
HAL Id: tel-03080700
https://hal.science/tel-03080700v1

Submitted on 17 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assisted strategic monitoring on call for tender
databases using natural language processing, text

mining and deep learning
Oussama Ahmia

To cite this version:
Oussama Ahmia. Assisted strategic monitoring on call for tender databases using natural language
processing, text mining and deep learning. Document and Text Processing. Université de Bretagne-
Sud, 2020. English. �NNT : �. �tel-03080700�

https://hal.science/tel-03080700v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE BRETAGNE SUD

ÉCOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

« Oussama AHMIA »
« Veille stratégique assistée sur des bases de données d’ap-
pels d’offres par traitement automatique de la langue natu-
relle, fouille de textes et apprentissage profond »

Thèse présentée et soutenue à Vannes, le 06/03/2020
Unité de recherche : IRISA
Thèse N° : 555

Rapporteurs avant soutenance :
Mohamed Nadif Professeur, Université Paris Descartes
Thierry Charnois Professeur, Université Paris 13

Composition du Jury :
Président : Bruno Crémilleux Professeur, Université de Caen Normandie

Examinateurs : Alexandre Garel Encadrant industriel, OctopusMind
Jeanne Villaneau MCF, Université de Bretagne Sud
Nadir Farah Professeur, Université d’Annaba

Dir. de thèse : Pierre-François Marteau Professeur, Université de Bretagne Sud
Co-dir. de thèse : Nicolas Bechet MCF, Université de Bretagne Sud

REMERCIEMENTS

Je tiens avant tout à remercier mes directeurs de thèse, Pierre-François Marteau et
Nicolas Béchet, qui m’ont guidé tout au long de ces années faites de hauts et de bas,
sans jamais perdre leur enthousiasme. Leurs précieux conseils et orientations ont été
d’un grand apport pour mon travail.

Merci d’avoir cru en moi et de m’avoir poussé à aller de l’avant même dans les
moments les plus difficiles.

Mes vifs remerciements vont également à Nadir Farah qui a su dès notre première
rencontre canaliser mes efforts et booster mon ambition dans le domaine. C’est en fait
grâce à lui que j’ai acquis le goût de la recherche, il a toute ma gratitude.

Aussi, je tiens à remercier Frédéric Oliveau pour sa patience, son soutien continu
et l’intérêt qu’il a porté à mon travail. Ses vives critiques m’ont permis de me remettre
sur les bons rails. Le soutien et l’écoute attentive d’Alexandre Garel, sa réactivité dans
les moments de blocage ont facilité l’avancement de mon travail. Je le remercie il a été
de très bon conseil et un ami.

Sans oublier toute l’équipe d’OctopusMind que je remercie pour leur soutien et
disponibilité, ils ont toute ma gratitude. Les discussions riches et constructives que j’ai
eu avec les membres de l’équipe expression ont été très bénéfiques, particulièrement
avec Jeanne Villaneau et Sylvie Gibet.

Je remercie également mes rapporteurs, Mohamed Nadif et Thierry Charnois ainsi
que les membres du jury, dont le président Bruno Crémilleux qui m’ont fait l’honneur
de s’intéresser à mon travail.

Enfin merci à Papa, Maman, Nourhene, Alexandrine qui ont toujours été à mes
côtés dans les moments difficiles et n’ont jamais cessé de croire en moi.

3

TABLE OF CONTENTS

Introduction 13
0.1 Context . 13
0.2 Challenges and problematics . 15
0.3 Main contributions . 19

1 TED dataset 23
1.1 Introduction . 23
1.2 The (full-document) fd-TED corpus . 25

1.2.1 Common Procurement Vocabulary 25
1.2.2 The documents . 26
1.2.3 Classification Example . 30

1.3 The (parallel) par-TED corpus . 30
1.4 Conclusion . 34

2 Document embedding 35
2.1 Introduction . 35
2.2 Related works . 36

2.2.1 Artificial neural networks concepts 43
2.2.2 Word2vec . 45
2.2.3 Latent semantic analysis . 46
2.2.4 Convolutional Neural Networks 49
2.2.5 Recurrent Neural Networks . 53
2.2.6 Long Short Term Memory networks 54
2.2.7 Attention mechanism . 57

Transformer . 61
2.2.8 Hierarchical attention . 65

2.3 Contribution . 68
2.3.1 LSA+W2V . 69
2.3.2 CnHAtt . 71

5

TABLE OF CONTENTS

2.3.3 Experimentation . 76
Experimental protocol . 77

2.3.4 Experimentation Result . 79
2.3.5 Conclusion and perspectives . 90

3 Applicative tasks 93
3.1 Introduction . 93
3.2 Information extraction . 94

3.2.1 Models used . 97
3.2.2 Surface extraction . 100

Methodology . 100
Features used . 102
Used dataset . 102
Experimentation and results . 103

3.2.3 Renewal information extraction 107
Methodology . 107
Used dataset . 107
Features used . 109
Experimentation and results . 109

3.2.4 Financial data extraction . 110
Methodology . 110
dataset . 112
Experimentation and results . 113

3.3 Recommender system . 116
3.3.1 Thésaurus classification . 117
3.3.2 Activity classification . 121
3.3.3 Document based recommendation 123

3.4 Conclusion and perspectives . 127

Conclusion 129

Bibliography 133

6

LIST OF FIGURES

1 Information type available on European Tender Platform TED 16

1.1 Format of the documents for the processed dataset fd-TED. 29
1.2 Format of the documents in the par-TED corpus. 31

2.1 Distributed Memory Model of Paragraph Vectors architecture taken from
[26] . 39

2.2 Distributed Bag of Words version of Paragraph Vector architecture taken
from [26] . 39

2.3 LSA + word2vec architecture taken from [31]. 41
2.4 lda2vec architecture overview taken from [34] 42
2.5 The architecture of a Perceptron. 44
2.6 Figure illustrating the architecture of a multi-layer perceptron taken from

[38]. 45
2.7 Two word2vec architectures: CBOW and Skip-gram. 46
2.8 SVD decomposition of the A matrix: A = USV T 48
2.9 The Uk, Sk, V T

k matrices after applying a Rank k = 2 approximation. . . . 48
2.10 CNN example that processes the sentence "I am watching a movie" . . 51
2.11 Illustration of a CNN layer: in this example, the convolution has a window

size of 3 and a pooling layer with 3 slices. 52
2.12 Illustration of an unfolded RNN Layer . 53
2.13 Figure illustrating an example of long context (long-term dependencies)

in RNNs. 54
2.14 Illustration of an unfolded LSTM Layer 55
2.15 Detailed illustration of an LSTM cell. 57
2.16 One word “perceived” differently when associated to different words in a

same sentence. 58
2.17 Illustrating the information bottleneck in an auto-encoder architecture. . 59
2.18 Example of the Attention mechanism taken from [5]. 59
2.19 Transformer model architecture taken from [48]. 62

7

LIST OF FIGURES

2.20 Illustration of scaled dot product taken from "Attention is all you need" [48]. 63
2.21 Transformer model architecture taken from "Attention is all you need"

[48] . 64
2.22 Hierarchical Attention Networks architecture taken from [11]. 67
2.23 Figure illustrating an example of word vector averaging result with the

sentence "Télécomunication optique et vidéo" 69
2.24 Illustration of the way the combination of word2vec and LSA is achieved. 70
2.25 Illustration of the convolution-based attention mechanism developed in

our model at sentence level. 73
2.26 Illustration of the convolution-based attention mechanism developed in

our model at document level. 75
2.27 Figure illustrating attention weights in a sentence and a word level on a

20NewsGroup document in the class "sci.electronics" 88
2.28 Figure illustrating attention weight for a word by multiplying the word

attention weight by sentence attention weight on a 20NewsGroup docu-
ment in the class "sci.electronics" . 88

2.29 Figure illustrating attention weights in a sentence and a word level on a
FULL-TED document in the class "Installation services of communica-
tions equipment" . 89

2.30 Figure illustrating attention weights a word by multiplying the word atten-
tion weight by sentence attention weight on a FULL-TED document in
the class "Installation services of communications equipment" 90

3.1 Diagram of the relationships between naive Bayes, logistic regression,
HMMs and linear-chain CRFs taken from[87] 99

3.2 Figure showing the labels used. 101
3.3 Figure showing error in sequences labeled by a human expert. 105
3.4 Figure showing the labels used for tender renewal detection. 108
3.5 Figure showing the tool developed for sequence labeling. 108
3.6 Figure showing the result of applying the regex for lot detection. 111
3.7 Figure showing the validation interface of the detected amounts. 112
3.8 Figure showing the validation interface of the detected amounts in pro-

duction environment. 115
3.9 Precision recall curve for the model used in production. 121
3.10 J360 web application subscription interface. 122

8

LIST OF FIGURES

3.11 Figure showing the query creation interface. 123
3.12 Figure showing the recommendation interface. 126
3.13 Figure showing the market analysis tool on j360 web application. 128

9

LIST OF TABLES

1.1 Number of documents for each level of the CPV code 26

1.2 Number of documents fully translated for some pairs of languages. . . . 27

1.3 Number of (fully translated documents/ unique sentences/ unique words)
per language. 27

1.4 Results obtained for administrative sentences detection. 29

1.5 SVM classification results . 30

1.6 Example of some most similar words to the word "Twitter" on the English
and French Corpus using word2vec representation and cosine similarity. 32

1.7 Example of some most similar words to the word "Linux" on the English
and French Corpus using word2vec representation and cosine similarity. 32

1.8 Example of some most similar words to the sum of the word vectors
"lawyer + advice" and "avocat + conseil" on the English and French Cor-
pus using word2vec representation and cosine similarity. 33

2.1 Excerpt of the confusion matrix for talk.religion.misc category obtained
using a SGB classifier on the 20NG dataset, using the various embed-
dings. 79

2.2 Results obtained for the 20NG dataset. 81

2.3 Results obtained for the TED-FR dataset. 83

2.4 Results obtained for the ohsumed dataset. 84

2.5 Results obtained for the RCV1 dataset 85

2.6 Results obtained for the TED-FILTER dataset. 85

2.7 Average time needed by CnHAtt and HAT to train and predict a batch of
512 observation. 86

2.8 Results obtained for clustering using Kmeans algorithm. 86

2.9 Results obtained for clustering using Hierarchical clustering algorithm.
The evaluation measure is the Rand index (No evaluation has been ob-
tained for TED-FR due to the size of the data set). 87

11

LIST OF TABLES

3.1 Results obtained with the different models. 104
3.2 Scores obtained by CRF context (3) model for the different labels. . . . 104
3.3 Summary of weights associated with the most discriminant characteris-

tics, by label, for the CRF context (3). 106
3.4 Scores obtained by the CRF context (3) model for the different labels. . 109
3.5 Scores obtained by CRF context (3) model for the different labels. . . . 113
3.6 Scores obtained by an SGD model using the left/right BOW for the dif-

ferent labels. 114
3.7 Time needed by the SGD and CRF for training and for predicting the

whole dataset (2000 Sentences) . 115
3.8 Scores obtained on the initial dataset used for the "thésaurus" classifi-

cation task using a train/test split of 80%/20%. 120
3.9 Scores obtained with the enriched dataset, used for the "thésaurus" clas-

sification task using a split train/test of 80%/20%. 120
3.10 Comparison between the initial and the enriched datasets for "thésaurus"

classification. 120
3.11 Scores obtained on the initial dataset used in "thésaurus classification

task using a split train/test of 80%/20%". 122

12

INTRODUCTION

0.1 Context

With the advent of the world wide web, public, semi-public and private procure-
ment actors all around the world have been massively publishing procurement related
documents on public platforms or websites. This created a relatively large corpus con-
taining precious economical information. Nevertheless, accessing the right information
at the right time, remains a challenge for every company. Moreover, a large number
of strategic information is lying around, hidden in a vast amount of unstructured or
semi-structured documents.

OctopusMind (previously Jurismarchés), is a French "SME" (Small Medium Enter-
prise) specialized in strategic monitoring applied to public procurement. Its main core
business, is to notify its subscription based users with all the newly published public
procurement projects related to their profiles 1, by providing them with all the docu-
ments related to this project.

It has lived through the digital revolution, from newspaper cuts up to present day
using web crawlers fetching information from around the world, databases, search en-
gines. With digitalization comes new opportunities and new challenges and you can
take them as struggle or as possible opportunities for growth.

While starting this CIFRE 2, OctopusMind has already gone a long way using com-
puter technologies in its business. Documents were harvested through a modern frame-
work, put in a database, and sent via email. Indexing and querying capabilities of
Search engines were thoughtfully exploited, as well as advanced heuristic rules to
maintain quality and consistency of data and speed up the work of analysts. Also
j360.info has just been released, targeting a wider audience, than the historic SEPAO
offer 3. These methods have their limitation as they rely heavily on human supervision

1. Customers profiles contains a set of criteria, example: activity field, financial information, localisa-
tion.

2. CIFRE (Industrial Agreement of Training through Research) is a PhD thesis prepared in collabo-
ration of both a public research laboratory and a french private company.

3. Users with premium subscriptions, benefiting from a tailored alert service

13

j360.info

Introduction

and engineering to work properly. In order to address these limitations using more
advanced NLP and text mining methods was mandatory.

In order to achieve such a goal, several tasks have to be addressed:
— Automatic information extraction, in order to find/extract a set of relevant infor-

mation (limit date, financial information, project renewal detection, and son on)
hidden in the text instead of doing it manually.

— Document recommendation, which consists of routing the relevant document to
the relevant user/client.

— Document classification, in both a supervised way, by attributing the correct la-
bel to a given document according to its content and also in an unsupervised
way, which allows us to explore the corpus in the hope of detecting interesting
grouping which allows for example the detection of new emerging activities.

With the continuous improvement in Natural language processing techniques, many
industries are becoming able to solve increasingly complex problems. As each year a
major milestone is reached. 2001 was the advent of the first neural network based
language modelling [1] allowing distributed representation for words that catches word
semantics. In 2008 the use of Multi-task learning [2] in NLP, allowing to share param-
eters between models that are trained on multiple tasks, thus creating representations
that are useful for many tasks. 2013 was the year where word2vec [3] was born, al-
lowing better performance for RNN and CNN in NLP tasks. In 2014 Sutskever et al [4]
introduced the use of sequence to sequence models for machine translation, achiev-
ing state of the art results. 2015 brought to us the use of attention neural networks
for machine translation [5] beating all other methods at the time. 2018 was the year of
pre-trained language models, only requiring unlabelled data to create the initial model.
Usually these models can be used across a diverse range of NLP tasks. For instance
BERT [6], was able to perform document classification, machine translation, and se-
quence labeling after it was fine tuned according to the target task.

14

Introduction

0.2 Challenges and problematics

Nature of the data

Public procurement documents are created and published by public actors (munic-
ipalities, state owned companies, and so on). This documents usually comes in two
types:

— Call for tenders (also known as call for bids) is a public procurement process that
generates offers from competing companies in order to obtain an award of busi-
ness contract for works, supply or service activity. The call for tender document
contains a set of information (the description of a project, the maximum budget
allocated, the different technical criteria, and so on), also each call for tender
has a deadline, beyond which the the call for bids is considered unsuccessful.
The public actor will then select the best offer according to a set of criteria.

— Contract award notice is the official form of notification issued by the public buyer
to publicly notify the successful bidder and the award price.

— There also exists other variations of those documents: Cancellations notice, Call
for registration, notice on future markets, design competitions, and so on 4

Figure 1 gives an idea of available documents types solely on TED, the European
Tender Platform.

4. For the purpose of this this thesis we will focus essentially on Call for tenders and "Contract award
notice".

15

Introduction

Figure 1 – Information type available on European Tender Platform TED

Each public entity around the world will publish its public procurement related doc-
umentation in the format they deem appropriate, as there is no standardized way of
doing it. These format differences make it hard to process automatically documents
from a source to another.

Also the fact that the documents are manually written, without accurate review,
makes them prone to spelling mistake. Moreover the style can be either very tele-
graphic, with long sentences without verbs, or in some case overblown (in some African
countries for example, where administrative contents tend to adopt a specific style).

In addition to that, the document contains administrative and legal information that
covers a big portion of text. This kind of information is usually considered as noise
when trying to understand the core business that describes the related project.

It is for these reasons that processing public procurement documents can be a
challenging problem. Having to develop methods that mitigate the noisy nature of the
data and the different format and syntactic structures from a source to another.

16

Introduction

Hardware limitation
Developing tools with the aim of integrating them into a pre-existing software environ-
ment, comes with a set of challenges. In addition to the fact that the methods developed
have to cope with some technical criteria (software compatibility, licensing type, and so
on), it also has to cope with cost, thus hardware, limitations.

One of the main challenges that we take into account when developing a natural
language processing model throughout this thesis, is to ensure that our solutions for
the various considered tasks (system recommender, text classification, information ex-
traction) are as efficient as possible. Therefore this efficiency objective is always taken
into account when designing a model. Hence the hyper-parameters of the models we
design (number of layers in a neural network for example) have to be chosen to opti-
mize the weight/size and the response time according to the hardware on which it will
be executed. Making the search for the right balance between efficiency and perfor-
mance is very challenging.

Lack of related corpus
In most cases, while addressing NLP (Natural Language Processing) tasks , it is nec-
essary to rely on textual resources to build models (for instance training an ANN or a
rule-based system), whether it is for information extraction or supervised text classifi-
cation. This textual resource has to rely on a domain-specific corpus that covers the
task objectives.

To our knowledge, public procurement domain is rarely explored by the NLP com-
munity. Therefore, no ready-to-use related corpus were to be found.

So, creating a dataset/corpus for each task we have to tackle is an unavoidable
step. However, employing experts to label a corpus can be very costly and in most
cases cannot be afforded by small and average size companies. So we had to be
crafty and some times tackle a problem in an indirect way to minimize the financial
expenses while accepting a minimal performance cost.

Information extraction
The nature of the documents processed by OctopusMind, and the public procurement
documentation in general, are usually presented in an unstructured format that con-
tains valuable information embedded into the raw text and submerged in legal and
administrative paragraphs, which make up most of the raw text.

17

Introduction

Targeted information is used to improve the user’s experience in OctopuMind’s plat-
form, also reducing the human workload. It allows the users to benefit from information
that cannot be obtained otherwise, since manually processing large number of docu-
ments ranging from thousands to millions can be difficult if not impossible, and surely
not cost effective.

Examples of relevant information that we aim at extracting include:

Financial data that can be indexed by a search engine allowing documents to be
filtered using these criteria; Information about the awardee of a project, this information
proves useful when performing competition analysis or market positioning; Evaluation
criteria (especially criteria involving sustainable development or social inclusion); Vari-
ous important dates in the project : deadline, renewal, etc; the place of execution; and
so on .

Document embedding
In order to use Machine learning models on textual data, it is mandatory to transform
the raw text into a vector of numerical features (of fixed size). This process is called
document embedding (or document vectorization).

The performance of either text classification (supervised or unsupervised) or rec-
ommender system algorithms will be directly linked to the embedding method we use.
Thus we had to develop a multi-purpose method to generate a document vector suited
with the different NLP Tasks we needed to address. This embedding method had to
satisfy a number of criteria, especially:

— Size limitation, the model has to be light weight in order to minimize the storage
overhead.

— Time complexity so it can be used for real time processing;
— Also it has to store semantic information of documents allowing to reflect the

semantic similarity between documents.

Recommender system
Document recommendation is the core business of OctopusMind, by rooting the most
relevant information to a given user according to their domain of activity. This task is
particularly strenuous due to the nature of the document we are working with. Further-
more, some of noise contained in the text can be confused with terms that characterize

18

Introduction

the domain of activity, depending on the context in which it appears. For example the
two sentences:

— "Section III: Legal, economic, financial and technical information."
— "...an existing legal framework to specifically analyze the mandate..."

The two sentences contain the word "legal": in the first sentence the word legal is
in a section tile, while in the second sentence it is part of the project description.

We also have to cope with the fact that the projects, subject of the call for tender,
are characterized with a deadline after which the document can no longer be recom-
mended.

0.3 Main contributions

This thesis is divided into three chapters. The first chapter describes a multi-lingual
corpus, that has been made available for the NLP community. The second chapter
proposes a survey of the state of the art in documents embedding and describes our
contribution to this field. The last part focuses on the different solutions we have devel-
oped and deployed in a production environment.

Two multi-lingual parallel corpora

In the chapter 1.1 we describe our first contribution, which takes the form of a multi-
lingual corpora "Tenders Electronic Daily" (TED) composed of two sub-datasets[7] cre-
ated from the TED’s 5 documents. We start by describing TED platform, by giving some
quantitative statistics and some use cases for which the database can be used.

The first sub-dataset, called fd-TED, is a (multilingual) corpus or aligned translated
documents contains about 3 million documents translated into the 24 languages of
the European union (DA, DE, EN, ES, FI, FR, EL, IT, NL, PT, SV, CS, ET, HU, LT, LV,
MT, PL, SK, SL, GA, BG, RO, HR). Each document is labeled with a set of hierarchi-
cal classes designating the core business of the project described in the document.
We also provide for each document a filtered version that is stripped of all the legal
and administrative content. We describe the process we got through to produce this
filtered version. This dataset can be used as a benchmark for supervised document
classification or to train machine learning models for business intelligence application.

5. https://ted.europa.eu/

19

Introduction

The second sub-dataset, called par-TED, is a corpus of aligned sentences trans-
lated to 24 languages extracted from the fd-TED corpus. It can be used for machine
assisted translation of juridical and technical documents, or the extraction of multilin-
gual terminology. This corpus contains 4 millions of unique sentences translated to at
least 23 languages. We explain in the related chapter, the heuristics we used to gener-
ate the par-TED dataset.

Document embedding

In the chapter 2, we address the document embedding problem. We start by a sur-
vey on the state of the art methods for document embedding. We then present our
contribution and position it within the state of the art, we also explain the thinking pro-
cess that drove us to develop such models. At the end of this chapter, we present the
experiments we carried out in order to evaluate the performances of our contribution in
comparison to the similar state of the art methods. Our contribution in this field comes
in this two following models:

Combining Latent Semantic Analysis and Word2vec

The first model referred, to as LSA+W2V [8], based on the combination Word2vec
and LSA vectorizations. This model takes advantage of these two well established
lexical semantics methods, thus allowing us to produce a low dimensional document
vector that catches both the general semantics of a document (general meaning) and
maintaining a lexical-conceptual description of this document.

Convolution based neural network for efficient text classification

The second model is a novel neural network architecture for text classification that
will be referred to as CnHAtt. Based on attention mechanism[9]. It is characterized by a
hierarchical structure allowing the different sentences to be separately considered ac-
cording to their importance. It enables large documents to be processed as it takes into
account the hierarchical nature of the text. The attention is calculated using a convolu-
tion[10] and a pooling layers. We made the choice of not relying on a Recurrent Neural
Network used in traditional models[11] [9], which allows it to be easily parallelisable,
therefore decreasing significantly the training and prediction time. We also developed a
number of variants, that gives more flexibility regarding the generated document vector.

We also developed a number of variants, that gives more flexibility regarding the

20

Introduction

generated document vector.

Applicative tasks
Chapter 3 focuses on the Applicative contributions, as we will describe the solutions

we developed and deployed to solve practical company problems, by explaining the dif-
ferent steps to solve each problem (data preparation, method design, evaluation). This
chapter is split up into two parts that address information extraction and recommender
system.

In the first part of this chapter, we describe the information extraction problems we
have solved. We start with a survey of the state of the art methods, then we explain
the motivation behind the models we chose to solve our problems, namely surface
extraction, market renewal detection and financial data extraction.

The second part of this chapter is about the creation of a recommender system. We
start survey of the state of the art methods to address this problem. Then we explain
the different models we used and we access their performance.

21

CHAPTER 1

TED

1.1 Introduction

Before tackling any NLP (Natural Language Processing) task, whether for informa-
tion extraction or supervised text classification, it is mandatory to rely on a domain-
specific corpus that covers the task objective.

One of the most important task at OctopusMind is related to automatic document
categorization. Being able to assign categories to documents according to their content
is a priority, as such ubiquitous task allows for the automatization of a wide range
of services, ranging from automatic recommender system (aiming at routing relevant
documents to the right user) to decision support tools, decreasing the experts/human
workload, hence saving time and costs.

In addition, document categorization allows to handle the deluge of data, since
being able to automatically process thousands of documents each day is impossible to
achieve manually or at least too costly for small business companies to afford.

Before starting any large scale classification task, as stated earlier, building a cor-
pus dedicated to this purpose was a priority. The corpus had to be multilingual (as
OctopusMind process document worldwide). It also need to be related to public pro-
curement and documents may embed some labels or labelling indications allowing to
use such corpora for the training of supervised classification models.

