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Abstract
The objective of this document is to introduce the principle of Autonomous PErcep-
tual System (APES) as an object of study.

The functionalities of artificial perception, in particular vision, have become both
easier to design and more efficient through the use of a set of techniques and
development environments grouped under the term “Deep Learning”. They have
reached a certain level of maturity making it possible to envisage their use for real
or even critical applications.

The research direction proposed here is to provide perception with a certain degree
of autonomy envisaged as a means of guaranteeing its reliability.

The introduction of such a property implies to reconsider the status of perception no
longer as passive functionality but as an activity involving as explicit stakeholders
the environment to be perceived but also the recipient of the perceptual products
with which the system maintains a contractual relationship determining the nature
of the expected service and the means to guarantee it.

The study of autonomous perceptual systems thus leads to a research program
organized along three axes: the design of a perceptual activity articulating functional
dynamics and learning processes, the development of an inherent intelligibility of
the mechanisms of perception for monitoring, specifying or justifying their behavior,
and the implementation of a general approach to guarantee their safe and controlled
use.

Résumé (Français)
L’objectif de ce mémoire est d’introduire le principe de système perceptif autonome
comme objet d’étude.

Les fonctionnalités de perception artificielle, en particulier de vision, sont devenues
à la fois plus faciles à concevoir et plus performantes par l’utilisation d’un ensemble
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de techniques et d’environnements de développement regroupés sous l’expression
apprentissage profond (Deep Learning). Elles ont atteint un certain niveau de
maturité permettant d’envisager leur utilisation pour des application réelles voire
critiques.

La direction de recherche proposée ici est de munir la perception d’un certain degré
d’autonomie considéré comme moyen de garantir sa fiabilité.

L’introduction d’une telle propriété implique de reconsidérer le statut de la percep-
tion non plus comme fonctionnalité passive mais comme une activité impliquant
comme parties prenantes explicites l’environnement à percevoir mais également le
destinataire des produits perceptifs avec lequel le système entretient une relation
contractuelle déterminant la nature du service attendu et les moyens de le garantir.

L’étude des systèmes perceptifs autonomes conduit ainsi à un programme de
recherche organisé selon trois axes: la conception d’une activité perceptive articulant
dynamique fonctionnelle et processus d’apprentissage, le développement d’une intel-
ligibilité propre des mécanismes de perception pour surveiller, spécifier ou justifier
leur comportement, et la mise en oeuvre d’une démarche générale permettant de
garantir leur utilisation sûre et maîtrisée.
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1Introduction

Context

The “Deep Learning” era

This memoir is about artificial perception in a historical context where generic
problems such as object detection or image classification, that had been previously
estimated unsolved, are now considered for practical and even critical applications.
This evolution is mostly caused by the surge of deep learning techniques that have
been able to federate (or dominate) various subdomains of Artificial Intelligence (AI)
under a common formalism – data-driven modeling and optimization or Machine
Learning (ML).

Computer Vision (CV), and to a lesser extent Natural Language Processing (NLP),
have been the core domains where this transformation was the most dramatic, with
the breakthrough of the deep convolutional network now known as AlexNet at the
ImageNet Large Scale Visual Recognition Challenge (Krizhevsky et al., 2012; Alom
et al., 2018). Since then, ML has become the leading conceptual paradigm for
almost all problems of CV, alternatives being forced to be justified and compared to
it. As an indirect consequence, it also gave a new visibility to Artificial Intelligence,
popularizing the expression as one of the keywords of many research fields.

The success of deep learning approaches is not only due to its empirical efficiency:
their flexible modularity makes easier the integration and combination of multiple
constraints, objectives and functional structures in a common framework, helped by
the availability of programming environments and a large community.

A consequence of this ease of development is an increased variety of functional
structures, adding closed-loop, sequential or interactive designs to feed-forward
processing pipe-lines. Merging various sources of information in complex static or
dynamic architectures, and optimizing globally their parameters from a data-driven
“end-to-end” criterion, is now the standard routine.

Of course, Deep Learning is not the solution to every problem: good performance
rely on the availability of large quantities of data, condition that may not be met
in many practical situations, motivating the development of other settings able to
address data scarcity.

The current hegemony of ML has also one side effect: that of overvaluing bench-
marking on research practice. Most studies in current literature contain a large
experimental section comparing proposed solutions on shared databases and eval-
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uation metrics, but often with objectives that do not differentiate clearly scientific
investigation from goal oriented engineering.

Maturing perception

In this context of unbounded creativity, the design of AI processes has evolved
towards more functional complexity and possibilities, but has also given rise to
new issues: formal reliability assessment, justification, explanation, verification,
trustworthiness, certification, etc. are now currently used keywords revealing the
level of maturity pursued for AI functions and also the difficulty to achieve such
objectives when dealing with Machine Learning enabled approaches.

Perceptual functions follow the same trend but with some specificity: the very
high dimension of input and inner spaces involved makes full knowledge of the
environment impossible at design time, requiring working hypotheses, simplifying
priors or online data gathering strategies to fill potential ignorance or uncertainty
gaps.

However, Perception as a generic capacity is more than a collection of functions. It is
indeed the interface with the external environment, but active and dynamic in the
sense that it brings the world into existence with a selective and purposeful point of
view. Perception is not mere passive signal processing.

The fundamental option taken here is that the right level of study for a mature
perception is to address both agency and cognitive dimensions. Agency implies
that the substratum of perception itself is a structure of dynamic components in
interaction with an environment and other agents. By cognitive we refer to capacities
such as memory management, reasoning, planning, learning, knowledge, decision,
multi-modal integration, language, etc. which are usually seen as high-level but that
are needed to implement perception.

Once the status of a cognitive agent is granted to perception, the question arises
of its autonomy: how to exploit efficiently its own capacities and resources, but
also what are its responsibilities about made commitments, for example in terms of
accuracy, relevance, response time, energy expense, etc.

Besides the underlying scientific issues, considering perception as a cognitive agent
is also an engineering ambition. The underlying assumption of the working program
described in this document is that the road to a mature and reliable artificial
perception is to address it as an Autonomous PErceptual System (APES).
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This document
The general objective of this document is to introduce the idea of Autonomous
PErceptual System and its implications in terms of research directions.

Its history started as a way to present in an organized and meaningful way my
previous works, most of it accomplished at ONERA, and ended in a report between
an essay, a research program or a roadmap, with (too) numerous references. I
apologize for this evolution that has considerably increased the length of the original
writing project.

The core of the document is divided in 4 chapters and a conclusion. Several contents
are highlighted with two types of boxes: squared for previous work, light blue filled
for research directions.

The goal of chapter 2 is to define more precisely the idea of APES as a means of
building reliable artificial perceptual systems, but also to question current approaches
in light of natural and cognitive science findings. In particular, it examines what it
implies for perception to be autonomous per se as opposed to the idea of endowing
an autonomous system with perceptual capacities.

Chapter 3 discusses the state of the art of formalism and techniques developed to
implement APES’s, and emphasizes two fundamental conceptual ingredients: active
perception and machine learning. This chapter also contains short descriptions
of most of my previous research activity and their underlying contribution to the
development of APES’s – a kind of fictive post-hoc story-telling.

One essential feature to ensure autonomy in perception is a capacity to express
representations or signs of their inner states or processes that are intelligible to their
recipient. Chapter 4 discusses the issues of interpretability or explainability – which
are becoming major concerns of the AI community – and their instantiation for
perceptual systems.

The boost in performance offered by deep learning approaches has paved the way
for the actual integration of perceptual capacities in real and even critical systems.
Chapter 5 reviews how to assess their safety and reliability, what are the current
limitations and proposes several research actions.

1.0 This document 3





2Autonomous PErceptual
Systems

This chapter introduces and justifies the concept of Autonomous PErceptual System
(APES) as a research topic with the objective of identifying its main issues. The
underlying idea of introducing such object is to examine the possibility of equipping
perception with a certain level of autonomy and to study what is impacted by this
property.

The chapter is organized in three sections: the first one examines what it means for
perception to be considered as an autonomous system; a second section discusses
several findings from cognitive science and philosophy that could inspire engineering;
the last section describes general issues that should be addressed to specifically study
APES.

2.1 What are APES?
A first idea to start investigations is to find out examples that could fit under APES
category before precisely defining it:

• softwares able to describe in a textual or visual form the content of an image
or a video (object localization and names, actions, events, etc.) as an answer
to a request for information,

• smart sensors, for instance Pan-Tilt-Zoom (PTZ) cameras or Unmanned Aerial
Vehicle (UAV) with sensors, combining controllable measurement device, view-
point and processing for feature extraction, image quality enhancement, mov-
ing object detection,

• multi-sensor networks or robots that allocate and combine resources to com-
plete multiple interpretation tasks such as people tracking, abnormal behavior
detection, action recognition,

• multimedia database management systems, able to navigate in large data
corpora, retrieve, organize and present to a user a set of data that corresponds
to her/his needs,

• data mining software suites that visualize, combine, summarize, reveal regu-
larities or accidents in heterogeneous datasets,

• search engine able to retrieve, suggest, notify digital content according to user
requests or habits.

Although those examples target different application contexts and communities,
they all share the same characteristics of purposively dealing with a contingent
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environment, world and/or user with which they possibly interact by emitting
actions or outputs and receiving inputs or requests.

The rest of this section will develop in details APES specificities: perceptual ability,
systemic structure and autonomy.

APES are Perceptual Systems

The foremost feature of APES is their perceptual ability. We need to define with
care what is implied by that faculty shared by most of living beings. A starting
point is therefore to study how natural perception is addressed and defined before
determining in what sense it can be understood for artificial entities.

Defining perception

Accurately defining perception is not a straightforward task as it potentially involves
considerations from various knowledge areas. A starting exercise to figure out what
is implicated when speaking of Perception is to compare the various definitions of
the term that have been proposed in dictionaries and analyze their differences.

A first corpus of definitions — multilingual — can be found in Wikipedia, which
itself refers to other sources:

English “Perception (from the Latin perceptio) is the organization, identification,
and interpretation of sensory information in order to represent and understand
the presented information, or the environment.” 1

French “La perception est l’activité par laquelle un sujet fait l’expérience d’objets
ou de propriétés présents dans son environnement. Cette activité repose
habituellement sur des informations délivrées par ses sens.” 2

Spanish “La percepción es la forma en la que el cerebro detecta las sensaciones
que recibe a través de los sentidos para formar una impresión consciente de la
realidad física de su entorno (interpretación).” 3

Italian “La percezione è il processo psichico che opera la sintesi dei dati sensoriali
in forme dotate di significato.” 4

1https://en.wikipedia.org/wiki/Perception.
2https://fr.wikipedia.org/wiki/Perception. Perception is the activity by which a subject experiences

objects or properties present in his environment. This activity is usually based on information
delivered by his senses.

3https://es.wikipedia.org/wiki/Percepcion. Perception is the way in which the brain detects the
sensations it receives through the senses to form a conscious impression of the physical reality of
its environment (interpretation).

4https://it.wikipedia.org/wiki/Percezione. Perception is the psychic process that operates the synthe-
sis of sensory data in meaningful form.
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German “Wahrnehmung (auch Perzeption genannt) ist der Prozess und das Ergeb-
nis der Informationsgewinnung und verarbeitung von Reizen aus der Umwelt
und dem Körperinnern eines Lebewesens.” 5

Other definitions can be found in several on-line dictionaries or encyclopedias:

Trésor de la Langue Française “Opération psychologique complexe par laquelle
l’esprit, en organisant les données sensorielles, se forme une représentation
des objets extérieurs et prend connaissance du réel.” 6

Académie Française “Acte par lequel le sujet se forme la représentation d’un objet
appréhendé par les sens.” 7

Larousse “Événement cognitif dans lequel un stimulus ou un objet, présent dans
l’environnement immédiat d’un individu, lui est représenté dans son activ-
ité psychologique interne, en principe de façon consciente ; fonction psy-
chologique qui assure ces perceptions.” 8

Petit Robert “Fonction par laquelle l’esprit se représente les objets ; acte par lequel
s’exerce cette fonction ; son résultat.” 9

Encyclopedia Britannica “Perception, in humans, [is] the process whereby sensory
stimulation is translated into organized experience.”

Several definitions are minimal: the Italian introduces the idea of meaningfulness,
and the Encyclopedia Britannica relates senses to experience. Several mention the
idea of interpretation. Other definitions speak of a subject or an individual hosting
perception, and introduce concepts of mind and consciousness. Several definitions
assume that senses hold information. Many introduce objects as the reference of
representations. Most refer to an outer environment or a reality. One definition
(Spanish) involves the brain as the entity hosting perception. The German definition
mentions inner body perception.

None of the previous definitions are conceptually neutral: they rely on a certain
interpretation of the nature of perception, and generate sometimes more issues than
validated facts. For instance, what is exactly the status of the objects represented
in perception, if any? Are they real (in what sense?) or mental constructions? Is
perception a reliable account of reality, or a subjective construction, an unconscious

5https://de.wikipedia.org/wiki/Wahrnehmung. Perception is the process and result of information
gathering and processing of stimuli from the environment and the internal body of a living being.

6http://www.cnrtl.fr/definition/perception. Complex psychological operation by which the mind, by
organizing sensory data, forms a representation of external objects and becomes aware of reality.

7https://academie.atilf.fr/9/consulter/perception?page=1. Act by which the subject forms the
representation of an object apprehended by the senses.

8https://www.larousse.fr/dictionnaires/francais/perception/59399?q=perception. A cognitive event
in which a stimulus or object, present in the immediate environment of an individual, is represented
to him in his internal psychological activity, in principle in a conscious manner; psychological
function that ensures these perceptions.

9Function by which the mind represents the objects; act by which this function is exercised; its result.
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inference (Helmholtz and Southall, 1924)? Those questions have been addressed
and debated extensively in philosophy and psychology: the goal of this section,
however, is not to present the various theories of perception, but only to point out
that perception resists unquestionable definition in spite of centuries of studies. “In
spite of the interest constantly aroused by the study of perception throughout the
history of Western philosophy and despite the enormous contribution made on this
subject by psychology since the moment when it tried to define itself as a science,
this subject is typically a domain that resists both concrete observation and abstract
analysis” 10 (Thinès, 2016).

For the following of this document, I will propose a minimal — i.e. reduced to
essential ingredients — definition to avoid underlying and undeclared conceptual
hypotheses, and also as an attempt to express a statement that can be shared between
natural and artificial perception:

Minimal definition Perception is an activity informed of the external world through
sensory input.

This definition only states that perception is the encounter of contingent data or
stimuli originating in senses and of an active process that may find or extract
information about an external world from it.

The important point that the proposed definition emphasizes is that perception is
an activity, that may potentially involve complex mechanisms and may take various
forms (construction process, synthesis, act, etc.).

The other specificities of this definition are the omissions: nothing is said about the
purpose or result of perception, for instance a representation of the environment or
world, nor that it has to be hosted by a mind or a consciousness which may or may
not have access to its results.

The next section examines how this essential definition can be declined and updated
for artificial perceptual systems.

The roles of artificial perception

A current difficulty when trying to describe and model perception when hosted by
an artificial entity is the comparison with our own senses: seeing, hearing, smelling,
tasting, touching are natural faculties that we experience “without knowing how
they work”. Humans have no difficulty in describing what they see in an image
or in a video and in reasoning about the cause and consequences of the observed

10Original text in French: “Malgré l’intérêt incessant qu’a suscité l’étude de la perception tout au long de
l’histoire de la philosophie occidentale et malgré l’énorme contribution, sur ce sujet, de la psychologie
depuis l’époque où celle-ci a tenté de se définir comme science, ce topique constitue, par excellence, un
domaine qui résiste à la fois à l’observation concrète et à l’analyse abstraite.”

8 Chapter 2 Autonomous PErceptual Systems



phenomena. The holistic experience of natural perception is also an obstacle to its
unequivocal and informative definition as was shown previously.

It is a platitude to state that this easiness and efficiency is not shared by artificial
devices. The expression “semantic gap” has been coined to refer to this problem and
expresses the fact that the information encoded in computers does not isomorphically
match the inner structure of sensory data.

Another specificity of artificial perceptual entities is that they are required to exter-
nalize some content: if the nature or even existence as such content is debatable
for natural perception and may lead to conceptual aporia, an artificial perceptual
system is used for some goal. Engineering is more comfortable when a criterion
to optimize or satisfy is exhibited, and when quantitative evaluation means and
validation protocols can be applied.

I propose two possible distinct roles for perception when hosted by an artificial
system: as a measuring device or as a sign producer.

Perception as a measuring device

In this first role, the objective for perception is to provide representations (topological,
geometric, radiometric, spectral etc.) of the environment. This objective is consistent
with the idea that senses provide us a direct and faithful account of the outside
world, as proposed in several definitions of page 6 — a approach sometimes called
naive realism in philosophy.

One clear advantage of this role is that perception production can be compared to
an ideal content, a ground truth, validated by other measuring means. Perception
can be seen as an inversion process, estimating or calculating physical features from
given sensory data. The representations can be used as a formal substitute of the
environment — a “digital twin” to invoke a fashionable expression — and exploited
later on for various inference tasks.

Another advantage of this objective of perception is the expected universal character
of the constructed representation obtained firstly by eliminating subjective idiosyn-
crasies — the norm of perception is the physical world, the reality — and secondly
by ignoring the potential usage of representations, making perception without any
specific purpose, ateleological. This lack of objective, however, may lead to uselessly
detailed representations or processes.

A typical role of perception as a measuring device is visual pose estimation of an
object or a person, i.e. a function able to describe the geometry and configuration of
an object relatively to known landmarks or axes.
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Perception as sign production

The second proposed role of perception is to consider it as a generator of objects that
stand for some feature or property of the world and is meaningful to a dedicated
user to serve her/his needs. This approach relaxes the ambition of universal and true
representation of the environment, and involves the recipient of perception outputs,
be it formal, material or human, as a key element: no perception without declared
user that assigns meaning of it.

The idea that perception content is between world and user, ontologically associated
with them, can be related to the concept of a sign, defined by Peirce (Chandler, 2007,
page 29) as a triadic (three-part) model11:

1. The representamen: the form that the sign takes – the ‘sign vehicle’.

2. An object: something to which the sign refers (a referent), or which it repre-
sents.

3. An interpretant: the effect produced by the sign or the sense made of it.

Considering perception as sign production, in the framework proposed by Peirce,
leads to two consequences:

• perception is only “real” when instantiated, i.e. when the triadic semiotic
relation becomes actual: the interpretant hosts a dynamic process — the
semiosis;

• perception is inherently to someone (the interpretant in Peirce vocabulary),
implying that its value depends on a final usage.

Peirce is also well known for having introduced three different ways to relate the
sign vehicle and what it refers to (Chandler, 2007, page 41):

a. Symbolic: based on a relationship which is fundamentally unmotivated, ar-
bitrary, and purely conventional (rather than being based on resemblance or
direct connection to physical reality) – so that it must be agreed upon and
learned.

b. Iconic: based on perceived resemblance or imitation (involving some recogniz-
ably similar quality such as appear - ance, sound, feeling, taste, or smell).

c. Indexical: based on direct connection (physical or causal). This link can be
observed or inferred.

Usual perceptual outputs can be analyzed using those categories: in computer vision,
object detection described as bounding boxes in an image, or even better as a mask,
can be interpreted as having an iconic link to the object since its shape resembles the
object geometric extension, a label is clearly symbolic since conventional, and the
optical flow is indexical, as it is caused by the object motion. Measure values should

11There is another tradition of semiotics that are more comfortable with a dyadic model — signi-
fied/signifier — as proposed by Saussure (Chandler, 2007, page 13).
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be considered as indexical since they are causally generated by the environment
or by object properties. A bounding box used to encode the object size, not its
shape, has therefore to be understood as an index, showing that a given formal
representation can have two different meanings from a semiotic point of view.

Interpreting perception as sign production has a direct implication when trying
to design and evaluate artificial perception: the relation between the sign-vehicle
and the object can be seen as the usual function associating input sensory data (an
image, a signal, etc.) to an output (a bounding box, a label, a flow field, a pose etc.).
However, the triadic form involves a third stakeholder, the interpretant, i.e. the entity
for which the sign meaningfully refers to an object. This implies that perception
objectives should also be characterized by the types of sign that are produced (the
representamen/object/intepretant triplets). One should not speak of visual object
recognition in a neutral way, i.e. by only describing the input/output form of a
function that produces “universal” representations, but should explicitly declare for
what recipient: for a robot that will grasp the object, for a tracker that will maintain
a label, for a database manager that will organize a dataset, etc.

One reason to introduce the idea of perception as sign production is when it has
to do with semantics: in perceptual tasks such as object categorization, captioning,
image segmentation, sound identification etc., the relation between the output and
the object it refers to must be agreed upon and shared by users, i.e. interpreters, to
be trusted.

One simple way to reveal the impact of involving an interpreter in “semantic”
perception is when the perceptual task is to name observed objects. What is the best
word to issue to describe the seen object? What categorization level target (basic,
superordinate, subordinate or fine grained)? (Rosch, 1999; Tousch et al., 2012)
For instance, when observing a car, it is not obvious to prefer to describe it as SUV,
a family car, a Peugeot 3008, or simply as a vehicle. Identifying the right level is
usually resolved by restricting the potential set of labels among which to choose,
often in a rather arbitrary way. However, when the output is a caption, i.e. a free
form text, it appears much more difficult to constrain the length or expressiveness
level, and even define an ideal caption without knowing how it will be used, for
what and by whom. Unequivocally defining ideal outputs is not straightforward,
and we will see that, even on non semantic problems such as contour identification
(chapter 5, pg. 144) that trying to eliminate the role of the interpreter introduces
more difficulties than simplifications.

Perception as a system

The concept of perception as a system is not new and has been approached either
to model natural perception or to design artificial algorithms and devices. Basically,
what is defended is the idea that the classic feed-forward functional structure linking
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sensor, processing algorithm and decision is perhaps not the most fruitful on the
conceptual plan or the most technologically efficient way to address perception.

As for perception — as we have seen previously — and with a still greater degree of
variability, the term system may refer to different ideas, is used in many knowledge
and technical domains (engineering, biology, politics, economics, philosophy etc.),
and may characterize either a concrete or an abstract object. For our use case —
perception — we can define it, minimally, as:

System A circumscribed set of interrelated and interdependent elements that
collectively and dynamically contribute to the achievement of a goal.

Several features of a system can be deduced from or added to this definition:

• Elements: a system is compound, its components playing a determined role;

• Interdependence: the existence of the elements depends on the others, making
the system a whole that is more than the sum of its parts, i.e. a structure;

• Interrelation: the elements interact with each others, i.e. receive or emit
information or actions;

• Circumscription: a system has an inside and an outside;

• Goal achievement: the system has an underlying final objective, not necessarily
shared with its components;

• Temporality: a system is dynamical, and is therefore dependent on, or simply
indexed by, some intrinsic or extrinsic sequential order.

The idea of perceptual system has been proposed extensively in natural perception
studies, especially in visual neuroscience. There is an important body of knowledge
about the visual system of primates, its neural architecture from the retina to the
cortex, and about internal structures of the brain responsible for sensorimotor
control. Fig. 2.1 depicts partial functional organization of the visual system, at
two different levels: cortical and sub-cortical. What they show is that vision is
spontaneously compound and mixes different natures of elements. A notable feature
is the loopy structure of dependence between components, very far from a feed-
forward processing scheme progressively transforming input sensory data to produce
the final output.

This tight and loopy dependency between processing components has inspired
several models and implementations of sensory-motor loops, especially in robotics.
Fig. 2.2 shows a functional architecture intertwining data processing, gaze and motor
control and sensory data acquisition to be hosted by a humanoid robot. The model
is designed to account for developmental ability through environment interaction
(grasping), but is a good example showing how difficult it is to restrict perception
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Fig. 2.1: (Left) Visual cortex areas of the macaque monkey. Each box is a separate cortical
region that is known to play a role in vision, and the lines represent known
pathways between these regions (Felleman and Van, 1991). (Right) Schematic
representation of the relationships between cortical and subcortical loops for
saccade generation of the primate visual system, involving brain inner structures
such as basal ganglia (BG), thalamus (TH), superior colliculus (SC), and cortical
areas such as frontal eye field (FEF) and V4/IT (N’Guyen et al., 2014).

to simple feed-forward processing when addressing complex multimodal tasks.
This architecture also exemplifies the need of a systemic approach when addressing
limited resource management for cognitive tasks and the role of attentional processes.
This aspect will be developed in chapter 3.

Fig. 2.2: Functional architecture of an object recognition system integrating vision and
motor control (grasping, saccade) (Hülse et al., 2010).

The design and development of perceptual systems able to complete several tasks
and combining various types of components with assigned roles (data processing,
knowledge base, long-term memories, hypothesis management, reasoning, etc.) has
a long tradition in artificial intelligence (Draper et al., 1989; Draper et al., 1999).
The ambition of those systems is to be rather generic and are more oriented towards
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exploiting knowledge representations, i.e. to be cognitive, rather than optimizing
processing for a specific task. Fig. 2.3 shows a example of a rather recent proposition
of this research trend.

Application Domain

Knowledge Base

Interpretation
Engine

Visual Object

Knowledge Base

shared by

Visual Concept
Ontology

shared by

shared by

shared by

Library of
Image

Processing

Programs

Program

Utilization

Knowledge Base

Program
Supervision

Engine

 Image

Visual Object
Hypotheses Instances

Data

Image processing: Program Supervision KBS

Visual Data Management KBS

Semantic Interpretation KBS

Management Engine

Visual DataVisual Data Management

and Spatial Analysis

Ontology

Image Processing

Semantic Image Interpretation system

Image Processing

Requests

INPUT

End User Request

Input Image

Current Context

High level goal

OUPUT

Interpretation

Fig. 2.3: Example of a vision architecture for image interpretation integrating several types
of interacting “cognitive” components (Hudelot, 2005).

Finally, the deep network approach, and its capacity to accommodate several modules
with specific roles under a unifying formalism, can be seen as the contemporary
way to consider perception as a system. The availability of software development
frameworks makes the design of interconnected components easy, with the possibility
of combining classical feed-forward and recurrent (LSTM, GRU) local architectures
in an “end-to-end” learnable framework. Fig. 2.4 shows an example of this type of
approach, exploiting modules (e.g. “Visual Question Answering” and “captioning”)
playing the role of non declarative knowledge bases, similarly to cognitive vision
architectures such as those of Fig. 2.3.
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Fig. 2.4: (a) Global architecture of a semantic image encoder exploiting various sources
of knowledge exploited as captioning and visual question answering modules.
(b) Architecture of the question generator module (blue rounded rectangle). (c)
Architecture of the history based VQA module (red rounded rectangle). (Bucher
et al., 2018)
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What could be the advantages of considering perception as a system, rather than as
a feed-forward transducer transforming energy into representation? Three types of
justifications can be given:

• it embeds the problem into a more general conceptual framework, allowing
better expressiveness;

• it is more in line with models and findings from natural perception, where
loopy functional architectures are commonly used to explain behaviors;

• it potentially brings better flexibility and adaptability through dynamical inter-
actions between its components.

The main drawback of a systemic approach is of course that of complexity. We will
see in a following section how this issue can be solved by transferring, partly, the
complexity of design and operation to autonomy.

Boundaries of perceptual systems (Perception and cognition)

As has been proposed above, the role of perception is to provide either a measure or
a sign referring to a property or a content of the environment for a user/recipient:
one key feature of perception is that it externalizes something. Perception, as a
system, has an inside and an outside divided in two categories of externalities: a
contingent world and a user.

One consequence of a circumscribed perception is the need to define its functional
boundaries. This can be addressed either as a scientific question — what is exactly
the role and place of perception — or as an engineering problem — how dispatch
tasks between components when designing complex artifacts such as robots or
autonomous vehicles.

(a) (b)

Fig. 2.5: (a) Feed-forward network for object recognition inspired by brain functional
architecture (DiCarlo et al., 2012). (b) Diagram of functions involved in the
EZ-reading model. V is preattentive visual processing; L1 is "familiarity check"; L2
is "lexical access"; A is "attention shift"; I is "postlexical integration"; M1 "labile
saccadic programming"; and M2 "nonlabile saccadic programming". From (Reichle
et al., 2012).
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Fig. 2.5 shows two diagrams depicted natural vision models. The left diagram
shows a feed-forward biologically inspired architecture for pre-attentive visual object
recognition, i.e. a recognition not involving any saccade or eye movement (DiCarlo
et al., 2012). The second diagram, purely functional, intends to describe the basic
modules and actions involved in reading and contains dependent components, with
multiple loops and interactions (Reichle et al., 2003).

Both diagrams describe cognitive perceptual tasks (object recognition and reading)
but with very different options and objectives. The first one tries to isolate an ele-
mentary brick, the second one emphasizes the dynamic collaboration of elementary
functions to complete a task. These diagrams reveal an underlying difference about
what is thought to be the nature of perception.

The feed-forward architecture of Fig. 2.5(a) is in the quest of a model for “core
visual recognition”, i.e. a function providing through perception an all purpose
representation for various tasks. Recent studies of this trend have proposed to
interpret contemporary deep image feature networks — often used in the computer
vision community as generic features — as plausible neural architectures (Kubilius
et al., 2018; Rajalingham et al., 2018).

However, what the diagram of Fig. 2.5 does not show is the existence of “skip”
efferent connections from the early visual cortex V1 directed towards other higher
cortical and subcortical areas (Casagrande and Kaas, 1994) and afferent connections
from the IT area (Fig. 2.6), implying that the visual brain is not processing inputs
from the retina to interpretation in a strict feed-forward hierarchical way. The brain
is the place of multiple bottom-up and top-down interactions, making the isolation
in its global neural network of a core and universal perceptual function somehow
conventional.

Fig. 2.6: Feedback pathways carrying top-down information to the visual areas. From
(Gilbert and Li, 2013).

The contrasting roles of bottom-up and top-down information flows as explication of
perceptual phenomena and experience has given rise to decades of discussions. Al-
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though there have been numerous studies about the complex influence on perception
of context, personal history, multiple sensory modalities, or of cognitive states such
as emotion and motivation, the debate is still vivid. The target article published by
Firestone and Scholl and its open peer commentaries (Firestone and Scholl, 2016),
which disputes the fact that perception may be penetrated by cognition (Pylyshyn,
1999), is a recent instance of the current level of controversy.

The top-down vs. bottom-up opposition is also manifest in the usual distinction
between low-level and high-level perception, mostly practiced in computer vision
(Hildreth and Ullman, 1988), with the idea that the low-level part is automatic,
unconditioned, signal processing based, whereas the high-level addresses more
semantic tasks and potentially involves multiple contextual and global cognitive
state conditioning. Here again, a clear segmentation between a low-level — more
perceptual — and a high level — more cognitive — is difficult to keep, especially with
the current deep learning approach where models, although mostly feed-forward, are
shaped by “cognitive” tasks and objective functions (categorization, object detection,
captioning etc.)

Another way to dispute the articulation between a core perception encapsulated
as a component of a master cognition is to make perception fundamentally active,
where attributes such as dynamical, selective, contextual, conditioned, indirect,
loopy, top-down influenced, flexible, uncertain, adaptive become relevant. The idea
of APES is clearly more comfortable with this way of considering perception.

APES are Autonomous Systems (Agents)

Perception, whether natural or artificial, is a capability with compound structure and
which requires complexity management means to become truly usable, for scientific
description or for engineering applications. This section examines how adding a
degree of autonomy is a way to, partially, get around this question.

Autonomy is a property of a system having a capacity of action: an agent. We
will therefore start by studying in what sense perception may fit with the idea of
agency, and discuss later how autonomy is a complementary property that impacts
the way perception should be addressed. We finally examine the usefulness, both
conceptually and in practice, of considering perception as a service.

Perception and agents

Autonomous or intelligent systems or agents have been widely studied in artificial
intelligence, and have given rise to specialized scientific communities. Research
objectives in this field can be roughly divided in two groups: the first one puts the
emphasis on the agency property, i.e. the fact that agents can act and modify their
environment and inner states: (Poole and Mackworth, 2017) is an example of a
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recent textbook of that category which “presents artificial intelligence as the study
of the design of intelligent computational agents.” The second group puts the accent
on the study of interactions and organization between collection of agents either to
model behaviors or to solve problems, and is usually referred to as “multi-agents”
(Weiss, 2013).

What is the place or role of perceptual issues in those studies? To get an idea of this,
Fig. 2.7 depicts schemata found in current textbooks where observation through
sensors or stimuli are transformed into percepts to generate actions. The nature of
this percept, however, is generally not developed in those books.

memories Controller

percepts commands

Body

memories

Environment

stimuli actions
Agent

Fig. 2.7: (Left) “An agent in its environment. The agent takes sensory input in the form
of percepts from the environment, and produces as output actions that affect it.
The interaction is usually an ongoing, non-terminating one.” From (Weiss, 2013,
chapter 1). (Right) A similar diagram that introduces a memory based controller.
From (Poole and Mackworth, 2017, chapter 2).

Another source of information are definitions found in the literature: (Franklin
and Graesser, 1996) collect a series of them, and propose to essentially define
autonomous agent as “a system situated within and a part of an environment that
senses that environment and acts on it, over time, in pursuit of its own agenda and
so as to effect what it senses in the future.” There are several points that require
comments in this definition: it introduces the verb to sense — not to perceive —
conjugated at the active voice, and makes sensing a consequence of action, an effect.
Senses appear to be at the same time a condition for action and a goal, since the
agent is conditioned by what it should sense next, in the future.

What is common with the schemata and the definition discussed above is the fact
that the agent is considered alone and enters a sensing/action loop with a unique
source of contingency: an undifferentiated environment. Nothing specific is said
about other agents that may directly interact with it and exploit or be influenced
by its production. In particular, agents as depicted do not communicate, unless one
considers communication as a sensing/action loop — which is not a meaningless
option, but needs to be more clearly assessed.

This loneliness is of course not a property of the multi-agent approach where
communication between entities — a user being a specific type of agent — is a
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central concern (see (Weiss, 2013, part II)). However, the conceptual emphasis in
this field is more about the management of the complexity induced by the “multiple”
existence of agents than the interaction with a single user.

Perceptual agency

A central question that the idea of APES addresses is the possibility of considering
perceptual agency, i.e. to study agents whose purpose is to perceive and that do not
address perception solely as a resource for action.

Perceptual agency is the fact that perception at some point of its process has to select
among several possibilities of action to construct its final state or outcome. It entails
time inscription and sequentiality of operation, as for system, but adds activity as an
essential feature.

The fact that perception for perceptual agents may be a final objective, and not a
passive intermediate resource instigates two related questions: what is the nature of
“perceptual” actions? what are the characteristics of the environment that receives
them?

A first type of action one can think of is motor command. The idea of motion for
perception is clearly inseparable from the sense of touch. When considering other
senses such as vision of hearing, motor actions may also be involved to direct the
head or control the visual gaze (see Fig. 2.5(b) and Fig. 2.2).

The fact that bodily movement are often entangled with perception has given rise to
a global account of behavior or cognition as sensory-motor skills coupling in a loopy
dependence sensor outputs and actuator commands. The extreme development
of this trend is the idea that the world is mainly perceived as a source of action —
affordances (Gibson, 2019)— or is constructed, hence perceived, through bodily
interactions (O’Regan and Noë, 2001), i.e. the cognition is embodied (Varela et al.,
1991) and generates its own world by acting (Gallagher, 2017).

Another remarkable active feature of perception, and probably also of cognition in
general, is attention. It can be considered as the action of valuing, ordering, filtering
or selecting available resources to complete a cognitive task. Attention has been
kept for a long time in the neuroscience or psychology domains (Carrasco, 2011;
Borji and Itti, 2013), but has been acclimated recently as a common tool in artificial
intelligence for deep network design (Vaswani et al., 2017).

Visual attention is manifest through the “overt” phenomena of saccade or pursuit in
primate vision. But attention studies also reveal the existence of “covert” phenomena,
i.e. mental focus without eye movement (Richard D. Wright, 2008). Chun et al.
(Chun et al., 2011) propose another categorization of attentional phenomena, and
oppose external attention — that refers to the selection and modulation of sensory
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information — to internal attention — that refers to the selection, modulation, and
maintenance of internally generated information, sub-objectives, long-term memory,
or working memory.

Attention phenomena show that the repertoire of perceptual actions target other
objectives than motor control and may functionally influence “internal” processes.
This means also that perception may involve operations and structures with various
roles and types, and corresponding actions to control them, making APES a complex
functional object by nature (see the diagrams of Fig. 2.2, 2.3 and 2.4 for instance).

Task oriented perception

So far, we have proposed that perception should be endowed with agency and that
actions may be either external or internal. In the previous section, we have also
questioned the relevance of drawing inalienable boundaries to perception in its
relation to a hypothetical cognition that may functionally encapsulate it.

A simple idea to avoid endless discussions to decide who gets the primacy, a free mind
or a contingent experience, instantiated by the top-down/bottom-up opposition, is
to consider cognitive activity as a dual project of task specification — what is to be
achieved — and completion — the operations actually involved.

The value of perception in this framework, which ontologically puts the notion task
at the first place, depends on how and for what purpose its output is used. Perception
“alone” is useless and only acquires value when contributing to an identified task.

Task specification is not the responsibility of perception, but perception has to “agree”
to participate in the operations needed to complete it and to follow a set of rules and
commitments. Conversely, cognition, considered as a task manager, enrolls available
resources, including perception, based on a knowledge of what they can achieve.

In this task-oriented view of perception, no actor dictates what the other has to
do without shared acknowledgement: cognition uses perception production to
complete its objective but has to take into consideration available perceptual capacity;
perception organizes its production so as to be useful to the task. We will come back
later on this co-specification by introducing the idea of service in a further section.

All cognitive tasks do not necessarily involve perception. Remembering, solving
a mathematical problem, judging, use skills that do not require the existence of
perceptual inputs to operate. Tasks such as describing a scene, reading, navigating,
grasping, singing etc., however, make use of sensory inputs somewhere in their
process. Scene description produces from visual signal semantic representations,
usually symbols, referencing its content. Reading requires visual sensing and gaze
control (see Fig. 2.5). Navigating may exploit sensors to estimate a position, i.e.
a measure, in order to build appropriate motor commands. Grasping uses visual
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servoing to reach its target with good precision. Singing may use audio feedback to
adjust pitch and level. In all those tasks, the role of perception is to provide outputs
dedicated to their achievement.

Those examples suggest a rather general definition of a

Perceptual task : A goal-oriented activity that depends on measures or signs pro-
duced by perception from sensory inputs.

In this document, we will only be interested in describing how perceptual tasks are
implemented as APES.

Binding perception to task implies multiplicity: there are, in principle, as many
categories of perception as varieties of tasks: there is no such thing as a generic
perception that provides versatile and universal representations of the world, but
several instances of dedicated sign or measure producers that contribute specifically
to the current task.

However the quest for common architecture or features in perception is an interesting
scientific and technical question: it should result from discovering what can be
shared between tasks, and not by positing a core architecture. A certain level of
versatility can be a consequence of task multiplicity, as is proposed for instance in
(Kokkinos, 2017; Doersch and Zisserman, 2017; Zamir et al., 2018), the problem
being addressed is the existence of a structure organizing visual tasks and able to
transfer latent features between them (Fig. 2.8). We will see in the following chapter
what are the promises and the difficulties of conceiving such a project of joint control
of multiple perceptual tasks.

Fig. 2.8: Structure discovery between visual tasks (Zamir et al., 2018).

Adaptivity

As we have seen in the previous section, a desirable feature of APES’s is their
capacity of offering a repertoire of perceptual tasks for several recipients, i.e. their
potential versatility. Addressing globally a task-user multiplicity is an over complex
problem and motivates the development of adaptation capacities in APES’s that
will compensate for incomplete models. Roughly speaking, since it is impossible to
describe exhaustively all the circumstances APES’s will have to deal with, we are
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forced to relax imperative modeling or programming towards more declarative way
to express their expected behavior.

Considering adaptivity as “the capacity that certain systems possess to modify them-
selves in order to adjust to changes in the environment” (Barandiaran and Moreno,
2008), a first question is to identify what is the environment of an APES, or what is
likely to change in it. Various aspects can be considered.

Adaptation to the situation, i.e. to the entities that signs or measures refer to. This is
the usual way to consider run-time adaptivity where, for a given task, the perceptual
system selects and combines its resources to adjust to the complexity of the outside
world. For instance, image features or processing logic may differ in night or day
vision; another type of adaptation is active vision that sequentially selects informative
parts in the field of view (see Fig. 2.2 page 13).

Adaptation to the task(s), i.e. to the nature of expected output signs and measures.
The structure of operations and resources depend on the perceptual tasks and on
the system performance requirements. Several parts of the perceptual system can
be generically shared in case of multiple tasks, e.g. deep image features as it is now
customary in many computer vision chains.

Adaptation to the operational domain, i.e. to the variety of sensory inputs and tasks.
An APES structure may globally adjust to the potential complexity or variability of
the perceived world: for instance, image features and processing chains are different
when detecting furniture in indoor scenes or when segmenting buildings in aerial
images.

Adaptation to the user(s), i.e. to the nature of the potentially multiple agents that
will exploit perceptual production. An APES may have to prioritize its resources
according to the status of the recipient and to the nature of the perceptual output.
For instance when the result of certain tasks are critical to the safety of a global
entity hosting an APES as one of its subsystems, or when one of the tasks is to alert
about some possible danger.

Those four different types of adaptivity do not have the same impact on APES
design. The first one (adaption to the situation) is related to the systemic nature of
perception as has been discussed previously (page 11) and conditions the dynamics
of information flows. The other three are more global and have an influence on the
functional structure of the system, i.e. the nature and relation between the various
states, components, processes, etc.

Ideally, to be truly versatile, an APES should be able to adapt along those four
directions: specifying and designing the rules or principles governing the internal
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decisions and processes of this kind of system is a very challenging problem if
addressed in a direct way. The next section discusses the role of autonomy as a
necessary condition for efficient adaptivity.

Autonomy

One motivation for introducing the idea of APES is to endow perception with some
degree of autonomy, and examine what this property implies. A first action is to
clarify what is meant by autonomy.

As a preliminary precaution, we do not consider here the ontological problem of
the self or identity that can result from the “operational closure” at the root of
autopoiesis (Meincke, 2018; Barandiaran, 2017) or be a condition of autonomy. In
other words, we do not question the existence of the entity — a perceptual agent —
nor the boundaries with respect to its outside; we only try to address what it means
to be autonomous.

The first property that comes to mind when speaking of autonomy is independence.

It arises rather naturally as a key feature of autonomy in moral or political philosophy.
Autonomy is either considered as the right or condition of free self-government
independently from external control or influence, or for instance in Kantian moral
philosophy, as the “capacity to impose the (putatively objective) moral law on
oneself” (Christman, 2018) and act in accordance with it. Autonomy is connected
to free will, as a necessary condition, but adds to the capacity of making agent’s
choices of action a higher possibility of designing own objectives or motives. Another
related concept is that of (moral) responsibility, as a dual or counter part of freedom
of action: one way to answer to the problem is to ascribe responsibility to an agent
only if the production of his/her actions can actually or potentially be demonstrated
through explicit and verifiable statements identifying the underlying rules governing
action.

