ has no zero coefficients. Writing the permutation layer

1. if the matrix 𝒩 is equal to 𝒩 = (︀ ℐ 0 𝒜 ℐ)︀ ∈ Z[𝐹, 𝐼]

where ℐ is the 𝑘 2 × 𝑘 2 identity matrix and where 𝒜, the lower left quarter of 𝒩 , is such that

𝒜 = 𝐼 ••• 𝐼 𝐹 ⎞ ⎟ ⎠;

2. and if 𝒫 globally exchanges emitters (blocks 𝑥 0 to 𝑥 𝑘/2-1) with receivers (blocks 𝑥 𝑘/2 to 𝑥 𝑘-1) with 𝜋(𝑘/2 -1) = 𝑘 -1 and 𝜋(𝑘 -1) = 𝑘/2 -1;

then its diffusion delay 𝑑 is equal to 4.

by definition of 𝜋, the matrix of the egfn becomes ℳ = 𝒫𝒩 = (︁ 𝒫 1 𝒜 𝒫 1 𝒫 2 0

)︁

 . Let us consider an egfn with 𝑘 blocks as defined in Definition 8.13, satisfying Condition 2 of Theorem 8.16:

	𝑋 15	𝑋 14	𝑋 13	𝑋 12	𝑋 11	𝑋 10	𝑋 9	𝑋 8	𝑋 7	𝑋 6	𝑋 5	𝑋 4	𝑋 3	𝑋 2	𝑋 1	𝑋 0
								𝐹 0								
								𝐹 1								
								𝐹 2								
								𝐹 3								
								𝐹 4								
								𝐹 5								
								𝐹 6								
								𝐹 7								
								𝐹 0								
								𝐹 1								
								𝐹 2								
								𝐹 3								
								𝐹 4								
								𝐹 5								
								𝐹 6								
								𝐹 7								
	𝑌 15	𝑌 14	𝑌 13	𝑌 12	𝑌 11	𝑌 10	𝑌 9	𝑌 8	𝑌 7	𝑌 6	𝑌 5	𝑌 4	𝑌 3	𝑌 2	𝑌 1	𝑌 0

 .1 for 𝑡 in -39, • • • , ℓ + 1:𝑥 1 𝑡+1 = 𝑆(𝑥 20 𝑡 ⊕ 𝑆𝐾 0) ⊕ 𝑆(𝑥 26 𝑡 ⊕ 𝑆𝐾 1) ⊕𝑆(𝑥 29 𝑡 ⊕ 𝑆𝐾 2) ⊕ 𝑆(𝑥 40 𝑡 ⊕ 𝑆𝐾 3) ⊕ 𝑚 𝑡 𝑥 2 𝑡+1 = 𝑥 1 𝑡 ⊕ 𝑆(𝑥 2 𝑡 ⊕ 𝑆𝐾 4) ⊕ 𝑆(𝑥 31 𝑡 ⊕ 𝑆𝐾 5) ⊕𝑆(𝑥 35 𝑡 ⊕ 𝑆𝐾 6) 𝑥 3 𝑡+1 = 𝑥 2 𝑡 ⊕ 𝑆(𝑥 3 𝑡 ⊕ 𝑆𝐾 7) 𝑥 4 𝑡+1 = 𝑆(𝑥 2 𝑡 ⊕ 𝑆𝐾 8) ⊕ 𝑆(𝑥 3 𝑡 ⊕ 𝑆𝐾 9) . . .

	𝑐 𝑡+1 = 𝑥 3 𝑡+1

 𝑆(𝑥20 𝑡 ⊕ 𝑆𝐾 0) ⊕ 𝑆(𝑥 26 𝑡 ⊕ 𝑆𝐾 1) ⊕ 𝑆(𝑥 29 𝑡 ⊕ 𝑆𝐾 2) ⊕ 𝑆(𝑥 40 𝑡 ⊕ 𝑆𝐾 3) 𝑥 1 𝑡 ⊕ 𝑆(𝑥 2 𝑡 ⊕ 𝑆𝐾 4) ⊕ 𝑆(𝑥 31 𝑡 ⊕ 𝑆𝐾 5) ⊕ 𝑆(𝑥 35 𝑡 ⊕ 𝑆𝐾 6) 𝑥 36 𝑡 ⊕ 𝑆(𝑥 27 𝑡 ⊕ 𝑆𝐾 74) ⊕ 𝑆(𝑥 37 𝑡 ⊕ 𝑆𝐾 75) 𝑥 37 𝑡 ⊕ 𝑆(𝑥 10 𝑡 ⊕ 𝑆𝐾 76) ⊕ 𝑆(𝑥 38 𝑡 ⊕ 𝑆𝐾 77) 𝑥 38 𝑡 ⊕ 𝑆(𝑥 39 𝑡 ⊕ 𝑆𝐾 78) ⊕ 𝑆(𝑥 8 𝑡 ⊕ 𝑆𝐾 79)

	𝑥 1 𝑡	• • •	𝜙 0	𝜙 1	• • •	𝜙 2	• • •	𝜙 3
	𝑥 2 𝑡	• • •	• • •	𝜙 4	𝜙 5	• • •	𝜙 6	• • •
	𝑥 3 𝑡							
		
	𝑥 38 𝑡							
	𝑥 39 𝑡							
	𝑥 40 𝑡							

Maximum Distance Separation. En théorie des codes, les codes mds ont la meilleure capacité de correction et de détection d'erreurs.

National Institute of Standards and Technology. Il s'agit d'une agence de standardisation américaine.

De manière informelle, la notion de délai de diffusion peut être vue comme le nombre minimal de tours à effectuer pour que tous les blocs en sortie dépendent de tous les blocs en entrée.

In Boolean algebra, the exclusive or is a logical operation that outputs true (1) only when inputs differ 𝑖.𝑒. one is true (1) and the other is false (0).

A pseudorandom number generator (prng) is an algorithm that can generate predictable sequences of numbers that exhibit statistical randomness.

However, it might become vulnerable in the future.

Data Encryption Standard.

An involution is a function 𝑓 that is its own inverse. Namely, 𝑓 (𝑓 (𝑥)) = 𝑥.

National Security Agency, American intelligence agency.

Substitution Box.

National Institute of Standards and Technology, American standardization authority.

Simply put, in coding theory, Maximum Distance Separable codes have the greatest error correcting and detecting capabilities.

See the Lightweight Cryptography Lounge at https://www.cryptolux.org/index.php/Lightweight_Block_ Ciphers

Random-Access Memory. ram is a form of a volatile memory used to store the data of a program and its execution stack.

Read-Only Memory.

Central Processing unit.

A number that can be used only once.

The simplest checksum algorithm consists in breaking the data into 𝑛-bit words and then computing the xorof all those words.

A competition was also held by the National Bureau of Standards (nsb) for the Des, although it was only reserved to invited designers.

https://www.ecrypt.eu.org/stream/-

A nibble is half a byte 𝑖.𝑒. 4 bits.

Processing complexity is the total number of operations required to perform the attack. It is measured in some agreed upon unit, usually the number of elementary operations or the number of calls to the encryption function.

Storage complexity is the memory space required for the attack.

Data complexity is the total number of data (either ciphertexts or plaintext-ciphertext pairs) the attacker can access.

This is called the hypothesis of stochastic equivalence[START_REF] Lai | Markov ciphers and differential cryptanalysis[END_REF]. While this hypothesis is not always accurate for key-alternating ciphers [DR05, DR07, SWW18], several experimental results have shown that the difference between the expected value of a differential and the value obtain by the mean over the keys is small, making this a reasonable assumption[START_REF] Blondeau | Links between theoretical and effective differential probabilities: Experiments on PRESENT[END_REF][START_REF] Blondeau | Bounds in shallows and in miseries[END_REF].

The word size depends on the native structure of the cipher.

Protocoles et Algorithmes Cryptographiques Légers pour l'Internet Des Objets. http://paclido.fr/ lilliput-ae/

https://csrc.nist.gov/News/2018/requesting-nominations-for-lightweight-crypto-algs

These three results have been recently merged together in[START_REF] Inoue | Cryptanalysis of OCB2: Attacks on authenticity and confidentiality[END_REF]

With notations of Section 4.2.3 we have 𝐿 = (𝑋15, . . . , 𝑋8) and 𝑅 = (𝑋7, . . . , 𝑋0).

We guess that similar results would have been obtained for other versions.

We recall that 𝑀 defines a word-ring-lfsr with minimum number of xor gates and a primitive polynomial of degree 64. 𝑀𝑅 is defined by the reciprocal polynomial of 𝑀 .

