
HAL Id: tel-03086269
https://hal.science/tel-03086269

Submitted on 22 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and Analysis of Lightweight Encryption Schemes
Paul Huynh

To cite this version:
Paul Huynh. Design and Analysis of Lightweight Encryption Schemes. Computer Science [cs]. Uni-
versité de Lorraine, 2020. English. �NNT : 2020LORR0223�. �tel-03086269�

https://hal.science/tel-03086269
https://hal.archives-ouvertes.fr

École doctorale IAEM Lorraine

Analyse et Conception d’Algorithmes
de Chiffrement Légers

THÈSE

présentée et soutenue publiquement le 26 novembre 2020

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention informatique)

par

Paul Huynh

Composition du jury

Président : Emmanuel Jeandel Professeur, Université de Lorraine

Rapporteurs : Pierre-Alain Fouque Professeur, Université Rennes 1
François-Xavier Standaert Professeur, Université Catholique de Louvain

Examinateurs : Christina Boura Mâıtresse de Conférences,
Université de Versailles Saint-Quentin-en-Yvelines

Virginie Lallemand Chargée de Recherche cnrs, Nancy

Directrice de thèse : Marine Minier Professeure, Université de Lorraine

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Paul

Remerciements

“I don’t know half of you half as well as I should like;
and I like less than half of you half as well as you deserve.”

— Bilbo Baggins

i

ii

All work and no play makes Jack a dull boy
All w ork and no play makes Jack a dull boy
All work and no ,play makesJack a dull boy

iii

iv

Contents

Introduction Générale xi

Introduction xxvii

List of Publications xxix

Part I Background and Preliminaries 1

Chapter 1 – Design of Symmetric Encryption Algorithms 3

1.1 From Ancient to Modern Cryptography . 3

1.2 General Concepts of Cryptography . 5

1.2.1 Purpose . 5

1.2.2 Symmetric Cryptography . 6

1.2.3 Security and adversarial models . 8

1.3 On the Design of Block Ciphers . 9

1.3.1 Modes of operation . 10

1.3.2 Iterated block ciphers . 12

Chapter 2 – Lightweight Cryptography 19

2.1 Lightweight Encryption Primitives . 20

2.1.1 Design criteria . 20

2.1.2 Overview of various design strategies 22

2.2 On Authentication . 23

2.2.1 Authenticated encryption . 23

2.2.2 Generic composition . 24

2.2.3 Dedicated ae(ad) solutions . 25

2.3 Towards New Standards . 30

2.3.1 Iso/iec cryptographic standards . 31

v

Contents

2.3.2 Open competitions . 31

2.4 Some Existing Lightweight Algorithms . 32

2.4.1 Present . 32

2.4.2 Skinny . 33

2.4.3 LBlock . 35

2.4.4 Lilliput . 37

Chapter 3 – Cryptanalysis 41

3.1 General Principles of Classical Cryptanalysis 43

3.1.1 Distinguishers . 43

3.1.2 Key recovery and last round attack 43

3.1.3 Overview of cryptanalytic techniques 44

3.2 Statistical Attacks . 45

3.2.1 Differential attacks . 45

3.2.2 Linear attacks . 50

3.2.3 Boomerang attacks . 51

3.2.4 Interpolation attacks . 53

3.3 Structural Attacks . 54

3.3.1 Integral attacks . 54

3.3.2 Impossible differential attacks . 56

3.4 Automatic tools . 56

3.4.1 Mixed-Integer Linear Programming (milp) 56

3.4.2 Boolean Satisfiability problem (sat) 57

3.4.3 Constraint Programming (cp) . 57

Part II Contribution to the Nist Lightweight Cryptography Competi-
tion 59

Chapter 4 – Lilliput-AE: a nist Proposal 61

4.1 Introduction . 62

4.2 Specifications . 63

4.2.1 Recommended Parameters . 64

4.2.2 The Lilliput-AE Authenticated Encryption scheme 65

4.2.3 The Lilliput-TBC Tweakable Block Cipher 67

4.3 Design Rationale and Security Analysis . 77

4.3.1 Design Rationale of the Modes of Operation 77

4.3.2 Design Rationale of Lilliput-TBC 78

vi

4.3.3 Security Analysis of the Modes of Operation 85

4.3.4 Security Analysis of Lilliput-TBC 86

4.4 Implementations . 94

4.4.1 Software Implementations . 94

4.4.2 Hardware Implementations . 106

4.4.3 Threshold Implementations . 109

4.5 External Cryptanalysis of Lilliput-AE . 113

4.5.1 Lilliput-AE v1 . 113

4.5.2 External analysis of Lilliput-AE . 115

4.5.3 Impact . 115

4.6 Conclusion . 116

Chapter 5 – Cryptanalysis Results on Spook 117

5.1 Introduction . 117

5.2 Preliminaries . 120

5.2.1 Specification of Shadow-384 and Shadow-512 120

5.2.2 Differential Distinguishers . 121

5.3 Structural Observations . 122

5.3.1 Super S-box . 122

5.3.2 4-Identical States . 122

5.3.3 3-Identical States . 124

5.3.4 2-Identical States . 125

5.4 A Distinguisher Against Full Shadow-512 (and More) 125

5.4.1 A 5-Step Truncated Differential Property 126

5.4.2 A Distinguisher for 6- and 7-Step Shadow 128

5.4.3 A Distinguisher for 6-step Shadow-384 134

5.5 Forgeries with 4-step Shadow in the Nonce Misuse Setting 137

5.6 Conclusion . 141

Chapter 6 – Differential Analysis of Skinny with Different Tools 143

6.1 Introduction . 144

6.2 Cipher Under Study: SKINNY-𝑛 . 145

6.3 Overview of Solving Techniques . 147

6.3.1 Mixed Integer Linear Programming 147

6.3.2 Constraint Programming . 147

6.3.3 Sat . 148

6.4 Models for Step 1 . 148

vii

Contents

6.4.1 Milp Models . 148

6.4.2 MiniZinc (sat) Models . 149

6.4.3 Cp Models . 149

6.4.4 Ad-Hoc Models . 150

6.5 Modeling Step 2 with cp . 151

6.6 Results . 153

6.6.1 Step 1 strategies comparison . 154

6.6.2 Step 2 performance results . 157

6.7 Conclusion . 166

Part III General Results on Feistel Constructions 167

Chapter 7 – Introducing the FBCT: A Cryptanalysis Tool for Feistel con-

structions 169

7.1 Introduction . 170

7.2 Motivation: Disproving the Validity of a Previous Boomerang Distinguisher

on LBlock . 172

7.2.1 Specification of LBlock . 172

7.2.2 Attack of Liu et al. 173

7.2.3 Incompatibility in the Distinguisher Proposed by Liu et al. 174

7.3 FBCT: the Feistel Counterpart of the BCT . 176

7.3.1 Definition of the FBCT . 176

7.3.2 Some Variants of Feistel Constructions for which the FBCT Applies . . 179

7.3.3 Evaluation of the 1-round Boomerang Switch of Liu et al.’s Attack

with the FBCT . 180

7.3.4 Relation Between the FBCT and the Feistel Switch 181

7.4 Properties of the FBCT . 181

7.4.1 Basics on vectorial Boolean Functions 182

7.4.2 Some Direct Properties of any FBCT 182

7.4.3 On the FBCT of APN Functions . 183

7.4.4 On the FBCT of S-boxes based on the Inverse Mapping 183

7.4.5 On the FBCT of Equivalent S-boxes . 185

7.4.6 FBCT and Inversion . 186

7.4.7 Set-based Formulation of the FBCT . 186

7.4.8 Comparison of the properties of the BCT and of the FBCT 187

7.5 Extending our Analysis to Two Rounds . 189

7.5.1 The Feistel counterpart of the BDT 189

viii

7.5.2 Probability of a 2-round Boomerang Switch 190

7.6 Generic Formula for a Feistel Boomerang Switch over Multiple Rounds . . . 194

7.7 Application to LBlock-s . 197

7.7.1 Finding the Best 7-round Differential Characteristics for 𝐸0 and𝐸1 . 197

7.7.2 Choosing a Switch 𝐸𝑚 . 198

7.7.3 Deriving a Boomerang Distinguisher 200

7.8 Conclusion . 200

Chapter 8 – Looking for new egfn structures 201

8.1 Background on Gfns and their Extensions 202

8.1.1 Generalized Feistel Networks . 202

8.1.2 Full diffusion delay . 204

8.1.3 Improvement of the diffusion delay . 205

8.1.4 Matrix Representation of Feistel Networks 206

8.1.5 Characterizing Quasi-involutive gfns 207

8.1.6 Extended Generalized Feistel Networks 209

8.1.7 Lilliput . 211

8.2 Towards Lighter Egfn Constructions . 211

8.2.1 Resistance to integral attacks . 212

8.2.2 Resistance to differential cryptanalysis 221

8.3 Conclusion . 223

Conclusion 225

Appendices 229

Appendix A – On Non-Triangular Self-Synchronizing Stream Ciphers 229

A.1 Introduction . 229

A.2 Theoretical Foundations and Flatness . 231

A.2.1 Generalities on Stream Ciphers . 231

A.2.2 Keystream Generators for Self-Synchronizing Stream Ciphers 231

A.2.3 Flat lpv Automata and sssc . 233

A.3 Specification of the flat lpv-based sssc Stanislas 237

A.3.1 Equations of Stanislas . 237

A.3.2 Ciphering Process . 238

A.3.3 Deciphering Process . 239

A.4 Design Rationale and Security Analysis . 240

ix

Contents

A.4.1 Design Rationale . 240

A.4.2 Security Analysis . 243

A.5 Hardware Performance and Implementation Aspects 245

A.6 Conclusion . 247

A.7 Appendix . 247

A.7.1 The Matrix 𝐴𝑆 . 247

A.8 Construction of the Matrices of the sssc . 248

Bibliography 251

x

Introduction Générale

Ça va être dur de faire plus dur que si
dur.

Un homme de lettres

La cryptologie, ou étymologiquement "la science des codes secrets", comprend la cryptographie,
qui se concentre sur l’ensemble des techniques de communication visant à protéger la confidentialité
des données, et la cryptanalyse, qui s’attèle à trouver des faiblesses dans les méthodes de chiffrement
proposées. Ces deux aspects de la cryptologie sont évidemment complémentaires, une avancée
dans un domaine poussant l’autre à proposer des solutions plus efficaces.

De la substitution simple, qui permit à Jules César de communiquer avec ses armées par
messages chiffrés, à la machine Enigma utilisée par les forces de l’Axe lors de la seconde guerre
mondiale, la cryptologie est restée pendant très longtemps réservée à un usage principalement
militaire. Ce n’est qu’avec le développement de l’informatique et l’arrivée des ordinateurs
personnels qu’elle est devenue un domaine de recherche actif, s’imposant progressivement dans
notre quotidien. On compte aujourd’hui un certains nombre de primitives cryptographiques, tels
le chiffrement Rsa [RSA78] ou encore l’Aes [AES01, DR02], standard de chiffrement depuis 2001.

La cryptographie moderne

Avant toute chose, rappelons les objectifs de la cryptographie moderne. Deux protagonistes,
Alice et Bob, veulent communiquer en présence d’un adversaire, Eve. Pour que des utilisateurs
non-légitimes comme Eve ne puissent pas accéder au contenu du message qu’Alice envoie à Bob,
ce message est chiffré au moyen d’une transformation, un cryptosystème, qui apporte les garanties
suivantes :

∙ Confidentialité. Bob doit être le seul à pouvoir déchiffrer le message d’Alice. Si Eve venait
à intercepter le message chiffré d’Alice, il serait impossible pour elle d’en extraire une
quelconque information.

∙ Intégrité. Si Eve change le contenu du message d’Alice, Bob doit être en mesure de le
détecter.

∙ Authenticité. Bob doit être en mesure de vérifier que le message provient bien d’Alice. Eve
ne peut donc pas communiquer avec Bob en prétendant être Alice.

La Figure 1 montre ce procédé. Les algorithmes de chiffrement se répartissent en deux grandes
familles : les algorithmes symétriques, aussi appelés algorithmes à clef secrète, et les algorithmes
asymétriques, ou encore à clef publique :

xi

Introduction Générale

Rosebud

KA

~s@a]f8  
8&\$-0(

Rosebud

~s@a]f8  
8&\$-0(

KB

Figure 1: Alice veut envoyer un message à Bob, chiffré avec une clef 𝐾𝐴. Seul Bob peut retrouver
le message à l’aide de sa clef de déchiffrement 𝐾𝐵 . Pour un chiffrement symétrique, Alice et Bob
partagent la même clef secrète, 𝑖.𝑒. 𝐾𝐴 = 𝐾𝐵.

∙ La première famille utilise une seule et même clef pour le chiffrement et le déchiffrement, ce
qui nécessite le partage d’un secret entre les deux entités souhaitant communiquer.

∙ Pour les algorithmes à clef publique, comme Rsa, chaque entité dispose d’une paire de clef :
une clef de chiffrement, publique, et une clef de déchiffrement, secrète.

La seconde approche permet ainsi d’éviter le problème du partage de secret commun qui est
propre aux algorithmes symétriques. Le sécurité des cryptosystèmes asymétriques repose sur
des problèmes issus de la théorie des nombres considérés comme difficiles, tels la décomposition
en facteurs premiers ou la résolution du logarithme discret dans un corps fini : on démontre en
général que casser un tel système est équivalent à résoudre un certain problème mathématique jugé
difficile. Les arguments de sécurité s’appuient ainsi sur des résultats de complexité asymptotique.
Par ailleurs, certains travaux ont mené à des algorithmes quasi-polynomiaux permettant de
résoudre ces problèmes dans certains cas [Jou14, BGJT14, KW19, BGG+20], montrant qu’il est
possible que des algorithme rapides pour résoudre ces problèmes sous-jacents finissent par voir le
jour. Enfin, il convient aussi d’évoquer la menace d’un éventuel ordinateur quantique, auquel
certains de ces problèmes mathématiques ne résisteraient pas.

Un second type de difficulté concerne la mise en pratique de tels systèmes : les problèmes
difficiles mentionnés précédemment manipulent de grands nombres d’éléments, dans des corps
de grande dimension, ce qui implique des coûts d’implémentation trop élevés ou des débits trop
lents pour certaines applications, comme par exemple, le chiffrement de disque dur. Seuls les
algorithmes symétriques sont capables d’atteindre ces exigences d’implémentation.

Ainsi, dans la pratique, des systèmes hybrides sont utilisés : un système à clef publique va
permettre à deux interlocuteurs Alice et Bob de s’échanger une clef de session, qui servira à
son tour à paramétrer un algorithme de chiffrement symétrique. C’est sur cette seconde famille
d’algorithmes de chiffrement que se concentre cette thèse.

xii

Plan détaillé de la thèse

Ce manuscrit rassemble les différents travaux effectués durant ma thèse à l’Université de Lorraine,
sous la direction de Marine Minier, au sein de l’équipe Caramba.

Ces travaux de recherche portent principalement sur un sous-domaine particulier de la
cryptologie symétrique : la cryptographie dite à bas coût ou encore légère (lightweight cryptography
en anglais), qui a pour but de concevoir des algorithmes de chiffrement dédiés aux objets connectés.
Ces nouveaux appareils, apparus au cours des vingt dernières années et regroupés sous le concept
d’Internet des Objets (iot), sont en effet généralement limités en ressources, créant un besoin
de nouvelles primitives cryptographiques demandant peu de place en mémoire, ayant une faible
consommation d’énergie, tout en conservant une vitesse d’exécution rapide.

Dans les différents chapitres de ce manuscrit, seront donc étudiées les méthodes de conceptions
et d’analyse de tels chiffrements légers. Le contenu est divisé en trois partie, détaillées ci-dessous.

Partie I. Contexte général

Cette première partie a pour but de situer le contexte des contributions qui seront ensuite
présentées dans les Parties II et III. Ainsi, après une présentation des concepts fondamentaux
de la cryptographie moderne, nous nous intéresserons à un des défis ouverts de ce domaine de
recherche, la cryptographie légère. Plusieurs techniques de conception d’algorithmes efficaces et
légers seront étudiées et nous détaillerons également certaines méthodes utilisées en cryptanalyse
symétrique qui seront appliquées dans la suite du manuscrit.

Chapitre 1. Cryptographie symétrique et chiffrements par blocs

Ce chapitre présente les objectifs principaux de la cryptographie et s’intéresse aux solutions mises
en oeuvre dans le domaine de la cryptographie symétrique. En particulier, il décrit les méthodes
de conception des algorithmes de chiffrement symétrique qui utilisent des chiffrements par blocs.
Nous verrons en effet que construire des primitives cryptographiques peut se décomposer en deux
sous-problèmes :

1. concevoir une famille de 2𝑘 permutations de F𝑛
2 se comportant comme une permutation

aléatoire, où 𝑘 désigne la taille de clef secrète (typiquement 128 bits), et 𝑛 est la taille de
bloc (128 bits également),

2. décrire un mode opératoire permettant de manipuler des messages de tailles quelconque.

Une partie de la thèse s’attardera davantage sur le premier point, à savoir la conception d’une
transformation pouvant manipuler des messages de taille fixe. Une technique classique pour
concevoir un algorithme de chiffrement par blocs est d’utiliser un chiffrement itératif : l’idée
consiste à appliquer successivement une permutation paramétrée par une quantité secrète (une
sous-clef) en partant du message clair d’origine pour obtenir le message chiffré. Ce type de
construction est illustrée sur la Figure 2.

Cette structure présente deux avantages. Elle permet tout d’abord d’obtenir des chiffrements
complexes en ne construisant qu’une fonction de tour, ce qui réduit considérablement le coût
d’implémentation. De plus, elle facilite l’analyse du chiffrement puisqu’il est plus simple de fournir
des arguments de sécurité pour une petite fonction simple itérée plusieurs fois que sur une grande
transformation.

xiii

Introduction Générale

𝑀

Algorithme de cadencement de clef

𝐹

𝑘0

𝐹

𝑘1

· · ·

𝐾

· · ·

𝐹

𝑘𝑟−2

𝐹

𝑘𝑟−1

𝐶

Figure 2: Un chiffrement par blocs itératif: la fonction de tour 𝐹 est appliquée successivement, à
chaque fois avec une sous-clef 𝑘𝑖 différente dérivée de la clef de chiffrement 𝐾.

Ainsi, la conception d’un chiffrement par blocs est réduit à deux problèmes : la spécification
d’un algorithme de cadencement de clef pour dériver des sous-clef de tour et une fonction de tour
𝐹 .

Pour la fonction de tour, l’approche usuelle consiste à utiliser deux couches, chacune permettant
d’obtenir une des propriétés de confusion et de diffusion énoncées par Claude Shannon dans son
article fondateur de 1949 [Sha49] :

∙ une couche linéaire, qui va créer de la dépendance entre tous les bits de clef, les bits de
clairs et les bits de chiffrés,

∙ une couche non-linéaire, pour casser les structures algébriques, souvent à base de substitution.

Ces techniques de chiffrement ont été grandement utilisées et étudiées et l’apogée de ce genre
de construction est le choix du standard actuel de chiffrement symétrique, l’Aes [AES01], qui
utilise une concaténation d’une même table de substitution—la boîte-S—sur 8 bits dans sa couche
non-linéaire, et une multiplication par une matrice dite mds1, permettant d’optimiser la diffusion
de sa couche linéaire. La fonction de tour de l’Aes est illustrée à la Figure 3.

ARK SB SR MC
13

2 6 10 14

4 8 12

1 5 9

3 7 11 15

ki

0row 0

row 1

row 2

row 3

Figure 3: Fonction de tour de l’Aes.

Chapitre 2. Cryptographie légère

Dans ce chapitre, nous nous intéresserons davantage à la problématique sous-jacente du coût
d’implémentation et des performances, déjà évoquée dans le chapitre précédent.

1Maximum Distance Separation. En théorie des codes, les codes mds ont la meilleure capacité de correction et
de détection d’erreurs.

xiv

Alors même que l’Aes venait d’être choisi comme nouveau standard par le nist2, le début
des années 2000 vit apparaître un certain nombre d’applications utilisant des plateformes limitées
en ressources, telles les cartes de transports ou les systèmes de verrouillage à distance de voitures.
Aujourd’hui, la prolifération de ces petits objets connectés et le flux de données transitantes qui
en résulte ont créé de nouveaux besoins auxquels les standards actuels comme l’Aes ne sont pas
adaptés. Depuis quelques années, la communauté cryptographique s’efforce donc de proposer de
nouveaux algorithmes consommant très peu d’énergie, utilisant très peu de portes logiques sur un
circuit : les algorithmes légers.

Ces primitives doivent répondre à des contraintes différentes selon le support d’intégration
visé, qui peut être de nature matérielle ou logicielle. Un ensemble de métriques permet de mesurer
l’efficacité d’une implémentation.

∙ Pour une implémentation logicielle, les paramètres à optimiser sont l’empreinte mémoire, la
vitesse d’exécution et la latence.

∙ Pour une implémentation matérielle, un des critères les plus importants est la taille occupée
par l’algorithme sur un circuit, qui est mesurée en nombre de portes logiques (ou ge pour
Gate Equivalent). Un concepteur cherchera également à optimiser le temps d’exécution, la
latence ainsi que la puissance requise.

Il est très difficile d’optimiser toutes ces quantités en même temps et en général, l’application
visée déterminera les choix d’optimisation.

Une autre problème soulevé est la protection contre les attaques par canaux auxiliaires, qui
tirent parti du fonctionnement de l’appareil sur lequel est implémenté l’algorithme de chiffrement
visé. Dans un contexte tel que celui de l’Internet des Objets, beaucoup de systèmes (puces rfid,
capteurs sans fil etc.) opèrent dans des environnements non-protégés et sont particulièrement
exposés à de telles attaques. Ainsi, il est important de pouvoir implémenter des contre-mesures
efficaces, tout en conservant de bonnes performances.

Le chapitre détaillera donc les méthodes de conceptions adoptées pour répondre à ces nouvelles
exigences, illustrées par plusieurs exemples d’algorithmes légers :

∙ Present [BKL+07], aujourd’hui standardisé (iso/iec 29192-2 [ISO12b]), fut le premier
chiffrement léger. Ses concepteurs ont opté pour un ordonnancement de clef simplifié, un
état interne réduit, des boîtes-S agissant sur 4 bits et une permutation simple de bits pour
favoriser une implémentation matérielle.

∙ L’implémentation de l’Aes sur des petites cartes restant trop coûteuse du fait des structures
mathématiques utilisées (boîte-S sur 8 bits, matrice mds), une question naturelle qui s’est
notamment posé a été de savoir comment alléger ces composants, en ayant des propriétés
d’implémentation qui soient très bonnes et en gardant une sécurité correcte. Cette approche
a été adoptée par les concepteurs de Skinny [BJK+16]. D’autres travaux ont également
été menés sur la recherche de boites-S [Can05, BP09, CDL16, CR19] ou de matrices
mds [JPS17, DL18] compactes.

∙ Des constructions basées sur des schémas de Feistel, comme LBlock [WZ11a] ou Lil-
liput [BFMT16] permettent de diminuer le surcoût du déchiffrement.

Des implémentation logicielles efficaces peuvent être obtenue par bit-slicing, qui consiste
à réécrire un algorithme cryptographique au plus bas niveau, en utilisant uniquement des

2National Institute of Standards and Technology. Il s’agit d’une agence de standardisation américaine.

xv

Introduction Générale

opérations logiques bit à bit. Les LS-Designs [GLSV15] ont été conçus pour faciliter ce genre
d’implémentation. Les structures Arx [Miy91, WN95, BSS+13, DPU+16], n’utilisent que des
opérations simples—addition, rotation et xor et sont également très efficaces pour les applications
logicielles.

La question de l’authentification est également importante en cryptographie légère. Plus
particulièrement, alors que la méthode traditionnelle consiste à chiffrer les données, puis faire
appel à une autre primitive pour générer un tag d’authentification permettant de vérifier l’identité
de l’émetteur, la communauté cryptographique a cherché à proposer des modes opératoires
permettant de fournir l’authentification en même temps que le chiffrement : on parle alors de
chiffrement authentifié en une passe.

Chapitre 3. Cryptanalyse

La cryptanalyse permet d’évaluer la sécurité des primitives cryptographiques. C’est une com-
posante essentielle de la cryptologie; la seule façon de se convaincre de la sécurité d’un algorithme
étant de regarder les grandes familles d’attaques connues et de montrer que celles-ci ne s’appliquent
pas sur ce système.

Une notion importante en cryptanalyse symétrique est celle du distingueur, qui peut être
définie comme une propriété permettant à un attaquant de différencier un chiffrement d’une
permutation aléatoire.

Prenons comme exemple le cas de la cryptanalyse différentielle, introduite par Biham et
Shamir [BS91a], qui étudie le biais statistique induit par une fonction de chiffrement dans la
distribution de différences observées en sortie du chiffrement lorsque la différence d’entrée entre
deux messages clairs est fixée. L’attaquant considère deux messages d’entrée 𝑀,𝑀 ′, dont la
différence est fixée à une valeur 𝛿0, et observe la différence entre les images 𝐶,𝐶 ′ de ces deux
entrées, notée 𝛿𝑡, comme illustré sur la Figure 4.

𝑀 ′

𝑀

𝐶 ′

𝐶𝐸

𝐸

𝐾

𝐾

𝛿𝑒 = 𝑀 ⊕𝑀 ′ 𝛿𝑠 = 𝐶 ⊕ 𝐶 ′

Figure 4: Une differentielle (𝛿𝑒, 𝛿𝑠) sur un chiffrement 𝐸, paramétré par une clef 𝐾.

Pour une permutation aléatoire, la différence en sortie prendra toutes les valeurs possibles
(non-nulles) avec une distribution uniforme. Plus précisément, pour toute paire d’éléments de 𝑛
bits (𝛿𝑒, 𝛿𝑠) la probabilité :

Pr[𝑓(𝑥⊕ 𝛿𝑒)⊕ 𝑓(𝑥) = 𝛿𝑠].

vaudra 1
2𝑛 si 𝑓 est une permutation aléatoire. Cependant, si 𝑓 correspond à un chiffrement par

blocs 𝐸, il est possible que pour certains couples de différences d’entrée et de sortie (𝛿𝑒, 𝛿𝑠), cette
probabilité soit plus élevée, ce qui donnera un distingueur différentiel. On dit alors que la paire
(𝛿𝑒 𝛿𝑠) est une différentielle. Le but pour un attaquant sera donc de trouver des différentielles
de forte probabilité, afin de distinguer le chiffrement d’une permutation aléatoire.

xvi

Les analyses présentées dans les Chapitres 5, 6 et 7 se basent sur ce principe. L’attaque
différentielle fait partie d’une grande sous-classe d’attaques : les attaques statistiques. D’autres
attaques de ce type sont décrites dans ce chapitre, comme l’attaque linéaire, l’attaque boomerang
ou par interpolation. Une seconde partie sera également consacrée à des attaques dites struc-
turelles. La question de l’automatisation de certaines attaques via des outils génériques comme
le ilp (Integer Linear Programming), sat (Boolean Satisfiability problem) ou cp (Constraint
Programming) sera évoquée, avant d’être étudiée dans le Chapitre 6.

Partie II : Contributions au processus de standardisation pour la cryptogra-
phie légère du nist

En août 2018, le nist lança un appel à contribution [NISb] afin de constituer un portfolio
d’algorithmes de chiffrement authentifié légers, à l’instar des précédentes compétitions Aes en
1998 et Sha-3 en 2007. Parmi les 57 propositions soumises, 56 furent retenues pour le premier
tour, en avril 2019. Actuellement, 32 candidats sont encore en lice dans le deuxième tour. C’est
dans ce contexte que s’inscrivent les contributions présentées dans cette partie.

Chapitre 4. L’algorithme de chiffrement authentifié léger Lilliput-AE

Ce chapitre présente l’algorithme de chiffrement authentifié léger Lilliput-AE [ABC+18], conçu
en collaboration avec Alexandre Adomnicai, Thierry Berger, Christophe Clavier, Julien Francq,
Virginie Lallemand, Kévin Le Gouguec, Marine Minier, Léo Reynaud et Gaël Thomas et qui
fit partie des candidats du premier tour du processus de standardisation pour la cryptographie
légère initié par le nist.

Ce schéma utilise la primitive Lilliput-TBC, basée sur le chiffrement par blocs léger
Lilliput [Tho15, BFMT16]. Il reprend ainsi la fonction de tour, représentée sur la Figure 5.
Elle repose sur une structure de Schéma de Feistel Généralisé Étendu (Extended Generalized
Feistel Network en anglais), ce qui permet d’optimiser son délai de diffusion3. L’algorithme de
cadencement de clef a en revanche été modifié.

Deux modes de chiffrement authentifiés sont définis : Lilliput-I et Lilliput-II, respective-
ment basés sur les modes Θcb3 [KR11b] et sct-2, tous les deux utilisés dans Deoxys [JNPS16].
Le premier mode garantit une sécurité tant que le nonce est renouvelé entre chaque usage, tandis
que le second permet une réutilisation du même nonce. Pour chaque mode, le schéma est défini
avec un état interne de 128 bits, ainsi qu’une clef de taille 128, 192 ou 256 bits, conformément
aux critères d’évaluation énoncés par le nist [NISb].

Après avoir donné une spécification complète du schéma, nous proposons une analyse de
sécurité justifiant les choix de conceptions. Enfin, le chapitre se conclut par une évaluation des
performances logicielles et matérielles. Celles-ci sont comparables à celles d’autre algorithmes
légers comme Acorn et Ascon, qui figurent dans le portfolio final de la compétition caesar
portant sur le chiffrement authentifié.

Chapitre 5. Cryptanalyse de Spook

Spook [BBB+19] est l’un des 32 candidats à avoir été retenu pour le deuxième tour du processus de
standardisation pour la cryptographie légère du nist. Sa permutation interne, Shadow, se décline
en deux versions : Shadow-384 et Shadow-512, s’appliquant à un état de 384 (respectivement

3De manière informelle, la notion de délai de diffusion peut être vue comme le nombre minimal de tours à
effectuer pour que tous les blocs en sortie dépendent de tous les blocs en entrée.

xvii

Introduction Générale

Couche Non-linéaire

Couche Linéaire

Couche de Permutation

𝑥0𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7𝑥8𝑥9𝑥10𝑥11𝑥12𝑥13𝑥14𝑥15

𝜋 = (0, 13, 6, 12, 2, 14)(1, 9, 5, 11)(3, 8, 4, 10)(7, 15)

𝐹7

𝐹6

𝐹5

𝐹4

𝐹3

𝐹2

𝐹1

𝐹0

Figure 5: Fonction de tour utilisée dans Lilliput-AE.

512) bits vu comme un ensemble de 3 (respectivement 4) tableaux de taille 32 x 4 bits (aussi
appelés bundles).

Chaque permutation applique 6 étapes (steps). Comme le montre la Figure 6, une étape est
constituée de deux tours, un tour A et un tour B, séparés par une addition de constante de tour.
L’unique différence entre une étape de Shadow-512 et une étape de Shadow-384 réside dans la
définition de la couche de diffusion 𝐷.

· · ·
· · ·
· · ·
· · ·

S S S S S

· · ·
· · ·
· · ·
· · ·

S S S S S

· · ·
· · ·
· · ·
· · ·

S S S S S

· · ·
· · ·
· · ·
· · ·

S S S S S

S-box

L
L

LL
L

LL
L

LL
L

L

L-box

Round A

· · ·
· · ·
· · ·
· · ·

S S S S S

· · ·
· · ·
· · ·
· · ·

S S S S S

· · ·
· · ·
· · ·
· · ·

S S S S S

· · ·
· · ·
· · ·
· · ·

S S S S S

S-box D-box

Round B

c

1 Step

· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·

D

AC(2i) AC(2i+ 1)

c’

Figure 6: Description d’une étape de Shadow-512.

L’analyse présentée dans ce chapitre montre l’existence de distingueurs différentiels sur
Shadow-384 et Shadow-512, ainsi qu’une attaque pratique permettant de forger des messages
avec un tag d’authentification identique, en utilisant une version réduite de Shadow. Ces résultats
sont le fruit d’une collaboration avec Patrick Derbez, Virginie Lallemand, María Naya-Plasencia,
Léo Perrin et André Schrottenloher, et ont été présentés à Crypto 2020 [DHL+20].

Nos distingueurs reposent sur une propriété structurelle des permutations permettant la
préservation après une étape d’états 𝑖-identiques, définis comme suit :

xviii

Definition 0.1 (État 𝑖-identique). Un état de Shadow est dit 𝑖-identique si 𝑖 bundles sont
égaux.

Les équations à satisfaire pour maintenir un état 4-identique après une étape de Shadow-512
sont détaillées ci-dessous, où 𝑆 désigne la boîte-S appliquée sur chaque colonne (𝑦0, 𝑦1, 𝑦2, 𝑦3)𝑡 en
début de tour, et 𝑐, 𝑐′ sont les constantes des tours A et B respectivement :

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑆(𝑦3 ⊕ 𝑐) = 𝑆(𝑦3)⊕ 𝑐′

𝑆(𝑦2 ⊕ 𝑐) = 𝑆(𝑦2)⊕ 𝑐′

𝑆(𝑦1 ⊕ 𝑐) = 𝑆(𝑦1)⊕ 𝑐′

𝑆(𝑦0 ⊕ 𝑐) = 𝑆(𝑦0)⊕ 𝑐′ ,

ce qui donne les probabilités suivantes :

Table 1: Probabilité que la sortie de l’étape 𝑠 de Shadow-512 soit 4-identique sachant que l’entrée
l’est.

𝑠 0 1 2 3 4 5

Probability 0 0 0 2−12 2−8 0

Par un raisonnement similaire, il est assez simple de déduire les probabilités que les constantes
de tour s’annulent dans le cas d’états 3- et 2-identiques, conservant ainsi ces états après une étape.
Ces propriétés permettent d’obtenir un distingueur sur l’intégralité des 6 étapes de Shadow-512,
ainsi que sur une version réduite à 5 étapes au lieu de 6 pour Shadow-384.

En utilisant un principe similaire, il est également possible de générer des collisions sur les tags
d’authentifications en très peu de requêtes, dans une configuration de rejeu du nonce. Tous ces
résultats ont une complexité très faible et ont été vérifiés expérimentalement. Ils sont disponibles
à l’adresse suivante :

https://who.paris.inria.fr/Leo.Perrin/code/spook/index.html

Cette analyse montre l’importance du choix des constantes de tour pour les LS-designs : il faut
donc non seulement s’assurer que les attaques par sous-espaces invariants [BCLR17] ne sont pas
applicables, mais également éviter d’autres effets indésirables, comme dans ce cas, une annulation
dans l’état interne. Nos résultats ont amené les concepteurs de l’algorithme à changer la matrice
utilisée dans la couche de diffusion pour la version Spook v2, présentée dans l’édition spécial du
journal Transactions of Symmetric Cryptography 2020 consacré à la compétition nist [BBB+20].

Chapitre 6. Cryptanalyse différentielle automatisée de Skinny

Dans ce chapitre, le chiffrement étudié est Skinny [BJK+16], une primitive sur laquelle sont
basées plusieurs propositions d’algorithmes légers soumis au nist : ForkAE [LPR+19], Re-
mus [IKMP19a], Romulus [IKMP19b] et Skinny-aead/Skinny-hash [BJK+19]. Ces travaux
ont été effectués en collaboration avec Stéphanie Delaune, Patrick Derbez, Marine Minier, Victor
Mollimard et Charles Prud’homme et sont actuellement en cours de soumission.

La recherche de chemins différentiels optimaux est essentielle car elle permet d’évaluer la
marge de sécurité des primitive cryptographiques. Son automatisation constitue cependant un
problème hautement combinatoire pour lequel le passage à l’échelle s’avère difficile. Une façon de

xix

https://who.paris.inria.fr/Leo.Perrin/code/spook/index.html

Introduction Générale

limiter cette explosion combinatoire consiste à utiliser des différentielles tronquées [Knu95], qui
indiquent si la différence sur un mot de l’état interne est nulle ou non, sans plus d’information
sur la valeur de cette différence. Typiquement, chaque mot de l’état interne est vu comme une
variable binaire, et le but recherché n’est plus de déterminer la valeur exacte des différences en
entrée et en sortie de chaque tour mais uniquement les positions de ces différences, c’est à dire,
déterminer quel mot contient une différence non-nulle. Lorsqu’une différence est présente en
entrée d’une boîte-S, on dira alors que cette boîte-S est active. L’inconvénient de la représentation
tronquée est l’existence de faux-positifs (i.e. de chemins non-instanciables).

L’approche usuelle [BN10, AST+17, GLMS20] consiste ainsi à diviser le processus de recherche
en deux étapes:

1. une première étape (Step1) qui adopte une représentation abstraite des différences en
considérant uniquement des variables binaires et qui cherche donc à trouver des chemins
différentiels tronqués minimisant le nombre de boites-S actives;

2. une seconde (Step2) qui essaye d’instancier chaque solution trouvée par l’étape précédente,
tout en maximisant la probabilité du chemin.

Plusieurs modèles d’attaques différentielles sont ici considérés : le modèle SK se place dans
le cadre d’une attaque à clef simple, tandis que le modèle TK1 (respectivement TK2 et TK3)
désigne une attaque à clef liée dans laquelle le tweakey contient une seule (respectivement, deux
et trois) composante(s). Le modèle d’attaque à clef liée suppose qu’un adversaire a non seulement
le contrôle sur les différences entre les messages clairs 𝑀 et 𝑀 ′ dont il peut demander les chiffrés,
mais également sur les différences entre les clés de chiffrement 𝐾 et 𝐾 ′.

Plusieurs outils automatisés ont été choisis pour modéliser l’étape Step1 : Integer Linear
Programming (ilp), Constraint Programming (cp), Boolean Satisfiability Problem (sat) ainsi
qu’un outil Ad-Hoc. Pour l’étape Step2, la programmation par contraintes a été choisie pour son
efficacité dans la résolution de ce type de problème.

Ces modèles nous ont permis de retrouver les résultats de [AST+17] en seulement quelques
minutes, alors qu’il a fallu environ 16 jours4 aux auteurs du papier d’origine. De plus, nous avons
également pu dériver des bornes optimales jusqu’à 14 tours pour le modèle TK1 et 12 tours
pour le modèle TK2 de SKINNY-128, un nombre de tours encore jamais atteint par les travaux
précédents, comme ceux de Liu et al. [LGS17]. Enfin, nous montrons l’absence de caractéristique
de probabilité supérieure à 2−128 pour 15 tours, dans le modèle TK1. L’ensemble de nos résultats
est résumé dans le Tableau 2.

Ces travaux nous ont également permis de donner une comparaison rapide de différents outils
automatisés utilisés. Pour l’étape Step1, l’outil Ad-Hoc donne les meilleurs temps dans la plupart
de cas et semble donc être la plus efficaces des 4 méthodes étudiées. Cette méthode demande en
revanche une grande quantité de mémoire. Aussi, l’approche ilp paraît être une bonne alternative
de par sa facilité d’utilisation. Pour l’étape Step2, l’outil cp s’est avéré être le plus rapide,
principalement grâce à l’utilisation de contraintes Table qui ont permis une modélisation efficace
des boîtes-S et de leur ddt5.

Enfin, nous avons pu constater qu’une meilleure solution de filtrage pour l’étape Step1 serait
très bénéfique à l’approche adoptée dans cette analyse. En effet, cette étape renvoie généralement
un nombre minimal de boîtes-S actives 𝑣* relativement bas, cependant, les solutions optimales

4Il faut néanmoins préciser que nos configurations étaient différentes. Nous aurions souhaité pouvoir faire une
comparison, cependant le code du papier [AST+17] n’est pas publique.

5Difference Distribution Table.

xx

Nb Tours 𝑂𝑏𝑗𝑠𝑡𝑒𝑝1 Nb sol. Step 1 Temps Step 2 Meilleure 𝑃𝑟

SK 9 41 → 43 52 16s 2−86

SK 10 46 → 48 48 11s 2−96

SK 11 51 → 52 15 4s 2−104

SK 12 55 → 56 11 6s 2−112

SK 13 58 → 61 18 2m27s 2−123

SK 14 61 → 63 6 21s < 2−128

TK1 8 13 → 16 14 4s 2−33

TK1 9 16 → 20 6 3s 2−41

TK1 10 23 → 27 6 4s 2−55

TK1 11 32 → 36 531 37s 2−74

TK1 12 38 → 46 186 482 213m 2−93

TK1 13 41 → 53 2 385 482 2 jours 2−106.2

TK1 14 45 → 59 11 518 612 20 jours 2−120

TK1 15 49 → 63 7 542 053 25 jours < 2−128

TK2 9 9 → 10 7 3s 2−20

TK2 10 12 → 17 132 11s 2−34.4

TK2 11 16 → 25 4203 6m 2−51.4

TK2 12 21 → 35 1 922 762 512m 2−70.4

TK2 13 25 → 44 - non résolu 2−89.7

TK2 14 31 → 54 - non résolu 2−108.4

TK2 15 35 → 56 - non résolu 2−113.2

TK2 16 40 → 63 - non résolu 2−127.6

TK2 17 43 → 63 - non résolu -
TK2 18 47 → 63 62 681 709 non résolu -
TK2 19 52 → 63 772 163 280m < 2−128

Table 2: Résultats sur SKINNY-128 dans les 4 modèles d’attaque. "Temps Step 2" correspond au
temps pris par Step2 pour toutes les solutions de Step1-enum lorsque 𝑂𝑏𝑗𝑠𝑡𝑒𝑝1 prend la valeur
indiquée dans la première colonne. La colonne "Meilleure 𝑃𝑟" indique la meilleure probabilité
trouvée parmi les chemins différentiels.

renvoyées par l’étape Step2 en termes de probabilités correspondent parfois à un nombre de
boîtes-S actives 𝑣 beaucoup plus élevé que la valeur 𝑣* trouvée lors de la première étape.

Partie III : Résultats généraux sur les schémas de Feistel

Les chiffrements par blocs peuvent généralement être divisés en deux sous-familles : les schémas
de Substitution-Permutation (Substitution-Permutation Networks ou spns en anglais) et les
schémas de Feistel (Feistel Networks). Cette partie regroupe des travaux portant sur cette seconde
sous-famille.

Chapitre 7. Introduction et analyse de la FBCT

En 1999, une nouvelle méthode de cryptanalyse des chiffrements par blocs fut introduite par
Wagner : l’attaque boomerang. Cette variante de la cryptanalyse différentielle repose également
sur l’étude de la propagation de différences dans un chiffrement par blocs, mais pour un ensemble

xxi

Introduction Générale

de quatre messages clairs au lieu de deux.
Dans un distingueur basique, illustré sur la partie gauche de la Figure 7, le cryptosystème

𝐸 est réécrit comme la composition de deux sous-chiffrements (𝐸 = 𝐸1 ∘ 𝐸0), pour lesquels il
existe un chemin différentiel allant d’une différence 𝛼 vers une différence 𝛽 de forte probabilité
Pr[𝛼 𝐸0 𝛽] = 𝑝 et un deuxième chemin différentiel allant d’une différence 𝛾 vers une différence
𝛿 de forte probabilité Pr[𝛾 𝐸1 𝛿] = 𝑞. Un attaquant cherchera ainsi à maximiser la probabilité
d’obtenir l’évènement suivant :

𝐸−1(𝐸(𝑀1)⊕ 𝛿)⊕ 𝐸−1(𝐸(𝑀1 ⊕ 𝛼)⊕ 𝛿) = 𝛼.

Cette probabilité a dans un premier temps été évaluée à 𝑝2𝑞2 mais plusieurs résultats ont
fini par montrer que cette formule était erronée. En 2010, Dunkelman et al. [DKS10], proposent
l’attaque sandwich, représentée sur la partie droite de la figure 7, dans laquelle le chiffrement
𝐸 est cette fois divisé en trois parties : un tour de jonction au milieu (boomerang switch) est
intercalé entre 𝐸0 and 𝐸1.

M1

E0

E1

C1

M2

E0

E1

C2

α

β

M3

E0

E1

C3

M4

E0

E1

C4

α

β

γ

γ

δ

δ

1

2

3

4

M1

E0

Em

C1

M2

E0

E1

C2

α

β

M3

E0

C3

M4

E0

C4

α

β

γ

x1

x2

x3

x4

Em

Em

Em
y1

y2

y3

y4

E1

E1

E1

γ

δ

δ

1

2

3

4

Figure 7: Configurations de l’attaque boomerang dans sa forme de base (gauche) et telle que
décrite dans l’attaque sandwich (droite).

En notant 𝑟 la probabilité que les propagations différentielles requises soient satisfaites pour
𝐸𝑚, la probabilité du distingueur est alors égale à 𝑝2𝑞2𝑟.

Le calcul de la probabilité 𝑟 pour les chiffrements spn a été grandement aidé par l’introduction
en 2018 par Cid et. al de la Boomerang Connectivity Table (BCT) [CHP+18].

Definition 0.2 (Boomerang Connectivity Table [CHP+18]). Soit 𝑆 une permutation de F𝑛
2 ,

et Δ𝑖,∇𝑜 ∈ F𝑛
2 . La Boomerang Connectivity Table (BCT) de 𝑆 est donnée par une table de

taille 2𝑛 × 2𝑛 dans laquelle l’entrée à la position (Δ𝑖,∇𝑜) est donnée par :

𝐵𝐶𝑇 (Δ𝑖,∇𝑜) = #{𝑥 ∈ F𝑛
2 |𝑆−1(𝑆(𝑥)⊕∇𝑜)⊕ 𝑆−1(𝑆(𝑥⊕Δ𝑖)⊕∇𝑜) = Δ𝑖}.

Cette nouvelle table a permis de calculer de façon systématique la probabilité 𝑟 du tour du
milieu d’un distingueur pour une attaque boomerang en ramenant le problème à un calcul de
probabilité sur les boîtes-S du chiffrement. Cependant, cette étude ne s’est intéressée qu’aux
constructions spn, délaissant les schémas de type Feistel. Le travail présenté dans ce chapitre

xxii

permet de combler ce manque, en introduisant la FBCT d’une boite-S 𝑆, l’équivalent de la BCT
pour les constructions de type Feistel. Il a été effectué avec Hamid Boukerrou, Virginie Lallemand,
Bimal Mandal et Marine Minier, et nos résultats ont été présentés à FSE 2020 [BHL+20].

La FBCT peut être définie comme suit :

Definition 0.3 (FBCT). Soit 𝑆 une fonction de F𝑛
2 dans F𝑚

2 , et Δ𝑖,∇𝑜 ∈ F𝑛
2 . La FBCT de 𝑆

est une table de taille 2𝑛 × 2𝑛 dans laquelle l’entrée à la position (Δ𝑖,∇𝑜) est donnée par :

FBCT𝑆(Δ𝑖,∇𝑜) = #{𝑥 ∈ F𝑛
2 |𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖)⊕ 𝑆(𝑥⊕∇𝑜)⊕ 𝑆(𝑥⊕Δ𝑖 ⊕∇𝑜) = 0}.

Il est intéressant de remarquer que la valeur de la table à la position (Δ𝑖,∇𝑜) correspond au
nombre d’annulations possibles de la dérivée seconde de 𝑆 en les points Δ𝑖,∇𝑜. Nous pouvons
également noter que contrairement à la définition de la BCT, 𝑆 n’a pas besoin d’être une
permutation. Ceci s’explique par le fait que, dans un structure de type Feistel, le déchiffrement
correspond au chiffrement, à une inversion des sous clefs près. Ainsi, l’inverse de la fonction de
tour n’intervient à aucun moment.

Nous avons également regardé quelles étaient les propriétés de la FBCT. Le tableau 3 compare
certaines propriétés étudiées par Boura and Canteaut [BC18] sur la BCT avec le cas de la FBCT.
Dans le cadre des attaques boomerang, le comportement d’une boîte-S peut donc différer en
fonction du type de construction dans laquelle elle est utilisée.

Table 3: Comparaison des propriétés de la BCT et de la FBCT (fonctions sur 𝑛 bits).

Propriété BCT FBCT
Uniformité boomerang préservée par équivalence affine oui oui
Uniformité boomerang préservée par équivalence affine-étendue non oui
Uniformité boomerang préservée par équivalence CCZ non non
Uniformité boomerang préservée par inversion oui non
Valeur de l’uniformité boomerang d’une fonction APN 2 0
Valeur de l’uniformité boomerang pour la fonction inverse (𝑛 pair) 4 ou 6 4

Enfin, nous proposons dans la dernière section du chapitre une formule générique permettant
de calculer la probabilité pour une section 𝐸𝑚 couvrant un nombre arbitraire de tours, dans le
cas où la caractéristique d’arrivée est la même que la caractéristique de départ.

Chapitre 8 : Recherche de structures d’egfn légères dérivées de la fonction de tour
de Lilliput

Lors de la conception de Lilliput-AE, différentes structures de type egfn ont été étudiées,
l’idée étant de partir de la fonction de tour du chiffrement Lilliput [BFMT16] et d’alléger cette
structure tout en conservant un délai de diffusion optimal ainsi qu’une résistance suffisante à la
cryptanalyse différentielle et intégrale. Ce chapitre regroupe les observations que nous avons pu
faire lors de nos expériences.

Pour cette étude, l’approche matricielle développée dans [BMT14, Tho15] et rappelée dans la
Définition 0.4, a été adoptée. Cette représentation permet de voir la fonction de tour comme
étant le produit de deux matrices, correspondant à une couche non-linéaire et à une couche de
permutation.

xxiii

Introduction Générale

Definition 0.4. Une matrice ℳ à coefficients dans {0, 1, 𝐹, 𝐼} ⊂ Z[𝐹, 𝐼] est la matrice d’un
schéma de Feistel généralisé étendu quasi-involutif s’il existe une matrice de permutation 𝒫 et
une matrice 𝒩 avec ℳ = 𝒫𝒩 tel que :

1. la diagonale est remplie de un,

2. les coefficients non-nuls en dehors de la diagonale sont soit 𝐹 , soit 𝐼,

3. pour tout 0 ≤ 𝑖 ≤ 𝑘 − 1, la ligne 𝑖 et la colonne 𝑖 ne peuvent pas toutes deux contenir
un coefficient non-nul en dehors de la diagonale,

4. pour tout 0 ≤ 𝑖 ≤ 𝑘 − 1, si la ligne 𝑖 contient un 𝐼 alors elle contient aussi un 𝐹 .

Un exemple de egfn avec 𝑘 = 4 branches et ses matrices associées sont représentées sur la
Figure 8.

𝑥0

𝑦0

𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

nonlinear layer ℱ
linear layer ℒ
permutation layer 𝒫

𝒩
ℳ =

(︂
𝐼 𝐹 1
𝐹 𝐼 1
1

1

)︂
𝒫 =

(︂
1
1

1
1

)︂

ℒ =

(︂
1
1

𝐼 1
𝐼 1

)︂
ℱ =

(︂
1

1
𝐹 1

𝐹 1

)︂

Figure 8: Exemple d’egfn et les matrices associées.

Nous sommes partis du constat que le Théorème 0.5, énoncé ci-dessous— et vérifié par la
fonction de tour du chiffrement Lilliput—reste vrai tant que la dernière ligne et la dernière
colonne contiennent uniquement des coefficients qui sont non-nuls. Cette observation a laissé
entrevoir la possibilité d’obtenir des variantes plus légères de Lilliput (avec, au maximum, une
réduction de 6 coefficients), tout en garantissant un délai de diffusion optimal. Ainsi, nous avons
cherché à identifier toutes les structures satisfaisant les conditions du Théorème 0.5 présentant de
bonnes propriétés vis à vis des attaques différentielles et intégrales.

Theorem 0.5. Pour un entier 𝑘 pair, 𝑘 ≥ 4, soit un egfn tel que défini dans la Définition 0.4
à 𝑘 branches, ℳ, 𝒩 et 𝒫 ses matrices associées, où 𝒩 est la représentation matricielle des
couches linéaire et non-linéaire de l’egfn et 𝒫 la matrice de la couche de permutation,
correspondant à une permutation 𝜋,

1. si la matrice 𝒩 est égal à 𝒩 =
(︀ ℐ 0
𝒜 ℐ
)︀
∈ Z[𝐹, 𝐼] où ℐ est la matrice identité de taille

𝑘
2 × 𝑘

2 et 𝒜, le quart inférieur gauche de 𝒩 , est égal à 𝒜 =

⎛⎜⎜⎜⎜⎜⎝
𝐹

(0) 𝐹 𝐼

... 𝐼

𝐹 (0)
...

𝐹 𝐼 𝐼 ··· 𝐼

⎞⎟⎟⎟⎟⎟⎠
2. et si 𝒫 échange globalement les émetteurs (branches 𝑥0 à 𝑥𝑘/2−1) et les receveurs

(branches 𝑥𝑘/2 à 𝑥𝑘−1) avec 𝜋(𝑘/2− 1) = 𝑘 − 1 et 𝜋(𝑘 − 1) = 𝑘/2− 1,

xxiv

alors le délai de diffusion 𝑑 est égal à 4.

Plus particulièrement, nous nous sommes restreints à l’ensemble des permutations involutives
vérifiant la Condition 2 du Théorème 0.5, noté 𝒫𝑖𝑛𝑣𝑜𝑙, afin de minimiser le surcoût de l’opération
de déchiffrement. Pour toutes les configurations possibles de 𝒜 et toutes les matrices de 𝒫𝑖𝑛𝑣𝑜𝑙
satisfaisant le Théorème 0.5, nous avons donc regardé les propriétés intégrales et différentielles
des schémasℳ correspondants, avec pour objectif de réussir à caractériser les permutations les
plus intéressantes et ainsi définir des critères sur le choix des permutations.

xxv

Introduction Générale

xxvi

Introduction

Karma police
Arrest this man
He talks in maths

Radiohead

This thesis covers the research work in the field of symmetric cryptography that I carried
out between 2017 and 2020 at Loria, Nancy, where I was a Ph.D. student in the Caramba
team, under the supervision of Marine Minier. The main focus of my research was lightweight
cryptography—that is, cryptography intended to be used on resource-constrained devices, such as
wireless sensors—from a design and a cryptanalysis standpoint. The content of this thesis is split
into three parts: after a first introductory part, Part II and Part III describe my contributions.

Part I: Background and Preliminaries

This first part aims at giving the reader a grasp of the fundamental concepts of modern cryptology.

Chapter 1. This chapter recalls the main goals of this research field and reports how these
objectives are being pursued in symmetric cryptography. More specifically, it delves into the
design of block ciphers, one of the two major classes of cryptosystems that can be found in this
field.

Chapter 2. This chapter discusses a new research direction in symmetric cryptography that
has emerged in the recent years: lightweight cryptography. It investigates the challenges faced in
the context of the Internet of Things (iot) and presents some of the design trends introduced to
address these constraints and the algorithms that have resulted from these efforts, the several
competitions and standardizations attempts, such as the one initiated by the National Institute
of Standards and Technology (nist).

Chapter 3. Cryptanalysis is a field of cryptology dedicated to the security evaluation of
cryptographic primitives. Even though designers are expected to make sound security analyses,
external cryptanalysis is instrumental for the adoption of any new proposal. A primitive that has
been subject to many third-party analysis and for which no security breach has been found is
likely to gain trust from the cryptographic community. This chapter offers an overview of some
of the most prominent cryptanalysis techniques used to study encryption schemes and introduces
the basic notions that will later be used in Chapter 5, Chapter 6 and Chapter 7.

xxvii

Introduction

Part II: Contributions to the Nist Lightweight Cryptography Stan-
dardization Process

The second part of this thesis regroups all the works related to the Nist Lightweight Cryptography
Standardization Process.

Chapter 4. This chapter presents Lilliput-AE, a new Authenticated Encryption with Associ-
ated Data (aead) scheme designed in collaboration with Alexandre Adomnicai, Thierry Berger,
Christophe Clavier, Julien Francq, Virginie Lallemand, Kévin Le Gouguec, Marine Minier, Léo
Reynaud and Gaël Thomas as a proposal to the Nist Lightweight Cryptography Standardization
Process. After describing this algorithm based on an Extended Generalized Feistel Network
(egfn), a security analysis is provided to support our design choices. An evaluation of the
performances of Lilliput-AE for both software and hardware platforms is discussed at the end
of the chapter.

Chapter 5. Spook is one of the 32 candidates that has made it to the second round of
the nist lwc standardization process. This chapter demonstrates a distinguisher on the full
underlying permutation of Spook, Shadow-512, and a practical forgery attack against Spook in
the nonce-misuse setting, with a reduced version of Shadow.

Chapter 6. Skinny serves as a basis for several candidates of the nist lwc standardization
process. This chapter compares existing automatic tools—Integer Linear Programming (ilp),
Constraint Programming (cp) and Boolean Satisfiability Problem (sat)—to find the best differ-
ential characteristics on Skinny, a task that is decisive when it comes to evaluating the security
margin of cryptographic primitives.

Part III: General Results on Feistel Constructions

This part focuses on Feistel schemes which, together with Substitution-Permutation Networks
(spns), are the main constructions used for block ciphers.

Chapter 7. In this chapter a new tool to compute the probability of the middle round of a
boomerang distinguisher for ciphers following a Feistel construction is introduced: the fbct. Its
properties are studied and compared to the bct, its counterpart for spns. A generic formula to
compute the probability of a boomerang switch over multiple rounds is also provided. Finally,
this approach is applied to LBlock-s, the lightweight block cipher used in the Caesar candidate
Lac, to build a 16-round distinguisher.

Chapter 8. When designing Lilliput-AE, several configurations of Extended Generalized
Feistel Networks (egfns) were explored, inspired by the one used in the round function of the
Lilliput block cipher. The aim was to find lighter constructions that provided good resistance
to differential and integral cryptanalysis, while preserving an optimal diffusion delay. This
chapter recalls some properties of Generalized Feistel Networks (gfns) and their extensions, then
summarizes small results derived from the experiments that were conducted.

xxviii

List of Publications

1. Lilliput-AE: a New Lightweight Tweakable Block Cipher for Authenticated Encryption with
Associated Data
Alexandre Adomnicai, Thierry P. Berger, Christophe Clavier, Julien Francq, Paul Huynh,
Virginie Lallemand, Kévin Le Gouguec, Marine Minier, Léo Reynaud, and Gaël Thomas.
Submission to the NIST Lightweight Cryptography project. Available online
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/
round-1/spec-doc/LILLIPUT-AE-spec.pdf, 2018.

2. On the Feistel Counterpart of the Boomerang Connectivity Table–Introduction and analysis
of the FBCT.
Hamid Boukerrou, Paul Huynh, Virginie Lallemand, Bimal Mandal, and Marine Minier.
IACR Trans. Symmetric Cryptol., 2020(1):331–362, 2020. doi:10.13154/tosc.v2020.i1.
331-362.

3. Cryptanalysis Results on Spook–Bringing Full-round Shadow-512 to the Light.
Patrick Derbez, Paul Huynh, Virginie Lallemand, María Naya-Plasencia, Léo Perrin, and
André Schrottenloher.
In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO
2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA,
USA, August 17-21, 2020, Proceedings, Part III, volume 12172 of Lecture Notes in Computer
Science, pages 359–388. Springer, 2020. doi:10.1007/978-3-030-56877-1_13.

4. Skinny with Scalpel: Comparing Tools for Differential Cryptanalysis.
Stéphanie Delaune, Patrick Derbez, Paul Huynh, Marine Minier, Victor Mollimard, and
Charles Prud’homme. (submitted)

xxix

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/LILLIPUT-AE-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/LILLIPUT-AE-spec.pdf
http://dx.doi.org/10.13154/tosc.v2020.i1.331-362
http://dx.doi.org/10.13154/tosc.v2020.i1.331-362
http://dx.doi.org/10.1007/978-3-030-56877-1_13

List of Publications

xxx

List of Figures

1.1 Secure communication over an insecure channel. 6
1.2 Encryption in the ecb mode of operation. 10
1.3 An example of the ecb encryption mode. 10
1.4 Encryption in the cbc mode of operation. 11
1.5 Encryption in the cfb mode of operation. 11
1.6 Encryption in the ofb mode of operation. 12
1.7 Encryption in the ctr mode of operation. 12
1.8 An iterated block cipher. 13
1.9 A Feistel round. 14
1.10 One spn round. 14
1.11 One round of the Aes. 15
1.12 Key schedule for the Aes in the 128-bit keys version. 16

2.1 Authenticated Encryption with Associated Data. 24
2.2 Integrity-Aware Parallelizable Mode (iapm) as shown in [Jut08]. 26
2.3 Message processing with padding in ocb3. 27
2.4 Associated data processing with padding in ocb3. 27
2.5 Handling of the associated data for ΘCB3. 29
2.6 Message processing for ΘCB3 with padding when the message length is not a

multiple of the block size. 30
2.7 Handling of the associated data for sct-2. 30
2.8 Message processing in the authentication part for sct-2. 30
2.9 Message processing with padding in the encryption part for sct-2. 30
2.10 One round of the Present cipher. 33
2.11 One round of the Skinny cipher. 34
2.12 The Skinny tweakey schedule. 35
2.13 One round of the LBlock cipher. 36
2.14 The OneRoundEGFN function of Lilliput. 38
2.15 Lilliput Key Schedule . 39

3.1 A differential (𝛿0, 𝛿𝑡) on 𝑡 rounds of a cipher 𝐸. 46
3.2 A differential attack on the last round of an iterated block cipher. 49
3.3 A related-key differential (𝛿0, 𝛿𝑡) on 𝑡 rounds of a cipher 𝐸. 50
3.4 Basic boomerang distinguisher. 52
3.5 Basic boomerang distinguisher. 53
3.6 An integral characteristic on a Feistel network with a nonlinear component 𝐹 . . . 55

4.1 Handling of the associated data in the nonce-respecting mode. 65

xxxi

List of Figures

4.2 Message processing for the nonce-respecting mode. 66
4.3 Ciphertext processing for the nonce-respecting mode. 66
4.4 Handling of the associated data in the nonce-misuse resistant mode. 67
4.5 Message processing in the authentication part of the nonce-misuse resistant mode. 68
4.6 Message processing in the encryption part of the nonce-misuse resistant mode. . . 68
4.7 Ciphertext processing in the decryption part of the nonce-misuse resistant mode. 68
4.8 The egfn used in Lilliput-TBC that reaches full diffusion in 𝑑 = 4 rounds. . . 71
4.9 Lilliput-TBC Encryption process. 72
4.10 The tweakey schedule. 𝑓 represents the round function OneRoundEGFN. 73
4.11 Some structures to build 2𝑛-bit S-boxes from 𝑛-bit ones. 80
4.12 Quadatric functions used to build the cubic 4-bit S-boxes. 82
4.13 The three inner 4-bit S-boxes. 83
4.14 The tweakey schedule of Lilliput-AE. 113
4.15 Tag collision using a 1-round iterative related tweakey differential. 115

5.1 State Organization of Shadow-512 (left) and of Shadow-384 (right). 120
5.2 Description of one step of Shadow-512. 120
5.3 Evolution of two rounds with a starting 4-identical state, where the four bundles

are equal in the beginning. 123
5.4 A 5-step distinguisher against the 512-bit permutation Shadow. 126
5.5 A 7-step distinguisher against the 512-bit permutation Shadow. 128
5.6 Another trail contributing to the probability of the 7-step distinguisher of Shadow-512.133
5.7 A (1-step shifted) 6-step distinguisher for Shadow-384. The thick rectangles depict

2-identical states. 135
5.8 S1P mode in our attack setting . 138
5.9 4-step path . 140

6.1 the SKINNY round function with its five transformations [Jea16]. 146

7.1 Configuration of the basic boomerang attack (left) and of the sandwich attack
(right). Circled numbers correspond to a numbering that helps referencing states
in the following discussions. 171

7.2 High-level description of one round of LBlock (left) and description of the 𝐹
function (right). 173

7.3 The 8-round related-key characteristic used in Liu et al.’s attack, used for both 𝐸0

and 𝐸1 with Δ𝐾1 = Δ𝐾9,Δ𝐾2 = Δ𝐾10, · · · ,Δ𝐾8 = Δ𝐾16. 175
7.4 Middle rounds of the boomerang distinguisher proposed in [LGW12]. 176
7.5 The value of 𝐵𝐶𝑇 (Δ𝑖,∇𝑜) corresponds to the number of S-box inputs 𝑥 that make

the boomerang over 1 round come back. 177
7.6 Boomerang switch over a generic Feistel round. 178
7.7 One round of the Feistel construction of type I, type II and source-heavy for

variants with 4 branches. 180
7.8 Boomerang switch over one round of the source-heavy construction. 181
7.9 View of the parameters of the FBDT: Δ𝑖 is the input difference and 𝛿 is the output

difference of 𝑆 when looking at the difference between state 1○ and 2○. ∇𝑜 is the
input difference of the same S-box 𝑆 when looking at the difference between state
1○ and 3○ (which is the same as the one between state 2○ and 4○). 190

xxxii

7.10 Boomerang Switch over two rounds of a balanced Feistel with two branches. The
differences denoted with straight lines are imposed and fixed. 191

7.11 Concrete 2-round boomerang switch on LBlock, derived from [CM13]. 193
7.12 Setting for a boomerang Switch over more than two rounds of a balanced Feistel

with two branches. The differences denoted with straight lines are imposed and fixed.195
7.13 Setting for the switch over three rounds of LBlock-s. 199

8.1 An example of a gfn round with 𝑘 = 8 blocks. 202
8.2 One round of a type-1 gfn with 𝑘 = 4 blocks. 203
8.3 One round of a type-2 gfn with 𝑘 = 4 blocks. 203
8.4 One round of a type-3 gfn with 𝑘 = 4 blocks. 203
8.5 One round of a source-heavy gfn with 𝑘 = 4 blocks. 204
8.6 One round of a target-heavy gfn with 𝑘 = 4 blocks. 204
8.7 One round of a Nyberg gfn with 𝑘 = 4 blocks. 204
8.8 Decomposition of the transition matrix of the gfn given in Figure 8.1. 207
8.9 An example of an egfn with its three layers and the corresponding matrices. . . 209
8.10 One round of an egfn that reaches full diffusion in 4 rounds. 210
8.11 The round function of Lilliput, that reaches full diffusion in 4 rounds. The

permutation 𝜋 is given as a product of cycles. 211
8.12 The 𝒜 matrix of Lilliput. 212
8.13 Layout of a matrix from set 1. Each column can only contain one 𝐹 coefficient.

Red coefficients are either 𝐼 or 𝐹 , blue coefficients equal 𝐹 if the red coefficient on
the same column equals 𝐼 and 0 otherwise. 213

8.14 A matrix from set 1 with no integral property for 8 rounds (3rd case) and the
associated egfn with 16 blocks. 214

8.15 Possible placements for 𝐹 coefficients for a matrix from set 2 in the simple case.
Each row can only contain one 𝐹 coefficient. Red coefficients are either 𝐼 or 𝐹 ,
blue coefficients equal 𝐹 if the red coefficient on the same row equals 𝐼, 0 otherwise. 215

8.16 One example of a matrix for the 𝑛𝐹 = 1 case of set 2 and its associated egfn.
The permutations are given as a product of cycles. 216

8.17 Layout of a matrix from set 2, full case. Each row can only contain one 𝐹 coefficient.
Blue coefficients are either 0 or 𝐹 . Red coefficients are either 𝐼 or 𝐹 217

8.18 Layout of a matrix from set 3. Red coefficients are either equal to 𝐼 or 𝐹 219
8.19 An interesting family of matrices 𝒜 with 8 𝐹 coefficients. The last coefficient can

be placed at any red-marked position. 220
8.20 A target-heavy construction that reaches full diffusion in 𝑑 = 4 rounds and has no

integral property for 6 rounds . 221
8.21 Cancelation of two differentials in the linear layer, leading to an iterative probability-

1 differential characteristic for the whole cipher. 222
8.22 An egfn structure with a permutation 𝜋 that helps avoid the cancelation of equal

differences in the internal state. 224

A.1 The complete ciphering process of Stanislas with 𝜙𝑖(𝑥𝑗𝑡) = 𝑆(𝑥𝑗𝑡 ⊕ 𝑆𝐾𝑖). 240
A.2 The Matrix 𝐴𝑆 . 247
A.3 Digraph obtained after completion of Step 1-2. The vertex vr corresponds to the

flat output . 248
A.4 Graph obtained after Step 1-4. 249
A.5 Graph obtained after completion of Step 1-5. 249

xxxiii

List of Figures

xxxiv

Part I

Background and Preliminaries

1

1

Design of Symmetric Encryption
Algorithms

What immortal hand or eye,
Dare frame thy fearful symmetry?

William Blake

Cryptology is the science that studies secret communication. It encompasses both cryptography
and cryptanalysis. Cryptography studies the design of algorithms to ensure secure communication
in the presence of malevolent third parties. Cryptanalysis is the offensive side, trying to find
flaws in the aforementioned designs. The evolution of cryptology has always been driven forward
through a sort of cat-and-mouse game: each time an algorithm is compromised—or broken—by
cryptanalysts, a new one which is computationally more challenging to break is put forward by
cryptographers.

1.1 From Ancient to Modern Cryptography 3

1.2 General Concepts of Cryptography 5

1.2.1 Purpose . 5

1.2.2 Symmetric Cryptography . 6

1.2.3 Security and adversarial models . 8

1.3 On the Design of Block Ciphers 9

1.3.1 Modes of operation . 10

1.3.2 Iterated block ciphers . 12

1.1 From Ancient to Modern Cryptography

Ciphers have been used since ancient times, allowing people to transmit and protect sensitive
information. A cipher (or cryptosystem) defines the set of rules used for encryption—the process
of converting an original message (plaintext) into an unreadable form (ciphertext)—and for
decryption—the process of recovering the plaintext from the ciphertext.

3

Chapter 1. Design of Symmetric Encryption Algorithms

Ancient cryptography. Some of the earliest forms of secret writing date back to antiq-
uity [Kah96]. Although occurrences of symbol replacement can be traced back to 1900 BC, in
ancient Egypt, the first known example of cryptography being used to protect sensitive information
occurred around 3500 years ago, when a Mesopotamian scribe concealed a formula for pottery
glaze by omitting letters and changing the spellings of some common words.

By later periods of antiquity, cryptography was widely used to protect important military
information. In ancient Greece, during times of battle, the Spartans used scytales to perform an
early form of a transposition cipher. Messages were written on a strip of leather wound around
a cylinder of a particular size, making them undecipherable until they were wrapped around a
similar-sized cylinder by the recipients.

Substitution ciphers. A more advanced cryptography method was invented by the Romans
around 60 BC, known as the Caesar cipher, where letters of the encrypted message were shifted
by 3 places down the Latin alphabet, turning 𝐴 into 𝐷, 𝐵 into 𝐸, etc. The Caesar cipher is the
most famous example of a larger class of techniques called substitution ciphers, which replace
every letter in a message with something else according to a translation. More specifically, a
Caesar cipher is a monoalphabetic substitution cipher, a class of ciphers for which each letter of
the alphabet stands for another letter consistently throughout the whole message. A variant of
the Caesar cipher is still nowadays widely found on Internet forums to obscure jokes or story
spoilers: the Rot13 algorithm. It replaces each of the 26 letters of the basic Latin alphabet, with
the letter positioned 13 places down and it is therefore its own inverse.

After the Caesar cipher, there were no major breakthroughs in encryption for over a thousand
years but major contributions in cryptanalysis were made in the meantime. Around 800 AD,
mathematician Al-Kindi wrote the first text on cryptanalysis and introduced the frequency
analysis technique, determining which letters occurred most frequently in Arabic, as well as
which letters could not occur together. In monoalphabetic substitution ciphers, such properties
of the natural language are preserved in the ciphertext, allowing an attacker to determine the
appropriate shift and recover the original message.

This technique was rendered ineffective after the invention of polyalphabetic substitution
ciphers. One of the earliest polyalphabetic ciphers was the Vigenère cipher, developed in the 16th
century. This cipher used a shifting substitution determined by a keyword repeated multiple
times, spanning the entire message.

Kerckhoffs’ principle. The advent of the telegraph in the 19th century motivated the use of
more secure ciphers. In 1883, Dutch cryptographer Auguste Kerckhoffs laid out a series of six
design principles for military ciphers in his essay titled La Cryptographie Militaire ("Military
Cryptography") [Ker83]. The second one is known as Kerckhoffs’ principle and states the following
about a cryptosystem:

“2. Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient tomber entre les
mains de l’ennemi ;”

which can be translated to

“2. It must not require secrecy and should not cause any inconvenience if it were to
fall into the hands of the enemy;”

Central to Kerckhoffs’ principle is the idea that secrecy in itself is no effective guarantee of security.
This fundamental design guideline gave rise to modern cryptography algorithms.

4

1.2. General Concepts of Cryptography

World War II. By the 1900s, cryptography was mechanized in the form of encryption machines.
In 1918, Arthur Scherbius invented one of the most famous cryptographic machines in the world:
Enigma, an encryption device heavily used by the Axis powers during World War II with about
267 possible keys defined by the settings of its internal rotors.

Polish mathematicians led by Marian Rejewski reverse-engineered the details of Enigma and
found the first attacks against it using an electromechanical device called the bomba kryptolog-
iczna ("cryptologic bomb"). This early computer technology was later transferred to British
mathematician Alan Turing along with the rest of his team at Bletchley Park who succeeded in
breaking more recent versions of Enigma.

The modern era. In 1949, Claude Shannon authored a landmark paper [Sha49] that estab-
lished the mathematical basis of information theory and formalized the main goals of modern
cryptography.

Notably, this paper introduced the concept of perfect secrecy (also referred to as unconditional
security). A ciphertext maintains perfect secrecy if the attacker’s knowledge of the contents of
the message is the same both before and after the adversary inspects the ciphertext, attacking it
with unlimited resources. That is, the message gives the adversary precisely no information about
the message contents. To achieve unconditional security, the key must be at least the size of the
message. This is the idea behind the One-Time Pad—also known as the Vernam cipher—an
encryption algorithm invented in the 20th century that simply consists in xoring1 every plaintext
with a single-use key of the same length. The One-Time Pad provides perfect secrecy if the keys
used are fully random, as proven by Shannon, however, this cipher is impractical due to the key
management problem.

In addition to his work on perfect secrecy, Shannon also identified the principles of confusion
and diffusion as two major properties of a secure cipher. Confusion means that the key does
not relate in a simple way to the ciphertext and can be enforced using substitutions.Diffusion is
enforced using permutations or transpositions and spreads the plaintext statistics through the
ciphertext. Simply put, if one character of the plaintext is changed, then the ciphertext should
change drastically.

Towards civilian applications. Up to World War II, encryption was mostly exploited for
military purposes. However, with the advent of the personal computer, cryptography started
to gain commercial attention. Businesses trying to secure their data from competitors as well
as the development of the Internet and the massive amount of shared information all called
for a widespread use of cryptography. This gave rise to modern cryptographic algorithms like
Des [DES77] in 1975, Rsa [RSA78] in 1977, Aes [AES01, DR02] in 2001.

1.2 General Concepts of Cryptography

1.2.1 Purpose

The narrative in cryptography is simple: two entities, Alice and Bob, are trying to communicate
securely over an insecure channel. Eve is an attacker trying to interact malevolently with the
communication. Modern cryptography is meant to provide the following security services:

1In Boolean algebra, the exclusive or is a logical operation that outputs true (1) only when inputs differ 𝑖.𝑒.
one is true (1) and the other is false (0).

5

Chapter 1. Design of Symmetric Encryption Algorithms

∙ Secrecy. Only authorized parties—Alice and Bob here—can access the content of the
information. It must be impossible for Eve to obtain any meaningful information from
intercepted communication.

∙ Integrity. Data integrity provides a means to detect whether data has been tampered with
by an unauthorized party. If Alice is sending a message to Bob, it must be impossible for
Eve to change its content.

∙ Authenticity. The aim here is twofolds. If Bob receives a message from Alice, he must be
able to tell if Alice was indeed the original sender. Moreover, it must be impossible for Eve
to communicate with Bob while pretending to be Alice.

Rosebud

KA

~s@a]f8  
8&\$-0(

Rosebud

~s@a]f8  
8&\$-0(

KB

Figure 1.1: A classic setting in cryptography: Alice wants to send a message to Bob. In symmetric
cryptography, Alice and Bob share the same secret key, 𝑖.𝑒. 𝐾𝐴 = 𝐾𝐵.

Modern cryptography can be divided into two main branches: private-key (or symmetric)
cryptography and public-key (or asymmetric) cryptography.

In symmetric cryptography, a unique key is used for both encryption and decryption. Sym-
metric cryptography also studies algorithms that do not require any key at all, such as hash
functions.

Asymmetric cryptography requires a pair of keys : one key set up in advance is used to encrypt
and another one to decrypt. The key for encrypting plaintexts, called the public key, can be
freely distributed while only the decryption key, called the private key, is kept secret. In other
words, the sender and the receiver do not need to share a common secret in order to communicate
securely. This solves the complex key sharing problem of symmetric algorithms, which are in
contrast faster and more power-efficient than public-key algorithms.

As a result, a combination of both is most commonly used in practice: a secret key is first
exchanged using public-key cryptography, then communication is encrypted with a symmetric
algorithm. This thesis focuses on the design and the analysis of symmetric encryption primitives.

1.2.2 Symmetric Cryptography

In symmetric cryptography, the studied algorithms can be divided into four categories: block
ciphers, stream ciphers, hash functions and message authentication codes. Block ciphers and

6

1.2. General Concepts of Cryptography

stream ciphers provide secrecy while hash functions and message authentication codes—which
will not be discussed in this thesis—are used for integrity and authentication.

Stream ciphers. A stream cipher uses the same encryption principle as the One-Time Pad—
messages are xored with a sequence of bits of the same length—while offering more practical
requirements on key management: the stream of bits, called the keystream, is generated in a
pseudorandom2 manner from a shorter secret key that needs to be transmitted only once. However,
since the keystream is not truly random, the proof of security associated with the one-time pad
no longer holds.

A stream cipher can be seen as a finite state automaton whose initial internal state is derived
from the short secret key. At each clock cycle, the keystream bits are obtained by applying a
filtering function to the internal state before it is updated using a transition function. Both
filtering function and transition function must be chosen carefully.

Linear-Feedback Shift Registers (lfsr) are very popular building-blocks for transition functions
since they can generate sequences with good statistical properties at high speed and have low
hardware implementation cost. However, schemes based on a simple combination of lfsrs such
as A5/1—a stream cipher used to encrypt over-the-air transmissions in the gsm standard—
are insecure. Most notably, an lfsr should never be used by itself as a keystream generator
since the Berlekamp-Massey algorithm [Mas69] can recover the entire keystream given enough
consecutive bits of it. Moreover, lfsr-based keystream generators can be vulnerable to algebraic
attacks [CM03] due to the linearity of the transition function. This weakness can be avoided by
combining lfsrs with nonlinear mappings such as Nonlinear-Feedback Shift Registers (nlfsrs)
or more sophisticated filtering functions.

Stream ciphers are well-suited for software applications requiring a very high throughput
or with limited buffering, since each bit of a stream of data is encrypted individually. They
also have lower hardware complexity than block ciphers, which makes them interesting for
hardware applications that need a low-cost implementation, as illustrated by Trivium [De 06]
and Grain [HJMM08] for instance.

Block ciphers. While a stream cipher encrypts one bit at a time, a block cipher is a family of
permutations operating on blocks of 𝑛 bits (usually 64/128/256 bits) that is parameterized by a
key. Block ciphers must be combined with modes of operation which describe how to repeatedly
apply a single-block operation to encrypt plaintexts of arbitrary size. Further details will be
provided in Section 1.3.

Hash functions. A cryptographic hash function takes input strings of arbitrary length and
maps these to short fixed length output strings called hash values or digests. This construction
requires no secret key and must satisfy the following properties.

∙ Collision resistance: it should be computationally infeasible to build two messages with the
same hash value.

∙ Preimage resistance: it should be computationally infeasible to reverse a hash function (i.e.
given a hash value, it should be difficult to find an input message resulting in that value).

∙ Second-preimage resistance: given an input and its digest it should be difficult to find a
second input with the same digest.

2A pseudorandom number generator (prng) is an algorithm that can generate predictable sequences of numbers
that exhibit statistical randomness.

7

Chapter 1. Design of Symmetric Encryption Algorithms

The most common cryptographic uses of hash functions are in digital signatures and data
integrity verification. To sign a message, a hash function is applied and only the digest is signed,
which brings both performance and security benefits. The recipient then hashes the received
message, and verifies that the received signature is valid for this newly-computed hash-value. For
data integrity verification, a document is hashed at two different points in time—before and after
being sent for instance—and the corresponding digests are compared to detect any alteration
that may have occurred within this timeframe.

Message authentication codes. A message authentication code (mac) algorithm is a family
of functions parameterized by a secret key that generates a tag of fixed length from an arbitrarily
long message, which is used to verify the authenticity and the integrity of the message. Macs
can be seen as keyed hash functions. The main security requirement for a mac algorithm is the
computation-resistance property; that is, it should be computationally infeasible for an attacker
to forge a message and tag pair without knowing the secret key.

1.2.3 Security and adversarial models

Following Kerckhoffs’ principle, most cryptographic algorithms are published in the open literature,
exclusively relying on the secrecy of the key to provide security. As a result, any attacker can
access the full specification of an algorithm and study it to provide a security assessment. The
more an algorithm has resisted cryptanalysis attempts, the more it is trusted by the community.
A description of the main cryptanalytic attacks is given in Chapter 3.

Security level. The security level of cryptosystem is defined as the minimum number of
operations that would be necessary to break the cipher. It is usually expressed in bits: a
cryptosystem offers 𝑖-bit security and is said to have security level 𝑖 if the best attack requires 2𝑖

operations. Cryptographic primitives are designed to achieve a target security level. When attacks
are found that have lower cost than these security claims, the primitive is considered broken.

The security level of an algorithm is highly correlated to the key size. More precisely, since
the security of any algorithm can be violated by brute-force attack (also called exhaustive key
search), the key length gives an upper bound: for a 𝑘-bit key, enumerating all possible key values
until the correct one is found requires up to 2𝑘 operations. At the time of writing, it is regarded
that 280 operations is an affordable figure for a handful of actors with major computing resources
and a large budget, such as government agencies. Consequently, the current recommendations
suggest a minimum of 128 bits for the key size of symmetric ciphers [ANS14, ECR18, Bar20], as
this provides computational security : no current technology could break the system3.

In asymmetric cryptography on the other hand, the designs rely on mathematical problems that
are known to be easy to compute in one direction but hard to reverse, such as integer factorization
or the discrete logarithm problem; solving these underlying arithmetic problems is time-consuming
but usually faster than exhaustive search of the keyspace. Thus, asymmetric keys must be longer
than symmetric algorithm keys, for an equivalent security level. As an example, a 2048-bit
minimum is recommended for the key size of the Rsa cryptosystem [RSA78], which is based on
the multiplication of two prime numbers. Breaking this primitive can be reduced to factoring a
2048-bit integer, which is simpler than testing all 22048 possibilites, although still computationally
unreachable in reasonable time to this day. The complexity of solving such problems is subject to
many refinements and has generated much interest [Jou14, BGJT14, KW19, BGG+20].

3However, it might become vulnerable in the future.

8

1.3. On the Design of Block Ciphers

Attack models. In general terms, an attack is a method that provides some information about
the decryption key (key recovery attack) and/or the plaintext (decryption attack). There are four
main types of attacks, depending on the information made available to the cryptanalyst.

∙ Ciphertext-only attack. The attacker only has access to a set of ciphertexts produced using
the same encryption key. This is the weakest assumption and thus, the hardest setting for
the attacker.

∙ Known-plaintext attack. The attacker has access to several pairs plaintexts together with
their corresponding ciphertexts produced using the same encryption key.

∙ Chosen-plaintext attack. The attacker can choose the plaintexts to be encrypted and obtain
the corresponding ciphertexts.

∙ Chosen-ciphertext attack. The attacker can choose ciphertexts and obtain their decryption.

Usually the attacker has no information on the encryption key and cannot interact with it.
However, in the related-key setting, the attacker can choose the plaintexts (or the ciphertext)
to be encrypted (or to be decrypted) under multiple keys that are kept secret, yet linked to the
target key in some mathematically defined way that is known. For instance, for two keys 𝑘 and 𝑘′,
the attacker might know the value 𝑐 = 𝑘 ⊕ 𝑘′. Although less realistic at first glance, this setting
is still plausible in the context of block-cipher-based hash functions.

All these cryptanalytic attacks use a black-box model: the attacker cannot access the internal
state of the cipher; only its input, output or key can be controlled. On the other hand, side-
channel attacks can gain partial information about the internal state of a primitive by exploiting
the physical effects caused by the operation of a cryptosystem, such as variations in the power
consumption.

1.3 On the Design of Block Ciphers

Block ciphers are some of the most prominent components in symmetric cryptography. A block
cipher 𝐸 is an algorithm parameterized by a key 𝐾 of 𝑘 bits acting on plaintext blocks of 𝑛 bits
and producing ciphertext blocks of the same size. The block size 𝑛 usually equals 64, 128 or 256
bits. Formally, a block cipher can be defined as follows.

Definition 1.1 (Block cipher). A block cipher 𝐸 taking as inputs an 𝑛-bit block and a 𝑘-bit
key is a family of permutations of F𝑛

2 of size 2𝑘 denoted by (𝐸𝐾)𝐾∈F𝑘
2
.

In other words, given a block cipher 𝐸, any secret key 𝐾 ∈ F𝑘
2 defines a unique permutation

on 𝑛 bits denoted by 𝐸𝐾 .

Ideal block cipher. One of the desired properties of a block cipher is that it needs to be a
reversible mapping for decryption to be possible, meaning that each input block is mapped to a
unique output block, for all possible input states. Ideally, a block cipher would allow every possible
permutation of the plaintext values, with each permutation being selected by an encryption key
𝐾. For an 𝑛-bit block, there are 2𝑛! such transformations in total. Since the key specifies which
mapping to use, the key space should be as big as the number of possibilities, resulting in a key
that would be 𝑙𝑜𝑔2(2

𝑛!) bits long. This size is absolutely not practical as it would be impossible
to store and to distribute in an efficient manner. As an example, for 𝑛 = 32, it would require

9

Chapter 1. Design of Symmetric Encryption Algorithms

approximately 16 GB to store the key. In practice, the key size 𝑘 is close to the block size 𝑛 and
never exceeds a couple of hundreds of bits.

1.3.1 Modes of operation

A block cipher only acts on blocks of fixed length 𝑛, but messages come in a variety of lengths.
To operate on an input which is larger, the data is first split into separate 𝑛-bit blocks. Whenever
required, the message is padded : a specific sequence of bits is added to it in order to bring its
length up to a multiple of the block size 𝑛. Padding thus ensures that messages of arbitrary
length can be partitioned into blocks of the right size. These blocks are then processed by the
block cipher and combined together to form the final output in a specific manner that is described
by a mode of operation.

Ecb (Electronic Code Book). This mode is very simple: an ℓ × 𝑛-bit plaintext 𝑀 is
broken into ℓ 𝑛-bit blocks 𝑀0, · · · ,𝑀ℓ−1 and each block is encrypted independently at a time.
The ciphertext blocks are then concatenated together to obtain the resulting ciphertext 𝐶 =
𝐶0||𝐶1|| · · · ||𝐶ℓ−1, as depicted in Section 1.3.1. While ecb is parallelizable in both encryption
and decryption, this mode does not hide patterns in the plaintext: for instance, two identical
blocks will result in the same ciphertext block, thus revealing information on the inner structure
of the original message. Figure 1.3 shows that even after encryption, the outlines of the content
of a picture remain visible.

𝐸𝐾

𝑀0

𝐶0

𝐸𝐾

𝑀1

𝐶1

· · · 𝐸𝐾

𝑀ℓ−1

𝐶ℓ−1

Figure 1.2: Encryption in the ecb mode of operation.

(a) A picture of a cat. (b) The same picture, encrypted using Aes-128 in
ecb mode: the cat remains visible.

Figure 1.3: Comparison of a picture before and after encryption using the ecb mode.

10

1.3. On the Design of Block Ciphers

Cbc (Cipher Chaining Block). In this mode of operation, each plaintext block is xored
with the preceding ciphertext block before applying the block cipher. As a result, each cipher
block depends on all plaintext blocks previously processed. To ensure that ciphertexts remain
distinct even when the same plaintext message is encrypted multiple times under the same key,
the first plaintext block is xored with a randomly chosen block of bits called an initialization
vector (𝐼𝑉), as shown in Figure 1.4.

𝐸𝐾

𝑀0

𝐶0

𝐸𝐾

𝑀1

𝐶1

𝐼𝑉

· · · 𝐸𝐾

𝑀ℓ−1

𝐶ℓ−1

Figure 1.4: Encryption in the cbc mode of operation.

Despite being a sequential encryption mode—decryption, however, allows for parallelism—cbc
is a very popular way of using block ciphers.

For some applications, the ciphertext should have exactly the same length as the original
plaintext; thus preventing the use of padding. Other modes of operations address this problem:
cfb (Cipher Feedback), ofb (Output Feedback) and ctr (Counter), depicted in Section 1.3.1,
Figure 1.6 and Figure 1.7 respectively. These modes transform a block cipher into a stream
cipher—they work by xoring the plaintext with the output of the block cipher. In order to treat
an incomplete last block, one simply selects the required number of bits from the output of the
block cipher. All three modes only use the encryption operation of the block cipher.

Cfb. This mode is very similar to cbc as it also uses chaining (or feedback) to induce diffusion
between the blocks and destroy patterns in the plaintext data. In cfb, an initialization vector is
used as initial state. The state is encrypted and the encryption result is used as keystream. The
resulting ciphertext is then fed back to the state.

𝐸𝐾

𝐶0

𝑀0

𝐸𝐾

𝐶1

𝑀1

𝐼𝑉

· · · 𝐸𝐾

𝐶ℓ−1

𝑀ℓ−1

Figure 1.5: Encryption in the cfb mode of operation.

11

Chapter 1. Design of Symmetric Encryption Algorithms

Ofb. This mode differs from cfb in the way feedback is accomplished: instead of feeding the
previous ciphertext back to the state, ofb directly uses the keystream.

𝐸𝐾

𝐶0

𝑀0

𝐸𝐾

𝐶1

𝑀1

𝐼𝑉

· · · 𝐸𝐾

𝐶ℓ−1

𝑀ℓ−1

Figure 1.6: Encryption in the ofb mode of operation.

Ctr. The ctr mode uses a counter to produce the keystream—this counter can be as simple
as an ascending number. Consequently, this mode allows for parallelism in both encryption and
decryption.

𝐸𝐾

𝐼𝑉 ||0

𝐶0

𝑀0

𝐸𝐾

𝐼𝑉 ||1

𝐶1

𝑀1

· · · 𝐸𝐾

𝐼𝑉 ||ℓ− 1

𝐶ℓ−1

𝑀ℓ−1

Figure 1.7: Encryption in the ctr mode of operation.

While block ciphers only provide secrecy on their own, some modes of operation combine
confidentiality and authenticity such as ocb (Offset Codebook, eax (Encrypt-then-authenticate-
then-translate), ccm (Counter with cbc-mac), and gcm (Galois Counter Mode). These modes
are suited for authenticated encryption with associated data (aead) schemes, which will be
discussed in Chapter 2.

1.3.2 Iterated block ciphers

Generally, each permutation 𝐸𝐾 , for 𝐾 ∈ F𝑘
2, should be complex enough for it to be hard

to distinguish from a random permutation—this is called prp4 security. Specifying the entire
codebook5 for an entire family of 2𝑘 permutations on the set {0, 1}𝑛 with such property is quite
challenging, especially since the size of a block usually ranges between 64 and 256 bits (for security
and implementation reasons).

4Pseudo-Random Permutation.
5A codebook is a lookup table for coding and decoding. It shows the relationship between the input blocks and

the output blocks.

12

1.3. On the Design of Block Ciphers

For this reason, all block ciphers are designed using a simple key-dependent transformation
called the round function that is applied 𝑟 times in an iterative fashion to compute the output—
iterations may vary by the addition of round constants.

Definition 1.2 (Iterated block cipher). An iterated block cipher is a block cipher obtained by
iterating 𝑟 times an invertible transformation 𝐹 called the round function, each time with a
round key 𝑘𝑖 derived from the master key 𝐾 by means of a key scheduling algorithm. Denoting
the 𝑛-bit plaintext with 𝑀 , the encryption operation can be written as:

𝐸𝐾(𝑀) = 𝐹𝑘𝑟−1 ∘ 𝐹𝑘𝑟−2 ∘ · · · ∘ 𝐹𝑘0(𝑀).

Figure 1.8 shows the general structure of an iterated block cipher. While the individual round
function might be cryptographically weak, its repeated application allows for the construction
of a complex encryption function. The choice of the proper number of iterations (or rounds) is
performed via cryptanalysis of the cipher. The round function itself is made easy to study by
composing several basic operations—such as transpositions, xors, simple substitutions etc. In
addition to the facilitated analysis, another advantage of this iterative structure is the compact
hardware, software implementation.

𝑀

Key Schedule

𝐹

𝑘0

𝐹

𝑘1

· · ·

𝐾

· · ·

𝐹

𝑘𝑟−2

𝐹

𝑘𝑟−1

𝐶

Figure 1.8: An iterated block cipher: the round function 𝐹 is repeatedly applied, each time using
a different round-key 𝑘𝑖 derived from the master key 𝐾.

Iterated block ciphers may be divided into two large classes: Feistel networks and Substitution-
Permutation networks (spn) , both described in the following.

Feistel Networks

Named after cryptographer Horst Feistel, who introduced them in 1974 during the design of
IBM’s Lucifer block cipher [Fei74], Feistel networks are widely used structures in iterated block
ciphers. The most prominent example of a Feistel network is the Des6 [DES77], which was
adopted by the U.S. government as an official standard from 1977 to 2000.

The round function of a Feistel network uses a keyed function 𝐹𝑘 called the Feistel function
and maps an 𝑛-bit input split into two halves (𝑥1, 𝑥0), with 𝑥1 and 𝑥0 in F𝑛/2

2 , to an output
(𝑦1, 𝑦0) such that:

{︃
𝑦1 = 𝑥0

𝑦0 = 𝑥1 ⊕ 𝐹𝑘(𝑥0),

6Data Encryption Standard.

13

Chapter 1. Design of Symmetric Encryption Algorithms

as depicted in Figure 1.9. By construction, a Feistel round is a permutation over F𝑛
2 regardless of

whether 𝐹𝑘 is bijective or not, and inverting such a round is simple; the function is the same, up
to the permutation of the two halves:

{︃
𝑥0 = 𝑦1

𝑥1 = 𝑦0 ⊕ 𝐹𝑘(𝑦1).

As a result, implementing decryption on top of encryption is very cost-efficient in the case of
Feistel networks. Furthermore, the left and right branches are usually not exchanged in the last
round. That way, the scheme becomes an involution7 and the same algorithm can be used to
both encrypt and decrypt up to a reversal of the round-key order.

𝑥1

𝑦1

𝑥0

𝑦0

𝐹𝑘

Figure 1.9: A Feistel round.

Examples of block ciphers relying on a Feistel structure in the literature include LBlock [WZ11a],
Lilliput [BFMT16] or the nsa8’s Simon [BSS+13]. Variants of this construction exist, such as
unbalanced Feistel networks [SK96], where the two branches are of different sizes. In the case of
Misty-like structures—named after the Misty block cipher [Mat97]—the Feistel function has to
be a permutation and is directly applied to a branch rather than a copy of it. Finally, Generalized
Feistel Networks, which are the main focus of Chapter 8, extend the Feistel network to a larger
number of branches.

Substitution-Permutation Networks (spn)

𝑆 𝑆 𝑆 𝑆· · ·

𝐿

𝑘𝑖

Figure 1.10: One spn round.

In an spn round, the internal state is first xored with the round key 𝑘𝑖. As shown in Figure 1.10,
it then goes through two layers to satisfy Shannon’s confusion and diffusion properties:

7An involution is a function 𝑓 that is its own inverse. Namely, 𝑓(𝑓(𝑥)) = 𝑥.
8National Security Agency, American intelligence agency.

14

1.3. On the Design of Block Ciphers

1. A substitution layer consisting of parallel applications of small nonlinear functions—usually
operating on 4 or 8 bits—called S-boxes9. This layer adds to local confusion.

2. A permutation layer acting on the entire block state, that mixes the entire internal state.
Modern ciphers tend to use linear mappings instead of simple permutations to reach better
diffusion in fewer rounds.

As opposed to Feistel ciphers, the spn structure requires that all inner components be
invertible. The most prominent spn is the current nist10 standard, the Advanced Encryption
Standard [AES01] (Aes), but many other algorithms exist in the open literature, such as
Klein [GNL11], Midori [BBI+15], Noekeon [DPAR00], Present [BKL+07], Robin [GLSV15],
Skinny [BJK+16] and Zorro [GGNS13].

A focus on the Aes. In the two decades following the design of the Des, computers had
dramatically increased in power, making the 56-bit key of the algorithm—the encryption standard
at the time—vulnerable to exhaustive search. In 1997, nist initiated an open process to find the
successor to the Des. All submissions had to be block ciphers supporting a block size of 128 bits
and key sizes of 128, 192, and 256 bits. As a result of this effort, after three years of analysis,
Rijndael [DR02], designed by Belgian cryptographers Joan Daemen and Vincent Rijmen, was
selected among 15 candidates as the Aes [AES01] (Advanced Encryption Standard) to replace
the Des.

The algorithm operates on a 128-bit internal state 𝑠 which can be represented as a 4 × 4
array of bytes, as depicted in Figure 1.11. The size of the internal state and the size of the round
keys 𝑘𝑖 are both fixed to 128 bits, however, the number of rounds 𝑟 (10, 12 and 14) and the key
scheduling algorithm can change according to the key size (128, 192 and 256 bits respectively).

ARK SB SR MC
13

2 6 10 14

4 8 12

1 5 9

3 7 11 15

ki

0row 0

row 1

row 2

row 3

Figure 1.11: One round of the Aes.

Round function The round function combines four operations:

1. AddRoundKey (ARK). At the beginning of each round, the state 𝑠 is xored with the round
key 𝑘𝑖: AddRoundKey(𝑠) = 𝑠⊕ 𝑘𝑖.

2. SubBytes (SB). The same S-box 𝑆 is applied to each of the 16 bytes. This S-box is derived
from the multiplicative inverse over the finite field F28 , which is known to have good
cryptographic properties.

3. ShiftRows (SR). Row 𝑖 is cyclically shifted by 𝑖 positions to the left, for 𝑖 = {0, · · · , 3}.
This step is instrumental in preventing the columns from being encrypted independently.

9Substitution Box.
10National Institute of Standards and Technology, American standardization authority.

15

Chapter 1. Design of Symmetric Encryption Algorithms

4. MixColumns (MC). This step combines the four bytes of each column of 𝑠 using an invertible
linear transformation. It can be seen as a multiplication by the circulant matrixℳ, defined
as follows:

ℳ =

⎛
⎜⎜⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞
⎟⎟⎠

where each byte is viewed as an element of the finite field

F28 = F2[𝑋]/(𝑋8 +𝑋4 +𝑋3 +𝑋 + 1).

The matrix ℳ is defined by a so-called mds11 code and has a very interesting diffusion
property; it ensures that each byte in the input column influences all four output bytes.

The MixColumns operation is omitted in the last round, an additional round key is added
instead.

Key schedule The 128-bit keys version of the key schedule will be described in what
follows. For more details regarding the other versions, the reader is referred to the complete
specification [AES01].

𝑘0𝑖

𝑘1𝑖

𝑘2𝑖

𝑘3𝑖

𝑘4𝑖

𝑘5𝑖

𝑘6𝑖

𝑘7𝑖

𝑘8𝑖

𝑘9𝑖

𝑘10𝑖

𝑘11𝑖

𝑘12𝑖

𝑘13𝑖

𝑘14𝑖

𝑘15𝑖

𝑘0𝑖+1

𝑘1𝑖+1

𝑘2𝑖+1

𝑘3𝑖+1

𝑘4𝑖+1

𝑘5𝑖+1

𝑘6𝑖+1

𝑘7𝑖+1

𝑘8𝑖+1

𝑘9𝑖+1

𝑘10𝑖+1

𝑘11𝑖+1

𝑘12𝑖+1

𝑘13𝑖+1

𝑘14𝑖+1

𝑘15𝑖+1

≪𝑆

Figure 1.12: Key schedule for the Aes in the 128-bit keys version.

The 11 round keys 𝑘𝑖, 𝑖 ∈ {0, · · · , 10}, are generated from the master key 𝐾. The key state at
round 𝑖 is represented as a 4× 4 matrix whose coefficients are denoted 𝑘𝑗𝑖 , as shown in Figure 1.12.

11Simply put, in coding theory, Maximum Distance Separable codes have the greatest error correcting and
detecting capabilities.

16

The first round key 𝑘0 simply equals 𝐾, then for 𝑖 ∈ {1, · · · , 10}, the key state is updated as
follows.

𝑘𝑗𝑖 = 𝑘𝑗𝑖−1 ⊕ 𝑆(𝑘
12+(𝑗+1) mod 4
𝑖−1)⊕ 𝑟𝑐𝑗𝑖 𝑗 ∈ {0, 1, 2, 3}

𝑘𝑗𝑖 = 𝑘𝑗𝑖−1 ⊕ 𝑘𝑗−4
𝑖 𝑗 /∈ {0, 1, 2, 3}

(1.1)

(1.2)

Equation (1.1) describes how to compute the first column of 𝑘𝑖: the last column of 𝑘𝑖−1 is
rotated by one position—top byte is moved to the bottom etc.—then, each byte is ran through
the Aes S-box 𝑆. Next, the column is xored with a 4-byte round constant 𝑟𝑐𝑖 = [𝑟𝑐3𝑖 𝑟𝑐

2
𝑖 𝑟𝑐

1
𝑖 𝑟𝑐

0
𝑖]

and finally with the first column of the previous round key 𝑘𝑖−1. Equation (1.2) states that the
other columns of 𝑘𝑖 are obtained by xoring the previous column with the same column of the
previous round key 𝑘𝑖−1.

Chapter 1. Design of Symmetric Encryption Algorithms

18

2

Lightweight Cryptography

Light as a feather and hard as dragon
scales.

Bilbo Baggins

Modern cryptographic algorithms are fairly useless on their own: for real-life applications,
they have to be implemented in actual devices that process information encoded in a binary
representation. Implementation can either be done in software—the cipher is written as a code
that is then turned into a program that can be executed on a general-purpose processor—or the
algorithm can be built directly in real hardware, for instance on an fpga1 or an asic2, depending
on the specific requirements of the use cases.

While most modern symmetric ciphers such as the Aes were designed for high-end machines
such as personal computers or web servers, the last two decades saw the proliferation of a variety
of interconnected devices in our environment—all encompassed within the very broad concept of
the Internet of Things (iot)—sometimes with very limited resources, thus only devoting a small
fraction of their computing power to security. Yet, the expansion of the iot in our daily lives
clearly raises new security concerns with regard to privacy and availability of service. Indeed,
sophisticated sensors and chips embedded in the physical devices that surround us continuously
gather and transmit large amounts of data to offer a diversity of services, from connected watches
tracking our daily physical efforts to sensors networks monitoring the production chain of a
factory and many more examples extending to healthcare and agriculture among others. The iot
is a highly heterogeneous environment: although some of the devices use powerful processors and
can be expected to use the same cryptographic algorithms as standard desktop PCs, many of
them use extremely low power microcontrollers, such as rfid3 tags or wireless sensors networks.
Classical encryption schemes are not adapted to these platforms, which calls for new dedicated
algorithms.

1Field Programmable Gate Arrays. fpgas are integrated circuits typically found in small embedded devices.
They are designed to be configured after manufacturing using a hardware description language (hdl).

2Application-Specific Integrated Circuits. An asic is an integrated circuit manufactured for a specific use or
application. For this reason, they can provide high speed and optimized implementations, but they are more
expensive to design.

3Radio-Frequency IDentification.

19

Chapter 2. Lightweight Cryptography

2.1 Lightweight Encryption Primitives 20

2.1.1 Design criteria . 20
2.1.2 Overview of various design strategies 22

2.2 On Authentication . 23

2.2.1 Authenticated encryption . 23
2.2.2 Generic composition . 24
2.2.3 Dedicated ae(ad) solutions . 25

2.3 Towards New Standards . 30

2.3.1 Iso/iec cryptographic standards 31
2.3.2 Open competitions . 31

2.4 Some Existing Lightweight Algorithms 32

2.4.1 Present . 32
2.4.2 Skinny . 33
2.4.3 LBlock . 35
2.4.4 Lilliput . 37

2.1 Lightweight Encryption Primitives

The Aes marked the culmination of a four-year effort involving the cooperation between the
U.S. Government, private industry and academia from around the world to develop a standard
encryption primitive. Twenty years later, its security is well-established in the cryptographic
community and it remains the most popular algorithm used in symmetric-key cryptography.
Furthermore, hardware [BJM+14, BBR16, UMHA16] and software optimization [OBSC10, SS16]
allow for decent—although not optimal—performances on a wide variety of platforms, making
the Aes an honorable candidate for most use cases. However, due to its large S-box and large
block size, it remains a suboptimal choice for more stringent constraints.

Lightweight cryptography aims at providing security for these highly constrained systems, where
cost, power consumption, energy, and available resources are limited. Many primitives have been
proposed in the recent years4, including Clefia [SSA+07], Klein [GNL12], LBlock [WZ11a],
Led [GPPR11], Lilliput [BFMT16], Present [BKL+07], Skinny [BJK+16], Simon and
Speck [BSS+13] and Twine [SMMK13]. When compared to traditional ciphers, these new
algorithms—in their lightest variants—sometimes operate with a smaller block size (64 bits) and
key length (80 bits). Likewise, their components are simplified: smaller S-box (4 bits) when
they use any, linear diffusion layer over a smaller alphabet (F2 for instance) and a simplified
key-schedule.

2.1.1 Design criteria

It should be stressed that lightweight algorithms differ from their conventional counterparts in that
they are tailored to satisfy specific constraints related to their use cases. Usually, aiming for both

4See the Lightweight Cryptography Lounge at https://www.cryptolux.org/index.php/Lightweight_Block_
Ciphers

20

https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers
https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers

2.1. Lightweight Encryption Primitives

software and hardware efficiency is hard and trade-offs between security margins, performance
and costs are common.

The efficiency of an algorithm can be assessed using appropriate cost and performance metrics,
which are the memory usage, the implementation size and the speed of the algorithm. More
details are given below, for hardware implementations and software implementations.

Software implementations

Algorithms can be implemented in software, typically for use on microcontrollers. In this case,
designers tend to optimize the memory consumption of the algorithm during computation (in
ram5) and the code size of the algorithm itself (stored on a rom6 for instance). In regard to time
complexity, the throughput of the algorithm, expressed in bytes per cpu7 cycle, is an important
metric. Latency, which is the time required for a single operation, should also be taken into
account.

Microcontrollers do not operate at bit level as opposed to the hardware case; instead, they
process bits in small batches, called words. These words usually contain 8, 16 or 32 bits.
Consequently, one operation acting at bit level like seen sometimes in hardware, will mostly
display very bad performance in software if it breaks this word structure. For this reason,
software-friendly primitives rely exclusively on word-wide logical operations and rotations.

Hardware implementations

In hardware platforms, such as rfid tags, the gate area measures both the memory consumption
and the size of the circuit implementing the algorithm. It can be expressed in 𝜇𝑚2, although this
value is specific to the manufacturing technology of the circuit. For this reason, another unit is
often used: the Gate Equivalent (ge), which is the silicon area of a nand gate, in the considered
technology. In addition, performance metrics such as the execution speed and the latency also
have to be optimized; some applications indeed require a quick response time. Finally, the power
consumption, measured in Watts should not be neglected, especially when considering devices
running on batteries that cannot be replaced or recharged frequently.

Side-channel resistance

Side-channel attacks (scas) are physical attacks exploiting the implementation of a cipher to
leak information about its internal state and break its security. In the context of the iot,
embedded devices are particularly exposed to such threats as they might operate in unprotected
environments, allowing any attacker to easily gain access to them. For this reason, implementation
of counter-measures such as reduction of information leakage, data shuffling or masking is not to
be neglected when designing lightweight algorithms. Masked implementations have a substantial
cost that is correlated to the number of nonlinear logic gates (and gates, or gates, etc.) in the
circuit representation of the functions that need masking. As a result, reducing the complexity of
nonlinear components such as S-boxes is crucial to the resistance to side-channel analysis.

5Random-Access Memory. ram is a form of a volatile memory used to store the data of a program and its
execution stack.

6Read-Only Memory.
7Central Processing unit.

21

Chapter 2. Lightweight Cryptography

An optimal trade-off?

All the criteria previously mentioned compete with one another and achieving full versatility
is extremely hard. Consequently, the optimization sometimes focus on particular metrics at
the expense of others, depending on the context. For instance, Prince [BCG+12] and Man-
tis [BJK+16] target hardware implementation for applications such as data encryption on ssds,
and have thus been optimized for latency. The designers of Midori [BBI+15] focused on energy
and power efficiency and mention applications such as battery-operated medical implants.

2.1.2 Overview of various design strategies

Low implementation cost is at the core of lightweight cryptography. In the case of block ciphers,
this is achieved by minimizing the implementation costs of the two main components: the
nonlinear layer and the linear layer.

Nonlinear operations

Nonlinearity brings confusion into a cipher. In practice, it is provided by S-boxes or through the
use of nonlinear arithmetic operations.

Compact S-boxes. S-boxes are usually the most expensive components of a cipher. Many
software implementations use S-boxes in the form of precalculated look-up tables (luts) to
optimize throughput (retrieving a value from memory is faster than computing the S-box).
However, this requires storing all possible outputs which, for an 8-bit S-box such as the one
used by the Aes, has a significant cost. In hardware, look-up tables would not fit any device
and instead, the S-box is represented as a binary circuit using elementary logic gates. For an
efficient hardware implementation, this circuit needs to be as compact as possible in terms of
ge. While 4-bit S-boxes are rather well understood, finding a low-cost implementation of a
given 8-bit S-box that is known to have good cryptographic properties is a hard problem, even
though some convincing works have been made in this direction for the Aes [Can05, BP09].
Another approach is to build small circuits that instantiate S-boxes with sufficient cryptographic
properties [CDL16, CR19].

An alternative to lut-based implementation for software platforms is called bitslicing [Bih97a]
in which bitwise operations (such as xors or ands) are performed on words of 𝑤 bit, resulting in
𝑤 parallel applications of the S-box. For a bitslice implementation to be efficient, the S-boxes
need to be designed with this implementation strategy in mind from the start. They usually
require only a limited number of logical operations to be evaluated, which makes their software
implementation particularly easy to mask. The so-called LS-Designs [GLSV15] are examples of
bitslice-based algorithms.

Arx structures. Arx-based ciphers were first introduced in [Miy91]. These algorithms are
designed using only three operations: modular addition, which provides nonlinearity, with rotation
and xor for diffusion. Examples include Sparx [DPU+16], Speck [BSS+13] and Tea [WN95].

Arx-based algorithms are particularly well-suited to software implementation because of
the very simple operations they rely on. Moreover, they run in constant time, and therefore,
are inherently immune to timing attacks. In contrast, modular addition is fairly expensive to
implement in hardware.

22

2.2. On Authentication

Linear operations

Bit permutations. For diffusion, something as simple as bit permutation can be used. Bit-wise
permutations come virtually for free in hardware since they are realized by simple wiring and
require no transistors; they are thus a popular choice. For instance, Present [BKL+07] is
a hardware-oriented cipher that use a simple bit-wise permutation in its diffusion layer (see
Section 2.4.1). The implementation cost of bit-wise permutations in software is, however, quite
high, unless they describe rotations inside a word.

Compact mds matrices. For more complex diffusion layers, mds matrices can be used.
Several works [JPS17, DL18] focus on global optimization of an mds matrix. In [DL18], a search
through a space of circuits is ran to find optimal circuits yielding mds matrices. In particular mds
matrices with only 67 bitwise xors were found, while a direct implementation of the MixColumns
matrix of the Aes requires 152 bitwise xors.

Key schedule

A trend in lightweight cryptography consists in applying a very simple key schedule, which
merely selects different bits of the master key adds them to some round constants to produce
the round keys [GPPR11, BCG+12, BBI+15, BJK+16]. Some attacks has shown to be quite
effective against such schemes, namely, invariant subspace attack [LAAZ11, LMR15] and nonlinear
invariant attack [TLS16]. However, these structural attacks heavily rely on the choice of round
constants and can be thwarted if the round constants are carefully chosen. In [BCLR17], Beierle
𝑒𝑡 𝑎𝑙. studied the mathematical nature of these so-called invariants and provided certain conditions
under which an iterated block cipher could be resistant against invariant attacks. Wei 𝑒𝑡 𝑎𝑙.
later showed in [WYWP18] that these criteria appeared to be necessary but not sufficient and
presented additional design guidelines.

2.2 On Authentication

Enforcing security of iot systems is a challenging task and this quest for "lightweightness" can
not be reduced to encryption primitives: authentication and integrity solutions must also be
provided, in spite of the resource constraints.

2.2.1 Authenticated encryption

Authenticated encryption (ae) aims at providing confidentiality, integrity and authentication at
once. Authentication allows communicating entities to ensure that their communication has not
been modified or tampered with. This verification is based on the computation of a so-called tag
associated to the transmitted data which cannot be generated in reasonable time unless a secret
is known.

Authenticated encryption with associated data (aead), introduced by Rogaway [Rog02], is an
extension of ae that can ensure authenticity and integrity of additional associated data (ad) that
does not require privacy protection. A common use case for such schemes is the transmission of
network packets: the header, which may contain an ip address, has to remain unencrypted for
the packet to reach its correct destination and the payload needs confidentiality, but both need
authentication and integrity.

23

Chapter 2. Lightweight Cryptography

More formally, an aead scheme can be seen as a tuple Π = (𝒦, ℰ ,𝒟), where 𝒦 is a key
scheduling algorithm, ℰ is an encryption function and 𝒟 a decryption/verification function. The
function 𝒦 takes as input an integer 𝑘 and picks a secret key 𝐾 uniformly at random from F𝑘

2.
The encryption function is specified as

ℰ : F𝑘
2 × F𝑛

2 × F*
2 × F*

2 ↦→ F*
2 × F𝑡

2

(𝐾,𝑁,𝐴,𝑀) ↦→ (𝐶, 𝑇)

where 𝐾 is a secret key, 𝑁 a nonce8, 𝐴 associated data, 𝑀 a plaintext message, 𝐶 a ciphertext
and 𝑇 an authentication tag. Decryption, on the other hand is defined by

𝒟 : F𝑘
2 × F𝑛

2 × F*
2 × F*

2 × F𝑡
2 ↦→ F*

2 ∪ {⊥}

(𝐾,𝑁,𝐴,𝐶, 𝑇) ↦→
{︃
𝑀 if 𝑇 = 𝑇 ′

⊥ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑇 ′ denotes the authentication tag that was computed and 𝑇 is the one that was received.
Figure 2.1 depicts encryption and decryption/verification processes for aead. Ae can be viewed
as a special case where 𝐴 is left empty.

A communication between Alice and Bob is conducted as follows, assuming they have already
agreed on a secret key 𝐾 using a key exchange protocol:

1. Alice computes ℰ𝐾(𝑁,𝐴,𝑀) = (𝐶, 𝑇) and sends (𝑁,𝐴,𝐶, 𝑇) over the communication
channel to Bob.

2. Bob uses the decryption function 𝒟𝐾 on (𝑁,𝐴,𝐶, 𝑇), which computes an authentication
tag 𝑇 ′ and compares it to the tag 𝑇 that has been received. If the tag is valid 𝑖.𝑒. 𝑇 = 𝑇 ′,
then 𝒟𝐾 returns the message 𝑀 . If tag verification fails, 𝒟𝐾 outputs an error symbol
denoted by ⊥ and securely erases all intermediate results.

𝐾

𝐸𝑀

𝑁

𝐴𝐷

𝐶, 𝑇

(a) aead encryption.

𝐾

𝐷𝐶, 𝑇

𝑁

𝐴𝐷

𝑀

or
⊥

(b) aead decryption

Figure 2.1: Authenticated Encryption with Associated Data.