All those questions of free-will, self-government, responsibility, statements, which
are critical to define autonomy from a moral or legal point of view, are still debated
and controversial. Whether they can be adapted and applied to artificial systems
such as APES’s requires detailed investigation and will not be addressed further in
this document.

From a more focused artificial system perspective, thus, the issue of independence
can be started by identifying its attributes: independence from what or who? For
APES’s, dependence can be reduced to a relation with two kinds of objects: the
environment in which the perceptual agent lives, and other agents which may take
the role of either users or prescribers of perceptual outputs.
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The environment is the main source of contingency. A perceptual system cannot
be independent from the environment since its principle is precisely to generate
measures or signs that refer to it. However, freedom or self-government can be
invoked in the way this reference is built and on what it refers to. An autonomous
perceptual system has some flexibility on the form it generates a scene description —
as a text, a mathematical object representing geometric configuration or radiative
features, an image etc. It may also choose the elements to describe (object location
or attributes, actions, events etc.) and will organize its resources accordingly. Having
the freedom of choosing the nature of a description can however also be understood
more negatively as a consequence of the limited capacity of APES’s: choosing is
selecting what can be achieved.

The relation to other agents however is potentially more constrained, in the sense
that what makes the value of APES’s outputs, is what a user or a sign recipient
— the interpretant (cf. page 10) — will make of or expect from it. Somehow, an
Autonomous PErceptual System must be aware of the recipient-user’s objectives, at
least partially, to guide its activity, making its behavior partly conditioned by these
external constraints.

The global complex gathering APES and recipient-user involves two objective func-
tions: the first one is hosted by the APES and aims at a building measures or signs
that are faithful to the environment and valuable to the user, the second one rep-
resents the recipient-user own goals that makes use of APES production. The two
ideally collaborate but may also compete: conflicts may be resolved by imposing
a hierarchical precedence between the user and the perceptual system, restricting
APES full independence.

However, an exclusive hierarchical relation with a single user which prescribes the
current perceptual task may be inefficient and even dangerous for a global system,
perception being the unique source of environmental information.

A first obstacle to exclusivity is the expected versatility of APES’s that aims at
providing outputs to several users that may have contradictory goals. A second
difficulty that could make a hierarchical relation inefficient and even harmful is
inattentional blindness (Mack and Rock, 1998) that makes a perceptual system
univocally engaged in a given task for a given user, becoming blind to unexpected
events. This kind of phenomena leads to problem of attentional tunneling (Régis
et al., 2014), i.e. “the allocation of attention to a particular channel of information,
diagnostic hypothesis or task goal, for a duration that is longer than optimal, given
the expected cost of neglecting events on other channels, failing to consider other
hypotheses, or failing to perform other tasks” (Wickens and Alexander, 2009). This
behavior prevents a perceptual system from generating alerts that may inform the
system of dangerous events, for instance, and from asking for revised objectives.
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Fig. 2.9: Levels of driving automation as proposed by the Society of Automotive Engineers
(committee, 2018).

The status of the relation between an artificial system and a potential user is the
core or the proposed hierarchy that rules the different levels proposed for automated
driving applications (Fig. 2.9). The levels distinguish two groups according to who
monitors the driving environment: human or automated system. It also introduces
the idea of “request to intervene” that instantiates various precedence levels between
user and automated system.

What should be retained from the short discussion above is that autonomy does not
mean that an APES should not have relationships with other agents or users, but
that the nature of independence, seen as a condition to autonomy, is determined by
the type of relationship they have. We will define in a further section what are those
relationships by discussing the idea perception as a service.

Learning and autonomy

One possibility to avoid the complexity of explicitly modeling adaptive systems is
to implement this activity as a learning phase, i.e. let actual experience or practice
shape their structure and values. This is one of the major trends in contemporary
perceptual and artificial intelligence systems, relying on the fact that a data driven
approach is able to compensate — partly — for the complexity or deficiency of
formal modeling.
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Learning can be thought as a way to adapt a system to the three off-line types of
adaptation: to the operational domain, to the tasks and to the users. But how does
it fit in a system claiming a certain level of autonomy?

A first useful distinction to make is to separate autonomy during operation, or during
development. Operational autonomy refers to the usual property when speaking
of autonomous agents (see previous section page 17). Developmental autonomy
introduces the idea that the system has some initiative in designing its own capacity,
and can evolve over time: this is where learning can take place.

The classical and mostly used type of learning is data-driven supervision: the way it
is formulated through an annotated dataset completely defines the task (input and
output) and the domain, since data are hypothesized to sample the true underlying
distribution. User requirements are usually expressed in the form of performance
objectives (error rate, computational time, memory usage, etc.) In this framework,
autonomy can be found in the way the algorithm instantiating the prediction, the
optimization scheme and the data management strategy are chosen. This is a rather
weak type of developmental autonomy, where choices are not ruled by objectives
provided by the APES itself but by external prescribers.

Several varieties of learning belong to the category of supervised learning: classifi-
cation, regression, imitation learning. Reinforcement learning is a weaker way to
specify a task — it does not require the exact output, only the cost of making errors
— but also requires an external prescriber to tell if there have been an error. The
standard supervised scheme may be complemented by other strategies to exploit
other sources of data: domain adaptation (Patel et al., 2015; Csurka, 2017; Wang
and Deng, 2018), transfer learning (Pan and Yang, 2009; Weiss et al., 2016; Tan
et al., 2018) or self-supervised learning (Jing and Tian, 2019) etc. can be used to
adapt to larger domains for instance, but all aim at fulfilling the same task.

However, APES’s may need a higher level of autonomy especially if versatility is
one of their objectives. An important dimension of autonomy, therefore, is self-
development, i.e. the capacity to improve its skills, in quality and quantity, by
dynamically managing all kinds of available resources. Several learning schemes
have been proposed to address this long-run problem — few shot, zero-shot, con-
tinual, meta learning — and exploit various types of information or data to add
new perceptual capabilities (new class, domain, question etc.). One difficulty when
increasing the repertoire of skills is to achieve it without damaging the old ones, i.e.
with no regression, a property which requires a certain degree of autonomy for an
APES to organize its resources.

We will examine in the next chapter the central role of learning in contemporary
perceptual system design.
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Perception as a service

As we have seen, one specificity of APES is to consider jointly the perceptual system
capacity and the user needs. Introducing an idea of autonomy in perception requires
the description in more details of the nature of their relationship.

A complementary way to consider the relationship user-APES is by introducing the
idea of delegation, i.e. “the act of empowering to act for another”. The APES acts on
behalf of the user to produce perceptual outputs, and becomes responsible of their
quality. Conversely, delegation is only possible if the user has confidence in the APES
skills to fulfill its perceptual or informational needs, i.e. if the APES is considered
reliable. We will examine in this section how considering perception as a service is
one way to formalize user and APES interaction.

The idea of service has been extensively applied in several computer science applica-
tions. One of the most notable formal models is called Service Oriented Architecture
(SOA) 12: it defines the roles of service providers and consumers, and the means of
establishing their interactions, trough the shared publication of a catalog of available
services and the definition of contracting protocols.

If we pursue the idea of service, the user plays the role of a client issuing requests to
the server, i.e. the APES, according to a ruled protocol. Before actually operating the
service, a contract specifying the service must be set and agreed between the two
parties.

When establishing a service, three phases should be considered:

Contracting In this preliminary phase, the client and server agree on what is
the expected output and from what material, its quality, but also
how should abnormal situations be detected and handled.

Operation This is where the actual perception takes place from sensory inputs.
It may also allow some kind of monitoring from the client in order
to verify that the process works as expected, depending on what
has been agreed during the contracting phase.

Delivery When the server considers that the queried perceptual outputs
are available according to what has been contracted, it delivers it
to the client who may accept or reject it, and potentially ask for
adjustments.

The contracting phase is the most critical one since it defines what can be achieved
for the user-client by the APES-server. It relies on prediction of what could happen,
and ideally anticipates every critical situation.

12https://publications.opengroup.org/standards/soa
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The difficulty of drafting an agreed contract between APES and user — which can
be a complex and dynamic procedure — is to match two points of view. Tables 2.1
and 2.2 states the various aspects that the contract should address to guarantee a
clear and reliable relation between the two parties.

Tab. 2.1: Questions to be answered from server side during contracting phase

• Who issues the query?

• Who is the recipient of the answer?

• What is the nature of the information requested?

• With what quality requirement? How soon? At what cost?

• Can I predict the quality of my output given the context?

• How can I prove that I will be able to answer the query?

• Can I afford to answer it alone?

• If no, what other quality / deadline can I suggest?

• How to agree with the client on the quality / deadline?

• Do I need external services to answer the query?

• Is there conflict with another query being processed?

• How learn from the client what he wants?

• How justify that my answer is efficiently/faithfully produced?

• How express the uncertainty or confidence about results pro-
vided?

Basically, what the server has to address is the possibility of providing a reliable
and useful output to the client, using its own resources. An important dimension is
the capacity of the sever to express the degree of contract fulfillment (justification,
uncertainty representation, etc.) so as to build a confident relationship with the
client.

From the client side, the main challenge is to define in a precise way what it expects
from the service, to agree on what it can potentially offer, and to commit to accept
it. What makes a system autonomous is therefore not unconstrained freedom
but a capacity of making choices according to its own principles or rules. When
formalizing perception as a service, self-governance is achieved if the relationships
that tie the various agents can be explicitly defined, declared, shared and revoked if
needed, i.e. if a contract can be explicitly established between the parties and reliably
operated. Intelligibility of contracting and operating is therefore a required property
of perceptual system to become truly autonomous. We will discuss in more details
this issue in chapter 4.
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Tab. 2.2: Questions to be answered from client side during contracting phase

• What level of quality / delay can I ask?

• How express unambiguously the expected performance qual-
ity?

• What level of delegation can I authorize? What should I
monitor?

• What recommendations can I make about the way the query
should be processed?

• What useful information can I send to help and improve query
processing?

• What quality of service can I expect?

• Can I get a particular quality of service?

• If the answer is not of sufficient quality, is there a way to
claim?

• Can I teach the server what I need?

• What action can I make if I think something goes wrong when
processing the query?

2.2 Natural APES

The disparity of definitions presented in the previous section (page 6) reveals that
the nature and the role of perception has a long history of research and debates in
philosophy (Matthen, 2015) psychology (Goldstein, 2010) and neuroscience (Banich
and Compton, 2018).

In this section, we present – very broadly – several issues that may shed light on
several aspects of APES, with the conviction that natural science or philosophy have
something to tell to engineering. We do not however assume that the underlying
project of APES studies is to Build machines that learn and think like people (Lake
et al., 2017) but, when it seems profitable, acclimate and exploit findings from
cognitive science that could inspire more efficient design. It may also happen that
the formalism and demonstration required to fulfill engineering objectives give some
insight and partial justification of natural science hypotheses.

Cognitive science will be considered as the conjunction of three areas of study,
although the frontiers between them may not be that strict:

Psychology provides validated hypotheses and models on the nature of perception
from a behavioral perspective. It is often divided in several subfields of study such
as memory, cognitive disorders, illusions, attention, visual search, etc.

2.2 Natural APES 29



Neuroscience studies the neuronal substratum of perception in the brain, by
identifying the anatomical or functional structures and their relations at various
levels of analysis.

Philosophy asks fundamental questions on the content of perception, if any, its
purpose, its level of truth. It is discussed for instance whether perception should
be considered only as a an openness to or as an awareness of the world, as a direct
or indirect source of representation of that world, as a teleological or as generic
activity, as a source of knowledge or as an assessment of the behavioral possibilities
a stimulus affords.

We will briefly identifies several issues and results in those fields that may be of
interest for the study and design of APES’s.

Neural organization

Formal neural networks, which are now unavoidable in artificial intelligence, have
been originally inspired by biological models: they mostly exploit variations of a lin-
ear combination+activation pattern (xi(t+ 1) = φ

[∑
j wijxj(t)− w0

]
) as proposed

by McCulloch and Pitts (McCulloch and Pitts, 1943) to model the activity of a single
neuron when stimulated by other neural inputs. The simplicity of this model has
allowed the usage of mathematical tools to control complex architectures, and study
the computational capacity of networks.

However, this model is also well known to be a caricature of natural neuron behavior:
it may lead to misunderstanding of brain behavior, and perhaps may hide interesting
findings that could inspire new efficient formal models.

In this section, I will briefly point out several issues regarding possible inspiration of
neuroscience for APES design.

Brain structures

A first feature that is disregarded as a source of inspiration for perceptual system
models is the actual organization of brain structures. Most artificial neural networks
proposed in the artificial intelligence literature have a rather homogeneous structure
and follow a feed-forward layer based pattern, sometimes combined with skip-
connections between layers.

This is to be contrasted with brain organization, where subcortical modules are
combined with specific cortical areas in a more loopy architecture (see Fig. 2.6) or
when the perceptual system is extended to involve eye motor coordination (Fig. 2.10
and 2.1).
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Fig. 2.10: Cortical and subcortical structures involved in visual processing (left) and eye
control (right). From (Kandel et al., 2013, chapter 25).

A difficulty however when trying to get inspiration from brain architecture is the
precise knowledge about the role of the various structural components: the fact that
several regions exchange neural activity does not tell how and for what purpose they
do so. Broad functional areas have been identified and have been used to propose
an account of how the brain connects to its environment to create a mental world,
using for instance imagery (positron emission tomography (PET) and functional
magnetic resonance imaging (fMRI)) to justify hypotheses (Frith, 2007; Gazzaniga
and Ivry, 2013). The precise connectivity and dynamics of neural activity is however
largely unknown.

Sensory system

Natural and artificial sensors may be rather different: the physical principles of
detection, of course, but also the form of their outputs. For instance, an eye is not
producing images, i.e. arrays of measures regularly indexed by a location in the
sensor plane, but streams of activity transmitted through action potentials by the
million of fibers of the optic nerve to the brain.

Massive parallel filtering occurs at very early stages of perception, and encodes
physical phenomena in behaviorally relevant form (Wässle, 2004). In vision, the
retina adapts to illumination and motion changes, for instance, and is able to
compress by a factor of 100 the 108 rods and cones that transform light in electrical
potential.

An important difference of the retina compared to cameras is the spatial variation of
photo-receptor density (Fig. 2.11), allowing various types of sensitivity: the central
region, the fovea, contains a higher density of cones that have responses that depend
on light wavelength, and a peripheral region with a larger density of rods, that have
large wavelength response and are much more sensitive to light.

Another key feature of the retina is the amount of computation implemented close to
the photo-receptors, and that “whereas the conventional wisdom treats the eye as a
simple prefilter for visual images, it now appears that the retina solves a diverse set of
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specific tasks and provides the results explicitly to downstream brain areas”(Gollisch
and Meister, 2010). The fact that the functional bricks of the retina and the brain
are all neurons is another arguments against drawing a fixed boundary between
pure perception and cognition.

Fig. 2.11: Anatomy of the retina, with the five types of cells: rod, cone, ganglion, bipolar
and amacrin. Left: The various cells that shape input light in electrical signals to
the brain (photo-receptors and ganglion cells). Right: The varying densities of
rods and cones in the retina.

As a recent review article on the functional organization of the retina states (Baden et
al., 2018), “today the retina is amongst the best understood complex neuronal tissues
of the vertebrate brain.” The classical account of retina circuits have revealed that
“ neurons specifically responding a certain visual feature are usually complemented
by a set of neurons that are suppressed by the very same feature” (Baden et al.,
2018), and form ON and OFF cell populations of ganglion cells, the neurons that
connect the retina to the brain.

However, several aspects are still unclear, typically what is “the neural code of the
retina” (Meister and Berry, 1999). In 2012, (Masland, 2012) estimated that “at least
half of the encodings sent to the brain (ganglion cell response selectivities) remain
to be discovered”. (Wienbar and Schwartz, 2018) propose a recent review about the
structure of ganglion cell receptive fields, i.e. the spatial locations of the field of view
that influence cell activity, and demonstrate their huge static and dynamic variety.

Another unanswered question is the spatio-temporal form of the information con-
veyed to the brain. For instance, several studies argue that the synchronized activities
of output ganglion cells contain information that complement individual cell trains
of spikes (Shlens et al., 2008). (Gollisch and Meister, 2008) “report that certain
retinal ganglion cells encode the spatial structure of a briefly presented image in the
relative timing of their first spikes.”

The complexity of natural sensors, even the most well known such as the mammalian
retina, has not been translated yet into practical and efficient formal models for
applications. Taking a kind of opposite inspiration, several studies have tried to
show that current artificial intelligence approaches are in some way competitive
with natural sensors: (McIntosh et al., 2016) use CNN to model retinal response to
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natural image sequence, (Parthasarathy et al., 2017) propose a deep network model
for decoding natural images from the spiking activity of large populations of retinal
ganglion cells. (Lindsay, 2018) discusses in what sense deep neural networks may
be relevant natural vision models.

Neuron types and connectivity

The basic structural elements in the brain are neurons and glial cells, this last
category having no functional role for cognition. Here we only address cortical
organization, with the hypothesis that the cortex is the brain structure responsible
for cognition — a disputable hypothesis.

We mainly discuss the difference between artificial and biological neural networks
structures.

A first difference is the functional nature of neurons. In the traditional McCullough
& Pitts model, efferent synapses (i.e. weights) may be either excitatory (i.e. positive)
or inhibitory (i.e. negative). This is in contradiction with biological findings for
which neurons are either globally excitatory or inhibitory due to the nature of the
synaptic neurotransmitters. Excitatory synapses are also much more frequent that
the inhibitory ones (20 to 25 %) (DeFelipe et al., 2002). This high discrepancy
between excitatory and inhibitory neuron in number, structure and distribution in
the cortex suggests different roles: informational association for excitatory neurons,
and regulation for inhibitory ones.

The fine connectivity structure and range of individual neurons is also much more
diverse than what is commonly used in DNN’s. Fig. 2.13 shows several types
of ganglion cells from the retina (its outputs), with various input dendritic tree
shapes and locations. The cortex contains also many different families of neurons,
distinguishing top-level excitatory and inter-neurons. Another widespread feature
in the brain but not in DNN’s is the presence of inner layer lateral connections
(Thomson and Lamy, 2007; Harris and Mrsic-Flogel, 2013) (Fig. 2.12), although
recurrent network models such as LSTM can be interpreted as instantiating lateral
connections on its inner state. However, “despite extensive research, we still have
only a rudimentary understanding of the diverse classes of cortical excitatory and
inhibitory neurons”(Harris and Mrsic-Flogel, 2013).

A second difference is the nature of connectivity. Most contemporary DNN’s are
structured as chains of feed-forward layers (ResNet ian extreme case that may
contain until 151 layers (He et al., 2016)), with several exceptions such as Dense
Net (Huang et al., 2017a) or U-Net (Ronneberger et al., 2015) that contain skip
connections between lower and higher levels, combining mostly convolution and
fully connected layers.
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Fig. 2.12: Current understanding of the connectivity between the major principal cell
classes of the sensory cortex. Line thickness represents the strength of a pathway;
question marks indicate connections that appear likely but have not yet been
directly demonstrated. From (Harris and Mrsic-Flogel, 2013).

Fig. 2.13: The retina contains more than 13 types of ganglion cells on the basis of their
dendritic shape and depth of position in the retina. From (Kandel et al., 2013,
chapter 4).
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By contrast, the diameter of the cortical graph, i.e. the maximal graph distance
between two neurons, is between 2 to 3 13, meaning that two neurons randomly
picked can be connected by at most 1 or 2 intermediate relays. At a larger scale
of analysis (cortical areas), connectivity is also structurally and functionally denser
than in most artificial DNN’s (Bullmore and Sporns, 2009) (see also Fig.2.1).

Neural information

How the brain encodes information to perceive and to act in the world is still not
clearly understood. The unified nature of brain constituents, neurons and glial
cells, that ensure an amazing continuity between sensors, actuators and cognitive
functions hosted in the cortex makes logical, structural and functional analysis
difficult.

What the brain really encodes, and for what purpose is still highly debated. What
can be stated without too much doubt is that information is distributed in the
whole network, that certain subnetworks or areas play specific functional roles, and
that dynamical electrical and chemical phenomena are jointly used as support for
transmitting or holding information.

Basically, four different feature candidates have been investigated to devise a neu-
ral code (Wikipedia, 2019): average firing rate, temporal, population and sparse
coding.

The firing rate is the most usual coding scheme proposed in formal models: the
density of spikes by time unit measures the intensity level of other afferent neuron
activity, and the global input activity is the sum of all firing rates weighted by
synaptic efficacy. (Rolls and Treves, 2011) argue after a quantitative information
theoretic analyses of neural encoding, particularly in the primate visual, olfactory,
taste, hippocampal, and orbito frontal cortex, that most of the information is encoded
by the firing rates, and that “a little additional information is available in temporal
encoding involving stimulus-dependent synchronization of different neurons, or the
timing of spikes within the spike train of a single neuron”.

However, other studies argue that a lot of information is encoded in temporal features
of trans of spikes: (Panzeri et al., 2010) state that “temporal multiplexing could be a
key strategy used by the brain to form an information-rich and stable representation
of the environment”. (Pillow et al., 2008) propose that time-to-first-spike is the
information carrier. (Rullen and Thorpe, 2001) argue that the temporal structure of

13This can be computed approximately from the degree of the graph and its size. The total number
of synapses in human brain is 1.64 × 1014, with an average number of synapses per neuron of
6.93 × 103 (Tang et al., 2001), with variations for 1 to 6 between cortical layers I and IV for
instance (DeFelipe et al., 2002). The number of cortical neurons is estimated to 16.34×109 neurons,
and 86.06 × 109 in the whole brain (Azevedo et al., 2009). This gives an approximate diameter =
log(]neurons)/ log(]synapses per neuron) of 2.65.

2.2 Natural APES 35



the spike train is required for fast transmission of detected events from the retina to
the cortex.

Different parts of the brain may encode different features, and for various objectives.
In this spirit, (Kumar et al., 2010) try to reconcile proponents of firing rate vs tempo-
ral coding and propose that “rate and synchrony propagation represent, in fact, two
extremes of a ‘continuum’ defined by the parameters of the feedforward architecture.
A particular class of networks may be more suitable for rate propagation, but it can
be systematically altered to a network that preferentially propagates synchrony”.

Population coding has been a longstanding hypothesis but until recently rather hard
to experimentally study due to the difficulty of recording multiple neuron joint
activity. Most of the work have been theoretical (Cohen and Kohn, 2011) (Brette,
2012) and with rather small size models. (Gardella et al., 2019) in a recent review of
neural population coding and segments models synchronous vs. temporal correlation
based approaches.

A fundamental question however is to clarify what the “neural code” refers to. A
first proposed segmentation has been to make the hypothetical neuron code as
an intermediate correlate of stimulus and behavior (Johnson, 2000). This purely
stimulus/response behavioral analysis however makes difficult the understanding of
latent mental states which may not directly depend on inputs (Northoff, 2013). More
global modulatory phenomena may also encode other type of information, such as
the effect of brain stem on attention and arousal (Kandel et al., 2013, Chapter 25).

As a final statement of this section about a possible collaboration between formal
mathematical models and neuroscience, “although decades have passed since per-
ceptrons and associative memory networks were invented, it is still unclear how
well these models explain visual perception and the storage and recall of memories”
(Kandel et al., 2013, p. 1599). The story is clearly not ended: (Kietzmann et al.,
2018) present a recent review of how deep network models have been used in
computational neuroscience. (Barrett et al., 2019) explore opportunities for synergy
between computational neuroscience and artificial intelligence. Regarding APES
design, natural neural networks remain an interesting, and under exploited, source
of inspiration.

Predictive coding

Principles

Predictive coding (Rao and Ballard, 1999), also often referred under the expressions
Bayesian brain (Knill and Pouget, 2004; Friston, 2012; Seth, 2015) or Free-energy
principle (Friston, 2010), is a rather recent field of thought proposing a computational
unifying view of behavioral and neural phenomena.
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The idea of predictive coding originates in neuroscience (Feldman and Friston, 2010;
Bastos et al., 2012), and opposes “classical theories of sensory processing [that]
view the brain as a passive, stimulus-driven device” and “emphasize the constructive
nature of perception, viewing it as an active and highly selective process [for which]
there is ample evidence that the processing of stimuli is controlled by top-down
influences that strongly shape the intrinsic dynamics of thalamocortical networks
and constantly create predictions about forthcoming sensory events.” (Engel et al.,
2001)

The main principles organizing the predictive coding (PP) way of thinking are the
following (as summarized in (Wiese and Metzinger, 2017)):

1. Top-down Processing: Computation in the brain crucially involves an inter-
play between top-down and bottom-up processing, and PP emphasizes the
relative weighting of top-down and bottom-up signals in both perception and
action.

2. Statistical Estimation: PP involves computing estimates of random variables.
Estimates can be regarded as statistical hypotheses which can serve to explain
sensory signals.

3. Hierarchical Processing: PP deploys hierarchically organized estimators
(which track features at different spatial and temporal scales). 14

4. Prediction: PP exploits the fact that many of the relevant random variables in
the hierarchy are predictive of each other.

5. Prediction Error Minimization (PEM): PP involves computing prediction
errors; these prediction error terms have to be weighted by precision estimates,
and a central goal of PP is to minimize precision-weighted prediction errors.

6. Bayesian Inference: PP accords with the norms of Bayesian inference: over
the long term, prediction error minimization in the hierarchical model will
approximate exact Bayesian inference.

14“Each area of the cortex performs a specific causal inference, and the passage of error messages
between areas allows them to be updated. The layered architecture of the cortex corresponds
to a natural distribution of the calculation. Descending connections implement the predictive
model, that is, the prediction of the n-level signals, based on the representations inferred at the
n + 1 level. Conversely, the ascending connections, coming from the upper layers of the cortex,
transmit the prediction error, that is the difference between the received input and its prediction.
The error signal is used to update the top-level model to prevent this error from occurring again
in the future.” From Cours de Stanislas Dehaene sur le cerveau prédictif. Original text: “Chaque
aire du cortex réaliserait une inférence causale spécifique, et le passage de messages d’erreurs entre
aires permettrait leur mise à jour. L’architecture en couches du cortex correspondrait à une répartition
naturelle du calcul. Les connections descendantes implémenteraient le modèle prédictif (forward
model), c’est-à-dire la prédiction des signaux du niveau n, sur la base des représentations inférées
au niveau n+1. Inversement, les connections ascendantes, issues des couches supérieures du cortex,
transmettraient l’erreur de prédiction, c’est-à-dire la différence entre l’entrée reçue et sa prédiction. Le
signal d’erreur est utilisé pour mettre à jour le modèle de niveau supérieur, afin d’éviter que cette erreur
ne se reproduise à l’avenir.”
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7. Predictive Control: PP is action-oriented in the sense that the organism can
act to change its sensory input to fit with its predictions and thereby minimize
prediction error; among other benefits, this enables the organism to regulate
its vital parameters (like levels of blood oxygenation, blood sugar, etc.).

8. Environmental Seclusion: The organism does not have direct access to the
states of its environment and body, but infers them (by inferring the hidden
causes of interoceptive and exteroceptive sensory signals). Although this is a
basic feature of some philosophical accounts of PP, it is controversial.

9. The Ideomotor Principle: There are “ideomotor” estimates; computing them
underpins both perception and action, because they encode changes in the
world which are registered by perception and can be brought about by action.

10. Attention and Precision: Attention can be described as the process of opti-
mizing precision estimates.

11. Hypothesis-Testing: The computational processes underlying perception, cog-
nition, and action can usefully be described as hypothesis-testing (or the
process of accumulating evidence for the internal model). Conceptually, we
can distinguish between passive and active hypothesis-testing (and one might
try to match active hypothesis-testing with action, and passive hypothesis-
testing with perception). It may however turn out that all hypothesis-testing
in the brain (if it makes sense to say that) is active hypothesis-testing.

12. The Free Energy Principle: It says that any self organizing system must
maximize the evidence for its own existence, which means it must minimize
its free energy using a model of its world, which on most PP accounts would
amount to the long-term average of prediction error.

Promises and limitations

The predictive coding approach has been largely investigated and criticized at a
philosophical level (Clark, 2013; Clark, 2015b; Hohwy, 2013; Hohwy, 2016). Several
claim that predictive coding is “a genuine departure from many of our previous
ways of thinking about perception, cognition, and the human cognitive architecture”
(Clark, 2013) while others show that it has connections to other traditions (Kant
(Swanson, 2016), German neo-Kantians of 19th century and Husserl’s phenomenol-
ogy (Zahavi, 2018)). Predictive coding is also claimed to be a modern version of
Helmholtz unconscious inference principle who was among the first to apply the idea
of Bayesian inference to sensory perception (Helmholtz and Southall, 1924).

Predictive coding is attractive for the study of APES for various reasons:

• It integrates perception, cognition and action under a unique regulatory princi-
ple (feature 5).
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• It requires local and global interplay between bottom-up and top-down in-
formation flows (feature 1). Fig. 2.14 is an example of global integration of
various flows in the brain.

• It allows the presence of internal “mental” models that are dynamically ex-
ploited as hierarchical hypothesis generators (features 4 and 11).

• It emphasizes the active nature of cognition, hence perception (features 7 and
11) (Donnarumma et al., 2017).

• It justifies attention as an optimal control principle (feature 10) (Feldman and
Friston, 2010).

Fig. 2.14: Integration of perception and cognition as a single network. “Neuronal activity
encodes expectations about the causes of sensory input, and these expectations
minimize prediction error. Minimization relies on recurrent neuronal interactions
between different levels of the cortical hierarchy.” From (Friston et al., 2014).

One important dimension of the predictive coding approach is that the problematic
question of perceptual boundaries, as discussed page 15, is somehow (dis)solved in
a global sensory predictive objective, making the whole cognitive activity directed
towards perceptual prediction. Predictive coding, in a way, reverses the way of
taking the problem: cognition becomes an activity essentially devoted to perception
prediction. Perception prediction is not a means, it is the main motor of cognition,
its fundamental principle.

Predictive coding has also been proposed as a way to solve the cognitive penetrability
of perception problem i.e. the idea that top-down processes may, or may not, shape
perceptual processes (Zeimbekis and Raftopoulos, 2015). (Lupyan, 2015) states
“that the controversy surrounding cognitive penetrability of perception — the idea
that perceptual processes are influenced by non-perceptual states – vanishes” when
adopting a predictive coding interpretation of cognition and concludes that “pene-
trable perceptual systems are simply better and smarter in fulfilling their function of
guiding behavior in a world that is at once changing and predictable.” Predictive

2.2 Natural APES 39



coding makes perception penetrable by principle, but at a very local scale through
top-down prediction connections (see Fig. 2.14).

This unification is conceptually appealing, but has however several drawbacks when
trying to apply it in practice for engineering purposes or for scientific investigation:
the fact that every element or component of the cognitive system may contribute to
the overall predictive objective, although the predictive coding approach has both
local (Bastos et al., 2012) and global (Friston, 2010) instantiation, makes analysis
and control difficult.

A first response to that problem is to restore the idea of modularity of cognition
but in a renewed way. (Drayson, 2017) argues that the continuity claim — the fact
that there are no clear boundaries between cognitive processes and non-cognitive
(especially perceptual) processes — and the non-isolation claim — the fact that “no
part of perceptual processing is informationally isolated from higher-level cognitive
processing” — do not necessarily entail that predictive architecture is not modu-
lar. She proposes “to understand modularity as a flexible and dynamic feature of
architectures, and to appreciate that predictive architectures are modular architec-
ture”, perhaps not in a strict information encapsulated way. The question however
remains to figure out how a predictive architecture is able to dynamically restrict
and modularly organize information processing.

Another problem with the predictive coding approach is its solipsism. As (Frith,
2007, p. 132) highlights: “My Perception Is Not of the World, But of My Brain’s
Model of the World” (feature 8). In a way, a predictive coding based system does not
externalize anything, except if it is understood as a means to optimize its predictive
error, for instance by acting so that the resulting sensory data is changed. The value
or perception and action is not their useful contribution to other tasks — as sign
or measure producer — but their ability to internally anticipate sensory data and
features.

Perceptual experience

Perception and especially vision is a heavily studied topic in experimental psychology.
The fact that it is a dynamic, constructive, adaptive and selective process is not really
questioned15.

In this section, I will focus on specific features that should be considered for APES
design.

15In a general introduction about perception, (Pomerantz, 2003) states the “ following eight facts
[that] cover the basics of what is known and widely accepted about perception today”: it is limited,
selective, refers to the distal stimulus, not the proximal stimulus, requires time, is not entirely
veridical, requires memory, requires internal representations, is influenced by context.
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Perceptual organization

A first admitted feature of perception is the fact that the external world, given by
senses, appears readily organized, i.e. is shown to the mind with structure, shapes,
objects, layout, etc. One account of this phenomenological experience is the Gestalt
school which hypothesizes that visual experience follows principles of proximity,
similarity, symmetry, etc. so as to make “the whole something else than the sum of
its parts” (Koffka, 2013). One notable phenomenon of “wholeness” in perceptual
experience is the figure/ground separation that is manifest in famous examples
of object perception instability (e.g. Rubin’s vase/face drawing (Wagemans, 2015,
section 4)). In these examples, the foreground is perceived globally as a segmented
salient shape, and not as the mere aggregation of independent elements.

An extension of the idea that the world appears spontaneously meaningful is by
introducing the idea of affordance, i.e. to assume that “to perceive [surfaces] is to
perceive what they afford, [implying that] values and meanings of things in the
environment can be directly perceived” (Gibson, 2019, pg. 119). “The affordance
of some thing does not change as the need of the observer changes. The observer
may or may not perceive or attend to the affordance, according to his needs, but
the affordance, being invariant, is always there to be perceived” (Gibson, 2019, pg.
130).

These two related approaches of perceptual experience — Gestalt and affordance —
share the fundamental idea that perception, at some point, is ruled by invariants that
are accessible, just waiting to be used for various tasks. This view is in agreement
with the classical symbolic AI approach that considers perception as a large database
of meaningful percepts filled by some automatic cognitively impenetrable process
(Firestone and Scholl, 2016; Pylyshyn, 1999).

However, specifying these invariants and designing ways to build them is a difficult
task. The search for invariants has been fully studied for instance in geometrical
vision (Mundy, 2006), but has been postponed by lack of robustness and expres-
siveness for real world applications. Indeed, it seems difficult to imagine invariants
independently of any purposive objective function, without asking what will the
invariant be used for or what should be the good trade-off between specificity and
invariance (the only generic invariant is the constant function (Burns et al., 1992)).
Deep learning models offer a new way to search for invariance as they can be inter-
preted as implicitly searching genericity in the first steps of network layers initially
optimized for classification and used as all-purpose image features for other tasks.

Attention

Perceptual organization addressed the question of an input sensory structure, and
hypothesized that raw sensory data were shaped by automated processes offering
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ready to use informative primitives or invariants. Although these first building blocks
encode sensory data for better “ecological” efficiency, the compression step provided
by perceptual organization is, hopefully, under-constrained: there are many ways to
organize the perceptual stream to adapt to the possible tasks that rely on it. This is
where attention plays a central role as a selective and purposive mechanism.

There is a very large body of evidence that attention is a key feature of cognition
either from neuroscience (Gazzaniga and Ivry, 2013, chapter 7), experimental
psychology (Nobre, 2014; Carrasco, 2011) or philosophy (Mole, 2017; Ganeri,
2017) perspectives.

The role of attention can be considered as a global physiological state — it is usually
referred to arousal in this case — or as a way to select cognitive resources, actions
and inputs. This last selective dimension is especially relevant for perceptual systems,
and is commonly justified as a way to deal with the limited processing or memory
capacity of the brain (Buschman and Kastner, 2015).

Attention is fundamentally a cognitive high-level conditioning perceptual process
ruled by capacity constraints. The influence of cognition to perceptual behavior
has been spectacularly demonstrated by the variation of fixation point and saccade
scanpath when asked to answer different types of questions about the visual content
of a picture (Fig. 2.15) (Tatler et al., 2010). The nature of the scanpath can be
interpreted as a fingerprint of the underlying task asked to the subject (Borji and Itti,
2014), although not a clear index (Greene et al., 2012).

Fig. 2.15: Cognitive conditioning of eye saccades. Center: subject asked to freely examine
the frame. Right: the subject is asked to estimate the material circumstances
of the family (Yarbus, 1967). See also (Tatler et al., 2010) for a more recent
reproduction of the original Yarbus experiment.

Attention is an essential and ubiquitous feature of perceptual experience. Fig. 2.16,
for instance, displays the various areas in the brain that are claimed to play a role
in visual attention. As the figure shows, perceptual attention involves cortical and
sub-cortical areas, and exploits various targets of selection, besides gaze control,
such as memory and perceptual features (Gillebert and Humphreys, 2013).

The generality of attentional phenomena in cognitive activity makes the clear specifi-
cation of the object of study difficult: it is common for instance to make a distinction
between overt and covert attention, or to organize the various forms based on the
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Fig. 2.16: Cortical and subcortical regions involved in visual attention. From (Gazzaniga
and Ivry, 2013, chapter 7). See also Fig. 2.1 for a more specialized diagram about
saccade generation.

internal/external location of attention targets (Chun et al., 2011). Attention is
also either considered as a selection, able to discard irrelevant resources (the most
standard approach), as a modulation weighting features and information sources or
as a way of regulating priority process (Watzl, 2017).

Attention is therefore more than a simple perceptual system feature, but an essential
dimension of cognitive activity and even of consciousness (Cohen et al., 2012;
Watzl, 2017). Here again we find that it appears difficult to isolate perception from
cognition due to the functional loopy structure of information flows that connect the
various cognitive components involved in the production of perceptual outputs.

The consequence for APES design is 1/ that attention should be functionally ex-
ploited in models 2/ but that the variety and complexity of attentional features
make them too difficult to be apprehended globally. What I propose to simplify the
picture is to consider attention as a repertoire of means that efficiently control re-
sources to complete cognitive tasks, with three different functional aspects: selection,
modulation, and priorizing.

Attention — at least of a certain type — is now widely used in deep learning models
as a generic computational principle (Vaswani et al., 2017). Perceptual attention
computational models have mainly focused on two problems: salient object detection
(Borji et al., 2014a; Borji et al., 2015) and gaze prediction (the “where to look next”
problem)(Borji et al., 2014b; Bylinskii et al., 2016) and used for several perceptual
applications (Nguyen et al., 2018).

We will give a more detailed discussion on formal models in the following chapter.
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External influence to perception

We have seen in the previous sections two fundamental features of perceptual
experience: it deals with an organized field of sensory inputs, and the efficient
exploitation of this field requires various forms of resource management that can be
associated with the idea of attention, a conditioning process that acts as selection,
modulation or priorizing.

Another spectacular phenomenon that reveals an external — negative — influence
on perceptual experience is the failure to detect several events that “normally” should
have been noticed. Two major forms of failure have been thoroughly investigated:
inattentional blindness (Mack and Rock, 1998) (“observers generally do not see
what they are looking directly at when they are attending to something else”16

(Mack, 2003)) and change blindness (Rensink et al., 1997; Simons and Rensink,
2005) (observer do not perceive slight changes in sensory inputs when another
perturbing event is inserted) 17. What those phenomena reveal is the difficulty of
making perceptual behavior independent from an underlying master task in which
the subject is engaged, impairing the capacity of the subject to become aware of
signals that are expected to be otherwise noticeable. It is not clear however whether
perception badly selects informative sources and fails, or if the role assigned to
perception by the main task causes blindness.

Task conditioning is not the only influential actor: emotion (Zadra and Clore, 2011)
or motivation (Engelmann et al., 2009) may globally modulate perception, multiple
sensory modalities may interact (Shams and Kim, 2010), working memory state and
visual attention are tightly interdependent (Chun, 2011; Gazzaley and Nobre, 2012).
A larger list of global influences on perception can be found in (Firestone and Scholl,
2016).

However, findings form experimental psychology are difficult to transfer to APES
design, for several reasons:

• Perceptual experience features are indirectly inferred from global behavior
analysis, using objective physiological measurement or by collecting subject
outputs (action, reaction, wording). They can’t be used to give precise insights
of what’s in the perception box.

• The fact that perception, when experienced, receives potentially many sorts of
influence is an obstacle for its study in isolation — we are faced once again
with the problem of perception/cognition separation.

• Perceptual experience is often understood in connection with conscious aware-
ness, a global mental state — perceptual blindness phenomena, for instance,
are revealed because subjects become unaware of meaningful events. Here

16One famous example is the invisible gorilla illusion http://www.theinvisiblegorilla.com/videos.html.
17See http://nivea.psycho.univ-paris5.fr/#CB for examples.
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again, how perception contributes to awareness, from what mechanical pro-
cesses, is hard to devise.

In a previous section, we proposed to model perception as a service to try to solve the
conceptual difficulty brought by drawing fixed functional boundaries with cognition
(see page 27). Using this formalism, both parts have some knowledge of what they
expect from each other. The cognitive conditioning of perception is partly ensured
by the contracting phase that determines output requirements and defines the input
elements or priors that may be necessary to complete the perceptual task. Those
inputs may be misleading for several perceptual tasks (for instance when asking for
the presence of gorilla after having asked to count passes in the “invisible gorilla”
experiment), but not for the main current task. Decomposing perceptual experience
in this framework could be a way to clarify a potential role of perception in an
extended and more versatile way.

Philosophy of perception

Perception, as the spontaneous and unique window and knowledge source of the
world, has been the concern of many philosophers (Matthen, 2015, part 1), and
continues to stimulate proposals and discussions (see (Fish, 2010) for a presentation
of recent proposals mostly from analytic philosophy tradition). Two main directions
have been investigated. The first one addresses metaphysical and epistemological
questions and discusses in what terms and conditions perceptual experience is able
to veridically account for the external world (Lyons, 2017; Crane and French, 2017).
The second one is more concerned with describing the experience of perceiving itself,
its phenomenology, and its relation to consciousness and mental states.

This section will of course not present the whole corpus of philosophical investi-
gations and proposals on this topic, but select several ideas that may be useful
to guide APES design, with the underlying and arguable assumption that natural
perception — the object of philosophical inquiries — is the ultimate reference of
artificial systems.

The problem of representation

The common assumption in science and engineering is realism, i.e. the fact that
perception has to say something about the outer world. Perception can be used as a
measure, interpretation or description of the world. Once it is faithfully represented,
inference from the perceptual content can consequentially be made for various tasks.
Philosophical investigations are mostly motivated by questioning this naive realism
assuming that perception accounts for the world as it is.

A critical epistemological issue, therefore, is the nature, and the existence, of per-
ceptual representations, or more generally of perceptual content (Brogaard, 2014;
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Siegel, 2016). Indeed, it is customary to make a distinction between two types
of perception — direct and indirect — that assume the existence of a mediation
between the subject/perceiver and the world, or not. The mediation may take the
form of what has been called sense-data (Huemer, 2016), that are mental entities,
ideas or objects possessing the properties or attributes that appear to us.

Thinking of perception this way, i.e. through the mediation of a representation,
has several conceptual advantages: it is an efficient formal recipient for references
to the world, and can host veridical status — a representation can be true or
erroneous. It can also explain in a simple way illusions or hallucinations as flaws in
the representational process (Fish, 2009), phenomena sometimes presented as being
the problem of perception. A correlated issue is to make clear what it means to be true
or false for perception, what is the relation between perception and knowledge.

