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Chapter 1

Preface

The present document was written with a simple goal in mind: allow me to defend my ha-
bilitation at the University of Toulouse, France. For those not familiar with the concept of
“habilitation”: according to the guidelines of the aforementioned University, a habilitation (or
“HDR: Habilitation & Diriger des Recherches”) < sanctionne la reconnaissance d’un haut niveau
scientifique, le caractere original d’une démarche, la maitrise d’une stratégie de recherche dans
un domaine large et la capacité & encadrer de jeunes chercheurs (arrété du 23 novembre 1988,
modifié par les arrétés des 13 février 1992 et 13 juillet 1995, interprété par les circulaires des 5
janvier 1989 et 16 novembre 1992) >. As you probably guess, it is quite an important document
in the french academic system, not least because it will allow me to supervise a PhD student
on my own. With this document, I have to convince three referees and a jury that I

e can work at a high scientific level,

e develop my own ideas,

e master a scientific strategy in an extended domain, and
e that I am capable to supervise young scientists.

This document is therefore often written in the first person. But please keep in mind that
I worked in a team and that the presented work is mostly teamwork, with influences from
everybody with whom I discussed or worked during the last 20 years. I apologize in advance if
the value of these influences has been diluted by this emphasis on the first person, please also
take a look at the co-author list in the cited papers to get a more complete picture.

Besides this official and target oriented character, I nevertheless hope that the present doc-
ument will be of some interest to everybody who is interested in the study of complex biological
systems. I will present case studies that combine experimental with theoretical approaches in
order to understand the underlying mechanisms of morphogenetic processes in a large sense:
from the aggregation of individuals over the aggregation of objects to the collaborative con-
struction of a social insect nest. I also hope that it will appeal to a wide interdisciplinary
audience, covering biologists, physicists and mathematicians. I have myself started my career
with a Masters in Applied Mathematics (Jost, 1993) at the University of Ziirich, Switzerland,
while doing in parallel a Bachelors degree in Biology. Both interests merged during my PhD in
ecology (Jost, 1998) at the Institut national agronomique Paris-Grignon (supervised by Roger
Arditi), where I explored what time series data of prey and predator abundances can tell us
about the underlying predator-prey interaction (and, without having ever had any formal course
on statistical inference, had to learn on the fly the statistical approaches to model selection).
This PhD taught me, amongst other things, that if we only have data of the final result in a
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biological process (here predator-prey abundances, measured several times to catch the dynam-
ics), we have only limited statistical power to infer something on the underlying processes (here
prey growth, predation, predator growth). I was therefore lucky to get my job here in Toulouse,
where the goal was exactly to identify the underlying processes on the individual level that let
emerge some intriguing behavior on the collective level. Lucky in two ways, actually: I got the
occasion to design and perform my own experiments (easier said than done, the biologists in
the lab often sadly shook their heads), and I found colleagues in statistical physics that taught
me a modeling approach to understand collective behavior as emerging from the underlying
individual behavior. They also taught me that parameter estimation from experimental data
is not only a statistical/numerical problem, but that thoughtful modeling combined with sim-
ulation (Monte Carlo) can often work wonders. This habilitation is therefore also the story of
my scientific journey here in Toulouse, combining mathematics, physics, computer science and
biology in order to advance our understanding of pattern formation in social insects.

This document would not have been possible without the enthusiastic participation of many
students. I would not want to miss the freshness and (sometimes naive) scientific curiosity of
Bachelor level students: I usually set them to work on very precise questions for which I more
or less already know the result, but they often surprised me by developing their report beyond
my expectations or by insisting on questions that I considered initially to be of less importance
but that turned out to shed new light on the studied topic (B-R Bengoudifa, A Guérécheau,
N Hurard, B Piccinini, M Schwalm, A Solacroup, V Rossi). Master students in their first year
(M1) played an important role because the evaluation of their internship focusses on the research
approach and how they develop it, not on the results themselves: it is therefore possible to let
them work on speculative questions, their supervision just requires frequent discussions with
them and a close look at what they are actually doing in order to refine the methods and identify
the results that merit to be further pursued (G Talbot, J Champeau, S de Mendonga, V Loisel, S
Causse, D Fouquet, T Robert, L Chauvet, S Faber, C Bonnand, N Boulic, A Uhart, A Pessato,
R Runghen). Master students in their 2nd year (formerly called DEA, now simply M2) require
a similar supervision, but I try to set them on questions for which I expect publishable results
(M Challet, J Verret, S Garnier, E Casellas, J Olivera, M Keromest, V Loisel, D Fouquet, C
Péchabadens). Finally, supervising all these students, in particular teaching them the necessary
methods and techniques to become operational, was largely facilitated by the active help of
the PhD students I co-supervised (M Challet, C Sbai). Working with PhD students is more
like a scientific cooperation than student supervision. The hard work is to find a promising
subject and how to attack it, the day to day supervision then mostly consists in discussing
intermediate results, explore alternative explanations and refine the methods and techniques in
order to best anticipate all possible critics and objections of future anonymous referees. The
goal is to advance our understanding of the subject and to accompany the PhD student how to
achieve that — this type of cooperation is largely based on trust.

Having said all this I just hope that you will enjoy reading part or all of this document.
Thanks in advance for your interest.

Christian Jost, Toulouse, 2015.



Chapter 2

Introduction

“All models are wrong - but some
models are useful” Box (1976)

In the title I use the word morphogenesis rather than the more general pattern formation:
what do I mean by this? Wikipedia defines morphogenesis as “the biological process that causes
an organism to develop its shape”. This definition seems to restrict this term to the growth of a
single organism (and many authors use this restricted view). However, in biology we also have
the concept of extended phenotype (popularized by Dawkins 1982) where an organism develops
other things than shape, in particular behavior. By this behavior it also changes its environment
and can create patterns in this environment (a bird building its nest, a beaver constructing a
dam, ...). Morphogenesis can therefore also be the process how an organism creates patterns
in its environment, this is still a biological process. Turner (2002) in his book The extended
organism took this concept a step further by treating the resulting pattern as an organism in
itself and emphasizing the physiology of such animal built structures (thus resembling even
more the wikipedia definition of morphogenesis). The book cover shows a termite mound,
illustrating Turner’s preferred model organism. But other social insects such as ants, wasps or
bees also construct nests that don’t shy a comparison with termite mounds. With social insects
we have arrived in the field of collective animal behaviors (Sumpter, 2010) or, more general,
in group living animals (Krause and Ruxton, 2002). My research during the last 14 years has
been about understanding how animals collectively create patterns, be it a simple aggregation
of individuals (as in cockroaches, Jeanson et al. 2005), the aggregation of objects (as corpse
clustering in ants, Theraulaz et al. 2002), or the aggregation of soil pellets to construct a shelter
(as in ants, Franks et al. 1992, or in termites, Bruinsma 1979). I consider all such pattern
formation processes as morphogenetic processes, and my goal was and is to understand the
underlying behavioral mechanisms that coordinate the animal’s behavior in their group.

2.1 Mechanisms of morphogenesis

How are these patterns created? There might be somewhere in the animal a map or a plan
of the pattern to be built, the animal just following this plan in order to converge towards
the final pattern. This plan might be a genetic program that triggers a sequential order of
behaviors that lead to the pattern. The problem with this concept alone is the amount of
information that would have to be encoded for such a plan. Even if this were feasible, many
animal structures are built collectively: in this case the animal not only needs the sequential
program how to build, it also needs the cognitive capacities to assess the state of the structure
in order to continue its construction after some coworker has worked on it. In short, the notion
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of a map or plan seems rather complicated to get to work, it is therefore rarely invoked as
an explanation for the observed morphogenesis (but see also nest construction in the solitary
paper wasp Paralastor sp — Smith 1978; Downing and Jeanne 1988). A second explanation
might be that the pattern already exists as a template, though not visible to our eyes. You
surely remember the physics experiment in college where iron filings are spread randomly on
a sheet of paper above a magnet: when vibrating the paper gently the iron filings become
ordered and reveal the form of the magnetic field created by the magnet and that has been
there all the time, even if we did not see it. Such patterns can also exist in biological systems
as spatial heterogeneities: a humid spot in the soil which will be excavated by ants and form
the nest cavity, a temperature or humidity gradient along which the nest is excavated and
that serves to raise eggs, pupae or larvae at the right conditions (Brian, 1983; Thomé, 1972).
Sometimes the template is created by a single individual as in the case of the Macrotermes
subhyalinus queen which emanates constantly a pheromone whose concentration decreases with
increasing distance from the queen: it is this concentration that lets workers construct a shelter
chamber adapted to the queen’s size (Bruinsma, 1979; Ladley and Bullock, 2005). This template
mechanism also solves the coordination problem between different workers, they are all guided
by the template independently of the other worker’s activity. However, a template alone is a
limited solution because it must pre-exist somehow. It is also only a partial solution in the case
of the termite queen and nuptial chamber construction: as the shelter walls rise, the pheromone
concentrations inside will change, thus changing the template. How do the workers maintain the
right distance from the queen? This is where an additional concept, self-organization (Camazine
et al., 2001) or stigmergy (Grassé, 1959, 1967; Theraulaz and Bonabeau, 1999), becomes handy.
Much has already been said about stigmergy: here I will consider it simply as a predecessor of
self-organization (SO) and concentrate on the latter. Camazine et al. (2001) define SO as:

Self-organization is a process in which pattern at the global level of a system emerges solely
from numerous interactions among the lower-level components of the system. Moreover, the
rules specifying interactions among the system’s components are executed using only local
information, without reference to the global pattern.

This is a rather wide definition, its key components are only

e dynamical system: a pattern emerges as the result of a dynamic process,

e two or more scales of interest: there are at least two levels in the system (global and lower
in the definition, or collective and individual in the examples treated here),

e 1o global information available to lower level components: the rules guiding the interac-
tions between the lower level components (and their environment) only depend on local
information (each individual has a limited perception, not extending to the global level,
and its behavior is driven by this local information).

Several ingredients of SO are implicitly following from this definition (Bonabeau et al., 1997):

e there must be some positive feedback that amplifies small fluctuations (the origin of these
fluctuations can be the result of a random or non-random process) in an out-of-equilibrium
system,

e there must also be some negative feedback that finally controls this amplification and helps
to stabilize the emerging pattern (forcing it to a stationary state or new equilibrium)

The fact that both ingredients exist implies that the dynamical system cannot be linear (if a
reader wants a technical definition of a linear or non-linear dynamical system I warmly recom-
mend to read the introduction in the habilitation of Gautrais 2015). Other ingredients are less
obvious but have been found in all such non-linear dynamical systems:



e several stable states can co-exist, that is the system can converge to different stationary
states as a function of initial conditions and random fluctuations,

e there is always some so-called bifurcation parameter, that is a variable in the system that,
if changed, let the pattern on the global level emerge or not.

The last few lines have become rather technical, let’s illustrate them with the termite queen
chamber construction. The emerging pattern is the queen chamber, while the local interaction is
termite construction activity based on local queen pheromone concentration (template) and, in
addition, current theory postulates also mixing of the pellets with some construction pheromone
that stimulates further pellet deposits. Actually, when Bruinsma (1979) put an unprotected
queen in an arena with soil and termite workers, these workers didn’t build directly a wall
around the queen as the template mechanism would suggest, but started by building evenly
spaced pillars at the right distance around the queen. These pillars are assumed to be the result
of a positive feedback: termites mix pellets with saliva and probably with some pheromone
(different from the queen pheromone) before depositing the pellet'. Another pellet transporting
termite can sense this local pheromone and its rate to deposit its pellet increases with the
sensed construction pheromone concentration. This is the positive feedback. The rising pillars
still let the queen pheromone diffuse quite freely around them, thus maintaining the required
concentration template. This first phase therefore replaces the pheromone template by a pillar
template. Once the pillars are sufficiently high the termites start to fill the space between them
from the bottom up, thus building the wall. The negative feedback is simply the completeness
of the shelter: once the shelter is finished there are no more pillars with empty space between
them (except the entrance hole, see Ladley and Bullock 2005 for a possible explanation): with
no place where to put new pellets the termite construction activity ebbs out. There are no
multiple stable states in this system since there is only one queen, but we will see them in
later examples. However, there is a bifurcation parameter: worker density. If the worker
density is too low the positive feedback weakens because pheromone evaporates more quickly
than new transporting termites arriving at the construction site: no pillars will rise.

As this example shows, morphogenesis is rarely the result of a single mechanism. Here, a
template mechanism works hand in hand with SO to let the queen chamber emerge. However,
when SO was suggested as an important mechanism in biological pattern formation, the first
experimental validations did their best to eliminate explanations other than SO simply to make
sure SO was the only possible explanation for the observed patterns (eg. Franks et al. 1992;
Theraulaz et al. 2002; Jeanson et al. 2005). This emphasis on “its only SO” led to some “accu-
sations” that protagonists of SO were too narrow minded and didn’t see beyond SO. I think this
debate has now ebbed out: SO does not exclude inter individual variability or even leadership.
Inter individual variability can even play a crucial role in a SO process (see review in Jeanson
and Weidenmiiller 2014), such as thermoregulation in honey bees (Jones et al., 2004) where
polyandric colonies have a more stable temperature than monoandric colonies. Leadership in
itself is a debated concept (King, 2010; Bourjade et al., 2015), but recent research has shown
that its mechanistic origins are diverse and include SO (Petit and Bon, 2010) combined with
evolutionary processes (Conradt and Roper, 2010). Gautrais (2010) showed that leadership
can result from a combination of inter individual variability and SO, with a continuum from
distributed leadership to “despotic” leadership according to certain individual behavioral pa-
rameters. Coming back to morphogenesis, SO not only interacts with templates, SO can even
generate dynamic templates that play a crucial role in the emerging structure (Jost et al., 2007;

!Note that the described mechanism hasn’t been experimentally verified in all detail and is currently again
under discussion (Petersen et al., 2015). This means that the story told above may have to be refined in the
future



Weitz, 2012). A current challenge in morphogenesis is therefore to mount experimental systems
where several mechanisms are at work in order to understand their interplay (eg. Jost et al.
2007), preferably concerning processes with a sound biological meaning/function. The role of
inter individual variability or leadership are still completely unknown in such morphogenetic
processes, but the reviews cited above suggest that they play one, the question is to identify it
experimentally.

2.2 Why do we need modeling?

You may have wondered why I started this chapter with a (negative) citation on modeling.
Well, first, that might be due to my teaching activity. Students frequently assume that in an
experimental approach one tries to describe reality. While, in reality, we try to understand one
aspect of the real system, an aspect of which we have a caricature in mind. Furthermore, when
we want to understand underlying mechanism, we have a caricature of these mechanisms in
mind, neglecting some details while favoring others. In sum, we see the real biological system
as a caricature, and “caricature” is just another word for “model”. Just as a caricature is
not reality, thus wrong, any model we have in mind is wrong: but sometimes this caricature
helps us see connections and helps us understand the principal mechanisms underlying some
emergent pattern. Then the model is useful, and for a biologist this usefulness is the only
“raison d’étre”® to formulate a model. Second, when we try to understand emerging behavior,
a qualitative model is often insufficient to help us see what emerges from a particular choice
of mechanisms and behaviors on the individual level (remember, we have non-linearity in a
system, and predicting non-linear systems is all but trivial, just see the latest Jurassic Park
sequel). Or, on the other side, several different qualitative models predict the same emerging
qualitative pattern (Weitz et al., 2012), how do we compare between the models and identify
the most likely one? In both cases we can go towards a quantitative model in the form of
mathematical equations that can be studied either analytically or by numerical simulation, and
that can be confronted statistically with the biological data. However, most biology students
want to do science, but have chosen biology because they detest mathematics. My task is
therefore to explain that when we do modeling, we do biology, not mathematics. We may need
some mathematical techniques to understand model predictions, but this is not for fun, just
a necessary nuisance. These techniques rarely exceed what they have already learned in their
“baccalauréat” (bachelor in the anglo-saxon system?). The citation helps me to remind them
of this, that our interests are biological questions, and that modeling is just one tool to answer
them. Last not least, modeling comes more and more down to computer simulations, and many
biology students are open to this tool and can use it actually fairly well.

The question asked in the section heading is therefore the wrong question: we always do
modeling when we think about how biological systems work. The real question would be why
we should resolve to a mathematical model to answer our biological questions. Students can
accept that we do not do this for fun, but because we see no other way to answer the question.?

2.3 A methodology to study SO

The method we use to study SO in collective animal behaviors is the one well described in
Camazine et al. (2001) and illustrated in Fig 2.1.

2The most important reason or purpose for something or someone’s existence
3Last not least, this citation also tells us that there is more behind Box than the box plot.
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Figure 2.1 — The methodology we use to study collective animal behaviors. It starts (1) with some
intriguing collective behavior we want to understand, and continues (based on observation of the system)
with a first choice of relevant individual behaviors (2). These behaviors are then precisely translated
into a quantitative model (enunciation) from which we predict the emerging collective patterns (3+4).
Finally, the predicted pattern is compared to the actually observed pattern (4+1). If this comparison
is not satisfactory, we go back to the choice of individual behaviors (maybe an important behavior was
missed) or to the model enunciation (have we correctly translated the behavior into quantitative terms?
are there statistical biases in the parameter estimation methods?) and redo the cycle until we find a
satisfactory prediction of the collective pattern.

The main goal of this methodology is to identify the individual behaviors that can explain
some collective behavior we are interested in. It therefore starts with the identification and
description of some intriguing collective behavior we want to understand (step 1). In the
example cited above this pattern was the construction of a shelter of the right size to protect
the queen. The next step is to identify, by direct observation of the biological system, candidate
individual behaviors that can explain this collective pattern (step 2). In the case of queen shelter
construction this had been done in the early work of P.-P. Grassé (summarized in Grassé 1984)
and by controlled experimental approaches by Bruinsma (1979) in his PhD work. All subsequent
modeling work on this shelter construction found their biological inspiration in Bruinsma’s PhD
work (Deneubourg, 1977; Courtois and Heymans, 1991; Bonabeau et al., 1998a; Ladley and
Bullock, 2005; Hill and Bullock, 2015). We will illustrate the methodology with the work by
Ladley and Bullock (2005) who selected the following elements from Bruinsma’s work:

e the termites move around randomly on the ongoing construction with a tendency to
deposit pellets where previous pellets have been deposited or to move towards such places,

e the pellets themselves are impregnated by the termites with some volatile marking (cement
pheromone),

e the queen emits queen pheromone at a constant rate and which diffuses in the air,
e termites only deposit pellets at a certain queen pheromone concentration.
The next step in the methodology is to formulate precisely how these behaviors are translated

into a model (step 3), which is in their case a computer simulation model. My physics colleagues

11



call this step model enunciation to emphasize that a clear and precise description of this
translation of individual behavior into the model is required in this step. By this emphasis there
is a clear separation between step 2 (selection of individual behaviors) and step 3 (writing the
model), and subsequent critical examination of the work can separately question the decisions
made in both steps. Ladley and Bullock (2005) choose to implement construction in a 3D
lattice model, where each soil pellet corresponds to a cube. Their pellet carrying termites move
around randomly in the empty cells adjacent to the built cubes (according to some precise
rules that the authors call logistic constraints) with a bias towards cells with a higher cement
pheromone concentration. They have a fixed probability to deposit their pellet. The cement
pheromone in the deposited cube decreases/evaporates exponentially. There is a fixed number
of pellet carrying termites, and when one deposits its pellet it disappears and a new pellet
carrying termite is generated at a random location. The queen is modeled as a fixed template
that emits queen pheromone at a constant rate. This pheromone spreads in the empty cells
according to a standard diffusion implementation in lattices. Pellets can only be deposited
within a fixed range of queen pheromone. This implementation leads indeed to the formation of
a dome shaped shelter around the queen (Fig 2.2) that compares well with the observed queen
shelters in Bruinsma (1979) or Grassé (1984) (step 4).