2.2.2 Generic composition

Ae can be achieved by combining two separate primitives under independent keys: a conventional
encryption algorithm ℰ𝐾𝑒 is used for encryption and a mac 𝒯𝐾𝑚 generates the authentication tag.
Such constructions obtained through so-called generic composition were formalized by Bellare and
Namprempere [BN00], and Katz and Yung [KY01]. They are widely used in practice and can be
found in many standards such as the Secure Shell (ssh) protocol, Secure Sockets Layer/Transport
Layer Security (ssl/tls) or ipsec. These three protocols all use different types of composition
that we detail below:

8A number that can be used only once.

24

2.2. On Authentication

Encrypt-and-mac. The plaintext 𝑀 is first encrypted using the encryption algorithm ℰ and
the mac is applied on the plaintext to obtain the tag 𝑇 . Finally, 𝐶||𝑇 is sent, where

𝑇 = 𝒯𝐾𝑚(𝑀), 𝐶 = ℰ𝐾𝑒(𝑀).

Mac-then-encrypt. The authentication tag 𝑇 is produced based on the plaintext 𝑀 , then it
is appended to the plaintext before encryption. The resulting ciphertext 𝐶 is sent.

𝑇 = 𝒯𝐾𝑚(𝑀), 𝐶 = ℰ𝐾𝑒(𝑀 ||𝑇)

Encrypt-then-mac. The plaintext 𝑀 is first encrypted using the encryption algorithm ℰ and
the tag 𝑇 is produced based on the resulting ciphertext 𝐶. Finally, 𝐶||𝑇 is sent, where

𝐶 = ℰ𝐾𝑒(𝑀), 𝑇 = 𝒯𝐾𝑚(𝐶).

All three approaches can be extended to include associated data 𝐴 in a rather straightforward
manner by prepending 𝐴 to the input of the mac before sending the associated data, the ciphertext
and the tag together.

These constructions were examined by Krawczyk [Kra01] and Bellare and Namprempre [BN00].
Both analyses recommended Encrypt-then-mac for achieving ae, as this construction would
always be secure as long as the underlying primitives were provably secure while the security
of the Encrypt-and-mac and Mac-then-encrypt approaches could not be ensured generically.
However, a more recent study by Namprempre, Rogaway, and Shrimpton [NRS14] gives a more
extensive analysis of generic composition and shows that Encrypt- then-mac constructions can
fail, when ae is formalized differently, underlining that one must proceed with extreme caution
when attempting to instantiate concrete schemes using generic composition.

Besides the danger of insecure instantiations of generic compositions [BKN02, Vau02, DR11,
AP13, BBB+19], these approaches are also computationally suboptimal, as they require the use
of two independent keys and two passes over the data; one providing confidentiality and the other,
integrity assurance—they are said to be two-pass constructions.

The next section gives a a short overview of dedicated aead block cipher modes, which
include several one-pass schemes.

2.2.3 Dedicated ae(ad) solutions

Dedicated solutions were conceived to achieve ae more efficiently, without using two different
algorithms, two different keys, or making two separate passes over the message, potentially leading
to schemes with a lower overhead for implementation and higher performance. Some of these
developments include block cipher modes. The main authenticated encryption modes based on
block ciphers are briefly detailed in the following.

Single-pass modes

The efficiency of ae(ad) schemes may be significantly improved if the constructions can, in a
single pass over the data, provide both confidentiality and integrity simultaneously. In 2001,
several single-pass provably secure ae designs were proposed: iacbc, iapm by Jutla [Jut01]; xcbc,
xecb by Gligor-Donescu [GD02]; and ocb, by Rogaway 𝑒𝑡 𝑎𝑙. [RBBK01, Rog04, KR11b, KR14].
All these proposals are patented.

25

Chapter 2. Lightweight Cryptography

Iapm (Integrity-Aware Parallelizable Mode). In 2001, Jutla proposed two seminal single-
pass ae modes: iacbc (Integrity-Aware Cipher Block Chaining) and iapm (Integrity-Aware
Parallelizable Mode) [Jut01], built on the traditional cbc and ecb modes respectively, with the
addition of a simple checksum9 and masking of the outputs and inputs. As opposed to iacbc, iapm
is fully parallelizable and therefore, generated more interest. Compared to generic composition,
which requires about 2× ℓ block-cipher calls per ℓ-block long plaintext to achieve authenticated
encryption, this scheme only needs around ℓ+ log2(ℓ) invocations. Further refinements to iapm
exist [Jut08] and reduce the number of block cipher calls down to ℓ+ 1. One of the variants of
iapm described in [Jut08] is depicted in Figure 2.2. Iacbc operates in an analogous manner,
except that cbc encryption is applied to the plaintext instead of ecb.

EKa

∆1

∆1

M0

C1

EKa

∆ℓ

∆ℓ

Mℓ−1

Cℓ

EKa

∆ℓ+1

∆0

∑
Mi

T

· · · · · ·

IV

C0

EKb

IV

∆0,∆1, · · · ,∆ℓ+1

Generate masks

Figure 2.2: Integrity-Aware Parallelizable Mode (iapm) as shown in [Jut08].

Ocb (Offset Codebook). Ocb [KR14] is a one-pass nonce-based aead block cipher mode
originally proposed by Rogaway 𝑒𝑡 𝑎𝑙. in [RBBK01] as a follow up to iapm. It allows parallelization
of data processing and provides several improvements over iamp such as encryption of arbitrary-
length plaintexts with minimal ciphertext expansion—the resulting ciphertext has the same length
as the plaintext plus the length of the authentication tag—and the use of a single block cipher key
for both data encryption and masks (or offsets) generation. A second version, ocb2 [Rog04], was
developed by Rogaway to support associated data. Finally, a third version introduced some minor
changes regarding offset computation and brought some performance improvements [KR11b].
This version is illustrated by Figure 2.3 and Figure 2.4. Ocb is an efficient mode of operation,
that uses ℓ+2 calls to the block cipher in the worst case to encrypt and authenticate ℓ-block long
messages. Whenever associated data 𝐴 is included, ℓ𝑎 additional block cipher calls are necessary,
where ℓ𝑎 is the block length of 𝐴. Ocb achieves security up to the birthday bound—the mode is
proven secure up to 2𝑛/2 queries if the underlying block cipher uses blocks of 𝑛 bits—and Ferguson
described a collision attack matching this bound [Fer02]. Despite its attractive features, ocb
never found widespread adoption due to patent restriction. The scheme is also not completely
without flaws: in October 2018 a practical existential forgery attack on ocb2 was presented by
Inoue and Minematsu [IM18], followed by several improvements [Poe18, Iwa18] leading up to
a plaintext recovery attack [IIMP19]. Authors have stated that these attacks do not extend to
ocb1 and ocb3.

9The simplest checksum algorithm consists in breaking the data into 𝑛-bit words and then computing the xorof
all those words.

26

2.2. On Authentication

EK

∆0

∆0

M0

C0

EK

∆ℓ−1

∆ℓ−1

Mℓ−1

Cℓ−1

EK

∆ℓ+1

auth

∑
Mi

T

· · · · · · EK

∆ℓ

pad

M∗

C∗

0∗

final

Figure 2.3: Message processing with padding in Ocb3, the final version of ocb described
in [KR11b]. The offsets Δ𝑖 are computed from a nonce 𝑁 and a simple increment function.
This step requires a single call to the block cipher 𝐸 under the same key 𝐾 as the one used for
encryption. Figure 2.4 shows how to compute the auth value.

EK

∆a,0

A0

EK

∆a,ℓa−1

Aℓa−1

auth

· · · · · · EK

A∗ 10∗

∆a,ℓa

Figure 2.4: Associated data processing with padding in Ocb3, the final version of ocb described
in [KR11b]. The auth value is determined by the associated data 𝐴 and the same key 𝐾 as
the one used for message processing. The offsets Δ𝑎,𝑖 are computed using the same increment
function as before, starting from an initial value Δ = 0(128).

Xcbc (Extended Ciphertext Block Chaining). Xcbc and xecb are two classes of schemes
presented by Gligor and Donescu in [GD02], respectively similar to cbc and xecb modes of
operation. Both schemes provide ae at a cost very close to that of encryption alone. Akin
to iacbc and iapm, they apply a mask to each message block before and after a block cipher
invocation. However, the masks are generated using arithmetic modulo 2𝑛—𝑛 being the block
size in bits—which is very fast on most processors.

Two-pass modes

The usage of fast one-pass schemes was hindered by intellectual property claims, which spurred
researchers to develop further efficient aead patent-free algorithms. Theses schemes include
ccm [WHF03], eax [BRW04], cwc [KVW04] and gcm [MV04]—ccm and gcm are both recom-
mended in nist’s special publications SP 800-38C [Dwo04] and SP 800-38D [Dwo07]. Although
not as fast as the single-pass modes, they still offer significant performance improvements over

27

Chapter 2. Lightweight Cryptography

generic composition schemes. Most importantly, for all the schemes listed below, a single block
cipher key suffices for the entire scheme.

Ccm (Counter with cbc-mac). The first patent-free proposed was ccm by Ferguson,
Housley, and Whiting [WHF03]. This aead mode only supports block ciphers with a 128-bit
block size. It combines cbc-mac—a mac construction technique based on cbc mode—for
authentication with ctr mode of encryption, using a mac-then-encrypt composition: cbc-mac is
first computed on the message to obtain a tag which is then encrypted together with the message
using counter mode. Ctr makes the scheme effectively a stream cipher that requires unique
nonces for initialization as long as the key is fixed. This is necessary, as confidentiality can not
be guaranteed for ctr if nonces are repeated.

Ccm uses a mac scheme and an encryption scheme, namely, cbc-mac and ctr, which
are both well known and provably secure modes. Ccm does offer advantages over the generic
composition of these two primitives; in particular, it uses the same key 𝐾 for both the mac and
the encryption steps as previously stated. Ctr mode requires no decryption function per se,
since encryption and decryption are done simply by xoring the plaintext and ciphertext with a
keystream, so hardware implementations do not need to implement the decryption functionality
of the block cipher.

A notable inefficiency of ccm is that the length of the processed data must be known in
advance, consequently it is not an online scheme and cannot be used for data streams.

Eax (Encrypt-then-Authenticate-then-Translate). Eax is a nonce-based aead block
cipher mode designed in part by two researchers from the ocb team to provide another patent-free
mode that addressed the several drawbacks to ccm [RW03]. It combines a variant of cbc-mac
called omac [IK03], which does not have the security deficiencies of raw cbc-mac, and ctr
encryption.

Eax is a very flexible mode; it has no restrictions on the underlying block cipher or on the block
size 𝑛 and supports arbitrary-length messages as well as authentication tag sizes 𝜏 ∈ {0, · · · , 𝑛}.
Many other desirable features come with eax: ciphertext expansion is minimal, it can pre-process
static associated data, which results in performance savings and it is online for both the plaintext
and the associated data, 𝑖.𝑒. the total data length does not need to be known up front. Similar
to ccm, only the forward cipher function of the block cipher algorithm is used.

Gcm (Galois Counter Mode). Akin to ccm, gcm is an aead mode defined for block ciphers
with a block size of 128 bits. It combines ctr mode of encryption and a mac for authentication
into a scheme which uses a single secret key. First the plaintext is encrypted using ctr mode, the
mac then processes the resulting ciphertext together with the associated data, in a Encrypt-then-
mac manner. The authentication process is based on multiplication in the Galois field F2128 and
does not require any block cipher invocation. Gcm mode can reach high throughput rates and
benefits from a structure that allows parallel processing and efficient use of pipelining, making it
suitable to high-speed hardware-based applications.

Cwc (Carter-Wegman + Counter). Cwc is a mode of operation that combines the Carter-
Wegman mac algorithm with the ctr mode of operation under a common key. Contrary to eax
and ccm, which use sequential cbc-mac type algorithms, cwc is parallelizable. Nist considered
this mode for standardization, but eventually gcm was chosen instead in 2007.

28

2.2. On Authentication

Authentication modes for tweakable block ciphers

In the design authenticated encryption schemes, tweakable block ciphers (tbcs), are valuable
building blocks. A tweakable block cipher is a generalized block cipher with an additional public
input, the tweak, that is meant to provide variability—not security. If the tweak can be changed
with little cost, then some interesting new operation modes become possible, such as aead modes
that can provide authenticity and confidentiality with just one pass over the data; leading to
schemes with a lower overhead for implementation and higher performance.

Tweakable block ciphers. The notion of tweakable block ciphers and their application to
modes of operations was introduced by Liskov, Rivest and Wagner [LRW02]. This theme was
developed by Rogaway in [Rog04], which described the first efficient constructions of tbc, namely
xe and xex, as well as several modes of operations. Formally, a tweakable block cipher is a func-
tion ℰ : 𝒦×𝒜×𝒳 ↦→ 𝒳 , where ℰ𝐾(𝐴, ·) = ℰ𝐴𝐾(·) is a permutation with inverse 𝒟𝐾(𝐴, ·) = 𝒟𝐴

𝐾(·)
for all 𝐾 ∈ 𝒦 and 𝐴 ∈ 𝒜. Here 𝒳 is finite, and 𝒜 is the set of tweaks, which might consist of
variable-length strings. Whereas block ciphers only give access to a single permutation per key,
tweakable block ciphers give access to an entire family, with the requirement that each member
of the family looks uniform and independent of all other members.

The tbc-based ae(ad) modes include tae [LRW02], Θcb3 [KR11b], otr [Min14], sct [PS16],
zae [IMPS17], paef, saef and rpaef [ALP+19] and fbae [NS19]. Some of these modes are
detailed below.

Tae. Tae was introduced by Liskov, Rivest and Wagner in the same paper which formalized
tweakable block ciphers [LRW02]. This mode essentially recasts ocb1 [RBBK01] using a tweakable
blockcipher instead of a masked block cipher and thus does not define the handling of associated
data.

Θcb3. Θcb3 is the tbc-based generalization of ocb3, introduced by Krovetz and Rog-
away [KR11b]. As the same key material is used for different purposes, domain separation
is required. Here, a 4-bit string prepended in the tweak ensures independence of the tweakable
block cipher calls for different kinds of computations. Figure 2.5 describes the handling of
associated data, with and without padding. The processing the plaintext is depicted in Figure 2.6.

𝐴0

𝐸
2||0
𝐾

0(𝑛)

. . .

𝐴𝑙𝑎−1

𝐸
2||𝑙𝑎−1
𝐾

. . . Auth

(a) Without padding.

𝐴0

𝐸
2||0
𝐾

0(𝑛)

. . .

𝐴𝑙𝑎−1

𝐸
2||𝑙𝑎−1
𝐾

. . .

𝐴*10
*

𝐸
6||𝑙𝑎
𝐾

Auth

(b) With padding.

Figure 2.5: Handling of the associated data for ΘCB3.

Sct. Contrary to Θcb3, sct is nonce-misuse resistant [RS06] 𝑖.𝑒. repeating a nonce in encryp-
tion queries does not harm authenticity nor confidentiality. A slight variant, sct-2, was described
in the specification of Deoxys [JNPS16]. This mode is also secure in the nonce-misuse scenario
and is depicted in Figure 2.7, Figure 2.8 and Figure 2.9.

29

Chapter 2. Lightweight Cryptography

𝑀0

𝐸
0||𝑁 ||0
𝐾

𝐶0

𝑀𝑙−1

𝐸
0||𝑁 ||𝑙−1
𝐾

𝐶𝑙−1

.

𝑀*10
*

0(𝑛)

𝐸
4||𝑁 ||𝑙
𝐾

𝐶*

pad

Checksum

𝐸
5||𝑁 ||𝑙+1
𝐾

tag

Auth
final

Figure 2.6: Message processing for ΘCB3 with padding when the message length is not a multiple
of the block size.

𝐴0

𝐸
2||0
𝐾

0(𝑛)

. . .

𝐴𝑙𝑎−1

𝐸
2||𝑙𝑎−1
𝐾

. . . Auth

(a) Without padding.

𝐴0

𝐸
2||0
𝐾

0(𝑛)

. . .

𝐴𝑙𝑎−1

𝐸
2||𝑙𝑎−1
𝐾

. . .

𝐴*10
*

𝐸
6||𝑙𝑎
𝐾

Auth

(b) With padding.

Figure 2.7: Handling of the associated data for sct-2.

𝑀0

𝐸
0||0
𝐾

Auth

𝑀𝑙−1

𝐸
0||𝑙−1
𝐾

. . .

. . .

𝐸
1||0(4)||𝑁
𝐾

tag

(a) Without padding.

𝑀0

𝐸
0||0
𝐾

Auth

𝑀𝑙−1

𝐸
0||𝑙−1
𝐾

. . .

. . .

𝑀*10
*

𝐸
4||𝑙
𝐾

𝐸
1||0(4)||𝑁
𝐾

tag

(b) With padding.

Figure 2.8: Message processing in the authentication part for sct-2.

0(8)||𝑁

𝐸
1||tag
𝐾

𝐶0

𝑀0

. . .

. . .

. . .

0(8)||𝑁

𝐸
1||tag⊕(𝑙−1)
𝐾

𝐶𝑙−1

𝑀𝑙−1

0(8)||𝑁

𝐸
1||tag⊕𝑙
𝐾

𝐶*

𝑀*

Figure 2.9: Message processing with padding in the encryption part for sct-2.

2.3 Towards New Standards

Lightweight cryptography and its direct applications in the real world has drawn a lot of attention
in the last two decades. Proprietary algorithms have been proposed by the industry, however,
many were weak, mostly relying on their secrecy and these 𝑎𝑑− ℎ𝑜𝑐 solutions sustained various
attacks once their specification was leaked or reverse-engineered. For instance, the specification of

30

2.3. Towards New Standards

the KeeLoq [BSK14] algorithm – used in the remote car keys of many manufacturers—was leaked
in 2006 which resulted in numerous attacks [CBW08, IKD+08, EKM+08, KKMP09, ABD+12].
The need for standard lightweight algorithms is well established and major standardization
organizations are closely following the evolution of this research area.

2.3.1 Iso/iec cryptographic standards

Iso/iec 29192. The International Organization for Standards (iso) and the International
Electrotechnical Commission (iec) are two organizations tasked with issuing and maintaining
standards regarding information and communication technology. They have already standard-
ized several lightweight primitives under the iso/iec 29192 reference [ISO12a], including block
ciphers, such as Present [BKL+07] and Clefia [SSA+07], stream ciphers, as illustrated by
Trivium [De 06], as well as hash functions and mac algorithms. Other primitives are currently
considered for inclusion.

2.3.2 Open competitions

Open competitions are held when a need for new primitives is well acknowledged by the cryp-
tographic community. Multiple proposals are submitted and analyzed by academic and private
organizations, with the main objective of identifying a portfolio of algorithms that are suitable
for widespread use, and sometimes defining new standards, as first done for the Aes10 [AES01],
then for the Sha-3 hash function [oST15]. Below are listed the international competitions in
which lightweight applications have been considered.

The estream project (2004 - 2008). In 2004, the European Network of Excellence in
Cryptology (ecrypt) announced the estream project11, with the objective of selecting new
dedicated stream ciphers instead of using the Aes with a mode of operation such as ctr.
The call for submission was published in 2004, with two targeted profiles: stream ciphers for
software applications with high throughput requirements and hardware applications with limited
resources. The competition received 34 submissions, and resulted in a portfolio of several
stream ciphers announced in 2008: HC-128 [Wu08], Rabbit [BVP+03], Salsa20/12 [Ber08],
and Sosemanuk [BBC+08] for high-throughput software applications; Grain v1 [HJMM08],
Mickey2.0 [BD08], and Trivium [De 06] for highly restricted hardware.

The Caesar competition (2014 - 2019). The launch of the cryptographic competition
called Caesar (Competition for Authenticated Encryption: Security, Applicability, and Robust-
ness) in 2014 demonstrated the need for new designs providing secure and efficient ae schemes.
This competition was a move towards selecting a portfolio of ae schemes that improved upon the
state of the art of the time, such as nist’s Aes-gcm [Dwo07]. It received 57 proposals [CAE], with
a variety of designs, from purely ad-hoc designs to tweakable block cipher operating modes. Three
use cases were defined, including one regarding lightweight applications for resource-constrained
environments. In February 2019, the competition ended with a total of 7 algorithms selected
in the final portfolio. For the lightweight use case, Acorn [Wu16] and Ascon [DEMS16] were
chosen, with Ascon being the main recommendation.

10A competition was also held by the National Bureau of Standards (nsb) for the Des, although it was only
reserved to invited designers.

11https://www.ecrypt.eu.org/stream/-

31

https://www.ecrypt.eu.org/stream/

Chapter 2. Lightweight Cryptography

The nist lwc standardization process (2018 -). As part of their Lightweight Cryptography
(lwc) project [NISa], launched in 2013, nist has recently initiated a standardization effort in order
to select symmetric encryption primitives that are lighter than the established nist standards. In
a report published in 2017 [MBTM17] nist had indeed concluded that these were not well-suited
for a range of resource-constrained devices. The requirements for their portfolio of lightweight
algorithms were announced in August 2018 [NISb] and as a result, 57 proposals were submitted,
of which 56 were accepted as first round candidates in April 2019. At the time of writing, round
2 is ongoing, with 32 candidates left.

2.4 Some Existing Lightweight Algorithms

The lightweight cryptography ecosystem has a plethora of designs, as evidenced by the variety
of schemes recently submitted to the nist standardization process. Most of the proposals can
be divided into two main design families, namely substitution-permutation networks (spns)
and Feistel networks. In the following section, four ciphers are presented, each with a distinct
structural property:

1. Present, an spn with a bit-based permutation layer;

2. Skinny, a family of spn with an Aes-like design;

3. LBlock, a two-branched Feistel scheme;

4. Lilliput, an extended generalized Feistel network.

Other structures exist among these families: arx-based designs are fairly popular [DPU+16,
BSS+13], some spns use a bitsliced S-box [GLSV15] and some are designed to minimize the
overhead of decryption (reflection ciphers) [BCKL17], to name a few. For a more complete
and in-depth listing, the interested reader can refer to [BP17] or [BP15] by Biryukov and
Perrin. The same authors also contributed to the development of the Felics benchmarking
framework [DBG+15, DCK+19], which was designed to provide a unified evaluation of the software
performances of lightweight cryptographic primitives.

2.4.1 Present

Present was introduced at CHES 2007 [BKL+07] and is one of the earliest lightweight encryp-
tion algorithm ever published. It has been standardized for applications requiring lightweight
cryptographic implementations and is specified in iso/iec 29192-2 [ISO12b]. Present adopts a
simple spn structure with a block size of 64 bits and a key size of 80 or 128 bits.

Round function. As shown in Figure 2.13, each of the 31 rounds of Present is made of one
subkey addition, a parallel application of a 4-bit S-box and a bit-oriented permutation.

Key-Schedule. Present supports keys of either 80 or 128 bits. In the 80-bit keys version,
the master key 𝐾 is stored in a register denoted by 𝐾79𝐾78 · · ·𝐾0. At round 𝑖, the 64-bit round
key 𝑘𝑖 consists of the 64 leftmost bits of the current key state:

𝑘𝑖 = 𝐾79𝐾78 · · ·𝐾16.

Then the key state is updated as follows.

32

2.4. Some Existing Lightweight Algorithms

𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆 𝑆

𝑘𝑖

Figure 2.10: One round of the Present cipher.

1. The key register is rotated by 61 bit positions to the left:

[𝐾79𝐾78 · · ·𝐾1𝐾0] = [𝐾18𝐾17 · · ·𝐾0𝐾79 · · ·𝐾20𝐾19].

2. The leftmost four bits are passed through the present S-box:

[𝐾79𝐾78𝐾77𝐾76] = 𝑆([𝐾79𝐾78𝐾77𝐾76]).

3. The binary representation of the round counter value 𝑖, denoted by [𝑖]2, is xored with bits
𝐾19𝐾18𝐾17𝐾16𝐾15 of 𝐾 with the least significant bit of 𝑖 on the right:

[𝐾19𝐾18𝐾17𝐾16𝑘15] = [𝐾19𝐾18𝐾17𝐾16𝐾15]⊕ [𝑖]2.

Because of its diffusion layer, this cipher clearly favors hardware implementations. Indeed,
bit-oriented permutations can be implemented in hardware using simple wiring but they are
not software-friendly operations. Its S-box is also very compact (only 28 ge) and has good
cryptographic properties as well. Being one of the first lightweight proposals, Present has
been extensively studied [Wan08, ÖVTK09, NSZW09, YWQ09, Lea11, CS09, KCS11, BKLT11,
KSK13, WSTP12, SHW+14, BPW15, BTV18]. Various cryptanalysis techniques (see Chapter 3)
have been used and some of the notable results include a statistical saturation attack which
targets up to 24 rounds [CS09], a truncated differential attack on 26 rounds [BN14] and a 28-
round multi-dimensional linear attack with time complexity 2122 for Present-128, and 277.4 for
Present-80 [FN20].

2.4.2 Skinny

Skinny [BJK+16] is a family of Aes-like tweakable block ciphers designed to reach performances
similar to those of nsa’s Simon [BSS+13] with additional strong security guarantees.

Skinny follows the TWEAKEY framework [JNP14], which offers a simple way of designing
tweakable block ciphers by treating the tweak and the key materials as a single input called the
tweakey. Various tweakey and block sizes are supported and the resulting variants are denoted
Skinny-𝑛-𝑡, where 𝑛 represents the block size (64 or 128 bits) and 𝑡 is the tweakey size (𝑛, 2𝑛 or
3𝑛).

Round function. All members of the family use an Aes-like round function depicted in
Figure 2.11. This function operates on a 4× 4 matrix of cells of 𝑠 bits, where 𝑠 = 4 in the 64-bit
variant and 𝑠 = 8 in the 128-bit variant. The operations are listed below.

33

Chapter 2. Lightweight Cryptography

1. SubBytes (SB). The same S-box—acting on 4 bits in the 64-bit version and on 8 bits in the
one with a 128-bit state—is applied to each of the 16 cells.

2. AddConstants (AC). Round constants derived using a 6-bit lfsr are added into to state.

3. AddRoundTweakey (ART). Round keys are dependent on both the master key and the tweak
are xored to the first two rows of the internal state at each round.

4. ShiftRows (SR). Row 𝑖 is cyclically shifted by 𝑖 positions to the right, for 𝑖 = {0, · · · , 3}.
This operation is similar to the one performed in the Aes, however, the direction of the
rotation is inverted.

5. MixColumns (MC). Each column is multiplied by a binary matrix 𝑀 defined as follows:

𝑀 =

⎛
⎜⎜⎝

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

⎞
⎟⎟⎠

All these operations are summarized in Figure 2.11.

SC AC

ART

≫ 1

≫ 2

≫ 3

ShiftRows MixColumns

Figure 2.11: One round of the Skinny cipher.

Tweakey schedule. As for the internal state, the tweakey state is arranged in 𝑧 = 𝑡/𝑛 4 × 4
matrices, denoted by 𝑇𝐾1, · · · , 𝑇𝐾𝑧. At each round, for 𝑖 ∈ {1, · · · , 𝑧}, the first two lines of the
𝑇𝐾𝑖 matrices are extracted and xored together to produce a subtweakey that is used as a round
key in the ART operation.

Next, each of the 𝑧 matrices are transformed by the permutation defined as

𝑃𝑇 = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7],

where indices are taken row-wise.
Finally, when 𝑧 = 2 or 𝑧 = 3, the first two rows of 𝑇𝐾𝑖, where 𝑖 ̸= 1, are further modified by

means of lfsrs given in Table 2.1, as illustrated by Figure 2.12.

Due to its good hardware/software performances, the Skinny family of block ciphers has
received much attention from the cryptographic community such as [ZR17, ABC+17, SGL+17,
ST17, AST+17, BCLR17, AK19, EKKT19, HAV18, ABI+18, LTW18, CHP+18, CSSH19, DLU19,
SQH19, ZCGP19]. Among all the cryptanalysis results, the best key-recovery attack in the single-
key model uses impossible differentials to target 22 rounds out of 40 for Skinny-64-192, 22
rounds out of 48 with time complexity 2245.72, for Skinny-128-256 and 20 rounds out of 56

34

2.4. Some Existing Lightweight Algorithms

Extracted
8𝑠-bit subtweakey

𝑃𝑇

LFSR

LFSR

Figure 2.12: The Skinny tweakey schedule. Each tweakey word is updated in a similar way,
except that no lfsr is applied to 𝑇𝐾1.

𝑇𝐾 𝑠 lfsr

𝑇𝐾2
4 (𝑥3||𝑥2||𝑥1||𝑥0) ↦→ (𝑥2||𝑥1||𝑥0||𝑥3 ⊕ 𝑥2)
8 (𝑥7||𝑥6||𝑥5||𝑥4||𝑥3||𝑥2||𝑥1||𝑥0) ↦→ (𝑥6||𝑥5||𝑥4||𝑥3||𝑥2||𝑥1||𝑥0||𝑥7 ⊕ 𝑥5)

𝑇𝐾3
4 (𝑥3||𝑥2||𝑥1||𝑥0) ↦→ (𝑥0 ⊕ 𝑥3||𝑥3||𝑥2||𝑥1)
8 (𝑥7||𝑥6||𝑥5||𝑥4||𝑥3||𝑥2||𝑥1||𝑥0) ↦→ (𝑥0 ⊕ 𝑥6||𝑥7||𝑥6||𝑥5||𝑥4||𝑥3||𝑥2||𝑥1)

Table 2.1: The lfsrs used in the variants of Skinny with 2 or 3 tweakey words. Each word is
made of 16 𝑠-bit cells (𝑥0 is the least significant bit of the cell).

with time complexity 2373.48 for Skinny-128-384 [TAY17]. In [SSD+18], authors mounted a
Demiric-Selçuk meet-in-the-middle attack on 22 rounds of Skinny-128-384 in the single-key
model with time complexity 2382.46 using a 10.5-round distinguisher. In the related-tweakey
settings, some of the best results were obtained using rectangle attacks [LGS17, ZDM+19]: 27
rounds of Skinny-64-192 were attacked with time complexity 2165.5 and a 28-round attack with
a complexity of 2315 in time was found for Skinny-128-384. Authors of [LGS17] also investigated
impossible differential attacks. In particular, they obtained a 23-round related-tweakey impossible
differential attack with time complexity 2251.47 for Skinny-128-256, using a truncated related-
tweakey impossible differential over 12 rounds. This result was later improved in [SMB18]. The
authors were able to find a 15-round related-tweakey impossible differential which allowed them
to decrease the time complexity of the attack to 2243.41. All in all, no practical attacks have been
found so far and skinny still offers a security margin above 30% for a 64-bit block size and 50%
for the 128-bit version.

Several candidates of the nist lighweight competition are based on Skinny. Namely,
ForkAE [LPR+19], Remus [IKMP19a], Romulus [IKMP19b], Skinny-aead/Skinny-hash [BJK+19]
use Skinny as a building block. Other submissions leverage some components derived from
Skinny: Gift-cofb [BCI+19], Hyena [CDJN19], Lotus-aead [CDJ+19], Sundae-Gift [BBP+19]
and Trifle [DGM+19] apply the same lfsr to generate their round constants and in Spook [BBB+19],
the S-box is a variant of the one used in Skinny.

2.4.3 LBlock

At ACNS 2011, Wu and Zhang proposed the LBlock lightweight block cipher [WZ11a]. LBlock
is a block cipher with a block length of 64 bits and a key length of 80 bits that iterates 32 times
a Feistel-based round function.

Round function. The round function is a modified classical two-branched Feistel structure,
where the receiving branch of the Feistel function is first rotated by 8 bits. The inner round

35

Chapter 2. Lightweight Cryptography

function is made of one round key addition, a parallel application of 8 different 4-bit S-boxes and
a nibble12-wise permutation.

𝑆0

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6

𝑆7

𝑘𝑖
≪ 8

𝐹

Figure 2.13: One round of the LBlock cipher.

Key schedule. The 80-bit master key K is stored in a key register and denoted as 𝐾 =
𝐾79𝐾78 · · ·𝐾1𝐾0. At round 𝑖, the 32-bit round key 𝑘𝑖 consists of the 64 leftmost bits of the
current key state:

𝑘𝑖 = 𝐾79𝐾78 · · ·𝐾48.

Then the key state is updated as follows.

1. The key register is rotated by 29 bit positions to the left:

[𝐾79𝐾78 · · ·𝐾1𝐾0] = [𝐾50𝐾49 · · ·𝐾0𝐾79 · · ·𝐾52𝐾51].

2. The leftmost eight bits are modified using two S-boxes 𝑆8 and 𝑆9:

[𝐾79𝐾78𝐾77𝐾76] = 𝑆9([𝐾79𝐾78𝐾77𝐾76])

[𝐾75𝐾74𝐾73𝐾72] = 𝑆8([𝐾75𝐾74𝐾73𝐾72]).

3. The binary representation of the round counter value 𝑖, denoted [𝑖]2, is xored with bits
𝐾50𝐾49𝐾48𝐾47𝐾46 of 𝐾 with the least significant bit of 𝑖 on the right:

[𝐾50𝐾49𝐾48𝐾47𝑘46] = [𝐾50𝐾49𝐾48𝐾47𝐾46]⊕ [𝑖]2.

Interestingly, LBlock’s diffusion layer is equivalent to that of the decryption of Twine [SMMK13],
although the two proposals are independent. A simplified version of LBlock called LBlock-s

12A nibble is half a byte 𝑖.𝑒. 4 bits.

36

2.4. Some Existing Lightweight Algorithms

is used as underlying primitive in the authenticated encryption cipher Lac [ZWW+14], which
was part of the first-round candidates of the Caesar competition until it was attacked by
Leurent [Leu16]—not to be confused with the eponym public key encryption scheme [LLJ+19],
a former candidate to nist’s post-quantum cryptography standardization process. To reduce
the cost in software and hardware implementation, a single 4-bit S-box is used instead of the 10
different ones. Additionally, the new key schedule discards the 29-bit rotation and replaces it
with a nibble-friendly 24-bit rotation, which yields better performances on 8-bit platforms. It also
features added xors to improve diffusion. Some studies of LBlock and its variant LBlock-s
can be found in [SN12, SW13, LGW12, ZNS12, EMPS13, BMNS14, WW14, SHW+14, BNS14,
XJHL15, WWJ16, LWZ16, Lu16]. Some attacks worth mentioning include an impossible differen-
tial attack by Boura 𝑒𝑡 𝑎𝑙. [BMNS14], which breaks 23 rounds of LBlock with time complexity
275.36 and data complexity 259 in the single-key model, a 22-round zero-correlation linear crypt-
analysis [SN12] and an integral analysis [SW13] that targets 22 rounds of LBlock as well.
Chapter 7 presents additionnal cryptanalysis results on LBlock-s.

2.4.4 Lilliput

Lilliput [BFMT16] was designed by Berger et al. in 2015. It is the first instantiation of the
so-called Extended Generalized Feistel Network [BMT14] (egfn) construction, a generalization of
Feistel networks with an arbitrary number of branches that uses a linear mapping instead of a
simple permutation of the branches so as to achieve fast diffusion.

The state of Lilliput is made of 64 bits, seen as 16 nibbles denoted 𝑥15, · · · , 𝑥0 and the key
length is 80 bits.

Round function. The round function, called OneRoundEGFN, is iterated 30 times. In more
details, OneRoundEGFN is composed of three layers:

∙ NonLinearLayer: this layer only updates the first half of the state. After the round key is
added to 𝑥7, · · · , 𝑥0, a 4-bit S-box 𝑆 is applied in parallel to the 8 nibbles. Namely, each 𝐹𝑗

seen in Figure 8.11 is defined as 𝐹𝑗 = 𝑆(𝑥𝑗 ⊕ 𝑘𝑖𝑗) where 𝑘𝑖𝑗 is the 𝑗-th nibble of the 32-bit
round key 𝑘𝑖 of round 𝑖, for 𝑗 ∈ {0, · · · , 7}.

∙ LinearLayer: this layer helps to increase the diffusion speed with a small additional cost.
It consists in having 𝑥7 propagate to all nibbles of the second half of the state while having
𝑥15 influenced from all nibbles of the first half of the state: block 𝑥7 is xored with blocks
𝑥9 to 𝑥15 and blocks 𝑥1 to 𝑥6 are xored with block 𝑥15.

∙ PermutationLayer: finally, the permutation 𝜋 is applied to the bytes. The permutation
was chosen to achieve the highest number of active S-boxes after 18, 19 and 20 rounds. This
layer is omitted in the last round for involution reasons.

Key schedule. The key schedule expands the 80-bit master key 𝐾 to 32-bit round keys for
round 𝑖, with 𝑗 ∈ {0, · · · , 29} denoted by 𝑘𝑗 .

The key schedule depicted in Figure 2.15 produces the 30 round keys 𝑘0 to 𝑘29 from the 80-bit
master key 𝐾.

To do so, it uses an 80-bit Linear Finite State Machine (lfsm) whose inner state 𝑌 is initialized
with the master key 𝐾. The first round key 𝑘0 is extracted from the lfsm initial state (i.e. the

37

Chapter 2. Lightweight Cryptography

NonLinearLayer

LinearLayer

PermutationLayer

𝑥0𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7𝑥8𝑥9𝑥10𝑥11𝑥12𝑥13𝑥14𝑥15

𝜋 = (0, 13, 6, 12, 2, 14)(1, 9, 5, 11)(3, 8, 4, 10)(7, 15)

𝐹7

𝐹6

𝐹5

𝐹4

𝐹3

𝐹2

𝐹1

𝐹0

Figure 2.14: The OneRoundEGFN function of Lilliput.

master key 𝐾). The lfsm state 𝑌 is then updated using RoundFnlfsm and the next round key is
extracted using ExtractRoundKey until all 30 round keys are generated.

The state 𝑌 is made of 20 nibbles 𝑌19, · · · , 𝑌0 split among four lfsrs, ℒ0 to ℒ3, acting on
5 nibbles each: ℒ0 acts on 𝑌0 to 𝑌4, ℒ1 on 𝑌5 to 𝑌9 and so on. These four lfsrs used in the
Lilliput key schedule are Feistel-like word-oriented lfsrs acting on 5 nibbles, inspired by the
results of [BMP09] and [ABMP11].

The RoundFnlfsm function seen as 4 Feistel-like word-oriented lfsrs can be divided into two
transformations: Mixinglfsm which holds the feedbacks, followed by Permutationlfsm which is
the word-wise cyclic shift, as depicted in Figure 2.15.

∙ Mixinglfsm: For each of the 4 parallel lfsrs ℒ0 to ℒ3, it consists in xoring some nibbles
to some others nibbles in a Feistel-like manner:

– for ℒ0: 𝑌0 ← 𝑌0 ⊕ (𝑌4≫ 1) and 𝑌1 ← 𝑌1 ⊕ (𝑌2 ≫ 3),

– for ℒ1: 𝑌6 ← 𝑌6 ⊕ (𝑌7 ≪ 3) and 𝑌9 ← 𝑌9 ⊕ (𝑌8≪ 1),

– for ℒ2: 𝑌11 ← 𝑌11 ⊕ (𝑌12≫ 1) and 𝑌13 ← 𝑌13 ⊕ (𝑌12 ≫ 3),

– for ℒ3: 𝑌16 ← 𝑌16 ⊕ (𝑌15 ≪ 3)⊕ (𝑌17≪ 1).

∙ Permutationlfsm: For each of the 4 parallel lfsrs ℒ0 to ℒ3, it consists in a left cyclic shift
of its 5 nibbles, i.e. 𝑌𝑖 ← 𝑌𝑖−1 mod 5.

∙ ExtractRoundKey: For each round of encryption, the subkey 𝑘𝑖 is extracted from the lfsm
inner state using a non linear extracting function in a bitsliced way. First, some nibbles of
the state are extracted:

38

𝑍(32) ← 𝑌18||𝑌16||𝑌13||𝑌10||𝑌9||𝑌6||𝑌3||𝑌1 and let 𝑍31, · · · , 𝑍0 be the bits of 𝑍 then 𝑘𝑖𝑗 =
𝑆(𝑍𝑗 ||𝑍8+𝑗 ||𝑍16+𝑗 ||𝑍24+𝑗)

where 𝑆 is the same S-box as in the datapath. Finally, the current round number 𝑖 ∈
{0, · · · , 29} is xored to the last 5 bits of the subkey: 𝑘𝑖 ← 𝑘𝑖 ⊕ 𝑖(5)||0(27).

RoundFnlfsm

RoundFnlfsm

𝐾

/80
ExtractRoundKey

ExtractRoundKey

ExtractRoundKey

𝑘0 /
32

𝑘1

𝑘29

...

Mixinglfsm

Permutationlfsm

Figure 2.15: Lilliput Key Schedule

Lilliput is the underlying primitive used in the tweakable block cipher Lilliput-AE [ABC+18]
that was submitted as a candidate to the nist lightweight cryptography standardization process.
This cipher is presented in Chapter 4.

The properties of Lilliput are studied in [ST16, ST17, MNV18, ST18]. The best attack,
presented in [ST16, ST18], uses the division property [Tod15b], a generalization of integral and
higher-order differential distinguishers to find an integral distinguisher on 13 rounds (out of 30)
that can be extended to a 17-round key recovery attack with time complexity 277.

With regard to Lilliput-AE, Dunkelman 𝑒𝑡 𝑎𝑙. discovered a practical forgery attack [DKLS19]
which exploited a weakness in the tweakey schedule, and thus does affect Lilliput. This resulted
in an updated design of Lilliput-AE (see Section 4.5.2).

Chapter 2. Lightweight Cryptography

40

3

Cryptanalysis

Please! God damn it! I hate this hacker
crap!

Ray Arnold

Cryptanalysis is the science that aims at finding attacks compromising the security of a
cryptographic algorithm, without the knowledge of the secret key. Nowadays, the adoption of
a scheme is for a large part based on the cryptanalytic efforts of the community. The security
assessment of a cryptographic primitive consists in a careful study of its properties, in an attempt
to retrieve the secret key or break the security claims. A successful attempt can discard an
algorithm, while unsuccessful attempts tend to increase the confidence in the security of said
algorithm. The most naive key recovery approach is brute-force and consists in testing all possible
values. This attack is impossible to carry out on modern cryptosystems; the keyspace is indeed
too large to be fully explored in practice, as illustrated by Table 3.1 and the following excerpt
from [LKT13]:

“Boiling all water on the planet (including all starfish) amounts to about 224 lakes
of Geneva and leads to global security: 114-bit symmetric cryptosystems, 228-bit
cryptographic hashes, and 2380-bit Rsa. This needs to be done 16 thousand times to
break Aes-128, Sha-256, or 3064-bit Rsa.”

Number of sand grains in the Sahara desert 1023 ≈ 277

Number of atoms on Earth 1051 ≈ 2170

Number of atoms in the Universe 1077 ≈ 2265

Table 3.1: Some significant orders of magnitude. It would take more time than the age of the
universe to break 128-bit encryption.

In fact, many cryptanalytic attacks are wildly impractical because of their tremendous
complexity in terms of time1, memory2 needed or amount of data3 required. For instance, the

1Processing complexity is the total number of operations required to perform the attack. It is measured in some
agreed upon unit, usually the number of elementary operations or the number of calls to the encryption function.

2Storage complexity is the memory space required for the attack.
3Data complexity is the total number of data (either ciphertexts or plaintext-ciphertext pairs) the attacker can

access.

41

Chapter 3. Cryptanalysis

best published attack against the Aes-128 at the time of writing requires 2126 operations [TW15],
which is a slight improvement over brute-force but still remains infeasible in practice. For this
reason, the term attack might seem confusing to some of the readers who are unfamiliar with
cryptography. An actual attacker will not be able to exploit them to recover the secret key;
instead, they should be thought of as security analyses illustrating unusual behaviors overlooked
by the designers.

In some cases, the weaknesses found by cryptanalysts do not even cover the full version of
a cryptographic primitive but rather a weaker version of it, such as a round-reduced variant in
the case of an iterated block cipher. The smaller the difference between the attacked version
and the full cipher, the less the cipher is considered secure. The number of rounds that remain
"unbroken" for the worst-case attack defines the security margin of the cipher. There are two
main types of attacks against symmetric ciphers.

– The first encompasses the more classical attacks that consider the ciphers as mathematical
objects. In these attacks, the cryptanalyst exploits a weakness in the algorithm to recover
the key in a more efficient way than exhaustive search. The main classes of attacks are
described in Section 3.1.3.

– Physical attacks, which will not be covered in this thesis, are the second type of attacks.
These attacks make use of the physical properties of the implementation of a cryptographic
algorithm. For instance, some key-dependent computations might induce observable physical
phenomena such as difference in timings, power consumption, temperature variations or
electromagnetic radiations. A careful study of these correlations can leak information on the
internal state of the cipher. Physical attacks can either be passive—side-channel analysis
(sca)—or active in the case of fault injection attacks (fia). Side-channel analysis is based
on the observation of the circuit while it operates the computations of an encryption process;
fault injection analysis studies the propagation of a fault throughout the system.

3.1 General Principles of Classical Cryptanalysis 43
3.1.1 Distinguishers . 43
3.1.2 Key recovery and last round attack 43
3.1.3 Overview of cryptanalytic techniques 44

3.2 Statistical Attacks . 45
3.2.1 Differential attacks . 45
3.2.2 Linear attacks . 50
3.2.3 Boomerang attacks . 51
3.2.4 Interpolation attacks . 53

3.3 Structural Attacks . 54
3.3.1 Integral attacks . 54
3.3.2 Impossible differential attacks . 56

3.4 Automatic tools . 56
3.4.1 Mixed-Integer Linear Programming (milp) 56
3.4.2 Boolean Satisfiability problem (sat) 57
3.4.3 Constraint Programming (cp) . 57

42

3.1. General Principles of Classical Cryptanalysis

3.1 General Principles of Classical Cryptanalysis

Before presenting the main classes of generic attacks that can be found in the literature, a major
component of cryptanalysis is discussed in this section: distinguishers and how they can be used
to gain some information about the secret key.

3.1.1 Distinguishers

Ideally, a block cipher should be indistinguishable from a random permutation. That is, given
a permutation picked uniformly at random from the set of all permutations and a block cipher
operating with an unknown key, an adversary should not be capable of successfully telling them
apart with a probability higher than 1

2 . Any property allowing them to successfully differentiate
the two transformations can be exploited to build a distinguisher.

Definition 3.1 (Distinguisher). A distinguisher is an algorithm 𝒜 that can decide with a
probability higher than 1

2 whether a set of plaintext/ciphertext pairs was generated by a random
permutation or by a cryptosystem.

More precisely, a distinguisher has access to an auxiliary function, called an oracle, to which it
can make queries. For any message 𝑚 received, the oracle answers randomly but consistently by
returning a ciphertext 𝑐 produced either by the targeted cipher 𝐶 or by a random permutation
𝑃𝑛. The distinguisher 𝒜 must be able to determine wether the oracle function is 𝐶 or 𝑃𝑛 using
𝑞 requests. Conventionally, the distinguisher returns 1 if it thinks that the messages received
were encrypted using 𝐶 and 0 otherwise. The probability that the distinguisher returns 1, while
the oracle actually uses 𝐶 is denoted by 𝑝 = Pr[𝒜𝐶 = 1]. Similarly, the probability that the
distinguisher returns 1, while the oracle actually uses 𝑃𝑛 is denoted by 𝑝* = Pr[𝒜𝑃𝑛 = 1]. The
efficiency of the distinguisher is measured by the advantage of 𝒜:

𝐴𝑑𝑣𝒜(𝐶,𝐶
) = |𝑝− 𝑝|.

The higher the advantage, the better the distinguisher. In other words, to obtain a good
distinguisher, the cryptanalyst has to look for a property of the cipher between the plaintexts and
the ciphertexts that has a probability that is significantly higher than what would be observed
for a random permutation. Several methods for building such objects are described in Section 3.2
and Section 3.3.

3.1.2 Key recovery and last round attack

While a distinguisher in itself is not an attack, such an object can be used to retrieve some bits
of the secret key in a key recovery attack. Indeed, an iterated block cipher with 𝑟 rounds can be
attacked using a distinguisher on 𝑟 − 1 rounds. To do so, the general idea is to brute-force the
last-round subkey and, for each guess, decrypt the ciphertext to know the internal state of the
cipher at round 𝑟 − 1. If a subkey is such that the internal state at round 𝑟 − 1 is coherent with
the distinguisher, then it is likely the correct guess. If not, it can be discarded.

This type of attack relies on the wrong-key randomization hypothesis [HKM95], which states
that a wrong guess of the key does not yield any bias and will result in values that are random
and uniformly distributed.

43

Chapter 3. Cryptanalysis

Definition 3.2 (Wrong-key randomization hypothesis). Let 𝐸𝐾 : F𝑛
2 → F𝑛

2 a block cipher
parameterized by a key 𝐾 with a round function 𝐹 . Denoting 𝑘𝑟−1 the subkey used in the last
round, the wrong-key randomization hypothesis assumes the following:

Pr[𝐹−1
𝑘𝑟−1

(𝐸𝐾(𝑋))⊕ 𝐹−1
𝑘𝑟−1

(𝐸𝐾(𝑋 ⊕ 𝛿)) = Δ] =

{︃
𝑝 if 𝑘𝑟−1 = 𝑘𝑟−1

1
2𝑛−1 otherwise.

If an adversary succeeds in determining the value of the last-round subkey, they can reapply
a similar attack to find the second-last round subkey etc. Then, inverting the key scheduling
algorithm reveals some bits of the master key, although in practice, this can require a sophisticated
analysis. An example is provided for differential cryptanalysis in Section 3.2.1.

3.1.3 Overview of cryptanalytic techniques

Most of the cryptanalytic methods can be divided into two classes: statistical attacks and structural
or deterministic attacks.

Statistical attacks

In the early 1990s, cryptanalysis of symmetric primitives made a leap forward as two power-
ful cryptanalytic techniques were published, namely differential cryptanalysis by Biham and
Shamir [BS91a] and linear cryptanalysis [TG92, Mat94] by Matsui, followed by many variants.
These techniques have greatly influenced the design of block ciphers and the approaches developed
to protect ciphers against them are still used to this day [DR01, DPU+16]

Differential and linear cryptanalysis are both statistical attacks, meaning that they study
statistical relations between the plaintexts and ciphertexts, where the probability is determined
by components of the cipher as well as the secret key.

– Differential cryptanalysis studies the propagation of differences in a cipher, exploiting the
statistical bias in the output difference distribution of the cipher when the difference between
two plaintexts is fixed. The cryptanalysis results on Skinny and on Spook presented in
Chapter 6 and Chapter 5, respectively, rely on this technique.

– In linear cryptanalysis, the bias is induced by linear approximations of the nonlinear round
function involving bits of the plaintext, the ciphertext and the key that are verified with a
probability that is significantly higher than for a random permutation.

The variants of differential and linear cryptanalysis include:

– Truncated differential cryptanalysis [Knu95]

– Impossible differential cryptanalysis [Knu98, BBS99]

– Multiple differential cryptanalysis [BG11]

– Higher-order differential cryptanalysis [Knu95, Lai94]

– Boomerang cryptanalysis [Wag99]

– Differential-linear cryptanalysis [LH94]

– Multiple linear cryptanalysis [BDQ04]

44

3.2. Statistical Attacks

– Multidimensional linear cryptanalysis [CHN09]

– Zero-correlation linear cryptanalysis [BR11].

An example of boomerang attack against Feistel networks is studied in Chapter 7.

Structural attacks

Structural attacks are mostly based on algebraic properties of a cipher. For instance, algebraic
attacks [CP02] exploit the relations between bits of the plaintext, the ciphertext and the key.
To retrieve the key in a way that is faster than exhaustive search, the goal here is to collect a
sufficient number of relations that are simple enough to create a system of equations that can be
solved efficiently—such systems either have low degree, small size or a specific structure. This
type of attack is very useful against stream ciphers but can be valuable in the case of block ciphers
as well, especially when combined with other types of attacks— see Albrecht and Cid’s algebraic
differential attack [AC09]. One could also mention meet-in-the-middle (mitm) attacks [DH77].
This type of attack requires the knowledge of some plaintext and their corresponding ciphertexts.
The attacker then tries to compute part of the internal state—usually the middle state of the
cipher during the encryption process—from both ends, by partial key-guessing: one pattern starts
from the plaintext, going forward to the middle state, the second one, going backward from the
ciphertext. If the values of the middle state do not match, then the key-guess is wrong and can be
discarded. Finally, the division property [Tod15b] (Section 3.3.1) is an example of the more novel
structural attacks. This technique extends integral attacks [DKR97] and has shown to be effective
against spns and Feistel constructions, as demonstrated by Todo’s attack [Tod15a] against the
full version of Misty1 [Mat97].

Statistical distinguisher Structural distinguisher
Differential cryptanalysis Higher-order differential cryptanalysis

Linear cryptanalysis Impossible differential cryptanalysis
Truncated differential cryptanalysis Integral cryptanalysis
Differential-linear cryptanalysis Zero-correlation linear cryptanalysis

Boomerang attack Division property
Rectangle attack Interpolation attack

Multiple linear cryptanalysis Zero-sum distinguisher
Multiple differential cryptanalysis Algebraic attack

Multidimensional linear cryptanalysis

Table 3.2: Some of the main cryptanalytic techniques.

The major cryptanalytic techniques are summarized in Table 3.2. In the following, some of
the main attacks are detailed. Section 3.2 focuses on statistical attacks and their variants while
Section 3.3 presents some structural attacks. A panorama of existing cryptanalytic techniques
against block cipher is provided in [SPQ03] or in [KR11a].

3.2 Statistical Attacks

3.2.1 Differential attacks

Differential cryptanalysis was first introduced by Biham and Shamir [BS91a] and was used in
1991 for the first attack against the Des which was faster than exhaustive search [BS93]. For the

45

Chapter 3. Cryptanalysis

remaining, let 𝐸 be a block cipher operating on blocks of 𝑛 bits using a key𝐾 of 𝑘 bits and 𝑟 rounds
of a function 𝐹 . 𝑀 and 𝑀 ′ are two plaintext blocks, and their intermediate state throughout
the encryption process under 𝐾 is denoted by 𝑀 = 𝑋0, 𝑋1, . . . , 𝑋𝑟−1, 𝑋𝑟 = 𝐸𝐾(𝑀) = 𝐶 and
𝑀 ′ = 𝑋 ′

0, 𝑋
′
1, . . . , 𝑋

′
𝑟−1, 𝑋

′
𝑟 = 𝐸𝐾(𝑀 ′) = 𝐶 ′.

Simply put, differential cryptanalysis is a chosen plaintext attack that studies how an input
difference evolves through the various rounds of the cipher. More precisely, this technique analyses
the probability of observing an output difference 𝛿𝑜𝑢𝑡 given an input difference 𝛿𝑖𝑛 of a function 𝑓 :

Pr[𝑓(𝑥⊕ 𝛿𝑖𝑛)⊕ 𝑓(𝑥) = 𝛿𝑜𝑢𝑡].

When 𝑓 is a permutation picked uniformly at random, any difference might occur and the
probability has an expected value of 2−𝑛 for any pair of nonzero 𝑛-bit elements (𝛿𝑖𝑛, 𝛿𝑜𝑢𝑡), and
any 𝑛-bit input 𝑥. However, for a block cipher with a key picked uniformly at random, some
output differences may have higher probabilities than others, which leads to a distinguisher. The
input/output difference pair (𝛿𝑖𝑛 𝛿𝑜𝑢𝑡) is called a differential.

Definition 3.3 (Differential). A differential on 𝑡 rounds of an iterated cipher 𝐸, with 𝑡 ≤ 𝑟,
is a pair (𝛿𝑖𝑛, 𝛿𝑜𝑢𝑡) ∈ F𝑛

2 × F𝑛
2 such that 𝑋0 ⊕𝑋 ′

0 = 𝛿𝑖𝑛 and 𝑋𝑡 ⊕𝑋 ′
𝑡 = 𝛿𝑜𝑢𝑡.

The cipher 𝐸 reduced to 𝑡 rounds will be denoted by 𝐸𝑡 in what follows, as shown in Figure 3.1.
In its simplest form, differential cryptanalysis aims at finding high-probability differentials. The
probability of a differential can be defined as follows.

𝑀 ′

𝑀

𝐶 ′

𝐶𝐸𝑡

𝐸𝑡

𝐾

𝐾

𝛿0 = 𝑀 ⊕𝑀 ′ 𝛿𝑡 = 𝐶 ⊕ 𝐶 ′

Figure 3.1: A differential (𝛿0, 𝛿𝑡) on 𝑡 rounds of a cipher 𝐸.

Definition 3.4 (Probability of a differential). The probability of a differential (𝛿0 𝛿𝑡),
denoted by Pr[𝛿0 𝛿𝑡], is defined by:

Pr[𝛿0 𝛿𝑡] = Pr𝑋,𝐾 [𝐸𝑡
𝐾(𝑋)⊕ 𝐸𝑡

𝐾(𝑋 ⊕ 𝛿0) = 𝛿𝑡],

where Pr𝑋,𝐾 is the probability computed on all possible input plaintexts 𝑋 ∈ F𝑛
2 and all possible

keys 𝐾 ∈ F𝑘
2.

In practice, computing the probability of a differential on 𝑡 rounds becomes very difficult as
𝑡 increases. A simpler approach consists in studying differential characteristics (or differential
trails), which specify the evolution of the differences after each round.

Definition 3.5 (Differential characteristic). A differential characteristic on 𝑡 rounds of a
cipher 𝐸 is a sequence (𝛿0, 𝛿1, . . . , 𝛿𝑡) ∈ (F𝑛

2)
𝑡+1 that specifies the input/output difference for

46

3.2. Statistical Attacks

each round:
𝛿0 = 𝑋0 ⊕𝑋 ′

0

𝛿1 = 𝑋1 ⊕𝑋 ′
1

...
𝛿𝑡 = 𝑋𝑡 ⊕𝑋 ′

𝑡

In the single key setting (see Chapter 1, Section 1.2.3), a right pair refers to two input messages
whose generated differences match the ones predicted by the characteristic, otherwise it is called
a wrong pair. The probability of a differential trail is defined as follows.

Definition 3.6 (Probability of a differential characteristic). The probability of a differential
characteristic (𝛿0, 𝛿1, . . . , 𝛿𝑡) ∈ (F𝑛

2)
𝑡+1 is given by:

Pr[𝛿0, 𝛿1, . . . , 𝛿𝑡] = Pr𝑋,𝐾 [𝐸𝑖
𝐾(𝑋)⊕ 𝐸𝑖

𝐾(𝑋 ⊕ 𝛿𝑖) = 𝛿𝑡, ∀𝑖 ∈ {1, . . . , 𝑡}].

This theoretical probability is computed under the assumption that the round transitions
are independent—this is called the Markov assumption [LMM91a]. As a result, the average
differential probability over all possible keys of an 𝑡-round characteristic can be expressed as the
product of the probabilities of its corresponding 1-round characteristics. The Markov assumption
is usually justified by showing that the analyzed primitive is a Markov cipher and by assuming
that the probability of any characteristic is roughly the same for the large majority of keys4.

Definition 3.7 (Markov cipher). An iterated cipher with round function 𝑌 = 𝐹𝑘(𝑋) is a
Markov cipher if there is a group operation ⊗ for defining differences such that, for all choices
of 𝛼 (𝛼 ̸= 0) and 𝛽 (𝛽 ̸= 0),

Pr[𝑌 ⊗ 𝑌 ′ = 𝛽 | 𝑋 ⊗𝑋 ′ = 𝛼,𝑋 = 𝛾]

is independent of 𝛾 when the subkey 𝑘 is uniformly random.

In simple terms, a Markov cipher is an iterative cipher for which the average differential
probability over one round is independent of the input of the round. Assuming that round keys
are independent and uniformly distributed in the key space , the probability of a characteristic
can therefore be expressed as:

Pr[𝛿0, 𝛿1, . . . , 𝛿𝑡] =
𝑡−1∏︁

𝑖=0

𝑝𝑖,

where 𝑝𝑖 = Pr[𝛿𝑖 𝛿𝑖+1] for 𝑖 ∈ {0, . . . , 𝑡− 1}.
As a way of building a differential distinguisher, an attacker has to study the round function

of a cipher 𝐸 to find high-probability characteristics on one round, which they can later combine
into a full differential characteristic. The resulting probability 𝑝 is the product of the probability
of the characteristics on one round. Several characteristics can compose a differential, and
the average probability can be computed—in principle—as the sum of the probabilities of all
characteristics sharing the same input and output differences with the differential. However, most

4This is called the hypothesis of stochastic equivalence [LMM91b]. While this hypothesis is not always accurate
for key-alternating ciphers [DR05, DR07, SWW18], several experimental results have shown that the difference
between the expected value of a differential and the value obtain by the mean over the keys is small, making this a
reasonable assumption [BG10, BBL13].

47

Chapter 3. Cryptanalysis

of time, the attacker will simply focus on high-probability characteristics, with no consideration
for this clustering effect, as it is customarily assumed that the best characteristic gives a good
approximation of the actual probability of the corresponding differential.

Search of characteristics

In order to compute the probability of a differential on one round of a cipher 𝐸, an attacker has
to study its evolution through the several operations of the round function 𝐹 . For the linear layer
𝐿 of the cipher, this computation is trivial since any difference 𝛿 is transformed into a difference
𝐿(𝛿). However, for a nonlinear operation such as an S-box application, predicting the evolution of
a nonzero difference with certainty is not possible if only the input and output differences—and
not the real values—are known.

The difference distribution table (ddt) of an S-box is a table that lists the number of pairs
that fulfill each possible input and output differences.

Definition 3.8 (Difference Distribution Table). The difference distribution table of an 𝑛×𝑛-bit
S-box is a matrix of size 2𝑛 × 2𝑛 such that

𝐷𝐷𝑇 [𝑎, 𝑏] = #{𝑋 ∈ F𝑛
2 | 𝑆(𝑋 ⊕ 𝑎)⊕ 𝑆(𝑋) = 𝑏}.

The coefficient at row 𝑎, column 𝑏 of this table is the number of inputs 𝑋 ∈ F𝑛
2 for which the

difference 𝑎 transitions to the difference 𝑏 through the S-box. The corresponding probability is
obtained by dividing this value by the total number of possible inputs 𝑋:

Pr[𝑎 𝑆 𝑏] =
𝐷𝐷𝑇 [𝑎, 𝑏]

2𝑛
.

When there is there is no difference between the two inputs of an S-box, this S-box is said to
be passive and the differential transition occurs with probability 1. Therefore, in order to obtain a
high-probability characteristic, an attacker has to minimize the number of active S-boxes—S-boxes
with nonzero input differences and ensure that their probabilities of transition are as high as
possible. This maximum probability of transition is derived from the differential uniformity of an
S-box.

Definition 3.9 (Differential uniformity). The differential uniformity of an S-box is the highest
coefficient of its ddt, with the first row and the first column excluded.

Once a differential (𝛿𝑖𝑛 𝛿𝑜𝑢𝑡) that has a probability 𝑝 that is significantly higher than 2−𝑛

has been exhibited, the attacker can build a distinguisher. For instance, they can ask for the
encryption of 𝑚 × 𝑝−1 pairs of messages whose difference equals 𝛿𝑖𝑛, with 𝑚 an integer; they
should observe about 𝑚 occurrences of 𝛿𝑜𝑢𝑡 in the resulting output differences.

Attacks on the last round

As introduced in Section 3.1.2, attacks on the last round make use of a statistical distinguisher
to recover the encryption key. The remaining section focuses on their application to differential
cryptanalysis.

In a differential attack on the last round, illustrated in Figure 3.2, the attacker has a differential
denoted (𝛿 Δ) of high probability 𝑝, that covers the first 𝑟 − 1 rounds of the attacked cipher
𝐸, parameterized by an encryption key 𝐾:

𝐸𝐾 = 𝐹𝑘𝑟−1 ∘ 𝐹𝑘𝑟−2 ∘ · · · ∘ 𝐹𝑘0 ,

48

3.2. Statistical Attacks

where each round function 𝐹𝑘𝑖 depends on a subkey 𝑘𝑖 derived from the master key 𝐾.
This distinguisher can be turned into an attack covering the full cipher as follows:

1. data collection phase: ask for the corresponding ciphertexts (𝐶0,𝑖, 𝐶1,𝑖) of 𝑞 pairs of messages
(𝑀0,𝑖,𝑀1,𝑖) whose difference equals 𝛿, for 𝑖 ∈ {0, . . . , 𝑞 − 1};

2. data analysis phase:

(a) guess the bits of the last round key 𝑘𝑟−1;

(b) using the guessed subkey, decipher the last round and observe the resulting differences
𝐹−1
𝑘𝑟−1

(𝐶0,𝑖)⊕ 𝐹−1
𝑘𝑟−1

(𝐶1,𝑖);

(c) if the number of occurrences of Δ matches the theoretical bias (about 𝑞 × 𝑝), then the
guess on 𝑘𝑟−1 is likely to be correct 𝑖.𝑒. 𝑘𝑟−1 = 𝑘𝑟−1, else go back to step 2a.

𝑀 𝐹

𝑘0

𝐹

𝑘1

· · ·

· · ·

𝐹

𝑘𝑟−2

𝐹

𝑘𝑟−1

𝐶

𝛿 Δ

𝐹−1
𝑘𝑟−1

(𝐶0)

𝐹−1
𝑘𝑟−1

(𝐶1)

𝑀 ′ 𝐹

𝑘0

𝐹

𝑘1

· · ·

· · ·

𝐹

𝑘𝑟−2

𝐹

𝑘𝑟−1

𝐶 ′

Figure 3.2: A differential attack on the last round of an iterated block cipher. 𝐹−1
𝑘𝑟−1

denotes the
inverse of the function 𝐹 parameterized by the guessed key 𝑘𝑟−1.

Extensions and variations

Truncated differential cryptanalysis. Truncated differentials are an extended form of dif-
ferentials introduced by Knudsen [Knu95], in which not all the bits of the difference are fixed. For
example, it might be possible to exhibit some differential patterns for which some bits are equal
to zero, while the other bits can take different values and are left undetermined. One particular
type of truncated differences that is widely used is word5-wise truncated differences. In such
cases, the analysis usually focuses on predicting whether the difference of a word is zero or not.
As a result, for the nonlinear layer, the precise value of the transitions of the S-boxes are not
considered anymore; the sole information that can be obtained is wether an S-box is active—the
input difference is nonzero—or passive—no difference on the inputs. The distinguishers on Spook
presented in Chapter 5 rely on this technique.

5The word size depends on the native structure of the cipher.

49

Chapter 3. Cryptanalysis

Related-key differential cryptanalysis. In 1993, Biham proposed to consider related-key
differential attacks [Bih94], in which the attacker can not only learn the encryption of two
plaintexts 𝑀 and 𝑀 ′ under the original key 𝐾 but also under some derived keys 𝐾 ′ whose
relations to the original key 𝐾 are known—typically 𝐾 ′ = 𝐾 ⊕ 𝑐, for some constant 𝑐 that is
known to the attacker. Although Figure 3.3 depicts the related-key setting for differential attack,
this model can be applied to numerous cryptanalysis techniques. Both the single-key and the
related-key models are considered in the differential analysis of Skinny presented in Chapter 3

𝑀 ′

𝑀

𝐶 ′

𝐶𝐸𝑡

𝐸𝑡

𝐾

𝐾 ′

𝛿0 = 𝑀 ⊕𝑀 ′ 𝛿𝑡 = 𝐶 ⊕ 𝐶 ′

Figure 3.3: A related-key differential (𝛿0, 𝛿𝑡) on 𝑡 rounds of a cipher 𝐸.

Impossible differential cryptanalysis. A differential (𝛿𝑖𝑛 𝛿𝑜𝑢𝑡) which has probability zero
can be used in impossible differential attacks [Knu98, BBS99]. The most common approach is to
combine two differentials of probability 1 for the cipher top and bottom that conflict in the middle
when concatenated together; this technique is called miss-in-the-middle (see Section 3.3.2).

Higher-order differential cryptanalysis. Differential cryptanalysis can be extended to
higher degrees [Lai94, Knu95]. Some ciphers are indeed secure against differential cryptanalysis
but vulnerable to higher order attacks, such as the KN-cipher [NK95]. Instead of considering
a difference between two values as done in the conventional differential setting, higher-order
differential cryptanalysis studies the propagation of a set of differences between a collection
of values. More precisely, a 𝑑𝑡ℎ-order differential is the difference between two (𝑑 − 1)𝑠𝑡-order
differentials and is a collection of 2𝑑 texts. In general, high-order differential analysis is mainly
successful against primitives with nonlinear components which have low algebraic degree and a
small number of rounds, such as the Keccak-𝑓 permutation [BCD11], used in the Sha-3 hash
function.The boomerang attack can be seen as an application of second-order differentials (see
Section 3.2.3).

3.2.2 Linear attacks

First introduced by Gilbert, Chassé and Tardy-Cordfir [GC91, TG92] then applied to the Des by
Matsui [Mat94], linear cryptanalysis is a known plaintext attack that studies the linear relations
between the plaintext, the ciphertext and the secret key in an attempt to find an effective
approximation of the cipher. More precisely, this attack studies the probability of the event

⟨𝛼 · 𝑥⟩ ⊕ ⟨𝛽 · 𝐸𝐾(𝑥)⟩ = 0,

where ⟨·⟩ denotes the scalar product on F𝑛
2 𝑖.𝑒 ⟨𝑎 · 𝑏⟩ =⨁︀𝑛−1

𝑖=0 𝑎𝑖𝑏𝑖, and 𝛼 and 𝛽 are two 𝑛-tuples,
also called masks. The pair (𝛼 𝛽) is the linear approximation of the cipher.

50

3.2. Statistical Attacks

Definition 3.10 (Correlation of a linear approximation). Let 𝑓 : F2𝑛 → F2𝑛 be a vectorial
boolean function. Assume that the masks for input 𝑥 and output 𝑓(𝑥) are 𝛼 and 𝛽, respectively.
The correlation of the linear approximation is defined as

𝐶(𝛼, 𝛽) = 2× Pr[⟨𝛼 · 𝑥⟩+ ⟨𝛽 · 𝑓(𝑥)⟩ = 0]− 1

If 𝑓 is a random permutation, the probability that ⟨𝛼 · 𝑥⟩ ⊕ ⟨𝛽 · 𝑓(𝑥)⟩ = 0 is close to 1
2 for

any pair of nonzero elements (𝛼, 𝛽). For a keyed permutation, however, the bias of the linear
approximation, defined by

𝜖(𝛼, 𝛽) = 𝐶(𝛼, 𝛽)/2

can be quite high. In such case, this results in a distinguisher. In other words, both masks should
be chosen such that Pr[⟨𝛼 · 𝑥⟩ ⊕ ⟨𝛽 · 𝐹 (𝑥)⟩ = 1] is as far as possible from 1

2 .
Linear round-approximations (or linear trails) with a high bias can be constructed by combining

several one-round approximations under the assumption that the individual rounds are mutually
independent, in an analogous fashion to differential trails.

Let 𝑓 = 𝑓𝑟−1 ∘ · · · ∘ 𝑓1 ∘ 𝑓0 be an iterated function. Linear approximations (𝛾𝑖 𝛾𝑖+1) of a
single round 𝑓𝑖 can be concatenated into a linear trail (𝛾0 𝛾1 · · · 𝛾𝑟) whose correlation is
estimated using the piling-up lemma.

Lemma 3.11 (Piling-up lemma). Let (𝛾0 𝛾1 · · · 𝛾𝑟) be a linear trail of an iterated
permutation. Then, the correlation of the linear trail can be computed as

𝐶(𝛾0, 𝛾𝑟) =

𝑟−1∏︁

𝑖=0

𝐶(𝛾𝑖, 𝛾𝑖+1).

Akin to the differential case, it is possible to combine several linear trails with masks 𝛼 and 𝛽
into a linear hull [Nyb95] (𝛼 𝛽). Extensions of linear cryptanalysis include the zero-correlation
attack [BR11], which is based on linear approximations with a bias equal to zero.

3.2.3 Boomerang attacks

Subsequent to the discovery of differential and linear cryptanalysis, Vaudenay developed the
decorrelation theory [Vau98], an approach for designing block ciphers that are provably secure
against basic variants of these cryptanalytic attacks, among others. In the same paper, he
proposed a concrete instantiation of this construction technique, Coconut98, which was broken
a year later by Wagner using a new type of attack that he called the boomerang attack [Wag99].

The boomerang attack is a chosen plaintext and ciphertext attack that combines sets of four
messages that maximize the probability that

𝐸−1(𝐸(𝑀0)⊕ 𝛿)⊕ 𝐸−1(𝐸(𝑀0 ⊕ 𝛼)⊕ 𝛿) = 𝛼,

with 𝑀0 a random message, 𝛼 and 𝛽 some input and output differences. The distinguisher works
as follows:

1. the attacker first picks a pair of messages (𝑀0,𝑀1) with a difference 𝛼, and asks for the
corresponding ciphertexts (𝐶0, 𝐶1);

2. then, they apply a difference 𝛿 to obtain two additional ciphertexts 𝐶2 = 𝐶0 ⊕ 𝛿 and
𝐶3 = 𝐶1 ⊕ 𝛿;

51

Chapter 3. Cryptanalysis

3. (𝐶2, 𝐶3) are decrypted to the plaintext pair (𝑀2, 𝑀3);

4. if 𝑀3 ⊕𝑀4 = 𝛼, the set (𝑀0,𝑀1,𝑀2,𝑀3) is a right quartet for the distinguisher.

This is summarized in Figure 3.4.

M0

E

M2

E−1

C0 C2δ

M1

E

M3

E−1

C1 C3δ

α α?

Figure 3.4: Basic boomerang distinguisher.

Probability of a right quartet. The boomerang technique is particularly effective against
constructions for which finding good short differentials is easier than finding one full differential
of a comparable probability. More precisely, the targeted cipher 𝐸 is rewritten as the composition
of two subciphers 𝐸0 and 𝐸1, such that there exist good differentials on each subcipher:

Pr[𝛼 𝐸0 𝛽] = 𝑝 and Pr[𝛾 𝐸1 𝛿] = 𝑞, where 𝐸 = 𝐸1 ∘ 𝐸0.

The initial pair of plaintexts 𝑀0 and 𝑀1 with a difference 𝛼 goes to difference 𝛽 through the
upper half of the cipher with probability 𝑝. The attacker obtains the corresponding ciphertexts
𝐶0 and 𝐶1, applies a difference 𝛿 to obtain ciphertexts 𝐶2 = 𝐶0 + 𝛿 and 𝐶3 = 𝐶1 + 𝛿, and
decrypts them to plaintexts 𝑀2 and 𝑀3. The choice of 𝛿 is such that the difference propagates to
the difference 𝛾 in the decryption direction through the lower half of the cipher with probability 𝑞.
For the right quartet of texts, difference 𝛾 is created in the middle of the cipher between partial
decryptions of 𝐶2 and 𝐶3 which propagates to the difference 𝛼 in the plaintexts 𝑀2 and 𝑀3. The
probability of the total structure is 𝑝2𝑞2.

52

3.2. Statistical Attacks

M0

E0

E1

C0

M1

E0

E1

C1

α

β

M2

E−1
0

E−1
1

C2

M3

E−1
0

E−1
1

C3

α

β

γ

γ

δ

δ

Figure 3.5: Basic boomerang distinguisher.

It was, however, observed that some dependencies can occur at the junction of the two
subciphers, sometimes leading to some free rounds in the middle—these special cases are called
ladder switch and S-box switch [BK09]—or incompatibilities leading to probability 0 [Mur11]. A
more accurate estimation of the probability of the distinguisher was given by Dunkelman 𝑒𝑡 𝑎𝑙.
in the so-called Sandwich attack [DKS10], which separates the cipher into three parts—an upper
part 𝐸0, a lower part 𝐸1 and a middle part 𝐸𝑚, made of one S-box layer:

𝐸 = 𝐸1 ∘ 𝐸𝑚 ∘ 𝐸0.

If 𝐸𝑚 satisfies the requested differential propagation among four texts with probability 𝑟, then
the probability of the boomerang distinguisher is 𝑝2𝑞2𝑟, using the same notation as previously
introduced.

At Eurocrypt 2018, Cid 𝑒𝑡 𝑎𝑙. introduced the Boomerang Connectivity Table (bct), a tool
that applies to one S-Box to better estimate the probability of the middle round 𝐸𝑚 of a
boomerang distinguisher in a systematic way for spns [CHP+18]. Their new table and the
following works led to a refined understanding of boomerangs, and resulted in a series of improved
attacks [BC18, LQSL19, ZDJ19, WP19, SQH19, LS19]. Chapter 7 presents a study that is
complementary to Cid 𝑒𝑡 𝑎𝑙.’s work by introducing the fbct, the Feistel counterpart of the bct.

Variants of the boomerang attack have been proposed in several papers, including the amplified
boomerang attack [KKS01] and the rectangle attack [BDK01]. Boomerang attacks can also be
translated into the related-key setting [BDK05].

3.2.4 Interpolation attacks

The interpolation attack was introduced by Jakobsen and Knudsen [JK97] in 1997 and applied to
variants of Shark, a predecessor of Rijndael which was optimized against linear and differential
attacks. It is effective in the analysis of ciphers for which the round function can be written as a
simple algebraic function.

Assuming that the ciphertexts 𝑐𝑖 can be expressed as a (possibly multivariate) polynomial
𝑝(𝑚𝑖) of the messages 𝑚𝑖 (or subwords of the messages) with a sufficiently small number of key-

53

Chapter 3. Cryptanalysis

dependent coefficients, then such a polynomial can be efficiently reconstructed from a collection
of plaintexts-ciphertexts pairs, using the Lagrange interpolation formula.

Definition 3.12 (Lagrange interpolation formula). Let 𝒦 be a field. Given 2𝑑 elements
𝑥0, . . . , 𝑥𝑑−1, 𝑦0, . . . , 𝑦𝑑−1 ∈ 𝒦, where the 𝑥𝑖’s are distinct, define:

𝑓(𝑥) =

𝑑−1∑︁

𝑖=0

𝑦𝑖
∏︁

1≤𝑗≤𝑓, 𝑗 ̸=𝑖

𝑥− 𝑥𝑗
𝑥𝑖 − 𝑥𝑗

,

then 𝑓(𝑥) is the only polynomial over 𝒦 of degree at most 𝑑 − 1 such that 𝑓(𝑥𝑖) = 𝑦𝑖 for
𝑖 = 0 . . . 𝑑− 1.

As a result, in the simplest form of the attack, a representation equivalent to the cipher with
the secret key is constructed, which allows an attacker to encrypt any plaintext message even
though the exact value of the key has not been determined.

A variant of the attack that can be more efficient consists of combining it with a meet-in-the-
middle approach to reduce the number of plaintexts needed. The attack can also be extended to
a key recovery attack: the correctness of the guess on a round key is simply checked by applying
the interpolation step on the remaining rounds. Finally, while the classical interpolation attack
assumes that the polynomials exist with probability 1, Jakobsen presented a probabilistic variant
in [Jak98].

3.3 Structural Attacks

As opposed to statistical attacks, which exploit the limitations of the nonlinear components of
cryptosystem, structural attacks tend to focus more on its diffusion properties.

3.3.1 Integral attacks

Integral cryptanalysis, also known as the Square attack or the saturation attack [Luc02], was
originally designed by Lars Knudsen and first presented together with the Square cipher [DKR97],
which served as basis for Rijndael.

Integral cryptanalysis uses sets of chosen plaintexts with a fixed part and another that varies
through all possibilities. Typically, for an 𝑛-bit block cipher, these sets contain 2𝑛 messages that
only differ in one block. The xor of these 2𝑛 values necessarily sums up to zero and the sum of
the corresponding ciphertexts can leak information about the cipher’s operation.

Inside a set, the blocks of the same index can reach four states, listed below.

- 𝒫 (permutation): the block can take all possible values;

- 𝒞 (constant): the block has a fixed value;

- 𝒮 (sum): the sum of all blocks equals zero; if a block reaches a state 𝒫 or 𝒞, the sum also
equals zero, thus 𝒮 is only used in cases where 𝒫 or 𝒞 are unknown;

- ’?’: nothing can be said about the block.

A bijective function preserves the 𝒫 and 𝒞 states, however, 𝒮 becomes ’?’. 𝒫 ⊕𝒞 remains 𝒫 since
all elements of the block in state 𝒫 are simply xored with the same constants. On the other

54

3.3. Structural Attacks

hand, 𝒫 ⊕ 𝒫 does not automatically yield 𝒫, however, 𝒮 is preserved because of the linearity of
the sum. Figure 3.6 illustrates these behaviors.

𝒫

𝒞

𝒞

𝒫

𝐹

𝐹

𝐹

𝐹

? ?

𝐹

𝒫

𝒫

𝒮

𝒫

𝒮

?

Figure 3.6: An integral characteristic on a Feistel network with a nonlinear component 𝐹 .

Integral attacks can be extended to higher order integrals. An integral of order ℓ requires
2𝑛ℓ plaintexts that take all possible 2𝑛 values on ℓ blocks. Zhang 𝑒𝑡 𝑎𝑙. [ZSW+12] introduced a
generic method to construct integral distinguishers for block ciphers.

Division property. Todo further investigated integral cryptanalysis and proposed the so-called
division property [Tod15b] at Eurocrypt 2015, a more fine-grained technique to find integral
characteristics than can be seen as a generalization of both integral and higher-order differential
properties. The same author later applied this tool to mount the first theoretical attack on the
full version of Misty1 [Tod15a]. The division property exploits the fact that some components
of a block cipher may be of a lower degree, depending on the inputs. More precisely, it can be
used to predict wether the monomials of the Algebraic Normal Form (anf) of a block cipher sum
up to zero when restricted to a specific set of plaintexts. Let 𝑢 = (𝑢1, . . . , 𝑢𝑛) be a vector of F𝑛

2

and let 𝑥𝑢 denote the coordinate product

𝑥 = (𝑥1, . . . , 𝑥𝑛) ↦→
𝑛∏︁

𝑖=0

𝑥𝑢𝑖
𝑖 ,

then a set 𝑋 ⊆ F𝑛
2 has the division property 𝒟𝑛

𝑘 , for some 1 ≤ 𝑘 ≤ 𝑛, if the sum over all vectors
𝑥 in 𝑋 of the product 𝑥𝑢 equals 0, for all vectors 𝑢 with Hamming weight strictly smaller than 𝑘,
𝑖.𝑒. ⨁︁

𝑥∈𝑋
𝑥𝑢 = 0 for all 𝑢 ∈ F𝑛

2 such that 𝑤𝑡(𝑢) < 𝑘.

55

Chapter 3. Cryptanalysis

In short, when encrypting a set of plaintexts with a defined structure—𝑒.𝑔., some bits can be
fixed to a constant value— some bits of the resulting ciphertexts might be balanced, 𝑖.𝑒. they
sum up to zero with probability 1 when going through the entire set of ciphertexts. The division
property is thus a means to track which bits of the plaintext should be fixed in order to obtain
such an output. This technique has sparked much interest from the community, leading to many
follow-up results [ZW15, TM16, BC16, XZBL16, SWW17, EKKT19, DFL19].

3.3.2 Impossible differential attacks

Impossible differential attacks were first described by Knudsen in the aes competition proposal
Deal [Knu98] but they were formalized by Biham, Biryukov and Shamir in [BBS99] at Crypto
1999. This type of attack is based on the fact that some differentials cannot be generated by a
permutation and thus, have a zero probability: if for one guessed value of a key, the attacker is
able to exhibit a pair of messages that satisfies this impossible differential, then the key can be
discarded, therefore reducing the keyspace.

In order to find an impossible differential characteristic, the authors of [BBS99] introduced
the miss-in-the-middle method, which consists of finding a differential with probability 1 on each
half of the cipher but that cannot occur together 𝑖.𝑒 the output difference of the first one cannot
transition to the input difference of the second one. This method was refined in subsequent
papers [KHS+03, LWLG09].

3.4 Automatic tools

Studying the security of a cryptographic primitive can be a tedious task and several methods have
been investigated in attempts to automate the process [BN10, BDF11, MWGP11, SHW+14, BV14,
LWZ16, DF16, GLMS18, SGL+17, HW19]. These include Mixed-Integer Linear Programming
(milp), Boolean Satisfiability (sat) and Constraint Programming (cp). Such generic solvers
are an appealing alternative to dedicated approaches as a cryptanalytic problem simply needs
be stated as a model—by means of linear inequalities for milp, Boolean clauses for sat, and
constraints for cp—which is then automatically solved. The three aforementioned methods have
been used to derive differential bounds and find new characteristics for Skinny; the results are
discussed in Chapter 6.

3.4.1 Mixed-Integer Linear Programming (milp)

Mixed-Integer Linear Programming was first adopted by Borghoff et al. to study Bivium, a
simplified version of Trivium [BKS09], and has since been used to tackle many symmetric
cryptanalysis problems [MWGP11, SHW+14, XZBL16, FWG+16, SWLW16, ZR17, ST17]. For
instance, Sun et al.applied milp to find optimal differential characteristics against bit-oriented
block ciphers such as Simon, Present or LBlock [SHW+14]. In [ST17], this approach was
used to search for impossible differentials, and the designers Skinny [BJK+16] relied on this tool
as well to provide security bounds.

Milp models can only contain linear inequalities and describing Boolean operations can be
complicated. The problems are first seen as general linear programming problems over the real
numbers, then by Branch and Cut, illegal branches are ruled then the solutions are limited to 0-1
integers. Consequently, nonlinear operators need to be transformed into sets of linear inequalities.
However, the resulting milp model may always not scale well, as the performance depends heavily
on the background and structure of the underlying problem. For instance, in [AST+17], authors

56

introduce a milp model of the nonlinear part of a block cipher to find differential trails. Some of
their results on Skinny-128 required about 15 days to find the characteristics.

3.4.2 Boolean Satisfiability problem (sat)

The Boolean Satisfiability problem (sat) considers whether there exists a valid assignment to
Boolean variables satisfying a given set of Boolean clauses. Sat and Satisfiability Modulo Theories
(smt) can be effective in solving cryptanalysis problems. For example, Mouha and Preneel used a
sat solver to search for optimal differential characteristics for arx ciphers [MP13]. In [SWW17],
Sun et al. proposed a sat/smt model to search for division properties on arx and word-based
block ciphers, and in particular, they showed that this approached scaled better than milp when
applied to Shacal-2. In [KLT15] the authors derived sat/smt models to study the differential
and linear behaviors of Simon-like round functions. Moreover, they computed optimal differential
and linear characteristics for Simon using the CryptoMiniSat [SNC09] solver—a solver that is
well-suited for cryptanalysis problems since xor operations can be easily modeled. Similarly to
milp, nonlinear operations cannot be described in a straightforward manner by means of clauses.
In [Laf18], Lafitte proposed a method to encode a relation associated with a nonlinear operation
into a set of clauses; Sun et al. [SWW18] were then able to reduce the number of clauses for this
kind of encoding by using a similar approach as in [AST+17].

3.4.3 Constraint Programming (cp)

Cp models have been used in [LCM+17] to model algebraic side-channel attacks on the Aes and
in [RSM+11] to design the nonlinear part of a block cipher with good properties. Regarding
differential cryptanalysis, Gérault et al. proposed cp models to find related-key differential
characteristics for the Aes [GMS16, GLMS18], Midori [GL16], and Skinny [SGL+17], showing
that cp solvers can perform better than dedicated approaches on such problems. The models for
the Aes were refined in [GLMS20]: the authors added new constraints to detect inconsistencies
sooner and developed a new two-step solving process that differs from the one previously used
in [FJP13, BN10, GMS16]. Thanks to these improvements, optimal related-key differential
characteristics were computed for all instance of the Aes in a few hours, while it took more than
two months of cpu time to solve the hardest instance with the models from [GLMS18].

Chapter 3. Cryptanalysis

58

Part II

Contribution to the Nist Lightweight
Cryptography Competition

59

4

Lilliput-AE: a nist Proposal

All hail Lilliput! All hail Lilliput!

General Edward Edwardian

This chapter presents Lilliput-AE [ABC+18], a new Authenticated Encryption with Associ-
ated Data (aead) scheme that uses as primitive the Lilliput-TBC tweakable block cipher—which
is itself based on the classical Lilliput block cipher presented in [BFMT16] (see Section 2.4.4),
with a modified tweakey schedule. Lilliput-AE is the result of a collaborative effort with Alexan-
dre Adomnicai, Thierry Berger, Christophe Clavier, Julien Francq, Virginie Lallemand, Kévin Le
Gouguec, Marine Minier, Léo Reynaud and Gaël Thomas as part of the fui 23 Paclido1 project,
following nist’s call for algorithms to be considered for lightweight cryptographic standards2. It
was submitted to the standardization process in February 2019 and selected as Round 1 candidate
in April 2019. My contributions to this proposal concerned some design aspects. To be more
precise, I participated the design of the tweakey schedule and the choice of the modes. Even
though our proposal is now based on the Lilliput block cipher, earlier in the design process, our
intention was to design our own primitive, while taking inspiration from Lilliput. As such, I was
tasked with studying other lightweight constructions of Extended Generalized Feistel Networks
(egfns)—some of this work is presented in Chapter 8 of this thesis. For the sake of completeness,
implementation results are still presented in this chapter.

4.1 Introduction . 62
4.2 Specifications . 63

4.2.1 Recommended Parameters . 64
4.2.2 The Lilliput-AE Authenticated Encryption scheme 65
4.2.3 The Lilliput-TBC Tweakable Block Cipher 67

4.3 Design Rationale and Security Analysis 77
4.3.1 Design Rationale of the Modes of Operation 77
4.3.2 Design Rationale of Lilliput-TBC 78
4.3.3 Security Analysis of the Modes of Operation 85
4.3.4 Security Analysis of Lilliput-TBC 86

1Protocoles et Algorithmes Cryptographiques Légers pour l’Internet Des Objets. http://paclido.fr/
lilliput-ae/

2https://csrc.nist.gov/News/2018/requesting-nominations-for-lightweight-crypto-algs

61

http://paclido.fr/lilliput-ae/
http://paclido.fr/lilliput-ae/
https://csrc.nist.gov/News/2018/requesting-nominations-for-lightweight-crypto-algs

Chapter 4. Lilliput-AE: a nist Proposal

4.4 Implementations . 94
4.4.1 Software Implementations . 94
4.4.2 Hardware Implementations . 106
4.4.3 Threshold Implementations . 109

4.5 External Cryptanalysis of Lilliput-AE 113
4.5.1 Lilliput-AE v1 . 113
4.5.2 External analysis of Lilliput-AE 115
4.5.3 Impact . 115

4.6 Conclusion . 116

4.1 Introduction

Lilliput-AE defines two authenticated encryption modes: Lilliput-I and Lilliput-II based
respectively on Θcb3 [KR11b] and sct-2, two modes that are used in Deoxys [JNPS16].
The Θcb3 mode is a nonce-respecting mode whereas sct-2 is a nonce-misuse resistant mode.
From those two authenticated encryption modes—Lilliput-I and Lilliput-II—several sets of
parameters are derived. These parameters conform with the Nist Submission Requirements and
Evaluation Criteria for the Lightweight Cryptography Standardization Process. The primary
member is Lilliput-II-128.

As shown in the next sections, Lilliput-AE is an authenticated encryption scheme that
provides full 128-bit, 192-bit or 256-bit security level. It performs well in software and also in
hardware. Moreover, the underlying block cipher Lilliput has been extensively studied by the
cryptographic community [ST18, MNV18, ST16] and so far, no weakness has been exhibited for
the full version of Lilliput.

We initially attempted to find lighter egfn constructions [BMT14] inspired by Lilliput.
Some of the results are presented in Chapter 8. While some schemes with a smaller xor count
could be instantiated, it turns out that the original structure of Lilliput still provided the best
security bounds. Moreover, Lilliput is a well-studied block cipher and thus, extending it to an
8-bit oriented version and combining it with a mode with good performances and with reinforced
security seemed like a good answer regarding both efficiency and security to the expectations of
the nist standardization process.

Main features of Lilliput-AE. From our point of view, Lilliput-AE brings many advan-
tages:

∙ It is based on building schemes (authenticated encryption modes, encryption process) that
have been significantly studied by the cryptographic community. Moreover, the security of
these blocks has been strengthened by modifiying some parameters (e.g., more secure S-box
and tweakey schedule).

∙ Its primary member is a nonce-misuse resistant mode, which allows an easier management
of cryptographic components deployed on the field.

∙ Its software implementations on 8-bit (e.g., Atmel avr atmega128 microcontrollers) and 16-
bit (e.g., Texas Instruments msp430f1611 microcontrollers) platforms are very competitive.
In terms of execution time (which relates to power consumption), and for 128-bit keys,
Lilliput-AE is comparable to lightweight winners of the Caesar competition [CAE],
Acorn and Ascon, on 8-bit platforms, and is significantly faster on 16-bit platforms.

62

4.2. Specifications

∙ Its hardware implementations on fpga platforms (e.g., Xilinx Spartan-6) are more compact
than Acorn and Ascon. Moreover, straightforward asic implementations of Lilliput-AE
lead to at most around 5000 Gate Equivalents (ges) for its maximum parameter sizes.
Serial implementations will decrease this figure down to 4000 ges or 3000 ges depending
on the parameter sizes, which is equivalent to serial implementations of plain Aes without
authentication mode.

∙ Some degrees of freedom are given to the implementers of Lilliput-AE: for some operations
(e.g., in the tweakey schedule), they can trade code size for ram usage and execution time.
Some operations can also be tabulated to accelerate their computation.

∙ The design facilitates side-channel protection: in particular, the S-box of Lilliput-AE has
been chosen to optimize its cost in threshold implementations.

∙ A first fault injection analysis of Lilliput-AE shows that faulting 7 rounds or more from
the end of the algorithm requires injecting too many faults (say millions) to be practical. A
cautious recommendation is then to protect the last 7 rounds of Lilliput-AE against fault
injection, which leads to a 22% execution time overhead if a straightforward duplication
countermeasure is implemented.

Organization of the chapter. In Section 4.2, we provide the complete specifications of
Lilliput-AE including the two considered modes of authenticated encryption with associated
data Lilliput-I and Lilliput-II (Section 4.2.2) and the tweakable block cipher Lilliput-TBC
with its particular tweakey schedule (Section 4.2.3). In Section 4.3, we detail our design choices:
first for the modes (Section 4.3.1) and second for the tweakable block cipher (Section 4.3.2). We
also perform an extensive security analysis of these two parts in Section 4.3.3 and in Section 4.3.4.
In Section 4.4, we give the implementation results we obtain for both software platforms and
hardware platforms. Finally, in Section 4.6, we address the changes made between the version
that was originally submitted to nist and the one that is presented in this thesis, Lilliput-AE
v1.1.

4.2 Specifications

This section presents the full specifications of our new Authenticated Encryption with Associated
Data (aead) scheme Lilliput-AE.

After introducing notations and the sets of parameters, we introduce in Section 4.2.2 the
two particular authenticated encryption modes: Lilliput-I based on the nonce-respecting mode
Θcb3 and Lilliput-II based on the nonce-misuse resistant mode sct-2.

Then, in Section 4.2.3, we introduce our tweakable block cipher Lilliput-TBC used in both
Lilliput-I and Lilliput-II.

Notations. Let us introduce the following notations: 𝐾 will represent the key of length 𝑘 bits,
𝑃 the plaintext of length 𝑛 bits, 𝑇 the tweak of length 𝑡 bits and we denote by 𝐸𝐾(𝑇, 𝑃) the
ciphering process using the tweakable block cipher 𝐸𝑇

𝐾 .
The concatenation operation at binary level is represented by || and 𝑝𝑎𝑑10* is the function

that applies the 10* padding on 𝑛 bits, i.e. 𝑝𝑎𝑑10*(𝑋) = 𝑋||1||0𝑛−|𝑋|−1 when |𝑋| < 𝑛. For an
empty string 𝜖, the 10* padding will not add any bit: 𝑝𝑎𝑑10*(𝜖) = 𝜖. The truncation of the word
𝑋 to the first 𝑖 bits is given by ⌈𝑋⌉𝑖, and the truncation to the last 𝑖 bits by ⌊𝑋⌋𝑖. To emphasize

63

Chapter 4. Lilliput-AE: a nist Proposal

a string 𝑋 is of length 𝑛, we may write it 𝑋(𝑛). We denote by ≫ 𝑖 and ≪ 𝑖 respectively the right
and left shifts of 𝑖 bits, and by≫ 𝑖 and≪ 𝑖 the right and left rotations of 𝑖 bits.

We will also denote by 𝑆≫𝑖 and 𝑆≪𝑖 the binary matrices of size 8 × 8 corresponding to a
right shift by 𝑖 bits positions or a left shift by 𝑖 bits positions respectively. More precisely, and
for example,

𝑆≫1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and 𝑆≪1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The encryption part ℰ takes as input a variable-length plaintext 𝑀 (with 𝑚 = |𝑀 | bits),
a variable-length associated data 𝐴 (with 𝑎 = |𝐴| bits), a fixed-length public nonce 𝑁 and a
𝑘-bit key 𝐾 (we deliberately used the same letter 𝐾 to represent the key in the authenticated
encryption scheme and the one in the tweakable block cipher, since they always refer to the same
object). It outputs an 𝑚-bit ciphertext 𝐶 and a 𝜏 -bit tag, denoted tag (with 𝜏 ∈ [0, · · · , 𝑛]) i.e.
(𝐶, tag) = ℰ𝐾(𝑁,𝐴,𝑀).

The verification/decryption part 𝒟 takes as input a variable-length ciphertext 𝐶 (with
𝑚 = |𝐶|), a 𝜏 -bit tag, denoted tag (with 𝜏 ∈ [0, · · · , 𝑛]), a variable-length associated data 𝐴
(with 𝑎 = |𝐴|), a fixed-length public nonce 𝑁 and a 𝑘-bit key 𝐾. It outputs either an error string
⊥ to signify that the verification has failed, or an 𝑚-bit string 𝑀 = 𝒟𝐾(𝑁,𝐴,𝐶, tag) when the
tag is valid.

The maximum message length (in 𝑛-bit blocks) is denoted 𝑚𝑎𝑥𝑙 and the maximum number of
messages that can be handled with the same key is denoted 𝑚𝑎𝑥𝑚 (the same limitation applies
to the associated data material).

4.2.1 Recommended Parameters

We derive our scheme Lilliput-AE into two authenticated encryption modes: Lilliput-I and
Lilliput-II. Lilliput-I is a nonce-respecting mode corresponding with Θcb3 and Lilliput-II
is a nonce-misuse resistant mode corresponding with sct-2.

The recommended parameter sets for all variants of these modes is given in Table 4.1. These
parameters have been chosen according to the internal tweakable block cipher Lilliput-TBC.

Name 𝑘 𝑡 𝑛 |𝑁 | 𝜏

Lilliput-I-128 128 192 128 120 128
Lilliput-I-192 192 192 128 120 128
Lilliput-I-256 256 192 128 120 128

Lilliput-II-128 128 128 128 120 128
Lilliput-II-192 192 128 128 120 128
Lilliput-II-256 256 128 128 120 128

Table 4.1: Recommended parameter sets for Lilliput-AE. Our primary member Lilliput-II-128
is in bold notation.

64

4.2. Specifications

For both variants, 𝑚𝑎𝑥𝑚 = 2|𝑁 | = 2120 bits. However, 𝑚𝑎𝑥𝑙 is dependent on the tweak input
and thus differs from one variant to the other:

∙ in the encryption part of Lilliput-I, the tweak is a concatenation of a 4-bit prefix, the
nonce 𝑁 and the index of the message block, thus 𝑚𝑎𝑥𝑙 = 2𝑡−4−|𝑁 | blocks.

∙ in the encryption part of Lilliput-II, the tweak is a concatenation of a 4-bit prefix and
the index of the message block, thus 𝑚𝑎𝑥𝑙 = 2𝑡−4 blocks.

As a result, the maximum message length in bytes is 272 bytes for Lilliput-I and 2128 bytes for
Lilliput-II.

4.2.2 The Lilliput-AE Authenticated Encryption scheme

In this section, we describe the authenticated encryption modes that are used in our proposal
Lilliput-AE. These mode variants are similar to the two modes described in Deoxys [JNPS16]:

∙ Lilliput-I (Section 4.2.2): in this nonce-respecting variant, the same nonce 𝑁 is expected
to never be used twice with the same key for encryption. ℰ𝐼 denotes the encryption part
and 𝒟𝐼 the verification/decryption part.

∙ Lilliput-II (Section 4.2.2): in this variant, a nonce 𝑁 may be reused with the same key
for encryption. ℰ𝐼𝐼 denotes the encryption part and 𝒟𝐼𝐼 the verification/decryption part.

As stated previously, 4-bit prefixes are used for the tweak input to separate the various types
of encryption/authentication blocks, akin to what has been done in Deoxys [JNPS16].

Nonce-Respecting Mode: Θcb3

This scheme follows the Θcb3 framework [KR11b] and therefore directly benefits from this
framework’s proof of security regarding authentication and privacy. In this mode, the tweak length
is 192 bits. The encryption algorithm ℰ𝐼 is given in Algorithm 1 while the verification/decryption
algorithm 𝒟𝐼 is given in Algorithm 2.

If the length of the associated data is not a multiple of the block size, the final block is
padded with the 10* padding, as depicted in Figure 4.1. The same applies for the message and
the ciphertext as shown in Figure 4.2 and Figure 4.3.

𝐴0

𝐸
2||0
𝐾

0(𝑛)

. . .

𝐴𝑙𝑎−1

𝐸
2||𝑙𝑎−1
𝐾

. . . Auth

(a) Without padding.

𝐴0

𝐸
2||0
𝐾

0(𝑛)

. . .

𝐴𝑙𝑎−1

𝐸
2||𝑙𝑎−1
𝐾

. . .

𝐴*10
*

𝐸
6||𝑙𝑎
𝐾

Auth

(b) With padding.

Figure 4.1: Handling of the associated data in the nonce-respecting mode.

65

Chapter 4. Lilliput-AE: a nist Proposal

𝑀0

𝐸
0||𝑁 ||0
𝐾

𝐶0

𝑀𝑙−1

𝐸
0||𝑁 ||𝑙−1
𝐾

𝐶𝑙−1

.

Checksum

𝐸
1||𝑁 ||𝑙
𝐾

tag

Auth
final

(a) Without padding.

𝑀0

𝐸
0||𝑁 ||0
𝐾

𝐶0

𝑀𝑙−1

𝐸
0||𝑁 ||𝑙−1
𝐾

𝐶𝑙−1

.

𝑀*10
*

0(𝑛)

𝐸
4||𝑁 ||𝑙
𝐾

𝐶*

pad

Checksum

𝐸
5||𝑁 ||𝑙+1
𝐾

tag

Auth
final

(b) With padding.

Figure 4.2: Message processing for the nonce-respecting mode.

𝐶0

𝐷
0||𝑁 ||0
𝐾

𝑀0

𝐶𝑙−𝑙

𝐷
0||𝑁 ||𝑙−1
𝐾

𝑀𝑙−1

.

Checksum

𝐸
1||𝑁 ||𝑙
𝐾

tag

Auth
final

(a) Without padding.

𝐶0

𝐷
0||𝑁 ||0
𝐾

𝑀0

𝐶𝑙−𝑙

𝐷
0||𝑁 ||𝑙−1
𝐾

𝑀𝑙−1

.

𝐶*10
*

0(𝑛)

𝐸
4||𝑁 ||𝑙
𝐾

𝑀*

pad

Checksum

𝐸
5||𝑁 ||𝑙+1
𝐾

tag

Auth
final

(b) With padding.

Figure 4.3: Ciphertext processing for the nonce-respecting mode.

Algorithm 1 The encryption algorithm ℰI𝐾(𝑁,𝐴,𝑀).
In the tweak inputs, the value 𝑁 is encoded on 120 bits, the integer values 𝑗 and 𝑙 are encoded
on 68 bits, while the integer values 𝑖 and 𝑙𝑎 are encoded on 188 bits.
/* Associated data */ 𝐴0|| · · · ||𝐴𝑙𝑎−1||𝐴* ← 𝐴 where each |𝐴𝑖| = 𝑛 and |𝐴*| < 𝑛 Auth ← 0(𝑛)
for 𝑖 = 0 to 𝑙𝑎 − 1 do

Auth ← Auth ⊕𝐸𝐾(0010||𝑖, 𝐴𝑖)
end
if 𝐴* ̸= 𝜖 then

Auth ← Auth ⊕𝐸𝐾(0110||𝑙𝑎, 𝑝𝑎𝑑10*(𝐴*))
end
/* Message */ 𝑀0|| · · · ||𝑀𝑙−1||𝑀* ←𝑀 where each |𝑀𝑗 | = 𝑛 and |𝑀*| < 𝑛 Checksum ← 0(𝑛)

for 𝑗 = 0 to 𝑙 − 1 do
Checksum ← Checksum ⊕𝑀𝑗 𝐶𝑗 ← 𝐸𝐾(0000||𝑁 ||𝑗,𝑀𝑗)

end
if 𝑀* = 𝜖 then

Final ← 𝐸𝐾(0001||𝑁 ||𝑙, Checksum) 𝐶* ← 𝜖
else

Checksum ← Checksum ⊕𝑝𝑎𝑑10*(𝑀*) Pad ← 𝐸𝐾(0100||𝑁 ||𝑙, 0(𝑛)) 𝐶* ← 𝑀* ⊕ ⌈Pad⌉|𝑀*|
Final ← 𝐸𝐾(0101||𝑁 ||𝑙 + 1, Checksum)

end
/* Tag generation */ tag ← Final ⊕ Auth return (𝐶0|| · · · ||𝐶𝑙−1||𝐶*, tag)

Nonce-Misuse Resistant Mode

This scheme is the variant of sct introduced in Deoxys [JNPS16]: sct-2. In this mode, the
tweak length is 128 bits while the size of the nonce 𝑁 remains unchanged and is 120 bits. The

66

4.2. Specifications

Algorithm 2 The verification/decryption algorithm 𝒟I
𝐾(𝑁,𝐴,𝐶, tag).

In the tweak inputs, the value 𝑁 is encoded on 120 bits, the integer values 𝑗 and 𝑙 are encoded
on 68 bits, while the integer values 𝑖 and 𝑙𝑎 are encoded on 188 bits.
/* Associated data */ 𝐴0|| · · · ||𝐴𝑙𝑎−1||𝐴* ← 𝐴 where each |𝐴𝑖| = 𝑛 and |𝐴*| < 𝑛 Auth ← 0(𝑛)
for 𝑖 = 0 to 𝑙𝑎 − 1 do

Auth ← Auth ⊕𝐸𝐾(0010||𝑖, 𝐴𝑖)
end
if 𝐴* ̸= 𝜖 then

Auth ← Auth ⊕𝐸𝐾(0110||𝑙𝑎, 𝑝𝑎𝑑10*(𝐴*))
end
/* Ciphertext */ 𝐶0|| · · · ||𝐶𝑙−1||𝐶* ← 𝐶 where each |𝐶𝑗 | = 𝑛 and |𝐶*| < 𝑛 Checksum ← 0(𝑛)

for 𝑗 = 0 to 𝑙 − 1 do
𝑀𝑗 ← 𝐷𝐾(0000||𝑁 ||𝑗, 𝐶𝑗) Checksum ← Checksum ⊕𝑀𝑗

end
if 𝐶* = 𝜖 then

Final ← 𝐸𝐾(0001||𝑁 ||𝑙, Checksum) 𝑀* ← 𝜖
else

Pad ← 𝐸𝐾(0100||𝑁 ||𝑙, 0(𝑛)) 𝑀* ← 𝐶* ⊕ ⌈Pad⌉|𝐶*| Checksum ← Checksum ⊕𝑝𝑎𝑑10*(𝑀*)
Final ← 𝐸𝐾(0101||𝑁 ||𝑙 + 1, Checksum)

end
/* Tag generation */ tag′ ← Final ⊕ Auth if tag′ = tag then

return (𝑀0|| · · · ||𝑀𝑙−1||𝑀*)
else

return ⊥
end

encryption algorithm ℰ𝐼𝐼 is given in Algorithm 3 while the verification/decryption algorithm 𝒟𝐼𝐼

is given in Algorithm 4.
The associated data is processed as in the previous variant, as depicted in Figure 4.4. The

processing of the message is shown in Figure 4.5 and Figure 4.6 and decryption is shown in
Figure 4.7.

𝐴0

𝐸
2||0
𝐾

0(𝑛)

. . .

𝐴𝑙𝑎−1

𝐸
2||𝑙𝑎−1
𝐾

. . . Auth

(a) Without padding.

𝐴0

𝐸
2||0
𝐾

0(𝑛)

. . .

𝐴𝑙𝑎−1

𝐸
2||𝑙𝑎−1
𝐾

. . .

𝐴*10
*

𝐸
6||𝑙𝑎
𝐾

Auth

(b) With padding.

Figure 4.4: Handling of the associated data in the nonce-misuse resistant mode.

4.2.3 The Lilliput-TBC Tweakable Block Cipher

In this section we present our dedicated lightweight Tweakable Block Cipher Lilliput-TBC that
is based on the egfn [BMT14] described in Figure 4.8.

Lilliput-TBC is composed of 6 variants depending on the key lengths (possible key lengths
are equal to 128, 192 and 256 bits) and on the tweak lengths (possible tweak lengths are equal to

67

Chapter 4. Lilliput-AE: a nist Proposal

𝑀0

𝐸
0||0
𝐾

Auth

𝑀𝑙−1

𝐸
0||𝑙−1
𝐾

. . .

. . .

𝐸
1||0(4)||𝑁
𝐾

tag

(a) Without padding.

𝑀0

𝐸
0||0
𝐾

Auth

𝑀𝑙−1

𝐸
0||𝑙−1
𝐾

. . .

. . .

𝑀*10
*

𝐸
4||𝑙
𝐾

𝐸
1||0(4)||𝑁
𝐾

tag

(b) With padding.

Figure 4.5: Message processing in the authentication part of the nonce-misuse resistant mode.

0(8)||𝑁

𝐸
1||tag
𝐾

𝐶0

𝑀0

. . .

. . .

. . .

0(8)||𝑁

𝐸
1||tag⊕(𝑙−1)
𝐾

𝐶𝑙−1

𝑀𝑙−1

(a) Without padding.

0(8)||𝑁

𝐸
1||tag
𝐾

𝐶0

𝑀0

. . .

. . .

. . .

0(8)||𝑁

𝐸
1||tag⊕(𝑙−1)
𝐾

𝐶𝑙−1

𝑀𝑙−1

0(8)||𝑁

𝐸
1||tag⊕𝑙
𝐾

𝐶*

𝑀*

(b) With padding.

Figure 4.6: Message processing in the encryption part of the nonce-misuse resistant mode.

0(8)||𝑁

𝐸
1||tag
𝐾

𝑀0

𝐶0

. . .

. . .

. . .

0(8)||𝑁

𝐸
1||tag⊕(𝑙−1)
𝐾

𝑀𝑙−1

𝐶𝑙−1

(a) Without padding.

0(8)||𝑁

𝐸
1||tag
𝐾

𝑀0

𝐶0

. . .

. . .

. . .

0(8)||𝑁

𝐸
1||tag⊕(𝑙−1)
𝐾

𝑀𝑙−1

𝐶𝑙−1

0(8)||𝑁

𝐸
1||tag⊕𝑙
𝐾

𝑀*

𝐶*

(b) With padding.

Figure 4.7: Ciphertext processing in the decryption part of the nonce-misuse resistant mode.

128 or 192 bits). The different parameters for those variants are specified in Table 4.2. Lilliput-
TBC-I for the three possible key lengths and a tweak length equal to 192 bits will be used in the
mode Lilliput-I and Lilliput-TBC-II for the three possible key lengths and a tweak length
equal to 128 bits will be used in the mode Lilliput-II.

Name 𝑘 𝑡 Nb of rounds 𝑟
Lilliput-TBC-I-128 128 192 32
Lilliput-TBC-I-192 192 192 36
Lilliput-TBC-I-256 256 192 42
Lilliput-TBC-II-128 128 128 32
Lilliput-TBC-II-192 192 128 36
Lilliput-TBC-II-256 256 128 42

Table 4.2: Recommended parameter sets for Lilliput-TBC.

68

4.2. Specifications

Algorithm 3 The encryption algorithm ℰII𝐾 (𝑁,𝐴,𝑀).
In the tweak inputs, the integer values 𝑖, 𝑗, 𝑙 and 𝑙𝑎 are encoded on 124 bits. Moreover, tag⊕ 𝑗
values are encoded on 127 bits (the most significant bit is truncated since |tag| = 𝜏).
/* Associated data */ 𝐴0|| · · · ||𝐴𝑙𝑎−1||𝐴* ← 𝐴 where each |𝐴𝑖| = 𝑛 and |𝐴*| < 𝑛 Auth ← 0(𝑛)
for 𝑖 = 0 to 𝑙𝑎 − 1 do

Auth ← Auth ⊕𝐸𝐾(0010||𝑖, 𝐴𝑖)
end
if 𝐴* ̸= 𝜖 then

Auth ← Auth ⊕𝐸𝐾(0110||𝑙𝑎, 𝑝𝑎𝑑10*(𝐴*))
end
/* Message authentication and tag generation */ 𝑀0|| · · · ||𝑀𝑙−1||𝑀* ←𝑀 where each |𝑀𝑗 | = 𝑛

and |𝑀*| < 𝑛 tag ← Auth
for 𝑗 = 0 to 𝑙 − 1 do

tag← tag⊕ 𝐸𝐾(0000||𝑗,𝑀𝑗)
end
if 𝑀* ̸= 𝜖 then

tag ← tag⊕ 𝐸𝐾(0100||𝑙, 𝑝𝑎𝑑10*(𝑀*))
end
tag← 𝐸𝐾(0001||04||𝑁, tag) /* Message encryption */ for 𝑗 = 0 to 𝑙 − 1 do

𝐶𝑗 ←𝑀𝑗 ⊕ 𝐸𝐾(1||tag⊕ 𝑗, 08||𝑁)
end
if 𝑀* ̸= 𝜖 then

𝐶* ←𝑀* ⊕ ⌈𝐸𝐾(1||tag⊕ 𝑙, 08||𝑁)⌉|𝑀*|
else

𝐶* ← 𝜖
end
return (𝐶0|| · · · ||𝐶𝑙−1||𝐶*, tag)

Encryption Process

Lilliput-TBC is a 128-bit tweakable block cipher with key sizes of 128, 192 or 256 bits and
tweak sizes of 128 or 192 bits. The whole encryption process is depicted in Figure 4.9. As
previously explained, Lilliput-TBC uses an Extended Generalized Feistel Network (egfn)
with a 128-bit state and a round function acting at byte level. The state 𝑋 is seen as 16 bytes,
denoted 𝑋15, · · · , 𝑋0. In its 128-bit key version, the cipher is composed of 𝑟 = 32 rounds, i.e. 32
repetitions of a single egfn called OneRoundEGFN, depicted in Figure 4.8. Each 𝐹𝑗 for 𝑗 from 0
to 7 is defined as 𝐹𝑗 = 𝑆(𝑋𝑗 ⊕ 𝑅𝑇𝐾𝑖

𝑗) where 𝑆 is an S-box that acts at byte level and 𝑅𝑇𝐾𝑖
𝑗

is the byte of position 𝑗 of the 64-bit subtweakey 𝑅𝑇𝐾𝑖 of round 𝑖. The 32 64-bit subtweakeys
𝑅𝑇𝐾𝑖 are generated from the master key and the tweak using the tweakey schedule.

In more details, the round function denoted OneRoundEGFN in Figure 4.9 is composed of a layer
of non linear components called NonLinearLayer for confusion; a new layer called LinearLayer
in [BMT14] that represent a linear layer made of linear components applied in a Feistel way; and
a block-wise permutation called PermutationLayer for diffusion. All three layers act at byte level
on the egfn state 𝑋 and together constitute one iteration of the egfn, as shown in Figure 4.8.

Note that with this new layer LinearLayer, it is possible to shuffle blocks better than what
was possible using the block-wise permutation only of a classical Feistel scheme, while preserving
the self-invertibility of the scheme.