However, as (Nanay, 2015) states, the fact that perceptual representations exist
has been questioned: “Twenty years ago, the vast majority of philosophers of
perception would have agreed that they do, but this is no longer so.” Instead, several
philosophers claim that “conscious perceptual experience is neither reducible to nor
explicable in terms of representational states or content.” (Locatelli and Wilson,
2017)

Two main strategies have been proposed to eliminate representation from perceptual
experience: 1/ Avoid the use of representation as an intermediate structure between
world and mind when describing or explaining perceptual experience. 2/ Extend the
object of investigation from mere perception to a larger set of experiences.

The first type of approaches claims that there is no need of a mediation to have an
experience of the world: perceptual experience is perceiving objects, not a represen-
tation of mental objects. One proposal to account for the direct experience of the
world is by introducing the idea of intentionality, the fact that subjective experience
takes the form of an object that is, by nature, in relation with something else. The
term intentionality has a long history in philosophy and many variations. It is some-
times simply presented as aboutness of mental states, allowing the the existence of a
content, which makes it a version of representationalism. Another tradition endows
intentionality with an ontological role, and asserts that perception is just what is
experienced — we directly see a “red tomato” as an object of the world, we do not
see an internal representation of an object which has been causally constructed from
the world with ’redness’ and ’tomatoness’ features. (Drummond, 2012) discusses
the various forms of intentionality — representationalist and presentationalist —
and their limitations. We will present a more detailed discussion of this question of
intentionality in the next section about phenomenology.

A second type of approaches proposes to eliminate the central role of representation
by ontologically intricating perception with the whole subjective experience of the
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world, and especially with body experience, leading to an embodied or enactive
perception (Varela et al., 1991; Gangopadhyay and Kiverstein, 2009; Wilson and
Foglia, 2017; Shapiro, 2014; Gallagher, 2017). Two important aspects introduced
in this trend are the essential dimensions of temporality and action in perceptual
experience: no perception if it is not temporally constructed from outer or inner
actions, those actions being real — they have an influence on the world or the body
— or virtual — they simulate their impact.

The importance of action in perception leads to the potential role of anticipation or
prediction capacity that will give its horizon to experience. Prediction is obviously
a central concern of the Predictive Coding approach (see page 36) which unifies
experience under a common regulatory principle where the brain constructs internal
models of the possible causes of sensory inputs to internally minimize the weighted
prediction error on these inputs. (Clark, 2012; Clark, 2015a) defend predictive
coding as a way to conciliate representionalism and anti-representationalim such as
the enactivist trend. In the same spirit, Madary proposes that “visual perception is
an ongoing process of anticipation and fulfillment. In short, perception is best under-
stood as an ongoing cycle; but instead of a cycle of action and perception, it is better
understood using the more general framework of anticipation and fulfillment.”18

Phenomenology: perception and consciousness

Perception can be studied as a faculty, with the role of providing correlates of external
objects and states of affairs, making the role of a hypothetical content a central
issue, or as a whole conscious experience. What phenomenology proposes is to unify
these two different views under the primacy of phenomenon from which perceptual
content can be derived as a feature.

Phenomenology (Gallagher and Schmicking, 2010; Zahavi, 2012) and perception
are terms that have been associated in many philosophical studies since the seminal
works of Brentano (Brentano, 2014), Husserl (Husserl, 1931; Husserl, 1997) and
Merleau-Ponty (Merleau-Ponty, 1945). This way of thinking starts from the nature
of perceptual experience as it appears to consciousness in order to describe, classify
and identify its common and invariant structures and mechanisms. It therefore takes
the problem of subjective experience seriously, not as a conceptual chimera, and
puts the question of consciousness as an object of investigation.

A key concept of Phenomenology19 is intentionality — we have already introduced
this term in the previous section — that characterizes the mind “’as a whole’ rather
than to particular mental events or states [. . . ]. Mind as such is intentional. Mind
as such transcends itself towards the world and relates itself to the existent world,
and every instance of ’minding’ the world participates in this relation, albeit, [. . . ]

18Cf. Madary, 2016, p. 9.
19In the following, Phenomenology with a capital letter will refer to the philosophical movement.
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in different ways.”20 Roughly summarized, the world exists to the mind because
consciousness is, in essence, intentional.

Siewert provides a summarized account of phenomenological insights about percep-
tion: “Beginning with Edmund Husserl, the intentionality of perception is investi-
gated by asking: how can experience, itself in near constant flux, nonetheless be of
stable objects, so that meaning and knowledge might be possible for us? The key to
answering this question, he proposes, is to see perceptual consciousness as dynamic
and prospective — a process wherein the needed constancies are achieved via the
successful anticipation of further experience through movement and direction of
attention.”21 As Noë states, the main phenomenological question of vision, and also
of other senses, is that “as a result of saccadic suppression, the data made available
to the retina takes the form of a succession of alternating snapshots and grey-outs.
How, on the basis of this fragmented and discontinuous information, are we able to
enjoy the impression of seamless consciousness of an environment that is detailed,
continuous, complex and high-resolution?”22

Presenting the (too) complex, sometimes esoteric and technical ensemble of con-
cepts and words that have been developed by the founder of the Phenomenology,
Edmund Husserl, with the objective of offering a method (Schmicking, 2010) able
to faithfully describe conscious life as it appears, is clearly beyond the scope of this
short section. One can however remember from the previous paragraph two central
ideas: the dynamic and attentional dimension of consciousness and the participa-
tion of knowledge on perception through anticipations. The enactive or embodied
approaches of perception mentioned in the previous section can be interpreted as
a modern extension to Phenomenology, at least of several of its original intuitions
about kynaesthesic perception (Husserl, 1997; Drummond, 1979).

The question of the relation between cognition and perception, a recurrent problem
as we have seen in previous sections, is somehow solved by Phenomenology by elimi-
nating the duality between pre-existing mind and world, or better, by describing how
the world exists transcendentally for a mind without any metaphysical hypothesis.

Invoking consciousness when addressing engineering or scientific issues is always
risky: consciousness is never far from affect, feelings, non-conceptual experience23,
and to moral questions such as the nature, condition and even existence of free
will. Critics and proponents of reductionism — the hypothesis that mind can be
reduced to physical or neural activity — abound in philosophical literature. For
instance, one of the most recent and commented philosophers who have been critical
about reductionism, Markus Gabriel (Gabriel, 2017), revisits recent philosophical

20Cf. Drummond, 2012, p. 125.
21Cf. Siewert, 2015, p. 194.
22Noë, 2002.
23Several philosophers have proposed the word qualia to refer to subjective experience, a concept

heavily criticized by Daniel Dennett as an ill defined object (Dennett, 2017).
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proposals that have accompanied the development of neuroscience and promotes a
“neo-existantialist” anti-scientist approach of consciousness that could allow a better
account of freedom.

However, the phenomenological approach is appealing for scientists and engineers,
since it relies on experimenting, although at the first person level, and has led to
an objective of “naturalization” (Petitot et al., 1999; Gallagher, 2012), that has
been followed either as “an extension of natural science” or, more modestly, “as a
meaningful and productive exchange with empirical science”24. This was this last
option I tried to follow in my PhD thesis (Herbin, 1997a) where one of the objectives
was to investigate a phenomenological description of visual recognition, taken as
the simplest, although already complex, simultaneously cognitive and perceptual
experience.

Phenomenology of visual recognition

Two chapters in my PhD thesis (Herbin, 1997a) have been inspired by Phe-
nomenology.

The first one presented the literature in computer vision available at that time
(i.e. before the “Deep Learning Era”) under two points of view: vision for
recognition, and recognition by vision, and tried to examine how intentional-
ity could be implemented along three dimensions: integration of the sensory
and representative point of view, computational and not simply algorithmic
definition of a dynamic vision and declared specification of a semantic and
perceptual context. This chapter was also a general justification of the idea
that recognition should be active by nature — in operation and specification
— introducing the formal models developed in the subsequent chapters.

The last chapter was a more general questioning of visual recognition di-
vided in two parts: a critical discussion of recognition seen as a matching
between perception and cognition representations, and a tentative study
of a phenomenological account of visual recognition, a cognitive capacity
characterized by the presence of an objective exterior — a world of objects,
the experience of knowledge, and the inscription in a temporality manifested
by the suffix re-. The study discussed the work of two philosophers: Gilles
Deleuze and Edmund Husserl. The first philosopher helped us develop a
critical perspective of the dogmatic way of thinking that reduces recognition
to the normative manipulation of concepts and to the reduction of recognition
to the experience of the same. The second philosopher allowed us to discuss a
phenomenological account of perceptual recognition, and to identify several
limitations of the idea of fulfillment, a key feature of perceptual intention,
when instantiated with recognition. The confrontation of these two philoso-

24Cf. Zahavi, 2010, p. 14.
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phers resulted in the proposition that the fundamental features of cognitive
act such as visual recognition, its essence, has the form of a circumscribed
multiplicity and the nature of a virtual alterity. In a less fancy formulation,
one can say that visual recognition is both about an external world, but that
the set of indeterminations of this world among which to choose, what it is
not, is defined in the recognition act itself as one of its features.

2.3 APES study and design
The discussion above mixed considerations from various perspectives (artificial
intelligence and cognitive science) in order to identify the specificity of APES, i.e.
consider perception as an autonomous system, and has often assumed that natural
perception is the model by which being inspired.

This section summarizes the identified properties that artificial APES should imple-
ment and discusses several challenges that should be addressed in order to satisfy
them.

APES properties

The properties that an autonomous perceptual system should verify can be organized
according to its nature, to what is expected from it and to the relation with its
environment (world and client).

expressiveness

• The role of APES is to express two types of perceptual objects: measures and
signs referring to features, properties or attributes of the world.

• Perceptual objects have one or several recipients that are engaged in a specific
task for whom they are meaningful.

• The value of signs or measures is related to recipient needs, i.e. to their
potential contribution to the task.

agency

• Perception is a constructive process that involves complex mechanisms subsum-
ing the passive functional input/process/output chain and is therefore better
understood as an active dynamical system: an agent.

• As such, an APES adapts to the situation with different time scales: A/ by
modifying its functional structure to comply with a contracted specification,
B/ by dynamically adjusting its resources to fulfill its specified objectives,
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typically by selective attention, or C/ by learning how to satisfy output quality
requirements.

cognitiveness

• The production of perceptual outputs makes use of skills such as memory, deci-
sion, knowledge, planning, reasoning that are usually considered as cognitive:
the separation between perception and cognition is functionally mutable.

• The distinction between cognition and perception can be formally instantiated
as a flexible client/server architecture, where the relation between the two
parts is contractually specified.

trustworthiness

• Perceptual products may be qualified and justified to the recipient for efficient
and safe exploitation.

• Reliability of perception is acquired when contracted requirements between
the perceptual system and the user/client are satisfied. This implies that the
perceptual agent assumes explicit responsibility for what it produces.

Challenges

The list of desirable properties stated above is abstract and requires work to be
fully satisfied. This section discusses broad challenges or issues that may organize
research actions. After all, we still do not know how to design reliable, efficient,
versatile and safe artificial perceptual systems.

Systemic complexity management

A fundamental problem when considering perception as system is the need to
master the complexity of its structure and behavior. The examples of Fig. 2.2,
2.1, 2.4 and 2.3 show intertwined patterns of functional relations, not to
mention the dynamics of their inner states.

Complexity management is a very old scientific topica. The engineering of
large and complex systems has also given rise to several studies (Dominique
Luzeaux, 2011). However, applying those results to perception itself has not
been really addressed.

Thinking of a system as a set of interconnected modules with dedicated roles
is a spontaneous approach. Modularity, as a design principle, decomposes a
complex task in small, simple and controllable pieces, with local requirements,
and assembles them to complete the final task. When applied to perception,
however, modularity happens to be too rigid, not robust to hazards and, at
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the end, rather inefficient because resources are often multiplied instead of
being shared.

One of the reasons of the recent successes of deep network approaches is to
relax in a certain way the fine local control of the modularity approach, and
to solve problems by distributing their resolution between small calculation
units — the neurons — without prescribed roles, using end-to-end learning
strategies. The price to pay, as is well known, is a lack of intelligibility of the
resulting perceptual process, which is a clear obstacle to trustworthiness, but
also to adaptability: all possible situations must be represented in the learning
data.

There is therefore a need for better formal tools and models that, while
being empirically efficient, allow sharing of calculation, flexibility, adaptability,
compositionality and global learning.

Recent approaches such as memory networks (Weston et al., 2014), neural
module networks (Andreas et al., 2016), Neural Turing Machines (Graves
et al., 2014) or capsule nets (Sabour et al., 2017) are tentative answers. They
still require however developments to be competitively compared with raw
opaque deep learning approaches.

aSee for instance the nice interactive map displaying the various trends and disciplines
associated with “complexity sciences” http://www.art-sciencefactory.com/complexity-
map_feb09.html

Model and evaluation of perception as sign production

We have proposed the idea that the output of perception may take the form
of signs, i.e. objects that combine three components: the sign itself, what it
refers to, and its recipient — the interpretant. This proposition was presented
as a way to solve the difficulty raised by defining perception as a univocal and
universal description of the world taking the form of a representation that
eludes what it should be used for.

Introducing a third actor — the recipient or interpretant — can be seen as a
kind of trick that delays the precise specification of perceptual products: their
value depend on the nature and needs of the interpretant, which makes it part
of the model itself.

One possibility of describing its role in the model is by instantiating it as a
requirement or constraint for sign generation.

This leads to questions related to the status of semiosis, the process that
actually builds the signs — in our case perception: When will it be said
to succeed or to fail? How decide if a sign is right or wrong? In what
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sense? How define ground truth, and metrics, for an object that has a triadic
nature (reference/sign vehicle/interpretant)? If a sign is bad, is it because
it does not meet the requirements, or is it because the requirements are bad
themselves?

Implementing the principle of perception as sign production as an engineering
project addresses therefore two problems: How define practical formal mod-
els that explicitly consider the user/recipient as a feature of the perceptual
process? How evaluate them?

Versatility of perception

As we have seen, it seems difficult to define fixed and inalienable limits to
perception, especially when it has to be opposed to cognition. It has been
proposed to bypass this aporia by endowing perception with autonomy and
bind it to the cognitive task to which it contributes as a service, thereby
eliminating the existence of a “pure” ateleological perception module.

One of the main reasons to avoid a rigid interface between cognition and
perception is the fact that there are multiple types of perceptual outputs
depending on what they should be used for: in other words, perception is
expected to be versatile, multi-purpose. The next question is to design models
able to efficiently implement this versatility property.

Of course, an efficient versatile perceptual system should not consider each
task independently and should factorize its resources. Multiple task learning
(as exemplified for instance Fig. 2.8 pg. 21) is one answer to this question,
but is mainly used as as a way to improve and regularize inner neural repre-
sentations by sharing objectives.

More generally, what is needed is a model able to adapt to a variety of tasks
with limited means. Two complementary research directions are possible to
address this question of resource economy: either functionally using ideas such
as compositionality and module re-usability, or dynamically through selective
attention, scheduling, planning, or information flow control (sequential vs.
parallel).

With the rather recent and drastic improvement of perceptual capacities of
artificial systems, the question of versatility can now become one item in the
research agenda. Typical issues are the following:

• optimality: How define global costs or principles able to arbitrate be-
tween conflicting tasks? How specify them?
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• evaluation: How define metrics measuring the general adequacy of a
multi-purpose system?

• incrementability: How increase the repertoire of tasks, or the integration
of an existing (off-the-shelf) function? How ensure that a new task will
increase perceptual capacities and not damage the system?

Specification of perceptual service

The idea of considering perception as a service was a way to make more
flexible its relation to the recipient of its production as expressed by the
lists of questions of Tab. 2.1 and Tab. 2.2. They need however to be more
quantitatively and formally specified to be exploited in an artificial model.

Those questions address various dimensions of the relation between perceptual
system and user/client as a whole process: the nature of the perceptual
products, their target quality through explicit requirements, but also describe
and anticipate the different ways of reacting, from both parts, when those
requirements cannot be satisfied.

This dynamic dimension of the client/server relation is an essential feature
that gives its value to perception by making it functionally trustworthy. It is
also a key ingredient able to define flexible interface between cognition and
“pure” perception by specifying, as long as the service is being active, what
level of impenetrable processing is delegated to the server. However, before
developing processes and algorithms implementing the service, it is necessary
to define a formalism capable of modeling this flexibility.

Representation elimination

The existence and role of a mental representation has been actively discussed
in cognitive science and philosophy, as has been briefly related in the previous
section. One of the extreme option was to invoke consciousness as a starting
point from which derive perception as a participant to mental experience.
Consciousness, in its dynamical account by Phenomenology — at least in the
Husserlian tradition — can be presented as a way to avoid the prerequisite of
making world representation the main objective of perception.

Questioning the role of representation from an artificial intelligence perspec-
tive translates into a more practical interrogation: Can we really do without
perceptual representation?

For engineers or computer scientists involved in artificial perception design,
this question can at first be rather irrelevant, since one major objective is
to imagine algorithms able to build representations from sensory data that
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will be exploited in various tasks. During the design process, engineers need
to know what is the system actually doing, measure its performance, and
optimize it. Exhibiting a representation is a handy output that can be used
as a behavioral gauge to reveal in more details how the perceptual process is
functioning — bad or good.

There have been several attempts to get rid of representations, mostly inspired
by an embodied cognition approach posing sensory-motor loops as the key
structuring element so as to produce “intelligence without representation”
(Brooks, 1991; Di Paolo et al., 2017). Realizations have been spectacular —
evolving robots designed from limited principles — but limited in scope and
demonstrated cognitive capacities.

The question remains to be able to design systems whose behavior can be antic-
ipated, if not controllable — an engineering objective — without introducing
representation as an intermediate feature. Predictive coding (see presentation
page 2.2) may offer a more cognitive alternative to the sensorimotor approach
that reduces the role of perception as a means to act.

Biologically plausible and efficient models

Artificial intelligence is very far from providing systems as versatile, adaptive,
integrative and resilient as the brain, in other words, as globally efficient.

Nature has been therefore a constant inspiration for artificial perceptual
systems but very few models have given rise to efficient approaches from
an engineering point of view, except maybe for low level computer vision
(Medathati et al., 2016). However, the popular Deep Neural Networks, al-
though originally inspired by neuron models, have very few in common with
brain components, structure and behavior, although connections between the
two worlds of artificial and natural neural networks continue to be drawn
(Marblestone et al., 2016; Hassabis et al., 2017).

Brain behavioral studies have of course given rise to many formal proposals:
however the goal of such models is primarily the verification of scientific hy-
potheses, not the reproduction of behaviors themselves, or if so, at a simplified
scale with the same objective of scientific fact assessment. Regarding vision
— the most studied perceptual modality — models have addressed various
scales of brain behavior and structures, from fine neural population dynamics
(Acebrón et al., 2005), to models for saccade generation dynamics (Girard
and Berthoz, 2005), and global description of visual process integration in
the brain (Bullier, 2001). When more cognitive capacities are involved, that
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require more abstract interpretation, models tend generally to get farther
away from biological observation.

One potential approach that may produce a fruitful integration of artificial
intelligence and neuroscience objectives is predictive coding (see pg. 36).
Several formal models have been proposed to implement its principles at the
neural level(Bastos et al., 2012) (Spratling, 2012) (Spratling, 2016) and for
artificial perception applications: (Lotter et al., 2017) for instance describe
deep network model inspired by predictive coding model to predict future
frames in a video sequence; (Spratling, 2017; Wen et al., 2018) use predictive
coding inspired models for object recognition tasks.

However, as (Cox and Dean, 2014) concludes, “seizing the opportunity [of
recent successes in machine learning and recent advances in neuroscience
technology] will require effort and a cultural shift, as the two fields often have
very different goals and approaches”.

Self-assessment
It has been proposed in the previous section that perceptual autonomy implied
a capacity of being responsible for the quality of the perceptual products, or
more precisely that an APES should be able to asses by itself that it can satisfy,
or not, the agreed requirements.

A series of questions requires further investigation to instantiate this capacity:
What is the nature of this assessment? How can it be built? In what way
express it? Can it be trusted?

There are at least two possible types of contents that can be expressed as
self-assessment: the quality of perceptual production, and the way it has been
produced.

A first issue is therefore to clarify in the first place what should be considered
a good perceptual output. This problem can be addressed either as truth, that
qualifies the faithfulness of the reference to the outer world, or as usefulness,
that relates to its value for the user.

From a physical view of perception as a measure of the world, acknowl-
edging that perception is inherently noisy, ambiguous, approximate, untrue,
is a standard hypothesis: engineering has a long history of formal tool de-
velopment about error modeling and exploitation. In Artificial Intelligence,
uncertainty happens to be more controversial and debated a, maybe because
the distinction between truth and usefulness is unclear.
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The capacity of self-assessing usefulness of perception implies that the percep-
tual system must have integrated in some way what the recipient will do with
its production. This role is played by the requirements that have been agreed
between the APES and the client/user, meaning that those requirements must
be expressed in a form that allows practical verification or checking. We will
come back to this question in more details in chapter 5.

A second type of self-assessed content is a statement about the way the APES
has built its perceptual outputs: this statement can be used to get confidence
about APES behavior or as a justification of the perceptual production quality.
Generating such content that makes APES more intelligible will be discussed
in chapter 4.

Self-awareness has been rather recently introduced to characterize computing
systems able to address their own behavior as humans do (Lewis, 2017;
Lewis et al., 2016) b Self-assessment can be considered as a fundamental
functionality of self-awareness. An interesting direction could be to study how
the ideas and concepts developed in this field, mainly targeting cyber-physical
objects (IoT) or data centers, can be transferred and adapted to perception.

aCf. the annual conference about Uncertainty in Artificial Intelligence http://www.auai.org/
b“Self-aware computing systems are computing systems that: 1. learn models capturing

knowledge about themselves and their environment (such as their structure, design, state,
possible actions, and runtime behavior) on an ongoing basis and 2. reason using the
models (e.g., predict, analyze, consider, and plan) enabling them to act based on their
knowledge and reasoning (e.g., explore, explain, report, suggest, self-adapt, or impact their
environment) in accordance with higher-level goals, which may also be subject to change.”
(Kounev et al., 2017)

Topics of investigation

The goal of this introductory chapter was to propose a research angle that does not
restrict perception to a generic provider of information about the world, without any
specificity or purpose “in mind”. The idea of APES suggests that the right way to
study perception is to consider it simultaneously as a system and in a system.

The next chapters will discuss in more details three different issues to be studied in
order to address this approach:

Operation &
development

How are organized the various systemic components and their
dynamic interactions? What let contextually adapted and what
should be generic? What can be analytically modeled and what
needs to be empirically learned?

Intelligibility What is the best way to monitor the internal states of the system,
their dependencies or their correlations? What signs should be
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generated and outsourced to inform of its behavior — good or
bad?

Safety What is expected from the perceptual system? How define a
good behavior? How improve predictability and robustness to
perturbations, or conversely, how detect instabilities in perceptual
systems?
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3OPERATION &
DEVELOPMENT — The
life of APES

The previous chapter examined in what sense an idea of autonomy could be as-
sociated with perceptual systems and discussed its conceptual implication. The
purpose of this chapter is to examine how to model and design such systems, with
an emphasis on their temporal evolution at two scales:

Operation: How does an autonomous perceptual system “function” and adapt
to the situation? What is the dynamical structure of calculations, actions,
decisions, etc. that produce perceptual outputs?

Development: What can be formally prescribed, what needs to be empirically
learned? How make it evolve and improve?

Those two scales are of course inter-dependent: a functional structure is worth if it
can be developed and implemented, a good development relies on the potentialities
and expressiveness of the functional structure.

3.1 Operation

Patterns of operation

In the previous chapter, we presented adaptivity as an answer to the control and
design of multiple task systems; we proposed that equipping perceptual system with
autonomy is a direction towards efficient design for adaptivity, and that learning is
a capacity that allows autonomy in the system development process. We have also
insisted that a key feature of an APES is the nature of its relationship with users, the
recipients and consumers of the signs or measures it produces. The central role of
the relationship with users has led to the definition of perception as a service, i.e. a
process capable of providing guaranteed answers to given tasks or questions, ruled
by an agreed contract.

The emphasis on the place of the final user in APES design can be symbolized by an
evolution of the functional patterns that connect the system to its outside. Fig. 3.1
depicts five classes, indexed by an iconic letter roughly representing the connectivity
shape:
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Fig. 3.1: Functional patterns of perceptual systems.

I This is the classical filtering structure that univocally receives
world features as input and sends output to an unknown user
which has no ability to interact with the system.

Λ In this pattern, the user asks a system to complete a task for him.
This pattern can describe distant calculation when the user needs
remote resources, for instance, but all the information needed to
answer the request are hosted by the system.

O This is the typical interactive connectivity scheme of an autonomous
agent where the system receives inputs from the environment and
issues actions. This pattern describes best robotics approaches
when the system is alone and do not interact with other agents or
users.

Y In this evolution of the previous pattern, the system interacts
with the world in an autonomous way, and outputs its perception
products towards the user but do not receive any feed-back from
it. The system knows what to do, and how to interact with the
world to provide useful outputs.

X In this last pattern – the richest – the system has to deal with two
distinct entities: a world that is the source of input and recipient
of actions, and a user that interactively asks for information, skills
or resources, for a service. This pattern is the more complex one
since it involves two feed-back loops that may conflict. However, it
allows seamless and continuous adaptivity and, potentially, better
quality of service.

The I pattern, although the most practiced in image processing or computer vision,
is a filter that maps sensory data to a given output space meaningful to the final user,
and does not involve any possible interaction with the source of data: it cannot be
considered functionally autonomous. The Λ pattern may describe interactions with
the user in an autonomous way, but does not produce any output (sign or measure)
that relates to a contingent world, losing its perceptual objective. The O pattern
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interacts with the world, but does not externalize any output towards a potential
user.

From the collection of functional patterns, only two involve autonomy and perception
– the features specific to an APES approach: the Y and X patterns. In the following,
we will examine how they have been addressed in the literature.

Active perception: the Y pattern
Dynamically interacting with the world to produce relevant perceptual outputs
has a long tradition in artificial intelligence. The idea that perception has to deal
with a temporal stream of sensory data is a rather natural question. The specificity
of an active perception approach is to control, or at least influence in some way,
information sources and other processing parameters to complete the current tasks
and output their results. Interaction with the user is only final, and one-way. The
asymmetry between a dynamic interaction with the world, and a static relation with
the user is represented by the Y pattern.

There are mainly two reasons to study an active perception approach: better adapta-
tivity under limited but controllable resources – a perceptual system cannot handle
all the aspects of the world due to its limited processing capacity – and incomplete-
ness of readily available perceptual features – the world does not reveal right away
its nature. Both reasons justify to temporally unfold perception, to make it a true
dynamical process.

The fact that perception is the consequence of action is a very old idea, especially in
the robotics domain. (Bajcsy et al., 2018) presents a large retrospective view from
a perceptual-motor loop perspective by several of the first researchers in this area.
“[Their] main argument is that despite the recent successes in robotics, artificial
intelligence and computer vision, a complete artificial agent necessarily must include
active perception. The reason follows directly from the [following] definition [...]:
An agent is an active perceiver if it knows why it wishes to sense, and then chooses
what to perceive, and determines how, when and where to achieve that perception.”
Fig. 3.2.

Their presentation of active perception emphasizes physical action on the perceptual
system and is therefore close to an embodied perception approach, “where an agent
(animal, robot, human, camera mount) changes position in order to improve the
view of a specific object and/or where the agent uses movement in order to perceive
the environment (e.g. for obstacle avoidance)”.1

Another dimension of active perception is also discussed in this recent review, but
less explicitly, with the claim that “The essence of active perception is to set up a

1https://en.wikipedia.org/wiki/Active_perception
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Fig. 3.2: Active vision issues from a robotics perspective (from (Bajcsy et al., 2018)).

goal based on some current belief about the world and to put in motion the actions
that may achieve it” (Bajcsy et al., 2018). This statement reveals the informational
concern of active perception with the introduction of belief about world states as a
fundamental feature.

The activity of perception has a dual nature: actions can be physical (as illustrated
in Fig. 3.2), but can also be algorithmic by recruiting the set of calculations adapted
to the current situation or perceptual state. From a formal perspective, selecting a
point of view, or choosing a feature extractor to apply on the data are both actions
that produce new data potentially contributing to task completion (Kragic, 2018).

We propose to abstract the role of an action as control, i.e. any output that has
an impact on the perceptual system input, the sensory data, and not restricted to
physical modifications. This extended definition unifies actions as – controllable –
sensory data generation, either through physical or algorithmic means.

An underlying assumption of an active perception approach is that the contour of the
system is given: its formal inside/outside boundaries are known and fixed. Actions
do not have an ontological impact on the system, and do not modify the nature or
the structure of the interaction with its outside – world or user. This assumption
maybe problematic if a developmental approach of perception is adopted (Ivaldi
et al., 2013), for instance, if the repertoire of skills and actions evolves during system
lifetime. We will come back to this question in a further section (pg. 89).

The active perception approach is not limited however to controllable sensory data
generation, or more precisely this capacity entails or implies several other properties
or features. The following list defines the features of an active perception system:
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Dynamic Time inscription is of course a mandatory feature, but perception
as an activity is also characterized by a behavior with internal state
dynamics.

Sequential As a consequence of its dynamic property, active perception recur-
sively updates its internal states from sensory data and generates
its products from a sequence or a stream of sensory data and
actions.

Active The system outputs a signal that potentially modifies sensory input
data. This modification is expected to be predictable in some way,
typically thanks to a dynamical or a probabilistic model.

Receptive As perceptual, the system is open to influence. One important
dimension of an active system is a capacity to modulate the nature
and the form of receptivity, for instance through attention.

Incomplete Sensory data only partially reveal the world: perception is always
in progress, unfinished, sketchy. The role of an active system is
to state when to stop and decide that it is able to deliver relevant
outputs.

Cognitive Perception may involve static structures such as models and knowl-
edge, and dynamic components such as memory.

Teleological The purpose of action generation is to, ultimately, improve the
level of task completion or user satisfaction. The repertoire of
purposes may be itself variable to allow versatility of the system.

Optimal Task completion can be expressed as a global reward or cost: infor-
mational uncertainty about states of the world, energy, duration,
memory storage etc. Ideally, the role of activity is to optimize
this cost/reward with final or anytime objectives, or at least to
control it.

Intentional The goal of perception is to produce references to objects or prop-
erties external to the system in the form of measures or signs.

Self-aware The system should have an estimate or a knowledge of how far it
is from its objectives. It may take the form of a belief about states
of the world.

Models of active perception

The expected properties of an active perception system can be expressed formally,
with various levels of complexity and under different kinds of hypotheses and
knowledge. The basic ingredients in an active perception model make use of three
different types of formal objects: variables, dynamic models and inference process.
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We present briefly in this section but in a rather general way their nature and
organization.

A first step when modeling active perception is to identify the dynamic variables
that stand for the system and the world features. An active system, characterized
by an internal state zt, is able to emit actions at towards the world to modify its
variant part wt. The world may be also characterized by invariant features h such as
type, category, attribute, etc. that may have a global conditioning influence on world
behavior (a pedestrian doesn’t move the same way as a car for instance) and can be
considered as a latent variable. The system is perceptual, and have access to sensory
data xt, the raw source of information used to produce perceptual outputs yt, often
a partial estimate either of world state wt or of its invariant part h 2. It is usual to
consider those variables as random.

The internal perceptual system state zt may be complex. It can encode the way
sensory data is processed (extracted features, applied algorithm, etc.), a local
memory that summarizes in a synthetic and informative form past sensory data,
action and world state estimates, proprioceptive pose or location of the perceptual
system in local coordinates, computing features (architecture, memory load, energy),
indicators of task completion (belief, duration), etc. The nature of this internal
state and the ways it is exploited differentiate the various models proposed in the
literature.

The history of inner states, actions and observations is noted Φt and collects all the
contingent elements that are accessible by the perceptual system and are used as
input data for decision or inference.

Tab. 3.1 summarizes the variables that can be exploited for active recognition
models.

Tab. 3.1: List of variables potentially used in active perception models.

Variables
t Time
xt Sensory data
at Action
wt World state (evolving part)
h World state (invariant part)
zt Internal state
yt Perceptual output

Φt = [x1:t, a1:t, z0:t] History of past observations, inner states and actions

The objective of a perception system is to infer a user-relevant output yt from input
data. The active dimension says that input data is the combination of sensor outputs,

2In these notations, we follow the convention used in pattern recognition where x is the sensory
input used to predict y. In control theory, y is usually taken to be the measurement whereas x is
the state.
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actions and inner system state, Φt. Formally, perceptual inference follows an I
pattern (Fig. 3.1) but with a complex temporal input: Φt → yt. Here, the i → o

symbolic expression simply means that the variable o on the right side has some
causal relation with the variable i on the left side. This relation may be functional or
random, i.e. one can make the hypothesis that posterior (Pr[o|i]), likelihood (Pr[i|o])
and joint distribution (Pr[i, o]) can be defined. It is usual that inferences exploiting
this type of random relation may come with an uncertainty representation (score,
probability, correlation matrix, belief, etc.).

Classical types of perceptual outputs yt are related to world states, and can be
divided into two categories:

• World feature prediction: Φt → ĥt. The goal is to provide a description of user-
relevant invariant features – attribute, category, shape, location etc. Although
the features are expected to be time invariant, their prediction may vary when
new actively generated data is available.

• World state estimation: Φt → ŵt. The goal here is to predict several features
of the changing world, objects or events, and potentially include the relation
of the perceptual system itself with the world, for instance for ego-localization.
This type of estimate is usually expected to provide measures of world features.

Tab. 3.2 summarizes the fundamental predictive functions involved in active percep-
tion.

Tab. 3.2: The two types of predictions.

Predictions
Φt → ĥ World feature prediction
Φt → ŵt World state estimation

What is specific to active perception with this formalization is the fact that the input
contains actions, i.e. controllable features. The main question is therefore to find
the best way to generate those actions: Φt−1 → at, i.e. to estimate the impact of a
possibly random action on current perceptual task completion, the production of
perceptual output from the sequence of sensory data and actions: Φt → yt.

One unifying modeling alternative would have been to consider the perceptual
output production as a specific terminal action. We keep the distinction between
those two types of inference two in order to make more salient the separation
between world interaction and perceptual output generation.

Tab. 3.3 summarizes the fundamental decision functions involved in active percep-
tion.

The design of the functions of Tab. 3.3 can only be done from modeling assumptions
needed to predict the dynamic behavior of key variables when applying a given
action:
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Tab. 3.3: The two fundamental (random) decision functions of active perception.

Inference & decision
Φt → yt Perceptual output generation

Φt−1 → at Action generation

• The world: acting in the world may modify it or change its relation with
the perceptual system. World dynamics depends on its history and on its
invariant features. The world itself may be changing without any action on it,
for instance if it contains mobiles.

• The perceptual system: its internal state can be modified sequentially typically
to update its observation parameters (such as those depicted in Fig. 3.2), or its
belief or estimated score measuring current task completion level.

• The sensory data: from a pure perceptual perspective, actions modify the
way the perceptual system senses a potentially evolving world. Sensory data
changes may result from actions on the world itself, but also from viewing
conditions modifications, for instance by changing focal length, image filters,
gaze direction, etc.

Tab. 3.4) summarizes the three different variables that may be impacted by an
action.

Tab. 3.4: General dynamic models used in active perception.

Dynamic models
h,w0:t−1, at → wt World dynamics

Φt−1, at → zt System dynamics
h,w0:t−1,Φt−1, at → xt Sensor dynamics

The practical implementation of these abstract models have been addressed in the
literature with various semantics and simplifying hypotheses. Four different families
of approaches have been proposed: utility based action selection, reward based
optimal policy design and controlled random sampling. The following sections will
describe their main features, concentrating on the question of invariant world feature
prediction: Φt → yt = ĥ.

Utility based action selection

The first, and probably dominant, formalization of active perception is to ask what
the next “best” action given system history should be, i.e. the most “useful” to
complete the task of accurately predicting the invariant feature h. The goal of this
action is to generate a new input sensory data xt expected to be useful for improving
the quality of the estimate ĥt.
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Let Ut denote the function measuring the utility of applying an action a at time t to
be chosen from a set At given the history of the system Φt−1. Action generation can
be rewritten as an optimization problem:

at = argmax
a∈At

Ut(Φt−1, a) (3.1)

Most of the approaches that describe utility functions – not all – are embedded
into a probabilistic framework expected to globally catch the contingent noise of
sensing devices, but also to control the complexity of modeling and handling high
dimensional sensory inputs.

A standard way to handle uncertainty is to make use of a Bayesian framework, i.e.
a formal environment where posterior and prior probability distributions of useful
variables are accessible and mechanisms to update their values when a new outcome
is available.

The classical formulation of predicting world state from sensory data is to introduce
a belief function bt defined as a posterior distribution that plays the role of the
system internal state zt:

bt(h) = Pr[h|Φt]

and to estimate its value as maximizing this belief

ĥt = argmax
h

bt(h). (3.2)

Other randomized estimators can be used instead of the maximum posterior.

The Bayesian framework is also interesting because it describes the internal system
state dynamics zt with a simple recurrent updating scheme using Bayes inversion
formula:

bt(h) = Pr[h|Φt]

= Pr[h|Φt−1,xt, at]

= Pr[xt|at,Φt−1, h]
Pr[xt|at,Φt−1] · Pr[h|Φt−1]

= Pr[xt|at,Φt−1, h]
Pr[xt|at,Φt−1] · bt−1(h)

(3.3)

making posterior (or belief) at time t− 1 a prior for the posterior at time t.

If the only useful feature is the maximum of eq.(3.2), the updating scheme can
even be made simpler by considering that the denominator of eq. (3.3) is only a
normalization factor:

bt(h) ∝h Pr[xt|at,Φt−1, h] · bt−1(h) (3.4)
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where the notation f(h) ∝h g(h) means that f(h) = g(h)∑
h′ g(h′) .

Eq. (3.4) is simple but hides a latent complexity: the whole history Φt−1. A standard
simplifying assumption is to consider that the probability of observing sensory data
x is independent of the history and is only the consequence of the sampling action
at. The belief updating equation becomes:

bt(h) ∝h p(xt|at, h) · bt−1(h) (3.5)

where the conditional likelihood p(xt|at, h) used as a recurrent multiplicative factor
is the only needed feature that relates sensory experience to perceptual output in
the model. If this likelihood can be reliably and efficiently estimated, for instance
when action and sensory data spaces are finite or Gaussian distributed, we have a
very compact model. The only remaining question is to find good utility functions
able to exploit this model.

Several approaches that make use of information theory concepts have been proposed
in the literature to justify the design of utility functions: entropy (Callari and Ferrie,
2001; Arbel and Ferrie, 2001; Defretin et al., 2010; Butko and Movellan, 2010),
expected loss of entropy (Paletta and Pinz, 2000; Borotschnig et al., 2000), mutual
information (Schiele and Crowley, 1998; Atanasov et al., 2014; Denzler and Brown,
2002), Kullback–Leibler divergence (Laporte and Arbel, 2006), free energy (Friston
et al., 2017) to name the most popular ones.

(Croon et al., 2009) empirically compares several of those strategies on a viewpoint
selection for 3D object recognition, which is often considered as a prototypical
problem for active recognition problem, although online feature selection has also
been evaluated (Potthast et al., 2016). There is no clear winner among the proposed
approaches in the literature, although the mutual information based action selection
seems to perform a little bit better on their experiments. More recently, (Daucé,
2018) provides a theoretical comparison of several utility functions and shows that
they can be considered as either innovative – they tend to generate actions that
may potentially contradict current prediction state – or conservative – they favor
action that are likely to confirm it. This distinction, which can be considered as a
version of the exploration/exploitation principle of reinforcement learning (François-
Lavet et al., 2018), explains the impact of modeling errors (mainly the estimation
of p(x|a, h)) on prediction performance, and argues in favor of strategies mixing
several utility functions. A utility function combining an “innovative” predicted
entropy and a “conservative” current best class likelihood has been proposed in
(Defretin et al., 2010).

Most of the utility functions proposed in the literature rely on the sequential Bayesian
updating rule of Eq. (3.5), and on the assumption that it can provide a good estimate
of the posterior distribution that can be used for further discrimination. In (Herbin,

68 Chapter 3 OPERATION & DEVELOPMENT — The life of APES



2014), I proposed a sequential strategy that rely on a different action selection
principle that maximizes the expected number of hypotheses that can be rejected.

Sequential hypothesis rejection strategies (Herbin, 2014)

Fig. 3.3: Example of foveated regions during the active recognition process. On
the upper left side of the figure, active hypotheses have red color, rejected
are in black, best current hypothesis has yellow background. The graph
depicts the sequence of focus locations. More examples in the video
http://youtu.be/51IbY3A0yC4.

The recognition task is considered as a sequential hypothesis rejection process,
starting from a set of possible hypotheses or classes Ω0 and iteratively reducing
the set of active hypotheses by applying a sequence of rejection tests.

The proposed algorithm follows a classical active recognition scheme: at
each instant t, the system selects an action able to generate a new piece
of information from the environment, combines it with past acquisitions to
improve the completion level of the recognition task and updates the set of
active hypotheses Ωt, i.e. hypotheses that are not believed to be false. In
this formulation, the internal state zt of Tab.3.1 is reduced to Ωt. The utility
function is defined as the average rejection capacity of a test able to discard a
given subset of hypotheses.

This type of approach is a contrario, in the sense that it does not try to isolate
the most likely hypotheses, but discards iteratively the less likely. It has
been validated on a problem of fine grained car recognition where actions
consist in focusing on several details of the field of view with high resolution
(Fig. 3.3).

3.1 Operation 69

http://youtu.be/51IbY3A0yC4


Reward based optimal policy

The previous section described a “next best action” strategy incrementally modifying
a predictive belief about the invariant part of the world h as internal state, using
several types of uncertainty representation (posterior, votes on rejected hypotheses)
summarizing the history of active sensory data acquisition. The value of an action
was evaluated as the one step uncertainty reduction on this state using various types
of utility functions and concepts of uncertainty.

Another common action selection strategy is to extend the idea of uncertainty
reduction to a generalized idea of reward: an action is good if it is rewarded a high
uncertainty reduction, but also if it is not too costly, risky, time consuming, etc. A
reward based formulation allows a better modeling flexibility and expressiveness.
The objective of a global action selection strategy – usually called policy in the
literature – can then be interpreted as maximizing a global reward that characterizes
the current task completion level.

Another advantage of a reward-based formulation is a clearer formal separation
between modeling and control, making easier the introduction of dynamic models
(see Tab. 3.4). This is one of the reasons of the popularity of this family of approaches
in robotics, often with an emphasis on controlling physical dynamical systems rather
than on expressing perception as a dynamical system.

