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Introduction générale

Les recherches présentées dans ce mémoire s'inscrivent dans les domaines de modélisation et de l'analyse mathématique et numérique des équations différentielles ordinaires. Mon objectif est de contribuer à la recherche fondamentale et appliquée dans ce domaine. Plus précisément, je m'intéresse à l'écologie microbienne, la dynamique des populations, l'étude et le contrôle des systèmes biologiques avec des applications dans le traitement des eaux usées, la production de bioénergie et l'optimisation et le contrôle des processus biologiques.

Mes travaux sont classés en deux axes de recherche : le premier porte sur la modélisation du processus de production de Fructo-Oligosaccharides (FOS) en utilisant la théorie d'identification des paramètres afin de dériver et d'identifier des modèles mathématiques qui permettent de reproduire et prédire assez bien le processus à partir des données expérimentales réelles que j'ai recueillies au laboratoire des génies des procédés chimiques et biochimiques de l'Université de Mons (en Belgique) dans un bioréacteur en batch et fed-batch. En raison de leur nature bifidogène, les FOS sont classés dans la catégorie des prébiotiques à cause de leurs propriétés bénéfiques pour la santé humaine. Les FOS peuvent être utiles pour prévenir le cancer et ralentir la progression des tumeurs. Ils peuvent être également utilisés pour réduire les niveaux de phospholipides, de triglycérides et de cholestérol, ou pour aider à l'absorption intestinale du calcium et du magnésium. Les propriétés fonctionnelles, ainsi que le potentiel technologique des FOS les rendent largement attractifs pour les applications alimentaires et pharmaceutiques.

Mon deuxième axe porte sur le développement de modèles mathématiques plus cohérents avec les observations de la biodiversité des écosystèmes microbiens dans le monde réel à partir du modèle classique du chémostat. L'analyse mathématique de ces modèles permet de prédire le comportement asymptotique de processus de traitement des eaux usées selon les paramètres opératoires et de contrôle. 

       Ṡ = D(S in -S) - n i=1 1 y i f i (S)x i , ẋi = [f i (S) -D i ]x i , i = 1, . . . , n (1) 
[f i (S) -D i ] x i = 0, i = 1, . . . , n.
ordonnées de telle sorte que λ 1 < λ i pour tout i > [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat : General response functions and differential death rates[END_REF] ont étendu le résultat de [START_REF] Hsu | Limiting behavior for competing species[END_REF] à une classe générale de taux de croissance, y compris les fonctions de croissance monotones et non monotones qui rendent compte des phénomènes de saturation et d'inhibition. Sari et Mazenc [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF] ont étendu le résultat de [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat : General response functions and differential death rates[END_REF] à des coefficients de rendement variables, en fonction de la concentration du substrat. Sari [START_REF] Sari | A Lyapunov function for the chemostat with variable yields[END_REF]95] a proposé une nouvelle fonction de Lyapunov qui est une extension des fonctions Lyapunov utilisées dans [START_REF] Hsu | Limiting behavior for competing species[END_REF][START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat : General response functions and differential death rates[END_REF]. Pour les modèles de chémostat, ce PEC peut être considéré comme la règle R * de Tilman [START_REF] Tilman | Resource Competition and Community Structure[END_REF].

Bien que cette prédiction théorique ait été corroborée par les expériences de Hansen et Hubbell [START_REF] Hansen | Single-nutrient microbial competition : Qualitative agreement between experimental and theoretically forecast outcomes[END_REF], la biodiversité présente dans la nature et dans les écosystèmes microbiens, ainsi que dans les processus de traitement des eaux usées semble contredire le PEC [START_REF] Scheffer | Why plankton communities have no equilibrium : solutions to the paradox[END_REF][START_REF] Schmidt | Characterization of a three bacteria mixed culture in a chemostat : Evaluation and application of a quantitative Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis for absolute and species specific cell enumeration[END_REF]. Par exemple, dans les écosystèmes aquatiques, plusieurs espèces phytoplanctoniques en compétition pour certaines ressources peuvent coexister [START_REF] Hutchinson | The paradox of the plankton[END_REF][START_REF] Scheffer | Why plankton communities have no equilibrium : solutions to the paradox[END_REF]. Cette biodiversité est également observée en laboratoire, avec des cultures mixtes comprenant au moins deux compétiteurs pour une seule ressource [START_REF] Heßeler | Coexistence in the chemostat as a result of metabolic by-products[END_REF][START_REF] Schmidt | Characterization of a three bacteria mixed culture in a chemostat : Evaluation and application of a quantitative Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis for absolute and species specific cell enumeration[END_REF]. Ainsi, le modèle classique du chémostat (1) est incapable de reproduire la réalité même qualitativement et il semble nécessaire d'étendre ce modèle où de nouvelles hypothèses devraient être considérées afin de concilier la théorie mathématique et les résultats expérimentaux. En fait, cela a déclenché de nombreuses recherches mathématiques visant à étendre le modèle (1) pour mettre la théorie et les observations en meilleure conformité.

Ce mémoire est structuré comme suit : dans le chapitre I, qui synthétise les principaux résultats du papier Abdellatif et al. [1], on étudie un premier mécanisme de coexistence qui est la compétition intraspécifiques entre les individus d'une même population de micro-organismes. On considère un modèle du chémostat avec plusieurs espèces en compétition pour une seule ressource avec des taux de croissance monotones et des taux de dilution distincts. En utilisant le concept de la caractéristique à l'équilibre, on présente une caractérisation géométrique de l'existence et de la stabilité de tous les équilibres. De plus, on fournit des conditions nécessaires et suffisantes sur les paramètres de contrôle du système pour avoir un équilibre positif de coexistence. En utilisant une fonction de Lyapunov, un résultat de stabilité globale est donné pour le modèle de compétition avec plusieurs espèces. Le diagramme opératoire décrit le comportement asymptotique de ce modèle selon les paramètres de contrôle et illustre l'effet de la compétition intraspécifique sur la région de coexistence de l'espèce. Ces résultats sont publiés dans [1] et n'ont pas été étudiés dans ma thèse [START_REF] Fekih-Salem | Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat[END_REF].

Dans le chapitre II, qui présente une synthèse de mes papiers Fekih-Salem et al. [START_REF] Fekih-Salem | Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses[END_REF][START_REF] Fekih-Salem | Properties of the chemostat model with aggregated biomass and distinct removal rates[END_REF], on analyse un deuxième mécanisme de coexistence qui est la floculation. La première partie de ce chapitre Dans la deuxième partie de ce chapitre, on considère un autre modèle de floculation où les bactéries isolées peuvent s'agréger non seulement avec les bactéries isolées, mais aussi avec les bactéries en flocs.

On a considéré également la mortalité de ces bactéries afin d'étudier leur effet sur le comportement du système. L'analyse théorique du modèle considérant la mortalité est un problème difficile car le modèle n'est plus réduit à un système dans le plan, comme dans le cas où les taux de dilution du substrat et de la biomasse sont égaux. Avec les mêmes taux de dilution, il est bien connu que le modèle de floculation peut avoir un unique équilibre positif stable tant qu'il existe [START_REF] Haegeman | How flocculation can explain coexistence in the chemostat[END_REF]. Sans mortalité et avec des taux de dilution différents, le système peut avoir une multiplicité des équilibres positifs qui ne peuvent apparaître ou disparaître que par une bifurcation noeud-col ou transcritique [START_REF] Fekih-Salem | Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat[END_REF][START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF].

Contrairement au cas sans mortalité, sous l'effet joint de la floculation et de la mortalité, le modèle peut subir des bifurcations de Hopf supercritiques ou des bifurcations homocliniques, avec l'apparition ou la disparition d'une orbite périodique stable. Ainsi, la coexistence peut se produire autour d'un équilibre positif ou également autour d'oscillations périodiques. Ces résultats sont publiés dans Fekih-Salem et al. [START_REF] Fekih-Salem | Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses[END_REF][START_REF] Fekih-Salem | Properties of the chemostat model with aggregated biomass and distinct removal rates[END_REF] et n'ont pas été étudiés dans ma thèse [START_REF] Fekih-Salem | Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat[END_REF].

En supposant que la dynamique de floculation et de défloculation soit plus rapide par rapport à la croissance des espèces, on a construit un modèle réduit de plusieurs espèces via la théorie de perturbations singulières dans lequel les fonctions de croissance et le taux de dilution dépendent de la densité de l'espèce. [START_REF] Fekih-Salem | Sensitivity analysis and reduction of a dynamic model of a bioproduction of fructo-oligosaccharides[END_REF][START_REF] Fekih-Salem | Data-driven modeling and optimal control of the production of fructo-oligosaccharides by aureobasidium pullulans[END_REF][START_REF] Fekih-Salem | Parameter identification of the fermentative production of fructo-oligosaccharides by aureobasidium pullulans[END_REF][START_REF] Schorsch | Identification and optimal control of fructo-oligosaccharide production[END_REF].

Enfin, la conclusion générale synthétise les messages les plus cruciaux obtenus dans ce mémoire et présente mes travaux en cours, ainsi que des extensions possibles. Les résultats de l'identification des paramètres du chapitre sont présentés dans l'annexe A. Une liste de mes travaux et publications est présentée dans l'annexe B. Les preuves de tous les résultats de ce mémoire se trouvent dans [1,[START_REF] Fekih-Salem | Sensitivity analysis and reduction of a dynamic model of a bioproduction of fructo-oligosaccharides[END_REF][START_REF] Fekih-Salem | A density-dependent model of competition for one resource in the chemostat[END_REF][START_REF] Fekih-Salem | Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses[END_REF][START_REF] Fekih-Salem | Properties of the chemostat model with aggregated biomass and distinct removal rates[END_REF][START_REF] Fekih-Salem | Data-driven modeling and optimal control of the production of fructo-oligosaccharides by aureobasidium pullulans[END_REF].

Chapitre I

La compétition 1 Introduction

Afin d'expliquer la coexistence des espèces microbiennes dans un chémostat, des approches reposent sur la prise en compte, des interactions interspécifiques entre les populations de micro-organismes et/ou des interactions intraspécifiques entre les individus eux-mêmes d'une même population. Wolkowicz et Lu [START_REF] Wolkowicz | Direct interference on competition in a chemostat[END_REF] ont analysé deux modèles considérant des interférences soit intraspécifiques soit interspécifiques dans la dynamique de deux espèces. Dans le cas des interférences intraspécifiques, il existe un équilibre de coexistence localement asymptotiquement stable. Dans le cas des interférences interspécifiques, il existe un équilibre de coexistence, mais il est instable [START_REF] Wolkowicz | Direct interference on competition in a chemostat[END_REF]. Le cas des interactions intra et interspécifiques a été considéré dans Fekih Salem et al. [START_REF] Fekih-Salem | Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat[END_REF][START_REF] Fekih-Salem | Sur un modèle de compétition et de coexistence dans le chemostat[END_REF]. Il a été démontré qu'il peut y avoir multiplicité d'équilibres positifs Localement Exponentiellement Stables (LES) avec bistabilité où le comportement asymptotique du système dépend de la condition initiale.

De Leenheer et al. [START_REF] Leenheer | Crowding effects promote coexistence in the chemostat[END_REF] ont proposé un modèle du chémostat où n espèces sont en compétition sur un seul nutriment en considérant que les taux de mortalité sont dus aux effets de surpopulation.

Les auteurs ne s'intéressaient qu'à l'équilibre positif. Ils exigent que les taux de mortalité de toutes les espèces soient suffisamment grands pour prouver l'existence d'un équilibre positif. Ils utilisent la théorie des systèmes dynamiques monotones pour une interconnexion de deux systèmes d'entrée-sortie afin de montrer un résultat de stabilité quasi-globale de l'équilibre positif.

Le but de ce premier chapitre est de donner une analyse assez compréhensive du modèle de De Leenheer et al. [START_REF] Leenheer | Crowding effects promote coexistence in the chemostat[END_REF]. En utilisant le concept de la caractéristique à l'équilibre introduit par Lobry et al. [START_REF] Lobry | Persistence in ecological models of competition for a single resource[END_REF][START_REF] Lobry | Sur un modèle densité-dépendant de compétition pour une ressource[END_REF], on présente une caractérisation géométrique qui décrit tous les équilibres du modèle et leur stabilité, non seulement l'équilibre positif comme dans [START_REF] Leenheer | Crowding effects promote coexistence in the chemostat[END_REF]. On donne une condition nécessaire et suffisante pour l'existence d'un équilibre positif de coexistence, non seulement une condition suffisante comme dans [START_REF] Leenheer | Crowding effects promote coexistence in the chemostat[END_REF]. En particulier, on montre que si les taux de mortalité de toutes les espèces sont positifs, alors il existe un équilibre de coexistence qui est stable si la concentration d'alimentation en substrat est assez grande. Ainsi, la condition suffisante (les taux de mortalité de toutes les espèces sont suffisamment grands) donnée par [START_REF] Leenheer | Crowding effects promote coexistence in the chemostat[END_REF] n'est pas nécessaire. Ces résultats ont été obtenus dans [START_REF] Fekih-Salem | Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat[END_REF].

Dans ce travail, on généralise la fonction de Lyapunov proposée par Wolkowicz et Lu [START_REF] Wolkowicz | Direct interference on competition in a chemostat[END_REF] dans le cas de deux espèces au cas de n espèces afin de montrer la stabilité globale de l'équilibre d'extinction de toutes les espèces sauf celle ayant le plus faible seuil de croissance. Enfin, on étudie le diagramme opératoire du modèle afin de déterminer le comportement du système selon les paramètres de contrôle (taux de dilution et concentration d'alimentation). Cette question n'a pas été considérée dans [START_REF] Fekih-Salem | Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat[END_REF][START_REF] Leenheer | Crowding effects promote coexistence in the chemostat[END_REF].

On montre que le diagramme opératoire est indépendant du paramètre de compétition intraspécifique de l'espèce la plus faible.

Dans ce premier chapitre, on peut ne pas faire l'hypothèse qu'il y a compétition intraspécifique de l'espèce la plus faible contrairement à la littérature où il est apparemment toujours supposé que tous les paramètres de compétition intraspécifiques sont positifs [START_REF] Fekih-Salem | Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat[END_REF][START_REF] Fekih-Salem | Sur un modèle de compétition et de coexistence dans le chemostat[END_REF][START_REF] Leenheer | Crowding effects promote coexistence in the chemostat[END_REF][START_REF] Lobry | Persistence in ecological models of competition for a single resource[END_REF][START_REF] Lobry | Sur un modèle densité-dépendant de compétition pour une ressource[END_REF][START_REF] Wolkowicz | Direct interference on competition in a chemostat[END_REF]. Ruan et al. [START_REF] Ruan | Coexistence in competition models with density-dependent mortality[END_REF] ont considéré un modèle de deux compétiteurs et une proie dont l'un des compétiteurs présente un taux de mortalité densité-dépendant. Il démontre que les deux compétiteurs peuvent coexister sur la seule proie. De manière similaire à ce qui a été montré dans [START_REF] Ruan | Coexistence in competition models with density-dependent mortality[END_REF], nos résultats démontrent que deux compétiteurs peuvent coexister quand seul le compétiteur le plus efficace présente une compétition intraspécifique. Cette coexistence n'est pas surprenante, car l'absence de compétition intraspécifique pour la plus faible espèce a un effet bénéfique sur sa capacité de survie avec les espèces les plus efficaces.

Étude du modèle de compétition à n espèces

On considère le modèle, introduit par De Leenheer et al. [START_REF] Leenheer | Crowding effects promote coexistence in the chemostat[END_REF], où n espèces sont en compétition sur un seul nutriment dans un chémostat avec des interactions intraspécifiques linéaires. Ce modèle s'écrit comme suit : 

       Ṡ = D(S in -S) - n i=1 f i (S)x i ẋi = [f i (S) -a i x i -D i ]x i , i = 1, . . . ,
λ i = f -1 i (D i )
. Sinon, on prend λ i = +∞. On suppose que les espèces x i sont numérotées de telle sorte que

λ 1 < λ 2 < • • • < λ n .
Afin de déterminer les équilibres de (I.1), on résout le système suivant :

       0 = D(S in -S) - n i=1 f i (S)x i 0 = [f i (S) -a i x i -D i ]x i , i = 1, . . . , n. (I.2)
Pour simplifier les écritures, on introduit les fonctions suivantes, pour i = 1, . . . , n :

h i (S) =    f i (S)-D i a i f i (S) si S > λ i 0, sinon (I.3) et H(S) = D(S in -S) - n i=1 h i (S).
Si x i = 0 pour tout i = 1, . . . , n, alors S = S in à partir de la première équation de (I.2). Cela correspond à l'équilibre de lessivage E 0 = (S in , 0, . . . , 0), qui existe toujours. Si x i = 0, pour tout i = 1, . . . , n, on déduit de l'équation i + 1 de (I.2) que,

x i = f i (S) -D i a i ,
qui est positif si et seulement si S > λ i . De la première équation de (I.2), on déduit que H(S) = 0.

Comme

H est décroissante sur [λ n , +∞[ et h n (λ n ) = 0, H(λ n ) = D(S in -λ n ) - n-1 k=1 h k (λ n ) et H(S in ) = - n i=1 h i (S in ), il existe une unique solution S * > λ n de l'équation H(S) = 0 si et seulement si H(λ n ) > 0, c'est-à-dire, S in > λn avec λn = λ n + 1 D n-1 k=1 h k (λ n ).
Par conséquent, on a le résultat suivant :

Proposition I. Table I.1 résume les résultats précédents où la lettre S (resp. I) signifie stable (resp. Instable).

h 2 h 3 E * E 12 E 13 E 1 E 23 E 2 E 3 E 0 λ 1 λ 2 λ2 λ 3 λ23 λ13 λ3 S in
L'absence de lettre signifie que l'équilibre correspondant n'existe pas.

Le résultat suivant prouve la stabilité globale de l'équilibre E 1 = (S 1 , x1 , 0, . . . , 0) correspondant à l'extinction de toutes les espèces sauf celle qui a le plus faible seuil de croissance.

I.3 Diagramme opératoire

Tab. I.1 -Existence et stabilité locale des équilibres de (I.1) avec n = 3. 

Condition E 0 E 1 E 2 E 12 E 3 E 23 E 13 E * S in < λ 1 S λ 1 < S in < λ 2 I S λ 2 < S in < λ2 I S I λ2 < S in < λ 3 I I I S λ 3 <
g i (S) α i min λ i <S<S in g i (S) (I.4) où g i (S) = f i (S) f 1 (S 1 ) f 1 (S) -f 1 (S 1 ) f i (S) -D i S in -S 1 S in -S .
Alors, l'équilibre E 1 est Globalement Asymptotiquement Stable (GAS) pour le système (I.1) pour toute condition initiale avec x 1 (0) > 0.

Diagramme opératoire

Le diagramme opératoire décrit le comportement asymptotique du système (I.1) lorsque la concentration d'alimentation en substrat S in et le débit d'alimentation D varient. Dans le modèle (I.1), chaque

paramètre D i , i = 1, • • • , n, peut être écrit sous la forme D i = D+A i , A i 0 où A i peut être interprété
comme le taux de mortalité naturelle spécifique de l'espèce i.

On note d'abord mi = sup S 0 f i (S) -A i et on suppose que mi > 0. On définit la fonction inverse F i de la fonction croissante f i , i = 1, . . . , n, de sorte que

S = F i (D) ⇔ f i (S) = D + A i , pour tout S ∈ [0, +∞[ et D ∈ [0, mi [.
Notons que cette fonction F i peut être calculée explicitement dans le cas des fonctions de croissance de type Monod considérées dans la Section 6 de [1]. Dans ce qui suit, on suppose, sans perte de généralité, que

F 1 (D) < F 2 (D) < • • • < F n (D), pour tout D ∈]0, mn [.
Pour illustrer le diagramme opératoire, on définit également les fonctions suivantes :

F J :]0, mj [ -→ ]0, +∞[ D -→ F j (D) + 1 D j∈J h j (F j (D)),
où J est un sous-ensemble non vide de {1, . . . , n} et j = max{j : j ∈ J}. Soit Γ J la courbe d'équation 

S in = F J (D). Ainsi,

I.4 Conclusion

(a) S in Γ 2 Γ 1 I 2 I 1 I 0 D (b) S in Γ 12 Γ 2 Γ 1 I 3 I 2 I 1 I 0 D (c) S in Γ 12 Γ 2 Γ 1

Conclusion

Dans [START_REF] Costerton | Overview of microbial biofilms[END_REF][START_REF]IWA Task Group on Biofilm Modeling[END_REF] ou simplement une formation de flocs ou d'agrégats [START_REF] Thomas | Flocculation modelling : A review[END_REF]. Ce phénomène permet de motiver la coexistence des espèces microbiennes. En effet, l'espèce la plus compétitive peut inhiber sa propre croissance par la formation de flocs où elle consomme moins de substrat que l'espèce la moins compétitive, étant donné que cet accès au substrat est proportionnel à la surface extérieure du floc.

Haegeman et al. [START_REF] Haegeman | Modeling bacteria flocculation as density-dependent growth[END_REF] ont analysé l'effet de la floculation sur la dynamique de croissance avec un nombre arbitraire de bactéries dans les flocs. Haegeman et Rapaport [START_REF] Haegeman | How flocculation can explain coexistence in the chemostat[END_REF] ont proposé un modèle de compétition de deux espèces microbiennes sur un seul nutriment avec des flocs de deux bactéries planctoniques, les mêmes taux de dilution et des fonctions de croissance monotones. En supposant que l'espèce la plus compétitive inhibe sa croissance par la formation de flocs, il peut y avoir coexistence entre les deux espèces. Une extension de ce modèle a été étudiée dans Fekih-salem et al. [START_REF] Fekih-Salem | La flocculation et la coexistence dans le chemostat[END_REF] sans négliger la consommation du substrat par les bactéries attachées, mais en supposant qu'elles consomment moins de substrat que les bactéries isolées, car les bactéries à la surface des flocs ont un accès plus facile au substrat que les bactéries à l'intérieur des flocs.

Dans Fekih-salem et al. [START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF], on a proposé un modèle de floculation de n espèces qui généralise plusieurs modèles [START_REF] Jones | The Freter model : a simple model of biofilm formation[END_REF][START_REF] Pilyugin | The simple chemostat with wall growth[END_REF][START_REF] Tang | Population dynamics and competition in chemostat models with adaptive nutrient uptake[END_REF] qui ont été considérés dans la littérature. Dans la suite, on considère le modèle de floculation suivant où les trois premières équations ont été introduites dans [START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF] : 

             Ṡ = D(S in -S) -f (S)u -g(S)v -f 2 (S)x 2 u = (f (S) -D 0 )u -A(•)u + B(•)v v = (g(S) -D 1 )v + A(•)u -B(•)v ẋ2 = (f 2 (S) -D 2 )x 2 (II.

Hypothèses de modélisation Taux d'attachement et détachement Références

D i = D, i = 0, 1, x 2 = 0 A(•) = a(1 -W ), B(•) = b + g(S)(1 -G(W )) Jones et al. [62] D i = D, i = 0, 1, x 2 = 0 A(•) = A(S), B(•) = B(S) Tang et al. [107] D 0 = D, D 1 = 0, x 2 = 0 A(•) = a, B(•) = b Pilyugin et Waltman [85] D i = D, i = 0, 1, 2, g(S) = 0 A(•) = au, B(•) = b Haegeman et Rapaport [43] D i = D, i = 0, 1, 2 A(•) = au, B(•) = b Fekih-Salem et al. [32] D i = D, i = 0, 1, x 2 = 0 A(•) = A(S, v, u), B(•) = B(S, u, v)
Fekih-Salem et al. [START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF] Dans la suite, on considère deux types de taux d'attachement et on montre comment il peut y avoir des oscillations périodiques et des phénomènes non intuitifs de la dynamique. Ce mécanisme est différent de ceux précédemment considérés dans la littérature pour expliquer les oscillations observées expérimentalement.

Flocs de deux bactéries

Dans cette section, on étudie le modèle de floculation proposé dans [START_REF] Haegeman | How flocculation can explain coexistence in the chemostat[END_REF], mais en considérant que les bactéries attachées consomment également du substrat. De plus, on considère une classe générale de taux de croissance pour étudier son effet sur la coexistence de deux compétiteurs et pour comparer nos résultats avec ceux obtenus par Butler et Wolkowicz [START_REF] Butler | A mathematical model of the chemostat with a general class of functions describing nutrient uptake[END_REF], où le système exhibe une bistabilité et le PEC est vérifié en absence de floculation. Afin de mieux comprendre les comportements qualitatifs des trajectoires du modèle de floculation (II.1), on propose dans cette section d'étudier tout d'abord le cas d'une espèce, c'est-à-dire le modèle tridimensionnel : Les taux de croissance satisfont aux hypothèses suivantes :

         Ṡ = D(S in -S) -f (S)u -g(S)v u = f (S)u -au 2 + bv -Du v = g(S)v + au 2 -bv -Dv.
(H1) La fonction f : R + → R + est continûment différentiable avec f (0) = 0 et il existe deux nombres réels strictement positifs λ 0 et µ 0 , tels que λ 0 < µ 0 et    f (S) > D si S ∈]λ 0 , µ 0 [ f (S) < D si S / ∈ [λ 0 , µ 0 ].
Si λ 0 et/ou µ 0 est égal à +∞, alors nos résultats peuvent être appliqués pour tout taux de croissance monotone pour les bactéries isolées.

(H2) g(0) = 0 et g (S) > 0 pour tout S > 0.

Lorsque l'équation g(S) = D admet une solution, elle est unique et on définit le seuil de croissance usuel

λ 1 = g -1 (D).
Sinon, on prend λ 1 = +∞.