Figure 2.2 — Termite queen shelter construction according to Ladley and Bullock (2005): the pheromone
emanating queen is the straight object in the center or the arena, rather evenly spaced pillars are formed
at a constant distance around the queen and rise continually, then the space between pillars is filled up
to form walls, and the queen is finally covered by a regular dome (Fig from Ladley and Bullock 2005).

Though this model relies on precise quantitative descriptions I would rather call it a qual-
itative model because none of the parameters used in the model has been estimated directly
from experimental data, nor is the queen shelter described in any quantitatively precise form.
Step 4 is therefore limited to a qualitative comparison, and if one is not satisfied with this com-
parison it is possible to “play around” with the parameter values (or, in more scientific terms,
tune them) until the comparison is satisfying. While this proof of concept is useful to show that
the proposed mechanisms are capable to explain the observed collective behavior, Weitz et al.
(2012) has shown in another experimental system that many different mechanisms can produce
the same collective outcome, even if the latter is precisely quantified. This illustrates that with
a qualitative model we have only limited statistical power to identify/select the underlying in-
dividual behaviors. For this reason Camazine et al. (2001) postulates a strict quantitative
approach for their methodology:

e the resulting collective structure must be precisely quantified to permit a quantitative
(statistical) comparison between observed pattern and model predicted pattern,

e the enunciated individual behavioral rules must be parameterized as good as possible from
experimental data on the individual level that are independent of the data/experiments
on the collective level.

12



With this additional requirement the methodology resembles the well known statistical ‘in-
sample out-of-sample’ model validation concept: the model is fit to part of the data (in-sample),
and model validation is based on how well this fitted model predicts the out-of-sample data.
The in-sample data are the one on the individual level on which the parameters of the individ-
ual behavioral rules are calibrated, while the out-of-sample data are the one on the collective
level. This strict quantitative approach should increase our statistical power to detect and
reject “wrong” individual behaviors (in the sense that they are not relevant to the emerging
collective pattern) or “wrong” enunciations of these behaviors (in terms of model formulation
and parameter estimation). Since the publication of Camazine et al. (2001) this full quantita-
tive methodology has been successfully applied in several case studies: cockroach aggregation
(Jeanson et al., 2005; Amé et al., 2005), cockroach collective decision making (Halloy et al.,
2007; Canonge et al., 2009), corpse-clustering in ants (Theraulaz et al., 2002), collective motion
in fish (Gautrais et al., 2012), ...

2.4 What does it take to understand social insect nest construc-
tion?

Let’s come back to morphogenesis in social insect nest construction as announced in the title.
The concepts and examples described in the previous sections make it clear that several mech-
anisms are at work: there is self-organization as in pillar construction in termites, there are
templates as in termite queen shelter construction, and these templates can even be dynamic
either by external changes (day-night, winter-summer) or by internal changes (queen size, the
ongoing construction itself). My research goal in the next few years will be to understand the
emergence of some termite nest architectures in this framework, with the mathematical and
computational tools that are needed for this goal. The rest of this text will retrace my work
over the last 14 years to check whether I have the skills to pursue this goal, both conceptually
as well as technically. In chapter 3 I will retrace the work on cockroach aggregation. This work
started in 2001, when I came to Toulouse in Guy Theraulaz’s research group, and it was my
initiation to the groups theme “collective animal behavior”. Chapter 4 will review our work on
the clustering of objects, in particular corpse-clustering in the harvester ant Messor sanctus.
During this work I started to supervise my own students both on the Masters and PhD level.
Chapter 5 will summarize what we know about the mechanisms underlying nest construction in
both ants and termites. During this work we also received our first ANR grant that permitted
us to create a large data-base of 3D nest-architectures and the presentation of some of these
nests in a public virtual museum (http://www.mesomorph.fr). Finally, in chapter 6 T will
develop my research program for the next couple of years that involves in particular two PhD
students that started their work in fall 2014 or will start it in fall 2015, the jury’s assessment
of these perspectives will therefore be highly valuable.
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Chapter 3

Self-clustering of animals (or robots)

The clustering of animals of the same species is a widespread phenomenon in nature (Krause
and Ruxton, 2002). Such clustering can have an adaptive purpose (create a locally favorable
micro climate, better defense against predators, more efficient predation, mate finding,. .. ), but
it also includes costs (competition for ressources, more visible to predators, ... ). Independently
of the adaptive nature of this clustering, one can also investigate the behavioral mechanisms
that permit the animals to group together. When I arrived in the CRCA in Toulouse in 2001
Raphaél Jeanson had just started his PhD and was working on these individual behavioral
mechanisms in the case of the aggregation of german cockroach larvae (Blattella germanica,
Fig 3.1). These cockroaches frequently aggregate together during the resting phase, Fig 3.1,
purportedly to create a favorable microclimate (Dambach and Goehlen, 1999). Clustering has
also been shown to increase individual growth (Prokopy and Roitberg, 2001).

—— e e m——

Adult male Adult female 6th instar 3rd mstar

N\ A~

1 min 10 n. 60 min l

Figure 3.1 — The german cockroach (Blattella germanica): adult male and female (the latter carries an
ootheca) and three instars during thelr development. The bottom row shows the experlmental aggrega-
tion pattern: 20 cockroach 1st instar larvae are released in a Petri Dish (diameter 11 cm), they first move
around to explore the arena, then start aggregating until in the end there is a single or two aggregates.
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3.1 Apply the SO methodology to study cockroach aggregation
behavior

Raphaéls work required to program cockroach aggregation as an individual based model (IBM)
in order to predict the emerging aggregation pattern from his experimentally determined indi-
vidual behaviors'. His PhD supervisors Guy Theraulaz and Jean-Louis Deneubourg decided
that I could work with him for several reasons: (a) Raphaél was new to programming, an inde-
pendent implementation by another programmer in a different language would therefore ensure
that no major bug distorted his results, (b) my background in model selection could be useful
to decide which behaviors are essential to be included in his IBM, and (c) for me this was the
ideal opportunity to dive into the world of collective animal behaviors.

Cockroach aggregation behavior has three components: (1) cockroach movement, (2) cock-
roach stopping and (3) cockroach departure. Cockroach movement in the experimental arena
(Petri Dish with diameter 11 cm) has itself two components, a standard diffusive random walk
in 2 dimensions when far (>5 mm) from the Petri Dish wall, and a strong tendency to follow
the wall (often called thigmotactic behavior) for a long time, sometimes making a U-turn (thus
a l-dimensional random walk), before returning to the arena center. This switching between
2-D and 1-D random walk had already been worked out by Raphaél and our physics colleagues
Richard Fournier and Stéphane Blanco (Jeanson et al., 2003), in particular how to estimate
model parameters from the experimental data. Several key ingredients of their model are worth
mentioning. The size of the arena permitted to model the 2-D random walk in the arena center
with an isotropic phase function (rather than the correlated random walk that describes an
animal’s trajectory more precisely, Codling et al. 2008): the longer ballistic phase in the corre-
lated random walk had no importance for the emerging cockroach distribution in the arena and
parameter estimation for a random walk with isotropic phase function is much simpler than
for a correlated random walk, it only required to estimate mean cockroach speed and the mean
free transport path from the slope of the net squared displacement (if you are completely lost
with this terminology I suggest to read Challet et al. (2005b) for an introduction to correlated
random walks and the appendix in Casellas et al. (2008) for the formal link between correlated
random walks, isotropic random walks and net squared displacement that actually goes back to
Einstein (1905)). The rate to do a U-turn when following the arena wall was much smaller than
the rate to leave the arena wall, it could therefore be neglected. Sometimes a cockroach stopped
and rested for a certain time before moving again. The inclusion of this behavior proved to be
essential to correctly predict cockroach density in the arena center as well as along the arena
wall. We will come back to the details of this stopping behavior in the next paragraph.

Cockroach stopping behavior was then studied as a function of how many stopped neigh-
bors a moving cockroach can detect. This neighbor detection happens by tactile contact with
either antenna or cerci, the number of neighbors can therefore be considered as the number
of individuals within reach of antenna and cerci (fixed perception radius). Raphaél needed in
particular to estimate the rate of stopping as a function of the number of stopped neighbors.
For spontaneous stops this was rather easy, it was sufficient to measure the time of movement
before a spontaneous stop and estimate this rate as the inverse of the mean movement time.
Furthermore, the survival curve of the moving times resembled an exponential distribution,
the rate can therefore also be estimated as the slope of this survival curve on log-linear scale
(technically this means that spontaneous stopping can be modeled as a memory-less or Marko-
vian process with a constant stopping rate - the underlying mathematics can be found in any
textbook on statistical physics). Estimating the stopping rates when the cockroach senses N

LA cluster or aggregation can be defined as any assemblage of individuals that results in a higher density than
in the surrounding environment (Camazine et al., 2001).
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stopped neighbors required a different technique: Raphaél observed all encounters between a
moving cockroach and an aggregate of size N and computed the fraction of cockroaches that
actually stopped in the aggregate. Assuming a constant speed and a fixed encounter duration
between the moving cockroach and an aggregate of size N one can estimate the stopping rate
of each N (see Appendix in Jeanson et al. 2003). It turned out that the stopping rate increases
monotonically with size IV - this is a positive feedback, the cockroach has an increased tendency
to stop the more stopped neighbors are around it.

Finally, stop duration turned out to be the most tricky part in Raphaél’s model. Fig 3.2(a)
shows the survival curves of the times an aggregate remained of fixed size N before changing
its size (departure or arrival of a cockroach). Contrary to the spontaneous stop survival curve,
these curves do not resemble an exponential distribution (that would be a straight line on
log-linear scale), at best they resemble the combination of two straight lines. Indeed, when
observing the stopped cockroaches more closely, Raphaél saw that some of them remained
rather nervous (moving the antenna and cerci), while others appeared to be very calm. The
first had on average shorter stop durations than the latter. Raphaél and coworkers therefore
suggested that a stopped cockroach can be in two states: a nervous state with a (fixed) high
departure rate, and a calm state with a (fixed) low departure rate. The resulting survival curve
of such a process would be the superposition of two exponential curves, resulting in such a
bilinear pattern. When estimating the associated parameters from his survival curves he found
that the fraction of nervous cockroaches decreased with aggregate size N, while the departure
rates for both states also decreased with N. In short, the larger the aggregate, the longer the
cockroaches tend to stay - this is again a positive feedback.

. ]\,71
A NZ
v 1\]3
= N, o
a =
3 - ' g
B < = £l
& Vv . g
= vy L) gc
=Y A VW% ) &
=] LY % - &
= hyy A 33 - &
g '™ v =
E o, v - g
a v =
g/ 4, R = Social simulations
= b '\. A, S Experiments
— [ LN = Nonsocial simulations
e o ° w
%o
L ] oo o ° .
L )
. L L
-4 oL vy
0 100 200 300 400 S 10 15 20 25 30 35 40 45 S0 55 60
Time (s) Time (min)

Figure 3.2 — (a) Survival curves (on log-linear scale) of the stop durations of aggregates of size N = 1,2, 3
and 4, (b) comparison between the dynamics of the largest aggregate size (with 20 cockroaches in the
arena) between experiments, the IBM’s predictions (Social simulations) and the predictions when the
two positive feedbacks had been removed from the simulations (Nonsocial simulations). These are Figs
2 and 3 from Jeanson et al. 2003.

The combination of the two positive feedbacks, stop when there are many stopped neighbors
and leave when there are few stopped neighbors, results in a strong overall positive feedback
that promotes cockroach aggregation. Raphagl identified this positive feedback as the core
social behavior that promotes cockroach aggregation. Putting all these behaviors together in
his simulation code (Fig 3.2(b)) the experimental dynamics of the largest aggregate size were
close to the model predictions, but when he removed the positive feedback from this model
there was simply no aggregation at all (Nonsocial experiments in Fig 3.2(b)).
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3.2 A first scheme for quantitatively based model selection

Raphaél decided to include (or not include) a behavior in his model by comparing the ex-
perimental data visually to the model predicted values (for example the fit of the “double
exponential” curves in Fig 3.2(a), or the closeness between experimental dynamics and Social
simulation dynamics in Fig 3.2(b)). However, while the “double exponential” seemed to fit the
survival curves much better than a simple exponential distribution, this criterion does not tell
whether the “double exponential” is important with respect to the global aggregation dynam-
ics. To test this question one could fit exponential distributions to the survival curves, redo the
simulations and compare visually whether the model with “double exponential” distributions
improves model predictions. As my modest original contribution to Raphaél’s work I tried to
develop a quantitative model assessment criterion to decide whether the “double exponential”
is indeed necessary (Jost et al., 2002).

We keep the in-sample and out-of-sample framework outlined in section 2.3: estimate all
model parameters with data on the individual level (in-sample), then predict the emerging
collective level and compare it to the actually observed pattern on the collective level (out-of-
sample). On the individual level the stop durations will either be fit to a simple exponential curve
or to the double exponential curve, predicting then in both cases the out-of-sample prediction
by Monte Carlo simulation. The only difference to Raphaél’s will be, following the ideas of
model selection theory in Linhard and Zucchini (1986), to define a so-called “discrepancy”,
which is simply a quantitative measure of proximity between predicted and observed pattern.
Since the predicted pattern is a whole dynamic system (as in Fig 3.2(b) I will use the dynamics
of the largest aggregate) this discrepancy has to properly weigh the different phases in the
dynamics (increasing phase, stationary state). Since Raphaél had performed 22 experiments
with 20 cockroaches in the arena, we have at each time step 22 largest aggregates from which
we compute the cumulative distribution (CDLA, Fig 3.3). Since the cockroaches had to be
anesthesized (CO2) when transferred to the Petri Dish, the beginning of the experiments may
have been perturbed due to their waking up. We therefore sampled these dynamics at 20, 40
and 60 minutes only to catch the increasing and the stationary phase.
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Figure 3.3 — The dynamics of the cumulative distribution of the largest aggregate (CDLA), sampled
over the 22 original experiments every five minutes. The z-axis is aggregate size (figure taken from Jost
et al. 2002).

To get the predicted pattern I computed the cumulative distribution of the size of the largest
aggregate for 22 in silico experiments at 20, 40 and 60 minutes, estimating its expected form
in a Monte Carlo setup by repeating the 22 experiments 20 times. The discrepancy between
these predicted distributions and the observed distributions in Fig 3.3 is computed as the sum
of weighted squared differences for all aggregate sizes (X2), the weight being the variance of
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the estimated distributions at each aggregate size (see Fig 3.4). The results are ambiguous: the
exponential distribution actually produced a smaller overall ng, but the CDLA barely moved
between the sampled times, that is it was at stationary state already at 20 min contrary to
the observed CDLA. With the double-exponential distribution we recover the dynamics of the
CDLA, but overall X2 is much worse.
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Figure 3.4 — Comparison between the observed CDLA at 20, 40 and 60 minutes and the model predicted
CDLA, on the top row assuming exponential distributions of the stopping times, on the bottom row
assuming double-exponential distributions (figure modified after Jost et al. 2002).

In sum, this first shot at a quantitative model selection approach in the context of collective
animal behaviors was not conclusive. We could choose other or more sampled times to give
more weight to the dynamics of the CDLA. We could also replace the X2 by a Kolmogorov-
Smirnov type maximal distance between observed and predicted CDLA. Note also that my
discrepancy measure did not account for model complexity (the exponential distributions require
one parameter, the double exponential three parameters). The approaching dead-line for the
Monte Verita workshop put a stop to these first trials, as unsatisfying as they were, but I will
come back to this problem of model selection and controlling model complexity in chapter 6.

3.3 Cockroach clustering and collective robotics

When I arrived in Toulouse in 2001 our workgroup had also just started as a partner in the
European [.EURRE project? under the coordination of Jean-Louis Deneubourg (ULB, Bruxelles,
Belgium). The goal of the LEURRE project was to create mixed animal-robot societies and to
apply self-organization theory in order to let the robots control the collective animal behav-
ior (Halloy et al., 2007). The robots themselves should merge with the animal group and be
accepted by them as one of their own. The principal model organism were cockroaches (Peri-
planeta americana, with Colette Rivault from the University of Rennes as the expert partner on
cockroach chemical communication, the experiments themselves being done in Bruxelles), the
robot partners were Roland Siegwart and Gilles Caprari from the Ecole polytechnique fédérale
Lausanne (EPFL); and Toulouse explored how the results achieved with cockroaches could be
transferred to a more complex organism, sheep. Gilles had actually already developed an au-
tonomous mini-robot, the “sugar cube” robot Alice (Fig 3.5). For the LEURRE project he would
develop with his partners a new insbot (insect like robot) tailor made for the interaction with

2Future and Emerging Technologies — Information Society Technologies, grant FET-OPEN-IST-2001-35506
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cockroaches. But while waiting for this robot to be engineered (it was actually ready in the
3rd LEURRE year) we decided to start collective robotics experiments with the Alice robots in
Toulouse (where we already had a couple of these robots, Gilles delivered 20 more to make a
nice little robot herd).

Raphaél’s model of German cockroach (Blattella germanica) aggregation served as the start-
ing point to implement the same aggregation behavior in the Alice robots. The standard Alice
has 4 infrared (IR) sensors to detect objects around them (Fig 3.5), two independent motors
to move around freely, they can recognize other Alice by radio contact, and they have about
5h autonomy. A diode on the Alice’s top can also signal its state to an observer. Gilles had
developed a library to program Alice in the C-language. I started the work by implementing the
single cockroach behavior in a circular arena (Jeanson et al., 2003). We were lucky that at this
moment a gifted Master student, Simon Garnier, arrived in the workgroup. He was interested
in exactly what we did: study collective animal behavior with the help of experiments, model-
ing, simulation and robotics. During his Master internship we implemented together the whole
cockroach aggregation behavior (Fig 3.5) and tuned the robots minutely to do quantitatively
exactly the same as the cockroaches (Garnier, 2004; Jost et al., 2004; Garnier et al., 2008). This
was the proof of concept that mini-robot technology could reproduce a simple collective insect
behavior at the same scale as the insects.