69

Chapter 4. Lilliput-AE: a nist Proposal

Algorithm 4 The verification/decryption algorithm 𝒟II
𝐾 (𝑁,𝐴,𝐶, tag).

In the tweak inputs, the integer values 𝑖, 𝑗, 𝑙 and 𝑙𝑎 are encoded on 124 bits. Moreover, tag⊕ 𝑗
values are encoded on 127 bits (the most significant bit is truncated since |tag| = 𝜏).
/* Message decryption */ 𝐶0|| · · · ||𝐶𝑙−1||𝐶* ← 𝐶 where each |𝐶𝑗 | = 𝑛 and |𝐶*| < 𝑛 for 𝑗 = 0
to 𝑙 − 1 do

𝑀𝑗 ← 𝐶𝑗 ⊕ 𝐸𝐾(1||tag⊕ 𝑗, 08||𝑁)
end
if 𝐶* ̸= 𝜖 then

𝑀* ← 𝐶* ⊕ ⌈𝐸𝐾(1||tag⊕ 𝑙, 08||𝑁)⌉|𝐶*|
else

𝑀* ← 𝜖
end
/* Associated data */ 𝐴0|| · · · ||𝐴𝑙𝑎−1||𝐴* ← 𝐴 where each |𝐴𝑖| = 𝑛 and |𝐴*| < 𝑛 Auth ← 0(𝑛)

for 𝑖 = 0 to 𝑙𝑎 − 1 do
Auth ← Auth ⊕𝐸𝐾(0010||𝑖, 𝐴𝑖)

end
if 𝐴* ̸= 𝜖 then

Auth ← Auth ⊕𝐸𝐾(0110||𝑙𝑎, 𝑝𝑎𝑑10*(𝐴*))
end
/* Message authentication and tag generation */ 𝑀0|| · · · ||𝑀𝑙−1||𝑀* ←𝑀 where each |𝑀𝑗 | = 𝑛

and |𝑀*| < 𝑛 tag′ ← Auth
for 𝑗 = 0 to 𝑙 − 1 do

tag′ ← tag′ ⊕ 𝐸𝐾(0000||𝑗,𝑀𝑗)
end
if 𝑀* ̸= 𝜖 then

tag′ ← tag′ ⊕ 𝐸𝐾(0100||𝑙, 𝑝𝑎𝑑10*(𝑀*))
end
tag′ ← 𝐸𝐾(0001||04||𝑁, tag′) /* Tag verification */ if tag′ = tag then

return (𝑀0|| · · · ||𝑀𝑙−1||𝑀*)
else

return ⊥
end

Note that the last round skips the PermutationLayer for involution reasons.
For the 192-bit and 256-bit key versions, the number of rounds 𝑟 is 36 and 42 respectively.

Overview of the egfn round function The particular egfn we use in Lilliput-TBC with
𝑘 = 16 blocks is depicted in Figure 4.8.

In more details, OneRoundEGFN is composed of:

∙ NonLinearLayer: It is the non-linear part of the egfn and is made of 8 parallel updates of
the egfn state. Each 𝐹𝑗 for 𝑗 from 0 to 7 is defined as 𝐹𝑗 = 𝑆(𝑋𝑗 ⊕𝑅𝑇𝐾𝑖

𝑗) where 𝑆 is an
S-box that acts at byte level given in Table 4.4 and 𝑅𝑇𝐾𝑖

𝑗 is the byte of position 𝑗 of the
64-bit subtweakey 𝑅𝑇𝐾𝑖 of round 𝑖.

∙ LinearLayer: It aims at providing quick diffusion between bytes and consists in xoring
some bytes to some other bytes. More precisely, as depicted in Figure 4.8, blocks 𝑋1 to 𝑋6

are xored to block 𝑋15, and block 𝑋7 is xored to blocks 𝑋9 to 𝑋15.

70

4.2. Specifications

NonLinearLayer

LinearLayer

PermutationLayer

𝑋0𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7𝑋8𝑋9𝑋10𝑋11𝑋12𝑋13𝑋14𝑋15

𝜋 = (0, 13, 6, 12, 2, 14)(1, 9, 5, 11)(3, 8, 4, 10)(7, 15)

𝐹7

𝐹6

𝐹5

𝐹4

𝐹3

𝐹2

𝐹1

𝐹0

Figure 4.8: The egfn used in Lilliput-TBC that reaches full diffusion in 𝑑 = 4 rounds. The
permutation 𝜋 is given as a product of cycles and can also be found in Table 4.3.

∙ PermutationLayer: It consists in applying the permutation 𝜋 given in Table 4.3 to the
bytes.

The permutation 𝜋 used in PermutationLayer The permutation 𝜋 is given in Table 4.3. It
has been chosen to maximize the number of active S-boxes on 18, 19 and 20 rounds as it will
be shown in Section 4.3.4. For each round 𝑖 ∈ {0, · · · , 𝑟 − 1}, let us denote 𝑌 𝑖 the output at
round 𝑖 after the transformations NonLinearLayer and LinearLayer with 𝑌 𝑖 = (𝑌 𝑖

15, · · · , 𝑌 𝑖
0) its

byte representation, i.e. 𝑌 𝑖 = (𝑌 𝑖
15, · · · , 𝑌 𝑖

0) = LinearLayer(NonLinearLayer(𝑋𝑖)). Then, the
PermutationLayer is applied on 𝑌 𝑖 in the following way:

∀𝑖 ∈ {1, · · · , 𝑟 − 2},∀𝑗{0, · · · , 15} ∈ 𝑋𝑖
𝜋(𝑗) = 𝑌 𝑖−1

𝑗 .

Table 4.3: Block permutation 𝜋 used in encryption mode and its inverse 𝜋−1 used in decryption
mode.

𝑖 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝜋(𝑖) 13 9 14 8 10 11 12 15 4 5 3 1 2 6 0 7

𝜋−1(𝑖) 14 11 12 10 8 9 13 15 3 1 4 5 6 0 2 7

The S-box 𝑆 used in NonLinearLayer The S-box 𝑆 used in NonLinearLayer is the 8-bit
S-box given in Table 4.4. The properties of this S-box will be described in Section 4.3.2.

71

Chapter 4. Lilliput-AE: a nist Proposal

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00 20 00 B2 85 3B 35 A6 A4 30 E4 6A 2C FF 59 E2 0E
10 F8 1E 7A 80 15 BD 3E B1 E8 F3 A2 C2 DA 51 2A 10
20 21 01 23 78 5C 24 27 B5 37 C7 2B 1F AE 0A 77 5F
30 6F 09 9D 81 04 5A 29 DC 39 9C 05 57 97 74 79 17
40 44 C6 E6 E9 DD 41 F2 8A 54 CA 6E 4A E1 AD B6 88
50 1C 98 7E CE 63 49 3A 5D 0C EF F6 34 56 25 2E D6
60 67 75 55 76 B8 D2 61 D9 71 8B CD 0B 72 6C 31 4B
70 69 FD 7B 6D 60 3C 2F 62 3F 22 73 13 C9 82 7F 53
80 32 12 A0 7C 02 87 84 86 93 4E 68 46 8D C3 DB EC
90 9B B7 89 92 A7 BE 3D D8 EA 50 91 F1 33 38 E0 A9
A0 A3 83 A1 1B CF 06 95 07 9E ED B9 F5 4C C0 F4 2D
B0 16 FA B4 03 26 B3 90 4F AB 65 FC FE 14 F7 E3 94
C0 EE AC 8C 1A DE CB 28 40 7D C8 C4 48 6B DF A5 52
D0 E5 FB D7 64 F9 F0 D3 5E 66 96 8F 1D 45 36 CC C5
E0 4D 9F BF 0F D1 08 EB 43 42 19 E7 99 A8 8E 58 C1
F0 9A D4 18 47 AA AF BC 5B D5 11 D0 B0 70 BB 0D BA

Table 4.4: The S-box in hexadecimal notation. The column indicates the least significant nibble
and the row indicates the most significant nibble of the S-box input.

Overall encryption process Figure 4.9 gives an overview of the complete encryption process
of Lilliput-TBC for all its variants.

OneRoundEGFN

OneRoundEGFN

OneRoundEGFN

𝑃
/128

/128

𝐶

𝑅𝑇𝐾0/
64

𝑅𝑇𝐾1

𝑅𝑇𝐾𝑟−1

...

NonLinearLayer

LinearLayer

PermutationLayer

NonLinearLayer

LinearLayer

Figure 4.9: Lilliput-TBC Encryption process.

Decryption Process

As Lilliput-TBC is a Feistel network, decryption is quite analogous to encryption but uses the
inverse block permutation 𝜋−1 given in Table 4.3 and the subkeys in the reverse order. Note that
the tweakey process could be inverted at low cost.

72

4.2. Specifications

Tweakey Schedule

An adapted version of the TWEAKEY framework [JNP14] was used as a building block for the
scheduling of the key and the tweak. More specifically, we used a variant of the STK construction,
where the key and the tweak inputs are handled almost the same way. The proposed version is
depicted in Figure 4.14.

𝛼0

𝛼1

...

𝛼𝑝−1

𝑇𝐾0

XOR 𝐶0

𝑓

𝑅𝑇𝐾0

𝛼0

𝛼1

...

𝛼𝑝−1

XOR 𝐶1

𝑓𝑀 = 𝑠0

𝑅𝑇𝐾1

𝛼0

𝛼1

...

𝛼𝑝−1

. . .

. . .

. . .

XOR 𝐶2

𝑓

𝑅𝑇𝐾2

XOR 𝐶𝑟−2

𝑓

𝑅𝑇𝐾𝑟−2

𝛼0

𝛼1

...

𝛼𝑝−1

XOR 𝐶𝑟−1

𝑓 𝑠𝑟 = 𝐶

𝑅𝑇𝐾𝑟−1

Figure 4.10: The tweakey schedule. 𝑓 represents the round function OneRoundEGFN.

The tweakey schedule produces the 𝑟 = 32 (36 or 42 respectively) 64-bit subtweakeys 𝑅𝑇𝐾0

to 𝑅𝑇𝐾𝑟−1 from the 128-bit (192 or 256 respectively) master key 𝐾 and the tweak 𝑇 that is 128
bits long when Lilliput-TBC-II is used and 192 bits long tweak when Lilliput-TBC-I is used.

As done in the STK construction, at each round 𝑖 ∈ {0, · · · , 𝑟 − 1}, the inner state 𝑇𝐾𝑖 is
divided into 𝑝 = (𝑡 + 𝑘)/64 lanes that we denote 𝑇𝐾𝑖

𝑗 , 𝑗 ∈ {0, · · · , 𝑝 − 1}, where 𝑘 is the key
length and 𝑡 is the tweak length. The values of 𝑝 are shown in Table 4.5, depending on which
version of Lilliput-TBC is used.

Name 𝑘 𝑡 𝑝 𝑟

Lilliput-TBC-I-128 128 192 5 32
Lilliput-TBC-I-192 192 192 6 36
Lilliput-TBC-I-256 256 192 7 42
Lilliput-TBC-II-128 128 128 4 32
Lilliput-TBC-II-192 192 128 5 36
Lilliput-TBC-II-256 256 128 6 42

Table 4.5: Recommended parameter sets for Lilliput-TBC and associated number of tweakey
lanes.

𝑇𝐾0 is initialized with the concatenation of the tweak 𝑇 and the master key 𝐾. The first 2
(or 3) lanes are thus dedicated to the 128-bit (or 192-bit) tweak. The key is then stored in the
following 2, 3 or 4 lanes, depending on its size.

For each round 𝑖, the 8-byte subtweakey word that is produced is denoted 𝑅𝑇𝐾𝑖:

∀𝑖 ∈ {0, · · · , 𝑟 − 1}, 𝑅𝑇𝐾𝑖 = 𝑅𝑇𝐾𝑖
7||𝑅𝑇𝐾𝑖

6||𝑅𝑇𝐾𝑖
5||𝑅𝑇𝐾𝑖

4||𝑅𝑇𝐾𝑖
3||𝑅𝑇𝐾𝑖

2||𝑅𝑇𝐾𝑖
1||𝑅𝑇𝐾𝑖

0,

where 𝑅𝑇𝐾𝑖
𝑗 is the byte that is xored to block 𝑋𝑗 then used as an input of the nonlinear function

𝐹𝑗 in the Lilliput-TBC round function of the encryption process.

73

Chapter 4. Lilliput-AE: a nist Proposal

The subtweakey word is obtained by xoring all 𝑝 𝑇𝐾𝑖
𝑗 lanes and a round-dependent constant

denoted 𝐶𝑖 together. In our proposal, the round constant 𝐶𝑖 is simply the round number 𝑖:

∀𝑖 ∈ {0, · · · , 𝑟 − 1}, 𝑅𝑇𝐾𝑖 =

𝑝−1⨁︁

𝑗=0

𝑇𝐾𝑖
𝑗 ⊕ 𝑖.

To update the tweakey, at each round 𝑖 ∈ {1, · · · , 𝑟 − 1}, each 64-bit lane 𝑇𝐾𝑖
𝑗 is multiplied

by a nonzero coefficient denoted 𝛼𝑗 , with 𝑗 ∈ {0, · · · , 𝑝 − 1}. These coefficients were carefully
chosen such that in 𝑟 consecutive rounds, at most (𝑝− 1) cancellations occur as will be shown
in Section 4.3.2. Next, we describe how to generate the sequences induced by coefficients 𝛼𝑗

(𝑗 = 0, · · · , 6).

Sequences The 𝛼-multiplications are computed using word-ring-lfsrs [BMP09]. The sequences
constructed as 𝛼-multiplications for the tweakey on 𝐺𝐹 (264) using word-ring-lfsrs are the
following ones: consider first a 64-bit lane in byte notation as 𝑥 = (𝑥7, · · · , 𝑥0) where 𝑥7 is the
most significant byte and 𝑥0 is the least significant one. In binary notations, we obtain the
following vector of 64 bits: 𝑥 = (𝑥𝑏63, · · · , 𝑥𝑏0). Thus, we have 𝛼0 = 𝑀 , 𝛼1 = 𝑀2, 𝛼2 = 𝑀3,
𝛼3 = 𝑀4, 𝛼4 = 𝑀𝑅, 𝛼5 = 𝑀2

𝑅 and 𝛼6 = 𝑀3
𝑅.

Then the sequence generated by 𝛼0 is produced using the ring-lfsr represented at byte level
word by the following matrix:

𝑀 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝐼𝑑 0 0 0 0 0 0
0 0 𝐼𝑑 0 0 0 0 0
0 0 𝑆≪3 𝐼𝑑 0 0 0 0
0 0 0 𝑆≫3 𝐼𝑑 0 0 0
0 0 0 0 0 𝐼𝑑 0 0
0 𝑆≪2 0 0 0 0 𝐼𝑑 0
0 0 0 0 0 0 0 𝐼𝑑
𝐼𝑑 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where 𝐼𝑑 is the 8 × 8 identity matrix. The primitive polynomial associated with this matrix
is computed as 𝐷𝑒𝑡(𝐼 −𝑀 · 𝑋) at binary level, which gives: 𝑥64 + 𝑥58 + 𝑥42 + 𝑥40 + 𝑥35 +
𝑥34 + 𝑥29 + 𝑥26 + 𝑥24 + 𝑥23 + 𝑥19 + 𝑥10 + 1. The multiplication by 𝛼0 is then generated as
(𝑦7, · · · , 𝑦0)𝑡 = 𝑀 · (𝑥7, · · · , 𝑥0)𝑡. Thus, we have: (𝑦7, · · · , 𝑦0)𝑡 = (𝑥6, 𝑥5, 𝑥4 ⊕ 𝑥5 ≪ 3, 𝑥3 ⊕ 𝑥4 ≫
3, 𝑥2, 𝑥1 ⊕ 𝑥6 ≪ 2, 𝑥0, 𝑥7)

𝑡.

𝑀2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 𝐼𝑑 0 0 0 0 0
0 0 𝑆≪3 𝐼𝑑 0 0 0 0
0 0 𝑆≪6 𝑀1 𝐼𝑑 0 0 0
0 0 0 𝑆≫6 𝑆≫3 𝐼𝑑 0 0
0 𝑆≪2 0 0 0 0 𝐼𝑑 0
0 0 𝑆≪2 0 0 0 0 𝐼𝑑
𝐼𝑑 0 0 0 0 0 0 0
0 𝐼𝑑 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

74

4.2. Specifications

with 𝑀1 equal to the binary 8× 8 following matrix:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

then

𝑀3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 𝑆≪3 𝐼𝑑 0 0 0 0
0 0 𝑆≪6 𝑀1 𝐼𝑑 0 0 0
0 0 0 𝑀2 𝑀1 𝐼𝑑 0 0
0 𝑆≪2 0 0 𝑆≫6 𝑆≫3 𝐼𝑑 0
0 0 𝑆≪2 0 0 0 0 𝐼𝑑
𝐼𝑑 0 𝑆≪5 𝑆≪2 0 0 0 0
0 𝐼𝑑 0 0 0 0 0 0
0 0 𝐼𝑑 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with 𝑀2 a binary matrix of size 8× 8 equal to
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and finally

𝑀4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 𝑆≪6 𝑀1 𝐼𝑑 0 0 0
0 0 0 𝑀2 𝑀1 𝐼𝑑 0 0
0 𝑆≪2 0 𝑀3 𝑀2 𝑀1 𝐼𝑑 0
0 𝑀4 𝑆≪2 0 0 𝑆≫6 𝑆≫3 𝐼𝑑
𝐼𝑑 0 𝑆≪5 𝑆≪2 0 0 0 0
0 𝐼𝑑 0 𝑀5 𝑆≪2 0 0 0
0 0 𝐼𝑑 0 0 0 0 0
0 0 𝑆≪3 𝐼𝑑 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with 𝑀3 a binary matrix of size 8× 8 equal to
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

75

Chapter 4. Lilliput-AE: a nist Proposal

𝑀4 a binary matrix of size 8× 8 equal to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and 𝑀5 a binary matrix of size 8× 8 equal to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

To generate the three following sequences, we use the following matrices using the reciprocal
primitive polynomial of 𝑥64 + 𝑥58 + 𝑥42 + 𝑥40 + 𝑥35 + 𝑥34 + 𝑥29 + 𝑥26 + 𝑥24 + 𝑥23 + 𝑥19 + 𝑥10 + 1
equal to 𝑥64 + 𝑥54 + 𝑥45 + 𝑥41 + 𝑥40 + 𝑥38 + 𝑥35 + 𝑥30 + 𝑥29 + 𝑥24 + 𝑥22 + 𝑥6 + 1.

The outputs are then computed in the reverse order using the relation (𝑦0, · · · , 𝑦7)𝑡 =
𝑀𝑅 · (𝑥0, · · · , 𝑥7)𝑡. Note that the associated binary words are also written in the opposite way
compared with the computations performed for 𝑀 , 𝑀2, 𝑀3 and 𝑀4. It means that, in this case,
at binary level, we have 𝑥 = (𝑥𝑏0, · · · , 𝑥𝑏63) and 𝑥𝑖 = (𝑥𝑏8·𝑖+0, · · · , 𝑥𝑏8·𝑖+7).

Thus, we have: (𝑦0, · · · , 𝑦7)𝑡 = (𝑥1, 𝑥2, 𝑥3 ⊕ 𝑥4 ≪ 3, 𝑥4, 𝑥5 ⊕ 𝑥6 ≫ 3, 𝑥6 ⊕ 𝑥3 ≫ 2, 𝑥7, 𝑥0)
𝑡.

𝑀𝑅 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝐼𝑑 0 0 0 0 0 0
0 0 𝐼𝑑 0 0 0 0 0
0 0 0 𝐼𝑑 𝑆≪3 0 0 0
0 0 0 0 𝐼𝑑 0 0 0
0 0 0 0 0 𝐼𝑑 𝑆≫3 0
0 0 0 𝑆≫2 0 0 𝐼𝑑 0
0 0 0 0 0 0 0 𝐼𝑑
𝐼𝑑 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑀2
𝑅 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 𝐼𝑑 0 0 0 0 0
0 0 0 𝐼𝑑 𝑆≪3 0 0 0
0 0 0 0 𝐼𝑑 𝑆≪3 𝑀6 0
0 0 0 0 0 𝐼𝑑 𝑆≫3 0
0 0 0 𝑆≫2 0 0 𝐼𝑑 𝑆≫3

0 0 0 0 𝑆≫2 0 0 𝐼𝑑
𝐼𝑑 0 0 0 0 0 0 0
0 𝐼𝑑 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

76

4.3. Design Rationale and Security Analysis

with 𝑀6 a binary matrix of size 8× 8 equal to
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

𝑀3
𝑅 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 𝐼𝑑 𝑆≪3 0 0 0
0 0 0 0 𝐼𝑑 𝑆≪3 𝑀6 0
0 0 0 𝑀7 0 𝐼𝑑 𝑀1 𝑀6

0 0 0 𝑆≫2 0 0 𝐼𝑑 𝑆≫3

𝑆≫3 0 0 0 𝑆≫2 0 0 𝐼𝑑
𝐼𝑑 0 0 0 0 𝑆≫2 𝑆≫5 0
0 𝐼𝑑 0 0 0 0 0 0
0 0 𝐼𝑑 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with 𝑀7 is a binary matrix of size 8× 8 equal to
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The periods of each sequence given by the word-ring-lfsrs produced by the previous matrices
are respectively: 264 − 1 for the sequences produced using 𝑀 , 𝑀2,𝑀4, 𝑀𝑅, 𝑀2

𝑅 and 264−1
3 for

the sequences produced using 𝑀3 and 𝑀3
𝑅.

4.3 Design Rationale and Security Analysis

In this section, we will detail the design choices we made for Lilliput-TBC and we provide a
complete security analysis regarding a wide variety of attacks.

4.3.1 Design Rationale of the Modes of Operation

Θcb3

The ocb mode (Offset Codebook Mode) was designed by Phillip Rogaway, who took inspira-
tion from Charanjit Jutla’s IAPM (Integrity Aware Parallelizable Mode) [Jut01]. The original
authenticated-encryption scheme has then been refined several times, leading to three named
versions: ocb1 [RBBK01], ocb2 [Rog04] and ocb3 [KR11b]. The main change introduced with
ocb2 is the possibility to handle Associated Data (AD), while the modifications made in ocb3

77

Chapter 4. Lilliput-AE: a nist Proposal

are rather minor (mostly a change in the way offsets are incremented). The ocb mode has
many advantages, starting with the fact that it is parallelizable and only requires one block
cipher invocation per message block, in contrary to schemes like GCM. In [KR11b], Krovetz and
Rogaway also introduced a tweakable block cipher generalization of ocb3 denoted Θcb3, which
is at the source of the mode used for our candidate Lilliput-I.

Ocb is covered by the United States Patent No. 7,949,129, United States Patent No. 8,321,675,
United States Patent No. 7,046,802 and United States Patent No. 7,200,22. Still, it is unclear
if Θcb3 is also covered by patents. This lack of clarity is part of the reason why we selected
Lilliput-II to be our primary member.

Under the assumption that the underlying (tweakable) block cipher is secure as a strong-
PRP (PseudoRandom Permutation), ocb is provably secure and achieves confidentiality and
authenticity. Confidentiality means that an adversary cannot make the distinction between ocb
outputs and random bits, while authenticity (of ciphertexts) means that she cannot produce a
valid nonce-ciphertext pair (different from the ones she previously obtained). Note that the various
variants of ocb are not designed to resist to nonce reuse nor to enjoy beyond-birthday-bound
security.

Sct-2

The Synthetic Counter in Tweak mode (sct) was first devised at Crypto 2016 by Thomas Peyrin
and Yannick Seurin [PS16]. Few months later, the mode was slightly modified by the same
authors associated with Jérémy Jean and Ivica Nikolic to be used as a mode for one of the
member of the family of authenticated ciphers Deoxys v1. 43 [JNPS16], their submission to
Caesar (Competition for Authenticated Encryption: Security, Applicability, and Robustness).
The rearranged mode was named sct-2, and the corresponding authenticated cipher was coined
Deoxys-II.

The difference between sct and sct-2 only lies in the way the tag is produced (the encryption
part is similar), a change that was done “in order to provide graceful degradation of security for
authentication with the maximal number of repetitions of nonce” [JNPS16].

4.3.2 Design Rationale of Lilliput-TBC

When designing Lilliput-TBC from the block cipher Lilliput, our overall goal was to maximize
diffusion between nibbles or bytes while keeping reasonable implementation performances. This
diffusion could be measured using the notion of full diffusion delay of [BMT14]. It will be denoted
by 𝑑 and corresponds to the minimum number of rounds needed for all output bytes or nibbles
to depend on all input bytes or nibbles. It is closely related to some structural attacks such as
impossible differentials or integral attacks, as shown in [SM10, BMT14].

We decided to use the egfn inferred in Lilliput [BFMT16] to reach this purpose because
the full diffusion delay of the egfn of Lilliput is equal to 𝑑 = 4 which is the best diffusion delay
obtained for a Feistel-like scheme.

We chose a 128-bit state as it is consistent with the NIST requirements. We split that state
into 16 bytes so that the block size matches the S-box size, i.e. the non-linear layer is made only
of 8 parallel calls to an 8-bit S-box and 8 subkey additions. As said before, the 𝜋 permutation has
been chosen to maximize the number of active S-boxes on 18, 19 and 20 rounds (see Section 4.3.4
and Table 4.7 for more details).

From those results and the security analysis performed in Section 4.3.4 and summed up
in Table 4.10, we also deduced the number of rounds of each instance of Lilliput-I and of

78

4.3. Design Rationale and Security Analysis

Lilliput-II equal to 32, 36 or 42 rounds.

The EGFN Structure

As done in [SM10, BMT14], we analyze here the security of our underlying EGFN scheme regard-
ing the pseudorandomness of the scheme. Note that the pseudorandomness bounds obtained
are generic and essentially depend on the 𝑑 value. We thus introduce the pseudo-random-
permutation advantage (prp-advantage) and the strong-pseudo-random-permutation advantage
(sprp-advantage) of an adversary. For this purpose, we introduce the two advantage notations as:

AdvprpC (𝑞) = max
A:𝑞-CPA

⃒⃒
⃒Pr[AC = 1]− Pr[AP𝑛 = 1]

⃒⃒
⃒ (4.1)

AdvsprpC (𝑞) = max
A:𝑞-CCA

|Pr[AC,C−1
= 1]− Pr[AP𝑛,P

−1
𝑛 = 1]| (4.2)

where C is the encryption function of an 𝑛-bit block cipher composed of Uniform Random
Functions (urfs) as internal modules whereas C−1 is its inverse; P𝑛 is an 𝑛-bit Uniform Random
Permutation (urp) uniformly distributed among all the 𝑛-bit permutations; P−1

𝑛 is its inverse.
The adversary, A, tries to distinguish C from P𝑛 using 𝑞 queries in a CPA (Chosen Plaintext
Attack) and tries to distinguish, always using 𝑞 queries, (C,C−1) from (P𝑛,P

−1
𝑛) in a CCA (Chosen

Ciphertext Attack). The notation means that the final guess of the adversary A is either 0 if A
thinks that the computations are done using P𝑛, or 1 if A thinks that the computations are done
using C. The maximums of Equations (4.1, 4.2) are taken over all possible adversaries A with 𝑞
queries and an unbounded computational power.

To prove the bounds of our scheme in those models, we recall the result proved in [BFMT16]:
let Φ𝑘𝑐,𝑟 denote our 𝑘-block scheme acting on 𝑐-bit blocks with 𝑛 = 𝑘𝑐, using 𝑟 rounds and with
diffusion delay 𝑑. We then have (the proof can be found in [BFMT16]):

Theorem 4.1. Given the 𝑟-round egfn Φ𝑘𝑐,𝑟 with 𝑘 branches acting on 𝑐-bit blocks with a
diffusion delay 𝑑 where all 𝑐-bit round functions are independent URFs. Then we have:

AdvprpΦ𝑘𝑐,𝑑+2
(𝑞) ≤ 𝑘𝑑

2𝑐
𝑞2 (4.3)

AdvsprpΦ𝑘𝑐,2𝑑+2
(𝑞) ≤ 𝑘𝑑

2𝑐−1
𝑞2 (4.4)

Thus, we have a classical security proof for the choice of the underlying EGFN used in Lilliput-
TBC. Note that, in our case, 𝑐 is equal to 8.

The 𝜋 Permutation

Full diffusion delay is closely related to some structural attacks such as impossible differentials
or integral attacks, as shown in [SM10, BMT14]. As there are many egfns that achieve 𝑑 = 4,
we chose one by taking other considerations into account. Specifically, we chose the block-wise
permutation to maximize resistance against differential and linear cryptanalysis.

We identified the criterion for a permutation 𝜋 to achieve 𝑑 = 4 to be as follows: first, 𝜋 must
swap the 8 right-most blocks with the 8 left-most, and second, 𝜋 must specifically swap blocks 𝑌7
and 𝑌15 (a complete proof could be found in [BMT14, BFMT16]).

Up to block reindexing equivalence, there are exactly 37108 such permutations. For each of
them, we computed the minimal number of differentially and linearly active S-boxes up to 20

79

Chapter 4. Lilliput-AE: a nist Proposal

rounds (see Section 4.3.4 and Table 4.7 for more details) and picked the one that maximizes the
number of active S-boxes on 18, 19 and 20 rounds.

The S-box

Overall structure We chose to build the 8-bit S-box from smaller ones so that it could be
implemented with a fewer number of gates, which is a valuable property for hardware and
bit-sliced software implementations. S-boxes built in this fashion usually rely on one of the four
constructions depicted in Figure 4.11. We defined the following selection criteria for the candidate

𝑆4

(a) Feistel

𝑆4

(b) MISTY

𝑆4

(c) Lai-Massey

𝑆4 𝑆′
4

𝒜

(d) SPN

Figure 4.11: Some structures to build 2𝑛-bit S-boxes from 𝑛-bit ones.

S-box:

- Differential uniformity 𝛿 ≤ 10

- Linearity ℒ ≤ 64

- Algebraic degree deg ≥ 6 .

All constructions discussed above need to be iterated several times in order to achieve the
desired cryptographic properties. Regarding Feistel and MISTY networks, [CDL16] gives lower
bounds on the differential uniformity and linearity for 3-round balanced constructions. In this
case, Feistel networks provide better cryptographic properties as it is possible to reach 𝛿 = 8
and ℒ = 64 versus 𝛿 = 16 and ℒ = 64 for MISTY networks. It comes from the fact that Feistel
networks do not require inner 4-bit S-boxes to be permutations, allowing the use of Almost
Perfect Nonlinear (APN) functions as inner components. Still, it has been shown that 3-round
unbalanced MISTY networks (e.g., dividing the 8-bit input into two inequal parts of 3 and 5
bits) can be used to build 8-bit S-boxes with 𝛿 = 8 [CDL16]. However, because the unbalanced
words induce components with strong unbalanced degrees for the ANF, we decided to rule out
this option.

Regarding the Lai-Massey scheme, the family of block ciphers FOX [JV04] uses a 3-round
iterated structure in order to build an 8-bit S-box with 𝛿 = 16 and ℒ = 64. On the other side,
some cryptographic primitives simply add a nonlinear layer (i.e. two 4-bit S-boxes in parallel) at
the beginning and/or at the end of the original scheme depicted in Figure 4.11c instead of using an
iterated structure and therefore save some XOR gates. For instance, the block cipher FLY [KG16]
adds a nonlinear layer at the end of the scheme while the hash function Whirlpool [BRAN00] also
adds one at the beginning resulting in a total of three and five inner 4-bit S-boxes, respectively. As
for the MISTY ladder, the Lai-Massey structure requires inner 4-bit S-boxes to be permutations
and therefore constructions that use three 4-bit S-boxes cannot reach a differential uniformity as

80

4.3. Design Rationale and Security Analysis

good as Feistel networks. Although the cryptographic properties achieved by the variant using
five 4-bit S-boxes are compliant with our selection criteria (i.e. 𝛿 = 8, ℒ = 56 and deg = 7 for
the Whirlpool S-box), it is not worth the implementation cost.

The same reasoning can be applied to SPNs. For instance, the block cipher CLEFIA [SSA+07]
uses two different 8-bit S-boxes and one of them relies on an SPN structure as defined in
Figure 4.11d with an additional nonlinear layer after 𝒜 which refers to a matrix multiplication
over F16. It results in an S-box with 𝛿 = 10, ℒ = 56 and deg = 6 which is compliant with our
selection criteria. However, because it uses four 4-bit S-boxes, it is more heavy than a 3-round
Feistel network to implement.

For all these reasons, we opted for an 8-bit S-box based on a 3-round balanced Feistel network.
In the rest of this section, 𝑆𝑖

4 refers to the inner 4-bit S-box at the 𝑖-th round.

Inner 4-bit S-boxes According to [CDL16], in order to reach 𝛿 = 8, 𝑆1
4 and 𝑆3

4 have to be
APN functions while 𝑆2

4 has to be a permutation with differential uniformity 4. The authenticated
block cipher SCREAM [GLS+15] uses an 8-bit S-box built in this manner where the underlying
APN functions are 𝑆1

4 = 020b300a1e06a452 and 𝑆3
4 = 20b003a0e1604a25 and the permutation

is 𝑆2
4 = 02c75fd64e8931ba.

𝑆1
4 can be implemented using 11 instructions in total (either AND or OR or XOR or NOT or MOV),

including 4 non-linear ones, while 𝑆3
4 is directly derived from it by adding a NOT instruction in order

to avoid fixed points. Although it is possible to find APN functions over F16 that are built using
10 instructions from the same instruction set, they all require at least 6 non-linear ones [CDL16]
which is not optimal regarding masked implementations. 𝑆2

4 is built using 9 instructions from the
same instruction set, including 4 non-linear ones, which is the smallest implementation cost for a
4-bit S-box with differential uniformity 4 [UDI+11]. Therefore, the SCREAM S-box allows very
efficient implementations with and without masking as it only requires 44 instructions in total
including 12 non-linear ones.

However, the number of non-linear operations is not the only criteria regarding Threshold
Implementations (TI) where an S-box with algebraic degree 𝑑 requires at least 𝑛 = 𝑑+ 1 shares.
In order to limit the number of shares for a 4-bit S-box with 𝑑 > 2, it has been proposed to use
its decomposition into quadratic bijections [NRS11] (i.e. 𝑆𝑖

4 = 𝐹 ∘ 𝐺) so that it is possible to
achieve a TI with 𝑛 = 3. In order to fulfill the uniformity criteria, it has been proposed to find
affine functions 𝐴1 and 𝐴2 such that 𝐹 = 𝐴1 ∘ 𝒬 ∘𝐴2, so that when it is possible to achieve a
uniform sharing of the quadratic function 𝑄, applying 𝐴1 and 𝐴2 on all input and output shares
respectively gives a uniform sharing of 𝐹 [BNN+12].

In [BGG+16] the authors study first-order TIs for several 8-bit S-boxes, including the one
used in SCREAM. It results that the two APN functions 𝑆1

4 and 𝑆3
4 can be directly decomposed

into two quadratic functions while the permutation 𝑆2
4 requires affine functions as described above.

In order to achieve more efficient TIs by saving the implemention cost of the affine functions, we
looked for (and found) alternatives to 𝑆2

4 that could be directly decomposed into two quadratic
functions.

We chose to investigate all possible circuits with a Breadth-First Search (BFS) approach,
including only AND, XOR and NOT gates as they can be straightforwardly thresholded. This approach
is very similar to [UDI+11]. We optimized the number of gates used without considering MOV
instructions as we consider that wiring is free compared to the cost of the gates. We allowed 5
registers during the exploration. Keeping the affine equivalence notion of the previous paper,
stopping the exploration to 8 gates allowed us to reach 62 affine equivalence classes, including 3

81

Chapter 4. Lilliput-AE: a nist Proposal

optimal classes according to [Saa11]. Following the same notation as [BNN+12] to refer to the
equivalence classes, the three optimal classes we reached are 𝒞223, 𝒞296 and 𝒞297.

We focused on permutations of the optimal classes as they are the only ones with differential
uniformity equal to 4. First, we eliminated candidates that did not allow to reach the selection
criteria for the 8-bit S-box when used as 𝑆2

4 in a 3-round Feistel network. After this step, there
were still candidates in each optimal class. In order to go further into the optimization of TIs, we
investigated the decomposition of the remaining candidates. Following [BNN+12], we decomposed
those cubic permutations into two quadratic functions. There are six quadratic classes denoted by
𝒬4, 𝒬12, 𝒬293, 𝒬294, 𝒬299 and 𝒬300. It results from our BFS exploration that these classes can
be implemented with a minimum of 2, 4, 6, 4, 6 and 6 gates, respectively. Among these classes,
only 𝒬4, 𝒬294 and 𝒬299 contain permutations that are uniform using direct sharing. However,
neither 𝒞223 nor 𝒞296 nor 𝒞297 can be decomposed using 𝒬4. On the other hand, because only
𝒞223 can be decomposed into two quadratic functions of the class 𝒬294 that are uniform using
direct sharing, this makes 𝒞223 the most interesting optimal class we reached regarding TIs.

As stated before, contrary to 𝑆2
4 , our aim was to avoid linear permutations between the

quadratic functions. As we consider that wire permutations 𝜔𝑖 are free, for all the remaining
candidates 𝐶 in 𝒞223, we looked for 4-gate circuits 𝑄𝑖 and 𝑄𝑗 of 𝒬294 that are uniform using direct
sharing, such that 𝐶 = 𝜔1 ∘𝑄𝑖 ∘ 𝜔2 ∘𝑄𝑗 ∘ 𝜔3 . As a final step to determine which composition to
use, we calculated the cost (considered in Gate Equivalents −ges) of a 3-share TI of all of them
using this formula:

ge = 3ge𝑋 ·𝑋 + (3ge𝑋 + 3ge𝐴) ·𝐴+ ge𝑁 ·𝑁 (4.5)

with ge𝑋 the area and 𝑋 the number of XOR gates, ge𝐴 the area and 𝐴 the number of AND gates
and ge𝑁 the area and 𝑁 the number of NOT gates. It comes from the fact that, when considering
3-share TIs, thresholding an XOR gate requires 3 XOR gates while thresholding an AND gate requires
6 XOR and 9 AND gates. Taking ge𝑋 = 8

3 , ge𝐴 = 4
3 and ge𝑁 = 2

3 , we found the minimum at
72 · 2 = 143ges. Note that it does not include the cost of registers between the two permutations
that are needed to ensure security against glitches.

Among the several compositions that can be implemented using 143ges, we chose the
permutation illustrated in Figure 4.13b as it constitutes the only candidate that results from the
composition of the same quadratic permutation 𝑄 = 042e8ca6173d9fb5, allowing to optimize
the area cost in particular cases.

a b c d

x y z t

(a) 𝐹 = 020b30a01e06a425

a b c d

x y z t

(b) 𝐺 = 0123457689abcdfe

a b c d

x y z t

(c) 𝑄 = 042e8ca6173d9fb5

Figure 4.12: Quadatric functions used to build the cubic 4-bit S-boxes.

82

4.3. Design Rationale and Security Analysis

To put it in a nutshell, our 8-bit S-box is obtained by combining the two APN functions from
the SCREAM S-box with the 4-bit permutation 𝑆2

4 = 081f4c792b36e5da in a 3-round Feistel
network and achieves 𝛿 = 8, ℒ = 64 and deg = 6 without fixed points. Thanks to the BFS
exploration, we ensure that our S-box requires a small number of gates and that its TI is efficient
as it uses the smallest circuits of its possible decompositions and futhermore, it does not require
the use of affine permutations when decomposed into two quadratic functions. The 4-bit S-boxes
are depicted in Figure 4.13 while the underlying quadratic functions are depicted in Figure 4.12,
where 𝑎 and 𝑑 refer to the most and the least significant bits, respectively.

a b c d

x y z t

(a) 𝑆1
4 = 𝐹 ∘𝐺

020b300a1e06a452

a b c d

x y z t

P

(b) 𝑆2
4 = 𝑄 ∘ 𝑃 ∘𝑄

081f4c792b36e5da

a b c d

x y z t

(c) 𝑆3
4 = 𝐹 ∘ (⊕1) ∘𝐺

20b003a0e1604a25

Figure 4.13: The three inner 4-bit S-boxes.

The Tweakey Schedule

As done for some other Tweakable Block Ciphers, we first looked at the TWEAKEY construction
of [JNP14] that fills 𝑝 lanes of 𝑛 bits divided into 𝑚 words of 𝑐 bits with the concatenation of
the tweak 𝑇 and of the key 𝐾. Then, to produce the subtweakey of each round, the TWEAKEY
framework applies, on each lane, a permutation ℎ acting on the 𝑚 words and then multiply
each of the 𝑚 elements of 𝑐 bits by a primitive root 𝛼𝑖,∀𝑖 ∈ {0, · · · , 𝑝− 1} over 𝐺𝐹 (2𝑐) different
for each lane. Then, the subtweakey is the xor of the 𝑝 lanes and of a constant. From this
construction that could be seen as the tensorial product of 𝑚 Vandermonde matrices, the authors
could deduce that the number of cancellations on 𝑟 + 1 subtweakeys is at most equal to (𝑝− 1).
Indeed, the updating function (excluding the ℎ permutation) for the 𝑐 bits words could be written
as the following Vandermonde matrix

𝑉 =

⎛
⎜⎜⎜⎜⎜⎝

𝛼0
0 𝛼1

0 𝛼2
0 · · · 𝛼𝑟

0

𝛼0
1 𝛼1

1 𝛼2
1 · · · 𝛼𝑟

1

𝛼0
2 𝛼1

2 𝛼2
2 · · · 𝛼𝑟

2
...

...
...

. . .
...

𝛼0
𝑝−1 𝛼1

𝑝−1 𝛼2
𝑝−1 · · · 𝛼𝑟

𝑝−1

⎞
⎟⎟⎟⎟⎟⎠

83

Chapter 4. Lilliput-AE: a nist Proposal

when all 𝛼𝑖 with 0 ≤ 𝑖 ≤ 𝑟 are distinct considering that 𝑟 < 𝑜𝑟𝑑(𝛼). In this case, the code
defined by 𝑉 is a Reed-Solomon code of length 𝑟 + 1 and dimension 𝑝 over 𝐺𝐹 (2𝑐) and it is
known to be mds (Maximum Distance Separable). It means that its minimum distance is equal
to 𝑟 + 1− (𝑝+ 1).

For designing our own tweakey schedule, we adopted the same idea to keep the Vandermonde
strategy in order to guarantee the maximal possible number of cancellations. However, as we
wanted to reduce the latency of the tweakey schedule and thus the number of computations, we
adopted the following strategy instead of considering a lane as a vector of 𝑚 elements of 𝐺𝐹 (2𝑐):
we directly consider the field 𝐺𝐹 (2𝑐𝑚) that will be equal in our case to 𝐺𝐹 (264). Indeed, in our
case, the size of each lane is equal to 𝑛

2 = 64 bits due to the use of a Feistel-like scheme requiring
only 𝑛

2 = 64 bits of tweakey injected in the round function at each iteration.
Thus, we consider the 𝑝 64-bit long lanes as 𝑝 elements of 𝐺𝐹 (264) and we multiply each lane

by 𝑝 different 𝛼𝑖 given in Section 4.2.3 in a byte oriented matrix representation. Thus, with our
construction, we obtain the following Vandermonde matrix constructed on 𝐺𝐹 (264):

𝑉 ′ =

⎛
⎜⎜⎜⎜⎜⎝

𝛼0
0 𝛼1

0 𝛼2
0 · · · 𝛼𝑟−1

0

𝛼0
1 𝛼1

1 𝛼2
1 · · · 𝛼𝑟−1

1

𝛼0
2 𝛼1

2 𝛼2
2 · · · 𝛼𝑟−1

2
...

...
...

. . .
...

𝛼0
𝑝−1 𝛼1

𝑝−1 𝛼2
𝑝−1 · · · 𝛼𝑟−1

𝑝−1

⎞
⎟⎟⎟⎟⎟⎠

Thus, as ∀0 ≤ 𝑖 < 𝑟, we have chosen the 𝛼𝑖 such that 𝑟 < 𝑜𝑟𝑑(𝛼𝑖), we preserve the mds property
induced by the underlying Reed-Solomon code and guarantee that the minimum distance is equal
to 𝑟 − (𝑝+ 1) leading to at most (𝑝− 1) cancellations on 𝑟 subtweakeys, seen always, as the xor
of the 𝑝 lanes. This last choice is a logical one as done in many lightweight block ciphers, such
as Present [BKL+07], Twine [SMMK13], LBlock [WZ11a] or Simon [BSS+13] where the
tweakey/key material is loaded in an initial register that is sequentially updated and where the
subtweakeys/subkeys are extracted from that register.

We also chose to split the tweakey into 𝑝 lanes of 64-bit instead of having a big state of 𝑝× 64
bits and to update in parallel those 𝑝 registers because small updating functions mix their content
faster and increase performance. The downside is that each updating function could be attacked
independently if their contents were not combined back during the subtweakey extraction which
is not the case here.

Let us now explain how we have chosen the different 𝛼𝑖 and the word-ring-lfsrs matrix
multiplications at binary level that perform those operations.

We used lfsrs inspired by the results of [BMP09] and [ABMP11] on lfsrs. lfsrs are
typically used either in Fibonacci or Galois mode. In the first case, many feedbacks are used to
influence a single cell while in the second case a single feedback influences many cells. In [BMP09],
the authors generalize lfsr beyond Fibonacci/Galois representation by allowing any cell to
be used as feedback in any other cell. They call these new lfsrs “ring-lfsrs” because of the
rotation occuring at each update. As the lfsrs in [ABMP11], the lfsrs chosen here have also
a word-oriented structure: instead of performing bit-wise shift at each iteration and having
binary feedbacks, they are shifted by one word at each update. As for the feedbacks, they are
also word-oriented: one whole word is xored to another after possibly being transformed by a
software-friendly operation such as shift or rotation. Those lfsrs are called word-lfsrs by their
authors [ABMP11]. When a lfsr is both a word and ring lfsr, we call it a word-ring-lfsr. At
the same time, they act at word level and they have feedbacks going from some word to some

84

4.3. Design Rationale and Security Analysis

other. Word-ring-lfsrs have thus a smaller diffusion delay than classical Fibonacci or Galois
lfsrs.

We have chosen our word-ring-lfsr defined by the matrix 𝑀 for the 𝛼0-multiplication with
the minimal possible number of shift operations (3 at 8 bits words level) to minimize the number
ofxor gates, with a primitive polynomial of degree 64. We chose words of size 8 bits to fit well
on software platforms. Then, 𝛼1, 𝛼2 and 𝛼3 multiplications are deduced directly using 𝑀2, 𝑀3

and 𝑀4.
Moreover, to construct the matrix 𝑀𝑅 for the 𝛼4 multiplication, we searched for a matrix

with 3 shift operations implementing the reciprocal (primitive) polynomial that defines 𝑀 to
ensure that the matrix 𝑉 ′ stays a Vandermonde matrix and that the sequences produced when
multiplying by 𝛼0 (𝛼1, 𝛼2 and 𝛼3 respectively) and 𝛼4 (𝛼5 and 𝛼6 respectively) have only a single
common value.

We have also chosen the different 𝛼𝑖 with a primitive retroaction polynomial to ensure that
the induced periods are maximal: the period for 𝛼0, 𝛼1, 𝛼3, 𝛼4 and 𝛼5 is maximal and equal to
264 − 1 whereas the period for 𝛼2 and 𝛼6 is equal to 264−1

3 .
Moreover, with this design strategy in mind, we are sure that the entire possible space is

reached discarding the risk of an invariant attack as detailed in Section 4.3.4.

4.3.3 Security Analysis of the Modes of Operation

Θcb3

The past year has seen several breakthroughs in the analysis of ocb, starting in October 2018
with the description by Inoue and Minematsu of a practical existential forgery attack [IM18]. Few
weeks after, Poettering [Poe18] extended this result and broke the confidentiality of ocb2, result
that was extended further by Iwata [Iwa18] who devised a plaintext recovery attack3. These
attacks were clearly announced by their authors as not applicable to ocb1 and ocb3, so Θcb3 is
also safe. To the best of our knowledge, no attacks were devised on Θcb3.

Sct-2

To the best of our knowledge, no flaws were found so far in sct-2 and the results published on
Deoxys [ZDW19, MMS18, CHP+17] only target the underlying cipher (that is, Deoxys-BC).
In [CHP+17], the authors briefly discuss if their attacks on Deoxys-BC could apply once the
cipher is used in the corresponding mode, and “argue that [their] attacks are difficult to extend to
Deoxys-II”. This seems to indicate that the sct-2 mode does not induce additional flaws to a
cipher but on the contrary results in an extra protection coming from the fact that the attacker
cannot access the decryption primitive.

To further support that the mode sct-2 is trusted by the community, we recall here that
Deoxys-II was selected after a 5-year process as the first choice for use case 3 ("Defense in
depth") in the final Caesar portfolio [CAE].

Security Claims for the Modes

Our security claims for the different variants of Lilliput-AE are provided in Table 4.6.
The bounds are given in the case of a tag size 𝜏 ≥ 𝑛. Should a smaller tag size be used, the

security claims will drop according to 𝜏 . We derived the security bounds from the security proofs
of Θcb3 [KR11b] and sct [PS16] and we refer to them for more details.

3These three results have been recently merged together in [IIMP19]

85

Chapter 4. Lilliput-AE: a nist Proposal

Security (bits)
Goal (nonce-respecting case) Lilliput-I Lilliput-II

Key recovery 𝑘 𝑘
Confidentiality for the plaintext 𝑛 𝑛− 1

Integrity for the plaintext 𝑛 𝑛− 1
Integrity for the associated data 𝑛 𝑛− 1

Security (bits)
Goal (nonce-misuse case) Lilliput-I Lilliput-II

Key recovery 𝑘 𝑘
Confidentiality for the plaintext none 𝑛/2

Integrity for the plaintext none 𝑛/2
Integrity for the associated data none 𝑛/2

Table 4.6: Security goals of Lilliput-AE in the nonce-respecting case and in the nonce-misuse
case.

4.3.4 Security Analysis of Lilliput-TBC

We analyze the security of Lilliput-TBC regarding classical attacks in the unknown key model
and also in the related-key model always considering the related tweak model. We will place
ourselves for all the attacks in the so-called “paranoid” ’ case, where the worst case is always
envisaged even if it could not be reached.

Thus, we divide this section in the following way: we first consider differential/linear crypt-
analysis, thus, extending those first results to the case of related-key boomerang attacks and then,
we give overall bounds for the so-called structural attacks that include impossible differential
attacks, zero-correlation attacks, integral attacks and meet-in-the-middle attacks. Then, we take
a particular attention on the following special attacks: division property, subspace cryptanalysis,
algebraic attack.

Thus, we will first introduce the following bounds that will be used in the rest of this section:

∙ As the full diffusion is reached after 𝑑 = 4 rounds for Lilliput-TBC, it means that no
structural distinguisher can be constructed for more than 2𝑑+ 2 rounds (see [BMT14] for a
detailed analysis and the security proofs).

∙ We will also always consider that the number of rounds that can be added to the best
distinguisher for the key recovery part at the beginning is equal to 𝑑 and at the end is also
equal to 𝑑. Indeed, if a property is found on a single byte at the beginning or at the end of
the distinguisher then after 𝑑 rounds, all the input/output bytes will be influenced, so a key
recovery could not exceed those bounds.

∙ As the tweakey schedule is fully linear and based on the xor of elements of a Vandermonde
matrix, it means that by reversing the linear system, one is able to find in the related-
tweak/related-key models (𝑝− 1) cancellations (when 𝑝 lanes are considered) placed at the
best for the attacker.

First, let us precise that to prevent slide attacks [BW99] and as usually done in other tweakable

86

4.3. Design Rationale and Security Analysis

block cipher proposals, different round constants are added to each subtweakey during the tweakey
schedule process. So, we consider Lilliput-TBC immune to slide attacks.

Differential / Linear Cryptanalysis

To prove the resistance of Lilliput-TBC against differential and linear cryptanalysis, we give in
Table 4.7 the lower bounds on the minimal number of active S-boxes in the single tweakey model
considering no difference in the tweak. Those bounds partly fit with the ones given in [ST16] for
the block cipher Lilliput. We have obtained those results using Constraint Programming up to
20 rounds in the single tweakey model. Due to the complexity of the tweakey schedule, we could
not derive bounds for the related tweakey models (note that the related tweakey models are not
considered for linear cryptanalysis). However, we could place ourselves in the worst case saying
that authorizing a particular difference in a single lane 𝑖 means that the results given in Table 4.7
on 𝑟 rounds apply for 𝑟+ 2 rounds, in two lanes 𝑖 and 𝑗 means that the results given in Table 4.7
on 𝑟 rounds apply for 𝑟 + 3 rounds, and so on up to 𝑝 lanes are activated.

Moreover, we use here the fact that, as mentioned in Section 4.3.2, we have 𝛿 = 2−5 and
ℒ = 64 for the chosen S-box.

Thus, with this reasoning, we could derive the following bounds for the different key lengths
on the best differential/linear attacks:

∙ Lilliput-TBC-I-128 (𝑡 = 192, 𝑘 = 128):

– Best differential distinguisher on 13 rounds when no difference are introduced at all
in the tweakey. Best possible differential attack on 13 + 𝑑+ 𝑑 = 13 + 8 = 21 rounds
in the same context. If a difference is introduced in 𝑏 lanes, then the best attack is
on 21 + 𝑏+ 1 rounds, leading to the best possible differential attack when the 𝑝 lanes
have differences equal to 21 + 5 + 1 = 27 rounds.

– With the same reasoning, the best linear distinguisher is on 16 rounds. Then, the best
possible linear attack is on 16 + 𝑑+ 𝑑 = 16 + 8 = 24 rounds.

∙ Lilliput-TBC-I-192 (𝑡 = 192, 𝑘 = 192):

– Best differential distinguisher on 17 rounds when no difference are introduced at all
in the tweakey. Best possible differential attack on 13 + 𝑑+ 𝑑 = 17 + 8 = 25 rounds
in the same context. If a difference is introduced in 𝑏 lanes, then the best attack is
on 25 + 𝑏+ 1 rounds, leading to the best possible differential attack when the 𝑝 lanes
have differences equal to 25 + 6 + 1 = 32 rounds.

– With the same reasoning, the best linear distinguisher is on 23 rounds (extrapolating
the results of Table 4.7 up to 48 active S-boxes). Then, the best possible linear attack
is on 23 + 𝑑+ 𝑑 = 23 + 8 = 31 rounds.

∙ Lilliput-TBC-I-256 (𝑡 = 192, 𝑘 = 256):

– Best differential distinguisher on 24 rounds when no difference are introduced at all in
the tweakey (always extrapolating the results of Table 4.7 up to 51 active S-boxes).
Best possible differential attack on 24+𝑑+𝑑 = 24+8 = 32 rounds in the same context.
If, a difference is introduced in 𝑏 lanes, then the best attack is on 32 + 𝑏+ 1 rounds,
leading to the best possible differential attack when the 𝑝 lanes have differences equal
to 32 + 7 + 1 = 40 rounds.

87

Chapter 4. Lilliput-AE: a nist Proposal

– With the same reasoning, the best linear distinguisher is on 30 rounds (extrapolating
the results of Table 4.7 up to 64 active S-boxes). Then, the best possible linear attack
is on 30 + 𝑑+ 𝑑 = 30 + 8 = 38 rounds.

∙ Lilliput-TBC-II-128 (𝑡 = 128, 𝑘 = 128): The bound for the differential distinguisher
is the same than the one given for Lilliput-TBC-I-192: the best differential attack
works on 21 rounds for the single tweakey model and on 26 rounds when the 𝑝 lanes have
differences. The bound for the linear cryptanalysis is the same than the one given for
Lilliput-TBC-I-192: 24 rounds.

∙ Lilliput-TBC-II-192 (𝑡 = 128, 𝑘 = 192): The bound for the differential distinguisher
is the same than the one given for Lilliput-TBC-I-192: the best differential attack
works on 25 rounds for the single tweakey model and on 31 rounds when the 𝑝 lanes have
differences. The bound for the linear cryptanalysis is the same than the one given for
Lilliput-TBC-I-192: 31 rounds.

∙ Lilliput-TBC-II-256 (𝑡 = 128, 𝑘 = 256): The bound for the differential distinguisher
is the same than the one given for Lilliput-TBC-I-256: the best differential attack
works on 32 rounds for the single tweakey model and on 39 rounds when the 𝑝 lanes have
differences. The bound for the linear cryptanalysis is the same than the one given for
Lilliput-TBC-I-256: 38 rounds.

Table 4.7: Minimal number of active S-boxes for every round. 𝐴𝑆𝐷 corresponds to the minimal
number of S-boxes reached for a differential attack. 𝐴𝑆𝐿 corresponds to the minimal number of
S-boxes reached for a linear attack.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
𝐴𝑆𝐷 0 1 2 3 5 9 12 15 17 19 22 24 25 28 29 31 34 40 41 43
𝐴𝑆𝐿 0 1 2 3 5 8 12 13 15 17 19 22 25 27 30 32 34 38 40 42

Related Tweakey Boomerang Attacks

As the attacker could introduce differences both in the tweak and in the key and as our tweakey
schedule is linear and could be completely computed according the introduced differences, we
could imagine that in a related tweakey boomerang attack, the attacker could find a forward
differential trail with (𝑝 − 1) rounds containing no difference and could also find a backward
differential trail with (𝑝− 1) rounds without difference. Thus, always considering that the key
recovery part at the top of the related tweakey boomerang distinguisher has 𝑑 = 4 rounds and also
𝑑 = 4 rounds at the bottom, we could construct a related tweakey boomerang attack containing
2 · (𝑝− 1) + 8 rounds at the beginning and at the end, and 𝑏 rounds in its middle part.

Let us determine how many rounds is 𝑏 for the different key lengths and considering that
between the first differential trail on 𝐸0 and the second differential trail on 𝐸1 with 𝑒 = 𝐸1 ∘ 𝐸0,
we have 2 rounds for free, one because the best coefficient of the BCT is equal to 1 and one because
Lilliput-TBC is a Feistel-like scheme. Thus, as in a related tweakey boomerang attack, we
associated the probability 𝑝 of the differential trail for 𝐸0 and 𝑞 for the differential trail for 𝐸1.
Thus, we expect that the overall probability for 𝑏− 2 rounds is 𝑝2𝑞2.

88

4.3. Design Rationale and Security Analysis

Thus, for a 256-bit key, we want 𝑝2𝑞2 ≤ 2−256 considering that using several keys and several
tweaks we could go beyond the full codebook limit. This leads to 𝑝 ≤ 2−64 considering that
𝑝 = 𝑞. Thus, referring to Table 4.7 with 𝛿𝑆 = 2−5, the differential trail for 𝐸0 has at most
64/5 = 12.8 active S-boxes leading to a differential propagating on at most 7 rounds. We apply
the same reasoning for 𝐸1. Thus, the maximal number of rounds a related tweakey boomerang
attack could reach is equal to 7 + 7 + 8 + 2 · (𝑝− 1) + 2 = 36 for Lilliput-TBC-I-256 and to
7 + 7 + 8 + 2 · (𝑝− 1) + 2 = 34 for Lilliput-TBC-II-256.

Thus, for a 192-bit key, we want 𝑝2𝑞2 ≤ 2−192. This leads to 𝑝 ≤ 2−48 considering that
𝑝 = 𝑞 and to 48/5 = 9.6 active S-boxes for both 𝐸0 and 𝐸1 leading to a differential propagating
on at most 6 rounds. Thus, the maximal number of rounds a related tweakey boomerang
attack could reach is equal to 6 + 6 + 8 + 2 · (𝑝− 1) + 2 = 32 for Lilliput-TBC-I-192 and to
6 + 6 + 8 + 2 · (𝑝− 1) + 2 = 30 for Lilliput-TBC-II-192.

Thus, for a 128-bit key, we want 𝑝2𝑞2 ≤ 2−128. This leads to 𝑝 ≤ 2−32 considering that
𝑝 = 𝑞 and to 32/5 = 6.4 active S-boxes for both 𝐸0 and 𝐸1 leading to a differential propagating
on at most 5 rounds. Thus, the maximal number of rounds a related tweakey boomerang
attack could reach is equal to 5 + 5 + 8 + 2 · (𝑝− 1) + 2 = 28 for Lilliput-TBC-I-128 and to
5 + 5 + 8 + 2 · (𝑝− 1) + 2 = 26 for Lilliput-TBC-II-128.

Structural Attacks

In this Subsection, we consider all the so-called structural attacks which include impossible
differential attacks [BBS99], zero-correlation attacks [BGW+14], integral attacks [DKR97] and
meet-in-the-middle attacks [DS08]. The security analysis of those attacks mainly depend on the
diffusion delay 𝑑 of the scheme as shown in [BMT14, SM10]. Indeed, no distinguisher could be
found for structural attacks beyond 2𝑑+ 2 rounds as full diffusion is reached. Those notions are
also mainly linked with the computation of the super-pseudo random permutation advantage of
the underlying scheme as shown in [HR10, BMT14].

Thus, in the single tweakey model where no difference at all is injected through the tweakey
schedule, the best distinguisher could be constructed on 2𝑑+ 2 rounds. To complete the attack,
we could add for the key recovery part 𝑑 rounds at the top of the distinguisher and 𝑑 rounds at
the bottom leading to a structural attack with a maximum of 4𝑑+ 2 rounds. For all instances of
Lilliput-TBC, this leads to the possibility of covering at most 18 rounds for all the structural
attacks considered here. Note that this bound is overestimated compared to the one provided
in [ST17] concerning the particular case of an impossible differential attack on the block cipher
Lilliput.

Moreover, in the related tweakey model where we consider that an adversary can control
at most the content of 𝑝 lanes, the adversary could directly in this context attack 4𝑑 + 2 + 𝑝
rounds at most. This leads to the following upper bounds on the possible number of attacked
rounds for the 6 instances of Lilliput-TBC: 22 rounds for Lilliput-TBC-II-128, 23 rounds
for Lilliput-TBC-II-192 and Lilliput-TBC-I-128, 24 rounds for Lilliput-TBC-II-256 and
Lilliput-TBC-I-192, 25 rounds for Lilliput-TBC-I-256.

Division Property

The division property was proposed by Todo [Tod15b] as a generalization of the integral property
to correctly evaluate higher-order integral property. The best division distinguisher described
in [ST18] on the block cipher Lilliput is on 13 rounds leading to a key recovery attack on 17
rounds in the single tweakey model. Note that the Linear procedure presented in Algorithm

89

Chapter 4. Lilliput-AE: a nist Proposal

1 of [ST18] is the same for Lilliput-TBC, only the NonLinear part diverges in the way to
compute the sets. The distinguisher presented in [ST18] studies an integral property on 63 input
bits and on 1 output bit that completely maximize the possible number of implied bits. Thus, we
conjecture that there is no distinguisher that exploits division properties on more than 26 rounds
of Lilliput-TBC as in this last case, the number of possible input bits implied in a division
property is doubled, i.e. equal to 127 with the same procedure describing the linear part. Thus,
we are still confident that our proposals offer a strong security margin regarding this class of
attacks.

Subspace Cryptanalysis

Invariant subspace cryptanalysis uses affine subspaces that are invariant throughout the cipher.
Those attacks work particularly well in the context of simple tweakey/key schedules where the
invariant properties stay valid through the key addition. Thus, to avoid this kind of attacks,
invariant subspaces must be destroyed by the key/tweakey schedule. As the tweakey schedule of
Lilliput-TBC is composed of ring-lfsrs ranging all the possible spaces, we conjecture that our
non-trivial tweakey schedule provide a good protection against those attacks.

However, we give here the 9 linear structures of our S-box, i.e. the list (𝑏, 𝑎, 𝑐) such that
𝑏 · (𝑆(𝑥)⊕ 𝑆(𝑥⊕ 𝑎)) = 𝑐 with 𝑐 a constant: (1, 32, 1), (1, 64, 0), (1, 96, 1), (4, 64, 1), (4, 128, 0),
(4, 192, 1), (5, 64, 1), (5, 160, 1), (5, 224, 0). Note that none of those structures is preserved
through two applications of the S-box.

Thus, with our non-trivial tweakey schedule and the fact that the invariant subspaces deduced
from the linear structures can not be chained for many rounds, we conjecture that Lilliput-TBC
is immune against this kind of attacks.

Algebraic Attacks

Before deducing bounds for algebraic attacks, let us describe the algebraic properties of the
S-box. The S-box has a maximal degree of 6 and a minimal degree of 4. Our S-box could also
be described using 𝑒 = 14 quadratic equations in the 16 input/output variables over 𝐺𝐹 (2).
Thus, from Table 4.7, we could see that for 13 rounds, we have 26 active S-boxes, it means
that, from this bound the number of induced variables by the algebraic expression of the cipher
Lilliput-TBC is greater than the block size.

Moreover, as our S-box 𝑆 could be described with 14 quadratic equations in 16 variables, it
means that the number of quadratic equations induced by a round is 14 × 8 = 112 quadratic
equations in 16× 8 = 128 variables and for 32 rounds of Lilliput-TBC, we thus obtain 3584
quadratic equations in 4096 variables. Thus, we obtain an under-determined system with more
variables than for the Aes.

Using those arguments, we conjecture that Lilliput-TBC is immune against algebraic
attacks.

Differential Fault Analysis in Middle Rounds

We want to protect Lilliput-TBC against differential fault analysis. Such attacks consist in
injecting faults in one of the last rounds of the encryption, and exploit pairs of faulty and correct
ciphertexts. A common countermeasure consists in doubling the execution of a few last rounds in
order to detect a fault. In the case of a fault injection – unless the attacker is able to inject twice
the same fault in a very short period of time – the doubling results in two ciphertexts, one faulty
and the other not. Such a result is detected and no output is given. In order to be detected, the

90

4.3. Design Rationale and Security Analysis

fault must be injected during the rounds that are doubled. If a fault occurs before, the faulty
state is copied and processed twice, resulting in two identical faulty ciphertexts which will be
outputted, making the countermeasure ineffective. For this reason, it is important to protect
enough rounds to prevent such attacks. It is also important to evaluate closely the number of
rounds to protect as doubling increases time computation or surface area.

We analyze how much rounds must be protected in order to prevent the attack from Ri-
vain [Riv09] adapted to Lilliput-TBC. This attack takes advantage of the Feistel scheme in
order to inject fault in middle rounds and observe differential distributions in the last one.

As Lilliput-TBC is based on a Feistel scheme, we will denote the state at output of round 𝑖
as (𝐿𝑖, 𝑅𝑖), 𝐿𝑖 and 𝑅𝑖 being its 64-bit left and right parts respectively4. Hence, the plaintext is
(𝐿0, 𝑅0), and the ciphertext (𝐿𝑟, 𝑅𝑟). The fact that the number of rounds 𝑟 changes with the
mode used does not change anything about the following results, as 𝑟 is always greater than the
number of rounds to protect. Notice that the subtweakey byte used in each non linear function
𝐹𝑗 of Lilliput-TBC (0 ≤ 𝑗 ≤ 7) is the xor of a known constant and 𝑝 byte values (4 ≤ 𝑝 ≤ 7)
that come from some known tweak-dependent lanes and other unknown key-dependent ones. The
following analysis focuses on retrieving this subtweakey byte value only, leaving uncertainty about
key-lane bytes. A "successful" attack thus leaves the attacker with 28 pairs of key-dependent
bytes (or 216 triplets or 232 quadruplets, depending on the key length).

As in [Riv09] we only consider faults in the left part of the state as it is the most efficient
way to retrieve the subkey in a Feistel scheme. Injecting a fault 𝜖 in 𝐿𝑖 induces changes in the
next rounds and results in a faulty ciphertext ̃︀𝐶. The correct ciphering of the same plaintext is
denoted 𝐶. The main goal is to observe the distribution of Δ = 𝐿𝑟−1 ⊕ ̃︀𝐿𝑟−1, which is the xor
of both left parts of the correct and faulty states before the last round. It is possible to compute
each byte of Δ = (𝛿7, . . . , 𝛿0) as a function of the correct/faulty ciphertexts and a guess 𝑔 on the
corresponding subtweakey byte in the last round. Denoting 𝐿𝑖 = (ℓ𝑖7, . . . , ℓ

𝑖
0) and ̃︀𝐿𝑖 = (̃︀ℓ𝑖7, . . . , ̃︀ℓ𝑖0)

– and similarly with 𝑟𝑖𝑗 and ̃︀𝑟𝑖𝑗 for the right parts – we infer:

𝛿0 = ℓ𝑟0 ⊕ ̃︀ℓ𝑟0 ⊕ 𝑆(𝑟𝑟7 ⊕ 𝑔)⊕ 𝑆(̃︀𝑟𝑟7 ⊕ 𝑔)

𝛿𝑗 = ℓ𝑟𝑗 ⊕ ̃︀ℓ𝑟𝑗 ⊕ 𝑆(𝑟𝑟7−𝑗 ⊕ 𝑔)⊕ 𝑆(̃︀𝑟𝑟7−𝑗 ⊕ 𝑔)⊕ 𝑟𝑟7 ⊕ ̃︀𝑟𝑟7 for 1 ≤ 𝑗 ≤ 6

𝛿7 = ℓ𝑟7 ⊕ ̃︀ℓ𝑟7 ⊕ 𝑆(𝑟𝑟0 ⊕ 𝑔)⊕ 𝑆(̃︀𝑟𝑟0 ⊕ 𝑔)⊕ 𝑟𝑟7 ⊕ ̃︀𝑟𝑟7
⊕ 𝑟𝑟6 ⊕ ̃︀𝑟𝑟6 ⊕ 𝑟𝑟5 ⊕ ̃︀𝑟𝑟5 ⊕ 𝑟𝑟4 ⊕ ̃︀𝑟𝑟4 ⊕ 𝑟𝑟3 ⊕ ̃︀𝑟𝑟3 ⊕ 𝑟𝑟2 ⊕ ̃︀𝑟𝑟2 ⊕ 𝑟𝑟1 ⊕ ̃︀𝑟𝑟1

(4.6)

(4.7)

(4.8)

Depending on the round where the fault is injected, the attacker might be able to know the
distribution of Δ. For example, if a fault 𝜖 is injected in 𝐿𝑟−3, then Δ = 𝜖. If the attacker knows
𝜖, he can check whether the 𝑔-dependent Δ value calculated from the previous equations equals 𝜖
or not, discarding subtweakey candidates that do not. Note that due to the byte oriented scheme
of Lilliput-TBC, the attack can be done on each subtweakey byte independently, allowing to
guess one byte and calculate one 𝛿 byte at a time. For this reason, the rest of the analysis focuses
on a byte 𝛿 rather than on the whole Δ.

If the attacker is able to systematically fault with the same known 𝜖 in earliest rounds, he can
build (in an offline phase) approximations of the theoretic distribution of any 𝛿𝑗 . Given 𝑁 pairs
of correct/faulty ciphertexts (𝐶, ̃︀𝐶)𝑁 , the attack then consists in calculating, for each candidate
𝑔, the corresponding empirical distribution of 𝛿𝑗 and select the one that is the most similar to
the theoretic one. This can be done in a maximum-likelihood manner for instance.

In the case where the attacker is not able to predict the distribution of 𝛿𝑗 , he can still
expect it to be biased for the correct key guess, and to be uniform for others (wrong-key

4With notations of Section 4.2.3 we have 𝐿 = (𝑋15, . . . , 𝑋8) and 𝑅 = (𝑋7, . . . , 𝑋0).

91

Chapter 4. Lilliput-AE: a nist Proposal

assumption). Similarly he can compute the empirical distributions of 𝛿𝑗 and select the one that
is the farthest from the uniform distribution. This can be done with the Squared Euclidean
Imbalance distinguisher for example.

In order to infer the number of rounds to protect, we have considered a strong attacker who
is able to inject bit flips at the bit position of its choice. We then conducted attacks, injecting
faults sooner and sooner until the attack becomes unfeasible.

Simulation Results and Recommendation We have simulated the differential fault analysis
where a bit flip fault is injected at a precise round 𝑟−𝑠 and at a chosen bit position 𝑏 on Lilliput-
TBC-I-1285. We have studied both the non profiled case where the distinguisher is the Squared
Euclidean Imbalance of the observed distribution of 𝛿𝑗 , and the profiled case based on the
maximum-likelihood of this distribution with respect to (an approximation of) the theoretic one.
For sake of clarity, with our notations, when the attacker observes the distribution of byte 𝛿𝑗 , it
helps him to recover the subtweakey byte 𝑅𝑇𝐾7−𝑗 . Our objective is to determine the largest
value of 𝑠 for which we suspect that a fault attack can be realized. The fault bit position 𝑏 is
numbered from 0 to 63 which respectively denote the least significant bit of 𝑋8 = ℓ0 and the
most significant bit of 𝑋15 = ℓ7. For any set of parameters (round gap 𝑠, fault bit position 𝑏,
attacked subtweakey byte position (7− 𝑗), number of faults 𝑁 , profiled/non profiled setting), our
results are expressed as the average success rate on 1000 runs.

We first observed that for 𝑠 ≤ 6, the fault attack is somewhat easy. For 𝑠 = 6, and for
𝑁 = 1000 faults, there always exists a fault bit position for which the success rate is 1.0 for all
positions 𝑗 except for 𝑗 = 7. Note that we have systematically observed that the subtweakkey
byte number 0 (𝑗 = 7) is the most difficult to retrieve. For 𝑗 = 7, the success rate may still be as
large as 0.873 (depending on 𝑏) in the profiled case. An interesting observation is that the success
of the attack greatly depends on the fault bit position. As we consider that the attacker can
choose 𝑏, we think that the relevant criteria is the maximum success rate taken on all 𝑏 = 0 . . . 63
values.

Table 4.8 and Table 4.9 present results for the non-profiled and the profiled settings respectively.
We have considered a number of faults𝑁 belonging to the set {103, 3.103, 104, 3.104, 105, 3.105, 106,
3.106, 107} for 𝑠 = 7, and to the set {105, 3.105, 106, 3.106, 107} for 𝑠 = 8. Without surprise, one
can observe that the profiled attack is more efficient than the non-profiled one. For 𝑠 = 7 all
subtweakey bytes except for 𝑗 = 7 can be retrieved with about 105 faults. Even with only about
3000 faults two subtweakey bytes (for 𝑗 = 1 and 𝑗 = 6) can be recovered. We also observe that
for 𝑠 = 8 the attack does not work, even in the profiled case and even with ten millions faults,
whatever the bit fault position and whatever the attacked byte.

Based on our simulation results, we recommend to protect Lilliput-TBC against differential
fault analysis by doubling the execution of a minimum of seven last rounds.

Security Evaluation Summary

Table 4.10 gives a security evaluation summary for all the instances of Lilliput-TBC. From this
table, we are able to say that each instance has a sufficient security margin (given in the last
column).

Surprisingly, classical attacks such as differential and linear attacks reach more rounds than
structural attacks for Lilliput-TBC. This is mainly linked with the choice of a Feistel-like
scheme with a good diffusion.

5We guess that similar results would have been obtained for other versions.

92

4.3. Design Rationale and Security Analysis

round faults attacked subtweakey byte : 𝑅𝑇𝐾7−𝑗

𝑗=0 𝑗=1 𝑗=2 𝑗=3 𝑗=4 𝑗=5 𝑗=6 𝑗=7
𝑠 = 6 103 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.032

𝑠 = 7

103 0.009 0.014 0.011 0.008 0.010 0.008 0.008 0.011
3.103 0.008 0.078 0.010 0.009 0.011 0.009 0.021 0.008
104 0.009 0.523 0.027 0.012 0.010 0.010 0.160 0.008
3.104 0.022 0.764 0.303 0.030 0.013 0.011 0.684 0.011
105 0.381 1.0 0.998 0.352 0.017 0.020 0.994 0.009
3.105 1.0 1.0 1.0 0.506 0.064 0.130 1.0 0.009
106 1.0 1.0 1.0 0.891 0.666 0.878 1.0 0.010
3.106 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.008
107 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.008

𝑠 = 8

105 0.010 0.008 0.011 0.011 0.008 0.009 0.012 0.009
3.105 0.008 0.011 0.008 0.008 0.009 0.008 0.008 0.009
106 0.009 0.009 0.010 0.013 0.010 0.012 0.008 0.009
3.106 0.008 0.008 0.011 0.011 0.010 0.008 0.010 0.009
107 0.012 0.009 0.009 0.008 0.009 0.008 0.008 0.011

Table 4.8: Experimental success rate of non profiled (Squared Euclidean Imbalance) differential
fault analysis

round faults attacked subtweakey byte : 𝑅𝑇𝐾7−𝑗

𝑗=0 𝑗=1 𝑗=2 𝑗=3 𝑗=4 𝑗=5 𝑗=6 𝑗=7
𝑠 = 6 103 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.837

𝑠 = 7

103 0.036 0.448 0.076 0.023 0.012 0.013 0.226 0.009
3.103 0.083 0.730 0.275 0.076 0.019 0.019 0.668 0.010
104 0.336 0.990 0.825 0.291 0.046 0.053 0.961 0.009
3.104 0.875 1.0 1.0 0.555 0.113 0.180 1.0 0.009
105 1.0 1.0 1.0 0.728 0.497 0.669 1.0 0.012
3.105 1.0 1.0 1.0 0.992 0.965 0.992 1.0 0.010
106 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.011
3.106 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.009
107 - - - - - - - -

𝑠 = 8

105 0.010 0.007 0.009 0.007 0.009 0.011 0.010 0.011
3.105 0.009 0.009 0.009 0.009 0.009 0.007 0.007 0.009
106 0.009 0.012 0.008 0.011 0.010 0.010 0.009 0.011
3.106 0.009 0.009 0.008 0.008 0.009 0.010 0.009 0.010
107 0.009 0.008 0.011 0.008 0.010 0.009 0.008 0.012

Table 4.9: Experimental success rate of profiled (Maximum Likelihood) differential fault analysis

93

Chapter 4. Lilliput-AE: a nist Proposal

STKM RTKM Nb rounds
(𝑟)

Sec. Margin
(in rounds)Diff. Lin. Struct. Diff. Lin. RTKB Struct.

Lilliput-TBC-I-128 21 24 18 27 24 28 23 32 4
Lilliput-TBC-I-192 25 31 18 32 31 32 24 36 4
Lilliput-TBC-I-256 32 38 18 40 38 36 25 42 2
Lilliput-TBC-II-128 21 24 18 26 24 26 22 32 6
Lilliput-TBC-II-192 25 31 18 31 31 30 23 36 5
Lilliput-TBC-II-256 32 38 18 39 38 34 24 42 3

Table 4.10: Security Evaluation summary (“paranoid” case). STKM means “Single Tweakey
Model”, RTKM means “Related Tweakey Model” and RTKB means “Related Tweakey Boomerang
attack”.

4.4 Implementations

Lilliput-AE is suited to be implemented efficiently on a wide range of processors (especially
those embedded in iot platforms) and in hardware. This section will provide insights on efficient
implementation methods, especially on 8-bit processors where Lilliput-AE is by design well
adapted due to its byte-oriented nature. Many good properties on 8-bit platforms are also valid
on 16-bit and 32-bit platforms.

4.4.1 Software Implementations

In this section, we give some possible variants for implementing Lilliput-AE. We take as reference
iot platforms those from the Felics (Fair Evaluation of LIghtweight Cryptographic Systems)
framework [DCK+15]: 8-bit Atmel avr atmega128, 16-bit Texas Instruments msp430f1611 and
32-bit Arduino Due arm Cortex-M3. When useful, binary code size, extscram, and execution
time optimizations will be discussed.

On an 8-bit processor, Lilliput-AE can be programmed by simply implementing the different
component transformations.

Round Function OneRoundEGFN

If we look at the OneRoundEGFN the round function, NonLinearLayer function is only made of
S-boxes computation, with previous subtweakey addition. LinearLayer function is just successive
byte additions on 𝑥15 followed by byte additions on most significant bytes of OneRoundEGFN
internal state. Finally, a byte-oriented permutation, PermutationLayer, is computed.

A straightforward implementation is then easy to implement on 8-bit processors. The
implementation of all the 𝐹𝑖 functions requires a table of 256 bytes. Since this table is fixed, it
can be easily stored in eeprom data. As mentioned in Section 4.3.2, 𝑆 has been chosen to be
easily masked in hardware and software.

Concerning code size, OneRoundEGFN can be easily computed with loops in order to save
rom program space. For example, Algorithm 5 shows that NonLinearLayer only needs one
additional intermediate register in total to store the successive results of 𝑆𝐾7−𝑖 ⊕ 𝑥7−𝑖 and the 𝑆
computation on it: ram stack usage is then minimal.

Similarly, Algorithm 6 shows that LinearLayer can be also implemented by XOR additions
and accumulations.

94

4.4. Implementations

Algorithm 5 𝑥8+𝑖 computation in Non-Linear Layer

for 𝑖 = 0 to 7 do
𝑥8+𝑖 ← 𝑥8+𝑖 ⊕ 𝑆(𝑆𝐾7−𝑖 ⊕ 𝑥7−𝑖)

return (𝑥15, 𝑥14, · · · , 𝑥8)

Algorithm 6 𝑥8+𝑖 computation in Linear Layer

for 𝑖 = 0 to 7 do
𝑥15 ← 𝑥15 ⊕ 𝑥𝑖

for 𝑖 = 0 to 6 do
𝑥14−𝑖 ← 𝑥14−𝑖 ⊕ 𝑥7

return (𝑥15, 𝑥14, · · · , 𝑥8)

Finally, PermutationLayer can be simply implemented as a series of MOV operations. For
example, in encryption mode: 𝑥13 ← 𝑥0, 𝑥9 ← 𝑥1, · · · , 𝑥7 ← 𝑥15.

Overall, a straightforward computation of OneRoundEGFN (which is the same for every 𝑇𝐾
size) needs 29 XORs (21 in the datapath plus 8 before each S-box computation), 8 accesses in
eeprom memory for S-box computations, and 16 MOV operations for PermutationLayer, i.e.
only 53 operations in total (29 arithmetic operations and 24 memory operations). The footprint
on ram stack, rom program (as discussed earlier in this subsection) and on eeprom data (256
bytes) of OneRoundEGFN is very lightweight for 8-bit platforms.

Tweakey Schedule

The tweakey schedule can be decomposed into two distinct functions:

∙ the extraction function, which is called 𝑟 times to produce subtweakey 𝑅𝑇𝐾𝑖 from the
tweakey state 𝑇𝐾𝑖, ∀𝑖 ∈ {0, · · · , 𝑟 − 1},

∙ the update function, which is called 𝑟 − 1 times to compute 𝑇𝐾𝑖+1 from 𝑇𝐾𝑖, ∀𝑖 ∈
{0, · · · , 𝑟 − 2}.

The update function consists in one multiplication 𝛼𝑖 per lane. Each of these multiplications
takes a different amount of operations to complete. Table 4.11 summarizes which multiplications
are needed for each variant of Lilliput-TBC.

The extraction function consists in:

∙ xoring all 𝑝 64-bit lanes together bytewise: this requires (𝑝−1) 64-bit XORs, hence 8×(𝑝−1)
8-bit XORs,

Name 𝑘 𝑡 𝑝 Required 𝛼𝑖

Lilliput-TBC-I-128 128 192 5 𝛼0 to 𝛼4

Lilliput-TBC-I-192 192 192 6 𝛼0 to 𝛼5

Lilliput-TBC-I-256 256 192 7 𝛼0 to 𝛼6

Lilliput-TBC-II-128 128 128 4 𝛼0 to 𝛼3

Lilliput-TBC-II-192 192 128 5 𝛼0 to 𝛼4

Lilliput-TBC-II-256 256 128 6 𝛼0 to 𝛼5

Table 4.11: Multiplications needed for each variant of Lilliput-TBC

95

Chapter 4. Lilliput-AE: a nist Proposal

∙ xoring the resulting 64-bit word with the round constant 𝐶𝑖: this requires a single 8-bit
XOR, since 𝐶𝑖 fits on 8 bits.

This function thus requires 8× (𝑝− 1) + 1 XOR operations.

4-lane case The following multiplications are needed to process four lanes: 𝛼0 = 𝑀 , 𝛼1 = 𝑀2,
𝛼2 = 𝑀3, and 𝛼3 = 𝑀4. As we will do for further number of lanes, we will develop the matrix
relations to evaluate precisely the number of required operations.

Multiplication 𝛼0 of vector 𝑥 = (𝑥7, 𝑥6, · · · , 𝑥0)𝑡 by matrix 𝑀 can be expressed as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦7
𝑦6
𝑦5
𝑦4
𝑦3
𝑦2
𝑦1
𝑦0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥6
𝑥5

𝑥5 ≪ 3⊕ 𝑥4
𝑥4 ≫ 3⊕ 𝑥3

𝑥2
𝑥6 ≪ 2⊕ 𝑥1

𝑥0
𝑥7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Multiplication 𝛼0 will thus require 14 operations in total:

∙ 3 shift operations,

∙ 3 XORs,

∙ 8 assignments.

Multiplication 𝛼1 is represented by matrix 𝑀2, which corresponds to two successive applica-
tions of matrix 𝑀 . Let us denote 𝑀 · 𝑥 as 𝑎 = (𝑎7, · · · , 𝑎0)𝑡:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎7
𝑎6
𝑎5
𝑎4
𝑎3
𝑎2
𝑎1
𝑎0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥6
𝑥5

𝑥5 ≪ 3⊕ 𝑥4
𝑥4 ≫ 3⊕ 𝑥3

𝑥2
𝑥6 ≪ 2⊕ 𝑥1

𝑥0
𝑥7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑦 = 𝑀2 · 𝑥 = 𝑀 · 𝑎 can then be expressed as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦7
𝑦6
𝑦5
𝑦4
𝑦3
𝑦2
𝑦1
𝑦0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎6
𝑎5

𝑎5 ≪ 3⊕ 𝑎4
𝑎4 ≫ 3⊕ 𝑎3

𝑎2
𝑎6 ≪ 2⊕ 𝑎1

𝑎0
𝑎7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

96

4.4. Implementations

Some components of 𝑎 are simply permuted components of 𝑥; others (namely, 𝑎5, 𝑎4 and 𝑎2)
result from a linear combination of components of 𝑥. Some of these combinations contribute to
more than one components of 𝑦: specifically, 𝑎5 = 𝑥5 ≪ 3⊕ 𝑥4 and 𝑎4 = 𝑥4 ≫ 3⊕ 𝑥3.

To minimize the number of operations, we can thus spend some registers to store 𝑎5 and 𝑎4.
The final expression for 𝑦 = 𝑀2 · 𝑥 then becomes:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦7
𝑦6
𝑦5
𝑦4
𝑦3
𝑦2
𝑦1
𝑦0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎6
𝑎5

𝑎5 ≪ 3⊕ 𝑎4
𝑎4 ≫ 3⊕ 𝑎3

𝑎2
𝑎6 ≪ 2⊕ 𝑎1

𝑎0
𝑎7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥5
𝑎5

𝑎5 ≪ 3⊕ 𝑎4
𝑎4 ≫ 3⊕ 𝑥2
𝑥6 ≪ 2⊕ 𝑥1
𝑥5 ≪ 2⊕ 𝑥0

𝑥7
𝑥6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Multiplication 𝛼1 will thus require 22 operations in total:

∙ 2 XORs, 2 shifts and 2 assignments for 𝑎5 and 𝑎4,

∙ 4 XORs, 4 shifts and 8 byte assignments.

Multiplication 𝛼2 is represented by matrix 𝑀3, which corresponds to three successive applica-
tions of matrix 𝑀 . Let us denote 𝑀2 · 𝑥 as 𝑏 = (𝑏7, · · · , 𝑏0)𝑡:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏7
𝑏6
𝑏5
𝑏4
𝑏3
𝑏2
𝑏1
𝑏0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎6
𝑎5

𝑎5 ≪ 3⊕ 𝑎4
𝑎4 ≫ 3⊕ 𝑎3

𝑎2
𝑎6 ≪ 2⊕ 𝑎1

𝑎0
𝑎7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑦 = 𝑀3 · 𝑥 = 𝑀 · 𝑏 can then be expressed as:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦7
𝑦6
𝑦5
𝑦4
𝑦3
𝑦2
𝑦1
𝑦0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏6
𝑏5

𝑏5 ≪ 3⊕ 𝑏4
𝑏4 ≫ 3⊕ 𝑏3

𝑏2
𝑏6 ≪ 2⊕ 𝑏1

𝑏0
𝑏7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

As with 𝛼1, we can isolate components of 𝑏 which satisfy the following constraints:

1. they result from a linear combination of more than one components of 𝑎,

2. they contribute to more than one components of 𝑦.

𝑏5, 𝑏4 and 𝑏2 satisfy constraint 1; among those, only 𝑏5 = 𝑎5 ≪ 3⊕ 𝑎4 and 𝑏4 = 𝑎4 ≫ 3⊕ 𝑎3 =
𝑎4 ≫ 3⊕ 𝑥2 satisfy constraint 2. To implement 𝛼2 using as few operations as necessary, we thus
need to:

97

Chapter 4. Lilliput-AE: a nist Proposal

1. pre-compute 𝑎5 and 𝑎4,

2. pre-compute 𝑏5 and 𝑏4,

3. compute 𝑦 as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦7
𝑦6
𝑦5
𝑦4
𝑦3
𝑦2
𝑦1
𝑦0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏6
𝑏5

𝑏5 ≪ 3⊕ 𝑏4
𝑏4 ≫ 3⊕ 𝑏3

𝑏2
𝑏6 ≪ 2⊕ 𝑏1

𝑏0
𝑏7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎5
𝑏5

𝑏5 ≪ 3⊕ 𝑏4
𝑏4 ≫ 3⊕ 𝑎2
𝑎6 ≪ 2⊕ 𝑎1
𝑎5 ≪ 2⊕ 𝑎0

𝑎7
𝑎6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎5
𝑏5

𝑏5 ≪ 3⊕ 𝑏4
𝑏4 ≫ 3⊕ 𝑥6 ≪ 2⊕ 𝑥1

𝑥5 ≪ 2⊕ 𝑥0
𝑎5 ≪ 2⊕ 𝑥7

𝑥6
𝑥5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Multiplication 𝛼2 will thus require 30 operations in total:

∙ 2 XORs, 2 shifts and 2 assignments for 𝑎5 and 𝑎4,

∙ 2 XORs, 2 shifts and 2 assignments for 𝑏5 and 𝑏4,

∙ 5 XORs, 5 shifts and 8 byte assignments.

Multiplication 𝛼3 is represented by matrix 𝑀4, which corresponds to four successive applica-
tions of matrix 𝑀 . Let us denote 𝑀3 · 𝑥 as 𝑐 = (𝑐7, · · · , 𝑐0)𝑡:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐7
𝑐6
𝑐5
𝑐4
𝑐3
𝑐2
𝑐1
𝑐0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏6
𝑏5

𝑏5 ≪ 3⊕ 𝑏4
𝑏4 ≫ 3⊕ 𝑏3

𝑏2
𝑏6 ≪ 2⊕ 𝑏1

𝑏0
𝑏7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑦 = 𝑀4 · 𝑥 = 𝑀 · 𝑐 can then be expressed as:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦7
𝑦6
𝑦5
𝑦4
𝑦3
𝑦2
𝑦1
𝑦0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐6
𝑐5

𝑐5 ≪ 3⊕ 𝑐4
𝑐4 ≫ 3⊕ 𝑐3

𝑐2
𝑐6 ≪ 2⊕ 𝑐1

𝑐0
𝑐7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑐4 and 𝑐5 are the only components of 𝑐 which result from a linear combination of more than one
components of 𝑏, while contributing to more than one components of 𝑦. Therefore, to implement
𝛼3 using as few operations as necessary, we need to:

1. pre-compute 𝑎5 and 𝑎4,

98

4.4. Implementations

2. pre-compute 𝑏5 and 𝑏4,

3. pre-compute 𝑐5 and 𝑐4,

4. compute 𝑦 as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦7
𝑦6
𝑦5
𝑦4
𝑦3
𝑦2
𝑦1
𝑦0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐6
𝑐5

𝑐5 ≪ 3⊕ 𝑐4
𝑐4 ≫ 3⊕ 𝑐3

𝑐2
𝑐6 ≪ 2⊕ 𝑐1

𝑐0
𝑐7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏5
𝑐5

𝑐5 ≪ 3⊕ 𝑐4
𝑐4 ≫ 3⊕ 𝑏2
𝑏6 ≪ 2⊕ 𝑏1
𝑏5 ≪ 2⊕ 𝑏0

𝑏7
𝑏6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏5
𝑐5

𝑐5 ≪ 3⊕ 𝑐4
𝑐4 ≫ 3⊕ 𝑥5 ≪ 2⊕ 𝑥0

𝑎5 ≪ 2⊕ 𝑥7
𝑏5 ≪ 2⊕ 𝑥6

𝑥5
𝑎5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Multiplication 𝛼3 will thus require 39 operations in total:

∙ 2 XORs, 2 shifts and 2 assignments for 𝑎5 and 𝑎4,

∙ 2 XORs, 2 shifts and 2 assignments for 𝑏5 and 𝑏4,

∙ 2 XORs, 3 shifts and 1 assignment for 𝑐4,

∙ 1 XOR, 1 shift and 1 assignment for 𝑐5,

∙ 5 XORs, 5 shifts and 8 byte assignments.

To sum up, for the 4-lane case, the multiplications by 𝛼0, 𝛼1, 𝛼2 and 𝛼3 require 14 + 22 +
30 + 39 = 105 operations in total.

Taking into account the 8× (𝑝− 1) + 1 = 8× 3 + 1 = 25 operations needed for the extraction
function, this leads to 105 + 25 = 130 operations for the whole subtweakey computation.

5-lane case To process five lanes, multiplications 𝛼0 = 𝑀 , 𝛼1 = 𝑀2, 𝛼2 = 𝑀3, 𝛼3 = 𝑀4

(already described) and 𝛼4 = 𝑀𝑅 are needed.
Multiplication 𝛼4 of vector 𝑥 = (𝑥0, 𝑥1, · · · , 𝑥7)𝑡 by matrix 𝑀𝑅 (as explained in Section 4.2.3,

we invert the direction of binary notations when dealing with 𝑀𝑅) can be expressed as:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2

𝑥3 ⊕ 𝑥4 ≪ 3
𝑥4

𝑥5 ⊕ 𝑥6 ≫ 3
𝑥3 ≫ 2⊕ 𝑥6

𝑥7
𝑥0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Multiplication 𝛼4 will thus require 14 operations in total:

∙ 3 XORs and 3 shifts,

∙ 8 byte assignments.

To sum up, for the 5-lane case, the update function will require 105 operations (cf. 4-lane
case) plus 14 operations for 𝛼4, i.e. 119 operations. After adding 8× (5− 1) + 1 = 33 XORs for
the extraction function, we reach 138 operations for the whole subtweakey computation.

99

Chapter 4. Lilliput-AE: a nist Proposal

6-lane case To process six lanes, multiplications 𝛼0 = 𝑀 , 𝛼1 = 𝑀2, 𝛼2 = 𝑀3, 𝛼3 = 𝑀4,
𝛼4 = 𝑀𝑅 (already described) and 𝛼5 = 𝑀2

𝑅 are needed.
Multiplication 𝛼5 of vector 𝑥 = (𝑥0, 𝑥1, · · · , 𝑥7)𝑡 by matrix 𝑀2

𝑅 corresponds to two successive
applications of matrix 𝑀𝑅. Let us denote 𝑀𝑅 · 𝑥 as 𝑎 = (𝑎0, · · · , 𝑎7)𝑡:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎0
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2

𝑥3 ⊕ 𝑥4 ≪ 3
𝑥4

𝑥5 ⊕ 𝑥6 ≫ 3
𝑥3 ≫ 2⊕ 𝑥6

𝑥7
𝑥0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑦 = 𝑀2
𝑅 · 𝑥 = 𝑀𝑅 · 𝑎 can then be expressed as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2

𝑎3 ⊕ 𝑎4 ≪ 3
𝑎4

𝑎5 ⊕ 𝑎6 ≫ 3
𝑎3 ≫ 2⊕ 𝑎6

𝑎7
𝑎0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

As with 𝛼1, 𝛼2 and 𝛼3, we will pre-compute components of 𝑎 which depend on more than
one components of 𝑥 and contribute to more than one components of 𝑦. For 𝛼5, this singles out
𝑎4 = 𝑥5 ⊕ 𝑥6 ≫ 3. We end up with the following expression for 𝑦:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2

𝑎3 ⊕ 𝑎4 ≪ 3
𝑎4

𝑎5 ⊕ 𝑎6 ≫ 3
𝑎3 ≫ 2⊕ 𝑎6

𝑎7
𝑎0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥2
𝑥3 ⊕ 𝑥4 ≪ 3
𝑥4 ⊕ 𝑎4 ≪ 3

𝑎4
𝑥3 ≫ 2⊕ 𝑥6 ⊕ 𝑥7 ≫ 3

𝑥4 ≫ 2⊕ 𝑥7
𝑥0
𝑥1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Multiplication 𝛼5 will thus require 21 operations in total:

∙ 1 XOR, 1 shift and 1 assignment for 𝑎4,

∙ 5 XORs, 5 shifts and 8 byte assignments.

To sum up, for the 6-lane case, the update function will require 119 operations (cf. 5-lane
case) plus 21 operations for 𝛼5, i.e. 140 operations. After adding 8× (6− 1) + 1 = 41 XORs for
the extraction function, we reach 181 operations for the whole subtweakey computation.

100

4.4. Implementations

7-lane case Finally, to process seven lanes, multiplications 𝛼0 = 𝑀 , 𝛼1 = 𝑀2, 𝛼2 = 𝑀3,
𝛼3 = 𝑀4, 𝛼4 = 𝑀𝑅, 𝛼5 = 𝑀2

𝑅 (already described) and 𝛼6 = 𝑀3
𝑅 are needed.

Multiplication 𝛼6 of vector 𝑥 = (𝑥0, 𝑥1, · · · , 𝑥7)𝑡 by matrix 𝑀3
𝑅 corresponds to three successive

applications of 𝑀𝑅. Let us denote 𝑀2
𝑅 · 𝑥 as 𝑏 = (𝑏0, · · · , 𝑏7):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏0
𝑏1
𝑏2
𝑏3
𝑏4
𝑏5
𝑏6
𝑏7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2

𝑎3 ⊕ 𝑎4 ≪ 3
𝑎4

𝑎5 ⊕ 𝑎6 ≫ 3
𝑎3 ≫ 2⊕ 𝑎6

𝑎7
𝑎0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑦 = 𝑀3
𝑅 · 𝑥 = 𝑀𝑅 · 𝑏 can then be expressed as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
𝑏2

𝑏3 ⊕ 𝑏4 ≪ 3
𝑏4

𝑏5 ⊕ 𝑏6 ≫ 3
𝑏3 ≫ 2⊕ 𝑏6

𝑏7
𝑏0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Only 𝑏4 = 𝑎5 ⊕ 𝑎6 ≫ 3 = 𝑥3 ≫ 2⊕ 𝑥6 ⊕ 𝑥7 ≫ 3 depends on more than one components of 𝑎
while contributing to more than one components of 𝑦. To implement 𝛼6 using as few operations
as necessary, we thus need to:

1. pre-compute 𝑎4

2. pre-compute 𝑏4,

3. compute 𝑦 as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
𝑏2

𝑏3 ⊕ 𝑏4 ≪ 3
𝑏4

𝑏5 ⊕ 𝑏6 ≫ 3
𝑏3 ≫ 2⊕ 𝑏6

𝑏7
𝑏0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎2
𝑎3 ⊕ 𝑎4 ≪ 3
𝑎4 ⊕ 𝑏4 ≪ 3

𝑏4
𝑎5 ⊕ 𝑎6 ≫ 3⊕ 𝑎7 ≫ 3

𝑎4 ≫ 2⊕ 𝑎7
𝑎0
𝑎1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥3 ⊕ 𝑥4 ≪ 3
𝑥4 ⊕ 𝑎4 ≪ 3
𝑎4 ⊕ 𝑏4 ≪ 3

𝑏4
𝑥3 ≫ 2⊕ 𝑥6 ⊕ 𝑥7 ≫ 3

𝑎4 ≫ 2⊕ 𝑥0
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Overall, multiplication 𝛼6 will require 28 operations:

∙ 1 XOR, 1 shift and 1 assignment for 𝑎4,

∙ 2 XORs, 2 shifts and 1 assignment for 𝑏4,

101

Chapter 4. Lilliput-AE: a nist Proposal

∙ 6 XORs, 6 shifts and 8 byte assignments.

To sum up, for the 7-lane case, the update function will require 140 operations (cf. 6-lane
case) plus 28 operations for 𝛼6, i.e. 168 operations. After adding 8× (7− 1) + 1 = 49 XORs for
the extraction function, we reach 217 operations for the whole subtweakey computation.

Possible Trade-Offs

Another implementation of the tweakey schedule’s update function can save some program space
at the expense of extra ram usage and latency. To multiply a lane 𝑥 by matrix 𝑀 (resp. 𝑀𝑅)
raised to the power of 𝑛 > 1, one can multiply 𝑥 by 𝑀 (resp. 𝑀𝑅) 𝑛 times, instead of using the
ad-hoc expressions given in Section 4.4.1. This allows the implementer to re-use the code for 𝛼0

(resp. 𝛼4) in order to compute 𝛼1, 𝛼2 and 𝛼3 (resp. 𝛼5 and 𝛼6), although computing and storing
each byte of every 𝑀 𝑖 · 𝑥, ∀𝑖 ∈ [1, 𝑛) requires more cycles and more working memory.

During Lilliput-TBC’s encryption process, either the full tweakey schedule can be run
to pre-compute all 𝑟 subtweakeys before processing the plaintext, or each subtweakey can be
computed on the fly to save extscram. Since the decryption process uses subtweakeys in the
reverse order, the full tweakey schedule must be run before processing the plaintext, in order to
compute the last subtweakey. The implementer can then either

∙ discard all intermediate subtweakeys, and re-compute 𝑅𝑇𝐾𝑖−1 from 𝑅𝑇𝐾𝑖 on the fly; this
requires additional code to implemented the inverted tweakey multiplications, and adds
some latency to the decryption process,

∙ keep all intermediate subtweakeys, which requires more extscram.

Note that there is no such issue with Lilliput-II, since Algorithm 4 does not need Lilliput-
TBC’s decryption process.

16-bit and 32-bit Platforms

Typical implementations of the Lilliput-TBC tweakey schedule and OneRoundEGFN function
map each lane and (left and right) parts of Feistel network to a CPU word, resulting in the state
of Lilliput-AE represented in 6 to 9 words of 64 bits each depending on the number of lanes.

Specifically, the implementation of Lilliput-AE on a 64-bit CPU can exploit 64-bit wide
boolean operations and 64-bit rotations. Thus, the choice of Lilliput-AE favors 64-bit CPUs
and yet remains efficient on 32-bit (and smaller) processors.

For implementing the tweakey schedule on a 32-bit CPU, the 64 bits of a lane should be
distributed to two 32-bit words.

Implementing OneRoundEGFN computation leaves room for optimization on 16-bit and 32-bit
processors. For 16-bit processors case, bytes should be considered and concatenated two-by-two
(𝑥1||𝑥0, 𝑥3||𝑥2, and so on) and then XOR operations can be extended to 16 bits. For 32-bit processors
case, bytes should be considered and concatenated four-by-four (𝑥3||𝑥2||𝑥1||𝑥0, 𝑥7||𝑥6||𝑥5||𝑥4,
and so on) to get the same kind of benefits for 32-bit XOR operations. To ease the schedule of
operations, the end of LinearLayer (Algorithm 7) should be computed before the beginning
(Algorithm 8) to compute repetitive 16-bit or 32-bit XOR operations.

102

4.4. Implementations

Algorithm 7 Linear layer - second loop
for 𝑖 = 0 to 6 do

𝑥14−𝑖 ← 𝑥14−𝑖 ⊕ 𝑥7

Algorithm 8 Linear layer - first loop
for 𝑖 = 0 to 7 do

𝑥15 ← 𝑥15 ⊕ 𝑥𝑖

Performance Benchmarks Summary

In terms of memory footprint, OneRoundEGFN function of Lilliput-TBC can fit easily in the
working memory (internal registers) of any considered processor, without requiring any additional
ram register. For example, 8-bit Atmel avr atmega128 processors implement 32×8-bit registers,
and then, since only 16 internal registers are needed to process the entire internal state, it leaves
room for 16 more available registers for intermediate computations. Concerning the tweakey
schedule, since computations on each lane are executed separately, and at most 4 additional
registers are needed to compute the most complex operation (𝛼3), ram stack consumption is very
low.

Table 4.12 compares the relative performance of a single round of each variant of the Lilliput-
TBC family.

This subsection also showcases comparisons with other lightweight aead algorithms. We chose
to compare Lilliput-AE with submissions to the Caesar [CAE] competition; in particular, we
focused on the final portfolio for use-case 1, which includes Ascon [DEMS16] and Acorn [Wu16].
The features of this specific portfolio [Ber16] align with Lilliput-AE’s own characteristics:

Use Case 1: Lightweight applications (resource constrained environments)
* critical: fits into small hardware area and/or small code for 8-bit CPUs
* desirable: natural ability to protect against side-channel attacks
* desirable: hardware performance, especially energy/bit
* desirable: speed on 8-bit CPUs
* message sizes: usually short (can be under 16 bytes), sometimes longer

A customized version of the Felics framework [FEL] has been developed to evaluate the
code size, ram consumption and execution time of these block ciphers on three microcontrollers:

∙ an 8-bit avr atmega128,

∙ a 16-bit TI msp430,

𝑝 Nb. of operations Cost wrt. 4-lane case
4 158 1
5 191 1.21
6 234 1.48
7 270 1.71

Table 4.12: Relative cost of a single round of Lilliput-TBC ∀𝑝 ∈ [4, 7]. “Nb. of operations” is
the sum of the number of operations for OneRoundEGFN (53, cf. Section 4.4.1) and the subtweakey
computation (cf. Section 4.4.1).

103

Chapter 4. Lilliput-AE: a nist Proposal

∙ a 32-bit Arduino Due with arm Cortex M3.

Our aim is to compare the performance of these block ciphers in a typical iot situation: the
test scenario thus consists in encrypting a single 16-byte message along with 16-byte associated
data. The following compiler options were tested:

∙ -03, to minimize computation time in order to decrease power consumption,

∙ -Os, to reduce code size and thus optimize for low memory footprint.

The Felics framework was run on an Ubuntu 16.04 64-bit desktop with 4 3.5GHz CPUs
and 8GB extscram. The software versions for platform-specific compilers, debuggers and other
such utilities correspond to those distributed by Ubuntu, with the exception of software listed in
Table 4.13.

Platform Software Version Origin

avr
simavr v1.6 Developer release [Pol19]
Avrora 1.7.117-patched Cf. Felics documentation [FEL19]

MSP msp430-GCC 7.3.2.154 Texas Instruments [MSP19]
MSPDebug v0.25 Developer release [Bee19]

arm J-Link Software V6.42f SEGGER [J-L19]

Table 4.13: Software versions for the Felics framework.

The source code for the Caesar algorithms was adapted from the Supercop [SUP] toolkit
in order to comply with Felics’s requirements. This implied, among other things:

∙ replacing platform-specific integer types with the exact-width types defined in stdint.h,

∙ isolating encryption code, decryption code, as well as constants held in read-only memory,
into distinct files,

∙ specifying where buffers should be stored (program memory or extscram) and how they
should be aligned, using Felics-specific macro annotations.

In order to provide a fair assessment of each algorithm’s performance, we looked for imple-
mentations of Ascon and Acorn distributed with Supercop that performed well (i.e. better
than the reference version) for each Felics platform. Table 4.14 sums up which implementations
were considered for each platform.

As for Lilliput-AE, we used the same implementation on all platforms. This implementation,
called felicsref, differs from the reference implementation in the following ways:

∙ in the tweakey schedule, a loop over an array of function pointers has been unrolled manually;
this was found to improve performance along every metric,

∙ instead of pre-computing all 𝑟 round-tweakeys up-front, each round-tweakey is computed
on-the-fly before applying OneRoundEGFN; this saves on ram since instead of storing all 𝑟
round-tweakeys in memory for the whole encryption process, only a single round-tweakey is
stored.

104

4.4. Implementations

Algorithm Platform Implementations

Ascon

avr ref
MSP ref
arm ref, opt32
PC ref, opt64

Acorn

avr 8bitfast
MSP 8bitfast
arm opt1
PC opt1

Table 4.14: Algorithm implementations for each platform

Version CFLAGS Code size (B) ram (B) Execution time (cycles)
Acorn-128 8bitfast -O3 3700 263 287991
Ascon-128 ref -O3 6140 268 191049
Ascon-128a ref -O3 6832 300 163315
Lilliput-I-128 felicsref -O3 6100 266 129093
Lilliput-II-128 felicsref -O3 6062 243 132650
Acorn-128 8bitfast -Os 2850 240 335934
Ascon-128 ref -Os 4322 323 254913
Ascon-128a ref -Os 4340 339 216080
Lilliput-I-128 felicsref -Os 2780 261 250657
Lilliput-II-128 felicsref -Os 2768 229 297992

Table 4.15: Performance results for 128-bit key algorithms on avr atmega128.

Version CFLAGS Code size (B) ram (B) Execution time (cycles)
Acorn-128 8bitfast -O3 3276 274 391983
Ascon-128 ref -O3 8358 290 544075
Ascon-128a ref -O3 8620 306 457998
Lilliput-I-128 felicsref -O3 5760 300 121646
Lilliput-II-128 felicsref -O3 4932 272 144399
Acorn-128 8bitfast -Os 2326 218 381698
Ascon-128 ref -Os 3686 372 567110
Ascon-128a ref -Os 3672 382 475176
Lilliput-I-128 felicsref -Os 2304 260 201075
Lilliput-II-128 felicsref -Os 2234 232 246193

Table 4.16: Performance results for 128-bit key algorithms on msp430f1611.

Table 4.15, Table 4.16, Table 4.17 and Table 4.18 give our results for all 128-key algorithms
on atmega128, msp430, arm and desktop PC respectively. These results showcase performance
for the full encryption process, including key (or tweakey) schedule.

Finally, Table 4.19, Table 4.20, Table 4.21 and Table 4.22 show the performance of the
felicsref version of each member of the Lilliput-AE family.

105

Chapter 4. Lilliput-AE: a nist Proposal

Version CFLAGS Code size (B) ram (B) Execution time (cycles)
Acorn-128 opt1 -O3 7608 808 56288
Ascon-128 opt32 -O3 18912 268 12791
Ascon-128 ref -O3 4080 600 32363
Ascon-128a opt32 -O3 23764 272 11719
Ascon-128a ref -O3 4424 608 27688
Lilliput-I-128 felicsref -O3 4656 444 86293
Lilliput-II-128 felicsref -O3 4684 420 89390
Acorn-128 opt1 -Os 2364 344 44902
Ascon-128 opt32 -Os 16072 240 10221
Ascon-128 ref -Os 1426 472 51036
Ascon-128a opt32 -Os 18996 256 9298
Ascon-128a ref -Os 1408 480 42114
Lilliput-I-128 felicsref -Os 1746 304 185796
Lilliput-II-128 felicsref -Os 1768 272 266409

Table 4.17: Performance results for 128-bit key algorithms on arm Cortex-M3.

Version CFLAGS Code size (B) ram (B) Execution time (cycles)
Acorn-128 opt1 -O3 6122 448 2966
Ascon-128 opt64 -O3 9616 192 1221
Ascon-128 ref -O3 2236 1984 6641
Ascon-128a opt64 -O3 11562 200 1111
Ascon-128a ref -O3 2102 1984 6308
Lilliput-I-128 felicsref -O3 6880 528 10030
Lilliput-II-128 felicsref -O3 6783 528 11816
Acorn-128 opt1 -Os 2564 392 3701
Ascon-128 opt64 -Os 9074 184 1257
Ascon-128 ref -Os 1486 448 3718
Ascon-128a opt64 -Os 10430 180 1164
Ascon-128a ref -Os 1466 448 3598
Lilliput-I-128 felicsref -Os 2906 416 21345
Lilliput-II-128 felicsref -Os 2867 400 24864

Table 4.18: Performance results for 128-bit key algorithms on PC.

4.4.2 Hardware Implementations

Theoretical Results on asic

In this section, we provide theoretical hardware implementation results on asic (Application-
Specific Integrated Circuit) in terms of ges. One ge is the area of a 2-input NAND gate in the
considered cmos technology. It allows to get normalized area and then ease comparisons between
different implementations that use the same cmos technology.

We provide here the global logic gates count for each lanes case, and translate it to the
total number of ges in a given cmos technology. That respectively allows the reader to easily
get estimations for other cmos technologies and get real implementation numbers. The cmos
technology used here is UMCL18G212T3 (cmos 180 nm technology). In this technology, area

106

4.4. Implementations

CFLAGS Code size (B) ram (B) Execution time (cycles)
Lilliput-I-128 -O3 6100 266 129093
Lilliput-I-192 -O3 6190 282 161775
Lilliput-I-256 -O3 6322 298 211347
Lilliput-II-128 -O3 6062 243 132650
Lilliput-II-192 -O3 6004 260 192982
Lilliput-II-256 -O3 6088 276 251050
Lilliput-I-128 -Os 2780 261 250657
Lilliput-I-192 -Os 2926 277 314893
Lilliput-I-256 -Os 3112 293 408907
Lilliput-II-128 -Os 2768 229 297992
Lilliput-II-192 -Os 2880 245 376124
Lilliput-II-256 -Os 3024 261 490172

Table 4.19: Performance of Lilliput-AE on avr atmega128.

CFLAGS Code size (B) ram (B) Execution time (cycles)
Lilliput-I-128 -O3 5760 300 121646
Lilliput-I-192 -O3 5950 316 155267
Lilliput-I-256 -O3 6186 334 207617
Lilliput-II-128 -O3 4932 272 144399
Lilliput-II-192 -O3 5082 288 181715
Lilliput-II-256 -O3 5272 304 240655
Lilliput-I-128 -Os 2304 260 201075
Lilliput-I-192 -Os 2524 288 354297
Lilliput-I-256 -Os 2696 304 465474
Lilliput-II-128 -Os 2234 232 246193
Lilliput-II-192 -Os 2320 248 300677
Lilliput-II-256 -Os 2540 276 550781

Table 4.20: Performance of Lilliput-AE on msp430f1611.

of respectively XOR, NOT, AND gates, and flip-flops are 2.67, 0.67, 1.33 and 5.33 ges. We use
non-scan flip-flops for registers in this estimation. Moreover, control logic (e.g., multiplexers,
finite state machine) is not taken into account, which can underestimate in the end the real
practical results after Place-and-Route process. We also give a relative performance metric, which
gives an estimation of the percentage of circuit area increase (considering the total number of
ges) for each lanes case, with the 4-lane case considered as a reference. We can estimate that one
Lilliput-TBC S-box is equivalent to the total size of 12 AND, 26 XOR and 1 NOT gates, and so:
12× 1.33 + 26× 2.67 + 1× 0.67 = 15.96 + 69.42 + 0.67 ≈ 86ges.

Nb. Lanes Registers Round Tweakey Total Relative
Function Schedule Perf.

4 384 8 S-boxes + 29×8 XORs 440 XORs 4530 ges 1
5 448 8 S-boxes + 29×8 XORs 507 XORs 5050 ges 1.15
6 512 8 S-boxes + 29×8 XORs 577 XORs 5626 ges 1.24
7 576 8 S-boxes + 29×8 XORs 650 XORs 6115 ges 1.35

107

Chapter 4. Lilliput-AE: a nist Proposal

CFLAGS Code size (B) ram (B) Execution time (cycles)
Lilliput-I-128 -O3 4656 444 86293
Lilliput-I-192 -O3 4756 460 107526
Lilliput-I-256 -O3 4876 476 140480
Lilliput-II-128 -O3 4684 420 89390
Lilliput-II-192 -O3 4592 436 129354
Lilliput-II-256 -O3 4692 452 167175
Lilliput-I-128 -Os 1746 304 185796
Lilliput-I-192 -Os 1830 320 273022
Lilliput-I-256 -Os 1930 336 378989
Lilliput-II-128 -Os 1768 272 266409
Lilliput-II-192 -Os 1836 288 293416
Lilliput-II-256 -Os 1920 304 413374

Table 4.21: Performance of Lilliput-AE on arm Cortex-M3.