Étude de l'existence et de la stabilité des équilibres de (II.2)

Les équilibres de (II.2) sont donnés par les solutions du système suivant :

         D (S in -S) = f (S)u + g(S)v 0 = f (S)u -au 2 + bv -Du 0 = g(S)v + au 2 -bv -Dv.
(II.3) À l'équilibre, si u = 0 alors on a nécessairement v = 0 et vice versa. Ainsi, il ne peut pas y avoir un équilibre d'extinction uniquement des bactéries isolées ou attachées. Notons

ϕ(S) = f (S) -D et ψ(S) = g(S) -D. (II.4)
La somme de la deuxième et la troisième équation de (II.3) donne l'équation suivante

ϕ(S)u + ψ(S)v = 0. (II.5)
Selon les hypothèses (H1)-(H3), trois cas possibles peuvent se présenter :

λ 0 < λ 1 < µ 0 , λ 0 < µ 0 < λ 1 ou λ 1 < λ 0 < µ 0 .
Ce dernier cas semble irréaliste du point de vue biologique, car les bactéries attachées devraient avoir un accès moins facile au substrat que les bactéries isolées (cet accès étant proportionnel à la surface externe des flocs). Donc, nous n'allons considérer que les deux premiers cas possibles dans ce qui suit. 1. l'équilibre de lessivage E 0 = (S in , 0, 0), qui existe toujours ;

Cas

I J λ 1 < µ 0 ]λ 0 , λ 1 [ ]µ 0 , +∞[ µ 0 < λ 1 ]λ 0 , µ 0 [ ]λ 1 , +∞[ et ψ(S) > 0,
2. un équilibre positif E 1 = S, ū, v avec S solution de l'équation H(S) = S in -S, ū = U ( S), v = V ( S), qui existe si et seulement si S ∈ I ∪ J b .
Un calcul direct donne l'expression suivante de la dérivée de H(•). (a) (a) On a obtenu les résultats suivants.

H = f (ψ -b)(ψ -2ϕ) aψ 2 + g ϕ -ϕψ + 2ϕ(ψ -b) + bψ aψ 3 (II.
x 1 H S in S in S in E 1 1 E 2 1 E 3 1 E 0 λ 0 I λ 1 µ 0 J b λ b S in S (b) x 1 S in S in E 1 1 E 2 1 E 3 1 E 4 1 λ 0 λ 1 µ 0 λ b S (c) x 1 S in H E 1 1 E 2 1 E 3 1 λ 0 λ 1 S
x 1 H S in S in S in E 1 1 E 2 1 E 3 1 E 0 λ 0 I µ 0 λ 1 J b λ b S in S (b) x 1 S in S in E 1 1 E 2 1 E 3 1 E 4 1 E 0 λ 0 µ 0 λ 1 λ b S
Proposition II.2.

-Si S in λ 0 , alors il n'y a pas d'équilibre positif.

-Si Dans toutes les figures, on a choisi la couleur rouge pour les équilibres LES, la couleur bleue pour les équilibres instables et la couleur verte quand un équilibre peut changer sa stabilité.

λ 0 < S in < µ 0 ou S in > λ b ,
Dans la proposition suivante, on donne une condition pour laquelle l'équilibre de lessivage est l'unique équilibre GAS de (II.2). Lorsque cette condition n'est pas satisfaite, la dynamique (II.2) admet des multi-équilibres et on se concentre alors sur l'étude de leur stabilité asymptotique locale.

En effet, on s'intéresse aux conditions pour lesquelles le lessivage est le seul équilibre stable.

Proposition II.3. Si S in < min(λ 0 , λ 1 ), alors l'équilibre de lessivage E 0 est GAS pour (II.2) dans l'orthant R 3 + .

Pour étudier la stabilité locale de chaque point d'équilibre de la dynamique (II.2), on considère la densité de la masse totale dans le bioréacteur z = S + u + v et le vecteur y = (S, u) T . Il est facile de voir que le système (II.2) possède une structure en cascade (voir par exemple l'annexe de [START_REF] Smith | The Theory of the Chemostat : Dynamics of Microbial Competition[END_REF]) dans les coordonnées (z, y) :

ż = D(S in -z) ẏ = φ 2 (z, y), où φ 2 (z, y) = D(S in -S) -f (S)u -g(S)(z -S -u) (f (S) -au -D)u + b(z -S -u) .
En utilisant les résultats de [START_REF] Mischaikow | Asymptotically autonomous semiflows : chain recurrence and lyapunov functions[END_REF], le système d'ordre trois (II.2) peut être réduit (pour la stabilité locale) au système de dimension deux qui est simplement la projection sur le plan (S, u)

Ṡ = D(S in -S) -f (S)u -g(S)(S in -S -u) u = (f (S) -au -D)u + b(S in -S -u) (II.12)
avec z = S in l'équilibre de la première dynamique. Rappelons que la fonction ϕ(•) a été définie dans (II.4). Ensuite, on a démontré les résultats suivants.

Proposition II.4. L'équilibre de lessivage

E 0 est LES si et seulement si ϕ(S in ) < 0 et S in < λ b .
Notons que lorsque la Proposition II.3 est applicable, la plus faible Proposition II.4 est également applicable.

Proposition II.5. Un équilibre positif E 1 est LES si et seulement si

H ( S) > -1 si S ∈ I H ( S) < -1 et tr A 1 < 0 si S ∈ J b . (II.13)
où A 1 est la matrice jacobienne de (II.12) à l'équilibre

E 1 = ( S, ū) correspondant à l'équilibre E 1 de (II.2).
On résume les résultats précédents dans le tableau II.3.

Tab. II.3 -Existence et stabilité locale des équilibres du système (II.2).

Équilibre Condition d'existence Condition de stabilité

E 0 existe toujours ϕ(S in ) < 0 et S in < λ b E 1 H(S) = S in -S admet une solution S ∈ I ∪ J b condition (II.13)

Diagramme de bifurcation à un paramètre

Notre objectif dans cette section est d'étudier le comportement du système (II.12) lorsque le paramètre S in varie et tous les autres paramètres sont fixes. Notons Sin la valeur critique de S in pour laquelle la courbe de la fonction H(•) est tangente à la droite d'équation

x 1 = S in -S. Pour S in ∈]λ b , Sin [, il existe un équilibre positif noté E 1 1 qui est LES, l'équilibre de lessivage E 0 et l'équilibre positif E 2
1 qui sont instables (points cols) tandis que l'équilibre positif E 3 1 peut changer sa stabilité (voir figure II.1(a)). On définit

D 1 (S in ) := det A 3 1 et T 1 (S in ) := tr A 3 1 où A 3
1 est la matrice jacobienne de (II.12) en E 3 1 = ( S, ū). En effet, ce dernier équilibre vérifie la condition H ( S) < -1 tandis que T 1 (S in ) peut changer de signe lorsque S in augmente. La 

dα dS in (S c in ) > 0 .
Par conséquent, l'équilibre E 3 1 change sa stabilité par une bifurcation de Hopf. Pour illustrer le changement de comportement asymptotique de E 3 1 , on représente les variations des valeurs propres quand le paramètre S in augmente de S in = 5 à 14.5 (voir figure II.3(b)) où une paire de valeurs propres conjuguées traverse l'axe imaginaire en S c in ≈ 9.9117 du demi plan négatif vers le demi plan positif. La figure II.3(c) illustre le diagramme de bifurcation à un paramètre pour le système (II.12) montrant la composante S de tous les équilibres lorsque S in varie. Le cycle instable apparaît autour de E 3 1 et définit son bassin d'attraction. Plus précisément, pour S in < λ 0 , E 0 est stable. E 1 1 émerge à partir de E 0 dans le quadrant positif lorsque S in = λ 0 . Pour S in ∈]λ 0 , µ 0 [, la stabilité est transférée à E 1 1 , tandis que E 0 devient un point col, via une bifurcation transcritique. De même, E 2 1 émerge à partir de E 0

II.2 Flocs de deux bactéries

(a) (a) u 

T 1 (S in ) D 1 (S in ) λ b Sin S in (b) β(S in ) λ1 λ2 α(S in ) U (c) S E 0 E 2 1 E 3 1 E 3 1 E 1 1 S in
E 1 1 E 2 1 E 3 1 E 0 S (b) u E 1 1 E 2 1 E 3 1 E 0 S (c) u E 1 1 E 2 1 E 3 1 E 0 S (d) u E 1 1 E 2 1 E 3 1 E 0 S (e) u E 1 1 E 2 1 E 3 1 E 0 S (f ) u E 1 1 E 2 1 E 3 1 E 0 S

Modèle avec biomasse agrégée

Le modèle de flocs de seulement deux bactéries de Haegeman et Rapaport [START_REF] Haegeman | How flocculation can explain coexistence in the chemostat[END_REF] a été étendu dans Haegeman et al. [START_REF] Haegeman | Modeling bacteria flocculation as density-dependent growth[END_REF] au cas des flocs avec un nombre arbitraire de bactéries, en utilisant la modélisation de la floculation de Smoluchowski [START_REF] Thomas | Flocculation modelling : A review[END_REF]. Dans cette modélisation, les interactions de flocs qu'on considère sont l'agrégation de deux flocs pour former un floc plus gros et la rupture d'un floc en deux plus petits. Deux flocs de tailles n et m (bactéries), respectivement, s'agrègent pour former un floc de taille n + m, avec une vitesse a n,m u n u m , proportionnelle aux densités u n et u m des petits flocs.

Un floc de taille n + m (bactéries) se divise en deux flocs, de tailles n et m, respectivement, avec une vitesse b n,m u n+m , proportionnelle à la densité u n+m du gros floc. Dans [START_REF] Haegeman | Modeling bacteria flocculation as density-dependent growth[END_REF], les densités sont exprimées en nombre de flocs par unité de volume. Dans [START_REF] Haegeman | How flocculation can explain coexistence in the chemostat[END_REF] 

         Ṡ = D(S in -S) -f (S)u -g(S)v, u = [f (S) -D u ]u -a(u + v)u + bv, v = [g(S) -D v ]v + a(u + v)u -bv, (II.
D u = αD + m u , D v = βD + m v ,
où les paramètres positifs m u et m v qui désignent les taux de mortalité sont pris en considération.

En effet, plusieurs études mathématiques [START_REF] Boer | Food chain dynamics in the chemostat[END_REF][START_REF] Kooi | Chaotic behaviour of a predator-prey system in the chemostat[END_REF][START_REF] Sari | A model of a syntrophic relationship between two microbial species in a chemostat including maintenance[END_REF]99,[START_REF] Wade | Emergent behaviour in a chlorophenolmineralising three-tiered microbial 'food web[END_REF][START_REF] Xu | Maintenance affects the stability of a two-tiered microbial 'food chain' ?[END_REF] Par conséquent, la déstabilisation de l'équilibre positif est due à la mortalité de l'espèce. Ce résultat est similaire à certains résultats obtenus dans la littérature existante sur les réseaux trophiques (modèle proie-prédateur) dans le chémostat où l'ajout des termes de mortalité de l'espèce entraîne une déstabilisation du système [START_REF] Boer | Food chain dynamics in the chemostat[END_REF][START_REF] Kooi | Chaotic behaviour of a predator-prey system in the chemostat[END_REF].

Dans ce qui suit, on étudie le modèle (II.14) en considérant les hypothèses générales suivantes pour les fonctions de croissance f (S) et g(S).

(H1) f (0) = g(0) = 0 et f (S) > 0 et g (S) > 0 pour tout S > 0.
(H2) f (S) > g(S) pour tout S > 0.

Existence des équilibres

La première étape consiste à déterminer les équilibres de (II.14). Un équilibre (S * , u * , v * ) doit être une solution du système : 

       0 = D(S in -S * ) -f (S * )u * -g(S * )v * , 0 = [f (S * ) -D u ]u * -a(u * + v * )u * + bv * , 0 = [g(S * ) -D v ]v * + a(u * + v * )u * -bv * . (II.
λ u = f -1 (D u ), λ v = g -1 (D v ) et λ b = g -1 (D v + b). De (H2), si de plus D v ≥ D u , alors λ v > λ u . Lorsque l'équation f (S) = D u ou g(S) = D v ou g(S) = D v + b n'a pas de solution, on prend λ u = ∞ ou λ v = ∞ ou λ b = ∞. On définit l'intervalle I par I =    ]λ u , λ v [ si λ u < λ v , ]λ v , min(λ u , λ b )[ si λ u > λ v .
(II. [START_REF] Chis | Structural identifiability of systems biology models : A critical comparison of methods[END_REF])

Notons que ϕ(λ u ) = ψ(λ v ) = 0 et ψ(λ b ) = b, où les fonctions ϕ et ψ sont définies par ϕ(S) = f (S) -D u et ψ(S) = g(S) -D v .
(II.17)

Dans ce qui suit, on utilise également la notation suivante :

U (S) := ϕ(S) (ψ(S) -b) a [ψ(S) -ϕ(S)] et V (S) := - ϕ 2 (S) (ψ(S) -b) a [ψ(S) -ϕ(S)] ψ(S) , (II.18) H(S) := f (S)U (S) + g(S)V (S). (II.19)
Ainsi, on peut énoncer le résultat suivant. 

Chapitre II. La Floculation

Cet équilibre positif existe si et seulement si S * ∈ I, où I est défini par (II. [START_REF] Chis | Structural identifiability of systems biology models : A critical comparison of methods[END_REF]).

Chaque solution de (II.20) appartenant à l'intervalle I donne lieu à un équilibre positif du système.

Un calcul direct donne

H (S) = f (S)(ψ(S) -b)ψ(S)F 0 (S) + g (S)ϕ(S)G 0 (S) a(ψ(S) -ϕ(S)) 2 ψ 2 (S) , (II.21) où F 0 = D u ψ 2 -2D v ϕψ + D v ϕ 2 et G 0 = bD u ψ 2 + (D v -D u )ϕψ 2 + bD v (ϕ 2 -2ϕψ). (II.22)
On démontre le lemme suivant.

Lemme II.2. Si D u ≤ D v , alors λ u < λ v et H (S) > 0 sur I. Si D u > D v ,

alors les deux cas suivants doivent être distingués :

-Cas λ u < λ v : le signe de H (S) peut être positif ou négatif pour S ∈ I.

-Cas λ u > λ v : on a H (S) < 0 sur I.

La proposition suivante exhibe le nombre d'équilibres positifs de (II.14).

Proposition II.6.

-Si D u ≤ D v , alors l'équilibre positif E 1 = (S * , u * , v * ) existe si et seulement si S in > λ u . S'il existe, il est unique.

-Si D u > D v , alors il existe au moins un équilibre positif dans le cas λ u < min(λ v , S in ) ou 

λ v < min(λ u , λ b ) < S in . Généralement,

Stabilité des équilibres

Dans cette section, on étudie la stabilité asymptotique locale de chaque équilibre du système (II.14).

Soit J la matrice jacobienne de (II.14) en (S, u, v) qui est donnée par

J =     -D -f (S)u -g (S)v -f (S) -g(S) f (S)u ϕ(S) -a(2u + v) -au + b g (S)v a(2u + v) ψ(S) + au -b     .
(II.23)

La stabilité de l'équilibre de lessivage est donnée comme suit :

Proposition II.7. E 0 est LES si et seulement si S in < λ u et S in < λ b .
Dans ce qui suit, on détermine la condition de stabilité des équilibres positifs. La matrice jacobienne en E 1 = (S * , u * , v * ) est donnée par

J 1 =     -m 11 -m 12 -m 13 m 21 -m 22 a 23 m 31 m 32 -m 33     , où          m 11 = D + f (S * )u * + g (S * )v * , m 12 = f (S * ), m 13 = g(S * ), m 21 = f (S * )u * , m 22 = a(2u * + v * ) -ϕ(S * ), a 23 = b -au * , m 31 = g (S * )v * , m 32 = a(2u * + v * ) et m 33 = b -au * -ψ(S * ).
(II.24)

Le polynôme caractéristique est donné par 

P (λ) = λ 3 + c 1 λ 2 + c 2 λ + c 3 , où c 1 = m 11 + m 22 + m 33 ,
D u ≤ D v ≤ D, cas 2 : D v < D u ≤ D, cas 3 : D v < D u et D < D u , cas 4 : D u ≤ D v et D < D v . (II.
1. Si λ u < λ v : E 1 est LES si H (S * ) > -D et est instable si H (S * ) < -D. 2. Si λ u > λ v : E 1 est LES si H (S * ) < -D et est instable si H (S * ) > -D.
Dans le cas 3 de (III.20), on montrera que c 4 peut changer de signe en variant le paramètre de contrôle S in de telle sorte que l'équilibre positif E 1 pourrait changer son comportement sans aucune collision avec un autre équilibre. En effet, nous avons réussi à trouver un jeu de paramètres où E 1 change la stabilité par une bifurcation de Hopf [START_REF] Kuznetsov | Elements of Applied Bifurcation Theory[END_REF], comme nous allons le voir dans la section suivante.

Plus précisément, on montre numériquement l'émergence des cycles limites dans le cas 3 de (III.20) lorsque

D < D v ≤ D u ou D v < D ≤ D u .
Dans le cas 4 de (III.20), on a toujours λ u < λ v et H (S) > 0, comme on le montre dans le Lemme II.2. Par conséquent, de la Prop. II.8, on en déduit que dans le cas 4 de (III.20) on a toujours c 3 > 0. 

II.3 Modèle avec biomasse agrégée

(a) δ H(S) E 3 E 2 E 1 E 0 S in λu λv I S (b) H(S) δ E 1 E 2 E 0 • S in λv λu I S (c) δ H(S) E 1 E 2 E 3 E 0 λv I λu S in S

Simulations numériques : cycle limite

(a) S E 0 E 0 E 1 S in (b) S E 0 E 0 E 2 E 1 S in (c) S E 0 E 2 E 1 E 1 S in

Conclusion

Dans la première partie de ce chapitre, on a étudié mathématiquement et par des simulations numériques un modèle du chémostat avec trois équations différentielles non linéaires où une espèce est présente sous deux formes, isolée et attachée avec la présence d'une seule ressource limitante. On a supposé que deux bactéries isolées peuvent s'agréger ensemble pour former un nouveau floc. En considérant une classe générale de fonctions de croissance, on a montré la multiplicité des équilibres positifs avec la possibilité de bistabilité de deux équilibres positifs. La bistabilité est déjà connue pour le modèle du chémostat sans floculation lorsque la fonction de croissance est non monotone. Cela peut s'expliquer par le fait que pour les grandes quantités de substrat, les bactéries deviennent "paresseuses" et sont ensuite lessivées, alors que ce n'est pas le cas pour les petites quantités de substrat. Ici, la prise peut être réduit à un modèle avec une fonction de croissance et un taux de mortalité densité-dépendants en utilisant la méthode de perturbation singulière (voir [START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF][START_REF] Haegeman | Modeling bacteria flocculation as density-dependent growth[END_REF][START_REF] Haegeman | How flocculation can explain coexistence in the chemostat[END_REF][START_REF] Rapaport | Properties of the chemostat model with aggregated biomass[END_REF]). La densité-dépendance, comme un troisième mécanisme de coexistence des espèces microbiennes, fera l'objet du chapitre III.

Chapitre III

La densité-dépendance 1 Introduction

Afin de montrer la coexistence et la biodiversité des espèces microbiennes, certains auteurs ont examiné le cas de réseaux trophiques et ont abordé la question de la sortie de la compétition lorsque certains prédateurs des espèces en compétition sont présents dans l'écosystème. Par exemple, Wolkowicz [START_REF] Wolkowicz | Successful invasion of a food web in a chemostat[END_REF] a montré qu'un équilibre de coexistence est possible lorsque chaque espèce en compétition est la proie d'un prédateur spécifique. Dans [50], les auteurs ont considéré le réseau trophique "diamant" (une ressource, deux consommateurs, un prédateur de deux consommateurs) et ont décrit quelques règles pour prédire l'issue de la compétition ; il s'avère que la coexistence est possible. Plusieurs modèles mathématiques [START_REF] Braselton | A competition model with dynamically allocated inhibitor production[END_REF][START_REF] Fgaier | An allelopathy based model for the Listeria overgrowth phenomenon[END_REF][START_REF] Grover | Competition for one nutrient with internal storage and toxin mortality[END_REF][53][START_REF] Hsu | Analysis of a model of two competitors in a chemostat with an external inhibitor[END_REF][START_REF] Hsu | A survey of mathematical models of competition with an inhibitor[END_REF]71] ont tenté de comprendre les effets d'un inhibiteur sur la compétition et la coexistence d'espèces dans le chémostat. Plus précisément, des modèles de compétition de deux populations de micro-organismes pour un seul nutriment ont été étudiés avec la présence d'un inhibiteur qui affecte le compétiteur le plus fort alors qu'il est détoxifié par l'autre compétiteur.

Voir aussi [START_REF] Cantrell | Intraspecific interference and consumer-resource dynamics[END_REF]57,[START_REF] Ruan | Coexistence in competition models with density-dependent mortality[END_REF] pour d'autres études des mécanismes de coexistence.

Une approche complètement différente consiste à ne pas complexifier le réseau trophique, mais à considérer les taux de croissance densité-dépendants. Dans ce chapitre, on étudie comment les interférences intra et interspécifiques sont des mécanismes de coexistence pour des espèces en compétition dans le chémostat. Dans ce contexte, on considère des modèles avec des fonctions de croissance densitédépendants. Le modèle général est l'extension suivante du modèle classique du chémostat (1) :

       Ṡ = D(S in -S) - n i=1 µ i (S, x 1 , . . . , x n )x i ẋi = [µ i (S, x 1 , . . . , x n ) -D i ]x i , i = 1, . . . , n (III.1)
où la fonction de croissance µ i (S, x 1 , . . . , x n ) peut désormais dépendre non seulement du substrat S mais aussi des concentrations des espèces x i , i = 1, . . . , n. On suppose que la fonction µ i est croissante par rapport à la variable S et est décroissante par rapport à chaque variable x j . Cette densité-dépendance peut être interprétée comme une "interférence négative" entre l'espèce i et l'espèce

Chapitre III. La densité-dépendance j. Puisque dans ce chapitre, on ne considère que les interférences négatives et on dit simplement que si i = j on a une interférence intraspécifique, alors que si i = j on a une interférence interspécifique.

Ce modèle a été considéré dans une série d'articles par Lobry et al. [START_REF] Harmand | Microbial ecology and bioprocess control : Opportunities and challenges[END_REF][START_REF] Lobry | A new hypothesis to explain the coexistence of n species in the presence of a single resource[END_REF][START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF][START_REF] Lobry | Persistence in ecological models of competition for a single resource[END_REF][START_REF] Lobry | Sur un modèle densité-dépendant de compétition pour une ressource[END_REF]. Pour le modèle (III.1), il est possible d'avoir un équilibre de coexistence, car à l'équilibre on doit avoir

[µ i (S, x 1 , . . . , x n ) -D i ] x i = 0, i = 1, . . . , n.
Si tous les x i sont positifs, alors

µ i (S, x 1 , . . . , x n ) = D i , i = 1, . . . , n
est un ensemble de n équations avec n variables x i qui pourrait avoir une solution positive x i = X i (S), i = 1, . . . , n. En remplaçant x i par X i (S) dans la première équation, on obtient l'équation suivante dans la seule variable S :

D(S in -S) - n i=1 D i X i (S) = 0.
La résolution de cette équation donne S puis la possibilité d'un équilibre positif.

Lobry et al. [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF][START_REF] Lobry | Persistence in ecological models of competition for a single resource[END_REF][START_REF] Lobry | Sur un modèle densité-dépendant de compétition pour une ressource[END_REF] ont considéré le cas où µ i (S, x i ) ne dépend que de la concentration de l'espèce i. Dans [START_REF] Lobry | Persistence in ecological models of competition for a single resource[END_REF][START_REF] Lobry | Sur un modèle densité-dépendant de compétition pour une ressource[END_REF], le concept de la caractéristique à l'équilibre a été introduit pour chaque espèce afin de fournir des conditions suffisantes pour la coexistence et pour déterminer le comportement asymptotique du système. Des résultats globaux ont également été obtenus lorsque D i = D pour toutes les espèces [START_REF] Lobry | Persistence in ecological models of competition for a single resource[END_REF]. Lorsque les taux de disparition sont distincts [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF][START_REF] Lobry | Sur un modèle densité-dépendant de compétition pour une ressource[END_REF], seule la stabilité locale de l'équilibre de coexistence est analysée dans [START_REF] Lobry | Sur un modèle densité-dépendant de compétition pour une ressource[END_REF] et un résultat de stabilité asymptotique globale est ensuite déterminé dans [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF] pour des taux de croissance spécifiques en utilisant une fonction Lyapunov.

Dans [START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF], il a été démontré que la méthode de la caractéristique à l'équilibre est applicable dans le cas où le taux de croissance µ i (S, x i ) et le taux de disparition D i = d i (x i ) de chaque espèce dépendent de la densité de la même espèce. Dans le Chapitre I, on a montré que la méthode de la caractéristique à l'équilibre permet une analyse assez complète du modèle considéré dans [START_REF] Leenheer | Crowding effects promote coexistence in the chemostat[END_REF], où le taux de croissance µ i (S) ne dépend que de S, mais le taux de disparition de x i est de la forme D i + a i x i . Le terme a i x i est habituellement référé à l'autorégulation densité-dépendante.

Le modèle général (III.1) a été considéré dans [START_REF] Harmand | Microbial ecology and bioprocess control : Opportunities and challenges[END_REF][START_REF] Lobry | A new hypothesis to explain the coexistence of n species in the presence of a single resource[END_REF] uniquement par des simulations numériques.

Ces auteurs ont considéré une situation particulière où les fonctions de croissance sont de la forme

µ i (S, x 1 , . . . , x n ) = ν i   S, x i + α j =i x j   , (III.2)
où α est un paramètre positif qui désigne la force de l'interférence interspécifique. Ils ont observé que la coexistence qui était prédite dans [START_REF] Lobry | Sur un modèle densité-dépendant de compétition pour une ressource[END_REF] lorsque α = 0 (seule une interférence intraspécifique est présente), reste une propriété du modèle lorsque α est suffisamment petit, mais ce n'est plus le cas

III.2 Taux de disparition distincts

lorsque α est suffisamment grand. Les fonctions de croissance de la forme (III.2) et des rendements densité-dépendants ont également été considérés dans [START_REF] Saito | Species coexistence under resource competition with intraspecific and interspecific direct competition in a chemostat[END_REF].