0 minutes

20 minutes

Figure 3.5 — An Alice robot with his three infrared sensors pointing forward (there is also one in the
back). (a~-d) Aggregation process of the Alice in a circular arena (diameter 50cm).

3.3.1 Clustering and collective decision making

Collective decision-making is a cornerstone for the functioning of animal groups: see Sumpter
(2010, Ch 4) for a general review, Camazine et al. (2001, Ch 12) for bee foraging, Beckers et al.
(1990) for ant foraging, Detrain and Deneubourg (2008) for the comparison between bee and
ant foraging, Seeley et al. (2012) for bee nest site selection, to cite but a few. For a collective
decision to happen there must be a strong positive feedback (Detrain and Deneubourg, 2008). Is

3In the final mixed societies the insbot had actually a much simpler behavioral program — key to the successful
subtle interaction with cockroaches was to make it smell like a cockroach (Sempo et al., 2006; Halloy et al., 2007).
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the positive feedback in cockroach aggregation (stop where there are many cockroaches, depart
when there are few around the cockroach) sufficiently strong to trigger a collective decision?
Indeed it is, Amé et al. (2006) could even show that the process leads to optimal mean benefit
for group individuals. Note also that the final experimental setup chosen in the LEURRE project
to show that the mixed societies worked and that the robots could influence collective behavior
was a collective decision setup (Halloy et al., 2007).

After his Master, Simon started a PhD on collective decisions in general under the supervi-
sion of Guy Theraulaz. The robot setup developed during his Master (Garnier, 2004) continued
to serve as a testbed (together with collective foraging in the Argentine ant Linepithema hu-
mile). Inside the arena there were two suspended disks of red acrylic glass to provide two
shelters from light (very similar to the final setup used in the LEURRE project). The robots
could move freely under these disks or in the rest of the arena, but they were programmed
to stop only under the shelters. The positive feedback implemented previously could therefore
only unfold beneath these shelters. Stopped robots light their diode to be detectable below the
shelters. See Fig 3.6 for the setup and a typical experiment.

In a first setup (Garnier et al., 2005) the robots had the choice between two disks of the same
size (14 cm diameter). While a trinomial distribution (distribution of randomly moving animals
without a positive feedback between shelter 1, shelter 2, and the rest of the arena) would predict
an equal number of robots under each shelter (Fig 3.6B.1), the robot experiments as well as
computer simulations show a U-shaped choice distribution, meaning that in each experiment
robots cluster preferentially under one of the two disks, but either disk can be chosen with
equal probability (Fig 3.6B.2-B.3). In a second series of experiments they had a choice between
a 10 cm disk and a 14 cm disk: they preferentially chose the 14 cm disk (Fig 3.6A.2-A.3).
In a final series of experiments they had a choice between an 18 cm disk and a 14 cm disk:
they preferentially choose the 18 cm disk (Fig 3.6C.2-C.3). Garnier et al. (2005) concluded
that robots, just as cockroaches, make a collective decision for the larger disk without robots
explicitly comparing between the two sites. This could be explained by the higher probability
for a randomly moving robot to encounter the larger disk, but robot densities under the larger
disk tend to be lower, thus decreasing the strength of the positive feedback. To explore the
interplay between these two mechanisms Garnier et al. (2009a) performed further simulation
work where they varied the ratio between the two shelter sizes continuously from 0 to 7 (while
keeping the arena size always proportional to the sum of the sizes of the two shelters): indeed,
the preference for the larger disk had a maximum for a ratio around 2 and then decreased
continuously, though still preferring the larger disk but with decreasing asymmetry.

3.3.2 Trail formation in robots: light as a substitute to pheromones

Insect communication relies to a large extent on pheromone communication. Robot technology
is still far away from using pheromones in the same way as insects. In Halloy et al. (2007) the
insbots were made to smell like cockroaches by glueing filter paper on them that was sprinkled
with the pheromone cocktail identified by the group in Rennes (Said et al., 2005). However,
the robot had neither control of pheromone emission, nor could it detect the pheromones. This
shuts the door to the transfer of many social insect solutions to collective robotics. However,
when discussing this problem with Fabien Tache (one of the roboticists in Lausanne involved
in the Leurre project) we thought that light is very easy to detect by a robot. We thus started
fantasizing about a system where light trails are projected by a video-projector, the robot detects
the light with two photosensors (to imitate the osmotropotaxic pheromone orientation in ants,
Fraenkel and Gunn 1961), its position being tracked in real time and this information used to
program what should be projected by the video-projector. Unfortunately, when time is ripe,
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Figure 3.6 — Collective decisions by the Alice robot: (left) experimental setup with two shelters seen
from the top or in a 3D visualization, (right) choice distributions (percentage of cockroaches under the
14 cm diameter disk on the z-axis, number of experiments that ended with this percentage on the y-axis:
a dominant bar on the right means the 14 cm disk has been chosen in columns A and C) when the robots
had a choice between two disks of sizes 10 cm and 14 ¢cm (column A), between two equal sized disks of
14 cm (column B) and between two disks of sizes 18 ¢cm and 14 c¢cm (column C). The top row shows the
expected choice distribution from a trinomial distribution (that has no positive feedback mechanism),
the middle row the result of 20 robot experiments with 10 robots each, and the bottom row the result
of spatially explicit Monte-Carlo simulations. Figs taken from Garnier et al. (2005).
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great ideas tend to emerge in parallel in many places. By the time Fabien had developed the
first prototype of this system we discovered that the Japanese had had exactly the same idea
and were beyond prototypes (Kazama et al., 2004; Sugawara, 2005). Nevertheless, Simon took
up Fabien’s prototype and adapted it (Fig 3.7) to study questions he had faced in the foraging
decisions made by argentine ants Linepithema humble (Garnier et al., 2009b). If ants access a
food source via a bridge with two equal length branches they make a collective decision and
most traffic will circulate on only one of these branches (Beckers et al., 1992b; Dussutour et al.,
2004). The underlying mechanism is the ant’s choice function when facing a Y junction with
pheromone concentrations on the left and on the right: this choice function is highly non-linear,
with small differences in pheromone concentrations amplifying the turning bias towards the
higher pheromone side.* Simon constructed the same setup for the Alice robot (Fig 3.7(b)):

Source

Figure 3.7 — The Alice light trail experiments: (a) An Alice equipped with two photosensors that can
detect independently light intensity (similar to the two ant antennas that detect pheromone concentra-
tion), (b) the simple experimental setup used, with a diamond shaped channel system between the “nest”
and the “food”; (c¢) three Alice robots following the projected light trail. Figs modified after Garnier
et al. (2007).

as soon as the robot leaves the nest or the source it switches on its LED, is detected by the
tracking system which projects on this position a light spot (pheromone) which decays slowly
with an exponential type decay. The robots perform a standard correlated random walk unless
they detect light, in which case they turn preferentially towards the higher light intensity (Fig
3.7(c)). With this “simple” setup the robot herd produced the same branch selection as the
ants (Garnier et al., 2007).

The next step was to let the robots navigate in a more complex network with variable
geometry. Fig 3.8 shows the used setups: they had 3 loops and the junctions were either
symmetrical or asymmetrical. Argentine ants tend to choose the branch where they have to turn
less, and they found the shortest path faster in the asymmetrical setup than in the symmetrical

4Note that ants do not compare the pheromone concentrations between the left and right branch, they simply
detect the pheromone concentrations with their two antenna and the net difference influences the magnitude of
turning behavior according to a Weber’s law. Perna et al. (2012) showed this experimentally and further showed
analytically that this simple behavior combined with some directional noise can result in the Deneubourg type
non-linear choice function (Beckers et al., 1992b) usually used in the literature.
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one (Garnier et al., 2009b). Note that such asymmetries in trail bifurcations had been found in
real ant trails (Jackson et al., 2004). Simulations in Garnier et al. (2009b) had shown that the
ant’s preference for small deviations could explain this difference and that foraging efficiency
(measured in the simulations as the number of ants going from S to T or from T to S) was three
times higher in the asymmetrical setup. The implementation in the robotics system (Garnier
et al., 2013) showed two things: (a) the light “pheromone” recruitment system combined with
asymmetrical junctions resulted in the highest recruitment efficiency (Fig 3.8), (b) the robots did
not need to know the turning angle to the next branch in order to bias their choice to the lesser
angle, the “inertia” of their correlated random walk combined with obstacle avoidance behavior
and the amplification power of pheromone trails was sufficient to reproduce this behavior.
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Figure 3.8 — (left) The 3 loop networks used in Garnier et al. (2013) with either symmetrical junctions
(wherever the robot comes from, it has to turn the same angle) or asymmetrical junctions (the angle
to turn depends where the robot comes from and where it goes). S marks the starting area, T the
target area. (right) Foraging efficiency (measured by the number of successful trips) of the robots in the
symmetrical (S) or asymmetrical (A) setup and with (+P) or without (-P) light “pheromones”. Figs
taken from Garnier et al. (2013).

When we had started working with robots (Garnier, 2004) we had only in mind to use
social insect behavior as a bio-inspiration for collective robotics, with the additional challenge
to reproduce cockroach behavior on the right scale. However, when Jean-Louis Deneubourg
remarked provocatively that this work had taught us nothing about biology we were nevertheless
somewhat disappointed. Continuing to think about this problem we meanwhile nevertheless
think that collective robotics experiments can also help us answer biological questions. Garnier
(2011) mentions several reasons:

1. robots require a complete specification and implementation of the individual behavior in
a given environment (similar to simple computer simulations),

2. robots are physical entities that move around in physical space with all its constraints
(this is more difficult to include realistically in computer simulations). It was exactly this
property that made robots the tool of choice in the mixed societies study (Halloy et al.,
2007), and robots, as modern lures, are used in many other areas of behavioral research,

3. robots can be inadvertent sources for biological inspiration (as in Garnier et al. (2013)
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that taught us that robots do not need to measure angles in order to favor low direc-
tional changes in a Y-maze — so why should ants need to know such angles to show their
behavioral bias towards low angle directional changes?),

4. robots are simply very “cool” gadgets that help direct attention to our questions and that
are of great use with students to illustrate biological ideas (more so than simulations which
are less transparent for many biology students). The last point is well illustrated by the
media coverage given to Garnier et al. (2013).

In sum, collective robotics will remain in the behavioral biologist’s toolbox, in particular because
robot behavior is completely controlled by the programmer and their physical presence make
interactions with real animals possible.
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Chapter 4

Object-clustering: corpse clustering
in ants

The first step towards nest construction is the clustering of objects. It was the clustering of soil
pellets by termites that inspired Grassé (1959, 1967) to create his stigmergy concept (Theraulaz
and Bonabeau, 1999). One of the first experimental demonstrations of self-organization in social
insect nest construction was with Leptothorax ants that chose small cavities for nesting where
they build additional walls by simply bulldozing sand pellets together (Franks et al., 1992). In
the last century Chrétien (1996) invented another clustering paradigm to study the underlying
mechanisms: the aggregation of dead nest mates by the black garden ant Lasius niger. When
an ant dies within its colony the corpse is usually picked up by some nest mate and transported
outside the nest (Wilson et al., 1958; Haskins and Haskins, 1974; Howard and Tschinkel, 1976)
where it is aggregated in refuse piles (or middens) together with other waste from the nest (Fig

Figure 4.1 — Messor sanctus is a harvester ant living around the Mediterranean. They harvest grains
from plants and store them in their underground chambers as food reserve. Waste, such as the corpses
of dead conspecifics, is expelled from the nest and accumulated by the ants in refuse piles or middens,
purportedly for nest hygienics. They have often erroneously been called “cemeteries”, but corpses are
treated just as any other garbage object.

This behavior is usually interpreted as serving nest hygienics. Dead corpses, as all other
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waste, let pathogens grow on them: expelling them from the nest reduces the risk of infection
and aggregating them reduces the risk for foraging ants to get in contact with contaminated
material. Workers identify corpses by their production of fatty acids (eg. oleic acid, Wilson
et al. 1958; Howard and Tschinkel 1976) and they usually never bring the corpses back into the
nest (but see also Gordon 1983 who found that this behavior may depend on the social context).
This last property was used by Chrétien (1996): she distributed ant corpses in a flat arena and
let the ants arrive spontaneously in the arena. The ants quickly started assembling/aggregating
the corpses into piles, and since the corpses are never brought back to the nest the dynamics
of the complete clustering process and the fate of all corpses could be observed by simply
filming the experimental setup. Chrétien (1996) found that any corpse found by the ant had
the same probability to be picked up (she did not assess whether local corpse density changes
this probability, she only varied their distance from the nest), that they are then transported a
certain distance away from the nest entrance and preferentially deposited at the arena border
or on other objects such as corpse piles (spontaneous depositing occurred, but with a low rate).
A simple simulation model (1-dimensional cellular automaton with a cell line along the arena
border, ants moving from cell to cell at constant velocity, with a constant probability to pick
up an encountered corpse, while varying the deposition probability with local corpse density)
permitted her to reproduce the observed aggregation patterns qualitatively.

To fully apply the methodology outlined in section 2.3 Theraulaz et al. (2002) started the
same kind of experiments with the harvester ant Messor sanctus® (Fig 4.2). Since Chrétien
(1996) had observed that corpses are mostly deposited along the arena border and, once there,
remained there even if picked up again, they chose to distributed the corpses in the beginning
homogeneously along the arena border. As can be seen in Fig 4.2 the aggregation dynamics
took indeed place along the arena border.
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Figure 4.2 — (left) Corpse-clustering in Messor sanctus in a circular arena when the corpses are initially
distributed homogeneously along the arena border. The nest is beneath the arena and exploring ants
enter the arena along a wood stick through the hole in the centre of the arena. Corpses are distributed in
the beginning regularly along the arena border and apparently remain there during the hole aggregation
process. (right) Corpse depositing (top left) and picking up (bottom left) probability as a function of
pile size, with the calibrated theoretical curve; survival curve of transport distance (right) that resembles
an exponential distribution. (Figs 1 and 3 from Theraulaz et al. 2002).

In a first series of experiments they measured the probability for a corpse transporting ant

1Note that this species is also called Messor sancta, but since the latin root of Messor is masculine L. Passera
argues that the adjective should also be masculine — I go along with L. Passera in this text.
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to deposit a corpse on a pile of size 1, 5, 10, 20, 30 or 50 corpses, for a free exploring ant to
pick up a corpse on the same pile sizes, and the transport distance before depositing a corpse
(Fig 4.2(right)). We can see a similar positive feedback as in cockroach aggregation: pick up
corpses at low densities and deposit them preferentially at high corpse densities. The increasing
scarcity of isolated corpses and the low picking up rates of corpses in piles act a as a negative
feedback that maintain the dynamical system finally in a stationary state.

How to model these observed behaviors? Since transport distance was distributed like an
exponential distribution (memory less process) spontaneous corpse deposition can be modeled
with a constant deposition rate kg (estimated as the slope of the survival curve on log-linear
scale). Depositing and picking up behavior are more complicated. Let ®. be perceived corpse
density (up to 1 cm behind and in front of an ant), p a fixed free (non-transporting) ant density,
a the density of transporting ants and c the corpse density. The picking-up rate can then be
modeled as O‘j’fp , and the deposition rate as a1<I>C . Inversion techniques permitted to estimate
the parameters «; from the observed probablhtles the fitted functions are shown in Fig 4.2
(the full details of the inversion process can be found in Weitz 2012). Given the uncertainties in
the measured probabilities the fitted functions well describe individual depositing and picking
up behavior. Finally, they also measured average ant speed v and the mean distance following
the border before making a U-turn, mean free transport path [.

Given all this information an individual based model (IBM) could me implemented on
a computer in order to predict the emerging clustering dynamics and compare them to the
observed dynamics. But one can also derive from these parameterized individual behaviors a
mean filed model in the form of partial differential equations (PDE):

Oc

a = Q(Caa)
Oa 9%a
L0 pZ=
ot (c;a) + Ox2
I
a1 P, asp
Q =
(a) = vkt g 0t
II
III v

Part I represents the diffusive random walk of transporting ants along the arena border (follow
the border and make a U-turn at rate 1/1) with the diffusion coefficient D = vl/2. Note that ants
usually deposited their corpse before making a U-turn, diffusion could therefore be neglected.
Part IT is the increase in corpse density through a spontaneous deposition (without any corpses
within the ants perception area), part III the increase due to corpse induced deposition, and
part IV corpse picking up. Numerical simulations of this set of equations showed that the model
perfectly predicts the observed clustering dynamics, illustrated in Fig 4.3 for the case of the
dynamics of the number of clusters.

Furthermore, the analysis of the equations showed that no aggregation should occur below
a certain corpse density (this density is therefore a bifurcation parameter). This prediction was
also experimentally verified. Overall, Theraulaz et al. (2002) is an example of the completely
applied methodology (section 2.3) in order to identify the underlying behavioral mechanisms.

To show the importance of doing the whole methodology, in particular to predict the emerg-
ing pattern from experimentally observed and quantified individual behaviors, physics PhD
student Sébastian Weitz (see also his other work below) choose in the methodological paper
Weitz et al. (2012) 6 different behavioral models and fitted them only to the collective data in
Fig 4.3 by choosing freely the functional forms of these behaviors and the associated parame-
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Figure 4.3 — Dynamics of the number of piles: comparison between model predictions (solid curves)
and experimentally observed values (mean+tsd) for arena =25 cm with 100 and 200 corpses, and for
arena @=50 cm with 200 and 400 corpses (Fig 5 from Theraulaz et al. 2002).

ters. The six models were various combinations of three behavioral traits: (a) inter individual
variability: picking-up and deposition statistics depend on an activity level that is constant in
time but varies from ant to ant, (b) temporal correlation (or memory effects): the propensity
to pick-up or deposit a corpse decreases as the time since the last behavioral action (deposit
or picking-up) has elapsed,(c) picking-up inhibition: the picking-up rate of an object decreases
with increasing local corpse density. Note that deposition rate increased in all six models with
perceived corpse density. Table 4.1 lists which behavioral traits were included in the six tested
models.

