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Chapter 1

Introduction

1.1 Context

The �rst meters and tens of meters of the underground constitute the interface
between the atmosphere and the deep geological environment. Moreover this
zone includes many human activities, whether for agriculture or because it is the
seat of the foundations of anthropogenic constructions. Yet the subsurface is
subject to meteorological modi�cations through the brutal climatic events that
are becoming more and more numerous in the context of climate change.

The alternation of droughts and drastic rain fall extents makes rapid modi-
�cations of the water table level as well as the water content pro�le in the not
saturated zone. The last, also called Vadose Zone or Critical Zone is thus very
sensitive to climate change. It is a transfer zone between the atmosphere and
the water table that lets pass soluble particles to the deepest media, thus a
critical area to monitor.

Moreover, the rapid changes of water content in the shallower media can
cause inner erosion or progressive variation of the media properties. This im-
plies a key issue for the �eld stability, for the civil engineering structures sus-
tainability, and for people's safety, i.e. a key issue for risk assessment. Thus the
mechanical variations should be detected and monitored before they accumulate
and create irreparable damages.

Seismic methods. In order to overcome this need, geophysics ap-
proaches and more particularly seismic methods can be a priori relevant because
surface recordings are linked to mechanical properties of underground without
using destructive probes. Di�erent usual seismic methods are based on di�erent
parts of the signal (re�ected or refracted body waves, surface waves, etc.). For
example, Wallace (1970); Haeni (1986) used compressional-wave to determine
the water table in the aquifer, through the tomography of �rst-arrival travel
time. More recent techniques like Full Waveform Inversion (FWI) tackle the
entire recorded signal, i.e. uses the information contained in both amplitude
and phase. By an inversion process, it is possible to recover seismic parame-
ters of the medium, such as densities, P-wave and S-wave velocities (Tarantola,
1984; Virieux and Operto, 2009). But FWI is quite time-consuming and expen-
sive to implement, and uses local inversion approaches which needs an accurate
information for the initial model.

13
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In near-surface applications, surface waves are widely used for its high energy
and long propagation distance (Socco and Strobbia, 2004; Foti et al., 2014). The
dispersion relation of surface waves are used to extract the medium's parameters
as function of depth, especially the S-wave pro�le. Compared to FWI, the sur-
face wave inversion (SWI) is less time-consuming (because the forward problem
is it-self less time-consuming), and both local and global inversion algorithms
are possible.

Surface wave methods can be considered as active methods by using con-
trolled sources like sledge hammer and a series of receivers in line, or as passive
methods by using continuous seismic signal that occurs in the surrounding me-
dia (ambient noise). In the later case, the sources and the receivers are usually
arranged on a 2D surface instead of a line.

1.2 Time-lapse monitoring

Time-lapse monitoring aims to monitor the temporal variations of the media,
through a series of measurements at di�erent times. The concept "time-lapse"
has been largely applied in the reservoir management and the long term mon-
itoring of underground environment in the oil and gaz industry. For example,
Arts et al. (2002, 2003) estimated the mass of the injected CO2 in an under-
ground reservoir, by comparing the data measured after CO2 injection in 1994,
1999 and 2001. Riahi et al. (2013) performed a time-lapse analysis above an
underground gas storage facility, using the phase velocity and the back azimuth
(the angle of the wave front arriving at the array) of Rayleigh and Love waves,
which were processed using a three-component beamforming algorithm. Cotton
et al. (2018) developed a 4D modi�ed prestack time migration method to detect
the velocity changes, obtained from daily acquisitions. This method is applied
on synthetic data and real onshore data sets, in order to monitor the heavy oil
reservoir in the context of steam injection.

Recently, in near-surface applications, the time-lapse monitoring has also
gained the reasearchers' attention. Planès et al. (2016) applied passive seismic
interferometry technique to monitor the temporal changes, e.g. the internal ero-
sion, in earthen dams and levees. 20% reduction of the surface wave velocity has
been estimated in a laboratory scale experiment and 30% reduction of surface
wave velocity has been observed on a �eld embankment. The same technique
has been applied to monitor the tidal response of a sea levee by Planès et al.
(2017). Surface wave has been recorded at four di�erent frequencies (related
to four depths) in order to estimate the relative variations of its group velocity
along a 180m section. The group velocity variation estimated, which is equal
to 5%, might be related to a concentrated water seepage or an internal erosion.
Joubert et al. (2018) monitor a sea dike (the dike body and its substratum) dur-
ing a tidal cycle using a passive surface wave methods. The empirical Green's
functions, which are obtained by cross-correlation or deconvolution were used to
extract the phase delay and the spectral amplitude ratio, which gave information
on the temporal variations of the surface wave velocity and attenuation. The
authors pointed out that the variations could be due to the water in�ltration in
the body of the dike.
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1.2.1 Main issues in time-lapse monitoring

Since time-lapse monitoring aims to estimate temporal variations in the media,
the di�erences of seismic data measured at di�erent times should be caused only
by the changes of the properties of the medium. In order to get close to this
ideal case, several aspects are critical in the methodological process. We can cite
the source repeatability, the receivers coupling, the measurement uncertainty.
The challenge concerning these critical points are summarized bellow:

Sources issue. Passive methodology can provide continuous recordings
at no cost, compared to active sources. But passive sources, such as ambient
noise, cannot be controlled. The unpredictable variations in such sources can
lead to variations in data, thus bias the assessment of the medium. On the con-
trary, active sources are easier to control. But measurements are more heavy
to carry out and thus the time sampling is usually sparser. Long time intervals
between two measurements makes it impossible to detect a sudden temporal
variations. Di�erent strategies are applied to overcome the source repeatabil-
ity. In case of FWI methods, the source signature is systematically inverted.
For surface waves methods, the active source signature is not mandatory when
extracting phase or group velocities from relative recordings between several
receivers. In the study of Ikeda et al. (2017), a controlled active continuous
source is used to overcome this issue.

Receivers issue. Multiple receivers are needed in most of seismic meth-
ods. In order to minimize the e�ects of their possible variations in positions,
coupling and tilt between two measurement sets (O'Neill, 2004), acquisition
equipment can be buried permanently during the construction of the structures
(see Ikeda et al. (2017) for an example monitoring of the subsurface media above
a CO2 storage site with surface wave phase velocity). The sustainability of re-
ceivers should be taken care before the burial. When permanent receivers are
not accessible, they can be replaced by temporary receivers while the positions
of the receivers are marked permanently to be correctly spotted from one time
to another (Pasquet et al., 2015b; Bergamo et al., 2016).

Measurement uncertainty. The uncertainty due to measurement
errors should be treated carefully in the measurement data, as it impacts the
estimation of the variations in the medium. Generally, surface wave measure-
ments are under the Gaussian assumption (Tarantola, 2005; Menke, 2018), i.e.
the probability density of the measurement error is a Gaussian distribution.
O'Neill (2004) pointed out that at low frequencies a Lorentzian distribution is
more appropiate than a Gaussian distribution and proposed to use a realistic
dispersion error for the data uncertainty. In more recent studies dedicated to
monitoring needs, Dangeard et al. (2018) proposes a processing work�ow to es-
timate the picking errors during the manual picking of P-wave �rst-arrival time
and the surface wave phase velocity dispersion curve extraction.

Inversion and parameter sensitivity. So far, in most of studies
involving surface waves monitoring, the variations are estimated qualitatively
on the information extracted from the measured data, such as the surface wave
velocity and attenuation, the time delay, etc. If the quantitative estimation on
the model parameter variations is needed, for example, temporal variations of
the S-wave or P-wave velocities, or the model parameter variations in depth,
an inversion process is essential. Moreover, the inversion input data should be
chosen after a sensitivity study of the inversion input data with respect to the
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model parameter that we are of interest. For example, classical inversion input
data in surface wave inversions are the phase or group velocities, which are
most sensitive to S-wave variations in the medium. Actually, if the parameter
sensitivity is too low compared to their temporal variations, the monitoring
process cannot be e�cient.

This last point is crucial and is the focus of this PhD thesis (we do not
consider the previous critical points which should be tackled in other studies).

1.3 Time-lapse inversion

Time-lapse inversion aims to estimate the changes of the model parameters, by
inverting the data measured at di�erent times. The subtraction of the inverted
model parameters gives the temporal variations of the medium. Combining the
temporal variations of the model parameters with the environmental changes
over the measurement time, one can draw the reasons for the changes in the
subsurface or in civil engineering structures.

Time-lapse surface wave inversion. Bergamo et al. (2016) es-
timate the climate e�ects followed with surface waves in a clay-�lled railway
embankment. The surface wave dispersion data are measured and then inverted
to reconstruct the time-lapse model of S-wave velocity. A velocity variation of
10% has been estimated quantitatively for the Rayleigh wave and the inverted
S-wave, which is related to the seasonal distribution of precipitation and the
soil water content. Ikeda et al. (2017) invert the surface wave phase velocity to
monitor the environmental in�uences on shallow body wave velocities above the
Aquistore CO2 storage site. Higher phase velocities are observed during winter
because the S-wave velocity increases with higher degree of frozen saturated
rock. Pasquet et al. (2015b) propose to analyze the Vp/Vs ratio to characterize
the subsurface medium, with the P-wave velocity model recovered by �rst-arrival
travel time tomography and the S-wave velocity inverted from surface wave dis-
persion data (which shows a higher lateral resolution than the S-wave velocity
extracted from S-wave �rst-arrival travel time tomography). This method is
then used to track the water table level in the shallow aquifer with the Vp/Vs
ratio and the Poisson's ratio in an experimental basin in France (Pasquet et al.,
2015a), and characterize the physical properties of quick clays in a three-layer
(peat, quick clay and bedrock) experimental site in Norway (Pasquet et al.,
2014).

Double di�erence full waveform inversion. The time-lapse
inversions described above involve two (or several) independent inversions of
the measured data and compare the inversion results to estimate the medium's
variations. Parallel to these studies using surface waves, a strategy to overcome
the uncertainty issue is possible through a di�erential inversion. The principle
of Double Di�erence for FWI (DDFWI) methods uses the inversion result of one
measured data to "guide" the other inversion through the de�nition of the initial
model. Watanabe et al. (2004) propose to use the substraction of the time-lapse
crosswell seismic data in the waveform inversion to assess the reservoir changes
during gas production. This method is then developed for the same purpose by
Denli and Huang (2009) in the time domain. The principle can be summarized
as follows: instead of applying two independent inversions on the measured
baseline and repeatline and extract the model parameter variations from the
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subtraction of the inversion results, the DDFWI (1) uses the inversion result
of the measured baseline to assess a synthetic baseline by solving the direct
problem; (2) adds the subtracting result between the measured baseline and
repeatline to the synthetic baseline for building a synthetic repeatline; (3) inverts
this synthetic repeatline using the inversion result of the measured baseline as
the initial model; (4) subtracts the inversion results of the measured baseline
and that of the repeatline to recover the model parameter variations. The
main advantage of this method is that the coherent noise between the measured
baseline and repeatline can be removed by the subtraction. Thus the di�erences
in the two data-sets are only due to the model parameter variations.

The DDFWI has been widely used for the purpose of monitoring reservoir
properties. Zhang and Huang (2013) improve the quantitative time-lapse seis-
mic monitoring of elastic properties within reservoirs, by using the approximate
location of a reservoir boundary as a priori information in the DDFWI. Yang
et al. (2013) apply the DDFWI method on time-lapse data-sets collected by
ocean-bottom-cable (OBC) seismic survey (MacLeod et al., 1999; Sears et al.,
2010) in the Valhall �eld in the North Sea. Zhang et al. (2016) apply the DDFWI
on seismic data-sets acquired with re�ection acquisition geometries, using a se-
ries of synthetic time-lapse data-sets. The feasibility and the robustness of the
DDFWI have been studies by other authors. Asnaashari et al. (2012) show that
the DDFWI method has a robustness limit when the two measured data-sets
have uncorrelated noise, since the time-lapse changes are blinded by the noise.
Yang et al. (2015) investigate the feasibility of the DDFWI under the condi-
tion of various types of non-repeatability in synthetic data-sets (random noise,
acquisition geometry mismatch, source wavelet discrepancy, etc.). Although
these tests are limited to acoustic assumption and thus P-wave inversion which
does not simulate realistic earth data, the results show that the DDFWI gives
a reliable estimate of the reservoir changes.

Despite the advantage of the DDFWI, it is di�cult to apply this method di-
rectly in the surface wave inversion, especially using global inversion techniques.
The �rst reason is that, the inversion input data in DDFWI is the waveform,
which contains the information of the amplitude and the phase of the prop-
agating waves, whereas, the surface wave inversion uses commonly dispersion
data (phase or group velocity curve). Another reason is that global inversion
techniques do not need an initial model. Therefore using the inversion result
of the measured baseline cannot be used as the initial model of the measured
repeatline inversion.

Nevertheless, the main idea of the DDFWI can still be applied in the surface
wave methods: in this thesis work, the data di�erence is used to obtain directly
the model parameter variation. The question is: (1) what kind of di�erence of
(2) which input data extracted from surface waves is relevant for the inversion?

1.4 Objective

In the scienti�c context of monitoring using surface wave methods, the sensitiv-
ity of the inverse problem for assessing weak variations of the medium remains
an open key issue. In this work, we tackle this topic by studying the e�ects
of several innovative strategies based on di�erent and new ways to consider
the input data as well as di�erent propositions to assess the residual between
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calculated and measured data in the inversion process.
For this purpose, three studies are carried out. The �rst one is based on

the sensitivity study of the dispersion data and proposes to introduce a new
input data to the inversion process: the derivative of the phase velocity versus
the frequency. This study, based on sensitivity analysis, numerical tests and
experimental laboratory tests, has been published in the Geophysical Journal
International (GJI) (Wang et al., 2020b).

The second and third propositions in this thesis work are based on "di�er-
ential inversion" for the surface wave methods, i.e. inverting the data di�erence
instead of two measured data-sets. Two approaches are considered: (1) calcu-
lating the di�erence by using several procedures to �nd the most relevant for
surface wave dispersion data; (2) linearizing the surface wave equation and mak-
ing use of the sensitivity kernel to invert the model parameter di�erence from
the simple di�erence of the surface wave dispersion curves. The work has been
conducted on numerical data as well as measurements carried out in small scale
experiments in the laboratory. All approaches will be presented in Chapters 2,
3, 4, 5 according to the following structure.

1.5 Outline of the thesis

The manuscript of the thesis is organized in �ve chapters. The �rst chapter is
the introduction of the thesis, which gives the general context and the challenges
of the monitoring of slight changes with surface waves.

Chapter 2 presents the state of the arts. First, surface waves are introduced
theoretically, using the wave propagation theory. The properties of Rayleigh
wave in homogeneous and vertically heterogeneous elastic media are described,
as well as the semi-analytical methods to calculate the Rayleigh wave phase
velocity. Then, the usual processing of the surface wave to extract the surface
wave phase velocities from measured seismic data is introduced. Finally, the
local and the global inversions methods are presented. The uncertainty issues are
commented in this section with more details on the surface wave measurements
and inversion. The experimental tool, the measurement bench called MUSC
(Measurement at Ultrasonic SCale) used for carrying out measurements under
controlled conditions is also presented.

In Chapter 3, we propose to consider the frequency derivative of Rayleigh
wave phase velocity as a new input data in the inverse problem. We �rst show
that this dispersion data is a combination of the phase and group velocities.
Its behavior is analyzed qualitatively and compared with the Rayleigh wave
phase and group velocities, using the theoretical dispersion curves of a series
of two-layer media with small variations. Then the quantitative analysis of
the phase velocity derivative and the phase and group velocities are performed
by calculating sensitivity curves. Inversion tests are provided to quantify the
feasibility of using the phase velocity derivative, thanks to theoretical dispersion
curves and experimental data recorded in the laboratory using two-layer epoxy-
resin models. As mentioned above, this part corresponds to a published paper
in GJI (Wang et al., 2020b).

The Di�erential Time-lapse Surface Wave Inversion (DTLSWI) is then �rstly
proposed in Chapter 4. For this approach, data di�erence is used as input data
in the surface wave inversion. Two data di�erences are tested: the phase velocity
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di�erence and the phase velocity dispersion diagram distance. The former is the
L2 norm distance between two measured phase velocity dispersion curves, and
the latter is based on a statistical distance considering the area of interest of
the dispersion diagram as a histogram of phase velocity distribution. These two
DTLDWI are tested numerically, using the synthetic dispersion diagrams, and
experimentally, using the ultrasonic measured data of the two-layer epoxy-resin
models and the two-layer mortar-concrete slabs.

Another di�erential inversion is proposed in Chapter 5. A linear assumption
is applied on Rayleigh wave phase velocity, which makes it possible to relate
the model parameter variations with the phase velocity variations by using the
sensitivity kernel of Rayleigh wave phase velocity. The limits of the linear ap-
proximation are discussed by inversion tests on a series of two-layer models,
where the theoretical phase velocities are calculated for each model. This ap-
proach is also applied to laboratory measured data recorded on the two-layer
epoxy-resin models.

Chapter 4 and 5 are written as two independent scienti�c papers for submis-
sion in few weeks. Other publications at national and international conferences
are also available:

• Wang, A., Le Feuvre, M., Abraham, O., & Leparoux, D. (2018, April).
Toward a time-lapse inversion of surface waves for the monitoring of soils
and structures. In 14ème Congrès Français d'Acoustique, 2018. (Le Havre,
France.)

• Wang, A., Le Feuvre, M., Leparoux, D., & Abraham, O. (2018, Septem-
ber). Impact of Small Shear Wave Velocity Variations on Surface Wave
Phase Velocity Inversion. In 24th European Meeting of Environmental
and Engineering Geophysics (Vol. 2018, No. 1, pp. 1-5). European
Association of Geoscientists & Engineers. (Porto, Portugal)

• Wang, A., Le Feuvre, M., Abraham, O., & Leparoux, D. (2018, Novem-
ber). E�et des petites variations d'un milieu bicouche sur une nouvelle
observable d'inversion. In 11ème colloque GEOFCAN (approche GEO-
physique et structurale de l'organisation spatiale et du Fonctionnement
des Couvertures pédologiques Anthropisées et Naturelles), 2018. (Antony,
France)

• Wang, A., Abraham, O., Leparoux, D., & Le Feuvre, M. (2019, July).
Ultrasonic surface wave in concrete: Sensitivity Analysis of Phase velocity
Derivative. In 46th Review of Progress in Quantitative Nondestructive
Evaluation, 2019. (Portland, USA)

• Wang, A., Leparoux, D., Abraham, O., & Le Feuvre, M. (2019, Septem-
ber). Evaluation of Dispersion Diagrams Distances Based on Usual His-
togram Analysis for the Surface Wave Di�erence Inversion. In 1st Con-
ference on Geophysics for Infrastructure Planning Monitoring and BIM
(Vol. 2019, No. 1, pp. 1-5). European Association of Geoscientists &
Engineers. (The Hague, Netherlands)

• Wang, A., Leparoux, D., Abraham, O., & Le Feuvre, M. (2020, Decem-
ber). Di�erential Inversion of Surface Wave Methods: Proposition of Dia-
gram Distance as Inversion Data. In 26th European Meeting of Environ-
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mental and Engineering Geophysics. European Association of Geoscien-
tists & Engineers, 2020. (Amsterdam, Netherlands)

Author's contributions to these studies are:

• designing of laboratory models

• performing measurements in the MUSC laboratory with the technicians
and engineers team

• analysis and data processing by developing processing tools in Seismic
Unix and Python language

• writing the global inversion codes in Python language based on the original
code of M. Le Feuvre



Chapter 2

State of the Art

This chapter describes the physical theory and characteristics of surface waves,
the surface wave methods, inversion algorithms, and the reduced scale measure-
ment approach providing experimental laboratory data involved in the following
chapters.

First, the principle of surface waves is presented, starting with the wave prop-
agation theory in homogeneous, elastic, in�nite, isotropic and linear medium,
followed by the Rayleigh wave propagation in homogeneous and layered media.
Then the MASW (Multichannel Analysis of Surface Waves) f − v method is
introduced to explain how to extract surface wave phase velocities from mea-
sured seismic data. Surface wave inversion approaches are introduced in the
next section and separated in two sections dealing respectively with local and
global inversions. It is followed by the uncertainty issue for the surface wave
measurements and inversion. Finally, the MUSC (Measurement at Ultrasonic
SCale) laboratory is presented, where a laser interferometer is used for the mea-
surement at reduced scale.

21



22 CHAPTER 2. STATE OF THE ART

2.1 Introduction of Surface Waves

Mechanical waves propagating in consolidated medium can be generally gath-
ered into two types: body waves and surface waves. Body waves contain P-
wave and S-wave which are distinguished by the relation between the direction
of propagation and the particle motion (polarization): they are respectively
compressional and transversal waves. Surface waves (SW) are elastic waves
generated in presence of a boundary and propagate parallel to it. Compared to
body waves, SW transport high energy since they are less a�ected by the ge-
ometrical attenuation, which makes long-length device measurement possible.
Surface waves are thus widely used in di�erent domain according to the spatial
scale involved: Non-Destructive Evaluation (NDE) to characterize material's
defects (e.g. Qixian and Bungey (1996); Métais et al. (2016)); characterization
of geo-material's properties for geophysical or geotechnical uses (e.g.Xia et al.
(1999); Nazarian et al. (1983)); sesimological approaches to study the earth's
crust and upper mantle (e.g.Mitchell (1995); Shapiro et al. (2005)). According
to the boundary conditions, di�erent kinds of SW are identi�ed.

Rayleigh Waves. Rayleigh waves occur in presence of a free surface.
Among the three directions of particle motion, Rayleigh waves are generated by
a vertical force in presence of a free surface (P-SV polarization in 2D media) and
involve an elliptical motion in the vertical plane. In a homogeneous medium,
Rayleigh waves propagate along the free surface and have a penetrating depth
around or less than one wavelength. According to sensitivity studies (Aki and
Richards, 2002; Takeuchi et al., 1972), Rayleigh wave velocity depends mainly
on S-wave velocity Vs and less on P-wave velocity Vp and mass density ρ. Thus,
Rayleigh waves can provide information as a pro�le of Vs, as a function of depth.

Love Waves. This is an other kind of surface waves in the presence of
a free surface. Love waves involve particle's transverse motion generated by a
source polarized in the SH direction in 2D media. Love waves do not exist in
homogeneous medium but occur in layered media, such as, a soft super�cial
layer on top of a sti�er half-space, since energy is trapped in the low-velocity
layer. Love waves velocity depends only on how S-wave velocity (Vs) and mass
density (ρ) vary with depth. Thus, this kind of surface waves usually arrives a
little bit earlier than Rayleigh Waves.

Scholte Waves. Scholte waves are the surface waves propagating at the
boundary between a solid and a liquid layer. Under this boundary condition,
two types of interface waves are propagated: Scholte waves and P-guided waves.
The properties of Scholte waves are mainly depending on the S-wave velocity of
the sub-bottom sediments and the P-guided waves depend mostly on the P-wave
velocity of the solid and of the water layer (Foti et al., 2014). Thus this kind of
SW is used for the underwater applications.

2.1.1 Wave Propagation in Homogeneous Elastic Medium

In a homogeneous, elastic, in�nite, isotropic and linear medium, the dynamic
equilibrium principle without body forces on a volume element dv can be written

div(σ) = ρü (2.1)

with σ the Cauchy stress tensor, div(·) the divergence di�erential operator, ρ
the mass density and u the displacement vector. ü is the second order temporal



2.1. INTRODUCTION OF SURFACE WAVES 23

derivative of the displacement vector: ü = ∂2u
∂t2

Under the assumption of small-strain, the Hooke's law for isotropic mate-
rials can be applied

σ = Λtr(ε)I + 2µε (2.2)

where Λ and µ are Lamé's elastic constants, tr(·) is the trace matrix operator,
I is the identity tensor and ε is the strain tensor which is de�ned as

ε =
1

2
(
−−→
gradu + (

−−→
gradu)T ), (2.3)

with
−−→
grad(·) the gradient di�erential operator and (·)T the transpose matrix

operator.
Substituting the strain tensor in Eq. 2.2 by its de�nition in Eq. 2.3 gives

the stress tensor

σ = Λdiv(u)I + µ(
−−→
gradu + (

−−→
gradu)T ). (2.4)

Substitution of Eq. 2.4 into Eq. 2.1 �nally gives the Navier's displacement
equation of motion

(Λ + µ)
−−→
grad div(u) + µ∆u = ρü (2.5)

with ∆(·) the Laplacien operator in Cartesian coordinates.
Applying divergence and curl operators to Eq. 2.5 gives

(Λ + 2µ)∆(div u) = ρ
∂2

∂t2
(div u), (2.6)

µ∆(curlu) = ρ
∂2

∂t2
(curlu), (2.7)

with the operators' relations: ∆(u) =
−−→
grad div(u)−curl(curlu), curl(

−−→
gradu) =

0 and div(curlu) = 0.
Eq. 2.6 and Eq. 2.7 show that in an isotropic medium, the volumetric

deformation (associated with the divergence operator) is separable from the dis-
tortion deformation (associated with the curl operator). Eq. 2.6 and Eq. 2.7
can also be obtained by applying Helmoltz's theorem on Eq. 2.5, by uncou-
pling the displacement vector on the irrotational movement and the movement
without volume change.

Since Eq. 2.6 and Eq. 2.7 are applicable for every point in the isotropic
medium, they can also be written as two wave equations:

(Λ + 2µ)∆u = ρü, (2.8)

µ∆u = ρü. (2.9)

The propagation velocities are
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Vp =

√
Λ + 2µ

ρ
, (2.10)

Vs =

√
µ

ρ
. (2.11)

P-waves are the fastest body wave, which correspond to the compressional
(or dilatation) waves. The propagation direction of P-waves is parallel to the
direction of polarization. S-waves correspond to shear (or distortional) waves
and their propagation direction is orthogonal to the particle motion; there is no
S-wave in �uid.

Poisson's ratio is a parameter which describes the material's expansion or
contraction in the directions perpendicular to the direction of stretching force.
Poisson's ratio can be expressed as function of P-wave and S-wave velocities
ratio γ = VP

Vs

ν =
1

2
· 2− γ2

1− γ2
. (2.12)

As γ = VP
Vs
≥ 1, the Poisson's ratio ν < 0.5.

2.1.2 Rayleigh Waves in Homogeneous Elastic Medium

In the previous part, we demonstrate that in a homogeneous, isotropic and
in�nite linear medium, wave equations can be separated into compressional and
shear waves respectively. However, in presence of boundary conditions, another
solution occurs: the superposition of P-waves and S-waves provide surface waves
which propagates along the surface.

According to Helmoltz's decomposition theorem, the displacement vector
can be described by a scalar potential Φ and a vector potential Ψ

u =
−−→
gradΦ + curlΨ, (2.13)

which can be expanded 

u1 =
∂Φ

∂x1
+
∂Ψ3

∂x2
− ∂Ψ2

∂x3
,

u2 =
∂Φ

∂x2
+
∂Ψ1

∂x3
− ∂Ψ3

∂x1
,

u3 =
∂Φ

∂x3
+
∂Ψ2

∂x1
− ∂Ψ1

∂x2
,

(2.14)

with curl(Φ) = 0 and
−−→
grad ·Ψ = 0.

Supposing that the Rayleigh waves are propagating along the x1 direction
and that the displacement component on the x3 direction is zero, Eq. (2.14)
can be simpli�ed as following:

u1 =
∂Φ

∂x1
+
∂Ψ

∂x2
,

u2 =
∂Φ

∂x2
− ∂Ψ

∂x1
,

(2.15)
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with the potential vector having only one component on x3 and then can be
written as Ψ = [0, 0,Ψ].

Substituting Eq. (2.15) in Eq. (2.5) gives two di�erential equations

∂2Φ

∂x2
1

+
∂2Φ

∂x2
2

=
1

V 2
P

∂2Φ

∂t2
, (2.16)

∂2Ψ

∂x2
1

+
∂2Ψ

∂x2
2

=
1

V 2
S

∂2Ψ

∂t2
. (2.17)

Considering a plane wave propagating along a semi-in�nite space (x1, x2)
with x2 ≥ 0, the two potential scalars can be written as:{

Φ(x1, x2, t) = φ(x2)ejk(ct−x1),

Ψ(x1, x2, t) = ψ(x2)ejk(ct−x1).
(2.18)

Substituting Eq. (2.18) into Eq. (2.16) and Eq. (2.17) yields

∂2φ

∂x2
2

+ (
ω2

V 2
P

− k2)φ = 0, (2.19)

∂2ψ

∂x2
2

+ (
ω2

V 2
S

− k2)ψ = 0. (2.20)

To solve the di�erential equations, two parameters p and q are introduced,
which are de�ned as

p2 = k2 − ω2

V 2
P

, (2.21)

q2 = k2 − ω2

V 2
S

. (2.22)

The solutions for the di�erential equations are{
φ(x2) = A1e

−px2 +A2e
+px2 ,

ψ(x2) = B1e
−qx2 +B2e

+qx2 ,
(2.23)

where A1, A2, B1, B2 are constants and depend on the boundary conditions.
In order to satisfy the semi-in�nite medium condition, i.e. the surface waves

have an exponential decaying modal shape as function of depth, p and q should
be positive. Moreover, to respect the law of conservation of energy, A2 and B2

are equal to zero. The potential scalars are now{
Φ(x1, x2, t) = A1e

−px2ejk(ct−x1),

Ψ(x1, x2, t) = B1e
−qx2ejk(ct−x1).

(2.24)

The Hooke's law in Eq. 2.4 gives
σ12 = µ(

∂u1

∂x2
+
∂u2

∂x1
),

σ22 = (Λ + 2µ)
∂u2

∂x2
+ Λ

∂u1

∂x1
,

(2.25)
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and the substitution of Eq. 2.15 and Eq. 2.24 in Eq. 2.25 yields
σ12 = µ(2

∂2Φ

∂x1∂x2
− ∂2Ψ

∂x2
1

+
∂2Ψ

∂x2
2

),

σ22 = (Λ + 2µ)
∂2Φ

∂x2
2

+ Λ
∂2Φ

∂x2
1

− 2µ
∂2Ψ

∂x1∂x2
.

(2.26)

The stress-free boundary condition at the ground surface of the half-space (x2 =
0) may be expressed by the equations:{

σ12 = 0,

σ22 = 0.
(2.27)

Thus substituting Eq. 2.24 in Eq. 2.26 gives
B1

A1
=

(Λ + 2µ)p2 − Λk2

j2µqk
,

B1

A1
=
−j2kp
k2 + q2

,

(2.28)

which means: [
(Λ + 2µ)p2 − Λk2

]
(k2 + q2)− 4µpqk2 = 0. (2.29)

Square elevation of Eq. 2.29 gives the Rayleigh dispersion equation:(
VR
VS

)6

−8

(
VR
VS

)4

+8

(
VR
VS

)2

·
[
1 + 2

(
1− V 2

S

V 2
P

)]
−16

(
1− V 2

S

V 2
P

)
= 0, (2.30)

with the de�nition of Rayleigh wave velocity VR = ω
k , presenting the velocity of

propagation of a wave moving along the free surface of an half-space. From the
Rayleigh dispersion equation, one can see that VR depends on VP and VS , which
are medium's frequency-independent parameters. Thus, in a homogeneous, elas-
tic, isotropic and linear half-space, the Rayleigh wave is non-dispersive, i.e., its
propagation velocity is independent of frequency.