En réalité, nous n'avons à notre disposition aucune étude mathématique générale de (III.1). Ce travail peut être considéré comme le premier pas dans cette direction. On considère le modèle à deux espèces 

       Ṡ = D(S in -S) -µ 1 (S, x 1 , x 2 )x 1 -µ 2 (S, x 2 , x 1 )x 2 ẋ1 = [µ 1 (S, x 1 , x 2 ) -D 1 ]x 1 ẋ2 = [µ 2 (S, x 2 , x 1 ) -D 2 ]

Taux de disparition distincts

On fait les hypothèses suivantes.

(H1) Pour i = 1, 2, j = 1, 2, i = j, µ i (0, x i , x j ) = 0 et µ i (S, x i , x j ) > 0 pour tous S > 0, x 1 0 et

x 2 0. (H2) Pour i = 1, 2, j = 1, 2, i = j, ∂µ i ∂S (S, x i , x j ) > 0, ∂µ i ∂x i (S, x i , x j ) 0 et ∂µ i ∂x j (S, x i , x j ) 0 pour tous S > 0, x 1 0 et x 2 0.
La condition (H1) signifie que la croissance peut avoir lieu si et seulement si le substrat est présent.

La condition (H2) signifie que le taux de croissance de chaque espèce augmente avec la concentration du substrat et est inhibé par des interférences intra et interspécifiques.

Les équilibres de (III.3) sont les solutions du système suivant :

       0 = D(S in -S) -µ 1 (S, x 1 , x 2 )x 1 -µ 2 (S, x 2 , x 1 )x 2 0 = [µ 1 (S, x 1 , x 2 ) -D 1 ]x 1 0 = [µ 2 (S, x 2 , x 1 ) -D 2 ]x 2 .
(III.5)

Par conséquent, le système (III.3) admet les différents types d'équilibres suivants :

-E 0 = (S in , 0, 0), qui existe toujours.

-E 1 = ( S1 , x1 , 0), où la deuxième population a disparu :

x 2 = 0 et x1 > 0.
-E 2 = ( S2 , 0, x2 ), où la première population a disparu : 

x 1 = 0 et x2 > 0. -E * = (S * , x * 1 , x * 2 ),
µ i S in - D i D x i , x i , 0 = D i . (III.9)
Si est positif si et seulement si xi < DS in /D i , c'est-à-dire (III.9) admet une solution dans l'intervalle (0, DS in /D i ). Soit ψ i la fonction définie par

ψ i (x i ) := µ i S in - D i D x i , x i , 0 -D i , i = 1, 2.
(III.10) D'après les hypothèses (H1) et (H2), on sait que la fonction ψ i est décroissante de ψ i (0) = µ i (S in , 0, 0)- 

D i à ψ i (DS in /D i ) = -D i . Ainsi, il existe un x i = xi ∈ (0, DS in /D i )
D(S in -S) = D 1 x 1 + D 2 x 2
(III.12)

µ 1 (S, x 1 , x 2 ) = D 1 (III.13) µ 2 (S, x 2 , x 1 ) = D 2 . (III.14)
À partir de (III.12), on voit que S * est donné par

S * = S in - D 1 D x * 1 - D 2 D x * 2 .
(III.15)

En remplaçant S * par cette expression dans (III.13,III.14), on voit que (

x 1 = x * 1 , x 2 = x * 2 ) doit être une solution de    f 1 (x 1 , x 2 ) = 0 f 2 (x 1 , x 2 ) = 0 (III.16) où f i (x 1 , x 2 ) := µ i S in - D 1 D x 1 - D 2 D x 2 , x i , x j -D i , pour i = 1, 2, j = 1, 2, i = j. (III.17)
Les fonctions (III.17) sont définies sur l'ensemble (III.9). L'équation f i (x 1 , x 2 ) = 0 définit une fonction continue et décroissante 

M = (x 1 , x 2 ) ∈ R 2 + : D 1 D x 1 + D 2 D x 2 S in . (III.18) S * est positif si et seulement si D 1 D x * 1 + D 2 D x * 2 < S
F i : [0, xi ] → R, x i → F i (x i ) telle que F i (x i ) = 0 et le graphe γ i de F i reste dans M o (voir figure III.1). Plus précisément, (x 1 , F 1 (x 1 )) ∈ M o [resp. (F 2 (x 2 ), x 2 ) ∈ M o ] pour tout x i ∈ (0, xi ). (a) x 2 δ γ 1 c 2 x2 b 2 = F 1 (b 1 ) b 1 l 1 x1 x 1 (b) x 2 δ γ 2 x2 b 2 l 2 b 1 = F 2 (b 2 ) x1 c 1 x 1 (c) x 2 δ γ 2 γ 1 x2 x2 x * 2 x * 1 x1 x1 x 1
F i : [0, xi ] → [0, xj ], x i → F i (x i ), où xj = F i (0) est l'unique solution de µ i S in - D j D x j , 0, x j = D i . (III.19)
En utilisant les définitions (III.17) de f 1 et f 2 , on voit que x1 , x2 qui sont les solutions de (III.9) et x1 , x2 qui sont les solutions de (III. [START_REF] Dominguez | New improved method for fructooligosaccharides production by Aureobasidium pullulans[END_REF]), sont simplement les solutions des équations suivantes Cas 3.a 

f 1 (x 1 , 0) = 0, f 2 (0, x2 ) = 0, f 1 (0, x2 ) = 0, f 2 (x 1 , 0) = 0.

Ces quantités représentent les coordonnées des intersections des courbes

E 2 E * x2 x2 E 0 E 1 x1 x1 x 1 Cas 1.b x 2 δ γ 1 γ 2 E 2 E * E * * x2 x2 E 0 E * * * E 1 x1 x1 x 1 Cas 2.a x 2 δ γ 2 γ 1 E 2 E * x2 x2 E 0 E 1 x1 x1 x 1 Cas 2.b x 2 δ γ 2 γ 1 E 2 E * E * * x2 x2 E 0 E * * * E 1 x1 x1 x 1
x 2 δ γ 1 γ 2 E 2 x2 x2 E 0 E 1 x1 x1 x 1 Cas 3.b x 2 δ γ 1 γ 2 E 2 E * x2 x2 E 0 E * * E 1 x1 x1 x 1 Cas 4.a x 2 δ γ 2 γ 1 E 2 x2 x2 E 0 E 1 x1 x1 x 1 Cas 4.b x 2 δ γ 2 γ 1 E 2 E * x2 x2 E 0 E * * E 1 x1 x1 x 1
       ż = D(S in -z) ẋ1 = [µ 1 (z -x 1 -x 2 , x 1 , x 2 ) -D]x 1 ẋ2 = [µ 2 (z -x 1 -x 2 , x 2 , x 1 ) -D]x 2 .
(III.26)

Soit (z(t), x 1 (t), x 2 (t)) une solution de (III.26). De la première équation, on déduit que

z(t) = S in + (z(0) -S in )e -Dt .
Ainsi, (III.26) est équivalent à un système non autonome de deux équations différentielles

     ẋ1 = µ 1 S in + (z(0) -S in )e -Dt -x 1 -x 2 , x 1 , x 2 -D x 1 ẋ2 = µ 2 S in + (z(0) -S in )e -Dt -x 1 -x 2 , x 2 , x 1 -D x 2 .
(III.27)

C'est un système différentiel asymptotiquement autonome qui converge vers le système autonome

   ẋ1 = x 1 f 1 (x 1 , x 2 ) ẋ2 = x 2 f 2 (x 1 , x 2 )
(III.28) où les fonctions f 1 et f 2 sont définies par (III.17), avec

D 1 = D 2 = D, c'est-à-dire f 1 (x 1 , x 2 ) := µ 1 (S in -x 1 -x 2 , x 1 , x 2 ) -D, f 2 (x 1 , x 2 ) := µ 2 (S in -x 1 -x 2 , x 2 , x 1 ) -D.
Les résultats de Thieme [START_REF] Thieme | Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations[END_REF], permettent de déduire le comportement asymptotique de la solution de (III.27) à partir du comportement asymptotique du système autonome (III.28) qui est appelé modèle réduit, car il s'agit simplement de la restriction de (III.27) sur le plan invariant défini par z(0) = S in pour lequel z(t) = S in pour tout t 0.

Modèle réduit

Dans cette section, on étudie le système réduit (III.28). Ce système est défini sur l'ensemble

M = (x 1 , x 2 ) ∈ R 2 + : x 1 + x 2 S in .
La frontière de M satisfait les propriétés suivantes pour i = 1, 2 :

(x 1 + x 2 )(τ ) = S in pour certains τ 0 =⇒ ẋi (τ ) = -Dx i (τ ) 0, x i (τ ) = 0 pour certains τ 0 =⇒ ẋi (τ ) = 0.
Par conséquent, l'ensemble M est borné et positivement invariant, c'est-à-dire que le système (III.28)

est dissipatif [START_REF] Smith | The Theory of the Chemostat : Dynamics of Microbial Competition[END_REF]. À part le lessivage E 0 = (0, 0) qui existe toujours, le système (III.28) peut avoir un équilibre de la forme E 1 = (x 1 , 0) et un équilibre de la forme E 2 = (0, x2 ), où xi est une solution, si elle existe, de l'équation

µ i (S in -x i , x i , 0) = D, i = 1, 2.
Le système peut également avoir un équilibre positif

E * = (x * 1 , x * 2 ) où (x * 1 , x *
2 ) est une solution, si elle existe, de deux équations f i (x 1 , x 2 ) = 0, i = 1, 2. Notons que les équilibres de (III.28)

E 0 = (0, 0), E 1 = (x 1 , 0), E 2 = (0, x2 ) et E * = (x * 1 , x * 2 )
correspondent respectivement aux équilibres de (III.3),

E 0 = (S in , 0, 0), E 1 = (S in -x1 , x1 , 0), E 2 = (S in -x2 , 0, x2 ) et E * = (S in -x * 1 -x * 2 , x * 1 , x * 2 ).

Comportement global

En utilisant les résultats de Thieme [START_REF] Thieme | Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations[END_REF], on en déduit que le comportement asymptotique de la solution du système d'ordre trois (III.3) est le même que le comportement asymptotique du système de second ordre (III.28). Ainsi, on obtient le résultat principal de cette section.

Théorème III.2. 

Si le cas

= D 2 = D.
Ce diagramme n'a pas été étudié dans la littérature existante.

Soit Υ i la courbe d'équation D = µ i (S in , 0, 0), i = 1, 2, Υ i = {(S in , D) : D = µ i (S in , 0, 0)} .
Rappelons que xi et xi sont définis comme les solutions de (III.9) et (III.19), respectivement. Ces équations deviennent maintenant Dans le reste de cette section, on se restreint au modèle suivant :

µ i (S in -xi , xi , 0) = D, µ j (S in -xi , 0, xi ) = D, i = 1, 2, j = 1, 2, i = j.
         Ṡ = D(S in -S) -ν 1 (S, x 1 + α 1 x 2 )x 1 -ν 2 (S, x 2 + α 2 x 1 )x 2 ẋ1 = [ν 1 (S, x 1 + α 1 x 2 ) -D 1 ]x 1 ẋ2 = [ν 2 (S, x 2 + α 2 x 1 ) -D 2 ]x 2 .
(III. [START_REF] Fekih-Salem | Properties of the chemostat model with aggregated biomass and distinct removal rates[END_REF] où D 1 = D 2 = D et les ν i sont donnés par la fonction de Monod modifiée suivante : [ [START_REF] Harmand | Microbial ecology and bioprocess control : Opportunities and challenges[END_REF][START_REF] Lobry | A new hypothesis to explain the coexistence of n species in the presence of a single resource[END_REF][START_REF] Lobry | Persistence in ecological models of competition for a single resource[END_REF] où α 1 = α 2 = 0 (seuls les termes d'interférence intraspécifiques sont pris en compte). La figure III.4 montre la réduction de la région de coexistence qui disparaît lorsque des interférences interspécifiques sont ajoutées dans le modèle. Par exemple, si le coefficient interspécifique de la première espèce α 1 = 0.7 est fixe, alors la variation du coefficient interspécifique de la deuxième espèce α 2 entraîne une réduction de la région de coexistence I 3 jusqu'à l'apparition de la région de bistabilité I 4 , suivie de la disparition de la région de coexistence I 3 (voir figure III. 4(a-b-c-d)). 

ν i (S, x) = m i S k i + S + β i x , i = 1,
D c i (S in ) = η 0 S in + η 1 η 2 S in + η 3 (III.32) où η 0 = α j β j m i -β i m j , η 1 = k j m i -k i m j , η 2 = α j β j -β i , η 3 = α j β j k i -β i k j -k i + k j .
I 2 I 3 S in (b) D Υ 1 Υ 2 Υ c 1 Υ c 2 I 0 I 1 I 2 I 3 I 5 S in (c) D Υ 1 Υ 2 Υ c 2 Υ c 1 I 0 I 1 I 2 I 3 s I 4 s I 5 S in (d) D Υ 1 Υ 2 Υ c 2 Υ c 1 I 0 I 1 I 2 I 4 I 5 S in

III.5 Conclusion

Chapitre IV

Modèles de production de FOS 1 Introduction

La santé et le bien-être humains dépendent de l'activité métabolique de la communauté bactérienne présente dans le tractus gastro-intestinal. Des études épidémiologiques et cliniques indiquent que des bactéries commensales bénéfiques, appelées bactéries probiotiques, peuvent être utiles pour prévenir le cancer et ralentir la progression des tumeurs [3,4]. Les pré-, pro-et synbiotiques peuvent être utilisés pour contrôler la fonction intestinale par la modulation de la composition et de l'activité du microbiote [START_REF] Preter | The impact of pre-and/or probiotics on human colonic metabolism : Does it affect human health ?[END_REF]. Grâce à leur nature bifidogène et de leurs propriétés bénéfiques pour la santé, les fructo-oligosaccharides (FOS) sont classés comme des prébiotiques. Les propriétés fonctionnelles, ainsi que le potentiel technologique des FOS, les rendent attractifs dans les applications alimentaires et pharmaceutiques [2,[START_REF] Guio | Kinetic modeling of fructooligosaccharide production using Aspergillus oryzae N74[END_REF][START_REF] Mutanda | Microbial enzymatic production and applications of short-chain fructooligosaccharides and inulooligosaccharides : recent advances and current perspectives[END_REF][START_REF] Nishizawa | Kinetic study on transfructosylation by bfructofuranosidase from Aspergillus niger ATCC 20611 and availability of a membrane reactor for fructooligosaccharide production[END_REF].

Les principaux FOS comprennent le 1-kestose (GF 2 ), le nystose (GF 3 ) et le fructofuranosylnystose (GF 4 ). Ils peuvent être en trace dans les fruits, les légumes et le miel [START_REF] Gibson | Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose[END_REF]. Industriellement, le FOS peut être produit à partir du saccharose (GF ) par des enzymes β-fructofuranosidase avec une activité transfructosylante et hydrolytique, fournies par des champignons, tels que les Aureobasidium pullulans [START_REF] Dominguez | New improved method for fructooligosaccharides production by Aureobasidium pullulans[END_REF][START_REF] Duan | Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose[END_REF][START_REF] Sangeetha | Recent trends in the microbial production, analysis and application of fructooligosaccharides[END_REF][START_REF] Yun | The production of high-content fructo-oligosaccharides from sucrose by the mixed-enzyme system of fructosyltransferase and glucose-oxidase[END_REF]. Afin d'améliorer la production des FOS, le criblage et la sélection de supports pour l'immobilisation des cellules Aureobasidium pullulans ont été étudiés dans [START_REF] Castro | Screening and selection of potential carriers to immobilize aureobasidium pullulans cells for fructo-oligosaccharides production[END_REF]. Les rendements de la production des FOS peuvent être affectés par la concentration du saccharose dans le milieu ainsi que des petits saccharides, tels que le glucose (G) et le fructose (F ) qui peuvent inhiber les enzymes fructosyltransférase et déclencher l'hydrolyse des FOS.

La maximisation de la productivité de la culture fermentative, ainsi que la minimisation des petits monosaccharides dans le milieu, peuvent être obtenues par un contrôle du processus. À cette fin, un modèle dynamique du processus de la production des FOS est nécessaire. Cependant, seulement quelques modèles dynamiques de la production des FOS sont disponibles. Dans [START_REF] Jung | Mathematical model for enzymatic production of fructo-oligosaccharides from sucrose[END_REF], les réactions de la synthèse des FOS par la fructosyltransférase sont considérées, tandis que [START_REF] Duan | Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose[END_REF] introduit la réaction d'hydrolyse du nystose. Un processus de fermentation basé sur des cultures d'Aureobasidium Pullulans est décrit dans [START_REF] Rocha | A dynamical model for the fermentative production of fructooligosaccharides[END_REF], qui comprend la croissance de la biomasse et les réactions d'hydrolyse du 1-kestose et du 1-Fructosylfuranosyl nystose. Cependant, ce modèle est délicat à identifier et à valider à partir de données expérimentales, comme discuté dans [START_REF] Fekih-Salem | Parameter identification of the fermentative production of fructo-oligosaccharides by aureobasidium pullulans[END_REF].

L'objectif de la section 2 est de revoir le modèle de Rocha et al. [START_REF] Rocha | A dynamical model for the fermentative production of fructooligosaccharides[END_REF], et les résultats préliminaires de l'identification de Fekih-Salem et al. [START_REF] Fekih-Salem | Parameter identification of the fermentative production of fructo-oligosaccharides by aureobasidium pullulans[END_REF], pour finalement proposer un modèle réduit qui serait pratiquement identifiable et de développer une procédure minutieuse d'identification des paramètres en utilisant une analyse de sensibilité locale, la matrice d'information de Fisher (FIM) et une sélection de sous-ensembles basée sur la décomposition QR afin de réduire le nombre de paramètres au minimum.

L'identifiabilité des paramètres peut également être évaluée à l'aide d'une analyse de sensibilité globale (voir par exemple [START_REF] Fiordalis | Data-driven, using design of dynamic experiments, versus modeldriven optimization of batch crystallization processes[END_REF][START_REF] Iooss | A Review on Global Sensitivity Analysis Methods[END_REF][START_REF] Kiparissides | Design of in silico experiments as a tool for nonlinear sensitivity analysis of knowledge-driven models[END_REF][START_REF] Simeone | A methodology for performing global uncertainty and sensitivity analysis in systems biology[END_REF] 

Q in (t) =        0 pour t ∈ [t 0 , t 1 [∪[t 2 , t 3 [∪[t 4 , t f [, Q 0 e βt pour t ∈ [t 1 , t 2 [, Q 1 + γt pour t ∈ [t 3 ,
Q in [L/h]

Modélisation de la production fermentative des FOS

Basés sur des travaux de [2,[START_REF] Duan | Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose[END_REF][START_REF] Rocha | A dynamical model for the fermentative production of fructooligosaccharides[END_REF], un modèle dynamique de bioproduction des FOS peut être proposé. Le modèle est basé sur un schéma réactionnel comprenant des réactions enzymatiques et pseudo-réactions biologiques décrivant la croissance du champignon de type levure d'Aureobasidium

Pullulans.

Les réactions enzymatiques sont réparties d'une part, en réactions d'hydrolyse, représentant la dégradation des FOS et du saccharose : 2GF

GF r 1 -----→ k 1 G + k 2 F GF 2 r 2 -----→ k 3 GF + k 4 F GF 3 r 3 -----→ k 5 GF 2 + k 6 F GF 4 r 4 -----→ k 7 GF 3 + k 8 F où GF , G, F et GF i , i = 2,
r 5 -----→ k 9 GF 2 + k 10 G 2GF 2 r 6 -----→ k 11 GF 3 + k 12 GF 2GF 3 r 7 -----→ k 13 GF 4 + k 14 GF 2 .
Par ailleurs, la croissance de la biomasse est décrite par : 

Y G G r 8 -----→ X Y F F r 9 -----→ X,
                                   ĠF = D(GF in -GF ) -r 1 + k 3 r 2 -r 5 + k 12 2 r 6 Ġ F 2 = -D.GF 2 -r 2 + k 5 r 3 + k 9 2 r 5 -r 6 + k 14 2 r 7 Ġ F 3 = -D.GF 3 -r 3 + k 7 r 4 + k 11 2 r 6 -r 7 Ġ F 4 = -D.GF 4 -r 4 + k 13 2 r 7 Ḟ = -D.F + k 2 r 1 + k 4 r 2 + k 6 r 3 + k 8 r 4 -Y F r 8 Ġ = -D.G + k 1 r 1 + k 10 2 r 5 -Y G r 9 Ẋ = -D.X + r 8 + r 9 V = Q in -Q out , (IV.1)
où GF in représente la concentration d'alimentation en saccharose ; Q in (t) et Q out (t) les débits volumiques d'alimentation et de soutirage, respectivement ; V (t) désigne le volume du liquide à l'intérieur du réacteur ; D(t) = Q in (t)/V (t) désigne le taux de dilution. Notons qu'en mode semi-continu (ou fed batch) Q out (t) = 0, mais un petit débit de soutirage peut parfois être envisagé pour prendre en compte les prélèvements d'échantillons (de petits volumes de liquide sont échantillonnés pour une analyse hors ligne).

Pour plus de commodité, les équations précédentes peuvent être converties en une représentation de matrice et vecteur, en introduisant la matrice pseudo-stoechiométrique K définie par :

K =                -1 k 3 0 0 -1 k 12 2 0 0 0 0 -1 k 5 0 k 9 2 -1 k 14 2 0 0 0 0 -1 k 7 0 k 11 2 -1 0 0 0 0 0 -1 0 0 k 13 2 0 0 k 2 k 4 k 6 k 8 0 0 0 -Y F 0 k 1 0 0 0 k 10 2 0 0 0 -Y G 0 0 0 0 0 0 0 1 1                (IV.2)
ainsi que les vecteurs d'état, de vitesse et de transport :

ξ T (t) = [ξ 1 , ξ 2 , • • • , ξ 7 ] = [GF, GF 2 , GF 3 , GF 4 , F, G, X] , r T ξ = [r 1 , r 2 , • • • , r 9 ] , F T (t) = [D(t)GF in , 0, • • • , 0] .
Avec cette notation, le modèle du bilan massique (IV.1) peut être réécrit comme suit :

   ξ(t) = Kr ξ -D(t)ξ + F(t) V (t) = Q in -Q out . (IV.3)

Identification des paramètres du modèle

Le jeu de paramètres θ, c'est-à-dire les 16 coefficients pseudo-stoechiométriques, les 25 paramètres cinétiques et éventuellement les concentrations initiales (conditions initiales des équations du bilan massique) sont identifiés sur la base des ensembles de données disponibles (des expériences en batch et fedbatch) en utilisant les valeurs des paramètres identifiées dans [START_REF] Nobre | Comparison of adsorption equilibrium of fructose, glucose and sucrose on potassium gel-type and macroporous sodium ion-exchange resins[END_REF] 

J (θ) = Nexp j=1 N t j i=1 y exp j (t ij ) -y sim j (t ij ; θ) T W -1 j y exp j (t ij ) -y sim j (t ij ; θ) (IV.9) où θ = θ T r θ T K ξ T 1 (0) • • • ξ T Nexp (0) ;
θ r est le vecteur des paramètres cinétiques (dim (θ r ) = 25), θ K est le vecteur des paramètres stoechiométriques (dim (θ K ) = 16), ξ j (0), j = 1, . . . , N exp , sont les conditions initiales de la j ème expérience, t ij désigne le i ème temps d'échantillonnage de la j ème expérience, N exp dénote le nombre d'expériences et N t j représente le nombre d'échantillons prélevés lors de la j ème expérience. Une matrice de mise à l'échelle

W j = diag max 1≤i≤N t j y exp j1 (t ij ) 2 , . . . , max 1≤i≤N t j y exp jNy j (t ij ) 2
est utilisée pour normaliser les distances calculées en (IV.9) par rapport à l'amplitude de chaque signal.

La méthode de Nelder-Mead qui est implémentée dans MATLAB par la fonction fminsearchbnd est utilisée pour minimiser le critère de moindres carrés pondérés. Cette version d'algorithme permet de définir les bornes en restreignant l'espace de recherche aux paramètres positifs et aux concentrations initiales. Typiquement, l'algorithme est appelé plusieurs fois de suite, avec réinitialisation suivant l'optimum trouvé précédemment. Ces appels successifs améliorent les performances de la méthode de Nelder-Mead et permettent une meilleure convergence vers le minimum recherché (voir par exemple [START_REF] Zhao | A restarted and modified simplex search for unconstrained optimization[END_REF]). Les procédures d'optimisation impliquent un grand nombre de simulations des équations différentielles ordinaires du modèle et le solveur ode23tb de MATLAB est sélectionné pour améliorer la vitesse et la précision de la simulation.

Une estimation a posteriori de la variance d'erreur de mesure de la j ème expérience σ2 j peut être obtenue par :

σ2 j = J j θ N y j N t j -N p , j = 1, . . . , N exp , où N p = dim (θ r ) + dim (θ K ) et l'estimateur de moindres carrés pondérés est θ = arg min θ J (θ) .
Soit S θ (t; θ) la matrice de sensibilité locale du vecteur d'état ξ au paramètre θ définie par

S θ (t; θ) = ∂ξ (t; θ) ∂θ .
Sous l'hypothèse d'un bruit blanc gaussien, la Matrice d'Information de Fisher (FIM) est déterminée par l'équation suivante [START_REF] Walter | Identification of parametric models from experimental data[END_REF] :

F IM θ, Σ = Nexp j=1 N t j i=1 S T θ (t ij ; θ) Σ-1 j S θ (t ij ; θ) (IV.10)
où Σj est la matrice de covariance a posteriori des erreurs de mesure de l'expérience j, calculée comme suit : Σj = σ2 j W j .