Table 4.1 — The six different models calibrated by Weitz et al. (2012) to the emergent pile number
statistics in Theraulaz et al. (2002).

behavior: inter-individual variability —temporal correlation picking-up inhibition

model 1 no no no
model 2 no no yes
model 3 yes no no
model 4 yes no yes
model 5 no yes no
model 6 no yes yes

Weitz et al. (2012) first showed that all six models could be calibrated to fit perfectly well the
collective pattern in Fig 4.3. He then showed analytically that even if the precision of the data
on the collective level were arbitrarily good one could not select a best fitting model: hence the
need to study the underlying individual behaviors directly in dedicated experiments. Redoing
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then the whole methodology underlying Theraulaz et al. (2002), Weitz et al. (2012) discuss in
detail the methodological issues while also emphasizing the “biological” decisions that had to be
made during the process. Without surprise the finally selected model 2 corresponds to the one
reported in Theraulaz et al. (2002), though they also showed that a slightly simpler functional
version (the deposition rate increases linearly with perceived corpse density) gives an equally
good fit.?

Where to go from here? Literature suggested that a template in the form of a laminar
air flow could modify the emerging patterns (Bruinsma, 1979; Bonabeau et al., 1998b), but
the underlying behavioral mechanisms had never been identified experimentally in a rigorous
manner (ie. applying methodology 2.3). Such a laminar air-flow cannot be created along
the circular arena borders in the experimental setup in Theraulaz et al. (2002), one needs a
morphogenetic process in 2 dimensions. Preliminary experiments with Messor sanctus showed
that a slight change in initial conditions could lead to cluster formation in 2D space — one only
had to disperse the corpses homogeneously on the whole surface in a sufficiently large arena
(Fig 4.4).

(@) ®)
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Figure 4.4 — Corpse-clustering in Messor sanctus in a circular arena when the corpses are initially
distributed homogeneously on the whole surface (Fig 3 from Theraulaz et al. 2003)

When I arrived in Toulouse in 2001 Guy and his collaborators had already found the funding
to construct an experimental setup permitting the creation of a controlled laminar air-flow in
a setup with 2D corpse clustering (Fig 4.5). After the cockroach work this was my second
opportunity to introduce myself to the study of collective animal behaviors. We were lucky
to find gifted students that I could co-supervise with Guy: Mélanie Challet during her DEA
(Dipléme d’Etudes Approfondis, now Master 2) internship in 2002 and during her PhD on the
same subject (2002-2005), Julie Verret during here DESUPS (Diplome d’Etudes Supérieures
Universitaires Paul Sabatier) in 2003/4, and Eric Casellas during his DEA in 2004/5 (and
several Master students in their first year, of course). I was also involved as an advisor and
collaborator in the work of Sebastian Weitz during his Master internship and PhD (2008-2012)
where he formalized and modeled the 2D corpse clustering phenomenon with and without

2My role in all the cited work by Sebastian was minor, simply the one of a critical observer and reader who
wanted to understand the methods in detail while redoing at the same time the same kinds of experiments and
modeling in a 2-dimensional environment.
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laminar air flows.

4.1 The influence of temperature on corpse clustering behavior

The experimental setup that had been developed to induce a controlled laminar air flow built
on the principal of convection (Fig 4.5): it was a closed chamber with temperature controlled
floor and walls. When setting one wall at 30°C and the opposite wall at 15° convection creates
an airflow inside the chamber. At ant antenna height (/=3 mm) this wind speed is ~1 cm/s in
about 75% of the floor area, but reaches 3-5 cm/s in a zone close to the cold side (see Fig 4.5).
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Figure 4.5 — (left) experimental setup to induce a laminar airflow in the area where the ants aggregate the
corpses. The colony is placed beneath the setup and the ants access the arena by climbing spontaneously
along a wood stick through a hole in the arena center. Temperature controlled water flows through
the arena floor and the four walls in order to heat them to specific temperatures. The setup is covered
by acrylic glass that can be placed at a chosen height above the arena floor and through which the
clustering dynamics can be filmed. The parameters that define the created convective air current are the
temperature difference between left and right wall and the height of the acrylic glass. (right) The finally
retained setup to induce laminar air flows: one wall is set at 30°C, the opposite one at 15°C, while the
floor and the lateral walls are set at 23°C. The acrylic glass is placed at height 27 cm. Inset (b) shows
the temperature at various heights above the floor, and inset (c¢) shows the laminar wind speeds at the
same heights. The grey bars show the zones where corpse piles were arranged for the individual corpse
depositing and picking-up experiments. Right side Fig from Jost et al. (2007).

The temperature in the ant zone can vary from 23°C to 21°C in 75% of the arena, but
can drop to 18°C close to the cold wall. Temperature is a driver of animal behavior, before
starting the convection experiments we had therefore to test whether the clustering behaviors
were sufficiently constant in these emerging temperatures.

Mélanie Challet attacked this question during her DEA internship in 2002 (Challet, 2002;
Challet et al., 2005b). She first measured experimentally the diffusion coefficient of exploring
Messor sanctus ants at three temperatures: 16°C, 25°C and 30°. More specifically, she tracked
exploring single ants, estimated their mean speed v, and then decomposed the trajectories by
a makeshift algorithm into a sequence of straight free paths and turning angles. The idea
of the algorithm was to group together consecutive positions into a single free path until the
turning angle between this free path orientation and the direction of the next move (straight line
between two consecutive positions) exceeded a given threshold of 0.175 rad (see Fig 1 in Challet
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et al. 2005b)3. Mean free path length [ and the mean cosine g of the turning angle distribution
(called phase function in statistical physics) permitted to compute the ants associated diffusion
coefficient D = Q(fﬁg) as a measure of ant dispersion. D increased with increasing temperature,
that is ants explore larger areas at higher temperatures. However, this effect was statistically
not detectable for temperature differences below 5°C.

The next step was to assess the effect of temperature on corpse picking-up and depositing
behavior. Mélanie measured the probability of a free (or loaded) ant to pick-up (or deposit) a

corpse on a pile of size 1, 10, 50 or 200. The result is shown in Fig 4.6. For both temperatures,
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Figure 4.6 — (a) Mean picking-up probability (£se) on piles of size 1, 10, 50 and 200 corpses at 16°C
and 30°°C. (b) Mean depositing probability for the same pile sizes and temperatures. The number of
observed contacts underlying each estimate is shown above the bars. Fig from Challet et al. (2005b).

picking-up probability decreases with pile size and depositing probability increases with pile size.
This is again the positive feedback underlying corpse clustering as found in Theraulaz et al.
(2002), but this time assessed in 2D clustering. The positive feedback is significantly stronger
at 30°C compared to 16°C, that is the clustering process is faster at higher temperatures. But
again, the detection of this effect requires high temperature differences (here 14°C), at low
differences as in the setup (2°C) we expect a very small effect of temperature.

These results therefore reassured us that the small temperature differences in the experi-
mental setup with convective laminar air flows (Fig 4.5) can be neglected, at least in a first
time. Beyond this first result, Challet et al. (2005b) shows that the clustering phenomenon is
faster at high temperatures (higher diffusion let ants encounter more corpses, higher positive
feedback accelerates cluster formation). Preliminary computer simulations (IBM) showed that
in a heterogeneous environment with two temperatures, 16°C and 30°C, corpses will finally all
be clustered at the higher temperature. Environmental modulation of local positive feedback
and dispersion can therefore be quite a general mechanism to explain the aggregation of diverse
objects (eggs, larvae, fungus, harvested grains) at optimal conditions (temperature, humidity,
air currents), see e.g. Bollazzi and Roces (2003) and Roces and Kleineidam (2000) for fungus
culturing in leaf-cutting ants or Scholes et al. (2006) for egg clustering in ants.

3There are many algorithmic possibilities how to decompose a path into this sequence of straight free paths
and turning angles, but each one requires ad-hoc decisions. Gautrais (2015) concluded that the problem itself
is badly defined, thus preventing the development of a method providing unbiased estimates of mean free path
and turning angle statistics (mean, variance, distribution). Nowadays we would directly estimate the diffusion
coefficient from the slope of net squared displacement, a much less biased estimate.
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4.2 Thigmotactic behavior and its role in corpse clustering

Another key issue when going from 1D corpse clustering (Theraulaz et al., 2002) to 2D clustering
is ant movement. Already Chrétien (1996) had noted the ant’s tendency to move preferentially
along the arena border (and thus a tendency of corpses to accumulate along the border). In the
literature this tendency is well known for many animals and was termed thigmotaxis (Fraenkel
and Gunn 1961, thigmo = ‘touch’), that is a tendency to align with a border and move along
it for some time. We had already encountered it in Raphaél’s work on cockroaches (Jeanson
et al., 2003), a classical model to study the underlying physiological base (Creed and Miller, 1990;
Cambhi and Johnson, 1999; Cowan et al., 2006). In the ecological literature this thigmotactic
behavior has been recognized as important in heterogeneous, patchy or fragmented habitats with
borders separating or connecting patches (Fagan et al., 1999; Ovaskainen and Cornell, 2003).
The amplification mechanisms in social insects (eg. mass recruitment by pheromone trails) can
further accentuate the impact of thigmotactic behavior (Dussutour et al., 2005). In sum, when
passing to a 2D corpse-clustering paradigm we had to address the role of thigmotactism in this
process. We first thought that it is a simple question of knowing ant density modulations along
arena borders (Casellas et al., 2008), but it soon turned out to be of fare more importance
because the emerging clusters’ borders elicit also thigmotactic behavior (Weitz et al., 2012;
Weitz, 2012).

Casellas et al. (2008) started with the cockroach movement model of Jeanson et al. (2003)
and applied it to the case of the temperature controlled setup in Fig 4.5. Single exploring
ants were let into the arena and their wall-following times were measured. Since this setup
has straight borders and corners, he first verified that the survival curves of these wall fol-
lowing times had the same slope (on log-linear scale) independently of whether the observed
path included a corner or not (showing on the fly that these survival curves corresponded to
exponential distributions as in cockroaches). He then introduced circular obstacles of diameter
6 cm, 4 cm and 2 cm (see Fig 4.7) and showed that wall following times along a border with
a given curvature (inverse of obstacle radius, zero for straight borders) were also exponentially
distributed. Furthermore, the mean wall following times increased with decreasing curvature.
In other words, the individual rate to quite a border (inverse of mean following time) increased
with increasing border curvature. In sum, Eric validated Raphaél’s cockroach model for Messor
sanctus and discovered that border leaving rate is a simple function of border curvature. He
further validated that ants move according to a diffusive correlated random walk outside border
zones (border width 1 cm).

In a next step Eric applied mesoscopic techniques to derive mean field equations (see eg.
Case and Zweifel 1967, the techniques actually going back to Ludwig Boltzmann in the 19th
century). The idea is to look at ant densities moving in a given direction, write the individual
behavior in terms of these densities (combined with the transport equation), and then pass to
mean densities by integrating the equations over all directions. For a fully worked out example I
refer to the Appendix in Casellas et al. (2008): however, the resulting model can be interpreted
without knowing the details how it was derived. The crucial point is to distinguish between
individuals moving along the arena border in a 1D random walk, or moving in the arena centre
with a 2D random walk, and to identify the equation governing the flux between these two
compartments. Let ny be the (1D) border density of ants, n. the (2D) centre density, j the
flux density, v, and v, ant speed in the arena centre or along the border respectively, A, the
mean border following distance, D. and Dy, the diffusion coefficients in the arena centre or along
the border (7 is the normal vector to the border pointing away from it). The resulting set of
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Figure 4.7 — Reconstructed mean ant densities (the darker the grey the lower the density) from 2h
films where ants could freely access the arena (Fig 4.5) through the hole in the center. The figures show
the averaged ant density over the last 90 min. The arena was either empty (A) or contained circular
obstacles (shown in white) with diameters 6 cm (B), 4 cm (C) and 2 cm (D). Fig from Casellas et al.
(2008).
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coupled partial differential equations (PDE) is
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where [ represents the ants arriving in the border zone and I/ the ants leaving the border zone.
Experimentally we found no difference in ant speed in the centre or along the border, v, = v.
At stationary state we therefore get the relations
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Note that we have in most experimental setups two types of border, the straight or convex
arena border and the concave obstacle borders of various curvatures (see Fig 4.5). Let \,, be
the arena border following time, n,, the arena border density and n; the object border density,
equation (4.4) therefore makes two predictions
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Ap = ﬂ'% and A\, = Wn—f (4.5)
(& C

that we tested experimentally in Casellas et al. (2008). We used the temperature controlled
setup in Fig 4.5 (without corpses) at 23°C and let ants spontaneously enter it through the hole
in the arena centre. The arena was either empty or had 3 circular obstacles of diameter 6 cm,
8 obstacles of diameter 4 cm or 10 obstacles of diameter 2 cm. Once the ants had access we
waited 30 min to let the system reach stationary state (the number of ants entering the arena
was approximately the same as the number of ants exiting from the arena) and we filmed for
90 min. From this film we extracted one image per second, binarized these images by a simple
threshold value, and then computed mean ant density in a border zone of width 1 cm and in the
arena centre. These densities were plugged into prediction (4.5) and the predicted wall follow
times were compared with the experimentally measured wall follow times (Fig 4.8). These
predictions were quite good for the empty arena and for the arena with obstacles of diameter
6 cm. However, they were not very satisfactory for the smaller obstacles. Fig 4.7 gives a hint
why: the model predicts that ant density should be constant along a border of a given curvature
and in the rest of the arena. For the smaller obstacles this is clearly not the case, there are
high density curved lines: pheromone trails (experimentally verified by removing after 2 h all
ants and obstacles and let new ants enter the arena — the hight density lines re-appeared at
exactly the same places). This was actually a surprise, the current literature suggested that
Messor sanctus does not lay pheromone trails during exploration, it supposedly only does so
after having found food. This result also raises a more important question: do these pheromone
trails play a role in the 2D corpse clustering dynamics? We will come back to this question in
the next section.

4.2.1 A new model for ant thigmotactic behavior

The modeling and experimental analysis of thigmotactic movement with equations (4.1-4.3) or
with the underlying individual based movement model is straightforward in an environment as
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Figure 4.8 — Comparison between the observed individual mean border follow times (with 95% con-
fidence interval) and the wall follow times predicted by the model from the mean border and center
densities (border width lcm, range obtained by varying the truncation of the highest pixel densities that
corresponded to shaded parts of the arena). Fig from Casellas et al. (2008).

shown in Fig 4.7 with well defined borders that do not move during the experiment. However,
what shall we do when these borders emerge in time and are dynamic objects as in the case
of corpse clustering (Fig 4.4)7 How do we distinguish in this case between border zone and
central zone? Another problem in the way we modeled thigmotactic behavior is of cognitive
nature: since there is a behavioral switch between 2D random walks in the arena centre and 1D
random walks along the arena border ants are supposed to be able to detect a border and to
move along it with a curvature dependent rate to leave it (that is, detect its orientation and its
curvature). What are the required physiological mechanisms that enable such a cognitive ability,
in particular in the case of a corpse cluster with irregular borders and highly varying corpse
densities? The answers to both questions are not known and would require ad-hoc decisions
when integrating this model with corpse clustering, or to do additional experiments to justify
such decisions experimentally.

When Sebastian Weitz started his PhD he was soon aware of these difficulties. Rather than
to start modeling corpse clustering in 2D with many uncertain hypotheses he chose to dig out
the original films of ants moving around the artificially formed clusters (Challet, 2005; Casellas
et al., 2008) and to rethink completely how this behavior could be modeled. Weitz et al. (2014)
measured in particular the angular distribution function of ants as a function of distance d to a
corpse and found that the ants’ distribution function corresponds to an isotropic distribution,
contrary to the model in Casellas et al. (2008) or Jeanson et al. (2003) that assume alignment
with the border (Fig 4.9(b)). He then defined that thigmotactism occurs if ant residence times
in a small surface near the corpse is higher than ant residence time in a surface of the same size
far away from a corpse (free field condition). Fig 4.9(c) shows the boundary following criterion
(defined as the observed mean residence time in a grey band of width d around a corpse divided
by the expected residence time for a diffusive random walk in the same band without a corpse)
as a function of width d. If ant movement were not influenced by the corpse this criterion should
give 1 (free-field condition): clearly this is not the case for M. sanctus, they show thigmotactism
according to our criterion.

The next step was to develop a model of wall-following behavior that can explain these two
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Figure 4.9 — Analysis of ant movement near a single corpse. (a) a typical ant trajectory around a single
corpse. The grey zone is an 8 mm wide band around the corpse in order to compute the mean residence
time (defined as the time until first return to the limit of the near-boundary region) of ants moving in this
band (the shown example provides two residence times to the computation of the mean). (b) normalized
cumulative angular distribution function computed at various distances d from the corpse and plotted
against the expected distribution of isotropic ant orientation (6 is the absolute angle between the ant
orientation and the radial vector departing from the corpse centre). If ants orient along the arena border
(as in the model in Casellas et al. 2008) we expect a relationship such as depicted by the solid line. The
observed relationship is, however, a straight diagonal line. (c¢) The boundary following criterion (defined
as the observed mean residence time in the grey band of width d (shown in a) divided by the expected
residence time for a diffusive random walk in the same band without a corpse, meantse): these ants
clearly show boundary following behavior according to our definition. Fig 1 from Weitz et al. (2014)
where the technical details can be found.

observed features (isotropic orientation everywhere but increasing density towards the border).
This is the occasion to introduce some mesoscopic thinking. Let f = f(7,d,t) be the ant
distribution function at location 7 and movement direction @ at time ¢. The ants move at
constant speed ¢ with a direction change frequency v = v(7, @), and p(J|&’") = p(&|d, 7) is the
direction-change phase function. The constant speed Boltzmann walker satisfies the following
equation:

O L o5.Vf=—vf+ / V fp(@|)de (4.6)
ot gt

I ITr

(I is the pure transport term, IT the ants that change direction from & to something else, and
I17 the sum of all ants that change their direction from some &' to direction ; IT and II1 are
also called collision terms in reference to the particle physics origin of these equations, but in
our context they represent the spontaneous decision of the animal to change direction). f’ is a
shorthand for f(7, &) and the same for /. Part I implies that free paths (the distances between
successive direction changes) are exponentially distributed as experimentally observed for M.
sanctus in Challet et al. (2005b) and Casellas et al. (2008). The direction change frequency is
supposed to be symmetrical around the current animal direction w, it can therefore be written
as p(d|d’) = p(@ - ') with a mean cosine g = [& - &'p(d - J')dd. Given all this notation
we can now look at the model proposed by Weitz et al. (2014). He assumed that the phase
function p (direction change distribution) is not modified when approaching a border (it has
been experimentally determined for M. sanctus in free field conditions in Challet et al. (2005b)
and Casellas et al. (2008), and was modeled in Weitz et al. (2014) by an elliptic function), but
that this border affects direction change frequency v:

V(7 @) = @I({;E) -2 fga(f‘) @ (4.7)
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® and @ are adjustable functions with the only constraints that [ ®(7, d)dw = 1, [ ®(F, d)wdw =
0 and v remains positive for all 7 and . K(7) is a free scalar field with the only constraint
that v remains positive — it does not modify the ants’ stationary distribution or their residence
times in Fig 4.9(c) and is therefore not further specified in Weitz et al. (2014)%. For the fitted
function in Fig 4.9 he chose & = 46(1 — )&, m~! (where €&, is the radial vector departing from
the corpse center towards position 7), ®(7,&) = 10 if ||& - €,]] < 0.3 and (7, &) = 1 else. The
choice for & is specific for the case one corpse cluster/boundary treated in Weitz et al. (2014),
in more complex environments it has to be adapted in order to have greater direction change
frequency the greater the difference between the ant orientation and the direction towards the
boundary. I refer to Weitz et al. (2014) and its section “Inversion properties” for further ideas
and details how to parameterize equation (4.7). The curvature dependence of wall following
times observed in Casellas et al. (2008) emerges from this model without an explicit curvature
detection on the individual level (Weitz et al., 2014, ref 52). Note that this type of model is
not completely new, the underlying idea is the same as in the “run-and-tumble” models for
bacterial chemotaxis where the direction change frequency depends on the movement direction
with respect to some chemical gradient (Erban and Othmer, 2004, 2007).