If Δ𝑇 = (0, 0, 0, 01𝑥, 01𝑥, 0, 0, 0), then ℓ = 2 32 + 2 24 + 2.

Therefore, the security of the Lilliput block cipher is not compromised.

See for instance Ascon [DEMS16], Ketje [BDP + 16], or Sparkle [BBdS + 19]

Recall here that the value of the round constant depends on the round index.

see: https://www.gurobi.com/documentation/9.0/refman/threads.html for more details.

It seems that the use of the 128 threads was prohibited by the memory usage of xor tables (i.e. xor in extension).

Note that we confirmed this experimentally by verifying that for a sample of

10 keys and 2 10 messages the boomerang never comes back along the announced differences in one or even two middle rounds.2 To stress the similarity between the notions we introduce here and the ones that have been previously introduced in the case of boomerang switches on SPN, we basically use the same acronyms, simply adding the letter "F" in front of them to recall that we are looking at the Feistel case.

Note that the FBCT of the 10 S-boxes of LBlock are the same. This is not a direct implication of the fact that the S-boxes are affine equivalent (counter-examples to this can easily be found).

Recall that for the BCT the boomerang uniformity of an S-box is 𝛽 = max Δ 𝑖 ̸ =0,∇𝑜̸ =0 𝐵𝐶𝑇 (Δ𝑖, ∇𝑜).

We recall that an emitting branch influences other branch in a linear or nonlinear way.

A receiving branch is influenced by at least another branch in a linear or nonlinear way.

These permutations were the ones that globally exchanged 𝑥4 and 𝑥6 with 𝑥9 and 𝑥11 as shown in Figure8.22.

This type of matrices has been adopted in several lightweight proposals [BCG + 12, BBK + 13, ADK + 14, IMGM15].

Section A.5 describes the meaning of GE metric.

Remerciements

"I don't know half of you half as well as I should like; and I like less than half of you half as well as you deserve." -Bilbo Baggins i

The S-boxes are detailed in Section 7.2.1. 𝑃 is a permutation given by: 𝑃 : {0, 1} 32 → {0, 1} 32

0xe 0x9 0xa 0xc 0xd 0x5 0x2 0x4 0x1 𝑆 4 0xe 0x5 0xf 0x0 0x7 0x2 0xc 0xd 0x1 0x8 0x4 0x9 0xb 0xa 0x6 0x3 𝑆 5 0x2 0xd 0xb 0xc 0xf 0xe 0x0 0x9 0x7 0xa 0x6 0x3 0x1 0x8 0x4 0x5 𝑆 6 0xb 0x9 0x4 0xe 0x0 0xf 0xa 0xd 0x6 0xc 0x5 0x7 0x3 0x8 0x1 0x2 𝑆 7 0xd 0xa 0xf 0x0 0xe 0x4 0x9 0xb 0x2 0x1 0x8 0x3 0x7 0x5 0xc 0x6 𝑆 8 0x8 0x7 0xe 0x5 0xf 0xd 0x0 0x6 0xb 0xc 0x9 0xa 0x2 0x4 0x1 0x3 𝑆 9 0xb 0x5 0xf 0x0 0x7 0x2 0x9 0xd 0x4 0x8 0x1 0xc 0xe 0xa 0x3 0x6

All work and no play makes Jack a dull boy All w ork and no play makes Jack a dull boy All work and no ,play makesJack a dull boy

Authentication modes for tweakable block ciphers

Part II

Contribution to the Nist Lightweight Cryptography Competition

Algorithm 16 Collision attack on the S1P mode, with nonce reuse, and using 4-step Shadow.

1. Encrypt an arbitrary two-block (4-bundle) message, e.g. (0, 0), (0, 0), and obtain ciphertexts (𝑑 0 , 𝑑 1), (𝑑 2 , 𝑑 3). Let 𝑥 1 , 𝑦 1 , 𝑎, 𝑏 be the 4-bundle state after Initialize (immediately before step 1). Then 𝑑 0 , 𝑑 1 = 𝑥 1 , 𝑦 1 .

2. Use Algorithm 15 to obtain two pairs of rate bundles (𝑥 ′ 1 , 𝑦 ′ 1), (𝑥 ′′ 1 , 𝑦 ′′ 1) such that 𝜋(𝑥 ′ 1 , 𝑦 ′ 1 , 𝑎, 𝑏) ⊕ 𝜋(𝑥 ′′ 1 , 𝑦 ′′ 1 , 𝑎, 𝑏) = (*, *, 0, 0) with probability 𝑝.

3. Encrypt (with the same nonce) (𝑥 1 ⊕ 𝑥 ′ 1 , 𝑦 1 ⊕ 𝑦 ′ 1), (0, 0) and obtain (𝑐 ′ 0 , 𝑐 ′ 1), (𝑐 ′ 2 , 𝑐 ′ 3). Then (𝑐 ′ 2 , 𝑐 ′ 3) is the value of the rate after the application of 𝜋 on (𝑥 ′ 1 , 𝑦 ′ 1 , 𝑎, 𝑏).

4. Encrypt (with the same nonce) (𝑥 1 ⊕ 𝑥 ′′ 1 , 𝑦 1 ⊕ 𝑦 ′′ 1), (0, 0) and obtain (𝑐 ′′ 0 , 𝑐 ′′ 1), (𝑐 ′′ 2 , 𝑐 ′′ 3). Then (𝑐 ′′ 2 , 𝑐 ′′ 3) is the value of the rate after the application of 𝜋 on (𝑥 ′′ 1 , 𝑦 ′′ 1 , 𝑎, 𝑏).

5. Output the two 4-bundle plaintexts: (𝑥 1 ⊕ 𝑥 ′ 1 , 𝑦 1 ⊕ 𝑦 ′ 1), (𝑐 ′ 2 , 𝑐 ′ 3) and (𝑥 1 ⊕ 𝑥 ′′ 1 , 𝑦 1 ⊕ 𝑦 ′′ 1), (𝑐 ′′ 2 , 𝑐 ′′ 3) and the nonce 𝑁 that was used. Then these plaintexts, encrypted with this nonce, yield the same internal state before the Finalize procedure, and the same tag, with probability 𝑝 ≃ 2 -24.83 . Lemma 5.5. Let 𝑡 1 , 𝑡 2 be a pair of 2-identical states with difference (𝛼, 𝛼, 0, 0). Then after a step of Shadow, they remain 2-identical with probability 2 -12 at step 3, 2 -8 at step 4 and 0 otherwise.

Using these probabilities, we can investigate Lemma 5.4.

Proof. We follow the convention of indexing bundles depending on the step that immediately precedes, i.e. 𝑤 2 is a bundle after step 2. The pattern used in this proof is summarized in Figure 5.9.

We consider Shadow reduced to steps 2 to 5. We start with an input state (*, *, 𝑎 1 , 𝑏 1). We select a random bundle 𝑤 2 and invert step 2 on (𝑤 2 , 𝑤 2 , 0, 0). We denote by (𝑥 1 , 𝑦 1 , *, *) the state obtained after this inversion. Now we consider the "mixed" state (𝑥 1 , 𝑦 1 , 𝑎 1 , 𝑏 1) passing through step 2. Applying the super-sboxes, 𝐷 and adding the second round constant we obtain the state: (𝜎 2 (𝑎 1) ⊕ 𝜎 3 (𝑏 1) ⊕ 𝑤 2 , 𝜎 2 (𝑎 1) ⊕ 𝜎 3 (𝑏 1) ⊕ 𝑤 2 , *, *) which is 2-identical.

We also consider the state (𝑥 1 ⊕ 𝜖, 𝑦 1 ⊕ 𝜖, 𝑎 1 , 𝑏 1), where 𝜖 belongs to the set ∇ of 2 16 differences that modify only the columns 22 and 23 of a bundle. Then, as shown in our analysis from the previous section, the difference does not interact with the part of the state dealing with the round constant. Hence, the state after step 2 is also 2-identical and it has the same bundles in the capacity part.

We now have a pair of 2-identical states (𝑥 2 , 𝑥 2 , 𝑎 2 , 𝑏 2) and (𝑦 2 , 𝑦 2 , 𝑎 2 , 𝑏 2) in the output of step 2. It is mapped to a pair of 2-identical states (𝑥 3 , 𝑥 3 , 𝑎 3 , 𝑏 3) and (𝑦 3 , 𝑦 3 , 𝑎 3 , 𝑏 3) through step 3 with probability 2 -12 and similarly through step 4 with probability 2 -8 .