L'inverse de la FIM fournit une estimation optimiste de la matrice de covariance d'erreur de paramètre (Borne de Cramér-Rao) [START_REF] Walter | Identification of parametric models from experimental data[END_REF] :

C θ FIM -1 θ, Σ . (IV.11)
La limitation principale de la FIM est qu'elle est basée sur une linéarisation du modèle. La propagation de ce qu'on appelle des points sigma à travers le modèle non linéaire permet généralement une meilleure estimation de la matrice de covariance [START_REF] Schenkendorf | Optimal experimental design with the sigma point method[END_REF]. Alternativement, la simulation de Monte Carlo et la méthode bootstrap [START_REF] Joshi | Exploiting the bootstrap method for quantifying parameter confidence intervals in dynamical systems[END_REF] permettent la considération des distributions d'erreur plus générales (non gaussiennes, non symétriques, etc.). Cependant, la FIM est un outil simple et pratique qu'on exploitera dans la suite de cette étude.

L'écart-type σ k des paramètres estimés θk peut être obtenu à partir de la racine carrée du k ème élément de la diagonale de la matrice C θ

σ k = C θ kk , k = 1, . . . , N p .
Il est possible d'estimer les intervalles de confiance pour un niveau de confiance donné et, dans ce travail, un niveau de confiance de 95 % (sous l'hypothèse d'une distribution gaussienne) est considéré θk -2σ k , θk +2σ k , k = 1, . . . , N p . (IV.12)

Alternativement, les coefficients de variation des paramètres estimés peuvent également être considérés (c'est-à-dire l'écart-type σ k normalisé par les valeurs respectives des paramètres estimées θk ). La

IV.2 Analyse de sensibilité et réduction du modèle

matrice de corrélation, qui est génériquement définie par le terme suivant :

ρ ij = C θ ij C θ ii C θ jj , i, j = 1, . . . , N p (IV.13)
peut aider à expliquer l'interdépendance des paramètres. Cependant, une corrélation de paramètres élevée n'est pas un critère de rejet, car elle n'induit pas nécessairement une sur-paramétrisation Un problème fréquent dans l'étude d'identification est que la FIM peut être mal conditionnée en raison d'un manque de données expérimentales informatives ou d'une sur-paramétrisation du modèle.

Pour évaluer la non-singularité de la FIM, l'estimateur de la condition réciproque LAPACK (qui est donné par la fonction rcond dans MATLAB) devrait au moins satisfaire aux conditions suivantes [START_REF] Zak | Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks : insights from an identifiability analysis of an in silico network[END_REF] :

rcond(FIM) > 10ε, (IV.14)
où ε est la précision relative en virgule flottante.

Pour investiguer les problèmes de singularités, une étude plus approfondie des sensibilités est nécessaire pour détecter les paramètres qui peuvent être linéairement dépendants. Cette étude devrait être basée sur les sensibilités normalisées par rapport aux sorties L et aux paramètres P :

S i,k (t) = θ k y i ∂y i ∂θ k (t) (IV.15)
et une matrice résumant les informations de sensibilité peut être construite

S(θ, t) =                          S 1,1 (θ, t 1,1 ) • • • S 1,P (θ, t 1,1 ) S 1,1 (θ, t 2,1 ) • • • S 1,P (θ, t 2,1 ) . . . S 1,1 (θ, t N t 1 ,1 ) • • • S 1,P (θ, t N t 1 ,1 ) S 1,1 (θ, t 1,2 ) • • • S 1,P (θ, t 1,2 ) . . . S 1,1 (θ, t N t Nexp ,Nexp ) • • • S 1,P (θ, t N t Nexp ,Nexp ) S 2,1 (θ, t 1,1 ) • • • S 2,P (θ, t 1,1 ) . . . . . . S L,1 (θ, t N texp,Nexp ) • • • S L,P (θ, t N t Nexp ,Nexp )                          . (IV.16)
Un premier indicateur quantitatif simple consiste à calculer la norme L2 de chaque colonne de S(θ, t) et à classer les paramètres du plus sensible au moins sensible (selon le critère de la norme). Cet indicateur est utile mais pas suffisant, car il ne donne aucune information sur les dépendances possibles entre les paramètres.

Un deuxième indicateur quantitatif est obtenu en calculant le rang numérique de la matrice S T S.

Si les valeurs singulières sont (IV.17)

σ 1 ≥ σ 2 ≥ • • • ≥ σ n ≥ 0,
Pour décider si une matrice donnée est numériquement de rang déficient ou non, généralement ≈ uσ 1 , où u est la racine carrée de la précision de l'epsilon de la machine. Si le rang numérique r est inférieur au nombre de paramètres à estimer, alors il existe des dépendances des paramètres. La matrice complète ne peut pas être utilisée et un ensemble réduit de r paramètres doit être envisagé.

Un troisième outil, appelé sélection de sous-ensembles, peut être utilisé à ce stade. Il existe plusieurs algorithmes puissants, mais on se restreint à la décomposition QR [START_REF] Golub | Matrix computations. Studies in mathematical sciencesr[END_REF] pour donner un classement des dépendances de paramètres. En effet, l'algorithme de la décomposition QR permet, suite à l'introduction d'une matrice de permutation spécifique P , d'ordonner les paramètres du moins au plus linéairement indépendant :

S T SP = QR (IV .18) 
où

P T = [1 • • • N p ] T . (IV.19)
En pratique, cette opération peut être facilement implémentée dans MATLAB en utilisant la fonction [Q, R, P ] = qr(S T S).

Résultats numériques

Dans Fekih-Salem et al. [START_REF] Fekih-Salem | Parameter identification of the fermentative production of fructo-oligosaccharides by aureobasidium pullulans[END_REF], une étude préliminaire de l'identification du modèle (IV.1) est proposée, principalement basée sur des données de simulation, ainsi que quelques données expérimentales en culture batch. La motivation derrière la présente étude est de réexaminer le problème d'identification en utilisant les outils systématiques présentés dans la section précédente et des ensembles de données expérimentales supplémentaires. En effet, l'étude de simulation révèle que quelques expériences en mode batch ne sont pas suffisantes pour estimer tous les paramètres du modèle [START_REF] Fekih-Salem | Parameter identification of the fermentative production of fructo-oligosaccharides by aureobasidium pullulans[END_REF]. Les expériences supplémentaires, qui sont effectuées en mode fed-batch, fourniront donc une partie des informations manquantes, tandis que l'analyse de sensibilité et la sélection de sous-ensembles aideront à réduire la sur-paramétrisation du modèle. Notons les faits suivants :

-En pratique, non seulement les 25 paramètres cinétiques doivent être considérés comme dans [START_REF] Fekih-Salem | Parameter identification of the fermentative production of fructo-oligosaccharides by aureobasidium pullulans[END_REF][START_REF] Nobre | Comparison of adsorption equilibrium of fructose, glucose and sucrose on potassium gel-type and macroporous sodium ion-exchange resins[END_REF], mais aussi les 16 coefficients pseudo-stoechiométriques et éventuellement les concentra- Il peut donc être utile de se retourner vers l'analyse de la sensibilité et les outils de sélection de sous-ensembles présentés dans la section précédente. En considérant u environ 10 -8 dans (IV.17 données, atténuerait certainement, au moins, une partie de ce problème d'identification des paramètres.

k 8 KitGF 3 Y G µ mG KmG KihGF 4 k 2 KmF k 3 Y F Classement QR k 8 k 1 KitGF 3 Y G Y F k 3 KihGF 4 KmG k 14 KmF µ mG
Le raisonnement ci-dessus se limite donc aux informations disponibles, car aucun autre ensemble de données ne peut être obtenu actuellement. La fixation des valeurs des paramètres non identifiables en utilisant, par exemple, les connaissances issues de la littérature, peut également introduire un fort degré d'incertitude et un biais sévère sur les paramètres identifiés. Cette dernière solution est donc rejetée. Les équations différentielles du modèle réduit peuvent être réécrites comme suit :

                             ĠF = D(GF in -GF ) -r 1 -r 5 + k 12 2 r 6 Ġ F 2 = -D.GF 2 -r 2 + k 5 r 3 + k 9 2 r 5 -r 6 + k 14 2 r 7 Ġ F 3 = -D.GF 3 -r 3 + k 7 r 4 + k 11 2 r 6 -r 7 Ġ F 4 = -D.GF 4 -r 4 + k 13 2 r 7 Ḟ = -D.F + k 2 r 1 + k 4 r 2 + k 6 r 3 Ġ = -D.G + k 10 2 r 5 V = Q in -Q out (IV.20)
avec la vitesse de réaction r 7 , initialement définie par (IV.7), se simplifie à : À la lumière de cette dernière réduction, le modèle à 30 paramètres devient :

r 7 = V mT GF 3 GF 3 Kmt GF 3 + GF 3 . ( IV 
                             ĠF = D(GF in -GF ) -r 1 -r 5 + k 12 2 r 6 Ġ F 2 = -D.GF 2 -r 2 + k 5 r 3 + k 9 2 r 5 -r 6 + k 14 2 r 7 Ġ F 3 = -D.GF 3 -r 3 + k 7 r 4 + k 11 2 r 6 -r 7 Ġ F 4 = -D.GF 4 -r 4 + k 13 2 r 7 Ḟ = -D.F + k 2 r 1 + k 4 r 2 Ġ = -D.G + k 10 2 r 5 V = Q in -Q out .
(IV. 

r i = V mh GF i GF i Kmh GF i + GF i , r 5 = V mT GF GF Kmst + GF + GF 2 Ksts , i = 2,
                             ĠF = D(GF in -GF ) -r 5 + k 12 2 r 6 Ġ F 2 = -D.GF 2 -r 2 + k 5 r 3 + k 9 2 r 5 -r 6 Ġ F 3 = -D.GF 3 -r 3 + k 7 r 4 + k 11 2 r 6 -r 7 Ġ F 4 = -D.GF 4 -r 4 + k 13 2 r 7 Ḟ = -D.F + k 4 r 2 Ġ = -D.G + k 10 2 r 5 V = Q in -Q out , (IV.24)
avec les vitesse de réaction suivante :

r i = V mh GF i GF i Kmh GF i + GF i , i = 2, 4, r 3 = V mh GF 3 GF 3 Kmh GF 3 + GF 3 + GF 2 3
Kih GF 3 , (IV.25) Pour étudier l'impact des incertitudes des paramètres sur la prédiction du modèle, des calculs supplémentaires peuvent être réalisés, y compris l'estimation de la covariance de l'erreur de prédiction du modèle, ou bien l'analyse de Monte Carlo qui considère tous les scénarios générés à partir de l'estimation de la matrice de covariance d'erreur C θ obtenue en inversant la FIM.

r 5 = V mT GF GF Kmst + GF + GF 2 Ksts , r i = V mT GF j GF j Kmt GF j + GF j + G Kit GF j , i =
Dans le cas de la culture en batch B1, la figure IV.7 montre :

-la trajectoire prédite par le modèle dynamique (ligne continue en rouge) ; -les intervalles de confiance à 95% (lignes noires en pointillés) de la prédiction du modèle, qui sont calculés sur la base d'une estimation de la covariance de l'erreur de prédiction du modèle par S T FIM -1 S -Simulation de Monte Carlo (200 trajectoires en gris clair) correspondant à 200 réalisations de la distribution de probabilité des paramètres (générée en MATLAB par lhsnorm) avec un vecteur moyen θ et une matrice de covariance FIM -1 θ, Σ . La trajectoire moyenne est représentée en magenta (et coïncide presque avec la prédiction du modèle en rouge), tandis que les intervalles de confiance à 95% sont représentés en cyan. 

Dérivation basée sur les données d'un modèle dynamique

Dérivation du modèle

Sur la base des ensembles de données expérimentales décrits dans la section précédente, une structure d'un modèle mathématique est dérivée d'une manière systématique dans la suite. La première étape est l'inférence du nombre minimal de pseudo-réactions en utilisant l'analyse de composantes principales, tandis que la deuxième étape est la déduction d'une structure cinétique plausible. Dans cette procédure, qui est essentiellement basée sur les données et aussi systématique que possible, les connaissances biologiques antérieures sont bien sûr exploitées chaque fois qu'elles sont utilisables.

Dans cette section, le nombre de réactions et la matrice stoechiométrique sont estimés en utilisant l'approche basée sur MLPCA décrite dans Mailier et al. [START_REF] Mailier | Stoichiometric identification with maximum likelihood principal component analysis[END_REF]. Tout d'abord, nous rappelons le concept du schéma de réactions macroscopiques introduit par Bastin et Dochain [6] : 

i∈Rm (-k i,m )ξ i rm -----→ j∈Pm k j,m ξ j , m ∈ [1, . . . ,
ξ f (t) = ξ(t) - t 0 F(τ ) -D(τ )ξ(τ ) dτ
dont la trajectoire peut être calculée par

ξ f (t) = ξ(0) + K t 0 r ξ(τ ) dτ.
Pour éliminer la condition initiale, un vecteur d'état différentiel sans transport peut être considéré

ξ ∆ f := ξ f (t j+1 ) -ξ f (t j ) = K t j+1 t j r ξ(τ ) dτ
qui semble avoir une trajectoire incluse dans un sous-espace engendré par les vecteurs colonnes de la matrice stoechiométrique K.

Cette interprétation géométrique est développée dans [START_REF] Mailier | Stoichiometric identification with maximum likelihood principal component analysis[END_REF], où il est montré que l'analyse de la composante principale du maximum de vraisemblance permet de sélectionner le nombre de réactions en testant l'hypothèse d'une dimensionnalité p du sous-espace stoechiométrique candidat, en commençant à partir de p = 1 et en augmentant cette dimension au cours des tests successifs. Par conséquent, une procédure systématique peut être développée, qui sélectionne la plus petite valeur de p qui permet une interprétation approfondie des données jusqu'à un niveau de confiance donné, en minimisant un coût de vraisemblance logarithmique :

J p = Ns j=1 ξ ∆ f,m i - ξ∆p f T Q ∆ j -1 ξ ∆ f,m i - ξ∆p f , où N s est le nombre d'échantillons, ξ ∆ f,m i
est la mesure bruitée de ξ ∆ f , Q ∆ j est la matrice de covariance du bruit de mesure et ξ∆p f est une estimation du maximum de vraisemblance (appartenant à un modèle linéaire de dimension p). Une valeur de J p supérieure à χ 2,1-α N ξ ×(Ns-1) conduit au rejet de l'hypothèse N r = p à un niveau de signification α [START_REF] Mailier | Stoichiometric identification with maximum likelihood principal component analysis[END_REF].

Cette méthodologie est maintenant appliquée aux ensembles de données collectées à partir des cultures en batch et en fedbatch. La figure IV.8 montre qu'un sous-espace de dimension quatre (c'està-dire p est égal à quatre réactions) est suffisant pour interpréter les données, qui est plus petit que le nombre des réactions considérées dans les modèles précédents de production des FOS [START_REF] Fekih-Salem | Parameter identification of the fermentative production of fructo-oligosaccharides by aureobasidium pullulans[END_REF][START_REF] Nobre | Comparison of adsorption equilibrium of fructose, glucose and sucrose on potassium gel-type and macroporous sodium ion-exchange resins[END_REF]. Une première estimation de la matrice stoechiométrique K peut être obtenue comme suit : 

K =             -0.
=             -1 2 
            =             -1 k 12 k 13 k 14 k 21 -1 -k 23 -k 24 k 31 k 32 -1 -k 34 k 41 k 42 k 43 -1 k 51 -k 52 -k 53 k 54 k 61 k 62 k 63 k 64             . (IV.31)
Cette estimation formatée servira comme point de départ pour l'identification ultérieure des paramètres du modèle. Le schéma réactionnel avec des paramètres génériques peut être écrit comme suit :

GF r 1 -----→ k 21 GF 2 + k 31 GF 3 + k 41 GF 4 + k 51 F + k 61 G GF 2 + k 52 F r 2 -----→ k 12 GF + k 32 GF 3 + k 42 GF 4 + k 62 G k 23 GF 2 + GF 3 + k 53 F r 3 -----→ k 13 GF + k 43 GF 4 + k 63 G k 24 GF 2 + k 34 GF 3 + GF 4 r 4 -----→ k 14 GF + k 54 F + k 64 G. (IV.32) En considérant ξ T (t) = [ξ 1 , ξ 2 , • • • , ξ 7 ] = [GF, GF 2 , GF 3 , GF 4 , F, G, V ] (IV.33)
comme vecteur d'état, une simple structure cinétique candidate est suggérée comme suit :

r j (ξ 1 , ξ 2 , • • • , ξ 6 ) = µ M ax j i∈R * j ξ i (t) K m ij + ξ i (t) , j = 1, . . . , 4 (IV.34) avec ξ T = [ξ 1 , ξ 2 , • • • , ξ 6 ] = [GF, GF 2 , GF 3 , GF 4 , F, G], µ M ax j
est le taux maximal de la réaction j, K m ij est la constante de Michaelis-Menten associée à la composante i dans la réaction j et R * j est l'ensemble des réactifs dans la réaction j. Plus précisément, on a

r 1 = µ M ax 1 GF K m 11 + GF , r 2 = µ M ax 2 GF 2 Km 22 +GF 2 F Km 52 +F , r 3 = µ M ax 3 GF 2 K m 23 + GF 2 GF 3 K m 33 + GF 3 F K m 53 + F , r 4 = µ M ax 4 GF 2 Km 24 +GF 2 GF 3 Km 34 +GF 3 GF 4 Km 44 +GF 4 .
Par conséquent, le modèle comprend 13 paramètres cinétiques et 20 coefficients pseudo-stoechiométriques : 

                             ĠF = D (GF in -GF ) -r 1 + k 12 r 2 + k 13 r 3 + k 14 r 4 Ġ F 2 = -D.GF 2 -r 2 + k 21 r 1 -k 23 r 3 -k 24 r 4 Ġ F 3 = -D.GF 3 -r 3 + k 31 r 1 + k 32 r 2 -k 34 r 4 Ġ F 4 = -D.GF 4 -r 4 + k 41 r 1 + k 42 r 2 + k 43 r 3 Ḟ = -D.F + k 51 r 1 -k 52 r 2 -k 53 r 3 + k 54 r 4 Ġ = -D.G + k 61 r 1 + k 62 r 2 + k 63 r 3 + k 64 r 4 V = Q in -Q out . (IV.
=             -1 0 0 k 14 k 21 -1 -k 23 0 k 31 k 32 -1 -k 34 0 k 42 k 43 -1 k 51 0 -k 53 k 54 k 61 0 k 63 0             . (IV.36) Le schéma réactionnel correspondant GF r 1 -----→ k 21 GF 2 + k 31 GF 3 + k 51 F + k 61 G GF 2 r 2 -----→ k 32 GF 3 + k 42 GF 4 k 23 GF 2 + GF 3 + k 53 F r 3 -----→ k 43 GF 4 + k 63 G k 34 GF 3 + GF 4 r 4 -----→ k 14 GF + k 54 F (IV.37)
implique les vitesses de réaction simplifiées 

r 2 = µ M ax 2 GF 2 K m 22 + GF 2 , r 4 = µ M ax 4 GF 3 K m 34 + GF 3 GF 4 K m 44 + GF 4 , ( IV 
=             -1 0 0 k 14 k 21 -1 0 0 0 k 32 -1 -k 34 0 0 k 43 -1 k 51 0 0 k 54 k 61 0 k 63 0             (IV.39)
avec les vitesses de réaction, pour i = 2, 3, 

r 1 = µ M ax 1 GF K m 11 + GF , r i = µ M ax i GF i K m ii + GF i , r 4 = µ M ax 4 GF 3 K m 34 + GF 3 GF 4 K m 44 + GF . ( IV 
=             -1 0 0 k 14 k 21 -1 0 0 0 k 32 -1 0 0 0 k 43 -1 0 0 0 k 54 k 61 0 0 0             (IV.41) r 1 = µ M ax 1 GF K m 11 + GF , r i = µ M ax i GF i K m ii + GF i , i = 2,

les paramètres inconnus.

La méthode choisie est l'approche de séries génératrices, qui est basée sur la décomposition de la fonction de sortie h en séries par rapport au temps et aux entrées, dont les coefficients sont h et les dérivées de Lie de h le long des champs vectoriels f et g j [5,[START_REF] Chis | Structural identifiability of systems biology models : A critical comparison of methods[END_REF]. Par exemple, 

L f h(ξ(t), θ, t) = N ξ j=1 f j ξ(t)

Validation croisée

Le modèle candidat (IV. 

Couloirs de confiance

En considérant le modèle général (IV.3) et la FIM (IV.10) dans le cas du bruit gaussien, il est possible de dériver une estimation de premier ordre ε x de la covariance de l'erreur de prédiction du modèle

E ε x ε T x = S θ FIM -1 S T θ + S x 0 Q 0 S T x 0 . (IV.48)
Cette matrice de covariance dépend de la covariance des paramètres (estimée via la FIM) et de la sensibilité des sorties du modèle aux paramètres, ainsi que de la covariance des erreurs (de mesure) sur les conditions initiales Q 0 et de la sensibilité aux conditions initiales. La figure IV.15 illustre les couloirs de confiance à 95% liés à la prédiction de l'expérience B1 par le modèle (IV.41 -IV.42). Ces couloirs incluent toujours les données mesurées, confirmant ainsi la validité du modèle proposé. 

IV.4 Conclusion

Conclusion

L'objectif principal de la première partie de ce chapitre est de montrer que l'analyse de sensibilité, la matrice d'information de Fisher et la sélection de sous-ensembles de paramètres basée sur la décomposition QR peuvent être utilisées comme des outils systématiques pour réduire les modèles biologiques détaillés à des représentations qui sont pratiquement identifiables avec les données disponibles. En effet, la connaissance a priori du processus conduit souvent à la dérivation de modèles qui sont surparamétrisés, au moins quand on considère le contenu limité en informations des expériences habituelles en batch et fedbatch. Bien sûr, la conception de l'expérience est d'une importance capitale et les expériences informatives permettent d'améliorer l'exactitude et la précision des paramètres, mais au détriment d'une expérimentation longue et délicate. Comme une étude de cas, la réduction d'un modèle dynamique de la bioproduction des FOS est discutée. La procédure permet de réduire drastiquement le nombre de paramètres du modèle de 41 à 23, en plusieurs étapes successives où les modèles intermédiaires sont estimés et analysés.

La principale contribution de la deuxième partie de ce chapitre est la dérivation d'un modèle dynamique de faible dimension de cultures batch et fedbatch pour la production de fructo-oligosaccharides. À notre connaissance, il s'agit du premier modèle de ce type avec une analyse approfondie des propriétés du modèle et une validation à partir des données expérimentales. La deuxième contribution est l'application d'une procédure basée sur les données combinant l'analyse de la composante principale du maximum de vraisemblance et l'estimation des paramètres non linéaires (y compris le calcul des intervalles de confiance), pour dériver les modèles candidats à partir de données expérimentales. De manière systématique, les modèles peuvent être dérivés et éventuellement simplifiés, sur la base d'une analyse des incertitudes des paramètres. Cette procédure est générale et peut être appliquée à d'autres bioprocédés, pour lesquels les connaissances préalables sont insuffisantes pour développer un premier modèle principe de manière directe. Le lecteur intéressé pourra se référer à [START_REF] Dewasme | Macroscopic dynamic modeling of sequential batch cultures of hybridoma cells : An experimental validation[END_REF] pour une application aux cultures de cellules d'hybridome dans des cultures séquentielles en fedbatch.

Conclusion générale et perspectives

Les travaux qui ont été décrits dans ce mémoire sont consacrés à la modélisation de processus biologiques et l'analyse mathématiques des modèles de compétition et de coexistence des espèces microbiennes dans un chémostat. Les messages les plus importants que j'ai mis en évidence dans ce travail sont les suivants :

1. En considérant seulement la compétition intra-spécifique dans le modèle classique du chémostat avec plusieurs espèces en compétition pour une seule ressource, on a montré l'existence d'un unique équilibre positif de coexistence à partir d'un certain seuil de la concentration d'alimentation. Cet équilibre est stable dès qu'il existe. Le diagramme opératoire illustre l'effet de la compétition intra-spécifique sur la région de coexistence dans le plan opératoire (D, S in ).

2. En considérant que l'espèce la plus compétitive fait des flocs et avec les mêmes taux de dilution, j'ai mis en évidence les effets communs du phénomène de floculation et de l'inhibition du substrat sur l'émergence de cycles limites instables par des bifurcations de Hopf sous-critiques. Cependant, sous l'effet joint de la floculation et de la mortalité, le modèle peut subir des bifurcations de Hopf supercritiques ou homocliniques, avec l'apparition ou la disparition d'une orbite périodique stable.

3. Motivée par les modèles de floculation, l'étude des modèles densité-dépendants intra et interspécifiques montre la convergence globale vers l'équilibre de coexistence pour des termes d'interférence inter-spécifiques suffisamment petits en permettant une large classe de fonctions de croissance avec des taux de disparition distincts. Cependant, lorsque l'interférence inter-spécifique est suffisamment grande, le système présente une bistabilité avec l'exclusion compétitive d'une espèce, selon la condition initiale. 4. À partir des données expérimentales d'un bioprocédé produisant des FOS, j'ai étudié l'identification des paramètres et j'ai réussi à déterminer un modèle mécaniste qui a fourni des prédictions satisfaisantes en validation directe et croisée. De plus, j'ai montré que l'analyse de sensibilité, la matrice d'information de Fisher et la sélection de sous-ensembles de paramètres basée sur la décomposition QR peuvent être utilisées comme des outils systématiques pour réduire drastiquement les modèles biologiques détaillés à des représentations qui sont pratiquement identifiables avec les données disponibles. Enfin, j'ai utilisé une procédure basée sur les données expérimentales combinant l'analyse de la composante principale du maximum de vraisemblance et l'estimation des paramètres non linéaires, pour dériver les modèles candidats qui peuvent être simplifiés de manière systématique, étape par étape en étudiant les incertitudes des paramètres. La méthode proposée est originale et peut être appliquée à d'autres bioprocédés, pour lesquels les connaissances préalables sont insuffisantes pour développer un premier modèle de manière directe.