The invariance property used above to define thigmotactism applies to any Boltzmann ran-
dom walk where the walkers have no orientation information and where the boundary conditions
at the limit of some domain D are compatible with a locally isotropic stationary state (Weitz
et al., 2014; Blanco and Fournier, 2003, 2006). It states that an isotropic homogeneous equi-
librium is reached with mean residence time (T') = % in any domain with surface S and
periphery length P. This invariance property can actually be used as an alternative to net
squared displacement to test whether the movement of some organism can be modeled as a
diffusive random walk. In a methodological paper (Challet et al., 2005a) we showed by simula-
tion that this criterion can help detect border or trail following behavior with a typical sample
size of 50-100 trajectories. Applying it in particular to the case of Messor sanctus we showed
that indeed, near the corpse clusters, ants no longer move according to a diffusive random walk
(Challet et al., 2005a).

4.3 Corpse clustering in 2D and its interactions with a dynamic
template

After this excursion to thigmotactism and its modeling lets come back to corpse clustering in
2D. We now want to understand how the laminar air flow of 1-5 cm/s in the experimental
setup 4.5 modifies the corpse clustering dynamics. The experimental work in this section was
performed by Mélanie Challet (Challet, 2002, 2005) during her DEA and PhD, Julie Verret
(Verret, 2004) during her DESUPS and Eric Casellas (Casellas, 2005) during his DEA. They
have been published together in Jost et al. (2007).

qf K (r) is needed it can be chosen in order to satisfy some physically or biologically motivated constraints.
This was Sebastian’s choice in the corpse clustering model in the next section: a first (physcial) constraint was
that v(7,d) must be positive for all 7 and all w (a negative direction-change frequency would be physical non-
sense): this constrains the minimal value for K (7). Then K(7) is fully fixed by the two following choices: (a)
K (7) is constant (motivated by parsimony) and (b) the direction-change frequency for an ant walking exactly in
the direction towards the pile is the same as in the free-field. This last choice means that an ant coming from the
free field does not modify its propensity to turn when walking towards the pile whereas it will turn more often
when walking in any other direction
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4.3.1 Clustering dynamics with and without a laminar air flow

In all the experiments reported below 3260 corpses were randomly distributed in the experimen-
tal arena of size 35 cm x 35 cm (that is, 2.66 corpses/cm?). Ants were given access to the arena
for 24 h and the experiments were filmed from the top for 2 s every 10 min. Fig 4.10 shows an
example of the observed dynamics without (9 replications in total) or with an air current (14
replications in total). In a control experiment we used the same temperature setup as for the
experiments with a laminar air flow (Fig 4.5), but lowering the acrylic glass plate to a height
of 3 cm, thus preventing the formation of convective air currents (4 replications).

-
1.5h

Figure 4.10 — Typical corpse clustering dynamics (seen from above in experimental setup Fig 4.5)
without (a) or with (b) a laminar air flow of speed 1-5 cm/s at ant antenna height.
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The overall clustering dynamics (surface of largest cluster, total surface of clusters, number
of clusters) were very similar between the two experimental conditions (Fig 4.11(left)). However,
differences appeared when looking at the form and the positions of the clusters. Fig 4.11(right)
shows the dynamics of the ratio length (in direction of the laminar air flow) over width of the
clusters. We see that in the condition with laminar air flows the clusters were elongated in
direction of the air flow by factor 2, while without air flows or in the control experiment these
ratios were close to 1. Fig 4.12 shows the clusters’ barycentres: they moved at a speed of ~19
mm/day in direction of the laminar air flow, but no such movement was seen perpendicular to
the air flow, without laminar air flow or in the control experiments.

4.3.2 Modulation of corpse picking-up and depositing by a laminar air flow

Since the air flow itself was too weak to move the corpses the observed elongation of the clusters
and the movement of their barycentre had to be explained by the ant’s clustering activity. A
first clue was given by the modulation of corpse depositing and picking up probability on corpse
clusters of size 1, 5, 10 and 50: we had arranged such clusters in the setup without air flows or
in the grey zones in Fig 4.5(c), corresponding to wind speeds of 0 cm/s, 1 cm/s or 3-5 cm/s,
and assessed the fraction of passing loaded ants that deposited their corpse or the fraction of
passing free ants that picked up a corpse. Fig 4.13 shows the results: as in the 1D corpse
clustering experiments (Theraulaz et al., 2002), depositing probability increased with cluster
size and picking-up probability decreased with cluster size. This is again the positive feedback
that leads to corpse clustering. Furthermore, the results in Fig 4.13 showed that this positive
feedback is modulated by wind speed: it was highest when there was no air flow and lowest at
the highest wind speeds.
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Figure 4.11 — (left) Characterization of the global corpse clustering dynamics (mean =+ se) by the surface
of the largest cluster (a,d), the total surface of clusters (b,e) and the number of clusters (c,f) without air
currents (a-c) or with air currents (d-f). (right) Dynamics of cluster length (in direction of the air flow)
over width in the three experimental conditions. Figs 5 and 7 from Jost et al. (2007).
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Figure 4.12 — Dynamics of the clusters’ barycentres (z-axis perpendicular to air flow direction, y-axis
with this direction) for the three experimental conditions (mean =+ se): no air flow (a,b), with a laminar
air flow (c,d), control without laminar air flow (e,f). Fig 6 from Jost et al. (2007).
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Figure 4.13 — Corpse depositing (top row) or picking-up (bottom row) probability as a function of pile
size and wind speed. Fig 2 from Jost et al. (2007).

4.3.3 Clusters as a dynamic template that modulate positive feedback and
thus their own growth

This modulation of positive feedback would by itself lead to a preferential clustering in the low
wind speed zone in our setup (Fig 4.5), and could thus explain the movement of the cluster
barycentres towards the low wind speed zone. However, where did the cluster elongation come
from? To understand this phenomenon we did two more analyses. First, we simulated numeri-
cally how the laminar air flow was modulated around a corpse cluster. Actually, at ant antenna
height there is a large low wind speed zone behind the cluster, a smaller such zone on the
side facing the laminar flow, while on the other sides of the cluster the laminar flow is acceler-
ated (Fig 4.14(a,b)). The probabilities of corpse depositing or picking-up were also modulated
around the cluster: picking up was higher on the sides than in front or behind the clusters, while
depositing was highest behind the cluster, lower in front of the cluster, and lowest on the sides
of the cluster (Fig 4.14(c,d)). In terms of positive feedback, it was therefore highest behind the
cluster, somewhat lower in front of the cluster and lowest on the lateral sides of the clusters.
This observed positive feedback modulation is coherent with its modulation by wind-speed (Fig
4.13) and the modulation of wind speed by the cluster (Fig 4.14(a,b)). This positive feedback
modulation also explains the elongation of the clusters and, since growth is fastest behind the
cluster, the movement of the barycentre in direction of the laminar air flow. Overall, Jost et al.
(2007) showed that the forming clusters act as dynamic templates that modulate the laminar
air flow, which in turn modulates the positive feedback strength around the cluster and the
subsequent growth of the clusters.

4.3.4 Modeling corpse clustering in 2D without a laminar air flow

When Weitz (2012) started to work on the modeling of corpse clustering in the case of a constant
environment (constant temperature and no laminar air flows) there actually already existed
individual based model (IBM) implementations of corpse clustering in 2D (Theraulaz et al.,
2003) based qualitatively on the experiments done in Challet (2005) or Casellas (2005). These
models did not include any thigmotactism, ants were moving around with standard correlated
random walks. Sebastian’s first task was to give such IBM’s a solid experimental hold, that
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Figure 4.14 — Modulation of wind speed at ant antenna height around a corpse cluster in the zone with
a laminar air flow of 1 cm/s (a) or 3-5 cm/s (b). Corpse depositing (c) or picking-up (d) probability as
a function of position around the corpse cluster. Fig 3 from Jost et al. (2007).

is to enunciate the underlying behavioral models precisely and formally develop the associated
inversion methods that permit parameter estimation from the experimental data (Fig 4.15, see
Weitz (2012) for the associated equations). When he then predicted the emerging clusters with
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Figure 4.15 — Inversion of the depositing probability P; and the picking-up probability P, for ants
moving with a correlated random walk (a,b) and for ants moving with the thigmotactic movement model
(c,d). Modified after Figs 4.9 and 4.10 in Weitz (2012).

inversions for the rates to deposit or to pick up a corpse based on correlated random walk
movement (Fig 4.15(a,b)) we knew for sure that thigmotactism had to be included: the clusters
were fare too numerous and too small (Fig 4.16(A-E,H)). Indeed, when using the inversions with
the thigmotactic model (Fig 4.15(c,d)) the number of clusters were closer to the experimental
observations (Fig 4.16(F,G,H)). However, the cumulated cluster surface was better predicted by
the correlated randoms walks than by the thigmotactic movement (Fig 4.16(I)). We considered
the first statistics, number of clusters, to be of higher importance and therefore continued the
work with the thigmotactic movement model.
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Figure 4.16 — (A-C) Example of a corpse clustering experiment at constant temperature (25°C) and
without convective air currents (see Fig VI.14 in Challet 2005). (D-E) Simulated cluster formation
with the model without thigmotactism (“diffusive” correlated random walks). (F-G) simulated cluster
formation with the model with thigmotactism. (H) Dynamics of the number of clusters and (I) of the
cumulated cluster surface (experimental and the two models with or without thigmotactism). Modified
after Figs 4.11, and 4.14 in Weitz (2012).
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4.3.5 Modeling corpse clustering in 2D with a laminar air flow

The coupling of the previous corpse clustering IBM with variable air flows required two steps.
First, the corpse depositing and picking-up rates not only depended on local corpse density
but also on local wind speed perceived at ant antenna height. Casellas (2005) had measured
the corpse picking-up and depositing probabilities on clusters with 1, 5, 10 and 50 corpses at
wind speeds 0 cm/s, 1 cm/s and >3 cm/s (see the gray zones in Fig 4.5(c)). Starting with
the depositing and picking-up rates determined in the previous section (no air flow), Sebastian
found that wind speed could be included by simply multiplying these rates with an exponential
function of wind speed (e‘ed”“a"” in the case of depositing, e/l in the case of picking up,
||tair || being wind speed at ant antenna height). Fig 4.17(C,D,E) shows the inversions of these
functions on Casellas’ experimental values. The second step was numerically more delicate: how
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Figure 4.17 — (A) Numerical scheme to compute the air flows in the arena at ant antenna height
(Lattice Boltzmann Method, LBM) and (B) the resulting air flow modulation around a typical corpse
cluster (black no air flow, white highest air flows). (C) Inversion of spontaneous corpse depositing with or
without an air flow of 1 cm/s. Inversion of corpse depositing probability (D) and picking-up probability
(E) as a function of pile size. See Weitz (2012) for the associated equations. Modified after Figs 4.18,
4.19, 4.23, 4.24, 4.25 in Weitz (2012).

is the laminar air flow induced by the experimental setup modulated by the emerging corpse
clusters? Sebastian solved this problem by a custom-tailored Lattice Boltzmann Method (LBM)
which permits an efficient implementation of the boundary conditions around the corpse piles
and can be easily parallelized (see section 4.6 in Weitz (2012) for the technical details and Fig
4.17(A,B) for the result).

The IBM was then coupled to the LBM by letting the latter recompute the air flow field
every 5 minutes (this was sufficiently frequent to take into account the cluster modification by
the IBM). The result is shown in Fig 4.18: (L,M) shows two snapshots of a single simulation,
(N) shows the dynamics of corpse elongation and (O) the dynamics of cluster movement in
the air flow direction. Both emerging statistics compare nicely to the experimentally observed
dynamics (Jost et al., 2007).
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Figure 4.18 — (J-K) Example of a corpse clustering experiment with convective air currents (see Fig
VI.18 in Challet 2005): the air flows from left to right. (L-M) Simulated corpse clustering with a laminar
air flow (the emerging wind speeds at ant antenna height are coded in gray scale, white indicates highest
wind speeds). (N) Corpse elongation at laminar air flows of 1 cm/s or 3 cm/s with the experimentally
observed elongation in between them. (O) Corpse movement (mm/day) at laminar air flows of 1 cm/s
or 3 cm/s with the experimentally observed movement. Modified after Figs 4.26, 4.27 and 4.29 in Weitz
(2012).

4.3.6 Towards a macroscopic model of corpse clustering in 2D?

The previously mentioned models are based on a mesoscopic formulation of the animal’s cluster-
ing behavior and the numerical simulations are standard individual based models. The analysis
of model sensitivity to behavioral or environmental parameters requires a lot of computing
power, especially in the case with laminar air flows where the modulation of these air flows by
the emerging structures has frequently to be updated. To simplify this type of analysis one
might try to pass from the mesoscopic equations by integration to a macroscopic model in the
form of a partial differential equations (PDE) system. Such macroscopic equations open the
door to study the model’s properties analytically, thus in much more generality. Actually, Chal-
let (2005) had already done this passage for a simple 2D version of the 1D model in Theraulaz
et al. (2002) and she had obtained a set of three coupled PDEs (free ant density, loaded ant
density and corpse density). In her case this model served for a preliminary assessment how the
effect of temperature on individual movement and clustering behaviors influences the emerg-
ing cluster statistics (in particular how fast clustering occurs). However, her model did not
include thigmotactic behavior, ants were freely diffusing independently of the current cluster
organization.

When Weitz (2012) formulated his mesoscopic model of corpse clustering with thigmotactic
behavior he carefully choose formulations that would not prohibit the integration to macroscopic
equations. However, obtaining such a macroscopic model and its analysis were beyond the
scope of his PhD. Another Master or PhD student could take up the work where he left it and
do this analytical (and numerical) work. We haven’t gone in this direction not only because
there was no such student at hand, but also because our interests have shifted from the corpse
clustering paradigm to actual nest construction behavior (see next chapter). While corpse
clustering was a perfect experimental system to study the underlying behaviors experimentally,
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find adequate mathematical formulations and the inversion methods to estimate the associated
parameters, the biological significance of corpse clustering is limited. As mentioned in the
beginning of the chapter, corpses are treated by ants as any other waste, they are thrown out
of the nest and in many species clustered in waste piles presumably for hygienic reasons. There
are no “cemeteries” separated from the other waste. On the other side, nest construction is full
of biological significance: protect the animals against environmental and predatory hazards,
provide suitable habitats and microclimates to raise the next generation, let them survive in
adverse climates (in particular dry savannas), .... We therefore chose to concentrate our efforts
on the understanding of social insect nest construction.
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Chapter 5

Nest construction in social insects:
state of the art

Figure 5.1 — (from top to bottom) Lasius nests in Romania, Cubitermes nests in Guynea, Cornitermes
nests in Brazil.

The clustering of objects (as the clustering of corpses in the previous chapter) is a first step
towards the construction of some shelter or even a whole nest. Social insects show a huge variety
of such nests, be it in wasps where the nest architecture was even used for phylogenetic studies
(Wenzel, 1991), in ants who can build huge underground nests (Jonkman, 1980a,b; Moreira
et al., 2004a,b) sometimes complemented by intricate above ground structures (Chauvin, 1959;
van Damme, 1998; Kleineidam et al., 2001; Cosarinsky and Roces, 2011), or in the masters of
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construction, termites (Noirot and Darlington, 2000; Turner, 2002; Korb, 2011). These animal’s
construction activity can become characteristic for whole landscapes (Fig 5.1) and their ecolog-
ical role is sometimes of a major importance for nutrient (Lopez-Herndndez et al., 2006) and
water management (Bonachela et al., 2015).

A nest is usually built by two activities, digging of tunnels/cavities and de novo construction.
Both can be coupled since construction requires material often coming directly from the digging
activity. In our work we concentrate on the actual construction activity where material is
assembled and stuck together to build architectures of various complexity. Fig 5.2 shows some

Figure 5.2 — (from left to right) Virtual cut through an above ground Lasius nest, an above ground
Cubitermes nest and a Cornitermes nest partly below ground. These virtual cuts where obtained from
X-ray tomographies of the excavated nests.

of the emerging architectures. In the case of the black garden ant Lasius niger these are simple
interconnected cavities in the material that has been thrown out of the nest entrance during
excavation of the underground part (note that we do not know whether they have dug in order
to produce material for this construction, or if they primarily dig and the thrown out material
has later been re-organized to provide additional living space, or if both go hand in hand). The
above ground nests of West-African Cubitermes sp. termites resemble mushrooms and consist
of many chambers interconnected by small diameter tunnels just large enough to let one termite
pass. The Brazilian termite Cornitermes cumulans has a more complicated architecture with a
solid outer shell that is partly immersed in the soil (and separated from it by a small air space)
and a softer inner core with organic lamellae.

Our central question is how such architectures emerge from the individuals’ construction
activity. Templates may be involved (the aggregated brood cluster in the ant Leptothorax
tuberointerruptus, Franks et al. 1992, or the physogastric queen in the termite Macrotermes
subhyalinus, Bruinsma 1979). These templates are coupled with self-organization (see chap-
ter 2). However, despite such conceptual simplicity, there is only one example where the full
methodology (section 2.3) has been applied in order to validate the concepts: the blind bulldoz-
ing underlying the construction of the circular wall surrounding a Leptothorax tuberointerruptus
colony in their naturally flat shelter under stones (Franks et al., 1992; Franks and Deneubourg,
1997). Even in Macrotermes subyhalinus, the best studied construction example in Termites
(Bruinsma, 1979; Ladley and Bullock, 2005; Hill and Bullock, 2015), the full methodology cycle
has not been closed and the existence and role of a central ingredient, cement pheromone, has
recently been experimentally challenged (Petersen et al., 2015).