Rayleigh wave velocity. In 1967, Viktorov made an approximation
of the solution of Rayleigh dispersion equation, which is

K =
VR
VS

=
0.87 + 1.12ν

1 + ν
. (2.31)

Since the Poisson's ratio 0 < ν < 0.5, the ratio between Rayleigh and shear
velocities is given by

0.87 < K < 0.96. (2.32)

Using the body wave velocities in Eq. 2.10 and Eq. 2.11, the shear and
compressional wave ratio can be written as

γ =
Vs
Vp

=

√
1− 2µ

2(1− µ)
. (2.33)
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Figure 2.1: Relation between Poisson's ratio and velocity of propagation in a
homogeneous, elastic, isotropic and linear medium.

The shear and compressional wave ratio γ depends on the Poisson's ratio and
its range is γ ∈ (0, 1√

2
). Fig. 2.1 shows that in an linear elastic homogeneous

medium, the di�erence between shear and Rayleigh waves velocities is very weak.
Particle movement. Substituting Φ and Ψ (Eq. 2.24) in Eq. 2.14,

the displacements in x1 and x2 directions can be written as{
u1 =

(
−jkA1e

−px2 − qB1e
−qx2

)
ejk(ct−x1)

u2 =
(
−pA1e

−px2 + jkB1e
−qx2

)
ejk(ct−x1)

. (2.34)

The relations between A1 and B1 are deduced in Eq. 2.28. The amplitude
of the displacements can be formulated as

U1 = jkA1

[
−e−px2 + 2

p
k
q
k

1 + ( qk )2
e−qx2

]
U2 = kA1

[
−p
k
e−px2 + 2

p
k

1 + ( qk )2
e−qx2

] , (2.35)

with p
k =

√
1− (VRVP )2 (Eq. 2.21) and q

k =
√

1− (VRVS )2 (Eq. 2.22).
According to the formulations of displacement above, one can calculate the

Rayleigh wave displacements, in horizontal and vertical directions respectively.
We notice that U1 is an imaginary number whereas U2 is a real number. These
characteristics indicate that, the horizontal and vertical motions are out of phase
of 90◦. Thus in a homogeneous, elastic, isotropic and linear half-space, the
particle movement of Rayleigh waves is retrograde elliptical.

Fig. 2.2 gives examples of particle displacements and motions at three
depths for a Poisson's ratio of 0.28. All the medium's parameters are given in
Table 2.1. When f = 50Hz, the wavelength λ is equal to 20m. The horizontal
and vertical displacements in Fig. 2.2 (a) are presented as functions of the
depth normalized by the wavelength. The amplitudes of displacement are also
normalized by the maximum of the vertical amplitude. When the depth is
around λ/5, the horizontal displacement is vanishing (i.e. the Rayleigh wave
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movement is purely vertical). This depth is called the critical depth where the
particle movement changes from retrograde to prograde Fig. 2.2 (b).

Table 2.1: Parameters in a homogeneous, elastic, isotropic and linear half-space.
VP : compressional-wave velocity; VS : shear-wave velocity; VR: Rayleigh wave
velocity; ρ: density; ν: Poisson's ratio.

VP [m/s] VS [m/s] VR [m/s] ρ [kg/m3] ν
2000 1100 1017 2200 0.28

(a) (b)

Figure 2.2: (a) Horizontal (uh) and vertical (uv) displacements of Rayleigh wave
as function of depth, normalized by wavelength λ = 20m (f = 50Hz). The
Poisson's ratio is equal to 0.28. (b) Particle motion at depths equal to λ/8, λ/4
and λ× 5

4 respectively. uh and uv correspond respectively to u1 and u2 in Eq.
2.15.

2.1.3 Rayleigh Waves in Vertically Heterogeneous Elastic

Media

In a vertically heterogeneous media, i.e. a vertically layered media, Rayleigh
wave features are dispersive, i.e. its propagating velocity depends on wavelength
thus on frequency. To analyze the propagation problem in such a medium, one
needs to solve an eigenvalue problem (Aki and Richards, 2002, Chapter 7). As
an illustration of the method principle, we presents in this section the eigen-
value problem associated with Rayleigh waves, for the horizontal and vertical
displacements.

Based on the study of the Rayleigh wave displacements in a linear elastic
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homogeneous half space, the displacements can be assumed as
u1 = jr1(x2, k, ω)ejk(ct−x1)

u2 = r2(x2, k, ω)ejk(ct−x1)

u3 = 0

(2.36)

where u2 presents a prograde motion out of phase of 90◦ to u1. Using Hooke's
law (Eq. 2.4), the stress �eld can be calculated as

σ11 = j[−(Λ + 2µ)kr1 + Λ
dr2

dx2
]ejk(ct−x1)

σ22 = j[−Λkr1 + (Λ + 2µ)
dr2

dx2
]ejk(ct−x1)

σ33 = jΛ[−kr1 +
dr2

dx2
]ejk(ct−x1)

σ12 = jµ[
dr1

dx2
− kr2]ejk(ct−x1)

σ13 = σ23 = 0

. (2.37)

σ13 = σ23 = 0 because of the free surface condition. Since the stress component
σ12 and σ22 are continuous in depth x2, they can be written as{

σ12 = jr3(x2, k, ω)ejk(ct−x1)

σ22 = r4(x2, k, ω)ejk(ct−x1)
. (2.38)

Using the dynamic equilibrium principle (Eq. 2.1), the di�erential equations
for the motion-stress vector r1, r2, r3, r4 are

d

dx2


r1

r2

r3

r4

 =


0 k 1

µ 0
−kΛ
Λ+2µ 0 0 1

Λ+2µ

k2ζ − ω2ρ 0 0 kΛ
Λ+2µ

0 −ω2ρ −k 0



r1

r2

r3

r4

 , (2.39)

where ζ = 4µ(Λ + µ)/(Λ + 2µ). This relation can also be rewritten as

df(x2)

dx2
= A(x2)f(x2). (2.40)

This equation de�nes a di�erential eigenvalue problem with the linear opera-
tor d

dx2
, and the motion and stress vectors are r1, r2 and r3, r4 respectively. With

the boundary conditions considering a upper free surface above a semi-in�nite
medium: {

r3 = 0, r4 = 0 x2 = 0
r1 → 0, r2 → 0 x2 → inf

, (2.41)

the Rayleigh wave velocity is calculated by solving the eigenproblem in Eq.
2.40, i.e. at one frequency ω, looking for the wavelengths kn, j ∈ [1, N ] which
satisfy the eigenproblem described above. The values of kn are the eigenvalues
associated with the eigenproblem, and their corresponding motion-stress vectors
r

(n)
i , i ∈ [1, 4] are the eigenfunctions.



30 CHAPTER 2. STATE OF THE ART

Each kn corresponds to a mode of propagation of Rayleigh wave (we note
Rayleigh wave in all the thesis for simplicity of terminology even if the strictly
correct term is "Pseudo-Rayleigh wave" in case of a layered medium) in the given
vertically heterogeneous medium. In a vertically heterogeneous medium, di�er-
ent modes of propagation exists because of constructive interference. When
n = 1, the mode is called the fundamental mode. In a medium where the
shear-wave and the compressional-wave velocities increase with depth, the fun-
damental mode is considered preponderant (Foti et al., 2014; Socco et al., 2010).

Numerical Techniques to solve the Rayleigh Eigenproblem

As explained above, the objective of the Rayleigh eigenproblem is to �nd the
roots of the dispersion equation, which are the wavenumbers corresponding to
the modes of propagation of Rayleigh waves at di�erent frequencies. In the case
of a vertically inhomogeneous media, there are many methods to solve this linear
problem of �rst order ordinal di�erential equations with variable coe�cients,
including the numerical integration (Takeuchi et al., 1972), the �nite di�erence
method (Boore, 1972), the boundary element method (Manolis and Beskos,
1988), the spectral element method (Faccioli et al., 1996), and the Propagator
Matrix Method.

The transfer matrix method, also called Thomson-Haskell method,
is originally developed by Thomson (1950) and improved by Haskell (1953).
In fact, Gilbert and Backus (1966) developed the general formulation of the
Propagator Matrix Method and the Thomson-Haskell method is a special case
of the Propagator Matrix Method, with the assumption that the medium is
strati�ed with homogeneous layers. The global dispersion equation can be con-
structed by a sequence of matrix multiplication, with the continuity conditions
of stress and displacement at each interface. Each matrix is formed by the
parameters of the corresponding layer. The eigenvalues computation of the
dispersion equation gives the wavenumbers at each frequency. Then the eigen-
functions can be determined for each mode of propagation, as function of depth.
Knopo� (1964) proposed an alternative matrix procedure, which proved to be
more stable and precise for higher modes computation, and faster than the
Thomson-Haskell technique (Schwab, 1970). Other researchers have also helped
to improve through, for example, the delta matrix method (Pestel and Leckie,
1963; Dunkin, 1965), the reduced delta matrix method (Watson, 1970), the
Schwab-Knopo� method (Schwab and Knopo�, 1970, 1972), and the Abo-Zena
method (Abo-Zena, 1979).

In the early 1970s, some researchers attempted to apply the �nite element
method to solve wave propagation problems (Lysmer and Drake, 1972; Lysmer
and Waas, 1972). Later, Kausel and Roësset (1981) proposed the dynamic
sti�ness matrix method, which is a �nite-element formulation derived from
the Thomson-Haskell method. In this method, the Thomson-Haskell transfer
matrices are replaced by layer sti�ness matrices, which can be used to solve the
surface wave eigenproblems and the e1astodynamic problems under static and
dynamic loads (Kausel, 1981).

Another important algorithm to solve the eigenproblem has been developped
with the method of re�ection and transmission matrix (R/T method), pro-
posed by Kennett and his colleagues (Kennett, 1974; Kennett and Kerry, 1979).
In this method, the re�ection and transmission matrices of each layer are con-
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Table 2.2: Parameters of a two-layer reference model.
layer (i) VPi [m/s] VSi [m/s] ρi [kg/m3] νi hi [m]

1 1000 600 1500 0.22 8
2 2000 1100 2200 0.28 ∞

structed by the re�ection and transmission coe�cients, de�ned by the relation
between up-going and down-going wave amplitudes. Then the global re�ection
and transmission matrices are obtained by the combination of the re�ection and
transmission matrices of each layer, through a recursive algorithm. The R/T
method gives a physical interpretation as it explicitly models the constructive
interference that leads to the formation of the surface waves modes. The R/T
method has been generalized by Kennett (1983); Luco and Apsel (1983). Fur-
ther studies of Chen (1993) and Hisada (1994, 1995) on the generalized R/T
method have made it possible to provide stable and accurate Rayleigh wave
phase velocities for both low and high frequencies. Lai and Rix (1998) further
developed the generalized R/T method for visco-elastic media.The fast gener-
alized R/T method (Pei et al., 2008) has improved the speed of computation
while keeping the stability and accuracy of the generalized R/T method.

In this thesis work, we compute the Rayleigh wave dispersion curve using the
Geopsy software, which uses the Dunkin's formalism (Dunkin, 1965; Wathelet,
2004). For reasons of convenience and �exibility in the development of method-
ological tests, the Geopsy software has been implemented in Python in this PhD
thesis work. Fig. 2.3 presents the Rayleigh wave phase velocity in a layered
medium (model parameters are available in Table 2.2): the �rst �ve modes are
shown.

Figure 2.3: Rayleigh wave dispersion curve in a vertically heterogeneous medium
(medium's parameters are available in Table 2.2).

Sensitivity Kernel

The seismic properties of a 1D medium, noted the model parameters m, are the
S-wave and P-wave velocities (Vs Vp), the density (ρ), as a function of depth x3.
The sensitivity kernel of the surface waves can provide quantitative information
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about the e�ect of medium's variations on the dispersion data (e.g. the phase
velocity), by calculating the partial derivative of the dispersion data with respect
to the model parameters.

Aki and Richards (2002) (chapter 7) deduced the sensitivity kernel for Love
waves, i.e. the Love wave phase velocity derivative with respect to the model
parameters. Here we apply the same approach on the Rayleigh wave to establish
the Rayleigh wave sensitivity kernel. In the �rst step, Hamilton's principle is
applied to the Lagrangian density (i.e. the kinetic energy minus the elastic strain
energy: see Aki and Richards (2002), chapter 2 for more details) of the Rayleigh
wave to deduce the fractional change in phase velocity at a given frequency:

[
δVph
Vph

]
ω

=
1

4VgVphIk2

(∫ ∞
0

(kr1 +
dr2

dx3
)2 δΛdx3

+

∫ ∞
0

(2k2r2
1 + 2(

dr2

dx3
)2 + (kr2 −

dr1

dx3
)2) δµdx3 −

∫ ∞
0

(ω2(r2
1 + r2

2)) δρdx3

)
.

(2.42)

δ represents the in�nitesimal change of either the parameters (Λ, µ, ρ) or
the phase velocity. I = 1

2

∫∞
0
ρ(r2

1 + r2
2)dz is the energy integral. The partial

derivative of Rayleigh wave phase velocity with respect to Λ, µ, ρ can be deduced
using the method introduced in Aki and Richards (2002) (chapter 7):

[
∂Vph
∂Λ

]
µ,ρ,ω

=
1

4VgIk2
(kr1 +

dr2

dx3
)2, (2.43)[

∂Vph
∂µ

]
Λ,ρ,ω

=
1

4VgIk2

[
2k2r2

1 + 2(
dr2

dx3
)2 + (kr2 −

dr1

dx3
)2

]
, (2.44)[

∂Vph
∂ρ

]
µ,Λ,ω

= − 1

4VgIk2
(ω2(r2

1 + r2
2)). (2.45)

Using Eq. 2.10 and Eq. 2.11, the partial derivatives of Vph as a function
of the medium's parameters (Vs, Vp and ρ) can be formulated as follows:

[
∂Vph
∂Vp

]
Vs,ρ,ω

=
Vpρ

2VgIk2
(kr1 +

dr2

dx3
)2, (2.46)[

∂Vph
∂Vs

]
Vp,ρ,ω

=
Vsρ

2VgIk2
[(kr2 −

dr1

dx3
)2 − 4kr1

dr2

dx3
], (2.47)[

∂Vph
∂ρ

]
Vp,Vs,ω

=
Vp
2ρ

[
∂Vph
∂Vp

]
Vs,ρ,ω

+
Vs
2ρ

[
∂Vph
∂Vs

]
Vp,ρ,ω

− 1

4VgIk2
ω2(r2

1 + r2
2).

(2.48)

It should be pointed out that the sensitivity kernel of the group velocity has
no analytical formulation (Aki and Richards, 2002).

This sensitivity kernel notion is a key tool for the studies presented in the
following chapters because it makes possible to assess the a priori e�ciency of
an input data for recovering the medium parameters through an invert problem
with enough sensitivity. It will be developed in the next chapter (Chapter 3)
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for the innovative input data which will be proposed and will be detailed as
a function of depth in the last chapter (Chapter 5) to answer the need for a
speci�c analytical approach we propose.

2.2 Surface Wave Methods

In the previous sections, we have introduced the main properties of Rayleigh
wave: in a homogeneous linear elastic half-space, the Rayleigh wave is non-
dispersive, i.e. the propagation speed is independent on the frequency. How-
ever, in a vertically heterogeneous medium, the Rayleigh wave velocity depends
on the frequency. Thus, one can extract information about the depth velocity
pro�le of the medium by studying Rayleigh wave dispersion curves. To do this,
multiple receivers are located at the medium upper surface along the propaga-
tion direction, for recording the particle motion (usually the vertical component)
in view of deriving the dispersion relations.

Spectral Analysis of Surface Waves (SASW) is a method �rstly proposed
by researchers in 1980s (Nazarian et al., 1983; Stokoe et al., 1994), making use
of two receivers aligned with an active harmonic source. Basically, the phase
velocity can be derived as the ratio of the distance between receivers divided by
the phase variation of the two recorded signals for each frequency component.
However, using only two receivers limits the estimation of Rayleigh wave velocity
when multiple modes occur because of the poor wavenumber resolution.

Then, researchers proposed a more robust method called MASW (Multi-
channel Analysis of Surface Waves), making use of a linear array of receivers
(McMechan and Yedlin, 1981; Gabriels et al., 1987; Park et al., 1998; Foti et al.,
2000). The MASW method enhances the production rate in the �eld and makes
the processing of the data faster, less subjective, and more robust compared to
the SASW method. Several signal processing techniques can be used for extract-
ing the dispersion curve of Rayleigh wave phase velocity, such as the f−k trans-
form (Foti et al., 2000; Gabriels et al., 1987), the τ−p transform (McMechan and
Yedlin, 1981), the phase-di�erence method (Mokhtar et al., 1988; Park et al.,
1998), or the linear Radon transform (Luo et al., 2008). Among them, the
phase-di�erence method, achieved by processing an optimization of the τ − p
transform, provides a high spectrum resolution with an optimized number of
receivers (Park et al., 1998; Socco et al., 2010; Xia, 2014). In our study, we use
the phase-di�erence method to extract the dispersion curve of Rayleigh wave
phase velocity in frequency-velocity domain as explained below.

2.2.1 MASW f − v method

With the help of a series of receivers, the particle motion can be recorded at
each receiver position, giving a data set in time-o�set domain s(t, x), which is
also called seismogram. Then, 1D Fourier Transform can be applied in time
domain at one receiver position x, giving a 2D f − x spectrum S(f, x):

S(f, x) =

∫
t

s(t, x)ej2πftdt. (2.49)

The source signal at position x = 0 can be written as R(f) = A(f)e−jφ(f)

with A(f) and φ(f) the corresponding amplitude and phase.After a propagation
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(a)

(b)

Figure 2.4: (a) Simulated seismogram in a two-layer medium. The active source
is a Ricker wavelet with a central frequency equal to 50Hz. 90 receivers are
linearly arranged with a receivers' space of 1m. (b) 2D Rayleigh wave dispersion
spectrum in f − v domain with a normalized amplitude at each frequency. The
black line corresponds to the fundamental mode of Rayleigh wave phase velocity.
The medium's parameters are provided in Table 2.2.
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distance x, the recorded signal is

S(f, x) = A(f)e−jφ(f)e
−j2πf x

Vph (2.50)

with Vph the surface wave phase velocity at frequency f . The phase-di�erence
method (Park et al., 1998) calculates the dispersion diagram as follows:

D(f, v) =

∫
x

S(x, f)

|S(x, f)|
ej2πf

x
v dx. (2.51)

Eq. 2.51 can also be written for discrete o�set xi:

D(f, v) = ∆x

Nx∑
i

S(xi, f)

|S(xi, f)|
ej2πf

xi
v , (2.52)

with ∆x the receivers' space. Fig. 2.4 (a) shows a simulated Rayleigh wave
seismogram, propagating in a medium, characterized by the model parameters
given in Table 2.2. Fig. 2.4 (b) presents the dispersion diagram, calculated
using Eq. 2.52. The amplitude of the dispersion diagram is normalized by
the maximum value at each frequency. The phase velocity dispersion curve is
assessed by selecting these maxima (black curve in Fig. 2.4).

2.3 Surface wave inversion

Given the parameters of a medium, one can describe its physical behavior, for
example, the velocity of propagation, the particle movements, the dispersion
relations, etc.. This procedure is called the forward problem. The inverse
problem consists of using recorded measurement on a medium, to infer some
of its parameters.

In the framework of surface wave inversion, a variety of observed data can
be used: the surface wave group velocity (Pedersen et al., 2003; Saygin and
Kennett, 2012; Yuan and Bodin, 2018), the Rayleigh or Love wave phase velocity
(Socco et al., 2009; Safani et al., 2005), the coupled Rayleigh wave phase velocity
and the attenuation (Lai and Rix, 1998; Bergamo et al., 2016), the ellipticity
of Rayleigh wave (Maranò et al., 2012; Poggi et al., 2012; Hobiger et al., 2013),
etc. Although the input data used in the inversion is di�erent, the purpose is
the same: by inverting the measured data, the model parameters are estimated
by a numerical process and the state of the medium can be deduced.

In order to carry out this numerical process, there are numerous inversion
algorithms. All of them are based on an iterative search mechanism and they are
divided into two categories, respectively the local and global optimization tech-
niques. Local inversions can be applied when the problem is considered locally
linear around a model near the �nal solution (called the initial model). Global
inversions do not require linearization nor an initial model: they search the
model parameter with a (pseudo) random search method. Which ever inversion
technique is used, a mis�t (or objective) function is needed for quantifying the
di�erence (discrepancies) between the measured data and the calculated data
in the estimated model. In the following, these two inversion techniques will
be brie�y introduced. A Monte Carlo technique, the Neighborhood Algorithm,
will be introduced with more details as it is used in this thesis work.
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Figure 2.5: Example of the linear problem x = at + b. The blue dots are the
observation data (ti, di). The black line is the estimated line.

2.3.1 Local inversion technique

In a given physical system, the model parameters m and the data d are related
under physical law(s). If this relation is linear for m and d, one can write

d = Gm (2.53)

with the matrix G called the data kernel, m and d are two vectors.

Example: Linear problem for a straight line x=at+b

A simple example is the linear movement equation x = at + b (Fig 2.5): x
is the position (of a car, for example) at time t, a is the velocity and b is the
initial position. The inverse problem is to solve the equation, or in other words,
�nd out the model parameter m = [a, b]T . For N time observations, the linear
equation can be written in the form of matrix x = Gm:

x1

x2

...

xN

 =


t1 1
t2 1
... ...
tN 1


(
a

b

)
. (2.54)

In Fig 2.5, the blues dots present the observed distance xi at time ti and
the black line presents the estimated line for equation x = at+ b. Each measure
point ti corresponds to an observed distance xobsi and an estimated distance
xesti . De�ning the mis�t function E as

E =

N∑
i

(xobsi − xesti )2, (2.55)

the best estimated line (black line in the Fig 2.5) gives the minimum value of
E. Substituting xesti = ati + b, Eq 2.55 can also be written as

E =

N∑
i

(xobsi − ati − b)2. (2.56)
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The minimum of the mis�t function E can be found out by solving the equa-
tions

∂E

∂a
= 2

N∑
i

(ati − xobsi + b)ti = 0, (2.57)

∂E

∂b
= 2bN + 2

N∑
i

(ati − xobsi ) = 0, (2.58)

or in a matrix form using Eq. 2.54:

GTGm−GTx = 0. (2.59)

General least-square solution

For a general linear problem, the mis�t function E is usually de�ned as the L2
norm distance (e.g. Eq. 2.56) which can be expressed

E = (d−Gm)T (d−Gm), (2.60)

or

E =

N∑
i

di − M∑
j

Gijmj

[di − M∑
k

Gikmk

]
(2.61)

with M and N respectively representing the lengths of the vectors m and d.
Writing the element mq (q ∈ [1,M ]) in the model parameter vector m, to
�nd the model parameter m which gives the minimum E, one should solve the
equation

∂E

∂mq
= 0. (2.62)

The partial derivative of the error E with respect to mq can be written
(Menke, 2018)

∂E

∂mq
= 2

M∑
j

mj

N∑
i

GiqGij − 2

N∑
i

Giqdi = 0 (2.63)

and then expressed in matrix form:

GTGm−GTd = 0. (2.64)

The solution of Eq. 2.64 can be written in the case where [GTG]−1 exists

mest = G−gd, (2.65)

with G−g = [GTG]−1GT .
The existence of [GTG]−1 has been discussed in Menke (2018). Brie�y

speaking, when the number of data is more than the number of unknowns, i.e.
N > M , the problem is overdetermined. In this case, [GTG]−1 exists and the
"best" solution can be calculated using Eq. 2.65. When N < M , there are
more unknowns than data. The problem is underdetermined. In the case where
N = M , the problem is even-determined. There is only one solution of m which
�ts perfectly the data, i.e. the error is zero. Others cases, such as the purely
underdetermined problem and the mixed-determined problem, have also been
discussed in Menke (2018).
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Local inversion in surface wave methods

The local inversion techniques can be applied in geophysical problems when the
problem is linearized around an initial model parameter m0. A good guess of the
initial model is needed to make sure that the real model values of the medium
is nearby this initial model. The calculated data dcal = Gm0 will be compared
with the measured data dmes with a de�ned mis�t function (for example, a L2
norm distance). If the initial model parameter m0 equals to the real one, the
mis�t function should be zero. If not, another model parameter mi (i is the
number of searched model in the inversion) should be used to recalculate dcal

which will be recompared with the measured data, until a best model parameter
is found. The process is therefore iterative to converge to the minimum mis�t
value.

Most of the local inversion techniques are gradient-based. For example, when
inverting Rayleigh wave phase velocity to estimate the model parameter of a
medium, the Jacobian matrix Js, of which elements are the �rst-order partial
derivatives of Rayleigh phase velocity with respect to the model parameter, is
used to guide the model selection at each iteration (Xia et al., 1999; Calderón-
Macías and Luke, 2007).

An advantage of the local inversion techniques is that the computational cost
is relatively low, even with a large the number of unknowns because only few
numbers of direct problems have to be calculated. Another attractive feature of
the local inversion techniques is that the resolution and the model covariance can
be calculated (Sambridge and Mosegaard, 2002). The resolution measures the
degree of the model parameter's independence from each other, and the model
covariance gives information about the propagation of the data uncertainty into
the model parameter (Lai et al., 2005).

However, the local inversion techniques can be applied when the non-linearity
of the problem is relatively weak, with a good guess of the initial model. When
the non-linearity becomes important, the mis�t function Eq. 2.60 is quickly
non-convex when the parameters move away from the global minimum, making
it di�cult to converge toward the global minimum and thus di�cult to optimize
the inversion process. Therefore, the initial model is an important issue in the
local inversion for surface waves techniques as well as for other methods. Since
the solution is considered to be near the initial model, a bad initial model could
lead the inversion to a local minimum (of the mis�t function), thus the �nal
inversion result could be di�erent to the true model (Socco et al., 2010).

2.3.2 Monte Carlo Inversion Technique

The moderate computation time associated to local inversion becomes less im-
portant as computers getting more and more powerful. This favors the Monte
Carlo Inversion technique (MCI) to solve geophysical problems, which are usu-
ally non-linear with non-unique solutions. MCI searches the model parameters
in the whole parameter space, with a random or pseudo-random search method,
regardless of an initial model.

Since Keilis-Borok and Yanovskaja (1967) �rstly introduced MCI in geo-
physical problem, it has been widely used and well developed. For example,
the Simulated Annealing (SA) (Kirkpatrick et al., 1983; Geman and Geman,
1984; Aarts and Korst, 1988), the Genetic Algorithm (GA) (Sto�a and Sen,
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1991; Sambridge and Drijkoningen, 1992; Gallagher and Sambridge, 1994), the
Neighborhood Algorithm (NA) (Sambridge, 1999a,b; Wathelet, 2008), etc. A
review has been made by Sambridge and Mosegaard (2002), in which the origins
and the developments of the MCI have been described in detail.

Di�erent inversion algorithms have their advantage and application domain.
In this thesis work, the NA is chosen to solve the surface wave inverse problem.
It is widely used in the near-surface applications, thanks to the easy use and
fast calculation of the free software Geopsy (Dinver package for the inversion)
developed by M. Wathelet and his colleagues. In the following, the NA will be
introduced with more details.

Neighborhood Algorithm

The Neighborhood Algorithm (NA) is �rstly proposed by Sambridge in 1999
(Sambridge, 1999a,b) and then developed by Wathelet (Wathelet, 2008). The
main idea of NA is to use the information of the current generated models
to guide the new models' generation. Another innovative point is that NA
uses Voronoi cells to assist in generating models. Indeed, given N models mi

(i ∈ [1, N ]), the Voronoi cell can separate the parameter space in a unique
way: each cell is the nearest neighbor region of the center model mi. The
mathematical de�nition of Voronoi cell with its center model mi is:

V (mi) = {m|‖m−mi‖ ≤ ‖m−mj‖}, for j 6= i, and i, j ∈ [1, N ], (2.66)

with ‖ · ‖ the L2 norm distance between two model parameters.
In NA inversion, four tuning parameters are needed: ns0 , ns, nr, ni. Their

functions are described in the following four steps:

1. Generating ns0 initial models in the parameter space by the Markov-Chain
random walk (Hastings, 1970). The parameter space is separated into ns0
Voronoi cells.

2. Calculating the mis�t function of the generated models in the previous
step and chose the best nr models and their corresponding Voronoi cell.

3. Generating ns models in the previous selected nr Voronoi cells, following a
uniform random walk (Wathelet, 2008). ns/nr new models are generated
for each cell.

4. Repeating step 2 and 3 for ni iteration.

According to the four steps above, the total number of generated models are
N = ns0 + ns × ni. However, in the calculation, ns/nr can be not an integer.
In Wathelet (2008), ns/nr is rounded down. In our Python program, a small
modi�cation has been made at step 3:

• Generating ns models in each of the previous selected nr Voronoi cells,
following a uniform random walk (Wathelet, 2008). ns × nr new models
are generated.

In this way, the total number of generated models will be N = ns0 + ns ×
nr × ni. In either case, the number of Voronoi cells grows exponentially in the
region where the values of the mis�t function are small.
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Figure 2.6: (a) to (c): Voronoi cells in a 2D parameter space with increasing
number of cells (10, 100 and 1000) (Sambridge (1999a), Figure 1). (d) Contour
of the mis�t functions, with decreasing values from light to deep color. In
the deepest color regions, the Voronoi cells are sampled thus more models are
searched in these regions.

2.3.3 Uncertainty Estimation

The uncertainty in geophysical inverse problems consists of two main parts: the
modelization uncertainty and the measurement uncertainty (Tarantola, 2005).
Inversion problems can be ill-posed, i.e. the existence, the uniqueness and the
stability of the inversion result may be not veri�ed. In this case, the modelization
uncertainty should be considered.

The measurement uncertainties are mainly coming from the noise in the
recorded signals, the inaccuracy of receivers' placement and static shifts, and less
a�ected by the receiver's tilt and coupling (O'Neill, 2004). Most of the surface
wave measurements are considered under the Gaussian assumption (Tarantola,
2005; Menke, 2018), i.e. the probability density for the measurement error ε is
a Gaussian distribution, with zero mean and variance σ2:

f(ε) =
1

(2π)
1
2σ
e−

1
2 ( εσ )

2

. (2.67)

Or in matrix form with the error vector ε = d− dobs:

f(ε) =
1

(2π)N/2
√
det(CD)

e−
1
2 (d−dobs)TCD

−1(d−dobs). (2.68)

N is the length of d and ε. CD the covariance matrix, representing the total
uncertainty: CD = CT + Cd, with the measurement uncertainty Cd and the
modelization (theoretical) uncertainty CT.
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However, it should be mentioned that O'Neill (2004) used a series of �eld
tests to show that the Gaussian distribution is not valid at low frequencies. A
Lorentzian distribution is more appropriate at low frequencies where the surface
wave phase velocity has poor resolution. O'Neill proposes to use the realistic
dispersion error for the data uncertainty, which is a function of the receiver
length and the measured phase velocity.