The "Tenders Electronic Daily" (TED) is the platform used by the European union
government to publish their public procurement related projects. Among other similar
sources, the TED platform publishes approximately 1,700 tenders, five times a week,
on the TED servers 1, or 460,000 contract notices per year. Among which 175,000
tenders describes projects worth around 420 billion euros.

The TED is a large source of semi-structured and multilingual data. This dataset can

1. http://ted.europa.eu/TED/main/HomePage.do

23

Partie , Chapter 1 – TED dataset

effectively be used to address complex machine translation, multilingual terminology
extraction, text-mining, or to benchmark information retrieval systems. In addition, for
each document (call for tenders, award notification..) a set of labels is assigned to
precisely describe the core business information that describes the related project.

These raw data are available as bulk downloads in XML format with a complex
structure. Unfortunately, different versions of the XML data structure from year to year
have been used, making the aggregation of the different bulks of data difficult. Further-
more, the collected documents are associated to a variable number of translations as
well as variable sets of meta data that is used for indexing.

Despite the services offered by the user-friendliness of the web site that made avail-
able to the public the access to the EU call for tenders publications, collecting and man-
aging such kind of data is a great burden and consumes a lot of time and computing
resources. This could explain why such a resource is not very (if any) exploited today
by computer scientists or engineers in NLP.

In order to create our corpus, we decided to process the TED database as it satis-
fies all of our previously listed needs.

The aim of this chapter is to describe the process we got through, in order to pro-
duce a processed version of this database, in a raw text format that can be directly and
easily used for text mining and other natural language processing tasks. The corpus is
decomposed into two documented and easy-to-use multilingual corpora (one of them
is a parallel corpus), extracted from the TED web source that we will use to train differ-
ent models to solve our NLP tasks at OctopusMind. The corpus is also made available
to the scientific community and can be downloaded 2 along with a simple Python API
for easier manipulation and few code samples for text classification.

The provided dataset is composed of two sub-datasets created from the TED’s
documents that have been published between January 2011 and August 2017 3.

1. The first sub-dataset, fd-TED, is a (multilingual) corpus or aligned translated doc-
uments. It contains around 3 million of documents translated to 24 languages
(DA, DE, EN, ES, FI, FR, EL, IT, NL, PT, SV, CS, ET, HU, LT, LV, MT, PL, SK,

2. https://github.com/oussamaahmia/TED-dataset
3. This numbers and statistics describes the initial upload. By the time this thesis is written we are

adding the documents published until August 2019.

24

https://github.com/oussamaahmia/TED-dataset

1.2. The (full-document) fd-TED corpus

SL, GA, BG, RO, HR). This dataset can be used as a benchmark for super-
vised classification or for training machine learning models applied to business
intelligence applications.

2. The second sub-dataset, par-TED, consists of the aligned sentences of trans-
lated texts extracted from the fd-TED corpus. It can be used for machine assisted
translation of juridical and technical documents, or the extraction of multilingual
terminology. This corpus is composed of 4 million unique sentences translated
to at least 23 languages.

The two sub-datasets, fd-TED and par-TED, will be updated in the future in a regular
basis to keep tracks of the new calls for tender published by the EU states.

We will also provide an API, to download the new updates and to support an easy
access to the data. This is done through the use of filters that can be applied on the
meta data, basically the language(s), the hierarchical level(s) of the Common Procure-
ment Vocabulary (CPV) codes, the type of processed texts, and so on.

1.2 The (full-document) fd-TED corpus

The fd-TED corpus is built from the full content of the documents extracted from the
TED platform. Each document of the corpus belongs to a hierarchy that is succinctly
described below.

1.2.1 Common Procurement Vocabulary

Common Procurement Vocabulary (CPV) 4 is the thesaurus that defines the sub-
ject matter of public contracts, allowing companies to easily find public procurement
notices according to their areas of expertise. The main CPV vocabulary is based on a
hierarchical structure (a tree structure) comprising codes of up to 9 digits (the ninth digit
serves to check the previous digits). The CPV code consists of 8 digits that encodes 5
hierarchical subdivisions as follows:

1. The first two digits identify the divisions (XX000000-Y), e.g. "industrial machin-
ery".

4. COMMISSION REGULATION (EC) No 213/2008 of 28 November 2007

25

Partie , Chapter 1 – TED dataset

2. The first three digits identify the groups (XXX00000-Y), e.g. "Machine tools".

3. The first four digits identify the classes (XXXX0000-Y), e.g. Metal-working ma-
chine tools.

4. The first five digits identify the categories (XXXXX000-Y), e.g. "Hydraulic presses".

5. Each of the last three digits gives a greater degree of precision within each
category.

For Example:
42000000 is the code for "industrial machinery", 42600000 is for "Machine tools",

42630000 for "Metal-working machine tools" and 4263600 is for "Hydraulic presses".
Table 1.1, presents the number of documents for each level of the CPV codes by

taking into account the last hierarchical level (the 8 digits of the CPV code)

Level in the hierarchy 1 2 3 4 5
Count 1,868,420 433,111 231,167 144,393 115,487
Level in the hierarchy 6 7 8 9
Count 45,656 30,792 21,694 16,727
Level in the hierarchy 1 2 3 4 5
Cumulative 2,907,447 1,039,027 605,916 374,749 230,356
Level in the hierarchy 6 7 8 9
Cumulative 114,869 69,213 38,421 16,727

Table 1.1 – Number of documents for each level of the CPV code

1.2.2 The documents

The documents are published in 24 languages of the EU. They can be fully trans-
lated to the 24 languages (Table 1.2 and 1.2.2) or partially translated (in most of the
cases the object of the document and the lots 5 are translated).

The dataset that we provide is presented as a multilingual corpus that can be ex-
ploited for supervised hierarchical classification or Cross-Language Text Classification
[12].

5. Tenders are generally advertised with a global title (object) and some of them are divided into lots,
each having its own title

26

1.2. The (full-document) fd-TED corpus

Language DE-ES DE-IT EN-DE EN-ES EN-FR
Count 425,797 428,097 425,893 425,808 426,027

Language EN-IT FR-DE FR-ES FR-IT IT-ES
Count 425,856 429,039 425,797 425,803 425,797

Table 1.2 – Number of documents fully translated for some pairs of languages.

SL SK DE
451.1K/1.2M/433.0K 452.0K/1.4M/491.6K 849.4K/6.4M/1.5M

LT GA PT
457.3K/1.6M/496.3K 425.8K/868.6K/359.9K 450.7K/1.0M/371.1K

MT SV LV
425.8K/913.8K/352.1K 499.8K/1.3M/592.8K 443.3K/1.1M/420.9K

EL FI HU
461.5K/1.7M/526.7K 472.2K/1.3M/696.6K 457.4K/2.5M/691.8K

EN DA FR
674.8K/4.2M/824.9K 461.3K/1.4M/545.6K 1.1M/11.4M/1.2M

RO PL HR
483.1K/3.5M/567.8K 739.8K/11.2M/988.6K 288.3K/765.3K/314.9K

NL CS ET
525.1K/2.0M/613.5K 527.3K/1.8M/563.4K 441.5K/1.1M/510.0K

ES IT BG
560.3K/2.1M/510.0K 544.9K/2.9M/677.3K 485.3K/2.4M/540.6K

Table 1.3 – Number of (fully translated documents/ unique sentences/ unique words)
per language.

27

Partie , Chapter 1 – TED dataset

The XML schema comes in different versions (R2.0.9 and R2.0.8), hence the needed
fields are extracted using the parser corresponding to each version. Then the CPV
codes are corrected if additional characters are found.

The raw text is created for each available language by converting the XML into text
records. In case of any error in this step, the text is downloaded directly from the TED’s
website or converted using TED’s online API.

Knowing that the procurement notices contain legal and administrative information
that are not fundamental for understanding the core business of the consultation, as
filtered sentences tends to introduce a lot of noise if the interest is upon valuable busi-
ness information present in call for tenders (conditions relating to the contract, deposits
and guarantees required...).

With the help of experts in public markets (hired by OctopusMind), we provide a
filtered version of each document that only contains the description of the expected
supplies. This consists in a filtered project description of a document in which the le-
gal/administrative sentences have been removed, as the administrative content is con-
sidered as noise and do not contribute any useful information when predicting CPV
classes.

Example of core business information:
— Installation of doors and windows and related components.
Example of legal and administrative information that has been filtered out:
— Candidates (all partners in the case of a consortium) shall prove that they have

the legal capacity to perform the contract by providing (...)
The filtered descriptions fields (named "desc") are created from the aggregation of

several XML elements that are checked for administrative sentences using a classifier
trained with manually tagged dataset by OctopusMind 6 experts.

The dataset used for legal/administrative sentences detection was created as fol-
low:

We started by asking the experts to list the sections of a document that will always
contain administrative or legal text, then we had to find the XML path related to this
section. We consider all the sentences from this section as administrative text.

For the non administrative sentences (core sentences) we keep all the document
titles, and considered them as core content.

We use this dataset to train a tf-idf based Random Forest [13]. The performances

6. https://www.octopusmind.info/

28

1.2. The (full-document) fd-TED corpus

of the model are shown in 1.4, using a train/test split of 80% and 20% respectively.

The filtered text is created by ignoring all the XML entities dealing with administra-
tive information (some XML elements will always contain only administrative content)
and filtering the mixed elements using the classifier to get rid of the administrative
content.

Precision Recall F1-score
Core 0.99 0.99 0.99
Administrative 1.00 1.00 1.00

Table 1.4 – Results obtained for administrative sentences detection.

The data structure of the documents contained in the fd-TED corpus is presented
in Figure 1.1.

{"ref":0000-0000 #The document ID in the TED database.
"origin_ln":"" #The original language of the document.
"list_ln": [] #the list of languages in which the document is translated.

"document":{
"EN":

{"title":"Document Title" #The title of the document.
"CPV":['00000000'] #The list of CPVs codes of the document
"desc": "description of the project"

#additional information about the project.
"lots": [#list of the parts of the project.

"title":"Title of the lot"
"CPV": ['00000000'] #the CPV codes of the lot.
"desc": "description of the lot"

#additional information about the lot.
]
"raw": "the raw text of the document" # full text
"filtered": "the processed document" # the text without the
administrative information.

}
}}

Figure 1.1 – Format of the documents for the processed dataset fd-TED.

29

Partie , Chapter 1 – TED dataset

It is likely that the proposed format of the processed document will change in the
near future for better storage efficiency. However the information stored will be the
same.

1.2.3 Classification Example

As an example of supervised classification, Table 1.5 shows the results of a classi-
fication using Linear Support Vector Machine (SVM) [14] and a bag of words represen-
tation. From a random sub-sample of 200K English and French documents extracted
from the fd-TED corpus 7, we randomly split our data into into 75% for training and
25% for testing. We have used for this experiment the first hierarchical levels of the
CPV codes, namely the two first digits.

The combination of the model trained on the English version of the documents
and the French one using a max rule [15] increases significantly the accuracy of this
classification task.

Language Accuracy
FR 59%
EN 65%
EN+FR 68%

Table 1.5 – SVM classification results

In chapter 2, we will address in more details the state of the art in text classification,
specifically related on word, phrases and document embedding for text classification
and will detail our contribution in this domain.

1.3 The (parallel) par-TED corpus

Alongside with the fd-TED corpus, we provide a multilingual aligned corpus in the
form of a set of parallel sentences with at least 1.2 million unique sentences translated
to at least 23 languages 8. This corpus is created by aligning the XML trees for each lan-

7. We use the raw version of fd-Ted
8. This numbers and statistics describe the initial upload. By the time this thesis is written we are

adding the documents published until August 2019.

30

1.3. The (parallel) par-TED corpus

guage. Some XML elements are ignored (such as Phone numbers, email, addresses,
etc). Then the repeated sentences are deleted.

Below is an example of aligned sentences for the EN,FR,ES,and IT languages.
— FR: "Travaux de finition et de rénovation pour le complexe tokamak, le bâtiment

d’assemblage et tous les bâtiments voisins."
— EN: "Finishing and retrofit works for the Tokamak complex, assembly hall and

all surrounding buildings."
— ES: "Obras de modernización y finalización del complejo y taller de montaje del

Tokamak y de los edificios colindantes."
— IT: "Lavori di rifinitura e di ammodernamento per il complesso Tokamak, il reparto

di assemblaggio e tutti gli edifici circostanti."
The data structure for the par-TED corpus is presented in Figure 1.2.

{"ref":0000-0000 #The document ID in the TED database.
"origin_ln':"" #The language of the source document.
"sent_id": #Sentence id in the document.

"sentences":{ #List of the translations.
"EN":"...",
"FR":"...",
"ES":"...",
...

}
}}

Figure 1.2 – Format of the documents in the par-TED corpus.

As an example, we have built word embedding for the EN and FR languages to
show the potentiality of this corpus in a multilingual terminology extraction application.

From Table 1.6 to Table 1.8 we can see that using a cosine similarity on Word2Vec
representations [3] built on this corpus, we get comparable results regarding the word
similarity on excerpts of common and proper nouns for the two tested languages.

31

Partie , Chapter 1 – TED dataset

Word(EN) Similar Words(EN) Similarity(EN) Word(FR) Similar Words(FR) Similarity(FR)

Twitter

facebook
social media

blogs
web chat

press releases
youtube

newsletter
text messaging

direct mail
google

0.85
0.82
0.78
0.69
0.68
0.67
0.66
0.65
0.65
0.65

Twitter

facebook
instagram

netflix
snapchat
google
tweets

youtube
linkedin

maddyness
tweet

0.90
0.86
0.84
0.82
0.81
0.80
0.80
0.77
0.77
0.77

Table 1.6 – Example of some most similar words to the word "Twitter" on the English
and French Corpus using word2vec representation and cosine similarity.

Word(EN) Similar Words(EN) Similarity(EN) Word(FR) Similar Words(FR) Similarity(FR)

Linux

citrix
unix

server
vmware

microsoft
windows server

weblogic
oracle
ms sql
red hat

0.81
0.81
0.80
0.80
0.78
0.77
0.77
0.77
0.77
0.77

Linux

windows
redhat
unix

mac os
citrix

serveurs
microsoft

ibm
windows server

env windows

0.85
0.83
0.83
0.82
0.81
0.80
0.79
0.79
0.79
0.79

Table 1.7 – Example of some most similar words to the word "Linux" on the English
and French Corpus using word2vec representation and cosine similarity.

32

1.3. The (parallel) par-TED corpus

Word
(EN)

Similar Words
(EN)

Similarity
(EN)

Word
(FR)

Similar Words
(FR)

Similarity
(FR)

lawyer
+

advice

legal
matters

legal matters
advisers
disputes

matters arising
legal advice

specific issues
lawyers

advice guidance

0.70
0.69
0.68
0.66
0.66
0.65
0.65
0.65
0.65
0.65

avocat
+

conseil

representation
conseils

droit social
assistance juridique

avocats
conseils juridique

representation juridique
contentieux

representation devant
conseil juridique

0.75
0.74
0.74
0.73
0.73
0.72
0.72
0.72
0.71
0.71

Table 1.8 – Example of some most similar words to the sum of the word vectors "lawyer
+ advice" and "avocat + conseil" on the English and French Corpus using word2vec
representation and cosine similarity.

We also note that the concept to which a word is related, may vary from a language
to another. For example in the English version the word "Twitter" is related to words like
"press releases", "newsletter", but also to words like "facebook" and "social media" .
Which indicates that in the English version, the word "Twitter" is considered to belong
to two concepts: press / journalism and "social media". While in the French version, the
word "Twitter" is more of a "social media" concept as it is closely related to the words
facebook, instagram, and so on.

33

Partie , Chapter 1 – TED dataset

1.4 Conclusion

The "Tenders Electronic Daily" (TED) is a large source of semi-structured and mul-
tilingual document widely under-used by the NLP community, mainly due to the burden
and costs associated to the collecting and formatting of the data. To ease the exploita-
tion of this resource either for text mining or machine translation tasks, we have pre-
sented a packaging of these data (along with a Python API to access it) that can be
freely downloaded 9 and used by scientists and engineers to benchmark or solve some
of their NLP problems. More practical applications examples will be also detailed in the
chapter 3 to highlight the usefulness of this this resource and the type of services it can
provide.

9. https://github.com/oussamaahmia/TED-dataset

34

https://github.com/oussamaahmia/TED-dataset

CHAPTER 2

DOCUMENT EMBEDDING

2.1 Introduction

With the constant growth of online information, the need for developing methodolo-
gies and tools for finding, filtering and managing these resources in a fast and efficient
way is an ever demanding necessity. The classification of textual data consists of clas-
sifying texts automatically in one or more categories. It has already been applied to
several issues including information retrieval tasks [16], sentient analysis [17], Spam
filtering [18], etc.

In order to apply machine learning algorithms (i.e. classification algorithms), in par-
ticular deep neural networks, on textual data, it is necessary in most cases to transform
the texts into a fixed-size vector, in order to map the data into a metric space, this pro-
cess called document embedding (text vectorisation). Numerous "vectorization" meth-
ods have been developed over the years.

Document embedding or document vectorisation can be seen as a feature extrac-
tion, that allows to transform a raw text into a mathematical representation (numeric
features) that can be used by different algorithms and models. It is a very sensitive
step as it garbles the original text, by creating representations that usually simplifies
the nature of a document by focusing on some characteristics and omitting others (for
example: ignoring sequentially in sentences). Therefore, by simplifying a document’s
characteristics we might end up with the ideal simplified representation in best cases
and, in worst cases, with a representation that drops all useful aspects of a text. We
also note that the performance of a specific document embedding approach may vary
from a task to another and also according to the corpus used, as shown later in this
chapter.

At OctopusMind document embedding is at the heart of several tasks, namely:
— Document classification, by assigning to each document custom labels that

helps indexing and organizing documents.

35

Partie , Chapter 2 – Document embedding

— Recommendations system, that allows choosing which document to show to
which client. Based on semantic distances of the new documents and the previ-
ously seen documents.

— Clustering of documents, allowing to detect emerging professional fields.
— Search engine, that returns results semantically close to the query.

The objective for OctopusMind is to develop a polyvalent document embedding model
such as to ensure that the previous tasks are the more efficient as possible. Also, our
vectorization model has to be fast and lightweight to cope with the hardware available
at OctopusMind.

This chapter focuses on our contributions on document embedding for text classifi-
cation.

We start by stating the literature and state of the art on document embedding in
the Related works section. Then we introduce our contribution and position it within
the state of the art. We continue by explaining the different experiments carried out
to assess the performances of our contributions. Finally we list the future works and
perspectives that may improve our work.

2.2 Related works

Central to many natural language processing problems, documents embedding (or
documents vectorization) is about document representation such as to capture "mean-
ing" of a document in a machine-understandable format (usually in the form of a fixed
size vector). Many different vectorization approaches have been developed over the
years.

The first pioneering method, which is still the most widely used, is called Bag Of
Words (BOW) [19], [20] , which consists in describing a text using the number of oc-
currences of the words (i.e. their frequencies) that compose it.

Usually BOW is implemented as a sparse vector 1 of N dimensions, where N is the
size of the vocabulary.

Using bag of words, the length of the vector is the size of the vocabulary and each
column (feature) is a word. For example the bag of word representation for the sentence

1. BagOfWords can also be binary. In this case the frequencies are replaced by binary values that
mark the presence or absence of words as a Boolean value, 0 for absent, 1 for present.

36

2.2. Related works

"the white cat" would be as follows: "with the given features (words) brown, cat, dog, I,
is, love, the, white"

brown cat dog i is love the white

0 1 0 0 0 0 1 1

 (2.1)

If we put apart the frequency of a term, this method considers that all the words in
a given document to have the same weight as long as they have the same frequency,
which is problematic for poorly discriminating words (stop words for example). And also
BOW does not take into into account the occurrence of a word across documents.

In order to overcome this problem, Karen Spärck Jones introduced the concept of tf-
idf weighting [21] short for (term frequency–inverse document frequency). It consists in
giving more weight for the words that appear in fewer documents. Thus, if two words w1

and w2 have the same frequency in a given document, if w1 appears in fewer documents
than w2, w1 will have more weight than w2.

This is done by assigning to each term a score based on its "term frequency"(tf)
and on the "inverse document frequency" (idf). It is calculated as follows:

tft,d = ft,d∑
k fk,d

idfi = log
N

nk

(2.2)

Where ft,d if the number of occurrences of the term t in the document d, N is the
number of documents and nk is the number of documents that contains the term k.
The terms with higher weights are considered to be more important.

Bag of words and tf-idf representations generate an embedding in very large vector
space (very high dimensionality) and do not take into account the semantics nor the
words order(words sequentiality). This means, for example, that the words "feed", "eat"
and "drive" assuming that they have the same frequencies are equidistant in this em-
bedding space despite the fact that semantically speaking "eating" should be closer to
"feeding" than "driving".

The matrices resulting from a BOW representation with a tf-idf weighting are usually
called term-document matrix or document-term matrix.

37

Partie , Chapter 2 – Document embedding

Assuming that words used in the same contexts tend to have a similar meaning,
Scott Deerwester et al. introduced the concept of latent semantic analysis (LSA) [22].
LSA is a statistical technique for extracting patterns in a form of relationships between
terms and concepts in documents by applying a singular value decomposition (SVD)
on a term-document matrix. Furthermore, this matrix factorization technique greatly
reduces the dimensionality (the size of the "embedding space"/"feature set"). LSA will
be explained in more details later on in this section.

Since the advent of word2vec, introduced by Mikolov [23], new opportunities have
recently appeared in the field of natural language processing and especially in docu-
ment embedding. Word2vec is a word level embedding method that generates dense
features vectors in a way that words with a similar meaning will have a similar repre-
sentation. This method will also be explained in details later on in this section. We note
that, in addition to word2vec, other word embedding models have been developed.
We can mention in particular the GloVe[24] (Global Vectors for Word Representation)
model. Unlike word2vec that relies on local information (lexical semantics based on a
word and its surrounding words), GloVe captures both global and local statistics of the
training corpus by creating word embedding based on a co-occurrence matrix.

Many attempts have been made to combine word2vec outputs with other kind or
level of vectorization. Based on word2vec, doc2vec [25] provides a vector represen-
tation at a document level. The idea behind doc2vec is to represent each word with
a one hot vector (binary bag of words) as in word2vec and in addition, each docu-
ment is also represented as a one hot vector and is considered as a special token.
Doc2vec comes in two different architectures. Both of them are inspired by learning
word vectors which are skip-gram and continuous bag-of-words (CBOW). The first one
is PV-DM (Distributed Memory Model of Paragraph Vectors), in this architecture the
document vectors and word vectors (a sliding window of words over the document) are
both represented by dense vectors that are initialized randomly. Each document in the
corpus have a different vector. The document vector and the word vector are then con-
catenated together to predict the next word as shown in the figure 2.1. The document
vector and word vector are trained during this process.

38

2.2. Related works

Figure 2.1 – Distributed Memory Model of Paragraph Vectors architecture taken from
[26]

The second architecture is the PV-DBOW (Distributed Bag of Words version of
Paragraph Vector), in this architecture the paragraph vector is used to predict randomly
sampled words in the document. The classification task is to predict whether or not a
word belongs to the document, as shown in figure 2.2. This is done by using the docu-
ment vector to predict a randomly selected word from a randomly sampled window of
the document. The vector of the word is learnt this way alongside the document vector.

Figure 2.2 – Distributed Bag of Words version of Paragraph Vector architecture taken
from [26]

39

Partie , Chapter 2 – Document embedding

In both architectures, after training, the paragraph vector is used as a document
representation.

Although doc2vec has produced promising results according to [25], [26], these
results could not be exactly reproduced according to [27], [28]. Furthermore, this ap-
proach requires clean data (with few stop words and non important word/sentences
in general) since it gives the same importance to each word occurrence when training
document vectors [29]. It also needs also a very large number of iterations to converge.
The complexity of doc2vec depends on the size of the vocabulary [30] (the number of
words in the vocabulary), it is expressed as (O(log(N)) where N is the vocabulary size.

Another interesting approach was proposed by Ronghui Ju et al [31] that combines
a vectorization based on LSA, with tf-idf weighting, and a word2vec vectorization.

The approach consists in creating a (m ∗ n ∗ v) matrix where m is the vocabulary
size, n the number of documents and v the word2vec vector dimension. In this three-
dimensional matrix, each document is represented as a matrix where each line is a
word2vec vector weighted by tfidf (this is done by a point-wise multiplication between
word2vec vectors and tfidf weight of the corresponding word).