In its most general form, the reward at time t, rt, is a random real function of
potentially all the variables involved in the active perception process:

• the action at: several actions can be more costly than others, or more adapted
to complete the task;

• the sensory data xt: the reward is a quality measure of its information content;

• the internal state zt: it encodes the state of completion of the current perceptual
task;

• the history Φt−1: the usefulness of a new experience can be relative to the pre-
vious state (Markov hypothesis) or to the whole past experience, for instance
to avoid revisiting the same locations;

• the world state history w0:t: prediction quality depends on outer world motion
or evolution features and on its complexity;

• the world invariant state h: several features are more rewarding than others,
more or less easily detectable for instance.

The objective of an action selection policy is to choose the action that maximizes an
expected cumulated or average reward, either with finite or infinite horizon:

Rt = E
[
L∑
k=1

γkrt+k+1

]
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where γ < 1 is a discounted factor that models the impact of long term rewards.

The literature addressing the resolution of this family of problems is huge, since the
seminal work of Bellman that defined the Markov Decision Process model (MDP)
and Dynamic Programming to solve it (Bertsekas, 1995). Several variations have
been proposed, introducing for instance multiple objectives or multi-valued rewards
(Roijers et al., 2013), or more complex processes such as Partially Observable Markov
Decision Processes (POMDP) (Ross et al., 2008), leading to a whole domain devoted
to planning (Ghallab et al., 2004; LaValle, 2006).

The exact resolution of reward-based action selection policies assumes the availability
of reliable dynamical and behavioral models (Tab. 3.4). Typically, the most usual
model is to make a Markov assumption on world (h,wt−1, at → wt) and/or internal
(zt−1, at → zt) state dynamics.

When dealing with complex situations, typically with large internal state spaces or
high dimensional sensory data, reliable dynamical models are difficult to obtain.
One usual proposed solution to somehow to get rid of the modeling step is to
directly learn the action selection policy exploiting rewards as reinforcement signals.
Reinforcement learning (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998) has
become a major technique in AI, with remarkable and spectacular successes (Silver
et al., 2018; Vinyals et al., 2019), and has evolved to acclimate formal objects such
as deep networks (François-Lavet et al., 2018), or new formal optimal settings such
as multi objective (Liu et al., 2014), preference (Wirth et al., 2017) or imitation
(Osa et al., 2018).

Many of the applications of reward-based policy design have target objectives where
perception appeared as a means to complete another task (navigation, localization,
visual servoing, path planning, gaming) not the final outcome of the process. The
main question regarding APES’s is to adapt this framework to perceptual systems,
i.e. systems whose main objective is to produce signs about or measures of the
world. A few studies have addressed the question of budgeted or controlled feature
acquisition for data classification (Karayev et al., 2012; Dulac-Arnold et al., 2013;
Weiss and Taskar, 2013; Nan et al., 2015; Huang et al., 2017b; Shim et al., 2018;
Janisch et al., 2019) often optimized using reinforcement learning.

Active sequential testing

The utility function based family of active perception approaches puts the emphasis
on finding the best next action and makes use of a Bayesian incremental belief
updating step relying on the availability of a conditional sensory data likelihood
model p(x|a, h) (Eq.3.5). Their performance depends on the quality of this likelihood
that plays the role of a predictor using Bayes inversion formula, which is a powerful
tool when the likelihood is reliable, but may lead to unstable or erroneous beliefs
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if badly estimated, for instance with high dimensional input sensory data such as
images. Another source of instability of a Bayesian approach is the normalization
step over the set of possible hypotheses that assumes that all the possible prediction
values are known beforehand.

Another active strategy dealing with uncertainty, more “frequentist” in spirit, is to
accumulate pieces of evidence in a statistical process that would eventually converge
to a good global likelihood estimate of each possible perceptual output.

Sequential decision strategies have a long history in statistics since the early work
of Wald (Wald and Wolfowitz, 1948) (see (Naghshvar and Javidi, 2013) for recent
developments or (Tartakovsky et al., 2014) for a recent account of sequential
analysis). In computer vision, sequential decision processes have been implemented
in the form of coarse to fine strategies (Blanchard and Geman, 2005; Fidler et al.,
2010; Gangaputra and Geman, 2006) or cascade-like structures (Viola and Jones,
2001) applied to categorical object detection rather than classification. The main
objective of a sequential strategy is to control the false alarm rate, and as a secondary
objective the variability of object features in the target category. Fewer studies have
addressed the question of object classification with a sequential decision approach.

Basically, a sequential testing approach updates the likelihood (or log-likelihood)
conditionally to each hypothesis h:

lt(h) = Pr[Φt|h]

= Pr[xt, at, . . .x1, a1,x0|h]
(3.6)

and decides when to stop acquiring new data and how to choose the most relevant
hypothesis. The main differences with the Bayesian approach is that we work with
likelihoods instead of normalized posteriors or beliefs, and that actions are often
random, i.e. they are sampled from a probability law, static or adapted to the current
likelihood distribution.

The global likelihood of Eq. (3.6) can be written also using a recurrence similar to
Eq. (3.4):

lt(h) = Pr[xt, at,Φt−1|h]

= Pr[xt, at|Φt−1|h] · Pr[Φt−1|h]

= Pr[at|Φt−1] · Pr[xt|at,Φt−1, h] · Pr[Φt−1|h]

= µt(at,Φt−1) · Pr[xt|at,Φt−1, h] · lt−1(h)

(3.7)

where µt is the action law at time t, i.e. the free control of the process that depends
on the accumulated observations Φt−1.

Several modeling hypotheses must be made to be able to exploit the decomposition
of Eq. 3.7 on the functional structure of the action law µt – how to summarize
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past experience Φt and how to (randomly) choose the wright action – and on the
controlled data acquisition Pr[xt|at,Φt−1, h]. The final hypothesis prediction can
be done using maximum likelihood decision: h∗ = argmaxh lt(h). This likelihood
formulation also makes possible the exploitation of statistical results, typically
consequences of the law of large numbers. This is what has been done in previous
work, under two modelling hypotheses: independent identically distributed (i.i.d.)
(Herbin, 2003; Herbin, 2004) and Markov chain (Herbin, 1996; Herbin, 1997b;
Herbin, 1998; Herbin, 2002).

Asymptotics of random sampling strategies for object recognition

I.I.D. case

The original idea was to model object of interest as a stationary family
of histograms (Pr[xt|at,Φt−1, h] = p(x|a, h)), and exploit this model for
inference when conditionally sampling the modalities a of each element of
the family. Testing is based on accumulating evidences on the discrimination
between all-pairs of hypotheses h and h′. For a stationary sampling law
µ(a), and if hypothesis h is the true one, we have, thanks to the law of large
numbers:

lim
t→∞

1
t
[log lt(h)− log lt(h′)] =

∑
a

µ(a)
∑

x
p(x|a, h) log p(xt|at, h)

p(xt|at, h′)
(3.8)

Hypothesis h will be declared true if all values of (3.8) are positive.

The convergence of a test exploiting the sign of (3.8) can be refined thanks to
tools of large deviations (Dembo and Zeitouni, 1998). Indeed, it is possible to
compute the exact logarithmic convergence rate to zero of deciding hypothesis
h′ while hypothesis h is true:

lim
t→∞
−1
t

log Pr[log lt(h) ≤ log lt(h′)|h] = ρ(h, h′) > 0 (3.9)

These number can be used either as a loss to be optimized (Herbin, 2003),
or as a way to calibrate the number of samples needed to reach a given
performance level (Herbin, 2004).

Eq 3.8 assumes that the conditional probabilities p(x|a, h) are exact. It is possi-
ble to modify the equations by replacing directly the log-ratio log(p(xt|at, h)/p(xt|at, h′))
by a more robust and discriminative quantity (Herbin, 2004) or by exploit-
ing multiple votes to secure the difference of distribution supports between
hypotheses (Herbin, 2003).
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This framework has been applied to the rotational invariant recognition of
noisy images, where objects are represented by statistics of pairs of point
configurations (Fig. 3.4).
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Fig. 3.4: Three examples of bipoint configurations used to define a rotation invari-
ant representation of a shape and that can be exploited from a random
sampling strategy.

Markov chain case

The i.i.d. active sampling case relies on a model that can only encode or
assume independence of observed input data, but is able to handle multiple
modalities. The Markov chain formulation adds to the previous case a model
of multiple observation inter-dependence, and can encode more structural
dimensions through their underlying transition graph.

With a Markov hypothesis, Eq. 3.7 can be rewritten as:

lt(h) = µ(at) · Pr[xt|at,xt−1, h] · lt−1(h) (3.10)

where the probability transition Pr[xt|at,xt−1, h] summarizes all is known
about the world.

Similarly to the i.i.d. case, finding the most accurate hypothesis can be done
by accumulating evidence through the conditional likelihood and infer the
best hypothesis according to their values. The asymptotics of a maximum
likelihood test also follows a Large Deviation principle:

lim
t→∞
−1
t

log Pr[log lt(h) ≤ log lt(h′)|h] = ρ(h, h′) + τ(h, h′) > 0 (3.11)

where ρ(h, h′) is a function of the probability ratios between hypotheses h and
h′, and τ(h, h′) depends on their transition graph differences, the graph of
edges whose transition probabilities are strictly positive for both hypotheses.
The convergence rate (3.11) gives also a similarity measure (not a distance,
however) between two Markov chains exploiting there relative probabilities
and structures in a single measure.

The active sampling scheme under Markov chain modeling has been ap-
plied to propose a well funded definition of probabilistic aspect graphs of 3D
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objects(Herbin, 1996; Herbin, 1997b; Herbin, 1998), and to define a similar-
ity measure between co-occurrence matrices of textures seen as controlled
Markov chains (Herbin, 2002).

Active perception use cases
The formal active perception framework described above can be used to solve several
use cases. Before presenting them, let’s begin by describing a typical situation where
an active approach may be useful to produce perceptual outputs.

A generic scenario: dynamic scene description for navigation

In this scenario, the role of the perceptual system is to provide a complete description
of the dynamic environment content in which an autonomous mobile platform
evolves to plan its trajectory (Fig. 3.5).

Fig. 3.5: Examples of outputs that are expected from the active perceptual system: object
detection and classification, moving direction estimation, and potential obstacle
nature.

The description has two roles: to anticipate the presence of obstacles for navigation
and to improve the ego-localization of the platform relatively to environmental
objects. It relies on capabilities of scene reconstruction, pose estimation, visual
detection, tracking, classification, re-identification and prediction.

Multiple agile sensors such as pan tilt zoom (PTZ) cameras or lidars can be used to
control the flow of information by focusing on several areas of the field of view or
modifying the applied sensor to improve the level of resolution or adapt the physical
principle needed to characterize the objects.
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Actions on this scenario can be of two types:

• Recruit, initialize and apply an algorithm to update the current state of de-
scription;

• Change line of sight, focal length or physical principle of sensors.

All parts of the visual field are not simultaneously observable or not with the same
level of resolution. A key feature of this use case is the exclusivity of several algo-
rithms: typically, identification of objects (e.g. road signs) requires high resolution
and narrows the field of view, preventing the detection or updating of other moving
objects in the whole scene that may have an impact on platform navigation (obsta-
cles). Conversely, when the field of view is large, many potential objects may be
detected but not characterized with enough precision or confidence.

The content of the whole dynamic scene cannot be described with a uniform level
of detail and confidence: when a new observation is available, each object state
and attribute can be either updated if it can be associated to a new measurement
or another algorithm output, or simply estimated from the past using a predictive
model. What is maintained by the system is therefore a set of predictors about object
location, pose, speed, nature, behavioral state, etc. that can be selectively updated
from controlled observations and algorithm recruitment.

Predictions are not independent: for instance, a reliable object characterization
(whether the object is a car, a pedestrian or a cycle, for instance) may condition its
kinematics and its behavior prediction.

Each prediction may be associated with any feature able to represent the current
description quality that is meaningful to the user: a confidence score, an uncertainty
level, a utility value, etc. The overall objective of the perceptual predictive system is
to ensure a good – minimal, average or final – value of this quality.

This rather general use case exemplifies several functions that have been addressed,
often independently, in the active perception literature. It also extends the repertoire
of actions customarily proposed in robotics (Fig. 3.2) to algorithmic or processing
alternatives. The rest of this section describes how some of the functions that con-
tribute to the above scenario can be solved using an active perception perspective.

Multi-view object recognition

Three dimensional object recognition has been one the first functions where an
active perception approach has been applied (Arbel and Ferrie, 1996; Herbin, 1996;
Dickinson et al., 1997; Paletta and Pinz, 2000; Borotschnig et al., 2000). It is
expected to allow the observation of objects from different points of view in order
to increase decision reliability with respect to a set of plausible hypotheses. The
role of actions is twofold: exploring the viewing space in order to discover more
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discriminating or interpretable views, and sample new data that may confirm/infirm
current beliefs about object nature.

Most approaches in this field exploit mechanisms of entropy reduction or mutual
information with respect to a set of known conditional laws (Denzler and Brown,
2002; Laporte and Arbel, 2006; Deinzer et al., 2006; Deinzer et al., 2009; Defretin,
2011; Atanasov et al., 2013) to choose the next best view (Roy et al., 2004). The
final quality of the recognition depends on the discriminating capacity of the image
characteristics extracted, the number of points of view exploited and the mechanisms
of combination of the perceptive information. Most approaches use heuristics to
enhance the independence of different viewpoints.

A large body of work has also been interested in view planning for object recon-
struction (Scott et al., 2003; Chen et al., 2008; Remazeilles and Chaumette, 2007;
Wenhardt et al., 2006; Wenhardt et al., 2007; Atanasov et al., 2014; Devrim Kaba
et al., 2017), a correlated task but where the objective is more directed towards
geometric precision and coverage than discrimination.

Object search

Another well studied function exploiting an active information gathering strategy is
to control a mobile sensor to efficiently search for objects in a scene. The main idea
in this problem is to incrementally build a global representation of the scene that
may be able to condition the probability of objects being present in certain locations
– typically by modeling object or landmarks co-occurrence – in order to infer the next
best view (Andreopoulos and Tsotsos, 2008; Sommerlade and Reid, 2008b; Aydemir
et al., 2013; Aydemir and Jensfelt, 2012; Velez et al., 2011; Velez et al., 2012).

Object search, due to its optimal formulation, is one of the few active perception use
cases where theoretical results have been produced. Tsotsos and its coworkers in a
series of works: (Ye and Tsotsos, 2001) justify the optimality of active perception for
object search; (Andreopoulos and Tsotsos, 2009; Andreopoulos, 2009; Andreopoulos
and Tsotsos, 2012; Andreopoulos and Tsotsos, 2013) investigate the impact of
input noise, occlusion, and the VC-dimensions of the related representation classes
on localizing all objects present in the search region, under finite computational
resources and a search cost constraint. (Karasev et al., 2012) exploits a simple model
that includes uncertainty due to occlusion, scaling, and other types of nuisance
processes and introduces the idea of control authority levels to describe various
active perception strategies and to derive theoretical performance bounds.
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Dynamic scene content description

Because active perception is a temporally unfolded decision process, it makes possible
the interpretation of dynamic environment with moving entities such as tracking,
behavior prediction, dynamic pose estimation, etc.

Most of the studies have concentrated on using controllable sensors such as Pan Tilt
Zoom cameras (PTZ) that are able to dynamically adapt to evolving situations.

A first series of studies are more control oriented, where perception is mainly used to
compute an error between an actual observation and a prediction from an internal
model to compute the control, i.e. the new sensor features. This problem can be
considered as a particular case of visual servoing (Chaumette and Hutchinson, 2006;
Chaumette and Hutchinson, 2007). The main active feature to control in those
studies was the focal length for problem of object tracking (Tordoff and Murray,
2004; Tordoff and Murray, 2007; Sommerlade and Reid, 2008a).

Another series of studies have concentrated on using a single PTZ camera, or master-
slave configuration, to optimally track multiple moving objects using fixed scheduling
policies (Costello et al., 2004), internal valued graph representations (Bimbo and
Pernici, 2006; Bagdanov et al., 2005; Bagdanov et al., 2006; Melman et al., 2018)
or information theoretic formalism (Sommerlade and Reid, 2008b; Sommerlade and
Reid, 2008c; Salvagnini et al., 2015).

Very few studies, however, have addressed the dynamic evolution of perceived
features for scene interpretation, for instance by zooming on specific parts to improve
accuracy. One of those is (Salvagnini et al., 2013) which describes a person re-
identification from focused body parts.

Multiple Sensor surveillance

Timely allocating the right sensor, with the right viewing features, is another well
studied problem that can fit under the idea of active perception. Compared to the
setting of the previous paragraph – a single but controllable sensor – the complexity
to handle is also carried by the current system state: the number of sensors and their
potential combined contributions to accomplish a global interpretation task.

Multiple Sensor surveillance is multi-objective by nature and requires trade-offs
between spatial coverage and quality of detection/recognition/tracking of mobile
entities, between accuracy and exhaustiveness.

The idea underlying an actively configurable sensor network is to compensate for
limitations due to the limited number of available resources and to constrained
geometric configurations. The collection of sensors cannot observe a whole scene in
every details due to occlusion, to blind spots and to spatial area coverage boundaries
at a given resolution.
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The typical problem of a sensor network is multiple target tracking, i.e. the capacity
to predict at every moment the presence and location of all targets of interest in the
monitored area. Each sensor has to determine whether it should contribute to the
tracking of a single target with high resolution, of a group with lower resolution or
search for a new target.

The literature in this domain is huge, and has been boosted by the availability of
cheaper camera networks and a political interest for security reasons in various
countries. Many general surveys (Song et al., 2011)(Wang, 2013)(Natarajan et al.,
2015)(Piciarelli et al., 2015)(Liu et al., 2016a) or targeting more focused questions
such as coverage (Mavrinac and Chen, 2013) or occlusion (Mittal and Davis, 2008)
are available. Multi robot can be considered as an extension to sensor networks
where each sensor may have the full 6 Degrees Of Freedom (Bakhtari et al., 2009;
Khan et al., 2018; Best, 2019) for instance when hosted by a drone (Xiao et al.,
2017).

Re-identification, i.e. finding in a scene an object or a person already observed is
a specific perceptual function that is mandatory in multi sensor systems to ensure
interpretation continuity and coherence. The causes of loss of visibility or rupture of
the quality of the interpretation are numerous (occlusions, sudden change of illumi-
nation, exit of the field of view, loss of resolution, blur ...) making re-identification a
difficult problem (Quo et al., 2007; Hamdoun et al., 2008; Guinet, 2008; Guo et al.,
2008; Arth et al., 2007; Leotta and Mundy, 2009; Tsin et al., 2009; Zheng et al.,
2016).

Choosing the right sensors at the right moment can be formalized as a sensor
management problem (Hero et al., 2007), i.e. to “seek a policy for determining
the optimal sensor configuration at each time, within constraints, as a function of
information available from prior measurements and possibly other sources” (Hero
and Cochran, 2011). Algorithms of this domain rely on formal tools similar to those
used in planning (MDP, POMDP, Dynamic Programming). In a recent series of work,
(Satsangi, 2019) discusses application of these techniques to multiple sensor person
tracking, including a PAC analysis (Valiant, 1984) able to integrate model uncertainty
in the decision policies. Most of the models are applied to low dimensional measure
or state spaces and to state estimation rather than to environment behavior or
content interpretation.

Attention: soft or hard

Attention, i.e. the time dependent selection or modulation of sensory data, is a
paradigmatic feature of active perception. The importance of attention in natural
vision has already been discussed in a previous section (pg. 41). The separation
between engineering and natural models3, however, is not strict: the artificial

3http://www.scholarpedia.org/article/Computational_models_of_attention
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intelligence, robotics or computer vision literature proposes models relying on
foveated sensors, i.e. that unevenly sample the field of view like the retina (Wang
and Bovik, 2001; Weber and Triesch, 2009) or interested in predicting gaze when
observing a given scene, i.e. the sequence of informative looking locations (see
Fig. 2.15) (Das et al., 2017a; Wloka et al., 2018). The existence of attention is also
often justified as a necessary condition for managing the complexity of input sensory
data with limited computing resources, both for engineering purposes of for natural
perception modeling (Tsotsos, 2011; Borji and Itti, 2013). Here we focus on how
attention has been considered in formal models: as a functional pattern to mimic, as
an interpretable phenomenon or as an efficient algorithmic principle

A first pregnant usage of attention is inspired by its “overt” features: focus, vergence
(Krotkov and Bajcsy, 1993), gaze control, etc. The idea of attention is exploited
as a functional pattern that guides perceptual system design and implementation.
This trend is well developed in robotics with a specific care about the control of
agile sensors such as monocular or stereo PTZ cameras (see previous sections and
(Frintrop et al., 2010; Chen et al., 2011)).

Overt attention, which is mainly reduced to the detectable phenomenon of focusing
on several part of the field of view, reveals something about how sensory data are
exploited during the perceptual process. We have seen in the previous chapter that
the pattern of fixation point locations may be conditioned by the current task to be
completed (DeAngelus and Pelz, 2009) (Tatler et al., 2010) (Borji and Itti, 2014),
although the informational content of such pattern is not clear (Greene et al., 2012).
We will see in the next chapter (pg. 127) how attentional features can be used
as supplementary explanations or justification of perceptual outputs, i.e. a kind of
confidence measure about the quality of perceptual production.

More recently, especially since the advent of the deep learning era and the revival
of recurrent networks (Wang and Tax, 2016), attention has been considered as an
efficient principle to solve various tasks, ranging from natural language processing
(NLP) (Bahdanau et al., 2014; Ma et al., 2018c; Young et al., 2018) to visual object
recognition and detection (Ren et al., 2015; Sermanet et al., 2015; Yoo et al., 2015;
Ren and Zemel, 2017; Fu et al., 2017; Zheng et al., 2017), visual tracking (Choi
et al., 2017; Wang et al., 2018a; Yang and Chan, 2018; Pu et al., 2018; Yun et al.,
2017; Yun et al., 2018; Luo et al., 2018; Luo et al., 2019; Zhang et al., 2019b),
action recognition (Das et al., 2019), visual question answering (Xu and Saenko,
2016; Lu et al., 2016; Anderson et al., 2018a), captioning (Xu et al., 2015; You et al.,
2016; Hossain et al., 2019), person re-identification (Lan et al., 2017; Lin et al.,
2019) or visual grounding (Deng et al., 2018).

Formally, attention has been implemented using two different ways to manage
resources: soft or hard. The soft way consists in filtering, weighing or modulating
the useful parts of the input sensory data, or of inner latent structures; the hard way
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selects the useful parts, i.e. discards the resources that have no useful informational
role to complete the task.

Most of the proposed algorithms in recent literature belong to the first category, and
introduce attention by weighing the input signal through saliency maps (Jaderberg
et al., 2015), internal feature channels (Dumoulin et al., 2018) or both (Wang
et al., 2017; Woo et al., 2018). Dense multiplicative weighing or gating, a common
operation in many deep network architecture, can be interpreted as an abstract soft
attention step and is used in several varieties of networks (LSTM, Memory Networks
(Sukhbaatar et al., 2015), Neural Turing Machines (Olah and Carter, 2016), FILM
(Dumoulin et al., 2018), etc.). Many approaches that exploit soft attention as an
internal computing principle fall under the encoder/decoder architectural paradigm
and encode input data either sequentially using recurrent networks, especially for
NLP applications (Chaudhari et al., 2019; Galassi et al., 2019), or using a more
global strategy able to encode efficiently long term dependencies (Vaswani et al.,
2017).

Hard attention, i.e. the selection of resources – data, computation, features, etc.–
among a given repertoire, has been less studied. This can be explained by the fact
that selection often leads to nondifferentiable expressions that prevent gradient
based optimization. The main application domain where selective attention has
been exploited is object or entity detection in high dimensional data such as images
or video where potential locations are ranked and proposed to further processing
steps. The idea of region proposal is an old strategy used to control the complexity
of detection by reducing the number of locations to evaluate (Uijlings et al., 2013;
Cheng et al., 2014; Zitnick and Dollár, 2014). Modern deep learning approaches
have proposed architectures able to integrate in their pipe-line such selection as an
intermediate step (Ren et al., 2015) or by mimicking multiple resolution foveation
(Mnih et al., 2014; Gao et al., 2018; Li et al., 2019).

Interactive perception as a solution

Since the seminal papers at the end of the 80’s (Bajcsy et al., 2018), active perception
has been addressed in a rather large amount of works, especially in robotics (Chen
et al., 2011; Patten, 2016; Best, 2019) where time dependent process and control
are fundamentals, but also for “pure” perceptual tasks as has been described in the
previous section.

One of the main motivations and inspirations for introducing active perception
features in artificial intelligence models has been to replicate the performance of
natural perception, which is fundamentally active. This is also why this approach
has been continuously addressed, and questioned, in artificial intelligence, although
with a rather moderate volume of research activity.
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We discuss here the conditions under which an active perception approach seems
to be useful, even necessary, for artificial perception systems, what are the avenues
for improvement and why this subject still deserves to be studied and is a central
concern of autonomous perception.

Why is active perception useful to perceptual systems?

To make the system adaptive. Perceiving the world is experiencing contingency. A
perceptual system, due to the current limitations of its resources, cannot forecast or
predict all aspects and dimensions of world features in every context: it may not be
readily adapted to the situation. The world itself may have a configuration where the
interesting features are hidden or not accessible with enough reliability, requiring
a modification of the perceptual system state (pose, viewpoint, sensing modality,
memory update, computing architecture, algorithm, etc.) 4. The fundamental
principle of active perception is to purposely modify its available and controllable
resources to optimally complete the current task. Considered this way, an adaptive
perceptual system is necessarily active.

Because resources are limited. All systems, natural or artificial, have finite re-
sources (time, energy, field of view, resolution, sensitivity, etc.). Active perception,
as already mentioned, can be seen as a way to get around these limitations by tem-
porally unfolding the usage of these constrained resources given a way to combine
them.

Because perceptual tasks are complex. Active perception, especially vision, was
shown to be interesting because a number of problems that are ill-posed for a passive
observer (shading and depth computation, shape from contour, shape from texture,
and structure from motion) are simplified when addressed by an active observer
(Aloimonos et al., 1988). On more high-level tasks, (Tsotsos, 1992; Ye and Tsotsos,
2001) showed that active vision has good optimal properties for object search. No
such result exists however for simple semantic tasks such as single object or global
scene classification – which may not require active features. For more complex
tasks such as question answering or captioning where multiple semantic levels are
involved, active or attentional vision is clearly a relevant option.

To make a perceptual system versatile. A complex scenario like the one illustrated
in Fig. 3.5 requires the allocation and prioritizing of several sub-tasks and objectives
that may vary according to user priorities and world events. A relevant perceptual
system for this kind of situation must be versatile in that it must actively recruit the
current goals and subgoals it pursues.

4“The non-invertibility of nuisances such as occlusion and quantization induces an “information gap”
that can only be bridged by controlling the data acquisition process.” (Soatto, 2013)
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What are the remaining problems of active perception?

Active perception has been a subject of interest for a long time in AI and, as the
previous section has argued, is still worth addressing. It remains however difficult to
develop in practice and can be only assessed in limited operating domain. Perceptual
systems able to provide reliable dynamic scene description as depicted Fig. 3.5
are not available yet. This sections discusses several key remaining problems of
active perception. More focused research actions will be presented at the end of this
chapter.

Self-assessment and uncertainty.

One of the main operating principles of active perception is information gain through
sequential sensing and computation actions, often expressed as uncertainty reduction
(see the short presentation of utility-based approaches pg. 66). But how express or
estimate uncertainty?

Several authors speak of aleatoric and epistemic uncertainties to distinguish what
comes from the environment and sensors, and what is the consequence of modeling
errors (Der Kiureghian and Ditlevsen, 2009; Kendall and Gal, 2017) and propose a
posteriori estimation methods by random perturbation (MC-drop out). The question
of calibrating predictors, i.e. making the predictive output score close to the true
likelihood, has been addressed recently by several studies and applied to deep
networks (Lakshminarayanan et al., 2017; Guo et al., 2017; Malinin and Gales,
2018).

One current way to circumvent the lack of knowledge about uncertainty origin is to
avoid its estimation as an intermediate product, and directly estimate the action law
by rewarding good trials, usually by reinforcement learning (see pg. 70). However,
learning is not the solution to all problems: it is computationally costly and hard to
control, it requires real world instantiation or surrogate simulation that brings other
type of noise, and in practice can only be applied to small scale active perception
problems.

(Gallos and Ferrie, 2019) suggest that a lot can be done already using better un-
certainty estimation (Gal and Ghahramani, 2016) and classical utility based next
best view prediction. Uncertainty estimation however remains difficult with deep
networks and depends on learning database biases (Ovadia et al., 2019).

One of the reasons why an active approach has not been considered mandatory in
perception models is perhaps due to the lack of expressiveness of uncertainty formal
representation and self-assessment: the recurrent equation 3.5 that is expected to
summarize current world experience using conditional probabilities is too elementary
to deal with heterogeneous levels of knowledge and complex objectives.
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One interesting avenue of research is therefore the improvement of uncertainty
representation, combination and estimation for sequential decision processes. To
achieve this objective, it may be necessary to escape the framework of statistical
information theory which provides powerful and reliable formal tools, but has
difficulty in representing and controlling the specificity of the various sources of
error.

Learning and modeling.

A machine learning step, typically using deep networks, is now compulsory in artifi-
cial perceptual system design to achieve robust and large usage domain performance,
at least for several functional components. When applied to the complex and se-
quential schema of active perception, questions such as What can/must be learned?
What can/must be modeled and optimized using other means or knowledge source?
do not have clear answers. From a robotics perspective, for instance, deep learning
raises specific challenges due to the impact of perceptual output to agent efficiency
and survival (Sünderhauf et al., 2018; Kojima and Deng, 2019). One straightforward
option is to use learning to provide instantaneous prediction from raw sensory data
and integrate the result in a sequential decision loop: this schema implies that pre-
diction is able to provide an uncertainty estimation of its result, which may not be an
easy task (see previous paragraph). A second extreme strategy is to learn everything
(sensory prediction module and action law) in an end-to-end way (Malmir et al.,
2017; Jayaraman and Grauman, 2018; Yang et al., 2019). This solution is appealing
as it transfers the burden of ruling the interaction and collaboration between system
components to a global learning phase; however, it requires the availability of good
learning databases, and it also makes system behavior less intelligible for monitoring
or debugging (the question of intelligibility will be addressed in chapter 4).

Evaluation.

Assessing the relevance of an active perception approach poses several problems.
When activity is only considered as a feature of the algorithm implementing a given
function – i.e. a “static” algorithm may also be able to implement it – performance
evaluation is not specific. This is typically the case for attentional algorithmic
approaches of images or videos.

Specific problems however arise when actions modify the physical relation of the sys-
tem with the world, when the perceptual system is embodied. As (Bajcsy et al., 2018)
state when evoking the usage of active cameras, "The design and implementation of
robotics systems which embody the basic prerequisites for Active Perception is still
hard. [...] There is no commercially available control of a camera system, namely of
the focus, aperture and field of view, though there are commercially available pan
and tilt controllers", and suggest to address this problem through a cyber-physical
system perspective (Sztipanovits et al., 2011; Alur, 2015).
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The difficulty of developing and fully evaluating real active perception systems can
be mitigated by the exploitation of simulated and controllable visual environments
which has been recently proposed (Ammirato et al., 2017; Ammirato et al., 2018; Xia
et al., 2018; Anderson et al., 2018b; Yan et al., 2018; Savva et al., 2017; Savva et al.,
2019; Brodeur et al., 2018) and applied to problems of embodied question answering
(Gordon et al., 2018; Das et al., 2018; Anderson et al., 2018c). The question remains
whether those environments can faithfully assess real system performance with
limited biases.

Towards autonomous perception

Activity is an essential feature of truly autonomous perceptual systems – this is one
of the main defended statement of this section. In the active perception approach,
inference is the result of an activity. However, perceptual system activity is itself
embedded into a more general environment, implying that the value or the quality
of what is inferred cannot be settled by the perceptual system itself, but is measured
by the degree of user/client requirement satisfaction, as already discussed in the
previous chapter.

We propose here directions to integrate also user requirements in the perceptual
system activity and argue for the development of a dialog between perceptual system
and user/client as a key issue.

Interacting with the user. In the active perception approach – at least the traditional
view put forward in (Bajcsy et al., 2018) – interaction with the world is purposive:
“An actively perceiving agent is one which dynamically determines the why of its
behavior and then controls at least one of the what, how, where and when for each
behavior”. However nothing is said about the origin of this why. The perceiving
agent has no ability to evaluate or discuss the usefulness or relevance of the goal
it pursues, whether it is really achievable or nonsense. The actively perceiving
agent is not autonomous, in the sense that it has no possibility to prescribe its own
objectives.

In the X pattern proposed above (Fig. 3.1), interaction has two faces: with the
world, as a source of sensory data, but also with a user/client for which the agent
produces meaning and possibly receives reward. One may ask: Why is autonomy
necessary for perceptual systems? Why should they be able to decide by themselves
what are the optimal criteria to optimize? The main reason is because an objective is
in fact always a trade-off between various features: available resources, energy, time,
beliefs confidence, measure quality, probability of false alarm vs. detection etc. A
user/client does not have the full knowledge of what is achievable by the perceptual
system and may decide impossible objectives to fulfill if not agreed by the perceptual
system.
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Dialogue. A key feature of an autonomous perceptual system is therefore the
capacity of interacting with the user/client. A spontaneous form of such an in-
teraction would be to initiate a dialog, i.e. a sequence of statements, questions,
answers, opinions, etc. But what would be the role of a dialog involving a perceptual
system?

The design of conversational agents is a well studied area, with three main types of
problems: question answering, chatbots and task-oriented dialogs (Chen et al., 2017;
Gao et al., 2019). They are not grounded on any information content that could
be provided by sensory data. General problems such as good question formulation
(Buck et al., 2018) or successful negotiation (Lewis et al., 2017) have been addressed
in this area.

The integration of language and sensory data, mostly visual, is an emerging topic
that has motivated recently a large quantity of work (Mogadala et al., 2019). One
of the first studied tasks has been Visual Question Answering (Antol et al., 2015),
where the main difficulty was to design algorithms able to answer free-form natural
language questions about image content. This elementary interaction has been
extended to full visual dialogs for image retrieval or object discovery tasks (De Vries
et al., 2017; Das et al., 2017c; Lu et al., 2017d; Jain et al., 2018; Zhuang et al.,
2018; Niu et al., 2019), image generation (Kim et al., 2017; Cheng et al., 2018),
navigation (Vries et al., 2018) or pricing (Parvaneh et al., 2019).

What is interesting with the idea of encapsulating active perception in a dialog is
that the involved agents ideally exploit awareness of each other skills, behavior and
objectives: the questioner (client), for instance, can adapt to what he/she knows
about the answerer (perceptual system) (Lee et al., 2018c), even if the objectives of
each agent are not the same.

There are several advantages of dialoguing: a first one is to avoid misunderstanding
about what can be achieved (function and performance), another is to improve the
confidence on perceptual outputs by sharing or comparing knowledge sources or
by using it as a justification (this question will be discussed more thoroughly in
chapter 4). In general, dialoguing offers a flexible format able to express finely tuned
requests and answers.

However, making use of a dialogue as an interactive interface implies specific ca-
pacities for a perceptual system: control of the semantic gap between language and
internal state, the ability of authorizing interruptions and generating anytime inter-
mediate results, reliable self-assessment and performance prediction etc., features
that are rather new to standard perceptual system design and that will be partly
discussed in chapter 5.
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3.2 Development
The previous section addressed the question of the overall functional architecture
of an APES and how it should operate and interact with the external world and,
possibly, with its user/client. In this section we discuss how to produce such a system,
how to develop it.

Perceptual systems, either adopting static I or dynamic X and Y patterns, are
purposive: they are specific to the world features from which they acquire sensory
data and to their user/client needs. They must be adapted to their environment.

Machine Learning (ML) is currently the favored approach to introduce specificity
and adaptation to many predictive processes, including perception, and is often
claimed to be one of the key technologies of the digital world transformation,
fostering automation in many application domains. The successes of deep learning
(Schmidhuber, 2015; Goodfellow et al., 2016) in computer vision, speech recognition
and natural language processing have made it unavoidable in contemporary artificial
intelligence. We briefly examine in this section how this approach works, why it is
successful but also point out several of its limitations.

Supervised learning: the unavoidable paradigm
Machine learning can be seen as the answer to the situation where the specification
of the target process cannot be expressed exhaustively by intension, i.e. by a series
of computable and verifiable properties, constraints or predicates, and can be substi-
tuted or completed by an extensive description, i.e. as a series of examples sampling
potential occurrences – the data.

One the most frequent ML use case is called supervised learning, where the desired
predictive process is described by samples of input/output pairs. Roughly speaking,
prediction in this framework is a form of statistical data interpolation, where concepts
of estimator bias, confidence intervals, tests, Bayesian vs. frequentist statistics
(Murphy, 2012), information theory (Cover and Thomas, 2012), etc. make sense,
but have been renewed to deal with more complex mathematical objects such as
Probably Approximately Correct (PAC) Learning (Valiant, 1984) or generalization
bounds (Vapnik, 2013) able to better analyze and control higher dimensional data.

Machine Learning for perceptual process development, typically for computer vision
or pattern recognition (Bishop, 2006), is not a new trend, but has been made
ubiquitous with the conjunction of large annotated database availability, cheap
massively parallel computational resources (GPU) and software frameworks easing
optimization, monitoring and design. It also has shown dramatic performance
improvement on standard problems such as image classification using complex and
highly dimensional parametric predictors.
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One of the most noticeable successes has been the rebirth of neural networks
with AlexNet (Krizhevsky et al., 2012; Alom et al., 2018), a deep convolutional
architecture that may be traced back to rather old previous work ((Fukushima,
1980), (LeCun et al., 1989)) but that outperformed current state of the art on the
ImageNet competition by more that 9% when submitted.

The main characteristics of a supervised learning approach for the design of per-
ceptual processes, especially when exploiting deep learning techniques, can be
summarized as follows:

• The availability of data is a critical step and a lot of effort has to be devoted to
their creation; performances are most of the time unsurpassable when such
database is available.

• Deep network architectures allow the unification of low and high level vision
(end-to-end approach) and are able to generate multi purpose unsupervised
informative data features as a by-product of the global optimization process.

• Design objectives shift to architecture innovation and optimization rather
than dedicated sensory data modeling. Many studies start with “generic”
convolutional architectures such as VGG (Simonyan and Zisserman, 2014),
Inception (Szegedy et al., 2015), DenseNet (Huang et al., 2017a), ResNet (He
et al., 2016) etc. for image classification, or Faster RCNN (Ren et al., 2015),
SSD (Liu et al., 2016b), FPN (Lin et al., 2017) for detection, and even address
now the question of architectural meta-learning with Neural Architecture
Search (NAS) (Elsken et al., 2019).

• Requirement assessment has been replaced by benchmarking on testing databases
using average metrics, confusing various evaluation concepts in a single statis-
tical framework.

Those features explain why supervised learning using deep learning techniques is a
key approach of modern artificial perceptual systems that has reshaped the R& D
agenda. There are still remaining issues to make perceptual tasks developed this way
really mature, safe and robust (this question will be addressed fully in chapter 5) for
real-world and critical applications. Several traditional elementary tasks are not yet
performing well – object detection, for instance (Liu et al., 2018), is still far from
human performance on standard images.

A first and well known issue is data dependence. When dealing with highly dimen-
sional sensors and contingent situations, sampling all possible occurrences to build
annotated data is impossible, limiting the validity of a pure data-driven approach.
We will examine possible answers to this problem in the next section.

A second issue is related to the integration of a perceptual function in a more global
system, for instance in a robot (Sünderhauf et al., 2018) or in an autonomous
vehicle, where perception is coupled with other objectives, and may benefit from
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or alter other tasks. This integration constraint also implies that other performance
measures or trade-offs should be involved, for example between accuracy, memory
and computational time in image classification (Howard et al., 2017) or detection
(Huang et al., 2017c).

The third issue is the real quality of sensory data features obtained after learning,
usually in the lower layers of a deep network, and their transferability to other tasks,
finely tuned or not. Several studies show that learned features usually improve
generalization (Yosinski et al., 2014) often with a specific local adaptation (Long
et al., 2015), but clear explanations and controls of this capacity are still missing.

Alleviating data dependency

Relying on data to develop a perceptual system may appear convenient and efficient,
but is precisely limited by the availability of data. Although several problems can
have access to large quantities – millions of images for face recognition for instance5

– current practical situations are more characterized by unevenness and small sample
size, at least at the scales that are required by modern deep networks to give reliable
results. Indeed, collecting, creating, formatting, storing, retrieving, annotating
data however are costly tasks and often not applicable in contexts where data are
structurally rare (medical (Ker et al., 2018), military, experimental sensors, etc.)
Several strategies have been proposed to address the question of small data samples
(Shu et al., 2018): we summarize and discuss them in the following.

Transferring information from a similar task

A first idea to compensate for the lack of data is to exploit other abundant sources that
are expected to be close to the target domain and provide useful information to help
solve the desired task using Transfer Learning techniques. “Given a source domain
DS = {XS ,P(XS)} with a corresponding source task TS = {YS , fS(·)} and a target
domain DT = {XT ,P(XT )} with a corresponding task TT = {YT , fT (·)}, transfer
learning is the process of improving the target predictive function fT : XT → YT by
using the related information from DS and TS , where DS 6= DT or TS 6= TT ” (Pan
and Yang, 2009; Weiss et al., 2016; Day and Khoshgoftaar, 2017).

Stated this way, transfer learning encompasses a large number of configurations:
if the source domain contains annotated data or not, if they are annotated with
the same set of labels, if source and target domains or tasks intersect, etc. Several
studied problems in this family have potentially clear practical impact:

Domain adaptation: DS 6= DT . (Csurka, 2017; Venkateswara et al., 2017) Transfer
occur when input spaces are different (XS 6= XT ) but share common features, or

5http://megaface.cs.washington.edu/
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when only their prior distributions differ (P(XS) 6= P(XT )). The question is to align
the two domains by globally compensating their shift (Courty et al., 2016), or to
prevent target and source predictor parameters from being too far from each other
in a joint optimization (Rozantsev et al., 2018), or to do both (Saito et al., 2018).

Semi-supervised learning: |YT | � |YS |. (Albalate and Minker, 2013; Zhu, 2005;
Chapelle et al., 2006; Zhu and Goldberg, 2009) In this setting, the target domain
has much fewer labeled data than the source domain: somehow, the target domain
gives the prior statistics, whereas the source gives its meaning, i.e. typical samples
of the relation between input sensory data and predicted label. This problem
is also sometimes called transductive learning when what is sought is the point-
wise prediction given the learning dataset (x 7→ y) and not the whole predicting
function on the potential target domain fT (·). The solution to the problem relies on
two assumptions: smoothness and low dimension of input data distribution, and
clusterable structure, i.e. the fact that decision boundaries lie in low density regions.
The proposed algorithms can be separated between generative, discriminative and
graph-based approaches, and have Deep Network extensions (Shi et al., 2018; Robert
et al., 2018; Iscen et al., 2019).