CFLAGS Code size (B) ram (B) Execution time (cycles)
Lilliput-I-128 -O3 6880 528 10030
Lilliput-I-192 -O3 7073 552 12658
Lilliput-I-256 -O3 7295 560 16476
Lilliput-II-128 -O3 6783 528 11816
Lilliput-II-192 -O3 6946 536 14888
Lilliput-II-256 -O3 7139 560 19527
Lilliput-I-128 -Os 2906 416 21345
Lilliput-I-192 -Os 3049 440 31047
Lilliput-I-256 -Os 3210 464 37369
Lilliput-II-128 -Os 2867 400 24864
Lilliput-II-192 -Os 2979 424 30962
Lilliput-II-256 -Os 3113 448 44951

Table 4.22: Performance of Lilliput-AE on PC.

We can compare these results with other hardware implementations of cryptographic standards.
One of the most compact implementations of Aes is the “Atomic v2” version [BBR16]: it is very
lightweight and smaller than our Lilliput-TBC hardware implementations (only 2060 ges) but
processes data with a big latency (246 cycles) and then a low throughput (88.4 Mbps). One of
the most compact implementation of Sha-3 (with 1088-bit block size) occupies 5522 ges (which
is bigger than the 128-bit key versions of Lilliput-TBC), and provides a very poor throughput
(44.3 kbits) [KY10].

An argument against tunable parameters in a standard is that it makes implementations more
expensive, as they usually have to support all parameter values to fully implement the standard.
However, for Lilliput-AE, this can be mitigated by only implementing the hardware needed
for computing the 𝑀 and 𝑀𝑅 functions, and iterate on them to compute the needed remaining
multiplications. This version will allow to save some logic gates, but at the expense of a decreased
throughput.

For the fpga implementation particular case, the S-box 𝑆 can be put in dedicated block
extscrams of the used fpga.

108

4.4. Implementations

The high parallelization level of the nonce-respecting and the nonce-misuse resistant modes
allows implementing in hardware many instances of 𝐸𝐾 running in parallel and then getting high
throughput, especially on dedicated asics.

VHDL Results

This subsection showcases performance results for iterated versions of all variants of the Lilliput-
TBC tweakable block cipher. These results were produced using version 14.4 of the ISE Design
Suite on a Virtex-6 XC6VLX75T device, with two optimization settings: “area reduction” and
“timing performance”.

Table 4.23 and Table 4.24 provide results of LilliputTBC with implementations optimized for
circuit area and execution time, respectively.

Finally, Table 4.25 and Table 4.26 compare Lilliput-TBC to Ascon-128a, Ascon-128
and Aes when optimized for circuit area and execution time, respectively. We used the iterated
implementation of Ascon-128a and Ascon-128 described in [Fiv16].

Table 4.23: Results for Lilliput-TBC, optimized for area reduction.

Lilliput-TBC I-128 I-192 I-256 II-128 II-192 II-256
LUTs 1345 1605 1827 854 1055 1175
slices 384 428 534 249 302 344

registers 1076 1204 1336 943 1075 1203
flip-flop pairs 1345 1605 1827 886 1097 1223

unused flip-flops 464 538 634 233 258 264
unused LUTs 0 0 0 32 42 48

fully used 881 1067 1193 621 797 911
Freq (MHz) 282 286 288 338 326 339

Table 4.24: Results for Lilliput-TBC, optimized for timing performance.

Lilliput-TBC I-128 I-192 I-256 II-128 II-192 II-256
LUTs 1625 1894 2140 1033 1218 1336
slices 568 564 649 430 433 415

registers 1109 1237 1369 1097 1108 1236
flip-flop pairs 1625 1894 2140 1136 1277 1405

unused flip-flops 700 777 896 315 370 375
unused LUTs 0 0 0 103 59 69

fully used 925 1117 1244 718 848 961
Freq (MHz) 357 352 367 402 388 408

4.4.3 Threshold Implementations

This section aims at giving the reader some insight into first order TIs of Lilliput-AE.

The S-box

The quadratic functions As stated in Section 4.3.2, the 8-bit S-box has been chosen with TIs
in mind as it is built from three inner 4-bit S-boxes, each directly decomposable into quadratic

109

Chapter 4. Lilliput-AE: a nist Proposal

Table 4.25: Comparison of Lilliput-TBC, Ascon and Aes implementations, optimized for area
reduction.

Ascon-128 Ascon-128a TBC-I-128 TBC-II-128 Aes
LUTs 1318 1422 1345 854 1615
slices 357 387 384 249 437

registers 933 997 1076 943 661
Freq (MHz) 372 357 288 338 170

Throughput(Mbit/sec) 3402 5084 1152 1352 2181

Table 4.26: Comparison of Lilliput-TBC, Ascon and Aes implementations, optimized for
timing performance.

Ascon-128 Ascon-128a TBC-I-128 TBC-II-128 Aes
LUTs 1370 1754 1625 1033 3258
slices 392 497 568 430 897

registers 933 997 1109 1097 670
Freq (MHz) 432 460 357 402 175

Throughput(Mbit/sec) 3951 6544 1428 1608 2245

permutations. Therefore, a first order TI can be achieved using only three shares. The following
algorithms describe, for each quadratic permutation 𝐹,𝐺 and 𝑄, a function 𝑓 that computes an
output share ⟨𝑥, 𝑦, 𝑧, 𝑡⟩ for two input shares ⟨𝑎0, 𝑏0, 𝑐0, 𝑑0⟩ and ⟨𝑎1, 𝑏1, 𝑐1, 𝑑1⟩.

Algorithm 9 𝑓𝐹 (⟨𝑎0, 𝑏0, 𝑐0, 𝑑0⟩, ⟨𝑎1, 𝑏1, 𝑐1, 𝑑1⟩) = ⟨𝑥, 𝑦, 𝑧, 𝑡⟩
𝑥← (𝑎0 ⊕ 𝑐0)(𝑏0 ⊕ 𝑑0)⊕ (𝑎0 ⊕ 𝑐0)(𝑏1 ⊕ 𝑑1)⊕ (𝑎1 ⊕ 𝑐1)(𝑏0 ⊕ 𝑑0)
𝑦 ← 𝑎0𝑑0 ⊕ 𝑎0𝑑1 ⊕ 𝑎1𝑑0
𝑧 ← 𝑏1 ⊕ 𝑑1
𝑡← (𝑎0 ⊕ 𝑏0 ⊕ 𝑑0)(𝑎0 ⊕ 𝑏0 ⊕ 𝑐0)⊕ (𝑎0 ⊕ 𝑏0 ⊕ 𝑑0)(𝑎1 ⊕ 𝑏1 ⊕ 𝑐1)⊕ (𝑎1 ⊕ 𝑏1 ⊕ 𝑑1)(𝑎0 ⊕ 𝑏0 ⊕ 𝑐0)

Algorithm 10 𝑓𝐺(⟨𝑎0, 𝑏0, 𝑐0, 𝑑0⟩, ⟨𝑎1, 𝑏1, 𝑐1, 𝑑1⟩) = ⟨𝑥, 𝑦, 𝑧, 𝑡⟩
𝑥← 𝑎1
𝑦 ← 𝑏1
𝑧 ← 𝑐1
𝑡← 𝑏0𝑐0 ⊕ 𝑏0𝑐1 ⊕ 𝑏1𝑐0 ⊕ 𝑑1

Algorithm 11 𝑓𝑄(⟨𝑎0, 𝑏0, 𝑐0, 𝑑0⟩, ⟨𝑎1, 𝑏1, 𝑐1, 𝑑1⟩) = ⟨𝑥, 𝑦, 𝑧, 𝑡⟩
𝑥← 𝑐0𝑑0 ⊕ 𝑐0𝑑1 ⊕ 𝑐1𝑑0 ⊕ 𝑏1
𝑦 ← 𝑑1
𝑧 ← 𝑎0𝑑0 ⊕ 𝑎0𝑑1 ⊕ 𝑎1𝑑0 ⊕ 𝑐1
𝑡← 𝑎1

Therefore, for each quadratic function 𝐴 ∈ 𝐹,𝐺,𝑄, TI with three shares is achived by

110

4.4. Implementations

computing

𝐴(⟨𝑎0, 𝑏0, 𝑐0, 𝑑0⟩, ⟨𝑎1, 𝑏1, 𝑐1, 𝑑1⟩, ⟨𝑎2, 𝑏2, 𝑐2, 𝑑2⟩) =𝑓𝐴(⟨𝑎1, 𝑏1, 𝑐1, 𝑑1⟩, ⟨𝑎2, 𝑏2, 𝑐2, 𝑑2⟩),
𝑓𝐴(⟨𝑎2, 𝑏2, 𝑐2, 𝑑2⟩, ⟨𝑎0, 𝑏0, 𝑐0, 𝑑0⟩),
𝑓𝐴(⟨𝑎0, 𝑏0, 𝑐0, 𝑑0⟩, ⟨𝑎1, 𝑏1, 𝑐1, 𝑑1⟩) .

(4.9)

Contrary to 𝑄 and 𝐺, the output sharing of 𝐹 is not uniform but it does not matter as these
functions are used in a Feistel network. Therefore, there is no need for re-masking and a threshold
implementation of the 8-bit S-box can be built upon the algorithms described above. Note that
the inner 4-bit S-box 𝑆3

4 requires an additionnal NOT instruction: it only has to be applied to one
of the three shares (i.e., ¬𝑥 = ¬𝑥0 ⊕ 𝑥1 ⊕ 𝑥2).

Software implementation using Look-Up Tables In order to improve the performance of
software implementations, it is possible to use look-up tables for the quadratic functions as done
in [SBM18]. To do so, one can compute three 8-bit to 4-bit look-up tables from 𝑓𝐹 , 𝑓𝐺 and 𝑓𝑄 noted
𝑇𝐹 , 𝑇𝐺 and 𝑇𝑄, respectively. Because 𝑆2

4 requires a bitwise permutation 𝑃 = 028a46ce139b57df

between the two quadratics, an additional 4-bit to 4-bit look-up table can be used.
However, as 𝑎0 and 𝑑0 do not interfere in the computation of 𝑓𝐺(⟨𝑎0, 𝑏0, 𝑐0, 𝑑0⟩, ⟨𝑎1, 𝑏1, 𝑐1, 𝑑1⟩),

it is possible to divide the size of 𝑇𝐺 by four (i.e., from 256 to 64 bytes) at the cost of two bitwise
operations at each table look-up. In the same way, 𝑏0 does not interfere in the computation of
𝑓𝑄(⟨𝑎0, 𝑏0, 𝑐0, 𝑑0⟩, ⟨𝑎1, 𝑏1, 𝑐1, 𝑑1⟩) and the size of 𝑇𝑄 can be reduced by half. In the rest of this
section, we use these tricks in order to minimize the memory space required to store the look-up
tables. The three resulting look-up tables are given below.

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0
1 0 2 9 b 3 1 a 8 d f 4 6 e c 7 5
2 0 b 0 b b 0 b 0 1 a 1 a a 1 a 1
3 9 2 0 b 3 8 a 1 5 e c 7 f 4 6 d
4 1 2 8 b 3 0 a 9 9 a 0 3 b 8 2 1
5 0 3 0 3 3 0 3 0 5 6 5 6 6 5 6 5
6 8 2 1 b 3 9 a 0 1 b 8 2 a 0 3 9
7 0 a 0 a a 0 a 0 4 e 4 e e 4 e 4
8 1 e 0 f b 4 a 5 1 e 0 f b 4 a 5
9 c 3 4 b 7 8 f 0 1 e 9 6 a 5 2 d
a 0 6 1 7 3 5 2 4 1 7 0 6 2 4 3 5
b 4 2 c a 6 0 e 8 8 e 0 6 a c 2 4
c 8 6 0 e 2 c a 4 0 e 8 6 a 4 2 c
d 4 a 5 b f 1 e 0 1 f 0 e a 4 b 5
e 0 7 8 f 3 4 b c 9 e 1 6 a d 2 5
f 5 2 4 3 7 0 6 1 1 6 0 7 3 4 2 5

Table 4.27: 𝑇𝐹 [𝑥][𝑦] = 𝑓𝐹 (𝑥, 𝑦)

In this way, the memory space required to store all the look-up tables equals |𝑇𝐹 |+ |𝑇𝐺|+
|𝑇𝑄|+ |𝑃 | = 256 + 64 + 128 + 16 = 464 bytes. Finally, the output shares of the 8-bit S-box can
be computed by running the Feistel network step by step as detailed by Section 4.4.3.

111

Chapter 4. Lilliput-AE: a nist Proposal

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 0 1 2 3 4 5 6 7 8 9 a b c d e f
1 0 1 2 3 5 4 7 6 8 9 a b d c f e
2 0 1 3 2 4 5 7 6 8 9 b a c d f e
3 1 0 2 3 4 5 7 6 9 8 a b c d f e

Table 4.28: 𝑇𝐺[𝑥][𝑦] = 𝑓𝐺(𝑥≪ 1, 𝑦)

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 0 4 2 6 8 c a e 1 5 3 7 9 d b f
1 0 4 a e 8 c 2 6 3 7 9 d b f 1 5
2 0 c 2 e 8 4 a 6 1 d 3 f 9 5 b 7
3 8 4 2 e 0 c a 6 b 7 1 d 3 f 9 5
4 0 6 2 4 8 e a c 1 7 3 5 9 f b d
5 2 4 8 e a c 0 6 1 7 b d 9 f 3 5
6 0 e 2 c 8 6 a 4 1 f 3 d 9 7 b 5
7 a 4 0 e 2 c 8 6 9 7 3 d 1 f b 5

Table 4.29: 𝑇𝑄[𝑥][𝑦] = 𝑓𝑄(𝑥+ 4, 𝑦)

Application to the Entire Algorithm

The tweakey schedule Because the key is manipulated along with the tweak during the
tweakey schedule, this step must be protected to prevent a side-channel attack. To do so, one can
share the tweak and the key into two shares. There is no difficulty to apply TI to the tweakey
schedule as it operates in a linear fashion. As a result, the tweakey schedule produces subtweakeys
splitted in two shares 𝑅𝑇𝐾𝑖

0 and 𝑅𝑇𝐾𝑖
1. In order to limit the amount of randomness to generate,

it is possible to share the key only. However, note that non-sharing the tweak implies that a
profiling attack against the tweakey schedule would allow to deduce some information on the
power consumption model of the device.

The egfn round function A way of applying TI to the round function is to share the input
block into three shares which are processed during the entire round function. More precisely,
if 𝑋𝑖,𝑗 refers to the 𝑖th byte of the 𝑗th share of 𝑋, then a TI of 𝐹𝑖 at round 𝑟 consists in
𝐹 ′
𝑖 = 𝑆′(𝑋𝑖,0 ⊕ 𝑅𝑇𝐾𝑟

𝑖,0, 𝑋𝑖,1 ⊕ 𝑅𝑇𝐾𝑟
𝑖,1, 𝑋𝑖,2) where 𝑆′ refers to the Section 4.4.3. Because

the remaining steps of the round function are linear, it is sufficient to apply it on each share
independently.

Performance Impact

We implemented the thresholding scheme described in this section, using lookup tables for the
S-box, and compared its performance with our felicsref implementation, in the conditions
described in Section 4.4.1 with the compiler option -O3. Table 4.30 shows the impact for each
metric on each platform.

Note that the threshold implementation used in this benchmark does not include a random
number generator; these results therefore do not account for the overhead induced by share
initialization.

112

4.5. External Cryptanalysis of Lilliput-AE

Algorithm 12 𝑆′(𝑠0, 𝑠1, 𝑠2) = 𝑠′0, 𝑠
′
1, 𝑠

′
2 with look-up tables 𝑇𝐹 , 𝑇𝐺, 𝑇𝑄 and 𝑃

/* Decompose 8-bit shares into 4-bit shares */ for 𝑖 = 0 to 2 do
𝑠𝑖 ← 𝑠𝑖 ≫ 4
𝑠𝑖 ← AND(𝑠𝑖, 15)

end

/* First 4-bit S-box */ 𝑡0 ← 𝑇𝐺[AND(𝑠1, 7)≫ 1][𝑠2]
𝑡1 ← 𝑇𝐺[AND(𝑠2, 7)≫ 1][𝑠0]
𝑡2 ← 𝑇𝐺[AND(𝑠0, 7)≫ 1][𝑠1]
𝑠0 ← 𝑠0 ⊕ 𝑇𝐹 [𝑡1][𝑡2]
𝑠1 ← 𝑠1 ⊕ 𝑇𝐹 [𝑡2][𝑡0]
𝑠2 ← 𝑠2 ⊕ 𝑇𝐹 [𝑡0][𝑡1]

/* Second 4-bit S-box */ 𝑡0 ← 𝑃 [𝑇𝑄[AND(𝑠1, 3)⊕ (AND(𝑠1, 8)≫ 1)][𝑠2]]
𝑡1 ← 𝑃 [𝑇𝑄[AND(𝑠2, 3)⊕ (AND(𝑠2, 8)≫ 1)][𝑠0]]
𝑡2 ← 𝑃 [𝑇𝑄[AND(𝑠0, 3)⊕ (AND(𝑠9, 8)≫ 1)][𝑠1]]
𝑠0 ← 𝑠0 ⊕ 𝑇𝑄[AND(𝑡1, 3)⊕ (AND(𝑡1, 8)≫ 1)][𝑡2]
𝑠1 ← 𝑠1 ⊕ 𝑇𝑄[AND(𝑡2, 3)⊕ (AND(𝑡2, 8)≫ 1)][𝑡0]
𝑠2 ← 𝑠2 ⊕ 𝑇𝑄[AND(𝑡0, 3)⊕ (AND(𝑡0, 8)≫ 1)][𝑡1]

/* Third 4-bit S-box */ 𝑡0 ← 𝑇𝐺[AND(𝑠1, 7)≫ 1][𝑠2]⊕ 1
𝑡1 ← 𝑇𝐺[AND(𝑠2, 7)≫ 1][𝑠0]
𝑡2 ← 𝑇𝐺[AND(𝑠0, 7)≫ 1][𝑠1]
𝑠0 ← 𝑠0 ⊕ 𝑇𝐹 [𝑡1][𝑡2]
𝑠1 ← 𝑠1 ⊕ 𝑇𝐹 [𝑡2][𝑡0]
𝑠2 ← 𝑠2 ⊕ 𝑇𝐹 [𝑡0][𝑡1]

/* Build 8-bit output shares from 4-bit shares */ for 𝑖 = 0 to 2 do
𝑠′𝑖 ← (𝑠𝑖 ≪ 4)⊕ 𝑠𝑖

end

4.5 External Cryptanalysis of Lilliput-AE

4.5.1 Lilliput-AE v1

𝛼0

𝛼1

...

𝛼𝑝−1

𝑇𝐾0

XOR 𝐶0

𝑓

𝑅𝑇𝐾0

𝛼0

𝛼1

...

𝛼𝑝−1

XOR 𝐶1

𝑓𝑀 = 𝑠0

𝑅𝑇𝐾1

𝛼0

𝛼1

...

𝛼𝑝−1

. . .

. . .

. . .

XOR 𝐶2

𝑓

𝑅𝑇𝐾2

XOR 𝐶𝑟−2

𝑓

𝑅𝑇𝐾𝑟−2

𝛼0

𝛼1

...

𝛼𝑝−1

XOR 𝐶𝑟−1

𝑓 𝑠𝑟 = 𝐶

𝑅𝑇𝐾𝑟−1

Figure 4.14: The tweakey schedule of Lilliput-AE.

113

Chapter 4. Lilliput-AE: a nist Proposal

Platform Member rom𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
rom𝑓𝑒𝑙𝑖𝑐𝑠𝑟𝑒𝑓

𝑒𝑥𝑡𝑠𝑐𝑟𝑎𝑚𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑒𝑥𝑡𝑠𝑐𝑟𝑎𝑚𝑓𝑒𝑙𝑖𝑐𝑠𝑟𝑒𝑓

𝑐𝑦𝑐𝑙𝑒𝑠𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑐𝑦𝑐𝑙𝑒𝑠𝑓𝑒𝑙𝑖𝑐𝑠𝑟𝑒𝑓

avr

Lilliput-I-128 2.37 1.60 5.17
Lilliput-I-192 2.39 1.59 4.87
Lilliput-I-256 2.43 1.59 4.57
Lilliput-II-128 2.39 1.63 6.41
Lilliput-II-192 2.42 1.61 5.34
Lilliput-II-256 2.46 1.61 5.02

MSP

Lilliput-I-128 1.85 1.51 4.39
Lilliput-I-192 1.85 1.51 4.12
Lilliput-I-256 1.87 1.50 3.87
Lilliput-II-128 2.01 1.54 4.85
Lilliput-II-192 2.00 1.53 4.57
Lilliput-II-256 2.02 1.53 4.29

arm

Lilliput-I-128 1.99 1.51 4.36
Lilliput-I-192 1.98 1.51 4.19
Lilliput-I-256 1.99 1.51 3.95
Lilliput-II-128 1.99 1.52 5.53
Lilliput-II-192 2.01 1.52 4.55
Lilliput-II-256 2.02 1.52 4.34

PC

Lilliput-I-128 1.49 1.29 4.54
Lilliput-I-192 1.49 1.28 4.38
Lilliput-I-256 1.50 1.30 4.13
Lilliput-II-128 1.50 1.26 5.17
Lilliput-II-192 1.50 1.28 4.84
Lilliput-II-256 1.51 1.27 4.51

Table 4.30: Performance impact of the thresholding scheme.

In the first version of Lilliput-AE that was submitted to nist [ABC+18], the tweakey schedule
was slightly different. More precisely, while the overall structure and type of operations were
identical, other 𝛼 coefficients were originally used. In particular, we chose 𝛼0 = 𝐼, 𝛼1 = 𝑀 ,
𝛼2 = 𝑀2, 𝛼3 = 𝑀3, 𝛼4 = 𝑀𝑅, 𝛼5 = 𝑀2

𝑅 and 𝛼6 = 𝑀3
𝑅, where 𝐼 is the 64× 64 identity matrix,

𝑀 and 𝑀𝑅 are the same matrices as described in Section 4.2.3. These choices ensured that in 𝑟
consecutive rounds, at most (𝑝− 1) cancellations occurred in the tweakey schedule while allowing
for a very efficient processing of the tweak at the same time6.

Unfortunately, this simple design introduced a fundamental flaw that was overlooked by our
team: the same part of the tweakey material was reused at each round. In 2019, Dunkelman,
Keller, Lambooij and Sasaki exploited this weakness and found a related tweakey differential
characteristic with probability 1 that was then used to mount practical forgery attacks on
Lilliput-AE [DKLS19]. In the following, we briefly describe their attack and discuss its impact
on our design.

6We recall that 𝑀 defines a word-ring-lfsr with minimum number of xor gates and a primitive polynomial of
degree 64. 𝑀𝑅 is defined by the reciprocal polynomial of 𝑀 .

114

4.5. External Cryptanalysis of Lilliput-AE

𝑀0

𝐸
0||0
𝐾

Auth

𝑀1

𝐸
0||1
𝐾

𝑀0⊕Δ𝑃

𝐸
0||Δ𝑇

𝐾

. . .

. . .

𝑀1⊕Δ𝑃

𝐸
0||Δ𝑇+1
𝐾

𝐸
1||04||𝑁
𝐾

tag

Figure 4.15: Tag collision using a 1-round iterative related tweakey differential.

4.5.2 External analysis of Lilliput-AE

Related-tweak differential characteristic for Lilliput-TBC Dunkelman et al. made
the observation that the first lane of the tweakey schedule—the least significant 64-bit word of the
tweak—was never updated between each round. Consequently, when considering two tweaks that
differed by Δ𝑇 = (Δ7, . . . ,Δ0) in the least significant word, all corresponding round subkeys had
the same difference Δ. By setting the difference in the right-hand side of the state to Δ𝑇 , they
were able to cancel out the input difference to all S-boxes, and thus, to pass the non-linear layer
with probability 1. Then, by ensuring that Δ7

𝑇 = 0 and Δ1
𝑇 ⊕ · · · ⊕Δ6

𝑇 = 0 and by exploiting the
cycle decomposition of the permutation 𝜋, the authors were able to identify several configurations
allowing for a 1-round iterative related-tweak differential characteristic with probability 1.

Forgery attacks on the Lilliput-AE scheme The authors then found that the character-
istic

Δ𝑃 = (0, 0, 0, 0, 0, 01(8), 0, 01(8)||0, 0, 0, 01(8), 01(8), 0, 0, 0),Δ𝑇 = (0, 0, 0, 01(8), 01(8), 0, 0, 0),

where Δ𝑃 and Δ𝑇 denote the difference between the plaintexts and the tweaks, respectively,
could be used to produce a pair of messages with the same tag, as shown in Section 4.5.2. Indeed,
let ℓ be equal to Δ𝑇 + 2, where Δ𝑇 is seen as an integer7, then choosing a message 𝑀 of length
at least ℓ blocks such that 𝑀ℓ−2 = 𝑀0 ⊕Δ𝑃 and 𝑀ℓ−1 = 𝑀1 ⊕Δ𝑃 yields:

𝐸
0||0
𝐾 (𝑀0)⊕ 𝐸

0||Δ𝑇

𝐾 (𝑀Δ𝑇
) = 𝐸

0||0
𝐾 (𝑀1)⊕ 𝐸

0||Δ𝑇

𝐾 (𝑀Δ𝑇+1) = Δ𝑃 .

As a consequence, the difference before the 𝐸
1||04||𝑁
𝐾 operation equals zero, which leads to a

collision on the tag if the same nonce is reused. In their paper, the authors also present a known
message variant, requiring a message of length at least 232 + 224 + 1 blocks of message and that
can also be applied in the nonce respecting mode.

4.5.3 Impact

As stated by the authors of [DKLS19], the weakness exploited in the analysis comes from the
fact that part of the tweak does not get updated8. This resulted in an unfortunate interaction
between the mode and a probability-1 differentials, which highlights the potential security risk in
using a tweakey schedule design that reuses the same part in every round. Authors suggested
replacing the identity transformation 𝛼0 used in the tweakey schedule with some mixing linear
transformation to avoid having the same difference in all round keys, therefore thwarting their

7If Δ𝑇 = (0, 0, 0, 01𝑥, 01𝑥, 0, 0, 0), then ℓ = 232 + 224 + 2.
8Therefore, the security of the Lilliput block cipher is not compromised.

115

Chapter 4. Lilliput-AE: a nist Proposal

attack. This led to an updated design of our proposal—called Lilliput v1.1—to ensure that no
lane goes through the tweakey schedule unmodified:

∙ 𝛼0 was changed from 𝐼 to 𝑀 ,

∙ 𝛼1, from 𝑀 to 𝑀2,

∙ 𝛼2, from 𝑀2 to 𝑀3,

∙ 𝛼3, from 𝑀3 to 𝑀4.

4.6 Conclusion

Lilliput-AE is a lightweight aead scheme that is based on a egfn construction to achieve
high diffusion. Its nonlinear components have been chosen to optimize their cost in threshold
implementations, thus facilitating side-channel protection while ensuring attractive cryptographic
properties. Lilliput-AE is suited to be implemented efficiently on a wide range of processors
and in hardware. Its performances are comparable to those of other lightweight algorithms, such
as Acorn and Ascon, which are part of the final portfolio of the Caesar competition [CAE].
Future works could include optimized software implementations of Lilliput-AE on iot platforms,
side-channel protected implementations with performance benchmark, or optimized hardware
implementations (e.g., serial implementations).

From the cryptanalysis aspect, Lilliput-AE will most likely receive less attention from the
community, since it was not selected for Round 2 of the nist standardization process. Still, it
would be interesting to see what cryptanalysts come up with to attack the tweaked version that
has been presented in this chapter.

116

5

Cryptanalysis Results on Spook

But it was my integrity that was
important. Is that so selfish? It sells for
so little, but it’s all we have left in this
place.

Valerie Page

Spook [BBB+19] is one of the 32 candidates that has made it to the second round of the nist
Lightweight Cryptography Standardization process, and is particularly interesting since it proposes
differential side channel resistance. This chapter introduces a joint work with Patrick Derbez,
Virginie Lallemand, María Naya-Plasencia, Léo Perrin and André Schrottenloher [DHL+20] in
which practical distinguishers of the full 6-step version of the underlying permutations of Spook,
namely Shadow-512 and Shadow-384, are exhibited, thus solving challenges proposed by the
designers on the permutation. We also discuss practical forgeries for the S1P mode of operation
in the nonce misuse scenario—which is allowed by the CIML2 security game considered by the
authors—using a 4-step Shadow. All the results presented in the following have been implemented.

5.1 Introduction

The number of applications running on interconnected resource-constrained devices has increased
exponentially in the last decade, bringing new challenges to both the community and the industry.
Sensor networks, Internet-of-Things, smart cards and healthcare are a few examples which handle
sensitive data that should be protected (see Chapter 2).

These new platforms have their own specific sets of requirements, in particular in terms of
implementation efficiency. As common cryptographic primitives were not designed to satisfy these
specific use cases, they can be ill-suited in these contexts. A staggering number of algorithms
has been proposed to fulfill such requirements, such as Present [BKL+07] (low gate count
in hardware), Prince [BCG+12] (low latency in hardware), Midori [BBI+15] (low power
consumption), or Lea [HLK+14] (low rom and cycle count on micro-controllers). Such primitives
have been nicknamed lightweight. Because the corresponding devices can often be expected to
be physically interacted with by an attacker, an algorithm easing side channel resistance has
a significant advantage. Hence many recent proposals were designed to be naturally resistant
against side-channel attacks or, at least, protectable at low cost. For instance, the authenticated
encryption (AE) scheme Pyjamask [GJK+19] was designed with a minimal number of non-linear

117

Chapter 5. Cryptanalysis Results on Spook

gates to allow efficient masked implementations while the AE scheme ISAP [DEM+17] is resistant
to differential power analysis, a powerful type of attack where the adversary try to deduce
information about the secret key from power consumption.

This need for lightweight cryptographic primitives led the American National Institute of
Standards and Technology (nist) to initiate the Lightweight Cryptography Project, aiming
at the standardization of hash functions and authenticated encryption algorithms suitable for
constrained devices. It received 57 algorithm proposals in February 2019 and accepted 56 of them.
In August 2019, 32 primitives were announced as the 2nd round candidates.

In this chapter we study Spook, an Authenticated Encryption scheme with Associated Data
(aead) which is among those 2nd round candidates. It was designed to achieve both resistance
against side-channel analysis and low-energy implementations and is particularly interesting as it
aims at providing strong integrity guarantees even in the presence of nonce misuse and leakage.
Aead is provided using three sub-components: the Sponge One-Pass mode of operation (S1P),
the tweakable block cipher Clyde-128 and the permutation Shadow. Both Clyde and Shadow
are based on simple extensions of the LS-design framework first introduced by the designers of
the lightweight block ciphers Robin and Fantomas [GLSV15]. This strategy leads to efficient
bitslicing and side-channel resistant implementations on a wide range of platforms. To further
simplify the implementation, the permutation uses the round function of the tweakable block
cipher as a sub-routine, effectively combining 3 or 4 parallel instances of a round-reduced cipher
using a simple linear layer to construct a 384- or 512-bit permutation.

Motivation and contributions. In Section 4.3 of the specification document of Spook [BBB+19],
the designers explicitly point out that an important requirement for the permutation in the S1P
mode of operation is that it provides collision resistance with respect to the 255 bits that generate
the tag and they say:

“Hence, a more specific requirement is to prevent truncated differentials with probability
larger than 2−128 for those 255 bits. A conservative heuristic for this purpose is to
require that no differential characteristic has probability better than 2−385, which
happens after twelve rounds (six steps).”

In this chapter we show that this heuristic is not conservative, providing practical truncated
distinguishers on Shadow, the inner permutation of Spook. We exhibit non-random behavior
for up to the full version of Shadow-512. Moreover, the same technique would also distinguish
Shadow-512 extended by 2 more rounds at the end. More precisely, we exhibit two particular
subspaces 𝐸 and 𝐹 of co-dimension 128 and an efficient algorithm which returns pairs of messages
(𝑚,𝑚′) such that 𝑚 ⊕ 𝑚′ ∈ 𝐸 and Shadow-512(𝑚) ⊕ Shadow-512(𝑚′) ∈ 𝐹 . This implies in
particular a practical collision on 128 bits of the output. This problem is a particular instance of
the so-called limited birthday problem, which was first introduced by Gilbert and Peyrin when
looking for known key distingushers against the Aes [GP10]. As a permutation can be seen as
a block cipher with a known key, it is natural to borrow distinguishers from this field. While
the complexity of a generic algorithm performing this task is around 264 because of the birthday
bound (see [IPS13] for more details), our un-optimized implementations of our distinguishers run
in at most a few minutes on a regular desktop computer.

We also provide similar distinguishers targeting up to 10 (out of 12) rounds of Shadow-384,
the small version of Shadow. Note that, as for Shadow-512, adding 2 more rounds at the end of
the permutation would not increase its security as there would exist a similar distinguisher on
the last 12 rounds (a 2-round shifted version of the proposed permutation).

118

5.1. Introduction

As other several sponge-based lightweight algorithms 1, the authors purposefully relied on a
permutation for which distinguishers could exist as this allows to use fewer permutation rounds
(Spook designers pointed out for instance that 12 rounds were not enough to have 512 bits of
security with respect to linear distinguishers) and thus an increase in the speed of data processing.
Nevertheless, our distinguishers seem to prove that the behavior of Shadow is not compatible
with the requirements given by the authors on the permutation for the S1P mode of operation.

The next important question is whether these distinguishers are a threat to Spook itself, as
the impact is a priori not clear. For Spook, we are able to leverage the results we obtained to
produce practical existential forgeries for the S1P mode of operation when Shadow-512 is reduced
to 8 rounds out of 12 in the nonce misuse scenario, which is allowed by the CIML2 security game
considered by the authors [BPPS17].

Distinguishers on both Shadow-512 and Shadow-384 along with the forgeries on 4-step Spook
have been implemented and verified against the reference implementation provided by the
designers.

Chapter Organization. In Section 5.2 we describe Shadow and introduce some cryptanalysis
techniques. Then in Section 5.3 we make some observations on the structure of the permutation
that will play a crucial role in our cryptanalysis. Finally, in Sections 5.4 and 5.5 we present the
results of our analysis of both versions of Shadow, including a distinguisher on the full Shadow-512,
as well as forgeries against Spook when Shadow-512 is reduced to 8 rounds.

5.1 Introduction . 117
5.2 Preliminaries . 120

5.2.1 Specification of Shadow-384 and Shadow-512 120
5.2.2 Differential Distinguishers . 121

5.3 Structural Observations . 122
5.3.1 Super S-box . 122
5.3.2 4-Identical States . 122
5.3.3 3-Identical States . 124
5.3.4 2-Identical States . 125

5.4 A Distinguisher Against Full Shadow-512 (and More) 125
5.4.1 A 5-Step Truncated Differential Property 126
5.4.2 A Distinguisher for 6- and 7-Step Shadow 128
5.4.3 A Distinguisher for 6-step Shadow-384 134

5.5 Forgeries with 4-step Shadow in the Nonce Misuse Setting 137
5.6 Conclusion . 141

All the analyses presented in this chapter are practical and have been implemented and tested.
Their source code is available at:

https://who.paris.inria.fr/Leo.Perrin/code/spook/index.html

Our results have been acknowledged and discussed by the designers of Spook in [BBB+20].

1See for instance Ascon [DEMS16], Ketje [BDP+16], or Sparkle [BBdS+19]

119

https://who.paris.inria.fr/Leo.Perrin/code/spook/index.html

Chapter 5. Cryptanalysis Results on Spook

5.2 Preliminaries

The specific mode of operation we target will be described in the relevant section. Here, we
present the Shadow family of permutations and recall the definition of differential distinguishers.

5.2.1 Specification of Shadow-384 and Shadow-512

The Spook algorithm is based on a permutation named Shadow that exists in two flavors:
Shadow-384 and Shadow-512, where Shadow-512 is the one used in the primary candidate
to the nist Lightweight competition. In both cases, the internal state is seen as a collection of 𝑚
two-dimensional arrays (or bundles) each of dimensions 32× 4: as depicted in Figure 5.1, 𝑚 = 4
for Shadow-512 and 𝑚 = 3 for Shadow-384. The permutations have a Substitution Permutation
Network (spn) structure based on a 4-bit S-box layer and two distinct linear layers, each being
used every second round.

· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·

bundle 3
bundle 2

bundle 1
bundle 0

· · ·
· · ·
· · ·
· · ·

ℓ = 32

m = 4

s = 4

bundle row

bundle column

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · · bundle 2

bundle 1
bundle 0

· · ·
· · ·
· · ·
· · ·

ℓ = 32

m = 3

s = 4

bundle row

bundle column

Figure 5.1: State Organization of Shadow-512 (left) and of Shadow-384 (right).

The full versions of the permutations iterate 6 steps. As represented in Figure 5.2, one step is
made of two rounds, denoted round A and round B, interleaved with round constant additions.
Shadow-384 and Shadow-512 only differ in the definition of the 𝐷 layer.

· · ·
· · ·
· · ·
· · ·

S S S S S

· · ·
· · ·
· · ·
· · ·

S S S S S

· · ·
· · ·
· · ·
· · ·

S S S S S

· · ·
· · ·
· · ·
· · ·

S S S S S

S-box

L
L

LL
L

LL
L

LL
L

L

L-box

Round A

· · ·
· · ·
· · ·
· · ·

S S S S S

· · ·
· · ·
· · ·
· · ·

S S S S S

· · ·
· · ·
· · ·
· · ·

S S S S S

· · ·
· · ·
· · ·
· · ·

S S S S S

S-box D-box

Round B

c

1 Step

· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·

· · ·
· · ·
· · ·
· · ·

D

AC(2i) AC(2i+ 1)

c’

Figure 5.2: Description of one step of Shadow-512.

Round A first applies a non-linear layer made by the application on each bundle column
of the 4-bit S-box recalled in Table 5.1. It then applies the so-called L-box which calls the 𝐿′

transformation to the first two and last two rows of each bundle. If we denote by (𝑥, 𝑦) the input
and by (𝑎, 𝑏) the output the definition of 𝐿′ is given by:

(𝑎, 𝑏) = 𝐿′(𝑥, 𝑦) =

(︂
circ(0xec045008) · 𝑥𝑇 ⊕ circ(0x36000f60) · 𝑦𝑇
circ(0x1b0007b0) · 𝑥𝑇 ⊕ circ(0xec045008) · 𝑦𝑇

)︂

where circ(𝐴) stands for a circulant matrix whose first line is a row vector given by the binary
decomposition of 𝐴.

120

5.2. Preliminaries

Table 5.1: 4-bit S-box used in Shadow.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 0 8 1 f 2 a 7 9 4 d 5 6 e 3 b c

Round B starts with the same S-layer as round A but uses a different linear layer, denoted 𝐷.
The purpose of 𝐷 is to provide diffusion between the 𝑚 bundles of the state: as depicted
in Figure 5.2, it takes as input one bit of each bundle. It modifies them with the application of a
near-mds matrix (which previously appeared in the design of the ciphers Midori [BBI+15] and
Mantis [BJK+16] for instance), respectively:

𝐷(𝑎, 𝑏, 𝑐, 𝑑) =

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠×

⎛
⎜⎜⎝

𝑎
𝑏
𝑐
𝑑

⎞
⎟⎟⎠

for Shadow-512 while for Shadow-384 we use:

𝐷(𝑎, 𝑏, 𝑐) =

⎛
⎝
1 1 1
1 0 1
1 1 0

⎞
⎠×

⎛
⎝
𝑎
𝑏
𝑐

⎞
⎠ .

The round constants used in the permutation correspond to the internal state of a 4-bit
lfsr. They are recalled in Table 5.2. At the end of every round (for rounds from 0 to 11),
the 4-bit constant is xored at 4 different positions, one time in each bundle: in bundle 𝑏 (for
𝑏 = 0, 1, 2, 3), the constant is xored to the column number 𝑏. Without loss of generality, we
hereafter position bit number 0 on the right of the state in our figures.

Table 5.2: Round constants used in Shadow. Note that the LSB is on the left.

Round Constant Round Constant Round Constant Round Constant

0 (1,0,0,0) 1 (0,1,0,0) 2 (0,0,1,0) 3 (0,0,0,1)

4 (1,1,0,0) 5 (0,1,1,0) 6 (0,0,1,1) 7 (1,1,0,1)

8 (1,0,1,0) 9 (0,1,0,1) 10 (1,1,1,0) 11 (0,1,1,1)

5.2.2 Differential Distinguishers

As indicated in the Spook specification, the black box security analysis of the mode of operation
that is used in Spook (S1P) relies on the assumption that the permutations are random. In this
chapter we challenge this assumption by exhibiting distinguishers for the permutations – that is,
algorithms that unveil a non-random behavior.

Our distinguishers use the notion of differential, a technique that was introduced by Biham
and Shamir in [BS91a]. The idea is to find a couple of xor differences (𝛿,Δ) such that if two

121

Chapter 5. Cryptanalysis Results on Spook

messages differ from 𝛿 then with high probability their output difference after encryption is equal
to Δ.

This idea was later extended by Knudsen in 1994 to define truncated differentials [Knu95], a
variant in which only a portion of the difference is fixed (while the remaining part is undetermined).
This technique is illustrated in Figure 5.5 for instance, where we introduce a distinguisher that
ends with a difference of the form (*, *, *, 0) before the last 𝐷 operation: the ’*’ symbol indicates
that the difference between the messages is not determined over the first three bundles, while the
’0’ symbol indicates that the two messages are identical on the last bundle (128 bits).

5.3 Structural Observations

In this section we present the general properties we found that we will later exploit in our analysis.
While our distinguisher is a truncated differential one, our method for finding right pairs does
not rely on a high probability differential trail (whose very existence is disproved by the authors’
wide trail argument). Instead, we exploit the similarity between the functions applied in parallel
on each bundle. To better describe them, we introduce the notion of Super S-box (as it applies
to Shadow) and we study the propagation of the following type of properties through the step
function. Note that we next provide the details for Shadow-512 but that similar results apply to
Shadow-384.

Definition 5.1 (𝑖-identical state). We call 𝑖-identical an internal state of Shadow in which 𝑖
bundles are equal.

5.3.1 Super S-box

Given the fact that in every step only the 𝐷 layer is mixing the bundles together, it is possible
to rewrite Shadow as an SPN using four 128-bit Super S-boxes (each operating on one bundle)
interleaved with a linear permutation 𝐷 operating on the full state. If 𝑎, 𝑏, 𝑐 and 𝑑 are the 128-bit
bundles, this linear permutation is represented as follows:

𝐷(𝑎, 𝑏, 𝑐, 𝑑) =

⎛
⎜⎜⎝

0 𝐼 𝐼 𝐼
𝐼 0 𝐼 𝐼
𝐼 𝐼 0 𝐼
𝐼 𝐼 𝐼 0

⎞
⎟⎟⎠×

⎛
⎜⎜⎝

𝑎
𝑏
𝑐
𝑑

⎞
⎟⎟⎠ .

𝐷 is an involution with branching number 4 (over 128-bit words) and it verifies that ∀𝑎 ∈
F128
2 , 𝐷(𝑎, 𝑎, 𝑎, 0) = (0, 0, 0, 𝑎).
We denote by 𝜎𝑗 for 𝑗 ∈ {0, 1, 2, 3} the four parallel Super S-boxes of the cipher. They

correspond to the first four operations of the step, namely: the S-layer and the linear operation 𝐿
of round A, the constant addition (that is done on a different position for each Super S-box), and
the S-layer of round B.

In the following, we show that even though the four bundles of a state go through different
Super S-boxes it might be possible to have a Shadow state with four equal bundles that is
transformed into a Shadow state of the same form at the output of a full step.

5.3.2 4-Identical States

In the discussion below we follow the evolution of the 4-identical property through a step and
show the required conditions for it to remain in the end. This evolution is also summarized

122

5.3. Structural Observations

in Figure 5.3.

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

D

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

+c'S

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

D

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

+c'S

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

D

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

+c'S

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

D

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

+c'S

y0 + c y1 + c y2 + c y3 + c S(y0 + c) S(y1 + c) S(y2 + c) S(y3 + c)

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

L

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

+cS = = =

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

L

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

+cS = = =

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

L

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

+cS = = =

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

L

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

+cS = = =

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

=

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

=

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

=

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0

=

and S(y0)+ c’=S(y0 + c)
S(y0)+ c’

and S(y1)+ c’=S(y1 + c)
S(y1)+ c’

and S(y2)+ c’=S(y2 + c)
S(y2)+ c’

and S(y3)+ c’=S(y3 + c)
S(y3)+ c’

Figure 5.3: Evolution of two rounds with a starting 4-identical state, where the four bundles are
equal in the beginning.

Probability of Maintaining the 4-Identical Property through a Step. We start from
a 4-identical state 𝑋 that we write 𝑋 = (𝑥, 𝑥, 𝑥, 𝑥). Each bundle 𝑥 is made of 32 columns:
𝑥 = (𝑥31, 𝑥30, · · · , 𝑥1, 𝑥0).

∙ Application of the Super S-boxes. The step starts with one non-linear layer followed
by the 𝐿 layer, applied in parallel (that is, independently) on each of the 4 bundles. Since
these transformations are identical for each bundle the 4-identical property is followed with
probability one up to this point and so we have 𝐿∘𝑆(𝑋) = (𝑦, 𝑦, 𝑦, 𝑦) with 𝑦 = 𝐿∘𝑆(𝑥). We

123

Chapter 5. Cryptanalysis Results on Spook

next have the addition of the first round constant on column 𝑗 of bundle 𝑗 for 𝑗 ∈ {0, 1, 2, 3},
that we will call 𝐴𝐶, and finally we apply another S-box layer. By denoting the round
constant by2 𝑐, we obtain the following values for 𝑆 ∘𝐴𝐶(2𝑖) ∘ 𝐿 ∘ 𝑆(𝑋):

𝐵0 : 𝑆(𝑦31) · · · 𝑆(𝑦4) 𝑆(𝑦3) 𝑆(𝑦2) 𝑆(𝑦1) 𝑆(𝑦0 ⊕ 𝑐)
𝐵1 : 𝑆(𝑦31) · · · 𝑆(𝑦4) 𝑆(𝑦3) 𝑆(𝑦2) 𝑆(𝑦1 ⊕ 𝑐) 𝑆(𝑦0)
𝐵2 : 𝑆(𝑦31) · · · 𝑆(𝑦4) 𝑆(𝑦3) 𝑆(𝑦2 ⊕ 𝑐) 𝑆(𝑦1) 𝑆(𝑦0)
𝐵3 : 𝑆(𝑦31) · · · 𝑆(𝑦4) 𝑆(𝑦3 ⊕ 𝑐) 𝑆(𝑦2) 𝑆(𝑦1) 𝑆(𝑦0)

where 𝐵𝑖 is bundle 𝑖. At this stage, the 4 bundles stop being 4-identical but differ on the
value of their 4 first columns.

∙ D-box and second round constant addition. The 𝐷 layer mixes together the 4 bundles
by xoring 3 of them together to form one output bundle, as described in Section 5.2.1. In the
above representation of the state, it operates columnwise by replacing each column element
with the xor of the 3 others. The last operation is the addition of the second round constant,
that we denote 𝑐′, at the same positions as before (column 𝑗 of bundle 𝑗 for 𝑗 ∈ {0, 1, 2, 3}).
Formally, the expression of the bundles of 𝐴𝐶(2𝑖+ 1) ∘𝐷 ∘ 𝑆 ∘𝐴𝐶(2𝑖) ∘ 𝐿 ∘ 𝑆(𝑋) is the
following:

𝐵0 : 𝑆(𝑦31) · · · 𝑆(𝑦4) 𝑆(𝑦3 ⊕ 𝑐) 𝑆(𝑦2 ⊕ 𝑐) 𝑆(𝑦1 ⊕ 𝑐) 𝑆(𝑦0)⊕ 𝑐′

𝐵1 : 𝑆(𝑦31) · · · 𝑆(𝑦4) 𝑆(𝑦3 ⊕ 𝑐) 𝑆(𝑦2 ⊕ 𝑐) 𝑆(𝑦1)⊕ 𝑐′ 𝑆(𝑦0 ⊕ 𝑐)
𝐵2 : 𝑆(𝑦31) · · · 𝑆(𝑦4) 𝑆(𝑦3 ⊕ 𝑐) 𝑆(𝑦2)⊕ 𝑐′ 𝑆(𝑦1 ⊕ 𝑐) 𝑆(𝑦0 ⊕ 𝑐)
𝐵3 : 𝑆(𝑦31) · · · 𝑆(𝑦4) 𝑆(𝑦3)⊕ 𝑐′ 𝑆(𝑦2 ⊕ 𝑐) 𝑆(𝑦1 ⊕ 𝑐) 𝑆(𝑦0 ⊕ 𝑐)

To ensure a 4-identical state at this point, the following 4 equations need to be satisfied:
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑆(𝑦3 ⊕ 𝑐) = 𝑆(𝑦3)⊕ 𝑐′

𝑆(𝑦2 ⊕ 𝑐) = 𝑆(𝑦2)⊕ 𝑐′

𝑆(𝑦1 ⊕ 𝑐) = 𝑆(𝑦1)⊕ 𝑐′

𝑆(𝑦0 ⊕ 𝑐) = 𝑆(𝑦0)⊕ 𝑐′ .

Depending on the values of 𝑐 and 𝑐′ – that vary with the index of the step – these 4 equations
are either never verified or can be verified with a rather high probability. In fact, their number of
solutions corresponds to the probability of the transition from a difference of 𝑐 to a difference of
𝑐′ through the S-box 𝑆. We computed the corresponding probabilities for all the steps and report
the results in Table 5.3. Note that we experimentally verified these values.

Table 5.3: Probability that an output of step 𝑠 of Shadow is 4-identical knowing that the input is.

𝑠 0 1 2 3 4 5

Probability 0 0 0 2−12 2−8 0

5.3.3 3-Identical States

A similar reasoning applies to states for which only 3 (out of 4) bundles are equal. Without loss
of generality, let us consider a 3-identical state 𝑋 = (𝑥, 𝑥, 𝑥, 𝑧) for which the first 3 bundles are

2Recall here that the value of the round constant depends on the round index.

124

5.4. A Distinguisher Against Full Shadow-512 (and More)

identical. The step starts with the application of the same operations to each bundle, namely 𝑆
and 𝐿, we denote the modified state by 𝐿 ∘ 𝑆(𝑋) = (𝑦, 𝑦, 𝑦, 𝑤). Once the other operations are
applied the output becomes:

𝑆(𝑤
31

), · · · , 𝑆(𝑤
3 ⊕ 𝑐), 𝑆(𝑦

2
) ⊕ 𝑆(𝑦

2 ⊕ 𝑐) ⊕ 𝑆(𝑤
2
), 𝑆(𝑦

1
) ⊕ 𝑆(𝑦

1 ⊕ 𝑐) ⊕ 𝑆(𝑤
1
), 𝑆(𝑤

0
) ⊕ 𝑐

′
,

𝑆(𝑤
31

), · · · , 𝑆(𝑤
3 ⊕ 𝑐), 𝑆(𝑦

2
) ⊕ 𝑆(𝑦

2 ⊕ 𝑐) ⊕ 𝑆(𝑤
2
), 𝑆(𝑤

1
) ⊕ 𝑐

′
, 𝑆(𝑦

0
) ⊕ 𝑆(𝑦

0 ⊕ 𝑐) ⊕ 𝑆(𝑤
0
),

𝑆(𝑤
31

), · · · , 𝑆(𝑤
3 ⊕ 𝑐), 𝑆(𝑤

2
) ⊕ 𝑐

′
, 𝑆(𝑦

1
) ⊕ 𝑆(𝑦

1 ⊕ 𝑐) ⊕ 𝑆(𝑤
1
), 𝑆(𝑦

0
) ⊕ 𝑆(𝑦

0 ⊕ 𝑐) ⊕ 𝑆(𝑤
0
),

𝑆(𝑦
31

), · · · , 𝑆(𝑦
3
) ⊕ 𝑐

′
, 𝑆(𝑦

2 ⊕ 𝑐), 𝑆(𝑦
1 ⊕ 𝑐), 𝑆(𝑦

0 ⊕ 𝑐)

To ensure a 3-identical state the following equations thus have to be satisfied:

𝑆(𝑦2 ⊕ 𝑐) = 𝑆(𝑦2)⊕ 𝑐′

𝑆(𝑦1 ⊕ 𝑐) = 𝑆(𝑦1)⊕ 𝑐′

𝑆(𝑦0 ⊕ 𝑐) = 𝑆(𝑦0)⊕ 𝑐′.

In this case, since we have one fewer S-box transition to constrain, the probabilities of Table 5.3
increase to the ones provided in Table 5.4.

Table 5.4: Probability that an output of step 𝑠 of Shadow is 3-identical knowing that the input is.

𝑠 0 1 2 3 4 5

Probability 0 0 0 2−9 2−6 0

These probabilities do not depend on the choice of the positions of the 3 input bundles that
are identical. Instead, they are valid as soon as the 3 positions are the same in the input and in
the output.

5.3.4 2-Identical States

We can follow a similar reasoning to obtain the probability of keeping a 2-identical state. We
obtain two equations to solve, and the probabilities become the ones given in Table 5.3. Again,
the position of the 2 identical bundles does not impact these probabilities but it has to be the
same in the input and in the output.

Table 5.5: Probability that an output of step 𝑠 of Shadow is 2-identical knowing that the input is.

𝑠 0 1 2 3 4 5

Probability 0 0 0 2−6 2−4 0

5.4 A Distinguisher Against Full Shadow-512 (and More)

In this section, we present a practical distinguisher which allows us to exhibit pairs (𝑥, 𝑥′) of
512-bit inputs of the Shadow-512 permutation such that

𝑥⊕ 𝑥′ = (*, *, *, 0) and 𝜋(𝑥)⊕ 𝜋(𝑥′) = 𝐷(0, 0, 0, *) , (5.1)

125

Chapter 5. Cryptanalysis Results on Spook

for the full version and such that

𝑥⊕ 𝑥′ = (*, *, *, 0) and 𝜋(𝑥)⊕ 𝜋(𝑥′) = 𝐷(*, *, *, 0) , (5.2)

for a “round-extended” version of Shadow-512 using 7 steps rather than 6. In other words, we
efficiently solve a limited-birthday problem.

As proved by Iwamoto et al. [IPS13], generating such pairs for a random permutation would
require roughly 264 queries. However, we can produce pairs satisfying Property (5.1) for full
Shadow-512 using about 215 calls to said permutation. The exact same technique finds pairs
satisfying Property (5.2) for 7-step Shadow-512. The corresponding procedures are described in
Section 5.4.2.

These distinguishers hinge on two properties: the propagation of 3-identical states which we
described in Section 5.3.3, and a probability 1 truncated differential explained in Section 5.4.1.
The latter can be used directly as a distinguisher for 10-round Shadow-512.

5.4.1 A 5-Step Truncated Differential Property

We start by devising a distinguisher of Shadow-512 reduced to 5 steps out of 6. The truncated
trail we use is summarized in Figure 5.4. Starting from the middle, we can easily construct pairs
of states such that their difference propagates with probability 1 over 2 forward and 2 backward
steps.

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

* * * 0

* * * 0

0 0 0 *
0 0 0 𝛼

𝛼 𝛼 𝛼 0

𝛽 𝛽 𝛽 0

0 0 0 𝛽

0 0 0 𝛾

𝛾 𝛾 𝛾 0

* * * 0

1 step

𝑝 = 1

𝑝 = 1

Start

Figure 5.4: A 5-step distinguisher against the 512-bit permutation Shadow.

All propagations are of probability 1, the only place where we would a priori have to pay for
the cost of a transition is for the three Super S-box level transitions 𝛼 𝛽 in step 2. However,
the high similarity between the Super S-boxes provides us with a simple way to obtain three such
pairs of 128-bit blocks.

Building pairs of bundles that follow the same differential for different Super S-boxes.
Recall that the only difference between two Super S-boxes lies in the constant addition operation

126

5.4. A Distinguisher Against Full Shadow-512 (and More)

that is done right after the 𝐿 linear layer. The 4-bit constant 𝑐 is added to the input of only one
S-box of the second non-linear layer, and the index of this S-box depends on the Super S-box
index.

Thanks to this limited difference between the Super S-boxes, we can easily build an input
difference 𝛼 so that the output difference of the S-box does not depend on its index. More
precisely, this difference 𝛼 should be chosen so that it does not diffuse to the last 4 columns of
the bundle. This simple fact is formalized in the following lemma:

Lemma 5.2. If 𝑥 ∈ F128
2 and 𝛼 ∈ F128

2 are such that (𝐿 ∘ 𝑆)(𝑥) ⊕ (𝐿 ∘ 𝑆)(𝑥 ⊕ 𝛼) = 𝛽 and
if 𝛽 is set to 0 on the 4 S-boxes that can receive the round constant 𝑐, then the value of
𝜎𝑏(𝑥)⊕ 𝜎𝑏(𝑥⊕ 𝛼) does not depend on the bundle index 𝑏.

Proof. We denote by 𝑦 and 𝑦 ⊕ 𝛽 the respective values of (𝐿 ∘ 𝑆)(𝑥) and (𝐿 ∘ 𝑆)(𝑥⊕ 𝛼). By
expanding these into the column notation we get:

𝑦 = 𝑦31 · · · 𝑦4 𝑦3 𝑦2 𝑦1 𝑦0

𝑦 ⊕ 𝛽 = 𝑦31 ⊕ 𝛽31 · · · 𝑦4 ⊕ 𝛽4 𝑦3 𝑦2 𝑦1 𝑦0

Let us first look at 𝜎0. We have that

𝜎0(𝑥) = 𝑆(𝑦31) · · · 𝑆(𝑦4) 𝑆(𝑦3) 𝑆(𝑦2) 𝑆(𝑦1) 𝑆(𝑦0 ⊕ 𝑐)
𝜎0(𝑥⊕ 𝛼) = 𝑆(𝑦31 ⊕ 𝛽31) · · · 𝑆(𝑦4 ⊕ 𝛽4) 𝑆(𝑦3) 𝑆(𝑦2) 𝑆(𝑦1) 𝑆(𝑦0 ⊕ 𝑐)

so summing these equations yields

𝜎0(𝑥)⊕ 𝜎0(𝑥⊕ 𝛼) = 𝛾31 · · · 𝛾4 0 0 0 0

Without loss of generality, let us now consider 𝜎1. We have

𝜎1(𝑥) = 𝑆(𝑦31) · · · 𝑆(𝑦4) 𝑆(𝑦3) 𝑆(𝑦2) 𝑆(𝑦1 ⊕ 𝑐) 𝑆(𝑦0)
𝜎1(𝑥⊕ 𝛼) = 𝑆(𝑦31 ⊕ 𝛽31) · · · 𝑆(𝑦4 ⊕ 𝛽4) 𝑆(𝑦3) 𝑆(𝑦2) 𝑆(𝑦1 ⊕ 𝑐) 𝑆(𝑦0)

As we can see we have the exact same pairs of values, and thus the same output differences,
unless we look at one of the first 4-bit nibbles. However, in this case, the values in 𝜎1(𝑥) and
𝜎1(𝑥 ⊕ 𝛼) are identical to one another, meaning that their difference is equal to 0 as well.
This concludes the proof since the two differences are equal.

To put it differently, this lemma allows us to build pairs of messages that follow the same
differential trail over one step whatever the index of the Super S-box.

Our distinguisher for 5 steps of Shadow-512 thus works by following the process described
in Algorithm 13. As depicted in Figure 5.4, the choice of the difference 𝛽 ensures that the
same transition is followed for the 3 first Super S-boxes of step 2. The differential pattern then
propagates as expected with probability 1 through steps 1 then 0 (backward), and 3 then 4
(forward).

We have verified experimentally that this distinguisher works as predicted.
The differences in the output of the Super S-box layer of step 5 (denoted by * in Figure 5.4)

are a priori different from one another, meaning that this approach cannot cover more rounds.
Fortunately, we can use the property studied in Section 5.3.3 to our advantage, as explained
below.

127

Chapter 5. Cryptanalysis Results on Spook

Algorithm 13 A distinguisher for 5-step Shadow.

1. Choose 𝛽 ∈ F128
2 such that it is set to 0 on the 4 S-boxes of lowest weight

2. Choose a random 𝑦 ∈ F128
2 and a random 𝑧 ∈ F128

2

3. Compute 𝑥 = 𝜎−1
0 (𝑦) and 𝑥+ 𝛼 = 𝜎−1

0 (𝑦 + 𝛽),

4. Set the two states at step 2 to be

𝑋2 = (𝑥, 𝑥, 𝑥, 𝑧) and 𝑋 ′
2 = (𝑥+ 𝛼, 𝑥+ 𝛼, 𝑥+ 𝛼, 𝑧) .

5. Invert step 1 and step 0 on 𝑋2 and 𝑋 ′
2 to obtain a pair of states (𝑋0, 𝑋

′
0) such that

𝜋(𝑋0)⊕ 𝜋(𝑋 ′
0) = 𝐷(*, *, *, 0).

5.4.2 A Distinguisher for 6- and 7-Step Shadow

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

Step 0

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

Step 1

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

Step 2

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

Step 3

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

Step 4

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

Step 5

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

Step 6

* * * 0

* * * 0

0 0 0 *
0 0 0 𝛼

𝛼 𝛼 𝛼 0

𝛽 𝛽 𝛽 0

0 0 0 𝛽

0 0 0 𝛾

𝛾 𝛾 𝛾 0

𝛿 𝛿 𝛿 0

0 0 0 𝛿

0 0 0 *

* * * 0

* * * 0

By construction

𝑝 = 2−9

𝑝 = 2−7.245

𝑝 = 1

𝑝 = 1

Start

Figure 5.5: A 7-step distinguisher against the 512-bit permutation Shadow.

Using the truncated trail discussed in Section 5.4.1 with the observation in Section 5.3.3, we
can build a distinguisher on 6 steps of Shadow, i.e. on the full permutation. It would naturally
extend to a distinguisher on 7 steps if we defined such a “round-extended” variant of Shadow.
This distinguisher is summarized in Figure 5.5.

128

5.4. A Distinguisher Against Full Shadow-512 (and More)

Structure of the distinguisher. Our distinguisher works as follows.

∙ We first focus on the input of step 2 and build a pair of messages that differ by (𝛼, 𝛼, 𝛼, 0).
This difference automatically sets the input difference of step 0 to be equal to 0 on the
third bundle. Our choice of the two messages must also ensure that their difference at the
end of step 2 is equal to (0, 0, 0, 𝛽) and that the two output messages are 3-identical (the
3-identical property is depicted by the thick rectangle in Figure 5.5.).

∙ In step 3, we want to keep the 3-identical property in order to ease the following step. As
we established before (see Table 5.4), this event has a probability equal to 2−9. The input
difference at the end of step 3 is then equal to (𝛾, 𝛾, 𝛾, 0).

∙ We next aim for a difference equal to (𝛿, 𝛿, 𝛿, 0) at the output of the Super S-boxes of step
4, an event whose probability we later prove to be 2−7.245. When this condition is fulfilled
we obtain a difference equal to (0, 0, 0, 𝛿) at the output of step 4, which automatically leads
to the required difference of the form (*, *, *, 0) at the end of step 5.

Let us now show how we can efficiently find two states that verify the conditions at the input
and the output of Step 3.

Suppose that there is an 𝑥 ∈ F128
2 such that the following holds during step 2 for some 128-bit

values 𝛼, 𝛽, 𝜖 and 𝜖′: ⎧
⎪⎨
⎪⎩

𝜎0(𝑥) + 𝜎0(𝑥+ 𝛼) = 𝛽

𝜎1(𝑥+ 𝜖) + 𝜎1(𝑥+ 𝜖+ 𝛼) = 𝛽

𝜎2(𝑥+ 𝜖′) + 𝜎2(𝑥+ 𝜖′ + 𝛼) = 𝛽 ,

(5.3)

these constraints corresponding to the differential trail at step 2 that is used in Figure 5.5. Such
an 𝑥 would allow us to run the 5-round distinguisher described in Section 5.4.1. However, as we
explained, the property would not extend beyond the fifth step. To achieve this, we add another
set of constraints:

{︃
(𝐴𝐶 ∘𝐷)

(︀
𝜎0(𝑥), 𝜎1(𝑥+ 𝜖), 𝜎2(𝑥+ 𝜖′), 𝑧

)︀
= (𝑦, 𝑦, 𝑦, 𝑧′)

(𝐴𝐶 ∘𝐷)
(︀
𝜎0(𝑥+ 𝛼), 𝜎1(𝑥+ 𝛼+ 𝜖), 𝜎2(𝑥+ 𝛼+ 𝜖′), 𝑧

)︀
= (𝑦, 𝑦, 𝑦, 𝑧′ + 𝛽) .

(5.4)

In other words, we impose that each state we consider is 3-identical.
In this case, the difference between the states has to be equal to (0, 0, 0, 𝛽) at the input of

step 3. Furthermore, each state is 3-identical. This property is carried over to the next step with
some probability. Should this happen, we would have at the input of step 4 that the difference
between the states is equal to (0, 0, 0, 𝛾) for some 𝛾 ∈ F128

2 , and that each state is 3-identical.

Finding Solutions for Properties (5.3) and (5.4). It turns out that a specific probability
1 truncated differential pattern allows us to trivially find solutions satisfying both Property (5.3)
and Property (5.4).

Indeed, we remark that:

1. the impact of the constant additions both within the Super S-box layers and outside it
(after the 𝐷 layer) is limited to the S-boxes with indices in {0, 1, 2, 3} (i.e. the 4 of lowest
weight) within each Super S-box, and

2. the bits with indices 22 and 23 in each of the 4 input words of a Super S-box do not influence
the output bits with indices in {0, 1, 2, 3}.

129

Chapter 5. Cryptanalysis Results on Spook

Using the reference implementation, we can indeed see that

𝐿(0, 𝑒22) = (1b880510, 6c06f000)
𝐿(𝑒22, 0) = (36037800, 1b880510)
𝐿(0, 𝑒23) = (37100a20, d80de000)
𝐿(𝑒23, 0) = (6c06f000, 37100a20) ,

where the 4 bits of lowest weight in each output are always equal to 0. We then define the vector
space ∇ ⊂ (F4

2)
32 as

∇ = {𝑎× 𝑒22 + 𝑏× 𝑒23, 𝑎 ∈ F4
2, 𝑏 ∈ F4

2} ,
where the multiplications are done in the finite field F4

2. As a consequence of our observations, we
have the following lemma.

Lemma 5.3. Let 𝑥 ∈ (F4
2)

32 be a 128-bit vector and let 𝛼 ∈ ∇ be a difference. Then for all
steps and all bundle index 𝑖, we have that

𝜎𝑖(𝑥) + 𝜎𝑖(𝑥+ 𝛼) = (*, *, ..., *, 0, 0, 0, 0) .

As evidenced by our experimental results (see below), this approach is efficient, and with the
cost of computing 1 Super S-box we can obtain about 216 internal states that verify the condition
of step 2.

Description of the Full Distinguisher. Algorithm 14 details our distinguisher. Using the
techniques described so far, we are able to find input differences that satisfy the truncated trail
and are 3-identical where needed (see Figure 5.5) from the beginning of step 0 to the end of step
2. Let us now see what happens in the remaining steps.

Algorithm 14 Our 7-step distinguisher against Shadow.
Output: A pair (𝑥, 𝑦, 𝑧, 𝑡), (𝑥′, 𝑦′, 𝑧′, 𝑡) such that 𝜋(𝑥, 𝑦, 𝑧, 𝑡) ⊕ 𝜋(𝑥′, 𝑦′, 𝑧′, 𝑡) = (*, *, *, 0) with
probability at least 2−16.245 after 7-step Shadow-512.

1. Select a difference 𝜖 ∈ ∇.

2. Select a state (𝑦2, 𝑦2, 𝑦2, 𝑧2) that will be a state after step 2.

3. Invert step 2 on (𝑦2, 𝑦2, 𝑦2, 𝑧2), obtaining (𝑥1, 𝑦1, 𝑧1, 𝑡1).

4. Invert step 1 on (𝑥1, 𝑦1, 𝑧1, 𝑡1) and (𝑥1 ⊕ 𝜖, 𝑦1 ⊕ 𝜖, 𝑧1 ⊕ 𝜖, 𝑡1), obtaining (𝑥0, 𝑦0, 𝑧0, 𝑡0) and
(𝑥0, 𝑦0, 𝑧0, 𝑡

′
0).

5. Invert step 0, obtaining a pair of Shadow-512 states with a zero-difference in the last bundle.

6. Return this pair of state. With high probability (≥ 2−16.24), it satisfies the truncated trail
in Figure 5.5.

Step 3. We start from two messages that are built such that at the end of step 2 they are
3-identical, and we want that the two messages are again 3-identical at the end of step 3.
With a reasoning similar to the one given in Section 5.3.3, we obtain 6 equations to solve,
while in fact only 3 are independent (the 3 equations obtained for the second message are

130

5.4. A Distinguisher Against Full Shadow-512 (and More)

the same as the 3 obtained for the first message since they only differ on the last bundle),
and as detailed in Table 5.4 the probability is equal to 2−9 since this is step number 3.

Step 4. Our objective is to obtain a difference of the form (0, 0, 0, 𝛿) for any non-zero 𝛿 in F128
2

at the beginning of step 5 (see Figure 5.5). In order for this to happen, we need to have a
difference equal to (𝛿, 𝛿, 𝛿, 0) at the end of step 4. To estimate the probability of this event,
let us write the corresponding equations. We denote the two messages after the application
of 𝑆 and 𝐿 of step 4 by (𝑦, 𝑦, 𝑦, 𝑤) and (𝑦′, 𝑦′, 𝑦′, 𝑤) respectively. Since the input of step 4
is 3-identical, 𝑦𝑖 = 𝑦′𝑖 for all 𝑖 > 3. The expression of the last 4 column values at the end of
step 4 (i.e. after applying 𝐷 and 𝐴𝐶) is then as follows for (𝑦, 𝑦, 𝑦, 𝑤)

𝑆(𝑤3 ⊕ 𝑐) 𝑆(𝑦2) ⊕ 𝑆(𝑦2 ⊕ 𝑐) ⊕ 𝑆(𝑤2) 𝑆(𝑦1) ⊕ 𝑆(𝑦1 ⊕ 𝑐) ⊕ 𝑆(𝑤1) 𝑆(𝑤0) ⊕ 𝑐′

𝑆(𝑤3 ⊕ 𝑐) 𝑆(𝑦2) ⊕ 𝑆(𝑦2 ⊕ 𝑐) ⊕ 𝑆(𝑤2) 𝑆(𝑤1) ⊕ 𝑐′ 𝑆(𝑦0) ⊕ 𝑆(𝑦0 ⊕ 𝑐) ⊕ 𝑆(𝑤0)

𝑆(𝑤3 ⊕ 𝑐) 𝑆(𝑤2) ⊕ 𝑐′ 𝑆(𝑦1) ⊕ 𝑆(𝑦1 ⊕ 𝑐) ⊕ 𝑆(𝑤1) 𝑆(𝑦0) ⊕ 𝑆(𝑦0 ⊕ 𝑐) ⊕ 𝑆(𝑤0)

𝑆(𝑦3) ⊕ 𝑐′ 𝑆(𝑦2 ⊕ 𝑐) 𝑆(𝑦1 ⊕ 𝑐) 𝑆(𝑦0 ⊕ 𝑐)

and as follows for (𝑦′, 𝑦′, 𝑦′, 𝑤):
𝑆(𝑤3 ⊕ 𝑐) 𝑆(𝑦′2) ⊕ 𝑆(𝑦′2 ⊕ 𝑐) ⊕ 𝑆(𝑤2) 𝑆(𝑦′1) ⊕ 𝑆(𝑦′1 ⊕ 𝑐) ⊕ 𝑆(𝑤1) 𝑆(𝑤0) ⊕ 𝑐′

𝑆(𝑤3 ⊕ 𝑐) 𝑆(𝑦′2) ⊕ 𝑆(𝑦′2 ⊕ 𝑐) ⊕ 𝑆(𝑤2) 𝑆(𝑤1) ⊕ 𝑐′ 𝑆(𝑦′0) ⊕ 𝑆(𝑦′0 ⊕ 𝑐) ⊕ 𝑆(𝑤0)

𝑆(𝑤3 ⊕ 𝑐) 𝑆(𝑤2) ⊕ 𝑐′ 𝑆(𝑦′1) ⊕ 𝑆(𝑦′1 ⊕ 𝑐) ⊕ 𝑆(𝑤1) 𝑆(𝑦′0) ⊕ 𝑆(𝑦′0 ⊕ 𝑐) ⊕ 𝑆(𝑤0)

𝑆(𝑦′3) ⊕ 𝑐′ 𝑆(𝑦′2 ⊕ 𝑐) 𝑆(𝑦′1 ⊕ 𝑐) 𝑆(𝑦′0 ⊕ 𝑐)

In order for the sum of these two states to be equal to (0, 0, 0, 𝛿) (for any non-zero 𝛿), the
following relations have to be satisfied:

𝑆(𝑦′2)⊕ 𝑆(𝑦′2 ⊕ 𝑐) = 𝑆(𝑦2)⊕ 𝑆(𝑦2 ⊕ 𝑐)

𝑆(𝑦′1)⊕ 𝑆(𝑦′1 ⊕ 𝑐) = 𝑆(𝑦1)⊕ 𝑆(𝑦1 ⊕ 𝑐)

𝑆(𝑦′0)⊕ 𝑆(𝑦′0 ⊕ 𝑐) = 𝑆(𝑦0)⊕ 𝑆(𝑦0 ⊕ 𝑐) .

Since we are looking at step 4, the constant 𝑐 is equal to 0𝑥5 and then each equality
has a probability equal to 2−2.415 to be verified (assuming that the value of 𝑦 and 𝑦′ are
independent).

Step 5. This last step is passed with probability one, so in the end we observe an output
difference equal to (*, *, *, 0) with a probability at least equal to (2−2.415)3× 2−9 = 2−16.245.

Step 6. One additional round can be added with probability one, since by inverting 𝐷 we would
find a difference equal to 0 in the last bundle with the same probability of 2−16.245.

Experimental Results. Experiments showed that the probability of the distinguisher is slightly
higher than what we expected, since in fact the previously detailed trail is not the only one that
leads to the required output difference (see the next subsection for a description of another valid
trail). By running Algorithm 14 for 222 times, we obtained 124 successful pairs, a probability
close to 2−15. Our unoptimized C++ implementation found all these pairs in less than 30 seconds
on a desktop computer. Below is an example for 7 steps.

𝑥1 𝑥2

9c7fbdf0 4a9a3523 90bd4f15 33e12e8f
5554509d 5ea7c50d db9fd14e 8cd31faf
5f0785c3 14ce1b1f b9a7f521 336e44ba
fcf630fb 82cafa8e abf5b881 e5534b79

b4764864 aaabc55e 2b65df83 33e12e8f
30d8625c 6d513db3 9024c477 8cd31faf
89fb6758 5d19b594 e69ccd64 336e44ba
4f3d62a5 3e530b8b f7ccf2b7 e5534b79

𝑥1 ⊕ 𝑥2 𝜋(𝑥1)⊕ 𝜋(𝑥2)

2809f594 e031f07d bbd89096 00000000
658c32c1 33f6f8be 4bbb1539 00000000
d6fce29b 49d7ae8b 5f3b3845 00000000
b3cb525e bc99f105 5c394a36 00000000

39e368a5 03e51caf f2d7ae55 00000000
2668956a b1720999 00c93f81 00000000
4aed9270 2b317fb5 6f1a183b 00000000
d902b8fd 5c7db7c2 2ef09921 00000000

131

Chapter 5. Cryptanalysis Results on Spook

Another High Probability Characteristic over 7 Steps

As previously stated, the trail that is represented in Figure 5.5 is not the only one contributing
to the probability of our 7-step distinguisher. Indeed, while we expected a probability of 2−16.245,
our experiments returned a probability close to 2−15. In this section we detail a second trail of
high probability that benefits from the definition of 𝐿, namely from the fact that the bits in
column 2 do not diffuse to column 0, 1 and 2.

Structure of the trail. The trail is represented in Figure 5.6 and works as follows:

∙ As before, our construction at step 2 gives a pair of messages that leads to the desired
difference (*, *, *, 0) at the input of the permutation with probability 1, while the states at
the output of step 2 are 3-identical and differ by (0, 0, 0, 𝛽).

∙ With probability 2−9, the two states keep their 3-identical property at the end of step 3,
and their difference is (𝛾, 𝛾, 𝛾, 0).

∙ We then require that at the end of step 4 the two states are 2-identical while they share the
same third bundle value. As we detail next, this event is of probability 2−8.3.

∙ Step 5 ends with a null difference in the last bundle with probability 1 thanks to the
definition of 𝐿. The distinguisher can be extended to a 7-step one for free.

The total probability of this trail is thus equal to 2−17.3. Adding it to the probability of the
other trail previously discussed in this section, we obtain something closer to what is observed
experimentally: 2−17.3 + 2−16.245 = 2−15.678. Note that other trails add up to this probability, for
instance the ones with a difference of the form (0, 𝜏, 𝜏, 𝜅) or (𝜏, 0, 𝜏, 𝜅) at the end of step 4.

Detail of the probabilities.

Step 3. As for the first trail described in this section, the probability that the states remain
3-identical is equal to 2−9.

Step 4. At the end of step 4, we aim for a pair of messages that are 2-identical in their first
2 bundles and that have no difference in their third bundle. Formally, let us denote by
(𝑦, 𝑦, 𝑦, 𝑤) and (𝑦′, 𝑦′, 𝑦′, 𝑤) the two states after 𝑆 and 𝐿. After applying the first constant
addition, the second S-layer, the 𝐷 operation and the second constant addition, we obtain:

𝑆(𝑤
31

), · · · , 𝑆(𝑤
3 ⊕ 𝑐), 𝑆(𝑦

2
) ⊕ 𝑆(𝑦

2 ⊕ 𝑐) ⊕ 𝑆(𝑤
2
), 𝑆(𝑦

1
) ⊕ 𝑆(𝑦

1 ⊕ 𝑐) ⊕ 𝑆(𝑤
1
), 𝑆(𝑤

0
) ⊕ 𝑐

′
,

𝑆(𝑤
31

), · · · , 𝑆(𝑤
3 ⊕ 𝑐), 𝑆(𝑦

2
) ⊕ 𝑆(𝑦

2 ⊕ 𝑐) ⊕ 𝑆(𝑤
2
), 𝑆(𝑤

1
) ⊕ 𝑐

′
, 𝑆(𝑦

0
) ⊕ 𝑆(𝑦

0 ⊕ 𝑐) ⊕ 𝑆(𝑤
0
),

𝑆(𝑤
31

), · · · , 𝑆(𝑤
3 ⊕ 𝑐), 𝑆(𝑤

2
) ⊕ 𝑐

′
, 𝑆(𝑦

1
) ⊕ 𝑆(𝑦

1 ⊕ 𝑐) ⊕ 𝑆(𝑤
1
), 𝑆(𝑦

0
) ⊕ 𝑆(𝑦

0 ⊕ 𝑐) ⊕ 𝑆(𝑤
0
),

𝑆(𝑦
31

), · · · , 𝑆(𝑦
3
) ⊕ 𝑐

′
, 𝑆(𝑦

2 ⊕ 𝑐), 𝑆(𝑦
1 ⊕ 𝑐), 𝑆(𝑦

0 ⊕ 𝑐)

and

𝑆(𝑤
31

), · · · , 𝑆(𝑤
3 ⊕ 𝑐), 𝑆(𝑦

′2
) ⊕ 𝑆(𝑦

′2 ⊕ 𝑐) ⊕ 𝑆(𝑤
2
), 𝑆(𝑦

′1
) ⊕ 𝑆(𝑦

′1 ⊕ 𝑐) ⊕ 𝑆(𝑤
1
), 𝑆(𝑤

0
) ⊕ 𝑐

′
,

𝑆(𝑤
31

), · · · , 𝑆(𝑤
3 ⊕ 𝑐), 𝑆(𝑦

′2
) ⊕ 𝑆(𝑦

′2 ⊕ 𝑐) ⊕ 𝑆(𝑤
2
), 𝑆(𝑤

1
) ⊕ 𝑐

′
, 𝑆(𝑦

′0
) ⊕ 𝑆(𝑦

′0 ⊕ 𝑐) ⊕ 𝑆(𝑤
0
),

𝑆(𝑤
31

), · · · , 𝑆(𝑤
3 ⊕ 𝑐), 𝑆(𝑤

2
) ⊕ 𝑐

′
, 𝑆(𝑦

′1
) ⊕ 𝑆(𝑦

′1 ⊕ 𝑐) ⊕ 𝑆(𝑤
1
), 𝑆(𝑦

′0
) ⊕ 𝑆(𝑦

′0 ⊕ 𝑐) ⊕ 𝑆(𝑤
0
),

𝑆(𝑦
′31

), · · · , 𝑆(𝑦
′3

) ⊕ 𝑐
′
, 𝑆(𝑦

′2 ⊕ 𝑐), 𝑆(𝑦
′1 ⊕ 𝑐), 𝑆(𝑦

′0 ⊕ 𝑐)

132

5.4. A Distinguisher Against Full Shadow-512 (and More)

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

Step 0

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

Step 1

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

Step 2

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

Step 3

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

Step 4

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

Step 5

𝜎0 𝜎1 𝜎2 𝜎3

𝐷

Step 6

* * * 0

* * * 0

0 0 0 *
0 0 0 𝛼

𝛼 𝛼 𝛼 0

0 0 0 𝛽

𝛾 𝛾 𝛾 0

𝜏 𝜏 0 𝜅

* * * 0

* * * 0

By construction

𝑝 = 2−9

𝑝 = 2−8.3

𝑝 = 1

𝑝 = 1

Start

Figure 5.6: Another trail contributing to the probability of the 7-step distinguisher of Shadow-512.

In order to obtain a 2-identical state the following relations have to be satisfied:

𝑆(𝑦1)⊕ 𝑆(𝑦1 ⊕ 𝑐) = 𝑐′,

𝑆(𝑦0)⊕ 𝑆(𝑦0 ⊕ 𝑐) = 𝑐′,

𝑆(𝑦′1)⊕ 𝑆(𝑦′1 ⊕ 𝑐) = 𝑐′,

𝑆(𝑦′0)⊕ 𝑆(𝑦′0 ⊕ 𝑐) = 𝑐′.

Given that we are looking at step number 4 we have 𝑐 = 0𝑥5 and 𝑐′ = 0𝑥𝑎, so each equation
is verified with probability 2−2. Also, since we aim for a difference at the end of step 4 of
the form (𝜏, 𝜏, 0, 𝜅) with 𝜏 ̸= 0, we have to add the condition:

𝑆(𝑦2)⊕ 𝑆(𝑦2 ⊕ 𝑐)⊕ 𝑆(𝑦′2)⊕ 𝑆(𝑦′2 ⊕ 𝑐) ̸= 0.

That is verified with probability 2−0.3. Consequently, the probability of step 4 is equal to
2−8.3. Once these conditions are fulfilled, we automatically have an output difference of
step 4 equal to (𝜏, 𝜏, 0, 𝜅) and the actual value of 𝜏 is very sparse, only the second column
is active:

𝜏 = (0, · · · , 0, 𝑆(𝑦′2)⊕ 𝑆(𝑦′2 ⊕ 𝑐)⊕ 𝑆(𝑦2)⊕ 𝑆(𝑦2 ⊕ 𝑐), 0, 0)

This particular shape implies that step 5 is passed with probability 1.

133

Chapter 5. Cryptanalysis Results on Spook

Step 5. We denote the two input states by (𝑢, 𝑢, 𝑣, 𝑥) and (𝑢 ⊕ 𝜏, 𝑢 ⊕ 𝜏, 𝑣, 𝑥′). Our goal is to
obtain a difference equal to zero in the last bundle at the end of the step. We first remark
that after applying the first S-layer to the two states, we obtain two states (𝑈,𝑈, 𝑉,𝑋) and
(𝑈 ′, 𝑈 ′, 𝑉,𝑋 ′) so that again the difference between 𝑈 and 𝑈 ′ is only positioned in the second
column of the bundle (simply because the S-layer modifies each column independently). We
denote the new difference by 𝑇 = 𝑈 ⊕ 𝑈 ′.

Due to the linearity of the next step we can further trace the evolution of 𝜏 through the
𝐿 layer: we have that 𝐿(𝑈) ⊕ 𝐿(𝑈 ′) = 𝐿(𝑇). Moreover, using the specification of 𝐿 we
observe that:

𝐿(𝑒2, 0) = (805101b8, 6f0006c0)
𝐿(0, 𝑒2) = (37800360, 805101b8).

These computations indicate that any difference positioned in column 2 does not propagate
to any of the first 3 columns, and in particular that whatever the exact value of 𝑇 the two
first bundles of each state have the same value over their 3 first columns. To see how this
leads to the required equality at the end of step 5, we can look at the formal expression of
the two states. After applying L, the first round constant addition and the second non-linear
layer we obtain:

𝑆(𝐿(𝑈)
31

), · · · , 𝑆(𝐿(𝑈)
3
), 𝑆(𝐿(𝑈)

2
), 𝑆(𝐿(𝑈)

1
), 𝑆(𝐿(𝑈)

0 ⊕ 𝑐),

𝑆(𝐿(𝑈)
31

), · · · , 𝑆(𝐿(𝑈)
3
), 𝑆(𝐿(𝑈)

2
), 𝑆(𝐿(𝑈)

1 ⊕ 𝑐), 𝑆(𝐿(𝑈)
0
),

𝑆(𝐿(𝑉)
31

), · · · , 𝑆(𝐿(𝑉)
3
), 𝑆(𝐿(𝑉)

2 ⊕ 𝑐), 𝑆(𝐿(𝑉)
1
), 𝑆(𝐿(𝑉)

0
),

𝑆(𝐿(𝑋)
31

), · · · , 𝑆(𝐿(𝑋)
3 ⊕ 𝑐), 𝑆(𝐿(𝑋)

2
), 𝑆(𝐿(𝑋)

1
), 𝑆(𝐿(𝑋)

0
)

for the first state, and the following for the second state:

𝑆(𝐿(𝑈
′
)
31

), · · · , 𝑆(𝐿(𝑈
′
)
3
), 𝑆(𝐿(𝑈

′
)
2
), 𝑆(𝐿(𝑈

′
)
1
), 𝑆(𝐿(𝑈

′
)
0 ⊕ 𝑐),

𝑆(𝐿(𝑈
′
)
31

), · · · , 𝑆(𝐿(𝑈
′
)
3
), 𝑆(𝐿(𝑈

′
)
2
), 𝑆(𝐿(𝑈

′
)
1 ⊕ 𝑐), 𝑆(𝐿(𝑈

′
)
0
),

𝑆(𝐿(𝑉)
31

), · · · , 𝑆(𝐿(𝑉)
3
), 𝑆(𝐿(𝑉)

2 ⊕ 𝑐), 𝑆(𝐿(𝑉)
1
), 𝑆(𝐿(𝑉)

0
),

𝑆(𝐿(𝑋
′
)
31

), · · · , 𝑆(𝐿(𝑋
′
)
3 ⊕ 𝑐), 𝑆(𝐿(𝑋

′
)
2
), 𝑆(𝐿(𝑋

′
)
1
), 𝑆(𝐿(𝑋

′
)
0
)

The difference in the last bundle at the end of step 5 is thus given by the sum of the first 3
bundles of both states (since we are passing through 𝐷). It gives:

0, · · · , 0, 𝑆(𝐿(𝑈)
1
) ⊕ 𝑆(𝐿(𝑈)

1 ⊕ 𝑐) ⊕ 𝑆(𝐿(𝑈
′
)
1
) ⊕ 𝑆(𝐿(𝑈

′
)
1 ⊕ 𝑐), 𝑆(𝐿(𝑈)

0
) ⊕ 𝑆(𝐿(𝑈)

0 ⊕ 𝑐) ⊕ 𝑆(𝐿(𝑈
′
)
0
) ⊕ 𝑆(𝐿(𝑈

′
)
0 ⊕ 𝑐).

We then use the previous observation which implies that 𝐿(𝑈 ′)1 = 𝐿(𝑈)1 together with
𝐿(𝑈 ′)0 = 𝐿(𝑈)0 to conclude that the bundle difference is null with probability 1.

5.4.3 A Distinguisher for 6-step Shadow-384

In this section we show how to build a similar distinguisher on 6 steps of the 384-bit variant of
Shadow shifted by one round (i.e. which works for steps from 1 to 6 but for no steps from 0 to 5
because of the round constants). As explained in the preliminaries, Shadow-384 is defined as a
3LS-design, and the 𝐷 layer acts on three 128-bit bundles 𝑎, 𝑏, 𝑐 as follows:

𝐷(𝑎, 𝑏, 𝑐) =

⎛
⎝
𝐼 𝐼 𝐼
𝐼 0 𝐼
𝐼 𝐼 0

⎞
⎠×

⎛
⎝
𝑎
𝑏
𝑐

⎞
⎠

134

5.4. A Distinguisher Against Full Shadow-512 (and More)

𝜎0 Step 0𝜎1 Step 0𝜎2 Step 0

𝐷

𝜎0 𝜎1 𝜎2

𝐷

Step 1

𝜎0 𝜎1 𝜎2

𝐷

Step 2

𝜎0 𝜎1 𝜎2

𝐷

Step 3

𝜎0 𝜎1 𝜎2

𝐷

Step 4

𝜎0 𝜎1 𝜎2

𝐷

Step 5

𝜎0 𝜎1 𝜎2

𝐷

Step 6

* * *
* * *

0 * *
0 𝛼 𝛼

0 𝛼 𝛼

0 𝛽 𝛽

0 𝛽 𝛽

0 𝛾 𝛾

0 𝛾 𝛾

0 𝛿 𝛿

0 𝛿 𝛿

0 * *

0 * *
0 * *

By construction

𝑝 = 2−12

𝑝 = 2−8

𝑝 = 2−4.83

𝑝 = 1

𝑝 = 1

Start

Figure 5.7: A (1-step shifted) 6-step distinguisher for Shadow-384. The thick rectangles depict
2-identical states.

Interestingly, propagating identical states remains possible with this layer, more specifically
for states in which the last 2 bundles are equal. Using this property, one can exhibit pairs (𝑥, 𝑥′)
such that 𝑥 ⊕ 𝑥′ = (0, *, *) at step 1 and 𝜋(𝑥) ⊕ 𝜋(𝑥′) = 𝐷(0, *, *) at the end of step 6. Note
that in this case, we cannot cover step 0. Hence this is not a distinguisher on the full version of
Shadow-384 for which we can cover only 5 steps. However, it shows that adding 1 more step at the
end does not increase the security of Shadow-384. The distinguisher is summarized in Figure 5.7.

As previously described in Section 5.4.2, by picking an 𝛼 in the vector space ∇ = {𝑎× 𝑒22 +
𝑏× 𝑒23, 𝑎 ∈ F4

2, 𝑏 ∈ F4
2} we can easily find two states (𝑥1, 𝑦1, 𝑦1 + 𝜖) and (𝑥1, 𝑦1 +𝛼, 𝑦1 + 𝜖+ 𝛼) as

inputs to step 2 that satisfy the following properties at input of step 3:
{︃
𝜎1(𝑦1) + 𝜎1(𝑦1 + 𝛼) = 𝛽

𝜎2(𝑦1 + 𝜖) + 𝜎2(𝑦1 + 𝜖+ 𝛼) = 𝛽 ,
(5.5)

and {︃
(𝐴𝐶 ∘𝐷)

(︀
𝑥1, 𝜎1(𝑦1), 𝜎2(𝑦1 + 𝜖)

)︀
= (𝑥2, 𝑦2, 𝑦2)

(𝐴𝐶 ∘𝐷)
(︀
𝑥1, 𝜎1(𝑦1 + 𝛼), 𝜎2(𝑦1 + 𝛼+ 𝜖)

)︀
= (𝑥2, 𝑦2 + 𝛽, 𝑦2 + 𝛽) .

(5.6)

By inverting step 1, we obtain a difference (0, *, *) with probability 1.
Now at step 3, the input difference equals (0, 𝛽, 𝛽) and the last two bundles of each state are

identical. With probability 2−12 and 2−8 respectively, the 2-identical states are preserved through

135

Chapter 5. Cryptanalysis Results on Spook

step 3 and 4. Using the same notations as in Section 5.3.2, these probabilities are explained
below.

Starting from a 2-identical state 𝑋 = (𝑥, 𝑦, 𝑦), let (𝑤, 𝑧, 𝑧) = 𝐿 ∘𝑆(𝑋) with 𝑤 = 𝐿 ∘𝑆(𝑥) and
𝑧 = 𝐿 ∘ 𝑆(𝑦). The first round constant 𝑐 is then added on column 𝑗 of bundle 𝑗 for 𝑗 ∈ {0, 1, 2},
and another S-box layer is applied, and we obtain the following:

𝑆 ∘𝐴𝐶(2𝑖) ∘ 𝐿 ∘ 𝑆(𝑋) =

[︂ · · · 𝑆(𝑤𝑖) · · · 𝑆(𝑤2) 𝑆(𝑤1) 𝑆(𝑤0 ⊕ 𝑐)
· · · 𝑆(𝑧𝑖) · · · 𝑆(𝑧2) 𝑆(𝑧1 ⊕ 𝑐) 𝑆(𝑧0)
· · · 𝑆(𝑧𝑖) · · · 𝑆(𝑧2 ⊕ 𝑐) 𝑆(𝑧1) 𝑆(𝑧0)

]︂
.

At this stage, the last 2 bundles of each state differ only on the value of their second and third
columns. After the 𝐷 layer and the addition of the second round constant 𝑐′ at column 𝑗 of bundle
𝑗 for 𝑗 ∈ {0, 1, 2}) as before, the expression of the bundles of 𝐴𝐶(2𝑖+1)∘𝐷∘𝑆 ∘𝐴𝐶(2𝑖)∘𝐿∘𝑆(𝑋)
becomes:

· · · 𝑆(𝑤𝑖) · · · 𝑆(𝑤2)⊕ 𝑆(𝑧2)⊕ 𝑆(𝑧2 ⊕ 𝑐) 𝑆(𝑤1)⊕ 𝑆(𝑧1 ⊕ 𝑐)⊕ 𝑆(𝑧1) 𝑆(𝑤0 ⊕ 𝑐)⊕ 𝑐′

· · · 𝑆(𝑤𝑖)⊕ 𝑆(𝑧𝑖) · · · 𝑆(𝑤2)⊕ 𝑆(𝑧2 ⊕ 𝑐) 𝑆(𝑤1)⊕ 𝑆(𝑧1)⊕ 𝑐′ 𝑆(𝑤0 ⊕ 𝑐)⊕ 𝑆(𝑧0)

· · · 𝑆(𝑤𝑖)⊕ 𝑆(𝑧𝑖) · · · 𝑆(𝑤2)⊕ 𝑆(𝑧2)⊕ 𝑐′ 𝑆(𝑤1)⊕ 𝑆(𝑧1 ⊕ 𝑐) 𝑆(𝑤0 ⊕ 𝑐)⊕ 𝑆(𝑧0).

Thus, to ensure a 2-identical state, the following 2 equations need to be satisfied:

𝑆(𝑧2 ⊕ 𝑐) = 𝑆(𝑧2)⊕ 𝑐′, 𝑆(𝑧1 ⊕ 𝑐) = 𝑆(𝑧1)⊕ 𝑐′ .

We can then compute the probability of following each step of the truncated pattern in
Figure 5.7 starting from the end of step 2:

Step 3: each equation is satisfied with probability 2−3 for one state, thus 2−12 in total for the
two states.

Step 4: the probability for one state becomes 2−2, meaning 2−8 in total.

Step 5: the 2-identical property cannot be carried through because of the round constants.
However, one can obtain a difference in the form (0, *, *) between the two states with
probability 2−4.83, as explained below.

By inverting the 𝐷 layer of step 6, we should then observe a difference equal to 0 in the first
bundle with a probability equal to (2−2.415)2 × 2−8 × 2−12 = 2−24.83.

Let us now compute the probability of going through step 5. If we denote (𝑤, 𝑧, 𝑧) and
(𝑤, 𝑧′, 𝑧′) the two states after the application of 𝑆 and 𝐿 in step 5, then the expression of the
column values at the end of that step for (𝑤, 𝑧, 𝑧) becomes

· · · 𝑆(𝑤𝑖) · · · 𝑆(𝑤2)⊕ 𝑆(𝑧2)⊕ 𝑆(𝑧2 ⊕ 𝑐) 𝑆(𝑤1)⊕ 𝑆(𝑧1 ⊕ 𝑐)⊕ 𝑆(𝑧1) 𝑆(𝑤0 ⊕ 𝑐)⊕ 𝑐′

· · · 𝑆(𝑤𝑖)⊕ 𝑆(𝑧𝑖) · · · 𝑆(𝑤2)⊕ 𝑆(𝑧2 ⊕ 𝑐) 𝑆(𝑤1)⊕ 𝑆(𝑧1)⊕ 𝑐′ 𝑆(𝑤0 ⊕ 𝑐)⊕ 𝑆(𝑧0)

· · · 𝑆(𝑤𝑖)⊕ 𝑆(𝑧𝑖) · · · 𝑆(𝑤2)⊕ 𝑆(𝑧2)⊕ 𝑐′ 𝑆(𝑤1)⊕ 𝑆(𝑧1 ⊕ 𝑐) 𝑆(𝑤0 ⊕ 𝑐)⊕ 𝑆(𝑧0)

and it takes the following value for (𝑤, 𝑧′, 𝑧′)

· · · 𝑆(𝑤𝑖) · · · 𝑆(𝑤2) ⊕ 𝑆(𝑧′2) ⊕ 𝑆(𝑧′2 ⊕ 𝑐) 𝑆(𝑤1) ⊕ 𝑆(𝑧′1 ⊕ 𝑐) ⊕ 𝑆(𝑧′1) 𝑆(𝑤0 ⊕ 𝑐) ⊕ 𝑐′

· · · 𝑆(𝑤𝑖) ⊕ 𝑆(𝑧′𝑖) · · · 𝑆(𝑤2) ⊕ 𝑆(𝑧′2 ⊕ 𝑐) 𝑆(𝑤1) ⊕ 𝑆(𝑧′1) ⊕ 𝑐′ 𝑆(𝑤0 ⊕ 𝑐) ⊕ 𝑆(𝑧′0)

· · · 𝑆(𝑤𝑖) ⊕ 𝑆(𝑧′𝑖) · · · 𝑆(𝑤2) ⊕ 𝑆(𝑧′2) ⊕ 𝑐′ 𝑆(𝑤1) ⊕ 𝑆(𝑧′1 ⊕ 𝑐) 𝑆(𝑤0 ⊕ 𝑐) ⊕ 𝑆(𝑧′0)

For the first bundles to be equal for both states the following relations have to be satisfied:

𝑆(𝑧′2)⊕ 𝑆(𝑧′2 ⊕ 𝑐) = 𝑆(𝑧2)⊕ 𝑆(𝑧2 ⊕ 𝑐)

𝑆(𝑧′1)⊕ 𝑆(𝑧′1 ⊕ 𝑐) = 𝑆(𝑧1)⊕ 𝑆(𝑧1 ⊕ 𝑐) ,

which occurs with probability 2−2.415 for each relation.

136

5.5. Forgeries with 4-step Shadow in the Nonce Misuse Setting

Experimental Results. Experiments showed that the probability of the distinguisher is very
close to what we expected. By testing 230 pairs, we obtained 31 successes, a probability close to
2−25. Our unoptimized C++ implementation took less than 70 minutes on a desktop computer to
find these pairs, i.e. about 2 minutes per pair on average. Below is an example.

𝑥1 𝑥2

62544d56 60b9af6e bd3ddabf
019d0421 569ad0d3 e543b03f
5f8ba283 087f4892 f7b632d8
116bb908 eef0b58d 97dc955a

62544d56 48d12ffc bb391a7d
019d0421 5efa911b cb4ff1e5
5f8ba283 265b098a ffd272c0
116bb908 e0d8f55f 9790d5da

𝑥1 ⊕ 𝑥2 𝜋(𝑥1)⊕ 𝜋(𝑥2)

00000000 28688092 0604c0c2
00000000 086041c8 2e0c41da
00000000 2e244118 08644018
00000000 0e2840d2 004c4080

00000000 d7ddf0cd 87ed7095
00000000 c4e25bec df225a5c
00000000 d3d67ba2 9416fab2
00000000 1cff6fdd 9cf7ed09

Difference with 7 Rounds. The main difference with our 7-round distinguisher on Shadow-512
is our inability to cover step 0, and it stems from 𝐷. The middle rounds of the attack cannot
be moved, as they depend on our ability to cancel out the constants and maintain 2-identical
states. In the 7-round attack, rounds alternate between 3 and 1 active Super S-box (bundle).
The inverse step 1 takes in input a difference 𝛼, 𝛼, 𝛼, 0 and the inverse application of 𝐷 gives a
difference 0, 0, 0, 𝛼. But since this difference is active in only one bundle, we can traverse one
more round and have a difference active in only three bundles. Here, we used a different path,
with two active bundles at each round. The inverse step 1 takes as input a difference 0, 𝛼, 𝛼,
the inverse of 𝐷 maps to a difference 0, 𝛼, 𝛼, but after the inverse Super S-box, we obtain two
unknown differences, and we cannot traverse round 0.

5.5 Forgeries with 4-step Shadow in the Nonce Misuse Setting

In this section, we show how to use the properties exploited in the distinguishers to create
existential forgeries for the S1P mode of operation [BBB+19], in the single user setting, when
used with 4-step Shadow (out of 6) shifted of two steps (starting at step 2 instead of 0). Hence,
our attack targets the “aggressive parameters” specified in [BBB+19, Section 5].

One interesting feature of Spook is that it provides strong integrity guarantees in the pres-
ence of nonce misuse and leakage, which are formalized as CIML2 in the unbounded leakage
model [BPPS17]. In our attack, we do not require leakage and instead exploit the nonce control.
More specifically, we require the same nonce to be used three times. Our attack then creates two
different messages with the same authentication tag. In particular, we are able to build collisions
on the underlying hash function, which allows us to build the forgeries.

Attack Outline. S1P is a sponge-based mode of authenticated encryption with associated data
represented in Figure 5.8, that uses Shadow as its underlying permutation. It has a rate of size
256 bits and a capacity of size 256 bits. If we number the bundles of Shadow as in the reference
implementation, bundles 0 and 1 are the rate part and bundles 2 and 3 are the capacity part.

For the sake of simplicity, we consider a version of the S1P mode of operation without
associated data, and we only consider two-block messages 𝑀0,𝑀1. This situation is depicted on
Figure 5.8, where 𝜋 is the Shadow permutation, Initialize is a procedure combining 𝜋 and the
Clyde block cipher, that produces a 512-bit state from a nonce 𝑁 and the secret key 𝐾, and
Finalize is a procedure that, on input a 512-bit state, produces a 128-bit authentication tag.

137

Chapter 5. Cryptanalysis Results on Spook

𝑁,𝐾 Initialize
Initialize

Initialize

𝑀0 𝐶0

𝜋
𝜋

𝜋

𝑀1 𝐶1

Finalize
Finalize

Finalize
Tag

Figure 5.8: S1P mode in our attack setting

Our goal is to output two plaintexts (𝑀0,𝑀1), (𝑀
′
0,𝑀

′
1) and a nonce 𝑁 that yield the same

authentication tag. In order to do that, we obtain a collision on the internal state before Finalize.
This means that any pair (𝑀0,𝑀1, 𝑥2, ..., 𝑥ℓ), (𝑀 ′

0,𝑀
′
1, 𝑥2, ..., 𝑥ℓ) of messages built by appending

the same blocks to our colliding pair would also yield the same tag provided that the nonce is
reused. We can find (𝑀0,𝑀1) and (𝑀 ′

0,𝑀
′
1) thanks to the following algorithm, that we will prove

later.
Let 𝜋 be the Shadow permutation restricted to rounds 2 to 5. Informally, the first queries

allow us to find the difference between the states before 𝜋, the second ones to figure out the
difference after 𝜋, and the third to cancel it out. The whole attack is presented in details in
Algorithm 16. Before describing it, we present its main subroutine whose success probability is
given by the following lemma.

Algorithm 15 Algorithm to generate candidate pairs for our 4-step property.
Output: two pairs of (𝑥1, 𝑦1), (𝑥′1, 𝑦′1) such that 𝜋(𝑥1, 𝑦1, 𝑎, 𝑏)⊕ 𝜋(𝑥′1, 𝑦

′
1, 𝑎, 𝑏) = (*, *, 0, 0) with

probability 𝑝.

1. Select a random 128-bit bundle 𝑤2.

2. Invert step 2 on (𝑤2, 𝑤2, 0, 0), obtaining (𝑥1, 𝑦1, *, *)

3. Return (𝑥1, 𝑦1), (𝑥1 ⊕ 𝜖, 𝑦1 ⊕ 𝜖) where 𝜖 ∈ ∇ (a difference that intervenes only in columns
22 and 23 of a bundle).

Lemma 5.4. Let (*, *, 𝑎, 𝑏) be a Shadow state. Then Algorithm 15 produces 4 bundles
(𝑥1, 𝑦1), (𝑥

′
1, 𝑦

′
1) such that 𝜋(𝑥1, 𝑦1, 𝑎, 𝑏) ⊕ 𝜋(𝑥′1, 𝑦

′
1, 𝑎, 𝑏) = (*, *, 0, 0) with a probability 𝑝 ≃

2−24.83.

In a nutshell, this property allows us to find a collision on the capacity part of the state after
having applied 𝜋. Since we can control the differences in the rate before and after 𝜋, we then
obtain a collision on the full 512-bit state. This is summarized in Algorithm 16. Notice that each
plaintext and ciphertext “block” is comprised of two rate bundles.

4-step Path. We will now prove Lemma 5.4. We are interested in pairs of 2-identical states
for Shadow, where the first two bundles are equal. The following lemma stems immediately from
the results in Table 5.5 (as both states in the pair must remain 2-identical, we take the squared
probabilities).

138

5.5. Forgeries with 4-step Shadow in the Nonce Misuse Setting

Algorithm 16 Collision attack on the S1P mode, with nonce reuse, and using 4-step Shadow.

1. Encrypt an arbitrary two-block (4-bundle) message, e.g. (0, 0), (0, 0), and obtain ciphertexts
(𝑑0, 𝑑1), (𝑑2, 𝑑3). Let 𝑥1, 𝑦1, 𝑎, 𝑏 be the 4-bundle state after Initialize (immediately before
step 1). Then 𝑑0, 𝑑1 = 𝑥1, 𝑦1.

2. Use Algorithm 15 to obtain two pairs of rate bundles (𝑥′1, 𝑦
′
1), (𝑥

′′
1, 𝑦

′′
1) such that

𝜋(𝑥′1, 𝑦
′
1, 𝑎, 𝑏)⊕ 𝜋(𝑥′′1, 𝑦

′′
1 , 𝑎, 𝑏) = (*, *, 0, 0) with probability 𝑝.

3. Encrypt (with the same nonce) (𝑥1 ⊕ 𝑥′1, 𝑦1 ⊕ 𝑦′1), (0, 0) and obtain (𝑐′0, 𝑐
′
1), (𝑐

′
2, 𝑐

′
3). Then

(𝑐′2, 𝑐
′
3) is the value of the rate after the application of 𝜋 on (𝑥′1, 𝑦

′
1, 𝑎, 𝑏).

4. Encrypt (with the same nonce) (𝑥1 ⊕ 𝑥′′1, 𝑦1 ⊕ 𝑦′′1), (0, 0) and obtain (𝑐′′0, 𝑐
′′
1), (𝑐

′′
2, 𝑐

′′
3). Then

(𝑐′′2, 𝑐
′′
3) is the value of the rate after the application of 𝜋 on (𝑥′′1, 𝑦

′′
1 , 𝑎, 𝑏).

5. Output the two 4-bundle plaintexts: (𝑥1⊕𝑥′1, 𝑦1⊕𝑦′1), (𝑐
′
2, 𝑐

′
3) and (𝑥1⊕𝑥′′1, 𝑦1⊕𝑦′′1), (𝑐

′′
2, 𝑐

′′
3)

and the nonce 𝑁 that was used. Then these plaintexts, encrypted with this nonce, yield
the same internal state before the Finalize procedure, and the same tag, with probability
𝑝 ≃ 2−24.83.

Lemma 5.5. Let 𝑡1, 𝑡2 be a pair of 2-identical states with difference (𝛼, 𝛼, 0, 0). Then after a
step of Shadow, they remain 2-identical with probability 2−12 at step 3, 2−8 at step 4 and 0
otherwise.

Using these probabilities, we can investigate Lemma 5.4.

Proof. We follow the convention of indexing bundles depending on the step that immediately
precedes, i.e. 𝑤2 is a bundle after step 2. The pattern used in this proof is summarized in
Figure 5.9.

We consider Shadow reduced to steps 2 to 5. We start with an input state (*, *, 𝑎1, 𝑏1).
We select a random bundle 𝑤2 and invert step 2 on (𝑤2, 𝑤2, 0, 0). We denote by (𝑥1, 𝑦1, *, *)
the state obtained after this inversion.

Now we consider the “mixed” state (𝑥1, 𝑦1, 𝑎1, 𝑏1) passing through step 2. Applying the
super-sboxes, 𝐷 and adding the second round constant we obtain the state: (𝜎2(𝑎1)⊕𝜎3(𝑏1)⊕
𝑤2, 𝜎2(𝑎1)⊕ 𝜎3(𝑏1)⊕ 𝑤2, *, *) which is 2-identical.

We also consider the state (𝑥1 ⊕ 𝜖, 𝑦1 ⊕ 𝜖, 𝑎1, 𝑏1), where 𝜖 belongs to the set ∇ of 216

differences that modify only the columns 22 and 23 of a bundle. Then, as shown in our
analysis from the previous section, the difference does not interact with the part of the state
dealing with the round constant. Hence, the state after step 2 is also 2-identical and it has
the same bundles in the capacity part.

We now have a pair of 2-identical states (𝑥2, 𝑥2, 𝑎2, 𝑏2) and (𝑦2, 𝑦2, 𝑎2, 𝑏2) in the output of
step 2. It is mapped to a pair of 2-identical states (𝑥3, 𝑥3, 𝑎3, 𝑏3) and (𝑦3, 𝑦3, 𝑎3, 𝑏3) through
step 3 with probability 2−12 and similarly through step 4 with probability 2−8.

Before step 5, we have a 2-identical pair (𝑥4, 𝑥4, 𝑎4, 𝑏4), (𝑦4, 𝑦4, 𝑎4, 𝑏4). Our goal is to obtain
a zero-difference in the capacity part. By an analysis analogous to the one of Shadow-384, this
happens with a probability approximately equal to 2−4.83. We then have a total probability
of 1⏟ ⏞

Step 2

× 2−12
⏟ ⏞
Step 3

× 2−8
⏟ ⏞
Step 4

× 2−4.83
⏟ ⏞
Step 5

.

139

Chapter 5. Cryptanalysis Results on Spook

𝑥1 𝑦1 𝑎1 𝑏1
𝑥1 ⊕ 𝜖 𝑦1 ⊕ 𝜖 𝑎1 𝑏1

Step 2: prob. 1
𝑥2 𝑥2 𝑎2 𝑏2

𝑦2 𝑦2 𝑎2 𝑏2
Step 3: prob. 2−12

𝑥3 𝑥3 𝑎3 𝑏3
𝑦3 𝑦3 𝑎3 𝑏3

Step 4: prob. 2−8

𝑥4 𝑥4 𝑎4 𝑏4
𝑦4 𝑦4 𝑎4 𝑏4

Step 5: prob. 2−4.83

* * 𝑎5 𝑏5

* * 𝑎5 𝑏5

Figure 5.9: 4-step path

Experimental Results. Lemmas 5.4 and 5.5 have been verified independently. Furthermore,
we have fully implemented the attack against S1P itself. Using the reference implementation of
S1P (but taking out the two first steps) we obtained the following example for a zero-key and a
zero-nonce.

𝑚1 = aaf2fbf5334fdfc6c1ee182f593cc6e1 a5ebc70be994a1bc8b980410a3dae96a
e93257859683265f20552e381b15c621 eb3257859783265f23552e381b15c621

𝑚2 = aaf2bbf5334fdfc6c1ee182f593cc6e1 a5eb870be994a1bc8b980410a3dae96a
2f160415c118c8c174200434e93c2e83 2d160415c018c8c177200434e93c2e83

𝑐1 = 75235998b09dcbe55a97db04e29622e4 4e73577cdacccc3520d6d6b03b5f2f51
00000000000000000000000000000000 00000000000000000000000000000000
c6461d8861f434500882ac5dc3490ce1

𝑐2 = 75231998b09dcbe55a97db04e29622e4 4e73177cdacccc3520d6d6b03b5f2f51
00000000000000000000000000000000 00000000000000000000000000000000
c6461d8861f434500882ac5dc3490ce1

After 230 trials, we obtained 41 successful collisions, with an experimental probability of success
of 2−24.64 which backs the theoretical 2−24.83. In practice, our un-optimized C++ implementation
needs about 15 minutes to find one collision.

Possible Extensions. Although using similar properties as the previous distinguishers (keeping
2-identical states with a cancellation of constants, using a difference in ∇), our attack suffers
from the fact that we cannot control the input in the capacity part. This is the main reason why
we cannot consider the steps before step 2, contrary to our distinguisher on full Shadow-512.

As a trivial extension, we remark that we can extend our reduced-step Shadow by one round
(i.e. half a step) at the end of our 4-step path, since this round does not traverse 𝐷; but it falls
outside the scope of the actual primitive. We could attack rounds 4 to 13 of Shadow-512 instead
of rounds 0 to 12.

Furthermore, the differences that we obtain at the input of step 2 are very sparse, since they
belong to the space ∇. As the complexity of our attack is of the order of 225, and the generic
complexity is of 2128 for a collision on the capacity, it might be possible to extend the attack
1 round at the beginning Shadow, but this seems far from trivial and would require advanced
message modification techniques.

140

5.6 Conclusion

In this chapter we have shown some new cryptanalysis results on the second round candidate of the
lightweight nist competition Spook based on the limited birthday problem. We can distinguish
5-step Shadow-512 from a random permutation using only 2 queries. If we exploit the round
constants, we are able to distinguish the full (6-step) Shadow-512, and we could even distinguish
7 steps if the number of rounds was increased (and regardless of the round constant values chosen
for this step). Regarding Shadow-384, we are able to efficiently distinguish the 6-step permutation
if its round constants are shifted, and a round-reduced 5-step version otherwise.

Using similar ideas we could build collisions on the underlying hash function for a 4-step
version of the permutation, which means we can build forgeries for the S1P mode with nonce
misuse, which is allowed by the CIML2 security game considered by the authors [BPPS17].

All the analyses presented are practical and have been implemented and verified. The
corresponding source code is publicly available.

An interesting extension of this work would be to reach 5-step forgeries: as we presented,
extending it one round is easy, but one more round for reaching 5-steps might be possible using
some advanced message modification techniques. In any case, 6-steps do seem out of reach with
our current techniques.

New criterion. Our analysis provides a new simple criterion for choosing the round constants
in LS-designs: besides trying to avoid invariant subspaces attacks, they should be introduced in
such a way that their effect in the internal symmetries cannot be canceled out.

Tweaks for Shadow. Though our findings do not represent a threat on the full-round authenti-
cated encryption primitive, the Shadow permutation can be tweaked to counter the low complexity
distinguisher and improve the security margin of Spook.

The first tweak we suggested the designers was to use denser constants. This change would
not affect the 5-step distinguishers, but would counter the 6-step ones and the 4-step forgeries.
A perhaps more interesting alternative due to implementation reasons was to use one round
constant per step instead of two, in order to prevent us from building identical bundle states by
canceling out the constants inside a step.