Pour la suite de mes travaux, plusieurs pistes sont en cours et sont envisagées. Un autre axe de recherche pour lequel j'ai un intérêt particulier est le processus de digestion anaérobie utilisé pour le traitement biologique des déchets municipaux, agricoles et industriels avec l'avantage supplémentaire de sa capacité à produire une énergie précieuse sous forme de biogaz. Plus précisément, j'ai considéré, dans un premier travail, un modèle de digestion anaérobie décrivant une relation syntrophique où deux espèces microbiennes dépendent l'une de l'autre pour leur survie. Le modèle à deux étapes décrit les deux réactions biologiques suivantes : Ce modèle général présente un comportement riche avec la coexistence de deux espèces microbiennes, la bistabilité, la multiplicité des équilibres de coexistence et l'existence de deux équilibres d'extinction de la première espèce. Le diagramme opératoire montre comment le modèle se comporte en faisant varier les paramètres de contrôle et illustre l'effet de l'inhibition et de la nouvelle concentration du substrat d'entrée (hydrogène) sur la réduction de la région de coexistence et l'émergence d'une région de bistabilité. Ces résultats sont soumis dans [START_REF] Fekih-Salem | A mathematical model of anaerobic digestion with syntrophic relationship, substrate inhibition and distinct removal rates[END_REF] et peuvent également servir à une conception expérimentale optimale en étudiant la production du biogaz et les performances du processus par rapport aux paramètres opératoires. Il s'agit d'une question importante qui mérite plus d'attention et fera l'objet de travaux futurs.

s 0 µ 0 -→ x 0 + s 1 , s 1
Dans un deuxième travail, on s'est intéressé par un modèle mécaniste décrivant la minéralisation anaérobie du chlorophénol dans un réseau trophique à trois étapes où trois espèces microbiennes sont en compétition pour trois substrats dans le chémostat. Plus précisément, on considère le système étudié dans [99], qui représente un modèle de réseau trophique microbien à trois niveaux : 
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 1 Fig. I.1 -Caractéristiques à l'équilibre pour n = 3. En rouge [bleu] la partie de la caractéristique qui correspond aux équilibres LES [resp. instables].
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 32102 Fig. I.2 -Émergence de la région de coexistence I3 : (a) a1 = 0, (b) a1 = 0.15 et (c) a1 = 1.5.

(II. 2 )

 2 On suppose que deux bactéries isolées peuvent s'agréger ensemble pour former un nouveau floc avec le taux au et qu'un floc peut se diviser et libérer des bactéries isolées avec le taux b. Ainsi, A(S, u, v) = au et B(S, u, v) = b comme dans les références[START_REF] Fekih-Salem | Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat[END_REF][START_REF] Fekih-Salem | La flocculation et la coexistence dans le chemostat[END_REF][START_REF] Haegeman | How flocculation can explain coexistence in the chemostat[END_REF]. Dans[START_REF] Fekih-Salem | Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat[END_REF], on a montré que le modèle de floculation à deux espèces (II.1) avec un taux de croissance non monotone seulement pour les bactéries isolées présente l'émergence d'un cycle limite stable. Afin de comprendre si l'apparition d'un cycle limite stable est due à l'effet conjoint de la compétition et à la floculation, on étudie dans la suite le modèle (II.1) avec une seule espèce et le même taux de dilution D. De plus, on considère un taux de croissance non monotone seulement pour les bactéries isolées. Pour plus de détails, le cas où un taux de croissance non monotone des bactéries isolées et attachées avec une certaine corrélation est étudié dans Fekih-Salem et al.[START_REF] Fekih-Salem | Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses[END_REF].
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 2 'équation (II.5) admet une solution strictement positive (u, v) si et seulement si ϕ(S) et ψ(S) ont des signes opposés à l'équilibre. Soient I et J les ensembles donnés dans le tableau II.2. Lorsque ϕ(S) < 0 Intervalles d'existence des équilibres positifs selon le cas.

II. 2 7 )Proposition II. 1 .

 271 alors S doit appartenir à l'ensemble I et lorsque ϕ(S) > 0 et ψ(S) < 0, alors S doit appartenir à l'ensemble J. Ces conditions peuvent être résumées par la seule condition S ∈ I ∪ J, avec I =]λ 0 , min(µ 0 , λ 1 )[ et J =] max(µ 0 , λ 1 ), +∞[. (II.6) Flocs de deux bactéries Ensuite, nous devons chercher des solutions (S, u, v) de (II.3) avec S ∈ I ∪ J. Comme on a ψ(S) = 0, l'équation (II.5) peut être réécrite comme En remplaçant v par son expression (II.7) dans la deuxième équation de (II.3), on obtient (pour u et v positifs) u = U (S) avec U (S) := ϕ(S) aψ(S) [ψ(S) -b] . (II.8) En remplaçant u par (II.8) dans (II.7), on obtient v = V (S) avec V (S) := -ϕ 2 (S) aψ 2 (S) [ψ(S) -b] . (II.9) Si l'équation ψ(S) = b possède une solution, il est unique et on notera λ b = ψ -1 (b). Sinon, on prend λ b = +∞. Notons que u et v définis par (II.8) et (II.9), respectivement, sont positifs si et seulement si S ∈ I ∪ J b avec J b = J ∩ [0, λ b [. On remarque que l'intervalle J b est vide si b < ψ(µ 0 ) dans le cas λ 1 < µ 0 et est vide si b = 0 dans le cas µ 0 < λ 1 . D'après (II.3), on déduit que S in -S = u + v. En remplacement u et v par (II.8) et (II.9), on obtient S in -S = H(S) où H(S) := ϕ(S) aψ 2 (S) [ψ(S) -b] [ψ(S) -ϕ(S)] . (II.10) Ceci nous permet d'énoncer le résultat suivant. Le système (II.2) possède les équilibres suivants :

  11) dont le signe peut être positif ou négatif quand S ∈ I ∪ J b (voir figures II.1 et II.2). De plus, la fonction H(•) est définie et positive sur cet intervalle. Elle s'annule en λ 0 , µ 0 , λ b et tend vers l'infini quand S tend vers λ 1 .

Fig. II. 1 -

 1 Fig. II.1 -Le cas λ1 < µ0 : Multiplicité des équilibres positifs : H est croissante (a) et non monotone (b) sur I. (c) Exemple numérique d'existence de trois équilibres positifs. Les valeurs des paramètres sont données dans le tableau B.1 [28].
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 2 Fig. II.2 -Le cas µ0 < λ1 : Multiplicité des équilibres positifs : H est décroissante (a) et non monotone (b) sur J b . Les valeurs des paramètres sont données dans le tableau B.1 [28].

  figure II.2 illustre le cas µ 0 < λ 1 où la fonction H(•) est décroissante (a) ou non monotone (b) sur J b .

  Figure II.3(a) illustre ce changement de signe de T 1 (S in ) où D 1 (S in ) est positif ou, de façon équivalente, H ( S) < -1. De plus, la matrice jacobienne A 3 1 possède une paire de valeurs propres complexes et conjuguées λj (S in ) = α(S in ) ± iβ(S in ), j = 1, 2 qui devient purement imaginaire pour une valeur particulière S in = S c in telle que α(S c in ) = 0, avec β(S c in ) = 0. On suppose la propriété suivante (qui a été vérifiée numériquement)

Fig. II. 3 -

 3 Fig. II.3 -Bifurcation de Hopf sous-critique : (a) changement de signe de T1(Sin) où D1(Sin) > 0 pour λ b = 4 < Sin < Sin ≈ 14.9124, (b) variation d'une paire de valeurs propres complexes et conjuguées quand Sin augmente. (c) Diagramme de bifurcation : en bleu les équilibres instables, en rouge les équilibres stables et en cyan le cycle instable. Les valeurs des paramètres sont données dans le tableau B.1 [28].

Fig. II. 4 -

 4 Fig. II.4 -Cas (a) : Sin = 7 < S 1 in ≈ 8.8763. Cas (b) : Sin = S 1 in (bifurcation hétéroclinique). Cas (c) : S 1 in < Sin = 8.9 < S 2 in ≈ 9.1162. Cas (d) : Sin = S 2 in (bifurcation homocline). Cas (e) : S 2 in < Sin = 9.4 < S c in (cycle limite instable). Cas (f) : S c in < Sin = 11 < Sin. Sur cette figure, en rouge : variété stable, en bleu : variété instable et en vert : (hétéro-)cycle.

  Ainsi, le modèle de floculation à une espèce (II.2) avec un taux de croissance non monotone présente un comportement riche avec multiplicité d'équilibres positifs, bistabilité et existence d'un cycle limite instable émergeant d'une bifurcation de Hopf sous-critique.

  et dans ce travail, u et v sont des densités massiques. Par conséquent, dans [43], u = u 1 m et v = 2u 2 m, où m est la masse des bactéries. Ainsi, le terme A(•)u = au 2 dans [43] correspond à l'agrégation de deux bactéries planctoniques pour former un floc de taille 2 et le terme B(•)v = bv dans [43] correspond à la rupture d'un floc en bactéries planctoniques. Dans la suite, on ne prendra pas en compte la taille ou le nombre de bactéries dans les II.3 Modèle avec biomasse agrégée flocs. On distingue simplement la biomasse totale v = (2u 2 + 3u 3 + • • • ) m dans les flocs et la biomasse planctonique u = u 1 m. Par conséquent, au terme A(•) = au dans [43], on doit ajouter un terme qui est proportionnel à v et qui correspond à l'agrégation des flocs avec des bactéries planctoniques pour former des flocs plus gros. Pour la simplicité, on suppose que le coefficient de proportionnalité est aussi égal à a et on prend A(•) = a(u + v) au lieu du choix plus général A(•) = a u u + a v v. Ce choix d'un terme d'attachement linéaire a été proposé pour la première fois dans Fekih-Salem et al. [26] et a également été considéré dans [23, 47, 88, 96]. Il correspond aux interactions de floculation suivantes : les bactéries planctoniques peuvent s'agréger avec des bactéries planctoniques ou des flocs pour former des nouveaux flocs, avec un taux a(u + v)u, proportionnel à la fois à la densité des bactéries isolées u et à la densité totale de la biomasse u + v. De plus, on suppose, comme dans la modélisation de Smoluchowski, que B(•) = b, c'est-à-dire que les flocs peuvent se diviser et libérer des bactéries planctoniques, avec le taux bv, proportionnel à la densité v. Le modèle prend la forme

  14) où a et b sont des constantes positives. Toutes ces études se sont limitées au cas biologiquement intéressant D v ≤ D u ≤ D, où D u = αD et D v = βD avec α et β appartiennent à [0, 1] et désignent, respectivement, la fraction des bactéries planctoniques et attachées quittant le réacteur comme proposé par Bernard et al. [9] pour modéliser un réacteur à biomasse attachée au support ou pour découpler le temps de séjour des solides et le temps de séjour hydraulique (1/D). Dans la suite, on étudie le modèle (II.14) où D u et D v peuvent être modélisées comme dans [77, 104] par

  ont tenté de comprendre les effets de la mortalité sur le comportement du système et la coexistence d'espèces dans le chémostat.Jones et al.[START_REF] Jones | Bacterial wall attachment in a flow reactor[END_REF][START_REF] Jones | Bacterial wall attachment in a flow reactor : Mixed culture[END_REF][START_REF] Jones | The Freter model : a simple model of biofilm formation[END_REF] ont considéré le taux de mortalité des cellules planctoniques et adhérentes dans le modèle de Freter de formation de biofilm en ajoutant un agent antimicrobien dans un réacteur continu et agité. Ainsi, un taux de mortalité significatif de bactéries isolées et/ou attachées pourrait augmenter le taux de disparition D u et/ou D v jusqu'à des valeurs supérieures au taux de dilution D.Par conséquent, l'étude ne sera pas restreinte aux cas D v ≤ D u ≤ D, comme dans[START_REF] Fekih-Salem | Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat[END_REF][START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF] 47,[START_REF] Rapaport | Properties of the chemostat model with aggregated biomass[END_REF] 96] et les cas D < D u , D < D v ou D u < D v , qui sont également d'intérêt biologique, seront investigués. Lorsque D = D u = D v , un résultat dans Harmand et al. [47] (voir aussi Rapaport [88]) montre que le modèle peut avoir un unique équilibre positif E * = (S * , u * , v * ), qui existe dès que f (S in ) > D. L'analyse du diagramme opératoire de ce modèle montre que les régions de lessivage et de coexistence ne dépendent que du taux de croissance des bactéries planctoniques [96]. Il a été montré dans [23, 26] que si D v < D u ≤ D et avec des taux de croissance monotones f (S) et g(S), le modèle (II.14) peut présenter un comportement de bistabilité, similaire à celui obtenu dans le modèle classique du chémostat (1) avec une seule espèce et une cinétique non monotone. Le cas D v < D u ≤ D peut se produire, par exemple, si m u = m v = 0 et β < α, c'est-à-dire le temps de séjour des bactéries attachées est supérieur à celui des bactéries planctoniques. L'objectif principal de cette section est de donner une analyse complète du modèle (II.14). On montre que lorsque D u ≤ D v , le modèle admet un unique équilibre positif E * = (S * , u * , v * ), qui existe dès que f (S in ) > D. Si, en plus, D v ≤ D, E * est LES dès qu'il existe. Par conséquent, on étend les résultats sur l'existence et l'unicité de l'équilibre positif obtenus dans le cas particulier D = D u = D v [47, 88] au cas général D u ≤ D v ; voir Proposition II.6. Le résultat sur la stabilité est étendu au cas D u ≤ D v ≤ D ; voir Proposition II.10. À la suite de [23], lorsque D v < D u ≤ D, on montre la multiplicité des équilibres positifs qui peuvent apparaître par des bifurcations noeud-col ou des bifurcations transcritiques ; voir Proposition II.11. Lorsque D v < D u et D < D u , on étudie numériquement le système et on démontre l'occurrence des bifurcations de Hopf et des bifurcations homocliniques ; voir Section 3.3. Notons que la condition D < D u et D < D v ne peut se produire que lorsque des termes de mortalité sont ajoutés au modèle.
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 15 Pour résoudre (II.15), on utilise le concept de la caractéristique à l'équilibre. Ce concept consiste à déterminer les équilibres des deuxième et troisième équations de (II.14), où S * est considéré comme une entrée du système. Autrement dit, on doit résoudre les deuxième et troisième équations de (II.15), II.3 Modèle avec biomasse agrégée où u * et v * sont inconnus et S * est considéré comme un paramètre. Supposons qu'on obtient u * = U (S * ), v * = V (S * ). Si on remplace u * et v * par ces expressions dans la première équation de (II.15), on obtient une équation de la seule variable S * de la forme D(S in -S * ) = H(S * ), où H(S * ) = f (S * )U (S * ) + g(S * )V (S * ). En résolvant cette équation, on trouve S * et par suite u * = U (S * ) et v * = V (S * ). Dans ce qui suit, on montre comment déterminer les fonctions U , V et H et on donne les conditions telles qu'une solution S * existe. De (H1), lorsque les équations f (S) = D u , g(S) = D v et g(S) = D v + b ont des solutions, elles sont uniques et on définit les seuils de croissance usuels

Lemme II. 1 .

 1 Sous les hypothèses (H1)-(H2), le système (II.14) admet alors les équilibres suivants :1. le lessivage E 0 = (S in , 0, 0), qui existe toujours, 2. un équilibre positif, E 1 = (S * , u * , v * ) avec S * solution de l'équation D(S in -S * ) = H(S * ), (II.20) où H est donné par (II.19), u * = U (S * ) et v * = V (S * ) avec U et V sont donnés par (II.18).

c 2 =

 2 m 12 m 21 + m 13 m 31 -m 32 a 23 + m 11 m 22 + m 11 m 33 + m 22 m 33 , c 3 = m 11 (m 22 m 33 -m 32 a 23 ) + m 21 (m 12 m 33 + m 32 m 13 ) + m 31 (m 12 a 23 + m 13 m 22 ). (II.25) D'après le critère de Routh-Hurwitz, E 1 est LES si et seulement si c 1 > 0, c 3 > 0 et c 4 = c 1 c 2 -c 3 > 0. (II.26) On a le résultat suivant. Lemme II.3. Tous les m ij sont positifs pour tous i, j = 1, . . . , 3 avec (i, j) = (2, 3) et on a c 1 > 0. Dans la proposition suivante, on montrera que le signe de c 3 est donné par la position de la courbe de la fonction H(•) par rapport à la droite d'équation y = D(S in -S). Plus précisément, on donne le lien entre le déterminant de la matrice jacobienne J 1 en E 1 = (S * , u * , v * ) et D + H (S * ). En effet, ce résultat est très général, comme on le montre dans l'annexe A.3 de Fekih-Salem et Sari [30]. Proposition II.8. On a c 3 = -det(J 1 ) = -ϕ(S * )(ψ(S * ) -b)(D + H (S * )). Étant donné que la condition c 4 > 0 du critère de Routh-Hurwitz (II.26) pourrait être non vérifiée, on étudiera le comportement du modèle de floculation (II.14) selon le taux de dilution et les taux de disparition des bactéries planctoniques et attachées. En fait, il existe quatre cas qui doivent être distingués (voir figure II.5) : cas 1 :

4 Fig. II. 5 -

 45 Fig. II.5 -Diverses régions selon D, Du et Dv lorsque le comportement du système (II.14) est différent. Région jaune pour le cas 1 (Du ≤ Dv ≤ D) ; région verte pour le cas 2 (Dv < Du ≤ D) ; région magenta pour le cas 3 (Dv < Du et D < Du) ; région cyan pour le cas 4 (Du ≤ Dv et D < Dv).
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 6 Fig. II.6 -Existence et stabilité des équilibres dans le cas 2 de (III.20) : (a) si λu < min(λv, Sin), (b) si λv < Sin < λu < λ b et (c) si Sin > min(λu, λ b ).
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 8 Fig. II.8 -Deux bifurcations de Hopf supercritiques : (a) variation d'une paire de valeurs propres complexes et conjuguées lorsque Sin augmente et la partie réelle correspondante (b) en fonction de Sin.
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 91010 Fig. II.9 -(a) La simulation en Scilab montrant les projections de l'ensemble ω-limite de la variable S lorsque Sin ∈ [3.5, 8.5] révèle l'émergence et la disparition des cycles limites ; (b) un agrandissement des deux bifurcations homocliniques lorsque Sin ∈ [3.83, 4.08] ; (c) un agrandissement de la bifurcation de Hopf supercritique lorsque Sin ∈ [3.835, 3.85]. Un point vert et un cercle ouvert vert représentent respectivement une bifurcation noeud-col et une bifurcation transcritique.

II. 4

 4 Conclusionen compte des bactéries attachées joue le rôle d'une "niche écologique" qui protège les bactéries du lessivage.Ce premier résultat est nouveau et non intuitif : il ne peut pas se produire dans le modèle classique du chémostat (1) même avec un taux de croissance non monotone (dans ce cas, le système peut présenter une bistabilité mais avec au plus un équilibre positif, l'autre équilibre étant le lessivage). Ici, le phénomène de floculation proposé permet d'éviter le bassin d'attraction de l'équilibre de lessivage et par conséquent d'empêcher l'extinction des espèces. La floculation a donc un effet de "protection" des espèces. De plus et de manière encore plus surprenante, la floculation et l'inhibition de la croissance par le substrat permettent ensemble l'apparition d'un cycle limite instable à travers une bifurcation de Hopf sous-critique. Ainsi, l'inhibition et la floculation sont des phénomènes antagonistes : l'inhibition a tendance à lessiver les bactéries tandis que la floculation les protège. Ces mécanismes peuvent créer des oscillations (car les trajectoires du système sont nécessairement bornées) ou se compenser à la bistabilité. Dans la deuxième partie de ce chapitre, on a analysé le modèle de floculation (II.14) où les bactéries isolées peuvent s'agréger avec des bactéries isolées ou en flocs pour former de nouveaux flocs. La nouvelle caractéristique est que les termes de mortalité sont ajoutés aux taux de disparition afin de donner une analyse complète du modèle de floculation (II.14). À notre connaissance, notre étude présente une première tentative pour mettre en évidence les effets communs du phénomène de floculation et de mortalité des espèces microbiennes sur la coexistence autour d'un cycle limite stable. Selon les deux paramètres opératoires S in et D, le modèle de floculation (II.14) peut présenter des oscillations maintenues et l'apparition des cycles limites stables par des bifurcations de Hopf supercritiques. Plus précisément, lorsque D v < D u , on montre que le système peut présenter une bistabilité avec une multiplicité d'équilibres de coexistence qui peuvent émerger soit par des bifurcations noeud-col soit par des bifurcations transcritiques. Si, de plus D u ≤ D, la coexistence des bactéries planctoniques et attachées ne peut être qu'autour d'un équilibre positif. Compte tenu de la mortalité des bactéries isolées et agrégées (D < D v < D u ), on a identifié que les portraits de phase peuvent être très riches. Plus précisément, le diagramme de bifurcation à un paramètre du modèle (II.14) montre l'effet du paramètre de contrôle S in sur le comportement du système. Pour S in suffisamment petit, il y a exclusion des espèces planctoniques et attachées. En augmentant S in , le système (II.14) exhibe des bifurcations de Hopf à l'équilibre positif E 1 . De plus, ce système peut présenter une bistabilité avec convergence soit vers un cycle limite stable soit vers l'équilibre de lessivage. La disparition des cycles limites stables peut être soit par des bifurcations de Hopf supercritiques soit par des bifurcations homocliniques. Pour S in suffisamment grand, il y a convergence globale vers l'équilibre positif ou vers un cycle limite stable. Cependant, on a montré que la mortalité des espèces planctoniques ou attachées (par exemple, D v < D < D u ) suffit pour assurer la coexistence autour d'un cycle limite stable. Nos résultats montrent que la mortalité de l'espèce est nécessaire à l'émergence de cycles limites stables dans le modèle de floculation (II.14) avec des taux de croissance monotones. Cela est principa-lement dû à l'effet conjoint de la mortalité et de la floculation. Ainsi, les modèles de floculation sont sensibles à la mortalité des espèces, qui était négligée dans la littérature et confirme l'importance de la mortalité dans les systèmes biologiques. Dans Fekih-Salem et al. [28], l'étude du modèle de floculation à deux espèces (II.1) montre l'apparition des cycles limites stables par des bifurcations de Hopf et la disparition par des bifurcations homocliniques. Les simulations numériques montrent que le système peut exhiber une bistabilité avec convergence soit vers un cycle limite, soit vers un équilibre positif. On conclut ainsi que le mécanisme de floculation pourrait être responsable d'une coexistence autour d'un équilibre positif alors que l'ajout de l'inhibition de la croissance par le substrat montre l'émergence d'un cycle limite instable. Cependant, l'ajout de la compétition de deux espèces à ces deux phénomènes pourrait conduire à une coexistence autour d'un cycle limite stable. Un choix plus général pour la vitesse spécifique A(•) d'agrégation, qui est toujours cohérent avec la modélisation de la floculation de Smoluchowski [42, 109], devrait être A(•) = a u u + a v v avec des coefficients distincts a u et a v . Le cas particulier a v = 0 correspond au modèle dans [43] et le cas particulier a u = a v correspond au modèle dans le présent chapitre. L'étude de la robustesse du modèle vis-à-vis cette variation, ou avec d'autres termes entachés d'une légère non-linéarité, est une question importante qui mérite une attention particulière et fera l'objet d'un futur travail. Par ailleurs, une propriété intéressante du modèle général (II.1) et son extension à n espèces en compétition, est que sous l'hypothèse que les vitesses d'attachement et de détachement sont plus rapides par rapport aux taux de croissance spécifiques et de disparition, le modèle de floculation (II.1)

  où les deux populations survivent : x * 1 > 0 et x * 2 > 0. Les composants S = Si et x = xi d'un équilibre de frontière E i sont les solutions de (III.5) avec x i > 0 et x j = 0, j = i. Par conséquent, Si et xi sont les solutions des équations D(S in -Si ) = D i xi (III.6) µ i Si , xi , 0 = D i . (III.7) De (III.6), on a Si = S in -D i D xi . (III.8) En remplaçant Si par cette expression dans (III.7), on voit que x i = xi doit être une solution de

  in , c'est-à-dire (III.16) admet une solution à l'intérieur M o de M , défini par (III.18). Pour résoudre (III.16) dans cet ouvert M o , on a besoin du résultat suivant : Lemme III.1. Supposons que la condition (III.11) est vérifiée pour i = 1, 2 et soit xi une solution de

Fig. III. 1 -

 1 Fig. III.1 -(a) Définition de la fonction F1. (b) Définition de la fonction F2. (c) : Un équilibre positif bleu. Dans toutes les figures, les courbes γ1 et γ2 sont respectivement en bleu et en rouge.

Fig. III. 2 -

 2 Fig. III.2 -Cas 1 : x1 > x1 et x2 > x2, Cas 2 : x1 < x1 et x2 < x2. (a) Intersection unique, (b) un nombre impair d'intersections.

Fig. III. 3 -

 3 Fig. III.3 -Cas 3 : x1 < x1 et x2 > x2, Cas 4 : x1 > x1 et x2 < x2. (a) Pas d'intersection, (b) un nombre pair d'intersections.