We end up with a tri-dimensional matrix that associates the word2vec vectors of the
terms with the documents. A Singular value decomposition (SVD) is then applied on
on each term by document 2-dimensional matrix)

The result is then used to train a convolutional neural network (CNN) [32] connected
to a pooling layer and used as an encoder (CNN will be developed in section 2.2.4).
The document vectors are outputted by the pooling layer of the CNN. We note that the
document vectors depend on a classification task. The model steps are shown in the
figure 2.3.

According to [31], this model seems to perform better than LSA associated to a
weighted bag of words vectorization. However the results presented on the paper are
based on a very small dataset. Also the method is memory greedy (for example if we
want to apply this approach on all the classes of 20NewsGroups we would need to
store a matrix of (20, 000×V ×D) where V is the number of unique words in the corpus
and D is word2vec dimension).

LDA2vec is also a hybrid model resulting from the combination of word2vec with
LDA [33] (Latent Dirichlet Allocation) which is a topic modeling algorithm. This model
is developed by Christopher Moody [34] and is inspired by the skip-gram variant of
word2vec.

40

2.2. Related works

Figure 2.3 – LSA + word2vec architecture taken from [31].

The basic idea behind this model is to map word vectors and document vectors
in the same embedding space. As shown in figure 2.4, the model starts by initializing
a document weight matrix D[documents × topics], a topic matrix T [hidden units ×
topics] and a word matrix W [words × hidden units]. A softmax function is applied
to the document weight vector Di (i is i-th document line in the matrix D) resulting
in a proportion vector (similarly to LDA, a proportion vector can be interpreted as a
probability distribution of topic mixtures) that sums to 1. The document vector V is then
obtained by a weighted sum of the proportion vector and the topic matrix T . The central
word Wp (p is p-th line in the W matrix) of a sliding window of words over the document
is considered as a pivot, the word vector Wp is then summed to document vector Vi to
get what the author describes as a context vector Cip = Vi + Wp. The context vector is
then used to predict a randomly selected target word drawn from the window containing
neighboring words of the pivot word. The overall process is described in figure 2.4.

41

Partie , Chapter 2 – Document embedding

Figure 2.4 – lda2vec architecture overview taken from [34]

In the following subsections we will further describe the models that are most recent
and relevant to our contribution.

42

2.2. Related works

2.2.1 Artificial neural networks concepts

In this subsection we present the core concepts of the artificial neural architectures
that we use hereinafter.

Artificial neural networks (ANNs) are computing systems inspired by biological neu-
ral systems. The main purpose of ANNs is "learning" to perform a task (for instance,
solve a classification, regression, or auto-encoding task).

The ANNs can be seen as a set of connected artificial neurons, arranged in layers.
In general we distinguish the following three types of layers:

— input layer: is composed of a set of input neurons that are fed with the initial
data (typically represented as a vector of features), that will be transferred to
subsequent layers.

— hidden layers: these are the layers located in between the input and output lay-
ers. They form the part of ANNs where most of the processing happens as they
discover and encode relationships between features (inputs). Each layer will cre-
ate synthetic or meta features by combining, in general non-linearly the outputs
of the precedent layer, and the complexity grows with the number of layers.

— output layer: it forms usually the last layer of a neural network and will produce
the outputs 2.

We will note in the remaining of the document, the concatenation of two vectors as
follow concat(a, b) = [a, b]

The simplest form of neuron in an ANNs is the Perceptron[35], the simplest neu-
ral structure that is characterized with a single artificial neuron. The output of a Per-
ceptron[35] is nothing but the weighted dot product of its entries: WX + b, where
X = [x1, x2, x3, ...] is the input vector (in the hidden layers the input is usually the
output of the precedent layer), W = [w1, w2, w3, ...] is the weights vector that contains
the so-called synaptic weights which are tuned during the learning process, and b is
the bias that can also be learned.

The architecture of a perceptron neuron is illustrated in the figure 2.5.

2. An Artificial neural networks can have multiple inputs and outputs layers at different level of the
network

43

Partie , Chapter 2 – Document embedding

Figure 2.5 – The architecture of a Perceptron.

The Perceptron is a linear classifier characterized with a linear discriminant function.
It means that the problem must be linearly separable for the Perceptron to work prop-
erly. In order to overcome this limit, more neurons or a non-linear activation function
can be used [36] (we note that each neuron in an ANN has its own weight). The figure
2.6, shows the architecture of a Multi-Layer Perceptron. An activation function f(x), is
applied on the output of a neuron x. Among the most famous activation functions we
can list the following:

— Sigmoid: ex

ex+1 , the Sigmoid function restricts the output between 0 and 1, sigmoid
function is usually used for binary classification.

— Hyperbolic Tangent: 2
1+e−2x − 1 the Hyperbolic Tangent function restricts the out-

put between −1 and 1.
— Softmax: f(xi) = exi∑K

j=1 e
xj

, where K is the size of x. The Softmax function re-

stricts the output between 0 and 1 and can be seen as a probability distribution
in case of multi-outputs ANNs, which means that the outputs sum up to 1. For
example lets assume we have an ANN f(x) with 3 outputs y = [y1, y2, y3] at-
tached to softmax activation function (each output is a different class) f(x) =
[P (y1|x), P (y2|x), P (y3|x)], where P is the probability to belong to a given class
yi. The softmax function works well with multi-output ANNs (Multi-class catego-

44

2.2. Related works

rization tasks). We note in the case of softmax, in the function f(x), x is a layer
output (multiple neurons).

In order to train an ANN, we need to update the weights of all the nodes (neurons)
in the network according to a loss function. The method used for updating the weights
of a neural network is called back-propagation, introduced in [37].

Figure 2.6 – Figure illustrating the architecture of a multi-layer perceptron taken from
[38].

2.2.2 Word2vec

Word2vec [23] refers to a group of models that are used to produce word embed-
dings. In practice, they allow to produce word embedding from large corpora in an
unsupervised fashion.

Word2vec embeddings are dense features vectors that capture the true semantics
of words, to the extent that words with a similar meaning will have a similar represen-
tation: in other words, they will be close in the embedding space in which they will be
projected. For example, "feeding" and "eating" are close (similar), while "eating" and
"driving" are more distant.

The word-embeddings end up displaying very interesting relationships. For exam-
ple, the result of subtracting or adding word vectors also carries a meaning. We can
ask questions by using linear equations on simple words vectors : "King" - "Man" +
"Woman" = X?, the result of such an equation would be the word "Queen", the closest
word vector to the resulting vector X.
Word2vec architecture is close to an autoencoder[39] in the way that input and output

45

Partie , Chapter 2 – Document embedding

are the same words. Word2vec comes in two different architectures: CBOW (continu-
ous bag of words 3) and Skip-gram. CBOW creates the word embedding of a word by
predicting its occurrence based on its context (a window of the words that occur before
and after to it) as shown in the figure 2.7. The second architecture, Skip-gram, creates
the word embedding of a word by predicting its context based on the word itself, as
shown in figure 2.7. The distant words from the current one are given less weight by
sampling them less in the training examples.

The prediction for the two architectures is done using a feed forward neural network
[40] that contains three layers (input, hidden and output layers). The weight matrix of
the hidden layer is used as words representation (word embedding).

Figure 2.7 – Two word2vec architectures: CBOW and Skip-gram.

2.2.3 Latent semantic analysis

Latent semantic analysis (LSA) [22] is a natural language processing technique
used to extract relationships between documents and terms they contain in order to
find the "latent" concepts of the documents.

3. The notion of "bag of words" implies that the order of words is not taken into consideration

46

2.2. Related works

This is done by mapping both into what we can call a "concept" space (this tech-
nique relates to matrix factorization), which allows to produce document vectors in a
reduced dimension.

LSA is done by applying an SVD (singular value decomposition) to a [terms x doc-
uments] matrix, and leads to a matrix factorization of the form:

A[m×n] = U[m×r]S[r×r](V[n×r])T (2.3)

Where:

— A is the input matrix, in LSA A is a [terms x documents] matrix (n terms and m
documents)

— U is the left singular vectors, an [m× r] (m documents, r concepts)
— S is the an [r × r] diagonal matrix that contains the singular values sorted in

decreasing order (it can be seen as as the strength of each concept)
— V is the right singular vectors, an [n× r] matrix (n terms, r concepts)

NB: We note that the complexity of the SVD is O(min(mn2,m2n))
The following example will illustrate how LSA works. Let’s assume that our "corpus"

consists of the following "documents":

— d1 = "the white cat."
— d2 = "the dog is brown."
— d3 = "I love the dog."

We suppose that we use a term frequency vector as document representation, the
result will be stored in matrix A figure 2.8.
The first step consists in decomposing the Matrix A into U , V T and S (Eq. (2.3)). The
result is shown in the figure 2.8.

The second step consists in applying a Rank k approximation (for this example
k = 2), this is done by only keeping the k first columns U and V and the k first rows
and columns of S associated to the k highest eigen values, as shown in figure 2.9.

The documents vectors in the reduced space are stored in the columns of the ma-
trix V T

k (the eigen vector values). In this example the coordinates of each document
vector will be as follow:
V c1 = (−0.37, 0.93)
V c2 = (−0.66, 0.26)
V c3 = (−0.66,−0.26)

47

Partie , Chapter 2 – Document embedding

Figure 2.8 – SVD decomposition of the A matrix: A = USV T

Figure 2.9 – The Uk, Sk, V T
k matrices after applying a Rank k = 2 approximation.

48

2.2. Related works

In order to obtain a vector of coordinates V q in the latent space for new documents q
(documents that have not been incorporated into the initial [terms x documents] matrix
A), we use the following equation:

V q = qTUkS
−1
k (2.4)

Where q is the query vector (the term frequency vector representing the new doc-
ument). For our example, let’s take the document d4 = "I love the cats.". Its term fre-
quency vector is: q =

[
0 1 0 1 0 1 1 0

]
.

By applying the equation Eq. (2.4) to the vector q. The coordinates of the document
vector in the latent space for the document q will be: V q = (−0.51, 0.33).

When working with big datasets we can use what we call "Truncated SVD". It is
applied by only calculating the k column vectors of U and k row vectors of V t cor-
responding to the k largest singular values. A faster way is to use randomized matrix
approximation technique to perform a randomized SVD [41], which can be summarized
as follow: First we calculate a matrix Q (Q is calculated using a collection of random
vectors) with k columns (small number of columns) where A ≈ QQTA assuming such
a Q exist.

Then, B = QTA is constructed. Where B is a relatively small matrix (much smaller
than A), a standard SVD is then applied to compute B. And thus B = RSV T (equation
Eq.(2.3)) and as A ≈ QQTA, we get A = Q(RSV T)

2.2.4 Convolutional Neural Networks

Convolutional Neural Networks, CNNs for short, is a central model in many com-
puter vision systems. The concept was introduced by Kunihiko Fukushima in [42] by
implementing the mathematical formulation of Hubel and Wiesel’s work on simple and
complex cells in the human visual cortex. Later on it was used to introduce the first
computational model for visual pattern recognition [10].

The CNNs were popularized by Yann LeCun et al. in [43] who experiment them in
document recognition tasks. Following the development of word embeddings [24], [44]
and its ability to represents word in dense fixed size vector while catching the seman-
tics of words, CNNs start to be popular in the NLP community.

49

Partie , Chapter 2 – Document embedding

CNNs were originally designed to work on image matrices (2-dimensional arrays),
but in this subsection we describe the one-dimensional CNNs used in NLP tasks. The
CNNs can be seen as combination of two components/layers a convolutional layer and
a pooling layer. The main objective of a convolutional layer is to extract local features
from a sliding window on a sequential input (a sequence of word vectors for instance).
This is done by mapping the input into a feature map in the form of a set of filters. Each
filter will detect a pattern in the input by applying a convolution filter. The convolution
layer can be seen as a convolution applied to a perceptron neural network with filters
as weights.

The convolution layer formula is shown in the equation Eq.(2.5):

F sw
i = g(

Dx∑
d=1

Dw∑
w=1

(Wi �X(sw,sw+Dw))), sw ∈ [1, T −Dw + 1]

Fi = [F 1
i , ..., F

T−Dw+1
i], F = [F1, ..., FN]

(2.5)

Where Wi is the weight matrix of the i-th filter, N is number of filter, d is the input
dimension index (also called channel), w is the window index; Dx is the input dimension
(word embedding dimension in NLP), Dw is the sliding window size, X(sw,sw+Dw) is the
sliding window (input sub-sequence) where sw is the sliding window index and T is the
sequence length. The � operator refers to the term by term multiplication. An activation
function g is then applied on the output: rectified linear units (ReLUs) are recommended
over the traditional activation functions for convolutional layers[45].

The equation Eq.(2.5) will be referred to as a function fcnn(W,X, sw) in the remain-
ing part of this document.

ReLUs(X) = max(0, X) (2.6)

From equation Eq.(2.5) we notice that the sliding window convolution layer steps through
the input from left to right. Applying the filter iteratively causes the input borders to not
be only exposed to the edge of the filter. We call this effect the "Border Effect Prob-
lem". In order to overcome this issue, padding is generally used. This is done by adding
"padding vectors 4" on each edge of the input, allowing the elements on the edge of the
input to be exposed more than once on each filter.

4. A vector populated by zeros

50

2.2. Related works

The pooling layer is connected to the output of the convolutional layer and used to
reduce the dimension of the of the convolved features by selecting the most important
features. This also reduces the computational cost of the training and minimizes the
risk of over-fitting. Pooling is done by slicing the input and applying the pooling function
on each slice.

There are two main types of pooling: "Max Pooling" and "Average Pooling". The
Average pooling performs down-sampling by dividing the input into regions and com-
puting an average values for each region. While the max Pooling do the same but
output the maximum values in each region.

Lets take as an example the sentence: "I am watching a movie", lets assume that
each word is represented by a 2-dimensional vector. The figure 2.10 illustrate the use
of a convolution layer with a size 2 sliding window (we don’t use any activation function
for this example)

Figure 2.10 – CNN example that processes the sentence "I am watching a movie"

CNN model is usually built by stacking multiple pairs of convolutional and pooling
layers, each subsequent layer will progressively aggregate simpler feature sets which

51

Partie , Chapter 2 – Document embedding

Figure 2.11 – Illustration of a CNN layer: in this example, the convolution has a window
size of 3 and a pooling layer with 3 slices.

52

2.2. Related works

can be successfully used for classification.

2.2.5 Recurrent Neural Networks

In order to fully represent a document, we need to represent each word according
to a model of its previous context (previous words). This mechanism can be referred to
as persistence of "thought".

Traditional neural networks cannot perform such a mechanism (we note that CNNs
can preserve local sequentiallity), and this has been considered as a major shortcom-
ing. For example, if we want to put a label on each word in a sentence or address
any other task that relies on sequence of terms, we need to manage specifically this
sequentiality.

Recurrent neural networks address this issue. They integrate loops enabling the
persistence of information.

Figure 2.12 – Illustration of an unfolded RNN Layer

A loop allows information to be passed from one step of the network to the next, as
shown in the diagram above (Fig.2.12). Recurrent neural networks are similar to tradi-
tional neural networks: they can be described as a chain of multiple copies of the same
network architecture, each copy passing information to its successor, in a chain like
architecture enabling to work with sequential data. They have been applied success-
fully to several problems such as speech recognition, language modelling, language
translation, image captioning, etc.

This kind of recurrent architecture works well if the objective is only to consider
recent information in order to perform the task. In other words, it works well if the
interval between the relevant information and the objective is small, meaning that this
architecture is associated to a short memory capability. For example, consider the task
of predicting the next word based on the previous context. If we are trying to predict

53

Partie , Chapter 2 – Document embedding

the word "bananas" in the sentence "the monkey eats bananas", we do not need any
longer context. In some situations however, we may need more context. For example
when we try to predict the word "gym" in the sentence "In order to stay in shape, I
go every day to the gym.". In this case, close context suggests that the next word is
probably a place and in order to have some information about the right word, we need
to know the context of sport (shape), from the start of the sentence.

The figure 2.13 an example of long context.

Figure 2.13 – Figure illustrating an example of long context (long-term dependencies)
in RNNs.

Unfortunately, as the interval grows between the relevant information in the se-
quence and the word to predict, RNNs performance degrades as it becomes harder to
connect the relevant information to the objective word. This problem was specifically
explored in [46].

2.2.6 Long Short Term Memory networks

Long Short Term Memory networks (LSTMs)[47], are special kind of RNNs capable
of learning long-term dependencies, thus it addresses the problem cited above while
storing relevant information for long periods of time.

LSTMs have a similar architecture to that of RNNs. However they implement a re-
current component that is more complex as it contains four neural networks layers as
shown in in figure 2.14. Each rectangle highlighted in this figure is a Neural Network
layer (Perceptron), tanh refers to a Hyperbolic Tangent activation function and σ stands
for a Sigmoid activation function.

54

2.2. Related works

Figure 2.14 – Illustration of an unfolded LSTM Layer

The core idea behind LSTMs is the use of cell states and internal gates mechanisms
implemented by sigmoids, that monitor the flow of information. By training the network,
the gates learn which information to keep and which to discard. They are composed
with a sigmoid layer and a point-wise multiplication operation. Keeping in mind that a
sigmoid function will output numbers between zero and one, such gating architecture
controls how much information is passing through. An LSTM has three of such gates.

We can look at a LSTM as a three steps process, as shown in the figure 2.15:

1- The first step of an LSTM is the "forget gate layer" (sigmoid layer), it decides
whether it keeps or throws away the information from the memory cell state.

The forget gate formula is given bellow:

ft = σ(W hfht−1 +W xfxt] + bf)) (2.7)

Where W xf and W hf are the weights matrices, bf is the bias, ht−1 is the hidden
state vector and xt is the input, the output of ft will be in the [0, 1] interval.

2- The second step allows for deciding which information to store in the cell state;
it is called "input gate". And is composed of two parallel layers: a "sigmoid layer" that
monitors what information needs to be added to the cell state based on ht−1 and xt as
described in this formula:

it = σ(W hiht−1 +W xixt] + bi) (2.8)

the second layer a "tanh layer" is used to create a vector C̃t that contains new values

55

Partie , Chapter 2 – Document embedding

that could be added to the next step, as described in the following:

C̃t = tanh(W hcht−1 +W xcxt] + bc) (2.9)

The two parallel parts are combined using a point-wise multiplication, the result
is used as an update to the state by combining it to Ct via an addition operation, as
illustrated in this formula:

Ct = ft � Ct−1 + it � C̃t (2.10)

Where � is a point-wise multiplication.

3- The last step corresponds to the "output gate". In this step the output ht is evalu-
ated based on a filtered version of the cell state Ct. So a tanh function is applied on Ct
the result will then be combined to the "output gate" ot using a pointwise multiplication,
where ot and ht are defined as follow:

ot = Σ(W hoht−1 +W xoxt] + bo) (2.11)

ht = ot � tanh(Ct) (2.12)

The figure 2.15 illustrate the combinaion of the three steps.

56

2.2. Related works

Figure 2.15 – Detailed illustration of an LSTM cell.

2.2.7 Attention mechanism

When the problem involves long-term dependencies (in natural language process-
ing in particular), RNNs (even when considering LSTMs/GRUs [9]) suffers from a num-
ber of difficulties:

— Information vanishing problem, caused by the gate mechanism while more in-
formation is added to the single hidden state vector available [5].

— The fact that RNNs have to process the elements of a sequence one by one,
therefore this process cannot be parallelized[48].

Attention mechanism was developed to address those problems.

The motivation behind attention mechanism is to model the way we pay visual atten-
tion to different regions of an image or correlated words into a sentence. For example
while reading the sentence: "I am watching an action movie" we put, in general, more
attention on the pair of words (watching, movie) than on the pair (watching, action):

57

Partie , Chapter 2 – Document embedding

Figure 2.16 – One word “perceived” differently when associated to different words in a
same sentence.

Relationships (semantic affinities) between words is the cause for such perception
gap, as when we encounter the word "watching" we expect to encounter a scene or
movie related word very close after the word "watching". The word "action" is more
related to the word "movie" and not much with the world "watching".

Attention mechanism aims to mimic something we humans do while reading a text,
as we tend to focus more on certain words that we believe are more relevant and
contribute more to the subject of the text.

In other words attention mechanism allows a neural network to focus on relevant
parts of the input. Attention can be seen as a vector of importance weights that char-
acterize elements (lets say words in a sentence) in relation to other elements in a
sequence (how strongly it is correlated with or “attends to” as expressed in [48]).

Attention mechanism was developed to improve the performance of the Encoder-
Decoder RNNs on machine translation tasks, presented by Dzmitry Bahdanau, et al.
in [5] as a solution to information vanishing due to the fact that an encoder will try to
compress all the necessary information from source sentence into a fixed-length vector
(the longer the sentence the more information is lost during the compression).

Instead of encoding the input sequence into a single fixed context vector that will be
passed to the decoder which cause a bottleneck as shown in figure 2.17, the attention

58

2.2. Related works

Figure 2.17 – Illustrating the information bottleneck in an auto-encoder architecture.

model develops a context vector that is filtered specifically for each output time step. In
addition, the decoder will receive all the context vector (RNN’s outputs).

The use of attention in NLP was popularized by Dzmitry Bahdanau et al. [5] on
English-to-French translation tasks. The proposed architecture is shown in figure 2.18

Figure 2.18 – Example of the Attention mechanism taken from [5].

In a classical RNN the conditional probabilities are computed as follows given the
context vector c (in RNNs the context vector is the sentence/document embedding
which is the last hidden state ht of the encoder RNN) and all the previously predicted

59

Partie , Chapter 2 – Document embedding

words y1, ..., yt−1:

p(yt|y1, ..., yt−1, c) = g(yt−1, st, c) (2.13)

where g is a non linear function (the output of a multi-layer in most cases) that
outputs the probability of yt and st is the hidden state of the RNN.

However in this model architecture that corresponds to the so-called "Vanilla atten-
tion", each conditional probability is defined as follow:

p(yi|y1, ..., yi−1, x) = g(yi−1, si, ci) (2.14)

Where si is an RNN hidden state for the step i, computed as follow:

si = f(si−1, yi−1, ci) (2.15)

We note that each probability is conditioned on specific (different) context vector ci
for each output word (target word) yi.

The context vector ci depends on the annotation (outputs) of the RNN 5, each an-
notation hi is an output of the bidirectional RNN that contains information about the
whole sentence (input sequence) with a strong focus on the i-th word and the words
surrounding it.

Then, the context vector ci is computed as a weighted sum of these annotations hi
and the attention weight aij:

ci =
Tx∑
j=1

aijhi (2.16)

The attention weights aij are computed as follow:

aij = exp(eij)∑Tx
k=1 exp(eik)

(2.17)

Where :

eij = α(si−1, hj) (2.18)

We can note that the equation Eq.(2.17) is a softmax activation function.

5. in the paper describing the vailla attention a GRU network was used (h1, ..., hTx
)

60

2.2. Related works

The alignment model α scores how well the inputs around the j-th word and the
word at the i-th position match. The alignment is based on the hidden state si−1 of the
decoder RNN and the annotation hj of the encoder RNN.

The model α is implemented as a feedforward neural network which is jointly trained
with all the other components of the proposed system.

Transformer

Transformer architecture was introduced by Vaswani and al [48] in the paper "At-
tention is all you need". As the title suggests the main focus of this model is to remove
the traditional RNN encoder-decoder in traditional architecture for machine translation
that are particularly costly to train. We will only describe the encoder part since it is the
part that performs the vectorization task, the focus of this chapter.

The overall architecture of a transformer is shown in figure 2.19.

The Transformer model uses a particular form of attention mechanism called the
“Scaled Dot-Product Attention” which is defined as follow:

Attention(Q,K, V) = softmax(QK
T

√
dk

)V (2.19)

Q = XWQ

K = XWK

V = XW V

(2.20)

Where Attention function can be seen as mapping a query (Q), and a set of key(K)-
value(V).

The output of the Attention function takes the form of a weighted sum of quanti-
ties that depend on the query and the corresponding keys. Therefore QKT is the inner
product (homogeneous to a similarity measure) between the projections of the word
vectors X into WQ and WK spaces: this evaluation can be interpreted as calculating
the correlation between a given word and all the others. Furthermore, applying a pro-
jection of X into W V allows to have more control on word level representation by tuning
(increasing/decreasing) its dimension.

The vectors K, Q are in dk dimensions and V is in dv dimensions.

61

Partie , Chapter 2 – Document embedding

Figure 2.19 – Transformer model architecture taken from [48].

62

2.2. Related works

Figure 2.20 – Illustration of scaled dot product taken from "Attention is all you need"
[48].