In order to work out such a full example we have started studying the construction behavior
of Lasius niger. Several Master students (Julie Olivera, Victor Loisel, Marion Keromest) and two
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PhD students (Anais Khuong, Chaker Sbai) were involved in this experimental and modeling
work reported below (section 5.1). I co-supervised all these students except Anais who was
supervised by Jacques Gautrais and a physics colleague, Jean-Jacques Bezian (my role was only
that of an adviser on available experimental data from earlier students). Thanks to an ANR
grant (MESOMORPH, ANR-06-BYOS-0008, 2007-2010) we also started assembling a database
of Termite nest architectures through X-ray tomography. Only the Termitinae nests in this
database could so far be characterized and analyzed (see section 5.2.1 below) in collaboration
with a series of postdocs from biology (Andrea Perna) or physics (Matheus Viana, Young-Ho
Eom). Since 2009 we also started to study construction behavior of termites in collaboration
with our Brazilian colleague Ana-Maria Costa Leonardo from UNESP Rio Claro: due to the
difficulty to raise such termites in a lab in France all experimental work has been done in Brazil,
myself spending overall 6 months in the field and several of my Master students, Diane Fouquet
and Christelle Péchabadens, spending half of their internship in Ana-Maria’s lab. Our efforts
concentrate on two sympatric species, Procornitermes araujoi and Cornitermes cumulans, that
are morphologically very similar but who’s nest architectures are quite different (see section
5.2.4 below).!

5.1 Ant nest construction: the case of the black garden ant
Lasius niger

The work on Lasius niger construction was initiated by me in Toulouse in 2004 based on
some preliminary results obtained during the PhDs of Dussutour (2004) and Buhl (2004). By
2010 the experimental data on the individual and the collective level were deemed sufficiently
well advanced to link them through a spatially explicit simulation model during the PhD of
Anals Khuong (which was also the occasion to centralize all the previous experimental work,
Khuong 2013). The complete work, applying the full methodology from section 2.3, is currently
submitted (Khuong et al., 2015) and contains the details of the work described below.
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Figure 5.3 — Individual construction behavior: (A) rates and (inset) probabilities to deposit a pellet as

a function of the number of perceived pellets (or, inset, the number of pellets in the pile encountered by a

transporting ant) — the straight line is the model fit v4(n) = vq,0+bqn; (B) rates and (inset) probabilities
Vp.1.

to pick up a pellet — the straight line is the model fit v,(n) = “2+; (C) height distribution of pellets
deposited along a vertical surface (the inset is the cumulated distribution F(h)) that can be well fit

by a skew Normal distribution (red line), Frequency f(h) = exp(—%) fféo “ )exp(—g)dt; (D)
fraction of ants found around a pile made of freshly manipulated material (red line, & se) compared to
the fraction of ants around a pile made of non-manipulated material (orange line) in a binary choice

experiment containing the two types of pillars in the same Petri dish.

A first series of experiments (Olivera, 2006; Loisel, 2009) quantified the individual construc-

!Note that this experimental and modeling work was also presented in a popular science paper, Theraulaz
et al. (2012a, in french).
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tion behavior of L. niger. Ants were led to choose shelter in a Petri Dish containing a humid
plaster disk and under the cover of red plastic film. After removal of the red plastic film con-
struction material (clay and sand in a 50:50 mixture) was made available directly in front of the
nest entrance. Ants spontaneously started carrying this material pellet by pellet into the (now
open) Petri dish and assembled a shelter (regularly spaced pillars finally covered by a roof). The
full process could take a week, but we were only interested in the initial phase during which the
gray pellets could be well distinguished against the white plaster background. We filmed this
initial phase for 8 h and recorded for all transporting ants that entered the nest the sequence of
encounters with previously deposited material until the final deposition of their pellet. These
observations permitted to reconstruct the probabilities for a transporting ant to deposit their
pellet on piles of sizes 1 to 6 (Fig 5.3A). From these probabilities we reconstructed by inversion
the individual deposition rate v4(n) (n is the number of perceived previously deposited pellets,
see legend Fig 5.3A). To study the picking up behavior of pellets we observed the evolution of
some of the first emerging pillars (up to size n = 6), noting all contacts with either unloaded
or loaded ants and whether these ants deposited or picked up a pellet. These observations
permitted to model the picking up rate v,(n) as the inverse of the number of perceived pellets
n (Fig 5.3B).

A next series of experiments was designed to observe at what height pellets are deposited
on vertical surfaces. Ants were moving on a 2 mm thick humid sand-clay mixture (where ants
started picking up pellets) which also contained vertical wood sticks. Most picked up pellets
were deposited on these wood sticks. We noted the final distribution of pellets on these sticks
and fitted it by a skew Normal distribution f(h) (Fig 5.3C, h is the vertical distance between
the ant’s position and the nearest construction material pellet below the ant). To include this
information in the model we simply multiplied the deposition rate by the cumulative distribution
F(h) of f(h), va(n, h) = va(n) F(h).

The experimental observations also suggested that recently modified piles changed their
size more frequently than older piles. This observation suggests that deposited material is
marked by some volatile chemical substance (“pheromone”) that influences the deposition and
picking-up rates. We could not measure directly the influence of such a marking on these
rates, but we showed that a pile made of freshly manipulated pellets is much more attractive
to ants than a pile not manipulated by ants (Fig 5.3(D), Keromest 2008). Marking of pellets
can therefore act on construction by increasing the ant density around piles (7.e., modifying
their movement pattern) or by manipulating the deposition and picking up rates (or act on
both behaviors). We choose to include this marking effect by a modulation of the deposition
rates, vg(n,7,) = vg(n) exp(—Tmvm) (where 7, is the time since the latest size change of a
pile and v, is the pheromone decay rate, thus assuming an exponential evaporation of the
pheromone).? We were not able to estimate the pheromone decay rate v, directly, it was
therefore a free parameter investigated in Khuong et al. (2015) by a sensitivity analysis and
comparison between the model predicted and experimentally observed emerging structures (see
below). Finally, given the choice that pellet marking modifies the pellet deposition rate but
not the ant movement, we verified that ants move in an unmarked environment according to
a (diffusive) correlated random walk (Khuong et al., 2013) and used this type of movement in
the simulation model below (calibrated to reproduce the same net squared displacement as the
real ants).

In order to observe the construction dynamics on the collective level we let the ants move

2However, this choice is quite arbitrary, one could also let the pheromone diffuse and ants climb the density
gradient (as in Deneubourg 1977; Bonabeau et al. 1998b) in order to let them be more dense near recently
manipulated piles, without changing the deposition rates. The currently available experimental data do not
permit to decide which of these two mechanisms is at work.
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Figure 5.4 — Collective construction behavior: ants were moving freely in an arena containing a moist-
ened circular disk (2= 10 cm, 2 mm high) of construction material (50% sand with 50% clay). They
started building pillars to a certain height and then enlarged them on the sides (like mushrooms) that
sometimes resulted in arches between pillars. The construction stopped because the amount of construc-
tion material was all used up for pillars and arches. (A) View from above on a construction after a
one-week experiment. (B) Virtual cut through such a construction and view from the side (X-ray to-
mography at the end of the experiment). (C) Monitoring of the construction dynamics by a NextEngine
surface scanner. (D) Construction never really stops, the built structures are continuously remodulated.
Figure taken from Khuong et al. (2015).
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freely in an arena containing a moistened circular disk of construction material. They started
building pillars to a certain height (Fig 5.4A) and then enlarged them on the sides (like mush-
rooms) that sometimes resulted in arches between pillars (Fig 5.4(B)). The construction stopped
because the amount of construction material was all used up for pillars and arches, but the ants
continued to modify the structures (Fig 5.4D). The whole process was monitored by a surface
scanner placed above the setup (Fig 5.4C), providing a matrix of heights every hour (the z —y
resolution was 0.3 mm). The whole experiment run one to two weeks (the construction speed
was experimentally not controllable). The global statistics computed from these matrices are
summarized in Fig 5.5 (time 0 was defined as the moment in an experiment when 3 pillars
rose above 3 mm height, after which the dynamics were observed for 36 h). We monitored in
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Figure 5.5 — Quantification of the construction dynamics (Fig 5.4). Black lines are the mean dynamics
(n=11 experiments), black dashed lines the mean + standard deviation, and red lines the mean model
predictions (average over 10 simulations). (A) Dynamics of pillar density (pillar cm~2). (B) Dynamics
of average nearest neighbor distance (mm). (C) Dynamics of the fraction of surface (in %) covered by
structures exceeding 3 mm (0 mm corresponds to the average height of the initial disk of construction
material). (D) Distribution of nearest neighbor distance between pillars after 96h. Figure taken from
Khuong et al. (2015).

particular the density of pillars, where a pillar was any construction exceeding 3 mm in height
and 14 mm? in surface (Fig 5.5A). This density monotonically increased to a plateau of ~ 0.35
pillars/cm?. We next computed the distance to the nearest neighbor at the moment the pillar
emerged, a value that decreased monotonically until reaching 10 mm (Fig 5.5B). Another global
statistics was the fraction of the setup’s surface covered by construction material exceeding 3
mm in height (Fig 5.5C). Finally, to get more detail on the nearest neighbor distance, we com-
puted the distribution of the nearest neighbor distances at the end of the monitoring (96 h)
(Fig 5.5D).

The link between individual behavior (Fig 5.3) and the emerging collective behavior (Fig
5.4) was established in Khuong et al. (2015) by a stochastic individual based model (IBM) on
a 3D grid of size 200® (one cubic cell has volume 0.5 mm3). A pellet has the size of a cell,
they are picked up by moving ants and deposited according to the previously established rules,
vp(n) and vg4(n, ), where n is the number of pellets in the 26 neighboring cells in the 3D
grid (subsequently called Vagg), and 7, is the time since the last picking up or deposit in Vag.
Picking up occurs in the bottom layer of Vg, while the ant occupies one cell, deposits a pellet
in this currently occupied cell and moves according to a constrained random walk on the built
surface (that is, in an elementary move she chooses randomly one of the six orthogonal cells
to its current position if it is free and shares a face with a cell occupied by a pellet; 1500 such
elementary moves per At = 1 s were necessary to reproduce the same net squared displacement
as observed for L. niger in Khuong et al. (2013)). Picking-up and deposition rates are calibrated
to the observed behaviors (Fig 5.3). A body template effect is introduced when ants move along
vertical surfaces: in that case the deposition rate is multiplied by the cumulative density function
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Figure 5.6 — A-C: sequence that shows the emergence of two pillars that are joined by an arch (ants
are the red cells, brown cells are the initial construction material and grey cells are moved pellets/cells).
D-F': a simulation run where the “age” of a moved pellet is visualized by a gray level, white referring to
the most recently moved pellets (brown pellets have never been moved). G-I: the same representation
(with pellet “age”) on a larger scale, emerging structures above height 3 mm colored in red (G: 24 h,
H: 48 h, I: 96 h). All simulations were run with a pheromone mean life time of 1/v,, = 20 min. Figure
taken from Khuong et al. (2015).

in Fig 5.3C. The model is run with a discrete time step At = 1 s and 500 ants. In the beginning
the five bottom layers (2.5 mm) of the grid were filled with construction material. Fig 5.6A-C
is a typical simulation run showing the emergence of pillars and the formation of an arch. Figs
5.6 D-I visualize the complex topochemical landscape created by the evaporating pheromone.

Since the pheromone evaporation rate could not be determined experimentally we analyzed
the sensitivity of the emerging structures to pheromone mean life time v, ranging from 300 s
to 7200 s (and oo simulated by a time of 3.6:10% s) or no pheromone at all (all pellets modulate
picking up and dropping rates, even if they have never been moved). Fig 5.7 summarizes
the results. If there was no pheromone at all no structures emerged, a volatile construction
pheromone (whatever its precise effect) seems therefore to be necessary. With a non-volatile
pheromone (v,,! = 3.6-10° s) the pillar density became fare too high. The experimental results
were best reproduced by mean life times between 1000 s - 1200 s. The red curves in Fig 5.5
were made with v, = 1200 s (average over 10 simulations).

Overall, by calibrating a single free parameter (pheromone life time) our model correctly
predicted all collective statistics in Fig 5.5. Though it would be more satisfactory to measure this
pheromone life time also experimentally we consider this result to be strong evidence that such a
construction pheromone exists (though whether it affects ant movement or ant deposition rates
— as in our model — or ant picking up rates remains to be tested experimentally). Despite this
free parameter we think that the modeling cycle postulated in section 2.3 has been satisfyingly
applied to argue that construction in the ant L. niger is a self-organized process.
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Figure 5.7 — Effect of pheromone life time v,,,! on the emerging structures. (A) Distribution of nearest
neighbor pillar distance after 96 h. Red dots indicate the median value. (B) Evolution of pillar density
from 0 to 96 h. The red line is the experimentally observed dynamics. (C) Fraction of surface (in %)
covered by structures exceeding 3 mm at 12 h, 14 h, 48 h and 96 h. Fig taken from Khuong et al. (2015).

5.2 Termite nest construction: on architecture and underlying
individual behaviors

The work on nest construction in the ant Lasius niger has shown that ants can build complex
architectures based on rather simple individual construction behaviors. However, ants are slow
constructors, the experiments run to obtain the emerging structures on the collective level
took 500 ants one to two weeks. If you take the same setup but replace the 500 ants by 50
Procornitermes araujoi termites you get the same kind of architecture within a couple of hours.
Furthermore, the solidity of an ant construction depends mostly on the clay content of the
used building material, their structures quickly erode away under heavy rain fall. Termites, on
the other side, have invented mortar (saliva and feces mixed with the construction material)
that can render their structures as solid as air-dried brick buildings. Furthermore, termite
architectures are fare more diverse than ant architectures (see for example the virtual visits
in our online virtual nest museum, http://www.mesomorph.org). Six years ago I started to
collaborate with Ana Maria Costa Leonardo’s termite laboratory in Rio Claro, Brasilia, to work
on nest construction behavior in termites. The already mentioned ANR grant (MESOMORPH,
ANR-06-BYOS-0008, 2007-2010) also permitted to build a large data-base of 3D termite (and
ant) nest architectures by X-ray tomography. The long term goal is to link the individual scale
construction behavior research with the colony scale nest architecture research. Currently we
are advancing on both fronts. Section 5.2.1 summarizes our network approach to understand
the functioning (and growth) of Termitinae nests (based on the X-ray tomographies obtained in
the MESOMORPH project, see Fig 5.8). This work was mostly performed by postdoc Andrea
Perna (Perna et al., 2008a,c,b, 2011) which also served me to write the “Making Of” page in the
virtual nest museum: the text below is an extended version of this page. Section 5.2.4 concerns
our results on individual construction behaviors and the involved stimuli in the Brazilian termite
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Procornitermes araujot.

Figure 5.8 — (left) Photo of the epigeous part of a Cubitermes sp. nest. (middle left) The X-ray
tomography control room with a protected view on the scanner. On this photo a Cubitermes acquisition
is under way. (middle right) Virtual mold of the Cubitermes nest, representing the habitable space of the
termites by rendering the walls invisible. (right) Network representation of the Cubitermes nest. The
color of the nodes indicates their degree. Figs taken from the virtual nest museum.

5.2.1 The network approach to understand Termitinae nests

One of the most important nest functions is to allow the insects to move efficiently within
these architectures. To describe this movement we have chosen to represent the nest as a
communication graph. A graph has only two elements, nodes and edges, the latter connecting
some of the nodes. In the case of a Termitinae nest (Fig 5.9) large diameter chambers are
connected by small diameter tunnels, we can therefore represent each room as a node, and each
tunnel connecting two rooms as an edge.

Figure 5.9 — Network with nodes (chambers) and edges (tunnels) connecting them, and how this network
is projected inside a Cubitermes nest. Fig taken from the virtual nest museum.

A graph is a much simpler object than the virtually reconstructed nest from X-ray tomog-
raphy, and we can use the powerful toolbox provided by graph theory. However, we must first
identify all the chambers and passages between the chambers in a nest. What might seem like
a relatively simple operation by observing a single cut from the X-ray tomography is actually
a much more complex task when trying to automate it with a computer. Fig 5.10 explains
the procedure to extract the connectivity graph of a Cubitermes nest from the slides obtained
by X-ray tomography. In this species, the task is facilitated by the fact that the rooms have
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a shape close to a sphere with a diameter much wider than the diameter of the tunnels that
connect them.

Cubitermes Cubitermes Binarisation Chamber detection
sagittal section axial section

&0 &H

Tunnel detection

Figure 5.10 — Identification of chambers and tunnels from virtual slices of a CT scan. The first step,
the binarization, applies thresholding to separate the walls from the empty space. In the second step,
the walls grow a few pixels until all tunnels are closed. This identifies all rooms and permits to number
them. Return now to the previous image and let the chambers grow without piercing walls. A tunnel is
identified in this process by the meeting of two chambers. Finally we have to identify the neighboring
chambers of a given chamber. For this we go back to the previous image and let the chambers grow
this time through walls. When two chambers meet, we know they are neighbors. Obviously, all these
analyzes must be done in 3D where the pixels are called voxels. Fig taken from the virtual nest museum.

Each chamber is now representable by a node (virtually placed at the centroid of the cham-
ber), tunnels by edges together with the information which chambers they connect. Fig 5.8
shows the result for a Cubitermes nest.

What do the graph representations teach us about nest functioning? Obviously, the repre-
sentation of a termite nest in the form of a network is a rather crude approximation of their
apparent complexity. However, the analysis of these networks revealed surprising properties.
Let’s start by examining some simple descriptors of a network: the degree of a node (that is
to say the number of tunnels starting from a room, see Fig 5.11) and the shortest topological
path between two nodes A and B (that is to say, the minimum number of edges that must be
crossed to get from A to B, see Fig 5.11).

Node of Path length 3

degree 4 between A and B

Figure 5.11 — Two basic statistics to describe a network. The degree of a node is the number of edges
that depart from it. The shortest (topological) path between nodes A and B is the minimum number of
edges through which one must pass to get from A to B. Fig taken from the virtual nest museum.

Fig 5.12 shows the node degree distribution for the studied Cubitermes nests (white dots) and
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also in the hypothetical case where the termites would connect each neighboring chambers. It is
immediately apparent that the average node degrees in the studied nests are very low compared
to the situation where each room were connected with all its neighboring nests: Cubitermes are
very weakly connected.

It is also possible to "unfold” the connection network virtually on a plane (Fig 5.12); one
can see that the network’s structure resembles that of a tree with a very small number of main
passages traversing the entire structure of the nest and on which are grafted groups of rooms
organized in a bunch. This could be an adaptation to defend the nest: when a predator (like
an army ant) managed to enter the nest, a single soldier can block the tunnel of the concerned
branch to gain time for workers to close this communication channel.