A second tweak option was to change the 𝐷 matrix in order to break the symmetry properties
between the bundles. The designers chose the latter in order to improve the security bounds of
Spook. They replaced the binary 𝐷 operation of Shadow with an efficient mds matrix proposed
in [DL18] that no longer preserves the equality of two bundles and additionally improves diffusion.
This limits the symmetry properties between the Shadow bundles and increases the bound on
the number of active S-Boxes for differential and linear characteristics. To compensate for the
performance overhead generated by this mds D-box, the constant addition was changed. This
resulted in a more efficient processing as well as denser constants. These two changes were
combined into Spook v2, presented in [BBB+20].

Chapter 5. Cryptanalysis Results on Spook

142

6

Differential Analysis of Skinny with
Different Tools

Come on, skinny love, just last the year.
Pour a little salt, we were never here.

Bon Iver

Evaluating resistance of ciphers against differential cryptanalysis is essential to define the
number of rounds of new designs and to mount attacks derived from differential cryptanalysis.
This part of the thesis covers some results obtained in this area together with Stéphanie Delaune,
Patrick Derbez, Marine Minier, Victor Mollimard and Charles Prud’homme. More precisely,
this chapter presents a comparison between existing automatic tools—previously introduced
in Chapter 3, Section 3.4—to find the best differential characteristics on the SKINNY block cipher.
As usually done in the literature, we split this search in two stages denoted by Step 1 and Step 2.
In Step 1, each difference variable is abstracted with a Boolean variable and we search for the
value that minimizes the trail weight, whereas Step 2 tries to instantiate each difference value
while maximizing the overall differential characteristic probability. We model Step 1 using a
milp tool, a sat tool, an ad-hoc method and a cp tool based on the Choco-solver library and
provide performance results. Step 2 is modeled using the Choco-solver as it seems to outperform
all previous methods on this stage.

Notably, for SKINNY-128 in the SK model and for 13 rounds, we retrieve the results of
Abdelkhalek et al. [AST+17] within a few seconds—while it took 16 days in [AST+17]—and we
provide, for the first time, the best differential related-tweakey characteristics up to respectively
14 and 12 rounds for the TK1 and TK2 models. These results have been submitted and are
currently under review.

6.1 Introduction . 144
6.2 Cipher Under Study: SKINNY-𝑛 . 145
6.3 Overview of Solving Techniques 147

6.3.1 Mixed Integer Linear Programming 147
6.3.2 Constraint Programming . 147
6.3.3 Sat . 148

6.4 Models for Step 1 . 148
6.4.1 Milp Models . 148

143

Chapter 6. Differential Analysis of Skinny with Different Tools

6.4.2 MiniZinc (sat) Models . 149
6.4.3 Cp Models . 149
6.4.4 Ad-Hoc Models . 150

6.5 Modeling Step 2 with cp . 151
6.6 Results . 153

6.6.1 Step 1 strategies comparison . 154
6.6.2 Step 2 performance results . 157

6.7 Conclusion . 166

6.1 Introduction

Differential cryptanalysis [BS91b] evaluates the propagation of an input difference 𝛿𝑋 = 𝑋 ⊕𝑋 ′

between two plaintexts 𝑋 and 𝑋 ′ through the ciphering process. Indeed, differential attacks
exploit the fact that the probability of observing a specific output difference given a specific
input difference is not uniformly distributed. Today, differential cryptanalysis is public knowledge,
and block ciphers such as the Aes have proven bounds against differential attacks. A classical
extension of differential cryptanalysis is the so called related-key differential cryptanalysis [Bih94]
that allows an attacker to inject differences not only between the plaintexts 𝑋 and 𝑋 ′ but also
between the keys 𝐾 and 𝐾 ′ (even if the secret key 𝐾 stays unknown from the attacker). This
attack has recently been extended to tweakable block ciphers [BJK+16]. As already mentioned in
Chapter 2, those particular ciphers allow in addition to the key, a public value called a tweak.
Thus, related-tweakey differential attacks allow related-key differences but also related-tweak
differences (i.e. differences in a pair of tweaks (𝑇, 𝑇 ′)). In differential attacks, two notions
are considered: first, differentials, where only the input and the output differences are known;
and differential characteristics, where each difference after each round is completely specified.
A classical approach to evaluate the resistance against differential attacks is to compute the
probability of the best differential characteristic of the cipher.

Finding optimal (related-tweakey) differential characteristics is a highly combinatorial problem
that hardly scales. To limit this explosion, a common solution consists in using a truncated
representation [Knu95] for which cells are abstracted by single bits that indicate whether sequences
contain differences or not. Typically, each cell (i.e. byte or nibble) is abstracted by a single bit
(or, equivalently, a Boolean value). In this case, the goal is no longer to find the exact input
and output differences, but rather to find the positions of these differences, i.e., the presence or
absence of a difference for every cell. When a difference is present at the input of an S-box, we
talk about an active S-box or an active byte/nibble. However, some truncated representations
may not be valid (i.e., there do not exist actual byte values corresponding to these difference
positions) because some constraints at the byte level are relaxed when reasoning on difference
positions.

Hence, the optimal (related-tweakey) differential characteristic problem is usually solved in
two steps [BN10, AST+17]. In the first one, every differential byte is abstracted by a Boolean
variable that indicates whether there is a difference or not at this position, and we search for all
truncated representations of low weight as the less differences passing through S-boxes there are,
the more the probability is increased. Then, for each of these low weight truncated representations,
the second step aims at deciding whether it is valid (i.e., whether it is possible to find actual
cell values for every Boolean variable) and, if it is valid, at finding the actual cell values that
maximize the probability of obtaining the output difference given the input difference.

144

6.2. Cipher Under Study: SKINNY-𝑛

Many techniques have been proposed to search for the Step 1 solutions using automatic
tools such as Mixed Integer Linear Programming (milp) [SHW+14, ST17, BJK+16], Boolean
satisfiability (sat) [SNC09, MP13, SWW17] and Satisfiability Modulo Theories (smt) [KLT15].
Dedicated solutions have also been proposed [Mat95]. However, only few tools have been proposed
to find the best instantiation of a truncated characteristic [AST+17, Laf18, SWW18, FJP13,
BN10, GLMS18, ENP19]. Notably, in [AST+17], authors introduce a milp model of the non-linear
part of a block cipher and present some results on SKINNY-𝑛 where the time required to find
differential paths is about 16 days.

Our contribution. In this chapter, we compare several methods that implement Step 1 resolution
on the SKINNY-𝑛 tweakable block cipher. Four attack models can be considered on SKINNY-𝑛
according the size of the tweakey: the SK model focuses on single-key attack, the TK1 model
considers related-tweakey attack when the tweakey has only one component, the TK2 model in
the related-tweakey settings considers 2 components and the TK3 model, 3 components.

We first implement Step 1 using 4 different tools: a milp model, a sat model, an Ad-Hoc
method and a cp model for the 4 attack settings. We also propose a cp model for Step 2 taking
as inputs the solutions output by Step 1. We analyze and compare all the proposed methods
through intensive computations dedicated to the SKINNY case. As a result we show that milp is
not always the best choice for both problems. First, for Step 1, the Ad-Hoc method is able to
surpass the milp model. Second, the cp model proposed for Step 2 is incomparably much faster
than the milp model proposed in [AST+17], reducing the execution time from several days to few
minutes. Thus, we provide, for the first time, the best differential related-tweakey characteristics
up to 14 rounds for the TK1 model and up to 12 rounds for the TK1 model of SKINNY-128. This
is an important improvement compared to previous results. For instance, in [LGS17] Liu et al.
could only find the best differential characteristics up to 7 and 9 rounds respectively. Finally we
also show there is no differential characteristic with probability higher than 2−128 for 15 rounds
in the TK1 model and provide the best TK2 related-tweakey differential characteristic we found
for 16 rounds. All those results clearly show that SKINNY is much more resistant to differential
cryptanalysis than one would expect when simply counting the number of active S-boxes.

All the codes for those models will be made public once the reviewing process of our paper is
finished. These codes are meant to be easy to use and to adapt to other ciphers.

6.2 Cipher Under Study: SKINNY-𝑛

In this section, we briefly review the tweakable block cipher SKINNY-𝑛 where 𝑛 denotes the block
size and can be equal to 64 or 128 bits. All the details that have been overlooked can be found
in [BJK+16].

As its name indicates, it enciphers blocks of length 64 or 128 bits seen as a 4× 4 matrix of
cells (nibbles for 𝑛 = 64 or bytes for 𝑛 = 128). We denote 𝑥𝑖,𝑗,𝑘 the cell at row 𝑖 and column 𝑗 of
the internal state at the beginning of round 𝑘 (i.e. 0 ≤ 𝑖, 𝑗 ≤ 3 and 0 ≤ 𝑘 ≤ 𝑟 + 1, where 𝑟 is
the number of rounds depending on the tweak length and on the key length). SKINNY-𝑛 follows
the TWEAKEY framework from [JNP14]. SKINNY-𝑛 has three main tweakey size versions: the
tweakey size can be equal to 𝑡 = 64 or 128 bits, 𝑡 = 128 or 256 bits and 𝑡 = 192 or 384 bits and
we denote 𝑧 = 𝑡/𝑛 the tweakey size to block size ratio. Then, the number of rounds is directly
derived from the 𝑧 value: from 32 rounds for the 64/64 version up to 56 for the 128/384 version.

The tweakey state is also viewed as a collection of 𝑧 4× 4 square arrays of cells (nibbles for
𝑛 = 64 or bytes for 𝑛 = 128). We denote these arrays 𝑇𝐾1 when 𝑧 = 1, 𝑇𝐾1 and 𝑇𝐾2 when
𝑧 = 2, and finally 𝑇𝐾1, 𝑇𝐾2 and 𝑇𝐾3 when 𝑧 = 3. We also denote by 𝑇𝐾𝑘𝑖,𝑗 the nibble or the

145

Chapter 6. Differential Analysis of Skinny with Different Tools

byte at position [𝑖, 𝑗] in 𝑇𝐾𝑘. Moreover, we define the associated adversarial model SK (resp.
TK1, TK2 or TK3) where the attacker cannot (resp. can) introduce differences in the tweakey
state.

One encryption round of SKINNY is composed of five operations applied in the following
order: SubCells (SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and
MixColumns (MC) (see Fig. 6.1).

SC AC

ART

»> 1

»> 2

»> 3

ShiftRows MixColumns

Figure 6.1: the SKINNY round function with its five transformations [Jea16].

SubCells. A 4-bit (𝑛 = 64) or an 8-bit (𝑛 = 128) S-box is applied to each cell of the state. See
[BJK+16] for the details of the S-boxes.

AddConstants. A 6-bit affine lfsr is used to generate round constants 𝑐0 and 𝑐1 that are xored
to the state at position [0, 0] and [1, 0] whereas the constant 𝑐2 = 0x02 is xored to the
position [2, 0].

AddRoundTweakey. The first and second rows of all tweakey arrays are extracted and bitwise
exclusive-ored to the cipher internal state, respecting the array positioning. More formally,
we have:

∙ 𝑥𝑖,𝑗 = 𝑥𝑖,𝑗 ⊕ 𝑇𝐾1𝑖,𝑗 when 𝑧 = 1,

∙ 𝑥𝑖,𝑗 = 𝑥𝑖,𝑗 ⊕ 𝑇𝐾1𝑖,𝑗 ⊕ 𝑇𝐾2𝑖,𝑗 when 𝑧 = 2,

∙ 𝑥𝑖,𝑗 = 𝑥𝑖,𝑗 ⊕ 𝑇𝐾1𝑖,𝑗 ⊕ 𝑇𝐾2𝑖,𝑗 ⊕ 𝑇𝐾3𝑖,𝑗 when 𝑧 = 3.

Then, the tweakey arrays are updated. First, a permutation 𝑃𝑇 is applied on the cells po-
sitions of all tweakey arrays: if ℓ = 4*𝑖+𝑗 where 𝑖 is the row index and 𝑗 is the column index,
then the cell ℓ is moved to position 𝑃𝑇 (ℓ) where 𝑃𝑇 = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7].
Second, every cell of the first and second rows of 𝑇𝐾2 and 𝑇𝐾3 are individually updated
with an lfsr on 4 bits (when 𝑛 = 64) or on 8 bits (when 𝑛 = 128) with a period equal to
15.

ShiftRows. The rows of the cipher state cell array are rotated to the right. More precisely, the
second (resp. third and fourth) cell row is rotated by 1 position (resp. 2 and 3 positions).

MixColumns. Each column of the cipher internal state array is multiplied by the 4× 4 binary
matrix 𝑀 : ⎛

⎜⎜⎝

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

⎞
⎟⎟⎠

146

6.3. Overview of Solving Techniques

6.3 Overview of Solving Techniques

In this section, we briefly recall the different techniques previously introduced in Section 3.4
and that we used for performing the search of the best differential characteristic. Note that
the Ad-Hoc method inspired from [FJP13] is standalone and will be only described in the next
Section.

6.3.1 Mixed Integer Linear Programming

Many symmetric cryptanalysis problems on different ciphers have been tackled with milp [SHW+14,
BJK+16, ST17, MWGP11]. Note that milp traditionally considers variables from discrete do-
mains and from continuous domains. Here and as usually done in all the cryptanalytic contexts,
we only consider integer variables, and instead, we should rather talk about ilp—for Integer
Linear Programming—as the term Mixed designates continuous variables. However, since milp is
the term classically used in the cryptographic community, we decided to stick to this terminology.

The important point is that milp models can only contain linear inequalities. Therefore, it is
necessary to transform non-linear operators into sets of linear inequalities. Moreover, as done
in [BJK+16], we decided to use the Gurobi Mathematical Optimization solver [Opt18]. To be
compatible with our code in Python 3 and to benefit from the the search options on the pool of
solutions, a version greater than 9 is required.

6.3.2 Constraint Programming

Although less usual than milp to tackle cryptanalytic problems, cp has already been used in
e.g. [GMS16, ENP19]. We recall some basic principles of cp and we refer the reader to [RBW06]
for more details.

Cp is used to solve Constraint Satisfaction Problems (csps). A csp is defined by a triple
(𝑋,𝐷,𝐶) such that 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} is a finite set of variables, 𝐷 is a function that maps
every variable 𝑥𝑖 ∈ 𝑋 to its domain 𝐷(𝑥𝑖) and 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚} is a set of constraints. 𝐷(𝑥𝑖)
is a finite ordered set of integer values to which the variable 𝑥𝑖 can be assigned to, whereas 𝑐𝑗
defines a relation between some variables 𝑣𝑎𝑟𝑠(𝑐𝑗) ⊆ 𝑋. This relation restricts the set of values
that may be assigned simultaneously to 𝑣𝑎𝑟𝑠(𝑐𝑗). Each constraint is equipped with a filtering
algorithm which removes from the domains of 𝑣𝑎𝑟𝑠(𝑐𝑗), the values that cannot satisfy 𝑐𝑗 .

In cp, constraints are classified in two categories. Extensional constraints, also called table con-
straints, explicitly define the allowed (or forbidden) tuples of the relation. Intentional constraints
define the relation using mathematical operators. For instance, in a csp with 𝑋 = {𝑥1, 𝑥2, 𝑥3}
such that 𝐷(𝑥1) = 𝐷(𝑥2) = 𝐷(𝑥3) = {0, 1}, a constraint ensuring that the sum of the variables
in 𝑋 is different from 1 can be either expressed in extension (1) or in intention (2):

1. Table(⟨𝑥1, 𝑥2, 𝑥3⟩ , ⟨(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)⟩)

2. 𝑥1 + 𝑥2 + 𝑥3 ̸= 1

Actually, any intentional constraint can be encoded with an extensional one provided enough
memory space, and conversely [DHL+16]. However, they may offer different performances.

The purpose of a csp is to find a solution, i.e. an assignment of all variables to a value from
their respective domains such that all the constraints are simultaneously satisfied. When looking
for a solution, a two-phase mechanism is operated: the search space exploration and the constraint
propagation. The exploration of the search space is processed using a depth-first search. At each

147

Chapter 6. Differential Analysis of Skinny with Different Tools

step, a decision is taken, i.e. a non-assigned variable is selected and its domain is reduced to a
singleton. This modification requires checking the satisfiability of all the constraints. This is
achieved thanks to constraint propagation which applies each constraint filtering algorithm. Any
application may trigger modifications in turn; the propagation ends when either no modification
occurs and all constraints are satisfied or a failure is thrown, i.e., at least one constraint cannot
be satisfied. In the former case, if all variables are assigned, a solution has been found. Otherwise
a new decision is taken and the search is pursued. In the latter case, a backtrack to the first
refutable decision is made and the search is resumed.

Turning a csp into a Constrained Optimisation Problem (cop) is done by adding an objective
function. Such a function is defined over variables of 𝑋, the purpose is then to find the solution
that optimizes the objective function. Finding the optimal solution is done by repeatedly applying
the two-phase mechanism above, and by adding a cut on the objective function that prevents
from finding a same cost solution in the future.

6.3.3 Sat

Transforming cryptanalytic problems into a propositional Boolean logic formula is also a common
technique [MP13, SWW17, KLT15, SNC09, SWW18]. To ease the modeling step, a high-level
modeling language called MiniZinc [NSB+07] has been used: MiniZinc models are translated
into a simple subset of MiniZinc called FlatZinc, using a compiler provided by MiniZinc, and
supported by most existing cp solvers that have developed FlatZinc interfaces (currently, there
are fifteen cp solvers which have FlatZinc interfaces). Evaluations select Picat-sat as the best
candidate sat solver for Step 1. Picat-sat translates csps into Boolean satisfiability formulae,
and then uses the sat solver Lingeling [Bie14] to solve it. Since Picat-sat clearly outperforms all
the other sat solvers provided through the MiniZinc interface, we decided to discard the other
ones when comparing with other techniques in Section 6.6.

6.4 Models for Step 1

As explained in the Introduction, in a first step called Step 1, we abstract each possible difference
at byte level by a binary variable which symbolizes the presence/absence of a difference value at a
given position of the cipher. The main concern regarding this step is the combinatorial explosion
induced by the abstract xor operation for which the sum of two non zero values can lead to the
presence or the absence of a difference.

Note also that all the models described below are tuned to enumerate the solutions for a given
number of active S-boxes and for a given number of rounds in the four possible attack models.
We call this step Step1-enum. This phase comes after an initial step called Step1-opt, in which
the minimal number of active S-boxes for a given number of rounds has been already found. Note
also that all the models for SK discard symmetries up to column shift.

6.4.1 Milp Models

A milp model has already been proposed in [BJK+16], but for comparison purposes on time
benchmarks, and to better fit our needs, we re-implement it. Below, we only describe our
modifications and refer to Appendix D in [BJK+16] for the original model.

First, we add constraints in the SK model to obtain all solutions up to column shifts in
order to remove symmetries. Moreover, as the original model only describes the way to find
the minimal number of active S-boxes, we add a constraint in each model to set a lower bound

148

6.4. Models for Step 1

Minimize

𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 =

𝑛∑︁
𝑟=1

4∑︁
𝑖=1

4∑︁
𝑗=1

𝛿𝑋𝑟,𝑖,𝑗 (6.1)

subject to

Table(⟨𝛿𝑋𝑟,0,𝑗 , 𝛿𝑋𝑟,1,(𝑗+3)%4, 𝛿𝑋𝑟,2,(𝑗+2)%4, 𝛿𝑋𝑟,3,(𝑗+1)%4,

𝛿𝑋𝑟+1,0,𝑗 , 𝛿𝑋𝑟+1,1,𝑗 , 𝛿𝑋𝑟+1,2,𝑗 , 𝛿𝑋𝑟+1,3,𝑗⟩
, ⟨MxC⟩),Δ𝑋𝑟,𝑖,𝑗 ̸= 0,∀𝑟 ∈ 1..𝑛− 1, ∀𝑗 ∈ 1..4

(6.2)

where ∀𝑟 ∈ 1..𝑛, ∀𝑖 ∈ 1..4, ∀𝑗 ∈ 1..4,
𝛿𝑋𝑟,𝑖,𝑗 ∈ 0..1

and ⟨MxC⟩ encodes both MixColumns and Shiftrows constraints.

Model 1: Formulation of SK Step 1, without symmetry breaking constraints.

on the number of active S-boxes and thus, be able to enumerate all the Step 1 solutions given
a particular lower bound for the number of active S-boxes. In milp, the constraint for xor
𝒞⊕[𝑖1, 𝑖2, 𝑜, 𝑑] needs a dummy variable 𝑑 to be correctly modeled. 𝒞⊕[𝑖1, 𝑖2, 𝑜, 𝑑] is the set of the
following linear constraints:

{𝑖1 ≤ 𝑑} ∪ {𝑖2 ≤ 𝑑} ∪ {𝑜 ≤ 𝑑} ∪ {𝑖1 + 𝑖2 + 𝑜 ≤ 2𝑑}.

Finally, regarding the resolutions of the milp models, the parallelization is left to the Gurobi
solver1.

6.4.2 MiniZinc (sat) Models

Due to the high-level modeling allowed by MiniZinc, the model is exactly the same as in the milp
model described in Subsection 6.4.1 except the way we model the xor operation. Indeed, we
simply use the method described in [GL16] where if 𝑎, 𝑏 and 𝑐 are Boolean variables, then the
xor operation verifies (considering addition over integers): 𝑖1 + 𝑖2 + 𝑜 ̸= 1. Thus, this model
does not require the dummy variables 𝑑.

6.4.3 Cp Models

A cp model for SK is depicted in Model 1. In comparison to other models (Subsection 6.4.1
and Subsection 6.4.2), the objective function (6.1) remains identical. Then, the model relies on
Table constraints (6.2) with ⟨MxC⟩ as input parameter, the list of feasible combinations. In an
early stage, ⟨MxC⟩ is computed based on a composition of MixColumns relation and ShifRows
relation over two blocks and eight variables. Only the 34 combinations satisfying both MixColumns
and ShifRows are retained among the 256 possible ones. Just like milp and sat, symmetry
breaking constraints are added to models in order to prevent the calculation of solutions equivalent
up to column shift.

TK1, TK2 and TK3 are modeled based on Model 1, i.e., without the symmetry breaking
constraints. We follow the same lines as the milp model proposed in Appendix D in [BJK+16] to
model cancellation in TK2 and TK3.

In terms of solving configuration, a parallel portfolio is used to run resolutions simultaneously.
We separate the different models according to the 216 possible values (0 or 1 for each possible
cell) taken in a given middle round, which turns the original cop into many csps. In practice,
each independent sub-problem is assigned to a new thread. Threads send each other messages

1see: https://www.gurobi.com/documentation/9.0/refman/threads.html for more details.

149

https://www.gurobi.com/documentation/9.0/refman/threads.html

Chapter 6. Differential Analysis of Skinny with Different Tools

containing the value of 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1, the best number of S-boxes found so far. Such an approach
limits the number of messages passed but offers valuable data to running threads, and future
ones. Indeed, bound sharing prevents from exploring sub-regions of the search where there is no
chance to find better solutions.

In addition, each model defines a search strategy based on a lexicographic ordering. Once the
middle round being instantiated, then, it goes one round by one round to the forward and to the
backward direction.

6.4.4 Ad-Hoc Models

To the best of our knowledge, the most efficient algorithm to search for truncated representations
is the one described in [FJP13] by Fouque et al.. The main idea is that round 𝑖 is independent
of the paths of rounds 0, 1, . . . , 𝑖− 1 and at each step we only have to save, for each truncated
state, the minimal number of active S-boxes to reach it. Hence, the complexity of this algorithm
is exponential in the state size but linear in the number of rounds. The algorithm is specified
in Algorithm 17. At the end of the algorithm we obtain an array 𝐶 such that 𝐶[𝑟][𝑠] contains
the minimal number of active sboxes required to reach state 𝑠 after 𝑟 rounds. Retrieving the
truncated representations is then done quite easily using 𝐶, starting from the last state to the
first.

Algorithm 17 Search for the best truncated representation (SK).
foreach state 𝑠 do

𝑀 [𝑠]←− list of states 𝑠′ reachable from 𝑠 through one round
end
foreach state 𝑠 do

𝐶 [0] [𝑠]←− number of active cells of 𝑠
end
for 1 ≤ 𝑟 < 𝑅 do

foreach 𝑠𝑡𝑎𝑡𝑒 𝑠 do 𝐶 [𝑟] [𝑠]←−∞ foreach state 𝑠 do
foreach state 𝑠′ in 𝑀 [𝑠] do

𝑐←− 𝐶 [𝑟 − 1] [𝑠] + number of active cells of 𝑠′ if 𝑐 < 𝐶 [𝑟] [𝑠′] then 𝐶 [𝑟] [𝑠′]←− 𝑐
end

end
end
return C

The complexity of the algorithm in the single key model is very low, and we experimentally
counted around (𝑅 − 1) × 220 simple operations for 𝑅 rounds. A naive solution to search for
truncated representations in the TK1, TK2 and TK3 models would be to apply the previous
algorithm for each possible configuration of the key. While for TK1 this would only increase the
overall complexity by a factor 216, the search would not be practical for both the TK2 and TK3
models. Indeed, because of the possible cancellations occurring in the round keys, the number of
configurations is very high:

⎛
⎝

8∑︁

𝑘=0

(︂
8

𝑘

)︂(︃𝑡𝑘−1∑︁

𝑖=0

(︂⌊(𝑅− 1)/2⌋
𝑖

)︂)︃𝑘
⎞
⎠
⎛
⎝

8∑︁

𝑘=0

(︂
8

𝑘

)︂(︃𝑡𝑘−1∑︁

𝑖=0

(︂⌈(𝑅− 1)/2⌉
𝑖

)︂)︃𝑘
⎞
⎠ .

For instance, for 𝑅 = 30, there are more than 264 configurations in the TK2 model.

150

6.5. Modeling Step 2 with cp

In the following we present the first practical algorithm which tackles down the problem
without relying on a black box solver as milp, sat or cp solvers. The idea is quite similar to the
one used in the single key model. Actually, to compute the minimal number of active S-boxes at
round 𝑟 + 1 we only need to know the minimal number of active S-boxes for each possible state
at round 𝑟 together with the number of cancellations for each key cell. Indeed, we do not need to
know at which rounds the cancellations occurred but only how many times they did. A simplified
version of this algorithm is described in Algorithm 18. In practice, we found it was better to
proceed step by step. First we pick a key cell and guess whether it is active or not. Then we
apply the algorithm partially and guess another key cell if and only if it seems possible to find a
better representation.

Remarks. Note that while our ad-hoc tool gave the best running times, it may require a lot
of memory to store the array 𝐶. For instance, for 30 rounds in TK3 mode, our tool required
up to 500 gb of ram to finish the search. It is also important to note that it did not fully take
advantage of the 128 cores of our server, and most often used less than 40 cores.

Algorithm 18 Search for the best truncated representation (TK).
foreach state 𝑠, round key 𝑘 do

𝑀 [𝑘] [𝑠]←− list of states 𝑠′ reachable from 𝑠 and 𝑘 through one round
end
foreach state 𝑠 do

𝐶 [0] [𝑠]←− {(number of active cells of 𝑠, 0)}
end
for 1 ≤ 𝑟 < 𝑅 do

foreach 𝑠𝑡𝑎𝑡𝑒 𝑠 do 𝐶 [𝑟] [𝑠]←− ∅ foreach state 𝑠, round key 𝑘 do
foreach state 𝑠′ in 𝑀 [𝑘] [𝑠] do

foreach (cost, cancelled) ∈ 𝐶 [𝑟 − 1] [𝑠] do
if cancelled compatible with k then

𝑐 ←− cost + number of active cells of 𝑠′ 𝐶 [𝑟] [𝑠′] ←− 𝐶 [𝑟] [𝑠′] ∪
{(𝑐, update(𝑐𝑎𝑛𝑐𝑒𝑙𝑙𝑒𝑑, 𝑘))}

end
end

end
end
foreach 𝑠𝑡𝑎𝑡𝑒 𝑠 do keepOptimals(𝐶 [𝑟] [𝑠])

end
return C

6.5 Modeling Step 2 with cp

The aim of Step 2 is to try to instantiate the abstracted solutions provided by Step 1 while
maximizing the probability of the differential characteristic. Thus, Step 2 takes as input a
solution of Step 1 with the objective function of maximizing the probability of the differential
characteristic. However, some solutions of Step 1 could not be instantiated in Step 2 as refining
the abstraction level of Step 2 will induce non-consistent solutions. In the literature, this Step has
been modeled using Ad-Hoc methods [BN10], milp [AST+17], sat [SWW18] or cp [GLMS20].
As milp [AST+17] and sat [SWW18] seem to hardly scale due to prohibitive computational

151

Chapter 6. Differential Analysis of Skinny with Different Tools

times (linked with the size of the 8-bit S-boxes that must be represented in the form of linear
inequalities or of clauses), we focus here on a dedicated cp method implemented using the Choco
solver [PFL16].

Given a Boolean solution for Step 1, Step 2 aims at searching for the byte-consistent solution
with the highest (related-tweakey) differential characteristic probability (or proving that there
is no byte-consistent solution). In this section, Model 2 describes the cp model we used for
SKINNY-128 (SK). Actually, the ones used to model the other variants, as well as SKINNY-64, are
rather similar.

Minimize

𝑂𝑏𝑗𝑆𝑡𝑒𝑝2 =

𝑛∑︁
𝑟=1

4∑︁
𝑖=1

4∑︁
𝑗=1

𝑃𝑟,𝑖,𝑗 (6.3)

subject to

20× 𝑛 ≤
𝑛∑︁

𝑟=1

4∑︁
𝑖=1

4∑︁
𝑗=1

𝑃𝑟,𝑖,𝑗 ≤ min(70× 𝑛,𝑂*) (6.4)

∀𝑟 ∈ 1..𝑛, ∀𝑖 ∈ 1..4,∀𝑗 ∈ 1..4{︃
𝛿𝑋𝑟,𝑖,𝑗 = 0 ∧ 𝛿𝑆𝐵𝑟,𝑖,𝑗 = 0 ∧ 𝑃𝑟,𝑖,𝑗 = 0 if Δ𝑋𝑟,𝑖,𝑗 = 0

𝛿𝑋𝑟,𝑖,𝑗 ≥ 1 ∧ 𝛿𝑆𝐵𝑟,𝑖,𝑗 ≥ 1 ∧ 𝑃𝑟,𝑖,𝑗 ≥ 20 otherwise

(6.5)

∀𝑟 ∈ 1..𝑛, ∀𝑖 ∈ 1..4, ∀𝑗 ∈ 1..4

Table(⟨𝛿𝑋𝑟,𝑖,𝑗 , 𝛿𝑆𝐵𝑟,𝑖,𝑗 , 𝑃𝑟,𝑖,𝑗⟩ , ⟨SBox⟩) if Δ𝑋𝑟,𝑖,𝑗 ̸= 0
(6.6)

∀𝑟 ∈ 1..𝑛− 1, ∀𝑗 ∈ 1..4 𝛿𝑆𝐵𝑟,0,𝑗 = 𝛿𝑋𝑟+1,1,𝑗 (6.7)

∀𝑟 ∈ 1..𝑛− 1,∀𝑗 ∈ 1..4⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛿𝑆𝐵𝑟,2,(2+𝑗)%4 = 𝛿𝑋𝑟+1,2,𝑗 if Δ𝑆𝐵𝑟,1,(3+𝑗)%4 = 0

𝛿𝑆𝐵𝑟,1,(3+𝑗)%4 = 𝛿𝑋𝑟+1,2,𝑗 if Δ𝑆𝐵𝑟,2,(2+𝑗)%4 = 0

𝛿𝑆𝐵𝑟,1,(3+𝑗)%4 = 𝛿𝑆𝐵𝑟,2,(2+𝑗)%4 if Δ𝑋𝑟+1,2,𝑗 = 0

Table(
⟨︀
𝛿𝑆𝐵𝑟,1,(3+𝑗)%4, 𝛿𝑆𝐵𝑟,2,(2+𝑗)%4, 𝛿𝑋𝑟+1,2,𝑗

⟩︀
, ⟨XOR⟩) otherwise

(6.8)

∀𝑟 ∈ 1..𝑛− 1, ∀𝑗 ∈ 1..4⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛿𝑆𝐵𝑟,2,(2+𝑗)%4 = 𝛿𝑋𝑟+1,3,𝑗 if Δ𝑆𝐵𝑟,0,𝑗 = 0

𝛿𝑆𝐵𝑟,0,𝑗 = 𝛿𝑋𝑟+1,3,𝑗 if Δ𝑆𝐵𝑟,2,(2+𝑗)%4 = 0

𝛿𝑆𝐵𝑟,0,𝑗 = 𝛿𝑆𝐵𝑟,2,(2+𝑗)%4 if Δ𝑋𝑟+1,3,𝑗 = 0

Table(
⟨︀
𝛿𝑆𝐵𝑟,0,𝑗 , 𝛿𝑆𝐵𝑟,2,(2+𝑗)%4, 𝛿𝑋𝑟+1,3,𝑗

⟩︀
, ⟨XOR⟩) otherwise

(6.9)

∀𝑟 ∈ 1..𝑛− 1, ∀𝑗 ∈ 1..4⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛿𝑋𝑟+1,0,𝑗 = 𝛿𝑋𝑟+1,3,𝑗 if Δ𝑆𝐵𝑟,3,(1+𝑗)%4 = 0

𝛿𝑆𝐵𝑟,3,(1+𝑗)%4 = 𝛿𝑋𝑟+1,3,𝑗 if Δ𝑋𝑟+1,0,𝑗 = 0

𝛿𝑆𝐵𝑟,3,(1+𝑗)%4 = 𝛿𝑋𝑟+1,0,𝑗 if Δ𝑋𝑟+1,3,𝑗 = 0

Table(
⟨︀
𝛿𝑆𝐵𝑟,3,(1+𝑗)%4, 𝛿𝑋𝑟+1,0,𝑗 , 𝛿𝑋𝑟+1,3,𝑗

⟩︀
, ⟨XOR⟩) otherwise

(6.10)

where ∀𝑟 ∈ 1..𝑛, ∀𝑖 ∈ 1..4, ∀𝑗 ∈ 1..4,

𝛿𝑋𝑟,𝑖,𝑗 ∈ 0..255, 𝛿𝑆𝐵𝑟,𝑖,𝑗 ∈ 0..255, 𝑃𝑟,𝑖,𝑗 ∈ {0, 20, .., 70},

and ⟨XOR⟩ encodes ⊕ relation and ⟨SBox⟩ the S-box constraint.

Model 2: Formulation of SK Step2.

For each Boolean variable Δ𝑋𝑟,𝑖,𝑗 of Step 1, we define an integer variable 𝛿𝑋𝑟,𝑖,𝑗 . The domain
of this integer variable depends on the value of the Boolean variable in the Step 1 solution: if

152

6.6. Results

Δ𝑋𝑟,𝑖,𝑗 = 0, then the domain is 𝐷(𝛿𝑋𝑟,𝑖,𝑗) = {0} (i.e., 𝛿𝑋𝑟,𝑖,𝑗 is also assigned to 0); otherwise,
the domain is 𝐷(𝛿𝑋𝑟,𝑖,𝑗) = [1, 255] (6.5).

For each byte that passes through an S-box, we define an integer variable 𝛿𝑆𝐵𝑟,𝑖,𝑗 which
corresponds to the difference after the S-box. Its domain is 𝐷(𝛿𝑆𝐵𝑟,𝑖,𝑗) = {0} if Δ𝑋𝑟,𝑖,𝑗 is assigned
to 0 in the Step 1 solution; Otherwise, it is 𝐷(𝛿𝑆𝐵𝑟,𝑖,𝑗) = [1, 255] (6.5).

Finally, as we look for a byte-consistent solution with maximal probability, we also add an
integer variable 𝑃𝑟,𝑖,𝑗 for each byte in an S-Box: this variable corresponds to the absolute value
of the base 2 logarithm of the probability of the transition through the S-Box. Actually, a
factor 10 has been applied to avoid considering floats. Thus we define a Table constraint (6.6)
composed of valid triplets of the form (𝛿𝑋𝑟,𝑖,𝑗 , 𝛿𝑆𝐵𝑟,𝑖,𝑗 , 𝑃𝑟,𝑖,𝑗). Note that these triplets only contain
non-zero values and that 𝑃𝑟,𝑖,𝑗 only takes 2 different values for the 4-bit S-box (SKINNY-64) and
7 different values for the 8-bit S-box (SKINNY-128). There are roughly 214 triplet elements in
the Table constraint for the SKINNY-128 case. As the S-box layer is the only non-linear layer,
the other operations could be directly implemented in a deterministic way at the cell level.
The associated constraints thus follow the SKINNY-128 linear operations. When possible, we
replace xor constraints (encoded using Table constraints) by a simple equality constraint. This
corresponds to Table constraints (6.7), (6.8), (6.9) and (6.10) in Model 2.

The overall goal is finally to find a byte-consistent solution which maximizes differential
characteristic probability. Thus, we define an integer variable 𝑂𝑏𝑗𝑆𝑡𝑒𝑝2 to minimize the sum of
all 𝑃𝑟,𝑖,𝑗 variables (6.3). This value mainly depends on the number of S-boxes output by Step1
𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 and can be bounded to [[20 ·𝑂𝑏𝑗𝑆𝑡𝑒𝑝1, 70 ·𝑂𝑏𝑗𝑆𝑡𝑒𝑝1]] (6.4).

The differences for the models TK1, TK2 and TK3 are the modeling of the xors induced by
the lanes of the tweakey through xor table constraints. Each xor constraint depicted in Model 2
provides high quality filtering but requires 65536 tuples to be stored which results in prohibitive
memory usage. This may limit the number of threads that can be used for the resolution, which
was the case for TK2. To get around this issue, we encoded the xor constraint in intention
(by defining filtering rules), providing a more memory efficient algorithm, at the expense of
filtering strength. This last choice was applied only for TK2 (SKINNY-128 only). We also rely on
Table constraints to model the lfsr applied on TK2 and TK3.

Concerning the search space strategy, for the TK2 and the TK3 attack settings, Step 1 only
outputs the truncated value of the sum of the 𝑇𝐾𝑖. Thus, the search space strategy first looks at
the cancellation places of the sum of the 𝑇𝐾𝑖 and then instantiates the 𝑇𝐾𝑖 values according to
those positions. For the TK1 setting, we just apply the default Choco-solver strategy.

Regarding parallelization, we affect one solution output by Step 1 per thread and we share
the value of 𝑂𝑏𝑗𝑆𝑡𝑒𝑝2 between the threads.

6.6 Results

Regarding Step 1, we run our different tools on the four attack scenarios (SK, TK1, TK2, and
TK3). Then, Step 2 is performed on the two versions of SKINNY (SKINNY-64 and SKINNY-128)
using our cp models written in Choco-solver.

We conduct all our experiments on our server composed of 2×Amd Epyc 7742 64-Core and
1tb of ram. All the reported times are real system times and then take advantage of tools
that are properly designed for parallelism. We first detail here the time results obtained for the
different tools modeling Step 1 and then move to the Step 2 time results.

153

Chapter 6. Differential Analysis of Skinny with Different Tools

6.6.1 Step 1 strategies comparison

In this Subsection, we compare the time results obtained by all the Step 1 tools using the
function Step1-enum. Step1-enum comes after a first process called Step1-opt that searches for a
solution that optimizes the value of the variable 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 whereas Step1-enum enumerates all
solutions when the variable 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 is assigned to a given value, here the optimal one 𝑣* where
𝑣* corresponds to the minimal number of active S-boxes. This optimal value is of course the same
for the different models as the abstractions made in the different models are the same.

Results for Step1-opt.

Finding the minimal number of active S-boxes on a given number of rounds is most often the only
result which is interesting for designers as it allows to derive a lower bound on the probability of
the best differential trail. However, showing that the minimal number of active S-boxes is 𝑛 is
actually similar to enumerating all characteristics with at most 𝑛− 1 active S-boxes and finding
no solution. Thus, the running times required by each tool to find the minimal number of active
S-boxes are very close to the running times reported on Table 6.2. In SK, TK1 and TK2 our
ad-hoc tool gives the best running times by far, while in TK3, our milp model is also competitive.
In particular, we are able to complete the security analysis made in [BJK+16, ABI+18] and claim
that the minimal number of active S-boxes in TK1 for 28, 29 and 30 rounds are 105, 109 and
113 respectively (as shown in Table 6.1).

Rounds 28 29 30
TK1 105 109 113

Table 6.1: Lower bounds on the number of active S-boxes in SKINNY.

Results for Step1-enum.

Table 6.2 reports the different real times we obtained to enumerate all the solutions for the
optimal value 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 = 𝑣* (i.e. with 𝑣* active S-boxes). Those computations are done on
our server for the 4 different Step 1 tools (milp, MiniZinc/sat, Ad-Hoc, Choco-solver), for the
different attack scenarios (SK, TK1, TK2 and TK3) on SKINNY when varying the number
of rounds between 3 and 20. The first column specifies the number of solutions we found for
the 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 value. Those solutions correspond to solutions given without the symmetries, thus
are computed up to the columns shifts (for SK). As one can see, these numbers are really low
and hide a different reality when 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 increases. Indeed, the optimal solution of Step 2
in terms of differential characteristic probability, could be obtained for a value 𝑣 of 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1
which is not optimal (𝑣 > 𝑣*). For example, imagine that when processing Step 2, one obtains
a differential characteristic with the best probability equal to 2−3·6 = 2−18 with 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 = 6
and whereas the optimal differential probability of the S-box is 2−2. It means that one has to
test all solutions output by Step 1 until 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 = 18/2 = 9 to be sure that none has a better
differential characteristic probability. This is exactly what happened for the case of SKINNY-128
in the TK1 model for 15 rounds as we will detail in the next Section. We only want to stress
here that computing the optimal bounds is often not enough and we need to go further. However,
increasing the value of 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 induces an increase of the possible number of Step 1 solutions
as illustrated in the third column of Table 6.8. As one can see, this number of solutions tends

154

6.6. Results

to grow exponentially as 𝑣 increases. For example, for SKINNY-128 with 14 rounds in the TK1
model, for the optimal value 𝑣* = 45, Step 1 outputs only 3 solutions; whereas we have 897
solutions for 𝑣 = 𝑣* + 5 = 50; 137 019 solutions for 𝑣 = 𝑣* + 10 = 55 and finally 7 241 601
solutions for 𝑣 = 59. So, the time required for the Step 2 computations on 1 solution output by
Step 1 becomes the bottleneck of the overall process.

Analyzing the results and understanding the tools.

Table 6.2 reports the time required to enumerate all the solutions with 𝑣* active S-boxes where
𝑣* is the optimal value of 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 found by Step1-opt. This value and the corresponding number
of solutions is reported in the second column of Table 6.2.

Sat is clearly disadvantaged by the choice we made i.e. using a high level modeling language:
MiniZinc. Indeed, sat could not perform clause learning as the constraint SolveAll is not
implemented from MiniZinc to sat. Thus, once a solution for Step 1 has been found, the program
has to be rerun by adding a constraint that discards this valid Step 1 solution. This is why
MiniZinc performs less efficiently than one could expect. The previous fact could be directly seen
on Table 6.2 as the time required to solve instances with many solutions is much bigger than the
one required to solve instances with only few Step 1 solutions.

Choco-solver does not seem to be a good candidate either as for all instances greater than 16
rounds it requires more than 24 hours to solve the problem. This is mainly linked with the nature
of the variables themselves. Choco-solver (and more generally cp) is efficient when domains
are subset of integers. Here, Choco-solver can not efficiently propagate lower bounds and upper
bounds on Boolean variables as milp or sat could do.

Actually, the Step 1 model could be completely linearized and of course, the branch-and-cut
method used by milp eliminates uninteresting branches quite quickly. Sat behaves better than
cp because the problem is purely Boolean and cp/Choco-solver does not benefit from the conflict-
driven clause learning (the cdcl). Thus, cp, that performs very well on integer domains, is less
well suited when regarding Boolean or linear problems.

Moreover, regarding the way cp cuts the problem, this division produces mainly trivial
problems, the few remaining ones have a very large search space (therefore, those are the ones
that should be cut). But once more, milp and sat perform better.

Contrary to the two previous tools, milp and the Ad-Hoc method seem to perform well and,
as shown in Table 6.2, could solve all the problems on all the instances in reasonable times. As
shown in the previous paragraph, the Ad-Hoc method is able to outperform milp. For milp, and
as previously said, this is clearly linked with the nature of the problem to solve: Step 1 only
models Boolean variables for which values propagate very well in the milp model. The Ad-Hoc
method is finally a dedicated one and manages to surpass even milp.

Thus, in conclusion, we think that if one does not have the time to think of a solution, milp
is a good candidate to quickly have direct Step 1 bounds. If one has time, the Ad-Hoc method
clearly outperform previous results. We also think that sat could perform well even if it is not
proven here. The idea behind is to directly use a sat solver without any other interfaces to be
closer to the clauses.

155

Chapter 6. Differential Analysis of Skinny with Different Tools

St
ep

1-
en

um
#
R
ou

nd
s

𝑂
𝑏𝑗

𝑆
𝑡𝑒
𝑝
1
(N

b
so
ls
)

M
IL
P

M
in
iZ
in
c/

sa
t

A
d-
H
oc

C
ho

co
S
K

T
K

1
T

K
2

T
K

3
S
K

T
K

1
T

K
2

T
K

3
S
K

T
K

1
T

K
2

T
K

3
S
K

T
K

1
T

K
2

T
K

3
S
K

T
K

1
T

K
2

T
K

3
3

5
(4
)

1
(1
2)

0
(1
)

0
(1
)

1s
1s

-
-

1s
1s

-
-

1s
21
s

69
s

69
s

7s
1s

-
-

4
8
(3
)

2
(9
)

0
(1
)

0
(1
)

1s
1s

-
-

4s
1s

-
-

1s
22
s

25
s

76
s

7s
1s

-
-

5
12

(2
)

3
(2
)

1
(1
2)

0
(1
)

1s
1s

1s
-

4s
1s

1s
-

1s
21
s

22
s

10
3s

7s
1s

1s
-

6
16

(1
)

6
(2
)

2
(1
0)

0
(1
)

1s
1s

1s
-

6s
1s

1s
-

1s
22
s

22
s

25
s

7s
3s

1s
-

7
26

(4
)

10
(2
)

3
(2
)

1
(1
2)

1s
1s

1s
1s

17
s

8s
1s

1s
1s

21
s

22
s

22
s

7s
7s

1s
1s

8
36

(1
7)

13
(1
)

6
(2
)

2
(1
1)

1s
1s

1s
1s

14
0s

7s
4s

2s
1s

22
s

31
s

23
s

7s
8s

3s
1s

9
41

(2
)

16
(1
)

9
(1
)

3
(3
)

2s
2s

2s
2s

57
s

11
s

7s
1s

1s
22
s

24
s

26
s

8s
9s

7s
1s

10
46

(2
)

23
(1
)

12
(2
)

6
(3
)

7s
5s

3s
2s

97
s

46
s

15
s

10
s

1s
22
s

24
s

27
s

9s
60
s

55
s

2s
11

51
(2
)

32
(2
)

16
(1
)

10
(3
)

8s
11
s

4s
3s

31
2s

29
m

22
s

24
s

1s
23
s

25
s

32
s

23
s

18
8m

86
s

34
s

12
55

(2
)

38
(7
)

21
(1
)

13
(2
)

13
s

35
s

7s
3s

46
8s

>
24
h

11
3s

35
s

1s
24
s

27
s

25
s

75
s

>
24
h

43
m

28
8s

13
58

(6
)

41
(2
)

25
(2
)

16
(2
)

9s
53
s

17
s

6s
14
m

14
m

10
4s

1s
24
s

30
s

27
s

24
9s

>
24
h

56
m

14
61

(2
)

45
(3
)

31
(1
)

19
(1
)

23
s

93
s

27
s

8s
49
1s

72
m

14
8s

1s
24
s

39
s

28
s

10
m

>
24
h

15
66

(2
)

49
(1
)

35
(1
)

24
(4
)

69
s

24
5s

75
s

21
s

27
m

>
24
h

15
7m

1s
25
s

46
s

34
s

85
m

16
75

(8
)

54
(1
)

40
(2
)

27
(1
)

12
m

42
3s

14
8s

39
s

12
8m

25
1m

1s
25
s

57
s

38
s

>
24
h

17
82

(4
)

59
(5
)

43
(1
)

31
(2
)

46
m

22
m

21
3s

53
s

10
6m

>
24
h

1s
27
s

59
s

48
s

18
88

(4
)

62
(1
)

47
(1
)

35
(1
)

17
8m

31
m

53
5s

64
s

40
3m

1s
27
s

76
s

73
s

19
92

(4
)

66
(1
)

52
(1
)

43
(1
4)

52
9m

56
m

29
m

21
8s

43
6m

1s
28
s

11
0s

28
3s

20
96

(2
)

70
(2
)

57
(2
)

45
(2
)

16
h

87
m

33
m

34
0s

17
4m

1s
28
s

19
3s

32
6s

Ta
bl
e
6.
2:

C
om

pa
ri
so
n
of

th
e
ti
m
es

of
th
e
di
ffe

re
nt

St
ep

1
to
ol
s
fo
r
so
lv
in
g
𝑆
𝑡𝑒
𝑝
1
−
𝑒𝑛

𝑢
𝑚

(S
KI

NN
Y)
,i

.e
.
to

en
um

er
at
e
al
ls

ol
ut
io
ns

fo
r
th
e

op
ti
m
al

𝑂
𝑛
𝑗 𝑆

𝑡𝑒
𝑝
1
bo

un
d
gi
ve
n
in

th
e
fir
st

co
lu
m
n
in

ea
ch

sc
en

ar
io
:
S
K
,T

K
1,

T
K

2
an

d
T

K
3.

W
e
re
po

rt
th
e
re

al
ti
m
e
on

ou
r
se
rv
er
.

156

6.6. Results

6.6.2 Step 2 performance results

Up to our knowledge, we only found [AST+17] that gives time results concerning finding the
best SK differential characteristic probability on SKINNY-128 using a milp tool based on Gurobi.
More precisely, the authors say:

“In our experiments, we used Gurobi Optimizer with Xeon Processor E5-2699 (18
cores) in 128 gb ram.”

and, for 13 rounds in the SK model:

“In our environment, the test of 6 classes [Step 1 solutions with 58 active S-boxes
without symmetries] finished in 16 days [. . .] Finally, it is proven that the tight bound
on the probability of differential characteristic for 13 rounds is 2−123.”

Concerning the use of sat, [SWW18] implements a sat model for differential cryptanalysis
based on Cryptominisat5 [SNC09] for Midori64 and LED64. This model implies a sufficiently
small number of clauses to model the non-zero values of the ddt and to be applicable. However,
no result concerning 8-bit S-boxes are given. As sat uses Boolean formulas, it seems that the
same problem than for milp appears for modeling S-box: a huge number of Boolean formulas will
be necessary to correctly model this step even if dedicated tools as Logic Friday or the Expresso
algorithm [AST+17] are used. Thus, we discard the use of a sat model.

Results for SKINNY-64.

We sum up in Table 6.3 all the results we obtain for SKINNY-64 in the four different attack models
(SK,TK1,TK2 and TK3). The overall time, in this case, is not a bottleneck. We only give
results concerning number of rounds that are at the limit (just under and just upper) when
considering the number of active S-boxes, which is equal to 32 in the case of SKINNY-64, as the
state size is 64 bits and the best differential probability of the S-box is equal to 2−2. Thus, the
best overall differential characteristic probability must be under 2−64.

Note that sometimes, we need to browse several 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 bounds to find the optimal differential
characteristic probability when the number of rounds is fixed. Indeed, we need to proactively
adapt the probability bound we found. For example, in the case of TK2 SKINNY-64 with 13
rounds, the optimal 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 is equal to 25 and when providing the Step 2 process with this
𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 bound, we find a best differential characteristic probability equal to 2−55. Thus, we
need to run again Step1-enum with 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 = 26 and 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 = 27 to be sure that the previous
probability is really the best one. Then, before running again Step 2 on those new results we
adapt the best probability to the new bound equal to 2−55 instead of the old bound equal to 2−64.

157

Chapter 6. Differential Analysis of Skinny with Different Tools

Nb Rounds 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 Nb sol. Step 1 Step 2 time Best 𝑃𝑟

SK 7 26 2 1s 2−52

SK 8 36 17 1s < 2−64

TK1 10 23 1 1s 2−46

TK1 11 32 2 1s = 2−64

TK2 13 25 → 27 10 1s 2−55

TK2 14 31 1 1s < 2−64

TK3 15 24 → 26 46 2s 2−54

TK3 16 27 → 31 87 4s = 2−64

TK3 17 31 2 1s < 2−64

Table 6.3: Overall results concerning SKINNY-64 in the four attack models. Step 2 time corresponds
to the Step 2 time taken over all solutions of Step1-enum when 𝑂𝑏𝑗𝑠𝑡𝑒𝑝1 takes the values detailed
in the second column. Best 𝑃𝑟 corresponds to the best probability of a differential characteristic
found.

158

6.6. Results

Best (related-tweakey) differential characteristics for SKINNY-64. In the following, we
provide the details of the best differential characteristics we found for SKINNY-64. The best SK
differential characteristic for 7 rounds with probability equal to 2−52 is given in Table 6.4. Then,
in the TK1 setting, the best differential characteristics for 10 rounds with probability equal to
2−46 is described in Table 6.5. For TK2, Table 6.6 details the best differential characteristic
obtained for 13 rounds with probability equal to 2−55. Finally, Table 6.7 describes the best TK3
differential trail on 15 rounds of SKINNY-64 with probability equal to 2−54 is given in Table 6.7.

Round 𝛿𝑋𝑖 = 𝑋𝑖 ⊕𝑋 ′
𝑖 (before SB) 𝛿𝑆𝐵𝑋𝑖 (after SB) Pr(States)

𝑖 = 1 0040 4444 4440 4400 0020 2222 2220 2200 2−2·10

2 0000 0020 0200 2002 0000 0010 0100 1001 2−2·4

3 0010 0000 0000 0001 0080 0000 0000 0008 2−2·2

4 0000 0080 0000 0080 0000 0040 0000 0040 2−2·2

5 0400 0000 0004 0000 0200 0000 0002 0000 2−2·2

6 0000 0200 0200 0000 0000 0100 0100 0000 2−2·2

7 0001 0000 0011 0001 0008 0000 0088 0008 2−2·4

Table 6.4: The best SK differential characteristic on 7 rounds of SKINNY-64 with probability
equal to 2−52. The four words represent the four rows of the state and are given in hexadecimal
notation.

Round 𝛿𝑋𝑖 = 𝑋𝑖 ⊕𝑋 ′
𝑖 (before SB) 𝛿𝑆𝐵𝑋𝑖 (after SB) 𝛿𝑇𝐾1𝑖 Pr(States)

𝑖 = 1 0000 0002 0020 0200 0000 0001 0010 0100 1000 0000 0B80 0000 2−2·3

2 1000 1000 0000 0000 B000 8000 0000 0000 B000 8000 1000 0000 2−2·2

3 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000 B000 8000 −
4 0010 0010 0000 0010 00B0 00A0 0000 00B0 00B0 0080 0010 0000 2−2·3

5 0B00 0000 0002 0000 0100 0000 0001 0000 0000 1000 00B0 0080 2−2·2

6 0000 0100 0000 0000 0000 0800 0000 0000 0000 B800 0000 1000 2−2·1

7 0000 0000 0B00 0000 0000 0000 0100 0000 0000 0010 0000 B800 2−2·1

8 0001 0000 0000 0001 0008 0000 0000 0008 0008 00B0 0000 0010 2−2·2

9 0080 0000 000B 0000 0040 0000 0001 0000 0000 0100 0008 00B0 2−2·2

10 0140 0040 0110 0140 0820 0020 0880 0820 0000 0B08 0000 0100 2−2·7

Table 6.5: The best TK1 differential characteristic on 10 rounds of SKINNY-64 with probability
equal to 2−46. The four words represent the four rows of the state and are given in hexadecimal
notation.

159

Chapter 6. Differential Analysis of Skinny with Different Tools

Round 𝛿𝑋𝑖 = 𝑋𝑖 ⊕𝑋 ′
𝑖 (before SB) 𝛿𝑆𝐵𝑋𝑖 (after SB) 𝛿𝑇𝐾1𝑖 𝛿𝑇𝐾2𝑖 Pr(States)

𝑖 = 1 0000 8200 0080 0000 0000 4100 0040 0000 0000 0008 0502 0000 0000 000C 060C 0000 2−2·3

2 4000 0000 0410 4000 2000 0000 02A0 2000 5000 0002 0000 0008 D000 0008 0000 000C 2−2·4

3 0000 A000 0002 0002 0000 6000 0006 0003 0800 0000 5000 0002 0800 0000 D000 0008 2−2·3

4 0630 0000 0000 0600 03F0 0000 0000 0100 0250 0000 0800 0000 01A0 0000 0800 0000 2−3·3

5 1000 0000 0000 0000 9000 0000 0000 0000 8000 0000 0250 0000 1000 0000 01A0 0000 2−2

6 0000 0000 0000 0000 0000 0000 0000 0000 2000 5000 8000 0000 2000 5000 1000 0000 −
7 0000 0000 0000 0000 0000 0000 0000 0000 0080 0000 2000 5000 0020 0000 2000 5000 −
8 00A0 00A0 0000 00A0 0060 0050 0000 0050 0020 0050 0080 0000 0040 00B0 0020 0000 2−2·3

9 0500 0000 000B 0000 0C00 0000 000C 0000 0000 8000 0020 0050 0000 4000 0040 00B0 2−3·2

10 0000 0C00 0000 0000 0000 0200 0000 0000 0000 2500 0000 8000 0000 9700 0000 4000 2−2

11 0000 0000 0B00 0000 0000 0000 0100 0000 0000 0080 0000 2500 0000 0090 0000 9700 2−2

12 0001 0000 0000 0001 000A 0000 0000 0008 0005 0020 0000 0080 000F 0030 0000 0090 2−2·2

13 0080 0000 0001 0000 0040 0000 0008 0000 0000 0800 0005 0020 0000 0300 000F 0030 2−2·2

Table 6.6: The best TK2 differential characteristic on 13 rounds of SKINNY-64 with probability
equal to 2−55. The four words represent the four rows of the state and are given in hexadecimal
notation.

Round 𝛿𝑋𝑖 = 𝑋𝑖 ⊕𝑋 ′
𝑖 (before SB) 𝛿𝑆𝐵𝑋𝑖 (after SB) 𝛿𝑇𝐾1𝑖 𝛿𝑇𝐾2𝑖 𝛿𝑇𝐾3𝑖 Pr(States)

𝑖 = 1 0000 0001 4000 0004 0000 0008 2000 0002 0000 080D 0000 0800 0000 0408 0000 0500 0000 0E0D 0000 0C00 2−2·3

2 0000 0000 0000 0020 0000 0000 0000 0010 0008 0000 0000 080D 000B 0000 0000 0408 000E 0000 0000 0E0D 2−2

3 010D 000D 0000 000D 0A0E 0002 0000 0002 0D08 0000 0008 0000 0109 0000 000B 0000 060F 0000 000E 0000 2−2·32−3

4 0020 0000 2000 0000 0030 0000 3000 0000 0000 0008 0D08 0000 0000 0007 0109 0000 0000 000F 060F 0000 2−2·2

5 0000 0030 0030 0000 0000 00C0 00C0 0000 D000 0008 0000 0008 2000 0003 0000 0007 3000 0007 0000 000F 2−3·2

6 0000 C000 000C 0000 0000 2000 0002 0000 0800 0000 D000 0008 0F00 0000 2000 0003 0700 0000 3000 0007 2−2·2

7 0200 0000 0000 0200 0500 0000 0000 0300 08D0 0000 0800 0000 0640 0000 0F00 0000 0B90 0000 0700 0000 2−2·2

8 3000 0000 0000 0000 D000 0000 0000 0000 8000 0000 08D0 0000 E000 0000 0640 0000 B000 0000 0B90 0000 2−3

9 0000 0000 0000 0000 0000 0000 0000 0000 8000 D000 8000 0000 D000 9000 E000 0000 5000 4000 B000 0000 −
10 0000 0000 0000 0000 0000 0000 0000 0000 0080 0000 8000 D000 00C0 0000 D000 9000 0050 0000 5000 4000 −
11 0010 0010 0000 0010 0080 0090 0000 00A0 0080 00D0 0080 0000 00A0 0030 00C0 0000 00A0 0020 0050 0000 2−2·3

12 0A00 0000 0005 0000 0A00 0000 000A 0000 0000 8000 0080 00D0 0000 8000 00A0 0030 0000 A000 00A0 0020 2−22−3

13 0000 0A00 0000 0000 0000 0A00 0000 0000 0000 8D00 0000 8000 0000 5600 0000 8000 0000 D100 0000 A000 2−3

14 0000 0000 0000 0000 0000 0000 0000 0000 0000 0080 0000 8D00 0000 0010 0000 5600 0000 00D0 0000 D100 −
15 0000 0000 0004 0000 0000 0000 0002 0000 000D 0080 0000 0080 000D 00B0 0000 0010 0008 0060 0000 00D0 2−2

Table 6.7: The best TK3 differential characteristic on 15 rounds of SKINNY-64 with probability
equal to 2−54. The four words represent the four rows of the state and are given in hexadecimal
notation.

160

6.6. Results

Results for SKINNY-128.

In the same way, we provide in Table 6.8 the best differential characteristic probability with the
total time required for this search for the 4 different attack models. As one can see, we also verify
all the possible values for 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 for a given number of rounds, depending on the probability
value previously found. Thus, this time, the number of solutions output by Step 1 could be huge
when we move away from the optimal Step 1 value 𝑣*. However, as the time spent to solve one
solution is reasonable, our model scales reasonably well: the worst case requires 25 days of real
time on our server on 8 threads and 31 gb of ram2. Our TK2 model is based on xor constraints
encoded in intention (and not using tables) and these experiences have been launched using the
128 threads of our server. Table 6.8 shows the results obtained with the best configurations for
SK, TK and TK2.

Nb Rounds 𝑂𝑏𝑗𝑠𝑡𝑒𝑝1 Nb sol. Step 1 Step 2 time Best 𝑃𝑟

SK 9 41 → 43 52 16s 2−86

SK 10 46 → 48 48 11s 2−96

SK 11 51 → 52 15 4s 2−104

SK 12 55 → 56 11 6s 2−112

SK 13 58 → 61 18 2m27s 2−123

SK 14 61 → 63 6 21s < 2−128

TK1 8 13 → 16 14 4s 2−33

TK1 9 16 → 20 6 3s 2−41

TK1 10 23 → 27 6 4s 2−55

TK1 11 32 → 36 531 37s 2−74

TK1 12 38 → 46 186 482 213m 2−93

TK1 13 41 → 53 2 385 482 2 days 2−106.2

TK1 14 45 → 59 11 518 612 20 days 2−120

TK1 15 49 → 63 7 542 053 25 days < 2−128

TK2 9 9 → 10 7 3s 2−20

TK2 10 12 → 17 132 11s 2−34.4

TK2 11 16 → 25 4203 6m 2−51.4

TK2 12 21 → 35 1 922 762 512m 2−70.4

TK2 13 25 → 44 - not solved > 2−89.7

TK2 14 31 → 54 - not solved > 2−108.4

TK2 15 35 → 56 - not solved > 2−113.2

TK2 16 40 → 63 - not solved > 2−127.6

TK2 17 43 → 63 - not solved -
TK2 18 47 → 63 62 681 709 not solved -
TK2 19 52 → 63 772 163 280m < 2−128

Table 6.8: Overall results concerning SKINNY-128 in the four attack models. Step 2 time
corresponds to the Step 2 time taken over all solutions of Step1-enum when 𝑂𝑏𝑗𝑠𝑡𝑒𝑝1 takes
the values precise in the first column. Best 𝑃𝑟 corresponds to the best found probability of a
differential characteristic.

Concerning TK2, for 18 rounds, we have not performed the computations due to the huge
2It seems that the use of the 128 threads was prohibited by the memory usage of xor tables (i.e. xor in

extension).

161

Chapter 6. Differential Analysis of Skinny with Different Tools

number of Step 1 solutions. For the same reasons, the full computations for 15, 16 and 17 rounds
have not been performed. Nonetheless, in the following, we provide the best TK2 differential
characteristic we found for 16 rounds. Note that we do not know if this differential characteristic
is optimal in terms of probability as we do not test all the solutions from Step 1.

162

6.6. Results

Best (related-tweakey) differential characteristics for SKINNY-128. Regarding the best
SK differential characteristics on 13 rounds of SKINNY-128, we obtain the same trail with
probability equal to 2−123 given in Table 11 of Appendix D of [AST+17]. The best TK1
differential characteristic on 14 rounds of SKINNY-128 with probability equal to 2−120 is given in
Table 6.9. The best TK2 differential characteristic on 16 rounds of SKINNY-128 that we found is
given in Table 6.10. The probability of this characteristic equals 2−127.6, but we do not know if
this value is optimal since we did not test all Step 1 solutions.

163

Chapter 6. Differential Analysis of Skinny with Different Tools

R
ou

nd
𝛿𝑋

𝑖
=

𝑋
𝑖
⊕
𝑋

′ 𝑖
(b
ef
or
e
SB

)
𝛿𝑆

𝐵
𝑋

𝑖
(a
ft
er

SB
)

𝛿𝑇
𝐾
1 𝑖

P
r(
St
at
es
)

𝑖
=

1
02

00
00

02
00

00
02

00
00

02
00

00
00

02
00

40
08

00
00

08
00

00
08

00
00

08
00

00
00

08
00

04
00

00
00

00
00

00
00

00
01

00
00

00
00

00
00

00
2−

2
·6

2
00

00
04

00
08

00
00

08
00

00
00

00
08

00
00

00
00

00
01

00
10

00
00

10
00

00
00

00
10

00
00

00
00

00
01

00
00

00
00

00
00

00
00

00
00

00
00

00
2−

2
·4

3
00

00
00

10
00

00
00

00
10

10
00

00
00

00
00

00
00

00
00

40
00

00
00

00
40

40
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
01

00
00

00
00

00
2−

2
·3

4
00

00
40

00
00

00
00

40
00

00
40

40
00

00
40

00
00

00
04

00
00

00
00

04
00

00
04

04
00

00
04

00
00

00
00

00
01

00
00

00
00

00
00

00
00

00
00

00
2−

2
·5

5
04

00
04

00
00

00
04

00
00

05
00

00
04

04
04

00
05

00
05

00
00

00
01

00
00

05
00

00
05

05
05

00
00

00
00

00
00

00
00

00
00

00
00

00
01

00
00

00
2
−
3
·6
2
−
2

6
00

05
05

00
05

00
05

00
00

00
00

04
05

00
05

05
00

05
05

00
01

00
01

00
00

00
00

05
05

00
05

05
00

00
00

00
00

00
01

00
00

00
00

00
00

00
00

00
2−

3
·6
2−

2
·2

7
00

05
00

05
00

05
05

00
00

04
00

00
00

00
05

00
00

05
00

05
00

05
05

00
00

05
00

00
00

00
05

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
01

00
2−

3
·6

8
00

00
00

00
00

05
00

05
00

00
05

00
00

05
00

00
00

00
00

00
00

01
00

05
00

00
05

00
00

05
00

00
00

00
00

00
00

01
00

00
00

00
00

00
00

00
00

00
2
−
3
·3
2
−
2

9
00

00
00

00
00

00
00

00
00

00
00

00
05

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
05

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

01
00

00
2
−
3

10
00

00
00

05
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

01
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

01
00

00
00

00
00

00
00

00
00

00
00

00
2
−
2

11
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

01
00

00
00

00
−

12
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

01
00

00
00

00
00

00
00

00
−

13
00

00
00

00
00

00
00

00
01

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
20

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

01
2
−
2

14
00

00
20

00
00

00
00

00
00

00
20

00
00

00
20

00
00

00
80

00
00

00
00

00
00

00
80

00
00

00
80

00
00

01
00

00
00

00
00

00
00

00
00

00
00

00
00

00
2−

2
·3

Ta
bl
e
6.
9:

T
he

be
st

T
K

1
di
ffe

re
nt
ia
lc

ha
ra
ct
er
is
ti
c
on

14
ro
un

ds
of

SK
IN

NY
-1

28
w
it
h
pr
ob

ab
ili
ty

eq
ua

lt
o
2−

1
2
0
.
T
he

fo
ur

w
or
ds

re
pr
es
en
t

th
e
fo
ur

ro
w
s
of

th
e
st
at
e
an

d
ar
e
gi
ve
n
in

he
xa

de
ci
m
al

no
ta
ti
on

.

164

6.6. Results

Round 𝛿𝑋𝑖 = 𝑋𝑖 ⊕𝑋 ′
𝑖 (before SB) 𝛿𝑇𝐾1𝑖 Pr(States)

𝛿𝑆𝐵𝑋𝑖 (after SB) 𝛿𝑇𝐾2𝑖
𝑖 = 1 00000000 00404010 40400000 40000000 00000000 00000000 00000000 00007700 2−2·6

00000000 00040440 04040000 04000000 00000000 00000000 00000000 00003900
2 00000400 00000000 40000000 00000404 00000000 00770000 00000000 00000000 2−2·32−3

00000500 00000000 04000000 00000101 00000000 00730000 00000000 00000000
3 00010000 00000500 00000000 00000100 00000000 00000000 00000000 00770000 2−2·22−3

00200000 00000500 00000000 00002000 00000000 00000000 00000000 00730000
4 00000000 00200000 00000005 00200000 00000077 00000000 00000000 00000000 2−2·22−3

00000000 00800000 00000005 00800000 000000E7 00000000 00000000 00000000
5 80050090 00000090 00058000 00050090 00000000 00000000 00000077 00000000 2−2·8

03010002 00000002 00010200 00010003 00000000 00000000 000000E7 00000000
6 00010303 03010002 00000001 01010003 00000000 00000077 00000000 00000000 2−2·62−3·4

00202020 20200009 00000020 20200020 00000000 000000CE 00000000 00000000
7 20000000 00202020 B0002000 00002020 00000000 00000000 00000000 00000077 2−2·62−2.42−3

80000000 00808080 80008000 00009380 00000000 00000000 00000000 000000CE
8 00930000 80000000 00000080 00008000 00770000 00000000 00000000 00000000 2−2·32−6

00EA0000 03000000 00000003 00000300 009D0000 00000000 00000000 00000000
9 00000000 00000000 00000000 00030000 00000000 00000000 00770000 00000000 2−5

00000000 00000000 00000000 00BC0000 00000000 00000000 009D0000 00000000
10 BC000000 00000000 00000000 00000000 77000000 00000000 00000000 00000000 2−6

4C000000 00000000 00000000 00000000 3B000000 00000000 00000000 00000000
11 00000000 00000000 00000000 00000000 00000000 00000000 77000000 00000000 −

00000000 00000000 00000000 00000000 00000000 00000000 3B000000 00000000
12 00000000 00000000 00000000 00000000 00007700 00000000 00000000 00000000 −

00000000 00000000 00000000 00000000 00007700 00000000 00000000 00000000
13 00000000 00000000 00000000 00000000 00000000 00000000 00007700 00000000 −

00000000 00000000 00000000 00000000 00000000 00000000 00007700 00000000
14 0000000 00000000 00000000 00000000 00000000 77000000 00000000 00000000 −

00000000 00000000 00000000 00000000 00000000 EF000000 00000000 00000000
15 00000000 00000000 00980000 00000000 00000000 00000000 00000000 77000000 2−5

00000000 00000000 00420000 00000000 00000000 00000000 00000000 EF000000
16 00000042 00000000 00000042 00000042 − 2−2.4·3

00000008 00000000 00000008 00000008

Table 6.10: The Best TK2 differential characteristics we found on 16 rounds of SKINNY-128 with
probability equal to 2−127.6. The four words represent the four rows of the state and are given in
hexadecimal notation.

165

Lessons learnt.

The overall gap is not to find the optimal value of 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 = 𝑣* for a given number of rounds and
to enumerate the corresponding overall solutions if the Step 1 model is sufficiently tight. The real
gap is if the value obtained for 𝑂𝑏𝑗𝑆𝑡𝑒𝑝2 (here equal to 2× 𝑣* as the best differential probability
for the S-box is equal to 2−2) is far from the optimal bound then we have to increase 𝑂𝑏𝑗𝑆𝑡𝑒𝑝1 up
to the bound ⌊𝑂𝑏𝑗𝑆𝑡𝑒𝑝2/2⌋. The further we are from 𝑣* in the Step 1 resolution, the more Step 1
solutions there are (in fact this number grows exponentially as can be seen in Table 6.8). Thus,
the time for the Step 2 resolution becomes the bottleneck.

We have seen that cp is outperformed by milp, sat and Ad-Hoc methods when trying to
model and solve the Step 1 problem. This is mainly linked with the nature of the problem where
only Boolean variables are considered and where dedicated tools such as milp or sat perform
very well in this case. Thus, no-one could think that it could be helpful for modeling Step 2.
However, one of the main advantage of cp is the existing implementation of Table constraints
that are well suited to the problem of modeling S-boxes and their ddt. Note that, in this case,
especially when modeling 8-bit S-boxes, milp and sat imply a big number of equations that do
not scale very well. Thus, cp could be a useful tool in this case.

One of the strenghts of cp—having Table constraints—can also become a weakness as their
number and size increase. Our solution to code the xor in intention is only possible when weaker
filtering is compensated by a more constrained model containing the search space (like in TK2).

6.7 Conclusion

In this chapter, we have compared several tools searching for (related-tweakey) differential
characteristics on the block cipher SKINNY. As usually done, we have divided the search procedure
into two steps: Step 1 which abstracts the difference values into Boolean variables and finds the
truncated characteristics with the smallest number of active S-boxes; and Step 2 which inputs
the results of Step 1 to output the best possible probability instantiating the abstract solutions
output by Step 1. Of course, each solution of Step 1 could not always be instantiated in Step 2.

This study shows that for Step 1, our ad-hoc tool which heavily uses the structure of the
problem, consistently has the best running times. However, sat is also quite good in SK and
milp runs well in both TK2 and TK3 settings. Furthermore, both the sat and milp models
required much less work than our ad-hoc tool. Regarding Step 2, our Choco-solver model is
much faster than any other approaches we tried. It allowed us to find, for the first time, the best
(related-tweakey) differential characteristics in the TK1 model up to 14 rounds for SKINNY-128
and to show that there is no differential trail on 15 rounds with a probability better than 2−128.
Regarding the TK2 model, we were able to find the best differential trails up to 12 rounds. Note
that in [LGS17] Liu et al. were only able to reach 7 and 9 rounds in the TK1 and TK2 model
respectively. Our approach is thus an important improvement.

Part III

General Results on Feistel
Constructions

167

7

Introducing the FBCT: A
Cryptanalysis Tool for Feistel

constructions

Le vrai boomerang, le boomerang
authentique, pas celui que l’on trouve dans
les bazars pour touristes de Sydney et de
Camberra ! Le boomerang primitif, celui
qui armait les fiers guerriers australiens
depuis la nuit des temps, ce boomerang là
a une dynamique, un mouvement dans
l’espace quand il est bien lancé, que je
qualifierais de miraculeux.

Tanner

At Eurocrypt 2018, Cid et al. introduced the Boomerang Connectivity Table (BCT), a tool to
compute the probability of the middle round of a boomerang distinguisher from the description
of the cipher’s S-box(es). Their new table and the following works led to a refined understanding
of boomerangs, and resulted in a series of improved attacks. Still, these works only addressed the
case of Substitution Permutation Networks, and completely left out the case of ciphers following
a Feistel construction. Together with Hamid Boukerrou, Virginie Lallemand, Bimal Mandal and
Marine Minier, we addressed this lack by introducing the FBCT, the Feistel counterpart of the
BCT. This chapter summarizes our results, which have been presented at FSE 2020 [BHL+20].
We show that the coefficient at row Δ𝑖, column ∇𝑜 corresponds to the number of times the
second order derivative at points (Δ𝑖,∇𝑜) cancels out. We explore the properties of the FBCT and
compare it to what is known on the BCT. Taking matters further, we show how to compute the
probability of a boomerang switch over multiple rounds with a generic formula.

7.1 Introduction . 170
7.2 Motivation: Disproving the Validity of a Previous Boomerang

Distinguisher on LBlock . 172
7.2.1 Specification of LBlock . 172
7.2.2 Attack of Liu et al. 173
7.2.3 Incompatibility in the Distinguisher Proposed by Liu et al. 174

169

Chapter 7. Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

7.3 FBCT: the Feistel Counterpart of the BCT 176
7.3.1 Definition of the FBCT . 176
7.3.2 Some Variants of Feistel Constructions for which the FBCT Applies 179
7.3.3 Evaluation of the 1-round Boomerang Switch of Liu et al.’s Attack

with the FBCT . 180
7.3.4 Relation Between the FBCT and the Feistel Switch 181

7.4 Properties of the FBCT . 181
7.4.1 Basics on vectorial Boolean Functions 182
7.4.2 Some Direct Properties of any FBCT 182
7.4.3 On the FBCT of APN Functions . 183
7.4.4 On the FBCT of S-boxes based on the Inverse Mapping 183
7.4.5 On the FBCT of Equivalent S-boxes 185
7.4.6 FBCT and Inversion . 186
7.4.7 Set-based Formulation of the FBCT 186
7.4.8 Comparison of the properties of the BCT and of the FBCT 187

7.5 Extending our Analysis to Two Rounds 189
7.5.1 The Feistel counterpart of the BDT 189
7.5.2 Probability of a 2-round Boomerang Switch 190

7.6 Generic Formula for a Feistel Boomerang Switch over Multiple
Rounds . 194

7.7 Application to LBlock-s . 197
7.7.1 Finding the Best 7-round Differential Characteristics for 𝐸0 and 𝐸1 197
7.7.2 Choosing a Switch 𝐸𝑚 . 198
7.7.3 Deriving a Boomerang Distinguisher 200

7.8 Conclusion . 200

7.1 Introduction

Boomerang attacks date back to 1999, when David Wagner introduced them at FSE to break
Coconut98 [Wag99]. When presented, this variant of differential attacks [BS91a] shook up
the conventional thinking that consisted in believing that a cipher with only small probability
differentials is secure. Indeed, boomerang attacks make use of two small differentials covering
half of the attacked rounds each, and can beat differential cryptanalysis when no high probability
differential exists for the whole cipher.

In the basic form of the distinguisher, (represented on the left in Figure 7.1), the attacker
has access to the encryption (𝐸) and decryption (𝐸−1) oracles, and studies particular quartets
of messages. First, she chooses 𝑀1 and constructs 𝑀2 = 𝑀1 ⊕ 𝛼; using 𝐸, she obtains the
corresponding ciphertexts 𝐶1 and 𝐶2 from which she deduces two additional ciphertexts by
computing: 𝐶3 = 𝐶1 ⊕ 𝛿 and 𝐶4 = 𝐶2 ⊕ 𝛿. By calling the decryption oracle she retrieves
the corresponding plaintexts 𝑀3 and 𝑀4 and then checks if 𝑀3 ⊕𝑀4 = 𝛼. A boomerang
distinguisher is obtained if the probability that 𝑀3 ⊕𝑀4 = 𝛼 is higher for the cipher than for a
random permutation.

In summary, a boomerang distinguisher is based on a couple of plaintext and ciphertext
differences (𝛼, 𝛿) for which the following property among quartets of messages has a high
probability:

𝐸−1(𝐸(𝑀1)⊕ 𝛿)⊕ 𝐸−1(𝐸(𝑀1 ⊕ 𝛼)⊕ 𝛿) = 𝛼.

170

7.1. Introduction

In the original approach, the attacked cipher 𝐸 is written as the composition of two sub-ciphers
𝐸0 and 𝐸1: 𝐸 = 𝐸1 ∘ 𝐸0. If for the sub-cipher 𝐸0 the input difference 𝛼 leads to the output
difference 𝛽 with probability 𝑝 (and similarly 𝛾 leads to 𝛿 with probability 𝑞 over 𝐸1) the previous
event was thought to have a probability of 𝑝2𝑞2.

Following this breakthrough some variants were proposed including a related-key version [KKH+04,
BDK05] and an impossible-differential one (see [CY09]). Improvements were also proposed on
top of this, like a version that does not require access to the decryption oracle (named amplified
boomerang attack [KKS01]) that was further developed into the so-called rectangle attack [BDK01].

The validity of boomerang attacks and in particular of the 𝑝2𝑞2 formula were later questioned
by Murphy [Mur11] with an example of distinguisher that seemed valid but was in fact of
probability zero. The opposite phenomenon, that is distinguishers that happen with probability
higher than what is expected, was also presented by Biryukov and Khovratovich in [BK09], and
some particular cases (termed Ladder Switch, S-box Switch and Feistel Switch) were explained.

All these observations were later formalized in a framework called sandwich attack [DKS10]
for which the cipher is divided in 3 parts instead of 2, as represented on the right of Figure 7.1: a
middle part 𝐸𝑚 (termed boomerang switch) is introduced between 𝐸0 and 𝐸1. Dunkelman et al.
applied this framework to KASUMI.

M1

E0

E1

C1

M2

E0

E1

C2

α

β

M3

E0

E1

C3

M4

E0

E1

C4

α

β

γ

γ

δ

δ

1

2

3

4

M1

E0

Em

C1

M2

E0

E1

C2

α

β

M3

E0

C3

M4

E0

C4

α

β

γ

x1

x2

x3

x4

Em

Em

Em
y1

y2

y3

y4

E1

E1

E1

γ

δ

δ

1

2

3

4

Figure 7.1: Configuration of the basic boomerang attack (left) and of the sandwich attack
(right). Circled numbers correspond to a numbering that helps referencing states in the following
discussions.

Cid et al. [CHP+18] recently introduced a tool called the Boomerang Connectivity Table that
allows to easily evaluate the probability of the middle part 𝐸𝑚 in the case where it covers one
round and when the studied ciphers follows an SPN construction. Their technique reduces the
problem of computing the probability of the boomerang switch over one round function to the
one of computing it over one S-box only.

Equally as an S-box with a Difference Distribution Table with small coefficients provides
resistance against differential attacks, an S-box with a Boomerang Connectivity Table (BCT)
with small coefficients prevents an attacker from building efficient boomerang-style attacks. A
study of some important families of S-boxes has been made in [BC18], [BPT19] and [LQSL19],
just to cite a few. Another interesting line of work that followed the paper of Cid et al. is the
determination of the probability of a boomerang switch 𝐸𝑚 that covers more than one round,
and that was addressed for SPN ciphers in [WP19, SQH19].

171

Chapter 7. Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

Still, to the best of our knowledge a similar analysis has not been provided yet for Feistel
constructions [Fei74], while it cannot be denied that it is an equally important type of block
cipher design, instantiated for instance by the widely used 3-DES and by CLEFIA [SSA+07]
(ISO/IEC 29192-2).

Our Contributions. In this work, we address this lack and investigate what can be said on
a boomerang switch when the studied cipher follows a Feistel construction. In case the Feistel
round function contains some affine layers and a single S-box layer we introduce the FBCT, the
Feistel counterpart of the Boomerang Connectivity Table and show that it is related to the second
order derivative of the S-box at play. Our model elucidates the last switch that is not explained
by the BCT by showing that the Feistel Switch corresponds to the diagonal of our table.

We study the properties of the FBCT for some categories of cryptographic S-boxes (in particular
APN S-boxes and S-boxes based on the inverse mapping) and investigate if the maximum in the
FBCT is invariant for S-boxes that are in the same equivalence classes for an equivalence that is
affine, extended-affine and CCZ.

In a bottom-up approach, we start from this notion of FBCT (that covers switches of one
round) and then introduce the FBDT to deal with a 2-round switch and finally propose the FBET
that treats the case of an arbitrary number of rounds. We explain the relation between all these
new notions and give examples of their application.

Finally, we illustrate our approach by applying it to the cipher LBlock-s (used in the CAESAR
candidate LAC), and provide a 16-round distinguisher which probability is evaluated to be higher
than 2−56.14.

7.2 Motivation: Disproving the Validity of a Previous Boomer-
ang Distinguisher on LBlock

As a warm up, we study the related-key boomerang distinguisher devised by Liu et al. on
LBlock [LGW12] and prove that the middle part contains a contradiction that invalidates the
proposed boomerang distinguisher.

7.2.1 Specification of LBlock

LBlock was proposed at ACNS 2011 [WZ11a] by Wenling Wu and Lei Zhang. The cipher is
lightweight and works on blocks of 64 bits and requires a key of 80 bits. It follows a Feistel
structure and has the particularity to rely on 10 different 4-bit S-boxes. We give a short description
of its design below and refer to [WZ11a] for more details and in particular for the description of
the key schedule.

One LBlock encryption requires to iterate 32 times a round function that follows a 2-branch
balanced Feistel structure with a twist, that is the right branch is modified by a rotation of 8 bit
positions (see Figure 7.2). The other half of the internal state is modified by the 𝐹 function that
takes as parameter the 32-bit round key 𝐾𝑖. If the plaintext is denoted 𝑀 = 𝑋1||𝑋0 (where ||
denotes the concatenation), we have for all 33 ≥ 𝑖 ≥ 2:

𝑋𝑖 = 𝐹 (𝑋𝑖−1,𝐾𝑖−1)⊕ (𝑋𝑖−2≪ 8).

More into details, the function 𝐹 is defined as:

𝐹 : {0, 1}32 × {0, 1}32 → {0, 1}32
(𝑋,𝐾𝑖) → 𝑈 = 𝑃 (𝑆(𝑋 ⊕𝐾𝑖)).

172

7.2. Motivation: Disproving the Validity of a Previous Boomerang Distinguisher on LBlock

𝑆 is an S-box layer that transforms each nibble 𝑌𝑖 into the nibble 𝑍𝑖 = 𝑆𝑖(𝑌𝑖):

𝑆 : {0, 1}32 → {0, 1}32
𝑌7||𝑌6||𝑌5||𝑌4||𝑌3||𝑌2||𝑌1||𝑌0 → 𝑍7||𝑍6||𝑍5||𝑍4||𝑍3||𝑍2||𝑍1||𝑍0, 𝑍𝑖 = 𝑆𝑖(𝑌𝑖).

The S-boxes are detailed in Section 7.2.1. 𝑃 is a permutation given by:

𝑃 : {0, 1}32 → {0, 1}32
𝑍7||𝑍6||𝑍5||𝑍4||𝑍3||𝑍2||𝑍1||𝑍0 → 𝑈 = 𝑍6||𝑍4||𝑍7||𝑍5||𝑍2||𝑍0||𝑍3||𝑍1.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf
𝑆0 0xe 0x9 0xf 0x0 0xd 0x4 0xa 0xb 0x1 0x2 0x8 0x3 0x7 0x6 0xc 0x5
𝑆1 0x4 0xb 0xe 0x9 0xf 0xd 0x0 0xa 0x7 0xc 0x5 0x6 0x2 0x8 0x1 0x3
𝑆2 0x1 0xe 0x7 0xc 0xf 0xd 0x0 0x6 0xb 0x5 0x9 0x3 0x2 0x4 0x8 0xa
𝑆3 0x7 0x6 0x8 0xb 0x0 0xf 0x3 0xe 0x9 0xa 0xc 0xd 0x5 0x2 0x4 0x1
𝑆4 0xe 0x5 0xf 0x0 0x7 0x2 0xc 0xd 0x1 0x8 0x4 0x9 0xb 0xa 0x6 0x3
𝑆5 0x2 0xd 0xb 0xc 0xf 0xe 0x0 0x9 0x7 0xa 0x6 0x3 0x1 0x8 0x4 0x5
𝑆6 0xb 0x9 0x4 0xe 0x0 0xf 0xa 0xd 0x6 0xc 0x5 0x7 0x3 0x8 0x1 0x2
𝑆7 0xd 0xa 0xf 0x0 0xe 0x4 0x9 0xb 0x2 0x1 0x8 0x3 0x7 0x5 0xc 0x6
𝑆8 0x8 0x7 0xe 0x5 0xf 0xd 0x0 0x6 0xb 0xc 0x9 0xa 0x2 0x4 0x1 0x3
𝑆9 0xb 0x5 0xf 0x0 0x7 0x2 0x9 0xd 0x4 0x8 0x1 0xc 0xe 0xa 0x3 0x6

Table 7.1: The 10 S-boxes used in LBlock.

F

<<< 8

Xi−1 Xi−2

Xi Xi−1

Ki−1

Ki

S7 S6 S5 S4 S3 S2 S1 S0

X

Figure 7.2: High-level description of one round of LBlock (left) and description of the 𝐹 function
(right).

7.2.2 Attack of Liu et al.

In 2012, Liu et al. [LGW12] proposed a 16-round related-key boomerang distinguishing attack on
LBlock based on two 8-round related-key characteristics of low weight (that is, with very few
active S-boxes). This attack is supposed to work in some (very large) weak-key class as it includes
a key condition. With their parameters (that we recall in the next s), the probability of 𝐸0 is
𝑝 = 2−14, while the probability of 𝐸1 is 𝑞 = 2−16. They next computed the probability of the
obtained distinguisher with the approximation 𝑝2𝑞2, that gives 2−60. Unfortunately, Section 7.2.3
details why the two characteristics 𝐸0 and 𝐸1 are in fact incompatible, meaning that the actual
probability that the boomerang returns along these differential characteristics is 0.

Parameters of Liu et al.’s Related-Key Boomerang Distinguisher on LBlock

For 𝐸0, there are seven active S-box transitions all of probability 2−2, and no active S-boxes
in the key schedule, resulting in 𝑝 = 2−14. 𝐸1 is defined by the same 8-round characteristic
positioned from round 9 to 16 with the change that for the master key difference to reach the

173

Chapter 7. Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

required difference at the output of 𝐸1 (in round 9), one S-box is activated in the key schedule
(transition probability of 2−2), meaning that 𝑞 = 2−16.

More into details and as depicted in Figure 7.3, the parameters of 𝐸0 and 𝐸1 are:

Δ𝐿
𝑖 = 0𝑥00000000, Δ𝑅

𝑖 = 0𝑥00000020, Δ𝐿
𝑜 = 0𝑥80001508, Δ𝑅

𝑜 = 0𝑥00000490.

Regarding the differences in the keys, we have:

Δ0
𝐾 = 0𝑥00000200000000000000, Δ1

𝐾 = 0𝑥0000𝑐000000000000000.

The key derivation gives the following subkeys from Δ0
𝐾 = 0𝑥00000200000000000000:

Δ𝐾1 = 00000200 Δ𝐾5 = 00000000
Δ𝐾2 = 00000000 Δ𝐾6 = 00000000
Δ𝐾3 = 00000000 Δ𝐾7 = 00800000
Δ𝐾4 = 00010000 Δ𝐾8 = 00000000

While from Δ1
𝐾 = 0𝑥0000𝑐000000000000000 we get:

Δ𝐾1 : 0000𝑐000 Δ𝐾5 : 00000000 Δ𝐾9 : 00000200 Δ𝐾13 : 00000000
Δ𝐾2 : 00000000 Δ𝐾6 : 00000001 Δ𝐾10 : 00000000 Δ𝐾14 : 00000000
Δ𝐾3 : 00000000 Δ𝐾7 : 80000000 Δ𝐾11 : 00000000 Δ𝐾15 : 00800000
Δ𝐾4 : 00600000 Δ𝐾8 : 00000000 Δ𝐾12 : 00010000 Δ𝐾16 : 00000000

The active S-box in the key schedule of 𝐸1 appears in the round key 7 and uses the transition
𝑆9(0𝑥3) = 0𝑥8 with probability 2−2.

7.2.3 Incompatibility in the Distinguisher Proposed by Liu et al.

To help visualize the following discussion, we provide in Figure 7.4 a representation of the end of
𝐸0 and of the beginning of 𝐸1. In the following, we assume that the required transition happened
in the key schedule (that is 0x3 →𝑆9 0x8 in round 7).

Suppose that the quartet (𝑀1,𝑀2,𝑀3,𝑀4) follows the characteristics defining the boomerang
specified by Liu et al. When looking at the beginning of the characteristic over 𝐸1 we see that
we expect a transition through the second S-box from a difference of 0x2 to 0x2, while by
extending with probability 1 the differential characteristic over 𝐸0 we see that the entering
difference for this same S-box is 0x5 (see Figure 7.4). If we denote by 𝑡𝑖 the nibble that enters
the S-box number 2 of round 9 for 𝑀 𝑖, this means that 𝑡1 ⊕ 𝑡3 = 𝑡2 ⊕ 𝑡4 =0x2 and that
𝑆2(𝑡

1)⊕ 𝑆2(𝑡
3) = 𝑆2(𝑡

2)⊕ 𝑆2(𝑡
4) =0x2. Also, we have 𝑡1 ⊕ 𝑡2 = 𝑡3 ⊕ 𝑡4 =0x5.

By referring to 𝑆2, we can list the possible input nibbles that make the transition from an
input difference of 0x2 to an output difference of 0x2, and we obtain that (𝑡1, 𝑡3) ∈ {(0x1,0x3),
(0x3,0x1), (0x8,0xa), (0xa,0x8)}. Since 𝑡2 and 𝑡4 are separated from 𝑡1 and 𝑡3 by a difference of
0x5 we can deduce that their values are in the following set: (𝑡2, 𝑡4) ∈ {(0x4,0x6), (0x6,0x4),
(0xd,0xf), (0xf,0xd)}.

The contradiction comes from the fact that none of these pairs allows the required transition
from 0x2 to 0x2, an observation that can be rewritten as: {(0x1, 0x3), (0x3, 0x1), (0x8, 0xa),
(0xa, 0x8)} ∩ 0x5⊕ {(0x1, 0x3), (0x3, 0x1), (0x8, 0xa), (0xa, 0x8)} = ∅ since we want that the
shifted values (𝑡1, 𝑡3) also allows the desired S-box transition.

174

7.2. Motivation: Disproving the Validity of a Previous Boomerang Distinguisher on LBlock

S S S S S S S S

0 0 0 0 0 0 00 0 0 0 0 0 2 00

0 0 0 2 0 0 00

0 0 0 0 2 0 00

0 0 0 2 0 0 00

P

S S S S S S S S

0 0 0 0 0 0 00 0 0 0 0 0 0 00

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0 0 0 0 0 0 00

P

S S S S S S S S

0 0 0 0 0 0 00 0 0 0 0 0 0 00

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0 0 0 0 0 0 00

P

S S S S S S S S

0 0 0 0 0 0 00 0 0 0 0 0 0 00

0 0 0 0 0 0 00

0 0 1 0 0 0 00

0 0 0 0 0 0 05

P

S S S S S S S S

0 0 0 0 0 0 05 0 0 0 0 0 0 00

0 0 0 0 0 0 00

0 0 0 0 0 0 00

9 0 0 0 0 0 00

P

S S S S S S S S

9 0 0 0 0 0 00 0 0 0 0 0 0 05

0 0 0 0 0 0 00

0 0 0 0 0 0 00

0 8 0 0 0 0 00

P

S S S S S S S S

0 8 0 0 0 0 50 9 0 0 0 0 0 00

0 0 0 0 0 9 00

0 8 0 0 0 0 00

0 0 0 0 4 0 00

P

S S S S S S S S

0 0 0 0 4 9 00 0 8 0 0 0 0 50

8 0 0 0 5 0 00

0 0 0 0 0 0 00

0 0 0 1 0 0 80

P

round 1

round 2

round 4

round 3

round 5

round 6

round 7

round 8

0 0 0 0 4 9 008 0 0 1 5 0 80

Figure 7.3: The 8-round related-key characteristic used in Liu et al.’s attack, used for both 𝐸0

and 𝐸1 with Δ𝐾1 = Δ𝐾9,Δ𝐾2 = Δ𝐾10, · · · ,Δ𝐾8 = Δ𝐾16.

175

Chapter 7. Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

0 0 0 0 0 0 00

round 8 of E0 S S S S S S S S

round 9 of E0 S S S S S S S S

0 0 0 0 2 0 00

round 1 of E1 S S S S S S S S

0 0 0 0 2 00

0 0 0 0 4 9 00

0 0 0 0 4 9 00 0 8 0 0 0 0 50

8 0 0 0 5 0 00

0 0 0 0 1 8 00

0 0 0 1 0 0 80

8 0 0 1 5 0 a0

8 0 0 1 5 0 80 0 0 0 0 4 9 00

0 0 0 0 0 00 2

0 0 4 9 0 0 00

(extended with probability 1)

2

0

0 00 0 0 0 0

0 0 0 0 0 0 00

0 0 0 0 2 0 00

0 0 0 0 2 0 00

0 0 0 2 0 0 00

0 0 0 0 0 0 000 0 0 0 0 0 008 0 0 1 5 0 80

difference between 1© and 3© and between 2© and 4©

X9 X9X8 X8

difference between 1© and 2© and between 3© and 4©

K9 K9

Figure 7.4: Middle rounds of the boomerang distinguisher proposed in [LGW12].

This incompatibility implies that the boomerang over the middle round never returns,1 and
consequently the related-key distinguisher proposed by Liu et al. is invalid as no quartet can
follow the required characteristic.

7.3 FBCT: the Feistel Counterpart of the BCT

The inconsistency found in the previous section (that is reminiscent of the examples given by
Murphy in [Mur11]) calls for a tool to automatically study the behavior of the junction between
𝐸0 and 𝐸1.

In fact, this problem has recently been addressed in the case of Substitution-Permutation
Networks with the introduction of the Boomerang Connectivity Table (BCT) by Cid et al [CHP+18].
However, no similar tool has been devised so far to deal with boomerang attacks on Feistel
Networks. We address this shortfall in this section by introducing the2 FBCT.

7.3.1 Definition of the FBCT

The (SPN) Boomerang Connectivity Table. The essence of the Boomerang Connectivity
Table introduced by Cid et al. is similar to the one of the well-known Difference Distribution
Table: instead of looking at the property of a round as a whole (thus at a function of usually 64
or 128 bits), the problem is reduced to one we can easily study given its small size: examining
each S-box of the S-layer independently. While the DDT describes the differential properties of

1Note that we confirmed this experimentally by verifying that for a sample of 210 keys and 210 messages the
boomerang never comes back along the announced differences in one or even two middle rounds.

2To stress the similarity between the notions we introduce here and the ones that have been previously
introduced in the case of boomerang switches on SPN, we basically use the same acronyms, simply adding the
letter "F" in front of them to recall that we are looking at the Feistel case.

176

7.3. FBCT: the Feistel Counterpart of the BCT

each S-box from which are deduced the ones of the round, the BCT gives the probability of a
boomerang switch over each S-box from which is deduced the one of the round.

The formal definition of the BCT is recalled below: it is a table that gives at line Δ𝑖, column
∇𝑜 the number of values for which a boomerang of input Δ𝑖 and output difference ∇𝑜 comes
back. It corresponds to the following formula, depicted in Figure 7.5:

Definition 7.1 (Boomerang Connectivity Table [CHP+18]). Let 𝑆 be a permutation of F𝑛
2 ,

and Δ𝑖,∇𝑜 ∈ F𝑛
2 . The Boomerang Connectivity Table (BCT) of 𝑆 is given by a 2𝑛 × 2𝑛 table,

in which the entry for the (Δ𝑖,∇𝑜) position is given by:

𝐵𝐶𝑇 (Δ𝑖,∇𝑜) = #{𝑥 ∈ F𝑛
2 |𝑆−1(𝑆(𝑥)⊕∇𝑜)⊕ 𝑆−1(𝑆(𝑥⊕Δ𝑖)⊕∇𝑜) = Δ𝑖}.

x

S

S(x)

∆i

∇o

S

S(x⊕∆i)

S

S

∇o

∆i ?

S(x⊕∆i)⊕∇o

S(x)⊕∇o

Figure 7.5: The value of 𝐵𝐶𝑇 (Δ𝑖,∇𝑜) corresponds to the number of S-box inputs 𝑥 that make
the boomerang over 1 round come back.

The Feistel Boomerang Connectivity Table. The previous definition is only valid for an
S-box that is part of an S-layer in an SPN cipher: the objective of this work is to address the
need of the counterpart for a Feistel cipher.

As a hint of what we introduce below, remember that Feistel ciphers have the practical
advantage that decryption is performed by executing the same function as for encryption, simply
changing the order of the round keys. This change is at the heart of the Feistel counterpart of
the BCT that we introduce now: here, the inverse of the S-box is never at play.

We start by illustrating our theory on the generic Feistel cipher represented in Figure 7.6: it
is a balanced Feistel with two branches, that we denote 𝐿 and 𝑅. The output of one round is
given by 𝐹 (𝐿)⊕𝑅||𝐿, where the 𝐹 function is defined by a round key addition, an S-layer and
a linear layer 𝐿. Note that the details of the linear layers of 𝐹 play no role in our discussion,
and that the only important point is that 𝐹 contains one S-layer made by the concatenation of 𝑡
𝑛-bit S-boxes.

We are interested in the probability of the following 1-round boomerang switch: we have an
input difference equal to 𝛽𝐿||𝛽𝑅 between state 1○ and 2○, an output difference equal to 𝛾𝐿||𝛾𝑅
between state 1○ and 3○, and 2○ and 4○, and we want that the input difference between state 3○
and 4○ is equal to 𝛽𝐿||𝛽𝑅.

Left part of the difference. We start by studying the cost of obtaining that the left difference
between state 3○ and 4○ has the desired value of 𝛽𝐿.

177

Chapter 7. Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

βL||βR

γL||γR

= βL||βR?

γL||γR

L1 R1

L2 R2

L3 R3

R4L4

G3

G4

S

L

S S S S

S

L

S S S S

S

L

S S S S

S

L

S S S S

· · ·

· · ·· · ·

· · ·

1

2

3

4

Figure 7.6: Boomerang switch over a generic Feistel round.

Given the fact that the left branch is the one that is not modified through one round of Feistel
we can easily conclude that the desired difference comes for free:

𝐿3 ⊕ 𝐿4 = (𝐿3 ⊕ 𝐿1)⊕ (𝐿1 ⊕ 𝐿2)⊕ (𝐿2 ⊕ 𝐿4)

= 𝛾𝑅 ⊕ 𝛽𝐿 ⊕ 𝛾𝑅 = 𝛽𝐿.

Right part of the difference. We now focus on obtaining a difference of 𝛽𝑅 between the
right part of state number 3○ and 4○. By naming 𝐺3 and 𝐺4 the left output after one round in
state 3○ and 4○ (see Figure 7.6), we obtain the following simplification:

𝑅3 ⊕𝑅4 = 𝐹 (𝐿1 ⊕ 𝛾𝑅)⊕𝐺3 ⊕ 𝐹 (𝐿1 ⊕ 𝛾𝑅 ⊕ 𝛽𝐿)⊕𝐺4

= 𝐹 (𝐿1 ⊕ 𝛾𝑅)⊕ 𝐹 (𝐿1)⊕𝑅1 ⊕ 𝛾𝐿 ⊕ 𝐹 (𝐿1 ⊕ 𝛾𝑅 ⊕ 𝛽𝐿)

⊕𝐹 (𝐿1 ⊕ 𝛽𝐿)⊕𝑅1 ⊕ 𝛽𝑅 ⊕ 𝛾𝐿

= 𝐹 (𝐿1 ⊕ 𝛾𝑅)⊕ 𝐹 (𝐿1)⊕ 𝐹 (𝐿1 ⊕ 𝛾𝑅 ⊕ 𝛽𝐿)

⊕𝐹 (𝐿1 ⊕ 𝛽𝐿)⊕ 𝛽𝑅.

For this difference to be equal to 𝛽𝑅 we need that

𝐹 (𝐿1)⊕ 𝐹 (𝐿1 ⊕ 𝛾𝑅)⊕ 𝐹 (𝐿1 ⊕ 𝛽𝐿)⊕ 𝐹 (𝐿1 ⊕ 𝛾𝑅 ⊕ 𝛽𝐿) = 0.

We use the fact that the only non-linear function of 𝐹 is an S-layer made by a concatenation of
small S-boxes to rewrite this condition as a set of independent conditions on smaller parts of the
states, and obtain 𝑡 independent equations of the form:

𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖)⊕ 𝑆(𝑥⊕∇𝑜)⊕ 𝑆(𝑥⊕Δ𝑖 ⊕∇𝑜) = 0.

Where Δ𝑖 is the difference at the input of the considered S-box between state 1○ and 2○,
deduced from 𝛽𝐿, and ∇𝑜 is the difference at the input of the considered S-box between state 1○
and 3○ and 2○ and 4○, deduced from 𝛾𝑅.

The resulting probability of the boomerang switch over one round is then the product of the
probabilities for each S-box, that are of the form

2−𝑛 ×#{𝑥 ∈ F𝑛
2 |𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖)⊕ 𝑆(𝑥⊕∇𝑜)⊕ 𝑆(𝑥⊕Δ𝑖 ⊕∇𝑜) = 0}.

This discussion leads us to the introduction of the following definition:

178

7.3. FBCT: the Feistel Counterpart of the BCT

Definition 7.2 (FBCT). Let 𝑆 be a function from F𝑛
2 to F𝑚

2 , and Δ𝑖,∇𝑜 ∈ F𝑛
2 . The FBCT of

𝑆 is given by a 2𝑛 × 2𝑛 table 𝑇 , in which the entry for the (Δ𝑖,∇𝑜) position is given by:

FBCT𝑆(Δ𝑖,∇𝑜) = #{𝑥 ∈ F𝑛
2 |𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖)⊕ 𝑆(𝑥⊕∇𝑜)⊕ 𝑆(𝑥⊕Δ𝑖 ⊕∇𝑜) = 0}.

Since we do not have to consider a bijective S-box, we define FBCT𝑆 for any S-box 𝑆 from F𝑛
2

to F𝑚
2 with possibly 𝑛 ̸= 𝑚. In the following we leave out the 𝑆 index and simply write FBCT

when the S-box we are referring to is clear from the context.
Once the table is built, the probability that a boomerang comes back over 1 round of a Feistel

scheme is simply the product of the corresponding coefficients of the FBCT divided by 2𝑛. An
example of FBCT is provided in Table 7.2 in the case of the S-box3 𝑆2 of LBlock.

Table 7.2: FBCT of the S-box 𝑆2 of LBlock.

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 16 16 0 0 0 0 0 0 0 0 8 8 0 0 0 0
2 16 0 16 0 0 0 0 0 0 8 0 8 0 0 0 0
3 16 0 0 16 8 8 8 8 0 0 0 0 0 0 0 0
4 16 0 0 8 16 0 0 8 0 0 0 0 0 0 0 0
5 16 0 0 8 0 16 8 0 0 0 0 0 0 0 0 0
6 16 0 0 8 0 8 16 0 0 0 0 0 0 0 0 0
7 16 0 0 8 8 0 0 16 0 0 0 0 0 0 0 0
8 16 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0
9 16 0 8 0 0 0 0 0 0 16 0 8 0 0 0 0
a 16 8 0 0 0 0 0 0 0 0 16 8 0 0 0 0
b 16 8 8 0 0 0 0 0 0 8 8 16 0 0 0 0
c 16 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0
d 16 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0
e 16 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0
f 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16

It is easy to see that the formula of the FBCT corresponds to the number of times the order
2 derivative with respect to Δ𝑖 and ∇𝑜 of the vectorial Boolean function 𝑆 cancels out. We
formalize this and study its properties in Section 7.4. First, we show that the same reasoning
applies to variants of this construction.

7.3.2 Some Variants of Feistel Constructions for which the FBCT Applies

We show here that the FBCT tool covers more constructions than the classical Feistel cipher,
by providing three examples: the type I and II variants introduced by Zheng, Matsumoto and
Imai in [ZMI90] and the source-heavy (also called contracting) construction as implemented in
SMS4 [Dt08]. A representation of the round structure of these types is given in Figure 7.7 in the
case of 4-branch networks.

The only assumption we make is that the 𝐹 and 𝐹 ′ functions used in theses constructions are
composed of some linear or affine operations (like for instance matrix multiplication, permutations,
Xor of constants or of round keys) and of one S-layer. We show below that the relations that
need to be fulfilled in these cases can also be expressed as a product of FBCT coefficients.

3Note that the FBCT of the 10 S-boxes of LBlock are the same. This is not a direct implication of the fact that
the S-boxes are affine equivalent (counter-examples to this can easily be found).

179

Chapter 7. Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

F F F ′

Type I Type II Source-Heavy

F

Figure 7.7: One round of the Feistel construction of type I, type II and source-heavy for variants
with 4 branches.

Type I: Referring to Figure 7.7, one round of type I can be seen as one round of classic Feistel
with some (2 in the picture) additional branches that are independent and not affected by
a 𝐹 function. Thus, the reasoning made in Section 7.3.1 can be extended to the case of
type I construction and the probability that the boomerang switch over one round happens
as required is the product of the FBCT coefficients corresponding to the S-boxes contained
in 𝐹 .

Type II: In a similar way, one round of type II can be seen as the concatenation of several (2
in the picture) classical Feistels that are independent one from the others. The reasoning
made in Section 7.3.1 applies to this case and the probability of the boomerang switch is
made by the product of the FBCT coefficients of the S-boxes of the 𝐹 functions at play.

Source-Heavy: This case can also easily be treated with the FBCT. It can be shown that the
one-round boomerang switch represented in Figure 7.8 comes back if the following condition
is fulfilled:

𝐹 (𝑥11 ⊕ 𝑥12 ⊕ 𝑥13)⊕ 𝐹 (𝑥11 ⊕ 𝑥12 ⊕ 𝑥13 ⊕ (𝐴⊕𝐵 ⊕ 𝐶))⊕
𝐹 (𝑥11 ⊕ 𝑥12 ⊕ 𝑥13 ⊕ (𝑎⊕ 𝑏⊕ 𝑑))⊕ 𝐹 (𝑥11 ⊕ 𝑥12 ⊕ 𝑥13 ⊕ (𝐴⊕𝐵 ⊕ 𝐶)⊕ (𝑎⊕ 𝑏⊕ 𝑑)) = 0

Which can be rewritten as a product of the FBCT coefficients of the S-box of 𝐹 , with the
two parameters depending on 𝐴, 𝐵, and 𝐶 for one, and 𝑎, 𝑏 and 𝑑 for the other.

Note that the discussion above has to be nuanced as the application of the FBCT to other
cases (as for instance type III construction) might not be straightforward.

7.3.3 Evaluation of the 1-round Boomerang Switch of Liu et al.’s Attack with
the FBCT

We focus on the S-box 𝑆2 of round 9 of the cipher. From 𝐸0, the input difference of S-box 2 is
0x5, so following previous notation we have Δ𝑖 = 0x5. When referring to 𝐸1 and taking into
account the difference coming from the round key we have ∇𝑜 = 0x2. The FBCT coefficient we are
interested in is then FBCT𝑆2(0x5, 0x2). Referring to Table 7.2, we see that the corresponding cell
has a value equal to 0, meaning that the 1-round boomerang switch is impossible.

Note that this incompatibility is even more general than the one we discussed in Section 7.2.3,
as in Section 7.2.3 we fixed an additional parameter namely one S-box output. This vision
corresponds to what we introduce in Section 7.5.1 under the name of Feistel Boomerang Difference
Table (FBDT).

180

7.4. Properties of the FBCT

FF

FF

(A,B,C,D) =(A,B,C,D)?

(a,b,c,d)

(a,b,c,d)

x1
1 x1

2 x1
3 x1

4 x3
1 x3

2 x3
3 x3

4

x4
1 x4

2 x4
3 x4

4x2
1 x2

2 x2
3 x2

4

y11 y12 y13 y14

y21 y22 y23 y24 y41 y42 y43 y44

y31 y32 y33 y34

Figure 7.8: Boomerang switch over one round of the source-heavy construction.

7.3.4 Relation Between the FBCT and the Feistel Switch

While the Feistel case is not covered by the Boomerang Connectivity Table, a first step in
understanding the case of boomerang distinguishers for Feistel constructions has been made by
Wagner himself while analyzing Khufu [Wag99]. His observation was later referred under the
name of Feistel Switch, for instance in the related-key cryptanalysis of the AES-192 and AES-256
by Biryukov and Khovratovich [BK09], in which one can read:

Surprisingly, a Feistel round with an arbitrary function (e.g., an S-box) can be passed
for free in the boomerang attack (this was first observed in the attack on cipher Khufu
in [Wag99]). Suppose the internal state (𝑋,𝑌) is transformed to (𝑍 = 𝑋 ⊕ 𝑓(𝑌), 𝑌)
at the end of 𝐸0. Suppose also that the 𝐸0 difference before this transformation is
(Δ𝑋,Δ𝑌), and that the 𝐸1 difference after this transformation is (Δ𝑍,Δ𝑌). [. . .]
Therefore, the decryption phase of the boomerang creates the difference Δ𝑋 in 𝑋 at
the end of 𝐸0 “for free”.

By analyzing this setting in the way we did in Section 7.3.1 we can show that an internal
state (𝑋,𝑌) allows the boomerang to come back if 𝑌 verifies:

𝑓(𝑌)⊕ 𝑓(𝑌 ⊕Δ𝑌)⊕ 𝑓(𝑌 ⊕Δ𝑌)⊕ 𝑓(𝑌 ⊕Δ𝑌 ⊕Δ𝑌) = 0,

(we have 𝛾𝑅 = 𝛽𝐿 = Δ𝑌 with our previous notation) which is always true. Moreover if the
Feistel round function is made of some linear operations and an S-layer, the previous setting
means that for every S-box we are looking at coefficients that are on the diagonal of the FBCT.

7.4 Properties of the FBCT

This section gives a review of the most important properties of the Feistel boomerang connectivity
table. We start by listing the constants of the table and then investigate the properties of the
FBCT of two crucial classes of vectorial function, namely APN functions and functions based on

181

Chapter 7. Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

the inverse mapping. We also study if the so-called Feistel boomerang uniformity is constant
for S-boxes belonging to the same equivalence classes, for various definitions of equivalence. We
conclude this section by giving a comparison of the BCT and FBCT properties.

7.4.1 Basics on vectorial Boolean Functions

Let 𝑆 : F𝑛
2 −→ F𝑚

2 be a vectorial Boolean function. The set of all vectorial Boolean functions
from F𝑛

2 to F𝑚
2 is denoted ℬ(𝑛,𝑚). The derivative of 𝑆 ∈ ℬ(𝑛,𝑚) at Δ𝑖 ∈ F𝑛

2 is defined as

𝐷Δ𝑖𝑆(𝑥) = 𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖)

for all 𝑥 ∈ F𝑛
2 .

The first derivative is at the basis of the Difference Distribution Table (DDT) of a given vectorial
function 𝑆, defined as:

DDT𝑆(Δ𝑖, 𝛿) = #{𝑥 ∈ F𝑛
2 : 𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖) = 𝛿}.

The value of maxΔ𝑖 ̸=0,𝛿{DDT𝑆(Δ𝑖, 𝛿)} is called the (differential) uniformity of 𝑆.
This definition is extended to higher-order derivatives as follows: let Δ1

𝑖 ,Δ
2
𝑖 , . . . ,Δ

𝑘
𝑖 be a

basis of a 𝑘-dimensional subspace 𝑉 of F𝑛
2 . The 𝑘-th derivative of 𝑆 with respect to 𝑉 , denoted

by 𝐷𝑉 𝑆, is defined as 𝐷𝑉 𝑆(𝑥) = 𝐷Δ1
𝑖
𝐷Δ2

𝑖
· · ·𝐷Δ𝑘

𝑖
𝑆(𝑥), for all 𝑥 ∈ F𝑛

2 .
Given this definition, it is direct to see that for an 𝑛×𝑚 S-box seen as an element of ℬ(𝑛,𝑚),

the value of FBCT(Δ𝑖,∇𝑜) corresponds to the number of zeroes of the function 𝐷Δ𝑖𝐷∇𝑜𝑆 extended
to the cases where Δ𝑖 and ∇𝑜 are not linearly independent.

7.4.2 Some Direct Properties of any FBCT

We start with a series of simple properties that are easily observable from the definition:

Property 7.3. The coefficients of the FBCT of 𝑆 ∈ ℬ(𝑛,𝑚) verify the following:

1. Symmetry: for all 0 ≤ Δ𝑖,∇𝑜 ≤ 2𝑛 − 1, FBCT(Δ𝑖,∇𝑜) = FBCT(∇𝑜,Δ𝑖).

2. Fixed values:

(a) First line: for all 0 ≤ ∇𝑜 ≤ 2𝑛 − 1, FBCT(0,∇𝑜) = 2𝑛 (ladder switch),
(b) First column: for all 0 ≤ Δ𝑖 ≤ 2𝑛 − 1, FBCT(Δ𝑖, 0) = 2𝑛 (ladder switch),
(c) Diagonal: for all 0 ≤ Δ𝑖 ≤ 2𝑛 − 1, FBCT(Δ𝑖,Δ𝑖) = 2𝑛 (Feistel switch).