The difference between the scaled dot-product attention (as shown in figure 2.20)
and Self-attention (intra-attention) [49] is the scaling factor 1√

dk
. According to [48] for

large values of dk the scaling factor seems to improve the performance.

Instead of using a single attention function, the transformer architecture uses a
Multi-head attention. This is achieved by linearly projecting (K,Q, V) n times (where
n is the number of heads) with different, learned linear projections. In practice this is
done by initializing n different matrices (WK

i , WK
i , W V

i) for projecting (K,Q, V), in each
version of (Kn, Qn, Vn) the attention is calculated in parallel, which allows the attention
layer to exploit information from different positions and different representation sub-
spaces. The outputs are then concatenated and weighted as shown in figure 2.21 and
Eq.(2.21)

MultiHead(Q,K, V) = Concat(head1, ..., headn)WO = Z (2.21)

Where headi = Attention(QWQ
i , KW

K
i , V W

V
i)

63

Partie , Chapter 2 – Document embedding

Figure 2.21 – Transformer model architecture taken from "Attention is all you need" [48]

Since the Transformer model contains no recurrence nor convolution, in order to
keep information about the order in the sequence a positional encoding is applied. The
positional encoding vectors have the same dimension than the word embedding and
are calculated as follow:

PEpos,2i = sin(pos/100002i/dmodel)

PEpos,2i+1 = cos(pos/100002i/dmodel)
(2.22)

Where pos is the position, i is the dimension and dmodel is the word embedding
dimension. The resulting vector is then added to the word vector.

xpos = xepos + tpos (2.23)

Where xpos is the positional weight, after applying the positional encoding, xepos is the
word embedding vector and tpos is the positional embedding vector which corresponds
to the pos-th position.

The output of the multi-head attention sub layer Z = (z1...zn) are then added to the
word annotation X = (x1, ..., xn). The resulting vector is then normalized [50].

The sentence vector can be obtained by combining the the vectors [zi, ..., zn] using
a pooling layer that can takes the form of a feed forward neural network [6].

64

2.2. Related works

2.2.8 Hierarchical attention

Hierarchical Attention Network (HAN) [11] has been designed for text classification
tasks. The attention mechanism that this model implements is close to the vanilla at-
tention concept (introduced in section 2.2.7), with the difference that lies in the use of
a context vector.

The HAN model considers a document as a sequence of sentences and a sentence
as a sequence of tokens (usually words). Hence the name "Hierarchical Attention".
According to this model the attention is calculated at two levels (at word and sentence
levels).

At word level the HAN model uses a bidirectional GRU network word encoder ([5]).
The word encoder assigns word wij (i is sentence identifier and j is the word identifier)
to vector xij. This word encoder consists of an embedding matrix W e, Xij = W e

wij
,

where wij is the word entry in the dictionary [9], [51]. W e is trained along side with the
model. The word annotations hij benefit from both directions of the "bidirectional GRU"
as explained in section 2.2.7. The GRUs are labeled as:

−−−→
GRU for the unit that reads a

sentence from wi1 to wiT and
←−−−
GRU for the one that reads a sentence from wiT to wi1.

Here T is the length of a sentence (the number of words).

The annotation hij of the word wij is obtained by concatenating the forward hidden
state

−→
hij and backward hidden state

←−
hij (hij = [−→hij,

←−
hij]).

Where:

−→
hij = −−−→GRU(Xij)
←−
hij =←−−−GRU(Xij)

(2.24)

The word attention is then calculated as follow:

uij = tanh(Wwhij) (2.25)

aij =
exp(uTijuw)∑
j exp(uTijuw) (2.26)

Where uw is the context vector that can be seen as a high level representation of a
fixed query expressed as: "what is the informative word?" [52], [53] (in the context of
our classification problem).

65

Partie , Chapter 2 – Document embedding

uw is randomly initialized and trained along side with the rest of the model.
The sentence vector is then calculated by summing words annotation hij weighted

by the attention aij, as shown in equation Eq.(2.27)

si =
∑
j

aijhij (2.27)

At sentence level, the encoder works basically the same way as for the word en-
coder, taking si as the bidirectional GRU input. The sentence encoder architecture can
be summarized by the following equations:

ui = tanh(Wshi) (2.28)

aij = exp(uTi us)∑e
i xp(uTi us)

(2.29)

v =
∑
i

aihi (2.30)

Where hi is the sentence level bidirectional GRU output and v is the document
vector (in equation Eq.(2.30)).

The classification is then achieved using a feed forward neural network.
The overall architecture of the Hierarchical Attention Network (HAN) is illustrated in

the figure 2.22.

66

2.2. Related works

Figure 2.22 – Hierarchical Attention Networks architecture taken from [11].

67

Partie , Chapter 2 – Document embedding

2.3 Contribution

Document vectorization is a critical step for multiple tasks at Octopusmind company
(recommender system design, clustering document and classification tasks, etc.).

The Vectorization model must meet certain criteria before it can be integrated into
a production process, in particular:

— The model has to be light weight given the limitation of the resources, in partic-
ular the storage capacity and the processing hardware the company can afford.

— The vectorization process has to be efficient, so it can be used in a real time
advanced query processing framework.

— The document embedding should be able to store semantic information, in other
words the distance between two documents should reflect their semantic dis-
tance.

— The model must be compatible with the nature of the call for tender documents,
for which most of the content is irrelevant to the filtering/retrieval tasks (we con-
sider such content as noise).

— The sequentiality of words in a sentence is only important in a local context (a
sliding window containing few words).

Our two following contributions address a vectorization at document level. Keeping
in mind that the models had to answer the criteria above. The first one proposes to
benefit from the combination of word2vec and LSA methods to construct a vectoriza-
tion at document level that exploit two complementary views on the context of word
occurrences. The model was light weight, relatively fast and stored very well semantic
information but had issues handling noisy documents. The second contribution relies
on a new model to capture attention, the so-called CNN-based attention mechanism,
that is exploited hierarchically in order to construct a vectorization at document level
from a vectorization defined at sentence level. This model has resolved the issues
when working with noisy data.

68

2.3. Contribution

2.3.1 LSA+W2V

Our first model referred, to as LSA+W2V [8], is constructed from the word2vec and
LSA vectorizations that are defined at word levels. This model aims at taking advantage
of these two complementary views on lexical semantics. Assuming that the general
meaning of a text is the combination of the words that compose it, the vectorial repre-
sentation of a document (document embedding) can be constructed as a combination
of the vectorial representations of the words that form the document. The naivest way
to produce such a vectorial representation at document level, is to average the word
vectors. The figure 2.23 illustrates an example with the sentence "Télécomunication
optique et vidéo" ("optical telecommunication and video").

Figure 2.23 – Figure illustrating an example of word vector averaging result with the
sentence "Télécomunication optique et vidéo"

The resulting mean vector can be seen as as a vector describing the general idea
developed in the document. However, an average based aggregation comes with few
disadvantages: as it tends to be sensitive to outliers (extreme values), the result could
be irrelevant in the case of asymmetric data. Worse, in some cases the calculated
average could fall in an area of the embedding space that is void, i.e. far from any
observed word vectors: for example the mean value of −10 and 10 is 0 which is far from
the two initial values and could generally correspond to a void area of the embedding

69

Partie , Chapter 2 – Document embedding

space.
Moreover, from the word2vec averaging representation of a document, it is difficult,

if not impossible, to go back to the words contained in the text, even if we address this
problem probabilistically. In the other hand, an LSA vector retains information about
the most important words that characterise the texts in the context of a set (corpus) of
documents.

It is the complementary of these two ways to address the context of word occur-
rences (locally around the word for word2vec, and globally in the context of a set
of documents for LSA) that motivates our approach. By concatenating the word2vec
mean and the embeddings provided by LSA, we obtain a low-dimensional vector rep-
resentation at document level (document embeddings) that catches both the general
semantics of a document (general meaning) and maintaining a lexical-conceptual de-
scription of this document. To our knowledge this combination has not been explored
yet. The combination of word2vec and LSA is illustrated in the figure 2.24.

We made the choice of applying LSA on [documents x terms] matrix, weighted
using tf-idf heuristic.

Figure 2.24 – Illustration of the way the combination of word2vec and LSA is achieved.

If we compare LSA+W2V to doc2vec which is basically a modified version of word2vec,
it builds the document vector based on local context, while our model combines the
benefits of using word2vec that is also based on local context words to LSA that pro-
vide a more global context, by keeping information about the words that compose the

70

2.3. Contribution

document.

And compared to the combination of word2vec and LSA proposed in [31], our model
is more memory efficient, therefore more practical while working with big corpora.

2.3.2 CnHAtt

The W2V+LSA model is time-consuming to build, as it depends on building two
separate models (LSA and word2vec) that have respectively a time complexity of
O(Nlog(V)) and O(V Nmin(N, V)) where V is the number of unique words in the vo-
cabulary and N is the number of document. But is able to generate lightweight vectors
that somehow catch the document semantic. However it shows some limitation: in par-
ticular it assigns the same weight to all the words while creating the document vector,
without considering their relevance to the considered task (even words that do not con-
tribute to the main topic addressed by a document are still considered into the vector).
In order to overcome those limitations, we propose a model that takes into account the
hierarchical nature of a document (a document can be seen as a list sentences and
a sentence as a list of terms) and also weighting the words and sentences according
to their relevance to the topic of the document or to the task that is tackled (document
classification for instance).

Our model CnHAtt (Convolution based Hierarchical Attention) can be compared to
the HAT model [11], as it also has a hierarchical attention that applies the attention on
two level, on a word level which allows to give each word a weight according to its local
context and on a sentence level by giving each sentence a weight according to their
relevance to classification task. But also takes advantage of the transformers[48] archi-
tecture by getting rid of the RNNs, which allows it to be easily parallelisable, therefore
decreasing significantly the training and prediction time.

Instead of using self-attention or vanilla attention [5], we propose to use a CNN
architecture to mimic the attention mechanism in a local context. The choice of a local
attention mechanism is motivated by the fact that unlike global attention, it does not
need to attend to all words, which is expensive, and slowdown the performance while
working with long sequences [54].

To our knowledge, the CNN-based attention detailed herein after is novel and the
concept of attention has not yet been addressed in such a manner.

In our DNN architecture, the multiple filters in CNN are acting like a multi-head

71

Partie , Chapter 2 – Document embedding

attention: each filter of the CNN deals with a specific representation that focuses on
different aspects of the input.

In other words the CNN filters will focus on different patterns extracted from a sub-
sequence of words, thus performing a local attention [54] instead of a global attention
as implemented into the HAT model [11], in vanilla attention [5] or in the transformer
architecture [48]. As we do not use any RNN layer, the attention A in our model is only
conditioned by the input vector X.

Our model is dedicated to the construction of a document-level representation. We
assume that a document is composed with S sentences and each sentence is com-
posed with T words (including padding if necessary). wij represents the j-th word in
the i-th sentence. We use padding in our model to ensure that each word vector in
entry can be located at a center of a filter.

Our model first maps word wij to the embedding vector Xij through a word encoder
which consists of an embedding matrix W e, Xij = W e

wij
, where wij is the word entry in

the dictionary [9], [51]. We is trained along side the model.

The choice between the max pooling and average pooling can be explained intu-
itively as follow:

— Global max pooling will give attention to words that are relevant to at least one
CNN filter.

— Global Average pooling will give attention to words that are in general relevant
to most CNN filters.

Hij = fcnn(Wt, [Xij−(sw−1)/2, ..., Xij+(sw−1)/2], sw) (2.31)

The attention at a word level in our model is calculated according to Eq.(2.32):

aij = g([Hi1, ..., HiT]) (2.32)

Where fcnn is a CNN layer, g is a function that selects which filters to consider
(pooling layer), in our model we use a Global Average Pooling or a Global Max Pooling
(we can also use a feed forward layer as a function). Hij is the output of the convolution
layer centered on the word wij (i is sentence id and j is the word id) .
Finally, n is the size of the window used by the word level CNN and Fw

k is k-th filter of
the word level CNN,where Fw is word level filters matrix.

Then each dimension of the word embedding vector Xij is multiplied by the cor-
responding attention weight aij the resulting vector Zij is then summed up to get the

72

2.3. Contribution

sentence context vector Ci as illustrated in 2.25.

Zij = Xij × aij (2.33)

Ci =
T∑
j=1

Zij (2.34)

We note that the same convolution layer is applied to all the sentences.

Figure 2.25 – Illustration of the convolution-based attention mechanism developed in
our model at sentence level.

At the sentence level the model calculate the attention ai according to the following

73

Partie , Chapter 2 – Document embedding

equations:

Hi = fcnn(Ws, [Ci−(sw−1)/2, ..., Ci+(sw−1)/2], sw) (2.35)

ai = g([H1, ..., HS]) (2.36)

where fs if CNN layer, m is the size of the window used by the sentence level CNN
and F s

k is k-th filter of the sentence level CNN.
The representation vector of the document C is calculated the same way as the context
vector Ci (sentence representation) as illustrated in figure 2.26.

Zi = Ci × ai (2.37)

C =
S∑
i=1

Zi (2.38)

To use our model in a classification framework, the document vector C is used as
an input of any neural network architecture in charge of the classification task. In our
case, we use a non linear MLP that is trained on the classification task along side the
attention vectorization layers, in order to fine tune the word embedding.

We have also studied different variations of the proposed model: The first variation
(CnHTr) is based on self-attention on a local context, this is done by creating a Key
K, Query Q and a Value V but instead of using a dot product like in Eq.(2.20), we use
three convolution layers (fQ(x), fK(x), fV (x)) to createQ,K, V , where fQ(x) and fK(x)
have the same sliding window size. This allows to calculate an attention that is based
jointly on local and global context. It is also possible to mimic the multi-head model
by using multiple (fQ(x), fK(x), fV (x)) and concatenating the result of the attentions
machanisms on each head, in the same way as in Eq.(2.21).

The second version is based on a rewriting of equation Eq.(2.37) into:

Zij = XijW
V � aij (2.39)

Where W V is a weight matrix that is trained along side the model and allows to control
the world representation size (Zij). Both variations do not contribute significantly to the

74

2.3. Contribution

Figure 2.26 – Illustration of the convolution-based attention mechanism developed in
our model at document level.

75

Partie , Chapter 2 – Document embedding

improvement of the performance of our main model as the model needs further tuning
and experimentation. We do not report any further the experimentation we have carried
out using these variants of our model.

2.3.3 Experimentation

In order to benchmark our two contributions against the state of the art methods, we
used five data sets to cover a relatively wide range of document topics, various scales
(sizes of the datasets) and tasks. These data sets are listed below with a description
of their characteristics:

1. 20NewsGroup [55], that we will be denote as 20NG, is an English-language
textual corpus of 20K documents containing messages, comments and news
collected from a discussion forum. This dataset is categorized into 20 cate-
gories. The documents contain noise in the form of meta-data, that is particularly
present in the headers and footers of the messages. This noise contains infor-
mation about the authors’ name and affiliations. These meta-data can some-
times be beneficial to a classification task in some cases by biasing the learning.

2. RCV1 [56] is a corpus of 800K documents containing English-language news
bulletins collected by the Reuters news agency, and categorized into 103 cat-
egories. The task is multi-label, in other word a document can be labeled with
several categories.

3. TED-FR is a sub-corpus from the fd-TED corpus [7] 6. This corpus contains ten-
ders from the European public procurement. The tender documents contain a lot
of noise that comes in the form of legal-commercial-administrative information.
The documents are categorized into 45 categories and are also multi-labeled.
More precisely, the fd-TED dataset is organized according to a hierarchical cat-
egory architecture: we use for our experimentation the level 2 hierarchy which
leads to the 45 categories mentioned above. For this experiment, we only con-
sider the calls for tender in French language that are fully translated (from the
24 languages of the European union), which constitutes 800K documents.

4. TED-FILTER, is a corpus comprising 2000K documents extracted from the com-
plete fd-TED (the corpus is multilingual but we only consider the document in

6. https://github.com/oussamaahmia/TED-dataset

76

https://github.com/oussamaahmia/TED-dataset

2.3. Contribution

french) corpus by filtering out the legal-commercial-administrative paragraphs.
This filtering step considerably reduces the size of the texts (around 80% of the
document). The documents are still categorized into 45 categories in a multi-
label setting.

5. OHSUMED [57] is a subset of the MEDLINE database, which is a bibliographic
database of peer-reviewed medical literature (in English) maintained by the Na-
tional Library of Medicine. It contains 22K documents divided into 23 categories
presented in a multi-label setting.

Experimental protocol

We describe in this section the protocol we used to evaluate our proposed docu-
ment embedding methods (combination W2V+LSA and CnHAtt) comparatively to the
state of the art approaches reported in the literature. All the five datasets briefly de-
scribed above are used for the evaluation.

The following pre-processing is applied to all tested methods :

We first remove the stop-words (we use the stop word lists provided by the NLTK
toolkit [58]) corresponding to the languages that are used in the datasets. Then, for the
TED-FR corpora, the CPV codes (classification system for public contracts) contained
in the text are replaced by a neutral keyword (%digit%), as these codes define the
classes of the documents. In addition, we also ignore terms whose number of occur-
rences is less than 5 in a dataset.

Once the previous preprocessing is done, we consider the following vectorizations
(embeddings) methods:

1. tf : bag of words with a tf weighting

2. LSA tf : tf weightings + LSA

3. tf-idf : bag of words with a tf weighting

4. LSA tf-idf : tf-idf weightings + LSA

5. W2V the average word2vec vectors

6. LSA+W2V the average word2vec vectors concatenated with the LSA vector us-
ing a tf-idf weighting

77

Partie , Chapter 2 – Document embedding

In our experiment, we have choosed 100 dimensions for LSA and W2V which leads
to a combined vector of 200 dimensions for LSA+W2V vectorization.

For our hierarchical model (CnHAtt) and HAT [11] model the embedding layers are
initialized using a 100 dimension word2vec embedding.

Beside CnHAtt and HAT we have evaluated each vectorization method described
above using the following classifiers:

— MLP: A multilayer perceptron [59] with two hidden layers of 200 nodes each, the
activation function used is the sigmoid.

— SGD: A linear support vector machine optimized by stochastic gradient descent
[60].

— NB: A multinomial naive Bayes classifier [61] with α = 1 for the tf and tf-idf
weightings. A Gaussian naive Bayes classifier [62] is used for the other vector-
izations, as they can contain negative values, with a default variance of σ = 10−9.

— for CnHAtt and HAT models the outputs are connected to MLP layers that will
be trained along side each model (the other classification models cited above
are not used in this case). Both CnHAtt and HAT models use the same fixed
number of words and sentences, namely 50 and 20 respectively. For CnHAtt we
have used 128 filters on both CNNs with a window size of 5 and the GRU layer
in the HAT model includes a hidden layer whose size is 100 neurons.

However, not all combinations of vectorization/classification model can be evaluated
for algorithmic complexity reasons. It is indeed difficult to combine, for example, a very
large (high dimensional) vectorization tf-idf with an MLP classifier for instance.

The ’multi-label ’ classification was done using the ’One v.s. Rest ’ classification
framework (in the case of MLP this step is not required), which involves training a
binary model for each class. Observations (documents) belonging to one class are
considered positive class of an observation where all others as negative class (we end
up with binary classifiers for each class).

A decision threshold varying between [0.1,..,0.9] 7 is then used: if the log-probability
of a tested document in relation to a class is greater than the threshold, the tested
document will be classified as member of this class.

7. we keep the threshold with the best accuracy score for each classification model

78

2.3. Contribution

2.3.4 Experimentation Result

Using word2Vec averaging as document embedding for the different NLP tasks
(classification, clustering, recommendation, etc.) that we face at OctopusMind, was
indeed a good start: it was fast and easy to implement in our production environment.
However, this approache rapidly shows some limitation and disadvantages.

We first try to verify the general assumption that word2vec averaging tends to focus
on the main topic of the document and to filter out some important semantic informa-
tion while storing only the general idea of a document. In addition, we want to evaluate
the ’noise’ produced by the way contextual information is used to construct word em-
bedding: the word that are frequently in a similar context will inevitably have similar
embedding vectors even if these words are critical to dissociate two different classes
(antonyms, such as to love or to hate are generally associated to similar embedding
vectors since they occur frequently in similar contexts).

After building a skipgram word2vec model on the 20newsgroup dataset, we took,
as an example, the words "Jesus-Christ" and "Moses" (two Prophets). These nouns
tend to occur in a similar context and after calculating the cosine similarity between
the word2vec vectors of this two words we obtained the value of (0.80) which is fairly
large considering that this two words are really important to separate classes like: Ju-
daism and christianism or ("soc.religion.christian" and "talk.religion.misc") in the case
of 20newsgroup. To get a better view on this problem, we can analyse the confusion
matrix produced by a SGD classifier and the three different embeddings (W2V, LSA,
LSA+W2V). The results are shown in the table below:

embedding alt.atheism soc.religion. talk.politics. talk.religion.

christian mideast misc

W2V 23 16,25 3,4 59,45
LSA 21,33 11,15 1,11 76,08
W2v+LSA 16,43 8,58 1,69 84,5

Table 2.1 – Excerpt of the confusion matrix for talk.religion.misc category obtained
using a SGB classifier on the 20NG dataset, using the various embeddings.

79

Partie , Chapter 2 – Document embedding

From table 2.1 when we use a word2Vec averaging embedding, the classifier tends
to misclassify the documents from alt.atheism and soc.religion into talk.religion.misc.
Using a LSA embedding reduces the confusion between these classes that are close
semantically, and the combination of LSA and word2vec embeddings improves the re-
sults even more.

The following tables present the experimental results obtained for the different com-
binations of vectorization and classification algorithms.

The classification algorithms are evaluated using four metrics:

— The empirical accuracy (accuracy) which represents the percentage of the ob-
servations labeled identically to the true annotation:A = vpvn

vp+fp+vn+fn ,
— The precision measure P = vp

vp+fp ,
— The recall measure R = vp

vp+fn where vp is the number of true positives, fp is the
number of false positives and fn is the number of false negatives,

— The F1-measure F = (1+β2).P.R
β2.P+R (with β = 1),

The precision, recall and F1-score measures are presented in the form of a weighted
average relative to the support of each class. It is therefore a macro-average, that al-
lows to take into account the imbalanced classes.

In addition, 80% of each dataset is used as training data and 20% as test data,
enabling to set up a k-fold cross-validation with k = 5.
As stated above, we note that for neural network methods we apply different threshold
on the outputs and we select the best results on a validation set based on the accuracy
(thus, it is possible to have different threshold for each step of the cross validation), the
different metrics for each step of the cross validation are then averaged.

The tables (2.2, 2.3, 2.5 and 2.6) present the classification results obtained on all
five corpora.

For the 20NG corpus, the best accuracy is obtained by the SGD classifier using the
tf-idf bag of word embedding. This can be explained by the fact that tf-idf weighting is
able to represent documents by keeping all the occurrences of the words contained in
a document, which allows to separate more efficiently the most similar classes of this
very peculiar dataset: 20NG is a dataset that contains very similar classes (semanti-
cally speaking), i.e: religion.misc and alt.atheism.

80

2.3. Contribution

Accuracy Precision Recall F1-score
SGD (tf-idf) 92,92 92,8 92,8 92,8
CnHAtt 90,29 96,38 94,19 90,63
NB (tf-idf) 90,07 90,6 90 89,8
HAT 88,24 94,37 92,30 88,72
MLP (LSA+W2V) 84,46 84,6 84,6 84,6
NB (tf) 83,96 86,2 83,8 83,4
MLP (LSA tf-idf) 81,86 82 81,8 81,6
SGD (LSA tf-idf) 78,99 81,2 79 79
NB (LSA tf-idf) 74,1 75,4 74,4 74,4
MLP (W2V) 73,43 73,6 73,6 73,6
SGD (LSA+W2V) 71,49 80,8 71,4 73
SGD (tf) 71,12 83,2 71 74,6
NB (LSA+W2V) 68,46 71,6 68,4 69
MLP (LSA tf) 59,37 59,2 59,4 58,4
SGD (LSA tf) 54,16 68,4 54,2 54,4
NB (W2V) 51,95 55 51,8 52
SGD (W2V) 51,16 65 51,2 52,6
NB (LSA tf) 39,23 51,2 39,2 41,6

Table 2.2 – Results obtained for the 20NG dataset.

81

Partie , Chapter 2 – Document embedding

Concerning all four other datasets, our LSA+W2V model gets relatively good results
for a cheap computational cost (using MLP classifier).