Before step 5, we have a 2-identical pair (𝑥 4 , 𝑥 4 , 𝑎 4 , 𝑏 4), (𝑦 4 , 𝑦 4 , 𝑎 4 , 𝑏 4). Our goal is to obtain a zero-difference in the capacity part. By an analysis analogous to the one of Shadow-384, this happens with a probability approximately equal to 2 -4.83 . We then have a total probability of 1 ⏟ ⏞

Step 2

× 2 -12 ⏟ ⏞

Step 3

× 2 -8 ⏟ ⏞

Step 4

× 2 -4.83 ⏟ ⏞

Step 5 .

Results

Best (related-tweakey) differential characteristics for SKINNY-64. In the following, we provide the details of the best differential characteristics we found for SKINNY-64. The best SK differential characteristic for 7 rounds with probability equal to 2 -52 is given in Table 6. [START_REF]Performance of Lilliput-AE on avr atmega128. CFLAGS Code size (B) ram (B) Execution time (cycles) Lilliput-I-128 -O3 5760[END_REF]. Then, in the TK1 setting, the best differential characteristics for 10 rounds with probability equal to 2 -46 is described in Table 6.5. For TK2, Table 6.6 details the best differential characteristic obtained for 13 rounds with probability equal to 2 -55 . Finally, Table 6.7 describes the best TK3 differential trail on 15 rounds of SKINNY-64 with probability equal to 2 -54 is given in Table 6.7.

Round 𝛿𝑋 𝑖 = 𝑋 𝑖 ⊕ 𝑋 ′ 𝑖 (before SB) 𝛿𝑆𝐵𝑋 𝑖 (after SB) Pr(States) 𝑖 = 1 0040 4444 4440 4400 0020 2222 2220 2200 2 -2•10 2 0000 0020 0200 2002 0000 0010 0100 1001 2 -2•4 3 0010 0000 0000 0001 0080 0000 0000 0008 2 -2•2 4 0000 0080 0000 0080 0000 0040 0000 0040 2 -2•2 5 0400 0000 0004 0000 0200 0000 0002 0000 2 -2•2 6 0000 0200 0200 0000 0000 0100 0100 0000

0001 0000 0011 0001 0008 0000 0088 0008 Round

0000 0002 0020 0200 0000 0001 0010 0100 1000 0000 0B80 0000 2 -2•3 2 1000 1000 0000 0000 B000 8000 0000 0000 B000 8000 1000 0000 2 -2•2 3 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000 B000 8000 -4 0010 0010 0000 0010 00B0 00A0 0000 00B0 00B0 0080 0010 0000 2 -2•3 5 0B00 0000 0002 0000 0100 0000 0001 0000 0000 1000 00B0 0080 2 -2•2 6 0000 0100 0000 0000 0000 0800 0000 0000 0000 B800 0000 1000 2 -2•1 7 0000 0000 0B00 0000 0000 0000 0100 0000 0000 0010 0000 B800 2 -2•1 8 0001 0000 0000 0001 0008 0000 0000 0008 0008 00B0 0000 0010 2 -2•2 9 0080 0000 000B 0000 0040 0000 0001 0000 0000 0100 0008 00B0 2 -2•2 10 0140 0040 0110 0140 0820 0020 0880 0820 0000 0B08 0000 0100 2 -2•7

Table 6.5: The best TK1 differential characteristic on 10 rounds of SKINNY-64 with probability equal to 2 -46 . The four words represent the four rows of the state and are given in hexadecimal notation.

Results

Round

00000000 00404010 40400000 40000000 00000000 00000000 00000000 00007700 2 -2•6 00000000 00040440 04040000 04000000 00000000 00000000 00000000 00003900 2 00000400 00000000 40000000 00000404 00000000 00770000 00000000 00000000 2 -2•3 2 -3 00000500 00000000 04000000 00000101 00000000 00730000 00000000 00000000 3 00010000 00000500 00000000 00000100 00000000 00000000 00000000 00770000 2 -2•2 2 -3 00200000 00000500 00000000 00002000 00000000 00000000 00000000 00730000 4 00000000 00200000 00000005 00200000 00000077 00000000 00000000 00000000 2 -2•2 2 -3 00000000 00800000 00000005 00800000 000000E7 00000000 00000000 00000000 5 80050090 00000090 00058000 00050090 00000000 00000000 00000077 00000000 2 -2•8 03010002 00000002 00010200 00010003 00000000 00000000 000000E7 00000000 6 00010303 03010002 00000001 01010003 00000000 00000077 00000000 00000000 2 -2•6 2 -3•4 00202020 20200009 00000020 20200020 00000000 000000CE 00000000 00000000 7 20000000 00202020 B0002000 00002020 00000000 00000000 00000000 00000077 2 -2•6 2 -2.4 2 -3 80000000 00808080 80008000 00009380 00000000 00000000 00000000 000000CE 8 00930000 80000000 00000080 00008000 00770000 00000000 00000000 00000000 2 -2•3 2 -6 00EA0000 03000000 00000003 00000300 009D0000 00000000 00000000 00000000 9 00000000 00000000 00000000 00030000 00000000 00000000 00770000 00000000 2 -5 00000000 00000000 00000000 00BC0000 00000000 00000000 009D0000 00000000 10 BC000000 00000000 00000000 00000000 77000000 00000000 00000000 00000000 2 -6 4C000000 00000000 00000000 00000000 3B000000 00000000 00000000 00000000 11 00000000 00000000 00000000 00000000 00000000 00000000 77000000 00000000 -00000000 00000000 00000000 00000000 00000000 00000000 3B000000 00000000 12 00000000 00000000 00000000 00000000 00007700 00000000 00000000 00000000 -00000000 00000000 00000000 00000000 00007700 00000000 00000000 00000000 13 00000000 00000000 00000000 00000000 00000000 00000000 00007700 00000000 -00000000 00000000 00000000 00000000 00000000 00000000 00007700 00000000 14 0000000 00000000 00000000 00000000 00000000 77000000 00000000 00000000 -00000000 00000000 00000000 00000000 00000000 EF000000 00000000 00000000 15 00000000 00000000 00980000 00000000 00000000 00000000 00000000 77000000 2 -5 00000000 00000000 00420000 00000000 00000000 00000000 00000000 EF000000 16 00000042 00000000 00000042 00000042 -2 -2.4•3 00000008 00000000 00000008 00000008 Table 6.10: The Best TK2 differential characteristics we found on 16 rounds of SKINNY-128 with probability equal to 2 -127. 6 . The four words represent the four rows of the state and are given in hexadecimal notation.

Part III

General Results on Feistel Constructions

row of its DDT has exactly one 4 and (2 𝑛-1 -2) occurrences of the number 2 (and in particular that the S-box is differentially 4-uniform). Given that we already discussed the case of APN functions in Section 7.4.3, we focus here on the case where 𝑛 is even.

Property 7.6. In each row (except the first) of the FBCT of the inverse mapping over an even number of bits, the values 2 𝑛 , 4 and 0 occur 2, 2 and 2 𝑛 -4 times, respectively.

Proof. Using a reductio ad absurdum argument, we start by showing that the only possible values in the FBCT of the inverse mapping over an even number of bits are 0, 4 and 2 𝑛 . Since for every FBCT the coefficients in the first line, first column and diagonal are equal to 2 𝑛 , we focus on the other positions. Suppose that for given non-zero Δ 𝑖 and ∇ 𝑜 verifying Δ 𝑖 ̸ = ∇ 𝑜 we have FBCT(Δ 𝑖 , ∇ 𝑜) > 4. Given that the coefficients of the FBCT are multiple of 4 this implies that we have at least 8 distinct values

This can be rewritten as:

2)

The first line indicates that the equation 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕ Δ 𝑖) = 𝛿 1 has at least 4 distinct solutions, that is DDT(Δ 𝑖 , 𝛿 1) ≥ 4. Similarly, the second line shows that DDT(Δ 𝑖 , 𝛿 2) ≥ 4. There are two possibilities: if 𝛿 1 = 𝛿 2 we obtain that DDT(Δ 𝑖 , 𝛿 1) ≥ 8 which contradicts that the differential uniformity of the considered S-box is 4, while if 𝛿 1 ̸ = 𝛿 2 we obtain that there are two coefficients in the same line of the DDT with a coefficient higher or equal to 4. In both cases we obtain a contradiction, so we conclude that the only possible values in the FBCT are 0, 4 and 2 𝑛 .