3. Multiplicity: for all 0 ≤ Δ𝑖,∇𝑜 ≤ 2𝑛 − 1, FBCT(Δ𝑖,∇𝑜) ≡ 0 mod 4.

4. Equalities: for all 0 ≤ Δ𝑖,∇𝑜 ≤ 2𝑛 − 1, FBCT(Δ𝑖,∇𝑜) = FBCT(Δ𝑖,Δ𝑖 ⊕∇𝑜).

Proof. All the properties are easily deduced from Definition 7.2:
(1) and (4) are proven by writing the expressions of the coefficients at play. Note that

from symmetry we also have FBCT(Δ𝑖,Δ𝑖 ⊕∇𝑜) = FBCT(∇𝑜,Δ𝑖 ⊕∇𝑜).
(2)a. and (2)b. correspond to the ladder switch proposed in [BK09] that works the

same way for Feistel and SPN ciphers: if either Δ𝑖 or ∇𝑜 is zero, it means that two pairs of
messages inside the quartet share the same S-box input, and the boomerang comes back with
probability 1. This is formally shown as follows:

FBCT(0,∇𝑜) = #{𝑥 ∈ F𝑛
2 |𝑆(𝑥)⊕ 𝑆(𝑥)⊕ 𝑆(𝑥⊕∇𝑜)⊕ 𝑆(𝑥⊕∇𝑜) = 0}

= 2𝑛,

182

7.4. Properties of the FBCT

and similarly FBCT(Δ𝑖, 0) = 2𝑛. The Feistel switch recalled in Section 7.3.4 is also easily
proven: if Δ𝑖 = ∇𝑜 the FBCT coefficients correspond to the number of 𝑥 ∈ F𝑛

2 that are
solutions to 𝑆(𝑥) ⊕ 𝑆(𝑥 ⊕Δ𝑖) ⊕ 𝑆(𝑥 ⊕Δ𝑖) ⊕ 𝑆(𝑥) = 0. Since every value of 𝑥 fulfills this,
FBCT(Δ𝑖,Δ𝑖) = 2𝑛.

(3) The property is verified for the case Δ𝑖 = ∇𝑜 (since we can reasonably assume 𝑛 > 1),
so we focus on the case where Δ𝑖 ̸= ∇𝑜. If no 𝑥 is solution the property is verified, while if
there is at least one 𝑥 ∈ F𝑛

2 that is a solution then three more distinct values 𝑥⊕Δ𝑖, 𝑥⊕∇𝑜

and 𝑥⊕Δ𝑖 ⊕∇𝑜 also are, which proves the multiplicity.

Given that the coefficients in the first line, first column and diagonal of the FBCT are always equal
to the maximum that is 2𝑛, we define the boomerang uniformity a bit differently from what has
been done for the BCT4:

Definition 7.4 (F-Boomerang Uniformity). The F-Boomerang uniformity corresponds to the
highest value in the FBCT without considering the first row, the first column and the diagonal:

𝛽𝐹 = max
Δ𝑖 ̸=0,∇𝑜 ̸=0,Δ𝑖 ̸=∇𝑜.

FBCT(Δ𝑖,∇𝑜).

From the designer point of view, it is preferable to use an S-box with a small F-boomerang
uniformity. This goal can be reached by opting for an APN function, as we show below.

7.4.3 On the FBCT of APN Functions

A function 𝑆 ∈ ℬ(𝑛, 𝑛) is called almost perfect nonlinear (APN) if for any Δ𝑖, 𝛿 ∈ F𝑛
2 with Δ𝑖 ̸= 0

the equation 𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖) = 𝛿 has either 0 or 2 solutions. Alternatively, we know (refer for
instance to [Car10], page 417) that 𝑆 is APN if and only if for any non-zero Δ𝑖,∇𝑜 ∈ F𝑛

2 with
Δ𝑖 ̸= ∇𝑜, 𝐷Δ𝑖𝐷∇𝑜𝑆(𝑥) ̸= 0 for all 𝑥 ∈ F𝑛

2 . This directly implies the following theorem:

Theorem 7.5. Let 𝑆 ∈ ℬ(𝑛, 𝑛). 𝑆 is an APN function if and only if its FBCT verifies
FBCT(Δ𝑖,∇𝑜) = 0 for all 1 ≤ Δ𝑖 ̸= ∇𝑜 ≤ 2𝑛 − 1.

A direct implication of this theorem is that any non-APN function has a non-zero coefficient
at a position that is not in the first row, first column or diagonal of its FBCT, so in particular a
Feistel boomerang uniformity higher or equal to 4.

7.4.4 On the FBCT of S-boxes based on the Inverse Mapping

Another important and widely used set of S-boxes are the ones based on the inverse mapping,
which include (among others) the 8-bit S-boxes of CAMELLIA [AIK+01], Clefia [SSA+07] and
SMS4 [Dt08] and the 4-bit S-box of Twine [SMMK13].

We know that F𝑛
2 and F2𝑛 are vector isomorphic over F2, i.e., with respect to a fixed basis

𝛼𝑖, 1 ≤ 𝑖 ≤ 𝑛, of F2𝑛 , any element of 𝑥 ∈ F2𝑛 can be uniquely written as 𝑥 = ⊕𝑛
𝑖=1𝑥𝑖𝛼𝑖, where

(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ F𝑛
2 . A mapping 𝑆 : F2𝑛 → F2𝑛 of the form 𝑆(𝑥) = 𝑥2

𝑛−2 is called an inverse
mapping.

The importance of this family of functions comes from its very good cryptographic properties
(that led to it being selected to build the AES [AES01] S-box for instance). Indeed, Nyberg [Nyb94]
showed that if 𝑛 is odd, then the inverse function over F2𝑛 is APN, and if 𝑛 is even, then each

4Recall that for the BCT the boomerang uniformity of an S-box is 𝛽 = maxΔ𝑖 ̸=0,∇𝑜 ̸=0 𝐵𝐶𝑇 (Δ𝑖,∇𝑜).

183

Chapter 7. Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

row of its DDT has exactly one 4 and (2𝑛−1 − 2) occurrences of the number 2 (and in particular
that the S-box is differentially 4-uniform). Given that we already discussed the case of APN
functions in Section 7.4.3, we focus here on the case where 𝑛 is even.

Property 7.6. In each row (except the first) of the FBCT of the inverse mapping over an even
number of bits, the values 2𝑛, 4 and 0 occur 2, 2 and 2𝑛 − 4 times, respectively.

Proof. Using a reductio ad absurdum argument, we start by showing that the only possible
values in the FBCT of the inverse mapping over an even number of bits are 0, 4 and 2𝑛. Since
for every FBCT the coefficients in the first line, first column and diagonal are equal to 2𝑛, we
focus on the other positions.

Suppose that for given non-zero Δ𝑖 and ∇𝑜 verifying Δ𝑖 ≠ ∇𝑜 we have FBCT(Δ𝑖,∇𝑜) > 4.
Given that the coefficients of the FBCT are multiple of 4 this implies that we have at least 8
distinct values x,x⊕Δ𝑖,x⊕∇𝑜,x⊕Δ𝑖⊕∇𝑜,y,y⊕Δ𝑖,y⊕∇𝑜,y⊕Δ𝑖⊕∇𝑜 that are solutions
of:

𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖)⊕ 𝑆(𝑥⊕∇𝑜)⊕ 𝑆(𝑥⊕Δ𝑖 ⊕∇𝑜) = 0.

This can be rewritten as:

𝑆(x)⊕ 𝑆(x⊕Δ𝑖) = 𝑆(x⊕∇𝑜)⊕ 𝑆(x⊕Δ𝑖 ⊕∇𝑜) = 𝛿1, (7.1)
𝑆(y)⊕ 𝑆(y ⊕Δ𝑖) = 𝑆(y ⊕∇𝑜)⊕ 𝑆(y ⊕Δ𝑖 ⊕∇𝑜) = 𝛿2. (7.2)

The first line indicates that the equation 𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖) = 𝛿1 has at least 4 distinct
solutions, that is DDT(Δ𝑖, 𝛿1) ≥ 4. Similarly, the second line shows that DDT(Δ𝑖, 𝛿2) ≥ 4. There
are two possibilities: if 𝛿1 = 𝛿2 we obtain that DDT(Δ𝑖, 𝛿1) ≥ 8 which contradicts that the
differential uniformity of the considered S-box is 4, while if 𝛿1 ̸= 𝛿2 we obtain that there are
two coefficients in the same line of the DDT with a coefficient higher or equal to 4. In both
cases we obtain a contradiction, so we conclude that the only possible values in the FBCT are
0, 4 and 2𝑛.

To conclude on the number of occurrences of each coefficient we need to prove that there
are only 2 coefficients equal to 4 in each line. We consider Δ𝑖, 𝛿 ∈ F𝑛

2 so that DDT(Δ𝑖, 𝛿) = 4.
There exist x, x⊕Δ𝑖, y, y ⊕Δ𝑖 ∈ F𝑛

2 with x ̸= y and x ̸= y ⊕Δ𝑖 such that:

𝑆(x)⊕ 𝑆(x⊕Δ𝑖) = 𝛿 = 𝑆(y)⊕ 𝑆(y ⊕Δ𝑖)

𝑖.𝑒. 𝑆(x)⊕ 𝑆(x⊕Δ𝑖)⊕ 𝑆(x⊕∇𝑜)⊕ 𝑆(x⊕∇𝑜 ⊕Δ𝑖) = 0, where ∇𝑜 = x⊕ y.

As a consequence, FBCT(Δ𝑖,∇𝑜) = FBCT(Δ𝑖,Δ𝑖 ⊕ ∇𝑜) = 4 so there are at least two ’4’ in
each line of the FBCT. Suppose there is one more coefficient equal to 4 in this line, that
is there exists c ∈ F𝑛

2 with c ̸= ∇𝑜 and c ≠ Δ𝑖 ⊕ ∇𝑜 such that FBCT(Δ𝑖, c) = 4 and let
z ∈ {𝑥 ∈ F𝑛

2 |𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖)⊕ 𝑆(𝑥⊕ 𝑐)⊕ 𝑆(𝑥⊕Δ𝑖 ⊕ 𝑐) = 0}. We have:

𝑆(z)⊕ 𝑆(z⊕Δ𝑖)⊕ 𝑆(z⊕ c)⊕ 𝑆(z⊕Δ𝑖 ⊕ c) = 0

𝑖.𝑒. 𝑆(z)⊕ 𝑆(z⊕Δ𝑖) = 𝛿′ = 𝑆(w)⊕ 𝑆(w ⊕Δ𝑖), where w = z⊕ c.

FBCT(Δ𝑖, c) = 4 yields c ̸= Δ𝑖 and c ̸= 0 and thus DDT(Δ𝑖, 𝛿
′) = 4 = DDT(Δ𝑖, 𝛿). Since each

row of the considered S-box DDT has exactly one entry that equals 4, it follows that 𝛿 = 𝛿′ and
that z,w ∈ {x,x⊕Δ𝑖,y,y⊕Δ𝑖}, which leads to the contradiction that c ∈ {Δ𝑖,∇𝑜,Δ𝑖⊕∇𝑜}.

184

7.4. Properties of the FBCT

7.4.5 On the FBCT of Equivalent S-boxes

Various notions of equivalence are frequently used when studying S-boxes, among which linear,
affine, extended-affine and CCZ equivalence [CCZ98]. These various concepts play an important
role to categorize sets of S-boxes since central cryptographic properties (differential, linear and
sometimes algebraic degree) are constant for equivalent S-boxes. In this section we investigate if
the F-boomerang uniformity is preserved under these various notions of equivalence.

Linear, Affine and Extended-Affine Equivalence. As their names suggest, the three first
flavors we start with are related as follows: linear equivalence is a sub-case of affine equivalence,
and affine equivalence is a particular case of extended-affine equivalence.

Definition 7.7 (Linear, Affine and Extended-Affine Equivalence). Two vectorial Boolean
functions 𝐹,𝐺 ∈ ℬ(𝑛,𝑚) are called extended-affine equivalent if there exist two nonsingular
matrices 𝐴 ∈ 𝐺𝐿(𝑛,F2), 𝐵 ∈ 𝐺𝐿(𝑚,F2), (𝑎, 𝑏) ∈ F𝑛

2×F𝑚
2 and an affine function 𝐶 : F𝑛

2 → F𝑚
2

such that for all 𝑥 ∈ F𝑛
2

𝐺(𝑥) = 𝐵(𝐹 (𝐴(𝑥)⊕ 𝑎))⊕ 𝐶(𝑥)⊕ 𝑏,

where 𝐺𝐿(𝑛,F2) is the set of all nonsingular binary matrices of order 𝑛. If 𝐶 = 0, then 𝐹
and 𝐺 are affine equivalent, and if in addition 𝑎 and 𝑏 are equal to zero then they are linear
equivalent.

Theorem 7.8. The multi-set composed of all values in the FBCT is preserved under extended-
affine nonsingular transformation. Namely, we have that FBCT𝐺(𝑢, 𝑣) = FBCT𝐹 (𝑢′, 𝑣′) where
𝑢′ = 𝐴(𝑢) and 𝑣′ = 𝐴(𝑣).

Proof. Suppose that 𝐺(𝑥) = 𝐵(𝐹 (𝐴(𝑥)⊕ 𝑎))⊕𝐶(𝑥)⊕ 𝑏 for all 𝑥 ∈ F𝑛
2 , where 𝐴 ∈ 𝐺𝐿(𝑛,F2),

𝐵 ∈ 𝐺𝐿(𝑚,F2), (𝑎, 𝑏) ∈ F𝑛
2 × F𝑚

2 and 𝐶 ∈ ℬ(𝑛,𝑚) is an affine function. Using the fact that
𝐶(𝑥)⊕ 𝐶(𝑥⊕ 𝑢)⊕ 𝐶(𝑥⊕ 𝑣)⊕ 𝐶(𝑥⊕ 𝑢⊕ 𝑣) = 0, for all 𝑥 ∈ F𝑛

2 and 𝑢, 𝑣 ∈ F𝑛
2 , we obtain the

following relations:

FBCT𝐺(𝑢, 𝑣) = #{𝑥 ∈ F𝑛
2 : 𝐺(𝑥)⊕𝐺(𝑥⊕ 𝑢)⊕𝐺(𝑥⊕ 𝑣)⊕𝐺(𝑥⊕ 𝑢⊕ 𝑣) = 0}

= #{𝑥 ∈ F𝑛
2 : 𝐵(𝐹 (𝐴(𝑥)⊕ 𝑎))⊕𝐵(𝐹 (𝐴(𝑥⊕ 𝑢)⊕ 𝑎))⊕𝐵(𝐹 (𝐴(𝑥⊕ 𝑣)⊕ 𝑎))

⊕𝐵(𝐹 (𝐴(𝑥⊕ 𝑢⊕ 𝑣)⊕ 𝑎)) = 0}
= #{𝑥 ∈ F𝑛

2 : 𝐵(𝐹 (𝐴(𝑥)⊕ 𝑎)⊕ 𝐹 (𝐴(𝑥⊕ 𝑢)⊕ 𝑎)⊕ 𝐹 (𝐴(𝑥⊕ 𝑣)⊕ 𝑎)

⊕ 𝐹 (𝐴(𝑥⊕ 𝑢⊕ 𝑣)⊕ 𝑎)) = 0}
= #{𝑥 ∈ F𝑛

2 : 𝐹 (𝐴(𝑥)⊕ 𝑎)⊕ 𝐹 (𝐴(𝑥)⊕ 𝑢′ ⊕ 𝑎)⊕ 𝐹 (𝐴(𝑥)⊕ 𝑣′ ⊕ 𝑎)

⊕ 𝐹 (𝐴(𝑥)⊕ 𝑢′ ⊕ 𝑣′ ⊕ 𝑎) = 0}
= #{𝑦 ∈ F𝑛

2 : 𝐹 (𝑦)⊕ 𝐹 (𝑦 ⊕ 𝑢′)⊕ 𝐹 (𝑦 ⊕ 𝑣′)⊕ 𝐹 (𝑦 ⊕ 𝑢′ ⊕ 𝑣′) = 0}
= FBCT𝐹 (𝑢

′, 𝑣′),

where 𝑢′ = 𝐴(𝑢), 𝑣′ = 𝐴(𝑣) and the new variable 𝑦 corresponds to 𝐴(𝑥)⊕ 𝑎.

In particular, the F-boomerang uniformity is constant among S-boxes in the same linear,
affine or extended-affine equivalence class.

185

Chapter 7. Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

CCZ Equivalence. The last equivalent relation we discuss here is the CCZ equivalence [CCZ98].
Concluding on this case is rather easy: it is known that every permutation is CCZ-equivalent to
its inverse, and we show in next subsection that Feistel boomerang uniformity is not necessarily
the same for an S-box and its inverse. Consequently, S-boxes that are CCZ equivalent might not
share the same boomerang uniformity.

7.4.6 FBCT and Inversion

In the case of the BCT, it has been shown that the boomerang uniformity of 𝑆 and its inverse are
the same [BC18]. Before studying the case of the FBCT, let us recall that since we are looking at
Feistel constructions the S-boxes at play do not have to be invertible (the most famous example
in this category being the DES [DES77]).

For an invertible S-box, we can find some special cases for which the property is preserved,
for instance for APN functions (since the inverse is also APN). Still, in the general case this
property does not hold, and one example of this is for instance the 4-bit S-box SS0 used in
CLEFIA [SSA+07]:

SS0 = [0xe, 0x6, 0xc, 0xa, 0x8, 0x7, 0x2, 0xf, 0xb, 0x1, 0x4, 0x0, 0x5, 0x9, 0xd, 0x3].

The F-boomerang uniformity of SS0 is equal to 8, while the one of its inverse is 4.

7.4.7 Set-based Formulation of the FBCT

In this section, we identify the set5

𝜒FBCT(Δ𝑖,∇𝑜) = {𝑥 ∈ F𝑛
2 |𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖)⊕ 𝑆(𝑥⊕∇𝑜)⊕ 𝑆(𝑥⊕Δ𝑖 ⊕∇𝑜) = 0}

with the union for all 𝛿 ∈ F𝑛
2 of the intersection of 𝜒𝐷𝐷𝑇 (Δ𝑖, 𝛿) and its coset 𝜒𝐷𝐷𝑇 (Δ𝑖, 𝛿)⊕ ∇𝑜.

First, we recall the definition of 𝜒𝐷𝐷𝑇 (Δ𝑖, 𝛿), a notion that has been introduced in [CLN+17]
and used in the context of boomerang attacks in [SQH19] and that corresponds to the set of all
𝑥 ∈ F𝑛

2 that make a given S-box transition possible:

𝜒𝐷𝐷𝑇 (Δ𝑖, 𝛿) = {𝑥 ∈ F𝑛
2 |𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖) = 𝛿}.

The alternative formulation is given in the following theorem:

Theorem 7.9. For any Δ𝑖,∇𝑜 ∈ F𝑛
2 and 𝑆 ∈ ℬ(𝑛, 𝑛),

𝜒FBCT(Δ𝑖,∇𝑜) =
⋃︁

𝛿∈F𝑛
2

(𝜒𝐷𝐷𝑇 (Δ𝑖, 𝛿) ∩ (𝜒𝐷𝐷𝑇 (Δ𝑖, 𝛿)⊕∇𝑜))

5We have #𝜒FBCT(Δ𝑖,∇𝑜) = FBCT(Δ𝑖,∇𝑜).

186

7.4. Properties of the FBCT

Proof. For any Δ𝑖,∇𝑜 ∈ F𝑛
2 ,

𝜒FBCT(Δ𝑖,∇𝑜) ={𝑥 ∈ F𝑛
2 : 𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖)⊕ 𝑆(𝑥⊕∇𝑜)⊕ 𝑆(𝑥⊕Δ𝑖 ⊕∇𝑜) = 0}

={𝑥 ∈ F𝑛
2 : 𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖) = 𝑆(𝑥⊕∇𝑜)⊕ 𝑆(𝑥⊕Δ𝑖 ⊕∇𝑜)}

=
⋃︁

𝛿∈F𝑛
2

{𝑥 ∈ F𝑛
2 : 𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖) = 𝑆(𝑥⊕∇𝑜)⊕ 𝑆(𝑥⊕Δ𝑖 ⊕∇𝑜) = 𝛿}

=
⋃︁

𝛿∈F𝑛
2

{𝑥 ∈ F𝑛
2 : 𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖) = 𝛿}

∩ {𝑥 ∈ F𝑛
2 : 𝑆(𝑥⊕∇𝑜)⊕ 𝑆(𝑥⊕Δ𝑖 ⊕∇𝑜) = 𝛿}

=
⋃︁

𝛿∈F𝑛
2

𝜒𝐷𝐷𝑇 (Δ𝑖, 𝛿) ∩ {∇𝑜 ⊕ 𝑥 ∈ F𝑛
2 : 𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖) = 𝛿}

=
⋃︁

𝛿∈F𝑛
2

𝜒𝐷𝐷𝑇 (Δ𝑖, 𝛿) ∩ (𝜒𝐷𝐷𝑇 (Δ𝑖, 𝛿)⊕∇𝑜).

Note here that for any fixed Δ𝑖 the equality {𝑥, 𝑥⊕Δ𝑖} = ∇𝑜 ⊕ {𝑥, 𝑥⊕Δ𝑖} is satisfied for
any 𝑥 if and only if ∇𝑜 = 0 or Δ𝑖 = ∇𝑜.

This reformulation leads to the following rewriting of the FBCT coefficient:

Corollary 7.10.

FBCT(Δ𝑖,∇𝑜) =
∑︁

𝛿∈F𝑛
2

#(𝜒𝐷𝐷𝑇 (Δ𝑖, 𝛿)) ∩ (𝜒𝐷𝐷𝑇 (Δ𝑖, 𝛿)⊕∇𝑜)

Proof. This comes directly from the previous theorem by remarking that once Δ𝑖 is fixed
we have 𝜒𝐷𝐷𝑇 (Δ𝑖, 𝛿) ∩ 𝜒𝐷𝐷𝑇 (Δ𝑖, 𝛿

′) = ∅ for all 𝛿 ̸= 𝛿′, which justifies that the unions in
Theorem 7.9 are disjoint and hence that we have a sum.

Let us again stress the parallel with a similar reformulation of the BCT:

Corollary 7.11 ([BC18]). Let 𝑆 ∈ ℬ(𝑛, 𝑛). We define 𝒴𝐷𝐷𝑇 as the set of all S-box outputs
that make a given transition possible, that is: 𝒴𝐷𝐷𝑇 (Δ𝑖, 𝛿) = {𝑆(𝑥) ∈ F𝑛

2 |𝑆(𝑥)⊕𝑆(𝑥⊕Δ𝑖) = 𝛿}.
The expression of the BCT coefficient becomes:

𝐵𝐶𝑇 (Δ𝑖,∇𝑜) =
∑︁

𝛿∈F𝑛
2

#(𝒴𝐷𝐷𝑇 (Δ𝑖, 𝛿)) ∩ (𝒴𝐷𝐷𝑇 (Δ𝑖, 𝛿)⊕∇𝑜)

7.4.8 Comparison of the properties of the BCT and of the FBCT

We conclude this section by comparing in Table 7.3 the main properties explored by Boura and
Canteaut [BC18] regarding the BCT with what we proved in the case of the FBCT.

187

Chapter 7. Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

Table 7.3: Comparison of the properties of the BCT and of the FBCT of 𝑛-bit functions.

Property BCT FBCT
Boomerang uniformity preserved under affine equivalence yes yes
Boomerang uniformity preserved under extended-affine equivalence no yes
Boomerang uniformity preserved under CCZ equivalence no no
Boomerang uniformity preserved under inversion yes no
Value of the boomerang uniformity of an APN function 2 0
Value of the boomerang uniformity of the inverse mapping (𝑛 even) 4 or 6 4

Note that another family of S-boxes was studied by Boura and Canteaut, namely the set of
quadratic permutations. In the case of the FBCT this instance is rather easy to solve: for any
non-zero Δ𝑖,∇𝑜 ∈ F𝑛

2 with Δ𝑖 ≠ ∇𝑜, 𝐷Δ𝑖𝐷∇𝑜𝑆 is constant. If this constant is not equal to zero
we have that FBCT(Δ𝑖,∇𝑜) = 0, otherwise FBCT(Δ𝑖,∇𝑜) = 2𝑛. We can conclude that either the
quadratic permutation is APN and then its Feistel boomerang uniformity is equal to 0, or the
quadratic permutation is not APN (this is the case of all the quadratic permutations on an even
number of variables) and then its Feistel boomerang uniformity is equal to 2𝑛.

Next, we provide a (rather intricate) formula linking the FBCT and the recently introduced
Differential-Linear Connectivity Table (DLCT) [BDKW19]. We expect that other relations can
be obtained.

A Relation Between the DLCT and the FBCT

As before, we consider 𝑛,𝑚 two positive integers and 𝑆 ∈ ℬ(𝑛,𝑚). The set of all non-zero
elements of F𝑛

2 is denoted by F𝑛*
2 . For 𝑥 and 𝜆 ∈ F𝑛

2 we denote by 𝜆 · 𝑥 the canonical inner
product.

The Differential-Linear Connectivity Table (DLCT) was introduced by Achiya Bar-On et al.
in [BDKW19] and is defined as follows:

Definition 7.12 ([BDKW19]). For a vectorial Boolean function 𝑆 : F𝑛
2 → F𝑚

2 , the differential-
linear connectivity table (DLCT) of 𝑆 is an 2𝑛 × 2𝑚 table whose rows correspond to input
differences to 𝑆 and whose columns correspond to bit masks of outputs of 𝑆. The DLCT entry
(Δ, 𝜆), where Δ ∈ F𝑛

2 is a difference and 𝜆 ∈ F𝑚
2 is a mask, is

𝐷𝐿𝐶𝑇𝑆(Δ, 𝜆) = #{𝑥 ∈ F𝑛
2 : 𝜆 · 𝑆(𝑥) = 𝜆 · 𝑆(𝑥⊕Δ)} − 2𝑛−1.

Recall that the autocorrelation of an n-variable Boolean function 𝑓 at point Δ ∈ F𝑛
2 , denoted

𝐶𝑓 (Δ), is defined as:
𝐶𝑓 (Δ) =

∑︁

𝑥∈F𝑛
2

(−1)𝑓(𝑥)⊕𝑓(𝑥⊕Δ).

It can be easily proven that 𝐷𝐿𝐶𝑇𝑆(Δ, 𝜆) = 1
2C𝜆·𝑆(Δ).

In the following, we consider a vectorial Boolean function 𝑆 and derive a relation between
its FBCT and the autocorrelation of its component functions. Using this relation, we provide a
relation between the FBCT and the DLCT of 𝑆.

188

7.5. Extending our Analysis to Two Rounds

Theorem 7.13. Let 𝑆 ∈ ℬ(𝑛,𝑚). Then for any non-zero Δ ∈ F𝑛*
2

∑︁

𝜆∈F𝑚*
2

𝐶2
𝜆·𝑆(Δ) = 2𝑚

∑︁

∇∈F𝑛*
2 : ∇̸=Δ

FBCT𝑆(Δ,∇) + 2𝑛(2𝑚+1 − 2𝑛).

Proof. For any non-zero Δ ∈ F𝑛*
2 , we have

∑︁

𝜆∈F𝑚*
2

𝐶2
𝜆·𝑆(Δ) =

∑︁

𝜆∈F𝑚*
2

(
∑︁

𝑥∈F𝑛
2

(−1)𝜆·𝑆(𝑥)⊕𝜆·𝑆(𝑥⊕Δ))(
∑︁

𝑦∈F𝑛
2

(−1)𝜆·𝑆(𝑦)⊕𝜆·𝑆(𝑦⊕Δ))

=
∑︁

𝑥∈F𝑛
2

∑︁

𝑦∈F𝑛
2

∑︁

𝜆∈F𝑚*
2

(−1)𝜆·(𝑆(𝑥)⊕𝑆(𝑥⊕Δ)⊕𝑆(𝑦)⊕𝑆(𝑦⊕Δ))

=
∑︁

𝑥∈F𝑛
2

∑︁

∇∈F𝑛
2

(
∑︁

𝜆∈F𝑚
2

(−1)𝜆·(𝑆(𝑥)⊕𝑆(𝑥⊕Δ)⊕𝑆(𝑥⊕∇)⊕𝑆(𝑥⊕Δ⊕∇)) − 1)

= 2𝑚
∑︁

∇∈F𝑛
2

#{𝑥 ∈ F𝑛
2 : 𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ)⊕ 𝑆(𝑥⊕∇)⊕ 𝑆(𝑥⊕Δ⊕∇) = 0} − 22𝑛

= 2𝑚
∑︁

∇∈F𝑛*
2 : ∇̸=Δ

FBCT𝑆(Δ,∇) + 2𝑛(2𝑚+1 − 2𝑛).

From this theorem and the relation between the DLCT and the autocorrelation of the component
functions of 𝑆, we directly deduce the following corollary:

Corollary 7.14. Let 𝑆 ∈ ℬ(𝑛,𝑚). Then for any non-zero Δ ∈ F𝑛*
2

∑︁

𝜆∈F𝑚*
2

𝐷𝐿𝐶𝑇 2
𝑆(Δ, 𝜆) = 2𝑚−2

∑︁

∇∈F𝑛*
2 : ∇̸=Δ

FBCT𝑆(Δ,∇) + 2𝑛(2𝑚−1 − 2𝑛−2).

7.5 Extending our Analysis to Two Rounds

Similarly to what has been done in [WP19, SQH19] for SPN constructions, this section discusses
the probability of a boomerang switch 𝐸𝑚 that covers two rounds.

7.5.1 The Feistel counterpart of the BDT

When studying how to extend the BCT theory to boomerang switches on more rounds, Wang
and Peyrin [WP19] introduced the BDT (standing for Boomerang Difference Table), a variant of
the BCT with one supplementary variable fixed, namely the S-box output difference:

Definition 7.15 (Boomerang Difference Table [WP19]). Let 𝑆 be an invertible function in
F𝑛
2 , and (Δ𝑖, 𝛿,∇𝑜) be elements of (F𝑛

2)
3. The boomerang difference table (BDT) of 𝑆 is a

three-dimensional table, in which the entry for (Δ𝑖, 𝛿,∇𝑜) is computed by:

𝐵𝐷𝑇 (Δ𝑖, 𝛿,∇𝑜) = #{𝑥 ∈ F𝑛
2 |𝑆−1(𝑆(𝑥)⊕∇𝑜)⊕ 𝑆−1(𝑆(𝑥⊕Δ𝑖)⊕∇𝑜) = Δ𝑖,

𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖) = 𝛿}.

189

Chapter 7. Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

As we show next, the counterpart of this table for the Feistel case turns out to be useful to
study a switch over two rounds. Following the idea of [WP19], we define it as follows (it can be
visualized in Figure 7.9):

Definition 7.16 (FBDT). Let 𝑆 be a function from F𝑛
2 to itself, and (Δ𝑖, 𝛿,∇𝑜) be elements

of (F𝑛
2)

3. The Feistel boomerang difference table (FBDT) of 𝑆 is a three-dimensional table, in
which the entry for (Δ𝑖, 𝛿,∇𝑜) is computed by:

FBDT(Δ𝑖, 𝛿,∇𝑜) = #{𝑥 ∈ F𝑛
2 |𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖)⊕ 𝑆(𝑥⊕∇𝑜)⊕ 𝑆(𝑥⊕Δ𝑖 ⊕∇𝑜) = 0,

𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖) = 𝛿}.

∆i

∇o

L1 R1

L2 R2

L3 R3

R4L4S

L

S S S S

S

L

S S S S

S

L

S S S S

S

L

S S S S

· · ·

· · ·· · ·

· · ·

1

2

3

4

δ

x

∇o

Figure 7.9: View of the parameters of the FBDT: Δ𝑖 is the input difference and 𝛿 is the output
difference of 𝑆 when looking at the difference between state 1○ and 2○. ∇𝑜 is the input difference
of the same S-box 𝑆 when looking at the difference between state 1○ and 3○ (which is the same
as the one between state 2○ and 4○).

Given the discussion made in Section 7.4.7, we can rewrite the FBDT as:

FBDT(Δ𝑖, 𝛿,∇𝑜) = #{(𝜒𝐷𝐷𝑇 (Δ𝑖, 𝛿)) ∩ (𝜒𝐷𝐷𝑇 (Δ𝑖, 𝛿)⊕∇𝑜)}.

This is rather straightforward to see that the FBDT follows similar relations as the BDT does,
namely:

Property 7.17 (Relations between the DDT, FBCT and FBDT).

1. 𝐷𝐷𝑇 (Δ𝑖, 𝛿) = FBDT(Δ𝑖, 𝛿, 0) = FBDT(Δ𝑖, 𝛿,Δ𝑖) and in the general case 𝐷𝐷𝑇 (Δ𝑖, 𝛿) ≥
FBDT(Δ𝑖, 𝛿,∇𝑜).

2. FBCT(Δ𝑖,∇𝑜) =
∑︀2𝑛−1

𝛿=0 FBDT(Δ𝑖, 𝛿,∇𝑜).

3. FBDT(0, 0,∇𝑜) = 2𝑛.

7.5.2 Probability of a 2-round Boomerang Switch

The theorem we discuss next gives the probability that a boomerang comes back over 2 rounds
of a classic Feistel cipher, that is a balanced one with 2 branches. We consider that the input
difference between state 1○ and 2○ is (Δ𝐿

𝑖 ,Δ
𝑅
𝑖), that the output difference between state 2○ and

4○ and 1○ and 3○ is equal to (∇𝐿
𝑜 ,∇𝑅

𝑜), and we want that the input difference between state 3○
and 4○ is again (Δ𝐿

𝑖 ,Δ
𝑅
𝑖).

190

7.5. Extending our Analysis to Two Rounds

Again, we consider a very generic case where the round function is composed of one S-box
layer made of 𝑡 parallel 𝑛-bit S-boxes and of some linear or affine operations, which implies in
particular that if the input difference of one round is known together with the output difference of
the S-box layer, then the difference at the input of the next round S-box layer can be computed.
To keep our explanation as generic as possible we introduce the following notations, that can be
visualized in Figure 7.10:

∙ Δ𝑖 represents the difference at the input of the first round S-box layer, between state 1○
and 2○. It is fixed to a certain value since it can be deduced from the first round input
difference Δ𝐿

𝑖 .

∙ 𝛿 denotes the corresponding output difference of this S-box layer, but is not specified.

∙ Δ′
𝑖 corresponds to the difference at the input of the second S-box layer (again with respect

to state 1○ and 2○). Its value is deduced from 𝛿 and from Δ𝑅
𝑖 .

∙ In a similar way, the difference at the input of the second round S-box layer, between state
2○ and 4○ is set to a certain value denoted ∇𝑜, deduced from ∇𝑅

𝑜 .

∙ The corresponding output difference is denoted 𝛼, but again is not fixed.

∙ ∇′
𝑜 represents the input difference of the first round S-box layer for these states, and is

computed from ∇𝐿
𝑜 and 𝛼.

(∆L
i ,∆

R
i)

(∇L
o ,∇R

o)

α

1

2

3

4

L1

Sbox layer

L2 ∆i

δ

∆′
i

(∇L
o ,∇R

o)

∇o

∇′
o

L1

Sbox layer

L2

L1

Sbox layer

L2

L1

Sbox layer

L2

L1

Sbox layer

L2

L1

Sbox layer

L2

L1

Sbox layer

L2

L1

Sbox layer

L2

Figure 7.10: Boomerang Switch over two rounds of a balanced Feistel with two branches. The
differences denoted with straight lines are imposed and fixed.

Given this notation we can find a formula for the probability of a 2-round boomerang switch
over a Feistel, see Theorem 7.18. Note that to simplify its writing we extended the definition
of the FBDT to the case of the S-box layer (instead of one S-box only). Naturally, this simply
corresponds to the product of the FBDT of each S-box that composes the S-box layer.

191

Chapter 7. Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

Theorem 7.18 (Probability of a 2-round Switch). With the previous notation, the probability
that a boomerang comes back over 2 rounds is equal to:

2−2𝑡𝑛 ×
∑︁

0≤𝛿,𝛼<2𝑛

FBDT(Δ𝑖, 𝛿,∇′
𝑜)× FBDT(∇𝑜, 𝛼,Δ

′
𝑖). (7.3)

Proof. In order to cover most constructions, in what follows we consider a Feistel cipher as
depicted in Figure 7.10, that is with a round function made of one linear (or affine) layer 𝐿1,
followed by one S-box layer of 𝑡 𝑛-bit S-boxes and again a linear (or affine) layer 𝐿2.

We start by observing that if the second round S-box layer output difference between
state 2○ and 4○ is equal to a given value 𝛼 then the same difference is required between state
1○ and 3○ for the boomerang to return.

Denote by 𝛼′ the second S-box layer output difference between state 1○ and 3○. Given that
the output difference between 1○ and 3○ and 2○ and 4○ is equal to (∇𝐿

𝑜 ,∇𝑅
𝑜) we deduce that

the input difference in the left branch between states 1○ and 3○ and 2○ and 4○ are respectively
equal to ∇𝐿

𝑜 ⊕𝐿2(𝛼
′) and ∇𝐿

𝑜 ⊕𝐿2(𝛼). The input difference between the left branches of state
1○ and 2○ is equal to Δ𝐿

𝑖 so we deduce that the left branch difference between state 3○ and
4○ is equal to: Δ𝐿

𝑖 ⊕∇𝐿
𝑜 ⊕ 𝐿2(𝛼

′)⊕∇𝐿
𝑜 ⊕ 𝐿2(𝛼) = Δ𝐿

𝑖 ⊕ 𝐿2(𝛼
′)⊕ 𝐿2(𝛼). For the boomerang

to return this has to be equal to Δ𝐿
𝑖 , which proves that we must have 𝛼′ = 𝛼.

We now demonstrate the formula by first looking at the case where the values of 𝛼 and 𝛿
are fixed. The theorem is deduced by summing over all their possible values.

We focus on the second round of the switch, and more precisely on the difference between
state 2○ and 4○. To obtain the required output difference, the S-box layer must transition
from ∇𝑜 = 𝐿1(∇𝑅

𝑜) to 𝛼, an event that is of probabilitya:

2−𝑛𝑡 × DDT(∇𝑜, 𝛼).

If we denote by 𝑋 the input value of the second round S-box layer of state 2○, We know
that the corresponding value of state 1○ has to be equal to 𝑋 ⊕Δ′

𝑖, value that should also
allow the transition from ∇𝑜 to 𝛼 according to the previous discussion. The probability that
it is the case is:

#𝜒𝐷𝐷𝑇 (∇𝑜, 𝛼) ∩ (𝜒𝐷𝐷𝑇 (∇𝑜, 𝛼)⊕Δ′
𝑖)

#𝜒𝐷𝐷𝑇 (∇𝑜, 𝛼)
.

Assuming that the previous conditions are fulfilled, the boomerang returns in the first
round if the S-box layer transitions from Δ𝑖 to 𝛿 given that the input difference of this S-box
layer between state 2○ and 4○ and 1○ and 3○ is equal to ∇′

𝑜. The probability of this event is
FBDT(Δ𝑖, 𝛿,∇′

𝑜)× 2−𝑛𝑡.
Putting things together, we obtain

2−2𝑡𝑛 ×
∑︁

0≤𝛿,𝛼<2𝑛

FBDT(Δ𝑖, 𝛿,∇′
𝑜)× DDT(∇𝑜, 𝛼)×

#𝜒𝐷𝐷𝑇 (∇𝑜, 𝛼) ∩ (𝜒𝐷𝐷𝑇 (∇𝑜, 𝛼)⊕Δ′
𝑖)

#𝜒𝐷𝐷𝑇 (∇𝑜, 𝛼)

Given that DDT(∇𝑜, 𝛼) = #𝜒𝐷𝐷𝑇 (∇𝑜, 𝛼) and that #(𝜒𝐷𝐷𝑇 (∇𝑜, 𝛼) ∩ (𝜒𝐷𝐷𝑇 (∇𝑜, 𝛼) ⊕
Δ′

𝑖)) = FBDT(∇𝑜, 𝛼,Δ
′
𝑖), we obtain the required expression.

aWe again make the shortcut of considering the S-box layer instead of each individual S-box.

Note that our formula is very reminiscent of what is used in the SPN case, as Wang and

192

7.5. Extending our Analysis to Two Rounds

Peyrin [WP19] proposed to use the product of the BDT and BDT’ coefficients to cover the case
of a 2-round switch where the same S-box is active with respect to 𝐸0 and 𝐸1. As a side note,
we also remark here that the somewhat more intricate formulation proposed by Song et al. can
be rewritten as the product of the BDT and BDT’ in the case of 2 rounds, as in particular the
𝒟𝐵𝐶𝑇 coefficient of [SQH19] is in fact equal to the BDT’ coefficient.

Example of a 2-round Switch on LBlock

This section shows a concrete example of how the 2-round formula given by Equation (7.3) can
applied to a cipher, namely LBlock. We consider a 2-round boomerang switch that is deduced
from the proposed boomerang distinguisher of the paper by Chen and Miyaji [CM13].

1 a 0 0 0 0 09 1 0 0 0 0 0 06

0 0 0 0 0 1 60

0 0 0 0 0 0 00

round 1 of Em

1 a 0 0 0 0 09

δ1 δ3 0 0 0 0 0δ2

δ1 δ3δ2 0 0 0 0 0

S0

0

0 0 0 0 0 0 00

round 2 of Em

0 0

6100δ1δ2 δ3

0 δ1δ2 δ3 1 6

1 a 0 0 0 0 09

0 0 0 0 0 0 00

round 1 of Em

0 0 0 0 0 0 00

round 2 of Em

0 0 2 2 1 0 00

0 0 2 2 1 0 00

0 0 2 2 1 0 00

S1S2S3S4S5S6S7

S0S1S2S3S4S5S6S7

S0S1S2S3S4S5S6S7

S0S1S2S3S4S5S6S7

1 2 0 0 0 0 00Beginning of E1

End of E0

0 0 αu 0 00 αwαv

extension with probability 1

difference between 1© and 2© and between 3© and 4©

extension with probability 1

difference between 1© and 3© and between 2© and 4©

αwαu αv0 0 0 0 0

αwαu αv1 2 0 0 0

αwαuαv 1 2 0 00

Figure 7.11: Concrete 2-round boomerang switch on LBlock, derived from [CM13].

The switch and the notation used below are represented in Figure 7.11. By careful identification
of the differences at play, Equation (7.3) gives:

𝑃 = 2−2×8×4 ×
∑︁

0≤𝛿,𝛼<2𝑛

FBDT𝑆7(0x1, 𝛿1, 𝛼𝑣)× FBDT𝑆7(0, 0, 𝛿2)×

FBDT𝑆6(0x9, 𝛿2, 0)× FBDT𝑆6(0, 0, 0)×
FBDT𝑆5(0x𝑎, 𝛿3, 0x1)× FBDT𝑆5(0, 0, 𝛿1)×
FBDT𝑆4(0, 0, 𝛼𝑢)× FBDT𝑆4(0x2, 𝛼𝑢, 𝛿3)×
FBDT𝑆3(0, 0, 0x2)× FBDT𝑆3(0x2, 𝛼𝑣, 0)×
FBDT𝑆2(0, 0, 0)× FBDT𝑆2(0x1, 𝛼𝑤, 0)×
FBDT𝑆1(0, 0, 𝛼𝑤)× FBDT𝑆1(0, 0, 0x1)×
FBDT𝑆0(0, 0, 0)× FBDT𝑆0(0, 0, 0x6)

Using the properties of the FBDT, this can be simplified into:

193

Chapter 7. Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

𝑃 = 2−6×4 ×
∑︁

0≤𝛿,𝛼<2𝑛

FBDT𝑆7(0x1, 𝛿1, 𝛼𝑣)×𝐷𝐷𝑇𝑆6(0x9, 𝛿2)× FBDT𝑆5(0x𝑎, 𝛿3, 0x1)

×FBDT𝑆4(0x2, 𝛼𝑢, 𝛿3)×𝐷𝐷𝑇𝑆3(0x2, 𝛼𝑣)×𝐷𝐷𝑇𝑆2(0x1, 𝛼𝑤)

Referring to the DDT and FBDT we found that it is equal to 2−24 × 219 = 2−5, which closely
matches what we found experimentally (we obtained a probability of 2−4.998 when doing 220 tests
corresponding to 210 keys with 210 messages each).

7.6 Generic Formula for a Feistel Boomerang Switch over Multi-
ple Rounds

To obtain an accurate estimation of the probability of a boomerang distinguisher, an attacker
has to correctly evaluate the size of 𝐸𝑚, that is the number of middle rounds for which there
exists a dependency between the characteristic on 𝐸0 and the one on 𝐸1. Once this is done,
the formula introduced with the sandwich attack theory [DKS10] can be applied and the value
of 𝑝2𝑞2𝑟 (where 𝑟 is the probability of 𝐸𝑚, 𝑝 the one of 𝐸0 and 𝑞 the one of 𝐸1) gives a good
estimate (under the usual assumptions).

The problem of evaluating the size of 𝐸𝑚 has already been discussed in two papers in the case
of SPN ciphers: by Song et al. in [SQH19] and by Wang and Peyrin in [WP19]. The algorithm
proposed in [SQH19] (that we recall in Algorithm 19) is rather natural: additional rounds are
added to 𝐸𝑚 as long as the probability of the newly added round is higher than the probability
that would have been obtained if they were no dependencies. Since this technique directly applies
to boomerang distinguishers on Feistel constructions we do not elaborate more on this.

Algorithm 19 Song et al.’s [SQH19] algorithm to compute the size of 𝐸𝑚.

1. Extend both 𝐸0 and 𝐸1 with probability 1.

2. Initialize 𝐸𝑚 with the last round of 𝐸0 and the first round of 𝐸1.

3. Prepend one round to 𝐸𝑚

(a) Check whether the lower crossing differences for the newly added round are distributed
uniformly. If they are, peel off the first round of 𝐸𝑚 and go to step 4.

(b) Go to step 3.

4. Append one more round to 𝐸𝑚

(a) Check whether the upper crossing differences for the newly added round are distributed
uniformly. If they are, peel off the last round of 𝐸𝑚 and go to step 5.

(b) Go to step 4.

5. Compute the probability of 𝐸𝑚.

The remaining problem in the case of Feistel ciphers is to compute the probability of a
boomerang switch over more than 2 rounds. We address this now, with a setting and notation
given in Figure 7.12 and that is a direct generalization of the one in Figure 7.10.

194

7.6. Generic Formula for a Feistel Boomerang Switch over Multiple Rounds

(∆L
i ,∆

R
i)

(∇L
o ,∇R

o)

α′

1

2

3

4

L1

Sbox layer

L2 ∆i

δ

∆′
i

(∇L
o ,∇R

o)

∇′
o

∇o

L1

Sbox layer

L2

L1

Sbox layer

L2

L1

Sbox layer

L2

L1

Sbox layer

L2

L1

Sbox layer

L2

L1

Sbox layer

L2

L1

Sbox layer

L2Sbox layer

L1

L2

Sbox layer

L1

L2

Sbox layer

L1

L2

Sbox layer

L1

L2

δ′

∆′′
i

δ′′

α′′

∇′′
o

α

Figure 7.12: Setting for a boomerang Switch over more than two rounds of a balanced Feistel
with two branches. The differences denoted with straight lines are imposed and fixed.

As depicted in the figure, we introduce new variables to represent all the intermediate
differences. As we did when discussing the 2-round switch, the idea will be to iterate over all the
possible values for these, to compute the probability of the obtained settings and finally to sum
together the probabilities.

We introduce a coefficient that corresponds to the situation where an active S-box in 𝐸0 is in
front of an active S-box in 𝐸1, and for which both S-box outputs (when looking at state 1○ and
2○ and state 2○ and 4○) are fixed. We obtain the following formula:

Definition 7.19 (FBET). Let 𝑆 be a function from F𝑛
2 , and (Δ𝑖, 𝛿,∇𝑜, 𝛼) be elements of (F𝑛

2)
4.

The Feistel boomerang extended table (FBET) of 𝑆 is a four-dimensional table, in which the
entry for (Δ𝑖, 𝛿,∇𝑜, 𝛼) is computed by:

FBET(Δ𝑖, 𝛿,∇𝑜, 𝛼) = #{𝑥 ∈ F𝑛
2 |𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖)⊕ 𝑆(𝑥⊕∇𝑜)⊕ 𝑆(𝑥⊕Δ𝑖 ⊕∇𝑜) = 0,

𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖) = 𝛿,

𝑆(𝑥⊕Δ𝑖)⊕ 𝑆(𝑥⊕Δ𝑖 ⊕∇𝑜) = 𝛼}.

The probability of a switch is then estimated to be6 the sum over all the possible intermediate
differences of the product of the FBET coefficient (divided by 2𝑛) of each S-box. For instance, the
probability of the 3-round boomerang switch depicted in Figure 7.10 can be approximated by:

2−3𝑡𝑛
∑︁

0≤𝛿,𝛼,𝛿′,𝛼′,𝛿′′,𝛼′′<2𝑛

FBET(Δ𝑖, 𝛿,∇𝑜, 𝛼)× FBET(Δ′
𝑖, 𝛿

′,∇′
𝑜, 𝛼

′)× FBET(Δ′′
𝑖 , 𝛿

′′,∇′′
𝑜 , 𝛼

′′)

6Note that this approximation considers that the same characteristic is followed between state 1○ and 2○ and
between state 3○ and 4○. For 3 rounds and more it is not apparent that this is always the only possible case.

195

Chapter 7. Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

where again by abuse of notation the FBET coefficient is the one of the full S-layer, but should
be replaced by the ones of the individual S-boxes. Note that Δ𝑖 and ∇′′

𝑜 are determined by
(Δ𝐿

𝑖 ,Δ
𝑅
𝑖) and (∇𝐿

𝑜 ,∇𝑅
𝑜), the input and output differences of the switch. Also, the values of

Δ′
𝑖, Δ

′′
𝑖 , ∇𝑜 and ∇′

𝑜 are deduced from the other parameters on which we iterate (for instance
Δ′

𝑖 = 𝐿1(𝐿2(𝛿)⊕Δ𝑅
𝑖)).

As we show in the following property, the obtained formula can be simplified when we sum
coefficients over all the possible values of some variables. Further simplifications are obtained
with Property 7.17.

Property 7.20 (Relations between the FBET and the previous tables).
∑︁

0≤𝛿<2𝑛

FBET(Δ𝑖, 𝛿,∇𝑜, 𝛼) = FBDT(∇𝑜, 𝛼,Δ𝑖).

∑︁

0≤𝛼<2𝑛

FBET(Δ𝑖, 𝛿,∇𝑜, 𝛼) = FBDT(Δ𝑖, 𝛿,∇𝑜).

FBET(0, 0,∇𝑜, 𝛼) = FBET(∇𝑜, 𝛼, 0, 0) = DDT(∇𝑜, 𝛼).

It is rather easy to show that the FBET view covers the previous formula for the 2-round
switch (given in Theorem 7.18): we use the notation of Figure 7.10 and additionally denote by 𝛿′

the output difference between state 1○ and 2○ of the second-round S-layer, and by 𝛼′ the output
difference between state 2○ and 4○ of the first-round S-layer. The sum we have to compute is:

2−2𝑡𝑛
∑︁

0≤𝛿,𝛼′,𝛿′,𝛼<2𝑛

FBET(Δ𝑖, 𝛿,∇′
𝑜, 𝛼

′)× FBET(Δ′
𝑖, 𝛿

′,∇𝑜, 𝛼).

Since 𝛼′ and 𝛿′ have no impact on the other values we can rewrite the previous sum as:

2−2𝑡𝑛
∑︁

0≤𝛿,𝛼′,𝛼<2𝑛

(FBET(Δ𝑖, 𝛿,∇′
𝑜, 𝛼

′)×
∑︁

0≤𝛿′<2𝑛

FBET(Δ′
𝑖, 𝛿

′,∇𝑜, 𝛼))

= 2−2𝑡𝑛
∑︁

0≤𝛿,𝛼′,𝛼<2𝑛

(FBET(Δ𝑖, 𝛿,∇′
𝑜, 𝛼

′)× FBDT(∇𝑜, 𝛼,Δ
′
𝑖))

= 2−2𝑡𝑛
∑︁

0≤𝛿,𝛼<2𝑛

(FBDT(∇𝑜, 𝛼,Δ
′
𝑖)×

∑︁

0≤𝛼′<2𝑛

FBET(Δ𝑖, 𝛿,∇′
𝑜, 𝛼

′))

= 2−2𝑡𝑛
∑︁

0≤𝛿,𝛼<2𝑛

(FBDT(∇𝑜, 𝛼,Δ
′
𝑖)× FBDT(Δ𝑖, 𝛿,∇′

𝑜)).

In a similar way, if we focus on one round only, we have to compute

2−𝑡𝑛
∑︁

0≤𝛿,𝛼<2𝑛

FBET(Δ𝑖, 𝛿,∇𝑜, 𝛼).

Since both 𝛿 and 𝛼 have no impact on the other variables it can be rewritten as:

2−𝑡𝑛
∑︁

0≤𝛿<2𝑛

FBDT(Δ𝑖, 𝛿,∇𝑜) = 2−𝑡𝑛FBCT(Δ𝑖,∇𝑜).

So the FBET coefficient allows to recover our previous formulas.
Note that when looking at a switch covering many rounds the application of this formula may

require too much time if many S-boxes are involved, so it might be preferable to evaluate the
probability of 𝐸𝑚 experimentally.

196

7.7. Application to LBlock-s

Short Discussion on the SPN Case. While we focused on the Feistel case, it seems that a
similar technique can be used to get the probability of a multiple-round boomerang switch on an
SPN cipher. In particular, the counterpart of the FBET would be:

𝐵𝐸𝑇 (Δ𝑖, 𝛿,∇𝑜, 𝛼) = #{𝑥 ∈ F𝑛
2 |𝑆−1(𝑆(𝑥)⊕∇𝑜)⊕ 𝑆−1(𝑆(𝑥⊕Δ𝑖)⊕∇𝑜) = Δ𝑖,

𝑆(𝑥)⊕ 𝑆(𝑥⊕Δ𝑖) = 𝛿,

𝑥⊕ 𝑆−1(𝑆(𝑥)⊕∇𝑜) = 𝛼}.

and we have the following direct properties:

Property 7.21 (Relation between the BET and the previous tables).
∑︁

0≤𝛼<2𝑛

𝐵𝐸𝑇 (Δ𝑖, 𝛿,∇𝑜, 𝛼) = 𝐵𝐷𝑇 (Δ𝑖, 𝛿,∇𝑜),

∑︁

0≤𝛿<2𝑛

𝐵𝐸𝑇 (Δ𝑖, 𝛿,∇𝑜, 𝛼) = 𝐵𝐷𝑇 ′(∇𝑜, 𝛼,Δ𝑖) = 𝒟𝐵𝐶𝑇 (Δ𝑖,∇𝑜, 𝛼)

∑︁

0≤𝛼,𝛿<2𝑛

𝐵𝐸𝑇 (Δ𝑖, 𝛿,∇𝑜, 𝛼) = 𝐵𝐶𝑇 (Δ𝑖,∇𝑜)

Our bet is that it provides a generic formula covering the previous particular cases discussed
in [SQH19] and [WP19].

7.7 Application to LBlock-s

We propose here to study the case of LBlock-s, the Feistel cipher used in LAC, in order to illustrate
the way our formula can be used to estimate the probability of a boomerang distinguisher.

LAC was a first-round candidate to the CAESAR competition submitted by Lei Zhang et
al. [ZWW+14]. It is a lightweight authenticated encryption scheme that relies on a modified
version of LBlock called LBlock-s. In this version, the 10 different 4-bit S-boxes are replaced
with one unique S-box, which corresponds to the one called 𝑆0 in LBlock. The block cipher
also includes a modified key schedule algorithm that we do not detail here since it plays no role
in the following discussion. The LAC algorithm uses both full 32-round LBlock-s as well as a
round-reduced LBlock-s iterating 16 rounds.

In this section, we evaluate with the 𝑝2𝑞2𝑟 formula the probability of a 16-round boomerang
distinguisher on LBlock-s when the size of 𝐸𝑚 varies from 2 to 8 rounds. We found out that
when 𝐸𝑚 covers 8 rounds the expected probability of the resulting distinguisher is 2−56.14.

This value is higher than the probability of the distinguisher that was proposed by Leurent
in [Leu16]. In this paper, the author showed the existence of collections of differential charac-
teristics with probability as high as 2−61.52. Still, our distinguisher cannot be used for forgery
contrary to what is done in [Leu16].

7.7.1 Finding the Best 7-round Differential Characteristics for 𝐸0 and 𝐸1

As a starting point, we look at the setting where 𝐸𝑚 covers 2 rounds and search the best
characteristics over 7 rounds for 𝐸0 and 𝐸1. To find these, we use the two-step strategy described
in [GLMS18]:

197

Chapter 7. Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

∙ In the first step, we abstract all the nibble differences by Boolean variables (if a nibble is active
then its associated Boolean value is 1, else it is 0) and we look for the truncated differentials
with the minimum number of active S-boxes. We implement this step using a high-level
modeling language called MiniZinc [NSB+07]. MiniZinc models are translated into a simple
subset of MiniZinc called FlatZinc, using a compiler provided by MiniZinc. Most existing
constraint programming solvers (including SAT solvers and MILP solvers) have developed
FlatZinc interfaces (there are currently fifteen solvers with FlatZinc interfaces). Using the
PICAT SAT solver we found 8 possible optimal truncated differential characteristics that
are valid for both 𝐸0 and 𝐸1.

∙ In the second step, we look for the best differential characteristics (in terms of probability)
that follow the previous truncated differential paths. To do so, we use the constraint pro-
gramming language Choco [PFL16]. For each possible truncated differential characteristics
on 7 rounds we obtain 2766 solutions with an optimal probability equal to 2−16. We tried
several combinations and picked the one that gave the best probability for the 2-round 𝐸𝑚.
We present it in Table 7.4.

Differential characteristic used in 𝐸0 Differential characteristic used in 𝐸1

Input 20400000 00001460 Output r9 00004020 41000006
Output r1 00006000 20400000 Output r10 00000600 00004020
Output r2 40000000 00006000 Output r11 00400000 00000600
Output r3 00000000 40000000 Output r12 00000000 00400000
Output r4 00000040 00000000 Output r13 40000000 00000000
Output r5 00000004 00000040 Output r14 00400000 40000000
Output r6 00004400 00000004 Output r15 00060040 00400000
Output r7 00004440 00004400 Output r16 42000004 00060040

Table 7.4: The two differential characteristics on 7 rounds of 𝐸0 and of 𝐸1 in hexadecimal
notations.

7.7.2 Choosing a Switch 𝐸𝑚

To obtain an accurate evaluation of the boomerang distinguisher, we evaluate the size and
probability of 𝐸𝑚 with the algorithm recalled in Algorithm 19. When 𝐸𝑚 covers few rounds we
were able to apply our formulas to compute its probability but we then switched to experiments
to avoid intricate expressions with many parameters. As detailed in Table 7.5, we were able
to apply the algorithm for an 𝐸𝑚 covering up to 8 rounds, thus obtaining an estimation of the
probability of the distinguisher of 2−56.14. Our observation is that 𝐸𝑚 covers more than 8 rounds,
but we were limited by computational power to get its exact size.

Example of Instantiation of the Generic Formula

As an example of the application of the switch formulas proposed in this work, we detail here
how to compute the probability of the 3-round switch on LBlock-s with the parameters provided
in Table 7.5 and depicted in Figure 7.13:

198

7.7. Application to LBlock-s

𝐸𝑚 𝛼 𝛿 theoretical 𝑟 practical 𝑟 𝑝2𝑞2𝑟

0 rounds - - - - 2−88

2 rounds (0𝑥00004440, 0𝑥00004400) (0𝑥00004020, 0𝑥41000006) 2−3.09 2−3.09 2−67.09

3 rounds (0𝑥00004440, 0𝑥00004400) (0𝑥00000600, 0𝑥00004020) 2−6.80 2−6.80 2−62.8

4 rounds (0𝑥00004400, 0𝑥00000004) (0𝑥00000600, 0𝑥00004020) n/a 2−14.10 2−62.1

6 rounds (0𝑥00000004, 0𝑥00000040) (0𝑥00400000, 0𝑥00000600) n/a 2−19.04 2−59.04

8 rounds (0𝑥00000040, 0𝑥00000000) (0𝑥00000000, 0𝑥00400000) n/a 2−24.14 2−56.14

Table 7.5: Theoretical and practical values of 𝑟 for various sizes of 𝐸𝑚 and corresponding
probability of the 16-round distinguisher when applying the 𝑝2𝑞2𝑟 formula. We detail the
theoretical computation for 3 rounds in Section 7.7.2.

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

44 4 4 4

4 4
4 44 4

δ1 δ3δ24 4 44 4

4 4 4
δ1 δ3δ24 4

δ′1 δ′3δ′2 δ′4 δ
′
5

δ3δ2δ1

4 2

24
6

2 4

α′
1 α′

2 α′
3

α′
1 α′

2 α′
3

α′
1 α′

2 α′
3

2 4α′
1 α′

2 α′
3

α1α2 α3α4α5

δ1 δ3δ24 44 4δ′1 δ′2 δ′4 δ
′
5

4 4 δ2 δ3

S S S S S S S S

δ′′1 δ
′′
2 δ′′3 δ

′′
4 δ

′′
5 δ

′′
6 δ

′′
7

δ′3
+4

δ1
δ′1 δ′2 δ′3 δ′5

+4
4 4 δ′4

α′′
1α

′′
2 6

α′′
1α

′′
2

S S S S S S S S

α′′
1α

′′
2 6

α′′
1α

′′
26

4 2

α′′
1α

′′
2

4 26

Beginning of the characteristic over E1

End of the characteristic over E0

Extension with

probability 1

Extension with

probability 1

Figure 7.13: Setting for the switch over three rounds of LBlock-s.

According to our theory, an approximation of the 3-round switch is given by the sum over
all the possible intermediate differences (the 𝛿 and 𝛼 in the figure) of the product of the FBET
coefficients of each S-box, each divided by 2𝑛. Since FBET(0, 0, 0, 0) = 2𝑛 and FBET(0, 0,∇𝑜, 𝛼) =
FBET(∇𝑜, 𝛼, 0, 0) = DDT(∇𝑜, 𝛼), we expect only 5 FBET coefficients corresponding to the S-boxes
that are active on both sides, and 15 DDT coefficients corresponding to S-boxes that are only
active in one side.

An additional simplification comes from the following fact: the active S-boxes in the first
round of the right part of the figure and the ones in the last round of the left part of the figure
have an output that is free of constraints, so they don’t have an impact on the probability we are
computing (this comes from the fact that 1

2𝑛
∑︀

𝛼 DDT(𝛾, 𝛼) = 1).

Putting things together, we obtain the following expression, where the sum is over all the
involved variables:

199

Chapter 7. Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions

𝑟 = 2−4×12
∑︁

FBET(4, 𝛿2, 𝛼
′
2, 𝛼4) · DDT(4, 𝛿1) · FBET(4, 𝛿3, 4, 𝛼5)

·DDT(4, 𝛿′2) · DDT(4, 𝛿′1) · DDT(𝛿1, 𝛿′4) · DDT(𝛿2, 𝛿′5) · FBET(𝛿3, 𝛿′3, 6, 𝛼′
3)

·DDT(𝛼′′
1, 𝛼

′
2) · DDT(𝛼′′

2, 𝛼
′
1)

·FBET(4, 𝛿′′6 , 4, 𝛼′′
1) · FBET(𝛿′4, 𝛿′′7 , 2, 𝛼′′

2).

We can further simplify this expression by using the relations between the tables discussed in
this work. It gives:

𝑟 = 2−4×8
∑︁

FBCT(4, 𝛼′
2) · DDT(4, 𝛿1) · DDT(4, 𝛿3)

·DDT(𝛿1, 𝛿′4) · FBCT(𝛿3, 6) · DDT(𝛼′′
1, 𝛼

′
2)

·DDT(4, 𝛼′′
1) · FBCT(2, 𝛿′4)

We computed this sum and we obtained 𝑟 = 38338560
(24)8

= 2−6.807, which confirms the experiment
reported in Table 7.5.

7.7.3 Deriving a Boomerang Distinguisher

The previous discussion indicates that the 16-round boomerang distinguisher we are looking at
has a probability higher than 2−56.14. It can be used as follows:

The attacker randomly chooses 𝑀1
𝑖 (0 ≤ 𝑖 < 𝑚) and compute 𝑀2

𝑖 = 𝑀1
𝑖 ⊕ 𝛼 with 𝛼 =

(20400000, 00001460). She encrypts these plaintexts over 16 rounds of LBlock-s to obtain
the ciphertexts 𝐶1

𝑖 and 𝐶2
𝑖 from which she deduces 𝐶3

𝑖 = 𝐶1
𝑖 ⊕ 𝛿 and 𝐶4

𝑖 = 𝐶2
𝑖 ⊕ 𝛿 with

𝛿 = (0𝑥42000004, 0𝑥00060040) and asks for their corresponding plaintexts 𝑀3
𝑖 and 𝑀4

𝑖 . Finally
she checks if the boomerang comes back by testing if 𝑀3

𝑖 ⊕𝑀4
𝑖 = 𝛼.

Given our estimate, 𝑚 = 256.14 quartets are sufficient to expect one boomerang to return
(using 258.14 ciphering/deciphering operations).

7.8 Conclusion

Starting from an observation similar to the one made by Murphy in 2011, we develop a new theory
that explains the behavior of boomerang switches for Feistel ciphers. We introduce the adequate
notion of FBCT and give its main properties and relations with other well-known cryptographic
tables. Taking things further, we provide a rather simple expression of the probability of a
boomerang switch over two rounds, and a (more intricate) general expression of the one over
multiple rounds.

200

8

Looking for new Extended Generalized
Feistel Networks structures

You can’t see the whole complete act yet.
But when this is done... when it’s
finished...it’s gonna be... People will
barely be able to comprehend.

John Doe

This final chapter presents a study on a particular family of Extended Generalized Feistel
Networks (egfns), first introduced in [BMT14]. This work was initiated during the design of
Lilliput-AE [ABC+18], a Round 1 candidate the nist lwc standardization process: starting
from round function of the Lilliput lightweight block cipher, its aim was to determine whether
it was possible to derive lighter structures providing good resistance to differential and integral
cryptanalysis and optimal diffusion delay.

First, some properties of Generalized Feistel Networks (gfns) and their extensions are recalled
in Section 8.1. This section essentially summarizes the results from [BMT14, Tho15], in which
the matrix representation of gfns were introduced and used to propose an extension of such
schemes, namely, Extended Generalized Feistel Networks (egfns). Then, Section 8.2 provides
some comments on the experiments that were conducted to assess the resistance to integral and
differential cryptanalysis of some egfns derived from the structures proposed in [BMT14]. Some
early results seemed to point out that the Lilliput round function was among the best choices.
Moreover, this primitive had already been subject to third-party analysis [ST16, ST17]. For
these reasons, my co-authors and I ultimately chose the build our nist proposal around the
round function of Lilliput. While this work was carried out in the context of our nist lwc
submission, it covers a broader class of egfns and thus, we found it appropriate to place it as a
separate chapter. Unfortunately, this work remains incomplete for now as we were not successful
in identifying some general criteria for the family of egfns considered.

8.1 Background on Gfns and their Extensions 202
8.1.1 Generalized Feistel Networks . 202
8.1.2 Full diffusion delay . 204
8.1.3 Improvement of the diffusion delay 205
8.1.4 Matrix Representation of Feistel Networks 206

201

Chapter 8. Looking for new egfn structures

8.1.5 Characterizing Quasi-involutive gfns 207
8.1.6 Extended Generalized Feistel Networks 209
8.1.7 Lilliput . 211

8.2 Towards Lighter Egfn Constructions 211
8.2.1 Resistance to integral attacks . 212
8.2.2 Resistance to differential cryptanalysis 221

8.3 Conclusion . 223

8.1 Background on Gfns and their Extensions

8.1.1 Generalized Feistel Networks

While Feistel networks (see Section 1.3.2) act on a state that is split into two branches (also called
blocks), Zheng et al. introduced at CRYPTO 1989 [ZMI90] a construction that considered a 𝑘-block
state, called the Generalized Feistel Network or gfn. Gfns mostly inherit the interesting features
of the classical Feistel network: their structure remains simple and allows for high parallelism,
they transform any set of noninvertible functions into a permutation and the inverse is the same
up to a permutation of the blocks, which makes them suitable for low cost implementation. One
gfn round is made of two layers: the nonlinear layer and the permutation layer. The nonlinear
layer contains one or several Feistel functions 𝐹𝑖 applied in parallel whose outputs are then xored
to a single or to several other branches. The permutation layer originally consisted of a cyclic
block-wise shift to the left, however works such as the ones of [SM10, YI13, CGT19] or [DFLM19]
among others have since shown that the diffusion delay of gfns could be improved by using
different shufflings.

𝑥0

𝑦0

𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

𝑥4

𝑦4

𝑥5

𝑦5

𝑥6

𝑦6

𝑥7

𝑦7

𝐹0𝐹1𝐹2𝐹3
nonlinear layer

permutation layer

Figure 8.1: An example of a gfn round with 𝑘 = 8 blocks.

Figure 8.1 depicts an example of what is called a type-2 gfn with 𝑘 = 8 branches. The type
of a gfn is defined by the way the Feistel functions interact with the 𝑘 input blocks during one
round of the gfn. A brief description of each of the main types of gfns is given in the rest of
this section. For the sake of simplicity, the permutation layer considered will be the cyclic shift
to the left.

Type-1. Akin to the classical Feistel network, the type-1 Feistel scheme only has one Feistel
function that takes one branch as input, and xors its output to another branch, as shown in
Figure 8.2.

Type-2. The type-2 Feistel scheme is defined over an even number of branches 𝑘 and operates
using 𝑘/2 Feistel functions 𝐹0, · · · , 𝐹𝑘/2−1. Each function 𝐹𝑖 takes as input branch 𝑥2𝑖 and
the output is xored to branch 𝑥2𝑖+1, as shown in Figure 8.3. This construction is used in

202

8.1. Background on Gfns and their Extensions

𝑥0

𝑦0

𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

𝐹

Figure 8.2: One round of a type-1 gfn with 𝑘 = 4 blocks.

Clefia [SSA+07], and in lightweight ciphers such as LBlock [WZ11b], Piccolo [SIH+11] and
Twine [SMMK13].

𝑥0

𝑦0

𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

𝐹0𝐹1

Figure 8.3: One round of a type-2 gfn with 𝑘 = 4 blocks.

Type-3. The nonlinear layer of a type-3 Feistel network with 𝑘 branches contains 𝑘 − 1 Feistel
functions. Each function 𝐹𝑖 takes as input branch 𝑥𝑖 and the output is xored to branch 𝑥𝑖+1,
for 0 ≤ 𝑖 ≤ 𝑘 − 2. Because of its structure, one cannot have a parallel evaluation of the
Feistel functions in decryption mode for the type-3 Feistel network. Indeed, function 𝐹𝑖 requires
𝑥𝑖 = 𝑦𝑖−1 ⊕ 𝐹𝑖−1(𝑥𝑖−1), meaning that each Feistel function has to be treated sequentially. One
example is given in Figure 8.4.

𝑥0

𝑦0

𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

𝐹0𝐹1𝐹2

Figure 8.4: One round of a type-3 gfn with 𝑘 = 4 blocks.

Source-heavy. A source-heavy Feistel network with 𝑘 branches only leverages a single Feistel
function defined from F(𝑘−1)𝑛

2 to F𝑛
2 that takes 𝑘 − 1 branches as inputs and the output is xored

to the remaining branch. Figure 8.5 depicts an example of a source-heavy gfn with 4 blocks. This
type of construction is used in the Rc2 block cipher [Riv98], the Sha-1 hashing function [Nat95]
or Sms4 [Dt08], which is now a Chinese standard for Wireless LANs.

203

Chapter 8. Looking for new egfn structures

𝑥0

𝑦0

𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

𝐹

Figure 8.5: One round of a source-heavy gfn with 𝑘 = 4 blocks.

Target-heavy. As depicted in Figure 8.6, a target-heavy Feistel scheme uses a single Feistel
function from F𝑛

2 to F(𝑘−1)𝑛
2 . This construction was used in Mars [BCD+99], which was selected

as a finalist in the Aes competition.

𝑥0

𝑦0

𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

𝐹

Figure 8.6: One round of a target-heavy gfn with 𝑘 = 4 blocks.

Nyberg. The Nyberg Feistel [Nyb96]—depicted in in Figure 8.7—is similar to the type-2 Feistel
in the way that it also operates using 𝑘/2 Feistel functions. However in this case, the first half of
the branches are emitting branches—through a Feistel function—and the second half are receiving
branches. More precisely, for 0 ≤ 𝑖 ≤ 𝑘/2− 1, the Feistel function 𝐹𝑖 takes as input branch 𝑥𝑖
and its output is xored to branch 𝑥𝑘−𝑖.

8.1.2 Full diffusion delay

Once the number of branches of a gfn is chosen, one important matter that remains is the number
of rounds required to ensure a secure scheme. One criterion for that choice is the full diffusion
delay [Tho15], originally introduced as the maximum diffusion round in [SM10]. Informally, the
full diffusion delay is the smallest number of rounds needed so that each of the final output blocks

𝑥0

𝑦0

𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

𝐹1

𝐹0

Figure 8.7: One round of a Nyberg gfn with 𝑘 = 4 blocks.

204

8.1. Background on Gfns and their Extensions

𝑦0, · · · 𝑦𝑘−1 depends on every input blocks 𝑥0, · · · , 𝑥𝑘−1. This notion gives a quantifiable measure
of the diffusion inside a block cipher. A more formal definition can be given, using a graph point
of view.

Definition 8.1 (Associated digraph of a gfn). The associated digraph of a 𝑘-block gfn is
the graph with vertex set {0, · · · , 𝑘 − 1} and such that (𝑖, 𝑗) is an edge if the output block 𝑦𝑗
depends on the input block 𝑥𝑖. Edges of the graph either come from the nonlinear layer or the
permutation layer. Whenever the dependency spans from a Feistel function, a symbol 𝐹 is
used to label the corresponding edge.

The same 𝐹 is used for all the different round-functions used throughout the cipher.
A block 𝑥𝑖 is said to affect or influence an output block 𝑦𝑟𝑗 at round 𝑟 if the computation of

𝑦𝑟𝑗 depends on 𝑥𝑖. Block 𝑥𝑖 is said to have diffused at round 𝑟 if all outputs 𝑦𝑟𝑗 at round 𝑟 depend
on 𝑥𝑖, for 0 ≤ 𝑗 ≤ 𝑘 − 1. When all blocks 𝑥𝑖 have diffused at round 𝑟, for 0 ≤ 𝑖 ≤ 𝑘 − 1, the gfn
has reached full diffusion. The full diffusion delay, denoted 𝑑+, is the smallest number of round
required to reach full diffusion.

Definition 8.2 (Diffusion delay 𝑑+ of a gfn). Input block 𝑥𝑖 influences output block 𝑦𝑟𝑗 if
there exists a path of length exactly 𝑟 going from vertex 𝑖 to vertex 𝑗 in the associated digraph
of the gfn. The full diffusion delay 𝑑+ can thus be defined as the smallest integer 𝑟 such that,
for all ordered pair of vertices (𝑖, 𝑗) there exists a path of length exactly 𝑟 connecting 𝑖 to 𝑗.

Namely, the full diffusion delay 𝑑+ is the radius of the graph associated to the gfn. From
these definitions, it should be noticed that the full diffusion delay of a gfn is a structural property
of a gfn: it solely depends on the way the Feistel functions used in the gfn are placed, provided
they are not the zero function. Additionally, if a gfn reaches a full diffusion state at round 𝑟
then it will remain in such state for the remaining rounds.

In a similar manner, the full diffusion delay for decryption can be defined using the digraph
associated to the gfn in decryption mode. It is denoted 𝑑−.

Since encryption and decryption are equally important, we consider the full diffusion delay
for both ways, 𝑑 = max(𝑑+, 𝑑−). Table 8.1 summarizes the full diffusion delay for both ways 𝑑
for classical gfns.

Gfn Type Source-Heavy Target-Heavy Type-1 Type-2 Type-3 Nyberg
𝑑 𝑘 𝑘 (𝑘 − 1)2 + 1 𝑘 𝑘 𝑘

Table 8.1: Both-way full diffusion delay 𝑑 for the main instances of gfns with 𝑘 blocks.

8.1.3 Improvement of the diffusion delay

As stated before, the permutation layer of a gfn initially consisted in a cyclic shift of the branches.
At FSE 2010, Suzaki and Minematsu [SM10] presented their analysis results on gfns regarding
noncyclic permutations. It was shown that the diffusion could be improved for type-2 gfns by
carefully choosing the permutation. It particular, a generic construction based on de Bruijn
graphs was proposed for schemes with a number of branches 𝑘 that is a power of 2, leading to a
decrease of the diffusion delay from 𝑘 to2 log2 𝑘. Similar constructions were analyzed in [YI13]
for type-1, type-3, source-heavy and target-heavy gfns with noncyclic permutation. Regarding
the source-heavy and the target-heavy gfns, it was observed that these scheme can only reach

205

Chapter 8. Looking for new egfn structures

full diffusion if the permutation is a single cycle of length 𝑘, leading to a diffusion in 𝑘 rounds,
otherwise 𝑑 = +∞. As a result, using different permutations cannot improve the diffusion delay.
For Type-1 gfns on the other hand, authors were able to give an optimum generic construction
for any 𝑘. Finally, a necessary and sufficient condition for to improve the diffusion delay of type-3
gfns with 𝑘 branches, for 2 ≤ 𝑘 ≤ 8.

All the improved results are given in Table 8.2.

Gfn Type [YI13] Type-1 [SM10] Type-2
𝑑 𝑘(𝑘 + 2)/2− 2 2 log2 𝑘

Table 8.2: Improved both-way full diffusion delay 𝑑 for type-1 and type-2 of gfns with 𝑘 blocks.

8.1.4 Matrix Representation of Feistel Networks

Another way to further study the diffusion properties of a gfn is through a more unified vision
using a matrix representation, introduced by Berger et al. in [BMT14, Tho15]. In this section,
we give the definition of a gfn matrix and how this representation ties in with the graph view
introduced earlier.

Matrix of a gfn

We recall that one round of a gfn can be divided into two distinct transformations: first, the
nonlinear layer 𝒩 and second, the permutation layer 𝜋. The matrix of the permutation layer is
straightforward: it is the 𝑘 × 𝑘 binary permutation matrix 𝒫 such that

𝒫𝑖,𝑗 =
{︂

1 if 𝑖 = 𝜋(𝑗)
0 otherwise.

As for the nonlinear layer, the definition is given below:

Definition 8.3 (Matrix representation of the nonlinear layer of a gfn). The matrix repre-
sentation of the nonlinear layer of a 𝑘-block gfn is the 𝑘 × 𝑘-matrix ℱ over Z[𝐹] with an
all-one diagonal and with a formal parameter denoted 𝐹 at position (𝑖, 𝑗) if and only if there
is a Feistel-function taking block 𝑥𝑖 as input and whose output is xored to block 𝑥𝑗.

It follows that the matrix of the gfn as a whole can be defined as below:

Definition 8.4 (Matrix representation of a gfn). Consider a gfn whose nonlinear layer
and permutation layer are represented by a matrix ℱ and a binary permutation matrix 𝒫
respectively, then the matrix of the gfn is ℳ = 𝒫 × ℱ .

For a gfn with 𝑘 blocks,ℳ is the 𝑘 × 𝑘 matrix over Z[𝐹] such that for 0 ≤ 𝑖, 𝑗 ≤ 𝑘 − 1,

ℳ𝑖,𝑗 =

⎧
⎨
⎩

1 if 𝑦𝑖 directly depends on 𝑥𝑗
𝐹 if 𝑦𝑖 depends on 𝑥𝑗 via a Feistel function
0 otherwise.

The matrix of the gfn in decryption mode is ℳ−1. The corresponding matrices for the gfn
depicted in Figure 8.1 are given in Figure 8.8.

The following theorem ties the graph representation and the matrix representation of a gfn.

206

8.1. Background on Gfns and their Extensions

ℳ =

⎛
⎜⎜⎝

𝐹 1
1
𝐹 1

1
𝐹 1

1
𝐹 1

1

⎞
⎟⎟⎠ 𝒫 =

⎛
⎜⎜⎝

1
1
1
1
1
1
1

1

⎞
⎟⎟⎠ ℱ =

⎛
⎜⎜⎝

1
𝐹 1

1
𝐹 1

1
𝐹 1

1
𝐹 1

⎞
⎟⎟⎠

Figure 8.8: Decomposition of the transition matrix of the gfn given in Figure 8.1.

Theorem 8.5. The matrix ℳ of a gfn is the transpose of the adjacency matrix of the
associated digraph of the gfn.

The graph representation and the matrix representations are thus equivalent. Powers of the
matrixℳ provide information on how each block diffuses throughout the scheme. Indeed, the
elementℳ𝑟

𝑖,𝑗 gives the number of walks of length 𝑟 from vertex 𝑖 to vertex 𝑗. Put another way,
ℳ𝑟

𝑖,𝑗 indicates wether input block 𝑥𝑖 influences output block 𝑦𝑟𝑗 after 𝑟 rounds. As a consequence
the diffusion delay 𝑑+ can be defined from the matrix point of view as follows:

Theorem 8.6. Given a gfn with diffusion delay 𝑑+ and associated matrix ℳ, then 𝑑+ is
the smallest nonzero integer such that ℳ𝑑+ has only nonzero coefficients.

The diffusion delay in decryption mode 𝑑− can naturally be defined in an analogous way using
ℳ−1. One advantage of the matrix representation over the graph representation is that one can
multiply different matrices together instead of just raising one matrix to a power, which means
that one can use round functions that are different. Moreover, the notion of inversion comes more
naturally for matrices than it does for graphs.

Matrix Equivalences

The matrix representation now allows us to properly define an equivalence relation on gfns.

Definition 8.7. Two gfns are equivalent if their associated graphs are isomorphic. From a
matrix point of view, two gfn matricesℳ andℳ′ are equivalent if there exists a permutation
matrix 𝜋 such that 𝜋ℳ𝜋−1 =ℳ′.

In other words, two gfns are equivalent if they are the same up to block reindexation and
thus share the same properties, such as a common full diffusion delay. Moreover, the following
property describes how the corresponding inner layers of two equivalent gfns are tied one to
another.

Theorem 8.8. Let ℳ = 𝒫ℱ and ℳ′ = 𝒫 ′ℱ ′ be two gfns according to Definition 8.4
and equivalent as defined in Definition 8.7. Let also 𝜋 be such that 𝜋ℳ𝜋−1 =ℳ′. Then
𝜋𝒫𝜋−1 = 𝒫 ′ and 𝜋ℱ𝜋−1 = ℱ ′.

Two gfns are thus equivalent if and only if both of their layers are equivalent with the same
conjugating element 𝜋.

8.1.5 Characterizing Quasi-involutive gfns

In this section, we look at the characteristics of a gfn matrix. Clearly, not every matrix with
coefficient in {0, 1, 𝐹} corresponds to a gfn.

207

Chapter 8. Looking for new egfn structures

We recall that an important and interesting feature of gfns is that they are invertible
permutations, regardless of the invertible nature of the inner Feistel functions that are used in
each round: the decryption process uses the exact same functions. Consequently, when looking at
the matrix of the gfn in decryption modeℳ−1, no element should be computed as inverses of
expressions containing an 𝐹 . This yields that det(ℳ) is independent of 𝐹 , or equivalently, that
det(ℳ) = ±1, hence det(ℱ) = ±1 since 𝒫 is a permutation matrix.

Another feature of many gfns is that the decryption process is roughly the same as the
encryption process, up to inverting the permutation layer 𝒫. Such property is called quasi-
involutiveness. The remaining of this section focuses of these particular schemes.

Definition 8.9. A gfn is quasi-involutive if its nonlinear layer is an involution.

All classical gfns described in Section 8.1.1 are quasi-involutive, except for the type-3 gfn,
in which case the round-functions must be evaluated sequentially while decrypting.

The definition of a matrix of a quasi-involutive gfn is given below:

Definition 8.10. A 𝑘 × 𝑘-matrix ℳ with coefficients in {0, 1, 𝐹} ⊂ Z[𝐹] is the matrix of a
quasi-involutive gfn if it can be written as ℳ = 𝒫ℱ , where 𝒫 is a permutation matrix and
ℱ satisfies the following conditions:

1. the main diagonal is filled with 1,

2. the off-diagonal coefficients are either 0 or 𝐹 ,

3. for each index 𝑖, row 𝑖 and column 𝑖 cannot both have an 𝐹 coefficient.

Condition 3 means that the blocks of the gfn can be partitioned into three categories:

∙ emitting blocks, that go through a Feistel function,

∙ receiving blocks, that are xored to the output of a Feistel function,

∙ blocks that do not emit nor receive.

Theorem 8.11. Let ℳ = 𝒫ℱ be a gfn according to Definition 8.10. Then ℱ is invertible
and ℱ−1 = 2ℐ − ℱ , where ℐ stands for the identity matrix.

Theorem 8.11 shows the property of quasi-involutiveness of gfns defined as in Definition 8.10.
The matrices are indeed with coefficients in a ring of characteristic 0 so that distances can be
computed/measured in the associated Feistel graph. In this context, inverting the operation
of adding the output of the Feistel functions means performing the corresponding subtraction,
hence the term −ℱ . The other term, 2ℐ, ensures that the coefficients on the diagonal equal 1. In
characteristic 2, which is the case where the outputs of the Feistel functions are simply xored
with other blocks, this theorem yields ℱ−1 = ℱ .

Conversely, a characterization can be given for matrices ℱ such that ℱ−1 = 2ℐ − ℱ :

Theorem 8.12. Let ℱ be a matrix that verifies Conditions 1 and 2 of Definition 8.10. If
(ℱ − ℐ)2 = 0 then ℱ also verifies Condition 3.

In other words, all quasi-involutive nonlinear layer matrices are exactly those for which
Condition 3 of Definition 8.10 holds.

208

8.1. Background on Gfns and their Extensions

𝑥0

𝑦0

𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

nonlinear layer ℱ
linear layer ℒ
permutation layer 𝒫

𝒩
ℳ =

(︂
𝐼 𝐹 1
𝐹 𝐼 1
1

1

)︂
𝒫 =

(︂
1
1

1
1

)︂

ℒ =

(︂
1
1

𝐼 1
𝐼 1

)︂
ℱ =

(︂
1

1
𝐹 1

𝐹 1

)︂

Figure 8.9: An example of an egfn with its three layers and the corresponding matrices.

8.1.6 Extended Generalized Feistel Networks

In this section, we remind the results from [BMT14, Tho15] in which Extended Generalized
Feistel Networks (egfns) were introduced. Using permutations other than the cyclic shift in the
permutation layer of gfns has proven to an effective way to improve diffusion, as shown by Suzaki
et al. in [SM10] and more recently in [CGT19] and [DFLM19]. The idea behind egfns is to go
even further and to replace the block permutation with a linear mapping, which is equivalent to
adding a third layer, called the linear layer between the nonlinear layer and the permutation
layer.

Definition 8.13. A matrix ℳ with coefficients in {0, 1, 𝐹, 𝐼} ⊂ Z[𝐹, 𝐼] is an Extended
Generalized Feistel Network (egfn) matrix if it can be written in the form ℳ = 𝒫𝒩 such
that 𝒫 is a permutation matrix and the matrix 𝒩 satisfies the following properties:

1. the main diagonal is filled with 1,

2. the off-diagonal coefficients are either 0, 𝐹 or 𝐼,

3. for each index 𝑖, row 𝑖 and column 𝑖 cannot both contain a nonzero coefficient other
than on the diagonal,

4. for each index 𝑖, if row 𝑖 contains an 𝐼 then it also contains an 𝐹 .

An example of an egfn with 𝑘 = 4 branches and its associated matrices is depicted in Fig-
ure 8.9.

Definition 8.14. Conside an egfn and its associated matrixℳ as defined in Definition 8.13,
the diffusion delay in encryption mode of the egfn is the smallest integer 𝑑+ such that ℳ𝑑+

does not have any zero coefficients. The diffusion delay in decryption mode is defined in a
similar way and is denoted 𝑑−. Finally, we define the full diffusion delay of the egfn as
𝑑 = 𝑚𝑎𝑥(𝑑+, 𝑑−).

More generally, we have the following definition.

Definition 8.15. Consider an egfn and its associated matrixℳ as defined in Definition 8.13,
for an integer ℓ ∈ N, we define the ℓ𝑡ℎ diffusion delay of the scheme as the smallest integer
𝑑+ℓ such that:

min
0≤𝑖,𝑗≤𝑘−1

deg(ℳ′𝑑+ℓ
𝑖,𝑗) ≥ ℓ,

209

Chapter 8. Looking for new egfn structures

where ℳ′ is the matrix with coefficients in {0, 1, 𝐹} ⊂ Z[𝐹] such that:

ℳ′
𝑖,𝑗 =

{︃
1 if ℳ𝑖,𝑗 = 𝐼

ℳ𝑖,𝑗 otherwise.

Similarly, we define 𝑑−ℓ using ℳ−1 instead of ℳ.
𝑑ℓ = 𝑚𝑎𝑥(𝑑+ℓ , 𝑑

−
ℓ) is then called the ℓ𝑡ℎ diffusion delay in both ways.

Theorem 8.16. Consider an egfn as defined in Definition 8.13 with 𝑘 ≥ 4 blocks, 𝑘 even,
and its associated matrices ℳ, 𝒩 and 𝒫 with 𝒩 being the matrix representing the both
nonlinear and linear layers of the egfn and with 𝒫 being the matrix of the permutation layer
defined by a permutation 𝜋 then,

1. if the matrix 𝒩 is equal to 𝒩 =
(︀ ℐ 0
𝒜 ℐ
)︀
∈ Z[𝐹, 𝐼] where ℐ is the 𝑘

2 × 𝑘
2 identity matrix

and where 𝒜, the lower left quarter of 𝒩 , is such that 𝒜 =

⎛⎜⎜⎜⎜⎜⎝
𝐹

(0) 𝐹 𝐼

... 𝐼

𝐹 (0)
...

𝐹 𝐼 𝐼 ··· 𝐼

⎞⎟⎟⎟⎟⎟⎠
2. and if 𝒫 globally exchanges emitters (blocks 𝑥0 to 𝑥𝑘/2−1) with receivers (blocks 𝑥𝑘/2 to

𝑥𝑘−1) with 𝜋(𝑘/2− 1) = 𝑘 − 1 and 𝜋(𝑘 − 1) = 𝑘/2− 1,

then its diffusion delay 𝑑 is equal to 4.

nonlinear layer

linear layer

permutation layer

𝑥0

𝑦0

𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

𝑥4

𝑦4

𝑥5

𝑦5

𝑥6

𝑦6

𝑥7

𝑦7

𝑥8

𝑦8

𝑥9

𝑦9

𝑥10

𝑦10

𝑥11

𝑦11

𝑥12

𝑦12

𝑥13

𝑦13

𝑥14

𝑦14

𝑥15

𝑦15

𝐹0

𝐹1

𝐹2

𝐹3

𝐹4

𝐹5

𝐹6

𝐹7

Figure 8.10: One round of an egfn that reaches full diffusion in 4 rounds.

Figure 8.10 depicts one example of an egfn round that fulfills all the conditions stated in
Theorem 8.16 and reaches full diffusion in 4 rounds as a result.

210

8.2. Towards Lighter Egfn Constructions

8.1.7 Lilliput

The Lilliput round function is a particular case of egfn deduced from Theorem 8.16, introduced
in [BFMT16]. This egfn with 𝑘 = 16 blocks is depicted in Figure 8.11.

nonlinear layer

linear layer

permutation layer

𝑋0𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7𝑋8𝑋9𝑋10𝑋11𝑋12𝑋13𝑋14𝑋15

𝜋 = (0, 13, 6, 12, 2, 14)(1, 9, 5, 11)(3, 8, 4, 10)(7, 15)

𝐹0

𝐹1

𝐹2

𝐹3

𝐹4

𝐹5

𝐹6

𝐹7

Figure 8.11: The round function of Lilliput, that reaches full diffusion in 4 rounds. The
permutation 𝜋 is given as a product of cycles.

The permutation 𝜋 has been chosen so that the number of active S-boxes on 18, 19 and 20
rounds is maximized among the 37108 possible permutations (up to block reindexing equivalence)
that fulfill the conditions of Theorem 8.16. A more complete description of Lilliput can be
found in Section 2.4.4 of this thesis.

8.2 Towards Lighter Egfn Constructions

The goal of this work was to design an even lighter version of Lilliput with similar properties—
same diffusion delay and good resistance to differential and integral cryptanalysis.

For the permutation layer, we wanted to focus on involutions to minimize the overhead of
decryption. For the upper layers, our intentions was to reduce the number of xors, while keeping
the same amount nonlinear components. From a matrix perspective, this essentially meant
removing some of coefficients equal to 𝐼.

A relaxed definition of egfns. Regarding Theorem 8.16, one interesting observation is that
the result stays true, as long as the last row and the last column of the 𝒜 matrix—the lower left
quarter of the 𝒩 matrix—are both entirely filled with nonzero coefficients. In other words, all
the coefficients of the antidiagonal except the two ends can be removed, potentially allowing for
lighter constructions of egfns with a diffusion delay 𝑑 equal to 4. However, the four conditions
stated in Definition 8.13 were too restrictive and did not allow for much reduction. Conditions 1
and 2 were essential to the definition of egfns and Condition 3 simply implied that branches
of the egfn were either emitters1 or receivers2, but not both. Condition 4, on the other hand,

1We recall that an emitting branch influences other branch in a linear or nonlinear way.
2A receiving branch is influenced by at least another branch in a linear or nonlinear way.

211

Chapter 8. Looking for new egfn structures

seemed too strong to us and thus, we decided to investigate whether finding egfns with good
properties that did not satisfy this condition was possible.

As a result, in the following, we considerℳ matrices with coefficients in {0, 1, 𝐹, 𝐼} ⊂ Z[𝐹, 𝐼]
that can be written in the formℳ = 𝒫𝒩 such that 𝒫 is a involutory permutation matrix and
the matrix 𝒩 satisfies the following properties:

1. the main diagonal is filled with 1,

2. the off-diagonal coefficients are either 0, 𝐹 or 𝐼,

3. for each index 𝑖, row 𝑖 and column 𝑖 cannot both contain a nonzero coefficient other than
on the diagonal.

In the case of the 8× 8 𝒜 matrix used in Lilliput, shown in Figure 8.12, the antidiagonal is
filled with 𝐹 s and the rest of the last column and of the last row is made of 13 coefficients all
equal to 𝐼. However, with this relaxed definition, other configurations with the same number of
Feistel functions and the same diffusion delay are possible: instead of being on the antidiagonal,
the 𝐹 coefficients can be moved to the last row or to the last column, thus removing some 𝐼
coefficients, which is equivalent to removing some xors from the scheme.

⎛
⎜⎜⎝

𝐹
(0) 𝐹 𝐼

... 𝐼

𝐹 (0)
...

𝐹 𝐼 𝐼 ··· 𝐼

⎞
⎟⎟⎠

Figure 8.12: The 𝒜 matrix of Lilliput.

We therefore examined several sets of 8×8 matrices made of 8 coefficients equal to 𝐹 following
a similar triangular structure as the one described in Theorem 8.16 but with a reduced number
of nonzero coefficients on the antidiagonal. For each matrices, we wanted to assess the number of
permutations in 𝑃𝑖𝑛𝑣𝑜𝑙 that resulted in schemes with good resistance to integral and differential
cryptanalysis. The idea was then to keep the matrices that could be combined with the highest
number of permutations for more in-depth analysis. The results of our experiment are reported
in the following parts. We also try to understand how the permutations and the matrices interact
together to possibly exhibit some criteria that could help with the choice of the permutation
layer.

8.2.1 Resistance to integral attacks

Integral cryptanalysis [DKR97] (see Section 3.3.1) uses sets of chosen plaintexts with a fixed part
and another that varies through all possibilities. Typically, for an 𝑛-bit block cipher, these sets
contain 2𝑛 messages that only differ in one block. The xor of these 2𝑛 values necessarily sums
up to zero and the sum of the corresponding ciphertexts can leak information about the cipher’s
operation.

The examined matrices were split into three sets (with some redundancy), described below.

1. The first set consists of matrices 𝒜 such that each column of 𝒜 has exactly one 𝐹 coefficient.
We recall that this coefficient can either be on the antidiagonal, on the last row or on the
last column of 𝒜.

212

8.2. Towards Lighter Egfn Constructions

2. In the second set, we consider matrices 𝒜 such that each row has exactly one 𝐹 coefficient.
As for the first set, this coefficient can either be on the antidiagonal, on the last row or on
the last column. This entire set actually verifies Condition 4 of Definition 8.13.

3. Finally, the last set consists of matrices with no coefficients on the antidiagonal at all, and
8 𝐹 coefficients.

For each matrix, we also ensure that the last row and the last column of 𝒜 contain only
nonzero coefficients by filling the gaps with 𝐼 coefficients in order to guarantee a diffusion delay
equal to 4. This entails that in any case, branch 𝑥7 influences every receiving branch 𝑥𝑖, for
8 ≤ 𝑖 ≤ 15—linearly or via a Feistel function—and 𝑥15 receives from every emitting branch 𝑥𝑗 ,
for 0 ≤ 𝑗 ≤ 7.

For the rest of this section, we only focus on the set of 7! = 5040 involutory permutations 𝜋𝑖
that satisfy Condition 2 of Theorem 8.16. We denote the set by 𝒫𝑖𝑛𝑣𝑜𝑙.

Set 1: every emitting branch is taken as input of a Feistel function

The set considered here contains matrices for which each column has exactly one 𝐹 coefficient.
This coefficient can either be on the antidiagonal, on the last row or on the last column of 𝒜.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

×
× ×

(0) × ×
× ×

× ×
× (0) ×

× ×
𝐹 × × × × × × ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 8.13: Layout of a matrix from set 1. Each column can only contain one 𝐹 coefficient. Red
coefficients are either 𝐼 or 𝐹 , blue coefficients equal 𝐹 if the red coefficient on the same column
equals 𝐼 and 0 otherwise.

In other words, for 0 ≤ 𝑖 ≤ 7, branch 𝑥𝑖 emits through exactly one Feistel function. Moreover,
if 0 < 𝑖 < 7, there are two possibilities: the output of the Feistel function can either be xored to
branch 𝑥15−𝑖 (if the 𝐹 is on the antidiagonal) or to branch 𝑥15 (if the 𝐹 is on the last row). For
𝑥7, the output of the Feistel function can be xored to any branch 𝑥𝑗 , with 8 ≤ 𝑗 ≤ 15 and 𝑥15
will always be influenced at least by 𝑥0 in a nonlinear manner. Figure 8.13 shows the general
layout of the matrix considered; an example and the resulting scheme are depicted in Figure 8.14.

The set contains 8× 26 = 512 matrices. Indeed, the 𝐹 on the first column of 𝒜 is fixed and
for each of the 8 possible positions for the 𝐹 on the last column, the remaining 6 𝐹 coefficients
are either on the antidiagonal or on the last row.

All matrices result in the same 𝑑1 and 𝑑2 values (as defined by Definition 8.15) as Lilliput,
which are 5 and 6 respectively, for all permutations in 𝑃𝑖𝑛𝑣𝑜𝑙.

When considering 8 rounds, we found 20 matrices with no integral property, no matter which
permutation was used. These are the 14 matrices with at least 7 𝐹 coefficients on the antidiagonal,
and the 6 matrices that have 6 𝐹 s on the diagonal with the two remaing 𝐹𝑠 at (7, 𝑖) and (𝑖, 7)
for 𝑖 ∈ J1, 6K.

From the egfn point of view, this means that the three cases described below can occur.

213

Chapter 8. Looking for new egfn structures

𝑋0𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7𝑋8𝑋9𝑋10𝑋11𝑋12𝑋13𝑋14𝑋15

Any involutory permutation 𝜋

𝐹0
𝐹1
𝐹2
𝐹3
𝐹4
𝐹5
𝐹6
𝐹7

⎛
⎜⎜⎜⎝

0
𝐹 𝐼

(0) 𝐹 𝐼
𝐹 𝐼

0 𝐹
𝐹 (0) 𝐼

𝐹 𝐼
𝐹 𝐼 𝐼 𝐹 𝐼 𝐹 𝐹 𝐼

⎞
⎟⎟⎟⎠

Figure 8.14: A matrix from set 1 with no integral property for 8 rounds (3rd case) and the
associated egfn with 16 blocks.

1. Branch 𝑥𝑖 emits via a Feistel function to branch 𝑥15−𝑖, for 𝑖 ∈ J0, 7K. That is the Lilliput
matrix.

2. There is a branch 𝑥𝑒, with 1 ≤ 𝑒 ≤ 7, that emits via a Feistel function to 𝑥15, and for all
𝑖 ∈ J0, 7K ∖ {𝑒}, branch 𝑥𝑖 emits via a Feistel function to branch 𝑥15−𝑖.

3. There is a branch 𝑥𝑒, with 1 ≤ 𝑒 ≤ 6, that emits via a Feistel function to 𝑥15, and for all
𝑖 ∈ J0, 6K ∖ {𝑒}, branch 𝑥𝑖 emits via a Feistel function to branch 𝑥15−𝑖. As for 𝑥7, the branch
goes through a Feistel function and the result is xored to 𝑥15−𝑒. One example is provided
in Figure 8.14.

In essence, whenever one considers schemes for which every emitting branch goes through a
Feistel function, there exist schemes with one less xor operation than the original Lilliput
that ensure an absence of integral property after 8 rounds, no matter which permutation
is used. For 6 rounds however, only the Lilliput matrix seems to be resistant to integral
cryptanalysis for all permutationsa.

aCombining the Lilliput matrix with involutory permutations, leads to schemes that are all equivalent,
thus, the outcome is the same for all involutory permutations in 𝒫𝑖𝑛𝑣𝑜𝑙.

Set 2: every receiving branch is xored to the output of a Feistel function

For this set, each row of 𝒜 has exactly one 𝐹 coefficient. We consider two cases:

1. a case where both ends of the antidiagonal have 𝐹 coefficients, which is simpler to study,
leaving only 6 other coefficients to position, i.e. for 8 ≤ 𝑖 ≤ 15, every receiving branch 𝑥𝑖 is
influenced via a Feistel function, either by 𝑥15−𝑖 or by 𝑥7.

214

8.2. Towards Lighter Egfn Constructions

2. the full case, where the 𝐹 coefficients can either be anywhere on the last row, the last
column or the antidiagonal as long as there are exactly one 𝐹 coefficient per row, i.e. for
8 ≤ 𝑖 ≤ 14, every receiving branch 𝑥𝑖 is influenced via a Feistel function, either by 𝑥15−𝑖 or
by 𝑥7. As for 𝑥15, the branch is influenced in a nonlinear way by one of the emitters. This
means that besides 𝑥7, another the emitter might influence two branches at the same time.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐹
× ×

(0) × ×
× ×

× ×
× (0) ×

× ×
𝐹 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 8.15: Possible placements for 𝐹 coefficients for a matrix from set 2 in the simple case.
Each row can only contain one 𝐹 coefficient. Red coefficients are either 𝐼 or 𝐹 , blue coefficients
equal 𝐹 if the red coefficient on the same row equals 𝐼, 0 otherwise.

Simple case. The set consists of 64 matrices: the first row and the last row are already fixed,
as shown in Figure 8.15, and there are 2 possibilities for each of the 6 remaining rows (the 𝐹
coefficient is either on the antidiagonal or on the last column).

All 64 matrices result in the same 𝑑1 and 𝑑2 values as Lilliput, for all permutations in
𝒫𝑖𝑛𝑣𝑜𝑙. No matrix appears to show any integral property after 8 rounds, for all 5040 permutations.
After 6 rounds, however, for some matrices, only a portion of the permutations yields no integral
property. We will call these valid permutations for the rest of the section.

Proposition 8.17. The number 𝑝𝑛𝐹 of valid permutations depends on the number 𝑛𝐹 of 𝐹
coefficients on the diagonal, excluding the ones on both ends:

∀𝑛𝐹 ∈ J0, 5K, 𝑝𝑛𝐹 =

{︃
(7− 𝑛𝐹)! · 𝑛𝐹 ! if 𝑛𝐹 is even
(7− 𝑛𝐹)! · (𝑛𝐹 + 1)! otherwise.

To explain this proposition, we denote the 𝑛𝐹 corresponding emitting branches by ℰ =
{𝑒0, · · · , 𝑒𝑛𝐹−1} ⊂ {𝑥1, · · · , 𝑥6} and the 𝑛𝐹 corresponding receiving branches byℛ = {𝑟0, · · · , 𝑟𝑛𝐹−1} ⊂
{𝑥8, · · · , 𝑥14}. Figure 8.16 shows a matrix 𝒜 with 𝑛𝐹 = 1 𝐹 coefficient and the corresponding
egfn scheme. Here, ℰ = {𝑥4} and ℛ = {𝑥15−4} = {𝑥11}.

1. When 𝑛𝐹 is even, then every permutation 𝜋 such that 𝜋(ℰ) = ℛ leads to a scheme that can
resist integral attacks in 6 rounds. There are 𝑛𝐹 ! such possible swaps and (7−𝑛𝐹)! possible
swaps for the remaining emitting branches (that is, {𝑥0, · · · , 𝑥6} ∖ ℰ), hence in total:

(7− 𝑛𝐹)! · 𝑛𝐹 !

2. When 𝑛𝐹 is odd, the valid permutations include permutations 𝜋 such that globally exchange
ℰ and ℛ like in the even case, as well as permutations satisfying the three following
conditions:

(a) 𝑥0 is swapped with a branch 𝑟𝑥0 ∈ ℛ (
(︀
𝑛𝐹
1

)︀
choices),

215

Chapter 8. Looking for new egfn structures

(b) 𝑛𝐹 − 1 emitters among ℰ are swapped with the 𝑛𝐹 − 1 receivers left available from
ℛ ∖ {𝑟𝑥0} (

(︀
𝑛𝐹

𝑛𝐹−1

)︀
choices to pick the emitters, then (𝑛𝐹 − 1)! permutations),

(c) the (6− (𝑛𝐹 − 1)) remaining emitters are swapped with any other receiver that is not
in ℛ.

Put another way, when 𝑛𝐹 is odd, one of the branches in ℰ can switch its role with 𝑥0,
hence (7− 𝑛𝐹)! · 𝑛𝐹 ! possibilities for each of the 𝑛𝐹 branches. The reason why this occurs
in the odd case remains to be determined. As a result, the total number of permutations is:

(7− 𝑛𝐹)! · 𝑛𝐹 ! + 𝑛𝐹 · (7− 𝑛𝐹)! · 𝑛𝐹 ! = (7− 𝑛𝐹)! · (𝑛𝐹 + 1)!

The case where 𝑛𝐹 = 6 is more particular as 𝑝6 = 5040; that is to say, any permutation of
𝒫𝑖𝑛𝑣𝑜𝑙 can be used. This case correspond to the Lilliput matrix and is simply explained by
the fact that for all permutations in 𝒫𝑖𝑛𝑣𝑜𝑙, the resulting schemes are equivalent, as mentioned
earlier. Actually, when 𝑛𝐹 = 0, every receiving branch is influenced in a nonlinear way, either by
𝑥0 for 𝑥15, or by 𝑥7 for all the other branches. That is, every branch 𝑥𝑖 is interchangeable, for
𝑖 ∈ J8, 14K and, as for 𝑛𝐹 = 6, any permutation in 𝒫𝑖𝑛𝑣𝑜𝑙 produces an equivalent scheme. All the
results are summarized in Table 8.3.

𝑛𝐹 0 1 2 3 4 5 6
𝑝𝑛𝐹 5040 1440 240 576 144 1440 5040

Table 8.3: Number of permutations 𝑝𝑛𝐹 for which no integral property exists for 6 rounds given a
matrix 𝒜 with 𝑛𝐹 𝐹 coefficients on the antidiagonal, both ends excluded.

𝑋0𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7𝑋8𝑋9𝑋10𝑋11𝑋12𝑋13𝑋14𝑋15

𝜋 =

{︃
(4, 11)(7, 15) · · ·
(0, 11)(7, 15) · · ·

𝐹0
𝐹1
𝐹2
𝐹3
𝐹4
𝐹5
𝐹6
𝐹7

⎛
⎜⎜⎜⎝

𝐹
0 𝐹

(0) 0 𝐹
𝐹 𝐼

0 𝐹
0 (0) 𝐹

0 𝐹
𝐹 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼

⎞
⎟⎟⎟⎠

Figure 8.16: One example of a matrix for the 𝑛𝐹 = 1 case of set 2 and its associated egfn. The
permutations are given as a product of cycles.

216

8.2. Towards Lighter Egfn Constructions

For the simple case of this set, in which every receiving is influenced via a nonlinear function,
there exist schemes with a total of 15 xor operations for which there is no integral property
after 6 rounds. This is 6 less than for the Lilliput matrix. The corresponding matrix is the
following:

𝒜 =

⎛
⎜⎜⎜⎝

𝐹
0 𝐹

(0) 0 𝐹
0 𝐹

0 𝐹
0 (0) 𝐹

0 𝐹
𝐹 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼 𝐼

⎞
⎟⎟⎟⎠

All permutations are valid.

Full case. In the full case, we have 512 matrices (64 possible combinations for each position on
the last row) and all matrices result in 𝑑1 = 5 and 𝑑2 = 6, for all permutations. The placement
choices for the 𝐹 coefficients are depicted in Figure 8.17.

After 20 rounds, none of the 512 matrices has any integral property, for all permutations in
𝒫𝑖𝑛𝑣𝑜𝑙. This holds down to 8 rounds. After 6 rounds however, 132 matrices have undesirable
properties, no matter which permutation is used and for the 380 matrices that remain, not all
permutations are valid.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐹
× ×

(0) × ×
× ×

× ×
× (0) ×

× ×
× × × × × × × ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 8.17: Layout of a matrix from set 2, full case. Each row can only contain one 𝐹 coefficient.
Blue coefficients are either 0 or 𝐹 . Red coefficients are either 𝐼 or 𝐹 .

While in the simpler case, the number of 𝐹 coefficients on the antidiagonal (with both ends
excluded) seemed enough to determine the number of valid permutations, other parameters come
into play here, such as the number of 𝐹 coefficients on a single column that is not the last one.
Indeed, in the simpler case, the 𝐹 coefficient on the last row of 𝒜 was fixed at position (0,7).
Here, it can be anywhere on the last row, at a position that we denote by (0, 𝑙𝑟). If another 𝐹
coefficient is placed on the diagonal at position (𝑙𝑟, 𝑙𝑟), then branch 𝑥𝑙𝑟 has a nonlinear influence
on two receiving branches. This leads to many subcases, as shown in Table 8.4, and as a result,
the formula derived in the simpler case does not apply anymore.

𝑛𝐹 0 1 2 3 4 5 6

𝑝𝑛𝐹

𝑥𝑙𝑟 /∈ ℰ and 𝑥𝑙𝑟 ̸= 𝑥7 5040 1440 240 576 144 1440 5040
𝑥𝑙𝑟 ∈ ℰ - 720 0 528 0 624 720
𝑥𝑙𝑟 = 𝑥7 5040 5040 1200 0 0 0 0

Table 8.4: Number of permutations 𝑝𝑛𝐹 for which no integral property exists for 6 rounds given a
matrix 𝒜. 𝑛𝐹 is the number of 𝐹 coefficients on the antidiagonal, both ends excluded, ℰ is the
set of 𝑛𝐹 corresponding emitters and 𝑥𝑙𝑟 denotes the branch that emits to 𝑥15. The "-" symbol is
used for settings that never occur.

217

Chapter 8. Looking for new egfn structures

Let us have a closer look at Table 8.4. Consider a matrix with 𝑛𝐹 coefficients on the diagonal,
excluding both ends. As done in the simple case, let us denote the 𝑛𝐹 corresponding emitting
branches by ℰ = {𝑥𝑒0 , · · · , 𝑥𝑒𝑛𝐹−1} ⊂ {𝑥1, · · · , 𝑥6}, and the 𝑛𝐹 corresponding receiving branches
by ℛ = {𝑥15−𝑒0 , · · · , 𝑥15−𝑒𝑛𝐹−1} ⊂ {𝑥8, · · · , 𝑥14}.

∙ The first row shows that when the only column of 𝒜 with more than one 𝐹 coefficient is the
last column (𝑥𝑙𝑟 /∈ ℰ), and that the 𝐹 coefficient of the last row is not on the last column
either (𝑥𝑙𝑟 ̸= 𝑥7), then the behavior observed in the simple case can be seen again. The
only difference here is that 𝑥𝑙𝑟 might not be 𝑥0.

∙ On the second row, when one emitter—that is not 𝑥7—nonlinearly influences two other
branches (𝑥𝑙𝑟 ∈ ℰ , and for simplicity, let us consider that 𝑥𝑙𝑟 = 𝑥𝑒0), a valid permutation 𝜋
has to fulfill one the following conditions:

– if 𝑛𝐹 is odd,

1. 𝜋(𝑥𝑒0) ∈ ℛ ∖ {𝑥15−𝑒0} and there is one subset ℰ𝑛𝐹−2 of ℰ ∖ {𝑥𝑒0} of size 𝑛𝐹 − 2,
such that 𝜋(ℰ𝑛𝐹−2) = ℛ ∖ {𝑥15−𝑒0 , 𝜋(𝑥𝑒0)} and 𝜋(ℰ ∖ {𝑥𝑒0 , ℰ𝑛𝐹−2}) ̸= 𝑥15−𝑒0 .

2. 𝜋(ℰ) = ℛ

Thus, the total number of permutations is:

(𝑛𝐹 − 1) ·
(︂
𝑛𝐹 − 1

𝑛𝐹 − 2

)︂
· (𝑛𝐹 − 2)! ·

(︀
6− (𝑛𝐹 − 1)

)︀
· (7− 𝑛𝐹)! + 𝑛𝐹 ! · (7− 𝑛𝐹)!

that is,
(7− 𝑛𝐹)! ·

(︀
(𝑛𝐹 − 1)2 · (𝑛𝐹 − 2)! · (7− 𝑛𝐹) + 𝑛𝐹 !

)︀
.

– if 𝑛𝐹 is even, it is still unclear why for 𝑛𝐹 = 2 or 𝑛𝐹 = 4, none of the permutations are
valid. When 𝑛𝐹 = 6, the only valid permutations are the ones such that 𝜋(ℰ) = ℛ.

∙ Regarding the third row, when 𝑛𝐹 = 2, there are two emitting branches 𝑥𝑒0 and 𝑥𝑒1 , with
1 ≤ 𝑒0, 𝑒1 ≤ 6 that respectively emit to 𝑥15−𝑒0 and 𝑥15−𝑒1 and 𝑥7 also emits to 𝑥15. A valid
permutation 𝜋 has to fulfill one of the following conditions:

1. 𝜋(𝑥𝑒0) = 𝑥15−𝑒1 and 𝜋(𝑥𝑒1) ̸= 𝑥15−𝑒0

2. 𝜋(𝑥𝑒1) = 𝑥15−𝑒0 and 𝜋(𝑥𝑒0) ̸= 𝑥15−𝑒1

Since for the other values, 𝑝𝑛𝐹 = 5040 or 0, we could not

Once again, for the full case of this set, there are 8 schemes with a total of 15 xor operations
for which there is no integral property after 6 rounds, no matter which permutation in 𝒫𝑖𝑛𝑣𝑜𝑙
is used. These are the schemes in which 𝑥7 goes through a Feistel function and is xored to
𝑥8, . . . , 𝑥14.