The relatively low results obtained on the TED-FR dataset by the LSA+W2V em-
bedding method, even though the recall is significantly higher than the one obtained
with the traditional tf and tf-idf BOW models, are largely due to the noisy nature of the
database, in particular because it contains a fairly large amount of legal-administrative
information (which represents the majority of the texts). Therefore the discriminating
words (relevant) in relation to some classes represent only a small portion of the text.
In another hand, this is precisely the reason why attention based vectorization models
perform much better, as compared to LSA+W2V vectorizations (or any other methods
that do not include any attention mechanism) that take into account all the words of
a document without any discrimination regarding their importance to the classification.
Conversely, the attention based methods (CnHAtt and HAT) only stores the most im-
portant words contextually to the task at hand. The hierarchical architectures also helps
when working with relatively long documents (RCV1 and TED-FR)

Furthermore, from tables 2.4 and 2.2, we observe that the performance of the
LSA+W2V vectorization is relatively close to CnHAtt and HAT vectorizations when
working with relatively clean and small datasets (example in 20NG we obtain f1-scores
of: 90.63, 88.72, 84.6 for CnHAtt, HAT and LSA+W2V respectively).

Concerning TED-FILTER, hierarchical method was not evaluated, the reason is that
this dataset contain very small texts (one sentence in most cases). Therefore the hier-
archical aspect of HAT and CnHAtt cannot be highlighted on such dataset.

From the tables (2.6, 2.4, 2.5), we can infer that by combining LSA with word2vec,
our model, thanks to LSA, takes into account the frequencies of the important words
that compose the document and, thanks to the averaged word2vec embedding, this
kind of vectorization takes into account the general semantics of the documents, while
preserving a reduced dimension for the resulting vector. By taking advantage of the
complementary of the two approaches, LSA + W2V achieves a good compromise
between performance and algorithmic complexity as shown for the RCV1 and TED
datasets.
For 20NG, which has very similar and ambiguous categories, LSA vectorization is prob-
ably carried out with an insufficient dimensionality, which prohibits a good separation
of the words that characterize most these categories.

82

2.3. Contribution

Accuracy Precision Recall F1-score
CnHAtt 84,89 99,49 88,95 89,74
HAT 84,40 99,13 82,14 89,25
MLP (LSA+W2V) 55,27 78,2 57 64
MLP (LSA tf-idf) 49,65 76,8 49,4 55,4
SGD (tf) 48,32 78,2 59,6 62,8
MLP (W2V) 45,23 76,6 45 53
MLP (LSA tf) 33,13 64,4 31,8 37
SGD (LSA+W2V) 32,8 66,6 34,4 41
SGD (W2V) 29,9 64,4 31,8 38,4
SGD (LSA tf-idf) 17,63 53 16,6 22
NB (tf) 16,65 34,6 81,2 45,6
SGD (tf-idf) 16,35 73,8 15 20,4
NB (LSA tf-idf) 14,6 32 45,6 35,2
NB (tf-idf) 13,99 68,8 13,4 19,8
NB (LSA tf) 11,41 28,2 41,8 30,4
NB (LSA+W2V) 6,08 26,4 60,8 33,2
SGD (LSA tf) 6,06 30,2 5,8 9
NB (W2V) 5,33 19,8 48,2 25,6

Table 2.3 – Results obtained for the TED-FR dataset.

83

Partie , Chapter 2 – Document embedding

Accuracy Precision Recall F1-score
CnHAtt 78,12 92,99 92,25 92,57
HAT 77,08 92,16 91,52 91,81
MLP (LSA+W2V) 72,58 89,36 90,05 89,66
SGD (tf) 71,45 87,98 90,25 89,06
MLP (LSA tf-idf) 70,88 88,47 89,50 88,94
MLP (W2V) 69,25 87,48 87,52 87,44
SGD (tf-idf) 64,51 93,28 84,40 88,51
MLP (LSA tf) 50,95 84,01 77,13 80,23
NB (tf) 25,80 62,87 90,09 73,31
SGD (LSA+W2V) 19,64 71,96 49,67 56,84
SGD (LSA tf-idf) 19,47 74,52 43,34 53,33
NB (tf-idf) 15,25 88,64 34,20 44,55
NB (LSA tf-idf) 12,94 54,46 53,57 53,33
SGD (W2V) 11,82 63,40 34,42 41,61
SGD (LSA tf) 10,25 69,34 25,13 34,68
NB (LSA tf) 3,29 33,28 47,72 37,13
NB (LSA+W2V) 3,15 38,56 66,54 47,25
NB (W2V) 1,31 32,03 61,63 40,39

Table 2.4 – Results obtained for the ohsumed dataset.

84

2.3. Contribution

Accuracy Precision Recall F1-score
CnHAtt 64,60 89,62 85,30 86,93
HAT 63,15 89,96 83,45 85,37
MLP (LSA+W2V) 58,51 87 81 83,6
MLP (W2V) 57,86 87,4 80 83
MLP (LSA tf-idf) 54,64 86 77 80,4
SGD (tf-idf) 49,67 91,4 69,2 76,2
MLP (tf) 49,41 84,2 72,2 76,6
SGD (tf) 44,84 81,6 75,6 77,8
SGD (LSA+W2V) 38,32 79 71 73,4
SGD (LSA tf-idf) 36,42 82,8 60,6 67,2
SGD (W2V) 32,99 76,6 67,4 70
SGD (tf) 18,81 78,4 44 53
NB (LSA tf-idf) 4,85 40,8 77,2 50,2
NB (LSA+W2V) 2,58 40,6 85,2 50,4
NB (W2V) 1,54 38,6 85,2 48,4
NB (tf) 0,55 27,4 72,8 36,2
NB (tf) 0,29 4,4 0 0
NB (tf-idf) 0,29 0 0 0

Table 2.5 – Results obtained for the RCV1 dataset

Accuracy Precision Recall F1-score
MLP (LSA+W2V) 77,47 95,2 75 83,2
MLP (W2V) 75,6 95,2 72,6 81,4
MLP (LSA tf-idf) 69,38 94,4 66,4 76,6
NB (tf-idf) 66,07 88 66,2 74,6
SGD (LSA+W2V) 61,22 91 59,2 69,8
SGD (W2V) 56,16 88 55,2 65,6
SGD (tf) 55,74 89,4 53,8 65
NB (tf) 51,9 62,8 78,2 68,8
SGD (tf-idf) 49,39 93,4 46 59
SGD (LSA tf-idf) 44,73 83,2 42,4 53,4
SGD (tf) 31,82 74,4 30,2 39,2
NB (W2V) 5,72 23,8 77,6 33,8
NB (tf) 2,38 19,8 73 27,8
NB (LSA+W2V) 1,85 22,8 81,2 33,8
NB (LSA tf-idf) 1,63 20 76,8 30,2

Table 2.6 – Results obtained for the TED-FILTER dataset.

85

Partie , Chapter 2 – Document embedding

We also observe from the previous tables that CnHAtt and HAT seems to have very
close results for all datasets with CnHAtt slightly ahead. The main difference between
the two approaches lies in their respective algorithmic complexity. In addition, CnHAtt is
fully parallelizable which is not the the case for HAT since it is based on RNNs (GRUs in
the case of this experiment) that is intrinsically a sequential model. The following table
2.7 presents the execution time for both models on a batch of 512 items. The hardware
used for this experiment has the following characteristics: (CPU: 2 x Intel(R) Xeon(R)
Gold 6140 CPU @ 2.30GHz, GPU: GeForce RTX 2080 Ti).

CnHAtt HAT
Training 51 ms 498 ms
Prediction 17 ms 118 ms

Table 2.7 – Average time needed by CnHAtt and HAT to train and predict a batch of
512 observation.

Clearly CnHAtt is more efficient computationally speaking comparatively to HAT:
CnHAtt is nearly 10 times faster than HAT, which represents an order of magnitude.

In order to evaluate how our model CnHAtt performs comparatively to the HAT
model in clustering tasks, we carried out the following experiment. For each one of
the datasets listed in (2.3.3), we only consider the documents that belong to only one
class (while filtering out documents belonging to several classes). The HAT and CnHAtt
models are then trained on each dataset (the training is stopped when the loss on the
validation dataset does not change for more than 3 epoch)

The vectorization models are evaluated using Kmeans [63] and Hierarchical clus-
tering [64] with cosine similarity, the number of expected clusters for each dataset is
the same as the number of classes. The performance is then measured using the Rand
Index[65] measure. The results are presented in the following tables.

CnHAtt HAT
20NewsGroup 0.50 0.48
RCV1 0.45 0.43
TED-FR 0.46 0.61
ohsumed 0.25 0.16

Table 2.8 – Results obtained for clustering using Kmeans algorithm.

86

2.3. Contribution

CnHAtt HAT
20NewsGroup 0.38 0.37
RCV1 0.33 0.30
TED-FR / /
ohsumed 0.29 0.21

Table 2.9 – Results obtained for clustering using Hierarchical clustering algorithm. The
evaluation measure is the Rand index (No evaluation has been obtained for TED-FR
due to the size of the data set).

From table (2.8), we observe that in some cases the score is surprisingly high (HAT
on TED-FR). This is probably caused by the fact that document vector becomes too
much related to the output categories. To have a better look at the results and to val-
idate this assumption, we have used the document vectors trained on TED-FR (45
classes) and tried a clustering on the TED-FR with level 3 hierarchy classes (317
classes). Using the Rand index we get 0.23 and 0.17 for CnHAtt and HAT respectively
using the Kmeans algorithm.

That confirms that the document generated by HAT model tends to be too much
related to the classes. This may be caused by the way HAT generates the document
vectors, using a GRU which is a non linear projection of the word embeddings, causing
the document vector to live in a different space. Conversely, CnHAtt involves a weighted
sum of the word embedding exploiting the attention weight, which means that the docu-
ment vector lives in the same space as the word vectors. Also we observe heuristically
that only a small modification of the embedding is produced during the training phase
at the embedding layer.

This mean that the document vectors generated by CnHAtt live in the same space
as the word vectors which is not the case for the HAT model.

The following figures illustrate the attention generated by the CnHAtt model, using
green shades at word level and blue shades at sentence level (the darker the color,
the bigger the attention). We notice from figures (2.30, 2.29) that the model gives less
attention to sentences that contains legal-commercial-administrative information, which
shows that the CnHAtt model is able to work with noisy documents.

On the figures (2.28, 2.27), we show that the same word can have different attention
levels according to its context.

87

Partie , Chapter 2 – Document embedding

Figure 2.27 – Figure illustrating attention weights in a sentence and a word level on a
20NewsGroup document in the class "sci.electronics"

Figure 2.28 – Figure illustrating attention weight for a word by multiplying the word
attention weight by sentence attention weight on a 20NewsGroup document in the
class "sci.electronics"

88

2.3. Contribution

Figure 2.29 – Figure illustrating attention weights in a sentence and a word level on a
FULL-TED document in the class "Installation services of communications equipment"

89

Partie , Chapter 2 – Document embedding

Figure 2.30 – Figure illustrating attention weights a word by multiplying the word at-
tention weight by sentence attention weight on a FULL-TED document in the class
"Installation services of communications equipment"

2.3.5 Conclusion and perspectives

In this chapter we described the two document embedding methods we developed,
namely LSA+Word2vec and CnHAtt. both models gave promising results for classifica-
tion tasks.

As for LSA+Word2vec by using the complementarity of Word2vec and LSA we were
able to create dense document vectors that stores the context of word occurrences
(local context for Word2vec and global context for LSA), the document vectors obtained
are of a low-dimension, therefore respecting the criteria set by OctopusMind.

The CnHAtt model, is a CNN based attention DNN. The model brings a novel way to
produce local attention weights using CNNs, it also applies a hierarchical architecture,
allowing to produce attention at a word level giving each word a weight according to

90

2.3. Contribution

its local context and on a sentence level by giving each sentence a weight according
to their relevance to classification task, which allows to remove irrelevant sentences
(legal and administrative sentences in the case of public procurement documents).
The CnHAtt model do not use RNNs, allowing it to be 10 times faster to train compared
to other state of the art RNN based attention models. Also the CnHAtt model beats the
state of the art similar model in the presented classification tasks.

As a perspective, we will be working toward updating the CnHAtt model to work
with multiple languages. For the time being in order to achieve document classification
on multilingual corpus, we train a different model for each language. Also, we need to
further study the different variation of CnHAtt on different NLP problems.

In addition to that we will be exploring more clustering techniques, with the goal of
being able to detect new trends in public procurement (new activity fields for example),
keeping in mind that due to the nature of the corpus we are working with, the clustering
methods we will be using will have to take into consideration the nature of the data
we are working with. Especially the fact that the documents we are willing to classify
may belong to several clusters. Fuzzy clustering methods[66], [67], seems to to be
a good answer to this problematic, we are aiming to explore these techniques in the
foreseeable future.

91

CHAPTER 3

APPLICATIVE TASKS

3.1 Introduction

The main objective and purpose of this thesis project is to provide a toolbox that
performs automatic strategic monitoring on call for tender databases using natural lan-
guage processing.

In order to achieve such a goal we have to create software modules that perform
a variety of tasks ranging from specific information extraction from noisy document to
modeling complex semantics of raw text, as well as tunneling the right information to
the right actor.

Those different solutions must fit in an already existing software environment in
use at OctopusMind and has to meet the constraints imposed by the company (time
complexity, cost...).

We decided to take a modular approach, in a sense that we created a dedicated
solution for each task: the developed modules have been created in a way that there are
easily reusable for similar problem. The combination of such relatively simple modules
should be able to solve more complex problems, with the hypothesis that each complex
problem can be split into simpler problems.

This chapter focuses on describing the different solutions that we have developed
and deployed to solve practical company problems, by either applying state of the art
methods or developing our own solution to fit the specific needs of the company.

This chapter is decomposed into three sections. The first section describes the solu-
tion related to the information and relationships extraction problems (covering financial
data extraction, surfaces detection, etc.). The second section is about the creation of a
recommender system using different document embedding methods described in the
chapter 2. Finally we list the future works and perspectives that are planned in order to
tackle more complex problems and overcome some of our shortcomings.

We also note that the different problems tackled in this chapter were dealt with

93

Partie , Chapter 3 – Applicative tasks

all along the thesis period (4 years period) and in parallel to the works on document
embedding.

3.2 Information extraction

The data found on the web, can be categorised in two main classes: structured data
and unstructured data.

Structured data is characterized by a "standardized" format that can be easily ex-
ploited allowing a direct access to the relevant information (SGBD database, xml data,
rdf data). On the contrary, unstructured data does not have a pre-definded formatting.
hence, it contains information that cannot be immediately accessible, and generally
requires human expertise to be properly processed.

The unstructured information is estimated to represent about three quarters of the
data accessible on the internet [68]. The data used by OctopusMind, and the public
procurement documentation in general, falls into this category: the documents contain
large amount of useful information that are embedded into the full-text. Examples of
unstructured information include:

— "Financial data", which requires detecting and extracting information about the
cost of a project, the budget allocated or the minimum turnover needed to apply
for a call for tenders.

— "Renewal information", which requires extracting from a call for tender informa-
tion that allows to know if a given project will be renewed and if so, when this will
occur.

— "Surface characterization", which requires in analysing documentation related to
construction projects and extracting different information about the building that
are described (surface, type,...)

Creating automated tools to automatically extract such information became quickly
a necessity, since, as the number of documents grows, manually processing them be-
came impossible.

A lot of work in the literature has provided numerous models for information ex-
traction (e.g. named entity detection) and relationship extraction. These methods are
generally grouped into two categories: supervised approaches and unsupervised ap-
proaches [69].

Unsupervised approaches are usually based on contextual features. Distributional

94

3.2. Information extraction

semantics introduced by Z.S Harris [70], assumes that words (entities) that frequently
occur in same contexts, tends to have similar meanings. D. Ravichandran uses a boot-
strap approach [71] to learn surface text patterns in order to extract binary relationships
from the Web. More recently [72] developed a large scale method for relationships
extraction that allows handling polysemy and synonymy problems, usually source of
semantic ambiguity and is in general difficult to overcome for the extraction of certain
classes of relationships.

This approach is divided into two steps. The first step consists in discovering a set
of semantic classes that will be used as arguments for each binary relation.

The result of this first step is a large collection of relations whose arguments are
pairs of semantic classes associated to a single semantic relation. These type of rela-
tionships are called "Type-A" relations. Example:

<{New York, London...}, be locate in, {USA,England,...}.>

During this phase, the polysemous phrases are disambiguated and placed in sep-
arate relations (Example: <Euro, be the currency of, Germany> and
<authorship, be the currency of, science> are polysemous relations).

The second phase groups the "Type A" relationships according to their similarities
[73], this is done by Hierarchical Agglomerative Clustering [74] resulting in "Type B"
relationships. It results in relationships that can have multiple expressions (semantically
similar sentences written in different ways), Example:

r1 = <Cities, be locate in, Countries> and
r2 = <Cities, be city of, Countries>.

Therefore being able to resolve hyperonyms 1 problem (Example: the relations r1, r2
share a pair of arguments< Tokyo, Japan > and a pair of hyperonyms< City, Country >).

The supervised methods address relationships extraction as a classification prob-
lem. Usually supervised approaches are divided into 2 sub-groups: kernel based meth-
ods and features based methods.

The kernel-based method tackles the problem of relationships extraction as a kernel
evaluated on a pair of objects (binary matching) [76], which allows the use of large fea-
ture sets without needing to extract them explicitly. This model exploits a kernel based
on the syntax tree of a sentence. Qian et al [77] developed a dynamic approach that

1. hyperonym is a word with a general meaning that has basically the same meaning of a more
specific word. [75]

95

Partie , Chapter 3 – Applicative tasks

determines sub-trees that could potentially encode a relationship, by using a convolu-
tion tree kernel. More recently Zhou et al [78] proposed an approach that uses enriched
syntactic and semantic information to develop a context-aware convolutional kernel (-
sensitive convolution tree kernel). This type of kernel is used to extract sub-trees that
encodes relationships that take into account the context.

Features based methods seek at extracting a set of syntactic and semantic vari-
ables that are then used in a statistical learning framework [79]. Several techniques
have been proposed in this line of research, in particular structured classification algo-
rithms such as CRF [80] (Conditional Random Fields). More recently a semi-supervised
approach has been proposed in [81] for extracting relationships from large corpus.

We also note, that with the emerging of deep learning techniques, many attempts
have been done to use deep learning architectures in named entity detection and rela-
tionships extraction. Either by using CNNs (Convolutional Neural Networks) like in [82]
where multi-level attention CNNs are configured to classify relationships by relying on
the two levels of attention: the first one is used to to capture entity-specific attention
(at input level in respect to the target entities) and the second one comes in the form
of an attention based pooling layer that calculate relation-specific attention, enabling
it to automatically learn which parts are relevant for a given classification. Other ap-
proaches take advantage of RNNs (Recurrent Neural Networks) like in [83] where the
LSTM (Long-Short Term Memory) network is trained to classify relationships between
named entities. The main feature of this model is the fact that it chooses the shortest
dependency path, thus only retaining the most relevant information (to relation classifi-
cation task).

For our needs we will focus on statistical feature based methods. The main motiva-
tion behind this choice is that most of the problems we tackle are centred on detecting
specific relationships/entities that we know beforehand (we mostly deal with supervised
entity and relationships detection) so we have no need to explore the corpus in search
of unknown relationships (unsupervised entity and relationships detection). The use of
kernel based methods has not been considered as they are essentially used for un-
supervised entity-relation detection. Furthermore, we have not considered either deep
neural methods, since such models need relatively large dataset to be trained, which
are costly to create. Also this type of models cannot be easily interpreted and the model
behavior in most cases are impossible to explain.

96

3.2. Information extraction

The models we have used for the different information tasks are: structured percep-
tron, HMMs (Hidden Markov Model), CRFs (Conditional random fields), HCRFs (Higher
order CRFs) and Semi-Markovian CRFs. These models are the most used models for
feature based information and relationships extraction. We evaluated them on the sur-
faces extraction task, to select the best model as a starting baseline for other similar
tasks, namely: financial data and renewal information extraction.

We also developed a context aware version of bag of word, for financial information
extraction. Which is faster than the previously quoted models.

3.2.1 Models used

Conditional random fields

Conditional random fields (CRFs) [84], are a class of probabilistic modeling method,
used for labeling and segmenting structured data (such as sequence or tree). Its main
objective is that of defining a conditional probability distribution over a label sequences
y, given a sequence observation x.

The Conditional Random Fields can be defined as follows: Let G = (V,E) be an
undirected graphical model, where V is the nodes set (Vertices), E is the edges, X
and Y are two random fields describing respectively the observations and the labels,
in such a way that for each node v ∈ V , ∃Yv ∈ Y . We can assume that (X, Y) is a
Conditional random Field if each random variable Yv satisfies the following Markovian
property :

∀v, p(Yv|X, {Yw, w 6= v}) = p(Yv|X, {Yw, v ∼ w})

, where v ∼ w means that w and v are neighbors in G (i.e. there is an edge linking w

and v).
In other words, each random variable Yv only depends on X and on its neighbors

in G (a more intuitive way to say it is that the prediction of the label depends on the
previously predicted label).

The potential functions associated to the CRF are defined as the exponential of a
weighted sum of functions fk (referred to as "feature functions"), the weights being the
λk. The conditional probability of a label given the knowledge of an observation x, can
be formulated according to the following equation:

97

Partie , Chapter 3 – Applicative tasks

p(y|x1:N) = 1
Z(X = x) exp(

N∑
n=1

F∑
i=1

λifi(zn−1, x1:N , n)).

Where: Z(x) is a normalisation function specific to the observation x:

Z(x) =
∑
y

exp(
N∑
n=1

F∑
i=1

λifi(zn−1, x1:N , n)).

Higher order CRFs and semi-markovian CRFs

A CRF is considered as being a high order model if each Yi depends on a fixed
number o of previous labels Yi−o,...,Yi−1. The training and inference (prediction) for this
type of models is only practically possible for small values of o [85].

Unlike the CRF that allows for a given sequence of observation X = x1, x2, ..., xT to
return a sequence of labels Y = y1, y2, ..., yT that maximise the posterior probability.

The semi-Markovian CRFs allows to label sub-sequences (segments) of the obser-
vation S = 〈s1, ..., sp〉, where the segment sj = 〈tj, uj, yj〉 has a start position tj, an end
position uj and a label yj ∈ Y .

For example, for Y = 〈1, 1, 2, 2, 2, 0, 0, 0〉 we have S = 〈〈1, 2, 1〉, 〈3, 5, 2〉, 〈6, 8, 0〉〉.
In the case of semi-Markovian CRFs the features are calculated at segment level

rather than at an element level. Furthermore, for the "linear chain" CRF, a feature of a
segment j, lets say for example the n-th feature of the segment j, fn(j,X, S), is calcu-
lated from the observations xtj , ..., xuj

.

Hidden Markov Model

Hidden Markov Model (HMM)[86] is composed with a set of finite states connected
through transitions. Each state is characterized by two types of probabilities: the prob-
ability of transitioning between states and the probability of emitting a label, which can
be a discrete probability function or a probability density.

A HMM can be defined as follow: Lets S be a set of states including an initial state
S1 and a final state Sf , A a transition probability matrix (such as A = ai,j where aij is the
transition probability from the i-th state to the j-th state) and B is the output probability
matrix B = {bj(Ok)} (in the case of a discrete form of HMMs) where Ok in this case is
a discrete symbol.

98

3.2. Information extraction

In the discrete HMM form, aij and bj(Ok) have the following properties:

aij ≥ 0, bj(Ok) ≥ 0, ∀i, j, k,∑
j

aij = 1 ∀i,

∑
k

bj(Ok) = 1 ∀j.

Thus, A gives the probability of transition between states and B associate each
state Sj, said hidden, with a probability for each output (the observable state).

The figure 3.1 illustrate diagram of an HMM along side a CRF.

Figure 3.1 – Diagram of the relationships between naive Bayes, logistic regression,
HMMs and linear-chain CRFs taken from[87]

Structured perceptron

Structured perceptron [88] is the result of combining the percepton algorithm[89]
with an inference algorithm.

The perceptron enables a local linear classification, while the inference algorithm
(Viterbi algorithm[90]) allows to align sequential data. The model can be summarized
as follow: φ(X, y) links an observation X to a label y, θ is the weights vector and GEN
is the function that performs the prediction.