To conclude on the number of occurrences of each coefficient we need to prove that there are only 2 coefficients equal to 4 in each line. We consider Δ 𝑖 , 𝛿 ∈ F 𝑛 2 so that DDT(Δ 𝑖 , 𝛿) = 4. There exist x, x ⊕ Δ 𝑖 , y, y ⊕ Δ 𝑖 ∈ F 𝑛 2 with x ̸ = y and x ̸ = y ⊕ Δ 𝑖 such that:

As a consequence, FBCT(Δ 𝑖 , ∇ 𝑜) = FBCT(Δ 𝑖 , Δ 𝑖 ⊕ ∇ 𝑜) = 4 so there are at least two '4' in each line of the FBCT. Suppose there is one more coefficient equal to 4 in this line, that is there exists

We have:

FBCT(Δ 𝑖 , c) = 4 yields c ̸ = Δ 𝑖 and c ̸ = 0 and thus DDT(Δ 𝑖 , 𝛿 ′) = 4 = DDT(Δ 𝑖 , 𝛿). Since each row of the considered S-box DDT has exactly one entry that equals 4, it follows that 𝛿 = 𝛿 ′ and that z, w ∈ {x, x ⊕ Δ 𝑖 , y, y ⊕ Δ 𝑖 }, which leads to the contradiction that c ∈ {Δ 𝑖 , ∇ 𝑜 , Δ 𝑖 ⊕ ∇ 𝑜 }.

On the FBCT of Equivalent S-boxes

Various notions of equivalence are frequently used when studying S-boxes, among which linear, affine, extended-affine and CCZ equivalence [START_REF] Carlet | Codes, bent functions and permutations suitable for des-like cryptosystems[END_REF]. These various concepts play an important role to categorize sets of S-boxes since central cryptographic properties (differential, linear and sometimes algebraic degree) are constant for equivalent S-boxes. In this section we investigate if the F-boomerang uniformity is preserved under these various notions of equivalence.

Linear, Affine and Extended-Affine Equivalence. As their names suggest, the three first flavors we start with are related as follows: linear equivalence is a sub-case of affine equivalence, and affine equivalence is a particular case of extended-affine equivalence. Definition 7.7 (Linear, Affine and Extended-Affine Equivalence). Two vectorial Boolean functions 𝐹, 𝐺 ∈ ℬ(𝑛, 𝑚) are called extended-affine equivalent if there exist two nonsingular matrices 𝐴 ∈ 𝐺𝐿(𝑛, F 2), 𝐵 ∈ 𝐺𝐿(𝑚, F 2), (𝑎, 𝑏) ∈ F 𝑛 2 ×F 𝑚 2 and an affine function 𝐶 :

where 𝐺𝐿(𝑛, F 2) is the set of all nonsingular binary matrices of order 𝑛. If 𝐶 = 0, then 𝐹 and 𝐺 are affine equivalent, and if in addition 𝑎 and 𝑏 are equal to zero then they are linear equivalent.

Theorem 7.8. The multi-set composed of all values in the FBCT is preserved under extendedaffine nonsingular transformation. Namely, we have that FBCT 𝐺 (𝑢, 𝑣) = FBCT 𝐹 (𝑢 ′ , 𝑣 ′) where 𝑢 ′ = 𝐴(𝑢) and 𝑣 ′ = 𝐴(𝑣).

Proof. Suppose that 𝐺(𝑥) = 𝐵(𝐹 (𝐴(𝑥) ⊕ 𝑎)) ⊕ 𝐶(𝑥) ⊕ 𝑏 for all 𝑥 ∈ F 𝑛 2 , where 𝐴 ∈ 𝐺𝐿(𝑛, F 2), 𝐵 ∈ 𝐺𝐿(𝑚, F 2), (𝑎, 𝑏) ∈ F 𝑛 2 × F 𝑚 2 and 𝐶 ∈ ℬ(𝑛, 𝑚) is an affine function. Using the fact that 𝐶(𝑥) ⊕ 𝐶(𝑥 ⊕ 𝑢) ⊕ 𝐶(𝑥 ⊕ 𝑣) ⊕ 𝐶(𝑥 ⊕ 𝑢 ⊕ 𝑣) = 0, for all 𝑥 ∈ F 𝑛 2 and 𝑢, 𝑣 ∈ F 𝑛 2 , we obtain the following relations:

where 𝑢 ′ = 𝐴(𝑢), 𝑣 ′ = 𝐴(𝑣) and the new variable 𝑦 corresponds to 𝐴(𝑥) ⊕ 𝑎.

In particular, the F-boomerang uniformity is constant among S-boxes in the same linear, affine or extended-affine equivalence class. Theorem 8.5. The matrix ℳ of a gfn is the transpose of the adjacency matrix of the associated digraph of the gfn.

The graph representation and the matrix representations are thus equivalent. Powers of the matrix ℳ provide information on how each block diffuses throughout the scheme. Indeed, the element ℳ 𝑟 𝑖,𝑗 gives the number of walks of length 𝑟 from vertex 𝑖 to vertex 𝑗. Put another way, ℳ 𝑟 𝑖,𝑗 indicates wether input block 𝑥 𝑖 influences output block 𝑦 𝑟 𝑗 after 𝑟 rounds. As a consequence the diffusion delay 𝑑 + can be defined from the matrix point of view as follows:

Theorem 8.6. Given a gfn with diffusion delay 𝑑 + and associated matrix ℳ, then 𝑑 + is the smallest nonzero integer such that ℳ 𝑑 + has only nonzero coefficients.

The diffusion delay in decryption mode 𝑑 -can naturally be defined in an analogous way using ℳ -1 . One advantage of the matrix representation over the graph representation is that one can multiply different matrices together instead of just raising one matrix to a power, which means that one can use round functions that are different. Moreover, the notion of inversion comes more naturally for matrices than it does for graphs.

Matrix Equivalences

The matrix representation now allows us to properly define an equivalence relation on gfns.

Definition 8.7. Two gfns are equivalent if their associated graphs are isomorphic. From a matrix point of view, two gfn matrices ℳ and ℳ ′ are equivalent if there exists a permutation matrix 𝜋 such that 𝜋ℳ𝜋 -1 = ℳ ′ .

In other words, two gfns are equivalent if they are the same up to block reindexation and thus share the same properties, such as a common full diffusion delay. Moreover, the following property describes how the corresponding inner layers of two equivalent gfns are tied one to another.

Theorem 8.8. Let ℳ = 𝒫ℱ and ℳ ′ = 𝒫 ′ ℱ ′ be two gfns according to Definition 8.4 and equivalent as defined in Definition 8.7. Let also 𝜋 be such that

Two gfns are thus equivalent if and only if both of their layers are equivalent with the same conjugating element 𝜋.

Characterizing Quasi-involutive gfns

In this section, we look at the characteristics of a gfn matrix. Clearly, not every matrix with coefficient in {0, 1, 𝐹 } corresponds to a gfn.

We recall that an important and interesting feature of gfns is that they are invertible permutations, regardless of the invertible nature of the inner Feistel functions that are used in each round: the decryption process uses the exact same functions. Consequently, when looking at the matrix of the gfn in decryption mode ℳ -1 , no element should be computed as inverses of expressions containing an 𝐹 . This yields that det(ℳ) is independent of 𝐹 , or equivalently, that det(ℳ) = ±1, hence det(ℱ) = ±1 since 𝒫 is a permutation matrix.

Another feature of many gfns is that the decryption process is roughly the same as the encryption process, up to inverting the permutation layer 𝒫. Such property is called quasiinvolutiveness. The remaining of this section focuses of these particular schemes. Definition 8.9. A gfn is quasi-involutive if its nonlinear layer is an involution.

All classical gfns described in Section 8.1.1 are quasi-involutive, except for the type-3 gfn, in which case the round-functions must be evaluated sequentially while decrypting.

The definition of a matrix of a quasi-involutive gfn is given below:

is the matrix of a quasi-involutive gfn if it can be written as ℳ = 𝒫ℱ, where 𝒫 is a permutation matrix and ℱ satisfies the following conditions:

1. the main diagonal is filled with 1, 2. the off-diagonal coefficients are either 0 or 𝐹 , 3. for each index 𝑖, row 𝑖 and column 𝑖 cannot both have an 𝐹 coefficient.

Condition 3 means that the blocks of the gfn can be partitioned into three categories:

• emitting blocks, that go through a Feistel function,

• receiving blocks, that are xored to the output of a Feistel function,

• blocks that do not emit nor receive.

Theorem 8.11. Let ℳ = 𝒫ℱ be a gfn according to Definition 8.10. Then ℱ is invertible and ℱ -1 = 2ℐ -ℱ, where ℐ stands for the identity matrix.