Note that, it is a di�cult task to study all uncertainty issues in surface
wave problems. In the following, we will focus on how to treat the uncertainty
from the measurements to the inversion results, in local and global inversions
respectively.

Uncertainty Estimation in Local Inversion

The linear relation between the estimated model parameter m and the data d
can be written as (Menke, 2018)

m = Md + v (2.69)

where M and v are some matrix and some vector. For example, M = [GTG]−1GT

for the least-square solution (see Chapter 2.3.1); v is related to a priori informa-
tion for underdetermined problems (Menke, 2018). Then it is possible to write
the mean value and the covariance of the model parameter as (Menke, 2018)

m = Md + v (2.70)

Cm = MCDMT . (2.71)

Eq. 2.71 shows that the uncertainty in the estimated model parameter can be
calculated from the uncertainty in the data. In the surface wave measurements,
where the Rayleigh wave phase velocity is measured and the model parameter
is the shear-wave velocity Vs, if the inverse problem is solved by the linear
inversion techniques, the uncertainty of Vs can be estimated by the following
formula (Tarantola, 2005)

Cov[VS ] ≈
[
(JTS (Cov[VR])−1JS)−1JTS (Cov[VR])−1

]
· Cov[VR]

·
[
(JTS (Cov[VR])−1JS)−1JTS (Cov[VR])−1

]T
.

(2.72)

Cov[VR] is the covariance matrix of the measured Rayleigh wave phase velocity
VR, Js is the Jacobian matrix of VR, i.e. the partial derivative of VR with respect
to the model parameter Vs.

Eq. 2.72 has been used by Lai and Rix (1998) when VR is inverted by
Occam's algorithm (Constable et al., 1987), a local inversion technique, and
been further used to estimate the uncertainty in the inverted S-wave pro�le,
obtained from two �eld measurements (Lai et al., 2005). The same equation
has been used in Strobbia and Foti (2006) to estimate the uncertainty of the
inversion results in the Multi-O�set Phase Analysis (MOPA). In this procedure,
the phase-o�set data is extracted after signal processing on the measured seismic
data, and is used to calculate the wavelength k using a regression procedure.
The Rayleigh phase velocity is then obtained by Vph = 2πf

k and be inverted
using local inversion.
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Uncertainty Estimation in Global Inversion

The local inversion techniques give one inversion result of model parameters
(e.g. the Vs or Vp pro�le as function of depth) and the model error can be
estimated using the Eq. 2.72. Unlike the local inversion techniques, which
are matrix-based methods, it is di�cult to quantitatively estimate the data
uncertainty propagation to the inverted model parameter, when global inversion
techniques are applied. Besides, the global inversion gives a family of inverted
models, instead of one single model. Each of them has a corresponding mis�t
value which represents the �tting level with respect to the measurements. The
expected family of inverted models should have an acceptable mis�t value in the
frame of the uncertainty of the method. Thus, the estimation of the uncertainty
in global inversion results would make it possible to select the acceptable models
from all searched models. It is related to both the inversion algorithm and the
inversion input parameter.

When NA inversion (Sambridge, 1999a,b; Wathelet, 2008) is applied in sur-
face wave inversion, the data error is usually introduced in the mis�t function
as following (Wathelet, 2004):

misfit =

√√√√ 1

Nf

Nf∑
i

(
dmesi − dcali

σi

)2

. (2.73)

Nf is the number of samples in the measured data (the number of frequencies or
wavelength, for example), σ is the uncertainty of the measured data, and dmesi ,
dcali are the measured and calculated data at point i. When σ is not available,
it can be replaced by dmes.

Note that, as the iteration number increases, the NA inversion converges
towards the zone(s) where the model parameters are close to the real one (see
Fig. 2.6). After a certain number of iteration, the mis�t functions of the
inverted model parameters are all equal to a lowest reachable value, and it is
di�cult to estimate which one(s) is(are) the best model(s).

The most common method to select the best inverted models for surface
wave inversion is to give a user-de�ned threshold: when the mis�t function of
the inverted model parameter is lower than the threshold, the model parameter
is considered acceptable. Hobiger et al. (2013) use this method to select the in-
version results on both theoretical test and measured data, during the inversion
of the Rayleigh wave ellipticity. Renalier et al. (2010) apply seismic ambient
noise cross-correlation technique to retrieve 3D Vs pro�les. The acceptable mod-
els are those having mis�t values less than 1.2 times the minimum mis�t value of
all searched models. Some authors also veri�ed that the dispersion curves of the
selected inversion results should be within the error bars of the measured data
(Snoke and Sambridge, 2002; Endrun et al., 2008; Leparoux et al., 2012; Pasquet
et al., 2015b). In this case, the use of error bars, e.g. Gaussian distribution or
realistic error (O'Neill, 2004), a�ects the model selection.

Another method to select the inversion results is to �x the number of re-
sulting models. Saygin and Kennett (2012) used the local group dispersion
information to produce a 3D wavespeed model: from the total 50000 searched
models, the best 5000 models (with lowest mis�t values) are considered accept-
able models.
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One sees that neither method estimates quantitatively the uncertainty of
model parameters. A study of Dettmer et al. (2012) has also pointed out that
in most of inversion works, the uncertainty of model parameter has been es-
timated using qualitative and relative approaches. In their study, in order to
quantify the e�ect of the uncertainty in data-error statistics on the uncertainty
of model parameters, the hierarchical autoregressive data-error model has been
introduced to invert the microtremor array dispersion data. This hierarchical
autoregressive data-error model is particularly suitable for trans-dimensional
inversion problem, in which the length of model parameter m (the number of
elements in the model parameter) is considered unknown (Sambridge et al.,
2013).

In our thesis work, the inverted model parameter will be selected with a
threshold in the mis�t values to select the chosen resulting models, without the
consideration of error bars related to the measurement. This approach is chosen
because the NA algorithm will be applied for the inversion of numerical data
and measured data obtained from reduced-scale models in the laboratory. The
errors in the numerical data can be controlled and are not the main concern in
the inversion. The measurement errors in the laboratory are small since a laser
interferometer is used for the recording of the data with a precision level for
positioning equal to 10µm. Moreover, di�erent inversion input parameters are
proposed and tested in this thesis work. It is impossible to use one error bar to
describe the measurement uncertainty for all types of data.

2.4 Reduced-scale modeling experiments

Numerical simulations are usually under multiple assumptions, such as the
isotropic/elastic media, 1D/2D models, homogeneous medium, etc., whereas
complex modeling schemes lead to expensive computational costs. Thus, �eld
measurements, which are realistic by de�nition, would be relevant for validating
imaging and inverse methods. However, in most of real contexts, the mechani-
cal properties cannot be well known and the measurement uncertainties due to
the source and receiver coupling can further complicate the estimation of the
medium. Thus, reduced scale modeling in the laboratory is a useful intermedi-
ate step between the numerical modeling and the �eld measurements, especially
for validating new numerical modeling methods. Laboratory experiments pro-
vide well controlled conditions to study the physical phenomena. In addition,
the measurement parameters can be chosen and veri�ed and the experimental
artifacts can be identi�ed.

The use of reduced-scale models in geophysics dates back to the 1930s.
Rieber (1936) uses the ultrahigh-speed photographic technique to produce snap-
shots of acoustic waves in the air for the purpose of study the seismic waves (di-
rect, re�ected and refracted). Since then, di�erent ultrasonic techniques have
been developed and two popular of them are piezoelectric based and laser based
techniques.

The piezoelectric technology is �rstly introduced by Press et al. (1954) and
Oliver et al. (1954) in the geophysics domain, using piezoelectric transducers
as sources and receivers. Following by the development of numerical modeling
and processing methods based on multiple sources and receivers measurement
in 1960s, the piezoelectric techniques have been widely used and developed in
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the next decades: Hilterman (1970) validates a 3D acoustic model of arbitrary
shape; French (1974) expands the migration method of processing seismic re-
�ection data for handling 3D problems; Bishop et al. (1985) apply seismic �rst-
arrival travel time tomography on reduced-scale models in order to produce
a velocity-depth model of the medium and similarly, Lo et al. (1988) analyze
the performance of several tomography algorithms with di�erent source-receiver
con�gurations and the size and properties of the models; Pratt (1999) uses
reduced-scale model to verify the seismic waveform inversion in the frequency
domain.

However, some issues of piezoelectric techniques have also be pointed out
(Buddensiek et al., 2009; Fukushima et al., 2009), such as the coupling prob-
lem between the transducer and the sample, the non-plat transfer function of
the piezoelectric transducers, the size of the transducer with respect to the
wavelengths, etc. More recently, the laser based techniques have gained more
interests which overcome the main issues of piezoelectric techniques in particu-
lar for the signals recordings. Thus, a piezo-electric transducer can be used as
an active source and a laser interferometer, based on the optical interaction of
a laser beam, is able to measure the particle movement and record as seismic
data. Some works are based on these techniques, for example, Kaslilar (2007)
developed an inverse scattering method to image near-surface heterogeneities
using scattered surface waves. This method is validated by ultrasonic labora-
tory data, measured on a small scale aluminum block with a hole �lled with
epoxy. Bretaudeau et al. (2013) apply a 2D FWI approach in the frequency
domain on a three-layered epoxy-resin model, in order to analyze the feasibility
of this method in a near-surface context. Pasquet et al. (2016) built a reduced
scale tank �lled with dry glass beads to simulate granular media. P-wave �rst-
arriving time and the phase velocity of surface waves are extracted and inverted
from the ultrasonic data in order to estimate the varying water levels. Filippi
et al. (2019) used reduced-scale epoxy-resin models to simulate underground
geological medium, in order to understand the seismic wave propagation phe-
nomena in the presence of cavity.

In this framework, the ultrasonic measurement laboratory MUSC (Non-
contact Untrasonic Measurements, or Mesure Ultrasonique Sans-Contact in
French) was built to reproduce seismic data in small scale models in Gustave
Ei�el University (formely ifstar). The MUSC bench was �rst built by Bre-
taudeau et al. (2011) and then upgraded by Valensi et al. (2015). Bretaudeau
et al. (2011) describe the set-up in the MUSC laboratory, which contains an
optical table with two moving arms, a TEMPO-FS200 laser interferometer, a
piezo-electric transducer as a source and small-scaled models. The experimental
data recorded in MUSC are compared to simulated numerical data using the
�nite-element methods. A good agreement between the experimental and nu-
merical data validates the use of MUSC laboratory for the purpose of studying
physical phenomena in small scale models. Valensi et al. (2015) validate the
upgrade of the device, making the measurement of horizontal particle displace-
ment possible. More recently, Pageot et al. (2017) veri�ed the reproductivity
of the data produced in MUSC laboratory, by comparing 2D numerical data
(simulated by the Spectral Element Method) and 3D experimental data.

The MUSC laboratory is used as an experimental tool in this thesis work,
in order to produce seismic data on several reduced-scale models, which will
be used for the inversion tests in the following chapters. The MASW methods
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are applied on these measured data in order to extract the dispersion diagrams
and dispersion curves. Both numerical and experimental data are used in the
inversion process (NA inversion algorithm) for testing and validating the new
propositions in each chapter.
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Chapter 3

Frequency derivative of

Rayleigh wave phase velocity

for fundamental mode

dispersion inversion:

parametric study and

experimental application

The study in this chapter aims to study the sensitivity of the Rayleigh wave
dispersion data. The approach proposes to used the frequency derivative of
Rayleigh wave phase velocity as an innovate inversion input data. The sensi-
tivity study of the phase velocity derivative as well as the classical dispersion
data, phase and group velocities, are carried out for a simple two-layer model
and compared for variations of the shallow layer and the deep layer shear-wave
velocity. The phase velocity derivative is tested on both numerical data and ex-
perimental data, obtained from two reduced-scale models, made by epoxy-resin.
For that, a combined strategy is proposed to increase the accuracy of results
while maintaining robustness in dispersion extraction.

This chapter is structured as a scienti�c article since it corresponds to the
version published in Geophysical Journal International (Wang et al., 2020b).

3.1 Introduction

The subsurface media are particularly a�ected by climate change and associ-
ated climatic events through variations in water table levels and �uid transfers
in the unsaturated zone, known as the Critical Zone. These phenomena create
alteration zones that can potentially lead to collapses. For these reasons, mon-
itoring mechanical changes in the subsurface media in areas of human activity,
particularly when they involve buildings, is becoming increasingly important.
These needs are therefore among the key issues of current geophysical research.

47
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Among non-destructive seismic approaches for assessing the mechanical prop-
erties of shallow underground media, the properties of surface waves are widely
used due to the energy they transport and their long propagation distances
(Socco and Strobbia, 2004; Foti et al., 2017). Using the dispersion of surface
waves in a layered structure, the properties of the medium are inferred by solv-
ing an inverse problem. This method, as a standard procedure for surface wave
analysis, contains three steps: 1) acquisition, 2) processing for extracting the
dispersion data that will serve as the inversion input data, and 3) the inversion
whose output parameters are shear-wave velocity, compressional-wave velocity
and density, as function of depth. Classically the phase velocity dispersion is
used for subsurface investigations, and the group velocity dispersion is used for
seismology approaches. The common methods to extract these two dispersion
data are recalled below.

A sensitivity study by Bhattacharya (2015) showed that group velocity is
more e�cient than phase velocity to explore the anisotropic nature of a medium.
The multiple �lter method (MFM) proposed by Dziewonski et al. (1969) is based
on band-pass frequency �lters to analyze earthquake signals. Using di�erent
band-pass �lters, waves with frequencies around the center frequency are iso-
lated. Thus, the delay between the source wavelet and the arrival of the signal,
both �ltered for the current frequency, is used for assessing the group velocity
corresponding to the current frequency. The main di�culty in using the multi-
ple �lter technique is the possible interference between higher modes when the
envelope of the �ltered signals is not sharp enough to contain a very narrow fre-
quency band (Gabriels et al., 1987). Based on MFM, the reassignment method
(Kodera et al., 1976; Auger and Flandrin, 1995) calculates the center of gravity
of a signal pulse, which helps improve the accuracy of the group velocity assess-
ment. Pedersen et al. (2003) developed a good adaptation for both synthetic
seismograms and �eld data relating to shallow earth structures. However, the
reassignment can blur the distinction between waves that are located close to-
gether, thus generating complexity in the time-frequency domain. In addition,
in the case of strong frequency dispersion, the phase velocity can be e�ciently
extracted for several modes if a large set of receivers is involved (Socco and
Strobbia, 2004). Thus, as mentioned by these authors, this dispersion data, i.e.
the phase velocity, is commonly used in subsurface investigation. The principal
of its extraction is explained below.

Indeed, the classical measurement setup for subsurface geophysics applica-
tions involves a set of several receivers for a processing method called MASW
(Multichannel Analysis of Surface Waves). This approach, �rst implemented
by geophysicists in the 1980s for near-surface characterization (McMechan and
Yedlin, 1981; Gabriels et al., 1987) and improved in the following decades (Park
et al., 1998; Foti et al., 2000), is the most commonly used method in the case
of geophysical Near Surface investigations. By applying an active source and
a linear array of receivers, the MASW method enhances the production rate
in the �eld and makes the processing of the data faster, less subjective, and
more robust compared to classical one-source one-receiver systems (Foti et al.,
2014). The processing stage consists in extracting from recordings the disper-
sion data that will be inverted. With the MASW approach, the dispersion data
comprises the dispersion curves of the phase velocity. Several signal processing
techniques can be used for extracting it, such as the f − k transform (Yilmaz,
1987), the τ − p transform (McMechan and Yedlin, 1981), the phase-di�erence
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method (Park et al., 1998; Mokhtar et al., 1988), or the linear Radon trans-
form (Luo et al., 2008). The phase-di�erence method, achieved by processing
an optimization of the τ − p transform, provides a high spectrum resolution
of the dispersion diagram with an optimized number of receivers (Park et al.,
1998; Socco et al., 2010; Xia, 2014). It has been chosen for this study. For this
procedure, the Fourier Transform is applied to each signal of the seismic shot.
After normalizing the amplitude, a phase shift correction is applied to each fre-
quency component as a function of the receiver-source distance, through a series
of possible phase velocities. The corrected frequency components are summed
over the entire shot to obtain a dispersion diagram in the v−f domain. On the
latter, the areas of maximum values correspond to the extracted phase velocity
estimated as a function of frequency for the fundamental mode and the excited
higher modes.

Whatever the dispersion data used (i.e. group or phase velocity), the general
approach of dispersion inversion of surface waves makes it possible to character-
ize the propagating media for investigating the Earth on a global scale up to the
�rst meter deep or even the sub-millimeter scale, depending on the propagating
wavelength range used. Thus, surface wave analysis should be suitable for mon-
itoring the mechanical variations of the subsurface. For example, Planès et al.
(2016) used the passive seismic-interferometry technique to analyze internal ero-
sion in earth dams and levees. They were able to monitor a 20% reduction in
surface wave velocity on a canal embankment model and a 30% variation in a
�eld-scale levee testing experiment. The same technique has been used on a
sea levee in the Netherlands, using tra�c noise on a bridge and the noise from
a wind turbine as sources, and a 3 − 5% increment of the group velocity was
estimated during low tide (Planès et al., 2017). Joubert et al. (2018) applied
the cross-correlation and deconvolution methods of seismic noise, to estimate
a variation of less than 10% of relative surface wave velocity as a function of
increasing sea level. It is noteworthy that these authors did not apply any
inversion processing to their data sets.

Indeed, in the case of slight modi�cations in the medium, the inversion
method must discriminate small parameter variations leading to several issues
that alter the e�ciency of the process and degrade its potential. These inaccu-
racies are due to accuracy limits in acquisition, dispersion data extraction, or
inversion processes. Note that using passive measurements makes possible to
continuously record the signal without any action at the source from the geo-
physicist. The problem of measurement errors is di�erent from the active setup,
but the inversion process is similar with the same limit problems. To overcome
the problem of acquisition and phase velocity extraction, di�erent works have
proposed new approaches as a function of �eld conditions. For example, Le Feu-
vre et al. (2015) improved the determination of subsurface shear-wave velocity
from ambient noise using cross-correlations and beamforming. Dangeard et al.
(2018) proposed a statistical approach for estimating picking errors in the case
of standard surface wave inversion for time-lapse studies. The latter tackled the
repeatability issue of the method but did not overcome the �Realistic Error�,
the term given by O'Neill (2004), who used a statistical approach to de�ne an
uncertainty law for the extraction of the phase velocity. Studies on these e�ects
(Lai et al., 2005; O'Neill, 2004) proved that the uncertainty in surface wave
measurements has a greater impact on low frequencies, making it more di�cult
to assess deep media variations precisely. More recently, studies in a two-layer
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medium (Wang et al., 2018) showed that conventional phase velocity dispersion
curve inversion is not capable of estimating a variation ratio lower than 10% in
the deep layer. Other possibilities for increasing the e�ciency of results could
be used to tackle the inversion process, for example the mis�t function, which
can be based on di�erent norms or diagram distances (e.g. Wang et al. (2019)).

We can summarize the needs and problems described above as follows. The
publications on dike monitoring mentioned show the interest of surface waves
to identify areas of damage and water penetration. In order to monitor detailed
evolutions before a potential break, the methodology must allow identifying
small variations in surface wave velocity. This is not straightforward or even
possible for the inversion of surface wave dispersion in the current classical pro-
cedure. In order to improve its performances, di�erent levers can be used, some
of which have been analyzed in the literature, such as errors on measurements
and dispersion data extraction, or the distance norm between estimated and
recorded data. However, despite the progress made in these studies, the results
available are not su�cient to make the methodology e�ective if phase velocity
variations are lower than 20%. Therefore, we propose here to study another
lever that is complementary to the previous ones.

In this framework, our concern is to study the e�ect of the Rayleigh Phase
Velocity Derivative with respect to frequency dVph

df (abbreviated as PVD). More
particularly, our aim is to study its sensitivity and impact on the convergence
and precision of the inversion results. This proposition is based on the idea that
information on the variation of a medium's properties as a function of depth is
contained in the variation of the phase velocity as a function of frequency and
thus potentially in the phase velocity derivative. Consequently, the PVD could
provide more sensitive information on the shear-wave velocity depth pro�le in
the medium. Firstly, to analyze the sensitivity of the PVD, qualitative and
quantitative approaches regarding its behavior will be implemented before test-
ing it on the inversion process. For these analyses, all the stages of the methods
(including the geometry of the measurement setup and the inversion process)
follow the most usual procedures for geophysical approaches in shallow media.
The inversion method used is summarized hereafter.

The inversion stage consists in assessing the shear-wave velocity 1D model
from surface wave dispersion data. To do this, a local or a global optimization
method can be used. The global approach, which is used for our study, makes
it possible to explore the parameter space without de�ning any initial model. It
provides a set of possible models associated with a value of the mis�t function.
The latter indicates the error level, for example, thanks to a L2 norm, between
the dispersion data extracted from measurements and those theoretically cal-
culated. More precisely, the global optimization method used for this study is
based on the Neighborhood Algorithm (NA), commonly used by geophysicists.
The NA is a stochastic search method in a given parameter space, making use of
Voronoi cells to compute the mis�t function in the parameter space (Sambridge,
1999b). Like other global inversion methods (genetic algorithm, simulated an-
nealing, etc.), the NA generates pseudo-random samples in the parameter. The
originality of NA is that the new samples generated at each iteration are guided
and improved by the previous ones. A later study by Wathelet (2008) improved
the capacity of random model generation in a parameter space with irregular
boundaries.

All these process stages will be used here for a two-layer medium with in-
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creasing shear-wave and compressional-wave velocities as a function of depth,
and for the fundamental mode which is considered as the most preponderant
in this case (Foti et al., 2014; Socco et al., 2010). The aim is to determine the
fundamental e�ects of the PVD on the most basic underground medium in the
1D case. The paper is organized as follows:

In a �rst part below, the two-layer reference model, the phase velocity deriva-
tive dVph

df , and its extraction are presented. In the second part, the behavior of
the PVD is analyzed qualitatively by observing its variations over a frequency
range for small velocity modi�cations. In the next part, the theoretical sensi-
tivity of the PVD is calculated and analyzed. All these features are compared
to those of the traditional dispersion data: the phase velocity and the group
velocity of Rayleigh Waves. Then, inversion tests are provided and analyzed
in the two last parts. These tests are performed respectively on theoretical
dispersion curves and on experimental data recorded in the laboratory using
two-layer resin models with a shear-wave velocity di�erence equal to 17% in the
deep layer. These measurement data-sets are obtained to simulate at reduced
scale �eld recordings carried out for typical shallow underground media.

3.2 De�nition and Formulation of the Phase Ve-

locity Derivative

In a homogeneous isotropic elastic linear medium, Rayleigh wave velocity is
independent of frequency. The Rayleigh phase velocity Vph and group velocity
Vg are equal. However, in a multilayered medium, phase and group velocities
are functions of the angular frequency ω (with the relation ω = 2πf and f being
the frequency) and wavenumber k, and de�ned as follows

Vph =
ω

k
(3.1)

Vg =
dω

dk
. (3.2)

The Rayleigh phase velocity can be written as a function of frequency,
wavenumber and medium parameters mj (shear-wave velocity Vs, compressional-
wave velocity Vp, layer thickness h and density ρ) with j ∈ [1, 4]:

Vph = f(Vs, Vp, h, ρ, ω, k), (3.3)

Then, the phase velocity derivative can be expressed as follows:

dVph =

[
∂Vph
∂ω

]
k,mj

dω +

[
∂Vph
∂k

]
ω,mj

dk +

4∑
i

[
∂Vph
∂mj

]
k,ω

dmj . (3.4)

Since the medium parameters are independent of frequency, we can write
dmj
dω = 0. Then, dividing by the term dω on both sides of Eq. 3.4 gives

dVph
dω

=

[
∂Vph
∂ω

]
k,mj

+

[
∂Vph
∂k

]
ω,mj

dk

dω
. (3.5)
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Table 3.1: Parameters of a two-layer reference model. Vp: compressional-wave
velocity; Vs: shear-wave velocity; ρ: density; ν: Poisson's ratio; and h: layer
thickness.

layer (i) V refpi [m/s] V refsi [m/s] ρrefi [kg/m3] νrefi hrefi [m]

1 1000 600 1500 0.22 8
2 2000 1100 2200 0.28 ∞

The partial derivatives of phase velocity with respect to frequency
[
∂Vph
∂ω

]
k

=

1
k and to wavenumber

[
∂Vph
∂k

]
ω

= − ω
k2 are substituted in Eq. 3.5:

dVph
dω

=
1

k
− ω

k2

dk

dω
, (3.6)

and with the de�nition of group velocity in Eq. 3.2:

dVph
dω

=
1

k
− ω

k2

1

Vg
. (3.7)

Therefore, the analytical formulation of the phase velocity derivative with
respect to frequency is

dVph
df

=
Vph(Vg − Vph)

fVg
. (3.8)

Eq. 3.8 shows that the phase velocity derivative can be formulated as a function
of the group and phase velocities, according their theoretical de�nitions. Note
that since surface waves are mostly sensitive to shear-wave velocity (Takeuchi
et al., 1972; Lai and Rix, 1998; Aki and Richards, 2002), only shear-wave veloc-
ity variations are considered in the following study (see sensitivity formulations
in section 4). To study the phase velocity derivative dVph

df , sensitivity to small
variations is �rst analyzed qualitatively and compared with the Rayleigh wave
phase and group velocities. The study is based on a two-layer medium whose pa-
rameters are given in Table 3.1 with Vpi being the compressional-wave velocity
of the ith layer, Vsi the shear-wave velocity, ρ the density and νi the Poisson's
ratio. The thickness of the top layer is 8m and the deep layer is assumed to be
semi-in�nite.

To understand the basic behavior of dVphdf , the study proposed here deals with
a 1D two-layer model as it is the most basic medium. The parameter values are
chosen to be typical of simple subsurface media, as an illustrative case for the
qualitative analysis. However, the analysis below is based on non-dimensional
observations in order to be generalizable.

3.3 Parametric Study

Based on the reference model given in Table 3.1, we conducted a qualitative
analysis of the inversion input data Vph, Vg and the phase velocity derivative
with respect to frequency, dVphdf , to highlight the e�ects of the shear-wave velocity
and �rst layer depth variations. The Geopsy software (Wathelet, 2004) is used
to calculate the theoretical phase and group dispersion curves. The computation
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of the theoretical dispersion curve is based on the eigenvalue problem originally
described by Thomson (1950) and Haskell (1953) and then modi�ed by Dunkin
(1965). The propagator matrix method (Gilbert and Backus, 1966) is used to
solve the eigenvalue problem in a 1D strati�ed medium. The root search is
based on the Lagrange polynomial, which e�ciently speeds up the calculations.
Thanks to the rapidity of the computation, a series of phase and group dispersion
curves are calculated for various media following the variation ratio de�ned as

α(Vsi) =
∆Vsi

V refsi

=
V varsi − V refsi

V refsi

(3.9)

with V refsi being the reference shear-wave velocity given in Table 3.1 and V varsi
the variable shear-wave velocity of the medium. The dispersion curves are calcu-
lated in a frequency band [1, 150]Hz and represented as a function of wavelength
normalized by the interface depth h1 in order to obtain results that can be gen-
eralized as much as possible to other similar cases (i.e. other ranges of values
but similar ratios compared to the propagating wavelength).

3.3.1 Vs1 variation

The shear wave velocity of the �rst layer varies with a variation ratio α(Vs1) ∈
[−5, 5]% and a corresponding Poisson's ratio ν1 ∈ [0.17, 0.26]. Fig. 3.1 shows,
on the left, the phase and group velocities of the Rayleigh wave, as well as dVph

df ,

as a function of λ
h1
. The right part of Fig. 3.1 shows variations of dispersion

data (∆Vph, ∆Vg, ∆∂fVph), normalized by the reference dispersion curves

(∆X)norm =
∆X

Xref
× 100% =

Xvar −Xref

Xref
× 100% (3.10)

with X being the dispersion data and Xref the reference dispersion data when
α(Vs1) = 0.

Fig. 3.1 shows that Vph and Vg vary over a wider range than dVph
df for the

wavelength range taken into account. However, the values of the dispersion data
variations are higher when normalized by the reference model values. As ex-
pected, it can be seen that when the shear wave velocity of the �rst layer varies,
the variations of Vph are larger for short wavelengths, i.e. higher frequencies.
Also, for λ ≥ 4h1, they become very weak, which makes them indistinguishable
from each other. Regarding the group velocity, the variations are also larger for
shorter wavelengths and the maximum is reached for λ ≈ 3h1.

dVph
df curves present variations over a di�erent frequency range. Indeed, dVphdf

tends to zero for lower wavelengths for which the Rayleigh wave penetrates
only in the shallow layer. When λ ≈ 3.2h1, where the values of

δVph
δf are mini-

mum, their variations are signi�cant and reach a normalized value equal to 20%
for a 5% variation of velocity whereas it is about 10% for the group velocity.
(∆∂fVph)norm = 0 at λ ≈ 5h1 and when λ ≥ 5h1, the variations are not as large
as at short wavelengths. However they are more visible than the second lobes
at (∆Vph)norm or (∆Vg)norm.

Regarding the behavior for λ = 3.2h1, a physical explanation can be given
by analyzing the cumulative amplitude of displacement in depth depending on
the wavelength. The �gures are presented in Appendix D. Indeed, for the wave-
length λ = 3.2h1, the normalized amplitude of the particle displacement is 0.5
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Figure 3.1: (a) Dispersion curves of the Rayleigh wave phase velocity (top),
group velocity (middle) and phase velocity derivative (bottom) with the varia-
tion ratio α(Vs1) = ±5%. (b) Normalized variations with respect to the disper-
sion curves of the reference model.

at the depth corresponding to the interface between the two media and the
normalized cumulative amplitude is 0.5 (see Fig. D.1 in Appendix D). This
means that at the wavelength λ = 3.2h1, 50% of the cumulative amplitude of
the surface wave propagates in the shallow layer and 50% in the deep layer.
Therefore, at this point, the propagation of the Rayleigh wave is in�uenced by
both media. The cumulative amplitude derivative with respect to wavelength
con�rms that the variation is highest at λ = 3.2h1 around the interface. By
varying the frequency slightly, the dominant in�uence comes from the shallow
or deep layer, depending on the direction of the variation. This corresponds to
the in�ection point of the phase velocity curve, where the absolute value of the
�rst derivative (as a function of frequency) is maximal.