Weakly-supervised learning: YT 6= YS . (Deselaers et al., 2012; Oquab et al., 2015;
Papandreou et al., 2015; Bilen and Vedaldi, 2016; Durand et al., 2016; Durand et al.,
2017; Zhou, 2017; Zhou et al., 2018b; Hong et al., 2017) Available annotations
in the learning dataset may not meet the expressivity level required for the target
task: for example, the dataset may only contain global tags whereas the task is to
detect and locate the objects, or object locations may be encoded by point, scribble
or bounding boxes whereas pixel level labeling is expected as output. Transferring
relies on the assumption that the target output is the assembly of components that
can be identified by a weak annotation and an aggregating process.

The various strategies used to counterbalance the lack of annotated data by exploiting
a similar task rely on hypotheses about data distribution structure that are difficult
to both clearly identify and verify. Most of proposed methods are only evaluated
empirically by comparison with a completely supervised setting to assess their
potential, and often with negative conclusions: supervised learning usually performs
better, meaning that, when it is possible, it is often more fruitful to invest in data
rather than in algorithms.

Sharing features and representations across tasks

Another possibility to address the problem of data paucity is to consider from start
a broader set of objectives and to make the target task one of the elements that
shares components with the others. One tactic is to anticipate the exploitation of the
available data by extracting good features to easily solve the target task, often using
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another related data corpus. Typically, what is sought is a discriminating embedding
where decisions can be made simpler and reliable with few data, for example using
a nearest-neighbor approach or a simple linear classifier. This general scheme has
been addressed under different settings.

Representation learning.

Designing good “representations of the data that make it easier to extract useful
information when building classifiers or other predictors” (Bengio et al., 2013b) is a
(the?) fundamental activity of data-driven artificial intelligence. In modern machine
learning approaches, this activity takes the form of a data preprocessing, sometimes
called encoding or feature extractor, and fed to a further decision or predictive step.
These representations are expected to have some universal – they must be adapted to
the largest scope of input data – properties of smoothness, expressiveness, versatility,
intelligibility and efficiency. Good pretrained representations are expected to give
high performance with small data and has been proved to benefit large sample
problems (Sun et al., 2017).

The question of building good representations have been addressed in several
directions. A first one has been to identify the informative factors of variation
of input data, a problem that can be traced back to PCA or ICA, and provide a
disentangled representation (Locatello et al., 2019; Higgins et al., 2018; Mathieu
et al., 2019) able to reveal the underlying data structure.

Another more recent trend is to exploit the versatility of deep learning architectures
and optimizing schemes to solve multiple task problems (Liu et al., 2015; Yang and
Hospedales, 2016; Ruder, 2017) or learn a related task that is expected to provide a
useful transferable representation from a self-supervised learning step (Pathak et al.,
2016; Donahue et al., 2016; Jing and Tian, 2019).

In robotics, the idea of designing good representations has been studied mostly as a
consequence of building an environment description organized as affordances (Min et
al., 2016) or sensori-motor invariants, and often solved as a problem of developmental
learning (Sigaud and Droniou, 2015). Reward based environment exploration, either
coming from an external teacher (Ivaldi et al., 2013) or from internal regulation
(intrisic motivation or curiosity)(Pathak et al., 2017; Oudeyer and Kaplan, 2009;
Oudeyer, 2018) is a central learning principle of this family of approaches that put
the emphasis on structuring robot skills or goals (Laversanne-Finot et al., 2018;
Péré et al., 2018) rather than improving sensory data representation or processing,
although more computer vision oriented skills have been proposed to learn visual
saliency (Craye, 2017; Craye et al., 2018).

One of the reasons for the attractiveness of deep learning is a capacity to provide
easily transferable and versatile features in the first layers of a network. Those
quasi-universal representations are expected to have good but average performance
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for a large repertoire of tasks. This implies that to be really efficient, they need to
be adapted to the specific task: one classical technique is fine-tuning – a unsolved
question being to decide what should be considered plastic (Yosinski et al., 2014).
Another strategy is to complete the generic features by more specific parts (Rebuffi
et al., 2018; Bucher et al., 2018).

Meta-learning.

The idea of this family of approaches (Vanschoren, 2018) is to prepare representa-
tions in a previous global phase using a large database, so that learning with few
samples is made easy. Meta-learning is often presented as the problem of “learning to
learn” (Caruana, 1997; Wang and Hebert, 2016) and is one of the favorite paradigms
to solve one-shot or few-shot learning (Fei-Fei et al., 2006; Vinyals et al., 2016; Ren
et al., 2018; Rusu et al., 2019; Wang and Yao, 2019). A seminal meta-learning model
is MAML (Model Agnostic Meta Learning) (Finn et al., 2017; Antoniou et al., 2019)
that seeks good initialization parameters for further specific adaptation and exploits
two intricate stochastic gradient loops: one inner loop to locally adapt the param-
eters to a current few-shot virtual task, and an outer meta loop that updates the
initial parameters using accumulated gradients computed at the updated parameters
of the inner loop.

Incomplete cross-modal learning.

Data can be provided by several sources or modalities, in combination or indepen-
dently. One possibility to compensate for data paucity is to exploit correlations
between modalities and estimate missing data as a latent variable in the prediction
step. Zero-shot learning (Lampert et al., 2009; Lampert et al., 2014) is a specific
case of cross-modal learning for classification where the input modalities are images
and semantic class descriptions: “zero-shot” means that several classes are only
known from their description (unseen classes) and not by samples (seen classes).
Various learning configurations have been proposed: standard, where the problem is
to predict only unseen classes, generalized where input data may come from either
seen or unseen classes(Chao et al., 2016; Xian et al., 2018; Le Cacheux et al., 2019a;
Le Cacheux et al., 2019b), instance transductive where data from new classes are
available but without labels (Fu et al., 2014), and class tranductive when the whole
set of unseen class descriptions is know (see (Wang et al., 2019a) for a recent
comprehensive review).
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Metric learning for zero-shot classification (Bucher et al., 2016b; Bucher et al., 2016a)

Fig. 3.6: Improvement of attribute prediction consistency using metric-learning for
zero-shot classification.

One of the most practiced approach to solve zero-shot learning is to map
data and class descriptions – often represented as a series of attributes – in
a common embedding space where similarity measures become meaningful.
Once the embedding is set, inference can be done using a simple compatibility
function and an argmax operation (Akata et al., 2013). In his PhD thesis,
Maxime Bucher describes a metric learning formulation to improve attribute
prediction consistency (see Fig. 3.6). The idea was to introduce a loss able
to simultaneously characterize class prediction and data embedding in the
attribute space (Bucher et al., 2016b). An extension to this scheme was
proposed to deal with hard negative examples that are selected sequentially
according to a trade-off between data uncertainty and intra-class correlation
(Bucher et al., 2016a).

Generating new relevant data

Artificial generation is an obvious way to compensate for the lack of data. When
dealing with images or videos, a spontaneous idea is to make use of modern pro-
cedural rendering engines and models that are able to produce huge quantities of
photorealistic outputs in various configurations (Souza et al., 2017; Richter et al.,
2016; Müller et al., 2018). Artificial data generation potentially samples a huge
variety of situations and is expected to extend to a large usage domain.
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However, although often visually satisfying when involving sufficient computing
capacity and modeling endeavor, data produced this way are always biased, some-
times in a subtle way, bias that may be amplified when plug into a machine learning
process. In other words, algorithm that perform well on artificial data are not
guaranteed to have comparable performance on real data.

Another strategy to generate data is to exploit sampling based generative models,
where parameters have been learned from a representative database. The most
practiced approach exploits an adversarial min-max optimization on a deep neural
architecture and is currently referred to Generative Adversarial Network. Since the
first paper (Goodfellow et al., 2014a), a large volume of work has proposed several
alternative models and optimization schemes able to stabilize learning and increase
the dimension of generated data (Creswell et al., 2018; Pan et al., 2019; Wang et al.,
2019b; Hong et al., 2019).

The deep network framework allows flexible architectural design and combination,
and offers various ways to condition these data-driven generation capacities: as
image-to-image translation to achieve style transfer (Isola et al., 2017; Zhu et al.,
2017), from semantic maps to image or video (Wang et al., 2018d), from label to
image (Mirza and Osindero, 2014), from text to image (Reed et al., 2016; Zhang
et al., 2017a), from image and label to image (Wang et al., 2018c) etc. Conditional
generative models can be considered as a way to unify data-driven and procedural
generation to produce high quality data.

One possible usage of this generation capacity is to augment or transform available
data – for instance images obtained by procedural synthesis – to improve predictor
accuracy. Generative models have been applied to domain adaptation for semantic
segmentation (Murez et al., 2018; Vu et al., 2019), continual learning (Lesort et al.,
2018), gaze and pose estimation (Shrivastava et al., 2017), super-resolution for
object detection (Bai et al., 2018), 3D object recognition (Wu et al., 2016) etc.

Conditional generative models for zero-shot recognition (Bucher et al., 2017)

(2) AC-GAN

(4) Adversarial Auto-Encoder

(1) GMMN

(3) Denoising Auto-Encoder

FC + lrelu

FC + lrelu

FC + lrelu

FC + lrelu

FC + lrelu FC + lrelu

FC + lrelu

FC + lrelu

FC + lrelu

Fig. 3.7: Zero-shot learning using generated features. Unseen class data are condi-
tionally generated using one of the networks on the left, and combined
with seen data to learn a discriminating classifier.
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When addressing the problem of zero-shot learning, a simple idea is to
generate data as surrogate samples of the unseen classes and then apply a
standard discriminating classifier. The problem is therefore to build a data
generator that is able to produce data from a semantic class description, either
from a vector of attributes or from a word vector representation. It was found
more efficient to build directly discriminating features (penultimate layer of a
VGG or GoogLeNet) instead of images.

Several architectures have been tested, inspired by existing generators: a
generative moment matching network (Li et al., 2015) that exploits a Mean
Maximum Discrepancy criterion (Gretton et al., 2012), and three networks
using an adversarial optimization scheme: Wasserstein generative adversarial
network (Arjovsky et al., 2017), adversarial auto-encoder (Makhzani et al.,
2016) and denoising auto-encoder (Bengio et al., 2013a).

This simple scheme gave state of the art result on 5 databases (CUB, AwA,
SUN, Pascal & Yahoo and ImageNet) and demonstrated the power of gen-
erative models to solve both standard and generalized zero-shot learning
(Bucher et al., 2017).

Generative models have shown great promises as a main or supplementary tool to
produce missing data. However, it is often difficult to assess the intrinsic quality of
generated data. Data generators are not defect-free.

A first difficulty is the instability of training. In most of the schemes, there is little
guarantee that the finally converged state will allow complete and faithful sampling
of the original data. Phenomena of mode collapsing (Lala et al., 2018), i.e. the
fact that complete areas in the data space become inaccessible to generation, and
overfitting (Webster et al., 2019) are likely to happen. Several metrics besides simple
visual inspection have been proposed to evaluate generated data quality, but lack
clear validation (Borji, 2019a).

Hybridizing with models

Supervised learning is one of the most powerful paradigm to develop an artificial
perceptual capacity but relies on two fundamental hypotheses: the first one is that
it can be expressed as a function with meaningful and tractable means to compute
predictive error, the second one is that a large corpus of data is available to reach
reliable and controllable performance. When those two hypotheses are met – and
verifying that they are is another important question – any other type of approach
has difficulty to compete. This is however not often the case in practice.
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We have presented in the previous section various learning strategies to alleviate
data dependency in case of data paucity. Here we discuss how what is usually
called model-based approaches can be hybridized with machine learning to improve
performance.

Model-based approach for perception

Hybridizing data-driven and model-based concepts is a current concern of AI (see
for instance the ANITI project6) but not a new one. The idea of developing computa-
tional architectures integrating the symbolic and neural/subsymbolic levels (an old
expression that refers to data-driven machine learning), has been a constant question
since the rebirth of neural networks in the 80’s (McClelland and Rumelhart, 1987)
and has led to the development of hybrid neural systems, for instance (Bookman
and Sun, 1994; Wermter and Sun, 2000).

The expression “Model-based” potentially refers to many things: any formal activity
that requires a model, i.e. a set of extensive and intensive variables and their
relations that abstractly characterize an entity behavior or several of its features. In
the field of artificial intelligence (Russell and Norvig, 2016), it also usually refers
to the symbolic and logical approaches (Genesereth and Nilsson, 2012), sometimes
embedded in a probabilistic framework (Pearl, 1988) with key problems such as
knowledge representation, planning or reasoning.

More formally, when applied to perception, i.e. a process that produces signs or
measures related to the world, a model-based approach can be reduced to any
process that exploits the knowledge of two functions:

• A generative or direct model G : θ 7→ x that maps latent variables θ to
observation x;

• An inference, prediction or decision D : θ 7→ y that maps the latent variable θ
to the final output y, meaningful to the user/client.

The variables x,y, θ may be multi-dimensional, may have complex structure, and
are usually considered random.

The generative model is where knowledge stands: it postulates the existence of a
latent cause or condition θ that generates data using a known process G. A classical
model is a linear map x = AT · θ + η where η is a random noise, but more complex
generative models can be defined, using geometric and radiometric features for
instance (image synthesis), sample based generative networks, logical engines, etc.
In computer vision, geometric object recognition from a CAD model as has been
practiced since the beginning of computer vision (Mundy, 2006) and exemplified in

6“The ambition of the ANITI project is to develop a new generation of artificial intelligence called
hybrid AI, combining data-driven machine learning techniques with symbolic and formal methods
for expressing properties and constraints and carrying out logical reasoning.” https://aniti.univ-
toulouse.fr/
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various textbooks before the deep learning era (Faugeras, 1993; Forsyth and Ponce,
2002; Hartley and Zisserman, 2003; Szeliski, 2010).

The inference model produces the output expected by the user. It can be the whole
set of latent variables, a subset of it – in object recognition, the user may be only
interested in the object pose, not a representation of its texture – or a decision among
a set of hypotheses.

A critical step in a model-based approach, is to have access to this latent variable θ
knowing a direct model, to estimate it. If the mapping G is invertible (injective), one
solution is to apply an inversion process and use the result as input of the inference.
However, in many situations, because of the structure of the generation process
(think of object parts that are hidden by occlusion) or because of unknowns in the
model (e.g. illumination, noise, texture), the generative model cannot be inverted.
The question of estimation under reasonable hypotheses becomes central. When
the problem is embedded in a probabilistic setting, inversion and inference can be
joined in a single but compound process, exploiting optimal formulations such as
y = argmaxy′

∫
θ Pr(y′|θ) · Pr(θ|x).

Hybridization is still a challenging question, especially with the overwhelming
domination of deep learning and the temptation of instantiating complex function
with “end-to-end” supervised objectives that produces efficient solutions on many
problems. In the following, two different hybridization strategies are presented and
discussed: the integration of learned components in a core model-based engine, the
use of data-driven constraints or regularities in a model-based solver.

Learned components in models

A first simple idea to hybridize model-based and data-driven approaches is to
introduce learned components inside the direct model or inference functions, but
keeping a generative formal structure. Many “ancient” successful approaches for
visual object recognition (Grauman and Leibe, 2011) fall under this category. In
the Implicit Shape Model (Leibe et al., 2004), for instance, the relation between
local appearance and geometric pose is learned in a previous phase and used to
infer object localization through a voting scheme. Another famous example, the
Discriminating Part based Model (Felzenszwalb et al., 2009), exploits a geometrically
constrained local patch generative model for object detection, where parts and
geometric constraints are learned from an image database.

During their PhD, J. Guinet (Guinet, 2008) and C. Le Barz (Le Barz, 2015) have
exploited a hybrid scheme mixing learned components, mostly similarity measures,
and generative models (a geometry-based image formation and a temporal Hidden
Markov Model) for two different computer vision applications.
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Three-dimensional object re-identification (Guinet, 2008)

Fig. 3.8: A 3D CAD model is matched to images in order to register and rectify
patches which are later compared using a learned similarity measure. A
simple vote predicts whether the objects observed in the two images or
sequences are different or identical.

In his PhD thesis, Jonathan Guinet exploited a deformable CAD model to
predict object appearance observed in a given sequence to other viewing
conditions. The geometric model was used to extrapolate their aspect (Guinet
et al., 2007) and identify the object parts that could be commonly visible and
matched in two different poses for further appearance based comparison. The
learned part of the model was a similarity measure between local patches
(Fig. 3.8). This chain has been applied to 3D object re-identification in a visual
surveillance application where objects could be observed by two different
cameras.

Visual localization by image retrieval and temporal integration (Le Barz, 2015)
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Fig. 3.9: Similarity scores between observed and reference image sequences. The
similarity measure is learned off-line. A Hidden Markov Model is used to
filter the assignment matrix and globally improve localization.

Ego-localization is a fundamental function in robotics applications and can be
achieved by vision. The availability of geo-localized image data like Google
Street makes possible absolute localization by comparing current observation
and a database of such referenced images. In (Le Barz et al., 2014) it was
studied the possibility of temporally filtering local matching through a Hidden
Markov Model representing a priori motion – the direct model – to improve
global sequence matching between the whole observed video sequence and
the database (Fig. 3.9). The similarity measure depended on learned features
obtained through standard bag-of-words or adapted to the context through
metric-learning (Le Barz et al., 2015b; Le Barz et al., 2015a).

In several application contexts (medical imaging, remote sensing, intelligence, in-
dustrial vision, etc.), data are not that diverse due to the common nature of their
production (same sensor, same viewing conditions, same type of scene, etc.) The
annotation of few data is likely to be sufficient to sample with enough accuracy their
variability, given that relevant generative data models are available.

Under these hypotheses, we have studied two algorithmic scenarios of how a simple
annotation step of one or two images could be exploited for the detection of a not
too diverse class of objects in known contexts.

Light annotation for object detection

Fig. 3.10: Schema of the saliency detection chain combining multiple scale filters.

The first scenario addressed the problem of detecting objects in remote sensing
images using a probabilistic parametric model of object saliency (Borji, 2019b)
mixing scale and contrast features. It was studied during the PhD work of
Benjamin Francesconi (Chalmond et al., 2006). The model contained few
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parameters and can be learned by annotating less than 10 positive (object)
and negative (background) patches. The image features were Gabor filters at
several scales (Fig. 3.10), the role of the model being to weigh the correlation
between filter outputs and object scale.

Fig. 3.11: Moving object detection chain combining a direct motion compensation
model and semantic classification. Up left: original image. Up right:
optical flow magnitude after motion compensation. Down left: moving
object detection obtained by thresholding the optical flow. Notice that 3D
objects like trees have a motion magnitude similar to vehicles. Down right:
Moving object detection obtained by combining motion and semantic
classification.

The second scenario addressed the problem of detecting moving vehicles in
aerial videos. It was studied during the PhD work of Christophe Guilmart
(Guilmart et al., 2011). The underlying generative model exploited two
properties: that moving object have high values of residual optical flow
obtained after dominant affine motion compensation, and that vehicles drive
on road and follow its direction. Those two knowledge statement were
instantiated as a semantic segmentation algorithm combining optical flow
information and appearance features to produce vehicle/road/background
classes. The classification was learned from a single frame roughly annotated
in three classes.

Model as a learned constraint

The previous paragraph presented one type of hybridization consisting in introducing
learned components that, combined with the direct model, was exploited in the
inference step. Another strategy is to modify the direct model itself – or more
precisely its inversion – by learned features.

The fundamental idea is to add to the inversion, and possibly to the inference, a
constraint that helps disambiguate the set of potential output. It can be considered as
an Inverse Problem (Idier, 2013), where typical applications are image denoising or
reconstruction, tomography, super-resolution, optical flow, stereo-vision, etc. which
is “solved” as a global statistical inference from multiple observations that takes
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advantage of the hypothetical smoothness of the generative process, but controlled
by a learned regularization.

In low-level computer vision, numerous studies have exploited geometric constraints
as direct model (the projected 2D image motion between video frames can be
fully determined by the depth structure and camera motion) to learn to estimate
dense features (optical flow, depth maps) (Godard et al., 2017; Yin and Shi, 2018),
sometimes also mixing semantic information to add another stabilization constraint
(Chen et al., 2019).

Inverse problems can be solved by directly learning the inversion as a supervised
learning problem (Lucas et al., 2018) when data is available. Another strategy more
respectful of an inverse problem optimization formulation (argminθ ‖x − G(θ)‖ +
λφ(θ) where φ(θ) is a regularization function) is to add a learned regularized
function representing more accurate data prior (Lunz et al., 2018) or to mimic an
iterative optimization process as a neural architecture, typically a proximal operator
(Meinhardt et al., 2017; Rick Chang et al., 2017) or a truncated Neumann series
(Gilton et al., 2019). (Arridge et al., 2019) is a recent review about solving inverse
problems using data-driven models.

The expression of a data-driven learned constraint used in the prediction process,
either as a regularizer or as an operator in the iterative optimization process, encodes
knowledge in a numerical and rather opaque way. Hybridization with more explicit
knowledge representation has been proposed through Markov Logic Networks (MLN)
(Richardson and Domingos, 2006), a variant of conditional random fields (Sutton
and McCallum, 2012) which integrates logical predicate descriptions to specify in a
more meaningful way variable interactions.

Markov Logic Networks for tracklet association (Leung and Herbin, 2011)

Fig. 3.12: (Left) One example of a complex occlusion configuration that needs to
be handled to improve track continuity. (Right) Example of rules that
describe group configuration and tracklet status.

In applications of video-surveillance of crowded areas, multiple static and
dynamic occlusions between objects is frequent (Fig. 3.12 (Left)), and lowers
the performance of multi-target trackers: they often produce short and unre-
lated sequences, making the on-line analysis of videos unreliable. A posterior
processing is likely to enhance track quality. Tracklet association refers to the
joining of reliable track fragments to form longer, coherent tracks.
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In (Leung and Herbin, 2011), we have proposed to use Markov Logic Net-
works as a flexible way to introduce complex object configurations, typically
the notion of group, explicitly handling situations where a group is formed
or disperses (Fig. 3.12 (Right)). The weights of the MLN are learned using
a database of simulated tracklets sampling various configurations. Infer-
ence results can be represented by logical formulae and be interpreted more
easily.

When is hybridization useful?

There are several reasons to hybridize formal models with data-driven approaches.

A first reason is to compensate for the lack of data, the fuel of machine learning.
Models are used as knowledge representations able to provide good approximate
predictions that can be adjusted by empirical means. However, when large data
corpora are available, model-based approaches give in general no performance gain
over “pure” deep learning approaches, typically when accurate generative models
depend on many unknown parameters as it is the case for vision.

A second reason has to do with intelligibility. Because models instantiate a form of
declarative and shared knowledge, results can be interpreted, analyzed, evaluated
and controlled in the light of this knowledge, potentially resulting in a better
understanding of the perceptual process for instance by displaying intermediate
results on geometric patterns that can be visually checked. We will come back to
this issue in chapter 4.

A third reason is validity. When models have been legitimized by other means,
for instance when they conform to known physical laws or equations, perceptual
predictions may, in a way, be considered true. The idea of “physics-informed”
machine learning, for instance, is a recent trend that aims at “solving supervised
learning tasks respecting any given laws of physics described by general nonlinear
partial differential equations” (Raissi et al., 2019). Nonetheless, it seems difficult
to get rid of any type of empirical evaluation: models themselves are built on
hypotheses or initial values that must also be validated or checked.

A last reason to address hybridization is to use machine learning as a way to provide
expressive and practical representations that are physically meaningful and can be
used for further reasoning, i.e. as physical engines (Chang et al., 2016; Battaglia
et al., 2016). In these approaches, knowledge is given as a valued graph structure of
pairwise interacting variables (Sanchez-Gonzalez et al., 2018) where links encode
physical dynamics. The role of machine learning is to fill the corresponding graph
values.
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Collaborative development

Specification is the activity of identifying and describing in an exploitable way
what the perceptual system actually should do and under what constraints, i.e.
expressing the requirements it has to satisfy. Specification and development go hand
in hand: specification must have an idea of what is achievable, and development
must conform to the requirements.

In the X pattern proposed in Fig 3.1, the perceptual system interacts with the world
and potentially with a user/client when operating perception. But the user/client
may also have an influence in developing perceptual capacities, notably because it is
the main part concerned by their results.

Machine learning being one of the essential techniques used to develop a perceptual
capacity, the specification step, or at least one part of it, relies on providing good
annotations as examples of what the system should output7. We presented above
several learning approaches that could compensate for low annotation (see pg. 89).
But another possibility is to exploit a collaborative setting where both sides exchange
information about their states and wishes.

One can think of two ways to develop a collaborative specification.

The first one, commonly referenced as active learning, allows the perceptual system
to query annotations about data to the user. The provided annotation is expected
to be very impactful on system performance, and the global annotation process
should be ruled by a expected performance gain and annotation cost. Of course, the
activity of annotation itself can also be accelerated by proposing efficient interactive
softwares (Andriluka et al., 2018), but the question of what to annotate comes
first.

This problem has been addressed in machine learning literature for a long time
(Cohn et al., 1996), and applied to problems of classification (Joshi et al., 2009;
Jain and Kapoor, 2009; Tuia et al., 2009), image retrieval (Gosselin and Cord, 2008;
Wang and Hua, 2011), object detection (Brust et al., 2018), segmentation (Li et al.,
2011; Vezhnevets et al., 2012) and co-segmentation (Batra et al., 2011).

Although there are theoretical results about the number of data requiring annotation
to reach a given expected performance (Dasgupta, 2005), they are not really appli-
cable to large dimension problems (Ramirez-Loaiza et al., 2017). Most practicable
strategies exploit heuristics to improve confidence of decision (Settles, 2009), or
input domain coverage. (Fu et al., 2013) in a rather recent survey segments the
various approaches in two families: those that evaluate uncertainty locally under an
i.i.d. hypothesis, and those that exploit similarity between samples.

7We will discuss in chapter 5 the impact of specifying by examples on system performance assessment.
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The evolution of processing chains towards deep networks requires an adaptation of
the annotation query process, either by developing new ways to estimate uncertainty
(Wang et al., 2017; Gal et al., 2017; Beluch et al., 2018; Yoo and Kweon, 2019) or
by modifying the query process to handle subsets (Sener and Savarese, 2018).

The second type of collaborative specification assumes that the perceptual system
is able to output information assessing its current state of achievement, and that
the user from this information is able to modify the system in a way that satisfies
his/her/its needs. This setting puts the burden of development on the user, but is
only possible if the system prepares it by 1/ providing accurate and intelligible inner
representation and 2/ allowing effective action possibilities or “affordances” (Gibson,
2019; Norman, 2013). The question of intelligibility of the perceptual process
and identification of influential parameters will be discussed more thoroughly in
chapter 4.

Dynamics of development

It has been discussed in the previous section that an essential feature of autonomous
perceptual systems is their temporal dimension in operation. Temporality is also
constitutive of development – there is a before and an after learning – and often
modeled as an iterative, or at least sequential process. Temporality of development
can also be involved at a larger scale. Indeed, all situations and application contexts
cannot be foreseen during the initial design phase, and should be continuously
updated or learned to preserve or improve skills.

Besides the challenging scientific question, controlling and understanding long
temporal scale learning has obvious practical impact allowing to:

• Enlarge progressively competence, i.e. repertoire of tasks or skills.

• Improve performance with online integration of new information.

• Delay obsolescence of systems by easing maintenance and versioning.

• Integrate and adapt pre-learned components for which the learning database
is not available due to protection issues.

The idea of providing a system with never-ending (Mitchell et al., 2018) capacity
is an old objective of artificial intelligence, with the dreamed objective of reaching
the general adaptivity of human intelligence. It is technically addressed in artificial
intelligence under lifelong (Thrun and Mitchell, 1995; Chen and Liu, 2016), continual
(Zenke et al., 2017a) or incremental (Gepperth and Hammer, 2016) learning, with
no clear meaningful distinction between those expressions.

The idea of continuously enhancing by learning the capacity of a predictive system
has been formulated in various ways: by increasing the input domain extension,
by incrementally refining the output scope, or by augmenting the quantity of tasks
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that can be accomplished. (Hsu et al., 2018; Ven and Tolias, 2018; Ven and Tolias,
2019) discuss several scenarios for continual learning and try to better define their
functional differences, typically whether task id is given or not as input.

The ubiquity and efficiency of deep learning has rather recently reactivated the
question of lifelong learning and given rise to new research activity. (Parisi et al.,
2018) presents a recent survey on this domain and puts in correspondence natural
science and computing issues.

The major problem to solve is the fact that new information, data or tasks, may
interfere negatively with the previously reached level of competence, a phenomenon
usually denominated by catastropic forgetting (McCloskey and Cohen, 1989; French,
1999).

Proposals to address this question can be roughly divided in three categories:

Structural dynamics. The idea of this family of approaches is to increase the ex-
pressive capacity of the predictor by adding new architectural features, for example
new layers or neurons in a deep network (Rusu et al., 2016). Although simple in its
principle, this family has to deal with complexity and scalability issues.

Regularization. Another type of strategy against catastrophic forgetting is to protect
the old model by regularization, i.e. by preventing too much variation during model
update. This control of modification can be done very locally reasoning at the
weight level (Zenke et al., 2017a; Kirkpatrick et al., 2017) and can be interpreted
as a homeostatic variant of Hebb synaptic updating rule (Zenke et al., 2017b), or
resulting from a modified learning cost imposing an extra variational constraint, for
example using distillation (Hinton et al., 2015) between old and new task outputs
(Li and Hoiem, 2017).

Memory management. The last type of approaches introduces extra memory mod-
ules to store a summary of previous experience, inspired by the Complementary
Learning System hypothesis (McClelland et al., 1994) 8. The memory module can
be a simple fixed size rehearsal buffer which is updated with the data used for the
new problem, or a learned generative model (Shin et al., 2017; Lesort et al., 2018).
This type approach gives in general the best performance, especially compared to
regularization, but requires an extra component.

8“According to the theory, effective learning requires two complementary systems: one, located in
the neocortex, serves as the basis for the gradual acquisition of structured knowledge about the
environment, while the other, centered on the hippocampus, allows rapid learning of the specifics
of individual items and experiences.” (Kumaran et al., 2016)
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Several proposed models combine those three approaches: (Rebuffi et al., 2017;
Castro et al., 2018) use replay of stored data and distillation. (Rajasegaran et al.,
2019) mixes evolutionary architectural selection, example replay and distillation.

Although an old problem, the formal expression of continual or lifelong learning
problems is not fully settled, and has given rise of several studies promoting various
definitions and evaluation measures.

(Gepperth and Hammer, 2016) propose five challenges for incremental learning:
Online model parameter adaptation, Concept drift, Stability-plasticity dilemma,
Adaptive model complexity and meta-parameters, Efficient memory models. (Kemker
et al., 2018) propose a general framework for evaluating continual learning using
three tasks: Data Permutation Experiment, Incremental Class Learning and Multi-
Modal Learning, and apply it on five representative algorithms (Standard Multi-
Layer Perceptron, Elastic Weight Consolidation (Kirkpatrick et al., 2017), PathNet
(Fernando et al., 2017), two versions of GeppNet (Gepperth and Karaoguz, 2016),
and Fixed Expansion Layer (Coop et al., 2013)). (Lopez-Paz, 2017) defines two
metrics: Backward Transfer to measure forgetting of past learned tasks, and Forward
Transfer to measure the predictive capacity of old task to solve new ones. (Chaudhry
et al., 2018) introduces the idea of “intransigence” (inability to update the knowledge
to learn the new task), complementary to forgetting. (Díaz-Rodríguez et al., 2018)
adds complexity evaluation measures such as model size, storage and computational
efficiency. (Farquhar and Gal, 2018) identifies shortcomings and biases of current
evaluation protocols and proposes critical desiderata of good continual learning
methods. (Pfülb and Gepperth, 2019) describes a large-scale empirical study of
catastrophic forgetting.

Incremental learning of Visual Question Answering

Fig. 3.13: Comparison of incremental learning performance applied to VQA for
various tasks, with (right) and without (left) using a rehearsal buffer of
size 40000.
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In his ongoing PhD thesis Alexis Lechat (2018-2021), addresses the question
of continuously improving the capacity of a system able to answer questions
in free-form natural language about the visual content of images or scenes
(Visual Question Answering = VQA). This problem is complex since it re-
quires to incrementally increase output vocabulary (answer) and input task
repertoire (question).

A first study (Lechat et al., 2019) showed the importance of mastering the
imbalance between question semantic types (yes/no vs. what/where/who)
and the impact of task ordering during learning: certain tasks have very
forgetting effect, while others are able to benefit from previous learning. One
consequence of this first finding is that controlling and estimating input task
complexity, at semantic and visual levels, is a key to apply continual learning
on VQA.

3.3 Discussion: machine learning and
perceptual systems
The learning paradigm has two facets: from a natural science perspective, it is
another world for adaptation or acclimatization to environment; from an engineering
or computer science perspective, machine learning is a way to specify and design
algorithms when efficient, expressive and reliable models are lacking.

Perception, being a very complex faculty due to the high dimension of sensory data,
has been using for a rather long time machine learning techniques in association
with more analytical models (see the discussion about hybridization above). The
spectacular success and ease of use of deep learning techniques on fundamental per-
ceptual functions such as image classification or object recognition has considerably
biased the current research agenda: a large part of recent work has been to translate
old problems as a supervised learning formalism, usually in an end-to-end learning
approach, often if not always leading to a notable performance gain.

Deep supervised learning is indeed currently the paradigmatic design pattern of
ML and cannot be completely bypassed nowadays: besides its noticeable good
performance, one origin for this primacy is a clear problem expression as functional
optimization that makes proposed approaches easily comparable with the definition
of train, validation and test datasets. It also has practical and conceptual limitations,
however.

We have examined in a previous section its dependency on large corpus of annotated
data and presented several of the current directions to mitigate this constraint. In
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the same spirit, (Yuille and Liu, 2019) questions the relevance of a design process
relying on large data corpora solely: "it seems highly unlikely that methods like Deep
Nets, in their current forms, can deal with the combinatorial explosion. The datasets
may never be large enough to either train or test them. [..] Although Deep Nets will
surely be one part of the solution, we believe that we will also need complementary
approaches involving compositional principles and causal models that capture the
underlying structures of the data."

(Marcus, 2018) diagnoses other limitations of deep learning besides data hungriness:
limited capacity for transfer, no natural way to deal with hierarchical structure,
open-ended inference poor performance, not sufficiently transparent, not being
well integrated with prior knowledge, cannot inherently distinguish causation from
correlation, presumes a largely stable world in ways that may be problematic, often
cannot be fully trusted, is difficult to engineer with.

Another big issue is perceptual system versatility and scalability: in supervised
learning, there is only one goal-oriented optimized cost, sometimes compound
to deal with multi-task problems, but unique. Adding a new task to a learned
system is usually detrimental and produces catastrophic forgetting, inhibiting the
incremental extension of skill repertoire. This limitation favors the development
of task specification other than purely data-based, using maybe more symbolic
description (hybridization). Formulating interaction as a supervised problem is also
difficult, since the data exchanged between the system and its outside cannot be
considered identically and independently distributed.

Deep learning has proven effective on several problems, but its behavior is not well
understood, especially its good generalization capacity despite a number of parame-
ters sometimes larger than the learning samples (Poggio et al., 2017)(Kawaguchi
et al., 2017)(Zhang et al., 2016). Network architecture, optimization algorithm
and data distribution have a combined impact that is difficult to disentangle. A
growing number of studies have proposed approaches to extend generalization
bounds (Bartlett et al., 2019) (Arora et al., 2018) (Arora et al., 2019), to estimate
deep network expressivity (Gribonval et al., 2019) (Zarka et al., 2019), to decipher
the role and behavior of stochastic gradient descent optimization (Shwartz-Ziv and
Tishby, 2017)(Zou et al., 2018) and the impact of neural architecture to the geome-
try of the loss landscape (Nguyen, 2019). A global understanding of deep learning
behavior leading to its better control is still missing.

Fundamentally, the general question that should be addressed is whether an “every-
thing but data” approach is sufficient to specify, design and evaluate perceptual or
cognitive capacities. The limitations of supervised learning to implement desired
features of autonomous perceptual systems suggest that this is not the case, and that
other development strategies should complement or assist data-driven approaches.
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3.4 Research directions

In the previous chapter, it was proposed that an Autonomous PErceptual System
should have expressiveness, agency, cognitiveness and trustworthiness properties.
In its current state, deep supervised learning alone will have difficulties to provide
reliable solutions to implement them all, even if the flexibility of its formalism and
the availability of programming environments allow large inventiveness.

The reminder of this section presents several research directions that could contribute
to improve the design and development of APES’s.

Dynamics of versatile perceptual systems

If the right way to consider perception is as an Autonomous PErceptual System,
especially if versatility is the desired feature characterizing autonomy, several
issues regarding perceptual dynamics are worth being addressed. Three
research directions are proposed:

Structured task spaces

A key question is the capacity for a perceptual system to host and manage
multiple tasks with the level of performance required by the user/client. When
tasks are dynamic and involve interaction, which is an expected property to
reach autonomy, an important issue is to have access to efficient formal
structures able to describe and organize in a flexible way their from what
(input, resources and actions) and for what (goal, requirement and output)
features.

Designing systems that are able to manage multiple tasks is a rather new
concern in artificial perception, and have been mostly aimed at building
shared sensory data representations (Ruder, 2017; Kokkinos, 2017; Zamir et
al., 2018) or controlling negative interference between tasks during learning
using priorization (Guo et al., 2018a) or attentional mechanism (Maninis
et al., 2019).

A flexible structured task representation, i.e. with composition operations
combining elementary functional components, and handling deep network
formalism, is still to be proposed. Several studies have addressed the question
of better structuring subgoals by reinforcement learning (Nachum et al., 2018;
Nair and Finn, 2019) but to complete a single task. Maybe one direction could
be to acclimatize the formal representations developed for image understand-
ing ontologies (Town, 2006; Clouard et al., 2010). However, the difficulty
remains to combine these symbolic knowledge representations with machine
learning.
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Generalized attention

Attention, as a selection or modulation of resources, has become a rather
standard algorithmic ingredient in many processing chains (see pg 79). When
applied to natural cognition, the idea of attention can be extended to the gen-
eral management under constraint of resources such as memory, computing,
modality, etc. (see the discussion pg. 41).

Dynamic management of resources is a traditional topic of planning in artifi-
cial intelligence: several studies involve perception through the next best view
selection problem, for visual navigation or scene reconstruction (see the active
perception use cases pg. 75). The design of artificial computer game players
has also proposed rather global planning problems: (Oh et al., 2016) applies
reinforcement learning to “Control of memory, active perception, and action in
Minecraft”. However, all those studies concentrate on a single optimal objec-
tive, and have not addressed the question of a flexible and adaptive strategies
that may be able to reconfigure resource management policies conditionally
to a given task. Studying the conditions of a generalized attention could be
one path towards increasing the versatility of perceptual systems, i.e. their
capacity of efficiently completing tasks from a large repertoire.

Contextual and functional dynamics

The idea of context has been introduced in the field of artificial or natural
perception as a means of representing priors and constraints likely to limit
research spaces, and therefore to increase performance or simply feasibility
when the environment is complex, contains a large amount of interacting
entities, some of which potentially ambiguous when taken alone. Relying on
the right priors is therefore critical.

Active perception can be interpreted as implementing prior dynamics: the
Bayesian sequential decision of Eq. (3.5) is a simple way to update priors
when new data is available, the belief at time t − 1 acting as a prior to the
belief at time t; sequential hypothesis rejection (pg. 69) is a more drastic way
to concentrate priors.

Priors depend on the task to complete, on the nature of the environment and
on the history of interaction with the world. But dynamics can also operate at a
functional level. When interpreting dynamic scenes, the occurrence of certain
events may trigger different perceptual subgoals (switch from categorical to
fine-grained classification, from tracking to action recognition, etc.) or modify
the value of scene content (objects may become obstacle, people may turn
dangerous, etc.) and therefore task performance requirements or objectives.
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Autonomous PErceptual Systems have therefore to handle two intertwined dy-
namics: contextual and functional, where priors and subgoals jointly evolve to
complete a master task. Formalizing such a coupled dynamics for perception,
and developing algorithms able to implement it is a long time research objec-
tive. One possible direction could be to address the question by proposing an
online version of Neural Architecture Search (Elsken et al., 2019).

A remaining problem is that of evaluation of such perceptual dynamic systems,
due to the huge dimensions involved (input, inner states and trajectories in
those spaces). The very large parameter space of deep networks brings a new
type of complexity to master. This question will be discussed more precisely
in chapter 5.

Learning of perceptual dynamical systems

The fact that APES’s are temporal entities has an impact for their development.
The question of specifying, designing and controlling dynamical systems is a
standard issue in engineering and physics, where control goes hand in hand
with modeling. When perception is the target function, this collaboration is
more difficult, first because the dimensions of inputs, variables or state spaces
involved are often huge, but also because perception has to deal with two
external contingencies: the environment and the user/client. Two specific
issues regarding learning are discussed in the following.

Attention for learning vs. Learning attention

It has been argued previously that attention is a key operating feature of
perceptual systems. Deep network formalism has proposed several end-to-end
models that can be learned using stochastic gradient optimization schemes,
most of them implementing a soft version of attention (see a more detailed
presentation pg. 79).

Conversely, one can think of exploiting attention to improve learning efficiency:
exploiting a process that selects the good experience to integrate in a system
should be beneficial, the question being of course to define what it is to be
good for learning – selective attention can also act negatively (Schwartzstein,
2014).

Two research problems can be reinterpreted as “attention for learning”: the
first one is the well studied exploration/exploitation dilemma in reinforcement
learning (Ishii et al., 2002), where efficient exploration can be seen as a
process that selects the good actions to improve policy reliability. The second,
also well studied, is active learning (already discussed pg. 103), with its non
interactive hard example mining version (Bucher et al., 2016a; Shrivastava
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et al., 2016; Yuan et al., 2017; Smirnov et al., 2018), where learning is
improved by selecting the examples that may have the highest impact.

In natural cognitive systems, at least what is understood about their functional
structure, learning cannot be reduced to simply optimizing a deep network
structure, although complex, through a single optimizing cost. Learning
involves many cognitive components, typically various types of memories
(long term, working, episodic, verbal/visual etc.) and and raises the question
of their dynamic management. The massive corpus of findings and models
that have been proposed in the cognitive science literature is still waiting to
be exploited as a source of inspiration in artificial intelligence.

Learning to act vs. learning to interact

An important dimension of an APES is its dual interactive relation with an
external world and a user/client. The relation to the external world will be
assumed rather neutral: the perceptual system does not modify the latent,
possibly dynamic, structure of the world, only its ego-relation to it. In other
words, the external world is not causally modified by perception. This hypoth-
esis excludes object manipulation for instance that should be considered as
involving a bigger system.

However, the relation to the user/client is potentially more complex: both
parts may act, the perceptual system by providing answers, justifications
or requests, the user/client by expressing requirement, acknowledgement
and revision. We have already discussed the usefulness of developing an
interactive perception (pg. 81) with the key issue of establishing a dialogue
between the two parts. The question is to develop such a capacity by learning
(Das et al., 2017b).