99

Partie , Chapter 3 – Applicative tasks

For each iteration:
for each (X, y):

y∗ = argmaxy∈GEN(x)θ
Tφ(x, y)

if (y∗ 6= y) then: θ = θ + φ(x, y)− φ(x, y∗)

3.2.2 Surface extraction

Urban planning is a complex area where public decision-makers intervene. Indeed,
each development project affects and interacts with the other projects in a given area.
Which makes anticipating changes and analyzing their long-term impacts a very com-
plex task. These tasks require a comprehensive knowledge of the urban environment
and future projects. It is in this context that the identification of future territorial de-
velopment projects (Urban planning) and all information related to them becomes a
necessity. As is, it allows to represent the future evolution of a city, and for this pur-
pose, it is necessary to get information on the nature of the development project at the
right time. This information are characterized in particular by its surface area and its
main type, characterized by a building typology: hospital, park, etc.

The main purpose of this work is, from the content of call for tenders documents, to
list different development projects (public buildings construction) in France, and extract
their surfaces, location (Geo-position), in order to plot them on a 3D map.

Methodology

Our problematic is to extract the surface of a territorial development project (a build-
ing or a group of buildings) based on unstructured textual data. More concretely we
need to extract two types of named entities (surface and building) from unstructured
text, to determine if there exists a relationship between them.

Our problem is therefore divided into two steps: Firstly, the named entity detection
(surface and building). And secondly the relationship extraction of the type "is a sur-
face of" between the previously detected entities. These relationships link a building to
it’s surface, like for example "a 1000m2 municipal swimming pool". The relationships
can also link several buildings to one surface, for example: Approximately 2500 m2 of
floor space, including offices, reading rooms ...".

The proposed approach is to perform the named entities extraction (surface and
building) simultaneously with the relationships detection between these entities. This

100

3.2. Information extraction

approach can be seen as a problem of sequence labeling or "sequence tagging",
with the following possible labels:

— O: Items that do not fall into neither of the following categories. ;
— LINK_SURFACE/bâtiment: the buildings that are part of a relationship " is a

surface of";
— O/bâtiment: Buildings that are not part of a relationship "is a surface of";
— O/surface: surfaces that are not part of "is a surface of";
— LINK_SURFACE/surface: the surfaces that are part of a relationship " is a

surface of";
— LINK_SURFACE: Items that are part of the "relationship are a surface of",

but are neither surface nor building (this label makes it easier to link the named
entities together in the case that there are several surfaces and buildings in the
same sentence).

The figure 3.2 shows the expected result of our labeling model.

Figure 3.2 – Figure showing the labels used.

From the labels on the first sentence shown in the figure 3.2, we can easily infer
the following relationship "2 500 m2" "is a surface of" "bureaux + salles + espaces
spécifiques". And therefore we just need to extract the sequence of elements (items)
that have the following labels: LIEN_SURFACE/bâtiment, LIEN_SURFACE/surface
or LIEN_SURFACE.

101

Partie , Chapter 3 – Applicative tasks

Features used

The features used to train our model can be split into two types: Local features
related to one of the token of the sequence:

— word.lower : the uncased form of a token.
— istitle : Boolean feature that indicates whether or not the word starts with a

capital letter.
— lemma : The word lemma.
— POS : "Part of speech" of the word.
— type : This feature can have one of the following values: bâtiment if the word

is in a predefined set of buildings names, surface: A regular expression (regex)
is applied to check if a token is a word (this feature turn out to be useful in the
case of tokenization error, example: "200m2shon") or 0 otherwise.

The second type of features are Long range features that takes into account the
context of tokens which reduces the semantic ambiguity of the words and have proven
to be effective for sequence labeling tasks [91],[92]. Let x′i be a feature set of local
features xi describing a token wi after adding long range features, as described in the
following equation: x′i = 〈xi−j, ..., xi+j〉, where j is the context size. For example: for
j = 2, x′4 = 〈x2, x3, x4, x5, x6〉.

Used dataset

The data used for this experiment are taken from BOAMP 2 dataset, the electronic
version of the French official journal (The French equivalent of the TED dataset). The
BOAMP is used by DILA (Direction de l’Information Légale et Administrative) to publish
public procurement notices.

The documents are indexed using (Lucene) search engine in order to select doc-
uments that are related to the construction of new buildings. The text is then split into
sentences and then regular expressions are applied to detect building names or sur-
faces. We used (among others) the following Regex:

((([0− 9]\s∗) + ((\.|,)[0− 9]+) ∗ \s∗)(m\s ∗ 2|m2|ha(\s+ |$)|hectare\w ∗ |metres\s ∗
((car)\w∗) ∗ (lineaires∗)∗))

2. http://www.boamp.fr

102

http://www.boamp.fr

3.2. Information extraction

The sentences that contain a surface are segmented into tokens, then local and
contextual (long range features) features are extracted. The initial dataset contains
2000 sequences. This sequences are labeled using a regex (the regex labeling is used
as a benchmark), the result is then corrected by OctopusMind experts in order to have
the final dataset that will be used in our experiments.

Experimentation and results

Several models for information and relation extraction are evaluated on this dataset.
We compared different types of conditional random fields (CRF): with long range fea-
tures and different context sizes, high order CRF (H-CRF) and semi-Markovian CRFs
with. We have also evaluated a hidden markov model and a structured perceptron.
We have used a Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS [93],
[94]) method for CRFs weight optimisation. We have applied a grid search [95] algo-
rithm in order to select the (l1, l2) coefficients for L-BFGS regularisation. Choosing the
grid search method was mostly motivated by easiness of implementation and by the
simplicity of the optimization problem, as we only have two variables to optimize. The
number of iterations used to train each model has been set to 200.

For this experiment, we implemented a cross validation procedure with k = 5 folds
(80% for train and 20% for test). The evaluation measures used for this experiment
are: precision, recall, F1-measure and accuracy (The percentage of sequences which
all labels are correctly predicted). The accuracy can be seen as the success rate on the
sequence level compared to the other measures we use that are at label/token level.
The results are shown in table 3.1.

From table 3.1, we can see that the CRF with long range features performs the best,
with an accuracy of 76.04%. This result confirms that the use of context aware features
(long range features) increases the performance of the models. We also noticed that
for this particular problem, having a context size bigger than 3 does not improve the
result any further. The HMM got the worst result, as they are not suited for relation-
ships extractions problems. We also note that by increasing the complexity of a model
coupled with small size of the training data may cause over-fitting.

The table 3.2 shows the different measures evaluated for each label prediction taken
separately.

103

Partie , Chapter 3 – Applicative tasks

Precision Recall F1-measure accuracy
CRF context (3) 0.932 0.932 0.932 76.04%
CRF context (2) 0.926 0.926 0.926 74.65%
Linear CRF 0.899 0.896 0.897 61.75%
CRF semi-Markoviens 0.897 0.899 0.897 67.74%
HCRF order(3) 0.878 0.878 0.877 66.36%
HCRF order(2) 0.884 0.882 0.882 63.59%
Structured perceptron 0.898 0.897 0.897 64.52%
Regex 0.884 0.851 0.855 66.89%
HMM 0.776 0.733 0.667 15.21%

Table 3.1 – Results obtained with the different models.

Precision Recall F1-measure support
O 0.954 0.943 0.948 3473
LINK_SURFACE 0.891 0.909 0.900 1764
LINK_SURFACE/bâtiment 0.931 0.940 0.935 315
O/bâtiment 0.807 0.800 0.803 115
LINK_SURFACE/surface 0.973 0.973 0.973 524
O/surface 0.767 0.793 0.780 58

Table 3.2 – Scores obtained by CRF context (3) model for the different labels.

104

3.2. Information extraction

By further analysing the results, in particular while checking a few miss labeled
sentences, we have noticed that some of the errors were due to the human expert
errors (an example is shown in figure 3.3). The number of errors in manual annotations
is estimated at 1%. In those cases the model gave better results than the ground truth,
which proves a good generalisation capability. An example of a miss-labeled training
sequence is shown in figure 3.3

Figure 3.3 – Figure showing error in sequences labeled by a human expert.

Also by analysing the CRF weights after training, we notice about the variable type
that, while it helps for classifying surface and buildings concepts, the model does not
rely solely on this variable for prediction: as can be seen from the following table.

105

Partie , Chapter 3 – Applicative tasks

Feature Label Weight
lemma:m2 LINK_SURFACE/surface 1.087

type:surface LINK_SURFACE/surface 2.296
type:bâtiment LINK_SURFACE/bâtiment 4.674
type:surface O/surface 1.452

word.lower():m2 LINK_SURFACE/surface 1.079
POS:NOUN LINK_SURFACE/bâtiment 1.561

type:bâtiment O/bâtiment 3.551
-1:type:surface LINK_SURFACE/surface 0.919
-1:lemma:mètre O -0.53

POS:NUM O -0.69
lemma:local O -0.81

Table 3.3 – Summary of weights associated with the most discriminant characteristics,
by label, for the CRF context (3).

106

3.2. Information extraction

3.2.3 Renewal information extraction

We also tackled another task similar to the surface detection problem: tender re-
newal detection. Early detection of interesting leads is a priority for companies, in order
to anticipate their strategy and assess business opportunities. Thanks to these weak
signals[96], companies can plan their actions accordingly. Information on the tenders
renewal give them a strong competitive advantage.

Methodology

The "tenders renewal" problem can be considered as a named entity detection prob-
lem, as we need to extract a set of pieces of information that describe the project re-
newal, namely:

— "période": The time limit for a call for tender.
— "periodicité" (periodicity): Describes the number of renewals the call for tender

may have.
— "début du marché": The starting date of the project described in the call for

tender.
— "fin du marché": The ending date of the project described in the call for tender.
— "début de la reconduction": The starting date for the renewal.
— "fin de la reconduction": The ending date for the renewal.
— "délai du marché": The time allocated for the project described in the call for

tender.
— "délai de la reconduction": The time allocated for the renewals (i.e. a call for

tenders that has a "periodicity" of 3 and a "période" of 1 year the value of this
label should be "3 years").

The figure 3.4, illustrate some example of labels used.

Used dataset

Due to the lack of a suitable dataset to train a model for this labeling task, it was
necessary to create a training database manually. To do so we used Lucene search
engine (through the Elasticsearch encapsulation) queried on OctopusMind’s database
to select all documents that may contain the word "reconduction" 3 (french word for

3. We also note that we only select french documents.

107

Partie , Chapter 3 – Applicative tasks

Figure 3.4 – Figure showing the labels used for tender renewal detection.

"renewal") and its different variations of occurrence. Then we apply a filter to select a
10 documents from 50 different sources (to take documents with different structures
and syntaxes), we end up with around 500 documents. This dataset can be considered
to be sufficiently large and diversified to ensure a good training set for our CRF model.

We developed a homemade tool (as shown in figure 3.5) to allow experts to effi-
ciently label this dataset.

Figure 3.5 – Figure showing the tool developed for sequence labeling.

108

3.2. Information extraction

Features used

For this task we used similar features to those used for the surface extraction prob-
lem. These features can be split into two types:

Local features related to one of the token of the sequence:

— word.lower : the uncased form of a token.
— istitle : Boolean feature indicates whether or not the word starts with a capital

letter.
— lemma : The word lemma.
— POS : "Part of speech" of the word.
— isdigit : Boolean feature that indicates whether or not a token is a number (de-

fined using a Regex).

As for the surface extraction task, we also use Long range features.

Experimentation and results

For this sequence labeling task we used the CRF context (3) model. The following
table 3.4 shows the results obtained by applying a cross validation (k=4)

Precision Recall F1-measure support
period 0.84 0.92 0.87 700
debutr 0.13 0.43 0.20 7
delaim 0.89 0.88 0.89 1173
delair 0.78 0.85 0.82 96
dureem 0.92 0.93 0.92 634
finm 0.80 0.83 0.81 303
finr 0.60 0.85 0.70 116
periodicite 0.88 0.97 0.92 454
avg/total 0.87 0.90 0.88 3483

Table 3.4 – Scores obtained by the CRF context (3) model for the different labels.

From the table 3.4 we can notice that the CRF context (3) model seems to perform
well for most of the labels with an F1-measure greater than 82%. The only problem is
with the label "debutr" for which the precision is very low (13%): this is caused by the
lack of training examples in the dataset (only 7 sentences of 4000 contains this label).

109

Partie , Chapter 3 – Applicative tasks

By adding more example of this label, the performance for this specific label should
significantly increases.

3.2.4 Financial data extraction

The costs of projects in call for tenders and contract award notices, is a very im-
portant information for OctopusMind’s clients. Indeed, the information that describes
the financial value of a project (the contract award value) allows companies to better
position themselves, by knowing what share of market their competitors control and the
price a customer is able to pay (market analysis) for a given project.

Some financial data contained in call for tenders documents are requirements that
can be disqualifying for the bidder, such as the presence of a minimum turnover re-
quired for the candidate. In a somewhat more indirect way, some companies use the
information from the contract budget estimate or the amount awarded for a contract to
contact the contract winner in order to sell them services necessary for project com-
pletion.

Therefore extracting such information is strategic.

Methodology

The financial data extraction task can be seen as a named entity recognition task.
As we want to be able to identify the value of the contract and extract the allocated
fund of each lot 4 in the award notice, and provisional budgets in the case of the call for
tenders.

The problem can be decomposed into 3 steps:
— The lot detection.
— Budget extraction.
— Budget classification.
First we need to detect in a document the text describing each lot (we note that

the description of a lot can be located in different part of the document). The second
step is related to the amount detection (detecting a "money amount") from the text. And
finally, the third step consists in classifying the detected "money amount" into one of
the following categories:

4. Some project in call for tenders are split into parts (lots) each lot will have a different allocated
budgets

110

3.2. Information extraction

— The "Minimum" amount that can be allocated.
— The "Maximum" amount that can be allocated.
— The "Total" cost of a project.
— The minimum "Turnover" a company needs to have in order to have its offer

considered.
— The "N/A" label means that the money amount will not be considered as a bud-

get (usually administrative fees)
— The "Firm" section which is only applied to project that are achieved in several

steps, planned at different moments (Usually big construction project), the firm
section will be the budget of the section that must be carried out.

— The "Conditional" section is a budget that is only applied if the company respects
a set of conditions listed in the call for tenders document.

— "Bonus" amount is only applied for architects and defines/sets the amount archi-
tects will be payed when submitting their proposal even in the case of rejecting
their proposition.

— The "Travaux" label is used for construction cost estimates.
For the lot part detection, we opted for the use of a Regex coupled to a simple

heuristic. The regex used is shown below and the result of this regex is shown in figure
3.6:

(?:[\b\s]N°|lot)\s*(?:n|\(s|\s)[^\d+]{0,3}\s*(?P<num_lot>\d+)

Figure 3.6 – Figure showing the result of applying the regex for lot detection.

111

Partie , Chapter 3 – Applicative tasks

In order to regroup different parts of text that describe the same lot, we rely on the
lot id (usually a number or a code). The paragraphs that have the same lot id are con-
catenated.

For the second and third part of the problem (detecting and classifying a "money
amount") we decided to solve jointly the detection and the classification using a CRF
(we use the CRF context(3) used in 3.2.2).

dataset

For the purpose of this task, we have built a dataset containing around 4000 sen-
tences manually annotated by the by experts. The sentences where selected using
(Lucene) search engine in order to select documents that contain a currency (Euro,C,$,etc.).
The documents are then split into sentences and the budget token is detected using a
Regex. The sentences that contains budget are the annotated.

The figure 3.7 illustrates the interface used to label the dataset.

Figure 3.7 – Figure showing the validation interface of the detected amounts.

112

3.2. Information extraction

Experimentation and results

The results given by the CRF context(3) model are shown in the table below using a
stratified (the distribution of the categories in the train/test sets is preserved according
to the statistics evaluated on the whole corpus) cross validation (with k=5 folds).

Precision Recall F1-measure support
Turnover 0.00 0.00 0.00 16
Conditional 0.00 0.00 0.00 13
Firm 0.00 0.00 0.00 4
Maximum 0.70 0.76 0.73 542
Minimum 0.73 0.70 0.72 382
N/A 0.72 0.51 0.60 284
Bonus 0.00 0.00 0.00 4
Total 0.85 0.86 0.86 874
Travaux 0.67 0.44 0.53 54
avg/total 0.76 0.74 0.74 2173

Table 3.5 – Scores obtained by CRF context (3) model for the different labels.

As we can see from table 3.5, the model is not able to correctly handle unbalanced
datasets. Therefore it cannot predict at all classes with small number of representation.

The results were not acceptable according to OctopusMind’s criteria. So we used
another approach that revealed to be more efficient (and faster compared to the CRF).
This approach relies on splitting in two sub-problems the detection and the classifica-
tion of the budget as was originally planned. For the detection we decided to use a
regex as the problem is not too complex. An example of a used regex is shown below:

(((?:[0-9](?:\s|\.|,)*)+)\s*(M)*(EUR\w*|€|eur\w*|chf))

For the classification part, we developed a context aware version of bag of word. In
our case the context is defined as the word surrounding a budget (any money amount).
The method consists in segmenting the sentence in which the budget appears into two
parts and applying a Bag Of Word representation by considering the words to the left of
the amount and those to the right as different features, in such a way that it is possible
to distinguish the words occurring in each part. As shown in the example below:

"Valeur totale du marché (hors TVA) :Valeur 92 915,71 euros ou Offre la plus basse"

113

Partie , Chapter 3 – Applicative tasks

The sentence will be represented as follow:

['left_valeur', 'left_totale', 'left_du', 'left_marché',
'left_(','left_hors', 'left_tva', 'left_)', 'left_:',
'__budget__', 'right_ou','right_offre', 'right_la',
'right_plus', 'right_basse']

Then we use a SGD classifier based on this representation in order to predict the
budget category.

The table 3.6 shows the results obtained by this method using a stratified cross
validation (k=5).

Precision Recall F1-measure support
Turnover 1.00 0.75 0.86 16
Conditional 0.40 0.31 0.35 13
Firm 0.67 0.50 0.57 4
Maximum 0.87 0.88 0.88 542
Minimum 0.88 0.86 0.87 382
N/A 0.75 0.83 0.79 284
Bonus 0.67 0.50 0.57 4
Total 0.94 0.93 0.94 874
Travaux 0.88 0.78 0.82 54
avg/total 0.88 0.88 0.88 2173

Table 3.6 – Scores obtained by an SGD model using the left/right BOW for the different
labels.

We notice from the table 3.6 that our last method outperforms the CRF model and is
even able to predict classes with very small number of observations as shown in tables
[3.6,3.5].

This method is also more efficient in term of required computation time (the prepro-
cessing time is not taken into account for this experiment) as illustrated in the table 3.7.
We note that the implementation of the CRF is done using Crfsuite 5 [97], scikit-learn 6

[98] for The SGD.

5. http://www.chokkan.org/software/crfsuite/
6. https://scikit-learn.org

114

3.2. Information extraction

Training prediction
CRF context(3) 11s 1.15s
SGD (left/right) 21ms 4ms

Table 3.7 – Time needed by the SGD and CRF for training and for predicting the whole
dataset (2000 Sentences)

Figure 3.8 – Figure showing the validation interface of the detected amounts in produc-
tion environment.

The final model is now integrated into OctopusMinds software environment, and
used in a daily basis. The economic information extracted by our model are stored with
the objective to sell it to OctopusMind’s clients or to be used by the company experts
(we also note that this information is indexed and can be used as a filtering criteria by
a search engine).

OctopusMinds review the result of our model in the production environment and
modify their predictions if needed by using the interface shown in figure 3.8 (allowing
them to add/edit amounts and changing the classes that have been incorrectly pre-
dicted).

The corrections made by the experts are used to periodically re-train the models.

115

Partie , Chapter 3 – Applicative tasks

3.3 Recommender system

With the continuously increasing growth rate of documents managed by Octopus-
Mind, the creation of a tool to easily access the most relevant information for the plat-
form’s users is a strong requirement. In addition, as a strategic and economic intel-
ligence service company, the relevance of the results that are produces is a primary
factor for OctopusMind.

In order to develop such a tool we have decided to analyse users interactions with
the platform and especially the search engine usage (the platform offers a search en-
gine that allows for filtering the results in very detailed ways using different tags and
logical expressions). We noticed that around 95% of the users limit themselves to basic
queries using only few key-words. By that we understand that the majority of the users
will make minimum effort while still expecting highly relevant results.

The objective is then to develop a recommender system that allows the user to
access the most valuable information (the relevant documents according to their needs
(activity field)) that suits his needs. And this have to be done in a way that minimizes
the user’s interaction effort.

The most widely used method for item recommendation is collaborative filtering. It
consists on making automatic predictions on a user interests based on preferences
and tastes information of other users.

The collaborative filtering approach is based on the assumption that if a person
A has the same taste than a person B regarding a topic, then the person A is more
likely to have the same taste than the person B on different topic. For example, a
recommendation system based on collaborative filtering applied on an online bookstore
could make predictions about which book or author a user is likely to buy given a list of
users tastes or buying history [99].

The collaborative filtering methods are not suitable for the kind of data we are
dealing with due to the nature of public procurement documents and especially for the
following reasons:

— The documents have a limited time span, as each project have a deadline: after
the deadline the document is no more relevant, thus cannot be recommended
to a user.

— The documents need to be recommended as soon as they are published on
the platform, which means that the documents must be recommended before

116

3.3. Recommender system

gathering any information about user interests concerning this document.
Another common approach is content-based filtering [100], which is done by as-

signing a description (features 7) for each item we are recommending and for the users
profiles. Then recommending an item is done by comparing its description to a user
profile description. This comparison is achieved by using a classifier that will learn user
tastes based on items description.

The recommendation system 8 used by OctopusMind is close to a content-based
filtering model. It was built on top of a search engine (elasticsearch 9).

This was implemented as follows:
— The features of an item (document) are the words contained in the text and

also a set of custom keywords ("thésaurus" 10) assigned by the experts for each
reviewed document.

— For each SEPAO 11 user, an elasticsearch dedicated query is built that contains
a set of keywords describing the user’s interest and a list of "thésaurus" 12 terms
that may interest him. The query results are then manually reviewed by the ex-
pert team before sending them to the users. Also no recommendation system
was established for other types of users (Non premium).

This approach is heavily reliant on human expert’s annotations. In order to improve this
approach we focuses on three aspects:

— Reducing the human experts workload.
— Broadening the recommendation scope to all users (Not limiting to premium

users).
— Offering document based recommendation.

3.3.1 Thésaurus classification

The automation of "thésaurus" based classification can significantly reduce human
experts work load. In order to improve the previous recommnender system we decided

7. The features can be any way to describe an item, in our case we use keywords
8. Was implemented in a simple form before the start of this thesis
9. https://www.elastic.co/fr/

10. Note that this keywords are not necessarily explicitly present in the document, but usually guessed
from the understanding of the text, the "thésaurus" categories have distinct semantic groups, for exam-
ple, some may characterize the call for tender type, others the sector, others the necessary skills, etc.

11. Users with premium subscriptions
12. "Thésaurus" are a set categories crated by OctopusMind for internal use, allowing to classify the

documents in order to route them toward the appropriate users.

117

Partie , Chapter 3 – Applicative tasks

to start by addressing this objective.
This "thésaurus" classification based problem can be seen as a multi-label classifi-

cation, consisting in classifying each document into different "thésaurus" entries.
We started by extracting the already annotated documents, ending up with a dataset

containing around 60K documents (356 classes). We filter some of the "thésaurus"
classes that require a more in depth text understanding and that could be too complex
to predict using a classifier that is only trained on raw plain text.

The following example illustrates some of the classes we have filtered out:
— "Marche_20M_plus": a class concerning projects that will cost more than 20

millions euros.
— "C2_Couv_region_depart_plus_150000hab": a class related to a project exe-

cuted in a department or state with more than 150K inhabitant.
— "A_Hopital_EHPAD": a class concerning projects where the buyer is a health

institution.
We note that the examples given above can be challenging to categorize if the clas-

sifier is only trained on textual data. For example:
"C2_Couv_region_depart_plus_150000hab" will need external information (number of
inhabitant in a region) and "Marche_20M_plus" need the budget detection and conver-
sion to numerical value to be able to correctly predict its thésaurus class. In the other
hand, this kind of problems can be resolved easily using simple expert rules.

This classification problem was first tackled before the work we have done on doc-
ument embedding (before developing LSA+W2V method). So we used as document
embedding method a weighted sum of Word2vec vectors. The weighting is done by
separately averaging representations of words belonging to the same semantic cluster
(concept). The resulting vectors associated to a document are then averaged.

Lets take for example the sentence:

"Création d’une application mobile pour ios et android"

After tokenization, bigram 13 extraction and stop words removal, we end up with the
following tokens list:

['creation',
'application_mobile',
'ios’,

13. The bigram application_mobile is considered as one token.

118

3.3. Recommender system

'android’]

The bigrams are formed according the method used in [3], based on the unigram
and bigram counts:

score(wi, w − j) = count(wiwj)− δ
count(wi) + count(wj)

(3.1)

Where wi, wj are consecutive words and δ is used to prevents bigrams with infre-
quent words to be formed. The bigrams wiwj with a score above a chosen threshold
are then used as bigrams and considered as tokens during tokenization.