  Par conséquent, xi et xi dépendent des paramètres opératoires S in et D. On les désigne par xi (S in , D) et xi (S in , D). Définissons les ensembles Υ c i = {(S in , D) : xi (S in , D) = xi (S in , D)}, qui sont des courbes dans le cas générique. Si les courbes Υ i , i = 1, 2 se coupent en un point (S * in , D * ) du plan, alors on a µ 1 (S * in , 0, 0) = µ 2 (S * in , 0, 0) = D * . (III.29) D'après (III.29), on déduit que xi (S * in , D * ) = 0 et xi (S * in , D * ) = 0, i = 1, 2. Par conséquent, le point (S * in , D * ) appartient aux ensembles Υ c i , i = 1, 2. D'où, si Υ i , i = 1, 2 se coupent en un point du plan (S in , D), alors les courbes Υ c i se coupent au même point.

  La figure III.4 illustre le cas où les courbes Υ 1 et Υ 2 ne se coupent pas. Dans ce cas, les courbes Υ i et Υ c i , i = 1, 2 séparent le plan opératoire (S in , D) en au plus six régions, notées I k , k = 0, . . . , 5. Toutes les régions apparaissent dans la figure III.4(c). Les régions I 4 et I 5 sont vides dans le cas (a) et les régions I 4 et I 3 sont vides dans les cas (b) et (d), respectivement.

Fig. III. 4 -

 4 Fig. III.4 -Les diagrammes opératoires de (III.30) où D1 = D2 = D et νi est donné par (III.31) et les courbes Υine se coupent pas : émergence de la région de bistabilité I4 et disparition de la région de coexistence I3 lorsque αi augmente. La couleur cyan représente la région de lessivage (E0 est GAS), la couleur rouge représente la région de coexistence (E * est GAS), la couleur bleue représente la région de bistabilité (E1 et E2 sont LES), la couleur verte [resp. jaune] représente une région d'exclusion compétitive (E1 [resp. E2] est GAS).

Tab. III. 2 -

 2 Existence et stabilité locale des équilibres selon les régions du diagramme opératoire de la figure III.4, lorsque les courbes Υi ne se coupent pas. Région E 0 E 1 E 2 E * (S in , D) ∈ I 0 S (S in , D) ∈ I 1 Dans ce chapitre, on a analysé l'effet des interférences intra et interspécifiques sur la coexistence des espèces microbiennes dans un chémostat, en considérant une large classe de fonctions de croissance avec des taux de disparition distincts. L'analyse mathématique prouve que la sortie de la compétition de deux compétiteurs pour une seule ressource dépend des positions relatives des nombres xi et xi , i = 1, 2. En effet, on a distingué quatre cas (III.20), qui sont qualitativement similaires aux cas rencontrés dans le modèle classique de compétition Lotka-Volterra. Lorsque l'interférence intraspécifique est dominante par rapport à l'interférence interspécifique, il existe au plus un équilibre positif, qui est LES tant qu'il existe. Cet équilibre positif existe si et seulement si les deux équilibres de frontière sont instables. Par conséquent, le modèle exhibe la coexistence des espèces. Inversement, lorsque l'interférence intraspécifique est dominée par l'interférence interspécifique, il existe au plus un équilibre positif, qui est instable tant qu'il existe. Cet équilibre positif existe si et seulement si les deux équilibres de frontière sont LES. Par conséquent, le modèle présente la bistabilité. Avec le même taux de disparition D 1 = D 2 = D, le modèle d'ordre trois (III.3) peut être réduit au modèle du second ordre (III.28), grâce au principe de conservation de la matière. De plus, d'après les résultats de Thieme [108], la stabilité asymptotique globale de chaque équilibre de (III.3) est dérivée de celle du modèle réduit (III.28). Notre étude mathématique révèle une caractéristique principale du modèle densité-dépendant intra et interspécifique qui a été établie numériquement par Lobry et al. [48, 72] : pour des termes d'interférence interspécifiques suffisamment petits, il existe une persistance stable de deux espèces qui peuvent coexister pour toute condition initiale positive. Cependant, si ces termes sont suffisamment grands, le système présente une bistabilité avec l'exclusion compétitive d'une espèce selon la condition initiale. Par conséquent, l'interférence intra et interspécifique a un impact significatif sur le comportement du système. Dans le cas particulier de (III.30) avec seulement l'interférence intraspécifique, c'est-à-dire α 1 = 0 et α 2 = 0, et le même taux de disparition D 1 = D 2 = D, on a montré dans Fekih-Salem et al. [27] que la condition d'existence de l'équilibre positif E * , obtenue par Lobry et al. [72, 74], est équivalente au cas 1 de (III.20). Les diagrammes opératoires montrent comment les régions de coexistence et de bistabilité varient selon les interférences intra et interspécifiques. Plus précisément, l'augmentation des valeurs des termes d'interférence interspécifiques réduit la région de coexistence et augmente les régions d'exclusion compétitive avec l'apparition d'une région de bistabilité. En effet, on pense que l'une des originalités de ce travail est de mettre en évidence les effets communs de l'interférence intra et interspécifique sur le comportement des modèles densité-dépendants. Les simulations illustrent les résultats mathématiques démontrés dans le cas où les taux de croissance densité-dépendants sont de type Monod modifiés (III.31) ou de type Monod généralisés [27].
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 11 Fig. IV.1 -Évolution du débit d'alimentation proposé dans une expérience en mode fedbatch.

  le rang -numérique pourrait être défini comme suit : r = min {r : σ r ≤ } .

Tab. IV. 2 -

 2 tions initiales qui sont mesurées et donc incertaines. Cela conduit à un problème d'identification avec 41 paramètres (48 avec les conditions initiales) pour une culture en batch et jusqu'à 69 paramètres pour une combinaison de deux expériences en batch et deux en fedbatch. Pour illustrer la procédure d'une manière systématique, les données à partir d'une seule culture en batch (fermentation B1) sont considérées en premier pour l'identification des paramètres du modèle (IV.1) où la condition initiale de la concentration de saccharose est fournie dans le tableau IV.1. Les résultats de la validation directe sont présentés sur les figures IV.2 et IV.3, et sont tout à fait satisfaisants. Cependant, la FIM est mal conditionnée avec rcond(FIM) = 3 × 10 -53 , c'est-à-dire que la condition (IV.14) n'est pas satisfaite et le rang(FIM) = 35 tandis que dim (FIM)=41 (voir Tableau IV.2). Ainsi, le modèle n'est pas identifiable avec les données d'une seule expérience en batch. Racine carrée de l'erreur quadratique moyenne (Root-Mean-Square Error (RMSE) en anglais) et singularité, selon différents modèles et modes de culture. Modèle RMSE dim θ r dim θ K rang(FIM) rcond(FIM) FIM (IV.1)Pour fournir plus d'informations, plusieurs combinaisons des expériences B1, B2, FB1, FB2 sont sélectionnées, y compris une en batch (1B), une en fedbatch (1FB) et une avec deux expériences en batch et deux en fedbatch (2B-2FB). Les diverses expériences transmettent des informations différentes comme elles ont été réalisées avec différentes conditions initiales de la concentration du saccharose (voir tableau IV.1). Les expériences restantes (fermentations B3 et B4) ne sont pas utilisées pour l'identification, mais pour la validation croisée. Les figures IV.2 et IV.3 montrent que le modèle (IV.1) reproduit assez bien les données expérimentales en validation directe. Pour les combinaisons d'expériences 1FB et 2B-2FB, rcond(FIM) a été significativement augmenté (voir tableau IV.2). Néanmoins, les valeurs de certains paramètres et leurs intervalles de confiance associés peuvent varier considérablement en fonction de la base de données. Logiquement, la richesse de la base de données 2B-2FB conduit à des valeurs plus raisonnables, mais ne permet pas toujours de capturer tous les paramètres d'une manière fiable (voir tableau A.1). Ceci est logique puisque la FIM est encore singulière (puisque le rang(FIM) = 38 tandis que le dim (FIM) = 41 quand on ne considère pas les conditions initiales dès le début dans l'ensemble des paramètres inconnus, voir tableau IV.2). Ainsi, les données additionnelles ne sont pas suffisantes pour garantir l'identifiabilité de tout le modèle.
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 23 Fig. IV.2 -Concentrations en saccharose, fructose et glucose : mesures des fermentations B1 (points verts) et FB1 (points rouges) et prédiction de différents modèles. Les simulations du modèle sont représentées avec des lignes continues tandis que les données expérimentales à temps discret sont représentées par des points.
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 4 Fig. IV.4 -Matrice de corrélation du modèle (IV.20) représentée sous forme d'une carte thermique. Les paramètres sont numérotés de 1 à 41 suivant la séquence de la première colonne du tableau A.1.

6 .

 6 .21) L'identification des paramètres du modèle (IV.20) avec la combinaison des expériences 2B-2FB montre encore une bonne capacité prédictive en validation directe (voir les figures IV.2 et IV.3). Ceci confirme, a posteriori, la légitimité de la réduction du modèle. Les résultats de l'identification du tableau A.2 montrent que la plupart des incertitudes, mais pas toutes, sont réduites. Même si la FIM est régulière où la condition (IV.14) est vérifiée et le rang(FIM) = dim (FIM) = 31 (voir tableau IV.2), le rang -numérique(S) = 30 et le rang -numérique(S T S) = 30 au lieu de N p = 31. Il est donc recommandé d'éliminer un paramètre de plus et le suivant dans la sélection du sous-ensemble QR serait k La méthode de la norme L2 pointe également sur ce paramètre et, de plus, les résultats actuels de l'identification indiquent que ce coefficient pseudo-stoechiométrique est très faible (voir tableau A.2) et pourrait probablement être négligé.

22 )

 22 Les résultats de l'identification pour ce dernier modèle montrent que la FIM est régulière puisque la condition (IV.14) est vérifiée et rang(FIM) = dim (FIM) = rang -numérique(S) = 30 avec N p = 30 (voir tableau IV.2). Cependant, certains paramètres restent associés à des incertitudes assez importantes et il est proposé d'éliminer encore les paramètres Kgst, Kih GF 2 et Kih GF 4 pour lesquels les coefficients de variation sont supérieurs à 50 % (pas explicitement indiqué dans le tableau A.2, mais la deuxième colonne indique les intervalles de confiance). Par conséquent, les vitesses de réaction simplifiées r i , i = 2, 4, 5 deviennent
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 5 Fig. IV.5 -Matrice de corrélation du modèle (IV.24-IV.26) représentée sous forme d'une carte thermique. Les paramètres sont numérotés de 1 à 23 suivant la séquence de la première colonne du tableau A.2.
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 6 Fig. IV.6 -Validation croisée du modèle réduit (IV.24-IV.26) en utilisant la fermentation B4 (RMSE=9.43).
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 7 Fig. IV.7 -Évolution temporelle des concentrations dans l'expérience B1 -Tous les échantillons expérimentaux (points verts avec des barres d'erreur noires à 95%) ont une intersection non vide avec les intervalles de confiance à 95 % (lignes pointillées noires) des concentrations simulées (lignes continues en rouge) -Simulation de Monte Carlo (200 trajectoires en gris clair) avec une trajectoire moyenne en magenta et des couloirs de confiance à 95% avec des lignes cyan en pointillés.

  La figure IV.8 peut être analysée comme suit : (a) N r = p = 1, 2 est rejeté au niveau de signification 99.9% (presque toujours) et la structure du modèle ne permet pas aux erreurs de MLPCA résultantes d'être plus petites que les erreurs du bruit de mesures supposées. (b) N r = p = 3 est rejeté au niveau de signification 0.01% mais pas à 99.9% et plus de quantiles doivent être calculés pour déterminer exactement le niveau de signification minimal de rejet. (c) N r = p = 4 n'est pas rejeté au niveau de signification 0.01%, c'est-à-dire que la probabilité que J p ≤ J * soit vraie est inférieure à 0.01% et le sous-espace de dimensions 4 a donc une probabilité de plus de 99.9% pour être un candidat de base d'un bon modèle.
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 8 Fig. IV.8 -Fonctions coûts de Log-vraisemblance liées aux sous-espaces estimés de MLPCA avec l'ensemble de données en cultures batch et fedbatch. La ligne en pointillé supérieure représente le quantile chi carré χ 2 1350 à 99,9 % et celle du bas le quantile chi carré χ 2 1350 à 0.1%.
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 9 Fig. IV.9 -Expériences en batch (B1 : vert -B2 : noir) et expériences en fedbatch (FB1 : rouge -FB2 : bleu). Mesures et prédiction du modèle (IV.36 -IV.38) où J(θ) = 6.59 (RMSE=8.03).
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 40 Ce modèle admet neuf coefficients pseudo-stoechiométriques et neuf paramètres cinétiques. La Fig. IV.10 montre le bon ajustement du modèle (IV.39 -IV.40) avec les données expérimentales disponibles, malgré la réduction drastique du nombre de paramètres. De plus, les intervalles de confiance des paramètres restants sont maintenant relativement petits (voir tableau A.3). La FIM est régulière avec rcond(FIM) = 2.34×10 -10 (une légère amélioration par rapport aux résultats précé-
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 10 Fig. IV.10 -Expériences en batch (B1 : vert -B2 : noir) et expériences en fedbatch (FB1 : rouge -FB2 : bleu). Mesures et prédiction du modèle (IV.39 -IV.40) où J(θ) = 7.06 (RMSE=8.39).
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 11 Fig. IV.11 -Expériences en batch (B1 : vert -B2 : noir) et expériences en fedbatch (FB1 : rouge -FB2 : bleu). Mesures et prédiction du modèle (IV.41 -IV.42) où J(θ) = 9.41 (RMSE=8.18).
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 12 Fig. IV.12 -Tableaux d'identifiabilité générés par le logiciel GenSSI pour le modèle (IV.41 -IV.42) avec 14 paramètres. Un carré noir aux coordonnées (i, j) indique que le coefficient de la série génératrice non nul correspondant j dépend du paramètre i. Le tableau de gauche correspond à trois dérivées de Lie, tandis que le tableau de droite est celui du réduit.
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 13 Fig. IV.13 -Validation croisée du modèle réduit (IV.41 -IV.42) avec l'expérience B3 (RMSE=7.05).
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 14 Fig. IV.14 -Validation croisée du modèle réduit (IV.41 -IV.42) avec l'expérience B4 (RMSE=10.33).

Fig. IV. 15 -

 15 Fig. IV.15 -Tous les échantillons expérimentaux de la culture B1 (points verts avec barres d'erreur noires) ont une intersection non vide avec les intervalles de confiance à 95% (lignes pointillées) des concentrations simulées (lignes continues vertes).

µ 1 -→ x 1 où

 11 un substrat s 0 (acide gras volatil) est consommé par une biomasse x 0 (les bactéries acétogènes) pour produire l'hydrogène s 1 . Le substrat s 1 est consommé dans la deuxième réaction par une autre biomasse x 1 (les bactéries méthanogènes hydrogénotrophes). Ces réactions sont décrites par le système d'équations différentielles suivant :s in 0 -s 0 -µ 0 (s 0 , s 1 )x 0 , ẋ0 = (µ 0 (s 0 , s 1 ) -D 0 ) x 0 , ṡ1 = D s in 1 -s 1 + µ 0 (s 0 , s 1 )x 0 -µ 1 (s 1 )x 1 , ẋ1 = (µ 1 (s 1 ) -D 1 ) x 1 .(IV.49) où D 0 et D 1 représentent les taux d'élimination des bactéries acétogènes et méthanogènes, respectivement. On a donné une analyse assez complète du modèle syntrophique (IV.49) en déterminant les effets conjoints de la relation de syntrophie, de la mortalité, de l'inhibition du substrat et des concentrations d'entrée qui ont été négligés dans les études précédentes. En utilisant des taux de croissance non monotones généraux, les conditions nécessaires et suffisantes d'existence et de stabilité de tous les équilibres du système en dimension quatre sont déterminées en fonction des paramètres opératoires.

in 1 et s in 2 . 1 -

 21 ẋ0 = (µ 0 (s 0 , s 2 ) -D -a 0 )x 0 ẋ1 = (µ 1 (s 1 , s 2 ) -D -a 1 )x 1 ẋ2 = (µ 2 (s 2 ) -D -a 2 )x 2 ṡ0 = D s in 0 -s 0 -µ 0 (s 0 , s 2 )x 0 ṡ1 = D s in 1 -s 1 + µ 0 (s 0 , s 2 )x 0 -µ 1 (s 1 , s 2 )x 1 ṡ2 = D s in 2 -s 2 -ωµ 0 (s 0 , s 2 )x 0 + µ 1 (s 1 , s 2 )x 1 -µ 2 (s 2 )x 2 (IV.50)où s 0 est la concentration du premier substrat (chlorophénol) et x 0 la concentration du consommateur, s 1 et x 1 pour le deuxième substrat (phénol), s 2 et x 2 pour le troisième substrat (hydrogène). Le modèle dans [99] ne considère que la concentration d'entrée s in 0 . Ici, suivant [112], on ajoute les entrées s En considérant une large classe de cinétiques de croissance et de termes de mortalité, le modèle (IV.50) est exploré de manière assez détaillée. Selon les quatre paramètres opératoires du bioprocédé représentés par le taux de dilution et les concentrations d'alimentation du chlorophénol, du phénol et d'hydrogène, on a démontré que le système peut avoir huit équilibres en déterminant explicitement les conditions nécessaires et suffisantes pour leur existence et leur stabilité locale. À l'exception de l'équilibre positif, tous les autres équilibres ne peuvent apparaître ou disparaître que par des bifurcations transcritiques ou noeud-col. Enfin, on a montré que l'équilibre positif peut être déstabilisé par une bifurcation de Hopf supercritique avec l'apparition d'une orbite périodique stable qui pourrait disparaître par une bifurcation homocline en faisant varier la concentration d'alimentation s in 0 . Ces résultats sont soumis dans [84]. Enfin, nous étudions un modèle densité-dépendant interspécifique en considérant une relation proieprédateur. Cette relation est caractérisée par le fait que les espèces proies favorisent la croissance des espèces prédatrices qui à leur tour inhibent la croissance de la première espèce. Le modèle est un système d'équations différentielles ordinaires tridimensionnel. Avec les mêmes taux de dilution, le modèle peut être réduit à un système dans le plan qui a le même comportement local et global que le système tridimensionnel. Les conditions d'existence et de stabilité de tous les équilibres du modèle réduit dans le plan sont déterminées en fonction des paramètres opératoires. En utilisant la méthode des isoclines, nous présentons une caractérisation géométrique de l'existence et de la stabilité de tous les équilibres montrant la multiplicité des équilibres de coexistence. Les diagrammes de bifurcation illustrent que les équilibres peuvent apparaître ou disparaître uniquement par bifurcations noeudcol ou transcritiques. De plus, les diagrammes opératoires décrivent le comportement asymptotique de ce système selon les paramètres de contrôle et montrent l'effet de l'inhibition de la prédation sur l'émergence d'une région de bistabilité et la réduction jusqu'à la disparition d'une région de coexistence en augmentant ce paramètre d'inhibition. Ces résultats sont soumis dans Mtar et al. [80].Annexe A : Résultats de l'identification des paramètres Tab. A.Résultats de l'identification des paramètres (avec des intervalles de confiance de 95%) du modèle (IV.1) considérant différentes combinaisons d'expériences pour l'identification des paramètres.N o Paramètre Littérature a Modèle (IV.
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  En effet, la planification des installations de traitement des eaux usées représente la meilleure opportunité pour aborder les impacts du changement climatique de notre époque et permet de traiter les problèmes potentiels comme la diminution des ressources en eau. Pour la réutilisation de l'eau en agriculture dans les régions semi-arides, comme la Tunisie, le traitement des eaux usées utilise la dépollution par voie biologique. Les micro-organismes (ou "biomasse") transforment la matière (ou substrat) présente dans les déchets sous forme organique. Ainsi, le traitement utilise les écosystèmes microbiens pour concentrer la pollution qu'il faudrait optimiser et contrôler en identifiant des modèles mathématiques appropriés.Le chémostat est utilisé comme point de départ et joue un rôle important en tant que modèle en

Ces modèles mathématiques pourraient être utilisés pour maximiser la production d'énergie renouvelable à partir des déchets sous forme de biogaz qui est principalement transformé en chaleur et en électricité.

biologie mathématique pour des processus de traitement des eaux usées. Dans sa forme la plus simple, il s'agit d'un modèle de bioréacteur où les espèces microbiennes sont en compétition sur les nutriments disponibles. La dérivation et l'analyse d'un grand nombre de modèles de type chémostat se trouvent dans la monographie

[START_REF] Smith | The Theory of the Chemostat : Dynamics of Microbial Competition[END_REF]

, voir aussi

[47]

. Le modèle classique du chémostat où n espèces sont en compétition pour une seule ressource S s'écrit :

  1, il est bien connu que l'équilibre E 1 est localement asymptotiquement stable et tous les autres équilibres E 0 et E i , i > 1, sont instables [106]. Par conséquent, à l'équilibre, seule l'espèce avec le plus faible seuil de croissance survit, c'est l'espèce qui consomme moins de nutriment que ses compétiteurs pour atteindre son équilibre. L'un des principaux résultats concernant le système (1) est connu sous le nom de Principe d'Exclusion Compétitive (PEC), d'après Hardin [46]. Ce résultat affirme que l'équilibre localement stable E 1 est en fait globalement attractif lorsque D i = D. Cependant, la stabilité globale pour des fonctions de croissance f i monotones et sans restriction sur les D i reste un problème mathématique ouvert [70]. Le PEC a été établi par plusieurs auteurs sous diverses hypothèses : Hsu et al. [52] ont montré la stabilité asymptotique globale

de E 1 dans le cas de la cinétique de Michaelis-Menten (ou Monod)

[START_REF] Monod | La technique de culture continue[END_REF] 

et le même taux de disparition D i , Hsu

[START_REF] Hsu | Limiting behavior for competing species[END_REF] 

a étendu l'étude de [52] avec des taux de disparition distincts en utilisant un argument de Lyapunov-LaSalle, Wolkowicz et Lu

  représente, à notre connaissance, une première étude d'un modèle de floculation avec une classe générale des taux de croissance. Plus précisément, on considère une seule ressource limitante et une seule espèce microbienne qui se présente sous deux formes : des bactéries isolées et des bactéries attachées.

L'analyse mathématique et les simulations numériques montrent que le modèle révèle un ensemble très riche de comportements possibles : coexistence, bistabilité et apparition de cycles limites instables via des bifurcations de Hopf sous-critiques. Ces résultats publiés dans

[START_REF] Fekih-Salem | Emergence of coexistence and limit cycles in the chemostat model with flocculation for a general class of functional responses[END_REF] 

sont surprenants et inédits au sens où ils ne peuvent pas se produire dans le modèle classique du chémostat.

  Avec le même taux de disparition, le modèle peut être réduit à un système dans le plan, puis les résultats de stabilité globale pour chaque point d'équilibre sont dérivés. Les diagrammes opératoires montrent le comportement du modèle selon les paramètres opératoires et illustrent l'effet des interférences intra et interspécifiques sur la disparition d'une région de coexistence et l'apparition d'une région de bistabilité. Lorsque les termes d'interférence interspécifiques sont suffisamment petits, on démontre la convergence globale vers l'équilibre de coexistence pour toute condition initiale positive. Lorsque l'interférence interspécifique est suffisamment grande, ce système présente une bistabilité où la sortie de la compétition dépend de la condition initiale. Ces

Ce résultat est original et a été publié dans Fekih-Salem et al.

[START_REF] Fekih-Salem | Extensions of the chemostat model with flocculation[END_REF]

. Ces modèles s'appellent des modèles densité-dépendants qui représentent le troisième mécanisme de coexistence que j'ai étudié dans le cadre de la maintenance des écosystèmes microbiens.

Dans le chapitre III, on considère un modèle de deux espèces microbiennes en compétition pour une seule ressource dans le chémostat avec des taux de croissance généraux de densité-dépendants intra et interspécifiques. En considérant l'effet de la mortalité de ces espèces microbiennes, les taux de disparition sont distincts pour chaque espèce. Afin de comprendre les effets des interférences intra et interspécifiques, ce modèle général est d'abord étudié en déterminant les conditions d'existence et de stabilité locale des points d'équilibre. résultats sont publiés dans Fekih-Salem et al. [27]. Dans le chapitre IV, j'ai réussi à identifier un modèle dynamique d'un bioprocédé produisant des FOS à l'aide de données expérimentales collectées dans un bioréacteur en batch et fed-batch. Le modèle comprend la croissance des champignons Aureobasidium pullulans et les réactions enzymatiques qui sont divisées en réactions d'hydrolyse, représentant les FOS et la dégradation du saccharose (sucre de canne) et les réactions de transfructosylation qui décrivent la synthèse des FOS. Comme un résultat de cette description relativement détaillée, le modèle contient un grand ensemble de paramètres inconnus (25 paramètres cinétiques et 16 coefficients pseudo-stoechiométriques). À l'aide de l'ensemble de données expérimentales disponibles, l'identification des paramètres est réalisée en utilisant la méthode des moindres carrés pondérés non linéaires. L'analyse de sensibilité et la matrice d'information de Fisher sont utilisées pour simplifier progressivement le modèle à 15 paramètres cinétiques et à huit coefficients pseudo-stoechiométriques. Le modèle mécaniste résultant fournit des prédictions satisfaisantes en validation directe et croisée. Mon deuxième objectif consiste à dériver dans ce chapitre IV un modèle dynamique macroscopique de production de FOS à partir de séries de données expérimentales. Le modèle doit être de faible dimension afin de pouvoir l'identifier sur la base des données disponibles et pour pouvoir l'optimiser et le contrôler. Alors, une analyse de la composante principale du maximum de vraisemblance est utilisée pour déterminer le nombre approprié de réactions et la stoechiométrique correspondante. En outre, une structure cinétique basée sur les produits de facteurs de Monod est choisie pour la simplicité. Les paramètres du modèle sont estimés à l'aide de la méthode des moindres carrés pondérés et la simplification du modèle est effectuée de manière systématique, étape par étape en éliminant les paramètres associés à des grandes incertitudes. De plus, l'identifiabilité structurelle du modèle est confirmée à l'aide de la série génératrice et du logiciel GenSSI. L'identification est réalisée avec succès et a donné des résultats satisfaisants en validation directe et croisée. Les incertitudes sur les paramètres sont faibles et la prédiction du modèle correspond bien aux données expérimentales. Ces résultats sont publiés dans Fekih-Salem et al.