One possibility to address this problem, besides defining the nature and
meaning of dialogue, is to consider the perceptual system and user/client as
two different communicating agents (Foerster et al., 2016) that optimize a
common utility, but with different action repertoires and vocabularies. The
literature on multi-agent learning is large, and mostly relies on reinforcement
learning approaches (Shoham et al., 2007; Bu et al., 2008) and game theory
(Lanctot et al., 2017). However, most of the studies have focused on how
to define local policies of cooperative multiple but simple agents where the
number of agents is large but the vocabulary of actions small.

In the case of a interactive perceptual system, the two agents involved (the
APES itself and the user/client) are potentially complex and do not play
the same role: they can be simultaneously or sequentially cooperative or
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competitive, leading to complex and unstable situations (Lowe et al., 2017).
User and perceptual system may not work with the same time scale, and
require fine modeling features such as asynchronous event and interruption
handling.

Joint dynamics of operation and development

The traditional engineering workflow makes a clear separation between de-
velopment and operation, the former being usually divided in several steps,
for example by applying a V-Model. However, in natural perceptual systems,
the development phase cannot be definitely ended: although some critical
and final learning occurs in the early days of life (see the vision deprivation
experiments of (Wiesel and Hubel, 1963)), brain plasticity allows lifelong
adaptation and new skill acquisition.

Another argument that favors intrication of development and operation is the
fact that operation is a complete experience that can be valued and exploited
by an (unsupervised) adaptation rule, for instance through Hebb’s associative
law (Sejnowski and Tesauro, 1989): actual operation may have an influence
to future operations.

A first attempt to combine operation and development is to address the ques-
tion of lifelong learning, as already briefly discussed pg. 104. The proposed
approaches follow a “learn then run” scheme, although repetitively, and show
how difficult it is to counter catastrophic forgetting effects in current algo-
rithms.

A question thus is to unify operation and development rather than separating
them as two distinct phases, and go beyond the traditional train/test design
pattern of supervised learning. One can think of several research directions to
address this question:

Online interactive learning

One simple possibility is to sequentially integrate the flow of interaction with
the system outside to progressively improve. This requires that the outside
shares with the perceptual system some utility value of the produced outputs
as one of the interactive content, for instance a desired output or any other
type of reward.

In principle, online learning has access to a sample i.i.d. generator, and could
be better than batch learning that shuffles the same dataset. Efficient gradient
based optimization algorithms have been proposed for low to medium state
spaces (Duchi and Singer, 2009; Mairal, 2015) but the question of their

3.4 Research directions 113



extension to deep networks, where batch learning is usually found to be more
efficient in practice, remains.

Another difficulty is to guarantee that interaction yields faithful sampling.
Indeed, inputs from system outside may be intentionally poisoned (Steinhardt
et al., 2017; Wang and Chaudhuri, 2018), leading to undesirable states (see
what happened for instance to the chatbot Tay a that was driven to output
offensive statements).

Curriculum and developmental learning

A second idea is to embed perceptual skill development in a more global and
autonomous behavior learning objective, inspired by the study of children
learning where a “self-generated learning curriculum allows infants to avoid
spending too much time on goals that are either too easy or too difficult,
focusing on goals of the right level of complexity at the right time” (Forestier
et al., 2017).

Progressive skill development can be addressed in two directions. The first
one, more formal, aims at organizing adaptation steps by controlling data
complexity (Bengio et al., 2009; Weinshall and Amir, 2018; Guo et al., 2018c)
and can be interpreted as a regularization strategy in a supervised learning
setting. The second one, more directly inspired by natural system development
(Oudeyer, 2018), organizes experience as a series of subgoals that can be
explored and learned by the system in a unsupervised way using a curiosity
principle modeled as intrinsic motivation (Péré et al., 2018; Laversanne-Finot
et al., 2018).

One limitation of curiosity-driven approaches when applied to APES design is
that they fundamentally follow an O pattern: agents are only concerned by
themselves and with their relation to an external, potentially complex, world.
However, as we have argued, an APES is better understood as instantiating
an X pattern, with an essential role of the user/client that issues queries
and receives outputs from the system. The question of faithfully taking into
account such an actor that can take several roles (prescriber, teacher, helper,
etc.) in a developmental learning framework is open.

Online heterogeneous learning

Supervised learning is often considered as being the most efficient type of
learning protocol. However, in practice or in real life, the conditions required
to its use are rarely met, and other types of “suboptimal” settings have been
proposed: transfer, zero/one shot, multi-task, semi/self/weakly supervised,
etc. All those variants have given birth to very specialized subfields, each
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with their own protocols and corresponding benchmarks. The question of
exploiting them jointly and dealing efficiently with the possible heterogeneity
of available data, in format, quantity, annotation level, completeness, has not
been clearly addressed.

The concepts of never-ending (Mitchell et al., 2018) or lifelong learning (Chen
and Liu, 2016) emphasize the non regressive acquisition of new skills in a
system (see short presentation pg. 104), with the underlying hypothesis that
coupling and sharing knowledge and representations between a large number
of tasks will give a collective benefit to all of them: scaling could be the
solution, not the problem. These problem, however, do not formally address
the simplest question of progressively and opportunistically improving the
performance of a given set of tasks using any type of available data, knowledge
or experience.

Finding formalism and algorithms to solve online heterogeneous learning has
two potential impacts: the first obvious one is practical – having a system or an
algorithm able to profitably absorb any piece of information, whatever its type,
could be useful from an engineering point of view; the second is scientific,
with the underlying hypothesis that addressing and solving heterogeneity in
learning will give insights on what generic structures or processes, if any, are
involved, and perhaps understand why machine learning is still not able to
fruitfully exploit and integrate any new experience as humans do easily most
of the time.

ahttps://futureoflife.org/2016/03/27/tay-the-racist-chatbot-who-is-responsible-when-a-
machine-learns-to-be-evil
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4INTELLIGIBILITY —
Communicating with APES

The advent of machine learning methods in computer vision has dramatically in-
creased empirical performance. Deep learning is the last instance of this trend, and
there is no sign that this vogue is likely to disappear at short notice.

Deep networks are notoriously difficult to interpret: without any tools, the mechani-
cal steps generating the predictions are too complex or numerous to be understood
by humans.

To allow interaction with perceptual systems, especially if they ambition some kind
of autonomy, predictions must be made in a understandable way. This chapter
examines how intelligibility can be obtained from APES, and why “Opening the
black-boxes of AI” 1 is a major concern of current research.

4.1 Problem formulation

Why intelligibility?

There are several reasons to improve intelligibility of perceptual systems.

1. A first reason is epistemological. Opacity is an obstacle to reliable science.
A normal scientist is frustrated when not being able to understand what is
behind the phenomena he/she is studying. Doshi-Velez and Kim argue for
instance that "the need for interpretability stems from an incompleteness in
the problem formalization, creating a fundamental barrier to optimization and
evaluation" (Doshi-Velez and Kim, 2017). In other terms, low intelligibility is
synonymous of epistemological weakness.

2. A second reason is efficient engineering. An improved intelligibility makes the
development of artificial perceptual systems easier to debug, control and tune.

3. A third reason is trustworthiness. By giving some insights of what they are
doing, and how, APES’s are likely to be adopted more easily and be trusted.

4. A fourth reason is validation. Explanations can be used as element of proof
demonstrating that APES’s behavior conforms to what is expected or is anoma-
lous.

1This is an explicit subtitle of the Villani report (Villani, 2018).

117



In those four reasons we see that humans, which are of course the key recipient
of interpretable representations, can play different roles: scientist, engineer, end-
user or authority, determining the type of intelligibility sought out. The nature of
explanation recipient, however, is seldom identified as a key feature in the literature,
with the exception of (Tomsett et al., 2018; Preece et al., 2018) or (Bhatt et al.,
2019) that question the current state of the art on explainability regarding their
usability for stakeholders — organizations and end-users 2.

We will see in the next section that the search for intelligibility can also be of interest
to automated processes.

What is meant by intelligibility?

The idea of intelligibility has given rise to a huge amount of work recently, mostly
motivated by the need to better analyze deep network behaviors, to open their black
box (Shwartz-Ziv and Tishby, 2017), and extract from their distributed complexity
meaningful events and structures.

In the artificial intelligence domain, the vocabulary and concepts connected to
intelligibility issues is somehow imprecise. The literature speaks of explanation, justi-
fication, transparency, interpretability, comprehension, introspection, and associates
requirements of faithfulness, reliability, accountability, fairness, completeness... Sev-
eral recent papers have tried to clarify those expressions (Lipton, 2016; Doshi-Velez
and Kim, 2017; Doran et al., 2017; Biran and Cotton, 2017; Hohman et al., 2018;
Gilpin et al., 2018; Guidotti et al., 2018; Ras et al., 2018; Arrieta et al., 2019).

The first concept closely related to intelligibility is interpretability. Most authors
define interpretability as the ability to explain or to present in understandable terms to
a human (Doshi-Velez and Kim, 2017).

(Gilpin et al., 2018) make a clear distinction between interpretability and explain-
ability, and consider interpretability, along with completeness, as two concurrent
ways to evaluate the quality of explanations. "For a system to be interpretable, it
must produce descriptions that are simple enough for a person to understand using a
vocabulary that is meaningful to the user", whereas "an explanation is more complete
when it allows the behavior of the system to be anticipated in more situations."
They conclude that "the challenge facing explainable AI is in creating explanations
that are both complete and interpretable: it is difficult to achieve interpretability
and completeness simultaneously. The most accurate explanations are not easily
interpretable to people; and conversely the most interpretable descriptions often
do not provide predictive power." One may prefer to speak of predictive capacity

2“We found that while ML engineers are increasingly using explainability techniques as sanity checks
during the development process, there are still significant limitations to current techniques that
prevent their use to directly inform end-users.”
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rather than completeness here. (Dhurandhar et al., 2017) proposes to give a formal
definition of interpretability as a quantity of information.

Associating understandability and interpretability to explainability does not make
things much clearer. What is however certain is that it necessarily brings human in
the picture, and involves therefore human centered issues addressed for instance
in cognitive science, human computer interaction (HCI) or visual analytics. (Abdul
et al., 2018) (also extensively cited in (Gilpin et al., 2018)) describes through a com-
prehensive literature analysis directions for HCI studies towards usable intelligibility
(see Fig.4.1). Their conclusion, from an HCI perspective, is that "While researchers
in the ML and AI communities are working on making their algorithms explainable,
their focus is not on usable, practical and effective transparency that works for and
benefits people."

Fig. 4.1: Citation network of 12,412 papers citing 289 core papers on explanations, and
identification of topics by clustering. From (Abdul et al., 2018)

As we see from this short discussion, final and shared definitions of the concepts
connected to intelligibility still require work and good argumentation. To unify the
various ideas connected to explainability that has been discussed in the literature, I –
temporarily – propose the following definitions:

Intelligibility: the capacity of a system to produce explanations.

Explanation: a formal representation that causally depends on the system behavior
features (processing and internal states), is interpretable by humans, and
contains predictive information.
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4.2 State of the art
The idea of providing prediction processes with better intelligibility is not new,
and is central to the symbolic approach of AI, sometimes named GOFAI (Good Old
Fashioned AI) (Boden, 2014), which promotes explicit step by step understanding
and reasoning in its models. The involvement of machine learning techniques
in modern methods and the opacity of the resulting prediction processes have
encouraged the development of mixed approaches that could benefit jointly from
both worlds.

The existence of several recent workshops and tutorials in major AI conferences
show that this rather new field of research is creating a research community. A
prominent initiative is the XAI program from the DARPA (Gunning, 2017), initiated
in 2016, with the final objective of bringing to the user a series of elements that
would make him trust and efficiently exploit the predictions made by the automated
system (Fig.4.2a). The declared objective of this project is to move the trade off
between process interpretability and performance (Fig.4.2b).
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Fig. 4.2: Two slides from the presentation of the XAI project from the DARPA. From (Gun-
ning, 2017).

In the following, I propose to categorize the work on explainability according to the
type of object explained: the whole function prediction or the prediction itself. We
describe in the following the main approaches that have been developed in these two
categories. Note that other recent surveys have proposed different segmentations:

Explanations of the prediction function
The objective of the first category is to interpret the whole prediction process as
it should work when applied to a variety of potential inputs (the how), either by
giving an interpretable account of its functional structure, or by assigning a role to
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its functional building blocks. We focus here on the deep network approach which
concentrates most of the activity on this problem.

Understanding prediction structure

Explainability in this family of works is to provide hints of what deep networks
actually do, what is the role and impact of the functional architecture. One way to
answer that question is to exhibit meaningful local or global objectives, typically
measures or optimization criteria, that would be able to reproduce the same behavior
if applied.

Understanding the prediction function behavior can be traced back to the first studies
on multi layer neural networks that interpreted the role of a two layer network as
principal component extractor (Baldi and Hornik, 1989) or discriminant projections
(Gallinari et al., 1991; Bishop, 1995).

A modern version of this theoretical statistical interpretation trend is the work on
what has been called the Information Bottleneck method that gives an interpretation
of deep network architectures in the plane of the Mutual Information values, i.e.
a two dimension plot of the mutual information between the layer and the input
and output variables, as a compressor/predictor structure (Tishby et al., 2000;
Tishby and Zaslavsky, 2015). (Shwartz-Ziv and Tishby, 2017) also describes the
dynamics of learning as a two phase sequence: fast empirical error minimization
followed by slow representation compression. These results were presented as a
general understanding of deep network behavior but were found not so general or
hard to verify empirically by several authors (Saxe et al., 2018; Amjad and Geiger,
2019). Much work is still to be done to fully understand the behavior of the deep
learning approach: the links between architecture, optimization and generalization
capacity.

Visualizing feature extraction

One of the big advantages of deep network models is to delegate the design of
the feature extraction step – which had been one major research activity in data
science, pattern recognition or signal and image processing before the DL Era – to
the learning phase.

When dealing with computer vision applications, a natural objective is to find ways
to visualize the features encoded in the network, and ideally assign a semantic
role to its various components. Probably one of the first studies trying to visually
explain features produced by a learned network is the work of Linsker in natural
visual system modeling who showed that local image filters emerged in a network
with lateral connections learned with an Infomax criterion (Linsker, 1986a; Linsker,
1986b).
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Fig. 4.3: Iconic visualization of the features exploited in a deep network to process a given
image (Zeiler and Fergus, 2014).

The visual features in deep network architectures can be more complex. Fig. 4.3
shows an example of what one would expect from a representation explaining the
role of its various layers, starting from local filters to more sophisticated pattern
detectors.

In this kind of explainability, the idea of feature visualization is not to show a
representation of the detector parameters themselves – they have no meaningful
structure – but an iconic and interpretable pattern xF representing the feature F , i.e.
an image or a patch, that will be correlated with its presence in the original input
data. Those visualizations can be obtained by optimization, using for instance a
criterion with a classical form:

xF = argmax
x∈X

SF (θ,x) + λR(x) (4.1)

where SF is a cost function depending on the network parameters θ, i.e. its architec-
ture and weights, and R is a regularizer used to generate naturally looking images,
often a L2 norm. A typical cost function is the activation of a neuron interpreted
as detector for feature F , a whole channel layer activation field, or a classification
output score. The set of possible image based feature representations X may be a
given database or an abstract image space. In the first case, the criterion 4.1 is used
as a data selector and does not require regularization, in the second case, the image
feature xF is virtual, giving imaginary non realistic representations (Simonyan et al.,
2013; Nguyen et al., 2016).

Explanations of the prediction

The goal of the second category is to provide justifications of the prediction made (the
why), i.e. hints of how the system is working when applied to a given input: they can
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be textual (caption), graphical (activity patterns), perceptual (image samples). They
can be local (a hidden layer) or global (an activity graph). They can be exact, i.e. the
prediction is causally related to their value, the justification being an understandable
representation, or proximal, i.e. the prediction can be approximately produced by
the justification.

Visual feature contributions

The criterion of Eq. 4.1 is expected to be worth for a whole network. Identifying the
features responding to a given input image x0 is also an interesting explanation. A
first possibility is to extend the previous criterion as:

xF (x0) = argmax
x∈X

SF (θ,x; x0) + λR(x) (4.2)

where the cost function SF now depends on an input image. A typical cost is a
Euclidean distance in some representation space ‖Φ(x)− Φ(x0)‖2, where Φ maps
the data to some feature space (Mahendran and Vedaldi, 2015). Another possibility
is to invert the features to generate data according to the network, by deconvolution
(Zeiler and Fergus, 2014) or by learning (Dosovitskiy and Brox, 2016). The criterion
of Eq. 4.2 can also be used to identify the examples from a given data distribution
(the x0) that respond best, and can be structured according to network topology
(Zeiler and Fergus, 2014) or classification objectives (Wei et al., 2015). Fig.4.4
shows examples of generated data and associated samples from an image database
that respond best/worst to a given feature identified as a network layer. In a recent
paper, (Bau et al., 2019) interpret Generative Adversarial Network by identifying
the role of several units in the network in the generative process.

Fig. 4.4: Examples of a generated data and responding input data for a given neuron of a
deep network. Worst (left) and best(right) responding data (Olah et al., 2017).

General reviews of visualization issues of deep network has been proposed recently.
(Olah et al., 2017) discusses optimization issues and the role of regularization and
diversity generation to represent features by image data. (Seifert et al., 2017)
is another recent survey on deep network visualization. (Hohman et al., 2018)
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analyzes literature analysis on deep network visual explanations from a user oriented
perspective.

Approximating the prediction process

To reveal the behavior of prediction process implemented by complex architectures
such as deep networks or random forests, a solution proposed by several authors
is to approximate it by a simpler model, such as a linear regression, an additive
process, a decision tree or a falling rule list (Wang and Rudin, 2015), which is
expected to be directly understandable, at least by AI specialists, or if a person can
step meaningfully through the algorithm in reasonable time (Lipton, 2016). This
approximation is expected to be local, i.e. example dependent.

A typical example of this family is the approach proposed in (Ribeiro et al., 2016)
which describes a "Local interpretable model-agnostic explanations" (LIME) for each
prediction of a data x in the form of a simple model g∗(x) that locally fits the pre-
diction function f using a complexity penalty R(g) and optimizes an approximation
loss L:

g∗(x) = argmin
g∈G

L(f, g, πx) + λR(g). (4.3)

Locality of explanation is achieved by generating data in the vicinity of input data x
through a sampling function πx, typically a Gaussian distribution centered at x. We
see that criterion 4.3 instantiates the interpretability/accuracy tradeoff through this
local approximation paradigm.

Most of the other approaches in this family of explanation generators follow the
same paradigm. (Zhang et al., 2018d) describe an interpretable proxy (a decision
tree) able to explain the logic of each prediction of a pretrained convolutional
neural networks. (Lundberg and Lee, 2017) presents a unified framework for
interpreting predictions that assigns to each feature an importance value for a
particular prediction expressed as an additive model. (Chen et al., 2018) presents
feature selector trained to maximize the mutual information between selected
features and the output. (Adler et al., 2018) describe an approach that probe
black-box models and study the extent to which existing models take advantage of
particular features in the data set. (Lakkaraju et al., 2017b) learns a small number
of compact decision sets each of which approximate the behavior of the black box
model in identified regions of the feature space. (Zhang et al., 2018e) learns how to
make each filter represent a specific object part in the input data given a pre-trained
convolutional network.

Influential input dimensions

When the prediction approximation relies on sparse inputs, the resulting explanation
can be used to indirectly select the most influential features. A rather large body of
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research has been proposed recently to specifically identify those features, mostly
in the visual domain, without necessarily relying on a low-complexity surrogate
approximating prediction. This instance based feature selection process, which can
also be considered as a saliency detection, is often called attribution in literature.

Most of the approaches define analytical tools that are able to reveal in a given class of
predictors those impacting features given the architecture. Fig. 4.5 shows an example
of such techniques used to decompose the prediction in terms of contributions of
individual input variables, i.e. image pixels, by back-propagating operations. The
selected variables may be gathered in the form of a saliency or heat map. Fig. 4.6
shows another flow diagram that generate heatmaps by backpropagating gradients
from the main chain.

Fig. 4.5: Layer-Wise Relevance Propagation approach used to quantify the contribution
of feed-forward neural network components to the prediction (Montavon et al.,
2017). The heatmapping site provides several on-line demonstrations.

As recently discussed and unified in (Ancona et al., 2018), attribution methods
(Goyal et al., 2016; Shrikumar et al., 2017; Simonyan et al., 2013; Selvaraju et al.,
2017; Rajani and Mooney, 2017; Sundararajan et al., 2017; Montavon et al., 2018),
rely on a kind of sensitivity analysis of how input data propagates, and exploits
combinations of gradients relative to input features to quantify their contribution to
the prediction. This type of visual explanation has been applied to various types of
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Fig. 4.6: Grad-cam approach that generates heatmaps correlated with prediction (Selvaraju
et al., 2017). From http://gradcam.cloudcv.org/

image based tasks: classification, captioning or visual question answering, and also
in natural language processing (Arras et al., 2017).

One problem with feature based explanations such as saliency maps is that it is not
clear whether they can be really trusted. The spectacular demonstration of similarly
visual examples fed to a deep network and producing completely different outputs –
adversarial examples – shows that the non linear processes involved in deep networks
may generate very complex behaviors that are not visually explainable. Adversarial
attacks can target feature based justifications as shown in (Xu et al., 2018).

Textual justifications

An alternative to analyzing the inner behavior of the prediction chain is to generate
complementary textual justifications that may give hints about the reason why the
system produces the current prediction.

(Hendricks et al., 2016) and (Guo et al., 2018b) generate captions that are expected
to be more discriminant that general captions for fine-grained classification problems
(CUB database). (Li et al., 2018) propose a specific database to learn explanations
for VQA problems, and a baseline algorithm. (Park et al., 2016; Park et al., 2018)
associate textual and visual saliency explanations on VQA tasks.

Textual justifications are potentially very flexible representations, and may carry a
lot of information: they however heavily rely on user linguistics ability and general
knowledge to interpret it, which may be the source of ambiguity and misunder-
standing. This also makes difficult the quantitative evaluation of justifications: the
standard metrics used in computational linguistics to compare texts (Spice (Ander-
son et al., 2016), Bleu (Papineni et al., 2002), Rouge (Lin, 2004), Meteor (Banerjee
and Lavie, 2005), Cider (Vedantam et al., 2015)) are not designed to compare
explanatory capacity.
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A second limitation of these approaches, which all claim that they can be helpful to
debug the operational prediction process, is that they rely on a learned correlation
with the actual output. Used as a diagnostic tool, these explanations may not fulfill
their objective because they may also introduce measurement noise: when using it
as an explanation tool for diagnosis, for instance, it becomes difficult to say who is
wrong – the prediction process or the explanation. This problem can be amplified
when the explanation itself is learned: the bias of the main operational chain may
be propagated to the explanation generation process and lead to good justification
of wrong prediction with good faith.

Interpretability by design

Rather than providing supplementary explanations that are expected to give informa-
tion about the main opaque process behavior but with no warranty that it faithfully
catches critical aspects of its behavior, an alternative is to design the predictor to
be causally dependent on some interpretable representations, partly or fully. We
describe in the following three different directions to do so.

Attentional mechanisms

Several approaches extract saliency maps as a byproduct of their main attentional
based processing flow that may reveal regions of the input space that contribute
preferably to the prediction, especially on captioning or VQA tasks (Zhu et al., 2016;
Xu and Saenko, 2016; Ben-younes et al., 2017). (Trott et al., 2018) describe a
process able to answer to "how-many" type questions that grounds discrete counts
in the image. However, the main objective of these maps is usually restricted to an
illustration of attention and not of explainability which is not evaluated as such.

A few studies however address more explicitly interpretability issues. (Liu et al.,
2017; Das et al., 2017a) try to improve attentional maps in a captioning process
with the objective of making model behavior more human-like, and therefore more
interpretable. (Xu et al., 2018) show that attention, bounding box localization, and
compositional internal structures are vulnerable to adversarial attacks for captioning
and VQA tasks, limiting the reliability of explanations generated as attentional
maps.

Reasoning

Attention emphasizes what features are important for prediction, but not how to
actually make this prediction. Reasoning is one possible functional strategy which
relies on a sequential or branching process where each functional step, belonging to
a given repertoire, is expected to be interpretable.
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Several studies have recently addressed the problem of visual reasoning for scene
understanding. (Johnson et al., 2017b) learn a program generator that can be
applied to the image to provide the answer. (Hu et al., 2017) generate a concrete
network architecture, and then execute the assembled neural module network
to output an answer for visual question answering. (Ilievski and Feng, 2017)
build reasoning models that combine modules specialized to elementary visual and
linguistics tasks. (Mascharka et al., 2018) define a program generator where each
visual module is associated with a visual justification (saliency maps), combining
reasoning and attention.

All those studies make use of the CLEVR dataset (Johnson et al., 2017a) which
has been specifically designed to evaluate reasoning through visual question an-
swering tasks, contains 700K of generated data (image, question, answer) and
associated functional programs able to answer questions by an explicit visual reason-
ing (Fig. 4.7). Several studies have proposed solutions to question answering on this
dataset (Perez et al., 2017) without generating an interpretable program, losing the
intelligibility capacity of explicit reasoning approaches.

Fig. 4.7: Left: Shapes, attributes, and spatial relationships. Center: Examples of questions
and their associated functional programs. Right: Repertoire of basic functions
used to build questions (Johnson et al., 2017a).

Causal interpretable inner states

The last strategy to make prediction interpretable by design is to force the processing
pipeline to host an intelligible intermediate surrogate state that causes the prediction.
Interpretability may take various forms, but the important point is to make the
prediction dependent on this intermediate representation, preventing the explanation
from being uncorrelated with prediction accuracy.
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Semantic bottleneck (Bucher et al., 2018)

a man that is on a tennis court 

with a racquet

q1: can you see his racquet? 

q2: what color is it?      

q3: can you see the ball?              

q4: is the ball yellow?                   

q5: is he about to serve the ball?                   

q6: is it  time?

q7: is it indoors?                 

q8: is the picture bright?                   

q9: any other people?                   

q10: can you see the net?

a1: yes          

a2: not sure, but it 's a wilson racket 

a3: yes it 's in his hand

a4: yes

a5: maybe                   

a6: i don't think so               

a7: can't tell                 

a8: yes                   

a9: no                   

a10: no 

Semantic bottleneck
Captioning

Questions Generation

Visual Question Answering

Semantic Image Encoder

Retrieval

Classification

person,

sports ball,

tennis racket

Fig. 4.8: Illustration of the semantic bottleneck approach which enforces a process-
ing chain to generate a textual causal inner representation.

In (Bucher et al., 2018) we proposed a semantic bottleneck approach that
provides a directly interpretable representation that forces the prediction
process itself to be interpretable in some way, since it causally relies on
this intermediate semantic representation. The textual representation is
generated using a combination of image-to-text algorithms (captioning, dialog
generation), adapted to the target task (multi-label classification or content
based retrieval), and is evaluated as a support for failure prognostic.

Uncertainty expression

The prediction process may be uncertain due to incomplete knowledge or ambiguous
input. Providing hints of the information quality is an important aspect of reliable
interaction with APES. How to represent, to manipulate and to exploit uncertainty
is an old question of artificial intelligence, which has given rise to an extensive
literature, with various competing frameworks (probability, Bayesian modeling, pos-
sibility theory, fuzzy logic, Dempster-Shafer evidence theory, etc.) (Zio and Pedroni,
2013). Intelligibility of uncertainty may be required at two levels: during inference –
how combine inner uncertain representations to produce accurate prediction in an
interpretable way – and in the prediction representation – how describe and quantify
output hypothesis distribution in an understandable form.

4.2 State of the art 129



Hierarchical multi-label annotations (Tousch et al., 2008; Tousch, 2010)

Fig. 4.9: Illustration of the semantic annotation approach expressing prediction as a
list of multi-labels scored by a confidence value.

Anne-Marie Tousch in her thesis Tousch, 2010 proposed an algorithm able
to produce multi-faceted predictions, i.e. assembling multiple independent
semantic view points on the same data, and described a method for evaluating
such an algorithm. The starting point was a semantic lattice defining all possi-
ble coherent object descriptions through inheritance and exclusion relations.
This domain knowledge was used in a learning process which outputs a set of
coherent explanations of the image valued by their confidence value (Fig. 4.9).
The first contribution was to design this method for multiple complexity level
image description. A secondary focus was to develop rigorous evaluation
standards for this computer vision task, i.e. able to measure the trade-off
between semantic expressiveness and accuracy.

Other approaches not for perceptual tasks

Several other lines of research have investigated the general design of interpretable
models, but applied to small dimension data: rule sets (Lakkaraju et al., 2017b;
Wang et al., 2017), rule lists (Wang and Rudin, 2015; Yang et al., 2017; Angelino
et al., 2017), scoring systems (Zeng et al., 2017), case based reasoning (Bichindaritz
and Marling, 2006; Richter and Weber, 2016), hybrid models (Wang, 2018). How
they can be applied on high dimensional perceptual data is not obvious.

An unsolved issue: the evaluation of interpretability

The question of clearly evaluating the quality or usability of explanations remains
an active and ill posed problem given the variety of so-called explanations, the
vagueness of their objective – what they represent, who is going to use them, for
what purpose. Several recent reviews argue for the necessity of defining clearer
metrics and objectives (Arrieta et al., 2019; Mohseni et al., 2018; Carvalho et al.,
2019).
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Indeed, the state-of-the-art about the evaluation of explainability, as found in pub-
lished studies, is mostly from qualitative arguments on selected examples. (Samek
et al., 2017) presented a comparative method based on randomly perturbing the
input image and measuring the impact on a heat map explanation. (Kindermans
et al., 2016) studied the influence of noise in the explanation process and uses it to
visually compare several heatmap based explanations on MNIST classification.

Several studies provide theoretical elements. (Kindermans et al., 2017) question
the stability of saliency based visual explanations by showing that a simple constant
shift may lead to uninterpretable representations. (Montavon et al., 2018) propose
to quantify explanation quality by measuring two desirable features: continuity
and selectivity of the input dimensions involved in the explanation representation.
(Gilpin et al., 2018) discuss four different types of evaluation based on various trade-
off points between completeness and interpretability of explanation and explanation
objective.

A few studies define quantitative metrics that can be automatically computed given
an augmented ground truth. (Zhang et al., 2017b) and (Bau et al., 2017) describe
geometric metrics to assess the quality of the visual explanation with respect to
landmarks or objects in the image. (Ancona et al., 2018) propose a quantitative
but comparative evaluation metric based on computing the correlation between
attribution score and random input perturbation.

Very few studies however explicitly address user-centered evaluation(Hoffman et al.,
2018) for perceptual functions. (Selvaraju et al., 2017) experimentally evaluated
the grad-CAM visual explanation approach on two problems (class discrimination
information and trust on the explanation) using Amazon Mechanical Turk (AMT)
and compare it to three other baselines (Fig. 4.10).

Fig. 4.10: Example of an experimental evaluation of a visual explanation. User was asked
to predict the class given the explanation (left) or compare the reliability of two
prediction processes from their visual attribution (right). (Selvaraju et al., 2017).

An evaluation protocol should clarify what quality is expected to be improved by
explanations and for whom. Evaluation of explainability should therefore depend
on the four potential types of potential explanation users defined previously:
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• A scientist will expect that explanations will make her/him understand better
the laws or rules underlying perceptual systems. The benefit of exploiting
explanations for scientific discovery is person history dependent and makes
the evaluation of their generic capacity difficult and even not meaningful.

• An engineer will expect that they will help her/him increase the accuracy and
efficiency of a given system. A simple evaluation would be to compare the
capacity of several types of explanations to tune or debug better given the same
input data. (Nushi et al., 2017) propose a human-in-the-loop methodology
to predict which fixes in a machine learning based system are most likely to
improve its behavior.

• An authority will mostly exploit explanations as arguments demonstrating that
the system behavior is extensively good: explanations should therefore aim at
identifying operating domain boundaries, and be evaluated according to their
capacity to express domain coverage or sensible situations.

• An end-user will expect that explanations will give her/him enough reliable
information to trust predictions made by the system. A good way to measure
this trust is to quantify the capacity to predict bad behavior from explanations,
with or without human-in-the-loop. (Zhang et al., 2014) describe a general
framework to learn how to detect failure of various vision tasks (segmentation,
zero-shot learning, vanishing point estimation). (Bansal et al., 2014) learn an
attribute description of failure cases given a trained visual classification system
and uses it to anticipate prediction failure. (Nushi et al., 2018) describe a
set of hybrid human-in-the loop and machine learning methods that facilitate
the process of describing and explaining failures in machine learning systems
through performance views explaining under which circumstances the system
is most likely to err.

Note that (Mohseni et al., 2018) proposes another segmentation of potential users
of explainability (machine learning experts, data experts, and AI novices) that can
be crossed or completed with the above categories.

One example of user-centered evaluation of explainability has been proposed in the
PhD Thesis of Maxime Bucher.
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Failure prediction through semantic bottleneck analysis (Bucher et al., 2018)

Fig. 4.11: Interface used to evaluate the capacity of the semantic bottleneck to
predict prediction failure for a multi label classification task. Users were
asked to anticipate labels that may be missed (False Negative) or falsely
detected (False Positive) by the prediction chain based on the image and
the semantic bottleneck.

In our semantic bottleneck approach, we evaluated through a dedicated in-
terface (Fig. 4.11) the capacity of the textual representation to anticipate
bad behavior, i.e. to detect potential wrong predictions. The interpretabil-
ity capacity of the provided explanation is measured by the performance
increment when rejected either the whole data, or only the identified label
when computing accuracy. User performance is also compared with a learned
automatic failure predictor exploiting the same input data. On a experiment
involving 1000 images, we showed that human subjects were able to identify
half of the failures with a precision of approximately 60% using the semantic
bottleneck representation, whereas the automatic algorithm detected around
40% of failures with a precision of 50%.

4.3 Research directions

The question of making prediction more understandable is in several respects an old
and a new problem. Old because artificial intelligence, at least its symbolic tradition,
makes explicit modeling of intelligent processes a key objective. New because recent
successes relying on deep neural networks which are opaque in practice due to their
complexity require new explanatory and analytical tools to really understand their
behavior, in both testing and training phases.
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Several questions need to be clarified:

What is actually explained? Recent literature, as shown, investigates multiple
paths but with no clear common objective of what is the object of explanations.
Do explanations have to identify the effective informative features or do they
have to describe how prediction is built from data? Should they justify, i.e. be
coherent with, normal behavior, or should they be used to detect bad behavior?

For whom? Explanations will serve different purposes when targeted to a scientist,
an engineer, an end-user or an authority. For each of them, the usefulness of
the explanation will be different, and should be evaluated accordingly.

How? What is the best way to provide an explanation? As a symbol, a text, an
image? What causal relation between the explanation and what it is expected
to explain?

For what purpose? The goal of explanations is to provide meaningful understand-
ing of system behavior, but may also be used as an information element for
decision or action: control, tuning, approval, etc.

I propose to address those issues with the following research actions:

Clarification of the intelligibility objectives

The problem of explanation is a longstanding research issue in humanities
and social science. (Miller, 2017) argues that the field of explainable artificial
intelligence should build on this existing body of works to remove the AI
specialist bias, and proposes a preliminary categorization. This first study
should be completed, and extended.

One possible research direction, for instance, is to consider an explanation as
a sign, and analyze the various explanatory schemes and objectives using tools
of semiotics (Chandler, 2007). Signs, as discussed in chapter 2, are one of the
main perceptual output types able to refer to the external world in a triadic
relation involving a user; explanations as signs refer instead to the internal
state of the perceptual system with some respect.

This type of research is typically a multi-disciplinary action, and should involve
researchers from several fields: artificial intelligence, philosophy, psychology,
and cognitive science.

User centered design

Interpretability design and evaluation

The final recipient of an explanation is a human, which as we have seen
may play various roles (scientist, engineer, end-user, authority). This implies
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that interpretability should be designed and evaluated from a user center
perspective.

A first trend of research, as exemplified by (Olah et al., 2018) which present
rather spectacular interfaces oriented to deep network interpretation, is to
build efficient and usable interfaces able to reveal prediction process behavior
for various types of users. This means that explainability solutions should
include issues and findings from Human Computer Interaction (Abdul et al.,
2018) domain.

A correlated action to make progress on these questions is to build shared
and accepted benchmarks and protocols. This is a difficult question since user
centered evaluation is not a well established routine in artificial intelligence
research, except in specialized sub-field such as crowdsourcing.

Good and validated interpretability will come from multi disciplinary stud-
ies.

“Monitor, Fix and Evaluate”: fast collaborative design of perceptual
systems

Specifying and designing a perceptual system for a given application context,
and assessing its performance, is a tedious work, event with the availability of
unifying programming framework such as TensorFlow or Pytorch. Meaningful
explanations that reveal the reasons for success or failure of a given system
state could therefore be helpful.

Various types of explanations could be used as answers to design oriented
questions like: What is the current system state? Where to act? What is the
impact of action? and initiate a collaboration between user/client and system
to improve performance interactively.

Monitoring the system state has been the main purpose of proposed explan-
ability studies until now, however not with the purpose of actually exploiting
them for action, to provide affordances (Norman, 2013). Several works have
addressed the question of identifying critical input units of a deep network
and use them for data generation (Bau et al., 2017; Bau et al., 2018). Other
works act on several features of a system to evaluate their generalization
(Morcos et al., 2018) or selectivity (Zhou et al., 2018a) properties. (Dalvi
et al., 2019) describes a toolkit for analyzing individual neurons impact for
natural language processing functions.
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However, what is still lacking is an integrated user oriented strategy exploiting
explanations or various visualizations of inner states and action capacities to
improve design cycle.

Text as pivot computational representation

Designing good representations is often the key issue of artificial intelligence,
although several researchers, as we have seen, have proposed to eliminate
them. What is expected from such formal objects is expressiveness – the
capacity to stand for a diversity of objects or references – and computability –
the ability to support various types of formal operations, transformations and
mappings.

A naive statement could assert that natural language, and its textual encoding,
could be such a good representation. Fig. 4.12 illustrates various usages:
human interaction, image or world description, as knowledge representa-
tion, digital encoding, etc. and shows how text can serve as an intermediate
between those usages.

Fig. 4.12: Various usages of text as representation.

Research associating sensory data, especially image or video, and text have
flourished with the rise of deep learning, mostly as multi-modal integration,
with functionalities such as captioning, question answering, alignment or
grounding, data generation, etc.a (Mogadala et al., 2019; Guo et al., 2019;
Baltrušaitis et al., 2018). Many approaches have proposed efficient algorithms
to achieve mappings or fusion between modalities: the “semantic gap” has
never been so narrow.

A different usage of language in the perspective of giving some autonomy to a
perceptual system is to rule its interaction content with the user/client (see
the discussion about interactive perception pg. 81): a text can express several
dimensions of the perceptual output, typically the outer world content, but
also a self-assessment of its production, a justification, a level of uncertainty
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(“The animal on the sofa is a cat because it has fur, whiskers and is sleeping,
but it can also be a small dog”). It can also be used in a dialogue to settle and
negotiate the perceptual task assigned to the system.

Our first work (Bucher et al., 2018) on constraining the prediction process to
host a semantic bottleneck was a preliminary proof-of-concept on two visual
tasks (content-based image retrieval and multi-label classification) which
requires further investigations. Several semantic problems have not been
fully resolved, both in terms of reference to the input data – what kind of
information it represents – and to the downstream prediction process – how
is the information used.

Using an intermediate textual representation is very flexible, but the nature of
what it expresses requires a better specification. One question is to study how
the semantic bottleneck vocabulary can be adapted to account for potentially
multiple and miscellaneous visual prediction tasks such as retrieval, classifica-
tion, captioning, event detection, ego-localization, navigation, and how such
representations can be used generically to anticipate behavioral problems.

ahttps://github.com/pliang279/awesome-multimodal-ml
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5SAFETY – Trusting APES

Artificial intelligence is predicted to invade our day-life, at home or at work, and
there is a legitimate concern about knowing what it is actually doing, controlling
how it is working, verifying that it is doing well, in order to safely use it.

The idea of a safe AI, and the way to achieve it, has become a issue by itself
either from a technical or from a social perspective (future jobs, biases in decision
making (Osoba and Welser IV, 2017)), most of the discussions being driven by
three topics: ethical issues of general AI, security of personal data and autonomous
driving. Safety of AI is however a beginning research area, but a real concern
of the scientific community1, probably because until recently the performance of
autonomous decision making systems prevented them from being actually used,
except in a very restricted situations. The integration of machine learning in the
design process adds another dimension to control.

This section focuses on how safety is to be considered for APES – i.e. for autonomous
or adaptive systems able to produce some information about the environment from
sensors – what has been achieved, and what are the future directions of research
with the underlying goal of providing a clear framework for their certification or
normalization,2 the definition of protocols for design and testing to deal both
confidently and efficiently with those complex objects, i.e. towards a “grown-up”
perception.

5.1 Problem formulation
Asserting that an artificial system is safe can be done along two lines of thought:
either by proving it, typically through formal verification, or by convincing users,
authorities, patients, media, etc. through evaluation, design protocol and analytic
tools that it can be relied on. In practice, a formal proof of all the use cases exploiting
complex structures such as perceptual systems is not achievable, and is de facto
transformed into an ancillary objective of a more global picture.

To clarify what is expected to be safe, a first task is to be able to state what the
purpose of the system is, and under what conditions it is supposed to be used. We
therefore start by examining a specific operating domain, where safety issues have
some content, in order to derive more generic problems.

1For instance, the IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems that seeks
to “advance a public discussion about how we can establish ethical and social implementations for
intelligent and autonomous systems and technologies, aligning them to defined values and ethical
principles that prioritize human well-being in a given cultural context.” Also, the Villani report
(Villani, 2018) clearly discusses ethical issues and societal impact of artificial intelligence.

2https://marketing.afnor.org/livre-blanc/intelligence-artificielle
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Avionic safety as a reference domain

Aircraft design and operation is a domain where safety and certification has a long
history and a formatted practice, and where sensors – often simple detectors or
probes – are generally involved with software components. Other domains such as
chemical processes, food, medical devices have also developed safety approaches, but
non concerned with perceptual issues. Two other application domains, automotive
industry (Janai et al., 2017; Salay and Czarnecki, 2018) and medical diagnosis may
also be interested in having safe perceptual components, but have not yet developed
a comparable framework.

This paragraph briefly describes the main tools and protocols proposed for avionics
software safety.

Fig. 5.1: Set of documents and logical relations between them as used for software certifi-
cation in avionics.

Avionics software safety is mostly grounded in the definition of good practices for
software design, development and integration agreed among administrations and
industry. Fig. 5.1 shows the various documents and standards implied and their
conceptual relations.

One central reference document is the DO-178C, Software Considerations in Airborne
Systems and Equipment Certification (RTCA, 2011) which defines the "acceptable
means, but not the only means, for showing compliance with the applicable air-
worthiness regulations for the software aspects of airborne systems and equipment
certification" (US Federal Aviation Administration).
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It distinguishes Reliability – i.e. the system does what it is supposed to do (no failures)
– from Safety3 – the system does not do what it is not supposed to do (no hazards).
From a software production point of view, reliability is obtained by tracing each
requirement to its implementing code and verification, with no missing functionality,
whereas for safety, the objective is to trace back each piece of code to a requirement,
guaranteeing no additional functionality, or "dead code".