Distribution of network degrees

Figure 5.12 — (left) The degree distribution of the nodes for 6 different Cubitermes nests; in white those
observed in the studied nests, and in blue those that would be obtained if all the neighboring chambers
were connected by a tunnel. The nest M10 corresponds to that of Fig 5.8. (right) The virtually unfolded
network of the nest in Fig 5.8: we see a structure that closely resembles that of a tree. Fig taken from
the virtual nest museum.

But the surprises continue. Look now at the distribution of the shortest topological paths.
Fig 5.13 shows the distribution obtained in the studied nests, and that one would obtain if all
the rooms were connected to their neighbors. The two distributions are very similar, as if the
termites had carefully chosen the tunnels to minimize the distances between any two distant
rooms.

Is it possible to obtain such a structure by choosing tunnels at random? This question is
far from trivial. Indeed, what would be the structure of a network with the same number of
nodes and edges as the original nests, but where the tunnels between the nodes were arranged
at random? To build such a network, one must meet certain constraints. For example, each
node must be connected to the network and tunnels may only connect adjacent chambers. Fig
5.14 describes an algorithm that creates random networks within these constraints.

By simulating a large number of random networks of this type, it is possible to calculate
the average length of shortest paths and compare them to the original network. The result
is shown in Fig 5.14. We can see that the average length is significantly shorter than for our
random networks. This result indicates that termites do not choose edges randomly, but that
they found a way to choose the most important tunnels in order to shorten the distances in the
nest. The behavioral mechanisms that allow this ingenious choice are still completely unknown.

However, one may try to imagine such mechanisms that optimize the network in the sense
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Figure 5.13 — The distribution of the shortest topological paths for 6 different Cubitermes nests; in gray
the actually observed distribution and in white the one we would obtain if each chamber were connected
to all its neighboring chambers. Fig taken from the
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Figure 5.14 — (left)The construction of a random network while conserving the number of nodes and
edges. (a) is the original network, (b) the complete network by connecting all the neighboring nodes, (c)
the minimal tree that retains full connectivity, and (d) a random network by adding random edges to reach
the number of edges in the original network. (right) The average length of the shortest topological paths
for five Cubitermes nests, comparing the original network (green dots) to random networks (boxplots)
and networks optimized to preserve the most important edges (horizontal line). Figs taken from the
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of providing short travel distances between distant chambers. While studying different models
of network growth and dynamical change we were able to formulate such a hypothesis: the
optimization procedure could rely on the termites’ capacity to estimate in a non-centralized
way another important edge characteristics, its centrality. For this estimation they could use
the trail pheromone concentration that forms on every edge in the network from the termites
passing through this edge (termites, just as ants, use chemical signals deposited on the ground
to communicate indirectly, e.g. to guide termites to a new foraging site). Centrality is a measure
of an edge’s importance for the traffic within a network and its value corresponds to the total
number of shortest paths between any two nodes that pass through this edge. The pheromone
used by the termites will tend to accumulate on the edges with the most passages, that is to say
on the "most central” edges. In the scenario that we simulated in our model, we start with the
maximally connected network and remove progressively the edges with the smallest centralities
until we have the same number of edges as in the original Cubitermes network (the mean path
lengths represented by a horizontal line in Fig 5.14 were computed with this algorithm). The
resulting network only contains the most important edges. The results show that networks built
by this algorithm share many characteristics with the networks built by termites (Fig 5.15).
Or, field observations show that Cubitermes termites indeed rework sometimes the structure of
the communication network between the chambers by blocking certain passages. This simple
mechanism of path conservation according to traffic intensity could allow termites to collectively
optimize the network structure within their nest, in a totally decentralized manner and without
any insect needing information on the global network.

100 200 300 400 500 600 700 800
Centralite de Chemin

Figure 5.15 — Simulation of the network evolution when the edges (galleries) having a low centrality
value are gradually eliminated, while ensuring that the network remains connected. In networks produced
by this model, the distances between nodes are relatively short, although a large number of edges have
been removed. Fig taken from the virtual nest museum.

We continued this work on the network structure in Cubitermes termite nests with a new
approach provided by the research group of Luciano da F. Costa in Sao Carlos (Brazil). With
his student Matheus Viana he had developed a network measure that characterizes dynamics
on a network: accessibility (Viana et al., 2012; da F. Costa, 2008). For a given number of
k steps from node to node on a network, accessibility quantifies the mean number of nodes
that can be reached in k steps (out-accessibility) or the mean number of nodes from which
a focus node can be accessed in k steps (in-accessibility). This accessibility has biological
meaning when it comes to transportation/movement inside the nest or defense of the nest
against invading ant predators. The application (Viana et al., 2013) on the 6 Cubitermes nest
networks of Perna et al. (2008a,c) revealed that in- and out-accessibility are mostly symmetrical
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(Fig 5.16¢). Furthermore, dividing the nest in three parts (cells on the nest surface, S; central
cells with now contact with the surface, C; cells in the bottleneck zone between the nest and
the underground tunneling network, B; see Fig 5.16a) surprisingly showed that accessibility was
lowest in the B zone. This result can be interpreted in the context of nest defense against ant
predators who have to pass through this bottleneck zone when accessing the epigeous nest after
entering through the underground tunneling network (or vice versa). Termites themselves can
bypass the restrictions of accessibility by circulating on pheromone trail networks, but further
work will be needed to assess how the termites actually move around in their nests.
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Figure 5.16 — Accessibility analysis of Cubitermes nest communication networks (each chamber is a node,
a tunnel between adjacent chambers is an edge). (a) separation of the nest in three parts: chambers
along the nest surface (S), internal chambers without surface contact (C) and chambers in the bottleneck
zone between the nest and the underground tunnel network. (b) Network representation of the same
nest. Node colors code for out-accessibility. (¢) comparison between in- and out-accessibility for the
three nest parts (the crosses represent the median +- quartiles). Figs modified after Viana et al. (2013).

All previously presented work analyzed the properties of the networks extracted from the
real nests. Perna et al. (2008c) had compared these networks to random graphs. However,
his random graphs were still based on the node coordinates and edge statistics of the origi-
nal networks, they were not based on a network generation algorithm starting from an initial
chamber as in termite nest construction. Valverde et al. (2009) went a step further by gen-
erating networks with random node coordinates: based on the observation that Cubitermes
nests were layered with different connection probabilities between horizontal layers and within
them he formulated a network growth model that started with a fully connected regular cubic
lattice of the same dimensions as the real nest, then removed edges randomly until obtaining
the same connection probabilities as in the original network, and finally added stochastic noise
to the node coordinates that may result in the fusion of nodes that had become too close.
The analysis of these random graphs showed that the connectivity probabilities in the real nest
networks brought them close to the percolation threshold (fewer edges would lead to network
disconnection), confirming the earlier results by Perna et al. (2008a) that these networks are
sparsely connected and rather resemble trees than networks. However, the model of Valverde
et al. (2009) was not an actual network growth model since it started with an existing grid of
the right size.

In Eom et al. (2015) we therefore tried to develop a network growth algorithm that started
from a single initial node and whose growth rules were only based on locally available infor-
mation. In this work we added to the six Cubitermes nests six other Termitinae nests: four
Procubitermes nests and two Thoracotermes nests. An edge connecting two nodes is charac-
terized by its length, its angle on the horizontal plane and its angle on a vertical plane (see
Fig 5.17(left)). Eom et al. (2015) showed that in all 12 nests edge length and the angle on a
vertical plane had Gaussian distributions while the angles on the horizontal plane had isotropic
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Figure 5.17 — (left) Empirical network description in the case of nest C9 (Cubitermes sp., Central
African Republic, see Fig 1B in Perna et al. (2008a)). (a) Each tunnel or edge is represented as a vector
in spherical coordinates, (b) tunnel lengths (r) distribution, (c¢) distribution of the vertical component
(9, 0 points upwards and 7 points downwards), (d) distribution of the horizontal component (¢). (¢) and
(d) are symmetric and periodic respectively because both @1 — @5 and @5 — ¢ are used. (right) The
analyzed Thoracotermes nest T29 with its network representation (middle) and a simulated network
(right). The pink node (lower right) indicates the initial node of the simulated network. Note that
while there are isolated chambers in the original network, isolated chambers are more prevalent in the
simulated nests. Figs taken from Eom et al. (2015).

distributions. This led him to a network growth algorithm starting from a single initial node,
adding then iteratively new edges to randomly chosen nodes with length and angles drawn from
the empirically characterized distributions. When a new edge came too close to an existing
node it connected to it without generating a new node. Edges were also constrained to remain
within a vertical cylinder (with elliptic base) of the same size as the original nests. The node
from where to start a new edge was not chosen randomly but preferring the most recently added
nodes with an exponential decay of their attractiveness (as if there was a volatile pheromone
incorporated into the construction material, with decay rate n). Furthermore, at each iteration
step (adding an edge) the edge with the lowest betweenness centrality was pruned with a fixed
probability p. These steps were repeated until the random network had the same number of
nodes as the original one. The two parameters, n and p, where calibrated to each nest in order
to reproduce the same number of edges and the same nest height. Fig 5.17(right) shows an
example random network for a Thoracotermes nest.

This calibrated model correctly predicted in all 12 nests several emerging characteristics:
node degree distribution, average topological distance between any two nodes and backbone
link ratio (the latter is the fraction of edges who’s removal leads to a disconnection of the
network). The growth rules therefore seem plausible, and in a next step one could investigate
experimentally how termites actually initiate new edges according to the postulated rules.

5.2.2 The virtual nest museum

An important part in the mentioned ANR project MESOMORPH was the visualisation of the
nest architectures acquired through X-ray tomography. Modern tomographs have a resolution
of 0.3 mm in all three dimensions, scanning a nest with a typical height of 30-50 cm therefore
results in several hundred slides that have to be processed. Software to visualize these tomo-
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graphies target medical applications. Though some of them are free or competitively priced
for science (we used initially the free Osirix viewer based on 32 bit technology, though the size
of the files quickly obliged us to buy the commercial 64 bit version), these viewers are not
particularly adapted to investigate nest architectures. The Laboratoire Informatique de Nantes
(LINA), one of the four partners in the project, developed therefore an application for handling
the rather large digital files. This software has been designed to allow interactive navigation
within the visualized structures. This mode of interaction allows to study the internal physical
characteristics of a nest or confirm working hypotheses without having to physically destroy it.
But to move freely in a three dimensional space one has to simultaneously handle six degrees of
freedom: 3 translations along the x, y and z axes and 3 rotations around these same axes. To
facilitate this interaction, the software supports devices specifically designed for that purpose:
3D mouse and inertial sensors (Fig 5.18).

Figure 5.18 — (left) 3D navigation in an Apicotermes nest with "Wii” type technology. (right) Navigation
with a 3D mouse in an Apicotermes nest projected on the interior of a dome to give a 3D feeling.

However, this software was only used amongst the MESOMORPH partners, its complexity
and specificity made it difficult to provide a stable version to a larger community. All the
beautiful visualisations of the complex nest architectures acquired through this project therefore
remained mostly hidden from a larger public. We found this disappointing and therefore sought
ways to render these architectures available to a large public. A first part was to write a public
science portfolio in the Journal “Pour la Science” (Theraulaz et al., 2012b) that was distributed
together with anaglyph 3D glasses in order to visualize some of the nest architectures in 3D.
A second part was to design and develop a Virtual Nest Museum? that presented for each
studied species general scientific information, photos of the nests and the termites, 2D and 3D
visualizations made from the X-ray tomographies, and movies showing the virtual navigation
through these nests (Fig 5.19). This website was designed with an open architecture, that is
a backoffice interface allows to add new nests (with their visualizations) as soon as we have
them. This Virtual Nest Museum contains currently information for six genera: Cubitermes,
Procubitermes, Apicotermes, Thoracotermes, Sphaerotermes and Trinervitermes.

5.2.3 Tunnel networks in termites

Many termites search their food (dead organic material such as wood or grass) by digging an
extensive underground tunnel network. Tunneling provides also the raw material for construc-
tion activity. The mechanisms underlying tunneling activity therefore provides supplementary
information to the understanding of construction activity. We studied such foraging tunnel

3http://www.mesomorph.org
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Figure 5.19 — (left) Welcome page of the Virtual Nest Museum. The “Making of” part describes how
termite nests can be analyzed with X-ray tomography, while the “Nests” part gives access to a data base
where we can provide for each species or nest type a general text providing some biological information
and as many visualizations (photos, virtual reconstructions, virtual fly throughs) as available. (right) A
typical page for a genus/species (here Apicotermes) with the general biological information below and
the available visualizations on the left. Clicking on one of these icons loads the image or movie in the
main window above the text, and a further click on this object opens it in a large popup window for
better visualization.

networks in three Brazilian termite species: Velocitermes heteropterus, Procornitermes arau-
joi and Cornitermes cumulans. We made them dig under laboratory conditions during 3-5
days in horizontally placed sand disks where tunnel progression can be monitored by taking
photographs at regular time intervals. The sand disks were accessed at a single location and
tunnels radiated away from this entry point (Fig 5.20). In all three species, several tunnels
were dug in parallel and branched frequently. Digging occurs at a constant speed but slows
down towards the end of the experiments. The analysis of the inter branching tunnel lengths
showed that they have exponential distributions (Fig 5.20a+b top), suggesting that branching
occurs at a constant rate (Haifig et al., 2011; Jost et al., 2012). In V. heteropterus two castes
participated in this digging activity, majors and minors. Single caste experiments showed that
they have caste specific branching rates, but in mixed caste experiments the one of the major
caste dominated (Haifig et al., 2011).

P. araujoi and C. cumulans are two sympatric species of near identical morphology and living
on the same resources. Experimental encounters between the two species show that they quickly
engage in agressive behaviors with ferocious fights where soldiers and workers participate equally.
We studied how competition affects their tunnel networks by letting them access the same sand
disk from two different entry points (Fig 5.20b, Jost et al. 2012)*. When the two tunnel networks
met the usual reaction was to wall off the breach immediately, thus avoiding direct fights. There
is even evidence that P. araujoi can detect C. cumulans tunnels some distance before actually
encountering them. However, both species do not hesitate to invade part of the other species’
tunnel network and incorporate it into their own network. Nevertheless, in natural 3-dimensional
soil environments encounters between the tunnel networks are supposedly rare, the competition
between these two species is therefore rather of the “exploitation competition” type, not of

‘see additional material on my homepage http://cognition.ups-tlse.fr/_christian/TermiteNetworks-InsSoc-
012/CornitermesProcornitermes.html
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Figure 5.20 — Tunnel networks in (a) Velocitermes heteropterus or (b) Procornitermes araujoi (Pa)
and Cornitermes cumulans (Cc). The survival curves on top show the exponential distribution of the
inter-bifurcation distances. In (b) the ‘Comp’ column shows what happens when the tunnel networks
of the two species encounter each other (interference, walling off). Figures modified after Haifig et al.
(2011) and Jost et al. (2012).

the “interference competition” type. However, we noted that, at least for C. cumulans, the
foraging tunnels progress at a constant depth below the surface, with frequent branchings that
mount to the surface to let termites locate food (unpublished). The 2D topological nature of
the tunnel networks found in our artificially 2D experimental setups (constant branching rates)
may therefore also apply in field conditions.

5.2.4 Comparative study of Procornitermes araujoi and Cornitermes cu-
mulans nests

Preliminary construction experiments also showed that P. araujoi as well as C. cumulans are
good experimental models to study their construction behavior: 20-50 workers placed in a 5 cm
& Petri dish with soil rebuild a complete shelter within a couple of hours (as in the ant Lasius
niger construction starts with pillars that are then covered by a roof). Both species live in the
same area (sympatry), sometimes in the same field. They are taxonomically close, of nearly
identical morphology (C. cumulans is on average slightly larger, Jost et al. 2012) and can only be
distinguished by a line of microscopic hairs on the hind leg of C. cumulans (Constantino, 1998).
However, their nest architectures are quite different, with P. araujoi building a homogeneous
sponge like network of interconnected chambers that resembles the nest of L. niger in Fig 5.2
(in particular, one cannot distinguish distinct tunnels as in the Termitinae nests), while C.
cumulans builds very solid and compact nests with a distinct paraecy (empty space) separating
it from the surrounding soil and an internal organisation composed of a massive outer shell
made of clay and a softer inner part made of organic material and organized in lamellae (Figs
5.2(right) and 5.21).

Given these observations we decided to concentrate on the construction behavior and their
coordination mechanisms in both species, first to test whether the similar architectures in L.
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Figure 5.21 — (left) Sagittal cut of a Procornitermes araujoi nest in Rio Claro, Brazil, with the epigeous
constructed part and the hypogeous dug out part. A yellow square is of size 5 cm x 5 cm. (middle)
Excavated nest of a Cornitermes cumulans nest in Brasilia, Brazil, showing the below ground paraecy
that separates the nest from the surrounding soil (with foraging tunnels extending from the paraecy
towards the foraging grounds and the ground water level). The epigeous part is ~ 40 cm high. (right)
Saggittal cut through a small C. cumulans nest from Rio Claro, Brazil. Only 5 cm of the nest are
epigeous. One can clearly distinguish the massive outer shell (made of clay) and the soft inner part
(made of organic material).

niger and P. araujoi are based on similar construction behaviors, and second to identify the
behavioral differences at the base of the architectural differences between P. araujoi and C.
cumulans. We hypothesize that the basic construction behaviors are the same, but that their
modulation by environmental stimuli (such as humidity, CO2, temperature) or colony specific
stimuli (colony odor, trail pheromones) can explain these architectural differences.
Construction behavior in P. araujoi was studied in Fouquet et al. (2014)°. Fig 5.22 shows
the termites during construction, a close-up of the typical epigeous nest architecture, and the
result of a 1 h construction experiment where 10 or 25 termite workers are placed in a 4 cm &
plastic beaker on a 4 mm deep soil disk: they quickly start digging tunnels, but are stopped
by the beaker bottom before finding shelter. With the excavated material they build pillars
and start extending them laterally (exactly as in L. niger), stopped finally by the scarcity
of available construction material. The experiment was filmed from the top. When a termite
deposits an excavated pellet it makes a characteristic screwing motion of the head. This screwing
motion can be detected by eye and backward playing of the movie permits to identify where
the pellet has been dug out. By this procedure the first ~150 (in the experiments with 10
workers) or =400 (in the experiments with 25 workers) pellet transports were identified with
their excavation coordinates, transport path and deposition coordinates. From these data we
could reconstruct how many previously deposited pellets a transporting termite could detect at
each moment (with their antenna, therefore a circular perception area with radius = antenna
length). Assuming that termite behavior is Markovian (an assumption that has frequently been
found to be sufficiently accurate for social insect behavior, Camazine et al. 2001) we could
then reconstruct the survival curves of pellet transports for a fixed number of detected pellets.
Fig 5.23 shows the results of this analysis. First, the survival curves all resembled exponential

®see also additional material on my homepage http://cognition.ups-tlse.fr/ christian/FouquetEtal-014-
webPage/FouquetEtal-InsSoc-2014.html
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Figure 5.22 — Construction activity in the termite Procornitermes araujoi. (a) two workers fixing a
breach in the nest wall while being guarded by a soldier, (b) typical architecture of their nest with
densely packed chambers separated by thin walls, (c) experimental de novo construction with 25 workers
+ 3 soldiers in the laboratory (3 h after beginning the experiment). Fig 1 from Fouquet et al. (2014).

distributions, pellet deposition behavior can therefore be modeled by a constant deposition rate
(estimated as the inverse of mean transport time or as the slope of the survival curve on log-
linear scale). Second, the deposition rates increased with the number of detected pellets. There
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Figure 5.23 — Transport times as a function of termite density and the local density of previously
dropped pellets. (a) The mean transport times, (b) survival curves of the transport times in experiments
with 10 workers for 0 to 3 perceived pellets, (c) survival curves of transport times in experiments with
25 workers, separately for each number or perceived dropped pellets (0 to 10). Fig 4 from Fouquet et al.
(2014).

is therefore a double positive feedback: digging stimulates further digging (tunnel formation)
and deposits stimulate further deposits (pillar formation). Third, the deposition rates were also
influenced by termite density, being smaller at higher densities. This predicts a larger spacing
between pillars at higher densities, a prediction not yet experimentally tested.