3.3.2 Vs2 variation

The shear-wave velocity of a semi-in�nite medium varies with the variation
of ratio α(Vs2) ∈ [−5, 5]% which gives a Poisson's ratio of ν2 ∈ [0.25, 0.31].
Variations of phase and group velocities (Vph, Vg) and the derivative of phase
velocity dVph

df are shown in Fig. 3.2.
It can be seen that the phase velocity is sensitive to variations of the deep

layer at long wavelengths and the variations become increasingly larger as the
wavelength grows. The same occurs for the group velocity: (∆Vg)norm equals
zero at short wavelengths and increases as the wavelength increases. The values
of (∆Vg)norm is maximum when λ ≈ 3.4h1 and returns to zero at λ ≈ 5.3h1.
Then, with a change of sign, the variations of the group velocity are signi�cant
at long wavelengths. Variations of Vs2 do not change the minima δVph

δf location
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Figure 3.2: (a) dispersion curves of the Rayleigh wave phase velocity (top),
group velocity (middle) and phase velocity derivative (bottom) with the varia-
tion of ratio α(Vs2) = ±5%. (b) normalized variations with respect to reference
model dispersion curves.

at λ = 3.2h1. The variation of dVphdf is maximum and decreases gradually along
the wavelength with an in�ection point around λ = 5.3h1 where (∆Vg)norm = 0.

3.3.3 h1 variation

The PVD is a derivative of the phase velocity as a function of frequency, and
which is used to calculate the phase velocity gradient. In a two-layer medium,
the depth of the �rst layer changes the slope of the phase velocity dispersion
curve. In the following we consider a variation in the depth of the �rst layer.

Interestingly, for a two-layer medium, the gradient of both the phase and
group velocity dispersion curves with respect to wavelength is a linear function
related to the thickness of the shallow layer, causing the minimum phase velocity
derivative to occur at λ = 3.25h1. Normalized variations (Fig. 3.3) show that
the group velocity is more sensitive to changes in the depth of a shallow medium
than the phase velocity, while the variations of the phase velocity derivative are
much larger.

It is important to note that (∆∂fVph)norm approaches in�nity at a short
wavelength for h1 = 4m and 6m. This is because when calculating the relative
di�erence, the reference curve approaches zero at a short wavelength, but the
absolute di�erence between the reference and variation curves is relatively large,
leading to a ratio close to in�nity. This re�ects the instability of the PVD at
high frequencies, which demands precise processing of the measurement data,
since small changes of data may cause huge deviations in the inversion results,
thus a�ecting the overall assessment of the media. This requires more attention
especially for inversion, as discussed in section 5: Numerical Illustration. How-
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Figure 3.3: (a) Dispersion curves of the Rayleigh wave phase velocity (top),
group velocity (middle) and phase velocity derivative (bottom) with depth vari-
ation h1 ∈ [4, 12]m, as a function of wavelength. (b) Dispersion curves as a
function of normalized wavelength. (c) Normalized variations of the dispersion
data.

ever, in this �rst stage of the study, the results indicate that the high sensitivity
of the PVD could lead to more accurate assessment of the evaluation properties
of the depth pro�le Vs. Indeed, the sensitivity of the PVD under study is high
at intermediate frequencies for which the dispersion data are generally stable
if the frequency range of the source is chosen correctly. This would therefore
permit distinguishing small di�erences between two media or small variations
between two states of the same medium, such as in the case of monitoring the
variation of water penetration in sea dikes (Planès et al., 2017; Joubert et al.,
2018), or the water content in granular material (Pasquet et al., 2016; Dangeard
et al., 2018).

Before testing this numerically with the inversion process, we propose in the
following part to analyze the theoretical sensitivity behavior of the PVD. This
approach will provide a general result regarding the points identi�ed above.

3.4 Sensitivity Kernels

The formulation of the sentivity of the inversion input data to changes in a
medium parameter is given by the partial derivative of this inversion data with
respect to the medium parameter. Sensitivity can thus be calculated for the
fundamental mode which is the subject of this study. It is intended to provide
quantitative information on the e�ect of the medium variation on the inversion
input data of interest, prior to future studies on the e�ects of higher modes,
following the same principle. Here we follow the approach established by Aki
and Richards (2002) for Love waves and apply it to Rayleigh waves to quantita-
tively compare the behavior of the di�erent inversion input data analyzed, i.e.
phase velocity, group velocity and the phase velocity derivative with respect to
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frequency. In the �rst step, Hamilton's principle is applied to the Lagrangian
density of the Rayleigh wave to deduce the fractional change in phase velocity
at a given frequency

[
δVph
Vph

]
ω

=
1

4VgVphIk2

(∫ ∞
0

(kr1 +
dr2

dz
)2 δΛdz

+

∫ ∞
0

(2k2r2
1 + 2(

dr2

dz
)2 + (kr2 −

dr1

dz
)2) δµdz −

∫ ∞
0

(ω2(r2
1 + r2

2)) δρdz
)
,

(3.11)

with z being the depth, Λ and µ Lamé coe�cients, r1(k, ω, z) and r2(k, ω, z)
Rayleigh displacement vectors in the horizontal and vertical directions, respec-
tively, and I = 1

2

∫∞
0
ρ(r2

1 + r2
2)dz the energy integral. Aki and Richards (2002)

described the method used to calculate the partial derivative of the Love phase
velocity with respect to the medium parameter. Here, we perform the same
work for the Rayleigh wave to obtain the following formulation:

[
∂Vph
∂Λ

]
µ,ρ,ω

=
1

4VgIk2
(kr1 +

dr2

dz
)2, (3.12)[

∂Vph
∂µ

]
Λ,ρ,ω

=
1

4VgIk2

[
2k2r2

1 + 2(
dr2

dz
)2 + (kr2 −

dr1

dz
)2

]
, (3.13)[

∂Vph
∂ρ

]
µ,Λ,ω

= − 1

4VgIk2
(ω2(r2

1 + r2
2)). (3.14)

Given the equations of Vp, Vs as a function of Λ, µ, ρ: Vp =
√

Λ+2µ
ρ and

Vs =
√

µ
ρ , the sensitivity of the Rayleigh phase velocity as a function of depth,

i.e. the partial derivatives of Vph as a function of the medium's parameters (Vs,
Vp and ρ) can be formulated as follows:

[
∂Vph
∂Vp

]
Vs,ρ,ω

=
Vpρ

2VgIk2
(kr1 +

dr2

dz
)2, (3.15)[

∂Vph
∂Vs

]
Vp,ρ,ω

=
Vsρ

2VgIk2
[(kr2 −

dr1

dz
)2 − 4kr1

dr2

dz
], (3.16)[

∂Vph
∂ρ

]
Vp,Vs,ω

=
Vp
2ρ

[
∂Vph
∂Vp

]
Vs,ρ,ω

+
Vs
2ρ

[
∂Vph
∂Vs

]
Vp,ρ,ω

− 1

4VgIk2
ω2(r2

1 + r2
2).

(3.17)

Since there is no analytical expression for group velocity sensitivity (Aki
and Richards, 2002), the sensitivity kernels for both the group velocity and the
phase velocity derivative are calculated numerically. For group velocity, we use
Taylor's theorem.

Vg(m) = Vg(m0) +

[
∂Vg
∂m

]
m0

(m−m0) + h1(m)(m−m0), (3.18)
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with m representing the medium's parameters and limm→m0
h1(m) = 0. Under

this condition, we write [
∂Vg
∂m

]
m0

=
Vg(m)− Vg(m0)

m−m0
. (3.19)

For a given medium, the Rayleigh phase velocity can be expressed as a
function of the frequency and the medium's parameters: Vph = f(ω, Vs, Vp, ρ).
The total derivative of the phase velocity is written as:

dVph =
∂Vph
∂ω

dω +
∑ ∂Vph

∂m
dm (3.20)

with m a vector of the medium parameters Vs, Vp and ρ which are independent
of frequency, we obtain:

dVph
dω

=
∂Vph
∂ω

+
∑ ∂Vph

∂m

dm

dω
=
∂Vph
∂ω

. (3.21)

According to the symmetry of second derivatives in mathematics, we can
write:

∂

∂ω

(
∂Vph
∂m

)
=

∂

∂m

(
∂Vph
∂ω

)
=

∂

∂m

(
dVph
dω

)
. (3.22)

Thus, the sensitivity kernel of the phase velocity derivative can be assessed
numerically by calculating the gradient of ∂Vph∂m , related to the frequency. The
latter was calculated previously as the Rayleigh phase velocity sensitivity. The
resulting sensitivity kernels for each inversion input data, i.e. phase velocity,
group velocity and its derivative, for the fundamental mode, are presented in
Fig. 3.4 as a function of normalized wavelength. Note that, as mentioned
previously, for this study, the sensitivity is calculated and presented as related
only to the shear-wave velocity parameter. In Fig. 3.4, the blue curves show
the sensitivity of the inversion input data to variations of shear-wave velocity of
the shallow layer (Vs1) and orange curves show the shear-wave velocity of the
half-space Vs2 variations. To make the results comparable, all the curves are
normalized by the maximum sensitivity value of each inversion input data.

In Fig. 3.4, it can be seen that with Vs1 variations, both Vph and Vg have
high sensitivity values at short wavelength. However, when variations occur
in the deep layer (Vs2), it is necessary to have a long wavelength to obtain
more sensitivity, but precise estimation of the medium is di�cult due to high
uncertainties (Lai et al., 2005). In contrast, the resulting sensitivity of the PVD
is found to be signi�cant at λ ≈ 3.4h1 for both Vs1 and Vs2 variations. From
the standpoint of inversion, regarding this two-layer reference medium, this
behavior indicates that the shear-wave velocity variations occurring in whichever
layer can be estimated by the phase velocity derivative over a limited range of
wavelengths, where the phase velocity derivative is sensitive.

The analysis of the sensitivity kernel in Fig. 3.4 is in good agreement with
the previous qualitative analysis shown in Fig. 3.3. The maximum sensitivity
and largest variations of the phase velocity derivative occur for the same order
of wavelength (λ ≈ 3.4h1). In addition, the sensitivity kernels for models with
di�erent �rst layer depths (h1) but with the same shear-wave velocities are also
calculated. The same conclusion as for the qualitative analysis is also found: the
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Figure 3.4: Rayleigh phase velocity sensitivity kernel (top), group velocity sen-
sitivity kernel (middle) and phase velocity derivative sensitivity (below) with
respect to the shear-wave velocities of the shallow layer (Vs1) and the deep layer
Vs2 . Sensitivity values normalized by the maximum value of sensitivity with re-
spect to Vs1 and presented as a function of wavelength normalized by the depth
of the shallow layer h1.

maximum sensitivity of the phase velocity derivative still occurs for λ ≈ 3.2h1,
under the assumption of �xed model shear-wave velocities.

3.5 Inversion Tests

In the previous two sections, we discussed the sensitivity of the PVD dVph
df both

qualitatively and quantitatively. In this part, we apply dVph
df in a numerical

inversion problem to verify its feasibility. Three types of dispersion data are
taken as inversion input data: Vph, Vg and

dVph
df . For that, theoretical dispersion

curves of Vph and Vg are calculated using Geopsy software (Wathelet, 2004). The
PVD is then calculated using Eq. 3.8. Note that, since only the fundamental
mode is tackled, the dispersion curve calculated is that of the fundamental mode
only.

The parameters of the reference model are presented in Table 3.1 and we
assume that the medium has undergone minor changes such that its shear wave
velocities change with variation ratios α(Vsi) ≤ 5%. The dispersion curves
are calculated for the reference model and the models with shear-wave velocity
variations in a frequency range [1, 160]Hz with a frequency sampling step of
0.5Hz. This frequency band has been chosen for these inversion tests because
it corresponds to that of an ideal pulse source centered on 50Hz, this central
value being itself typical of a hammer shot used in subsurface geophysics. Fig.
3.5 presents the dispersion curves of the three dispersion data, as function of
frequency.
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(a) (b) (c)

Figure 3.5: Theoretical dispersion curves of the reference medium (Table 3.1).
(a) Vph, (b) Vg, (c)

dVph
df .

3.5.1 Mis�t function and a priori information

The dispersion data are tested below for an inversion process by a global opti-
mization through the Neighborhood Algorithm (NA), as indicated in the intro-
duction: the NA computes the mis�t function in the parameter space, where
the pseudo-random samples are generated at each iteration by making use of
Voronoi cells, and then guided and improved by the samples generated at the
previous iteration. Each sample corresponds to one ground model (i.e. a set of
the research parameters: Vs of each layer in the model) and corresponds to one
calculated dispersion curve using Geopsy software. The objective (also called
mis�t) function is de�ned as the L-2 norm relative di�erence between measured
and calculated inversion data values, xmes and xcal respectively, in the frequency
domain

misfit =

√√√√ 1

Nf

Nf∑
i

(
xmes − xcal

xmes
)2, (3.23)

where Nf is the number of inversion input data in the frequency domain, x is
the inversion input data, Vph, Vg or

dVph
df . We de�ne an indicator function such

that its value is between 0 and 1

P = e−misfit. (3.24)

In our inversion, the compressional-wave velocity Vp, the �rst layer depth
h1 and the density ρ are �xed, only the shear-wave velocities of both layers
Vsi are inverted and are searched in the domain [−20%,+20%] × V refsi . NA
needs several tuning parameters in an inversion process: ns0 = 50 the number
of samples randomly distributed in the parameter space as well as the Voronoi
cells number at the initial iteration; nr = 5 the number of best cells to consider
for the next iteration; ns = 10 the number of new generating samples at each
selected cell; and ni = 15 the total number of iteration. Finally, a total of 800
(= ns0 + nr × ns × ni) models are calculated in each inversion.

3.5.2 Inversion results of Vph and Vg

Fig. 3.6 and Fig. 3.7 present the inversion results of the phase velocity and
the group velocity, respectively, with each dot corresponding to one inverted
model. Black dots are inversion results for the reference medium (α = 0) and
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Figure 3.6: Vph inversion results. Each dot corresponds to one inverted model
with the colors representing reference and shear-wave velocity variation media.
Black: α(Vsi) = 0; red: α(Vsi) < 0; blue: α(Vsi) > 0.

blue dots are inverted models for the medium with the variation α > 0, the red
dots represent α < 0. A maximum probability value of 99% (99%Pmax) is used
as a limit for all the inversion models in each inversion, which means only the
models with P ≥ 0.99Pmax are selected as acceptable. In each �gure, the top
four images show the selected inversion results when small variations occur in
the shallow medium (α(Vs1)), and the bottom four correspond to the cases of
small variations in the deep medium (α(Vs2)).

For both the phase velocity and the group velocity (Fig. 3.6, Fig. 3.7),
when small variations occur in the shallow medium α(Vs1), those greater than
3% can be well estimated because the inversion results can be clearly distin-
guished from those of the reference model. When the variation is equal to
2%, the inversion results begin to overlap and when α(Vs1) = 1%, the inversion
results cannot be separated. For variations in the deep medium (α(Vs2)), the in-
version results overlap when α(Vs2) = 4%. Therefore, in this two-layer medium,
the classical inversion method can estimate variations of the shear-wave velocity
in the shallow medium which are greater than 3%. However, for variations in
the deep medium, only variations greater than 5% can be estimated.

3.5.3 Inversion results of
dVph

df

As shown in section 3, the qualitative analysis of the behavior of the PVD,
dVph
df tends to zero at high frequencies (short wavelengths) where the shear-wave

velocity variation is small (see Fig. 3.5), which causes the objective function
to tend to in�nity. Consequently, the inversion of dVph

df tends to �nd models
that better �t the dispersion curves at high frequencies. To avoid this problem,
we propose here to invert a combined dispersion curve by using the derivative
of the dispersion velocity for lower frequencies and dispersion velocities for the
higher frequencies. The frequency limit between the two ranges is chosen here
in order to integrate the derivative of the phase velocity over a su�ciently wide
range including the zone of maximum sensitivity. According to the sensitivity
curves of dVphdf (Fig. 3.4), dVphdf is most sensitive when λ ∈ [2, 6]h1 = [16, 48]m,



62 CHAPTER 3. FREQUENCY DERIVATIVE OF RAYLEIGH VPH

Figure 3.7: Vg inversion results. Each dot corresponds to one inverted model
with the colors representing reference and shear-wave velocity variation media.
Black: α(Vsi) = 0; red: α(Vsi) < 0; blue: α(Vsi) > 0.

Figure 3.8: Combined data inversion results. Each dot corresponds to one
inverted model with the colors representing reference and shear-wave velocity
variation media. Black: α(Vsi) = 0; red: α(Vsi) < 0; blue: α(Vsi) > 0.
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Figure 3.9: Normalized probability curves for Vph, Vg and combined dispersion
curves as function of iteration number.

which corresponds to the frequency range [20, 40]Hz in the tested case. Thus,
the combined dispersion curve is dVph

df when f < 60Hz and Vph when f ≥
60Hz. Note that the frequency range limits for dVph

df have been chosen here
by considering the part of the dispersion curves featuring the higher variations
but it remains arbitrary. This choice for the limits values could be driven by a
benchmark test approach in further studies with the objective to automatically
recover the optimum values of the frequencies boundaries.

Fig. 3.8 shows that the combined data inversion has a quasi-equivalent
estimation for the shallow layer Vs1 . But when variations occur in the deep
medium, the inversion of the combined data better estimates small Vs2 varia-
tions. The normalized convergence curve of the indicator P in Fig. 3.9 shows
that all inversion processes converge after around 300 iterations and the num-
ber of selected models for both inversions varies between [550, 650]. In order to
obtain a clearer view of the selected models, they are presented quantitatively
in Fig. 3.10.

The inversion results of the combined dispersion curve and Vph are shown
in Fig. 3.10: the inverted shear-wave velocities are plotted as a function
of the variation ratio α. The black line presents the expected values, and the
colored zones show, extreme inverted values for Vph (red zone) and the combined
dispersion curve (grey zone), respectively, which correspond to extreme Vs values
in Fig. 3.8. The advantage of combined data inversion is obvious for Vs2
because the result area is narrower around the expected value. In the next
section, the procedure is tested with real laboratory measurements.

3.6 Application on Real Data from Laboratory

Measurements

Two reduced-scale models made of epoxy resin (Fig. A.1), were designed to
validate and illustrate our results experimentally. The parameters and dimen-
sions of the �rst model (named baseline) are given in Table 3.2. Using the
sample parameters provided by previous studies on this type of resin (Filippi
et al., 2019), we calculated the size of the model to minimize and delay the
boundary e�ects. Moreover, the latter are reduced because the borders of the
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(a) (b) Vs2

Figure 3.10: Inversion results of shear-wave velocities for (a) shallow layer Vs1
and (b) deep layer Vs2 , using Vph and dVph

df separately. The black line presents
the exact shear-wave velocity value for each variation ratio α.

Table 3.2: Baseline model parameters and dimensions. hi: layer thickness; l
and w: length and width of model. Scale ratio between the numerical and the
experimental model dimensions is 1000.
layer Vpi [m/s] Vsi [m/s] ρi [kg/m3] νi hi [mm] l [mm] w [mm]
1 1300 703 450 0.29 8.0 265 235
2 2048 933 1300 0.37 203 265 235

models are rounded using a radius larger than or equal to the central wavelength
(Pageot et al., 2015). The radius of the rounded borders is 12mm (r ≈ VR

f )
and is identical for both resin models. The second model (named repeatline)
was similar to the �rst one but with a higher shear-wave velocity in depth. The
variation ratio is α(Vs2) = 17% as Vs2 = 1100m/s for the repeatline model.

3.6.1 Model Measurements

The measurements were conducted in the MUSC (Measurement at Ultrasonic
SCale) laboratory which permits carrying out seismic analogical measurements
at reduced scale (Bretaudeau et al., 2011). The scale ratio between the numerical
and experimental model dimensions is 1000, i.e. 1m in the numerical model is
1mm in the laboratory model, and 1Hz corresponds to 1 kHz (Pageot et al.,
2017). A Ricker wavelet with a central frequency of 100 kHz was generated with
a dry contact point piezoelectric transducer and the signals were recorded with
a moving laser interferometer, with a sampling rate equal to 10MHz (see Fig.
A.1 (a) in Appendix A for an illustration of the experimental set-up). More
speci�cations of the MUSC measurement bench are available in (Bretaudeau
et al., 2011) for any reproduction of the experiment. Fig. A.1 (b) in Appendix
A shows the position of the piezo-electric source and the measurement points
of the laser receivers (maximum o�set equal to 90mm with a space of 1mm).
Like all the recordings published from the MUSC bench, the measurements are
available to the scienti�c community and can be obtained as free data on request
by email.

Seismograms measured on the two models were then analyzed and processed.
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(a)

(b)

Figure 3.11: (a) Measured seismograms for the baseline model (orange) and the
repeatline model (blue), normalized by maximum values at each trace. (b) Dis-
persion diagrams for the baseline (orange) and the repeatline (blue), normalized
by the maximum value at each frequency. The value of the contour line is equal
to 0.5. The measured dispersion diagrams are presented separately in Fig. A.3
for a clear display of each one.
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Fig. 3.11 (a) shows the measured baseline and repeatline seismograms. The
phase velocity dispersion diagrams are extracted from the measured seismo-
grams, using the phase-shift method (Fig. 3.11 (b)). The dispersion diagrams
are calculated in the frequency range [10, 150]Hz and at each frequency, the
phase velocity is searched in the velocity range [500, 1500]m/s with the velocity
resolution equal to 2m/s. They are then normalized by the maximum value at
each frequency and the value of the contour line plotted is 0.5. The di�erence
is visible between the diagrams at low frequency, which corresponds to veloc-
ity variations in the deep layer. The Vph dispersion curves are then extracted
by automatic picking and their gradients give the dVph

df dispersion curves (Fig.
3.12).

It should be pointed out that the PVD is extracted here using the gradient
of the measured phase velocity curve instead of using the group velocity as
proposed in Eq. 3.8. As he matter of fact, the high contrast of the shear wave
velocity between the two layers, which gives a very steep variation of the group
velocity as a function of frequency (i.e. a high dispersion), makes the choice of
the frequency �lter range, in the MFM procedure described in introduction, too
di�cult for accurately de�ning the group velocity required in Eq. 3.8 for dVph

df .
Indeed, a wide frequency range can bias the central frequency where the group
velocity is searched; on the contrary, a narrow frequency range cannot contain
enough energy to estimate the group velocity properly. This critical point of
the group velocity assessment, above the scope of this study, should be tackled
in further approaches, as mentioned in the �nal discussion of this paper.

As previously stated, only the fundamental mode is inverted. The cut-o�
frequency at high frequencies is �xed at 90 kHz to avoid the higher mode per-
turbation for both baseline and repeatline models. The signals at low frequency
(below 35 kHz), which presents a low signal-to-noise ratio and requires unavail-
able large receiver o�set to be correctly assessed and mitigate the near �eld
e�ects as highlighted by Bodet et al. (2009), who recommend a minimum fre-
quency such as the maximum wavelength is lower than half of the receiver o�set,
are not used. According to these criteria, in the following, the frequency band
is chosen in [35, 90]Hz for both models. See Fig. A.3 for a better visualiza-
tion. However, as mentioned in the previous part concerning the theoretical
tests, a further study should deal with the frequencies boundaries that can be
automatically de�ned for optimal results.

The PVD dVph
df and the classical dispersion data Vph are now inverted to

perform an accurate evaluation of the di�erence between the two models. As
in section 5, the inversions are carried out using Vph and combined dispersion
curves. The combined dispersion curve consists of dVphdf at medium frequencies
(f ∈ [42, 70]Hz) and Vph at low and high frequencies (f ∈ [35, 42]∪ [70, 90]Hz).
These limits are de�ned to avoid both an oscillation e�ect at low frequencies
and a normalization problem at high frequencies. In the following, we invert
the dVph

df dispersion curve, without the normalization in the mis�t function, and
discuss its robustness.

3.6.2 Inversion results

In the Neighborhood Algorithm inversion process, we consider the compressional-
wave velocity and density set as provided in Table 3.2. The shear-wave ve-
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(a) (b)

Figure 3.12: Measured dispersion curves of (a) the phase velocity Vph and (b)
the phase velocity derivative dVph

df . The combined data of baseline and repeat-

line consist of non-gray parts of the blue and red curves in the two images,
respectively.
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Figure 3.13: Inversion results of baseline (red) and repeatline (blue).

locities of each layer are searched in the range Vs1 ∈ [500, 900]m/s, Vs2 ∈
[800, 1200]m/s and in the depth of the �rst layer in the range h1 ∈ [7.2, 8.8]m.
Fig. 3.13 shows the resulting couples of shear-wave velocities (Vs1 ,Vs2) recov-
ered by all the inversion processes, where Vs1 and Vs2 correspond to the shallow
and deep layer, respectively. The results are shown for all three inversions:
solely Vph, solely

dVph
df , combined Vph and dVph

df curves. There are 1520 models
(ns0 = 20, nr = 10, ns = 10, ni = 20) in each inversion process and the con-
vergence indicator curves are plotted in Fig. 3.14. The convergence curves of
Vph and combined data inversions tend towards the same level but reach a lower
value for dVph

df because of the non-normalization in the mis�t function.
The result scatter plots in Fig. 3.13 focus more on the true value on the

Vs1 axis when Vph is considered for the inversion than when it is for the other
inversion data. However, dVph

df and the combined data inversions give better
estimations on Vs2 , as we can see better discrimination between the results of the
baseline and repeatline models. To analyze the inversion results quantitatively,
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Figure 3.14: Probability curves for baseline inversion using Vph,
dVph
df and com-

bined dispersion curves, respectively.

histograms of inverted models are shown in Fig. 3.15, as a function of inverted
Vs1 and Vs2 , separately. µb and σr are mean values and standard deviations for
each group of models where b represents the baseline and r the repeatline. As
there is no variation in the shallow layer between baseline and repeatline, the
two inverted Vs1 should be identical.

Compared to dVph
df and combined data inversion, Vph inversion provides in-

verted Vs1 values with smaller standard deviations for both baseline and repeat-

line, which corresponds to the more focused results in Fig. 3.13. In Fig. 3.15
(a), the two histograms of combined data inversion are superimposed but the
di�erences between µb and µr are signi�cant due to several bigger inverted Vs1
values of the repeatline (the part between 710 and 750m/s).

The assessment of the deep layer variation is presented in Fig. 3.15 (b).
The variation ratio α(Vs2) is equal to 16.0± 0.7% for Vph alone, 16.4± 1.1% for
dVph
df alone and 17.1 ± 0.3% for combined data inversions. The result of Vph is

smaller than the reference value 17%, and the error of the dVph
df inversion result

is larger than that of the other two inversions. The result of the combined data
inversion is not only the closest to the expected reference value but it also has the
smallest error. The improvement of the combined approach on the experimental
data may seem small. However, the relative error with respect to the true model
is divided by 2 and 6 depending on the data set, and the standard deviation is
divided by 1.7 in both cases.

Using the mean values of the inverted models in Fig. 3.15, the calculated
dispersion curves and the measured dispersion curves are plotted for the baseline
and the repeatline in Fig. 3.16. We can see that the dispersion curve calculated
from the inversion results of dVphdf is wholly above the measured curves, in both
Fig. 3.16 (a) and (b) although their corresponding derivative curves �t well
with the trend measured in (c) and (d). Indeed, two "parallel" dispersion curves
share one gradient curve, which means using only dVph

df for the optimization
search in the inversion process can result in the identi�cation of several solutions
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Figure 3.15: Density histograms of baseline (blue) and repeatline (orange) in-
verted models as a function of (a) Vs1 and (b) Vs2 . The surface of each histogram
is equal to 1.
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(a) (b)

(c) (d)

Figure 3.16: (a) and (b): Phase velocity dispersion curves for the measured data
of (a) baseline and (b) repeatline, and their corresponding inverted models from
di�erent inversion data. (c) and (d): Phase velocity derivative dispersion curves
for the measured data of (c) baseline and (d) repeatline, and their corresponding
inverted models.
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that do not correspond to the real model. The combined data method avoids
this problem since Vph replaces dVph

df at both low and high frequencies. Thus,

when using the combined data in inversion, both the high sensitivity of dVphdf and
the calibration value to Vph are taken into account. The results of the combined
data inversion in Fig. 3.16 (c) and (d) are closer to the minimum values of
the measured curves.

Viewed globally it should be noted that the MASW approach involves several
steps regarding the overall indeterminacy of the method: the measurements
and their uncertainties, the extraction of the dispersion data, the convergence
of the inversion process according to the criterion of the cost function and the
inversion input data and its sensitivity. This study proposed to explore the
e�ects of introducing the derivative of the Rayleigh wave phase velocity (PVD)
in the process, independently of the issue of the measurement errors. Indeed,
dissociating the e�ects of the di�erent key elements of the process is crucial for
the �rst stage. However further works will attempt to associate the e�ects of
the measurements errors in order to identify their impacts. Thus, integrating
the e�ect of errors on the data will contribute to the feasibility of the method
in speci�c cases.

3.7 Conclusion and discussion

In this paper, the derivative of the Rayleigh wave phase velocity dVph
df is in-

troduced in the surface wave inversion method, to estimate small variations in
media (variation ratio smaller than 10%). Based on two-layer media, we dis-
cussed the performance of the PVD when small variations occur in both layers,
in particular shear-wave velocity variations. In the qualitative analysis, the
dispersion curves of Vph, Vg and dVph

df were calculated theoretically for several
series of two-layer media with variations of shear-wave velocities and the depth
of the shallow layer. dVph

df displayed greater sensitivity compared to the phase
and group velocities, especially for the deep layer variations: for the deep layer
when the shear-wave velocity variation was equal to 5%, the variation of dVphdf
was around 18% while it was only 5% for Vph and Vg. Then, in the quantitative
analysis, the calculation of sensitivity curves con�rmed that dVph

df contained in-
formation from both layers when λ ≈ 3.4h1. As a reminder, the sensitivity of
Vph and Vg follows the following rule: a variation of the shallow layer provided
high sensitivity at a short wavelength while a long wavelength was needed for
high sensitivity to variation in the deep layer.

The feasibility of using dVph
df was then veri�ed numerically by inverting the

dispersion curves calculated from synthetic noisy signals. The high sensitivity of
dVph
df was particularly interesting but it should be used with care in the inversion

process, due to its high oscillation in the case of noise and to the derivative
property which leads to confusion with the Vph curves that share the same
gradient in the frequency domain. To avoid this problem, we proposed to use
combined data that consists of Vph and dVph

df . We veri�ed that the combined

data contained both the high sensitivity of dVph
df and the robustness of Vph at

the same time. Then, two two-layer models made of resin-epoxy were used to
illustrate this result experimentally. The di�erence between them was a 17%
variation of shear-wave velocity in the deep layer. The Vph inversion estimated
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the variation of the deep layer at (16.4±1.1)% while the combined data inversion
estimated the variation of the medium at (17± 0.3)%. Moreover, regarding the
expected velocity values of the deep layer, the combined method gives more
precise results with a smaller error, which are divided by 1.9 and 6.9 depending
on the data set as well as standard deviations divided by 1.7. This improvement
makes sense when looking at changes in media for small variations such as in
continuous monitoring.