Theorem 8.11 shows the property of quasi-involutiveness of gfns defined as in Definition 8.10. The matrices are indeed with coefficients in a ring of characteristic 0 so that distances can be computed/measured in the associated Feistel graph. In this context, inverting the operation of adding the output of the Feistel functions means performing the corresponding subtraction, hence the term -ℱ. The other term, 2ℐ, ensures that the coefficients on the diagonal equal 1. In characteristic 2, which is the case where the outputs of the Feistel functions are simply xored with other blocks, this theorem yields ℱ -1 = ℱ.

Conversely, a characterization can be given for matrices ℱ such that ℱ -1 = 2ℐ -ℱ:

Theorem 8.12. Let ℱ be a matrix that verifies Conditions 1 and 2 of Definition 8.10. If (ℱ -ℐ) 2 = 0 then ℱ also verifies Condition 3.

In other words, all quasi-involutive nonlinear layer matrices are exactly those for which Condition 3 of Definition 8.10 holds.

A.2 Theoretical Foundations and Flatness

After few generalities on stream ciphers, it is recalled in this section the main results of [START_REF] Dravie | Design of self-synchronizing stream ciphers: A new control-theoretical paradigm[END_REF] concerning the design of sssc based on the property of flatness.

A.2.1 Generalities on Stream Ciphers

For a stream cipher, it must be given an alphabet 𝐴, that is, a finite set of basic elements named symbols. The set 𝐴 stands in this paragraph as a general notation without any specific alphabet. Typically, 𝐴 could be composed of 1 or several bits elements. Hereafter, the index 𝑡 ∈ N will stand for the discrete-time. On the transmitter part, the plaintext (also called information or message) 𝑚 ∈ ℳ (ℳ is the message space) is a string of plaintext symbols 𝑚 𝑡 ∈ 𝐴. Each plaintext symbol is encrypted, by means of an encryption (or ciphering) function 𝑒, according to:

where 𝑧 𝑡 ∈ 𝐴 is a so-called keystream (or running key) symbol delivered by a keystream generator. The function 𝑒 is invertible for any prescribed 𝑧 𝑡 . The resulting symbol 𝑐 𝑡 ∈ 𝐴 is the ciphertext symbol. The integer 𝑟 ≥ 0 stands for a potential delay between the plaintext 𝑚 𝑡 and the corresponding ciphertext 𝑐 𝑡+𝑟 . This is explained by computational or implementation reasons, see [START_REF] Daemen | The Self-Synchronizing Stream Cipher MOSQUITO: eSTREAM Documentation, Version 2. eSTREAM, ECRYPT Stream Cipher Project[END_REF] for example. Consequently, for stream ciphers, the way how to encrypt each plaintext symbol changes on each iteration. The resulting ciphertext 𝑐 ∈ 𝒞 (𝒞 is called the ciphertext space), that is the string of symbols 𝑐 𝑡 , is conveyed to the receiver through a public channel. At the receiver side, the ciphertext 𝑐 𝑡 is deciphered according to a decryption function 𝑑 which depends on a running key ̂︀ 𝑧 𝑡 ∈ 𝐴 delivered, similarly to the cipher part, by a keystream generator. The decryption function 𝑑 obeys the following rule. For any two keystream symbols ̂︀ 𝑧 𝑡+𝑟 , 𝑧 𝑡+𝑟 ∈ 𝐴, it holds that

2) means that the running keys 𝑧 𝑡 and ̂︀ 𝑧 𝑡 must be synchronized for a proper decryption. The generators delivering the keystreams are parametrized by a secret key denoted by 𝐾 ∈ 𝒦 (𝒦 is the secret key space). The distinct classes of stream ciphers (synchronous or self-synchronizing) differ each other by the way on how the keystreams are generated and synchronized. Next, we detail the special class of stream ciphers called Self-Synchronizing Stream Ciphers.

A.2.2 Keystream Generators for Self-Synchronizing Stream Ciphers

A well-admitted approach to generate the keystreams has been first suggested in [START_REF] Maurer | New approaches to the design of self-synchronizing stream ciphers[END_REF]. It is based on the use of so-called finite state automata with finite input memory as described below. This is typically the case in the cipher Moustique [KRB + 04]. At the ciphering side, the automaton delivering the keystream takes the form:

where 𝑥 𝑡 ∈ 𝐴 is the internal state, 𝑓 is the next-state transition function parametrized by 𝐾 ∈ 𝒦.

As previously stressed, the delay 𝑏 is introduced to cope with special situations, in particular when the computation of the output (also called filtering) delivered by the function ℎ involves 𝑟 successive operations processed at time instants 𝑡, . . . , 𝑡 + 𝑟. Those operations will be here matrix multiplications as detailed later in Equation (A.14). Substituting 𝑚 𝑡 by its expression (A.2) yields an automaton described by

If such an automaton has finite input memory, it means that, by iterating (A.4) a finite number of times, there exists a function ℓ 𝐾 and a finite integer 𝑀 such that

and thus,

Actually, the fact that the keystream symbol can be written in the general form

with 𝜎 𝐾 a function involving a finite number of past ciphertexts from time 𝑡ℓ to 𝑡ℓ ′ (ℓ, ℓ ′ ∈ Z), is a common feature of the sssc. Equation (A.7) is called the canonical equation.

Remark 1. The benefits of implementing the recursive forms (A.3) or (A.4) instead of directly implementing the canonical form (A.7) is that we can obtain nonlinear functions 𝜎 𝐾 of high complexity by implementing simpler nonlinear functions 𝑓 𝐾 or 𝑔 𝐾 . The complexity results from the successive iterations which act as composition operations.

At the deciphering side, the automaton takes the form

where ̂︀ 𝑥 𝑡 is the internal state. Similarly to the cipher part, the automaton having a finite input memory, it means that, by iterating Equation (A.8) a finite number of times, one also obtains x𝑡 = ℓ 𝐾 (𝑐 𝑡+𝑟-1 , . . . , 𝑐 𝑡+𝑟-𝑀), and thus, ẑ𝑡+𝑟 = ℎ 𝐾 (ℓ 𝐾 (𝑐 𝑡+𝑟-1 , . . . , 𝑐 𝑡+𝑟-𝑀)).

Hence, it is clear that after a transient time of maximal length equal to 𝑀 , it holds that, for 𝑡 ≥ 𝑀 , ̂︀ 𝑥 𝑡 = 𝑥 𝑡 and ̂︀ 𝑧 𝑡+𝑟 = 𝑧 𝑡+𝑟 . (A.9)

In other words, the generators synchronize automatically after at most 𝑀 iterations. Hence, the decryption is automatically and properly achieved after at most 𝑀 iterations too. No specific synchronizing protocol between the cipher and the decipher is needed. This explains the terminology Self-Synchronizing Stream Ciphers. The integer 𝑀 is called the synchronization delay.

Hereafter, the considered automata will be assumed to operate on the 𝑞 elements finite field F = F 𝑞 where 𝑞 is a prime power.

A.2.3 Flat lpv Automata and sssc

For the automaton described by (A.3) (or the equivalent automaton described by (A.4) after substitution) to get a finite input memory feature (see (A.5)), the solutions proposed in the open literature call for state transition functions 𝑔 𝐾 in the form of shifts or more generally 𝑇 -functions (𝑇 for Triangle). It is recalled that 𝑇 -functions are functions that propagate dependencies in one direction only. Till now, none of the proposed ssscs has involved non-triangular state transition functions although 𝑇 -functions are known to suffer from weakness [START_REF] Joux | Chosen-ciphertext attacks against MOSQUITO[END_REF]. Indeed, 𝑇 -functions induce a propagation of differential properties which make them easier to cryptanalyse. It is explained by the fact that no systematic methodology for constructing finite automata with finite input memory and involving general non-triangular state transition functions was proposed so far. Actually, it has been shown in [START_REF] Dravie | Design of self-synchronizing stream ciphers: A new control-theoretical paradigm[END_REF] that such a problem can be fixed for the particular class of automata called flat lpv (Linear Parameter-Varying) automata.

Let us recall what is a flat automaton.

Definition A.20. An automaton described by the dynamics 𝑓 verifying

where 𝑥 𝑡 ∈ F 𝑛 is the state, 𝑚 𝑡 ∈ F is the input, is said to be flat, if there exists a function

such that all system variables can be expressed as a function of 𝑐 𝑡 and a finite number of its backward and forward shifts.

The output 𝑐 𝑡 is called the flat output. Hence, by definition, there exists a function ℱ such that

where 𝑡 0 and 𝑡 1 are Z-valued integers. A central remark is that (A.11) is nothing but the canonical equation of an sssc (compare with (A.5)). As a direct consequence, a flat automaton acts as a primitive for designing an sssc.