The literature on termite construction behavior (Bruinsma, 1979; Grassé, 1984) also sug-
gests that pellets are marked with some construction pheromone which stimulates deposition
behavior. In order to identify whether the detected positive feedback in pellet deposition be-
havior relies on such a marking we run a second series of experiments (Fig 5.24). Based on the
strong positive feedback on digging we provided two small holes to initiate digging in them.
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Figure 5.24 — The experimental setup for the binary choice experiments. Termites move in a conical
beaker on a 6.3 cm wide soil disk that is surrounded by a polystyrene ring that is level with the soil.
Inside the disk two stimuli were placed (see ¢) asymmetrically around two small holes in the soil that
stimulate digging activity close to the stimuli. Termites that exit from the hole with a soil pellet have
therefore the choice between the stimulus (test zone) and standard soil (control zone). (a) shows the
complete setup, and (b) shows the zones on the termite moving ground where picking up and dropping
events were counted. (c) The three types of experiments used: (S2T1) two unmarked soil heaps, (5S2T2)
marked and unmarked soil embedded in the sand disk (the curly lines indicate marking), and (S2T3)
marked versus unmarked soil heaps. The distance between the two stimuli (4 cm) is larger than the
average distance between two constructed piles observed in the construction experiments. Fig 2 from
Fouquet et al. (2014).
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Termites were therefore in a binary choice situation (would they concentrate digging effort only
on one hole or on both? See Detrain and Deneubourg (2008) for an extensive discussion on
collective decision making and the underlying individual mechanisms). We added a second bi-
nary choice situation by providing different stimuli on two sides of the holes: (I) an artificial
unmarked pillar vs. level unmarked soil, (IT) level marked soil vs. level unmarked soil, and (I1I)
a repeat of setup (I) but with one of the pillars made with marked material (marked material
was always taken from another ongoing construction experiment with termites from the same
colony). Case (I) tests whether elevated structure stimulate deposition on them, case (II) tests
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Figure 5.25 — RWP’s (Renormalized Weighted Proportions) of deposits in the binary choice experiments:
(a) comparison between test (structure, tz) and control zone (cz) for experiments of type I, and (b,c)
comparison between these two zones and whether the test zone contained marked (m) material or not
(nm) for experiments of type II and III.Fig 7 from Fouquet et al. (2014).

whether marked soil stimulates deposition, and case (III) tests whether their is an interaction
between the two stimuli (structure and marking). In all cases an experiment started with the
introduction of 30 worker termites in the arena and their construction activity was filmed for
30 min. We identified in each replication the positions of the first 50 digging and deposition
events and attributed them to 8 zones: hole 1 or 2, test zone (pillar or soil insets) 1 or 2, control
zone (opposite pillar or soil inset) 1 or 2, construction zone (rest of setup where soil is present)
or edge zone. To test for structure or marking effects we weighted these counts by the surface
of each zone and renormalized the new values to sum to one in a given experiment. We will
refer to these Renormalized Weighted Proportions as RWP. 90% of digging events occurred in
the holes, wile 90% of the pellet depositions occurred in the control or test zones. Fig 5.25
summarizes the depositions in control and test zones. In case (I) there is a clear effet of struc-
ture, pillars attract further deposits even if not marked. In case (II) no effect of marking can
be detected, termites deposit as often on marked as on unmarked soil. In case (III) we find
around both holes the same result as in case (I), termites deposit preferentially on pillars but
without making a distinction between marked and unmarked pillars. On first sight marking
of soil seems therefore to be of no importance. However, when testing for collective choices
between activity around holes 1 and 2 we could detect such collective choices only in case (III):
if there were no marking effect we should have detected these collective choices also in case (I).
On the other hand, it is known that asymmetries in binary choices can accentuate the collective
decision making (Beckers et al., 1992a). There is therefore nevertheless some indirect evidence
that marking plays a role, though it is not clear which one.

We rerun the experiments of case (II) with a higher replication number and in a simplified
version with only one initial hole and a single binary choice between depositing on the side of
an inset with marked material or on the side with an inset of unmarked material (Pechabadens,
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2014). But still no effect of marking on pellet deposition could be detected. Actually, the
simple stigmergic mechanism “termites preferentially deposit on recently manipulated material”
that is suggested in the literature (Bruinsma, 1979; Grassé, 1984) and that can produce the
observed emergent constructions (Courtois and Heymans, 1991; Bonabeau et al., 1998a; Ladley
and Bullock, 2005; Hill and Bullock, 2015) seems to be more complex: Petersen et al. (2015)
performed the same kind of experiment with a different species, Macrotermes michaelseni, and
they found that recently manipulated material had the effect that termites simply spent more
time near marked material. Higher deposition rates on marked material might therefore simply
be a side effect of this “arrestant” (sensu Petersen et al. (2015)) property. This reminds us
of a first model leading to pillar construction where marking actually did not modulate the
deposition rates but the movement of individuals that followed the gradient of the volatile
marking (Deneubourg, 1977). In sum, volatile marking of construction material seems to be
necessary in the formation of pillars (Khuong et al., 2015), but the actual role of marking on
animal behavior remains to be determined.

I will finish this section with two preliminary experimental results (Fig 5.26). First, P.
araujoi also seems tu use its body as a template when depositing pellets on a vertical surface:
the highest deposition frequency occurs at a height of 6-7 mm that just corresponds to these
termites’ length (Fig 5.26(left)). These experimental data will allow us to start implement-
ing P. araujoi construction behavior in 3D just as we did in the case of L. niger (see next
chapter). However, contrary to L. niger, P. araujoi heavily relies on pheromone trails already
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Figure 5.26 — (left) distribution of construction material along a vertical surface. (right) average termite
density (averaged over 5 min, black indicates high density) of 100 termites moving in a 24 cm & arena
on white paper at the end of a 1 h experiment.

during exploration behavior (Fig 5.26(right)). A recent simulation study of termite construction
(Hill and Bullock, 2015) had shown that such pheromone trails strongly influence the emerging
structures. Bruinsma (1979) had also run nuptial chamber construction experiments where the
worker’s bellies were varnished, they were therefore unable to lay a pheromone trail: no nuptial
chamber was constructed in these experiments, the pillars remained very flat. These pheromone
trails play therefore an important role in termite construction, but their exact effect in the case
of P. araujoi remains to be explored by applying the full methodology of section 2.3 (see next
chapter).
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Chapter 6

Where to go now?

In the last chapter we announced that we want to concentrate on construction behavior in
Procornitermes araujoi and Cornitermes cumulans, first to test whether the similar architectures
in L. niger and P. araujoi are based on similar construction behaviors, and second to identify
the behavioral differences at the base of the architectural differences between P. araujoi and
C. cumulans. The reported research shows that we are just at the beginning of the first goal.
Within the next four years I plan to advance on several fronts.

6.1 The role of individual movement in the emergence of the
nest architecture in Procornitermes araujoi

The experimental data that are available on P. aruajoi individual construction behavior are
comparable to what was available in Khuong et al. (2015). From my 2009 stay in Brazil we also
have three collective construction experiments that had been monitored by a microtomograph
(provided by Carlos Vaz from EMBRAPA Instrumentacao). We are therefore ready to start
closing the methodological cycle from section 2.3. During the last two years this project was
offered as a PhD project in the International PhD Office of the University of Toulouse, and we
were lucky that a Chinese physics student obtained a 4-year Chinese Scientific Council (CSC)
grant to work in our group on this project (starting in October 2015). Beyond simply redoing
the work of Khuong et al. (2015) for a different species we want to take in this PhD a closer
look at the role of individual movement on the emerging nest structures. P. araujoi relies
much more on pheromone trails than L. niger (Fig 5.26), and the simulation work by Hill
and Bullock (2015) had shown that pheromone trails modify the morphospace of the emerging
structures. Furthermore, a recent paper (Perna et al., 2012) provides a methodology how to
analyze and to model such emerging trail networks. A first task will therefore be to develop a
trail formation algorithm for P. araujoi and incorporate this algorithm in a simulation platform
for construction'. This will permit to assess whether the incorporation of this movement type
improves the predictive power on the collective level. Note also that the individuals move
around on a surface in 3D. Khuong et al. (2013) had shown that the correlated random walk of
L. niger is modulated by this third dimension. Preliminary data on P. araujoi’ indicate that
this is also the case in our study species. Another task will therefore be to assess whether this
modulation is important to correctly predict the emerging constructions on the collective level.
All-together, this is an ambitious program and we will see how far we get in the framework of

!Experimental data to apply this methodology to P. araujoi had been collected during my two months invited
professorship in Rio Claro in 2012
2 Also gathered during 2012 in Rio Claro
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this CSC PhD. This PhD is for me also the occasion to reinforce our workgroup’s collaboration
with two physicists from the LAPLACE laboratory in Toulouse, Richard Fournier and Stéphane
Blanco. I also hope to develop during this time collaborations with external partners that can
help us advance on how to characterize the complex architectures found in P. araujoi and in
C. cumulans.

6.2 The interplay between nest architecture, environmental pa-
rameters and individual behavior

The architectural differences between P. araujoi and C. cumulans are probably linked to their
ecological function, that is the way the architecture helps the colony to survive and to produce
sexual individuals that can themselves found new colonies. The architecture can in particular
help control environmental variables such as temperature and humidity, and it plays also a role
in the gaseous exchange with the environment (export COy produced in the nest by metabolic
activity and renew the consumed O3). We therefore hypothesize that the environmental vari-
ables best controlled by some architecture are stimuli involved in the modulation of construction
behavior in order to obtain this particular architecture. This idea is at the base of another PhD
who already started in fall 2014. His first task will be to monitor in the field temperature and
humidity both outside and inside the mounds of P. arauoi and C. cumulans in order to assess
whether the more complex architecture of C. cumulans better controls these factors®. If this
turns out to be true he will assess in an experimental approach how these factors modulate con-
struction behaviors and how this modulation modifies the emerging architectures. He will also
test whether the individuals of the species with better controlled environmental variables are
more sensitive to changes in these variables. We hope to gain from this PhD not only a better
understanding of the ecological role of these species’ architectures but also to become able to
formulate clear hypotheses how environmental variables affect individual construction behavior
in these species in order to let certain architectures emerge. The field and experimental work
during this PhD will again be executed in the termite laboratory of A-M Costa Leonardo in
Rio Claro, and this PhD will also be the occasion to add some neotropical termite nests to the
virtual nest museum. While the PhD will focus on temperature and humidity we will also start
to acquire the necessary technology to study the effect of CO9 concentration on construction
behavior (as done in Rémer (2014) in the case of nest construction in leaf-cutting ants). COq
is a candidate how termites estimate their position in the nest with respect to the nest paraecy,
and thus a potential stimulus to explain the transition from the soft inner core to the hard outer
shell in C. cumulans (Fig 5.21).

6.3 Are there alternatives to our methodology to study self-
organization?

Our methodology to analyze collective animal behavior (introduced in section 2.3) is, as already
mentioned, simply a variant of the well known in-sample and out-of-sample methodology -
estimate the parameters by fitting the model to some data, then use different data to test
the predictive power of the fitted model. If the model predicts the (out-of-sample) observed
phenomenon satisfyingly one concludes that the underlying behavioral model is likely to cause
this phenomenon. Several candidate models can be subjected to this methodology, and the one

3The termite literature often mentions that the temperature and humidity inside the fungus cultures of
Savannah termites are kept at nearly constant levels throughout the year. However, there is no direct experimental
evidence for this claim, rather the contrary (Turner and Soar, 2008).
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that best predicts the observed phenomenon can be selected as the most likely explanation. We
are now in the context of model selection, a very challenging field in the statistical literature
(Linhard and Zucchini, 1986; Burnham and Anderson, 2002; Claeskens and Hjort, 2008). The
question is what criterion should be chosen to decide whether one model is better than another.
The mentioned in-sample and out-of-sample methodology combined with a simple comparison
statistic such as the squared differences between observed and predicted values can do fine.
However, the models linking individual to collective behavior are all of the non-linear type. The
predictions of non-linear models can be very sensitive to slight changes in parameter values
(chaotic dynamics) or slight changes in the used functional descriptions (Wood and Thomas,
1999). Since these parameters are estimated on the individual level with some limited precision,
one may ask the question whether some slight tweaking of these values to improve the fit on
the collective level is legitimate - but how much tweaking is legitimate without compromising
the fitting done on the individual level? This question made us reconsider the in-sample and
out-of-sample framework and come back to fitting the complete model to all available data (Sbai
et al., 2015).

The literature suggests two main methods for model selection when several alternative mod-
els are fit to the same data set. The first is the likelihood ratio test to compare between nested
models. The second is the information criterion (IC) approach promoted by Burnham and
Anderson (2002). It has recently been given quite some attention in the behavioral sciences
(special issue of Behavioural Ecology and Sociobiology 2011, V 65, Nr 1). Both methods are
based on the formulation of a likelihood function that quantifies the likelihood of a model M
given the data D, L(M; D). A model M is fitted to the data D by maximizing this likelihood.
In practice this means to find the numerical values of the model parameters 8 that maximize
the likelihood. If there are two models My and Ms with K7 and Ko parameters respectively we
can compute the maximum likelihood fits of both models, Lys1(01; D) and Lo (0a; D).

If M; is nested in M, (that is, M7 can be obtained from Ms by fixing some of Mj’s parameters
to specific values) we can compute the log likelihood ratio statistic

D = —2log (LMl(el; D)

~ = —2|log Lys1(81; D) — log Ls2(6a; D) (6.1)
Lra(02; D)) [ }

(since M is nested in My the latter will have a less negative maximum log likelihood, we
therefore have the relation log LMl(él; D) < log LMQ(éQ; D) and D > 0). According to Wilks
theorem, D will be asymptotically x? distributed with Ky — K degrees of freedom. One can
therefore test whether model Ms fits significantly better than model M.

In the information criterion approach model selection is not based on a statistical test but by
comparing the likelihoods after penalising them in some way by the number of model parameters.
The best known information criterion is Akaikes Information Criterion AIC (Akaike, 1973),
defined as

AIC = —2log(Ly(0; D)) + 2K. (6.2)

One selects the model with the smallest AIC. Information criteria are also valid for non-nested
model selection. Furthermore, if the goal is to estimate a parameter common to several models
the IC approach also allows to do multi-model parameter estimation, thus avoiding the question
of model selection (Burnham and Anderson, 2002). However, in the present case we consider
the case where one is looking for a single best-fitting model.

Can these model selection schemes also be used when trying to identify the underlying be-
haviors of a collective phenomenon? Recall that the key issue outlined above was to estimate
parameters with data on the individual level, but to validate the model with data on the collec-
tive level without actually fitting it to these data. However, the likelihood function computed
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with the data on the collective level will not be at its maximum with the parameter values fitted
on the individual level - on the other hand, all the statistical theory behind the likelihood and
information criterion approach assumes to be at this maximum. In the outlined in-sample and
out-of-sample approach we therefore cannot use these two model selection methods.

Nevertheless, we think that this approach can be applied to find the model that explains
the observed data with the least complex functional relationships (parsimony). The key issue
is to develop a likelihood function that correctly combines model fit on the individual and the
collective level. Since likelihoods are based on probabilities we suggest that one can simply
develop a likelihood function on each of these levels, and maximize the global likelihood that is
the product of these two likelihoods. Let Dy and D¢ be the (independent) data on the individual
and on the collective level respectively, M7 and M the statistical models on the two levels and 6y
and O¢ their associated parameter sets. On the collective level this can be as simple as modeling
a statistic from replicate experiments by its mean and standard deviation. Let Li(0r; Dy) be the
likelihood function on the individual level and Lc(6Oc; Dc) the one on the collective level. 6y
and @¢ can be estimated independently from the data on the individual and the collective level
respectively. But if the collective behavior emerges from the individual behaviors in M then
some of the parameters in M¢c will be predicted by the individual parameters 6y (for example
the mean value of some collective statistic), though not necessarily all of them. We can write
in this case 8¢ = (0,,0,), with 8, = 6,(0;) being the parameters emerging from the parameters
on the individual level and 0, the parameters exclusive to collective behaviour.

If individual and collective behaviors are consistent with each other, they should bring
consistent estimates of the linked parameters 8,, that is, the estimates derived independently
from individual and collective behaviors should be estimates of the same parameters. This is
tested by comparing the joint log likelihood L¢y evaluated with 6, = 6,(6;) (the joint maximum
likelihood estimate OAL’CI) to the log likelihood L1 obtained by separately fitting each type of
observations. That is, we compare

Ler = Li(61.01;: Dr) - Le(8c cr; Do), (6.3)

A

where Oc.c1 = (0,.c1,05,c1) = (0,,c1(01,01), 0.1, to
Ly = Li(@r.ci; D1) - Le(Oc.c 13 Do), (6.4)

where éLC/I maximizes L(OALC/I; Dr) and BAC’C/I = (éhc/l, GA&C/I) maximizes Lc(éqc/l; Dc)
independently.

Both likelihoods are based on the same data set (D¢, Dy), we can therefore use both model
selection schemes explained above. This idea is applied in Sbai et al. (2015) to the thigmotactic
data of Casellas et al. (2008). Since I am not a professional statistician I want to work on such a
theme with competent people. At the moment the project is on hold mostly by open questions
how to apply the scheme in detail to our data and a lack of time to dive into these questions,
but since model selection has been on my interest list since my PhD I plan to follow up on these
ideas.
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