.2 Étude du modèle de compétition à n espèces

  

	Iintroduit par Lobry et al. [74, 75]. Dans la suite, on étudie l'existence des équilibres du système (I.1)
	sous l'hypothèse (H1) et pour tout a i > 0, i = 1, . . . , n. Si l'équation f i (S) = D i admet une solution,
	alors on prend
	(I.1)
	n
	où S(t) désigne la concentration du substrat ; x i (t) désigne la concentration de la i ème population de
	micro-organismes ; S in et D désignent la concentration du substrat à l'entrée du chémostat et le taux
	de dilution, respectivement ; D i désigne le taux de disparition de l'espèce i qui est égal à la somme
	du taux de mortalité de l'espèce i et du taux de dilution. a i est un paramètre positif donnant lieu
	au taux de mortalité a i x i qui est dû aux interactions intraspécifiques entre les individus d'une même
	population et f i (•) représente le taux de croissance de l'espèce i. On fait l'hypothèse suivante sur les
	taux de croissance :
	(H1) Pour i = 1, . . . , n, f i (0) = 0 et pour tout S > 0, f i (S) > 0.
	L'hypothèse (H1) signifie que la croissance peut avoir lieu si et seulement si le substrat est présent.
	De plus, le taux de croissance de chaque espèce augmente avec la concentration du substrat.
	Afin de déterminer l'existence et le comportement asymptotique des équilibres du système (I.1) en
	fonction des paramètres de contrôle D et S in , on utilise le concept de la caractéristique à l'équilibre

  dans les régions I k , k = 0, . . . , 3, lorsque les courbes Γ 1 et Γ 2 ne se coupent pas.Notons que le cas où les courbes Γ i se coupent peut être traité de la même manière.

	il existe 2 n-1 courbes qui séparent le plan (D, S in ) en régions d'existence et de
	stabilité des différents équilibres. Puisque les fonctions F J ne dépendent que de a 1 , . . . , a n-1 , les régions
	du diagramme opératoire sont indépendantes de a n . Ainsi, la compétition intraspécifique de l'espèce
	la moins compétitive n'a aucun effet sur la région de coexistence. Pour une meilleure compréhension,
	on illustre les résultats précédents dans les cas n = 2 et 3, où les valeurs des paramètres sont fournis
	dans le tableau 5 de [1].				
	Dans le cas n = 2, les courbes Γ i , i = 1, 2 et Γ 12 séparent le plan opératoire (D, S in ) en quatre
	régions notées I k , k = 0, . . . , 3 (voir figure I.2(b-c)). Le tableau I.2 montre l'existence et la stabilité
	locale des équilibres Tab. I.2 -Existence et stabilité locale des équilibres selon (D, Sin), dans le cas n = 2 et Γ1 ∩ Γ2 = ∅.
	Région	E 0 E 1 E 2 E *
	(D, S in ) ∈ I 0	S			
	(D, S in ) ∈ I 1	I	S		
	(D, S in ) ∈ I 2	I	S	I	
	(D, S in ) ∈ I 3	I	I	I	S
	La transition de la région I 0 à la région I 1 par la courbe Γ 1 (la courbe rouge) correspond à une
	bifurcation transcritique entre E 0 et E 1 où l'équilibre E 0 devient instable (point col) avec apparition
	d'un équilibre E 1 qui est un noeud stable. La transition de la région I 1 à la région I 2 par la courbe Γ 2
	(la courbe bleue) correspond à une bifurcation transcritique entre E 0 et E 2 où l'équilibre E 0 reste un
	point col avec apparition d'un équilibre E 2 qui est un col. La transition de la région I 2 à la région I 3
	par la courbe Γ 12 (la courbe magenta) correspond à une bifurcation transcritique entre E 1 et E * où
	l'équilibre E 1 devient instable (point col) avec apparition d'un équilibre E * qui est un noeud stable.
	Lorsque a 1 = 0, le diagramme opératoire correspond à celui du modèle classique du chémostat
	(voir figure I.2(a)). L'augmentation de a 1 aboutit à l'émergence de la région de coexistence I 3 et à la
	réduction de la région I 2 correspondant à l'exclusion compétitive de la deuxième espèce (voir figure
	I.2(b-c)). Ainsi, la compétition intraspécifique de l'espèce la plus compétitive mène à l'occurrence
	d'une région de coexistence avec des changements de sa taille.		

Tab. II.1 -Hypothèses de modélisation et description des taux de floculation et de défloculation. Tous les taux de croissance sont monotones.

  

	1)
	où u(t) et v(t) désignent, respectivement, les concentrations de la population de micro-organismes
	planctoniques et des bactéries attachées à l'instant t ; f (•), g(•) et f 2 (•) représentent, respectivement,
	les taux de croissance des bactéries isolées et attachées de la première espèce et de la seconde espèce ;
	D 0 , D 1 et D 2 représentent, respectivement, les taux de disparition des bactéries isolées et attachées
	de la première espèce et de la seconde espèce ; A(•)u et B(•)v, désignent, respectivement, les taux de
	floculation et de défloculation. Exactement comme dans [43], on suppose que la deuxième espèce qui
	est la moins compétitive n'a pas besoin d'inhiber sa croissance par un mécanisme de floculation pour
	coexister avec l'espèce la plus compétitive.
	Le tableau II.1 résume les hypothèses de modélisation et décrit les taux de floculation et de
	défloculation utilisés dans la littérature. Notons que W = v/v max où v max désigne la densité surfacique
	maximale des bactéries adhérentes et G(•) est une fonction décroissante. Les termes a et b sont des
	constantes positives. Dans la littérature [8, 120, 121], les taux d'attachement/détachement ont été
	considérés comme étant assez variables selon les conditions de mélange. Cependant, l'effet d'inhibition
	de la croissance des bactéries planctoniques par le substrat n'a pas encore été étudié dans la littérature,
	ce qui fait l'objet de la section suivante.

  Encore une fois, les deux bassins d'attraction de E 1 1 et E 3 1 sont séparés par la variété stable de E 2 1 (les courbes verte et rouge dans la figure II.4(b)). iii. Pour S in ∈]S 1 in , S 2 in [ : la variété instable de E 0 admet E 1 1 comme ensemble ω-limite, tandis que la variété stable de E 2 1 coupe la droite S + u = S in . Cette variété stable de E 2 1 (courbe rouge dans la figure II.4(c)) divise le plan de phase en deux bassins d'attraction de E 1 1 et E 3 1 .

1 in [, la variété instable de E 0 admet E 3 1 comme ensemble ω-limite, tandis que la variété stable de E 2 1 coupe l'axe u = 0. La variété stable de E 2 1 (courbe rouge dans la figure II.4(a)) divise le plan de phase en deux bassins d'attraction de E 1 1 et E 3 1 . ii. Pour S in = S 1 in (bifurcation hétéroclinique) : la variété instable de E 0 et la variété stable de E 2 1 fusionne. iv. Pour S in = S 2 in (bifurcation homocline) : les deux variétés stables et instables de E 2 1 fusionnent (la courbe verte dans la figure II.4(d)). Cette orbite homocline délimite le domaine d'attraction de E 3 1 . v. Pour S in ∈]S 2 in , S c in [ (bifurcation d'Andronov-Leontovich, voir [68], Theorem 6.1 et figure 6.8) : le cycle instable émerge du cycle homoclinique (la courbe cyan dans la figure II.4(e)). vi. Pour S in = S c in (bifurcation de Hopf sous-critique, voir [68]) : le cycle limite instable disparaît. Pour S in ∈]S c in , Sin [, E 3 1 est instable (voir figure II.4(f)). Pour S in = Sin (bifurcation noeud-col) : E 2 1 et E 3 1 entre en collision, formant un point non hyperbolique qui est un noeud-col et disparaît par la suite.

  -(a) Changement de signe de c4 et la stabilité correspondante de E1 sur la courbe rouge ou bleue de la fonction H(•) où S 1 ≈ 3.492 (ou encore S 1 in ≈ 3.837), S 2 ≈ 3.422 (ou S 2 in ≈ 3.842) et S 3 ≈ 1.963 (ou S 3 in ≈ 8.179) ; (b) un agrandissement pour 3.25 < S < λu = 4.061 où Sin = 3.86. Par suite, E 0 est instable et E 1 change sa stabilité et devient LES. Pour comprendre et analyser ces changements de comportement asymptotique local de E 1 en S 2 in et S 3 in sans aucune bifurcation avec d'autres équilibres, on détermine numériquement les valeurs propres de la matrice jacobienne J 1 du système (II.14) à l'équilibre positif E 1 . En effet, cette matrice jacobienne admet une valeur propre négative et une paire de valeurs propres complexes et conjuguées λ j (S in ) = µ(S in ) ± iν(S in ), j = 1, 2.

	(a) H(S) H(S vérifiée numériquement : c 4 S 3 S 2 S 1 S être calculé explicitement par S i in = 1 D dµ dS in (S 2 in ) > 0 .	c 4	E 1	δ S 2 S 1	(b) E 2	E 0 H(S)
	f (S) =	m 1 S k 1 + S	et g(S) =	m 2 S k 2 + S	,	(II.28)
	où m i désigne le taux de croissance maximal et k i la constante de demi-saturation. En effet, nous
	avons réussi à trouver un jeu de paramètres tel que c 4 peut changer son signe lorsque S in augmente,
	ou encore S * décroît (voir figure II.7). Les valeurs des paramètres utilisées pour les simulations sont
	fournies dans l'annexe B de [30].					

Afin de montrer que la condition c 4 (S * ) > 0 évaluée en E 1 = (S * , u * , v * ) peut être non satisfaite et pour détecter si l'équilibre positif E 1 peut changer sa stabilité par une bifurcation de Hopf, tous les paramètres biologiques ont été fixés tels que D < D v < D u . Ensuite, le paramètre de contrôle S in a été varié. Pour voir le changement de signe de la fonction S * → c 4 (S * ) évaluée en E 1 et pour détecter l'apparition des cycles limites, il est utile d'illustrer la courbe de cette fonction. À cet effet, les taux de croissance f et g sont choisis pour la simplicité de type Monod La solution S 1 de l'équation H (S) = -D et les solutions S i , i = 2, 3, de l'équation c 4 (S) = 0 sont représentées dans la figure II.7. En fait, S 1 in est une valeur critique de S in pour laquelle la courbe de la fonction H(•) est tangente à la droite δ d'équation y = D(S in -S). Par ailleurs, S i in , i = 1, 2, 3, peut S Fig. II.7 i ) + S i . Selon le paramètre de contrôle S in , les changements de stabilité suivants de E 0 et E 1 se produisent lorsque l'équilibre E 2 est instable tant qu'il existe. -Pour S in ∈ [0, S 1 in [, il existe un unique équilibre qui est le lessivage E 0 et il est LES. -Pour S in = S 1 in , deux équilibres positifs E 1 et E 2 émergent dans le quadrant positif par une bifurcation noeud-col. -Pour S in ∈]S 1 in , S 2 in [ (ou encore S * ∈]S 2 , S 1 [), c 4 (S * ) > 0 et H (S * ) < -D (voir figure II.7(b)). Par suite, E 2 est instable alors que E 0 et E 1 sont LES. -Pour S in ∈]S 2 in , λ u [, E 0 est LES alors que E 1 et E 2 sont instables où c 4 < 0 (voir figure II.7(b)). -Pour S in = λ u , E 2 coalesce avec E 0 . -Pour S in ∈]λ u , S 3 in [, E 2 disparaît par une bifurcation transcritique et transfère l'instabilité à E 0 alors que E 1 reste instable. -Pour S in ∈]S 3 in , +∞[ (ou encore S * < S 3 ), c 4 (S * ) > 0 et H (S * ) < -D (voir figure II.7(a)). En augmentant le paramètre de contrôle S in à partir de S 1 in , cette paire traverse l'axe imaginaire en une valeur critique S in = S 2 in du demi plan négatif au demi plan positif (voir figure II.8(a)), c'est-à-dire elle devient purement imaginaire en S 2 in telle que µ(S 2 in ) = 0, avec ν(S 2 in ) = 0. L'inégalité suivante est

  x 2 , (III.3) où les fonctions de croissance µ 1 et µ 2 sont supposées être croissantes en S et décroissantes en x 1 et x 2 . Notons que pour la commodité des notations, la première variable des espèces dans µ

	D'autre part, notre étude décrit le diagramme opératoire qui montre les régions de stabilité, en
	fonction des paramètres opératoires D et S in , lorsque tous les paramètres biologiques sont fixes. Ce
	diagramme de bifurcation est un outil important pour l'expérimentation, voir [1, 35, 97, 112, 115].

i (S, x i , x j ) est la variable x i , avec le même indice i. Le cas particulier de (III.3) où D 1 = D 2 = D et la fonction de croissance µ i (S, x j ) ne dépend que de x j , où j = i, a été considéré dans

[START_REF] El-Hajji | How mutual-inhibition confirms competitive exclusion principle[END_REF]

. Dans le cas d'une interférence interspécifique positive (connue sous le nom de coopération ou mutualisme), où µ i (S, x j ) est croissante par rapport à x j , le lecteur peut se référer à

[START_REF] Hajji | Association between competition and obligate mutualism in a chemostat[END_REF]

. Le cas particulier de (III.3) où les fonctions de croissance sont de la forme (III.2) et D 1 = D 2 = D, a été étudié théoriquement dans

[START_REF] Fekih-Salem | Modèles mathématiques pour la compétition et la coexistence des espèces microbiennes dans un chémostat[END_REF][START_REF] Fekih-Salem | Sur la stabilité globale de l'équilibre de coexistence d'un modèle densité-dépendant de compétition pour une ressource[END_REF]

. On portera une attention particulière au cas particulier où les taux de croissance sont de la forme (III.2) mais avec différents paramètres d'interférence interspécifiques :

µ i (S, x i , x j ) = ν i (S, x i + α i x j ), où i = 1, 2, j = 1, 2, i = j (III.

4) où α 1 et α 2 ne sont pas nécessairement égaux. Par conséquent, notre étude fournit une extension des résultats dans [23, 29] au cas où D 1 et D 2 peuvent être différents de D avec α 1 et α 2 peuvent également être différents.

Notre étude présente une extension des résultats dans

[START_REF] El-Hajji | How mutual-inhibition confirms competitive exclusion principle[END_REF] 

au cas où la fonction de croissance µ i dépend des deux espèces x 1 et x 2 , pas seulement de x j où j = i. Notre étude présente également une extension, dans le cas n = 2, des résultats dans

[START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF][START_REF] Lobry | Persistence in ecological models of competition for a single resource[END_REF][START_REF] Lobry | Sur un modèle densité-dépendant de compétition pour une ressource[END_REF] 

où seule l'interférence intraspécifique est considérée, au cas où des interférences intra et interspécifiques sont considérées, c'est-à-dire que la fonction de croissance µ i dépend des deux espèces x 1 et x 2 , et non seulement de x i . Dans ce cas n = 2, on donne des explications théoriques pour le phénomène, qui a été observé numériquement dans

[START_REF] Harmand | Microbial ecology and bioprocess control : Opportunities and challenges[END_REF][START_REF] Lobry | A new hypothesis to explain the coexistence of n species in the presence of a single resource[END_REF]

, où la coexistence est maintenue lorsque seule l'interférence intraspécifique est considérée, alors qu'elle peut disparaître lorsque la force de l'interférence interspécifique est suffisamment grande.

  doivent être les solutions de (III.5) avec x 1 > 0 et x 2 > 0. Par conséquent S

	la condition	
	µ i (S in , 0, 0) > D i	(III.11)
	est vérifiée. Si xi existe, il est unique. Par conséquent, on obtient le résultat suivant qui donne la
	condition d'existence d'un équilibre de frontière E i .	
	Proposition III.1. Soit E i un équilibre de (III.3) avec xi > 0 et x j = 0, j = i. Alors Si est donné
	par (III.8) où x i = xi est la solution de (III.9). Cet équilibre existe si et seulement si la condition
	(III.11) est vérifiée. S'il existe, il est unique.	
		vérifiant (III.9) si et seulement si

Les composants

S = S * , x 1 = x * 1 et x 2 = x * 2 d'

un équilibre de coexistence E * * , x * 1 et x * 2 sont les solutions des équations suivantes :

2 Taux de disparition distincts

  

	Les quatre cas suivants doivent être distingués (voir figures. III.2 et III.3) : Cas 1 : x1 > x1 et x2 > x2 , Cas 2 : x1 < x1 et x2 < x2 , Cas 3 : x1 < x1 et x2 > x2 , Cas 4 : x1 > x1 et x2 < x2 . Le résultat suivant donne la condition d'existence d'un équilibre positif E * . Proposition III.2. Un équilibre positif E * = (S * , x * 1 , x * 2 ) de (III.3) existe si et seulement si les courbes (III.20) γ 1 et γ 2 ont une intersection positive, c'est-à-dire (x * 1 , x * 2 ) est une solution positive des équations x 2 δ γ 1 x Cas 1.a γ 2

γ 1 et γ 2 avec les axes de coordonnées. Leurs positions relatives jouent un rôle majeur dans le comportement du système. 2 = F 1 (x 1 ) et x 1 = F 2 (x 2 ). (III.21) Alors S * est donné par (III.15). Si le cas 1 ou le cas 2 est vérifié, alors un équilibre positif existe. Cette III.

4 Diagramme opératoire 4 Diagramme opératoire

  Conditions d'existence et de stabilité des équilibres dans le système (III.3). Le diagramme opératoire détermine le comportement du système (III.3) en fonction des paramètres opératoires S in et D comme ce sont les paramètres les plus faciles à manipuler dans un chémostat. En effet, tous les autres paramètres de (III.3), tels que les fonctions de croissance et les coefficients d'interférences intra et interspécifiques ont une signification biologique et ne peuvent pas être facilement manipulés par le biologiste. Ils sont donc fixés selon les organismes et le substrat introduits dans le chémostat. Dans cette section, on va décrire le diagramme opératoire de (III.3) lorsque D 1

	Équilibre Existence	Stabilité locale	Stabilité globale
	E *	(III.21) a une solution F 1 (x * 1 ) F 2 (x * 2 ) > 1	Cas 1 et (III.21) admet une unique solution
	E 1	µ 1 (S in , 0, 0) > D	x1 < x1	Cas 3 et (III.21) n'admet pas de solution
	E 2	µ 2 (S in , 0, 0) > D	x2 < x2	Cas 4 et (III.21) n'admet pas de solution
	E 0	existe toujours	µ	

1 est vérifié et que l'équilibre positif E * est unique, alors il est GAS pour (III.3) à l'intérieur de Ω. 2. Si le cas 3 est vérifié et qu'il n'existe pas d'équilibre positif, alors E 1 est GAS pour (III.3) à l'intérieur de Ω. 3. Si le cas 4 est vérifié et qu'il n'existe pas d'équilibre positif, alors E 2 est GAS pour (III.3) à l'intérieur de Ω.

4. E 0 est GAS pour (III.3) dans Ω si et seulement si µ i (S in , 0, 0) < D. L'existence, la stabilité locale et globale de tous les équilibres de (III.3) sont résumées dans le tableau III.1. Tab. III.1i (S in , 0, 0) < D, i = 1, 2 µ i (S in , 0, 0) < D, i = 1, 2 III.

  2, (III.31) où m i désigne le taux de croissance maximal, k i est la constante de demi-saturation et β i est le facteur d'inhibition de la croissance de l'espèce i dû aux interférences intra et interspécifiques. Dans ce cas, l'ensemble Υ c i est la courbe de la fonction D = D c i (S in ) donnée par

2 Analyse de sensibilité et réduction du modèle 2.1 Conditions opératoires et échantillonnage des données

  pour des aperçus). Cependant, comme indiqué dans[START_REF] Donoso-Bravo | Identification in an anaerobic batch system : global sensitivity analysis, multi-start strategy and optimization criterion selection[END_REF], où les sensibilités locales et globales sont calculées pour un système biologique non linéaire, l'analyse de sensibilité locale est beaucoup plus facile à réaliser et fournit assez d'informations, si elle est appliquée rigoureusement.

	Les cultures en mode fermé (ou batch en anglais) impliquent aucun débit d'entrée et de sortie dans
	le bioréacteur et sont donc facilement réalisables en pratique. Cependant, les données expérimentales
	qui peuvent être collectées dans ce mode opératoire sont caractérisées généralement d'un manque
	d'informations, notamment sur les coefficients de demi-saturation des lois de Michaelis-Menten. Pour
	le mode semi-continu (ou fedbatch en anglais), le débit de sortie est toujours nul, mais le débit d'entrée
	peut être manipulé. Ce mode fedbatch est un moyen pratique de surmonter ce manque d'informations,

Dans la section 3, on privilégie une autre approche où on dérive directement un modèle macroscopique (éventuellement de faible dimension) du bioprocédé en utilisant des techniques basées sur les données. À cette fin, une approche de l'analyse de la composante principale du maximum de vraisemblance (ou Maximum Likelihood Principal Component Analysis (MLPCA) en anglais) développée dans Mailier et al.

[START_REF] Mailier | Stoichiometric identification with maximum likelihood principal component analysis[END_REF] 

est utilisée pour estimer la stoechiométrie de la réaction indépendamment de la cinétique. Les cinétiques sont formulées comme des simples produits des facteurs de Monod et l'identifiabilité structurelle est vérifiée à l'aide de la série génératrice et du logiciel GenSSI. Les paramètres du modèle sont estimés en utilisant la méthode des moindres carrés pondérés. Les résultats de la validation directe et croisée démontrent que le modèle résultant est capable de reproduire de manière satisfaisante les données expérimentales. car il permet au processus d'être conduit à différents niveaux de concentration du substrat. Dans notre investigation préliminaire

[START_REF] Fekih-Salem | Parameter identification of the fermentative production of fructo-oligosaccharides by aureobasidium pullulans[END_REF]

, la conception expérimentale a montré que le débit d'alimentation Q in (t) dans les expériences en fedbatch devrait varier comme une combinaison de fonctions affine et exponentielle :

  t 4 [, avec, par exemple, β = 0.02 et γ = 2×10 -4 . Les temps de transition peuvent être définis comme t 0 = 0 h, t 1 = 50 h, t 2 = 100 h, t 3 = 130 h, t 4 = 160 h et t f = 240 h, afin d'explorer un intervalle opératoire relativement large et de générer des données informatives (voir figure IV.1). Le volume maximal est

	fixé à 3.5 L.
	Temps [h]

  Les variables mesurées sont les concentrations du saccharose GF , fructose F , glucose G, 1-kestose GF 2 , nystose GF 3 et fructofuranosylnystose GF 4 . Le tableau IV.1 décrit le domaine expérimental, c'est-à-dire les différentes séries d'expériences en batch et fedbatch qui diffèrent par la condition initiale de GF . En raison de sa croissance hétérogène, la biomasse fongique n'est malheureusement pas mesurée. Les données ont été collectées avec un temps d'échantillonnage de mesure variable de 2 à 10 h pendant la première phase de transformation du saccharose (presque jusqu'à 50 h). Ensuite, moins d'échantillons ont été prélevés, par exemple, toutes les 6 à 16 h comme le saccharose converge vers un état stationnaire. Pour les expériences en fedbatch, un échantillonnage plus fréquent a été réalisé (une période de 1 à 15 h) et un débit d'entrée Q in (t) (Lh -1 ) variant dans le temps a été utilisé.

	Fermentation en batch	B1	B2	B3	B4
	GF (0)	206.59	205.94	172.11	212.79
	Fermentation en fedbatch	FB1	FB2		
	GF (0) = GF in	200.63	102.62		

Les concentrations d'alimentation et initiale du milieu étaient les mêmes, c'est-à-dire GF (0) = GF in .

  où X est la concentration de biomasse (gL -1 ), Y G et Y F représentent le coefficient de rendement de la biomasse du glucose et du fructose, respectivement. En appliquant le bilan de matière, le système d'équation différentielle ordinaire suivant est obtenu :

  comme conditions initiales (voir le tableau A.1). Le problème d'identification est formulé comme la minimisation d'un critère de moindres carrés pondérés ou Weighted Least Squares en anglais mesurant la distance entre les mesures

	expérimentales, représentées par le vecteur y exp j	et la prédiction du modèle, représentée par le vecteur
	y sim	

j

:

  Les coefficients de variation sont également importants pour Kmh GF , Kmh GF 2 et Kmh GF 4 mais ils sont a priori conservés dans le modèle compte tenu de leur rôle important. Notons également que leur précision est aussi susceptible de s'améliorer après la simplification et la ré-identification du modèle. = 26. Selon la norme L2 de sensibilités, on pourrait alors essayer d'éliminer le paramètre k 2 , dont la valeur estimée est très faible et est associée à une grande incertitude (voir tableau A.2). Suite à cette indication, la réaction r 1 serait éliminée avec les paramètres correspondants V mh GF et Kmh GF . De plus, le rang -numérique(S T S) = 25 et, selon la sélection du sous-ensemble QR, on pourrait éliminer les deux coefficients pseudo-stoechiométriques k 2 (déjà signalés par l'indicateur de la norme L2) et k 14 qui est également très petit et largement incertain (voir tableau A.2). Par conséquent, la paramétrisation du modèle est encore réduite à un ensemble de 23 paramètres et les équations différentielles ordinaires du bilan massique se simplifient à

	4.	(IV.23)
	Les résultats de l'identification pour le modèle (IV.22-IV.23) avec la combinaison de données 2B-
	2FB montrent à nouveau que la FIM est régulière où la condition (IV.14) est vérifiée et le rang(FIM)
	= dim (FIM) = N p = 27 (voir tableau IV.2).	
	Notons cependant que rang(S) = rang -numérique(S)	

  Kmt GF 3 et V mh GF 4 ou Kih GF 3 et Kmh GF 4 , (iii) l'interdépendance des paramètres stoechiométriques (k 4 , k 13 )/cinétique (V mh GF 2 ,V mt GF 3 ) et (iv) l'interdépendance stoechiométrique entre k 12 et k 10 /k 5 . (i) et (iii) peuvent être relativement bien compris, car la présence de termes multiplicatifs contenant des paramètres peut renforcer la dépendance des paramètres tandis que (ii) et (iv) peuvent être interprétés comme une conséquence de la forme en cascade du modèle (IV.24-IV.26) en considérant les taux trois et quatre, ainsi que cinq à sept.