The methodology proposed, which combined the two inversion data, used
the performance of each one valid over distinct frequency ranges, and combined
them over the whole frequency range of the measured data. The results showed
that it is an appropriate inversion strategy because it allows using the phase
velocity derivative over the frequency range for which it is most sensitive. We
proposed to de�ne this frequency range according to the feature of the phase
velocity derivative: its use was limited to the part for which it presented a
minimum, without taking into account the areas for which the result of the
calculation showed strong oscillations at lower frequencies or the plateau area
for the higher frequencies. However, this criterion remained qualitative here
and could be the subject of further studies in the near future. It will also be
interesting to analyze the behavior of the PVD for higher modes. Indeed, the
experiments, which were carried out on two-layer epoxy resin models, con�rmed
that dVph

df is complementary to Vph in the inversion. Work is now in progress
using epoxy resin models with smaller variations of mechanical properties, and
time-lapse inversion.

Moreover, other major points should be investigated in further studies: the
experimental tests in the last part on real measurements have highlighted the
complexity of using the low frequency signal. The dispersion uncertainties for
the lowest frequencies in the case of subsurface measurements are due, on the
one hand, to the e�ects of near �elds and, on the other hand, to the ratio be-
tween phase shift and wavelength (Bodet et al., 2009). Therefore, we propose,
for future studies, to characterize all the uncertainties, including those for lower
frequencies, for the phase velocity but also for the calculation of its deriva-
tive. The range of uncertainty for each frequency can be linked to the width
of the lobe envelope associated with the fundamental mode in the dispersion
diagram. The limits of this lobe can be computed analytically as proposed by
(Wang et al., 2020a). Derivatives of these limits as a functions of frequency,
also analytically available, could identify the uncertainty associated with the
phase velocity derivative. The e�ects of these uncertainties on inversion by the
method proposed in this article could be further addressed by including it in
the mis�t weighting.

Finally, in the experimental tests, the phase velocity derivative was calcu-
lated by the gradient of the phase velocity and not by Eq. 3.8 which uses the
group velocity. The latter is indeed very di�cult to evaluate in a robust way
when the contrast between the two media is strong and implies a high velocity
dispersion: in this case, the choice of the �lter width is critical and beyond the
scope of the present study. Therefore, we propose, for future studies, to analyze
the impact of the velocities contrast on the choice of this �lter and the values
from which assessment of the phase velocity derivative is more interesting by
calculating the phase velocity gradient.
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Chapter 4

Di�erential time-lapse

inversion of surface waves

phase velocity dispersion

using the histogram distance

between fundamental modes

in dispersion diagrams

In this chapter, the notion of "di�erential inversion" is introduced in surface
wave inversion for the purpose of monitoring the temporal variations of medium.
We call it Di�erential Time-Lapse Surface Wave Inversion (DTLSWI). For the
proposed approach, two types of dispersion data di�erence are tested and com-
pared as inversion input data: the phase velocity di�erence and the phase ve-
locity dispersion diagram distance. The former is the simple di�erence between
two phase velocity dispersion curves, and the later is an innovative parameter
for surface waves inversion, based on a statistical distance and considering the
area of interest of the dispersion diagram as a histogram of phase velocity dis-
tributions. Both data di�erences are tested by numerical data and laboratory-
measured data, based on two-layer models and compared with classical surface
wave phase velocity dispersion curve inversion.

This chapter will be published in a few months as the second article associ-
ated to this thesis work. Thus, the presented structure follows this of a scienti�c
article and may provide repetitions with previous chapters, particularly in some
parts of the introduction.

4.1 Introduction

The monitoring of civil engineering structures and subsurface media is an im-
portant topic in current geophysical research. The variations of the medium
properties due to the environmental changes, or the inner damages due to the
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aging issue can potentially lead to collapsing phenomena. Among the non-
destructive seismic approaches, surface waves are widely used, thanks to their
high energy level and long propagation distances. We can cite, for example,
applicated targets like, the inner erosion in earthen dams and levees (Planès
et al., 2016), the velocity variations and attenuation due to the water in�ltra-
tion in see dikes (Joubert et al., 2018), the water lever variation in granular
media (Pasquet et al., 2016) and of shallow aquifers Pasquet et al. (2015a), and
the ground water storage at mesoscale (Lecocq et al., 2017).

There are three steps in the standard procedure of surface wave methods,
summarized as following. (1) Acquisition: the signal acquisition uses a series
of receivers to capture the arriving signals, emitted from an active source (e.g.
hammer) or a passive source (e.g. see waves). (2) Processing: the dispersion
data is extracted from the acquisition recordings and will serve as the inversion
input data, which could be the dispersion curve or the diagram of the phase
velocity, generally used for subsurface investigations. (3) Inversion: the proper-
ties of the medium, which is usually a depth pro�le of shear-wave velocity, are
inferred by solving an inverse problem.

The second step of the method mentioned above, considering a 1D lay-
ered medium for which the surface waves are dispersive, i.e. the phase velocity
depends on frequency, aims to extract the dispersion relation for further un-
derstanding of the medium properties. By applying signal processing on the
measured data, i.e. the seismogram in time-space domain, one extracts the dis-
persion relation of the medium from a dispersion diagram usually presented in
frequency-velocity domain. The maximum amplitude of the dispersion diagram
at a given frequency corresponds to the surface wave phase velocity (Vph). For
the third step of the method, the surface wave phase velocity (Vph) is an input
data classically used in the surface wave inversion process. The later looks for
the model of which the theoretical dispersion curve is the closest to the measured
one.

When inverting the surface wave phase velocity, the inversion can be per-
formed on one mode, generally the fundamental mode which is dominent, or
for several modes if they can be identi�ed. However, the study of Zhang and
Chan (2003) shows the di�culty of modes identi�cation, the failure of which can
lead to incorrect results. Moreover, in several cases, such as shear-wave velocity
decreasing as function of depth or if there are strong shear-wave velocity con-
trasts, the dispersion curve consists in superimposed modes, also called "e�ective
mode" (Tokimatsu et al., 1992). To overcome this problem, researchers have
proposed di�erent methods. Maraschini et al. (2010) propose to construct the
Thomson-Haskell matrix using the searched model parameter and the observed
dispersion curve. By minimizing the Thomson-Haskell matrix determinant, one
could estimate the model parameter corresponding to the measurement, with-
out the need of modes identi�cation. However, in this approach, the presence
of local minima is a major issue. Ryden and Park (2006) propose to invert the
dispersion diagram by de�ning its mis�t function involving the sum the each
pixel in the diagram which demands a high computational cost. These studies
and results show the interest of using the surface wave dispersion diagram as
inversion input data. In this regards, we can note that for each frequency, the
dispersion diagram forms a lobe with a particular shape which can be considered
as a distribution of velocity. Some information is contained in this velocity dis-
tribution shape, for example, the width of lobes, the amplitude, the integrated
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surface as function of velocity. Moreover, by using this part of the dispersion
diagram, which will be called "principal lobe" hereafter, it is possible to avoid
the noise contained in other parts of the diagram.

To take into account this information in the inversion process, we propose
to consider the dispersion diagram lobes as a set of histograms and assess the
histograms distance between measured and calculated data. Note that the ap-
proach of an alternative distance calculation for the inversion process was al-
ready conducted for other seismic data. For example, in the study of Engquist
and Froese (2013), the conventinal mis�t function, the L2 norm distance, is
replaced by the Wasserstein distance, which is a mathematical tool widely used
in optimal transport problems, for the comparison of 1D seismic signals. Then,
Métivier et al. (2016) expanded this method for the entire seismogram com-
parison using a variant of the Wasserstein distance. As far as our proposal is
concerned, the distances we implement come from the statistical domain, and
concern the early approaches in Arti�cial Intelligence for image recognition.

Indeed, as the computer power has been rapidly growing in the recent
decades, the machine intelligence is developed with high rapidity and widely
applied in both scienti�c research and daily life. To teach a machine how to
"think" like a human, one main task is the pattern recognition, which is "the
study of how machines can observe the environment, learn to distinguish pat-
terns of interest from their background, and make sound and reasonable deci-
sions about the categories of the patterns" (Jain et al., 2000). One of the best
approaches for pattern recognition is the statistical classi�cation (Duda et al.,
1973). Cha and Srihari (2002) introduced it to measure the distance between
two histograms. In this study, we introduce the histogram distance to measure
the di�erence between surface wave dispersion diagrams, which is called diagram
distance.

In parallel to the issue of input data for inversion, the monitoring approach
involves a key element: the sensitivity of the inverse method to variations,
possibly weak, of the medium parameters. The current available approaches for
surface waves and their key points are summarized below.

For the monitoring purpose, a series of measurements of the medium at dif-
ferent times can be used to estimate the temporal variations in the medium,
which is called time-lapse monitoring (Arts et al., 2003; Bergamo et al., 2016;
Planès et al., 2016). The dispersion data, extracted from the acquisition record-
ing at the initial state, is called the baseline and the dispersion data recorded
after a period of time is called the repeatline. When applying the inversion
procedure on the baseline and the repeatline, one makes a time-lapse inversion
(TLI), which is able to assess the medium properties' variation with time. The
classical time-lapse inversion includes two independent inversions on the baseline
and the repeatline, followed by the rebuilding of the medium properties.

Major concerns in the application of time lapse inversion are the indetermi-
nacy of the inversion results themselves in the case of weak variations from one
time step to another and the di�culty to make robust and informative inversion
of two data sets with close information but with noise. Strategies have been im-
plemented to overcome this problem in the context of monitoring underground
reservoirs, using the Full Waveform Inversion method (FWI). Watanabe et al.
(2004) proposed a di�erential method to invert the crosswell seismic data for
reservoir monitoring during gas production tests, using FWI in the frequency
domain. Instead of two independent inversions of the measured baseline and
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Figure 4.1: Work�ow of Double Di�erence Full Waveform Inversion (DDFWI).

repeatline and the extraction of the model parameter variations from the sub-
traction of the inversion results, this di�erential method (1) uses the inversion
result of the measured baseline to reconstruct a synthetic baseline; (2) adds the
subtraction of the measured baseline and repeatline to the synthetic baseline in
order to reconstruct a synthetic repeatline; (3) inverts the synthetic repeatline
using the inversion result of the measured baseline as the initial model; (4) sub-
tracts the inversion results of the measured baseline and repeatline to get the
model parameter variations. This method is also called the Double Di�erence
Inversion (DDI) and has been proved to produce more reliable estimation of
the medium changes compared to the conventional FWI where two independent
inversions are performed on the baseline and the repeatline data (e.g., Denli
and Huang (2009); Zhang and Huang (2013); Yang et al. (2013); Zheng et al.
(2011)). The work�ow of the DDI method is presented in Fig. 4.1.

This approach has some non-operabilities in the context of the surface wave
analysis using a global inversion technique. Actually, one advantage of the DDI
is that the inversion of the repeatline uses the inversion result of the baseline
as initial model, which is close to the true model of the repeatline, under the
circumstances of weak variations between baseline and repeatline. However,
this advantage disappears in the case of surface wave inversion with the global
search algorithm as no initial model is used. Nevertheless, by subtracting the
baseline and the repeatline, the synthetic repeatline contains the velocity vari-
ations caused by the model di�erence. Based on this idea, we propose to test
a new method for inverting the surface waves temporal variations in a global
research approach, which is the Di�erential Time-Lapse Surface Wave Inversion
(DTLSWI).

Based on the description above, a new surface wave inversion algorithm is
proposed in our study: the di�erential time-lapse surface wave inversion (DTL-
SWI), which uses the data di�erence between the baseline and repeatline as in-
version input data. Two data di�erence are tested in this study for comparison:
the Vph di�erence (Vph-DTLSWI) and the diagram distance (DD-DTLSWI). To
present this study and results, we �rst introduce the mathematical de�nition
of histogram distance for better understanding of the diagram distance in the
following. Then, two measurements gathers (on epoxy-resin models and mortar-
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concrete slabs respectively) are presented with details for a better application
and comprehension of the diagram distance. Finally, the DTLSWI approach is
tested numerically and experimentally, using the synthetic data and the labo-
ratory data respectively.

4.2 Histogram Distance

As proposed in introduction, the lobe shape of the fundamental mode in a dis-
persion diagram of surface wave data can be considered as a set of velocity
distributions (one per frequency). A histogram is an approximate represen-
tation of a data distribution. Comparing two histograms, i.e. �nding their
similarity and di�erence, is an important subject in pattern classi�cation and
clustering. There are two methodologies to measure a histogram distance: the
vector approach treats a histogram as a d-dimensional vector, such like city-

block (L1-norm), Euclidean (L2-norm) and correlation, etc. (Pass et al., 1997),
and the statistical approach regards the histogram as an empirical estimate
of a probability density distribution (PDF) (Duda et al., 1973), for example
Bhattacharyya distance (B-distance) (Kailath, 1967), Kullback-Leibler distance
(K-L distance) (Kullback and Leibler, 1951).

In the study of Cha and Srihari (2002), the authors have compared the di�er-
ent approaches of histogram distances and mentioned that a disadvantage of the
conventional methods of histogram distance calculation, is that the similarity
between histograms is not taken into account. To overcome this disadvantage,
Cha and Srihari propose a new method to measure the distance between ordinal
type histograms, i.e. the data described by the histograms are numbers, such
like ages, lengths, velocities, etc. It can be used in the study of the surface
wave velocity, to make a comparison between two dispersion diagrams. Thus,
we recall below the formulations of the six di�erent ways mentioned above for
calculating these distances between histograms which will be tested for DD-
DTLSWI in the following parts.

We use the following notations and symbols to de�ne a histogram. A set
X contains q elements: X = {x0, x1, ..., xi, ..., xq−1}, and each element xi is a
measurement. Consider a set of r elements A where A = {a0, a1, ..., aj , ..., ar−1}
and aj ∈ X. The histogram of the set A along the measurement xi is then

Hi(A) =

r−1∑
j=0

δij where δij =

{
1 if aj = xi ,

0 otherwise.
(4.1)

When a histogram is considered as a vector, the standard vector norms can
be used to measure the histogram distance as follows:

L1 norm:

DL1(A,B) =

q−1∑
i=0

|Hi(A)−Hi(B)|. (4.2)

L2 norm:

DL2(A,B) =

√√√√q−1∑
i=0

(Hi(A)−Hi(B))2. (4.3)
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Table 4.1: Number of students at each height range. 165 cm represents the
height range [164.5, 165.5] cm, same for the rest of height ranges.

height 165 166 167 168 169 170 171 172 173 174
H(A) 10 8 7 5 2 1 1 1 4 2
H(B) 8 7 3 5 2 1 1 3 4 7

Another approach to measure the histogram distance is to compute the corre-
lation, which can gives the degree to which two sets of measurement are linearly
related:

Dcorr(A,B) =
E[(H(A)−H(A))(H(B)−H(B))]

σAσB
, (4.4)

where E[·] is the expected value operator, H(·) is the mean value of the his-
togram and σA, σB are the standard deviations which are de�ned as

σA =

√√√√1

q

q−1∑
i=0

(Hi(A)−H(A))2, σB =

√√√√1

q

q−1∑
i=0

(Hi(B)−H(B))2 (4.5)

In the probability point of view, the histogram distance can be considered
as the overlap between two distributions. Here we de�ne the probability density
function as follows:

Pi(A) =
Hi(A)∑q−1
i=0 Hi(A)

. (4.6)

The B-distance measures the similarity between two probability distributions
(Kailath, 1967) and its formulation is

DBha(A,B) = −log
q−1∑
i=0

√
Pi(A)Pi(B). (4.7)

Another famous approach is the K-L distance which generalized Shannon's
concept of entropy (Kullback and Leibler, 1951; Shore and Gray, 1982)

DKL(A,B) =

q−1∑
i=0

Pi(B)log
Pi(B)

Pi(A)
. (4.8)

However, the common disadvantage of those distances is that, either the sim-
ilarity (the overlapping part of two distributions) or the di�erence (the vector
norms) is used to measure the histogram distance. Indeed, an e�cient compar-
ison of two histograms should contain information of both the similarity and
the di�erence. For this reason, Cha and Srihari have introduced a new mea-
sure of histogram distance, using the notion of the minimum di�erence of pair

assignments that will be used in this study:

Dord(A,B) =

q−1∑
i=0

|
i∑

j=0

(Hj(A)−Hj(B)) | . (4.9)

As an illustration of the principle, an example is given in Table 4.1. Fig.
4.2 shows the histograms H(A) (red bars) and H(B) (blue bars), assuming that
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Figure 4.2: Example of histograms H(A) (red bars) and H(B) (blue bars),
representing the number of students in each height class. The purple bars are
the overlapping parts of H(A) and H(B).

the height of two groups (A and B) of students is measured and presenting the
number of student respectively by two histograms H(A) and H(B) in the total
range [164.5, 174.5] cm. The purple bars are the overlapping parts of H(A) and
H(B), i.e. the equal number of students for each height class which is contained
in both groups A and B.

Using the histogram distances de�ned above, the histogram distances of
H(A) and H(B) are calculated as follows: DL1(A,B) = 14, DL2(A,B) = 7.07,
Dcorr(A,B) = 0.70, DBha(A,B) = 0.016, DKL(A,B) = 0.072, Dord(A,B) =
50. It is di�cult to tell which histogram distance(s) is (are) the best by sim-
ply comparing these values. In section 4, those histogram distances will be
applied for comparing two surface wave dispersion diagrams, where the advan-
tages and limits of each distance can be shown more clearly. In section 5, the
DD-DTLSWI, which uses the diagram distances as inversion input data, will be
applied on numerical data and laboratory data, in order to test the feasibility
of the use of diagram distance for the surface wave inversion.

4.3 Measured data

Two sets of laboratory ultrasonic measurements are presented in this section,
which will be used to test the DTLSWI approach. The �rst one is carried out
on four two-layer epoxy-resin models. These blocks are made for simulating
natural subsurface media at reduced scale. The shallow layer is similar for each
of them whereas the deep layer presents speci�c S-waves velocity for each one.
The second measurements are recorded on three two-layer slabs consisting of
a mortar layer on a concrete slab, where variations occur in the shallow layer
(mortar). The speci�cation of the models and data are summarized below. Note
that in case of the mortar-concrete slabs, internal non-homogeneity may occur.
Thus more cares are taken when processing the mortar-concrete slabs data and
the details will be given in the following.

4.3.1 Epoxy-resin models

Four reduced-scale models made of epoxy-resin (see Fig. A.1 in Appendix
A) have been designed in order to physically simulate a series of successive
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Table 4.2: C0 model parameters and dimensions. hi: layer thickness; l and
w: length and width of model. Scale ratio between the numerical and the
experimental model dimensions is 1000. A photo of one epoxy-resin model is
shown on Fig. A.1 in Appendix A.
layer Vpi [m/s] Vsi [m/s] ρi [kg/m3] νi hi [mm] l [mm] w [mm]
1 1300 703 450 0.29 7.2 265 235
2 2048 933 1300 0.37 203 265 235

measurements in a variable medium. The parameters m (compressional-wave
velocity Vp, shear-wave velocity Vs, density ρ and layer thickness h) and the
dimensions of the �rst model (named C0) are given in Table 4.2. To minimize
and delay the boundary e�ects, the size of model has been optimized and the
edges of the models are rounded using a radius larger than or equal to the central
wavelength (Pageot et al., 2015). The radius of the rounded edges is 12mm for
all the epoxy-resin models. Besides, the scale ratio between the numerical and
experimental model dimensions is 1000, i.e. 1m in the numerical model is 1mm
in the laboratory model, and 1Hz corresponds to 1 kHz (Pageot et al., 2017).

The three other models are respectively called C25, C45 and C65, which are
similar in shape to the C0 model. The shear-wave velocities of the deep layer
of C25, C45 and C65 models are respectively 990m/s, 1038m/s and 1086m/s.
We introduce here the variation ratio α(Vsi , X, Y ) to describe the change of
shear-wave velocity Vsi of model Y in the i-th layer, with respect to the X
model:

α(Vsi , X, Y ) =
Vsi(Y )− Vsi(X)

Vsi(X)
. (4.10)

Substituting X by C0 and Y by C25, C45 and C65, the corresponding variation
ratios of the deep layer are 6%, 12% and 17%.

The measurements recorded on the epoxy-resin models have been conducted
in the MUSC (Measurement at Ultrasonic SCale) laboratory which makes it
possible to carry out seismic analogical measurements at reduced scale. A Ricker
wavelet with a central frequency of 100 kHz was generated with a dry contact
point piezoelectric transducer and the signals were recorded with a moving laser
interferometer, with a sampling rate equal to 10MHz (see Fig. A.1 (a) in
Appendix A for an illustration of the experimental set-up). Fig. A.1 (b) in
Appendix A shows the position of the piezo-electric source and the measurement
points of the laser receivers. The receivers distances to the source position
are x ∈ [12, 102]mm with a receiver spacing of 1mm for the experimentation
conducted in this study. More speci�cations of the MUSC measurement bench
are available in Bretaudeau et al. (2011). Like all the recordings published from
the MUSC bench, the measurements are available to the scienti�c community
and can be obtained as free data on request by email.

The measured seismograms for the four models are presented in Fig. A.2
in Appendix A. To see the di�erence, the seismograms are superimposed and
zoomed in the zone t ∈ [0.1, 0.3]ms and x ∈ [92, 101]mm. We note the very
slight di�erences between two successive data-sets carried out on models with
close velocities. The phase velocity dispersion diagrams (Fig. 4.3, (a) to (d))
are then extracted from the measured seismograms, using the phase-di�erence
processing method (Park et al., 1998, 1999; Mokhtar et al., 1988). The dis-
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Table 4.3: The parameters and dimensions of mortar-concrete slabs D01, D06
and D08. w/c is the water-to-cement ratio of the mortar layer. h, l, and w are
the thickness, the length and the width of the layers and slabs.

The parameters and dimensions of the slab D01.

layer w/c Vp [m/s] ρ [kg/m3] h [m] l [m] w [m]
mortar 0.40 3660 2100 0.03 1.2 0.8
concrete - 4300 2400 0.2 1.2 0.8

The parameters and dimensions of the slab D06.

layer w/c Vp [m/s] ρ [kg/m3] h [m] l [m] w [m]
mortar 0.55 3150 2000 0.03 1.2 0.8
concrete - 4300 2400 0.2 1.2 0.8

The parameters and dimensions of the slab D08.

layer w/c Vp [m/s] ρ [kg/m3] h [m] l [m] w [m]
mortar 0.70 2642 1870 0.03 1.2 0.8
concrete - 4300 2400 0.2 1.2 0.8

persion diagrams are calculated in the frequency range [20, 150] kHz in order
to visualize the fundamental mode and the �rst higher mode for all epoxy-
resin models. At each frequency, the phase velocity is limited in the velocity
range [500, 1100]m/s with the resolution 1m/s. Black dots in each diagram
correspond to the maximum amplitude at each frequency, i.e. the picked phase
velocity dispersion curve. Red dots show the limits of the principal lobe where
the energy is most contributing (the limits of principal lobe are calculated ana-
lytically using Eq. 4.19 as explained in section 4.1). The normalized amplitude
of diagram at frequency f = 45Hz and f = 85Hz are presented in Fig. 4.3,
(e) and (f), as function of velocity.

4.3.2 Mortar-concrete slabs

Three mortar-concrete slabs are used and each slab is made by a layer of mortar,
superimposed on the surface of a concrete slab. The mortar layers of the three
slabs have di�erent water-to-cement ratio (w/c) which changes the mechanical
properties of each slab. The parameters and the dimensions of the slabs are
given in Table 4.3. The compressional-wave velocities of mortar layers are
determined using the seismic refraction method (Press et al., 1954; Palmer,
1981).

The experimental set-up is made by an ultrasonic source and a receiver
probe of 16 receivers. For the measurement of each slab, four sources (54 kHz,
100 kHz, ACS1 and ACS234, see Fig. B.2 in Appendix B) are used separately
in order to average the response of the sensors and improve the signal-to-noise
ratio. For each measurements, the probe is reinstalled �ve times in a row to
have 80 traces in total. The sampling rate is equal to 5MHz.

The dispersion diagrams are extracted using the phase-di�erence processing
method, with f ∈ [5, 80] kHz and v ∈ [1300, 2700]m/s (velocity resolution
equals to 2m/s). The �nal dispersion diagrams and the dispersion curves of
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Dispersion diagrams for the epoxy-resin model (a) C0, (b) C25,
(c) C45 and (d) C65. Dispersion curves (black dots) and the the limits of the
principal lobe (red dots) are presented in the frequency range [40, 90] kHz that
will be used in the inversion (see section 5.2 for more details). The white lines
in diagrams at f = 45Hz and f = 85Hz correspond respectively to the phase
velocity distributions in (e) and (f).
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each slab are obtained after averaging the measured diagrams using the four
sources. The dispersion diagrams are picked manually at certain frequencies
due to the lack of energy of the source. The dispersion curves of each slab using
the four sources and the �nal dispersion curve after manual picking are available
in Fig. B.3 In Appendix B. The �nal dispersion diagrams and the dispersion
curves are presented in Fig. 4.4.

4.4 Diagram Distance

The inversion methodology proposed in this article is based on two innovative
aspects: �rstly by using an innovative distance for calculating di�erences be-
tween parts of dispersion diagrams and secondly by inverting this di�erence
itself thus carrying out a di�erential inversion process. Concerning the calcu-
lation of the di�erence between calculated or measured data, we propose to
use a distance of two dispersion diagrams by assimilating the velocity lobes as
histograms of velocity distribution for each frequency taken into account. The
di�erence between these histograms, called here the phase velocity diagram dis-
tance (or diagram distance) is based on a statistical distance. Several of them,
which will be tested in this study, have been presented previously (section 2).
In order to further describe the principle of this approach, we summarize be-
low the computational method used to compute the dispersion diagram and the
way we extract part of the information of interest for the study, i.e. the velocity
lobe corresponding to the fundamental mode. Finally, we examine the evolution
of these lobe distances in the case of laboratory measurements on epoxy-resin
blocks presented above.

There are several processing methods to extract the dispersion diagram from
a multi-receiver seismogram, such as the f−k method (Yilmaz, 1987), the τ −p
transform (McMechan and Yedlin, 1981), the phase-di�erence method (Mokhtar
et al., 1988; Park et al., 1998) and the linear Randon transformation (Luo et al.,
2008). Among them, the phase-di�erence method extracts the dispersion dia-
gram by, �rstly, a 1D Fourier Transform to have amplitude spectrum at each
o�set, then, an integration of normalized amplitude as function of the o�set to
have a frequency-velocity spectrum. The diagrams presented in this article are
extracted using this method as it provides a high spectrum resolution of the
dispersion diagram with an optimized number of receivers (Park et al., 1999;
Xia, 2014; Socco et al., 2010).

As previously mentioned, only an optimal comparison zone is used: the
principal lobe of the diagram where surface wave energy concentrates. Thus,
noise occurring in other parts of the diagram is avoided. This strategy makes
the inversion more robust in case of monitoring. Moreover, note that in our
study, only the fundamental mode is taken into account even if further studies
will be planned to tackle information included in the lobes of higher modes.

4.4.1 Zone of comparison: Principal lobe calculation

When using the phase-shift method (Park et al., 1998) to extract the dispersion
diagram of surface wave phase velocity, one can obtain the width of the lobes,
among which, the principal lobe contains the most part of the energy. A set
of receivers are used to record the particle movement and the recorded signal
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(a)

(b)

(c)

Figure 4.4: The dispersion diagrams of slab D01 (a), D06 (b) and D08(c). The
red dots present the dispersion curve of each slab.
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is a seismogram in time-o�set domain, noted as s(t, x). Applying 1D Fourier
transform, one gets the spectrum in frequency-o�set domain:

S(f, x) =

∫
t

s(t, x)ej2πftdt. (4.11)

Supposing that the source signal at position x = 0 can be written as R(f) =
A(f)e−jφ(f) with A(f) and φ(f) the corresponding amplitude and phase, as
function of frequency. When the surface wave is propagating in an elastic
medium, after a propagation distance x, the recorded signal is

S(f, x) = A(f)e−jφ(f)e
−j2πf x

Vph (4.12)

with Vph the surface wave velocity at frequency f . The phase-di�erence
method (Park et al., 1998) calculates dispersion diagram as follows:

D(f, v) =

∫
x

S(f, x)

|S(f, x)|
ej2πf

x
v dx. (4.13)

Substituting Eq. 4.12 in Eq. 4.13, one can write

D(f, v) = e−jφ(f)

∫
x

e
j2πf( xv−

x
Vph

)
dx. (4.14)

The width of lobes of the diagram D(f, v) corresponds to velocities v for
which D(f, v) = 0. Thus, values of v must verify:∫

x

e
j2πf( xv−

x
Vph

)
dx = 0. (4.15)

Assuming that the receivers are organized in the space vector x ∈ [xbegin, xend],
Eq. 4.15 implies:

1

j2πf( 1
v −

1
Vf

)

[
e
j2πf( 1

v−
1
Vph

)x
]xend
xbegin

= 0, (4.16)

2πf(
1

v
− 1

Vph
)(xend − xbegin) = 2nπ, n 6= 0, (4.17)

which can also be written as:

1

v
=

1

Vph
+

n

f(xend − xbegin)
, n 6= 0. (4.18)

The velocity can then be deduced using Eq. 4.18

vn =
1

1
Vph

+ n
f(xend−xbegin)

, n 6= 0. (4.19)

In Eq. 4.19, when n ≤ 0, vn corresponds to the limits of the lateral lobes on the
right hand-side of the principal lobe; when n ≥ 0, vn is the limits of the lateral
lobes on the left hand-side. The limits of the principal lobe used hereafter are
obtained when n = ±1 (v−1 and v+1).

Eq. 4.19 indicates that the width of the lobe is dependent on the receiver
array length. A longer length leads to a smaller lobe width, i.e. a better
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(a) (b)

(c) (d)

Figure 4.5: Numerical (a) and experimental (c) dispersion diagrams and the
velocity distribution (b) and (d) at f = 50Hz. The medium parameters of the
numerical dispersion diagram are presented in Table 4.2 and the experimental
dispersion diagram is that of the epoxy-resin model C0. The receiver array
length (= xend− xbegin) is 89mm. The limits of �rst lobes are presented as the
dotted line in (b) and (d) of which the values can be veri�ed by Eq. 4.19 for
n = ±1.

resolution of the dispersion diagram. In fact, when n = 0, v = Vf , which
corresponds to the position of the maximum value of the dispersion diagram.