Lpv automata, defined over a field F, are described by the following state space representation:

𝑥 𝑡 ∈ F 𝑛 is the state vector, 𝑚 𝑡 ∈ F is the input. The matrices 𝐴 ∈ F 𝑛×𝑛 and 𝐵 ∈ F 𝑛×1 are respectively the dynamical matrix and the input matrix. The output 𝑐 𝑡 is defined as

with 𝐶 ∈ F 1×𝑛 the output matrix. The matrix 𝐵 is the input matrix and defines the component 𝑥 𝑖 𝑡 on which the symbol 𝑚 𝑡 is added. Let us note that 𝑚 𝑡 can be added to several components. Such a system is called Linear Parameter-Varying because it is written with a linear dependency with respect to the state vector. The set of all varying parameters of 𝐴 are collected on a vector denoted by

where 𝐿 is the total number of non-zero (possibly varying) entries. Such automata can exhibit nonlinear dynamics. Indeed, the nonlinearity is obtained by defining the varying parameters 𝜌 𝑖 (𝑡) as nonlinear functions 𝜙 𝑖 : F 𝑠+1 → F of the output 𝑐 𝑡 (or a finite number of shifts) 𝜌 𝑖 (𝑡) = 𝜙 𝑖 (𝑐 𝑡 , 𝑐 𝑡-1 , • • • , 𝑐 𝑡-𝑠) with 𝑠 a natural number. Let us notice that the notation 𝜌 𝑖 (𝑡) (usual in the literature for lpv systems) is somehow abusive because it does not reflect an explicit dependency with respect to the time 𝑡 but on quantities, here 𝑐 𝑡 , indexed with 𝑡.

As a simple illustration, the automaton governed by Equation (A.12) with the setting along with the keystream ̂︀ 𝑧 𝑡 defined as

and the deciphering function obeying

Then, the set of equations (A.16-A. 19) define the deciphering part of an sssc.

The proof given in [START_REF] Dravie | Design of self-synchronizing stream ciphers: A new control-theoretical paradigm[END_REF] consists in showing that, if the lpv finite state automaton defined by (A.12) is flat, then there exists an integer 𝑀 such that the synchronization error 𝑥 𝑘 -̂︀ 𝑥 𝑡+𝑟 reaches zero after a finite transient time of length 𝑀 . The integer 𝑀 is the synchronization delay. Actually, it is shown that flatness is equivalent to the existence of an integer 𝑀 such that for all 𝑡 ≥ 0,

Summary for the construction of sssc from a flat lpv-based automaton Choose a triplet (𝑛, 𝑟, 𝑛 𝑎) with 𝑛 the dimension of the state, 𝑟 the delay and 𝑛 𝑎 the number of non-zero entries of the matrix 𝐴.

Step S1: Choose a component 𝑥 𝑖 𝑡 on which the plaintext symbol 𝑚 𝑡 is added. It follows that 𝐵 = (0 . . . 1 0 . . . 0) 𝑡 (the entries 1 is located at column 𝑖).

Step S2: Choose a component 𝑥 𝑖 𝑡 (𝑖 ∈ {1, . . . , 𝑛}) as the desired flat output 𝑦 𝑡 = 𝑥 𝑖 𝑡 . It follows that 𝐶 = (0 • • • 0 1 0 . . . 0) (the only entry 1 is located at the 𝑖-th column of 𝐶). It can be shown that for the special case when 𝐵 = (1 0 . . .), 𝑖 must be equal to 𝑟 for 𝑦 𝑡 = 𝑥 𝑖 𝑡 to be a flat output.

Step S3: Construct the corresponding digraph 𝒢(Σ Λ) according to Step 1-5 given in Appendix A.8 and derive the matrices 𝐼 𝐴 and 𝐼 𝐵 of the structured linear system Σ Λ .

Step S4: Replace some of the non-zero entries of 𝐼 𝐴 by a nonlinear function 𝜌 𝑖 (𝑡) = 𝜙 𝑖 (𝑐 𝑡 , 𝑐 𝑡-1 , • • • , 𝑐 𝑡-𝑠) to construct the matrix 𝐴 𝜌(𝑡) of (A.12) and set 𝐵 = 𝐼 𝐵 . Not all '1' entries of 𝐼 𝐴 must be assigned to a non-linear function. Some of them can be merely constant. The choice must obey a trade-off between complexity of the architecture and security (a matter discussed in next section). Since the construction ensures structural flatness, any choice will preserve the self-synchronization property.

Step S5: Complete the design by deriving the equations of Proposition 1. In particular, calculate the matrix (A.17) governing the state transition function of the automata (A.16) ensuring the deciphering.

Example: Consider the triplet (𝑛 = 2, 𝑟 = 2, 𝑛 𝑎 = 5). Choose

The particular setting of the matrix 𝐶 means that the component 𝑥 2 𝑡 of the state vector of the lpv system (A.12) is the desired flat output. For 𝑛 𝑎 = 5, Steps 1-5 given in Appendix A.8 give

Let us keep constant and equal to 1 the first three entries of 𝐴 and let the fourth entry be a nonlinear function. It is denoted by 𝜌 1 (𝑡). This finally leads to the following matrix 𝐴 𝜌(𝑡) :

)︂ .

Next sections are devoted to the specifications, design rationale and security analysis of a complete sssc based on flat lpv dynamical systems as described above. The cipher is called Stanislas for Secure Transmission Algorithm with Nontriangular Iterative Structure Looking After Self-synchronization.

A.3 Specification of the flat lpv-based sssc Stanislas

Stanislas operates over the 16 elements of the finite field F 16 defined as: F 16 = F 2 [𝑋]/(𝑋 4 +𝑋 +1), the addition being the componentwise exclusive or, simply denoted +, and the multiplication, denoted by •, being the polynomial multiplication modulo the primitive polynomial 𝑋 4 + 𝑋 + 1.

A.3.1 Equations of Stanislas

The internal state 𝑥 𝑡 ∈ F 40 16 of the cipher consists in a vector of dimension 𝑛 = 40 with 4-bit components considered as elements in F 16 . The input 𝑚 𝑡 and the output 𝑐 𝑡 of the ciphering function are 4-bit respective elements in F 16 .

Ciphering equations

The ciphering equation defines the next internal state 𝑥 𝑡+1 ∈ F 40 16 and the cipher output 𝑐 𝑡 ∈ F 16 . Note also that all elements that compose the matrix 𝐴 𝜌(𝑡) and the vectors 𝐵 and 𝐶 are elements of F 16 . The ciphering equation obeys, for 𝑡 ≥ 0, cipher:

where 𝐵 is the column vector equal to 𝐵 = (1 F 16 , 0 F 16 , . . . , 0 F 16) 𝑇 and 𝐶 is the row vector equal to 𝐶 = (0 F 16 , 0 F 16 , 1 F 16 , 0 F 16 , . . . , 0 F 16) with the 1 F 16 component located at column 𝑟 = 3. In other words, the only non-zero component of 𝐶 which equals 1 F 16 is the third component. Hence, the ciphertext symbol consists in the third component of the internal state. Let us note that in general, the ciphertext obeys Equation (A.13). Hence, the ciphertext results from a linear combination of the state vector components. Here, we propose a construction for which the linear combination reduces to the selection of one component. To guarantee a self-synchronization property (otherwise stated, to ensure Equation (A.20)), the component that is selected must coincide with 𝑟, the delay of the system. This is why here, 𝑟 = 3.

The matrix 𝐴 𝜌(𝑡) is a 40 × 40 dimensional matrix. The entries 𝑎 𝑖𝑗 of 𝐴 𝜌(𝑡) are either 0 of F 16 , or 1 of F 16 or a nonlinear function of 𝑐 𝑡 . Among them, 𝑛 𝑎 = 115 entries are non-zero coefficients and 𝐿 = 80 entries correspond to nonlinear functions 𝜙 𝑖 (𝑖 = 1, . . . , 80). Each function 𝜙 𝑖 depends on the current ciphertext symbol 𝑐 𝑡 (𝑠 = 0 in Equation (A.21)) and on a subkey 𝑆𝐾 𝑖 of 𝐾. This subkey 𝑆𝐾 𝑖 thus defines the corresponding function 𝜙 𝑖 which depends on only one ciphertext symbol 𝑐 𝑡 .