After calculating word2vec representations for these words, we use k-means clus-
tering algorithm in order to regroup the similar words into clusters (5000 clusters have
been constructed). Then these clusters are reviewed by experts and the clusters con-
taining mostly stopwords 14 have been removed.

The worlds from the same cluster are then grouped together.

[('creaton', Cluster_6),
('applicaton_mobile', Cluster_1242),
(('ios','android'), Cluster_1519)]

Finally, the words belonging to the same cluster are averaged together, and the
resulting vectors describing a document are then summed up as shown in the example
below:

V(sentence) = W2V(creation) + W2V(application_mobile)
+ 1/2(W2V(ios) + W2V(android))

This method is applied on the title and the lots description of a document. The
resulting vector is then used as input to a MLP (Multi-Layer Perceptron) classifier with
2 hidden layers.

The results obtained with this initial model are shown in table 3.8 (the results ob-
tained with lsa+w2v are given also for comparison).

The model used in production by now is based on lsa+w2v (cf. 2.3.1). The LSA is
created using tf-idf bag of word vectors and the text used to generate the tf-idf is based
on the full description of the documents once the filtering out of the administrative
information (using the same method as in 1.2.2) has been performed. The model has

14. Stopwords specific to the public procurement vocabulary.

119

Partie , Chapter 3 – Applicative tasks

Precision Recall F1-score
w2v 0.71 0.48 0.54
LSA+w2v 0.75 0.53 0.59

Table 3.8 – Scores obtained on the initial dataset used for the "thésaurus" classification
task using a train/test split of 80%/20%.

been re-trained using additional data (2 years of additional data). The results in the
table 3.9, shows the performance of the different models after two years of periodical
training (40K more documents)

Precision Recall F1-score
w2v 0.72 0.58 0.63
LSA+w2v 0.73 0.62 0.66
CnnHAtt 0.72 0.69 0.69

Table 3.9 – Scores obtained with the enriched dataset, used for the "thésaurus" classi-
fication task using a split train/test of 80%/20%.

We notice from these result tables [3.8,3.9] that adding more data improves signifi-
cantly the performance. This is because the initial data and also the classes are largely
unbalanced. The following table shows some statistics on the two datasets. (initial and
enriched)

Average document per class Median documents per class
Initial dataset 622 180
Final dataset 1058 4653

Table 3.10 – Comparison between the initial and the enriched datasets for "thésaurus"
classification.

The result can be tweaked by increasing/decreasing the MLP threshold in order to
favor the precision or the recall. In our case the model is used as a tool for decision-
making support by helping the experts to label document in a more efficient way.
Hence, we focused mostly on the recall, as it is easier to delete irrelevant labels.

The precision recall curve is shown in the figure 3.9.
We got good feedback from the experts who use this tool. Allowing them to accel-

erate significantly the labeling of documents (the gain is about 25% compared to the

120

3.3. Recommender system

Figure 3.9 – Precision recall curve for the model used in production.

previous manual tagging procedure). We can also notice that the amount of documents
per class is relatively low for neural networks training. We can conclude from table 3.10
that the more training data is available, the best is the model. So the performance of the
model is expected to periodically improve with the increase of available labeled data
with time.

3.3.2 Activity classification

The second aspect to improve is to broaden the recommendation service to all
users. This means allowing non premium users to have easily access to the call for
tenders that may interest them and recommending them the most relevant projects
according to their trade/profession/"field of activity" with minimum effort.

The approach we decided to follow is to label each document according to its field
of activity (trades). In addition to that, each user will be requested to fill a list of trades
relative to their profession. By achieving this, the users can access recommendation
directly after creating an account and selecting the area fields that are relevant to his
profession. This is achieved through the interface presented in figure 3.10.

The first task was to create a list of labels (trades). This was achieved based on the
CPV (Common Procurement Vocabulary) from the TED dataset[7].

The CPV codes were not used directly but combined in a way to create a number of
classes that cover all trades while being sufficiently represented. The CPV codes were
analysed by the expert team and we end up with 59 classes. For example the CPV

121

Partie , Chapter 3 – Applicative tasks

Figure 3.10 – J360 web application subscription interface.

codes for "Maple sugar and maple syrup" and "animal product" will be in the same
class "food and agricultural products".

We then train an MLP with 2 hidden layers (500 neurons per layers) on the TED
dataset with the transformed classes. The vectorisation method used is LSA+W2V.
The Word2vec vector is created in the same way as for "thésaurus" classification task
and the LSA vector is created using the filtered version of the full description (after
filtering out the administrative information).

The resulting vector is then used as input to the MLP.

The results obtained with the initial model are shown in table 3.11.

Precision Recall F1-score
SGD(tf-idf) 0.74 0.36 0.43
W2V 0.72 0.56 0.62
LSA+W2V 0.83 0.78 0.80

Table 3.11 – Scores obtained on the initial dataset used in "thésaurus classification
task using a split train/test of 80%/20%".

This model has been deployed into the production environment and is periodically
retrained.

122

3.3. Recommender system

We have then decided to use the activity tags as keywords on the search engine
interface as shown in figure 3.11, so the users can use them to search projects that
are not directly related to their activity (for example an electrician is usually interested
in a construction project).

Figure 3.11 – Figure showing the query creation interface.

3.3.3 Document based recommendation

The third improvement aspect is establishing a recommendation system based on
documents. Allowing the users to access a set of similar documents to the one he is
currently reading.

A user experiencing the web application from external sources (a user that is not
a subscribing user yet) would be able to obtain recommendation and access similar
content only based on the text of a document. The choice of only considering the
text while doing document recommendation is motivated by the fact that this way of
exploring the database (jumping from a document to another) can allow the users to
access documents that may be related to their field of activity that they couldn’t see
otherwise.

Let’s assume this situation where a user who is interested in selling web marketing
services is connected to the platform searching for projects in his field. He can search
based on the activity classes ("Websites and mobile apps" class in this case) or by
typing keywords on the search engine and by using one or both of these methods. The
returned results can be as follow:

123

Partie , Chapter 3 – Applicative tasks

— Using only activity classes the projects that will be recommended will cover a
broad range of professions within the activity field including websites and app
creation, web hosting, etc. Hence, more filtering is needed to access the most
relevant information.

— Using the search engine (with or without selection of activity classes) will only
return the projects that exactly contains the words typed in query and not take
into account synonyms for example.

Recommending documents based on semantic similarity can mitigate these two
issues. In order to achieve this we need to be able to accurately calculate a semantic
similarity between documents.

For the initial model we have used the weighted Word2vec sum method (the same
method used for the "thésaurus" classification task and activity prediction) and we used
cosine similarity to estimate document similarity. To evaluate the performance of this
approach we decided to use it jointly with a kmeans (k=1000) algorithm. We applied
this clustering on all the french documents contained in our database (which represents
about 3.5M documents by the time the experiment was done).

Manually checking all clusters was too costly, so for the evaluation we asked the
experts to randomly pick up 500 clusters and check if the 10 closest documents to the
centroid of the cluster are coherent.

The following example illustrates a cluster:

- Séjour APPN Côté d'Opale (ou bretonne ou normande)
- SORTIE A PARIS
- Voyage pédagogique au Mémorial de Caen et Plages du débarquement
- Sortie site archéologique Chateaubleau
- Sorties Pédagogiques COLLEGE MAPA 12020C
...

We got promising feedback from the experts regarding the quality of the obtained
clusters. However in a cluster, the farther a document is from the centroid the less
relevant it is expected to be.

Then we created a small dataset containing 2000 documents (here a document is
only represented by its title) randomly selected from different clusters. for each of this
document we get the 10 nearest neighbors documents using our method. The experts
then validate each results by answering the question "is this neighbor similar to the

124

3.3. Recommender system

query document?". The notion of similarity for the expert is based on profession con-
cept (the neighbors are similar to the query if they are related to the same profession).

The accuracy/precision that we obtained on this dataset is 63%. This score is mod-
erately satisfactory, but the model was still deployed into the production system of the
company, since the experts find the result acceptable for a first model and clustering
results seemed globally coherent. Also one of the objective of this model is to allow
the users to explore the data in a progressive way (going from a profession to another
progressively).

In the production environment, the search for the k documents that are the closest
to a given document (query document) is done with the K-nn (k-nearest neighbors)
method using the cosine similarity. It consists in calculating the similarity between the
document query and all the documents in the dataset. This can be computationally
challenging when working with large datasets.

In order to overcome this issue we use k-means (k = 10000) clustering algorithm,
to first split the dataset, into clusters that regroups similar documents. We first apply
the k-nn search on the clusters centroids to select the closest clusters. Then we apply
a second K-nn on the documents belonging to the selected cluster(s). The returned
documents are then used as recommendation.

We note that it is preferable to use multiple clusters for the second K-nn to avoid
omitting some documents. For example, lets assume that the documents Da and Db

belong respectively to the clusters with the centroids Ca and Cb, and suppose that the
following properties are verified:

— cos(D,Db) < cos(D,Ca)
— cos(D,Cb) > cos(D,Ca)
— cos(D,Db) < cos(D,Da)

Where cos is a cosine distance. In this example, even if Db is closer to D than Da

it will not be returned in the recommendation. This method allows us to get a huge
time gain. For instance a k-nn on a 2M documents dataset will calculate 2M cosine
similarities and with this methods (assuming we have 1K clusters and each cluster
contains 2K documents) if we consider two clusters, we only calculates 5K distances.

The following figure 3.12 shows the interface used to list the documents that are
recommended.

125

Partie , Chapter 3 – Applicative tasks

Figure 3.12 – Figure showing the recommendation interface.

126

3.4. Conclusion and perspectives

3.4 Conclusion and perspectives

In this chapter we focused on the different solutions we developed with the aim of
including them into the OctopusMind software environment, for daily production uses.
We have presented some of the information extraction tasks (financial data, surfaces)
allowing the company to achieve an important technological leap, essentially by offering
the users to access relevant information that are manually impossible to get on big
datasets.

In other hand, we also developed a recommendation system that minimises the hu-
man efforts for developing this relevant information access service. The recommender
system is evaluated on a small dataset. Even if the experts seems to be pleased with
the results we need to develop a consolidated evaluation workflow.

We also need to evaluate our newly developed document embedding model (Cn-
HAtt) on similarity tasks and using it as the default model for classification tasks.

As a perspective, we will need to update our different models to work with multiple
languages. For the time being our different NLP models only work with French and
English languages and this is achieved while creating a model for each languages.

In addition to that we are aiming to explore the unsupervised approaches for rela-
tionships extraction in an unsupervised fashion [101],which will allows us to discover
new relationships that we may not notice acknowledge otherwise, we also note that
unsupervised relationships extraction is less costly compared to the supervised way,
as it does not need labeled data.

Also we need to further develop the interactions with our different modules. One line
of on-going research is to create new information at a higher level of analysis, mostly
by aggregating already existing one.

An example of information extraction we started working on is a market analysis
task. By trying to analyse financial information and producing statistics on a specific
industry. The first attempt we made, is to combine the financial data extraction model
we have developed with the document based recommender system. This allows to get
more elaborated financial information about a certain type of project.

For example by selecting a document we are able to list the k most similar projects
(we also use a similarity threshold to reduce the noise). And then we are able to calcu-
late the average, minimum and maximum cost for this type of projects.

Also listing the bids winners of similar projects with the project costs, allows the

127

Partie , Chapter 3 – Applicative tasks

users to identify their competitors and their prices. This information is important to
better position OctopusMind clients into their market.

The preliminary interface for accessing this tool is given in figure 3.13.

Figure 3.13 – Figure showing the market analysis tool on j360 web application.

128

CONCLUSION

Users of online recommendation platforms have high expectations regarding infor-
mation quality obtained with little effort. Any system which aims at providing relevant
answers to such platform users must take this fact into account.

This is especially challenging when working with unstructured documents. This is
the case at OctopusMind, whose major service is to recommend public procurement
related documents (essentially call for tenders). Before routing the documents to rele-
vant users, each document has to be analyzed, so that important information can be
extracted (such as: financial data, execution location, etc.) and eventually categorized
into a set of classes.

Our thesis work was focused at providing OctopusMind with a set of tools that allows
this process to be automated. Based on NLP methods, the final product aims to be
included in the already existing software environment.

To achieve such a goal, we had to tackle a broad range of NLP tasks including
named entity recognition, relationship extraction, document classification and docu-
ment embedding. Keeping in mind that OctopusMind is an SME, it comes with its set of
challenges, as all the solutions we provide have to be efficient (with low memory usage
and execution time) to cope with the hardware limitation.

This thesis has been structured into three chapters, which reflects the different NLP
problems we have to tackle. We also note that the order of the tasks described in the
different chapters does not reflect the orders in which we dealt with them. In most cases
the different tasks have been addressed according to the company strategic planing.

The need to create a corpus related to the public procurement domain was of a
high priority, in order to train or evaluate any machine learning approaches and solving
the automatizing problems that Octopus Mind had planned. Chapter 1.1 describes the
process we go through to generate a multilingual corpus composed with documents
published by the European union and related to public projects covering nearly all the
business activity.

The corpus is divided into two sub-datasets, fd-TED and par-TED. The fd-TED cor-
pus that we have used at several occasions during this thesis has been created with

129

the goal of multilingual text classification which suits the international market targeted
by OctopusMind. The par-TED corpus consists of a set of translated sentences. It was
mostly a contribution toward the NLP community, especially in the scope of the ma-
chine translation. Many of the problems raised by OctopusMind can be considered as
document classification tasks, and when it comes to text classification, the embeddings
methods we have tested and developed show significant impact on the quality of the
provided service.

Chapter 2 describes our contributions in this area. We started the chapter with a
survey of different document embedding methods, but due to the nature of the public
procurement document and the hardware limitation we are held to, we have developed
our own methods based on the analysis of the state of the art techniques.

We started by combining LSA and Word2Vec averaging methods as they bring com-
plementary views on lexical semantics, providing a local and global semantic overview.
The results were acceptable but still lacked proper term weighting, in the sense that all
the words in a document will contribute equally, this is especially the case for Word2vec
averaging. The negative impact of this uniform kind of weighting is even more signifi-
cant due to the noisy nature of public procurement documents. Attention mechanism
was a natural step forward to cope with this issue.

CnHAtt, our second contribution in the area of document vectorization, was devel-
oped using CNNs as an efficient (time wise) method to create document embedding
by only taking into consideration the most relevant words according to the classification
task at hand. The hierarchical structure of the CnHAtt, allowed legal and administrative
sentences to be discarded by giving them lower weights. The results are promising,
but more experiments need to be done to finalize the different possible variants of this
method.

Chapter 3 was essentially centered on the application benefits of this thesis. The
result of the work described in this chapter are current solutions to real world problems.
As stated above, the finality of this thesis is to help OctopusMind establishing an au-
tomatized process for on-line public market monitoring. Information extraction was of a
high priority, as it allows us to automatically gather business intelligence features. We
have established a well-functioning, reusable system that meets OctopusMind expec-
tation by enriching the database by extracting useful information from raw documents,
namely, surface information for construction projects, renewal details allowing to antic-
ipate in advance future projects and also financial information that can be used to bet-

130

ter filter relevant documents. Such extracted information is planned to be used in more
complex tasks such as market analysis. Aside from information extraction we have also
cleared the foundation for the creation of a recommendation system that suits the pub-
lic procurement business. Thanks to our contribution in document embedding we are
able to represent documents in such a way that the semantics is preserved.

Despite the pragmatic solutions we have been able to propose, many perspectives
arise from our work. Especially in the multilingual domain. Indeed, within the time span
available for addressing our different tasks, we train a model for each language. We are
considering extending these models to work with different languages simultaneously.
One interesting way of doing it, is to create a universal document embedding method
that allows mapping texts in different languages in the same space while preserving
their semantics. This may allow document recommendation to be proposed in multiple
languages.

With the increasing amount of information we are able to extract and the ability to
better represent the documents semantics, it becomes feasible to achieve large scale
market analysis. This may be partially out the scope of this thesis, but still worth men-
tioning. As the NLP allowed us in some cases to go from texts to quantitative features
(financial indicators) the combined use of these solutions allow us to handle the public
market characterization within a bigger picture. It will bring a better understanding of
the relationships and interactions between the different actors.

131

BIBLIOGRAPHY

[1] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, « A neural probabilistic lan-
guage model », Journal of machine learning research, vol. 3, Feb, pp. 1137–
1155, 2003.

[2] R. Collobert and J. Weston, « A unified architecture for natural language pro-
cessing: Deep neural networks with multitask learning », in Proceedings of the
25th international conference on Machine learning, ACM, 2008, pp. 160–167.

[3] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, « Distributed
representations of words and phrases and their compositionality », in Advances
in neural information processing systems, 2013, pp. 3111–3119.

[4] I. Sutskever, O. Vinyals, and Q. V. Le, « Sequence to sequence learning with
neural networks », in Advances in neural information processing systems, 2014,
pp. 3104–3112.

[5] D. Bahdanau, K. Cho, and Y. Bengio, « Neural machine translation by jointly
learning to align and translate », arXiv preprint arXiv:1409.0473, 2014.

[6] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, « BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding », in Proceedings of the
2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), 2019, pp. 4171–4186.

[7] O. Ahmia, N. Béchet, and P.-F. Marteau, « Two Multilingual Corpora Extracted
from the Tenders Electronic Daily for Machine Learning and Machine Transla-
tion Applications », in Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018), 2018.

[8] O. Ahmia, N. Béchet, P.-F. Marteau, and A. Garel, « Utilité d’un couplage en-
tre Word2Vec et une analyse sémantique latente: expérimentation en catégori-
sation de données textuelles. », in Extraction et Gestion des Connaissances:
Actes de la conférence EGC’2019, BoD-Books on Demand, vol. 79, 2019.

133

[9] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, « Learning phrase representations using RNN encoder-decoder
for statistical machine translation », arXiv preprint arXiv:1406.1078, 2014.

[10] Y. Le Cun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D. Hender-
son, R. E. Howard, and W. Hubbard, « Handwritten digit recognition: Applica-
tions of neural network chips and automatic learning », IEEE Communications
Magazine, vol. 27, 11, pp. 41–46, 1989.

[11] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, « Hierarchical attention
networks for document classification », in Proceedings of the 2016 conference
of the North American chapter of the association for computational linguistics:
human language technologies, 2016, pp. 1480–1489.

[12] J. S. Olsson, D. W. Oard, and J. Hajič, « Cross-language text classification »,
in Proceedings of the 28th annual international ACM SIGIR conference on Re-
search and development in information retrieval, ACM, 2005, pp. 645–646.

[13] L. Breiman, « Random forests », Machine learning, vol. 45, 1, pp. 5–32, 2001.

[14] C. Cortes and V. Vapnik, « Support vector machine », Machine learning, vol. 20,
3, pp. 273–297, 1995.

[15] J. Kittler, M. Hatef, R. P. Duin, and J. Matas, « On combining classifiers », IEEE
transactions on pattern analysis and machine intelligence, vol. 20, 3, pp. 226–
239, 1998.

[16] N. Kushmerick, E. Johnston, and S. McGuinness, « Information Extraction By
Text Classification », in In The IJCAI-2001 Workshop on Adaptive Text Extrac-
tion and Mining, 2001.

[17] L. Dey and S. M. Haque, « Opinion mining from noisy text data », International
Journal on Document Analysis and Recognition (IJDAR), vol. 12, 3, pp. 205–
226, Sep. 2009, ISSN: 1433-2825. (visited on 10/16/2018).

[18] N. Jindal and B. Liu, « Review spam detection », in Proceedings of the 16th in-
ternational conference on World Wide Web - WWW ’07, Banff, Alberta, Canada:
ACM Press, 2007, p. 1189, ISBN: 978-1-59593-654-7. (visited on 10/16/2018).

[19] Z. S. Harris, « Distributional Structure », WORD, vol. 10, 2-3, pp. 146–162, Aug.
1954, ISSN: 0043-7956, 2373-5112. (visited on 10/16/2018).

134

[20] G. Salton, A. Wong, and C.-S. Yang, « A vector space model for automatic
indexing », Communications of the ACM, vol. 18, 11, pp. 613–620, 1975.

[21] K. S. Jones, « A statistical interpretation of term specificity and its application in
retrieval », Journal of Documentation, vol. 28, pp. 11–21, 1972.

[22] T. K. Landauer, P. W. Foltz, and D. Laham, « An introduction to latent semantic
analysis », Discourse Processes, vol. 25, 2-3, pp. 259–284, Jan. 1998, ISSN:
0163-853X, 1532-6950. (visited on 10/16/2018).

[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean, « Efficient Estimation of Word
Representations in Vector Space », arXiv:1301.3781 [cs], Jan. 2013, arXiv:
1301.3781.

[24] J. Pennington, R. Socher, and C. Manning, « Glove: Global vectors for word
representation », in Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), 2014, pp. 1532–1543.

[25] Q. V. Le and T. Mikolov, « Distributed Representations of Sentences and Docu-
ments », arXiv:1405.4053 [cs], May 2014, arXiv: 1405.4053.

[26] A. M. Dai, C. Olah, and Q. V. Le, « Document embedding with paragraph vec-
tors », arXiv preprint arXiv:1507.07998, 2015.

[27] G. Mesnil, T. Mikolov, M. Ranzato, and Y. Bengio, « Ensemble of generative
and discriminative techniques for sentiment analysis of movie reviews », arXiv
preprint arXiv:1412.5335, 2014.

[28] J. H. Lau and T. Baldwin, « An Empirical Evaluation of doc2vec with Practi-
cal Insights into Document Embedding Generation », in Proceedings of the 1st
Workshop on Representation Learning for NLP, 2016, pp. 78–86.

[29] Z. Zhu and J. Hu, « Context aware document embedding », arXiv preprint
arXiv:1707.01521, 2017.

[30] M. Chen, « Efficient verctor representation for documents through corruption »,
arXiv preprint arXiv:1707.02377, p. 13, 2017.

135

[31] R. Ju, P. Zhou, C. H. Li, and L. Liu, « An Efficient Method for Document Cate-
gorization Based on Word2vec and Latent Semantic Analysis », in 2015 IEEE
International Conference on Computer and Information Technology; Ubiquitous
Computing and Communications; Dependable, Autonomic and Secure Com-
puting; Pervasive Intelligence and Computing, LIVERPOOL, United Kingdom,
Oct. 2015, pp. 2276–2283, ISBN: 978-1-5090-0154-5.

[32] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, « Object recognition with gradient-
based learning », in Shape, contour and grouping in computer vision, Springer,
1999, pp. 319–345.

[33] D. M. Blei, A. Y. Ng, and M. I. Jordan, « Latent dirichlet allocation », Journal of
machine Learning research, vol. 3, Jan, pp. 993–1022, 2003.

[34] C. E. Moody, « Mixing Dirichlet Topic Models and Word Embeddings to Make
lda2vec », arXiv:1605.02019 [cs], May 2016, arXiv: 1605.02019.

[35] F. Rosenblatt, « The perceptron: a probabilistic model for information storage
and organization in the brain. », Psychological review, vol. 65, 6, p. 386, 1958.

[36] M. Minsky and S. Papert, « An introduction to computational geometry », Cam-
bridge tiass., HIT, 1969.

[37] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al., « Learning representations
by back-propagating errors », Cognitive modeling, vol. 5, 3, p. 1, 1988.

[38] K. Vora and S. B. Yagnik, « A Survey on Backpropagation Algorithms for Feed-
forward Neural Networks », International Journal of Engineering Development
and Research (IJEDR), vol. 1, 3, pp. 193–197, 2014.

[39] D. H. Ballard, « Modular Learning in Neural Networks. », in AAAI, 1987, pp. 279–
284.

[40] A. Zell, Simulation neuronaler netze. Addison-Wesley Bonn, 1994, vol. 1.

[41] N. Halko, P.-G. Martinsson, and J. A. Tropp, « Finding structure with random-
ness: Probabilistic algorithms for constructing approximate matrix decomposi-
tions », SIAM review, vol. 53, 2, pp. 217–288, 2011.

[42] K. Fukushima, « Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position », Biological
cybernetics, vol. 36, 4, pp. 193–202, 1980.

136

[43] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., « Gradient-based learning ap-
plied to document recognition », Proceedings of the IEEE, vol. 86, 11, pp. 2278–
2324, 1998.

[44] T. Mikolov, K. Chen, G. Corrado, and J. Dean, « Efficient estimation of word
representations in vector space », arXiv preprint arXiv:1301.3781, 2013.