The principal lobe analytical limits(i.e. v−1 and v+1) are calculated for
illustrative tests in Fig. 4.5, with both numerical and experimental diagrams.
The experimental diagrams come from the reduced-scale two-layer model C0
introduced in Section 3.1. The associated numerical model uses the medium
parameters presented in Table 4.5 and reproduces the experimental set-up
of the model C0 in order to generate comparable numerical data. At f =
50 kHz, the corresponding phase velocity of numerical and experimental models
are respectively 740.5m/s and 734.5m/s. Taking these values as Vf and n = ±1
in Eq. 4.19, one can recover the limits of the principal lobes of these two
diagrams which are presented in Fig. 4.5 (b) and (d).

It should be pointed out that only the principal lobe of the diagram is used
as a comparison zone because it is the most energetic part of the diagram and
it eliminates the lack of energy issue at lateral lobes. However, Eq. 4.19 is
not validated when multiple modes appear at high frequencies. In this case, one
could choose, instead of one part of the velocity distribution (the principal lobe),
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the total velocity distribution which includes all the modes as the comparison
zone. This complexity is beyond the scope of this paper.

4.4.2 Diagram distance of epoxy-resin model data

Considering the principal lobe of the dispersion diagram as a set of histograms
of the velocity distributions (i.e. one for each frequency), we can apply the
statistical distances described in section 2 for assessing the di�erence between
two dispersion diagrams as a function of frequency:

DD(A,B, f) = Dtype(D(A, f), D(B, f)). (4.20)

DD(A,B, f) is the diagram distance of two diagrams D(A, f) and D(B, f),
with D(A, f) and D(B, f) being the velocity distributions of two dispersion
diagrams A and B, at frequency f . Dtype is the histogram distance, where
the subscript "type" indicates the type of statistical distance used among those
introduced in Section 2 (DL1, DL2, Dcorr, DBha, DKL, Dord).

The diagram distances of the epoxy-resin models in Section 3.1 are therefore
calculated, using the principal lobe only. Before calculating the distance of two
diagrams, it should be clari�ed that, in order to consider the velocity distribution
as an histogram and to make possible comparison between two of them, the
velocity distribution, considered as an histogram, is normalized so that the
total surface of each principal lobe equals to 1 (see Appendix C Fig. C.2 (b)).

As described in section 3, the di�erences between the properties of epoxy-
resin models concern only the deep layer; the shallow layer remains similar in
all models. This feature indicates that the di�erences are expected for the lower
frequencies, that is, we expect a greater distance at low frequencies and a smaller
distance at high frequencies. Fig. 4.6 (a) presents the diagram distances of the
epoxy-resin models C0 and C25. Taking into account the feature expected for
higher and lower frequencies, the curves shapes show that the L1-norm and the
L2-norm distances do not well provide information about the expected similarity
at high frequencies. The B-distance and the correlation also show slightly larger
deviations for higher frequencies. The K-L distance shows a decay curve but the
ordinal type distance seems a priori the best way to indicate similarity for higher
frequencies compared to lower frequencies because the decay is the strongest.

In order to con�rm this feature we assess the e�ects of the several distances
on a mis�t value used in the inversion process. For that, a series of synthetic
diagrams (names C̃x) are then generated, based on the baseline C0 parameters
as well as the experimental set-up, for the variation ratio α(Vs2 , C0, C̃x) ∈
[0, 20]%. The distances of the synthetic diagrams and the measured diagram
of C0 are calculated using Eq. 4.20 and named DD(C0, C̃x, f). Here, we
introduce a L2 norm objective (or mis�t) function to estimate the di�erence
between the measured and synthetic dispersion distances:

misfit =

√
1

Nf

∑
f

(DD(C0, C25, f)−DD(C0, C̃x, f))2 (4.21)

with Nf the number of data in the frequency domain and DD(C0, C25, f) the
measured diagram distance of the measured diagrams of C0 and C25. We use
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(a) (b)

Figure 4.6: (a) Diagram distances of models C0 and C25, normalized by the
maximum values. (b) Normalized mis�t values between the distances of mea-
sured data (C0 and C25) and a series of synthetic diagrams.

the exponential function in order to have the mis�t values ranged in [0, 1]:

P = exp(−misfit). (4.22)

The mis�t values are presented in Fig. 4.6 (b), as function of α(Vs2 , C0, C̃x).
The behaviors of the mis�t evolution for the di�erent distances show that the L1-
norm and the L2-norm distances have biased α(Vs2 , C0, C25) values because the
minimum mis�t values are between 7.5% and 10% whereas the actual discrep-
ancy between Vs2 in C0 and C25 models is 6%. The correlation, the B-distance
and the K-L distance can estimate the actual variation between the two models,
but the ordinal type distance can not only estimate the variation between C0
and C25, but also has bigger mis�t values when α(Vs2 , C0, C25) < 5%. This
means the ordinal type distance better discriminates the di�erences between
DD(C0, C̃x, f) and DD(C0, C25, f). Thus it will be able to �nd the best result
more e�ciently in an inversion process because presenting the mis�t values as
function of α(Vs2 , C0, C̃x) is a simpli�ed inversion process: the model param-
eter Vs2 varies linearly in a given range and the calculated diagram distances
are compared with the measured diagram distance. In the following section, the
new inversion process for monitoring purpose based on this statistical distance,
i.e. ordinal type distance, applied on the principal lobe will be numerically and
experimentally tested, using the laboratory data presented in section 3.

4.5 Time-lapse surface wave inversion

The objective of time-lapse inversion is to �nd out the variation of the medium.
Classically, one would invert the measured data, baseline and repeatline, sepa-
rately, then the variation would be extracted by calculating the di�erence be-
tween the inversion results. The innovate point of our approach is to use the
di�erence between baseline and repeatline as inversion input data. The work-
�ow of the process is presented in Fig. 4.7. The baseline b is the measured
data at time t0. The repeatline r is another measurement at time t1. Diff(b, r)
is the di�erence between the baseline and the repeatline, which is the inversion
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input data. b′ and r′ are the estimated data associated to the searched models
for the baseline and the repeatline.

With m representing the model parameters, the searched model in the in-
version, m′, is modi�ed at each iteration. It is used to calculate the synthetic
repeatline r′. The baseline b′ can be synthetic, calculated with parameters in-
verted from measurement b, or directly the measured data, i.e. equal to b. Since
the Diff(b′, r′) is the inversion input data, its calculation is the most important
part in the inversion process. Using a synthetic b′ ensures that the di�erence
between b′ and r′ depends only on the variation of the models. Other e�ects,
such as the noise and the attenuation, are under control and can be eliminated.
But if the synthetic baseline is not close enough to the measured baseline, i.e.
if the �rst inversion of b is not accurate enough for providing parameters to
calculate b′ , it can bias the di�erential inversion results. To avoid the issue of
biased inversion results of b, we use the measured instead of synthetic baseline
in the inversion process, i.e. b′ = b.

One of inversion input data, which is tested in this study for comparison
to the diagram distance, is the Vph di�erence. The Vph di�erence is the simple
di�erence between the phase velocity of the baseline and the repeatline as

Dvph(b, r, f) = V bph(f)− V rph(f). (4.23)

The di�erential time-lapse surface wave inversion using Dvph as inversion input
data will be abbreviated as "Vph-DTLSWI" in the following.

The other tested inversion input data is the diagram distance with the ordinal
type distance, which is introduced in section 4.2 (Eq. 4.20). We should note
that the de�nition of the ordinal type distance (Eq. 4.9) has a reciprocal
property, which can be expressed as

Dord(A,B) = Dord(B,A). (4.24)

It is unconvenient to use directly this formulation since the increase or the
decrease of the surface wave velocity at one given frequency has a major physical
meaning (see Appendix C Fig. C.1 (c) and (d)). To circumvent this di�culty,
we propose a slightly alternative de�nition of the ordinal type histogram dis-
tance, where the absolute value of the cumulative summation is removed:

D′ord(A,B) =

q−1∑
i=0

i∑
j=0

(Hj(A)−Hj(B)). (4.25)

The reciprocal property of the ordinal type histogram distance has vanished.
This prevents the bias of the inversion results. Indeed with Eq. 4.25, the
sense of variation of the phase velocity between the baseline and the repeatline
is correctly taken into account in the inversion process. The DTLSWI using
diagram distance as inversion input data will be called as "DD-DTLSWI" in
the following.

The inversion method used in this study is the Neighborhood Algorithm
(NA), which makes use of Voronoi cells to compute the mis�t function in the
parameter space, where the pseudo-random samples are generated at each iter-
ation and then guided and improved by the samples generated at the previous
iteration (Sambridge, 1999b; Wathelet, 2008).
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baseline b repeatline r baseline b′ repeatline r′

Diff(b, r) Diff ′(b′, r′)

mis�t(Diff ,Diff ′)

convergence

inverted model m

modi�ed model m′

No

model iteration

yes

measured data

Figure 4.7: Work-�ow of di�erential time-lapse surface wave inversion (TL-
SWI). Baseline and repeatline (b and r respectively) are the measured data
of a medium at di�erent time. The Diff(b, r) is the di�erence between two
data-sets which can be replaced by Dvph(b, r, f) (Eq. 4.23) or DD(b, r, f) (Eq.
4.20). b′ and r′ are the estimated data associated to the searched models for
the baseline and the repeatline.
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Table 4.4: Baseline model parameters for the numerical tests.
layer Vpi [m/s] Vsi [m/s] ρi [kg/m3] νi hi [m]
1 1300 709 450 0.29 7.2
2 2048 938 1300 0.37 ∞

4.5.1 Numerical Tests of the DTLSWI

To verify the feasibility of DTLSWI, several numerical tests are performed. The
inversion results are compared with the classical surface wave phase velocity in-
version (abbreviated as Vph-SWI), as described in the introduction. The baseline
is a two-layer medium, with a layer superimposed on a semi-in�nite medium.
The model parameters of the baseline in given in Table 4.4. Four repeatlines
are considered: the deep layer shear-wave velocity Vs2 increases and the varia-
tion ratios α(Vs2 , b, r) (Eq. 4.10) are respectively equal to 1%, 3%, 5%, 10%
and 15%.

The theoretical dispersion curves are used in the Vph-SWI and the Vph-
DTLSWI. The synthetic seismograms are calculated using the theoretical dis-
persion curve of the phase velocity of the medium under consideration. Here we
reproduce the measurement's set-up used in laboratory MUSC for the epoxy-
resin models (section 3.1). The resulting seismogram is used to extract the
synthetic dispersion diagram for DD-DTLSWI. We should remind that only the
fundamental mode is taken into account.

The synthetic dispersion diagrams are then calculated using the phase-shift
method in the velocity range [500, 1300]m/s with the velocity resolution equal
to 1m/s, and in the frequency range [30, 150]Hz. The same frequency range
is used to calculate the theoretical dispersion curves which will be used in the
Vph-SWI and the Vph-DTLSWI.

As we mentioned in the beginning of section 5, the NA is used in the in-
version, for which, several tuning parameters are needed: ns0 = 50 the number
of samples randomly distributed in the parameter space as well as the Voronoi
cells number at the initial iteration; nr = 10 the number of best cells to con-
sider for the next iteration; ns = 10 the number of new generating samples at
each selected cell; and ni = 10 the total number of iteration. Finally, a total of
1050(= ns0 + nr × ns × ni) models are searched in each inversion.

In these inversion tests, we �x Vp and ρ of each layer and invert the shear-
wave velocities Vsi of the two layers and the thickness of the �rst layer h1. Vs1
is searched in the range [500, 900]m/s, Vs2 in the range [900, 1300]m/s and the
thickness in the range [7.0, 7.5]m.

Fig. 4.8 (a) presents the convergence curves of Vph inversion, Vph-DTLSWI
inversion and DD-DTLSWI, for the model C25. The mis�t value at each iter-
ation is calculated using the Eq. 4.22. Since the mis�t function is used two
di�erent data (phase velocity or histogram distance at each frequency), the orig-
inal values of mis�t are not directly comparable. In Fig. 4.8 (b), the mis�t
values of each curve are normalized as follows:

Pn =
Po −min(Po)

max(Po)−min(Po)
. (4.26)

Po is the original mis�t value calculated for each searched model using Eq.
4.22 (Fig. 4.8 (a)) and Pn is the normalized mis�t value (Fig. 4.8 (b)).
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(a) (b)

Figure 4.8: Convergence curves of the DD-DTLSWI, Vph-DTLSWI and Vph-
SWI, as function of the iteration number.

After normalization, the convergence curve of each inversion is limited between
[0, 1] where 0 represents the worst inverted model and 1 represents the model
which is the closest to the measured one. In Fig. 4.8 (b), one can see that the
Vph inversion converges very quickly when the iteration number is around 400.
And the Vph-DTLSWI and the DD-DTLSWI need more iterations number for
converging (nearly 900 iterations).

Considering a threshold of 90%, which corresponds to the red line in Fig.
4.8, the inverted models above this line from every inversion of repeatline are
selected and presented in Fig. 4.9, using the DD-DTLSWI, Vph-DTLSWI and
Vph-SWI respectively. Fig. 4.9 (a) and (b) show that the inverted results
of each repeatline are highly concentrated so that each group of results can be
easily separated from each other. However, the results of Vph-SWI (Fig. 4.9
(c)) shows that Vs2 cannot be distinguished for variation ratios less than 10%.
The main reason is that the classical Vph-SWI is not sensitive enough to estimate
the small variations between models, especially for the variations in the deep
layer (Wang et al., 2020b). As a consequence, the mis�t function converges
rapidly, as we can see in Fig. 4.8. The number of selected models for the
Vph-SWI is around 1000 (from the iteration number ≈ 200), but the numbers of
selected models for Vph-DTLSWI and DD-DTLSWI are only 300 models (from
iteration number ≈ 800).

These inversion tests show the ability of the new time-lapse inversion ap-
proach to estimate the variation of shear-wave velocity in the deep layer, using
synthetic signals based on a two-layer semi-in�nite medium. However, since the
dispersion diagram, instead of the theoretical dispersion curve, is calculated for
each searched model in the inversion, this approach is more time consuming
than the Vph inversion or the Vph-DTLSWI. Nevertheless, if the number of it-
eration is su�cient for the convergence, the inversion results are more reliable
than the Vph inversion.

4.5.2 Application on the epoxy-resin models

The dispersion curves of the four epoxy-resin models are presented in Fig. 4.10
(a). As mentioned in the previous section, the variations between models are in
the deep layer, which leads to the di�erences of phase velocity at low frequencies.
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(a) (b) (c)

Figure 4.9: Inversion results using synthetic signals for models with 1% (blue),
3% (orange), 5% (green), 10% (red) and 15% (purple) variations. (a) DD-
DTLSWI. (b) Vph-DTLSWI. (c) Vph-SWI. The models are selected by the 90%
threshold.

(a) (b) (c)

Figure 4.10: (a) Dispersion curves of epoxy-resin models. (b) The Vph di�erence
between models (c) The ordinal type distances between models Eq. 4.25. The
absolute values are presented for a better visualization.

The shallow layer of the models should be identical but through the measured
dispersion curves, one can see that the Vph of C0 model at high frequencies
are slightly smaller than other models. This di�erence is probably due to the
manufacture of the resins. Besides, the di�erence between models C0 and C25 is
the largest, and on the contrary, the di�erence between models C45 and C65 is
the smallest. This can be veri�ed by calculating the distances between measured
diagrams (Fig. 4.10 (b)).

The DTLSWI approach is now applied on the measured diagrams of the
epoxy-resin models. Three pairs of models are inverted: C0/C25, C25/C45,
C45/C65 which follow the gradual increase of the shear-wave velocity in the
deep layer. Vp and ρ are �xed in the inversion and the a priori information for
Vs and h1 are: Vs1 ∈ [500, 900]m/s, Vs2 ∈ [900, 1300]m/s, h1 ∈ [7.0, 7.5]mm.
The deep layer are considered as semi-in�nite. The frequency range of the
inversion is [40, 90] kHz.

In Fig. 4.11, the inversion results are presented for the Vph-SWI (red dots),
Vph-DTLSWI (purple dots) and DD-DTLSWI (blue dots). In each sub-�gure,
there are 1050 inverted models (ns0 = 50, ns = nr = ni = 10) for each color.
On the top and the left images, Vs1 and Vs2 are presented with the mis�t value,
normalized using Eq. 4.26. The central parts of the images (bottom right)
present the inverted models as function of Vs1 and Vs2 .

Fig. 4.11 shows that the inversion results of Vph-DTLSWI and DD-DTLSWI
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(b)

(c)

Figure 4.11: Inversion results for (a) C25; (b) C45; (c) C65. Blue: results for
the DD-DTLSWI. Purple: Results for the Vph-DTLSWI. Red: results for the
Vph-SWI.
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Table 4.5: Mean values of selected models for the three epoxy-resin models
inversion. Unity: [m/s].

model
true values Vph-SWI Vph-DTLSWI DD-DTLSWI
Vs1 Vs2 Vs1 Vs2 Vs1 Vs2 Vs1 Vs2

C25 708 990 708 1003 708 1003 708 993
C45 708 1038 709 1060 709 1061 709 1050
C65 708 1086 706 1096 706 1098 706 1076

are better distributed than that of Vph-SWI. The reason is the same as men-
tioned in the numerical tests: classical Vph-SWI is not e�cient for discriminating
the di�erences between models with small variations. From the family of mod-
els which have similar mis�t function (the red dots in Fig. 4.11), it is di�cult
to �nd out which model(s) is(are) the best �tting one(s) to recover the model
associated to measured data.

Table 4.5 gives the mean values of the shear-wave velocities of the selected
models for the three inversions (Vph-SWI, Vph-DTLSWI, DD-DTLSWI), using
the 90% threshold for the normalized mis�t function (Eq. 4.26). The inversion
results for Vs1 have negligible di�erences (less than 1m/s di�erence with the
true values). Compared to the other two inversion methods, the DD-DTLSWI
has the closest inversion results to the true Vs2 values, for all three epoxy-resin
models.

4.5.3 Application on the mortar-concrete slabs

The application of DD-DTLSWI and Vph-DTLSWI on the laboratory data has
proved the feasibility of this method. However, the epoxy-resin models that we
measured are homogeneous and the measured data (phase velocity dispersion
curves and diagrams) are fairly smooth and regular. In this part of study, we
apply the new approach on three mortar-concrete slabs (D01, D06, D08), in
which the materials properties are more heterogeneous resulting in imperfect
measured data, i.e. phase velocity dispersion curves and diagrams (Fig. 4.4).

In Fig. 4.12 (a), the dispersion curves of the three slabs are presented.
The di�erence between slabs can be estimated through the dispersion curves:
the changes of the mortar layers (shallow layer) correspond to the di�erences at
high frequencies. However, di�erences can also be seen at low frequencies. This
indicates that changes also occur in the concrete slabs (deep layer), which were
meant to be identical for the three slabs. The L1 norm di�erence between Vph
and the ordinal type diagram distances in Fig. 4.12 (b) agree with the varia-
tions in the dispersion curves and show that the variations are more important
between the slabs D08 and D06.

The inversions are performed as shown in Table 4.6. The a priori infor-
mation for each group is di�erent but we keep the velocity range identical for
the three inversions. The inversion results are presented in Fig. 4.13. The
inverted models of time-lapse inversions (purple dots for TL Vph inversion and
blue dots for diagram inversion) are more concentrated than the Vph inversion
(red dots) with a slight di�erence at the center of each inversion.

In order to have a quantitative estimation of the inversion results, the mean
value of the 200 best inverted models for each inversion is calculated, named
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(a) (b) (c)

Figure 4.12: (a) The dispersion curves of the three slabs. (b) The Vph di�erence
between slabs. (c) The ordinal type distance between slabs. Absolute values
are presented for better observation.

Table 4.6: Three groups of inversions and corresponding a priori information.
baseline repeatline Vs1 [m/s] Vs2 [m/s] h1 [mm]
D06 D01 [1900, 2200] [2100, 2600] [20, 40]
D08 D06 [1700, 2000] [1900, 2400] [20, 40]
D06 D08 [1400, 1700] [1800, 2300] [20, 40]

m200, where m can be replaced by Vs1 or Vs2 . The values are presented in the
Table 4.7. One sees the shear-wave velocity variations in the mortar layers
which corroborate to the compressional-wave velocity variations obtained from
the seismic refraction method (see section 3.2). Variations are estimated in the
concrete deep layer, which are expected to be identical by the manufacturer.
The inversion results obtained by the three inversion approaches have slight
di�erences in Vs1 : ∆V 1(D01) < 3m/s, ∆V 1(D06) < 5m/s, ∆V 1(D08) <
3m/s, compared to the mean value of inverted V s1 for each slab. The errors
of the inverted Vs1 with respect to the mean value are less than 0.3%. The
di�erences of inverted Vs2 are ∆V 2(D01) < 11m/s, ∆V 2(D06) < 12m/s,
∆V 2(D08) < 18m/s, which gives a maximum error of 0.9%. The inversion
results of the three inversion methods are in good agreement, which validates the
use of DTLSWI in medium with higher heterogeneity than epoxy-resin models.

Then m200 is taken as reference value to calculate the standard deviation of
each inversion, as function of iteration number:

std(m,n) =

√√√√ 1

N − n

N∑
n

(mn −m200)2, (4.27)

with n the iteration number and N the total number of iteration, m the model
parameter (Vs1 or Vs2).

The standard deviations of the inverted models are presented in Fig. 4.14.
As shown in Fig. 4.13, the inverted Vs1 are concentrated for all three inversions.
Thus the di�erences between the std(Vs1 , n) (Fig. 4.14 (a)) are not signi�cant.
However, in Fig. 4.14 (b), the Vph-DTLSWI and the DD-DTLSWI have
smaller standard deviations for slabs D06 and D08. And the DD-DTLSWI has
the smallest standard deviations for slab D01. When n ≈ 1000, std(Vs2 , n) of
the two time-lapse inversions are greater than that of the Vph inversion with
a small value, since the Vph inversion converges more rapidly than the other
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(a)

(b)

(c)

Figure 4.13: Inversion results for (a) D01; (b) D06; (c) D08. Blue: results for
the diagram inversion. Red: results for the Vph inversion.
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Table 4.7: Mean values of the inverted shear-wave velocities Vs1
200

, Vs2
200

for
the three slabs. Unity: [m/s].

slab
Vph-SWI Vph-DTLSWI DD-DTLSWI

Vs1
200

Vs2
200

Vs1
200

Vs2
200

Vs1
200

Vs2
200

D01 2030 2212 2032 2214 2035 2203
D06 1842 2101 1837 2089 1837 2092
D08 1524 1930 1521 1912 1523 1929

(a)

(b)

Figure 4.14: Standard deviations of each inversion: (a) std(Vs1 , n); (b)
std(Vs2 , n).

time-lapse inversion.

4.6 Conclusion

In this study, we propose a di�erential time-lapse inversion approach for the
monitoring of weak temporal variations, using the surface wave methods. In-
stead of applying independent inversions on the measured data, the DTLSWI
uses the data di�erence as the inversion input data. Two DTLSWI approaches
have been tested with two inversion input data: the �rst one is the simple dif-
ference between the phase velocities of the measured baseline and repeatline;
the second one is the diagram distance of the dispersion diagrams of the base-
line and repeatline. The diagram distance, based on the histogram distance,
measures the distance between two dispersion diagrams, by regarding the dis-
persion diagram amplitude at one frequency as a distribution of velocity. Using
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synthetic data to test di�erent histogram distances, the ordinal type distance is
shown to have the best behavior thanks to its ability to measure the similarity
and the di�erence between two histograms at the same time.

The Vph-DTLSWI and DD-DTLSWI have been tested on the numerical data
and compared with the classical surface wave phase velocity inversion. Both
DTLSWI can better estimate the variation of shear-wave velocity in the deep
layer than Vph-SWI. Then the laboratory data are used to verify the feasibility
of the DTLSWI. The �rst laboratory data are recorded on four epoxy-resin
two-layer models, with weak variations in the deep layer. Although Vph-SWI
converges faster than DTLSWI, the inversion results of the DTLSWI are more
concentrated than the Vph-SWI for both layers, which makes it easier to estimate
the model variations. All three inversions have a good estimation of the shear-
wave velocity of the shallow layer, but for the deep layer, DD-DTLSWI has
the best inversion results compared to that of Vph-SWI and Vph-DTLSWI. The
second laboratory experiments are made on three mortar-concrete slabs, where
the mortar layer (top layer) of each slab has di�erent water-to-cement ratio. A
good agreement between the results of the three inversion methods validates
the use of DTLSWI in a medium with higher heterogeneity. However, the DD-
DTLSWI is the most time-consuming because the synthetic dispersion diagram
is calculated at each iteration.

In this study, only the fundamental mode is considered for Vph-SWI and
Vph-DTLSWI, and the principal lobe of the fundamental mode is used as the
comparison zone for DD-DTLSWI. For further works tackling on multi-modal
inversion, we can note that, the mode identi�cation is unavoidable for Vph-SWI
and Vph-DTLSWI, but not necessary for DD-DTLSWI. The dispersion diagram
can be partially or completely taken into account for the diagram distance cal-
culation, without the need of mode separation. This characteristic gives a real
advantage of using the DD-DTLSWI. The synthetic data are constructed in the
time domain by Inverse Fourier Transform, which considers only the Rayleigh
wave phase velocity propagation and demands a high computational cost. Other
numerical methods, e.g. Spectral Element Method, could be used for generat-
ing more realistic seismic data thus generalizing the DD-DTLSWI approach for
more complicated cases.
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Chapter 5

Time-lapse inversion for

surface waves: a di�erential

approach using a linear

approximation of the

Rayleigh wave phase velocity

This chapter propose a second "di�erential inversion" methodology, using the
linear assumption approximation of the Rayleigh wave phase velocity. It is
named Analytical Di�erential Time-Lapse Surface Wave Inversion (ADTLSWI).
The sensitivity kernel of Rayleigh wave phase velocity relates the model param-
eter variations with the phase velocity variation, which is used in the inversion
process. The limits of the linear assumption are studied by error estimation
of the theoretical and calculated (using the linear approximation) dispersion
curves and inversion tests of numerical dispersion data. Finally, the ADTLSWI
is applied on the measured data of reduced-scale models.

This chapter is also intended to be published in a scienti�c journal as the
third article associated this thesis work. Thus the chapter presentation follows
an article structure, with possible repetitions with the previous in the introduc-
tion, as already mentioned.

5.1 Introduction

Surface wave (SW) methods are widely used in near-surface applications, be-
cause they allow to quantitatively assess parameters of mechanical properties
without di�culties thanks to the use of lightweight sources. Indeed, while body
waves are highly attenuated in altered and unconsolidated underground, surface
waves remain very energetic and easy to record. By inverting surface wave dis-
persion data, usually the phase or group velocity, the 1D medium's properties
are recovered as function of depth. SW methods are for instance used for the
monitoring of subsurface media, which are sensitive to environmental changes.
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For example, we can cite the monitoring of the water table level in shallow
aquifers (Pasquet et al., 2015a), the inner erosion in dams (Planès et al., 2016)
or the water penetration in dikes (Joubert et al., 2018), the climate e�ects on
railway embankments (Bergamo et al., 2016), etc.

The time-lapse monitoring aims to monitor temporal variations, through a
series of measurements at di�erent times. By comparing the measured data,
such as the surface wave velocity attenuation or time delay, the variations in
the medium can be estimated. For example, the temporal variations of surface
wave velocity and attenuation during a tidal cycle can be extracted from a
passive surface wave method (Joubert et al., 2018). However, if the quantitative
estimations of the medium's parameter variations is needed, e.g. the temporal
variations of S-wave velocity as a function of depth, an inversion process is
essential.

Some recent studies have applied time-lapse inversion on measured data,
to recover a quantitative estimation of the medium's paramater variations. In
order to estimate the climate e�ects on railway embankment, Bergamo et al.
(2016) measured and inverted the Rayleigh wave phase velocity and attenuation
curves to construct the time-lapse model of S-wave velocity (depth pro�le of S-
wave velocity as function of time). In this study, a velocity variation of 10% is
estimated quantitatively for the Rayleigh wave and the inverted S-wave. Ikeda
et al. (2017) inverted surface wave phase velocity dispersion data to monitor
the environmental in�uences on shallow seismic velocity above the so called
Aquistore CO2 storage site. Higher phase velocities are observed in winter due
to the increase of S-wave velocity with higher degree of frozen saturated rock.
More recently, Wang et al. (2020b) have studied the sensitivity of the Rayleigh
wave phase and group velocities with respect to the S-wave velocity. The authors
show that these two types of dispersion data are not sensitive enough to small
variations in the deep medium for a high accuracy of inversion results, and then
propose to use the frequency derivative of the Rayleigh phase velocity as an
innovate inversion input data to improve the recovery of the deep medium's
small variations.

This lack of precision in inversion results is due to several key points in
the entire inversion methodology, including the sensitivity of the input data to
the inverted medium parameter but also the measurement uncertainty. This
uncertainty should be taken care of during signal processing as it impacts the
estimation of the variations in the medium for time-lapse monitoring. In case of
surface wave approaches, the probability of the measurement error is generally
considered as a Gaussian distribution (Tarantola, 2005; Menke, 2018). More
precisely, O'Neill (2004) pointed out that a Lorentzian distribution is more
appropriate than a Gaussian distribution for low frequencies, and proposed to
use a realistic dispersion error for data uncertainty estimation. More recently,
Dangeard et al. (2018) proposed a processing work�ow to estimate the picking
errors during the manual picking for extracting the surface wave phase velocity
dispersion curve.

In deeper contexts of seismic monitoring tackled with Full Waveform Inver-
sion, a recent proposition consists in taking into account di�erential information
between two sets of consecutive measurement to overcome a major part of in-
certitude laying in the data (principally uncorrelated noise). This approach is
called Double Di�erence Full Waveform Inversion (DDFWI) (Watanabe et al.,
2004; Denli and Huang, 2009) and is based on the following principle: instead of
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two independent inversions on the data measured at two di�erent times (named
baseline and repeatline respectively) and extraction of the model variations from
two inversion results, the DDFWI (1) uses the inversion result of the measured
baseline to calculate a synthetic baseline; (2) uses the subtraction of the mea-
sured baseline and the repeatline to reconstruct a synthetic repeatline by adding
the measured di�erence to the synthetic baseline; (3) inverts the synthetic re-
peatline using the inversion result of the measured baseline as the initial model;
(4) subtracts the inversion results of the measured baseline and the repeatline
to recover the model parameter variations. The main advantage of this method
is that the coherent noise between the measured baseline and repeatline can be
removed by the subtraction, thus the di�erences in the two data-sets are mainly
due to the model parameter variations (Asnaashari et al., 2012; Yang et al.,
2015). Note that the incoherent noise is supposed to be canceled in the FWI
method by stacking and the multi-receiver principle.

The di�erential inversion has been recently introduced for the SW meth-
ods by Wang et al. (2020a), where the di�erence of measured data is used as
the inversion input data, through a diagram distance of two measured surface
wave dispersion diagrams (abbreviated as DD-DTLSWI), and compared to the
simple distance of two measured surface wave phase velocities (abbreviated as
Vph-DTLSWI). This di�erential inversion approach has been tested with nu-
merical data and experimental laboratory data. The results show that the
DD-DTLSWI can better estimate the variations than the Vph-DTLSWI and the
classical surface wave phase velocity inversion, in the case of two-layer media
(�rst made of epoxy-resin and then mortar-concrete based).