Set 3: no coefficients on the antidiagonal

218

8.2. Towards Lighter Egfn Constructions

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

×
×
×

(0) ×
×
×
×

× × × × × × × ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 8.18: Layout of a matrix from set 3. Red
coefficients are either equal to 𝐼 or 𝐹 .

For this last configuration, we considered
matrices with no coefficients on the an-
tidiagonal at all, that is, matrices with
only 15 nonzero coefficients. The 8
𝐹 coefficients are thus either on the
last row or on the last column of ma-
trix 𝒜. Consequently, branch 𝑥7 is
the only branch that can have more
than one receiver (via a Feistel function),
and branch 𝑥15 is the only branch than
can have more than one nonlinear emit-
ter.

Out of the
(︀
15
8

)︀
combinations, 3446 𝒩 matrices resulted in the same 𝑑1 and 𝑑2 values as

Lilliput.
If we denote by 𝑎𝑖,𝑗 the coefficients at row 𝑖 and column 𝑗 of 𝒜, then these remaining matrices

are:

∙ the
(︀
12
5

)︀
possible matrices such that 𝑎 𝑘

2
−1, 𝑘

2
−1 = 𝐹 ,

∙ the 7 matrices with exactly one 𝐹 coefficient per row such that 𝑎7,7 = 𝐼,

∙ the 7 matrices with exactly one 𝐹 coefficient per column such that 𝑎7,7 = 𝐼.

That is, if 𝑥7 does not emit to branch 𝑥15, then either every other emitting branch 𝑥𝑖 influences
𝑥15 in a nonlinear way, for 0 ≤ 𝑖 ≤ 6, or every other receiving branch 𝑥𝑗 receives from 𝑥7 in a
nonlinear way, for 8 ≤ 𝑗 ≤ 14. We then studied the integral property of these matrices when
combined with the permutations from 𝒫𝑖𝑛𝑣𝑜𝑙:

∙ After 20 rounds, 204 matrices showed no integral property, for all permutations. These are
the matrices with 6 𝐹 coefficients or more on the last column.

∙ After 8 rounds, only 57 matrices showed no integral property. This result does not depend
on the chosen permutation. These are the matrices with exactly 7 𝐹 coefficients on the last
column (8 possibilities to pick the row without an 𝐹 on the last column × 7 possibilities
for the 𝐹 on the last row) and the target-heavy scheme in which 𝑥7 emits to all 8 receiving
branches.

∙ After 6 rounds, only 8 matrices had no integral property. These are the matrices already
exhibited with the previous set, in which the first 7 positions of the last column are
filled with 𝐹 coefficients and the remaining 𝐹 is on the last row.

Conclusion of these expriments

Regarding the interactions between the permutations and the matrices, in some cases we were
able to identify the conditions required for a valid permutation. However, these observations
still need to be interpreted before any meaningful criteria can be exhibited. From these results
it appears that the most promising schemes are the 8 possible constructions in which the first
7 positions of the last column are filled with 𝐹 coefficients and the remaining 𝐹 is on the last
row, as they display no integral property for 6 rounds, for all permutations in 𝒫𝑖𝑛𝑣𝑜𝑙, and they
have the minimum number of nonzero coefficients to ensure a diffusion delay equal to 4. The

219

Chapter 8. Looking for new egfn structures

corresponding matrices are depicted in Figure 8.19. It should be noted that these matrices fulfill
Condition 4 of Definition 8.13, which we initially deemed too restrictive.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐹
𝐹
𝐹

(0) 𝐹
𝐹
𝐹
𝐹

× × × × × × × ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 8.19: An interesting family of matrices 𝒜 with 8 𝐹 coefficients. The last coefficient can be
placed at any red-marked position.

Theorem 8.18. Consider an egfn as defined in Def. 8.13 with 𝑘 ≥ 4 blocks, 𝑘 even, and
its associated matrices ℳ, 𝒩 and 𝒫 with 𝒩 the matrix representing the nonlinear and linear
layers of the egfn and with 𝒫 the matrix of the permutation layer defined by a permutation
𝜋,

1. if the matrix 𝒩 is equal to 𝒩 =
(︀ ℐ 0
𝒜 ℐ
)︀
∈ Z[𝐹, 𝐼] where ℐ is the 𝑘

2 × 𝑘
2 identity matrix

and where 𝒜, the lower left quarter of 𝒩 , is such that 𝒜 =

⎛⎜⎝
𝐹

(0)
...

𝐼 ··· 𝐼 𝐹

⎞⎟⎠;

2. and if 𝒫 globally exchanges emitters (blocks 𝑥0 to 𝑥𝑘/2−1) with receivers (blocks 𝑥𝑘/2 to
𝑥𝑘−1) with 𝜋(𝑘/2− 1) = 𝑘 − 1 and 𝜋(𝑘 − 1) = 𝑘/2− 1;

then its diffusion delay 𝑑 is equal to 4.

Proof. 𝒜2 =

⎛
⎜⎝

𝐹𝐼 ··· 𝐹𝐼 𝐹 2

...
...

...
𝐹𝐼 ··· 𝐹𝐼 𝐹 2

𝐹𝐼 ··· 𝐹𝐼 𝐹 2+(𝑘
2
−1)𝐹𝐼

⎞
⎟⎠ has no zero coefficients. Writing the permutation layer

𝒫 as 𝒫 =
(︁

0 𝒫1
𝒫2 0

)︁
by definition of 𝜋, the matrix of the egfn becomesℳ = 𝒫𝒩 =

(︁𝒫1𝒜 𝒫1
𝒫2 0

)︁
.

Computingℳ3 =
(︁

(𝒫1𝒜)3+𝒫1𝒜𝒫1𝒫2+𝒫1𝒫2𝒫1𝒜 (𝒫1𝒜)2𝒫1+𝒫1𝒫2𝒫1

𝒫2(𝒫1𝒜)2+𝒫2𝒫1𝒫1𝒫2 𝒫2𝒫1𝒜𝒫1

)︁
shows it still has zero coeffi-

cients, as 𝒫2𝒫1𝒜𝒫1 does. Thus, 𝑑+ ≥ 4.

Compute then ℳ4 =
(︁

𝑎 (𝒫1𝒜)3+𝒫1𝒜𝒫1𝒫2𝒫1+𝒫1𝒫2𝒫1𝒜𝒫1

𝑏 𝒫2(𝒫1𝒜)2𝒫1+(𝒫2𝒫1)2

)︁
with 𝑎 = (𝒫1𝒜)4 + (𝒫1𝒜)2𝒫1𝒫2 +

𝒫1𝒜𝒫1𝒫2𝒫1𝒜+ 𝒫2
2 (𝒫1𝒜)2 + 𝒫2

2𝒫1𝒫2 and 𝑏 = 𝒫2(𝒫1𝒜)3 + 𝒫2𝒫1𝒜𝒫1𝒫2 + (𝒫2𝒫1)2𝒜.

Thusℳ4 has no zero coefficient because by definition 𝒫1 is of the form: 𝒫1 =
⎛⎜⎜⎝

0

𝒫 ′
1

...
0

0 ··· 0 1

⎞⎟⎟⎠.
Thus, as the last row and the last column of 𝒜 has no zero, the product (𝒫1𝐴)2 has only
nonzero coefficients. Thus, the condition 𝜋(𝑘 − 1) = 𝑘/2 − 1 implies that 𝑑+ = 4. The
reasoning is the same onℳ−1 to prove that 𝑑− = 4 and finally that 𝑑 = 4.

220

8.2. Towards Lighter Egfn Constructions

𝑋0𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7𝑋8𝑋9𝑋10𝑋11𝑋12𝑋13𝑋14𝑋15

Any involutory permutation 𝜋

𝐹0

𝐹1

𝐹2

𝐹3

𝐹4

𝐹5

𝐹6

𝐹7

Figure 8.20: A target-heavy construction that reaches full diffusion in 𝑑 = 4 rounds and has no
integral property for 6 rounds

8.2.2 Resistance to differential cryptanalysis

While the constructions shown in Section 8.2.1 displayed attractive features with regards to
lightweightness and integral property, we found out that they had very undesirable behaviors re-
garding differential cryptanalysis. More precisely, when combined with an involutory permutation
layer, they allowed for the cancelation of differences.

As an example, let us consider a very simple case, using the 𝒜 matrix exhibited in the previous
section

𝒜 =

(︃ 𝐹

(0)
...

𝐼 ··· 𝐼 𝐹

)︃

and the 𝑘
2 -blocks shift to the left as the permutation layer.

In this target-heavy configuration, the only emitting block that goes through a nonlinear func-
tion is 𝑥7 and every other emitting block is simply xored to 𝑥15 in the linear layer. Consequently,
two active differences set on any pair of emitting blocks that does not include 𝑥7 will be canceled
in the linear layer if they are equal. After the permutation layer, these two active differences will
then be moved to two receiving blocks, before being switched back to their original location at
the end of the second round, since the permutation is only made of transpositions. Figure 8.21
shows this behavior.

To avoid such cases, it is required that one of the active differences eventually goes through a
nonlinear function. In the scheme shown above, this is only possible if the difference propagates
to 𝑥7 at a given round 𝑟, which never can never happen because of the permutation that was
chosen. This implies some constraints on the nonlinear layer and the permutation layer:

Proposition 8.19. Let us consider an egfn with 𝑘 blocks as defined in Definition 8.13,
satisfying Condition 2 of Theorem 8.16:

221

Chapter 8. Looking for new egfn structures

𝑋0𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7𝑋8𝑋9𝑋10𝑋11𝑋12𝑋13𝑋14𝑋15

𝐹0

𝐹1

𝐹2

𝐹3

𝐹4

𝐹5

𝐹6

𝐹7

𝑌0𝑌1𝑌2𝑌3𝑌4𝑌5𝑌6𝑌7𝑌8𝑌9𝑌10𝑌11𝑌12𝑌13𝑌14𝑌15

𝐹0

𝐹1

𝐹2

𝐹3

𝐹4

𝐹5

𝐹6

𝐹7

Figure 8.21: Cancelation of two differentials in the linear layer, leading to an iterative probability-1
differential characteristic for the whole cipher.

1. there must be at least two emitters in the nonlinear layer,

2. the permutation used can have at most one cycle that does not contain any of the
nonlinear emitters in its decomposition, and in that case, that cycle is a transposition.

One of the conditions to reach an optimal diffusion delay, described in [BFMT16] and recalled
in Theorem 8.16, is that the permutation 𝜋 globally exchanges emitters (blocks 𝑥0 to 𝑥 𝑘

2
−1) with

receivers (blocks 𝑥 𝑘
2
to 𝑥𝑘−1) with 𝜋(𝑘2 − 1) = 𝑘 − 1 and 𝜋(𝑘 − 1) = 𝑘

2 − 1.
As a consequence, 𝜋 can be written as a product of cycles of even length, alternating between

an emitter and a receiver, with one of the cycles being the transposition (𝑘2 − 1, 𝑘− 1). If 𝜋 has a
cycle of length at least 4 that contains none of the nonlinear emitters, then two differences located

222

8.3. Conclusion

on the two linear emitters involved in this cycle will never go through a nonlinear function, thus
canceling each other if their values are equal. Therefore, involutions cannot be used unless there
are at least 𝑘

2 − 1 emitters in the nonlinear layer.
We used SageMath to study the cancelation of differences for several 𝒜 matrices at a symbolic

level. Considering a 𝑘-block egfn represented by a symbolic matrix M=P×N defined over the
polynomial ring in F, d over F2—where F represents the Feistel functions and d a block difference—
an input difference Δ can be seen as a vector of 𝑘 components of the form Δ=(0,. . . ,0,d,0,. . . ,0).

The propagation of a difference Δ after 𝑟 rounds of encryption can then be tracked by
computing M𝑟 ×Δ. In our approach, we considered every vector Δ with a Hamming weight equal
to 2 or 4, and for each scheme, we computed the smallest 𝑟 value such that (P×N)𝑟 ×Δ has an F
coefficient, which corresponds to the minimum number of rounds required for a difference to go
through a nonlinear function.

The target-heavy construction shown in Section 8.2.1 did not fit the constraints stated
in Proposition 8.19, so we tried to investigate alternative structures such as the other matrices
depicted in Figure 8.19, with two emitters in the nonlinear layer, namely, 𝑥7 and a second branch
that influences 𝑥15. Unfortunately, for the set of permutations considered, at least 𝑟 = 12 rounds
were required before a difference could actually go through a Feistel function. We also studied
egfns with more nonlinear emitters. For instance, the one depicted in Figure 8.22 seemed
promising, as for some permutations3, we obtained an r value equal to 4. However, it was quite
similar to the original egfn of Lilliput. Since Lilliput had already been studied by other
cryptanalysts [ST16, ST17] and only had a slightly higher xor count, we decided to base our nist
proposal on this primitive instead and thus did not pursue the search for the best permutations
for other 𝒜 matrices.

8.3 Conclusion

This chapter has investigated of a family of egfns identified by Berger et al. in [BMT14] with
interesting diffusion properties. It was initially started to find lightweight constructions that could
be used as round functions for a new authenticated encryption scheme that would later become a
Round 1 nist lwc candidate, Lilliput-AE [ABC+18]. We have tried to summarize the results of
our experiments in hopes to exhibit some criteria to design egfns with good properties regarding
integral and differential cryptanalysis. However, this work is still in its early stages and many
observations remain to be explained.

3These permutations were the ones that globally exchanged 𝑥4 and 𝑥6 with 𝑥9 and 𝑥11 as shown in Figure 8.22.

223

Chapter 8. Looking for new egfn structures

𝑋0𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7𝑋8𝑋9𝑋10𝑋11𝑋12𝑋13𝑋14𝑋15

⎧⎪⎨⎪⎩
𝜋 = (0, · · ·⏟ ⏞

4

, 4, · · ·⏟ ⏞
4

, 6, · · ·⏟ ⏞
4

)(*, *)(7, 15)

𝜋({4, 6}) = {9, 11}

𝐹0

𝐹1

𝐹2

𝐹3

𝐹4

𝐹5

𝐹6

𝐹7

Figure 8.22: An egfn structure with a permutation 𝜋 that helps avoid the cancelation of equal
differences in the internal state.

224

Conclusion

Derek says it’s always good to end a paper
with a quote.

Danny Vinyard

In this thesis, the recent challenges of lightweight cryptography have been discussed and
a new lightweight proposal has been presented along with some new cryptanalysis results. A
large portion of these works, described in Part II, have been carried out in the context of the
ongoing Nist Lightweight Cryptography Standardization Process. After designing a proposal,
Lilliput-AE, introduced in Chapter 4, some components of other candidates have been studied,
namely, Spook and Skinny, in Chapter 5 and Chapter 6, respectively.

Chapter 4. This chapter presented Lilliput-AE, a new Authenticated Encryption with
Associated Data (aead) scheme that uses the round function of Lilliput [BFMT16], an
algorithm based on an Extended Generalized Feistel Network. Lilliput-AE was part of the
56 Round 1 candidates to the nist lwc standardization process [ABC+18], however it was not
selected for Round 2.

Chapter 5. For Spook, a Round 2 candidate in the nist lwc process, my coauthors and I
found distinguishers on the underlying permutations, Shadow-384 and Shadow-512, using some
structural observations on the preservation of identical states. More precisely, by exploiting the
cancellation of round constants, we exhibited distinguishers for the full (6-step) Shadow-512 and
for a round-reduced 5-step version of Shadow-384. We could even efficiently distinguish the 6-step
permutation if its round constants were shifted. The properties exhibited were then used to build
some forgeries in the nonce-misuse setting with a handful of queries, for a 4-step version of the
permutation. Extending this attack to another step using similar techniques might be possible
and remains to be investigated.

All results have very low, practical complexity and were experimentally verified. Our analysis
shows that even when LS-designs seem to avoid the main problem related to round constants,
namely invariant subspaces attacks [BCLR17], some unwanted properties may remain, such as
the cancellation of their effect in the internal symmetries.

Chapter 6. This chapter focused on the automated search for optimal differential characteristics
on the Skinny block cipher, on which several nist lwc proposals are based. To do so, a common
approach is to divide the search procedure into two steps: the first step (Step 1) abstracts the
difference values into Boolean variables and finds the truncated characteristics with the smallest
number of active S-boxes; and the second step (Step 2) tries to instantiate the solutions output
by Step 1 to find the best possible probability. Several automatic tools were used to generate the

225

Conclusion

models for Step 1: milp, sat, cp and an Ad-Hoc method. Step 2 was modeled solely using cp
as it seemed much more efficient than the other methods. With these models, we were able to
retrieve some previous results in much less time and we also went further than the highest number
of rounds previously reached in other papers. This also provided useful knowledge on the suitable
tools for differential cryptanalysis. Overall, the Ad-Hoc method gave the best running times for
Step 1 in most cases and thus, became the most efficient tool among the four. However, this
method may require a lot of memory. Milp is a good alternative as it is a tool with easier access.
For Step 2, the cp-based method was much faster, mainly due to the existing implementation of
Table constraints that allowed for an efficient modeling of the S-boxes and their ddt.

Main conclusion of Part II and further research directions. Our results on Shadow
exhibited in Chapter 5, or the attack on Lilliput-AE described in Section 4.5.1 are testimony
to the complex task faced by designers, who must find the right trade-off between security,
performance and cost, which is all the more important in the context of lightweight cryptography.

∙ Regarding Spook, the weakness came from a bad interaction between the round constant
addition and the diffusion layer mixing the rows of the state bundles. For Shadow-512, the
designers opted for the diffusion layer of the low-energy cipher Midori [BBI+15]. This
involutory near-mds matrix4 was chosen for its efficiency in terms of area and signal-delay,
which in turn resulted in a slower diffusion speed and a lower branch number—thus, a
smaller minimum number of active S-boxes in each round. Our findings have led the Spook
team to switch to an mds matrix in order to counter our distinguishers and improve the
security margins [BBB+20].

∙ Similarly, a weakness was introduced in Lilliput-AE because of some design choices meant
to improve the efficiency of the algorithm and decrease its implementation cost. More
specifically, the forgeries presented by Dunkelman et al. [DKLS19] exploited the fact that
one of transformations used to update the tweakey schedule was the identity function,
resulting in the existence of an iterative differential characteristic of probability 1.

These results are also reminders that even though differential cryptanalysis is one of the
earliest and most studied technique, assessing the resistance of a primitive against this type of
attack remains difficult when designing a new one. Automatic tools such as the ones investigated
in Chapter 6 can be helpful in such problems.

The study has shown that finding the best differential characteristic for a given number of
rounds is a more intricate task than expected, even with automatic tools. Indeed, while Step 1
usually returns a minimum number of active S-boxes 𝑣* that is quite low, the optimal solution
for Step 2 in terms of differential characteristic probability can sometimes be obtained for a
number of active S-boxes 𝑣 that is higher than 𝑣*. As such, computing the optimal bounds is
often not enough and we need to go further to be sure that the characteristics found have the
best probabilities. However, the possible number of Step 1 solutions tends to grow exponentially
when 𝑣* increases. In such cases, the time required to complete Step 2 becomes the bottleneck.
Therefore, our approach would greatly benefit from a better filtering for Step 1 in order to decrease
the number of solutions as one deviates from the optimal bound. Below are listed other possible
extensions of our work.

4This type of matrices has been adopted in several lightweight proposals [BCG+12, BBK+13, ADK+14,
IMGM15].

226

∙ For Sat we chose to use a high level modeling language which did not perform as efficiently
as expected since its interface did not implement the SolveAll constraint for the chosen
sat solver. As a result, for each Step 1 solution found, the program had to be run again
with an added constraint to discard the previously found solution. Using a sat solver
without any other interfaces to be closer to the clauses, instead of using generic translated
models as we did, may lead to better performances.

∙ The chosen tools may work differently for different ciphers, depending on the underlying
structure. Performing similar experiments on other ciphers might be valuable.

In the third part of this dissertation, some more general works related to Feistel schemes
have been described. In Chapter 7, we have introduced the Feistel Boomerang Connectivity
Table (fbct), which extends the Boomerang Connectivity Table (bct) to the Feistel case. Then,
Chapter 8 has presented a study of egfns inspired by the one used in Lilliput in an attempt to
find lighter, yet more secure, constructions.

Chapter 7. This chapter investigated the computation of the probability of a boomerang
switch for generic Feistel ciphers—a problem that had not been addressed so far in spite of the
importance of such constructions. While boomerang switches of Feistel ciphers had been studied
before, the role of the S-box in a Feistel boomerang switch had previously never been analyzed
in a systematic way, as done in the spn case. As such, my co-authors and I introduced the
counterpart of the bct, namely the fbct. Our work laid the foundations for this tool by studying
its properties. Interestingly, given an input difference Δ𝑖 and an output difference ∇𝑜, we showed
that the coefficient at row Δ𝑖, ∇𝑜 of the fbct corresponds to the number of times the second
order derivative of the S-box at points (Δ𝑖, ∇𝑜) cancels out.

We also showed how to extend a boomerang switch to an arbitrary number of rounds and
provided a generic formula to compute the corresponding probability. However, applying this
formula over many rounds quickly requires too much computational power. As a result, when
evaluating the probability of a switch covering many rounds, the experimental approach is more
preferable to the theoretical evaluation of the fbct—or the bct for that matter [SQH19]). Still,
the fbct remains a useful tool that can help find S-boxes with the best properties or that are
the most likely to lead to incompatibilities for a Feistel cipher.

Chapter 8. The analysis presented in this chapter was initiated during the design of Lilliput-
AE. The goal was to find new structures inspired by the egfn used in Lilliput [BFMT16], with
the same diffusion delay and good resistance against structural attacks but a smaller xor count.
Several interesting structures were found but ultimately, it seemed that the egfn of Lilliput
was the most secure scheme. I attempted to derive some general properties for this class of egfn
but could not formalize any.

Main conclusion of Part III and further research directions. Regarding our analysis of
the fbct, some possible work directions include:

∙ Automating the search of the best parameters for a Boomerang attack using the fbct. As
shown in Chapter 6, the search for the best differential characteristics is a process that can
easily be fully automated. Boomerang attacks would greatly benefit from similar tools but
as we have seen in Section 7.6, the computation of the size of the middle part of a switch

227

Conclusion

and the corresponding probability can be tricky due to the large number of parameters,
which begs to question whether automating this part is feasible or not.

∙ Applying our formula to the Des and other Feistel ciphers such as Clefia, Twine to
possibly find new attacks. In Section 7.7, the fbct was used to find a 16-round boomerang
distinguisher in the single key setting, the related-key case should be investigated as well.

∙ Extending the fbct to different types of boomerang distinguishers: in some cases, it might
be preferable to consider a boomerang distinguisher that starts from a difference but does
not come back to the same difference it has been sent with. For instance, when looking at
the fbct of an Almost Perfect Nonlinear (apn) function, all coefficients are zero apart from
those of the first line, the first column and the diagonal, leaving very few possibilities for an
attacker to have a switch that comes back. The definition of the fbct could be extended
to cover this scenario.

The study started in Chapter 8 on egfns is incomplete; some structures with optimal diffusion
delay providing good resistance to integral cryptanalysis have been exhibited but the results
obtained so far are still preliminary and mostly focused on involutory permutations. Having some
criteria to choose an optimal permutation according to the layout of the nonlinear layer would be
helpful. Regarding differential cryptanalysis, some early cp models were made in an attempt
to derive differential bounds for some egfn-based constructions but those were too slow to be
exploited. Using an approach similar to the one described in Chapter 6 might lead to better
results, although the structures are quite different here.

228

A

On Non-Triangular Self-Synchronizing
Stream Ciphers

This Appendix presents a collaborative work with Loïc Besson, Julien Francq, Phillipe Guillot,
Gilles Millérioux and Marine Minier on Self-Synchronizing Stream Ciphers (ssscs) that was
initiated before the Ph.D. but then was refined and submitted during those three years. We
propose an instantiation of a dedicated Self-Synchronizing Stream Cipher, called Stanislas,
involving an automaton with finite input memory using non-triangular state transition functions.
This peculiarity makes our proposal different from existing ones, since the construction of
previous dedicated ssscs was exclusively based on automata with shifts or triangular functions
(𝑇–functions) as state transition functions. The construction is based on a general and systematic
methodology based on the use of automata (called Linear Parameter Varying, lpv) admitting
a matrix representation and a special property of dynamical systems called flatness. Hardware
implementations and comparisons with some state-of-the-art stream ciphers on Xilinx fpgas are
presented. It turns out that Stanislas provides bigger throughput than the considered stream
ciphers (synchronous and self-synchronizing) when straightforward implementations are considered.
Moreover, its synchronization delay is much smaller than the sssc Moustique (40 clock cycles
instead of 105) and the standard approach Cfb1-Aes128 (40 clock cycles instead of 128). In
contrast, it has a rather large hardware footprint.

A.1 Introduction

Self-Synchronizing Stream Ciphers (sssc) were patented in 1946. The basic principle of such
ciphers is to encrypt every plaintext symbol with a transformation that only involves a fixed
number of previous ciphertext symbols. Therefore, every ciphertext symbol is correctly deciphered
provided that previous symbols have been properly received. This self-synchronization property
has many advantages and is especially relevant to group communications. In this respect, since
1960, specific sssc have been designed and are still used to provide bulk encryption (for Hertzian
line, RNIS link, etc.) in military applications or governmental radio mobile networks.

The canonical form of the sssc combines a shift register, which acts as a state register with
the ciphertext as input, together with a filtering function that provides the running key stream.
The cryptographic complexity of the canonical form of the sssc lies in the filtering function.
In the early 90s, studies have been performed [Mau91, DGV92] to propose secure designs of
ssscs. These works have been followed by effective constructions ([HPRM04, Sar03, DK08]).
What motivates the present proposal for a new sssc is that, till now, all of these sssc schemes

229

Appendix A. On Non-Triangular Self-Synchronizing Stream Ciphers

have been broken ([JM03, JM05, JM06, KRB+08, Klí05]). And up to our knowledge, since 10
years, no other proposals of ssscs has been made. Clearly, sssc can be naturally built using a
block cipher by applying the Cipher Feedback (CFB) mode. However, the computational cost
of CFB is one full block cipher operation per digit. So for single-bit digits, it is 𝑛 times less
efficient than synchronous stream encryption modes such as Output Feedback (OFB) or Counter
(CTR) Mode, with 𝑛 the block length. For example, AES in single-bit CFB mode (as defined
as “CFB1-AES128” in NIST SP 800-38a [Dwo01]) is 128 times less efficient than AES in CTR
mode. As a consequence, it seems interesting to propose dedicated ssscs and consider them as a
category of primitives on their own.

The aim of the present document is to propose a new framework, along with an instantiation
called Stanislas, to design sssc. The methodology of construction allows to obtain more general
automata. Indeed, their state transition functions are not necessarily 𝑇–functions as was the
case over the past years (see [DK05, DK08] as examples). Due to this peculiarity, the class of
admissible automata to act as sssc is thereby enlarged. It is recalled that a finite automaton with
finite input memory 𝑀 (see [Mau91]), is an automaton which can be represented in a canonical
form that consists of an input shift-register of length at least 𝑀 with an attached memoryless
function whose input is the shift-register state. This memoryless function allows to introduce
nonlinearities with proved properties, what a shift register does not always permit. The benefit
of implementing an sssc based on a finite automaton rather than the canonical form is that it is
more relevant from a computational point of view. The design approach is based on both the
special feature of Finite State Machines admitting a matrix representation, called lpv (Linear
Parameter Varying) automata and on a property of dynamical systems named flatness. The
matrix representation is a generalization of Rational Linear Finite State Machines or Feedback
with Carry Shift Registers proposed in [ABL+09, ABMP11]. The use of flatness for the sake of
cryptography has been first proposed in [DGM17a]. It has been shown that flatness characterizes
the self-synchronization property and that it allows to design automata which can be more general
than 𝑇–functions.

In the present document, a complete cipher, called Stanislas (for Secure Transmission Algorithm
with Non triangular Iterative Structure Looking After Self-synchronization) and designed from
the lpv framework, is described. The Key Schedule, the design rationale and the security
analysis are provided. Next, hardware implementation results on Xilinx FPGA platforms of
Stanislas are performed and compared with some state-of-the art competitors: some Synchronous
Stream Ciphers coming from eSTREAM portfolio (Trivium [CP08] and Grain [HJMM08]), one
sssc (Moustique) and the only known feedback mode (the NIST-standardized CFB1-AES128).
Interestingly, Stanislas provides the highest throughput on Xilinx Spartan-6 XC6SLX75T FPGAs
compared to its stream ciphers and sssc competitors, implemented in a straightforward manner.
Moreover, with the same comparison conditions, its synchronization delay is much smaller than
the sssc Moustique (40 clock cycles instead of 105) and the standard approach CFB1-AES128 (40
clock cycles instead of 128), which provides a decisive advantage for applications when low-latency
synchronization is required (e.g., Telecom).

The document is organized as follows. Section A.2 recalls the theoretical results linking
together flatness and sssc. Section A.3 presents the new sssc Stanislas. The design rationale
and the security analysis are detailed in Section A.4. Finally, Section A.5 provides hardware
implementation results and comparisons. Section A.6 concludes this document.

230

A.2. Theoretical Foundations and Flatness

A.2 Theoretical Foundations and Flatness

After few generalities on stream ciphers, it is recalled in this section the main results of [DGM17a]
concerning the design of sssc based on the property of flatness.

A.2.1 Generalities on Stream Ciphers

For a stream cipher, it must be given an alphabet 𝐴, that is, a finite set of basic elements named
symbols. The set 𝐴 stands in this paragraph as a general notation without any specific alphabet.
Typically, 𝐴 could be composed of 1 or several bits elements. Hereafter, the index 𝑡 ∈ N will stand
for the discrete-time. On the transmitter part, the plaintext (also called information or message)
𝑚 ∈ℳ (ℳ is the message space) is a string of plaintext symbols 𝑚𝑡 ∈ 𝐴. Each plaintext symbol
is encrypted, by means of an encryption (or ciphering) function 𝑒, according to:

𝑐𝑡+𝑟 = 𝑒(𝑧𝑡+𝑟,𝑚𝑡), (A.1)

where 𝑧𝑡 ∈ 𝐴 is a so-called keystream (or running key) symbol delivered by a keystream generator.
The function 𝑒 is invertible for any prescribed 𝑧𝑡. The resulting symbol 𝑐𝑡 ∈ 𝐴 is the ciphertext
symbol. The integer 𝑟 ≥ 0 stands for a potential delay between the plaintext 𝑚𝑡 and the
corresponding ciphertext 𝑐𝑡+𝑟. This is explained by computational or implementation reasons,
see [DK05] for example. Consequently, for stream ciphers, the way how to encrypt each plaintext
symbol changes on each iteration. The resulting ciphertext 𝑐 ∈ 𝒞 (𝒞 is called the ciphertext
space), that is the string of symbols 𝑐𝑡, is conveyed to the receiver through a public channel.
At the receiver side, the ciphertext 𝑐𝑡 is deciphered according to a decryption function 𝑑 which
depends on a running key ̂︀𝑧𝑡 ∈ 𝐴 delivered, similarly to the cipher part, by a keystream
generator. The decryption function 𝑑 obeys the following rule. For any two keystream sym-
bols ̂︀𝑧𝑡+𝑟, 𝑧𝑡+𝑟 ∈ 𝐴, it holds that

̂︀𝑚𝑡+𝑟 := 𝑑(𝑐𝑡+𝑟, ̂︀𝑧𝑡+𝑟) = 𝑚𝑡 whenever ̂︀𝑧𝑡+𝑟 = 𝑧𝑡+𝑟. (A.2)

Equation (A.2) means that the running keys 𝑧𝑡 and ̂︀𝑧𝑡 must be synchronized for a proper
decryption. The generators delivering the keystreams are parametrized by a secret key denoted
by 𝐾 ∈ 𝒦 (𝒦 is the secret key space). The distinct classes of stream ciphers (synchronous
or self-synchronizing) differ each other by the way on how the keystreams are generated and
synchronized. Next, we detail the special class of stream ciphers called Self-Synchronizing Stream
Ciphers.

A.2.2 Keystream Generators for Self-Synchronizing Stream Ciphers

A well-admitted approach to generate the keystreams has been first suggested in [Mau91]. It
is based on the use of so-called finite state automata with finite input memory as described
below. This is typically the case in the cipher Moustique [KRB+04]. At the ciphering side, the
automaton delivering the keystream takes the form:

{︂
𝑥𝑡+1 = 𝑓𝐾(𝑥𝑡,𝑚𝑡),
𝑧𝑡+𝑟 = ℎ𝐾(𝑥𝑡)

(A.3)

where 𝑥𝑡 ∈ 𝐴 is the internal state, 𝑓 is the next-state transition function parametrized by 𝐾 ∈ 𝒦.
As previously stressed, the delay 𝑏 is introduced to cope with special situations, in particular
when the computation of the output (also called filtering) delivered by the function ℎ involves

231

Appendix A. On Non-Triangular Self-Synchronizing Stream Ciphers

𝑟 successive operations processed at time instants 𝑡, . . . , 𝑡 + 𝑟. Those operations will be here
matrix multiplications as detailed later in Equation (A.14). Substituting 𝑚𝑡 by its expression
(A.2) yields an automaton described by

{︂
𝑥𝑡+1 = 𝑔𝐾(𝑥𝑡, 𝑐𝑡+𝑟),
𝑧𝑡+𝑟 = ℎ𝐾(𝑥𝑡)

(A.4)

If such an automaton has finite input memory, it means that, by iterating (A.4) a finite number
of times, there exists a function ℓ𝐾 and a finite integer 𝑀 such that

𝑥𝑡 = ℓ𝐾(𝑐𝑡+𝑟−1, . . . , 𝑐𝑡+𝑟−𝑀), (A.5)

and thus,
𝑧𝑡+𝑟 = ℎ𝐾(ℓ𝐾(𝑐𝑡+𝑟−1, . . . , 𝑐𝑡+𝑟−𝑀)). (A.6)

Actually, the fact that the keystream symbol can be written in the general form

𝑧𝑡+𝑟 = 𝜎𝐾(𝑐𝑡−ℓ, . . . , 𝑐𝑡−ℓ′), (A.7)

with 𝜎𝐾 a function involving a finite number of past ciphertexts from time 𝑡− ℓ to 𝑡− ℓ′ (ℓ, ℓ′ ∈ Z),
is a common feature of the sssc. Equation (A.7) is called the canonical equation.

Remark 1. The benefits of implementing the recursive forms (A.3) or (A.4) instead of directly
implementing the canonical form (A.7) is that we can obtain nonlinear functions 𝜎𝐾 of high
complexity by implementing simpler nonlinear functions 𝑓𝐾 or 𝑔𝐾 . The complexity results from
the successive iterations which act as composition operations.

At the deciphering side, the automaton takes the form
{︂
̂︀𝑥𝑡+1 = 𝑔𝐾(̂︀𝑥𝑡, 𝑐𝑡+𝑟),
̂︀𝑧𝑡+𝑟 = ℎ𝐾(̂︀𝑥𝑡) (A.8)

where ̂︀𝑥𝑡 is the internal state. Similarly to the cipher part, the automaton having a finite input
memory, it means that, by iterating Equation (A.8) a finite number of times, one also obtains

𝑥̂𝑡 = ℓ𝐾(𝑐𝑡+𝑟−1, . . . , 𝑐𝑡+𝑟−𝑀),

and thus,
𝑧𝑡+𝑟 = ℎ𝐾(ℓ𝐾(𝑐𝑡+𝑟−1, . . . , 𝑐𝑡+𝑟−𝑀)).

Hence, it is clear that after a transient time of maximal length equal to 𝑀 , it holds that, for
𝑡 ≥𝑀 ,

̂︀𝑥𝑡 = 𝑥𝑡 and ̂︀𝑧𝑡+𝑟 = 𝑧𝑡+𝑟. (A.9)

In other words, the generators synchronize automatically after at most 𝑀 iterations. Hence,
the decryption is automatically and properly achieved after at most 𝑀 iterations too. No
specific synchronizing protocol between the cipher and the decipher is needed. This explains the
terminology Self-Synchronizing Stream Ciphers. The integer 𝑀 is called the synchronization
delay.

Hereafter, the considered automata will be assumed to operate on the 𝑞 elements finite field
F = F𝑞 where 𝑞 is a prime power.

232

A.2. Theoretical Foundations and Flatness

A.2.3 Flat lpv Automata and sssc

For the automaton described by (A.3) (or the equivalent automaton described by (A.4) after
substitution) to get a finite input memory feature (see (A.5)), the solutions proposed in the open
literature call for state transition functions 𝑔𝐾 in the form of shifts or more generally 𝑇–functions
(𝑇 for Triangle). It is recalled that 𝑇–functions are functions that propagate dependencies in one
direction only. Till now, none of the proposed ssscs has involved non-triangular state transition
functions although 𝑇–functions are known to suffer from weakness [JM06]. Indeed, 𝑇–functions
induce a propagation of differential properties which make them easier to cryptanalyse. It is
explained by the fact that no systematic methodology for constructing finite automata with finite
input memory and involving general non-triangular state transition functions was proposed so
far. Actually, it has been shown in [DGM17a] that such a problem can be fixed for the particular
class of automata called flat lpv (Linear Parameter-Varying) automata.

Let us recall what is a flat automaton.

Definition A.20. An automaton described by the dynamics 𝑓 verifying

𝑥𝑡+1 = 𝑓(𝑥𝑡,𝑚𝑡) (A.10)

where 𝑥𝑡 ∈ F𝑛 is the state, 𝑚𝑡 ∈ F is the input, is said to be flat, if there exists a function

ℎ : F𝑛 × F→ F
𝑐𝑡 = ℎ(𝑥𝑡,𝑚𝑡)

such that all system variables can be expressed as a function of 𝑐𝑡 and a finite number of its
backward and forward shifts.

The output 𝑐𝑡 is called the flat output. Hence, by definition, there exists a function ℱ such that

𝑥𝑡 = ℱ
(︀
𝑐𝑡+𝑡0 , . . . , 𝑐𝑡+𝑡1

)︀
(A.11)

where 𝑡0 and 𝑡1 are Z-valued integers. A central remark is that (A.11) is nothing but the canonical
equation of an sssc (compare with (A.5)). As a direct consequence, a flat automaton acts as a
primitive for designing an sssc.

Lpv automata, defined over a field F, are described by the following state space representation:

𝑥𝑡+1 = 𝐴𝜌(𝑡)𝑥𝑡 +𝐵𝑚𝑡 (A.12)

𝑥𝑡 ∈ F𝑛 is the state vector, 𝑚𝑡 ∈ F is the input. The matrices 𝐴 ∈ F𝑛×𝑛 and 𝐵 ∈ F𝑛×1 are
respectively the dynamical matrix and the input matrix. The output 𝑐𝑡 is defined as

𝑐𝑡 = 𝐶𝑥𝑡 (A.13)

with 𝐶 ∈ F1×𝑛 the output matrix. The matrix 𝐵 is the input matrix and defines the component
𝑥𝑖𝑡 on which the symbol 𝑚𝑡 is added. Let us note that 𝑚𝑡 can be added to several components.
Such a system is called Linear Parameter-Varying because it is written with a linear dependency
with respect to the state vector. The set of all varying parameters of 𝐴 are collected on a vector
denoted by

𝜌(𝑡) =
[︀
𝜌1(𝑡), 𝜌2(𝑡), ..., 𝜌𝐿(𝑡)

]︀
∈ F𝐿

233

Appendix A. On Non-Triangular Self-Synchronizing Stream Ciphers

where 𝐿 is the total number of non-zero (possibly varying) entries. Such automata can exhibit
nonlinear dynamics. Indeed, the nonlinearity is obtained by defining the varying parameters
𝜌𝑖(𝑡) as nonlinear functions 𝜙𝑖 : F𝑠+1 → F of the output 𝑐𝑡 (or a finite number of shifts)
𝜌𝑖(𝑡) = 𝜙𝑖(𝑐𝑡, 𝑐𝑡−1, · · · , 𝑐𝑡−𝑠) with 𝑠 a natural number. Let us notice that the notation 𝜌𝑖(𝑡) (usual
in the literature for lpv systems) is somehow abusive because it does not reflect an explicit
dependency with respect to the time 𝑡 but on quantities, here 𝑐𝑡, indexed with 𝑡.

As a simple illustration, the automaton governed by Equation (A.12) with the setting

𝐴𝜌(𝑡) =

(︂
𝑎 0

𝜌1(𝑡) 𝜌2(𝑡)

)︂
, 𝐵 =

(︂
1
0

)︂

with 𝑎 a constant element in F, 𝜌1(𝑡) = 𝑐𝑡 · 𝑐𝑡−1 and 𝜌2(𝑡) = (𝑐𝑡−2)
2, is an lpv automaton.

A flat lpv automaton is an lpv automaton of which state vector 𝑥𝑡 verifies (A.11).
Let us recall from [DGM17a] the main proposition which allows to define a family of ssscs

based on lpv automata. For brevity, we introduce the following notation. For 𝑡2 ≥ 𝑡1, denote by∏︀𝑡1
𝑙=𝑡2

𝐴𝜌(𝑙) the product of matrices 𝐴𝜌(𝑙) from 𝑡2 to 𝑡1. For 𝑡2 < 𝑡1, define
∏︀𝑡1

𝑙=𝑡2
𝐴𝜌(𝑙) = 1𝑛 (the

identity matrix of dimension 𝑛). Finally, let 𝒯 be the scalar defined by 𝒯 = 𝐶
∏︀𝑡+1

𝑙=𝑡+𝑟−1𝐴𝜌(𝑙)𝐵.

Proposition 1. If the lpv finite state automaton defined by (A.12) is flat, defining the keystream
with delay 𝑟 as

𝑧𝑡+𝑟 = 𝐶
∏︀𝑡

𝑙=𝑡+𝑟−1𝐴𝜌(𝑙)𝑥𝑡 (A.14)

and the ciphering function as
𝑐𝑡+𝑟 = 𝑧𝑡+𝑟 + 𝒯𝑚𝑡, (A.15)

the set of equations (A.12), (A.14) and (A.15) define the ciphering part of an sssc.
On the other hand, consider the finite state automaton with internal state ̂︀𝑥𝑡 with dynamics

given by
̂︀𝑥𝑡+1 = 𝑃𝜌(𝑡:𝑡+𝑟)̂︀𝑥𝑡 +𝐵𝒯 −1𝑐𝑡+𝑟 (A.16)

with

𝑃𝜌(𝑡:𝑡+𝑟) = 𝐴𝜌(𝑡) −𝐵𝒯 −1𝐶
𝑡∏︁

𝑙=𝑡+𝑟−1

𝐴𝜌(𝑙) (A.17)

along with the keystream ̂︀𝑧𝑡 defined as

̂︀𝑧𝑡+𝑟 = 𝐶
∏︀𝑡

𝑙=𝑡+𝑟−1𝐴𝜌(𝑙)̂︀𝑥𝑡 (A.18)

and the deciphering function obeying

̂︀𝑚𝑡+𝑟 = 𝒯 −1(𝑐𝑡+𝑟 − ̂︀𝑧𝑡+𝑟). (A.19)

Then, the set of equations (A.16-A.19) define the deciphering part of an sssc.

The proof given in [DGM17a] consists in showing that, if the lpv finite state automaton defined
by (A.12) is flat, then there exists an integer 𝑀 such that the synchronization error 𝑥𝑘 − ̂︀𝑥𝑡+𝑟

reaches zero after a finite transient time of length 𝑀 . The integer 𝑀 is the synchronization delay.
Actually, it is shown that flatness is equivalent to the existence of an integer 𝑀 such that for all
𝑡 ≥ 0,

𝑃𝜌(𝑡+𝑀−1:𝑡+𝑀−1+𝑟)𝑃𝜌(𝑡+𝑀−2:𝑡+𝑀−2+𝑟) · · ·𝑃𝜌(𝑡:𝑡+𝑟) = 0 (A.20)

234

A.2. Theoretical Foundations and Flatness

where the product (A.20) results from the composition of the state transition functions of the
deciphering automaton. Let us note that 𝑇 and 𝑟 are independent.

This lpv framework for the design of sssc is new regarding the literature devoted to the
design of sssc. In particular, it really differs from the serial and parallel constructions proposed
in the 90s by Maurer [Mau91].

According to Remark 1, implementing the recursive form (A.12) and (A.16) instead of the
canonical form (A.5) is more efficient from a computational point of view.

It is recalled that the non-linearity is obtained by defining the values of every varying
parameters 𝜌𝑖(𝑡) (𝑖 = 1, . . . , 𝐿) involved in the matrices of (A.12-A.19) as non-linear functions 𝜙𝑖

of a finite number of past cryptograms (𝜌𝑖(𝑡) = 𝜙𝑖(𝑐𝑡, 𝑐𝑡−1, · · · , 𝑐𝑡−𝑠)). Those functions will be
implemented in the form of S-boxes denoted 𝑆.

𝜙𝑖 : F𝑠+1 → F
(𝑐𝑡, 𝑐𝑡−1, · · · , 𝑐𝑡−𝑠) ↦→ 𝑆(𝑐𝑡, 𝑐𝑡−1, · · · , 𝑐𝑡−𝑠, 𝑆𝐾𝑖)

(A.21)

where 𝑆𝐾𝑖 is the subkey number 𝑖 derived from the secret key denoted with 𝐾.
The point is that the lpv automaton defined by (A.12) must be flat for any secret key

𝐾 and any realization of 𝜌(𝑡). In other words, flatness must be a generic property of (A.12).
Designing an lpv automaton (A.12) which is generically flat relies on an admissible realization
of a corresponding structured linear system. A structured linear system is a linear system only
defined by the sparsity pattern of the state space realization matrices. In other words, for a
structured linear system, we distinguish between the entries that are fixed to zero and the other
ones that can take any value in F, including the ones which are time-varying. Hence, a structured
linear discrete-time system, denoted by ΣΛ, is a system that admits the form:

ΣΛ : 𝑥𝑡+1 = 𝐼𝐴𝑥𝑡 + 𝐼𝐵𝑚𝑡 (A.22)

The entries of the matrices of (A.22) are ’0’ or ’1’. In particular, the entries 𝐴(𝑖, 𝑗) of 𝐼𝐴 (resp.
𝐵(𝑖) of 𝐼𝐵) that are ’0’ mean that there are no relation (dynamical interaction) between the state
𝑥𝑖𝑡+1 at time 𝑡+ 1 and the state 𝑥𝑗𝑡 at time 𝑡 (resp. the state 𝑥𝑖𝑡+1 at time 𝑡+ 1 and the input 𝑚𝑡

at time 𝑡). The entries that are ’1’ mean that there is a relation. As a simple example, let us
consider again the lpv system with the setting

𝐴𝜌(𝑡) =

(︂
𝑎 0

𝜌1(𝑡) 𝜌2(𝑡)

)︂
and 𝐵 =

(︂
1
0

)︂

where 𝑎 is a constant element in F, 𝜌1(𝑡) and 𝜌2(𝑡) are varying parameters in F. The dynamical
matrix and the input matrix 𝐼𝐴 and 𝐼𝐵 of the corresponding structured linear system read:

𝐼𝐴 =

(︂
1 0
1 1

)︂
, 𝐼𝐵 =

(︂
1
0

)︂

As a consequence, if the structural linear system (A.22) derived from (A.12) is flat, the flatness
will hold for any 𝜌(𝑡) or equivalently any nonlinearity 𝜙𝑖 (any S-box will be admissible). Hence,
the challenge is to define a methodology to construct flat linear structural systems. It is the
purpose of the graph-based approach provided in [MB15] which follows the steps recalled in
Appendix A.8. Roughly speaking, given a triplet (𝑛, 𝑟, 𝑛𝑎) with 𝑛 the dimension of the state, 𝑟
the delay and 𝑛𝑎 the number of non-zero entries of the matrix 𝐴, a digraph 𝒢(ΣΛ) is constructed
according to given rules and the matrices 𝐼𝐴 and 𝐼𝐵 are derived.

The triplet (𝑛, 𝑟, 𝑛𝑎), the number of non-linear functions 𝜙𝑖 and their locations in the matrix
𝐼𝐴 determine a family of flat lpv-based sssc. Next subsection aims at summarizing the steps
needed for the design of such a family. Then, a particular instantiation, leading to the sssc called
Stanislas, is given in next section.

235

Appendix A. On Non-Triangular Self-Synchronizing Stream Ciphers

Summary for the construction of sssc from a flat lpv-based automaton

Choose a triplet (𝑛, 𝑟, 𝑛𝑎) with 𝑛 the dimension of the state, 𝑟 the delay and 𝑛𝑎 the number of
non-zero entries of the matrix 𝐴.

Step S1: Choose a component 𝑥𝑖𝑡 on which the plaintext symbol 𝑚𝑡 is added. It follows that
𝐵 = (0 . . . 1 0 . . . 0)𝑡 (the entries 1 is located at column 𝑖).

Step S2: Choose a component 𝑥𝑖𝑡 (𝑖 ∈ {1, . . . , 𝑛}) as the desired flat output 𝑦𝑡 = 𝑥𝑖𝑡. It
follows that 𝐶 = (0 · · · 0 1 0 . . . 0) (the only entry 1 is located at the 𝑖-th column of 𝐶). It can
be shown that for the special case when 𝐵 = (1 0 . . .), 𝑖 must be equal to 𝑟 for 𝑦𝑡 = 𝑥𝑖𝑡 to be a
flat output.

Step S3: Construct the corresponding digraph 𝒢(ΣΛ) according to Step 1-5 given in Ap-
pendix A.8 and derive the matrices 𝐼𝐴 and 𝐼𝐵 of the structured linear system ΣΛ.

Step S4: Replace some of the non-zero entries of 𝐼𝐴 by a nonlinear function 𝜌𝑖(𝑡) =
𝜙𝑖(𝑐𝑡, 𝑐𝑡−1, · · · , 𝑐𝑡−𝑠) to construct the matrix 𝐴𝜌(𝑡) of (A.12) and set 𝐵 = 𝐼𝐵 . Not all ’1’ entries of
𝐼𝐴 must be assigned to a non-linear function. Some of them can be merely constant. The choice
must obey a trade-off between complexity of the architecture and security (a matter discussed
in next section). Since the construction ensures structural flatness, any choice will preserve the
self-synchronization property.

Step S5: Complete the design by deriving the equations of Proposition 1. In particular,
calculate the matrix (A.17) governing the state transition function of the automata (A.16) ensuring
the deciphering.

Example: Consider the triplet (𝑛 = 2, 𝑟 = 2, 𝑛𝑎 = 5). Choose

𝐵 =

(︂
1
0

)︂
, 𝐶 = (0 1)

The particular setting of the matrix 𝐶 means that the component 𝑥2𝑡 of the state vector of
the lpv system (A.12) is the desired flat output.
For 𝑛𝑎 = 5, Steps 1-5 given in Appendix A.8 give

𝐼𝐴 =

(︂
1 1
1 1

)︂
, 𝐼𝐵 =

(︂
1
0

)︂
(A.23)

Let us keep constant and equal to 1 the first three entries of 𝐴 and let the fourth entry be a
nonlinear function. It is denoted by 𝜌1(𝑡). This finally leads to the following matrix 𝐴𝜌(𝑡):

𝐴𝜌(𝑡) =

(︂
1 1
1 𝜌1(𝑡)

)︂

Calculate 𝑃𝜌(𝑡:𝑡+2) = 𝐴𝜌(𝑡) −𝐵𝐶𝐴𝜌(𝑡+1)𝐴𝜌(𝑡). One obtains

𝑃𝜌(𝑡:𝑡+2) =

(︂
−𝜌1(𝑡+1) −𝜌1(𝑡)𝜌1(𝑡+1)

1 𝜌1(𝑡)

)︂
.

Next sections are devoted to the specifications, design rationale and security analysis of a
complete sssc based on flat lpv dynamical systems as described above. The cipher is called
Stanislas for Secure Transmission Algorithm with Nontriangular Iterative Structure Looking After
Self-synchronization.

236

A.3. Specification of the flat lpv-based sssc Stanislas

A.3 Specification of the flat lpv-based sssc Stanislas

Stanislas operates over the 16 elements of the finite field F16 defined as: F16 = F2[𝑋]/(𝑋4+𝑋+1),
the addition being the componentwise exclusive or, simply denoted +, and the multiplication,
denoted by ·, being the polynomial multiplication modulo the primitive polynomial 𝑋4 +𝑋 + 1.

A.3.1 Equations of Stanislas

The internal state 𝑥𝑡 ∈ F40
16 of the cipher consists in a vector of dimension 𝑛 = 40 with 4-bit

components considered as elements in F16. The input 𝑚𝑡 and the output 𝑐𝑡 of the ciphering
function are 4-bit respective elements in F16.

Ciphering equations

The ciphering equation defines the next internal state 𝑥𝑡+1 ∈ F40
16 and the cipher output 𝑐𝑡 ∈ F16.

Note also that all elements that compose the matrix 𝐴𝜌(𝑡) and the vectors 𝐵 and 𝐶 are elements
of F16. The ciphering equation obeys, for 𝑡 ≥ 0,

cipher:

{︂
𝑥𝑡+1 = 𝐴𝜌(𝑡)𝑥𝑡 +𝐵𝑚𝑡

𝑐𝑡+1 = 𝐶𝑥𝑡+1
(A.24)

where 𝐵 is the column vector equal to 𝐵 = (1F16 , 0F16 , . . . , 0F16)
𝑇 and 𝐶 is the row vector

equal to 𝐶 = (0F16 , 0F16 , 1F16 , 0F16 , . . . , 0F16) with the 1F16 component located at column 𝑟 = 3. In
other words, the only non-zero component of 𝐶 which equals 1F16 is the third component. Hence,
the ciphertext symbol consists in the third component of the internal state. Let us note that
in general, the ciphertext obeys Equation (A.13). Hence, the ciphertext results from a linear
combination of the state vector components. Here, we propose a construction for which the linear
combination reduces to the selection of one component. To guarantee a self-synchronization
property (otherwise stated, to ensure Equation (A.20)), the component that is selected must
coincide with 𝑟, the delay of the system. This is why here, 𝑟 = 3.

The matrix 𝐴𝜌(𝑡) is a 40× 40 dimensional matrix. The entries 𝑎𝑖𝑗 of 𝐴𝜌(𝑡) are either 0 of F16,
or 1 of F16 or a nonlinear function of 𝑐𝑡. Among them, 𝑛𝑎 = 115 entries are non-zero coefficients
and 𝐿 = 80 entries correspond to nonlinear functions 𝜙𝑖 (𝑖 = 1, . . . , 80). Each function 𝜙𝑖 depends
on the current ciphertext symbol 𝑐𝑡 (𝑠 = 0 in Equation (A.21)) and on a subkey 𝑆𝐾𝑖 of 𝐾. This
subkey 𝑆𝐾𝑖 thus defines the corresponding function 𝜙𝑖 which depends on only one ciphertext
symbol 𝑐𝑡.

𝜙𝑖 : F16 → F16

𝑐𝑡 ↦→ 𝑆(𝑐𝑡 ⊕ 𝑆𝐾𝑖)
(A.25)

The subkey 𝑆𝐾𝑖 is a 4-bit word derived from the secret key 𝐾 as described in the Key Schedule of
subsection A.3.1 detailed further on. The function 𝑆 is the bijective S-Box extracted from Piccolo
[SIH+11]. It is defined on 4-bit words by Table A.1. The entries 𝑎𝑖𝑗 according to their location
(row 𝑖, column 𝑗 for 𝑖, 𝑗 ∈ {1, . . . , 40}) are given in Appendix A.7.1 in a symbolic manner. In the
symbolic representation of 𝐴𝜌(𝑡), denoted 𝐴𝑆 , the functions 𝜙𝑖 (𝑖 = 1, . . . , 80) are assigned to the
entries of 𝑆.

In other words, taking into account the particular structure of the matrices 𝐵 and 𝐶 with
only one non-zero coefficient, the ciphering process is governed by:

𝑥1𝑡+1 =
∑︀𝑛

𝑗=1 𝑎1𝑗𝑥
𝑗
𝑡 +𝑚𝑡

𝑥𝑖𝑡+1 =
∑︀𝑛

𝑗=1 𝑎𝑖𝑗𝑥
𝑗
𝑡 , 𝑖 = 2, · · · , 𝑛

𝑐𝑡+1 = 𝐶𝑥𝑡+1 = 𝑥3𝑡+1

(A.26)

237

Appendix A. On Non-Triangular Self-Synchronizing Stream Ciphers

Table A.1: S-box in hexadecimal notation.

𝑥 0 1 2 3 4 5 6 7 8 9 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

𝑆(𝑥) 𝐸 4 𝐵 2 3 8 0 9 1 𝐴 7 𝐹 6 𝐶 5 𝐷

Deciphering equations

The deciphering is governed by two equations defined, for 𝑡 ≥ 0, by

decipher:

{︂ ̂︀𝑥𝑡+1 = 𝑃𝜌(𝑡:𝑡+𝑟)̂︀𝑥𝑡 +𝐵𝒯 −1𝑐𝑡+𝑟

̂︀𝑚𝑡+𝑟 = 𝒯 −1(𝑐𝑡+𝑟 − 𝐶
∏︀𝑡

𝑙=𝑡+𝑟−1𝐴𝜌(𝑙)̂︀𝑥𝑡)
(A.27)

where the 40×40-dimensional matrix 𝑃𝜌(𝑡:𝑡+𝑟) over F16 verifies 𝑃𝜌(𝑡:𝑡+𝑟) = 𝐴𝜌(𝑡)−𝐵𝒯 −1𝐶
∏︀𝑡

𝑙=𝑡+𝑟−1𝐴𝜌(𝑙)

and 𝒯 = 𝐶
∏︀𝑡+1

𝑙=𝑡+𝑟−1𝐴𝜌(𝑙)𝐵.
Otherwise stated, the deciphering consists of two equations. The first one achieves the com-

putation of the next internal state 𝑥̂𝑡+1 from the current state 𝑥̂𝑡 and the delayed ciphertext 𝑐𝑡+𝑟.
The second equation ensures the recovery of the plaintext symbol 𝑚𝑡. The self-synchronization
between the internal states 𝑥𝑡 and ̂︀𝑥𝑡 of the cipher and the decipher automata and thus a proper
decryption are guaranteed, by construction, after a finite transient time.

Let 𝑋[𝑖] denotes the 𝑖-th row of a matrix 𝑋. Taking into account the particular structure
of the matrices 𝐴, 𝐵 and 𝐶, the delay 𝑟 = 3, and noticing that 𝒯 equals one, the deciphering
process is governed by:

̂︀𝑥1𝑡+1 =
(︀
𝑃𝜌(𝑡:𝑡+3)[1] · ̂︀𝑥𝑡

)︀
+ 𝑐𝑡+3

̂︀𝑥𝑖𝑡+1 =
(︀
𝑃𝜌(𝑡:𝑡+3)[𝑖] · ̂︀𝑥𝑡

)︀
𝑖 = 2, · · · , 40

̂︀𝑚𝑡+3 =
(︀
𝐴𝜌(𝑡+2)𝐴𝜌(𝑡+1)𝐴𝜌(𝑡)

)︀
[3] · ̂︀𝑥𝑡 + 𝑐𝑡+3

(A.28)

where
𝑃𝜌(𝑡:𝑡+3)[1] = 𝐴𝜌(𝑡)[1]−

(︀
𝐴𝜌(𝑡+2)𝐴𝜌(𝑡+1)𝐴𝜌(𝑡)

)︀
[3]

𝑃𝜌(𝑡:𝑡+3)[𝑖] = 𝐴𝜌(𝑡)[𝑖], 2 ≤ 𝑖 ≤ 𝑛
(A.29)

Key Schedule

The matrix 𝐴 consists of 𝑛𝑎 = 115 non-zero entries, and among them, 𝐿 = 80 are functions 𝜙𝑖

depending on the subkey 𝑆𝐾𝑖. Thus, the Key Schedule process aims at generating 80 subkeys of
4-bit length: 𝑆𝐾1, · · · , 𝑆𝐾80 from the 80-bit master key 𝐾 arranged as 20 words 𝐾1, . . . ,𝐾20

of 4-bit length. To do so, the ciphering equations (A.26) with 𝑚𝑡 = 0 are used. During this
process, the parameters 𝑆𝐾𝑖 involved in the functions 𝜙𝑖 (see Equation (A.25)) are set to zero.
The internal state 𝑥0 is initialized by duplicating the master key 𝐾 as (𝑥10 · · ·𝑥200) = (𝐾1 · · ·𝐾20)
and (𝑥210 · · ·𝑥400) = (𝐾1 · · ·𝐾20). Then, the initial internal state 𝑥0 is updated ten times by using
equations (A.26) with 𝑚𝑡 = 0 for 𝑡 = 0, . . . , 9.

After those ten iterations, the ten subkeys 𝑆𝐾1, . . . , 𝑆𝐾10 are respectively initialized with
the following components of the internal state 𝑥10: 𝑥110, 𝑥210, 𝑥710, 𝑥1010, 𝑥1710, 𝑥1810, 𝑥2210, 𝑥2610, 𝑥2810, 𝑥3410.
This process is repeated 7 more times to initialize the other subkeys 𝑆𝐾10𝑖+1, . . . , 𝑆𝐾10𝑖+10, for
𝑖 = 0, . . . , 7.

A.3.2 Ciphering Process

The plaintext consists of ℓ elements of F16: 𝑚 = 𝑚0 · · ·𝑚ℓ−1. The initial state 𝑥0 is first initialized
with 40 random elements of F16. These initial values are kept secret and are not transmitted to

238

A.3. Specification of the flat lpv-based sssc Stanislas

the decipher even if it is possible to recover the secret key. The way those elements are randomly
picked is out of the scope of this document. Only consider that you have a source of randomness.
𝑥0 could be considered as a secret nonce.

Then randomly pick 𝑛 − 1 = 39 elements 𝑚−39, · · · ,𝑚−1 of F16 as the synchronization
sequence which is placed before the plaintext. It is recalled that at most 𝑛 = 40 iterations are
needed for the self-synchronization to be achieved.

Then, because of the parameter value 𝑟 = 3 that induces a delay, randomly pick 𝑟−1 = 3−1 = 2
more elements 𝑚ℓ,𝑚ℓ+1 of F16 that will be placed at the end of the plaintext sequence 𝑚 to
process the two last plaintext symbols. Finally, the sequence that must feed the cipher is
𝑚⋆ = 𝑚−39, . . . ,𝑚0, . . . ,𝑚ℓ,𝑚ℓ+1.

The resulting ciphertext consists of the sequence 𝑐−39, . . . , 𝑐ℓ+1 of (ℓ + 41) symbols in F16,
computed with the ciphering Equations (A.26) using Matrix 𝐴𝑆 given in Appendix A.7.1 for 𝑡 in
−39, · · · , ℓ+ 1:

𝑥1𝑡+1 = 𝑆(𝑥20𝑡 ⊕ 𝑆𝐾0)⊕ 𝑆(𝑥26𝑡 ⊕ 𝑆𝐾1)
⊕𝑆(𝑥29𝑡 ⊕ 𝑆𝐾2)⊕ 𝑆(𝑥40𝑡 ⊕ 𝑆𝐾3)⊕𝑚𝑡

𝑥2𝑡+1 = 𝑥1𝑡 ⊕ 𝑆(𝑥2𝑡 ⊕ 𝑆𝐾4)⊕ 𝑆(𝑥31𝑡 ⊕ 𝑆𝐾5)
⊕𝑆(𝑥35𝑡 ⊕ 𝑆𝐾6)

𝑥3𝑡+1 = 𝑥2𝑡 ⊕ 𝑆(𝑥3𝑡 ⊕ 𝑆𝐾7)
𝑥4𝑡+1 = 𝑆(𝑥2𝑡 ⊕ 𝑆𝐾8)⊕ 𝑆(𝑥3𝑡 ⊕ 𝑆𝐾9)

...
𝑐𝑡+1 = 𝑥3𝑡+1

Note that the Matrix 𝐴𝑆 given in Appendix A.7.1 could be seen as one round of a block cipher
applied on a state with 40 4-bit words where after each round the 4-bit word 𝑥3 is outputted
whereas the 4-bit word 𝑥0 is completely updated by other 4-bit words. At each clock, each
4-bit word crosses at least one S-box, except the 4-bit word 𝑥1 that could be considered as a
temporary variable (as it receives the 4-bit message 𝑚𝑡). Note also that the updated rule for
most of the variables 𝑥𝑖 (5 ≤ 𝑖 ≤ 40) could be written as 𝑥𝑖𝑡+1 = 𝑆(𝑥𝑖−1

𝑡 ⊕ 𝑆𝐾𝑘) ⊕ 𝑓(𝑥𝑖−2
𝑡) or

𝑆(𝑥𝑖−1
𝑡 ⊕ 𝑆𝐾𝑘)⊕ 𝑓(𝑥𝑖−2

𝑡)⊕ 𝑆(𝑥𝑗𝑡 ⊕ 𝑆𝐾𝑘′) for given 𝑗, 𝑘 and 𝑘′ and where 𝑓 is the identity or the
S-box 𝑆. It could be seen as a generalization of the so-called 𝐿-scheme with a circular permutation
used in the block cipher MISTY1 with balanced inputs/outputs.

The complete ciphering process of Stanislas is illustrated on Fig. A.1.

A.3.3 Deciphering Process

The decipher receives the cryptogram consisting of ℓ + 41 symbols 𝑐−39, . . . , 𝑐ℓ+1 in F16. The
internal state ̂︀𝑥0 is initialized to an arbitrary value, for example the zero value.

Then, the deciphering Equations (A.28)-(A.29) are applied to recover a ℓ+41-length message
̂︀𝑚 = ̂︀𝑚−41, . . . ̂︀𝑚ℓ−1. The plaintext sequence is recovered as the last ℓ symbols 𝑚 = ̂︀𝑚0 . . . ̂︀𝑚ℓ−1.

Remark 2. It could be surprising that a part of the ciphering process directly depends on a secret
nonce (i.e. 𝑥0). Instead, we could imagine that an 80-bit 𝐼𝑉 is used to generate the first value 𝑥0
adding an 𝐼𝑉 schedule to the Key Schedule process. First, generate the subkeys using the Key
Schedule, then initialize the internal state with the concatenation of the 𝐼𝑉 and of the key. Then,
apply again the Key Schedule process (but including the generated subkeys 𝑆𝐾𝑖 in the S-boxes) to
initialize the internal state 𝑥0. But, note that in this case, the particular property that the internal
states (that must be kept secret) of the ciphering part and of the deciphering part are not required
to be equal is lost. Indeed, in this case where an 𝐼𝑉 is used, we will suppose that the internal
state will be computed in the same way in both sides.

239

Appendix A. On Non-Triangular Self-Synchronizing Stream Ciphers

𝑥1𝑡

𝑥2𝑡

𝑥3𝑡

...

𝑥38𝑡

𝑥39𝑡

𝑥40𝑡

· · · 𝜙0 𝜙1 · · · 𝜙2 · · · 𝜙3

...
...

· · · · · · 𝜙4 𝜙5 · · · 𝜙6 · · ·

𝑆(𝑥20𝑡 ⊕ 𝑆𝐾0)⊕ 𝑆(𝑥26𝑡 ⊕ 𝑆𝐾1)⊕ 𝑆(𝑥29𝑡 ⊕ 𝑆𝐾2)⊕ 𝑆(𝑥40𝑡 ⊕ 𝑆𝐾3)

𝑥1𝑡 ⊕ 𝑆(𝑥2𝑡 ⊕ 𝑆𝐾4)⊕ 𝑆(𝑥31𝑡 ⊕ 𝑆𝐾5)⊕ 𝑆(𝑥35𝑡 ⊕ 𝑆𝐾6)

𝑥36𝑡 ⊕ 𝑆(𝑥27𝑡 ⊕ 𝑆𝐾74)⊕ 𝑆(𝑥37𝑡 ⊕ 𝑆𝐾75)

𝑥37𝑡 ⊕ 𝑆(𝑥10𝑡 ⊕ 𝑆𝐾76)⊕ 𝑆(𝑥38𝑡 ⊕ 𝑆𝐾77)

𝑥38𝑡 ⊕ 𝑆(𝑥39𝑡 ⊕ 𝑆𝐾78)⊕ 𝑆(𝑥8𝑡 ⊕ 𝑆𝐾79)

· · · · · · · · · 𝜙7 · · · · · ·
𝑥2𝑡 ⊕ 𝑆(𝑥3𝑡 ⊕ 𝑆𝐾7)

· · · 𝜙74 · · · 𝜙75 · · · · · ·

· · · · · · 𝜙76 · · · 𝜙77 · · · · · ·

· · · · · · · · · 𝜙78 · · · 𝜙79 · · ·

𝐴𝑆 · 𝑥𝑡

𝑥3𝑡+1

𝑥1𝑡+1

𝑥2𝑡+1

...

𝑥38𝑡+1

𝑥39𝑡+1

𝑥40𝑡+1

𝑐𝑡+1
ciphertext

· · ·· · ·· · ·𝑐ℓ+2𝑐−39, · · · , 𝑐ℓ+1

synchronisation

𝑚𝑡 (plaintext)

𝑐𝑡+1

Figure A.1: The complete ciphering process of Stanislas with 𝜙𝑖(𝑥𝑗𝑡) = 𝑆(𝑥𝑗𝑡 ⊕ 𝑆𝐾𝑖).

The matrix 𝐴 consists of 𝑛𝑎 = 115 non-zero entries, and among them, 𝐿 = 80 are functions
𝜙𝑖 depending on the subkey 𝑆𝐾𝑖. Thus, the Key Schedule process aims at generating 80 subkeys
of 4-bit length: 𝑆𝐾1, · · · , 𝑆𝐾80 from the 80-bit master key 𝐾 arranged as 20 words 𝐾1, . . . ,𝐾20

of 4-bit length. To do so, the ciphering equations (A.26) with 𝑚𝑡 = 0 are used. During this
process, the parameters 𝑆𝐾𝑖 involved in the functions 𝜙𝑖 (see Equation (A.25)) are set to zero.
The internal state 𝑥0 is initialized by duplicating the master key 𝐾 as (𝑥10 · · ·𝑥200) = (𝐾1 · · ·𝐾20)
and (𝑥210 · · ·𝑥400) = (𝐾1 · · ·𝐾20). Then, the initial internal state 𝑥0 is updated ten times by using
equations (A.26) with 𝑚𝑡 = 0 for 𝑡 = 0, . . . , 9.

A.4 Design Rationale and Security Analysis

In this section, we motivate the choices of the field on which the cryptosystem operates, the
dimension 𝑛 of the internal state, the delay 𝑟 and the structure of the matrix 𝐴. Most of the
choices rest on security criteria, other ones take into account practical considerations, regarding
in particular the hardware implementation issues.

A.4.1 Design Rationale

Field on which the cryptosystem operates: Galois field 𝐺𝐹 (16). Any quantities 𝑚𝑡,
𝑐𝑡, components of 𝑥𝑡 and 𝑥̂𝑡 and non-linear functions 𝜙𝑖 (S-boxes) inputs are 4-bit data. It is
motivated by the fact that the cryptosystem is intended to be implemented on a digital equipment.
Hence, field extensions and so, power of two are required. On the other hand, 8-bit would be too
heavy for an embedded algorithm. In particular, S-boxes would involve too many logic gates.

240

A.4. Design Rationale and Security Analysis

Dimension 𝑛: 40. As the internal state components are 4-bit words, a dimension 𝑛 = 40
provides an internal state of 160 bits and thus a security level of 80 bits. Indeed, to prevent
time-memory trade-off attack [Hel80] (an attack which is a trade-off between exhaustive search
and table look-up), the internal state must be two times longer than the key length which defines
the security level. This level is compatible with a real-world application.

Delay 𝑟: 3. The more the delay, the more the algebraic degree of the entries of 𝑃𝜌(𝑡:𝑡+𝑟), recalling
that 𝑃𝜌(𝑡:𝑡+𝑟) involves the product of 𝑟 matrices (see (A.29)). Thus, for a good resistance against an
algebraic attack ([CKPS00]), the algebraic degree should be as large as possible. On the other hand,
the more the delay, the more the complexity of implementation and the less the computational
performances. The delay 𝑟 = 3 results from a trade-off between security with respect to algebraic
attacks (to increase the overall algebraic degree) and ease of implementation (especially the
implementation of the 𝑃 deciphering matrix which involves several S-box multiplications (see
Equation (A.17) in the general case and (A.29) for Stanislas)).

Structure of the matrices 𝐴 and 𝑃 . We recall that the matrix 𝐴 (and thus 𝑃 from the
computation (A.29)) is derived from the construction of a digraph (see Appendix A.8) from which
an adjacency matrix 𝐼𝐴 is extracted. More precisely, the adjacency matrix 𝐼𝐴 determines the
entries of 𝐴𝜌(𝑡) that are zero and the others that are possibly non-zero. The number 𝑛𝑎 of edges
in the digraph 𝒢(ΣΛ) corresponds to the number of non-zero entries of 𝐼𝐴. Hence, the number
𝑛𝑎 also determines the number of non-zero entries of the state transition matrix 𝑃 . Beyond the
number of non-zero entries, their location (row and column) must also be chosen. Finally, it
must be decided whether a non-zero entry will be 1 or will correspond to an S-box. All those
issues have been addressed by considering several criteria regarding the security, in particular
the good resistance to classical attacks and the good diffusion delay, while satisfying a trade-off
with respect to the computational complexity for the sake of implementation. Let us introduce
symbolic representations of 𝐴𝜌(𝑡) and 𝑃𝜌(𝑡) denoted by 𝐴𝑆 and 𝑃𝑆 where the coefficients of 𝐴𝑆

and 𝑃𝑆 belong to Z[𝑆], 𝑆 representing any non-linear function. The following considerations on
𝐴𝑆 and 𝑃𝑆 can be made.

∙ Diffusion Delay and Depth. The diffusion delay and the depth are properties related to
the consideration of the powers 𝐴𝑝

𝑆 and of 𝑃 𝑝
𝑆 as 𝑝, a natural integer, increases. Indeed, the

power of matrices results from the successive iterations of the ciphering and the deciphering
process. Let 𝑝 denotes the power of a matrix 𝑍 ∈ 𝑀𝑛(𝐺𝐹 (16)). The diffusion delay,
introduced in [ABMP11], is the smallest value, denoted by 𝑑0, of 𝑝 such that 𝑍𝑝 does not
have any zero coefficient. In other words, it is the smallest value of 𝑝 such as each element
of the initial internal state 𝑥0 has influenced every element of 𝑥𝑡 for 𝑡 ≥ 𝑑0. The depth,
introduced in [BM15], is the smallest value, denoted by 𝑑1, of 𝑝 such that any entry of 𝑍𝑝

are polynomials of degree at least 1. We are looking for the smallest values of 𝑑0 and 𝑑1.

∙ Algebraic Degree. Considering the matrix resulting from successive powers of 𝐴𝑆 and
𝑃𝑆 , we are first interested in ensuring that at least one entry has the largest algebraic
degree. To this end, we must add a cycle on the 𝑟-th vertex of the digraph 𝒢(ΣΛ), which
equivalently means that the entry of 𝐴𝑆 and 𝑃𝑆 located at row 𝑟 and column 𝑟 must be an
S-box. Furthermore, the evolution of this quantity, after successive iterations, must meet
an ideal shape: it must increase by one at each iteration, must remain constant and equal
to its maximum value as long as possible and finally must drop down to zero (let us recall
that after 40 iterations, due to (A.20), the product reaches exactly zero).

241

Appendix A. On Non-Triangular Self-Synchronizing Stream Ciphers

∙ Full Rank Matrix. The fact that 𝐴𝑆 is a full-rank matrix is a necessary condition to
ensure a full diffusion of the internal state and to maximize the dependency between the
involved terms at time 𝑡 and the involved terms at time 𝑡+ 1. Moreover, this condition
guarantees that the encryption process does not collapse. By construction (see Appendix
A.8) to ensure flatness, every element of the subdiagonal of 𝐼𝐴 from the 𝑟-th one is 1.
Hence, for 𝐴𝑆 to be full-rank, each column and each row must contain at least one non-zero
element. And yet, by construction, only the 𝑟 − 1 first elements of the last column can be
non-zero. Hence, one of them must be non-zero. From the digraph point of view, it means
that at least one of the 𝑟 − 1 first vertices must be connected to the last vertex.

The symbolic matrix 𝐴𝑆 which has been finally selected is given in Appendix A.7.1. It has
been obtained after 700000 random runs performed under the aforementioned constraints: best
diffusion delay and depth, algebraic degree (especially increase by 1 at each iteration), full rank
matrix. Several matrices correspond to the best choices (we add a sum indicator without weighing)
and we finally choose the one with the best implementations for 𝐴𝑆 and for 𝑃𝑆 . The symbolic
matrix 𝑃𝑆 can be directly obtained by considering Equations (A.29). The matrix 𝐴𝑆 involves
𝑛𝑎 = 120 non-zero entries and its number of S-boxes is 𝐿 = 80. The matrix extracted from 𝐴𝑆

and 𝑃𝑆 by removing the first 𝑟 rows and columns have a special feature. The lower subdiagonal
is full of coefficients 𝑆 (corresponding to S-boxes and denoted SB in the symbolic representation)
and the subsubdiagonal just above is full of 1. Thus, each line has at least one S-box to ensure
that the internal state 𝑥𝑡 is updated in a non-linear way: this corresponds to a non-linear shift
register.

The corresponding diffusion delay, 𝑑0 = 7, could be considered as a good diffusion delay with
regard to the synchronization delay that equals 40 (the system dimension). Indeed, the worst
diffusion delay is equal to 40 and the best diffusion delay of 1 could only be reached with a matrix
full of non-zero coefficients. Thus, we consider that a diffusion delay of 7 is a sufficiently good
compromise between the best diffusion delay and a reasonable number of non-zero coefficients.

Let us notice that the dimension 𝑛 of the system is the upper bound of the diffusion delay.
Indeed, due to (A.20), the product reaches exactly zero in 𝐺𝐹 (16) since the synchronization is
achieved after at most 40 iterations. The depth is 𝑑1 = 7 and is the best that we manage to
achieve.

S-box. Various classifications of 4-bit S-boxes exist in the literature [Can07, LP07, Saa]. For
the sake of hardware optimization, the same S-box has been used to define the 𝐿 = 80 nonlinear
functions 𝜙𝑖. Two kinds of criteria have been considered: theoretical and practical. On one
hand, we have selected S-boxes to satisfy the maximum differential probability and the maximum
(absolute) linear bias 2−2, the algebraic degree 3, and no fixed-point. Four S-boxes that satisfy
those criteria and that have simple algebraic expressions (i.e. a minimal number of non-linear
transformations) have been selected, each one corresponding respectively to the four classes
proposed in [Saa].

From an implementation point of view, it turns out that the S-box depicted in Table A.1
induces the smallest gate count. It is the Piccolo S-box ([SIH+11]). The area is around 23 Gate
Equivalents (GEs)5. It involves four NOR gates, three XOR gates and one XNOR gate. Let
us notice that the masking method can be applied using only three shares, making this S-box
suitable for efficient threshold (i.e. side-channel protected) implementations.

5Section A.5 describes the meaning of GE metric.

242

A.4. Design Rationale and Security Analysis

Key Schedule. The Key Schedule has been chosen to reuse existing circuit while sufficiently
mixing together the key words. To do so, we use the already implemented matrix 𝐴 by applying
it a sufficient number of times when looking at the diffusion degree and at the induced algebraic
degree. The extracted 4-bit words of the internal state 𝑥𝑡 - at positions 1, 2, 7, 10, 17, 18, 22, 26,
28, 34 - have been chosen to be among the ones that depend of the maximum number of other
elements of 𝑥𝑡 to ensure to maximize the diffusion effect of the initial state 𝑥0.

From a theoretical point of view, if we consider that each S-box behaves as a random function
(i.e. it has a behavior sufficiently near the one of a true random function) and using the direct
extension of Lemma 9 and Theorem 7 of [Mau02], we could say, that after 𝑑0 + 2 of the matrix 𝐴
on the input 𝑥0, the applied transformation behaves as a random function. In other words, the
operations done to fulfill the subkey words behaves as a random function.

A.4.2 Security Analysis

The following section focuses on the security of Stanislas against known attacks. We claim a
80-bit security level which corresponds to the key length (we could not have a security level
greater than the key length). Moreover, this security level is also achieved regarding the length of
the main register: 160 bits. Indeed, the Guess-and-Determine attacks described in [Hel80] imply
to double the length of the used register compare to the key length to achieve a security level
corresponding to the key length. Thus, we try to derive security bounds for all known attacks
against Stanislas and we found no attacks that work with a complexity smaller than 280 operations
which corresponds with our security claim.

Moreover, it has been proven in [DGM17b] that the canonical form of an sssc is secure
against Chosen Plaintext Attacks (IND-CPA secure) but not against Chosen Ciphertext Attacks
(IND-CCA security). We do not claim any security result in this last model. Moreover, we
suppose that the attacker has no access to the key and to the initial value of the internal state 𝑥0.
To prevent collision search attack, we limit the size of each plaintext to 264 4-bit words.

First, it seems very difficult to analyze the security of Stanislas in its true settings (i.e. the
160-bit internal state 𝑥0 is a secret nonce). In those settings, we could only say that:

∙ the time-memory-data trade-off attacks described in [Bab95, BS00, Hel80] apply when the
internal state is smaller than two times the key length. This is why we choose the length of
the internal state to be twice the key length to prevent this kind of attacks.

∙ Guess-and-Determine Attacks [Hel80] consist in guessing a part of the state to further
determine the remaining part of the state. Thus, at time 𝑡, suppose that we know 𝑥2𝑡 , 𝑥3𝑡
and of course, 𝑐𝑡. Thus, we could suppose that we observe 𝑛 consecutive outputs from
𝑐𝑡 to 𝑐𝑡+𝑛. Thus, how much does it cost to recover the induced subkey 𝑆𝐾𝑖? First, from
the equation 𝑥3𝑡+1 = 𝑥2𝑡 ⊕ 𝑆(𝑥3𝑡 ⊕ 𝑆𝐾7), we could directly compute 𝑆𝐾7. Thus, we could
derive the successive value of 𝑥2𝑡 from 𝑡 to 𝑛. Thus, from 𝑥2𝑡 we derive non-linear equations
where the unknowns are 𝑥1𝑡 , 𝑥31𝑡 , 𝑥35𝑡 , 𝑆𝐾5, 𝑆𝐾4 and 𝑆𝐾6 and the known terms are 𝑥2𝑡 to
𝑥2𝑡+𝑛. Thus, as the Algebraic Normal Form (ANF) of the S-box has 2 equations with 4
terms, 1 equation with 9 terms and 1 equation with 7 terms, each new 𝑥2𝑡 will induce a
system of 4× 3× (𝑛+ 1) + 3× 4 = 12𝑛+ 24 unknown binary variables with 4 equations
with in total 24 non-linear terms. Thus, we could not solve the system without guessing a
part of it whatever the 𝑛 value. Even considering that we guess a part of the system, the
combinatorial explosion seems clear because each value of the internal state depend on at
least one other value. Thus, we conjecture here that Stanislas is safe against this type of
attacks since, even if a part of the internal state is guessed, each 4-bit word of this state

243

Appendix A. On Non-Triangular Self-Synchronizing Stream Ciphers

is updated through a XOR with a 4-bit word of subkey and an S-box. Moreover, since
the diffusion delay of 𝐴𝑆 is 𝑑0 = 7, this leads to guess after 7 outputs all the key. Thus,
guessing a part of the state allows to guess a part of the key which, in then, amounts to a
guess-and-determine attack with a complexity greater than the key exhaustive search.

Thus, instead, when looking at classical attacks, we will use the model described in Remark 2
where the initial state is derived in its first components after 20 iterations of the matrix 𝐴𝑆

applied on the concatenation of an IV and of the master key 𝐾 and in its last components
after 14 more iterations. Those settings could be considered as a degrading mode of the original
Stanislas specifications. Thus considering that the attacker has full access to the IV, we obtain
the following bounds against classical attacks:

∙ Differential / Linear Cryptanalysis: we compute the lower bounds on the minimal
number of active S-boxes for the computation of the internal state with Remark 2. To do
so, we implement the model of Remark 2 using Constraint Programming to explore all the
possible paths in the induced graph. Then, we obtain that, for the differential case, after 7
iterations, a minimal number of 38 S-boxes has been crossed, after 10 iterations, 46, after
14 iterations, 65. As the differential probability of the chosen S-box is equal to 2−2, we
could guarantee that the 80-bit key exhaustive search is less expensive than passing through
more than 40 S-boxes, which is the case after 10 iterations of the 𝐴𝑆 matrix. In the same
way, for the linear case, we obtain after 7 iterations, 35 active S-boxes, after 10 iterations,
41 and after 14 iterations, 59. Thus, for the same reason, after 10 iterations, a 80-bit key
exhaustive search is more efficient.

∙ Algebraic Attacks: This kind of attacks [CKPS00] is possible when the overall degree
of the induced system of equations does not sufficiently increase at each clock. Especially,
if the overall degree 𝑑 in each of the 𝑛 unknown variables (the key variables for example)
of the system is such that (𝑛𝑑)2.5 is lower than the security bounds, it means that it is
faster to solve the induced system by Gaussian elimination (considering that each new
monomial is a new unknown variable) than trying all the keys of the system. Thus, we
want to prevent this attack from happening as described below. The algebraic degree of
each S-box component is the best one: equal to 3. Thus, each passing through an S-box
increases the degree in the equations describing the internal state and in the equations
describing the key. Even if the 𝑆𝐾𝑖 linearly depends on the master key bits 𝐾1, · · · ,𝐾80

(there are 80 key bits that are unknown), if we write the number of variables after crossing
the first S-box, we have (80)3 monomials depending on the unknown key bits, after the
second pass we obtain (80)6 monomials also depending on the unkonwn key bits and so
on. Thus, if we apply those estimations using the bounds on the number of active S-boxes
of the differential/linear case, after 10 iterations, we have 46 active S-boxes, which means
that the number of unknowns (considering that each new monomial is a new unknown) is
lower bounded after 10 iterations by (80)3×46 ≈ 2872,16 where 80 are the unknowns coming
from the master key, 3 is the algebraic degree of the S-box and 46 is the number of crossed
S-boxes. Thus, we conjecture that the complexity of the best algebraic attack is greater
than the 80-bit key exhaustive search.

∙ Cube Attacks: As established in [DS09], a cipher is vulnerable to cube attacks if an
output bit can be represented as a sufficiently low degree polynomial over 𝐺𝐹 (2) of key
and input bits. It works by summing an output bit value for all possible values of a subset
of public input bits, chosen such that the resulting sum is a linear combination of secret

244

A.5. Hardware Performance and Implementation Aspects

bits. Repeated application of this technique gives a set of linear relations between secret
bits that can be solved to discover these bits. In [SMT19], the authors analyzed this kind
of attacks on the block cipher Piccolo, especially its S-box. They stated that after 8 rounds,
no relation with 63 input bits could be found. The minimal number of S-boxes crossed for 8
Piccolo rounds is 58 whereas in our case, it is 46 after 10 iterations. So we conjecture that
we cross a sufficient number of S-boxes after few iterations to prevent having low degree
relations between secret key bits and public input bits.

In summary, we conjecture that most of the usual attacks which apply in the stream cipher
context have a complexity greater than the exhaustive key search for Stanislas.

A.5 Hardware Performance and Implementation Aspects

We give hereafter the implementation results of a straightforward implementation of Stanislas. It
produces one 4-bit word of ciphertext per clock cycle. Subkeys are computed in the initialization
step using the Key Schedule and stored in dedicated registers, before the cipher state processing.
The same material is used for the cipher state and the Key Schedule processes. The hardware
implementation of Stanislas is not an optimized version targeting any specific performance. The
main area occupation comes from the matrix update as it carries big registers during all the
calculations. Those registers are the internal state which are mixed with the subkeys either
with binary addition or multiplication. This means updating a 40 × 4 bits register all along
the matrix update. During ciphering process, the matrix update is solely made of S-boxes and
XOR of 4-bits words. The lowest line of the matrix in terms of area occupation is made of 1
S-box and 2 additionnal XORs, the biggest of 4 S-boxes and 8 additional XORs. The deciphering
process implies adding 23 multiplications, 28 S-boxes and 39 XORs to the previous total which
makes deciphering heavier in terms of area occupation. The matrix is implemented line by
line, calculated straightfowardly following the equations as depicted in Fig. 1. The S-boxes are
implemented in a Look-Up-Table (LUT) way, so we let the compiler do its own optimizations.
Our Stanislas implementation combines both the encryption and decryption process in order to
ease comparisons with ssscs.

We implemented Stanislas in VHDL and we provide in Table A.2 FPGA hardware implementa-
tions and performance comparisons with synchronous SCs Trivium [CP08] and Grain [HJMM08],
final members of the eSTREAM portfolio, another sssc Moustique and the AES-based sssc
CFB1-AES128 as defined in NIST SP 800-38a [Dwo01]. The chosen FPGA platform for our
benchmark is the Xilinx Spartan-6 XC6SLX75T, package FGG676. High effort of the Xilinx ISE
Design Suite has been put on area reduction. Post-place-and-route results are provided.

To get Trivium, Grain, Moustique and CFB1-AES128 implementation results, we have
designed our own VHDL straightforward reference implementations, without further optimization
in mind. For this latter, we have implemented the potential S-boxes as LUTs, to be consistent
with the S-boxes LUT implementations of Stanislas.

At first sight, we can check that some well-known properties are visible in the results.
For example, Trivium and Grain are very compact, which can be explained by their low
combinatorial gate counts. Moreover, the number of initialization cycles needed for Trivium,
Grain and Moustique is consistent with the specifications: e.g., Trivium needs a warm-up phase
of minimum 1152 steps. This number is really low for Stanislas where it just consists in a Key
Schedule and it is equal to 0 for CFB1-AES128 where the key is processed on the fly.

Surprisingly, straightforward implementation of Stanislas provides the best throughput (TP)
compared to the other stream ciphers, even self-synchronizing. The reason is that one 4-bit word

245

Appendix A. On Non-Triangular Self-Synchronizing Stream Ciphers

Area Init. Synchro. Freq. TP
(slices) (cycles) (cycles) (MHz) (Mbps)

Trivium 47 1603 0 191 191
Grain 48 256 0 355 355

Moustique 166 105 105 309 309
CFB1-AES128 745 0 128 73 849

Stanislas 701 66 40 95 380

Table A.2: Xilinx Spartan-6 XC6SLX75T (FPGA) Straightforward Implementation Results.

is processed by clock cycle, so the throughput is given by: 95 × 4 (bits) = 380 Mbps. That
justifies our design choice of processing 4-bit words instead of individual bits. Compared to the
standard approach CFB1-AES128, the time needed for synchronization is also shorter, along with
a smaller area.

This encouraging result has to be mitigated if we consider the combined metric TP/Area as
shown on Table A.3. This latter allows to estimate the cost of optimized parallel implementations,
where many bits can be processed in parallel, at the expense of additional area.

TP/Area (Mbps/slice)
Trivium 4.06
Grain 7.39

Moustique 1.86
CFB1-AES128 1.13

Stanislas 0.54

Table A.3: Combined Metric TP/Area (Mbps/Slice on Xilinx Spartan-6 XC6SLX75T FPGA).

As we can see, due to its lowest TP/Area value, straightforward implementation of Stanislas
will suffer from the comparisons of its competitors’ optimized versions. We can then estimate, in
Table A.4, the theoretical implementation results of all Stanislas competitors when all of them are
unrolled versions which process 4 bits per clock cycle, as Stanislas.

Area (slices) TP (Mbps)
Trivium 188 764
Grain 192 1420

Moustique 664 1236
CFB4-AES128 2980 3396

Stanislas 701 380

Table A.4: Theoretical Implementation Results of some (SS)SCs on Xilinx Spartan-6 XC6SLX75T
FPGA for 4-bit Versions

As we can see, CFB4-AES128 mode has a 4-fold throughput speedup, beating Stanislas
proposal with a significant margin, and it requires only 32 steps for synchronization. But it
implies to occupy a big amount of FPGA slices, which is not always affordable for some constrained
applications.

Future works will include the study of the cost of side-channel protected Stanislas implemen-
tations.

246

A.6. Conclusion

A.6 Conclusion

An instantiation, called Stanislas, of a dedicated Self Synchronizing Stream Ciphers (sssc) has
been proposed. Its main peculiarity comes from the fact that it involves an automaton with finite
input memory using non-triangular state transition functions. The construction is based on a
general and systematic methodology that uses automata (called Linear Parameter Varying, lpv)
admitting a matrix representation and a special property called flatness. The security analysis
allows to conjecture that most of the usual attacks which apply in the stream cipher context have
a complexity greater than the key exhaustive search for Stanislas. But, Stanislas could not be
considered having a small hardware footprint.

However, when straightforward implementations are considered, Stanislas provides bigger
throughput than the considered stream ciphers, and its intrinsic synchronization delay is much
smaller than the sssc Moustique (40 clock cycles instead of 105) and the standard approach
CFB1-AES128 (40 clock cycles instead of 128).

Moreover, the number of surviving Self Synchronizing Stream Ciphers after a phase of public
cryptanalysis time is equal to zero. So, we hope that Stanislas will be the first one and we
encourage the symmetric key cryptographic community to cryptanalyze it.

A.7 Appendix

A.7.1 The Matrix 𝐴𝑆

The matrix 𝐴𝑆 is given in Fig. A.2.

Figure A.2: The Matrix 𝐴𝑆 .

247

Appendix A. On Non-Triangular Self-Synchronizing Stream Ciphers

A.8 Construction of the Matrices of the sssc

A digraph 𝒢(ΣΛ) describing the structured linear system associated to the state equations (A.12),
is the combination of a vertex set 𝒱 and an edge set ℰ . The vertices represent the states and the
input components of ΣΛ while the edges describe the dynamic relations between these variables.
One has 𝒱 = X ∪ {m} where X is the set of state vertices defined as X =

{︀
x1, . . . , xn

}︀
and

m is the input vertex. The edge set is ℰ = ℰ𝐴 ∪ ℰ𝐵, with ℰ𝐴 =
{︀
(xi,xj) |𝐴(𝑖, 𝑗) ̸= 0

}︀
and

ℰ𝐵 =
{︀
(m,xi) |𝐵(𝑖) ̸= 0

}︀
. The entries of 𝐴𝜌(𝑡) correspond to the weights of the edges in the

digraph. For convenience, we will denote by vj, (𝑗 = 0, . . . , 𝑛) a vertex of the digraph 𝒢(ΣΛ)
regardless of whether it is the input or a state vertex.

Given a triplet (𝑛, 𝑟, 𝑛𝑎) with 𝑛 the dimension of the state, 𝑟 the delay and 𝑛𝑎 the number of
non-zero entries of the matrix 𝐴, the construction of the digraph 𝒢(ΣΛ) related to the system ΣΛ

involves the following steps.

The system ΣΛ is of dimension 𝑛 and thus, the digraph 𝒢(ΣΛ) involves 𝑛+ 1 vertices. The
input is assigned to the vertex denoted by v0. The other 𝑛 vertices are denoted by v1, . . . ,vn.
Let vr be the vertex that corresponds to the flat output vr.

Step 1: For, 𝑖 = 0, . . . , 𝑛− 1, add the edges (vi,vi+1). There are 𝑟 edges which connect v0

to vr. Hence, the delay of the automaton is 𝑟.

After Step 1, this line topology corresponds to quite trivial dynamical systems since it
corresponds to state transition functions in the form of simple shifts. Let us recall that we
aim at designing an automaton possibly involving state transition functions more general than
𝑇–functions. A shift is a special and trivial 𝑇–function. To this end, the following steps provide
a way of adding edges (vi,vj) while guaranteeing flatness.

Step 2: Add the edges (vr+i,vr+i+1) for 𝑖 = 1, . . . , 𝑛 − 𝑟 − 1. Step 2 allows vertex vj,
𝑗 = 𝑟+1, . . . , 𝑛 to have a predecessor. Indeed, if not so, the dynamics of the corresponding vertex
vj would reduce to 𝑥𝑗𝑘+1 = 0 and would be clearly useless. The resulting path is a so-called main
directed path and is depicted in Figure A.3.

v0 v1 v2 vr−1 vr vn

Figure A.3: Digraph obtained after completion of Step 1-2. The vertex vr corresponds to the flat
output

Step 3: Add the edges (vr,vi), 𝑖 = 1, . . . , 𝑛 that connect the vertex vr to any other vertices
of the graph (except the vertex v0 related to the input).

Step 4: For every vertex vi, 𝑖 = 1, . . . , 𝑟 − 1, add the directed edge (vi,vj) for 𝑗 = 1, . . . , 𝑖.

The graph obtained after Step 1-4 is depicted in Figure A.4.

Step 5: For every vertex vi, 𝑖 = 𝑟 + 1, . . . , 𝑛, add the directed edge (vi,vj) for 𝑗 = 1, . . . , 𝑟
and 𝑗 = 𝑖+ 2, . . . , 𝑛.

The resulting digraph after completion of Step 1-5 is depicted in Figure A.5.

248

A.8. Construction of the Matrices of the sssc

v0 v1 v2 vr−1 vr vr+1 vi vn

Figure A.4: Graph obtained after Step 1-4.

v0 v1 v2 vr−1 vr vr+1 vi vn

Figure A.5: Graph obtained after completion of Step 1-5.

To sum up, the digraph 𝒢(ΣΛ) is parametrized by the triplet (𝑛, 𝑟, 𝑛𝑎). The number of vertices
of the digraph is equal to 𝑛+ 1. Indeed, there are 𝑛 vertices assigned to the state components
and one assigned to the input. The delay 𝑟 is the number of edges in the main directed path. The
integer 𝑛𝑎 defines the desired number of edges in the digraph 𝒢(ΣΛ). It must satisfy 𝑛𝑎 ≤ 𝑛𝑀 ,
where 𝑛𝑀 is the maximal number of edges resulting from the construction Step 1-5. A simple
counting leads to:

𝑛𝑀 =
𝑛(𝑛+ 1)

2
+ 𝑟. (A.30)

During the construction, at each step, we can decide whether we actually add the edges or not.
That introduces flexibility in the perspective of providing distinct graphs and thus, distinct sssc
as detailed in Subsection A.2.3.

Finally, the matrices 𝐼𝐴 and 𝐼𝐵 of the structural system ΣΛ can be extracted from the
adjacency matrix, denoted by ℐ, associated to the digraph 𝒢(ΣΛ). Indeed, the adjacency matrix
ℐ associated to the digraph 𝒢(ΣΛ) is the (𝑛+ 1)× (𝑛+ 1) matrix

ℐ =

⎛
⎜⎜⎜⎝

0 𝐼𝑡𝐵
0

𝐼𝑡𝐴
...
0

⎞
⎟⎟⎟⎠ (A.31)

where 𝐼𝑡𝐴 and 𝐼𝑡𝐵 stands respectively for the transpose of the structured matrices 𝐼𝐴 and 𝐼𝐵 . The
entries ℐ𝑖𝑗 are defined as follows for 1 ≤ 𝑖, 𝑗 ≤ 𝑛

ℐ𝑖𝑗 =
{︂

1 if there exists an edge from vj to vi

0 otherwise. (A.32)

The adjacency matrix associated to 𝒢(ΣΛ), obtained after completion of Step 1-5, is given by

249

Appendix A. On Non-Triangular Self-Synchronizing Stream Ciphers

v0 v1 v2 v3 · · · vr vr+1 · · · vn−1 vn

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

v0 0 1 0 0 · · · 0 · · · 0 0 0
v1 0 1 1 0 · · · 0 · · · 0 0 0
v2 0 1 1 1 · · · 0 · · · 0 0 0
v3 0 1 1 1 · · · 0 · · · 0 0 0
...

...
...

...
...

. . . 0 0 0 0 0
vr 0 1 1 1 · · · 1 1 1 1 1

vr+1 0 1 1 1 · · · 1 0 1 1 1
...

...
...

...
...

...
...

...
.

...
vn−1 0 1 1 1 · · · 1 0 0 0 1
vn 0 1 1 1 · · · 1 0 0 0 0

The open source software Sagemath [CCC+13] has been used to elaborate the digraph 𝒢(ΣΛ)
corresponding to the triplet (𝑛 = 40, 𝑟 = 3, 𝑛𝑎 = 120). The construction has been performed on an
Intel CORE i7 CPU 2.26 GHz running Linux Ubuntu 14.04. All experiments ran single-threaded
on the processors. It took 21 ms on the computer to obtain the digraph 𝒢(ΣΛ).

250

Bibliography

[ABC+17] Ralph Ankele, Subhadeep Banik, Avik Chakraborti, Eik List, Florian Mendel,
Siang Meng Sim, and Gaoli Wang. Related-key impossible-differential attack on
reduced-round skinny. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi,
editors, ACNS 17, volume 10355 of LNCS, pages 208–228. Springer, Heidelberg, July
2017. doi:10.1007/978-3-319-61204-1_11.

[ABC+18] Alexandre Adomnicai, Thierry P. Berger, Christophe Clavier, Julien Francq,
Paul Huynh, Virginie Lallemand, Kévin Le Gouguec, Marine Minier, Léo
Reynaud, and Gaël Thomas. Lilliput-AE: a new lightweight tweakable
block cipher for authenticated encryption with associated data. Sub-
mission to the NIST Lightweight Cryptography project. Available online
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/LILLIPUT-AE-spec.pdf., 2018.

[ABD+12] Wim Aerts, Eli Biham, Dieter De Moitie, Elke De Mulder, Orr Dunkelman, Sebastiaan
Indesteege, Nathan Keller, Bart Preneel, Guy A. E. Vandenbosch, and Ingrid
Verbauwhede. A practical attack on KeeLoq. Journal of Cryptology, 25(1):136–157,
January 2012. doi:10.1007/s00145-010-9091-9.

[ABI+18] Gianira Alfarano, Christof Beierle, Takanori Isobe, Stefan Kölbl, and Gregor Leander.
Shiftrows alternatives for AES-like ciphers and optimal cell permutations for midori
and skinny. IACR Trans. Symm. Cryptol., 2018(2):20–47, 2018. doi:10.13154/
tosc.v2018.i2.20-47.

[ABL+09] F. Arnault, T. P. Berger, C. Lauradoux, M. Minier, and B. Pousse. A new approach
for fcsrs. In Selected Areas in Cryptography - SAC 2009, volume 5867 of Lecture
Notes in Computer Science, pages 433–448. Springer, 2009.

[ABMP11] Francois Arnault, Thierry P. Berger, Marine Minier, and Benjamin Pousse. Revisiting
LFSRs for Cryptographic Applications. IEEE Trans. on Info. Theory, 57(12):8095–
8113, 2011.

[AC09] Martin Albrecht and Carlos Cid. Algebraic techniques in differential cryptanalysis.
In Orr Dunkelman, editor, FSE 2009, volume 5665 of LNCS, pages 193–208. Springer,
Heidelberg, February 2009. doi:10.1007/978-3-642-03317-9_12.

[ADK+14] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander, Christof
Paar, and Tolga Yalçin. Block ciphers - focus on the linear layer (feat. PRIDE).
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume
8616 of LNCS, pages 57–76. Springer, Heidelberg, August 2014. doi:10.1007/
978-3-662-44371-2_4.

251

http://dx.doi.org/10.1007/978-3-319-61204-1_11
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/LILLIPUT-AE-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/LILLIPUT-AE-spec.pdf
http://dx.doi.org/10.1007/s00145-010-9091-9
http://dx.doi.org/10.13154/tosc.v2018.i2.20-47
http://dx.doi.org/10.13154/tosc.v2018.i2.20-47
http://dx.doi.org/10.1007/978-3-642-03317-9_12
http://dx.doi.org/10.1007/978-3-662-44371-2_4
http://dx.doi.org/10.1007/978-3-662-44371-2_4

Bibliography

[AES01] Advanced Encryption Standard (AES). National Institute of Standards and Tech-
nology (NIST), FIPS PUB 197, U.S. Department of Commerce, November 2001.

[AH16] Roberto Avanzi and Howard M. Heys, editors. SAC 2016, volume 10532 of LNCS.
Springer, Heidelberg, August 2016.

[AIK+01] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho Moriai,
Junko Nakajima, and Toshio Tokita. Camellia: A 128-bit block cipher suitable for
multiple platforms - Design and analysis. In Douglas R. Stinson and Stafford E.
Tavares, editors, SAC 2000, volume 2012 of LNCS, pages 39–56. Springer, Heidelberg,
August 2001. doi:10.1007/3-540-44983-3_4.

[AK19] Ralph Ankele and Stefan Kölbl. Mind the gap - A closer look at the security of block
ciphers against differential cryptanalysis. In Cid and Jacobson Jr: [CJ19], pages
163–190. doi:10.1007/978-3-030-10970-7_8.

[ALP+19] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar, Arnab Roy,
and Damian Vizár. Forkcipher: A new primitive for authenticated encryption of very
short messages. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019,
Part II, volume 11922 of LNCS, pages 153–182. Springer, Heidelberg, December
2019. doi:10.1007/978-3-030-34621-8_6.

[ANS14] Référentiel général de sécurité – Mécanismes cryptographiques. Technical report,
2014. Agence Nationale de la Sécurité des Systeèmes d’Information, https://www.
ssi.gouv.fr/uploads/2014/11/RGS_v-2-0_B1.pdf.

[AP13] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS
and DTLS record protocols. In 2013 IEEE Symposium on Security and Privacy,
pages 526–540. IEEE Computer Society Press, May 2013. doi:10.1109/SP.2013.42.

[AST+17] Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba, and Amr M.
Youssef. MILP modeling for (large) s-boxes to optimize probability of differen-
tial characteristics. IACR Trans. Symm. Cryptol., 2017(4):99–129, 2017. doi:
10.13154/tosc.v2017.i4.99-129.

[Bab95] S. Babbage. A Space/Time Trade-Off in Exhaustive Search Attacks on Stream
Ciphers. In European Convention on Security and Detection, number 408. IEEE
Conference Publication, 1995.

[Bar20] Elaine Barker. NIST SP 800-57. Recommendation for key management: Part
1—general (revised). Technical report, Gaithersburg, MD, USA, 2020. https://
nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf.

[BBB+19] Davide Bellizia, Francesco Berti, Olivier Bronchain, Gaëtan Cassiers,
Sébastien Duval, Chun Guo, Gregor Leander, Gaëtan Leurent, Itamar
Levi, Charles Momin, Olivier Pereira, Thomas Peters, François-Xavier
Standaert, and Friedrich Wiemer. Spook: Sponge-based leakage-resilient
authenticated encryption with a masked tweakable block cipher. Sub-
mission to the NIST Lightweight Cryptography project. Available online
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/Spook-spec-round2.pdf., 2019.

252

http://dx.doi.org/10.1007/3-540-44983-3_4
http://dx.doi.org/10.1007/978-3-030-10970-7_8
http://dx.doi.org/10.1007/978-3-030-34621-8_6
https://www.ssi.gouv.fr/uploads/2014/11/RGS_v-2-0_B1.pdf
https://www.ssi.gouv.fr/uploads/2014/11/RGS_v-2-0_B1.pdf
http://dx.doi.org/10.1109/SP.2013.42
http://dx.doi.org/10.13154/tosc.v2017.i4.99-129
http://dx.doi.org/10.13154/tosc.v2017.i4.99-129
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/Spook-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/Spook-spec-round2.pdf

[BBB+20] Davide Bellizia, Francesco Berti, Olivier Bronchain, Gaëtan Cassiers, Sébastien Duval,
Chun Guo, Gregor Leander, Gaëtan Leurent, Itamar Levi, Charles Momin, Olivier
Pereira, Thomas Peters, François-Xavier Standaert, Balazs Udvarhelyi, and Friedrich
Wiemer. Spook: Sponge-based leakage-resistant authenticated encryption with a
masked tweakable block cipher. IACR Trans. Symm. Cryptol., 2020(S1):295–349,
2020. doi:10.13154/tosc.v2020.iS1.295-349.

[BBC+08] Côme Berbain, Olivier Billet, Anne Canteaut, Nicolas T. Courtois, Henri Gilbert,
Louis Goubin, Aline Gouget, Louis Granboulan, Cédric Lauradoux, Marine Minier,
Thomas Pornin, and Hervé Sibert. Sosemanuk, a fast software-oriented stream cipher.
4986:98–118, 2008. URL: https://doi.org/10.1007/978-3-540-68351-3_9, doi:
10.1007/978-3-540-68351-3_9.

[BBdS+19] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl,
Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and Qingju Wang. Schwaemm
and Esch: lightweight authenticated encryption and hashing using the Sparkle
permutation family. Submission to the 2nd round of the Nist lightweight process.,
2019.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga
Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A block cipher for low
energy. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part II,
volume 9453 of LNCS, pages 411–436. Springer, Heidelberg, November / December
2015. doi:10.1007/978-3-662-48800-3_17.

[BBK+13] Begül Bilgin, Andrey Bogdanov, Miroslav Knežević, Florian Mendel, and Qingju
Wang. Fides: Lightweight authenticated cipher with side-channel resistance for
constrained hardware. In Bertoni and Coron [BC13], pages 142–158. doi:10.1007/
978-3-642-40349-1_9.

[BBL13] Céline Blondeau, Andrey Bogdanov, and Gregor Leander. Bounds in shallows
and in miseries. In Canetti and Garay [CG13], pages 204–221. doi:10.1007/
978-3-642-40041-4_12.

[BBP+19] Subhadeep Banik, Andrey Bogdanov, Thomas Peyrin, Yu Sasaki, Siang,
Meng Sim, Elmar Tischhauser, and Yosuke Todo. SUNDAE-GIFT. Sub-
mission to the NIST Lightweight Cryptography project. Available online
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/SUNDAE-GIFT-spec-round2.pdf., 2019.

[BBR16] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Atomic-AES v2.0.
Cryptology ePrint Archive, Report 2016/1005, 2016. http://eprint.iacr.org/
2016/1005.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In Jacques Stern, editor, EUROCRYPT’99,
volume 1592 of LNCS, pages 12–23. Springer, Heidelberg, May 1999. doi:10.1007/
3-540-48910-X_2.

[BC13] Guido Bertoni and Jean-Sébastien Coron, editors. CHES 2013, volume 8086 of
LNCS. Springer, Heidelberg, August 2013.

253

http://dx.doi.org/10.13154/tosc.v2020.iS1.295-349
https://doi.org/10.1007/978-3-540-68351-3_9
http://dx.doi.org/10.1007/978-3-540-68351-3_9
http://dx.doi.org/10.1007/978-3-540-68351-3_9
http://dx.doi.org/10.1007/978-3-662-48800-3_17
http://dx.doi.org/10.1007/978-3-642-40349-1_9
http://dx.doi.org/10.1007/978-3-642-40349-1_9
http://dx.doi.org/10.1007/978-3-642-40041-4_12
http://dx.doi.org/10.1007/978-3-642-40041-4_12
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SUNDAE-GIFT-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SUNDAE-GIFT-spec-round2.pdf
http://eprint.iacr.org/2016/1005
http://eprint.iacr.org/2016/1005
http://dx.doi.org/10.1007/3-540-48910-X_2
http://dx.doi.org/10.1007/3-540-48910-X_2

Bibliography

[BC16] Christina Boura and Anne Canteaut. Another view of the division property. In
Robshaw and Katz [RK16a], pages 654–682. doi:10.1007/978-3-662-53018-4_24.

[BC18] Christina Boura and Anne Canteaut. On the boomerang uniformity of cryptographic
sboxes. IACR Trans. Symm. Cryptol., 2018(3):290–310, 2018. doi:10.13154/tosc.
v2018.i3.290-310.

[BCD+99] Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario Gennaro, Shai
Halevi, Charanjit Jutla, Stephen M. Matyas Jr, Luke O’Connor, Mohammad Peyra-
vian, Jr. Luke, O’connor Mohammad Peyravian, David Stafford, and Nevenko Zunic.
Mars - a candidate cipher for aes. NIST AES Proposal, 1999.

[BCD11] Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-order
differential properties of Keccak and Luffa. In Joux [Jou11], pages 252–269.
doi:10.1007/978-3-642-21702-9_15.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Kneže-
vić, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian
Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE
- A low-latency block cipher for pervasive computing applications - extended
abstract. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, vol-
ume 7658 of LNCS, pages 208–225. Springer, Heidelberg, December 2012. doi:
10.1007/978-3-642-34961-4_14.

[BCI+19] Subhadeep Banik, Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, Mridul
Nandi, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo. GIFT-COFB.
Submission to the NIST Lightweight Cryptography project. Available online
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/gift-cofb-spec-round2.pdf., 2019.

[BCKL17] Christina Boura, Anne Canteaut, Lars R. Knudsen, and Gregor Leander. Reflection
ciphers. Des. Codes Cryptogr., 82(1-2):3–25, 2017. URL: https://doi.org/10.
1007/s10623-015-0143-x, doi:10.1007/s10623-015-0143-x.

[BCLR17] Christof Beierle, Anne Canteaut, Gregor Leander, and Yann Rotella. Proving resis-
tance against invariant attacks: How to choose the round constants. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages
647–678. Springer, Heidelberg, August 2017. doi:10.1007/978-3-319-63715-0_22.

[BD08] Steve Babbage and Matthew Dodd. The MICKEY stream ciphers. In Matthew
J. B. Robshaw and Olivier Billet, editors, New Stream Cipher Designs - The eS-
TREAM Finalists, volume 4986 of Lecture Notes in Computer Science, pages 191–
209. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-68351-3_15,
doi:10.1007/978-3-540-68351-3_15.

[BDF11] Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic search of
attacks on round-reduced AES and applications. In Rogaway [Rog11], pages 169–187.
doi:10.1007/978-3-642-22792-9_10.

[BDK01] Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack - rectangling
the Serpent. In Pfitzmann [Pfi01], pages 340–357. doi:10.1007/3-540-44987-6_21.

254

http://dx.doi.org/10.1007/978-3-662-53018-4_24
http://dx.doi.org/10.13154/tosc.v2018.i3.290-310
http://dx.doi.org/10.13154/tosc.v2018.i3.290-310
http://dx.doi.org/10.1007/978-3-642-21702-9_15
http://dx.doi.org/10.1007/978-3-642-34961-4_14
http://dx.doi.org/10.1007/978-3-642-34961-4_14
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/gift-cofb-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/gift-cofb-spec-round2.pdf
https://doi.org/10.1007/s10623-015-0143-x
https://doi.org/10.1007/s10623-015-0143-x
http://dx.doi.org/10.1007/s10623-015-0143-x
http://dx.doi.org/10.1007/978-3-319-63715-0_22
https://doi.org/10.1007/978-3-540-68351-3_15
http://dx.doi.org/10.1007/978-3-540-68351-3_15
http://dx.doi.org/10.1007/978-3-642-22792-9_10
http://dx.doi.org/10.1007/3-540-44987-6_21

[BDK05] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and rectangle
attacks. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS,
pages 507–525. Springer, Heidelberg, May 2005. doi:10.1007/11426639_30.

[BDKW19] Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman. DLCT: A
new tool for differential-linear cryptanalysis. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 313–342. Springer,
Heidelberg, May 2019. doi:10.1007/978-3-030-17653-2_11.

[BDP+16] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny
Van Keer. CAESAR submission: Ketje v2. Submission to the CAESAR Competition,
2016.

[BDQ04] Alex Biryukov, Christophe De Cannière, and Michaël Quisquater. On multiple linear
approximations. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS,
pages 1–22. Springer, Heidelberg, August 2004. doi:10.1007/978-3-540-28628-8_
1.

[Bee19] Daniel Beer. mspdebug. https://github.com/dlbeer/mspdebug, 2019. Accessed:
2019-03-07.

[Ber08] Daniel J. Bernstein. The salsa20 family of stream ciphers. In Matthew J. B.
Robshaw and Olivier Billet, editors, New Stream Cipher Designs - The eS-
TREAM Finalists, volume 4986 of Lecture Notes in Computer Science, pages
84–97. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-68351-3_8,
doi:10.1007/978-3-540-68351-3_8.

[Ber16] Daniel J. Bernstein. CAESAR use cases. https://groups.google.com/forum/#!
msg/crypto-competitions/DLv193SPSDc/4CeHPvIoBgAJ, 2016.