Requirements are organized according to a hierarchy of Design Assurance Levels
(DAL) for each software component. Each DAL targets a specific failure effect level
(Catastrophic, Hazardous, Major, Minor, No Effect) and specifies a corresponding
series of objectives to be met (between 0 to 71, see Tab. 5.1) according to the failure
effect level, establishing the rigor necessary to demonstrate their compliance with
safety goals.

Tab. 5.1: Failure effects and acceptable occurrence rates.

Level Failure effect Objectives Failure Rate Examples
A Catastrophic 71 10−9/hour Flight surface controls,

engine controls, etc.
B Hazardous 69 10−7/hour Primary Flight Displays,

Cabin Pressurization,
etc.

C Major 62 10−5/hour Flight Management
Systems, COMM, NAV,
DATALINK,etc.

D Minor 26 10−3/hour Transponders, cabin
lighting, etc.

E No Effect 0 n/a In-flight entertainment,
satellite phone, etc.

The DO-178C document describes a series of recommendations to assert safety of
avionic software, and is completed by more specific guidelines. The ARP4754A
Guidelines for Development of Civil Aircraft and Systems (SAE, 2010) (Fig 5.2)
targets the software development process.

The ARP4761 Guidelines and Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipment (SAE, 1996) defines a series of actions and
processes for using common modeling techniques to assess the safety of a system.
Functional Hazard Assessment/Analysis (FHA) is a key process whose objective is to
identify all the risks that a system may encounter, their causes, and consequences.
The steps to fulfill this process are the following:

1. Identification of the operational context where the system evolves.

3The term safety is often used without making a clear distinction between the two. We will introduce
later more precise issues aiming at making system safer and more reliable, and use the term safety
in the broad sense.
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Fig. 5.2: Processes used to implement the safety guidelines for software certification.

2. Identification of potential hazards and the severity of their consequences.

3. Definition of corrective actions.

4. Verification of completeness of the resulted list of failure conditions.

5. Preliminary indications for the system architecture in order to provide mitiga-
tion means.

and results in a summarizing spreadsheet (Fig. 5.3).

These documents and processes to guide and assess safety are essentially code
development oriented: their motivation is that every line of code be directly traceable
to a requirement and a test routine, and that no extraneous code outside of this
process be included in the build.

The next paragraph examines whether this formal approach is applicable to artificial
perceptual systems, and what it may actually guarantee.

Specificity of perceptual systems
Addressing safety for perceptual systems is a rather new concern. There are of
course related software issues, since until now artificial perception is essentially
implemented on a computer linked to an electronic sensor. However, the main
scientific question to address, and hence the major potential cause of failure if not
answered satisfactorily, is to describe the way perception does what it does, how it
works, not how it is implemented on a computer.
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Fig. 5.3: Functional Hazard Assessment example for a Deceleration on the Ground function.

A way to point out where the safety issue critically lies for artificial perception
compared to software production, is to use the three independent levels of analysis
of information processing system as proposed by Marr (Marr, 1982): computational,
algorithmic and hardware (Tab. 5.2).

Tab. 5.2: The three levels at which any machine carrying out an information processing
task must be understood (Marr, 1982).

Computational theory Representation and al-
gorithm

Hardware implemen-
tation

What is the goal of the
computation – the prob-
lem it solves, the func-
tion it implements – why
is it appropriate, and
what is the logic of the
strategy by which it can
be carried out?

How can this computa-
tional theory be imple-
mented? In particular,
what is the representa-
tion for the input and
output, and what is the
algorithm for the trans-
formation?

How can the represen-
tation and algorithm be
realized physically? On
what machine or substra-
tum?

These three levels were primarily thought to be applied on formal models of natural
vision, although Marr’s work was clearly influenced by computing aspects, and had
a huge impact on artificial vision models (the International Conference on Computer
Vision awards a Marr Prize Paper every two years). (Peebles and Cooper, 2015)
discusses the legacy of Marr’s levels in cognitive science.

When dealing with computer vision, it would be useful to add also an intermediate
software level between algorithmic and hardware to take into account the way
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algorithms are coded and formally described in a program, and in a way that is not
bound to a specific physical implementation.

As an illustrative example, let’s take the simple boundary detection function in an
image. The computational level can be simply defined as detecting the relevant
contours of an image, i.e. provide a map encoding the probability that there is a
contour at a given pixel. The algorithm is the way pixel values are exploited to
provide this map: given the complexity of the problem, there is no single way to
compute it, and a huge number of algorithms have been proposed in the literature.
Fig. 5.4 shows several examples of boundary detection outputs on the same image.
One can observe that for the same function, various algorithms give various results,
and behave differently on the same input: the first algorithm usually gives more
details than the second one, and is scored positively for the first image, but negatively
for the second, when compared to the target “ideal” map.

Fig. 5.4: Examples of boundary detection results for two algorithms. First column is the
original image, second column is the ideal boundary map defined by several users,
third column is a result from the best algorithm in average, fourth column is the
second best. From the Berkeley Segmentation Dataset and Benchmark

Expressed in a safety-like vocabulary, one can state that the first algorithm of Fig. 5.4
fails on the second image (too many noisy contours), and the second algorithm fails
on the first image (not enough details) because they are not consistent with the
desired output defining the computational level.

By generalizing this idea, a way to assert that an information processing system is
safe is to ensure that the three representation levels (or four when adding software)
are consistent, in a sense that must be agreed upon and made specific to each couple
of levels; another way to put it is to state that a system will fail when there exists
some inconsistency between the levels.
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When it comes to artificial perception, the main safety problem is not to assess that
the software is developed according to safe guidelines and standards, but rather to
state if the underlying perceptual function can actually be implemented through
calculation. One can interpret the goal of most of the studies produced in the field
of artificial perception as trying to make the first two levels consistent: designing
algorithms able to reliably implement the function defined at the computation
level (detect relevant boundaries, classify and localize objects, track objects, answer
questions about visual content...) The way the algorithm is defined can exploit any
available means: a learning dataset, a knowledge base, an optimal cost functions,
noise or uncertainty models. . . , but is expected to produce results close to what the
computational level specifies.

The software production protocols and standards for avionics do not address any
algorithmic issue, i.e. they do not question the capacity of an automatic calculation
to realize the function. The three last levels (algorithm, software, hardware) may be
consistent, but may result in a faulty system: one may rigorously code an algorithm,
compile and operate it on a given architecture, but if the algorithm doesn’t solve
reliably the computational problem (e.g. detect an obstacle), it may generate critical
hazards.

The consistency of the three or four levels should be addressed globally: software and
hardware levels, for instance, may also impose several constraints on the algorithm
structure or family due to their own requirements (no randomness, single precision
calculation, computation load, bounded stopping time, budgeted memory etc.)
Algorithm state of the art may also restrain the functional requirements and the
expected operating domain: why target a given function if there is no algorithm
available able to implement it?

Ensuring the global consistency of the three (or four) description levels for perceptual
systems, autonomous or not, is a difficult task, and cannot be solved using the
protocols and formalism practiced for software certification. The next section
examines how this issue can be addressed using a data driven perspective.

Data driven safety assessment
Datasets are now crucial components of artificial intelligence and almost manda-
tory to computer vision. They are of course a key ingredient of machine learning
techniques, but are also used to empirically evaluate the performance of algorithms,
i.e. to statistically estimate their errors. Those two usages – learning and error
estimation – are common practice in machine learning where it is customary to
separate learning and test sets, sometimes in a virtual way for cross validation.

The idea that failure results from an inconsistency between the computational and
the algorithmic levels leads to three different problems when expressing require-
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ments through datasets: function output description, operating domain coverage
and evaluation of the operating discrepancy between function and algorithm.

Dataset to describe function output

In perceptual systems, except for very simple and restricted input spaces, pure
analytical expressions of the computational level are in general not accessible. In
most cases, the function is only accessible through samples of the joint distribution
of inputs and outputs {(Xi,Yi)}Ni=1, i.e. as a test set if we use machine learning
vocabulary. The question now translates into finding the right ways to obtain these
samples, the input and output pairs.

In most of the datasets containing real data, not simulations, the expected outputs
Yi of the function given the input Xi are created by manual annotations, and rely on
the hypothesis than humans host the golden standard of perceptual systems. Manual
annotation is known to be tedious work, especially for low level features, and is
also annotator dependent. Relying on human expertise to define the function output
however generates uncertainty: Fig. 5.5 depicts examples of various annotations for
boundary extraction on the same image and show that user define relevant contours
with various levels of detail, yielding to an inherently random ground-truth.

Fig. 5.5: Examples of boundary detection proposed by four different users. From the
Berkeley Segmentation Dataset and Benchmark

The current practice for annotating large sets is to use crowdsourcing resources
such as Amazon Mechanical Turk4. In such settings, the problem is to design
a complete protocol ensuring that annotation is of high quality while effort is
minimized (Kovashka et al., 2016). Although annotations are primarily used to
define the main target output, they may also contain other hidden features useful to
improve learning, e.g. the pose of an object as a supplementary information when
object categorization is the functional objective.

Dataset to cover operating domain

The dual question of annotation is to select or collect the data that define the input
samples Xi and ensure that they adequately cover the distribution of inputs that the
perceptual function is likely to process.

One may think of using active learning techniques (Fu et al., 2013) to select from an
available pool or from a controllable generator the data that minimizes the expected

4https://www.mturk.com/
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error. This kind of approach has been used in many applications where annotation is
expensive (crowdsourcing (Kovashka et al., 2016), supervised learning classification
(Li et al., 2013)) or when data is unbalanced such as in object detection (Canevet
and Fleuret, 2015) or zero-shot learning (Bucher et al., 2016a). However, the way
data is collected in these approach depends on the algorithm used and may possibly
reinforce its biases: it cannot guarantee that the annotated input data will cover
the operating domain. All the other sorts of transfer learning or domain adaptation
techniques suffer from the same bias limitation. They can be used however as a way
to design the algorithm, but not to generate the data used to test it.

Another way to define the input samples that should be used to define the function
is to exploit expertise on the events leading to algorithm failure. Many benchmarks
have been designed to sample specific difficulties. For instance, the data used for the
Visual Object Tracking challenge5 are labeled for each frame with a tag (Occlusion,
Illumination change, Object motion, Object size change, Camera motion) that is
likely to cause drift. Since most of the evaluation metrics rely on average and not
worst case analysis, building a dataset from identified difficulties may prevent the
global performance to be dominated by easy and frequent situations.

A generalization of this way of designing test sets has been proposed in Zendel et al.,
2015 as an application to computer vision of the Hazop (HAZard and OPerability
analysis) methodology, used in safety analysis of large systems. The principle is to
systematically list the various sources of risk as deviations of a parameter located in
some part of the system and predict their impact. The various types of deviations are
described using a limited vocabulary named guide words. Fig. 5.6 shows the various
parameter locations of a computer vision system,

Fig. 5.6: Information flow used to define hazard locations. Light travels from the light
source and the objects through the medium to the observer, which generates the
image. Finally, the algorithm processes the image and provides the result. (Zendel
et al., 2017b)

and Tab. 5.3 shows examples of hazard description with their associated location/-
parameter/guide word. The full list containing more than 1400 hazards is available
at https://vitro-testing.com/cv-hazop/.

5http://www.votchallenge.net/
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Tab. 5.3: Extract of the list of hazards for computer vision systems (Zendel et al., 2017b).

The HAZOP approach can be used to finely analyze the hardness of datasets. (Zendel
et al., 2017a) apply it on stereo vision benchmarks (Fig. 5.7), and shows that
algorithm performance is strongly correlated with frames marked as hazards. They
also identify 32 types of missing hazards in datasets. Their conclusion is that
benchmark design should focus on finding data instantiating hazards, rather than
on increasing their size.

Fig. 5.7: Distribution of hazards per dataset used in stereo vision: Dark cells show identified
hazards while light cells represent entries with no GT, too small area or disputed
ones; color represents CV-HAZOP category (Zendel et al., 2017a).

Another way to produce data is to artificially generate it, and possibly target specific
hazard where data is missing. This is done in application domain where data is
scarce or expensive but with low safety requirements. The question is to estimate the
bias of these data, and if they can be used to evaluate real hazard occurrence. How-
ever, it is important to make the distinction between generation used to artificially
generate surrogate data for learning and simulation of corner cases to control the
hardness level of benchmarks: as discussed above, statistical relevance improvement
is expected from the first case, yielding to possible problem of domain adaptation,
whereas the second case targets better coverage of the operating domain.

Evaluation metrics

The third issue to exploit datasets for safety assessment is to measure the discrepancy
between what the algorithm is actually producing from the input data Xi and what
it should, the Yi.
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All datasets used as benchmark come with performance scores or metrics used to
compare algorithm proposals. Most of them are statistics in the form:

Performance score = 1
N

N∑
i

wi ·D(F̂ (Xi),Yi) (5.1)

where D is a discrepancy measure, possibly multi dimensional, comparing the actual
output F̂ (Xi) with groundtruth Yi, and wi is a weight vector encoding failure
impact of each dimension, and may also be used for re-normalizing the performance
score in various ways, for instance to account for unbalanced number of samples
between categories.

Most algorithm have parameters which can be used as control: this is for instance
the case for detection or classification algorithms wher final decision is obtained by
thresholding a score or likelihood calculated for each possible hypothesis. A usual
way to produce performance measure that are independent of such controls is to
average their scores:

Performance score = 1
N

∑
λ

N∑
i

wi ·D(F̂ (Xi, λ),Yi) (5.2)

where λ is the parameter controlling the output F̂ (Xi, λ).

Those scores however do not address the question of evaluating algorithm reliability
for real applications in their operating context. It is hard to figure out if the best
algorithm from the state of the art, i.e. the winner on a given benchmark, is really
usable and safe. What is the semantics of the evaluation score value – e.g. is an
Average Precision score of 85% for detection really good for applications?

With the ubiquity of machine learning in perceptual system design, there is also
somehow a general confusion between data needed for learning, which requires
statistical relevance to catch variability, and data used for testing – the benchmark
– which is expected to sample both hard and easy cases. The high competition for
publishing in high rank journals and conferences mostly concentrates endeavor on
known competitive benchmarks without questioning their value.

The way perceptual algorithms are currently evaluated has two main weaknesses if
used to assess safety.

A single score averaging miscellaneous behaviors in a single scalar, if useful to
produce ranking, cannot take into account all the features of a given application
context. This is why most modern benchmarks (e.g. MS COCO6, VOT (Čehovin et al.,
2016) and MOT7 challenges) analyze algorithms along a pool of metrics, which may

6http://cocodataset.org/#detection-eval
7https://motchallenge.net/results/MOT17Det/#metrics
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have a certain degree of independence. However, those supplementary analytical
tools are usually statistics in the form of (5.1) or (5.2) and may numerically hide
rare but catastrophic events among frequent but easy situations. Introducing worst
case measures, or HAZOP analysis, as presented above, could be investigated to
improve benchmarks from a safety point of view.

Another weakness of current evaluation frameworks is the difficulty of handling
complex or multidimensional outputs. This is already the case in the classical object
detection problem or, more recently, in dense video captioning, where the output
associates textual description and numerical spatio-temporal localization: the tasks
of object localization and characterization are not obviously independent? They can
be correlated negatively – i.e. one cannot have simultaneously good localization and
characterization – or positively – to have good characterization, it’s better to have
good localization, and vice versa?

With the constant improvement of algorithm performance, a current trend is to pro-
pose more versatile or multi-task perceptual systems (see pg. 90). Their evaluation
requires even more complex tradeoffs or correlations to be identified and mastered
to derive meaningful indicators.

Safety issues for APES

The formal framework developed for software safety in avionics presented in the
previous paragraph is not fully applicable to autonomous perceptual systems. As
we have suggested, the proposed protocols and standards do not guarantee the
consistency between the algorithmic and computational levels of artificial perceptual
system, which is the main source of failure of such systems.

Several ideas may be retained however from this framework.

The first idea is to distinguish between requirement specification and assessment –
how to define a normal situation and demonstrate that the system operates in
it – during the design, development and operation phases. The main question is
the formal definition of what should be and can be required to define the operating
domain; especially when dealing with perceptual systems, how measure discrep-
ancies between the computational and algorithmic levels, and define acceptable
bounds of their values. Formal proofs or verification procedures may be useful, but,
as we shall see, cannot encompass all the aspects of perceptual systems. They are
also quite difficult to develop given the way modern algorithms are designed – i.e.
through machine learning – and perhaps more fundamentally given their adaptive
model-free nature, and the huge dimension of their inner state and input sensory
data (image, video, text, sound).
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The second idea is hazard management – how to detect abnormal conditions or
dreaded events and what to do in such cases. Given the contingency of the environ-
ment and the various autonomy levels allowed to the system, APES may cause, as an
adaptive agent, or be the subject of, as an interactive entity, new types of risks. The
main difficulty is to make the system able to detect failure conditions, and provide
mitigation solutions. Machine learning techniques introduce a new actor in the
picture: a learning phase, and introduces new questions such as operating domain
coverage, data poisoning, malicious adversarial attacks, harmful exploration, etc.
Again, when dealing with huge dimensional data, these questions suffer from the
curse of dimensionality problem, and require specific tools or tricks to control it.

The last idea is that safety assessment, and certification, must be a collaborative
process involving all the actors (scientists, engineers, authorities and users), and
should promote the design of specific tools and protocols to do so. Formal proof of
requirement fulfillment is difficult, or even impossible for adaptive agents, and a
surrogate approach is to improve their transparency during design and operation, i.e.
output interpretable representations revealing their expected behavior or possible
failure. The search for transparency is to convince certifying authorities by producing
good behavior reporting, but also to bring confidence to system users, either novice
or expert, that they can reliably interact with it and accept it. Intelligibility, as
discussed in chapter 4, is one feature of this transparency objective.

A few studies have addressed the problem of safety, mostly from a general AI
perspective. (Amodei et al., 2016) discusses safety issues, namely the problem of
accidents in machine learning systems, defined as unintended and harmful behavior
that may emerge from poor design of real-world AI systems, with application to
reinforcement learning or agents acting in a real environment (e.g. autonomous
vehicles). (Yampolskiy and Spellchecker, 2016) presents future AI safety issues
from cybersecurity perspective. (Papernot et al., 2016b) discusses vulnerabilities of
machine learning based algorithms under an adversarial optimization framework.
(Seshia et al., 2016) defines several principles for what is called Verified AI. (Huang
et al., 2018) is a recent survey about deep network safety and trustworthiness.
(Cheng et al., 2019) addresses safety of machine learning based components through
an architectural point of view and proposes to reach dependability through “diverse
redundancy, information fusion, and runtime monitoring”. (Ashmore et al., 2019)
presents a global survey about assuring Machine Learning, i.e. “generating evidence
that ML is sufficiently safe for its intended use” and organizes activities in data
management, model learning, verification and deployment issues. (Rahwan et al.,
2019) argues for the development of an interdisciplinary research field concerned
with “Machine Behavior” that would address the impact and role of AI systems in
society.
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The next section discusses the state or the art on these questions with a focus on
perceptual systems, and is structured around three research issues:

Requirement fulfillment The goal is to answer the question “How to make sure
that the instantiated algorithm actually implements the target function?” and
to develop means of validating & verifying that the requirements are satisfied.
Keywords: evaluation benchmarks, adversarial example design, unknown
unknowns impact limitation, formal verification.

Run-time safety The question to ask in this case is “How to prevent the algorithm
from generating hazardous or unexpected behaviors?”, which can be answered
by developing specific functions used to detect bad operation and mitigation
means.
Keywords: self-diagnosis, anomaly or novelty detection, malicious attack detec-
tion.

Certification equipment and tools The question to be answered is “How to demon-
strate to users and authorities that the algorithm is correctly doing what it
should?” and to propose tools able to either show that the algorithm actually
performs well on the current data or that the process has been correctly de-
signed.
Keywords: explainability or justification of predictions, output qualification or
self-assessment, transparency.

5.2 State of the art

Requirement fulfillment

This section presents the tools and frameworks developed to state that perceptual sys-
tems are actually doing what they are required to do. We focus here on requirements
assessing the consistency between computational and algorithmic levels.

Evaluation benchmarks

The question of benchmark quality, such as those used in academic studies, is not
new: (Ponce et al., 2006) states that the "hardness of different datasets is not well
understood" and identifies several issues to be addressed: annotation quality and
content (semantic, geometric, viewing conditions, object pose), impact of context
or extra information, rigorous evaluation protocols. (Thacker et al., 2008) gives a
thorough account of evaluation practices on several tasks before the deep learning
era.
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Many datasets are now available thanks to the availability of modern sensors and
storing capacities. The CVonline site8 maintains a rather up-to-date list of current sets
used in computer vision, showing the variety of data and annotations that have been
gathered. Many datasets have dedicated sites that maintain associated leaderboards
to monitor the evolution of performance. The Kaggle9 platform organizes data
science competitions and hosts several multimedia datsets.

Several specific domains have gathered large amount of data, especially to be used
as learning databases. This is the case for instance for data targeting autonomous
vehicle (Berkeley Deep Drive10, Cityscape11, Kitti12, etc.), or remote sensing 13.
Other domains, e.g. image based medical diagnosis, however, have less furnished or
very unbalanced datasets regarding machine learning requirements.

As previously discussed, the CV-HAZOP analysis (Zendel et al., 2017b) has revealed
that identifying difficult cases is a key ingredient to build datasets that may evaluate
safety issues. Most of the available benchmarks however do not address the explicit
definition of hazards and rather favor the diversity of sources. The main reason of
this situation is that data acquisition or collecting is usually opportunistic, and is not
able to fully control their content.

One possibility to overcome the lack of data instantiating hazards is to simulate data.
Computer graphics simulation has been used for a long time in robotics, for instance,
using modern game engines (Shah et al., 2018; Mueller et al., 2017): data realism
is achievable with such generators, but it essentially depends on the quality of the
models fed to the engine. They are in practice very costly to create, and what is
often exploited by these simulations is more the controlled diversity of situations
than the realism of sense data. 14 Another simulation strategy is to exploit complex
or multi-modal data acquisition, e.g. omni-directional sensors or combination of
lidar and optical cameras, to generate new data with a variety of viewpoints. (Zajc
et al., 2017) applies this approach to produce various visual motion patterns for
single object tracking problems.

Another commonly used simulation strategy is to randomly augment existing data,
usually images, by geometric or photometric transformations. More recently, tech-
niques of style transfer have been applied to enhance data quality from low resolution
models and have shown to improve performance (Shrivastava et al., 2017; Wang
et al., 2018c; Atapour-Abarghouei and Breckon, 2018). The goal of both approaches,

8http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
9https://www.kaggle.com/

10http://bdd-data.berkeley.edu/
11https://www.cityscapes-dataset.com/
12http://www.cvlibs.net/datasets/kitti/
13https://github.com/chrieke/awesome-satellite-imagery-competitions
14The site https://github.com/unrealcv/synthetic-computer-vision lists resources exploiting

simulated data for computer vision.
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however, is more to increase the number of learning samples than to design a good
test set.

As already stated, all benchmarks come with associated evaluation metrics aiming
at measuring the discrepancy between algorithm output and required ground truth.
The current trend is to compute a series of measures, possibly correlated, each one
being used to address either a certain type of phenomenon or specific input data, and
to select a master one for ranking. Tab. 5.4 shows several metrics used in common
benchmarks for various functions.

Dataset # measures Names

Pascal VOC detection a 1 AP

Kitti object detection b 4 Moderate, Easy, Hard, Runtime

MS COCO detection c 12
AP, AP50, AP75, APS, APM, APL, AR1,

AR10, AR100, ARS, ARM, ARL

Kitti road detection d 7 MaxF, AP, PRE, REC, FPR, FNR, Runtime

VOT challenge (2017) e 3
Robustness, Accuracy, Expected Average

Overlap

Kitti tracking f 7
MOTA, MOTP, MT, ML, IDS, FRAG,

Runtime

MOT challenge g 9
AP, MODA, MOTP, FAF, TP, FP, FN,

Precision, Recall

MS COCO captioning h 8
CIDEr-D, METEOR, Rouge-L, BLEU-1,

BLEU-2, BLEU-3, BLEU-4, SPICE
Tab. 5.4: Examples of evaluation measures used in several benchmarks.

ahttp://host.robots.ox.ac.uk/pascal/VOC/
bhttp://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark
chttp://cocodataset.org/#detection-eval
dhttp://www.cvlibs.net/datasets/kitti/eval_road.php
ehttp://www.votchallenge.net/vot2017/
fhttp://www.cvlibs.net/datasets/kitti/eval_tracking.php
ghttps://motchallenge.net/results/MOT17Det/#metrics
hhttp://cocodataset.org/#captions-eval

This list points out three issues about evaluation metrics as currently practiced:

• They are multidimensional: algorithms may fail in various ways and for various
types of input data, which motivates the proposition of several corresponding
measures.

• The same function can be evaluated by various sets of metrics, although several
benchmarks are more used than others and become de facto standard.
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• Most of them are empirical means over some quantity, and do not therefore
identify difficult or extreme situations that have low occurrence probability.

If the goal of evaluation benchmarks is to rank algorithms according to a clear rule
of game – although questionable – available datasets and associated metrics fulfill
their role. Specific metrics adapted to restricted domains can also be proposed: for
instance, (Fritsch et al., 2013) focus on road detection evaluation and apply them to
the Kitti benchmark.

Because it is sometimes difficult to clearly formulate and quantize the operating
interpretation of a discrepancy between algorithmic and functional levels, one
solution is to define it from the dataset itself. This is for instance proposed in
(Cui et al., 2018) which learns a metric able to distinguish between human and
machine-generated captions as a captioning evaluation measure.

Evaluation of visual object recognition tasks

Issues related to the design, modeling and evaluation of perceptual functions
are commonly addressed in my activity at ONERA (Herbin et al., 2012) as a
national research agency performing technical analysis for the government.
Most of this work however is not public.

One public output has been the co-organization of the ROBIN competitiona

whose goal was to evaluate the performance of object recognition algorithm
in various operating contexts (video surveillance, remote sensing, aerial
imaging) and in cooperation with several industrial data providers (Duclos et
al., 2008a; Duclos et al., 2008b). An evaluation protocol b has been proposed
and applied on a series of 6 datasets. One of the main features of ROBIN was
to orient the evaluation towards applicability, with an emphasis on taking
into consideration control points and rejection capacity.

ahttp://robin.inrialpes.fr/
bhttp://robin.inrialpes.fr/robin_evaluation/downloads/ROBIN_metrics_v6.pdf

However, the real operating value of metrics is not explicitly addressed by current
benchmarks: in particular, they do not allow clear assessment of algorithm safety,
especially in the case of high dimension inputs.

Testing robustness – generation of adversarial examples

An important issue of safety is to state whether a perceptual system is robust to
hazards that may have been known, or not, during the design or learning phase. The
HAZOP methodology is an expert analysis aiming at describing generic hazardous
situations, anticipating possible failures on state of the art algorithms. A complemen-
tary approach is to start from a given instantiated function and discover its possible
failure cases through specific stress tests or attacks.
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A particular and notorious approach to build hard examples for deep networks, the
current state of the art approach for perceptual functions, is the existence of the
so-called adversarial examples, i.e. inputs that are tailored to fool a system (Fig. 5.8).
Those examples reveal the fact that that current deep networks, at least the way
they have been learned, may be unstable and that small perturbations may have a
dramatic impact on their behavior: this is a worrisome issue for safety concerns.

Fig. 5.8: Illustration of adversarial example paradigm. A small and visually undetectable
perturbation added to the original image may drive the deep network classifier
to erroneous prediction (output ‘ostrich’ when looking at ‘cat’). From NIPS 2018
Adversarial Vision Challenge.

Since the seminal articles of Szegedy et al. (Szegedy et al., 2014) and Goodfellow
et al. (Goodfellow et al., 2014b) that have identified the phenomenon, adversarial
examples, both from the attacking and defending sides, have generated a huge
literature in very short time. (Akhtar and Mian, 2018) is a recent survey in the
computer vision domain, and contains more than 180 references. It distinguishes
white box (Carlini and Wagner, 2017a) to black box (Papernot et al., 2017) strategies,
universal (Moosavi-Dezfooli et al., 2017) to image specific (Moosavi-Dezfooli et al.,
2016) attacks, and whether the fooled output is controlled, i.e. its output predicted
class is a parameter, or not. (Xu et al., 2019) is another recent survey that addresses
other application domains and other settings (learning data poisoning).(Goswami
et al., 2019) gives a general panorama of adversarial defenses and mitigation means
applied to face recognition. (Zhang et al., 2019c) addresses adversarial attack
and defense for natural langugage processing, including multi-modal signal to text
functions (captioning, VQA, OCR).

Adversarial attacks and robustness evaluation

The main and first attacked function by adversarial examples is classification, al-
though continuous functions such as visual flow estimation (Ranjan et al., 2019),
semantic segmentation (Fischer et al., 2017; Hendrik Metzen et al., 2017; Arnab
et al., 2018) and detection (Xie et al., 2017) have been addressed recently.
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A typical strong attack based on a source data x that one wants to erroneously
classify as t is obtained as an optimization (Carlini and Wagner, 2017b):

attack(x, t) = argmin
x′

‖x′ − x‖2 + c · lκ(x′, t) (5.3)

where the loss function l is defined as lκ(x′, t) = max(max{Zi(x′) : i 6= t} −
Zt(x′),−κ), and Zi(x′) is the logit function used to classify data as class i, and κ is a
margin used to force the wrong class output logit to be arbitrarily high. (Carlini and
Wagner, 2017a) experimentally studied the resilience of several attack detectors and
showed that this way of forging adversarial attacks was able to bypass ten of them.
This approach is considered as being among the strongest so called “white box”
attacks, i.e. attacks that have access to the entire prediction algorithm, its weights
and architecture.

In this strategy, adversarial examples are specifically tailored to fool a known system.
Adversarial examples may also threat – be transfered to – another classifier (Papernot
et al., 2016c; Liu et al., 2016c), which allows the estimation of simpler surrogate
classifiers of a black-box system (e.g. an SVM instead of a deep network) that can be
used as a model to find adversarial examples.

The basic explanation of the existence of adversarial networks is that small pertur-
bation distributed over input signal may be cumulated and emphasized by deep
networks that have a large Lipschitz constant (Cisse et al., 2017). This also means
that the fundamental signal that is exploited by most of the attacks is the gradient
w.r.t the input as a measure of data sensitivity. Many other types of attacks have been
proposed (see the cited surveys), but all rely on an optimizing locally or globally a
data based criterion to search the most impactful input example, and exploit gradient
computation, or its approximation.

The evaluation of attack strength can be done according to two dual measures.
The first one estimates the average smallest perturbation ρ(f) able to fool the
classification function f(x) and can be expressed as:

ρ(f) = Ex,y [min ‖δ‖p s.t. f(x + δ) 6= y]

where the norm of the perturbation ‖.‖p is defined for p ∈ {1, 2,∞}

The second measure estimates the impact of perturbing input data by less than ε on
the prediction loss l(y, y′):

Radv(f, ε) = Ex,y

[
sup
‖δ‖p≤ε

l(f(x + δ), y)
]

Those two adversarial criterion do not have the same usage. The robustness ρ
is a measure of classification sensitivity to perturbations, and qualifies the whole
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function. The second measure is more an optimization criterion, that can lead to
regularized criteria such as those of Eq. 5.3, and to distribution free (Diochnos et al.,
2019; Attias et al., 2019) or distribution dependent (Yin et al., 2019) bounds to
control the gap between empirical and real adversarial risks.

Note that perturbations may not stay on data manifold (the x′ is not constrained to
be sampled from original data, and δ is isotropic): they may be completely artificial
and not observed in nature.

A second important point is that those measures are local and are not, by construction,
related to the global risk that measures accuracy:

R(f) = Ex,y [l(f(x), y)]

The relation between the two has been discussed recently where several studies
argue that accuracy and robustness are related antagonistic phenomena (Tsipras
et al., 2019) (Su et al., 2018) that can lead to mixed optimization criteria (Zhang
et al., 2019a), whereas others separate the two by distinguishing between on and
out data manifold adversarial examples (Stutz et al., 2019).

Adversarial defenses

The discovery of adversarial examples has motivated the development of defense
techniques to improve robustness. Two principles have been proposed: data aug-
mentation and regularization.

Adversarial examples can be interpreted as unknown learning biases. One way
therefore to counteract their impact is to augment the learning database by artificially
generating adversarial examples (Kurakin et al., 2017). This adversarial learning
strategy generates one of the best defenses against adversarial attacks, but can be
costly: there are potentially many possible perturbations per example that would fool
the predictive system. (Sinha et al., 2018) augments model parameter updates with
worst-case perturbations of training data in a Wasserstein ball. (Tramèr et al., 2018)
studies a technique that augments training data with perturbations transferred from
other models. Another data augmentation strategy is to interpolate between available
data and their labels as a mixing regularizer (Zhang et al., 2018a). (Tramèr and
Boneh, 2019) discusses the difficulty of handling multiple adversarial perturbation
types in training and proposes new training criteria fusing several adversarial risks.
(Shafahi et al., 2019a; Wong et al., 2020) propose faster ways to achieve adversarial
training.

A second type of strategy is to improve the learning step itself, typically by adding
more layers/sub-networks, by changing the loss/activation functions, etc. (Cisse
et al., 2017) controls the Lipschitz constant of each layer through regularization.
(Madry et al., 2018) studies the adversarial robustness of neural networks through a
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robust optimization perspective. (Papernot et al., 2016a; Papernot and McDaniel,
2017) exploit the notion of distillation, i.e. the extraction of class probability vectors
produced by a first model to train a second one of reduced dimensionality without
loss of accuracy, to generate more regularized deep networks.

However, as (Goodfellow et al., 2018) states it, “few strong countermeasures exist
for the many attacks that have been demonstrated”. Detecting attacks to start
mitigation means or to prevent error propagation instead of trying to counter them
is an alternative strategy that will be described in a following section.

Real world attacks?

Whether adversarial examples are a real threat for real-world or embedded appli-
cations is however still a debated question. (Evtimov et al., 2017) describe real
world attacks and shows that simple stickers put on road signs may fool the classifier
for various viewing conditions (Fig. 5.9). (Sitawarin et al., 2018) is another recent
study that shows examples on black-box attacks on road signs. Other attacks fool
object detectors by inserting in the scene an adversarial patch close to the object
(Brown et al., 2017). (Jan et al., 2019) generates adversarial examples against deep
neural networks by explicitly modeling the digital-to-physical transformation.

Fig. 5.9: Example of modified real world objects fooling a known deep network used to
classify road signs (Evtimov et al., 2017).

However, some advocate that the theoretical existence of such phenomenon is not
critical for embedded applications such as autonomous driving (Lu et al., 2017a),
especially for object detection (Lu et al., 2017c) where the technique proposed in
(Evtimov et al., 2017) is hard to reproduce. More global and simple perturbations,
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however, may induce wrong decisions: (Afifi and Brown, 2019) studies the impact
of incorrect color constancy on classification and semantic segmentation based on
deep networks.

Given the maturity of this research domain, it is hard to say if adversarial examples
are a real concern for safety issues or if their occurrence in real situations is negligible
compared to other hazards (Gilmer et al., 2018).

Besides the theoretical issues raised by the existence of adversarial instabilities, one
possible use of this already large body of techniques developed may be used to
tailor benchmarks of various difficulty levels or simply to improve robustness of
algorithms.

The high interest of the research community has promoted several challenges on
designing defense methods against adversarial attacks: for instance, NIPS 2017:
Defense Against Adversarial Challenge Attack15 and NIPS 2018 Adversarial Vision
Challenge16. Benchmarks in these competitions are usually of medium size (number
of samples and data dimension): cifar-10, MNIST, Tiny ImageNet, Traffic sign 17.
Those challenges often come with adversarial example generation toolboxes such as
the adversarial robustness toolbox18(Nicolae et al., 2018) or CleverHans library 19

as baselines. A thorough benchmarking action is proposed in (Su et al., 2018) with
the objective of examining the existence of empirical trade-offs between robustness
and accuracy using multiple robustness metrics, including distortion, success rate
and transferability of adversarial examples 20. Their conclusion is that low error
networks are highly vulnerable to adversarial attacks and that network architecture
has a larger impact on robustness than model size.

As regularly mentioned in papers, attacks such as those calculated using Eq. 5.3
fool most of currently proposed defenses, but are also increasingly detected. As
(Goodfellow et al., 2018) asks, “can we expect an arms race with attackers and
defenders repeatedly seizing the upper hand in turn?”, as is for instance instantiated
in the NIPS 2018 Adversarial Vision Challenge.

A critical question regarding the safety of APES would be to know whether attacks
and defenses can be universal, and in what sense. The origin of the existence of
adversarial example, however, is unclear. Several authors hypothesize that accurate
learned classifiers may in fact catch non-robust but informative latent features to
make their prediction (Tsipras et al., 2019; Ilyas et al., 2019; Joe et al., 2019),
implying that adversarial examples are possible because the resulting classifier has

15https://www.kaggle.com/c/nips-2017-defense-against-adversarial-attack
16https://www.crowdai.org/challenges/adversarial-vision-challenge
17http://benchmark.ini.rub.de/index.php?section=gtsrb&subsection=dataset
18https://github.com/IBM/adversarial-robustness-toolbox
19https://github.com/tensorflow/cleverhans
20https://github.com/huanzhang12/Adversarial_Survey
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not been able to apprehend the “good” regularities in data. Other authors impute
the existence of adversarials to the data distribution itself and its geometry (Khoury
and Hadfield-Menell, 2019; Khoury and Hadfield-Menell, 2018), which leads to non
intuitive concentration of measure phenomena (Shafahi et al., 2019b; Mahloujifar
et al., 2019), and could partially explain how attacks can also be performed on
simple non-deep classifiers such as k-nearest neighbors (Sitawarin and Wagner,
2019b; Sitawarin and Wagner, 2019a).

All those recent studies point out the fact that many phenomena encountered in deep
learning are not well understood, and that the objective of ensuring safe learning is
not yet achieved.

Testing robustness – unknown unknowns

Machine learning based prediction systems, or more generally AI systems, have
by essence a limited knowledge of the world in which they will live: they entirely
depend on the learning database and on the underlying regularity assumptions that
are exploited in the design phase. As Dietterich puts it (Dietterich, 2017) “An AI
system must act without having a complete model of the world”. (Boult et al., 2019)
states that solutions able to handle unknowns are insufficient, especially for deep
network predictors.

There are two reasons why limited knowledge may produce erroneous predictions:
the model is too uncertain for reliable prediction, or the system predicts from wrong,
invalid or non existing grounds. The first case can be dealt with supplementary
elements describing the prediction uncertainty level (confidence coefficient or vari-
ance). The second case is more problematic since the system doesn’t know it may be
wrong and outputs false predictions with high confidence. This last case has been
called unknown unknowns (UU).

Looking for UU’s should be one dimension of the safety assessment of predictive
systems. Very little work has been done in this direction: the main studies are
(Lakkaraju et al., 2017a; Bansal and Weld, 2018) which describe sequential sampling
strategies applied to the prediction system considered as a black box.

Outlier, novelty or out-of-distribution detection approaches may also be used to
identify UU’s: they are mostly use to detect failure on line (see section 5.2) and
usually require the availability of the training database.

Testing robustness – domain coverage

The previous paragraphs addressed robustness issues by trying to find specific error
generating cases, with various levels of universality or transferability. A dual concern
is to ensure that all operating situations have been examined: the question is to
design strategies able to cover them with a certain confidence level.
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The aim of the CV-HAZOP approach (Zendel et al., 2017b), presented previously,
was precisely to try to exhaustively anticipate hazardous situations through an
expert analysis: this analysis is not algorithm dependent, or in a rather loose way –
computer vision experts know in which general circumstances algorithms are likely
to fail.

Recent works have tried to define algorithm dependent policies aiming at ensuring
their operational value. Several studies have been inspired by coverage criteria
as practiced in software testing: (Pei et al., 2017) and (Tian et al., 2018) exploit
neuron activity coverage on a known deep network (white-box approach) as a way
to generate incorrect “corner cases”. (Wu et al., 2019) describes a strategy for
generating corner cases, i.e. data that defines the boundaries of good functioning
domain, by applying a series of image transformations to the learning database. (Ma
et al., 2018a) defines bad behavior criteria for deep network based on testing if
neuron output values belong to sets of real valued intervals. (Gopinath et al., 2017)
proposes a data-guided approach for automatically identifying safe regions of the
input space, within which the network is robust against adversarial perturbations,
using verification techniques (SMT). (Wicker et al., 2018) proposes a feature-guided
black-box algorithm for evaluating the resilience of deep neural networks against ad-
versarial examples. (Odena and Goodfellow, 2018) adapts techniques from software
engineering (coverage-guided fuzzing) to find numerical issues in trained neural
networks, disagreements between neural networks and their quantized versions, and
undesirable behaviors in character level language models.

Many studies have addressed safety issues in the context of autonomous driving.
(Dreossi et al., 2017) describes an image generator that produces synthetic pic-
tures by sampling in a lower dimension image modification subspace to test the
deep network used to predict driving commands. (Zhang et al., 2018c) presents
an unsupervised framework to automatically produce large amounts of driving
scenes through Generative Adversarial Networks to test the consistency of driving
behavior.

Formal verification and proofs

Deep networks are rather complex objects: their behavior is not fully understood, and
there are not definite results stating the impact of optimization, architecture, data
sets on performance stability and accuracy. However, several approaches have tried
to adapt several formal results or practice of “validation & verification” techniques.

A first series of methods makes use of verification algorithms to evaluate the stability
of network, i.e. their output invariance to perturbations at a given operating point.
(Huang et al., 2017d) presents work on verifying the absence of adversarial inputs in
generic feed-forward multi-layer neural networks using Satisfiability Modulo Theory
(SMT), while (Katz et al., 2017) develops Reluplex, a simplex formulation of local
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invariance for networks combining linear and ReLU type non linearities. (Tjeng
and Tedrake, 2017) formulates verification of piecewise-linear neural networks as a
mixed integer program. Those verification processes are exponential in the number
of features, and their scaling for large images is an issue. (Wang et al., 2018b)
addresses the scaling issue using interval analysis and linear relaxations. Other
works that improve property verification scaling are (Singh et al., 2019b)(Salman et
al., 2019)(Singh et al., 2019a). (Hains et al., 2018; Liu et al., 2019) present a general
recent account of formal methods developed to assess safety of deep networks, and
conclude that “there is a trade-off between completeness of a verification algorithm
and its scalability. Complete algorithms run slower on larger networks, while
incomplete algorithms are more conservative.”

A second series of studies examines global network from a functional point of view,
and measure stability through an evaluation of their Lipschitz constant (Scaman and
Virmaux, 2018; Weng et al., 2018; Fazlyab et al., 2019).

Finally, (Cullina et al., 2018) takes a statistical learning perspective and extend
the Probably Approximately Correct (PAC)-learning framework to account for the
presence of adversaries. (Varshney, 2016; Varshney and Alemzadeh, 2017) formally
define machine learning safety in terms of risk, epistemic uncertainty, and the harm
incurred by unwanted outcomes.