In view of these promising results of di�erential inversion and with the aim of
exploring di�erent approaches to this principle, we propose in this article an al-
ternative di�erential inversion technique that uses a linear approximation of the
Rayleigh wave phase velocity. As described in the �rst section bellow, the an-
alytical formulation of the Rayleigh phase velocity sensitivity kernel associates
the model parameter variations with the phase velocity variations, making it
possible to use the phase velocity di�erence in the di�erential inversion process.
Since the analytical formulation of sensitivity kernel is used, we abbreviate this
approach as ADTLSWI (Analytical Di�erential Time-Lapse Surface Wave In-
version). The behavior of the ADTLSWI is studied numerically in the third
part, using theoretical phase velocity dispersion curves in order to analyze the
limits of the linear assumption. Then, in the fourth part, the ADTLSWI is
applied to laboratory data measured on reduced-scale epoxy-resin models.

5.2 Linear Approximation of Rayleigh wave phase

velocity

With a given integer q ≥ 1, and knowing that function f(x) is q-times di�eren-
tiable at the point a, the function f(x) can be expanded according to Taylor's
theorem to formulate the linear approximation of the function f(x) at a point a
with a precision of order q. When the function f(x) is replaced by the Rayleigh
wave phase velocity Vph(m) as function of model parameters m (including S-
wave velocity Vs, P-wave velocity Vp, density ρ and the layer thickness h),
and mb represents the baseline model parameters, the linear approximation of
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Rayleigh wave phase velocity can be written:

Vph(m) = Vph(mb) +

[
dVph
dm

]
mb

(m−mb) + o[(m−mb)], (5.1)

with limm→mb
o[(m − mb)] = 0.

[
dVph
dm

]
mb

is the sensitivity kernel of the

Rayleigh phase velocity, i.e. the phase velocity derivative with respect to the
model parameter.

Neglecting the term o[(m − mb)], which is here a second-order approxi-
mation, and writing the derivative of Vph in Eq. 5.1 as the sum of partial
derivatives for each model parameter in m, it comes :

Vph(m) ≈ Vph(mb) +
∑
mi

[
∂Vph
∂mi

]
mib

(mi −mib), (5.2)

with i ∈ [1, 4] and mi = (Vs, Vp, ρ, h).

5.2.1 Sensitivity Kernels

Aki and Richards (2002) deduced the sensitivity kernel for Love waves, i.e.
the Love wave phase velocity derivative with respect to the model parameters.
One can apply this approach to Rayleigh waves to establish the Rayleigh wave
sensitivity kernel (Takeuchi et al., 1972; Lai and Rix, 1998). The sensitivity
curves of Rayleigh phase velocity with respect to the model parameters (Vp, Vs
and ρ) are

[
∂Vph
∂Vp

]
Vs,ρ,ω

=
Vpρ

2VgIk2
(kr1 +

dr2

dz
)2, (5.3)[

∂Vph
∂Vs

]
Vp,ρ,ω

=
Vsρ

2VgIk2
[(kr2 −

dr1

dz
)2 − 4kr1

dr2

dz
], (5.4)[

∂Vph
∂ρ

]
Vp,Vs,ω

=
Vp
2ρ

[
∂Vph
∂Vp

]
Vs,ρ,ω

+
Vs
2ρ

[
∂Vph
∂Vs

]
Vp,ρ,ω

− 1

4VgIk2
ω2(r2

1 + r2
2).

(5.5)

r1(k, ω, z) and r2(k, ω, z) are the Rayleigh displacement vectors in the hor-
izontal and vertical directions, respectively, which are two functions of the
wavenumber k, the angular frequency ω (with the relation ω = 2πf and f
being the frequency), and the depth z. Vg is the Rayleigh wave group velocity
and I = 1

2

∫∞
0
ρ(r2

1 + r2
2)dz is the energy integral. Eq. 5.3, Eq. 5.4 and Eq.

5.5 can be used to calculate the sensitivity curves of Rayleigh wave phase veloc-
ity for the fundamental mode and higher ones. However, in our study, only the
fundamental mode is considered in order to circumscribe the problem. Further
studies should be conducted for higher modes.

The model parameters are piecewise functions with respect to depth. For a
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Table 5.1: Parameters of a two-layer reference model. Vp: compressional-wave
velocity; Vs: shear-wave velocity; ρ: density; ν: Poisson's ratio; and h: layer
thickness.

layer (i) V refpi [m/s] V refsi [m/s] ρrefi [kg/m3] νrefi hrefi [m]

1 1000 600 1500 0.22 8.0
2 2000 1100 2200 0.28 ∞

1D model made of n layers, the model parameters are noted

m =


(Vs1 , Vp1 , ρ1), z ∈ [0, h1]

(Vs2 , Vp2 , ρ2), z ∈ [h1, h2]

...

(Vsn , Vpn , ρn), z ∈ [hn−1,∞]

(5.6)

with hj being the depth and mj being the model parameters of the jth layer
(h0 = 0).

Equations Eq. 5.3, Eq. 5.4 and Eq. 5.5 are also depth-dependent equa-
tions. Fig. 5.1 shows the sensitivity curves of Rayleigh phase velocity, with
respect to the model parameter Vs, Vp and ρ, as a function of depth. A two-layer
model (parameters available in Table 5.1) is used to calculate the sensitivity
curves at four wavelengths (frequencies): λ = h1

2 , λ = 2h1, λ = 4h1 and
λ = 10h1. According to Fig. 5.1, the Rayleigh wave phase velocity is more
sensitive to the variation of the S-wave velocity than to variations of P-waves
velocity and density, especially at depth (i.e. below the �rst layer thickness h1),
since the values of the sensitivity with respect to Vp and ρ are nearly zero below
this depth.

The sensitivity kernel of the phase velocity, with respect to the model pa-
rameters of each layer, is the integral of Eq. 5.4, Eq. 5.3 and Eq. 5.5, in the
corresponding depth range:

[
∂Vph
∂Vpj

]
Vs,ρ,ω

=
1

hj − hj−1

∫ hj

hj−1

[
∂Vph
∂Vp

]
Vs,ρ,ω

(z)dz, (5.7)[
∂Vph
∂Vsj

]
Vp,ρ,ω

=
1

hj − hj−1

∫ hj

hj−1

[
∂Vph
∂Vs

]
Vp,ρ,ω

(z)dz, (5.8)

[
∂Vph
∂ρj

]
Vp,Vs,ω

=
1

hj − hj−1

∫ hj

hj−1

[
∂Vph
∂ρ

]
Vp,Vs,ω

(z)dz. (5.9)

Vpj , Vsj and ρj are model parameters at jth layer.
The phase velocity sensitivity kernel is calculated numerically using the

model parameters in Table 5.1 and presented in Fig. 5.2. The maximum
depth for the integration calculation is 80m which equals to 10h1. Fig. 5.2
shows that Vs has more e�ects on the Rayleigh wave phase velocity, especially
for greater depths. Indeed the maximum ratio of the sensitivity kernels of Vs
to Vp or ρ is higher for the deep layer. Considering this behavior, the following
study will be carried out under the assumption that only Vs changes, whereas
Vp and ρ remain with the same values.
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Figure 5.1: Sensitivity curves of the Rayleigh wave phase velocity of a two-layer
model (parameters available in Table 5.1), presented as function of normalized
depth. h1 is the �rst layer thickness.

(a) (b)

Figure 5.2: Rayleigh wave phase velocity sensitivity kernel with respect to the
model parameters Vp, Vs and ρ of (a) the shallow layer (layer 1 of Table 5.1)
and (b) deep layer (layer 2 of Table 5.1), as a function of the wavelength
divided by the thickness of the shallow layer h1.
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5.2.2 Error estimation

A two-layer model, named baseline mb, is used as the reference model. Its
sensitivity kernel is calculated with respect to Vs. The model parameters of the
baseline are in described Table 5.1. A series of models, named repeatline mr,
are similar to the baseline parameters except S-wave velocities which is modi�ed
for each mr model.

Eq. 5.1 can be used to estimate the phase velocity of a repeatline model
mr from the knowledge of the phase velocity of a baseline model mb, under the
condition that the models mb and m are close enough so that the variations
between Vph(m) and Vph(mb) can be considered linear. In order to analyze the
limits of Eq. 5.1, the estimated phase velocity using Eq. 5.1 will be compared
with its theoretical value. The S-wave velocity variation ratio is de�ned as

α(Vsj , b, r) =
V rsj − V

b
sj

V bsj
(5.10)

with V bsj and V
r
sj the S-wave velocity of jth layer, for the baseline mb and the

repeatline mr respectively. In the following study, the S-wave velocity varia-
tion ratio of the repeatline for both layers are limited to the range: α(Vs1) ∈
[−15,+15]%, α(Vs2) ∈ [−15,+15]%.

The dispersion curves of the baseline and the repeatline (calculated using the
Geopsy software (Wathelet, 2004)) are named Vph(mb) (abbreviated as V bph) and
Vph(mr) (abbreviated as V rph) respectively. Using Eq. 5.2, the phase velocity
of the repeatline can be estimated:

V estph (mr) = Vph(mb) +
∑
mri

[
∂Vph
∂mi

]
mbi

(mr
i −mb

i ). (5.11)

The error between estimated and theoretical phase velocities (also called
phase velocity error) of repeatline is de�ned using the L2 norm:

err(Vph(mr), V
est
ph (mr)) =

√√√√√ 1

Nf

∑
Nf

(
Vph(mr)− V estph (mr)

Vph(mr)

)2

× 100% (5.12)

with Nf the number of frequencies sampled for the phase velocity dispersion
curve.

Fig. 5.3 shows the errors between the estimated and calculated dispersion
curves of the repeatline, with the S-wave velocity variation ratio less than 15%.
The phase velocity errors are more important for Vs1 than for Vs2 . Actually,
the Rayleigh wave phase velocity is more sensitive to the shallow medium's
variations (see section 2.1: Sensitivity Kernels). Thus, when the variation occurs
in the shallow layer, it is more di�cult to estimate the correct phase velocity
using Eq. 5.1. In other words, in the case of the shallow layer, we quickly
move away from the hypothesis of linearity when the variation in S wave velocity
increases.

In this section, the sensitivity kernel of the Rayleigh phase velocity has been
calculated semi-analytically and then used to estimate the phase velocity of
models with S-wave velocity variations. In the next section, the ADTLSWI
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Figure 5.3: Phase velocity errors between the estimated and theoretical phase
velocities of the repeatline. The variation ratios of both S-wave velocities are
less than 15%.

approach will be proposed, using the linear approximation of the Rayleigh wave
phase velocity to invert the phase velocity di�erence instead of the phase velocity
itself.

5.3 Time-lapse inversion with linear approxima-

tion

Based on the linear approximation of the Rayleigh wave phase velocity (Eq.
5.1), we propose a new time-lapse inversion, using the di�erence of the phase
velocity as the inversion input data. Fig. 5.4 shows the work-�ow of this
time-lapse inversion.

Vb
ph and Vr

ph are two measured phase velocities in a time-varying medium
at di�erent times, so called baseline and repeatline. Assuming the initial state
of the medium (the baseline model mb) is known, the inversion process searches
the new state of the medium (the repeatline model mr) after some unknown
variations has occurred in the medium.

∆Vph calculates the simple di�erence between the two measured phase ve-
locities Vb

ph and Vr
ph: ∆Vph = Vr

ph − Vb
ph. Based on the baseline model

parameter mb, the sensitivity kernel of the baseline
[
∂Vph

∂m

]
mb

can be calcu-

lated (Eq. 5.3, Eq. 5.4, Eq. 5.5).
The model parameter of the repeatline mr is the unknown in the inversion

process, i.e. the inverted parameter. For each searched mr, the model di�erence
∆m is calculated through the simple di�erence: ∆m = mr −mb. Using the
linear approximation of the Rayleigh wave phase velocity (Eq. 5.1), the phase
velocity di�erence ∆V′ph can be calculated:

∆V′ph =

[
∂Vph
∂m

]
mb

∆m. (5.13)

For numerically testing the ADTLSWI (Analytical Di�erential Time-Lapse
Surface Wave Inversion) in the next section, a global optimization algorithm,
the Neighborhood Algorithm (NA), is used. Proposed by Sambridge (1999a,b)
and the improved by Wathelet (2008), the NA uses Voronoi cells to sample the
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Figure 5.4: Work-�ow of ADTLSWI. mb is recovered by a previous inversion
of the baseline measurement b; r is new model tested, as de�ned by the NA
depending on the mis�t values of the previous iteration.
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parameter space and to generate models in a pseudo-random way. In the NA
inversion, the objective function calculates the L2 norm between the two phase
velocity di�erences (Wathelet, 2004)

misfit(∆Vph,∆V′ph) =

√√√√ 1

Nf

∑
Nf

(∆Vph −∆V ′ph)2. (5.14)

In order to have the objective function in the range [0, 1], the exponential of the
mis�t value is used by calculating the indicator P :

P = exp(−misfit) (5.15)

We should note that instead of using the phase velocity, the time-lapse in-
version uses the di�erence of the phase velocity as inversion input data, under
the linear assumption of the Rayleigh wave phase velocity. However, when the
variation is too important, the linear assumption is no longer applicable. In the
next part, we test this method thanks to numerical dispersion data, to �nd out
the feasibility and the limits of this method.

5.4 Numerical Tests

In section 2.2, the phase velocity errors have been analyzed to estimate the limits
of the linear approximation of the Rayleigh wave phase velocity, using a baseline
model and a series of repeatline models with variable S-wave velocities. Here,
the limits of the linear approximation will be tested against the ADTLSWI.

5.4.1 ADTLSWI with large S-wave velocity variations

The baseline model is the same as in section 2.2 presented in Table 5.1 and
the variation ratio of the repeatline models, described by Eq. 5.10, is such as
α(Vsi) ∈ [−16,+16]% (the variation ratio α(Vsi , b, r) is simpli�ed as α(Vsi) in
this section). Three inversion tests are performed: (1) α(Vs1) ∈ [−16, 16]%,
α(Vs2) = 0; (2) α(Vs1) = 0, α(Vs2) ∈ [−16, 16]%; (c) α(Vs1) = α(Vs2) ∈
[−16, 16]%. Each test has 33 repeatline models. Each repeatline model will
be paired with the baseline model for the time-lapse inversion, thus 33*3 inver-
sion results are analyzed.

For each inversion process, the phase velocity of the baseline and the repeat-
line (V bph, V

r
ph) are calculated theoretically using the Geopsy software, in the

frequency range [10, 150]Hz with a step of 0.5Hz. It should be pointed out
that since the di�erence of the phase velocity is the inversion input data, the a
priori information is the variation range between the baseline and the repeatline
model parameters. Here in each inversion, the repeatline S-wave velocities Vsi
will be searched in the range Vsi ∈ [−20,+20]% × ∆Vsi (∆Vsi = V rsi − V

b
si).

Other parameters (Vp, ρ and h1) are �xed: their values are given in Table 5.1.
Among a total number of 1020 searched models for each inversion case, only

those models whose objective function (de�nied in Eq. 5.15) has a value greater
than 99% of the value associated with the best model will be selected: Pi ≥
99% ×max(Pi) with i ∈ [1, 1020]. The inversion results of the three inversion
tests are presented in Fig. 5.5. Each group of colored dots corresponds to
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the results of one ADTLSWI with a pair of baseline-repeatline models. Each
group of colored dots corresponds to the selected models in this inversion: α(Vsi)
decreases from blue to red. This choice aims to visually di�erentiate the di�erent
zones of alpha values in the results. The black dot is the center of this group of
inversion models. The gray triangle is the position of α(Vsi) for each repeatline.

In Fig. 5.5 (a), the inversion results are presented as a function of the vari-
ation ratio α(Vs1) ∈ [−16, 16]% in the x-axis. In the y-axis, the inversion results
are presented as the quotient of the di�erence between Vs2 and V

b
s2 with respect

to V bs2 (noted as ∆Vs2/V
b
s2). Since α(Vs2) = 0 in these inversions, the centers of

the inversion results should form a line at ∆Vs2/V
b
s2 = 0. However, in Fig. 5.5

(a), the centers of the inversion results (black dots) has a parabolic shape: the
inverted Vs2 is biased. Besides, the distances between the black dots and the
grey dots become signi�cant when α(Vs1) > 5%. The result shows that when
large variations occur in Vs1 , the phase velocity cannot be correctly estimated
due to the limits of linear approximation (see section 2.2). The inversion results
are thus biased not only for Vs1 but also for Vs2 .

In Fig. 5.5 (b), the inversion results are presented as a function of the
variation ratio α(Vs2) ∈ [−16, 16]% in the x-axis, and as a function of ∆Vs1/V

b
s1

in the y-axis. The inversion results of Vs1 are less biased compared to the
inverted Vs2 in Fig. 5.5 (a). This corresponds to the error estimation in
section 2.2: the high sensitivity of Rayleigh wave phase velocity with respect
to Vs1 makes it more di�cult to estimate the phase velocity of the repeatline
using Eq. 5.1. As a consequence, the inversion results are more biased when
variations occur at shallow depth.

In Fig. 5.5 (c), the variation ratios are equal for both layers, α(Vs1) =
α(Vs2), so that the centers of the inversion results should line up (the grey dots).
This is the case when α(Vsi) ≤ 5%. When α(Vsi) = 5%, the inverted results of
Vs are α(Vs1) = 4.79%, α(Vs2) = 4.56% instead of 5%; when α(Vsi) = −5%, the
inverted results of Vs are α(Vs1) = −5.17%, α(Vs2) = −5.46% instead of −5%.
This means that when the same proportion of variation occurs in Vs1 and Vs2 ,
it is more di�cult to estimate the deep layer variation using the ADTLSWI,
which corresponds to the low sensitivity of Rayleigh wave phase velocity with
respect to Vs2 (see section 2.1).

These tests show the limit of the linear approximation for di�erential inver-
sion in the context of this kind of two-layer media. According to these results,
the ADTLSWI should be limited to cases where the model variations are lower
than 5%, for both layers, above which the linear assumption is no longer rel-
evant. Indeed if the variation is less than 5%, the mean of the results family
extracted for mis�t values greater than 99% compared to the maximum mis�t
value, reaches the correct expected value of the repeatline. In the next section,
the ADTLSWI will be compared with other surface wave inversion methods, in
the case of model parameter variations smaller than 5%.

5.4.2 ADTLSWI with weak S-wave velocity variations

For the two-layer model in Table 5.1, it has been shown that the ADTLSWI is
applicable if the S-wave velocity variation is less than 5%. Respecting this limit,
the ADTLSWI will be applied on the same baseline and repeatline models as
before, using the theoretical phase velocities, and the inversion results will be
compared to other surface wave inversion methods: the Rayleigh wave phase



114 CHAPTER 5. DTLSWI - LINEAR APPROXIMATION OF VPH

(a) (b)

(c)

Figure 5.5: Inversion results using the ADTLSWI. Each group of colored dots
corresponds to the selected models in this inversion: α(Vsi) decreases from blue
to red. This choice aims to visually di�erentiate the di�erent zones of alpha
values in the results. Black dots: the center of each inversion models. Grey
triangle: the expected results of α(Vsi). (a) α(Vs1) ∈ [−16, 16]%, α(Vs2) = 0.
(b) α(Vs1) = 0, α(Vs2) ∈ [−16, 16]%. (c) α(Vs1) = α(Vs2) ∈ [−16, 16]%.

velocity inversion (abbreviated as Vph-SWI) and the frequency derivative of
Rayleigh wave phase velocity inversion (abbreviated as PVD-SWI) (Wang et al.,
2020b).

The Vph-SWI uses the theoretical phase velocity dispersion curve as the
inversion input data. The PVD-SWI uses the combined data of the phase ve-
locity at high frequencies and the frequency derivative of the phase velocity at
low frequencies. The study of Wang et al. (2020b) shows that the phase veloc-
ity derivative has a higher sensitivity to the medium variation than the phase
velocity for the deep layer, so that the combined data leads to a robust inversion.

The three inversion input data are calculated theoretically in the frequency
range [10, 150]Hz with a step of 0.5Hz. The combined data consists in the
phase velocity derivative when f ≤ 60Hz and the phase velocity derivative
when f > 60Hz. Since the variations between the baseline and the repeatline
models are small (α(Vsi) ≤ 5%), the model parameters are searched in the
same range for all inversions: Vs1 ∈ [560, 640]m/s, Vs2 ∈ [1040, 1160]m/s, i.e.
∆Vs1 ∈ [−40, 40]m/s, ∆Vs2 ∈ [−60, 60]m/s. All the other model parameters
are �xed and their values available in Table 5.1.

A total number of 1020 models are searched for each inversion and only those
models whose objective function (Eq. 5.15) has a value greater than 99% of
the value associated with the best model are selected: Pi ≥ 99%×max(Pi) with
i ∈ [1, 1020]. In Fig. 5.6 and Fig. 5.7, the inversion results are presented as
function of Vsi , normalized by the corresponding values of the baseline model
(Table 5.1).
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Figure 5.6: The inversion results of Vph-SWI. Each dot corresponds to one
inverted model with the colors representing the variation ratio of the medium.
Red: α(Vsi) < 0; black: α(Vsi) = 0; blue: α(Vsi) > 0.

Figure 5.7: The inversion results of PVD-SWI. Each dot corresponds to one
inverted model with the colors representing the variation ratio of the medium.
Red: α(Vsi) < 0; black: α(Vsi) = 0; blue: α(Vsi) > 0.
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Figure 5.8: The inversion results of ADTLSWI. Each dot corresponds to one
inverted model with the colors representing the variation ratio of the medium.
Red: α(Vsi) < 0; black: α(Vsi) = 0; blue: α(Vsi) > 0.

As predicted in Wang et al. (2020b), Vph-SWI is not capable to estimate
weak variations of the medium, especially for the deep layer (Fig. 5.6). When
α(Vs1) ≤ 2% and α(Vs2) ≤ 5%, the inversion results are superimposed. The
inversion results of the PVD-SWI can be separated when the variation is larger
than 2%, for both layers (Fig. 5.7). Therefore, the PVD-SWI method can
better estimate weak variations of the medium than Vph-SWI approach, thanks
to its higher sensitivity to the medium variation.

The inversion results of the ADTLSWI in Fig. 5.8, which takes advantage
of time-lapse measurements through the work�ow presented in Fig. 5.4, show
the best behavior. Indeed, the inversion results of each group are centered and
there is no overlapping of the inversion results even for the smallest variation
(α(Vsi) = 1%). However, a small bias for the centers of inversion results can
be observed when α(Vs1) = 5%, which corresponds to the limits of the linear
approximation of the Rayleigh phase velocity depicted in the previous section.

Another advantage of the ADTLSWI is its low computing time due to the
fact that the forward problem is calculated only once for the sensitivity kernel

of the baseline
[
∂Vph

∂m

]
mb

(Fig. 5.4). In other surface wave inversion methods,

such as the Vph-SWI, the forward problem is calculated for each searched model,
which is the most computing time-consuming part to the algorithm.

Theoretical Rayleigh wave phase velocities have been used to analyze the
ability of the ADTLSWI for the estimation of weak medium's variations. The
use of the ADTLSWI is valid when the variation of the medium is lower than 5%.
The comparison of the ADTLSWI with the Vph-SWI and the PVD-SWI shows
that ADTLSWI has the best behavior. In the next section, the ADTLSWI will
be applied on laboratory experimental data, in order to con�rm this result and
test the robustness of the ADTLSWI approach.
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Table 5.2: C25 model parameters and dimensions. hi: layer thickness; l and
w: length and width of model. Scale ratio between the numerical and the
experimental model dimensions is 1000 (Pageot et al., 2017).
layer Vpi [m/s] Vsi [m/s] ρi [kg/m3] νi hi [mm] l [mm] w [mm]
1 1300 708 450 0.29 7.2 265 235
2 2048 990 1300 0.37 203 265 235

5.5 Laboratory tests on reduced-scale models

5.5.1 Description of the experimental set-up

Three reduced-scale epoxy-resin models, named C25, C45 and C65 respectively,
are designed in order to simulate small variations in the medium to mimic
time-varying models at three di�erent times. The model parameters and the
dimensions of the C25 model are presented in Table 5.2. Fig. 5.9 (a) presents
the C25 model and the experimental set-up: the edges of all the models are
rounded according to arcs of circles in order to minimize and delay the boundary
e�ects (Pageot et al., 2015) as it is visible for the C25 model in Fig. 5.9. The
radius of the rounded edges have to be larger than or equal to the central
wavelength, which is 12mm for all three epoxy-resin models used in this study.
C45 and C65 have the same shape as C25, but have di�erent S-wave velocities in
their deep layer: 1038m/s for C45 and 1086m/s for C65 instead of 990m/s for
C25. The variations of S-wave velocity in the deep layer are α(Vs2 , C25, C45) =
4.8% and α(Vs2 , C45, C65) = 4.6%, calculated using Eq. 5.10, with ∆Vs2 =
48m/s for both groups.

The measurements of the three epoxy-resin models are carried out at MUSC
(Mesure Ultrasonore Sans-Contact, or Non-Contact Ultrasonic Measurement in
English) laboratory (Bretaudeau et al., 2011; Valensi et al., 2015; Pageot et al.,
2017). This device makes possible to reproduce the same con�guration as in
�eld measurement but in a controlled environment on reduced-scale models.
For that, a scale ratio in time and distances is assumed (1000 in this work) and
ultrasonic sensors used. A piezo-electric transducer is used as an active source
to generate a Ricker wavelet with a center frequency of 100 kHz. A moving
laser interferometer measures the particle displacement, with a sampling rate
equal to 10MHz. Fig. 5.9 (b) gives information about the positions of the
source and receivers. The distance between the source and the �rst receiver
is 12mm and receivers are lined up for a total length equal to 90mm with a
receiver spacing equal to 1mm.

In Fig. 5.10, the measured seismograms are superimposed in order to see
the di�erences between the three data-sets. Fig. 5.11 presents the measured
Rayleigh wave dispersion diagrams of the epoxy-resin models using the phase-
di�erence processing method (Mokhtar et al., 1988; Park et al., 1998) with the
phase velocity dispersion curves in black dots. Only the fundamental mode of
the Rayleigh wave phase velocity is considered in the inversion.

5.5.2 Inversion results obtained with ADTLSWI

Two groups of ADTLSWI are tested in this section to recover material property
variations thanks to couples of measured seismograms. First, C25 model will be
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(a) (b)

Figure 5.9: (a) Experimental set-up and the two-layer resin model. (b) Position
of source and the receiver vector for the epoxy-resin model measurement.

(a)

(b)

Figure 5.10: Measured seismograms for resin models. Red: C25; blue: C45;
orange: C65. Signals in the grey rectangles (t ∈ [0.1, 0.3]ms, x ∈ [92, 101]mm)
are zoomed for a better visualization.
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(a)

(b)

(c)

Figure 5.11: Measured dispersion diagrams of epoxy-resin models (a) C25, (b)
C45 and (c) C65. Black dots: the Rayleigh wave phase velocity. White dashed
line: the frequency range used in the inversion process.
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Figure 5.12: Convergence curves for ADTLSWI, using C45 and C65 as repeat-
line respectively.

Table 5.3: Comparison between the actual S-wave variations of the models and
the inversion results. V invsi = ∆V invsi + V realsi with V realsi the actual S-wave
velocities of the epoxy-resin models (see section 5.1). Unity: [m/s].

baseline/repeatline ∆V realsi ∆V invsi V realsi V invsi

C25/C45
Vs1 0 +1.4 708 709.4
Vs2 48 43.9 1038 1033.9

C45/C65
Vs1 0 -4.2 708 703.8
Vs2 48 33.1 1086 1071.1

used as the baseline and C45 as the repeatline. Then C45 and C65 models are
used as the baseline and the repeatline. Both groups will share the following
settings:

• Vp, ρ and h1 are �xed (values available in Table 5.2);

• ∆Vs1 ∈ [−30,+30]m/s, ∆Vs2 ∈ [−10, 110]m/s;

• frequency range: f ∈ [35, 90] kHz.

∆Vs1 is searched in the limited parameter space which corresponds to 3%
variation of the Vs1 since actually no variation occurs in shallow layers. The
Vs2 variation ratios are α(Vs2 , C25, C45) = 4.8% and α(Vs2 , C45, C65) = 4.6%,
respectively. Thus we search ∆Vs2 in the range [−10, 110]m/s which corre-
sponds to a variation range around [−1, 11]%. Frequency limits are 35 kHz at
low frequencies, because of a low signal-to-noise ratio, and 90 kHz at high fre-
quencies in order to extract only the fundamental model and to avoid higher
mode perturbations for all three models.

A total number of 2501 models are searched. The convergence curves (P Eq.
5.15) as a function of the iteration number are presented in Fig. 5.12. One
can see that both inversion processes converge fast since both curves reaches to
the maximum (P/Pmax = 1) when the iteration number is around 300. The
inverted models exceeding the black dashed line (P ≥ 99%×Pmax) are selected.
More than 2200 models are selected for both inversions.

Fig. 5.13 (a) presents the measured phase velocities of the three epoxy-
resin models and Fig. 5.13 (b) shows the variations of the measured phase
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(a) (b)

(c) (d)

Figure 5.13: (a) Measured phase velocity dispersion curves of epoxy-resin mod-
els. (b) Relative variations for the measured phase velocities and the inverted
phase velocities. "mes" stands for "measured" and "inv" stands for "inverted".
(c) Measured and inverted phase velocities for C45 model. (d) Measured and
inverted phase velocities for C65 model.

velocities (solid lines) by subtracting that of the repeatline to that of the base-
line. The Vph variation is the simple di�erence between the baseline and the re-
peatline phase velocities, normalized by the baseline phase velocity for a clearer
visualization (∆Vph/V bph).

A summary of the comparative results is presented in Table 5.3. It indicates
the actual S-wave variations between models compared to the inversion results,
calculated through the average values of the selected models. The inverted S-
wave velocity of the repeatline V invsi is calculated as the sum of the inverted
S-wave velocity variation ∆V invsi and the real S-wave velocity of the baseline
V realsi (available in section 5.1). The errors of the inversion results of C25/C45
are 0.2% for Vs1 and 0.4% for Vs2 . The errors of C45/C65 inversion are 0.6%
for Vs1 and 1.4% for Vs2 , which are three time more than that of C25/C45
inversion.

We can notice large variations at low frequencies for the inverting groups
C25/C45 and C45/C65 in Fig. 5.13 (a) and (b). This is due to the shear-
wave velocity variations actually expected in the deep layer. In parallel, at high
frequencies (f ≥ 60 kHz), small variations (negative values) are observed on the
Vph variation (Fig. 5.13 (b)) for C45/C65 (yellow solid line), which means the
shallow layers of C45 and C65 are not perfectly identical. This explains why
∆V inv equals to −4.2m/s instead of 0 after the ADTLSWI for C45/C65.