𝜙 𝑖 :

The subkey 𝑆𝐾 𝑖 is a 4-bit word derived from the secret key 𝐾 as described in the Key Schedule of subsection A. In other words, taking into account the particular structure of the matrices 𝐵 and 𝐶 with only one non-zero coefficient, the ciphering process is governed by:

Deciphering equations

The deciphering is governed by two equations defined, for 𝑡 ≥ 0, by decipher:

where the 40×40-dimensional matrix 𝑃 𝜌(𝑡:𝑡+𝑟) over F 16 verifies 𝑃 𝜌(𝑡:𝑡+𝑟) = 𝐴 𝜌(𝑡) -𝐵𝒯 -1 𝐶 ∏︀ 𝑡 𝑙=𝑡+𝑟-1 𝐴 𝜌(𝑙) and 𝒯 = 𝐶 ∏︀ 𝑡+1 𝑙=𝑡+𝑟-1 𝐴 𝜌(𝑙) 𝐵. Otherwise stated, the deciphering consists of two equations. The first one achieves the computation of the next internal state x𝑡+1 from the current state x𝑡 and the delayed ciphertext 𝑐 𝑡+𝑟 . The second equation ensures the recovery of the plaintext symbol 𝑚 𝑡 . The self-synchronization between the internal states 𝑥 𝑡 and ̂︀ 𝑥 𝑡 of the cipher and the decipher automata and thus a proper decryption are guaranteed, by construction, after a finite transient time.

Let 𝑋[𝑖] denotes the 𝑖-th row of a matrix 𝑋. Taking into account the particular structure of the matrices 𝐴, 𝐵 and 𝐶, the delay 𝑟 = 3, and noticing that 𝒯 equals one, the deciphering process is governed by:

where

2 ≤ 𝑖 ≤ 𝑛 (A.29)

Key Schedule

The matrix 𝐴 consists of 𝑛 𝑎 = 115 non-zero entries, and among them, 𝐿 = 80 are functions 𝜙 𝑖 depending on the subkey 𝑆𝐾 𝑖 . Thus, the Key Schedule process aims at generating 80 subkeys of 4-bit length: 𝑆𝐾 1 , • • • , 𝑆𝐾 80 from the 80-bit master key 𝐾 arranged as 20 words 𝐾 1 , . . . , 𝐾 20 of 4-bit length. To do so, the ciphering equations (A.26) with 𝑚 𝑡 = 0 are used. During this process, the parameters 𝑆𝐾 𝑖 involved in the functions 𝜙 𝑖 (see Equation (A.25)) are set to zero. The internal state 𝑥 0 is initialized by duplicating the master key 𝐾 as

Then, the initial internal state 𝑥 0 is updated ten times by using equations (A.26) with 𝑚 𝑡 = 0 for 𝑡 = 0, . . . , 9.

After those ten iterations, the ten subkeys 𝑆𝐾 1 , . . . , 𝑆𝐾 10 are respectively initialized with the following components of the internal state 𝑥 10 : 𝑥 1 10 , 𝑥 2 10 , 𝑥 7 10 , 𝑥 10 10 , 𝑥 17 10 , 𝑥 18 10 , 𝑥 22 10 , 𝑥 26 10 , 𝑥 28 10 , 𝑥 34 10 . This process is repeated 7 more times to initialize the other subkeys 𝑆𝐾 10𝑖+1 , . . . , 𝑆𝐾 10𝑖+10 , for 𝑖 = 0, . . . , 7.

A.3.2 Ciphering Process

The plaintext consists of ℓ elements of F 16 : 𝑚 = 𝑚 0 • • • 𝑚 ℓ-1 . The initial state 𝑥 0 is first initialized with 40 random elements of F 16 . These initial values are kept secret and are not transmitted to Key Schedule. The Key Schedule has been chosen to reuse existing circuit while sufficiently mixing together the key words. To do so, we use the already implemented matrix 𝐴 by applying it a sufficient number of times when looking at the diffusion degree and at the induced algebraic degree. The extracted 4-bit words of the internal state 𝑥 𝑡 -at positions 1, 2, 7, 10, 17, 18, 22, 26, 28, 34 -have been chosen to be among the ones that depend of the maximum number of other elements of 𝑥 𝑡 to ensure to maximize the diffusion effect of the initial state 𝑥 0 .

From a theoretical point of view, if we consider that each S-box behaves as a random function (i.e. it has a behavior sufficiently near the one of a true random function) and using the direct extension of Lemma 9 and Theorem 7 of [START_REF] Maurer | Indistinguishability of Random Systems[END_REF], we could say, that after 𝑑 0 + 2 of the matrix 𝐴 on the input 𝑥 0 , the applied transformation behaves as a random function. In other words, the operations done to fulfill the subkey words behaves as a random function.

A.4.2 Security Analysis

The following section focuses on the security of Stanislas against known attacks. We claim a 80-bit security level which corresponds to the key length (we could not have a security level greater than the key length). Moreover, this security level is also achieved regarding the length of the main register: 160 bits. Indeed, the Guess-and-Determine attacks described in [START_REF] Hellman | A cryptanalytic time-memory trade-off[END_REF] imply to double the length of the used register compare to the key length to achieve a security level corresponding to the key length. Thus, we try to derive security bounds for all known attacks against Stanislas and we found no attacks that work with a complexity smaller than 2 80 operations which corresponds with our security claim.

Moreover, it has been proven in [START_REF] Dravie | Security proof of the canonical form of self-synchronizing stream ciphers[END_REF] that the canonical form of an sssc is secure against Chosen Plaintext Attacks (IND-CPA secure) but not against Chosen Ciphertext Attacks (IND-CCA security). We do not claim any security result in this last model. Moreover, we suppose that the attacker has no access to the key and to the initial value of the internal state 𝑥 0 . To prevent collision search attack, we limit the size of each plaintext to 2 64 4-bit words.

First, it seems very difficult to analyze the security of Stanislas in its true settings (i.e. the 160-bit internal state 𝑥 0 is a secret nonce). In those settings, we could only say that:

• the time-memory-data trade-off attacks described in [Bab95, BS00, Hel80] apply when the internal state is smaller than two times the key length. This is why we choose the length of the internal state to be twice the key length to prevent this kind of attacks.

• Guess-and-Determine Attacks [START_REF] Hellman | A cryptanalytic time-memory trade-off[END_REF] 𝑡+𝑛 . Thus, as the Algebraic Normal Form (ANF) of the S-box has 2 equations with 4 terms, 1 equation with 9 terms and 1 equation with 7 terms, each new 𝑥 2 𝑡 will induce a system of 4 × 3 × (𝑛 + 1) + 3 × 4 = 12𝑛 + 24 unknown binary variables with 4 equations with in total 24 non-linear terms. Thus, we could not solve the system without guessing a part of it whatever the 𝑛 value. Even considering that we guess a part of the system, the combinatorial explosion seems clear because each value of the internal state depend on at least one other value. Thus, we conjecture here that Stanislas is safe against this type of attacks since, even if a part of the internal state is guessed, each 4-bit word of this state is updated through a XOR with a 4-bit word of subkey and an S-box. Moreover, since the diffusion delay of 𝐴 𝑆 is 𝑑 0 = 7, this leads to guess after 7 outputs all the key. Thus, guessing a part of the state allows to guess a part of the key which, in then, amounts to a guess-and-determine attack with a complexity greater than the key exhaustive search. Thus, instead, when looking at classical attacks, we will use the model described in Remark 2 where the initial state is derived in its first components after 20 iterations of the matrix 𝐴 𝑆 applied on the concatenation of an IV and of the master key 𝐾 and in its last components after 14 more iterations. Those settings could be considered as a degrading mode of the original Stanislas specifications. Thus considering that the attacker has full access to the IV, we obtain the following bounds against classical attacks:

• Differential / Linear Cryptanalysis: we compute the lower bounds on the minimal number of active S-boxes for the computation of the internal state with Remark 2. To do so, we implement the model of Remark 2 using Constraint Programming to explore all the possible paths in the induced graph. Then, we obtain that, for the differential case, after 7 iterations, a minimal number of 38 S-boxes has been crossed, after 10 iterations, 46, after 14 iterations, 65. As the differential probability of the chosen S-box is equal to 2 -2 , we could guarantee that the 80-bit key exhaustive search is less expensive than passing through more than 40 S-boxes, which is the case after 10 iterations of the 𝐴 𝑆 matrix. In the same way, for the linear case, we obtain after 7 iterations, 35 active S-boxes, after 10 iterations, 41 and after 14 iterations, 59. Thus, for the same reason, after 10 iterations, a 80-bit key exhaustive search is more efficient.