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	6, 7; j = 2, 3. L'identification des paramètres du modèle (IV.24-IV.26) avec la configuration des données 2B-2FB (IV.26) (voir le tableau A.2) montre que toutes les incertitudes des paramètres sont très significativement ré-duites. La FIM est régulière (voir Tableau IV.2) avec rang(FIM) = rang(S) = rang -numérique(S) = dim (FIM) = 23. Pour compléter l'analyse de l'identifiabilité, la matrice de corrélation obtenue à partir de (IV.13) est représentée sur la figure IV.5 et montre que, même si tous les paramètres apparaissent comme identifiables, plusieurs fortes interdépendances de paramètres subsistent (ρ ij ≥ 0.7). Les coef-ficients de corrélation correspondants sont présentés dans le tableau IV.4. Évidemment, quatre types d'interdépendances apparaissent : (i) la dépendance cinétique interne entre les coefficients du taux maximal (V mh GF 4 , V mt GF,GF 2 ) et leurs constantes de demi-saturation et/ou d'inhibition respectives (Kmh GF 4 , Ksts, Kit GF 2 ), (ii) les dépendances cinétiques croisées entre les paramètres comme, par exemple, 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

  Identification des conditions initiales de la fermentation B3 et B4 pour la validation croisée.

	Pour vérifier encore la capacité prédictive du modèle réduit (IV.24-IV.26), une validation croisée
	est réalisée avec les données en batch B3-B4. La figure IV.6 montre l'ajustement avec les données en
	batch B4. Notons que la validation croisée implique l'identification des conditions initiales les plus
	probables répertoriées dans le tableau IV.5.					
	Tab. IV.5 -Fermentation en batch GF (0) GF 2 (0) GF 3 (0) GF 4 (0) F (0) G(0)
	B3	160	4.4	10.1	10 -3	6.3	10.1
	B4	177.4	5×10 -3 0.04	1.2	7.30	30.2
	Premier paramètre Deuxième paramètre Coefficient de corrélation
	Kmh GF 4	V mh GF 3		-0.739			
	Kmh GF 4	V mh GF 4		0.715			
	Kmt GF 3	V mh GF 4		0.898			
	Kih GF 3	Kmh GF 4		-0.885			
	Ksts	V mt GF		-0.791			
	Kit GF 2	V mt GF 2		-0.789			
	k 4	V mh GF 2		-0.95			
	k 12	k 10		-0.725			
	k 12	k 5		-0.868			
	k 13	V mt GF 3		-0.814			
	L'interprétation du modèle (IV.24-IV.26) serait donc sur la base des hypothèses chimiques/biologiques
	suivantes :						
	-Les fractions du GF impliquées comme réactifs ou produits dans les réactions d'hydrolyse sont
	négligeables par rapport aux fractions consommées ou produites par les transfructosylations ;
	-La fraction du GF 2 produite par transfructosylation du GF 3 est négligeable par rapport à
	toutes les fractions produites des autres réactions considérées ;		
	-La production du fructose s'explique principalement par l'hydrolyse du GF 2 ainsi que la pro-
	duction du glucose par transfructosylation du GF ;				
	-Dans les conditions opératoires considérées, la dynamique de la biomasse peut être négligée.

  Ce schéma contient N r réactions irréversibles dans lesquelles apparaissent des composantes N ξ notées ξ (avec, par hypothèse, N ξ ≥ N r ). R m et P m représentent l'ensemble des indices i des composants ξ qui sont des réactifs et des produits, respectivement, dans la réaction m. Les paramètres k i,m sont des coefficients pseudo-stoechiométriques, tandis que r m est la vitesse de la réaction m, c'est-à-dire le nombre de fois où elle se produit par unité de temps et par unité de volume. Les équations différentielles ordinaires du bilan massique sont données par :

	dξ(t) dt	= Kr ξ + F(t) -D(t)ξ	(IV.28)
	où F(t) est le vecteur des taux d'alimentation et D(t) est le taux de dilution. La soustraction des
	termes de transport et l'intégration du modèle général (IV.28) du temps zéro au temps t permet de
	définir l'état "sans transport",		
		N r ].	(IV.27)

  Les réactions devraient conduire à la synthèse en cascade des FOS de sorte que GF et GF 2 soient, respectivement, les principaux réactif et produit de la première réaction, GF 2 et GF 3 les composants principaux de la deuxième réaction, GF 3 et GF 4 les composants principaux de la troisième réaction, tout en permettant également l'hydrolyse des FOS, c'est-à-dire la récupération du saccharose GF à partir des FOS dans la quatrième réaction ; -Chaque stoechiométrie de réactions peut être normalisée par rapport au réactif principal.

	8776 0.2108 -0.3415 -0.0011 0.1141 -0.2473 0.1159 0.5991 0.0668 -0.2452 -0.6593 0.5560 0.0402 -0.1061 -0.1778 -0.1966 0.1897 0.8941 0.0199 0.3641 0.4180 0.1538 -0.6350 -0.4009 Cette estimation doit être examinée en considérant les points suivants : d'inverser le sens des réactions correspondantes et la réorganisation des colonnes pour correspondre à             (IV.29) l'ordre de réaction logique : K =             -0.8776 0.3415 0.0011 0.2108 0.1141 -0.1159 -0.5991 -0.2473 0.0668 0.6593 -0.5560 -0.2452 0.0402 0.1778 0.1966 -0.1061 0.1897 -0.0199 -0.3641 0.8941 0.4180 0.6350 0.4009 0.1538             . (IV.30) La deuxième manipulation vise à éliminer les degrés de liberté artificiels par une normalisation adé-quate : -La première préoccupation conduit à la multiplication des deux dernières colonnes de K par -1 afin K

  .38) où les coefficients de demi-saturation K m 52 et K m 24 n'apparaissent plus (puisque F et GF 2 ne font plus partie des deuxième et quatrième réactions, respectivement). Le modèle comprend désormais 11 paramètres cinétiques et 13 coefficients pseudo-stoechiométriques. La figure IV.9 montre la capacité prédictive du modèle (IV.36 -IV.38) en validation directe. Les données expérimentales se composent de deux cultures en batch (B1 et B2) et de deux en fedbatch (FB1 et FB2). Cependant, les intervalles de confiance de certains des paramètres estimés sont trop larges (voir tableau A.3) et rcond(FIM) = 4.95 ×10 -11 (La FIM est non singulière, mais avec un petit nombre de condition réciproque (RCN)).

  désigne la j ème composante de f . Soit s(θ) un résumé exhaustif contenant les coefficients de la série obtenus par calcul successif des dérivées de Lie le long de f et g j à l'état initial ξ(t 0 ) = ξ 0 (θ). Le modèle est identifiable s'il existe une solution unique pour θ à partir de s(θ). divers modèles précédents candidats peuvent être analysés avec le logiciel GenSSI[START_REF] Chis | Genssi : a software toolbox for structural identifiability analysis of biological models[END_REF]. Les résultats sont résumés dans le tableau IV.6, ainsi que les résultats précédents de la procédure d'estimation des paramètres non linéaires.

					, θ, t	∂h ∂ξ j	ξ(t), θ, t	(IV.47)
	où f j Les Modèle	RMSE	dim θ r	dim θ K	rcond(FIM)	Nder	s.l.i.	s.g.i
	(IV.35)	8.29	13	20	4.11 ×10 -13	ML	ML	ML
	(IV.36 -IV.38)	8.03	11	13	4.95 ×10 -11	4	OK	OK
	(IV.39 -IV.40)	8.39	9	9	2.34 ×10 -10	3	OK	OK
	(IV.41 -IV.42)	8.18	8	6	7.15 ×10 -9	3	OK	OK
	L'analyse de l'identifiabilité structurelle du modèle initial (IV.35) n'est malheureusement pas pos-
	sible en raison d'une limitation de mémoire (au moins avec nos installations informatiques). Grâce à
	la simplification du modèle, l'analyse des modèles subséquents, qui contiennent moins de paramètres,
	est cependant possible.							
	Tous ces derniers modèles sont globalement structurellement identifiables et l'attention est concen-
	trée sur l'analyse du dernier, le plus prometteur, à savoir le modèle (IV.41 -IV.42). Les tableaux d'iden-
	tifiabilité représentés sur la figure IV.12 montrent les éléments non nuls du jacobien des coefficients de
	la série par rapport aux paramètres. Chaque colonne de ces tableaux correspond à un paramètre du
	modèle (il y a 14 colonnes pour le modèle considéré), tandis que les lignes correspondent à des coef-
	ficients de la série non nuls. Si le tableau présente des colonnes vides, les paramètres correspondants
	peuvent être non identifiables (mais pas nécessairement, car le nombre de coefficients de la série peut

Tab. IV.

6 

-Comparaison des quatre modèles candidats : Racine carrée de l'erreur quadratique moyenne (RMSE), nombre de dérivées de Lie (Nder), localement structurellement identifiable (s.l.i.) et globalement structurellement identifiable (s.g.i), limitation de mémoire (ML).

être infini et une preuve de non-identifiabilité nécessiterait que les coefficients d'ordre supérieur sont nuls).

  41 -IV.42) peut être testé par la validation croisée en utilisant les expériences en batch B3 et B4 qui n'ont pas été utilisées dans le processus d'identification. Avant de procéder à l'évaluation de la capacité prédictive du modèle par la validation croisée, les bonnes pratiques suggèrent d'identifier les conditions initiales des nouvelles expériences (B3 et B4) tout en conservant les paramètres du modèle (IV.41 -IV.42) fixés à leurs valeurs précédemment estimées. En effet, les valeurs initiales mesurées sont perturbées par le bruit, ce qui pourrait affecter l'initialisation des trajectoires du modèle. Les conditions initiales estimées sont répertoriées dans le tableau IV.7. En utilisant les conditions initiales identifiées, les figures IV.13 et IV.14 montrent que le modèle est capable de reproduire relativement bien des nouvelles expériences. Identification des conditions initiales des expériences en batch B3 et B4.

	Tab. IV.7 -Expérience GF (0) GF 2 (0) GF 3 (0) GF 4 (0) F (0) G(0)
	B3	174.80 15	0.22	0.96	7.78	12.05
	B4	193.86 3.74	10 -6	0.13	9.70	34.62

  Résultats de l'identification des paramètres des modèles (IV.20), (IV.22), (IV.22-IV.23) et (IV.24-IV.26) en utilisant la combinaison de données 2B-2FB.Coefficients de variation des paramètres estimés du modèle (IV.24-IV.26). Résultats d'estimation des paramètres pour les 4 modèles candidats en utilisant les données expérimentales collectées dans 2 expériences en batch (B1 et B2) et 2 en fedbatch (FB1 et FB2) -les valeurs des paramètres sont données avec un intervalle de confiance de 95 %.Coefficients de variation des paramètres estimés du modèle (IV.41 -IV.42).

	1 2 3 4 N o Paramètre V mhGF V mhGF 2 V mhGF 3 V mhGF 4 Tab. A.3 -Paramètre (IV.35) µ M ax 1 9.34 ± 0.21 (IV.20) 1.43 7.58 7.97 7.35 (IV.36 -IV.38) 0.68 ±6.6 6.2 ± 5.4 12 ± 9 7.6 ± 36 (IV.22) (IV.39 -IV.40) 9.2±55 0.32 ±319 13.8 ±8.4 8.9 ± 2.9 (IV.22-IV.23) (IV.41 -IV.42) 10± 3.3 28.9± 4.7 22.8 ± 0.6 Var a (%) (IV.24-IV.26) Var a (%) 10.16 ± 0.19 8.58 ± 0.27 9.11 ± 0.31 1.7 8.5 ± 2.2 5 V mtGF 49.99 85 ± 45 67 ± 45 V mhGF 0.08± 0.27 1.78± 0.07 463 ± 29 µ M ax 2 1.39 ± 1.83 7.79 ± 1.33 32.96 ± 0.9 7.13 ± 0.17 1.2 440 ± 118 6 V mtGF 2 41.63 205 ± 86 57.2 ± 28.7 1 V mhGF 2 5.84± 3.91 15.15± 15.6 6.5 ± 0.3 0.1 ± 0.02 10 µ M ax 3 21.1 ± 27.9 2.17 ± 2.44 7.99 ± 0.16 7.91 ± 0.12 0.8 217 ± 14 7 V mtGF 3 11.53 11 ± 71 6.1 ± 3.9 2 V mhGF 3 7.37± 0.25 1.64± 0.44 450 ± 40 17.2 ± 0.57 1.66 µ M ax 4 0.28 ± 0.06 0.5 ± 0.03 0.22 ± 0.01 0.25 ± 0.01 2.0 8.8 ± 4.6 8 µ mF 0.0097 2 ± 89 0.07 ± 1.3 3 V mhGF 4 2.8 ± 1 4.98 ± 1 42.8±12.3 29.5 ± 10 16.95 Km 11 10 -4 ± 5.72 10.3 ± 7.49 4.06 ± 5.43 12.03 ± 7.89 32.8 0.1 ± 0.3 9 µ mG 2.89×10 -5 5×10 -3 ± 17 9×10 -3 ± 1 4 V mtGF 125.7 ± 17 76.4 ± 10.9 151.6 ± 13 167 ± 4.8 1.44 Km 22 364.6 ± 104.5 422.18 ± 65.1 860.6 ± 80.9 140.2 ± 12.5 4.5 0.09 ± 2.7 10 KmhGF 111.57 136± 3×10 3 611± 697 5 V mtGF 2 103.9 ± 6.4 401.4 ± 42.2 195.5 ± 19.9 191 ± 9.5 2.49 Km 52 6.3 ± 1.46 10 3 ± 456 11 KmhGF 2 0.61 136± 3×10 3 8×10 -12 ±705 6 V mtGF 3 9.58 ± 1.9 9.98 ± 0.75 8.9 ± 26.8 11.8 ± 1.7 7.20 Km 23 532 ± 1406 137.5 ± 240 250 ± 244 12 KmhGF 3 177.41 20.5 ± 52 79 ± 68 KmhGF 8.18± 4.8 1.43 ± 0.8 8747 ± 1234 Km 33 69.1± 148.7 62.93± 84.96 41.7± 12.9 24.8± 8.9 17.9 85 ± 8 13 KmhGF 4 724.07 468 ± 10 3 409 ± 391 7 KmhGF 2 72.6± 154 0.08 ± 0.35 57.5 ± 40.5 0.36 ± 0.9 125 Km 53 28.89 ± 45.7 37.84 ± 37.98 484 ± 69 14 Kmst 70.22 90 ±254 269 ± 77 8 KmhGF 3 18.9 ± 4.8 0.8 ± 0.45 1153 ± 227 47.8 ± 4.7 4.92 Km 24 10 -3 ±10.7 210 ± 101 15 KmtGF 2 239.88 10 3 ± 10 3 405 ± 148 9 KmhGF 4 138.4 ± 39.8 206.7 ± 21.8 2100 ± 303 1730 ± 348 10.06 Km 34 10.9 ± 15.3 12.36 ± 2.34 0.12 ± 1.39 627 ± 84 16 KmtGF 3 333.07 384 ± 10 3 87 ± 146 10 Kmst 264 ± 62 50.3 ± 12.7 1508 ± 203 447 ± 81.6 9.13 Km 44 0.003 ± 0.15 0.019 ± 0.16 0.86 ± 0.48 1.37 ± 0.59 21.5 313 ± 39 17 KmF 11.45 8×10 3 ± 3×10 16 238 ± 3×10 8 11 KmtGF 2 197.4 ± 71.5 483.9 ± 193.7 1327 ± 223 492 ± 92 9.35 k 12 0.04 ± 20.5 496 ± 357 18 KmG 397.98 7×10 3 ± 5×10 5 461 ± 3239 12 KmtGF 3 134.6 ± 27 121 ± 24 509 ± 52 252 ± 48 9.52 k 13 5 × 10 -3 ± 14 10 4 ± 10 4 19 KihGF 2 2.72 10 3 ± 10 5 0.3± 133 KihGF 2 0.46± 0.47 1 ± 1.2 k 14 3.59 ± 6.85 5.21 ± 0.67 5.65 ± 0.93 5.52 ± 0.76 6.9 0.24± 0.07 20 KihGF 3 10.52 22 ± 43 15 ± 14.8 13 KihGF 3 16.2± 5.16 11.25 ± 5.5 0.89 ± 0.09 7.97 ± 1.5 9.41 k 21 0.31 ± 0.03 0.33 ± 0.02 0.43 ± 0.03 0.44 ± 0.03 3.4 8.3 ± 0.8 21 KihGF 4 6.21 10 11 ± 4×10 22 403.8 ± 4×10 5 KihGF 4 4.48 ± 5.5 2.4 ± 2.1 k 23 4.89 ± 7.24 12.4 ± 14.3 2.9 ± 5.9 22 Ksts 911.16 23 ± 9.5 406± 2×10 3 14 Ksts 11.5 ± 1.9 17.7 ± 4.4 3.1 ± 0.6 7.2 ± 0.6 4.17 k 24 10 -3 ±0.95 3.1 ± 0.9 23 Kgst 24.57 15 ± 182 10 4 ± 10 8 Kgst 6.6 ± 18 57.4 ± 357.5 k 31 0.11 ± 0.07 0.06 ± 0.05 0.06 ± 0.02 24 KitGF 2 49.96 10 6 ± 2×10 13 4.85 ± 91 15 KitGF 2 0.27 ± 0.03 0.05 ± 0.01 0.24 ± 0.1 0.11 ± 0.01 4.54 k 32 33.6 ± 39.9 4.45 ± 0.65 2.62 ± 0.39 3.04 ± 0.36 5.9 0.08 ± 5×10 -3 25 KitGF 3 49.95 2.7 ± 168 32 ± 851 k 2 4.8 ± 16 0.15 ± 0.04 2×10 -13 ±0.02 k 34 14.38 ± 2.93 7.59 ± 0.52 4 × 10 -3 ±0.17 2×10 3 ± 3×10 6 26 Y F 79.34 4×10 -8 ± 10 5 6×10 -4 ± 5×10 3 16 k 4 0.99 ± 1 0.16 ± 0.06 0.14 ± 0.07 2.46 ± 0.6 12.2 k 41 10 -4 ±0.009 129 ± 272 27 Y G 29.23 7×10 3 ± 2×10 7 3×10 3 ± 3×10 5 17 k 5 0.9 ± 0.3 2.8 ± 0.4 0.64 ± 0.3 0.88 ± 0.12 6.82 k 42 1.22 ± 1.18 0.42 ± 0.05 416 ± 10 4 28 k 1 0.53 3×10 -10 ± 6 1 ± 9 k 6 9×10 -16 ±0.07 k 43 1.52 ± 1.7 4.96 ± 5.77 0.1 ± 0.01 0.09 ± 0.01 3×10 -7 ± 0.2 29 k 2 0.53 0.26 ± 2.7 1 ± 6 18 k 7 7.8 ± 2 3.7 ± 1.4 11.4 ± 4.5 8.4 ± 1.5 8.93 k 51 0.03 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.2 ± 0.15 30 k 3 0.68 1.4 ± 1.7 71.7 ± 5×10 4 19 k 9 2.3±0.4 2.27 ± 0.22 4.94 ± 0.9 2.23 ± 0.17 3.81 k 52 0.011 ± 1.97 0.14 ± 0.3 31 k 4 0.36 0.05 ± 0.3 10 -13 ± 155 20 k 10 0.4±0.05 0.35 ± 0.06 1.56 ± 0.29 0.52 ± 0.05 4.81 k 53 1.36 ± 1.83 6.9 ± 7.99 0.49 ± 0.3 32 k 5 0.76 0.7 ± 1 0.8 ± 0.88 21 k 11 0.77 ± 0.19 0.55 ± 0.07 2.2 ± 0.7 0.99 ± 0.05 2.52 k 54 2.03 ± 0.54 1.37 ± 0.29 1.07 ± 0.22 1.27 ± 0.11 4.3 0.6 ± 0.1 33 k 6 0.27 2×10 -10 ± 0.7 0.03 ± 0.1 22 k 12 0.56 ± 0.15 1.1 ± 0.14 0.17 ± 0.14 0.47 ± 0.09 9.57 k 61 0.21 ± 0.05 0.21 ± 0.03 0.26 ± 0.04 0.25 ± 0.02 4.0 0.09 ± 0.04 34 k 7 0.8 3.4 ± 13 3×10 -18 ± 5.8 23 k 13 0.32 ± 0.11 0.3 ± 0.07 1.26 ± 3.9 0.45 ± 0.11 12.22 k 62 2 × 10 -6 ± 10.9 7.7 ± 1.7 35 k 8 0.22 10 -3 ± 7.5 7.7×10 -15 ± 1.4 k 14 1.49 ± 0.78 1.46 ± 0.4 0.05 ± 4.3 k 63 2.06± 4.38 0.99± 3.42 2 × 10 -3 ±0.05 10 -6 ± 1.3 36 k 9 1.47 1.27 ± 0.4 1.4 ± 0.8 1.78 ± 0.1 k 64 5 × 10 -7 ± 3.5
	37	k 10	0.53	0.25 ± 0.2	0.5 ± 1.1	0.47 ± 0.05
	38	k 11	1.32	1.64 ± 0.5	1.6 ± 0.5	1 ± 0.1
	39	k 12	0.68	0.85 ± 2	0.8 ± 0.8	0.85 ± 0.1
	40	k 13	1.24	0.84 ± 5	0.5 ± 0.7	0.7 ± 0.4
	41	k 14	0.76	1.33 ± 3.4	0.03 ± 1.3	0.46 ± 1

a Les valeurs des paramètres(dim (θ)=41) du modèle de Rocha et al.

[START_REF] Rocha | A dynamical model for the fermentative production of fructooligosaccharides[END_REF]

.
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Une structure candidate pour la vitesse de la réaction d'hydrolyse du saccharose est la loi de Michaelis-Menten suivante [START_REF] Duan | Kinetic studies and mathematical model for enzymatic production of fructooligosaccharides from sucrose[END_REF][START_REF] Rocha | A dynamical model for the fermentative production of fructooligosaccharides[END_REF] :

V mh GF GF Kmh GF + GF , (IV.4) où V mh GF et Kmh GF représente, respectivement, le taux d'hydrolyse maximal et la constante de demi-saturation de Michaelis-Menten.

Les taux d'hydrolyse des FOS sont donnés par les lois de Michaelis-Menten modifiées décrivant l'inhibition du substrat Les lois de Michaelis-Menten modifiées avec inhibition compétitive du glucose pour le 1-kestose et le nystose sont données par :

où V mT GF i est le taux de transfructosylation maximal, Kmt GF i est la constante de Michaelis-Menten et Kit GF i est la constante d'inhibition compétitive du glucose.

Les lois de Monod sont données par : 

Identifiabilité et validation du modèle

La section précédente suggère une identification et une réduction étape par étape du modèle, sur la base de l'analyse des estimations des paramètres et des intervalles de confiance, c'est-à-dire, sur la base d'une identifiabilité pratique compte tenu des données expérimentales disponibles. Cette approche pratique peut être complétée par une analyse théorique plus approfondie de la structure du modèle qu'on appelle identifiabilité structurelle [START_REF] Walter | Identification of parametric models from experimental data[END_REF]. En supposant des conditions idéales, c'est-à-dire sans erreur dans la structure du modèle avec des mesures sans bruit et continues dans le temps, il existe un vecteur de paramètre estimé θ tel que le comportement entrée-sortie du modèle M soit identique à celui du procédé, c'est-à-dire

où θ * désigne la vraie valeur (hypothétique) des paramètres.

-Un paramètre θ i est globalement structurellement identifiable (ou uniquement) (s.g.i) si pour presque tout θ * dans l'espace des paramètres Θ,

-Un paramètre θ i est localement structurellement identifiable (s.l.i.) si pour presque tout θ * ∈ Θ, il existe un voisinage V(θ * ) tel que

-Un paramètre θ i est structurellement non identifiable (s.u.i.) lorsque la condition (IV.45) n'est pas vérifiée dans aucun voisinage de V(θ * ).

Plusieurs méthodes sont disponibles pour analyser cette propriété (voir par exemple l'aperçu dans [START_REF] Chis | Structural identifiability of systems biology models : A critical comparison of methods[END_REF][START_REF] Villaverde | Identifiability of large nonlinear biochemical networks[END_REF]), telles que : algèbre différentielle [START_REF] Ritt | Differential Algebra[END_REF], série de Taylor [START_REF] Pohjanpalo | System identifiability based on the power series expansion of the solution[END_REF] ou série génératrice [START_REF] Walter | Global approaches to identifiability testing for linear and nonlinear state space models[END_REF]. De plus, plusieurs logiciels ont été développés, par exemple DAISY (algèbre différentielle) [7], GenSSI (génération de séries) [START_REF] Chis | Genssi : a software toolbox for structural identifiability analysis of biological models[END_REF] et outil d'observabilité (test d'observabilité locale) [START_REF] Karlsson | An efficient method for structural identiability analysis of large dynamic systems[END_REF].

Les équations différentielles non linéaires décrivant le système biologique peuvent généralement être écrites sous la forme affine en entrée suivante :