Using the inverted S-wave velocities in Table 5.3, inverted phase velocity
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dispersion curves are calculated and compared with the measured phase veloci-
ties (Fig. 5.13 (c) and (d)). A good �tting between the measured and inverted
phase velocities is observed for both models. The Vph variations between the in-
verted phase velocity of repeatline (C45inv or C65inv) and the measured phase
velocity of baseline (C25mes or C45mes) are presented in Fig. 5.13 (b) (dashed
lines).

5.5.3 Discussion

The presented tests conducted on laboratory data make possible to experimen-
tally validate the applicability of ADTLSWI but also determine its limitations
in the context de�ned of the two-layer model chosen. Actually the analysis on
the experimental data shows the feasibility of the ADTLSWI process and its
performance in case of weak velocities variations, i.e. lower than 5%, for which
the linear approximation of the Rayleigh wave phase velocity can be e�ciently
considered.

A prominent numerical advantage of the ADTLSWI is its low calculation
time as the sensitivity kernel is calculated only once based on the baseline model
parameters. However, this di�erential approach needs an accurate assessment of
the baseline model, i.e. a previous �ne inversion of the baseline data to provide
a robust reference model without which the results on the repeatline can be
biased by error propagation.

Note that the study presented here is based on a two-layer model for which
using only the fundamental mode is suitable as it is dominant. However, in
case of models including a large parameter contrasts between layers, a multiple
mode study would be of interest. In this case, the sensitivity kernel should be
updated to contain the information of multiple modes.

The small scale models used here for the applicability of the method make
use of ultrasonic techniques in a laboratory environment, which means that
the experiments are under control with a �xed position of the source and a
shared generated source signal, controlled receiver positions with high accuracy,
epoxy-resin parameters well known. However, in case of �eld measurements,
it should be important to consider uncertainty issues, since several parameters
are not controlled and di�cult to assess. This aspect is not addressed in this
paper and should be tackled in further research works. It is expected that this
methodology could be successfully used in monitoring applications where the
sensors are permanently embedded.

5.6 Conclusion

An Analytical Di�erential Time-Lapse Surface Wave Inversion (ADTLSWI) is
proposed in this study for the purpose of monitoring small variations of the
medium. It uses the simple di�erence of two successive measured phase ve-
locity dispersion curves (∆Vph) as inversion input data. The latter is inverted
through the ADTLSW by using a linear assumption of the Rayleigh wave phase
velocity and sensitivity kernels (which describes the partial derivative of the
Rayleigh wave phase velocity with respect to the model parameters) in order to
mathematically link ∆Vph with variation of model parameters ∆m.
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ADTLSWI approach has been �rstly tested on numerical data. Two-layer
models are used to simulate variations occurring in the shallow and deep layers.
The analysis of the process results has shown that the linear approximation of
the Rayleigh wave phase velocity cannot be used when the variations are larger
than 5%. Besides, the ADTLSWI method provides greater bias in the results of
variations in the shallow layer than in the deep layer. This behavior is due to the
higher sensitivity of the Rayleigh wave phase sensitivity to S-waves variations
in the shallow layer than in the deep layer. Compared to the Vph-SWI and
PVD-SWI, the ADTLSWI is more e�cient for estimating the weak variations
to the medium (variations less than 5%) furthermore at a lower computational
cost.

The ADTLSWI methodology was �nally applied on laboratory data for ex-
perimental validation in the two-layer context. Theses data have been carried
out on three small-scale epoxy-resin two-layer models. The inversion results are
in good agreement with the measured data and the known model parameters.
However, the limitation of the ADTLSWI is also pointed out. The baseline
model should be well known before the use of ADTLSWI since the sensitivity
kernel calculation is based on the baseline model parameters. This could be
di�cult for the application on the �eld experiments.

Actually, the test with the laboratory data is an intermediate step between
numerical test and �eld experiment. Further studies with �eld data and thus
uncontrolled factors are the next steps. However, medium's variations may be
unknown in the �eld measurements, or known as being weak variations but
cannot be sure to be lower than 5%. In this case, another di�erential time-lapse
surface wave inversion approach, using the diagram distance to measure the
di�erence between measured data, should be more appropriate (Wang et al.,
2020a). Moreover, the PVD-SWI process can be implemented as an alternative
method to estimate the baseline model with more precision. In a global blind
monitoring approach, we recommend �rstly to use the PVD-SWI method for
determining the baseline model, then to proceed to the di�erential inversion with
the DD-DTLSWI and, if the results sounds close or lower to 5%, to re�ne the
results by applying the ADTLSWI approach. We can note the complementary
of the latter to the other recent innovative propositions dedicated to accurate
inversion of surface waves for monitoring issues.

At last, only the fundamental mode of the Rayleigh wave is used in this
study, whereas in some cases multiple mode study would be e�cient. Further
studies should be conducted in this direction.
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Chapter 6

Conclusion

The thesis work presented in this manuscript tackles surface wave inversion chal-
lenges linked to the monitoring of weak variations of mechanical properties in
the subsurface media particularly impacted by the climate change. Face to the
limitations of the results accuracy when using the classical MASW (Multichan-
nel Analysis of Surface Waves) approach based on the inversion of phase velocity
dispersion of Rayleigh Waves, we propose and analyze three alternative strate-
gies. These new approaches innovate in terms of inversion input data. The �rst
one proposes to use the frequency derivative of Rayleigh wave phase velocity as
input data in the inversion process. The second and the third propositions are
based on a "di�erential inversion" (abbreviated as DTLSWI), where the data
di�erences are inversion input data instead of independent measured data-sets.
All the three proposed strategies are tested numerically and experimentally,
using laboratory-measured data.

They show behaviors improving the e�ciency of the surface waves inversion
for recovering weak variations of the S-waves velocities in subsurface media.
These characteristics are di�erent depending of the proposed strategies as sum-
marized bellow and their interests can be complementary to answer monitoring
needs.

6.1 Surface wave inversion using frequency deriva-

tive of Rayleigh wave phase velocity

In the �rst approach, the use of frequency derivative of the phase velocity as the
input data for inversion instead of the phase velocity or group velocity dispersion
as classically done. A sensitivity study is carried out in order to analyze the
ability of these di�erent dispersion data to estimate small variations in two-layer
models. The three types of dispersion curves mentioned above, i.e. the Rayleigh
wave phase and group velocities (Vph and Vg), and the frequency derivative of the
Rayleigh wave phase velocity (abbreviated as PVD, Phase Velocity Derivative),
are compared. According to the sensitivity study, the PVD is more sensitive to
the deep layer's variations than the phase and group velocities, since it contains
the information of both layers at wavelengths around 3.4 times the thickness of
�rst layer.

A combined data, consisting of PVD at low frequencies and phase velocity

125
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at high frequencies in order to contain both the high sensitivity of PVD and
the robustness of phase velocity at the same time, is proposed and tested nu-
merically, using the theoretical dispersion curves of a series of two-layer models.
The inversion results of the combined data are compared with that of Vph and
Vg. It is shown that Vph and Vg can estimate the two-layer medium's varia-
tions when (1) the shear-wave velocity variations in the shallow layer (Vs1) are
greater than 3% or (2) the shear-wave velocity variations in the deep layer (Vs2)
are greater than 5%. Compared to Vph and Vg, the inversion results of the com-
bined data show a quasi-equivalent estimation for Vs1 , but a better estimation
for Vs2 : variations in both layers can be estimated when they are greater than
3%.

The feasibility of PVD is then veri�ed experimentally using two small-scale
epoxy-resin models measured in the laboratory. The two epoxy-resin models
have a 17% variation in the shear-wave velocity of their deep layer (Vs2). The
variation is estimated by two inversion approaches, using Vph and combined data
respectively. The Vph inversion estimates a 16.4± 1.1% variation of Vs2 and the
combined data inversion estimates a 17± 0.3% variation of Vs2 . Regarding the
expected velocity values of the deep layer, the combined method gives more
precise results with a smaller error.

6.2 Di�erential time-lapse surface wave inversion

The notion of "di�erential inversion" is introduced for surface wave methods
through two strategies: in the �rst one, the diagram distance (DD-DTLSWI)
is de�ned as a distance of two dispersion diagrams by assimilating the lobes
of the fundamental mode in the dispersion diagram as a series of histograms
of velocity distributions, i.e. one histogram for each frequency; the second one
uses a linear approximation of the Rayleigh wave phase velocity (ADTLSWI)
to associate the phase velocity variations with the model variations.

6.2.1 Diagram distance

The diagram distance calculates the di�erence between two dispersion diagrams,
based on a statistical distance which measures the di�erence and the similarity
between two histograms. We propose to use the diagram distance as the input
data in the surface wave inversion process, taking the principal lobe of the
fundamental mode in each of the two dispersion diagrams as comparison zones.

Another DTLSWI is also proposed as an intermediate step between the DD-
DTLSWI and surface wave phase velocity inversion (Vph-SWI), using the simple
di�erence between the Rayleigh phase velocities as inversion input data (Vph-
DTLSWI). Numerical tests on the three inversion input data show that the
two DTLSWI can better estimate small variations in two-layer media, when
variations occur in the deep layer.

The �rst experimental test is based on the measurements of four epoxy-resin
two-layer models with gradual shear-wave velocity variations in the deep layer.
The inversion results of the three inversion approaches (Vph-SWI, Vph-DTLSWI
and DD-DTLSWI) have less than 1m/s di�erence with the true value of Vs1
for all three pairs of baseline/repeatline models. But compared to the other
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two inversion methods, the DD-DTLSWI has the closest inversion results to the
true Vs2 value.

Three mortar-concrete slabs are used as a second experimental application
of the DD-DTLSWI, where the heterogeneity of the material is more important
than in the epoxy-resin models. Compared the inversion results of each inver-
sion process to the mean value of the three inversions, errors of the inverted
shear-wave velocities are less than 0.3% for Vs1 and 0.9% for Vs2 . The good
agreement between the three inversion approaches validates the feasibility of
the DD-DTLSWI in a heterogeneous medium, which shows a great potential for
applications in the �eld. Standard deviations of inverted models are calculated
as a function of iteration number for the three inversions. It proves that the Vph-
SWI converges more rapidly (i.e. for less iterations number) than Vph-DTLSWI
and DD-DTLSWI, but the two di�erential inversions have more concentrated
inversion results.

6.2.2 Linear approximation of Rayleigh wave phase veloc-

ity

A linear approximation of the Rayleigh wave phase velocity is used to associate
the phase velocity variations with the model variations, by using the sensitivity
kernel (i.e. partial derivative of the Rayleigh wave phase velocity with respect to
the model parameters). A sensitivity study shows that the Rayleigh wave phase
velocity is more sensitive to shear-wave velocity, compared to compressional-
wave velocity and density. Then the errors between the theoretical phase veloc-
ity and the one calculated by multiplying the sensitivity kernel and the simple
di�erence of model parameters, are estimated, based on a series of two-layer
models. It shows that when the variations occur in the shallow layer (Vs1),
more di�culties appear for correctly estimating the phase velocity using the
linear approximation than the variations in the deep layer (Vs2), because of a
high sensitivity of Rayleigh wave phase velocity with respect to Vs1 .

Numerical tests on the ADTLSWI are performed with a series of two-layer
models where the variations between them are ranged in [−16,+16]%. The the-
oretical analysis as well as the numerical test results show that the ADTLSWI
is e�ciently applicable when the medium's variations are less than 5%. Com-
parisons have also been made with Vph-SWI and PVD-SWI for estimating weak
variations (less than 5%). The results analysis show behaviors that indicate the
following order in term of e�ciency of the methods ADTLSWI > PVD-SWI >
Vph-SWI from good to bad.

Laboratory tests are based on three two-layer epoxy-resin models, where the
shear-wave variations between them are respectively 4.8% and 4.6%. Applying
the ADTLSWI, the inverted Vs1 have respectively 0.2% and 0.6% errors for
the two repeatline models, and the inverted Vs2 have respectively 0.4% and
1.4% errors. This accuracy approves the ability of ADTLSWI to estimate weak
variations in a two-layer medium.

6.3 Discussion and Prospect

Concerning the strategies proposed for the monitoring by surfaces waves inver-
sion, the three studies have been respectively conducted for de�ning their poten-
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tial. Each one is based on simple two-layer models, taking only the fundamental
mode into account. This choice was motivated to (1) clarify the analysis since
only few model parameters are concerned; (2) limit the computing cost. From
realistic considerations, further studies should be focused on the expansion and
the generalization of these inversion approaches on multiple-layer media with
multi-modal studies.

In a global blind monitoring approach, we recommend �rstly to use the
PVD-SWI method for determining the baseline model, then to proceed to the
di�erential inversion with the DD-DTLSWI and, if the results sounds close or
lower to 5%, to re�ne the results by applying the ADTLSWI approach. We can
note the complementary of the latter to the other recent innovative propositions
dedicated to accurate inversion of surface waves for monitoring issues.

Application tests have been carried out with laboratory-measured data of
reduced scale models for the three approaches. However, �eld tests are also
essential as more uncontrolled factors appears so that the feasibility and the
robustness can be veri�ed in realistic conditions.

In the numerical tests, synthetic seismograms are calculated using Inverse
Fourier Transform and tackled at each receiver position. Two problems should
be taken care for the improvement of the calculation code. (1) Loops are required
on both frequency and the receiver position which slows down the calculation
time. (2) Only the Rayleigh wave is taken into account which do not simulate
realistic data. Numerical approaches, such as the Spectral Element Method,
could be implemented in the Python code in order to generate more realistic
data.

In summary, further works should be carried out to test the robustness of
the improvements highlighted in this thesis, by conducting additional studies
both on more complex numerical simulation data, �eld experiments as well as
methodological approaches involving the information provided by the higher
modes.
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Appendix A

Experimental set-up and

measured data of epoxy-resin

models

Four reduced-scale models made of epoxy-resin were designed and named C0,
C25, C45 and C65 respectively (see Fig. A.1 (a) for C0 and C65). They are
measured in the MUSC laboratory and the measured data are used for the tests
of di�erent approaches proposed in this thesis work.

The experimental set-up consists of a piezo-electric transducer (Fig. A.1
(b)) as a point source and a laser interferometer to measure the wave propa-
gation (Fig. A.1 (c)). For the experimental tests, the piezo-electric source is
�xed on the horizontal harm visible in Fig. A.1 (c) below the laser interfer-
ometer. Fig. A.1 (d) provides information on the positions of the source and
the receivers, with the dimensions of the resin models.

The four models (C0, C25, C45 and C65) are similar in shape with shear-
wave velocity of the deep layer increasing successively. The model parameters
of the C0 model are available in Table A.1. The models consist of two super-
imposed plates. The pink upper part is machined in a layer of industrial epoxy
resin (polyurethane). The lower part is molded underneath this plate from an
epoxy resin mixture (casting polyurethane) with an additional �ller (hydrated
alumina) which gives it speci�c Vs velocity properties. The choice of the amount
of �ller included in the polymerized mixture was decided on the basis of infor-
mation provided in previous experimental studies (Filippi et al., 2019; Pageot
et al., 2015; Métais, 2016). The �lled resins �nally used in this study were also
tested by independent measurements.

Table A.1: C0 model parameters and dimensions. hi: layer thickness; l and
w: length and width of model. Scale ratio between the numerical and the
experimental model dimensions is 1000.
layer Vpi [m/s] Vsi [m/s] ρi [kg/m3] νi hi [mm] l [mm] w [mm]
1 1300 703 450 0.29 8.0 265 235
2 2048 933 1300 0.37 203 265 235
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(a) (b)

(c) (d)

Figure A.1: (a) The baseline (left) and repeatline (right) models. (b) The
piezoelectric source Acsysr. (c) Experimental set-up and the two-layer resin
model. (d) Position of source and the receiver vector.
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The shear-wave velocities of C25, C45 and C65 are respectively 990m/s,
1038m/s and 1086m/s. Fig. A.2 presents the measured seismograms of the
epoxy-resin models. They are superimposed to make comparisons between mod-
els. Fig. A.3 gives the Rayleigh wave phase velocity dispersion diagrams of
the four epoxy-resin models. Dispersion curves are presented together in Fig.
A.4 where the di�erences are observed in low frequencies, which corresponds to
the shear-wave velocity variations in the deep layer.
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(a)

(b)

(c)

Figure A.2: Measured seismograms for the epoxy-resin models. Black: C0; red:
C25; blue: C45; orange: C65. Signals in the grey rectangles are zoomed for a
better visualization.
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(a) (b)

(c) (d)

Figure A.3: Dispersion diagrams for the epoxy-resin model (a) C0, (b) C25, (c)
C45 and (d) C65. Black dots: phase velocity dispersion curves.

Figure A.4: Dispersion curves of epoxy-resin models.
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Appendix B

Experimental set-up and

measured dispersion curves of

mortar-concrete slabs

Three mortar-concrete slabs (D01, D06 and D08), made by a layer of mortar
superimposed on the surface of a concrete slab, are measured in laboratory (Fig.
B.1). The measured data of mortar-concrete slabs are used in Chapter 4 for the
validation of Di�erential Time-Lapse Surface Wave Inversion in heterogeneous
medium.

The mortar layers of the three slabs have di�erent water-to-cement ratio
(w/c) which changes the mechanical properties of each slab. The parameters
and the dimensions of slabs are given in Table B.1.

The experimental set-up is made by an ultrasonic source and a receiver probe
of 16 receivers. For the measurement of each slab, four sources (54 kHz, 100
kHz, ACS1 and ACS234 in Fig. B.2) are used separately in order to average
the response of the sensors and improve the signal-to-noise ratio. The sampling
rate is equal to 5MHz. For each measurements, the probe is reinstalled �ve
times in a row to have 80 traces in total.

For each slab, four dispersion diagrams are obtained corresponding to four
sources used in the measurement. Fig. B.3 shows the measured dispersion
curves of slabs. The �nal dispersion diagram and the dispersion curve of each
slab are obtained after averaging the measured diagrams using the four sources.
The dispersion diagrams are picked manually at certain frequencies due to the
lack of energy of the source. The �nal dispersion diagrams and dispersion curves
are presented in Fig. B.4.
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Table B.1: The parameters and dimensions of mortar-concrete slabs D01, D06
and D08. w/c is the water-to-cement ratio of the mortar layer. h, l, and w are
the thickness, the length and the width of the layers and slabs.

The parameters and dimensions of the slab D01.

layer w/c Vp [m/s] ρ [kg/m3] h [m] l [m] w [m]
mortar 0.40 3660 2100 0.03 1.2 0.8
concrete - 4300 2400 0.2 1.2 0.8

The parameters and dimensions of the slab D06.

layer w/c Vp [m/s] ρ [kg/m3] h [m] l [m] w [m]
mortar 0.55 3150 2000 0.03 1.2 0.8
concrete - 4300 2400 0.2 1.2 0.8

The parameters and dimensions of the slab D08.

layer w/c Vp [m/s] ρ [kg/m3] h [m] l [m] w [m]
mortar 0.70 2642 1870 0.03 1.2 0.8
concrete - 4300 2400 0.2 1.2 0.8

(a) (b) (c)

Figure B.1: (a) The measurement set-up. (b) The surface of the concrete slab.
(c) The surface of the mortar layer.
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(a) (b) (c)

Figure B.2: (a) Source 54 kHz. (b) Source 100 kHz. (c) Sources ASC1 and
ASC234.
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(a)

(b)

(c)

Figure B.3: Measured dispersion curves of slab (a) D01 , (b) D06 and (c) D08,
using the four sources. The black lines are the �nal dispersion curves after
manual picking.
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(a)

(b)

(c)

Figure B.4: The dispersion diagrams of slab D01 (a), D06 (b) and D08(c). The
red dots present the dispersion curve of each slab.
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Appendix C

Ordinal type diagram

distance

This part of appendix is a supplement to Chapter 4, in order to describe in detail
the use of ordinal type histogram distance for the measure of the dispersion
diagram distance in Di�erential Time-Lapse Surface Wave Inversion. The reason
of removing the absolute value of the cumulative summation in the original
ordinal type histogram distance de�nition has also been illustrated.

Three models (a, B and B') are used to generate synthetic data. The param-
eters of model A are given in Table C.1. The models B and B' are similar to the
model A of which the shear-wave velocities are di�erent: Vs2(B) = 1052m/s,
Vs2(B′) = 925m/s. The phase velocities of the three models are presented in
Fig. C.1.

The signals are generated using the experimental set-up of the epoxy-resin
models in Appendix A. After signal processing, the velocity distribution of the
three models at f = 40 kHz are presented in Fig. C.2 (a). Since we use the
principal lobe as the comparison zone to calculate the diagram distance, only
the principal lobes are presented in Fig. C.2 (a) and the lateral lobes are
reinitialized to zero:

Amp(v) =

{
Amp(v) if v ∈ [v+1, v−1] ,

0 otherwise.
(C.1)

Amp(v) is the amplitude of the dispersion diagram at one given frequency,
as function of velocity; vmin and vmax are the limits of the principal lobes
calculated by Eq. 4.19. In Fig. C.2 (a), the di�erence between the three
lobes is the position and the shape of the lobes seems identical.

Since we introduce the histogram distance into the diagram distance calcu-
lation, the velocity distribution should be used instead of the amplitude. Fig.

Table C.1: Parameters of the model A.
layer Vpi [m/s] Vsi [m/s] ρi [kg/m3] νi hi [mm]
1 1300 703 450 0.29 7.2
2 2048 989 1300 0.37 ∞
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Figure C.1: Phase velocities of model A, B and B'.

C.2 (b) gives the velocity distributions of the three models, which is the am-
plitude in the Fig. C.2 (a) normalized by the surface of the principal lobe:

P (v) =
Amp(v)∑
v(Amp(v))

. (C.2)

In Fig. C.2 (b), the surface of each lobe equals to 1. Compared to Fig.
C.2 (a), the di�erences between lobes are ampli�ed. The shapes of the lobes
are di�erent after the normalization since the lobes' widths are B > A > B′,
according to Eq. 4.19.

According to Eq.4.9 and Eq. 4.25, we de�ne two equations which calculate
the cumulative summation of the di�erence between two velocity distributions:

Diff1(v)A,B =|
i∑

j=0

(P (vj)A − P (vj)B) |, (C.3)

Diff2(v)A,B =

i∑
j=0

(P (vj)A − P (vj)B). (C.4)

The cumulative summations with and without the absolute value are pre-
sented in Fig. C.2 (c) and Fig. C.2 (d). One can see that the sign of the
cumulative summation in Fig. C.2 (d) indicates the relative position between
two velocity distributions: when Diff2(v)A,B > 0 (green curve), P (v)B is on
the right of the P (v)A; when Diff2(v)A,B

′
> 0 (orange curve), P (v)B′ is on the

left of the P (v)A. However, this property cannot be observed in Fig. C.2 (c).
Besides, using Eq. 4.9 and Eq. 4.25 to calculate the histogram dis-

tance of P (v)A and P (v)B , P (v)A and P (v)′B , one gets Dord(A,B) = 36.2,
Dord(A,B

′) = 37.9 and D′ord(A,B) = 36.2, D′ord(A,B
′) = −37.9. The sign

is also signi�cant when calculating the diagram distance which can avoid the
trap of the local minimum, e.g. inversion �nds the model B' instead of the true
model B.
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(a) (b)

(c) (d)

Figure C.2: (a) Amp(v)A, Amp(v)B , Amp(v)B′ : Amplitude of the dispersion
diagram at frequency f = 40 kHz. Only the principal lobe is presented. (b)
P (v)A, P (v)B , P (v)B′ : Velocity distribution (amplitude normalized by the prin-
cipal lobe surface) of the three lobes. (c) Diff1(v)A,B , Diff1(v)A,B

′
: Absolute

cumulative summation of the di�erence between model A/B and model A/B'.
(d) Diff2(v)A,B , Diff2(v)A,B

′
: Cumulative summation of the di�erence be-

tween model A/B and model A/B'.
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Appendix D

Rayleigh Wave Displacement

and Cumulative Energy

Rayleigh wave displacement vectors for horizontal and vertical components have
been presented in Chapter 2.1.2. Here we use the same equations to calculate
the displacement vector of Rayleigh wave, based on a two-layer model (Table
D.1), for an supplementary illustration of the frequency derivative of Rayleigh
wave phase velocity presented in Chapter 3.3.1.

Fig D.1 (a) presents the total displacement vector d(λ, z) (square root
of the horizontal and vertical displacements), as a function of the normalized
wavelength (λ/h1) and depth (z/h1). Fig D.1 (b) presents the cumulative
amplitude D(λ, z), with its de�nition

D(λ, z) =

∫ z

0

d(λ, z)dz. (D.1)

Table D.1: Parameters of a two-layer reference model. Vp: compressional-wave
velocity; Vs: shear-wave velocity; ρ: density; ν: Poisson's ratio; and h: layer
thickness.

layer (i) V refpi [m/s] V refsi [m/s] ρrefi [kg/m3] νrefi hrefi [m]

1 1000 600 1500 0.22 8
2 2000 1100 2200 0.28 ∞
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(a) (b)

(c)

Figure D.1: (a) Rayleigh wave displacement vectors as a function of the nor-
malized depth and wavelength. (b) Cumulative amplitude of the Rayleigh wave
displacement in the vertical direction (i.e. depth), normalized by the maximum
value at each wavelength. (c) Cumulative amplitude derivative with respect to
wavelength. The blue line indicates the interface where depth/h1 = 1. The
orange dashed line corresponds to the wavelength λ = 3.2h1.
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Résumé : Les 1ers mètres du sous-sol, la Zone 
Critique, concentrent de nombreuses activités 
humaines. La ZC est aussi le siège de 
perturbations en raison du changement 
climatique à travers des variations du niveau des 
nappes, de modifications hydriques et 
mécaniques qui augmentent l’érosion et les 
risques de dommages voire d’effondrements. 
Aussi, la surveillance de la subsurface et de ses 
structures anthropiques est actuellement un 
enjeu majeur.  
De ce fait, les méthodes géophysiques, 
notamment sismiques permettant d’évaluer les 
paramètres mécaniques du milieu sont 
intéressantes. Parmi elles, la technique MASW 
basée sur les Ondes Sismiques de Surface 
estime un profil 1D de vitesses d’ondes S. La 
donnée inversée correspond à la dispersion de 
la vitesse de phase (Vph) ou de groupe. 
Cependant, la précision des solutions inverses  

par MASW ne discrimine pas les variations de Vs 
de quelques pourcents. Ces limites sont dues au 
niveau d’incertitude des mesures mais aussi à la 
sensibilité de la donnée aux paramètres du 
milieu. 
Pour lever ce verrou, nous proposons 3 
alternatives méthodologiques. La première 
propose d’inverser la dérivée fréquentielle de 
Vph. Les 2 autres reposent sur l’inversion de 
données différentielles. Dans la première, il 
s’agit de la distance statistique entre les lobes 
principaux des diagrammes de dispersion 
assimilés à des histogrammes. Dans la 
deuxième, il s’agit de formulation analytique par 
approximation linéaire de Vph. Ces propositions 
sont appliquées à des modèles bicouches, tant 
sur des données synthétiques que sur des 
mesures de laboratoire sur du béton et par 
interférométrie laser sur des modèles en résines. 
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Abstract :  The 1st meters of the underground 
media, the Critical Zone, involve many human 
activities. It is also the site of disturbances due 
to climate change through variations in the level 
of the water table, hydric and mechanical 
modifications that increase erosion and the risks 
of damage or even collapse. Therefore, 
monitoring of the subsurface and its 
anthropogenic structures is currently a major 
challenge. 
Therefore, geophysical methods, especially 
seismic methods, which allow to evaluate the 
mechanical parameters of the environment, are 
interesting. Among them, the MASW technique 
based on Surface Seismic Waves estimates a 
1D-profile of S wave velocities. The inverted 
data corresponds to the dispersion of the phase 
velocity (Vph) or group velocity. However, the 

accuracy of the MASW inverse solutions does 
not discriminate Vs variations lower than a few 
percent. These limits are due to the current 
level of measurements uncertainty but also to 
the sensitivity of the data to the medium 
parameters. 
To overcome this key issue, we propose 3 
methodological alternatives. The first proposes 
to invert the frequency derivative of Vph. The 2 
others are based on the inversion of differential 
data. In the first one, it is the statistical distance 
between the main lobes of dispersion diagrams 
assimilated to histograms. In the second, it is an 
analytical formulation by linear approximation of 
Vph. These proposals show a contribution of the 
resolution for typical two-layer models of the 
subsurface, based on synthetic data and 
laboratory measurements by laser 
interferometry on resin and concrete models. 
 

 


	Introduction
	Context
	Time-lapse monitoring
	Main issues in time-lapse monitoring

	Time-lapse inversion
	Objective
	Outline of the thesis

	State of the Art
	Introduction of Surface Waves
	Wave Propagation in Homogeneous Elastic Medium
	Rayleigh Waves in Homogeneous Elastic Medium
	Rayleigh Waves in Vertically Heterogeneous Elastic Media

	Surface Wave Methods
	MASW f-v method

	Surface wave inversion
	Local inversion technique
	Monte Carlo Inversion Technique
	Uncertainty Estimation

	Reduced-scale modeling experiments

	Frequency derivative of Rayleigh Vph
	Introduction
	Definition and Formulation of the Phase Velocity Derivative
	Parametric Study
	 variation
	 variation
	 variation

	Sensitivity Kernels
	Inversion Tests
	Misfit function and a priori information
	Inversion results of Vph and Vg
	Inversion results of dVphdf

	Application on Real Data from Laboratory Measurements
	Model Measurements
	Inversion results

	Conclusion and discussion

	DTLSWI - Diagram Difference
	Introduction
	Histogram Distance
	Measured data
	Epoxy-resin models
	Mortar-concrete slabs

	Diagram Distance
	Zone of comparison: Principal lobe calculation
	Diagram distance of epoxy-resin model data

	Time-lapse surface wave inversion
	Numerical Tests of the DTLSWI
	Application on the epoxy-resin models
	Application on the mortar-concrete slabs

	Conclusion

	DTLSWI - Linear approximation of Vph
	Introduction
	Linear Approximation of Rayleigh wave phase velocity
	Sensitivity Kernels
	Error estimation

	Time-lapse inversion with linear approximation
	Numerical Tests
	ADTLSWI with large S-wave velocity variations
	ADTLSWI with weak S-wave velocity variations

	Laboratory tests on reduced-scale models
	Description of the experimental set-up
	Inversion results obtained with ADTLSWI
	Discussion

	Conclusion

	Conclusion
	Surface wave inversion using frequency derivative of Rayleigh wave phase velocity
	Differential time-lapse surface wave inversion
	Diagram distance
	Linear approximation of Rayleigh wave phase velocity

	Discussion and Prospect

	Appendix Epoxy-resin models
	Appendix Mortar-concrete slabs
	Appendix Ordinal type diagram distance
	Appendix Rayleigh Wave Displacement and Cumulative Energy