• Algebraic Attacks: This kind of attacks [START_REF] Courtois | Efficient algorithms for solving overdefined systems of multivariate polynomial equations[END_REF] is possible when the overall degree of the induced system of equations does not sufficiently increase at each clock. Especially, if the overall degree 𝑑 in each of the 𝑛 unknown variables (the key variables for example) of the system is such that (𝑛 𝑑) 2.5 is lower than the security bounds, it means that it is faster to solve the induced system by Gaussian elimination (considering that each new monomial is a new unknown variable) than trying all the keys of the system. Thus, we want to prevent this attack from happening as described below. The algebraic degree of each S-box component is the best one: equal to 3. Thus, each passing through an S-box increases the degree in the equations describing the internal state and in the equations describing the key. Even if the 𝑆𝐾 𝑖 linearly depends on the master key bits 𝐾 1 , • • • , 𝐾 80 (there are 80 key bits that are unknown), if we write the number of variables after crossing the first S-box, we have (80) 3 monomials depending on the unknown key bits, after the second pass we obtain (80) 6 monomials also depending on the unkonwn key bits and so on. Thus, if we apply those estimations using the bounds on the number of active S-boxes of the differential/linear case, after 10 iterations, we have 46 active S-boxes, which means that the number of unknowns (considering that each new monomial is a new unknown) is lower bounded after 10 iterations by (80) 3×46 ≈ 2 872,16 where 80 are the unknowns coming from the master key, 3 is the algebraic degree of the S-box and 46 is the number of crossed S-boxes. Thus, we conjecture that the complexity of the best algebraic attack is greater than the 80-bit key exhaustive search.

• Cube Attacks: As established in [START_REF] Dinur | Cube attacks on tweakable black box polynomials[END_REF], a cipher is vulnerable to cube attacks if an output bit can be represented as a sufficiently low degree polynomial over 𝐺𝐹 (2) of key and input bits. It works by summing an output bit value for all possible values of a subset of public input bits, chosen such that the resulting sum is a linear combination of secret bits. Repeated application of this technique gives a set of linear relations between secret bits that can be solved to discover these bits. In [START_REF] Sato | Analysis of division property using milp method for lightweight blockcipher piccolo[END_REF], the authors analyzed this kind of attacks on the block cipher Piccolo, especially its S-box. They stated that after 8 rounds, no relation with 63 input bits could be found. The minimal number of S-boxes crossed for 8 Piccolo rounds is 58 whereas in our case, it is 46 after 10 iterations. So we conjecture that we cross a sufficient number of S-boxes after few iterations to prevent having low degree relations between secret key bits and public input bits.

In summary, we conjecture that most of the usual attacks which apply in the stream cipher context have a complexity greater than the exhaustive key search for Stanislas.

A.5 Hardware Performance and Implementation Aspects

We give hereafter the implementation results of a straightforward implementation of Stanislas. It produces one 4-bit word of ciphertext per clock cycle. Subkeys are computed in the initialization step using the Key Schedule and stored in dedicated registers, before the cipher state processing. The same material is used for the cipher state and the Key Schedule processes. The hardware implementation of Stanislas is not an optimized version targeting any specific performance. The main area occupation comes from the matrix update as it carries big registers during all the calculations. Those registers are the internal state which are mixed with the subkeys either with binary addition or multiplication. This means updating a 40 × 4 bits register all along the matrix update. During ciphering process, the matrix update is solely made of S-boxes and XOR of 4-bits words. The lowest line of the matrix in terms of area occupation is made of 1 S-box and 2 additionnal XORs, the biggest of 4 S-boxes and 8 additional XORs. The deciphering process implies adding 23 multiplications, 28 S-boxes and 39 XORs to the previous total which makes deciphering heavier in terms of area occupation. The matrix is implemented line by line, calculated straightfowardly following the equations as depicted in Fig. 1. The S-boxes are implemented in a Look-Up-Table (LUT) way, so we let the compiler do its own optimizations. Our Stanislas implementation combines both the encryption and decryption process in order to ease comparisons with ssscs.

We implemented Stanislas in VHDL and we provide in Table A.2 FPGA hardware implementations and performance comparisons with synchronous SCs Trivium [START_REF] De | Trivium. In New Stream Cipher Designs -The eSTREAM Finalists[END_REF] and Grain [START_REF] Hell | The grain family of stream ciphers[END_REF], final members of the eSTREAM portfolio, another sssc Moustique and the AES-based sssc CFB1-AES128 as defined in NIST SP 800-38a [START_REF] Dworkin | Nist special publication[END_REF]. The chosen FPGA platform for our benchmark is the Xilinx Spartan-6 XC6SLX75T, package FGG676. High effort of the Xilinx ISE Design Suite has been put on area reduction. Post-place-and-route results are provided.

To get Trivium, Grain, Moustique and CFB1-AES128 implementation results, we have designed our own VHDL straightforward reference implementations, without further optimization in mind. For this latter, we have implemented the potential S-boxes as LUTs, to be consistent with the S-boxes LUT implementations of Stanislas.

At first sight, we can check that some well-known properties are visible in the results. For example, Trivium and Grain are very compact, which can be explained by their low combinatorial gate counts. Moreover, the number of initialization cycles needed for Trivium, Grain and Moustique is consistent with the specifications: e.g., Trivium needs a warm-up phase of minimum 1152 steps. This number is really low for Stanislas where it just consists in a Key Schedule and it is equal to 0 for CFB1-AES128 where the key is processed on the fly.

Surprisingly, straightforward implementation of Stanislas provides the best throughput (TP) compared to the other stream ciphers, even self-synchronizing. The reason is that one 4-bit word is processed by clock cycle, so the throughput is given by: 95 × 4 (bits) = 380 Mbps. That justifies our design choice of processing 4-bit words instead of individual bits. Compared to the standard approach CFB1-AES128, the time needed for synchronization is also shorter, along with a smaller area.

This encouraging result has to be mitigated if we consider the combined metric TP/Area as shown on Table A.3. This latter allows to estimate the cost of optimized parallel implementations, where many bits can be processed in parallel, at the expense of additional area. As we can see, due to its lowest TP/Area value, straightforward implementation of Stanislas will suffer from the comparisons of its competitors' optimized versions. We can then estimate, in Table A As we can see, CFB4-AES128 mode has a 4-fold throughput speedup, beating Stanislas proposal with a significant margin, and it requires only 32 steps for synchronization. But it implies to occupy a big amount of FPGA slices, which is not always affordable for some constrained applications.

Future works will include the study of the cost of side-channel protected Stanislas implementations.

The open source software Sagemath [CCC + 13] has been used to elaborate the digraph 𝒢(Σ Λ) corresponding to the triplet (𝑛 = 40, 𝑟 = 3, 𝑛 𝑎 = 120). The construction has been performed on an Intel CORE i7 CPU 2.26 GHz running Linux Ubuntu 14.04. All experiments ran single-threaded on the processors. It took 21 ms on the computer to obtain the digraph 𝒢(Σ Λ).

Résumé

Les travaux présentés dans cette thèse s'inscrivent dans le cadre du projet fui Paclido qui a pour but de définir de nouveaux protocoles et algorithmes de sécurité pour l'Internet des Objets, et plus particulièrement les réseaux de capteurs sans fil. Cette thèse s'intéresse donc aux algorithmes de chiffrements authentifiés dits à bas coût ou également, légers, pouvant être implémentés sur des systèmes très limités en ressources. Une première partie des contributions porte sur la conception de l'algorithme léger Lilliput-AE, basé sur un schéma de Feistel généralisé étendu (egfn) et soumis au projet de standardisation international Lightweight Cryptography (lwc) organisé par le nist (National Institute of Standards and Technology). Une autre partie des travaux se concentre sur des attaques théoriques menées contre des solutions déjà existantes, notamment un certain nombre de candidats à la compétition lwc du nist. Elle présente donc des analyses spécifiques des algorithmes Skinny et Spook ainsi qu'une étude plus générale des attaques de type boomerang contre les schémas de Feistel.

Mots-clés: cryptographie, cryptanalyse, bas coût, authentification, chiffrement, Feistel, Internet des Objets

Abstract

The work presented in this thesis has been completed as part of the fui Paclido project, whose aim is to provide new security protocols and algorithms for the Internet of Things, and more specifically wireless sensor networks. As a result, this thesis investigates so-called lightweight authenticated encryption algorithms, which are designed to fit into the limited resources of constrained environments. The first main contribution focuses on the design of a lightweight cipher called Lilliput-AE, which is based on the extended generalized Feistel network (egfn) structure and was submitted to the Lightweight Cryptography (lwc) standardization project initiated by nist (National Institute of Standards and Technology). Another part of the work concerns theoretical attacks against existing solutions, including some candidates of the nist lwc standardization process. Therefore, some specific analyses of the Skinny and Spook algorithms are presented, along with a more general study of boomerang attacks against ciphers following a Feistel construction.

Keywords: cryptography, cryptanalysis, lightweight, authentication, encryption, Feistel, Internet of Things.