Those method are related to the emerging topic of Verified AI which proposes to
extend the current validation & verification practices to AI (Menzies and Pecheur,
2005). Seshia et al. (Seshia et al., 2016) identified five main challenges from a
formal method perspective (environment modeling, formal specification, system
modeling, computational engines, and correct-by-construction design) and defined
several corresponding design principles:

“

1. Introspect on the system (i.e. identify assumptions that the system makes about
the environment that are sufficient to guarantee the satisfaction of a given
requirement) and actively gather data to model the environment;

2. Formally specify end-to-end behavior of the AI-based system, and develop new
quantitative formalisms to specify learning components;

3. Develop abstractions for and explanations from Machine Learning components;

4. Create a new class of randomized and quantitative formal methods for data
generation, testing, and verification;

5. Develop techniques for formal inductive synthesis of AI-based systems, sup-
ported by an integrated design methodology combining design-time and run-
time verification.

”
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Those principles target generic AI systems and are general, with a twist towards
model-based approaches as a prerequisite of many formal methods. The question
whether they are relevant to APES is open since modern perceptual algorithms are
mostly data-driven designed.

Run-time safety
The techniques described previously aim at characterizing a given system before it
is actually operated. They exploit potentially hazardous input data or an analysis
of the algorithm architecture. Another strategy to improve safety is to develop
methods detecting potential problems during operation. Here again, one can make a
distinction between methods trying to characterize input data, and those that exploit
knowledge of the algorithm to diagnose bad behavior. The new challenge of deep
network instability, revealed by the existence of adversarial examples, has motivated
the development of specific defense approaches.

Anomaly or novelty detection

A safe system should be able to warn its user when there is a risk of catastrophic
consequences when exploiting a false prediction and suggest to reject it. In a
prediction system, there are mainly two causes of rejection: uncertainty – the input
data can be meaningfully associated to more than one prediction – or novelty – the
input data has not been considered during the design phase or is abnormal with
respect to the underlying models governing prediction. We focus on this last case in
this section.

Novelty, anomaly or outlier detection are synonyms of the same formal problem: to
decide whether a given data belongs to an underlying known distribution, usually
described as samples or characteristic prototypes. It does not address the question
of designing a system that is robust to anomaly or outlier but aims at equipping
a predictor with an explicit rejection capacity or out-of-distribution detector. In
machine learning, this problem is also named “one-class classification”. Introducing
a supplementary rejection class in a global decision process is sometimes referred to
selective classification (Geifman and El-Yaniv, 2017; Geifman and El-Yaniv, 2019),
the question being to control the good operating trade-off between decision and
error rates. Note that the expression “anomaly detection” sometimes refers to a way
of building “saliency” detectors (Borji et al., 2015) – an anomaly being a pattern
considered different from most of the others – and not in the sense of building a
rejection process.

Novelty detection is not a new problem, and is used in many applications, for
instance in data stream analysis to detect intrusion (see (Chandola et al., 2009;
Markou and Singh, 2003; Zimek et al., 2012; Pimentel et al., 2014; Akoglu et al.,
2015) for various surveys). However, when data is highly dimensional, like images,
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applying generic methods is not powerful enough, and depends on a projection
on a much lower dimension feature space, using for instance Principal Component
Analysis (PCA), auto-encoders or non-linear kernels, to make statistically relevant
inferences. (Zimek et al., 2012) discusses the issue of high dimension and its relation
to the curse of dimensionality phenomenon.

A first strategy to detect anomaly or novelty is to find ways to apprehend the
extension and structure of the data manifold. This is what deep learning is expected
to do, either for generic tasks (classification) or to specifically improve anomaly
detection. (Chalapathy et al., 2017) describes a robust auto encoder that learns
a nonlinear subspace that captures the majority of data points, while allowing
for some data to have arbitrary corruption, and evaluates the approach on three
image datasets. (Zhai et al., 2016) investigates two decision criteria (energy score
and reconstruction error) for performing anomaly detection from an energy based
distribution representation computed on a deep network architecture. (Erfani et al.,
2016) presents a hybrid model where an unsupervised deep belief network (DBN) is
trained to extract generic underlying features, and a one-class SVM is trained from
the features learned by the DBN. (Ruff et al., 2018) extends one-class support vector
approach to deep network, using the same concept of minimum volume hypersphere
boundary.

Another series of works exploit or modify the output scores before decision, and use
them to detect out-of-distribution data coming from datasets that contain classes
different from those found in the in-distribution. (Hendrycks and Gimpel, 2017)
shows the performance of a baseline approach on several datasets relying on the idea
that correctly classified examples tend to have greater maximum softmax probabili-
ties than erroneously classified and out-of-distribution examples, allowing for their
detection. (Liang et al., 2018) describes a method improving the detectability of
out-of-distribution from the output scores by adding small perturbation to the input
and output temperature scaling. (DeVries and Taylor, 2018) proposes a method
that learns a confidence score jointly with the actual prediction by retraining the
last layer of a classification network, and uses it on the task of out-of-distribution
detection. (Mandelbaum and Weinshall, 2017) also learns a confidence coefficient
from inner layers of a classification network and prediction but with another loss
measuring pairwise distance between different classes. (Lee et al., 2018a) exploit
hierarchical class structure to detect data coming from new classes using confidence-
calibrated classifiers, data relabeling, and leave-one-out strategy for modeling novel
classes under the hierarchical taxonomy. Note that all these approaches rely on
detecting bad score prediction behavior and therefore require that the underlying
data distribution is structured in classes.

As a binary decision problem, the evaluation of novelty detection algorithms de-
pends on measures of false positive/false negative tradeoffs (AUC under ROC curve,
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Precision at given Recall). Most of evaluation frameworks exploit data acquired
from “real” situations, e.g. by labelling several classes as outliers, or importing other
datasets of similar origin and label it as novel (Cifar-10 vs. Imagenet). Algorithms
are believed to be more fairly compared under such settings. (Campos et al., 2016;
Swersky et al., 2016) discuss the suitability of available benchmarks (datasets and
metrics) and compare several algorithms using such metrics. Their evaluation how-
ever is limited to low dimensional data, and whether their conclusion scales to higher
dimensional perceptual data is open. (Snoek et al., 2019) describes the results of a
large-scale benchmark on classification problem and investigates the effect of dataset
shift on accuracy and calibration.

It is however difficult to tell using such evaluation approaches if the state of the art
of novelty detection algorithms is mature enough to assess on-line safety of APES.
A fundamental question is to define what is a realistic or useful out-distribution to
validate novelty detection: How different should it be from the in-distribution? What
are hazardous situations likely to happen? The design of adversarial data (see 5.2)
is a complementary way to build evaluation in a way that is more, perhaps too,
specialized to instantiated algorithms. The next section will present in more details
how to build defenses against adversarial attacks.

Detecting adversarial examples

Countering attacks, i.e. producing mitigating means to correct the impact of malicious
perturbations on the decision, is difficult as we have seen. Whether it is possible
remains a question. However, one can instead try to detect when such attack happens
and delay the final prediction to other actors. This is typically an anomaly detection
problem but dedicated to adversarially perturbed input data.

The main difference with anomaly detection is the malicious intention of the attack:
data are generated purposively to fool the system. Various settings can be defined
according to the attacker knowledge (white/black box, access to learning data or
not).

Most of the studies addressing adversarial detection analyze behavioral difference
of a known network when activated by normal or perturbed data. (Gong et al.,
2017; Metzen et al., 2017) learn a separate binary adversarial detector from a set
of generated attacks. (Grosse et al., 2017) builds a two sample statistical test to
separate benign and corrupted data. (Lu et al., 2017b) learns a Radial Basis Function
SVM to detect out of distribution data from the last stages of a deep network where
adversarial examples are expected to have the most different behavior. (Li and Li,
2017) defines a cascade classifier from convolutional filter outputs of various layers
in a deep network.
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Another type of strategy modifies training or input data to make attacks more salient.
(Dathathri et al., 2018) detects adversarial examples by testing the validity of Neural
Fingerprints, a set of fixed perturbations that are expected to have a controlled
behavior when added to a real data and not when added to an adversarial example.
(Xu et al., 2017) uses feature squeezed (pixel encoding depth reduction and spatial
smoothing) data to compare predictions from the original and the squeezed images.
If a large difference is found, the image is considered to be an adversarial example.
(Akhtar et al., 2018) learns a specific network able to rectify a perturbed data, and
detects universal attacks by analyzing the difference between the original image and
the rectified one.

Other approaches exploit the same intuition that adversarial examples are far from
the manifold of clean data and can be identified by out-of-distribution method in a
given subspace spanned by inner activation layers of a deep neural network. (Meng
and Chen, 2017) detects adversarial examples by projecting the data to the learned
manifold of clean images. (Feinman et al., 2017) uses kernel density estimates and
Bayesian uncertainty through drop-out to detect out of distribution adversarial data.
(Ma et al., 2018b) uses local intrinsic dimension estimation of adversarial regions
and apply it to the detection of adversarial examples. (Lee et al., 2018b) proposes a
method for detecting any abnormal samples based on computing the Mahalanobis
distance between class conditional Gaussian distributions with respect to (low- and
upper-level) features of the deep models obtained through Gaussian discriminant
analysis.

A complementary question to adversarial detection is to ensure that a given predic-
tion cannot be impaired by any bounded perturbation for given data points. This
is the objective of several formal methods that have been developed to compute
such data relative bounds as described pg. 162, and that can be used as a test for
adversarial detection, the value of the bound indicating the risk of accepting the
prediction. (Kolter and Wong, 2017; Wong et al., 2018) exploits a convex outer
approximation of the set of activations reachable through a norm-bounded perturba-
tion for piece-wise linear activation function networks. This idea has been extended
to non-linear activation functions (Singh et al., 2018)(Zhang et al., 2018b). (Jordan
et al., 2019) provides tighter bounds on the average case. (Balunovic et al., 2019) ex-
tends verification to geometric transformation (rotation and translation) and solves
it using a combination of sampling and optimization to compute asymptotically
optimal linear constraints. (Cohen et al., 2019) injects Gaussian noise in the input
data to produce a smoothed random classifier that can be guaranteed to be accurate
under any perturbation bounded by a computable radius.
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Self-diagnosis and recovery

Self-diagnosis is the capacity of a system to detect bad behavior by probing its inner
states. Novelty or adversarial attack detection, as described previously, are potential
candidates to fulfill this goal for predictive systems.

Self-diagnosis requires some kind of introspection, i.e. a way to express and represent
in a common formalism what is happening inside the system. The role of intelligibility
for perceptual prediction (see chapter 4) will be discussed in more details later as
a general way to provide insights about system behavior. We are more interested
here in examining how self-diagnosis can be used on-line to improve robustness and
make the predictive system safer.

The big question is how to integrate self-diagnosis capacity in a general processing
framework so as to improve safety and to help the system recover from its detected
failures. In other words, what action to make once failure has been detected?

There are mainly two families of algorithms that may profitably make use of on-
line self-diagnosis: vision based dynamical systems implementing functions such
as tracking, navigation, SLAM, etc. which, because of their sequential nature, can
incrementally correct their behavior; ensemble methods that may weigh or select the
contributions of each of the components in a fusion step according to their failure
prognostic or confidence.

Fig. 5.10: Block diagram of a flight controller exploiting vision failure detection. (Saxena
et al., 2017).

Very few studies take into account explicitly vision failure in a global processing
pipeline. Most of them target autonomous driving (car or UAV) as application.
(Saxena et al., 2017) learns a recovery maneuver predictor (translate right, translate
left, rotate right, rotate left) applied when an uncertain input image is detected,
i.e. when a classifier is unable to ascertain whether the scene is collision free vs.
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collision prone, for example in case of improper illumination (see Fig. 5.10). The
role of the maneuver is to drive the vehicle to a location or an altitude where the
input data can be safely interpreted. (Khan and Hebert, 2018) ensures UAV flight
safety by choosing the best trajectory leading to past non failed states after failure
has occurred. (Richter and Roy, 2017) exploits an autoencoder to declare visual
scenes familiar or not during a robot navigation task that collects new images to
learn a collision predictor. The detection of novelty makes the robot switch to a safer
behavior (lower speed). (Hecker et al., 2018) learns a “Scene Drivability” predictor
that decides whether the environment is safe or hazardous for an automated car to
navigate using an automated image-based maneuver generator (speed and steering),
and let the driver take over sufficiently ahead of time.

In Isabelle Leang thesis, we have been interested in studying failure predictor and
recovery means for the fusion of single object trackers.

Online drift prediction for fusion of single object trackers (Leang et al., 2015; Leang et al., 2018)
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Fig. 5.11: Block diagram for multiple tracker fusion.

The work focused on the design of good strategies for the on-line fusion of
trackers. The emphasis was on controlling the overall robustness of tracking
measured as a number of drifting events, i.e. the number of times the target
is lost when applied on a given database. Trackers deal with critical situations
differently (illumination, occlusion, appearance changes, camera motion);
the idea was to exploit their complementarity on various fusion strategies.

Fusion can operate at two levels: by selecting the appropriate set of good track-
ers and/or by correcting either their output or their inner state (Fig. 5.11).
Drift prediction based on various features has been proposed and more specif-
ically studied as a key component of the selecting step. The overall fusion
strategies resulted in 46 different schemes that have been extensively evalu-
ated on 4 databases (VOT2013+, VOT2015, VOT-TIR2015 and OTB-100) and
a repertoire of 9 trackers with available source code (NCC, KLT, CT, STRUCK,
DPM, DSST, MS, ASMS, CCOT).
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The results of the experiments has been summarized as a series of recom-
mendations (What trackers use? What to fuse and how?) when trying to
apply on-line fusion given a target database or application context and a set
of trackers with their individual robustness evaluation on the database:

1. Fusion is helpful when fusing trackers with comparable individual
performance (robustness) and gives an important gain. By contrast,
fusing very heterogeneous trackers can be harmful when noisy outputs
contaminate the other trackers and degrade their behavior.

2. A selection step is useful, the simplest methods based on bounding box
reasoning – temporal filtering and consensus – leading to comparable
results to more specific methods trying to give independently a hint of
each individual tracker behavior (score or likelihood maps).

3. The correction step is sensitive to individual tracker behaviors: passive
fusion cannot recover from target confusion, and active fusion may be
contaminated by bad target localization.

Fusion performance also depends on tracker complementarity besides their
individual performance. To quantify the complementarity of a set of trackers,
we defined an incompleteness measure based on off-line individual drifts that
is predictive (with a certain variance) of the fusion performance of 2 to 4
trackers. This measure can be used to choose the best combination of trackers
for a given database.

Self-diagnosis associated with recovery means should be an essential feature of safe
systems. Self assessment of prediction quality is usually unstable and hard to set
up – it is often pessimistic. In our work on drift detection it has been observed than
better prediction was obtained using an out-of-consensus approach, implying than
redundancy monitoring, which is a simpler failure prediction scheme, is safer than
introspection. This assertion however requires further investigation.

Certification equipment and tools

It seems difficult or even theoretically impossible to prove the safety of APES for all
their potential inputs: the sensory data are contingent and their high dimensionality
makes the bad behavior of predictors difficult to anticipate. If safety cannot be
proven, an alternative strategy is to address trustworthiness directly and to pro-
vide APES’s with additional tools, outputs or devices that would convince users or
certification authorities.
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APES trustworthiness can be improved along two different strategies: by making
its operations intelligible to detect possible wrong behaviors, and by improving its
usability for better acceptance.

Explainability (for authorities)

Explainability is the ability of a system to justify the cause or origin of its prediction
by providing a dedicated representation: a text or a visual sign. Chapter 4 has
presented what kind of explanations are possible, especially when dealing with deep
networks. It has been pointed out that the usefulness of an explanation depends on
its recipient: an end-user, an engineer, a scientist or an authority. Explainability may
play several roles to improve system safety.

The fact that a system is able to deliver reliable explanations is an element that may
be used to improve its trustworthiness. The values of explanations can be checked to
verify on specific cases that everything goes right. Explainability allows better and
more efficient monitoring.

Another use of explanations for authorities is as a evidence of good or bad activity.
They can be recorded for further analysis in case of failure, have usually smaller size
than the whole system inner states, and encode directly informative features.

Using explanations to improve safety implies that their production is reliable. As
already discussed in Chapter 4 page 130, the assessment of explanation quality is
not a very well settled question.

Usability

One way of looking at the question of system safety is to consider that the best
judge is the user: a system will be recognized as safe if the user declared to be
so. Another way to justify the concern about usability for safety is the importance
of human-computer interfaces. This places usability as a critical feature of safety
assessment when a user is involved as a recipient or as a prescriber of the predictive
process and enters into an interactive loop with the system.

The computer vision literature addresses human-in-the-loop processes to gener-
ate data interpretation such as segmentation (McGuinness and O’connor, 2010;
Zhao and Xie, 2013) or annotations (bounding boxes around objects, categories,
attributes), often leveraged by a crowdsourcing approach (Russakovsky et al., 2015;
Kovashka et al., 2016). The interactive processes are usually evaluated as a trade-off
between accuracy and interaction load (Veit et al., 2015), typically measured as
mouse click counts, number of workers involved in a crowdsourcing setting (Branson
et al., 2017) or time to accomplish the task.
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Human computer Interaction is a now well established inter disciplinary research
field, at the intersection of computer science and behavioral sciences (psychol-
ogy, neuroscience, ergonomics), and should take an active part in analyzing and
evaluating usability of interactive perceptual processes.

In his book (Norman, 2009), Don Norman one of the foremost researchers in this
field analyzes the way user (should) interact with machines, and suggests six general
rules that should govern system design:

1. Provide rich, complex, and natural signals.

2. Be predictable.

3. Provide a good conceptual model.

4. Make the output understandable.

5. Provide continual awareness, without annoyance.

6. Exploit natural mappings to make interaction understandable and effective.

These rules are general and the question remains of how instantiating and evaluating
them for APES so as to improve usability and safety. This question has been partly
addressed in the following project.

SATIE project (2014-2015)

Fig. 5.12: SATIE project.

SATIE (“Semi-AuTomated Information Extraction”) was an ONERA research
project aiming at studying human interaction design and evaluation of inter-
active system exploiting multimedia data and sources (Fig. 5.12). It originates
in requirements or critics about available systems expressed by experts on
image analysis for defense or intelligence applications.

The project identified several topics that appeared relevant and were found
not being sufficiently addressed:
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Usability The system must be seen as an aid, not a constraint.

Acceptance The system is a partner, not a substitute to human skills.

Familiarization System design must take into account the maturation of
human-computer relation.

Personaliza-
tion

System interactions should allow and exploit user idiosyn-
crasies (personal history, preferences, etc.).

When addressing more specifically the usability of prediction processes, it
had been found at that time that several important dimensions were not
sufficiently mature, or even addressed:

Affordance Processes can be controlled at several levels of the chain
(input parameters, decision thresholds, on-line annotations,
etc.) but there is no global and validated account of action
impact.

Intelligibility State of the art processes are rather opaque, and the way
they build their predictions, especially when they are wrong,
is often unclear. We have seen in chapter 4 that this ques-
tion is now an important research subject.

Predictability The impact of user actions on the system is often difficult
to foresee (parameters have various sensibilities, several
combinations are more useful than others). Knowing the
potential role of actions is however crucial for efficient
feedback.

The sequel of this project would have been to instantiate and evaluate those
interactive system features using psycho-physics measuring devices (eye
tracking, electroencephalography) in an experimental psychology study. This
is work that is still to be done.

5.3 Discussion

The safety of AI algorithms and software is a recent issue and motivated by their
economical prospects. Making AI based products safe is becoming a key concern for
stakeholders 21, citizens, government or market. This section discusses several of
the currently envisioned solutions.

21See the section “Risks for safety and the effective functioning of the liability regime”, pg. 12 of the
recent White Paper on AI from the European Commission.
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Use of formal methods

One now well studied research domain is the application of formal verification
methods to deep neural networks (see the presentation of several works pg. 155 and
pg. 162). Given the ubiquity of such objects in contemporary perceptual models and
systems, this seems an interesting objective.

As already questioned, formal methods developed for software validation & verifica-
tion may not be well suited to the nature of perceptual systems.

A first difficulty is the way safety is expressed as a satisfiability problem (x ∈ X ⇒
f(x) ∈ Y): how can this kind of formulation be adapted to data-driven function
specification as usually done for perception? Most of the proposed approaches
ensure stability around known operating points, but this may drastically restrict the
system operating domain to known but limited situations, without being able to
assess the safety of other ones, unknown but likely to occur. Ensuring joint local
constraint satisfaction and generalization capacity is still to be achieved.

Another difficulty for formal verification of modern perceptual systems is that adver-
sarial examples seem to be rather easy to find due to the high dimension of deep
network parameters (computer vision networks have several millions of weights
and biases). This means that formal methods alone will probably not be enough
to prove safety in a large operating domain even though problematic cases such as
those generated by adversarial attacks may not happen during the system life-time.
If the existence of adversarial examples is a conceptual obstacle to universal formal
stability of predictive processes, it may not be that problematic for real systems. The
idea of confronting defenses and attacks could be an interesting research direction
to improve their accuracy and robustness as a design principle.

Empirical testing

Empirical validation methods, such as those practiced in most of computer vision
challenges, is another way to assess safety, and partly substitutes empiricism to
formal proof.

The emphasis is then on designing the good testing dataset that will cover the
various potential failure causes, and the evaluation protocols. The CV-HAZOP
approach (Zendel et al., 2017b), which tries to optimize hazard covering as discussed
previously, is one step in that direction.

A complementary action could be to develop testing features taking into account
the actual instantiated algorithm, for instance by forging black-box attacks, whether
adversarial or not: i.e. to design algorithm dependent “stress tests”.
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User centered validation
Safety issues should involve the recipient of APES’s production. A first reason, as
already mentioned, is that users are the best judge of how useful is an APES to
their needs – it will be for sure useless if untrusted or unsafe. Somehow, safety can
be considered as a feature of usability. This way of thinking has however several
limitations: safety constraints sometimes appears contradictory to ease of use, for
instance when cybersecurity requires complex passwords or even more complex
protocols to log into a computer system.

Another reason for placing user at the center, whether it is a human or another
artificial system, is to resist to over specification that may impose too large security
margins at the cost of lower efficiency. It is also a way to bypass the question of
formally defining a target operating domain, which is a difficult task, and almost
impossible when dealing with high dimensional data. Subsuming safety under
usability is a way to circumvent the problem of forecasting its operating domain
independently of an actual usage and leads to virtual verification, proof or testing.

Systemic safety
A current trend of modern industrial design is to assemble COTS (Commercial off-
the-shelf) components, relying on data sheets characterizing their performance, and
ideally their operating domain. APES are systems that may be considered as COTS
of a bigger system, and may also itself contain COTS (think of deep image features
such as currently used in computer vision).

The problem with the classical practice of decomposing a system in several com-
ponents to assess global system safety as a combination of unitary verification and
validation procedures is difficult to apply to APES.

• Ideally, we would like to know how, when and on what applying a given
algorithm to provide a satisfactory solution. APES are complex, and the way
their performance is described (see benchmark section pg. 152) is usually
not sufficient or correctly focused to predict how errors may propagate to
the bigger system and cause failure. Fundamentally, there is no clear way to
identify or describe an operating domain, especially when machine learning
designed components are involved.

• ML based components are likely to be updated regularly in a system, without
modifying the hardware or software structure, simply by modifying their
parameters (think of a whole deep network as a parameter described by
representations such as Open Neural Network eXchange files)22. A new version
will generally improve the component performances on average, but will find

22https://onnx.ai/
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difficult to guarantee non regression on several data. The impact of this
updating on the global system performance and safety becomes difficult to
predict.

• Assessing the safety of APES as a system assembling several components also
raises questions. The main obstacle is the way modern perceptual systems are
created using Deep Learning techniques (end-to-end design, fine-tuning, multi-
task, memory networks) and global optimization that make almost impossible
to assign a functional role to the various parts of the networks.

5.4 Research directions

It is too soon to state what should be the good ways to assess safety of complex high-
dimensional machine learning based processes such as found in APES, in particular,
it appears unclear when and where to use formal verification methods, if they can
be completed or even replaced by more empirical strategies. Four more focused
research directions to mature this problem are proposed in the following:

Joint design of run-time failure prognosis and recovery

Equipping a system with a run-time failure prognosticator is a possible step
towards improved safety, but not a final objective. The question remains of
what should be done once a failure prognostic has been detected: should
the system simply send a warning, or start more complex recovery actions to
escape, counter or protect itself from the failure cause?

In either case, a prognosticator should take into account the failure origin:
an accidental out-of-distribution data cannot be considered the same way as
a malicious adversarial attack, may have a different impact in case of not
failure detection and should be countered accordingly. Recovery means can
also be harmful or have a too negative impact on usability, potentially leading
to hazardous behavior of the global system.

A key research direction is therefore to design a functional architecture able
to handle various types of failures with corresponding recovery or defense
strategies.

Explainability for user centered validation

Pure formal verification of APES is difficult, especially when they have been
designed by machine learning techniques. One proposed alternative of a
third party evaluation is to involve explicitly the user/client for contextual
validation as the better judge of the satisfaction of his/her requirements.
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In chapter 4, it has been suggested to measure explainability quality as failure
prediction: it is proposed to extend this idea and make explainability a tool
for assessing the safety of the perceptual system by giving an overview of its
behavior to the user.

A first objective is to figure out what kind of explanation or justification is
useful for this purpose and to examine what category of APES is likely to be
validated by usage, i.e. what type of prediction is expected, from what data,
with what level of interaction. Also, if explainablity is to be considered as a
sign production, it will be interesting to examine on what kind of media they
will be conveyed (visual, sound, haptic, etc.), in what way they will refer to
the system behavior features (as index, icon or symbol), and how they can be
reliably produced.

A second series of problems is to differentiate the role of explainability at three
different stages of a system life-cycle: as a tool to help design, at run-time to
check system behavior and for a post-hoc analysis, targeting three different
types of recipients: engineer, end-user and authority.

Multi-task system safety

Designing multi-task systems that partly share common resources is a way
to regularize inner representations and features through machine learning
(Caruana, 1997; Evgeniou and Pontil, 2004; Ruder, 2017) and is expected
to make the system globally more robust and accurate. When addressing
safety issues, multi-task approaches can be regarded as a difficulty or as an
opportunity.

As a difficulty, a problem is to define a generic multiple objective evaluation
framework for APES. What trade-offs and/or correlations are active and
acceptable? Do errors propagate between tasks? What are the components
involved, and what is their main impact to performance? A clear view on
those questions is necessary to understand and describe a multi-task system
behavior, and is therefore critical for safety assessment.

However, the fact that the system is designed to jointly perform several tasks
can be beneficial to failure detection, as each task to be completed provides
a different view of the situation, and may be used to transfer behavioral
information from one task to another, for instance in case or corrupted input
data.

5.4 Research directions 177



Certification of APES
An important dimension of system safety is the design of norms and protocols
that would lead to their certification by authorities allowing their actual
usage.

Modern perceptual systems such as APES make a central use of machine learn-
ing, which exploit several data sources and annotations with various controls
and heuristics. These techniques (and sometimes tricks) make perceptual
prediction performance apparently improve, but not with enough convincing
justification.

There are two issues related to certification: qualification of the predictive
function in its operating domain, but also of the way it has been settled – the
machine learning phase.

One feature of the first issue is the design of testing datasets which should
1/ reliably cover the expected operating domain and 2/ reveal algorithm
resilience to known hazards. The design of adversarial attacks as algorithm
dependent “stress tests” is probably an activity that should be emphasized
given the current instability of deep networks.

Regarding the second issue – the impact of the machine learning phase –
one of the well known problem is the reproducibility of results: many works
do not show in their experiments a correct account of the bias-variance
dilemma, making the claimed performances and the generalization capacity
questionable. Evaluation and design protocols should give means to assess
faithfulness of the results, of the ways operating points are controlled, of the
robustness to annotation noise or data poisoning, for instance.

Synthetic data simulation or generation could be useful to help addressing
those two issues. Simulation techniques have now reached a state where
photo realistic data is available at low calculation cost, for instance (see the
last Turing architecture from Nvidia which integrates hard wired ray tracing),
although designing models remains an expensive task. Generative models
are also able to produce data with nice variety and look, and have been
used to complement data distribution. Their possible contribution to safety
assessment is still to be justified.
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6Conclusion

Summary

Features of Autonomous PErceptual Systems

The purpose of this document was to discuss the consequences of applying an idea
of autonomy to perception with the underlying hypothesis that developing such
a property is the key to its reliability, and therefore to its potential usability for
demanding applications. The schedule of this practical objective is justified by the
maturity level that can now be envisaged thanks to the latest development of Deep
Learning.

A first direct implication of autonomy is perceptual agency: when speaking of
autonomy, we indeed implicitly assume the idea of an agent, i.e. a dynamic system
with components interacting between themselves and with an outside.

The specificity of a perceptual agent is its ability to express for a known recipient
a measure of or a sign about the world. The value of what is expressed depends
on the needs of this recipient: autonomy is granted if the perceptual system takes
its responsibilities and agrees in an explicit form with the user on the quality and
requirements that it should satisfy, i.e. if it is able to establish and fulfill a contract
defining the nature of the expected perceptual service. A formalized interaction with
the user/client is a key feature of a trustworthy perception.

The conceptual and functional separation between perception and cognition is
unstable: there is no such process as pure perception that can operate without
memory, learning, reasoning, knowledge, decision, etc. Conversely, perception is
also a fundamental faculty of what is called cognition. Acknowledging the cognitive
dimension of perception is required to provide it with some autonomy.

Instantiation of Autonomous PErceptual Systems

The design of APES’s rests on two conceptual pillars: interactivity and learning.

Interactivity means that the system is able to act and to be receptive to some inputs.
The specificity of APES’s functional pattern is the double source and destination of
interaction: the outer environment and a user/client.

The interaction with the environment can be apprehended under a “classical” ac-
tive perception approach. Two of its essential features: attention, mostly as a soft
modulating process, and dynamic sequential information integration have been
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incorporated as standard functional patterns in deep learning formalism and archi-
tectures.

Formalizing the interaction between the system and the user that receives the
products of perception can be one answer to a better control of the system behavior:
each part can be involved in a dialog to specify in an explicit and trustful way what
is expected and what is achievable, to monitor the state of achievement or to even
collaborate to produce the usable perceptual outputs. The introduction of such
a dialog at the perceptual level requires the development of a specific formalism
able to express several aspects of system behavior and implies reliable predictive
self-assessment capacities to avoid misunderstanding.

Machine learning is now a prerequisite to artificial perception design. Its super-
vised framework shows the best performance, but relies on the availability of large
databases and restrains the dependability of predictions to the boundaries defined by
the training database. Several strategies or settings have been proposed to respond
to this limitation, typically variations of the supervised pattern combining multiple
types of data or hybridization with knowledge based models, but often with lower
performance.

The concept of autonomy usually refers to on-line adaptive operating capacities:
one idea is to extend it to the development of those capacities, not only their usage,
and make learning a constitutive part of APES’s life, with the underlying hypothesis
that the acquisition of reliable perceptual skills depends on endowing a perceptual
system with some developmental autonomy and capacities such as continual or
never-ending learning able to improve consistently their quality and the extension
of their repertoire.

Another argument for more autonomy when learning is the complexity of cognitive
skills such as perception that involve multiple interdependent high dimensional func-
tions and components sharing global informational resources in an intertwined way:
the precise specification of each component and their relations is an overcomplex
task. One answer to master this complexity, and one of the reasons for its success, is
end-to-end deep learning with its capacity to transfer specification complexity to a
global optimization problem given a parametric architecture and learning samples.

Such a design principle allows great creativity, but has also several limitations: it
suffers from a well-known black-box phenomenon making difficult the understand-
ing and control of its behavior. This weakness leads to a new important feature
requested for autonomy: intelligibility. Equipping components and systems with
this property is currently a major concern of AI, with related objectives such as justi-
fication, explanation, explicit reasoning, uncertainty representation, transparency,
accountability, responsibility, etc. but is still in its infancy: agreed and practical
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definitions, clearly identified problems with metrics and evaluation protocols are
still lacking.

With the arrival of AI components and techniques in many application and scientific
domains, their safety and trustworthiness are becoming topics of increasing interest.
Classical validation and verification techniques based on formal proofs are no longer
relevant or applicable for systems that rely on machine learning principles. Artificial
perception fall in this category. Explainability, robustness testing and prediction of
bad or unpredictable behavior are current research objectives aiming at providing
new safety tools. A question that requires further investigation is whether aiming at
autonomy and letting systems develop new skills on their own, but in a accountable
way, could be an alternative strategy to gain safety.

Perspectives
Several challenges and possible research actions that could contribute to mastering
Artificial PErceptual Systems have been identified in the core of this document. This
section proposes a more organized research program.

Short term actions

Incrementability of perceptual skill acquisition

The general problem is to study the capacity of a visual system to acquire incremen-
tally new interpretation capacities without forgetting the old ones. A first research
action is the PhD Thesis of Alexis Lechat (2018-2021) where the objective is to
address the incremental learning of visual question answering (see box ’Incremental
learning of Visual Question Answering’ pg. 106).

Dialog as collaborative specification and explanation

A future PhD Thesis (2020-2023) is expected on the problem of designing an explain-
able by design perceptual system. The main idea is to represent the behavior of an
algorithm as a natural language-record of the steps that have led to collaboratively
realize a perceptual task (detection, recognition, "captioning", monitoring, tracking,
etc.) by two agents having distinct roles but able to dialog which each other to
exchange various types of information.

Self-diagnosis and certification of perception

The question of mastering the use and integration of machine learning enabled per-
ceptual systems gives rise to new issues: How to ensure a given level of performance?
How to avoid failure?
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The proposed contributions to answer those questions will be at two levels: de-
velopment of specific tools to assess operating domain (adversarial defense, out-
of-distribution detection), and definition of generic methods or protocols able to
validate perceptual functions. The proposed actions will be carried out as part of ON-
ERA research projects and participation to discussion groups about standardization
of AI.

Long term objectives

Several long term objectives have been described throughout the document. We
recall them briefly in this section and organize them in several clusters.

Systemic and dynamic dimension of perception

As argued in chapter 3, bringing autonomy in perception breaks the static feed-
forward functional pipeline classically exploited in artificial perception design (the I
pattern) and requires a more dynamic and systemic approach (Y or X patterns).

Systemic complexity management: Addressing perception as a system containing
multiple interacting dynamic components is a difficult objective, both from practical
and conceptual points of view. Deep learning formalism provides one answer when
deployed as an end-to-end approach, but remains opaque and rigid. Other more
flexible alternatives do not compete yet in terms of performance.

Versatility of perception: Perception potentially serves multiple goals that depend on
the user needs. Designing or modeling a perceptual system able to do so addresses
three specific issues: optimality of resource allocation for multiple objectives or tasks,
incrementability of tasks and evaluation of such versatile system.

Dynamics of versatile perceptual systems: These two essential features of an Au-
tonomous PErceptual System (systemic and dynamic dimensions) should be ad-
dressed jointly. Three research directions are of interest: better models and control
tools of task spaces, generalized attention as an online task-based dynamic selection
of (computing) resources and control of contextual priors and functional dynamics.

Learning of perceptual dynamical systems: APES’s are complex dynamic objects with
potentially highly dimensional state spaces and two contingent worlds to deal with:
the external environment and the user/client. Learning such systems is therefore
difficult, and two research directions are proposed to exploit an autonomous dimen-
sion: adapt attention skills to learning itself, and develop specific tools to acquire
reliable and helpful dialogue with the user/client to define perceptual objectives and
requirements.

Joint dynamics of operation and development: The idea of APES makes the sequen-
tial separation of development and operation – learn and run – rigid, leading to

182



limited usage domain and low efficiency. Three different issues are proposed to
unify those activities: interactive learning involving user/client, long-term moni-
tored integration of experience and information (“curriculum learning”) and joint
opportunistic exploitation of multiple learning schemes.

Perceptual interaction

A foremost feature of an APES is its ability to interact with the user/client – human or
machine – to improve the usability of perceptual production. Introducing explicitly
the user/client suggests several research issues necessitating investigation.

Model and evaluation of perception as sign production: Considering perceptual
outputs as signs implies that their value and relevance depends on the user/clien-
t/recipient needs. The introduction of this third part requires new ways to model
and evaluate perceptual processes as semiosis.

Specification of perceptual service: Considering perceptual process as a service is
a way to structure the various features required to ensure a successful perception,
and involves three stages: a contracting phase where the perceptual process and
user/client agree on how perception should occur, an actual perceptual process, and
a final checkable delivery step. A complete specification should describe these three
stages: the question is to define them in a usable formalism.

Clarification of the intelligibility objectives: One dimension of the interaction be-
tween the perceptual system and the user/client is to provide insight of its inner
behavior in a meaningful way. This question of meaningfulness or intelligibility is
quite naively addressed by the AI community and would benefit from conceptual
tools developed in natural or human sciences to make it clearer.

User centered design: A possible exploitation of intelligibility capacities provided by
the perceptual system is for design purposes. Two research objectives are possible:
using design success or failure as a key indicator of intelligibility capacity and develop
corresponding protocols and benchmarks; integrating intelligible features to a global
design process.

Text as pivot computational representation: Natural language is a spontaneous intel-
ligible representation that may refer to multiple contents: outer world description,
inner system state, queries, etc. Thanks to deep learning and available databases,
techniques to associate digital and language representations have been proposed to
solve problems such as captioning, visual question answering, dialog: one proposed
research direction is to extend those techniques to rule the interaction between the
system and the user/client in a semantic way with a shared vocabulary.
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“Grown-up” perception

The maturation of perceptual systems requires new tools and research objectives to
make them reliably usable.

Self-assessment: Knowing what they can achieve is a required faculty for perceptual
systems to become truly autonomous and responsible. Self-assessment tools must be
developed according to two objectives: qualification of their capacity to faithfully
report outer-world content and evaluation of their ability to satisfy the user/client
needs. The complexity of deep learning and limited understanding of its behavior
makes these two objectives difficult to achieve in current state of the art.

Multi-task system safety: Combining and sharing resources to accomplish multiple
tasks is a current strategy to improve performance when using machine learning
techniques. Multiplying task objectives can be both detrimental and beneficial
regarding the trustworthiness of the perceptual process: the contribution of each
system component to the overall output is difficult to identify, but the monitoring of
each task may lead to more efficient abnormal behavior detection.

Joint design of run-time failure prognosis and recovery: The study of perceptual
system safety often separates robustness control to abnormal behavior detection
issues. A useful research direction is to jointly handle both sides, and design global
strategies able to efficiently recover from the various sources of failure.

Explainability for user centered validation: Explainability is a desired property of a
perceptual system potentially capable of helping to assess the safety of their behavior.
Two directions of investigations are required to mature this idea: precising the
nature of explanations useful for this purpose, and identifying the phase of the
system life-cycle (design, run-time or posterior analysis) they refer to.

Certification of APES: The maturity of a technology is revealed by certification
concerns, i.e. by the development and usage of methods, tools and protocols able
to convince authorities that a proposed system is safe and satisfies an intended
behavior. Such a global methodology is still waited for APES, especially because of
their dependence on machine learning techniques. Several related problems have
been addressed (corner cases or hazards identification, operating domain coverage
using for instance data synthesis, machine learning good practice, adversarial defense
validation etc.) but require improvement to be transformed in a general approach.

Aligning natural and cognitive science with engineering

A last series of rather speculative research questions address the relation between
artificially engineered and natural systems. Regarding perception, the question can
be divided in two strategies: reverse engineering of natural and human intelligent
skills (as proposed by (Lake et al., 2017)) or development of a general “strong AI”,
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i.e. an artificial system hosting intelligent skills or behavior comparable to humans,
as a proxy to artificial perception.

Representation elimination: There is still room to discuss the relation between
perception, cognition and even consciousness. One question is the status and
usefulness of perceptual representations, mental or formal, as an essential feature
of models. This issue has been debated in natural science and philosophy, but
building, exploiting and validating an engineered version of a “perception without
representation” remains difficult.

Biologically plausible and efficient models: Natural science models can inspire artifi-
cial perception approaches. Two possible directions are worth studying: attention
principle, either as selection or modulation, which has rather recently given rise
to a large body of studies in AI, although not really aligned with natural science,
and predictive coding that makes perceptual prediction a fundamental principle of
neural organization and processing but has difficulty to scale and to compete with
the problems deep learning currently addresses.
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Towards Autonomous PErceptual Systems

The objective of this document is to introduce the principle of Autonomous PErceptual System (APES) as an 
object of study.

The functionalities of artificial perception, in particular vision, have become both easier to design and more 
efficient through the use of a set of techniques and development environments grouped under the term 
"Deep Learning". They have reached a certain level of maturity making it possible to envisage their use for real 
or even critical applications.

The research direction proposed here is to provide perception with a certain degree of autonomy envisaged as a 
means of guaranteeing its reliability.

The introduction of such a property implies to reconsider the status of perception no longer as passive 
functionality but as an activity involving as explicit stakeholders the environment to be perceived but also the 
recipient of the perceptual products with which the system maintains a contractual relationship determining the 
nature of the expected service and the means to guarantee it.

The study of autonomous perceptual systems thus leads to a research program organized along three axes: the 
design of a perceptual activity articulating functional dynamics and learning processes, the development of an 
inherent intelligibility of the mechanisms of perception for monitoring, specifying or justifying their behavior, and 
the implementation of a general approach to guarantee their safe and controlled use.

Keywords :
COMPUTER VISION ; ARTIFICIAL INTELLIGENCE ; ACTIVE VISION ; MACHINE LEARNING ; EXPLAINABIIITY ; 
CERTIFICATION ; AUTONOMY

Vers des systèmes perceptifs autonomes

L'objectif de ce mémoire est d'introduire le principe de système perceptif autonome comme objet d'étude.

Les fonctionnalités de perception artificielle, en particulier de vision, sont devenues à la fois plus faciles à 
concevoir et plus performantes par l'utilisation d'un ensemble de techniques et d'environnements de 
développement regroupés sous l'expression apprentissage profond "Deep Learning". Elles ont atteint un certain 
niveau de maturité permettant d'envisager leur utilisation pour des application réelles voire critiques.

La direction de recherche proposée ici est de munir la perception d'un certain degré d'autonomie considéré 
comme moyen de garantir sa fiabilité.

L'introduction d'une telle propriété implique de reconsidérer le statut de la perception non plus comme 
fonctionnalité passive mais comme une activité impliquant comme parties prenantes explicites l'environnement à 
percevoir mais également le destinataire des produits perceptifs avec lequel le système entretient une relation 
contractuelle déterminant la nature du service attendu et les moyens de le garantir.

L'étude des systèmes perceptifs autonomes conduit ainsi à un programme de recherche organisé selon trois 
axes: la conception d'une activité perceptive articulant dynamique fonctionnelle et processus d'apprentissage, le 
développement d'une intelligibilité propre des mécanismes de perception pour surveiller, spécifier ou justifier leur 
comportement, et la mise en œuvre d'une démarche générale permettant de garantir leur utilisation sûre et 
maîtrisée.

Mots-clés :
VISION ARTIFICIELLE ; INTELLIGENCE ARTIFICIELLE ; VISION ACTIVE ; APPRENTISSAGE AUTOMATIQUE ; 
EXPLICABILITE ; CERTIFICATION ; AUTONOMIE
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