[45] V. Nair and G. E. Hinton, « Rectified linear units improve restricted boltzmann
machines », in Proceedings of the 27th international conference on machine
learning (ICML-10), 2010, pp. 807–814.

[46] Y. Bengio, P. Simard, P. Frasconi, et al., « Learning long-term dependencies
with gradient descent is difficult », IEEE transactions on neural networks, vol. 5,
2, pp. 157–166, 1994.

[47] S. Hochreiter and J. Schmidhuber, « Long Short-Term Memory », Neural Com-
put., vol. 9, 8, pp. 1735–1780, Nov. 1997, ISSN: 0899-7667. DOI: 10.1162/neco.
1997.9.8.1735. [Online]. Available: https://doi.org/10.1162/neco.1997.9.
8.1735.

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł.
Kaiser, and I. Polosukhin, « Attention is all you need », in Advances in neural
information processing systems, 2017, pp. 5998–6008.

[49] J. Cheng, L. Dong, and M. Lapata, « Long Short-Term Memory-Networks for
Machine Reading », in Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, 2016, pp. 551–561.

[50] J. L. Ba, J. R. Kiros, and G. E. Hinton, « Layer normalization », arXiv preprint
arXiv:1607.06450, 2016.

[51] Y. Gal and Z. Ghahramani, « A theoretically grounded application of dropout
in recurrent neural networks », in Advances in neural information processing
systems, 2016, pp. 1019–1027.

[52] S. Sukhbaatar, J. Weston, R. Fergus, et al., « End-to-end memory networks »,
in Advances in neural information processing systems, 2015, pp. 2440–2448.

[53] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani, V. Zhong,
R. Paulus, and R. Socher, « Ask me anything: Dynamic memory networks for
natural language processing », in International conference
on machine learning, 2016, pp. 1378–1387.

137

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

[54] M.-T. Luong, H. Pham, and C. D. Manning, « Effective approaches to attention-
based neural machine translation », arXiv preprint arXiv:1508.04025, 2015.

[55] T. Joachims, « A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for
Text Categorization », in Proceedings of the Fourteenth International Confer-
ence on Machine Learning, ser. ICML ’97, San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1997, pp. 143–151, ISBN: 978-1-55860-486-5.

[56] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, « Rcv1: A new benchmark collection
for text categorization research », Journal of machine learning research, vol. 5,
Apr, pp. 361–397, 2004.

[57] W. Hersh, C. Buckley, T. Leone, and D. Hickam, « OHSUMED: an interactive
retrieval evaluation and new large test collection for research », in SIGIR’94,
Springer, 1994, pp. 192–201.

[58] E. Loper and S. Bird, « NLTK: the natural language toolkit », arXiv preprint
cs/0205028, 2002.

[59] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, « Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, Vol. 1 », in D. E. Rumelhart,
J. L. McClelland, and C. PDP Research Group, Eds., Cambridge, MA, USA:
MIT Press, 1986, ch. Learning Internal Representations by Error Propagation,
pp. 318–362, ISBN: 0-262-68053-X. [Online]. Available: http://dl.acm.org/
citation.cfm?id=104279.104293.

[60] T. Zhang, « Solving Large Scale Linear Prediction Problems Using Stochastic
Gradient Descent Algorithms », in Proceedings of the Twenty-first International
Conference on Machine Learning, ser. ICML ’04, Banff, Alberta, Canada: ACM,
2004, pp. 116–, ISBN: 1-58113-838-5. DOI: 10.1145/1015330.1015332. [Online].
Available: http://doi.acm.org/10.1145/1015330.1015332.

[61] A. M. Kibriya, E. Frank, B. Pfahringer, and G. Holmes, « Multinomial Naive
Bayes for Text Categorization Revisited », in Proceedings of the 17th Australian
Joint Conference on Advances in Artificial Intelligence, ser. AI’04, Cairns, Aus-
tralia: Springer-Verlag, 2004, pp. 488–499, ISBN: 3-540-24059-4, 978-3-540-
24059-4. DOI: 10.1007/978- 3- 540- 30549- 1_43. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-30549-1_43.

138

http://dl.acm.org/citation.cfm?id=104279.104293
http://dl.acm.org/citation.cfm?id=104279.104293
https://doi.org/10.1145/1015330.1015332
http://doi.acm.org/10.1145/1015330.1015332
https://doi.org/10.1007/978-3-540-30549-1_43
http://dx.doi.org/10.1007/978-3-540-30549-1_43
http://dx.doi.org/10.1007/978-3-540-30549-1_43

[62] D. J. Hand and K. Yu, « Idiot’s Bayes—not so stupid after all? », International
statistical review, vol. 69, 3, pp. 385–398, 2001.

[63] J. MacQueen et al., « Some methods for classification and analysis of multivari-
ate observations », in Proceedings of the fifth Berkeley symposium on math-
ematical statistics and probability, Oakland, CA, USA, vol. 1, 1967, pp. 281–
297.

[64] A. K. Jain and R. C. Dubes, « Algorithms for clustering data », Englewood Cliffs:
Prentice Hall, 1988, 1988.

[65] W. M. Rand, « Objective criteria for the evaluation of clustering methods », Jour-
nal of the American Statistical association, vol. 66, 336, pp. 846–850, 1971.

[66] C. Laclau, F. d. A. T. de Carvalho, and M. Nadif, « Fuzzy co-clustering with au-
tomated variable weighting », in 2015 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), Aug. 2015, pp. 1–8. DOI: 10.1109/FUZZ-IEEE.2015.
7337802.

[67] J. C. Dunn, « A Fuzzy Relative of the ISODATA Process and Its Use in Detecting
Compact Well-Separated Clusters », Journal of Cybernetics, vol. 3, 3, pp. 32–
57, 1973. DOI: 10.1080/01969727308546046.

[68] A. Holzinger, « Human-Computer Interaction and Knowledge Discovery (HCI-
KDD): What is the benefit of bringing those two fields to work together? », in In-
ternational Conference on Availability, Reliability, and Security, Springer, 2013,
pp. 319–328.

[69] S. C. de Abreu, T. L. Bonamigo, and R. Vieira, « A review on Relation Extraction
with an eye on Portuguese », Journal of the Brazilian Computer Society, vol. 19,
4, pp. 553–571, 2013.

[70] Z. S. Harris, « Distributional structure », Word, vol. 10, 2-3, pp. 146–162, 1954.

[71] D. Ravichandran and E. Hovy, « Learning surface text patterns for a question
answering system », in Proceedings of the 40th annual meeting on association
for computational linguistics, Association for Computational Linguistics, 2002,
pp. 41–47.

139

https://doi.org/10.1109/FUZZ-IEEE.2015.7337802
https://doi.org/10.1109/FUZZ-IEEE.2015.7337802
https://doi.org/10.1080/01969727308546046

[72] B. Min, S. Shi, R. Grishman, and C.-Y. Lin, « Ensemble Semantics for Large-
scale Unsupervised Relation Extraction », in Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Com-
putational Natural Language Learning, ser. EMNLP-CoNLL ’12, Jeju Island, Ko-
rea: Association for Computational Linguistics, 2012, pp. 1027–1037. [Online].
Available: http://dl.acm.org/citation.cfm?id=2390948.2391062.

[73] D. Lin and P. Pantel, « DIRT@ SBT@ discovery of inference rules from text », in
Proceedings of the seventh ACM SIGKDD international conference on Knowl-
edge discovery and data mining, ACM, 2001, pp. 323–328.

[74] D. Beeferman and A. Berger, « Agglomerative clustering of a search engine
query log », in Proceedings of the sixth ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM, 2000, pp. 407–416.

[75] L. B. Feldman, Morphological aspects of language processing. Psychology Press,
2013.

[76] D. Zelenko, C. Aone, and A. Richardella, « Kernel methods for relation extrac-
tion », Journal of machine learning research, vol. 3, Feb, pp. 1083–1106, 2003.

[77] L. Qian, G. Zhou, F. Kong, Q. Zhu, and P. Qian, « Exploiting constituent de-
pendencies for tree kernel-based semantic relation extraction », in Proceedings
of the 22nd International Conference on Computational Linguistics-Volume 1,
Association for Computational Linguistics, 2008, pp. 697–704.

[78] G. Zhou, L. Qian, and J. Fan, « Tree kernel-based semantic relation extraction
with rich syntactic and semantic information », Information Sciences, vol. 180,
8, pp. 1313–1325, 2010.

[79] S. Miller, H. Fox, L. Ramshaw, and R. Weischedel, « A Novel Use of Statisti-
cal Parsing to Extract Information from Text », in Proceedings of the 1st North
American Chapter of the Association for Computational Linguistics Conference,
ser. NAACL 2000, Seattle, Washington: Association for Computational Linguis-
tics, 2000, pp. 226–233. [Online]. Available: http://dl.acm.org/citation.
cfm?id=974305.974335.

[80] M. Banko, O. Etzioni, and T. Center, « The Tradeoffs Between Open and Tradi-
tional Relation Extraction. », in ACL, vol. 8, 2008, pp. 28–36.

140

http://dl.acm.org/citation.cfm?id=2390948.2391062
http://dl.acm.org/citation.cfm?id=974305.974335
http://dl.acm.org/citation.cfm?id=974305.974335

[81] G. Angeli, J. Tibshirani, J. Wu, and C. D. Manning, « Combining Distant and
Partial Supervision for Relation Extraction. », in EMNLP, 2014, pp. 1556–1567.

[82] L. Wang, Z. Cao, G. De Melo, and Z. Liu, « Relation classification via multi-level
attention cnns », in Proceedings of the 54th annual meeting of the Association
for Computational Linguistics (volume 1: long papers), 2016, pp. 1298–1307.

[83] Y. Xu, L. Mou, G. Li, Y. Chen, H. Peng, and Z. Jin, « Classifying relations via
long short term memory networks along shortest dependency paths », in pro-
ceedings of the 2015 conference on empirical methods in natural language pro-
cessing, 2015, pp. 1785–1794.

[84] J. Lafferty, A. McCallum, and F. Pereira, « Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data », in Proceedings of the
eighteenth international conference on machine learning, ICML, vol. 1, 2001,
pp. 282–289.

[85] N. Ye, W. S. Lee, H. L. Chieu, and D. Wu, « Conditional Random Fields with
High-Order Features for Sequence Labeling », in Advances in Neural Informa-
tion Processing Systems 22, Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I.
Williams, and A. Culotta, Eds., Curran Associates, Inc., 2009, pp. 2196–2204.
[Online]. Available: http : / / papers . nips . cc / paper / 3815 - conditional -
random-fields-with-high-order-features-for-sequence-labeling.pdf.

[86] S. R. Eddy, « Hidden markov models », Current opinion in structural biology,
vol. 6, 3, pp. 361–365, 1996.

[87] C. Sutton, A. McCallum, et al., « An introduction to conditional random fields »,
Foundations and Trends® in Machine Learning, vol. 4, 4, pp. 267–373, 2012.

[88] M. Collins, « Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms », in Proceedings of the ACL-02
conference on Empirical methods in natural language processing-Volume 10,
Association for Computational Linguistics, 2002, pp. 1–8.

[89] Y. Freund and R. E. Schapire, « Large margin classification using the perceptron
algorithm », Machine learning, vol. 37, 3, pp. 277–296, 1999.

[90] G. D. Forney, « The viterbi algorithm », Proceedings of the IEEE, vol. 61, 3,
pp. 268–278, 1973.

[91] Y. Li, J. Jiang, H. L. Chieu, and K. M. A. Chai, « IJCNLP », 2011, pp. 392–400.

141

http://papers.nips.cc/paper/3815-conditional-random-fields-with-high-order-features-for-sequence-labeling.pdf
http://papers.nips.cc/paper/3815-conditional-random-fields-with-high-order-features-for-sequence-labeling.pdf

[92] T. Lavergne, O. Cappé, and F. Yvon, « Practical Very Large Scale CRFs »,
in Proceedings of the 48th Annual Meeting of the Association for Computa-
tional Linguistics, ser. ACL ’10, Uppsala, Sweden: Association for Computa-
tional Linguistics, 2010, pp. 504–513. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1858681.1858733.

[93] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, « Algorithm 778: L-BFGS-B: For-
tran subroutines for large-scale bound-constrained optimization », ACM Trans-
actions on Mathematical Software (TOMS), vol. 23, 4, pp. 550–560, 1997.

[94] M. F. Møller, « A scaled conjugate gradient algorithm for fast supervised learn-
ing », Neural networks, vol. 6, 4, pp. 525–533, 1993.

[95] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, « Algorithms for hyper-
parameter optimization », in Advances in Neural Information Processing Sys-
tems, 2011, pp. 2546–2554.

[96] H. I. Ansoff, « Managing strategic surprise by response to weak signals », Cali-
fornia management review, vol. 18, 2, pp. 21–33, 1975.

[97] N. Okazaki, « Crfsuite: a fast implementation of conditional random fields (crfs) »,
2007.

[98] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, « Scikit-learn: Machine
Learning in Python », Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[99] H. Chen, X. Li, and Z. Huang, « Link prediction approach to collaborative fil-
tering », in Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital
Libraries (JCDL’05), IEEE, 2005, pp. 141–142.

[100] P. Brusilovsky and E. Millán, « User models for adaptive hypermedia and adap-
tive educational systems », in The adaptive web, Springer, 2007, pp. 3–53.

[101] K. Gábor, H. Zargayouna, I. Tellier, D. Buscaldi, and T. Charnois, « Unsuper-
vised relation extraction in specialized corpora using sequence mining », in In-
ternational Symposium on Intelligent Data Analysis, Springer, 2016, pp. 237–
248.

142

http://dl.acm.org/citation.cfm?id=1858681.1858733
http://dl.acm.org/citation.cfm?id=1858681.1858733

[102] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, « Squad: 100,000+ questions
for machine comprehension of text », arXiv preprint arXiv:1606.05250, 2016.

[103] B. McCann, N. S. Keskar, C. Xiong, and R. Socher, « The natural language de-
cathlon: Multitask learning as question answering », arXiv preprint arXiv:1806.08730,
2018.

[104] W. L. Taylor, « “Cloze procedure”: A new tool for measuring readability », Jour-
nalism Bulletin, vol. 30, 4, pp. 415–433, 1953.

[105] D. M. Blei, A. Y. Ng, and M. I. Jordan, « Latent Dirichlet Allocation », Journal
of Machine Learning Research, vol. 3, Jan, pp. 993–1022, 2003, ISSN: ISSN
1533-7928.

[106] C. Cortes and V. Vapnik, « Support-vector networks », Machine Learning, vol. 20,
3, pp. 273–297, Sep. 1995, ISSN: 0885-6125, 1573-0565.

[107] L. Rokach and O. Maimon, « Data mining and knowledge discovery handbook »,
in Springer, 2005, pp. 321–352.

[108] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al., Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies, 2001.

[109] S. Sarawagi, « Information extraction », Foundations and trends in databases,
vol. 1, 3, pp. 261–377, 2008.

[110] D. Zeng, K. Liu, S. Lai, G. Zhou, J. Zhao, et al., « Relation Classification via
Convolutional Deep Neural Network. », in COLING, 2014, pp. 2335–2344.

[111] M. Mintz, S. Bills, R. Snow, and D. Jurafsky, « Distant Supervision for Rela-
tion Extraction Without Labeled Data », in Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th International Joint Con-
ference on Natural Language Processing of the AFNLP: Volume 2 - Volume
2, ser. ACL ’09, Suntec, Singapore: Association for Computational Linguistics,
2009, pp. 1003–1011, ISBN: 978-1-932432-46-6. [Online]. Available: http://
dl.acm.org/citation.cfm?id=1690219.1690287.

[112] V. N. Vapnik and V. Vapnik, Statistical learning theory. Wiley New York, 1998,
vol. 1.

[113] O. Ahmia, N. Béchet, and P.-F. Marteau, « Apprentissage de structures séquen-
tielles pour l’extraction d’entités et de relations dans des textes d’appels d’offres. »,
in EGC, 2017, pp. 351–356.

143

http://dl.acm.org/citation.cfm?id=1690219.1690287
http://dl.acm.org/citation.cfm?id=1690219.1690287

Titre : Veille stratégique assistée sur des bases de données d’appels d’offres par traitement
automatique de la langue naturelle, fouille de textes et apprentissage profond.

Mot clés : Fouille de textes, Apprentissage profond, Attention hiérarchique, TALN, Appel d’offres,

Apprentissage automatique

Résumé : Le data mining ou text mining est
un concept récent apparu en 1989 qui en-
gendre des innovations dans de nombreux do-
maines (knowledge management, marketing,
communication, juridique, banque, finance,
assurance, santé...). Face à la croissance des
données disponibles, l’analyse humaine doit
être accompagnée par des technologies de
traitement automatique du langage naturel à
la fois rapides, économes en ressource et
de grande qualité pour servir d’interface entre
l’homme et la machine.

Cette croissance exponentielle de l’infor-
mation disponible en ligne génère une pres-
sion de plus en plus forte sur les algorithmes
et technologies de traitement de cette informa-
tion qui se présente principalement sous une
forme textuelle. La nécessité de développer
des méthodes avancées de TALN (traitement
automatique du langage naturel) pour trouver,
filtrer et analyser ces ressources de manière
rapide et efficace devient ainsi d’autant plus
prégnante.

C’est dans cette optique, que j’ai souhaité
réaliser ma thèse sur des données écono-
miques textuels que sont les avis d’appels pu-
blics à la concurrence, communément appelés
appels d’offres. Le contenu de ces données
est textuel, multilingue, peu ou pas structuré,
et très hétérogène, tant dans sa forme que sur
le fond. En effet, le contenu des marchés mé-
lange à la fois du formalisme et le détail de
l’intention d’achat. La capitalisation de ces do-
cuments sur plusieurs années a permis de dis-
poser d’une banque de données qui constitue
une mine d’informations dans différents do-
maines (secteurs d’activités, concurrence, prix

d’achats...) permet d’asseoir une veille straté-
gique et concurrentielle sur un large spectre
de métiers, de technologies ou de services.

Cette thèse, effectuée dans le cadre d’un
contrat CIFRE avec la société OctopusMind,
est centrée sur le développement d’un ou-
tillage informatique dédié et optimisé pour l’as-
sistance à l’exploitation de la base d’appels
d’offres, dans une finalité de veille stratégique.
Cet outillage est basé sur les processus avan-
cés de traitement de l’information et a pour vo-
cation de s’intégrer dans le système d’informa-
tion développé par l’entreprise. Les objectifs
principaux de la thèse concernent la recom-
mandation d’appels d’offres pour les clients,
la classification des appels d’offres, ainsi que
l’extraction d’informations pertinentes au re-
gard d’une spécification de recherche don-
née. Notre contribution se décline en trois
chapitres : le premier concerne le dévelop-
pement d’une ressource multilingue partielle-
ment comparable. Celle-ci est construite à par-
tir des appels d’offres européens publiés par le
TED (Tenders Electronic Daily). Elle contient
plus de deux millions de documents traduits
dans 24 langues publiées durant les 9 der-
nières années (cette ressource est une don-
née ouverte). Le deuxième chapitre concerne
une étude sur les questions de vectorisation
de mots, phrases et documents susceptibles
de capturer au mieux, des éléments d’ordre
sémantique, selon différentes échelles. Nous
avons proposé deux approches : la première
est basée sur une combinaison entre un plon-
gement de mot (word2vec) et une caractéri-
sation de type sémantique latente (LSA). La
deuxième est basée sur une architecture neu-

ronale originale basée sur des réseaux d’at-
tention convolutionnels à deux niveaux. Ces
vectorisations sont exploitées à titre de va-
lidation sur des tâches de classification et
de clustering de textes. Le troisième chapitre
concerne l’extraction de relations sémantiques
contenues dans les appels d’offres, en par-
ticulier, permettant de relier des bâtiments à
des surfaces, des lots à des budgets, etc. Les
approches supervisées développées sont ici

plus traditionnelles et reposent sur des Condi-
tionnal Random Fields. La fin de ce chapitre
aborde la mise en production dans l’environ-
nement logiciel d’OctopusMind des différentes
solutions développées, notamment l’extraction
d’informations, le système de recommanda-
tion, ainsi que la combinaison de ces diffé-
rents modules pour résoudre des problèmes
plus complexes (i.e. études de marchés).

Title: Assisted strategic monitoring on call for tender databases using natural language pro-
cessing, text mining and deep learning

Keywords: Text mining, Deep learning, Hierarchical attention, NLP, Call for tender, Machine

learning

Abstract:
Data mining or text mining is a recent con-

cept which appeared in 1989, it has created
several innovations in many fields (knowledge
management, marketing, communication, le-
gal, banking, finance, insurance, health ...).
Faced with the growth of available data, hu-
man analysis must go along with automatic
natural language processing technologies that
are both fast, resource-efficient and of high
quality to serve as an interface between man
and machine.

This exponential growth in the information
available online (which is mainly presented in
textual form) generates increasing pressure
on algorithms and technologies used for pro-
cessing this information. The need to develop
advanced NLP (natural language processing)
methods to find, filter and analyze these re-
sources quickly and efficiently becomes all the
more significant.

It is with this in mind that I wanted to carry
out my thesis on textual economic data, more
precisely of public calls for competition notices,
commonly called calls for tenders. The con-
tent of this data is textual, multilingual, loosely
structured or not at all, and very heteroge-
neous, both in form and content. Indeed, the
content of the documents mixes both formal-

ism and the detail of the purchase intention.
The capitalization of these documents over
several years has made it possible to have a
database that constitutes a wealth of informa-
tion in different fields (business sectors, com-
petition, purchase prices, etc.). strategic and
competitive across a broad spectrum of pro-
fessions, technologies or services.

This thesis, carried out within the frame-
work of a CIFRE contract with the Octopus-
Mind company, is focused on developing a set
of automated tools dedicated and optimized to
assist call for tender databases processing, for
the purpose of strategic intelligence monitor-
ing. This set of tools is based on advanced
information processing techniques and is de-
signed to be integrated into the information
system developed by the OctopusMind com-
pany. The main objectives of this thesis are
centred on recommendation of calls for ten-
ders for OctopusMind’s clients, the classifica-
tion of calls for tenders documents, as well as
the extraction of relevant information with re-
gard to a given set of specifications.

Our contribution is divided into three chap-
ters: The first chapter is about developing a
partially comparable multilingual corpus, built
from the European calls for tender published
by TED (Tenders Electronic Daily). It con-

tains more than 2 million documents trans-
lated into 24 languages published over the last
9 years (this resource is published as open
data). The second chapter presents a study on
the questions of words, sentences and docu-
ments embedding, likely to capture semantic
features at different scales. We proposed two
approaches: the first one is based on a combi-
nation between a word embedding (word2vec)
and latent semantic analysis (LSA). The sec-
ond one is based on a novel artificial neural
network architecture based on two-level con-
volutional attention mechanisms. These em-
bedding methods are evaluated on classifica-
tion and text clustering tasks. The third chapter

concerns the extraction of semantic relation-
ships in calls for tenders, in particular, allow-
ing to link buildings to areas, lots to budgets,
and so on. The supervised approaches devel-
oped in this part of the thesis are essentially
based on Conditionnal Random Fields. The
end of the third chapter concerns the applica-
tion aspect, in particular with the implementa-
tion of some solutions deployed within Octo-
pusMind’s software environment, including in-
formation extraction, a recommender system,
as well as the combination of these different
modules to solve some more complex prob-
lems, e.g. market analysis.

	Introduction
	Context
	Challenges and problematics
	Main contributions

	TED dataset
	Introduction
	The (full-document) fd-TED corpus
	Common Procurement Vocabulary
	The documents
	Classification Example

	The (parallel) par-TED corpus
	Conclusion

	Document embedding
	Introduction
	Related works
	Artificial neural networks concepts
	Word2vec
	Latent semantic analysis
	Convolutional Neural Networks
	Recurrent Neural Networks
	Long Short Term Memory networks
	Attention mechanism
	Transformer

	Hierarchical attention

	Contribution
	LSA+W2V
	CnHAtt
	Experimentation
	Experimental protocol

	Experimentation Result
	Conclusion and perspectives

	Applicative tasks
	Introduction
	Information extraction
	Models used
	Surface extraction
	Methodology
	Features used
	Used dataset
	Experimentation and results

	Renewal information extraction
	Methodology
	Used dataset
	Features used
	Experimentation and results

	Financial data extraction
	Methodology
	dataset
	Experimentation and results

	Recommender system
	Thésaurus classification
	Activity classification
	Document based recommendation

	Conclusion and perspectives

	Conclusion
	Bibliography