[BFMT16] Thierry P. Berger, Julien Francq, Marine Minier, and Gaël Thomas. Extended
generalized feistel networks using matrix representation to propose a new lightweight
block cipher: Lilliput. IEEE Trans. Computers, 65(7):2074–2089, 2016. URL:
https://doi.org/10.1109/TC.2015.2468218, doi:10.1109/TC.2015.2468218.

[BG10] Céline Blondeau and Benoît Gérard. Links between theoretical and effective differ-
ential probabilities: Experiments on PRESENT. Cryptology ePrint Archive, Report
2010/261, 2010. http://eprint.iacr.org/2010/261.

[BG11] Céline Blondeau and Benoît Gérard. Multiple differential cryptanalysis: Theory and
practice. In Joux [Jou11], pages 35–54. doi:10.1007/978-3-642-21702-9_3.

[BGG+16] Erik Boss, Vincent Grosso, Tim Güneysu, Gregor Leander, Amir Moradi, and Tobias
Schneider. Strong 8-bit sboxes with efficient masking in hardware. In Gierlichs and
Poschmann [GP16], pages 171–193. doi:10.1007/978-3-662-53140-2_9.

[BGG+20] Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel
Thomé, and Paul Zimmermann. Comparing the difficulty of factorization and
discrete logarithm: A 240-digit experiment. In Daniele Micciancio and Thomas
Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages 62–91.
Springer, Heidelberg, August 2020. doi:10.1007/978-3-030-56880-1_3.

255

http://dx.doi.org/10.1007/11426639_30
http://dx.doi.org/10.1007/978-3-030-17653-2_11
http://dx.doi.org/10.1007/978-3-540-28628-8_1
http://dx.doi.org/10.1007/978-3-540-28628-8_1
https://github.com/dlbeer/mspdebug
https://doi.org/10.1007/978-3-540-68351-3_8
http://dx.doi.org/10.1007/978-3-540-68351-3_8
https://groups.google.com/forum/#!msg/crypto-competitions/DLv193SPSDc/4CeHPvIoBgAJ
https://groups.google.com/forum/#!msg/crypto-competitions/DLv193SPSDc/4CeHPvIoBgAJ
https://doi.org/10.1109/TC.2015.2468218
http://dx.doi.org/10.1109/TC.2015.2468218
http://eprint.iacr.org/2010/261
http://dx.doi.org/10.1007/978-3-642-21702-9_3
http://dx.doi.org/10.1007/978-3-662-53140-2_9
http://dx.doi.org/10.1007/978-3-030-56880-1_3

Bibliography

[BGJT14] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A
heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of
small characteristic. In Nguyen and Oswald [NO14], pages 1–16. doi:10.1007/
978-3-642-55220-5_1.

[BGW+14] Andrey Bogdanov, Huizheng Geng, Meiqin Wang, Long Wen, and Baudoin Col-
lard. Zero-correlation linear cryptanalysis with FFT and improved attacks on
ISO standards Camellia and CLEFIA. In Lange et al. [LLL14], pages 306–323.
doi:10.1007/978-3-662-43414-7_16.

[BHL+20] Hamid Boukerrou, Paul Huynh, Virginie Lallemand, Bimal Mandal, and Marine
Minier. On the Feistel counterpart of the boomerang connectivity table (long paper).
IACR Trans. Symm. Cryptol., 2020(1):331–362, 2020. doi:10.13154/tosc.v2020.
i1.331-362.

[Bie14] Armin Biere. Yet another local search solver and lingeling and friends entering the
sat competition 2014. Sat competition, 2014(2):65, 2014.

[Bih94] Eli Biham. New types of cryptanalytic attacks using related keys (extended abstract).
In Helleseth [Hel94], pages 398–409. doi:10.1007/3-540-48285-7_34.

[Bih97a] Eli Biham. Cryptanalysis of Ladder-DES. In FSE 1997 [Bih97b], pages 134–138.
doi:10.1007/BFb0052341.

[Bih97b] Eli Biham, editor. FSE’97, volume 1267 of LNCS. Springer, Heidelberg, January
1997.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas
Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of
block ciphers and its low-latency variant MANTIS. In Robshaw and Katz [RK16b],
pages 123–153. doi:10.1007/978-3-662-53008-5_5.

[BJK+19] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. SKINNY-
AEAD and SKINNY-Hash. Submission to the NIST Lightweight Cryp-
tography project. Available online https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/
SKINNY-spec-round2.pdf., 2019.

[BJM+14] Lejla Batina, Domagoj Jakobovic, Nele Mentens, Stjepan Picek, Antonio De La
Piedra, and Dominik Sisejkovic. S-box pipelining using genetic algorithms for high-
throughput AES implementations: How fast can we go? In Willi Meier and Debdeep
Mukhopadhyay, editors, INDOCRYPT 2014, volume 8885 of LNCS, pages 322–337.
Springer, Heidelberg, December 2014. doi:10.1007/978-3-319-13039-2_19.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full
AES-192 and AES-256. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume
5912 of LNCS, pages 1–18. Springer, Heidelberg, December 2009. doi:10.1007/
978-3-642-10366-7_1.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An

256

http://dx.doi.org/10.1007/978-3-642-55220-5_1
http://dx.doi.org/10.1007/978-3-642-55220-5_1
http://dx.doi.org/10.1007/978-3-662-43414-7_16
http://dx.doi.org/10.13154/tosc.v2020.i1.331-362
http://dx.doi.org/10.13154/tosc.v2020.i1.331-362
http://dx.doi.org/10.1007/3-540-48285-7_34
http://dx.doi.org/10.1007/BFb0052341
http://dx.doi.org/10.1007/978-3-662-53008-5_5
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SKINNY-spec-round2.pdf
http://dx.doi.org/10.1007/978-3-319-13039-2_19
http://dx.doi.org/10.1007/978-3-642-10366-7_1
http://dx.doi.org/10.1007/978-3-642-10366-7_1

ultra-lightweight block cipher. In Pascal Paillier and Ingrid Verbauwhede, editors,
CHES 2007, volume 4727 of LNCS, pages 450–466. Springer, Heidelberg, September
2007. doi:10.1007/978-3-540-74735-2_31.

[BKLT11] Julia Borghoff, Lars R. Knudsen, Gregor Leander, and Søren S. Thomsen. Cryptanal-
ysis of PRESENT-like ciphers with secret S-boxes. In Joux [Jou11], pages 270–289.
doi:10.1007/978-3-642-21702-9_16.

[BKN02] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking and provably
repairing the SSH authenticated encryption scheme: A case study of the Encode-
then-Encrypt-and-MAC paradigm. Cryptology ePrint Archive, Report 2002/078,
2002. http://eprint.iacr.org/2002/078.

[BKS09] Julia Borghoff, Lars R. Knudsen, and Mathias Stolpe. Bivium as a mixed-integer
linear programming problem. In Matthew G. Parker, editor, 12th IMA International
Conference on Cryptography and Coding, volume 5921 of LNCS, pages 133–152.
Springer, Heidelberg, December 2009.

[BM15] T. P. Berger and M. Minier. Some results using the matrix methods on impossible,
integral and zero-correlation distinguishers for feistel-like ciphers. In Progress in
Cryptology - INDOCRYPT 2015, volume 9462 of Lecture Notes in Computer Science,
pages 180–197. Springer, 2015.

[BMNS14] Christina Boura, Marine Minier, María Naya-Plasencia, and Valentin Suder. Improved
impossible differential attacks against round-reduced LBlock. Cryptology ePrint
Archive, Report 2014/279, 2014. http://eprint.iacr.org/2014/279.

[BMP09] Thierry P. Berger, Marine Minier, and Benjamin Pousse. Software oriented stream
ciphers based upon FCSRs in diversified mode. In Bimal K. Roy and Nicolas
Sendrier, editors, INDOCRYPT 2009, volume 5922 of LNCS, pages 119–135. Springer,
Heidelberg, December 2009.

[BMT14] Thierry P. Berger, Marine Minier, and Gaël Thomas. Extended generalized Feistel
networks using matrix representation. In Lange et al. [LLL14], pages 289–305.
doi:10.1007/978-3-662-43414-7_15.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. In Tatsuaki
Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 531–545. Springer,
Heidelberg, December 2000. doi:10.1007/3-540-44448-3_41.

[BN10] Alex Biryukov and Ivica Nikolic. Automatic search for related-key differential char-
acteristics in byte-oriented block ciphers: Application to AES, Camellia, Khazad and
others. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 322–
344. Springer, Heidelberg, May / June 2010. doi:10.1007/978-3-642-13190-5_17.

[BN14] Céline Blondeau and Kaisa Nyberg. Links between truncated differential and
multidimensional linear properties of block ciphers and underlying attack complexities.
In Nguyen and Oswald [NO14], pages 165–182. doi:10.1007/978-3-642-55220-5_
10.

257

http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-642-21702-9_16
http://eprint.iacr.org/2002/078
http://eprint.iacr.org/2014/279
http://dx.doi.org/10.1007/978-3-662-43414-7_15
http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/978-3-642-13190-5_17
http://dx.doi.org/10.1007/978-3-642-55220-5_10
http://dx.doi.org/10.1007/978-3-642-55220-5_10

Bibliography

[BNN+12] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg Stütz.
Threshold implementations of all 3 × 3 and 4 × 4 S-boxes. In Emmanuel Prouff
and Patrick Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages 76–91.
Springer, Heidelberg, September 2012. doi:10.1007/978-3-642-33027-8_5.

[BNS14] Christina Boura, María Naya-Plasencia, and Valentin Suder. Scrutinizing and improv-
ing impossible differential attacks: Applications to CLEFIA, Camellia, LBlock and Si-
mon. In Sarkar and Iwata [SI14], pages 179–199. doi:10.1007/978-3-662-45611-8_
10.

[BP09] Joan Boyar and Rene Peralta. New logic minimization techniques with applications
to cryptology. Cryptology ePrint Archive, Report 2009/191, 2009. http://eprint.
iacr.org/2009/191.

[BP15] Alex Biryukov and Léo Perrin. Lightweight cryptography lounge. http://cryptolux.
org/index.php/Lightweight_Cryptography, 2015.

[BP17] Alex Biryukov and Leo Perrin. State of the art in lightweight symmetric cryptography.
Cryptology ePrint Archive, Report 2017/511, 2017. http://eprint.iacr.org/2017/
511.

[BPPS17] Francesco Berti, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. On
leakage-resilient authenticated encryption with decryption leakages. IACR Trans.
Symm. Cryptol., 2017(3):271–293, 2017. doi:10.13154/tosc.v2017.i3.271-293.

[BPT19] Christina Boura, Léo Perrin, and Shizhu Tian. Boomerang uniformity of popular
s-box constructions. In Proceedings of The Eleventh International Workshop on
Coding and Cryptograph (WCC), 2019.

[BPW15] Céline Blondeau, Thomas Peyrin, and Lei Wang. Known-key distinguisher on
full PRESENT. In Gennaro and Robshaw [GR15], pages 455–474. doi:10.1007/
978-3-662-47989-6_22.

[BR11] Andrey Bogdanov and Vincent Rijmen. Linear hulls with correlation zero and linear
cryptanalysis of block ciphers. Cryptology ePrint Archive, Report 2011/123, 2011.
http://eprint.iacr.org/2011/123.

[BRAN00] Paulo S. L. M. Barreto, Vincent Rijmen, Scopus Tecnologia S. A, and Cryptomathic
Nv. The Whirlpool Hashing Function. In First open NESSIE Workshop, 2000.

[BRW04] Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX mode of operation.
In Roy and Meier [RM04], pages 389–407. doi:10.1007/978-3-540-25937-4_25.

[BS91a] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems. In
Menezes and Vanstone [MV91], pages 2–21. doi:10.1007/3-540-38424-3_1.

[BS91b] Eli Biham and Adi Shamir. Differential cryptanalysis of Feal and N-hash. In Davies
[Dav91], pages 1–16. doi:10.1007/3-540-46416-6_1.

[BS93] Eli Biham and Adi Shamir. Differential cryptanalysis of the full 16-round DES.
In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 487–496.
Springer, Heidelberg, August 1993. doi:10.1007/3-540-48071-4_34.

258

http://dx.doi.org/10.1007/978-3-642-33027-8_5
http://dx.doi.org/10.1007/978-3-662-45611-8_10
http://dx.doi.org/10.1007/978-3-662-45611-8_10
http://eprint.iacr.org/2009/191
http://eprint.iacr.org/2009/191
http://cryptolux.org/index.php/Lightweight_Cryptography
http://cryptolux.org/index.php/Lightweight_Cryptography
http://eprint.iacr.org/2017/511
http://eprint.iacr.org/2017/511
http://dx.doi.org/10.13154/tosc.v2017.i3.271-293
http://dx.doi.org/10.1007/978-3-662-47989-6_22
http://dx.doi.org/10.1007/978-3-662-47989-6_22
http://eprint.iacr.org/2011/123
http://dx.doi.org/10.1007/978-3-540-25937-4_25
http://dx.doi.org/10.1007/3-540-38424-3_1
http://dx.doi.org/10.1007/3-540-46416-6_1
http://dx.doi.org/10.1007/3-540-48071-4_34

[BS00] A. Biryukov and A. Shamir. Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In Advances in Cryptology - ASIACRYPT 2000, volume 1976 of Lecture
Notes in Computer Science, pages 1–13. Springer, 2000.

[BSK14] Frederick J. Bruwer, Willem Smit, and Gideon J Kuhn. Microchips and remote
control devices comprising same. US Patent 5517187, 1996-05-14.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK families of lightweight block ciphers.
Cryptology ePrint Archive, Report 2013/404, 2013. http://eprint.iacr.org/
2013/404.

[BTV18] Andrey Bogdanov, Elmar Tischhauser, and Philip S. Vejre. Multivariate profiling of
hulls for linear cryptanalysis. IACR Trans. Symm. Cryptol., 2018(1):101–125, 2018.
doi:10.13154/tosc.v2018.i1.101-125.

[BV14] Alex Biryukov and Vesselin Velichkov. Automatic search for differential trails in ARX
ciphers. In Josh Benaloh, editor, CT-RSA 2014, volume 8366 of LNCS, pages 227–250.
Springer, Heidelberg, February 2014. doi:10.1007/978-3-319-04852-9_12.

[BVP+03] Martin Boesgaard, Mette Vesterager, Thomas Pedersen, Jesper Christiansen, and
Ove Scavenius. Rabbit: A new high-performance stream cipher. In Johansson
[Joh03], pages 307–329. doi:10.1007/978-3-540-39887-5_23.

[BW99] Alex Biryukov and David Wagner. Slide attacks. In Knudsen [Knu99], pages 245–259.
doi:10.1007/3-540-48519-8_18.

[CAE] Crypto competitions: CAESAR submissions. https://competitions.cr.yp.to/
caesar-submissions.html. Accessed: 2019-07-23.

[Can05] D. Canright. A very compact S-box for AES. In Josyula R. Rao and Berk Sunar,
editors, CHES 2005, volume 3659 of LNCS, pages 441–455. Springer, Heidelberg,
August / September 2005. doi:10.1007/11545262_32.

[Can07] C. De Cannière. Analysis and Design of Symmetric Encryption Algorithms. PhD
thesis, Katholieke Universiteit Leuven, 2007.

[Car10] Claude Carlet. Vectorial boolean functions for cryptography. Boolean models and
methods in mathematics, computer science, and engineering, 134:398–469, 2010.

[CBW08] Nicolas Courtois, Gregory V. Bard, and David Wagner. Algebraic and slide attacks on
KeeLoq. In Nyberg [Nyb08], pages 97–115. doi:10.1007/978-3-540-71039-4_6.

[CCC+13] A. Casamayou, N. Cohen, G. Connan, T. Dumont, L. Fousse, F. Maltey, M. Meulien,
M. Mezzarobba, C. Pernet, N. Thiéry, et al. Calcul mathématique avec Sage. available
online: https://hal.inria.fr/inria-00540485v2/document, 2013.

[CCZ98] Claude Carlet, Pascale Charpin, and Victor A. Zinoviev. Codes, bent functions and
permutations suitable for des-like cryptosystems. Des. Codes Cryptogr., 15(2):125–
156, 1998. URL: https://doi.org/10.1023/A:1008344232130, doi:10.1023/A:
1008344232130.

259

http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404
http://dx.doi.org/10.13154/tosc.v2018.i1.101-125
http://dx.doi.org/10.1007/978-3-319-04852-9_12
http://dx.doi.org/10.1007/978-3-540-39887-5_23
http://dx.doi.org/10.1007/3-540-48519-8_18
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/11545262_32
http://dx.doi.org/10.1007/978-3-540-71039-4_6
https://hal.inria.fr/inria-00540485v2/document
https://doi.org/10.1023/A:1008344232130
http://dx.doi.org/10.1023/A:1008344232130
http://dx.doi.org/10.1023/A:1008344232130

Bibliography

[CDJ+19] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancilias Lopez,
Mridul Nandi, and Yu Sasaki. LOTUS-AEAD and LOCUS-AEAD. Sub-
mission to the NIST Lightweight Cryptography project. Available online
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/lotus-locus-spec-round2.pdf., 2019.

[CDJN19] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, and Mridul Nandi. HyENA.
Submission to the NIST Lightweight Cryptography project. Available online
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/hyena-spec-round2.pdf., 2019.

[CDL16] Anne Canteaut, Sébastien Duval, and Gaëtan Leurent. Construction of lightweight
S-boxes using Feistel and MISTY structures. In Dunkelman and Keliher [DK16],
pages 373–393. doi:10.1007/978-3-319-31301-6_22.

[CG13] Ran Canetti and Juan A. Garay, editors. CRYPTO 2013, Part I, volume 8042 of
LNCS. Springer, Heidelberg, August 2013.

[CGT19] Victor Cauchois, Clément Gomez, and Gaël Thomas. General diffusion analysis: How
to find optimal permutations for generalized type-ii feistel schemes. IACR Trans.
Symmetric Cryptol., 2019(1):264–301, 2019. URL: https://doi.org/10.13154/
tosc.v2019.i1.264-301, doi:10.13154/tosc.v2019.i1.264-301.

[CHN09] Joo Yeon Cho, Miia Hermelin, and Kaisa Nyberg. A new technique for multidimen-
sional linear cryptanalysis with applications on reduced round Serpent. In Pil Joong
Lee and Jung Hee Cheon, editors, ICISC 08, volume 5461 of LNCS, pages 383–398.
Springer, Heidelberg, December 2009.

[CHP+17] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. A security
analysis of Deoxys and its internal tweakable block ciphers. IACR Trans. Symm.
Cryptol., 2017(3):73–107, 2017. doi:10.13154/tosc.v2017.i3.73-107.

[CHP+18] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang
connectivity table: A new cryptanalysis tool. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 683–714.
Springer, Heidelberg, April / May 2018. doi:10.1007/978-3-319-78375-8_22.

[CJ19] Carlos Cid and Michael J. Jacobson Jr:, editors. SAC 2018, volume 11349 of LNCS.
Springer, Heidelberg, August 2019.

[CKPS00] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In Advances in Cryptology
- EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages
392–407. Springer, 2000.

[CLN+17] Anne Canteaut, Eran Lambooij, Samuel Neves, Shahram Rasoolzadeh, Yu Sasaki, and
Marc Stevens. Refined probability of differential characteristics including dependency
between multiple rounds. IACR Trans. Symm. Cryptol., 2017(2):203–227, 2017.
doi:10.13154/tosc.v2017.i2.203-227.

[CM03] Nicolas Courtois and Willi Meier. Algebraic attacks on stream ciphers with linear
feedback. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages
345–359. Springer, Heidelberg, May 2003. doi:10.1007/3-540-39200-9_21.

260

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/lotus-locus-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/lotus-locus-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/hyena-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/hyena-spec-round2.pdf
http://dx.doi.org/10.1007/978-3-319-31301-6_22
https://doi.org/10.13154/tosc.v2019.i1.264-301
https://doi.org/10.13154/tosc.v2019.i1.264-301
http://dx.doi.org/10.13154/tosc.v2019.i1.264-301
http://dx.doi.org/10.13154/tosc.v2017.i3.73-107
http://dx.doi.org/10.1007/978-3-319-78375-8_22
http://dx.doi.org/10.13154/tosc.v2017.i2.203-227
http://dx.doi.org/10.1007/3-540-39200-9_21

[CM13] Jiageng Chen and Atsuko Miyaji. Differential Cryptanalysis and Boomerang Crypt-
analysis of LBlock. In Alfredo Cuzzocrea, Christian Kittl, Dimitris E. Simos, Edgar R.
Weippl, and Lida Xu, editors, Security Engineering and Intelligence Informatics -
CD-ARES 2013 Workshops: MoCrySEn and SeCIHD, volume 8128 of LNCS, pages
1–15. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-40588-4_1,
doi:10.1007/978-3-642-40588-4_1.

[CP02] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers with overdefined
systems of equations. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501
of LNCS, pages 267–287. Springer, Heidelberg, December 2002. doi:10.1007/
3-540-36178-2_17.

[CP08] Christophe De Cannière and Bart Preneel. Trivium. In New Stream Cipher Designs -
The eSTREAM Finalists, volume 4986 of Lecture Notes in Computer Science, pages
244–266. Springer, 2008.

[CR15] Carlos Cid and Christian Rechberger, editors. FSE 2014, volume 8540 of LNCS.
Springer, Heidelberg, March 2015.

[CR19] Christophe Clavier and Léo Reynaud. Systematic and random searches for compact
4-bit and 8-bit cryptographic S-boxes. Cryptology ePrint Archive, Report 2019/1379,
2019. https://eprint.iacr.org/2019/1379.

[CS09] Baudoin Collard and François-Xavier Standaert. A statistical saturation attack
against the block cipher PRESENT. In Marc Fischlin, editor, CT-RSA 2009,
volume 5473 of LNCS, pages 195–210. Springer, Heidelberg, April 2009. doi:
10.1007/978-3-642-00862-7_13.

[CSSH19] Qiu Chen, Danping Shi, Siwei Sun, and Lei Hu. Automatic demirci-selçuk meet-
in-the-middle attack on SKINNY with key-bridging. In Jianying Zhou, Xiapu Luo,
Qingni Shen, and Zhen Xu, editors, ICICS 19, volume 11999 of LNCS, pages 233–247.
Springer, Heidelberg, December 2019. doi:10.1007/978-3-030-41579-2_14.

[CT16] Jung Hee Cheon and Tsuyoshi Takagi, editors. ASIACRYPT 2016, Part I, volume
10031 of LNCS. Springer, Heidelberg, December 2016.

[CY09] Jiali Choy and Huihui Yap. Impossible boomerang attack for block cipher structures.
In Tsuyoshi Takagi and Masahiro Mambo, editors, IWSEC 09, volume 5824 of LNCS,
pages 22–37. Springer, Heidelberg, October 2009.

[Dav91] Donald W. Davies, editor. EUROCRYPT’91, volume 547 of LNCS. Springer, Heidel-
berg, April 1991.

[DBG+15] Dumitru-Daniel Dinu, Alex Biryukov, Johann Groszschaedl, Dmitry Khovra-
tovich, Yann Le Corre, and Léo Paul Perrin. FELICS - Fair Evaluation
of LIghtweight Cryptographic Systems. https://csrc.nist.gov/csrc/
media/events/lightweight-cryptography-workshop-2015/documents/papers/
session7-dinu-paper.pdf, 2015.

[DCK+15] Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl,
and Alex Biryukov. Triathlon of lightweight block ciphers for the internet of things.
Cryptology ePrint Archive, Report 2015/209, 2015. http://eprint.iacr.org/
2015/209.

261

https://doi.org/10.1007/978-3-642-40588-4_1
http://dx.doi.org/10.1007/978-3-642-40588-4_1
http://dx.doi.org/10.1007/3-540-36178-2_17
http://dx.doi.org/10.1007/3-540-36178-2_17
https://eprint.iacr.org/2019/1379
http://dx.doi.org/10.1007/978-3-642-00862-7_13
http://dx.doi.org/10.1007/978-3-642-00862-7_13
http://dx.doi.org/10.1007/978-3-030-41579-2_14
https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/papers/session7-dinu-paper.pdf
https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/papers/session7-dinu-paper.pdf
https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/papers/session7-dinu-paper.pdf
http://eprint.iacr.org/2015/209
http://eprint.iacr.org/2015/209

Bibliography

[DCK+19] Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl,
and Alex Biryukov. Triathlon of lightweight block ciphers for the internet of things.
Journal of Cryptographic Engineering, 9(3):283–302, September 2019. doi:10.1007/
s13389-018-0193-x.

[De 06] Christophe De Cannière. Trivium: A stream cipher construction inspired by block
cipher design principles. In Sokratis K. Katsikas, Javier Lopez, Michael Backes,
Stefanos Gritzalis, and Bart Preneel, editors, ISC 2006, volume 4176 of LNCS, pages
171–186. Springer, Heidelberg, August / September 2006.

[DEM+17] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. ISAP – towards side-channel secure authenticated encryption.
IACR Trans. Symm. Cryptol., 2017(1):80–105, 2017. doi:10.13154/tosc.v2017.
i1.80-105.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon
v1.2. Submission to the CAESAR competition: https://competitions.cr.yp.to/
round3/asconv12.pdf, 2016. URL: https://ascon.iaik.tugraz.at.

[DES77] Data encryption standard. National Bureau of Standards, NBS FIPS PUB 46, U.S.
Department of Commerce, January 1977.

[DF16] Patrick Derbez and Pierre-Alain Fouque. Automatic search of meet-in-the-middle
and impossible differential attacks. In Robshaw and Katz [RK16b], pages 157–184.
doi:10.1007/978-3-662-53008-5_6.

[DFL19] Patrick Derbez, Pierre-Alain Fouque, and Baptiste Lambin. Linearly equivalent
S-boxes and the division property. Cryptology ePrint Archive, Report 2019/097,
2019. https://eprint.iacr.org/2019/097.

[DFLM19] Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin, and Victor Mollimard. Effi-
cient search for optimal diffusion layers of generalized feistel networks. IACR Trans.
Symmetric Cryptol., 2019(2):218–240, 2019. URL: https://doi.org/10.13154/
tosc.v2019.i2.218-240, doi:10.13154/tosc.v2019.i2.218-240.

[DGM17a] B. Dravie, P. Guillot, and G. Millérioux. Design of self-synchronizing stream ciphers:
A new control-theoretical paradigm. In IFAC World Congress, (IFAC 2017), Toulouse,
France, July 2017.

[DGM17b] B. Dravie, P. Guillot, and G. Millérioux. Security proof of the canonical form of
self-synchronizing stream ciphers. Des. Codes Cryptography, 82(1-2):377–388, 2017.

[DGM+19] Nilanjan Datta, Ashrujit Ghoshal, Debdeep Mukhopadhyay, Sikhar Pa-
tranabis, Stjepan Picek, and Rajat Sadhukhan. TRIFLE. Submis-
sion to the NIST Lightweight Cryptography project. Available online
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/trifle-spec.pdf., 2019.

[DGV92] J. Daemen, R. Govaerts, and J. Vandewalle. On the design of high speed self-
synchronizing stream ciphers. In Proc. of the ICCS/ISITA’92 conference, volume 1,
pages 279–283, Singapore, November 1992.

262

http://dx.doi.org/10.1007/s13389-018-0193-x
http://dx.doi.org/10.1007/s13389-018-0193-x
http://dx.doi.org/10.13154/tosc.v2017.i1.80-105
http://dx.doi.org/10.13154/tosc.v2017.i1.80-105
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
https://ascon.iaik.tugraz.at
http://dx.doi.org/10.1007/978-3-662-53008-5_6
https://eprint.iacr.org/2019/097
https://doi.org/10.13154/tosc.v2019.i2.218-240
https://doi.org/10.13154/tosc.v2019.i2.218-240
http://dx.doi.org/10.13154/tosc.v2019.i2.218-240
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/trifle-spec.pdf

[DH77] W. Diffie and M. E. Hellman. Special feature exhaustive cryptanalysis of the
nbs data encryption standard. Computer, 10(6):74–84, June 1977. URL: https:
//doi.org/10.1109/C-M.1977.217750, doi:10.1109/C-M.1977.217750.

[DHL+16] Jordan Demeulenaere, Renaud Hartert, Christophe Lecoutre, Guillaume Perez,
Laurent Perron, Jean-Charles Régin, and Pierre Schaus. Compact-table: Efficiently
filtering table constraints with reversible sparse bit-sets. In Principles and Practice of
Constraint Programming - CP 2016, volume 9892 of LNCS, pages 207–223. Springer,
2016.

[DHL+20] Patrick Derbez, Paul Huynh, Virginie Lallemand, María Naya-Plasencia, Léo Perrin,
and André Schrottenloher. Cryptanalysis results on spook - bringing full-round
shadow-512 to the light. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 359–388. Springer, Heidelberg,
August 2020. doi:10.1007/978-3-030-56877-1_13.

[DK05] J. Daemen and P. Kitsos. The Self-Synchronizing Stream Cipher MOSQUITO:
eSTREAM Documentation, Version 2. eSTREAM, ECRYPT Stream Cipher Project,
Report 2005/018, 2005. Available online at http://www.ecrypt.eu.org/stream/
p3ciphers/mosquito/mosquito.pdf.

[DK08] J. Daemen and P. Kitsos. The self-synchronizing stream cipher moustique. In New
Stream Cipher Designs - The eSTREAM Finalists, volume 4986 of Lecture Notes in
Computer Science, pages 210–223. Springer, 2008.

[DK16] Orr Dunkelman and Liam Keliher, editors. SAC 2015, volume 9566 of LNCS.
Springer, Heidelberg, August 2016.

[DKLS19] Orr Dunkelman, Nathan Keller, Eran Lambooij, and Yu Sasaki. A practical forgery
attack on lilliput-AE. Cryptology ePrint Archive, Report 2019/867, 2019. https:
//eprint.iacr.org/2019/867.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher Square. In
Biham [Bih97b], pages 149–165. doi:10.1007/BFb0052343.

[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-key attack
on the KASUMI cryptosystem used in GSM and 3G telephony. In Rabin [Rab10],
pages 393–410. doi:10.1007/978-3-642-14623-7_21.

[DL18] Sébastien Duval and Gaëtan Leurent. MDS matrices with lightweight circuits. IACR
Trans. Symm. Cryptol., 2018(2):48–78, 2018. doi:10.13154/tosc.v2018.i2.48-78.

[DLU19] Patrick Derbez, Virginie Lallemand, and Aleksei Udovenko. Cryptanalysis of SKINNY
in the framework of the SKINNY 2018-2019 cryptanalysis competition. In Kenneth G.
Paterson and Douglas Stebila, editors, SAC 2019, volume 11959 of LNCS, pages
124–145. Springer, Heidelberg, August 2019. doi:10.1007/978-3-030-38471-5_6.

[DPAR00] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. Nessie
proposal: the block cipher Noekeon. Nessie submission, 2000. http://gro.noekeon.
org/.

263

https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1109/C-M.1977.217750
http://dx.doi.org/10.1109/C-M.1977.217750
http://dx.doi.org/10.1007/978-3-030-56877-1_13
http://www.ecrypt.eu.org/stream/p3ciphers/mosquito/mosquito.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/mosquito/mosquito.pdf
https://eprint.iacr.org/2019/867
https://eprint.iacr.org/2019/867
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/978-3-642-14623-7_21
http://dx.doi.org/10.13154/tosc.v2018.i2.48-78
http://dx.doi.org/10.1007/978-3-030-38471-5_6
http://gro.noekeon.org/
http://gro.noekeon.org/

Bibliography

[DPU+16] Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Johann Großschädl,
and Alex Biryukov. Design strategies for ARX with provable bounds: Sparx and LAX.
In Cheon and Takagi [CT16], pages 484–513. doi:10.1007/978-3-662-53887-6_18.

[DR01] Joan Daemen and Vincent Rijmen. The wide trail design strategy. In Bahram
Honary, editor, 8th IMA International Conference on Cryptography and Coding,
volume 2260 of LNCS, pages 222–238. Springer, Heidelberg, December 2001.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002. URL: https://doi.org/10.1007/978-3-662-04722-4, doi:10.1007/
978-3-662-04722-4.

[DR05] Joan Daemen and Vincent Rijmen. Probability distributions of correlation and
differentials in block ciphers. Cryptology ePrint Archive, Report 2005/212, 2005.
http://eprint.iacr.org/2005/212.

[DR07] Joan Daemen and Vincent Rijmen. Plateau characteristics. IET Information
Security, 1(1):11–17, 2007. URL: https://doi.org/10.1049/iet-ifs:20060099,
doi:10.1049/iet-ifs:20060099.

[DR11] Thai Duong and Juliano Rizzo. BEAST: Surprising Crypto Attack Against HTTPS.
Blog post. http://netifera.com/research/beast/beast_DRAFT_0621.pdf, 2011.

[DS08] Hüseyin Demirci and Ali Aydin Selçuk. A meet-in-the-middle attack on 8-round
AES. In Nyberg [Nyb08], pages 116–126. doi:10.1007/978-3-540-71039-4_7.

[DS09] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In
Advances in Cryptology - EUROCRYPT 2009, volume 5479 of Lecture Notes in
Computer Science, pages 278–299. Springer, 2009.

[Dt08] Whitfield Diffie and George Ledin (translators). SMS4 encryption algorithm for
wireless networks. Cryptology ePrint Archive, Report 2008/329, 2008. http://
eprint.iacr.org/2008/329.

[Dwo01] Morris Dworkin. Nist special publication 800-38a, recommendation for block cipher
modes of operation-methods and techniques. National Institute of Standards and
Technology/US Department of Commerce, 2001. URL: https://csrc.nist.gov/
publications/detail/sp/800-38a/final.

[Dwo04] Morris J. Dworkin. NIST SP 800-38C. Recommendation for block cipher modes of
operation: The ccm mode for authentication and confidentiality. Technical report,
Gaithersburg, MD, USA, 2004.

[Dwo07] Morris J. Dworkin. NIST SP 800-38D. Recommendation for block cipher modes of
operation: Galois/counter mode (gcm) and gmac. Technical report, Gaithersburg,
MD, USA, 2007.

[ECR18] Algorithms, key size and protocols report (2018), 2018. H2020-ICT-
2014 - Project 645421, D5.4, https://www.ecrypt.eu.org/csa/documents/D5.
4-FinalAlgKeySizeProt.pdf.

264

http://dx.doi.org/10.1007/978-3-662-53887-6_18
https://doi.org/10.1007/978-3-662-04722-4
http://dx.doi.org/10.1007/978-3-662-04722-4
http://dx.doi.org/10.1007/978-3-662-04722-4
http://eprint.iacr.org/2005/212
https://doi.org/10.1049/iet-ifs:20060099
http://dx.doi.org/10.1049/iet-ifs:20060099
http://netifera.com/research/beast/beast_DRAFT_0621.pdf
http://dx.doi.org/10.1007/978-3-540-71039-4_7
http://eprint.iacr.org/2008/329
http://eprint.iacr.org/2008/329
https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf

[EKKT19] Zahra Eskandari, Andreas Brasen Kidmose, Stefan Kölbl, and Tyge Tiessen. Finding
integral distinguishers with ease. In Cid and Jacobson Jr: [CJ19], pages 115–138.
doi:10.1007/978-3-030-10970-7_6.

[EKM+08] Thomas Eisenbarth, Timo Kasper, Amir Moradi, Christof Paar, Mahmoud Salma-
sizadeh, and Mohammad T. Manzuri Shalmani. On the power of power analysis
in the real world: A complete break of the keeloqcode hopping scheme. In David
Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 203–220. Springer,
Heidelberg, August 2008. doi:10.1007/978-3-540-85174-5_12.

[EMPS13] Sareh Emami, Cameron McDonald, Josef Pieprzyk, and Ron Steinfeld. Truncated
differential analysis of reduced-round LBlock. In Michel Abdalla, Cristina Nita-
Rotaru, and Ricardo Dahab, editors, CANS 13, volume 8257 of LNCS, pages 291–308.
Springer, Heidelberg, November 2013. doi:10.1007/978-3-319-02937-5_16.

[ENP19] Maria Eichlseder, Marcel Nageler, and Robert Primas. Analyzing the linear keystream
biases in AEGIS. IACR Trans. Symm. Cryptol., 2019(4):348–368, 2019. doi:
10.13154/tosc.v2019.i4.348-368.

[Fei74] Horst Feistel. Block cipher cryptographic system, March 19 1974. US Patent
3,798,359.

[FEL] Fair Evaluation of LIghtweight Cryptographic Systems. https://www.cryptolux.
org/index.php/FELICS. Accessed: 2019-02-14.

[FEL19] CryptoLUX > FELICS Avrora patch. https://www.cryptolux.org/index.php/
FELICS_Avrora_patch, 2019. Accessed: 2019-03-07.

[Fer02] Niels Ferguson. Collision attacks on OCB. Technical report, 2002.

[Fiv16] Michael Fivez. Energy Efficient Hardware Implementations of CAESAR Submissions.
Master’s thesis, KU Leuven, 2016. Ingrid Verbauwhede (promotor).

[FJP13] Pierre-Alain Fouque, Jérémy Jean, and Thomas Peyrin. Structural evaluation of
AES and chosen-key distinguisher of 9-round AES-128. In Canetti and Garay [CG13],
pages 183–203. doi:10.1007/978-3-642-40041-4_11.

[FN20] Antonio Flórez-Gutiérrez and María Naya-Plasencia. Improving key-recovery in
linear attacks: Application to 28-round PRESENT. In Anne Canteaut and Yuval
Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 221–249.
Springer, Heidelberg, May 2020. doi:10.1007/978-3-030-45721-1_9.

[FWG+16] Kai Fu, Meiqin Wang, Yinghua Guo, Siwei Sun, and Lei Hu. MILP-based automatic
search algorithms for differential and linear trails for speck. In Peyrin [Pey16], pages
268–288. doi:10.1007/978-3-662-52993-5_14.

[GC91] Henri Gilbert and Guy Chassé. A statistical attack of the FEAL-8 cryptosystem. In
Menezes and Vanstone [MV91], pages 22–33. doi:10.1007/3-540-38424-3_2.

[GD02] Virgil D. Gligor and Pompiliu Donescu. Fast encryption and authentication: XCBC
encryption and XECB authentication modes. In Matsui [Mat02], pages 92–108.
doi:10.1007/3-540-45473-X_8.

265

http://dx.doi.org/10.1007/978-3-030-10970-7_6
http://dx.doi.org/10.1007/978-3-540-85174-5_12
http://dx.doi.org/10.1007/978-3-319-02937-5_16
http://dx.doi.org/10.13154/tosc.v2019.i4.348-368
http://dx.doi.org/10.13154/tosc.v2019.i4.348-368
https://www.cryptolux.org/index.php/FELICS
https://www.cryptolux.org/index.php/FELICS
https://www.cryptolux.org/index.php/FELICS_Avrora_patch
https://www.cryptolux.org/index.php/FELICS_Avrora_patch
http://dx.doi.org/10.1007/978-3-642-40041-4_11
http://dx.doi.org/10.1007/978-3-030-45721-1_9
http://dx.doi.org/10.1007/978-3-662-52993-5_14
http://dx.doi.org/10.1007/3-540-38424-3_2
http://dx.doi.org/10.1007/3-540-45473-X_8

Bibliography

[GGNS13] Benoît Gérard, Vincent Grosso, María Naya-Plasencia, and François-Xavier Stan-
daert. Block ciphers that are easier to mask: How far can we go? In Bertoni and
Coron [BC13], pages 383–399. doi:10.1007/978-3-642-40349-1_22.

[GJK+19] Dahmun Goudarzi, Jérémy Jean, Stefan Kölbl, Thomas Peyrin, Matthieu
Rivain, Yu Sasaki, and Siang Meng Sim. Pyjamask. Submis-
sion to the Nist Lightweight Cryptography project. Available online
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/pyjamask-spec-round2.pdf., 2019.

[GL16] David Gérault and Pascal Lafourcade. Related-key cryptanalysis of midori. In Orr
Dunkelman and Somitra Kumar Sanadhya, editors, INDOCRYPT 2016, volume
10095 of LNCS, pages 287–304. Springer, Heidelberg, December 2016. doi:10.1007/
978-3-319-49890-4_16.

[GLMS18] David Gérault, Pascal Lafourcade, Marine Minier, and Christine Solnon. Revisiting
AES related-key differential attacks with constraint programming. Inf. Process.
Lett., 139:24–29, 2018. URL: https://doi.org/10.1016/j.ipl.2018.07.001, doi:
10.1016/j.ipl.2018.07.001.

[GLMS20] David Gérault, Pascal Lafourcade, Marine Minier, and Christine Solnon. Computing
AES related-key differential characteristics with constraint programming. Artificial
Intelligence, 278:103183, January 2020. URL: https://hal.archives-ouvertes.
fr/hal-02327893, doi:10.1016/j.artint.2019.103183.

[GLS+15] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varıcı, François
Durvaux, Lubos Gaspar, and Stéphanie Kerckhof. SCREAM v3, August 2015.
Submission to the CAESAR competition. URL: https://competitions.cr.yp.to/
round2/screamv3.pdf.

[GLSV15] Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem Varici.
LS-designs: Bitslice encryption for efficient masked software implementations. In
Cid and Rechberger [CR15], pages 18–37. doi:10.1007/978-3-662-46706-0_2.

[GMO09] Juan A. Garay, Atsuko Miyaji, and Akira Otsuka, editors. CANS 09, volume 5888
of LNCS. Springer, Heidelberg, December 2009.

[GMS16] David Gérault, Marine Minier, and Christine Solnon. Constraint programming
models for chosen key differential cryptanalysis. In Principles and Practice of
Constraint Programming - CP 2016, volume 9892 of LNCS, pages 584–601. Springer,
2016.

[GNL11] Zheng Gong, Svetla Nikova, and Yee Wei Law. KLEIN: A new family of lightweight
block ciphers. In Ari Juels and Christof Paar, editors, RFID. Security and Privacy
- 7th International Workshop, RFIDSec 2011, Amherst, USA, June 26-28, 2011,
Revised Selected Papers, volume 7055 of Lecture Notes in Computer Science, pages 1–
18. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-25286-0_1, doi:
10.1007/978-3-642-25286-0_1.

[GNL12] Zheng Gong, Svetla Nikova, and Yee Wei Law. Klein: A new family of lightweight
block ciphers. In Ari Juels and Christof Paar, editors, RFID. Security and Privacy,
pages 1–18, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

266

http://dx.doi.org/10.1007/978-3-642-40349-1_22
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/pyjamask-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/pyjamask-spec-round2.pdf
http://dx.doi.org/10.1007/978-3-319-49890-4_16
http://dx.doi.org/10.1007/978-3-319-49890-4_16
https://doi.org/10.1016/j.ipl.2018.07.001
http://dx.doi.org/10.1016/j.ipl.2018.07.001
http://dx.doi.org/10.1016/j.ipl.2018.07.001
https://hal.archives-ouvertes.fr/hal-02327893
https://hal.archives-ouvertes.fr/hal-02327893
http://dx.doi.org/10.1016/j.artint.2019.103183
https://competitions.cr.yp.to/round2/screamv3.pdf
https://competitions.cr.yp.to/round2/screamv3.pdf
http://dx.doi.org/10.1007/978-3-662-46706-0_2
https://doi.org/10.1007/978-3-642-25286-0_1
http://dx.doi.org/10.1007/978-3-642-25286-0_1
http://dx.doi.org/10.1007/978-3-642-25286-0_1

[GP10] Henri Gilbert and Thomas Peyrin. Super-sbox cryptanalysis: Improved attacks for
AES-like permutations. In Hong and Iwata [HI10], pages 365–383. doi:10.1007/
978-3-642-13858-4_21.

[GP16] Benedikt Gierlichs and Axel Y. Poschmann, editors. CHES 2016, volume 9813 of
LNCS. Springer, Heidelberg, August 2016.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED block cipher. In Preneel and Takagi [PT11], pages 326–341. doi:10.1007/
978-3-642-23951-9_22.

[GR15] Rosario Gennaro and Matthew J. B. Robshaw, editors. CRYPTO 2015, Part I,
volume 9215 of LNCS. Springer, Heidelberg, August 2015.

[HAV18] Mathias Hall-Andersen and Philip S. Vejre. Generating graphs packed with paths.
IACR Trans. Symm. Cryptol., 2018(3):265–289, 2018. doi:10.13154/tosc.v2018.
i3.265-289.

[Hel80] M. E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Information
Theory, 26(4):401–406, 1980.

[Hel94] Tor Helleseth, editor. EUROCRYPT’93, volume 765 of LNCS. Springer, Heidelberg,
May 1994.

[HI10] Seokhie Hong and Tetsu Iwata, editors. FSE 2010, volume 6147 of LNCS. Springer,
Heidelberg, February 2010.

[HJMM08] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. The grain
family of stream ciphers. In Matthew J. B. Robshaw and Olivier Billet, editors, New
Stream Cipher Designs - The eSTREAM Finalists, volume 4986 of Lecture Notes
in Computer Science, pages 179–190. Springer, 2008. URL: https://doi.org/10.
1007/978-3-540-68351-3_14, doi:10.1007/978-3-540-68351-3_14.

[HKM95] Carlo Harpes, Gerhard G. Kramer, and James L. Massey. A generalization of linear
cryptanalysis and the applicability of Matsui’s piling-up lemma. In Louis C. Guillou
and Jean-Jacques Quisquater, editors, EUROCRYPT’95, volume 921 of LNCS, pages
24–38. Springer, Heidelberg, May 1995. doi:10.1007/3-540-49264-X_3.

[HLK+14] Deukjo Hong, Jung-Keun Lee, Dong-Chan Kim, Daesung Kwon, Kwon Ho Ryu,
and Dong-Geon Lee. LEA: A 128-bit block cipher for fast encryption on common
processors. In Yongdae Kim, Heejo Lee, and Adrian Perrig, editors, WISA 13,
volume 8267 of LNCS, pages 3–27. Springer, Heidelberg, August 2014. doi:10.1007/
978-3-319-05149-9_1.

[HPRM04] P. Hawkes, M. Paddon, G. G. Rose, and W. V. Miriam. Primitive specification for
sss. Technical report, e-Stream Project, 2004. Available at: http://www.ecrypt.eu.
org/stream/ciphers/sss/sss.pdf.

[HR10] Viet Tung Hoang and Phillip Rogaway. On generalized Feistel networks. In Rabin
[Rab10], pages 613–630. doi:10.1007/978-3-642-14623-7_33.

267

http://dx.doi.org/10.1007/978-3-642-13858-4_21
http://dx.doi.org/10.1007/978-3-642-13858-4_21
http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.13154/tosc.v2018.i3.265-289
http://dx.doi.org/10.13154/tosc.v2018.i3.265-289
https://doi.org/10.1007/978-3-540-68351-3_14
https://doi.org/10.1007/978-3-540-68351-3_14
http://dx.doi.org/10.1007/978-3-540-68351-3_14
http://dx.doi.org/10.1007/3-540-49264-X_3
http://dx.doi.org/10.1007/978-3-319-05149-9_1
http://dx.doi.org/10.1007/978-3-319-05149-9_1
http://www.ecrypt.eu.org/stream/ciphers/sss/sss.pdf
http://www.ecrypt.eu.org/stream/ciphers/sss/sss.pdf
http://dx.doi.org/10.1007/978-3-642-14623-7_33

Bibliography

[HW19] Kai Hu and Meiqin Wang. Automatic search for a variant of division property using
three subsets. In Mitsuru Matsui, editor, CT-RSA 2019, volume 11405 of LNCS, pages
412–432. Springer, Heidelberg, March 2019. doi:10.1007/978-3-030-12612-4_21.

[IIMP19] Akiko Inoue, Tetsu Iwata, Kazuhiko Minematsu, and Bertram Poettering. Cryptanal-
ysis of OCB2: Attacks on authenticity and confidentiality. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages
3–31. Springer, Heidelberg, August 2019. doi:10.1007/978-3-030-26948-7_1.

[IK03] Tetsu Iwata and Kaoru Kurosawa. OMAC: One-key CBC MAC. In Johansson
[Joh03], pages 129–153. doi:10.1007/978-3-540-39887-5_11.

[IKD+08] Sebastiaan Indesteege, Nathan Keller, Orr Dunkelman, Eli Biham, and Bart Preneel.
A practical attack on KeeLoq. In Nigel P. Smart, editor, EUROCRYPT 2008,
volume 4965 of LNCS, pages 1–18. Springer, Heidelberg, April 2008. doi:10.1007/
978-3-540-78967-3_1.

[IKMP19a] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin.
Remus. Submission to the NIST Lightweight Cryptography project. Available online
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/
documents/round-1/spec-doc/Remus-spec.pdf., 2019.

[IKMP19b] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin. Romu-
lus. Submission to the NIST Lightweight Cryptography project. Available online
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/Romulus-spec-round2.pdf., 2019.

[IM18] Akiko Inoue and Kazuhiko Minematsu. Cryptanalysis of OCB2. Cryptology ePrint
Archive, Report 2018/1040, 2018. https://eprint.iacr.org/2018/1040.

[IMGM15] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, and Sumio Morioka. CLOC: Authen-
ticated encryption for short input. In Cid and Rechberger [CR15], pages 149–167.
doi:10.1007/978-3-662-46706-0_8.

[IMPS17] Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin. ZMAC:
A fast tweakable block cipher mode for highly secure message authentication. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part III, volume
10403 of LNCS, pages 34–65. Springer, Heidelberg, August 2017. doi:10.1007/
978-3-319-63697-9_2.

[IPS13] Mitsugu Iwamoto, Thomas Peyrin, and Yu Sasaki. Limited-birthday distinguishers
for hash functions - collisions beyond the birthday bound can be meaningful. In
Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270
of LNCS, pages 504–523. Springer, Heidelberg, December 2013. doi:10.1007/
978-3-642-42045-0_26.

[ISO12a] ISO/IEC 29192-1:2012 Information technology – Security techniques – Lightweight
cryptography – Part 1: Ggeneral, 2012. https://www.iso.org/standard/56425.
html.

[ISO12b] ISO/IEC 29192-2:2012 Information technology – Security techniques – Lightweight
cryptography – Part 2: Block ciphers, 2012. https://www.iso.org/standard/
56552.html.

268

http://dx.doi.org/10.1007/978-3-030-12612-4_21
http://dx.doi.org/10.1007/978-3-030-26948-7_1
http://dx.doi.org/10.1007/978-3-540-39887-5_11
http://dx.doi.org/10.1007/978-3-540-78967-3_1
http://dx.doi.org/10.1007/978-3-540-78967-3_1
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Remus-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/Remus-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/Romulus-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/Romulus-spec-round2.pdf
https://eprint.iacr.org/2018/1040
http://dx.doi.org/10.1007/978-3-662-46706-0_8
http://dx.doi.org/10.1007/978-3-319-63697-9_2
http://dx.doi.org/10.1007/978-3-319-63697-9_2
http://dx.doi.org/10.1007/978-3-642-42045-0_26
http://dx.doi.org/10.1007/978-3-642-42045-0_26
https://www.iso.org/standard/56425.html
https://www.iso.org/standard/56425.html
https://www.iso.org/standard/56552.html
https://www.iso.org/standard/56552.html

[Iwa18] Tetsu Iwata. Plaintext recovery attack of OCB2. Cryptology ePrint Archive, Report
2018/1090, 2018. https://eprint.iacr.org/2018/1090.

[J-L19] J-Link Software and Documentation Pack. https://www.segger.com/downloads/
jlink/#J-LinkSoftwareAndDocumentationPack, 2019. Accessed: 2019-02-26.

[Jak98] Thomas Jakobsen. Cryptanalysis of block ciphers with probabilistic non-linear
relations of low degree. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of
LNCS, pages 212–222. Springer, Heidelberg, August 1998. doi:10.1007/BFb0055730.

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/tikz/,
2016.

[JK97] Thomas Jakobsen and Lars R. Knudsen. The interpolation attack on block ciphers.
In Biham [Bih97b], pages 28–40. doi:10.1007/BFb0052332.

[JM03] A. Joux and F. Muller. Loosening the KNOT. In Fast Software Encryption - FSE
2003, volume 2887 of Lecture Notes in Computer Science, pages 87–99. Springer,
2003.

[JM05] A. Joux and F. Muller. Two attacks against the HBB stream cipher. In Fast Software
Encryption - FSE 2005, volume 3557 of Lecture Notes in Computer Science, pages
330–341. Springer, 2005.

[JM06] A. Joux and F. Muller. Chosen-ciphertext attacks against MOSQUITO. In Fast
Software Encryption - FSE 2006, volume 4047 of Lecture Notes in Computer Science,
pages 390–404. Springer, 2006.

[JNP14] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block ciphers:
The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata, editors, ASI-
ACRYPT 2014, Part II, volume 8874 of LNCS, pages 274–288. Springer, Heidelberg,
December 2014. doi:10.1007/978-3-662-45608-8_15.

[JNPS16] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. Deoxys v1.43.
Submitted to CAESAR, 2016.

[Joh03] Thomas Johansson, editor. FSE 2003, volume 2887 of LNCS. Springer, Heidelberg,
February 2003.

[Jou11] Antoine Joux, editor. FSE 2011, volume 6733 of LNCS. Springer, Heidelberg,
February 2011.

[Jou14] Antoine Joux. A new index calculus algorithm with complexity 𝐿(1/4 + 𝑜(1))
in small characteristic. In Lange et al. [LLL14], pages 355–379. doi:10.1007/
978-3-662-43414-7_18.

[JPS17] Jérémy Jean, Thomas Peyrin, and Siang Meng Sim. Optimizing implementations
of lightweight building blocks. Cryptology ePrint Archive, Report 2017/101, 2017.
http://eprint.iacr.org/2017/101.

[Jut01] Charanjit S. Jutla. Encryption modes with almost free message integrity. In
Pfitzmann [Pfi01], pages 529–544. doi:10.1007/3-540-44987-6_32.

269

https://eprint.iacr.org/2018/1090
https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack
https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack
http://dx.doi.org/10.1007/BFb0055730
https://www.iacr.org/authors/tikz/
http://dx.doi.org/10.1007/BFb0052332
http://dx.doi.org/10.1007/978-3-662-45608-8_15
http://dx.doi.org/10.1007/978-3-662-43414-7_18
http://dx.doi.org/10.1007/978-3-662-43414-7_18
http://eprint.iacr.org/2017/101
http://dx.doi.org/10.1007/3-540-44987-6_32

Bibliography

[Jut08] Charanjit S. Jutla. Encryption modes with almost free message integrity. Journal of
Cryptology, 21(4):547–578, October 2008. doi:10.1007/s00145-008-9024-z.

[JV04] Pascal Junod and Serge Vaudenay. FOX: A new family of block ciphers. In Helena
Handschuh and Anwar Hasan, editors, SAC 2004, volume 3357 of LNCS, pages
114–129. Springer, Heidelberg, August 2004. doi:10.1007/978-3-540-30564-4_8.

[Kah96] David Kahn. The Codebreakers: The Comprehensive History of Secret Communica-
tion from Ancient Times to the Internet. Simon and Schuster, 1996.

[KCS11] Stéphanie Kerckhof, Baudoin Collard, and François-Xavier Standaert. FPGA imple-
mentation of a statistical saturation attack against PRESENT. In Abderrahmane
Nitaj and David Pointcheval, editors, AFRICACRYPT 11, volume 6737 of LNCS,
pages 100–116. Springer, Heidelberg, July 2011.

[Ker83] Auguste Kerckhoffs. La cryptographie militaire. (French) [Military cryp-
tography]. Journal des Sciences Militaires, IX:5–38, 161–191, January/
February 1883. URL: http://www.cl.cam.ac.uk/~fapp2/kerckhoffs/la_
cryptographie_militaire_i.htmhttps://www.petitcolas.net/kerckhoffs/
;https://www.petitcolas.net/kerckhoffs/crypto_militaire_1_b.pdf;https:
//www.petitcolas.net/kerckhoffs/crypto_militaire_2.pdf.

[KG16] Pierre Karpman and Benjamin Grégoire. The littlun s-box and the
fly block cipher. 2016. https://pdfs.semanticscholar.org/5487/
ccb5b874c1e56f1b8468eef2def91de42d36.pdf.

[KHS+03] Jongsung Kim, Seokhie Hong, Jaechul Sung, Changhoon Lee, and Sangjin Lee.
Impossible differential cryptanalysis for block cipher structures. In Thomas Johansson
and Subhamoy Maitra, editors, INDOCRYPT 2003, volume 2904 of LNCS, pages
82–96. Springer, Heidelberg, December 2003.

[KKH+04] Jongsung Kim, Guil Kim, Seokhie Hong, Sangjin Lee, and Dowon Hong. The
related-key rectangle attack - application to SHACAL-1. In Huaxiong Wang, Josef
Pieprzyk, and Vijay Varadharajan, editors, ACISP 04, volume 3108 of LNCS, pages
123–136. Springer, Heidelberg, July 2004. doi:10.1007/978-3-540-27800-9_11.

[KKMP09] Markus Kasper, Timo Kasper, Amir Moradi, and Christof Paar. Breaking KeeLoq in a
flash: On extracting keys at lightning speed. In Bart Preneel, editor, AFRICACRYPT
09, volume 5580 of LNCS, pages 403–420. Springer, Heidelberg, June 2009.

[KKS01] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang attacks
against reduced-round MARS and Serpent. In Schneier [Sch01], pages 75–93. doi:
10.1007/3-540-44706-7_6.

[Klí05] V. Klíma. Cryptanalysis of hiji-bij-bij (HBB). IACR Cryptology ePrint Archive,
Report 2005/3, 2005.

[KLK13] Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon, editors. ICISC 12, volume
7839 of LNCS. Springer, Heidelberg, November 2013.

[KLT15] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the SIMON block
cipher family. In Gennaro and Robshaw [GR15], pages 161–185. doi:10.1007/
978-3-662-47989-6_8.

270

http://dx.doi.org/10.1007/s00145-008-9024-z
http://dx.doi.org/10.1007/978-3-540-30564-4_8
http://www.cl.cam.ac.uk/~fapp2/kerckhoffs/la_cryptographie_militaire_i.htm https://www.petitcolas.net/kerckhoffs/; https://www.petitcolas.net/kerckhoffs/crypto_militaire_1_b.pdf; https://www.petitcolas.net/kerckhoffs/crypto_militaire_2.pdf
http://www.cl.cam.ac.uk/~fapp2/kerckhoffs/la_cryptographie_militaire_i.htm https://www.petitcolas.net/kerckhoffs/; https://www.petitcolas.net/kerckhoffs/crypto_militaire_1_b.pdf; https://www.petitcolas.net/kerckhoffs/crypto_militaire_2.pdf
http://www.cl.cam.ac.uk/~fapp2/kerckhoffs/la_cryptographie_militaire_i.htm https://www.petitcolas.net/kerckhoffs/; https://www.petitcolas.net/kerckhoffs/crypto_militaire_1_b.pdf; https://www.petitcolas.net/kerckhoffs/crypto_militaire_2.pdf
http://www.cl.cam.ac.uk/~fapp2/kerckhoffs/la_cryptographie_militaire_i.htm https://www.petitcolas.net/kerckhoffs/; https://www.petitcolas.net/kerckhoffs/crypto_militaire_1_b.pdf; https://www.petitcolas.net/kerckhoffs/crypto_militaire_2.pdf
https://pdfs.semanticscholar.org/5487/ccb5b874c1e56f1b8468eef2def91de42d36.pdf
https://pdfs.semanticscholar.org/5487/ccb5b874c1e56f1b8468eef2def91de42d36.pdf
http://dx.doi.org/10.1007/978-3-540-27800-9_11
http://dx.doi.org/10.1007/3-540-44706-7_6
http://dx.doi.org/10.1007/3-540-44706-7_6
http://dx.doi.org/10.1007/978-3-662-47989-6_8
http://dx.doi.org/10.1007/978-3-662-47989-6_8

[Knu95] Lars R. Knudsen. Truncated and higher order differentials. In Preneel [Pre95], pages
196–211. doi:10.1007/3-540-60590-8_16.

[Knu98] Lars Knudsen. Deal - a 128-bit block cipher. In NIST AES Proposal, 1998.

[Knu99] Lars R. Knudsen, editor. FSE’99, volume 1636 of LNCS. Springer, Heidelberg, March
1999.

[KR11a] Lars R. Knudsen and Matthew Robshaw. The Block Cipher Companion. Information
Security and Cryptography. Springer, 2011. URL: https://doi.org/10.1007/
978-3-642-17342-4, doi:10.1007/978-3-642-17342-4.

[KR11b] Ted Krovetz and Phillip Rogaway. The software performance of authenticated-
encryption modes. In Joux [Jou11], pages 306–327. doi:10.1007/
978-3-642-21702-9_18.

[KR14] Ted Krovetz and Phillip Rogaway. The OCB Authenticated-Encryption Algorithm.
RFC 7253, May 2014. URL: https://rfc-editor.org/rfc/rfc7253.txt, doi:
10.17487/RFC7253.

[Kra01] Hugo Krawczyk. The order of encryption and authentication for protecting com-
munications (or: How secure is SSL?). In Joe Kilian, editor, CRYPTO 2001,
volume 2139 of LNCS, pages 310–331. Springer, Heidelberg, August 2001. doi:
10.1007/3-540-44647-8_19.

[KRB+04] E. Kasper, V. Rijmen, E. Bjorstad, C. Rechberger, M. Robshaw, and G. Sekar.
Correlated Keystreams in MOUSTIQUE. Technical report, ESTREAM Project,
2004.

[KRB+08] E. Käsper, V. Rijmen, T. E. Bjørstad, C. Rechberger, M. J. B. Robshaw, and G. Sekar.
Correlated keystreams in moustique. In Progress in Cryptology - AFRICACRYPT
2008, volume 5023 of Lecture Notes in Computer Science, pages 246–257. Springer,
2008.

[KSK13] Takuma Koyama, Yu Sasaki, and Noboru Kunihiro. Multi-differential cryptanalysis
on reduced DM-PRESENT-80: Collisions and other differential properties. In Kwon
et al. [KLK13], pages 352–367. doi:10.1007/978-3-642-37682-5_25.

[KVW04] Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A high-performance
conventional authenticated encryption mode. In Roy and Meier [RM04], pages
408–426. doi:10.1007/978-3-540-25937-4_26.

[KW19] Thorsten Kleinjung and Benjamin Wesolowski. Discrete logarithms in quasi-
polynomial time in finite fields of fixed characteristic. CoRR, abs/1906.10668,
2019. URL: http://arxiv.org/abs/1906.10668, arXiv:1906.10668.

[KY01] Jonathan Katz and Moti Yung. Unforgeable encryption and chosen ciphertext
secure modes of operation. In Schneier [Sch01], pages 284–299. doi:10.1007/
3-540-44706-7_20.

[KY10] E.B. Kavun and T. Yalcin. A Lightweight Implementation of Keccak Hash Function
for Radio-Frequency Identification Applications. In Radio Frequency Identification:

271

http://dx.doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/978-3-642-17342-4
https://doi.org/10.1007/978-3-642-17342-4
http://dx.doi.org/10.1007/978-3-642-17342-4
http://dx.doi.org/10.1007/978-3-642-21702-9_18
http://dx.doi.org/10.1007/978-3-642-21702-9_18
https://rfc-editor.org/rfc/rfc7253.txt
http://dx.doi.org/10.17487/RFC7253
http://dx.doi.org/10.17487/RFC7253
http://dx.doi.org/10.1007/3-540-44647-8_19
http://dx.doi.org/10.1007/3-540-44647-8_19
http://dx.doi.org/10.1007/978-3-642-37682-5_25
http://dx.doi.org/10.1007/978-3-540-25937-4_26
http://arxiv.org/abs/1906.10668
http://arxiv.org/abs/1906.10668
http://dx.doi.org/10.1007/3-540-44706-7_20
http://dx.doi.org/10.1007/3-540-44706-7_20

Bibliography

Security and Privacy Issues - RFIDSec, volume 6370 of Lecture Notes in Computer
Science, pages 258–269. Springer, 2010.

[LAAZ11] Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik Zenner.
A cryptanalysis of PRINTcipher: The invariant subspace attack. In Rogaway [Rog11],
pages 206–221. doi:10.1007/978-3-642-22792-9_12.

[Laf18] Frédéric Lafitte. Cryptosat: a tool for sat-based cryptanalysis. IET Information
Security, 12(6):463–474, 2018.

[Lai94] Xuejia Lai. Higher Order Derivatives and Differential Cryptanalysis, pages
227–233. Springer US, Boston, MA, 1994. URL: https://doi.org/10.1007/
978-1-4615-2694-0_23, doi:10.1007/978-1-4615-2694-0_23.

[LCM+17] Fanghui Liu, Waldemar Cruz, Chujiao Ma, Greg Johnson, and Laurent Michel. A
tolerant algebraic side-channel attack on AES using CP. In Principles and Practice
of Constraint Programming - 23rd International Conference, CP 2017, Melbourne,
VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10416 of Lecture
Notes in Computer Science, pages 189–205. Springer, 2017.

[Lea11] Gregor Leander. On linear hulls, statistical saturation attacks, PRESENT and a
cryptanalysis of PUFFIN. In Kenneth G. Paterson, editor, EUROCRYPT 2011,
volume 6632 of LNCS, pages 303–322. Springer, Heidelberg, May 2011. doi:10.
1007/978-3-642-20465-4_18.

[Leu16] Gaëtan Leurent. Differential forgery attack against LAC. In Dunkelman and Keliher
[DK16], pages 217–224. doi:10.1007/978-3-319-31301-6_13.

[LGS17] Guozhen Liu, Mohona Ghosh, and Ling Song. Security analysis of SKINNY under
related-tweakey settings (long paper). IACR Trans. Symm. Cryptol., 2017(3):37–72,
2017. doi:10.13154/tosc.v2017.i3.37-72.

[LGW12] Shusheng Liu, Zheng Gong, and Libin Wang. Improved related-key differential
attacks on reduced-round LBlock. In Tat Wing Chim and Tsz Hon Yuen, editors,
ICICS 12, volume 7618 of LNCS, pages 58–69. Springer, Heidelberg, October 2012.
doi:10.1007/978-3-642-34129-8_6.

[LH94] Susan K. Langford and Martin E. Hellman. Differential-linear cryptanalysis. In
Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages 17–25. Springer,
Heidelberg, August 1994. doi:10.1007/3-540-48658-5_3.

[LKT13] Arjen K. Lenstra, Thorsten Kleinjung, and Emmanuel Thomé. Universal security;
from bits and mips to pools, lakes – and beyond. Cryptology ePrint Archive, Report
2013/635, 2013. http://eprint.iacr.org/2013/635.

[LLJ+19] Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan He, Zhenfei Zhang,
Zhe Liu, Hao Yang, Bao Li, and Kunpeng Wang. LAC. Technical report, National
Institute of Standards and Technology, 2019. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions.

[LLL14] Tanja Lange, Kristin Lauter, and Petr Lisonek, editors. SAC 2013, volume 8282 of
LNCS. Springer, Heidelberg, August 2014.

272

http://dx.doi.org/10.1007/978-3-642-22792-9_12
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-1-4615-2694-0_23
http://dx.doi.org/10.1007/978-1-4615-2694-0_23
http://dx.doi.org/10.1007/978-3-642-20465-4_18
http://dx.doi.org/10.1007/978-3-642-20465-4_18
http://dx.doi.org/10.1007/978-3-319-31301-6_13
http://dx.doi.org/10.13154/tosc.v2017.i3.37-72
http://dx.doi.org/10.1007/978-3-642-34129-8_6
http://dx.doi.org/10.1007/3-540-48658-5_3
http://eprint.iacr.org/2013/635
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

[LMM91a] Xuejia Lai, James L. Massey, and Sean Murphy. Markov ciphers and differential crypt-
analysis. In Donald W. Davies, editor, Advances in Cryptology - EUROCRYPT ’91,
Workshop on the Theory and Application of of Cryptographic Techniques, Brighton,
UK, April 8-11, 1991, Proceedings, volume 547 of Lecture Notes in Computer Science,
pages 17–38. Springer, 1991. URL: https://doi.org/10.1007/3-540-46416-6_2,
doi:10.1007/3-540-46416-6_2.

[LMM91b] Xuejia Lai, James L. Massey, and Sean Murphy. Markov ciphers and differential
cryptanalysis. In Davies [Dav91], pages 17–38. doi:10.1007/3-540-46416-6_2.

[LMR15] Gregor Leander, Brice Minaud, and Sondre Rønjom. A generic approach to invariant
subspace attacks: Cryptanalysis of robin, iSCREAM and Zorro. In Oswald and
Fischlin [OF15], pages 254–283. doi:10.1007/978-3-662-46800-5_11.

[LP07] G. Leander and A. Poschmann. On the Classification of 4 Bit S-Boxes. In WAIFI,
volume 4547 of Lecture Notes in Computer Science, pages 159–176. Springer, 2007.

[LPR+19] Elena Andreevaand Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar,
Arnab Roy, and Damian Vizár. ForkAE. Submission to the NIST Lightweight
Cryptography project. Available online https://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/
forkae-spec-round2.pdf., 2019.

[LQSL19] Kangquan Li, Longjiang Qu, Bing Sun, and Chao Li. New results about the
boomerang uniformity of permutation polynomials. IEEE Trans. Information Theory,
65(11):7542–7553, 2019. URL: https://doi.org/10.1109/TIT.2019.2918531, doi:
10.1109/TIT.2019.2918531.

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In
Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 31–46. Springer,
Heidelberg, August 2002. doi:10.1007/3-540-45708-9_3.

[LS19] Yunwen Liu and Yu Sasaki. Related-key boomerang attacks on GIFT with automated
trail search including BCT effect. In Julian Jang-Jaccard and Fuchun Guo, editors,
ACISP 19, volume 11547 of LNCS, pages 555–572. Springer, Heidelberg, July 2019.
doi:10.1007/978-3-030-21548-4_30.

[LTW18] Gregor Leander, Cihangir Tezcan, and Friedrich Wiemer. Searching for subspace
trails and truncated differentials. IACR Trans. Symm. Cryptol., 2018(1):74–100,
2018. doi:10.13154/tosc.v2018.i1.74-100.

[Lu16] Jiqiang Lu. On the security of the LAC authenticated encryption algorithm. In
Joseph K. Liu and Ron Steinfeld, editors, ACISP 16, Part II, volume 9723 of LNCS,
pages 395–408. Springer, Heidelberg, July 2016. doi:10.1007/978-3-319-40367-0_
25.

[Luc02] Stefan Lucks. The saturation attack - a bait for Twofish. In Matsui [Mat02], pages
1–15. doi:10.1007/3-540-45473-X_1.

[LWLG09] Yiyuan Luo, Zhongming Wu, Xuejia Lai, and Guang Gong. A unified method for
finding impossible differentials of block cipher structures. Cryptology ePrint Archive,
Report 2009/627, 2009. http://eprint.iacr.org/2009/627.

273

https://doi.org/10.1007/3-540-46416-6_2
http://dx.doi.org/10.1007/3-540-46416-6_2
http://dx.doi.org/10.1007/3-540-46416-6_2
http://dx.doi.org/10.1007/978-3-662-46800-5_11
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/forkae-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/forkae-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/forkae-spec-round2.pdf
https://doi.org/10.1109/TIT.2019.2918531
http://dx.doi.org/10.1109/TIT.2019.2918531
http://dx.doi.org/10.1109/TIT.2019.2918531
http://dx.doi.org/10.1007/3-540-45708-9_3
http://dx.doi.org/10.1007/978-3-030-21548-4_30
http://dx.doi.org/10.13154/tosc.v2018.i1.74-100
http://dx.doi.org/10.1007/978-3-319-40367-0_25
http://dx.doi.org/10.1007/978-3-319-40367-0_25
http://dx.doi.org/10.1007/3-540-45473-X_1
http://eprint.iacr.org/2009/627

Bibliography

[LWZ16] Li Lin, Wenling Wu, and Yafei Zheng. Automatic search for key-bridging technique:
Applications to LBlock and TWINE. In Peyrin [Pey16], pages 247–267. doi:
10.1007/978-3-662-52993-5_13.

[Mas69] James L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans. Inf.
Theory, 15(1):122–127, 1969. URL: https://doi.org/10.1109/TIT.1969.1054260,
doi:10.1109/TIT.1969.1054260.

[Mat94] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Helleseth [Hel94],
pages 386–397. doi:10.1007/3-540-48285-7_33.

[Mat95] Mitsuru Matsui. On correlation between the order of S-boxes and the strength of
DES. In Santis [San95], pages 366–375. doi:10.1007/BFb0053451.

[Mat97] Mitsuru Matsui. New block encryption algorithm MISTY. In Biham [Bih97b], pages
54–68. doi:10.1007/BFb0052334.

[Mat02] Mitsuru Matsui, editor. FSE 2001, volume 2355 of LNCS. Springer, Heidelberg,
April 2002.

[Mau91] U. M. Maurer. New approaches to the design of self-synchronizing stream ciphers.
In Advances in Cryptology - EUROCRYPT ’91, volume 547 of Lecture Notes in
Computer Science, pages 458–471. Springer, 1991.

[Mau02] U. M. Maurer. Indistinguishability of Random Systems. In Advances in Cryptology
- EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages
110–132. Springer, 2002.

[MB15] G. Millerioux and T. Boukhobza. Characterization of flat outputs for LPV discrete-
time systems: A graph-oriented approach. In 54th IEEE Conference on Decision
and Control, CDC 2015, pages 759–764. IEEE, 2015.

[MBTM17] Kerry A. McKay, Lawrence E. Bassham, Meltem Sonmez Turan, and NickyW. Mouha.
Report on lightweight cryptography. https://nvlpubs.nist.gov/nistpubs/ir/
2017/NIST.IR.8114.pdf, 2017.

[Min14] Kazuhiko Minematsu. Parallelizable rate-1 authenticated encryption from pseu-
dorandom functions. In Nguyen and Oswald [NO14], pages 275–292. doi:
10.1007/978-3-642-55220-5_16.

[Miy91] Shoji Miyaguchi. The FEAL cipher family (impromptu talk). In Menezes and
Vanstone [MV91], pages 627–638. doi:10.1007/3-540-38424-3_46.

[MMS18] F Moazami, AR Mehrdad, and Hadi Soleimany. Impossible differential cryptanalysis
on deoxys-bc-256. The ISC International Journal of Information Security, 10(2):93–
105, 2018.

[MNV18] Nicolas Marrière, Valérie Nachef, and Emmanuel Volte. Differential attacks on
reduced round LILLIPUT. In Willy Susilo and Guomin Yang, editors, ACISP
18, volume 10946 of LNCS, pages 188–206. Springer, Heidelberg, July 2018. doi:
10.1007/978-3-319-93638-3_12.

274

http://dx.doi.org/10.1007/978-3-662-52993-5_13
http://dx.doi.org/10.1007/978-3-662-52993-5_13
https://doi.org/10.1109/TIT.1969.1054260
http://dx.doi.org/10.1109/TIT.1969.1054260
http://dx.doi.org/10.1007/3-540-48285-7_33
http://dx.doi.org/10.1007/BFb0053451
http://dx.doi.org/10.1007/BFb0052334
https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf
http://dx.doi.org/10.1007/978-3-642-55220-5_16
http://dx.doi.org/10.1007/978-3-642-55220-5_16
http://dx.doi.org/10.1007/3-540-38424-3_46
http://dx.doi.org/10.1007/978-3-319-93638-3_12
http://dx.doi.org/10.1007/978-3-319-93638-3_12

[MP13] Nicky Mouha and Bart Preneel. A proof that the ARX cipher salsa20 is secure
against differential cryptanalysis. IACR Cryptology ePrint Archive, 2013:328, 2013.
URL: http://eprint.iacr.org/2013/328.

[MSP19] MSP430-GCC-OPENSOURCE GCC - Open Source Compiler fro MSP Microcon-
trollers. http://www.ti.com/tool/msp430-gcc-opensource, 2019. Accessed: 2019-
03-07.

[Mur11] Sean Murphy. The return of the cryptographic boomerang. IEEE Trans. Informa-
tion Theory, 57(4):2517–2521, 2011. URL: https://doi.org/10.1109/TIT.2011.
2111091, doi:10.1109/TIT.2011.2111091.

[MV91] Alfred J. Menezes and Scott A. Vanstone, editors. CRYPTO’90, volume 537 of
LNCS. Springer, Heidelberg, August 1991.

[MV04] David A. McGrew and John Viega. The security and performance of the galois/-
counter mode of operation (full version). Cryptology ePrint Archive, Report 2004/193,
2004. http://eprint.iacr.org/2004/193.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and linear
cryptanalysis using mixed-integer linear programming. In Chuankun Wu, Moti Yung,
and Dongdai Lin, editors, Information Security and Cryptology - 7th International
Conference, Inscrypt 2011, Beijing, China, November 30 - December 3, 2011. Revised
Selected Papers, volume 7537 of Lecture Notes in Computer Science, pages 57–
76. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-34704-7_5, doi:
10.1007/978-3-642-34704-7_5.

[Nat95] National Institute of Standards and Technology. FIPS PUB 180-1: Secure Hash
Standard. April 1995. Supersedes FIPS PUB 180 1993 May 11. URL: http:
//www.itl.nist.gov/fipspubs/fip180-1.htm.

[NISa] Lightweight Cryptography | CSRC. https://csrc.nist.gov/Projects/
Lightweight-Cryptography. Accessed: 2019-07-23.

[NISb] Submission requirements and evaluation criteria for the lightweight
cryptography standardization process. https://csrc.nist.
gov/CSRC/media/Projects/Lightweight-Cryptography/documents/
final-lwc-submission-requirements-august2018.pdf. Accessed: 2019-07-
24.

[NK95] Kaisa Nyberg and Lars R. Knudsen. Provable security against a differential attack.
Journal of Cryptology, 8(1):27–37, December 1995. doi:10.1007/BF00204800.

[NO14] Phong Q. Nguyen and Elisabeth Oswald, editors. EUROCRYPT 2014, volume 8441
of LNCS. Springer, Heidelberg, May 2014.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware implemen-
tation of nonlinear functions in the presence of glitches. Journal of Cryptology,
24(2):292–321, April 2011. doi:10.1007/s00145-010-9085-7.

[NRS14] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsidering
generic composition. In Nguyen and Oswald [NO14], pages 257–274. doi:10.1007/
978-3-642-55220-5_15.

275

http://eprint.iacr.org/2013/328
http://www.ti.com/tool/msp430-gcc-opensource
https://doi.org/10.1109/TIT.2011.2111091
https://doi.org/10.1109/TIT.2011.2111091
http://dx.doi.org/10.1109/TIT.2011.2111091
http://eprint.iacr.org/2004/193
https://doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.itl.nist.gov/fipspubs/fip180-1.htm
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
http://dx.doi.org/10.1007/BF00204800
http://dx.doi.org/10.1007/s00145-010-9085-7
http://dx.doi.org/10.1007/978-3-642-55220-5_15
http://dx.doi.org/10.1007/978-3-642-55220-5_15

Bibliography

[NS19] Yusuke Naito and Takeshi Sugawara. Lightweight authenticated encryption mode of
operation for tweakable block ciphers. IACR TCHES, 2020(1):66–94, 2019. https:
//tches.iacr.org/index.php/TCHES/article/view/8393. doi:10.13154/tches.
v2020.i1.66-94.

[NSB+07] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. Minizinc: Towards a standard CP modelling language. In
Principles and Practice of Constraint Programming - CP 2007, volume 4741 of LNCS,
pages 529–543. Springer, 2007.

[NSZW09] Jorge Nakahara Jr., Pouyan Sepehrdad, Bingsheng Zhang, and Meiqin Wang. Linear
(hull) and algebraic cryptanalysis of the block cipher PRESENT. In Garay et al.
[GMO09], pages 58–75.

[Nyb94] Kaisa Nyberg. Differentially uniform mappings for cryptography. In Helleseth [Hel94],
pages 55–64. doi:10.1007/3-540-48285-7_6.

[Nyb95] Kaisa Nyberg. Linear approximation of block ciphers (rump session). In Santis
[San95], pages 439–444. doi:10.1007/BFb0053460.

[Nyb96] Kaisa Nyberg. Generalized Feistel networks. In Kwangjo Kim and Tsutomu Mat-
sumoto, editors, ASIACRYPT’96, volume 1163 of LNCS, pages 91–104. Springer,
Heidelberg, November 1996. doi:10.1007/BFb0034838.

[Nyb08] Kaisa Nyberg, editor. FSE 2008, volume 5086 of LNCS. Springer, Heidelberg,
February 2008.

[OBSC10] Dag Arne Osvik, Joppe W. Bos, Deian Stefan, and David Canright. Fast soft-
ware AES encryption. In Hong and Iwata [HI10], pages 75–93. doi:10.1007/
978-3-642-13858-4_5.

[OF15] Elisabeth Oswald and Marc Fischlin, editors. EUROCRYPT 2015, Part I, volume
9056 of LNCS. Springer, Heidelberg, April 2015.

[Opt18] Gurobi Optimization. Gurobi optimizer reference manual, 2018. URL: http://www.
gurobi.com.

[oST15] National Institute of Standards and Technology. SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions: Federal Information Processing Standards
Publications (FIPS PUBS) 202. 2015. URL: http://dx.doi.org/10.6028/NIST.
FIPS.202.

[ÖVTK09] Onur Özen, Kerem Varici, Cihangir Tezcan, and Çelebi Kocair. Lightweight block
ciphers revisited: Cryptanalysis of reduced round PRESENT and HIGHT. In Colin
Boyd and Juan Manuel González Nieto, editors, ACISP 09, volume 5594 of LNCS,
pages 90–107. Springer, Heidelberg, July 2009.

[Pey16] Thomas Peyrin, editor. FSE 2016, volume 9783 of LNCS. Springer, Heidelberg,
March 2016.

[Pfi01] Birgit Pfitzmann, editor. EUROCRYPT 2001, volume 2045 of LNCS. Springer,
Heidelberg, May 2001.

276

https://tches.iacr.org/index.php/TCHES/article/view/8393
https://tches.iacr.org/index.php/TCHES/article/view/8393
http://dx.doi.org/10.13154/tches.v2020.i1.66-94
http://dx.doi.org/10.13154/tches.v2020.i1.66-94
http://dx.doi.org/10.1007/3-540-48285-7_6
http://dx.doi.org/10.1007/BFb0053460
http://dx.doi.org/10.1007/BFb0034838
http://dx.doi.org/10.1007/978-3-642-13858-4_5
http://dx.doi.org/10.1007/978-3-642-13858-4_5
http://www.gurobi.com
http://www.gurobi.com
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.6028/NIST.FIPS.202

[PFL16] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco Documenta-
tion. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S., 2016. URL:
http://www.choco-solver.org.

[Poe18] Bertram Poettering. Breaking the confidentiality of OCB2. Cryptology ePrint
Archive, Report 2018/1087, 2018. https://eprint.iacr.org/2018/1087.

[Pol19] Michel Pollet. simavr. https://github.com/buserror/simavr, 2019. Accessed:
2019-03-07.

[Pre95] Bart Preneel, editor. FSE’94, volume 1008 of LNCS. Springer, Heidelberg, December
1995.

[PS16] Thomas Peyrin and Yannick Seurin. Counter-in-tweak: Authenticated encryption
modes for tweakable block ciphers. In Robshaw and Katz [RK16a], pages 33–63.
doi:10.1007/978-3-662-53018-4_2.

[PT11] Bart Preneel and Tsuyoshi Takagi, editors. CHES 2011, volume 6917 of LNCS.
Springer, Heidelberg, September / October 2011.

[Rab10] Tal Rabin, editor. CRYPTO 2010, volume 6223 of LNCS. Springer, Heidelberg,
August 2010.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-cipher
mode of operation for efficient authenticated encryption. In Michael K. Reiter and
Pierangela Samarati, editors, ACM CCS 2001, pages 196–205. ACM Press, November
2001. doi:10.1145/501983.502011.

[RBW06] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Program-
ming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York, NY,
USA, 2006.

[Riv98] R. L. Rivest. A Description of the RC2(r) Encryption Algorithm. Network Working
Group, RFC 2268, march 1998. http://tools.ietf.org/html/rfc2268.

[Riv09] Matthieu Rivain. Differential fault analysis on DES middle rounds. In Christophe
Clavier and Kris Gaj, editors, CHES 2009, volume 5747 of LNCS, pages 457–469.
Springer, Heidelberg, September 2009. doi:10.1007/978-3-642-04138-9_32.

[RK16a] Matthew Robshaw and Jonathan Katz, editors. CRYPTO 2016, Part I, volume 9814
of LNCS. Springer, Heidelberg, August 2016.

[RK16b] Matthew Robshaw and Jonathan Katz, editors. CRYPTO 2016, Part II, volume
9815 of LNCS. Springer, Heidelberg, August 2016.

[RM04] Bimal K. Roy and Willi Meier, editors. FSE 2004, volume 3017 of LNCS. Springer,
Heidelberg, February 2004.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi
Atluri, editor, ACM CCS 2002, pages 98–107. ACM Press, November 2002. doi:
10.1145/586110.586125.

277

http://www.choco-solver.org
https://eprint.iacr.org/2018/1087
https://github.com/buserror/simavr
http://dx.doi.org/10.1007/978-3-662-53018-4_2
http://dx.doi.org/10.1145/501983.502011
http://tools.ietf.org/html/rfc2268
http://dx.doi.org/10.1007/978-3-642-04138-9_32
http://dx.doi.org/10.1145/586110.586125
http://dx.doi.org/10.1145/586110.586125

Bibliography

[Rog04] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In Pil Joong Lee, editor, ASIACRYPT 2004, volume
3329 of LNCS, pages 16–31. Springer, Heidelberg, December 2004. doi:10.1007/
978-3-540-30539-2_2.

[Rog11] Phillip Rogaway, editor. CRYPTO 2011, volume 6841 of LNCS. Springer, Heidelberg,
August 2011.

[RS06] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-
wrap problem. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 373–390. Springer, Heidelberg, May / June 2006. doi:10.1007/11761679_23.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the Association
for Computing Machinery, 21(2):120–126, 1978.

[RSM+11] Venkatesh Ramamoorthy, Marius-Calin Silaghi, Toshihiro Matsui, Katsutoshi Hi-
rayama, and Makoto Yokoo. The design of cryptographic s-boxes using csps. In
Principles and Practice of Constraint Programming - CP 2011 - 17th International
Conference, CP 2011, volume 6876 of Lecture Notes in Computer Science, pages
54–68. Springer, 2011.

[RW03] P. Rogaway and D. Wagner. A critique of CCM. Cryptology ePrint Archive, Report
2003/070, 2003. http://eprint.iacr.org/2003/070.

[Saa] Markku-Juhani O. Saarinen. Cryptographic Analysis of All 4 x 4 - Bit S-Boxes.
Cryptology ePrint Archive, Report 2011/218.

[Saa11] Markku-Juhani O. Saarinen. Cryptographic analysis of all 4 x 4 - bit s-boxes.
Cryptology ePrint Archive, Report 2011/218, 2011. http://eprint.iacr.org/
2011/218.

[San95] Alfredo De Santis, editor. EUROCRYPT’94, volume 950 of LNCS. Springer, Heidel-
berg, May 1995.

[Sar03] P. Sarkar. Hiji-Bij-Bij: A New Stream Cipher with a Self-Synchronizing Mode of
Operation, 2003.

[SBM18] Pascal Sasdrich, René Bock, and Amir Moradi. Threshold implementation in
software - case study of PRESENT. Cryptology ePrint Archive, Report 2018/189,
2018. https://eprint.iacr.org/2018/189.

[Sch01] Bruce Schneier, editor. FSE 2000, volume 1978 of LNCS. Springer, Heidelberg, April
2001.

[SGL+17] Siwei Sun, David Gerault, Pascal Lafourcade, Qianqian Yang, Yosuke Todo,
Kexin Qiao, and Lei Hu. Analysis of AES, SKINNY, and others with con-
straint programming. IACR Trans. Symm. Cryptol., 2017(1):281–306, 2017. doi:
10.13154/tosc.v2017.i1.281-306.

[Sha49] Claude E. Shannon. Communication theory of secrecy systems. Bell Systems
Technical Journal, 28(4):656–715, 1949.

278

http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://dx.doi.org/10.1007/11761679_23
http://eprint.iacr.org/2003/070
http://eprint.iacr.org/2011/218
http://eprint.iacr.org/2011/218
https://eprint.iacr.org/2018/189
http://dx.doi.org/10.13154/tosc.v2017.i1.281-306
http://dx.doi.org/10.13154/tosc.v2017.i1.281-306

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Auto-
matic security evaluation and (related-key) differential characteristic search: Appli-
cation to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers.
In Sarkar and Iwata [SI14], pages 158–178. doi:10.1007/978-3-662-45611-8_9.

[SI14] Palash Sarkar and Tetsu Iwata, editors. ASIACRYPT 2014, Part I, volume 8873 of
LNCS. Springer, Heidelberg, December 2014.

[SIH+11] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru Akishita,
and Taizo Shirai. Piccolo: An ultra-lightweight blockcipher. In Preneel and Takagi
[PT11], pages 342–357. doi:10.1007/978-3-642-23951-9_23.

[SK96] Bruce Schneier and John Kelsey. Unbalanced Feistel networks and block cipher
design. In Dieter Gollmann, editor, FSE’96, volume 1039 of LNCS, pages 121–144.
Springer, Heidelberg, February 1996. doi:10.1007/3-540-60865-6_49.

[SM10] Tomoyasu Suzaki and Kazuhiko Minematsu. Improving the generalized Feistel. In
Hong and Iwata [HI10], pages 19–39. doi:10.1007/978-3-642-13858-4_2.

[SMB18] Sadegh Sadeghi, Tahereh Mohammadi, and Nasour Bagheri. Cryptanalysis of reduced
round SKINNY block cipher. IACR Trans. Symm. Cryptol., 2018(3):124–162, 2018.
doi:10.13154/tosc.v2018.i3.124-162.

[SMMK13] Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE : A lightweight block cipher for multiple platforms. In Lars R. Knud-
sen and Huapeng Wu, editors, SAC 2012, volume 7707 of LNCS, pages 339–354.
Springer, Heidelberg, August 2013. doi:10.1007/978-3-642-35999-6_22.

[SMT19] H. Sato, M. Mimura, and H. Tanaka. Analysis of division property using milp
method for lightweight blockcipher piccolo. In 2019 14th Asia Joint Conference on
Information Security (AsiaJCIS), pages 48–55, 2019.

[SN12] Hadi Soleimany and Kaisa Nyberg. Zero-correlation linear cryptanalysis of reduced-
round LBlock. Cryptology ePrint Archive, Report 2012/570, 2012. http://eprint.
iacr.org/2012/570.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to
cryptographic problems. In Theory and Applications of Satisfiability Testing - SAT
2009, 12th International Conference, SAT 2009, volume 5584 of Lecture Notes in
Computer Science, pages 244–257. Springer, 2009.

[SPQ03] François-Xavier Standaert, Gilles Piret, and Jean-Jacques Quisquater. Cryptanalysis
of block ciphers: A survey. 06 2003.

[SQH19] Ling Song, Xianrui Qin, and Lei Hu. Boomerang connectivity table revisited.
IACR Trans. Symm. Cryptol., 2019(1):118–141, 2019. doi:10.13154/tosc.v2019.
i1.118-141.

[SS16] Peter Schwabe and Ko Stoffelen. All the AES you need on Cortex-M3 and M4. In
Avanzi and Heys [AH16], pages 180–194. doi:10.1007/978-3-319-69453-5_10.

279

http://dx.doi.org/10.1007/978-3-662-45611-8_9
http://dx.doi.org/10.1007/978-3-642-23951-9_23
http://dx.doi.org/10.1007/3-540-60865-6_49
http://dx.doi.org/10.1007/978-3-642-13858-4_2
http://dx.doi.org/10.13154/tosc.v2018.i3.124-162
http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://eprint.iacr.org/2012/570
http://eprint.iacr.org/2012/570
http://dx.doi.org/10.13154/tosc.v2019.i1.118-141
http://dx.doi.org/10.13154/tosc.v2019.i1.118-141
http://dx.doi.org/10.1007/978-3-319-69453-5_10

Bibliography

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The 128-
bit blockcipher CLEFIA (extended abstract). In Alex Biryukov, editor, FSE 2007,
volume 4593 of LNCS, pages 181–195. Springer, Heidelberg, March 2007. doi:
10.1007/978-3-540-74619-5_12.

[SSD+18] Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun, and Lei Hu.
Programming the Demirci-Selçuk meet-in-the-middle attack with constraints. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume
11273 of LNCS, pages 3–34. Springer, Heidelberg, December 2018. doi:10.1007/
978-3-030-03329-3_1.

[ST16] Yu Sasaki and Yosuke Todo. New differential bounds and division property of Lilliput:
Block cipher with extended generalized Feistel network. In Avanzi and Heys [AH16],
pages 264–283. doi:10.1007/978-3-319-69453-5_15.

[ST17] Yu Sasaki and Yosuke Todo. New impossible differential search tool from design and
cryptanalysis aspects - revealing structural properties of several ciphers. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III,
volume 10212 of LNCS, pages 185–215. Springer, Heidelberg, April / May 2017.
doi:10.1007/978-3-319-56617-7_7.

[ST18] Yu Sasaki and Yosuke Todo. Tight bounds of differentially and linearly active s-boxes
and division property of lilliput. IEEE Trans. Computers, 67(5):717–732, 2018.

[SUP] SUPERCOP. https://bench.cr.yp.to/supercop.html. Accessed: 2019-02-21.

[SW13] Yu Sasaki and Lei Wang. Comprehensive study of integral analysis on 22-round
LBlock. In Kwon et al. [KLK13], pages 156–169. doi:10.1007/978-3-642-37682-5_
12.

[SWLW16] Ling Sun, Wei Wang, Ru Liu, and Meiqin Wang. MILP-aided bit-based division
property for ARX-based block cipher. Cryptology ePrint Archive, Report 2016/1101,
2016. http://eprint.iacr.org/2016/1101.

[SWW17] Ling Sun, Wei Wang, and Meiqin Wang. Automatic search of bit-based division
property for ARX ciphers and word-based division property. In Tsuyoshi Takagi and
Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 128–
157. Springer, Heidelberg, December 2017. doi:10.1007/978-3-319-70694-8_5.

[SWW18] Ling Sun, Wei Wang, and Meiqin Wang(66). More accurate differential properties
of LED64 and Midori64. IACR Trans. Symm. Cryptol., 2018(3):93–123, 2018.
doi:10.13154/tosc.v2018.i3.93-123.

[TAY17] Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. Impossible differential
cryptanalysis of reduced-round SKINNY. In Marc Joye and Abderrahmane Nitaj,
editors, AFRICACRYPT 17, volume 10239 of LNCS, pages 117–134. Springer,
Heidelberg, May 2017.

[TG92] Anne Tardy-Corfdir and Henri Gilbert. A known plaintext attack of FEAL-4 and
FEAL-6. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages
172–181. Springer, Heidelberg, August 1992. doi:10.1007/3-540-46766-1_12.

280

http://dx.doi.org/10.1007/978-3-540-74619-5_12
http://dx.doi.org/10.1007/978-3-540-74619-5_12
http://dx.doi.org/10.1007/978-3-030-03329-3_1
http://dx.doi.org/10.1007/978-3-030-03329-3_1
http://dx.doi.org/10.1007/978-3-319-69453-5_15
http://dx.doi.org/10.1007/978-3-319-56617-7_7
https://bench.cr.yp.to/supercop.html
http://dx.doi.org/10.1007/978-3-642-37682-5_12
http://dx.doi.org/10.1007/978-3-642-37682-5_12
http://eprint.iacr.org/2016/1101
http://dx.doi.org/10.1007/978-3-319-70694-8_5
http://dx.doi.org/10.13154/tosc.v2018.i3.93-123
http://dx.doi.org/10.1007/3-540-46766-1_12

[Tho15] Gaël Thomas. Design and Security Analysis for constructions in symmetric
cryptography. Theses, Université de Limoges, June 2015. URL: https://tel.
archives-ouvertes.fr/tel-01184927.

[TLS16] Yosuke Todo, Gregor Leander, and Yu Sasaki. Nonlinear invariant attack - practical
attack on full SCREAM, iSCREAM, and Midori64. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 3–33.
Springer, Heidelberg, December 2016. doi:10.1007/978-3-662-53890-6_1.

[TM16] Yosuke Todo and Masakatu Morii. Bit-based division property and application to
simon family. In Peyrin [Pey16], pages 357–377. doi:10.1007/978-3-662-52993-5_
18.

[Tod15a] Yosuke Todo. Integral cryptanalysis on full MISTY1. In Gennaro and Robshaw
[GR15], pages 413–432. doi:10.1007/978-3-662-47989-6_20.

[Tod15b] Yosuke Todo. Structural evaluation by generalized integral property. In Oswald and
Fischlin [OF15], pages 287–314. doi:10.1007/978-3-662-46800-5_12.

[TW15] Biaoshuai Tao and Hongjun Wu. Improving the biclique cryptanalysis of AES. In
Ernest Foo and Douglas Stebila, editors, ACISP 15, volume 9144 of LNCS, pages 39–
56. Springer, Heidelberg, June / July 2015. doi:10.1007/978-3-319-19962-7_3.

[UDI+11] Markus Ullrich, Christophe Decannière, Sebastiaan Indesteege, Ozgül Küçük, Nicky
Mouha, and Bart Preneel. Finding Optimal Bitsliced Implementations of 4x4-bit
S-boxes. Feb 2011.

[UMHA16] Rei Ueno, Sumio Morioka, Naofumi Homma, and Takafumi Aoki. A high through-
put/gate AES hardware architecture by compressing encryption and decryption
datapaths - toward efficient CBC-mode implementation. In Gierlichs and Poschmann
[GP16], pages 538–558. doi:10.1007/978-3-662-53140-2_26.

[Vau98] Serge Vaudenay. Provable security for block ciphers by decorrelation. In Michel
Morvan, Christoph Meinel, and Daniel Krob, editors, STACS 98, 15th Annual
Symposium on Theoretical Aspects of Computer Science, Paris, France, February
25-27, 1998, Proceedings, volume 1373 of Lecture Notes in Computer Science, pages
249–275. Springer, 1998. URL: https://doi.org/10.1007/BFb0028566, doi:10.
1007/BFb0028566.

[Vau02] Serge Vaudenay. Security flaws induced by CBC padding - applications to SSL,
IPSEC, WTLS... In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332
of LNCS, pages 534–546. Springer, Heidelberg, April / May 2002. doi:10.1007/
3-540-46035-7_35.

[Wag99] David Wagner. The boomerang attack. In Knudsen [Knu99], pages 156–170. doi:
10.1007/3-540-48519-8_12.

[Wan08] Meiqin Wang. Differential cryptanalysis of reduced-round PRESENT. In Serge
Vaudenay, editor, AFRICACRYPT 08, volume 5023 of LNCS, pages 40–49. Springer,
Heidelberg, June 2008.

281

https://tel.archives-ouvertes.fr/tel-01184927
https://tel.archives-ouvertes.fr/tel-01184927
http://dx.doi.org/10.1007/978-3-662-53890-6_1
http://dx.doi.org/10.1007/978-3-662-52993-5_18
http://dx.doi.org/10.1007/978-3-662-52993-5_18
http://dx.doi.org/10.1007/978-3-662-47989-6_20
http://dx.doi.org/10.1007/978-3-662-46800-5_12
http://dx.doi.org/10.1007/978-3-319-19962-7_3
http://dx.doi.org/10.1007/978-3-662-53140-2_26
https://doi.org/10.1007/BFb0028566
http://dx.doi.org/10.1007/BFb0028566
http://dx.doi.org/10.1007/BFb0028566
http://dx.doi.org/10.1007/3-540-46035-7_35
http://dx.doi.org/10.1007/3-540-46035-7_35
http://dx.doi.org/10.1007/3-540-48519-8_12
http://dx.doi.org/10.1007/3-540-48519-8_12

Bibliography

[WHF03] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). RFC
3610 (Informational), September 2003. URL: http://www.ietf.org/rfc/rfc3610.
txt.

[WN95] David J. Wheeler and Roger M. Needham. TEA, a tiny encryption algorithm. In
Preneel [Pre95], pages 363–366. doi:10.1007/3-540-60590-8_29.

[WP19] Haoyang Wang and Thomas Peyrin. Boomerang switch in multiple rounds. IACR
Trans. Symm. Cryptol., 2019(1):142–169, 2019. doi:10.13154/tosc.v2019.i1.
142-169.

[WSTP12] Meiqin Wang, Yue Sun, Elmar Tischhauser, and Bart Preneel. A model for structure
attacks, with applications to PRESENT and Serpent. In Anne Canteaut, editor,
FSE 2012, volume 7549 of LNCS, pages 49–68. Springer, Heidelberg, March 2012.
doi:10.1007/978-3-642-34047-5_4.

[Wu08] Hongjun Wu. The stream cipher HC-128. In Matthew J. B. Robshaw and Olivier
Billet, editors, New Stream Cipher Designs - The eSTREAM Finalists, volume 4986
of Lecture Notes in Computer Science, pages 39–47. Springer, 2008. URL: https://
doi.org/10.1007/978-3-540-68351-3_4, doi:10.1007/978-3-540-68351-3_4.

[Wu16] Hongjun Wu. Acorn: a lightweight authenticated cipher (v3). Candidate for
the CAESAR Competition. See also https: // competitions. cr. yp. to/ round3/
acornv3. pdf , 2016.

[WW14] Yanfeng Wang and Wenling Wu. Improved multidimensional zero-correlation linear
cryptanalysis and applications to LBlock and TWINE. In Willy Susilo and Yi Mu,
editors, ACISP 14, volume 8544 of LNCS, pages 1–16. Springer, Heidelberg, July
2014. doi:10.1007/978-3-319-08344-5_1.

[WWJ16] Ning Wang, Xiaoyun Wang, and Keting Jia. Improved impossible differential attack
on reduced-round LBlock. In Soonhak Kwon and Aaram Yun, editors, ICISC
15, volume 9558 of LNCS, pages 136–152. Springer, Heidelberg, November 2016.
doi:10.1007/978-3-319-30840-1_9.

[WYWP18] Yongzhuang Wei, Tao Ye, Wenling Wu, and Enes Pasalic. Generalized nonlinear
invariant attack and a new design criterion for round constants. IACR Trans. Symm.
Cryptol., 2018(4):62–79, 2018. doi:10.13154/tosc.v2018.i4.62-79.

[WZ11a] Wenling Wu and Lei Zhang. LBlock: A lightweight block cipher. In Javier Lopez
and Gene Tsudik, editors, ACNS 11, volume 6715 of LNCS, pages 327–344. Springer,
Heidelberg, June 2011. doi:10.1007/978-3-642-21554-4_19.

[WZ11b] Wenling Wu and Lei Zhang. LBlock: A lightweight block cipher *. Cryptology ePrint
Archive, Report 2011/345, 2011. http://eprint.iacr.org/2011/345.

[XJHL15] Hong Xu, Ping Jia, Geshi Huang, and Xuejia Lai. Multidimensional zero-correlation
linear cryptanalysis on 23-round LBlock-s. In Sihan Qing, Eiji Okamoto, Kwangjo
Kim, and Dongmei Liu, editors, ICICS 15, volume 9543 of LNCS, pages 97–108.
Springer, Heidelberg, December 2015. doi:10.1007/978-3-319-29814-6_9.

282

http://www.ietf.org/rfc/rfc3610.txt
http://www.ietf.org/rfc/rfc3610.txt
http://dx.doi.org/10.1007/3-540-60590-8_29
http://dx.doi.org/10.13154/tosc.v2019.i1.142-169
http://dx.doi.org/10.13154/tosc.v2019.i1.142-169
http://dx.doi.org/10.1007/978-3-642-34047-5_4
https://doi.org/10.1007/978-3-540-68351-3_4
https://doi.org/10.1007/978-3-540-68351-3_4
http://dx.doi.org/10.1007/978-3-540-68351-3_4
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
http://dx.doi.org/10.1007/978-3-319-08344-5_1
http://dx.doi.org/10.1007/978-3-319-30840-1_9
http://dx.doi.org/10.13154/tosc.v2018.i4.62-79
http://dx.doi.org/10.1007/978-3-642-21554-4_19
http://eprint.iacr.org/2011/345
http://dx.doi.org/10.1007/978-3-319-29814-6_9

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP
method to searching integral distinguishers based on division property for 6
lightweight block ciphers. In Cheon and Takagi [CT16], pages 648–678. doi:
10.1007/978-3-662-53887-6_24.

[YI13] S. Yanagihara and T. Iwata. Improving the Permutation Layer of Type 1, Type
3, Source-Heavy, and Target-Heavy Generalized Feistel Structures. IEICE Trans.,
96-A(1):2–14, 2013.

[YWQ09] Lin Yang, Meiqin Wang, and Siyuan Qiao. Side channel cube attack on PRESENT.
In Garay et al. [GMO09], pages 379–391.

[ZCGP19] Wenying Zhang, Meichun Cao, Jian Guo, and Enes Pasalic. Improved security
evaluation of SPN block ciphers and its applications in the single-key attack on
SKINNY. IACR Trans. Symm. Cryptol., 2019(4):171–191, 2019. doi:10.13154/
tosc.v2019.i4.171-191.

[ZDJ19] Boxin Zhao, Xiaoyang Dong, and Keting Jia. New related-tweakey boomerang and
rectangle attacks on deoxys-bc including BDT effect. IACR Trans. Symm. Cryptol.,
2019(3):121–151, 2019. doi:10.13154/tosc.v2019.i3.121-151.

[ZDM+19] Boxin Zhao, Xiaoyang Dong, Willi Meier, Keting Jia, and Gaoli Wang. Generalized
related-key rectangle attacks on block ciphers with linear key schedule: Applications
to SKINNY and GIFT. Cryptology ePrint Archive, Report 2019/714, 2019. https:
//eprint.iacr.org/2019/714.

[ZDW19] Rui Zong, Xiaoyang Dong, and Xiaoyun Wang. Related-tweakey impossible differen-
tial attack on reduced-round deoxys-bc-256. Science China Information Sciences,
62(3):32102, 2019.

[ZMI90] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. On the construction of
block ciphers provably secure and not relying on any unproved hypotheses. In
Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 461–480. Springer,
Heidelberg, August 1990. doi:10.1007/0-387-34805-0_42.

[ZNS12] Liang Zhao, Takashi Nishide, and Kouichi Sakurai. Differential fault analysis of full
LBlock. In Werner Schindler and Sorin A. Huss, editors, COSADE 2012, volume
7275 of LNCS, pages 135–150. Springer, Heidelberg, May 2012. doi:10.1007/
978-3-642-29912-4_11.

[ZR17] Wenying Zhang and Vincent Rijmen. Division cryptanalysis of block ciphers with
a binary diffusion layer. Cryptology ePrint Archive, Report 2017/188, 2017. http:
//eprint.iacr.org/2017/188.

[ZSW+12] Wentao Zhang, Bozhan Su, Wenling Wu, Dengguo Feng, and Chuankun Wu. Ex-
tending higher-order integral: An efficient unified algorithm of constructing integral
distinguishers for block ciphers. In Feng Bao, Pierangela Samarati, and Jianying
Zhou, editors, ACNS 12, volume 7341 of LNCS, pages 117–134. Springer, Heidelberg,
June 2012. doi:10.1007/978-3-642-31284-7_8.

[ZW15] Huiling Zhang and Wenling Wu. Structural evaluation for generalized Feistel struc-
tures and applications to LBlock and TWINE. In Alex Biryukov and Vipul Goyal,

283

http://dx.doi.org/10.1007/978-3-662-53887-6_24
http://dx.doi.org/10.1007/978-3-662-53887-6_24
http://dx.doi.org/10.13154/tosc.v2019.i4.171-191
http://dx.doi.org/10.13154/tosc.v2019.i4.171-191
http://dx.doi.org/10.13154/tosc.v2019.i3.121-151
https://eprint.iacr.org/2019/714
https://eprint.iacr.org/2019/714
http://dx.doi.org/10.1007/0-387-34805-0_42
http://dx.doi.org/10.1007/978-3-642-29912-4_11
http://dx.doi.org/10.1007/978-3-642-29912-4_11
http://eprint.iacr.org/2017/188
http://eprint.iacr.org/2017/188
http://dx.doi.org/10.1007/978-3-642-31284-7_8

Bibliography

editors, INDOCRYPT 2015, volume 9462 of LNCS, pages 218–237. Springer, Heidel-
berg, December 2015. doi:10.1007/978-3-319-26617-6_12.

[ZWW+14] Lei Zhang, Wenling Wu, Yanfeng Wang, Shengbao Wu, and Jian Zhang. LAC: a
lightweight authenticated encryption cipher, March 2014. Submission to CAESAR.
Available from http://competitions.cr.yp.to/round1/lacv1.pdf.

284

http://dx.doi.org/10.1007/978-3-319-26617-6_12
http://competitions.cr.yp.to/round1/lacv1.pdf

Résumé

Les travaux présentés dans cette thèse s’inscrivent dans le cadre du projet fui Paclido qui a pour
but de définir de nouveaux protocoles et algorithmes de sécurité pour l’Internet des Objets, et
plus particulièrement les réseaux de capteurs sans fil. Cette thèse s’intéresse donc aux algorithmes
de chiffrements authentifiés dits à bas coût ou également, légers, pouvant être implémentés sur des
systèmes très limités en ressources. Une première partie des contributions porte sur la conception
de l’algorithme léger Lilliput-AE, basé sur un schéma de Feistel généralisé étendu (egfn)
et soumis au projet de standardisation international Lightweight Cryptography (lwc) organisé
par le nist (National Institute of Standards and Technology). Une autre partie des travaux se
concentre sur des attaques théoriques menées contre des solutions déjà existantes, notamment
un certain nombre de candidats à la compétition lwc du nist. Elle présente donc des analyses
spécifiques des algorithmes Skinny et Spook ainsi qu’une étude plus générale des attaques de
type boomerang contre les schémas de Feistel.

Mots-clés: cryptographie, cryptanalyse, bas coût, authentification, chiffrement, Feistel, Internet
des Objets

Abstract

The work presented in this thesis has been completed as part of the fui Paclido project,
whose aim is to provide new security protocols and algorithms for the Internet of Things, and
more specifically wireless sensor networks. As a result, this thesis investigates so-called lightweight
authenticated encryption algorithms, which are designed to fit into the limited resources of
constrained environments. The first main contribution focuses on the design of a lightweight
cipher called Lilliput-AE, which is based on the extended generalized Feistel network (egfn)
structure and was submitted to the Lightweight Cryptography (lwc) standardization project
initiated by nist (National Institute of Standards and Technology). Another part of the work
concerns theoretical attacks against existing solutions, including some candidates of the nist lwc
standardization process. Therefore, some specific analyses of the Skinny and Spook algorithms
are presented, along with a more general study of boomerang attacks against ciphers following a
Feistel construction.

Keywords: cryptography, cryptanalysis, lightweight, authentication, encryption, Feistel, Internet
of Things.

285

286

	Couverture
	Remerciements
	Dédicace
	Contents
	Introduction Générale
	Introduction
	List of Publications
	Part I Background and Preliminaries
	Design of Symmetric Encryption Algorithms
	From Ancient to Modern Cryptography
	General Concepts of Cryptography
	Purpose
	Symmetric Cryptography
	Security and adversarial models

	On the Design of Block Ciphers
	Modes of operation
	Iterated block ciphers

	Lightweight Cryptography
	Lightweight Encryption Primitives
	Design criteria
	Overview of various design strategies

	On Authentication
	Authenticated encryption
	Generic composition
	Dedicated ae(ad) solutions

	Towards New Standards
	Iso/iec cryptographic standards
	Open competitions

	Some Existing Lightweight Algorithms
	Present
	Skinny
	LBlock
	Lilliput

	Cryptanalysis
	General Principles of Classical Cryptanalysis
	Distinguishers
	Key recovery and last round attack
	Overview of cryptanalytic techniques

	Statistical Attacks
	Differential attacks
	Linear attacks
	Boomerang attacks
	Interpolation attacks

	Structural Attacks
	Integral attacks
	Impossible differential attacks

	Automatic tools
	Mixed-Integer Linear Programming (milp)
	Boolean Satisfiability problem (sat)
	Constraint Programming (cp)

	Part II Contribution to the Nist Lightweight Cryptography Competition
	Lilliput-AE: a nist Proposal
	Introduction
	Specifications
	Recommended Parameters
	The Lilliput-AE Authenticated Encryption scheme
	The Lilliput-TBC Tweakable Block Cipher

	Design Rationale and Security Analysis
	Design Rationale of the Modes of Operation
	Design Rationale of Lilliput-TBC
	Security Analysis of the Modes of Operation
	Security Analysis of Lilliput-TBC

	Implementations
	Software Implementations
	Hardware Implementations
	Threshold Implementations

	External Cryptanalysis of Lilliput-AE
	Lilliput-AE v1
	External analysis of Lilliput-AE
	Impact

	Conclusion

	Cryptanalysis Results on Spook
	Introduction
	Preliminaries
	Specification of Shadow-384 and Shadow-512
	Differential Distinguishers

	Structural Observations
	Super S-box
	4-Identical States
	3-Identical States
	2-Identical States

	A Distinguisher Against Full Shadow-512 (and More)
	A 5-Step Truncated Differential Property
	A Distinguisher for 6- and 7-Step Shadow
	A Distinguisher for 6-step Shadow-384

	Forgeries with 4-step Shadow in the Nonce Misuse Setting
	Conclusion

	Differential Analysis of Skinny with Different Tools
	Introduction
	Cipher Under Study: SKINNY-n
	Overview of Solving Techniques
	Mixed Integer Linear Programming
	Constraint Programming
	Sat

	Models for Step 1
	Milp Models
	MiniZinc (sat) Models
	Cp Models
	Ad-Hoc Models

	Modeling Step 2 with cp
	Results
	Step 1 strategies comparison
	Step 2 performance results

	Conclusion

	Part III General Results on Feistel Constructions
	Introducing the FBCT: A Cryptanalysis Tool for Feistel constructions
	Introduction
	Motivation: Disproving the Validity of a Previous Boomerang Distinguisher on LBlock
	Specification of LBlock
	Attack of Liu et al.
	Incompatibility in the Distinguisher Proposed by Liu et al.

	FBCT: the Feistel Counterpart of the BCT
	Definition of the FBCT
	Some Variants of Feistel Constructions for which the FBCT Applies
	Evaluation of the 1-round Boomerang Switch of Liu et al.'s Attack with the FBCT
	Relation Between the FBCT and the Feistel Switch

	Properties of the FBCT
	Basics on vectorial Boolean Functions
	Some Direct Properties of any FBCT
	On the FBCT of APN Functions
	On the FBCT of S-boxes based on the Inverse Mapping
	On the FBCT of Equivalent S-boxes
	FBCT and Inversion
	Set-based Formulation of the FBCT
	Comparison of the properties of the BCT and of the FBCT

	Extending our Analysis to Two Rounds
	The Feistel counterpart of the BDT
	Probability of a 2-round Boomerang Switch

	Generic Formula for a Feistel Boomerang Switch over Multiple Rounds
	Application to LBlock-s
	Finding the Best 7-round Differential Characteristics for E0 andE1
	Choosing a Switch Em
	Deriving a Boomerang Distinguisher

	Conclusion

	Looking for new egfn structures
	Background on Gfns and their Extensions
	Generalized Feistel Networks
	Full diffusion delay
	Improvement of the diffusion delay
	Matrix Representation of Feistel Networks
	Characterizing Quasi-involutive gfns
	Extended Generalized Feistel Networks
	Lilliput

	Towards Lighter Egfn Constructions
	Resistance to integral attacks
	Resistance to differential cryptanalysis

	Conclusion

	Conclusion
	Appendices
	On Non-Triangular Self-Synchronizing Stream Ciphers
	Introduction
	Theoretical Foundations and Flatness
	Generalities on Stream Ciphers
	Keystream Generators for Self-Synchronizing Stream Ciphers
	Flat lpv Automata and sssc

	Specification of the flat lpv-based sssc Stanislas
	Equations of Stanislas
	Ciphering Process
	Deciphering Process

	Design Rationale and Security Analysis
	Design Rationale
	Security Analysis

	Hardware Performance and Implementation Aspects
	Conclusion
	Appendix
	The Matrix AS

	Construction of the Matrices of the sssc

	Bibliography
	Résumé
	Abstract

